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Abstract 

The fundamental problem of interaction of a screw dislocation with planar surfaces and 

interfaces is of great theoretical and practical interest from micro/nano mechanical point of view. 

In the present study, we aim to capture the micro/nano mechanical effects through the continuum 

based model of couple stress elasticity using an analytical approach for the problem. To do so, 

we establish the boundary value problem corresponding to a screw dislocation near planar 

interfaces and surfaces in couple stress materials. We evaluate four main cases: the presence of a 

screw dislocation near a bi-material interface; a screw dislocation in a substrate near a thin film 

interface; a screw dislocation inside a thin-film lying over a substrate; a screw dislocation in an 

unconfined thin-film. Using classical Fourier transform techniques, we solve the corresponding 

boundary value problem for antiplane deformations with appropriate boundary conditions. The 

interfaces are assumed to be perfectly bonded and we impose continuity of displacements and 

tractions. For the surfaces, the traction free condition is set up for the problem. We solve the 

antiplane problem for the displacement field and use the resulting displacement to calculate 

stresses and couple stresses in the entire media. We employ the displacement and stress 

distributions to calculate the force induced by the boundaries on the dislocation. The interaction 

force is important because it determines the state of mobility of dislocations in certain 

configurations which is highly influential on the plastic behavior of materials. We use 

conservative J-integral techniques with numerical integration over a path enclosing the 

dislocation to obtain the interaction force. The classical elasticity solutions of a screw dislocation 

near interfaces and surfaces of bi-materials, thin films and substrates are well-documented in the 

literature. We compare the resulting solutions with the reported solutions in the literature to 

verify our results, accordingly. The comparison also reveals the contribution of couple stresses to 
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stress distributions and interaction forces. It is illustrated that, in general, couple stresses endow 

the structure with an extra stiffness which results in higher stress concentrations as well as higher 

values of interaction force.  
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1  Introduction 

Following the recognition of the importance of crystalline structure in many solid materials and 

observations regarding the mechanisms with which plastic deformation occurs, crystallographic 

defects were identified to play the leading role in the mechanisms of plastic deformation [1]. 

However, mathematical models describing these crystallographic defects were later established 

by Volterra [2], Love [3], Taylor [4], and others but only in the framework of classical elasticity. 

Among the defects or imperfections in the crystalline structure of solids, dislocations have 

proven to be of great interest and importance because of their notable influence on the properties 

of the materials from both microscopic and macroscopic points of view. Years of effort toward 

establishing a sensible theory of plasticity [5] applicable to various areas of engineering and 

science accounts also for the increasing number of studies on dislocations, aiming for a better 

understanding of the physical explanation of the plastic properties of crystalline materials. 

The state of mobility of dislocations, though a microscopic feature, is a key aspect that 

influences the material’s macroscopic properties, such as strength, hardening, ductility, plastic 

deformation and corrosion, which are all decisive in the design of mechanical, electrical, optical 

and other engineering devices. For this reason, the concepts of a dislocation’s self-stress, image 

effects as well as the interaction of dislocations and energetic forces have long been under 

scrutiny by several researchers. Leibfried and Dietze [6], Peierls [7], Nabarro [8], Read [9], and 

Head [10][11], are few examples of pioneering work in the study of dislocations. Most of the 

efforts during that era were conducted in the framework of classical elasticity without 

considering any kind of size dependence. Head [10] [12] for example, applied the electrostatic 
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problem of line charges to model straight dislocations and from that calculated the image force. 

Smith [13] [14] used the analytical approach on an isolated screw dislocation as well as a group 

of screw dislocations interacting with cylindrical inhomogeneities. A collection of analyses of 

dislocation problems in interaction with interfaces and surfaces, up to the end of the 1960s, is 

presented in Dundurs [15]. 

In the second half of the 20th century, the application of small-scale objects, micro- and 

nanomaterials, thin films, and coating technology led to the expansion of investigations into the 

behavior of materials of micro and nano-scales. The discrepancy between results obtained from 

classical theories and experiments in small-scale mechanics gave rise to discussions and 

illustrative works such as Kroner [16], Kaloni and Ariman [17], Mindlin [18], Schijve [19] and 

Cowin [20]. In response to this deficiency the long abandoned Cosserats’ theory [21] was 

revived in order to capture the effect of microstructures on the behavior of materials. 

Subsequently, Eringen [22] [23], Eringen and Suhubi [24] and Nowacki and Olszak [25] 

introduced micropolar theories of elasticity which were capable of capturing the size effects 

through the specification of independent local microrotations and couple stress transmission at a 

material point. In addition, strain-gradient theories [26] [27] [28] were proposed as higher-order 

continuum theories where constitutive equations are dependent on the gradient of the strain in 

addition to the strain itself. Eringen and Edelen [29] presented nonlocal elasticity theory allowing 

for the capability to describe mechanical effects at molecular scales. Tiffin and Stevenson [30], 

Truesdell and Toupin [31], Grioli [32], Koiter [33], Toupin [34] and Mindlin and Tiersten [35], 

modified the original Cosserats’ continuum theory to Cosserats’ media with constrained rotation 

and their efforts gave rise to a mathematically more elegant couple stress theory. In their theory, 

the kinematics of the continuum is similar to the classical model, yet the presence of couple 

stresses capture the essence of microstructural effects. All the aforementioned theories, introduce 

a new intrinsic property of matter at small scales that has the dimension of length. This property 

was soon after defined as the characteristic length of the material. 

In addition to the profound macro scale effects in the properties of a material, dislocation in 

crystalline solids is by nature a micro or even nanoscale phenomenon for it is basically a defect 

in the atomistic arrangement. Therefore, when we study a dislocation’s interaction with surfaces, 

interfaces or thin film structures we usually cannot simply ignore the small-scale effects. In the 



3 

 

early 1990s, a series of experiments on plastic behavior of metals was conducted where Fleck et 

al [36], Joshi et al [37], Zbib and Aifantis [38], and Ma and Clarke [39] showed plainly that the 

strength and hardening in the plastic state of a material is strictly dependent on the size of the 

specimen. Nix [40] published his experimental results on a thin film-substrate structure in the 

presence of dislocations, where he used this to reveal the microstructural properties of the metals. 

Stelmashenko et al [41] tested the indentation size effect on the plastic flow of anisotropic 

crystals. Experiments of this kind showed that plastic strength increases with decrease in size, 

hence the motto “smaller is stronger” became popular in the literature. These discoveries were 

sufficient motivation for researchers such as Drugan and Willis [42], and Fleck and Hutchinson 

[43] [44] to try to establish nonlocal constitutive equations as well as strain gradient plasticity 

theories founded on the concept of couple stress in Toupin-Mindlin theory [26][27].  

Nonetheless, plasticity is a consequence of the action of numerous dislocations which turn out to 

be size-dependent. This supports the idea that a more accurate evaluation of problems of a single 

or a finite number of dislocations, specifically regarding their behavior around interfaces, thin 

films and other dislocations is possible only by taking into account the effect of size in the 

geometry of the problem. At the end of the last century, with the huge development in 

computational methods, several attempts have been made to acquire a more realistic account of 

dislocations in solids. For example, Kenway [45] calculated grain boundaries in Aluminum oxide 

through atomistic simulation. Watson et al [46] modeled the behavior of dislocations and grain 

boundaries to the atomistic level in Magnesium oxide and compared their results with classical 

elasticity theory. Devincre and Kubin [47] simulated the dynamics of dislocation in elastic media 

by the use of molecular dynamics schemes considering the dislocation interactions with other 

dislocations in a group and interacting with other obstacles. Verdier et al [48] reviewed the 

atomistic dynamic simulation techniques to study self-organization of dislocations at the 

mesoscopic scale which is the scale between macroscopic and atomistic levels. Blanckenhagen et 

al [49] modeled the plastic deformation of a thin film metal by using the simulation of dynamics 

of discrete dislocations. Espinosa et al [50] also adopted the molecular dynamic simulation to 

identify the size effect in the plasticity of a free standing thin film under pure tension and 

verified their results with previous experiments [51]. The dislocation dynamic modeling and 

simulation remains an active area of research found even in recent works such as Wang and 

Beyerlein [52] who adopted a dislocation dynamics model for body-centered cubic metals and 
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compared the mobility of screw and edge dislocations. Also, Shin and Carter [53] simulated the 

dislocation’s mobility using orbital-free density functional theory at the atomic scale. Simulation 

techniques, though very useful, are highly dependent on special cases of materials, with certain 

elements, atoms and crystal formations and so far, do not lead to a general explanation for the 

behavior of dislocations or indeed a general theory of plasticity. In the literature, several 

dislocation models have been proposed, each of which refers to a special crystalline material 

with a certain arrangement of atoms. Nevertheless, simulation techniques are particularly 

advantageous for complex geometries and situations involving a large number of dislocations 

which often require intensive calculation. However, they do not always guarantee agreement 

with experimental results [54].  

Rational continuum-based models with the capability of considering size effects such as those 

discussed earlier, despite their limitations (mainly due to their mathematical complexity), have 

proven to be useful in modeling single or finite numbers of dislocations in simple geometries. 

They also become helpful in establishing a general theory of the behavior of materials with 

dislocation mechanisms including plastic deformation. From the earliest advent of size-

dependent theories, many researchers have applied these models to dislocation problems. For 

example, Cohen [55] formulated screw and edge dislocations in couple stress elasticity 

introduced by Mindlin and Tiersten [35]. Eringen [56] [57] [58], described screw and edge 

dislocations in his non-local theory [59] and removed the intrinsic singularities that appear in the 

classical portrayal of elastic dislocations. Lazar et al [60] [61] applied first and second strain 

gradient elasticity to edge and screw dislocation problems and related their results to that of 

Eringen’s nonlocal theory [62]. Lazar and Maugin [63] [64] also combined micropolar theory 

with strain gradient elasticity to formulate screw and edge dislocations and wedge disclination. 

Lardner [65], compared the effect of second-grade materials on dislocation induced fields with 

that of couple stress materials and showed how stress fields have a greater deviation from 

classical theory in second-grade materials. The effect of couple stresses on elastic properties of 

edge dislocations was analyzed by Knésl and Semela [66]. Lubarda [67], studied the elastic 

strain energy created by screw and edge dislocations in a couple stress material. Shankar et al 

[68] evaluated the interaction between dislocations in a couple stress medium and showed that 

the mutual interaction between dislocations changes only when their distances are comparable to 

the characteristic material length scale. Taking advantage of a distributed dislocations solution in 
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couple stress elasticity, Gourgiotis and Georgiadis [69] [70] modeled crack growth mechanisms 

in materials with couple stresses. Their work also is an example of the application of 

dislocations’ mobility in a mechanism other than plasticity. Despite all the aforementioned 

efforts, when it comes to the analysis of dislocations interacting with interfaces and surfaces 

using couple stress elasticity, there is a perceptible void in the literature. 

In this thesis, we aim to address this deficiency. We treat the problem of a screw dislocation near 

inhomogeneous interfaces and planar surfaces in couple stress elasticity. Firstly, we deal with the 

problem of a dislocation in interaction with a bi-material interface, where each material region 

consists of a half-plane. Then, we determine the solution for the special case of a screw 

dislocation near a traction-free planar surface. Secondly, we generalize our results to the 

interaction of a screw dislocation near the interface of a thin film on a substrate. Next, we 

evaluate the case when the dislocation has occurred inside the thin film. Finally, we recover our 

results for the particular state of this case when the screw dislocation is located in an unsupported 

thin film. In each case, we compare our results to those obtained in classical elasticity which 

does not account for size effects. This comparison is useful for understanding the extent to which 

couple stresses can alter the results based on the geometrical dimensions of the problem relative 

to the characteristic lengths of materials. 

The thesis is organized as follows. In Chapter 2, we recount the micropolar theory of elasticity as 

developed by Eringen [23]. Then, we unfold the assumptions based on which the Mindlin-

Tiersten’s [35] couple stress theory was built. In Chapter 3, we present a concise review of the 

elasticity theory of dislocations. We also recalculate the stress fields and interaction force in 

classical elasticity in order to illustrate the procedure and use the results in our extension to 

couple stress theory. In Chapter 4, we present the fundamental concept that we use for 

calculation of the interaction forces on the screw dislocation in various states. In this chapter, we 

explain the concept of conservation energy integrals used in determining the force. Chapter 5 is 

dedicated to the solution of the problem in an infinite bi-material. The stress distributions and the 

interaction force are presented for a variety of parameters indicating the effects of each. The 

problem of the interaction of a screw dislocation with a thin film on a substrate is considered in 

Chapter 6. We use the Fourier transform method as in the previous chapter to evaluate the stress 

field induced around the dislocation in a couple stress medium. In Chapter 7, we position the 
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dislocation in a thin film which is supported by a substrate. Again, in this case, we determine the 

fields induced by the dislocation for different geometries and materials and compare them to 

classical results. The special case of a screw dislocation in an unconfined thin film is presented 

in Chapter 8, where we show that the couple stress theory used in this thesis does not lead to any 

significant difference in the interaction force. Finally, in Chapter 9, we draw several conclusions 

on the contribution of couple stresses and size effects using the extensive analysis presented in 

the thesis. 
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2 Micropolar Elasticity and Couple Stress Theory 

The fundamental assumption in classical elasticity is that the constitutive properties of a body are 

independent of the size of the body and therefore, the laws of motion and constitutive equations 

are valid however infinitesimal the part of the body under examination. In classical elasticity, 

material constitutive properties depend only on the position vector of a point in the body. In 

reality, however, the microstructural, granular and molecular qualities of materials play a greater 

role as the size of an element becomes smaller. The importance of microstructure on the 

accuracy of an analysis is clearer when the length scale of a body or the external physical stimuli 

are of the same order as the grain, microstructure, or molecular size of the material. For example, 

in wave propagation problems, when the wavelength is comparable to the dimensions of 

microstructures, the motion of every microstructural constituent (or microelement) individually 

affects the outcome. Also, in the analysis of cracks and notches, where the geometry of the 

problem is near the order of microelements, classical elasticity is incapable of reconciling theory 

with experiment. The situation is also common when the microelements are so large that 

classical models of continuum mechanics are not reliable for engineering applications. Examples 

of such materials include polymeric and composite materials containing macromolecules, fibers, 

and granular constituents. To generate mathematical models to describe such materials, 

researchers tried to develop enhanced continuum theories. The micropolar theory of elasticity is 

one remedy to the aforementioned deficiencies. In this theory, the rotation vector of every point 

or microelement is independent of the displacement vector. Therefore, in a micropolar 

continuum, every particle has a displacement u  and a rotation φ  (E and F Cosserat [21]). This 
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extra degree of freedom necessitates the existence of an extra form of transmitted load namely 

couple stress. Thus the interaction of two parts of a body on a surface element dA  is through a 

force vector pdA  and a moment vector mdA  (Voigt [71]), where p  and m  denote the force and 

moment per unit area, respectively. 

In this chapter, we present an overview of the micropolar theory and its special case couple stress 

elasticity. The detailed explanation of these theories can be found in Eringen [23], Toupin [26] 

and Mindlin and Tiersten [35]. First, we derive balance laws for a body in the presence of couple 

stresses. Next, we describe deformation theory in micropolar continua. Using energy methods, 

we next obtain the constitutive equations for micropolar linearly elastic materials. In the last 

section, we define couple stress theory as a special case of micropolar elasticity and derive the 

corresponding governing equations. 

2.1 Balance of force 

Consider a material body whose point elements correspond to a Euclidean space E . A vector X  

denotes the position of each point of the material body relative to an origin o . We assume that 

the material body is subjected to external and internal mechanical forces that produce 

interactions on the scale of microelements. These forces include body forces, body couples, 

surface forces and surface couples. In the context of Newtonian mechanics, the force acting on 

every point in a body is a function of the position of that point, X  and time, t . Thus, we can 

introduce forces acting in the volume V  and on the surface S  of the body as follows: 

( , )f X t : Body force per unit volume at the point X  and time t . 

( , )m X t : Body couple (moment) per unit volume at the point X  and time t . 

( , )T X t : Force per unit area (stress) at the point X  on the surface with normal n  and at time t . 

( , )M X t : Moment per unit area (couple stress) at the point X  on the surface with normal n  and 

at time t . 
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Consider a Cartesian coordinate system 1 2 3
{ : , , }o X X X  with the standard basis 1 2 3

{ , , }e e e  which 

locates each material point by its components as 1 1 2 2 3 3
X X e X e X e= + + . A general 

configuration of exerted forces is shown in Fig.  2-1.  

  

Fig.  2-1- An arbitrary configuration of a micropolar body under the influence of forces and moments 

If we separate an infinitesimal tetrahedron which represents an arbitrary surface n  inside or on 

the body, we can write equilibrium of forces and moments in the tetrahedron as 

 
1 1 2 2 3 3

1 1 2 2 3 3

( ) ( ) 0,

( ) ( ) 0,

T n A T A T A T A f V

M n A M A M A M A m V

∆ − ∆ + ∆ + ∆ + ∆ =

∆ − ∆ + ∆ + ∆ + ∆ =
  (2.1) 

where A∆  is area of the diagonal surface with normal n , V∆  is volume of the tetrahedron and 

the stress and couple stress ( )T n  and ( )M n , respectively, are functions of the corresponding 

surface normals. iT  and iM  ( 1, 2,3i = ) denote the stress and the couple stress acting on the 

surface with normal ie  whose area is iA∆ . Dividing both sides of (2.1) by A∆  and letting the 

dimensions be sufficiently small, we can deduce that / 0V A∆ ∆ → . Therefore, we can write in 

differential form, 

 
1 1 2 2 3 3

1 1 2 2 3 3

( ) ,

( ) .

i i

i i

T n dA T dA T dA T dA T dA

M n dA M dA M dA M dA M dA

= + + =

= + + =
  (2.2) 

We assume that Latin indices ( i , j , k ,…) take the values 1,2,3, and that the convention of 

summation over repeated indices is adopted. For the closed surface of the tetrahedrons in Fig. 

o

( , )f X t

1

2

3

( , )m X t

( , )T X t ( , )M X t

2

3

n

( )T n

2 2n e− 1 1n e−

3 3n e−

1T
2T

3T
2

3

n

( )M n

2 2n e− 1 1n e−

3 3n e−

1M
2M

3M
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 2-1, the area of the diagonal surface A∆  can be expressed in terms of the areas of faces 

perpendicular to the Cartesian coordinates’ axes as 

 .i i i i i idA e ndA n edA dA n dA= = ⇒ =   (2.3) 

Therefore, (2.2) can be written as 

 
( ) ,

( ) ,

i i

i i

T n T n

M n M n

=

=
  (2.4) 

Decomposing iT  and iM  into their rectangular components according to 1 2 3
{ , , }e e e , we get 

 
,

.

i ij j

i ij j

T e

M e

σ

µ

=

=
  (2.5) 

Now, ijσ  and ijµ  denote stress and couple stress tensor components, respectively. Thus, 

inserting (2.5) into (2.4), for an arbitrary surface in the material body 

 
( ) ,

( ) .

ij i j

ij i j

T n n e

M n n e

σ

µ

=

=
  (2.6) 

With these preliminary concepts in mind, we may establish balance of forces and couples in the 

whole system of a material body in a form of integrals over the surface and volume of the body: 

 ( ) ,
A V V

T n dA f dV adVρ+ =∫ ∫ ∫�   (2.7) 

 ( ) ( ) ( )( ) ( ) ( ) .
A V V

X T n M n dA m X f dV X a dVρ ρα× + + + × = × +∫ ∫ ∫�   (2.8) 

In the above expressions, A  and V  stand for the total surface area and total volume of the body, 

respectively, dA  and dV  are the surface and volume elements of A  and V over which the 

integration is performed, ×  indicates cross-product, ρ  is the mass density at the point X , a  is 

the acceleration vector at X  and α  is a vector representing the outcome of the product of the 

moment of inertia tensor and angular momentum. Substituting stress and couple stress from (2.4) 

into (2.7) and (2.8) the two set of equations can be written as 
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 ,i i

A V V

T n dA f dV adVρ+ =∫ ∫ ∫�   (2.9) 

 ( ) ( ) ( ) .i i i i

A V V

X T n M n dA m X f dV X a dVα ρ× + + + × = × +∫ ∫ ∫�   (2.10) 

Using the Divergence Theorem, the surface integrals can be converted into volume integrals. 

Then, by incorporating the Cartesian coordinates through (2.6), we have 

 ,( ) 0,ij i j j j j j

V

e f e a e dVσ ρ+ − =∫   (2.11) 

 

(

)

, ,

( ) 0,

njk ij ki n njk j ki i n in i n n n

V

nkj k j n nkj k j n n n

e X e e m e

X f e X a e e dV

ε δ σ ε σ µ

ε ε ρ ρα

+ + +

+ − − =

∫
  (2.12) 

where ijkε  are the components of the alternating tensor defined by 

 

1 if ( , , ) is (1,2,3), (3,1, 2) or (2,3,1)

1 if ( , , ) is (1,3, 2), (2,1,3) or (3, 2,1)

0 otherwise

ijk

i j k

i j kε

+


= −



  (2.13) 

the subscript “ , i ” denotes / iX∂ ∂ . The foregoing equations of motion must be satisfied at each 

part of the body. As a result, the integrands in (2.11) and (2.12) must be equal to zero and for 

every point in the body we write: 

 , 0,ij i j jf aσ ρ+ − =   (2.14) 

 , 0.jnk nk ij i j jmε σ µ ρα+ + − =   (2.15) 

These are the local equations of motion for a micropolar material. 

2.2 Deformation theory 

Consider a material point (P) of a body in its undeformed state. A vector X  indicates the 

position of (P) with respect to a Cartesian reference system via its components 1
X , 2

X  and 3
X . 

After deformation, the point P moves to a new position which in the same reference frame will 

be denoted by x  with components 1
x , 2

x  and 3
x . It is assumed that during the deformation 
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every point undergoes a bijective mapping. Therefore, the position of a point in the undeformed 

state can be related to a unique position in the deformed configuration and conversely, every 

point in the deformed configuration can be traced back to a unique point in the undeformed 

configuration. In either case, we express the position vector of a deformed point as a function of 

its location before deformation or the position of an undeformed point as a function of its 

deformed state. That is, 

 1 2 3
( , ) ( , , , ),i ix x X t x x X X X t= ⇒ =   (2.16) 

 1 2 3
( , ) ( , , , ).i iX X x t X X x x x t= ⇒ =   (2.17) 

Also, we note that for the one-to-one mapping to be valid, the following Jacobian determinant 

must be nonzero: 

 

31 2

1 1 1

31 2

2 2 2

31 2

3 3 3

0.

xx x

X X X

xx x
J

X X X

xx x

X X X

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
= ≠
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

  (2.18) 

To take into account the granular properties of the material body, we assume that every element 

of the body contains sub-elements called “microelements”. Consequently, for an undeformed 

body, X  indicates the position vector of the center of mass for each element hereafter referred to 

as macro-element. In addition, each material point corresponding to a microelement can be 

located by its position relative to the center of mass of the macro-element containing that point. 

Therefore, the position of each material point in this continuum can be expressed by the location 

of its macro-element relative to a reference origin o , and the position of its microelement 

relative to the center of mass of that macro-element (see Fig.  2-2). In vectorial form 

 
( ) ( ) ,mi miX X= +Ξ   (2.19) 

where 
( )miX  is the position of general microelements with respect to the origin o  and 

( )miΞ  is the 

position of the same microelement with respect to the center of mass of the macro element X . 

Accordingly, we may also express the position vector of a microelement in a deformed state as 
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 ( ) ( ).mi mix x ξ= +   (2.20) 

Similarly, 
( )mix  and ( )miξ  have the same definitions as 

( )miX  and 
( )miΞ  in the deformed state of 

the body. 

  

Fig.  2-2- Macro-elements and microelements 

Again, we relate the position of a microelement point in a deformed and undeformed 

configuration by defining functions, 

 
( ) ( ) ( )( , ),mi mi miX X x t=   (2.21) 

 
( ) ( ) ( )( , ).mi mi mix x X t=   (2.22) 

Using (2.20) and (2.19), the position of a microelement relative to the center of mass of its 

containing macro-element in a deformed body will be restated as 

 ( ) ( ) ( )( , ) ( , ).mi mi mix X t x X tξ = +Ξ −   (2.23) 

As a result, ( ) ( )( , , )mi miX tξ Ξ  is a function of X , 
( )miΞ  and t . One can write the Mclaurin series 

of this function in terms of 
( )miΞ  as 

 

( )

( ) ( ) ( )

( )
( ,0, ) .

mi
mi mi mi

mi
X t

ξ
ξ ξ

∂
= + Ξ +

∂Ξ
…   (2.24) 

Since the center of mass of the macro-element does not change during the deformation the term 

( ) ( ,0, )mi X tξ  vanishes. On the assumption of homogeneous motion [72], we neglect the second 

1

2

3

x

X

Macroelement

o
x

X

Microelement

o

Ξ

ξ
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and higher order terms in (2.24) so that the only meaningful term in the expansion generates a 

linear relation between ( )miξ  and 
( )miΞ . Thus, it is true that, 

 

( )

( ) ( )

( )
,

mi
mi mi

mi

ξ
ξ

∂
= Ξ
∂Ξ

 or ( ) ( )( , ) ,mi mi
i iX tξ χ= Ξ  or ( ) ( )( , ) ,mi mi

j ji iX tξ χ= Ξ   (2.25) 

where ijχ  denote the Cartesian components of a second order tensor ( , 1, 2,3i j = ). The relation 

(2.25) formulates the motion of a microelement point relative to the center of mass of the macro-

element or “micromotion” of the point. Conversely, the undeformed ( )mi
iΞ , can be written as 

 ( ) ( )( , ) ,mi mi
j ji iX tα ξΞ =   (2.26) 

which represents the inverse micromotion. As an inverse micromotion necessarily nullifies the 

corresponding micromotion, we can infer that for a micromotion and inverse micromotion 

ij jk ikχ α δ= , where ikδ  is Kronecker delta defined by 

 
1

0
ik

i k

i k
δ

=
= 

≠
  (2.27) 

Therefore, the motion of a point in micropolar theory can be expressed in terms of its 

components as 

 ( ) ( )( , ) ( , ) ( , ) ,mi mi
i i ij jx X t x X t X tχ= + Ξ   (2.28) 

and an inverse motion as 

 ( ) ( )( , ) ( , ) ( , ) .mi mi
i i ij jX x t X x t x tα ξ= +   (2.29) 

By total differentiation rule, (2.28) becomes 

 ( ) ( ) ( )

, ,( ) .mi mi mi
i i k ij k j k ik kdx x dX dχ χ= + Ξ + Ξ   (2.30) 

In order to evaluate the magnitude of infinitesimal changes in the position vector after 

deformation ( ( )mi
idx ), we determine the inner product, 
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( )
( )

( ) ( ) ( ) ( ) ( )

, , , , , ,

( ) ( )

, ,

( ) ( )

2

2 2

.

mi mi mi mi mi
i k i k i m i k in m n ij k in m j n m k

mi mi
i k im im ij k j m k

mi mi
ik im k m

dx dx x x x dX dX

x d dX

d d

χ χ χ

χ χ χ

χ χ

⋅ = + Ξ + Ξ Ξ

+ + Ξ Ξ

+ Ξ Ξ

  (2.31) 

This expression equals the square of the differential arc length in the body after deformation. 

One can see that except , ,i k i mx x  in (2.31) which is Green’s deformation tensor in classical 

elasticity, the remainder of the expression emerges from micropolar theory. From (2.31), the 

deformation tensors in micropolar theory can be defined as 

 , , , , ,, , .km i k i m knm i k in m km i k imG x x x xχ χ= Γ = Ψ =   (2.32) 

Now, we may define the displacement vector of a point as a vector extended from the 

undeformed to the deformed position of that point. The definition of displacement is clarified in 

Fig.  2-3. This can be expressed as 

 
( ) ( ) ( ).mi mi miu x X= −   (2.33) 

  

Fig.  2-3-Definition of displacement vector 

The relation (2.33) can be written in terms of displacement of the center of mass of a macro-

element, u , as 

 ( ) ( ) ( ).mi mi miu u ξ= + −Ξ   (2.34) 

From (2.34), we find in deformed and undeformed configurations that, 

 

( )

( )

( ) ,

( ) ,

mi
i i ij ij j

mi
i i ij ij j

u u

u u

χ δ

δ α ξ

= + − Ξ

= + −
  (2.35) 

and we define 

x
X u ( )miξ

( )miu( )miΞ
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,

,

ij ij ij

ij ij ij

φ χ δ

ϕ δ α

= −

= −
  (2.36) 

as the components of micro-displacement tensors. Also, the displacement gradient of a macro-

element will have components: 

 , , .i j i j iju x δ= −   (2.37) 

Using (2.37) deformation tensors introduced in (2.32) can be rephrased in terms of displacement 

as 

 

, , , , , , , ,

, , , , , , ,

, , , ,

( )( ) ,

( )( ) ,

( )( ) ,

km i k i m i k ik i m im i k i m m k k m mk

knm i k in m i k ik in m i k in m kn m

km i k im i k ik im im i k im m k km mk

G x x u u u u u u

x u u

x u u u

δ δ δ

χ δ φ φ φ

χ δ φ δ φ φ δ

= = + + = + + +

Γ = = + = +

Ψ = = + + = + + +

  (2.38) 

and from the invertibility condition for micromotion ( ij jk ikχ α δ= ), we relate micro-displacement 

tensors ijφ  and ijϕ  by 

 .ik ik ij jkφ ϕ ϕ φ= +   (2.39) 

In expressions (2.38) and (2.39), the underline identifies the nonlinear parts of deformation 

tensors. In the framework of small deformations, however, we can neglect the nonlinear parts so 

as to express deformation tensors in the following form, 

 

( )

, ,

( )

,

( )

,

,

,

,

L
km m k k m mk

L
knm kn m

L
km m k km mk

G u u

u

δ

φ

φ δ

= + +

Γ =

Ψ = + +

  (2.40) 

and also 

 ,ik ikφ ϕ=   (2.41) 

which shows that with the assumption of small deformations in micropolar theory, as in classical 

theory, the expressions in terms of deformed and undeformed coordinates will be the same. In 
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accordance with (2.40), the strain tensor components ijε  and the microstrain tensors components, 

ijkγ  and ( )mi
ijε  are defined as 

 

( ), ,

,

( ) ( )

,

1
,

2

,

.

ij i j j i

ijk ij k

mi L
ij ij ij ij j i

u u

u

ε

γ φ

ε δ φ

= +

=

= Ψ − = +

  (2.42) 

Now, in terms of newly defined parameters, we may write the square of differential arc length 

before ( dS ) and after ( ds ) deformation as 

 
( )
( )
( )

2 ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

2 2

2 ,

mi mi
i k

mi
km knm n m k k k

mi mi mi mi
km mjk j m k k k

mi mi mi mi mi mi
mk km mk k m k k

ds dx dx

dX dX dX dX

d dX d dX

d d d d

ε γ

ε γ

ε ε ε

= ⋅

= + Ξ +

+ + Ξ Ξ + Ξ

+ + − Ξ Ξ + Ξ Ξ

  (2.43) 

 2 ( ) ( )( )( ).mi mi
k k k kdS dX d dX d= + Ξ + Ξ   (2.44) 

The difference between the square differential arc length before and after deformation will be 

 

( )
( )
( )

2 2 ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2 .

mi
km knm n m k

mi mi mi
km mjk j m k

mi mi mi mi
mk km mk k m

ds dS dX dX

d dX

d d

ε γ

ε γ

ε ε ε

− = + Ξ

+ + Ξ Ξ

+ + − Ξ Ξ

  (2.45) 

Upon eliminating the microelement factors, ( )mi
jΞ , the relation (2.45) can be reduced to the 

classical definition of strain, 

 2 2 2 km m kds dS dX dXε− =   (2.46) 

A special assumption made in micropolar theory entails rigid local motion of microelements 

comprising a macro-element. Based on this assumption, micro-displacement tensors are 

antisymmetric and can be regarded as micro-rotations. That is 

 .km mkφ φ= −   (2.47) 
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We can write the antisymmetric micro-rotation tensor (2.47) in an axial vectorial form as 

 1
2

.k kmn nmφ ε φ=   (2.48) 

The relation (2.48) means that 1 32
φ φ= , 2 13

φ φ=  and 3 21
φ φ= . 

Multiplying both sides of (2.48) by the alternating tensor kltε , the result will be, 

 .lt klt kφ ε φ= −   (2.49) 

Using the definition of rotation in classical theory, we can also introduce a familiar form of 

rotation, namely macro-rotation tensor. That is 

 1
, ,2

( ),ij ji i j j iu uω ω= − = −   (2.50) 

or in axial vectorial form, 

 1 1
,2 2

.i ijk kj ijk k juω ε ω ε= =   (2.51) 

Similar to (2.49), we obtain 

 .lt klt kω ε ω= −   (2.52) 

As in the classical theory, macro-rotation and strain tensors are related to displacement gradient 

by the following: 

 , .i j ij ij ij ijk ku ε ω ε ε ω= + = −   (2.53) 

We also express microstrain tensors (2.42) in terms of axial vectors kφ  and kω : 

 

( )

,

( ),

.

mi
ij ij jik k k

ijn kij k n

ε ε ε φ ω

γ ε φ

= + −

= −
  (2.54) 

It is obvious that micro-rotations kφ  are independent of macro-rotations kω  and hence, 

independent of macro-displacement ku . As a result, one finds that the degrees of freedom in a 

micropolar continuum are ( , )iu X t  and ( , )i X tφ . Going back to the deformed position vector 
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( )mix , if we write this vector in terms of the foregoing deformation parameters, from the 

definition of displacements (2.33), we find that 

 ( ) ( ) ( ) ( ) ,mi mi mi mix X uξ= +Ξ + + −Ξ   (2.55) 

which with the aid of (2.25), becomes 

 ( ) ( ) ( )( ) .mi mi mi
ij ij j ix X u eχ δ= +Ξ + + − Ξ   (2.56) 

Taking (2.36) into consideration, and upon substituting (2.49) into (2.56), we find 

 ( ) ( ) ( ) ,mi mi mix X u φ= +Ξ + −Ξ ×   (2.57) 

in vectorial form. This represents the deformation of a micropolar body as the summation of 

displacement of a macro-element (center of mass of a macro element) and angular rigid rotation 

of a microelement about the center of mass of the macro-element. In differential form (2.57) 

gives 

 ( ) ( ) ( ) ( ) .mi mi mi midx dX d du d dφ φ= + Ξ + − Ξ × −Ξ ×   (2.58) 

Using total differential definitions for du  and dφ , and incorporating the second equation in 

(2.54), after some simplifications, (2.58) can be expressed by 

 ( )

( ) ( )

1

( ) ( )1
2

2

( )1
2

3

( )

( ) .

mi mi

mi mi
ikj jki k j i

mi
ij ikj jki k j i

dx dX d

dX d dX e

dX e

ω φ γ γ

ε γ γ

= + Ξ

− × + Ξ × − − Ξ

 + + + Ξ 

��������

����������������������������������

����������������������

  (2.59) 

In (2.59) the 1
st
 underlined part refers to the rigid translation, the 2

nd
 underlined part specifies the 

rigid rotation of macro and microelement, and the 3
rd

 underline can be interpreted as the stretch 

in a micropolar body. If one puts 
( ) 0miΞ = , then (2.59) will be reduced to its classical form, 

 .ij j idx dX dX dX eω ε= − × +   (2.60) 
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In the equation (2.59), Eringen [23] defines a second order tensor * ( )mi
ij ikj kγ γ= Ξ . Thus, the 

symmetric part of *

ijγ  appears in the 3rd underline in (2.59) and the antisymmetric part in the 

2nd underline. Eringen [23] transforms the antisymmetric part *( ) ( )1
2

( )A mi
ij ikj jki kγ γ γ= − Ξ  into an 

axial vector and names it mini-rotation, 

 *( )1
2

.A
m mji ijγ ε γ=   (2.61) 

Consequently, linear deformation of a body in micropolar theory can be characterized by 

macrostrain tensor (or briefly strain tensor), 

 ( )1
, ,2

,ij i j j iu uε = +   (2.62) 

microstrain tensor, 

 ( )

, , ,mi
ij ij j i j i kij ku uε φ ε φ= + = −   (2.63) 

micropolar 3
rd

 order strain tensor, 

 , , ,ijk ij k nij n kγ φ ε φ= = −   (2.64) 

macro-rotation vector, 

 1
,2

,i ijk k juω ε=   (2.65) 

and mini-rotation vector, 

 ( )1
, ,2

( ) .mi
m i m i i mγ φ φ= − Ξ   (2.66) 

The foregoing parameters make up the components of deformation in micropolar elasticity 

theory. 

2.3 Constitutive equations 

In mechanical problems, constitutive equations specify ideal material properties which model the 

real behavior of an actual material body. In fact, these relations connect kinematics to 

mechanical fields, such as a force field, and in turn, yield a foundation for governing field 

equations. These constitutive equations can be derived using the energy balance law and its 
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resultant minimum total potential energy principle. According to this principle, among all the 

admissible deformations of a body, only the one that minimizes the total potential energy 

represents the body in its equilibrium state. Consider the material body shown in Fig.  2-1. The 

total potential energy of such a system, Π , is defined as the sum of internal energy U  and work 

of external forces on the system W . 

 Π = −U W .   (2.67) 

Now, we assume that the internal energy per unit volume at each point or the internal energy 

density u  is a function of independent degrees of freedom. i.e. ( )

,( , )u
mi

ij n kε φ . Thus, the internal 

energy of the system will be 

 ( )

,( , ) .U u
mi

ij n k

V

dVε φ= ∫   (2.68) 

From variational principles and using total differentiation techniques, we may show that the 

variation of energy density is 

 ( )

,( )

,

.
u u

u
mi

ij n kmi
ij n k

δ δε δφ
ε φ
∂ ∂

= +
∂ ∂

  (2.69) 

On the other hand, one can calculate the work of external forces on the body as the work of 

surface forces and surface couples plus the work of body forces and body couples. It follows that 

 ( ) ( ) .W ij j ij j i j j j j

A V

u n dA f u m dVσ µ φ φ= + + +∫ ∫�   (2.70) 

Using the Divergence Theorem, (2.70) becomes 

 ( ), , , , .W ij i j ij j i ij i j ij j i j j j j

V

u u f u m dVσ σ µ φ µ φ φ= + + + + +∫   (2.71) 

Therefore, we define work density as 

 , , , , .w ij i j ij j i ij i j ij j i j j j ju u f u mσ σ µ φ µ φ φ= + + + + +   (2.72) 

Since the total potential energy is under consideration, the equations of motion (2.14) and (2.15), 

in static form are incorporated into (2.72). Then, the work density is expressed by 
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 ( )

, .w
mi

ij ij ij j iσ ε µ φ= +   (2.73) 

As for the internal energy density, we regard work density as a function of ( )mi
ijε  and ,n kφ . 

Therefore, the variation of work density will be 

 ( )

, .w
mi

ij ij ij j iδ σ δε µ δφ= +   (2.74) 

For the total potential energy to be minimized, the variation of the total potential energyδΠ  

should vanish. As a result, we write 

 0.U Wδ δ δΠ = − =   (2.75) 

Based on the fact that the relation (2.75) holds for every arbitrary part of the body, we eliminate 

volume dependence from both sides to show that variations of work density and internal energy 

density (2.69) and (2.74) are equal. By comparison, we deduce that 

 
( )

,

, .
u u

ij ijmi
ij j i

σ µ
ε φ
∂ ∂

= =
∂ ∂

  (2.76) 

The relations (2.76) are true for all micropolar elastic material bodies. Based on experimental 

studies however, for several elastic mechanical systems, especially when the deformations are 

small the stress-strain relation may be considered linear. Also, depending on the application of 

micropolar theory, in the simplest form the material may be considered as isotropic. Therefore, 

giving attention to (2.76), we can impose the linear condition by taking u  as a quadratic function 

of ( )mi
ijε  and ,j iφ . This means that in the micropolar theory of linear elasticity for an isotropic 

material body, in the absence of residual stresses, the internal energy density can be expressed as 

 

( ) ( ) ( ) ( ) ( ) ( )

, , , , , ,

2 2 2

.
2 2 2

u
mi mi mi mi mi mi

ij ij ij ji kk nn

j i j i i j j i k k n n

e e

µ α µ α λ
ε ε ε ε ε ε

γ γ β
φ φ φ φ φ φ

+ −   = + +   
   

+ −   + + +   
   

  (2.77) 

Now, referring to (2.76), stresses and couple stresses are related to microstrains and micro-

rotation gradients as 

 ( ) ( ) ( )( ) ( ) ,mi mi mi
ij ij ji ij nnσ µ α ε µ α ε λδ ε= + + − +   (2.78) 
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 , , ,( ) ( ) .ij j i i j ij n ne eµ γ φ γ φ βδ φ= + + − +   (2.79) 

In relations (2.77), (2.78) and (2.79), µ , α , λ , γ , e  and β  are elastic moduli for a micropolar 

isotropic or micro-isotropic material. In classical elasticity of an isotropic material, only µ  and 

λ , known as Lamé coefficients, are involved in the constitutive equations. 

2.4 Field equations in micropolar elasticity 

To obtain the general governing field equations in terms of displacements and micro-rotations, 

we substitute (2.78) into the equations of motion (2.14) and (2.15). The result gives us the two 

equations, 

 , , ,( ) ( ) 2 0,j ii i ji kij k i j ju u f uµ α µ λ α αε φ ρ+ + + − − + − =ɺɺ   (2.80) 

 , , ,( ) ( ) 2 4 0,j ii i ji jkn k n j j je e u m Iγ φ γ β φ αε αφ ρ φ+ + + − − − + − =ɺɺ   (2.81) 

where dot and double dot on parameters refer to the first and second total derivatives of the 

parameters with respect to time t . Note that on the assumption of micro-isotropy for material, in 

deriving (2.80) and (2.81) from (2.14) and (2.15), the inertial terms in the equations of motion 

are converted to 

 , ,a u Iρ ρ ρα ρ φ= = ɺɺɺɺ   (2.82) 

where, uɺɺ  and φɺɺ  are respectively, the second total derivatives of displacement and rotation 

vectors u  and φ  with respect to time t . I  is the micro-inertia coefficient and is derived from a 

general micro-inertia tensor ijI  which in the case of isotropy reduces to ij ijI Iδ= . One can also 

convert the field equations (2.80) and (2.81) into vectorial form as 

 2( ) ( ) ( ) 2 0,u u f uµ α µ λ α α φ ρ+ ∇ + + − ∇ ∇⋅ + ∇× + − =ɺɺ   (2.83) 

 2( ) ( ) ( ) 2 4 0,e e u m Iγ φ γ β φ α αφ ρ φ+ ∇ + + − ∇ ∇⋅ + ∇× − + − =ɺɺ   (2.84) 

where “ ⋅ ” indicates inner product,∇  is the gradient operator defined by ( / )i iX e∂ ∂  in Cartesian 

coordinates and 2∇  is the Laplacian operator defined by 2∇ = ∇⋅∇ . The equations (2.83) and 

(2.84) along with boundary and initial conditions make up a boundary value problem whose 

solution specifies the state of a micro-isotropic body under the given conditions. It is clear that 
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the foregoing system of equations is not easy to solve in general. Thus, many researchers have 

tried to simplify the theory further in order to make it more applicable to solid mechanics 

problems. 

 

2.5 Couple stress theory of elasticity 

Couple stress theory stems from the micropolar theory if certain further simplifying assumptions 

are made. Truesdell and Toupin [31], Grioli [32], Toupin [26] and Mindlin and Thiersten [35] 

were the first researchers to develop the theory around half a century ago. Couple stress theory 

can be derived as a special case of micropolar elasticity when the independent micro-rotations 

are omitted from the degrees of freedom. Consequently, the displacement field remains only to 

characterize kinematics of the continuous material body and rotations retain their classical 

definition as 

 
1

,
2

uφ ω= = ∇×   (2.85) 

or in terms of the vector components, 

 ,

1
.

2
i i ijk k juφ ω ε= =   (2.86) 

Following this assumption, the micro-strain tensor (2.54), becomes 

 ( )( )

, ,

1
,

2

mi
ij ij j i i ju uε ε= = +   (2.87) 

which is a symmetric tensor as in classical elasticity. It follows that by substituting (2.87) into 

the constitutive equation (2.78), we obtain a symmetric stress tensor as 

 2 ,S
ij ij ij nnσ µε λδ ε= +   (2.88) 

which can be translated in terms of displacement as 

 ( ), , , .
S

ij i j j i ij k ku u uσ µ λδ= + +   (2.89) 

From the second set of equations of motion, (2.15) multiplied by jtlε , an antisymmetric stress 

tensor will result in, 
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 ,

1 1
( ) ( ).

2 2

A
tl tl lt jtl ij i jtl j jtl jm Iσ σ σ ε µ ε ε ρ φ= − = − + − ɺɺ   (2.90) 

Thus, the total stress tensor in couple stress theory is the summation of the symmetric and 

antisymmetric parts as 

 .S A
ij ij ijσ σ σ= +   (2.91) 

Moreover, by imposing the rotation constraint (2.85) on the constitutive equation (2.79), we 

deduce that 

 , ,

( ) ( )
,

2 2
ij nmj m ni nmi m nj

e e
u u

γ γ
µ ε ε

+ −
= +   (2.92) 

which considering (2.86) and since , 0i iω = , turns out to be a deviatoric tensor. Then, by 

inserting (2.92) into the antisymmetric part of the stress tensor (2.90), the expression in terms of 

displacement becomes 

 , ,

( ) 1 1
,

2 2 2

A A A
tl l tii jtl j l t

e
u m Iu

γ
σ ε ρ

+
= − − + ɺɺ   (2.93) 

where ,

A
l tu  is the antisymmetric part of displacement gradient tensor described by its components 

as 

 ( ), , ,

1
.

2

A
l t l t t lu u u= −   (2.94) 

From (2.93), it is obvious that the antisymmetric part of the stress tensor depends not only on the 

properties of a material medium but also on the applied body moments and the inertia. On the 

other hand, since the rotation φ  is not independent, then the couple stresses determined by the 

constitutive equation (2.79) which originate from (2.76)2 will no longer be independent. For 

these reasons, the theory is usually referred to as “indeterminate” couple stress theory. 

We may also show the symmetric part of the displacement gradient tensor to be 

 ( ), , ,

1
.

2

S
l t l t t lu u u= +   (2.95) 

Hence, using (2.93) and (2.89), the total stress tensor (2.91), can be written as 
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 , , , ,

( ) 1 1
2

2 2 2

S A A
tl l t tl k k l tii jtl j l t

e
u u u m Iu

γ
σ µ λδ ε ρ

+
= + − − + ɺɺ   (2.96) 

Thus far, the second set of equations of motion and constitutive equations have been used to 

determine the stress tensor components. Now, if we carry the stress tensor (2.96) into the first set 

of equations of motion (2.14), the governing field equation in couple stress theory can be found 

as 

 
2 2 2

, , , ,

1

4 4 2 4 4
l tt t lt jtl j t l l l t lt

e e I I
u u m f u u u

γ γ
µ µ λ ε ρ

+ +   − ∇ + + + ∇ − + = − ∇ +   
   

ɺɺ ɺɺ ɺɺ   (2.97) 

The component expressions in (2.97) may be transformed into vectorial forms by multiplying 

both sides by le  and using the identities , ( )i ji ju e u= ∇ ∇⋅  and , ( ) ( )j ii ju e u u= ∇ ∇ ⋅ −∇× ∇× . 

Therefore, we write: 

 ( ) 2 1
2 ( ) ( ) ( )

4 2 4

e I
u u m f u u

γ
µ λ µ ρ

+ + ∇ ∇⋅ − − ∇ ∇× ∇× + ∇× + = + ∇× ∇× 
 

ɺɺ ɺɺ   (2.98) 

In the special case where the body is in a state of static equilibrium, the inertial factors vanish 

from (2.98). Then, we obtain 

 ( ) 2 1
2 ( ) ( ) 0

4 2

e
u u m f

γ
µ λ µ

+ + ∇ ∇⋅ − − ∇ ∇× ∇× + ∇× + = 
 

  (2.99) 

Further, in the absence of body forces and body moments the field equation reduces to 

 ( ) 2
2 ( ) ( ) 0.

4

e
u u

γ
µ λ µ

+ + ∇ ∇⋅ − − ∇ ∇× ∇× = 
 

  (2.100) 

Now, consider the couple stress formulations in the static case. If we use the first equation of 

equilibrium (2.14), and exert a virtual displacement iu△  on the balanced system, the virtual work 

equals zero. Formally, 

 ,( ) 0.ji j i i

V

f u dVσ + =∫ △   (2.101) 

Also we know that 
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 , , ,( ) .ji j i ji i j ji i ju u uσ σ σ= −△ △ △   (2.102) 

Using (2.102) into (2.101), we have 

 , ,[( ) ] 0.ji i j ji i j i i

V

u u f u dVσ σ− + =∫ △ △ △   (2.103) 

Applying the Divergence Theorem on the first term, we relate the internal force stresses to the 

force tractions on the body surface S , as 

 , .ji i j ji j i i i

V S V

u dV n u dS f u dVσ σ= +∫ ∫ ∫△ △ △   (2.104) 

We decompose the stress in terms of its symmetric and antisymmetric parts as 

 ,( ) .S A
ji ji i j ji j i i i

V S V

u dV n u dS f u dVσ σ σ+ = +∫ ∫ ∫△ △ △   (2.105) 

Incorporating the second equation of equilibrium (2.15) in terms of the antisymmetric part of 

stress, we have 

 
, , ,

1
( ) .

2

S
ji i j jik nk n jik k i j ji j i i i

V V S V

u dV m u dV n u dS f u dVσ ε µ ε σ− + = +∫ ∫ ∫ ∫△ △ △ △   (2.106) 

Then, it is easy to show that ,

S S
ji i j ji jiuσ σ ε=△ △ . Again, using the relation, 

 , , , , ,( ) ,jik nk n i j jik nk i j n jik nk i jnu u uε µ ε µ ε µ= −△ △ △   (2.107) 

and the divergence theorem, we can relate the internal couple stresses to the couple tractions on 

the surface as 

 

,

, ,

1
( )

2

1 1
( ) ( ) .
2 2

S
ji ji jik nk i jn

V

jik nk i j n ji j i jik k i j i i

S S V V

u dV

u n dS n u dS m u dV f u dV

σ ε ε µ

ε µ σ ε

+

= + + +

∫

∫ ∫ ∫ ∫

△ △

△ △ △ △

  (2.108) 

Using the condition (2.86), we may write 
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,( )

( ) ( ) .

S
ji ji nk k n

V

ji j i ji j i i i i i

S S V V

dV

n dS n u dS m dV f u dV

σ ε µ ω

µ ω σ ω

+

= + + +

∫

∫ ∫ ∫ ∫

△ △

△ △ △ △

  (2.109) 

The left-hand side of the equation (2.109) represents the internal elastic energy of the system 

( )E △
 , while the right-hand side shows the work of external loads including surface tractions and 

body forces and couples, all produced by an arbitrary virtual displacement. Now we focus on the 

couple stress tractions on the surface ji j inµ ω△  and decompose it to the normal and tangential 

components through 

 ( ) ,ji j i ji j ik k ji j k ik i k ji j i k kn n n n n n n nµ ω µ δ ω µ ω δ µ ω= = − +△ △ △ △   (2.110) 

where the underlined part in (2.110) is the normal component of the couple stress vector on S , 

denoted by ( )nor

ji j in nµ µ= . Inserting the decomposition (2.110) into (2.109) and using (2.86), we 

obtain: 

 

( ) ( ) 1
,2

[ ( ) ( )]

( ) .

nor

ji j ik i k k k mnk n m

S

ji j i i i i i

S V V

E n n n n u dS

n u dS m dV f u dV

µ δ ω µ ε

σ ω

= − +

+ + +

∫

∫ ∫ ∫

△
△ △

△ △ △

  (2.111) 

Additionally, we can alter (2.111) to the form 

 

( )

( ) ( )1 1
, ,2 2

[ ( ) ]

[ ( ) ( ) ]

( ) .

nor nor

ji j ik i k k

S

mnk k n m mnk k n m

S

ji j i i i i i

S V V

E n n n dS

n u n u dS

n u dS m dV f u dV

µ δ ω

ε µ ε µ

σ ω

= −

+ −

+ + +

∫

∫

∫ ∫ ∫

△
△

△ △

△ △ △

  (2.112) 

We apply Stokes’ theorem to the underlined part and since S  is assumed to be a smooth closed 

surface this part will be eliminated. Therefore, 

 

( )

( )1
,2

[ ( ) ]

( ( ) ) ( ) .
nor

ji j ik i k k

S

ji j mik k m i i i i i

S V V

E n n n dS

n n u dS m dV f u dV

µ δ ω

σ ε µ ω

= −

+ − + +

∫

∫ ∫ ∫

△
△

△ △ △

  (2.113) 
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Thus, on the surface S , the normal component of the couple stress vector remains only in 

combination with the stress vector as the coefficient of displacement iu△ . Additionally, a 

uniform distribution of normal component of the couple stress vector on S , does not contribute 

to the virtual work. Based on this, Mindlin and Tiersten [35] and later Koiter [33] argue that 

specification of stresses and couple stresses on the surface yields five boundary conditions. Also, 

if we prescribe the displacement vector as a boundary condition, the normal component of the 

rotation vector or the normal component of the couple stress vector at the boundary cannot be 

specified independently. This fact is particularly useful in establishing boundary conditions for 

the problem of a screw dislocation interacting with interfaces. We will use the equations derived 

in this chapter in Chapters  5 to  8, to deal with the problem of the interaction of a screw 

dislocation near interfaces and surfaces in couple stress theory. 
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3 Interaction of a Screw Dislocation with a Bi-

material Interface in Classical Elasticity 

A perfect lattice region in a crystalline solid is where the crystal particles are arranged in a 

regular pattern. This pattern is broken when an imperfection or defect occurs. Imperfections in a 

crystal lattice are very common and they account for several mechanical properties of a solid 

material. For instance, imperfections describe the structural state of materials and deformation 

processes. Furthermore, an imperfection can reduce the strength of a material by orders of 

magnitude. A certain type of imperfection takes place when two adjacent planes of a lattice 

displace relatively so that the particles make bonds with their new neighbors in such a way that 

the lattice formation remains perfect. The plane over which the particles have slipped relative to 

one another is referred to as “slip plane”. The slip usually happens only on a part of the slip plane 

and the boundary which differentiates between the slipped and unslipped region is defined as 

“dislocation” (Read [9], Hirth and Lothe [73]-see Fig. 3-1). 

Dislocations can move through the crystal lattice. The presence and mobility of dislocations have 

a great deal of influence on the mechanical properties of materials. In fact, the mobility of 

dislocations explains the plastic deformation for crystalline solids such as metals. Work 

hardening property in metals is also related to the increase in the concentration of dislocations 

and strong interaction between them which makes a metastable configuration [9]. The motion of 

a dislocation can occur in two forms. First, the lattice particles continue slipping over the slip 

plane in which case the slipped region expands or shrinks and the boundary line, or namely the 

“dislocation line”, moves through the lattice. This kind of movement is called conservative since 
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the number of particles remains constant during the process. The second kind of movement is 

known as climb of a dislocation which normally occurs at high temperatures. As a non-

conservative motion of a dislocation, climb involves an out-of-slip-plane movement of the 

dislocation line and requires particles to be added to the material. 

The description of dislocation behavior begins by introducing a unit vector ζ  tangent to the 

dislocation line whose direction determines the positive sense [73]. A dislocation vector b , or 

the Burgers vector, is defined to determine the strength of a dislocation. Roughly speaking, the 

Burgers vector b  determines the magnitude of slippage and the direction in which the plane 

particles have slipped over each other. In general form, b  can be interpreted as the total 

displacement caused by a dislocation on a path C  which lies totally in the perfect lattice, 

encloses the dislocation line, and whose direction is determined by the positive sense of ζ  and 

the right-hand rule. In mathematical form, this means, 

 
C C

u
b du ds

s

∂
= =

∂∫ ∫� �   (3.1) 

Geometrically, dislocations are categorized into “edge” and “screw” dislocations. For an edge 

dislocation, the dislocation line unit vector ζ  is perpendicular to the Burger’s vector b , or 

0bζ ⋅ = . For a screw dislocation, on the other hand, ζ  and b  are parallel to each other, or 

b bζ ⋅ = , b  being the magnitude of the Burger’s vector (see Fig.  3-1). The present dissertation 

focuses on the interaction of a screw dislocation with interfaces and free surfaces in couple stress 

theory.  

 

Fig.  3-1- (a) Edge dislocation and (b) screw dislocation and slippage configuration. 

b b

Dislocation Line
Dislocation Line

ζζ

Slip Plane
Slip Plane

(a) (b)
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3.1 Screw dislocation 

A dislocation can be identified by its prescribed displacement field in a surrounding infinite 

medium (in the Cartesian coordinates 1 2 3
{ : , , }o X X X , for example, 

1 2 3 1 2 3
( , , ) ( , , )i iu X X X u X X X e=  denotes the displacement field components). For a screw 

dislocation at the origin of a Cartesian coordinate system (Fig.  3-2) whose dislocation line and 

unit vector ζ  coincide with the 3
X - axis direction, the only non-vanishing displacement field is 

3
u  which can be regarded as the out-of-plane or anti-plane component. In addition, since b  and 

ζ  are aligned, the slip plane for a screw dislocation is not unique. In order to quantify the screw 

dislocation in an infinite medium, from all possible choices, the 1 3
X X−  plane is taken as the 

slip plane. Therefore, one can relate the magnitude of Burger’s vector b  to the anti-plane 

displacement by 

 3 1 3 1 1( ,0 ) ( ,0 ) , 0.b u X u X X− + = − >    (3.2) 

Here, the superscripts “+ ” and “− ” refer to the right and left limits as 2
X  approaches zero. Also, 

with reference to the polar coordinates shown in Fig.  3-2, it is assumed that the displacement 

component 3
u  increases uniformly with θ . Then, we may write: 

 3( , ) ,
2

u r b
θ

θ
π

=   (3.3) 

or in the defined Cartesian coordinates, 

 1 2
3 1 2

1

( , ) tan
2

Xb
u X X

Xπ
−  

=  
 

  (3.4) 

From the classical theory of elasticity, for a screw dislocation in an infinite medium, the 

prescribed displacement field induces a stress field known as self-stress of the screw dislocation. 

This shear stress field is derived from the displacement field by 

 13 31 3,1 23 32 3,2, ,
2 2

u u
µ µ

σ σ σ σ= = = =   (3.5) 

where µ  is the shear modulus of the material occupying the medium. 
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Fig.  3-2- Model of a screw dislocation in an infinite plane. 

Hence, we can write: 

 2 1
13 31 23 322 2 2 2

1 2 1 2

, ,
2 2

X Xb b

X X X X

µ µ
σ σ σ σ

π π
   −

= = = =   + +   
  (3.6) 

for the stress field components.  

3.2 Screw dislocation near a free surface 

Consider a screw dislocation which is located at the point ( ,0)a  in the plane Cartesian 

coordinate system and a free surface which lies on the 2
X -axis. In this case, the traction free 

surface condition ( 13
0σ = ) must be satisfied. Using the stress field relations (3.6), for a screw 

dislocation in an infinite plane at the point ( ,0)a  the stress component 13
σ  on the 2

X  axis will 

be 

 2
13 2 2

2

.
2

Xb

a X

µ
σ

π
 −

=  + 
  (3.7) 

In order to satisfy the traction free condition on the surface, the stress component (3.7) must be 

nullified with another equal and opposite stress field. Hence, we superpose an imaginary screw 

dislocation ( b−
�

) at the mirror position ( ,0)a− . Then, the displacement field in the half-plane is 

 
1 12 2

3

1 1

tan tan .
2

X Xb
u

X a X aπ
− −

    
= −    − +    

  (3.8) 

From (3.8), using stress-displacement relations (3.5), we find that 

3b b e=
1

2

θR
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2 2
13 31 2 2 2 2

1 2 1 2

1 1
23 32 2 2 2 2

1 2 1 2

,
2 ( ) ( )

( )
,

2 ( ) ( )

X Xb

X a X X a X

X a X ab

X a X X a X

µ
σ σ

π

µ
σ σ

π

 −
= = + − + + + 

 − − +
= = + − + + + 

  (3.9) 

in the half-plane ( 1
0X ≥ ). 

3.3 Screw dislocation near a bi-material interface 

The solution for the more general case of a screw dislocation near a bi-material interface is given 

in Head [12] and his approach is restated here in detail. Let 1
µ  and 2

µ  be respectively, the shear 

moduli of phase 1 and 2 of a bi-material infinite plane medium, namely material 1 and 2. The 

configuration of the problem is given in Fig.  3-3(a). Again, the dislocation 3
b be=  is located at 

( ,0)a . For a perfectly bonded interface between materials 1 and 2, the continuity of displacement 

and traction should be enforced. In this regard, we consider materials 1 and 2 separately with 

boundary conditions, 

 (1) (2) (1) (2)

13 2 13 2 3 2 3 2(0, ) (0, ), (0, ) (0, ).X X u X u Xσ σ= =   (3.10) 

Here, the superscripts “ (1) ” and “ (2) ” indicate that the respective quantities belong to materials 

1 and 2. If we consider material 1 only, we may assume that an image dislocation of strength Ib  

at ( ,0)a−  is superposed with the real dislocation b  as in Fig.  3-3(b). The resulting displacement 

and stress components are 

 (1) (1) 1 2 1 2
3 1 2 13 2 2 2 2

1 2 1 2

, .
2 2 2 ( ) 2 ( )

I Ib b X b Xb
u

X a X X a X

µ µ
θ θ σ

π π π π
   − −

= + = +   − + + +   
  (3.11) 

Next, considering material 2 (Fig.  3-3(c)), the real dislocation outside the material at ( ,0)a  is 

added to an image dislocation of strength Ib−  at the same location to form 

 
( )(2) (2) 2 2 2 2

3 1 13 2 2 2 2

1 2 1 2

, .
2 2 ( ) 2 ( )

I I
b b b X b X

u
X a X X a X

µ µ
θ α σ

π π π
−    −

= + = +   − + − +   
  (3.12) 



35 

 

 (a) 

 (b)  (c) 

Fig.  3-3- Details of the decomposition made in solving the problem of a screw dislocation near a planar interface 

In (3.12), α  is an unknown coefficient which along with Ib  must be found from the boundary 

conditions (3.10). From the first equation in (3.10) we obtain: 

 2 1

1 2

,Ib
K

b

µ µ
µ µ
−

= =
+

  (3.13) 

and by applying (3.13) to the second equation, 

 .
2

bK
α =   (3.14) 

Therefore, using the theory classical elasticity we find the anti-plane displacement component 

for the boundary value problem of a screw dislocation near the interface of two adjoining half-

plane materials as 

 ( ) ( )(1) (2)

3 1 2 3 1, (1 ) ,
2 2

b b
u K u K Kθ θ θ π

π π
= + = − +   (3.15) 

where 

1µ2µ

Material 1Material 2

o 3
b b e=

1

2

1µ

Material 1

o

3
b b e=

1

2

3I Ib b e= 1
θ

2
θ

1 2
( , )X X

2µ

Material 2

o

3I Ib b e= −

1

2

1θ
1 2( , )X X
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 1 12 2
1 2

1 1

tan , tan .
X X

X a X a
θ θ− −   
= =   − +   

  (3.16) 

For convenience, from this point forward, the following mismatch coefficient 

 2

1

,
µ
µ

Γ =   (3.17) 

is adopted. Then, 

 
1

.
1

K
Γ −

=
Γ +

  (3.18) 

Thus, using (3.5) the stress field components can be expressed as 

 (1) (1) 1 2 2
13 31 2 2 2 2

1 2 1 2

,
2 ( ) ( )

b X X
K

X a X X a X

µ
σ σ

π
 − −

= = + − + + + 
  (3.19) 

 (2) (2) 2 2
13 31 2 2

1 2

(1 ) ,
2 ( )

b X
K

X a X

µ
σ σ

π
 −

= = −  − + 
  (3.20) 

 (1) (1) 1 1 1
32 23 2 2 2 2

1 2 1 2

( ) ( )
,

2 ( ) ( )

b X a X a
K

X a X X a X

µ
σ σ

π
 − +

= = + − + + + 
  (3.21) 

 (2) (2) 2 1
32 23 2 2

1 2

( )
(1 ) .

2 ( )

b X a
K

X a X

µ
σ σ

π
 −

= = −  − + 
  (3.22) 

3.4 Interaction force between dislocation and interface 

The force on a dislocation is defined as the negative change of total potential energy with the 

change of position of the dislocation. In general, the force can be written as 

 ,F = −∇Π   (3.23) 

where Π  indicates the total potential energy in the elastic body. In the absence of external 

stimuli, the potential energy equals the internal strain energy Ε . The defined force is a fictitious 

parameter that determines the state of mobility of a dislocation. Eshelby [74] [75] [76] [77] 

proposed a general model for the calculation of the interaction force on dislocations and other 

elastic defects in material bodies. As will be discussed further in the next chapter, we adopt 
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Eshelby’s general idea to determine the force on a dislocation in couple stress elasticity. 

However, to compute the interaction force in classical elasticity, the Peach-Koehler model [78] is 

probably the most convenient. The Peach-Koehler model uses a straightforward formula based 

on the work done by the stress field without “self-stress” of the dislocation when the dislocation 

moves. Self-stress is defined as the stress field caused by the dislocation in a virtual infinite 

medium. Consider Iσ  as the non-self-stress tensor field caused by the image effects of surfaces, 

interfaces and external loadings, and dS  the element of direction in which the dislocation moves. 

For an element dζ  of the dislocation line, the work done during the moving process will be the 

inner product of the force on the movement surface dS dζ×  and the displacement of the lattice 

b , generating the movement of the dislocation. Thus, when dζ  moves as much as a dS , the 

work done can be expressed as 

 ( ). ( ) .d IdW b d dSζ σ ζ= ×   (3.24) 

 

Fig.  3-4- Schematic interpretation of the Peach-Koehler model for calculation of the force 

The total work on the dislocation line dW  can be computed through integration over ζ  as 

 ( ). ( ) .IdW b d dS
ζ

σ ζ= ×∫
�

  (3.25) 

Consequently, the force, by definition, can be written as the negative of the work done during a 

unit movement of the dislocation s : 

 ( ) ( ). ( ) . ( ) .I IF b d s b s d
ζ ζ

σ ζ σ ζ ζ= − × = − ×∫ ∫
� �

  (3.26) 

Clearly, for a screw dislocation near an infinite interface the energy does not change when it 

moves in the direction parallel to the interface since the configuration is unchanged. Therefore, 

dζdS

dS dζ×

Iσ
b
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with reference to Fig.  3-2 we regard 2
0X =  as the slip plane on which the movement occurs. 

Using the Peach-Koehler formula (3.26) and the stress components (3.19) to (3.22), we express 

the interaction force on a unit line of the dislocation near the interface as 

 ( )3. ( ) ,IF b eσ= − −   (3.27) 

which leads to 

 
2

1
1 1 1,

4

b
F F e Ke

a

µ
π

= =   (3.28) 

where 1
F  is the force component in the 1

X -direction. From (3.28) it is apparent that when 0K >

, the force repels the dislocation from the interface, while for 0K <  the nature of the force 

between dislocation and interface is attractive. 

The classical formulation presented above will serve as a foundation for developing the problem 

in the case of couple stress theory. In the following chapters, we introduce couple stress effects 

as a perturbation to this classical solution. As well, we compare the solutions obtained from 

couple stress theory to the classical solutions presented in this chapter. 
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4 Calculation of Interaction Forces on Dislocations 

The force acting on a dislocation was defined in Section  3.4. As mentioned, the interaction force 

can be calculated using a straightforward Peach-Koehler method in classical elasticity. This 

method has also proved useful in problems dealing with anisotropic materials (Ma and Lu [79]) 

as well as non-local approaches (Eringen, [56] [57], Kroner, [80]). In couple stress theory, 

however, the aforementioned approach must take into account the couple stress effects on the 

changes of energy as the dislocation moves. One remedy is to calculate the total elastic energy in 

the whole system and take the derivative in terms of the dislocation’s distance to the interface. 

Particularly, when the numerical evaluation is needed in the problem this procedure requires a 

high amount of sampling points and calculations. The use of energy-momentum tensor 

expressions leading to J-type integrals is another approach which requires less numerical effort 

since the number of integral variables is less than the previous case. Therefore, for an anti-plane 

problem such as the screw dislocation problem the two-dimensional integration over an infinite 

medium is replaced with a finite path integral over an arbitrary line enclosing the dislocation. In 

this chapter, we outline the concept of conservative energy integrals in elastic materials which is 

adopted by Eshelby [74][75] in order to determine the configurational forces on material defects. 

Numerous researchers developed the conservation integral concept to tackle crack (Rice [81], 

Budiansky and Rice [82]), inclusion [83], phase boundaries [84], and dislocation problems [85]. 

The idea is expanded to couple stress theory in Atkinson and Leppington [86] [87], and later 

Lubarda and. Markenscoff [88]. 
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4.1 Conservation law 

We consider a phenomenon that is represented mathematically in the form of a partial 

differential equation. The system which models the phenomenon is assumed to include 

dependent variables jf  ( 1, 2,...,j n= ) that are functions of the independent variables iX  (

1, 2,...,i m= ). We write the governing PDE for this system in the following form: 

 ,( , , ,...) 0,H i j j iX f f =   (4.1) 

where H  denotes the differential operator. For a solution jf  of the equation (4.1), if we can find 

a set of functions ,( , , ,...)k i j j iF X f f , ( 1, 2,...,k m= ) associated with independent variables, 

satisfying, 

 1 2

1 2

... 0 or 0,m

m

FF F
F

X X X

∂∂ ∂
′+ + + = ∇ ⋅ =

∂ ∂ ∂
  (4.2) 

then we call (4.2) a conservation law (Herrmann, and Kienzle [89]). For example, if we consider 

the components of a position vector in Cartesian coordinates 1 2 3
( , , )X X X  and time t  as the 

independent variables and define 1
F , 2

F  and 3
F  as the flux of energy density in each direction of 

the coordinates and tF  the energy density at time t  , then for a given point in this system, the 

rate of change of energy density is equal to the flux of energy density at that point. This is the 

law of conservation of energy which can be expressed by 

 31 2

1 2 3

0.tdF dFdF dF

dX dX dX dt
+ + + =   (4.3) 

We generalize the conservation law in an integral form over a domain of volume V . In this case, 

if we consider the components of a position vector in Cartesian coordinates 1 2 3
( , , )X X X  as 

independent variables and remove the time dependence, then for a conserved system of volume 

V , devoid of sources and sinks, we may write 

 0,
j

jV

F
dV

X

∂
=

∂∫   (4.4) 

which by the Divergence Theorem, gives 
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 0,j j

A

F n dA =∫   (4.5) 

over the boundary of the domain, A . The expression (4.5) states that in the absence of a source 

or sink of jF  inside the domain, the summation of a flux quantity with components jF  over the 

boundary of the domain is zero. 

4.2 Noether’s model for conservation law in couple stress 

theory 

As implied in chapter  2, the strain energy density in couple stress theory is a function of 

displacement and rotation gradients ,i ju  and ,i jω , respectively. Here, we assume that the strain 

energy density in a couple stress homogeneous material in its static state is a Lagrangian 

function, 

 , ,( , ).i j i jL w u ω=   (4.6), 

Then, the strain energy for the whole body of volume V  and surface area A  can be written as 

 , , , ,( , ) ( , ) .i j i j i j i j

V V

E L u dV w u dVω ω= =∫ ∫   (4.7) 

We consider E  as a functional and apply Hamilton’s principle of stationary action. According to 

this principle, a system changes through a path on which the action (in the present case E ) is 

stationary (unchanged of the first order). Consequently, the functions ,i ju  and ,i jω  that provide 

the stationary action condition for the functional E  are the solutions to the system. Formally, the 

functions ,i ju  and ,i jω  will be the solutions to the equation 

 0,Eδ =   (4.8) 

where δ  indicates the first variation of the functional E . In order to apply the condition (4.8) on 

(4.7), we make an infinitesimal transform in displacement, rotation, and position of the system. 

The transformed parameters can be expressed as 

 ( , , ), ( , , ), ( , , ),i i i j m n i i i j m n i i i j m nX X X u u u X u X uξ ω ϕ ω ω ω ψ ω∗ ∗ ∗= + = + = +ε ε ε   (4.9) 

where ε  is an infinitesimally small scalar and iξ , iϕ  and iψ  are arbitrary functions. The starred 
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parameters indicate the transformed state of the un-starred parameters. Hence, the energy 

expression after the infinitesimal transformation can be written as 

 ( , ) .i i

j jV

u
E w dV

X X

ω
∗

∗ ∗
∗ ∗

∗ ∗

∂ ∂
=

∂ ∂∫   (4.10) 

Now, we rewrite 
*E  in terms of untransformed state parameters iu , iω  and iX . Thus, for the 

differential variable of integration we have 

 

31 2

1 1 1

31 2

2 2 2

31 2

3 3 3

,

XX X

X X X

XX X
dV J dV dV

X X X

XX X

X X X

∗∗ ∗

∗∗ ∗
∗

∗∗ ∗

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
= =

∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

  (4.11) 

which with reference to the first equation in (4.9), and elimination of the higher order terms of 

the small parameter ε , becomes 

 

1,1 2,1 3,1

1,2 2,2 3,2 ,

1,3 2,3 3,3

1

1 (1 ) .

1

i idV dV dV

ξ ξ ξ
ξ ξ ξ ξ
ξ ξ ξ

∗

+

= + +

+

ε ε ε

ε ε ε ε

ε ε ε

≃   (4.12) 

Using the chain rule, we can state that 

 ( )( ) ( ), , , , , , , ,i i k
i k i k jk k j i j i j i k k j

j k j

u u X
u u u

X X X
ϕ δ ξ ϕ ξ

∗ ∗

∗ ∗

∂ ∂ ∂
= = + + = + −

∂ ∂ ∂
ε ε ε   (4.13) 

and 

 ( )( ) ( ), , , , , , , .i i k
i k i k jk k j i j i j i k k j

j k j

X

X X X

ω ω
ω ψ δ ξ ω ψ ω ξ

∗ ∗

∗ ∗

∂ ∂ ∂
= = + + = + −

∂ ∂ ∂
ε ε ε   (4.14) 

Substituting (4.12), (4.13) and (4.14), into (4.10), we have 

 ( ) ( )( ), , , , , , , , ,, (1 ) .i j i j i k k j i j i j i k k j i i

V

E w u u dVϕ ξ ω ψ ω ξ ξ∗ = + − + − +∫ ε ε ε   (4.15) 
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We expand the function w  in Taylor series about its value at , ,( , )i j i ju ω . Considering terms of 

first order and ignoring higher order terms, the result will be 

 ( ) ( ) ( ), , , , , , , , ,

, ,

, (1 ) .i j i j i j i k k j i j i k k j k k
i j i jV

w w
E w u u dV

u
ω ϕ ξ ψ ω ξ ξ

ω
∗

 ∂ ∂ 
= + − + − + 

∂ ∂  
∫ ε ε ε   (4.16) 

Next, we extract the initial energy expression (before the transformation) from the relation(4.16). 

That is 

 ( ) ( ), , , , , , ,

, ,

.i j i k k j i j i k k j k k
i j i jV V

w w
E wdV u w dV

u
ϕ ξ ψ ω ξ ξ

ω
∗

 ∂ ∂
= + − + − +  ∂ ∂ 
∫ ∫ε   (4.17) 

Since we have (4.7), the variation of energy due to the transformation of the system can be 

written as 

 , , , , , ,

, , , ,

.i j i j k j i k i k k k
i j i j i j i jV

w w w w
E E u w dV

u u
ϕ ψ ξ ω ξ

ω ω
∗

    ∂ ∂ ∂ ∂
− = + − + +        ∂ ∂ ∂ ∂    

∫ε   (4.18) 

We use the relation: 

 ( ), , ,,
, ,

,k k k k i jk i jkk
i j i j

w w
w w u

u
ξ ξ ξ ω

ω

 ∂ ∂
= − +  ∂ ∂ 

  (4.19) 

in (4.18), to obtain 

 

( )

, , , , ,

, , , ,

, ,,
, ,

.

i j i j k j i k i k
i j i j i j i jV

k k i jk i jkk
i j i j

w w w w
E E u

u u

w w
w u dV

u

ϕ ψ ξ ω
ω ω

ξ ξ ω
ω

∗
   ∂ ∂ ∂ ∂

− = + − +      ∂ ∂ ∂ ∂   

 ∂ ∂
+ − +   ∂ ∂  

∫ε
  (4.20) 

The above relation can be rearranged to the form, 

 ( ) ( ) ( ), ,, , ,
, ,

.i k i k i k i k jj j j
i j i jV

w w
E E u w dV

u
ϕ ξ ψ ξ ω ξ

ω
∗

 ∂ ∂
− = − + − +  ∂ ∂ 

∫ε   (4.21) 

The equation (4.21) can also be expressed as 
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( ) ( ) ( )

( ) ( )

, , ,
, ,, ,

, ,

, ,

.

i k i k i k i k j j
i j i jV j j

i k i k i k i k
j i j j i j

w w
E E u w

u

w w
u dV

X u X

ϕ ξ ψ ξ ω ξ
ω

ϕ ξ ψ ξ ω
ω

∗
   ∂ ∂− = − + − +      ∂ ∂   

   ∂ ∂ ∂ ∂
− − − −       ∂ ∂ ∂ ∂    

∫ε
  (4.22) 

Using the constitutive equations obtained in Section  2.5 for couple stress theory we deduce that 

 
, ,

, .
S A
ji ji ji ji

i j i j

w w

u
σ σ σ µ

ω
∂ ∂

= = − =
∂ ∂

  (4.23) 

Thus (4.22) gives 

 
( )( ) ( )( )

( )( ) ( )( )

, ,
,

, , , , .

A
i k i k ji ji i k i k ji j

j
V

A A
i k i k ji j ji j i k i k inm nm

E E u w

u dV

ϕ ξ σ σ ψ ξ ω µ ξ

ϕ ξ σ σ ψ ξ ω ε σ

∗ − = − − + − +

− − − − − − 

∫ε
  (4.24) 

After taking out the antisymmetric stress from the first term and imposing the equation of 

equilibrium (2.14) in the absence of body forces, we apply the stationary condition to the 

variation of energy. We may write: 

 
( ) ( )( )

( ) ( )

, ,
,

, ,,
0.

i k i k ji i k i k ji j j
V

A A
i k i k ji i k i k inm nmj

E E
u w

u dV

ϕ ξ σ ψ ξ ω µ ξ

ϕ ξ σ ψ ξ ω ε σ

∗ − = − + − +

+ − + − =


∫ε   (4.25) 

From (4.25) we extract the conditions under which the strain energy is conserved during the 

transformations defined in (4.9). The conditions are: 

 
( ) ( )( )

( ) ( )

, ,

, ,,

0,

.

i k i k ji i k i k ji j
j

A A
i k i k ij i k i k inm nmj

u w
X

u

ϕ ξ σ ψ ξ ω µ ξ

ϕ ξ σ ψ ξ ω ε σ

∂
− + − + =

∂

− = −

  (4.26) 

Therefore, energy is stationary under the transforms that are made by the functions iξ , iϕ  and 

iψ  satisfying the conditions (4.26). In other words, every composition of functions iξ , iϕ  and 
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iψ  that satisfy (4.26) is a conserved transform and equations (4.26) incorporating those functions 

are considered as conservation laws in couple stress elasticity. 

For application to the present discussion, we consider a special case where 

 0, 0, .i i i ijϕ ψ ξ δ= = =   (4.27) 

Note that if we consider 1 2 3
{ , , }e e e  as a standard basis for the Cartesian coordinates 1 2 3

{ , , }X X X , 

then the third relation in (4.27) becomes i i ij i je e eξ δ= = , meaning that the transform applied to 

the system is a unit translation of configuration in the jX -direction. One can easily verify that 

the set of functions defined in (4.27) satisfy the second equation in (4.26). Thus, we introduce 

(4.27) into the equation (4.25) to obtain: 

 ( ) ( )( ), ,
,

.i kn i k ji i kn i k ji jn
j

V

E E
u w dVϕ δ σ ψ δ ω µ δ

∗ −
= − + − +∫ε

  (4.28) 

Using the Divergence Theorem, the foregoing integral can be converted to an integral over the 

closed surface S  of the body, 

 ( ) ( )( ), , ,i kn i k ji i kn i k ji jn j

S

E
u w n dS

δ
ϕ δ σ ψ δ ω µ δ= − + − +∫ε �   (4.29) 

or in the well-known form of a J-integral, 

 ( ), , .n nj ji i n ji i n j

S

E
J w u n dS

δ
δ µ ω σ= = − −∫ε �   (4.30) 

If there is no source of stress including inhomogeneities, dislocations or crack tips inside the 

enclosed surface S , then obviously, the translation of the configuration in the nX -direction leads 

to a zero change of energy. This indicates the conservation law, 

 ( ), , 0,n nj ji i n ji i n j

S

J w u n dSδ µ ω σ= − − =∫�   (4.31) 

and yet, accounts for path independence of the J-integral. However, in general, when a source of 

stress, such as a dislocation, is present within the enclosed surface of a body while the 

configuration undergoes a translation, the change of energy is not zero and the situation is 
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equivalent to a translation of the source of energy inside the body. As a result, the change of 

energy during a unit translation of a source of stress equals the J-integral over an arbitrary 

surface which is completely located in a homogeneous part of the material and encloses the 

source of stress. This quantity is defined in the literature as the n th component of the virtual 

force acting on the stress source (in our case a dislocation) and can be written as 

 ( ), , ,n nj ji i n ji i n j

S

F w u n dSδ µ ω σ= − −∫�   (4.32) 

where the tensor with components  

 , ,nj nj ji i n ji i nP w uδ µ ω σ= − −   (4.33) 

is defined by Eshelby [75] as the energy-momentum tensor in an elastic field. 

4.3 Intuitive explanation of forces on a dislocation 

Eshelby [74] [75] expounds the idea of forces on material defects in a more straightforward 

manner. He divides moving of a stress source into two stages: (1) change of elastic energy due to 

the translation of the stress source (2) adjustment of the quantities so that they conform again 

with the boundary conditions. To provide a better understanding, here we develop his approach 

to couple stress elasticity. 

Consider a body of couple stress elastic material containing a dislocation shown in Fig.  4-1. The 

boundary conditions on the surface S  of this body include displacement and rotations ju  and jω  

as well as force and couple tractions ij inσ  and ij inµ , respectively. The objective is to evaluate the 

change of total potential energy in the material as the dislocation translates by a corresponding 

vector with components kξ . In stage (1), we assume that the dislocation is fixed and the 

surrounding body along with all its quantities (stress and couple stress fields) moves by a vector 

with components kξ−  (Fig.  4-1). Consequently, in the new position, the stress field induces new 

boundary conditions, ,j k j ku uξ− , ,j k j kω ξ ω− , ( ),ij k ij k inσ ξ σ−  and ( ),ij k ij k inµ ξ µ− , for 

displacement, rotation, force stress, and couple stress tractions, respectively. The change of stain 

energy in stage (1) can be written as 
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 (I)

, ,elastic i i i i i i i

V V S

E w dV w dV w n dSδ ξ ξ ξ= = =∫ ∫ ∫�   (4.34) 

 

Fig.  4-1- Stage 1: Translation of a dislocation inside a body 

In stage (2), we adjust the boundary conditions to the final values for displacement and rotations 

f
ju  and f

jω , so that we regain ij inσ  and ij inµ , for stress and couple stress tractions. During the 

adjustment stage shown in Fig.  4-2, we neglect changes in traction since those changes are of the 

order of kξ , and we express the change of elastic energy due to the tractions ij inσ  and ij inµ  on 

the surface S  of the body at the stage (2) as 

 (II)

, ,( ) ( ) .f f
elastic ij j j k j k ij j j k j k i

S

E u u u n dSδ σ ξ µ ω ω ξ ω = − + + − + ∫�   (4.35) 

 

Fig.  4-2-Stage 2: Adjustment of boundary conditions 

Now, we consider the work done during the total process. A dislocation is displaced inside an 

elastic body so that the final values of displacements and rotations on the surface become f
ju  and 

s s
kξ

kξ−

ij inσ ju ij inµ jω ( ),ij k ij k inσ ξ σ−

,j k j ku uξ−

( ),ij k ij k inµ ξ µ− ,j k j kω ξ ω−

S S

S

( ),ij k ij k inσ ξ σ−

,j k j ku uξ−
( ),ij k ij k inµ ξ µ−

,j k j kω ξ ω−

S

ij inσ f
ju ij inµ f

jω
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f
jω , respectively. The work done by the surface tractions ij inσ  and ij inµ  as external factors, 

during this process can be formulated as 

 (I&II) ( ) ( ) .f f
External ij j j ij j j i

S

W u u n dSδ σ µ ω ω = − + − ∫�   (4.36) 

With the aid of (4.34), (4.35) and (4.36) we may establish the variation of total potential energy 

as 

 (I) (II) (I&II)

, , .elastic elastic External i i ij i k j k ij i k j k

S

E E W w n n u n dSδ δ δ δ ξ σ ξ µ ξ ω+ − = Π = − −∫�   (4.37) 

Therefore, the change of total energy for a unit translation of the dislocation can be written as 

 
, ,( )k ik ij j k ij j k i

k S

E
J w u n dS

δ
δ σ µ ω

ξ
= = − −∫�   (4.38) 

which is equivalent to the force acting on the dislocation in the kX -direction of the reference 

Cartesian coordinates. Again, the condition stated in Eshelby [75] for the use of the J-integral 

must be satisfied. Accordingly, the closed surface S  must not cross any singularity or 

inhomogeneity. In addition, the integral (4.38) is path independent as long as the surface we 

choose is placed entirely in the homogeneous material and encompasses the same singularities. 

We use this concept to calculate the force on a screw dislocation with a high degree of certainty 

for different configurations. To do so, considering the aforementioned conditions, we choose an 

arbitrary surface which for the anti-plane problem at hand reduces to a path enclosing the screw 

dislocation. Consequently, we use (4.38) for the special case of an anti-plane problem and we 

choose an arbitrary rectangular path to incorporate the quantities obtained in the rectangular 

Cartesian coordinates assigned to the problem. In the next chapters, we represent the obtained 

results for the force on screw dislocations induced by nearby bi-material interfaces, substrate-

film interfaces, and free surfaces. We also present illustrative examples and discussions 

regarding the influence of different parameters on the force. 
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5 Screw Dislocation Near an Interface in Couple 

Stress Theory 

The fundamentals of couple stress theory have been discussed in Chapter  2. The main purpose of 

this chapter is to employ couple stress theory to solve the problem of a screw dislocation near a 

bi-material interface. As mentioned in Chapter  3, a screw dislocation induces anti-plane shear 

deformations on the surrounding medium. Therefore, first, we derive the governing equation for 

an anti-plane problem in the couple stress theory. Next, we use Fourier integral transforms to 

derive the solution to the boundary value problem. Then, using the results from stress and couple 

stress fields we determine the interaction force between the dislocation and the interface. Finally, 

numerical results are presented to illustrate the influence of couple stresses on the solution and 

compare them to the existing classical results. 

5.1 Couple stress theory for anti-plane problems 

The general governing field equation in couple stress theory in the absence of body forces has 

been obtained in Section  2.5. If we adopt Cartesian coordinates as in Chapter  3, then for the anti-

plane problem of a screw dislocation, the non-vanishing displacement component acts in the 3
X -

direction. Thus, the displacement field is a function of 1
X  and 2

X . We can write: 

 3 1 2 3
( , ) ,u u X X e=   (5.1) 

and from (2.87) we can deduce that the non-vanishing components of stress and strain tensors are 
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13 13

23 23

31 32 31 32

0 0 0 0

0 0 , 0 0 ,

0 0

ij ij

ε σ
ε ε σ σ

ε ε σ σ

   
   = =   
      

  (5.2) 

where, 

 13 31 3,1 23 32 3,2

1 1
, .

2 2
u uε ε ε ε= = = =   (5.3) 

Using the expression (2.96) for the static case, in the absence of body forces and body couples, 

 ( ), , , ,

( )
,

2

A
tl t l l t tl k k l tii

e
u u u u

γ
σ µ λδ

+
= + + −   (5.4) 

we may translate the stress components in terms of displacement component 3
u  as 

 

2

13 3,1 3,1

2

23 3,2 3,2

2 2

31 3,1 3,1 32 3,2 3,2

0 0
4

0 0 .
4

0
4 4

ij

e
u u

e
u u

e e
u u u u

σ

γ
σ µ

γ
σ µ

γ γ
σ µ σ µ

=

+ = − ∇ 
 

+ = − ∇
 
 + + = + ∇ = + ∇
  

  (5.5) 

Pursuing the same procedure, from (2.92) we find the following for the couple stress 

components: 

 

11 3,21 12 3,11 3,22

21 3,22 3,11 22 3,21

0
2 2

0
2 2

0 0 0

ij

e e
u u u

e e
u u u

γ γ
µ γ µ

γ γ
µ µ µ γ

 + −   = = − +    
    

 + −   = = − = −    
    

 
 
 

  (5.6) 

The governing field equation in terms of displacement components is given in (2.97) This 

equation for the static case, in the absence of body forces and body couples can be rewritten as 

 
2 2

, , 0.
4 4

l tt t lt

e e
u u

γ γ
µ µ λ

+ +   − ∇ + + + ∇ =   
   

  (5.7) 
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Since 3
u  is the only displacement component and a function of 1

X  and 2
X , then the second term 

in (5.7) vanishes, so that (5.7) becomes 

 
2

3, 0,
4

tt

e
u

γ
µ

+ − ∇ = 
 

  (5.8) 

which can be written in the form 

 2 4

3 0,
4

e
u

γ
µ

 +
∇ − ∇ = 
 

  (5.9) 

or 

 ( )2 2 4

3 0,l u∇ − ∇ =   (5.10) 

where 4 2 2∇ = ∇ ∇ . The parameter ( ) / 4l eγ µ= +  in (5.9) has the dimension of length and it is 

known as the characteristic length of material in the literature (Mindlin and Tiersten [35], 

Mindlin [18]). The characteristic length is believed to be the range of atomic forces [16], the size 

of the grains or size of other microstructural features of a material (Yang and Lakes [90]). Both 

for the purpose of simplicity, and because of its justification through Grioli’s [32] representation 

of constitutive equations on the grounds that the rigid rotation has no contribution to the elastic 

energy, we can assume that the eγ = . A detailed explanation of Grioli’s approach is given in 

Mindlin and Tiersten [35]. Taking eγ =  is equivalent to taking 0η ′ =  in the representation by 

Mindlin and Tiersten [35], since in their notation ( ) / 4eη γ′ = − . Note that ( ) / 4eγ −  does not 

appear in the displacement field equation (5.9) and affects the solution only through the 

boundary conditions. Accordingly, the stress components become 

 

2

3,1 3,1

2

3,2 3,2

2 2

3,1 3,1 3,2 3,2

0 0
2

0 0 ,
2

0
2 2

ij

u u

u u

u u u u

γ
µ

γ
σ µ

γ γ
µ µ

 − ∇ 
 
 = − ∇
 
 
 + ∇ + ∇
  

  (5.11) 

and the couple stress components, 
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3,21 3,11

3,22 3,21

0

0 .

0 0 0

ij

u u

u u

γ γ

µ γ γ

− 
 = − 
  

  (5.12) 

The characteristic length is also converted to 

 
2

l
γ
µ

=   (5.13) 

5.2  Solution to the boundary value problem of a screw 

dislocation near a bi-material interface 

Fig.  5-1, illustrates the configuration of the boundary value problem of a screw dislocation near a 

bi-material interface. As shown in the figure, we consider two semi-infinite adjoining linear 

elastic isotropic material phases referred to as “Phase (Material) 1” and “Phase (Material) 2”. We 

assign shear moduli 1
µ  and 2

µ , and bending-twisting moduli 1
γ  and 2

γ  to Phase 1 and Phase 2 

respectively. Similar to the previous chapter, we place the rectangular Cartesian coordinates 

system 1 2 3
{ : , , }o X X X  described by the standard basis 1 2 3

{ , , }e e e  in a way that the interface 

coincides with the 2
X -axis and a right-handed screw dislocation is located at the point 

1 2
( , 0)X a X= = . Again, we consider 1 3

X X−  as the slip plane and as in Section  3.1, we 

formulate the dislocation by 

 3 1 3 1 1( ,0 ) ( ,0 ) ,b u X u X X a− + = − >    (5.14) 

We assume that the two material phases are perfectly bonded ensuring continuity of 

displacements, rotations, and tractions at the interface. 
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Fig.  5-1- Configuration of the problem. 

The solution of the boundary value problem using classical elasticity has been obtained in 

section  3.3 in the form, 

 ( ) ( )(1) (2)

3 1 2 3 1, (1 ) ,
2 2

b b
u K u K Kθ θ θ π

π π
′ ′= + = − +   (5.15) 

where, 

 1 12 2 2
1 2

1 1 1

1
tan , tan , , .

1

X X
K

X a X a

µ
θ θ

µ
− −    Γ −

= = Γ = =   − + Γ +   
  (5.16) 

Using superposition, we introduce the effects of couple stress theory on the solution as 

perturbations added to (5.15). Thus, the displacement solution can be expressed as 

 (1) (1) (1) (2) (2) (2)

3 3 3 3 3 3
ˆ ˆ, .u u u u u u′ ′= + = +   (5.17) 

The defined displacement field must satisfy the governing equation (5.10) in each one of the 

material phases. Then, 

 
( )
( )

2 2 4 (1)

1 3 1

2 2 4 (2)

2 3 1

0, 0

0, 0.

l u X

l u X

∇ − ∇ = ≥

∇ − ∇ = <
  (5.18) 

where, 2

1 1 1/ 2l γ µ=  and 2

2 2 2/ 2l γ µ= . Inserting (5.17) into (5.18), we find that the classical part 

already satisfies the governing equation. Therefore, we have: 

 ( ) ( )2 2 4 (1) 2 2 4 (2)

1 3 2 3
ˆ ˆ0, 0.l u l u∇ − ∇ = ∇ − ∇ =   (5.19) 
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Considering the discussion on boundary conditions in couple stress theory made in Section  2.5, 

the perfectly bonded boundary conditions at the interface can be written as 

 

(1) (2) (1) (2)

13 2 13 2 12 2 12 2

(1) (2) (1) (2)

3 2 3 2 3,1 2 3,1 2

(0, ) (0, ), (0, ) (0, ),

(0, ) (0, ), (0, ) (0, ).

X X X X

u X u X u X u X

σ σ µ µ= =

= =
  (5.20) 

Also, with reference to the results available for an infinite medium by Lubarda [67] and the 

earlier work of Cohen [55], we posit that the parts of the solution induced by the couple stress 

effects, (1)

3û  and (2)

3û , vanish as 1
X →±∞  or 2

X →±∞ .  

Using the equations (5.11), (5.12), (5.15) and (5.17), the boundary conditions (5.20) can be 

expanded to 

 
( )

(1) (2)

13 2 13 2

(1) (2) 2 (1) 2 (2)1 2
1 3,1 2 2 3,1 2 3,1 2 3,1 2

(0, ) (0, )

ˆ ˆ ˆ ˆ(0, ) (0, ) (0, ) (0, ) 0,
2 2

X X

u X u X u X u X

σ σ

γ γ
µ µ

= ⇒

 − − ∇ − ∇ = 
 

  (5.21) 

 
( ) ( )

(1) (2)

12 2 12 2

(1) (2)2
1 2 1 3,11 2 2 3,11 22

2 2

2

(0, ) (0, )

2
ˆ ˆ(1 ) (0, ) (0, ) 0,

2

X X

X ab
K u X u X

a X

µ µ

γ γ γ γ
π

= ⇒

 
  − − − − =   +  

  (5.22) 

 (1) (2) (1) (2)

3 2 3 2 3 2 3 2
ˆ ˆ(0, ) (0, ) (0, ) (0, ) 0,u X u X u X u X= ⇒ − =   (5.23) 

 

(1) (2)

3,1 2 3,1 2

(1) (2)2
3,1 2 3,1 22 2

2

(0, ) (0, )

2
ˆ ˆ(0, ) (0, ) 0.

2

u X u X

KXb
u X u X

a Xπ

= ⇒

 −
+ − = 

+ 

  (5.24) 

We apply the Fourier integral transform in the form, 

 2

2 2

1
( ) ( ) ,

2

is XU s u X e dX
π

∞
−

−∞

= ∫ɶ   (5.25) 

and the inverse transform, 



55 

 

 2

2

1
( ) ( ) ,

2

is Xu X U s e ds
π

∞

−∞

= ∫ ɶ   (5.26) 

to the governing field equations (5.19). Consequently, we obtain 

 
2 2

2 2 2 2 (1)

1 1 3 12 2

1 1

1 ( , ) 0,s l s l U X s
X X

  ∂ ∂
− − + + =  ∂ ∂  

ɶ   (5.27) 

and 

 
2 2

2 2 2 2 (2)

2 2 3 12 2

1 1

1 ( , ) 0,s l s l U X s
X X

  ∂ ∂
− − + + =  ∂ ∂  

ɶ   (5.28) 

for Phases 1 and 2, respectively. The two resultant ordinary differential equations yield the 

following general solutions: 

 

2 2
1 12 2

1 1 1 1

1 1

(1)

3 1 1 1 1( ) ( ) ( ) ( ) ,
s X s X

s X s X l lU A s e B s e C s e D s e
+ − +

−= + + +ɶ   (5.29) 

 

2 2
1 12 2

1 1 2 2

1 1

(2)

3 2 2 2 2( ) ( ) ( ) ( ) ,
s X s X

s X s X l lU A s e B s e C s e D s e
+ − +

−= + + +ɶ   (5.30) 

for the Phase 1 and 2, respectively. With the application of vanishing response at infinity to 

(5.29) and (5.30), we can write the solution as 

 

2
12

1 1

1
(1) ( )

( )3
1 1( ) ( ) ,

s X a
s X a lU

B s e D s e
b

− + −
− −′ ′= +

ɶ

  (5.31) 

 

2
12

1 2

1
(2) ( )

( )3
2 2( ) ( ) .

s X a
s X a lU

A s e C s e
b

+ +
+′ ′= +

ɶ

  (5.32) 

We also transform the boundary conditions (5.21) to (5.24) by (5.25) to obtain 

 ( )1 1 2 2( ) ( ) 0,
s aB s A s s eµ µ′ ′+ =   (5.33) 

 

( )

( )( )

2

2
1

2

2
2

1

2 2

1 1 2 2 1 1 2

1

1

1 22

2 2 2

2

1
( ) ( ) ( )

11
( ) 0,

2 2

a s
a s l

a s
a sl

B s A s s e D s s e
l

K
C s s e i s e

l

γ γ γ

γ γ
γ

π

+

+
−

 
′ ′ ′+ − + + 

 

 − −   ′− + + = 
 

  (5.34) 
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 ( )
2 2

2 2
1 2

1 1

1 2 1 2( ) ( ) ( ) ( ) 0,
a s a s

a s l lB s A s e D s e C s e
+ + 

 ′ ′ ′ ′− + − =
 
 

  (5.35) 

 

( )
2 2

2 2
1 2

1 1

2 2

1 2 1 22 2

1 2

1 1
( ) ( ) ( ) ( )

sgn( ) 0,
2

a s a s
a s l l

a s

B s A s s e D s s e C s s e
l l

K
i s e

π

+ +

−

′ ′ ′ ′+ + + + +

− =

  (5.36) 

respectively. Equations (5.33) to (5.36) comprise a system of four linear algebraic equations 

whose solution in terms of 1
( )B s′ , 2

( )A s′ , 1
( )D s′  and 2

( )C s′ , can be found as 

 
( )( )

( ) ( )

22 2

1 2 1 2

2 2 2 2

1 2 2 1 1 2

1 1 ( ) 2 ( )sgn( )
( ) ,

2 2 ( )( ) (1 ) (1 ) (1 ) (1 )

a sN K s K N s i e
A s

N s s N s

β β β β

π β β β β β β

−  − − − + − −  ′ =
 − Γ + + + +Γ − −Γ + +Γ + −Γ 

 (5.37) 

 
( )( )

( ) ( )

22 2

1 2 1 2

1 2 2 2

1 2 2 1 1 2

1 1 ( ) 2 ( )sgn( )
( )

2 2 ( )( ) (1 ) (1 ) (1 ) (1 )

a sN K s K N s i e
B s

N s s N s

β β β β

π β β β β β β

−  Γ − − + + Γ −  ′ =
 − Γ + + + +Γ − −Γ + +Γ + −Γ 

 (5.38) 

( )( ){ }
( ) ( )

( )1

22 2

2 2

1 2 2 2

1 2 2 1 1 2

2 sgn( ) ( ) (1 ) 1 1 (1 ) (1 )
( ) ,

2 2 ( )( ) (1 ) (1 ) (1 ) (1 )

a s

a s
K s N s N N K s s i e

D s e
N s s N s

β
β β

π β β β β β β

−

−
     − Γ + − + Γ − − − + Γ − −Γ   ′ =

 − Γ + + + + Γ − −Γ + +Γ + −Γ 
  (5.39) 

( )( ){ }
( ) ( )

( )2

22 2

1 1

2 2 2 2

1 2 2 1 1 2

2 sgn( ) ( ) (1 ) 1 1 (1 ) (1 )
( ) ,

2 2 ( )( ) (1 ) (1 ) (1 ) (1 )

a s

a s
K s N s N K s s i e

C s e
N s s N s

β
β β

π β β β β β β

−

−
     − Γ + − + Γ + − − + Γ + −Γ   ′ =

 − Γ + + + + Γ − −Γ + +Γ + −Γ 
  (5.40) 

where, 

 
2 2 2

1 22 2

1 2 1

1 0
1 1

, , , 1, sgn( ) .0 0

1 0

s

s s N i s s
l l

s

γ
β β

γ

>


= + = + = = − = =
− <

  (5.41) 

With these coefficients known and using the inverse transform (5.26), the perturbed parts of the 

displacement solution can be expressed in the form of improper integrals, 

 

2
12

1 1 2

1
( )

( )(1)

3 1 1
ˆ ( ) ( ) ,

2

s X a
s X a l isXb

u B s e D s e e ds
π

∞ − + −
− −

−∞

 
 ′ ′= +
 
 
∫   (5.42) 
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2
12

1 2 2

1
( )

( )(2)

3 2 2
ˆ ( ) ( ) .

2

s X a
s X a l isXb

u A s e C s e e ds
π

∞ + +
+

−∞

 
 ′ ′= +
 
 
∫   (5.43) 

Therefore, the anti-plane displacement induced by the presence of the screw dislocation in 

Phases 1 and 2 of the bi-material medium is determined as 

 
2

12
1 1 2

(1) 1 12 2
3

1 1

1
( )

( )

1 1

tan tan
2

( ) ( ) ,
2

s X a
s X a l isX

X Xb
u K

X a X a

b
B s e D s e e ds

π

π

− −

∞ − + −
− −

−∞

    
= +     − +    

 
 ′ ′+ +
 
 
∫

  (5.44) 

 
2

12
1 2 2

(2) 1 2
3

1

1
( )

( )

2 2

(1 ) tan
2

( ) ( )
2

s X a
s X a l isX

Xb
u K K

X a

b
A s e C s e e ds

π
π

π

−

∞ + +
+

−∞

  
= − +   −  

 
 ′ ′+ +
 
 
∫

  (5.45). 

In order to facilitate comparison of the results, as well as evaluation of the influence of each 

parameter on various components of the solution, we normalize the displacement (5.45) in terms 

of the distance of the dislocation to the interface. The normalized parameters are defined here: 

 1 2 1 2
1 2 1 2, , , ,

X X l l
x x l l

a a a a
= = = =   (5.46) 

Subsequently, we translate the parameters, 

 2 2

1 1 1 2 2 22 2

1 2

1 1
, ,a s a s

l l
β β β β β β= ⇒ = + = ⇒ = +   (5.47) 

where s as= . Also, 

 

2

1

2 ( )2 2
2 2

2 ( )1 1
1 1

( ) ( )
( ) , ( ) ,

2 2

( ) ( )
( ) , ( ) .

2 2

a s a s

a s a s

A s C s
A s e C s e

B s D s
B s e D s e

β

β

π π

π π

− − +

− − +

′′ ′′
′ ′= =

′′ ′′
′ ′= =

  (5.48) 

Hence, the displacement solution in normalized form is 
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( )1 1 1 2

1 12 2

1 1(1)

3

( 1) ( )

1 1

tan tan
1 1

,
2

( ) ( )
s x s x isx

x x
K

x xb
u

B s e D s e e dsβπ

− −

∞
− + − +

−∞

    
+    − +    =  

 ′′ ′′+ + 
 
∫

  (5.49) 

 ( )1 2 1 2
( 1)(2) 1 2

3 2 2

1

(1 ) tan ( ) ( ) .
2 1

s x x s isxxb
u K K A s e C s e e ds

x
βπ

π

∞
− −−

−∞

  
′′ ′′= − + + +   −  

∫   (5.50) 

Using (5.49) and (5.50), we can determine stresses and couple stresses through (5.11) and (5.12). 

The stress components corresponding to each material phase are 

 ( )1 2
( 1)(1) 1 2 2

13 12 2 2 2

1 2 1 2

( ) ,
2 ( 1) ( 1)

s x isxb x x
K s B s e e ds

a x x x x

µ
σ

π

∞
− +

−∞

 − −
′′= + + − 

− + + + 
∫   (5.51) 

 

( )1 1 1 2

(1) 1 2 2
31 2 2 2 2

1 2 1 2
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1 1 1

2 ( 1) ( 1)
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b x x
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a x x x x
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σ
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β
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 − −
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− + + +


′′ ′′+ − − 


∫

  (5.52) 

 ( )1 2
( 1)(1) 1 1 1

23 12 2 2 2

1 2 1 2

( 1) ( 1)
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K isB s e e ds
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π

∞
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− + + + 
∫   (5.53) 
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32 2 2 2 2

1 2 1 2
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1 1

( 1) ( 1)

2 ( 1) ( 1)
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s x s x isx

b x x
K

a x x x x

is B s e D s e e dsβ

µ
σ
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−∞

 − +
= +

− + + +


′′ ′′+ + 


∫

  (5.54) 
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s x isxb x
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µ
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π

∞
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∫   (5.55) 
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∫   (5.57) 
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∫   (5.58) 

and the couple stresses are 
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5.3 Special case: A screw dislocation near a free surface 

In Section  3.2, we presented the idea of using an image dislocation to satisfy the traction free 

boundary conditions in classical elasticity. In couple stress theory, however, an image screw is 

not sufficient to cancel out the couple stress component 12
µ  on the expected traction-free 
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surface. However, we may use the approach presented in Section  5.2 to solve the problem in 

couple stress theory. Also, if we let , 0NΓ →  in the general case of the bi-material interface 

problem, we can obtain the same results for a free surface as a special case. In this case, the usual 

arrangement of coordinates is used for consistency so that the 2
X -axis lies on the planar free 

surface and the screw dislocation is located at ( ,0)a . The material properties including shear and 

bending-twisting moduli are denoted by µ  and γ , respectively. Again, we decompose the 

displacement in the semi-infinite medium to the sum of the classical solution and couple stress 

effects such that, 

 3 1 2 3 1 2 3 1 2 1
ˆ( , ) ( , ) ( , ), 0.u X X u X X u X X X′= + ≥   (5.63) 

Note that the classical solution 3
u′  is given in Section  3.2 as 
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  (5.64) 

Using the Fourier transform approach we find that the governing equation, 

 ( )2 2 4

3 1
ˆ 0, 0.l u X∇ − ∇ = ≥   (5.65) 

in transformed form becomes 
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which yields the solution in the form, 
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s X
s X lU Be De

− +
−= +ɶ   (5.67) 

with regard to the vanishing response at infinity. The boundary conditions for a free surface case 

can be written as 

 12 2 13 2
(0, ) 0, (0, ) 0.X Xµ σ= =   (5.68) 

Using the expressions (5.11) and (5.12), and applying the Fourier transform to (5.68) we have 
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which with the aid of (5.67), can be expressed as a set of linear equations, 
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whose solution will be 
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Using the inverse transform (5.26), along with the coefficients D  and B , the anti-plane 

displacement can be expressed as 
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With 3
u  determined, the stress and couple stress fields can be obtained through (5.11) and (5.12). 

The stress components are 
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and the couple stress components, 
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It is obvious from (5.74) and (5.76) that the stress components on every plane parallel to the 3
X -

direction do not differ from the classical solution and regarding the assumed Cartesian 

coordinates the couple stress effects appear only in 31
σ  and 32

σ  components of the stress field. 
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5.4 Numerical evaluation of couple stress effects 

In this section, we numerically evaluate the improper integrals in the expressions (5.51). 

Subsequently, we present results for the stress field components and compare them to the 

existing classical solutions. We use normalized parameters in the numerical evaluation. 

 (a)  (b) 

 (c) 

Fig.  5-2- Normalized distribution of stress component 13
σ  for length of materials 1 2 0, 0.1,1l l= =  

Note that in choosing the parameters we must consider the interrelation between mismatch 

coefficients Γ  and N , and characteristic lengths 1l  and 2l  of the two material phases; 
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 2 1.
N

l l=
Γ

  (5.81) 

 (a)  (b) 

 (c) 

Fig.  5-3- Normalized distribution of stress component 31
σ  for length of materials 1 2 0, 0.1,1l l= =  

The stress results in the case of 5NΓ = = , for 1 2 0.1l l= =  and 1 2 1l l= =  as well as classical 

solutions ( 1 2 0l l= = ) are compared through Figs.5-2 to 5-5. 
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 (a)  (b) 

 (c) 

Fig.  5-4- Normalized distribution of stress component 23
σ  for length of materials 1 2 0, 0.1,1l l= =  
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(a) (b) 

 (c) 

Fig.  5-5- Normalized distribution of stress component 32
σ  for length of materials 1 2 0, 0.1,1l l= =  

We can see from Figs. 5-2(a) and (b), that for a relatively small characteristic length of material, 

the distribution of 13
σ  differs only slightly from that of the classical solution. However, for 

larger values of 1l  and 2l  (comparable to the dislocation’s distance from the interface), we 

observe a quite different distribution of 13
σ  with overall larger, and at some points, localized 

values. In particular, for the case of 1 2 1l l= =  (taken to represent a relatively ‘large’ 

characteristic length of material in Fig.  5-2(c)), 13
σ  attains extreme values on the interface 
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around 
2

0.45x = ± . From Fig.  5-3 we see that, in contrast to the classical results, in the case of the 

couple stress solution, the stress component 31
σ  is always discontinuous on the interface. 

Similarly, for ‘small values’ of 1l  and 2l , the overall distribution of 31
σ  does not change 

significantly but it does exhibit a localized nature around the interface (Figs. 5-3(a) and (b)). 

Additionally, a neutral surface ( 31
0σ = ) appears parallel to the interface with a distance nearly 

half of the characteristic length of material. In contrast, in the case of a larger characteristic 

length, a significant change in the distribution of 31
σ  is observed (Fig.  5-3(c)). A neutral surface 

again emerges at approximately half of the characteristic length of material from the interface 

and the stress distribution becomes concentrated to give extreme values on the interface. 

Fig.  5-4 shows the 23
σ  component of the stress field. This component also undergoes a 

significant change when the characteristic length of material is of the order of the dislocation’s 

distance from the interface or higher (say 1 2 1l l= =  as in Fig.  5-4(c)). In addition, we observe a 

rapid variation of 23
σ  on the interface ( 1

0x = ), as well as stress concentrations at the origin (

1 2
0x x= = ), that is, the nearest point of the interface to the dislocation. The stress component 

32
σ  is also shown in Fig.  5-5. Comparing Figs. 5-4 and 5-5 demonstrates that the two 

components 23
σ  and 32

σ  deviate from each other as the characteristic length becomes larger. For 

1 2 1l l= =  in Fig.  5-5, we can again observe a concentration of 32
σ  at the origin but the 

distribution differs from that of 23
σ . 

5.5 Interaction force on the screw dislocation near the 

interface 

In Chapter  4, we showed that the energy changes due to the translation of a singularity can be 

expressed by the idea of path independent J-integrals. In this section, we use this idea to calculate 

the interaction force on the screw dislocation. The J-integral in couple stress theory which is 

equivalent to the force is given in (4.32). We rewrite the formula, 
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 ( ), , ,n nj ji i n ji i n j

S

F w u n dSδ µ ω σ= − −∫�   (5.82) 

where w  is the strain energy density given as 

 , , ,
2

ij ij kk nn j i j iw
λ

µε ε ε ε γω ω= + +   (5.83) 

in couple stress theory. For the anti-plane problem, (5.83) reduces to 

 , , .ij ij j i j iw µε ε γω ω= +   (5.84) 

We choose a path that conforms to the conditions mentioned in Chapter  4. Thus, the chosen path 

lies completely in Phase 1. Additionally, we define a rectangular path to take advantage of the 

defined rectangular Cartesian coordinates to formulate the integral in (5.82). Therefore, using 

(2.86) and (2.87), for the only component of the force in the 1
X -direction, we may write 
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where 1
S  and 2

S  are the sums of the path segments parallel to the 1
X  and 2

X -axis, respectively, 

such that 1 2
S S S+ = . S  is shown in Fig.  5-6. We may rephrase the expression (5.85) in terms of 

the normalized forms introduced earlier in (5.46) and (5.47): 
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Fig.  5-6-An arbitrary rectangular path of integration enclosing the screw dislocation 

In (5.86), 
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Taking the characteristic lengths as 1 2 0l l= = , (5.86) can be determined analytically for the 

special case of a classical elastic material, 
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In order to determine (5.88) analytically, we consider a general rectangular path as shown in Fig. 

 5-6. However, we normalize the dimensions in Fig.  5-6 with respect to the distance of the 

dislocation to the interface. Therefore, we have 
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  (5.89) 

with b , c , d  and e  defined in Fig.  5-6, and 

2X

1Xo

Material 2: Material 1:2 2,µ γ 1 1,µ γ

S
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Calculating the integral (5.89) analytically gives us 
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which, by referring to (3.28), is exactly as expected (Dundurs [15]). The general integral (5.86), 

however, cannot be determined analytically. We use the displacement and stress distributions 

from (5.49), (5.51) and (5.53) to calculate sampling points on the path of integration. Then, we 

employ numerical integration methods (for example the Gauss-Kronrod formula) to estimate the 

force on the dislocation in different cases.  

The effects of mismatch ratio on the interaction force are illustrated in Fig.  5-7. It is evident that 

for 0NΓ = = , which is equivalent to the free surface case, the interaction force is equal to the 

force determined by classical elasticity theory. This proposition is always true, regardless of the 

value of l  in a couple stress semi-infinite medium. We can reach the same conclusion if we use 

the direct results from the free surface solution ((5.72) to (5.76)). With 1NΓ = = , the material 

properties of both phases become identical and they make up a uniform, infinite medium. In this 

case, as expected, the interaction force is zero. For high values of the mismatch ratios ( , 1NΓ >>

), the results show that, in couple stress materials, a higher interaction force repels the dislocation 

from the interface. However, for small values of 1l  and 2l  the change in force is not significant. 

For example, in the case of 1 2 0.1l l= = , we can continue to use classical solutions with only a 

reasonable loss of accuracy. Moreover, the higher the characteristic length, the greater the 

difference between the classical and couple stress solutions. 
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Fig.  5-7- Variations of interaction force with mismatch ratio 

Another interesting aspect addressed in Fig.  5-8 is the variation of interaction force with the 

characteristic length of the material. Evidently for , 0NΓ < , when phase 2 of the material is 

softer, the interaction force is intensified as 1l  and 2l  increase, but the nature of the force is 

attraction towards the interface. It should be noted that when phase 2 is extremely soft relative to 

phase 1 (say 0.01NΓ = = ) the negative force increases at a lower rate. For higher values of Γ  

and N , while phase 2 remains softer than phase 1 ( , 0NΓ < ), the negative force intensifies more 

rapidly as 1l  and 2l  grow. Moreover, we observe from Fig.  5-8 that when phase 2 of the material 

is softer than phase 1, there are certain values of 1l  and 2l  at which the force becomes equal to 

the force acting on a screw dislocation near a free surface (the curves meet the gray line in Fig. 

 5-8). For , 0NΓ > , that is, for a relatively harder phase 2 material, the force is again intensified 

at higher material lengths, however, the force repels the dislocation from the interface. 
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Fig.  5-8- Variations of interaction force characteristic length of materials 

 

Fig.  5-9-Variation of force with mismatch between characteristic lengths 

The variations of interaction force with the mismatch between characteristic lengths are 

demonstrated in the Fig.  5-9. Since the relation (5.81) between the two media must be satisfied, 
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we choose 1l  as a constant and change 2l  by regulating N . Therefore, the variations of force 

versus N  are the subject of study in Fig.  5-9. In other words, we generate the mismatch between 

two semi-infinite media by bending-twisting moduli 1
γ  and 2

γ  only, and from the view of the 

classical shear moduli 1
µ  and 2

µ , we deal with a uniform infinite medium, hence 1Γ = . The 

advantage of this choice is to remove the effects of mismatch ratio in classical elasticity and 

identify the pure couple stress effects. It can be observed from Fig.  5-9 that when 1N < , 

meaning that 1 2l l> , the mismatch causes a negative force meaning attraction towards the 

interface. Conversely, for the values 1N > , that is when 1 2l l< , the interface repels the 

dislocation. In addition, we see that the interaction force induced by this kind of mismatch is 

highly dependent on the order of the characteristic length of material. Thus, when the 

characteristic lengths of the two materials are relatively large compared to the dislocation’s 

distance from the interface, the effect of mismatch on the force is obviously higher. For a small 

value of 1l  (for example 1 0.1l = ), however, the effect of mismatch between characteristic 

lengths of materials is negligible. This conclusion agrees with the results from Fig.  5-7, where 

we can see that for 1 0.1l =  the force variations approximately follow the curve of the classical 

solution. 

In this chapter, we have introduced an integral transform approach and concluded a thorough 

investigation of the classical problem of a screw dislocation near the interface of a bi-material in 

couple stress elasticity. In the following chapters, we employ the same approach to solve 

problems of particular relevance to engineering applications. In the next two chapters, we 

consider a screw dislocation in a substrate interacting with a thin film in couple stress elasticity. 

In the later chapter, we discuss a dislocation in an isolated thin film in couple stress elasticity. 

 

  

wwewer wer wer wer wer wer we  



74 

 

 

6 A Screw Dislocation in a Substrate Near a Thin 

Film 

Many industrial and technological devices require the application of thin films over substrates in 

manufacturing. For example, in solar cells, semiconductors, and optical products, certain 

materials are used in the form of thin films with thickness ranging from a few micro to a few 

hundred nanometers coated over a substrate. Therefore, the study of the mechanical properties of 

these structures is of significant importance in engineering applications. In particular, when the 

dimension of a thin film is of the order of microns the use of couple stress theory seems most 

appropriate. In this chapter, we use an approach similar to that used in the previous chapter to 

study a more general case involving the interaction of a screw dislocation in a substrate with a 

thin film. 

6.1 Solving the boundary value problem 

We adopt the layout presented in Fig.  6-1. As before, we assume that the anti-plane parameters 

act in the 3
X -direction, while the 2

X  axis lies on the substrate-film interface and a right-handed 

screw dislocation is located at the point ( ,0)a  in the substrate. In this case, 
S
µ  and 

S
γ  designate 

the elastic properties of the substrate material and the film of thickness h  has the elastic shear 

and twisting-bending moduli of 
F
µ  and 

F
γ . 
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Fig.  6-1- Configuration of the problem of a screw dislocation in a substrate near a thin film 

Again, using the superposition principle we separate the classical solution corresponding to a 

screw dislocation near a bi-material interface from the total solution of interest. That means 
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  (6.1) 

where the superscripts “ ( )S ” and “ ( )F ” indicate correspondence to the substrate and the film, 

respectively. The additional terms ( )

3
ˆ Su  and ( )

3
ˆ Fu  involve both the effects of couple stresses and 

thin layer geometry. The governing displacement field equations 

 

2 2 2 ( )
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2 2 2 ( )

3 1
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(1 ) 0, 0,
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F

F

l u X

l u h X

∇ − ∇ = ≥

∇ − ∇ = − ≤ <
  (6.2) 

must be satisfied in the substrate and in the film, respectively. In (6.2), 2 / 2
S S S

l γ µ=  and 

2 / 2
F F F
l γ µ= . First, substituting (6.1) into (6.2), we have 
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  (6.3) 

Then, we apply the Fourier transform defined in (5.25) to (6.3) to obtain 

1

2

1θ
2θ

1 2( , )X X

Substrate:Film: S S,µ γ
F F,µ γ

aa
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  (6.4) 

The solution to the two ordinary differential equations (6.4) is given by 
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where, 

 2 2

1 22 2

1 1
( ) , ( ) .

FS

s s s s
l l

β β= + = +   (6.6) 

At this point, for brevity we refer to the coefficients “ 1
( )B s , 1

( )D s , …”, as “ 1
B , 1

D ,…”. The 

boundary conditions at the perfectly bonded interface between the substrate and the film are as 

follows: 
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Also, the following boundary conditions are established on the traction-free surface of the thin 

film: 

 ( ) ( )

12 2 13 2( , ) 0, ( , ) 0.
F Fh X h Xµ σ− = − =   (6.8) 

Considering the expressions given in (5.11) and (5.12) for the stress and couple stress 

components in each medium (the substrate and the film), we expand the boundary conditions as 
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Applying the Fourier transform to (6.9)-(6.14) results in 
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π
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respectively. Clearly, the equations (6.15) to (6.20) form a set of six algebraic equations in terms 

of six unknowns 1
B , 1

D , 2
A , 2

B , 2
C  and 2

D . After normalizing in terms of a , such that, 
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We solve the system of equations to obtain, 
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the normalized forms of 1
B , 1

D , 2
A , 2

B , 2
C  and 2

D . In relations (6.22), 
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where, /
F S

N γ γ=  and /
F S
µ µΓ = . Now, using the coefficients (6.22) and the inverse transform 

(5.26), the expressions for the displacement component in the substrate and the film are obtained 

as 
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Accordingly, through the relations (5.11), the stress components in terms of normalized 

parameters are 
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for the substrate and, 
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for the film. In order to verify the presented results, we determine the displacement fields (6.30) 

and (6.31) for the extreme case when { , 0}
FS

l l → . We observe then that the results reduce to the 

existing solution in classical elasticity [15]. That is 

 1 2
( 1 )( ) 1 12 2

3

1 1

(1 )
tan tan ( ) ,

2 1 1 2

S h x s isxx xb i K
u K A s e e ds

x x sπ

∞
− + +− −

−∞

      − +
= + +         − + Γ      

∫   (6.40) 
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1 1
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2 1

(1 )
( ) cosh( ) ( )sinh( ) ,

2
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u K K

x

i K
B s sx C s sx e e ds

s

π
π

−

∞
− +

−∞

  
= − +   − 

 − +
+ +    Γ  
∫

  (6.41) 

where, 

 

( ) ( ) ,
cosh( ) sinh( )

( ) .
cosh( ) sinh( )

hs
A s B s

hs hs hs hs

hs
C s

hs hs hs hs

−Γ
= =

+Γ

=
+Γ

  (6.42) 

Additionally, if we let h →∞ , the result will be equal to that of the bi-material interface 

discussed in Chapter  5. 

6.2 Numerical evaluation of stress field 

As in Section  5.4, we estimate the integrals in the expressions (6.32) to (6.41) by numerical 

procedures. Selected results are shown in (Figs. 6-2 to 6-5) to demonstrate the effects of couple 

stresses on the stress field in different cases.  
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(a) (b)

(c) 

Fig.  6-2-Normalized distribution of stress component 13
σ  for length of materials 1 2 0, 0.1,1l l= = , and 1h =   
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In Fig.  6-2, the normalized values of the stress component 13
σ  are shown in contour plots. The 

mismatch ratios are chosen as 5NΓ = = , so that the film is stiffer than the substrate. 

Considering the plots in Fig.  6-2, we realize that the stress field is subjected to dramatic changes 

when the characteristic length of material is large compared to the distance of the dislocation 

from the interface ( 1
FS

l l= = ). For small relative characteristic lengths of material (say 

0.1
FS

l l= = ), however, 13
σ  varies slightly between classical and couple stress solutions. The 

changes from the classical solution for 31
σ  stress component are shown in Fig.  6-3. In the case 

of relatively large characteristic lengths of materials, 1
FS

l l= = , we observe a discontinuity of 

stress distribution as well as stress concentration at the interface. 

(a) (b) 

Fig.  6-3-Normalized distribution of stress component 31
σ  for length of materials 1 2 0,1l l= = , and 1h =   

Figs. 6-3 and 6-4 illustrate the stress components 23
σ  and 32

σ . A pronounced deviation from the 

classical solution is obvious in these figures. Notice that the discontinuity and stress magnitudes 

are intensified at the interface for these components. 
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(a) (b)

(c) 

Fig.  6-4- Normalized distribution of stress components 23
σ  and 32

σ  for length of materials 1 2 0,1l l= = , and 

1h =   
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To evaluate the effect of thickness h  of the film on the stress field, we may illustrate 

representative results for two more different cases namely 0.5h =  and 0.1h = . In each case we 

choose the characteristic length of materials to be equal to the thickness of the film. Again, the 

mismatch ratios are taken as 5NΓ = =  so that the film is stiffer than the substrate. We see from 

Fig.  6-5 that the stress distribution is highly dependent on the proportion of characteristic length 

to the dislocation’s distance from the interface. However, the distribution shows less sensitivity 

to the thickness of the film, even though the relative characteristic length is large compared to 

the thickness. We observe from Fig.  6-5(a) and (b) that for 0.5h =  the effect of couple stresses 

on both the film and the substrate is more pronounced, because the ratio 0.5
F S
l l= =  is relatively 

large. For the case of 0.1h =  as shown in Fig.  6-5(c) and (d), however, couple stress theory 

imposes no tangible effect on the stress distribution. In this case, despite being of the order of the 

thickness 0.1h = , the relative characteristic length ( 0.1
F S
l l= = ) is still far from comparable to 

the dislocation’s distance from the interface. With reference to Fig.  6-2(c), on the other hand, we 

observe that the stress distribution is significantly influenced by couple stresses for 

1
F S

h l l= = = . 
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(a) (b) 

(c) (d) 

Fig.  6-5-Couple stress effects on the stress component 13
σ  for different film thicknesses 
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6.3 Interaction force in substrate-film configuration 

We use the same approach as in Section  5.5 to calculate the force. The equation (5.86) which 

represents the interaction force in normalized form is then adopted and we may write: 
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  (6.43) 

for the case of the substrate-film interface. In the expression (6.43), 
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  (6.44) 

and ( )

3

Su , ( )

23

Sσ  and ( )

13

Sσ  are obtained from (6.30), (6.32) and (6.34). Again, 1
S  and 2

S  are the 

sums of the segments parallel to the 1
X  and 2

X -axes, respectively so that 1 2
S S S+ =  comprises 

an enclosing path around the screw dislocation. We notice that this arbitrary rectangular path lies 

completely in the substrate region as in Fig.  6-6. 

 

Fig.  6-6-Path of integration for calculating the force 

1X

2X

S

a

h

Film Substrate
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We employ the displacement and stress expressions given in Section  6.1 to determine sampling 

points for evaluating the integral (6.44) over an arbitrary rectangular path within the substrate. 

Fig.  6-7 illustrates numerical results for the interaction force varying with the relative thickness 

of the film, h . We can see that for each of the mismatch coefficients Γ  and N , as h  takes 

larger values, the normalized force approaches its value for the bi-material case. In Fig.  6-7, the 

force variations are presented for a relatively soft film over a stiff substrate where 0.5NΓ = = , 

as well as, for the case when the film is made of a stiffer material than the substrate 5NΓ = = . 

In each of these states, we compare the forces for 0.5
F S
l l= =  and 1

F S
l l= =  to the classical 

solutions in Dundurs [15]. It can also be shown using numerical analysis that if 0
F S
l l= →  the 

results reproduce those found in Dundurs [15] as 

 

Fig.  6-7-Variations of normalized force with relative thickness of the film. 
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 − + ∞  
 
 
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∫   (6.45) 

for the case of classical elasticity. It can be deduced from Fig.  6-7, that as in the case of a bi-

material, the higher values of 
F
l  and 

S
l , intensify the absolute value of the force on the 

dislocation. However, for , 1NΓ > , when we increase the thickness h  from zero (which is 

equivalent to a half-plane medium), the force decreases until it vanishes indicating that the 

dislocation reaches a state of equilibrium. This particular value of thickness imposing 

equilibrium on the dislocation decreases for higher values of relative characteristic lengths 
F
l  

and 
S
l . Physically, this means that for couple stress materials a thinner coating is required to 

immobilize the dislocation. 

 

Fig.  6-8 Variation of force with mismatch between characteristic lengths for different thicknesses and 0.5
S
l =  

 s 

F S 
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As another interesting aspect of the problem, we consider the combined effects of couple stresses 

and thickness of the film on the force. Figs. 6-8 and 6-9, illustrate the variations of force when 

the mismatch of the substrate-film is produced only by the difference in the characteristic lengths 

of materials occupying the two regions. Again, we choose the parameters so that they satisfy the 

relation (5.81). In this regard, we keep the characteristic length of material in the substrate as a 

constant in each case and change the bending-twisting moduli ratio N  as well as the thickness of 

the film. 

 

Fig.  6-9- Variation of force with mismatch between characteristic lengths for different thicknesses and 1
S
l =   

From Fig.  6-8 and 6-9, it is clear that while the relative characteristic length of material in the 

substrate is definite, increasing N  from a very small value (approximately classical theory) to 

higher values, decreases the absolute value of the attraction force towards the interface until a 

state of equilibrium is reached. This balance point occurs at a smaller N  for higher thicknesses. 

The minimum N  where the balance occurs is at 1N =  when h →∞ , which is consistent with 

the case of a dislocation in a uniform infinite medium. Then, if we continue to increase N  after 

the balance point, a repulsive force appears and increases accordingly. The repulsive force is also 

s 

F S 
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higher for higher thicknesses of the film. Comparing Fig.  6-8 with Fig.  6-9, we deduce that the 

rate of change in force is higher for a larger characteristic length of material in the substrate. In 

addition, we can compare Figs. 6-8 and 6-9 with Fig.  5-9 for the case when h →∞  to verify that 

our results are reducible to the case of the interface interaction for a bi-material presented in 

Chapter  5. 
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7 A Screw Dislocation in a Film over a Substrate 

In this chapter, we present the second possible case of the screw dislocation-interface interaction 

for a thin film and a substrate configuration. In this case, the dislocation is positioned inside the 

film region. We use the same Fourier integral transform approach to tackle the problem. 

7.1 Solving the boundary value problem 

Assuming again that the anti-plane parameters act in the 3
X -direction and that the 2

X  axis 

coincides with the film- substrate interface, we place a right-handed screw dislocation at the 

point ( ,0)a  inside the thin film of thickness h  ( )h a> . Again, we assign the shear and twisting-

bending moduli 
S
µ  and 

S
γ , respectively, to the substrate region while these parameters for the 

film region are denoted by 
F
µ  and 

F
γ . The geometry of the problem, in this case, is shown in 

Fig.  7-1. As before, by taking the classical displacement solution for a dislocation near a bi-

material interface as a base solution, we introduce a perturbation displacement term that 

encompasses the effects of the confined film as well as the couple stresses. Therefore, we may 

write: 

 

( ) 1 1 ( )2 2
3 3

1 1

( ) 1 ( )2
3 3

1

ˆtan tan ,
2

ˆ(1 ) tan ,
2

F F

S S

X Xb
u K u

X a X a

Xb
u K K u

X a

π

π
π

− −

−

    
= + +     − +    

  
= − + +   −  

  (7.1) 
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Fig.  7-1-Configuration of the problem of a screw dislocation in a film over a substrate. 

where, the superscripts “ ( )S ” and “ ( )F ” again refer to the substrate and film, respectively. For 

this anti-plane problem, we express the governing field equations as 

 

2 2 2 ( )

3 1

2 2 2 ( )

3 1

(1 ) 0, 0 ,

(1 ) 0, 0,

F

F

S

S

l u X h

l u X

∇ − ∇ = ≤ ≤

∇ − ∇ = <
  (7.2) 

for the film and the substrate respectively. Upon inserting (7.1) into (7.2), we have 

 

2 2 2 ( )

3 1

2 2 2 ( )

3 1

ˆ(1 ) 0, 0 ,

ˆ(1 ) 0, 0,

F

F

S

S

l u X h

l u X

∇ − ∇ = ≤ ≤

∇ − ∇ = <
  (7.3) 

As in the previous chapters, for both material media (the substrate and the film, respectively), the 

characteristic lengths are denoted by 2 / 2
S S S

l γ µ=  and 2 / 2
F F F
l γ µ= . The boundary conditions 

for the two governing equations (7.2) can be written as 

 

( ) ( ) ( ) ( )

12 2 12 2 13 2 13 2

( ) ( ) ( ) ( )

3 2 3 2 3,1 2 3,1 2
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  (7.4) 

at the interface ( 1
0X = ) and 

 ( ) ( )

12 2 13 2( , ) 0, ( , ) 0,
F Fh X h Xµ σ= =   (7.5) 

for the traction-free surface of the thin film at 1
X h= . Taking (7.1) into consideration and 

1X
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a

h

FilmSubstrate

F F,µ γS S,µ γ
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making use of (5.11) and (5.12) we may express the boundary conditions (7.4) and (7.5) in terms 

of the additional displacement parameters ( )

3
ˆ Fu  and ( )

3
ˆ Su  as 
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13 2 13 2
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  (7.11) 

Applying the Fourier integral transform given in (5.25) and (5.26) to the governing equations 

(7.3), we obtain the two ordinary differential equations, 
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ɶ
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  (7.12) 

which, regarding the bounded displacement condition as 1
X →∞ , have solutions 
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where, 

 2 2

1 22 2

1 1
( ) , ( ) .

FS

s s s s
l l
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The boundary conditions introduced through (7.6) to (7.11) can also be transformed by (5.25), 

which result in 

 1 1 2
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respectively. We solve the set of algebraic equations (7.15) to (7.20) for the coefficients 1
A , 1

B , 

1
C , 1

D , 2
B  and 2

D , and we simultaneously use the substitutions, 
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to express the results in the following form: 
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where, 
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and, as opposed to Chapter  6, we define /
FS

N γ γ=  and /
FS

µ µΓ = , since the dislocation is 

located in the film. Similar to the previous chapters, we use the coefficients (7.22), and the 

inverse transform (5.26) to express the displacement solution as 
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for the film and the substrate respectively. In addition, using (5.11) the stress components can be 

expressed in terms of the coefficients given in (7.22), as follows: 
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With the use of the foregoing expressions, we may analyze the effects of couple stresses in the 

case of a screw dislocation inside the film. 

7.2 Numerical solutions for the stress field 

We evaluate the integral representations (7.32) to (7.39) in order to identify the specific 

contributions made by the use of couple stress theory. The illustrative results are presented in 

Figs. 7-2 to 7-4. Note that since the dislocation lies in the film, the stress components, in this 

case, are normalized in terms of the parameters of the film region. We can observe that the effect 

of couple stress is significant when the characteristic lengths of the materials are comparable to 

the dislocation’s distance to the film-substrate interface. The dislocation’s distance from the free 

surface, however, seems not to be a factor in the influence of couple stresses on 13
σ  and 23

σ , 
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meaning that if the characteristic length of the material is comparable to the distance from the 

free surface, but still small compared to the distance from the interface, the couple stress effect is 

negligible on 13
σ  and 23

σ . The effect is significant on 31
σ  and 32

σ , however, if the size of the 

characteristic length of material is comparable to the dislocation’s distance to the free surface, 

but still small compared to the dislocation’s distance to the interface. This conclusion becomes 

clearer in the next chapter where we analyze a dislocation in an isolated thin film. Comparing 

Fig.  7-2(a) with Fig.  7-2(b), which illustrate the stress distribution around the dislocation for the 

mismatch ratios 0.2NΓ = = , that is when the film is stiffer than the substrate, we observe a 

concentration of shear stress 13
σ  accompanied by a change of sign along the interface, for the 

couple stress materials with 1
F S
l l= = . 

(a) (b) 

Fig.  7-2- Normalized distribution of stress components 13
σ  and 31

σ   for 0,1
F S
l l= = , 1.2h = , 0.2NΓ = =  

From Fig.  7-3 illustrating the stress components 13
σ  and 31

σ  for the case where 1.5h = , we 

deduce that, as in the classical case, development of the stress field of a dislocation from a stiffer 

medium (the film) to a softer medium (the substrate) is limited. However, for the 13
σ component 

there still exists a concentration area on the interface. In contrast, for the case of a stiffer 
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substrate, shown in Fig.  7-4, the dislocation inside the film imposes a greater effect on the 

substrate medium and specifically for high values of relative characteristic lengths (say 

1
F S
l l= = ), the stress concentration on the interface becomes higher. 

(a) (b)

(c) 

Fig.  7-3- Normalized distribution of stress components 13
σ  and 31

σ   for 0,1
F S
l l= = , 1.5h = , 0.2NΓ = =  



104 

 

(a) (b) 

(c) 

Fig.  7-4- Normalized distribution of stress components 13
σ  and 31

σ   for 0,1
F S
l l= = , 1.5h = , 5NΓ = =   
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7.3 Interaction force on the screw dislocation 

Following the procedure introduced in Section  5.5, here we evaluate the force acting on the 

dislocation inside the thin film. The force on the screw dislocation, in this case, is a combination 

of the forces induced by the film-substrate interface and the film’s free surface. We use the 

following integral formula to determine the force: 
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with the schematic path given in Fig.  7-1 and the parameters defined as 
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  (7.41) 

Using the displacement and stress expressions given in (7.30) to (7.39) we determine sampling 

points for the evaluation of the integral (7.40) over an arbitrary rectangular path which encloses 

the screw dislocation and lies completely inside the film region. The interaction force on the 

screw dislocation inside the thin film on a substrate is calculated for a variety of cases. First, 

consider the variations of normalized force with changes of film thickness. As we see in Fig.  7-5, 

when the relative thickness increases from 1h = , the force declines from an infinite value and 

approaches asymptotically to the forces achieved for the case of an infinite plane of a bi-material. 

In particular, when the thin film is of a softer material than the substrate (say 5N = Γ = ), the 

force declines more slowly for a higher characteristic length of material and approaches a higher 

positive value, which indicates repulsion from the interface. On the other hand, for 0.5N = Γ = , 

when the thin film is of a stiffer material, the force declines from an infinite repulsive value to 

approach a negative value, meaning that the dislocation is attracted to the interface. We observe 

that in this case, there is a certain thickness at which the dislocation is in the equilibrium state. 

This equilibrium thickness is smaller for higher characteristic lengths of material. Therefore, the 
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force analysis of a screw dislocation in couple stress theory predicts a smaller thickness for 

which the stability of the dislocation inside a thin film is achieved.  

 

Fig.  7-5- Variations of normalized force with relative thickness of the film. 

Additionally, as in Chapter  6 we illustrate the pure effect of mismatch in characteristic lengths of 

materials in the film and the substrate. Recall that the relation between mismatch ratios and 

characteristic lengths of the film and the substrate is  

 .
FS

N
l l=

Γ
  (7.42) 

Hence, using (7.42) we can determine the characteristic length of the material in the substrate for 

each given N , by the given characteristic length of the film in Figs. 7-6 and 7-7. We take 1Γ =  

so that the shear moduli of the material regions become uniform and the only influence inducing 

mismatch parameter will be the different characteristic lengths of the film and the substrate 

region.  
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Fig.  7-6- Variation of force with mismatch between characteristic lengths for different thicknesses and 0.5
F
l =  

 

Fig.  7-7- Variation of force with mismatch between characteristic lengths for different thicknesses and 1
F
l =  

From Figs. 7-6 and 7-7, we find that in general, the magnitude of the force is greater for the 

smaller film thickness. This higher force is caused by the presence of the free surface near the 



108 

 

dislocation for a thinner film which makes a substantial contribution to the force in the 1
X - 

direction towards the free surface. In addition, as opposed to the case evaluated in Section  6.3, 

for both 0.5
F
l =  and 1

F
l = , respectively (shown in Figs. 7-6 and 7-7), the equilibrium of the 

dislocation is possible only for a very high value of the relative thickness (practically infinite 

thickness). Also, to confirm the results, notice that the graphs shown for h →∞ , representing 

the infinite bi-material case, coincide with their counterparts in Figs. 6-8 and 6-9. 
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8  A Screw Dislocation in an Unconfined Film 

 The problem of a single screw dislocation in an unconfined couple stress film is considered 

here. So far, we have analyzed geometries in which the dislocation was located in a semi-infinite 

medium. In the present configuration, however, the dislocation takes place in an infinite film 

with parallel planar free surfaces. We use the same approach to solve the problem of an isolated 

film containing a screw dislocation. As shown in Fig.  8-1, the screw dislocation is located at a 

distance a  from the left-side free surface in a strip of a thickness h  ( h a> ). This time, we place 

the origin of the Cartesian coordinates at the dislocation so that the 3
X -axis coincides with the 

dislocation line. The infinitely extended film is filled with a linear elastic couple stress material 

with elastic properties described by 
F
µ  and 

F
γ . 

 

Fig.  8-2- Configuration of the problem of a screw dislocation in an unconfined film 

1X

2
X

h

a

F
µ

F
γ
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We know that the equation,  

 2 2 2

3 1(1 ) 0, ( ),
F
l u a X h a∇ − ∇ = − ≤ ≤ −   (8.1) 

governs the anti-plane displacement component 3
u . In addition, we separate the displacement 

field induced by the dislocation in an infinite medium and express the effect of couple stresses 

and the existence of traction free surfaces to a perturbation term. Formally, 
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Substituting (8.2) into (8.1) we find, 
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where 2 / (2 )
F F F
l γ µ= . In this case, the boundary conditions for the two planar free surfaces can 

be written as 
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Again, we use the Fourier integral transform expressed in (5.25) to convert (8.3) to 
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whose solution can be expressed as 
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where, 
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The transformed expressions for the boundary conditions (8.4) are 
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The system of algebraic equations (8.8) to (8.11) must be solved for ( )A s , ( )B s , ( )C s  and ( )D s . 

In the meantime, to obtain the solution in its normalized form, we adopt the following 

parameters: 

 
2

2

1
, , , ,F

F

F

l h
l h s as a s

a a l
β β β= = = = ⇒ = +

  (8.12) 

and also 

 
1 1

2 2

2 2
, ,

2 2
, .

a A a B
A A B B

b D b D

a C a D
C C D D

b D b D

π π

π π

∗ ∗

∗ ∗

= = = =

= = = =

  (8.13) 

Therefore, by solving the four equations for the four unknowns we obtain 

 ( )2

1 2 1 ,
h sD s e= −   (8.14) 

 ( )( )22 2

2 2 1 1 ,
h shD s e eββ= − −   (8.15) 

 ( )2( 1)
sgn( ) 1 ,

h sA i s e −∗ = −   (8.16) 

 ( )2
sgn( ) 1 ,

sB i s e∗ = − −   (8.17) 
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( )( )

( )

( 1) 2 2 ( 3)*

( 3) (1 ) ( 3) 3 (2 1)

1

sgn( ) 2 2 ,

h s h s h s h s

h s h s h s h s h s h h s

C ise s e e e

s s e e e e e e

β β

β β β

− − − − +

− − + + + + + +

= − − +


+ − + + − +
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  (8.18) 

 
( )( )

( )

( 1) 2 2*

3 (2 ) ( 2 ) 2 2( 1)

1
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h s h s h s h s

h s h s h s h s h s h h s
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s s e e e e e e

β β

β β β

− + +

+ + + + +

= − +


+ + − − + +


  (8.19) 

Then, with reference to (8.12) - (8.19), the non-vanishing component of the displacement field 

becomes 

 

( )1 1 1 1 2

( ) 1 2
3

1

( ) ( )

tan
2

( ) ( ) ( ) ( ) .

F

s x s x s x s x isx

xb
u

x

A s e B s e C s e D s e e dsβ β

π
−

∞
− −

−∞

  
=     


+ + + + 


∫

  (8.20) 

Other aspects of the solution such as stress and couple stress field can be now determined 

through (5.11) and (5.12). For example, the stress components in integral form become 

 ( )1 1 12
13 2 2

1 2

( ) ( ) ,
2

F s x s x isxb x
s A s e s B s e e ds

a x x

µ
σ

π

∞
−

−∞

  − 
= + − +    +    

∫   (8.21) 
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  (8.22) 

 ( )1 1 11
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1 2
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Notice that the coefficients A  and B , are independent of the characteristic length 
F
l , hence the 

stress components 13
σ  and 23

σ  are independent of 
F
l  and equal to their counterparts in classical 

elasticity. Therefore, only the stress components acting on the surfaces perpendicular to the 3
X -

axis are affected by the incorporation of couple stress theory. The same conclusion was reached 

in Section  5.3 for a screw dislocation near a free planar surface. Additionally, the integral terms 

in (8.21) and (8.23) can be evaluated analytically. Then, we can express the stress components 

13
σ  and 23

σ  as 

 

1 2 1 2
13

1 2 1 2

( ) ( )
cot cot

2 4 2 2

(2 ) (2 )
cot cot ,

2 2

F
b x ix x ixi

a h h h

x ix x ix

h h

µ π ππ
σ

π

π π

  − +     = −      
     

+ − + +   − +    
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  (8.25) 
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  (8.26) 

The foregoing expressions are equivalent to the results reported in Leibfried and Dietze [6] (and 

restated in Chu [91]) using classical elasticity theory. The stress components 31
σ  and 32

σ , 

however, deviate from their classical counterparts as the relative characteristic length of material 

F
l  increases. These components are evaluated numerically and shown in Figs. 8-3 and 8-4. From 

these figures, we can see the change of stress distribution with respect to high relative 

characteristic lengths. 
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(a) (b) 

(c) 

Fig.  8-3-Normalaized distribution of 31
σ  for length of materials 0.1

F
l =  and 1

F
l = . 
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(a) (b) 

(c) 

Fig.  8-4-Normalized distribution of 32
σ  for length of materials 0.1

F
l =  and 1

F
l = . 
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8.1 Force on a screw dislocation in an unconfined film 

As in Sections  5.5 and  6.3 after choosing an arbitrary enclosing rectangular path, we use the 

following J-integral formulation to calculate the force: 

 

( ) ( )

( ) ( )
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  (8.27) 

where again, 1S  and 2S  are the sums of the segments in the 1
x  and 2

x -directions, and 3
u , 13

σ  

and 23
σ  are evaluated using (8.20), (8.21), (8.23) in the following forms: 
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F F F F

F F
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u u
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b b b b
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σ σ
σ σ

µ µ
π π π π

= = = =
       
       
       

  (8.28) 

We use the foregoing information to obtain sampling points for evaluating the integral (8.27), 

numerically. Consequently, the variations of normalized force with /h a  are illustrated in Fig. 

 8-5. 

 

Fig.  8-5-Variations of force with thickness and the location of the dislocation (comparison between classical and 

couple stress elasticity). 
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As shown in Fig.  8-5 (which represents evaluated forces), we discover from the numerical 

analysis that the force is independent of the characteristic length of material and therefore 

coincides with the classical solution. This statement is consistent with the results obtained for a 

dislocation near a semi-infinite medium surface treated in Section  5.3, since that case is a special 

case of an unconfined film as /h a →∞ . Also, as we expect from section  5.3, the normalized 

force approaches the value 1−  as the configuration approaches a semi-infinite medium. 

 

 



118 

 

9 Conclusions 

Our analysis leads us to the following conclusions regarding the incorporation of couple stress 

theory in the model of dislocation-interface interaction problem. 

• In general, the use of couple stress elasticity as the governing theory to solve the problem 

of a screw dislocation near interfaces and surfaces leads to intensified responses from the 

corresponding elastic media. The stress fields and the forces on the dislocation are, in 

general, of higher magnitudes in couple stress theory. This fact is not surprising since we 

are practically introducing an extra elastic stiffness namely bending-twisting modulus. 

• Almost in every case studied, we encounter a stress concentration on the interface as the 

characteristic lengths of the materials grow higher and increase the couple stress effects. 

Additionally, couple stresses create extra discontinuities of the stress field at the 

interfaces. In fact, when we begin to increase the characteristic length of material from a 

small amount to acquire couple stress effects, the deviations from classical theory start 

from interfaces by a small discontinuity and a small stress concentration there. Then, as 

we continue to increase the couple stress effects, the deviation grows to a global 

disturbance or even change of signs in the stress field around the dislocation and the 

interfaces or surfaces. 

• Evidently, the tangible changes from the classical model appear when the relative 

characteristic lengths increase to the values around 0.2 0.3∼  and the changes continue to 

rise dramatically with increasing characteristic lengths. Therefore, for the use of couple 

stress theory to be meaningful we must consider the characteristic length of the material 

relative to the distance of the dislocation from interfaces or surfaces. Below the indicated 
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values of characteristic length, the size effects on the stress field are negligible except for 

a narrow region along the interfaces or surfaces (width of the order of the characteristic 

length). 

• In the case of a screw dislocation near a bi-material interface, the interaction force (either 

attractive or repulsive) is intensified with the increase in the characteristic length of 

material. The range of change of force with the characteristic length of material is 

broader when the medium containing the dislocation is made of a softer material and the 

shear modulus of the dislocation-free medium can approach infinity. This intensified 

force also explains the higher required loads for the movement of dislocations producing 

plastic deformation in small scale problems. Hence, it justifies our need to take into 

account the size dependency in plasticity as well. Therefore, this result is consistent with 

the fact that on a small scale, the plastic strength of a material is higher. 

• We studied the interaction force on a screw dislocation in a substrate near a thin film. In 

this case, we reach the conclusion that for a certain interaction force to emerge, a smaller 

thickness of the film is required. Specifically, the couple stress theory predicts a lower 

thickness of a stiffer thin film to create the state of equilibrium for the dislocation. These 

results are the consequences of higher intensity of the interaction force in couple stress 

theory. We also studied the mismatch generated by the difference in couple stress factors 

only. We showed that the adjoining materials with the same classical elastic moduli but 

different characteristic lengths induce forces on the nearby dislocations. When this 

mismatch ratio is zero it means that the film on the substrate is made of a classical 

material and in this case the force tends to move the dislocation towards the thin film. 

However, when we increase this mismatch ratio the force reduces to zero. This state of 

equilibrium occurs at higher mismatch ratios for thinner films. For larger mismatch 

ratios, the force repels the dislocation from the thin film 

• We also studied the interaction force on a dislocation inside a thin film adjoining a 

substrate. In this case, the use of couple stress theory exacerbates the state of instability 

of the dislocation by intensifying the force. As for the classical case, the stability of the 

dislocation is only possible for a certain thickness when the film is stiffer than the 

substrate. Because of the intensified force, the required thickness for achieving a specific 

force or stability (zero force) is lower than that for the corresponding classical solutions. 
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Furthermore, in this case, as well, we studied the mismatch generated only by the 

difference in couple stress parameters. As a result of the presence of the planar free 

surface near the dislocation, in this case, the force generated by this kind of mismatch is 

almost always repulsive from the interface. Only when the thickness is very high 

(practically an infinite bi-material) the stability of the dislocation is possible. This fact 

also shows that the mismatch between the lengths of materials (or in other words, 

bending-twisting modulus) is of secondary importance in causing the force compared to 

the mismatch between classical elastic moduli (shear moduli) of the materials. 

• We have also demonstrated the effects of couple stresses on a half-plane and an 

unconfined thin film containing a screw dislocation. According to our results, the couple 

stresses do not change the stress field components on the planes parallel to the dislocation 

line. On the other planes, however, the stress components start to change from the free 

surfaces as the characteristic length rises from zero. 

• Finally, we conclude from the incorporation of couple stress theory that the force acting 

on a screw dislocation in a half-plane or an unconfined film remains the same as in the 

classical theory. In other words, no contribution is made to the force from couple stress 

effects. 

9.1 Future research 

• It seems possible to solve the problem in the couple stress theory under different 

conditions. For instance, we can choose e  to be independent instead of equating it to γ . 

Also, we can deal with the same problem by other non-local or even micropolar theory. 

In all those cases, we may be encumbered by the mathematical complexities which can 

be treated only through numerical analyses.  

• In the future, we can expand the current problem to the case of imperfect interfaces. The 

viscoelastic imperfection of the interfaces is one of the attractive subjects that we may 

combine with the current problem and solve it in couple stress theory. 

• It may not be as straightforward as the anti-plane problem presented here, however, we 

may consider the possibility of solving an edge dislocation problem with the same 

assumptions made in couple stress theory. 
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• In the future, we may also expand the problem to the problem of multiple screw 

dislocations interacting with surfaces or interfaces in couple stress theory. 
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