INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM! a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are availabie for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

THE UNIVERSITY OF ALBERTA

Design and Implementation of a Tool to
Support Web-based Dynamic Composition of Software Component
by

Raymond Wai-Man Wong @

g

A THESIS

SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EDMONTON, ALBERTA

SPRING, 2001

i~l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-60515-9

Canada

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre réfdrence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

THE UNIVERSITY OF ALBERTA

Library Release Form

Name of Author: Raymond Wai-Man Wong

Title of Thesis: Design and Implementation of a Tool to Support Web-based
Dynamic Composition of Software Components

Degree: Master of Science
Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purpose only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor
any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

[

e

—

Raymond Wai-Man
Wong

942 Ormsby Wynd,
Edmonton, AB
T5T 6A9

April 17, 2001

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies for acceptance, a thesis entitled "Design and Implementation of a
Tool to Support Web-based Dynamic Composition of Software Components"
submitted by Raymond Wai-Man Wong in partial fulfillment of the requirements for
the degree of Master of Science.

Supervisor,Pr6t.Giancarlo Succi
Department of Electrical and Computer
Engineering

\M—j(s\

Prof. Witold Pedrycz
Department of Electrical and Computer
Engineering

Prof. Peter Musilek
Department of Electrical and Computer
Engineering

Hl L — .
Prof. Marek Reformat

Department of Electrical and Computer
Engineering

Prof. Kenny Wong —
Department of Computing Science

Aprz 17, 200]

Date

Abstract

Internet is a worldwide resource for component distribution. Software companies
already sell their products to customers through direct downloading. This distribution
model can be extended to software components instead of full-featured applications.
Components are composed by customers to reform customizable applications.
However, the current available technology does not support the distribution
mechanism fully. This research work focuses on the study and development of a
prototype for supporting the described market structure. In order to support the
infrastructure, dynamic component composition in a Web-based environment must be
supported. WebCODS (W eb-based Component On Demand System) is a research
prototype that supports dynamic component composition over the Web. This system
uses the component composition model derived from UniCon and applies the
composition framework in a Web-based environment. The framework also provides
a classification model and a search engine to support component brokerage. The
classification model is based on facet classification and accompanied with a search
engine for querying the component broker. The security aspect in the environment is
also addressed using encryption and digital signature. The thesis contains detailed
discussion on the design of WebCODS and the selected implementation strategy.
From the experience of developing WebCODS, the techniques for building such a

system and directions for future research are identified.

Acknowledgements

This work has benefited from the support of many people. Thanks to my supervisor,
Giancarlo Succi, for his timely advice, encouragement, and criticism throughout the
development of this work. Thanks are also due to the people at the SERN lab at the
University of Calgary and the QUASE Lab at the University of Alberta. These
people have been an endless source of inspiration and good discussion throughout the
work. They include Eric Liu, Skylar Lei, Mike Smith, Milorad Stefanovic, and Jason
Yip.

I could not have completed this research without the support of University of Alberta,
the University of Calgary, the Government of Alberta, the Alberta Software
Engineering Research Consortium, and the Canadian Natural Sciences and

Engineering Research Council.

This work is dedicated to my Parents, Kenneth Wong and Rita Lau.

Table of Contents

Chapter 1: INTOAUCHON «.cotemremrnienrinrrieeemeerirecteeaessstesse s se s s s s e st sne st as e e s s s sesnsnsisinas |
1.1 ODBJECHIVES ...eeeercceeeerceteeerticsnessees s s nesresesbe e me e sssssasensatesn s ne o s s e am s e s ssesnse 5

1.2 THESIS SIUCIUTC .. eeeeeieeemieeeieenrnereeeseemeceeeeeeseseaeoosssessssssrssnsmnssaraasosamsesennnsssasns 7
Chapter 2: Component COMPOSItION.......cveieermrerrateeseescracre ettt st ses e cacaracas 9
2.1 Scripting LANGUAEZEScocvruieveeieeirrmrrreieeieieeneesseeeseee e esceanen s ses s s 9
2.1.1 Module Interconnection Languages....c...cceveeurrerremrriiiocrncceeicencseeneennneenn. 10

2.1.2 Architectural Description Languagesccccceeeeveeremenscccnsnreieeninneninnnns 11

22 Other Composition APPIOACIHESveeereeeeieieenereecncetsitetiinee e 16

23 Dynamic Component Composition TOOIS.ccrreeuereininciiiiiiiecneeenne 18

24 SUITIMATYoeeereeereneeceemesestrareeseeeresasssessrassassnsesssessasntsassantanssasssnsnssreanssassss 21
Chapter 3: Component Classification Background.........cccccovmmiiiinienicinccneninnnn. 24
3.1 Representation of COMPONENLSccceomreriereeeieeemeserscnnteeecesanessasessasseness 24

3.2 SOFtWALE LIDIATIES .eeeevenreeinreeireeecnnenscereretosaeseesassssrssasssnemsssnaessassesassnssssssnnes 28

33 SUITHITIATY ..eeeeeererenereseeseenscrsrcetessessssessseraesnensessseasssessesoteateseesansarnaessssssessensae 32
Chapter 4: Network Security Background ..o 33
4.1 Keys and CertifiCaeS «.ccceveieiiiroreranrirrenieetreeensesetetetcesac et e 34

4.2 Encryption TEChNIGUE ..c..c.cocceiiimiitiememc et 36

43 SUIMIMIATYceeieeeieeereeeenneseeceeseeeesssseesssnssessassasaeasssssessanstsessasassessransasssensases 38
Chapter 5: JAVASPACES....ueeruiiirieeereie e e ettt st et st 41
5.1 OVEIVIEWoeiieeeeeeieeeeeeeirreeeeessesnsonsessnsestesesssnesessssassessernsnasaaesssensanmsssnsesesinses 41

52 OPETALIONS .eeeeeemeeeemeeniisiiiitiie i e reesne et s s as s s s et e st s st st e s s b s s e s 43

53 | 2755 1153 U TR UUURURU T 46
Chapter 6: WEDCODS......ciiieeeetceeieem ettt n et st a st st s 48
6.1 Client ENVITONIMEIIT «....eeveeeeeeenieeeenenreeeesenreeeeerassesssssaesssnsnanasensasssessssasssossens 49

6.2 Provider ENVITONIMENLoocceeureeieeeneeeesenceesneensossenmmmssssnsassessonassssssssssnssssnees 50

6.3 Broker ENVITONIMEDLvviiiieeeeeeneeeeereerracnnesestarsssnsmrmreassasasesesseseemsmmnmmneans 50
Chapter 7: Support for Dynamic COMPOSION «..ccueuurceuereriieriniiinnansesies et 52
7.1 Framework LeVELuuueeeiieeeeceeemecceeeeceeseeceeesssssssnrenssnsaansssessssssssssnssenneas 53

7.2 CompoOSItion LeVel ... ineiiiiiiiiieicinimreeneee e ce e cesessesneeees 54

7.2.1 Ports and CONNECLOTS ...coeeieeeeecerreeeerenenereeecenesrssessssssenmssnsesessssssrmssanessens 56

7.2.1.1 Procedures Calls.......cccoiammeiiiiieriieiiin e eeee et ece e 57

7.2.1.2 Pipes (SIrEAMS)....uucueeeeeaciarererresneccecsesensisssersessesssssesssnsassssssseassnsas 58

T2.1.3 EVEILS ettt seete s eese et ee e s eesasass e s e s s sensnesraneas 59

7.2.1.4 Shared Variablescocoooeeeemeeemeeecceeeeecieeeecerecccsssssseressenanees 60

T2.1.5 FALES coeeeeeeeeeeeee ettt e mes e e s e s s e seese s s s s ssr e s rannsan 60

T2.1.6 SOCKELS ...ooeeeieeeeeeeeeeeieeniene e s sseesssoeeseeeseeessaresesssssnasessrsessssrsrnnas 61

7.2.1.7 Supporting Connection MechanisSmscccceeeremereeerreeiiceeienenn. 62

7.3 INStANCE LEVEL ..ot e e ceeeerses s s ee s ss e s e nes 64
Chapter 8: Component BroKETage..........cceeeeeerereerreeeeccecrcerssesscessessssssssressasssnssassssasases 67
8.1 Component ClassSifICAtiONcccceececeirerereersrecriiiiiiiie e e e sree s ere e ssesans 69

8.2 Operations of the Brokercccc.ccvviiiiicccencciciiiitieeies e 72

8.3 S CUTIEY c e eeeeueereeeeeeeeeeree e e s eee e e e s reesaaa s e s s senmecrecemseesnasessssssanssssssnsssnsesnssnnns 74
Chapter 9: IMplementation........ccoueeeueeeioeeeeeereeeietieiee e et ceesceserceseeeeesseseessesasnrssessenanas 76
9.1 ComposItion TOOL o . ettt tc et eececee e e e 77

20 U0 RN 131 4 3] (=3 0= SO USROSt 77

9.1.2 Transfer of COMPONENLSoccevuieriirereaeecemeeeeeecceereceeeesasssressssnrrnessreessnnnes 81

9.1.3 Composition Environment............cceeeeeeecemeoreceiercciiissssrsresnrnneessnesessnsens 83

9.2 Search ENGINe.....cciiiiiiieeicteeeec et eee et sneeeecesesese s e s es s n e s sns e nees 87

9.3 SECUMILY COMLET ...eieeeeeeeeereceeereceeeeteeeareteeseseseseetetenteeentseesasssrsssernssssssannn 92

9.4 Fault TOleranCe . .ccoe i i cnceceeeceteeeeeee e renittereerereee s e s s asee s sese e sees s e aaes 96
Chapter 10: Example Use of WebCODS.......ieeceecrieeeeeeeeccsnneeeene e enes 99
10.1 PrOVIAETS. cceeieeiiieiii it trr e e s e astesenessee s e s emseae s s s esee s ras e e e naees 99
10.2 123 () (= oSO EIN 103
10.3 () 1153 1 | 1S USSR USRS 104

10.4 Integration of Existing Applications into WebCODS..........ccccoerieinnncees 106
Chapter 11: Conclusions and Further Research..........cccouoeiiiiniminionnnicceenee 112
RETEIEIICESeeieveeeeeeeeeeeeeereeeeeeeereeeeeaeee e ssmeeseesseeessaaas e e santoeeseresennaeesssssssnsnsnrrsssasansnsnns 117
Appendix A: WebCODS User Manual...........ccoocierincinniinieniireeenneeeseeesssecsreeenenne 124

Al |2 500) 4= ST OO 125

A1l Database File....uumueeeeeeoeeicimeenearcme e rns e s e ne s sass st s 126

Al INT FIlC aneeeeceeeeieeeeeerensnesssaaceootseceasasssrnsssnsssssmeaseneassesasnrssrassssassasnenses 127
A.l3 Keystore File oottt 127
AL1d FACES Fil caneooeieeieeeeeeeeeeeecccneciseseesenasnanesessessncsesessrneesassssenannanssssns 128
A.1.5 TheSaurus File ... eeeeeeeeececiirre e cncertneseseeecccteeemtnr e rsanssses e se e 129
A.1.6 Execution Of the BroKer.....ccccaiiimiiiimmiiiieneeeicieeciiriieeeeineeeeeeeeens 131
A.1.7 RECOVETY SEIVICE -eerreiiiitiireeniieeee ettt ettt 132

A2 ClIEIEaeenneeeeeeeeeeeeeeeeseessrrseeasasnsesaenassnesssanriassassssansssnsranassnnsossntessnnersrrnanasacees 133
A2.1 Prerequisite to Execute the AppliCation........ccoviuimirmiceeeninncennecens 133
A.2.2 Execution of the APPLCAtION ...ueeeeimmririeeeeiieiteneenrnreeeereeeneenieee 135
A.2.3 Saving and Reloading of COMPONENTS.....c.oovmimiimmecmienennienncicseeeneess 138

A3 PLOVIART oo eeeeeeeceeeeeteeeeeteeeeseaassemenenacsennnssnnrnssananeaa st s ssstaeesaesassssanesssanasasses 141
A3.1 Prerequisite to Execute the Application........c.covrimomeminennciscecnnns 141
A.3.2 Execution of the AppliCationcoerriiiiieeeiriiieciiinrie e 144
A.3.3 Creation Of COMPONENLSeuummieriimmeecrreeeseeitnieisetessnneecaesnsnneeesneeees 145
A.3.4 Classification of COMPONENTSccoorrieererereriireiecteeincsresireerenaesecceses 148
A.3.5 Components in the BroKer ... 149
Appendix B: Description of the Implementation of WebCODS ... eeeeeeecceeeennenenens 150
B.1 COMIMIECTOT e enneeereeeanecenesseessnnsmsssasnemnsaeeeaeee sssnsnsserssaesssrsmnsnaateessnesossnnnnnaanasass 151
B2 S BIVIC . oo eeeeeeeeeeeceeressesssssemaaaseasesereaaeeeersssasnstassrnseam s ar et aees st e sesinnansseasasans 155
B3 P TS e nnneeeeeeeeeeeeeeeeeeeesnereesnsssssasmnmeaseeneeeeisssssssneasssreaa s nnsaaeeessan st e s s e s e 158
B.3.1 Creation of Primitive COMPONENLScovvrieerimiaieciecrnenneieresnesnnrnnnnesss 158
B.3.2 Creation of Composite COMPONENLS....cccevireirinarerrmsimniriirinnniasaseeees 159
B.3.2.1 INSTANCE SECHOM ceuuuueerennneeeeirimriereretinnnrerereseasareeenesesssesmianssnansreeass 160

B.3.2.2 Connectivity SECIOMN ..cc.uuuuiimiimrirereraietrnrerencenrcesesntne s ese e 161

B.4 TYPIOZ «veveeenermeeeresencenineeraeersensese s e s s st s s st e tas s e e s s 163
B.4.1 Resolving of Primitive COMPONENLS....cociievimieciiiirirnennineeneneeeaieens 167
B.4.2 Resolving of Composite COMPONENLScoieirmiiumiirmaniesnneisaecessinns 168
B.4.3 Textual Description.... .o oiemmmiiiiommiineeceeeieicietinnnee e sesenesesees 169

B.5 BIOKET «eneeeeeeeeeeeeeeeeeecteseeesssssnsssseeanaaeeeeeaeeeessssnsnsassanseassanasasesasessasessnsnnnaassassss 171
B.5.1 DAlA ACCESS.cieeireerrrreeeaasrsesennesesssssntessasassssessssresssssssssssssssitamsesarasnsosssas 172

B.5.2 SESSIONS 11 SEIVET .cnneeiiteeenrenieeemeneecnessoeessissessarsnnsssssssssessstscassssnnassees 174

B.5.3 DElIVErY SEIVICE.....cuiuieiierienirrrineeieiieereeresremseesntssnessnsasennesssessssasens 176
B.5.4 SeCUItY CENLET..cccumreeeeeeiiiernrernreneteasiesneensasesssnsessesseeseneerancsssnanens 177
B.5.5 SErViCe CEenter.... . ceoieaeneceeennrnrrrrniniinenteniesessaesassrrerassessssssacensesssnsnss 179

B.6 Search ENGINeccooeiioiiaiimiiniciiieneieiinnenereressesesne s e s ne s e s e cssscenesansennns 181
B.7 (@) TS5 4 L=V) o] 1T 11 1) + WU OOV PPN 184
T8 B 4310 72117711 (o) « OO U USRI OPPPPN 184
B.72 UL Creation. . cceeeeeeeeeeceeeeecreeeecreernnnrnecieteeresessssssssssnnraseesssessssssesasassssacs 185
B.7.3 Compose DIa@Iammcoieeiirimimeeiieeeneceeeeenesnesecsceee s sesenaaneane 187
B.7.4 Searching and Downloading Components from the Broker................ 190
B.7.4.1 S€archimng....ccccccverirrereceeirisetiiininicsesstesssnsreessesessssnssesssnsnasesssenns 190

B.7.4.2 Downloading.......ccccoveecmocceeaniirecteeeisreeieseene e 191

B.8 Provider AppliCationccouecieveeicmrmtiernreeeee et 192
B.8.1 INitialiZAtiOn ceeeeuecmeeeeeraieeeeeeeceeicriiiicetccereasnsneseernnesessseesssaassnsessssnsens 192
B.8.2 UI Creation. cccemueeceeeeceieeeccecaceennestnieccneeteseseasensssssnsnseanessessenasesesssnns 193
B.8.3 Creation DIia@ramcccccociieeiiiiiniiiniiiiiienennrnirneee e eee s enoe e aseseeeane 196
B.8.4 Compose DIaGrammcccceiriirirrimimriiierneeceeeeseeae st mscesininaaae 198
B.8.5 Submitting Components to the BroKer ..o, 199

List of Tables

Table 1: Comparisons of supported features of component composition in ADLs........... 15
Table 2: Investigated software compoOSItion tOOISooeieiiiieeciieeeceeeeeeeceeeeeeeeeeeeeeeene 21
Table 3: Summary of classification SChEMEeeemmmiiieeeeeeeeeeee e 27
Table 4: Software libraries and their classification scheme..........cccoeeeeereiieiicccecccnncinnae. 31
Table 5: Phases of software architecture analysis........ceeeeeereeeereeeeeeeememmieeeeeereeneeceennncennenses 55
Table 6: Summary for connections mechanism for components in Java.......ccccccceeieeeecennn. 56
Table 7: Connectors in WebCODS ... ettt eeereeee s seee e seeeesseeeeessrnessseas 62
Table 8: Types of Ports supported in WebCODS...........eeeeceeecceeecneeenns 63
Table 9: Samples of Facets and Term Spaces used in WebCODS......c...coocvcieennnnrcnnnn. 71
Table 10: The result set after querying the graph with the term Parsing........c.ccccceeueueeenn. 91
Table 11: Options used in the dx£233d COMPONENL.....coocirruierararcrreeeeaaeerersnecmeeneeeecssnnes 107
Table 12: Icons for ports in WebCODS ... ceenarenanes 146
Table 13: Package structure within the connector package......ccccceeeoeeiecccniiiinncnnn. 152
Table 14: Summary for the implementation 0f CONNECOTScccceeerererenrriceceemreennnnnns 153
Table 15: Summary for steps required to create TypedComponent objects. 162
Table 16: Usage of supporting classes in the typing packagecccceceevecveeiuerrnnnnnn. 165
Table 17: Summary of the sessions created in the brokerccccooeeeiciniiiinccciiniinnnnnnn. 174
Table 18: Supporting classes for drawing in the composition diagram..........ccccceceuuneunnn. 189
Table 19: Icons for ports in WebCODS ... et ae e e eerenennns 197

List of Figures

Figure 1: Sample Entry from the HelloWorld example.......cccoooooiiaiioinoiiiiineccceeenes 43
Figure 2: Sample code for writing and reading the HelloEntry from the space................. 44
Figure 3: Structure of WebCODS ... ettt teceeer e seesee e sam e sessenene 48
Figure 4: Software Components and CONNECIOTScc.coeurmiemirecccerreencorcceeerereeiceecseeneeenes 53
Figure 5: Instantiation of Primitive COMPONENLtieiireieeireeeeccnnteeecceeeseseseseeeeees 64
Figure 6: Instantiation of Composite COMPONENLSccccerreeierrerecrceeeertreneeeeeecseseeeenes 65
Figure 7: Component Brokerage Environment in WebCODS 68
Figure 8: Thesaurus for Action FACET «.cc.ce eeciiiieeiececencteeeeeeee s eceee e e e 73
Figure 9: Security protocol used in WebCODS.........ccccoiiiinineenimnctrcenceeeeeeennans 74
Figure 10: Distribution of components in WebCODS ...t 76
Figure 11: Connectivity description for the components shown in Figure 4..................... 80
Figure 12: UML diagram shows the structure of components in WebCODS 81
Figure 13: Possible Java code for the connection of A and B in Figure 4......................... 84
Figure 14: Template used by the Non Buffered Connector..........ccccovmremmuinneecnnnnnncenns 85
Figure 15: The DTD for the XML description of WebCODS component...............ccc..e. 88
Figure 16: A sample XML description for WebCODS components.......ccccceeevveeeeeccecnnee 89
Figure 17: Example of relations in the Thesaurus ... 90
Figure 18: Transferring of keys between clients and the brokercccoccvvinnniennnnneee. 94
Figure 19: Code for decryption and encryption in WebCODS.........c.cccovreirrrrinniicanenenn 95
Figure 20: Protocols for transferring messages in WebCODScoooiiniinnneee. 96
Figure 21: Code for restoration of the broKer ... 98
Figure 22: Creation of (a) primitive and (b) composite components in WebCODS 101
Figure 23: Generated Description for UniCon-based Description in WebCODS for

(a) CParser, (b) Preprocessor and (c) CompleteParseroveeeeeoiiiciencnneennnnnen. 102
Figure 24: Specifying classification details for components...........ccooeeeieniniinciniceeeeenes 102
Figure 25: Query dialog DOXcceeeiiiiiiiiiiiiiiiiieceer ettt s s 104
Figure 26: The selection dialog after querying the broker............coooeieeiiiiirniiiiincennn. 105

Figure 27: The graphical component editor in client panel used to
(a) compose components and (b) standalone componentccoeeeeereeeieeneceennne 106

Figure 28: The instantiated components with the parameters specified at runtime (a)
Preprocessor and (D) CParser ...ttt cecsene e 106

Figure 29: Wrapper class for dx£253d UtItY oo 108

Figure 30: The (a) composition and (b) execution of the DXF2J3Dconverter

components in the WebCODS environment............cccoeeeeecereeeeeeceeesenreereseecesessenns 110
Figure 31: The instantiated components resulting from the composed application (a)

file editor and (b) file VIEWET «.c.....eerieeeeeeeeee et reeee e e eennneseeneas 111
Figure 32: The tool to manipulate thesaurus (a) loading (b) testing of thesaurus 130
Figure 33: Execution of the broker program...........cc.eceeeemieeieeceeeeeeeeeeeeeeneeeceeeeeeeaeenes 131
Figure 34: Sample HTML to execute the client application.........ccceceveeeereeeeeeeecceeeeeneenes 134
Figure 35: (a) Login screen and (b) environment for the client application.................... 135
Figure 36: (a) Querying modes in the client environment and (b) searching

components In the BrOKETt ree e e e e e erte e craa e e e se s ee e 136
Figure 37: Listing of matched components from the brokerccvveeeeereeecreecccececenaces 136
Figure 38: Composition of components in the client environment.......cccccceeeeeeveeeeeneenns 137
Figure 39: (a) Saving components and (b) the generated description based of the

COMPOSEd APPLICALION....ooeeieeeciieeecittaeeeritrarerereeeeeeeeneresesnanscnesesenanessassansrnsneeaenas 138
Figure 40: Loading of saved components into the environment

(a) loading and (b) using the COMPONENLcceeeeeeiermieeeeeeeeeereeeeeeereartrereseneeereseceres 139
Figure 41: The resulted error message showing the required components when

loading saved deSCIIPHION ... cceie e iieiiieeeeeeeeeeeeee e e eeccee e e ee s e s s e eeeene 140
Figure 42: Sample HTML to execute the provider applicationcccceeeeeecercrceerccccreeenee 143
Figure 43: (a) Login screen and (b) running environment for the client application 144
Figure 44: Creation of primitive COMPONENLoeeeeiemieeeeeieeinnneeereeeeresesseeeereaseeaseceaees 146
Figure 45: Specifying details for ports using the create diagramcceeccoveveecccrcceanceenns 147
Figure 46: Specifying classification details for components.........cccccceeiereiiiiiiiniaccnnanennns 148
Figure 47: Removing assets from the broKer...........oooiciiriiieieeieeeceeceeecreeeeee s e eeeaes 149
Figure 48: Class Diagram for the service package......cccccemeermeireieiennerccienccceererenenns 157
Figure 49: Class Diagram for the t yping packagecccoooimmeeccereiencrenerecccicnceenennes 164
Figure 50: UML class diagram for the accessdata package......cccoceveevenrvocccicainennnn. 172
Figure 51: UML class diagram for the broker packageccccoeeveceicrineinneieniiiicnenennnns 175
Figure 52: The UML description of the servicecenter package........ccccceeevveeiieeenns 180

Figure 53: The UML description of the searchengine package.....c..cccovuuuereeenennnnn. 183

Chapter 1: Introduction

This thesis is about the design and the development of a framework to support
brokerage of software components in the Web-based environment. Components
referred in the framework can be standalone or composed with other applications.
The composition of these components creates flexible applications which can be

customized to suit the needs of application users from different domains.

This chapter begins by briefly describing the motivation of this research and a general
description of the developed framework. The evolution of the Internet enables the
emergence of innovations and electronic markets. The Internet becomes a worldwide
resource for programming solutions and provides effective exchange of products
between programmers and consumers. The structure can be supported by an

electronic intermediate that supports brokerage of components.

The Internet supports the development of software tools that can be downloaded on-
demand by users — software tools on-demand. These tools cannot be purchased like
products, because they do not reside on the user’s machine. Rather, they can be used
as “services.” The idea is to let users building applications using a wide variety of
composable components, provided by several providers who make them available
through the Internet. The wide diffusion of Java and JavaScript foster innovative
techniques for software distribution. Java-based tools can be downloaded on demand
from the developer's server and executed inside a Web-browser; installations of the
software are not required on the user’s machine. This approach presents several
benefits (Yourdon, 1996). Tools are immediately available to any Internet connected
computer. Downloaded tools can run on any hardware platform with a Java-capable
web browser. Since the tools are downloaded from a central server, users always get

the latest version (Gosling and McGilton, 1996). Moreover, since there is no

installation requirement for software, managing a large user base becomes more
viable. Maintenance costs for software are significantly reduced (Gupta et al., 1998).
The elimination of packaging and physical distribution helps reduce production costs
(Hummel, 1996). Succi et al. (2000) suggests that the tool on demand distribution
mechanism can be enhanced with software pay-per-use or renting mechanism. The
usage of software by users is monitored and users will be charged based on their
usage of the downloaded software.

The software tools-on-demand mechanism can be extended to software components —
components-on-demand. This software distribution model can be extended to
software components instead of full-featured applications. Each application feature
or function in the traditional monolithic application can be decomposed to a candidate
tool in the component-based paradigm. Since users do not usually require all the
features provided by the monolithic application, software distributors provide a
component composition environment allowing users to download and compose their
“applications™ using only the components that fit their needs. Components users are
encouraged to try out more components because of the reduced entry barrier for using

new components (Choudhary et al., 1998).

The implication of the component-based paradigm is like the creation of a virtual
market. Shaw (1999) analyzes this distribution behavior using the metaphor of the
Virtual Agora, a virtual market place where developers and users meet and exchange
resources. The creation of the infrastructure requires new toolkits to identify,
compose and track the resources available in the agora. Moreover, an economic
infrastructure is also required to support the market and charging mechanism. The
architecture of the agora is still open since no system successfully supports the

operation-model of such a virtual market.

Tools supporting web-based distribution and composition of software components
should provide the infrastructure for component-based development. The
infrastructure must define a component repository for managing existing components
for development. A few tools have been developed, such as ArchStudio (Medvidovic
and Taylor, 2000), Resolve (Bucci, et al., 1994; Sitaraman, 1999), and Espresso
(Faison, 1997). In most cases, they provide proof of concept for new ideas, focus on
specific aspects of component composition, and do not target of the overall

requirements of a fully functioning system.

When composing software systems from distributed components that perform
robustly regardless of platform or network infrastructure, the use of middleware for
the integration of distributed objects is necessary. However, there are still common
design problems regarding composition of software components. These problems
range from heterogeneity of computing platforms to absence of suitable support tools
(Emmerich, 2000). Middleware for connecting distributed objects are available, such
as Common Object Request Broker Architecture (CORBA), Component Object
Model (COM), Distributed Component Object Model (DCOM), Enterprise JavaBeans
(EJB), Java RMI.

The Common Object Request Broker Architecture (CORBA) enables open
interconnection objects in an open connection environment. This technology is based
on a set of invocation interfaces describing the requirements for invoking the object.
The distributed object uses an Object Request Broker (ORB) to locate the receiver
object, invoke method, and transport arguments. The message passing process
involves sets of object adapters that marshal and unmarshal the arguments, and then

invoke the requested method on the receiver object.

The Component Object Model (COM) is the component software framework that
Microsoft used on its platform. The fundamental component of COM is the interface.

On the binary level, an interface is represented as a pointer to an interface node. The
only specified part of an interface is another pointer held in the first field of the
interface node. The second pointer is defined to point to a table of procedure
variables (function pointers). The double pointer mechanism allows clients to see
only a pointer to a pointer to the virtual functions in other components. In general
COM offers an infrastructure for building software applications from blocks of
objects.

The Distributed Component Object Model (DCOM) developed by Microsoft extends
the COM to support communication among objects on different machines based on
client-side proxy objects and the server-side stub objects. This mechanism uses the
idea of Object Identifiers (OID) to locate the object in the server and an Interface
Pointer Identifier (IPID) to signal the server of the process. DCOM also provides

access control to protect the data and the service.

The Enterprise Java Beans (EJB) technology consists of two parts: server and clients.
The server is a container for the client to access individual Enterprise JavaBean
objects. The server allows the client to identify and create instances of specific
Enterprise JavaBeans within itself. The client can then use these objects to perform
some function (for instance, business logic). An application may use one or more
Enterprise JavaBean servers in its programming. Once the client disconnects from
the server, EJB instances that are no longer used by the client are destroyed. The EJB
may choose to save the state of variables to secondary storage for later retrieval or

discard all information.

The Remote Method Invocation (RMI) is a Java-centric way for distributed
computing. It offers the core components needed for any distributed systems in Java-
only applications. The object communication scheme of RMI is analogous to

CORBA. The objects being transferred across networks are serialized. The

serialization of objects allows users to transfer or request any object by value form
one remote process to another. The registry in RMI serves the role of Object
Manager and Naming Service for the entire distributed object system. Clients can
communicate with the registry to look up objects in the server. Unlike CORBA, the

RMI registry is required to be running on the server of a remote object.

Composition of components can be divided into two areas: offsite composition and

local composition.

The offsite composition allows component integration to be performed among
heterogeneous computing platforms. The integration of resources is performed in the
remote site where the components are executed. Standards supporting offsite
composition have been discussed above, such as, COM, DCOM, CORBA, and RMI.
Modeling and implementing middleware software connectors with complex protocols

become a key aspect of architecture-based development. (Dashofy et al., 1999).

However, the increase of computing power in terminals and personal computers
encourages the composition of components to be performed in the user’s local
environment. The composition of components locally allows more flexibility in the
connection mechanisms. Currently, there is no standard approach to support local
composition of components. Limited works have been reported in compose
components using local objects. (Faison, 1997; Weinreich, 1999, Hewlett-Packard,
1999; Michiels and Wydaeghe, 2000)

1.1 Objectives

The primary objective of this thesis is to provide the basis to support a component
brokerage system by developing a software framework. The system developed in this
thesis is called WebCODS (Web-based Components On Demand System).

5

WebCODS aims at creating a comprehensive environment where components can be
effectively distributed and used through the Web. WebCODS identifies three major
roles in the supply-use chain: Component Providers, Customers and Brokers.
Providers sell their components to customers through the mediation of a broker.
Customers find and obtain the interested components from a component broker.
Customers can use the components as they are, or further compose them together in

their local environment.

Besides the matching of suppliers and customers in the market place, the intermediary
also provides additional services, such as, information of services, categorization of
products, trust, and quality assurance. The identification of products in the market
requires the development of a standardized production description. The using of
unified product descriptions simplifies the evaluation and comparison of alternative
products. The information cost for users is significantly lowered in the centralized

market space.

The virtual market transfers components and sensitive information via the Internet.
The transfer of this secure information in an insecure network needs to fulfill the

following security properties:

e Confidentiality ensures the secure information is not disclosed to unauthorized

recipients.

e Integrity ensures the data send in the network are only modified or destroyed

in a specific and authorized manner.

e Availability ensures that the resources of the system will be usable whenever

they are requested by authorized users.

The support provided by WebCODS targets all the key areas for secure component

brokerage on the Web and dynamic composition of components. The system is

operated in a Web-based environment, therefore, it allows dynamic uploading and
downloading of component to/from providers, customers and brokers. The mobility
of components via the Internet is required. New components can be created
dynamically by composition of existing components. After composing components in
the environment, composers can instantiate and execute the created components. The
broker also features a facility for components classification and identification. The
management of components is supported in the infrastructure. The system provides
security services to protect the overall system operations against unwanted accesses.
The infrastructure of WebCODS also contains a security center and search engine.
The security center uses public and private key pairs to protect the transfer of
components in the Web being tapped by unauthorized users. The search engine

handles the identification of components in the broker.

1.2 Thesis Structure

Chapters 2 to 5 discuss the background information related to the thesis. Chapter 2
describes component composition in detail and examines other available component
composition environments. Chapter 3 deals with the theory required for classification
and identification of components. The security aspects for the component brokerage
infrastructure are discussed in Chapter 4. Chapter S includes an introduction of
JavaSpaces that is used for the primary transfer medium for components in the
framework.

From Chapter 6 to 8, the requirements for the WebCODS project are discribed.
Chapter 6 first introduces the architecture of the WebCODS application. Then the
following sections targets at the aspect of component composition and component
brokerage in WebCODS. Chapter 7 is focused on the design strategies to implement
the composition environment in the application. Chapter 8 states the requirements for

implementation of the component brokerage and the related security issues.

Chapter 9 discusses the implementation details to target the requirements specified in
the previous chapters. The discussion is centered on the implementation of the
composition environment, the security manager used for transfer components in the
network and the search engine for identification of components in the broker.
Chapter 10 provides an example to illustrate how WebCODS works. The example
describes the steps from building up of components in the broker environment to the

execution of the component in the client’s location.

Chapter 11 is an evaluative conclusion of the research and includes directions for
future work.

Chapter 2: Component Composition

Nierstrasz and Meijler (1995) define software composition as the construction of
software application from components that implement abstraction pertaining to a
particular problem.” The benefit of composing systems from components is
flexibility. Systems created from components should be easy to recompose to address
new requirements (Medvidovic ef al., 1999). This section describes a few approaches

to compose components.

2.1 Scripting Languages

Construction of software applications from existing components has been a major
research directive for many years. Sametinger (1997) has identified successful
examples of composable software entities existing in many environments, such as
mixins, macros, functions, templates, and modules. Scripting languages are designed
for “gluing” a set of existing components and plugging them to work together
(Ousterhout, 1998). The script is used to specify the composition of program
components, and perform late binding of components together. The language for
composition can be formalized as Module Interconnection Languages (MILs) and

Architectural Description Languages (ADLs).

2.1.1 Module Interconnection Languages

MIL is used to provide a means for the programmers of large systems to express their
intent regarding to the overall program structure in a concise, precise and checkable
form. It provides formal grammar constructs for deciding the various module
interconnection specifications required to assemble a complete software system.
Communications in MIL systems are performed by exchanging resources among
modules. Resources are entities that can be named in the corresponding
implementation language, such as, variables, constants, procedures, and type
definitions. Modules are units that provide resources and require some set of
resources. Once a system structure is coded in MIL, the system can be verified for
completeness and inconsistencies. MILs are coupled with the programming language

used to implement the system. (Prieto-Diaz and Neighbors, 1986)

The first module interconnection language, MIL75, was developed in 1970s
(DeRemer and Kron, 1977). MIL75 decomposes a large system in a tree
representation with modules as nodes. MIL75 has an associated compiler to verify

module accessibility and resource management.

Thomas’ MIL is based on the idea that module interconnection should be flexible and
not constrained in a tree based structure as in MIL75 (Thomas, 1976). The proposed
MIL allows software systems to be represented as a “finite directed graph” -- all the
contained nodes in the graph are reachable from each other. The idea of subsystems
is supported in the MIL. Subsystems are stored in a library structure and can be

referred in an MIL program as a module.

10

Cooprider’s MIL expands the basic of previous MILs to include a version control
facility and a software construction facility (Cooprider, 1979). The version control
ability allows modules to hold different versioning information, so that duplication of
modules is prevented. The construction system supports creation of applications from
source files, rules and processors. The source file and rules are input to a processor

that creates the application.

Conic is an extension of MIL75 to support execution of components in distributed
environments (Magee ef al., 1989). Conic components are equipped with ports to
communicate with the environment. Message passing is the only supported
mechanism for component interaction. Runtime component composition is specified
by a configuration language and interpreted by an application server that executes
components on different CPUs and transfers messages among components. Conic has
an associated compiler that supports platform-independence code generation -- the
Asterdam Compiler Kit. The compiler-kit takes in source code and regenerates

platform specific binaries for execution (Tanenbaum et.al, 1983).

2.1.2 Architectural Description Languages

ADL is a language that provides features for modeling a software systems conceptual
architecture, separated from the system’s implementation. Comparing to MILs, the
language targets coarser-grained architectural elements and their structures. The
building blocks of ADL are components, connectors and architectural configuration.
ADLs are usually associated with suitable supporting tools, such as, framework

generator and system verifier.

11

Rapide supports modeling and simulation of the dynamic behavior of component-
based systems (Luckham and Vera, 1995). Components are defined using interfaces,
connections, and constraints. The specifications of connections are embodied in
components and connecting mechanisms cannot be changed after deployment. The
composition model also limits the communication between components to event
propagation. When communication links are instantiated, a specific implementation is

required for each connection.

Darwin addresses software architectures of distributed systems (Magee and Kramer,
1995). The language supports dynamic structures. The modeled evolution includes
changes in connections between components and the set of component instances.
Darwin components are characterized by services -- provide service and contain
services. Components are binded together by services. Each connection is
represented by a binding between a required service and a provided service. The
operational semantics for system specification in Darwin is analyzed with n—calculus
(Milner er. al, 1992). The focus of the analysis is based on the binding of services,

instead of interaction between components and connectors.

UniCon considers connectors as first class entities (Shaw et al., 1995; Shaw et al.,
1996). It supports a piedefined set of connectors with defined semantics: pipe, file
/O, procedure calls, data accesses and remote procedure calls. The software
architectures are specified in terms of rules that define the admissible connections
between connectors and components. The core components are typed, and a type-
checking like mechanism is used to ensure the validity of the connection.
Components in UniCon can be source code, object-code components, or executable
components. The linkage of components requires dynamic generation of glue codes
for participating connectors. The creation of code is based on the component
descriptions and the source code. The UniCon parser interprets this information and
generates C-based Odin files (Clemm, 1998). The Odin files contain the source code

and compiler directives for generation of the components recognized in by the Odin

12

compiler. UniCon is able to deal with executables; it provides limited support for
dynamic component composition, but constrained in Unix-style and C-based

environments.

Wright is an extension of UniCon that uses formal specification to specify protocols
of interaction between components (Allen and Garlan, 1997). The protocols are
defined by Communicating Sequential Processes (Hoare, 1985). Since connectors
and components are specified with formal specifications, properties of connections

can be checked automatically for consistency and compatibility.

The C2 architecture style (Medvidovic et al., 1999) can be summarized as a network
of components connected together by connectors for message passing. Components
and connectors both have a defined top and bottom. The top of a component can be
connected to the bottom of a single connector. The interface port of connectors is
typed and it can support an arbitrary of components. The interface of connectors is
evolvable and it is determined by interfaces of the connected components. The C2
supports the generation of application frameworks for C++, Ada and Java. C2 also
supports dynamic manipulation of the application architecture with the
C2’architecture modification language. The language allows add, remove, weld and

unweld for components in the architecture at runtime.

ACME is an Architecture Description Interchange Language used to provide
intermediate representations for ADLs (Garlan et al., 1997). The core architectural
entities supported are components, connectors, systems, ports, roles, representations,
and rep-maps. Compositions of entities are interpreted into identified architectural
templates. These templates support the abstraction of information from the style and

are used to interchange the architecture description between ADLs.

13

ARMANI provides a design vocabulary, design rules and architecture style to capture
details for architectural design (Monroe, 1998). It supports definition of styles in

terms of component types, connector types and architectural constraints.

Table 1 summarizes the comparisons of supported features between different MILs
and ADLs. Some of them are used only in the analysis of software architecture, such
as, Darwin, Rapide, Wright, ACME, and ARMANI. They are not used to relate the
software architecture and the actual implementation of the composed system. The
table shows that UniCon and C2 is the only ADL that supports dynamic composition
of executables. UniCon using predefined connectors to provide more flexibility for
connections, while C2 supports only event passing as connection mechanism among

components.

14

ADL Connectors | Suppeorts Supports Supports Works
as 1% Class | Typed Typed Dynamic with
Entity Components | Connectors | Composition | Execut

able

MIL No No No No No

Thomas’ No No No No No

MIL

Cooprider’ | No No No No No

s MIL

Conic No No No Yes No

Rapide No Yes No Yes No

Darwin No Yes Yes No No

UniCon Yes Yes Yes Partial Yes

Wright Yes Yes Yes No No

C2 Yes No Yes Yes Yes

ACME Yes Yes Yes No No

ARMANI Yes Yes Yes No No

Table 1: Comparisons of supported features of component composition in ADLs

Medvidovic and Taylor (2000) have evaluated a set of ADL based on their properties.
They have concluded most ADLs support static generation of source code for the
application or the skeleton for the application framework. Clearly, components
generated from these ADLs do not support evolution of software architecture during
runtime; a certain level support of dynamism is necessary. The paper found that the
support tool ArchStudio of C2 exhibits this property. The tool allows interactive
construction, execution, and run-time modification of C2 architectures implemented
in Java. The dynamism is achieved by loading and linking new components or

connectors into the tool dynamically.

15

2.2 Other Composition Approaches

To connect components together requires multiple steps, most of which require
human intervention. Standards for composing components exists, such as, CORBA,

COM, DCOM, and RMI. In the last few years, different tool-sets have been

developed to allow composers to connect components together.

Rational Rose is a visual modeling tool to improve software design, manage
complexity, define software architecture, enable reuse and capture vital business
processes (Rational Rose, 2001). The users of the tool are able to create components
templates and saved as a model in the Rational Rose standard. The application
framework can be composed using the defined component models. The composed
framework creates skeleton code and a visual model to the application. The
generated application requires experienced technical personnel to fill in the missing

parts before the framework develops into an executable application.

Paradigm Plus is an UML-based modeling tool for creating component centric
applications (Paradigm Plus, 2001). The focus of the application is in designing,
modeling, and component-reuse of software systems. Each component defined in the
application is hosted on a multi-user object repository. The application is able to
publish the UML-based models of the defined components in HTML format and
added to the intranet web site. Therefore, anyone within the organization can browse
the design models and locate reusable components. The composition styles of the

software components are defined in the UML-based model.

Broadvision’s software suite helps companies construct Web sites that offer
personalized e-commerce transactions, tailored customer service, and Web-based

content management (Broadvision, 2001). The application offers a design center and

16

a publishing center to Web authors and Internet application developers. The design
center provides Broadvision’s users a standard approach to create Web-based
applications. The publishing center is an easy-to-use tool with a Web-based interface
for managing distributed, collaborative online content development. It allows a
distributed team of non-technical content experts to manage every aspect of site
content, including creation, editing, staging, production, and archiving. The
references of the Web pages are linked together statically in the publishing center.

(Kent er al., 1998) proposed a pictorial approach to specify and verify software
composition. Using the framework, composition of components is achieved through
sub-typing and framework-inclusion. Further information can be found at Catalysis
(d’Souza and Wills, 1997). The development environment is a CASE tool similar to
UML, which generates skeleton code for component developers. The component
composition environment supports a software development methodology, and is not

constrained to any OO programming languages.

Ciao is a tool that generates target applications by solving packaging mismatch
between C-based components (Deline, 1999). The tool contains a Ciao compiler to
process the Ciao code written by the packager and component producer. The target
product of the compiler is the packager source and component source in C. The
UniCon system is used to generate applications with the available component

resources.

RESOLVE aims at reducing the gap between formal specifications and actual
implementations through interfaces of components (Bucci, e al., 1994; Sitaraman,
1999). The supporting tool, WorkBench, creates a development environment for
RESOLVE language. The tool contains a navigator to browse existing components, a
module editor to manipulate specifications and a composition wizard for composing

components. Component composition in the tool is based on the matching of formal

17

specifications for interfaces and implementations of components. The target outputs
of the tool are source code of the application either in Ada, C++ or Java, and these

codes are passed to corresponding compilers to generate executables.

Composition theory expresses rules for composing components in formal languages.
The language is used to specify interfaces of components. Therefore, modules in
system can be designed and verified separately. The implementation of the modules
must satisfy its interface without knowing details of other modules in the system.
The analysis of the interface provides verifications that the collection of interacting
modules satisfies the system specification. Examples of composition theory can be
found in (Lam and Shankar, 1994), (Fiadeiro and Maibaum, 1995) based on Category
Theory (Goguen, 91), (Magee and Kramer, 1995) relied on n-calculus (Milner et. al,
1992), and (Allen and Garlan, 1997) using Communicating Sequential Processes
(Hoare, 1985).

2.3 Dynamic Component Composition Tools

There are tools available for dynamic component composition for binary components
-- Espresso (Faison, 1997), Combo Framework (Weinreich, 1999), E-Speak (Hewlett-
Packard, 1999) and Michiels and Wydaeghe (2000). These models are based solely
on the interface of components and method invocation. Connections between
components are established with direct connection, parameterization of connectors in
the source code level is not required. The dynamism of the composition environment
allows interactive construction, execution and runtime-modification of the system.
To support these behaviors, the framework allows dynamic loading and linking of

components into the environment.

Espresso allows users to compose components in a tool-based environment. Espresso
components are JavaBeans. The tool contains a user interface representing

components as box and line. Users of the tool link components together by drawing

18

lines across the ports. Ports are not typed, and they refer to methods within the
component. Properties of JavaBean also support components to be loaded
dynamically and transferable via network into the component environment. Glue
code is not required to connect components since the composition model is based on

the JavaBean specification.

The Combo component composition framework was developed in C++ and requires
components to be loaded at start-up. The framework does not support dynamic
clustering of existing components to form new components. Interfaces and properties
of components are required to be specified in a separate system configuration file. A
component manager uses the configuration file to determine which component is
supplied to the application and being executed at runtime. The application
determines the required interface and requests the components from the manager.
The manager finds the best matching component, then it creates an instance and binds
the component with the application. Components in the framework interacts with

interfaces, no generation of glue code is necessary.

E-Speak is a component composition framework in a distributed Java environment.
The environment takes advantage of the serialization and RMI properties of Java.
The environment joins participants in a federation and they are classified as providers
and clients. Providers are parties who create instances of components and supplying
them via the Web. These components are implemented with a predefined set of
interface class in Java. Clients use predefined interfaces to search for matching
components within the federation. New components cannot be dynamically loaded
into the system without notifying others about the newly predefined interface.
Components are supplied as serialized representations (an object-instance for local
and a stub for distributed environment) and executed in the target location. Glue code
is required to connect component in the framework, so recompilation is required for

each newly composed components with the provided interfaces.

19

Michiels and Wydaeghe (2000) propose a tool that composes components based on
micro-architecture design in Java environment. Micro-architectures are templates for
different architecture-styles of interactions between components. The environment
provides composers with a predefined set of micro-architectures as connectors for
components. Components are defined with an application program interface (API)
and a set of usage scenarios. The usage scenario also defines the mapping of the API
to the interactions in micro-architectures. A component composition wizard is
provided in the environment to allow users to specify the behavior of the composed
component in the form of message sequence chart. The wizard analyzes the chart and
generates the glue code for the micro-architecture template. The code for the
template is loaded into the execution environment to execute the composed
application. The only supported connection mechanism within the connectors is

method invocation.

Table 2 contains a summary of the investigated tools for software composition.

Name Composition | Summary

Ciao Static e Constrained in C and Unix Environment

e Generate code and compiled into executable

Resolve Static e Support ADA, Java and C++

e Based on a composition language to
describe components

e Generate code and compiled into executable

Rational Rose | Static e Based on Rational Rose application
framework

e Generate skeleton code only

Paradigm Plus | Static e CASE Tool
e Support publishing of components

e Generate skeleton code only

Broadvision Static e Web-publishing tool

e Allowing dynamic creation of Web page

20

e Support publishing of components

CORBA Dynamic e Require predefined interface between
components

e Support components in different platform
and development language

COM Dynamic e Supports only Window environment
e Required predefined interfaces between
components
DCOM Dynamic e Same as COM

e Support distributed components

RMI Dynamic e Support only Java environment

e Predefined interface required

Espresso Dynamic e Based on JavaBean standard
e Interface of components do not need to be
predefined
Combo Dynamic e Support C++ environment
¢ Interface of components do not need to be
predefined
e Interface of components are stored in a
database
E-speak Dynamic e Based on RMI
e Require predefined interface between
components
Michiels and Dynamic e Predefined interface required

Wyd . .
ydaeghe e Based on micro-architecture templates

Table 2: Investigated software composition tools

2.4 Summary

Nierstrasz and Meijler (1995) suggest the composition of software component divides

into two streams: static and dynamic.

21

The static composition of components creates statically binded applications which
can not be altered during runtime. Any changes to the architecture of the application
require recompilation and re-execution of the system. On the other hand, dynamic
composition allows dynamism in the composed systems. The architecture of these
systems can be modified at run-time. The alternation of the system architecture may
not require reinstantiation of the application to accommodate the changes in the

structure.

Applications created with the static composition are based on compiler and linkers.
The composition environment interprets the instructions for composing applications
with a parser. The parser generates code for components and glue code for
connectors. The generated code is passed to the compiler, which statically binds
them together into executables. The component can be executed without the
composition environment. Once the system is composed, any changes to the
architecture require recompilation of the system. The connection mechanisms among
components are not restricted to method invocation and interfaces in component

specifications. However, the overhead of code generation and compilation is large.

The dynamic composition technique creates applications dynamically. The technique
works with the binary code of components. The composition of components is based
on interfaces and predefined communication techniques, such as, method invocation
and event passing. Since connections between components are established with

direct connection, parameterized connectors are not necessary.

The dynamism of the composition environment allows interactive construction,
execution and runtime-modification of the system. Therefore, applications cannot be
executed without the composition environment. To support these behaviors, the
environment allows dynamic loading and linking of components into the

environment. The composed components are not statically boursded together in a rigid

22

way, and they can be rearranged to form another applications. The target software

can evolve at runtime.

The components in WebCODS are binary components; therefore, their composition
environment uses dynamic composition. The connection mechanism between
components in dynamic composition is limited with component interfaces and
method invocations. This limitation is overcome by the use of UniCon. This ADL
provides the environment with a composition model and a predefined set of
connectors. The set of connectors provides extra connection mechanisms between
components in addition to message passing, such as piped streams, file connections,
and socket connections. Applications composed in WebCODS allow dynamic

alteration of system architecture at runtime.

23

Chapter 3: Component Classification
Background

Building a software component library requires a classification method to organize
the contained assets. To successfully identify and reuse the components in systems,
users must be able to understand the classification scheme and find the desire assets.
Prieto-Diaz (1991) says that a classification scheme for reusable software must meet

the following criteria:
1. Support an expanding collection
2. Locate exact matched and similar components
3. Find functionally equivalent components across domains
4. Detail components precisely and descriptively
5. Be easy to maintain and use

6. Be amenable to automation

3.1 Representation of Components

Frakes and Pole (1994) describe an empirical investigation for the different libraries
and information science methods. The representation of information can be divided

into two different categories: controlled vocabulary and uncontrolled vocabulary.

24

Controlled vocabulary places limits on the terms that can be used to describe
classified object and on the syntax that can be used to combine those terms.
Controlled vocabularies rely on a predefined set of keywords as indexing terms
derived by experts. The controlled vocabulary thesaurus controls all acceptable terms
that can be used and unacceptable terms that are not usable. Uncontrolled
vocabularies do not have restrictions on the terms and syntax in the component

descriptions.

The representation of components can be decomposed into enumerated, facets,

attribute-value, and free text (uncontrolled) keywords classifications.

Enumerated classification divides subject areas into mutually exclusive hierarchical
classes (Booch, 1987). The highly structured schema makes enumerated classification
easy to understand and use. The well-defined hierarchy helps users understand the
relationships among controlled indexing terms, and provides a searching method by
traversing the tree. For example, the structure of the Java Foundation Class (JFC)
library is classified into different packages according to their functionality. However
this classification requires a lot of domain knowledge to create exclusive relations.
Once the classification scheme is established, a simple change of the scheme may
affect other assets in the scheme. Therefore, this classification scheme cannot be

used when the domain is not well understood and evolving.

Facet-based classification divides subject areas using basic terms that are organized
as facets. (Prieto-Diaz, 1985; Prieto-Diaz and Freeman, 1987) The facets are
identified by the most important vocabulary in a domain and then grouping the
similar terms together into facets. Assets are classified by synthesizing the facet term
pairs in the classification scheme. Facets are more flexible than enumerated schemes
because individual facets can be redesigned without impacting other facets. This

method requires that users know the significance of each facet and the terms that are

25

used in the facet. The list of facets can be ranked according to their importance, and
usually the size of the list contains less than seven items. The schema can be
enhanced with a controlled vocabulary thesaurus to provide the searching ability
across domains. Facet-based classification also provides some facilities for handling

synonyms that are not available in attribute-value matching.

Attribute-value classification describes information in terms of a set of paired
attributes and values. This classification scheme is very similar to facet classification.
However, the vocabulary used can be controlled and uncontrolled. The faceted
technique uses a fixed number of facets per domain, and no such restriction exists for
attribute-value methods. Moreover, searching of attributes contains no order and the

list of attributes is not constrained to any numbers of items.

Free-text keyword indexing uses terms automatically extracted from documentation.
(Frakes and Negmeh, 1987) The free-text analysis consists of analyzing word
frequencies in the natural text. Relevant keywords are derived automatically by their
statistical and positional properties. The processing is automatic and is referred to as
automatic indexing. The extracted terms in free-text analysis can be drawn from any
source. Since the indexing is automated, this results in lower maintaining cost than
other classification schemes. The terms used in classification is not restricted, they
can be as specific as possible to describe assets. The low cost of building the
repository coupled with adequate performance has made this approach popular in
commercial text retrieval systems and World Wide Web search engines such as
Yahoo and AltaVista.

The study of Frakes and Pole (1994) also suggest that no single indexing method
works really well. The effectiveness of these systems ranged from 40% to 60%. The
evaluation is based on the recall and precision number. Recall is the number of

relevant items retrieved over the number of relevant items in the database. Precision

26

is the number of relevant items retrieved over the number of all items retrieved.
Moreover, different representation methods will locate different items, although their
recall and precision numbers tends to be similar. Users tend to use systems that are

easy to use and understand.

Information retrieval systems need to address incomplete and inconsistent indexing.
The downfall of the traditional matching strategy is that queries are viewed as precise
specifications of user needs and document representations as precise descriptions of
repository objects. The existence of incomplete and inconsistent indexing makes the
retrieval methods and algorithm go beyond simplistic keyword matching schemes.
The employment of “intelligent” retrieval methods extends the exact-match paradigm
to retrieve items by reformulation of the query (Williams, 1984). The reformulation
can be performed by combining different representation models to obtain a higher
accuracy and flexibility in classifications and retrieval of components. Empirical
studies indicate that this combination of techniques achieves good performance in the

face of indexing problems and ill-defined information needs (Henninger, 1997).

Table 4 summaries the characteristics of different classification methods.

Classification Features
Enumerated Rigid structure, difficult to change,
requires concrete domain knowledge
Facet-based Flexible structure, easy to change,
requires understanding from users, facets are ordered
Attribute-value Flexible structure, attributes are non-ordered
Free-text Non-structured, using natural language for description

Table 3: Summary of classification scheme

27

3.2 Software Libraries

(Creech et al.,1991) proposed a tool called Kiosk, to interconnect a library of reusable
assets using hypertext. The hypertext is selected for structuring the library because it
supports navigation while performing searches within the library. The use of
keywords and free-text searching are also supported by the hypertext. The software
components in the library are Unix text files with links that point to other nodes in the
library. The nodes are classified into two forms: classification nodes and component
nodes. The classification nodes provide the classification lattices of all its referred
nodes. The referred nodes can be other classification or component nodes.
Component nodes contain the actual functionality of the referred component. The
library structure is highly flexible, because an existing library can be restructured by
linking nodes in different arrangement. However, the experimental users of the
system claim that it is difficult to use and that is easy to get lost in the hypertext

environment.

Henninger (1997) developed a software reuse repository for Emacs Lisp functions
and variables. The repository supports tools to create information structures, flexible
mechanisms to search and browse the repository, and tools to refine and adapt
information as users work with the repository. The components are extracted from
text files and indexed with a combination of automatic extraction and interactive user
support. Components in the repository are indexed with key terms and phrases. The
system uses an intelligent retrieval method that extends the exact-match paradigm to
retrieve items that are associated with a query. The method uses an association
network for terms. The network consists of two layers of nodes: terms and
components. They are connected with weighted links. The retrieval of components

is based on a spreading activation procedure

(Mozer, 1984) applied on the association network. The query node is given an
activation index. If a node has an index greater than a threshold, the value is passed
through each of its links to other nodes. The sum of the received activation value is

modulated with a decay parameter -- the parameter is calculated based on the weight

28

of links. With this technique, an unlimited number of documents may be “relevant”
to some degrees. The stabilization of the matching set is achieved when the
maximum number of iterations is reached, or the activation index lies below certain
threshold. The association network adapts to the evolving environment by adjusting

the linkage weight between nodes according to the feedbacks from users.

Swanson and Samadzadeh (1992) implemented a software library that uses facet-
based classification. The system is used to catalog software components using the
same faceted cataloging scheme presented by Prieto-Diaz and Freeman (1987) and
supports retrieval of components from the repository. The system is used to only
catalog components at the source code level. Six facets used are divided into two
major areas: 3 for functionality of the components and 3 for describing the execution
environment. Each facet used is accompanied with its own thesaurus data file. The
thesaurus is filled with sets of descriptors. For example, given a set of descriptors
“add, sum, total” for the facet “function”, the user can use any of the descriptor as
input for classification. If the user enters the word “total”, the thesaurus searches the
set and understands the input term referred is the same as “sum” and “add”. The
system does not support dynamic insertion of terms into the thesaurus. The retrival of
components is based on matching of facets. The studies also suggests more

specialized the components, they are easier to be classified by facets.

Jade Bird Component Library system (JBCL) is a library system which supports
classification, organization, storage and retrieval of components (Li e al., 1998).
Components in the library are classified with attribute-values, keywords,
enumerations, and facets. Component providers can also supply information about
the relationship between the provided component and others in the library. The
system uses facets as the core classification method, and the other classifications are
auxiliary. The following five characteristics of components are selected as facets:
Application Environment, Application Domain, Functionality, Level of Abstraction,

and Representation. These facets are orthogonal and independent of each other, and

29

reflecting sufficient characteristics of components. Each facet is associated with a
structured set of legal terms called a term space. The component providers are not
constrained to the existing terms. They can add in new terms to the term space and
associate the term with synonyms. Users can retrieve components by facets,
keywords or attributes. After a component is found, the users can navigate the

relations based on the supplied relationship information by the component provider.

(Damiani et al., 1999) presented a hierarchical-aware classification schema for
object-oriented code. The components in the library are classified with a faceted
Software Description (SD). The SDs are generated automatically by extracting verb,
noun pairs from interfaces of the source. (Biggerstaff et al., 1994; Etzkom and Davis,
1997) These pairs form the features of the components and classify the software
components according to their behavioral characteristics. Each feature is a SD
associated with a specific weight used to compare relevance with other SDs. The
assignments of weights are performed automatically with a fuzzy weights assignment
technique. Since the system is designed for object-oriented code, the inheritance
properties of OO programming language is also presented in SDs. The propagation
of contexts in the SDs results in a hierarchy of component library with a classification
tree used to select contexts. Although a large portion of the classification work is
done automatically, the system still relies heavily on an application engineer who
customizes the automation script and manual tuning for each single SD. The retrival
system requires the user to set up a features list of the desired component and their

weights used in searching.

Component Behavior Library (CBR) classifies component based on the history of
executed program traces as a knowledge base to describe the behavior of components
(Pozewaunig and Reithmayer, 1999). The assets in the library are required to test
carefully. The classification details include the test cases that used to sample the
component and “past pictures” of the program. The identification process is based
on a signature matching system. The library is divided into partitions containing

30

components conformed to a generalized signature. The library also contains a

runtime environment to support testing and identification of components.

CHIME uses the browser to provide Web-based source code browsing. The central
focus of CHIME is the task of inserting HTML links into the source code.
Specifically, the library focused on distributed repository, and that syntactic and
semantic inter-relations between are preprocessed by some analysis tools. The links
in the assets are inserted dynamically according to the request of the searcher based
on the CHIME language. The mechanisms for identification of asset are defined
using CGI gateway tool. The using of CHIME provides a flexible library structure

for the librarian, and searching mechanism for users.

Table 4 shows the summary feature sheet for the described libraries.

Library Assets Classification
Kiosk Source Code Keywords
Swanson and | Source Code Facet-based

Samadzadeh, 1992
Henninger, 1997 LISP functions | Attribute-value with weighted

relations
JBCL Source Code | Facets-based and free-text
and Executable | description
Damiani et al, | Software Facets-based and Attribute-
1999 Descriptors value
CBR Software Behavior and test cases
Components
CHIME Source Code, | Facet-based
Text
Documents

Table 4: Software libraries and their classification scheme

31

3.3 Summary

Structured repositories for software reuse are faced with two interrelated problems:
(1) requiring the knowledge to initially construct the repository and (2) modifying the
repository to meet the evolving and dynamic needs for software development
organizations. The structure of a repository is the key to obtaining good retrieval
results. No matter how “intelligent” the matching algorithm, if the components are
indexed or structured poorly, it will be difficult to achieve good retrieval
performance. (Henninger, 1997) Moreover, the structuring of software repository
methods relies heavily on classification, which requires costly reclassification and
domain analysis efforts before a repository can be used effectively. (Frakes and Poles,
1994)

Simplicity is another key for successful repositories. The strength of methods that
use sophisticated information structures is that the knowledge contained in the
structure lead the users to relevant information easily. The weakness is that no
support is possible if the information is not structured in the manner expected with
users (Halasz, 1988). However, the good structure is crucial in a retrieval system’s
effectiveness, a balance must be found between structure and effective retrieval.
Retrieval methods employ very little structure requirement yet yield effective
retrieval performance. Feedback can be obtained from users and used to improve the
existing structure. (Damiani et al., 1999) (Henninger 1997) The result is a flexible
integration of retrieval and repository construction methods that improve the

underlying structures as the repository is used.

32

Chapter 4: Network Security Background

The widespread growth and the public access nature of the Internet enhance the
importance of “security”. Downloading and executing code from anywhere on the
Internet brings security problems along with it. Oaks (1998) suggests that a secure

system contains the following features:

e Safe from malevolent programs: Programs should not be allowed to harm a

user’s computer environment.

e Non-intrusive: Programs should be prevented from discovering private

information on the host computer’s network.

e Authenticated: The identity of the parties involved in the program should be

verified.
e Encrypted: Data that the program sends and receives should be encrypted.
e Audited: Potentially sensitive operations should always be logged.
e Verified: Rules of operation should be set and verified.

e Well-behaved: Programs should be prevented from consuming too many

system resources.

33

In fact, all these features could be part of a secure system, but the need of each of
these features varies from application to application. For example, the security model
of Java uses the idea of a sandbox to handle the first and second features in the list.
The sandbox provides an environment where the program can be executed. The
boundary of the environment is variable based on the number of system resources
which need to be protected. The Java security model can be extended to handle
authorization and encryption. Encryption and digital signatures can be used to protect

messages and verify the originator of the message using keys and certificates.

4.1 Keys and Certificates

Keys are required to create and verify digital signatures. Generally, a key is a long
string of numbers with a special mathematical property. The properties of keys are
based on the cryptographic algorithm they are going to be used for. Keys can either
come alone as a symmetrical secret key or in pairs of asymmetrical public and private
key. So there are three types of keys — secret, public and private. Under a
cryptographic perspective, there are only two types of keys — secret and shared. The
secret and private are classified as secret keys — the owner of the key must keep them
safely. The public keys can be published in the network, so they are classified as

shared keys. The usage of these keys is described here below.

The algorithm using the symmetrical secret key requires all involved parties to use
the same key. All parties must agree to keep the key secret, otherwise the security
connection between the parties is broken. The problem with this approach is the
storage of the keys. It is very important to keep the key secret, since anyone with the
key can decrypt the data. Therefore, sending the key over the network without
encryption is dangerous; doing so would be the same as sending the data itself

unencrypted.

34

Using key pairs allows keys to be transferable over the network. The public key can
be published to the world, as long as the private is kept secret. Encryption can be
done with either public or private key. If the information is encrypted with a private
key, the decryption must be done with the corresponding public key. The key pairs
provide asymmetric operations to cryptographic engines.

When keys are published to the Internet, it does not provide any information about
the owner of the key. For example, there is no way to verify that the received key of
person A is the key from person A. Since the key is only a set of numbers, the key
can be generated by different identities who claim to be person A. There is no way to

verify the source of the key based only on the key itself.

The use of certificates solves this problem by verifying public keys with a third-party
organization called a Certificate Authority (CA). A certificate contains three pieces

of information:
1. The information about whom the certificate has been issued for.
2. The public key associated with the owner.

3. A digital signature that verifies the information of the certificate. The
certificate is signed by the issuer of the certificate.

The certificate provides assurances that the public key contained in the certificate
does indeed belong to the entity that the certificate authority says it does. The
certificate is verified with the digital signature of the CA. If the signature is valid, the
public key in the certificate does in fact belong to the entity the certificate claims.
The certificate is the primary object for a person to provide other people with his/her
public key.

35

The most common certificate format is X509. An X509 certificate has a number of
special properties extending the basic certificate. The certificate is valid only for a
certain period of time specified by a start and an end date. Each certificate issued by
a certificate authority has a unique serial number. The combination of the serial

number and the certificate authority guarantees a unique certificate.

4.2 Encryption Technique

Message digests is a method to ensure that a message passed to and received from the
network has not been modified. A message digest is a small sequence of bytes that is
produced when a given set of data is passed through the cryptographic engine. The
algorithm does not operate with any key. Instead, it takes a stream of data and
produces a single output. The message digest does not produce a very high level of
security because there is nothing to prevent someone from changing both the text and
the digest stored in the file such that the new digest reflects the altered text. A
modified version of the message digest is the Message Authentication Code (MAC).
The algorithm concatenates a secret passphrase at the end of the data stream and
calculates the new message digest. The message digest is considered equal if the
same data and the passphrase are used in both the message sender and receiver. The
algorithm strongly requires that the sender and receiver agree on what data to use for
the passphrase and the passphase cannot be passed along with the text. Therefore, the
security of the algorithm depends heavily on the security of the passphrase.

There are two different types of encryption algorithms available: Secret key
algorithm and Public key algorithm.

The secret key algorithm uses a key that is agreed upon by the sender and receiver.
The target message is encrypted with the secret key. The encrypted message can be
decrypted with the same secret key used for encryption.

36

The public key algorithm uses shared keys: a private key and a public key. The keys
used to encrypt and decrypt are not symmetrical: the private key is used to encrypt the
message while the public key is used for decryption. The party in possession of the
public key may read the message, but cannot modify and decrypt the new message
with the same key again. The key can also be used as a digital signature. The owner
of the information signs the document with the private key, and the recipient of the
information uses the public key of the owner to verify the digital signature. The
signature process contains two steps. The signature engine calculates the message
digest for the input data, and then the digest is encrypted with the private key. The
verification of the digital signature is the reverse process of signing. The message
digest of the input data is calculated, then this digest is passed to the cryptographic
engine for decryption with the public key of the signer. The final step is to ensure the
decrypted digest and the digest from the data is the same.

Symmetrical keys can also be generated with key agreement algorithms by sharing
some public information. Diffie-Hellman Key Agreement (Diffie and Hellman,
1976) uses public share keys to generate the same secret key while preventing parties
unrelated to the agreement from generating the same key. In order to encrypt the
message, the common secret key is generated from the private key of the sender and
public keys from all receivers. The message is then encrypted with the created secret
key. For receivers of the message, the common secret key is generated using the
corresponding private key and public keys from all participants. The shared
information is the public keys of all entities who have potential access to the
decrypted message. The agreement ensures that the shared information is not enough
for eavesdroppers of the conversation to calculate the same shared key. Boneh and
Venkatesan (1996) suggest that it is possible to crack the algorithm only by knowing
the most significant bit (MSB) in the Diffie-Hellman Key Agreement Protocol.
However, the task is as hard as computing the secret key generates by the algorithm
(Bihem et al., 1999).

37

Oaks (1998) suggests that the use of signed message in Diffie-Hellman Key
Agreement can also avoid the risk of “man in the middle attack™. For example,
PartyA and PartyB want to build a common secret key and PartyC wants to crack the
code. The man in the middle attack is easy if PartyC can impersonate both PartyA and
PartyB. If PartyC can answer to PartyA as PartyB and the same on PartyB side, it is
easy for PartyC to know the two secret keys and make a bridge between PartyA and
PartyB. PartyC can read and modify the exchanged message at the same time. If
PartyA and PartyB signed the message, it is impossible for PartyC to impersonate

them.

4.3 Summary

The development of a network sharing applications requires the creation of suitable
security mechanism to control access for authorized users. It is necessary to provide

authentication and encryption services for secure applications.

Daily computer applications using public and private keys can be found. For
example, email systems provide services for signing and encrypting messages. These
systems provide a key management system for users to store certificates form other
entities and the private keys of themselves. The Web-browsers also provides abilities
to manipulate certificates and digital signatures. Kemmerer (1997) claims that these
features are not widely used at that time. However, certificates and digital signatures
are commonly used in Web pages. With the increasing use of Java applets, the Web-
browser is capable of downloading and executing programs from anywhere on the
Internet. Security precaution is required to prevent breaches from running code from

untrusted sources.

Java 1.1 supports the properties of authentication with the introduction of a jarsigner
utility. The architecture of Java provides a key management system for managing
key and certificates. The jarsigner tool obtains the private key of the entity that is
signing the jar file. Once the signed Jar file is produced, it can be downloaded by

38

users. In order to verify the signature, the certificate of the signer must be imported
to readers’ key management systems in advance. When the Jar file is read on the
remote system, the key management system is consulted to retrieve the public key of
the entity that signed the Jar file, so that the jar file signature can be verified. This
approached is commonly used in the Applet-viewer and other Java-enabled browsers

for web pages containing Java applets (Scott, 1999).

GIShape is a network-distributed system that uses certificates for security (Puliafito er
al., 1997). The aim of the application is to provide user access to the Sharpe tool
(Symbolic Hierarchical Automated Reliability/Performance Evaluator) through the
Web. The Web-page interfacing the application provides an Applet for users to
access the application. The secure communication protocol between the application
server and clients is divided into 3 stages: registration, initialization and data transfer.
The registration stage requires the client to generate a set of key pairs. The client
keeps the private key safe and sends the public key to the server. The server creates a
certificate for the client’s public key and signs it with its own private key. The server
then delivers its own certificates to the client and the new certificate issued. The
initialization stage is the loading of the Applet in the Web-browser. The client sends
a code to the server to identify its public key and a signed message for verification.
After the connection protocol is establish, secure messages can be sent. The message
sent in the data transfer stage contains the encrypted data and the sender’s signature.
The message is encrypted with the server’s public key and signed with the client’s
private key. The key and certificate operations are fully supported by Java
architecture. These operations are managed by the Applet running in the client side

and a wrapper for applications encoded in Java executing in the remote site.

The digital signature and encryption algorithms are the tools for application
developers to develop secure network applications. Different combinations of using

these tools provide flexibility for the developers to create secure applications that

39

target different security needs. The issue targeted by WebCODS is to develop a

secure protocol to transfer components in the network.

40

Chapter S: JavaSpaces

JavaSpaces is a distributed object system developed by Sun (Sun Microsystems,
1998). It focuses on transactional Linda operations and is intended as a platform to
provide distributed persistence for exchangeable objects. Linda defines an
abstraction for programming software agents and defines a small set of coordination
operations (Gelernter, 1985). In a Linda-based system, an ensemble of agents work
together on tasks within a shared environment, called a tuplespace. A tuplespace
contains tuples, which are structured containers of information relevant for the
application. The primitive operations provided by the system are retrieving, writing
and matching tuples in the tuplespace. (Sun Microsystems, 1998; Ciancarine er al.,
1998)

5.1 Overview

The distributed application paradigm supported by JavaSpaces is based on remote
agents interacting with others indirectly through a shared data object space. A space
is a shared, network-accessible repository for objects. Processes use the repository as
a persistent object storage and exchange mechanism. The processes coordinate by
exchanging objects through spaces, instead of communicating directly. The space

provides a unique set of key features for programming network applications.

Spaces are network-accessible “shared memories” that many remote processes can
interact with them concurrently. The “shared memory” also allows multiple
processes to simultaneously build and access distributed data structure, using objects
as building blocks.

41

Spaces provide reliable storage for objects. Once the object is stored in the space, it
will remain there until a process explicitly removes it. Process can specify a “lease™
time for the existence of the object in the space, after which it will be automatically
destroyed and removed from the space. When objects in a space are persistent, they
may outlive the processes that created them, remaining in the space even after the
process has terminated. This property is significant and necessary for supporting

uncoupled protocols between processes.

Objects in a space are identified by an associative lookup, rather than by memory
location or identifier. The associative lookup provides a relatively simple mechanism
of finding objects according to their content. The identification of an object requires
a matching template. The template is an object with some or all of its fields set to
specific values used for matching processes. The object in the space matches a

template if it matches the template’s specified field exactly.

JavaSpaces technology provides a transaction model that ensures that operations on
space are atomic. A transaction is atomic in the sense that all or none of the
operations in the transaction will be carried out. If any of the operations within the
transaction fails, then the entire transaction fails and any sub-operations that had
succeeded are “rolled back,” and the space is left in the same state it would have been
in if the transaction had never been attempted. Transactions are important when

dealing with partial failure.

The space also allows processes to exchange executable content. While in the space,
objects are passive data. They are not subjected to modification and execution.
However, when objects are retrieved out of the space, a local copy of the object is
created for the process using the object. The local object is just a regular Java object.

The process can modify the public fields and invoke the methods presented in the

42

downloaded object. This capability gives a powerful mechanism for extending the

behavior of applications using JavaSpaces.

5.2 Operations

There are four kinds of primary operations for JavaSpaces. The operations are:

1.

2.

write — write the given entry into the space
read — read an entry that matches the given template from the space

take — read an entry that matches the given template from the space and

remove it from the space

notify — notify a specified object when entries that match the given template

exist or are introduced into the space

Figure 1 and Figure 2 shows a simple HelloWorld example using JavaSpaces

architecture. The sample code contains an Entry that stores the message “Hello

World”. The main program uses the write and take function from the JavaSpaces to

transfer the entry between the server and the client’s environment.

public class HelloEntry implements
net.jini.core.entry.entry {

//The message contained in the entry
public string message .
= new String("Hello world™ ");

//Print out the message
public Sstring tostring() {
return message;

Figure 1: Sample Entry from the HelloWorld example

43

public class HelloworldExample {

JavaSpaces jp;

//Write the entry to the space
public void wri teTOSﬁ)ace O {
Entry e = new Helloworldeéntry();
jp.write(e);

//Read the entry from the space
public Entry readFromSpace(g
Entry e = new He11oWor1dEntry(),
//Set the content to null for matching
e.message = null;
return Jp.read(e);

//Main function)]
public static void main(string[] args) {

//Set up reference to space
getJavaspaces();

writeToSpace(Q);

Entry matchedEntry;
matchedeEntry = readfFromSpace();

//Print out the contain of the Entry
System.out.printin(matchedentry) ;

Figure 2: Sample code for writing and reading the HelloEntry from the space

Entries are the common base-object of all space-based applications. The entries are
exchanged in the space tc enable process communication, synchronization and
coordination of activities. When an entry is added to a JavaSpaces, the entry is stored

in serialized form by independently serializing each field in the entry.

A write places a copy of an entry into the space. The entry passed to the write is not
affected by the operation. Each write operation places a new entry into the space,

even if the same entry object is used in more than one write.

A read operation looks up the space for any entry that matches the template provided
as an entry. If a match is found, a copy of the matching entry is returned. If no match

is found, a null value is returned.

The matching of entries is based on the following rules:
1. The template’s type is the same as the entry’s, or is a supertype of the entry.

2. Every field in the template matches its corresponding field in the entry:

o If a template’s field is specified to be a wildcard (null value), then the
entry’s field is matched.

e If a template’s field is specified to contain a value, then it matches the

entry’s corresponding field of the two have the same value.

Successive read requests with the same template on the same space might or might
not return the same object, even if no intervening modifications have been made to
the space. Each invocation of read returns a new object, even if the same entry is

matched in the space.

A take request performs exactly like the corresponding read requests, except that the
matching entry is removed from the space. Two take operations will never return
copies of the same entry. If two equivalent entries are in the space, the two take

operations will return equivalent entries but different copies of entries.

JavaSpaces provides services for delivering notifications among processes. The
service is based on the observer design pattern (Gamma, 1994). The model works
together with event sources, event listeners and event objects. An event source is any
object that “fires” an event, and an event listener is an object that listens for fired
events. Whenever the event source fires an event, it notifies each of its registered
listeners by calling a method on the listener object and passing it an event object.

Space-based distributed events are built on top of the Jini Distributed Event model.

45

The model extends the Java event model to allow events to be passed form event
sources in one Java Virtual Machine (JVM) to remote event listeners resides in
another JVM.

When using space-based distributed events, the space is an event source that fires
events. Events are fired when entries are written into the space that matches the
template specified by the event listener. The JavaSpaces interface provides a notify
method that allows processes to register an object’s interest in the arrival of entries
that a matches a specific template. When an entry arrives that matches the template,
an event is generated by the space and sent to the registered object in the form of a

remote event object, by calling a notify method on the listener.

5.3 Benefits

Space-based communication loosens the ties between senders and receivers of
information. It promotes a loosely coupled communication style in which senders
and receivers of information interact indirectly through a space. In fact, the
communication protocol in the space behaves like the convention “Message Passing™:
one process sends out a message, and another process receives it. However, the
conventional message passing supplied by most low-level communication forces
senders and receivers to know each other’s identity, location and existence at the
same time. All three must be specified explicitly by the process in order for a
message to be delivered. The requirement tightly couples the sender and receivers

together.

The loosely coupled communication provides several advantages for communication
(Freeman et al., 1999). Senders and receivers can communicate anonymously.
Senders of information do not care who gets it, but some process will eventually
know how to handle the message. On the other hand, the process that picks up the

message does not care about who sent the message. Senders and receivers can be

46

located anywhere in the network, as long as they have access to an agreed-upon space
for exchanging messages. Even if the sender and receiver roam from machine to
machine, the communicate code used in the program does not need to be altered.
With space-based communication, senders and receivers are able to communicate any
anytime. The persistence of messages in the space allows space-based applications to

exhibit the “time-uncoupled” property.

47

Chapter 6: WebCODS

WebCODS is a prototype system to illustrate the idea of components-on-demand in
Web-based environments. WebCODS is a system to support brokerage of software
components on the Web. The system contains tools to support component
composition, search and identification of components in the component broker, and
secure transfer of components in the network. Three major kinds of actors participate
in WebCODS: Providers, Brokers, and Customers (Figure 3).

WebCODS Provider

- WebCODS
~ Broker

Component

Figure 3: Structure of WebCODS

The Broker provides secure component brokerage in the Web-based environment. It
provides an environment similar to a market where Customers and Providers meet

and trade products. Customers enter the market to browse and retrieve software

48

components that fit their needs. Customers who are interested in a component can
search the broker for matches or pick from a list containing all available components.
The broker transfers the required product to the client’s environment for composition
and execution. Providers develop software components and advertise their software

products through the mediation of the broker.

6.1 Client Environment

The client environment provides a login procedure for connecting clients to the
broker. If the client is verified as an authorized user in WebCODS, they can connect
to the broker and retrieve components from it. The environment contains a service
manager to communicate with the broker and a composition manager for managing
component composition and execution. The environment also contains a security

manager for secure communication between clients and the broker.

The service manager provides facilities for users to query the broker. The querying
results in a list of components, which are currently supplied by the broker. The result
list of the query contains components’ classification details and their providers’
information. The manager also handles the downloading of components. If clients
want to use a component listed in the broker, the manager sends the request to the
broker. The broker processes the request and returns the requested component to the

clients using the secure manager.

The composition manager provides the ability to compose and execute the
downloaded components in the environment. WebCODS specifies interfaces and
connections of components using a notation based on UniCon (Shaw et al., 1996).
Composition of components is supported dynamically using UniCon-based
connectors with a component composition GUL. WebCODS is based on UniCon,
thus the self-standing entities are components, connectors, and ports. The only

components supported by the current version of the system are Java components and

49

their compositions. The system is developed in Java to take advantage of reflection,

dynamic binding, and secure class loading.

The security manager provides secure communication between clients and the broker
using keys and certificates. The manager uses JavaSpaces as the primary transfer
medium. Digital signing and encryption are used in together with JavaSpaces when
transferring components in the network. Digital signing allows the receiver to verify
the source of information, while encryption ensures that only the authorized parties

are able to read the messages.

6.2 Provider Environment

The provider environment is similar to the client environment. It also possesses a
composition manager and a security manager. The major differences between the
provider and client environment is the ability to upload components to the broker and
specify classification details for created components. These extended abilities are

handled by the component manager.

The component manager allows users to send the selected components stored in the
local component repository. Providers can manage their component list in the broker
by adding and removing components from the broker. The broker maintains a
dynamic list of available components supplied by all WebCODS providers. The
manager also provides facilities for users to classify their components. The
classifying information is being used by the broker for searching, and by clients for
understanding and identification of components. The classification scheme is based

on facets and free-text description.

6.3 Broker Environment

The broker contains a storage area to temporary save the submitted components from
providers. Each component is accompanied with the corresponding classification

details. The identification of components in the broker requires a search engine. The

50

engine uses the query prepared by searchers and matches the query based on the

facets and free-text description.

The broker provides two ways for clients to retrieve components:
e List all components available in the broker

e Query for a list of available components that fits the searching criteria

The search engine is accompanied with a thesaurus. The thesaurus specifies all the
synonymous and ranks them according to the closeness to each other. The query can
be expanded using the thesaurus. Therefore, the search engine is able to generate the
biggest result set, with ranking of component based on the fitness to the searching

criteria.

51

Chapter 7: Support for Dynamic Composition

The focus of WebCODS is to provide component brokerage in a Web-based
environment. The component broker is the administrator of the market; it provides a
framework for providers to advertise their software products. Customers enter the
market to browse and retrieve software components that fit their needs. The client’s
environment is responsible for composition and execution of the downloaded product

received from the broker.

(Nierstrasz and Meijler, 1995) claim that tools supporting composition of software

components should supply three levels of support:
1. Framework Level
2. Composition Level

3. Instance Level

The composition framework in WebCODS allows dynamism and expands the

connection mechanism with connectors. In this section, we discuss how WebCODS

is targeting these levels and needs.

52

7.1 Framework Level

The framework level describes the ways components are composed together in terms
of component interfaces, composition mechanisms, and composition rules.
WebCODS is based on an ADL description called UniCon to express the software
architecture in terms of component interfaces, composition mechanisms and

composition rules.

Software architectures are specified with ports, connectors and components. Ports are
used to define interfaces of components and connectors are used to link ports
together. Components are referred to functional programming parts of a monolithic
application. Each component has an associated list of ports that defines the supported
mechanisms for its interconnections. A set of connectors is predefined in the
environment to provide composition mechanisms and to enforce the validity and

rules.

Figure 4 shows a sample interaction between components, connectors and ports.
There are 2 components (A and B), 4 ports (£ and o, ports of A, and y and &, ports of
B) and a connector (x). Port £ of component A is connected to port & of component B

using connector x.

Connector

Port

Con:lponcnt

Figure 4: Software Components and Connectors

53

Components supported are primitive and composite. The basic building blocks are
“Primitive Components”. They refer to primary features of applications. “Composite
Components” are defined as a collection of other (primitive or composite)
components. These components are interconnected together to form complex

features required by the composer.

Components in the framework are transferred between broker, clients, and providers
via networks. The transfer of the component requires the full specification of
components, which contains two parts: (1) the description of internal architecture of
the composite components and (2) the executables required to run the application.

Therefore, a protocol must be defined for the transfer of this information.

7.2 Composition Level

Composition level defines how applications are composed with components within
the framework. Specific applications are obtained as compositions of other generic
components defined in the framework. These newly created applications can fed
back to the framework as new components. The composers performing components
composition need to be aware of the connectivity of the components and perform
composition. The details regarding the implementations of components are not

required.

Garlen and Shaw (1994) performed a series of work in the area of Software
Architecture. During their studies of industrial projects, they have identified a few
common architecture styles that are usually used, such as, client server, and
blackboard architecture. In order to formalize a way to perform checks and analysis
in different architecture style, they decided to break down the system into a set of
components and connectors. Therefore, each component is specified by a typing

description of itself for function classification and a set of players which interacts

54

with the outside world. The connector specifies rules for components in the

connections, such as, number of connections and algorithm for connection.

The analysis of Software Architecture further breaks down into multiple phases
(Table 5).

Phase Focus
Syntactic Checks Type checking for the component and connectors in the
connections
Semantic Checks Check for the matching of parameters (protocols) or use
formal specification (second level of checks)
Linking Checks Final checks for the matching of connections between
components

Table S: Phases of software architecture analysis

The compiling stage finally links the component by specifying linker directives and

recompiles the associated component again.

The communications between components must be abstract and high level. Since
WebCODS components are developed by different providers, these components are
strongly decoupled. Each component in WebCODS consists of a set of Ports to
interact with the outside world. The examples for high-level connections are through

pipes, sockets, and files.

WebCODS is aimed to ensure that each component specified in the composed
application can establish valid links together. If links between components are valid,
the components are hooked up together with the minimal overhead added to the

system.

55

In order to achieve this purpose, we have identified that an ADL is required to:

1. Identifying all basic interactions allowed by components (limited to Java)

2. Typing description of ports

3. Describing of how ports are connected to each other

The UniCon-based description of WebCODS provides information about the

connectivity of the component and performs component composition.

Since the

connectivity of components is achieved with a set of predefined connectors, the

environment can analyze the validity of connections with type-checking and the

modes of connection (in, out and bi-directional).

7.2.1 Ports and Connectors

The description of the available connection mechanisms for components available in

the Java environment is described in details in the following sections.

summarized the analyzed results.

Table 6

Ports Mode Broadcasting | Supported
Procedures Calls | In, Out No No
Pipes In, Out No Yes
Events In, Out Yes Yes
Shared Variables | In, Out, In/Out | Yes No
Sockets In, Out, In/Out | Yes Yes
Files In, Out Yes Yes

Table 6: Summary for connections mechanism for components in Java

56

7.2.1.1 Procedures Calls

Components can be connected together via method invocation. This kind of
connection mechanism is similar to using interfaces when programming in Java. The
interface to components are predefined. The procedure definer provides actual
implementation of the functions. When the procedure caller wants to use the
component, the caller obtains the implementation from the procedure definer. Since
the interface to the component is predefined, the caller can invoke the function with

the given interface.

The connection of components via procedure results may have two scenarios:
e The definer and caller have an agreement on the interface

¢ The definer and caller do not have an agreement on the interface

The first case is the simple case to handle the connection. The connector uses the on-
line bridge pattern to handle the connection (DeLine, 1999). The procedure caller
first defines a way to pass references of the procedure definer into itself. Then the
caller is able to invoke the method according to the specified interface. The bridge
serves only the purpose of passing references from input component to output

component.

The second case can be handled with mediator pattern (DeLine, 1999). The
procedure caller and definer both specify their interfaces to the outside world.
During the connection phase, the connector maps the functions required by the caller
to the functions provided by the procedure definer. This step requires human
intervention, but can be automated based on the matching of function signature and
naming scheme. The code for the bridge must be generated at runtime to allow the
function caller to call the bridge and the bridge calls the procedure definer with the

57

correct function (Bridge Pattern). The use of compiler and source code of all

involved components is required to generating the executable of the connector.

In component-based systems, procedure calls between components creates strong
coupling. Szyperski (1998) suggested that this approach is not considered as good
design technique in component-based development environment. In the current
version of WebCODS, the composition model will not consider procedure call as a

valid connection mechanism.

7.2.1.2 Pipes (Streams)

The term Streams in Java has the same meaning as Pipes in Unix environment.

Streams in Java are separated into InputStreams and OutputStreams. However, they
cannot connect to each other without a intermediate connection. The intermediate
connection depends on a generic representation of data within the stream. For

example, the generic form of the data can be an array filled or a file filled with byte.

Streams can be connected as

e Buffered — the stream contains a circular buffer of a size specified by the user. As
bytes from the stream are read or skipped, the internal buffer is refilled as

necessary from the contained input stream, many bytes at a time.

e Non-buffered — the usage of this kind of stream is similar to the buffered stream
except the buffer size is 1. The contained byte will be over written with the new
data received from the input stream. Therefore, data will be lost if the reading

from the output stream is not as fast as writing operation.

58

The PipedStream available from Java presents a little different mechanism than the
discussed streams. PipedStream allows an input stream directly linked with a output
stream. If the input and output stream is able to connect with each other, it is not

necessary to use the generic form of data representation.

In this case, first the connector must set up two piped streams:
1. PipedInputStream — input stream for piped input stream

2. PipedOutputStream — output stream for piped output stream

The stream connector uses the piped streams to connect input and out streams
together. The implementation of the connector varies among non-buffered and
buffered stream. The major difference between them is the kind of input streams

used during the instantiation of the connector.

In the buffered version of the connector, the piped stream is first bounded with a
buffered input stream in the input side for buffering. The size of the buffer is
specified by the composers who create the connections between components.
However, in the non-buffered version, the piped input stream is connected only with a

basic input stream. Other than that, both connectors are very similar with each other.

7.2.1.3 Events

The events passing mechanism works like procedure with a well defined interface
from the Java language. The Event passing mechanism in Java has defined interfaces
for Events and EventListeners. The underlying mechanism for passing events to

events handlers is based on the method with the following signature:

void addEventListener (Event e)

59

In event passing, the procedure caller is the component that generates the Event. The
reference to the procedure definer is passed by the addEventListener method.
When an event is generated, all referred procedure definers will be notified. Then,

the definer reacts to the event according to their implementation.

Two connectors can be created in this category,

1. Point-to-Point connection — a one to one connection between an event generator

and an event handler

2. Broadcasting — a one to many connections between an event generator and event
handlers. The event generator is broadcasting the event to all the registered

event handlers through the addEventListener interface.

7.2.1.4 Shared Variables

Since the Java Virtual Machine prohibits programs from directly accessing physical
memory locations, sharing variables in memories is not possible in Java. Moreover,
WebCODS deals with compiled components, so it is impossible to set up variables
referred by the component which are not known at compile time. Due to the above
limitations, it seems that the connection between components using shared variables

is not possible.

7.2.1.5 Files

Files can be used to store output data from a component. Then the file can be read by
another component as input. The connection between these components requires an
agreement of the name and location of the file. Therefore, the connector of file

requires the following parameters:
e Name of the file
e Location of the file

60

After specifying the parameters, the connector passes the specified parameters (file
name) into the components. The mechanisms for output to and input from files are
left for the corresponding components to handle. Since a file and be read by multiple

readers, this type of Port supports both point-to-point and broadcasting.

7.2.1.6 Sockets

Data can also be passed using sockets. There are two types of sockets supported in

Java language by default:
e Socket — uses Streams for input and output

e Datagram Socket — uses Datagram Packet for input and output

There is only one parameter required for Socket connection:

e Port Number (Since WebCODS is focused in local composition of
components, the network address to connecting ports is defaulted back the
local machine)

According to the Java documentation (Sun Microsystems, 1999), the current
implementation of Socket and Datagram Socket do not supporting multicasting. The
language prohibits the broadcasting capability of the connection. The mode of the
connection for each type of socket can be In, Out, and In/Out.

Because of the incapability in the input and output mechanisma of the Datagram

Socket and Socket, they become two distinct types. The reasons are:
¢ The commonalties between Datagram Packet and Stream cannot be identified

e The input and output of Datagram Socket and Socket cannot be connected with

each other

61

7.2.1.7 Supporting Connection Mechanisms

Each kind of port in Table 7 contains a description of the behaviors of different
connectors supported in WebCODS (Table 8). The Mode of connection defines the

direction of the flow of information. Event, File and Pipe support only mono-

directional flows, while Sockets and Datagram Sockets support both mono- and bi-

directional connections. Event, and File also support Broadcasting, that is the

possibility of attaching multiple “in” ports to a single “out” port.

Connector Type Description

Event Event Sets up the links between “Event” ports, so that an

Connector event-generating component is connected with an event-
handling component.

File File Supports the connection between two “File” ports,

Connector handling the file name and location.

Non- Pipe Establishes a pipe to connect “Pipe” ports together.

Buffered

Stream

Connector

Buffered Pipe Similar to the Non-Buffered Stream Connector. In this

Stream case, the pipe has an associated buffer.

Connector

Socket Socket Supports the connection between two “Socket™ ports,

Connector handling the port number and IP address.

Datagram Datagram Similar to the Socket Connector, but supports

Socket Socket broadcasting and operates on packets.

Connector

Table 7: Connectors in WebCODS

62

Port Type Connector Mode Broadcasting

Event Event Event Connector | In, Out Yes

File File File Connector In, Out Yes
Buffered Stream

No

Connector

Pipe Pipe Non-Buffered In, Out
Stream No
Connector

Socket Socket Socket In, Out, In/Out | No
Connector

Datagram Datagram Datagram Socket

Socket Sockilt' Co;an%crctor In, Out, In/Out | No

Table 8: Types of Ports supported in WebCODS

The validity of connection is enforced according to the following scheme:

1.

2.

Each port can connect only to another port of the same kind.

can be connected only to other “Bi-directional”™ ports.

“In” ports can connect only to “Out” ports and vice versa; “Bi-directional”

The framework does not allow composition through implementation inheritance. The

components are interconnected only with a predefined set of interfaces and

connectors.

connectivity among connectors.

These restrictions avoid inconsistencies between components and the

The composition of the components is analyzed in a graphical environment. The

composition of components is achieved by linking ports from components with the

supplied connectors form the composition environment. Components and connectors

can also be parameterized for adaptation to the environment during actual

instantiation. The composition analysis does not involve compilers and creations of

glue code for connectors and components.

63

7.3 Instance Level

Instance level is used to instantiate components which exist in the composition level.
Components in need of instantiation require both specification and executables. The
instantiation is basically interpreting the specification and constructing instances of

composed components.

Instantiation of components in WebCODS may refer to constructing running
instances of both primitive or composite components. The steps for instantiation vary
between primitive and composite components. The process varies because primitive
components relate directly to executables, while composite components refer to a

collection of components which can be primitive or composite.

The instantiation of primitive components is the direct execution of the corresponding
binaries. The instance of the component can be parameterized with the parameter
supplied in the composition level. When the instantiation occurs, these specified
parameters are passed into the component as runtime variables. The component uses
these parameters to construct a parameterized instance of the component from the

executables (Figure 5).

Parameters

Parameterized
Running
—» Instance

Figure 5: Instantiation of Primitive Component

64

Instantiation of composite components is a recursive process since all the referred
components need to be instantiated. The first step of the instantiation transverses the
composite components to execute of all referred primitive components. After actual
instances of programming features are running, the required connectors used to
connect ports among the executed components are instantiated with the specified
parameters. The connectors are ready to be used to connect components together
according to the specification. When the instantiation of the current level of
components is finished, the process is ready to move on to the above level that
encapsulates the current level of components. The process repeats until it finishes

instantiation of highest level of composite components.

Figure 6 shows the steps required to instantiate the composite component CCA
(Composite Component A). The component CCA encapsulates another composite
component CCB (Composite Component B) that refers to a primitive component
PCC (Primitive Component A). The first step of the instantiation is to transverse
CCA to identify and execute all primitive components. After PCC is instantiated, the
next step is to instantiate CCB. The execution of CCB establishes a connection
between CCB and PCC. Then the process moves to the next level and establish
another connection between CCA and CCB. The instantiation of CCA ends the

recursive process because the highest level of the composite components is reached.

*’«%:5—&.&:
cca CCA CCA 5% ﬁ%%
Connection
CCB 1| | ccB
Instantiation

PCC

Figure 6: Instantiation of Composite Components

65

A flexible application can be achieved, if its architecture allows its components to be
removed, replaced and reconfigured without perturbing other parts of the application.
This kind of application can be generated, if the instantiation of the application does
not require recompilation of components and connections. There are no new binaries
required to load into the system for executions and reestablish connections among
components. In this way, the software architectures can be altered at runtime by
modifying the connectors in the graphical component composition environment. To
support dynamic composition of components, the environment should allow

components to be loaded and unloaded into the framework dynamically.

The reuse of the same application structure is supported by saving the structure of the
composed application. The save involves the architecture description of the
application in the UniCon-based ADL description. The description is created by
analyzing the structure of the composed applications in the environment. The
description specifies the required components for execution of this component and all
the connection mechanism among those required components. The description is in
text format and it does not contain any runtime-time information about the

application.

The saved description can be reloaded into the environment as a composite
component. The loading of saved components first sends the description to the
composition level. Then the composition level evaluates the composition mechanism
specified in the description, and validates the rules. If the validation of the
description succeeds, the component will be forwarded to the instantiation level for

execution.

66

Chapter 8: Component Brokerage

The broker in WebCODS supports component brokerage by allowing users to
identify suitable components and downloading them. The components in the
database are represented with facets and free-text description. The use of facets
allows classifiers more freedom to create complex relationships by combining facets
and terms. It is also much easier to modify than other classification schemes, because
one facet can be changed without affecting others in the classification scheme. The
free-text description is provided as an auxiliary classification scheme. Classifiers can
use the free-text description to supply more detail for their components. The
identification of components in the database is primarily based on facets and uses

keywords in the free-text descriptions as the secondary searching media.

The classification of components in WebCODS is the responsibility of providers.
When providers want to announce new components to the broker, they classify the
new component using facets and free-text descriptions. The components being sent

to the broker contains:

et
'

Binaries for execution

2. UniCon based description for connectivity and internal structure

(V3]

Classification details for the component

67

When the broker receives components from providers, the classification details of
components are extracted and stored in the search engine in the broker. The client
uses the search interface provided in the client environment to query the component
database using the search engine. The search engine returns a set of matched
components’ classification details to the client. The architecture of the component

brokerage environment in WebCODS is shown in Figure 7.

Broker Client

B: ‘ﬂ?’:‘\}"&
MR Search
‘: Engine

Provider

I

Component

Figure 7: Component Brokerage Environment in WebCODS

68

8.1 Component Classification

The classification method selected for WebCODS component exhibits common

requirements of component libraries (Li et al., 1998).

1. The classification information must express relevant information about the

component from the users point of view.

2. The classification strategy must be applicable to a broad spectrum of

components.

3. The classification must not be too complex. High complexity method will
decrease the quality of the classification scheme since more work is required

in order to understand and use the classification method properly.

The faceted classification method in WebCODS defines a set of independent facets
that describe essential features of components. The facets are applicable for all
components in the component library. Each facet is associated with a structured set
of terms. The facets form a list of pairs: facet, and the term value assigned for the

facet. Each term may be associated with several synonyms specified in a thesaurus.

The base facets are orthogonal and independent of each other. They reflect

sufficiently the characteristics related with the use of components.

69

The base facets are listed in descending order of their importance as follows:

e Domain: The names of domain that the component is used or may be used.
The term “domain™ characterizes a set of similar systems or applications that

share some common functionality.
e Action: The function that is performed by the component.
e Platform: The software platform that is used to execute the component.
e Safety: The safety level of executing the asset.

e Needed Resource: Other related sources required by the successful execution

of the component.

e Cost: The cost of using the component charged by the broker.

If the provider wants to add in new facets, the new facets are added to the bottom of
the base facets list in the order specified by providers. The new facet list is presented
to the broker which then updates the facet list stored in the search engine. When
users query the broker for components, the search engine presents the updated facet

list for users to query the available components in the broker.

The determination of term space of facet is difficult because a legalized term standard
is absent. The tentatively term space is presented below, which needs to be modified
and extended while the classification method is being used. The provider
environment used for classification allows classifier to enumerate the available term
space for each facet. Providers of component may provide new terms at any time
when they provide new components. The current supplied term spaces for each facet

are listed in Table 9.

70

Facet (Description) Term Space (Value)

Domain “Metric Collectors”, “Data
Analyzer”, “Data Viewer”

Action “Analyze”, “Extract Data”, “View
File”, “Convert File”

Platform Javal.1,Java 1.2

Safety “High”, “Medium”, “Low”

Needed Resources “Analyze”, “Extract Data”, “View
File”, “Convert File”

Cost 10, 20, 30

Table 9: Samples of Facets and Term Spaces used in WebCODS

The administrator of the broker maintains the terms of facets in the classification
scheme. In order to maintain consistency of term space, if terms supplied by
providers of components are not coincident with existing terms in the scheme, the
administrator will be consulted to add new terms and their synonyms into the

thesaurus.

The component classification uses faceted method as the main classification strategy,
and uses free-text description as auxiliary method. In the description, the provider
explains the behavior of the component in natural language. When users retrieve the
component, they obtain more understandable details from the provided text
description than with facet classification alone. Since the description also contains
controlled and uncontrolled keywords, it can be used for matching queries supplied

by users.

71

8.2 Operations of the Broker

The broker maintains a storage area for the submitted components from providers.
Components submitted by providers contain the core elements for component
composition and the corresponding classification information. The classification

information contains a facet list and free-text description.

When a client queries the component broker, the search engine provides two modes
of searching. The broker can provide the client a list of currently available
components. The returned list contains only the classification details for components.
If clients are interested in downloading the component, they have to make a separate
request for downloading. The broker also allows the client to search the component

database with a query. The search generates a ranked result set which match the

query.

The search engine is accompanied with a thesaurus. The search engine uses the
thesaurus to extend the exact-match paradigm in searching. The thesaurus contains a
list of synonyms used in the system-defined facets. For each synonym contained in
the thesaurus, there is a ranking of how close it is related to each other. In this way,
the search engine is able to identify one or more related components with ranked

closeness according to the input query.

Figure 8 shows a sample thesaurus for the vocabulary used in the Action facet. The
weighted relations between synonyms are also displayed. For example, the term
“metrics collecting” and “parsing” are synonyms in the domain; the assigned weight
for their closeness value is 1.0. The relationship between terms is not bi-directional.
Considering the synonyms “parsing” and “preprocessing”, if users refers to the term
“parsing”, preprocessing may be considered as an activity that involve parsing.

However, users interested in the preprocessing actions may not have a high interest in

72

parsing. Therefore, the closeness from the term “parsing” to “preprocessing” is

stronger than the opposite relationship.

e T e
R e e O] sk P
parsing preprocess...|0.5
preprocessing parsing 0.2
{metrics collecting iparsing 0.5
analyzing imetrics coli...10.5
metrics collecting analyzing 0.4
metrics collecting parsing 1.0

Figure 8: Thesaurus for Action Facet

When a query is submitted to the broker, the search engine expands the criteria using
the thesaurus. The expanded query contains all the related synonyms according to the
relationship in a specified query. The expanded query is also ranked according to the
closeness to the original query. Searching of components is based on the exact match
of terms in the expanded query. Since the query set is ordered, the result set is also

ordered according to the expanded query.

The engine takes in a query that contains two parts: one for facets and one for free
text description. For each facet specified in the query, the engine checks the thesaurus
and expands the submitted facet value with the list of weighted synonyms. The engine
selects the components that match with the expanded query. Components that match
the query are added to the result set with their rank, according with the weight in the
list of synonyms. If a search is required in the free-text description, the component
descriptions not containing the query term are removed from the result set constructed
in the previous stage. The set returned by the search is all the possible matched

components with ranking.

8.3 Security

WebCODS presents different security policies: password authentication, signed
message and encryption. The techniques that we will use are based on public, private
and Diffie-Hellman Key. The communication protocol can be subdivided into 3

stages as shown in Figure 9: registration, initialization and transferring data.

Client Broker

|

ot Pl Koy

Transferring \’
Dam Encrypted

Message

Figure 9: Security protocol used in WebCODS

The registration stage allows clients to register with a system administrator in
WebCODS. The client first generates a set of public and private key. The created
public key will be sent to the administrator. The administrator then creates a
certificate for the received public key. If the registration is success, the administrator
will deliver the created certificate and the system certificate to client. After the
installation of certificates in the key management system, the registration step is no

longer required until the certificate expires.

The initialization step begins after the client connects with the broker as an
authenticated user. The client application generates a pair of keys with Diffie-

Hellman Key agreement. The created public key is encrypted with the broker’s

74

public key and signed with the private key of the client. After receiving the encrypted
key, the broker then verifies the signature of the sender and obtains the key in the
message. Then, the broker follows a similar approach to send its Diffie-Hellman
public key to the client. At this point, both clients and the broker have obtained each
other’s key for secure data transfer.

The transferring of data in WebCODS is based on the JavaSpaces architecture.
Dispatching components on a public network have to address two different problems:
send the right component to the right receiver and protect the content of the message
to be read only by the authorized parties. The entry used to deliver messages in the
space of WebCODS features a destination and data section. The destination section
contains the delivery information of the message. The data section stores the
encrypted contains of the message. The message is encrypted with Diffie-Hellman
Keys, therefore, only authorized parties are able to decrypt the message.

75

Chapter 9: Implementation

Since WebCODS targets the Web-based environment, it requires its components to be

executable in different machine platforms. As suggested by (Faison, 1997), Java

satisfies this requirement.

The implementation of the WebCODS system includes (Figure 10):

a. Composition environment to compose components to form

applications,
b. Search engine for locating matching components for composition and

c. Security center to provide protection for transferring components

among the broker, clients and providers.

Composition
Environment —

-l

Security
Center

Search

Client - . Engtne

Security
Center

Compasition
Environment p—

-d-—-_

Broker

Security
Center

Provider

Figure 10: Distribution of components in WebCODS

The detailed descriptions of implementation strategies to support the above features

are described in the following sections.

76

9.1 Composition Tool

The components to suppert component composition are: (1) an interpreter that
processes and analyzes connectivity description for components, (2) a tool used to
transfer components in the network, and (3) a graphical composition environment for

manipulating components.

9.1.1 Interpreter

Components in WebCODS are accompanied with a connectivity description. The
descriptions are analyzed by a textual interpreter generated with JavaCC. The target
product of the interpretation is a set of object-based representation of the structure of
the component. The OO-based representations are used in the instance level for

instantiation and future composition.

Components in WebCODS are accompanied with a description. The description
characterizes the structure of the component into components, connectors and ports.
To convey this information, detailed descriptions for the internal structure and the
connectivity of the components are required. The internal structure reveals how
components encapsulated in the components are connected together. The
connectivity describes the incoming and outgoing interfaces available inside the
component. UniCon has been adapted to support runtime composition of
components. The modified version of UniCon contains only two major building

blocks: (1) a Port Specification, and (2) an Implementation Section.

77

The syntax of the modified UniCon language follows in BNF format is shown below:

Component ::= COMPONENT ComponentName

(PortList) *
[Implementation]

END COMPONENT

PortList ::= PORT PortName MODE aMode IS Type
MEMBER (StringWithMemberName)

END PORT

Implementation ::= IMPLEMENTATION

(INSTANCE InstanceName =

ComponentName [Parameter])%*
(Connect) *

END IMPLEMENTATION

Connect ::= CONNECT PortName TO PortName (, PortName)*
TYPE Type IS ConnectionMethod
[PARAM attribute] [Parameter]

Mode ::= IN | OUT | INOUT

Type ::= EVENT | FILE | PIPE | SOCKET | DATAGRAMSOCKET

78

ConnectionMethod ::= EVENTCONNECTOR | FILECONNECTOR

| BUFFEREDCONNECTOR
NONBUFFEREDCONNECTOR

[SOCKETCONNECTOR |
DATAGRAMSOCKETCONNECTOR

Parameter ::= { Parameter (, Parameter)* }

ComponentName, InstanceName, PortName are the usual C-like identifiers.

StringWithMemberName is a string with the name of the method to use in it.

Parameter can be a string or “$” <DIGIT> for referring to the index of the

instantiation parameter.

Figure 11 shows the UniCon-based description of the system illustrated in Figure 4
(A, B, and the composed system AandB), assuming that all ports are of type Pipe.

79

COMPONENT A COMPONENT B
Port L MODE OUT IS Pipe Port y MODE In IS Pipe
END PORT END PORT
Port o MODE IN IS Pipe Port EMODE In IS Pipe
END PORT END PORT

END COMPONENT END COMPONENT

COMPONENT AandB
Port Cl.w MODE OUT IS Pipe
END PORT
Port C2Z2.y MODE OUT IS Pipe
END PORT
IMPLEMENTATION
INSTANCE C1 = A
INSTANCE C2 = B
CONNECT Cl1. L TO C2.E
TYPE Pipe IS NonBuffered
END IMPLEMENTATION
END COMPONENT

Figure 11: Connectivity description for the components shown in Figure 4

Components referred by INSTANCE and CONNECT keywords can be either

primitive or composite. @ The composite description keeps only references to

subcomponents and allows subcomponents to specify their implementation details.

The description of a component can be interpreted into a set of Java objects. The

representation can be used for both types of components. Descriptions are stored in a

wrapper object called “Typed Component”. This wrapper object is used to store (1)

the descriptions of all referred subcomponents (2) the information of the interfaces,

(3) the connectivity information within the abstract component. The hierarchy of the

Typed Component is represented in UML in Figure 12.

80

7Primiﬁve Comvp‘d'site;
T T T T — T T ‘f’1 ”.i' .
~ Component _
0»'
0.r
ot Connection
e ——
7 PortTyBéf_ " Direction 1= _C_o;;)ector'
e S T
_n_ow BiDirectional

Figure 12: UML diagram shows the structure of components in WebCODS

The description of a component is transferable in the network with the object
serialization provided with Java. The transfer of component description also transfers

the description of all subcomponents.

9.1.2 Transfer of Components

The transfer of components requires the moving of components’ executables and the

corresponding description.

When constructing the OO-based representation of components, the component
referred by the INSTANCE can refer to an actual instance of the component. The
interpretation of the description can establish connections directly between instances
of components. Using the serialization properties of Java, the states of components
and their connection properties can be saved and reconstructed via deserialization of

the OO-based description. This approach is currently being used in JavaBeans.

81

However, implementation of transferability of components in WebCODS based-on

serialization raises feasibility issues:

e Components can be serialized only if all referred classes implement the

Serializable interface.

e Some connectors require reconnections in the target environment, such as,

Files and Socket

e For deserialization to be successful, all implementing classes must be

concurrent and available on the target machine.

For these reasons, we cannot restrict WebCODS component to be based on the
serialization properties of Java. The solution is to use the notion of an “Unresolved
Component”. The Typed Component contains references to WebCODS components
in the INSTANCE construct in the description. Instead of referring to the actual
instance to the components, we replace the reference with a symbolic reference --
“Unresolved Component™; a reference that will be resolved on the client machine.

Unresolved components are then serialized and sent to client machines.

On the target environment, the OO-based description with unresolved components is
deserialized. This forms the “Reference Component.” The Reference Component is
used with both primitive and composite components. ~When the Reference
Component refers to a primitive component, the concrete implementation stored in
the object refers to the start up Java class. When the typed component represents a
composite component, the component stores references to a collection of other
Reference Components. Establishment of connections can be done among instances
of components. The Reference Component contains the runtime information about (1)

the implementation of the component and (2) the types of ports.

82

9.1.3 Composition Environment

Composition environment supports analysis of connectivity, and composition and
instantiation of components. The composition environment provides a set of
predefined connectors for connections among components. The composition and
instantiation of components enables the user to add in new components to the

environment and execute them.

The interfaces of components are defined with ports. Each port has a name and a
type. Available types are Event, File, Pipe, Socket and Datagram Socket. The
connections are typed; each kind of ports has a specific connector to link them
together. Currently, WebCODS does not handle other kinds of interconnection
mechanisms proposed in the literature (Garlan, 1997; Deline 1999) such as procedure

calls and shared variables.

Using a predefined set of connectors allow connectors in WebCODS to be written
with the reflection property in Java and the template-method design pattern (Gamma
et al, 1994). Each type of connector has a template to handle the connection.
Recompilation of components and connectors is not required when new connections
are established components. Runtime modification of software architecture is

supported.

Consider the previous example in Figure 4. Port £ of A and port & of B are connected
with a non-buffered stream connector. Component A uses the method
setOutputStream and B uses setInputStream to set up the reference to the pipe
established by the connector. The interfaces of components are not predefined as in a

framework.

83

Figure 13 details a piece of Java code that could implement the required connection.
However, this approach requires the generation of glue code for the connector and
linking of components at runtime with the name of the actual procedures to be called,
setOutputStream and setInputStream.

" public class MyConnector extends NonBufferedConnector {
ComponentA objectl;
ComponentB object?;

InputStream is;
OutputStream os;

public MyConnector (ComponentA objectl, ComponentB object2) (..}

public void connect () {
//Set up reference to the Pipe initialized in the connector
objectl.setOutputStream(os}
object2.setInputStream(is);

Figure 13: Possible Java code for the connection of A and B in Figure 4.

Figure 14 illustrates the proposed solution for the Non-Buffered Connector. The
component specific codes in Figure 13 have been replaced with source in the
reflection package of Java to support generic components. Parameters for connectors
are not constrained to predefined values, they can be specified in the visual

composition environment or loaded from the specification language.

84

public class NonBufferedConnector {
Object objectl, object2:
String objectliMethodName, object2MethodName;
InputStream is:
OutputStream os;
public NonBufferedConnector
(Object objectl, String objectlMethodName,
Object object2, String object2MethodName) (...}
public void connect () {
//Create the Pipe

objectl.setOutputStream(os)
is called using Reflection

Method methodl, method2;

methodl.invoke (objectl, os); object2.setlnputStream(is)
method2.invoke (object2, is)q-\ is called using Reflection

Figure 14: Template used by the Non Buffered Connector

The composition environment allows dynamic loading of component descriptions
into the environment. The connectivity information associated with the component is
converted into OO-based descriptions. The analysis of connectivity is based on

reflection to validate the correctness of connections with typing-checking.

The instantiation of components converts unresolved components into resolved
components. The resolved component contains references to the actual instance of
the corresponding component. The instance of the component is finally executed and

awaiting for further composition in the environment.

Usually binary components can be instantiated with different parameters by calling
constructors with different interfaces. The instantiation of component with
parameters requires the framework to provide a predefined function of factory design
pattern to create instances of components. The method takes in an array of Strings as

parameters and it has the following interface:

Object createObjectWithParameters (String[] args)

85

Both primitive and composite components can be specified with parameters. In the
case of primitive, the specified parameters are passed to the actual instance of
component. Specifying parameters for composite component requires an extra step to
distribute the supplied parameters to each referred component. The description
should contain directives for distribution of these parameters. At the end of each
instance and connect statement of the textual description, there is an instantiation
section. The section is used for specifying the parameters for instantiation. The
parameter can be final or referencing to a runtime parameter specified during
instantiation. We have adopted an indexing scheme for referencing of parameters.

551”

The parameter “$1” uses “$” to signal the use of the indexing scheme and to refer

to the first parameter supplied at runtime.

For example, two primitive components (File Browser and File Content Viewer) are
composed to form a Complete File Viewer. Each primitive component is displayed in
separate windows. The display windows are differentiated by their titles, which can
be supplied as input parameter to the components. Therefore, the composed
component requires two titles. The first parameter is the title for the File Browser
component ($1), and the second parameter is the title for the File Content Viewer

component ($2).

When the Complete File Viewer component is executed with the parameters
“Browser” and “Viewer”. The instantiation of the composite component binds the
parameter $1 with “Browser” and the parameter $2 with “Viewer”. Each parameter is
passed on to the corresponding component for instantiation. The bounded parameters
are passed on to the sub-components. The next instantiation step rebinds the
argument “Browser” as $1 in the File Browser component, and the parameter
“Viewer” as $1 in the File Content Viewer component. The execution of the

primitive component uses the supplied parameter for instantiation.

86

The textual description of the current application architecture can be obtained by the
analysis of the composition environment. The generated description can be saved and

loaded into the environment for later retrieval.

9.2 Search Engine

The classification details of components to be used by the search engine are stored in
the eXtensible Markup Language (XML) format. XML is a markup language much
like HTML. It is designed to describe data. It uses a DTD (Document Type
Definition) to formally describe the data. XML can also be used to store data in files
or in databases. Applications can be written to store and retrieve information from the

store, and generic applications can be used to display the data.

The component classification information in XML is supplied by component
providers. The supplied description is verified by a predefined a DTD by the broker.
The verified XML descriptions are stored in the broker and they will be used by
search engine. When the XML description is provided to clients, they can display the

document in a tree view to visualize the enclosed information.

The purpose of a DTD is to define the legal building blocks of an XML document. It
defines the document structure with a list of legal elements. The DTD used in
WebCODS is shown in Figure 15. The DTD specifies the XML description will

contain the following sections:
1. Name — the name of the component.

2. Description — the free text description of the component in natural language.

87

3. Facets — the set of facets used to classify the component and their associated
attributes. The facets are listed in descending order according to their

importance.
4. Ports — list of the unconnected ports of the component.

5. Provider Name — the name of the component provider.

<!IELEMENT List (Components+*)>

<!ELEMENT Components (#PCDATA|Facets]| InputQOutput| Provider) *>
<!ATTLIST Components Name CDATA #REQUIRED

IRank CDATA "">

<!ELEMENT Facets (#PCDATA)>

<!ATTLIST Facets Name CDATA #REQUIRED>

<!ELEMENT InputOutput (Port*)>

<!ELEMENT Port EMPTY>

<!ATTLIST Port PortName CDATA #REQUIRED

PortType CDATA #REQUIRED

PortDirection (IN|OUT|INOUT) #IMPLIED>

<!ELEMENT Provider (#PCDATA)>

<!ATTLIST Provider Name CDATA #REQUIRED>

Figure 15: The DTD for the XML description of WebCODS component

A sample XML description of a WebCODS component is shown in Figure 16.

88

<?xml version="1.0" encoding="UTF-8"?>
<List>
<Component Name="TableMetricsViewer”>
<! [CDATA[Table-based visualization of the generated metrics data]]>
<Facets Name="Domain">MetricsExtraction</Facets>
<Facets Name="Action">Viewing</Facets>
<Facets Name="Platform">1.1.7</Facets>
<Facets Name="Safety">low</Facets>
<Facets Name="NeededResource">datalnput</Facets>
<Facets Name="Cost">10</Facets>
<InputOutput>
<Port PortName="FileInput" PortType="File" PortDirection="IN" />

</InputOutput>
<Provider Name="Component Provider A”></Provider>

</Component>

</List>

Figure 16: A sample XML description for WebCODS components

With all the classification details for components encoded in XML, the XML
description will be used by search engine in retrieving of components. The

implementation of the search engine contains two parts: the thesaurus and the engine.

The thesaurus contains terms and weighted relation between allied words. The
contained information in the thesaurus can be represented as a graph. Each node in
the graph represents a term and each edge represents the directed weighted proximity
relationship. The weighted graph is used to help identify related terms. When a
query is made, the graph is consulted to find all related terms and returns a related set
of terms used for querying. Weights are assigned to the edges, the higher the weight

89

assigned to the edge connecting the two terms, the closer the perceived proximity of

the terms.

Using a node as entry point, the traversal of the graph results with a list of synonyms
related to the term represented by the entry point. For each synonym in the list, there

is also a weight that explains how the two words are related.

Parsing related to Metrics Collecting with
weight 0.8
0.7 Parsing related to Preprocessing with weight
0.7
gr6eprocessing related to Parsing with weight
Metri 0.6 Derived:
ctres Parsing related to Preprocesing with weight
Collecting 0.8%0.6=0.48

Figure 17: Example of relations in the Thesaurus

Figure 17 shows some sample relations that might exist in the thesaurus. Parsing,
Preprocessing, and Metrics Collecting are terms in the thesaurus. When consulting
the graph for related synonyms for Parsing, the graph will be transversed starting
from Parsing. The querying of the graph finds that Metric Collecting relates to
Parsing with weight 0.8 and Preprocessing relates to Metrics Collecting with weight
0.6. The proximity relationship between Preprocessing and Parsing is the products of
weight from Parsing and Metrics Collecting, and Metrics Collecting and

Preprocessing. The function used to calculate the proximity relation is shown as:
w(Parsing, Preprocessing)=

w(Parsing, Metrics Collecting) *w(Metrics Collecting, Preprocessing).

90

When there is more than one value in the relationship from two terms, so the system

has to choose the maximum weight relations:

w(terml,termN)= max (w(terml,termN))
all the possible path

In this way, all the terms may be related to the query term with different proximity
relations. If two terms have a proximity relation below a threshold value (e.g., 0.3),
the two terms are not related to each other. According to the above formula, the
weight from Parsing to Preprocessing is maximum of the set {0.48, 0.7}. Therefore,
the proximity relation between Parsing and Preprocessing is 0.7. Table 10 shows the

returned set of using the term Parsing to query the graph.

|
CrTemm N ¢ ol L Relation’s
31Parsing 1.0
:1|Metrics Callection 0.8
=51 {Praprocessing 0.7

2R i Tem2 2T
Metrics Collection

{Metrics Collection Preprocessing

Parsing Preprocessing

Table 10: The result set after querying the graph with the term Parsing

The engine supports query of terms in facets and free text.

When searching for terms in the facets section, the engine first expands the submitted
facet value with the thesaurus. The querying of the thesaurus returns a list of
weighted synonyms to the engine. The engine then identifies the components that
matched with the expanded query. Since the list of synonyms is ranked, the matched
components are also ranked according to the weight associated to the synonyms. The

91

primitive matching criteria in the engine are based on exact matching. However, for
some facets that support ordinal scale, such as “Platform”, “Safety”, and “Cost”,
comparison operations like equality, greater than, and lower than are also supported.

The searching of facets is ordered in the same way as the importance of facets.

Searching the free text section serves as the auxiliary mechanism in WebCODS.
When the component description is received in the search engine, the free text
description of components is converted into a significant list (Frakes and Poles,
1991). This significant list is constructed from the free text description by discarding
the useless words. The discarded words are articles, prepositions, and some other
common words. To obtaining a higher accuracy matching, the list of significant
words can be improved with statistical analysis to discard the unnecessary terms. The
searching of free-text can also be accompanied with a thesaurus to expand the
querying for free text descriptions into a list of weighted synonyms. The lists of
significant words for components are compared against the expanded query for exact
match. Components that match the query are added to the result set with their rank,
according with the weight to the list of synonyms.

9.3 Security Center

To login to the broker, users have to supply their username, their company name, and
their password. This information is used to build the MDS5 hash code used for
authentication. The password is not transmitted over the network, because it is used
only for building this code. The username, company name and the generated
hashcode for password of the user is passed to the broker for validating the user’s

identity.

The validation process in the broker then uses the usernames, and company names

supplied by the customer to identify the password of the customer in the database.

92

The obtained information is used to generate a MDS5 hash code for the user. The
verification of the identity is based on the matching of the two codes.

Clients and providers use the broker as an intermediary in their communications. The
broker holds a public key for each customer, and each of the customers also holds the
public key of the broker. Therefore, messages send among parties can be verified if

they are signed by their senders.

The encryption technique used in WebCODS is based on “Diffie-Hellman™ key
agreement protocol. The protocol overcomes the necessity of using symmetric keys
for encrypting and decrypting messages. However, the DH keys are currently not
supported by X.500 certificate standard. Therefore, public DH keys cannot be
transferred in the format of certificate. Since WebCODS uses DH keys for
encryption, an addition step is required for the clients and broker to exchange their

public DH keys.

After the user is recognized as an authenticated user, the program creates a new set of
keys using the “Diffie-Hellman™ key agreement protocol. After the keypair is
generated, the broker and clients will exchange their DH public key. The message
used to enclose the key is signed with the private key of the sender. After verifying
the originality of the received public key from the broker, the client is able to build a
secret key. The secret key is built with the private key of the client and the public key
of the broker. The created secret key is served as a seed to build a “TripleDES” key
for encryption. The algorithm uses multiple DES keys to perform three rounds of
DES encryption or decryption; the added complexity greatly increases the amount of
time required to break the encryption. The encrypted message can only be decrypted
with the secret key generated from the public key of the client and the private key of
the broker. Figure 18 shows the events occurred after the clients initialize a login

request to the broker.

93

l Client I I Broker l
. Creation of
DH Public Key key pairs

| Public Key | Public key
Verify the message and
| DH Public Key l m?bw;nz;le k:ye =
Generate shared
i

Encrypt \mu\)

Message messages

<&-

Figure 18: Transferring of keys between clients and the broker

For performance consideration, the generated keypair will be saved in the local
environment for future use. The code used for decryption and encryption is shown in

Figure 19.

94

pubTic byte[] decrypting(byte[] buf, Key secretkey)
throws Exception{

//Create a TripleDES engine

Cipher c= Cipher.getinstance("DESede");

//Setup up the decryption with the ke
c.init(Cipher .DECRYPT_MODE, secretkey);

//Perform decryption
return c.doFinal (buf);

}

public byte[] encrypting(bytel] buf, Key secretKey)
throws Exception {

//Create a TripleDES engine

Cipher c= Cipher.getInstance("DESede");

//Setup up the encryption with the ke
c.init(Cipher.ENCRYPT_MODE, secretkey);

//pPerform encryption
return c.doFinal (buf);

Figure 19: Code for decryption and encryption in WebCODS

When transferring messages to the open JavaSpaces architecture, the system adopts
the following policies to ensure security. Each message posted to the space is
specified with recipients; so that messages will not be delivered to unauthorized
readers. Figure 20 shows the protocol for publishing messages in JavaSpaces for
WebCODS. In addition, the messages are signed with senders’ signatures using their
private keys. Therefore, the sender of the message can be verified. The content of

the message is encrypted using the sender’s DH private key and receiver’s public key.

95

public class webCODSEntry implements
net.jini.core.entry.Entry {

//Attribute used for matching
//the receiver of the message
public Receiver receiver;

//Content of the message .
public Object = signed_encrypted_object;

Figure 20: Protocols for transferring messages in WebCODS

Therefore, every message dispatched on the space is encrypted and signed. Parties
other than the specified recipients are not able to view the content of the message.
The message senders can be verified for validity and audited by the receiver for the

content of the message.

9.4 Fault Tolerance

WebCODS has a single point of failure: the broker. The broker program is
responsible for all the component brokerage related activities. If the program fails,
the entire WebCODS application cannot function anymore and all components
submitted from component providers may be lost. The possible error recovery

actions can be:

1. Backup the contents of the broker — reduce the lost of data cause by the

failure

2. Provide duplicate brokers — increase the reliability of the system

The current implementation of WebCODS broker implements a backup mechanism

for restoring the state of the broker before a failure occurred.

96

The assets in the broker are components. These components are composed of (1)
XML descriptions, (2) connectivity descriptions and (3) executables. The component
center in the broker first stores all these details for each component received from
providers. Then the XML description will be analyzed and the analyzed result is used

to form the search engine.

In the broker, the backup mechanism activates every 10 minutes to save the contained
list of assets. The saving stores the three necessary elements to form WebCODS
components. If the broker failed, the saved list of components can be loaded back

rebuild the component library in the broker.

The rebuilding of the broker simulates the process of submitting components from
providers. When a new component is added to the broker, the XML description is
analyzed and the classification description is passed on to the search engine. The
component library in the broker stores the connectivity description and the

executables of the component.

With the given XML descriptions, connectivity descriptions and executables of saved
components. Each component can be added to the reinitialized broker sequentially.
In this way, the component list of the broker and the component library is restored.
By adding components to the broker, the status of the search engine is also restored to

the state before the broker fails.

The code used for the restoration of the broker is shown in Figure 21.

97

public void restoreBroker() {
//Create a new search engine
SearchEngine= Engine.gettEngine();

//Load the saved file
ObjectInputStream ois = loadsavedfile();

//0btain the save list of component .
vector componentList = (Vector) ois.readObject();

//Build the component 1list in the broker
broker.addCcomponentList(componentList);

//Build the searchgngine .
searchEngine. addComponentList(componentList);

Figure 21: Code for restoration of the broker
The JavaSpaces is only used as the transfer medium, so it is not necessary to be

backed up. The restart of the broker does not have any interaction to the transferring

medium.

98

Chapter 10: Example Use of WebCODS

Participants in WebCODS are separated into three parties: broker, provider and client.
This section will use an example to illustrate how WebCODS involves all
participants.

10.1 Providers

The component broker in WebCODS is a server program. The server provides an

administrated entry point for providers and clients entering the virtual market.

After connecting to the broker, providers can use the application to create new
primitive and composite components. The environment contains a Ul for providers to
characterize components and generate their descriptions automatically. The upload of
components to the broker can be done after all required parameters are specified.
Providers use the environment to create new primitive and composite components.
The environment contains a Ul for providers to characterize components and
generates the description automatically. After the classification parameters are

specified, the components can be uploaded to the broker.

For example, a provider specializing in software metrics extraction has two primitive
components to offer the broker: (a) a C/C++ Preprocessor and (b) a C Software
Metrics Extractor. The details of these components are shown below. The bytecode
of these components are bundled in Jar files saved in the provider’s local

environment.

99

The preprocessor is the front end of a C/C++ based language compiler. It processes
compiler directives and outputs preprocessed code in a stream. The main executable
class for the Preprocessor component is the Preprocessor class. The preprocessed
code is output to an output stream through an “out” pipe port -PreprocOutput. The
reference to the output stream is set by the method setoutputStream. The

component accepts a parameter to display as the name of the frame.

The Software Metrics Extractor extracts metrics from C source code and displays
them. The Software Metrics Extractor starts with the class cParser. The component
accepts source code input from an input stream through an “in” pipe port -CodeInput.
The reference to the stream is set by the method setInputStream. The component

accepts a parameter to display as the name of the frame.

Given all the details of components, the provider is able to create bundled
components that will going to be dispatched to the component broker. The creation
of components can be done in the application supplied to component providers. For
example, Figure 22a shows the environment used to create the CParser component.
The environment is designed for creating primitive WebCODS components out of
Java executables. Users specify interfaces to the component in terms of ports. The
newly created ports are typed and they need to be specified by a name and the
corresponding method to set up references. The graphical representation of the
component are transformed into textual description and saved into the local

environment for later referral by other composite components.

After specifying the primitive components, the provider can use them to create new
composite components. Linking the preprocessor and the software metrics extractor
together can form a C Software Metrics Extraction System called CompleteParser.
Components in the system can be linked together with either a Non-Buffered

Connector or a Buffered Connector. The composer selected the linkage to be a Non-

100

Buffered Connection. Figure 22b shows the environment used to generate the
system. The instantiation of this component requires two parameters. The first
parameter is distributed to the crarser and the Preprocessor accepts the second

parameter.

POEEE R
] [}

(a)
Figure 22: Creation of (a) primitive and (b) composite components in WebCODS

Figure 23 shows the descriptions generated from the environment for Cparser,
Preprocessor and the CompleteParser system. The provider can transfer these newly
created components to the broker. The interpreter in the composition environment
converts the textual description of the selected component into OO-based description
and determines the bytecode that needs to be transferred. The bytecode is
compressed in Jar format and is transferred with the serialized description using a

protocol defined in the JavaSpaces.

101

IS0 cophon

CONMPONENT Cosplecefacser

INPLEMERTATION
INSTARCE C43311 = CParser
INSTANCE C944lS » Preprocessor

CONPOEENT CParser ; COMPONENT Preprocessor
CodeInpu 3 PORT PreprocQutpuc MODE Out IS 35!2“(CONRECT C$441S. PreprocOurput TO C43311.CodeTnpuc
FORT CHIDE In IS Streem TYPE stream IS EQ¥Buffered
("sech ean”} Heaber({ ~setfutpucStrean™) ;
PORT PORT i| > IEPLENETATION
E COMPOMERT 3 COMPONERT i| (oD cozpoxzyT
(@) (b) (c)

Figure 23: Generated Description for UniCon-based Description in WebCODS

for (a) CParser, (b) Preprocessor and (c) CompleteParser

The last step of component creation is to specify component descriptions (Figure 24).
The provider is supplied with a dialog box to specify the facets and free-text
descriptions. The core facets must be filled with attributes. If the available list of
facets is not enough to classify the components, new facets can be added. The free-
text description allows providers to describe the component in natural language. All
the specified information is used by the search engine and is viewable by clients after

downloading the component information.

Figure 24: Specifying classification details for components

102

10.2 Broker

The Broker provides an environment similar to a market where Customers and
Providers meet and trade products. The broker is the administrator of the market; it
provides a framework for providers to advertise their software products. Customers
enter the market to browse and retrieve software components that fit their needs.
Customers who are interested in a component can search the broker for matches or
pick from a list containing all available components. The broker transfers the

required product to the client’s environment for composition and execution.

After preparing components in the provider environment, the provider is ready to
publish the component Preprocessor and CParserGUI on the broker. The provider
encrypts the component using a DH secret key. The secret key is generated from the
private key of the provider and the received public key from the broker. The
encrypted components are then signed and sent to the broker. When the broker
receives the component, the encrypted components are decrypted and the identity of
the sender is verified. If the received component passes the security test, the broker
creates an entry for the component in the database. The classification details of

components are analyzed and stored in the search engine.

When a client makes a query for components in the broker, the broker generates an
XML document with all the information regarding the obtained result from the search
engine. This generated XML document will be transferred to the client. The
document contains also the classification details of all the listed components. If the
client is interested in any of the contained components, the broker will encrypt the
component with the secret key shared between the broker and the client. The
encrypted component is sent to the client through the security center. The component

is sent to the client and can be decrypted with the same secret key.

103

10.3 Clients

After connecting to the broker, clients can obtain a list of available components or
search for matching components from the broker. The query is made using
acquisition form that helps the client visualize the name of the facets and permits the
choice of terms in a controlled vocabulary. Figure 25 shows that search the broker
using the name of providers, attributes in facets, and free-text. When query
components using facets, the Properties, the Value and the Bounds columns are used
to specify matching parameters. The Properties column shows the facets currently
defined in the search engine. The Value column contains the terms that have been
used to describe the facet. The Bound column allows searchers to match components
using word or numerical comparison. For example, the component searcher can use
the numerical comparison to query components using cost facet by specifying the
upper and lower bound of the matching requirements. The example shows that the
matching is based on the Domain facets. However, new rules can be added to the

form by clicking on the “Add Rule” button to add more specific matching criteria.

The searching parameters used for searching are stored in the search engine and are

downloaded to the client environment dynamically for each query.

‘‘‘‘‘

- 3 ¥ 3 .
o B = %
SR SRS

Figure 25: Query dialog box

104

The query returns an XML document to the client. This document contains a list of
components in descending order of matches. The document can be visualized as a
tree (Figure 26). The client can view all the specified classification details of any
components in the list by selecting the attributes. If clients are interested in using any
matched components, they can click the “Load” button to download the component
from the broker.

~._;;; Heded tton Component Dislog

L3 Components

e
H @ CAust % Name = Action
il @ (=] Compaonentcomplete z :
D) Facets:Domain \ 7| parser Attribute of the Z
D) EacetsiAction % selected facet
[Facets:Piatform E :

3 D Facets:Safety

3 [} Facets:NeededResource
[Facets:Cost
) Facets:Security
[Facets:Reliability o
[Facets:Deployment Phase
D) Provider-PraviderA

© 1 ComponentPreprocessor 4]

=

[Facets:Domain
D Eacote-actian

T T TR e b STy A et Ay o 7 S S Y g

AN -BESSINNR TR SONE

Matched
Component

ARTITE

=N

(M L A

cR

AICRIR

:
W
7
)
|

R Y S R R e e R E R e

Figure 26: The selection dialog after querying the broker

Clients download components from a selection panel and store the components in
their local environment. By downloading the Preprocessor and the Crarser from
the broker, clients can build a C Metric Extraction System. In the composition panel,
clients link the obtained components with a connector of stream type. Figure 27a
shows the resulting graphical component editor panel when the client has downloaded
the primitive components and linked them together with a Buffered Stream Connector
with a buffer size of 1024 bytes. After the configuration of the connector, the
downloaded components are executed and linked together with the parameterized
stream connector. Clients can also request the predefined CompleteParser
component to avoid linking of components (Figure 27b). During the analyzing of

component descriptions from unresolved to resolved component, connections

105

between subcomponents are reestablished and all referred components are executed.

The executed components with the specified parameters are shown in Figure 28.

Figure 27: The graphical component editor in client panel used to

(a) compose components and (b) standalone component

TR e O e P G
e S 3P

e R i

Figure 28: The instantiated components with the parameters specified at

runtime (a) Preprocessor and (b) CParser

10.4 Integration of Existing Applications into WebCODS

Existing Java applications can be converted into WebCODS components. The

conversion requires a wrapper class to:
1. Characterize the interface of the component
2. Provide interaction points for connectors to communicate to the component

3. Specify the execution sequence of the component

106

For example, a Java application, dx£2j3d is a Java freeware utility that converts an
object drawn out of 3D Polylines in AutoCad dxf file format into a ready-to-compile
Java3D java file (Washburn, 1999). The application contains 5 classes bundled in a

jar file. The command line used to execute the application is:

java dxf23j3d <filename.dxf> -<option>

The utility reads in the name of the input file from the command line and outputs a
.java file that uses the same name as the AutoCad .dxf file. The options available for

the application are listed in Table 11 below.

Option Descriptions

-? Lists options

—-nb Turn off the use of bubble sort in CAD layers
-nf Turn off the use of face sort in conversion

Table 11: Options used in the dxf253d4 component

The interface of the component consists of an input port to read files and an output
port to output files. The input port provides the name of the file that will be
processed by the utility. The input file name supplied from the connector is saved in
the wrapper class and used when the component is executed. After execution, the
component outputs the result in the file. The final step is the mapping of the output

file to the file specified in the output File connector.

The command line execution of a Java application can be simulated in the
environment by invoking the main method. The arguments required for execution are

supplied at the time of execution.

107

The wrapper class required for dx£233d utility is shown in Figure 29.

public class DXF2J3DConverter extends Thread {

String outputFileName, inputFileName;

public void setOutputFileName (String name)
{outputFileName = name;}

public void setInputFileName (String name)
{inputFileName = name; }

String[] arguments;

public DXF2J3Dconverter (String{] args) {argments = args;}

public DXF2J3DCcnverter createlnstance(String(] args)
{return new DXF2J3DConverter (args);}

public void run() {
//Create reordered arguments
String{] newArgument = messageArguments

(inputFileName, arguments):;

//Execute the application
Djf2j3d.main(newArgument) ;
//Mapping the current output with the connector
mappingOutputFile (outputFileName) ;

Figure 29: Wrapper class for ax£2334 utility

The wrapper class provides two methods for File connectors to set up input and
output file names. The names are stored in the class as instance variables, and used

when the component executes.

The passing of runtime parameters to the component uses the
createObjectWithParameters method. The method in this case does not actually
create any object instances of dx£23j3d; it stores the parameters to be used when the

component instantiates.

108

The wrapper class extends the Thread class to avoid deadlock of components in the
instantiation environment. Subclasses of the Thread class are required to implement
the corresponding run method. The run method defines the steps to execute the

application.

According to the specification of the application, it requires the first argument to be
the name of the input file followed by any options. The execution of dx£233d utility
requires three steps. The first step of execution is the recreation of the arguments by
picking up arguments obtained from the input file connector and the instantiation
environment. The component can then be executed by invoking the main method
with the reordered arguments. After execution, the output file from the application is
converted to the file specified by the output file connector.

After the wrapper class is developed, it is compiled and bundled into a jar file with all
other necessary executables. The component provider can create the corresponding
description for the newly formed primitive component and market it as a component

to the broker.

The given interface allows other WebCODS components to be connected to the input
and output port of DXxF2J3DConverter. For example, a file editor can be connected at
the input end for editing the file input to the converter, and a viewer at the output end

to view the produced java file.

In the composition environment, the user downloads the DxF2J3Dconverter, a file
editor with a file output port and a viewer with a file input port. After downloading
the components, the user performs component composition by linking them together
with 2 file connectors. The file connectors are specified with the names of files being
input into and output from DXF2J3Dconverter. Figure 30a shows the use of file

connectors to compose applications with downloaded components.

109

The pxF2J3Dconverter can be executed with parameters supplied at runtime. Figure
30b shows that the converter is instantiated with the -nb option to turn off the use of
bubble sort in the CAD layers. After all the parameters are set, the application is

ready to be executed.

Ty W

]

i
|

Figure 30: The (a) composition and (b) execution of the DXF2J3Dconverter

components in the WebCODS environment

After the execution of the composed application, Figure 31a shows the file editor that
sends the file to the pXF2J3Dconverter. The DXF2J3Dconverter processes the
received file and outputs to another file specified by the output file connector. Figure

31b shows the file viewer that is able to read the file specified by the connector.

110

Y

f * Object Generated By dxf2j3d

*This Utility is Freeware.

mport javax.media.j3d.”,
mport javaxvecmath.®;
$ACADVER public class MyObject extends Shape3D { -
1 : =
INC1009 3 ¥ New Group : LAYER1 %
g 3
SINSBASE private static final Peint3f p00 = new Paint3(0.9848351, 1 t‘i;
10 private static final Point3f p01 = new Paint31(0.984835, 1 &2
0.0 p sStatic f pint3f0 984835f 21¥
20 R) F d 4

@ | ®)

Figure 31: The instantiated components resulting from the composed application
(a) file editor and (b) file viewer

111

Chapter 11: Conclusions and Further Research

This thesis has described the experience in developing a system to support dynamic

composition of software components in a Web-based environment.

The system defines the responsibilities of each involved participant: component
broker, clients and provider. Providers develop components and offer them to
customers through the mediation of the broker. Customers visit the broker and
download required software components. They can use the components as they are, or
compose them together either with a composition language or a graphical component
editor. The future version of the system should contain a charging mechanism based

on the usage of the components.

The use of a compositional style to build applications affects how software is
produced. WebCODS envisioned two types of developers: (1) component developers
and (2) ware developers. Providers are components developers. They can follow
either a top-down or bottom-up approach to develop software. Larger applications
can be sub-divided into smaller component-wares. @ Small components are
interconnected to yield larger ones. Clients are ware developers following a bottom-

up approach. They use pre-packaged components to form applications.

The development of the system is separated into two areas: component composition

and component brokerage.

112

The component composition environment developed in the system focuses on pre-
compiled Java components and UniCon-based descriptions. The system supports two
types of components: primitive components and composite components. In this way,
applications can be composed using existing components to create customizable

applications.

Primitive components are the basic building blocks. They keep references to the
implementation of the Java components. Each primitive component has an associated

list of ports that defines the supported mechanisms for its interconnections.

Composite components are defined as a collection of other (primitive or composite)
components, possibly connected through connectors. Composite components keep a
description of the instantiation steps that detail how each enclosed component has to
be generated and connected to other components. As with primitive components,

they have an associated list of ports.

When components are downloaded from the broker to the client’s environment, the
components can be loaded into the application dynamically. The execution
environment for WebCODS components supports a mechanism to construction the
component using an extension of the UniCon ADL language. The components are

instantiated and executed upon arrival in the clients’ composition environments.

The selected implementation language, Java, provides platform independence for
components as well as other useful features, such as, introspection, object-
serialization and classloading. The dynamism property of the system is supported —
components can be loaded into the system at anytime and executed within the

composition environment.

113

Components are composed using a predefined set of connectors. The dynamic
property of Java allows the connectors to be encoded in template format. The
instantiation of connectors does not require the generation of customized code and
recompiled by compiler to obtain binaries. The connection between components is
dynamic and instant. The composition environment supports dynamic evolution of

software architecture by reconfiguring the connections between components.

WebCODS provides brokerage of software components on the Web. The broker of
the system can load and unload components into the component-storage dynamically.
The components stored in the broker consist of executables, connectivity descriptions

and classification details.

The classification details of components are stored in a search engine. The engine is
used when clients want to search for components in the broker. The classification
scheme in WebCODS uses facets and free-text descriptions. The querying of
components is primarily based on matching of facets and uses free-text matching as
secondary searching mechanism. The facet-based classification scheme can be
modified by introducing new or removing existing facets. The cost of modification
for a facets classification scheme has been shown to be less than that for other

classification schemes (Frakes, 1991).

The mobility of components is required in the brokerage environment. The
transferring of components in the network is encrypted to target the security needs.
WebCODS uses DH key agreements to create a secret key for encrypting and
decrypting components — only authorized parties can decrypt the message and obtain
the component. The encryption technique used in the current implementation is the
DES algorithm, but can be easily upgraded to other algorithms like “BlowFish” or
“RAS”.

114

Future work should focus on several issues:

Components in WebCODS can be new or existing applications as shown in the
example. However, more composition mechanisms should be extended to support
other complex connectors. As suggested by Deline (1999), other connecting
mechanisms, such as explicit procedure calls and shared variables are commonly used
to compose components. More research should be performed to investigate how

these mechanisms are implemented in the composition environment in WebCODS.

The composition environment analyzes the permissibility of connection based on
type-checking and direction of operation. The analysis guarantees the syntactic
correctness of the connection. Yakimovich er al (1999) suggest that when
components interact with each other, there is a high possibility of mismatches
between them. Therefore, the description needs to integrate the syntactic and

semantic aspects of the connection.

Moreover, the using of WebCODS to support the infrastructure for component based
development environment is still under investigation. The procedure for breaking
down a monolithic application to composable components is needed. If the procedure

is established, the definition for components in WebCODS is clear.

The classification scheme is only in its first version. After obtaining feedback from
providers, the scheme can be improved by revising the facets and the related
attributes. When identifying components using the search engine, the engine can be
improved with automatic construction and statistical analysis to increase the accuracy
for locating components. The proximity mechanism used in the thesaurus requires
refinements to reflect the proximity relations between synonyms in the domain. In
additions to the adjustment in the thesaurus, further statistical analysis can be

performed to investigate the preference of the selector.

115

The current implementation of WebCODS provides a prototype to experience the
possibility of component composition and brokerage in the network environment. To
improve the usability of the system in commercial environments, additional tools
should be investigated, such as servers providing business logic, to provide payment

issues.

116

References

Allen R., and D. Garlan, “A Formal Basis for Architectural Connection,” ACM
Transactions on Software Engineering and Methodology, 6(3): 213-249,
1997.

Biggerstaff T., J. Mitbander, and D. Webster, “Program Understanding and the
Concept Assignment Problem”, Communications of ACM, 37(5): 72-82, 1994.

Biham E., D. Boneh, and O. Reingold, “Breaking Generalized Diffie-Hellman
Modulo a Composite is no Easier than Factoring”, Information Processing
Letters (IPL), 70: 83-87, 1999.

Boneh D., and R. Venkatesan, “Hardness of computing the Most Significant Bits of
Secret Keys in Diffie-Hellman and Related Schemes”, Proceedings Crypto
’96, 1996

Broadvision, “Broadvision Overview”, http://www.broadvision.com ,2001

Buccei P., S. Edwards, W. Heym, J. Hollingsworth, J. Krone, T. Long, W. Ogden, M.
Sitaraman, S. Sreerama, B. Weide, S. Zhupanov, and S. Zwben, “Special
Feature: Component-Based Software Using RESOLVE,”
http://www.csee.wvu.edu/~resolve/resolve.html, 1994.

Clemm G., “The ODIN Specification Language”, Proceedings of the I°' International
Workshop on Software Version and Configuration Control, 1988

Choudhary V., S. Mehta and A. Chaturvedi, “Experiments with Software Renting,”
Workshop on Information Systems Economics (WISE), 1998.

Cooprider L. W., The Representation of Families of Software Systems, Ph.D. thesis,
Carnegie-Mellon University, Computer Science Department, April 1979

117

Creech L., F. Freeze, and L. Griss, “Using Hypertext In Selecting Reusable Software
Components”, Proceedings of the Third Annual ACM Conference on
Hypertext, 1991

Ciancarini P., R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche, “Coordinating
Multiagent Applications on the WWW: A Reference Architecture”, IEEE
Transactions on Software Engineering, 24(5)362-375, 1998

D’Souza D., and A. Wills, Component-Based Development Using Catalysis,
Addison-Wesley, 1998.

Damiani E., M. Fugini, and C. Bellettini, “A Hierarchy-Aware Approach to Faceted
Classification of Object-Oriented Components®, ACM Transaction on
Software Engineering and Methodology, 8(4): 425-472, 1999

Dashofy E, N. Medvidovic, and N. Taylor, “Using Off-The-Shelf Middleware to
Implement Connectors in Distributed Software Architectures,” Proceedings of
the 21st International Conference on Software Engineering, 1999

DeLine R., “A Catalogue Technique for Resolving Packaging Mismatch,”
Proceedings of the Fifth ACM Symposium on Software Reusability, 1999

DeLine R., “Avoiding Packaging Mismatch with Flexible Packaging,” Proceedings of

the 21st International Conference on Software Engineering, 1999

DeRemer F. and H. Kron, “Programming-in-the-Large Versus Programming-in-the-
Small,” IEEE Transactions on Software Engineering, 2(2): 80-86, 1976

Devanbu P., Y. Chen, E. Gansner, H. Muller and J. Martin, “CHIME: Customizable
Hyperlink Insertion and Maintenance Engine for Software Engineering
Environment,” Proceedings of the 21st International Conference on Software

Engineering, 1999

Diffie W. and M. Hellman, “New Direction in Cryptography”, IEEE Transaction in
Information Theory, 22(6): 644-654, 1976

Emmerich W., Engineering Distributed Object, John Wiley & Sons, 2000.

118

Etzkorn L., and C. Davis, “Automaically Identifying Reusable OO Legacy Code”,
IEEE Computer, 30(10): 66-71, 1997

Faison T., “Interactive Component-Based Software Development with Espresso,”
Proceedings of the 1997 International Conference on Automated Software
Engineering, 1997

Fiadeiro J., and T. Maibaum, “Interconnecting Formalisms: Supporting Modularity,
Reuse and Incrementality,” Proceedings of the third symposium on The
Sfoundations of software engineering, 1995

Frakes W., and T. Pole, “An Empirical Study of Representation Methods for
Reusable Software Components”, IEEE Transaction on Software Engineer,
20(8) 617-630, 1994

Frakes W., and B. Nejmeh, “An Information System for Software Reuse”, 20"

International Conference for System Science, 1987

Freeman E., S. Hupfer and K. Arnold, JavaSpaces™ Principles, Patterns, and
Practice, Addison-Wesley, 1999

Gamma E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional Computing
Series, Addison-Wesley, 1994.

Gelemter D., “Generative Communication in Linda”, ACM Transactions on

Programming Languages and Systems, 7(1): 80-112, 1985

Goguen J., “A Categorical Manifesto”, Mathematical Structures in Computer Science
1(1): 46-67, 1991

Gosling, J., and H. McGilton. “The Java Language Environment - A White Paper.”
Javasoft, May 1996. http://java.sun.com/docs/white/index.html

Gupta A., C. Ferris, Y. Wilson, and K. Venkatasubramanian. “Implementing Java
Computing: Sun on Architecture and Applications Deployment.” [EEE
Internet Computing, 2(2): 60-64, 1998

119

Henninger S., “An Evolutionary Approach to Constructing Effective Software Reuse
Repositories”, ACM Transactions of Software Engineering Methodologies,
6(2): 111-140

Hewlett-Packard, “A Tutorial in Developing e-speak Services,” http://www.e-
speak.net/library/pdfs/tutorial.pdf, 2000

Hoare C., Communicating Sequential Processes, Prentice Hall, 1985.
Hummel, R. “How Java Can Pay the Rent.” Byte Magazine, June 1996

Lam S., and A. Shankar, “A Theory of Interfaces and Modules I — Composition
Theorem,” IEEE Transactions on Software Engineering, 20(1): 55-71, 1994.

Li K., G. Lifeng, M. Hong, F. Yang, “An Overview of JB (JadeBird) Component
Library System JBCL”, Proceeedings of The Technology of Object-Oriented
Language and System Tools, 1998

Kemmerer R., “Security Issues in Distributed Software”, Proceeding of the 6"

European Conference on Software Engineering, 1997

Kent S., K. Lano, J. Bicarregui, A. Hamie, and J. Howse, “Component Composition
in Business and System Modeling,” Proceedings of OOPSLA97 Workshop on
Object-Oriented Behavioral Semantics, 1997

Magee J., and J. Kramer, “Dynamic Structure in Software Architectures,”

Proceedings of the 4" Symposium Foundations of Software Engineering,
1996.

Magee J., J. Kramer and M. Sloman, “Constructing Distributed Systems in Conic,”
IEEE Transactions on Software Engineering, 15(6): 663-675, 1989.

Medvidovic N., and R. Taylor, “A Classification and Comparison Framework for
Software Architecture Description Languages,” IEEE Transactions on
Software Engineering, 26(1): 70-93, 2000.

Medvidovic N., D. Rosenblum, and R. Taylor, “A Language and Environment for
Architecture-Based Software Development and Evolution™, Proceedings of
the 21* International Conference on Software engineering, 2000

120

Mozer M., “inductive Information Retrieval Using Parallel Distributed Computation”,
ICS Rep. 8406, Institution for Cognitive Science, University of California —
San Diego, 1984

Michiels B., and B. Wydaeghe, “Component Composition”, Proceedings of the 22"

International Conference on Software engineering, 2000

Milner R., J. Parrpw, and D. Walker, “A calculus of mobile processes, Part I and II,”
Journal of Information and Computation, 100: 1-40, 41-77, 1992

Nierstrasz O., and T. Meijler, “Research Direction in Software Composition,” ACM
Computing Surveys, 27(2): 263-264, 1995

Ousterhout J., “Scripting: Higher Level Programming for the 21% Century”, /EEE
Computer Magazine, March 1998.

Paradigm Plus, “PLATINUM technology - Manage and Improve your IT
Infrastructure”, http://www.platinum.com, 2001

Pozewaunig H., and D. Reithmayer, “Support of Semantics Recovery during Code
Scavenging uisng Repository Classification”, Proceedings of the Fifth
Symposiun on Software Reusability, 1999

Prieto-Diaz R., “A Software Classification Scheme”, Ph.D. dissertation, University of
California, Irvine, CA, USA, 1985

Prieto-Diaz R., and J. Neighbors, Module Interconnection Languages, The Journal of
System and Software, 6(2): 307-334, 1986

Prieto-Diaz R., “Implementing Faceted Classification for Software Reuse”,
Communications of ACM, 34(5): 88-97, 1991

Prieto-Diaz R., and P. Freeman, “Classification Software for reusability”, IEEE
Transactions on Software Engineering, 4(1): 6-16, 1987.

Puliafito A., O. Tomarchio, and L. Vita, “Porting SHARPE on the WEB: Design and
Implementation of a Network Computing Platform using Java”, 9" IEEE

International Conference on Modeling Techniques and Tools, 1997

121

Rational Rose, “Rational Rose v2001:Visual Modeling, UML, Object-Oriented,
Component-Based Development with Rational Rose”,
http://www.rational.com/products/rose/index. jsp, 2001

Sametinger J., Software Engineering with Reusable Components, Springer 1997
Scott O., Java Security, O’Reilly, 1998

Shaw M., “Research Opportunities in the Virtual Agora: Market Aspects of Open
Resource Coalitions,” First International Workshop on Economics-Driven
Software Engineering Research,
http://www.cs.cmu.eduw/afs/cs.cmu.edu/project/vitYwww/paper_abstracts/Virt_
Agora.html, 1999.

Shaw M., and P. Clements, “A Field Guide to Boxology: Preliminary Classification
of Architectural Styles for Software Systems,” Joint Proceedings of the 2nd
International Software Architecture Workshop and International Workshop on
Multiple Perspectives in Software Developme nt (SIGSOFT '96), 1996.

Shaw M., R. DeLine, and G. Zelesnik, “Abstractions and Implementations for
Architectural Connectors,” Proceedings of the Third International Conference
on Configurable Distributed Systems, 1996.

Shaw M., R. DeLine, D. Klein, T. Ross, D. Young and G. Zelesnik, “Abstractions for
Software Architecture and Tools to Support Them,” IEEE Transactions on
Software Engineering, 21(4): 314-335, 1995.

Sitaraman M., “Why Neither Java Components Ndor Formal Methods Can Do it
Alone,” Proceedings of the 9 Workshop on Fustitutionalizing Software Reuse,

http://www.csee.wvu.edu/~resolve/papers/wisr-paper.html, 1999.

Succi G., C. Bonamico, L. Benedicenti, E. Lim, T. Vernazza and R. Wong,
“Supporting Electronic Commerce of Software Products through Pay-Per-Use
Rental of Downloadable Tools”, Internet Commerce and Software Agents:
Cases, Technologies and Opportunities, Idea -Group Publishing, 2000.

Sun Microsystems, “JavaSpaces™ Specification”, July 1998

http.//java.sun.com/products/javaspaces/specs/js.pdf
122

Sun Microsystems, “JavaTM 2 Platform, Standard FEdition Documentation
(J2SETM) ”, 1999 http://java.sun.com/docs/index.html

Swanson J., and M. Samadzadeh, “A Reusable Software Catalog Interface”,
Proceedings of the 1992 ACM/SIGAPP Symposium on Applied computing,
1992

Szyperski C., Component Software - Beyond Object-Oriented Programming, Addison
Wesley, 1998.

Tanenbaum, H. Stavaren, E. Keizer, and J. Stevenson, “A Practical Tool Kit for

Making Portable Compilers” Communication of ACM, 26(9): 654-662, 1983.

Thomas J., Module Interconnection in Programming Systems Supporting Abstraction,

Ph.D. thesis, Brown University, June 1976.

Weinreich R., “A Component Framework for Direct-Manipulation Editors,”
Proceedings of the Technology of Object-Oriented Languages and Systems,
1998

Williams M., “What makes RABBIT run?”, International Journal Mechanic Machine
Studies 21, 333-352, 1984

Yakimovich D., J. Bieman and V. Basili, “Software Architecture Classification for
Estimating the Cost of COTS Integration”, Proceedings of the 2lIst

International Conference on Software Engineering, 1999.

Yourdon E., “Java, the Web and Software Development.” J[EEE Computer, 29(8): 17-
34, 1996

123

Appendix A

Appendix A: WebCODS User Manual

The execution of WebCODS requires the following software packages.

1.

2.

Java 1.3 Standard Edition

Jini 1.0.1

Jini Extension kit (JXE) 1.0.1

Java Cryptographic Extension Kit (JCE) 1.2
XML Parser from IBM

Graphical Editor Framework (GEF)

The hardware requirements:

e Pentium II or higher

e 20M of free spaces

The WebCODS system consists of three main executables:

1.
2.

3.

Broker — used by the administrator of WebCODS
Provider — used by the parties supplying components to the Broker

Client — used by the parties downloading components from the Broker

124

Appendix A

A.1 Broker

The execution of the broker requires the following to be running at the same time.

1.

HTTP Server — The server is provided for client and provider programs to
download the necessary classes for execution. The server can also be used to
supply other software packages, such as JCE, XML Parser and GEF. The
use of the server does not require executing the client nor does the provider

program need to have all the software packages installed.

RMI Daemon (RMID) — The daemon is used by by the Jini Lookup Service.
The daemon is an extension to the RMI registry. The extension allows the
registry to handle persistence storage for remote objects. The persistence

information of the registry can be logged in a file specified by the user.

Jini Lookup Service — The Lookup service provides facilities for services to
advertise their availability and for would-be clients to obtain references to
those services. In WebCODS, the Jini Lookup Service is used to locate the

JavaSpaces service available in the Jini server.

JavaSpaces Server — The medium used for transferring components in
WebCODS. The JavaSpaces is implemented as a service of Jini. Different
names are used to distinguish different services of JavaSpaces available in

the Jini Lookup Service.

The HTTP server can be any commercial server. The RMI Daemon is a standard

program that comes with the Java Development Kit. The RMID program is tied to

specific Java versions, meaning that RMID will only work with its particular version.

The execution of the Jini Lookup Service and JavaSpaces Server requires the

installation of Jini and Jini Extension Kit. The detailed procedures for executing both

services are discussed in the documentation that comes with the Jini package.

125

Appendix A

The execution of the broker depends on several data files:
1. Database file
2. INIfile
3. Keystore file
4. Facets file

5. Thesaurus file

These files must be located at the same directory that executes the broker program.

A.l.1 Database File

The database contains all the clients’ and providers’ information. The current
database is built with Microsoft Access. The database contains tables to store users’
login name, password and the company that they belong to. The location and name
of the database is installed to the system’s registry with a script specific for the
Windows NT operation system. The installation of the database into the registry

allows the ODBC service from the operating system to gain access to the file.

Accessing the database is based on a JDBC bridge. The bridge allows the broker
program to link to the ODBC bridge of the operation system. By specifying the name
of the database, the program gains access to the database installed in the local system.
The communication between the program and the database is based on SQL
(Structured Query Language), the standard language for accessing relational
databases.

With the correct JDBC and ODBC bridges, there is no limitation on the kind of
database that is used in WebCODS.

126

Appendix A

A.1.2 INI File

The INI file stores the necessary information that is used to start up the server. The

file contains 4 pieces of information:

1. Name of the database — name of the database stored in the registry of the

system

2. JDBC bridge used with the database — the correct JDBC bridge to be used
with the database

3. Location of a Jini Lookup Service — the IP address of the machine that runs a

lookup service

4. Name of the JavaSpaces — the name of the JavaSpaces that will be used by
WebCODS as transferring medium. The instance of the JavaSpaces service

must exist in the specified machine that runs the Jini Lookup Services.

The information provided in the INI file will be input to the broker when the broker

program starts to execute.

A.1.3 Keystore File

The keystore file stores the certificates of the broker itself and the certificates of
clients. The manipulation of the keystore requires the use of the keytool available
with the JDK. The tool can be used to add and remove certificates from the keystore
file. Moreover, the keytool program is able to generate and store a key pair — private
and public key. The private key will be stored in the keystore, and the public key can
be retrieved. The public key can be sent to certificate authorities for verifying and

obtaining a verified certificate.

127

Appendix A

Certificates obtained from the certificate authorities can be installed into the keystore
and becomes a trusted certificate. This type of entry contains a single public key
certificate belonging to another party. It is called a trusted certificate because the
keystore owner trusts that the public key in the certificate indeed belongs to the
identity identified by the owner of the certificate. More complete information about
the keytool program can be found at:

http://developer.java.sun.com/developer/onlineTraining/Security

When the WebCODS administrator runs the broker for the first time, the
administrator needs to set up the keystore file. The keytool is used to generate a set
of private and public keys for the broker. The public key is then sent to a certificate
authority for verification. After the verification, the returned certificate is installed to

the keystore. The broker program is able to access its own public and private keys.

For all registered clients and providers in the application, their public key must be
added to the keystore. The installed public keys and certificates are used to verify the
identification parties participating in WebCODS.

A.l1.4Facets File

The facets file contains the core facets that are used in classification. The file is read
when the search engine is instantiated in the broker. The presentation of the facets is

in descending order according to their importance in the classification scheme.

When clients query the broker, the search engine presents the ordered set of facets

that is contained in the file.

Currently the facet file contains 6 entries:

128

Appendix A

e Domain: The names of domain that the component is used or may be used.
The term “domain™ characterizes a set of similar systems or applications that

share some common functionality.
e Action: The function that is performed by the component.
e Platform: The software platform that is used to execute the component.
e Safety: The safety level of executing the asset.

e Needed Resource: Other related sources required by the successful execution

of the component.

e Cost: The cost of using the component charged by the broker.

The facets list in WebCODS is not statically built in the search engine and other
related components. When the facets list is loaded into the search engine, any
components that use the list will query the search engine to obtain the concurrent
facets list. Since the facet list is dynamically loaded into the framework, any
operations to the list can be modified without affecting other components in
WebCODS.

A.1.5 Thesaurus File

Each facet may be accompanied with a thesaurus file. The thesaurus contains a list of
synonyms used in the corresponding facets. For each synonym contained in the
thesaurus, there is a ranking of how close it is related to each other. The current

broker version includes 3 sample thesaurus files:
1. Action.thesaurus — Thesaurus for Action facets
2. Description.thesaurus — Thesaurus for Description facets

3. Domain.thesaurus — Thesaurus for Domain facets

129

Appendix A

In the thesaurus file, each line contains a set of synonyms and their weighted
relations. For example, the term “metrics collecting” and “parsing” are
equivalentand the assigned weight for their closeness value is 1.0. The line that
appears in the thesaurus file will be:

metrics collecting, parsing, 1.0

A collection of the related synonyms and their associated weights will build up the
thesaurus required in the search engine. WebCODS provides a tool, called Thesaurus
Viewer, for the administrator to build up the thesaurus. The command to run the

class is given below:

java webcods.engine.ThesaurusViewer

The tool is capable of helping administrators to build and test the thesaurus file. The

features of the tool are listed below:
1. Load a thesaurus file specified by the user (Figure 32a)
2. Add and remove entries in the thesaurus file

Perform test queries in the build thesaurus (Figure 32b)

(V3]

4. Save the build thesaurus to be used by the search engine

[‘;z fhn:;nuvuf; Vietwe:r
£ T Oparation™> Hel - T 15
|Parsing Metrics Collection |0.87 N TaRRs e
{metrics Collection __|Preprocessing ___ |0.61 jozs o sin'gm“’ o on:t
[Parsing 7 Preprocessing 0.7f Matrics Gollection 0.8
{Preprocessing 8.7 __
e T S Y RN sl N |
(@) (b)

Figure 32: The tool to manipulate thesaurus (a) loading (b) testing of thesaurus

130

Appendix A

A.1.6 Execution of the Broker

The main class to execute the broker is webcods.server.Server. The
successful execution of the broker requires the proper installation of all the software

packages specified in Section 1.

The broker program picks up all required input files from the directory that it
executes in. It is not necessary to provide any parameters to run the program. If the
program fails to start, the corresponding error messages will be displayed on the
screen. The administrator of the program needs to fix all the errors before the broker

program can execute successfully.

Figure 33 shows the successful execution of the broker in a Windows NT
environment. The display shows that the broker has located the Jini Lookup service
and matched an instance of JavaSpaces from it. After the initialization, the broker is

ready to receive requests for connections from clients and providers.

Command Prompt run

MC*-H.‘S..‘ t P
~lassloader = < v oc1e
Tlon. L.

Figure 33: Execution of the broker program

131

Appendix A

A.1.7 Recovery Service

The broker program is responsible for all the component brokerage related activities.
To provide error recovery capabilities, the broker implements a backup mechanism
for restoring the state of the broker before a has failure occurred. The backup service
is activated every 5 minutes. The backup data is stored in a file called

backup.save.

When the broker program starts, the recovering service is activated to check if the
backup.save file exists. If the file exists, the mechanism will recover the last
saved status from the file. If the file does not exist, a new broker without any assets

will be created.

132

Appendix A

A.2 Client

The client program is implemented as a Java applet. The application is intended to

run with an AppletViewer or any Java-enabled Web-browsers.

A.2.1 Prerequisite to Execute the Application

The execution of the client requires the proper setup of the Java security policies for
the local Java Virtual Machine. The additional resources required by the client
include: file access, opening network connections, defining new packages in the
applet and others. To grant privileges to perform these operations, the boundary of
the sandbox in the Java Virtual Machine is redefined with a user-defined policy file.
Since the executed binaries are coming from the trusted broker, the sandbox is
defined to grant access to all local resources. The policy file contains the following
lines:
grant {

permission java.security.AllPermission;

};

The successful execution of the client application also relies on the software packages
described in Section 1. The client has a choice to either install the packages in the
local system or download them from the HTTP server hosted by the broker. If clients
choose to download software packages from the server, they have to setup the code
base for the applet to download the necessary packages. The HTML page is also used
to pass the location of the broker to the application. The parameter passing is
achieved using a parameter tag. The tag specifies the name of the parameter is

“broker” and its value indicates the location of the broker.

133

Appendix A

The main class used to execute the application is
webcods.client.ClientAppUI. The HTML page used to execute the client
application is shown in Figure 34.

<HTML>
<HEAD>
<TITLE>Client Page</TITLE>
</HEAD>
<BODY>

<Applet code=webcods.client.ui.ClientAppUI

codebase=" titus.quase.ualberta.ca"
width="598" height="432">
<param name = "broker" value = "titus.quase.ualberta.ca">
</Applet>
</BODY>
</HTML>

Figure 34: Sample HTML to execute the client application

The client application also uses a keystore file to store the corresponding public and
private key information. Before the WebCODS client runs the application for the
first time, the client needs to generate a set of private and public key and submit the
public key to the broker for verification. After the verification, the broker will return
the verified certificate and the broker’s certificate to the client. The client then needs
to install both received certificates to its keystore. The certificates are used to
perform digital signing, encrypting, and decrypting messages that pass between the

client and the broker.

134

Appendix A

A.2.2 Execution of the Application

Executing the application results in a login screen for the client to connect to the
broker. The login process requires the client to enter the user name, the password and
the company name assigned by the WebCODS administrator. Figure 35a shows the
login screen from the application. After the broker verifies the identity of the client,
the application (Figure 35b) shows a list of downloaded components and a panel to

perform component composition.

(a)

Figure 35: (a) Login screen and (b) environment for the client application

After login to the broker, the client can use the application to query the broker for
components. There are two ways of querying (Figure 36a):

1. Listall available components in the broker

2. Search the broker using facets or free-text descriptions (Figure 36b)

135

&

BE

Sy

R0

'

Figure 36: (a) Querying modes in the client environment and (b) searching

components in the broker

After listing or searching components available in the broker, a matched list is
returned to the client application (Figure 37). The classification details for
components is stored in an XML format. A XML viewer is used in the environment
so the client can view any attributes contained in the description. If the client is
interested in downloading any listed components, the client can select the component
in the list and click the load button. After receiving the component from the broker,

the component is listed under downloaded components in the main application panel.

35 clechon Campaonent Dialng

E Selactsd Componein: | TableGui
R ATy o TR bk [t
i3 Components
@ Tust
[fe? DXF2J3DC¢
©-[CompenantCPPTView
©- 7 ComponantTextGui
©- [componentEditableGul
il e CComponentTabiedu,

R R i Al e]

:
{
»
8

Figure 37: Listing of matched components from the broker

136

Appendix A

After downloading components from the broker, the client is able to compose
applications. Components can be moved from the downloaded component list to the
composition panel. The components in the panel are represented as boxes with
different icons as ports to signal their availability for further connections. To

compose applications, lines are drawn across ports to connect components together.

(Figure 38)

aef rhent o C b aBADEUT

B

Hoxr2sapconverter

cPPComptaeFts
iavaDatanatzerrviewd
[CombineRIsUNGLA &
cPPTVIew :

AQpiel staneq.

Figure 38: Composition of components in the client environment

The composed application can be executed by clicking on the icon. The
composed application can be modified by adding new components to the structure or
re-linking components together in different ways. After the modification of the
structure is finished, the client can click the execution icon to run the newly created

application.

137

A.2.3 Saving and Reloading of Components

Appendix A

The composed application can be saved for later retrieval. Clients are allowed to

specify the name of the composed component and the location for storing the

description. The description of components is generated automatically and reflects

the current architecture of applications in the composition panel. Figure 39 shows the

saving capability in the client application.

COMPONENT ComposedConvertar
PORT C8973.Fileinput MODE IN IS File
END PORT
PORT C57216.FiteQuipyt KODE QUT IS File
END PORT
PORT C34264 Filein MODE IN[S File
END PORT
PORT C34264 FileOut MODE OUT IS File
END PORT

MPLEMENTATION

INSTANCE C8973 =visualizegui TextGui

INSTANCE C57216 = editablegui EditableGu
INSTANCE C34264 = tfconverter DXF2J3DConvarier

CONNECT C57216.FileOutput TO C34264.Fiteln
TYPE file IS File
PARAMETER CONNECTOR "input’

CONNECT C34264 FlleOut TO C8873.Filelnput
TYPEflle IS File
PARAMETER CONNECTOR ~outoul”

ND COMPONENT

FND IMPLEMENTATION

(@)

(b)

Figure 39: (a) Saving components and (b) the generated description based of the

composed application

13

8

Appendix A

The saved components can be loaded back to the application as a component. The
client uses a file browser to locate the saved components. After the previously saved
component is selected and loads into the application, the component is listed under
the downloaded components. Saved components in the same way as components
downloaded from the broker. Figure 40 shows the reloading of the components back

to the client application.

When the client loads the components saved in the local environment, any
components referred to in the saved components must be available in the downloaded
components list. If any referred component is not available, the component fails to
load into the system. If the saved component fails to load because of missing referred
components, an error message is displayed to indicate what components are required
in the environment. The client should download all the missing components from the
broker to ensure successful loading of the saved component. Figure 41 shows the

error message when a client loads the saved description without downloading all the

required components.

[EiApplet Viewer webcody chient o ChientAppUl = 2 x|

{Applet started.

@) (b)

Figure 40: Loading of saved components into the environment

(a) loading and (b) using the component

139

Appendix A

Figure 41: The resulted error message showing the required components when

loading saved description

140

Appendix A

A.3 Provider

The provider program is implemented as a Java applet. The application is intended to

run with an AppletViewer or any Java-enabled Web-browsers.

A.3.1 Prerequisite to Execute the Application

The provider program is used to create and publish components to the broker. The

component published to the broker contains 3 pieces of information:
1. Binary Code — executables for the component

2. Classification Information — classification details to be used by clients to

identify the component in the broker

3. Connectivity Information — details about the internal structure and further

connectivity of the component

The primary components referred to by the application must be installed in the
environment. The binary code of these components is contained in separate jar files.
These jar files can be created with the jar tool supplied with the standard Java
Development Kit. They can be stored in any name and location specified by the
provider. When primitive components are created in the application, the
classification and connectivity details are stored in the same location as the main

executable class.

When composite components are created in the application, the descriptions can be
saved in any name and location in the local system. The provider does not need to

locate all necessary source code and put them together in a single jar file. The

141

Appendix A

application will automatically to organize all the required executables when the

composite component is published to the broker.

Information about all previously created components in the application is stored in an
XML file called webcods.xml. Each component saved in the file contains the

following information:
1. Name of component
2. Location of the description file for the component

3. Location of the jar file containing the necessary executables (exist only if the

component is a composite component)

The execution of the provider application is similar to the running of the client
application. The Java Virtual Machine running the application must grant enough

privileges to access the local resources.

The HTML page used to execute the client application is shown in Figure 42. The

main class used to execute the application is:

webcods.client.ProviderAppUI.

142

Appendix A

<HTMIL>
<HEAD>
<TITLE>Provider Page</TITLE>
</HEAD>
<BODY>

<Applet code=webcods.client.ui.ProviderAppUI

codebase=" titus.quase.ualberta.ca"
width="598" height="432">
<param name = "broker" value = "titus.quase.ualberta.ca">
</Applet>
</BODY>
</HTML>

Figure 42: Sample HTML to execute the provider application

The provider also has an option of not installing all the software packages described
in Section 1. By specifying the code base tag in the HTML code, the application is
able to download them from the HTTP server. Another parameter in the code is the

“broker™; it is used to indicate the location of the broker.

The provider application also uses a keystore file to store the corresponding public
and private key information. The procedure for setting up the file is the same as the
WebCODS client.

143

Appendix A

A.3.2 Execution of the Application

Executing the application results in a login screen for the provider to connect to the
broker. The login process requires the client to enter the user name and password
assigned by the WebCODS administrator. Figure 43a shows the login screen for the
application. After the broker verifies the identity of the broker, the application
(Figure 43b) shows a list of previously created components, the submitted

components of the provider in the broker and a panel to create components.

(a)

Figure 43: (a) Login screen and (b) running environment for the client

application

The provider can publish any components available in the local list to the broker. The
provider can select any components listed under local list and display a popup menu
for component operation by right clicking on the mouse button. This menu allows
providers to view the connectivity and classification description of the component
and also contains an option to publish components to the broker. When submitting
components to the broker, the application obtains the binaries from the corresponding

jar files and the required descriptions from the local environment. After successfully

144

Appendix A

publishing the component to the broker, the component is listed under the list of

components in the broker.

A.3.3 Creation of Components

The application can be used to create primitive and composite components. The
primitive components are created using the create diagram in the application. The
creation of composite components is similar to composing applications in the client

environment.

Composite components are created using components in the local component list.
After composing the application, the provider needs to specify classification
information for the component and save the description in the local environment. The
provider does not need to bundle the required executables into a single jar file, the
system can automatically find out the required primitive components and combine all

the executables together when the provider submits the component to the broker.

When creating primitive components in the application, the provider needs to specify

the following information (Figure 44):
1. Name of the component
2. Package name of the component
3. Path to the component package

4. Location of the jarred executables

145

Appendix A

‘ Applet statadt.

Figure 44: Creation of primitive component

After specifying the necessary information to execute the component, the provider is
required to add connectivity details. The available ports are shown in the menu bar of
the panel. When providers want to add a port to the component, they can pick the
desired one and drop it onto the component. Table 12 lists the icons and their

represented ports type.

Port Direction
In Out In/Out
Stream Y/ a N/A
File & =] N/A
Event + + N/A
Socket = B -
Datagram Socket | :*: % *

Table 12: Icons for ports in WebCODS

146

Appendix A

After dropping the ports onto the component, the provider needs to set up the name
for the port and the corresponding method in the executables that is used when

connecting the port using a connector.

Figure 45 shows the specification of a file port for a component. The name of the
port is called FileInput and the method associated with the port is setInputFile.
Once all the ports are setup for components, the connectivity description of the

component is created and saved in the same location as the main executable class.

ESiApplit Viewer webcads,provider v ProviderAppUl [=1a >8]
= e e e AR A3t g y 200 T e rrorrey

/’«'/"'2;/?’"** ,,_/(77
'

Namex [Filetnput

Rt
A2

oA
3

s

L0
22l
UYL SN R et g LR

un

'} Asetinputrile
-Jcreateinstance
;b iman

| MR R RN
TSI

&
il

-Applst started.

Figure 45: Specifying details for ports using the create diagram

147

Appendix A

A.3.4 Classification of Components

The final process in the creation of new components is to specify the classification
details (Figure 24). The classification details include facets and free-text

descriptions.

After specifying connectivity information, the application supplies the provider a
dialog box to specify facets and free-text descriptions. The core facets must be filled
with attributes. The attributes can be selected from a supplied list or the provider can
input a new term to describe the facet. If the available list of facets is not enough to

classify the components, new facets can be added by clicking on the add facet button.

The free-text description allows providers to describe the component in natural
language. All the specified information is used by the search engine and is viewable

by clients after downloading the component information.

=

s:f0omain
ciaction
FoiPlatform

7 jiSafety

:;: NeadadResource standalone

Tha CPPCompleteSiraam i< a parserfar C/ICPP flies, the action of this component|s extract
mermn:s from the scurce file

Figure 46: Specifying classification details for components

148

Appendix A

The classification details are saved in XML format together with the connectivity

description.

A.3.5 Components in the Broker

Once the component is submitted to the broker, the component is stored permanently
as an asset of the broker. The application allows providers to add, modify and delete

their components exists in the broker. The details of the operations are:

1. Add - add a component to the broker if the component does not exist in the
broker. The operation is performed by selecting the Publish command from

the right-click pop-up on components listed in the local component list.

2. Modify — replace the component in the broker with the one currently
submitted by the provider. The operation is performed by selecting the
Publish command from the right-click pop-up on components listed in the

local component list.

3. Delete — remove the component in the broker. The operation is performed by
selecting the DeleteService command from the right-click pop-up on

components listed in the broker component list (Figure 47).

Figure 47: Removing assets from the broker

149

Appendix B

Appendix B: Description of the Implementation
of WebCODS

The package structure of WebCODS is divided according to the existing core

elements. There are 8 packages in WebCODS:

1.

2.

Connector — the templates for the supported connectors
Service —the operations related to the transfer of components

Parser — the interpreter for converting textual descriptions to object-based

descriptions
Typing — the representation for components connectivity
Broker — the implementation for the broker application

Search Engine - the implementation for the search engine used in the

broker
Client — the implementation for the client application

Provider — the implementation for the provider application

The following document describes the internals of the WebCODS such that

developers can understand the current state of the system, and how to go about fixing

or extending it in the future. The overall design is roughly mapped into code, and

their implementation details are explained. The packages and classes are discussed.

150

Appendix B

B.1 Connector

The connector package contains templates for the supported connectors. These
connectors are used in the composition environment for both the client and provider
applications. Each kind of connector has its own template encapsulated in a class.
The current implementation of WebCODS supports 4 types of connectors residing in

4 sub-packages.

All connector classes are inherited from an abstract super class called Connector
residing in the base package. The Connector class is used to store the following

common information among all subclasses:
1. Store the reference to the object that acts as an input to the connector

2. Save the name of the method that sets up the reference of the connector within

the input object

3. Contains the connector parameter

The connector class provides the method interface for connect, and disconnect
methods. The connect method is used to connect the input and output objects
referred by the connector. The disconnect method defines how the connected
objects in the connector are separated from each other. The implementation of these
methods varies among different types of connectors; therefore, they are declared as
abstract and allow the cormresponding connectors to provide the actual

implementation.

Table 13 lists the package structure of all sub-packages.

151

Appendix B

Package Class Support
webcods. connector Connector Base Class for Connectors
webcods.connector.event Ewvent Event Connector
webcods.connector.file File File Connector

DatagramSocket | Datagram Socket Connector
webcods.connector.socket

Socket Socket Connector
| Buffered Buffer Stream Connector
webcods.connector.stream !
' NonBuffered Non-buffered Stream Connector

Table 13: Package structure within the connector package

The supported connection mechanisim can be either one-to-one or multicasting. For

all the connector classes, they have to:
1. Store the reference to the objects that act as output to the connector

2. Save the name of methods that setup the reference of the connector within all

referred output objects

When the connection is one-to-one, the connector needs a reference to the output
object and a reference to the input object. By extending the base Connector class, the
actual implementation is enhanced wvith a reference to the output object. When the
connection is multicasting, the connector needs references to all the output objects
and a reference to the input object. The connector uses a Vector class in the

java.util package to hold refererices to output objects.

152

Appendix B

Connector | Parameter Connect Disconnect
Event None Passes the reference of the | Remove the reference of
event generating class to | the event generating class
all the event listeners in the event listeners
File Name and | Passes the mname and | Set the name and location
location of the | location of the file to the | of the file to “null” to the
file wused to | inputand output objects input and output objects
transfer data
Datagram Socket number | Passes the socket number | Set the socket number to *“-
Socket to the input and output | 1” to the input and output
objects objects to signal
disconnection
Socket Socket number 1 Passes the socket number | Set the socket number to “-
' 10 the input and output | 1” to the input and output
objects objects to signal
disconnection
Buffer Buffer size i Create a buffered stream of | Close the buffered stream
Stream . the specified size and |and passes a “null” as the
. passes the reference of the | reference of the stream to
| stream to the input and | the input and output object
| output object
Non- None . Create a piped stream and | Close the stream and
buffered | passes the reference of the | passes a “null” as the
Stream ' stream to the input and | reference of the stream to

' output object

the input and output object

Table 14: Summary for the implementation of connectors

Appendix B

The implementation of connect, and disconnect methods characterize the
properties of the connector. Table 14 shows the implementation details for

connect, and disconnect methods in the supported connectors.

The connectors in WebCODS are templates to connect different components together,
the references passing in the ccnnect, and disconnect methods is based on the

reflection feature available in Java.

The steps to pass references between objects using the java. reflection package

is listed below:

1. For any given input or output object, invoke the getClass method to obtain

the corresponding Class otject.

2. Invoke the getMethod method on the returned Class object with the name
of the method that is used to setup the references from the connector. This

operation returns the corresponding Method object.

3. The Method object can be executed using the invoke method with the

original instance of the object and the arguments.

4. The reference is set in the given input or output object.

The sub-classes of the base class Connector also need to provide an
implementation of the isValid method. The method returns a Boolean value to
indicate the validity of the connectivity of the input and output objects referred by the
connector. The validity of connectivity is imposed using type-checking and the

modes of connection (in, out anc bi-directional).

Appendix B

B.2 Service

The service package contains the definition for the CODSEntry template. The
template is used by clients, providers and the broker to transfer components to and
from JavaSpaces. The class extends the net.jini.core.entry.Entry class

from the Jini package.

The object referred to inside the template is transferred together with the template to
the JavaSpaces; therefore, all referred objects must implement the

java.io.serializable tc become transferable in the network.

The template posted to the space contains the following information:

1. Recipient of the template, so that messages will not be delivered to

unauthorized readers.

The message stored in the template is encrypted using the sender’s DH private

]

key and receiver’s public key.

The information of the recipient is contained in a class called RecipientInfo and
implements the java.io.serializable interface. The class is responsible for
storing the name and company of the user. When perform matching of the recipient
in the space, the recipient is matched only if the both the name and company match
exactly. The message is in String format so that it can be transferred with the

template.

155

Appendix B

The package also contains a classloader called WebCODSClassloader to load the
classes defined in the CODSEntry template. The class is an extension to the

ClassLoader class available from the java. system package.

The WebCODSClassloader extends the base class by providing the ability to load
classes to the Java Virtual Machine from the component stored in the CODSEntry
template. Before using the classloader, the provider and client programs decrypt the
message stored in the template into a byte array. If the decryption is successful, the
byte array contains the executables of the component in a Jar archive. The byte array

is passed to the classloader using the 1cadClassBytes method.

The loadClassBytes uses the following steps to load the classes into the Java

Virtual Machine.
1. The method unjars the Java classes from the jarred byte array
2. Put the obtained classes in the form of byte array

3. For all the obtained classes, uses the dafineClass method from the parent

class to add the binaries to the memory

Figure 48 shows the class diagrams of the service package.

156

Appendix B

java.system.ClassLoader 7

ne:jin:.core.entry Entry

I

|
.

WebCODSClassl oader CODSENtry
— orecepient
oadClassBytes() 4| emessage

Recepientinfo

2

éusemame
ocompany

Figure 48: Class Diagram for the service package

Appendix B

B.3 Parser

The textual connectivity descriptions of WebCODS components are analyzed by a
textual interpreter generated with JavaCC. The analysis generates the object-based

representation of the structure of the component.

The interpreter is used for both primitive and composite components. If the
component is a composite component, the interpreter creates the object-based
representation for all the referred primitive components. After the basic building
blocks are generated, the interpreter is able to add the blocks to the composite
component used to encapsulate thzm. The build composite component is returned as

the final product of the analysis.

B.3.1 Creation of Primitive Coraponents

When analyzing the textual description of components, the analyzer first creates a
TypedComponent object usirg the name components. The analyzer then performs
a check to see if the component is a composite or primitive component. The check is
based on the return of the Class. forName method. If the method is able to locate
the executable for the componert, the component is defined to be primitive. Then the
name of the component is added to the component table in the TypedComponent

object.

After the initialization of the TyoedComponent object, the analyzer proceeds to
create the connectivity information of the component. The analyzer reads in the Port
description and creates the speciiied Port Specification. The details of the
specification are stored in the PortSpec class available in the webcods. typing

package.

158

Appendix B

The PortSpec specification contains:
1. Name of the port
2. Type of the connection port
3. Direction of the connection

4. The corresponding method name use to setup the parameter for the

connection, if the component is a primitive component.

The component may contain more than one port for connections. Each port has its
own representation in the PortSpec class. The created port specifications are

added to the TypedComponer. = object using the addPort method.

If the component is primitive, the created TypedComponent object is ready to be

returned as the final product.

B.3.2 Creation of Composite Components

Composite components contair an implementation section to describe the internal

structure of the component.

The implementation section is d:vided into two subsections.

1. Instance Section — list all the referred components to implement this

component

2. Connectivity Section’ — characterize how the components listed in the

instance section are connected together

159

Appendix B

B.3.2.1 Instance Section

The building of the instance section for TypedComponent objects requires a list of
components, which is supplied from the composition environment using the analyzer.
The list of components contains the connectivity description of all the components
currently maintained in the environment. The connectivity description can be in

textual format or TypedCompcnent representation.

The implementation section allows muitiple instances of the same component to build
up the component. The structure used to specify components contains two details to

declare an instance of componer:ts:
1. An instance name

2. The name of the component.

Given the name of the compor :nt, the list of components is consulted to obtain the
description of the component. If the list contains the TypedComponent object for
the component, the instances ot components are added to the TypedComponent
object using the ad::CompositeComponent method. The
addCompositeComponent method rakes in the TypedComponent and the
instance name as parameters. [f the textual description for the component is
available, the description is ana.yzed to obtain the object-based representation. The

description is then added to the 7y pedZcmponent representation.

The instance parameters for the component can also be added to the
TypedComponent represcatation of the component using the

setInstanceParameter method.

160

Appendix B

B.3.2.2 Connectivity Section

After the instantiation of the recuired TypedComponent object referred to this
composite component, components can connect together according to the CONNECT

constructs.

In each CONNECT construct, the following information is defined:
1. The name of input ports ‘o the connector
2. The names of output ports o the connector
3. The type of connection
4. The specific connector used in the connection
5. The parameter of the co~nector if required

6. The instance parameter {or the connector if specified

The name of the ports specifiec in the connect constructs is composed of the instance
name and the name of the port in the component. The instance name for the
component is based on the intonmation created in the instance section. Using the
getCompositeport method available from the TypedComponent object, the

corresponding PortSpec repr:sentation of the port can be resolved.

When the analyzer obtains the <pecified connector from the description, the required
connector is created. The obtained FortSpec representations for involved ports are
added to the created connector. The adding of the PortSpec object uses the
setInPort and setOutPor = nethads according to specification of the construct.
The established connector is the : added to the description using the addConnector
method.

161

Appendix B

The instance parameters for th= component can also add to the connector using the

addConnectorParameter method.

After setting up the instance and conaectivity section, the TypedComponent object

can be used to represent the con:posite component defined in the textual descripton.

Table 15 summarizes the use o! diffzrcat sections in the textual description to create

TypedComponent objects for prim:tive and composite components.

Section Primitive Component Composite Component
Component Corresponding to Java | Any name
Name executables
Ports Same as composite components. | Specifies the name, operation
The specification ccentains the | direction and type of the port.
name of the method to be used
by the connector
Instance N/A Create an instance section for the
referred components. All the
referred components are resolved
into TypedComponent
representation
Connectivity | N/A Connect the components listed in the

instance section. Instance of
PortSpec objects are added to the
Connector object to be connect in

the composition environment.

Table 15: Summary for steps required to create TypedComponent objects.

162

Appendix B

B.4 Typing

The TypedComponent class in the package is used to represent the description of
a component into a set of Java cbjects. The representation can be used for both types
of components. Descriptions are stored in a wrapper object called “Typed
Component™. This wrapper objzct is used to store (1) the descriptions of all referred
subcomponents (2) the information ¢f the interfaces, (3) the connectivity information

within the abstract component.

The TypedComponent class contair:s the following lists to store the details used to

represent the component.

1. Port list — the list of pcits available for connection
2. Instance list — the list of requirzd instances of components
3. Connector list — the list of connectors used to connect internal components

4. Component Parameter L'st — the list of parameters to be used by internal

components
5. Connector Parameter List — the list of parameters to be used by connectors

6. Object List — the list t¢ store the references to instances of Java executables

referred by internal comrponents

Figure 49 shows the class diagrams of the typing package.

Appendix B

vV

TypedComponent

oPortList
olnstancelList

#Objectlist

oConnectorList

e

PortSpec

™~

éname
oonner

webcods.connector.Connector

T~

4 -
ConnectionType
Direction Y
/q f) D\V
ZF v\ \ —
In Out InOut Stream Socket File Event

Figure 49: Class Diagram for the typing package

164

Appendix B

The usage of other supporting classes in the t yping package is listed in Table 16.

Class Name Usage

PortSpec Hold the name of the connection port and connection details:
mode of operations (directions) and type of connections.

Direction Base class for defining the mode of operation

In Subclass of Direction— indicates the mode of operation is IN

Out Subclass of Direction— indicates the mode of operation is
OuT

InOut Subclass of Direction— indicates the mode of operation is
IN/OUT

ConnectionType | Base class for defining the type of connection

Event Subclass of ConnectionType— specifies the connection is of
type Event

File Subclass of ConnectionType— specifies the connection is of
type File

Stream Subclass of ConnectionType— specifies the connection is of
type Stream

Socket Subclass of ConnectionType— specifies the connection is of

type Socket

Table 16: Usage of supporting classes in the typing package

165

Appendix B

The TypedComponent class and all other referred classes implement the
java.io.serializable interface. Instances of TypedComponent class are transferred

in the network with the required executables of components.

When TypedComponent objects arrive in the composition environment, the
objects can be resolved into an executable instance of the represented components.

The resolving of TypedComponent objects achieves the following purposes:

1. Create running instances of executables referred in the primitive

components
2. Obtain references to these running instances and put them into the object list

3. Connect the components together using instances of executables

After establishing the object list, the list can be obtained from the
TypedComponent object. Since all the main classes of components in WebCODS
are extending the java.lang.thread class, the components in the list can be

executed by calling the run method.

The resolving to executables in the TypedComponent is based on the resolve
method. The method relies on a classloader for the class to locate the required

executables of the components.

In the provider environment, the WebCODS components are installed locally in the
machine. The Java classes can be obtained from the classloader supplied from the
Java Virtual Machine. However, in the client environment, the executables are stored
in a byte array. The contained Java classes in the array require the using of the
WebCODSClassloader to read the byte array and load the classes and other class
from the system. Therefore, the method requires the user of the method to supply the

appropriate classloader to load classes.

166

Appendix B

The resolve mechanism for composite and primitive component is different. The first

step for the resolve is to check the type of components using the isPrimitive

method. The component represented by the object is primitive, if the implementation

section does not exist in the description. Therefore, the querying of the size of the

instance list is sufficient to derive the type of the component.

B.4.1 Resolving of Primitive Components

The resolving of primitive components proceeds with the following steps:

1.

2.

Use the supplied classloader to obtain the Java class
Create a new instance of the class
Obtain the specified parameters using the getParameter method

Invoke the createInstance method available in the execute class of the

component to obtain an instance with the specified parameters

Setting up the referred PortSpec objects to refer to the corresponding

executed instance.

After the creation of a new instance of the component, a reference to the component

to the object table is added to the object table of the TypedComponent. The

component is waiting to be executed by the composition environment

167

Appendix B

B.4.2 Resolving of Composite Components

The resolving of composite components proceeds with two stages. The first stage is
the resolving of the components listed in the instance list. The second stage

establishes connections stored in the connector list.

In the first stage, each component in the instance list goes through the following
steps:

1. Pass parameters used in instantiation to the TypedComponent object
2. Resolve the component using the supplied classloader

3. Obtain the references to the instances of the executables contained in the

resolved component

4. Add the references to the object table in the TypedComponent object

After resolving all referred primitive and composite component, the object table holds
references of all the executables required by the component. However, the

component is not connected with using any connectors in the connector list.

The second stage is to use the Connector object in the connector list to connect

components together. Each connection in the list requires the following steps:
1. Pass specified parameters to the Connector object
2. Verify the validity of the connection

3. Connect the objects together using the connect method available in the

Connector class

168

Appendix B

The final step for stage two is setting up the PortSpec objects contained in the
component. The first step to setup the object is to locate the PortSpec object
referred in its subcomponents. From the located PortSpec object, a reference to
the corresponding executable of the component can be obtained. The reference is
passed to the PortSpec object that needs to be initialized -- the setOwner method

is invoked with the reference to the executable as the argument.

B.4.3 Textual Description

After the resolving of TypedComponent objects component, the component is able
to query itself for a textual description. The textual description is generated by

invoking the getDescription method.

The generation of the description relies on the ability of the Connector and
PortSpec class to generate a textual description to describe its internals. The steps

used to create the textual description is listed below:
1. Obtain the name of the component
2. Prepare the first line in the description

3. For all the PortSpec objects contained in the port list, invoke the

getDescription method to obtain a textual representation of the port.

169

Appendix B

If the type of component is primitive, the preparation of the textual description is

finished. In the case of composite components, the textual description also contains

an instance and a connectivity section. The preparation of the description continues:

1.

The instance list of components is visited to find out names of the instance

and the names of the component.

If parameters for the instance are specified, the list of parameters is attached at

the end of the INSTANCE construct.

The connection list of component is consulted to produce the textual

description of all the connectors.

If a parameter for the connector is specified, the parameters is attached at the

end of the CONNECT construct.

170

Appendix B

B.5 Broker

The broker package contains the implementation for the component broker in

WebCODS. The broker is a Java application running as a server for the application.

It holds the following responsibilities:

1.

2.

3.

4.

Authenticate clients and providers to login to the broker
Connect clients and providers to the broker

Receive components from providers

Dispatch components to clients

Maintain the list of components received from providers

Perform backup services of the component list

The broker package is further divided into the following sub-packages:

L.

(93]

dataaccess — the related operations to access the database
clientsession — the session for the client in the server
providersession — the session for the provider in the server

deliveryservice — delivery service to transfer components between

clients and providers

security — the encryption and decryption services required in the delivery

service

servicecenter — the service centre maintains the list of components in

the server

171

Appendix B

B.5.1 Data Access

The UML class diagram for the package is shown in Figure 50. The package consists

of three classes:

1. AccessManagementData — the class extends the AccessData class and
provides methods to verify the usernames and passwords obtained from the

database.

2. AccessData — the class contains the core method used to access the

database through the DataStorage class

3. DataStorage — the proxy class to the database

AccessData W
[®database
SaddSelectClause() atabase
SaddSelectTable() PO
SaddselectField() getData()
AccessManagementData
*checkPassword()

Figure 50: UML class diagram for the accessdata package

The verification of usernames and passwords is based on the checkPassword
method available in the AccessManagementData class. The method returns a
Boolean value to indicate the validity of the supplied username and password. The
parameters passed to the method includes a username, a company name and the
supplied MDS5 digest of the message. The MDS5 digest is created using the username,
the company name and the password of the user. In this way, the password is never

dispatched to the network.

172

Appendix B

After receiving the supplied information, the method builds up a customized SQL
clause to select the password of the user from the database. The SQL is built using
the supplied operations in the AccessData class, such as, addSelectClause,
addSelectTable, and addSelectField. The usermames and passwords are
stored in a table called Users in the database. When setting up the AccessData
class to retrieve the User table, the Password field of the specified user can be

obtained.

The verification of the supplied user information starts after retrieving the
corresponding password from the database. The program recalculates the MDS5
message digest using the received username and company name, together with the
password obtained from the database. The calculated digest is compared against the
received digest. If both digests have an exact match, the login information is supplied
from an authenticated party. The method returns a true value to indicate the success
of the validation.

The creation of the AccessData class initializes the connection to the database
using the DataStorage class. The class connects to the database installed in the
system using the JDBC Bridge. The class also provides an accessing method to the
database. The accessing method is called getData. The method takes in the

following parameters:
1. A vector of interesting field
2. A vector of interesting table

3. A vector of selecting clause

The method creates an SQL statement in the form of a Statement class and passes
it to the database. The queried result is in the form of the ResultSet class. The

Statement and ResultSet classes are defined in java. sqgl package.

173

Appendix B

B.5.2 Sessions in Server

The broker application is implemented as an RMI server. The authentication of

clients and providers are based on RMI.

When the server is initialized, it registers itself to a RMI registry as “Broker”. In the
HTML page for the clients and providers, they specify a name and the location to
locate the broker. They can then connect to the broker using RMI and perform the

authentication.

After being authenticated by the broker, the broker creates new sessions for the
connected party. If the connected party is a client, the established session is a client
session. The interface of the session is defined in ClientSessionInterface.
If the connected party is a provider, the created session is a provider session and has
an interface defined in ProviderSessionInterface. The detailed descriptions

of the client session and provider session are summarized in Table 17.

Session Method Usage
requestService Submit a request for components to the broker
Client getComponentInfo | Requestdescription of a component in the broker
Query Query the broker with the supplied requirements
addService Add a new service to the broker
modifyService Modify the service existing in the broker
Provider
removeService Remove the existing service in the broker
listService List the submitted components of the broker
Common | getFacets Obtain the facets defined in the search engine

Table 17: Summary of the sessions created in the broker

174

Appendix B

Figure 51 shows the UML description for the architecture of the broker.

Server
ProviderServerinterface ClientServerinterface
A
7 A
ProviderSeiver ClientServer
SaddService() Squery()
SmadifyService() SgetFacets(}
Sremoveservice() SrequestService()
“istService() SgetCompanentinfa()
SgetFacets()
Keys

Figure 51: UML class diagram for the broker package

Given the users’ information, the corresponding public key can be identified from the
system keystore file. Using the same information, the system is also able to find the
DH public key of the party in the secret keystore file. If the DH public for the party
does not exist, the session will request the party to generate a new key set. After the
key is generated, the generated public key is transferred to the broker and is stored in

the secret keystore file.

The generated session holds the retrieved public keys of the connected party:
e Public key
e DH Public key

The keys are required by the security center when performing encryption, decryption

and verification of digital signature.

175

Appendix B

B.5.3 Delivery Service

The DeliveryService class is responsible for obtaining a reference to the
JavaSpaces that is used for delivering components. The initialization of the class uses
the LookupLocator class to find a Register for the Jini server. The lookup
locator reads in the location of the Jini server from the INI file. The Register is
then used to identify an instance of the JavaSpaces services with the specified name
also from the INI file. The reference to an instance of the JavaSpaces is stored as an

attribute in the class.

When clients request for components, the client session will consult the service center
to deliver the component. The service center obtains the component from the
component list. After obtained the component, the component is transferred to the
security center for encryption and digital signing. The component then sends to the

delivery service for transferring to the client.

The DeliveryService class uses the delivery method to send the component
to the space. The method requires information of the receiver and the encrypted

component as arguments. The delivery process has the following steps:

1. Prepare an instance of the RecipientInfo that contains the receiver’s

information

2. Prepare an instance of the CODSEntry that stores the RecipientInfo

and the encrypted component

(U3

Write the instance of the CODSEntry to the JavaSpaces

4. Return an Acknowledgement to the client

176

Appendix B

B.5.4 Security Center

The security center performs encryption, decryption and digital signing of
components. The operations are dependants on the private and public keys of the

broker and the public keys obtained from the corresponding established session.

The main methods available in the Security class are:
1. receiveData — decrypt the data using the keys
2. sendData — encrypt the data using the keys

3. startDHSession —calculate the DH secret key for the session

When data is received from client sessions or provider session, the receiveData
in the Security class is consulted. The method takes in the encrypted message,
and the user name of the session as parameters. The decryption of the message is

based on the following steps:

1. Verification of the signature contained in the message — use the verify
method in SignedObject to compare the signature used to sign the

message and the signature created with the public key stored in the session.

2. Generation the key for decryption — the message is encrypted with a key
generated using the DH private key of the encrypter and the DH public key of
the decrypter. Based on the properties of DH key agreement, the same key
can be generated from using the DH private key of the decrypter and the DH
public key of the encrypter. Therefore, the decryption key can be generated
using the DH private key of the broker and the public DH key stored in the

session using the startDHSession method.

3. Decryption — when the agreed DH secret key is generated, it can be used to
decrypt the message.

177

Appendix B

The encryption is the reverse of the decryption process described above. The sending

out of a component uses the sendData method. The method takes in the message,

and the user name of the session as parameters. The encryption of the message is

based on the following steps:

Generate the key for encryption — the decryption key can be generated using
the DH private key of the broker and the public DH key stored in the session.

Encrypt — when the agreed DH secret key is generated, it can be used to

encrypt the message.

Sign — using the public key and create the SignedObject for the message

The startDHSession is used to create the secret DH agreement key. The

procedure to create the key is listed below:

1.

2.

Create an instance of KeyFactory class using DH key agreement

Initialize the KeyFactory instance with the DH private of the broker using the

init method.

Add the public key of the session to the KeyFactory instance with the
doPhase method.

Generate the secret key using the generateSecret method
Create an instance of the SecretKeyFactory using “DESede” algorithm

Initialize an instance of the DESedeKeySpec with the previously generated

secret key

Regenerate the secret key using the generateSecret method available in

the DESedeKeySpec class

178

Appendix B

B.5.5 Service Center

The service center contains a list of the components received from providers. The
service center is the point of interaction for the established session in the broker. The

service center interface provides the following functions:
1. addService —add a new component to the component list
2. modifyService —modify an existing component in the component list
3. removeService —remove an existing component in the component list

4. query — search components using the search engine

The component being added to the component list contains:
1. Executables
2. Object-based representation of the component

3. Classification details in XML format

When components are added to or modified in the component list, the XML
description is added to the search engine. The service center delegates the query

operations to the search engine that contains the classification details.

The service center is also responsible for the backup of the component list. If the
broker crashes, the component list can be reloaded and continue serving components
to clients. The backup of the server is performed in the ServiceCenterBackup

class.

179

Appendix B

The backup of the broker proceeds with the following steps for each component in the
list:
1. Save the executables and typing descriptions

2. Store the XML descriptions

The information of the component is written to an ObjectOutputStream and
saves to a file. The backup mechanism is implemented as a Thread, and it is

activated every 10 minutes.

The rebuilding of the broker simulates the process of submitting components from
providers; each component in the saved list is added to the reinitialized broker
sequentially. In this way, the component list of the broker is restored to the last saved

execution state and the status of the search engine can also be rebuilt.

The UML description of the servicecenter package is shown in Figure 52.

ServiceCenter
Component $addService()

N SremaveService()

- SmadifyService()
Squery()

N / \ 1
ComponentDescription SearchEngine ServiceCenterBackup
o r

Figure 52: The UML description of the servicecenter package

180

Appendix B

B.6 Search Engine

The core functionality of the engine is listed in the Engine interface. This interface

requires implementing classes to provide the following methods:

1.

2.

search — the finding of components in the engine

addDocument — add new description to the engine
modifyDocument — modify the existing description in the engine
removeDocument — remove the existing description in the engine

getNumComp — return the number of descriptions available in the engine

When the search engine is created, it reads in a few files to establish the internal

structure.

1.

Facets file — the file contains the list of facets used in the classification of

compcenents

Thesaurus files — each of the facets in the Facets File may be accompanied by
a thesaurus file. The thesaurus file contains synonyms and their related
weights.

The search engine supports searching in the following ways:

1.

(3]

List the components belongs to a provider using the searchProvider

method
Match of attributes in facets using the searchFacets method

Search of the querv in the free-text description using the

searchDescription method

181

Appendix B

The searching mechanism in the searchFacets and searchDescription
methods are dependants on the thesaurus created during the initialization of the search
engine. The queries supplied to these methods are expanded using the search method
available in the Thesaurus class. The expanded result is listed in ResultPath
class. Because the class extends java.util.Iterator, the next method can
be used to traverse the returned result. Each entry in the result contains the related

synonym and its proximity related weight.

The thesaurus is represented as a directed graph with weighted links. Each node in
the graph is represented as a GraphElement. This class contains the represented
synonyms and their proximity relationship. The Thesaurus class contains a
java.util.Hashtable to store the GraphElement objects. This class has a
recursive per formSearch method that can transverse the graph and identifies all
related nodes for the supplied query. The use of the thesaurus allows identification of

one or more related components with ranked closeness according to the input query.

When searching components using the thesaurus, there is a possibility that all terms in
the thesaurus are related. Therefore a threshold wvalue is required in the

performSearch method to eliminate the not-so related synonyms.

The UML description of the searchengine package is shown in Figure 53.

182

Appendix B

ComponentDescription
/PU..
SearchEngne Thesauus GraphNode

erm-

SsearchProvider() - Sterm?2

SsearchFacets() - Jsearch) [®owweight

“searchDescription() . ‘performSearcV - 9

ResultPath

Figure 53: The UML description of the searchengine package

The searchengine package also contains an application for the system

administrator to build and test the thesaurus. The application contains the following

classes:

1.

ThesaurusViewer — the main class of the application. The class is able to
read in a thesaurus file and allows modification to the thesaurus. After testing
of the thesaurus, the modification can be written to a thesaurus file and used

by the application.

VisualizePanel — the class creates an instance of the Thesaurus class for
testing. The user of the application can perform queries on the created

thesaurus and see the result.

QueryMenu — the class used to create a query menu to search the thesaurus.
The query menu allows the user to supply a query string and a threshold to be

used in the search.

ResultViewer — the class used to view the result of the querying of the
thesaurus. The result lists the related synonyms and their weighted proximity
relationship.

183

Appendix B

B.7 Client Application

The client application is implemented as a Java Applet. The main execution class,
webcods.client.ui.ClientAppUI of the application extends the

java.swing.JApplet class. The package contains four main components:
1. Initialization of the client application — the webcods.client package

2. Creation of the user interface of the application — the

webcods.client.ui package

3. Composition environment for components - the

webcods.client.ui.composediagram package

4. Searching and downloading components — the webcods.client.ui
package

B.7.1 Initialization

Initialization of the client application is required to establish connection with the
broker. The application opens the keystore file to locate the public and private key
set of the client, and the public key of the broker.

The connection process starts with obtaining a reference to the server using the name
of the broker and the location of the registry server. After obtained a RMI connection
with the server, the client supplies the username and password to establish a client

session with the broker.

184

Appendix B

The username and password is used to generate a MD5 code. The username and the
created MDS5 code are encapsulated as a SignedObject object. The object is
digitally signed using the private key of the client. The prepared message is sent to

the broker for verification.

B.7.2 UI Creation

The application Ul is implemented using Swing components. It is composed of the

following components:

1. DownloadedComponentList — based on java.swing.JList. The

list contains components downloaded from the broker.

2. ToDoPane — based on java.swing.JDesktopPane. The panel

contains sub-frames to perform component composition.

The DownloadedComponentList stores the list of components downloaded
from the broker. The list displays the name of components, but the model behinds the
list stores all the details of the downloaded components:

1. Executables

o]

TypedComponent representation

3. XML description

The list also supports operations to visualize properties for the contained components:

1. View connectivity description of components — the ViewPanel class. The

class uses a JTextPanel to view the textual description for the component.

2. View classification description of components - the
ViewPropertiesPanel class. The class uses a JPanel to view the

facets attributes and free-text description for the component.

185

Appendix B

The ToDoPane provides frames to compose components —
ComposeDiagramFrame. The frame is supported by a

ComposeDiagramModel in the webcods.client.ui package.

When components are dropped from the DownloadedComponentList to the

ComposeDiagramFrame, the component is loaded into the composition

environment with the following steps:
1. Create a new ComposeDiagramFrame in the ToDoPane
2. Save descriptions of applications created in the ToDoPane
3. Load saved descriptions into the DownloadedComponentList
4. Exit the application

5. Display the about box of the application

The main UI class containing the DownloadedComponentList and
ToDoPane is called NavigatorPane. The panel creates the main menu for the

application. The Action class is the implementation for the menu.

The menu contains the following actions:
6. Creation of new ComposeDiagramFrame in the ToDoPane
7. Saving descriptions of applications created in the ToDoPane
8. Loading of saved descriptions into the DownloadedComponentList
9. Existing the application

10. Displaying of the about box of the application

186

Appendix B

B.7.3 Compose Diagram

The composediagram package contains the implementation for the composition

environment. The implementation is divided into two areas:
1. Analysis — the composition model of the environment

2. Drawing — the displaying of the components in the environment

When components are put on the ComposeDiagramFrame, the component is
represented as a ComponentNode. The type description of the component is
analyzed by the ComponentNode and displays the component on the
ComposeDiagram. The drawn component is added to the

ComposeDiagramModel.

The ComponentNode contains a TypedComponent of represented component.
The representation is resolved to contain the executable instances of referred
components. The node has access to the internal structure of the component therefore
the connectivity information of the component can be realized. The component is
displayed as a box with ports surrounding it to indicate its connectivity. The
PortsSpec objects in the description are represented by class of type
ConnectPort. Each kind of port has it’s own implementation of this class. For
example, the Stream port has a StreamPort class to define the behavior of the port.
The behavior is restricted by the permissible type of connector links to the port and

the directions of operation.

The model of connection between components is represented by ConnectEdge.

The class is responsible for:
1. Creating the correct representation of the connecting edge figure

2. Checking the permissibility of the connection between the ports

187

Appendix B

The ComposeDiagramModel is the container of the composed application. It

stores references to the contained ComponentNode and ConnectEdge objects.

When connections are request by the composer in the composition environment, the

model is consulted to verify the permissibility of connection. The verification

process is delegated to the corresponding ConnectPort and ConnectEdge

objects for accurate analysis.

Because the ComposeDiagramModel contains the model of the application,

textual description for the composed application can be generated from the model.

The created components in the panel must be composite components.

The creation of description is based on the following steps:

1.

2.

Obtain the name of the component
Prepare the first line in the description

From the ComposeDiagramModel, obtain all unconnected
ConnectPort objects and then invoke the getDescription method

to obtain a textual representation of the port.

Visit the contained ComponentNode in the model and generate unique

instance names for the components.

If parameters for the instance are specified, attach the list of parameters is

to the end of the INSTANCE construct.

Consult the list of ConnectEdge objects to obtain the corresponding
connectors for connections. Create the textual description using the

getDescription method of all the connectors.

If a parameter for the connector is specified, attach the parameters to the

end of the CONNECT construct.

188

Appendix B

Component drawing is accomplished using drawing classes provided by the GEF

package. Each drawing element in the diagram extends the EdgeFig class from the

GEF.

Table 18 lists the drawing classes in the composition diagram and their usage.

Class

Usage

DatagramSocketEdgeFig

Contains the datagram socket connector and creates the

menu for input socket number

EventEdgeFig Contains the Event connector

FileEdgeFig Contains the file connector and creates the menu for
input file name

StreamEdgeFig Contains a menu for composers to select the preferred
pipe style. The class also stores the selected connector
and its parameters.

SocketEdgeFig Contains the socket connector and creates the menu for
input socket number

FigIcon Drawing class for icons to represent ports surrounding

the component

Table 18: Supporting classes for drawing in the composition diagram

The menus to set up parameters are stored in the ui package under

composediagram. Each connector has a specific implementation of the menu,

even for those do not require a menus to input parameter. The menu is used for

189

Appendix B

connecting and disconnecting the connection between components, and the

generation of textual descriptions for the connectors.

B.7.4 Searching and Downloading Components from the Broker

The application also has the capabilities to find components and download

components from the broker.

B.7.4.1 Searching

The functionality to search for components in the broker is encoded in the
MakeQuery class. The class uses a JDialog for clients to input the matching

criteria. The criteria includes searching for:
1. Provider’s Name

2. Facet’s Name

L)

Free-text description

The facets list is obtained dynamically from the broker by invoking the get Facets
methods available from the ClientSessionInterface. After specifying the
query, the information is gathered into a text string and submits to the broker.

The ClientSessionInterface provides a search method to query the search
engine. The return of the method is the XML description of all the matched
components. The XML description is viewed in a DisplayQuery class. The
viewing panel is an extension of the ViewEditorPanel that is configured to read
in HTML. The configured panel is able to view XML descriptions in a tabulated

format.

190

Appendix B

The listing of components is a similar process to searching. However, the query of

the search is not specified, it is able to match all the listed components in the broker.

B.7.4.2 Downloading

The components listed in the ViewEditorPanel after listing or searching can be
downloaded to the composition environment. This process is initiated by issuing a

requestService command to the ClientSessionInterface.

The requestService method takes in the name of the component as parameter.
The return of the method is an Acknowledge from the broker. The class contains

two required objects for the client to obtain the component:
1. JavaSpaces —a proxy to the JavaSpaces that the broker uses

2. CODSEntry — a prepared template for the client to match the component

from the space.

After obtaining the Acknowledge, the client can issue the take command to
obtain the requested component. The component is stored within the CODSEntry
and encrypted with the agreed DH key between the client and the broker.

The package contains a Security class that is responsible for the management of
keys in the application. The main methods in the class are decrypting and
startDHSession. The decrypting method is used to decrypt the encrypted
message in the CODSEntry obtained from the space using an agreed key generated

from the startDHSession method.

The decrypted messaged contains the executables of the component and the
connectivity description. The executables are loaded to the environment using the

WebCODSClassloader. The connectivity description of the component is added to

191

Appendix B

the DownloadedComponentList and displayed in the panel. When the
component is put in the composition environment, a cloned description for the

component is returned.

B.8 Provider Application

The provider application is implemented as a Java Applet. The main execution class,
webcods.provider.ui.ProviderAppUI of the application extends the

java.swing.JApplet class. The package contains four main components:
1. webcods.provider - Initialization of the provider application
2. webcods.provider.ui - Creation of the user interface of the application

3. webcods.provider.ui.creatediagram - Creation environment for

primitive components

4. webcods.provider.ui.composediagram - Composition

environment for components

B.8.1 Initialization

The process is similar to the initialization of the client application. The connection
process is started with obtain a reference to the server using the name of the broker
and the location of the registry server. The provider supplied the company name and

password to establish a provider session in the broker.

The generated username and the created MDS5 code are encapsulated in as a signed
object using the private key of the provider. The prepared message is sent to the

broker for verification.

192

Appendix B

B.8.2 UI Creation

The interface of the application is implemented using Swing components. It is

composed of the following components:

1.

(¥

LocalComponentList — based on java.swing.JList. The list

contains components downloaded from the broker.

ServerComponentList — based on java.swing.JList. The list

contains components loaded to the broker.

ToDoPane — based on java.swing.JDesktopPane. The panel

contains sub-frames to perform component creation and composition.

The LocalComponentList stores the list of components previously created in or

loaded into the application. The list displays the name of components, but the model
behind the list stores all the details of the local components.

1.

2.

Name of the component

Location of the package of the component (for primitive component)
Location of the jar file that contains the executable (for primitive component)
Location of the connectivity description for the component

Location of the classification description

The information is retrieved when the component is dropped to the composition

environment or publishes to the broker. When the application exits, the details of

components stored in the LocalComponentList are saved into a XML formatted

file. The file is saved to the current user’s home directory. The initialization of the

LocalComponentList loads the saved component information and displays them

in

the list.

193

Appendix B

The list also supports operations for the contained components:

1. View connectivity description of components — the ViewPanel class. The

class uses a JTextPanel to view the textual description for the component.

2. View classification description of components — the
ViewPropertiesPanel class. The class uses a JPanel to view the
facets attributes and free-text description for the component. The panel also
supports the modification of the classification details. The updated details are

saved in the description file.
3. Remove the component from the list

4. Publish the component to the broker

The BrokerComponentList lists the components previously submitted by the
provider. The process is the same as querying the broker using the provider’s name.

The queried result is saved in the list. The list stores the following information:
1. Name of the component

2. Classification details of the component — in XML format

The list supports the remove and view operations for the contained components:

1. Remove — delete the component from the broker. The remove includes the

removal of the executables and the corresponding descriptions.

2. View connectivity description — obtain the description based on the

information obtained from the LocalComponentList

3. View classification description — view the classification description of the

component returned from the querying of the search engine.

194

Appendix B

The ToDoPane provides frames to create and compose components -

CreateDiagramFrame and ComposeDiagramFrame.
CreateDiagramFrame creates new prinmitive components. The
ComposeDiagramFrame composes new components from the

LocalComponentList. After new components awrre created, they are added to the

list, and are ready to be published to the broker.

When components are dropped from the LocalComponentList to the
composition environment, the executables are loaded to the system memory using the
system classloader. The component is drawn o the corresponding frame for

manipulation.

After new components are created in the ToDoPame, the classification details of
components are input using the ViewPropPanel. The panel obtains the facets
from the broker using the getFacets methods from the
ProviderSessionInterface. Since the lisk is dynamically added to the
application, the modification of the classification scheeme does not need to reprogram

the panel.

The main Ul class containing the- LocalComponentList,
ServerComponentlList and ToDoPane is called NavigatorPane. The
panel creates the main menu for the application. The Action class is the

implementation for the menu.

The menu contains the following actions:

1. Create new CreateDiagramFrame in the ToDoPane

2. Create new ComposeDiagramFrame in the ToDoPane

195

Appendix B

3. Load saved descriptions into the LocalComponentList
4. Exit the application

5. Display the about box of the application

B.8.3 Creation Diagram

The creatediagram package contains the implementation for the creation of new

and modification of existing primitive components.

When components are put on the CreateDiagramFrame, the component is
represented as a ComponentNode. The type description of the component is
generated by the node and displays the component on the CreateDiagram. The

drawn component is added to the CreateDiagramModel.

The node has access to the TypedComponent representation of the component and
displays the ports using the corresponding icons. When the node is representing a
new component, the TypedComponent refers to a NULL object. Ports can be
added or removed from the ComponentNode. The ports drawn in the diagram are

represented as PortImage.

The available ports for adding to components are listed in the menu of the diagram.

The menu is created using the following classes:
1. CmdMenuIn — loads the icons for ports supporting in direction.
2. CmdMenuOut - loads the icons for ports supporting out direction.

3. CmdMenuInOut - loads the icons for ports supporting in and out direction.

196

Appendix B

Table 12 summarizes the icons used for ports in the creation and composition

environment.
Port Direction
In Out In/Out
Stream d J N/A
File = = N/A
Event + + N/A
Socket -] -2
Datagram Socket | 3> & %

Table 19: Icons for ports in WebCODS

The PortMenu class in the menu package is supplied for composers to input
information, when adding or modifying of ports in the diagram. The dialog requires
composers to provide the following information:

1. Name of the port

2. Select a method exists in the main class to set up the reference for the

connection

The CreateDiagramModel is the container of the created primitive component.
It stores references to the contained ComponentNode object. The model also stores
references to PortImage objects in the diagram. The model is capable of
generating the textual description for the created component using information

supplied by composers and contained information in the model.

197

Appendix B

The creation of description is based on the following steps:
1. Obtain the name of the component
2. Prepare the first line in the description

3. From the CreateDiagramModel obtains all PortImage objects, and
then invokes the getDescription method to obtain a textual

representation of the port.

After the textual description is prepared, the component creator needs to specify the
following information using the ComponentMenu dialog. The dialog allows the

provider to specify:

1. The main class to execute the component

!\J

The path to the package of the component

3. The path to the jar file that contains the executables

When the component is saved to LocalComponentList, the textual connectivity
description is saved in the same directory with the main execution class. The other
details specified in the ComponentMenu dialog are stored in the list and saved in

the XML file in the user directory.

B.8.4 Compose Diagram

The composediagram package contains the implementation for the composition

environment.

The implementation is the same as the composediagram in the client package.

198

Appendix B

B.8.5 Submitting Components to the Broker

The components listed in the LocalComponentList can be submitted to the
broker environment. The process is initialized by issuing a publish command in the
list. The command is passed to the ProviderSessionInterface using the

addService method.

The publish command picks wup the selected component in the
LocalComponentList. The command is transferred to the NavigatorPane.
The panel obtains a reference to the ServerComponentList and invokes the
addElement method. The method takes in the name of the component as the input
parameter. The request is then submitted to the addService method in
ProviderAppUI. Given the name of the component, the XML description and

the path to the component can be realized.

With all required details for the component, the addService method in

ProviderApp is invoked. The method prepares the component in a secure and

transferable format for the network.

The preparation of the details required for the component is listed below:
1. Read in the textual description of the component

2. Analyze the textual description of the component using the TypeParser in
the parsexr package

3. Resolve the TypedComponent object using the system class loader
4. Obtain the list of referred primitive components saved in the object table

5. Add the required executables into a new jarred byte array using the

ServiceOperation class
6. Obtain the classification details of the component in XML format

199

Appendix B

When the required details are ready, the information is bundled together in the
CODSDetails format. The transformation of data is based on the following steps:

1. Create a new instance of CODSDetails
2. Specify the information of the provider

3. Obtain the executables of the component from ServiceOperation class

in the form of jarred byte array
4. Put the jarred byte array into CODSDetails
5. Put the serialized TypedComponent representation into CODSDetails
6. Put the serialized XML classification into CODSDetails

7. Encrypt the CODSDetails using the agreed DH key between the provider
and the broker

The submitting of components to the broker is performed by invoking the
addService method in the ProviderSessionInterface class. The
ProviderApp class performs a check to determine the calling to addService or
modifyService method in the ProviderSessionInterface. The check is
achieved by querying the DownloadedComponentList to see if the component

exists in the broker before invoking the method.

The package contains a Security class that is responsible for the management of
keys in the application. The main methods in the class are decrypting and
startPHSession. The decrypting method is used to decrypt the encrypted
message in the CODSDetails obtained from the space using an agreed key

generated from the startDHSession method.

200

