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Abstract 

This research is focused on massive sand production around injector wells immediately after 

well shut-in events. Sand production in some water injector wells has been reported to be 

catastrophic, massive and always occurring after an unplanned shut-in. High pore pressures 

around injectors, numerous cycles of injection and shut-in, the strength-weakening effect of 

water and water hammer (WH) induced pressure pulses make the conditions around wellbore 

susceptible to sandstone degradation and sand production. WH is a general term describing the 

generation, propagation and damping of pressure waves in pipes.  It occurs due to sudden 

velocity changes occurring upon quick shutting down of the well. There are several examples of 

massive sand production and even complete injectivity losses. Progressive failure and 

liquefaction are among the theories to explain massive sanding. However, no numerical 

modeling has been performed to verify the underlying responsible mechanism. A dynamic 

analysis together with a suitable constitutive model can help us understand the mechanism, and 

hence take the necessary precautions to prevent catastrophic sand production conditions. 

The relevance of the research is not restricted to injection wells. Production wells also deal with 

WH waves during sudden shut-ins. Sudden sanding can be expected in producers particularly at 

high water cuts for which low compressibility of the water column in the wellbore ensures low 

attenuation of the WH pressure pulses.  

In this research a 2D axsisymmetric, single-phase fluid, sequentially coupled dynamic code is 

developed, capable of modeling pore pressure waves propagating within saturated porous media. 

The code ignores cyclic behavior and the effect of fatigue. It is used to study the sanding 

potential because of dynamic WH waves in a small-scale synthetic case study. The model 
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simulates a layer of both weakly-consolidated and unconsolidated reservoir with the WH waves 

applied as a boundary condition. The modeling results indicate progressive failure as the 

underlying mechanism for massive sanding. The stress paths and dominant factors affecting 

failure and potential sand production are also discussed. The fast changes of stress conditions 

and failure progression confirms the need for a dynamic analysis. 
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Chapter 1: Introduction 

 

1.1 Background   

Seventy percent of the world oil and gas are contained in weakly consolidated 

reservoirs.  Oil extraction using deep wells in these weakly cemented materials is 

prone to sand production. Material degradation and loss of sandstone strength are 

necessary conditions for sanding. Drilling operations, fatigue caused by several 

cycles of shut-in and injection, generation of high pore pressures, operational 

conditions and strength-weakening effect of water gradually lead to sandstone 

degradation around the perforations. High pressure gradients along perforations 

also facilitate the detachment of sand particles. In addition, fluid flow is 

responsible for the transportation and production of de-bonded sand particles or 

detached sand clumps into the wellbore.  

Sand production is the source of several problems in the oil industry. These 

problems include but are not limited to the following: plugging the perforations or 

production liner, wellbore instability, failure of sand control completions (Willson 

et al., 2002), lower wellbore productivity/injectivity, filling the well with sand 

after a massive sanding, environmental effects, additional cost for remedial and 

clean-up operations, and erosion of pipelines and surface facilities. Prevention of 

sanding by sand control completions such as gravel packing is costly and leads to 

lower well productivity/injectivity. Therefore, there is always a cost benefit if 

sand management and modeling is implemented early during the design stage of 

well completions. 

A sizable portion of oil reserves are recovered by waterflood requiring water 

injection wells. Beside petroleum production wells, water injector wells can also 
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be prone to sand production. However, the problem for injector wells remains 

unnoticed or is ignored until it is too late, mainly because the flow direction 

obscures sanding. Sand production in injector wells occurs during the shut-in 

period when cross-flow, backflow, water hammer (WH) and well interference 

lead to sanding (Santarelli et al., 2011). There are several examples of massive 

sand production and even complete loss of injectivity in the Norwegian North Sea 

(Santarelli et al., 1998; Santarelli et al., 2000), Indonesia (Papamichos, 2006) and 

Buzzard field in the UK (Santarelli et al., 2011) for injector wells. The Norwegian 

Sea well serves as a good example for the severity of sanding in injector wells, 

where the injectivity of the well decreased from 8000 m
3
/d to 0 m

3
/d in just half 

an hour when the injection was resumed following a quick wellbore shut-in. All 

of these problems could have been prevented if a comprehensive sand assessment 

had been performed and the wellbore had not been shut-in quickly.  

The focus of this work is the dynamic response of sand formations to WH 

pressure pulsing that has been alluded to in the literature as a major factor in 

massive sand production, primarily in water injection wells. WH is a general term 

describing the generation, propagation, reflection and damping of pressure waves 

through liquids in pipes (Jardine et al., 1993). A realistic investigation of WH 

pulsing effects requires a dynamic analysis. Sudden changes in the flow velocity 

lead to liquid depressurization at one end of the well and extra pressure at the 

other end. WH pressure pulses hit the reservoir formation like seismic waves 

following the shut-in and may lead to sand liquefaction and massive sanding 

(Santarelli et al., 2000).  

1.2 Objective 

The primary objective of this research is to numerically investigate the 

importance of WH pressure pulsing on the sanding potential and mechanism in 

water injection wells. The goal is to assess if the WH pressure pulsing can lead to 
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massive sand failure and investigate the conditions that may lead to massive 

sanding. Some speculate that dynamic liquefaction due to WH is the culprit 

mechanism for massive sanding after sudden shut-ins, but no measurements or 

simulation studies have verified this. Massive failure could also be due to 

progressive failure when near well-bore failure leads to additional failure 

progressing through the reservoir.  

Since no commercial simulator is available to realistically mimic pore pressure 

pulses (such as WH waves) in porous media, the secondary objective is to develop 

a numerical model capable of simulating fluid dynamics in porous media. The 

model must take into account the effect of fluid acceleration and the results are 

validated against experimental data. 

1.3 Hypothesis 

The hypothesis is that the WH pressure pulsing can lead to massive sandstone 

degradation through two possible mechanisms: (1) the high pore pressures during 

WH propagations leads to low mean effective stresses and liquefaction, and (2) 

the zone surrounding the wellbore may undergo failure due to sudden changes in 

pore pressure and stress, the failure zone may then expand as a result of stress 

redistribution and wave propagation through a progressive failure process. When 

the failure process is self-enhancing, and different parts of the material fail at 

different times, it is called progressive failure.  

The counter argument against the liquefaction hypothesis is the great depth of the 

reservoirs that have experienced massive sanding after the sudden well shut-in. 

The high depth of the reservoirs formation should indicate lower porosities, i.e. 

dense sandstone and high stresses lessening the liquefaction potential.  
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1.4 Research Motivation 

Sanding is a widespread problem in weakly-consolidated sandstone reservoirs, 

which comprise more than seventy percent of the hydrocarbon reservoirs.  Water 

injection is expected to be the secondary recovery method of choice for a 

considerable number of these resources. To design optimum completion, it is 

necessary to estimate the rate and volume of the potential sand that will be 

produced in the life span of a wellbore. However, the existing models require 

further development to accurately predict sanding for field-scale problems. 

Sanding in injector wells is usually ignored until it is too late, e.g. in Norwegian 

North Sea (Santarelli et al., 1998; Santarelli et al., 2000), Indonesia (Papamichos, 

2006) and Buzzard field in the UK (Santarelli et al., 2011). The problem in 

injectors is often regarded as the case with sudden and massive sand production. 

The Norwegian Sea well serves as a good example where the injectivity of the 

well decreased from 8000 m
3
/d to 0 m

3
/d in just half an hour after a shut-in 

(Santarelli et al., 2000).  

Because of the fast and massive nature of the produced sand, researchers 

(Santarelli et al., 2011; Santarelli et al., 1998; Santarelli et al. 2000; Han et al., 

2003; Hayatdavoudi, 2005) speculated that dynamic WH waves, generated after 

an abrupt shut-in, are the main culprit, and liquefaction could be the governing 

mechanism. Progressive failure can be a potential mechanism too. However, little 

research has been conducted to verify which the dominant mechanism. Numerical 

study of the former hypothesis requires the implementation of an appropriate 

constitutive model in a dynamic hydro-mechanical model to capture the excess 

pore pressure generation observed in liquefaction. The model should provide a 

safe shut-in and start-up window to minimize the sanding in injection wells as 

well as production wells with high water-cut. 
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1.5 Methodology and Scope 

The methodology consists of developing a suitable model to simulate pressure 

pulsing propagation in the porous media and capture sand liquefaction around 

water injector wells. The model includes the following important features:  

 Axisymmetric condition is assumed for a single injection well analysis to 

limit the model size; 

 The geomechanical modeling platform is Itasca’s FLAC software. 

Dynamic load in the Civil Engineering context (e.g. earthquake 

engineering) is usually conducted by specifying  the stress or displacement 

as the boundary condition. However, the dynamic load in this research 

consists of WH pressure pulses and the corresponding normal stress pulses 

on the well face. The dynamic option of FLAC only solves for solid 

dynamics. The fluid flow is still calculated using Darcy’s law, hence 

ignoring the pore fluid acceleration. Therefore, FLAC cannot simulate the 

pore pressure waves. A CFD code, capable of solving dynamic fluid flow 

in porous media, is developed in MATLAB and the two software are 

sequentially coupled using an undrained split methodology;  

 The simulation steps involve drilling a wellbore, applying the mud 

pressure, and installing the casing; a static injection period leads to the 

dynamic simulation involving several cycles of WH pressure pulses.  The 

applied WH waves are based on the measured data available for a well in 

an Alaskan field; 

 The study involves the utilization of different constitutive models for 

weakly-consolidated sandstone and unconsolidated sand and comparison 

of the results. The conditions under which sudden failure is triggered and 

the extent of failure is studied. The area of failure is identified and related 

to the potential amount of sand production around the injection well. 
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Finally, the conditions under which a dynamic analysis is necessary are 

specified; 

 A parametric study is conducted to investigate the effect of rock 

parameters, WH wave properties and operating conditions on the model 

response in terms of sand failure and sanding potential.  

For the feasibility of the study, some simplifications are necessary. The code is 

developed for 2D axisymmetric conditions. Single-phase flow is considered, as 

the waves only affect the vicinity of the injector well which is mostly water 

saturated. The reservoir is assumed homogenous. 

The effect of fatigue due to cyclic loading is outside the scope of this work. 

However, it is anticipated that the fatigue should have a significant effect on the 

sand failure and the generation of excess pore pressure when WH pulses hit the 

well. Moreover, it is assumed that static constitutive models are still suitable in 

the simulation of dynamic conditions.  

1.6 Thesis Layout 

Chapter 2 presents a literature review on the modeling of sand production and the 

sanding cases in the context of water injection wells, particularly those that are 

suspected to occur due to liquefaction. The chapter also introduces the essential 

theory and background for the stated problem. 

Chapter 3 discusses the behavior of sandstone and its degradation under shear 

yielding. A bilinear hardening/softening Mohr-Coulomb model is presented and 

calibrated for two different types of sandstone and validated with experimental 

data. The same model is used for the model presented in Chapter 5. Also, Fracture 

Energy Regularization is applied to eliminate mesh dependency during softening. 
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Chapter 4 covers the mathematical formulation of porous media dynamics. The 

governing equations are presented and extended to elastoplastic conditions.  The 

equations presented by De la Cruz and Spanos (1989) are adopted under 

isothermal conditions and solved using the Finite Difference Method. The results 

are also compared with those obtained from Biot's theory (Biot, 1956). A new 

form of artificial viscosity is presented for the numerical stability. The numerical 

solutions are validated using a shock-tube experiment and some simple models 

are simulated to examine the propagation of the pressure waves through an elastic 

medium. The flow equations are then coupled with the FLAC dynamic module.  

Both undrained and drained splits are investigated and it is concluded that the 

undrained split coupling is more robust and stable. 

Chapter 5 investigates the failure and sanding potential for a synthetic model that 

is based on the case study reported by Santarelli et al. (2000). Axisymmetric 

condition is assumed for a single injection well in the reservoir. WH waves are 

applied as the boundary condition following a sudden shut-in for a dynamic 

analysis. Different constitutive models are used and the dynamic response of the 

medium is investigated. Both weakly-consolidated sandstone and cohesionless 

sand are simulated. Finally, a parametric study is performed to study the effect of 

sand properties (e.g. friction angle, dilation angle, permeability and porosity), 

operational parameters (e.g. injection pressure and wave amplitude) on the model 

response. 

Chapter 6 presents a summary and conclusion of the findings as well as the 

recommendations for further advancement of this research. 
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Chapter 2: Literature Review 

 

2.1 Introduction 

To investigate numerical modeling of sanding under dynamic effect of WH 

pressure pulsing, several topics have to be considered including modeling sand 

production, WH waves, dynamic analysis, progressive failure and liquefaction. In 

this chapter a summary of previous numerical studies on sanding are mentioned 

and some theories are introduced regarding the phenomenon under investigation. 

This chapter introduces a review of the current sanding models and how they lack 

the ability to capture dynamic effects. Then it briefs a review of soil response 

under dynamic loading. The chapter ends with a discussion on WH pressure 

pulsing as a result of sudden shut-in.  

2.2 Sanding Models
1
 

Over the time, numerous approaches have been adopted to predict and understand 

the sand production phenomenon using physical model testing, analytical and 

empirical relationships, and numerical modeling. Routine laboratory tests can 

only predict the onset of sand production (Xiao and Vaziri, 2011). They are also 

time-consuming and expensive. In addition, because of the small size of the 

sample plugs, the results are usually influenced by boundary effects. Analytical 

                                                 
1
 This section is based on the following publication: Rahmati, H., Jafarpour, M., Azadbakht, 

S., Nouri, A., Vaziri, H., Chan, D., and Xiao, Y., 2012. Review of Sand Production Prediction 

Models, Journal of Petroleum Engineering, Vol 2013, Article ID 86498. 

 

https://www.hindawi.com/47953141/
https://www.hindawi.com/78673461/
https://www.hindawi.com/26589507/
https://www.hindawi.com/70532965/
https://www.hindawi.com/71605987/
https://www.hindawi.com/60725965/
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models are fast and easy to use but they are only good for the onset of sand 

predictions and have some restrictions. Most of them are only valid for certain 

limited assumptions, which are not usually the case in complicated field-scale 

problems. Numerical models are by far the most powerful tools for predicting and 

managing sand production. They can be combined with analytical correlations to 

obtain the results more efficiently. Experimental results are also utilized to 

calibrate or verify numerical models. Yet, numerical models have their own 

limitations and extensive efforts have been made to improve them.  

The many numerical sand models reported in the literature can be divided into 

two groups: continuum-based models and discontinuum-based models. Discrete 

element method (DEM) is a good tool to mimic sand production, especially to 

understand the mechanism of sanding in the grain-scale level. However, it cannot 

be used for large-scale problems because of the large computational time 

required. The calibration of the model is also very difficult and involves several 

uncertainties as it is not possible to create a model with the exact particle 

arrangement as the real sandstone. It is also not possible to measure micro 

properties of sandstone directly. They are obtained in such a way that the set of 

properties predicts the desired sand behaviour. Therefore, continuum-based 

models are more popular especially for field-scale problems. Table 2-1 

summarizes all the continuum-based numerical works in the literature. 

An important issue about the current sand models is that almost all of them are for 

producer wells. There are a number of issues that are common between water 

injectors and producers, including erosion. However, injectors face other potential 

problems such as WH, well-to-well backflow, inter-layer crossflow during shut-

ins, thermal fractures, and gravel loss into fracture systems (Sadrpanah, 2005). 

Only a few researchers (Yi, 2001; Vaziri et al., 2008; Azadbakht et al., 2012) 

performed numerical studies to predict sanding in injectors. Sanding mechanisms 
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in injectors have not been investigated thoroughly and may be quite different due 

to, for instance, the effects of WH waves. The situation in these wells is often 

described as cases with high sand production within a short duration. A few 

papers (Santarelli et al., 2011, 1998, 2000; Hayatdavoudi, 2005) tried to explain 

the sanding problems in injectors and stated that sand liquefaction due to WH, the 

process by which spontaneous loss of shear strength occurs under undrained 

condition, is a likely mechanism for massive sand production. Progressive failure, 

where different elements undergo failure at different time, is also likely to cause 

massive sanding.  Nevertheless, no work has been published which investigates 

possible mechanisms and the conditions leading to massive sanding. 
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Table 2-1 Summary of the numerical works on sand production in the literature 

Model 

Geometry 

& Solution 

Method 

Yield 
Hard. 

/Soft. 
Coupling 

Onset of 

Sanding 

  

  
  

Permeability 

Change 
Other Features 

(Morita et al., 

1989; Morita et 

al., 1998; Burton 

et al., 1998) 

3D; FE 

 

(SAND3D 

software) 

Kinematic 

model 

with a cap 

yes 

(flow 

friction) 

Iteratively  

coupled 

plastic strain 

limit 

0 0 1.Only the onset of 

sanding.  2.Burton  

applied it for gas 

reservoirs 

(Vardoulakis et 

al., 1996) 

1D; FD N/A N/A Fluid flow 

& erosion 

are coupled. 

 

            

 
  

  
   

And with sand deposition: 

=         
  

   
        

  

 

  
           

(Carman -Kozeny) 

1.Only hydro-

mechanical effects; 

Equilibrium eqn is 

not solved.  2.Sand 

deposition is 

neglected in 

modeling. 

(Skjærstein et al., 

1997) 

1D; FD N/A N/A Fluid flow 

& erosion 

are coupled. 

   

  
      

 

   
    

 

 
      

(found 

experimentally) 

Forcheimer’s law 

was used instead of 

Darcy’s law to 

account for 

turbulancy. 

(Papamichos and 

Stavropoulou, 

1998)   

2D Axial 

symmetry & 

3D; FE;  

Newoton-

Paphson (NR) 

iterations 

MC yes Fully-

coupled 

   

  
              

No crit. porosity 

 

  
             

               

Tension cut-off: 

function of both 

plastic strain & 

porosity ; by the 

factor    
         . 

(Papamichos et 

al., 2001) 

2D Axial 

symmetry;  

FEM; NR 

iterations 

MC yes Fully-

coupled 

   

  
            

Carman -Kozeny Tension cut-off & 

Young mod 

changed by the 

factor    
         . 
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(Yi, 2001) 2D axial 

symmetry;  

FD 

MC no  yielding 
 
  

  
       

  

  
       

  

  
    

   

  
            

  

  
 

 

  

  
       

  

  
       

 

        
 

 

Sand deposition in 

porous media is 

considered. 

(Vaziri et al., 

2002) 

2D axial 

symmetry; 

FE; fully-

implicit 

Modified 

MC with 

tensile 

failure 

yes Fully-

coupled 

Tensile 

failure (zero 

effective 

stress) 

0 (sand is remained in place 

as a liquefied zone) 

 

  
           
                

Zero stiffness, 

compressibility & 

high k for the 

liquefied tensile 

zone. 

(Wang and Xue, 

2002) 

FE; Crank-

Nicholson for 

time 

integration 

MC no Fully-

coupled 
  

    
        

 

  

  
              

  

  
          Kozeny-Poiseuille 

law &   Carman -

Kozeny 

 

(Chin and Ramos, 

2002) 

2D & 3D; FE; 

explicit; NR 

iteration 

Drucker-

Prager 

no Coupled yielding           Power law with 

porosity 

(exponent=5.6) 

 

(Nouri et al., 

2003) 

2D plane 

strain;  FD 

Bilinear 

MC 

yes Fully-

coupled 

Tensile 

failure or 

shear-failed 

element 

falls in 

tension 

N/A (sudden element 

removal) 

N/A Capillary is 

considered as a 

residual cohesion. 

(Wang et al. 

2005) 

2D; FE Drucker-

Prager 

no Fully-

coupled 

   a function of plastic strain            

    
       

  

Cohesion & friction 

drop linearly with 

porosity. 

(Servant et al., 

2006) 

2D; FE MC no Iteratively  

coupled 

Yielding & 

seepage 

Based on filtration theory  Constant viscosity 

for the slurry. 

(Detournay et al., 

2006) 

2D; FD MC yes Iteratively  

coupled 

Tension or 

q>    

  
  

  

  
 

 

  
 
       

  

  
       

 
Bulk mod. changed 

by      
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(Nouri et al., 

2006b) 

2D axial 

symmetry; FD 

Bilinear 

MC 

yes Iteratively  

coupled 

Tensile 

failure or a 

shear-failed 

element 

falls in 

tension 

element removal if produced, 

else:          
               

 

 

(Nouri et al., 

2006a) 

FE; NR 

iterations 

MC yes Fully-

coupled 

Tension N/A (sudden element 

removal) 

N/A Adaptive mesh is 

used. 

(Nouri et al., 

2007; Vaziri et 

al., 2008) 

2D plane 

strain & axial 

symmetry; FD 

Bilinear 

MC 

yes Iteratively  

coupled 

Complete 

degradation 

and tensile 

mean 

effective 

stress 

 Applied but not 

reported how. Vaziri 

(2008) 

WH pulsing is 

included in the 

model; stiffness 

changes with 

sanding (Vaziri et 

al., 2008) 

(Detournay-

Piette, 2008) 

2D plane 

strain;  FD 

Double-

yield 

yes Iteratively  

coupled 

Same as 

2006 

  Only cap yielding is 

considered. 

(Nouri et al., 

2009) 

All the features are the same as (Nouri et al., 2007) but fracture energy regularization is applied to remove mesh dependency and the calibration of 

hardening/softening behavior is discussed thoroughly. 

(Kim et al., 2011) 3D;  FD MC yes  Calculated 

from force 

balance on 

the element 

N/A (sudden element 

removal) 

N/A No calibration 

parameter to match 

the experiment is 

used and yet a good 

match is observed. 

(Wang et al., 

2011) 

2D;  FE 

(ELFEN 

software)  

Soft rock 

model 

yes Fully-

coupled 

  K changes as a 

function of dilation or 

volumetric strain: 

            

1.adaptive mesh; 

2.Arbitrary 

Largrangian 

Eulerian 

formulation; 

3.Fracture Energy 

Regularization 
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The importance of WH is amplified by the fact that the produced flow rates due to 

WH are higher than crossflows and backflows (Santarelli et al., 2011). In 2006, 

Hayatdavoudi investigated the WH effects in three production wells in sandstone 

reservoirs that had experienced loss of production. They observed, at least in three 

deep wells with highly consolidated reservoir rocks, that not only did they lose 

fluid production, but they also produced a great deal of pulverized, highly angular 

rock fragments. The situation exacerbates for weakly consolidated sandstones.  

Wang et al. (2008) measured high frequency WH pulses (above 17 Hz) in an 

Alaska oil field. Therefore, WH is a short transient event requiring a dynamic 

approach in modeling. Only Vaziri et al. (2008) and Azadbakht et al. (2012) 

performed a simulation study of WH effect on sanding. However, the authors took 

a quasi-static approach. Hence, the accelerations of fluid in porous media and 

solid particles were ignored. Solving for dynamic fluid considers the pore fluid 

acceleration and any possible turbulence in the fluid flow. Previously, Skjærstein 

et al. (1997) used Forcheimer’s law instead of Darcy’s law to account for fluid 

turbulence around the wellbore. Yet, this approach also ignores pore fluid 

acceleration. In fact, the only research in which a dynamic numerical model for 

sanding is mentioned, though not applied, is for modeling unstable responses in 

CHOPS (Wang et al., 2011).  

To capture a more realistic model than those currently available, it is necessary to 

take a dynamic approach. To investigate the hypotheses for massive sanding it is 

necessary to utilize a constitutive model capable of predicting excess pore 

pressure generation during liquefaction.  

Despite numerous efforts in modeling sand production, field case studies show 

that the ability to predict the quantity and rate of sand production has not been 

achieved yet. Considering the works reported in the literature, there are still many 

areas for improvement:  
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1. No dynamic analysis has been conducted in sanding for those cases with 

intense WH pulses generated after fast shut-ins in injection wells and high water-

cut production wells.    

2. The main mechanism is not identified. Although liquefaction is speculated as 

the main mechanism in sudden and massive sand production in injection wells, it 

has not been investigated in the current models yet. Progressive failure is another 

likely mechanism. 

3. Critical-state based constitutive models are recognized to predict sand 

behaviour more precisely. Most of these models are capped to capture 

compression yielding, which is necessary to capture the compactive sanding 

response and slit-mode of failure around wellbore (Detournay, C., 2008). Sand 

tendency to compaction when combined under undrained conditions are expected 

to lead to liquefaction when WH pressure pulses hit the reservoir. 

4. Fatigue and cyclic effect of loading and unloading due to drilling, injection, and 

WH effect are not included in the current sanding models. 

There are other deficiencies in the current models which can be improved. 

However, addressing all of them is beyond the scope of this work. The main focus 

of this work is the first two points: modeling the dynamic effect of the WH 

pressure pulses, investigating the culprit mechanism for massive sanding in 

injector wellbores and identifying the potential for massive sand production i.e. 

progressive failure and liquefaction.  
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2.3 Dynamic Analysis 

Dynamic analysis is necessary to capture the response of a medium under 

dynamic loading. The difference between dynamic and static analysis is the 

incorporation of the inertia effect in dynamic analysis.  Oscillating, fast changing, 

and impact forces are all considered as dynamic loads. Soil behavior under 

dynamic loads can be very different from the same under static loads. These 

differences include, but are not limited to, inclusion of acceleration and damping 

in the formulation and shear modulus degradation. 

After FEM discretization, the equilibrium equation for a dynamic analysis will be 

in the form of: 

                 (2-1) 

where   is the mass matrix,   is the damping matrix,   is the stiffness matrix,   

is the pressure coefficient matrix, and     and   represent the displacement, pore 

pressure, and force vectors, respectively.  

2.3.1 Damping 

Damping refers to the gradual decrease of amplitude with time due to 

environment energy absorbing through mechanisms such as grain-to-grain friction 

and interface slippage (Das and Ramana, 2011). A suitable model for soil under 

dynamic loading would capture the hysteresis curves and energy-absorbing 

characteristics of the soil (FLAC user manual, 2008). In soils and rocks, natural 

damping is hysteretic, i.e. damping is independent of the applied frequency 

(Wegel and Walther, 1935; Gemant and Jackson, 1937). For geological materials 

and for structures, damping commonly falls in the range of 2-5% and 2-10% of 

the critical damping, respectively (Biggs and Biggs, 1964). A system is critically 

damped when damping ratio equals one and the system returns to a steady-state 
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quickly without oscillating. The damping ratio of a soil sample can be measured 

by a “resonant column test” (Jefferies and Been, 2006). 

There are various damping models available in numerical models: Raleigh 

damping, hysteretic damping, viscous damping, and artificial viscosity. Hysteretic 

damping is the most realistic representation of soils in which the plastic 

deformation is independent of the applied load frequency (Gemant et al., 1937; 

Wege et al., 1935; Bear, 2010). Hysteretic damping is not effective at low strain 

cycles; therefore, it should be combined with small (about 0.2%) stiffness-

proportional Raleigh damping (FLAC user manual, 2008). Artificial viscosity is 

also used in fluid dynamics especially to damp numerical overshoots behind a 

shock front and to diffuse the shock front over a number of zones as the shock 

progresses (Wilkins, 1980). Artificial viscosity does not damp shear waves.  

2.3.2 Sand Behavior under Dynamic Loads 

Laboratory research has been conducted to measure soil behavior under dynamic 

loads. Some of the experiments have been specifically proposed to measure the 

properties of dynamically loaded soils. Figure 2-1 shows damping ratio obtained 

from previous experimental studies. Other studies show that sand Young’s 

modulus is approximately the same under static and transient loads (Casagrande 

and Shannon, 1949). 
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Figure 2-1 Dependence of damping ratio on shear strain for sands (Seed et al., 1984) 

2.3.3 Dynamic Formulation 

A dynamic analysis involves modeling the mechanical deformation as well as the 

transient fluid flow and pore pressure distribution considering the acceleration 

terms. Biot (1956) described the dynamic governing equations in saturated porous 

media for low frequency waves. The basic principles are conservation of mass 

and conservation of momentum. Spanos and De la Cruz (1989) extended the 

formulation by adding thermodynamics and treating porosity as a primary 

variable. A detailed formulation and numerical solution are presented in Chapter 

4. 

2.4 Water hammer (WH) 

WH is a general term describing pressure wave generation and propagation 

through liquids in pipes and pipe networks (Jardine et al., 1993). The classic 
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analysis of WH shows that if flow is stopped suddenly (e.g. a valve is closed) a 

positive pulse is generated. This positive pulse will travel to the end of the conduit 

and reflect as a positive pulse if the end of the conduit is closed. If the end 

empties into a large reservoir the positive pulse will reflect as a negative pulse 

(McStravick et al., 1992). A typical WH wave is measured in Alaska field (Wang 

et al., 2008). 

2.4.1 Wave Magnitude and Attenuation 

The velocity and the magnitude of the initial pressure pulse created depend on the 

fluid inside the pipe, geometry, stiffness of the pipe material, and frictional 

effects. The rock quality at the wellbore-reservoir interface affects the amplitude 

of the reflected waves as energy dissipates faster in a well with higher 

Productivity Index (PI) (Sadrpanah et al., 2005). 

The magnitude of initial WH amplitude can be estimated using:  

               (2-2) 

Where   is density,    is change in fluid velocity, and   is the speed with which 

the pressure-pulse wave is transmitted along a pipe and is calculated using:  

   
 
 
  

   
 
   

 
 
 
 

               (2-3) 

where K is the bulk modulus of elasticity of fluid,   is the elastic modulus of the 

pipe, D is the inner diameter of the pipe, and l is the thickness of the pipe. 

The basic equations for formulating WH are Newton’s second law and continuity 

equation:  
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               (2-4) 

  

 

  

  
  

  

  
       

  

  
   

               (2-5) 

where    is the friction factor, H is the head, v is fluid velocity, and   is the angle 

that pipe makes with horizon. These equations can be solved by the characteristic 

method (Streeter et al., 1998).  

Figure 2-2 illustrates that a pulse attenuates considerably during the travel 

towards longer lengths. 

Some measurements at three different depths in a well in Alaska show that only 

10% of the wave amplitude generated at the surface is observed at a depth of 1356 

m. The frequency however is doubled at higher depths and the wave is no longer a 

smooth sinusoidal shape at that depth but is in more erratic shock wave form.  

 

Figure 2-2 Wave attenuation (after McStravick et al., 1992) 

Wang et al. (2008) measured the WH wave effects in an Alaska field by 

downhole memory pressure gauges. The repeatability of the wave generation is 
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tested by measuring them twice. They found out that WH waves may have 

frequencies as high as 17 Hz. Hence, WH is a short transient event and its 

modeling requires a dynamic approach. 

2.4.2 WH in Production Wells  

Little research in the literature addresses WH effects in producers while most 

express concern on the impact in injection wells. Hayatdavoudi (2006) 

investigated sanding and production loss of three high-pressure oil and gas wells 

in consolidated reservoirs with thin seals and explained peak pressure of WH 

wave as the primary reason of well sanding. He reported that at least three deep 

wells with highly consolidated reservoir rocks lost production and produced a 

great deal of pulverized, highly angular rock fragments. 

The aftermath of WH pressure pulsing was as follows: (a) fracture propagation 

into the water zone below the perforations, (b) increased water saturation in the 

producing zone, (c) rock strength loss, (d) pulverization of sand, (e) sand 

production, and of course (f) production loss. The highly angular and orthogonal 

shapes of the produced sand are indicative of fracture extension, and the sheared 

surfaces with ripple marks are indicative of the cyclic rock grain slips. Cavitation 

of trapped gas under high cyclic stress waves may also occur. Hayatdavoudi 

(2006) also reported a highly fluctuating gas production immediately after the 

sudden shut-in of the well. The well lost its production after this event. 

The author concluded that the instantaneous emergency shut-in of a producer 

appears to cause a WH effect in the form of strong cyclic peak pressure, which 

travels down the tubing into the perforations. This extra pressure builds up 

cyclically in the reservoir rock near the well bore until it is attenuated with time. 

WH waves detrimentally changed the cyclic effective stresses around the 

perforations.  
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The pressure rise due to WH changes the stress around the perforations. As a 

result, the reservoir rock may fail due to the cyclic WH of the fluid mixture in the 

well. Therefore, fracture is created in the reservoir, and the grains pulverize. The 

sets of fractures facilitate water flow towards the perforation and increase both 

water saturation and water cut. The increased water saturation and pressure build-

up within the capillaries weaken the rock strength by as much as 50 percent. The 

increased water saturation increases the angle of internal friction due to the 

lubricating effect of water film on the surfaces of rock grains and at the grain 

contact points. This caused the well to sand up and hurt production 

(Hayatdavoudi, 2006). 

Experiments on the produced grains confirm the presence of highly angular rock 

fragments and tensile fracture as a result of cyclic stress waves (see Figure 2-3). 

Since wave damping depends on the fluid compressibility, only producers with 

high water cuts are vulnerable to detrimental effects of WH. 

2.4.3 WH in Injectors 

Strictly speaking, WH is an upstream problem while the same term has been 

largely used in injector wells. The reason might be that a similar mechanism to 

that of WH is responsible for producing waves in injectors. Once the injection 

well is shut down, there will be a negative wave travelling down the wellbore. 

When the wave hits the reservoir, it results in backflow from the reservoir to the 

wellbore which in turn leads to a high pressure wave. This process continues until 

all the wave energy is damped. Figure 2-4 shows typical WH pressure pulses 

measured with downhole gauges in an Alaska field at a depth of 760 m . 
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Figure 2-3 Characteristics of rock failure under the action of cyclic stress waves. A) Gas 

cavitation molds, B) Highly angular and broken grains, and C) Orthogonal set of tensile 

fracture (Hayatdavoudi, 2006).  
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Figure 2-4 WH pressure pulses recorded with downhole gauges in an Alaska field (Wang 

et al., 2008) 

WH waves could be generated in a well due to sudden shut-in caused by pump 

malfunctions, sudden shut-in on emergency cases by blow-out preventer (BOP), 

velocity changes due to step-rate-testing (SRT), shut-in by a pressure build-up 

test, and sudden changes in flow rate during the injection/production. They may 

also be generated during drilling operations by a kick, tripping out, pulling the 

string, casing, or even screens (Hayatdavoudi, 2005).  WH effects resulting from 

the shutting-in of water injection wells are an often ignored issue in petroleum 

production operations, but they have considerable impact on injection well 

performance and longevity (Wang et al., 2008). It is also more dominant in 

injectors compared to producers (Sadrpanah et al., 2005; Wang et al., 2008) 

probably due to lower water compressibility compared to hydrocarbons and less 

damping of the waves. 

The WH effect hits the reservoir formation like seismic waves during the shut-in 

and may lead to liquefaction of the sand (Santarelli et al., 2000). As a result, 
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sudden shut-in of the well should be avoided; however, there are always 

emergency cases.  

2.5 Progressive Failure 

Progressive failure is defined as the process where failure of one element leads to 

failure of adjacent elements. It refers to non-uniform mobilization of shear 

strength along a potential failure zone (Morgenstern, 1977) where the self-

propagating failure zone develops due to the redistribution of stresses after initial 

failure.  

It is expected that near-wellbore area undergoes failure as a results of drilling, 

different cycles of injection and shut-in, cohesion-weakening effect of water and 

WH waves. Stress redistribution and continuous effect of WH waves can lead to 

failure of additional elements and a growing failure zone. Therefore, progressive 

failure is a possible mechanism for sudden massive sanding where initial failure 

around perforations triggers a more global failure.  

2.6 Liquefaction 

Liquefaction is defined as the process by which temporary and spontaneous loss 

of shear strength occurs in soils under undrained condition. It is usually associated 

with medium-to-fine grain cohesionless soils (Das and Ramana, 2011). It is the 

reduction in the contact forces between particles, and not pore pressure increase, 

that is responsible for decrease in the effective stress (Dinesh et al., 2004). During 

straining, gravity loads are transferred from the soil to the pore fluid (Das and 

Ramana, 2011). As a result, pore pressure increases. Even though straining may 

be evident for days before the failure, the transition to high excess pore pressures 

is normally very rapid (Jefferies and Been, 2006). That is why a dynamic 

approach seems reasonable for modeling liquefaction. 
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There are two types of liquefaction reported in the literature (Robertson, 1994): 

1. Static Liquefaction (Flow Liquefaction): under undrained 

conditions 

2. Cyclic Softening 

a) Cyclic liquefaction: Cyclic shear stresses exceed the initial static 

shear stress and cause a shear stress reversal. A condition of zero 

effective stress may be achieved. 

b) Cyclic mobility (limited liquefaction): Deformations 

accumulate during each cycle of shear stress, but cyclic loads do 

not yield a shear stress reversal. During static liquefaction under 

undrained conditions, pore pressure increases such that     . 

However, this is not the condition for dynamic loading due to the 

rapid cycles. Figure 2-5 and Figure 2-6 compare the stress paths 

for different types of liquefactions. Cyclic mobility is typical of 

dense soils where dilation causes an increase in void ratio and a 

decrease in pore pressure. 

Liquefaction mostly occurs at shallow depths and not at reservoir depths. Also 

sandstone has less void ratio than that of sand, and based on these factors cyclic 

mobility seems to be more likely than cyclic liquefaction. However, cyclic 

mobility cannot justify the production of a large amount of sand as the strength 

increases after some cycles. It is probable that the increase in void ratio due to 

sand production around the wellbore at some later stage leaves very soft porous 

sandstone in place, which has the potential of cyclic liquefaction. At the same 

time, it is possible that other factors are contributing to massive sand production. 
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Figure 2-5 Response of contractive (left) and dilative (right) sand under liquefaction 

(Rauch, 1997) 

 

Figure 2-6 Response of contractive (left) and dilative (right) sand under liquefaction in a 

q-p plot (Rauch, 1997) 

Santarelli et al. (2000) took the first steps in proposing liquefaction as the most 

likely mechanism for catastrophic sanding around injectors. They documented a 

well undergoing massive sand production in a field in the Norwegian Sea 

operated by Statoil.  
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There are a few factors that can be concurrent in injector wells that may lead to 

liquefaction e.g. water degrading effect on the cementation, presence of a stiff 

strong cap rock (so that the vertical stress is reduced in the sandstone layer due to 

the arching effect), previous sand production leading to higher porosity and a 

tendency to compact, and full degradation of the rock around the wellbore due to 

drilling and several cycles of injection and shut-in. When WH waves hit the 

reservoir after quick shut-ins, they expose the degraded sandstone around the 

wellbore to dynamic loading.  

Since no investigation has been performed on liquefaction in wellbores with sand 

production problems, it is therefore difficult to confirm its role in massive sand 

production. One may argue that high sandstone density (more tendency to dilate 

than to compact), high permeability, and cementation around the grains and high 

depths (thus high stresses) make the conditions of liquefaction unlikely. Under 

these conditions, one would expect other mechanisms for massive sanding.  

2.7 Summary 

Although Sand production has been addressed by many researchers, there are still 

some areas that require further investigation, including the phenomena of massive 

sand production. There are several factors that lead to massive sand production in 

injectors such as sandstone degradation due to drilling and several cycles of 

injection and shut-in, loss of cohesion due to the presence of water, cross-flow, 

and WH waves. The focus of this study will be the effect of WH waves on 

massive sanding around injector wells.  

The fast nature of pore pressure pulses requires a dynamic analysis where 

acceleration terms are not ignored. Both liquefaction and progressive failure are 

among the proposed mechanisms for massive sanding. However, the conditions in 

reservoirs are not in favor of liquefaction. Lack of sufficient measurements in 

such incidents makes it hard to defend one mechanism against the other. A 
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numerical study under dynamic analysis will deepen our understanding of the 

behavior of near-wellbore reservoir exposed to WH waves and the main 

parameters triggering and affecting the extent of massive sand production.  

2.8 Nomenclature 

  Speed of wave in the pipe 

 :  Damping matrix 

D  Inner diameter of the pipe 

  Elastic modulus of the pipe 

  Force vector 

   Friction factor 

H Head 

k Permeability 

K  bulk modulus of elasticity of fluid 

   Stiffness matrix 

  Pipe thickness 

    Rate of mass/sand production 

   Mass matrix 

   Pore pressure 
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q flow rate 

t Time 

    Surface area 

   Pressure coefficient matrix 

    Displacement 

   Fluid velocity 

    Volume 

    Plastic strain 

    Volumetric strain 

   Angle of pipe with horizon 

   Sand production coefficient; a calibration parameter 

   Density 

    Tensile stress 

   Porosity 
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Chapter 3: Elastoplastic Behavior of 

Sandstone
2
 

 

3.1 Introduction 

Sand production is a two-stage process. The first stage involves sandstone 

degradation due to the stress concentration induced by creating and completing 

the wellbore. The degraded sand particles may then be dislodged by the seepage 

forces during the petroleum production or, in the case of injection wells, during 

the back flow and cross flow following the well shut-in. Hence, capturing the 

sandstone degradation by accurately describing the hardening/softening behavior 

normally observed in sandstone is essential in the sanding simulation. Yet, as 

discussed in Chapter 1, most sanding models have been based on simple 

constitutive models that do not adequately capture the sandstone degradation. One 

reason for this is the complexity involved in the calibration of advanced 

constitutive models that capture the plastic hardening and softening.  

This chapter presents a detailed approach to calibrate a bilinear Mohr-Coulomb 

model for simulating the degrading behavior of sandstones. The procedure is 

demonstrated by calibrating the model for two sets of triaxial testing data on two 

different sandstones, namely TB and Castlegate sandstones. The same constitutive 

model will be used in Chapter 5 to simulate the degradation of weakly-

consolidated sandstone in a dynamic analysis. 

                                                 
2 

This chapter is based on the following publication: Jafarpour, M., Rahmati, H., Azadbakht, S., 

Nouri, A., Chan D., Vaziri, H., 2012. Determination of mobilized strength properties of degrading 

sandstone, J. of Soils and Foundations, Vol 52, Issue 4, pp. 658-667.
 

 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Kzw8KCUAAAAJ&citation_for_view=Kzw8KCUAAAAJ:d1gkVwhDpl0C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Kzw8KCUAAAAJ&citation_for_view=Kzw8KCUAAAAJ:d1gkVwhDpl0C
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Sandstone is a granular material with cementation that shows frictional and 

dilatancy behavior. Sulem et al. (1999) showed that sand behavior can be modeled 

using the friction hardening and cohesion softening concept using the Mohr-

Coulomb model.  Sulem’s work assumes uniform deformation in triaxial tests and 

produces questionable results by neglecting localization of deformation. Later, 

Nouri et al. (2009) adopted the same approach for calibration, but used a bilinear 

Mohr-Coulomb yield surface instead of a linear one to capture a more accurate 

behavior at high effective confining stresses.  

This chapter presents a few modifications and simplifications that are 

incorporated into Sulem’s work (1999) to ensure the calibration procedure is easy 

to implement, objective, and efficient in mimicking the rock behavior. Bilinear 

Mohr-Coulomb yield surface is used, which was also adopted by Nouri et al. 

(2009). Emphasis is given here to simulating the softening behavior of the 

material. Sulem’s work is based on uniform deformation in a triaxial test, an 

assumption which is questionable in the softening regime where localization 

occurs. Hence, the approach proposed by Vermeer and de Borst (1984) is adopted 

for modeling the softening regime. They calibrated the softening regime using an 

exponential function with a tuning parameter to match the experimental data. 

Fracture energy regularization is also employed to enhance the Mohr-Coulomb 

model. In addition, an oriented mesh with an inclination equal to the expected 

rock failure angle is used. This special mesh design limits the localized 

deformation to only one element size so that the shear band thickness is produced 

numerically. The model calibration is applied to different sandstones (Castlegate 

and TB sandstone). Back-analysis of the results is then conducted to ensure the 

calibrated formulation can predict the experimental results. The chapter ends with 

the results of mesh sensitivity analysis and a comparison of the results of an 

oriented mesh with those of a regular mesh.  
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3.2 Theory and Formulation 

3.2.1 Elastic Properties 

Stress-dependent elasticity is commonly observed in sandstone and more 

generally in granular materials. For simplicity and due to a lack of unloading data, 

however, elastic parameters are assumed to depend on the confining stresses but 

not on the plastic strain. Due to a lack of unloading data, however, the error in the 

selection of the initial yield point is inevitable. Elastic properties are determined 

at 50% of the peak stress (see Figure 3-1) as recommended by Schanz et al. 

(1999). The Poisson’s ratio can be calculated using the definition of  
  

  
 , and the 

Young modulus is calculated by: 

  
 

  
 (3-1) 

where   is the Poisson’s ratio,    is strain in the i direction,   is Young’s modulus, 

and   is the shear stress.  

Sulem et al. (1999) emphasized the significance of calibration of the elastic 

moduli since they not only affect the elastic calculations but also influence the 

calculation of the plastic strains considerably.  
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Figure 3-1 . Secant stiffness modulus at 50% of the peak loading, E50 (Schanz et al., 

1999) 

3.2.2 Yield Surface 

The yield function implemented is a bilinear Mohr-Coulomb model which was 

also used by Nouri et al. (2009). Figure 3-2 shows the yield surface in a T - P plot 

where T is the square root of the second invariant of the deviatoric stress tensor 

and P is the mean effective stress. For a triaxial test conditions, they are 

simplified as: 

  
   

 

 
 
  
     

 

 
 

(3-2) 

       
 

 
       

       

  
 

(3-3) 

The yield surface equation is bilinear with each line described by: 

             (3-4) 

where   is the friction coefficient. It has the following relationship with the 

mobilized friction angle for the axisymmetric state of stress: 
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(3-5) 

 

Figure 3-2 Friction hardening (top) and cohesion softening (bottom) of the bilinear Mohr-

Coulomb model (Jafarpour et al., 2012) 

 q is the tension cut-off which can be related to the mobilized cohesion, C, by the 

following relation: 

         (3-6) 

The behavior of sandstone is schematically demonstrated in Figure 3-2, where 

Line (0) shows the initial yield surface. Once a stress state reaches Line (0), 
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plastic deformation begins. Further loading increases the friction coefficient or the 

slope of the line up to the peak yield surface (Line (1)). This is shown by the 

upward arrows from Line (0) to Line (1). Up to this point, the tension cut-off is 

approximately constant both for the low and high effective confining stresses 

(  
    

  and   
    

 ). Additional deformation after the peak results in the 

softening of the material and shrinkage of the yield surface. This is demonstrated 

in Figure 3-2 (bottom) by the downward arrows from Line (1) to Line (2).  During 

softening, tension cut-off shrinks to the residual value (  ), and it is equal to zero 

for fully degraded sandstone, as depicted in Figure 3-2 (bottom). However, the 

friction coefficient remains constant. That is, the line is lowered to the residual 

state with the same slope as that of the peak. Line (2) is the new yield surface 

during softening when the residual tension cut-off gradually decreases to zero 

leading to the development of shear bands. 

3.2.3 Friction Hardening 

Plotting the initial yield points and peak stress points for all the tests in the T - P 

space gives the yield functions at initial yielding and at peak strength. The plot 

gives an indication in dividing the data into two lines: low effective confining 

stress (LECS) and high effective confining stress (HECS). The data are fitted 

using a bilinear curve whose slopes give the friction coefficient at LECS and 

HECS. 

In measuring plasticity, the hardening parameter rate is defined as: 

     
    

         
        

     
  

 
 

(3-7) 

where    
  

 is the plastic shear strain rate in the i direction. The hardening 

parameter,   , is the cumulative summation of the hardening parameter rates. 
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Sulem et al. (1999) suggested that the friction angle in the hardening phase can be 

related to the hardening parameter using the following formulation: 

   
         

           

      
              

 

                                                                         
 

  

(3-8) 

To calculate this friction angle one has to obtain   and   from the peak yield 

stress. The value of q may change from the initial to peak yield stress, especially 

at HECS, but the change is found to be insignificant. Assuming q is constant from 

the initial yield point up to the peak point, the friction coefficient can be 

calculated based on the T and P values from the triaxial tests. The friction 

coefficient is also a function of the mean stress. Sulem et al. (1999) assumed the 

friction coefficient is a function of the plastic shear strain and a linear function of 

the mean stress. In this work, two lines are calibrated (one for LECS and another 

one for HECS) instead of considering the mean stress in the formulation. 

3.2.4 Cohesion Softening 

In the softening regime, the friction coefficient is assumed to remain constant and 

equal to the value at the peak strength. However, a decrease in the tension cut-off 

(Sulem, 1999) results in a decrease in cohesion. The formulation proposed by 

Sulem et al. (1999) is used in simulating tests on sandstone, which produced poor 

results. The reason is primarily attributed to the localized deformation in the post-

peak regime, which was assumed to be uniform in Sulem’s approach. Hence, the 

method proposed by Vermeer and de Borst (1984) is utilized to describe the 

cohesion behavior for the softening part. The following functional form is used: 

            
     

 

  
 

 

  
(3-9) 
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where    is the softened cohesion,    is the mobilized cohesion at peak,   
  is the 

hardening parameter at peak strength, and    is a calibration parameter. 

3.2.5 Mobilized Dilation Angle 

Plastic volumetric strains, also known as shear dilation, develop as a result of 

plastic shear strain. Shear dependency is defined by the dilation angle: 

     
   
 

     
     

  
   

 

      
    

  
 

(3-10) 

where   is dilation angle,    
 
 is rate of volumetric plastic strain, and    

 
 is rate of 

axial plastic strain.  

Equation (3-10) can be used to calibrate the dilation angle directly from triaxial 

testing data. Another approach is to use Rowe’s dilatancy formula. Rowe (1972) 

correlated the mobilized dilation angle to the mobilized friction angle: 

     
           
            

 
(3-11) 

where     is the constant volume friction angle (Rowe, 1972), which can be 

calculated from the dilation angle and friction angle at the peak strength in 

Rowe’s formula.  

3.3 Calibration of Experimental Data 

The results of 16 triaxial tests on sandstone core samples from a petroleum 

reservoir, referred to as TB here, are utilized. The samples were taken from 

different depths and at different temperatures and orientations with respect to the 

bedding plane.  
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Four out of the 16 tests were selected for this calibration task. All samples for 

these four tests were from the same depth, with the core plug axis being 

perpendicular to the bedding plane, and  the tests were carried out at a 

temperature of 21.11º C (70º F). 

As for the Castlegate sandstone, conventional triaxial compression testing results 

were available for six samples. The stress-strain responses are shown in Figure 3-

3 and Figure 3-4. Each curve shows the response at a different confining stress. 

The figures show show the average radial strains measured at two points 90º apart 

on the outer surface and at mid-height of the samples. Both TB and Castlegate 

sandstones were used in the calibration as disussed next. 

Figure 3-5 shows the best-fit envelopes for the initial yield and peak yield on a T 

vs. P’ scale. The selection of initial yield is based on deviation from straigth line 

due to a lack of unloading data.  
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Figure 3-3 Experimental triaxial data for TB at different effective confining stresses 

(ECS) 

 

Figure 3-4 Experimental triaxial data on Castlegate at different ECS’s 
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Figure 3-5 Failure envelope at initial and peak yield based on triaxial tests on TB 

3.3.1 Friction Hardening 

As stated above, experimental data indicate a nearly constant q in the pre-peak 

phase. q is evaluated from the yield envelope at the peak strength. Next, the pre-

peak triaxial data are used in Eqs. (3-4) and (3-7) to plot the friction coefficient 

versus the hardening parameter for LECS and HECS. A correlation is found based 

on the best fitting curve of Eq. (3-8) For TB at LECS:

 

   
     

              

        
                

                                                                     

  

(3-12) 

and at HECS: 

   
     

              

       
                

                                                                    

  

(3-13) 
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Figure 3-6 shows the friction angle versus hardening parameter calculated from 

Eq. (3-5), (3-12) and (3-13) for TB sandstone. 

In the same way, for Castlegate at LECs: 

   
      

              

        
                 

                                                                        

  

(3-14) 

and at HEC: 

   
      

              

       
                 

                                                                         

  

(3-15) 

 

Figure 3-6 Friction and dilation angles of TB vs. hardening parameter 
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Figure 3-7 shows the friction angle versus hardening parameter calculated from 

Eqs (3-5), (3-14) and (3-15) for Castlegate sandstone. 

 

Figure 3-7 Friction and dilation angles of Castlegate vs. hardening parameter 

3.3.2 Cohesion Softening 

For the post-peak regime, it is assumed that the friction angle remains constant at 

peak-strength. The constant friction angle was used along with cohesion from Eq. 

(3-9) in a series of numerical simulations. Several values were tried for the 

calibration parameter   . In the end, values of 0.05 and 0.1 for the calibration 

parameter were found to give the best match at LECS and HECS for TB. The 

mobilized cohesion is shown in Figure 3-8. 
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Figure 3-8 Mobilized cohesion vs. hardening parameter for TB 

In the same way, values of 0.15 and 0.2 for the calibration parameter are found to 

give the best match at LECS and HECS for Castlegate, respectively. The 

mobilized cohesion for this sandstone is shown in Figure 3-9. 

 

Figure 3-9 Mobilized cohesion vs. hardening parameter for Castlegate 
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3.3.3 Mobilized Dilation Angle 

The dilation angle at the peak strength is calculated using Eq. (3-10), which is 

then used along with the friction angle at the peak strength to calculate        
in 

Eq. (3-11). Applying this procedure, the average values of 0.12 at LECS and 0.29 

at HECS are used for        for TB, while 0.19 at LECS and 0.17 at HECS are 

used for Castlegate. The relationships for the friction angle as a function of the 

hardening parameter are already known; therefore, equations for the dilation angle 

as a function of hardening parameter can easily be established at LECS and 

HECS. Since the friction angle is assumed constant in the softening regime, Eq. 

(3-11) predicts constant dilation angle after the peak.  

Figure 3-6 and  

Figure 3-7 show the calculated dilation angle for TB and Castlegate, respectively. 

3.4 Numerical Modeling of Sand Softening Behaviour 

Simulation of the post-peak response of geomaterials using continuum-based 

models has been observed to produce results that are spuriously dependent on the 

numerical mesh design. The continuum model must be modified by a 

regularization method to reduce or eliminate mesh dependency (Crook et al., 

2003). Regularization can be carried out by incorporating a characteristic length 

scale into the formulation. The characteristic length depends on the material, and 

it is usually related to the grain sizes of the granular material. Methods such as 

Cosserat continuum, gradient plasticity, and non-local models have been used to 

address the mesh-dependency problem. However, the Cosserat method is 

effective as a regularization method when frictional slip is prevailing (Sluys, 

1992). Gradient plasticity regularization is applicable as long as the shear band is 

thicker than the element size, thus requiring a very fine mesh in many cases. Non-

local models are computationally intensive when modeling field-scale 
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applications. Fracture energy regularization developed by Pietruszcak and Mroz 

(1981) and Bazant and Oh (1983) among others is applied here. This method also 

has its limitation: the characteristic length of the element must be larger than the 

material characteristic length. However, this is of little consequence for field 

applications (Crook et al., 2003). 

3.4.1 Fracture Energy Regularization 

During the hardening phase, the deformations are nearly uniform. As a result, the 

whole sample deforms uniformly independent of the mesh design. However, in 

the softening regime, deformation concentrates in the shear bands. When 

numerically solving the equations for the softening regime, the shear band 

resolves itself into the smallest possible thickness, which is one row of elements. 

The energy released for this localized deformation depends on the size of the 

shear band (i.e., the size of that one row of deforming elements). The larger the 

elements, the higher the energy release rate. This difference in energy release for 

different mesh sizes results in the mesh-dependency. This mesh dependency is not 

observed in the hardening regime because the whole sample deforms uniformly; 

hence, the same energy is used to deform the sample for different mesh sizes. But 

once the deformations are localized, the behavior will be different. 

Figure 3-10 shows the mesh dependency normally observed in the softening 

regime for TB sandstone. For brevity, only the results of TB sandstone are 

presented in this part. There are several methods to regularize the continuum to 

reduce this mesh dependency. One way is to use fracture energy regularization in 

which one has to include a material characteristic length,   
 . The finest 

acceptable mesh is when   
    

 , where   
  is the characteristic length of the 

element defined as the diameter of the sphere (circle) having equal volume (area) 

to the element under consideration.  
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Figure 3-10 Mesh-size dependency in the softening regime (legend shows mesh size) 

To use larger element sizes, one needs to change the hardening parameter such 

that it yields the same fracture energy (Crook et al., 2003): 

  
    

  
  
 

  
  

  
(3-16) 

where   
  is the material hardening parameter,   

  is the modified hardening 

parameter, and n is a material constant equal to unity when the energy release rate 

for the fracture growth is constant. The value of n=0.6 is calibrated in this work.  

Eq. (3-16) makes the energy release (area under the stress-strain curve) in the 

softening region the same for different element sizes.  

3.4.2 Shear Band Thickness 

Previous research suggested that the shear band thickness,   , should be 10 to 20 

times the mean grain size,    , of the material (Desrues and Hamad, 1989; Oda 

and Kazama 1998; Viggiani et al., 2001; Yoshida et al., 1994). Marcher and 

Vermeer (2001) assembled all the data and correlated them using two lines: 
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         and         . They then concluded that most data coincide with 

the line         . They also reported that the data falling on this line were 

obtained by more reliable measurement techniques such as thin-slice and X-ray 

methods.  Hence, we assume the shear band thickness is about 10 times the mean 

grain size. 

3.4.3 Characteristic Length 

The mesh size is selected so that the same experimental shear band thickness is 

produced numerically. It is important to accurately reproduce the thickness of the 

shear band to avoid, or at least to reduce, the mesh dependency of the results in 

the softening phase. In other words, the size of the elements is selected such that 

the actual size of the shear band is reproduced numerically. The material 

characteristic length,   
 , has been reported to be equivalent to the shear band 

thickness (Nouri et al., 2009). However, this assumption is only valid as long as 

the shear band is produced within one row of elements. Figure 3-11 shows a 

linear dependency of the numerically produced shear band thickness on the 

material characteristic length for a common rectangular element. Shear band 

would be approximately 4.73 times the characteristic length for rectangular 

shaped elements. Hence, for a rectangular element: 

  
  

  
     

 
     
     

         
(3-17) 
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Figure 3-11 Dependency of numerically produced shear band thickness on the 

characteristic length 

Since this value is only an average value between a limited number of tests and 

since localization usually occurs diagonally with an inclination of the failure 

angle, the shear band will still be slightly thicker than the real physical size 

(Figure 3-12 a and b). Therefore, oriented mesh geometry is used to reduce the 

size of the shear band to one row of elements only (Figure 3-12 c). Several 

numerical experiments demonstrate that if the angle of oriented mesh is the same 

as that of the failure angle, i.e.     
   

 
  , the shear band will be limited to one 

element row, and the material characteristic length will be the same as the shear 

band thickness (Figure 3-12 c). If the effect of the mesh shape was not considered 

in the characteristic length, we would have had different results even with 

regularization.  
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Figure 3-12 Plastic strain contours for different mesh designs: a) coarse mesh, b) fine 

mesh and c) oriented mesh 

The oriented mesh is considered to be the base case here, and all the other 

simulations are compared with this base case. A plane strain model with regular 

rectangular mesh (both coarse and fine) is simulated and compared with the base 

case. An axisymmetric model is also performed and compared with the base case.  

In field-scale simulations it is impossible to predict the failure zone and align the 

mesh with that, especially when the failure occurs at different angles such as 

breakouts around a wellbore. The purpose here is to match the rectangular mesh 

results with the oriented one as much as possible. 

3.5 Back-Analysis of Triaxial Tests 

Back-analyses of the tests are performed using FLAC software. Various 

approaches are taken to capture the stress-strain behavior of the reservoir rock. It 

is common to simulate triaxial experiments using an axisymmetric configuration; 

however, an axisymmetric configuration does not allow localization of 

deformation. A plane strain configuration is used to capture localization. The 

results are later compared with those from using an axisymmetric configuration. 

Fracture energy regularization is applied to remove mesh dependency. 
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3.5.1 Mesh Size 

The triaxial samples are 1 in. (2.54 cm) in diameter and 2 in. (5.08 cm) in length. 

Mesh sizes of 0.2 in. (0.508 cm), 0.1 in. (0.254 cm), 0.067 in. (0.169 cm), and 

0.05 in. (0.127 cm) are used for the rectangular mesh. The mean average grain 

size of TB is 0.0055 in. (0.14 mm). Hence, the characteristic length would be 

approximately 0.0116 in. (0.2957 mm) and 0.055 in. (1.4 mm) for the rectangular 

and oriented mesh, respectively. 

3.5.2 Boundary Conditions 

The bottom boundary of the finite element mesh is fixed in the z (vertical) 

direction. The radial and axial loads are applied on the boundaries, and then a 

small velocity in the vertical direction is applied on the top boundary as directed 

by the experimental procedure. 

In the laboratory experiments, two steel platens are used at the top and bottom of 

the rock samples. Axial loads are directly applied on the platens. The surfaces 

between the steel and the rock are usually lubricated to avoid end effects. As a 

result, the platens are assumed to be frictionless. 

3.5.3 Back-Simulation Results 

As described previously, plane strain conditions with oriented mesh are used in 

the simulation. The elastoplastic material properties are calculated as presented in 

Section 3.3. Tables of cohesion, friction, and dilation angle versus hardening 

parameter are used as the input data in the model. The results are presented in 

Figure 3-13 and Figure 3-14.  
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Figure 3-13 Comparison of simulated results with triaxial experiments for TB sandstone 

(simulated results are shown with dash lines) 

It should be noted that radial displacement measurements are not uniform along 

the sample after the onset of localization. In other words, radial displacements at 

different heights and radial angles are different. Two experimental radial strain 

measurements are located at mid-height 90º apart to compare the experimental 

radial displacements with numerical calculations. Hence, obtaining a match for 

the radial strains is not carried out in this calibration. Actually, the radial 

displacements for plane strain conditions are the maximum displacements 

possible. Accurate calculation of radial strain requires a 3-D analysis, and even 

then it is difficult to compare radial strain with the laboratory measurements taken 

at only two measurement points. 
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Figure 3-14 Plastic strain contours showing the formation of shear band 

In addition to TB, the calibration and simulation method is applied to six 

Castlegate tests as well. The results are shown in Figure 3-15. 

Figure 3-15 Comparison between simulation and triaxial test results for Castlegate 

sandstone (simulated results are shown with dash lines) 
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3.5.4 Effect of Mesh Design 

Regular coarse mesh and fine mesh with fracture energy regularization are also 

simulated using the calibrated data and are compared with the base case (i.e., 

oriented mesh). Plane strain is assumed in all the models. The results are shown in 

Figure 3-16 for 3.45 MPa (500 psi) effective confining stress. 

 

Figure 3-16 Comparison between simulations and experimental observations for different 

mesh designs (confining stress=3.45 MPa, legend shows mesh size) 

Compared to Figure 3-10, not only is the mesh dependency largely reduced, but 

also the results are closer to the experimental data. 

Selecting the characteristic length equal to the shear band thickness regardless of 

the mesh shape does not result in good matches. Figure 3-17 demonstrated the 

results for such a case. 

Differences in the softening part of each simulation are expected. As shown in the 

figures, the results are highly dependent on the mesh design and the choice of 

characteristic length. Utilization of the fracture energy regularization method with 
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the angular mesh ensured objective calibration. For simpler simulations, such as a 

triaxial test, it is most favorable to apply oriented mesh and to select the elements 

size equal to the shear band size so that the actual shear band thickness can be 

captured. However, in more complicated applications it is very difficult, if not 

impossible, to align the mesh with the shear band as it requires preknowledge of 

the shear band location and thickness. In general, as long as the material 

characteristic length is selected based on the mesh size and shape the results will 

be adequately well. 

Figure 3-17 Comparison of simulations and experimental observations for different mesh 

designs without proper selection of characteristic length (confining stress=3.45 MPa) 

3.5.5 Axisymmetric Model 

The triaxial tests were cylindrical, but the plane strain simulations are rectangular. 

The difference in the configuration and assumption of plane strain had an impact 

on the simulation results. Simulation of triaxial experiments is usually carried out 

using an axisymmetric assumption. However, this assumption does not allow 
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localization, which is commonly seen in the post-peak regime, to occur. Note that 

a cylinder with a cutting plane is no longer axisymmetric. Figure 3-18 

demonstrates the axisymmetric mesh of one-half sample section.  

 

Figure 3-18 Axisymmetric mesh 

 

The simulation results for 3.45 MPa confining stress are shown in Figure 3-19. 

This model predicts better radial strains as the radial strains in the axisymmetric 

model are somehow the average strains. Since the axisymmetric model cannot 

capture localization of deformation, the displacements are completely different 

from those of the plane strain models. Figure 3-20 shows the displacements in the 

plane strain and the axisymmetric models. The modeling approach is, therefore, 

seen to have a high impact on the calibration and the numerical response.  
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Figure 3-19 Comparing results of the axisymmetric with plane strain model (confining 

stress=3.45 MPa) 

 

(a)                                        (b) 

Figure 3-20 Comparison of displacement between (a) a plane strain and (b) an 

axisymmetric model for the same mesh size (confining stress=3.45 MPa) 

3.6 Conclusions 

This chapter presented a detailed approach for calibrating a Mohr–Coulomb 

model for simulating the degrading behavior of sandstones. The procedure is 

demonstrated by calibrating the model for two sets of triaxial testing data. The 
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calibrations and back-simulation of TB and Castlegate sandstones show the 

following: 

 The bilinear Mohr–Coulomb model with friction-hardening/cohesion-

softening is capable of reproducing sandstone behavior. 

 The friction hardening formula offered by Sulem et al. (1999) along with 

constant tension cut-off is found to be adequate in the strain-hardening 

phase. 

 The cohesion softening formula along with constant friction angle as 

offered by Vermeer and De Borst (1984) combined with a plane strain 

modeling of triaxial tests with angular mesh is found to simulate the 

softening phase reasonably well. 

 The oriented mesh inclined at the failure angle results in the formation of 

shear band in one element row. This is most favorable in shear band 

simulations if the elements size is selected equal to the shear band size so 

that the actual shear band thickness can be captured. 

 The fracture energy regularization method is found to be capable of 

reducing mesh dependency. However, the appropriate choice of 

characteristic length is essential. 

 To have effective regularization, it is important to consider the shape of 

the mesh in the calculations of the characteristic length. The characteristic 

length for each mesh can be chosen in such a way that simulation 

produces the shear band thickness numerically. 

 Although axisymmetric assumption yields the best match for stress–strain 

curve when deformations are uniform, it does not allow capturing shear 

band formation and development in the softening phase. A Plane strain 

model is a better choice and is the only way to model shear bands in 2D 

simulations. 
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3.7 Nomenclature 

ECS Effective confining stress 

HECS High effective confining stress 

LECS Low effective confining stress 

C    Cohesion 

   Peak cohesion 

*c    Mobilized cohesion in the softening regime 

50d  
  Average grain size 

E      Young modulus 

re      Radial strain 

ze    Axial strain 

pe1
  Plastic axial strain rate 

p

ve    Plastic volumetric strain rate 

F     Yield function 

ph     Hardening parameter  

ph    Hardening parameter rate
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php   Peak hardening parameter 

2J     Second invariant of the deviatoric stress 

nk     Normal stiffness between steel platens and rock sample 

sk   Shear stiffness between steel platens and rock sample 

P    Mean stress 

q      Tension cut-off 

       Initial yield tension cut-off 

      Peak tension cut-off 

      Residual tension cut-off 

ijS    Deviatoric stress 

T    Square root of the second invariant of the deviatoric stress 

st    Shear band thickness 

   Friction coefficient 

H  Friction coefficient at HECS 

L   Friction coefficient at LECS 

    Poisson’s ratio 
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r'    Effective axial stress 

z'    Effective radial stress 

     Friction angle 

cv    Constant volume friction angle 


    Dilation angle 
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Chapter 4: Numerical Modeling of Pressure 

Pulse Propagation in Porous Media
3
 

 

4.1 Introduction 

As explained in Chapter 2, WH waves are fast transient phenomena which are 

best described if they are modelled dynamically. To the best knowledge of the 

author, none of the available sanding models have considered dynamic approach 

to simulate the transient behaviour of WH phenomenon. This is mainly because 

there is no commercial software available that considers the fluid flow dynamics 

in porous media. Instead, the available commercial software only solves Darcy’s 

law which is valid for steady-state flow regimes.  

In this chapter, first the dynamic formulations of saturated porous media are 

presented. Afterwards, the partial differential equations (PDE) are discretized and 

solved for elastic conditions. The proposed model solves the momentum balance 

of fluid and solid phases coupled with the fluid mass balance equation in the 

prediction of dynamic fluid flow and mechanical deformation in porous media. 

The model is a two-dimensional, elastic, axisymmetric, single-phase and 

sequentially-coupled model. To ensure stability, artificial viscosity is extended to 

tensor form and applied. The numerical model is validated against experimental 

data for a step wave in a shock tube. Good agreement between model calculations 

and measured data has been obtained. The equations are then extended for 

                                                 
3
 A version of this chapter is published as Jafar Pour, M., Nouri, A., Chan, D., 2016. Numerical 

modelling of waterhammer pressure pulse propagation in sand reservoirs, J of Petroleum Science 

and Engineering, Vol 137, pp. 42-54. 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Kzw8KCUAAAAJ&citation_for_view=Kzw8KCUAAAAJ:YsMSGLbcyi4C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Kzw8KCUAAAAJ&citation_for_view=Kzw8KCUAAAAJ:YsMSGLbcyi4C
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elastoplastic conditions and the fluid flow part of the equations is sequentially 

coupled with the dynamic module of FLAC. Finally, comparison between the 

sequentially coupled FLAC-MATLAB code vs. the fully coupled MATLAB code 

is made and the best method of coupling dynamic fluid flow with dynamic solid 

deformation is presented.  

4.2 Literature Review 

Coupling of fluid flow with geomechanics is necessary when analysing the 

propagation of pore pressure waves in porous media. Biot (1941) proposed the 

theory of poroelasticity which ignores the acceleration terms and wave effects. By 

wave, we mean any discontinuity or jump in the field properties such as pressure, 

temperature, or stress (Hill, 1962). Later, Biot extended his formulations to the 

elastic waves in saturated porous media for low frequency waves (Biot, 1956a) 

and high frequency waves (Biot, 1956b). A wave with low frequency is defined as 

a wave whose wavelength is less than the pore scale for which Poiseuille flow is 

valid (Sivrikoz, 2009). Different mathematical modeling is required at high 

frequencies since certain parameters such as permeability and tortuosity are 

frequency dependent. The critical frequency above which frequency is considered 

high can be calculated using Chiavassa and Lombard's equation (2011): 

  
  

          
  (4-1) 

where   is viscosity,   is porosity,   is tortuosity,   is permeability, and    is 

fluid density.  

Biot’s formulations have been used in various applications from the study of the 

effects of earthquake shear waves on saturated sand response (Cheng, 1986; Desai 

and Galagoda, 1989) to the ultrasonic wave travelling in human bones (Lakes et 

al., 1986). The applications, however, focused on stress waves and ignored the 
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effect of pore pressure waves in the fluid flow mainly because they are mostly 

damped and are of importance only around the source. Another reason is that 

Biot’s theory predicts two compressional waves in porous media while the second 

wave was not observed experimentally in porous media until 1980 (Plona, 1980) 

and later by van der Grinten (van der Grinten et al., 1985) in soil. An example of a 

Pore pressure wave is WH waves around an injector wellbore, the effects of 

which can be detrimental to the stability of wellbore and is suspected to induce 

sudden massive sand production because of sand liquefaction (Santarelli et al., 

2000, 2011; Hayatdavoudi, 2005). The exposure of the reservoir to WH 

amplitudes that can move the stress conditions towards near-zero mean effective 

stress (or liquefaction conditions) poses a potential risk to the stability of the 

wellbore. 

Verruijt (2010) presented an analytical solution to Biot’s 1D dynamic formulation 

for a shock pore pressure wave and showed that two p-wave will be generated as 

a result of a shock wave. He also verified the results with numercal simulations 

and obtained a reasonable match. The simulation results, however, showed 

numerical oscillations when the shock waves were calculated. He discussed two 

special cases using analytical models under dynamic pore pressure waves for a 1D 

problem: 1) pressure waves in undrained environment and 2) pressure waves in 

porous media where solid matrix is rigid so that there is no solid deformation. 

Verruijt' solutions predict nearly the same velocities for the fluid and solid phases 

(   ) under undrained conditions and elastic solid. It also predicts the wave 

propagation at the velocity of    given by: 

    
    

 
  

 
 

               (4-2) 
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where   is the undrained bulk modulus,   is shear modulus,   is density and w 

and v are solid and fluid velocities, respectively. 

During the second wave fluid and solid move out of phase with the velocity of: 

      
         

                

 
 

    
                (4-3) 

where                is the storativity,    
 

  
 

 
 
 is one-dimensional 

compressibility of porous medium,   is Biot’s coefficient,    is fluid 

compressibility,    is solid compressibility and  ,   and    have been defined 

earlier. Since the fluid and solid move out of phase, this wave is highly damped 

due to friction. In a rigid solid matrix (w=0) the wave is highly damped and only 

observed near the source. The second wave speed for very high frequencies is  

                    (4-4) 

which is the same as the propagation wave velocity in fluids. 

In a two-dimensional domain, the PDE set has three eigenvalues contributing to 

three waves including two compressional and one shear wave. 

Chiavassaa and Lombard (2011) focused on the efficiency of solving Biot’s 

equations. They quantified three types of waves: one fast compressional wave, 

one shear wave, and one slow compressional wave with velocities even slower 

than the shear wave. The velocities of these waves increase asymptotically 

towards the eigenvalues of the PDEs as the wave frequency increases. They 

solved the diffusive part of the equations for slow compressional wave 

analytically and combined several sophisticated numerical techniques, i.e. fourth 

order ADER scheme (Schwartzkopff et al., 2004), flux-conserving space-time 
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adaptive mesh refinement (Berger, LeVeque, 1998), and immersed interface 

method (Lombard, 2006), to achieve a smooth jump for wave propagation. 

de la Cruz and Spanos (1989) solved the thermodynamics of  porous media for 

low-frequency seismic waves. They used continuity and momentum balance 

equations and added thermal coupling to the poroelasticity equations and treated 

porosity as a primary variable. In their formulation, they related velocities and 

deformations to heat generation of the second order and compression to heat 

generation of the first order. They showed that the heat flow leads to wave 

attenuation. Their formulation has been used in the mathematical demonstration 

of the feasibility of the application of pore pressure pulsing as an Enhanced Oil 

Recovery (EOR) method (Spanos et al., 1999). 

Sivrikoz (2009) simplified the equations presented by de la Cruz and Spanos for 

pore pressure and solid displacements as the main variables under isothermal 

conditions, and solved them for application of pore pressure pulsing as an EOR 

method. After some simplifications, the author showed that the equations are 

equivalent to mathematical wave operator (
 

  
  

   
   ) on porosity. Low-

frequency pulses of fluid in a porous medium create a slow strain wave called the 

porosity dilation wave, which results from the interactions and deformations 

between the fluid and matrix in the porous media. The porosity dilation wave 

travels at velocities in the order of 5–150 m/sec and is characterized by a 

spreading front of elastic porosity changes. The method of solution adopts an 

elastic constitutive model to simplify the governing equations and is not 

applicable to elastoplastic cases.  

 The work presented in this chapter adopts the approach proposed by de la Cruz 

and Spanos (1989) for a saturated porous medium, ignoring the thermal effects by 

assuming isothermal conditions, assuming 2D axial symmetry, and developing a 

tensor form of artificial viscosity to damp the numerically-induced oscillations 
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and achieve smooth response for shock waves. An elastoplastic constitutive 

model is implemented to account for inelastic deformations. The state variables 

are chosen to be fluid velocity, solid velocity, pore pressure, porosity, and 

stresses. The model is validated against experimental data published by van der 

Grinten et al. (1985) and van der Grinten et al. (1987). The results are also 

compared with those of Biot's formulation. The explicit finite difference method 

is used to solve the governing equations by employing a sequential coupling 

scheme combined with the velocity–stress method (Virieux, 1986).  

Finally, the fluid flow part of the equations is sequentially coupled with the 

dynamic module of FLAC. Comparison between the sequentially-coupled code 

versus the fully-coupled code is made and an acceptable method of coupling 

dynamic fluid flow code with dynamic solid deformation software is presented.  

4.3 Governing Equations for Elastic Conditions 

de la Cruz and Spanos derived the governing equations for elastic solids by 

substituting stresses with displacements in Hook's law. The following equations 

are derived for isothermal conditions. 

4.3.1 Fluid Mass Balance 

The derivation of mass balance is expressed in more detail to emphasize the 

assumption of elasticity in describing the solid response. The next section will 

discuss changes required on the governing equations for a more general 

constitutive model for solid. The mass balance equation for fluid is: 

      

  
             (4-5) 

where n is the porosity,    is the fluid density, and   is the fluid velocity vector. 

This equation is Eulerian while the solid momentum equation is usually expressed 
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in the Lagrangian framework. Due to the solid deformation, the change in mass 

will not be equal to the change in    . Hence, material derivative is introduced in 

Eq. (4-6). 

   

  
 
   

  
          (4-6) 

where   is the solid velocity vector. The mass balance equation for the fluid can 

be rewritten as: 

      

  
                         (4-7) 

Also since divergence is a linear operator, it satisfies the product rule. Therefore, 

for any vector   and scalar  , one can write: 

                           (4-8) 

Now if       and    , it yields: 

                                (4-9) 

Replacing             in the mass balance equation: 

      

  
                           (4-10) 

Fluid compressibility is defined:  

   
   

     
  

   
  

  
  
  

 

 

 
            

(4-11) 

Under isothermal conditions: 
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(4-12) 

The porosity change proposed here depends on the solid and fluid 

compressibilities and is valid only for elastic behaviour:  

  

  
        

  

  
             (4-13) 

Elastoplastic conditions are discussed in Section 4.4. Substituting this into Eq. (4-

10) one gets: 

               
  

  
                            (4-14) 

Defining storativity as:               , mass balance equations yields: 

  
  

  
         

 

  
                (4-15) 

Verruijt (2010) derived the same equation by combining solid and fluid mass 

balance equations. 

Using Eq. (4-8) one gets: 

                                          (4-16) 

                               
   

  
                 

  
 
                     

(4-17) 

Substituting into Eq. (4-10) and combining with Eq. (4-12), mass balance 

equation will be obtained: 
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(4-18) 

Note that the change in porosity is based on elastic theory. For elastoplastic 

conditions, Eq. (4-30) is derived in the Section 4.4. 

4.3.2 Equation of Motion for Solid-Fluid System 

Assuming that stresses in the fluid and solid are related by           , 

where   is the normal unit vector, one obtains (de la Cruz and Spanos, 1989): 

       
  

  
    

  

  
                      (4-19) 

Stress in the fluid can be defined in terms of fluid velocities as: 

                                      (4-20) 

where subscripts s and f denote the solid and fluid phases and     
 

 
  since 

shear stresses for fluid are assumed to be zero. Stress is then replaced by effective 

stress through         , where   is the identity matrix. 

4.3.3 Momentum Balance for Fluid 

The equation of motion for fluid is presented in differential form as (de la Cruz 

and Spanos, 1989): 

   
  

  
           

   

 
                        

                        
      

  
 

(4-21) 

The added mass,    , comes from the tortuous path that the fluid follows to pass 

through the porous medium. The narrowing-widening nature of porous media 
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makes the fluid more accelerated. In other words, it is equivalent to an increase in 

the fluid mass.  This added mass depends on the tortuosity or connectivity of 

pores.  

Replacing   , one obtains: 

   
  

  
           

   

 
                     

 
 

 
                     

      

  
 

(4-22) 

As Eq. (4-22) shows, the fluid momentum balance reduces to Darcy’s law under 

negligible compressibility and no dynamic effect (Verruijt, 2010). A convection 

term,          , may appear in some formulations, but it is avoided here. Beck 

(1972) stated that this term is inappropriate since it increases the order of partial 

differential equation. It is also inconsistent with the slip boundary condition. In 

addition, this term is not an appropriate way to account for nonlinear drag arising 

from inertial effects since this term is zero for steady incompressible 1D flow 

regardless of the fluid velocity. The convection term can only be of importance 

for high-speed compressible fluid flow in highly porous medium. In general, this 

term will be small and can be ignored since solid structure may prohibit some 

motion and cause a change in momentum (Nield, D.A., and Bejan A, 2006).  

4.3.4 Porosity Equation 

de la Cruz and Spanos proposed the following equation for porosity. This 

equation is also valid for elastic conditions: 

  

  
                   (4-23) 
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4.3.5 Constitutive Law 

Hook's law is used for elastic description of solid deformation. 

         
 

 
           (4-24) 

where     is the rate of change of effective stress,    is the rate of change of strain,  

   is the bulk modulus,   is the shear modulus, and I is the identity matrix 

defined before. Compressive stresses are assumed to be positive. 

4.4 Mass Balance Equation for Elastoplastic Medium 

For elastoplastic deformation of rock, one may expect that nearly all the porosity 

change will originate from bulk volumetric deformation. The assumption here is 

that the fluid volume change is negligible compared to that of the solid. The 

porosity of the rock can be calculated from: 

    
    
    

 (4-25) 

where    is the initial porosity and    is the volumetric strain. Taking 

differentiation, yields: 

   
    
       

    (4-26) 

Therefore, the rate of change of porosity with respect to time is: 
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       (4-27) 

where            . Mass balance equation is derived by combining Eq. (4-10) 

and Eq. (4-12): 

  
 
  
  

  
   

  

  
                           (4-28) 

Substituting Eq. (4-16), (4-17) and (4-27) into Eq. (4-28), yields: 

       
  

  
   

    
       

                            

                                

(4-29) 

Dividing by    and simplifying the equation, one obtains Eq. (4-30) for the fluid 

mass balance: 

     
  

  
 

    
       

                                

            

(4-30) 

4.5 Comparison with Biot's Theory 

Biot's theory neglects some physics that govern the transport phenomenon in 

saturated porous media. One questionable assumption in Biot's theory is that 

porosity change is ignored. This porosity change leads to a porosity diffusion 

wave which can play a significant role in multi-phase saturated porous medium by 

enhancing the transport of the non-wetting phase (Spanos et al., 1999). The other 

difference is the fluid compressibility terms in fluid momentum balance, 

                
 

 
             . The effect of these differences on the 

results is demonstrated in Figure 4-4 to Figure 4-6. 
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4.6 Axisymmetry 

Since only one injector well will be modeled in this study, the equations are 

derived assuming axial symmetry in cylindrical coordinates. Therefore, the 

equations are extended to cylindrical coordinates under axisymmetry assumption. 

The assumption here is that horizontal stresses are isotropic. Furthermore, the 

assumption of axisymmetry, does not allow to capture the perforation geometry 

and direction as the model approximates the perforation tunnel with a ring 

opening in the casing. Under axisymmetric conditions, one can write: 

 

  
                 (4-31) 

     
   

  
       

  

 
       

   

  
  (4-32) 

       
   
  

                 (4-33) 

Therefore, the equations can be rewritten as: 
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(4-35) 

where          assuming shear stress in liquids are zero. 
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  (4-39) 

4.7 Convergence and Stability 

Multi-dimensional numerical modeling of waves in porous media is tricky due to 

coexistence of both propagating fast compressional wave, shear wave, and a 

diffusive slow compressional wave (Chiavassaa and Lombard, 2011).  

Sequential coupling of explicit dynamic equations is conditionally stable. The 

time step necessary for convergence must be smaller than the required time for 

waves to pass each element. For a 2-D system, this condition can be expressed as: 

    

  
 
    

  
      (4-40) 

where ui is the wave velocity in i direction.  

This is called the CFL condition (Courant, Friedrichs and Lewy, 1967), which is a 

very limiting constraint on the time step. For some PDEs, attempts are made to 

avoid this condition by solving the equation implicitly. However, the CFL 

condition arises for hyperbolic PDEs regardless of using an implicit method when 

waves are involved and when emphasis is on the transient behaviour with time, 

not the steady-state solution. The value of Cmax depends on the method of solving 

the equations, whether implicit or explicit.  

In addition, there are more implications with this condition, e.g. when the size of 

element is reduced due to compression by wave. Therefore, CFL only predicts an 

upper bound for the time step. In many cases, it is extremely hard, if not 
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impossible, to theoretically predict the highest CFL number. In this study, it is 

found heuristically that the coefficient of       puts the solution on the safe 

stable window: 

   
        

   
       (4-41) 

The speed of the wave,   ,  is given by Eq. (4-2).  

Running the simulation with coarse mesh is also problematic. Chiavassaa and 

Lombard (2011) related this to the small wavelength of the slow compressional 

wave. One has to use coarse grid appropriate for the fast wave where slow wave is 

poorly discretized or use a fine grid and increase the computational cost. The 

authors tackled this time restriction by solving the diffusive part for the slow 

compressional wave analytically. The authors also noted that the previous works 

were not able to answer the difficulty of handling numerical instability due to the 

viscous effects. 

 In this study, an extended form of artificial viscosity damping is derived to damp 

numerically-induced oscillations, as described in Section 4.7.1. 

4.7.1 Artificial Viscosity Damping 

In fluid dynamics, artificial viscosity is very common to damp the unrealistic 

oscillations resulting in a smooth response for modeling shock waves. Artificial 

viscosity makes it possible for the wave to be modeled as a viscous dissipation 

over a thin space, instead of a jump with infinitesimally small thickness. In 

reality, the thickness of the waves is at the molecules levels. 

Artificial viscosity damping has evolved over the years. The first representation is 

a scalar form in terms of the velocity rate. It includes the Von Neumann term, 

   and the Landshhoff term,   , which are given by Wilkins, (1980): 



 

77 

 

               
       

 
 

                      

(4-42) 

where L is the element size,     is the rate of volumetric strain,    and    are 

constant values equal to 2 and 1 respectively, and   is the speed of sound which is 

equal to      
 

 
      (Wilkins. 1980).    is the von Neumann term which 

damps the oscillations behind the front and spreads the wave over the mesh.    is 

the Landshhoff term which diffuses the shock front over an increased number of 

zones as the shock wave progresses (FLAC user manual, 2008). The minus sign 

of volumetric strain ensures that damping always occur in the opposite direction 

of the strain. 

This damping is a scalar value which is used in calculation of stress gradients. For 

a 2D axisymmetric case, the tensor form of artificial viscosity is adopted here 

based on the original scalar form: 

                 
         

  

                          

 

(4-43) 

                 
         

  

                          

 

(4-44) 
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(4-46) 

Comparing the smoothness of the results for the discussed artificial viscosities, 

this tensor form is more effective in damping numerical oscillations of 2D 

problems.  

4.8 Discretization and Solution Method 

To solve the equations, finite difference discretization is applied with second 

order approximation in space and first order backward approximation in time 

given by Eq. (4-47) and Eq. (4-48). 

  

  
 
           

   
        (4-47) 

  

  
 
        

  
       (4-48) 

The explicit time marching scheme is used because of the complexity and 

nonlinearity of the equations. However, this method imposes conditional stability, 

and small time step with fine mesh is required to achieve stable solution.  

To solve the equations, they are simplified and rearranged in the following order 

so that they can be solved sequentially. For simplicity, index notation is applied. 
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                                        (4-51) 

  

  
        

  

  
            (4-52) 

     
 

 
             (4-53) 

    
        

 

 
                 (4-54) 

First, fluid velocity is calculated explicitly from the fluid momentum balance. 

Then the new values for fluid velocities (shown in bold) are used in the 

momentum balance to find solid velocities. The calculated values of velocities for 

both phases are used in the mass balance equation to solve for pore pressure. 

Finally, using the new values of pore pressure and solid velocities, strains rates 

are calculated and porosity and stresses are updated. The algorithm is shown in 

Figure 4-1. 
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Figure 4-1 Algorithm for PDE solution 

4.9 Validation against Experimental Data 

van der Grinten et al. (1985, 1987) conducted a shock tube study by applying 

single step-like pore pressure wave to a cylindrical sand sample and measuring 

the pore pressure at different locations from the top of the sample. There is a layer 

of water on top of the sample to ensure full saturation. Above that there is a 

plastic sheet separating the high pressure section from a low pressure part in the 

tube. To produce the shock wave, the sheet is burned and a plane wave hits the 

Solve fluid momentum  

(4-49) for v
r
 & v

z
 

Solve solid momentum  

(4-50) for w
r
 & w

z
 

Solve mass balance 

(4-51) for p 

Solve (4-52) for n 

Calculate strains & 

stresses (4-53 to 4-54) 

Calculate artificial 

viscosity damping  

(4-43 to 4-46) 

t=t+Δt 
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water surface above the sample. This induces a step-like pore pressure increase. 

The schematic of the experiment is shown in Figure 4-2.  

There is a thin water layer (1 mm) separating the sample from the shock tube 

preventing shear interaction between the wall and the sample. To measure pore 

pressure, the pressure gauges have been placed in the gap resulting in erroneous 

measurements caused by wave propagation in the water column. For instance, 

Wisse (1999) performed two similar tests: one with small (0.25 mm) and the other 

with large gap (3.5 mm). The author stated that over the entire frequency ranges 

the gap pressure and the porous sample pressure have the same order of 

magnitude. However, the results of the small gap measuremnts are closer to the 

theoretical predictions. North (2002) performed a 2D modelling of both water and 

porous media using Biot’s theory and concluded good agreement between the 

results of the theoretical model and the measurements of the shock tube for tests 

with small gap. However, for large gap sizes between the sample and shock tube, 

the wave in the water has an impact on the amplitude of the measurements. No 

explanation of the gauge placement is provided by van der Grinten et al. (1985). 

However, in a later work they measured both pore pressures in the gap and in the 

sand sample using identical experimental set-up (van der Grinten et al., 1987). 

This newer experiment also included strain measurements. Hence, we use the 

later work which used the same type of soil as in their earlier work to validate the 

simulator developed here. 

The soil properties are summarized in Table 4-1. The compressibility of sand 

grain is not reported in the experiment. A value of            1/Pa, which is 

the average of grain compressibility values reported for Ottawa sand and quartz 

from Gulf of Mexico, is used in the modeling (Richardson et al., 2002). The 

sample is saturated with water whose properties are not measured. As such, 

typical water properties are assigned in the model as summarized in Table 4-2. 
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Figure 4-2 Shock tube experiment (van der Grinten et al. 1985) 

Table 4-1 Properties of the porous sand (van der Grinten et al. 1985) 

Property Value 

Sand Intrinsic density (kg/m
3
) 2650 

Bulk Modulus (GPa) 8.16 

Shear Modulus (GPa) 1.3 

Permeability (m
2
) 5.62e-11 

Porosity 0.3 

Added mass 2.7 
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Table 4-2 Water properties used in the simulation 

Property Value 

Density (kg/m
3
) 1000 

Viscosity (cP) 1 

Bulk Modulus (GPa) 2.00 

4.9.1 Comparison of Simulation and Experimental Results 

Figure 4-3 shows the schematic of the model under 2D axisymmetric conditions. 

The sample size is 75 mm in diameter and 1.895 m in length. Very fine mesh is 

required for the convergence of the solutions and to capture the wave propagation 

through the sample. For this work, the radius and the length are divided into 10 

and 400 equal elements, respectively, following a mesh sensitivity analysis. The 

time step is selected so that the waves travel the length of one element during one 

time step. The bottom of the model is assumed to be fixed in the vertical direction 

and the shock wave is applied from the top. This shock wave is represented by a 

combination of pore pressure and normal stress wave, i.e. zero effective stress 

normal to the top surface. The right boundary is allowed to move freely in the 

model in r direction; while in the experiment, water would prevent some (but not 

all) of the displacements. 

Figure 4-4 shows two jumps in the pore pressure response. It is hypothesized that 

(1) the first jump is the result of an undrained wave where both phases move 

together while the sample is contracted under the shock load and (2) the second 

jump is due to deceleration of solid velocity while fluid phase is accelerating (see 

Figure 4-8). 
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Figure 4-3 Schematic of the model geometry 

Figure 4-4 to Figure 4-12 show the results of the numerical model, which indicate 

a reasonable agreement between the measured and calculated pore pressures at 

120 and 220 mm from the top.  Note that tortuosity (or added mass) is used as a 

calibration parameter to obtain a closer match, because among the measured 

properties tortuosity has the highest uncertainty. This parameter is characterized 

by electrical conductivity measurements as suggested by Brown (1980). However, 

this measurement method is valid as long as the pore structure can be assumed 

incompressible and would be erroneous when applied to a deformable porous 

media. The effect of tortuosity on the simulation results is presented in Figure 4-

10. 

Figure 4-4 to Figure 4-6 show noticeable differences between the predictions of 

Biot's theory and the formulation used in this work during the transient period. 

Biot's theory prediction for the amplitude of the undrained wave is nearly half of 

the real value. Note that changing the value of tortuosity does not improve the 
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results obtained by Biot’s theory results since tortuosity has no effect on the speed 

of the first wave which is overestimated by Biot’s theory. van der Grinten et al. 

(1985, 1987) mistakenly attributed the difference to the radial motion of the 

sample and, therefore, modified the constrained modulus,    
 

 
 , to an effective 

constrained modulus (4.5 GPa instead of 9.9 GPa) in their analytical model. We 

will see that the radial motion of the sample is negligibly small. Also the rise of 

the second wave as predicted by Biot’s theory is more abrupt than the predictions 

of de la Cruz and Spanos’ theory and the experimental measurements.  

 

Figure 4-4 Comparison of pore pressure response for a shock wave 

The strain gauges inserted on the wall of the sample are pressure-dependent 

because they are glued to the porous sample with epoxy resin whose bulk 

modulus is smaller than that of the sand. Therefore, the glue would be compressed 

with increasing pressures. This pressure dependency was calculated from separate 

experiments. Values of 3.5 and 5.0 microstrain/bar are reported for the pressure 
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sensitivity of these gauges (van der Grinten et al., 1987). Both the measured 

values and the corrected ones are shown in Figure 4-5 and Figure 4-6, assuming 

compressive strains to be positive. There is a difference in the transient regime but 

the trend is predicted correctly. This difference is more significant using Biot’s 

theory.  

 

Figure 4-5 Comparison of axial strain response at 120 mm from the top of the sample 
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Figure 4-6 Comparison of axial strain response at 220 mm from the top of the sample 

Figure 4-7 and Figure 4-8 show the axial velocity and acceleration of both phases 

at 220 mm from the top of the sample, respectively. The interesting point is that 

the solid and fluid phases move together in the beginning, resulting in undrained 

wave propagation due to undrained conditions (Verruijt, 2010). For the second 

wave, the phases move with opposite accelerations with larger differences in 

velocities. Therefore, the friction between the two phases leads to the damping of 

wave amplitude far from the source.  

Simulation results indicate near zero values for radial acceleration and velocity. 

Therefore, it appears that the radial motion of the sample does not play a 

significant role in this experiment, which is contrary to the justification for wave 

speeds done by van der Grinten et al. (1985, 1987).  
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Figure 4-7 Simulated axial velocity response at 220 mm from the top of the sample 

 

Figure 4-8 Simulated axial acceleration response at 220 mm from the top of the sample 
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It would be beneficial to look at the porosity changes during wave propagation. 

Figure 4-9 shows the time variation of normalized porosity as defined by    

    

  
. The first drop in porosity is the result of the sample contraction due to the 

shock wave. The subsequent increase in porosity is the result of the second wave 

when the solid moves more slowly than the fluid, resulting in some expansion but 

not enough to cancel out all the initial contraction. 

 

Figure 4-9 Simulated normalized porosity at 220 mm from the top of the sample 

Figure 4-10 shows the effect of tortuosity on the numerical results. It affects the 

amplitude of the first wave and the speed of the second wave. Tortuosity or the 

narrowing–widening nature of porous media accelerates the fluid. This 

acceleration can generate a wave with a different amplitude. 
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Figure 4-10 Effect of tortuosity 

4.9.2 Wave Reflection in the Shock Tube 

Eqs. (4-2) and (4-4) result in the analytical velocities of 2508 m/s and 732 m/s for 

the solid and fluid waves, respectively. Hence, the time for the solid and fluid 

waves to travel to the bottom end of the sample and return to point 2 (220 mm 

from top) is estimated to be 0.0014 sec and 0.0052 sec, respectively. Using the 

simulation results, the wave velocities are calculated as 1980 m/s for solid and 

649.9 m/s for fluid waves. Therefore, the time needed for the reflected wave in 

the solid and fluid to reach Point 2 is estimated at 0.00184 and 0.0058, 

respectively. This assessment is in agreement with Figure 4-11 and Figure 4-12, 

which show the wave reflection in terms of pore pressure and porosity. The 

vertical lines represent the expected reflection times calculated from the wave 

velocities. It seems that there is a slowing factor as time increases. The figure 
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shows only the first wave reflection, and there are no pressure changes at the 

expected reflection times of the second wave. This wave is usually damped far 

from the source (Verruijt, 2010). In addition, the type of the boundary plays an 

important role in whether a wave is reflected or completely absorbed. The 

velocity of the first wave depends only on the moduli and the density of the 

medium. Density, especially that of the fluid, increases with higher pressure, 

resulting in a slightly slower wave. Thus, based on the first wave speed the 

reflections should occur slightly earlier. 

 

Figure 4-11 Pore pressure response due to the reflection of wave at 220 mm (P2) from the 

top of the sample  

Figure 4-12 shows that the reflection of wave can also be observed by examining 

the porosity changes. The first drop in porosity is the result of the first undrained 

wave followed by an increase in porosity by the second wave to an approximately 

steady value. The later changes are due to the reflection of the first wave.  
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 Figure 4-13 demonstrates the axial displacements through time. Initially, 

downward displacements are generated as the waves compress the soil sample. 

After a while, when the wave hits the boundary and is reflected, part of the 

compression is relieved. 

 

Figure 4-12 Porosity response due to the reflection of wave at 220 mm from the top of 

the sample 
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Figure 4-13 Contours of axial displacement 

4.10 WH Pressure Propagation in Elastic Porous Media 

The results of simulation of the propagation of a shock wave in a hypothetical 

reservoir are presented in this section. The rock deformation is assumed to be 

elastic obeying Hook's law. Elastoplastic conditions are discussed in Chapter 5. In 

this chapter, there is no attempt to incorporate failure or any possible liquefaction 

of the rock. The reservoir properties are zero tortuosity, 500 mDarcy permeability, 

bulk modulus of 218 MPa, and shear modulus of 131 MPa. The low moduli are to 

represent cohesionless sand at low effective stresses, which is the condition near 

an injector wellface. All the other properties are the same as those of the 
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experiment cited in Section 4.9. In situ reservoir pressure and vertical and 

horizontal stresses are selected to be 112, 120 and 115.6 MPa, respectively. The 

injection into the reservoir is applied from an openhole with the diameter of 10 

cm with a pressure of 115.6 MPa. The right boundary fixed against displacement 

in the normal direction and the pore pressure is also fixed in the same boundary. 

The initial condition is considered to be steady-state injection, and axial symmetry 

is assumed. A drop wave with amplitude of 3.6 MPa is applied on the wellface. 

The total stress at the wellbore is also dropped simultaneously to the pressure 

drop so that the effective stress stays at       , where   is Biot's coefficient. 

The schematic of the model is presented in Figure 4-14.  

 

Figure 4-14 Model schematic 

Figure 4-15 shows the pore pressure variation through time at three different 

locations. The two distinct pore pressure waves are characteristics of porous 

media, which are expected. However, the second wave is damped in most cases 

and its appearance depends on the properties of the medium. The predicted 

velocities show that the two phases are moving together, emphasizing that only 

the undrained wave occurs under these conditions.  
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For a cylindrical wave, there will be a geometric damping as the area exposed to 

the wave increases with radius. Hence the amplitude of the wave decreases with 

radius. In addition, for low permeabilities, the radius of drainage for Darcy flow 

cannot reach the wave front. Therefore, there will be a gradual increase of the 

pore pressure behind the wave front. If we use the properties of the shock tube 

example, there will be a two-wave response for the radial propagation of the 

wave.

 

Figure 4-15  Pore pressure versus time at three locations 

The results show that in this case only the areas near the well are affected by 

dynamics. Figure 4-15 shows that only one fifth of the applied wave is expected 

one meter away from the well. However, the nature of the wave is very quick and 

when the wellbore is exposed to subsequent multiple waves, e.g. for WH pressure 

pulsing, dynamic analysis is necessary to obtain a proper solution for the problem. 



 

96 

 

The changes in the effective stresses and shear stress are plotted in Figure 4-16 to 

Figure 4-19. Although pore pressures return to their original values when the 

waves are damped, effective radial stresses undergo a permanent change. 

 

Figure 4-16 Effective radial stress at r=0.55 m and z=0.05 m 
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Figure 4-17 Effective vertical stress at r=0.55 m and z=0.05 m 

 

Figure 4-18 Effective tangential stress at r=0.55 m and z=0.05 m 
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Figure 4-19 Shear stress at r=0.55 m and z=0.05 m 

Since we are modelling a 2D problem, we should expect to observe the generation 

and travel of a shear wave in the model. A shear wave is a wave for which the 

direction of particle displacement is perpendicular to the wave travelling 

direction. Here we have a radial wave; under axisymmetric conditions, the shear 

wave must induce oscillating vertical displacements equivalent to    . Figure 4-20 

shows the shear strain, which is small in values. This could be due to the fixed top 

and bottom boundaries and small reservoir thickness.  
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Figure 4-20 Shear strain at r=0.55 m and z=0.05 m 

4.11 Coupling  

Since elastoplastic solid deformation and its ability to liquefy are important in our 

application, it is a more appropriate choice to use more advanced constitutive 

models. For that, one needs to couple the fluid flow code in MATLAB with  

commercial software, the dynamic option in FLAC.  

4.11.1 Coupling Schemes 

There are different schemes of coupling fluid flow with geomechanics. 

Sequentially-coupled schemes are more popular since they are not as numerically-

expensive as fully-coupled ones. Kim (Kim, 2010; Kim et al. 2011) investigated 

the stability, convergence, and accuracy of different sequentially-coupled 

algorithms. He divided the sequential methods into four categories: drained split 

and undrained split if the mechanical simulator is solved first (see Figure 4-21 and 

Figure 4-22) and fixed-strain and fixed-stress if the fluid flow simulator is solved 
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first. He concluded that undrained split and fixed-stress schemes are 

unconditionally stable, faster in convergence, and more accurate. In this work, the 

mechanical step is solved first; therefore, both drained split and undrained split 

coupling schemes are investigated to ensure Kim’s conclusions are still valid for 

dynamic coupling.  

 

Figure 4-21 Different schemes of coupling fluid flow with geomechanics (Kim. 2010) 

 

Figure 4-22 Different schemes of coupling fluid flow with geomechanics (Kim. 2010) 

In the drained split, during the mechanical steps pore pressure remains constant, 

and then fluid flow is solved to update the pore pressure. In the undrained scheme, 

no fluid flow is allowed during the mechanical step (see Figure 4-21 and Figure 4-

22). No fluid flow means pore pressure will change based on the volumetric strain 
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to an undrained (excess) pore pressure,   . This undrained pore pressure can be 

calculated by: 

    
   
  

 (4-55) 

         (4-56) 

where n superscript shows the values at the last time step and     superscript 

represents the values at the new time step. Kim suggested calculating the pore 

pressure gradient using an intermediate time: 

                 (4-57) 

where     is a time between current time step, n, and the next time step,    . 

He (Kim. 2010) concluded that this scheme is unconditionally stable for      . 

He also showed that the drained scheme, even when stable, may not converge to 

the exact solution. All of his work was performed for quasi-static conditions and 

not dynamic conditions. Therefore, the same coupling schemes are investigated 

under dynamic conditions. 

4.11.2 Coupling Fluid Dynamics with FLAC 

The trick in coupling fluid dynamics code with FLAC is FLAC does not 

distinguish fluid acceleration from that of solid, and instead of Eq. (4-19), it 

solves the following equation in dynamic module: 

 
  

  
            (4-58) 

To compensate for the difference in the accelerations, an additional acceleration is 

calculated by the difference between Eq. (4-58) and Eq. (4-19). Note that one 

cannot directly apply this acceleration, as the software considers it as a boundary 
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condition. Therefore, velocity on each node is updated at every step based on this 

acceleration. 

                
  

  
 
  

  
  (4-59) 

To verify the coupling algorithm, a shock tube example is solved to compare the 

results of the sequentially-coupled fluid dynamics and FLAC with fully-coupled 

code in MATLAB. Both drained and undrained schemes are applied and pore 

pressure is reported at three different locations: 2 mm, 12 mm, and 22 mm from 

the top of the sample.  

In Fully-coupled approach the governing equations such as flow, mass balance 

and geomechanics are discretized and solved simultaneously at every time step. 

Sequentially-coupled approach is where either flow or mechanics is solved first to 

obtain an intermediate solution estimate. Solutions are then used in solving the 

other equation. The process can be iterated until the desired convergence 

tolerance is achieved. Loosely-coupled is done where coupling between flow and 

geomechanics is resolved only at certain time intervals (Klevtsov, 2017). 

According to Figure 4-23, undrained response is closer to the fully-coupled 

response. In addition, the drained response converges to a different steady state 

solution. To conclude, the results are consistent with what Kim (Kim. 2010) 

reported for quasi-static conditions. Therefore, an undrained scheme is preferable 

both for quasi-static and dynamic coupling of fluid flow and geomechanics.  

There are a number of possible reasons why the sequentially-coupled code is still 

different from fully-coupled code: the scalar version of artificial viscosity in 

FLAC vs. the tensor form in fully-coupled, the way additional acceleration is 

handled, and the truncation error introduced when exporting the values of 

variables from one code to another. 
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Figure 4-23 Comparison of coupling schemes for a shock tube example 

Based on the results shown in Figure 4-23, undrained scheme of sequentially-

coupling is closer to a fully-coupled case. In this work, the stable undrained 

scheme with       is adopted for coupling the dynamic codes. Figure 4-24 

shows the final selected algorithm for coupling fluid dynamics code with FLAC 

Dynamics.  
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Figure 4-24 Coupling algorithm 

Iterations are not implemented here mainly because the time steps are small 

enough for convergence and it reduces the numerical computations. As generally 

known, extremely fast phenomena if computed in all their time-dependent detail 

by solving Navier-Stokes are still beyond the practical reach of computational 

methods (Patankar, 1980). Two-way coupling of the code with geomechanics 

increases the time steps dramatically. Nevertheless, if the equations are solved 

without iterations during transient regimes in a small-scale model, a numerical 

response is still practical for short periods of time.  

Appendix A shows the code developed in MATLAB for fully-coupled dynamics 

in porous media. Appendix B shows the MATLAB-FLAC code for sequentially-

coupled scheme.  
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4.12 Conclusions 

A two-dimensional mathematical formulation and numerical solution of dynamic 

wave propagation in saturated porous media is presented for low frequency waves 

with the emphasis on pore pressure waves. To predict the dynamic transient fluid 

flow accurately, de la Cruz and Spanos’s approach is adopted. The formulation is 

modified in a displacement-stress format and the equations and the solution 

method are extended for elastoplastic solid behaviour. A new tensor form of 

artificial viscosity is proposed that is more efficient in damping numerically 

induced oscillations than the original Von Neumann and Landshhoff terms. The 

formulation is validated against experimental data and then compared with the 

formulation presented earlier by Biot. Biot's theory has been shown to be 

inaccurate in calculating wave propagation speed in deformable porous media and 

the amplitudes of pore pressure responses. However, it is sufficient in predicting 

the trends of pore pressure. Both theories predict two distinct waves as a result of 

a shock pore pressure wave: (1) undrained wave and (2) a wave which is highly 

damped due to opposite motion of the solid and the fluid. The presence of this 

wave depends on the porous media properties. Next, a reservoir response to WH 

pressure wave is simulated. Only near-wellbore areas could see the dynamic 

effect. In rocks with low permeability (compared to soil in the shock tube 

experiment), Darcy's flow cannot compensate for the pressure change as quickly 

as the wave propagates. Consequently, the pore pressure will return to the original 

values after the waves pass that specific location. In 2D problems, a shear wave is 

also generated as a result of the shock wave.  

The fluid dynamic equations are then coupled with FLAC dynamic module to be 

able to use more complicated constitutive models. Different schemes of coupling 

are investigated: drained vs. undrained. The results show that similar to quasi-

static conditions, an undrained scheme is the more appropriate choice in coupling 
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dynamic fluid and solid equations. It is more stable and converges to the correct 

answer for a steady state. 

4.13 Nomenclature 

   Fluid compressibility 

   Porous medium compressibility 

   Grain compressibility 

  Permeability 

   Bulk modulus 

  Porosity 

   Initial Porosity 

   Dimensionless Porosity 

  Pore pressure 

   Storativity of the porous medium 

  Radial direction 

  Time 

   Fluid velocity in r direction 

   Fluid velocity in z direction 

   Solid velocity in r direction 
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   Solid velocity in z direction 

  Vertical direction 

  Biot’s coefficient 

   Fluid dilatancy 

   Solid dilatancy 

   Volumetric strain 

  Fluid viscosity 

   Fluid density 

   Solid density 

    Added mass density 

    Stress component 

  Mean stress;         
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Chapter 5: Dynamic Analysis of Near-

Wellbore Sand Reservoir Response to WH 

Pressure Pulsing 

 

5.1 Introduction 

Chapter 4 described the development of a dynamic numerical tool and its 

validation to study the reservoir response to WH pressure pulses. In this chapter, 

the same tool is utilized to analyze the dynamic response of a synthetic sand 

reservoir using an elastoplastic model. A mesh sensitivity is performed to ensure 

the numerical results are independent of the selected grid size. Then the model is 

used to study sanding potential around an injector well. None of the sanding 

incidents reported in the literature provide enough data, such as material 

properties and operating conditions, for a meaningful comprehensive study with 

the results from the numerical simulation. The case study reported by Santarelli et 

al. (Santarelli et al. 1998; Santarelli et al. 2000), where the injector well was filled 

up with sand after an emergency shut-in, is selected for the construction of a 

numerical model since it provides a more comprehensive information on the 

wellbore and the reservoir compared to the other cases reported in the litarature.  

A sensitivity analysis is performed to distinguish the sensitivity of the reservoir 

response to several constitutive and operational parameters. Different constitutive 

models are used in the model to assess their performance and compare their 

results. 
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5.2 Case Study: An Injection Well in Norwegian North Sea  

There are several examples of massive sand production in the injector wells, 

which in some cases have led to a complete loss of injectivity. Examples include 

those in the Norwegian North Sea (Santarelli et al., 1998; Santarelli et al., 2000), 

Indonesia (Papamichos, 2006), and Buzzard field in UK (Santarelli et al., 2011). 

The Norwegian Sea well serves as a good example for the severity of sanding in 

an injector well, where the injectivity of the well decreased from 8000 m
3
/d to 0 

m
3
/d in just half an hour.  

An injector well in the Norwegian North Sea (Santarelli et al. 1998; Santarelli et 

al. 2000) is selected for this numerical study. This case is selected because the 

majority of the required properties and field operating conditions have been 

reported in the literature. Note that much key data for this case could not be found 

in the open literature and some assumptions are made. Therefore, the results and 

conclusions presented in this chapter should only be regarded as an exercise for 

the study of sanding potential in the injection wells and should not be regarded as 

firm conclusions for this case.  

In this example, the reservoir properties and operational conditions that increase 

the possibility of liquefaction are: 

- The sandstone was weakly consolidated (UCS= 2-10 MPa) and the strength was 

further reduced by 10 to 20% because of water. 

 - An 8,000 m
3
/day injection flow rate indicates high injection pressure, which can 

substantially reduce effective stresses around the wellbore. Effective stresses are 

further reduced around the wellbore due to WH waves.  

Therefore, Santarelli et al (2000) proposed liquefaction as the main mechanism 

based on the following evidence: 
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- A camera sent down the wellbore indicated that the perforations were filled with 

sand. 

- The well was filled with 400 m of sand above the top perforation within only 

half an hour after the well shut-in. One explanation is that sand behaves as slurry 

otherwise the wellbore filling by sand should have stopped once the perforations 

had been covered. 

- The slurry contained 60% sand by volume. The original porosity is not reported; 

however,  40% porosity (e=0.66) is considered a relatively high number for 

sandstone.  

It is noted the above observations only implicitly suggest liquefaction as the main 

mechanism. In addition, such incidents were always accompanied by emergency 

shut-downs; and hence, affected by WH waves. 

Alternatively, reservoir conditions, i.e. dense sandstone, higher stresses due to 

high depths and high permeability values, are not in favor of liquefaction. It is 

likely that a progressive failure where failure zone propagates quickly is the 

underlying reason of massive sand production. Sand production into the wellbore 

could redistribute the stresses leading to further failure, particularly in sand 

reservoirs where cavities are not stable. 

5.2.1 Model Schematics 

As discussed in Section 4.7, solving the dynamic equations for wave propagation 

in porous media is computationally demanding since the model requires very 

small time steps. Hence, a smaller model is used to investigate the potential 

sanding mechanisms.  

There are limitations associated with the small-scale modeling: radial 

pressure/stress gradients can be affected, and the specification of boundary 
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conditions can be a challenge to set accurately. A single-layer model like what is 

used in this effort simplifies the effects of overburden and underburden layers into 

simple boundary conditions This model is 1 m in length and 0.3 m in height with 

a perforation of 0.02 m diameter. A schematic of the model is illustrated in Figure 

5-1.  

Figure 5-1 Model schematics 

5.2.2 Initial and Boundary Conditions: 

The initial conditions and in-situ stresses reported by Santarelli (Santarelli et al. 

1998; Santarelli et al. 2000) are summarized in Table 5-1. 

Table 5-1 In-situ conditions reported by Santarelli et al. (1998) 

Initial Conditions Value (MPa) 

Vertical Stress 50.5 

Horizontal Stress 39.4 

Initial Pressure 27.6 

The short radius of the model (1 m) will alter the radial pressure and stress 

gradients. In order to attain more realistic estimation for gradients, a longer model 

with 50-m radius (see Figure 5-2) is simulated for the initial steady-state injection 

before the sudden well shut-in. The horizontal stress and pore pressure at 1-m 
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distance from the well in the long model are used as the boundary conditions in 

the smaller model shown in Figure 5-1. The steady-state results from the long 

model are shown in Table 5-2. 

 

Figure 5-2 Longer model schematics for more realistic gradients 

Table 5-2 Calculated boundary conditions at 1 m under steady state injection 

Permeability (mDarcy) Total Radial Stress (MPa) Pore Pressure (MPa) 

1000 40.15 29.07 

The top and bottom of the model are fixed in the vertical direction. A fixed top 

boundary is representative of a rigid caprock, which does not move due to the 

arching phenomenon that allows the overburden stress redistribution. The 

wellbore is assumed to be cased and cemented and hence fixed in radial direction 

except for the perforation elements where WH waves will be applied after 

injection. 

At the end of the steady-state solution, corresponding to the quick injection before 

shut-down, WH pressure pulses are applied at the perforation element and 

dynamic analysis is activated. Simultaneously, the right boundary condition is 

changed to a quiet boundary condition. A quiet boundary absorbs all the energy 

and acts as an infinitely large medium. It prevents the unrealistic wave reflection 

at the artificial boundary. 

To ensure the validity of the stress and pressure distribution in the model, before 

the application of WH waves, the following steps are modeled quasi-statically: 
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 Initialization of in-situ conditions  

 Wellbore drilling and applying mud pressure 

 Casing installation and mud pressure removal 

 Water injection until steady-state is achieved  

The WH wave characterictics are not reported for the Norwegian Sea well. Wang 

et al. (2008) measured WH waves in an Alaskan field; a typical wave is shown 

earlier in Figure 2-2. They measured wave frequencies up to 17 HZ. Since Alaska 

measurements are made in an injection well, they are used in this research for 

generating the shape of the wave. Shallower waves (228 m ) are smoother and 

easier to extract. Figure 5-3 shows that the wave shape can be approximated as a 

sinusoidal function. 

 

Figure 5-3 WH measurement in Alska Field at 228 m  (Wang et al., 2008); and 

approximation using a sinusoidal function 

In this study, the WH is assumed to have the maximum frequency meaured by 

Wang et al. (2008), i.e. 17 HZ, and an amplitude of 8 MPa in a sinusoidal pattern: 

                MPa. There is a sensitivity analysis on the amplitude of 

the wave in Section 5.2.9. In general, the wave amplitude depends on the rate of 
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change in the flow velocity. This well had large injection rates, 8000 m
3
/d, 

leading to significant WH amplitude following the emergency shut-in. 

5.2.3 Flow Properties 

Santarelli et al. (1998) reported a highly heterogeneous reservoir with sand 

permeability in the range between 0.1 to 5000 mDarcy. In this study, 1000 

mDarcy is selected for the base model. No value for porosity is reported; 

therefore, a porosity of 22% is assumed. A sensitivity analysis is conducted on the 

permeability and porosity values to investigate the uncertainties. Since a water 

injector well is the focus of this study, water properties are considered for the 

fluid properties at 4
ᵒ
C.  

5.2.4 Mesh Sensitivity 

Three uniform grid sizes with square elements are compared for the mesh 

sensitivity analysis: 1.25 cm, 1.00 cm and 0.75 cm. Figure 5-4 shows the pressure 

response at four locations for these grid sizes. Pressure responses for the models 

with a grid size of 1.00 cm and 0.75 cm are sufficiently close. The results 

difference is within 1.5% for the element at r=5 cm and 0.8% for the element at 

r=15 cm. The same results differences for the models with 1.25 cm and 1.00 cm 

grid size are 5.8% and 2.9% for elements at r=5cma and r=1 cm, respectively. In 

addition, the run time is proportional to      and N for FLAC and MATLAB, 

respectively, where N is the number of elements. To accelerate the numerical runs 

with the extremely small time steps (in the order of 10
-6

 sec), 1.00 cm grid size is 

used in this study. 
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Figure 5-4 Impact of grid size on pressure response for an element at r=15cm 

5.2.5 Rock Material Properties 

Three sets of rock behaviour are considered:  

1) elastic model  

2) hardening/softening bilinear Mohr-Coulomb failure envelope discussed in 

Chapter 3 

 3) Martin model, a simple liquefaction-based model incorporated in FLAC 

(further details are discussed in Section 5.2.9) 

Figure 5-5 shows the history points and their locations with respect to perforation 

elements..  
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Figure 5-5 History points 

5.2.6 Assumptions 

There are certain assumptions or simplifications made for the numerical study in 

this work; where excluding them may lead to the elevation of the dynamic effect. 

These assumptions are summarized below: 

 No sand production (material removal) is modeled. Sand production can 

potentially create a cavity, exposing a larger surface area to the high-

amplitude WH waves. It also increases the porosity of the elements with 

higher deformability under the dynamic loads. 

 The effect of fatigue and cyclic loadings are ignored in this study which 

may affect the pressure buildup due to multiple cycles of strain/pore 

pressure.  
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 A rigid caprock (top boundary fixed in vertical direction) is assumed to 

achieve numerically stable results. Application of stress at the top 

boundary of a cohesionless sand model leads to large failure zones in the 

model especially around perforation A thicker model would have 

alleviated the failure and model instability by redistributing the stress. The 

inclusion of the rigid caprock, represented by the fixed top boundary, 

allows the arching effect and vertical stress reduction at the perforation 

element. Further details are discussed in Sections 5.2.8.1.  

 No permeability modification as a result of porosity change is devised in 

this study. Based on the sensitivity analysis presented in Section 5.2.10.6, 

the results are not sensitive to the permeability for highly permeable 

media. 

 Three different constitutive models are applied in the analysis. The elastic 

model is used as a benchmark model. Then the model discussed in 

Chapter 3 is used to simulate the dynamic degradation of weakly-

consolidated sandstone. Finally, a cohesionless sand model is simulated 

assuming sufficient sandstone degradation occurs due to drilling, different 

cycles of injection and shut-in, WH as well as  presence of water. Martin 

model, a built-in constitutive model in FLAC for liquefaction studies, is 

used for modeling cohesionless sand. This model is discussed with further 

details in Section 5.2.9.  

5.2.7 Elastic Model 

The elastic model is used as a reference model against which the results of other 

models are compared. For this model, bulk and shear moduli are assumed to be 

218 MPa and 131 MPa, respectively. These values represent elastic moduli of 

cohesionless sand at low effective stresses present near an injector wellface.  
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Figure 5-6 shows the pore pressure response generated by WH wave at different 

distances from the wellbore and at the perforation elevation. The results indicate 

significant damping of the pore pressure pulses with radial distance because of 

geometric damping, which causes the amplitude of waves to attenuate as distance 

from the perforation increases.   

 

Figure 5-6 Change in pore pressure response to a sinusoidal wave at different radii  

The curves of pressure change in Figure 5-6 appear to converge at about 0.03 sec 

and 0.06 sec, but they are not, as any two of them are intersecting at very close 

pore pressures and times. As Figure 5-6 shows, at t~0.03 sec the point at r=50 cm 

is experiencing its peak while the point at 1cm has nearly completed half a cycle. 

Points at r=1 cm, r=5 cm and r=15 cm are so close to each other that they 

experience very similar, although not exactly the same, phases at around 0.03 sec.  

Upon exmining the pore pressure behaviour at early times, a fast low-amplitude 

wave is observed (see Figure 5-7). This is the first compressional wave which 

travels at a speed of ~2200 m/s. The pressure goes back to initial values because 
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the next wave is not as fast and cannot reach the points as quickly. This low-

amplitude wave is not the primary focus in the rest of this chapter due to small 

amplitude and low effect on the stress path in comparison with the main 

sinusoidal wave. In other words, although the influence of high-velocity waves 

has already been included in all the reported results, characterization of their 

behaviour is outside the scope of this research. 

 

Figure 5-7 Changes to pore pressure as a result of sinusoidsl wave at very small times  

 

The speed of the sinusoidal wave in the reservoir is calculated to be ~50 m/s, 

much slower than the waves speed discussed in Chapter 4. This slow wave has 

been characterized as porosity-diffusion wave (Davidson et al., 1999), or 

porosity-dilation wave (Sivrikoz, 2009), which is a wave that propagates through 

saturated porous media. Porosity-diffusion wave cannot exist without solid-liquid 

coupling and results from the simultaneous solid deformation and liquid-solid 

interaction. It is expected to have velocities of 5-150 m/s (Davidson et al., 1999). 

The wave was experimentally observed by Davidson et al. (1999) in a cylinderical 

sand pack at moderate frequencies (0.1-3 Hz). Any presence of gas will highly 
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dampen this wave. Figure 5-8 demonstrates the stress paths for the same elements 

at the perforation level and the same radial distances mentioned above. The stress 

paths indicate the mean effective stress reduces with an increase in the pore 

pressure. Also, shear stress reduces around the perforation. Furthermore, the WH 

pressure pulsing effect on shear stresses diminishes with distance. 

Figure 5-9 depicts the pore pressures at radius of 5 cm and different depths. The 

reference point (z=0) is the perforation depth. The element at z=0 cm is the first 

one to see the peak pore pressure since it has the least radial distance from the 

source (perforation).  

 

Figure 5-8 Stress paths for elements at different radii and perforation depth 
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Figure 5-9 Pore pressure response to a sinusoidal wave at r=5cm and different depths 

with respect to perforation depth 

5.2.8 Hardening/Softening Constitutive Model 

The constitutive model developed and validated in Chapter 3 is used to study the 

dynamic degradation of weekly-consolidated sandstone. In the Norwegian Sea 

field, sandstone UCS is reported (Santarelli et al., 1998) to vary between 2 MPa 

and 10 MPa, and further reduced by up to 20% to 1.6 MPa to 8 MPa due to the 

injection of water incompatible with the formation rock. 

In the absence of triaxial testing data, Salt Wash Sandstone (Rahmati et al., 2012) 

properties, calculated following the same procedure as in Chapter 3, are scaled 

down to obtain the properties for a sandstone with the UCS of 1.6 MPa. Assuming 

the same friction angle as that of Salt Wash (35 degrees at peak), the scaled-down 

peak cohesion will be 0.417 MPa. In other words, the shape of mobilized 

cohesion is the same as that of Salt Wash sandstone (see Figure 5-10) but scaled 

down to result in the 1.6-MPa UCS.  
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Negative dilation angles of -2 to -0.6 are assumed for the base case. Figure 5-11 

demonstrates the mobilization of friction angles and dilation angles with 

hardening parameters (effective plastic strain). Similar to cohesion, the shape of 

mobilized dilation angles is the same as those of Salt Wash sandstone and only 

the values are scaled down.  

 

Figure 5-10 Mobilized cohesion 
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Figure 5-11 Mobilized friction and dilation angle 

5.2.8.1 Simulation Results 

The model is initiated following the simulation steps explained in Section 5.2.4, 

which are drilling, casing, and perforating the well, followed by water injection. 

At this point, simulation results indicate failure around the perforation, as shown 

in Figure 5-12, before any WH wave is applied which is similar to what Santarelli 

reported (Santarelli et al., 1998). 

 

Figure 5-12 Failure around perforation before application of WH waves 

WH waves are then applied as boundary conditions on the perforation with the 

frequency of 17 Hz and amplitude of 8 MPa as explained in Section 5.2.2. Two 
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direction (representing a rigid caprock) and the other with constant vertical stress 

(        MPa) as the top boundary condition. The results are shown in Figure 

5-13 to Figure 5-18.   

Figure 5-13 illustrates that pore pressure response is almost identical for the two 

boundary conditions. This is because mechanical boundary conditions does not 

affect the fluid flow response, where porosity and permeability are not modified. 

Figure 5-14 shows the stress path for elements at different radial distances. The 

failure envelope is plotted for the element at r=2.5 cm after 0.085 sec. 

The pressure anomaly at 0.04 sec is when the stress path for the perforation 

element passes through a zero mean effective stress (see Figure 5-14). This leads 

to a sudden volumetric change as demonstrated in Figure 5-15. This pressure 

anomaly is superposed on the WH wave as it transfers along the reservoir.    

 

Figure 5-13 Pore pressure response for hardening/softening bilinear MC using different 

top boundary conditions 
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Figure 5-14 Stress path for hardening/softening bilinear MC using different top boundary 

conditions 

 

Figure 5-15 Volumetric strain change for the element at r=2.5 cm 

The displacement vectors for both boundary conditions demonstrate sand 
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combined effect of wave propagation and sand production, further study is 

required which is out of the scope of this work.  

 

Figure 5-16 Displacement vectors for the bilinear MC model with fixed top boundary 

condition in the y direction 
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Figure 5-17 Displacement vectors for the bilinear MC model with constant vertical stress 

on the top boundary 

To conclude, the top boundary condition only made a small difference on the 

stress path and displacement pattern. The downward displacement is more 

significant for the vertical stress case. However, sand degradation is larger for a 

fixed boundary in the vertical direction (see Figure 5-18). Therefore, the top 

boundary fixed in the vertical direction will be used in the follwoing sections for 

cohesionless sand. 

Figure 5-12 and Figure 5-18 show the growth of degraded zone as a result of WH 

waves hitting reservoir for 0.085 sec. In a real reservoir, more failure is expected 

because of longer WH waves (as long as 100 sec) and fatigue due to multiple 

cycles of injection and shut-in. Therefore, in the next section a cohesionless sand 

reservoir is modeled to represent an extended failure zone around the injector.  
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Figure 5-18 Dynamic degradation around perforation after 0.085 sec of WH waves for a 

fixed top boundary condition (top) and a constant stress top boundary condition (bottom) 

5.2.9 Martin Model 

FLAC software includes two simple empirical constitutive models to simulate 

generation of dynamic excess pore pressure observed in liquefaction. Both 

empirical relationships relate an irrecoverable decrease in volume,     , to the 

cyclic shear strain. Martin et al. (1975) suggested the following equation:  

                 
     

 

       
 

               (5-1) 

where   is the engineering cyclic shear strain and          and    are calibration 

constants. Only three of these calibration parameters are independent:    

      . Byrne (1991) proposed a simpler formulation: 

                 
   

 
      if                     (5-2) 

In many cases,          , and    can be derived from relative density,   . 
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                    (5-3) 

The additional volumetric contraction causes an excess pore pressure because of 

the cyclic shear strain, mimicking the main physics of liquefaction. However, this 

additional pore pressure is not smooth and is only applied at the end of each cycle 

of shear strain. Also, the model uses a perfectly plastic Mohr-Coulomb yield 

surface that does not evolve. One possible solution is to use an appropriate 

mobilizing constitutive model until full-degradation occurs and then switch to this 

model with zero cohesion and residual parameters. The main drawback of this 

approach is that the strain cycles before full degradation are ignored. 

Although excess pore pressure is generally associated with liquefaction, it is not 

considered as the direct cause of liquefaction. In constant volume experiments it 

is the decrease in contact forces between particles that is responsible for the 

decrease in effective stress (Dinesh et al., 2004). On the other hand, the effective 

stress does not necessarily have to be zero for a soil to liquefy. When a saturated 

cohesionless soil is subject to rapid static or cyclic loading, the tendency for the 

soil to compact causes the effective stress to decrease by transferring the loads 

from solid structures to the fluid, and the whole process leads to soil liquefaction 

(FLAC 7.0 user Manual). 

Before simulating an injector well with Martin constitutive model, the shock tube 

experiment is simulated with Martin model. The first two waves are measured in 

the lab. After that, because of wave reflections, additional cycles of pressure can 

fail the soil. This example is used as a validation of the whole package when 

failure occurs, i.e. dynamic code, coupling with Flac, and Martin constitutive 

model.  

The flow and elastic properties are reported in Table 4-1 and Table 4-2. For 

plastic properties, zero cohesion, 30 degrees friction angle together with       , 
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       ,         and         are used. These calibration values are 

typical values for cohesionless sand suggested by Martin et al. (1975). 

The results are plotted in Figures 5-19 to 5-20. Figures 5-19 shows the pore 

pressure and the wave reflection for two different points. The stress paths in 

Figure 5-20 show that failure initiates when the first pressure peak, or the first 

reflectin wave, reaches the element. This initial failure reduces the shear stress as 

the stress path moves on the failure envelope. Once pore pressure is decreased 

upon the arrival of the second reflected wave, the mean effective stress increases 

but shear streses remain low. Further pressure jumps (the third and fifth reflected 

waves) lead the stress path to zero mean effective stress. 

 

Figure 5-19 Pore pressure response to a shock wave in the shock tube experiment 
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Figure 5-20 Stress path for a point 710 mm from the top  

The results show that elastoplastic constitutive model together with coupled 

dynamic fluid flow and dynamic FLAC module is capable of modeling dynamic 

behavior beyond the elastic regime. The package can model the states of zero 

mean effective stress as a result of dynamic pore pressure/stress loading.  

5.2.9.1 Simulation Results and Comparison with the Elastic Reference Model 

The flow and elastic properties used in this section are similar to the values 

reported in  Section 5.2.5.1. Cohesionless sand is assumed with the premise that 

sandstone is already fully-degraded because of drilling, water effect, several 

cycles of injection and shut-in, fatigue and dynamic effect of WH waves. 

Santarelli et al. (2000) confirmed that sandstone was at failure conditions before 

sudden shut-in of the well. Mohr-Coulomb properties are zero cohesion, 30 

degrees friction angle, and -5 degrees dilation angle. The Martin liquefaction 

model has been used with       ,        ,         and        . These 

are typical values for cohesionless sand suggested by Martin et al. (1975).  
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The results from the elastic and Martin models are compared in Figure 5-21 

through Figure 5-26. Figure 5-21 shows the pore pressure propagation with radial 

distance and indicates slightly higher wave amplitudes compared to the elastic 

case. The reason can be attributed to the negative dilation and volumetric strain 

imposed by the Martin model. The observed spikes in the Martin model are due to 

failure of the perforation element where the stress path goes to a near-zero mean 

effective stress. 

 

Figure 5-21 Pore pressure response to a sinusoidal wave at different radii and perforation 

depth 

Although the pore pressure propagation in the Martin and elastic models are 

similar, the stress paths are quite different. According to Figure 5-22, the stress 

path for the perforation element is on the failure envelope moving towards a zero 

mean effective stress. The shear stress remains at near zero even when the pore 

pressure is decreasing in the cycle. With the second peak of pore pressure wave, 

the element is again at a zero mean effective stress. Note that sand production and 

element removal are not simulated in the model. Otherwise, the next elements 
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could have gone through the same stress path when forming a new boundary.  

Although the element 5cm farther away the perforation shows some initial shear 

stress reversal, it is not sufficient to reach near-zero mean effective conditions in 

this model. 

 

Figure 5-22 Stress path for elements at different radii using Martin model (the arrows 

shows the direction of stress path) 

One main difference compared to the elastic behavior is the pressure spikes 

observed in the Martin model. The pressure anomaly corresponds to a zero mean 

effective stress on the stress path of the perforation element and its sudden 

volumetric change/contraction (see Figure 5-23 to Figure 5-24). The arrows show 

the direction of stress path, a double-headed arrow represents the stress path 

moves forward and backward. These pressure rises can be correlated to porosity 

changes and will be transferred to adjacent elements as secondary waves. They 

are also occurring at higher frequencies than WH waves. 

Figure 5-25 shows the displacement vectors. The Martin model simulates sand 

tendency to contract toward the reservoir contrary to what the mobilized MC 
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constitutive model predicts. This is because of the additional contractive volume 

change incorporated in the Martin model. Another reason could be that the value 

of the dilation angle used in the sandstone model (see Figure 5-11) is larger than 

the constant value of -5 used for cohesionless sand for the Martin model.  

 

a 

 

b 

Figure 5-23 Pore pressure anomaly (a) corresponding to volume contraction (b) 
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Figure 5-24 Zero mean effective stress during pressure spikes 

 

Figure 5-25 Displacements after 0.085 sec of WH 
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elements, located at z=±5 cm relative to the perforation element, are failing 

reduces the stress for the element at the perforation elevation (r=5 cm; z=0 cm) 

without its stress path even touching the yield envelope. After failure, the stress 

state moves back to elastic conditions when pore pressure is reduced.  

 

Figure 5-26 Stress paths for elements at different depths and radius of 5 cm 

Based on the results, the stress path is similar to monotonic liquefaction shown in 

Figure 2-5 and Figure 2-6. However, this stress path is the same as material 

instability and failure. Note that the developed model is incapable of modeling 

cyclic fatigue and moving the stress conditions towards the failure envelope with 

each loading-unloading cycle. It is noted that the excess pore pressure included in 

the Martin model is very primitive. Figure 5-27 shows that the failure zone 

progresses through time very quickly. In other words, under the studied 

conditions and assumptions progressive failure is a more appropriate explanation 

of massive sand production than liquefaction.  
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Figure 5-27 Progression of failure within a fraction of second 

It is also noteworthy to mention that the boundary conditions could play a major 

role in the final displacement vectors. The top boundary fixed in a vertical 

direction is selected to represent a stiff caprock that allows the arching effect. 

However, this type of boundary may prevent the tendency for element 

compaction, which is expected during liquefaction. 

A model with top vertical stress boundary condition at the reported stresses is not 

stable for cohesionless sand. This type of boundary was investigated before for 

weakly-consolidated sandstone in Section 5.2.8.1 using a mobilized Mohr-

Coulomb (MC) constitutive model. 



 

138 

 

5.2.9.2 Sanding Estimation 

Several assumptions/simplifications have been made in the sanding estimation in 

this work as listed below: 

1) It has been assumed that failure is an indication of the potential of 

sanding.  

2) For sanding to occur, fluid velocities should be larger than a critical 

velocity to be able to carry the sand particles into the injector during the 

back-flow and cross-flow.  Detournay et al. (2006) proposed the critical 

velocity,    , as: 

    
                   

   
 

               (5-4) 

where   is the sanding coefiicient,   is the absolute permeability,   is 

porosity,    is the residual cohesion,     is the effective tangential stress,   

is the friction angle,   is fluid viscosity and    is sand particle size.  

Once an element on the boundary has failed, Eq. (5-4) is used, assuming 

       per Detournay’s suggestion (2006), to see if flow rate can carry 

sand particles into the wellbore.  

3) The elements that satisfy the conditions in (1) and (2) are not removed 

from the model, but is considered to be produced.  

4) Once sand production occurs in an element, a new pseudo-boundary is 

formed, the same calculations are performed until there is no change in the 

pseudo-boundary.  

5) Depending on the perforation density, the perforations area of the well 

may vary from the ring-shaped perforation area that is assumed in this 

study.  
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6) An actual injection well may be exposed to longer durations of WH 

waves. Hence, the sand around the well may potentially undergo a higher 

degradation. 

7) Another potential factor is the cyclic pore pressure variations. The 

constitutive models used in this work do not account for the degrading 

effects of cyclic loading on the reservoir sand. 

8) Sanding along the reservoir thickness may not be uniformly distributed 

due to lithology and strength variations.  

Considering the above simplifications, the modeling effort here serves only as a 

semi-qualitative probe of some field observations in injection wells, which 

indicate a significant sand production in a short amount of time.  

Following this procedure, the estimated sanding will be 13.16 kg after 0.085 sec 

for a reservoir with 30 cm thickness. This amount of sand will fill up the 

simulated well in this study by as much as 74% of the reservoir thickness with the 

formation porosity and 97% of the reservoir thickness with 40% porosity. The 

latter is consistent with the produced sand porosity as observed inside the North 

Sea well (Santarelli et al., 1998). 

5.2.10 Sensitivity Analysis 

Fast nature of massive sand production makes field measurements difficult; 

therefore, assuming some model parameters in the numerical analysis is 

inevitable. For this reason, and to investigate the main parameters affecting the 

underlying mechanism of massive sand production, sensitivity analyses have been 

performed on the parameters summarized in Table 5-3 by changing one parameter 

at a time while keeping the other parameters unchanged. In reality, however, the 

change of a parameter such as porosity, can influence other physical (e.g., 

permeability) and mechanical (e.g., strength and stiffness) properties. Martin 

Constitutive model is selected for the sensitivity analysis study.  
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Table 5-3 Summary of sensitivity analysis 

 Dilation 

Angle 

Friction 

Angle 

Injection 

Pressure 

(MPa) 

WH 

Amplitude 

(MPa) 

Porosity 

(%) 

Permeability 

(Darcy) 

Reference

Model  

-5 30 39.4 8 22 1.0 

Model 1-1  0 30 39.4 8 22 1.0 

Model 1-2  +5 30 39.4 8 22 1.0 

Model 2-1  -5 28 39.4 8 22 1.0 

Model 2-2  -5 35 39.4 8 22 1.0 

Model 3-1  -5 30 37.4 8 22 1.0 

Model 3-2  -5 30 41.4 8 22 1.0 

Model 4-1  -5 30 39.4 4 22 1.0 

Model 4-2  -5 30 39.4 10 22 1.0 

Model 5-1  -5 30 39.4 8 25 1.0 

Model 5-2  -5 30 39.4 8 30 1.0 

Model 6-1  -5 30 39.4 8 22 0.6 

Model 6-2  -5 30 39.4 8 22 2.0 

 

5.2.10.1 Effect of Dilation Angle 

As Figure 5-28 and Figure 5-29 show, pore pressure is slightly higher in the 

model with negative dilation angles because a negative dilation angles favor 

compaction with yielding. Also, stress reversal for the element at r=5 cm is higher 

for the model with negative dilation angles. The secondary pressure spikes are 

only observed in models with negative dilation angles. As the stress paths  in 

Figure 5-29 shows, these elements experience little to no failure with the 

exception of the element at r=0 cm. Therefore, the dilation angle, which controls 

plastic volumetric change, cannot affect the pore pressure.  
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Figure 5-28 Pore pressure response for different dilation angles 

 

Figure 5-29 Stress paths for different dilation angles 
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5.2.10.2 Effect of Friction Angle 

Figure 5-30 and Figure 5-31 show the effect of friction angle. A lower friction 

angle means elements may fail more easily under the same pressure wave 

amplitude. Failing and contraction (due to negative dilation angle) lead to the 

transfer of higher amplitude pressure waves, generated during plastic contraction, 

which in turn increases the potential for progressive failure. As a result, the 

element at r=5 cm shows a complete stress reversal due to the failure.  

 

Figure 5-30 Pore pressure response for different friction angles 
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Figure 5-31 Stress paths for different friction angles 

5.2.10.3 Effect of Injection Pressure 

Higher injection pressure moves the stress path closer to the failure envelope by 

reducing the mean effective stress. Therefore, higher injection pressure leads to 

more failure and shear stress reversal. Figure 5-32 and Figure 5-33 depict the 

results. 

Higher injection pressures result in higher injection rates into the reservoir. Since 

the WH amplitude is proportional to the magnitude of velocity change, an 

emergency shut-in will lead to a stronger WH pressure pulsing. However, as part 

of the sensitivity analysis only one parameter is varied at the time. 

 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

0.00 5.00 10.00 15.00 20.00 25.00 

q
 (

M
P

a)
 

P' (MPa) 

MC Failure 
r=0cm, fric 30 
r=5cm, fric 30 
r=15cm, fric 30 
r=25cm, fric 30 
r=50cm, fric 30 
r=0cm, fric 28 
r=5cm, fric 28 
r=15cm, fric 28 
r=25cm, fric 28 
r=50cm, fric 28 
r=0cm, fric 35 
r=5cm, fric 35 
r=15cm, fric 35 
r=25cm, fric 35 
r=50cm, fric 35 

1 
2 

3 



 

144 

 

 

Figure 5-32 Pressure response for different injection pressure 

 

Figure 5-33 Stress paths for different injection pressures 
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5.2.10.4 Effect of WH Amplitude 

Larger amplitudes of WH waves lead to more extensive failure and also a higher 

number of secondary pressure jumps as the mean effective stress is more 

susceptible to reaching near-zero values (see Figure 5-34 and Figure 5-35).  

 

Figure 5-34 Pore pressure response for different WH amplitudes 
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Figure 5-35 Stress paths for different WH amplitudes 

5.2.10.5 Effect of Porosity 

According to Figure 5-36, the wave amplitude is higher for a medium with a 

higher porosity, increasing the yield potential. The outcome is a higher likelihood 

for the complete stress reversal (see Figure 5-37) of farther elements from the 

well. In the absence of tortuosity, the fluid momentum equation, predicts higher 
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acceleration in the momentum equation (Eq. 4-50).  
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term in the dynamic fluid flow equation (Eq. 4-21). 
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Figure 5-36 Pressure response for different porosities 

 

Figure 5-37 Stress paths for different porosities 
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through compaction of the sand and fluid, and permeability does not affect it 

much if it is not a limiting factor, i.e. in case of very small permeabilities. Based 

on fluid momentum balance equation, permeability term is dominant for Darcy’s 

flow regime and not the transient flow regime. 

 

Figure 5-38 Pressure response for different permeabilities 
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Figure 5-39 Stress paths for different permeabilities 

5.3 Conclusions 
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additional volume change and associated pore pressure change which is 

superposed on the WH wave and transferred along the reservoir.  

• In case of a rigid cap rock (top boundary fixed in the vertical direction), 

more failure is observed around the perforation since arching and stress 

redistribution promote failure and stress reversal.  
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• The displacement vectors show a tendency for sand to be produced and 

push the sand retension equipment.  

To investigate the liquefaction potential, Martin constitutive model is used for 

cohesionless sand. The premise stress changes caused by drilling, injection and 

shut-in cycles, fatigue and WH waves can lead to full degradation of sandstone. 

The following statements are concluded for this model: 

• The estimated produced sand can fill the wellbore for the whole pay 

thickness, consistent with the observations in Norwegian field.  

• Based on the displacement vectors and the stress paths diagrams, failure 

occurs at two shear bands angular to the wellface and propagates through 

time. Depending on the flow and mechanical properties, the shear stress 

may go to low near-zero values or possibly zero. 

• Under the investigated conditions and assumptions, the stress path for the 

perforation element follows shear stress reversal (monotonic shear) on the 

yield envelope. Since cyclic fatigue is not included in the studied model, it 

is hard to distinguish liquefaction and simple material failure. It can only 

be concluded that progressive failure is an appropriate explanation of 

massive sand production. 

• The fact that the top and bottom elements are failing reduces middle 

elements stresses. Hence, a stress reversal is observed in the middle 

elements although they have not touched the yield envelope.  

• After failure, reduction in pore pressure moves back the stress state to 

elastic conditions and the behaviour becomes similar to an elastic stress 

path. 

• The failure effect due to a WH pressure wave is more significant around 

the wellbore.  

• Failure and sudden volumetric change of perforation elements (at near-

zero mean effective stress) act as a high-frequency porosity wave and 
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propagates through the reservoir as a secondary wave superposed on the 

WH wave.  

• The failure effect will be more significant for higher injection pressure, 

higher wave amplitude, negative dilation angle, higher porosity, and lower 

failure parameters such as lower friction angles. In such a case the 

elements beyond the perforation may undergo stress reversal. Without 

these extreme cases, only elements around the perforation are affected.  

• The progressive failure and stress state changes occur in a fraction of 

second. Therefore, dynamic analysis is deemed necessary to simulate 

massive sand production realistically. 

5.4 Nomenclature 

   Sanding coefiicient 

   Absolute permeability 

   Porosity 

    Constants for the Martin model, (i=1,..4) 

    Residual cohesion 

    Relative density 

    Sand particle size 

   Mean effective stress;    
  
     

 

 
 

  
     
 

 

    Critical velocity for sanding 

     Additional irrecoverable volume change 
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   Cyclic shear strain 

   Fluid viscosity 

   Friction angle 
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Chapter 6: Summary, Conclusions and 

Recommendations for Future Research 

 

 

 

The primary aim of this research is to develop a numerical model that can predict 

sand behavior under dynamic effects of WH waves. In addition, investigationg the 

role of dynamic liquefaction in massive sand productions and the conditions that 

will lead to massive sand production are important. Below is the overall summary 

of the research project, conclusions of the findings, and future recommendations: 

6.1 Summary 

In Chapter 1 of the thesis, the general idea behind the research motivation was 

introduced. Research motivations are established thoroughly and project scope, 

objectives, and methodology adopted and applied have been stated. 

In Chapter 2, a brief literature review was presented in order to shed more light on 

the concept under investigation, the general theory, and the background necessary 

to tackle such a complicated concept.  

In Chapter 3, the degrading behavior of sandstone was discussed. A bilinear 

hardening/softening Mohr-Coulomb was developed. The model was calibrated for 

two different types of sandstone and validated with experimental triaxial data. 

Also, Fracture Energy Regularization was applied to eliminate mesh dependency 

during softening. This model was later used in Chapter 5 to study dynamic 

degradation of sandstone. 
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In Chapter 4, the mathematical formulation of porous media dynamics was 

established. The governing equations are presented and extended to elastoplastic 

conditions.  Spanos and De la Cruz (1989) equations are adopted under isothermal 

condition and solved using Finite difference (FD) discretization. The equations 

are also compared with an earlier version presented by Biot (1956). A new tensor-

form of artificial viscosity, required for stability, was presented. Numerical 

solution and discretization are validated using a shock-tube experiment and some 

simple models are simulated to give an idea of how pressure waves propagate 

through elastic reservoir. The dynamic flow equations are then coupled with 

FLAC dynamic module to use advanced elastoplastic constitutive models.  Both 

undrained and drained coupling schemes are investigated. The results are then 

compared to the validated fully-coupled code. 

In Chapter 5, a massive sanding case study in the Norwegian Sea was numerically 

investigated. Axisymmetric condition was assumed to model sand around a single 

injection well in the reservoir. It is important to recall the approximation of an 

actual perforation tunnel with an axisymmetric slit opening in the casing which 

can lead to an overestimation of the sand failure and sand production. WH waves 

are applied as the boundary conditions during sudden shut-downs under dynamic 

analysis. Different constitutive models are utilized to study the mechanism and 

stress paths under dynamic WH pressures. The first one, the Mohr-Coulomb 

hardening/softening model, was used to study dynamic degradation of weakly-

consolidated sandstone and the effect of top boundary condition. The second one, 

the Martin model, is a simple liquefaction-based model. Finally, a parametric 

study was performed on rock properties, operational parameters, and wave 

properties.  

Chapter 6 presents an overall summary of the research project, and a conclusion 

of the findings as well as future recommendations. 
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6.2 Contributions 

The following are the academic contributions of this study: 

 Results of numerical simulations using Biot’s theory and de la Cruz and 

Spanos formulations are compared with measurements from a shock-tube 

experiment. It is demonstrated that Biot’s formulation underestimates the 

magnitude of the first wave and overestimates the speed of the second 

wave. 

 There is a hypothesis in the literature that liquefaction may occur during 

WH propagation in unconsolidated sand reservoirs. One of the objectives 

of this research is to find out through numerical simulations if dynamic 

liquefaction can be a mechanism for sanding in water injection wells.  The 

results of numerical simulations for the cases studied in this research 

indicated only local stress reversal around the perforation, not a global 

phenomenon of liquefaction. As a result, it is concluded that, for the 

simulation cases in this research, the observed mechanism was progressive 

failure with time, not liquefaction. Progressive failure may be a more 

appropriate description of sudden massive sand production as a result of 

WH waves.  The result of this research study can contribute to better 

understanding of reservoir behaviour under the WH propagation. 

 All the previous numerical studies are either using Biot's theory, or are 

limited to elastic rock behavior. The research implemented the 

fundamentals of theoretical dynamics of porous media into practice in an 

innovative and unique fashion using a more advanced formulation and 

extended the simulation to the elasto-plastic reservoir rock response. The 

use of a new tensor-form artificial viscosity to achieve convergence is also 

a contribution in the finite difference numerical modeling in this field. 

 Another novelty is applying an undrained coupling scheme in the dynamic 

porous solid-fluid flow calculations to obtain a faster numerical 
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convergence towards the solutions. The undrained scheme had been 

previously proven for static conditions, but not verified under dynamic 

conditions. Yet, the majority of geomechanics-fluid flow simulations use a 

drained coupling scheme. 

The following are the industrial contribution of this study: 

 A hardening/softening constitutive model and its calibration methodology 

is presented in this thesis. The model can predict sandstone behavior for 

applications where full sandstone degradation is important (e.g., in sand 

production analysis). 

 The methodologies presented in this thesis can be used to (1) calculate the 

amplitude of the propagated WH waves in the reservoir; (2) estimate the 

stress conditions and potential failure during fast shut-ins in water 

injection wells; and (3) estimate the size of the zone around the wellbore 

within which the propagated WH may contribute towards sandstone 

degradation. 

6.3 Conclusion 

The following conclusions can be drawn from this research: 

 A friction-hardening cohesion-softening the bilinear Mohr-Coulomb 

constitutive model is capable of modeling sandstone degradation under 

triaxial testing. The calibration procedure is also described. 

 A fully-coupled dynamic fluid-solid code is developed. The code is two-

dimensional and axisymmetric. Spanos and de la Cruz formulation is 

adopted and the equations are modified to be applicable to elastoplastic 

conditions.  

 To achieve stability, scalar form of artificial viscosity is extended to a new 

tensor form.  
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 The code is validated against experimental shock-tube data. Two pressure 

waves are generated in a saturated porous medium as a result of a shock 

wave. The model is capable of predicting the waves’ amplitude and speed.  

 Dynamic fluid flow is sequentially-coupled with the FLAC dynamic 

module. Different coupling schemes are investigated. It is concluded that 

under dynamic conditions undrained split is the preferred coupling 

method. Compared to the more common undrained split, it is more stable 

and converges to the correct steady-state solution.  

 The developed sequentially-coupled dynamic code is combined with the 

bilinear Mohr-Coulomb model and the Martin constitutive model to study 

massive sand production conditions, its mechanism, and the stress paths. 

 Under the assumed conditions, the amount of produced sand predicted by 

the model can fill the simulated well past the perforation in a fraction of 

seconds after well shut-in. In reality, the perforation density may change 

the area of perforation.  Also, the well was only exposed to about 1.5 

cycles of WH.  The results should, therefore, be seen in light of these 

assumptions. 

 Failure and sudden volumetric change of perforation elements (at near-

zero mean effective stress) act as a high-frequency porosity wave and 

propagates through the reservoir as a secondary wave superposed to the 

WH wave.  

 The failure effect is more significant for higher injection pressure, higher 

wave amplitude, negative dilation angle, higher porosity, and lower failure 

parameters such as lower friction angle. In such a case the elements 

beyond the perforation may undergo stress reversal. Without these 

extreme cases, only elements around the perforation are affected.  

 Under the studied conditions the stress path for perforation elements and 

the neighboring elements is similar to monotonic shear. The failure zone 

propagates quickly with time during WH wave dissipation.  It is concluded 
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that under the investigated conditions, progressive failure is a more 

appropriate description of sudden massive sand production. 

 In the case of a rigid cap rock (top boundary fixed in the vertical 

direction), more failure is observed around the perforation since arching 

and stress redistribution promote failure and stress reversal.  

6.4 Future Recommendations 

 There is a lack of measured and/or experimental data due to the fast nature 

of massive sand production; there are no comprehensive reports featuring 

all the necessary properties and conditions of this study. An experimental 

study will be of high value.  

 Different cycles of loading and unloading during injection/shut-in cycles 

and WH waves are not considered in this study.  Inclusion of an advanced 

constitutive model capable of modeling cyclic fatigue (such as bounding 

surface plasticity) is recommended. 

 Although the current study does not confirm liquefaction as the underlying 

mechanism, it does not discredit it either. Using a more comprehensive 

liquefaction model will shed more light on the effect of liquefaction.  

 Increasing the robustness of the numerical solution may allow element 

removal as a result of sand production. Having a moving interface is likely 

to result in more catastrophic progressive failure. 
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Appendix A: Fully-Coupled Dynamic Code 

Developed in MATLAB for Shock-Tube 

Example 

clear 
clc 
z_length=1.895; 
r_length=.0375;  %ID=75mm 
Nr=10; % number of nodes   %i index 
Nz=401;                     %j index 
N=Nr*Nz; 
dr=r_length/Nr; 
dz=z_length/Nz; 
%Fluid properties 
ro_f=1000; %kg/m3 
muf=1*.001; %cp to kg/(m.Sec) water viscosity 
mu=muf;%0; 
ro_s=2650; 
k0=5.6e-11 ; % m2 
kr=k0*ones(Nr,Nz); 
kz=k0*ones(Nr,Nz); 
n0=0.3; %initial porosity 
n=n0*ones(Nr,Nz); 
tow=1.65; %Tortuosity 
g=-9.8; 
bu=ones(Nr,Nz)*8.16e9; 
sh=ones(Nr,Nz)*1.3e9; 
nu=(3*bu(1,1)-2*sh(1,1))/(2*(3*bu(1,1)+sh(1,1))); 
mv=1/(bu(1,1)+4*sh(1,1)/3); 
cf=.0005*1e-6; %m2/MN fluid compressibility to 1/Pa 
cm=mv; 
ro=ro_f*n0+(1-n0)*ro_s; 
cs=2.35e-11; %1/Pa 
alfa=1-cs/cm; %Biot Coeff 
Sp=n0*cf+(alfa-n0)*cs; 
cc1=sqrt(1/(ro*mv)+alfa^2/(ro*(Sp))); 
cc2=sqrt((1-alfa+Sp/mv)*n0/(Sp*ro_f*(alfa-

n0+tow+(1+tow)*Sp/mv))); 

  
ds=cf*n0*(1-n0)/(n0*cf+(1-n0)*cs); 
df=cs*n0*(1-n0)/(n0*cf+(1-n0)*cs); 
% wave properties 
f=17;%0; %frequency 1/s  (f or w) 
period=1/f; %sec 
cc=sqrt(1/(ro*mv));  %p_wave speed 
ccf=sqrt(1/(ro_f*cf));  %p_wave speed 
Fdrr=zeros(Nr,Nz); 
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Fdrr_past=Fdrr; 
Fdzz=zeros(Nr,Nz); 
Fdzz_past=Fdzz; 

  
%mesh properties 
dz=z_length/(Nz-1); 
z=zeros(Nz,1); 
r=zeros(Nr,1); 
for jj=1:Nz 
    z(jj)=(jj-1)*dz; 
end 
dr=r_length/(Nr-1); 
for ii=1:Nr 
    r(ii)=(ii-1)*dr; 
end 
rw=r(1); 
re=r(Nr); 
jj2=1; 

  
dx1=r(2)-r(1); 
dx2=z(2)-z(1); 

  
dxmin=min(dx1,dx2); 

  
dt1=dxmin/cc1; 
dt2=dxmin/cc2; 

  
dt=.4*n0*min(dt1,dt2); 

  
t01=z_length/cc1; 
t02=z_length/cc2; 
t0=max(t01,t02);  %time the wave reaches the end 
%2D in r and z directions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
%initial conditions 
wr_past=zeros(Nr,Nz); 
wz_past=zeros(Nr,Nz); 
wr=wr_past; 
wz=wz_past; 
p_past=zeros(Nr,Nz); %10*ones(N,1); 
p=p_past; 
vr=zeros(Nr,Nz); 
vz=zeros(Nr,Nz); 
ur=zeros(Nr,Nz); 
uz=zeros(Nr,Nz); 
vr_past=zeros(Nr,Nz); 
vz_past=zeros(Nr,Nz); 
n_past=n; 

  
time=0; 
jj=1;  %used for p_wave & history points 
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srr=0*ones(Nr,Nz); 
szz=0*ones(Nr,Nz); 
stt=0*ones(Nr,Nz); 
srz=0*ones(Nr,Nz); 
srr_past=srr; 
szz_past=szz; %initialized by weight in the IC 
stt_past=stt; 
srz_past=srz; 
Ev=zeros(Nr,Nz); 

  
%initialization 
p0=zeros(Nz,1); 
for j=1:Nz 
    p0(j)=1.01e5+.48*abs(g)*ro_f+(z(Nz)-z(j))*ro_f*abs(g);% .5m 

water on top 
    p(:,j)=1.01e5+.48*abs(g)*ro_f+(z(Nz)-z(j))*ro_f*abs(g);% 
    szz(:,j)=1.01e5+.48*abs(g)*ro_f+(z(Nz)-z(j))*(ro*abs(g))-

alfa.*p(:,j); 
    szz_0(j)=1.01e5+.48*abs(g)*ro_f+(z(Nz)-z(j))*(ro*abs(g))-

alfa.*p0(j); 
end 
szz_past=szz; 
p_past=p; 

  
%history 
Xp1=0.12; 
Ip1=floor((z_length-Xp1)/dz); 
Xp2=0.22; 
Ip2=floor((z_length-Xp2)/dz); 
jj=0; 
t=zeros(100,1); 
f1=zeros(100,1); 
f2=zeros(100,1); 
ezz1=zeros(100,1); 
ezz2=zeros(100,1); 
fporo=f; 
Nr_mid=floor(Nr/2); 
f1(1)=0; 
f2(1)=0; 
ezz1(1)=0; 
ezz2(1)=0; 
fporo(1)=0; 
t(1)=0; 
counter=1; 
jij=1; 

  
coef=(1+tow*(1+n0*ro_f/(ro_s*(1-n0))))*ro_f; 
coef0=tow*ro_f/(ro_s*(1-n0)); 
p_wave=1.65e5; 
lamdaf=-2*mu/3; 
while time<6e-4 
    %solving for vr,vz, wr & wz 
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    %1) r=rw 
    i=1; 
    for j=2:Nz-1 
        z1_mid=(z(j)+z(j-1))/2; 
        z2_mid=(z(j)+z(j+1))/2; 
        r2_mid=(r(i)+r(i+1))/2; 
        vr(i,j)=0; %1D flow 

         
        vz(i,j)=vz_past(i,j)-

(dt/coef)*((1+coef0*alfa)*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-

z(j-1))+n_past(i,j)*muf*(vz_past(i,j)-wz_past(i,j))/kz(i,j)-... 
            ro_f*g+coef0*((srz_past(i+1,j)-

srz_past(i,j))/(r(i+1)-r(i))+(srz_past(i,j))/r2_mid+... 

%r(1)=0==>r2_mid 
            (szz_past(i,j+1)-szz_past(i,j-1)+Fdzz_past(i,j+1)-

Fdzz_past(i,j-1))/(z(j+1)-z(j-1))-ro*g+bu(i,j)*(n_past(i,j+1)-

n_past(i,j-1))/(z(j+1)-z(j-1)))-... 
            mu*((1/(r(i+1)-r(i)))*((vz_past(i+2,j)-

vz_past(i+1,j))/(r(i+2)-r(i+1))-(vz_past(i+1,j)-

vz_past(i,j))/(r(i+1)-r(i)))+... 
            (vz_past(i+1,j)-vz_past(i,j))/(r2_mid*(r(i+1)-

r(i)))+... %r(1)=0==>r2_mid 
            (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))-... 
            (mu+lamdaf)*((vr_past(i+1,j+1)-vr_past(i+1,j-1)-

vr_past(i,j+1)+vr_past(i,j-1))/((r(i+1)-r(i))*(z(j+1)-z(j-

1)))+(vr_past(i,j+1)-vr_past(i,j-1))/(r2_mid*(z(j+1)-z(j-1)))+... 

%r(1)=0==>r2_mid 
            (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))); 

         
        wr(i,j)=0; %axisym 
        wz(i,j)=wz_past(i,j)-dt*(n_past(i,j)*ro_f*(vz(i,j)-

vz_past(i,j))/dt+... 
            (srz_past(i+1,j)-srz_past(i,j))/(r(i+1)-

r(i))+srz_past(i,j)/r2_mid+... %r(1)=0==>r2_mid 
            (szz_past(i,j+1)-szz_past(i,j-1)+Fdzz_past(i,j+1)-

Fdzz_past(i,j-1))/(z(j+1)-z(j-1))+... 
            alfa*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-z(j-1))-

ro*g+bu(i,j)*(n_past(i,j+1)-n_past(i,j-1))/(z(j+1)-z(j-1)))/((1-

n_past(i,j))*ro_s); 
    end 
    %2) left bottom corner z=0 r=rw 
    j=1; 
    i=1; 
    r2_mid=(r(i)+r(i+1))/2; 
    vr(i,j)=0; %1D flow 
    vz(i,j)=0; %no flow @ bot 
    wr(i,j)=0; %axisym 
    wz(i,j)=0; %fix @bot 
    %3) left top corner z=h r=rw 
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    j=Nz; 
    i=1; 
    r2_mid=(r(i)+r(i+1))/2; 
    %BC 
    p(i,j)=p_wave+p0(j); 
    szz(i,j)=szz_0(j)+(1-alfa)*p_wave; 
    vr(i,j)=0; %1D flow 

     
    vz(i,j)=vz_past(i,j)-(dt/coef)*((1+coef0*alfa)*(p_past(i,j)-

p_past(i,j-1))/(z(j)-z(j-1))+n_past(i,j)*muf*(vz_past(i,j)-

wz_past(i,j))/kz(i,j)-... 
        ro_f*g+coef0*((srz_past(i+1,j)-srz_past(i,j))/(r(i+1)-

r(i))+(srz_past(i,j))/r2_mid+... %r(1)=0==>r2_mid 
        (szz_past(i,j)-szz_past(i,j-1)+Fdzz_past(i,j)-

Fdzz_past(i,j-1))/(z(j)-z(j-1))-ro*g+bu(i,j)*(n_past(i,j)-

n_past(i,j-1))/(z(j)-z(j-1)))-... 
        mu*((1/(r(i+1)-r(i)))*((vz_past(i+2,j)-

vz_past(i+1,j))/(r(i+2)-r(i+1))-(vz_past(i+1,j)-

vz_past(i,j))/(r(i+1)-r(i)))+... 
        (vz_past(i+1,j)-vz_past(i,j))/(r2_mid*(r(i+1)-r(i)))+... 

%r(1)=0==>r2_mid 
        (1/(z(j)-z(j-1)))*((vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))-(vz_past(i,j-1)-vz_past(i,j-2))/(z(j-1)-z(j-2))))-... 
        (mu+lamdaf)*((vr_past(i+1,j)-vr_past(i+1,j-1)-

vr_past(i,j)+vr_past(i,j-1))/((r(i+1)-r(i))*(z(j)-z(j-

1)))+(vr_past(i,j)-vr_past(i,j-1))/(r2_mid*(z(j)-z(j-1)))+... 

%r(1)=0==>r2_mid 
        (1/((z(j)-z(j-1))))*((vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))-(vz_past(i,j-1)-vz_past(i,j-2))/(z(j-1)-z(j-2))))); 
    wr(i,j)=0; %axisym 
    wz(i,j)=wz_past(i,j)-dt*(n_past(i,j)*ro_f*(vz(i,j)-

vz_past(i,j))/dt+... 
        (srz_past(i+1,j)-srz_past(i,j))/(r(i+1)-

r(i))+srz_past(i,j)/r2_mid+... %r(1)=0==>r2_mid 
        (szz_past(i,j)-szz_past(i,j-1)+Fdzz_past(i,j)-

Fdzz_past(i,j-1))/(z(j)-z(j-1))+... 
        alfa*(p_past(i,j)-p_past(i,j-1))/(z(j)-z(j-1))-

ro*g+bu(i,j)*(n_past(i,j)-n_past(i,j-1))/(z(j)-z(j-1)))/((1-

n_past(i,j))*ro_s); 
    %4) middle points  corr 
    for i=2:Nr-1 
        for j=2:Nz-1 
            r1_mid=(r(i)+r(i-1))/2; 
            r2_mid=(r(i)+r(i+1))/2; 
            z1_mid=(z(j)+z(j-1))/2; 
            z2_mid=(z(j)+z(j+1))/2; 

             
            vr(i,j)=vr_past(i,j)-

(dt/coef)*((coef0*alfa+1)*(p_past(i+1,j)-p_past(i-1,j))/(r(i+1)-

r(i-1))+n_past(i,j)*muf*(vr_past(i,j)-wr_past(i,j))/kr(i,j)-... 
                mu*((1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))+... 
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                (vr_past(i+1,j)-vr_past(i-1,j))/(r(i)*(r(i+1)-

r(i-1)))+(1/(z2_mid-z1_mid))*((vr_past(i,j+1)-

vr_past(i,j))/(z(j+1)-z(j))-... 
                (vr_past(i,j)-vr_past(i,j-1))/(z(j)-z(j-1)))-

vr_past(i,j)/(r(i)^2))-(mu+lamdaf)*((vr_past(i+1,j)-vr_past(i-

1,j))/(r(i)*(r(i+1)-r(i-1)))+... 
                (1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))-vr_past(i,j)/(r(i)^2)+... 
                (vz_past(i+1,j+1)-vz_past(i+1,j-1)-vz_past(i-

1,j+1)+vz_past(i-1,j-1))/((r(i+1)-r(i-1))*(z(j+1)-z(j-

1))))+coef0*... 
                ((srr_past(i+1,j)-srr_past(i-

1,j)+Fdrr_past(i+1,j)-Fdrr_past(i-1,j))/(r(i+1)-r(i-1))+... 
                (srz_past(i,j+1)-srz_past(i,j-1))/(z(j+1)-z(j-

1))+(srr_past(i,j)-

stt_past(i,j)+Fdrr_past(i,j))/r(i)+bu(i,j)*(n_past(i+1,j)-

n_past(i-1,j))/(r(i+1)-r(i-1)))); 
            vz(i,j)=vz_past(i,j)-

(dt/coef)*((1+coef0*alfa)*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-

z(j-1))+n_past(i,j)*muf*(vz_past(i,j)-wz_past(i,j))/kz(i,j)-... 
                ro_f*g+coef0*((srz_past(i+1,j)-srz_past(i-

1,j))/(r(i+1)-r(i-1))+(srz_past(i,j))/r(i)+... 
                (szz_past(i,j+1)-szz_past(i,j-

1)+Fdzz_past(i,j+1)-Fdzz_past(i,j-1))/(z(j+1)-z(j-1))-

ro*g+bu(i,j)*(n_past(i,j+1)-n_past(i,j-1))/(z(j+1)-z(j-1)))-... 
                mu*((1/(r2_mid-r1_mid))*((vz_past(i+1,j)-

vz_past(i,j))/(r(i+1)-r(i))-(vz_past(i,j)-vz_past(i-1,j))/(r(i)-

r(i-1)))+(vz_past(i+1,j)-vz_past(i-1,j))/(r(i)*(r(i+1)-r(i-

1)))+... 
                (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))-... 
                (mu+lamdaf)*((vr_past(i+1,j+1)-vr_past(i+1,j-1)-

vr_past(i-1,j+1)+vr_past(i-1,j-1))/((r(i+1)-r(i-1))*(z(j+1)-z(j-

1)))+(vr_past(i,j+1)-vr_past(i,j-1))/(r(i)*(z(j+1)-z(j-1)))+... 
                (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))); 

             

             
            wr(i,j)=wr_past(i,j)-dt*(n_past(i,j)*ro_f*(vr(i,j)-

vr_past(i,j))/dt+... 
                (srr_past(i+1,j)-srr_past(i-

1,j)+Fdrr_past(i+1,j)-Fdrr_past(i-1,j))/((r(i+1)-r(i-1)))+... 
                (srz_past(i,j+1)-srz_past(i,j-1))/(z(j+1)-z(j-

1))+(srr_past(i,j)+Fdrr_past(i,j)-stt_past(i,j))/r(i)+... 
                alfa*(p_past(i+1,j)-p_past(i-1,j))/(r(i+1)-r(i-

1))+bu(i,j)*(n_past(i+1,j)-n_past(i-1,j))/(r(i+1)-r(i-1)))/((1-

n_past(i,j))*ro_s); 
            wz(i,j)=wz_past(i,j)-dt*(n_past(i,j)*ro_f*(vz(i,j)-

vz_past(i,j))/dt+... 
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                (srz_past(i+1,j)-srz_past(i-1,j))/(r(i+1)-r(i-

1))+srz_past(i,j)/r(i)+... 
                (szz_past(i,j+1)-szz_past(i,j-

1)+Fdzz_past(i,j+1)-Fdzz_past(i,j-1))/(z(j+1)-z(j-1))+... 
                alfa*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-z(j-

1))-ro*g+bu(i,j)*(n_past(i,j+1)-n_past(i,j-1))/(z(j+1)-z(j-

1)))/((1-n_past(i,j))*ro_s); 
        end 
    end 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
    %5) z=0 
    j=1; 
    for i=2:Nr-1 
        r1_mid=(r(i)+r(i-1))/2; 
        r2_mid=(r(i)+r(i+1))/2; 

         

         
        vr(i,j)=vr_past(i,j)-

(dt/coef)*((coef0*alfa+1)*(p_past(i+1,j)-p_past(i-1,j))/(r(i+1)-

r(i-1))+n_past(i,j)*muf*(vr_past(i,j)-wr_past(i,j))/kr(i,j)-... 
            mu*((1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))+... 
            (vr_past(i+1,j)-vr_past(i-1,j))/(r(i)*(r(i+1)-r(i-

1)))+(1/(z(j+1)-z(j)))*((vr_past(i,j+2)-vr_past(i,j+1))/(z(j+2)-

z(j+1))-... 
            (vr_past(i,j+1)-vr_past(i,j))/(z(j+1)-z(j)))-

vr_past(i,j)/(r(i)^2))-(mu+lamdaf)*((vr_past(i+1,j)-vr_past(i-

1,j))/(r(i)*(r(i+1)-r(i-1)))+... 
            (1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))-vr_past(i,j)/(r(i)^2)+... 
            (vz_past(i+1,j+1)-vz_past(i+1,j)-vz_past(i-

1,j+1)+vz_past(i-1,j))/((r(i+1)-r(i-1))*(z(j+1)-z(j))))+coef0*... 
            ((srr_past(i+1,j)-srr_past(i-1,j)+Fdrr_past(i+1,j)-

Fdrr_past(i-1,j))/(r(i+1)-r(i-1))+... 
            (srz_past(i,j+1)-srz_past(i,j))/(z(j+1)-

z(j))+(srr_past(i,j)-

stt_past(i,j)+Fdrr_past(i,j))/r(i)+bu(i,j)*(n_past(i+1,j)-

n_past(i-1,j))/(r(i+1)-r(i-1)))); 
        vz(i,j)=0; %no flow @ bot 

         
        wr(i,j)=wr_past(i,j)-dt*(n_past(i,j)*ro_f*(vr(i,j)-

vr_past(i,j))/dt+... 
            (srr_past(i+1,j)-srr_past(i-1,j)+Fdrr_past(i+1,j)-

Fdrr_past(i-1,j))/((r(i+1)-r(i-1)))+... 
            (srz_past(i,j+1)-srz_past(i,j))/(z(j+1)-

z(j))+(srr_past(i,j)+Fdrr_past(i,j)-stt_past(i,j))/r(i)+... 
            alfa*(p_past(i+1,j)-p_past(i-1,j))/(r(i+1)-r(i-

1))+bu(i,j)*(n_past(i+1,j)-n_past(i-1,j))/(r(i+1)-r(i-1)))/((1-

n_past(i,j))*ro_s); 
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        wz(i,j)=0; %fixed @ bot 
    end 
    %6) z=h  corr top 
    j=Nz; 
    for i=2:Nr-1 
        %BC 
        p(i,j)=p_wave+p0(j); 
        szz(i,j)=szz_0(j)+(1-alfa)*p_wave; 

         
        r1_mid=(r(i)+r(i-1))/2; 
        r2_mid=(r(i)+r(i+1))/2; 

         
        vr(i,j)=vr_past(i,j)-

(dt/coef)*((coef0*alfa+1)*(p_past(i+1,j)-p_past(i-1,j))/(r(i+1)-

r(i-1))+n_past(i,j)*muf*(vr_past(i,j)-wr_past(i,j))/kr(i,j)-... 
            mu*((1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))+... 
            (vr_past(i+1,j)-vr_past(i-1,j))/(r(i)*(r(i+1)-r(i-

1)))+(1/(z(j)-z(j-1)))*((vr_past(i,j)-vr_past(i,j-1))/(z(j)-z(j-

1))-... 
            (vr_past(i,j-1)-vr_past(i,j-2))/(z(j-1)-z(j-2)))-

vr_past(i,j)/(r(i)^2))-(mu+lamdaf)*((vr_past(i+1,j)-vr_past(i-

1,j))/(r(i)*(r(i+1)-r(i-1)))+... 
            (1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))-vr_past(i,j)/(r(i)^2)+... 
            (vz_past(i+1,j)-vz_past(i+1,j-1)-vz_past(i-

1,j)+vz_past(i-1,j-1))/((r(i+1)-r(i-1))*(z(j)-z(j-1))))+coef0*... 
            ((srr_past(i+1,j)-srr_past(i-1,j)+Fdrr_past(i+1,j)-

Fdrr_past(i-1,j))/(r(i+1)-r(i-1))+... 
            (srz_past(i,j)-srz_past(i,j-1))/(z(j)-z(j-

1))+(srr_past(i,j)-

stt_past(i,j)+Fdrr_past(i,j))/r(i)+bu(i,j)*(n_past(i+1,j)-

n_past(i-1,j))/(r(i+1)-r(i-1)))); 

         
        vz(i,j)=vz_past(i,j)-

(dt/coef)*((1+coef0*alfa)*(p_past(i,j)-p_past(i,j-1))/(z(j)-z(j-

1))+n_past(i,j)*muf*(vz_past(i,j)-wz_past(i,j))/kz(i,j)-... 
            ro_f*g+coef0*((srz_past(i+1,j)-srz_past(i-

1,j))/(r(i+1)-r(i-1))+(srz_past(i,j))/r(i)+... 
            (szz_past(i,j)-szz_past(i,j-1)+Fdzz_past(i,j)-

Fdzz_past(i,j-1))/(z(j)-z(j-1))-ro*g+bu(i,j)*(n_past(i,j)-

n_past(i,j-1))/(z(j)-z(j-1)))-... 
            mu*((1/(r2_mid-r1_mid))*((vz_past(i+1,j)-

vz_past(i,j))/(r(i+1)-r(i))-(vz_past(i,j)-vz_past(i-1,j))/(r(i)-

r(i-1)))+(vz_past(i+1,j)-vz_past(i-1,j))/(r(i)*(r(i+1)-r(i-

1)))+... 
            (1/(z(j)-z(j-1)))*((vz_past(i,j)-vz_past(i,j-

1))/(z(j)-z(j-1))-(vz_past(i,j-1)-vz_past(i,j-2))/(z(j-1)-z(j-

2))))-... 
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            (mu+lamdaf)*((vr_past(i+1,j)-vr_past(i+1,j-1)-

vr_past(i-1,j)+vr_past(i-1,j-1))/((r(i+1)-r(i-1))*(z(j)-z(j-

1)))+(vr_past(i,j)-vr_past(i,j-1))/(r(i)*(z(j)-z(j-1)))+... 
            (1/(z(j)-z(j-1)))*((vz_past(i,j)-vz_past(i,j-

1))/(z(j)-z(j-1))-(vz_past(i,j-1)-vz_past(i,j-2))/(z(j-1)-z(j-

2))))); 

         
        wr(i,j)=wr_past(i,j)-dt*(n_past(i,j)*ro_f*(vr(i,j)-

vr_past(i,j))/dt+... 
            (srr_past(i+1,j)-srr_past(i-1,j)+Fdrr_past(i+1,j)-

Fdrr_past(i-1,j))/((r(i+1)-r(i-1)))+... 
            (srz_past(i,j)-srz_past(i,j-1))/(z(j)-z(j-

1))+(srr_past(i,j)+Fdrr_past(i,j)-stt_past(i,j))/r(i)+... 
            alfa*(p_past(i+1,j)-p_past(i-1,j))/(r(i+1)-r(i-

1))+bu(i,j)*(n_past(i+1,j)-n_past(i-1,j))/(r(i+1)-r(i-1)))/((1-

n_past(i,j))*ro_s); 
        wz(i,j)=wz_past(i,j)-dt*(n_past(i,j)*ro_f*(vz(i,j)-

vz_past(i,j))/dt+... 
            (srz_past(i+1,j)-srz_past(i-1,j))/(r(i+1)-r(i-

1))+srz_past(i,j)/r(i)+... 
            (szz_past(i,j)-szz_past(i,j-1)+Fdzz_past(i,j)-

Fdzz_past(i,j-1))/(z(j)-z(j-1))+... 
            alfa*(p_past(i,j)-p_past(i,j-1))/(z(j)-z(j-1))-

ro*g+bu(i,j)*(n_past(i,j)-n_past(i,j-1))/(z(j)-z(j-1)))/((1-

n_past(i,j))*ro_s); 
    end 

     
    %7) right r=re   corr 
    i=Nr; 
    for j=2:Nz-1 
        z1_mid=(z(j)+z(j-1))/2; 
        z2_mid=(z(j)+z(j+1))/2; 
        vr(i,j)=0; %no flow B/sealed 

         
        vz(i,j)=vz_past(i,j)-

(dt/coef)*((1+coef0*alfa)*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-

z(j-1))+n_past(i,j)*muf*(vz_past(i,j)-wz_past(i,j))/kz(i,j)-... 
            ro_f*g+coef0*((srz_past(i,j)-srz_past(i-1,j))/(r(i)-

r(i-1))+(srz_past(i,j))/r(i)+... 
            (szz_past(i,j+1)-szz_past(i,j-1)+Fdzz_past(i,j+1)-

Fdzz_past(i,j-1))/(z(j+1)-z(j-1))-ro*g+bu(i,j)*(n_past(i,j+1)-

n_past(i,j-1))/(z(j+1)-z(j-1)))-... 
            mu*((1/(r(i)-r(i-1)))*((vz_past(i,j)-vz_past(i-

1,j))/(r(i)-r(i-1))-(vz_past(i-1,j)-vz_past(i-2,j))/(r(i-1)-r(i-

2)))+(vz_past(i,j)-vz_past(i-1,j))/(r(i)*(r(i)-r(i-1)))+... 
            (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))-... 
            (mu+lamdaf)*((vr_past(i,j+1)-vr_past(i,j-1)-

vr_past(i-1,j+1)+vr_past(i-1,j-1))/((r(i)-r(i-1))*(z(j+1)-z(j-

1)))+(vr_past(i,j+1)-vr_past(i,j-1))/(r(i)*(z(j+1)-z(j-1)))+... 
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            (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))); 

         
        wr(i,j)=wr_past(i,j)-dt*(n_past(i,j)*ro_f*(vr(i,j)-

vr_past(i,j))/dt+... 
            (srr_past(i,j)-srr_past(i-1,j)+Fdrr_past(i,j)-

Fdrr_past(i-1,j))/((r(i)-r(i-1)))+... 
            (srz_past(i,j+1)-srz_past(i,j-1))/(z(j+1)-z(j-

1))+(srr_past(i,j)+Fdrr_past(i,j)-stt_past(i,j))/r(i)+... 
            alfa*(p_past(i,j)-p_past(i-1,j))/(r(i)-r(i-

1))+bu(i,j)*(n_past(i,j)-n_past(i-1,j))/(r(i)-r(i-1)))/((1-

n_past(i,j))*ro_s); 
        wz(i,j)=wz_past(i,j)-dt*(n_past(i,j)*ro_f*(vz(i,j)-

vz_past(i,j))/dt+... 
            (srz_past(i,j)-srz_past(i-1,j))/(r(i)-r(i-

1))+srz_past(i,j)/r(i)+... 
            (szz_past(i,j+1)-szz_past(i,j-1)+Fdzz_past(i,j+1)-

Fdzz_past(i,j-1))/(z(j+1)-z(j-1))+... 
            alfa*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-z(j-1))-

ro*g+bu(i,j)*(n_past(i,j+1)-n_past(i,j-1))/(z(j+1)-z(j-1)))/((1-

n_past(i,j))*ro_s); 
    end 

     
    %8) right bottom corner z=0 r=re    corr 
    j=1; 
    i=Nr; 
    vr(i,j)=0; 
    vz(i,j)=0; 

     
    wr(i,j)=wr_past(i,j)-dt*(n_past(i,j)*ro_f*(vr(i,j)-

vr_past(i,j))/dt+... 
        (srr_past(i,j)-srr_past(i-1,j)+Fdrr_past(i,j)-

Fdrr_past(i-1,j))/((r(i)-r(i-1)))+... 
        (srz_past(i,j+1)-srz_past(i,j))/(z(j+1)-

z(j))+(srr_past(i,j)+Fdrr_past(i,j)-stt_past(i,j))/r(i)+... 
        alfa*(p_past(i,j)-p_past(i-1,j))/(r(i)-r(i-

1))+bu(i,j)*(n_past(i,j)-n_past(i-1,j))/(r(i)-r(i-1)))/((1-

n_past(i,j))*ro_s); 
    wz(i,j)=0; 
    %9) right top corner z=h r=re  corr 
    j=Nz; 
    i=Nr; 
    %BC 
    p(i,j)=p_wave+p0(j); 
    szz(i,j)=szz_0(j)+(1-alfa)*p_wave; 
    vr(i,j)=0; 
    vz(i,j)=vz_past(i,j)-(dt/coef)*((1+coef0*alfa)*(p_past(i,j)-

p_past(i,j-1))/(z(j)-z(j-1))+n_past(i,j)*muf*(vz_past(i,j)-

wz_past(i,j))/kz(i,j)-... 
        ro_f*g+coef0*((srz_past(i,j)-srz_past(i-1,j))/(r(i)-r(i-

1))+(srz_past(i,j))/r(i)+... 
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        (szz_past(i,j)-szz_past(i,j-1)+Fdzz_past(i,j)-

Fdzz_past(i,j-1))/(z(j)-z(j-1))-ro*g+bu(i,j)*(n_past(i,j)-

n_past(i,j-1))/(z(j)-z(j-1)))-... 
        mu*((1/(r(i)-r(i-1)))*((vz_past(i,j)-vz_past(i-

1,j))/(r(i)-r(i-1))-(vz_past(i-1,j)-vz_past(i-2,j))/(r(i-1)-r(i-

2)))+(vz_past(i,j)-vz_past(i-1,j))/(r(i)*(r(i)-r(i-1)))+... 
        (1/(z(j)-z(j-1)))*((vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))-(vz_past(i,j-1)-vz_past(i,j-2))/(z(j-1)-z(j-2))))-... 
        (mu+lamdaf)*((vr_past(i,j)-vr_past(i,j-1)-vr_past(i-

1,j)+vr_past(i-1,j-1))/((r(i)-r(i-1))*(z(j)-z(j-

1)))+(vr_past(i,j)-vr_past(i,j-1))/(r(i)*(z(j)-z(j-1)))+... 
        (1/(z(j)-z(j-1)))*((vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))-(vz_past(i,j-1)-vz_past(i,j-2))/(z(j-1)-z(j-2))))); 

     
    wr(i,j)=wr_past(i,j)-dt*(n_past(i,j)*ro_f*(vr(i,j)-

vr_past(i,j))/dt+... 
        (srr_past(i,j)-srr_past(i-1,j)+Fdrr_past(i,j)-

Fdrr_past(i-1,j))/((r(i)-r(i-1)))+... 
        (srz_past(i,j)-srz_past(i,j-1))/(z(j)-z(j-

1))+(srr_past(i,j)+Fdrr_past(i,j)-stt_past(i,j))/r(i)+... 
        alfa*(p_past(i,j)-p_past(i-1,j))/(r(i)-r(i-

1))+bu(i,j)*(n_past(i,j)-n_past(i-1,j))/(r(i)-r(i-1)))/((1-

n_past(i,j))*ro_s); 
    wz(i,j)=wz_past(i,j)-dt*(n_past(i,j)*ro_f*(vz(i,j)-

vz_past(i,j))/dt+... 
        (srz_past(i,j)-srz_past(i-1,j))/(r(i)-r(i-

1))+srz_past(i,j)/r(i)+... 
        (szz_past(i,j)-szz_past(i,j-1)+Fdzz_past(i,j)-

Fdzz_past(i,j-1))/(z(j)-z(j-1))+... 
        alfa*(p_past(i,j)-p_past(i,j-1))/(z(j)-z(j-1))-

ro*g+bu(i,j)*(n_past(i,j)-n_past(i,j-1))/(z(j)-z(j-1)))/((1-

n_past(i,j))*ro_s); 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 
    %solving for p,srr,szz,srz,stt 
    %1) r=rw    Corr 
    i=1; 
    for j=2:Nz-1 
        r2_mid=(r(i)+r(i+1))/2; 

         
        err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
        ett=wr(i,j)/r2_mid; 
        ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
        erz=.5*((wz(i+1,j)-wz(i,j))/(r(i+1)-r(i))+(wr(i,j+1)-

wr(i,j-1))/(z(j+1)-z(j-1))); 
        vol=err+ett+ezz; 
        volf=(vr(i+1,j)-vr(i,j))/(r(i+1)-

r(i))+vr(i,j)/r2_mid+(vz(i,j+1)-vz(i,j-1))/(z(j+1)-z(j-1));  

%r(i); ==>r2_mid 
        dr=(r(i+1)-r(i))/2; 
        dz=(z(j+1)-z(j-1))/2; 
        q1=-sign(err)*4*ro*(dr*err)^2; 
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        q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
        Fdrr(i,j)=q2+q1; 
        q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
        q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
        Fdzz(i,j)=q2+q1; 

         
        lamda=bu(i,j)-2*sh(i,j)/3; 
        Mu=sh(i,j); 

         
        p(i,j)=p_past(i,j)-dt*((alfa-n_past(i,j))*vol+... 
            (vr(i,j)-wr(i,j))*(n_past(i+1,j)-

n_past(i,j))/(r(i+1)-r(i))+... 
            (vz(i,j)-wz(i,j))*(n_past(i,j+1)-n_past(i,j-

1))/(z(j+1)-z(j-1))+... 
            n_past(i,j)*(volf)+n_past(i,j)*cf*((vr(i,j)-

wr(i,j))*(p_past(i+1,j)-p_past(i,j))/(r(i+1)-r(i))+(vz(i,j)-

wz(i,j))*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-z(j-1))))/Sp; 
        srr(i,j)=srr_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*err); 
        szz(i,j)=szz_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ezz); 
        stt(i,j)=stt_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
        srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 
        n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 

         
    end 
    %2) left bottom corner z=0 r=rw 
    j=1; 
    i=1; 
    r2_mid=(r(i)+r(i+1))/2; 
    err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
    ett=wr(i,j)/r2_mid; 
    ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
    erz=.5*((wz(i+1,j)-wz(i,j))/(r(i+1)-r(i))+(wr(i,j+1)-

wr(i,j))/(z(j+1)-z(j))); 
    vol=err+ett+ezz; 
    volf=(vr(i+1,j)-vr(i,j))/(r(i+1)-

r(i))+vr(i,j)/r2_mid+(vz(i,j+1)-vz(i,j))/(z(j+1)-z(j)); 

%r(i);==>r2_mid 
    dr=(r(i+1)-r(i))/2; 
    dz=(z(j+1)-z(j))/2; 

     
    q1=-sign(err)*4*ro*(dr*err)^2; 
    q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
    Fdrr(i,j)=q2+q1; 
    q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
    q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
    Fdzz(i,j)=q2+q1; 
    p(i,j)=p_past(i,j)-dt*((alfa-n_past(i,j))*(vol)+... 
        (vr(i,j)-wr(i,j))*(n_past(i+1,j)-n_past(i,j))/(r(i+1)-

r(i))+... 
        (vz(i,j)-wz(i,j))*(n_past(i,j+1)-n_past(i,j))/(z(j+1)-

z(j))+... 
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        n_past(i,j)*(volf)+n_past(i,j)*cf*((vr(i,j)-

wr(i,j))*(p_past(i+1,j)-p_past(i,j))/(r(i+1)-r(i))+(vz(i,j)-

wz(i,j))*(p_past(i,j+1)-p_past(i,j))/(z(j+1)-z(j))))/Sp; 

     
    lamda=bu(i,j)-2*sh(i,j)/3; 
    Mu=sh(i,j); 
    srr(i,j)=srr_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*err); 
    szz(i,j)=szz_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ezz); 
    stt(i,j)=stt_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
    srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 

     
    n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 

     
    %3) left top corner z=h r=rw   Corr 
    j=Nz; 
    i=1; 
    r2_mid=(r(i)+r(i+1))/2; 
    err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
    ett=wr(i,j)/r2_mid; 
    ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
    erz=.5*((wz(i+1,j)-wz(i,j))/(r(i+1)-r(i))+(wr(i,j)-wr(i,j-

1))/(z(j)-z(j-1))); 
    vol=err+ett+ezz; 
    volf=(vr(i+1,j)-vr(i,j))/(r(i+1)-

r(i))+vr(i,j)/r2_mid+(vz(i,j)-vz(i,j-1))/(z(j)-z(j-1)); 

%r(i);==r2_mid 
    dr=(r(i+1)-r(i))/2; 
    dz=(z(j)-z(j-1))/2; 

     
    q1=-sign(err)*4*ro*(dr*err)^2; 
    q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
    Fdrr(i,j)=q2+q1; 
    q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
    q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
    Fdzz(i,j)=q2+q1; 
    p(i,j)=p_wave+p0(j); 
    lamda=bu(i,j)-2*sh(i,j)/3; 
    Mu=sh(i,j); 
    srr(i,j)=srr_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*err); 
    szz(i,j)=szz_0(j)+(1-alfa)*p_wave; 
    stt(i,j)=stt_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
    srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 
    n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 
    %4) middle points 
    for i=2:Nr-1 
        for j=2:Nz-1 
            err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
            ett=wr(i,j)/r(i); 
            ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
            erz=.5*((wz(i+1,j)-wz(i-1,j))/(r(i+1)-r(i-

1))+(wr(i,j+1)-wr(i,j-1))/(z(j+1)-z(j-1))); 
            vol=err+ett+ezz; 
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            volf=(vr(i+1,j)-vr(i-1,j))/(r(i+1)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j-1))/(z(j+1)-z(j-1)); 
            dr=(r(i+1)-r(i-1))/2; 
            dz=(z(j+1)-z(j-1))/2; 

             
            q1=-sign(err)*4*ro*(dr*err)^2; 
            q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
            Fdrr(i,j)=q2+q1; 
            q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
            q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
            Fdzz(i,j)=q2+q1; 
            p(i,j)=p_past(i,j)-dt*((alfa-n_past(i,j))*(vol)+... 
                (vr(i,j)-wr(i,j))*(n_past(i+1,j)-n_past(i-

1,j))/(r(i+1)-r(i-1))+... 
                (vz(i,j)-wz(i,j))*(n_past(i,j+1)-n_past(i,j-

1))/(z(j+1)-z(j-1))+... 
                n_past(i,j)*(volf)+n_past(i,j)*cf*((vr(i,j)-

wr(i,j))*(p_past(i+1,j)-p_past(i-1,j))/(r(i+1)-r(i-1))+(vz(i,j)-

wz(i,j))*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-z(j-1))))/Sp; 

             
            lamda=bu(i,j)-2*sh(i,j)/3; 
            Mu=sh(i,j); 
            srr(i,j)=srr_past(i,j)-

dt*(lamda*(err+ett+ezz)+2*Mu*err); 
            szz(i,j)=szz_past(i,j)-

dt*(lamda*(err+ett+ezz)+2*Mu*ezz); 
            stt(i,j)=stt_past(i,j)-

dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
            srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 
            n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 
        end 
    end 
    %5) z=0 
    j=1; 
    for i=2:Nr-1 
        err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
        erz=.5*((wz(i+1,j)-wz(i-1,j))/(r(i+1)-r(i-1))+(wr(i,j+1)-

wr(i,j))/(z(j+1)-z(j))); 
        vol=err+ett+ezz; 
        volf=(vr(i+1,j)-vr(i-1,j))/(r(i+1)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j))/(z(j+1)-z(j)); 
        dr=(r(i+1)-r(i-1))/2; 
        dz=(z(j+1)-z(j))/2; 

         
        q1=-sign(err)*4*ro*(dr*err)^2; 
        q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
        Fdrr(i,j)=q2+q1; 
        q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
        q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
        Fdzz(i,j)=q2+q1; 
        p(i,j)=p_past(i,j)-dt*((alfa-n_past(i,j))*(vol)+... 
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            (vr(i,j)-wr(i,j))*(n_past(i+1,j)-n_past(i-

1,j))/(r(i+1)-r(i-1))+... 
            (vz(i,j)-wz(i,j))*(n_past(i,j+1)-

n_past(i,j))/(z(j+1)-z(j))+... 
            n_past(i,j)*(volf)+n_past(i,j)*cf*((vr(i,j)-

wr(i,j))*(p_past(i+1,j)-p_past(i-1,j))/(r(i+1)-r(i-1))+(vz(i,j)-

wz(i,j))*(p_past(i,j+1)-p_past(i,j))/(z(j+1)-z(j))))/Sp; 

         
        lamda=bu(i,j)-2*sh(i,j)/3; 
        Mu=sh(i,j); 
        srr(i,j)=srr_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*err); 
        szz(i,j)=szz_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ezz); 
        stt(i,j)=stt_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
        srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 
        n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 
    end 
    %6) z=h 
    j=Nz; 
    for i=2:Nr-1 
        err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
        erz=.5*((wz(i+1,j)-wz(i-1,j))/(r(i+1)-r(i-1))+(wr(i,j)-

wr(i,j-1))/(z(j)-z(j-1))); 
        vol=err+ett+ezz; 
        dr=(r(i+1)-r(i-1))/2; 
        dz=(z(j)-z(j-1))/2; 

         
        q1=-sign(err)*4*ro*(dr*err)^2; 
        q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
        Fdrr(i,j)=q2+q1; 
        q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
        q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
        Fdzz(i,j)=q2+q1; 

         
        p(i,j)=p_wave+p0(j); 
        lamda=bu(i,j)-2*sh(i,j)/3; 
        Mu=sh(i,j); 
        srr(i,j)=srr_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*err); 
        szz(i,j)=szz_0(j)+(1-alfa)*p_wave; 
        stt(i,j)=stt_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
        srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 
        volf=(vr(i+1,j)-vr(i-1,j))/(r(i+1)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j)-vz(i,j-1))/(z(j)-z(j-1)); 
        n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 
    end 
    %7) r=re 
    i=Nr; 
    for j=2:Nz-1 
        err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
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        erz=.5*((wz(i,j)-wz(i-1,j))/(r(i)-r(i-1))+(wr(i,j+1)-

wr(i,j-1))/(z(j+1)-z(j-1))); 
        vol=err+ett+ezz; 
        volf=(vr(i,j)-vr(i-1,j))/(r(i)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j-1))/(z(j+1)-z(j-1)); 
        dr=(r(i)-r(i-1))/2; 
        dz=(z(j+1)-z(j-1))/2; 

         
        q1=-sign(err)*4*ro*(dr*err)^2; 
        q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
        Fdrr(i,j)=q2+q1; 
        q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
        q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
        Fdzz(i,j)=q2+q1; 

         
        p(i,j)=p_past(i,j)-dt*((alfa-n_past(i,j))*(vol)+... 
            (vr(i,j)-wr(i,j))*(n_past(i,j)-n_past(i-1,j))/(r(i)-

r(i-1))+... 
            (vz(i,j)-wz(i,j))*(n_past(i,j+1)-n_past(i,j-

1))/(z(j+1)-z(j-1))+... 
            n_past(i,j)*(volf)+n_past(i,j)*cf*((vr(i,j)-

wr(i,j))*(p_past(i,j)-p_past(i-1,j))/(r(i)-r(i-1))+(vz(i,j)-

wz(i,j))*(p_past(i,j+1)-p_past(i,j-1))/(z(j+1)-z(j-1))))/Sp; 

         
        lamda=bu(i,j)-2*sh(i,j)/3; 
        Mu=sh(i,j); 
        srr(i,j)=srr_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*err); 
        szz(i,j)=szz_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ezz); 
        stt(i,j)=stt_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
        srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 
        n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 

         
    end 
    %8) right bottom corner z=0 r=re 
    j=1; 
    i=Nr; 
    err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
    ett=wr(i,j)/r(i); 
    ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
    erz=.5*((wz(i,j)-wz(i-1,j))/(r(i)-r(i-1))+(wr(i,j+1)-

wr(i,j))/(z(j+1)-z(j))); 
    vol=err+ett+ezz; 
    volf=(vr(i,j)-vr(i-1,j))/(r(i)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j))/(z(j+1)-z(j)); 
    dr=(r(i)-r(i-1))/2; 
    dz=(z(j+1)-z(j))/2; 

     
    q1=-sign(err)*4*ro*(dr*err)^2; 
    q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
    Fdrr(i,j)=q2+q1; 
    q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
    q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
    Fdzz(i,j)=q2+q1; 
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    p(i,j)=p_past(i,j)-dt*((alfa-n_past(i,j))*(vol)+... 
        (vr(i,j)-wr(i,j))*(n_past(i,j)-n_past(i-1,j))/(r(i)-r(i-

1))+... 
        (vz(i,j)-wz(i,j))*(n_past(i,j+1)-n_past(i,j))/(z(j+1)-

z(j))+... 
        n_past(i,j)*(volf)+n_past(i,j)*cf*((vr(i,j)-

wr(i,j))*(p_past(i,j)-p_past(i-1,j))/(r(i)-r(i-1))+(vz(i,j)-

wz(i,j))*(p_past(i,j+1)-p_past(i,j))/(z(j+1)-z(j))))/Sp; 
    lamda=bu(i,j)-2*sh(i,j)/3; 
    Mu=sh(i,j); 
    srr(i,j)=srr_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*err); 
    szz(i,j)=szz_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ezz); 
    stt(i,j)=stt_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
    srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 
    n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 

     
    %9) right top corner z=h r=re 
    j=Nz; 
    i=Nr; 
    err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
    ett=wr(i,j)/r(i); 
    ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
    erz=.5*((wz(i,j)-wz(i-1,j))/(r(i)-r(i-1))+(wr(i,j)-wr(i,j-

1))/(z(j)-z(j-1))); 
    vol=err+ett+ezz; 
    volf=(vr(i,j)-vr(i-1,j))/(r(i)-r(i-1))+vr(i,j)/r(i)+(vz(i,j)-

vz(i,j-1))/(z(j)-z(j-1)); 

     
    dr=(r(i)-r(i-1))/2; 
    dz=(z(j)-z(j-1))/2; 

     
    q1=-sign(err)*4*ro*(dr*err)^2; 
    q2=-sign(err)*1*ro*cc*(dr)*abs(err); 
    Fdrr(i,j)=q2+q1; 
    q1=-sign(ezz)*4*ro*(dz*ezz)^2; 
    q2=-sign(ezz)*1*ro*cc*(dz)*abs(ezz); 
    Fdzz(i,j)=q2+q1; 

     
    %BC 
    p(i,j)=p_wave+p0(j); 
    lamda=bu(i,j)-2*sh(i,j)/3; 
    Mu=sh(i,j); 
    srr(i,j)=srr_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*err); 
    szz(i,j)=szz_0(j)+(1-alfa)*p_wave; 
    stt(i,j)=stt_past(i,j)-dt*(lamda*(err+ett+ezz)+2*Mu*ett); 
    srz(i,j)=srz_past(i,j)-dt*2*Mu*erz; 
    n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 

     
    time=time+dt; 
    jj2=jj2+1; 
    t(jj2)=time; 
    f1(jj2)=p(Nr_mid,Ip1+1)-p0(Ip1+1); 
    f2(jj2)=p(Nr_mid,Ip2+1)-p0(Ip2+1); 
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    ezz1(jj2)=ezz1(jj2-1)+dt*(wz(Nr,Ip1+2)-wz(Nr,Ip1))/(z(Ip1+1)-

z(Ip1-1)); 
    ezz2(jj2)=ezz2(jj2-1)+dt*(wz(Nr,Ip2+2)-wz(Nr,Ip2))/(z(Ip2+1)-

z(Ip2-1)); 
    fvz(jj2)=vz(Nr_mid,Ip1+1); 
    fvr(jj2)=vr(Nr_mid,Ip1+1); 
    fwz(jj2)=wz(Nr_mid,Ip1+1); 
    fwr(jj2)=wr(Nr_mid,Ip1+1); 
    favz(jj2)=(vz(Nr_mid,Ip1+1)-vz_past(Nr_mid,Ip1+1))/(dt); 
    fawz(jj2)=(wz(Nr_mid,Ip1+1)-wz_past(Nr_mid,Ip1+1))/(dt); 
    favr(jj2)=(vr(Nr_mid,Ip1+1)-vr_past(Nr_mid,Ip1+1))/(dt); 
    fawr(jj2)=(wr(Nr_mid,Ip1+1)-wr_past(Nr_mid,Ip1+1))/(dt); 
    fvz2(jj2)=vz(Nr_mid,Ip2+1); 
    fvr2(jj2)=vr(Nr_mid,Ip2+1); 
    fwz2(jj2)=wz(Nr_mid,Ip2+1); 
    fwr2(jj2)=wr(Nr_mid,Ip2+1); 
    favz2(jj2)=(vz(Nr_mid,Ip2+1)-vz_past(Nr_mid,Ip2+1))/(dt); 
    fawz2(jj2)=(wz(Nr_mid,Ip2+1)-wz_past(Nr_mid,Ip2+1))/(dt); 
    favr2(jj2)=(vr(Nr_mid,Ip2+1)-vr_past(Nr_mid,Ip2+1))/(dt); 
    fawr2(jj2)=(wr(Nr_mid,Ip2+1)-wr_past(Nr_mid,Ip2+1))/(dt); 
    fporo(jj2)=(n(Nr_mid,Ip2+1)-n0)/n0; 
    %giving current values as the past ones 
    p_past=p; 
    vr_past=vr; 
    vz_past=vz; 
    wr_past=wr; 
    wz_past=wz; 
    ur=ur+wr.*dt; 
    uz=uz+wz.*dt; 
    n_past=n; 
    srr_past=srr; 
    szz_past=szz; 
    stt_past=stt; 
    srz_past=srz; 

     
    Fdrr_past=Fdrr; 
    Fdzz_past=Fdzz; 

     
    jj=jj+1; 
end 

 

 

 

 

 

 



 

186 

 

Appendix B: Sequential-Coupled Dynamic 

Code Developed  

B.1 FLAC Code 

new 

set pl jpg 

set overwrite on 

config gwflow dy axi ex 5; 

 grid 100,30 

set grav 10 ;positive means downward 

set dy_damp avisc 1 1 ;Artificial viscosity damping 

set dy off flow on 

 

def para 

 Nr=igp 

 Nz=jgp 

 Nz_1=Nz-1 

 N=Nz*Nr 

 N_stres=(Nr-1)*(Nz-1) 

 z_length=0.3000 

 r_length=1.0000 

 well_rad=.09525  ;dia=7.5" 

 _dr=r_length/(Nr-1) 

 _dz=z_length/(Nz-1) 

 

 r_length2=r_length+well_rad  

 Nz_mid=int(Nz/2) 

 perf1=Nz_mid 

 perf1_2=perf1+1 

 perf2=Nz_mid+2 

 

 _nhis1=2;int(0.2000/_dr)  ;history points indices 

 _nhis2=5;int(1.0000/_dr) 

 _nhis3=10;int(5.0000/_dr) 

  

 pA=8000000.00   ;applied wave bc 

 _freq=17.0000   ;applied wave bc frequency 

 

  _k0=9.867e-10  ;k=1000mD 

  n0=0.22 

  

 ro_f=1000 

 ro_s=2650 

 ro=ro_f*n0+(1-n0)*ro_s 

 _g=10 ;gravity 

 counter5=0  ;for saving  

 alfa=0.999606973 
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end 

para 

 

gen well_rad,0 well_rad,z_length r_length2,z_length, r_length2,0  

 

;Constitutive model 

call Sand_fin_ten.txt 

;call sand_santarelli.txt 

 

;total density=2287; dry density must be given 

prop den 2067 ;bu 2.1836e8 sh 1.31e8    

nu=.2857 

prop por n0 perm _k0    

water bu 2.0e9 den 1000 

 

set biot on 

prop biot_c alfa ;1.0 

 

fix y j 1 ;fixed @ bottom 

fix x i Nr ;fixed @ right 

 

def _variation 

 _p0=27.8e6      

 _sy0=-50.5e6    

 _sx0=-39.4e6    

 _sx50m=-40.15e6  ;srr at 1m when a 50m model is run 

 _p50m=29.07e6    ;gpp at 1m when a 50m model is run 

 _pinj=-1*_sx0    

 p_var=-ro_f*_g*(y(1,Nz)-y(1,1)) 

 sy_var=ro*_g*(y(1,Nz)-y(1,1)) 

 p_bot=ro_f*_g*z_length+_p50m 

 sy_bot=-ro*_g*(y(1,Nz)-y(1,1))+_sy0 

 _sxx_ini=-1*p_bot 

 syy_ap=-1*_sy0 

 sxx_ap=-1*_sx50m 

 sxx_var=-1*p_var 

end 

_variation 

 

ini sat 1 

ini pp p_bot var 0 p_var  

ini syy sy_bot var 0 sy_var   

ini sxx _sx50m var 0 sxx_var  

ini szz _sx50m var 0 sxx_var 

 

;Top Boundary 

fix y j Nz 

 

;Right Boundary 

fix pp i Nr 

fix x i Nr ;fixed @ right 

 

;Left Boundary 
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app pp p_bot var 0 p_var i 1 

app press sxx_ap var 0 p_var i 1    

 

 

 

def abc 

ii=0 

 array ww_r(N) ww_z(N) ww_r_ini(N) ww_z_ini(N) acc_r(N) acc_z(N) 

_zer(N)  

 array vv_z_ini(N) vv_r_ini(N) _poro(N_stres)  

 array _Ev(N) _Ev_str(N) x_coor(Nr) y_coor(Nz)  

 array ww_r_str(N) ww_z_str(N) 

 array _ppp(N) _pp_no(Nr,Nz) pp_str(N) _aaa(8) del_n(N)   

 array flacend1(1)  ;to know when the flac file finishes running 

 array p_ini(N) p0(Nz) p00(Nz_1) _aaa2(Nz) p_star_1D(N) 

 array sxx_ini(N_stres) syy_ini(N_stres)  

 array szz_ini(N_stres) sxy_ini(N_stres)  

loop ii (1,N_stres) 

 sxx_ini(ii)='0.00' 

 syy_ini(ii)='0.00' 

 szz_ini(ii)='0.00' 

 sxy_ini(ii)='0.00' 

end_loop 

counter=0 

end 

abc 

 

def p_res  ;BC pressure will be added to this 

loop jj(1,Nz-1) 

 j2=jj+1 

 p0(jj)=gpp(1,jj) 

 p00(jj)=(gpp(1,jj)+gpp(1,j2))/2 

end_loop 

p0(Nz)=gpp(1,Nz) 

end 

p_res 

 

set sratio 1e-3 

solve   ;before applying the dynamic load there should 

be equilibrium 

 

;must read pp as an input for flac 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

def _input2D 

 

status=open('_pp.txt',0,1) 

status=read(_ppp,N)   

status=close 

 

status=open('por.txt',0,1)   

status=read(del_n,N_stres)   

status=close 

 

status=open('wr_co.txt',0,1) 
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status=read(ww_r,N)   

status=close 

 

status=open('wz_co.txt',0,1) 

status=read(ww_z,N)   

status=close 

 

loop ii (1,Nr) 

 loop jj (1,Nz) 

   NN=(jj-1)*Nr+ii 

 

  aa_r=parse(ww_r(NN),1) 

  aa_z=parse(ww_z(NN),1) 

 

 xvel(ii,jj)=xvel(ii,jj)+aa_r 

 yvel(ii,jj)=yvel(ii,jj)+aa_z 

 

 xdisp(ii,jj)=xdisp(ii,jj)+aa_r*dydt   

 ydisp(ii,jj)=ydisp(ii,jj)+aa_z*dydt 

 

  _pp_no(ii,jj)=parse(_ppp(NN),1)   

  gpp(ii,jj)=_pp_no(ii,jj) 

 

 end_loop 

end_loop 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;must write  Ev, wr, wz & stresses as an output for input to 

matlab 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

def _output 

loop ii (1,Nr) 

 loop jj (1,Nz) 

  bbb=xvel(ii,jj) 

  ccc=yvel(ii,jj) 

  if abs(bbb)<1e-20 then 

   bbb=0.00 

  end_if 

  if abs(ccc)<1e-20 then 

   ccc=0.00 

  end_if 

 

  NN=(jj-1)*Nr+ii 

  ww_r_str(NN)=string(bbb)  ;xvel 

   

  ww_z_str(NN)=string(ccc)  ;yvel 

end_loop 

end_loop 

 

status=open('_wr.txt',1,1) 

status=write(ww_r_str,N)  ;N=igp 

status=close 

 

status=open('_wz.txt',1,1) 
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status=write(ww_z_str,N)  ;N=igp 

status=close 

 

 

 

 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

def endflac 

flacend1(1)=string(1) 

status=open('Z_End.txt',1,1) 

status=write(flacend1,1)   

status=close 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

def casing ; 

command 

  app rem i 1 j 1,perf1 

  app rem i 1 j perf2, Nz 

  ;;free x i 1 

  fix x i 1 j 1,perf1 

  fix x i 1 j perf2,Nz 

end_command 

 

loop jjj(perf1,perf2-1) 

 _aa2=p00(jjj)  ;initial pp 

 j2=jjj+1 

 command 

  app pp _aa2 i 1 j jjj,j2    

  app press _aa2 i 1 j jjj,j2   

 end_command 

end_loop 

end 

 

casing 

 

set sratio 5e-4  ;must be in equilibrium before dynamics starts;  

solve 

 

def injection 

 command 

  app pp _pinj i 1 j perf1,perf2   

  app press _pinj i 1 j perf1,perf2   

  set sratio 1e-4  ;must be in equilibrium before dynamics  

  solve   

 set ste 1000000 sratio 1e-20  

 solve age 3 

 end_command 

end 

injection 

 

save b4_dynamic.sav 
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set flow off 

water bu 2e9 

set dyn on 

 

app nq i Nr 

app sq i Nr 

 

p_res 

 

def p_wave 

  p_wave0=pA*sin(2*pi*_freq*dytime) 

  p_var2=-ro_f*_g*(y(1,perf2)-y(1,perf1)); 

_pperf1= pinitial1+p_wave0 

_pperf2= pinitial2+p_wave0 

command 

 app pp _pperf1 i 1 j perf1,perf1_2  

 app pp _pperf2 i 1 j perf1_2,perf2  

 app pres _pperf1 i 1 j perf1,perf1_2  

 app pres _pperf2 i 1 j perf1_2,perf2 

end_command 

 

end 

 

p_wave 

 

set dy_dam combined .8 

set dy_damp avisc 1 1 ;Artificial viscosity damping 

ini xdisp 0 

ini ydisp 0 

 

 

def _dt1    ;writes dt Nx Nz & coordinates to text 

_aa=1.0e-6; 3.4e-7 

_aaa(1)=string(_aa) 

_aaa(2)=string(Nr) 

_aaa(3)=string(Nz) 

_aaa(4)=string(well_rad) 

_aaa(5)=string(perf1) 

_aaa(6)=string(perf2) 

_aaa(7)=string(pinitial1) 

_aaa(8)=string(_p50m) 

_aaa(p)=string(pA) 

 

status=open('dt.txt',1,1)   ;write dt Nr & Nz 

status=write(_aaa,8)   

status=close 

end 

_dt1 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

set dydt _aa  

save cont.sav 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

call Qratio.fis 

set flow on  ;so that xflow & yflow r nonzero 
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def _dt2 

loop ii (1,Nr) 

 x_coor(ii)=string(x(ii,1)) 

end_loop 

loop jj (1,Nz) 

 y_coor(jj)=string(y(Nr,jj)) 

end_loop 

 

status=open('r.txt',1,1)   ;write x coordinates 

status=write(x_coor,Nr)   

status=close 

 

status=open('z.txt',1,1)   ;write y coordinates 

status=write(y_coor,Nz)   

status=close 

 

loop ii (1,Nr) 

 loop jj (1,Nz) 

  NN=(jj-1)*Nr+ii 

  p_ini(NN)=gpp(ii,jj)  ;not string to export accurately 

 

  ww_r_ini(NN)=string(xvel(ii,jj)) 

  ww_z_ini(NN)=string(yvel(ii,jj)) 

  _zer(NN)=string(0.0000) 

  p_star_1D(NN)=string(gpp(ii,jj)) 

 end_loop 

end_loop 

 

 

loop ii (1,Nr-1) 

 loop jj (1,Nz-1) 

   NN=(jj-1)*(Nr-1)+ii 

   sxx_ini(NN)=string(sxx(ii,jj)) ;not string to export 

accurately 

   syy_ini(NN)=string(syy(ii,jj)) ;not string to export 

accurately 

   szz_ini(NN)=string(szz(ii,jj)) ;not string to export 

accurately 

   sxy_ini(NN)=string(sxy(ii,jj)) ;not string to export 

accurately 

    

   vv_z_ini(NN)=string(yflow(ii,jj)) 

   vv_r_ini(NN)=string(xflow(ii,jj)) 

   _poro(NN)=string(n0) 

 end_loop 

end_loop 

 

loop iji(1,N) 

 last='0' 

 nn=1; 

 no=int(p_ini(iji)) 

 no2=int((p_ini(iji)-no)*10000)  ;kepping 4 decimal points 
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 loop while no-10.0^nn>0 

   nn=nn+1; 

 end_loop 

 loop ii (1,nn)   

   _ii=nn-ii 

   aa=int(no/10.0^_ii); 

   no=no-aa*10.0^_ii; 

   last=last+string(aa); 

 end_loop 

 last=last+'.'+string(no2) 

 p_ini(iji)=last 

end_loop 

 

status=open('p_ini.txt',1,1)   ;write initial p 

status=write(p_ini,N)   

status=close 

 

status=open('sxx_ini.txt',1,1)  ;write initial sxx 

status=write(sxx_ini,N_stres)   

status=close 

 

status=open('syy_ini.txt',1,1)  ;write initial syy 

status=write(syy_ini,N_stres)   

status=close 

 

status=open('szz_ini.txt',1,1)  ;write initial szz 

status=write(szz_ini,N_stres)   

status=close 

 

status=open('sxy_ini.txt',1,1)  ;write initial sxy 

status=write(sxy_ini,N_stres)   

status=close 

 

status=open('wz_ini.txt',1,1)  ;write initial sxy 

status=write(ww_z_ini,N)   

status=close 

 

status=open('wr_ini.txt',1,1)  ;write initial sxy 

status=write(ww_r_ini,N)   

status=close 

 

status=open('vz_ini.txt',1,1)  ;write initial sxy 

status=write(vv_z_ini,N_stres)   

status=close 

 

status=open('vr_ini.txt',1,1)  ;write initial sxy 

status=write(vv_r_ini,N_stres)   

status=close 

 

; These are for the first time step so that input runs but 

doesn't change anything 

 

status=open('_pp.txt',1,1)   ;write initial p 

status=write(p_ini,N)   
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status=close 

 

status=open('wr_co.txt',1,1)   ;write initial p 

status=write(_zer,N)   

status=close 

 

status=open('wz_co.txt',1,1)   ;write initial p 

status=write(_zer,N)   

status=close 

 

status=open('por.txt',1,1)   ;write initial p 

status=write(_poro,N_stres)   

status=close 

 

status=open('p_star.txt',1,1)   ;write initial p 

status=write(p_star_1D,N)   

status=close 

end 

_dt2 

 

B.2 MATLAB Code 

clear 
clc 
Time2Run=0.085; 
z_length=.3; 
r_length=1.0000; 
fid = fopen('dt.txt'); 
ttt=textscan(fid,'%f'); 
fclose(fid); 
parameters=ttt{1}; 
dt=parameters(1); 
Nr=parameters(2); %i index 
Nz=parameters(3); %j index 
well_rad=parameters(4);  %Well radius 
perf1=parameters(5);  %perforation bottom j 
perf2=parameters(6);  %perforation top j 
p0_original=parameters(7); %In Flac this is pressure before 

dynamics 
P_res=parameters(8);   %for right-hand boundary 
pA=parameters(9);  %WH amplitude 

  
clear parameters 
N=Nz*Nr; 
N_stres=(Nz-1)*(Nr-1); 
Nr_mid=floor(Nr/2); 
Nz_mid=floor(Nz/2); 
%Fluid properties 
ro_f=1000; %kg/m3 
mu=1*.001; %cp to kg/(m.Sec) water viscosity 
muf=mu; 
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lamdaf=-2*muf/3; 
ro_s=2650; 
k0=9.867e-10*mu; %1D  
kr=k0*ones(Nr,Nz); 
kz=k0*ones(Nr,Nz); 
n0=0.22; %initial porosity 
n=n0*ones(Nr,Nz); 
tow=0; %Tortuosity 
g=-10; 
bu=ones(Nr,Nz)*2.1836e8; 
sh=ones(Nr,Nz)*1.31e8; 
nu=(3*bu(1,1)-2*sh(1,1))/(2*(3*bu(1,1)+sh(1,1))); 
mv=1/(bu(1,1)+4*sh(1,1)/3); %2e-10 
cf=.0005*1e-6; %m2/MN fluid compressibility to 1/Pa 
cm=mv; 
ro=ro_f*n0+(1-n0)*ro_s; 
cs=1e-12; %1/(4e9); %1/Pa 
alfa=1-cs/cm; %Biot Coeff 
Sp=n0*cf+(alfa-n0)*cs; 
cc1=sqrt(1/(ro*mv)+alfa^2/(ro*(Sp))); 
cc2=sqrt((1-alfa+Sp/mv)*n0/(Sp*ro_f*(alfa-

n0+tow+(1+tow)*Sp/mv))); 
ds=cf*n0*(1-n0)/(n0*cf+(1-n0)*cs); 
df=cs*n0*(1-n0)/(n0*cf+(1-n0)*cs); 

  
cc=sqrt(1/(ro*mv));  %p_wave speed 
% wave properties 
freq=17;%frequency 1/s  
period=1/freq; %sec 
%mesh properties 
fid = fopen('r.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
r=www{1}; 
clear www 
fid = fopen('z.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
z=www{1}; 
clear www 

  
ratio=1;  
sum=0; 
for i=1:Nr-1 
    sum=sum+ratio^(i-1); 
end 
r(1)=well_rad; 
r(2)=r(1)+(r_length/sum);   

  
for i=3:Nr-1 
    r(i)=r(i-1)+(r(i-1)-r(i-2))*ratio;  
end 
rw=r(1); 
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r(Nr)=r_length+rw;   
re=r(Nr); 

  
dr=r(2)-r(1); 
dz=z(2)-z(1); 

  
drmin=min(dr,dz); 

  
%Defining matrices 
wr_past=zeros(Nr,Nz); 
wz_past=zeros(Nr,Nz); 
wr=wr_past; 
wr_1D=zeros(N,1); 
wz=wz_past; 
wz_1D=zeros(N,1); 
p_past=zeros(Nr,Nz);  
p=p_past; 
p_1D=zeros(N,1);   
del_poro=zeros(N_stres,1); 
wr_cor=zeros(N,1); 
wz_cor=zeros(N,1); 
del_wr=zeros(Nr,Nz); 
del_wz=zeros(Nr,Nz); 
vr=zeros(Nr,Nz); 
vz=zeros(Nr,Nz); 
vr_past=zeros(Nr,Nz); 
vz_past=zeros(Nr,Nz); 
n_past=n; 
Ev=zeros(Nr,Nz);  %total volumetric strain   
srr=0*ones(Nr,Nz); 
szz=0*ones(Nr,Nz); 
stt=0*ones(Nr,Nz); 
srz=0*ones(Nr,Nz); 
Fdrr_past=zeros(Nr,Nz); 
Fdzz_past=zeros(Nr,Nz); 
Fdrr=zeros(Nr,Nz); 
Fd=zeros(Nr,Nz); 

  
%initialization 
time=0; 
jj=0; 
h = actxserver('WScript.Shell'); %creates a COM automation server 
h.Run('"flac500.exe.lnk"'); %Invokes flac.exe 
pause(.08); %Waits for the application to load. 
h.AppActivate('"flac500.exe.lnk"'); %Brings notepad to focus 
h.SendKeys('re cont.sav~'); %Sends keystrokes 
pause(1) %to run the file 
h.SendKeys('set echo off~'); 
h.SendKeys('set message off~'); 
h.SendKeys('set dy_da avisc 0 0~');  
h.SendKeys('set dy_dam combined .8~'); 
h.SendKeys('set pl jpg~'); 
h.SendKeys('w well_rad,.2 -.01,.31~'); 
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h.SendKeys('ca history.txt~'); 
h.SendKeys('set dydt 1.000E-06~'); 
counter=0; 

  
fid = fopen('p_ini.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
p_1D=www{1}; 
clear www 

  
fid = fopen('wr_ini.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
wr_1D=www{1}; 
clear www 

  
fid = fopen('wz_ini.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
wz_1D=www{1}; 
clear www 

  
for Num_count=1:N   
    i=rem(Num_count,Nr); 
    if i==0 
        i=Nr; 
    end 
    j=(Num_count-i)/Nr+1; 
    p_past(i,j)=p_1D(Num_count); 
    wr_past(i,j)=wr_1D(Num_count); 
    wz_past(i,j)=wz_1D(Num_count); 
end 
p0=zeros(Nr,Nz); 
szz_0=zeros(Nr,Nz); 

  
p=p_past;   
fid = fopen('sxx_ini.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
srr_1D=-www{1}; 
clear www 
fid = fopen('syy_ini.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
szz_1D=-www{1}; 
clear www 
fid = fopen('sxy_ini.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
srz_1D=-www{1};   
clear www 
fid = fopen('szz_ini.txt'); 
www=textscan(fid,'%f'); 
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fclose(fid); 
stt_1D=-www{1}; 
clear www 
fid = fopen('vr_ini.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
vr_1D=www{1}; 
clear www 
fid = fopen('vz_ini.txt'); 
www=textscan(fid,'%f'); 
fclose(fid); 
vz_1D=www{1}; 
clear www 
srr_flac=zeros(Nr-1,Nz-1); 
srz_flac=zeros(Nr-1,Nz-1); 
szz_flac=zeros(Nr-1,Nz-1); 
stt_flac=zeros(Nr-1,Nz-1); 
vr_flac=zeros(Nr-1,Nz-1); 
vz_flac=zeros(Nr-1,Nz-1); 
for Num_count=1:N_stres  %syy==szz  szz==stt 
    i=rem(Num_count,Nr-1); 
    if i==0 
        i=Nr-1; 
    end 
    j=(Num_count-i)/(Nr-1)+1; 
    srr_flac(i,j)=srr_1D(Num_count); 
    srz_flac(i,j)=srz_1D(Num_count); 
    szz_flac(i,j)=szz_1D(Num_count); 
    stt_flac(i,j)=stt_1D(Num_count); 
    vr_flac(i,j)=vr_1D(Num_count); 
    vz_flac(i,j)=vz_1D(Num_count); 
end 
%extropolation 

  
rmid=zeros(Nr-1,1); 
for i=1:Nr-1 %coordinate of middle points 
    rmid(i)=(r(i)+r(i+1))/2; 
end 
zmid=zeros(Nz-1,1); 
for i=1:Nz-1 %coordinate of middle points 
    zmid(i)=(z(i)+z(i+1))/2; 
end 
[X,Y]=meshgrid(zmid,rmid); 
[X1,Y1]=meshgrid(z,r); 
%if linera==on the boundaries =NAN 
srr_past=griddata(X,Y,srr_flac,X1,Y1,'nearest')-alfa.*p;  
szz_past=griddata(X,Y,szz_flac,X1,Y1,'nearest')-alfa.*p; 
srz_past=griddata(X,Y,srz_flac,X1,Y1,'nearest'); 
stt_past=griddata(X,Y,stt_flac,X1,Y1,'nearest')-alfa.*p; 

  
vz_past=griddata(X,Y,vz_flac,X1,Y1,'nearest'); 
vr_past=griddata(X,Y,vr_flac,X1,Y1,'nearest');   
%imposing BCs 
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vr_past(1,1:perf1-1)=0;  %no flow behnid casing 
vr_past(1,perf2+1:Nz)=0; 
vz_past(:,1)=0; 
vz_past(:,Nz)=0; 

  
for i=1:Nr 
for j=1:Nz 
    p0(i,j)=p_past(i,j); 
    szz_0(j)=szz_past(i,j); 
end 
end 

  
%history 
nhis1=2;%floor(.2/dr);  %history points indices 
nhis2=5;%floor(1/dr); 
nhis3=10;%floor(5/dr); 
HisSiz=floor(Time2Run/(dt*30)); 
tt=zeros(HisSiz,1); 
pp1=zeros(HisSiz,1); 
pp2=zeros(HisSiz,1); 
pp3=zeros(HisSiz,1); 
bc=zeros(HisSiz,1); 
coef=(1+tow*(1+n0*ro_f/(ro_s*(1-n0))))*ro_f; 
coef0=tow*ro_f/(ro_s*(1-n0)); 

  
vz=vz_past; 
vr=vr_past; 
p=p_past; 
wr=wr_past; 
wz=wz_past; 
p_star=zeros(Nr,Nz); 
p_inter=zeros(Nr,Nz); 
volu=zeros(Nr,Nz); 
FLACendFileDel ='Z_End.txt'; 
del_wr1=zeros(Nr,Nz); 
del_wz1=zeros(Nr,Nz); 
ro_12=0; 
while time<Time2Run  

  
    jj=jj+1; 

  
    p_wave=pA*sin(2*pi*freq*time);  %make sure the same is used 

in Flac file 

  
    %%%%%%%%%%%%1 solving for w and 

s%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %disp('Running FLAC file') 
    delete(FLACendFileDel)  %The command deletes the file left 

from the previous solution 
    h.AppActivate('"flac500.exe.lnk"'); %Brings notepad to focus 
    h.SendKeys('ca run_ex.txt~'); %Sends keystrokes 
    %This will run flac for 1 step 
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    fid=-1;  %-1 means file not found 
    % Open text file to see if FLAC is ended 
    while fid==-1 
        pause(.005) 
        fid = fopen(FLACendFileDel);   
    end 
    fclose('all');  
    %extract w & p* 
    fid = fopen('_wr.txt'); 
    www=textscan(fid,'%f'); 
    fclose(fid); 
    wr_1D=www{1}; 
    clear www 

  
    fid = fopen('_wz.txt'); 
    www=textscan(fid,'%f'); 
    fclose(fid); 
    wz_1D=www{1}; 
    clear www 

     
    for i=1:Nr  %changing vector of velocities to matrix of 

velocities 
        for j=1:Nz 
            Num_count=(j-1)*Nr+i; 
            wr(i,j)=wr_1D(Num_count);   %reading 
            wz(i,j)=wz_1D(Num_count); 
        end 
    end 
%     Calculate p_star 
    %1)r=rw    
    i=1; 
    for j=2:Nz-1 

         
        err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
        ett=wr(i,j)/r(i);  
        ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
        volu(i,j)=err+ett+ezz; 
        dr=(r(i+1)-r(i))/2; 
        dz=(z(j+1)-z(j-1))/2; 
        LL=sqrt(dr*dz); 
        q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
        q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
        Fd(i,j)=q2+q1; 

     
    end 
    %2) 
    j=1; 
    i=1; 

     
    err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
    ett=wr(i,j)/r(i);  
    ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
    volu(i,j)=err+ett+ezz; 
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    dr=(r(i+1)-r(i))/2; 
    dz=(z(j+1)-z(j))/2; 
    LL=sqrt(dr*dz); 
    q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
    q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
    Fd(i,j)=q2+q1; 

     
    %3) 
    j=Nz; 
    i=1; 

     
    err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
    ett=wr(i,j)/r(i);  
    ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
    volu(i,j)=err+ett+ezz; 
    dr=(r(i+1)-r(i))/2; 
    dz=(z(j)-z(j-1))/2; 
    LL=sqrt(dr*dz);     
    q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
    q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
    Fd(i,j)=q2+q1; 

     
    %4) 
    for i=2:Nr-1 
        for j=2:Nz-1  %assuming zero tow 
            err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
            ett=wr(i,j)/r(i); 
            ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
            volu(i,j)=err+ett+ezz; 
            dr=(r(i+1)-r(i-1))/2; 
            dz=(z(j+1)-z(j-1))/2; 
            LL=sqrt(dr*dz); 
            q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
            q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
            Fd(i,j)=q2+q1; 

             
        end 
    end     
    %5) 
    j=1; 
    for i=2:Nr-1 
        err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
        volu(i,j)=err+ett+ezz; 
        dr=(r(i+1)-r(i-1))/2; 
        dz=(z(j+1)-z(j))/2; 
        LL=sqrt(dr*dz); 
        q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
        q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
        Fd(i,j)=q2+q1; 

         
    end 
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    %6) 
    j=Nz; 
    for i=2:Nr-1 
        err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
        volu(i,j)=err+ett+ezz; 
        dr=(r(i+1)-r(i-1))/2; 
        dz=(z(j)-z(j-1))/2; 
        LL=sqrt(dr*dz); 
        q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
        q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
        Fd(i,j)=q2+q1; 

         
    end 
    %7) 
    i=Nr; 
    for j=2:Nz-1 
        err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
        volu(i,j)=err+ett+ezz; 
        dr=(r(i)-r(i-1))/2; 
        dz=(z(j+1)-z(j-1))/2; 
        LL=sqrt(dr*dz); 
        q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
        q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
        Fd(i,j)=q2+q1; 

         
    end 
    %8) 
    j=1; 
    i=Nr; 
    err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
    ett=wr(i,j)/r(i); 
    ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
    volu(i,j)=err+ett+ezz; 
    dr=(r(i)-r(i-1))/2; 
    dz=(z(j+1)-z(j))/2; 
    LL=sqrt(dr*dz);     
    q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
    q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
    Fd(i,j)=q2+q1; 

     
    %9) 
    j=Nz; 
    i=Nr; 
    err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
    ett=wr(i,j)/r(i); 
    ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
    volu(i,j)=err+ett+ezz; 
    dr=(r(i)-r(i-1))/2; 
    dz=(z(j)-z(j-1))/2; 



 

203 

 

    LL=sqrt(dr*dz); 
    q1=-sign(volu(i,j))*4*ro*(LL*volu(i,j))^2; 
    q2=-sign(volu(i,j))*1*ro*cc*(LL)*abs(volu(i,j)); 
    Fd(i,j)=q2+q1; 

  
    for i=1:Nr 
        for j=1:Nz 
            p_star(i,j)=p_past(i,j)-alfa*dt*volu(i,j)/Sp; 
            p_inter(i,j)=(p_star(i,j)+p_past(i,j))/2; 
        end 
    end 
    %solving for vr,vz 
    %1) r=rw       corr 
    i=1; 
    for j=2:Nz-1 
        z1_mid=(z(j)+z(j-1))/2; 
        z2_mid=(z(j)+z(j+1))/2; 
        r2_mid=(r(i)+r(i+1))/2; 
        if j>=perf1 && j<=perf2 
            p(i,j)=p0_original+p_wave; 
            vr(i,j)=vr_past(i,j)-(dt/(ro_f-

ro_12/n_past(i,j)))*((p_inter(i+1,j)+Fd(i+1,j)-p_inter(i,j)-

Fd(i,j))/(r(i+1)-r(i))+n_past(i,j)*mu*(vr_past(i,j)-

wr_past(i,j))/kr(i,j)-... 
                muf*((1/(r(i+1)-r(i)))*((vr_past(i+2,j)-

vr_past(i+1,j))/(r(i+2)-r(i+1))-(vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i)))+... 
                (vr_past(i+1,j)-vr_past(i,j))/(r(i)*(r(i+1)-

r(i)))+(1/(z2_mid-z1_mid))*((vr_past(i,j+1)-

vr_past(i,j))/(z(j+1)-z(j))-... 
                (vr_past(i,j)-vr_past(i,j-1))/(z(j)-z(j-1)))-

vr_past(i,j)/(r(i)^2))-(muf+lamdaf)*((vr_past(i+1,j)-

vr_past(i,j))/(r(i)*(r(i+1)-r(i)))+... 
                (1/(r(i+1)-r(i)))*((vr_past(i+2,j)-

vr_past(i+1,j))/(r(i+2)-r(i+1))-(vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i)))-vr_past(i,j)/(r(i)^2)+... 
                (vz_past(i+1,j+1)-vz_past(i+1,j-1)-

vz_past(i,j+1)+vz_past(i,j-1))/((r(i+1)-r(i))*(z(j+1)-z(j-1))))-

ro_12*(vr_past(i,j)+wr(i,j)-wr_past(i,j))/(n_past(i,j)*dt)); 
        else 
            vr(i,j)=0; %no flow behind casing 
        end 
        vz(i,j)=vz_past(i,j)-(dt/ro_f-

ro_12/n_past(i,j))*((p_inter(i,j+1)+Fd(i,j+1)-p_inter(i,j-1)-

Fd(i,j-1))/(z(j+1)-z(j-1))+n_past(i,j)*mu*(vz_past(i,j)-

wz_past(i,j))/kz(i,j)-... 
            ro_f*g-muf*((1/(r(i+1)-r(i)))*((vz_past(i+2,j)-

vz_past(i+1,j))/(r(i+2)-r(i+1))-(vz_past(i+1,j)-

vz_past(i,j))/(r(i+1)-r(i)))+... 
            (vz_past(i+1,j)-vz_past(i,j))/(r(i)*(r(i+1)-

r(i)))+...  
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            (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))-... 
            (muf+lamdaf)*((vr_past(i+1,j+1)-vr_past(i+1,j-1)-

vr_past(i,j+1)+vr_past(i,j-1))/((r(i+1)-r(i))*(z(j+1)-z(j-

1)))+(vr_past(i,j+1)-vr_past(i,j-1))/(r(i)*(z(j+1)-z(j-1)))+... 
            (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))); 
       if j>perf1 && j<perf2 
           del_wr1(i,j)=-(n_past(i,j)*ro_f*(vr(i,j)-vr_past(i,j)-

wr(i,j)+wr_past(i,j)))/ro; 
       else 
           del_wr1(i,j)=0; 
       end 
       del_wz1(i,j)=-(n_past(i,j)*ro_f*(vz(i,j)-vz_past(i,j)-

wz(i,j)+wz_past(i,j)))/ro; 

  
    end 

     
    %2) left bottom corner z=0 r=rw       
    j=1; 
    i=1; 
    r2_mid=(r(i)+r(i+1))/2; 
    p(i,j)=p0_original+p_wave; 
    vr(i,j)=0; %no flow behind casing 
    vz(i,j)=0; %no flow @ bot 
    del_wr1(i,j)=0; 
    del_wz1(i,j)=0; 

  
    %3) left top corner z=h r=rw 
    j=Nz; 
    i=1; 
    r2_mid=(r(i)+r(i+1))/2; 
    p(i,j)=p0_original+p_wave; 
    vr(i,j)=0; %%no flow behind casing 
    vz(i,j)=0; %no flow to upper layer (shale) 

  
    del_wz1(i,j)=-(n_past(i,j)*ro_f*(vz(i,j)-vz_past(i,j)-

wz(i,j)+wz_past(i,j)))/ro; 
    del_wr1(i,j)=0; 

  
    %4) middle points 
    for i=2:Nr-1 
        for j=2:Nz-1  %assuming zero tow 
            r1_mid=(r(i)+r(i-1))/2; 
            r2_mid=(r(i)+r(i+1))/2; 
            z1_mid=(z(j)+z(j-1))/2; 
            z2_mid=(z(j)+z(j+1))/2; 

         
           vr(i,j)=vr_past(i,j)-(dt/(ro_f-

ro_12/n_past(i,j)))*((p_inter(i+1,j)+Fd(i+1,j)-p_inter(i-1,j)-
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Fd(i-1,j))/(r(i+1)-r(i-1))+n_past(i,j)*mu*(vr_past(i,j)-

wr_past(i,j))/kr(i,j)-... 
                muf*((1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))+... 
                (vr_past(i+1,j)-vr_past(i-1,j))/(r(i)*(r(i+1)-

r(i-1)))+(1/(z2_mid-z1_mid))*((vr_past(i,j+1)-

vr_past(i,j))/(z(j+1)-z(j))-... 
                (vr_past(i,j)-vr_past(i,j-1))/(z(j)-z(j-1)))-

vr_past(i,j)/(r(i)^2))-(muf+lamdaf)*((vr_past(i+1,j)-vr_past(i-

1,j))/(r(i)*(r(i+1)-r(i-1)))+... 
                (1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))-vr_past(i,j)/(r(i)^2)+... 
                (vz_past(i+1,j+1)-vz_past(i+1,j-1)-vz_past(i-

1,j+1)+vz_past(i-1,j-1))/((r(i+1)-r(i-1))*(z(j+1)-z(j-1))))-

ro_12*(-vr_past(i,j)-wr(i,j)+wr_past(i,j))/(n_past(i,j)*dt)); 

             
           vz(i,j)=vz_past(i,j)-(dt/(ro_f-

ro_12/n_past(i,j)))*((p_inter(i,j+1)+Fd(i,j+1)-p_inter(i,j-1)-

Fd(i,j-1))/(z(j+1)-z(j-1))+n_past(i,j)*mu*(vz_past(i,j)-

wz_past(i,j))/kz(i,j)-... 
                ro_f*g-muf*((1/(r2_mid-r1_mid))*((vz_past(i+1,j)-

vz_past(i,j))/(r(i+1)-r(i))-(vz_past(i,j)-vz_past(i-1,j))/(r(i)-

r(i-1)))+(vz_past(i+1,j)-vz_past(i-1,j))/(r(i)*(r(i+1)-r(i-

1)))+... 
                (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))-... 
                (muf+lamdaf)*((vr_past(i+1,j+1)-vr_past(i+1,j-1)-

vr_past(i-1,j+1)+vr_past(i-1,j-1))/((r(i+1)-r(i-1))*(z(j+1)-z(j-

1)))+(vr_past(i,j+1)-vr_past(i,j-1))/(r(i)*(z(j+1)-z(j-1)))+... 
                (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))-ro_12*(-vz_past(i,j)-

wz(i,j)+wz_past(i,j))/(n_past(i,j)*dt)); 

  
            del_wr1(i,j)=-(n_past(i,j)*ro_f*(vr(i,j)-

vr_past(i,j)-wr(i,j)+wr_past(i,j)))/ro; 
            del_wz1(i,j)=-(n_past(i,j)*ro_f*(vz(i,j)-

vz_past(i,j)-wz(i,j)+wz_past(i,j)))/ro; 
        end 
    end 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %5) z=0  
    j=1; 
    for i=2:Nr-1 
        r1_mid=(r(i)+r(i-1))/2; 
        r2_mid=(r(i)+r(i+1))/2; 
        vr(i,j)=vr_past(i,j)-(dt/(ro_f-

ro_12/n_past(i,j)))*((p_inter(i+1,j)+Fd(i+1,j)-p_inter(i-1,j)-
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Fd(i-1,j))/(r(i+1)-r(i-1))+n_past(i,j)*mu*(vr_past(i,j)-

wr_past(i,j))/kr(i,j)-... 
            muf*((1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))+... 
            (vr_past(i+1,j)-vr_past(i-1,j))/(r(i)*(r(i+1)-r(i-

1)))+(1/(z(j+1)-z(j)))*((vr_past(i,j+2)-vr_past(i,j+1))/(z(j+2)-

z(j+1))-... 
            (vr_past(i,j+1)-vr_past(i,j))/(z(j+1)-z(j)))-

vr_past(i,j)/(r(i)^2))-(muf+lamdaf)*((vr_past(i+1,j)-vr_past(i-

1,j))/(r(i)*(r(i+1)-r(i-1)))+... 
            (1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))-vr_past(i,j)/(r(i)^2)+... 
            (vz_past(i+1,j+1)-vz_past(i+1,j)-vz_past(i-

1,j+1)+vz_past(i-1,j))/((r(i+1)-r(i-1))*(z(j+1)-z(j))))-ro_12*(-

vr_past(i,j)-wr(i,j)+wr_past(i,j))/(n_past(i,j)*dt)); 
        vz(i,j)=0; %no flow @ bot 

  
        del_wr1(i,j)=-(n_past(i,j)*ro_f*(vr(i,j)-vr_past(i,j)-

wr(i,j)+wr_past(i,j)))/ro; 
        del_wz1(i,j)=0; 

  
    end 
    %6) z=h  
    j=Nz; 
    for i=2:Nr-1 
        r1_mid=(r(i)+r(i-1))/2; 
        r2_mid=(r(i)+r(i+1))/2; 
        vr(i,j)=vr_past(i,j)-(dt/(ro_f-

ro_12/n_past(i,j)))*((p_inter(i+1,j)+Fd(i+1,j)-p_inter(i-1,j)-

Fd(i-1,j))/(r(i+1)-r(i-1))+n_past(i,j)*mu*(vr_past(i,j)-

wr_past(i,j))/kr(i,j)-... 
            muf*((1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))+... 
            (vr_past(i+1,j)-vr_past(i-1,j))/(r(i)*(r(i+1)-r(i-

1)))+(1/(z(j)-z(j-1)))*((vr_past(i,j)-vr_past(i,j-1))/(z(j)-z(j-

1))-... 
            (vr_past(i,j-1)-vr_past(i,j-2))/(z(j-1)-z(j-2)))-

vr_past(i,j)/(r(i)^2))-(muf+lamdaf)*((vr_past(i+1,j)-vr_past(i-

1,j))/(r(i)*(r(i+1)-r(i-1)))+... 
            (1/(r2_mid-r1_mid))*((vr_past(i+1,j)-

vr_past(i,j))/(r(i+1)-r(i))-(vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1)))-vr_past(i,j)/(r(i)^2)+... 
            (vz_past(i+1,j)-vz_past(i+1,j-1)-vz_past(i-

1,j)+vz_past(i-1,j-1))/((r(i+1)-r(i-1))*(z(j)-z(j-1))))-ro_12*(-

vr_past(i,j)-wr(i,j)+wr_past(i,j))/(n_past(i,j)*dt)); 
        vz(i,j)=0; %no flow to upper layer (shale) 
       del_wr1(i,j)=-(n_past(i,j)*ro_f*(vr(i,j)-vr_past(i,j)-

wr(i,j)+wr_past(i,j)))/ro; 
       del_wz1(i,j)=-(n_past(i,j)*ro_f*(vz(i,j)-vz_past(i,j)-

wz(i,j)+wz_past(i,j)))/ro; 
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    end 

     
    %7) r=re    
    i=Nr; 
    for j=2:Nz-1 
        z1_mid=(z(j)+z(j-1))/2; 
        z2_mid=(z(j)+z(j+1))/2; 

         
        p(i,j)=P_res;  %Res Pres. 
        vr(i,j)=vr_past(i,j)-(dt/(ro_f-

ro_12/n_past(i,j)))*((p_inter(i,j)+Fd(i,j)-p_inter(i-1,j)-Fd(i-

1,j))/(r(i)-r(i-1))+n_past(i,j)*mu*(vr_past(i,j)-

wr_past(i,j))/kr(i,j)-... 
            muf*((1/(r(i)-r(i-1)))*((vr_past(i,j)-vr_past(i-

1,j))/(r(i)-r(i-1))-(vr_past(i-1,j)-vr_past(i-2,j))/(r(i-1)-r(i-

2)))+... 
            (vr_past(i,j)-vr_past(i-1,j))/(r(i)*(r(i)-r(i-

1)))+(1/(z2_mid-z1_mid))*((vr_past(i,j+1)-vr_past(i,j))/(z(j+1)-

z(j))-... 
            (vr_past(i,j)-vr_past(i,j-1))/(z(j)-z(j-1)))-

vr_past(i,j)/(r(i)^2))-(muf+lamdaf)*((vr_past(i,j)-vr_past(i-

1,j))/(r(i)*(r(i)-r(i-1)))+... 
            (1/(r(i)-r(i-1)))*((vr_past(i,j)-vr_past(i-

1,j))/(r(i)-r(i-1))-(vr_past(i-1,j)-vr_past(i-2,j))/(r(i-1)-r(i-

2)))-vr_past(i,j)/(r(i)^2)+... 
            (vz_past(i,j+1)-vz_past(i,j-1)-vz_past(i-

1,j+1)+vz_past(i-1,j-1))/((r(i)-r(i-1))*(z(j+1)-z(j-1))))-

ro_12*(-vr_past(i,j)-wr(i,j)+wr_past(i,j))/(n_past(i,j)*dt)); 

         
        vz(i,j)=vz_past(i,j)-

(dt/coef)*((1+coef0*alfa)*(p_inter(i,j+1)+Fd(i,j+1)-p_inter(i,j-

1)-Fd(i,j-1))/(z(j+1)-z(j-1))+n_past(i,j)*mu*(vz_past(i,j)-

wz_past(i,j))/kz(i,j)-... 
            ro_f*g+coef0*((srz_past(i,j)-srz_past(i-1,j))/(r(i)-

r(i-1))+(srz_past(i,j))/r(i)+... 
            (szz_past(i,j+1)-szz_past(i,j-1)+Fdzz_past(i,j+1)-

Fdzz_past(i,j-1))/(z(j+1)-z(j-1))-ro*g+bu(i,j)*(n_past(i,j+1)-

n_past(i,j-1))/(z(j+1)-z(j-1)))-... 
            muf*((1/(r(i)-r(i-1)))*((vz_past(i,j)-vz_past(i-

1,j))/(r(i)-r(i-1))-(vz_past(i-1,j)-vz_past(i-2,j))/(r(i-1)-r(i-

2)))+(vz_past(i,j)-vz_past(i-1,j))/(r(i)*(r(i)-r(i-1)))+... 
            (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))-... 
            (muf+lamdaf)*((vr_past(i,j+1)-vr_past(i,j-1)-

vr_past(i-1,j+1)+vr_past(i-1,j-1))/((r(i)-r(i-1))*(z(j+1)-z(j-

1)))+(vr_past(i,j+1)-vr_past(i,j-1))/(r(i)*(z(j+1)-z(j-1)))+... 
            (1/(z2_mid-z1_mid))*((vz_past(i,j+1)-

vz_past(i,j))/(z(j+1)-z(j))-(vz_past(i,j)-vz_past(i,j-1))/(z(j)-

z(j-1))))); 

  
       del_wr1(i,j)=-(n_past(i,j)*ro_f*(vr(i,j)-vr_past(i,j)-

wr(i,j)+wr_past(i,j)))/ro; 
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       del_wz1(i,j)=-(n_past(i,j)*ro_f*(vz(i,j)-vz_past(i,j)-

wz(i,j)+wz_past(i,j)))/ro; 

  
    end 
    %8) right bottom corner z=0 r=re     
    j=1; 
    i=Nr; 
    p(i,j)=P_res;  %Res Pres. 
     vr(i,j)=vr_past(i,j)-(dt/(ro_f-

ro_12/n_past(i,j)))*((p_inter(i,j)+Fd(i,j)-p_inter(i-1,j)-Fd(i-

1,j))/(r(i)-r(i-1))+n_past(i,j)*mu*(vr_past(i,j)-

wr_past(i,j))/kr(i,j)-... 
            muf*((1/(r(i)-r(i-1)))*((vr_past(i,j)-vr_past(i-

1,j))/(r(i)-r(i-1))-(vr_past(i-1,j)-vr_past(i-2,j))/(r(i-1)-r(i-

2)))+... 
            (vr_past(i,j)-vr_past(i-1,j))/(r(i)*(r(i)-r(i-

1)))+(1/(z(j+1)-z(j)))*((vr_past(i,j+2)-vr_past(i,j+1))/(z(j+2)-

z(j+1))-... 
            (vr_past(i,j+1)-vr_past(i,j))/(z(j+1)-z(j)))-

vr_past(i,j)/(r(i)^2))-(muf+lamdaf)*((vr_past(i,j)-vr_past(i-

1,j))/(r(i)*(r(i)-r(i-1)))+... 
            (1/(r(i)-r(i-1)))*((vr_past(i,j)-vr_past(i-

1,j))/(r(i)-r(i-1))-(vr_past(i-1,j)-vr_past(i-2,j))/(r(i-1)-r(i-

2)))-vr_past(i,j)/(r(i)^2)+... 
            (vz_past(i,j+1)-vz_past(i,j)-vz_past(i-

1,j+1)+vz_past(i-1,j))/((r(i)-r(i-1))*(z(j+1)-z(j))))-ro_12*(-

vr_past(i,j)-wr(i,j)+wr_past(i,j))/(n_past(i,j)*dt)); 
    vz(i,j)=0; 
    del_wr1(i,j)=-(n_past(i,j)*ro_f*(vr(i,j)-vr_past(i,j)-

wr(i,j)+wr_past(i,j)))/ro; 
    del_wz1(i,j)=-(n_past(i,j)*ro_f*(vz(i,j)-vz_past(i,j)-

wz(i,j)+wz_past(i,j)))/ro; 
    %9) right top corner z=h r=re  
    j=Nz; 
    i=Nr; 
    %BC 
    p(i,j)=P_res;  %Res Pres. 

         
    vr(i,j)=vr_past(i,j)-(dt/(ro_f-

ro_12/n_past(i,j)))*((p_inter(i,j)+Fd(i,j)-p_inter(i-1,j)-Fd(i-

1,j))/(r(i)-r(i-1))+n_past(i,j)*mu*(vr_past(i,j)-

wr_past(i,j))/kr(i,j)-... 
        muf*((1/(r(i)-r(i-1)))*((vr_past(i,j)-vr_past(i-

1,j))/(r(i)-r(i-1))-(vr_past(i-1,j)-vr_past(i-2,j))/(r(i-1)-r(i-

2)))+... 
        (vr_past(i,j)-vr_past(i-1,j))/(r(i)*(r(i)-r(i-

1)))+(1/(z(j)-z(j-1)))*((vr_past(i,j)-vr_past(i,j-1))/(z(j)-z(j-

1))-... 
        (vr_past(i,j-1)-vr_past(i,j-2))/(z(j-1)-z(j-2)))-

vr_past(i,j)/(r(i)^2))-(muf+lamdaf)*((vr_past(i,j)-vr_past(i-

1,j))/(r(i)*(r(i)-r(i-1)))+... 
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        (1/(r(i)-r(i-1)))*((vr_past(i,j)-vr_past(i-1,j))/(r(i)-

r(i-1))-(vr_past(i-1,j)-vr_past(i-2,j))/(r(i-1)-r(i-2)))-

vr_past(i,j)/(r(i)^2)+... 
        (vz_past(i,j)-vz_past(i,j-1)-vz_past(i-1,j)+vz_past(i-

1,j-1))/((r(i)-r(i-1))*(z(j)-z(j-1))))-ro_12*(-vr_past(i,j)-

wr(i,j)+wr_past(i,j))/(n_past(i,j)*dt)); 
    vz(i,j)=0; 

  
    del_wr1(i,j)=-(n_past(i,j)*ro_f*(vr(i,j)-vr_past(i,j)-

wr(i,j)+wr_past(i,j)))/ro; 

    del_wz1(i,j)=-(n_past(i,j)*ro_f*(vz(i,j)-vz_past(i,j)-

wz(i,j)+wz_past(i,j)))/ro; 

  
    for j=1:Nz 
        for i=1:Nr 
            Num_count=(j-1)*Nr+i; 
            wr_cor(Num_count)=del_wr1(i,j); 
            wz_cor(Num_count)=del_wz1(i,j); 

             
        end 
    end 
    

dlmwrite('wr_co.txt',wr_cor,'newline','pc','delimiter','\t','prec

ision','%2.14f'); 
    

dlmwrite('wz_co.txt',wz_cor,'newline','pc','delimiter','\t','prec

ision','%2.14f'); 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    wr=wr+del_wr1; 
    wz=wz+del_wz1; 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   %solving for p & n 
    %1) r=rw   
    i=1; 
    for j=2:Nz-1 

         
        err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
        vol=err+ett+ezz; 
        volf=(vr(i+1,j)-vr(i,j))/(r(i+1)-

r(i))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j-1))/(z(j+1)-z(j-1));  
        Ev(i,j)=Ev(i,j)+vol*dt;   
        if Ev(i,j)<-(n0-.05) 
            Ev(i,j)=-(n0-.05); 
        end 

  
        if j>=perf1 && j<=perf2 
            p(i,j)=p0_original+p_wave; 
        else 
            %EV_based 
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            p(i,j)=p_past(i,j)-dt*(n_past(i,j)*(volf)+(1-

n0)*(vol)/(1+Ev(i,j))^2+... 
                (vr(i,j)-wr(i,j))*(n_past(i+1,j)-

n_past(i,j))/(r(i+1)-r(i))+... 
                (vz(i,j)-wz(i,j))*(n_past(i,j+1)-n_past(i,j-

1))/(z(j+1)-z(j-1))+... 
                n_past(i,j)*cf*((vr(i,j)-wr(i,j))*(p_past(i+1,j)-

p_past(i,j))/(r(i+1)-r(i))+(vz(i,j)-wz(i,j))*(p_past(i,j+1)-

p_past(i,j-1))/(z(j+1)-z(j-1))))/(cf*n(i,j)); 

             
        end 
        n(i,j)=1-(1-n0)/(1+Ev(i,j)); 
    end 
    %2) left bottom corner z=0 r=rw   
    j=1; 
    i=1; 

     
    err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
    ett=wr(i,j)/r(i);  
    ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
    vol=err+ett+ezz; 
    volf=(vr(i+1,j)-vr(i,j))/(r(i+1)-

r(i))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j))/(z(j+1)-z(j));  
    Ev(i,j)=Ev(i,j)+vol*dt;  
    if Ev(i,j)<-(n0-.05) 
        Ev(i,j)=-(n0-.05); 
    end 
    %EV_based 
    p(i,j)=p_past(i,j)-dt*(n_past(i,j)*(volf)+(1-

n0)*(vol)/(1+Ev(i,j))^2+... 
        (vr(i,j)-wr(i,j))*(n_past(i+1,j)-n_past(i,j))/(r(i+1)-

r(i))+... 
        (vz(i,j)-wz(i,j))*(n_past(i,j+1)-n_past(i,j))/(z(j+1)-

z(j))+... 
        n_past(i,j)*cf*((vr(i,j)-wr(i,j))*(p_past(i+1,j)-

p_past(i,j))/(r(i+1)-r(i))+(vz(i,j)-wz(i,j))*(p_past(i,j+1)-

p_past(i,j))/(z(j+1)-z(j))))/(cf*n(i,j)); 

     
    n(i,j)=1-(1-n0)/(1+Ev(i,j)); 
    %3) left top corner z=h r=rw   
    j=Nz; 
    i=1; 
    r2_mid=(r(i)+r(i+1))/2; 

  
    err=(wr(i+1,j)-wr(i,j))/(r(i+1)-r(i)); 
    ett=wr(i,j)/r(i);  
    ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
%     erz=.5*((wz(i+1,j)-wz(i,j))/(r(i+1)-r(i))+(wr(i,j)-wr(i,j-

1))/(z(j)-z(j-1))); 
    vol=err+ett+ezz; 
    volf=(vr(i+1,j)-vr(i,j))/(r(i+1)-r(i))+vr(i,j)/r(i)+(vz(i,j)-

vz(i,j-1))/(z(j)-z(j-1));  
    Ev(i,j)=Ev(i,j)+vol*dt;  
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    if Ev(i,j)<-(n0-.05) 
        Ev(i,j)=-(n0-.05); 
    end 
    %Ev based 
     p(i,j)=p_past(i,j)-dt*(n_past(i,j)*(volf)+(1-

n0)*(vol)/(1+Ev(i,j))^2+... 
        (vr(i,j)-wr(i,j))*(n_past(i+1,j)-n_past(i,j))/(r(i+1)-

r(i))+... 
        (vz(i,j)-wz(i,j))*(n_past(i,j)-n_past(i,j-1))/(z(j)-z(j-

1))+... 
        n_past(i,j)*cf*((vr(i,j)-wr(i,j))*(p_past(i+1,j)-

p_past(i,j))/(r(i+1)-r(i))+(vz(i,j)-wz(i,j))*(p_past(i,j)-

p_past(i,j-1))/(z(j)-z(j-1))))/(cf*n(i,j)); 

  
    n(i,j)=1-(1-n0)/(1+Ev(i,j)); 
    %%%%%%%%%%%%%%%% 
    %4) middle points   
    %%%%%%%%%%%%%%%% 
    for i=2:Nr-1 
        for j=2:Nz-1  %assuming zero tow 
            err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
            ett=wr(i,j)/r(i); 
            ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
            vol=err+ett+ezz; 
            volf=(vr(i+1,j)-vr(i-1,j))/(r(i+1)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j-1))/(z(j+1)-z(j-1)); 
            Ev(i,j)=Ev(i,j)+vol*dt;   
            if Ev(i,j)<-(n0-.05) 
                Ev(i,j)=-(n0-.05); 
            end 
            %Ev based 
             p(i,j)=p_past(i,j)-dt*(n_past(i,j)*(volf)+(1-

n0)*(vol)/(1+Ev(i,j))^2+... 
                (vr(i,j)-wr(i,j))*(n_past(i+1,j)-n_past(i-

1,j))/(r(i+1)-r(i-1))+... 
                (vz(i,j)-wz(i,j))*(n_past(i,j+1)-n_past(i,j-

1))/(z(j+1)-z(j-1))+... 
                n_past(i,j)*cf*((vr(i,j)-wr(i,j))*(p_past(i+1,j)-

p_past(i-1,j))/(r(i+1)-r(i-1))+(vz(i,j)-wz(i,j))*(p_past(i,j+1)-

p_past(i,j-1))/(z(j+1)-z(j-1))))/(cf*n(i,j)); 

  
            n(i,j)=1-(1-n0)/(1+Ev(i,j)); 
        end 
    end 
    %5) z=0   
    j=1; 
    for i=2:Nr-1 
        err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
        vol=err+ett+ezz; 
        volf=(vr(i+1,j)-vr(i-1,j))/(r(i+1)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j))/(z(j+1)-z(j)); 
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        Ev(i,j)=Ev(i,j)+vol*dt;   
        if Ev(i,j)<-(n0-.05) 
            Ev(i,j)=-(n0-.05); 
        end 
        p(i,j)=p_past(i,j)-dt*(n_past(i,j)*(volf)+(1-

n0)*(vol)/(1+Ev(i,j))^2+... 
            (vr(i,j)-wr(i,j))*(n_past(i+1,j)-n_past(i-

1,j))/(r(i+1)-r(i-1))+... 
            (vz(i,j)-wz(i,j))*(n_past(i,j+1)-

n_past(i,j))/(z(j+1)-z(j))+... 
            n_past(i,j)*cf*((vr(i,j)-wr(i,j))*(p_past(i+1,j)-

p_past(i-1,j))/(r(i+1)-r(i-1))+(vz(i,j)-wz(i,j))*(p_past(i,j+1)-

p_past(i,j))/(z(j+1)-z(j))))/(cf*n(i,j)); 
        n(i,j)=1-(1-n0)/(1+Ev(i,j)); 
    end 
    %6) z=h  
    j=Nz; 
    for i=2:Nr-1 
        err=(wr(i+1,j)-wr(i-1,j))/(r(i+1)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
        vol=err+ett+ezz; 
        volf=(vr(i+1,j)-vr(i-1,j))/(r(i+1)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j)-vz(i,j-1))/(z(j)-z(j-1)); 
        Ev(i,j)=Ev(i,j)+vol*dt;   
        if Ev(i,j)<-(n0-.05) 
            Ev(i,j)=-(n0-.05); 
        end 
        p(i,j)=p_past(i,j)-dt*(n_past(i,j)*(volf)+(1-

n0)*(vol)/(1+Ev(i,j))^2+... 
            (vr(i,j)-wr(i,j))*(n_past(i+1,j)-n_past(i-

1,j))/(r(i+1)-r(i-1))+... 
            (vz(i,j)-wz(i,j))*(n_past(i,j)-n_past(i,j-1))/(z(j)-

z(j-1))+... 
            n_past(i,j)*cf*((vr(i,j)-wr(i,j))*(p_past(i+1,j)-

p_past(i-1,j))/(r(i+1)-r(i-1))+(vz(i,j)-wz(i,j))*(p_past(i,j)-

p_past(i,j-1))/(z(j)-z(j-1))))/(cf*n(i,j)); 
%         n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 
        n(i,j)=1-(1-n0)/(1+Ev(i,j)); 
    end 

     
    %7) r=re  Corr 
    i=Nr; 
    for j=2:Nz-1 
        err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
        ett=wr(i,j)/r(i); 
        ezz=(wz(i,j+1)-wz(i,j-1))/(z(j+1)-z(j-1)); 
        vol=err+ett+ezz; 
        volf=(vr(i,j)-vr(i-1,j))/(r(i)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j-1))/(z(j+1)-z(j-1)); 
        Ev(i,j)=Ev(i,j)+vol*dt;  
        if Ev(i,j)<-(n0-.05) 
            Ev(i,j)=-(n0-.05); 
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        end 
        p(i,j)=P_res; % Res. Press. 
%         n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 
        n(i,j)=1-(1-n0)/(1+Ev(i,j)); 
    end 
    %8) right bottom corner z=0 r=re   Corr 
    j=1; 
    i=Nr; 
    err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
    ett=wr(i,j)/r(i); 
    ezz=(wz(i,j+1)-wz(i,j))/(z(j+1)-z(j)); 
    vol=err+ett+ezz; 
    volf=(vr(i,j)-vr(i-1,j))/(r(i)-r(i-

1))+vr(i,j)/r(i)+(vz(i,j+1)-vz(i,j))/(z(j+1)-z(j)); 
    Ev(i,j)=Ev(i,j)+vol*dt;  
    if Ev(i,j)<-(n0-.05) 
        Ev(i,j)=-(n0-.05); 
    end 

  
    p(i,j)=P_res; % Res. Press. 
    n(i,j)=1-(1-n0)/(1+Ev(i,j)); 

     
    %9) right top corner z=h r=re Corr 
    j=Nz; 
    i=Nr; 
    err=(wr(i,j)-wr(i-1,j))/(r(i)-r(i-1)); 
    ett=wr(i,j)/r(i); 
    ezz=(wz(i,j)-wz(i,j-1))/(z(j)-z(j-1)); 
    erz=.5*((wz(i,j)-wz(i-1,j))/(r(i)-r(i-1))+(wr(i,j)-wr(i,j-

1))/(z(j)-z(j-1))); 
    vol=err+ett+ezz; 
    volf=(vr(i,j)-vr(i-1,j))/(r(i)-r(i-1))+vr(i,j)/r(i)+(vz(i,j)-

vz(i,j-1))/(z(j)-z(j-1)); 
    Ev(i,j)=Ev(i,j)+vol*dt;  
    if Ev(i,j)<-(n0-.05) 
        Ev(i,j)=-(n0-.05); 
    end 
    %BC 
    p(i,j)=P_res; % Res. Press. 
%     n(i,j)=n_past(i,j)+dt*(ds*vol-df*volf); 
    n(i,j)=1-(1-n0)/(1+Ev(i,j)); 
    %%%%%%%%%% Extract p & n for Flac 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    for j=1:Nz 
        for i=1:Nr 
            Num_count=(j-1)*Nr+i; 
            p_1D(Num_count)=p(i,j); 
        end 
    end 
    for j=1:Nz-1 
        for i=1:Nr-1 
            Num_count=(j-1)*(Nr-1)+i; 
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del_poro(Num_count,1)=(n(i,j)+n(i+1,j)+n(i,j+1)+n(i+1,j+1))/4;  

%n_flac(i,j) 
        end 
    end 

  
    

dlmwrite('_pp.txt',p_1D,'newline','pc','delimiter','\t','precisio

n','%8.10f'); 
    

dlmwrite('por.txt',del_poro,'newline','pc','delimiter','\t','prec

ision','%2.10f');  
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %giving current values as the past ones 
    p_past=p; 
    vr_past=vr; 
    vz_past=vz; 
    wr_past=wr; 
    wz_past=wz; 
    n_past=n; 
    time=time+dt; 
    tt(jj)=time; 
    pp1(jj)=(p(nhis1,Nz_mid)-p0(nhis1,Nz_mid)); 
    pp2(jj)=(p(nhis2,Nz_mid)-p0(nhis2,Nz_mid)); 
    pp3(jj)=(p(nhis3,Nz_mid)-p0(nhis3,Nz_mid)); 
    nn1(jj)=n(1,16); 
    nn2(jj)=n(2,16); 
    nn3(jj)=n(5,16); 
    nn4(jj)=n(15,16); 
    bc(jj)=p_wave; 
end 

 

B.3 FLAC Code (run_ex.txt) 

_input2D 

p_wave 

step 1 

_output 

endflac 


