
For anything worth having one must pay the price;
and the price is always work, patience, love, self-sacrifice.

No paper currency, no promises to pay, but the gold o f real service.
John Burroughs, 1837 - 1921

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

A Low P o w e r P a r a l l e l P r o c e s s o r I m p l e m e n t a t i o n o f a T u r b o

D e c o d e r

by

Marco Alejandro Castellon

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2006

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-13799-1
Our file Notre reference
ISBN: 0-494-13799-1

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Para mi preciosa esposa Rosa, quien ha sido mi
fortaleza en mis momentos debiles; y para

nuestros hijos Gabriel Alejandro y Marco Angelo,
quienes me inspiran a ser un mejor hombre.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

A novel parallel decoding algorithm for turbo codes is presented, along with its

implementation on an embedded Single-Instruction Stream, Multiple-Data Streams

(SIMD) processor. The novelty of the parallel algorithm is the simultaneous com­

putation of state metrics and log-likelihood ratios for all trellis stages in the con­

stituent decoder. The results are then interleaved prior to parallel decoding in the

subsequent constituent decoder. Implementation of the constituent decoder using

the massively parallel SIMD Array Processor of the Atsana Semiconductor J2210

Media Processor achieves speedup factors of 10 or greater for data packet sizes

in excess of 512 data symbols when compared to its sequential counterpart as ex­

ecuted by an ARM922T™ processor. The bit error rate performance of the pa­

rallel processor turbo decoder implementation lies within 0.1 dB from that of the

floating-point reference. The Processors-In-Memory architecture of the SIMD ar­

ray processor offers a 24% reduction in energy consumption when compared to the

low-power ARM922T™ core.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

I am grateful for the donation of development tools and for support provided for
this research work by Atsana Semiconductor Corporation.

I would like to thank Fengqin Zhai from the Communications Research La­
boratory for helping me understand turbo decoding and for providing source code
that served as a stepping stone for my research. Thanks to Yan Xin, for his technical
support and for helping to set up simulations in the Communications Research Lab.
A special thank you to Dr. Vincent Gaudet for always being available to answer
my questions on turbo codes and computer architecture. I am very grateful for the
assistance provided by Christian Giasson and John Koob with all my DTpX related
questions. Many thanks to Jeff Mrochuk from Atsana Semiconductor Corporation
whose expert technical support proved to be the key in getting applications working
on the J2210 Customer Evaluation board. A special acknowledgement to my friend
Aaron Hughes for reviewing and improving the Visual C++ code for the simulator
application and for his constant encouragement during the writing of this thesis. I
thank and acknowledge my great friend Dennis Bland for his never ending support
and for providing a valuable contribution to my research by letting me use his lab
equipment and tools. I would also like to express my sincere gratitude to Steve
Knish for helping me learn more about myself during my experience as a graduate
student.

I am specially grateful for the opportunity to work under the supervision of Dr.
Ivan Fair and Dr. Duncan Elliott. Thank you for taking the big chance of having
me as your student and for all the valuable advice and feedback which made the
completion of this work possible. I have learned to be a better professional through
your example.

My most heartfelt thanks go to my family, this work is as much your accom­
plishment as it is mine. All my love and appreciation to my wife Rosa and our chil­
dren Gabriel Alejandro and Marco Angelo for enduring the sacrifice of being away
from our home, and for their encouragement, moral support and patience through­
out my degree. Words are not enough to thank our parents for all their support; may
God bless you always for all your kindness.

Last but most certainly not least, I thank and praise our Lord Jesus Christ and
our Blessed Mother Mary for the many blessings that I have experienced during this
period of my life.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

1 Introduction 1
1.1 O v e rv ie w ... 1
1.2 Thesis Organization... 5

2 Background and Fundamentals 7
2.1 SIMD C om puters.. 8
2.2 Processor-In-Memory A rch itectu res.. 11
2.3 Development P la t fo rm .. 13

2.3.1 J2210 Media P rocessor... 14
2.3.2 Software Development Environment... 15

2.4 Iterative Decoding of Turbo C o d e s ... 16
2.5 Decoding Algorithms for Turbo C o d es .. 18

2.5.1 MAP Algorithm ... 19
2.5.2 Log-MAP and Max-Log-MAP A lg o rith m s 23

2.6 Data Parallel Turbo Decoder Im plem entations................................... 26
2.6.1 Software-Based D e c o d e rs ... 27
2.6.2 VLSI Im plem entations... 28

2.7 Fixed-Point C oncep ts.. 28
2.7.1 Number Representation .. 28
2.7.2 Arithmetic Operations C onsiderations..................................... 30

2.8 S u m m a ry ... 32

3 Fixed-Point Decoder Implementation 33
3.1 The UMTS Turbo C o d e .. 34
3.2 Fixed-Point Turbo Decoder A rchitecture... 36
3.3 Simplification of Decoding A lg o rith m .. 38

3.3.1 Log-Add Kernel A pproxim ation... 38
3.3.2 Normalization of State M etrics.. 40
3.3.3 Backward Recursion In itialization..41

3.4 Finite Precision A n a ly s is ... 42
3.4.1 Quantization M eth o d ...42
3.4.2 Effect of Fractional L eng th ...43
3.4.3 Density Evolution Analysis ... 45
3.4.4 Early Saturation of Extrinsics .. 54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.5 Fixed-Point Turbo Decoder S im ulations..58
3.5.1 BER Performance ... 58

3.6 S u m m a ry ... 61

4 Data Parallelism in Turbo Decoding 63
4.1 Turbo Code Trellis A n a ly s is ... 64

4.1.1 Efficient Trellis Structure to SIMD Hardware Mapping . . . 67
4.1.2 Memory Requirem ents...68

4.2 Parallel Window ONE Algorithm ... 69
4.2.1 Convergence of a and (3 State M etric s ...71

4.3 Parallelism and Efficiency .. 72
4.4 S u m m a ry ... 78

5 Parallel Processor Decoder Implementation 79
5.1 Sequential Interleaver.. 80
5.2 Implementation using the J2210 Array P ro c e s s o r 81

5.2.1 Inter-Processor Communication Topology.............................. 81
5.2.2 Description of Algorithm Implementation.............................. 85

5.3 Communication with the Host P rocessor... 89
5.4 BER Performance Evaluation... 90

5.4.1 Simulator and Experimental M ethod.. 90
5.4.2 Scalability of Parallel A lgorithm .. 91
5.4.3 Convergence Steps A n a ly s is ...95

5.5 Execution Time and S peedup...100
5.6 Power and Energy C onsiderations... 107
5.7 S u m m a ry ... I l l

6 Conclusions 113
6.1 Future Research D irections.. 115

Bibliography 118

A Turbo Encoder/Decoder C++ Source Code 123
A.l Fixed-Point Data Type D efinition.. 123
A.2 UMTS Interleaver Generator M ethod..131
A.3 Turbo Encoder/Decoder Class ... 134

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

1.1 Standard Turbo E n co d e r.. 2

2.1 SIMD Architecture Block Diagram.. 8
2.2 Grid connected inter-processor communication networks..................... 10
2.3 J2210 Customer Evaluation Board... 14
2.4 J2210 Media Processor Block Diagram... 15
2.5 Conventional Turbo Decoder Architecture.. 17
2.6 The Soft-Input Soft-Output (SISO) module.. 19
2.7 Meaning of Notations...20
2.8 Correction functions for Log-MAP, constant-Log-MAP and linear-

Log-MAP algorithms.. 26
2.9 Binary fixed point number representation..29
2.10 Range of representable numbers.. 30

3.1 UMTS turbo encoder.. 35
3.2 Fixed-Point Turbo Decoder Block Diagram... 36
3.3 Trellis tail for UMTS turbo code.. 41
3.4 Fixed-point BER performance with 0 < FWL < 244
3.5 Fixed-point BER performance with FWL = 3... 44
3.6 BER performance with unnecessarily long FWL.......................................45
3.7 Density Evolution of A0i (xk), Eb/No = 0.6dB...46
3.8 Density Evolution of L^a+Ŝ (**), E^/No = 0.6dB.......................................47
3.9 Density Evolution of A02 (xjt), Efc/Ao = 0.6dB...48
3.10 Density Evolution of Le2 (xk), E^/Nq = 0.6dB..49
3.11 Density Evolution of A*,i (xk), E^/No = 2.0dB... 50
3.12 Density Evolution of Lja+^(xk), Eb/N o -2 .0 d B51
3.13 Density Evolution of A 02 {xk), E^/Nq = 2.0dB... 52
3.14 Density Evolution of Le2 {xk), eJ/N q = 2.0dB..53
3.15 Early saturation of extrinsics,....2 iterations..56
3.16 Early saturation of extrinsics,... 4 iterations..56
3.17 Early saturation of extrinsics, 6 iterations.. 57
3.18 Early saturation of extrinsics, 8 iterations..57
3.19 Fixed-point Turbo Decoder BER performance, 2 iterations................59
3.20 Fixed-point Turbo Decoder BER performance, 4 iterations................60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.21 Fixed-point Turbo Decoder BER performance, 6 iterations.................... 60
3.22 Fixed-point Turbo Decoder BER performance, 8 iterations.....................61

4.1 Trellis Butterfly with State Metrics... 64
4.2 Adjacent Trellis Sections for RSC Code of UMTS Turbo Code. . . . 66
4.3 PE allocation.. 67
4.4 Parallel variable distribution per PE.. 68
4.5 Parallel Decoding Method with respect to Time.................................... 70
4.6 Effect of Code Parameters on Speedup..76
4.7 Efficiency for different Code Parameters.. 77

5.1 A CU and its Nearest Neighbors.. 82
5.2 West-East Data Transfer inter-PE Communication Pattern...................... 83
5.3 North-South Data Transfer inter-PE Communication Pattern.................. 84
5.4 Row-wise to Column-wise re-ordering of data...................................... 84
5.5 Emulation of Linear Array network using a 2-D Mesh.............................85
5.6 Turbo Encoder and AWGN Channel Simulator GUI................................ 91
5.7 BER performance vs. Frame Length, 4 Turbo Iterations................. 93
5.8 BER performance vs. Frame Length, 7 Turbo Iterations................. 94
5.9 BER performance vs. Frame Length, 10 Turbo Iterations........... 94
5.10 Bit Error Rate versus Number of Convergence Steps (Short Frame

Size)... 96
5.11 Effect of Decoder Iterations (Short Frame Size).................................... 97
5.12 BER versus Decoder Iterations versus Convergence Steps (Short

Frame Size)... 97
5.13 Bit Error Rate versus Number of Convergence Steps (Long Frame

Size)..98
5.14 Effect of Decoder Iterations (Long Frame Size).................................... 99
5.15 BER versus Decoder Iterations versus Convergence Steps (Long

Frame Size)... 99
5.16 Execution Time and Speedup Factor of Single Constituent Decoder. 104
5.17 Execution Time and Speedup Factor of Turbo Decoder.........................106
5.18 J2210 Customer Evaluation Board power distribution...........................107
5.19 Experimental Setup using E3647A Power Supply..................................108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

3.1 UMTS Turbo code P a ram eters ... 35
3.2 Turbo Decoder Fixed-Point Word Configuration..59

4.1 Operations per Trellis Column in Sequential Log-MAP Algorithm. . 73
4.2 Operations per PE in PW-ONE Algorithm.. 74

5.1 Memory Accesses and Interleaver R un-T im es....................................... 102
5.2 Execution Time of PW-ONE for Different Topologies.......................... 102
5.3 Speedup Factor Comparison for Constituent SISO D eco d er................ 103
5.4 Speedup Factor Comparison for Turbo D e c o d e r....................................105
5.5 Raw Current Consumption M easurem ents... 110
5.6 Power Estimates for Individual S u b sy stem s.. 110
5.7 Energy Consumption C o m p ariso n .. I l l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Nomenclature

List of Acronyms
AC Array Controller

AHB Advanced High-performance Bus

ALU Arithmetic Logic Unit

AP Array Processor

API Applications Programming Interface

APP a posteriori probability

ASIC Application Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BER bit error rate

BPSK binary phase shift keying

CEB Customer Evaluation Board

CIU CMEM Interface Unit

CU Computational Unit

DMA Direct Memory Access

DSP digital signal processor

FEC forward error correction

FPGA Field Programmable Gate Array

LDPC low density parity check

LLR log-likelihood ratio

LSB least significant bit

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LUT look-up table

MSB most significant bit

PCCC parallel concatenated convolutional code

PE processing element

PIM Processors-In-Memory

RSC recursive systematic convolutional

SEL SIMD Engine Language

SIMD Single Instruction Stream, Multiple Data Streams

SISO soft-input/soft-output

SNR signal-to-noise ratio

SoC System-on-Chip

SOVA soft-output Viterbi algorithm

UMTS Universal Mobile Telecommunications System

VLSI Very Large Scale Integration

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

The advent of third generation (3G) mobile telephone systems has brought forth

an increase in the available bandwidth to support high data rate applications such

as multimedia messaging and large file transfer. The characteristic low signal-to-

noise ratio (SNR) of wireless channels requires the use of advanced forward error

correction (FEC) coding to guarantee the fast and reliable delivery of wireless con­

nections to the Internet and the support of data applications for mobile devices.

Turbo codes have been adopted as one of the preferred methods of forward error

correction in 3G wireless systems because they can achieve a level of performance

that comes closer to the theoretical bounds than more conventional coding tech­

niques [1], This thesis investigates the implementation of a simple, low-power turbo

decoder design suitable for wireless applications.

1.1 Overview

Turbo codes, introduced in 1993 by Berrou et a! [1], are powerful error correcting

codes with performance that approaches the Shannon bound at low SNR levels. The

many research efforts aimed at the development of decoding algorithms for turbo

codes, as well as advances in digital signal processor (DSP) and Very Large Scale

Integration (VLSI) technologies, has allowed them to become practical for use in

real-world applications. One key example is their use for medium to high data rate

transmission in the Universal Mobile Telecommunications System (UMTS) speci­

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1: Introduction Castellon

fication [2], as standardized by the Third-Generation Partnership Project (3GPP)1.

Turbo codes are parallel concatenated convolutional codes (PCCCs). The block

diagram of a standard turbo code encoder is depicted in Figure 1.1. The turbo

encoder is composed of two identical recursive systematic convolutional (RSC) en­

coders separated by a pseudo-random interleaver. Parallel concatenation means that

the two encoders operate on the same data stream, but the lower encoder receives

the data after it has been permuted by an interleaver. The purpose of the interleaver

is to spread out bit information over large blocks of data. The data stream and the

outputs of the encoders are concatenated to form the overall encoder output. A

puncturing mechanism may be used for applications where a code with rate 1/2

or higher is preferred. The role of the puncturer is to periodically delete selected

bits to reduce coding overhead. In the case of iterative decoding, such as the one

employed for turbo codes, it is preferable to delete only parity bits as indicated in

Figure 1.1. For example, to achieve a rate of 1/2, the selection of the parity bit may

alternate between the upper encoder and the lower encoder for each transmit cycle.

cs = u

RSC Encoder # 2
(f lb p) , ffl(D))

RSC Encoder # 1
(f lo p) , <71P))

Pseudo-Random

Interleaver
Mechanism

Puncturing

Figure 1.1: Standard Turbo Encoder.

'3GPP is the collaboration agreement between a number o f telecommunications standards bodies
in charge of producing globally applicable technical specifications and technical reports for third
generation mobile systems.

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 1.1: Overview

A significant issue regarding turbo codes that remains under active investigation

is the development of a simpler, low-power implementation of the iterative decoding

procedure. Common implementations of turbo decoders are: software based algo­

rithms [3][4], commercially available IP cores for use on a digital Application Spe­

cific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) [5][6],

and analog VLSI decoders [7J. Dedicated hardware under software control can

offer an elegant and effective solution such as in the case of the TMS320C6416T

DSP that integrates a programmable, 3GPP compliant Turbo Decoder Co-Processor

(TCP) [8j. It is also important to recognize that real-time turbo decoders used in

embedded applications are likely to be implemented using fixed-point arithmetic.

This thesis discusses the novel implementation of a turbo decoder for execution

on a Single Instruction Stream, Multiple Data Streams (SIMD) array processor with

Processors-In-Memory (PIM) technology. The research project is divided into two

stages.

The first stage of the research focuses on the development of a fixed-point, se­

quential implementation of the Log-MAP algorithm. The objective of this stage is

to quantify the minimum fixed-point word length required for internal variables of

the constituent decoders as well as for the extrinsic information exchanged between

these constituent decoders. Results obtained indicate that it is possible to use a max­

imum word length size of 8 bits, consisting of 2 fractional bits and 5 integral bits,

across the entire architecture of the turbo decoder to achieve bit error rate (BER)

performance that lies within 0.1 dB of the floating-point implementation perfor­

mance. From a hardware point of view, the use of fixed-point arithmetic is advan­

tageous because simple integer hardware can be used to carry out the computations

(most of them additions) of the Log-MAP algorithm. The reduced fixed-point word

size lends itself nicely to a pipelined VLSI design. From a software perspective,

minimizing the fixed-point word length to the size stated above may not seem very

relevant since in practice one would like to take full advantage of the available na­

tive integer word size of the microprocessor or DSP architecture selected to execute

the algorithm. However, there also exists the potential of using a fixed-point DSP

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1: Introduction Castellon

whose instruction set includes SIMD extensions. In such a case, smaller word sizes

allow the manipulation of more data elements by the SIMD instructions. Smaller

fixed-point word sizes are also important when one considers a massively parallel

processor that may consist of processing elements with a bit-serial architecture or

whose Arithmetic Logic Units (ALUs) require operands with a short word length.

The second stage of the project explores the data parallelism available in the

Log-MAP algorithm by analyzing the regular trellis structure of systematic convo­

lutional codes. The main goal is the parallel processor implementation of the algo­

rithm for execution on commercially available hardware. Development is targeted

to the Array Processor in the J2210 Media processor from Atsana Semiconductor

Corporation2. This particular array processor consists of an array of simple compu­

tational units tightly coupled with a memory core. More details about the hardware

are provided in section 2.3.

A method is developed such that the operation of the constituent decoders in

the turbo decoder is parallelized and can be executed by a SIMD array processor.

The basis for the parallel method is the concept of the convergence step, where each

processing element in the array processor simultaneously operates on the data that

corresponds to an individual trellis stage of the code, to calculate the state metrics

needed to compute the log-likelihood ratios. Empirical results demonstrate that

BER performance equivalent to that of the sequential forward/backward algorithm

is achieved when the number of convergence steps is set to approximately seven

times the constraint length of the code. The applicability of this observation to data

packets of variable length was verified with the limited number of processing ele­

ments in the Array Processor of the J2210 Media processor by using a windowing

technique.

This research project has demonstrated that the massively parallel, processors-

in-memory architecture of the SIMD array processor provides a platform that of­

fers computational and power consumption advantages over a high-performance

ARM922T™ microprocessor core that is a popular choice for embedded, low-

2As of August 24, 2005 Mtekvision Co. Ltd. has acquired all assets and technology o f Atsana.

4

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 1.2: Thesis Organization

power applications. Additionally the use of a commercially available System-on-

Chip (SoC) with an embedded array processor to validate the functionality of the

data parallel turbo decoding algorithm reveals that SIMD cores tightly coupled with

memory used in the design of a cellular handset may offer benefits meeting the

bandwidth and battery life demands in 3G systems.

1.2 Thesis Organization

Six chapters, including this introductory chapter, comprise this thesis.

Chapter 2 presents background information related to the iterative operation of

turbo decoders and the decoding algorithms used by the constituent soft-input/soft-

output (SISO) decoders. This chapter also discusses basic concepts of fixed-point

arithmetic and presents background material on SIMD computers and Processors-

In-Memory architectures. It also includes an overview of the J2210 Media Proces­

sor and the development tools to generate application software for it.

Chapter 3 provides details of a fixed-point implementation of the sequential

turbo decoding algorithm. Explanation is provided for the selection of the constant-

Log-MAP algorithm over other methods, such as the use of look-up tables or the

Linear-Log-MAP algorithm, for the approximation of the correction function of the

log-add kernel in the Log-MAP algorithm. This chapter also describes the criteria

for selecting a combination with the smallest possible number of fractional and in­

tegral bits in the fixed-point word that minimizes the degradation in performance of

the overall turbo decoder. Empirical results are used to arrive at the minimum fixed-

point word size that results in negligible loss in BER performance when compared

to the baseline floating point implementation.

Chapter 4 explores the data parallelism of the Log-MAP algorithm by examin­

ing the structure of the trellis that describes the turbo code. The requirements for

the number of processing elements and the inter-processor communication network

in a generic SIMD array processor are examined. It also discusses the distribution

of data and variables in the localized memory for all processing elements.

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1: Introduction Castellon

Chapter 5 presents the details of the implementation that targets the Array Proces­

sor in the J2210 Media processor. It presents a comparative analysis of results re­

lated to BER performance, processing time and power consumption between the se­

quential, fixed-point implementation running on the embedded ARM922T™ core

and the parallel implementation executed by the Array Processor.

Chapter 6 provides conclusions and states the main contributions made by this

research. It also proposes further research such as modifications to the array proces­

sor architecture, specifically related to the inter-processor communications network,

to further increase performance. It suggests the implementation of a dedicated com­

munication network that can take over the role of the interleaver.

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Background and Fundamentals

This chapter begins by describing fundamental architectural features of SIMD multi­

processors. Section 2.2 elaborates even further by introducing examples of array

processors that have been developed to take advantage of the aggregate memory

bandwidth found inside memory chips by tightly coupling the processing elements

with the memory core.

Section 2.3 provides a brief overview of the hardware and software components

of the development platform used in this research project.

Sections 2.4 and 2.5 describe the decoding procedure for turbo codes and present

the relevant equations of the decoding algorithms used by the constituent decoders.

The complexity of the decoding algorithm is reduced when its operations are per­

formed in the logarithmic domain. The different approximation methods for the

correction function of the max* operator are also discussed. Some sample turbo

decoder implementations where a small degree of data parallelism is exploited are

presented in section 2.6.

The chapter concludes by discussing basic concepts of fixed-point arithmetic.

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals

2.1 SIMD Computers

Castellon

It is possible to develop the parallel counterpart of a sequential algorithm given a

specific target architecture. Parallel processing is a concept where many computa­

tional units share the workload of a processing job. This idea dates back to the early

days of electronic computers when it was recognized that parallel processing offers

performance gains that go beyond the computational capacity of the individual units

[9]. A category of parallel computers is Single-Instruction stream, Multiple-Data

streams (SIMD) computers. The term SIMD was introduced by Flynn in his clas­

sic taxonomy of computer architectures in 1966 [10]. This classification is based

on the manner of instruction and data distribution in a computer architecture. A

common architectural block diagram of a SIMD machine that uses the distributed

memory model is illustrated in Figure 2.1. It consists of an array of processing

elements (PEs), localized memory, an array controller, a host computer, and I/O for

external communication.

I/O

Network

T

Control Array
Controller

Commands Host 1
Unit Computer

PEi

LMi

PEo

LMo

Broadcast Bus
(Instructions
and Constants) PE n

LMn

Inter-Processor Communication Network

Data
Bus

PE: Processing
Element

LM: Local
Memory

Figure 2.1: SIMD Architecture Block Diagram.

The multiple PEs in a SIMD computer execute the same instruction on their

own data set which may or may not be different from that of their neighbors. This

type of parallelism signifies that SIMD architectures are best suited for computation

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.1: SIMD Computers

on arrays of data common in applications such as signal processing.

A SIMD computer exploits spatial parallelism rather than temporal parallelism as

in a pipelined computer. SIMD arrays can have a large number of processors if their

computational units have reduced complexity. The loss in performance per proces­

sor is made up by the increase in the number of processors that can be implemented

in the same space [11], A SIMD architecture with simple bit-serial processors can

implement line grain parallelism by assigning a single data item to each processor.

The relative simplicity of SIMD architectures allows them to claim some advan­

tages over other parallel architectures, including:

• Simplicity of concept, programming, and synchronization.

• Regularity of structure.

• Scalability of size and performance.

• Straightforward applicability in a number of fields which demand this

type of parallelism.

The PEs of an array processor are interconnected by an inter-processor commu­

nication network which performs inter-PE data communications such as broadcast,

point-to-point communication (shifting) and combine operations. Inter-processor

communication in SIMD computers can be autonomous where the destination of

the data packet is specified by each sender, for example the hypercube network

of Thinking Machines’ CM-2, or uniform (also known as patterned communica­

tion) where inter-PE data communication is performed in lockstep, synchronized in

hardware by the array controller. Uniform inter-processor communication was po­

pular with grid-connected SIMD computers such as the Illiac IV and the Goodyear

MPP, and for cost and area reasons [12] it is used in array processors with PIM

technology. Synchronized inter-processor communication operations make SIMD

computers efficient in exploring spatial parallelism in large arrays of data, and the

use of a particular inter-processor communication network will determine which

applications will run efficiently.

9

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

Popular inter-processor communication networks include:

• Linear Array.

• Mesh connected networks including NEWS net, Torus and Toroid.

• Hypercube.

Examples of linear array and 2-D mesh networks can be observed in Figure 2.2.

Grid connected inter-processor communication networks are described with more

detail in [13] and communication properties of interconnection networks are co­

vered in [10].

L inear A rray

T orus connection

N EW S ne t connection

U L » L _ J I « , I L _ J L,

Spiral connection

| | — P rocessing E lem ent

J — In terconnect L ink

T oro id connection

Figure 2.2: Grid connected inter-processor communication networks.

Successfully deployed SIMD machines date back to the Illiac IV introduced

in 1968 [9] [10]. Some examples of these conventional SIMD systems include:

Goodyear Corporation’s MPP (Massively Parallel Processor) in the 1980s, Think­

ing Machines’ CM-1 and CM-2 models, MasPar MP series and Active Memory

Technology’s (AMT) DAP machines from the early 1990s. The CM-2 and MasPar

MP-1 were array processors that targeted a wide range of applications in scientific

computing, however, they suffered from limited functionality, low processor uti­

lization in some cases, and unsuitability for some important problems [9][12].

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.2: Processor-In-Memory Architectures

A significant factor that prevented the widespread use of SIMD array processors

was their high price. This meant that they served a narrow market of universities

and government agencies that could afford them.

The idea of exploiting data parallelism in multimedia applications has resulted

in the integration of SIMD instructions to the instruction set of modem high perfor­

mance microprocessors and DSPs. When the width of the majority of the variables

for a given application is smaller than the width of the microprocessor registers,

there exists the opportunity for parallel operation on the data. In essence, multi­

ple values can be manipulated by utilizing the same wide data path. For example,

consider a 64-bit register. The data can be either a single 64-bit value in the native

precision of the processor, two 32-bit values, four 16-bit values, or eight 8-bit val­

ues. In this example, the latter three formats are considered SIMD representations.

SIMD architectures found in modern high performance microprocessors include:

• Sun Microsystems’ Visual Instmction Set (VIS™) in the UltraSPARC™

processor.

• Intel’s Pentium® Matrix Manipulation extensions (MMX™).

• Intel’s Streaming SIMD Extensions (SSE) and SSE2.

• Motorola’s AltiVec™ as SIMD extension to the PowerPC architecture.

• AMD’s Direct3D and 3D-Now technology.

Features and characteristics for most of the above SIMD extensions are summarized

in detail in [14],

2.2 Processor-In-Memory Architectures

In recent years SIMD architectures have emerged that are implemented around

memory cores. Such technology is known as logic-enhanced memories or Processor-

In-Memory (PIM) systems. These SIMD architectures are massively parallel and

are designed to take advantage of the high internal memory bandwidth by placing

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

SIMD processors inside memory devices. It has been shown that there are three to

four orders of magnitude more bandwidth available within the memory chip than

what is available externally [12]. The combination of high data bandwidth and the

fine grain parallelism possible with a SIMD architecture permits data-parallel op­

erations to be performed in memory. The regular structure of SIMD architectures

facilitates the addition of array processors in memory [15], thereby providing an

economic solution for parallel processing. These systems offer great benefit and in­

creased computational performance for applications that manipulate data sets with

a high degree of parallelism. Examples of these applications include image, video

and signal processing.

In [16] a review and survey of SIMD processor arrays for image and video

processing is presented. Emphasis is given to those designs whose logic circuits

are embedded in the SRAM or DRAM memory process. Dillen in [14] also briefly

describes four PIM array processors and elaborates on the DSP-RAM architecture.

Some of the most relevant PIM-style architectures are:

• Terasys.

• Computational RAM (C»RAM).

• Integrated Memory Array Processor (IMAP)

• EXECUBE

• DSP-RAM

Only a few details for the some of array processors mentioned above will be pre­

sented here.

Terasys, a massively parallel array processor, was developed by researchers at

the Supercomputing Research Center (SRC) in the early 1990s [17]. The SIMD

array consisted of 32K bit-serial processing elements, where each had access to a

2-Kbit column of SRAM as their local memory. The communication network for

the processing array consisted of a global OR network, a partitioned OR network,

and a parallel prefix network.

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.3: Development Platform

O R A M , developed at the University of Toronto [12], integrates bit-serial process­

ing elements at the memory sense amplifiers of SRAM or DRAM cores. The

processing element ALU is a 8-1 multiplexor, where the 3 inputs to the ALU are a

X register, a Y register, and the data memory. This ALU design is capable of imple­

menting 256 functions or operations. Inter-processor communication in O R A M is

accomplished via a linear network. O R A M , like many other SIMD systems, re­

quires a host processor to handle the non-data-parallel operations. A bit-parallel

version of O R A M is described in [18]. A commercial variant, the AX256 graphics

accelerator from Accelerix Inc., is a O R A M architecture with 4096 PEs. Work

was done in [11] to integrate this commercial product into an embedded system.

DSP-RAM is a moderately parallel processor that consists of processing ele­

ments built around a 16-bit multiply-accumulate (MAC) unit. The more sophisti­

cated PE architecture allows a smaller degree of parallelism, typically ranging from

64 to 256 PEs. DSP-RAM targets algorithms that exhibit moderate levels of par­

allelism and results in reduced latency of the multiplication operation compared to

bit-serial processors. A quantitative analysis of DSP-RAM has been carried out in

[14] and includes suggestions for improvement of the architecture.

2.3 Development Platform

The development platform selected for the implementation of this research project

is the J2210 Evaluation Kit that was provided by Atsana Semiconductor Corpo­

ration. The J2210 Evaluation Kit consists of a hardware platform and a software

development environment. The main hardware component is the Customer Evalu­

ation Board (CEB). The CEB contains the necessary on-board hardware to access

and control the J2210 Media Processor. Figure 2.3 shows a picture of the evalua­

tion board. The software environment consists of a set of tools needed to develop

firmware for the SIMD array processor of the J2210. These software tools allow the

user to program the array processor from two perspectives: a) for simulation only

and b) for generation of embedded firmware that is downloaded to the hardware

target. These tools are described in detail in [19]. The opportunity to evaluate and

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

Figure 2.3: J2210 Customer Evaluation Board.

verify the functionality of SIMD algorithms on commercially available hardware

is an important step in bringing the parallel processor implementation of a turbo

decoder into a real-world application.

2.3.1 J2210 Media Processor

The J2210 Media Processor from Atsana Semiconductor Corporation is a System-

on-Chip (SoC) that combines a general purpose ARM922T™ RISC microproces­

sor, a fully programmable SIMD array processor for low power multimedia process­

ing, and a set of peripherals to support multimedia applications. A block diagram of

the J2210 is portrayed in Figure 2.4. The architecture of the Array Processor (AP)

delivers more processing capability that conventional DSP solutions while consum­

ing less power. The SIMD array processor in the J2210 is tightly coupled with a

memory core, in other words, it is a Processor-In-Memory architecture. One may

consider the architecture of the Array Processor to be similar to the bit-parallel

computational RAM (C«RAM) architecture presented in [18]. The Array Proces­

sor consists of 96 Computational Units (CUs), each with 4KBytes of local me-

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.3: Development Platform

CLKIN
DLL

VLC

JTAG

USART

Timers (2)

GPIO (16)
System
Memory

Audio Codec
Interface

Figure 2.4: J2210 Media Processor Block Diagram.

mory. The CUs are arranged in a 4 x 24 grid with an inter-processor communica­

tion network that enables each CU to obtain data from its eight nearest neighbors.

The SIMD processor uses uniform memory addressing and uniform inter-processor

communication. There is an Array Controller that is in charge of issuing and se­

quencing micro-instructions to the Array Processor. The ARM922T™ processor

behaves as the system host; it is in charge of sending commands to the Array Con­

troller, and it controls the movement of data in and out of the Array Processor since

it too has access to the memory of the SIMD array.

2.3.2 Software Development Environment

The generation of software/firmware for the J2210 Media Processor involves three

levels of programming, however, only two out of the three are commonly used in

practice. At the lowest level is Micro-code Programming. Regular users are not

exposed to this level of programming because it requires detailed knowledge of the

architecture of the CUs and the Array Processor in general. The development in

this research project relies heavily on the provided micro-code and no new micro­

instructions are introduced.

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

At the middle level is the Array Processor Programming. This level of program­

ming requires the developer to become familiar with the SIMD Engine Language

(SEE) and with the Array Processor Software Development Kit (SDK). The role

of AP Programming is to implement the algorithms that have a parallel nature so

that they execute faster and use less power. These algorithms are written in SEL

and are known as AC Commands. SEL is a C-like proprietary language developed

by Atsana; it is described in detail in [19]. Developers at this stage in the process

make extensive use of the SEL compiler and the AP simulator and visual debugger

provided with the Array Processor SDK.

At the highest programming level is the development of software for the ARM

host processor. Software at this stage is developed with C/C++ by using the tools

available through the ARM Developer Suite.

2.4 Iterative Decoding of Turbo Codes

In section 1.1 turbo codes were described as parallel concatenated convolutional

codes with encoders formed usually by two constituent systematic encoders joined

through an interleaver. Assuming no puncturing, coded symbols of the UMTS turbo

code consist of one systematic bit followed by two parity bits. A typical turbo de­

coder has a constituent decoder corresponding to each of the constituent encoders.

Since the decoder knows the interleaving pattern used by the encoder, it is capable

of generating the proper systematic bit order for each of the constituent decoders.

In order to obtain the best possible estimate of the original message, the constituent

decoders share the results of their calculations by using iterative feedback decod­

ing. The component decoders output soft-bit information typically represented as

(ia posteriori) log-likelihood ratios (LLRs) of the form

At = ll/ l " * = 1W p . , ,
1 P[uk — 0|y]

where u* is the source data bit and y is the data sequence observed by the receiver.

The log-likelihood ratios (LLRs) produced by a soft-input/soft-output (SISO)

decoder consist of three components of information about the data bit u/.: 1) the

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.4: Iterative Decoding o f Turbo Codes

systematic channel observation denoted as » ; 2) the information derived from the

other constituent decoder which is used as a priori information and is denoted La,

and 3) the extrinsic information which is new information generated by the current

stage of decoding, denoted as Le. The overall LLR can be then be written:

At = Lcyk + L a + L e (2.2)

In order to prevent correlations, it is imperative that only the extrinsic information

is passed from one constituent decoder to the other. Therefore, the a priori data

input to the subsequent decoder is computed by subtracting the systematic channel

input and the a priori data input for the current decoder.

The architecture for a conventional turbo decoder is displayed in Figure 2.5.

Note that all the values received from the channel are multiplied by the factor Lc.

The term Lc is known as the channel reliability because it provides an indication

of how much weight the channel symbols have on the LLR[20], For example, a

channel with a higher SNR has a higher channel reliability, therefore, more weight

is put on the channel observations. The expression for Lc when binary phase shift

keying modulation is used in an Additive White Gaussian Noise (AWGN) channel

is defined in [20], while a more generalized version for fading channels is given in

[21].

Uk

-1

-1

SISO
Decoder #2

SISO
Decoder #1

Figure 2.5: Conventional Turbo Decoder Architecture.

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

In the following, boldface type is used to represent vectors that contain values

associated with an entire block of data. The first constituent decoder receives the

systematic channel symbols ys, the channel symbols associated with the parity from

the first encoder y*, and a priori information Laj derived from the output of the

second constituent decoder. The first decoder generates the LLR A*. The extrinsic

information of the first decoder h e\ is found by subtracting the scaled systematic

and a priori inputs from the output of this decoder. The extrinsic information is per­

muted by an interleaver, and used as a priori information for the second decoder.

The second decoder also receives the scaled and permuted systematic channel ob­

servations n (y v) and scaled observations of the parity bits from the second encoder

y“ . The second constituent decoder produces the LLR from which the extrinsic

information Leo is derived. The extrinsic information generated by the second de­

coder is deinterleaved and becomes the a priori input to the first decoder. After a

pre-defined number of iterations, the final estimate of the original data bit is found

by deinterleaving and hard-limiting the output of the second constituent decoder

according to the following expression:

2.5 Decoding Algorithms for Turbo Codes

A decoding algorithm that accepts a priori soft-information at its input and gener­

ates a posteriori information is referred to as a SISO decoding algorithm. Some of

the SISO algorithms most commonly used in turbo decoding are described in this

section. The concept of the SISO module and its variations is introduced in [22],

As an example, Figure 2.6 shows the SISO module for a rate 1/2 RSC code. It

accepts three inputs: the systematic observations Xs, the parity observations "kp, and

the a priori information Xa which, in the case of a turbo decoder, is derived from

the output of the other constituent decoder. The output of the SISO module is the

LLR A 0 as defined by (2.1).

(2.3)

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.5: Decoding Algorithms fo r Turbo Codes

The SISO algorithms presented in this section belong to the maximum a poste­

riori (MAP) family of decoding algorithms most commonly used in turbo decoding.

It is important to note that there also exists a decoding algorithm based on a modifi­

cation to the Viterbi algorithm that produces soft-decision outputs. This algorithm

is known as the soft-output Viterbi algorithm (SOVA) and its details are described

in [23].

Afl ^

As ^ SISO Ao

A p ^
D ecoder

Figure 2.6: The Soft-Input Soft-Output (SISO) module.

2.5.1 MAP Algorithm

In order to make the presentation of the MAP algorithm understandable, it is nec­

essary to introduce clear notation. For a constituent RSC encoder with constraint

length Kc (and therefore memory m = Kc — 1), the following notation is used with

reference to Figure 2.7. Assume that the time instant of interest is the &th interval:

1. The block of N source information bits that is encoded by the encoder is

denoted by u = {«o> « i , ■ • ■, un- \ }

2. The noisy estimates of the encoded bits received by the decoder are de­

noted by y = {(y§,yft), (yj.yf), • • ■,

3. Sk is the generic state at time k, belonging to the set S = {S’0, • • • ,S2'"~1}

4. Sk- 1 is one of the precursor states of Sk, more precisely the one defined

by the information symbol Uk- 1 in the transition Sk- i —► Sk

5. Sk+\ is one of the successors states of Sk, more precisely the one defined

by the information symbol w* in the transition Sk —> Sk+1

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

6. A parity coded symbol cpk is associated with each transition in the trel­

lis1. This coded symbol depends on the state from which the transition

originates and on the information symbol ip determining that transition.

s° s° s°
9 9 9

^ - ' T c L i i s ^ ^ s ky,
'k+lii ii ii

9 9 9
g2m~1 g2m“1 g2m_1

Figure 2.7: Meaning of Notations.

The symbol-by-symbol MAP algorithm, originally described in the late 1960’s

[24] and re-introduced in 1974 [25], was generally overlooked for use in decoding

convolutional codes in favor of the less complex Viterbi algorithm. The MAP algo­

rithm calculates the a posteriori probability (APP) that the original information bit

was a 0 or a 1 given the channel observation y. Since the outputs produced by the

MAP algorithm can be considered as soft decisions, it is a solution for use in turbo

decoding. The MAP algorithm consists of a forward and a backward recursion and

is applied on a block of N received symbols corresponding to a trellis with a finite

number of stages N. Once the APP values have been obtained for the desired quan­

tity, a hard decision is made by selecting the quantity with the highest probability.

However, in turbo decoding, hard decisions are not made until the iterations are

complete so that soft information can be exchanged between constituent decoders.

It can be observed from equation (2.1) that the APPs calculated by the MAP al­

gorithm of the constituent decoders are those of the message bits, P[uk = l|y] and

'Since the encoder is systematic, the systematic coded sym bol csk is the same as the information
symbol uk

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.5: Decoding Algorithms fo r Turbo Codes

P\nk = 0|y]. The APPs can be expressed as

PWk = *|y] = ^ s k+i) i e { 0 , 1 } (2.4)
sk

where the term Tk(Sk —*■ Sk+1) is the probability of each valid state transition given

the noisy channel observation y. Using the definition of conditional probability this

term can be expressed in the following manner:

h (S k f r+ t) - P[Sk -> Sk+1 |y] = ■̂ +1 ’^ • ' (2‘5)

As will be shown later, the denominator of the expression in equation (2.5) is a

constant and cancels out, therefore, the numerator is more commonly used instead

of ’kifSk —> Sk+i). Applying properties of the Markov process, the numerator can

be partitioned into the following components:

P[Sk -> S*+i,y] = A k(Sk)ri{Sk -+ Sk+])Bk+l(Sk+l), (2.6)

where

Ak(Sk) = (2.7)

= P[Sk+l,yk\Sk] (2.8)

Bk(S,t) = P[(yk+\, ■ ■ ■ ,y^v_i)|5fc-|-i]. (2.9)

The branch metric associated with the transition Sk —> Sk+1 is F(5^ —> Sk+1),

and it is determined by properties of the channel and the encoder. It is expressed as

T(S* ^ Sk+1) = P[uk]P[yk\xk], (2.10)

where uk and xk are the source bit and the channel input bit associated with the state

transition Sk —> Sk+\. Note that if the state at the kth interval is not connected to the

state at the next time interval, then the above probability is zero. In equation (2.10),

the first term on the right hand side is a priori information, and the second term is

a function of the modulation and channel model.

The probability A(Sk) is calculated according to the forward recursion

A(Sk) = £ A ^ - O r o s * - ! ^ Sk). (2.11)
Sk l

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

Likewise, B(Sk) is computed according to the backward recursion

B(Sk) = £ B(Sk+l)T(Sk -> Sk+l). (2.12)
S k + l

Once the APP of each state transition P[Sk —► Sk+\ |y] is found, the message bit

probabilities can be computed according to

^ k = i | y] = £ m ^ +1|y], (2.13)
A

and

P[uk = 0 \y] = Z P [S k ^ S k+l\y] (2.14)

where Si = {Sk —*■ Sk+\ : uk = 1} is the set of all state transitions associated with

a source bit of 1, and So = {S* —> Sk+1 : uk — 0} is the set of all state transitions

associated with a source bit of 0. The log-likelihood ratio then becomes

A - 1 ZsiMSk)nsk ^ s k+1)B(sk+1)
k n 'LSoA(sk)r (sk - * • sk+l)B(sk + l) '

Note that the term P[y] in equation (2.5) cancels out in the calculation of the ratio,

and therefore it can be ignored in all calculations.

The MAP decoding procedure can be broken down into the following steps:

a) Initialize A according to

A(5o) = { o ! f o J s o # 0 “ dA(S,) = 0 V k / 0 (2-16)

b) Initialize time index variable k = 1

c) Compute T; and Ak for all states Sk according to equations (2.10) and (2.11)

d) Increment k

e) Repeat steps c) and d) until k = N

f) Initialize B according to

B< « = { o ; S w O a „ d B «) = 0 V M A ' (2.17)

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.5: Decoding Algorithms fo r Turbo Codes

g) Initialize time index variable k — N — 1

h) Compute F, and B], for all states Sk according to equation (2.12)

i) Decrement k

j) Repeat steps h) and i) until k = 0

k) Compute the log-likelihood ratio according to

. . . , E s.w E s. r , (s t ^ s t+ ,)-A (st) . s (s t+1)

2.5.2 Log-MAP and Max-Log-MAP Algorithms

The MAP algorithm is considered to be the optimum SISO decoding algorithm

for minimizing the bit error rate when decoding a constituent code within a turbo

code. However, the numerical representation of probabilities and the large number

of multiplications make straightforward use of this algorithm unsuitable for prac­

tical implementation in both hardware and software for embedded systems. The

computational cost of the MAP algorithm can be alleviated by performing the en­

tire algorithm in the logarithmic domain, rather than waiting until the last step to

take the logarithm of the likelihood ratio. The main benefit of operating in the loga­

rithmic domain is that multiplication becomes addition. There exists one drawback

when working in the log domain: the arithmetic operation of addition becomes

more complex as can be observed in the Jacobian logarithm.

\n{ea + eb) = max(a,b) + ln (l + ex p (—\b — a |))

= max(a,b) + f c(\b — a\) (2.19)

The above expression suggests that addition, when performed in the log domain,

becomes a maximization operation followed by a correction function / c(). How­

ever, it is important to note that when a and b are not close in value, the result of the

correction function is close to zero. Therefore, a usable approximation to the above

expression is

In(ea + eb) m max(a,b). (2.20)

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

This approximation is the basis for the Max-Log-MAP algorithm, one of the

two versions of the MAP algorithm that operate solely in the log domain [26], with

the other one being the Log-MAP algorithm. The two algorithms differ in how they

compute addition in the log-domain. The Max-Log-MAP approximates addition as

a maximization operation as per equation (2.20). It is this simplification that makes

the Max-Log-MAP algorithm sub-optimal as is the case for SOVA. The Log-MAP

algorithm computes addition as a maximization followed by a correction as per

equation (2.19). This new operation is commonly referred to as max*(-).

The operation of the algorithm in the log domain results in new definitions for

the branch and state metrics. Letting y(S/c —> S^+i) denote the natural logarithm of

T(Sk —> Sk+1), one obtains

The calculation of the branch metric is greatly simplified when one considers the

particular case of binary transmission, antipodal modulation with signal amplitudes

such that Xk £ {A,—A}, and the AWGN channel model. In such a case, the sys­

tematic and parity inputs to the SISO decoder are likely to be in the form of log-

likelihood ratios and not probabilities. In [22] it is shown that the input LLRs take

on the following form

where / refers to the symbol being either the systematic or the parity symbol. It

is shown in [20] that the branch metric calculation reduces to

max*(a,b) = max(a.b) + f c(\b — a\) (2 .21)

y(Sk -> Sk+1) = XnP[uk]+\nP\yk\xk\. (2 .22)

(2.23)

y (Sk - * S k+1) = \nP\yk\xk) + l n ^ ^ — ^

= ^ > - [y l uk + y Pk - ck } + L a,

(2.24)

where

a 2 is the noise variance.

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.5: Decoding Algorithms fo r Turbo Codes

La is the a priori LLR.

c{ is the coded parity symbol that corresponds to the information symbol

Uk during the state transition Sk —> Sk+ \ ■

The definition of the forward and reverse state metrics in the log domain can be

stated in the following manner:

where A is the set of states Sk~ l with connections to state Sk, and B is the set of

states Sk+1 connected to state Sk. Note that when the Max-Log-MAP algorithm is

utilized, max*(a,b) becomes simply max(a,b).

Once a (Sk) and (3(5*) have been found for all states in the trellis, the LLR is

calculated using the following equation:

The operation of the Log-MAP and Max-Log-MAP algorithm proceeds with

the forward and backward recursions as described for the MAP algorithm, except

that these new initializations are used:

Considerable research effort has been dedicated towards finding low-complexity

approximations to the correction function of the max* operation. The most widely

used are: a) look-up tables (LUTs) as described in [27], with [26] reporting excel­

lent results with 8 stored values and \b — a\ ranging between 0 and 5; b) the thresh­

old and constant approximation presented in [28] and which is commonly known

ln A (^) = a(Sk) = max * [a(S*_i) +y(s*-i -»• s*)] (2.25)

and

ln£(S*) = m) = max * [P(S*+1) +y(Sk - S*+ i)] (2-26)
sk+i£B

Afc — max Y [a(5yt) + y(Sk —► Sk+i) + p(Sjt+i)]
s i

- max * [a(S*) + y{Sk -»• Sk+1) + (3(Sk+1)].
So

(2.27)

0, if 5b = 0
—oo. otherwise (2.28)

0, if S/v = 0
—oo otherwise (2.29)

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

as constant-Log-MAP\ and c) the linear approximation of Cheng and Ottoson [29]

which will be referred to as linear-Log-MAP algorithm. These approximations are

ideal for fixed-point software and VLSI implementations of the Log-MAP algo­

rithm. The plot of Figure 2.8 compares the exact correction function against the

constant and linear approximations.

0.7
— e x a c t fc (|y - x |)

— c o n s t a n t a p p ro x im a tio n
— l in e a r a p p ro x im a tio n

0.5

0.4

0.3

0.2

4.50.5 3.5

Figure 2.8: Correction functions for Log-MAP, constant-Log-MAP and linear-Log-MAP
algorithms.

With respect to the relative performance of the approximations, the work in

[30] shows that the performance of the constant-Log-MAP can be approximately

0.025 dB worse than the exact Log-MAP when evaluating an AWGN channel model

over a range of SNR levels and with various frame sizes. In contrast, the linear-

Log-MAP shows performance that is almost indistinguishable from the Log-MAP

algorithm, with a performance within 0.01 dB from that of the exact computation.

2.6 Data Parallel Turbo Decoder Implementations

This section discusses previous work where it was found that performance improve­

ments are obtained by taking advantage of the parallelism available in the MAP

based trellis decoding algorithms.

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.6: Data Parallel Turbo Decoder Implementations

2.6.1 Software-Based Decoders

It was previously stated in section 2.1 that newer, high-performance microproces­

sor and DSPs include enhancements to their instruction set by incorporating SIMD

instructions. The implementation of a 3GPP turbo decoder described in [3] takes

advantage of the SIMD features of the SP-5 SuperSIMD™ DSP core from 3DSP

Corporation to parallelize the computations within a frame to decode a single frame

four times faster than the 32-bit fixed-point superscalar implementation for both the

Max-Log-MAP and Log-MAP algorithms. The SIMD features of the SP-5 allow

the 32-bit operational units of the DSP to perform a maximum of four 8-bit com­

putations simultaneously. Their results show that with the 8-bit SIMD approach,

the data rate obtained with 8 decoder iterations is 488 kbps for the Max-Log-MAP

algorithm and 284 kbps for the Log-MAP algorithms when the SP-5 is operating at

250 MHz. Results were obtained through simulation on a cycle accurate simulator.

Another example of SIMD style operation of a turbo decoder implementation

is reported in [4]. This particular implementation uses the SIMD instructions of a

Texas Instruments TMS320C6416 DSP to perform decoding of four independent

trellises using the Max-Log-MAP algorithm. Just as in the case of the SP-5 imple­

mentation, 8-bit fixed-point SIMD operations were performed in the decoding al­

gorithm. However, their particular decoder relies on an adapted turbo code suitable

for efficient parallel implementation. This means that the code is not necessarily

a conventional convolutional turbo code, and it also requires a new interleaver de­

sign. Nevertheless, the data rate obtained with this implementation is 160 kbps with

8 decoder iterations and the DSP operating with a clock rate of 600 MHz.

A third architectural study is described in [31] where the performance of a Very

Long Instruction Word (VLIW) DSP (ST 120 from ST Microelectronics) is com­

pared against that of an application-customized RISC core. It is stated that the

ST 120 DSP supports SIMD style operation by packing two 16-bit data elements

into a 32-bit register. The data throughput in this case was measured to be 540 kbps

for the Max-Log-MAP algorithm and approximately 200 kbps for the Log-MAP

algorithm with 5 decoder iterations and the clock rate of the ST 120 set to 200 MHz.

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

2.6.2 VLSI Implementations

Hardware implementations of turbo decoders rely mostly on the duplication of the

functional units. This is the case for the work described in [32], where the Add-

Compare-Select unit is replicated eight times to match the eight states of the trellis

sections. In this manner, the forward and backward state metrics are computed

simultaneously for a trellis stage. Another characteristic of hardware implementa­

tions is that, whether on-chip or off-chip, they require simple control from a DSP

or microprocessor to handle data transport of input and output through an I/O inter­

face. The main advantage of dedicated hardware is that much higher data through­

put can be achieved with lower clock rates. For example, the authors of an imple­

mentation reported in [32] claim that it achieves a data rate of 2.1 Mbps at 42 MHz

when prototyped on a FPGA, and that it could operate at 92 MHz when synthesized

in a 0.25qm standard CMOS process.

2.7 Fixed-Point Concepts

Fixed-point data types are appealing for the development of digital signal process­

ing algorithms as they can be used to perform fractional arithmetic with integer val­

ues. When considering hardware implementation, the use of fixed-point data types

not only minimizes the amount of hardware needed to implement the functionality

but also results in cost and power savings when compared to their floating-point

counterparts.

2.7.1 Number Representation

Fixed-point numbers are characterized by their word length in bits, radix point, and

whether they are signed or unsigned. They are a way of representing the integral

and fractional bits of a real-valued quantity in an integer value. Figure 2.9 shows a

common representation of a binary fixed-point number (either signed or unsigned)

where

• bj are the binary digits (bits).

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.7: Fixed-Point Concepts

• wl is the word length in bits.

• The most significant bit (MSB), represented by location &w/- i takes the

role of the sign bit for signed values.2

• The bits to the right of the radix point are the fractional bits.

• The bits to the left of the radix point form the integer word length (IWL).

h-wl— 1 b-wl-2 h 64 h 2̂ h b0
------- 1l-------

MSB LSB

radix point

Figure 2.9: Binary fixed point number representation.

The radix point is used in the scaling of fixed-point numbers. For the special cases

of integer only or fractional only number, the radix point is preset. In the case of

signed or unsigned integer data, the radix point is assumed to be just to the right

of the least significant bit (LSB). For unsigned fractional numbers, the radix point

is to the left of the MSB, whereas for signed fractional data, it is just to the right

of the MSB. In the more generalized case the location of the radix point is usually

determined by the developer(s).

It is important to keep in mind that in performing arithmetic operations such

as addition or subtraction, the adder or ALU hardware uses the same logic circuits

regardless of the values of the scale factor. In other words, the hardware does not

know about scaling. The arithmetic-logic-units perform signed or unsigned binary

arithmetic as if the radix point was to the right of bo.

Fixed-point numbers are encoded by applying scaling and quantization. The

most common method of scaling is Radix Point-Only Scaling. With this method of

scaling, the fixed-point numbers are encoded as follows:

p ^ p 2 —f raction length ^ q (2.30)

2Signed fixed-point numbers are usually represented using tw o’s complement notation.

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

where

R is an arbitrarily precise real-world value.

R is the approximate real-world value.

Q is an integer that encodes R?

The fraction length (FL) is equal to the number of fractional bits.

The real-world value R is represented by the weighted sum of the bits in the encoded

integer Q. The following expression demonstrates this concept for the case of a

signed fixed-point quantity:

wl—2
£ 2~fraction length _ -bwi-!2wl~x + £ bj2‘ (2.31)

=o

Two other important concepts to consider when it comes to the representation of

fixed-point numbers are Range and Precision. The range is the span of numbers that

can be represented for a given fixed-point word length. The range of representable

numbers for a two’s complement fixed-point number of word length wl is illustrated

in Figure 2.10. The precision of a fixed-point number is the difference between

2w(-i 0 2wl~1 — 1

negative numbers positive numbers

Figure 2.10: Range of representable numbers .

successive values that are representable, which is equal to the value of its least

significant bit. The value of the least significant bit, and therefore the precision of

the number, is determined by the number of fractional bits.

2.7.2 Arithmetic Operations Considerations

The development of algorithms where fixed-point arithmetic is used must include

consideration of the following important factors.

3The quantization value Q is the binary number stored in memory and used by the hardware.

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 2.7: Fixed-Point Concepts

Overflow

The addition of two sufficiently large negative or positive numbers can

produce a result with more bits on the most significant side than are avail­

able for representation in the IWL.

Rounding

Also referred to as Quantization. The result of any operation on a fixed-

point number is typically stored in a register that is longer than the num­

ber’s original format. Rounding or quantization is used to determine what

happens to the least significant bits if more bits of precision are required

than are available when the result is put back into the original format.

Several methods to apply rounding/quantization and to handle overflow conditions

are described in detail in [33].

The operations of addition and subtraction for fixed-point numbers are the same

as for integers. Before the operation, care must be taken so that the fixed-point

numbers have the same number of fractional bits; in essence, the radix point of the

operands must be aligned. Overflow and underflow that may result from addition

or subtraction of sufficiently large (negative or positive) numbers can be handled by

saturation.

The multiplication of two signed fixed-point numbers will result in a number

with the following format:

A(IW Lh FLi) x B (IWL2,FL2) = C{IWU + IW L 2 + l ,F L 1 + F L 2). (2.32)

As can be observed in (2.32), the number of integer bits in the result is the sum of

the integer bits in the two operands with one additional bit representing an extra sign

bit. Also the number of fractional bits in the result is the sum of the fractional bits

in the two operands. Depending upon the requirements for accuracy in the output,

the number of fractional bits can be truncated after rounding. Different rounding

techniques are available to ensure accuracy in the results after the truncation of

fractional bits. A commonly used rounding method is rounding to positive infinity,

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2: Background and Fundamentals Castellon

where the most significant bit of the bits that are removed is added to the remaining

bits [33].

2.8 Summary

The vector processing capabilities of SIMD computers and their ability to exploit

spatial/data parallelism by using multiple processing units can result in compu­

tational performance improvements when targeting digital communication algo­

rithms. PIM-style architectures can also provide benefits such as reduced power

consumption by reducing the amount of off-chip data transfers. The SIMD com­

puter selected to execute the parallel algorithm developed in this research project is

the Array Processor found in Atsana Corporation’s J2210 System-on-Chip. A brief

description of the hardware and software components of the development platform

was included for future reference.

Turbo decoding is the target application for SIMD implementation in this thesis,

and details of the decoding algorithms used by the constituent SISO decoders were

described in section 2.5. Sample turbo decoder implementations that exhibit a small

degree of data parallelism were presented to provide background to previous work

in this area.

Finally, fundamental concepts about fixed-point number representation and fixed-

point arithmetic operations have been explained since practical, real-time turbo de­

coder implementations are likely to use fixed-point arithmetic.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Fixed-Point Decoder Implementation

Floating-point precision is usually assumed in the implementation of software based

turbo decoders in a research setting in order to better handle the numerical represen­

tation of quantities in the decoding algorithms. However, decoders used in real-time

embedded applications are likely to be implemented using fixed-point arithmetic.

This is also true for hardware implementations with FPGAs and VLSI technologies.

For these decoders to be efficient and meet the demands of high data rate systems,

they require low-complexity algorithms and small word sizes. The implementation

of such a decoder is described in this chapter.

The main objective of a fixed-point implementation is to minimize the fixed

word length so that the same integer range and fractional precision is utilized for

similar quantities throughout the decoding algorithm.

Applying the idea of early saturation, where less bits are allocated to the fixed-

point representation of the extrinsic information as compared to other variables,

helps the fixed-point turbo decoder implementation to continue to converge with

every iteration when no stopping criteria are used.

High level programming languages, such as C and C++, commonly used for em­

bedded firmware development, provide integral data types that do not allow devel­

opers to specify configuration parameters to resemble a fixed-point representation.

As described previously a fixed-point number is characterized by its word length

in bits, the type of sign encoding, and the location of the radix point which in turn

determines the fractional precision (number of bits to the right of the radix point)

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

and the integer word length (IWL). A fixed-point data type has been developed us­

ing the C++ programming language to help determine the impact that the IWL and

fractional word length (FWL) have on the accuracy and BER performance of the

fixed-point turbo decoder implementation. The concepts used in the development

of the fixed-point data type have been borrowed from similar but more elaborate

implementation such as the ones used in the SystemC [33] and IT++ [34] libraries.

Limitations of this fixed-point data type are:

• Saturating arithmetic, where the result of an arithmetic operation is clamped

to the most positive or negative representable value, is the only overflow

handling mode.

• Rounding to infinity is the only quantization mode available.

• Limited precision is used. The word length of the result of any operation

or expression is not allowed to exceed 16 bits.

Details of the definition and implementation of the fixed-point data type are in­

cluded in section A .l of Appendix A.

This chapter begins with the description of the turbo code used in the UMTS

specification. Working with a concrete turbo code makes development and evalu­

ation of the turbo decoder simpler. The following sections include the description

of the fixed-point turbo decoder architecture, details of and simplifications in the

SISO decoding algorithm of the constituent decoders, and section 3.4 covers details

of the finite precision analysis. Simulation results are summarized in section 3.5.

3.1 The UMTS Turbo Code

The development of the turbo decoder discussed in this thesis targets a specific

turbo code in order to avoid the many factors that play a role in the performance

of these codes. Such factors include: the generator polynomials of the constituent

encoder, interleaver design, frame size, code rate (directly related to the puncturing

mechanism), and trellis tei'mination. The turbo code selected for the development

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.1: The UMTS Turbo Code

described in this thesis is the turbo code used by the Universal Mobile Telecom­

munications Systems (UMTS). The most important parameters that describe the

UMTS turbo code are listed in Table 3.1.

UMTS Turbo Code Parameters
constraint length 4
feed-forward polynomial 150
feed-back polynomial 130
number of data bits N 40 < /V < 5114
code rate R 1/3
interleaver type Prime Block Interleaver

Table 3.1: UMTS Turbo code Parameters

The UMTS turbo encoder is depicted in Figure 3.1. The data is encoded by

the first (upper) encoder in its natural order, and by the second encoder after being

permuted by the interleaver. The interleaver is a matrix where the number of rows

and columns depends on the size of the data frame. The scrambling of the data is

performed by a set of intra-row and inter-row permutations in accordance with an

algorithm that is described in the specification [2].

4

Constituent encoder 1

Uk
Input

Constituent encoder 2Prime Block
Interleaver

Figure 3.1: UMTS turbo encoder.

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

As shown in Figure 3.1, the UMTS turbo encoder also employs trellis termina­

tion by forcing both encoders back to the all-zero state at a cost of reduced code

rate R. The two switches are in the up position until the end of the data frame, at

which time they get thrown to the down position. Because the state of the two RSC

encoders will usually be different after the data has been encoded, each encoder

then independently generates the tail bits required to terminate itself. The tail bits

are transmitted at the end of the encoded data frame.

3.2 Fixed-Point l\irbo Decoder Architecture

The operation of the turbo decoder is described using the notation of Fig. 3.2, with

a data frame of size N. Throughout the description of the operation of the turbo

decoder it is assumed that the decoder operates on unsealed channel symbols y*

and that the operations are performed in the logarithmic domain. This assumption

will be validated in section 3.3.1. The role of the “Early Saturation” block will be

(7. 2)

-1

Xk

Early
Saturatior

Early
Saturatior

Additive SISO

Decoder #1

Additive SISO

Decoder #2

Figure 3.2: Fixed-Point Turbo Decoder Block Diagram.

ignored for now, but its relevance to the correct operation of the turbo decoder is

discussed in section 3.4.4. The quantities Le\(x^) and Le2 (xk) are the extrinsic infor­

mation generated by constituent decoder #1 and constituent decoder #2 respectively.

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.2: Fixed-Point Turbo Decoder Architecture

They become a priori information for the corresponding subsequent constituent de­

coder. Prior to the first iteration, Lca {xk) is initialized to zero, because constituent

decoder #2 has not yet acted on the data. After each complete iteration, the values

of Le2 {xk) are updated to reflect beliefs regarding the data propagated from decoder

#2 back to decoder #1. Decoder #1 takes into account the extrinsic information

from decoder #2 simply by adding Le2 {xk) to the received systematic channel ob­

servation y sk. This is considered sufficient because of how the branch metrics are

computed in equation (2.24). The result is a new variable L^a+^ (xk) that combines

systematic data and extrinsic information. The other input to decoder #1 is the se­

quence of channel symbols yk 1 that correspond to the parity bits from encoder #1.

The output of decoder #1 is the LLR A0i (x^), where 1 < k < N since information

for the tail bits is not shared with the other decoder.

The extrinsic component of the output of decoder #1 is isolated by subtracting

L\a+S) (xk) from K>\ {xk)• The result is denoted Le\ (x^) which is then combined with

the received systematic channel symbols ysk to form a new variable L^a+^{xk), just

as was done to generate L\a+S) (xk) • The inputs to decoder #2 become the interleaved

version of Iya+Ŝ (tO and the channel symbols that correspond to the parity bits of

encoder #2. The output of decoder #2 is the LLR A02 (xk), 1 < k < N, which is

deinterleaved to form A 0 2 (jq j. The extrinsic information Le2 (xk) is calculated by

subtracting L^a+^(xk) from A„2 Dy) before it is fed back to be used by decoder #1

during the next iteration.

Once the iterations have been completed, a hard bit decision xk is generated

using A„2 {xk) according to the rule that i/. = 1 when A.,,2 (xy) > 0 and .% = 0 when

h-oiixk) ^ 0-

It is important to note that the architecture of this turbo decoder requires that the

entire data frame has been received before proceeding with the decoding. There­

fore, it is necessary that there exists a large enough buffer to store the received

systematic and parity channel observations as well as the tail bits.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

3.3 Simplification of Decoding Algorithm

The first step in the implementation of the proposed turbo decoder consists of the

simplification in the decoding algorithm used by the constituent decoders. Once the

algorithm has been defined, the effects of finite-precision arithmetic on the opera­

tion and accuracy of the decoder are considered.

3.3.1 Log-Add Kernel Approximation

As mentioned previously, the Log-MAP algorithm operating strictly in the loga­

rithmic domain addresses most of the implementation issues associated with MAP

decoding. However, the log-add kernel introduced by the Log-MAP algorithm still

represents a problem. Recall from equation (2.21) that the log-add kernel consists

of a maximization operation with the addition of a correction function. Setting the

correction term to zero as it is done in the Max-Log-MAP algorithm results in a

simple implementation but at the expense of approximately 0.5 dB loss in coding

gain. The use of LUTs to store the correction function has been reported to result

in performance that approaches that of the Log-MAP algorithm [27] [26], but it has

been argued that it may not be the best suited approach for the emerging global 3G

mobile communication systems [29]. For hardware based solutions such as fixed-

point ASIC implementations, the impact of LUTs is increased gate count because

parallelism may require duplicating the table. Furthermore, the LUT will likely

require very fast access times in a turbo decoder, and the implementation of high­

speed memory circuits for this purpose may be too expensive. In a software-based

decoder, the non-sequential memory accesses that occur from indexing can result

in pipeline stalls that increase the execution time [30].

The Linear-Log-MAP algorithm described in [29], where the non-linear correc­

tion function is approximated as a linear function, was considered as a potential

candidate for the implementation considered in this thesis. However, it was deter­

mined that it is computationally expensive when one considers the possible use of a

SIMD array processor to execute the algorithm. The constant-log-MAP algorithm

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.3: Simplification o f Decoding Algorithm

of Gross and Gulak [28] was instead chosen as a reasonable approximation for the

calculation of the correction factor of the log-add kernel. The constant-log-MAP is

characterized by two parameters as indicated in equation (3.1)

ln(e* + <?>’) - max(x, y) + j ® * J < ^ , (3• 1)

where T is some predefined threshold. The analysis performed in [30] shows that

values such as C = 0.5 and T — 1.5 provide near-optimal results over a range of

frame sizes and channel conditions.

It is important to note that even though the approximation of the constant-Log-

MAP algorithm is equivalent to a LUT with two entries, its complexity can be

simplified by realizing that the required conditional operations in software or the

multiplexors in hardware are trivial to implement.

Recall that the received channel symbols are scaled by the channel reliability

factor Lc prior to being sent to the decoder. This new quantity will be denoted

as A*. The scaling ensures that the channel observation is compatible with the a

priori and extrinsic components of the a posteriori LLR. From an implementation

perspective, as explained in [29], the non-linear correction function f c{-) of the log-

add kernel is the only operation in the Log-MAP algorithm that requires the exact

magnitude of the quantity Xk- The other two operations (maximization and addition)

are scale-invariant. In fact, if Max-Log-MAP was used as the decoding algorithm,

the operations of the algorithm could easily be performed on unsealed soft values

because the channel and noise estimates are not required. On the other hand, for

turbo decoding which uses the Log-MAP algorithm to operate on the unsealed soft

values y\, the use of the following soft combiner is required.

max*(y\,y2) = ~m ax*(X \,X 2)
L>c

= max(yi,y2) + ~fc(Lc\y] — A2 1) - (3.2)

This new definition of the max* operation has been verified in simulation with a

floating-point implementation of the Log-MAP algorithm where the exact calcula­

tion of the correction factor is performed.

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

Following the idea of the modified soft combiner, the constant-Log-MAP algo­

rithm can undergo a slight modification. Instead of using the procedure of (3.2)

every time that max* is invoked, the parameters C and T of the constant-Log-MAP

can be scaled by the reciprocal of Lc when a change in SNR is detected. The scal­

ing of C and T removes their constant property, however, assuming that the SNR is

constant over the duration of a frame, they behave as constants over each frame.

From a system level point of view, prior to decoding each frame the channel

estimator would provide an estimate of the reciprocal of Lc to the decoder; the

decoder would then use the estimate to update the values of C and T as long as

there is a recognizable change in value when compared to previous estimates.

3.3.2 Normalization of State Metrics

The recursive nature of the computation of the CL(Sk) and P (S j t) state metrics leads to

the almost monotonic increase of their values as the calculations proceed through

the trellis. It is common practice to normalize the value of the state metrics at

each trellis stage before proceeding to the next stage. A conservative normalization

method is applied for the implementation of the constituent decoders in this design.

Normalization consists of subtracting a number which is constant with respect to all

the states at the F h trellis stage. The constant value selected is the maximum value

among all the states, such that

where a(5*) and P(S*) are used for subsequent computations. The use of normal­

ization helps to ensure that the state metrics do not overflow. Adding a constant to

all a(Sjt) or P(5*) for a given k has no influence on the soft output since the constant

eventually cancels out [20]. Other normalization methods are described in [35] and

[36], Note that the value of the normalized metrics is at most zero, therefore, it is

possible to ignore the sign and treat these quantities as unsigned values in future

operations. The design choice was made to maintain a two’s complement represen-

a(Sk) = a(Sk) - m a x a (^) ,

P(S*) = P(S*)-m axp(S*),

(3.3)

(3.4)

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.3: Simplification o f Decoding Algorithm

tation so as to remain consistent with the representation of other variables (such as

the branch metrics) involved in the decoding procedure.

3.3.3 Backward Recursion Initialization

The tail bits of the received data frame do not include any information bits; they

were simply used to return the constituent encoders back to the all-zero state before

encoding a new data frame. Therefore, it is not necessary to compute LLR values

for these bits. By inspection of the trellis tail, as seen in Figure 3.3, it is observed

that it is possible to perform a short backward recursion only on the tail bits to gen­

erate initialization values for the P state metrics that can replace the initialization

described by equation (2.29). Another important observation is that these initializa­

tion values remain constant throughout all the iterations of the turbo decoding loop

for any given frame, and therefore, it is only necessary to calculate them once. The

approach used in this implementation is to compute the backward recursion initial­

ization values prior to performing turbo decoding of each received frame. In this

manner, each constituent decoder initializes the backward recursion with P values

that were computed with their corresponding tail bits.

N N + l N+2 N+3

- \j

s7 • ' O O O

Figure 3.3: Trellis tail for U M T S turbo code.

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

3.4 Finite Precision Analysis

When designing the constituent decoder based on finite-precision, one faces sev­

eral issues related to the arithmetic of fixed-precision numbers. The most relevant

concerns are:

1. The integer representation of the LLRs, which are inherently real

numbers.

2. The internal precision of the decoder arithmetic operations.

As stated previously, one of the design goals for this implementation is to use the

same number of fractional bits (fractional precision) for all the quantities that take

part in the decoding algorithm. This design constraint simplifies the arithmetic

operations by forcing the radix point of all operands to be aligned, and so shifting

operations are avoided.

3.4.1 Quantization Method

Our design approach consists of quantizing the unsealed soft-values y* received

from the demodulator and then operating strictly with fixed-point quantities. Based

on the concepts covered in section 2.7, fixed-point values are presented in the format

(.nw[,nfwi), such that nwi is the total number of bits in the entire word length, and

tifwi represents the fractional part of the value. The IWL is determined by:

The removal of one extra bit to obtain n,vv/ accounts for the fact that the most sig­

nificant bit in nwi is the sign bit. All the quantities use signed two’s complement

representation. It is obvious that if nwi is held constant, then for larger n jwi higher

fractional precision can be maintained while the dynamic integral range that can be

represented is smaller. On the other hand, if n fwi is reduced, the dynamic integral

range is larger at the expense of reduced fractional precision. The range of values

for a given fixed point format is the following:

IWL — ftiwi — nw{ n fw, 1 (3.5)

— 2~ n f w l (3.6)

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.4: Finite Precision Analysis

The quantization or rounding mode selected for this design is rounding to in­

finity. In this mode, the soft-values from the channel are first scaled using binary

point-only scaling and then rounded towards positive infinity if positive or negative

infinity if negative. The quantization operation is performed according to equation

(3.7)

y l = [2 nf-l -yk ± 0 .5 \ , (3.7)

where [rj refers to the integer portion of the argument r, and the + sign or - sign is

used depending on whether the quantity y* is positive or negative.

3.4.2 Effect of Fractional Length

All experiments were conducted where the simulator employed binary phase shift

keying (BPSK) modulation and an AWGN channel model to simulate transmission

of the coded symbols.

Experiments were conducted using a single constituent decoder in order to eval­

uate the impact of the fractional word length (the number of fractional bits in the

fixed-point word) on the BER performance of the turbo decoder. This allowed

to isolate the algorithm implementation for the SISO decoders. This decision was

based on the observation that the constituent decoder calculates the LLRs, while the

structure of the turbo decoder concentrates on the exchange of extrinsic information

between the constituent decoders.

Analysis of the effect of n fw[was performed through simulation by using a

fixed-point number representation for all the variables in the decoding algorithm

such that nw[was set to the maximum value allowed by the fixed-point data type

while the value for n f wi was varied. These simulations also allowed validation of the

operation of the modified constant-Log-MAP algorithm described previously when

used to decode the RSC code of the constituent encoder. The BER performance

obtained for the different (nw/,n /w;) configurations was compared against that of a

floating-point baseline. Simulation results are displayed in Figures 3.4 - 3.6.

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

— f lo a tin g -p o in t p re c is io n
0 f ix e d - p o in t (16 , 0)
x f ix e d - p o in t (1 6 ,1)
* f ix e d - p o in t (16 , 2)r1̂

Figure 3.4: F ixed-point B E R perform ance with 0 < FW L < 2.

— flo a t in g -p o in t p re c is io n
0 f ix e d - p o in t (1 6 , 3)

o 1 0 '

Figure 3.5: F ixed-point B E R perform ance w ith F W L = 3.

Simulation results in Figure 3.4 clearly show that a minimum of two fractional

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.4: Finite Precision Analysis

— floating-point precision
* fixed—poirt (16.8)

c
g

— floating-point precision
> fixed-point (16, 5)

cr

(a) FWL = 5 bits. (b) FWL = 8 bits.

Figure 3.6: BER performance with unnecessarily long FWL.

bits are require to obtain performance that approaches that when using infinite pre­

cision such as with a floating-point decoder implementation1.

Figure 3.5 shows that by setting n fwi — 3 the results achieved are almost indistin­

guishable from those of the floating-point baseline. Finally, the results of Figure

3.6 are presented to indicate that increasing the number of fractional number of bits

to larger than three provides no further benefit to the BER performance that can be

achieved.

3.4.3 Density Evolution Analysis

When considering the iterative nature of the decoding procedure used in the decod­

ing of turbo codes, there exists one additional issue related to the finite precision

arithmetic of a fixed-point implementation. This has to do with the fact that the

value of the extrinsic information involved in the operation of the SISO decoders

grows as long as the iterations progress. This growth in value has a significant

impact in the number of bits that must be reserved for the IWL of the fixed-point

representation of the extrinsic LLR.

A different set of experiments was conducted where the floating-point model of

floating-point representation o f real-valued quantities approaches infinite precision as the num­
ber o f bits in the mantissa increases

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

the turbo decoder was used to conduct a density evolution analysis for the quanti­

ties involved in the iterative procedure, namely the output LLRs generated by the

constituent decoders and the extrinsic information exchanged between decoders.

Histograms are used to display the distribution of the different quantities as the it­

erations of the turbo decoding loop progress. The effect of the SNR level is also

investigated by comparing the results for Ef,/No = 0.6 dB and E^/Nq = 2.0 dB.

Figures 3.7 through 3.10 show the distribution of A oi(^), I%+S(xk), Kaixk) and

Ee.z(xk) f°r the case when the channel SNR is 0.6 dB; Figures 3.11 through 3.14

display distributions for the same quantities when the SNR is 2.0 dB.

—i-fTM
_ t0 - 8 -6 - 4 - 2 0 2 4 6 8 10 -25 -20 -1S -10 - 5 0 5 10 15 20 25

(a) 1 Turbo Loop iteration. (b) 3 Turbo Loop iterations.

TlTT^rTh-rTff
-40 -20 20 40 -40 -20 0 20 40 60

(c) 5 Turbo Loop iterations. (d) 10 Turbo Loop iterations.

Figure 3.7: Density Evolution of A0i(^-), E^/Nq = 0.6dB.

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

%
of

E

v
en

ts

%
D

f
E

v
e

n
ts

Castellon Section 3.4: Finite Precision Analysis

•6 - 4 -2

(L + L J

(a) 1 Turbo Loop iteration.

-20 -15 -10 10 15 20

(b) 3 Turbo Loop iterations.

(c) 5 Turbo Loop iterations. (d) 10 Turbo Loop iterations.

Figure 3.8: Density Evolution of L^a+ŝ (xt), Eb/No - 0,6dB.

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

%
of

E

v
en

ts

%
of

E

v
e

n
ts

Chapter 3: Fixed-Point Decoder Implementation Castellon

(a) 1 Turbo Loop iteration. (b) 3 Turbo Loop iterations.

20 40 60 80 -100 -60 -40 -20 20 40 60 80 100

(c) 5 Turbo Loop iterations. (d) 10 Turbo Loop iterations.

Figure 3.9: Density Evolution of Eb/No = 0.6dB.

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

%
of

E

v
en

ts

%
of

E

v
e

n
ts

Castellon Section 3.4: Finite Precision Analysis

(a) 1 Turbo Loop iteration.

5 10 15 20

(b) 3 Turbo Loop iterations.

-30 -20 -10 40 -50 -40 -30 -20 -1 0 0 10 20 30 40 50

(c) 5 Turbo Loop iterations. (d) 10 Turbo Loop iterations.

Figure 3.10: Density Evolution of L,a{xk), Eb/No - 0.6dB.

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

%
of

E

v
en

ts

%
of

E

v
e

n
ts

Chapter 3: Fixed-Point Decoder Implementation Castellon

-2 0 2 4 6

A «

10 -50 -4 0 -30 -20 -10 0 10 20 30 40 50

A «

(a) 1 Turbo Loop iteration. (b) 3 Turbo Loop iterations.

(c) 5 Turbo Loop iterations. (d) 10 Turbo Loop iterations.

Figure 3.11: Density Evolution of A„] (**), Eb/No = 2.0dB.

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

%
of

E

v
en

ts

%
of

E

v
e

n
ts

Castellon Section 3.4: Finite Precision Analysis

(L + L J
' s a2'

(a) 1 Turbo Loop iteration.

(L + L .)
' s a2 '

J j
10 -30

(b) 3 Turbo Loop iterations.

(Ls+y
(c) 5 Turbo Loop iterations. (d) 10 Turbo Loop iterations.

Figure 3.12: Density Evolution of L^a+S){xk), Eb/No - 2.0dB.

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

%
of

E

v
en

ts

%
of

E

v
e

n
ts

Chapter 3: Fixed-Point Decoder Implementation Castellon

(a) 1 Turbo Loop iteration. (b) 3 Turbo Loop iterations.

100 -80

(c) 5 Turbo Loop iterations. (d) 10 Turbo Loop iterations.

Figure 3.13: Density Evolution of £’/>/Mj = 2.0dB.

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

%
of

E

v
en

ts

%
of

E

v
e

n
ts

Castellon Section 3.4: Finite Precision Analysis

10 -40 10 20 30 40

(a) 1 Turbo Loop iteration. (b) 3 Turbo Loop iterations.

J .
50 -50 -40 -30 -2 0 -10 0 10 20 30 40 50

(c) 5 Turbo Loop iterations. (d) 10 Turbo Loop iterations.

Figure 3.14: Density Evolution of), Eb/No - 2.0dB.

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

Notice that for the lower SNR levels it takes more turbo loop iterations before

the LLR distributions start showing a more pronounced division between those that

estimate the data bit as it* = 1 and those estimating the data bit as w* = 0. 2

The plots from Figures 3.7, 3.9, 3.11 and 3.13 show that the absolute value

of the magnitude of the quantities A„i (jq.) and \ a i x k) may grow to greater than

80 when no constraints are imposed on the floating-point model. Based on these

observations, one can argue that a minimum of 7 integer bits in the fixed-point

word are required to represent the dynamic integer range of the quantities A0i (xC)

and A02 (aO f°r UP t0 ten iterations of the turbo decoder. Using the same criteria, a

minimum of 6 integer bits would be required for the representation of the extrinsic

information exchanged between constituent decoders. However, as it will be shown

by simulation results for the turbo decoder implementation presented in this chapter,

fewer bits can be used if saturating arithmetic is applied.

3.4.4 Early Saturation of Extrinsics

Preliminary simulation of the turbo decoder showed that unstable operation of the

decoder occurred when the extrinsic information, the quantities Le\ (x&) and Le 2 (xk),

were allocated the same fixed-point word length as the LLRs A0] (x^) and A0i (x^).

Using the same word length resulted in the variables (x&) and Fja+s-} (xk) even­

tually approaching the same saturation limit imposed by the fixed-point word length

as the constituent decoder output LLRs. Recall that these variables are used as in­

put to their corresponding constituent decoders and are subtracted from the output

LLR in order to isolate the extrinsic information. With both the input and out­

put variables having similar values in magnitude, sign reversals can result when the

extrinsic information is calculated. This sign reversal translates into errors being in­

troduced by the iterative decoding mechanism instead of reducing them. In this case

the BER performance of the decoder displays an oscillatory behavior, such that the

BER would drop as the iterations progress until both input and output LLRs would

2Recall that the sign o f the LLR is used to make the hard decision: LLR < 0 —>«*, = 0,
and LLR > 0 —> u* = 1.

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.4: Finite Precision Analysis

saturate and then the BER would escalate to a value similar to the one observed

after the first decoder iteration. These oscillations would repeat with a period equal

to the number of decoder iterations needed for the quantities to reach saturation.

It was then determined that this inappropriate behavior could be avoided by

forcing early saturation, implemented as the allocation of fewer bits in the fixed-

point word representation of the extrinsic quantities Le\ (xb) and Le 2 U>) to prevent

sign reversal. The decision to perform early saturation was validated by using the

floating-point decoder model and applying uniform soft quantization to the extrin­

sic variables. The results of simulations for several soft quantization ranges are

presented in Figures 3.15 through 3.18 for different iterations of the decoder.

Notice the abnormal behavior (not smooth transition) of the BER curves pre­

sented in Figures 3.15 through 3.18 at the 1.2 dB SNR point. This particular result

is attributed to methodology used in the simulations to estimate the BER perfor­

mance at a given SNR level. The SNR range O.OdB < Eb/ A'q < 1.8dB was divided

into three regimes where different number of bit errors are accumulated in each

region to estimate the bit error rate. The three regimes under evaluation were the

following:

Regime 1: O.OdB < Eb/N 0 < 0.4dB

Simulations were conducted until at least 5000 bit errors were recorded.

Regime 2: 0.6dB < Eb/N 0 < 1 .OdB

Simulations were conducted until at least 1000 bit errors were recorded.

Regime 3: 1.2dB < Eb/No < 1.8dB

Simulations were conducted until at least 100 bit errors were recorded.

The 1.2 dB point is a transition point where the number of bit errors collected is

reduced by an order of magnitude to shorten simulation times. The abrupt change

in simulation constraints and the randomness of the procedure leads to simulation

results not matching the expected behavior of the decoder.

A recommendation for future experiments is to set simulation constraints where

simulations will continue until a minimum number of bit errors and a minimum

55

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

number of frame errors are recorded.

— N o q u a n tiz a tio n
- x - 5 - b i t q u a n tiz a tio n

* 6 - b i t q u a n tiz a tio n
O 7 - b i t q u a n tiz a tio n

2 10

1 .40.60.2 0 .4

Figure 3.15: Early saturation o f extrinsics, 2 iterations.

— N o q u a n t iz a t io n
- x - 5 - b i t q u a n t iz a t io n

* 6 - b i t q u a n t iz a t io n
0 7 - b i t q u a n t iz a t io n

2 10 '

0 .4 0.60.2

Figure 3.16: Early saturation o f extrinsics, 4 iterations.

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bi
t

E
rr

or

R
at

e

Castellon Section 3.4: Finite Precision Analysis

— N o q u a n t i z a t io n
- x - 5 —b it q u a n t i z a t io n

-* 6 - b i t q u a n t i z a t io n
Q 7 - b i t q u a n t i z a t io n

0.6 0.80.2 0 .4

Figure 3.17: Early saturation o f extrinsics, 6 iterations.

— N o q u a n t iz a t io n
- x - 5 - b i t q u a n t iz a t io n

-*• 6 - b i t q u a n t iz a t io n
0 7 - b i t q u a n t iz a t io n

£ 10 '

in 10

0.60.2 0 .4

Figure 3.18: Early saturation o f extrinsics, 8 iterations.

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

Observe that early saturation of the extrinsic information has a greater impact

on the BER performance for a higher number iterations, and also that it is more

pronounced in the error floor region. In conclusion, it was determined that limiting

the fixed-point word length for the extrinsic variables to one bit less than the fixed-

point word length of the output LLRs was sufficient to avoid degradation in the

performance of the turbo decoder due to sign reversal during calculation of the

extrinsic information.

3.5 Fixed-Point Turbo Decoder Simulations

Simulations were conducted to evaluate the performance of the fixed-point turbo

decoder based on the modified constant-Log-MAP algorithm. The simulations were

only performed for the AWGN channel. Taking advantage of the results presented

in section 3.4.2, the fixed-point representation of all the quantities internal to the

SISO decoders as well as that of the quantities external to these decoders have two

fractional bits reserved within the finite word length. Simulations evaluate the BER

performance of the fixed-point turbo decoder implementation for a range of IWL.

Arithmetic operations and intermediate results use the maximum precision allowed

by the fixed-point data type. All simulations were performed with the frame length

set to 1024 bits.

3.5.1 BER Performance

Figures 3.19 through 3.22 display the BER performance for 2, 4, 6 and 8 decoder

iterations, and compare the results against the floating-point baseline. Fixed-point

word configurations evaluated are (6, 2), (8, 2) and (12, 2), where the first digit in

parenthesis indicates the word length nwi and the second indicates the number of

fractional bits n fwi. The error introduced during fixed-point arithmetic decoding

is the combination of two main sources: the quantization error associated with the

quantized soft values from the channel before the decoder, and the accumulated

errors resulting from saturation of the arithmetic operations inside the decoder. In

particular, a loss of precision is introduced by the clipping of the extrinsic LLR

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.5: Fixed-Point Turbo Decoder Simulations

values at the output of the constituent decoders. It was observed during simulations,

that allocating a number of bits greater than four to the integer range of the fixed-

point quantity resulted in better performance than when allocating the additional

bits to the fractional precision. When allocating an insufficient number of bits to the

integer part, the decoder performs satisfactorily for a limited number of iterations

(less than four), before the extrinsic information exchanged between constituent

decoders starts diverging. As a result the variables involved in the operation of

the finite precision turbo decoder are configured with the values of Table 3.2. The

word length (nwi) 8
fractional bits («/w/) 2
integer bits (niwt) 5
sign representation two’s complement

Table 3.2: Turbo D ecoder F ixed-P oint Word Configuration.

exceptions are Le\ (jc*) and Le2 ^) that use nwi = 1 and n-lwi = 4 while still keeping

the same number of fractional bits.

— f lo a tin g -p o in t
- x - f ix e d - p o in t (6 ,2)

■* f ix e d - p o in t (8 ,2)
O ' f ix e d -p o in t(1 2 ,2)

2 10 '

0.2 0.80 .4 0.6

Figure 3.19: F ixed-point Turbo D ecod er B E R perform ance, 2 iterations.

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3: Fixed-Point Decoder Implementation Castellon

— flo a tin g -p o in t
- x - f ix e d -p o in t (6 ,2)

* f ix e d -p o in t (8 ,2)
0 fix ed —p o in t(1 2 ,2)

•X

E 10 '

0.60.40.2

Figure 3.20: F ixed-point Turbo D ecoder B E R perform ance, 4 iterations.

 f lo a tin g -p o in t
- x - f ix e d - p o in t (6 ,2)

* f ix e d - p o in t (8 ,2)
0 f ix e d -p o in t(1 2 ,2)

2 10' N\

0.4 0.60.2

Figure 3 .21: F ixed-point Turbo D ecod er B E R perform ance, 6 iterations.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 3.6: Summary

— f lo a t in g - p o i n t
- x - f i x e d - p o in t (6 ,2)
• * • f i x e d - p o in t (8 ,2)

0 - f ix e d —p o in t (1 2 .2)

S 1 0 '

10"7

0.2 0.6

Figure 3.22: F ixed-point Turbo D ecoder B E R perform ance, 8 iterations.

3.6 Summary

The design, implementation and evaluation of a fixed-point turbo decoder for the

UMTS turbo code has been discussed in this chapter. Of particular importance is

the selection of the constant-Log-MAP algorithm for use in the constituent SISO

decoders. Slight modifications are applied to the decoding algorithm to be able to

work with unsealed soft channel observations. The effects of fractional word length

were examined by evaluating the performance of a constituent SISO decoder, and

results demonstrate that 2 fractional bits, with an 8-bit total word length, are suffi­

cient to obtain a BER that closely matches that of a floating-point implementation

over a range of SNR levels. Selection of the IWL was conducted through a density

evolution analysis. It was determined that while most quantities used in the iterative

turbo decoding algorithm require an IWL with at least 5 bits, additional clipping is

necessary for the extrinsic LLR information in order to help maintain convergence

as the number of decoder iterations increases. Evaluation of the fixed-point turbo

decoder shows that a fixed-point word configuration of (8, 2) results in a BER per­

formance that lies within 0.1 dB of the performance obtained with the floating-point

reference implementation for SNR levels between 0.0 dB and 1.8 dB.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Data Parallelism in Turbo Decoding

Exploring data parallelism in signal processing algorithms is of great interest be­

cause it can lead to a high degree of parallelism involving thousands of concurrent

data operations, resulting in high speed-up factors. This chapter presents the ex­

ploration of data parallelism in the decoding algorithm for turbo codes. The main

objectives are: (a) the identification of suitable parallel data structures that can be

distributed among the PEs of a SIMD computer, (b) the distribution of the parallel

data among the PEs, and (c) identification of a simple inter-processor communica­

tion network that will support the data transfer operations required by the parallel

algorithm.

The chapter begins by analyzing the structure of the trellis that describes the

turbo code. This analysis allows identification of the relevant parallel data sets and

the communications patterns used in the algorithm. An efficient mapping of the

trellis structure to SIMD hardware is presented in section 4.1, followed by an esti­

mation of the memory requirements per PE. A high level description of the parallel

algorithm, in particular the procedure for the computation of the state metrics, is

presented in section 4.2. Finally a brief discussion on the topics of parallelism and

efficiency is given.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4: Data Parallelism in Turbo Decoding

4.1 Turbo Code Trellis Analysis

Castellon

It was previously stated that PCCCs use simple RSC constituent codes with short

constraint lengths. Rate 1/2 encoder models are popular such as in the case of the

UMTS turbo code that was presented in the previous chapter. The trellis diagram

representation of the constituent code is a useful means of describing the turbo code.

Analysis of the trellis structure starts by examining its basic building blocks.

For a binary code alphabet, the branch transitions appear as butterfly pairs of the

form displayed in Figure 4.1. Here the dashed lines are for branches where the

systematic bit of the coded symbol cs — 0, and the solid lines are for the branches

where the systematic bit cs = 1. The branch metrics are represented by y and y such

k-l k k k+1
max*(a\pi] + 7, a\p2\ + 7)

max*(a[p2] + 7, a[pi] + 7)

max* + 7, /?M + 7)«-

max*{f}[s2] + 7, P[si\ + 7) *

(a) Log-M AP forward recursion (b) Log-MAP backward recursion

Figure 4.1: Trellis Butterfly with State Metrics.

that the bits of the coded symbol that correspond to the branch identified by y are the

negated version of the bits in the coded symbol corresponding the branch labeled

with y. This is a property of RSC codes, and when a rate 1/2 encoder is used, half

the butterfly pairs have coded symbols (00) and (11), and the other half have coded

symbols (01) and (10) [20].

Figures 4.1(a) and 4.1(b) show the forward and backward recursions respec­

tively for the calculation of the a and [3 state metrics in the Log-MAP algorithm.

It is shown that all the state nodes perform the same data operations of addition

and max* as the recursions progress. The branch metrics can be calculated ahead

of time for all trellis stages and stored in a buffer or, to reduce memory usage at

the expense of repetitive computations, they can be computed for each trellis stage

at every step of the recursions. Also recall that the likelihood of the information

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 4.1: Turbo Code Trellis Analysis

bit Uk = 1 and the likelihood of the information bit Uk — 0 for all states along all

time intervals, as well as the LLRs, can be computed during either the forward or

backward recursion, whichever is chosen to be the second recursion.

These observations point out the data that can be represented as parallel vari­

ables, and they are:

• The branch metrics y.

• The forward state metrics a.

• The backward state metrics p.

• The log-likelihood of — 1.

• The log-likelihood of = 0.

• The LLR values.

By realizing that the same data operations are repeated on different data sets due to

the recursive nature of the algorithm, data parallelism can be exploited if all these

operations can be performed concurrently on all the data sets. If only the individual

butterfly pairs are considered, the obvious solution would be to allocate a PE to

every state node of the trellis, and Figure 4.1 shows that data communication is such

that one node at time interval k needs data from two immediate predecessors at time

interval k — 1 during the forward recursion, and from two immediate successors at

time interval k + 1 during the backward recursion. Such a communication pattern

can be expressed as a point-to-point (shift) data routing operation.

However, the communication pattern gets more complicated when one consid­

ers the entire trellis sections as illustrated in Figure 4.2, where each trellis section

is made up of a number of butterfly pairs that depends on the number of states in

the column, and the number of states depends on the constraint length Kc of the

constituent code.

Even though the inter-processor data routing operating may be visualized as a

shift of data from states at interval k — \ or k + 1 to states at interval k, it is not a

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4: Data Parallelism in Turbo Decoding Castellon

k-l k k+1
700 .

711

.7 ll 710.

7oo

7oi

S4

710 7io

7oi

7oo

.700

S7 7 ii

Figure 4.2: Adjacent Trellis Sections for RSC Code of UMTS Turbo Code.

simple left-right/right-left data transfer. There exists a vertical offset for most of the

branches, and this vertical offset varies from butterfly pair to butterfly pair.

A potential solution would be to organize the PEs of the array processor as a two

dimensional grid with an inter-processor communication network that corresponds

exactly to the branches of the trellis of the constituent code. Such a solution re­

quires a SIMD array processor architecture with fine grain data parallelism. SIMD

computers with PIM technology offer such fine grain data parallelism, however, this

alternative for mapping trellis parallel data structures to SIMD hardware would not

result in practical implementations for the following reasons:

1. The number of PEs necessary to support large frame sizes (up to 5114 bits

for UMTS) grows very rapidly as indicated by equation (4.1), where N is

the length of the data frame, Kc is the constraint length of the constituent

code and MPE is the number of processing element nodes.

MpE = N x 2Kc~ x (4.1)

2. The inter-processor communication network does not match any of the

networks commonly used in parallel processor architectures in spite of

the regular structure of the trellis.

The first issue can be alleviated by the use of the latest VLSI technologies, but

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 4.1: Turbo Code Trellis Analysis

the amount of distributed memory required for all the PEs may impose other limita­

tions. The exponential increase in the number of PEs can be kept to a minimum by

remembering that turbo codes typically use simple constituent codes with constraint

length 3 < Kc < 5 [37],

The second issue, however, has a greater impact for practical implementations

because a customized inter-processor communication network would be tied to ex­

actly one RSC constituent code and would offer no flexibility to support other codes.

This holds true even for configurations that specify short frame lengths because the

connections between state nodes of adjacent trellis columns are determined by the

generator polynomials for the constituent RSC.

4.1.1 Efficient Trellis Structure to SIMD Hardware Mapping

A more efficient and flexible mapping of the RSC code trellis structure to SIMD

hardware is portrayed in Figure 4.3. This particular approach recognizes that the

N-2 N-l

S3 •

P E S - PE,PE,PEc

Figure 4.3: PE allocation.

relatively short constraint length of the constituent code may allow for the distribu­

tion of the parallel variables such that each PE holds the set of data that corresponds

to a column or section of the trellis. In this manner each PE operates sequentially

on all the state nodes that correspond to the trellis section allocated to it. However,

since all the PEs execute the same instructions in lockstep, all trellis sections are

scanned in parallel.

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4: Data Parallelism in Turbo Decoding Castellon

The main advantage of this approach is that the complexity of the inter-processor

communication network is reduced to that of a linear array. Since the data routing

operations are limited to point-to-point communication between adjacent neigh­

bors, the long network diameter of the linear array network does not represent a

problem even for long frame lengths.

4.1.2 Memory Requirements

In addition to PE distribution it is also necessary to determine PE local memory re­

quirements for storage of the parallel variables involved in the decoding algorithm.

Figure 4.4 displays a high-level organization of the parallel variables within the

local memory for an individual PE.

Scratch Pad
Memory for
Temporary Variables

PE Masking flags

Constants

LLR

m a x * (lik e lih o o d Uk-o)

m a x * (lik e lih o o d Uk=i)

lik e lih o o d Uk=o[S]

l ik e lih o o d Uk=\[S]

Pk+i[S]
0k[S]
Qtfe-l [*9]
ak[S]

700 7 n
701 7io

Processing Element
ALU

<5 = Number of state nodes

Figure 4.4: Parallel variable distribution per PE.

It can be observed that each PE needs access within its local memory to the

branch metrics, and a and (3 state metrics for the corresponding trellis section. Each

PE also requires the normalized a state metrics from the preceding trellis section

and normalized (3 state metrics from the succeeding trellis section, which are used

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 4.2: Parallel Window ONE Algorithm

in the calculation of new values for the state metrics as per the algorithm described

in the next section. Additional storage is needed for the log-likelihood values for

Mfc = 0 and Uji = 1, and for the LLR. Finally, storage is required for constants and

flags used for masking of PEs as well as a scratch pad memory region for temporary

variables.

4.2 Parallel Window ONE Algorithm

The parallel processor implementation assumes that the number of PEs available

in the array processor is at least equal to the number of information bits in the data

frame. It is also assumed that it is possible to wait for the entire frame to be received

before decoding it. One preliminary step is taken prior to parallel decoding: a short

sequential backward recursion, as described in section 3.3.3, is performed to com­

pute an initial P distribution, since it is unnecessary for the tail bits to be included

in the parallel decoding. The a distributions for all trellis sections except the first

one are initialized as equiprobable; the first trellis section is initialized as per equa­

tion (2.28). A similar initialization is performed for the p distributions of all trellis

section except the last section which corresponds to the last information bit; this

section is initialized with the P values computed by the short sequential backward

recursion of the tail bits. This initialization method is similar to the one employed

by the sliding window technique [38] for initializing the backward recursion of the

individual windows due to lack of information about the distribution of the P state

metrics at the end of each window.

Prior to calculating the a and P state metrics, the y branch metrics are com­

puted in parallel for all trellis sections since it is assumed that the received channel

symbols have been distributed among all the PEs in the proper order. The branch

metrics y are calculated using the simplified method as per equation (2.24).

New a and P state metric are calculated as per equations (2.25) and (2.26).

These calculations happen in lockstep for all trellis sections. Once the new values

are obtained, the cq_j and P^+i are updated in the neighboring PEs. For the case

of the a metrics, each PE updates the oq._i values of its immediate neighbor to

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4: Data Parallelism in Turbo Decoding Castellon

the right; and for the case of the (3 metrics, each PE updates the $k+\ values of its

immediate neighbor to the left. The procedure of calculating new values for the a

and P state metrics is repeated using the updated a^_i and P*+i values respectively.

It is important to note that the first trellis section and the last trellis section continue

using the initialization values for a ^ -i and Pk+i respectively.

Compute
branch me

LLRs computed

' s t e p i

Time

Figure 4.5: Parallel Decoding Method with respect to Time.

The objective is to repeat the parallel evaluation of the a and P values until these

values converge to the same value as those calculated using the sequential forward-

backward algorithm. Each parallel computation of state metrics will be denoted

as a convergence step. Therefore, the parallel approach effectively replaces the

forward and backward recursions with a predefined number of convergence steps.

The number of convergence steps that should be used is considered in the next

subsection.

Once the state metrics have been computed, the LLR values for the information

bits can be calculated in parallel for all trellis sections because the branch and state

metrics already reside in the distributed memory of the SIMD array processor. The

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 4.2: Parallel Window ONE Algorithm

diagram of Figure 4.5 depicts the operation of the parallel decoding method with

respect to time for an example frame size of 12 data bits.

As discussed above, in this parallel processor implementation of the SISO de­

coder, one trellis section is allocated per PE. This configuration is equivalent to

having multiple windows with window length W — 1 where the decoder operates

on all the windows in parallel. It is then appropriate to label this new decoding

technique The Parallel Window ONE or PW-ONE algorithm.

4.2.1 Convergence of a and (3 State Metrics

Earlier work describing the parallelism in trellis decoding and methods to exploit

this parallelism are found in [39] and [40],

The equiprobable |3 distribution initialization used in the sliding window decod­

ing technique requires that each window includes a ‘stabilization’ length L such that

if the window length is W, the decoder only calculates LLRs values for D = W —L

trellis sections. Literature on this topic suggests that the backward recursion using

the sliding window technique closely approximates the exact P distribution when

the stabilization length L is five to six times the constraint length of the code [22],

The number of convergence steps used in the PW-ONE algorithm perform a

similar function as the stabilization region of the sliding window algorithm. The

advantage of the parallel algorithm is that upon completion of the predefined num­

ber of convergence steps, the a and P distributions will be close to their exact value

for all columns along the trellis.

Based on this result, the following hypothesis can be formulated for the PW-

ONE algorithm: the number of convergence steps required for the parallel algorithm

to compute a and p distributions that closely approximate the exact distributions is

five to six times the constraint length of the code. Simulation results that confirm

this hypothesis for some code configurations, but belie it for others are presented in

the next chapter.

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4: Data Parallelism in Turbo Decoding

4.3 Parallelism and Efficiency

Castellon

Two parameters that are commonly used in parallel computing for evaluation of al­

gorithm performance are the speedup factor and the system efficiency. The speedup

factor, or simply speedup, refers to how much faster a parallel algorithm is than

a corresponding sequential algorithm [41], Speedup is defined by the following

equation

SP = ^~, (4.2)
l p

where

p is the number of processors.

T] is the execution time of the sequential algorithm.

Tp is the execution time of the parallel algorithm with p processors.

When Sp = p, it is said that the parallel algorithm achieves linear speedup. In this

case, if the number of processors is doubled, then the processing speed is doubled.

Efficiency is a performance metric that indicates the actual degree of speedup

performance achieved as compared with the maximum value [10]. The system

efficiency of a p-processor system is defined by

d p T\
P PTP

Given that 1 < Sp < p, then the value of efficiency lies in the range l / p < rEp < \ .

For the case of the PW-ONE algorithm for a constituent decoder, one can at­

tempt to express the speedup factor and efficiency in terms of the dominant ope­

rations in the algorithm rather than in terms of absolute execution time measure­

ments. In both the sequential and parallel SISO decoding algorithms, the dominant

operations have been identified to be: (a) addition1, (b) max*, and (c) max. Ex­

pressions for speedup and efficiency are derived assuming that all three operations

are monolithic, that is, implementation details of max* and max are not considered.

Therefore, one does not need to be concerned with the number of native processor

'in this thesis, additions and subtractions are grouped together under the same category and
simply labeled as addition.

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 4.3: Parallelism and Efficiency

instructions and their execution times. It is reasonably accurate to assume that all

operations require equal execution time.

The following notation is used to derive the expressions for speedup and effi­

ciency:

G is the number of state nodes in a column of the trellis.

N is the frame length.

Csteps is the number of convergence steps in the PW-ONE algorithm.

Note that the PW-ONE algorithm assumes that the number of PEs available is at

least equal to the frame length, therefore, p = N.

The numbers of operations performed by the sequential forward/backward al­

gorithm for each column of the trellis are detailed on Table 4.1. The operation for

calculation of the branch metrics is included as part of both the forward and back­

ward recursion and consists of a single addition as per equation (2.24). Since the

Variable Calculated additions max* max Total Operations
a state metrics 3 x G + 1 G G - 1 5 xG
(3 state metrics 3 x G + 1 G G - 1 5 xG
LLRs 4xG + 1 2x(G - 1) 0 6 x G - 1

16xG - 1

Table 4.1: Operations per Trellis Column in Sequential Log-MAP Algorithm.

operations per trellis column are repeated N times to decode one frame, one can

express the execution time for the sequential algorithm in terms of the dominant

operations as follows:

7i = (16 x G — 1) xiV. (4.4)

In the PW-ONE algorithm the state nodes of a trellis column are also scanned

sequentially because an entire column is allocated to each PE of the SIMD array

processor. Therefore, the PW-ONE algorithm requires the same number of opera­

tions to calculate the a and (3 state metrics as in the forward/backward approach.

These operations are repeated a number of times equal to the predefined number of

convergence steps Csteps. However, the operations for the calculation of branch met­

rics are not included this time because branch metrics are computed prior to start-

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4: Data Parallelism in Turbo Decoding Castellon

ing the convergence procedure. Branch metrics are calculated by all PEs in parallel

and, therefore, computing branch metrics counts as a single operation. Similarly,

the number of operations to calculate the LLR values is the same as in the for­

ward/backward algorithm. The difference here is that the LLRs are computed after

the convergence procedure, and with all the PEs operating in parallel, the LLRs for

the entire frame are generated at the same time without the need for repeating the

calculations. Table 4.2 details the number of operations in the PW-ONE algorithm.

Variable Calculated Total Operations
branch metrics 1
a state metrics (5 X G - 1) X C s te p s

P state metrics (5X G - 1) X C s te p s

LLRs 6xG - 1
(10 x G - 2) x C s te p s + 6 x G

Table 4.2: Operations per PE in PW-ONE Algorithm.

The execution time for the parallel algorithm with p — N processors can therefore

be expressed as:

Tp = (10 x G — 2) x Csteps + 6 x G. (4.5)

Using equations (4.4) and (4.5), the expressions for speedup and efficiency

when evaluating the PW-ONE algorithm against the sequential constant-Log-MAP

algorithm can be stated as:

C _ * i (16 x G — 1) x A
p Tp (10 x G — 2) x CstePs + (6 x G)

TP = ^ (4.7)
Sp _ (16 x G — 1)
N ~ (10 x G — 2) x C^eps+ (6 x G)

It is then possible to calculate values for the speedup factor and efficiency based

on the expressions of equations (4.6) and (4.7) respectively. Substituting in place

of the variable parameters values that correspond to the UMTS turbo code and the

PW-ONE implementation evaluated in section 5.4 such that:

• Frame Length N = 1024

74

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 4.3: Parallelism and Efficiency

• Constraint Length Kc = 4

• Number of state nodes per trellis column G — 2Kc 1 = 8

• Number of convergence steps Csteps = 6 x Kc = 24,

one obtains the following speedup and efficiency results:

5p(PW — ONE) pt 67.7 (4.8)

£ p(PW — ONE) 0.066 (4.9)

Note that the computed speedup factor is a hypothetical speedup for a uni-processor

versus N identical processor, neglecting inter-processor communication. For the

speedup of a real SIMD array processor, relative to a real embedded processor,

refer to section 5.5.

The low value of efficiency ‘E p (PW — ONE) implies that it is better to use the

sequential implementation of the algorithm when the goal is to reduce the number

of operations. However, the parallel algorithm is the better choice for reducing the

latency of computing the end results at the expense of more hardware.

It is important to note that when using a SIMD array processor with PIM tech­

nology, the incremental hardware cost is low when one considers the gains in exe­

cution time performance and energy consumption performance.

The plots of Figure 4.6 show how the speedup factor is affected when code pa­

rameters are changed. Realizing that the number of state nodes G and the number

of convergence steps Csteps are determined by the constraint length Kc of the con­

stituent code, one can observe in Figure 4.6(a) the impact on speedup for constraint

length values in the range 2 < Kc < 5, and with the number of convergence steps

set to Csteps — 6 x Kc for all cases. Figure 4.6(b) displays the effect of varying the

number of convergence steps for a given constraint length, in this case Kc = 4. The

plot of Figure 4.7 portrays the efficiency of the data-parallel algorithm when the

parameters of equation (4.7) take on different values.

Based on these results, the main observations are:

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4: Data Parallelism in Turbo Decoding Castellon

3 0 0

—l— K = 2 , G = 2 , C , = 1 2c steps
K = 3 , G = 4 , C , = 1 8c steps
Kc= 4 , G = f ~

_A _ K = 5 , G = 1 6 , C7 =3°c _______ steps
2 5 0

200

f t 1 5 0

100

2000 2 5 0 01000 1 5 0 05 0 0
Frame Length

(a) Impact o f Constraint Length on Speedup

2 5 0 0

C , = 1 ‘ Ksteps c
C , =2*Ksteps c

-©- c , =3*Ksteps c
—A— C , =4*Ksteps c-±- C . =5*Ksteps c

- C . = 6 ‘ Ksteps c

2000

1 5 0 0

1000

5 0 0

2000 2 5 0 01000 15005 0 0
Frame Length

(b) Impact o f Convergence Steps on Speedup

Figure 4.6: Effect of Code Parameters on Speedup.

• Speedup achieved by the PW-ONE algorithm is proportional to the frame

length N, and inversely proportional to the number of convergence steps

C s te p s -

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

E
ff

ic
ie

n
cy

Castellon Section 4.3: Parallelism and Efficiency

- + - G =2
G = 4

- 0 - G = 8
- 6 - G = 1 6

0.6

0 .4

0.2

20
N u m b e r o f C o n v e r g e n c e S t e p s

Figure 4.7: Efficiency for different Code Parameters.

• To maintain equivalent coding gain when compared to the sequential al­

gorithm, however, Csteps needs to increase from 6 x Kc to 7 x Kc as the

frame size increases to greater than 512 data symbols (see section 5.4).

• The efficiency of the PW-ONE algorithm is determined by the number of

convergence steps for a given constituent code.

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4: Data Parallelism in Turbo Decoding

4.4 Summary

Castellon

After careful analysis of the trellis structure that describes RSC constituent codes

used in turbo codes, it was determined that a flexible, efficient and relatively inex­

pensive SIMD array processor that satisfies the requirements for parallel decoding

of an RSC code is one where the PEs are organized as a linear array. The storage

requirements for the individual PEs was presented.

The concept of the convergence step was introduced as the basis for the compu­

tation of the state metrics in the newly defined Parallel Window ONE algorithm. In

this algorithm, the a and |3 metrics are evaluated in parallel, and after a predefined

number of convergence steps, converge to the true metric values. This algorithm

will be used as the decoding algorithm in the constituent decoders for the parallel

processor implementation of the turbo decoder discussed in the next chapter.

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Parallel Processor Decoder
Implementation

This chapter presents the implementation details of the data-parallel turbo decoding

algorithm for execution by the SIMD array processor in the J2210 Media processor.

It also describes the experimental methodology for evaluation of the algorithm and

summarizes the results obtained from this evaluation.

The chapter begins by describing the interleaver and explaining why it is imple­

mented as set of functions in sequential software. Section 5.2 describes a data com­

munication topology that results in reduced inter-processor communication over­

head when using the inter-processor communication network of the Array Proces­

sor in the J2210. It also presents the pseudo-code for the implementation of the

PW-ONE algorithm. Scalability of the algorithm when a greater number of PEs

is available, and the impact of the number of convergence steps on the BER per­

formance of the turbo decoder, are the primary topics addressed in Section 5.4.

Section 5.5 presents results related to execution time of the sequential and data par­

allel algorithms and highlights the speedup factor achieved by this implementation

of the PW-ONE algorithm. The chapter concludes by considering the low energy

consumption advantage offered by the PIM technology of the Array Processor.

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation

5.1 Sequential Interleaver

Castellon

As stated in Chapter 3, the turbo code selected for development and verification of

the turbo decoder addressed in this thesis is the UMTS turbo code. Consequently,

the interleaver/de-interleaver implemented for use by the turbo decoder is the one

described in the UMTS specification.

Early in the development it was decided to implement the UMTS prime inter­

leaver in sequential software to be executed by the ARM922T™ RISC engine in

the J2210 Media processor. The inter-processor communication network topology

of the Array Processor in the J2210 does not provide the flexibility to implement

the interleaver efficiently, resulting in a large number of data transfers between PEs

to achieve the required permutation of the data. Therefore, a parallel processor

implementation of the interleaver may not offer any speedup advantage over its se­

quential implementation. Also, the limited number of CUs restricts the size of the

interleaver.

The UMTS prime interleaver can be visualized as a matrix with 5, 10, or 20

rows and between 8 and 256 columns (inclusive), depending on the frame length.

The data is written into the interleaver in a row-wise fashion, with the first data

bit placed in the upper-left position of the matrix. Permutation of the data pro­

ceeds as follows: first, each row of the matrix undergoes intra-row permutations

in accordance with the algorithm described in [2]; next, inter-row permutations are

performed to change the ordering of rows without changing the order of the ele­

ments within each row. After the intra-row and inter-row permutations, data is read

from the interleaver in a column-wise fashion.

The algorithm for the generation of the interleaver has been implemented as a

C++ module. This allows for a flexible interleaver design that can support the range

of data frame sizes stated in the UMTS specification. Memory for the interleaver is

allocated dynamically as part of the initialization procedure. The System Memory

block of the J2210 Media processor is used for storing the interleaver indexes. The

System Memory is a 32 KByte block of fast static RAM that is connected to the

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.2: Implementation using the J2210 Array Processor

Advanced High-performance Bus (AHB) of the ARM processor for fast data trans­

fers. Two functions are provided to the programmer to perform interleaving and

de-interleaving of data. The interleaving function simply uses the indexes provided

by the interleaver generator to re-arrange the data elements of the input array and

stores them in the permuted order in the output array. Similarly, the de-interleaving

function uses the indexes to reverse the order of the permutation. Using an em­

bedded memory block helps to speed up execution time of the interleaving and

de-interleaving of data. The source code for the implementation of the UMTS in­

terleaver generator is included in section A.2 of Appendix A.

5.2 Implementation using the J2210 Array Processor

This section presents implementation details for execution of the Parallel Window

ONE algorithm on the Array Processor of the J2210 Media processor. These details

include a description of the inter-processor communication topology that results

in reduced data communication overhead, and the pseudo-code for the three main

components of the algorithm.

5.2.1 Inter-Processor Communication Topology

The first step to implement the PW-ONE algorithm to target the Array Processor in

the J2210 SoC is to select a topology for the inter-processor communications that

resembles the linear array network assumed by the PW-ONE algorithm. Recall that

the CUs of the Array Processor are organized as a 4 x 24 2-D mesh, and the inter­

processor communication network enables each CU to obtain data from its eight

nearest neighbors as shown in Figure 5.1. This results in the additional benefit that

the instruction set of the Array Processor supports diagonal data transfers. The rest

of this chapter will continue to use the notation adopted in [19] to specify direc­

tions (NW,N,NE,E,W,SW,S,SE) of inter-processor communication. A key factor to

keep in mind in the selection of the inter-processor communications topology with

the communication network present in the Array Processor of the J2210 is that it

does not provide the wrap-around feature available in other 2-D meshes such as the

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

NW - - N - - NE

w - — local —- E

SW S SE

Figure 5.1: A CU and its Nearest Neighbors.

Spiral, Torus and Toroid of Figure 2.2. The two network topologies that have been

considered are:

West-East Data Transfer

Use of this topology results in data transfer between PEs in the W —> E

direction during the computation and convergence of a state metrics, and

in the W <— E during the computation and convergence of the |3 state met­

rics. Handling an edge condition here refers to transferring data between

CUs at opposite edges of two adjacent rows.

North-South Data Transfer

Use of this topology results in data transfer between PEs in the N —> S

direction during the computation and convergence of a state metrics, and

in the N S during the computation and convergence of the (3 state met­

rics. Handling an edge condition here refers to transferring data between

CUs at opposite edges of two adjacent columns.

Inter-processor data communication using the West-East Data Transfer topology

is shown in Figure 5.2, where the solid arrows indicate the data communication

pattern that is normally required1 while the dashed arrows indicate how the edge

condition is handled. These two data communication patterns do not occur in par­

allel but in a sequential manner. Additional storage per CU is required for a buffer

'This would be the only data communication pattern needed if wrap-around with offset between
adjacent rows were available.

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.2: Implementation using the J2210 Array Processor

that holds the data being transferred, plus masking2 of CUs is imperative to prevent

data from being corrupted.

CU (0,0) CU(0,23)

CU (3,23)

CU{ 1,23)

CU (0,22)

C U (3 ,1)

CU (0,1)

CU{2,22)

C U (l .l)

CU (2,23)

CU (3,22)

C U (I,0) CU(1,22)

CU (3,0)

C U (0,2)

CU (2,0)

CU (1,2)

CU (2,1) CU (2,2)

CU{3,2)

(a) Forward state metrics data transfer

CU (I,23)

CU(3,23)

CU (0,1)

CU (2,1)

CU (1,1)

CU (3,1)

CU(1,22>

CU(2,23)

CU (3,22)

CU(0,22)CU (0,2)

CU (2,0)

CU (0,0)

CU (3,0)

CU (1,0) CU (1,2)

CU (2,2)

CU (3,2)

(b) Backward state metrics data transfer

Figure 5.2: W est-E ast D ata Transfer inter-PE C om m unication Pattern.

In contrast, Figure 5.3 displays the inter-processor data communication pat­

tern using the North-South Transfer topology. Again, dashed arrows refer to how

the data is transferred between CUs at opposite edges of two adjacent columns,

and solid arrows show the data communication pattern with all CUs enabled3 (the

only communication pattern needed if wrap-around with offset between adjacent

columns were available).

Note that only one CU is enabled per row during each data hop between CUs

when handling the edge condition in the West-East Data Transfer topology. Special

consideration is given to the outer-most rows of the Array Processor. Similarly only

one CU is enabled per column during each data hop between CUs for the case of

the North-South Data Transfer topology, and the outer-most columns of the Array

2Masking a CU is achieved by clearing the contents o f the Write Enable (WE) register, thereby
disabling the ability o f the CU to write to its local memory.

3In this context, a CU being enabled refers to it being enabled to write to its local memory.

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

CU (3,2)

(a) Forward state metrics data transfer

C U (1,0) CU (1,1)

CU (3,22)

CU (0,2) CU (0,23)

C U (2,23)

CU (1,2)

C U (2,22)

CU (2,2)

C U (3,2) CU (3,23)

CU (1,2)

CU (2,23)

CU (0,2)

C U (2,0)

C U (1,0)

CU (1,23)

CU (2,2)

CU (0,22)CU (0,1)

C U (0 ,t)

C U (0,0)

CU (1,23)

CU (2,1)

C U (2,22)

CU (2,0)

CU (0,23)

CU (1,22)

C U (3,0)

CU (0,0)

C U (l .l)

CU (3,1) CU (3,23)

CU (1,22)

CU (3,1)

CU (0,22)

C U (3,0)

CU (2,1)

(b) Backward state metrics data transfer

Figure 5.3: North-South Data Transfer inter-PE Communication Pattern.

Processor are considered special cases. Therefore, handling edge conditions can be

expensive in terms of inter-processor communication overhead.

For the case of an asymmetrical 2-D mesh of CUs such as the one in the Array

Processor of the J2210, the choice of the North-South Data Transfer topology offers

an advantage in terms of reduced inter-processor communication overhead because

only three data hops are required to transfer data between edges of adjacent columns

as compared to twenty three hops to transfer data between edges of adjacent rows

if the West-East Data Transfer topology is used. The main drawback of the North-

9 • • • I 89

| 73 | | 74 | I 75 | > t , | 95 | | 96 | [4 | | 8 | | 12 | • • • [92 | 96 |

Figure 5.4: Row-wise to Column-wise re-ordering of data.

South Data Transfer topology is that the elements of the data arrays must be re-

84

Reproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.2: Implementation using the J2210 Array Processor

arranged so that they exhibit a sequential column-wise order before they are written

to the distributed memory of the Array Processor. The reverse is true when reading

data from the Array Processor memory. Figure 5.4 displays the change in order for

the CU arrangement in the Array Processor.

Section 5.5 compares the execution time of the emulated spiral topology (Torus

with offset) of Figure 5.5 against the execution time of the West-East and North-

South Data Transfer topologies when evaluating the PW-ONE algorithm with dif­

ferent convergence step configurations.

• • •

• • •
S W S E

• • •

• • •

C U (0 ,2)

C U (3 ,0)

C U (0 ,0)

C U (2 ,0)

C U (3 ,1)

C U (0 ,1)

C U (3 ,2)

C U (1 ,2)C U (1 ,0)

C U (3 ,2 3)

C U (0 ,2 2)

C U (3 ,2 2)

C U (2 ,2 3)C U (2 ,1)

C U (0 ,2 3)

C U (1 ,2 2)

C U (2 ,2)

C U (1 ,2 3)C U (1 ,I)

C U (2 ,2 2)

NWX

Figure 5.5: Emulation of Linear Array network using a 2-D Mesh.

5.2.2 Description of Algorithm Implementation

The implementation of the parallel processor SISO constituent decoder using the

PW-ONE algorithm can be divided into three main components. These components

are:

1. Calculation of branch metrics.

2. Calculation and convergence of a and P state metrics.

3. Calculation of LLR values.

The use of pseudo-code is preferred when describing the different components

of the algorithm and helps to avoid the intricate details of SEL programming. The

85

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

notation used in the pseudo-code assumes that there are as many PEs as data ele­

ments, and the block for all k in parallel do • • • end for causes all PEs to execute

the statements inside the block in synchrony.

Branch Metric Computation

The computation of the branch metrics requires that the systematic (data) and

parity channel observations are distributed among all the CUs of the Array Proces­

sor. Recall that for a rate 1/2 RSC constituent code there are four possible branch

metrics. These branch metrics will be denoted as y f ° \ y f l \ y [- 'and y[U\ where

the i j superscript is such that i refers to the value of systematic bit cs of the coded

symbol, and j refers to the value of the corresponding parity bit cp. The branch

metrics are then calculated in parallel as follows:

for all k in parallel do

TC=0yj.10i = data channel symbol
y[°1 = parity channel symbol

end for

Notice that since Yoo = 0 always, it is possible to omit it from all operations that re­

quire it. It is assumed that overflow checking is implied in all arithmetic operations.

Computation of a and (3 State Metrics

The component of the PW-ONE algorithm responsible for calculation of the

state metrics uses the convergence step concept. Inter-processor communication

also takes place during these computations. For the implementation targeting the

J2210 Array Processor, the North-South Data Transfer topology described in the

previous section is used.

Each convergence step consists of two half cycles. The first half cycle corre­

sponds to the computation of the a state metrics. The state nodes corresponding

to each processing element (also referred to as computational unit CU) are scanned

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.2: Implementation using the J2210 Array Processor

sequentially using the branch metrics to calculate new values for the a metrics.

The following pseudo-code describes the operations performed during the first half

cycle of a convergence step.

for all k in parallel do
for Number of Convergence Steps do

// First half of convergence step: Calculate a state metrics
for i = 0 to G-l do

a \ [i] = yi/! x> + [i]; // branch with data bit uk = 1

a k ['] = y'k X> + ®-k W > // branch with data bit uk — 0
a k [i] = max* (a [k [i], a°k [i]);

end for
// Find maximum out of a k values

ajfax = max(a*[0], . .. , a * [G - l]) ;

// Normalized values are used to update a k values
for i = 0 to G-1 do

&k [i] = a k [i] -N — a “ ax .N;
end for

// Handle edge condition
Mask CUs not needing to update their local memory
as edge condition proceeds;
One NW shift moves data to adjacent column;
2 vertical shifts move data up the column to top row;
Update a k values of CUs in the top row;

// Restore a k values of CU at top-left comer of grid
// to initialization values

The pseudo-code uses G to denote the number of state nodes per trellis column.

Inter-processor data communication is observed during the calculation and storage

of the normalized a metrics. The updated values for a are saved to be used dur­

ing the next convergence step, a corresponds to a^_i of the sequential algorithm.

Handling the edge condition, that is, moving data from one edge of a column in

the Array Processor to the opposite edge in the adjacent column involves multiple

point-to-point shifts. The pseudo-code omits details of loading and storing of data

during each point-to-point shift, and only presents a very simple description of the

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

steps involved in the procedure.

The second half cycle of each convergence step focuses on computation of the

(3 state metrics. The procedure is identical to the one used in the calculation of

the a metrics with the exception that the data flow is in the opposite direction.

The following pseudo-code insert displays the operations and other details that are

required during the second half cycle.

// Second half of convergence step: Calculate (3 state metrics
for i = 0 to G-l do

(3| [i] = Y/.(lx) + (3j [i]; // branch with data bit Lp = 1
P* PI = Ik (0*) + Pfc ['] i H branch with data bit u^ — Q
p ji] =max*(pl[i],pg[i]);

end for
// Find maximum out of (3̂ values

P“ ax = max(P,[0], . . . , (3 , [G -1]) ;

// Normalized (3/; values are used to update (3̂ values
for i = 0 to G-l do

p*[i] = p*[i].s-pjr-s;
end for

// Handle edge condition
Mask CUs not needing to update their local memory
as edge condition proceeds;
One SE shift moves data to adjacent column;
2 vertical shifts move data down the column to bottom row;
Update (3̂ values of CUs in the bottom row;

// Restore (3̂ values of CU at bottom-right comer of grid
// to initialization values

end for
end for

LLR Calculation

The third and last component of the PW-ONE algorithm implementation is the

computation of the LLR values. At this point in the algorithm, it is assumed that the

a and p metrics have converged to their exact values. Since the values for the branch

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.3: Communication with the Host Processor

metrics and for both state metrics are already present in the local memory of the

corresponding PE, calculation of the log-likelihood values for source data bits =

1 and Uk = 0 proceeds synchronously for all PEs. There is a small element of inter­

processor data communication in this component of the algorithm which involves

transferring the values of the a metrics to the PEs holding the corresponding y and

(3 metrics in order to compute the correct log-likelihood values. Details of this last

section of the algorithm are presented in the following pseudo-code.

for all k in parallel do
Move ak values to neighbor PE to the South
and handle edge condition;

for i = 0 to G-l do
A i [i l = o * [i] + 7 p :) + M i];

A?[i] = a*[i]+Y r + fc[i];
end for

// Compute max* value for A\ and A®
A* = A i[0];
A°=A°[0];
for i = 1 to G-l do

A{ = mor*(A{[i], A{);
A°k = max*(A°k[i\, A°);

end for

// Calculate the LLR
LLR = A * -A ° ;

end for

5.3 Communication with the Host Processor

The ARM922T™ RISC engine in the J2210 acts as the host or master processor.

In this application, communication with the host processor happens at two levels:

(a) sending commands to the Array Controller, and (b) writing to and reading from

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

the memory of the Array Processor4. Sending commands to the Array Controller is

accomplished by using the set of ACSendCommand x () Applications Programming

Interface (API) function calls. The host processor is responsible for writing the

simulated systematic and parity channel observations to the memory of the Array

Processor, sending the command to execute the parallel algorithm and then reading

the LLRs values from the memory of the Array Processor. Reading from and writ­

ing to the Array Processor memory is accomplished by using the ReadMem32() and

WriteMem32() API function calls respectively.

The ARM922T™ performs 32-bit word (4 bytes) accesses to and from the

Array Processor memory using the above mentioned API calls. The 32-bit word

access is seen as a 4-byte packet that get distributed across four horizontally adja­

cent CUs. When reading data from the Array Processor memory, the 4-byte packet

is unpacked in software if necessary. Direct Memory Access (DMA) channels are

available to support higher rate data transfer such as storing multiple bytes per CU.

However, it was determined that the single word accesses provided by the Read-

Mem32() and WriteMem32() functions satisfied the data rate requirements of the

data-parallel turbo decoder implementation due to the relatively small amount of

data written to and read from the Array Processor memory during the decoding of

each frame.

Descriptions of and examples on how to use the API function calls are provided

in the J2210 Software Tools User’s Manual [19].

5.4 BER Performance Evaluation

5.4.1 Simulator and Experimental Method

Verification of the data-parallel turbo decoder requires properly encoded data with

additive noise that can serve as input vectors to the decoder. A simulator was de­

signed as a visual application to run on a desktop computer for the purpose of

generating the test data for the turbo decoder implemented in the embedded target.

4Atsana’s documentation uses the term Computational Memory (CMEM) when referring to the
Array Processor.

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.4: BER Performance Evaluation

Figure 5.6 shows a picture of the user interface of the turbo encoder/channel model

simulator.

Um in
E b /N O in d B

I 0,8 sfj
Frame Length: j9 6

dB : p _ _
D ecoder Iterations: 5

S te p S is e : JO-2 < B \ O u tp u t F fc N am e: C B S 3 S T

Source Probabiiitv of 1

Probability must be
in th e range [0.1]

105

AWGN Channel with SNR = 0.80

Frames transmitted: 0

P ress to
PA U SE

Figure 5.6: Turbo Encoder and AWGN Channel Simulator GUI.

The simulator generates random binary data in packets with a frame length spe­

cified by the user. Turbo encoding is applied to the data frame using the UMTS

turbo encoder. The simulator then adds noise to the encoded data frame assuming

an AWGN channel model. Demodulation of the data is assumed to be perfect soft-

decision. The data with additive noise is then sent through the desktop PC serial

port to the J2210 CEB for decoding. The turbo decoder application executed by the

J2210 generates the LLR values for the information bits and sends that data back

to the simulator application on the desktop PC. The simulator then performs the

hard decision of the received bits and compares it against the value of the original

binary data. At least one thousand bit errors for SNR < 1 .OdB, or one hundred bit

errors for SNR > l.OdB are recorded to obtain a good estimate of the BER for the

given conditions. BER performance results are compared against the sequential,

fixed-point implementation of the turbo decoding algorithm.

5.4.2 Scalability of Parallel Algorithm

There was interest in verifying the scalability of the PW-ONE algorithm when more

PEs are available. Rather than verifying the BER performance of the turbo decoder

for the short frame size of 96 bits over a range of SNR levels, it was decided to

91

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

evaluate the BER performance when the frame length of the data packet is varied

while keeping a fixed SNR value.

The SNR oiEy/NQ = 0.8dB was selected to conduct the evaluation. This choice

of SNR level has no particular significance, but examination of the results presented

in Chapter 3 reveal that the turbo cliff region of the UMTS turbo code is observed

in the range 0.6dB < E^/N q < 1.2dB.

Frames with lengths greater than the number of PEs available in the Array

Processor are decoded by applying a modified version of the sliding window tech­

nique. The received frame is divided into windows of length W = 96, and each

window is decoded using the PW-ONE algorithm. The following conditions are

used in the application of the modified sliding window technique in order that the

results of the decoding are exactly equal to what would be obtained with operation

of the PW-ONE algorithm with p —N PEs: (a) there is no information contributed

from one window to the next for calculating a metrics, and the same holds true for

the computation of P metrics, (b) the overlap between windows is equal to twice the

number of convergence steps predefined in the PW-ONE algorithm. Note that this

modified algorithm is not as efficient (in terms of total number of computations) as a

true sliding window algorithm; it was instead designed in this fashion to accurately

emulate the PW-ONE algorithm.

Scalability of the algorithm for variable frame lengths was also verified by using

three different values for the convergence steps parameter. The number of conver­

gence steps that were used in the constituent SISO decoder were: (5 x Kc), (6 x Kc)

and (7 x Kc), where Kc is the constraint length of the rate 1/2 RSC constituent code

used in the turbo code. These particular choices for the number of convergence

steps were made so as to test the hypothesis of the PW-ONE algorithm made in

section 4.2 of Chapter 4, which was that the number of convergence steps required

for the parallel algorithm to compute a and P distributions that closely approximate

the exact distributions would be five to six times the constraint length of the code.

Consequently a value for the number of convergence steps less than (5 x Kc) was

not considered.

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.4: BER Performance Evaluation

Test results for four, seven and ten turbo decoder iterations are displayed in

Figures 5.7, 5.8 and 5.9 respectively. These test results indicate a significant degra­

dation in performance when the number of convergence steps is set to (5 x Kc).

This degradation is more pronounced when the length of the frame increases.

The measured results presented here agree with simulation results for a frame

size N = 1024 bits and SNR level of Eb/No = 0.8dB presented in section 3.5.

—I— S e q u e n t ia l F o r w a r d - B a c k w a r d
-*• S IM D : 5*K c c o n v e r g e n c e s t e p s
0 S IM D : 6*K c c o n v e r g e n c e s t e p s
e S IM D : 7*K c c o n v e r g e n c e s t e p s

cc _2
l u 1 0

•

1000 12008 0 04 0 0 6 0 0
F r a m e S iz e

200

Figure 5.7: BER performance vs. Frame Length, 4 Turbo Iterations.

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BE
R

B
E

R

Chapter 5: Parallel Processor Decoder Implementation Castellon

—i— S e q u e n t ia l F o r w a r d - B a c k w a r d
O S IM D : 6*K c c o n v e r g e n c e s t e p s

e S IM D : 7*K c c o n v e r g e n c e s t e p s

1000 12008 0 04 0 0 6 0 0
F r a m e S iz e

200

Figure 5.8: BER performance vs. Frame Length, 7 Turbo Iterations.

—I— S e q u e n t ia l F o r w a r d - B a c k w a r d
O S IM D : 6*K c c o n v e r g e n c e s t e p s
e S IM D : 7*K c c o n v e r g e n c e s t e p s

1000 12006 0 0
F r a m e S iz e

8 0 04 0 0200

Figure 5.9: BER performance vs. Frame Length, 10 Turbo Iterations.

94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.4: BER Performance Evaluation

The BER performance displayed in Figures 5.7 through 5.9 show that the turbo

decoder with PW-ONE based constituent decoders works correctly with increasing

number of turbo loop iterations, and that better performance is achieved when the

number of convergence steps is set to (7 x Kc).

5.4.3 Convergence Steps Analysis

Results from the evaluation of the scalability of the data-parallel turbo decoding

algorithm suggest that the degradation in BER performance cannot be ignored even

when the number of convergence steps used by the constituent SISO decoders is

set to live times the constraint length of the code. Therefore, it is necessary to

examine in more detail the impact of the number of convergence steps on the BER

performance of the turbo decoder.

The test methodology consists of selecting two different frame lengths, one

short and one relatively long, maintaining a fixed SNR level, and varying the num­

ber of convergence steps over a wider range than the range considered previously.

The two frame sizes selected for further analysis are: (a) 96 data symbols, and (b)

1056 data symbols. Note that the choice for the short frame size is such that it

matches exactly the number of PEs available in the Array Processor.

Short Frame Size (96 data bits)

The set of four plots in Figure 5.10 compares the BER performance of the par­

allel processor turbo decoder against that of the fixed-point, sequential implemen­

tation when the frame length is fixed to 96 data symbols. Figure 5.11 displays

the effect of turbo loop iterations and Figure 5.12 presents the combined effect of

convergence steps and turbo loop iterations as a three dimensional plot.

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

SIMD Algorithm
- Sequential FW/BW

|
m

Multiple Factor of Kc (Convergence Steps)

— Sequential FW/BW

o:
2

10'*

Muftiple Factor of Kc (Convergence Steps)

(a) 3 Turbo Loop Iterations. (b) 5 Turbo Loop Iterations.

— Sequential FW/BW

&t

Multiple Factor of Kc (Convergence Steps)

- Sequential FW/BW

CC

<
Multiple Factor of Kc (Convergence Steps)

(c) 7 Turbo Loop Iterations. (d) 10 Turbo Loop Iterations.

Figure 5.10: Bit Error Rate versus Number of Convergence Steps (Short Frame Size).

One can observe from the plots of Figures 5.11 and 5.12 that there exists a trade­

off between number of convergence steps and the number of turbo loop iterations.

A lower BER can be achieved for a given number of convergence steps if more

turbo iterations are employed.

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bi
t

E
rr

or

R
at

e

Castellon Section 5.4: BER Performance Evaluation

3 T u rb o L o o p I te r a t io n s
- 0 - 5 T u r b o L o o p I te r a t io n s
- e - 7 T u rb o L o o p I te r a t io n s
—I— 10 T u rb o L o o p Iterations

<uTOcc
o

LU

CO

M u ltip le F a c to r o f K c (C o n v e r g e n c e S te p s)

Figure 5.11: Effect of Decoder Iterations (Short Frame Size).

T u rb o L o o p
I te r a t io n s

N u m b e r o f C o n v e r g e n c e S te p s 7
a s a f a c to r o f K c

Figure 5.12: BER versus Decoder Iterations versus Convergence Steps (Short Frame Size).

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation

Long Frame Size (1056 data bits)

Castellon

Similar to the case of the short frame length, the BER performance is evaluated

over a wider range for the number of convergence steps, in this case 2 < Csteps < 7.

Results are recorded and plotted in the same format as before. The set of four

plots in Figure 5.13 display the BER performance for a fixed number of turbo loop

iterations and a variable number of convergence steps in each case. Figure 5.14 and

Figure 5.15 display the combined effect as a 2-D plot and as a 3-D plot respectively.

to'1
SIMD Algorithm

- Sequential FW/BW

10'3

Multiple Factor of Kc (Convergence Steps)

(a) 3 Turbo Loop Iterations.
10' '

SIMD Aigorithm
- Sequential FW/BW

i

10'3

10'\
Multiple Factor of Kc (Convergence Steps)

SIMD Algorithm
- Sequential FW/BW

10' !

St

10'3

Multiple Factor of Kc (Convergence Steps)

(b) 5 Turbo Loop Iterations.
10'1

SIMD Algorithm
Sequential FW/BW

<E

10'3

Multiple Factor of Kc (Convergence Steps)

(c) 7 Turbo Loop Iterations. (b) 10 Turbo Loop Iterations.

Figure 5.13: Bit Error Rate versus Number of Convergence Steps (Long Frame Size).

The plots of Figure 5.13 show how the BER performance of the turbo decoder

with PW-ONE based constituent decoders approaches the BER performance of the

sequential turbo decoder as the number of convergence steps increases.

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.4: BER Performance Evaluation

3 T u rb o L oop Iterations
5 T u rb o L oop Iterations

- © - 7 T urbo L oop Iterations
—t— 10 T u rb o L oop Iterations

0
aJCC
o
LU

M ultiple F a c to r of Kc (C o n v e rg e n c e S te p s)

Figure 5.14: Effect of Decoder Iterations (Long Frame Size).

C o n v e rg e n c e S te p s
a s a fa c to r of Kc

T u rb o Loop
I tera tio n s

Figure 5.15: BER versus Decoder Iterations versus Convergence Steps (Long Frame Size).

Figures 5.14 and 5.15 again display the BER performance trade-off between

convergence steps and turbo loop iterations.

99

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

It can be concluded from these observations that loss in BER performance ex­

hibited by the data-parallel turbo decoder is reduced if the number of convergence

steps is set to at least five times the constraint length for the case of short frames

(for example, 96 bits), but seven times or greater may be required for frames whose

length is greater than 1024 bits.

5.5 Execution Time and Speedup

Execution time measurements for both the fixed-point, sequential constituent SISO

decoding algorithm and the SIMD implementation of the PW-ONE algorithm make

it possible to determine the speedup factor as per equation (4.2). Further assump­

tions are made about future targeted architectural changes such as a 1-D linear ar­

ray inter-processor communication network and more PEs, and accurate execution

times are obtained when possible by simulating execution on real hardware. Note

that the execution time for the data-parallel SISO decoder remains constant for

any number of PEs. Measurements obtained when using the J2210 development

platform demonstrate this, even though the incorrect decoded data is generated.

However, execution time remains constant because the same number of SIMD in­

structions would be executed if proper hardware was available.

Experiments are conducted to obtain timing measurements that allow calcula­

tion of the speedup factor not only for the data-parallel constituent decoder but also

for the turbo decoder where multiple instances of this constituent decoder are used.

Computing the speedup factor for the case of the turbo decoder requires measuring

execution time for the sequential interleaver, and the amount of time taken by the

RISC engine to move data into and out of the Array Processor memory to perform

sequential interleaving and de-interleaving.

The test methodology for execution time measurement is the following. Time

stamping is performed by using the hardware timer facilities in the J2210 SoC.

Hardware Timer 1 is used for this purpose. This is a programmable, free-running

counter/timer whose tic source is derived from the system clock by sending the

system clock through a divide by 4 or divide by 16 block. With a system clock

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.5: Execution Time and Speedup

frequency of 96 MHz, and a divider factor of 4, the tic source for Timer 1 is 24

MHz, thereby providing a resolution of 41.667 nanoseconds. Prior to invoking the

decoder routine (sequential or parallel), the Counter Load Value is loaded with the

maximum value of OxFFFFFFFF by writing it to the counter/timer data register. As

the decoder routine executes, the counter value is decremented on every cycle of the

tic source. When the decoding routine finishes executing, the current counter value

is saved by reading it from the counter/timer data register. Knowing the difference

of the counter/timer value with respect to the pre-loaded value and the resolution of

the timer makes it possible to obtain a precise measurement of the execution time.

The turbo encoder/channel model simulator is used to generate and send a pre­

defined number of frames to the embedded target for decoding. A time measure­

ment is recorded every time a frame is decoded, and the process is repeated for

the predefined number of frames. This approach guarantees that time stamping is

performed during steady state operation of the decoder. In order to obtain a pre­

cise execution time estimate, measurements are recorded for 1000 frames and the

average is calculated.

Run-time results for moving data into and out of the Array Processor memory

are based on a frame size of 96 data bits, but these results can be linearly scaled

for longer frame sizes because the ARM™ RISC engine uses sequential word ac­

cesses to perform these data transfers to and from memory. Read access times are

the same for the simulated 1-D linear array and for the 2-D North-South topolo­

gies; however, the write access time for the case of the 2-D North-South topology

includes the overhead incurred when re-ordering of the data before storing it in the

Array Processor memory as per Figure 5.4. The data transfer times for a frame size

with 96 data bits are the following:

• ARM <— SIMD read access: 11 ps.

• ARM —> SIMD write access (1-D topology): 9 ps.

• ARM —> SIMD write access (2-D N-S): 16 ps.

With the previous results it is then possible to calculate an estimate for the time

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

spent by the ARM™ processor executing sequential instructions between the data-

parallel SISO stages of the turbo decoder. These execution time estimates5 are

summarized in Table 5.1.

Frame
Length

Read SIMD
Time

Interleaver
Time

Write SIMD
(1-D)

Total
Time

Write SIMD
(2-D N-S)

Total
Time

96 11 13 9 33 16 40
128 15 18 12 45 22 55
256 30 36 24 90 43 109
512 60 79 48 187 86 225
1024 120 159 96 375 172 451
2048 239 320 192 751 344 903

Execution time in microseconds (ps)

Table 5.1: Memory Accesses and Interleaver Run-Times

The next set of measurements have been recorded to compare the execution

time of the PW-ONE algorithm when using the North-South and West-East Data

Transfer topologies of the inter-processor communication network against either a

1-D array or a spiral topology that assumes wrap-around with offset at the West and

East edges of the 2-D grid. These results are frame size independent since execution

time remains constant. The spiral topology is emulated by ignoring the edge condi-

Csteps 1-D North-South East-West

& II Time Time % Overhead Time % Overhead
1 x K c 0.171 0.217 26.90 0.378 121.05
2 x Kc 0.321 0.411 28.04 0.716 123.05
3 x K c 0.472 0.606 28.39 1.054 123.31
4 x K c 0.622 0.800 28.62 1.391 123.63
5 x Kc 0.772 0.994 28.76 1.729 123.96
6 x Kc 0.923 1.188 28.71 2.066 123.84
7 x K c 1.073 1.383 28.89 2.404 124.04
8 x K c 1.224 1.577 28.84 2.741 123.94

Execution time measured in milliseconds

Table 5.2: Execution Time of PW-ONE for Different Topologies

tion that must be handled in the other two cases. The results displayed in Table 5.2

5Time measurements and estimates are rounded up to the nearest microsecond even though the
resolution o f Timer 1 allows to approximate results to o f a microsecond.

102

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.5: Execution Time and Speedup

show that the data communication overhead of handling the edge condition for the

North-South Data Transfer topology accounts for an extra 27% to 29% increase in

execution time as compared to the execution time observed with the spiral network

topology. In contrast, the data communication overhead incurred when handling

the edge condition of the West-East Data Transfer topology makes execution of

the PW-ONE algorithm more than two times slower relative to the using the spiral

network.

Taking advantage of the scalability results presented in the previous section and

assuming that there are enough PEs available to support variable frame lengths in

the range 96 < N < 2048, it is possible to compute the speedup factor achieved

by executing the PW-ONE algorithm in the Array Processor of the J2210. Table

5.3 presents the speedup factor results for the constituent SISO decoder when com­

paring the sequential, fixed-point forward/backward algorithm against the parallel

implementation with the more efficient data communication topologies. The execu­

tion time measurements used to compute the speedup factor are those where 7 x Kc

convergence steps were used because they exhibited BER performance closest to

that of the sequential algorithm.

Frame
Length

Sequential
Time

SIMD 1-D
Time

SIMD 1-D
Speedup

SIMD 2-D
(N-S) Time

SIMD 2-D
(N-S) Speedup

96 1.925 ms 1.073 ms 1.79 1.383 ms 1.39
128 2.570 ms 1.073 ms 2.40 1.383 ms 1.86
256 5.136 ms 1.073 ms 4.79 1.383 ms 3.71
512 10.327 ms 1.073 ms 9.62 1.383 ms 7.47
1024 20.713 ms 1.073 ms 19.30 1.383 ms 14.98
2048 41.457 ms 1.073 ms 38.64 1.383 ms 29.98

Table 5.3: Speedup Factor Comparison for Constituent SISO Decoder

The plots of Figure 5.16 display graphically a comparison of execution time

for the sequential and parallel implementation of the SISO decoding algorithm as

a function of frame length. Note that the execution time of the data-parallel con­

stituent decoder task for the case where frame length N = 96 is the only measured

value since this execution time would remain constant for other frame sizes. The

103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

speedup factor behavior as displayed in Figure 5.16(b) is comparable to the esti­

mated behavior based on equation (4.6) and plotted in Figure 4.6.

Sequential SISO decoder
—(— Parallel SISO (1 -D network)
- 9 - Parallel SISO (2 -D N -S topology)

2000 2 5001500500 1000
Frame Length

(a) Execution Time vs. Frame Length

S p eed u p w ith 1 -D n e tw ork
- 0 - S p eed u p w ith 2 - D N - S topo logy

2500200015005 00 1000
Frame Length

(b) Speedup vs. Frame Length

Figure 5.16: Execution Time and Speedup Factor of Single Constituent Decoder.

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.5: Execution Time and Speedup

When reviewing the speedup factor results, it is important to note that the work­

load is proportional to the number of processing elements used. In other words, the

underlying assumption is that the number of PEs available in the array processor is

proportional to the length of the data frame.

Speedup factors achieved when evaluating a turbo decoder whose constituent

SISO decoders are based on the SIMD implementation of the PW-ONE algorithm

are presented in Table 5.4. The execution time of a single turbo decoder iteration

is the parameter used to compute the speedup factor. Note that for the case of the

turbo decoder with data-parallel components, the execution time for one turbo loop

iteration is the sum of the execution time of two SIMD constituent decoders plus

twice the time taken by the interleaver/de-interleaver including the associated read

and write memory accesses to the Array Processor memory as indicated in Table

5.1.

Frame
Length

Sequential
Time

SIMD 1-D
Time

SIMD 1-D
Speedup

SIMD 2-D
(N-S) Time

SIMD 2-D
(N-S) Speedup

96 3.885 ms 2.218 ms 1.75 2.852 ms 1.36
128 5.185 ms 2.240 ms 2.31 2.879 ms 1.80
256 10.366 ms 2.330 ms 4.45 2.987 ms 3.47
512 20.883 ms 2.522 ms 8.28 3.218 ms 6.49
1024 41.962 ms 2.901 ms 14.47 3.671 ms 11.43
2048 84.057 ms 3.652 ms 23.02 4.575 ms 18.37

Table 5.4: Speedup Factor Comparison for Turbo Decoder

The results of Table 5.4 have been plotted as a function of frame length and

they can be observed in Figure 5.17. Note that for this case too, the workload is

proportional to the number of processing elements. The impact of moving data into

and out of the Array Processor memory to perform the sequential interleaving/de-

interleaving can be observed as the decrease in the slope of the speedup graphs

as the frame length increases. One would choose to use a point-to-point hardware

interleaver for faster execution time per turbo decoder iteration. Such a hardware

interleaver could be difficult to tune for different frame sizes and would add to the

overall hardware cost.

105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation

S equen tia l T u rb o D ecoder
—F- P ara lle l T u rb o D eco d er (1 -D)
- 0 - P a ra lle l T u rb o D eco d er (2 -D N -S)8 0

7 0

3 4 0

2 5 0 01 5 0 0 20005 0 0 1000
Frame Length

(a) Execution Time vs. Frame Length

- # - 1 -D n e tw o rk used in constitu en t d eco d ers
2 - D N - S top o lo g y u sed in c o n s titu en t d eco d ers

20

^ 10

2 5 0 01 5 0 0 20005 0 0 1000
Frame Length

(b) Speedup vs. Frame Length

Figure 5.17: Execution Time and Speedup Factor of Turbo Decoder.

106

Castellon

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.6: Power and Energy Considerations

5.6 Power and Energy Considerations

Energy consumption is a main concern for many digital signal processing applica­

tions, primarily for portable applications where battery life is paramount. Energy

per task is an important and useful metric, especially for mobile devices whose

batteries have a finite energy capacity. The average power consumed by a portable

device can be reduced by using a power management strategy where the device

goes into low-power or standby mode after completion of computationally inten­

sive tasks. However, the energy drained from the energy source (batteries) during

execution of a given task can be calculated using equation (5.1).

Energy = Power x Time (5.1)

Therefore, both power and execution time per task are measured in order to calcu­

late energy consumption per task. Execution time measurements for the sequential

and parallel decoding algorithms were presented in section 5.5; in this section the

methodology to obtain power measurements is described and energy consumption

estimates are presented.

The power measurement method used to obtain accurate power and energy es­

timates for the ARM922T™ RISC engine and the Array Processor of the J2210

SoC takes advantage of the power distribution circuitry on the Atsana J2210 CEB.

The power distribution on the CEB is illustrated in Figure 5.18. It consists of three

periph3.3V
Regulator

1.2V
Regulator

2.5V
Regulator

Figure 5.18: J2210 Customer Evaluation Board power distribution.

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

voltage regulators to supply the three voltage rails of the CEB design. The 3.3V

regulator supplies power to the external memory and peripherals on the board. The

I/O and core of the J2210 SoC are powered by the 2.5V and 1.2V regulators re­

spectively. This is a convenient configuration because one can simply connect an

ammeter in series between the output of the 1.2V regulator and its load to measure

current consumption of the J2210 SoC.

The experimental setup was selected so that it bypasses the 1.2V regulator

completely by desoldering the output pin of the 1.2V regulator from the board. An

Agilent E3647A programmable, dual output, DC power supply was used to provide

the necessary voltage sources. The experimental setup is depicted in Figure 5.19.

Observe that one of the power supply outputs provides the primary input voltage

Vjn to the CEB, while the second output replaces the 1.2V regulator. The ammeter

rouri — 5E periph

Via

Load = J2210 Core

3.3V
Regulator

2.5V
Regulator

Agilent E3674A
Dual Output
Power Supply

Figure 5.19: Experimental Setup using E3647A Power Supply.

shown in Figure 5.19 is built into the E3647A equipment and current measurement

readings with a resolution of 1 mA are provided on the display of the power supply.

The dual output capabilities of the E3647A power supply allow correct powering of

the CEB in the test configuration while still meeting the power-up supply sequenc­

ing required by the J2210.

Power measurement inconsistencies usually result when on-chip peripherals

and off-chip VO are included as part of the measurement. The previously described

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.6: Power and Energy Considerations

experimental setup excludes any off-chip I/O factors because only the current con­

sumption of the J2210 core is monitored, which still includes the current consump­

tion contributions of on-chip peripherals. The J2210 SoC provides a power man­

agement strategy where various subsystems can be placed in a sleep mode via clock

gating techniques. This technique is applied to power down on-chip peripherals that

should remain inactive during the experiments.

Several test cases were identified that in order to isolate the current consumption

of the ARM922T™ RISC engine, the Array Controller and the Array Processor.

These test cases were the following:

Test Case A - Quiescent or Leakage Current

It is possible to obtain an estimate of the leakage current of the J2210 by

asserting the power down input pin on the chip. When power down is

asserted the DLL is disabled and all clocks are stopped.

Test Case B - ARM922T halted

Using this test case, it is possible to obtain a measurement that can be

used as a baseline to determine the current consumption of the RISC en­

gine when executing the sequential SISO decoding algorithm. The Array

Controller (AC), CMEM Interface Unit (CIU), and the Array Processor

are kept in sleep mode in this experiment6.

Test Case C - ARM922T active

Here the AC, CIU, and the Array Processor remain in sleep mode while

the RISC engine executes the sequential decoding algorithm. This opera­

tion is repeated in a loop that lasts approximately 30 seconds.

Test Case D - ARM922T, AC and CIU active

The AC architecture allows it and the RISC engine to execute asynchro-

nously. Therefore, the Command Queue Unit of the Array Controller is

first filled with commands, and then it executes these commands while

6Other on-chip peripherals that are put in sleep mode for all test cases are the US ART and Block
Encoder.

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Parallel Processor Decoder Implementation Castellon

the RISC engine executes the sequential algorithm. The two processors

remain executing their commands in a loop for a period of approximately

30 seconds. The Array Processor is kept in sleep mode.

Test Case E - Array Processor active

This test case is similar to case D expect that now the Array Processor is

taken out of sleep mode.

Raw current measurements for each test case are summarized on Table 5.4. Isolating

Test Case I core Reading
A 3 mA
B 20 mA
C 57 mA
D 102 mA
E 141 mA

Table 5.5: Raw Current Consumption Measurements

the current consumption of the ARM922T™ , the AC and CIU combination, and

the Array Processor, and assuming a constant core voltage of Vcore = 1.2V, one can

calculate the power consumption for each subsystem. These power measurements

were obtained using a data set where the SNR level was set to Eb/No = 1.0 dB.

Subsystem Name ARM922T AC + CIU Array Processor
Current Consumption 34 mA 42 mA 36 mA

Power 40.8 mW 50.4 mW 43.2 mW

Table 5.6: Power Estimates for Individual Subsystems

Assuming that the power of the Array Controller remains constant, the power of

the Array Processor can be scaled linearly with the number of PEs7. Then, one can

compare energy consumed by the Array Processor against the energy consumed by

the ARM™ core when executing their corresponding SISO decoding algorithms

7There exist some quantization effects that have been neglected. For instance, if the addition of
one more PE results in the addition o f a new memory bank, then power consumption would increase
by a step greater than a linear step, but larger increments in the number o f PEs should result in a
close to linear increase in power consumption.

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 5.7: Summary

for various frame lengths. Execution time measurements from Table 5.1, the ex­

ecution time for 7 x Kc convergence steps, and power consumption measurements

from Table 5.6 are used to estimate the energy consumption.

Frame Length ARM922T
Energy

Array Processor
Energy

% Energy
Savings

96 78.54 59.75 / J 23.9
128 104.86 qJ 79.66 /j] 24.0
256 209.55 159.32 /rJ 24.0
512 421.34 qJ 318.64 /uJ 24.4
1024 845.09 /jJ 637.29 /rJ 24.6
2048 1691.45 ,uJ 1274.57 qJ 24.6

Table 5.7: Energy Consumption Comparison

The results of Table 5.6 clearly show that PIM technology offers an energy con­

sumption advantage over a low-power, high performance embedded microprocessor

such as the ARM922T™.

5.7 Summary

The implementation of the PW-ONE algorithm for execution on commercially avail­

able hardware has been described in this chapter. Implementation details such as

the selection of the inter-processor communication topology were explained. The

constituent data-parallel SISO decoders have been combined with a sequential im­

plementation of the interleaver to form the complete turbo decoder. Evaluation of

the turbo decoder has demonstrated that the concepts of the PW-ONE algorithm are

scalable to accommodate the use of more PEs so that the decoding of longer data

frames can be supported. Results also indicate that 7 x Kc or more convergence

steps may be required when decoding longer frames.

Considering the constituent SISO decoder alone, speedup factors greater than 10

can be obtained when applying the PW-ONE decoding technique to frames whose

length exceeds 512 data symbols. Finally, the use of PIM technology results in

approximately 24% energy savings, and this has been demonstrated with working

hardware.

I l l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Conclusions

This research work presented the design and implementation of a fixed-point, data-

parallel algorithm for the decoding of turbo codes. The algorithm has been devel­

oped to be executed by the SIMD array processor found in the Atsana Semiconduc­

tor J2210 Media processor. Embedded systems for wireless applications require

communications algorithms where fixed-point arithmetic is used as efficiently as

possible, and where parallelism is exploited in both software and hardware in or­

der to support the throughput demanded by high data rate applications. This work

shows that a SIMD computer with PIM technology provides the flexibility of soft­

ware with the performance of dedicated hardware to support the implementation

of a turbo decoder in a 3G mobile platform. The design of the fixed-point, data-

parallel algorithm required exhaustive analysis of the impact of finite precision on

the turbo decoding algorithm and the exploration of data parallelism in the constant-

Log-MAP algorithm used by the constituent SISO decoders of a turbo decoder.

Chapters 1 and 2 presented an introduction to this thesis and provided back­

ground material necessary for understanding the contributions of this work. In

Chapter 3, the implementation of a fixed-point turbo decoder was presented. The

constant-Log-MAP algorithm was selected for the constituent SISO decoders be­

cause of the simple method it uses to approximate the correction function of the

max* operation. The turbo decoder implementation described in Chapter 3 suc­

cessfully minimized the fixed-point word length for all the variables used in the

algorithm by operating on unsealed channel symbols and by limiting the saturation

113

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6: Conclusions Castellon

threshold of results from arithmetic operations. The effect of fractional precision

was examined by evaluating the performance of the individual constituent decoders,

while a density evolution analysis provided an indication of the number of integer

bits required. Empirical results demonstrated that a turbo decoder with a fixed-point

configuration of (8, 2), where the first digit represents the word length and the sec­

ond digit indicates the number of fractional bits, achieves a BER performance that

lies within 0.1 dB of the performance of a floating-point implementation. However,

this is only achieved by limiting the fixed-point word length for the extrinsic infor­

mation to one bit less than the fixed-point representation of the LLR values at the

output of the SISO decoders.

Chapter 4 explored the possibilities for data parallelism in the trellis-based de­

coding algorithm for turbo codes. This exploration resulted in the identification

of parallel data structures and inter-processor communication requirements. The

trellis structure that describes the RSC constituent code can be mapped efficiently

to a SIMD array processor where the PEs are arranged as a linear array. The re­

quirements for the inter-processor communication network are simplified by this

organization because data transfers between the state nodes of the trellis at different

time intervals can be visualized as point-to-point data shifts. The Parallel Window

ONE (PW-ONE) algorithm is also described in Chapter 4, where state metric dis­

tributions are evaluated in parallel for the entire trellis, and they converge to their

true metric value after a predefined number of convergence steps. The number of

convergence steps required by the PW-ONE algorithm affects the speedup and effi­

ciency of the data-parallel algorithm.

Chapter 5 presents the implementation details of the PW-ONE algorithm when

the SIMD target architecture is the Array Processor of the J2210 SoC. An efficient

implementation depends on the selection of an inter-processor data transfer topol­

ogy that reduces the communication overhead given the available inter-processor

communication network. The communication overhead of the North-South Data

Transfer topology described in Chapter 5 represents no more than 29% of the total

execution time.

114

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 6.1: Future Research Directions

BER performance test results show that the PW-ONE algorithm is scalable to

any size of frame length. However, analyzing the effect of the number of conver­

gence steps on the BER performance demonstrates that five times the constraint

length of the code is sufficient for short frames while seven times or greater may

be required for longer frames. The results then confirm the PW-ONE algorithm

hypothesis for some code configurations but contradict it for others. When the pre­

defined number of convergence steps is fixed to seven times the constraint length

of the code, execution time measurements on the hardware target show that the

execution of the PW-ONE algorithm by a SIMD computer, as compared to execu­

tion of the sequential forward/backward algorithm by a high performance ARM™

processor, can achieve speedup factors greater than ten when the frame length is

greater than 512 data symbols. Experimental results also indicate that processing in

memory offers 24% savings in energy consumption when compared to the popular

low-power ARM9™ architecture.

6.1 Future Research Directions

Future research work can be divided into three categories: algorithm development,

architectural changes of the SIMD array processor hardware and VLSI implemen­

tation of the PW-ONE algorithm.

Algorithm Development

Regarding algorithm development and optimization, future research tasks may

include:

1) In an effort to reduce the latency of the decoding procedure in the constituent

SISO decoders, a different method for the computation of the a and (3 state metrics

can be employed. The method applied by the current implementation initializes the

state metric distributions as equiprobable at the start of the decoding procedure in

each constituent SISO decoder. A new approach could take advantage of available

memory resources so that each constituent decoder stores the state metrics values

computed during it previous active state and then use them to initialize the state

115

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6: Conclusions Castellon

metric distributions at the beginning of a new decoding iteration. Conducting ex­

periments to evaluate this approach would demonstrate the possibility of reducing

the number of convergence steps required by the constituent SISO decoder down to

one constraint length of the constituent code or lower before computing the LLRs

and sending them through the interleaver blocks.

2) Under the assumption that the Array Processor in the J2210 Media Processor

continues to be the target SIMD architecture, develop custom micro-instructions to

reduce execution time. For example, the MAX() micro-instruction provided with

the J2210 AP SDK works well for unsigned numbers. However, to support the gen­

eral case of finding the maximum between two signed or unsigned numbers, three

additional SIMD instructions need to be executed including their corresponding

load and store cycles.

3) Increase the fixed-point precision of the PW-ONE algorithm from 8-bit to 16-bit.

It is expected that the increase in precision will reduce the frequency with which

overflow conditions are checked. Reducing the time spent checking for arithmetic

overflow may allow to achieve a higher speedup factors at the expense of an increase

in storage requirements.

4) Determine if normalization of the a and (3 state metrics can be omitted from

the operations performed by the PW-ONE algorithm. If normalization is still re­

quired, investigate other techniques that can potentially reduce the inter-processor

communication overhead.

SIMD Architecture

Research tasks involving hardware modifications to the SIMD array processor

architecture may include the following:

1) Develop a SIMD array processor with more PEs (CUs). To satisfy area restriction

imposed by an SoC, the amount of distributed memory in the array processor may

have to be reduced to make room for the logic circuits of the additional CUs. The

main objective of this task would be to determine the point of equilibrium between

the amount of distributed memory and the number of PEs that is practical for an

116

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon Section 6.1: Future Research Directions

application involving the decoding of turbo codes. A 2-D mesh arrangement of CUs

with wrap-around at the edges for efficient data transfer would require analyzing the

latency issues introduced by the long interconnections.

2) Investigate the design of a dedicated communication network for interleaving the

data that becomes the extrinsic input between constituent SISO decoding stages.

This task would quantify the time delay imposed by this network as a factor equi­

valent to a given number of SIMD instructions.

3) Investigate the implementation of a CU with a custom word length other than

8-bit wide. One would determine the word length to satisfy the finite precision

requirements of the algorithm and to reduce the occurrence of overflow from arith­

metic operations without having to double the number of bits used by the existing

architecture.

VLSI Implementation

A different research direction could see research efforts focused on the imple­

mentation of the PW-ONE algorithm in dedicated hardware using FPGA or VLSI

technologies. Such an implementation could be coupled with a parallel hardware

interleaver. With a completely data-parallel turbo decoder, researchers could de­

termine the number of turbo loop iterations required to achieve the same BER per­

formance as the sequential forward-backward algorithm if the PW-ONE algorithm

does not wait for convergence of the a and p state metrics before estimating LLRs

for the next decoding stage. A true data-parallel turbo decoder could achieve re­

duced latency, high data throughput and lower energy consumption per decoded bit

at the expense of more arithmetic calculations.

SIMD Implementation of LDPC Decoders

The architecture of low density parity check (LDPC) decoders where there is no

dependencies between neighboring data bits during a half-iteration of the decoding

procedure lends itself nicely for implementation using a SIMD array processor. A

final suggestion regarding potential future work involves investigating the design

requirements for such an implementation.

117

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

118

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] C. Berrou, A. Glavieux, and P. Thitimasjshima, “Near Shannon limit error-
correcting coding and decoding: T urbo-codes(l)in Proc. IEEE International
Conference on Communications, Geneva, Switzerland, May 1993, pp. 1064-
1070.

[2] 3GPP, “Universal mobile telecommunications system (UMTS): Multiplexing
and channel coding (FDD),” European Telecommunications Standards Insti­
tute, TS 125.212 version 5.9.0 Release 5, June 2004.

[3] J. G. Harrison. “Implementation of a 3GPP Turbo Decoder on a
Programmable DSP Core”. 3DSP Corporation. [Online], Available: http:
//www.3dsp.com/pdf/3dspTurboWhitePaper.pdf

[4] D. Gnaedig, M. Lapeyre, F. Mouchoux, and E. Boutillon, “Efficient SIMD
technique with parallel Max-Log-MAP Algorithm for Turbo Decoders,” in
GSPx2004 Embedded Applications Software & Hardware, Santa Clara, CA,
Sept. 2004.

[5] S3000 3GPP (WCDMA) Compliant Turbo Decoder, 1st ed., iCODING Tech­
nology Inc., San Diego, CA, Jan. 2002.

[6] PCD03V 3GPP/3GPP2 8 state turbo decoder, Small World Communications,
Payneham South, Australia.

[7] V. C. Gaudet and P. G. Gulak, “A 13.3-Mb/s 0.35-^m CMOS Analog Turbo
Decoder IC with a Configurable Interleaver,” IEEE J. Solid-State Circuits,
vol. 38, no. 11, pp. 2010-2015, Nov. 2003.

[8] TMS320C6416 Fixed-Point Digital Signal Processor Data Sheet.
tms320c6416.pdf. Texas Instruments Inc. Houston, Texas. [Online], Avail­
able: http://focus.ti.com/docs/prod/folders/print/tms320c6416t.html

119

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.3dsp.com/pdf/3dspTurboWhitePaper.pdf
http://focus.ti.com/docs/prod/folders/print/tms320c6416t.html

BIBLIOGRAPHY Castellon

[9] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Ap­
proach. Morgan Kaufmann, 1994.

[10] K. Hwang, Advanced Computer Architecture - Parallelism, Scalability, Pro­
grammability, ser. Computer Engineering. McGraw-Hill, 1993.

[11] N. Aklilu, “Integrating computational RAM (C*RAM) into a system architec­
ture,” Master’s thesis, University of Alberta, Edmonton, Alberta, July 2001.

[12] D. G. Elliott, “Computational RAM: A memory-SIMD hybrid,” Ph.D. disser­
tation, University of Toronto, Toronto, 1998.

[13] D. Leder, “C*RAM with Fault-tolerant Reconfigurable ID, 2D and 3D Com­
munication Network,” Master’s thesis, University of Alberta, Edmonton, Al­

berta, 2004.

[14] S. Dillen, “Quantitative analysis of the SIMD DSP-RAM architecture,” Mas­
ter’s thesis, University of Alberta, Edmonton, Alberta, July 2003.

[15] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. Mckenzie,
“Computational RAM: Implementing Processors in Memory,” IEEEDes. Test.
Comput., vol. 16, no. 1, pp. 32-41, Jan. 1999.

[16] T. E. Le, W. M. Snelgrove, and S. Panchanathan, “SIMD processor arrays for
image and video processing: a review,” in Proc. ofSPIE, vol. 3311 - Multime­

dia Hardware Architectures, San Jose, CA, Jan. 1998, pp. 30-41.

[17] M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory: The Terasys
Massively Parallel PIM Array,” IEEE Computer, vol. 28, no. 3, pp. 23-31,

Apr. 1995.

[18] C. Cojocaru, “Computational RAM: Implementation and bit-parallel architec­
ture,” M.Eng. thesis, Carleton University, Ottawa, Ontario, Jan. 1995.

[19] J2210 Software Tools User Manual, Atsana Semiconductor Corporation, Ot­
tawa, Ontario, July 2003, Document number: SWE-001-04.

[20] Y. Wu, “Implementation of Parallel and Serial Concatenated Convolutional
Codes,” Ph.D. dissertation, Virginia Polytechnic Institute and State University,
Blacksburg, VA, Apr. 2000.

120

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon BIBLIOGRAPHY

[21] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429-
445, Mar. 1996.

[22] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-output decod­
ing algorithms in iterative decoding of turbo codes,” NASA Jet Propulsion
Laboratory (JPL), TDA Progress Report 42-124, Feb. 1996.

[23] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs
and its applications,” in IEEE GLOBECOM’89, Nov. 1989, pp. 1680-1686.

[24] R. W. Chang and J. C. Hancock, “On receiver structures for channels having
memory,” IEEE Trans. Inform. Theory, vol. 12, pp. 463-468, Oct. 1966.

[25] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20,
pp. 284-287, Mai-. 1974.

[26] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in Proc.
IEEE International Conference on Communications, vol. 2, Seattle, WA, June
1995, pp. 1009-1013.

[27] J. A. Erfanian and S. Pasupathy, “Low-complexity parallel-structure symbol-
by-symbol detection for ISI channels,” in IEEE Pacific Rim Conf. Communi­
cations, Computers and Signal Processing, June 1989, pp. 350-353.

[28] W. J. Gross and P. G. Gulak, “Simplified MAP algorithm suitable for imple­
mentation of turbo decoders,” Electronic Letters, vol. 34, no. 16, pp. 1577-
1578, Aug. 1998.

[29] J. F. Cheng and T. Ottosson, “Linearly approximated log-MAP algorithms for
turbo decoding,” in Proc. IEEE Veh. Tech. Conf. (VTC), Houston, TX, May
2000, pp. 2252-2256.

[30] B. Classon, K. Blankenship, and V. Desai, “Turbo decoding with the constant-
log-MAP algorithm,” in Proc. Second Int. Symp. Turbo Codes and Related
Appl., Brest, France, Sept. 2000, pp. 467—470.

121

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix BIBLIOGRAPHY Castellon

[31] H. Michel, A. Worm, M. Munch, and N. Wehn, “Hardware/Software trade­
offs for advanced 3G channel coding,” in Design, Automation and Test in Eu­
rope Conference and Exhibition, Mar. 2002, pp. 396—401.

[32] X. Zeng and Z. Hong, “Design and Implemenation of a Turbo Decoder for
3G W-CDMA systems,” IEEE Trans. Consumer Electron., vol. 48, no. 2, pp.
284-291, May 2002.

[33] SystemC 2.0.1 Language Reference Manual, 1 st ed., Open SystemC Initiative,

San Jose, CA, 2003.

[34] IT++ library: Fixed-point data types. [Online], Available: http://itpp.
sourceforge.net/latest/group__fixtypes.html

[35] M. Valenti and J. Sun, “The UMTS turbo code and an efficient decoder im­
plementation suitable for software defined radios,” International Journal on

Wireless Information Networks, vol. 8, no. 4, pp. 203-216, Oct. 2001.

[36] Z. Wang, H. Suzuki, and K. K. Parhi, “VLSI implementation issues of

TURBO decoder design for wireless applications,” in IEEE Workshop on Sig­
nal Processing Systems, SiPS 99, Oct. 1999, pp. 503-512.

[37] M. C. Valenti, “Iterative Detection and Decoding for Wireless Communica­
tions,” Ph.D. dissertation, Virginia Polytechnic Institute and State University,
Blacksburg, VA, July 1999.

[38] A. J. Viterbi, “An intuitive justification and a simplified implementation of
the MAP decoder for convolutional codes,” IEEE J. Select. Areas Commun.,
vol. 16, no. 2, pp. 260-264, Feb. 1998.

[39] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s
radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in ISSCC
2003, vol. 1 - Digest of Technical Papers, 2003.

[40] D. Gnaedig, E. Boutillon, M. Jezequel, V. C. Gaudet, and P. G. Gulak, “On
multiple slice turbo codes,” in Proc. 3rd Int. Symp. Turbo Codes and Related
Appl., Brest, France, Sept. 2003.

[41] WIKIPEDIA, free online encyclopedia. [Online], Available: http://en.
wikipedia.org/wiki/Speedup

122

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://itpp
http://en

Appendix A

Turbo Encoder/Decoder C++ Source
Code

A.l Fixed-Point Data Type Definition

Listing A.l: Fixed-Point Data Type Class Definition
/**
* fixedpoint.h
* Copyright (c) 2004, 2005 Marco Castellon
* University of Alberta, Edmonton, CANADA* All rights reserved.
* This software may be used for non-profit university research if
+ given the author's expressed permission. An executed license* agreement with the author is required for all ether uses of this
* software. Redistribution of this software is not permitted without* the author's expressed permission. This copyright notice must
* remain intact.. Derivative works may contain additional notices.
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS” AND COMES WITH
* NO WARRANTY.
* Description: Class definition for fixed-point data types.

#ifndef F I X E D P O I N T . H
#define F I X £ D F O I N T _ H

#include " f i x a s s e r t . h "

// Typedef for signed 16-bit integer
typedef short int I N T I 6 ;

// Typedef for unsigned 16-bit integer
typedef unsigned short int U I N T 1 6 ;

// Type to represent fixed-point word
typedef 1 N T 1 6 f i x w o r a ;

// Maximum word length
const int MF.X_WORDL.EN - 1 6 ;

// Table for fast multiplication or division by 2‘n
const U1NT16 P 0W _0F _2[1 6] - {

0 x 0 0 0 1 , 0 x 0 0 0 2 , 0 x 0 0 0 4 , 0 x 0 0 0 8 , 0 x 0 0 1 0 ,

0 x 0 0 2 0 , 0 x 0 0 4 0 , O x O O S O , 0 x 0 1 0 0 , 0 x 0 2 0 0 ,
0 x 0 4 0 0 , 0 x 0 8 0 0 , 0 x 1 0 0 0 , 0 x 2 0 0 0 , 0 x 4 0 0 0 ,

0 x 8 0 0 0

};
// Table for fast multiplication by 2~(n-16)
const double D Q U B L E _ P O W 2 [3 2] = {

1 . 5 2 5 8 7 8 9 0 6 e - 0 5 , 3 . 0 5 1 7 5 7 8 1 2 e - 0 5 , 6 . 1 0 3 5 1 5 6 2 5 e - 0 5 , 1 . 2 2 0 7 0 3 1 2 5 e - 0 4 ,
2 . 4 4 1 4 0 6 2 5 e - 0 4 , 4 . 8 8 2 8 1 2 5 e - 0 4 , 9 . 7 6 5 6 2 5 e - 0 4 , 0 . 0 0 1 9 5 3 1 2 5 ,

123

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C+ + Source Code Castellon

0 . 0 0 3 9 0 6 2 5 ,

0 . 0 6 2 5 ,

1 . 0 ,
16 . 0 ,
2 5 6 . 0 ,
4 0 9 6 . 0 ,

};

0 . 0 0 7 8 . 1

0 . 1 2 5 ,
2 . 0 ,
3 2 . 0 ,
5 1 2 . 0 ,
8 1 9 2 . 0 ,

0 . 0 1 5 6 2 5 ,

0 . 2 5 ,
4 . 0 ,
6 4 . 0 ,
1 0 2 4 . 0 ,
1 6 3 8 4 . 0 ,

0 . 0 3 1 2 5 ,
0 . 5 ,
8 . 0 ,
1 2 8 . 0 ,
2 0 4 8 . 0 ,
3 2 7 6 8 . 0

// Overflow
enum O vf_M ocie

SAT,
WRAP

// Saturation
// iVrap-arouna

Fixed-point data type.Only Two's complement sign encoding is supported, and
only quantization mode supported is "Rounding to Infinity" asdescribed by the SC__RND_1NF quantization mode in systemC.

* /

struct R a w B i t s {
f i x w o r d w o r d _ b i t s ;
int f r a c t i o n . . . b i t s ;

};
c l a s s F i x F o i n t {

p u b l i c :
// Default constructor.
e x p l i c i t F i x P o i n t (double r e a l V a l u e = 0 . 0 , int w i = M A X_ WO RDL EN , int f l = 0) ;

// Copy constructor.
F i x P o i n t (const F i x P o i n t & f i x) ;

// Constructor to handle the unconstrained results of arithmetic operations. //FfxPoint (fixword raw, int fl);
F i x P o i n t (const R a w B i t s S b i t s) ;

// Destructor
v i r t u a l "F i x P o i n t () {}

/*•*** ACCESSOR AND MUTATOR MEMBER METHODS.****/
.// Set fractional length (without shifting) .
void s e t _ f r a c t i o n b e n g t h (i n t f l) ;

// Set overflow mode for ail objects of this class.
static void s e t _ O v e r f l o w M o d e (O v f _ M o d e o _ m o d e) ;

/ / G e t fractional length.
int q e c _ f r a c t i o n L e n g t h (void) const;

// Get word length.
int g e t _ w o r d L e n g t h (void) const;

// Get overflow mode.
static O v f _ M o d e g e t _ p v e r f l o w M o d e (void);

// G e t maximum value of data representation
f i x w o r d g e t „ . . m a x () const {return m a x _ v a l ; }

/'/ Get minimum value of data representation
f i x w o r d g e t m i n () const (return i n i n . _ v a l ; }

/**■*»• OVERLOADED ASSIGNMENT AND COMBINED BINARY/ASSIGNMENT OPERATORS .****/
// Assignment from Fix
F i x P o i n t S o p e r a t o r - (const F i x P o i n t A x) ;

// Addition of Fix
F i x P o i n t A o p e r a t o r * - (const F i x P o i n t A x) ;

// Subtraction of Fix
F i x P o i n t A o p e r a t o r - - (const F i x F o i n t A x) ;

// Unary negative of Fix
F i x P o i n t o p e r a t o r - !) const;

// Left shift n bits
F i x P o i n t A o p e r a t o r < < - (const int n) ;

// Right shift n bits using quantization mode RND_1NF
F i x P o i n t A o p e r a t o r > > - (const int n) ;

// Overloaded binary addition operator (FixPoint + FixPoint)
f r i e n d const F i x P o i n t o p e r a t o r * (const F i x P o i n t A x , const F i x P o i n t A y) ;

// Overloaded binary subtraction operator (FixPoint + FixPoint)

124

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A .l: Fixed-Point Data Type Definition

f r i e n d const F i x P o i n t o p e r a t o r - (const F i x P o i n t & x , const F i x P o i n t £ y) ;

/ / A b s o l u t e v a l u e
f r i e n d const F i x P o i n t a b s o l u t e (const F i x P o i n t i i x) ;

// Maxitnum of two values
f r i e n d const F i x P o i n t m a x i m u m (const F i x P o i n t & x , const F i x P o i n t & y) ;

// S e t t o x * pow2 (n) using quantization mode
void s e t (double x , int n) ;

// S e t d a t a representation (mainly for internal u s e since it reveals the representation type)
void s e t _ r a w b i n { f i x w o r d x) { r a w _ b i n _ n u m = h a n d l e _ o v e r f . l o w (x) ; }

// Left shift \c n kits
void l s h i f t (int n) ;

// Right shift \c n bits using quantization mode (c qmode (constructor argument)
v o i d r s h i f t (i n t n) ;

/ / G e t raw binary number used in the data representation.// (mainly for internal use since it reveals the representation type)
f i x w o r d g e t _ r a w b i n () const (return r a w _ b i n _ _ n u m ; }

. / / C o n v e r s io n t o d o u b l e
double u n f i x () const;

// Conversion to double
o p e r a t o r double!) const
I

F X P _ A 3 3 E R ' f (f r a c t i o n _ l e n > = - 1 5 && f r a c t i o n _ l e n < = 1 6 , " F i x P o i n t : : o p e r a t o r d o u b l e : i l l e g a l f r a c t i o n a l l e n g t h ! ")

return double (r a w _ b i n _ n u m) * D 0 U B L E . . .P 0 W 2 [1 6 - f r a c t i o n _ _ l e n] ;

1
// Check that x. fractionlen-=y. fractior.ien OR x==0 OR y==0 and return the // the fractional length (for the non-zero argument)
f r i e n d int a s s e r t _ f r a c t i o n l e n (const F i x P o i n t & x , const F ' i x P o i n t & y) ;

p r o t e c t e d :

// Raw binary number used for Data representation
f i x w o r d r a w _ b i n _ n u r a ;

// The number of bits to the right of binary point.// This value determines the scaling and interpretation of the fixed-point number.
int f r a c t . i o n _ I e n ;

// W o r d length
int w o r d _ l e n ;

// Overflow mode
static O v f _ M o d e o v f m o d e ;

// Minimum allowed value (help variable to speed up calculations)
f i x w o r d m i n _ v a l ;

// Maximum allowed value (help variable to speed up calculations)
f i x w o r d m a x _ v a l ;

// Number of unused (MSB) bits (help variable to speed up calculations)
int n _ u i ' i u s e d _ b i t s ;

// C a l c u l a t e help variables min, max and n_unused_bits
void i n i t i a l i s e (void);

// Handle overflows u s i n g overflow mode.
f i x w o r d h a n d i e _ o v e r f l o w (f i x w o r d x) const;

// Convert from double to raw binary representation using power-of-two scaling
// and apply quantization.
f i x w o r d s e a i e _ a n d _ q u a n t i z e (double x) const;

// Right shift n bits using quantization mode.
f i x w o r d r s h i f t _ a n d _ q u a n t i z e (f i x w o r d x , int n) const;

/* brief Templated fixed-point data type
*/

t e m p l a t e c i n t w l >

c l a s s F i x e d : p u b l i c F i x P o i n t {

p u b l i c :
/'/ Default, constructor
F i x e d (d o u b l e r e a i « 0 . 0 , i n t f l - 0)

: F i x F o i n t (r e a l , w l , f l) (}

125

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C++ Source Code Castellon

// Constructor
I - i x e d (const F i x P o i n t & x)

: F i x P o i n t (x) {}

// Destructor
v i r t u a l ' F i x e d () {}

// Assignment from Fix
F i x e d & o p e r a t o r - (const F i x P o i n t & x)

(
£ r a c t i o n _ _ i e n = x . g e t . . _ f r a c t i o n L e n g t h () ;
r a w _ _ b . i n _ n u r a - h a n d i e _ o v e r f l o w (x . g e t _ r a w b i n ()) ;

return * t f i i s ;

}
p r o t e c t e d :

/'/ Typedefs for saturated Fixed
typedef F i x e d < l > s f i x e d l ;
typedef F i x e a < 2 > s f i . x e d 2 ;

typedef F i x e d < 3 > s f i x e d 3 ;
typedef F i x e d < 4 > s £ i x e d 4 ;

typedef F i x e d < 5 > s f i x e d S ;

typedef F i x e d < 6 > s f i x e d 6 ;
typedef F i x e d < ’7> s f i x e d ' 7 ;

typedef F i x e d < 8 > s f i x e d S ;
typedef F i x e a < 9 > s f i x e d 9 ;

typedef F i x e d < 1 0 > s f i x e d l O ;

typedef F i x e d < l l > s f i x e d l l ;
typedef F i x e d < 1 2 > s f i x e d l 2 ;
typedef F i x e d < 1 3 > s f i x e d l 3 ;
typedef F i x e d < 1 4 > s f i x e d l 4 ;

typedef F i x e d < 1 5 > s f i x e d l o ;
typedef F i x e a < 1 6 > s f i x e d l 6 ;

/»***,*«**» BEGINNING OF FUNCTIONS ***»*»**********/
// Set y - x * pow2(n) using the quantization mode of y
i n l i n e void s e t _ f i x (F i x P o i n t &v, double x , int n) { y . s e t . (x , n) ; }

// Left shift 11 bits
i n l i n e void , l s h i f t _ f i x (F i x P o i n t & y r int n) { y . I s h i f t (n) ; }

// Right shift n bits using the quantization mode of y
i n l i n e void r s h i f t _ f i x {F i x P o i n t & y , int n) (y . r s h i f t (n) ; }

// Convert Fix to double by multiplying the bit representation with pow2(-shift)
i n l i n e double u n f i x (const F i x P o i n t & x) {return x . u n f i x {) ; }

#endif // FIXEDPOINT_H

126

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A .l: Fixed-Point Data Type Definition

L isting A .2: Fixed-Point D ata Type C lass Im plem entation

* f i x e d p o i n t . c p p

* C o p y r i g h t (c.) 2004, 2005 Marco C a s t e l l o n
* U n i v e r s i t y o f A l b e r t a , Edmonton , CANADA
* A l l r i g h t s r e s e r v e d .

* T h i s s o f t w a r e may b e u s e d f o r n o n - p r o f i t u n i v e r s i t y r e s e a r c h i f
* g i v e n t h e a u t h o r ' s e x p r e s s e d p e r m i s s i o n . A n e x e c u t e d l i c e n s e
* a g r e e m e n t w i t h t h e a u t h o r i s r e q u i r e d f o r a l l o t h e r u s e s o f t h i s
* s o f t w a r e . R e d i s t r i b u t i o n o f t h i s s o f t w a r e i s n o t p e r m i t t e d w i t h o u t
* t h e a u t h o r ' s e x p r e s s e d p e r m i s s i o n . T h i s c o p y r i g h t n o t i c e mus t
* r e m a in i n t a c t . D e r i v a t i v e works may c o n t a i n a d d i t i o n a l n o t i c e s .

* THIS SOFTWARE I S PROVIDED BY THE AUTHOR "AS I S " AND COMES WITH
* NO WARRANTY.

* D e s c r i p t i o n : C l a s s I m p l e m e n t a t i o n f o r f i x e d - p o i n t d a t a t y p e s .

#include "t i x e d p o i n t . h "

O v f _ M c d e F i x P o i n t : : o v f m o d e - S A T ; / / Default overflow handling mode is saturation.

* Definition of default constructor.
*/

F i x P o i n t : : F i x P o i n t (double r e a l V a l u e , int w l , int f l)

: w o r d _ . i e n { w l) , f r a c t i o n _ . l e n ! f 1)

{
i n i t i a l i z e () ;
r a w _ b i n _ n u m =• s c a l e _ a n d _ q u a n t i z e (r e a l V a l u e) ;

1

* D e f i n i t i o n of copy constructor.
*/

F i x P o i n t : : F i x P o i n t (const F i x P o i n t S f i x)

{
w o r d _ l e n - f i x . w o r a _ . l e n ;

f r a c t i o r . _ _ i e n - f i x . f r a c t i o n _ l e n ;

i n i t i a l i z e () ;

r a w _ b i n _ n u m - f i x . r a w _ b i n _ n u m ;

}
. / * *

>• Definition of constructor for unrestricted arithmetic operations.
*/

F i x P o i n t : : F i x P o i n t (const R a w B i t s & b i t s)

{
w o r d _ l e n - MA X_ WOR DL EN ;

i n i t i a l i z e (} ;

f r a c t i o n _ l e n = b i t s . f r a c t i o n _ b i t s ;

r a w _ b i n _ n u m = b i t s . w o r d _ b i t s ;

}

* initialize ()
* Based on the specified word length, d e t e r / n i n e the minimum and maximum* raw binary numbers that can be represented using 2's complement sign encoding.
*/

void F i x P o i n t : : i n i t i a i i z e (void)
1

F X P _ A S S F R T (w o r d _ l e n > ” 1 && w o r d _ l e n 1 6 , " F i x P o i n t : : i n i t i a l i z e : I l l e g a l w o r d l e n g t h ! ") ;
m a x _ v a l - f i x w o r d (P 0 W _ 0 F _ 2 [w c r d _ l e n - 1] - 1) ;

m i n _ v a l = s t a t i c _ c s s t < f i x w o r d > (- m a x _ v a l - 1) ;

n . . . u n u s e d _ . b i t s = MA X _W CR D LEN - w c r d _ l e n ;

}

* handle_cverflow ()
*/

f i x w o r d F i x F o i n t : : h a n d i e _ o v e r f l o w (f i x w o r d x) const
{

f i x w o r d t m p ^ x ;
b o o l o v e r f l o w = f a l s e ;

if (t m p < m . i n _ v a l) {

o v e r f l o w - t r u e ;

switch (F i x P o i n t : : o v f m o d e) {
case WRA P:

t m p - f i x w o r d ((s t a t i c _ c a s t < I N T 1 6 > (t m p) < < n _ u n u s e d _ b i t s) > > n _ u n u s e d _ b i t . s) ;

127

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C++ Source Code Castellon

break;
case SAT:

t m p = m i n _ v a l ;
break;

default:
break;

1 1
else if (t m p > m a x . _ . v a l) {

o v e r f l o w - t r u e ;
switch (F i x P o i n t : : o v f m o d e) {
case WRAP :

t m p - f i x w o r d < (s t a t i c _ c a s t < I N T 1 6 > (t m p) < < n _ u n u s e d _ b i t . s) > > n _ u n u s e d _ b l . t s) ;
break;

case SAT:
t m p - m a x _ v a . l ;
break;

default:
break;

}}
return t m p ;

)
f i x w o r d F i x P o i n t . : : s c a . l e _ a n d _ q u a n t . i z e (double x) const
1

F X P _ A S 5 E R T (f r a c t i o n _ _ l e n > = - l 6 && f r a c t i o n _ I e n < = 1 5 , " F i x P o i n t : : s c a l e _ a n d _ q u a n t i z e : i l l e g a l s h i f t ! ") ;

f i x w o r d t e m p - 0 ;

// Apply power-cf-two scaling to the real value.
double s c a l e d . . . v a l u e - x * D O U B L E . „ P O W 2 [f r a c t i o n _ . i e n + 1 6] ;

/./ if the number is negative round towards minus infinity, and if
// it is positive round to positive infinity. systemC calls this // SC_RND_1NF quantization mode.
if (x < 0)

t e m p = h a n d i e _ . o v e r f l c w (s t a t i c _ c a s t < f i x w o r a > (s c a l e d , v a l u e - 0 . 5)) ;

else
t e m p - h a n d l e _ o v e r f l c w (s t a t i c _ c a s t < f i x w o r d > (s c a l e d _ v a l u e + 0 . 5)) ;

return t e m p ;

}

* rshift._and_quantize()
*/

f i x w o r d F i x P o i n t : : r s h i f t _ a n d _ q u a n t i z e { f i x w o r d x r int r .) const
{

F X P . _ A S S E R I (n 0 , " F i x P o i n t : : r s h i f t , a n d . , q u a n t i z e : n c a n n o t b e n e g a t i v e ! ") ;

f i x w o r d t e m p -«= 0 ;

if (n = = 0)

{
t e m p = x ;

}
else

1
// If the most significant deleted bit is 1,
/ / and e i t h e r t h e inverted value of the sign bit or at least one other deleted bit is 1,
// add 1 to the remaining bits
if ((x 4 (s t a t i c . , c a s t < f i x w c r d > (1) < < (n - 1))) &&

{ (x > - 0) ! l (x & ((s t a t i c _ c a s t < f i x w o r d > (1) < < (n - 1)) - 1))))

t e m p - f i x w o r d ((x > > n) + 1) ;

else
t e m p - f i x w o r d (x > > n) ;

I
return t e m p ;

)

. / * *
* set_fractionLengt.h ()
* /

void F i x P o i n t : : s e t _ f r a c t i o n L e n g t h (int f l) { f r a c t i o n _ l e n = f l ; }

/ * *
» set_OverflcwMode()
*/

void F i x P o i n t : : s e t _ O v e r f l o w M o d e (C v f , M o d e o , m c d e) f F i x P o i n t : : o v f m c d e = o _ m o d e ; }

» g e t , . T r a c t i o n L e n g t h (J
* /

int F i x P o i n t : : g e t _ f r a c t i o n t e n g t h (void) const { r e t u r n (f r a c t i c n _ l e n) ; }

128

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A .l: Fixed-Point Data Type Definition

* g e t_ w o r d L e n g th ()
* /

int F i x P o i n t : : q e t _ w o r d L e n g t h (void) const { return (w o r c l _ l e n) ; }

* get_OverflcwModeI)
*/

C v £ _ . M o d e F i x P o i n t : : g e t O v e r f l o w M o d e (void) { return (F i x P o i n t : : o v f m o d e) ; }

/ * * * * * * * r ******** BEGINNING OF F i x c l a s s i m p l e m e n t a t i o n ******* **** ** **** ***** ****/'

F i x P c i n t S F i x P o i n t : : o p e r a t o r - (const F i x P o i n t &x)

{
f r a c t i o n _ i e n = x . f r a c t i o n _ l e n ;

r a w _ b i n _ r . u m - h a n d i e _ o v e r f l o w (x . r a w _ b i n _ r . u m) ;

return * t h i s ;

F i x F o i n t S F i x P o i n t : : o p e r a t o r + = (const F i x P o i n t & x)

{
f r a c t i o n _ l e n - a s s e r t _ f r a c t i o n l e n (* t h i s , x) ;
r a w _ b i n _ n u m - h a n d i e _ . . o v e r f l o w (f i x w o r d (r a w _ . b in _ . n u m + x . r a w _ . b i n . „ n u m)) ;
return * t h i s ;

F i x P o i n t S F i x P o i n t : : o p e r a t o r — (const F i x P o i n t &x)

i
f r a c t i o n _ i e n = a s s e r t _ f r a c t i o n l e n (* t h i s , x) ;
r a w _ b i n _ r . u m - h a n a l e _ o v e r f l o w (f i x w o r d ! r a w _ b i n _ n u m - x . r a w _ b i n _ n u m)) ;

return * t h i s ;

F i x P o i n t f i x P o i n t : : o p e r a t o r - () const
1

R a w B i t s b i t s ;

b i t s . w o r d _ b i t s ^ s t . a t i c _ c a s t < f i x w o r d > (- r a w _ b i n _ n u m) ;
b i t s . f r a c t i o n _ b i t s = f r a c t i c n _ l e n ;

return F i x P o i n t (b i t s) ;

F i x P o i n t & F i x P o i n t : : o p e r a t o r < < = (const int n)

{
F X P _ A S S E R T (n > ~ 0 , " F i x P o i n t r : o p e r a t o r c c - : n c a n n o t b e n e g a t i v e ! ") ;

f r a c t i o n _ i e n + = n ;
r a w _ b . i . n _ n u m — h a n d l e _ o v e r f l o w (f i x w o r d (r a w _ b i n _ n u m < < n)) ;

return * t h i s ;

F i x P o i n t S F i x P o i n t : : o p e r a t o r > > - (const int n)

I
f r a c t i o n _ . : . e n - - n ;
r a w _ b i . n _ r . u m - r s h i f t . _ a n d _ q u a n t . i z e (r a w _ b i n _ n u m , n) ;

return * t h i s ;

void F i x P o i n t : : s e t (double x , int n)

{
f r a c t i o n _ l e n - n ;

r a w . . . b i n . . n u m = s c a l e _ a n d . . _ q u a n t i t e (x) ;

}

void F ' i x P o i r . t : : I s h i f t (int n)

{
FXP. . . A S S E R T (15 > - 0 , " F i x P o i n t : : l s h i f t : n c a n n o t b e n e g a t i v e ! ") ;

f r a c t i o n _ l e n + = n ;
r a w _ b i n _ n u m - h a n d . l e _ o v e r f l o w (f i x w o r d (r a w _ b i n _ n u m < < n)) ;

)

void F i x P o i n t : : r s h i f t (int n)

{
f r a c t i o n _ l e n - = n ;
r a w _ b i n _ n u m = r s h i f t _ a n d _ q u a n t . i z e (r a w _ b i n _ n u m , n) ;

}

double F i x P o i n t : : u n f i x () const
1

F X P _ A S S t . R T (f r a c t i o n _ l e n > - - 1 5 && f r a c t . l o n _ l e n < - l 6 , " F i . x P o i . n t : : u n f i x : I l l e g a l s h i f t . ! ") ;
return (s t a t i c . _ . c a s t < d o u b l e > (r a w b i n n u tn) * D 0 U BL E . . _ P0 W 2 [1 6 - £ r a c t i o n l e n]) ;

}

i n t a s s e r t _ _ f r a c t i o n l e n (c o n s t F i x F o i n t & x , c o n s t F i x P o i n t S y)

129

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C++ Source Code Castellon

i
i n t t e m p - 0 ;

i f (x . f r a c t i o n _ l e n - - y . f r a c t . i o n _ l . e n)
t e m p -■= x . f r a c t i o n _ l e n ;

e l s e i f (x • f r a c t i o n l e n = = 0)

t e m p - v . f r a c t i o n _ l e n ;
e l s e i f I y . f r a c t i o n _ l e n = - 0)

t e m p — x . f r a c t i o n . _ l e n ;

e l s e
F X P _ E R R O R (" a s s e r t _ f r a c t i o n l e n : D i f f e r e n t s h i f t s n o t a l l o w e d ! ") ;

r e t u r n t e m p ;

}
/ * * * * * OTHER FUNCTIONS * * * ***** /

c o n s t F i x P o i n t a b s o l u t e (c o n s t F i x P o i n t &x)

{
R a w B i t s b i t s ;
f i x w o r d t e m p - x . r a w _ b i n _ . n u m ;

b i t s . w o r d _ b i t . s s t a t . i c _ c a s t < f i x w o r d > (t e m p > - 0 ? t e m p : - - t e m p) ; / / R i s k f o r o v e r f l o w .
b i t s . f r a c t i c n _ „ . b i t s = x . £ r a c t i c n _ l e n ;

r e t u r n F i x P o i n t (b i t s) ;

1
c o n s t F i x P o i n t m a x i m u m (c o n s t F i x P o i n t & x , c o n s t F i x P o i n t &y)

1
R a w B i t s b i t s ;
f i x w o r d o p e r a n d l , o p e r a n d 2 ;

i f (x . f r a c t i o n _ l e n !•» y . f r a c t i o n _ l e n)

F X P _ E R R O R (" m a x i m u m : D i f f e r e n t f r a c t i o n a l l e n g t h s n o t a l l o w e d ! ") ;

e l s e
b i t s . f r a c t i o n _ b i t s = x . f r a c t i c n _ l e n ;

o p e r a n d l = x . r a w _ b i n _ n u m ;

o p e r a n d 2 = y . r a w _ b i n _ n u m ;

b i t s . w o r d „ b i t s = (o p e r a n d l > - o p e r a n d l ? o p e r a n d l : o p e r a n d 2) ;

r e t u r n F i x P o i n t (b i t s) ;

1
/ * . „ * * * THE OPERATORS ******** /

/////////////////////////////////
/ / O p e r a t o r s f o r F i x an d F i x e d / /
/////////////////////////////////

/ / D e c l a r e d a s f r i e n d , t h e r e f o r e , c a n a c c e s s p r i v a t e members.
c o n s t F i x P o i n t c p e r a t o r + (c o n s t F i x P o i n t & x , c o n s t F i x P o i n t & y)

1
R a w B i t s b i t s ;

i f (x . f r a c t i o n _ l e n ! - y . f r a c t i o n _ l e n)
F X P _ B R R O R (" a d d i t i o n o p e r a t o r : D i f f e r e n t f r a c t i o n a l l e n g t h s n o t a l l o w e d ! ") ;

e l s e
b i t s . f r a c t i o n _ b i t s - x . f r a c . t i o n _ l e n ;

b i t s . w o r d _ b i t s = s t a t i c _ c a s t < f i x w o r d > (x . r a w _ b i n _ n u m + y . r a w _ b i n _ n u m) ;

r e t u r n F i x P o i n t (b i t s) ;

}
/ / D e c l a r e d a s f r i e n d , t h e r e f o r e , can a c c e s s p r i v a t e members.
c o n s t F i x P o i n t o p e r a t o r - (c o n s t F i x P o i n t & x , c o n s t F i x P o i n t &y)

{
R a w B i t s b i t s ;

i f (x . f r a c t i o n _ i e n ! - y . f r a c t i o n _ l e n)
F X P . . .E RR O R (" s u b t r a t i o n o p e r a t o r : D i f f e r e n t f r a c t i o n a l l e n g t h s n o t a l l o w e d ! ") ;

e l s e
b i t s . f r a c t i o n _ b i t s - x . f r a c t i c n _ l e n ;

b i t s . w o r d _ b i t s = s t a t i c _ c a s t < f i x w o r d > (x . r a w _ b i n _ n u m - y . r a w _ b i n _ n u m) ;
r e t u r n F i x P o i n t (b i t . s) ;

}

130

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A.2: UMTS Interleaver Generator Method

A.2 UMTS Interleaver Generator Method

L isting A .3: M ethod that generated interleaver map

* u m t s l n t e r l e a v e r . c p p

* C o p y r i g h t (c) 200 4, 2005 Marco C a s t e l l o n
* U n i v e r s i t y o f A l b e r t a , Edmonton , CANADA
* A l l r i g h t s r e s e r v e d .

* D e s c r i p t i o n :
* T h i s i s t h e i m p l e m e n t a t i o n o f t h e a l g o r i t h m f o r t h e g e n e r a t i o n o f t h e
* Turbo code i n t e r n a l i n t e r l e a v e r d e f i n e d UMTS s p e c i f i c a t i o n . R e f e r e n c e i s
* doc ument number: El 'SI I S 2 5 . 2 1 2 V 5 . 5 . 0 (2 0 0 4 -0 6) , p a g e s 17 - 20 . T h i s
* f u n c t i o n i s a member m e th o d o f t h e turboCodec. c l a s s d e f i n e d i n
* t u r b o C o d e c . h . The c l a s s member v a r i a b l e s u s e d h e r e a r e " f r a m e L e n g th "
* and " p l n t e r l e a v e r M a p " . The p l . n t e r l e a v e r M a p s t o r e s t h e p e r m u t a t i o n s
* g e n e r a t e d b y t h i s f u n c t i o n , an d t h e y a r e u s e d b y t h e i n t e r l e a v e r /
* d e - i n t e r l e a v e r m e th o d s .

+/
i n c l u d e < c s t d l i b >
i n c l u d e " t u r b o C o d e c . h ”

u s i n g n a m e s p a c e s t d ;

struct P r i r r . e T a b l e E l e m e n t {
int p r i m e _ n u m b e r ;
int p r i m i t i v e _ r o o t ;

);
* T a b le 2, p a g e 19 o f 3CPP S p e c i f i c a t i o n . Document Number: TS 2 5 .2 1 2
* L i s t o f p r i m e number p and a s s o c i a t e d p r i m i t i v e r o o t v.
*/

const P r i m e T a b i e E l e m e n t t a b l e I I _ 3 G P P [5 2] - {
{ 7 , 3 } , { 1 1 , 2 } , { 1 3 , 2 } , { 1 7 , 3 } , { 1 9 , 2 } , { 2 3 , 5 } , { 2 9 , 2 } , 1 3 1 , 3 } , { 3 7 , 2 } , { 4 1 , 6 } , { 4 3 , 3 } ,

{ 4 7 , 5 } , { 5 3 , 2 } , { 5 9 , 2 } , { 6 1 , 2 } , { 6 7 , 2 } , { 7 1 , 7 } , { 7 3 , 5 } , { 7 9 , 3 } , { 8 3 , 2 } , { 8 9 , 3 } , { 9 7 , 5 } ,
{ 1 0 1 , 2 } , { 1 0 3 , 5 } , { 1 0 7 , 2 } , { 1 0 9 , 6 } , { 1 1 3 , 3 } , { 1 2 7 , 3 } , { 1 3 1 , 2 } , { 1 3 7 , 3 } , { 1 3 9 , 2 } , { 1 4 9 , 2 } , { 1 5 1 , 6 } ,
{ 1 5 7 , 5 } , { 1 6 3 , 2 } , { 1 6 7 , 5 } , { 1 7 3 , 2 } , { 1 7 9 , 2 } , { 1 8 1 , 2 } , { 1 9 1 , 1 9 } , { 1 9 3 , 5 } , { 1 9 7 , 2 } , { 1 9 9 , 3 } , { 2 1 1 , 2 } ,

{ 2 2 3 , 3 } , { 2 2 7 , 2 } , { 2 2 9 , 6 } , { 2 3 3 , 3 } , { 2 3 9 , 7 } , { 2 L I , 7 } , { 2 5 1 , 6 } , { 2 5 7 , 3 }

};

* T a b le o f P r im e nu m b ers . A l s o f r o m T a b le 2 .
* /

const int p r i m e s [5 5 } - {

2 , :5, 5 , 7 , 1 1 , 1 3 , 1 7 , 1 9 , 2 3 , 2 9 ,
3 1 , 3 7 , 4 1 , 4 3 , 4 7 , 5 3 , 5 9 , 6 1 , 6 7 , 7 1 ,

7 3 , 7 9 , 8 3 , 8 9 , 9 7 , 1 0 1 , 1 0 3 , 1 0 7 , 1 0 9 , 1 1 3 ,

1 2 7 , . 1 3 1 , 1 3 7 , 1 3 9 , . 1 4 9 , 1 5 1 , 1 5 7 , . 1 6 3 , 1 6 7 , 1 7 3

1 7 9 , 1 8 1 , 1 9 1 , 1 9 3 , 1 9 7 , 1 9 9 , 2 1 1 , 2 2 3 , 2 2 7 , 2 2 9

2 3 3 , 2 3 9 , 2 4 1 , 2 5 1 , 2 5 7

};

* GCD - F u n c t io n t o c ompute t h e G r e a t e s t Common D i v i d e r b e tw e e n
* 2 i n t e g e r n um bers .
* /

int g c d {int a , int b)
{
register int c ;

while (a)

I
c = a ;
a ^ b % a ;

b - c ;

}
return b ;

/ * *
* u m t s I n t e r l e a v e r M a p ()

* I m p l e m e n ta t io n o f t h e T u r b o c o d e i n t e r n a l i n t e r l e a v e r a s d e f i n e d i n t h e UMTS 3GPP
* s p e c i f i c a t i o n (Document TS 1 2 5 .2 1 2 v e r s i o n 5 . 9 . 0) , p a g e s 1 7 -2 0 .
* /

void T u r b o C o d e c : : u m t s I n t e r l e a v e r M a p (void)
{
int r o w s ; / ' / Number o f rows o f r e c t a n g u l a r m a t r i x .
int c o l u m n s ; / /N u m b e r o f c o lu m n s o f r e c t a n g u l a r m a t r i x .
int p r i m e N u m b e r ;

int p r i m i t i v e R o o t ;

. / « * I n t e r - r o w p e r m u t a t i o n p a t t e r n s * /

131

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C++ Source Code Castellon

i n t l n t e r R o w I n t e r . l e a v e r _ l [5] { 4 , 3 , 2 , 1 , 0) ;

i n t i n t e r R o w I n t e r l e a v e r _ I I [1 0 { 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0) ;
i n t i n t e r R o w l n t e r l e a v e r _ . I l ! [2 0] (1 9 , 9 , 1 4 , 4 , 0 , 2 , 5 , 7 , 1 2 , 1 8 1 6 , 1 3 , 1 7 , 1 5 , 3 , 1 , 6 , 1 1 , 8 , 1 0) ;

i n t i n t e r R o w I n t e r l e a v e r _ I V [2 0] { 1 9 , 9 , 1 4 , 4 , 0 , 2 , 5 , 7 , 1 2 , 1 8 1 0 , 8 , . 1 3 , 1 7 , 3 , 1 , 1 6 , 6 , . 1 5 , 1 1 } ;

i n t i = 0 ;

i n t j - 0 ;
i n t p o s i t i o n = i ;

i n t g c d . . . v a l - 0 ;

i n t * * o r i g i n a 1 M a t r i x ;

i n t * * p e r m u t e d M a t r i x ;

i n t ★ b a s e S e q u e n c e - N U L L ; / / L e n g t h i s e q u a l t o t h e number o f co lu m n s o f t h e r e c t a n g u l a r m a t r
i n t ★ q S e q u e n c e - N U L L ; / / L e n g t h i s e q u a l t o t h e number o f rows o f t h e r e c t a n g u l a r m a t r i x .
i n t ★ r S e q u e n c e = N U L L ;

i n t ★ i n t e r P . o w P e r m u t a t i o n - N U L L ;

/ * D e t e r m in e t h e nu mber o f ro w s o f t h e r e c t a n g u l a r m a t r i x . * /
i f ((f r a m e L e n g t h > - 4 0) (f r a m e L e n g t h < - 1 5 9))

r o w s “ 5 ;
else i f (((f r a m e L e n g t h > - I S O) && (f r a m e L e n g t h < - 2 0 0)) | | ((f r a m e L e n g t h > - 4 8 1) (f r a m e L e n g t ' n < - 5 3 0)))

r o w s - 1 0 ;

else
r o w s ™ 2 0 ;

/ ★ F i n d t h e p r i m e number p t o b e u s e d i n t h e i n t r a - r o w p e r m u t a t i o n s . * /
do {

p r i m e N u m b e r - t a b l e I I _ 3 G P P [i] . p r i m e _ n u m b e r ;

p r i m i t i v e R o o t = t a b l e l l _ . 3 G P P [i] . p r i m i t i v e „ „ r o o t ;

i + + ;
) while((r o w s * (p r i m e N u m b e r + 1)) < f r a m e L e n g t h) ;

/ * D e t e r m in e t h e numbe r o f c o lu m n s o f t h e r e c t a n g u l a r m a t r i x . * /
i f (f r a m e L e n g t h < - (r o w s * (p r i m e N u m b e r - 1)))

c o l u m n s - p r i m e N u m b e r - 1 ;
else i f ((f r a m e L e n g t h > (r o w s * (p r i m e N u m b e r - 1))) && (f r a m e L e n g t h < = (r o w s * p r i m e N u m b e r)))

c o l u m n s - p r i m e N u m b e r ;

else i f (f r a m e L e n g t h > (r o w s * p r i m e N u m b e r))
c o l u m n s = p r i m e N u m b e r + 1 ;

/ ★ D y n a m i c a l l y a l l o c a t e memory f o r t h e m a t r i x , and i n i t i a l i z e i t . * /
o r i g i n a l M a t r i x - n e w int * [r o w s] ;

ford - 0 ; i < r o w s ; i + +)

{
o r i g i n a i M a t r i x C i J ^ n e w int [c o l u m n s j ;

f o r (j ^ 0 ; i < c o l u m n s ; j + +)

{
if (((c o l u m n s * !) + j) < f r a m e L e n g t h)

o r i g i n a i M a t r i x [i j (j J = p o s i t i o n + + ;

else
o r i g i n a l M a t r i x [i] [j] - 0 ;

}
}

/ / A l l o c a t e memory f o r t h e b a s e s e q u e n c e and t h e p r i m e i n t e g e r s e q u e n c e .
b a s e S e q u e r . e e - n e w int [c o l u m n s] ;

b a s e S e q u e n c e (O) - 1 ;
q S e q u e n c e - n e w int[r o w s] ;

q S e q u e n c e [0] = 1 ;

/ * C o n s t r u c t t h e b a s e s e q u e n c e f o r i n t r a - r o w p e r m u t a t i o n s * /
f o r (i = 1 ; i < c o l u m n s ; i + +)

{
b a s e S e q u e r . e e [i] = (p r i m i t i v e R o o t * b a s e 3 e q u e r . e e [i - 1 j) % p r i m e N u m b e r ;

}
/ * C o n s t r u c t t h e q s e q u e n c e (p r i m e i n t e g e r s e q u e n c e) . * /
f o r (i = 1 ; i < r o w s ; i + +)

1
j - 0 ;
d o {

q S e q u e n c e [i) - t . a b l e I I _ 3 G P P [j] . p r i m e _ n u m b e r ;

g c d _ v a l = g c d (q S e q u e n c e [i] , (p r i m e N u m b e r - 1)) ;

j + +i
} while((g c d _ v a l d 1) I I (q S e q u e n c e [1] < - q S e q u e n c e [i - 1])) ;

}
/ * Perm ute t h e q s e q u e n c e i n t o t h e r s e q u e n c e . */
r S e q u e n c e - n e w int [r o w s] ;
/ * S e l e c t t h e a p p r o p r i a t e i n t e r - r o w p e r m u t a t i o n p a t t e n ') t o u s e . * /
switch (r o w s)

{
case 5:

i n t e r R o w P e r m u t a t i o n - i . n t e r R o w l n t . e r l e a v e r _ l ;
break;

case 1 0 :

132

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A.2: UMTS Interleaver Generator Method

i n t e r R o w P e r m u t . a t i . o n - i n t . e r R o w I n t e r i e a v e r _ I I ;
break;

case 20:
if (((f r a m e L e n g t h 2 2 8 . 1) && (f r a m e L e n g t h 2 4 8 0)) |] ((f r a m e L e n g t h > ~ 3 1 6 1) && (f r a m e L e n g t h < -

3 2 1 0)))

i n t e r R o w P e r m u f a t i o n = i n t e r R o w I n t e r l e a v e r _ i l I ;
else

i n t e r R o w P e r m u t a t i o n - i n t e r R o w I n t e r l e a v e r _ I V ;

break;
default:

break;
1

for (i — 0 ; i < r o w s ; i + +)
* (r S e q u e n c e + i n t e r R o w P e r m u t a t i o n [i]) - * ! q S e q u e n c e + i) ;

/ * P e r fo r in t h e i n t r a - r o w p e r m u t a t i o n s . * /
/ / S t o r e t h e r e s u l t s i n a d y n a m i c a l l y a l l o c a t e d m a t r i x .
p e r m u t e a M a t r i x = n e w int * [r o w s] ;

for (i - 0 ; i < r o w s ; i + +)

1
p e r m u t e c i M a t r i x [i J - n e w int [c o l u m n s] ;

if (c o l u m n s ^ p r i m e N u m b e r)

1
for(j = 0 ; j < (p r i m e N u m b e r - 1) ; j + +)

{
int i n d e x l , i r . d e x 2 ;

i n d e x l = (j * r S e q u e n c e [i]) % (p r i m e N u m b e r - 1) ;
i n d e x 2 - b a s e S e q u e n c e [i n d e x l] ;

p e r m u t e d M a t r i x I i] [i n d e x 2] - o r i g i n a l M a t r i x [i] [j] ;

}
p e r m u t e d M a t r i x [i] [0] - o r i g i n a l M a t . r i x [i] [(p r i m e N u m b e r - 1)] ;

}
else if (c o l u m n s “ (p r . i m e N u m b e r + 1))

{
int s a v e d i n d e x ;

for (j - 0 ; j < (p r i m e N u m b e r - 1) ; j + +)

{
int i n d e x ! , i n d e x 2 ;

i n d e x ! - (j * r S e q u e n c e [i]) % (p r i m e N u m b e r - 1) ;
i n d e x 2 = b a s e S e q u e n c e [i n d e x l] ;

if (!j)
s a v e d i n d e x i n d e x 2 ;

p e r m u t e d M a t r i x [i] [i n d e x 2] = o r i g i n a l M a t r i x [i] [j] ;

}
p e r m u t e d M a t r i x [i] [0] =■ o r i g i n a l M a t r i x [i l [(p r i m e N u m b e r - 1)] ;

p e r m u t e d M a t r i x [i] [p r i m e N u m b e r] = o r i g i n a l M a t r i x [i j [p r i m e N u m b e r] ;

if ((i - - (r o w s - 1)) (f r a m e L e n g t h - - (r o w s ^ c o l u m n s)))

{
int t m p ;
t m p — p e r m u t e d M a t r i x [i] [s a v e d i n d e x] ;
p e r m u t e d M a t r i x [i] [s a v e d i n d e x] = p e r m u t e d M a t r i x [i] [p r i m e N u m b e r] ;

p e r m u t e d M a t r i x [i] [p r i m e N u m b e r] - t m p ;

1 1
else if (c o l u m n s ™ (p r i m e N u m b e r - 1))

{
for(j = 0 ; j < (p r i m e N u m b e r - 1) ; j + +)

{
int i n d e x ! , i r . d e x 2 ;

i n d e x ! - (j * r S e q u e n c . e [i]) % (p r i m e N u m b e r - 1) ;

i n d e x 2 = b a s e S e q u e n c e [i n d e x l] - 1 ;
p e r m u t e d M a t r i x [i] [i n d e x 2] = o r i g i n a l M a t r i x [i] [j] ;

/ * P e r fo r m t h e i n t e r - r o w p e r m u t a t i o n . « •/

for (i - 0 ; i < r o w s ; i + +)

1
for (j = 0 ; j < c o l u m n s ; i + +)

(
o r i g i n a i M a t r i x [i] [j] = p e r m u t e d M a t r i x [i n t e r R o w P e r m u t a t i o n [i]] [j]

}

/ * • Re ad t h e p e r m u t t e d m a t r i x one column a t a t im e f ro m t o p t o b o t t o m , and
*• s t o r e t h e i n t e r l e a v e r map p in g c o n f i g u r a t i o n i n t h e c o r r e s p o n d i n g a r r a y . * /

int f r a m e l n a e x - 0 ;

for (i = 0 ; i < c o l u m n s ; i + +)

133

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C++ Source Code Castellon

1
for(j - 0 ; j < r o w s ; j + +)

{
if (o r i g i n a l M a t r i x [j j [i] }

p I n t e r l e a v e r M a p l £ r a m e I n d e x + + J - o r i g i n a l M a t r i x [j] [i] - 1 ;

))
/ * R e t u r n a l l d y n a m i c a l l y a l l o c a t e d memory b a c k t o t h e h e a p . * /
d e l e t e [] b a s e S e q u e n c e ;

d e l e t e [] q S e q u e n c e ;
d e l e t e (] r S e q u e n c e ;

for (i = 0 ; i < r o w s ; i + +)

{
d e l e t e [j p e r m u t e d M a t r i x [i] ;

d e l e t e [] o r i g i n a l M a t r i x [i j ;

}
d e l e t e [] p e r m u t e d M a t r i x ;
d e l e t e (] o r i g i n a l M a t r i x ;

A.3 Turbo Encoder/Decoder Class

Listing A.4: Turbo Encoder/Decoder Class Definition
* t u r b o C o d e c . cpp

* C o p y r i g h t (c) 2 0 0 4 ,2 0 0 5 Marco C a s t e l l o n
* U n i v e r s i t y o f A l b e r t a , Edmonton , CANADA
* A l l r i g h t s r e s e r v e d .

* D e s c r i p t i o n :
* D e f i n i t i o n o f t h e t u r b o e n c o d e r / d e c o d e r c l a s s .

*/
#ifndef T U R 3 0 C 0 D E C _ H
define T U R 3 O C 0 D E C _ H

#include “ f i x e d p o i n t . h "

#define N U M _ O F _ S T A T E S 8
#define F R A C T I Q N _ L E N 2

#define W O R D _ L £ N „ 8 B I T S

#if d e f i n e d (W 0 R D _ L E N _ 6 B 1 T S)
w a r n i n g T o t a l w o r d l e n g t h o f f i x e d - p o i n t t y p e w i l l b e 6 - b i t . s .
♦ d e f i n e W OR D_ LE N 6
typedef s f i x e d o s c _ f i x e d ; / / D e f i n e new t y p e s f o r f i x e d - p o i n t v a r i a b l e s , and
typedef s f i x e d S s c _ f i x e d m l ; / / u s e t h e same n o t a t i o n a s i n Sys temC.

#elif d e f i n e d (W Q R D _ L E N _ 7 B I T S)

♦ w a r n i n g T o t a l w o r d l e n g t h o f f i x e d - p o i n t t y p e w i l l b e 7 - b i t s .
♦ d e f i n e W 0 R D _ L E N 7

typedef s f i x e d 7 s c _ f i x e d ; / / D e f i n e new t y p e s f o r f i x e d - p o i n t v a r i a b l e s , and
typedef s f i x e d o s c _ f i x e d m l ; / / use t h e same n o t a t i o n a s i n Sys te mC .

#elif d e f i n e d (W O R D _ L E N _ 8 B I T S)
♦ d e f i n e W OR D_ L E N 8

typedef s f i x e d S s c _ f i x e d ; / / D e f i n e new t y p e s f o r f i x e d - p o i n t v a r i a b l e s , and
typedef s f . i x e d 7 s c _ f i x e d m l ; / / u se t h e s a m e n o t a t i o n a s in Sys temC.

#elif d e f i n e d (WORD... L E N _ 1 2 B I T S)

♦ w a r n i n g T o t a l w o r d l e n g t h o f f i x e d - p o i n t t y p e w i l l b e 1 2 - b i t s .
♦ d e f i n e W 0 R D _ L E N 1 2
typedef s i i x e d l 2 sc._f i x e d ; / / D e f i n e ne w t y p e s f o r f i x e d - p o i n t v a r i a b l e s , and
typedef s f i x e d l l s o _ f i x e d m l ; / / u s e t h e same n o t a t i o n a s i n Sy s te mC .

#elif d e f i n e d (W O R D _ L E N _ 1 6 B I T S)

♦ w a r n i n g T o t a l w o r d l e n g t h o f f i x e d - p o i n t t y p e w i l l b e 1 6 - b i t s .
♦ d e f i n e W 0 R D _ L E N 1 6

typedef s f i x e d l 6 s c _ f i x e d ; / / D e f i n e new t y p e s f o r f i x e d - p o i n t v a r i a b l e s , and
typedef s f i x e d l S s c . _ f i x e d m l ; / / u s e t h e same n o t a t i o n a s i n Sys te mC .

#endif

* D ec ia ra i t io n o f Turbo E n c o d e r /D e c o d e r c l a s s ,

c l a s s T u r b o C o d e c

p r i v a t e :
b o o l p u n c t u r e a C o d e ;

short c o n s t r a i n t L e n g t h ;

134

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A. 3: Turbo Encoder/Decoder Class

short f e e d F o r w P o l v O c t a l . ;
short f e e d B a c k P o l y G c t a l ;
short c c d e W o r d L e n g t h ;

int f r a m e L e n g t h ;

int * p l n t e r l e a v e r M a p ;

s c _ . £ i x e d
3 c _ . f i x e d c l m _ C ;

void u m t s I n t e r l e a v e r M a p (void);

const F i x P o i n t . m a x S t a r (const F i x P o i n t & c p e r a n d X , const F i x P o i n t s o p e r a n d Y) ;

p u b l i c :

/ / D e c l a r e t h e d e f a u l t c o n s t r u c t o r ,
T u r b o C o d e c () ;

/ ' / O p t i o n a l c o n s t r u c t o r .
T u r b o C o d e c (short K c , short g O D , short g l D , int f r a m e S i z e) ;

/ . / ' D e c l a r e t h e d e s t r u c t o r .
' T u r b o C o d e c () ;

/ / D e c l a r a t i o n o f m u t a t o r m e t h o d s .
v o i d s e t C o n s t r a i n t l e n g t h (short K c) ;
v o i d s e t P o l y n o m i a l s (short g O D , short g i b) ;
v o i d s e r . F r a m e L e n g t h (int l e n g t h O f F r a m e) ;

v o i d s e t P u n c t u r i n g (char p u n c t u r e) ;
v o i d s e t C o d e W o r d L e n g t h (v o i d) ;

/ / D e c l a r a t i o n o f a c c e s s o r m e t h o d s .
short g e t C o d e W o r d L e n g t h (void) const;
b o o l i s P u n c t u r e d (void) const;

/ / D e c l a r a t i o n o f m e t h o d s r e l a t e d t o t h e I n t e r l e a v e r / D e l n t e r l e a v e r .
v o i d g e n e r a t e i r . t . e r l e a v e r M a p (v o i d) ;

void I n t e r l e a v e r (const char * p X k , char * p X k . . . I) ;
void I n t e r l e a v e r (const F i x P o i n t p X k [] , F i x P o i n t p X k _ I [J) ;

void D e i n t e r l e a v e r (const F i x F o i n t p X k _ I [] , F i x P o i n t p X k [J) ;

/ / D e c l a r a t i o n o f m e t h o d (s) r e l a t e d t o t h e E n c o d e r .
void F n c o d e W i t h l a i l (const char * d a t a B i t , char * p a r i t y B i t , char t a i l B i t s [1 [2]) ;

/ / D e c l a r a t i o n o f m e t h o d s r e l a t e d t o t h e D e c o d e r .
void s e t C o n s t a n t L o g M a p F a r a m s (double L c) ;
void d e c o d e T a i l (s c _ f i x e d t r e l l i s T a i l [] (2] , F i x P o i n t b e t a k l n i t (]) ;
void d e c o d e r r a m e (F i x P o i n t s y s t e m a t i c B i t s [] , F i x P o i n t p a r i t y B i t s [] ,

F i x P o i n t b e t a k I n . i t [] , F i x P o i n t l a t n b d a _ A u []) ;

e n d i f / / TURBOCODEC_H

135

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C+ + Source Code

Listing A.5: Turbo Encoder/Decoder Class Implementation
* t u r b o C o d e c . cpp

* C o p y r i g h t (c) 2004 , 2005 Marco C a s t e l l o n
* U n i v e r s i t y o f A l b e r t a , Edmonton, CANADA
* A l l r i g h t s r e s e r v e d .

* T h i s s o f t w a r e may b e u s e d f o r n o n - p r o f i t u n i v e r s i t y r e s e a r c h i f
* g i v e n t h e a u t h o r ' s e x p r e s s e d p e r m i s s i o n . An e x e c u t e d l i c e n s e
* a g r e e m e n t w i t h t h e a u t h o r i s r e q u i r e d f o r a i l e t h e r u s e s o f t h i s
* s o f t w a r e . R e d i s t r i b u t i o n o f t h i s s o f t w a r e i s n o t p e r m i t t e d w i t h o u t
* t h e a u t h o r ' s e x p r e s s e d p e r m i s s i o n . T h i s c o p y r i g h t n o t i c e must
* re m a in i n t a c t . D e r i v a t i v e works may c o n t a i n a d d i t i o n a l n o t i c e s .

* THIS SOFTWARE I S PROVIDED BY THE AUTHOR " A S I S " AND COMES WITH
* NO WARRANTY.

* D e s c r i p t i o n :
* i m p l e m e n t a t i o n o f t h e Turbo E n c o d e r /D e c o d e r C l a s s .
* The t u r b o e n c o d e r i s g e n e r i c i n t h a t t h e c o n s t i t u e n t e n c o d e r
* t a k e s i n a s p a r a m e t e r s t h e g e n e r a t o r p o l y n o m i a l s . The f ra m e l e n g t h
* i s a l s o an i n p u t p a r a m e t e r an d i s o n l y l i m i t e d b y t h e r e s t r i c t i o n s
* im p o s e d b y t h e UMTS s p e c i f i c a t i o n .

* The c o n s t i t u e n t SISO d e c o d e r i s s p e c i f i c t o t h e UMTS t u r b o code ,
* . f u t u r e work may i n v o l v e t h e p i e m e n t a t on o f a g e n e r r e SISO d e c o d e r .

*/
/ / i n c l u d e h e a d e r f i l e s

i n c l u d e < c s t d l i b >
i n c l u d e " t . a r b o C o d e c . h "

/ / D e c l a r e a f e w c o n s t a n t s f o r t h e l i m i t s o f t h e D e c o d e r .
const double C L M _ C O R R E C T O R - 0 . 5 ;
const double C L M _ T H R E S H O L D = 1 . 5 ;

#if d e f i n e d (WORD L E N _ . 6 B I T S)

const double N _ I N F I N I T Y = - 8 . 0 ;
#elif d e f i n e d < W O R D _ L E N _ 7 B I T S)

const double N _ _ I N F I N I T Y - - 1 6 . 0 ;

#elif d e f i n e d (W 0 R D _ L E N _ _ 8 B I T S)
const double N _ I N F I N I T Y - - 3 2 . 0 ;
#elif d e f i n e d (W O R D _ L E N _ 1 2 B I T S)

const double N _ I N F I N I T Y = - 5 1 2 . 0 ;
#elif d e f i n e d (W 0 R D _ L E N _ 1 6 B I T S)

const double N _ I N F I N I T Y - - 8 1 9 2 . 0 ;

#endif

* D e f i n e t h e v a l u e o f n e g a t i v e i n f i n i t y i n t e r m s o f t h e
* r a n g e a v a i l a b l e f o r t h e F i x P o i n t e d - p o i n t i m p l e m e n t a t i o n .
*/

const F i x P o i n t N E G _ i N F I N I T Y (N _ 1 N F I M i T Y , W O R D _ L E N , F R A C T I O N _ L E N } ;

const F i x P o i n t F I X _ Z E R O (0 . 0 , W O R D _ L E N , F R A C T I O N _ L E N) ;

/ / D e f i n i t i o n o f d e f a u l t c o n s t r u c t o r .
T u r b o C o d e c : : T u r b o C o d e c ()

{
c o n s t r a i n t L e n a t h = 4 ;
f e e d B a c k P o l y O c t a l =• 0 1 3 ;

f e e d F o r w P o i y O c t a l = 0 1 5 ;
p u n c t u r e a C o d e - f a l s e ;

p l n t e r l e a v e r M a p - N U L L ;

s e t C o d e W o r d L e n g t h f) ;

f r a m e L e n g t h = 1 0 2 4 ;

. / / D e f i n i t i o n o f c o n s t r u c t o r w i t h g i v e n p a r a m e t e r s .
T u r b o C o d e c : : T u r b o C o d e c (short K c , short g O D , short g l D , int f r a m e S i z e)

{
s e t C o n s t r a i n t L e n g t h (K c) ;
s e t . P o l y n o m i a l s (g 0 D , g l D) ; ;

p u n c t u r e d C o d e = f a l s e ;
p l n t e r l e a v e r M a p = N U L L ;

3 e t C o d e W o r d L e n g t h () ;

s e t F r a m e L e n g t h (f r a m e S i z e) ;

T u r b o C o d e c : : ' T u r b o C o d e c ()

{

136

Castellon

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A. 3: Turbo Encoder/Decoder Class

/ / R e t u r n b a c k t o h ea p memory a l l o c a t e d f o r I n t e r l e a v e r Map p o i n t e r .

if (p l n t e r l e a v e r M a p ! = N U LL)

(
d e l e t e [] p l n t e r l e a v e r M a p ;
p l n t e r l e a v e r M a p = N U L L ;

})
void T u r b o C o d e c : : s e t C o n s t r a i n t L e n g t h (short K c)

{
c o n s t r a i n t L e n g t h = K c ;

}

void T u r b o C o d e c : : s e t F o l y n o m i a l s (short g O D , short g l D)

{
f e e d E a c k P o l y O c t a l = g O D ;

f e e d F o r w P o l y O c t a l - g l D ;

}

void T u r b o C o d e c : : s e t F r a m e L e n g t h (int l e n g t h O f F r a m e)

{
f r a m e L e r . g t h ^ l e n g t h O f F r a m e ;

}

void T u r b o C o d e c : : s e t P u n c t u r i n g (char p u n c t u r e)

{
i f (p u n c t u r e = = ' Y ' i i p u n c t u r e = = ' y ')

p u n c t u r e d C o d e = t r u e ;

else
p u n c t u r e d C o d e = f a l s e ;

}

void T u r b o C o d e c : : s e t C o a e W o r d L e n g t h (void)
{
if (i s P u n c . t u r e d ())

c o d e W c r d L e n g t h = 2 ;

else
c c d e W o r d L e n g t h = 3 ;

}

short T u r b o C o d e c : r g e t C o d e W o r d L e n g t h (v o i d) const
{
return (c o d e W o r d L e n g t h) ;

}
b o o l T u r b o C o d e c : : i s P u n c t u r e d (void) const
{
return (p u n c t u r e d C o d e) ;

)

* RECURSIVE SYSTEMATIC CONVOLUTIONAL ENCODER *
* Pu r p o s e : To en c o d e a d a t a s e q u e n c e u s i n g a r e c u r s i v e s y s t e m a t i c *•

* c o n v o l u t i o n a l e n c o d e r . A l s o t e r m i n a t e s t h e t r e l l i s and *
* g e n e r a t e s t a i l s b i t s t o r e t u r n e n c o d e r t o z e r o s t a t e . *

void T u r b o C o d e c : : E n c o d e W i t h T a i l (const char * d a t a B i t , char * p a r i t y B i t , char t a i i B i t s N

{
int m e m b i t s ; / * Number o f memory e l e m e n t s o f t h e e n c o d e r = C o n s t r a i n
int i, j;
int g O D , g l D ;

unsigned short s h i f t R e g i s t e r ; / * t h e e n c o d e r s h i f t r e g i s t e r (enough f o r 1 6 - b i t s)
short s u m N o d e ; / * O u t p u t o f t h e sum n o d e u s i n g GF(2) a d d i t i o n . * /

short * g 0 ; / / G e n e r a t o r p o l y n o m i a l gO (f e e d b a c k) .
short * g l ; / / G e n e r a to r p o l y n o m i a l g l (f e e d fo r w a r d) .

m e m b i t s - c o n s t r a i n t L e n g t h - 1 ;

/ / A l l o c a t e memory f o r t h e g e n e r a t o r p o l y n o m i a l s and s h i f t r e g i s t e r .
g O = n e w short[c o n s t r a i n t L e n g t h] ;

g l - n e w short[c o n s t r a i n t L e n g t h] ;

/ / C o n f ig u r e t h e p o l y n o m i a l s .
for (i - 0 , g O D = f e e d B a c k P o l y O c t a l , g l D = f e e d F o r w P o l y O c t a l ; i < c o n s t r a i n t L e n g t h ; i + +)

{
g 0 [i] gO D & 1 ;

g l [i] = g l D & I ;

gO l l » - 1 ;
g l D » - 1 ;

}
/ / Make s u r e t h e c o n t e n t s o f t h e s h i f t r e g i s t e r a r e c l e a r e d b e f o r e b e g i n n i n g .

137

E2])

t L e n g t h - 1 * /

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C++ Source Code Castellon

s h i f t R e g r s t e r - 0 ;

/ * Now s t a r t t h e e n c o d i n g p r o c e s s f o r t h e d a ta b i t s . * /
/ * co mpute t h e u p p e r a n d l o w e r mod- two a d d e r o u t p u t s , one b i t a t a t im e * /
for (i = 0 ; i < f r a m e L e n g t h ; i + +)

{
s h i f t R e g i s t e r (d a t a B i t [i] < < m e m b i t s) ;
s u m N o d e - 0 ;

/ / D i v i s i o n b y t h e f e e d - b a c k p o l y n o m i a l .
for i j - 0 ; j < c o n s t r a i n t L e n g t h ; j t +)

{
if (g 0 [j] >

s u m N o d e ({ s h i f t . R e g i s t . e r & (1 < < j)) > > j) ;

}

s h i f t R e g i s t e r &= ' (1 < < m e m b i t s) ; / / F i r s t c l e a r t h e MSB o f t h e s h i f t r e g i s t e r ,

s h i f t R e g i s t e r | = (s u m N o d e < < m e m b i t s) ; / / A s s i g n a new v a l u e t o t h e MSB.
s u m N o d e = 0 ;

/ / M u l t i p l i c a t i o n b y t h e f e e d - f o r w a r d p o l y n o m i a l .
for (j - (c o n s t r a i n t L e n g t h - 1) ; j > ^ 0 ; i —)

{
if (gl[j1)

s u m N o d e ((s h i f t R e g i s t e r & (1 < <])) > > j) ;

}
/ * w r i t e t h e p a r i t y o u t p u t b i t * /
p a r i t y B i t f i] - (char)s u m N o d e ;

/ * S h i f t t h e c o n t e n t s o f t h e s h i f t r e g i s t e r t o t h e r i g h t b y o n e . * /
s h i f t R e g i s t e r > > ^ i ;

}
/ / c o u t << " s h i f t r e g i s t e r s t a t u s b e f o r e t a i l : " << s h i f t R e g i s t e r << e n d l ;
/ * Now g e n e r a t e t h e t a i l b i t s t o r e t u r n t h e e n c o d e r t o z e r o s t a t e . * /
for (i = 0 ; i < m e m b i t s ; i + +)

{
s u m N o d e - 0 ;
for (j = 0 ; j < (c o n s t r a i n t L e n g t h - 1) ; j + +)

{
if (g 0 (j])

s u i r i N o d e “ = ((s h i f t R e g i s t e r & (1 < < j)) > > j) ;

)

s h i f t R e g i s t e r • = (s u m N o d e < < m e m b i t s) ;

t a i l B i t s f i] [0] w (char)s u m N o d e ;

s u m N o d e = 0 ;

/ / D i v i s i o n b y t h e f e e d - b a c k p o l y n o m i a l .
for (j = 0 ; j < c o n s t r a i n t L e n g t h ; j + +)

{
if (g O [j])

s u m N o d e ((s h i f t R e g i s t e r & (1 < < j)) > > j) ;

}
s h i f t R e g i s t e r &= " (1 < < m e m b i t s) ;

s h i f t R e g i s t e r I™ (s u m N o d e < < m e m b i t s) ;

s u m N o d e ^ 0 ;

/ / Mul t i p l i c a t i o n b y t h e f e e d - f o r w a r d p o l y n o m i a l .
for (j - (c o n s t r a i n t L e n g t h - 1) ; j 0 ; j —)

{
if (g l [j])

s u m N o d e { (s h i f t R e g i s t e r & (1 < < j)) > > j) ;

}

/ * w r i t e t h e p a r i t y ou tp u t, b i t f o r t h e c o r r e s p o n d i n g t a i l b i t */
c a i l B i t s f i j [i j = (char)s u m N o d e ;

/ * S h i f t t h e c o n t e n t s o f t h e s h i f t r e g i s t e r t o t h e r i g h t b y o n e . * /
s h i f t R e g i s t e r > > = 1 ;

}
/ / c o u t << " s h i f t r e g i s t e r s t a t u s a f t e r t a i i : ” < < s h i f t R e g i s t e r << e n d l ;
d e l e t e [] g C ;
d e l e t e [] g l ;

) / / end E n c o d e r W i t h T a i l ()

I n t e r l e a v i n g
********* ** *** ** * i n t l * * * * ********* /
void T u r b o C o d e c : : I n t e r l e a v e r (const char * p X k , char ~ p X k _ l)

{
for{int n = 0 , k ; n < f r a m e L e n g t h ; n + +)

138

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A. 3: Turbo Encoder/Decoder Class

i
k - p l n t e r l e a v e r M a p [n] ; / / a d d r e s s mapp ing
p X k _ l [n j = p X k [k] ; / / v a l u e mapp ing

}
} / / e n d I n t e r l e a v e r

* O v e r lo a d e d d e f i n i t i o n o f I n t e r l e a v i n g m e th o d .
* S i n c e i t o n l y n e e d s t o s u p p o r t s h o r t and FXPT_TYPE t y p e s , no need
* f o r t e m p l a t e d v e r s i o n .
r /

void T u r b o C o d e c : : I n t e r l e a v e r (const F i x P o i n t . p X k [] , F i x P o i n t p X k _ I [])

{
for{int n - 0 , k ; n < f r a m e L e n g t h ; n + +)

{
k - p l n t e r l e a v e r M a p [n] ; / / a d d r e s s map p in g
p X k _ l [n] = p X k [k] ; / / v a l u e map ping

)
} / / e n d I n t e r l e a v i n g

/ * *
* D e f i n i t i o n o f D e i n t e r l e a v i n g m e th o d .
* O n ly s u p p o r t s FXPT_TYPE p a r a m e t e r s a t t h e moment.
* /

void T u r b o C o d e c : : D e l n t e r l e a v e r (const F i x P o i n t p X k _ l [j , F i x P o i n t p X k [])

{
for(int n = 0 , k ; n < f r a m e L e n g t h ; n + +)

{
k - p l n t e r l e a v e r M a p [n] ; / / a d d r e s s mapping
p X k [k] = p X k . . _ I i n] ; / / v a l u e mapp ing

}
\

* g e n e r a t e l n t e r l e a v e r M a p ()

v o i d T u r b o C o d e c : : g e n e r a t e I n t e r l e a v e r M a p (v o i d)

{
/ ' / D e a l l o c a t e memory i n o r d e r t o a v o i d memory l e a k s ,

if (p l n t e r l e a v e r M a p ! - N U L L)

{
d e l e t e [3 p l n t e r l e a v e r M a p ;

p l n t e r l e a v e r M a p - N U L L ;

}
p l n t e r l e a v e r M a p = n e w int [f r a m e L e n g t h] ;

/ / C r e a t e t h e i n t e r ! e a v e r map b a s e d on t h e f r a m e L e n g th .
u m t s I n t e r l e a v e r M a p () ;

}
/ * *

* d e c o d e ’i ' a i l O
*/

void T u r b o C o d e c : : d e c o d e T a i l { s c _ f i x e d t r e l l i s T a i l [3 [2] , F i x P o i n t b e t a k l n i t [3)

{
register int i ;

s c _ f i x e d g a m m a k _ _ 0 1 ;

s c _ f i x e d g a m m a k _ 1 0 ;
s c _ f i x e d g a n u n a k _ l l ;

s c . „ . f ;i x e d i n a x B e t a k ;

s c _ f i x e a b e t a k p l [N U M _ O F _ S T A T E S] ;
s c _ _ f i x e d b e t a k f N U M ._ C F _ S T A T E S] ;

b e t a k p l [0] - F I . X _ Z E E O ;
for (i - 1 ; i < NUM,...OF._ S T A T E S ; i + +)

{
b e t a k p l (i I - N E G _ I N F I N I T Y ;

}
/ * DECODE THE FIRST TAIL SECTION * /

g a i r , m a k _ i l = t r e l l i s T a i l [2] [0] + t r e l l i s T a i l [2] [1] ; / / b r a n c h m e t r i c r e q u i r e d .

/ / C a l c u l a t e b e td i (k) v a l u e s .
b e t a k [0] = b e t a k p l [0] ;
b e t a k [l] - b e t a k p l [0 3 + g a m m a k _ l l ;

/ / Update b e t a (k + l) v a l u e s .
b e t a k p l [0 1 = b e t . a k [0] ;

b e t a k p l [1] =" b e t a k f l] ;

139

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C++ Source Code Castellon

/ * DECODE THE SECOND TAIL SECTION * /

/ / D e t e r m in e t h e v a l u e o f t h e b r a n c h m e t r i c s (gamma).
g a m m a k _ 1 0 - t r e 1 1 i s T a i l [.1.] [0] ;
g a m m a k _ 0 1 = t r e l l i s T a i l f 1] [1] ;
g a m m a k _ . I l = t r e l l i s T a i l [l j [0] + t r e l l i s T a i l [I] [1] ;

/ / C a l c u l a t e b e t a (k) v a l u e s .
b e t a k [0] = b e t a k p l [0] ;
b e t a k [l] - b e t a k p l [0] + g a m m a k _ l . l

b e t a k [2 J b e t a k p l [l] + g a m m a k _ 1 0

b e t a k (3 j = b e t a k p l E l] + g a m m a k _ 0 1

/ ' / Update b e t a (k - r l) v a l u e s .
b e t a k p l [0] = b e t a k [0]
b e t a k p l [1] - b e t a k . [1]
b e t a k p l [2] = b e t a k [2]

b e t a k p l (3] = b e t a k [3] ;

/ * DECODE THE THIRD AND LAST TAIL SECTION * /

/ / D e t e r m in e t h e v a l u e o f t h e b r a n c h m e t r i c s (gamma).
g a m m a k _ l C - t r e l l i s T a i l [0] [0] ;

g a m m a k _ 0 1 = t r e l l i s T a i l [0] (1 . 1 ;
g a m m a k _ l i - t r e l l i s T a i l [0] [0] + t r e l l i s T a i l [0] [1] ;

/ / C a l c u l a t e b e t a (k) v a l u e s .
b e t a k [0] = b e t a k p l [0 1 ;
b e t a k [l] - b e t a k p l [0 j + g a m m a k _ l l
b e t a k (2] = b e t a k p l [l j * g a r w n a k _ . . 1 0

b e t a k [3] = b e t a k p l [l] + g a m m a k _ 0 1

b e t a k [4] - b e t a k p l [2] + g a m m a k _ 0 1
b e t a k [5] — b e t a k p l [2 ! + g a m m a k . _ 1 0
b e t a k [6] - b e t a k p l [3] + g a m m a k _ l 1

b e t a k [7] ~ b e t a k p l [3] ;

/ / F i n d t h e maximum o f b e t a k s t a t e p r o b a b i l i t i e s f o r t h e l a s t t a i l i n t e r v a l .
/ / I t w i l l be u s e d f o r n o r m a l i z e t h e v a l u e s .
m a x B e t a k = m a x i m u m (b e t a k [0 J , b e t a k [l]) ;
m a x E e t a k = m a x i m u m (m a x B e t a k , b e t a k [2] > ;
m a x B e t a k - m a x i m u m (m a x B e t a k , b e t . a k [3]) ;
m a x B e t a k = m a x i m u m (m a x B e t a k , b e t a k [4 3) ;

m a x B e t a k = m a x i m u m f m a x B e t a k , b e t a k [5]) ;
m a x B e t a k - m a x i m u r M m a x B e t a k , b e t a k [6 J) ;
m a x B e t a k - m a x i m u m (m a x B e t a k , b e t a k [7] > ;

f o r (i - 0 ; i < N l i M _ O F _ S T A T E S ; i + +)

(
b e t a k l n i t [i] = b e t a k [i] - m a x B e t a k ;

}

void T u r b o C o d e c : r d e c o d e F r a m e (F i x P o i n t . s y s t e m a t i c B i t s [] , F i x P o i n t p a r i t y B i t s [] ,
F i x P o i n t b e t a k l n i t [j , F i x P o i n t l a m b d a . _ A u [])

{
register int i ;
int i n t e r v a l , c w _ i n d e x ;

s c _ f i x e d g a m m a k _ 0 1 ;

s c . „ . £ i x e d g a m m a k _ 1 0 ;
s c _ f i x e d g a r n m a k _ l l ;

s c _ . f i x e d a l p h a k [NUM._OF .„ .STA TE S] ;

s c . _ f i x e d a l p h a k m l [N U M _ O F _ S T A T E S] ;

s c _ f i x e d b e t a k [N U M _ O F _ S T A T E S] ;

s c _ r i x e d b e t a k p l [N U M _ _ O F ._ ST A T ES] ;

s c _ f i x e d a i p h a k _ P r e [2] ;
s c . _ f i x e d b e t a k . „ P r e (2) ;

s c _ f i x e d l a m b d a _ X k l [N U M _ O F _ S T A T E S] ;

s c f i x e d l a m b d a _ X k O [N U M ._ O F _ S T A T E S] ;

s c _ f . i . x e d m a x L a m b d a _ X k 0 ;
s c _ f i x e d m a x L a m b d a _ X k l ;

s c _ f i x e d * a l . p h a T i m e [N U M _ O F _ S T A T E S J ;

s c _ f i x e d m a x A l p h a k ;
s c _ f i x e d m a x B e t a k ;

. / / D y n a m ic a l ly a l l o c a t e memory f o r t h e v a l u e s t o b e s t o r e d d u r i n g t h e f o r w a r d r e c u r s i o n .
/ / I n i t i a l i z e s t a t e m e t r i c s .
for (i = 0 ; i < N U M _ O F _ S T A T E S ; i + +)

140

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A. 3: Turbo Encoder/Decoder Class

{
a l p h a T i t n e [i] - n e w s c _ f i x e d [(f r a m e L e n g t h - r 1)] ;

a l p h a k m l [i] = N E G _ I N F I N I T Y ;

b e t a k [i] - N E G _ I N F I N I T Y ;

)
a l p h a k m l [0] = F 1 X _ Z E R 0 ;

* B e g i n n i n g o f f o r w a r d r e c u r s i o n .
* /

/ / I n i t i a l i z e t h e v a l u e s a lp h a T im e t h a t c o r r e s p o n d t o t im e i n t e r v a l 0.
a l p h a T i m e [0 j [0] ~ F I X _ Z E R O ;

f o r (i - 1 ; i < N U M _ C F _ S T A T E S ; i + +)

{
a l p h a T i m e [i] [0 j - Nh:G 3:N F I N 1 T Y ;

}

* C o m p u t in g a l p h a v a l u e s w i t h i n t h e b o d y o f t h e f ra m e .
* /

f o r (i n t e r v a l - 1 , c w _ i n d e x — 0 ; i n t e r v a l < = f r a m e L e n g t h ; i n t e r v a l + + , c w _ i n d e x + - r)

{
/ / Due t o t h e r e l a t i v e l y s m a l l number o f s t a t e s , t h e i n n e r l o o p
/ / w i l l b e u n - r o l l e d .

/ / C a l c u l a t e t h e b r a n c h m e t r i c v a l u e s u s e d f o r t h i s i n t e r v a l .
/ * IMPORTANT NOTE: gammak_00 = C ALWAYS; THEREFORE, I T I S SIMPLY OMITTED FROM THE CALCULATION * /
g a m i u a k _ 0 1 = p a r i t y B i c s [c w _ i n d e x] ; / / e n c o d e d b r a n c h = 01
g a m m a k _ 1 0 = s y s t e m a t i c B i t s [c w _ i n d e x] ; / / e n c o d e d b r a n c h - 10
g a m m a k _ l l - g a m m a k _ 1 0 + g a m m a k _ 0 1 ; / / e n c o d ed b r a n c h = 11

/ / C a l c u l a t e t h e a l p h a s t a t e m e t r i c f o r each o f t h e p o s s i b l e t r a n s i t i o n s .
/ / Use t h e MAX* o p e r a t o r t o d e t e r m i n e t h e a l p h a m e t r i c .
/ / D e t e r m in e t h e max (Alpha) a s each s t a t e i s v i s i t e d .

/ * S t a t e #0 * /
a l p h a k _ P r e 1 0 j •= a l p h a k m l [0 J ;

a l p h a k _ P r e [l] = a l p h a k m l [1] + g a m m a k _ l l ;
a l p h a k [0] - m a x S t a r (a l p h a k _ P r e [0] , a l p h a k _ P r e [11) ;

/ * S t a t e # 1 * /
a . l p h a k _ P r e [Oj ^ a l p h a k m l [2] + g a m m a k _ 1 0 ;

a l p h a k _ P r e [1 j a l p h a k m l [3] + g a m m a k _ 0 1 ;
a l p h a k [l] = m a x S t a r (a l p h a k _ P r e [0] , a l p h a k _ P r e [1]) ;

m a x A l p h a k - m a x i m u m (a l p h a k [0] , a l p h a k [l }) ;

/ * S t a t e #2 * /
a l p h a k _ P r e 1 0 j = a l p h a k m l [4] + g a m m a k _ _ 0 1 ;
a l p h a k _ P r e [1] = a l p h a k m l [5] + g a m m a k _ 1 0 ;
a l p h a k [2] - m a x S t a r (a l . p h a k _ P r e [0] , a . l p h a k _ P r e [1]) ;

m a x A l p h a k = m a x i m u m (m a x A l p h a k , a l p h a k (2] } ;

. / * S t a t e # 3 * /
a l p h a k _ P r e [0 j = a l p h a k m l [b] + g a m m a k _ l l ;

a . l p h a k _ P r e [1 j ^ a l p h a k m l [7] ;

a l p h a k [3] ~ m a x S t a r (a l p h a k _ P r e [0] , a l p n a k _ P r e [1 j) ;

m a x A l p h a k = m a x i m u m (m a x A l p h a k , a l p h a k [3]) ;

/ * S t a t e # 4 * /
a l p h a k _ P r e [0] = a l p h a k m l [0] + g a m m a k _ l l ;

a l p h a k _ P r e [1] = a l p h a k m l [1] ;
a l p h a k [4) - m a x S t a r (a l p h a k . P r e (0] , a l p h a k _ P r e [1]) ;

m a x A l p h a k - m a x i m u m (m a x A l p h a k , a l p h a k [4] } ;

/ * • S t a t e # 5 * /

a l p h a k _ P r e [0 j - a l p h a k m l [2] + g a m m a k _ 0 1 ;
a l p h a k _ P r e [I] - a l p h a k m l [3] + ga m m a k ! 0 ;
a l p h a k [5] = m a x S t a r (a l p h a k _ F r e [0] , a l p h a k _ P r e [1]) ;

m a x A l p h a k = m a x i m u m (m a x A l p h a k , a l p h a k f 5] } ;

/ * S t a t e #6 * /
a l p h a k _ P r e [0 j - a l p h a k m l [4] + g a m m a k _ 1 0 ;

a l p h a k _ P r e [1] = a l p h a k m l [5] + g a m m a k _ 0 i ;
a l p h a k [6] - m a x S t a r (a l p h a k _ P r e [0] , a l p h a k _ P r e { 1 j } ;

m a x A l p h a k = m a x i m u m (m a x A l p h a k , a l p > h a k [6]) ;

/ * S t a t e # 7 „ /

a l p h a k _ P r e [0] = a l p h a k m l [6] ;
a l p h a k _ P r e [1] ^ a l p h a k m l [7] + g a m m a k _ l l ;
a l p h a k [7] - m a x S t a r (a l p h a k _ P r e [0] , a l p h a k _ P r e [1]) ;

141

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A: Turbo Encoder/Decoder C++ Source Code Castellon

m a x A l p h a k - m a x i m u m (m a x A l . p h a k , a . l p h a k [7]) ;

/ / A s s i g n new v a l u e s f o r a lp h a km l and n o r m a l i z e i f n e c e s s a r y .
f o r I 1 - 0 ; i < N U M _ O F _ S T A T E S ; i + +)

{
a l p h a T i m e [i] [i n t e r v a l] = a l p h a k [i] ; / / S a v e a l p h a v a l u e s f o r f u t u r e u s e .

/ / A p p l y n o r m a l i z a t i o n r u l e .
a l p h a k m l | i i - a l p h a k [i] - m a x A l p h a k ;

}
} / / ’ End o f o u t e r l o c p f o r f o r w a r d r e c u r s i o n (c a l c u l a t i o n o f a lp h a v a l u e s) .

* B e g i n n i n g o f b a c k w a r d r e c u r s i o n .
*/

/ / I n i t i a l i z e t h e v a l u e s f o r b e t a k p l b a s e d on t h e d e c o d i n g o f t h e t a i l b i t s .
f o r (i = 0 ; i < M U M _ O F _ S T A T E S ; i + +)

(
b e t a k p l [i] = b e t a k l n i c [i] ;

}
/ , *

* C o m p u ti n g t h e b e t a v a l u e s w i t h i n t h e . b o d y o f t h e f r a m e .

»/
f o r (i n t e r v a l = { f r a m e L e n q t h - 1) ; i n t e r v a l > “ 0 ; i n t e r v a l — }

{

/ / U n - r o l l t h e i n n e r l o o p t h a t would n o r m a l l y i t e r a t e o v e r t h e number o f s t a t e s .

/ / C a l c u l a t e t h e b r a n c h m e t r i c v a l u e s u s e d f o r t h i s i n t e r v a l .
/ * IMPORTANT NOTE: gammak_00 = 0 ALWAYS; THEREFORE, I T I S SIMPLY OMITTED FROM THE CALCULATION * /

g a m m a k _ 0 1 - p a r i t y B i t s [i n t e r v a l] ; / / e n c o d e d b r a n c h - 01
g a m m a k _ i C ~ s y s t e m a t i c B i t s [i n t e r v a l] ; / / e n c o d e d b r a n c h = 10
g a m m a k _ l l = g a m m a k _ 1 0 + g a m m a k _ 0 I ; / / e n c o d e d b r a n c h - 11

/ / C a l c u l a t e t h e b e t a s t a t e m e t r i c f o r each o f t h e p o s s i b l e t r a n s i t i o n s .
/ / Use t h e MAX * o p e r a t o r t o d e t e r m i n e t h e b e t a m e t r i c .
/ / D e t e r m i n e t h e max (Be ta) a s each s t a t e i s v i s i t e d .

/ » S t a t e (tO * /
b e t a k _ P r e [0] ^ b e t a k p l [0] ;
b e t a k _ P r e [1] - b e t a k p l [4] + g a m m a k _ l i ;
l a m b d a _ X k O [0] = a l p h a T i m e [0] [i n t e r v a l] + b e t a k p l [0] ;
l a m b d a _ X k l [0] - a l p h a T i m e [0] [i n t e r v a l] + g a m m 5 k _ l l + b e t a k p l [4] ;

b e t a k [0] = m a x S t a r (b e t a k _ P r e [0] , b e t a k _ P r e [1]) ;

/ * S t a t e # 1 * /
b e t a k _ P r e [0] = b e t a k p l [0] + g a m m a k _ _ l l ;

b e t a k _ P i : e [1] - b e t a k p l [4] ;
l a m b d a _ X k l [1] - a l p h a T i m e [1] [i n t e r v a l] + g a m m a k _ l l + b e t a k p l [0] ;

l a m b d a . . . X k O [1] - a l p h a T i m e [1] [i n t e r v a l] + b e t a k p l [4 J ;

b e t a k [1] - m a x S t a r (b e t . a k _ P r e [0] , b e t a k _ P r e [1]) ;
m a x B e t a k = m a : - : i m u r n (b e t a k [0] , b e t a k [l]) ;

/ » S t a t e # 2 »■/

b e t a k . „ . P r e [0 J - b e t a k p l [l] + g a m i r . a k _ 1 0 ;
b e t a k _ P r e [l j = b e t a k p l [5] + g a m m a k _ 0 1 ;
l a m b d a _ X k l [2] ^ a l p h a T i m e [2] [i n t e r v a l] + g a m m a k _ 1 0 + b e t a k p l [1] ;

l a m b d a X k O [2 1 - a l p h a T i m e [2] [i n t e r v a l] + g a m m a k 0 1 + b e t a k p l [5] ;

b e t a k [2 1 - m a x S t a r (b e t a k _ F r e [0] , b e t a k _ P r e [1] > ;
m a x B e t a k = m a x i m u m (m a x B e t a k , b e t a k [2 j) ;

/ * S t a t e # 3 * / '

b e t a k _ . F r e [0] - b e t a k p l [l] + g a m m a k 0 1 ;
b e t a k _ P r e [l j = b e t a k p l [5] + g a m m a k _ 1 0 ;
l a m b d a _ X k 0 [3] = a l p h a T i m e [3] [i n t e r v a l] + g a m m a k . _ 0 . 1 + b e t a k p l [1] ;

l a i n b d a _ X k l [3] = a l p h a T i m e [3] [i n t e r v a l] + g a m i n a k _ 1 0 + b e t a k p l [5] ;

b e t a k [3 j - m a x S t a r (b e t . a k _ P r e [0] , b e t a k J P r e [1]) ;
m a x B e t a k - m a x i m u m f m a x B e t a k , b e t a k [3]) ;

/ * • S t a t e (t4 * /
b e t a k _ F r e [0 j - b e t a k p l [2] + g a m m a k _ 0 i ;

b e t a k _ P r e [l] = b e t a k p l [6] + g a m m a k _ l 0 ;
l a m b d a _ X k 0 [4] - a l p h a T i m e [4] [i n t e r v a l] + g a m m a k _ 0 1 + b e t a k p l [2] ;
l a m b d a _ X k l [4 j = a l p h a T i m e [4] [i n t e r v a l] + g a m m a k . , . 1 0 + b e t a k p l [6] ;

b e t a k [4] ^ m a x S t a r (b e t a k _ P r e [0] , b e t a k _ P r e [1]) ;
m a x B e t a k ^ m a x i m u m (m a x B e t a k , b e t a k [4]) ;

/ « • S t a t e # 5 * /
b e t a k _ F r e [0] - b e t a k p l [2] + g a m m a k _ 1 0 ;

b e t a k . . F r e [1] ~ b e t a k p l [6] + g a m m a k 0 1 ;

142

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Castellon A. 3: Turbo Encoder/Decoder Class

l a m b d a _ X k l [5] - a l p h a T i m e [5] [i n t e r v a l] + g a m m a k _ _ 1 0 + b e t a k p l [2] ;

l a m b d a _ X k O [5 j ^ a l p h a T i m e [5] [i n t e r v a l] -(• g a m m a k _ Q l + b e t a k p l [6] ;

b e t a k [5] - m a x S t a r I b e t a k _ P r e [0] , b e t . a k _ P r e [1]) ;
m a x B e t a k - m a x i m u m (m a x B e t a k , b e t a k [5]) ;

/ . S t a t e #6 */
b e t a k _ P r e [0] = b e t a k p l [3] + g a m m a k . . . l l ;

b e t a k _ P r e [l] - b e t a k p l [7] ;
l a m b d a _ _ X k l [6] - a l p h a T i m e [6] [i n t e r v a l] + g a m m a k _ l l + b e t a k p l [3] ;
l a r r . b d a _ X k 0 [6 j ^ a l p h a T i m e [6] [i n t e r v a l] r b e t a k p l [7] ;

b e t a k [6] - m a x S t a r (b e t a k _ P r e [0] , b e t a k . _ P r e [1]) ;
m a x B e t a k - m a x i m u m (m a x B e t a k , b e t a k [6]) ;

/ * S t a t e # 7 »• /
b e t a k „ P r e | 0] = b e t a k p l [3] ;

b e t a k . _ P r e (1] = b e t a k p l [7] + g a r i t m a k _ . l l ;

l a m b d a _ _ X k O [7 j = a l p h a T i m e (7] [i n t e r v a l] + b e t a k p l [3] ;
l a m b d a _ X k i [7] - a l p h a T i m e [7] [i n t e r v a l] + g a m m a k _ l l + b e t a k p l [7] ;

b e t a k [7] - m a x S t a r (b e t a k _ P r e [0] , b e t a k _ P r e [1]) ;
m a x 3 e t a k ^ m a x i m u m (m a x B e t a k , b e t a k [7]) ;

. / / A s s i g n new v a l u e s f o r b e t a k p l a n d n o r m a l i z e i f n e c e s s a r y .
for (i . - 0 ; i < N U M _ O F _ S T A T E S ; i + +)

{
b e t a k p l [i] = b e t a k [i] - m a x B e t a k ; / / ' A p p l y N o r m a l i z a t i o n r u l e .

}
/ / Compute t h e v a l u e o f t h e LLR f o r t h i s i n t e r v a l o f t h e t r e l l i s .
m a x L a m b d a _ X k O - m a x S t a r { l a m b d a „ X k C [0] , i a m b d a _ X k O [1]) ;

m a x L a m b d a _ . X k l = m a x S t a r { l a m b d a _ . X k l [0] , i a r a b d a _ X k l [1]) ;

for (i - 2; i < NUM_OF__5rATES; ! + •+)
{

m a x L a m b d a _ X k O = m a x S t a r (l a m b d a _ X k O [i] , m a x L a m b d a _ X k O) ;
m a x L a m b d a _ X k l - m a x S t a r (l a m b d a _ X k l [.1] , m a x L a m b d a _ X k l) ;

]
l a m b d a _ A u [i n t e r v a l] - m a x L a m b d a _ X k l - m a x L a m b d a _ X k O ;

} / / End o f b e t a v a l u e c a l c u l a t i o n w i t h i n b o d y o f f ra m e .

/ / D e a l l o c a t e t h e memory r e s e r v e d f o r a l l t h e a l p h a v a l u e s o f t h e e n t i r e f ra m e .
for (i = 0 ; i < N U M _ O F _ S T A T E S ; i + +)

d e l e t e [] a l p h a T i m e [i] ;

}
A*

* D e f i n i t i o n o f m a x S t a r (I m e m b e r m e t h o d .

*/
const F i x P c i n t T u r b o C o d e c : : m a x S t a r (const F i x P o i n t s o p e r a n d x , const F i x P o i n t & c p e r a n d Y)

{
s c _ f i x e a r n a x X Y ;
s c _ f i x e a d i f f e r e n c e ;
s c _ f i x e d c o r r e c t i o n T e r m ;

s c _ f i x e d a b s X Y ;

r na x X Y ^ m a x i m u m (o p e r a n d X , o p e r a n d Y) ;
d i f f e r e n c e - o p e r a n d X - o p e r a n d Y ;

/ / a b s o l u t e v a l u e o f t h e d i f f e r e n c e .
a b s X Y - a b s o l u t e (d i f f e r e n c e) ;

/ / Compute t h e c o r r e c t i o n t e r m a c c o r d i n g t o Cons tan t-Log-M A P r u l e .
if (a b s X Y . g e t _ r a w b i n () < = c l m _ . T . g e t r a w b i n ())

{
m a x X Y + - c l m _ C ;

}

return (F i x P o i n t (m a x X Y)) ;

void T u r b o C o d e c : : s e t C o n s t a n t L c g M a p P a r a m s (double L c)

{
double c o r r e c t i o n F a c t o r = 0 . 0 ;

double t h r e s n o l d L e v e l ^ 0 . 0 ;

/ / Q u a n t i z e and s c a l e t h e CLM t h r e s h o l d l e v e l a p p r o p r i a t e l y .
t h r e s n o l d L e v e l - C L M _ T H R E S H O L D / L c ;
c l r t i _ T . s e t (t h r e s h o l d L e v e l , F R A C T I O N . . L E N) ;

/ / Q u a n t i z e and s c a l e t h e CLM c o r r e c t i o n f a c t o r a p p r o p r i a t e l y .
c o r r e c t i o n F a c t o r = CLM. . . .CORRECTOR / L c ;

c l ; r , _ C . s e t (c o r r e c t i o n F a c t o r , F R A C T I O N _ L E N) ;

143

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

