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ABSTRACT

u
1
.-

A finite element formulation based on the principle of

.o

Virtual Work, for the analysis of material behavior flo#ing

v

in an axisymmetric silo is presented. The formulation
incorporates ®he Coloumb's fridtién,meéhanism through an

iterative sélution scheme. In the absence -of a rate
«dependent copstitutive law for stored material, én.elastic

-~ ) . ',w -
wpérfectly.plastyc material is proposed as a-first approach

.to theﬁgolution of such p;obleﬁs.-
v v L

A finite element progfam, FEPILS, based on program
FEPARCSS5 (Elwi and Murray, 1980) is used as a tool to

analyze a finite element‘model‘of.flowing material in

.

~axtsymmétric silos.

\

A series of problems are analyzed using program
FEPILS. The results of these énalyses are éompared with the

classical theories. The stress and the disglacement/velo-
»dity fields are presénted. A parametric study is carried

A

.out to investigate the effect of the anglg of internal

v

friction, the angle of wall friction, the hopper slope, the

2
2

height to diameter ratio and the Poisson's ratio, on the

pressure, the stress and the displacement/velocity Eields._.



-

ACKNOWLEDGEMENTS

N
\

author wishes to express his deep gratitude td

Dr. A.E. Elwi, Supervisor of this thesis, for his invaluable

-

1 . . . . e ‘ . . .

guidance and excellent counsel. 'SlncJ}e appreciation is
F] .

extended to Profs. T. Hrudey and S.H. Simmonds for their

helpful suggestions and fruitful discussions concérning this

;o

investigation.

This study has been pgrformed in the Department of
Ciyil Engienering at The University of Alberta. Financial
Supgort provided by the Civil Engineering Department and by
the Uhiversity of Alberta Central Research Fund is | r
ackﬁowledged.

Thanks are also extended to Ms. Nola Shaw for her
pa;ience aﬁd skill in typing this thesis, and to Mrs. Denise
Nickel who drew the figures.

~'Finally, the author cannot fully express his’
BN ‘3,' /'5 3 ) '

apgrgciation for the patience and encouragement of his wife
Seema, prayers of his mother and other family members, in

the completion of his thesis.

vi vl



" TABLE Ow CONTENTS

CHAPTER 1 - INTRODUCTION....... S s e e s e e :...A..
1.1 Silos and History..eeeoeeeosn et .;.
1.2 Scope and Objectives of Thesis................
1!3 Organization of Bhesis....... @ et

CHAPTER 2 ~ THEORY AND ANALYSES. ..tueueeneenneneannnn.
2.1 Static Pressure-Theorieé........L.. ...... e e .

2.1.1 Introduction.......... e e e e st ee e
2.1.2 anséen's Theory...... e T vt e e oaenns
2.1.3 Reimbert's Theory:;WQ ................ .
.2.1.4 Discussion....eeeeos. e v o e s e s e aer s

2.2 Flow Pressure Theories.......... e eee e .
2.2.1 Introduction....coveeeeereeonns .
2.2.2 Flow Patter#s ..........................
2.2.3 Jenike's Theories..... et ;;....

2.3 Finite Elemen; ANalySiS.e et eeeiinnnneersans v
2.3.1 The Ohio State University Group..... e
2;3.2 University of Gueiph Groﬁp .............

T 2.3.3 University of Karlsruhe Group..... PR

'\ 2.4 Field Measuremegts..., ........ B SR )
2.4.1 Simmonds and Smith (l983)....d‘ ........

2.4.2 Technical University of Denmark (1980).

vii

...... 4

..... 14

..... 46



CHAPTER 3 -~ THE PINFTE ELEMENT FRICTthChODRL.............51
Jul Introduction. it ittt ittt ittt ss et ensenaeabl
3.2 _Incremental Virtual Work %ormulation......., ....... 52
3.3 The Friction Force Formulation......ciiviiiveneeeee8?

3;3.1 Solution TechniquUe. i vivitiiennrnevnnseeasmbl
. ) .

CHAPTER 4 - MATERIAL MODEL .+ ittt ittt eionsntaeseensseeoseasabd
4.1 IntrodUCEION. ettt ittt it ientonenonnentoenssannneens éﬁ
4.2 Plasticity Model\65
4.3 Failure Surface.....fi..... ...... e e el 712

4.3.1 Willam-Warnke Surface.......vovviiiiia., 73
4.3.2 Drucker—Préger Surface. ..ot it e i, .76
4.3.3 Degeﬁeratioh of Willam-Warnke Surface

to Drucker-Prager Surface........ e 79

CHAPTER 5 —>ANALYSIS AND COMPARISON......&........'.“... .80
5.1 Introduction......................;........... . .:80
5.2 Model Description.......;....................... .80

5.2.1 Description of Test StructuUres.....i..... .80

5.2.2 Material Properties.............;..... ...... 82

5.2.3‘ DeScriptién Of ANalySiSeieiveeeoeeeenenn .85

5.3 Discuss¥on Of RESUIES..iie ittt nneeteenneenennns .86
5.3.1 Comparison of Pressure with Classical

Theories..............:..........:........ 86

5.3.2 Stfress Field.vioiiieeenenn. et et e 89

5.3.3 Displag%ment/Velocity Field............‘ .. 96

viii



5.3.4 Influence of Various Variables on

i

" Lateral Wall Pressur€......
b
CHAPTER 6 - SUMMARY AND RECOMMENDATIONS..
REFERENCE S . i vt et st snesoncaosesosenossenan

-

APPENDIX A - PROGRAM STRUCTURE (FEPILS)..

Al

ix

el 104

R Y
.. 126
Y



Figure

2.1

5

Reimbert's Distribution ot Material Weight........12
"Comparison Of Diffe:ént~meth0ds of Pressure '
/Calculéﬁioh.............h.!...........;.,.........16
" Funnel Flow Below an Effective Transition.........l9
Mass Flowi.....................I:......... ..... .. 109
Yield LocQs ot Coulomb's Solid....cieivieeivineen, 22
‘Stressesron?ggwﬁlement FloWing through éin

and Hopper.....?................. ...... I 22
Mass Flow Ldading.....z;.....e.....;.;...‘ ......... 25
Stresses on an Element of Solid...,..............327
Radial Pressure Field in HODPPET et v ve e in e e, 30

, ) S .

Pressure in Mass-Flow Bins.......,.x.... ......... .32
éection of Fording Coal Silowr...sie.... O
Section of Test‘gilo - Technical University

of Denmark.....(................;.................49
Forces on Element k..............i....:;ﬂ.........59
Boundary Element anderiction Forces.:..,.........59
Flow Chart for Solution Scheme of.Friction
}Force.............................................63
Idealized Stress—Strain‘Curve.........;....,...:..68
Yield Surface and Criterié of Loading and
Unloading..........s;t......... ...... e et e e e 68
William Warnke Failure SUrface........ et e ..74

LIST OF FIGURES

Page
The Free Body Diagram tor Janssen's Material
S ll @ it v te e v s eansosoes s seasassatsassssssosancesss 9



Figure
. »

' page

Drucker-Prager Failure Surtace......ceeveeevecaass?’

i
Finite Element Tdealization of Silos.......c..0.0. 83
Comparison of Finite Element Results with

Classical TheoOrleS .. v e eeeeetesrseseneaeeeassss e $7

Stress Field When Outlet. is Closed and Silo

Charged. .o e et e i ti et ai it Yl

v

Stress Field During Flow for 8' = 20.56°......... .91
2tresS-FieldvDuring Flow For D' = 24.78° cee 92
Stress Field Durind‘?low for 0' = 29.98°,.........93
Stress Field buring Flow for H/D = 2.5.0 0. 94
Stress Fiéld During Flow for H/D = 3.0......v.... ;QR

Yielded Material Zones When 6' is Varied..........97

Yielded Material Zones When ¢ is Varied........ el 98
;Yielded Material Zénes When ¢"is varied........ ..99
Yielded Material Zones When v is Varied....... f..IOO
Displacement/Velocity Field for ¢' = 25°......... 101
Displacement/Velocity Field~for ¢' = 20°. .. .00 102
Displaceﬁeht/Velocity Field for ¢' = 15°....... ..103

Pressure Distribution Whén ¢ is Varied.......\...105

Pressure Distribution When ¢' 1s Varied....... ...106

Pressure Distribution When 6' is vVaried..........108

Pressure Distribution Wan H/D is Varied.........1l09

Pressure Distribution When v is Varied........... 111

X1



A

©

-

T

‘paFameter 'y

'
b

1
Lo

LIST OF éXMBOLS
| g
éross;éectional é}ea, or-Jenike's strain energy
ag%a‘of hQriéontal cross—seéﬁion of the &ertical
part of‘bih
Jenike's stréin énergx'pafaméter,for constant for
Réimbeft'é equatién . : - ’ "

matrix of differential Qperator relating

mdisplacemeﬁﬁ/veloé}ty field to strain field

‘constitutive matrix
’

elastic constitutive matrix

constitutive tensor . = ' .

‘bin diameter ’ 1

Young médulué

effective yield lihe
yield function W
unconfinéd yiéld;strength

uniaxial compressiVe strength-

body fotrce field in tensor and matrix form

. o . . = .
force. in spring [for one. radian sector

friction force and its vector

contained material

height of materjal

horizontal andiverﬁical‘componént of friction
force | ’

potential f@gétion

H heightnor silo\heigﬁt

cone

xii



I1'J2 = stress invariants L

k = ratio of-pressure Og and dr (related to Janssen's

K factor), or Drugker7Pfager Constant for failure

surface
kBE = stiffness of bouﬁdéfy‘elemént
K = Janssen's constant, ratio of horizontal to !
vertical pressure ‘.;tx
(K] = str;cture stiffhéss.matfix ,
Kg] =‘element stiffness matrix
[KBEI'= boundary element stiffness mat?ii

L = denotes length

M = Jenike's straiﬁ energy pérametef -
N'= Jenike's strain energy parame£ér -
[N] = matrix of inberpolafionffunctibh
P =:horiéontal‘préssﬁre
P = cﬁncentfated'nof;al force pér unit length, or
| pefimetef of cylindfical portion of bin
q = vertical pressure
q, = co-efficient in calCdlatioh of vertical force in
| hopper . . ,,j"
g <q> = équilibrating load vector
OC‘= total y;rtical load aQrosS_solids'in cylindrical

\
| .

portion of bin at transition
-0, = total vertical force across -solid in hopper.
'r = radial, distance, or radius, or horizontal ' -

¥

coordinate

xiii



<r>

Jenike's transformed co-ordinate

vertical coordinate, or Reimbert's ve

<

‘displacement/velocity field, or d.o.f. of

structure

load vector o

‘deviatoris stress tensor , .

- nondimensionalized stress parameter

nondimensionatizgd initial pressure parameter

nondimensionalized flow-pressure parameter

/

surface traction field in tensor and matrix form

diSplacement/velbcity-}n hbrizontal'direction
dispiacémént/yelocityjin vertical direqtion; or
shear stress

friction force per unit lédgth,'or volume
tangential comppnént:of displécemené/Vechity
nérmal componenﬁ of'diSplécement/velocitQ:R

strain energy or work

internal work

external work

W
A

rtical.

el

distance from base of cone), or vertical distance
from free surface of material
depthvof sWitch location |
COeffigient of compressibility of solid material,

or. Drucker-Prager constant for failure surface.

.uﬁit weight of material -

- effective angle of internal friction, or denotes .

variation

Xiv



EV,En,EC

e
€ P €

tr
denotes increment : .
denotes strain and strain tensor respectively

vertical, horizontal, and hoop strain

reépectively

.elasticg strain component .

plastic strain component

elastic-plastic strain

initial strain : o F 3
‘ | .

hopper slope with vertical

spring inclination with horizontal

éngle of similar(@y

scalar function

~

Pbisson's rat@o

|
an irrational‘number denoting the ratio of

circumferencel of a circle to its diameter

denotes stress and stress tensor respectively.

J

major and minor principal stresses

stress or pressure in radial direction
o) .
stress or pressure normal to o,

tangential stress

“vertical, horizontal or normal, and hoop

pressure respectively

mean normal stress

-mean shear stress

&

angle of internal friction of material
angle of wall friction

denotes initial quantitites,

XV



il

H

1

denotes

denotes
)

denotes

transpose
preScribed quantities

nodal quahtities

o

Xvi



CHAPTER 1 - INTRODUCTION

™

1.1 silo and History

Storing and handling of bulk'materials are stential
aépects of grain, chemical aﬁd mining operations. For tHF
last twenty years, these igdustries'have explored the ﬁse‘of
silés of increasing height, diameter\and storage capacity.
'A silo is‘a deep bin, dged to store and to feed bulk
material, when requiréd, at some specified rate. A thorough
understanding-of the flow characteristics of the cohﬁainédj
material, the ﬁlow paﬁtern, which develops as a result of
discharge of material, and the ldgeral pressure exerted on
the siio wall\d;ring flow of contained material are
essential for designing an economical and reliable silo
structure, having a long operational life.,

The laterél presédure exerted by stofed'materiéls on
silo walls has been under study for the past hundred;
yeags. Before,1860) designe;s aséumed that a granular
méterial behavés as a quasi-liquid and exerts pressurés

similar to hydrostatic pressures. This assumption

roverestimated the horizontal static pressure .and bottom

‘ e
pressure/, and did not account for the friction between th

* stored -ofid material and the silo wall. "Issaq:Roberts'ihﬂ

the earnly 1880's, conducted experiments on a bin model aﬁﬁéwﬁ
concluded that the vertical and lateral pressures of a grain
silo 4did notkinCrease af;er the material depth reached twice

the smaller cross sectional dimension. The friction between



stored solid material and the wall transferred the weight to
the wall through the height. Y

In 1885, H.A. Janssen developed a method to calculate
granular material p%essures on the silo wall and bottom.
Airy (1898) proposed an alternative method of computing
| pressure. Toltz (1897), Bovey (1904), and Ketchum (1909)

» conducted tests and found that the static pressures compared
favourably witﬁ‘Janssen's predictions whiie the dynamié
pressure duriqg withdrawal of granular materigl showed anrw
increase up.td 10%; That initial period of growﬁh in silo
resea?ch was chéraéte;ised.py experimeﬁta1 precision and
gféatvclarity of formqlati@n; h

'Tﬁe observation of early investigators thgt,bin
pressures'were'not constant but varied between the initial
condition of charging andAthe condition of flow, was
confirmed éxperimentally by Shumsky (1941), Bernstein
(1947), Reimbert (1956), Bergau (1959), Kovtun and Platonov .
(1959), Kim (1959), Pieper and Wenzel (1964), Turitzin
(1963), and Balnchard and Walker (1966). Shumsky, Pieper
and Wenzel, and Walker reported that_further refining the
testing.techniques showed that not only flow pressures
exceeded the initial pressures, but gertaip undefiﬁed
conditions led to high peak loads'which o?burred not at the
base of the silo but at some higheleocation in the

structure.

-
-

' These results indicate that an active pressyre develops

during charging.of the solid material into a bin, ereas a



4

passive pressure develops during flow of the material from
the bin [Kottler (1899), Ohdé>(1950), Jenike (1954),
Nanninga (1956), Pieper, Mittelman and Wanzel (1964),
Pieper, Schnelle and Wenzel (1965), Walker (1966)].
e
Nanninga reported that at the plane of transition from an
active pressure field in the upper part of the bin to a
passive pressure field in the lower part, an éverp;essure at’
the wall is réquired te maintain equilibrium of the flowing
mass. o |
Sipce 1965, excellent experimental and’theoretical wofkr
have been reported. One of the most. important silo
developments in the last‘two decades is the increased
understandinhg of flow characteristics of the stored‘solid
material. Jopanson (1954) éséd the method of
_chafacteristics to determine the stress in converging flow
. .
channels. Walker (1966) and Walters (1973).developed
methoas for calculation of.flow pressureé. Jenike et ali
(19683 defined the concepts of mass flow and funnel flow in
siios, and derived differential equations for mass flow.y/
Jenike et al. (1973) developed analytical methods for
dealing with bothlhass and funnel flow, based on an energy
approach. Clague and Wright (1973) and Bfénsby et al.
(1973) experimentally measured the éressures developea

during mass flow. .Johanson (1965) and Williams (1974)
- devloped formulas for computing discharge rates from a mass
‘fiow conical hopper. 1In 1977 the Amertcan Concrete,

Institute developed its first code of practice entitled



"Recommended Practice for Design and Constrﬁctinn of
Concrete Bins, Silos, and Bunkers for Storing Granular
Materials (ACI 313-77)".

| Presently,‘investigators\gre developing and modifying
existing theories for more preéise prédiction of flow and

, , /
pressure. Seveéral finite element models have been developed

" to predict the behavior of®flowing mass in silos, and the

.

pressure exerted on.the silo wall. Bishara and.%handfangsu
- : -
(1978) developed a finite element model capable of handling
a nonlinear viscoelastic material. Jofriet and Dickinson
(1984) developed a finite element model for a.flat bottom
silos Eibl and héussler (1984) ‘have formulated a finite

element model ‘for a mass flow silo using an elastic visco-

plastic constitutive law.

1.2 Scope and Objective of Thesis

The objectives of this thesis can be summérized as:

1. To review classical theories used by different
design codes for calculating wall préssures imposed
by the contained sol;é, the finité element models
developed by differént research groups, and full
scale silos test results. '

21 To develop a finite element model and program
(FEPILS) for mass flow axisymmetric Silos,busing an
glastic‘perfectly plastic material model and

accounting for wall friction.

3. To run sample problems and investigate the pressure



akd stress distrihution using program FEPILS.
- 4. To compare tﬁese pressures and stresses with the
classical theories and methods of analysis.
5. To investigate the inflﬁence on pressure
distribution, when the angle of internal friction of
material, angie of wall friction, hopper geometry,

~height of silos, and Poisson's ratio of the

contained granular solid materials vary.

1.3 Organization of Thesis

Chapter 2 is divided into three parts. Part one
contains a review of classical thecries with emphasis on
Janssen's; Reimbert's and Jenike's theories. Part two of
this chapter discusses the finite element methoq of analysis.
developed by different reseaﬁch groups. The last part of

this chaptef reviews: the fie1§~measurement¥ of full scale
| |

-
.

silos. -

In Chapter 3 a Einite eiement model for incremental
analysis of axisymmetric silos is presented. Friction
forces and the associated boundary conditions are
formulated., NQmerical technique for solution of friction

problem is described.

Chapter 4 discusses the type of material and failure

surface used to represeht the behaviori of granular solid
: g

material. §

R 'g

. L x
A finite element program for invesitigation of loading

on axisymmetric silos (FEPILS) is desdtlibed in Appendix A.




The solution technique incorporated in the program, which
includes the numerical method adopted for loads and triction
'forces are discussed. The incremental implementation of the
plastic model is:also discussed in this chaptéf.

P4 )

In Chapter 5 sample problems are analyzed to

iﬁvestigate the capability of program FEPILS. The results

of the analyses are compared with classical theories. . A set

of problems is run varying the angle of internal friction,

angle of wall friction, hopper geometry, height of silos aqﬁ

Poisson's ratio of contained material to investigate their

effect on pressure distribution.

Chatper 6 contains summary and conclusions.

6



CHAPTHR 2 - THEORY AND ANALYSIS

/

2.1 static Pressure Thegries

2.1.1 Introduction
The magnitude and distribution of pressures that are
exerted by thé contained méterial on silos are major
concerns to design engineers. The pressures that aré
exerted by the contained magerial during fiiling are
considerablyfgifferent from those during discharge.
Pressures that occur prior to withdrawal of materials are
called static pressures or initial pressures, and those that
occur whenever the material is being withdrawn through the
discharge outlet are called flow pressureélor dynamic
pressures. Despite the developments of the last twd decades
in understanding the flow properfieé and tﬁé pressures
exerted bf ensiled material in silos, many codes around the
world still use Janssen's and Reimbért's static theories.
Since Janssen (1895) and Reimbert (1956) many researchers
have worked to refine and improve these theories. The
Janssen's theory and Reimbeft's theory are discussed in
detail because they are the basis of all current design

codes.

2.1.2 Janssen's Theory
Janssen based his theory on the following assumptions.
1. Vertical pressures are uniform over any horizontal

cross section of a bin. These pressures vary only



in the vertical direction.

2. Horizontal pressnres are unitorm over the perimvtgr
of a Eross section and vary only in the VGrti;a]
direction, |

3. The ratio of horizontal pressures to vertical
pressures, K, is constant throughout the height of
material.

4. The shear stress at the wall is a linear function of
the horizontal pressure. |

The free, body diagram for a material slice at depth‘Z

is shown in Figure 2.1. Vertical equilibrium of the body
forces and stress resultants of the free body yields the

following differential equation.

dq _ , _ r'Kg
az Y R ) ‘ (2.1)
,:“,;?‘;;
yLntroducing a normalizing stress parameter, S = q/Ry, Eq.

" 3
2.1 is writen as

e

4

ds _ 1 - p'KS
dz ~ R (2.2)
for which a solution exists 1n the form
- ' ’
] - piks = e MRZ/R) (2.3)

subject to the requirement that S = 0 when Z = 0,

N [

Consequently the average vertical static pressure g at, depth
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Fig. 2.1 The Free Body Diagram for Janssen's Material Slice



.7 below the material surface is given by
b
— ! > . .
- e U‘KZ/R]' (2.4)

2

The ratio of vertical to horizontal pressure, K,:is
independent'of magnitude of pressure, so that the lateral

unit pressure-p-is given. by

. - 'K ey . :
p = Kq = ;$ [1- KR (2.5)

Y

Janssen's theory is'applicable to ax;§ymmetric'ana two
diménsioﬁal (plain strain) problems, because.symmetry

fequireS'that‘no shear stress'occurs on a plane orthogonal

to the radial direction. "However this theory can be applied
: . T ‘ . . ' ‘

to unconventional, cross sections, with some loss in'ac&Qracy

(Fintel, 1974). A
S R _ 7 |
It'is apparent from Eq. (2.5) that aé depth 2

increases, the lateral static pressure, p, on the silo wall

14

asympto%ically'approacﬁes:

[2

p = YR/B' (2.6)

| 3N -
which ié'the maximum lateral pressure,icorresponding to a
vertical ‘Pressure in which the wall friction force exactly

fbalénces th'additional‘wei@ht»df the;material at. an

o . f
1 . . . -

“infinite depth.

10
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2.1.3 Reimbert's“Theqry
Reimbert‘s ﬁheory is based on experimenta%/;ork
conducted on‘a‘full scale silo in 1954 (Reimgeft 1955).
Many silo design codes recommend thié_theory;as an alterhate
fo Janssen's théory‘for computation of stééic pressures. |
Fig. 2.2 reveals graphically'the various/;symptotes used Ey
Reimbert for his derivation.. 7
Réimbert defines the totélvvertiCal load at any depth 2
as ‘Op, if there is no wall.friction acting on the material
'in thé, silo.. |

N (2.7?

YAh . . ;
where*Q, = 3 is the weight of the conicpl surcharge.

This is shown in Fig. 2.2 as Curve I. He‘furtm

as that component of vertical wall force tfansferréd to the -

silo wall by friction. - This forcé increases from zero at

: ot . . .
the free surface of the material togan asymptote parallel to

quve I, beg@use at greatvqepﬁhs, thé'weight of the materfal
is gxéctlysb;ianced by wail/frictioﬁ. This is showng¥:;

Curve II,.whiéh'is tangeﬁt\to Z—axis at Z=O. Its asymptote
is at an éngle YA from Z axis and has an origin at -(Opax

0 where O

\o)' max is the maximum vertical force. Tbé

difference between the,values of Curve I and Curve II yield
Curve ;II'which is the  variation of lateral wall force with
depth.> Curve II can .be reprasénted by an expression of "

Cf

hyperbolic form as . . = - &

e

er defines ng

11



Fig. 2.2 Reimbert's Distribution of Material Weight
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0 = eYAZ _ ‘ (2.8)

13

Satisfying necessary boundary conditions, the coefficients e

and £ can be determined and Eg. 2.8 taKes the following form

2 .
_ YAZ
Ow =7+ 8B ' (2.9)
: 0O -0 h, ’
where B = max °c. R __ jl ’ (2.10)

YA p'K

Differentiating Eq. 2.9

"o, = 1ALZ_* ZBZ] Az (2.11)
(2 + B)
This expression can be equated to the lateral static
pressure at depth Z, which yields
2 4
pPu'dz = YAIZ ¥ b2l (2.12)
(Z + B)
Hence -
A ‘ 1
o - B L6 - o
(z/B + 1) -

Both Janssen's and Reimbert's formulas for pressure have
similar asymptotes as Z approaches ». Whereas Janssen's
solution assumes an exponential form, Reimbert's solutions

tat~s a hyperbolic form. 1In addition Reimbert's theory



'acéounts for the surcharge’ of the material which is commonly
found at the top of ensiled materials under static

coﬁditions.
2.1.4 Di;cussion

Lateral pressures on silo walls under static or filling
céndibions can be predicted reésonably well from Janssen's
and Reimbertfs methods. However experimental evidence shows
that pressures during flgw\gfréranular solid méterials can
be greaten than the static\préSsures. Recent Codes of
Practice recognize these overpressures and recommend thaé
"pressures on silo walls be calculated by Janssen's or
Reimbért's method and then multiplied by an "overpressure
factor" to obtain design pressures.

Some investigators have exémined Janssen's work
critically, and éttempted to refine his theory under re laxed
assumpt}ons. Jenike, Johanson and Caréon (1973) pointed out
.that Janssen's formu.: is a lower bound on the average
éressdres, and not necessarily‘tﬁe actual pressureVén silo
walls. Bagster (1971) éuggested that the common
interpretationyéf Janssen's K factor as being
(1—sin¢5/(1+sin¢) is erroneous and that it should vary
between that and (1-sinZ¢/(1+sinZ¢). babrowski (1965) and
Walker (1966) stated a.similar conclusion. Walker (1966)
reported that the principal stresses at the bin éehtre are

not equal to the principal stresses in ‘the wall viéinity.

14

He also stated that the compaction of loaded materials below

-
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charging materials causes subsidance and frequent full
mobilization of wall friction. Lavin (1970) noted that the
vertical pressure is not uniform over the horizontal cross-
section, and analyzed the vertical equilibrium of a
differential ring element (as opposed to Janssen'ssdisc
shaped element). His solution shows agreement with the
limiting pressure predicted by Janssen's equétion. The
modified-Janssen solution given by Walker (1966) deals Qith
this assumed cross-secgtional nonuniformity by describing the
variation of K err the cross-section. Walker's solution ‘(
>can bevthought of as a smoothed approximation of Lavin's
exact analysis.

A numerical comparison of: different methods of pressure

calculation is presented in Figure 2.3, for a particular”

’

silo geometry, and material properties.
f

2.2 Flow Pressure Theories

2.2.1 Intfoduction

Recent studies py Walker (1966), Walters (1973), Jenike
et al. (1968-1973) ana many other ineestigators have clearly
shown that pressure occurring during emptying}of silos,
under certain c1rcumstances,'substantlally emﬁeee the static
pressures calculated by Janssen's or Relmbert s methods.
Theimer (1969) and Ssadler (1976, 1980) described a number of
bin failures caused by overpressures associated with flow

conditions among other factors. Flow theories that account

for these overpressures have been developed by Walker,
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Walters and Jenike and Johanson.

2.2.2 Flow Pattern

A knowledge of the flow characteristics of granular
solids and the flow pattern which may develop in a silo is
essential for understanding the magnitude and distributiom
of pressures on a bin wall. Two basic flow patterns have

been identified by Jenike et al. (1968).

Funnel Flew

This type of flow oecurs ih bins with a flat bottom or
with a shallow or reugh hopper offering great resistence to
the flowing material. In these cases flow may occur through
a channel formed within stagneht material. The channel is
usually conical in shape, having ;oye} diameter equal to the
effective dihension of the outlet and increases in diameter
as it extends upwards. In tall bine or silos, the channel
boundaries ﬁay expand to intersect the vertical wall at a
point defining an effective transition to mass flow (Fig.
2.4). Bins exhibiting funnel flow are commen in industry
and afe least costly.' This type of flow is disadvantageous
when handling materials susceptible to deterioration . In
addition, the formation of raehéles and stable afches may

occur.



Mass Flow

Mass flow occurs in bins with sufficiently steep and
smooth hoppers, adequate outlet size and where the‘entire
volume of solids is flowing with no stagnant or dead
zones. 'In mass flow bins the flow channel boundary
coinc;des with the wall and hopper surfaces, as shown 1in
Figure 2.5. In general mass flow has the following

A

characteristics:

l. Uniform flow. \
2. The bulk density of the solid is constant, and
independent of the heaa of stoged solid. v

3. Pressure across any horizontal cross section is

. relatively uniform.

4;‘There are no dead regions within the bin, hence

there is a minimum of consolidation at rest.

Jenike (1964, revised 1976) provides a meaningful
criteria for predicting gravity flow or no-flow of solids in
a bin. He states that gravity flow will occur in a channel
if the yield strength whiéh'the solid develops as a result
of the action of consolidétingvpressure is not sufficient to
suppoft an obstruction to flow.

As an element of solids flows downwards, it compacts

: ' ,
under a major consolidating stress, oy acting within the
bin, and develops unconfined yield strength, fé. For an
obstruction to fail, the stresses in an obstructién must 7

reach the yield strength at the critical location. The

major stress that acts on the abutment of an arch has been

'

18
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shown to be airectly proportional to f}an B of an arch. The

flow criteria is expressed by
o, > ! (2.14)

Jenike (1960) has shawn that the stress, o acting at the

1 14

abutments of an arch, can be expressed by

o
1 1 ,
N S 2.
VB H(G) (2.15)
where » y = bulk density
B = diameter of circular opening

I
D
It

a tunction of hopper slope measured from the
vertical.

The unconfined yield strength, f'

o is determined by a shear

test under appropriate consolidating stress., In all of
Jenike's theories discussed subsequehtly a flow situation 1is.

assumed to exist.

2:2.3 Jenike's Theories ' b~
Jenike and Shield (1959) assumed that a bulk solid can

be represented bx a rigid-plastic coulomb solid. Such a

solid is characterized by an effective yield locus (EYL)

that defines the limiting shear strength under any normal

stress (Fig. 2.6). Plétting shear stress, f, and normal

stress, o, the yield locus for a coulomb solid intersects

the © axis at a value of ©t defined as the cohesion, ¢, and

H



has a slope equal to the angle of internal friction, "p.
ienike and Johanson (1968) inAtheir analysis of pressure
fields assumed that in the plastic region the solid is
isotropic, frictional, cohesive and compressible. During
incipient failure the bulk so}id expands and during steady
flow it can either expand orlcontract.‘ The state of stress:
at an? point 1is indepenaent of time and is u%affected by
veloéity changes. As an element of solid flows through a
channel, shown in Fig. 2.7, the major consolydating stress
o, and the minor consolidgting stress o, on the element
change and continuous shear deformation occurs,

When the materiél stops flowing, it 1is assumed that
these stresses remain. The material gains strength at a
stationary condition under these stresses and resists the
flow of sélids when ghe bin outlet is reopened. For any
stress condition represented by a Mohr circle tangent t§ the
locus, the bulk solids are at yield, and the major aﬁd minor
consolidating stresses at this condition are defined by
intersection. of the circle with the o axis (Fig. 2.6).

Jenike (1954), Walker (1966) and Handly and Perry
(1968) have demonstrated experimentally and Smoltczyk (1953)

o

?;and Jenike (1961) have shown analytically that pressures

“Fwithin a solid contained in a hopper have a tendency to
decrease towards zero at the vertex of a hopper. A radial
(meridional) pressure field is said to occur, when the
pressure decreases linearly, and the pressures along a given

ray are proportional to the distance from the vertex. It is
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Fig. 2.6 Yield Locus of Coulomb's Solid

\

Fig. 2.7 Stress on an Element Flowing Through Bin
and Hopper
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apparent that a radial field cannot extend all the way
upward to a free surface, and is topped off by a compatible
pressure field decreasing upwards towards the free
surface.., At the. interface, thesc tyn pressure tields do not
match and a disturbed radial stress field develops, which
consists of a wave of overpressure and underpressure
superimposed on radial pressure; the wave decays rapfd]y
towards the vertgex of the hopper.

When an empﬁy bin with a closed outlet is charged, the
material contracts and slips aléng the wall. In the
éylindrical part sélids contréct vertically only, and a
plastic—aétive pressure field develops. In the hopper the
material contgacts both vertically and horizontally as ézzflf//’
occurs aloné the'wali. As a result an elastiq—active
pressure develops because it does not reach thg limiting or
plaétic sta€e. Major principal stresses are assumed to act
in vertical or close to vertical direction as shown in Fig.
2.8a. 'Pressure, p, which acts on the wall of bin i;éFeases
from the top somewhat according'togqanssen's formula,;goes
through a sharp change at the transition to hopper, and -
decreases towards zero at the vertex.

In a mass flow bin, when the outlet is opened @he
solids must contract horizontally and expand vertically in
order to flow in the hopper. This causes the 'major stress
to act in a direction close to the’horizonéal, forming what
is defined\és a plastié—passive»pressure field, as shown in

Fig. 2.8b. -
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Nanninga (1956) was the first to observe that at the

transitijon from active to passive pressure fields,

equilibrium of the mass requires an overpressure to occur.

ﬂenike and Johanson t1968)aand'Walters (1973) postulated

th

‘that a large tran51ent "switch" pressure develops when the

e—
——

flow is 1n1t1ateg in a bin. During initial loading an

active stress field is'generated When discharge begins,
J

the*support of the solid at the outlet is removed. The
[ S

P ( ' N
‘ unsupported solid above the, outlet expands downward This

B reduceS‘the vertical pressure within the solid in that

region and causes®™a switch to a passive pressure. field; the

major principal stress. now arghes across the outlet. As the

3
H »

Tlow continues, the regiop of flow expands\into the hopper,
and; the switch travels upwards,. to a point—where—the hopper - —
vinterSects the vertical section of the bin in a mass flow

bin.

The stress conditions when the switch is at a‘height,

_2, is shown in Fig. 2.8b. Below the.switch, the pressures
are in a pa551ve J(dynamic) state and swaller Flow pressures
develop;' Above the sw1tch the solids are still‘in an actiwe
state,and'lnitlal pressures prevail. The material atithe ’
transition betgeen two pressure fields_is no longer
'supported by the flowing solids below, and the equilibrium
of forces results ‘in an additional pressure at the region ‘of
the sw1tch |

Jenike's three.major contributions to mass flow theory

-

lieiin the areas of determining the plastic stress field in
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the hopper during flow, the determination of the magnitude

of the major transition pressure at the juncture of the
. 1

hopper’énd wall and,finally his strain energy theofy which
‘Fescribes the intermittant switch loads which might occur
during flow on silo walls: Jenike claims that this theory

accounts for the-overpressures known to occur during flow of
ensiled material.

In the following the basic assumptions for all three’

theories are discussed and results are summarized.

ot

"Stress Field in the Mass Flow Hopper: Jenike and Johanson

"(1968) presented an analytical method for calculating

initial, flow, and switch pressures in a bin hopper with no

element of sdlid material in converging channel as Shown in
Fié. 2.9 and.deriﬁed,pressﬁre:fieids for both plain strain
and axisymmetric channels. The aséumpﬁions made - are:

i. The solid material is nonlinear-elastic during
inftial conditions and plastic during flow
conditions.

2. Under both initial and flow conditions, a solid is
aésumed to slip at the walls. Hence the kinematic
angle of wall friction, ¢', is fully developed.

3. A radial stress field is assumed which increases
linearly with coordinate ray, r, from vertex of

. . \ v
channel and is defined as



Fig. 2.9 Stress on an Element of Solid
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o = YrSi(e) (2.16)

for initial stress fields and

o = Yrsf(e) _. | . (2.17)

for flow pressiye fields

The ratio k, related 'to Janssen's K factor, defined

as

=1 + a + v(m - a) » (2.18)

ab 1+ v(m +.a)
o

r .1s the pressure in radial directiion and

in which ¢
oé is the pressure normal to op. The coefficient
m=0, for plane strain and m=1, for axisymmétric
case, « and v are the cogfficiehts.of

compressibility of solid and Poisson's ratio

respectively.

In flow pressure fields the principal stresses 91
and o, are assumed to satisfy an effective yield

locus (Jenike and Shield, 1959) défined as

Q
[y

_2 ; 1 - sin 6 .
og; 1 + sin & ' : ,(2'19)

where § is an effective angle of internal friction.
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On the basis of the above assumptions, the differential
equations have ﬁgen derivea'for initial ‘and flow pressure
fields.‘ The wall preséures in mass flow hoppers are assumed
to have a triangular distribution as shown in Figs. 2.10a
and 2.10b, when there is no surcharge. The location of the
switch is uniquely defined for a given hopper configuration
and solids material properties.'

The peak initial pressure, p;, is derived as

R

_ yD 1
Py =1+ mil 2(tan'®' + tan ¢') (2.20)
in which i1 is the relative position of peak initial
pressure, and is a function of k, ' and ¢'.
The peak flow pressure is obtained from
_ YD 1 "
P2 T+ mi, 2(tan 8' + tan ¢ ') (2.21)

‘in which i5 is the relative position of peak flo@vpressure,
and is a function df 6" and §§. ‘The mégnitude of
concentrated load at the location of switch is obtaigéd by
caiculatiﬁg the force equivalent to the shaded area shown in
Fig. 2.10c. This force is required to maintain equilibrium
of the mass of solid and acts nofmal to the wall,

P = YD°FG | (2.22)

in which F = 1/4 sin 6'(tan 8' + tan ¢') and G is a function

o~
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of m, iy, ip and i, the relative position of the switch.
&

Overpressure at Transition in Mass Flow Bins: Jenlike and

, ’ 1
Johanson (1969) derived an expression for the concentrated

force at the transition from the vertical part to khe hopper
of a bin. This force, P, occurs during‘the.ﬁlowvo& a
material from a bin with the vertical surcharge onjhOpper
[See Fig. 2.11]. The vertical surcharge exerts a &ertical
load, 0., on thelsolids'in the hopper at the transition.

This can be expressed by Janssen's equation as

O

£ =g - L_H*SK [1 - e 'KZ/Ry ' - (2.23)

9]

/

The total vertical force acress a conical channel Burﬁng

flow has been computed for a radial pressure field‘by Jenike

(1961) as

/

0 = qyp2tM S (2.24)

where g, is-coefficient for vertical force in é mass flow
hopper and is a function of.é, 8!, ¢ and‘coefficiént m.

n=1 for initial loading and, 6=2 éor flow loading.; The
normal force P and ffictional.fofce V are assumed fo balance

the difference between 0. and Qn{ For a cylindrical channel

P and V are given per unit length of the circumference as
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O¢c 7 9 '
T e e e e 2,25
F D (sin 8' + cos 68' tan ¢') (2.25)

v

<
i

P. tan ¢' (2.26)
Jenike et al. (1973) suggested that this'force, P, can be
distributed over 0.3D slant distance of hopper wall below

“transition.

Jenike's Strain Energy Theory

Jenike et al. (1973 Part 2) measured wall pressures on

model bins handling sand and coke. They observed widely
. N
varying pressure fluctuations .in the-cylindrical portion '
N\

during flow, attributed to the ve}y‘slight imperfection in
the shape or finish of the bin cross section. The§ found
that the flow pressures were similar to the Janssen's
pressure field, in & diverging channel of.O.S degree, while
introduction of ledges or by using a 0.5 -degree cpnverging
channel, local pressures often exceeded—Janssen‘s pressure
distribution by a factor of two to three. JPatches of thin
boundary layers form and dissolve intermittently at thé
walls of cylinder due to imperfection:'in the shape ‘of bin,
The formation of a layer causes a switch from Janssen's to a
passive stress field, and the dissolution of the layer
causes a switch back to Janssen's.

An envelope enclosing the expected peak pressures at
various vertical locations defines an upper bound solution

to pressure. Jenike et al. (1973 Part 2) indicated that



£

‘ > . . . ‘
initial wall pressures on the cylinder in a mass ftlow bin
can be well represented by Janssen's theory. During flow,

however, it qivés a lower bound to the maximum wall
pressufe. Bins with surface imperfections can be designed
on the basis of an upper bound pressure. The upper bound on
the wall pressure was developed by denike et al. through
minimizing the recoveraBle strain energy. The éssﬁmptions
made are

1. The switch is assumed to occur at some level 7,
above this level, Janssen's field is assumed to
prevail while below'this level a passive stress
field prevails.

2. The vertical pressure is constant over any Cross
section.

3. Kinetic energy terms are small'compared té strailn
energy terms and are neglected. Further, the vessel
is assumed rigid and both the modulus of elasticity,
E, and Poisson's ratio, v, are assumed constant.

Jenike et al. postulated that energy is dissipated at

maximum rate during flow of solids; hence, the recoverable
part of energy within the flowing mass tends towards a
minimum. oFor a slice of solid of height, dz, the

recoverable strain energy, neglecting shear strain is

dw = -Adz[[ o de  + f o de_ + f dcdsc] (2.27)

3 £ 3
\Y n : p

The recoverable part of the differential strains are

34
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T P o (2.28)

where o 6h, and o, are vertical, horizontal and hoop

v’ C

pressures and €y, €ns and €, are corresponding strains.
A passive stress field is assumed in terms of a stress

parameter, S, and two lateral coefficients K and K3, as ,

follows.

g = RYS ' (2.29a)
v

o = KRYS (2.29b)
oL = K3Ryb (2.29c¢)

where R 1is the hydraulic radius and y is the specific weight

of solid mater al. For an axisymmetric case ¢

hence K5 = K.
Setting the first variation of the strain energy

expressibn to zero, the governing differertial equation is

extracted. The general solution to this differential .

equation has the following form

s = e’ + Be X + N (2.30)

in which
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w'(2-2 )
9 (2.31a)

(2 - 2v) R

N = BV _ \ (2.31b)

where 7 is the lgcation of the switch. The essential and
natural boundary conditions can be used to solve for
constanté A and B. Know?ng constants A, B and N, the stress
parameter can be found at any location, Z, 'below the assumed

instantanecus switch, 2

o+ The pressure on cylindrical

portion of wall can be calculated from Eg. 2.29b.

Funnel Flow Bins

The initial pressure in a funnel flow bin can be
represented by Janssen!s»pressure fiéld all the way down to
the outlet. When the outlet is opened flow starts through a
channel formed within a s£agnant mass of solids. The flow
channel is conical expanding upward from-the outlet. 'If the
bin is sufficiently tall the flow channel intersects the
cylihdrical w§ll. Above this level, referred to as the
effective transition, mass flow/occurs.

At the level of the effective transition a switch
occurs from the cylindrical pres=z e field, which may be a
Janssen's field or a Jenike's'upper‘bound strain energy
field to a converg;zg preséure field within. A peak

pressure develops at the level of the switch. Jenike et al.

(1973 Part 4) have suggested methéds for calcuiating these’



pressures and the location of the switch.

4

»
The developed codes of practjce for determination of

design loads on bins are mainly based on operating
experience, pressure.measurements in full size silos and
pressure theories (Janssen's and Reimbert's) representing
best fit test data. These theories have not been able to
describe the complex behavior ot flowind solids in a
qualitative or a apantitative manner.

During recent years, with increasing size of silos, the
uncertainty has increased by the occurence oﬁ considerable
damage to thesé structures. ‘

Tﬁ; finite eléement method provides a rat{onal technique
for évaluating the pressures on the silo walls and stfessos
within the‘ensiled material. Many research groupsxére using
the technique tb reach a reliable and rigorous under§k§nding
of the silo problems. In'the following the work of the’

L

three main groups is discussed.

2.3.1 The Ohio State Univergity Group
. Bishara et‘al.,(1976) presented constitutive laws for
some ensiled farm prdducts and a finite‘element analysis of
silage-silo interaction in a top unloading axisymmetric silo
structure. It is assumed that silage is an isotropic

piecewise-linear viscoelastic material contained in an

elaétic cylinder. The silage mass is divided into laminas,
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I . .
repgesenting the sequence of'loading, The Erlotion forcee
along the ﬁaterial—wall interfaoe has.been‘mpdeled as a
foroe‘boundary and assumed tonremaintunchangedlduring each
time intervail. nTheyuare.ealculated from -radial stress, at =
the endfof'previoue-interval, in the silage elemént next to
‘the wall. The analysis of a 24" x 70' top unloadlng silos,

'w1th 20 s1lage lamlnas f1111ng at 0.5 days 1nterval, showed

a .

a highest pressure to,occur at 4' above the floor. Theré is
considerable difference between Janssen's and the finite
- élement pressure curVes. To av01d the commulatlve error

resultlng from the plecew1se linear approach Karoon and

A

Bishara (1978) developed a nonlinear finite element method -
o : ) '

using the Newton-Raphson iteration technique, based on the
Lagrangian description of motion. To demonstrate the
applications of developed finite element model, the same

silo wasjanalyzedl‘ The result showed the highest pressufe
. & , }
Just after filling at 7.5 feet above the silo floor. The

)

lateral pressure obtained is higher‘than that predicted by .
‘piecewise linear viscoelastic finite element formulation.‘
The magnigude of <the maximum lateral pressure decreases by

almost 60% when the coefficient of friction, ul,'increases

-

from p'-= 0.0 to p' = 0.4. Bishara et al. (1983) A +

generallzed the constltutlve law for granular materials and

-~

adopted the flnlte element program deVeloped by Karoon and
. “u

Bishara (1978), wiﬂh special‘projision to allow for.slip-

stick phenomenon at the 51lo wall and material 1nterface. A

24" x 70' silo filled with dry sand was used to demonstrate

38
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the performance of finite.elément program. For depth of
ensiled material not exceeding the diame;er, the lateral
pressures obtained from the developed method lie between
Janssen's énd Reimbert's solutions. Below that depth the
pressures exceed Janssen's values by 20 to 25 percent and
Reimbe;£fs by abouf 10 toH15 peréent. The average vertical
pressure lies between "ssen's and Reimber's predic;eﬁ

value. Howéver, the analysis shows that the vertical

'éressuré distribution is parabolic over the silo cross
sééiion,'with é maximum at the centre and a minimum aé the
silo wall...This nonuniform distribution reflifcts the effect
of wall friction. Reimbert's and JanSsen'S methéds do nat

- take inlo account the nonuniformity o%lvertical pfessure in’
their célculation. |

El—Aiazy (1982) modified the program developed by

‘Beshara et al. (1978) to account for pressure during bottomv
unloading of farm silo bvalail uploaders. The prograh was
further modifiéd to simulate dome formation above the cavity
created by the unloader, and the Coliapse of thié dome. A

modified Druker-Prager failure criteria was used for ensiled

material. The results show that the lateral pressure at the
, 2 ? ,

EE

. 4 B . ] - Y Q)
level of dome formation, during unloading is double that

during static conditions, and there is a drastic decrease in

\ : .
its value to-near zero immeédiately above this level.

2.3.2 University of Guelph Group

Jofriet et al. (1977) analyzed the static pressutre
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exerted by a granulér material on a cylindricalistructure.
“ Friction along the wall/material interface was incorporated
in the model. The solutidn obtained was comparable_to |
Janssen's thegry, except near the hottom of cylinder.
Jofriet et al. (1980) carried out a‘number of ﬁinitg element
analyses of whole-plant corn silos to investigateitﬁe foect
of silo geometry and wall friction on lateral wall pressufe
gnd the proportion of verticél l@ad carried by the wall.
They assumed{a iinear ég!!ﬁic;isotropic magerial and akrigid'
cylindrical bbuﬁdary.  The éﬁélysis has been carried 6ut in
~a number of steps to simulate the filling procedure. For
each soiution step fadditional layer is added. The
éoofdinates, the density and the elastic moduli are updaﬁed‘
. after every sfep. R

1

The résults of these analyses indicate that the lateral

kS
o &

préssure increases with the decrease™in éspect ratio of the
silo. .This trend i®ialso predicted with Jansseﬁ's

formula. It algo shows an increaée in lateral pressure with
a decreése in tﬁe coefficiént of wall fr;ction. This is of
course. a result of increased vertical pressure‘and décreased
total vertical load transmitted to the wall.

Jofri;t and Dickinson (19845 déveloped a fin%59~s4ement
model based on isotropic linear elastic material Behavio;,
for a bottom-unloading farm silo. In this study the effects
~of base const:aints, formation of arch and cavity size,

coefficient of wall friction and lateral pressure ratio on

the lateral wallypressure were investigated. The cavity
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shape 1is axisymmetric and the material behavior'is uniform
with respect to depﬁh in lower {egi The stress
diétribution after form%tion of arch og cavity 1is
indépendeng%ﬁﬁmghe past h?gtory of the material, and Eﬂ; ‘_
unloading process is sufficiently slow, hence the dynamic
effects can be neglee&ed. Rigid bonstraints are used at the
walliin thé radial direction, and the vertical sh;ar force
in the wall is equal to the product of coefficient of
friction and corresponding radial reaction, actihg
veftically upward. ‘

The analysis of a 6 m diameter and 20 m height silo
indicated that arching of the material atithé_cavity causes
higher radial pressures on the lowef region of the silo
Qalls, than those experiencedﬂwitﬁout the caQity. The
ma;erial starts fléwihg only when the local stress statg

exceeds the strength of the material. It is also obse;vgd
that above a height equal®to the d;ameter,'the effect of
archiné is negligible. The overpressure becomes more

2
- concentrated with increase in the size of cavity and the
peak pressure at the pase‘increases exponentially with
l{nearly increasing cavity'size. The lateral wall pressure
decreases Qith~increasing co-efficient of wall friction,
which is also indicated by Janssen's solution; The pressure

ratio, K, has a negligibie effect on the overpressures at

the base.



2.3.3 University of Karlsruhe. Group ¢

Eibl et'él. (1984) presented a nonlinegr‘finite element
analyéis,simulating discharge through a mass-flow silo,
assuming that‘é granular solid durihg discharge exhibiﬁs a
;olfd—like and fluid-like behavior and using an incremental
yigcoplastic,conspifﬁtive law. Large deformations, and mass
préperties‘are fofmélated in the context of an Eulerian
frame of referen;e. The following basic assumptions lead
"them'tq the fbrmulatiéﬁ of{fidip@'eleﬁehﬁ model. .

-

1. Cauchy stress-c*‘ishdividedvinto a rate independent

part/o; and~a'fate'dependent part 03 i.e.

o* = g* 4 g* - : (2.32)

S v : :

2. The rate independent part is defined by the elastic-
" plastic law proposed?by Lade (1977)'as \

: ‘ / ) !
T N Ao = H Ae | (2.33)
s e v _ S

P
3. Strain tensor Asep has been divided into an elastic
'component(Ase, a plastic contractive component Aec

and a»plastic exgaﬁﬁive component Ae such that

’

pl

Ae = Ae  + Ae + Ae ’ (2.34)

4. An isotropic hypoelastic l%y with stress dependent

Young's modulus E, and constant Poisson's ratio, v,

42



are used ‘to define the elastic component-

‘ﬁee = EAoS | .(2.35)
The plastic contractive componenﬁ due to vok%petric
compression is determined by an assoéiatedwflow
rule. The plastic expansive componént due to
increase in deviatoric stresses, is obtained from a

nonassociative flow rule.

'afco
Aec = A)\C 5 (2.36a}
S
Ae = AA %%— ' " (2.36b)
p p ooy .

where AXp and AA. are monotonically increasing

positive scalars determined from plastic work

.

functions.

The yield surface, £ may expand infinitely in the

_ co’
principal stress space, while the expansive yield
surface, fex,vhas been'limited by a surface,'n.- The
elastic-plastic strain increment is thus given by
df
C
c 0o
S

O 4 an_ 29 (2.37)
p bcs'

‘Ae = EAo_ + AX
S

+ A
ep _

"

The rate dependent part of Cauchy stress is defined

by a relation of a form anélogous to the
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8. |The boundary conditions im

a) Velocity normal to bin

b) Velocity tdngential to

Ve = 0 if op < tan ¢°'.

g, = tan ¢'.on. |

c) At the outlet Op = O =
On|the basis of above assumpt
virtual velocities the problem has

Euleriah frame of reference. Anal

“silos, with different geometric cod

carried

obtained were found to be léss, bu

experimental results given by Motz

did not

theory.
Flow pressures were analyzed
strain silo, with.a hopper incline

horizonﬁal.

incompressible Newtonian f£

material parameter called

out under static condition

compare their results with

The results of the an

The flow velocity in the ¢
found to be approximately
move like a rigid body. I

velocity is maximum at the

luid, in terms of a

viscosity number.

+

posed on the problem are,

wall is zero, v 0

n

the normal is such that,

o otherwise

n’

ions and the principle of
been formulated in |
ysis of two plainksgraih
nfigurations have been
s. The wail pressures
t closé to the

(1974).

kus The authors

Janssen's and Reimbert's

for 6.5' x 39' plane

d at 60 degree to ~/

alysis are summarized as

ylindrica%\portion is //

constant, i.e. the solids

n the hopper area, flow

silo centre and decreases
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pressure develops near the transition.

to a minimum at the silo wall.

|
|
|
., ' |
Under static conditions, the direction of the major
principal stresses are close to the vertical%in both

the cylindrical and hopper parts. When disdbarge

begins, the direction of the méjor principal stress

is reoriented from the vertical to the horizontal in

the hopper area, while in the Aylindrical area it
does not change. Subsequently the magnitude of
stréss decreases above the outlet, and increases

.

near theé transition area between hopper and

.cylinder. « The stress level within the cylinder area

{

is unchanged. This stress redistribution during

flow has been explained by Jenike et al. (1968),
' /

Walker (1966) and Walters (1973) as a transition

from an active state of stress to a passive state of

stress.

The lateral wall pressure in the cylindrical area
increases uniformly with material depth followed by

a strong increase¢ near the transition.

The normal wall pressure in the hopper area

increases uniformly during the initial phase of

~discharging. When the flow is established the

pressures near the outlet decreases and a peak

45
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5. During charging the material near transition is in
limit state, while the rest is in plastic hardening
‘range. Elastic behavior occurs during the initial
phase of disgharging, which is transmitted to the
plastic hardening range in the hopper area, and then
to limit states as the flow propagates.
4

2.4 Field Measurements

2.4.1 Simmonds and Smith (1983)

-Simmonds and Smith (1983)‘presented‘an expefimental
study conducted on an pperafing reinforced concrete coal
silo, owned by Fording Coal Limited in British Columbia.

The objective was to‘Quantify material overpressure within a
full scalé,silo. )

The cylindrical portion of the siio has 70 feet inside
diameter, 12 inch wall thickness and rises 155.7 feet above
transition. The silo has two pyramidal oﬁtlet hoppers, all
of steel plate construction, as shown in_Fig. 2.12.  Strain
gauges have been mounted on hooplreinfércement at various
locations. Actual baf,strain measurements were recorded as
either statib or‘continuous.

The stﬁ?y showed that durfng flow large instantaneous
overpréssures‘coincidéd with quaéi-static overpressures of
similar magnitude. At strain gauge 1dcations 5 and 6, there
were virtually no affect during.discharge, also at location

4, no overpressures were observed. Therefore, the
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'Fig. 2.12 Section. of Fording Coal Silo
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distribution of lateral pressure¢ was close to static, from
free surface of material down to a level between strain
gaugue locations 3 and 4.

If it is assumed tha£ u' does not vary greatly, Kdy at
location 3 can be approximated by Kg, X overpressure factor )
(o.p.f.). For thé type of coal under study, Kgp was close
to 0.48, and with a maximum o.p.f. of 2.0, the largest
measured value for Kdy was thenlclose to 1.0.  This 1is
supported by Blight and Midgely (1980). Jenif?“s strain
energy‘method, also, gives a value for K close to unity,
when the switch location is assumed to occur at a depth
greater than one diameter from free surface.. It was also
indicated with respect to this study that the dynamic
pressures were fourd to be satisfactorily bounded by the
strain energy predictions. Further it was observed from
continuous strain record that the rate of withdrawal may
influeﬁce the distribution of lateral‘pressureé, while
Pieper (1969) in a model study showed that in a silonwith
symmetric outlet, filling and emptyiﬁg speeds have no

influence. 3

2.4.2 Technical University of Denmark (1980)

Nielsen and Kristiansen (1980) performed a full-scale
test on a silo, 7 m in diameter and 46 m high, using barléy
as ensiled material. 36 pressure cells on the walls and 5
on the bottom were mounted in the silo, as shown in Fig.

2.13. Three tests with central discharge and five with
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(b) Eccentric outlet
! ab/

(c) Sections 1,2,3,5,6 87
4cells

(d) Section 4, 12 cells

Fig. 2.13 Section of Test Silo, Technical Universiﬁy

of Denmark



eccentric discharge were carried. out. The test showed that
the static pressure during filling and rest deviated
considerably from Janssen's field. In some cases the mean
values were 20%. below Janssenfé formula, while in others,
‘they were up to 100% above this. During eccentric
discharge, the distribution of mean values for the maximum
discharge pressuré was‘largely‘plane—symmetfic. Except at
thé bottom most locations, where a considefable increase 1in
pressure occurred at all locatiodg3 The mean values for thé
maximum pressures were lowest, -about 1.8 times that obtained
from Janssen's formula for Bb = n/2 and. 3n/2. At one point
between locations 3 and 4, the pressure observed was about
2.8 times Janssen's formula for 8, = 0, and 3.2 times the
Janssen's vglue for eb = 1., The maximum pressure on
different locations did notVoccur atwghe same time. For
central dischargé the mean value of the maximum discharge
bressures were axisymmetric. The maximum pressure was of
approximately the same brder‘of magnitude except that it was
scagtered between locations 1 and 3. Considerable déviation
from the @xisymdétric were ascertained in an individual test
which may induce some moment in silo walls.

Significant cracks were observed aﬁ ldcation where the

largest pressures were measured as well as where the maximum

deviation from an axisymmetric distribution was observed.

By

w
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CHAPTER 3 — THE FINITF ELEMENT FRICTION MODEL

3.1 lntrogggtion

The behavior of a granular material flowing through a

silo is dominated by a number of variables falling into
[y
three different categories,
i) geometric variables such as diameters, heights,
and angles of hopper inclination, etc.,

ii) material properties,

ii1) boundary éonditions, such as wall friction.
The first two categories can be normally incorporated in any
finite element technique. Material nonlinearities may,
however, necessitate an incremental approach.

The third category projects the préblem into the class
of contact problems with Coloumb friction in which no;mfl
tractions are not known in aduvance (Campos, et al. 1982).
The presence of friitibn forces gives rise to
. nonconservative forées which introduce dissipative terms 1in
the variational formulation. With a certain loss of )
generality and at a risk of nonuniquéeness the incremental
virtual work principle may be used to describe such fields.

In the following differenz}approaches to describe the
‘boundary friction proﬁﬁem are presented. The particular

approach chosen is fully developed and the finite element

technique used in the rest of the study is described.



3.2 Incremental Virtual Work Formulation
’ ConSider a mechanicalESystém in eduilib;ium undér a set
~of applied forcesf T® and Fe and prescribed kinematic
cénstraints q°. \Qhe,prfnciplé of virtual work states that
the. sum of ali virgual work/rate of virtual wqu,'éw, done
by the eXﬁernél and ihgernal'forces existing in the systent
in going through an infinitesiﬁal arbitrary viftual
aisplacementé/velocitieg satisfying p%e@cribed kinematic"
constraints is zero i.e; 5W ; 0.- The'principle of‘gértual
work'is invariant under co-ordinéte t;g%sformaéions and it
holds good indegehdenﬁly of the stregs—strain relatiqns of
. 7 S @ s
the material. ) ‘ - gﬁﬁj v
The‘incremental vafiational,forﬁulatidh presented here
ié based on shall‘displacement/velgcity fielﬁ.‘ Let the

material body shown in Fig. 3.1 be divided into "k" number

‘of elements. Let V, be the volume of element and let Sk’

‘

Aqu and Sgy be those portions of eiementrsurfaces‘on which
‘prescribed tfactiéns, diéplacements/vélocitiés and friction
"forces respectively are applied. "

iT%erupefscript ()° ;hdiéatés initial quantities at the
beginning of a load“stéﬁr and the prefix A()‘quotes |
increhental qUantitiés.' Prescribed-quantities are denotéd
by ( and the nodal quantities are denoted by ( ).
When cértain.external'fofcesvare prescribed~as-acting;
ron.afdeformable 5ody, a-stqticaily admissible stress
distribution is defined as one satisfyiﬁg the differential
equaﬁigh of equil%brium in the interiof of the body énd the

¥
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boundary\COnditions.
The'differéntialaequat;on of equilibrium in incremental

‘form can be writen as

'o ' L 0
.. . +Ac.. . + F. + AF. =0 (3.1a)
13,] Lo 1]e] 1 ¢

The symbols ¢ and F Henote the stress tensor and the body

force per unit volume vector respectively.

*

The stress increment tensor Ac;: can be expressed in

J

terms of the constitutive tensor tijkl and the strain

_1ncrement tensor Aekl as | ]

895 = S 85 W  (3.1b)

[t

The strain increment tensor is related to the

I3
v

displacement/velocity field tensor, dﬁ.as

he.. =2 (g . o+ g% ) +%(Aqi’v. +ag ) - el (3.1c)

53

The mechanical boundary conditions on Sck are defined (Pian,

1976) as

0 0 . . . : ‘

T.l = qij nj (3.2a)

AT, = Ao, . n NE TS
1 1] J

in which T and n are the surface tracéioqs and the unit
N . _



~ N
vector normal to the surface respectively. The
1§ ' :
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displacement/velocity boundary conditions on qu are written

as (Pian, 1976)

Since the  imitial and’prescribed«quantifiés do not vary, the

first variation of Egs. 3.lc and 3.3 are

Co

. - "‘W’\ '\\ «I‘V' B
‘@@M ' ﬁ—‘ L (oA v 5hqg. ) (on V) : (3 4a)
o e OBFi3 T 2 VP89 9y,i/ t°0 Yk :
baqg, = 0 (on qu)‘ | : T . (3.4b)

Let the body in the initial equilibriuﬁ'configuration'be
“given an infinitesimaI‘virtual displacement/velocity 84q; -

subject to the conditions of Eg. 3.4b. The virtual work,

2, I

SWy, of the inteenal forces 4

Y

the virtual work, SWE, of

the external forces are e d as
- * El

. = 0 : 0 T I
W i {/ (Gij + Aoij) bhe . .V +‘f |cT + A0T||6AqT|dS}
Vk ' bfk .
, : (3.5a)
0 _ RN _ -
SW, = I {f (bi + AF:l) 54q, AV .+ [ (T_i +‘ATi) 6Aqidb}
_ k Vv, § Sop - , , .
( : : ' . (3.5b)

%

i
i

The symbols dT and g¢ denote, respectivélyﬂvthé tahgential 3

friction forces and the tangential displacements/velocities.



" The prfnciple of virtual work can be written as
SW_ - 6w, = 0. ’ - (3.6)

Substituting Wy and 8Wg from Egs. 3.5 and rearranging

z Ao . She..dv + [ |0 + Ao |84 ds.
. \{,f 197551550 s£ o ol qfr' .
k i k
- =0 0 AT VeAa 4 g 4y =
vf_(Fi + Afl) 68q, AV s{: (Ti‘+ ATi.)éAqi. +vj‘ oijéAeikjdV 0
k ' k _ k
B : : o
L A

|
The first térm aﬁd the third to fiféh terms on the left hand
.éide of BEg. 3.7 glve rlse to the usual finite element |
matrices (Elw1 and;Murray, 1980 and Bathe, 1982) 'in thé

)

fo}low1ng m@nner Let the dispiécement/velocity field be

iw
fggescrlbed 4in terms of nodal quantitites by

é&
(aq} = IN] (8g) ' (3.8

where [N] is a'matrix of shape'funct}ons and Ag 1s the set

of nodal displacement/vélocity,increments.

Using Eq. 3.4a thé strain increment field may be

written as

{ae} = [B] {ag} ' (3.9)
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where [B] is the u%ual differential operators matrix. Using

Fgqs. 3.l1b, 3.8 and 3.9, the first and third to fifth terms

of Eq. 3.§'ﬁaylbe Qritten as L
| ‘ v
50 > £ [k 1{aq, ) | | (3.10a)
Lk Ko : ,
Y oceagr T ([FY) + {aF,}) | (3.10b)
R k k!
<saq> £ ({TY} '+'_{ATK}) (3.10c)
k _ |
<60g> * {o } (3.10d)
K _
k
where, .
(K} = [ 31T (1 (Bl av L (3.11a)
k
(FO} + (oF,} = | yT(F%) av + [ (N1T(F} av (3.11b)
k k
(70} + (a7, } = [ T (T%) as + [ ) T(aTHras (3.1lc)
'So So '

K K
(o} = f (B1T(a®) av
| Vg - s S

-

,fepresenting théigleﬁent,stiffness matrix; the element body
forqe vectof( thé Surface tractions vector and the
eqpilibratiﬁg loads vector.

The'secona term in Eqg. 3;7~represent5‘the virtual work -
aSsoCiated with friétion forces. It may be represented;iﬁ

‘several ways.
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a) a boundary layer of thin solid element with spécific
material propertieé |
b) a boundary integral in whiéh cf~is-a 1inear function

of o,, where o is the normal pressure.

n
c) an iterétive process in which friction forces are
'derived as a linear function of boundary reactions.
In all three représentations Coloumb type friction is
assumed. The first‘approach requires a specific
formulation, not available in the present program EEPARCSS
(Elwi and Murray, 1980) which forms the base of program
FEPILS (FEPILS is an acronym for Finite‘Element Program for
‘Invéstigation of Loading on Silos). The second approach |
results in an unsymmetric stiffness matrix. The 'third "
approach requires-iterations, th is straight:forward and

can be readily implemented. This is the approach chosen for

the current study.

3.3 The Friction Force Formulation

The friction forces develop along the contact surface

betWeen the material and the wall as the solid material
moves in the silo. The contact surface. has been defined as

‘the friction boundary surface, Sgy. If the forces normal to
a .
the friction boundary, RN, are known, the tandential

friction forces, F can be obtained using Coloumb's

T"
friction law. The normal forces can be determined by

providing essential boundary conditions in terms of linear

springs on the friction surface. These springs have very

1



high stiffness as compared to the

Letl the spring-element be def

friction surface, as shown in Fig.

have an% orientation in the r-z pl
the horizontal and vertical coordi

Leé the virtual work/rate of
with the spring element be written
9

where 6W, is thé virtual disy.

boUndary surface -and Fg is the

radian section written as

Iy

]
g */

; g
where kBE is the spring stiffness,

the radlus at the point at which houndary element

attached

If the spring 1s 1nc111ed 9

stiffness of the material.
ined at point B on the

3.2a. The spring may
ane, where r and z denote
nates respectively.

virtual work associated

as

(3.12)

qcement/veleéity normal to the

force in the spring for a one

(3.13)

L is the length and r is

is .
o,

to the horlzonté

then the dlsplacement/veloc1ty component normal to the

frlctlon surface is given by (See| Fig. 3.2b)
cos es
W= <u v {Sin 6 , C(3.14)
s
Substituting the right hand side of Egs. 3.13 and -3.14 in
Eq. 3.12, the resulting equation can befwritten as

58
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- Element k | 'r |

Fig. 3.1 Forces on Element k

(a) Boundary (b) Velgcity (c) Friction
elethent "~ cobnents ' forces

¥ .
Fig. 3.2 Boundary Element and Friction Forces



. _ u
SWy = <Bu bv> [KBE] (o}

(3.15)

where [KBE] is the stiffness matrix of the boundary element

and is written as

00526 cos 6 sin 6
: s ‘ s s

cos 6  sin 8 sin2 )
S S

[Kog) - )

This stiffness matrix is added to the stiffness coefficients

of the nocde at which the spring element is attached.

3

(3.16)

60

The reactions or normal force components are calculated

by multiplying [KBE]

by the actual displaceﬁent/veloclty

obtained at any stagé of solution. The reactions are added

to the equilibrating loads to satisfy conditions

variational formulation. “
O

(3.4b) of

The friction force can be defined as the normal force

multiplied by a coefficient of friction (tan ¢), asting at

right angle to the normal force and in a direction opposite

to the movement of material body, expressed as

where Wy 1s the tangential component of
displacement/velocity written as
~sin OS
W, = <u v>

T
cos QS

and the normal force, Ry, is defined as

(3.17)

(3.18)

’
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R =k _ x W (3.19)

in which kpp is the stiffness of the spring element. The

horizontal and vertical component of friction force are

<FX Fy> = FT <- sin 95 cos es> . ; (3.20)
3.3.1 Solution Technique
In the strategy adopted to include friction forces, it
is assumed that the normal and hence the friction forces on
the friction surface is not known in advance. An iterative
scheme' can be develQped to incorporate the friction forces
inya general finite element program’for the analysis of a
problem without.friCtion.v ;
3 The'algorithm:fot the analysis of sueﬁ problems which
have friction along the contact surface between material and
silo wall is briefly described in the following. First, a
tinite element approximation of the problem without friction
" forces is obtained;’ The object.is to get an approximate
normal force and hence friction fyrce, which may be employed
later for a problem with the frlbtlon forces prescrlbed on
friction boundary eurface. Having calculated the nodal

dlsplacements/veloc1t1es at nodes on which the sprlng

. element 1s attached the nodal normal "and friction- forces
n N O

aredbptained using Eqs. 3.14, 3.17 to 3.19.
- e . |
- The horizontal and vertical components of friction:

)

i
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forces are bbtained from Eqg. 3.20. These friction torces
are multiplied by an under-relaxation factor to obtain the
incremental vadlue of friction force components, which are
added to the correéponding nodal values in load Vector.

The préblem is then resolved using the new load vector
which includes a first approximation of incremental
components of friction forces. This leads to new literates
of nodal dispiacements/velocities field, and hence new
friction forces.

- This process is'repeated continucusly, until successive
solution for friction forces do not differ by a preassigned
tolerance. The final résuit thus obtained for normal forces
after cénvergence of friction forces is employed to obtain

the flow pressure of material on silo walls. The flow chart

of this solution technique is il%ustrated in Fig. 3.3.

G
F
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Solve the problem without friction for an
increment of displ/velocity using finite element
technique

Resolve the problem having an approximated
incremental friction forces for increment of.

displ/velocity

Obtain tangential and normal displs/velocities

at nodes to which spring element is attached.

Y

Calculate the normal forces and tangential
friction forces, at nodes on friction surface

¢ R

Obtain horizontal and vertical ‘component of
friction forces and multiply by under-
relaxation factor to get incremental value of

friction forces.

OK

Test for the .convergence of friction forces

No

Add incremental values of friction forces to
the corresponding nodal values in load vector

Calculate the pressures exerted by the ensiled
material on silo wall, using the normal forces

Fig. 3.3 Flowchart for Solution Scheme of Friction Force

J

-

‘e
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CHAPTER 4 - MATERIAL MODEL -

1.1 Introductidg ' : "&#*.1%

]

Y
certain.degree of cohesion. Except at certain bocatlons,

P

such as the outlet and free surfaces. the beha%ﬁor téI

. i o
v _.T.l. R

a triaxial compressive field. In suchﬂa 'feldﬁthqge’ o

materials appear‘to behave in a viscop@ag#ic manher (Flbl

and Haussler, 1984). The behavior: 1sgmar%ed hy several

strong traits,

‘{" y A ' CA
gh%%eased‘hydrostat;p
pAl Y, ‘l;‘" . .

¢t

i) an increase in density with

stresses

ii) an increase in shear stréhdg
. “uly

hydrostatlc stresses, an&aw

1ii)

is dlrecteﬁ,prlmarlly at, coal

1snstudy

L@ikwof Lnfdrmatlom an-
‘? J“ _‘ .

denslty

AT 'J

rate dependent behavidr‘ofléoal, and" sbarsﬁ data

dependency, the study encompasses only elastlc perfect g;

. , , SRR
plastlc behavior in a small dlsplacement/veloc1ty % S
L oo

infin}tesimal strain field. In order to\model the*plaéﬁic&

behavior taking into consideration the shear strength tr%&;s

and the dilatancy effects a Drucker Prager type yleld

criterion (Drucker and Prager 1952) 1is proposed.

This failure surface can be degenerated from the five

parameter curved meridian failure surface developed by

64



B
Willam and Warnke (1975), which allows better triaxial
. . “’. .
.representation and may‘h%ﬁcmployud in later studies, -
|
This approach has %een extensively used in the tield ot
geotechnical .engineering in modelling the properties of
cohesive and granular materials. In the following the

incremental stress-strain relation in matrix notation is

presented.

4.2 Elastic Perfectly Plastic Model
A material body is deformed when subjected to applied

forces. If upon removal of the forces the bhody recovers its
¥

original shape and size, then the material body is called
eiastic. For such a material the Qurrent state of stress
depends. only on the current state of deformation, i.e.
vstress is a function of strain. Thus the behavior of this
type of material is both reversible and path ‘independent in

the sense that the stresses are uniquely determined from the

-

current state of straln or vice versa. The deformation of

material beyond the elastic limit is characterized as

w®
An idealized uniaxial stress-strain curve for elastic
perfectly pléhaic materialgpis ilfhstrated‘in Fig. 4.1. The
PAl - . ’ .
material initiaily behaves linearly elastic along the path

" the path‘is reversible. This is followed by a

plasticity}

0A, i.e&;

yield at point A. Once the material has reached the yield

3

stress, o (i.e. passed point A) the path ig no longer

yl
reversible. Upon unloading in this range the material once



more exhibitss{inear elastic behavior and follows a path
éakallei to OA. A permanent set of strain, eP, called
L]

plastic.strain is left in the material body after complete

‘unloading. Therefore~only elastic strain, e€, can be

recovered from total strain, e. The stress in the material

remains constant with increase . in the plastic strain, beyond. '

the yield point.
The concept of the yield point in the uniaxial case may
be replaced by a yield criterion for a small (macroscopic)

element of material subject to "any-action characterized by a

3t

The yield criterion and the general behavior of an

tanSor‘of applied stresseées oy

elastic perfectly plastic material under a stress tensor,
044, .can be defined as. follows.

1..In a nine dimensional stress space,«t&ere exists a
yieldysurface (function of stress) defined by a

W hd

n as

yield’functio

f=f(o,.) =0 - (a.
.“f f(qu) , . o (4.1)
£ is'a.scalar function and fi = 0 corfESponds,tO'the

66

irreversible:deformations. The material is elastic ™

e 4 .
C ~(7} . . i "

) f<o0 o o (4.2a)

4;;" .

and , Ce e



67

df = po.. <0 ‘ 2 (4.2b)

*and the material is plastic if

and
T
gf = 25 Ag. . =0 - o “ o 7(4.3n)
;acij i o < ' | E.

Fal

Tt must be noted that £ 0 is not possible. THe

N

materlal is elastlc untll it reaches the yleld limit
4

(i.e. £ = 0). The?plastic deformation takes place
B oy X "
. - : %, ' .
without limit. For plastic flow to continue (i.e..

for increase in plastlc straln) the state of stress
must remain on the yleld@%urface. This is'knéwn as .
the criterion of loading and deflned'by'Eq, 4.35. :
Now there remains a permanent set Qf.piastig strain,
;p ' when the stress’ 1nten51ty drops below the - yield
. value or when,the stresses are removed. Thls is
known as the criteria of unloading defined by Eq.

)

4.2b.

:mmhe cohgept of loading and unloading has been
illustrated in Fig. 4.2'where f‘isﬁinterpreted

geometrlcally as ‘a surface and o ij and Aoy ij as

stress and stress 1ncrement vector-in‘stress
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it

Fig. 4.1 Idealized Stress-Strain Curve -
\ .
¢ ¥
Perfect __ —»Loading -

plastic
f(Uu)=O

)

Fig. 4.2 Yield Surface and Criteria of Loading

Elastic .
f(O",j)(O

)

‘and Unloading

-'\;‘

oy
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‘additional loading, ‘Ac

¥

S—

space. This surface is fixed for elastic perfect
plastic ma;erials.

Let tﬁe.body, initially in a plastic state Yith
stress vecator Tijr be given an infiniﬁésimal

increment of stress, Ac;j (additional loading).' For

69

perfect plastic materials the stress point‘cahﬁot go'

outside the yield surface. Plastic flow,occurs when

‘the stress point“is Qh the yiéld surfate. and the

SK must lie in a plane

w0 T ' V-
tangent- to theg,ﬁefa&surface. The additional
¥ 1 -

S S,
'vﬁﬁ?ﬁ ”

: , |
loading bojy pgoduces only_elastic‘stfbin, if it is

directed inward from the surface f (unloading).

Pt ;
? . : i

: : &
. . LG g
. ) 4{?;17‘ é’gg

The total strain ihcfeﬁent, Ae

bejy, in the plastic”

zone of behavior can be decomposed into an elastic

q

component, As?j, and a plastic component, gegj, such
that v s : . ) B V‘ | Q-«I
L] 7 i’,
A s &
Ae.. =.0eS. + ael. : (4.4)

1] 1] . 1]

The elastic or ‘recoverable strain ‘increment .can be -

-

related to the incremental changes of stress, bojye

L)

by the generalized Hook‘s”LaW}QE
= e ' |
Aoij = Cijkl A?kl » » (4.5)

!

3. There may not be a connection between f and the

o



+

&

‘potential.

v
4

plastic strain increment. Let there be a plastic-

potential function

i

. ,‘F},
= L
% g(oij) . | » f(4.6)
such that ,
pel, = 28 gy ! (4.7)
1) 6oij

where d\ is a positive scalar function, which is

‘nonzero only when plastic deformation occurs. The

‘equation S(Gii) = constant, defines a plastic o
potential surface in nine dimensional stress
p

space. The plastic—flow vector Asij is directed

along the normal to'the surface'of.plastic

@

If it is assumed that the plastic potentiah-®@®__
5 N

function coincides with the yield, function, i.e. f =

g, then,
peP . = 2L g | . o (4.8)
1] 00, . . :
. Kl lJ N -

4

'This is called the associated flow rule. Obviously,
the plastic strain increment is thus normal to the
yield sirface (Fig. 4.2). Eq. 4.7 with f # g is

called nonassociated flow rule.

70



Substituting Eq. 4.8 into Eqg. 4.4 and rearranging, the

elastic strain component is written as

dr o (4.9)

To obtain the stress-=strain relation BEg. 4.9 is sUbstLtﬁEed

for .the elastic strain increment in Eg. 4.5 to obtain

k-

71

_ L o .
‘ o Boyy = Gy (dey - @ dr écki) (4.19)
5 1)
Subject to the condition
a) « = 1 if f(o,.) .0 and d e. oy is on the
’ yield surfacé.éﬁﬁ¢$@ying to the yield L
i : ‘ . ﬁ@$i~“'4 L™ '
a surface 7
"b)ia =0 if”f(oij)‘='0‘éhd df "< 0 i.e. oys on yield
surface and unloading . ﬂ' | S Lt
c) a = 0 if f(o;j) <0 i.e. oij is inside the yield
surface. | ' -
ji;e'factor dA iS'obtained_by'combihfng the stress-strain
elation (Eq. 4.10) with the consistenby conditién (Eqg.
4.3b) as follows - ¥ . | -
df CRf N ,; |
- —— C.. (Ae, , - adr ) =0 F (4.11)
G, 6cij ijklL kl aokl o :
rearranging andssu@stituting, a = 1, gives -
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vo,; Cijkl Aeky' | . o
. A (4.12)

T EE 3
aoij ijk1l K1

A general relatlon for stress increment is obtained by

sub%tltutlng dx from Egq. 4.12 into ﬁh. 4,10 as

o

do., . 1Jkl 36 - ijkl
. - - 1] k1 »
P 0o, . ~“1jkl 3o ‘
. ij .kl | L
3 . o
‘This is written in ;:&9 matrix for :as R S
; ) 2f) Of
S ,g:{‘g;]e {53—} ao> .J‘[c_]e
{aoy = [[C) - @ oF :
o e e ?r
o .;‘ ‘:” 'fQ,xl _ o

in.théh JC]evlS the elastlc cohstﬁ ty,

the increment of stress in vectorgform,> pf/do. is the .
gpadient of the.yield surface and A€ is'thefihcrement of -

a

strain in-vector. form. N K L
. e . . st .;
. i‘ R . f'}x,_!._‘.\
. ¢ ' .“ .
. ' YA (R :
4,3 Failure Surface I - . . .

A failure surfacé is described by'an envelope. in the

stress space which defines the faifure strength'for‘any

ratio of stresses.

When the stress path intersects tliis surface plastic
flow 'occurs. For perfectly plastic behavior tﬁé»surface

‘does not change 1ts conflguratlon durlng plastlc flow, “hence

‘the stress path descrlbes a trajectory on “the 1n1t1al



surface, while the plaspic strain increases continugqsly.

A two parameter failure surface proposed by,Druckér and
?réger (1952) is used in this work. 'This failure surface is
degenerated from a five parameter surface presented hy
wWillam and Warnke (1975). 9

4.3.1 Willam-Warnke Surface
~The Willam:Wanke faiiure surface is basically a cone

with curVed>meridians and non-circular base section, see

Fig..4.3a.‘ The surface is conveniently represented by

hydrostatic and deviatoric sections as shown in Figs. 4.3b

‘and‘4.38.

73

The Chafacteristics of this surface can be sumperized -

in the following.

" Let the mean (avérage) normal stress be defined as
o =90./3 | : (4.15)
and let the mean (average)'shear stress be defined as

- » . -

s | - , . | .
- sljsij/s o © o (4.16)

where Sij,is the deviatoric stress tensor defined as

1

S" = L _ o \"\ * ’ ‘ o & .
i3 013 : qkk613/3 RO | , (4.17)

Normalizing oy, and. 1, by uniaxial compressive strength f.

. A .
sy
0 - . A a
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s

(@) General view = 3‘4_»_%

[S

(c) Deviatoric section

Fig. 4.3 Willam-Warnke Failure Surface



Lo
as (e 1
R}
_ : ) .18
o om/fCu (4.18a)
T, T rm/fCu | (4.18b)
The deviatoric plane (o, = constant) of failure surface
/
is rep;esenﬁed by three symmetric elliptical segments
‘forming a closed convex and continuous curve. Hence, the
surface meets the condition of symmetry, smoothness and
convexity. The elliptic trace of the failure surface is '
described as
/”
—_— - e ,‘___ o ' \'
T r( o \c/m) (4.19)
~where 6 is the angle of Similarity and is expressed in
" terms of principal stresses as (Willam and Warnke, 1975)
cos 6 = °y 203 (4.20)
m 2 2 211/2 ’
v - - + ~
2 [(cl 02) + (02 03) _(03 ol) ]
For o, » o, » 0,, then 0 < 6 < 600, as héy be seen from
: 1 2 3 m
Fig. 4.3c. The function-r(em, Sﬁ) in Egq. 4.19 is defined as

"

(Willam and Warnke, 1975)

, 2 2 2 2 2, 2 1
) 2r2(r2 -, )cosem+r2(2rl—r2)[4(r2 -r) )cos 6 +5r) —4r1r§§‘/2

r(e o) = 2

&

2 2 .2 \
4(r, - ) cos” o+ (r, - 2r, )

_—_—

. | | (4.21)
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1
The vafiables‘rz and r, are respectively the maximum
/(em = 60°) and minimum (Gm = 0) radii of the deviatoric
trace of the surface (see Fig. 4.3c). These variables are
assumed to be parabolic functions of the hydrostatic stress

and are expressed as (Willam and Warnke, 1975)
(4.22a)

r, = by * byog + byo S ” | C (4.22b)
The value df the co-efficients ay to by are chosen such that
the variables r; and r; pass through a setlof control
points, as illustraﬁed in Fig. 4.3b.
Thié surfacevwas basically developed for concrete
subjé;ted to tfiaxial loading in the tension énd compression

regime. The values of these co-efficients for concrete

materials are evaluated by Willam and Warnke (1975).

4.3.2 Drucker-Prager Surface
Drucker-Prager surface is a right-circular cone with
its axes equally inclined to the co-ordinate axes in a

~ principal stress space, as shown in Fig. 4.4. Fhis is

expressed mathematically as

/3;) = al, +73, - k =0 _ (4.23)
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Fig. 4.4 Drucker-Prager Failure Surface
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where a and k are positive material constants. 1, and J,
are the tirst stress invariant and the second deviatoric

stress invariant respectively and are expressed in terms of

mean normal stress, Ome and mean shear stress, Tmr as
I, = 30m | (4.24a)
5 2 .
= 4.24h
J2 5 T ( )

Substituting Egs. 4.24 into Eq. 4.23 and normalizing by

“

uniaxial compressive strength gives

k =0 (4.25)

g = tan ¢ | (4.26)

Vé + 12 tan2 ¢

- 3¢

\[9+12tén2¢) ‘ : T

where ¢ is the angle of internalﬁfriction of material and «©

“is the cohesion. . v -

<

plastic volume expansion takes place at yield accggdinv

an associated flow rule which may not fit the observ

values (William and Warnke, 1975). This property is%%m@wn

K = 2 Q (4 226b)

78

. The major disadvantage .in this:type of surfacepis‘tghhyk‘
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-9 X s &

o . ‘
~as.-dilatancy. -

\ i

» Lot i

K . . ‘
{ 4%%,3 Degeneration ot Willam Warnke Surtace to Drucker v
. : ’ o - A
. .:“y

3

Prager Surtface . ,

The Willam+-Warnke degenerates to Drucker-Prager surtace

of circular cone if the meridian parameters are reduced to

ﬁthose of identical straight lines as follows

o an = by | . | | (4.27a)
N /}

a; = b (4.27b)

ay = by, = 0 o (4.27¢)

and ry = ry = r o _ (4.274d)

Ik

~in-which case .the deviatoric cross section is a circle.

Using Egs. 4.8b,.4.19, 4.22 and 4.27 and Hoting that T

= r/Y5 the followihg‘expréssion for the meridian is obtained

T . B} o )
o =5 IS WS S o t4.28)
cu. ¢5_féu i cu TR

. 5 . )
s ! .
; j

. . . ‘,\#:\‘;1 3 i .
Comparing to the Drt&er &Eger failure surface, Eg. 4.23

’

| a, = /775 k ‘ (4.29a)
N . . . ) { ‘ -
and, a, = - Y1875 a ’ N (4.29b)
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CHAPTER ( ~ ANALYSIS, AND COMPARISON

' < ¥ . 3

., ) \i*&’r\ ] . ot - i
- ) » \ - s

- A f1n1te element formulatlon‘for the 1ncremental A

.

analy51s Qf a flow1ng SOlld materlal in ax1symmetrlt 51los

’

is pres?nted in - Chapter 3 ’ Chapter 4 descrlbes the proposed

5. l Introductlon{* s

elastic- plasthc constltutlve model ProgramngPI%s in Wthh»—

3 \ '

the flnlte element model and materlal mode 1l proposed iny &

[y

Chapter 3 and‘4‘respeot1vely, have been 1mplemented as

N e N i~ . )
described in‘AppéhdixAA.' {Q\thls chapter as serles-of
» ‘ '

,\problems are analyzed using program FEPILS. Finite.element

’
model of test problems and. the material properties are
A4

described. A parametrlc study of the materlal behav1or is
.carrieq oUt The Variables investigated\ln‘thls ‘study are
Vo ' i .
: angle'of internal friction of materlal angle of wall

friqtion, hopper slope with vertlcal,éheight to diameter
. ,, s . - ,. » ‘. .
ratio and Poisson's ratio. The effect of these "variables on

lateral wall presshre and material stressés have been
examlned The results of the analyses are presented and
compared w1th classical theorles and results of finite

\

element analy51s described in Sectlon 2.3, J

5.2vModel Description
5.2.1 Description of Test Structures
A number of finite element problems are analyzed using

axisymmetric silos, having a diameter of 8.0 metres, with
> C \

varying height, hopper geometry, and material parameters.

. . ¥

se (

.



The finite -element idealization of three'eilo strucsures
having different hopper geometry is shown in Fig. 5.1.

These structures “are the basis of all finite element Y

analyses carried out in this(%}udy.' Eight node
) N ‘ -
isoparametric elements are used to construct‘each mesh of

the solid element. THese elements give greater flexibility

.

‘ ~ . . ’ B . - LS ?
in modelling the geometry.of the structure and at the same

time keeps the problem size reasonable. Typical spring

. . / .
boundary elemgpte have been provided over the entire hq&ght

of the 5110 to model the wall reactions. and subsequenbﬁy
/

frlctlon forces. The horlzontal dlsplacements/velOC}tles

élong the axis "of symmetry are suppressed. . /‘_ -
C _ / .

e

A total/of five sets of problems have been analyzed
yarying'the parameters as follows. . // ) ("

~

Hopper Slope with Vertical: The height of the/cylindrical

portion of the silo is kept constant and the'/opper slope
with Vertical is varied. The silos oeed for this analysie
are illustrated in Elgs.'S.la to"S.lo.. The” height of the
silos ls 16.0 m and the hopper slopes withfvertioallare
20.56 oeo., 24.78 ‘deg. and 29.98 degﬁ,ﬁ;espectively. The
outlet of the silo is 2.0 m:in diameter“ The total helght
of the hopper deefeases w1th 1ncrea51no hopper 1pcllnatlon.
Altogether, the problem has 177 nodes, 25 sprlné boundary J -
elements and 48 solld elements . ‘ bl

Héight'to Diameter Ratio:  Keeping the hopper geometry



r

constanﬁ, thé height of the‘cylindrical pértion of thg silo
is incre;;ed. The ratios of cylindrigal height to‘diameter
uééd in this study are 2.0,.235 and 3.0. :Fig. 5.1a séows ’,
the finite element model for the test probiem“wifh'awheigﬁt
to diameter (H/D) ratio of 2.0. The saée'probiem is ’
analyzed by adding two and four 1 of elements ‘or H/D
tatios of 2.5 and 3.0, fespeétively"/ Consequent ly ‘four and
eight, spring boundary elements are added at the interface‘
between solid material'and silo ‘wall. - Therefore,-ZOS‘nodes,
56 solid elements and 29';prrng boundéry élements for an H/D
ratio of 2.5, ar\id 233 nodes, 64 solid eliem'vgnt“s,and 33 'spring
hounhary elements for an H/D ratio of 3.0iform the finite
elemeqﬁ models pfzsths. | |

The rest of the three seté of problems have been S J
aﬁalyzed by'varyidg‘the angle of internai friction of the‘
matefiai,langle'of wall fricﬁionland Poissonws‘ratiof The
silo used for §ll these ana%yées'is the dneﬂillustratéd in

Fig. 5.1la-

’ 2. s
5.2.2 Material Propertiles

The bulk density of granular materials depend on

<

partlculate propertles such as 51ze, shape, the manner of

assemply of these partlcles and specific gravity of :

Pl

constitutive solids. Examination of classical theories

| . * . ~ :
réveal that horizontal pressure on the silo wall is a direct
function of unit weight. Most granular materials have

- sizeable variation in unit weights. As described in Section
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4.1, the saope of this study is directed at a coaQ\tyﬁe of

¢ ~I .
material. Jenike and Johaqéon {1979) indicate that

- compressibility effects ang moisture. content can cause large
S ‘ . , \

variations in the unit weight of coal (from 3.34 to 10.06
kN/mB). The average unit weight of a two inch min&s well
graded coal is 9.5 kN/m3. This value has been chosen f@f

determining the éravﬁty load in this study..

Jenike and Johanson (1979) reported that for coal -

Y

material passing a humbqr 8 mesh and having a moisture
content of 6%, the angle of internal friction ranges from
38° to 40°. ThiSnsghdy uses an anéle_of‘internal friétion
of material of 35°, 40° and 45°. They also stated‘that an

angle of wall friction on concrete varies from 26° to 31°.-

<

Ravenet (198(0) found'the angle of wallJfriction/eﬁ\afﬁusted
steel sheet as, 40°, on a cbrrugated steel shee? as 24°, orm’a
o : w |- :

polished steél sheet -as 17° and on a stainless/steel sheet

. - A ] . . .
as 8°. Problems with angle of wall frigtion of -25°, 20° and

;

15° hawe ‘been investigated® There is no significagl

information on investigation of.Poisson's ratio and monlus

of elasticity of coal. From geotechnical engineering

l11'erature the average value of Poisson's ratio.and.modulus

]

of elasticity for coarse sand is found to be 0.3 and 1.5 x

7

10° kPa. The values of Poisson's ratio uséd}to investigate
their effect' on material behavior are{O;ZS;ﬂO.3 and 0.35,

coupled with a modulus of elasticity of 1.5 x 102, . .

k4
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5.2.3 Description of the Analysis
?

The‘analysis_of the finite elemént modéls descfibeézgz
: . i
'Seégion A.2 is performed in two stéééé:) In the probleﬁ
pfepération.stage input daéé i's read and generatéd;.element
- shape- functions and derivatives afe‘calcu}ated, column *
heights and aadressing arréy of the stiffness matrix are
formed,'étresses, strains and material properties are &fijw
AN

. , , ] '
initialized at all integration points, and all basit load »\\“%

vectors Fre formed.

The grayity loads are aéplied‘to the structure assuming
no friction force. The incrgmént of displacements/veloci-
ties thus dbtaihed are used to, calculate frictton forces.

An underrelaxétion factor for friction.forces, Rg, between
0.05 apd 0.12, is used to calculate the increments of

’

ffictibn_forces." These incremental values of friction
forces ére added to the gravity load vector, and ghe problem *
- 1is résolved. Thé process.is repeated until“éuccessive
solutions for friction fbféesfdéwhdfﬂaifgér by a preassigned
‘toleranctd for load AD. vThe toierance for
diSplacements/véiocities; Ar, and loads (aﬁd friction
forces),’xP,'uéed aref0.00I and 0.005 réépectively; The {
nuﬁber of'subincremeﬁts (NI) vary from 10 to 15. The

maximum'humber_of itefations allowed*éer load step and for

ence of friction force Ks 30. An under-

-

complete converg
relaxation factor for diSplécements/velocities, Ry s used
vary between 0.8 and 1.0. An initial/elastic stiffness

matrix is used throughout the analysis. The nodal reaction
o < ’ -
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¥

or narmal forces obtained at the contact surface between the
material and the silo yall after convergence of friction
. N ) »

forcés is used to determine the material pressure normal to

-

the wall.

o,
o .
s o ‘« - . -

5.3 Discussion of Results.

A

Output of the analysis from'program FEPILS consists 'of

nodal displacements/velecities, nodal friétion forces and

’

.normal forces or reactions at the contact surface between

the silo wall and the material, and stresses at gaussiah

i

points. ‘Lateral wall pressures are obtained from reactions
at the silo wall. Comparison of these pressures have been

" made with the results obtained by classical theories,

-

discussed in Chapter. 2. Stress fields within the solid

‘

material are presented, ‘and compared with Jenike's

predictions. The diplacement/velocity field is presented
o

.and the effects of thq coefficient of friction are .,

discussed. A -parametric study is carried out to Pdentify
. ' e )
the, pertinent variables and_to examine any visible trend in

a

J}y@ﬁr relation to the lateral wall pressure.

5.3.1 Comparisdén, of Pressures with Classical Theories

The lateral pressure exerted by the material on the
T

gt :
silo wall, from fi;TEé\e)Qment analysis is presented in Fig.

5.23compa£ed with Janssen's, Reimbert's and Jenike's

pressure theories. The finite élemenﬁscurve is a digital
. : C e
— [ o
approximation with linear interpolation of pressures between
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adjace;t nodes. The lateral pressure obgained from the‘ -
fi;ite element>analysig lies between Janssen's and
Reimbert's solution, if the depth of the materiad from the
free surface does not exceed the silo diameter. Down to
this depth the analysis is on the average about 20 percent
above Janssen's and 24 purcent below Reimbert's solution.
Be low tﬁat depth down to the transifion, the pressure
exceeds Janssen's Qélues by about 20 to 40 percent and
Reimbert's by abéut 2 to -15 percent. The analysis result is
abgut 20 to 80 percent below Jenike's uppér bound
solution. A sharp increase in pressure 1is observed at the
transition from the cylindricél part of the silo to the
hopper. This is defined by Jenike as the éeék pressure ftor
swit&h from peak or active pressure field to radial or
passive pressure field at transition. The finite element
.solution of this peak pressure 1is about 20 percent abové
Jenike's. . This peak pressure vanishéd at a depth less than
that suggestéd;by Jenike .et al. (1973, Part 3) which is 0.3D
slant distance of hopper wall bilow transition. Both
initial and flow pressufes in {he hopper, obtained from
Jenike's theory are iess than the finite element -
predicgion. The analysis result is on the average about 65
percent above his initial pressure theory and ahout 200 to
300 percent above radial or flow pressure theory in the
hopper. Jenike assumes linear decrease in pre;suré from

transition to zero at vertex of hopper, whereas finite

element solution predicts another peak vélue at outlet.



HY
Eibl et al. (1984% have suppressed normal and‘tangdnfinl
pressures at the outlet, therefore this peak does not appodr~
in their solution. However, their golution givgg identical
‘pressure distributions 1in th% cylindrical pagt of the silo

and *hopper. ‘ .

5.3.2 Stress Field * , \
The resulting principal stress field ot the finite
_element analysis, when the gilo is fully charged, and the
outlet‘is éiosed, is presented in fig. 5.3. The major
principal stress acts in a vertical or close to a wertical
direction. Figs,‘5.4 to 5.8 show the priﬁcipal stresses for
various hopper geometry and cylindrical height to diameter
ratio, when the outlet is openéd and material flowsl The
direction pof brincipal stresses in the gylindrical part of
silos do not change significantly, but they are reoriented
ir the hopper section of“silos. Subsequently the’magnitude
of stresses decreases above the outlet ani increases near
the transition from the cylinaer to the hopper of the silo,
~whereas no changé in stréss level is observed in the rest of
the cylindrical portion of silos. Jenike et al. (1968) ,
Walker (1966), and Walters (1973) have described this stress
redistribution as the tragsition from an active state of
stress to passive. state of stress in the hopper, while
active stfess field is retained’above transition in the -

cylinder of the silo. Jenike et al. (1968) assumes an

arched or radial stress field iﬁ.%he hopper below
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'Fig. 5.3 Stress Field When Outlet Closed and
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Fig. 5.4 Stress Field During Flow for 8' = 20.56°
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transition, while the finite element result shows that this

Al t

radial stress field may extend only from 2 to 2.5 times thg
diameter of the outlet above the outlet level. vaQve this:
height the radial stress field 'does not exist.
“PrégerIFEPILS outputs yjeldihg informatioﬁ at gaussian
pionts. Fig. 5.9 sths ther yielded zoneg of material for
different Hopper geometry. The yiefée zone probagates
downwards from the free surface along‘the silo %ali to the
transition with an increase in angle of wall friction and
decrease 1in anglé of internal frictioh of the haterial. A
decrease in ﬁoisson“s”ratio does not change this effect.
These have been illustrated in Figs. 5.10 to 5.12. |
5.3.3 pisplaceﬁent/Velociﬁy F%%ld |

The deformed mesh 1is illustrated in Fig. 5.13 to 5.15

for angles of wall frictions OF 15°, 20° and 25°, . Jd

respectively. The broken line shows the original mesh

whereas the solid line indicates a deformed mesh. It is

‘obvious that the Coulomb friction mechanism has considerable

influence on the displacement/velocity field of the flowing
mass of the solid. The resdistance to the flow increases
with increase in angle of wall friction. This is an effect

~of high'shear stress near the wall and'éspeciélly in the

e

‘region above the outlet. However, the flow velocity is
approximafely'constant in the cylindrical area of silo
indicating that the material moves as a rigid body. Whereas

in the hopper area the flii:>elocity near the centre line is

96
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considerably larger than those near the wall ot the hopper.

5.3.4 Influence of Various Variables on Lateral Wall
Pressure
The‘finité;eiemont results for lateral %all pressures
are presented in Figs. 5.16 to 5.20.  The variablés examined
/
are the angle of internal friction, the angle of wall
friction, the hopper Sippe, the cylindrical height to
diameter ratio and Poisson's ratio. One variable is varied,
while thg others are kept constant. For example, to
invéstigate the effect of varying the angle of iﬁternal
friction ¢, the angle of wall friction ¢', the density, v,
the hopper slope with vertical, 8°', tHe height to diameter
ratio, modulus of elasticity aﬁd Poisson's ratio qré kept
constant.

Analysis of Fig. 5.16 reveéls that variation of angle
of internal friction does not havé any significant effect on
lateral wall pressure, This variable does not appear in any
classical theory formulation for lateral wall preésure.

The effect of the angle of wall friction on the
pressures a£ the wall is illustrated in Fig. 5.17. The -
diagram indicates an increase in wall pressure with decrease
in angle of wall frictioﬁ. This trend is also indiéatd by
Janssen's aﬂd Reimbert's formulas. The difference bethen
the rressure is greater at the transition and in the hopper

area. This 1is_obviously a direct result of the amount of

load transmitted to the wall through friction. The
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percentage of load carrled by the silo wall increases w1th
increase in angle of wall frlctlon If it is assumed that

the ratio of horlzontal pressure .does not change, then the
=~ .

horizontal pressure 1s proportional to the vertlcal pressure -

at any p01nt in the material, and hence the lateral wall

*

pressure is 1nversely proportlonal ‘to- the angle of wall

i

frlctlon, - _ L

The influence of hopper slope.on wall pressuxe is -shown

~in Fig. 5.18. There is a slight'increase“in pressure in the

Sy

1

cyllndrlcal part of the silo. The peak pressure at
transition changes greatily w1th increase in. hopper lepe

Also, the average pressure normal to the hopper wall and at

‘the outlet 1ncreases with increase in hopper slope.

Fig. 5.19 ‘illustrates the d?se when the hopper geometry :
is not changed and the vertical height of the cylinder is
increased. A tremendous increase in peak pressure at the

transiilon and normal to hopper wall is observed ' The

horizontal pressure on the cylxndrlcal wall 1ncre§ses in

1

similar fashion‘with depth of material. 'Jenike“s-formula

'(1969) for peak'ﬁressure at transition also gives an

1ncg§ﬁse in ,pressure with depth of stored materlal, while

hlS solutlon for r%g1al stress field in the hopper does not

‘account for the depth of materlal 1n,the.sllo above

transition. .The finite element seolution shows that pressure
normal to the hopper wall also increases Wwith an increase in
depth of material above transition.

The last parametric variable investigated in this study

v
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is Poisson's ratio, v. Fig. 5.20 shows its influence on

wall pressure.

-gith a decrease
the cylindrical
v = 0.3 and for

distribution is

In the hopper portion the pressure increases

in Poisson's ratio. At transition and in
part of the silo the pressure increases for
» e )

Poisson's ratio of 0.35 and 0.25 identical

observed.
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'CHAPTER 6 - SUMMARY AND RECOMMENDATIONS N

An incremental finite element formulation has been
‘developed to .analyze displacement/velocity; stress énd
pressure fields in axisymmetric silos during discharging. A
variational approach based on the principle of virtual work
ha? heen empléyva, wheré Cgloumb friction terms are

ingprpéfated. The floQing solid material in a silo appears
toggéhave’in a viyscoplastic manner (Eibi et al. 1984). Due
to nonavailability of rate-dependent materiél law for coal,
which is the primary direction of this study, an elastic-
plastic material beh;vigur is prbposed fbg this initial
study. | ’

An isoparametrié finite element of the serindipity
"family is used to model the ;Qliﬂ material in silos, and
spring boundary elemeﬁts are used to model the silo walls.
The Gaussian integration technique and a Newton-Raphson

iterative scheme are adopped‘in the program. Among %?ree
possible approaches proposed in Chapter 3 for contact
problems incorporating Coloumb friction, an iteratéVe
approach has been chosen as a first step for tﬁe rigorous
solution of the problem. The proposed frigtion model and
constitutive law are incorporateé in progrém FEPILS. |

’ Two iterative levels afe involved.‘ ?he fifsg iterative
level is at the materiél level svand the second is at the
friction force level. :The algorithm used for the material
model is limited to strong materials with a lower bound on

r
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th; apgle of internal fric£ion of 35°. Although a crude,
initiial stress option exists it mu:ﬁ of necessity be limited
té small values in ordef not to affect the final outcome.
Thus improvement of'that model is necessary. On the other
hand, iterating over t%e friction forces implies reversal of
the displacement increment and hence oscillations of botb
the normal pressure and the friction.forces.v In order té
smooth out the oscillation of convergence, an under-
relaxation factor has been introduced ovér the‘gricthn
forces. This factor appears.to be problem dependant, and
hence judgement should be exercised to choose an efficient
value.l |

The results of finite element analyses of axisymmetric
silos during discharging are presented. They are compared,
with the solutions of classical theories. ‘The latéral wall °*
'pré;sure in the cylindrical portfg; of silos shows good
agreement‘with Jansséh's solution. The peék pressure atﬁ
transition is found to be 20 percent above Jenike's

o

solution. A decreased tolerance in friction forces producés
. 4
a better result. A tremendous variation in the pressure
field in the hopper area ié found as compared to Jenike's‘
prediction. This variation may, in 'part, be due to the
severe dilation characteristics of the Drucker-Prager yield
surface, and in part due to the use of an elastic perfectly
pl§§tic algorﬁthm. The results may be improved by using a

more féalistidineld surface which depends on all three

invariants of the stress tensor and perhaps by implementing

¢
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a strain softening .plastic algorithm.

A local pressure peak is found at the outlet. This may
. be due to the rigid displacement boundary conditioné imposed
on the model at the outlet. Eibel and Hausler (1984) used a
zero force boundary condition at that location. In practice
it is known that the outlet design is generally soft.. |
However, it does have some stiffness. Therefore, future
studies should attempt to clarify the existence of a ééak
relative to a'given oQtlet stiffness.

The stress'distfibution shows good agreement with
Jenike's predictions under both initial.and flow conditions,
an active field when the outlet is closed, and a passive
field in the hoppér Qhen material discharges from the
silo. Jenike propo§ed a radiallstress field for hoppers but-
the finite element solution shows that this fie}é may exist
only up to a distance equal to 2 to 2.5 times the outlet
diameter above the outlet. .n- .

A parametric study is carried out torpredict the
influence of pertinént variables on lateral w?ll pressure.
It is found that variation of the‘angle'gf%£n£ern§l friction
and Poisson‘s ratio have neglible effect on pressure
field. The lateral wall pressure increa;fsvwigh a decreasé
in angle of wall friction. The peak préséure at transition
and pressure in hopper area increasés with incréase in
hopper slope with the Qertical. An increase‘in height to

diameter ratio causes an increase in peak pressure at

transition and preséure on the hopper wall. The preSsure
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field in the cylindricél part h(be identical distributions
with respect to depth of stored material,

The present method is an initial approach to modelling
the material behavior in a mass flow silo. Further research
in this area is necessar?. The alternative approaches
proposed in Section 3.2 may be investigated for better
performénce. An experimehpal study and formulation of a
rate dependent constitutive law of material is necessary. A
failure surface similar to Willam-Warnke surface, for solid
materials subjected to triaxial compression may be developed
for better représentation of material response. A model or
full scale test may be carried out to investigate the
llateral,wall pressure in order to compare with ﬁhe finite
element solution. A numerical study on the convergence
criteria to handle ill conditioning of the material model is
necessary. This cﬁndition occurs when the hydrostatic
stress is small and deviatoric stresis is very large as

compared to. the yield stress of the failure surface.
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APPENDIX A - PROGRAM STRUCTURE (FEPILS)

A.l Introduction

ProgramQFEPILS is a finite element Fortran Code for
analysis of material beha&ior flowing through axisymmetric
silos. The program assumes small Qisplacements/velocities,
neglible rotations and infinitesimal strains. It is
originally designed for elastic-perfectly plastic type of

: »
materials, but it can also handle linear problems.

This Appendix deals with the general description of the

" program, the solution techniques and the flow of operations.

A.2 General Description

Program FEPILS is based qn'the finite element progfam v
FEPARCS5 (Elwi and Murray, 1980). ' The program handles
combinations of linear, quadratic and cubic isopafametfic
elementsl |

Tﬁé elastic-plastic constitutivevrelatién presented in
Chapter 4 is implemeﬁted in program FEPILS as the material
model. |

The progfam is basiéaliy designed fdr analysis of
problems under gravity loads only. However it can handle
other types of loads, such as hydrostatic pressureé)
concentrated nodal loads and'pormal and tangeﬁtial surface
pressures. These loads can be combined usingvthé users's

specified load factors. Dead loads ‘can be a combination of

gravity loads, hydrostatic pressures, and concentrated nodal
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loads. A sepafate load vector for live concentrated loads
is provided. Normal and tangential SurfaceApressures are
handled in two separate load veétqrs. P

The input to the progfam is composed of control
parameters, material properties, nodal geometry, spring
boundary conditions, solid element ianrmatioh, material to
silo wall contact surface information, concentrated nodal
loads, normal and tangéntial surface pressure nodal
intehsity distributions and hydrostatic pressure nodal
int?nsity distribution.

‘The output is composed‘of nodal displacements/veloci-

-

ties in the global coordinates, friction forces, normal
éorces'or reactions, normal and tangential
displv €ments/velocities of nodes lying on friction
surfaces, - and locél coordinate stress components fqr solid .
elements.

" Numerical integrétion is used for the eQaluétion-of the
different element relations as well as the loads, whene?er

necessary. A number of Gaussian integration rules can be

chosen by the user, ranging from one point rule for linear

four. node elements to a three by seven two dimensiomal rule

©,
i

for higher order elements.

The program can use a tangential stiffness‘appfoéch of“
the initial load method_ (see Elwi and Murray) 1980). A |
ékyiine in—cére equation solver package (see.Elwi;.1977 and
‘Wilson and Bathe, 1975) -is employed for equation solving. .

An iterative method for friction forces is employed
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using Coloumb's friction law as‘described‘ih Chapter 3.
Element shape functions and derivatives evaluated at
the integration points, stresses and strains at integration
points and material properties are stored on sequential

files.

A.3 Solution Techniques : ) ’
'A.3.1 Numerical Method for Load and Friction Forces

A finite Qlemeht friction model formulation for the
analysis of matérial behavior floQing thﬁ&ugh an '
éxisymmetric silos is presentea in éhaptér 3. This 1is é
displacement/velocity.model. Therefore,‘it satisfies
kinematic compatibﬁ{ity everywhere and it approximately;
satisfies equilibrium only on a global level. The _ \
increment;l variation formulation of Section 3.2 leads to

the following set of equations.
[k1{ar} = {&R} - {20} - (A.1)

where [k] 1is the structure stiffness matrix, <A> is the
increment of nodal displacement velocities, <AR> is the
“increment of prescribed loads'énd <AQ> 1is the unbalanced
load at the end of the previous load step. Eg. A.l together
with the condition 3.4b make up a nonsingular system of |
equations whichAcan be solved for the increment of
displacement velocity <Ar>.

<AR> 1is a predetermined mégnitudé of load vector. As
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described in Secpion 3.3.1 the friction forces are not known
fq,advance. Theréfore, the problem.is initially solved
without incorporating friction effects. After completing

the first iteration of the problem, the increment of’
Vd?splacements/velocities at nodes are known. Using nodal
displacements/velocities at the friction surface the
friction force at nodes can be determined. 4Thé§e forces are
multiplied by an under-relaxation factor and added to the
corresponding nodal values in load vector <AR>. The second
and successive iterations for friction is carried out using
newly formed load vectors until convergence, as described 1in
Section 3.3.1.

For nonlinear and elastic-plastic material response the
Eq. A.l is solved by incremental piecewise linearization.
The increment of displacements/velocities obtained upon .
solving Eq. A.l, yields an increment of strain. The stress
increment is obtained using constiﬁuti&e matrix [(c] and
stfain increment <Ae>. The difference between the applied
‘loaas and equilibrating loads, equivalent to the stress
state which satisfies the constitutive law is,called the
~unbalanced load. The state of stress which satisfies both
kinametic compatibility and equilibrium can be arrivea at by
elimiﬁating the unbalanced load through an iterative scheﬁe.

The iterative schemes employed in this study are the
tangential stiffness mephod Kérgyris, et al., 1%74),

" sometimes known as the Newton-Raphson method (Zienkievicz,

1971) and the initial load method (Argyris, et al., 1974),



sometimes known as modified Newton—Raphson“method
(Zienkeiwicz, 1971).

In the tangential stiffness method, the stiffnesé
matrix may be evaluated at the beginning of each 1oag
increment based on the current material prOpertieS. The
initial load method repains the initigl stiffness matrix
until the’ materialfconVerges. This method needs a largér
number of iteratiqns to sétisfy equilibrium. The main

disadvantage of the tangential stiffness method is that it

may lose its positive definite character or become i1l
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conditioned when strain softening behavior is exhibited. An |

improved convergence may be obtained for both méEhods’as
follows. |

(a) introducing an over-relaxation factor to improve
convergence of the initial load method

(b) using an under-relaxation factor and numerical
damping to enlarge the convergence domain of thé
t&ngential stiffness method (Almroth, Stren and

'Brogan, 1979 and Fellipa, 1974 and 1976);

(c) re—evaluating the stiffness matrix after eVery few
iﬁerations in an initial load method. i.e.
combiﬁation»of the two iteration schemes.

All the above methods of improvement have been implemented,
 in program FEPILS.

The Eucleadian norm method has been adopted to test the

convergence of displaéemehts/velocities, loads and friction

forces 'of the iterative schemes. They can be described as



follows

Ar <2\ (A.2a)
r r
‘ |
rot
= < xR ’ . | (A.2b)
i
| [aF L] ’

—TTF;TT < XR | : | (A.2c)

where A . and AR are the user Specified tolerances on the
displacements/vélocities and loads (and friction forces)
respectively, arl is the increment of displacement/velocity
vector obtained in ith iteration, r is the current
diSplaeement vector, AOi is the unbalanced locad at the end
of the‘ith'itération, R is the total load vector, AF; is the
increment of frictidn force vector at the end of ith
itération and FTbis the total sum of friction force
vector. The symbol || || denots the Eucleadian norm.
A.3.2 Incremental Method for Plastic Model

This sec;ion deals with the numerical technique adopted
for incorporating the elastic-plastic constitutive model
presented in Chapter 4. The strain increment is obtained
from the displacemeht/veiocity incremeqt'solution of’Eq. Al

as

{ae} = [B] {ar} ' | (A.3)
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The strain increment thus obtained may be relatively large
to cause drift of the solution, particularly when the
resuiting étress point, which does not satisfy the
constitutive relation, falls outside the yield'surface.
This problem has been overcome by splitting the strain

increment into an equal number of smaller subincrements as
<be > = <pe>/NI ’ (A.4)

where NI is the number of subincfements. In this manner,
the stress point is changed gradually allowing close
simulation of the behavior and>hence convergence to the
rigﬁt answer. Let the stress components <o>, at the end of
nth iteration be known. A set of elstic trial stresses are

.

obtained as

\
i,e e i :
to™ ) 41 = {c}n + [el” {ae ) o4 ~ (A.S)
. . i . - . ¢
in which <As,s>n+l denotes the ith strain subincrement at the

eﬁd of (n+l)th iteration, .and the second\term on the right
hand side of Eq. A.5 denotes elastic subingfemeht {Aci}i+l'
Thése stresses are then testedﬂwithirespect‘to the yield

| (
condition. If the trial streQSQE do not violate the yield
condition, the material behavior is elastic. If the yield
condition is violated,‘the element has reached a plastic

state. Let the stress state at the end of (i-1)th strain.

subincrement be elastic



= f, <0 (A.6)

. . . i
Let the next strain subincrement with stress (o }n+1 lead

the stress path to point B, penetrating yield surface, such

\

that

f({oi} = f >0 , ' (A.7)

n+1) 1 '«

violates yield condition. This indicates a transition from

elastic to plastic states occurs during ith strain

subincrement and (n+l)th iteration. "In this case the stress

increment is subdivided into an elastic portion, A and a

cl

plastic portion after the yield surface. The stress at the
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point where stress path penetrates yield surface is.given by~

{oi} + x{Aoi}i+ (A.8)

nel - 9 1

where x{Aol}e

n+l is the portion of the stress increment at

which the plastic behavior is encounte 4, i.e. f({ol}n+l)

= 0. The simplest approximation of tl#e scaling factor, x,
n .

is obtained by a linear interpolation in f (Zienkiewicz et

\

al. 1969) i.e.
X = Xy = - F o (A.9)

The nonlinearity of function f may yield.'



N ) = E ¢ 0 (A.10)

(o) + x loo ) )

A better estimate for x is given by Nayak and Zienkiewica

(1972) by

£ \
X=X, - — — (A.11)
‘ <df/30> {Ac }n+1

"

once the elas%ic portion of th /gbqgjn subincrement x{AeS}
and the plastic fortion of thekstrain sbbincrement

(1-x) {Aes} héve been determined the final stresses ét the
end of ith subincrement and (n+l)th iteration is

i
fo }n+l

in which the second and third terms denote elastic stress

subincrement {Aol}: and plastic stress subincrement

+1
{Aol}g+l respectively. Fig. A.l represents the flow chart

of this incremental solution technique.

A.4 Flow Chart for Program FEPILS

‘Program FEPIﬁS is divided into two main execution
stages, namely the problem preparation stage and the
soiution stage. The former is performed to check the data,
‘whereas the latter is performed for solution of the actual
problém. A dry run option in the problem preparation stage

allows a check on the data. The number of subincrement,

134

= {o}n + x[b]e{Ae;} - (1 - x)[c]p{Ae;} kA.lZ%\
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iterative scheme, tolerance on convergence, relaxation

< ]

factor: load factors and the number of iterations before
reevaluation of the stiffness matrix are«specifiedwby the
user. Numerical problems such as an ill conditioned

stiffness matrix, oscillatory convergence and exéeeding the

<

. : ) . 7
maximum. number. of iterates stops the program automatically

" and prints the current state of stresses,

. Al
displacements/velocities, friction forces, and,reactions for
ffhe user's consideration.

’Fig. A.2 and A.3 show the flow operations of-the two

stages of pfogram.
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compute <&e> ., from increment
- of displ./Oe&ocity <tro>
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calculate trial elastic stress
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elastic subincrement <2o™> 4
n+1
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&
L.— Set x,=0 and obtain a, better estimaté of
. x=1-x scale factor, x from Eg. 5.11
. 4% Y
calculate the final stresses at b : »
the end of ith subincremént. and
(n+l)th iteration .
\ + \
/ ‘
('Next iteration }: i > NI , >

Yes- - No .

Fig. A.l1 Flowchart for Elastic-Plastic Cénstitutive Law
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Reaqacontrol para 'rs and adjust common
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Read and generate problem da:a,g]
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Y
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Form elementiyshape functions and its
- derivatives at gaussian integration points

i

Form skyline ogbthe structural stiffnress
matrix

o
o °

A

dryrun=l

Yes

3

No

Initialize stress, strain and material

.properties at all integration points -

‘ . Y

Form partial load vectors and initialize total

load vector, displ./velocity vecdtor, the
equilibrating load vector and the friction
force vector :

Y .

( Store structure and load information-

Y

If requested, triangularize and store
structural stiffness formed, triangularized
and stored. ’

Y

Fig. A.2

Stop

Flowchart of Problem Preparation Stage
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