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ABSTRACT : i \

| R

A new approach is given by the author in this presentatio

the relativistic problem of continuous media including therﬁbdyﬁamics
and heat flow effects; The'kinematicé of a materially uniform simpieb
body, a concept developed and'expléined‘by W. Noll-and‘C.C. Wang is
extended to include Loreﬁtz‘and Galilei space-times. ?\:@thematicél “ .
formalism for group structures on a manifold is developed, which lends

itself well to the description of vector bundles and fibre bundles '\\

.

/
both for the natural group—reducedvt@ﬁgent bundles for space-time and

the corresponding principallbundes. It also provides the basic -

‘

setting- for the framework af -material uniformity, a coqéept extended

here to gerneral relativity with the use of these bundles and the material

connection. o ’(

. 4
Using the notion of frame comporents which arises

naturall§ in the
discussion éf group structures, a powgrful'method, similar to.ﬁﬁew
Neﬁman—PenroSe formali;m, is”develoﬁed for solving the Einstein fiei@
eqﬁations in General‘Relativityf By imposiné thé‘Janpi\iféntity and;
integrability conditions:on the Ricci rotation coefficients it is |
possible to find solutions that can be interprsged physically in terms
of ;cceleration, expansioh rate, ro&ation etc. Complete formulas are

given in adapted frame components for the omnidirectional and uni-

directional space-times., A few more general solutions are compared

with existing exact ones.

A general theory iéathen given for a thermodymamic material element,
N ‘

simiiar‘ih style and theory to that of Noll but extended to include

: ‘ , . :
Noll, W., Arch. Rat. Mech. Anal. 48, 1-50(1972). : . &

(iv)



i
B

5. |

)

thermal. effects and done 1in.the formalism of differential geometry for

differential type materials. This includes memory effects, and the.

construction of a materially uniform
structure withathe symmetry group of
magnetic effects are also examined

including the_motion‘in a space—time

discussed.

Finally some examples are covere

body as a manifold\with a group

the material’element Electro-

'The relations to earlier results

and the. laws of thermodynamics are

.

d, including the ideal gas and

-~

degenerate Fermi gas which show how under particular assumptions on the

constitutive equatipns, classified ac
we can see how the. Einstein equations

to the material and shermodynamic pro
/

cording to the general theory above,
, solved in frame componengs, relate

perties The possibility of solu-

tions for partic&lar motion types such as constant acceleration, visco-

metric flow, irrotational,‘geodesic and %sochoric are examined
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INTRODUCT LON AND PRELIMINARLES

(P.1)  Summary ,",_"A Sectlons,

I have endeavoured in this research to build upon and help establlsh

the formalism for relatfvistic continuum physics.  Anoa resutt the work
[ % A

contains many formal definitions and a notat fon svstem which, through
, , :

practice, can be manipulated eas{ly to obtaln quick results. A tew

preliminary remarks on some of the object {ves, notation, and background
for the ClHlpl(‘rH are certainly {n order here.

[n the opening.chapter, the basic theory of Class{cal continuum
mechanics [105, 106, 78,79] is extended to the notatfion and formalism
of general relativity. (A few brief introductory remarks on this
theory, along the lines of Truesdell is given later in this section.)v
This includes deformation gradiept, mass measure, placement, motion,
hi tofy, process and deformation. The classical stress tensor is used
to construct a stress tensor on space-time, and the existence of this
is shown‘to be equivalent to the classical principle of material frame
indifference. The rotation of a material medium, described by a space-
time line bundle over the body manifold, is discussed using Fermi-Walker
transport by an arbitrary metric connection. Frames along a world
line which ére spatially and materially nonrotating are discussed, and
a number of different ;onnections and cdrresponding contorsigns are
used to describe the expansion and rotation propérties along lines that
are not necessarily world lines. A kinematical description of properties

such as vorticity, rotation, deformation rate, expansion rate, density,

mass, volume and acceleration is included, with direct comparisons to



“

[

—

: classioal/continuum physics in the original notation yded by the althors.

A simple description is given of .Lie transport, and the convectiye

deriyative {131 is detailed‘along with.the volume elements on the body '

B and SpaCe time M with®their convectibe,derivatives. ~The deforma-

. » PO
\ B B v

ab - “(a:b) T Y(asby T “(a') _
“the lift to space-time of the classical time deformation rate4 D of

tion rate is directl§ shown to equal

Jruesdell [105] The referenced and relative left and right Cauo§§—creen
tensors -dare completely explained inclpdi;; traneformation properties in-
their relatiVistio counterparts.. Thefnotion of‘pector transport neing
'a'connection'igidescribed and applied to explain kinematic andﬂdynamic
propertles of space tine. o o e - A 4

The most important new development in Chapter I is the exten51on

iof material uniformity for a simple body of Wang [108] to. general

‘r>

relativitx. The material connection on the body B which may’not 'be

L

uniqoe‘bnt always exists locally, at least, (as Wang has proved) 1s'

. 1ifted through the projection to a non-metric material conﬁéction on M.

~ The tensor difference between this connection and the Levi-Civita
connection on M (referred to as the.Christoffel symbols} gives us a

contorsion tensor called the material-contorsion. By taking symmetric

. and agtis&mmetric.parts we can describe the expansion and rotation of
o~ . ' '

. o , v : 1
the material medium in general along any curve in space-time. Associated

tensors like the orthogonal delta tensor and generalized-rotation are
< I

-A

- defined and related to the contogsion. ThESe turn out to be very useful

in later calculations, particularly in Chapter IV for extending Noll's
New Theory of Simple Materials to include eleotromagnetic effects. The
study of the material derivative includes evaluatiﬁn of tre materiali
deripatives of-the’volume elements, the metric, and thehmiﬁed projection

Tr. ,
tenSO - P
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In Chapter II"we briniiin the formal mathematics to discuss group

structures on a manifold and connections‘on a group structure. Here
we.see the formal mathematical concept of a connection discussed by
Wang [108] and Kobayashi and Nomizu [44] is brought into direct agree—
ment with the coordinate formulas used in Chapter I and as an added
beneflt we obtain-the results for tensors and connections in a frame
~.component syst . in particular, and of greatest interest, in-those
frame compoﬁ/nts consistent with the, group structure.. A great deal of
detail is included and this er‘two basic reasons. Firstly, theﬂabstract
presentations ‘in the existing literature are not &ell suited to
relat1v1st1c cOntinuum theory, or explained in such a way as to be
easily understood by most physiclsts. Secondly, the theory of group
structures on a manifold is the very heart- and core of the basics4gf
bundle theory (reduced tangent and princ1§hl bundles) and can be used to
describe both the Galilei or Lorentz structure on space time as well as
the material uniformity on the body manifold using the symmetry group
The entire structure on the manifold is reduced, through structure
preserving isomorphisms to a group structure on a single vector space v,
which is a Lie sybgroup of the general linear group GL(V) e Lorentz.
and Galilei‘structures on V are discussed in some detail,including
many of their properties, with a numher of propositions, remarks and
proofs. Later'in the chapter, the invariant tensors QE~£?e manifold ‘
and types of structure p:fgerving connections are covered.

In Chapter III we deyelop the ooncepts of frame components associated
with a fixed basis of v through structure preserving isomorphisms for
~a Lorentz group stricture.. We refer4to the usual manifold coordinates -

as homogeneous coordinates, and to the -structure induced frame components

) . ‘ ¢
‘as coordinates with torsion. The reason for this naming was made clear

)



i
identity T,, +
. A E I S

e

in Chapter II when we derived the formula for the torsion of a connection
in frame components. The "coori;:éte torsion" turns out to be the Ricci

coefficients for the frame compo system. They satisfy the Jacobi

. 3
i a ‘
- ; L v diti
Ta [QTj K] 0 and the,lntegrablllty condition
T i - T 1 =T a T i The hrlstoffel symbols in metrlc frame
i k,%m o k,m2 2 mj k,a | ym ‘
components are given by {jik} = *( Iijk - T¥kj) ‘where _(ﬁjk) =

diag(1,1,1, —l) is used to raise and lower indices.' This technique,
which has 31m11ar1t1es to the Newman-Penrose formalism, is useful in

relativistic continuum thequ because all dynamical quantities and -

kinematic rate quantities can bé expressed in terms 5f the Ricci

coefficients, without rgferenge to .the local orthonormél tetrad field

defining them. Symmetry conditions that reduce the number of soiutions

to the point of making the equations of General Relativity explicitly -
soluble can be imposed. The ones considered of gréatest interést;
namely omni- ana\unid}rectionality have complete formulas given. The
local orthonormal fréme used is said to be adapted, in that the time

like unit vector field is the matter flow, and the three orthonormal spacé

1ike vector fields are principal stress vectors. Under these circum-

. _ 1 4 s .
stances we have the deformation rate eAB = (T BA +T AB)’ rotation
_ 14 ‘ . - _ b .
rate_ W =2 TA B’ acceleration u, = Ta 4 and expansion rate
9 = T4 = Taaa’ where a = 1,2,3,4, -A,B =1,2,3 and the components

are given in the adapted frame. By the Einstein equations, the ortho-

/ .
gonal part of the Ricci tensor is diagonal in this frame, and it is given

i 1 1
by R. =T, . +T° +5 B += G.. where
Yo%k T TGL T (KL jk 4 J}é Ay T2 G e

i a i a a i a
B =T aiTi K B = Tay T By ” T, and Gy = L

i . . . :
where Ta = Ta i Exact solutions to the field equations are obtained
in simple cases, which are o interest in cosmology, and more general

cases, which are examined in the fifth and final chapter on speciél

N
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“

solutions in the 1ight<8f thelformalism_developed here.
In the fourth chapter, the‘New Theory of‘Simple Materials of Noll

-

(771 1s extended to relat1v1ty and thermodvnamics with some modifica-

tions. The state space L of Noll 1s a differentlal manifold here, and
~—— .
‘as a consequen%e does not have the same, topology as he introduces. The
evolution map B is different, adapted more to- the formalism of differ-
ential geometry in Dieudonné [22]. Thus the properties of the response
functlonal 1n continuum mechanics are anorporated in the smooth masz
07 EI ~ TZ and S:L~>S, where EI is the evolution bundle and

S 1is the stress map, S the stress space.‘ The structure of a material
element on an‘n—dimensional Qector space is completely given.along witn
all‘the axioms, ano we define what it means_fo; two material elements

to be materially isomorphic. The symmetry“g;oup of all material iso-
morphisms of a material element with itself is introduced, and in the
formalism of group structures on a manifold, the body B is given the
symmetry group structure. The coordinate notation of space time is
related to the body element formulation. Thermodjnamics is included,
and the first and second laws are studied in detail. The Maxwell
equations of electromagnetic theory'are reduced from space-time to the

body, and examined in the light of this abstract continuum theory with

memory, although a full solution to this problem seems distant.

In Chapter V we take the special solutions of Chapter III and
the material classifications using thevformalism of Chapter IV and the
special motion. types of'Chapter I and put them together. Special solu-
tions are found for material media in general relativity. Some of the
_constitutive equations of kinetic gas theory and Boltzmann temperature

determined energy distributions are consideted.
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(P.2) Symbols and Notation.

~-

Some of the notation and’terminology used in this work should be

considered now.. There are a few minor changes from one chapter to
Y .

ahother but I have attempted to keep these to a minimum. The symbol M
. . i . ' . »
' is used to denote space-time, B the body manifold, P : M >~ B the

projection. The metric in coordinates is ‘gab’ the flow vector is

v?  with uaua =i—1, and Ya =g -is the orthogonal metric.

+u
b J au

ab b

The Levi-Civita connection (or Christoffel symbols) is denoted by

a _ 1 ad . . . : '
{b C} =58 {gdb,cd-gdc,b gbc,d}' A semicolon }s used to degote the
covariant differentiation with respect to this conneétion, so, for

a a cy a L c ‘
i = -+ = - . I
instance u ‘b u b u {C b} and ua;b ua,b uc{a b} The comma is

used to indicate partial differentiations 'in the usual homogeneous
coordinates, and canonical parametric derivative along ‘the indicated
. = 1 ,

integréi curve of the specified vector field in frame components, which

simply extends its definition naturally. If another conmection’ is given,

N a - . [,a a a a
: T = -
say b e in S?mponents, we wr%te Fb o {b c} Kb o ,aﬁd call Kb c
the contorsion.tensor for Fbac' We associdte the contorsion with the
connection and the corresponding covariant différenﬁiation, some examples
of which are shown below. (G' = u ub)
. a a;b
» Covariant’ : y
Connectigg Differentiation Contorsion
Christoffel | a : v ' a _ ’
Symbol {b c} ‘ ’ Kb c 0
a : a : a *a a-

Colon b ¢ b e Kb c aubu u ub)uc

4 . ) ! '

a
r ! = . +
b ¢ K'bca—'u[,b,<:]ua."u[a,c:]ub u[b,a]uc
' a I T .
T = +
b c ~ Kabc (u[a;b] u[aub])'uc



Lo \

Covariant

Connection Differentiation - Contorsion
. +« a3 . R .
‘ r‘ . \ = - .
Dot b ¢ K Gb . ucua;b uauc,b
f ] . ‘ > .
St T2 o K =20, + ‘
wtar b c — “ach P[cua];b “ac'b
~ a » N .
Material T g = + - -
eria b c . Kabc Aabc ua;cub ub;cua_ ub;auc
) —ﬁbu u_
[
Funda~- _
mental f‘a : ) K =A +u u, - u u -~uw
b c ' abc abc as;c b bs;c a c -ba

Of course u = +u u - and we put 6

a:b ua;b a-b ab =‘u(a:b) and Yab =4u[a:b]'

) . a
We use D for the convective derivative, and Pa‘ for the components -

of the mixed projection temsor. For indices, the Latin 'a, b, i, j etc,

run from 1 to &4 referring to space time and the Greek a," B runrfrém,;

1 to 3 and refer to the body. |
Some of the n9tation of Noll [77] which is useé,to q;ite an extent

in Chapter IV is introduced éarlier, espgcially iﬁ Chapter I. We‘brief;y

review some of it at this ﬁime.‘ If T, T1 and TZAAare ﬁ-dimensional

real vector spaces, then Lin(Tl,TZ) 1s the set of all linear maps from

1 2°

T. to T and Invlin(Tl,TZY is the set of allllinear;iQOmorphisms
(1if dim G.=dim75). We let Lin(T) = Lin(7,T) and GL(T) = Inviin(T,T),

*
the latter being the linear automorphisms. If T  is the dual of T
* i o *
then Sym(T,T ) consists of those linear maps from T to T which

1 -

canonically correspond to a symmetric pilinear form on T. Likewise

* : . ‘
Sym+(T,T ) contains maps to be identified with positive definite symmetric

. 147 * - .
bilinear forms on T. If I € Sym+(T,T ) then o0(I), the orthogonal

. *
group of I 1is the set of all elements g 1in GB(T) with g oI-°g = I.
g _ v

d/ . ‘
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(P.3) Continuum Mechanics - Classical Kinematics.

!

& .~

Finaily, 1e£ us examine some of the classical continuum théofy of
Truesdell, N9Il and Wang. A body—(ma etiél(medium or continuum) ié a
3—dimené{onal connected difngen;ial'm nifold B that can be coVered_
by a singleAcéordinate chart,‘i.e. is diffeomorphic to an open subset
of 'Ra. Tﬁe coqrdinafe charFs f{(Uq,¢d), a i with Ua'= B aré.of i

o ' 3

greatest interest and we call each such diffeomo ism ¢a :B » ¢a(B) c R

» .

a gabaZ pZacem;nt of B in 1R3, where ¢a(B)' is an open connected
subset of R?, Any other such ¢a 2 Uy +WR; is. a loecal piﬁcemehtg The
 defivative map ¢a*xi BX »€R3 defines an (infinitesimal)vélaceﬁent of
X  which is simply ; linear isomorphism that‘preserves the standaqd,

orientation, where Bx "is the tangent space to- B at X ¢ B. We have

* * . S

¢aX:?R3 > BX which is the dual isomorphism of the ohne above, and the
' *

natural inner product on R? ~is used to equate 'R? with 1R3 . The-

* A,k ~/i2 .
map ¢ax ¢a*X e,Sym (BX,BX) can be viewed és a positive definite
symmetric bilinear form on BX called the (infinitesimal)‘configuration
of X in the placemeﬁt determined_by ¢a’ where X ¢ Ua' 1f
¢a: Ua +'R3 is a local placement, there is a unique structure (U&’da)

of a metric spéte on Ud) which makes ¢a' an isometry. We call dd

the Zocal configﬁrqti n of U,  under the pl%cément ¢,» and it measures
faithfully the streégziﬁg/g?4t at portion of the material medium‘or ;
body descfibed b; the open set ﬁa: Similafly we can define gZpbaZr
eonfiguration. jﬁe plzggment determines the configuration (or defbrma—
tion) of the material completely, whethgr.local, global or infinitesi-
mal, butithe converse is nol tr;;, if we.consider rigid rotations or
translations for instance.

The body manifold B 1is assumed to be equipped with'a o-finite

/ N . .
mass measure m on Borel sets of B which is absolutely. continuous

-
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in each  local configuration’with respect to the yolume Lebesgue . /
measure dv in 'R3 ,with'Radon—Nikodym derivative1 p ‘Ealled Eﬁelmass

deneity, i.e. for A< U, m(A) = p dV, and o 18 a real

valued function on ¢ (A),C‘R3. Its transformation properties under a

change of placement will be given in (1.3).
It is worth noting at this time we are using the more ‘modern term

"placement {77, P 8] in place of the original term configuration

I

“[105, p. 5],. A finer distinction will be made in Chapter IV between
configuration and deformation which are equivalent in this chapter.
A (local) reférence pZacemant r: U'+GR3, is a distingui#ﬂed local -

placement. Similarly we have global and infinitesimal reference place-

.

ments. We call r,o the infinitesimal reference placement at X

determined by rt for XeU. If ¢: U SR s a placement we call
' o !
- )

b or -1, r (V) C'R? > ¢(U) C'R? the related local pZacement. Similar

defin1tions exist fotr the, related global and inflnitesimal placements.

The clagsical "deformation gradient" [105, p. 11] is the 11near auto-
' e . -1
morphism Grad ¢ T ‘F(X)
1.2 .3

r(X) (X ,X",X7) as the "components' of X.

of_fR3 where X € B, and we write

N

fp

A local motion 1is a smooth time parametrized family of Iecal piace—
ments, i.e. ¢t: U +CR? is‘ajaiffeomorphism onto an open subset of ;RB
for each t, and t e I R where I is an interval (open closed,
bounded or unbounded). 1if I-= [0, dp] ‘wherek dp > 0, and
¢y =~P(t): U »iR3 is a local motion we call P a local process and
dp its duration. if I = (-m,tO] we call ¢t =‘H(t): L] ;VB; a local

history withtlimit -t Similar definitions hold for global and

0"

infinitesimal motions, processes and histories.

/

A local~defb?mation motion corresponding to the local motion (or
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’
' L

logal placement motion) \¢t: U +iR3,

t € I is the map ¢t — dt' where

dt is the metric on “U making '¢t an isometry. An infinitesimal
. R > . . A\

deformation motion corresﬁonding to the infinitesimal motion
. R 3 ' * Lk
t f+ *t' Bx f;R ,15 the map t — Kt K, € Sym(BX,BX) for t e I.

By appropriate }estrictipns of 1 as above we also have the local
deformation pracess, ltocal deformation history, infinitesimal deforma-
" tion process and infing®esimal deformation history. By putting U = B

:abOVe.Qe have a global deformation motion, process or hfétory.

e I 7is selected,AWe may

3

1f ¢t, t € I 1is a local motion and £y

put: r:-U +CR3 equal to ¢t0. Thén @t o r_l: r (U) ciR3 -+ ¢t(U) ch. )
is called the relative local motion {105, p. 15,‘}6]. Relative gldba&%x///
and infinitesimal motioéns (for placements) can also be defined, but
deformations are not relative in this sense. The "relétive deformation
éradient" {105, p. 16] is the gradiént of the relative local motion, an
automorphism of iR3 at each péiﬁt. (Xl;XZ,XB) € r*;(U) CiR3, and a

function of t €I cR. We use Truesdell's term deformation gradient

to refer to the gradient of eitﬁgf a fixed related local placement, or

— \ i ) -
a related local motion ¢t ¢ r 1 where r: U »€R3 is a fixed local
refer%g:e placement, not necessarily equal to any particular ¢t . In
o ; 0
this latter case it is a function of t, while in the former it is not.

1f F:ﬁRj 6:R3 is 'a linear automorphism which is a deformation

gradient we write F.= RU = VR wheré- R {is orthogonal and U and V

B

are positive definite symmetric.. This is the unique Cauchy decomposition
.[105, p. 17]. Because of our orientation requirements, det F > O !so

det R = +1. We call R the rotation, U and V the right and left
, . 2 T 2 T L
gtretches, and C =U" =F F, and B =V = FF  the right and left
o — '

1 'é . T 3 3 * I kL3
The map F : R™ - R is the dual isomorphism F : R -+ R with the

c%ﬁbnical inner product on R3 used to identify R3 with R3*,




’
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_Cauchy-Green tensors respectively. For the corresponding related ten

SOors on FR3, we leave them unsubscripted, but for a relative deformation
© - ‘
gradient Ft or Ft (t)- we subscript the reference time. Hence we .
‘ , 0. 0
obtain R_ (t), Ut (t), Vt , C , B etc. This notation is used
%o 0 0 o ‘o | |
in (I.12).

Following Truesdell [105, p. 19] (see also (I.12)) we define the

instantaneous time derivative of the relative deformation gradient by

o :_q_ ] . e I
F (t) = 4o Ft(T)Ith. We put G = F (t), D =10 (t) =V (t), W
T T

Then [105, p. 19,20], D =D, W +W=0, G = F(t)F(t)™L =D + W.

Rt(t).

‘Hére F(t) 1is the deformation.gradient at time t with corresponding

u(t) = U, V, R etc.. %(t) is simply the time derivative.. It is not
S

/
‘hard to show that
N
W= RRT + % ROU L -uToHRY  and
. (P.3.1)

D = %-R(ﬁu"l-+u“lﬁ)RT' [105, p. 21].

~ It is customary to use (X ,X ,X7,t) as the space-time coordinates
2 3

in classical theory with the usual time ¢t ‘and components X , X , X
with respect to the canonical basis of 'RQ. It is possible to consider
a change of frame [105, p. 22] that preserves distance, time intervals

atd time sense, which 'will be of the form:

Xt =ty vt ol -x)y, ek -,

h|
where Ci(t) are the components in 'Rg of a time dependent point,
N .
Qij is an orthogonal matrix function of t, XO a fixed vector (or .

3 ' *] K2 k3 %
point) in R and a ¢ R 1is a constant. We write (X 7,Xx °,Xx 7,t )

. * @ . -
as the coordinates of the same point in the new frame. A frame indifferent

quantity is invariant under all changes of frame. For instance if A

*
is an indifferent scalar, A = A, i1if v is an indifferent vector,

/



*

n e

v 61R3,. then v Qv, and if S 1is an indifferent tensor of second
QSQT; Indifference means the tensor is intrinsic to the

)

*
order then S

body or material medium. One can see easlily that for the related

. : ‘ , * *
deformation gradient and associated quantities, F = QF, R = QR,
* x * . * . .
U =u, VvV =qug', D =qpQt, W = QWQT + A where A = Q' = -AT,
! -
(cf. [105, p. 24] also (I.12)). We call A the angular velocity of the

-~ . ‘
starred frame with respect to the unstarred one. Thus V and D are

frame indiffereﬁt, while the others are not.

(P.4) The Stress Tensor.

’

If AcUc<B 1is encloéedﬂby its boundary ©oJA the forces on A
are classified in classical theory és body forée £b(A) and contact
force ft(A), ,the former‘being an absolutely continuous function of
the volume of ¢t(A), aﬁd;the }at&er an ébsolutely continuous function
of the surface area of 3¢t(A5, its boundary.- Of course ¢t: U ->]R3

is the local motion under consideration, (cf. [105, p. 26] also (I.4)).

The resultant force f(A) acting on A can be written as f(A) =

£ (A) + £ (A) where £ (A) = bp dV = |. bdm and £ (A) =
~b ~c ‘ ~b ~ ~ ~C -
¢t(A) A ‘
J tdS. "We say that .b is the specific body force and t 1is the

90,8

A d

‘ * *
traction, these being indifferent vectors, i.e. b =Qb and t = Qt

under a'change of frame. Translating the mass measure over to ¢t(U)

using thé(diffeomorphism‘ ¢t we may write £b(A) = J bdm.
: : ¢t(A)
\\ R ~
¥ Using this notation we define the resultant moment of force
LA,x,) = J (x-%,) *b dm + [ (x-%5) ¥ & ds, (P.4.1)

6, (&) 2, (A)

where dS-T71s the surface area element on 8¢t(A) as before, x, ¢ RY

3
is a fixed point, and x ¢ R is the evaluation point for the integra-



tion done at a fixed time t (classically), and "x" 1is the three
dimensional vector cross product, (cf. [105, p. 27]). The moment s\ f

force about different points are related by Q(A,éé) = L(A,go) +

. 1. 2
. dx- . dX
- x! . i = ——
(KO 50) x £(A), If X e U cB Iis fixed,.ye define x TR T
dX3

dt

2

- where (Xl;X ,XB) = ¢t(X). We then have the momentwn m(A) and

angular momentum M(A.go) of A in the placement by given by

( .
m(A) = xdm, Q(A,EO) =

X ) x x dm. (P.4.2)
\ RENCY

J (x -x
~ ~O
¢t(A)

We then have Euler's Laws of Mechanics, given by f(A) = é(A) and
L(A,ﬁo) = ﬁ(A,go), ‘where the dot indicates time derivative.

, .
According to Cauchy's Fundamental Lemma [105, p. 29]-a stronger

result that follows from the Euler-Cauchy Stress Princip
i 4
Euler Laws of Mechanics, we may write the traction as 5(5,

: . . 3 ,
*T(x, t)n , where g 1s the unit normal in R to 8¢t(A) is

the stress tensor. Using ﬁhe diver cte theorem we can see’that Euler's
.Lawé of Mechanics [105, p. 31] ggg/i:ﬂwritten }n an equivalent form as
Cauchy's laws of continuum mechanics, namely p}£,= dir T + pb and

TT = T. Specific assumptions involved in this equivalence are that all
torques are moments of forces, and that the traction is simple, i.e. it
satisfies the Euler-Cauchy stfess principle t = t(x, t, n). They express

locally the balance of linear momentum and moment of momentum (or angular

momentum) .

(P.5) Constitutive Equations and Simple Materials. ’

The Constitutive Equation determines the stress t nsorias a function
of " the placement and deformat;on of the body in past .'me. Several basic
principles which govern the formulation of constitutive equations ought

to be stated now (cf. [105, p. 33]).



L. Principle of Determinism: 7he stress tensor at ty (@ function

defined on ¢t (B) = R3 Sor ¢t a jglobal motion, which s a second order
0 ‘
symmetric tensor on Rj) Ls determined by the global history H(t) = be

with limit ty-

We call the functional of all possible histories with limit o

which gives us the stress tensor at CO in each case, the response

funetional. The equation which equates the stress tensor to its functional

of a history, is called the constitutive equation.

2. Principle of Local Action: The stress tensor at (¢t (X),toj =
0
(xé,xg,xg,co) ts determined by the local history H(t) = bt U R’ For
any netghborhood U of X ¢ B, where H has limit ty:

3. Principle of Material Frame Indifference: The stress tensor at

ty on ¢t (BY for by a global motion is determined by the global

0
deformation history with limit o

By combining the principle of local action with material frame

indifference we see that the stress tensor at (¢t (X),to) is determined
0

. by the local deformation history with limit ¢t of any neighborhood U

0
. !

of X.
| We say that B is a simple body or is a simple. material if the

? 3
Qtress tensor at ¢t (X) e R at time ¢t is, determined by the.

0 0
qnfinitesimal history of X with limit tO’ for every X € B. Material
frame indifference implies we need only know the infinitesimal deforma-—
tlion his;ory of X up to time o Following the notation of Wang [108,

p- 39], we write the constitutive equation for the stress as T(¢C(X),t) =
t
(¢*X(s),X). We call F the response functional (as above) and

S = =



}
‘b*.‘(: BX » R {5 a l[m}} Y)()lll(’rl’h(‘\m tor cach X and o tunction ot (e

time parameter g «h Is written ag g main tfunctfon variable here

rather th:ui\\\al Htllm(r‘lpt as [t was used before.  This

Wyt fon shows 1oe

direct dependence of the stress on the infinftestmal{ fistory, the

response functional also dj(‘?\'( Wﬁ}”ﬂ the position X (o the body.

Relatlve to a tide Lnfinit mal reference placement 1 (X): IS\, - R

we can write the (onstitut ive equation in the torm 'l‘(bt(.\'),t) =
t
F(s),X] whert G i'v Chﬁ, ragponse "uz( tiomil veolative to

el

r(X) {108. p. 39] and F(s) = QS) o r()()--1 is the (Iot'u.rmatinn

gradient history. 1In other words, if « {s anv infinitesimal hictary

3
of X ¢ B, 1i.e. «k(s): BX ~R, s = t~0 then
. . . s
Fo(c@s),x) = G r(X)(’((S)Or(X) X)) where
S:—m S=__co
1 _3 3

k(s) °r(X) : R° >R,

for t <t

(P.6) Material I'UniformiLv_.

A simple body B consists of simple material particles or points
X ¢ B only. Of course we say that X _ B is a simple particle if the
stress at (}pt (X),to) is determined by the infinitesimal history of
0

X up to to. If X and Y are simple particles we say [108, p. 40]

they are materially isomorphic if

t t

G (F(s),x) = G (F(s),Y) (P.6.1)

e T r(Y)

for some infinitesimal reference placements r(X): B, - R and



S Y A r ‘ ‘ .

-2 o : . ) : 2
r(Yél_BY 4-R3, and for every 3x3 invertible matrix function

history
F. «This is equivalent to the condition
t Tt : ' -1 o o
F (¢*Y(s~),y) = _F (¢*Y(s)_ or(¥) or(g),x), o (®.6.2)

g = - S

using the other form of the response "

nctional, for all local histories
i B N )

¢S about Y.

16.

A simple body B ,is'matefialiy uniform if for amy X,Y € B, -X and'

Y are materially isomorphic. Let B be materially,unifbrm;'iA reference

chart for B is a pair (Ua’ra) where Ua- is anp open'suﬁsét'of' B
called a reference neighborhood and T Xc U, > ra(X) 1s a smooth

field of infinitesimal reference piacements called a reference map. We
require that for all X e U, , g et

’ 4.
!

t ot '
S ool - 5 00,

S -_00

S

thét és the response-relative to ra(x) at X shpuld be independent’
of X eU, but depends on o only. ' This holds for all histories
F(s), s <t ghd defines for, us ﬁhe response fﬁnctional :Qa o}‘the
reférencé chart '(Uu;ra);x B

We say that two reference chafts ’(Ua,ra) and ,(UB’rBj‘ are
'coﬁpatiblé if the corresponding response functionals G, and GB- are
identical. ‘This of course is an eguivalence relation, independenf of

the overlap of the charts. A collection U= {(Ua,ra), a ¢ BN of

. - . "
mutually compatible reference charts is a reference atlas if it:is

maximal and if {Ua’ a ¢ B} “is an open cover for B. We put Gu = Gd’

¥ a ¢ B as the response functional relative to U.

We naturally associate a linear map iR3 —*‘R3 with its matrix with
respect to the canonical basis.



The development of material uniformity for simple bodies is given
in detail by Wang [108]. He coverév;he symmetry groups p. 42 (or isotropy

’
h

groups in the old terminology) and material connections p. 62, which we
will mention briefly flere. First of all, we should consider material

frame indifference.

.

—~

(P.7) Material Framezﬁndifference for a Simple Body. R
For a simple material, the condition that the stress depends only

]

on the infiniteéimaldeformationhistpry tells us that _T(¢t(X),t) =

(sf. This

. ‘ *
‘F (¢*X(s),x]l can be'rewrittén as a function Of‘_¢X(§) °¢X*n

S:—-m

/
means that the_stress tensor is frame indifferent (PJé) so that the

principle of material frame ;ndifference can be expressed (using the

2
> .
' /

change of frame from unstarred to starred) as

ot - _ t : .T ‘
Fofats) ox,X) =@ F (¥ 1 a(e)7, or
S:_co s.—_—m l'
- : _ (P.7.1)
t , . Pt g .
Gr(x) (Q(s)F(s),X) = Q(t) Gr(x)‘[F(s),X)iQ(;)
5=~ . E=f” il )

for all orfhogonal tensor histories Q(t), and all deformation gradient
histories F:?R3 +ZR; (1in2é% isomorphism,fof;eath ‘t)  or equivalently
all (infinitesimal) plaéementvhistopies . This form is used in

. ) p
Wang [108, p. 42], Truesdell [105, p..39] and later is extended to

?

general relativity (1.6).

(P.8) Symmetry Groups and Material Connectidﬁé.

We let B be a simple body which is materially uniform and smooth.
Then any X,Y € B atp/ggzz;ially isomorphic, and we say that
r(Y)'l or(x):‘BX > By is a ma;erial igomerphism if (P.6.1) holds for J“

N

17.
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all F. The symmetry group G(X) of B at X 1is_the group of all
material isomorphisms of X with itself. Thus h € GL(BX) is an element

. t t .
of G(X) if and only if F [¢ (s) X) = F (¢*x(s) °h,X) for all
. g = =™ g = —® . -
local histories ¢ about X, (cf. [108, p. 42]). Following Wang we

require that G(X) be a Lie subgroup of SL(ij the special linear

group of linear ‘automorphisms on . B the tangent spdce to B at

x°
X € B. These all havé detérmiﬁant +1 and arevvolume and orientation.
preserving. Physically this means that thelétress ghanges if the volume
océupied-ﬁer unit mass;sﬁﬁnges, ite. we have no volume altering symmetrieé.
Furthermore since our body 1is materiallyvunifoJm‘ G(X) and G(Y) are
isomorphic Lie‘Grodbs for all X;Y € B. Using the structure of our

reference atlas, the association X — G(X) becomes a Group Structure
)

on the Differential Manifold B (cf. Chapter II) whose associated group

reduced tangentvhnd principal bundles are the material tangent and

/

: : - /
material principal bundles of Wang [108, pp. 46-62]. This follows from

the result due to Noll. and Wang that if on 'R? we define a subgroup
t t :
3 .
¢ < SL(R’) by geG if and only if Gy (F(s)) = Gy (F(s)g) for

s:_w 'S=.-ao,, 4

all F, then G is a Lie subgroup of SL(R?) which is isomorphic to
each G(X) = GX. Furthermore if U = {(Ua,ra), a ¢ B} 1is the refer-

ence atlas, for X e'U&, rax: BX +TR3 induces a Lie group isomorphism
; - - -1 , . ,
: GX + G defined by rax(gx) = Ty °8x °Tox for gy € GX’ By BX > BX’

([103, p. 43] and (II.1)). This gives us the mathematical formélism

A

raX

needed to descriﬁe tMe notion of a materisdl being uniform in Eléssiqal

continuum theory, with the notion of smoothness handled by the theory

of group structures and differential geometry. One of our main objectives
o .

will be to extend this to relativity, and look for possible solutions

to the field equations there for media which are materially uniform.



In the classical theory presented thus far, Wang [108] has proved
‘quite a number of propositions and theorems relating to pafticular
types of smooth materially uniform media (referred to as "simple bodies"

by hiﬁ). "One of the most important concepts he develops is that of the

© -

material connection. , A material connectdion is simply a linear connection

1

(Kobayashi and Nomizu [44]) whose parallel transports are material

isbmorphisms. It is a connection on the:group sfiucture‘(II.G) G(B)

which is the symmetry groupjstructure'bn the body manifold B (II.1).
The material connection, which wé introduce for relativity ig (1,19) .

is derived as a direct extension of a given material connection on B.
, ; , J

Since B 1is paracompact [108, pp. 66-67] material connec¢tions. exist on
B. This is true even of the more general body manifold used in

Relativity (I.1), ‘since a differential manifold, by Dieudonné's

definitiom—is—metrizable [22]. The material : tion, which is of
‘coﬁrse not necessarily unique, provides a method for definingm rial
isomorphisms in a smooth way -between B and B . for all X and Y

X Y

construct a triad of vectors

contained in some smooth curGe C. If we
spanning BX i.e. a basis, and transport.itdto 3. vector fields on

C ¢ B forming a basis at BY for all Y ¢ C, then the response,

properties of the infinitesimal "material element" at each Y e C with

q . ,
respect to this frame is the same. That is, if we map this basis.to the
canonical basis in 1R3 and call that referenée placement 1 (Y) _theﬁ
Gr(Y) i; independent of Y for \Y € C. The méferiai conpection,and
assoclated material derivati;e represent thesiogical way to describe
nhow tensors on B vafy relative to the maferial consistency. A

number of propositions abogg_mgteriai connegtions énd ghe assqcigted
torsion and curvature tensors for specific types of bodies, especially

solids are given by Wang [108].-

19.

1

»
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(P.9) 'Noll's New Theory of Simple Materials.

In 1972 a new approach was formulated by Noll [77] for expressing -

the stress in terms of the deformation that involved processes rather

<

than hisfories (P.3). 1In this case we no-longer need to know or examine
the infiﬁitesimal deformation history»which reduires knowledge of the
infinite past. The new theory is more flexible, allowing the intro-
duction of thef&odynamic phenomena [77, p. 48] in a relative1§ easy way.
Noll has developéd a theorem which relates tﬁe origihai theory- ot |

1

continua to the new theory [77, p. 32] showing that the previous theory

covers éxactly those materials which are semi-elastic in the new
_sense. The stress is consideréﬁ‘to Belan intrinsic second.order
‘symmetric Eénsorliunction on the body manifold (as a function.of time)

thus eli/;ninating the need for considering the 'principle of inaferial @

frame indifference. As well, bekause we have a simple material, we can

work with B the tangent space to the body manifold B at X; rather

X
than considering all of B. We write T = BX and 1ook &poﬁ T as én.
abstractkp—dimenéional vector space (n=3 in épplications) with a ;

> special additional structure that we refer to as the structure of a-

* material eleﬁent [77, p. 12]. We say the material element T 1s in
stéée o 1f we héve sglected a particular element & out of a étaté

-

space I which is associated with T. A configuration or deformation G

N

is determined by o, and the stress S also is determined, where
+or T x
G e Sym (T,T).and S € Sym(T ,T). Any deformation process
- '+ . * "
P: [0, dp] ~ Sym (T,T ) with initial deformation P(0) =%G can be
applied to the material element T in state o to transform the
“~material element at time dp to a new state »0'. The new state

~

determines for us the configuration G' = P(dp) and the.final stress



S'. To see this more clearly, we recount here Noll's definition of a

material element (77, p. 9, 13].
Configuration space G is a closed and connected subset of .

* T g
Sym+(T,T ). If P: [O,dp] + G 1is a process, we calf Pl = P(0),

Pf = P(dp) the initial and final values of the process. If G e G,

t €eR, 't >0 we define a nrocess : [0 t] + G by G (r)
A ( )’ (t)

-

-

_V’r € [0,t], and call it the freeze of duratton t ~at G. Let P be

)
'

. < . i p
a process, ty-t, € [O,dp], £ 2 t2 We define a new process P

| P ' : - legsty]
of duration t, - £y by [tl’t ](t) ,géti-tl? for t € [0, tz—tl]
and call 1t a segment of the process P. Let Pl and P2 be nrocesses
with P, = Pi. We define a new process P. * P_ . of duration d + d
1 72 1 2 : Py Py

called the continuation of Pl with P2 by . N

[ :

| p ) .

o l(t) if t.€ o, dpl],
* =
(Pl Pz)(t) . \
l P (t-d_ ) if te [d_,d_ +d_].
2 Py Py° Py Py

We say that (T, G, I) 1is a body element if 1 1is a class of
processes with values in G satisfying
1. Any freeze at any G e G belongs to I«

-2. If Pell then every segment of P belongs to 1.

3. T 41s closed under continuation, i.e. if P P2 € I with

1,
£ _ 1 |
= * °
) Pl P2 then Pl P2 e 1. |
4 If 6,6, €6, IPel with P =g, P = G-

A matéfial element 1gs a septuple (T, G, m, z, é, S, 5) in which

(T, G, M) {is the underlying body élenent,f I is a topological space
called the sta%é space of the material element, G: £ + G is a con-
tinuous'mapping called the conf%gufqtion map, S: I+>8 = Sym(T*,T)

is a continuous map called the stress map, and p:(Z XH)fit > I is

s



called the evolution map where (I x II)fit l\{(o,P)Ic e, Pell,

R S
g

pl - é(O)}. The material element is subject to six axioms I through VI
e ' . ’ ? A bl .

which Noll lays out, the first three of which we will consider here. -

_The last,thfee’are related to the topology on the state space which he

= ¢ ¢ I for each

defines in terms of the natural uniformity on EG

G € G, and uses to prove Some propositions on felaxed states, acceséik
bility, ahd semi-elastic materizls. Since the formaiism we will be .
using in Chapter IV for thetmodynamic material elements.uses a different

topology on I and a.different evolution map and some variations

from Noll's approach, we will not include Axioms IV, V and VI here.
! !

fom I For all (9P ¢ ZxM,,, ¢(p(o,p)) = pf,
Axdom II If o ¢, Pl’PZ é Im, é(o) = Pi, Pi = P_/ then

~ * ~ '\‘

Axiom IIL If 01,05 € X, (o)) = G(o,) =G and. §°p(0),P) =
. .8 00(02,P) - for FZZ P el with p1 = G then
01 = 02
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. ' CHAPTER I

KINEMATICS IN SPACE TIME "

(1.1) Introductory Definitions.

We begin by introducing the basic structure of a body manifold and

space—time in relativ1ty, and . the foundations for describing its"

‘L////y motion. Fo}lowing Carter and Quintana [13] we begin with a differen-

.

1 pE

tial manifold M of dimen31on n+1 called the space—ttme and a
manifold B of dimen51on n called the body mawszld eIn all examn1es

used, we will take n-—3, which fits with our physical experlence iue

space-time will be equipped w1th a Lorentz or Galilei structure,’ Kiinzle

/7

“146] whicﬁ will be elaborated in greater detail as we proceed. For the

purposes of the present chapter it suffices to say that a Lorentz metric

tensor exists on M, whlch we write as g ab in local coordinates, with

‘the usual propertids famlliar to those who study general relat1v1ty

In addition, it is assumed a fibration map (Dieudonne [22] p. 77) namely"

A

P: M »-B exists with fibres diffeomorphic to R, and'tangent vectors

to the fibres time-llke everywhere Thus‘ M 1is that portion of space-
time through which the material med ium moves, and we are not considering
here those regions of vacuum Or empty space. For X € B7 the fibres
P_l(X) are called world Zines.' We assume that the notion, of "future

o
pointing" and "past p01nting are well defined concepts that partitior

/
_the time like vectors at each point x € M (considered as vectors
7 o

the tangent’space Mx) into two distinct classes. We shall see 1ate rillilE

how this relates to the conhcept of the Lorentz group structure on M

. being orthochronous, and the manifold M time-sense preserving. It is

-23-
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/

'worth‘noting‘that the world lines P_l(X) can be parametrized by

dx

ey are future pointing

proper time T such that the tangent vectors

and'have lehgth -1. (We assume that vavb > (0 for ahy space-like

8ab
vectors V.)

The Body manifold B is assumed to be orientable'[22,‘p. 1501,
so cbnsequently there exists a saturated oriented atlas {(Ua’¢a)’
o € A} of B with U an open subset of B and ¢ _: U ¢ (U ) ;]Rn

a : n & a a a )
1]

a diffeomorphism, thé charts compatible with positive Jacobian determinants
on the overlap, and the family maximal. In fact, theré are two such
atlases corresponding{;o the two orientations of B. Likewise B has
an everywhere non-zéro n-form (completely skew n-covariant tensor fiell; .,
We assume a pafticular such n-form is distinguished as. a basic property
of the body manifold, and denote this form by n ‘calling it the mass
n-form. 1f & ¢ A we call the map ¢ : U +R" a local pZacemént of ‘B

n : . . . n .
'in R, and for X-€ Ua we say the derivative map ¢a*X' BX +IR" is
an infinitesimal placement (or simply a placement). Similarly we have

* * :
the dual linear map ¢ax::m3 > BX of the isomorphisin ¢

3

a*X where the

’ : *
euclidean norm on R? is used to identify R~ with ]R3 . The map

*

* , ' ,
¢aX : B, > B can be viewed as a positive definite symmetric

° Puxxt Bx 7 B

- . + *
bilinear form on B the set of which is denoted by Sym'(BX,BX). We

L

the configuration of X in the placement ¢ ..,

X
(xx a*x

XelU,. ' The configuration or deformation detérmines for us the value

@f a Riemannian metric-at'pﬁe single point X € B. In more general
theories later, which include thermodynamics and even eléctromagpetism,
we will reserve the term deformation for the agove, and use COnfigurétion
in a more general setting. These terms, and the‘hotation above,
parallels that of Noll [77]. The notion of an (infinitesimal) reference
configuration used by Wang [108] in 'this éyétem, would be a map ?f the

\ ,
N >

LIS et
N ‘
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o

can be used to describe coordinates of B,

physical placements or reference placements. Let us now see how to

extend 'this to relativity.

(1.2). The Deformation Gradient.

\\ The world line P—l(X)

There exists an open interval I in ZB.(bounded or ugbounded) with a

can be parametrized;by proper time "1,

function B: I - Pix), x = 8(1) ¢ p1(X) called the proper time

paramecrization which is a diffeomorphism. There 'is a future-pointing

K

time like vector field on

ab

satisfies uu = -1
8ab /

M whose value in local coordinates is.

. ! ,
denoted by «® called the flow field of the material medium. It
‘ a )
everywhere, and ua = %%— where T 1s proper

time along world lines.
is the tangent space to th

define Mi to-be the set of all vectors in Mx orthogonal to

Thus ul

X =-%% -1 . At each x € M, MX
- xeP T ({X) ~

e differential manifold M at x, and we can

.B‘X

using the Lorentz metric. The map P*x: Mx - BX which is linear (the

' ' : . L
tangent map to the projection) {s an isomorphism when restricted to Mx s

i.e. (P _
N X

deformation gradient,

|vﬁ ) M B
H -
X X

analogous to the classiéél case of Truesdell [105] p. 11.

is bijective. Using. this we define the

o

r(X)
reference
placement

1
1,-1 //M *
(P*lex) </ X
N I ] ’ e
frame
isomorphism world
(an isometry) line
-1

P
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3

v |
We will do this for the case n = 3 although the ektension in

general is clear. For a fixed X « B and reference placement

r(X): B >1R3‘ (a linear isomorphism) and a frame isomorphism

X

wx: MX-+-'R3 a smooth function defined for all x ¢ P—l(x) (that is

a submanifold of M) we have a deformation gradient Fr(x)(r) ‘defined

(1) = wx °o P -1, r-l(X). We have abbreviated (P |1“Il)-1 by

by X CRkx xT

Fr(X)
(P*x)—l without ambiguity. Here x = B(t) and T is proper time

along the world line P-l(X). The frame isomorphism is assumed to be
metric preserving, between the natural Euclidean norm on IR3 and the
1 . '

norm on Mx‘ determined by the tensor whose components in local coordinates

B . . o b ‘ _ C oW\ T
are Yqb = 8. + u u evaluated at x(ua il - ). Thus if e (1,0,0? .

T T . :
e, = (0,1,0) ', ey = (0,0,1) are the standard basis of ’R? we can let
1

-1 -1 - ' -1
Elx = wx (gl)’ §|£ = wx (22), Elx = wx (g3) for each x ¢ P "(X) and
1

obtain smooth vector fields r,'s, t defined on the submanifold P (X)

of M. For each x € P—l(X),' £|x’ glx, Elx form an orthonormal basi$

. 1
for M.
x

(I.3) Mass Measure.

In the sense of Dieudonné [22] p. 152 we giQe the'Body manifold B
the orienfation of the oriented atlas that we choose to make the mass
n-form n a member of that orientation. Then [22, p. l}l] there is a
Lebesgdye measure m- on B correspon&ing to n for which we may write
m(A) = ["n for A a measurable subset of B. We call m the mass

A
measure on B. This mass measure is absolutely continuous in each local

configuration with respect to the volume Lebesgue measure dV in‘IR3

with Radon-Nikodyﬁ derivative o called the mass density, i.e. for

AcU, A measurable, m(A) = f p dV. On U n U, we have
* - s (&) * « B
a



r

i

aX
I = = o —l
o = J.aP8 where JQB-det{ .} 1,5=1,2,3, %, (¢a b )(&B)

o af

for &8 € ¢ (U ny ) C'RB, i.e. &a = ¢Q(XZ)

Oa is a real value

density in the a-local

use the charts in our ©

a3
a

g

configuration, and Jae is

8

= ¢8(X), X € B.

d function on U which 1is smooth and 1is called the

the Jacobian. We can

riented atlas ‘for B indexed by @ € A as

coordinates for identifying tensors in component

specific phy51cal configurations oOr deformations.

write our

~

ijk

B repres

where the

mass n-form o

entations, 0 %

~

form, as well as for

In this sense We can

r mass volume element (for n= 3) as

n=n. . dx @ ad @ ax® = n_j axt A de A dxXS, o

dXi nad A oax® =t

Einstein summation convention applies o

have nijk = €ijkp _ﬁor in ah coordinate system
where 6123'= 1 and €1k ig completely skew.

role of physical defor

cand 1

1

mation and coordinate. In

2

3
= 3! A A
3.n123dX dX ax".

(1.4) Motion and Stress-

A\placement

placement

infinitesimal processes | with U'

the proce
history.
processes

from this

s defined for

ss.  1If our do
In a 51mllar
and histories

develop the ¢

process Or motion is a time

¢

t e [O,dp]. This can be
]

main for t 1is (-=,t, )

r in spe01fic a or

n i,i,k = 1,2,3. We

o = )

Ngk - fiik’a ,
Here o plays a dual \«
particular

Nyg3 . °

I

parametrized'family of

defined for local or

or X respectively fixed thizggﬁaﬁt

we have a placement

way we can construct defor‘ion or configuration

which are necessarlly inf

initesimal. We can

jassical continuum mechanlcs of Truesdell [105]

and others using histories or the New theory,of c

for simple materials along the lines of Noll f77]

ontinuum mechanics

using processes. We
.

shall examine the former here briefly in this chapter, and the latter

- 3 -
A A ' L
i]k o o ijkdXB dXB dXB -

27.
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later on 1in the'more general context of thermodynamics.
q' . The Stress Tensor (Truesdell [105] p. 29) represents the contact
(,??; forces across a smogth surface in a bédy B, and is the starting point
\‘for the dynamical éescription.v If A< h < B 1is a volume bounded by

a

a. surface 9A, then the force on A can be written as

£A) = £ (A + £ (A) where f (A) = J e, dv = [ bdm |
. Lo ¢ < ) ¢G(A) A
External ~  Contact
Body Force Force
and £ (A) = [ tds. [105, p. 26]. We say b 1is the specific
c
3¢&(A) .

body force and t 1is the traction, which is given by -t = Tn for
simple tractions (g 1s normal to the surface 3¢Q(A),’ and T {is the

Stress tensor). The Stress T satisfies Cauchy's two laws of continuum

N

mechanics [105, p; 311} p'g'= divT +pb ~and. TT T, (P.4) if traction
is simple and all torques are moments of forcg;, i.e. we have nothing
like quantum mechanical spin.

Of course in relativity, especially general relativity we are not
able to work with iocal placements and even infinitesimal placements
present problémé;‘éé we are left_with configurations and deformations.

x\\\\\\\\\-//Ehisfﬁﬁﬁears to limit us to a class of materials which is referred to
BN N ! -

the literature as simple materials (P.5), and also requires us to -

investigate rinciple of material frame indifference, see'[lOS,

P

pp. 33-36], Wang [108] p. 39.

] discuss the
determinism of the stress for simple materia}§, and frame indifference,
let us examine frame isomorphisms and vector transport theory. For’

further discussion on material frame indifference you should see Meugin

[66,67]; Bressan [8], and for Fermi Effdéport, Lianis fSO] pp. 62-64,

Enosh and Kovetz [27] and Krause [45]E€:::>
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‘

E -1
We seck a method to parallel transport a vector at x ¢ P

'

along the entire world line P~1(X). This transport must have the

. . L
property of preserving orthogonal vectors, i.e. a vector in Mx must be
. . L .
transported to a vector in M_, for x,x' € P " (X), and it must preserve
: . X
1

orthonormality of any basis of Mx

For ény vector field v defined on P_l(X) with local coordinates

va, (a =1,2,3,4 ~ metric g b has signature type (1,1,1,-1)) we
: ) 6Qa dv? i, a dxj
define the parametric covariant derivatives “— = S 4  lp @ dx7
. dt dr ij drt
Sv dv N j
a _ a i dx
and ——— = - v

iz dv _ iTa g dr with respect to the ?onnectlon r.
. &“? . a a a
Followirg Hehl [39,% we write I ,%, = {, ,} - K
_. 1] 1] 13

contorsion tensor. It is worth noting at this point that the connection

and call K,a,, the
1]

’

Fiaj’ which is not symmetric in general like the Christoffel symbols

{iaj}’ is not used to describe the dynamics of space-time like in Hehl's

éheory and in Einstein-Cartan theory with the presence of (quantum
mechanical) spin, but the roetation of the matgrial medium. Dynamically
we assume the usual Einstein equations hold unless otherwise specifically

stated. In order that 0 we require that K, | = K

gablc - iaj [ia]j whe?e

the index on the contorsion tensor is lowered using the metric. We let |
denote T covariant differentiation and ; denote Christoffel symbol

covariant differentiation.

3.7~



a .
If r are the components of .an orthogonal transport invariant

vector field defined on P l(X) ‘we may write the transport equation as
Gr o 1 . oo=1

T = c(r)ua + d(T)Y‘ where v(x) € MX for all x € P “(X). Then
) 8 . a ' b $9p ‘ ' S
0 =_E;-(uar ) = c(1) =1 - - If s 1is also transport invariant and
. . a su §s (e by
- Sr a b b a a Su
. —_— =, — —_—— — <4 .
orthogonal we: have s é u [dt’]°r + d(1t)v and I ua[dr J Sy d(r)v
5(r sa)' )
Then we require 0 = 4 which implies d(r)r va + d(r)s v3.

The fimplest solution made by taking Ga = vé.= 0 is called the Fermi-

Walker tPansport.' It is the only such transport which preserves

v

orthonormality of all orthonormal frames irrespective of the choice of

2

‘the connection. SERCI : -
v ) . . " -'1
If 1, s, L 1s an oriented orthonormal frame at x e P (X)) (a
basis for Mi oriented by image under P*x in BX) then we can define

ah oriented frame of orthonormal'vector fields on P_l(X)”‘by the Fermi

: ‘trans ort condition 'namel se” u? éub §§3-= aﬂfﬂh 0

R P ? Y Tdq dt o dr ‘_u dt |°
dt B Gu'b y .o N . . : .
I [dr ]t - Now let -8 and | :denote covariant differentiationﬁf
wi;ﬁ_respeét to T ‘and 3 and H covarlant dlfferentlation w.r.t. T.

~?

Let (r »t) be Ferml transported along P 1(X) using I' and (g,é,g)
using T. We write T.a = { a } - K, . and f, . .
, i3] l J 11 173 i]

th contor510n tensors satlsfy K,

[

a { a } - Riaj where

., =K., .. and o= K., o, in
iaj [iadj - iaj [ialj
order that ‘g =0 = g - Such contorsions are called metric or
\\\\-ﬁ?/r~ ablc abllc T ' -
orentz,\and the same adjectives apply to the corresponding‘connections.

\ Th two bases of orthonormal vector fieldslon P—l(X) can be related

by an orthogonal matrix function -of proper'time. Writing r =r,

~(1)  ~

t we have T (t) = Q (r)r (1), and hence

(3) "k we S (1) ~(9)

(1) .E(j) i,j = 1/2,3. The" 1nd1ces in parentheses have no tensor

‘e

~sign1f1cance and can be ralsed or lowered freely without any change in

‘}‘
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i

j°

the vectors and without using g ab’ l.e.. E(j) = E(J), QiJ‘= Qij = Q

Clearly Q JQk. =8 i k =1, 2 »3, with sum:on j. 'Introduqing@a free

ik
tensor 1ndex to represent components in a coordinate system, we write

the Fermi transport conditions as

612 | s Bu )
(1) _ a_&i b (1) _ a[ Y|-b _
\ 47— u [dr]r(i)-’ 3t ﬁ—vu [.d'r] (i) for 1 = 1,2,3
Now Qij = E;ilf?j) sqvthat we have, u
e ~CONN X |
Wi o Ty, a9 O Vb e w
dt a. dt (J) dt Ta dt (i) b c dt
b
- __(i) ‘lb
a a (1)-b dx
(J)[ dt +:rb a c dT]

7

Using the Fermi transport relations and the fact that u 1is orthogonal

to ‘E(j) and g(j) for each j we have .
dqQ ff// ’
i = a -a (=€¢i) b c - = -a b
=. (T -T = -
dt ( b ¢ b c)ra r(j)u (Kbac Kbac)r(i)r(-j)u
usin u = 2X Th Egii = (K ) ﬂ tei
g at US4y abe r(1) () > and putting
A =K. - i r
Kabc Kabc abc® US1ng r(i) Qlk (k) ve get
inj a b c N\
= A = A \ .
dt Kachikr(k)r(j)u Qik Kj with summatiok on k Here
_ a b c _ _ P
Akj = AKabcr(k)r(j)u = Ajk so Ajk = A[jk]', The condition
in. . . , ¢
_E;J-zbqikAkj guarantees Q remains orthogonal for all Tt since A

is antisymmetric. [§$-= QA = é%(dwq) = 0 since A + AT =0 .]

(I.6) Material Frame Indifference and Frame Indifferent Tensors .

.

The introductton of rotating frames permits us to understand the

- Principle of material frame indifference in relativity for a simply body

We can define our frame identification maps wx: Mx +iR3 for each
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-1 » L _ - - _ P
PO by ey 0) =gy TE ) =gy, for 1=1,2,3
and extend by iinearity. These linear isomorphisms preserve norm and

» 3 ' ;
inner product, since the‘canonical basis of R is also orthonormal.

The infinitesimal motion of X is éiven by Ko = wx"P;i: BX *iR?

o 1 . o ‘ ) )
where x = B(1) and where P*x: Mx -+ BX is the fundamental isomorphism

induced by P. The stress tensor is then given by - the constitutive

-t

equation (P.5) T(x) = F (K X) _Where 1 =87 (x), x e-P_ x),
using the principle for :;e determinism of the stress for simple
materials and'tollowing the notation of Wang [105] p. 39. T is a
symmetric and second order tensor on iR?, and in the notation of

Noll {77], T ¢ éymCR3) = SymCIR3 IR?) (P.2). T(x) is.clearly inde—}
pendent of the choice of proper time parametrization B acoording as
where B(O) is takgn, however it daes depend on the choief of the
isomorphisms wx" (i.e; on the rotation frame). We call F the
response functional for the simple material. | (

- ~ 3
We can use the ,wx to transform the R~ tensor T(x) to a tensor

f(x) at x €M on M itself If we require that f(x) isfto be

Jndependent of the choice of the rotating frame, then automatically F

satisfies the principle of material frame indifference and conversely.

We éan see this as follows. We have r(i)( T) ﬁQ j (j)(T) and so for
= 8(1), - . .

- P ootk N N
W ®Eq) = (SF (kX)) Q (T)Qj (D Ly (D)
. Lp-l » 3 x » ;
* U D) Praer @) o' ORI

g j

= Ttz

>

e
-

. ” : - k‘
Notige that (~(i)) g(i) ‘w (~(i)) and so wx(Qi'E(k)) ¥ (~(i))

= Qi X(~(k)) lp (r(k)) ( ) w (r(i)) k‘px(E(i))- Heuce
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poaviake g (@ %ey) = 2" (r,, ) = a0l e so that in

X X (k) ~(k) ~(k) k~(i)’
lmatrix form wx °wx =Q, or wx =Q owx. Substituting above we get

= T | - 1j N '
T(x) = [ F (Q(s)"') wB(s) OP*é(s)’ X) Qi-k(r)QjE(r)g(k) QE(E) ().
sS=—m PR J

K

Also, ‘ ‘ 5 : . .

ke
T(x) = ( F (KS,X)} @y ®E¢g) (O

Hence T =w§ if snd only if o .
T | . T T
Folats)ox, x) = Q| F (e, OO,  [c.f. (.7)].
S=..-® S=~

~ P
"

This must hold for all orthogonal tensor histories Q(T) in order

for the pr1nc1p1e of material frame indifference to hold as well as for

the stress tensor T to be a well defined orthogonal space time. tensor
Y ‘ ‘

;field on P—l(X) aﬁd hence‘on ‘M. This result is a relativistio

e

'generalization of Noll s statement that the use of the intrinsic stress
on the body manifold or body element ellminat'e need to specifically :
No

consider the principle‘of.frameyindifference t 1771, pP. 2, 12.

Recall that for X € B, x e%??l(x), and . r(X)' B£‘+fR3 an
(orientation preserving) refeérence isomorphism we had defined the
)
_ -1 -1,
deformation gradient r(X)(T) = wx ,P*x or (X),,‘ = B(t). We can

write F = RU = VR ‘where R is'orthogonaf and V, U ere positive
definite‘symmetric matricesfuniquely determined.:‘(We use the canonical’
'basis ofﬁR3 for matrix representatiOns ) By orientability det R = +I:\*¢/f
since det F > 0.

Let us see how these trensform under a change of freme. " As before
Y ;w;l:= Q(1) so ? = QF where Q 1s orthogonal. Hence RJ = QRU-

go R = QR and U=1u by uniqueness of polar decomposition Therefore

= QR U(QR) = QV Q Hence V _ is frame indifferent, {i.e.



K

= Q\IQT (Truesdell {1osl, p. 23). The stress’ tensor on iR3 we saw
‘ was*ffﬁﬁériﬁdifferenﬁ and as a consequencé could be lifted to a stress

.tensor on P_l(X). Likewise the left stretch tensor V can be 1ifted e

fo a left stretch orthogonal space time . tensor V independent of the

choice of frame. This holds on P—l(X). 1f U cB 1Is open and

. r: X € U~ r(X) is a smooth field we can 1lift V to a smooth field V

‘EP ‘Pél(U) c M. We.write v(x) =vViJ(T)E(i) QE(j) and ~

v(x) = V(DI ®r,. (1) where X = %(t). Then clearly V =1V
£ "Ry !

because of this frame indifference. We define the left Cauchy-Green

‘tensor B by B-=.~,V2 = FFE, and we have the left Cauchy-Green tensor .

\
v

R - - v
B on P l(X) since B has the same property of being frame indifferent .

(B Q13Q ) as V has. 0f course these liffed tensors do depend on the -

choice of the infinitesimal reference placement “r(X). The right

2
Cauchy-Green tensor- C = U = FT F satisfies C=C like U and is

3 ' ~
therefore naturally an R~ tensor and not a tensor on space time like

‘B. We can then clearly write for the stfess (in TR ) . of our simple

ﬁaterial, T (x) =‘ F (K ,\X); where X = - B(1) € P l(X) ,aﬁd S0
r0 = F G el = G (e Prpeey O 05 X |
o B(S) *B(S)’ r(X) ‘7R(s) *8(s) ’
g=~ .

T ) »
=6 (x) (F (s),x) ‘

g=—> Lo

~

using the_notatidﬁg(P.S) of Wang [108], p. 39.
) . . ° . ‘;

H(I.7) Relative Deformation Gradients and Material Frames.

We can expresé the deformation of a materialfﬁkdium at a point
=1 ’ '
(

x' ¢ P 1(X) 1in terms of another point X ¢ P_l(X)' by means of the

relative deformation gradient Fr(%')> which 1s defined by
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- -1 -1 o ey = . ; 3
FT(T') = ¢x' oP*x' oP*x owx . Clearly FT(T) -‘I the identity on“jR
and under a change of frame ¥~ b, we have, "FT(T') = oP*x"oP*x °

7 g+ Bk By o4, = QR (DA Resan e

dq, - | L
’.__.——ll = . k = AK ra . rb | = »
Ix ijQi where kik A abel (1) (kx? x[ik]' Clearly every smooth

orthogonal matrix function Q(1) rePresents a change of frame. We need
! -1.d . .

pnly select A(t)  to satisfy A=Q (E%) ~which is automatically anti-

symmetric. We then select the‘contorsion‘difference to be orthogorally,

\

. . . ." AK - - u
invariant, i.e. abe Bab c

. : ' ' . b
where B = . A . = a

b = Pravyt T Mg T Pant 0T ()
uniquely determines ‘Bab if Bab is orthogonal. (We use orthogonai in
the sense of Carter and Quintana [13] that any contraction with the flow

vector is zero.)

If r(X) 1is an infihiteSimal reference placement of X, we have

FT(Tf) ='Fr(x;(r') °F;%X)(T) and under a change of frame -
= 'y = ' " o -1 T v_% T o"""]-
FT(T ) =Q(r )Fr(x)(T ) Fr(X)(T)Q.(I)'_Fr(X)(T ). Fr(X)(T).

For any given r(X)  we can choose Q(t) for all = such that
= . .l . £ ' s . . g ] ‘
Q(T)Fr(x)(r) is positive de i?ite ymmetric and equal to, éay Ur(X)(T)'



Then we have F_(1') = (t"U

r( )

=

(X)(Tj and we say that the bar frame

determined hy Q is the material frame of X relative to the'reference

r(X). This frame is unique by uniqueness of the polar decomposition

Truesdell [105],_p- 17. In this frame ﬁr(x)( T =
-1

(x) (0.

There is a

/ :
unique connection T on P 9.9] which ,is- orthogénally invariant with

respect to the Levi-Civita connection with Bab

defines the material frame with respect-to the given. reference

r(X). We write T

b c b

orthoébnal and which

©

placement

a a a .
= { } + B, “uy for its components in coordinates.
b c ¢ s

In many cases we will have a smooth field of infihitesimal reference

placements r(X), X © U an open subset of .B, S0

Py, .

’

(1.8) Lie and Convective Transports and Derivatives

Define ¢A}: M > M- by )
Y

¢AT(g? = B(ATi-B_l(x)) where B

RO o

j- -

T’ is defined on

=g(t")
‘15 a proper time parametrization‘of : ' =T+ AT
1(P(¥))’i i.e;‘ e are the para-
meter difference transports along the x = 8(1)
integral curves of the-vector field y_%(x) -
. oaf - Their derivatives ¢Ar* give
the Lie transports along the integral curvesi P_l(X) of u?. Ve

L

-

assume for the moment that the interval -1 ‘on which B 1is defined is

all of'iR, although'we can‘drop—this requirement with slight‘additional

complications on domain and range. Clearly ¢AT1

¢AT2 °¢A11’ ¢0 = identity on M, ¢-AT

Taking derivatives we have on the tangent spaces y

(where P(x) = X) and on the cotangent spaces,

The ¢AT* and ¢ are isomorphisms at each point of M.

+-A12 N ¢AT1

-1
‘¢AT’ and P o¢A

v ° ¢A'T*

-k P* o*
¢AT¢° x'  x

°¢A12 =

=P on M.

= P*x: Mx-vB
B* M*.

: +M .
X X

" Clearly P*x

36.

X
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+

sends u to zero at éach x, and also the ‘contraction of any covector

, .k , o *
in the image of Px with u at each x 1is zero. Hence ¢AT

preserves
orthogonality of space-time covectors, and 1in general any orthogonal
covarilant tensor at‘ X becoﬁbs an orthogonal tenser field on P—l(x)
under Lie transport. Equivaléntly the Lie derivative of a covariant y
orthqgonal tensorvfieid with respect to u is a covariant orthogénal
tensor field f the same rank. Also we see that ¢Ar*(gx) € ker P*x'

. *
and in fact ¢AT*(EX)'= 8 since L u = 0. Hence we have Im(Px) =

I

Coo kg LN * o .
MX and Px: BX > Mxl is an isonforphism. It is also easy to see that
(P*XIM:):'M: - BX is an isomorphism. These facts we have used before.
Let r(X), X € V be a smooth family of infinitesimal reference

placements on an opeﬁ set V < B, r(X):,BX 44R3. Then r determines

'+ a positive definite Rieémannian hetric‘ gaB’ a8 =1,2,3 on V such

Y

that r(X) preserves inner productqvbetween vectors, X ¢ V. Thus

*

and BX

. ‘ ‘ o . . .
gaB(X) determines an lisomorphism between B for each X €V,

X

o ) . * .
which can be lifted to an_isomorphism'between Mi and —Mxl for each

X € P_l(y). This can be represented uﬁiqﬁely by an orthogonal space
N "f o . time tensor called the beta tensor
By . - > M ' S
A .Px_- A ﬁ - written in'}ocai coordinates as Bab’
relative tﬁ‘he field r(X) of
gaB(X) ' 8 b(x) (infinitesimal) reference-placements.
a .
b
Not{pe. a,b = 1,2,3,4, .Babu = O.
L : ,
. ' d B = B, .. We say a tensor
. * I an ! }
Bx - X X ‘ mt _ab _?a ‘ o
o x field on P (X)) which 1s . orthogonal

is materially invarignt 1f it maﬁs through P, to a fixed tensor at X.

Clearly sz maps a materially-invaiiant vector field on (P—l(x) to a

‘materially invariant-covector field, which is also Lie invariant. The

Q

37.
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" Since it-agrees with the Lie derivative on orthogonal éovectors we

" transport of an orthogonal covector at x gives an orthogohal chvector

’ | ‘ . 38.
, E e

materially invariant orthogonal vector field need not be Lie invariant
however.
Since Lie transport preserves orthogonality of covectors, we can

extend it uniqhely to a convective transport of afbitrary covectors by

'demanding that u, be convectively invariant. To convectivelyvtrénsport

u

v, rwe write it as v, S W, + u (a unique decomposition) where

(wa) € Mxl at x. We then have by convective transport, va(x') =
: ' » ’ :

wa(x') + Aua(x'), where (wa(x')) = P:' oP;_l(wa(g)) where vy(x) =

(wa(x)) in component notation. The convective derivative of a covector,

i e. the proper time comparitive derivative at x is given, using the

Lie derivative formula (I.10.1) by - - - ¢
’ : .t
b c ce T
Dv.=v_ _u 4+v{u +uu) o : e
a ab c sa a’ . :
where Ga = ua_bub.' This reduces to the Lie derivative if vy is
orthogonal space time i.e. vaua = 0, and mdreover it satisfies~‘0ua = 0.

- Hence - Dva =0 is the condition for convective transport of covectors.

o

that D preserves orthogonal covectors, or equivalentdy nonz%iif

field on P_l(P(x)). \

We can determine what the convective derivative of a vector field

is by the condition D(w?va) = é%—(wava) and by the product rule. This
forces us to take Dw® = wo ub - wc(ua + 0.
sb s¢ ¢

E N a ' .
serves orthogonal vectors since D(w ua) = 0, 1.e. convective trans-

Clearly this pre-

% . ) .

port of an orthogonal vector ét x gives an 6rthogonal Qector field on
-1 ' a a

P (P(x)), and also w u, = 0 dimplies uaDw = 0 so the convective .

derivative of an orthogonal vector field is an orthdgonal véctor\field.
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‘This can also be proved directly from the component form above.
By the Léibnitz differentiation rule we can extend to get the

Convective derivative of an arbitrary tensor field,

‘D-rab...' _.Tab... ) - e .ebees (ua

a.
. 'Cd-.o-L Cd"’;eu -T cde e ;e+u ue)
ae'.o. b bc abou.‘ e es.

- - e + . .
T cd“'(u ;e+u ue) +T ed---(u - u uc) (1.8.1)
ab-... e es v

+ cee,

+T Ce,”(u g tu ud)-+ .

. -

For additional discussion on the convective derivative see Carter and

a

Quintana [13]}.

The convective transport of .an orthogonal vector along Pfl(x)‘ is

14

-

merely the material transport, i.e. the isomorphism between 'Mi and M;,

. 1 -1 1 1 1 - ' a _
is (P*x'lMx') o (P*lex).:,Mx - Mx.. Also we see that D? =0 so as

in the covariant case convective franSpor; preserves u and is the natural

/

material isomorphism-between the orthogoﬁal tangent spaces. Since
materially constant tensor fields are convective transport invariant we
see tﬂat vBéb = 0 for the beta tensor relative to any reference place-

meﬂé/field (or even a single infinitesimal reference placement of X 1if
. .

‘ Bab is defined only on PTl(X)). Since Bab is orthogonal to the flow

ub, it has an "inverse" o3P which is unique symmetric and orthogonal

satisfying aabBbC = Y: = 6: + uauc., Then ’aab is aléo materially

constaht; 1.e. Db - 0. Clearly Dyi = 0 but DYab 2 0 'in general.

b ' ab
+ = :
u u u 0 and ¥y ch

”(NOte:' Yab = gab a'b’ Yap'

a ﬂ .
= YC). ¥ince Bab is

. : ab
orthogonal and a covariant tensor, LuBab = 0, a represents the

: S kL
inverse transformation between Mx - and M& of the isomorphism deter-

mined by Bab(x). It is worth noting here that the same 8ag is induced

at X by .r(X) and r'(X) if and only if r'(X) o r'l(jc) ‘R R s

norm preéerving (and so represented by an orthogonal matrix).



~are the isomorphism transformation images from B to Mi.

(1.9) The Induced Metrié Function.

At X € B we can describe a Riemannian metri¢ tensor g _(t) at

aff
X which is a function of the proper time T at that point. The trans-

forﬁation is designed so as to make this diagram of isomorphisms commute.

P*
* x *
Ce—
. BX > Mx
. lgae(r) ! lYab(X)
1 _

o P*xIM \ Ml x = B(71)

X \ be
Then we claim that gaB(T)‘ is the metric induced at X by the placement

L ! ~ < : '

gT = wx o P*x where x = B(T), regardless of the frame wx. * This is

a.B _ a b a _ a b _ ,b,B
true since gaB(T)W \A Y ¥ (x)v (x) where w = P:W , v o= PBV

X

o

Proposition: The alpha temsor o°° s simply the lifted left Cauchy-

Green tensor aab

. : _ .
Proof: We write the defor?ation gradient Fr(x)(r)‘_ wx P*x o r “(X),
and thé left Cauchy-Green tensor = V2 = FFT. Let v, w be vectors

in IRB. The transpoée or adjoint FT of ‘F is defined by the inner

product condition ;X,{Fgg = <FTx, w>. ’ ' . ‘

If we put the metri; 848 at -X 1in B induced by r(X), tbgé<‘
the adjoint map can be ‘defined for each of the maps above, and since
both . r(X)‘ and wx afe norm preserving they have adjoint and inverse -

i

equal, so that

T S S e S -1+ -1
Fra (M = e TR (W) = r(X) (R ) b
Therefore B = FFT = wx o P;i‘o (P:i)+ ° w;l which depends on r(X)

only -through 1its induced metric at X so is unchanged if r(X) is

40.
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replaced by Q °‘r$X) where Q 1s orthogonal. This is frame indifferent
gy

~

From the diagram shown here

and can be lifted tg‘the tensor B at x.
-1.+
Ml (P* ) B
X f X
) Yab gaB
2 P* 9
1* N X *
/ Mx ) BX
.‘r
0Lab g
a8
’ 1
Mx‘ . > BX
. Pay .
-1 -1.+ -1 - -1.+
wg see that P*x (P*x) f P*x c.g " ° 8, ° (P*x)
= q : VM'L*# Ml
* XX

where o 1is of the form aab as an operator with one index lowered.

(We may write o

. |
b % since o 1is symmetric.)

/

This shows us that ——

the alpha tensor is in. reality the left Cauchy-creen tensor for the

reference pﬁacement r(X). We have seen it is independent (through a

f:::j rotation) of the orientation (nof in the sense of Dieudonné [22], p. 150, !

but physically) of its reference placement, and is frame indifferent

méking it a tensor field on P_l(x);

We can also obtain useful infor-

mation about the right Cauchy-Green tensor which is simply a matrix

\(ﬁot a tensor on P_l(X)) that is indépendent of the choice of frame

(i.e. the wx

frame isomorphisms) but does on the other hand depend on .

the orlentation (as abovg) of the réferenhe placement, (i.e. 1is affected

by r(X) - Qr(X), Q orthogonal). We have

c

T

=F

F

=r(X)(P;i)+P;ir—l(x).

Through the reference placement r(X) (which is infinitesimal) this

* (1)

corresponds to the transformation g 8

induced metric is used to raise and lower indices and g

: B

X

+ B

X

\ where the reference

(t) 1is the :
aB . !



proper time dependent metric induced by the infinitesimal motion Koy

The diagram here, as before, commutes.

(P,)
1 *x ~ @
Mx 3X
7 S
Yab BaB .
P*
1% X *
Mx ) BX
Ve
|
|
\ Yab gaB(T)
: e p
\ 1 *x
Mx . ” 'BX

\ The\right Cauchy-Green tensor is also the square of the‘symmetric

deformation gradient )(T) = Ur(X)(T) in a material frame, i.e.’

Fr(X
2 '
: Cr(X)(T)t=.(Ur(X)(T)) )

/{mafgrial
" frame
isomorphism

. 1§} (1) =
]R3 T (X) - ]R3
© Symmetric deformation gradient

3 .\ ! v

(1.10) The' Colon Contorsion - Convective Derivative in Lie Derivative Form.

We cap define a particular contorsion_ tensor Ka :as follows. Put

u ub
a;b

bc
Kabc = (uaub--ub and ; 1is Chr}stoffel symbol

covariant differentidﬁion. Clearly this contorsion (and the corresponding

- .
u Ju where u =
a’ ¢ a

\,
connection) is metric éxd orthogonally invariant. Furthermore if we let

":" denote the associated covariant differentiation, then ua_b==ua b'+
c, a a ccr a a a c, a '
= + - = - .
u Pc’b_ u ptu ({c b} KC b)-.u ‘b u KC b ?ence lowering indices,‘

pE



and using 8.ab:

.. Ce
u- . =u - uK = u + u u gsince uvu_ =10
. . . a ¢

= + < <
eab ©oh (following Carter and Quintana [13])7
[T » o by
. = d = ' . T . .
where eab u(a:b) an W u[a:b] It is eabx to see that
b -b : ' .
ua:bg =0 = UL Y §o that Qeab and w are orthogonal. Also’the

"

flow lines are autoparallels with respect- to this connection.since

ua.bub - 0. We shall see later that this connection produces a §£;¥inlly

4.

non-rotating frame like ‘the Christoffel symbols (or Lévi-Civita conmection).

; e - B . e . L
The Lie derivative of aﬁsor field T pe.. €aN be written in =
, A

“
LTa.o- =Tao‘.-. " p ua _...+Ta-o. uc PR
ou | b beee,c b ,C c ,b (1.10.1)-
"‘@&5{ \ao.. c Ceee a geee c
. = - = sse 4 4 ee e
T b.-'o;cu T b-.ou ;C T C.'.U ;b
“where , denotes partial differentiation and * ; Christoffél symbol
covariant differentiation. If we replace by ibove then it i$
easy to see that we obtain the convective derivative, i.e.
a.'.. ac e c C.c: a ‘ N R c * ’
= - —-eeo e+ + o o . .
DT beoe T beee:cY T peeal e ) T cee Uy (1.10.2)

Furthermore if Ta...

beee is an orthogonal tensor field it is clear

that eachnterp in the above expression is orthogonal since u b is’
orthogonal. We say that by means of the connection ‘associated with the ﬂ
covariant derivati&é . we have reduced the convective derivative to
Lie derivative form. ihe geﬁeral requirement on a contorsion for. this
té be true is hc&b = ua(Kbca';Kacb)' Also one can show that the only~
metric preserving covariant. differentiation with this property (of

pf&ducing the convective derivative in Lie derivative form) which is

L]
.

°

K]
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. (I1.11) The Volume/Element in Four Dimensions.

h 4

-

orgzogonally invariant with respect to:thé“Christoffel”eymbols'ié the

cdfon covariant derivative. For.if Kb ='-B. u 1is the céfntorsion for
: A N ca bc a -
b - . :

. . .o _ L o

such a connection, and 1if ue put ,Bbc. Bbc (ubucx ubuc) en
a,. - A ' ‘ S

0= + ¥ impli -o= f i r
0 ABbC - u ABacub which 1mo ee ABbc 0. if ABbC is isymmetric

El

. -

The‘Lorentz metric g ab -on M defines for us a“volume'element
' . e
(a completely skew smooth covarlant tensor "field on M of .rank 4). We

«shall see later that M which is that portlon of space tlme through

> . o

wh1 h thé materlal medlum moves, is "an orlentable manlfold This foliiows
¢ v
Y

from he fact that B_ is orientable and the Lorentz group structurYe on

M - is orthoc onoug‘(see C‘hapter II) and the notion of future pointing
isxwell defin i, with u a future pointing vector fie}d on all of M.
Thle'pe}m; s to define the. metrlc volume element on all of M , (

ndependent of ambigulty in the sign.' In local coordlnates'we write

. * N a - '
£ = Aj'v/- dxl/\dxz/\dx:;/\dx4 = g, dx ®de ®dxk®dxz =.€ dx /\dx J
- lekQ/ le H (
o Adx”." . =g e, =
.odx . l: ‘,”Herey 3 = g_fijkl’ whete ‘61234 1 and ¢ 1is. completely
skew,_?df ébutee” g % fdet(gis) in the specified.eoordinate system. \
_ Dual to ¢ we have £ == é%s'al A ?2 A'33’A 34 = elqkl —§§j®-i%f® |
T LTy o /g.ax dxT ¥xT 93X ' 8x~  9x s L
-j%za-—ai = eiszlja.‘A'a.:A_aka az‘.- Let Ele2 = € ikn Then B
¥x ax® BX_J dx 93X ‘ ' J o ;
- EERCE . 3 ) T . [ -
’eijkl = - Eiiff-"eabgde ‘= -4!, and €,, , = abcd ‘
: ST /s wy B abed e 17k 'gia Jbgkchd q. :
. A |
% ;
L1kew1se we have a volume element on the body manlfold, namely naB§ J

whe!e Greek indices run from l to 3 and refer to the body, ,and Latin ‘
3

e indlces from 1 fo 4 refer 'space time. THén -;_ = 3’n(X)§§. Adle\dx L
T ‘ : e o 0 , ‘
.o § Y- * EE ~ * L —

= X Swi ®@dX'. ‘ =
= nGBY( )dX_ , - ) nGBY‘ als complete,ly skew s etrlc and’ n123 n

-The mass of a subset .A of B in a local placement ¢ 1is

P

0



v wi’y};\" 5

the placement ¢, i.e. p = E(x).

: %k Py St
A(g)n (x)y (x)y b(x)y (x) = abc(x) for X € M. The mé%ggfensity “‘if“u

45,

- " (."I)

- P
f J n(X)d%ldXZdX3. ¢ 1s- the coordinate map from .
6 (A) 6 (A) o , -
1 .2 .3 .

VdcuB into 'R3, $(X) = (X ,X°,X°) and A cV is a measnfable set.

m(AS = p d& =

Hence the tensor denéity n determines (and is) the mass dehsity p - in

o

< -~

We have the standard duality for the volume element, namely v
- ‘ . o
ﬂ=_o_“alAazA33=nmwm) %o»%o 3 - {
n(X) 3X~ #x° ax Coaxt ax® axY |

(Wang “[108], p. 44). The no‘BY are compietely skew and moreover
B . . \\(‘ . \,

e

1 * ' ) * ’ o
n}23 = % = J' . 80 naBynaBY = 3!. Then naBY, n&B cé%\bg liftod
" 23 ! : "

uniquely to‘materially constant- orthogonal space timé completély>SkEW'
. s

A ~% .
tensor fields sua M 'which we denote by _nabc and Mabe respectively.
R ak : ‘ * -
Then 'Dnabc =0 and DOn ., = 0. We use the maps P  and (P* I{(l) 1
. ) abe . \ X XX

in order to construct these tensors for each .

~

ab or orthogomnal

tensors) at each x, and on B " let us use g

-1

On M let us use the metric Y to lower indices

aB(T). corresponding to

Xx = B8(1) ¢ P " (X). Recall that this is the metric 1nduced by the place—

" ment K at the point X at proper time 1. These two mettics trans-

lbform ;somorphically to one another through P as we have seen.

We can find a real Valued function_ A(X T) such that v .
KO () XiDE L (08 (K1) = 0 ). .
o P P CE T aBy | ~

of courée}wevh;ve the natural determinism x =-x(X,T) of the point

X € M. The proper time pérametrization is selected‘érbitrarilnyor

b d

each X and there is no need of a special relationship even such as o

”'continuity of x (X, r) for fixed tv as X varies. We'algo wrige

A(x) = A(X, T) where x = x(X T). Then thtough the P, lifting we have<.i%q\,

" :v' | .‘ : ) ' - | ;:- l\\\' | ag
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p is given by p(X,1) = p(x) = n J. where ' J =‘det(¢*x<*K;1) where

*
123
¢ 1is the body coordinate map. Clearly p(x) is independent'of the

vchoice of coordinates on B ét X. For the sake of the one point X

(now fixed) and proper time < (also fixed) we choose 'V,C B with

X € V and ¢: V 4*R3 a diffeomorphism onto an open subset, with
2.3 -

¢(X) = (X X X ) such that at this particular (X,1), ¢*X ="KT.
Then o = * d x,7), AP = 0¥ . With th |
en p = n123 and at ‘( ,T), An goeg ; asy' t t\eee,
coordinates at. that point gpé is the identlty 3 x 3 matrix, so
CaBy K 0,123 _ % _ ”123‘; 2 =2 2
Y = ngg, oF AT = mype Hemge A3t Mz T TP
’ 2 i W ’ ke i 2 . A D
i.e. A = . = S
i.e p Therefore we seelthat‘.nabC P M ope wherei/nzbb\\}s
: ) ~abc ) . L \
obtained from n by lowering of indices using the Vb tensor
' ' ~abc . R _
(equivalently‘using 8.b since no %e orthogonal and gab-Yab 'uaub).
v ) . Tk kA k% . A : x
. Also we must have ¢ = 0 n.Au and € = 0 A U4 where o , 0. are

S ‘a : * : _
scalar fieﬂds, u  has components ~u” " and u, has components u_. j) s

J
Using gab; to lower indices on this 1atter equation we have

*9;*\
£ = 2 A

(=1

* * S -
u \se that o = o/p . In components’ . > -

ijki o (ritkgt sz 1 kll J_FAlij k) Q\\

S
Now at X we choose properly comoving coordi&ates (Carter and QuintanE\\‘_/,
2 3 A o (1234 g ~123
SO

[13]) with ul =u =u =0 and ca =1 =z "N . If
- tdp M .r ’ ; . . .
x = x(X,7) 1is fixed the coordinates,can also beltaken so that _
2 .3, -1 2 34 "

¢*X = KT‘ﬁwhere u¢(X) (X X X ) comove with (X7,x",x ,X ) idze. ‘

X =x, X =x, X = x3w and -xé = ¢, The condition ¢*X =K holds
Hgnce'afst%igfpoint,‘13123'= 3” =-£ , but 51234u= _-lf
f -~ p ) . /é

N123

HE ; "’ . " - . <
whgré@hg = -det(g.i Y in this coordinate system. - The metric gij is

: 1
. . 1234 :
clearly diag(1,1,1,-1) at x so g = 1 and € = -1, Hence
o '_ Cx e o
-1 = z;' so” g = ~4p and 0 = ~4/p. VThereforeS-g = 4puAp and
x4 * .k . R . |
3 =LB-E AT . _Since u AT is convec%%ff'invariant we have
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&

{4

=
——
S5
\c——’

3

™

M

|
NI"\

-
P . . -

. i
ijkluﬂ = %_aijkulul = pﬁiJk. Lowering indices we get
K Coe Y Kk
u = %-n We write (as .a'matter of notation) eiJk = eij zul

'

-

. . i ,
Also e see that n 13k _ 3!'p = 6p.

1jk°

=0

Eab,édle

o~

Proof: Recall ne abed /E €

_ ‘ f. £, f £ g
E:.abcd;e'-_eabcd e fbcd{ } Eafcd{b e}‘-eabfd{c e} _Eabcf{dve}

. . ’ O
~ : P : ) . . .

80 1234 e:_ ( -{ } = (V@) e""/-(ln /-),e = 0 since w

b

-

{ a } (Zn /h)_e is easily: verified (with sum on a) ‘using

a . 1 .
{b c} =35 (gdb o gdc b gbc d) Then with a contorglon,

€ ‘= » + ‘ K £ ; | : f“+5 K £ +e K £ .l
abed|e Eabcd;e vefbcd a e‘,eafchb e eabfd ce “abcfd e’

L

: ' = a _a _ _ab .
Thug» €1234]e © 61234Ka o 0 since Ka o = g"Kabe 0 becapse

K

= K - for a metric . (or Lofentz) cOntorsidn. Therefore
~abe [able . ’

_ _ . abcd
eabédle =0 as required. By raising indices we can see that €

also, and the proof is complete.'

Recall th?t‘ Ta;b = ua;b + “al% and-hehb - Y(a:b) énd “ap u[é:b]'
o - _abrlirie ‘ :
If we put eaby

DYab = v(gabﬁfuaub)-g Dga

= 8 bg =0 we can see that 6 =u . =u ca Also

e e e . o ,fﬁ
u+ u + u =u +u_ 7=
b 8 eb :a gae : - : :

ab

26 Thus Dy, =26 and similarly “py? ‘=;—2'e , Dv3 =o.

ab’ ab .
- . . e - e e &
. P +
Now ?Fabcd ‘ €abed:e” -,*"'Eebcdu :a + Eaecdu :b + Eabedu e

e

€. U = ft o where f 1is a scalar function of position, since
. ~abce  :d . :

abced

-



b

the tensor is: completely -skew and of

so f =0 and Deabcd = eeabcd'
*

*

~

De = -g é%—(£n p) we find that ©

of the prdper time expansion rate of

By substituting back into the result

bed abed
Pe?PCS = —8e
™ .

\

0. The.equation 8

Likewise Deabc =
- I (&0
(pu® )

Dy

Bp +‘5 =0, so '(oua),a

' wﬁich e;§§esses local conservation o

flux of mass through the surface of

a density change.*zzv.

e

-

—

(1.12) Relative«Defbrmatidn and ‘Rat

4

maﬁimal rank Hence

Comparing with our previous result

fe1934 7 F1234"

a

48.

:a

= - < (tn p). Thus 6" is a measure

dT

the material along world lines.

De = g ﬁL\(Qn p) we obtain
—Beabc, DE " =9e ., , since

bc abc

p) can be written as-. 0p + 32

. This is the continuity equation
f ‘mass in that there is no. local

a fixed sphere not accounted for by

e

Bt ]

e of Change.

Recall that the relative deformation F (") satisfies FT(r'),o

(1) = F

(Tv) and tgansforms
h-

F o £ (X)

under a change of frame. Fbllowing

like 'F (r ) (r')F;(rF)QT(r)

Truesdell [105], p.'l9'we introduce

the analogs to, what he calls stretching and spin, using the same symbols

for convenience. We let . G = F (T)

ﬁframe G=F ¥ (T) = —»—d——i‘- (T‘)
? - ) I'=T.

function of - T ) in the usual way,

v

= . ' e
d ' F (1 )l it and inkthe gﬁr

Also, we can decompose FT ‘(as a
amely- F_o=RU_ =VR, c = v,
I A T T T

TBT = V2 where CT‘ and B _ are _the relative right and left Cauchy-

Green tensors respectively, Rr is

the relative rotation,‘and U and

VT the relative right and left stretches We then'define D = UT(T) =

QT(T) ‘and W= RT(T), and it follo
" [ ;-l . i .

G = Fr(x)(t)Fr(x)(T) =D+ W. Just

with respect to ' ~-and put =1

Te

p. 211, (P.3.1),

WS easily that D =D, W +W=0,

£ . 1) = ' .
differentiate FT(T ) - RT(T )UT(T )

to get these results. ‘Also [105,



' .
\ W=RR + % REUTT - UL O)RT ahd '
D =% rR@GU T+ U OHRT
. _ . , e d o ) S ' B
_ ‘where R = Rr(X)(T) and R = e Rr(X)(T)’ U‘. Ur(X)(T)’ RU Fr(X)(T)

c.»;Also we define the Rivlin-Ericksen tensors 'An. by

4"

dr'"

- _ Aln] _
An = CT (1) =

.

Let us now consider a chaﬁge'of frame and see how these defined
- 1 V _. - .
quantities transform. Recall earlier we defined A= Q'lQ. Now we

s T ® - - :
~introduce A = QQ = QQ 1. QAQT. Both A and A are antisymmetric
"3 x 3 matrix functions of T along ,P_l(X).: If we take F = Fi(*)(r)
» we see that under a’éhangg of frame F = QF,, R = QR, U = U,"V.= QVQT )

so that different

igeinoon

iation with respect to ‘'t gives F =‘6F +»Qf. But

F-GF and F=GF so GF = QGF + QF = QGQ'F + QQ'F. Multiplying

R ‘ — v T ,
4t0 the_ right by F ]ﬂ gives G = QGQ + A, or separating s

. . . — T —_—
and antisymmetric parts gives D = QDQ and W = QWQT + A, 1

particular D 1is frame indifferent and can be %ifted to a symmetric

frame #ndifferent, i.e A =>QAnQT and therefore have frame and >
A - a ' o '
reference independent 1ifts A to M. Notice that! A, =——= C (t")|_,_
S . ~n \ 1 _ T Jt'=1
: 2., . : A Cofh |
' = ' . = = . i
and CT(T ) UT(Tu) so ,Al 2D . and Al 2D.

-
.-

(1.13) Evaluation of the Rivlin-Ericksen Tensors.

' ' "y o=y, §pl
u/Recalltthat FT(T ) wx' ‘P*x_

-1 .
v ° ?**,f wx and CT(T') =

FI(T')FT(T').' In order to calcgiaté F:(T') we have to get its adjbint
T .

which necessitates putting a metric at X. We choose gaB(T') 80 that

49,



wx"-wx 5 and -P*x;. are norm and inner prdduct‘preserving meaning

their Adjoints equal their inverses.

) = T ) o ' ; o + o -0 -1 o ° -1 o
Now CT(T.) : FT(T ) FT(T 2 (wx P*x Q*XY wx,) A(QXl ?*x'
-1

’ -1 + - ) a
P*x.owx ) = wx oP*XOP*xowx . The T'Vvdependence %? completely con-

tained here in the adjoint (+) operation.

B ~ + \
[ o P
L *x
} , Mx “— _ BX
. Yab ) s ! ’ g(!B(T ) ‘ i A
: ' P* _
*1 ) X * &
. Mx A BX
o . v ‘ o . p
‘Bab , ,gaB(T )
P .
X
- , + 1 L
From the commutative diagram Here we sde that P, °P, M--+M
_ . X X X X

50.

is determined by FBab, the beta tensor for thé-reference placement K _,o.



= 4 L . . ' —1 r )
Bab Yab at x and ghb is obtained on P “(X) bx’convective
transpott of yab(x') along all of P_l(X).
‘ Noticing that since E%T has no effect on functions of x only, we
can write, ‘ _
_d o= o o4 rpt . ou Y 2y o8 (a® 9y oyt
gor Gt = b oG Py ep ) o =y [dr. (8 b)] v,
o [+AC /0 d o1 '
Ty (Y (x) dt!' (Bcb)) ,wx :
%,
Also, .
: n : n ¢ /
d o o [Lac d o1
o c () =y (¥ o (8,)) vy -
‘Evaluating at T' = T -we have ‘ x
g . . ————t T
o L . (.ac P § . .
-/ Ay = ¥ © (FPEGDNY ) v
where D" is the n-fold convective derivative. Hence A(n)ad =
Yac(Dnch)de and A<1)ad ='293d o ﬁad = ead. This gives us the

physicél interpretation of actually what the tensor ead represents in
relativistig continuum gechanicsx It is the instantaneous relative

symmetric dgformatidﬁemhfé along flow lines. A motion with ‘0 =0
v v ~
L

we call isochoric and with 6, =0 wecall pigid. (Compare this with/ -

b
séderholm [95].) ]

(I.14) The Materially,Nonrotating’Frame.

Recall that _W.= QWQT,+‘A = Q(Wi—A)QT. If we choose our frame
transformation Q such that W = -A then we obtain W.= 0 so the new

fransformed frame is materially nonrotating. Clearly for any anti-
qféymmetric_ma&rix function, W of T along P—l ). we can choose an

. ' ’ ,
orthogonal matrix function Q(t) so as to make A(1) = QTé equal to -

-W(1). The function Q(1) 1s unique up to a fixed = in&ependent

a

A\
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'orthogonal 1eft multioiication i;e. QOQtr) does just as well, Q0
orthogonal, det Qo = fl. This tells us that every materially,nonrotating
frame (i.e. orthonormal triad on Ml' for each x ¢ P (X), smoothly
determined, nonrotating materially ae above) is related to any other

materially nonrotating frame on P-l(X) by a fixed T independent
-1

orthogonal matrix Q0 transforming frames at each point x ¢ P

x).

Also-each QO' transforms one materially nonrotating frame to another.

4
(1.15)  Materially Nonrotating Connections and Covariant Derivatives.

We seek a covariant derivative | and a corresponding contorsion
kabc which is netric, that yill represent the materially non-rotating

frame under a Fermi Transport. First let us suppose this contorsion
reduces the convective derivative to Lie derivative form. If v® is'a

Fermi transport invariant vector field on P (X) with respect to the

. . a Su .
covariant differentiation | then i;t =.u [d:]vb. If v? 1is defined
on a neighborhood of P-l(x), va’bub = uaublcucv .  Hence, e = valbub/-

vb. But the condition uu =u (Kb )} for Lie derivative
¢ b ca

a
Ib acb

form automatically implies

, ot ;

bl‘ u€ =0 for metridtéontorsiohs ‘Hence,

ualbvb for a Fermi transported field v°. Now let r, s, t be
~

- . R 1
vector fields on P l(X) determining an orthonormal frame in Mx for

each X € P-l(X) that is Fermi transported along P—l(X) as above, i.e. ’

D;? = —ualbrb, Ds? = —ualbsb, De? = _ualbtb. ‘Suppose wx is the frame

risomorphism determining these fields, i.e. wx(g(X)) = eay wx(g(x)) = 3(25,

x(t(x)) = £(3) eIR3, V x e P 1(X). Then by looking at FTKT') =

-1 - , . . v
wx, ° P*x,-o P*x ° wxl we see that for an infinitesimal transformation

at _x, . ) ]



= . , ' . -

i~ c b c c.b]
u lbr r u |br s u Ibr t
- c. b c c
.ET(T-PdT) = [ +drt uc|bs T u Ibs s u Ibs t s
c b cb cb
uclbt r uclbt s u Ibt t

where I is the 3 x 3 identity matrix. Hence the condition for W = 0

is = Ub‘c

' : c
ucu = u (Kbca ac b) }Lie derivative form] and ua;b._ub;a u (Kbca_

uclb The two conditions on the contorsion can thus be written

) .

Kacb

[Symmetry uc|b-1ub|c]' " The simplest (but not the only) solution is

found by ‘taking Kbca-Kacb:=(ub;a’-ua;b)uc’ and using Kbca-Fcha 20 we
find that
- _' + _ ‘/ _ ¢ .
2gbca (ub,c Auc,b)ua _(ua,c uc,a)ub-*-(ub,a ua,b)'uc ?

i

‘"

M " nay be replaced by covariant derivative

where the partial derivative

8 for this contorsion, and

"w,n -
3 We can then easily check tt;; ualb ab

LA LA

we denote this covariant derivative by so

Yarp = fap

If we look for an orthogonally invariant materiélly nonrotating~

i

contorsion, we have to drop the condition that the convective derivative
o - - » .
be -in Lie derivative form, otherwise no solutions are found Let

a’ a ' :
T = - = - + = .

b o {b C} K, . where K. = Bbauc, B, . Bab 0 -If rois a
u-autoparallel connectioh (u ub = 0) then ﬁ = -B uCt and u =
~ ’ alb a ac alb
u +uu . Fermi invariance of a field W implies Sv_ 0, and so
a3b ab dt- -

-

b b - . b ,
gabDw -w (u(a;b)-+u(aub)) . -w 6ab for the materially nonrotating
condition means K_, = (u[g;b]4-u[aub])uc'

It 1is easy to see that for a u-autoparallel connection, the Fermi

transports along the flows equal the connection parallel transports.
Also we can see that an orthogonally invariant contorsion- K. =-B ,u
abc abc

Agives rise to the same Fermi transport fﬂames as’ the one obtained by

, A d
orthogonalizing Babf (i.e. replacing it. by YaYb od where y 6 +uu )
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The frames determined by Christoffel symbol Fermi transport along P—l(x)

(unique up to constant orthogonal matrix transformation) are called

spatially ﬁonrotating. This is justified on physical grouqu by Enosh and
Kovetz [27] and Lianis [50] pp. 62-64. The colon contorsion with covariant
derivative """ {s also spatially nonrotating with the same Fermi frames
(= parallelvtraﬁsport frames in this case) as the Ch?istoffel symbol or

semicolon derivative with zero contorsion. The condition on a contorsion

for it to be mgterially nonrotating is ' YZYZKabCuc =»—mde, 'S0 'KabcA=

'wabuc is materially nonrotating. The unique orthogonally invariant

materially nonrotating g—autopafallel contorsion which we determined as
: 1

K -+u[aﬁb])uc has a covariant derivative associated with it

abce =‘gu[a‘;b]
which we denote by "I (to be distinguished from 1). Then both the |

! s ¢ - + ] )
and ! contorsions satisfy Kabcu u[b;a] cu[bua]’ and both, of course,

are materially nonrotating.‘ Also © b identifies the time rate %% of

the orthogonal transformation Q between spatially nonrotating and

4

materially non:otating frames, as shown below. -

Letvus'compare the contorsion Kabc:zwabuc with the zero contorsion.

_ . _ o a b - dq :
Then AKabc wabug so Akj ueabr(k)r(j) and A Q at yhere .

Ly 2@ 2@3)
‘is the materially nonrotating frame with :g(k)ESQkJE(j)' Also we can -

uE(l)’ L2y 5(3)' is the spatially non;otéting frame and

" easily see that Akj"='—waﬁ;?k5;?j)' where A = %%—QT = QA QT.
We can, pf course, let the bar frame be the materially nonrotating

frame and the unbar frame be arbitrary. Then

ot

—‘3=0’=QWQT'+'A=‘Q(w+A)QT =>'W=—A=-—QT3—?_~,

This relates the 3-matrix W to the transformation Q(t) and the

rotation between frames.
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(I.16) Vorticity and the Delta Tensors. °

Recall that ¢

abe = Cabed! is orthogonal space time and SET:\¥>/
pletely skew. The unique vector field v® which is orthogonal e
" uC = - . c : .
(v u, 0) and satisfie4 ©p T €apeY is called the vorticity.
- .ab [a.b] abc [a.b.c] abcd
= ! = 1
We can define ch 214 cdd , Gdef 316 dseéf gnd 6efgh~= J
[a.b,.c.d] ‘ :
!
418 eéfagéh . Clearly,
a a a
Gd 6e sf
- .abe 1.b b b
“der = % % %] > ‘
: c c c '
<Sd 6e sf
and Gabc = 2Gab ' Gab =382, ¥ =4 and.the determfhant rqui; holds
dec de > “db d’ “a »

. ab abced Toated _ _ abcd =
similarly for dcd’ and Gefgh' Of course we have Eefgh = -¢ €efgh
—dade‘ and also, Gade.= abd —eadee . -Hence, - o i 4

efgh efch efh efch o Y ek
= ' - . A =
abc _ abdh _ ab _ ., [abl _ _ab _b.a g
€ Eefc; Sefhu g™ Yer © 2y eVe T Yol T Yes . T
where R Since w = g v -can write v® = L eabcw
e e Ye* ab abc wer-ca 2 be

as the direét‘solution for the vorticity. This can be seen Immediately -

abce - ab
efc Yef °

P2}

from the relation ¢

(I.17) Covariant Differentiation and Curvature.

o ~ . ,a _,a. _ _.a d_,a d

. 'We can see tbat: A Ibe: A lcb R dbcA A IdTb o
‘ a  _ a _ra f a o f a
vhere R gpe = Ta b Tab,etTda e b Td b c

d d T d . —ZK[bdc] is called the Torsion tensor.

(Ricci- identity)

' is called the Riemann

=T -
b ¢ b c cb
For a metric connection the torsion determines the contorsion as

1 )
cdb §<dec

.tengor and T

+T ). We say a connection is symmetric 1f the

dbe ~ Tbcd

torsion is zero, so the only symmetric mgtric connection is the Christoffel

symbol connection. We define the contorsion curvature tensor by
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a u a a f a f a
= - + - K P S .
C dbe - Kd c3b Kd b;c . %d be c Kd c £ b’ . (I.17.1)

«

a a 1 a £
= - - + = . )
Ky (hsel " K molel T2 Kaflen . . B
so that r? = Ré - c? where R® is ‘the Chfistoffel symbol
dbc dbe dbe dbc . 7 : °
Riémann tensor, i.e. -
: ?
& . .
a ‘1 a a f a f a
= - + - - .
R dbc {d c};b {d b},c {d c?{f b} {d b}{f c}

For a metric contorsion it is clear that Radbc = and

Rlad][be)”

Cadbc = Ctadﬂ[bc]‘ 1f the covarfant derivative | also sat}sfles
a d

=0 then R u" =0 =R u >

Malp adbc adbc .

(1.18) Flow—Constant Contor51ons

A metric covariant derivative 1s onw constant 1if ualb = 0  (and
. (7/ 1 .
hence ualb = 0). FOF example,'the dot contor51op Facb::ucué;b:fuauc;b
¥

gives rise to a flow constant derivative (ua-b = 0) called the dot

covariant derivative. It is spatially nonrdtating“aﬁd satisfie

abc  _ [P AR L
€ be-d =0, ¢ .d 0 etc.. Tk?re are also materia%%yﬁgonq?t%;%pg

o, .
R Y-

flow constant contorsionsg the simplest one belng the *7'§pnﬁgr§i nﬂii

* , . ‘7 N Lo

. = ». - + - - 2 . sl

Kacb ua;buc uc;bua (u[a;c]h u[auc])ub c a] b : Sacﬁ L
above we have U xp =0, 8 ke =0, € be*d = Q, b*q 0 gfg ! TRe,ff.

pEs

nondniqueness indicates the need to introduce material uniiﬂrmity on :he'
Body manifold Wang [108] p. 40 and extend the notion b%ﬂ&:: 't é
connection on a body manifold [L08, p.. 62] to a materiai

the space time.

A

The dot "' does.not indicate a time derivative i

©



X o
Kz

‘It will have the property that T

u =0 =u , but

(1.19) The Material Derivative.

& 2
Let us suppose that a material bniformity is defined on the body

manifold B, and a material connection is given on B. See Wang [108]
p. 41, 62 and preliminaries (P.8) of this thesis for further details,
Then in this ‘section we show that the connectiaon on the body manifold

can be lifted naturally to a non-metric conngection on M .which we call
¢

the material conpection. : @

For each tensor field Tab...cd___ on M we introduce the notion \

of the material derivative of T denoted by~ Tab...cd...Ae a tensor

[ta%

field of one higher cpvariaﬁt,rank like the usual covariant derivative.

' s

abe* ue - vrabooc and

Cd..:xe cdeee

]
# 0 so the materidP contorsion

Ae alfe gabAc - Yab/\c

-~

il - z A .
Ka is not antifymmefric, i.e. Kabc K[ab]c

™ - Tbﬁba and T =T + T.K b 5o that T? pre = - i
e ahe ase b ae i

. ' e A e )

: = + - = = K : + . A

Kbaeu u uu and .TaAeu DTa Kabeu Upia v Y, Also

: ] ) b
u = 0 > Kb u = u , U .= 0= K u ='-u,
Ae ae ; s ., abe dje
o

e
' . R A b s . . E b e . .
sistent, giving Kébeu u = -u .anQ ibaeu-u =u .

These are con-—

>

¥

~ To define the matgrial derivative (which represents the deviation of

. .
N .

a tensor fleld from material transport) let us first define material

/

transpqrt. If ¢ 1s an arbitrary
<

curve in M and x ¢ ¢ and

Al

a a a
w = Au +v ig. a vector at " x (in

v

component'form) we seek to transport

a 1
it to x' € ¢, where Vv |x € Mx. We

write the transported vector as
aj a a © ..a 1
w I ¢ = Au | vtV | . where v | €M,
X X X X X
-1

is the ‘image under P*x' of the trans-

5 - ;port from X to X' along the image



. preserved by maéerial transport and 1n the generalizat1on to tensors we shal

-dwill remain orthogonal;

curve Cc 'in the Body-manifo d B of- ¢ under iP. ‘The initial vector\at X

8.

is \* (w? | and it isvtransported'along »C: in B'-using;the‘given mat rial"

e

connection on the ‘body- manifold (F 8) In particular thetfldw vector sz

see. that the%material transport of an orthogonal tensor fleld along any curvq~

. \ . D . . . B o : :
. Let~-wa be a vector f}eld\defined‘on_a curve -C which is. parametrlzed
. .. . _ ‘) , ~a-

Lo 8w
by a parameter g, We construct the parametrlc mater1a1 derlvative a0 as:

-

jfollows., Let m{w (x )) be the vector at xle ¢ (in M ) obtalned byh

"

derivative. Therefore n =0  and - n

- L.e S :
. x whose tangent is. w-'. at x. Then

7

materlally transporting w (x ) € M . alomg C ‘tof x=,where x' e c. Let
Ao be the parameter increment) )golng-from X to- ';'\Then
/ﬁ\ .6 . o a., - “_ Lo ‘ I
w = 1lim (e’ G -w (x) . If W is deflned on an qpen neighborhood
~do ‘AG0 A Ag - : o

U c M and a is. another vectdr field defined on, 8) and 1f xkeU, ¢ is -

- a :
' the integral curve of s passing through X w1th natural parameter G,

then the materlal derlvative wa;b' of _wa at x;>1s deftned so that
L 3ed
~yaAbsb_s ;2 . Ihié’deflnes material dlfferentiatlon of uector fields, by

for scalars, deflnes mater1a1 dlfferentlatlon qn general. . -

ab o - S : N

¢Ab'= $

,Iniparticular;hif we take anylmaterial'tensor field.( ang'[iQB]vp. 44),

-/

i ; B o ’ T . . o ” ) e .
. y N e P - N C e . : . . . .
"intrinsic" in his notationm, it has zero covariant derivatlive using a. material.

5

‘connection ibid.:p, 74fand hence its lift to M will haGe'zero-material

aabe | _ B
abcad Ad 0.

’Euppose “wcuc =0 at -x and vcuC a0 aldng.a length}of.curve through

.
)
(4

BN a. b a 'b .c‘ a b. .
L et et

. requ1r1ng this for all fields s, The Lelbnlz product Aule and the condltlon‘"
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.

' Hers v . is the P* Oprojectidn»of. va "an'<wB is the P projection‘g

on B ’and we have used hyperSurface orthogonal projection (see noggito o
R g ;.

, fo 1ow,in the‘nekt section).- Ofrcourse ;W-i,ril is orthogonal to g Qnd

' a S oa. a :. fa o B AR .b b 8
w have v. = P*a?»* V.= P&QY"_’V ol - and__w = P, xg¥ with
i a a a ’ a B ‘_, 6 R "AA . ) .
PacPrp ™ Vp ? S e ’,%" In fact,
TR S S PR S ol
P#af—VP?Ojeéti0?3' Mx'#.Bx, .P*a_—_inverse - BX +ny3 ‘and t
P* L projection : By o Moh, P12 = im W't B
» = : fon 1 B, = M. = ' :
P prOJect_on . .X-‘ x;’ P a nverse - 3%
: ke kb T o - . kg -
: where P uP b Yb‘ and P P Gu . In component form P a’=vP % and
@ .. a 6 B . a7
. * !
: P*: = P'z 50 we can denote these transformations (or mixed tensors) by

y [

qu and P respectively.a Clearly P u =0 and P Wa 0.
Using this we obtain ‘the formula for the material derivative as -

_.~”_‘,,éA.b RN )ls “'.’%’ _'u ) de SRR
v i
,To see. this check‘ u;vaAb;;.vékbuF_ and read the following section (I 20)
'h/FérJhigher order tensors the . results are similarl./ﬁ/iice that . |
_g '(T)-= abPZPZ 'Yahézfgf depends on the point X € f l(g) ;under coné:

fsideration. Notice that raising and 1owering of indices does;noo commute

e

"with material differentiation. . 7?;'

v : .
v N - -
- Do T s ,\\L
-~ . . Ty

cee

(1;20)"Note,on Covariant Derivatives and Hypersurfaée Projections

3

In the exbression for ,vaﬂgﬂ ‘we. have to determine (vdP )\B ='v IB;:

Since va may project to a different vOt for various points X € P 1(X)
- we have to make the meaning of va~»and va‘B clear. Actually we choose
J R

.a hﬁpersurface H in M containing x which is orthogonal to ua at . X.

(We cannot in general obtain a hyp%rsurface H orthogonal to u? ovef"a
\ ' » . . . . 7“6 g ' )

i, . T

of (a b = l 2 3 4 a,;8=1, 2 3) i denotes covariant differentiation'*vaf:



on the choice of H in- general on~ P(H),“@but vaH and ;v

: fundamental connection with associated fundamental covariant derivative

sy - ) o o S PRIIRPIONENT LI S s et SO RO

neighborhood of x 1in uﬁgii We then a”% P, ' to transform this vector .

field v ,von H to Jva on a neighborhogd of X in ‘B. va_ depends

| g
are independent of H. In fact,-not only is the metric "(f) function
of\proper time\defined at X hﬁt ( ) is well defined and

aB

v

1ndependent of the choice of the hypersurface~ H at X ‘Orthogonaldto~ u

. at. %Q. Hence we can define: the Christoffel symbols

q," . &
. . 8 ot

‘1 S L
RRSIEE FLACICRET AR

~at“4X and the contorsion K v (T) defined so that 'T;YS»=H{aYéj(f)'—

"K-Yé(r) is. the - independent material connection on B..

a .

< . ) . . ) . T o

-(I.ZI),‘The.andémentel COntorsiont [ S

The material connection is rb ='{Lb'} ~k®% on M where
e sReT TR ae - ‘'ac Jac , _ .
ol TR e : o : ___ﬁw
.,Ka o is. theﬂmaterial contorsion. We define K. [ab]c 2(Kabc KbaC
: b b ~xb
and call it the: fundamental contorszon with r { } - K7 the

. a c ‘-a7c~f"'a E\ff\\\\§

denoted by j[ from now on unléﬁ% otherwise spEcified It is easy‘fo

!

see that K. bc #w;Qu[b; ] + u[bu ) S0, .vdefines frames which rotete
’with the matéridﬁ medium along fiow Iines._ Alao we can see that . is

flow constant i.e.-u =0 and u 0,‘dso 0=
_ alb v T o

_ ablc Yable
= 0 etc. 'We say T, b s the fundamental 8bnnection obtained
abcld : , ac

by lifting the material connection _FéBY from .B- to M as vFabc is

ﬁbe material connection obtained by 1ifting r ?¥r§to M. ,It 1s easy to

a +v L RS & 200
. +Ab o ; anb aAb NSO
see that ‘v |b>' : :.2_ - end varb ’{_—T—fi——_f— _for eny vector

= g2% AR o
ab - & Veap” ST SR :
The material contorsion K, . Dust satisfy "

field v, where v}

= ‘0"

co




The. simplest solution is - ‘ ‘ ‘ s - |
' ' . B \-

~

- = . . _ = _ L] ' . 1 ] ~- ) “
Kabe ua;cub “Upicta T Ypsalc TUptaet. \ (1.22-1)
The most general solution is obtained by adding an orthogona% space )
” \
- time covariant tensor field of order three to “the above. \ ‘\
If we calculate ‘K ="K " for the simple solution above we | .
‘ [able abc .

obtain ﬁhe contorsion. for’the * covariant differentiation which we -
defined“earIier. Evidently the most general fundamental contorsion is

" obtained by'taking'the * contorsion and adding a tensor .field

abe - J[able which is erthogonal

(I 22) The Delta Tensor

We use the delta tensor to. indieate the orthogonal part of the

-

contorsion (Aabe [ab]c so,
oA 44y U wu U -u_ U “Uuu
abe Aabc ua;cub?-ub;cua _ub;auc Qbuauc ? ‘ ‘
T e ] : (I.22.1)
= o ! - - .
Kabc Aabc~ ua;cub ub;icua v (u[b al- Q[bua])
; . : Core . _ g
We\can write aAb a b + v Ka b ann compare with the compenent f?rTm
of ‘vaAb, we‘hawe, to obtain o | u’ LT _‘2;-@:_
aB _ ef ~ e ; . c : o
, + (aC€ + + : L e
‘P P va|8 Yavae;f ( (u Qagb)u )Vc : R e

ab asb

,.If we introduce the metric v é(T) on B wlth Christoffel symbols

‘ w .
{ }(T) given as a function ofé&r' and covaXiant differentiation ",

S .
~ in

- c
alp™Va;p " Ba bV

. Yo o w Yo . as. P
+ v.K B where K, 8 is avfunction of Tn,ae’vellyesl<:TQ§§

on the quy,—we may write. (for ,vc‘ orthogona _ PaPB(w -v
| Let VG|B= Vg . et
X €B. Then P.R.K Vv =AM v ﬁ %% P“PBPCK Py Thus the -

a RV e ) - TmoL e

b4



L]

B

"!

“%

. § Y - Y - _ )Y ' O F
or x. Qf'course we have T 8 {0.l B}(1‘) Ka B(T) where the left
hand : Td oy gy d oy :
‘handﬁside is.independenffof‘ T. Henoe gy {a B}\ it Ka Bv‘and“

NE: a B ¢ Y A ‘ ‘ J v

A = - . : . ‘ v
D ab PanPY(dT Ku,B) We can use gas(r) to raise andklower indices

' oy e ©_ LooBY ~ e ,
at (X,{) :to get, Aacb [ c]b PanP K[GY]B Since DA ab B
PGPBPCLEL { Y ) is independent of the material connection on the body

ab ysdrt ‘a8 _ ‘
manifold, namely T YB we see that specifying A cb at one x € M

delta tenso

"determines

.(1.23) Convective Derivative of the Delta Tensor.

Q

Let v_ be orthogonal and convective invariant.. We may
a B . . ef ~ e - A :
Panga1B- Yaybve;f‘+ Aa Ve Since Vo.s Ve;f + v CKe £ mwhere
Lol cc’ [ e f e f
Ke £ - (u - Cw )uf we have ‘Yavae;f-'Yava E° Taking convectivﬁ
INCIP P v DAS Cn o - v B
derivatives we get 0 — Yavafve;f)i-chAa'b' Now, O Dve vgsgu +
’Vaq’ﬁe and p(ve:f) ve:fgu .+ Ya&fu te + ve:au f° Since 0 (Dve):f
=v . u®+v B +v,.u? 4y we see that
- exgf . e:g f a:f= :e a :ef
= . - 8 _ a .
P(Ve:f) ,(ve:fg ve:gf)u Va :ef
Cwam d g i d g a
' “Redfgv YT Verd f gt T Va" ef .
S . . ‘ . 2 d D
wﬂére R edfg is the-Riemann tensorvand Tf g is the torsion tensor
assoeiated with the colon covariant differentiation (I 17) ow’
e f =ld g e f d :d.g ;
Ya¥bVe:d e g* =Y Yb e: d(K £ X g)“
T elf .« ef d s d »

_through X,
§ .
ra‘B speci

relation ({i‘l

‘Aﬁ

be able to

S

PN

r A at x‘”is the 1lift of the contorsion K&ys‘ at (k,r)

it at all points of P (P(x)), i.e; on the world line
o ' . -

Withoutﬂfurther reference to raYB' ‘On the other hand’

fies Aago at x for each X € M and hence’ gives us the

,%ts value between different world lipes. Thus we ought to

y
P o

caiculate DA and this is done in the next section.

W . » . ‘.

9
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Hence

e f e fid - g a4 . o v
YaYbD(ve:f) Yo YR - " B

and 8o therefore

(1.24) Generalized ExpanSion and.Rotation.

‘ a H .
Let C be/a curve in M, x e€-C and (V) eM a vector. We

. Fermi transport using the fundamental connection (equivalent .to parallel

transport sincé ualb =0=>u 0). Thus on P (P(x)) vi  is

. defined, and if O is_a pa 4meter for ¢ with tangént vector | \
. 4 o T ena b o a | \>
s' = =— then .0 = 7— = T s on e. If v - is defined {
u‘dO do * . cb a . .
on a neighborhgod of x we can write %%;j= yalb sb. Assuming this we

. can see that the,material derivative of va_'along c "is

B ' QX_ = v2 sb and v+ sb = -[i ’ sijc s I
do Ab . anb” Tt (ca)b ’ e
s Because of the symmetry of K(ca)h in ¢ and a- we have the familiar
non-rotating condition we had earlier for Fermi transport along the o7

: A
flow lines, where we forced the convective derivative to transform the

éfansport invariant vector field through a symmetric tensor Thus the
, fundamental connection gives rise to parallel transports preserving the
metric that rotates with the matelial medium even along arbitrary

K .

curves C other ‘than the flow 1ine curves whose tangents are .ua.

T We @efine the generalzzed atretchpng rate tensor e = 'iii@c
‘gabcsc is a symmetric tensor in a and < which describes the o-
parameter rate of change of. stretch along the vector direction s°.

.

Then -e = 6 uS  1s the st dh rate ale}"*
ab abc %4’ R

1%nes, and




o

s e Y B A R PR T

EN

where the fundamental contorsion satie

abc . abc abc
K =0+ 26 u, ... Define !w~ = yd €' to be
abc ab [ab] A abce dec a'd
. : c ,
. rotation ten::ff“iThen ©obet = Yap and,.t‘uabc " =bbe
S ' ALY ~c 1l cab
- Kabc —waég.&ua_ Y T ub Uar Putting V 4 5 € Y,
" the generaltzed vorttctty which satisfies Ucdud = v (t
-~ i - :
) _ 1 cab _ [ 1
defined earlier). Then 4=~ 3°¢ Roa= VU ~3F
can write the Orthogonalized Vorticity as ' 4° ;ceyg

i

stretch and write

'

~ ) _ ei fv/
abc yaYbeefc and
. - o
Then we have eabcu = 935’
v o ~ ' A -
®abe = K(abye = (ab)
E eabc S
3 o o
Since eas ’is orthogonal

R

reference to §
‘abe

If we look for a covariant derivative A with contorsion K

3 satisfies ‘
: ¥ 3.
ef b L +guuv o= v, Sy
Ya¥ble;tt (a;p 7 Ya%/" Ve T Veat¥a'v
“and hence alsn
»'Pava = yeyfv >‘+ Z'C‘V’ " owe then heze
' abalB. 'abedf abc’ o -
Kecf =, ne a&u -‘ *leuc ‘£ Aecuf where A -is antisymetric.

Hence we obtain A ¢

°

64.

sfies

the generalizedﬁ

w u'; with.

ab . c

Qabc'

e _f_gY . gy .
) = = ] .
abc YaYbYceefg Ye abg
[V c .' .o
=0 u- as before. In fac
abc : o
c u(b;a)uc - u(h’ua)uc
Oabc - eabuc where ciearly \A(ab)c =
. . .,"t
(V) ~ e ) ! v ’
) =0 ﬁ 80 we can drop all further
abc a c ‘ . i

that

>

N

1f the

_contorsion. 1s to define a rotgtion along flow 1ines with the material

medium-* and the flowa areu

i
2

determined‘an&‘ A

Cy

7

[ ;CJ -
"covariant derivative we defined earlie;:Xz “and in’ fact is flow cons

SR LB
Vel

In this cas

“le ci,'

B

ogbe u-autoparallel then it is uniquely

e’ A

is the *
tanj

v
2 .

P :
n Y
e
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. ):'\) » g 3 ef ef
If we look for a covariant deri tive e that satisfies. YévagOf = Yavae
c a B e f ‘ e ‘ _ v .
= 8
+ Aa bvc SO tha; PanvaIB YavaeOE f a'bvc' then we have .
o (N
= - + A. oosi
Kecf u, gl ‘uczfye + Aecf ‘vAecuf for angisymmetric Choosigg
A the‘same'as before so as to make the contorsion flbﬁ—méferially'
nonrotating and uéautbparalléi we find K = K __ the fundamental
I ~ ' ecf ecf
contcppéon uniquely, which is also flow constant by the way. Hence 1f RN
| is'ma;erial covariant derivative on the body . (identified with Greek
" indices) .and is fundamental derivative on space time (Latin indices). we
have . ' T
a8 e fl . e
= + 6 .
PanVQIB Yavaelf' ‘ab'c
Since v =v + Q'é,c *  we have )
' enf elf ce f . -
. a8 - e L : ,
' : = f t
o PanvaIB YaybveAf which algp ol;ows direst;y from the
or#ginal formula for VoAf in compognent fqrmf\ Also :gabAC = Yapne =
[ ' : ) ‘ v d v d° : . : : i
= o+ ] + . an =0 : .
Zeabc“since Babac ~ Baple ™ Bdb'a c . gadeb‘cx\and ablc 0- since -
-the fundamental contorsiénvis metric. Now it'is:eésy to see that
R £ £, . xc'f
Dve = Voagd < Velfu +_Ycee'fu;
= v uf +0 S .
- Telf e ¢ |
. ° ‘
Foritensors, .
‘vTa"“ =Tan.04 _ue__Te--- } ea _...+Tat‘.. ee -+'..,
Cee c.-. e ‘Coo- e e Qe c
and"
RTaO.. = aeee ue=’1‘.avoc. ,ﬁe=Tao.. ue=Taﬁn' e

Ceoe ceele

-~

is called the Rotational Flow derivative which measures ﬁhe deviaﬁion of

0

a tensor field from a metric Fermi transport along world lines rotating

B

PR ‘ N S : C : o
- with the material medium. The different .covariant derivatives in the

above could be replacedyby any g?autoparallel‘flow‘materially non-

rotating one (whose contorsion satisfles K uf = “Ulesa] ~ u, u ]).
[ o _ ' . ;al -

4 B

eaf. [ea
/

_ o : -



-

Similarly we can define the Spatial flow derivative st -
a.... e a,.. e : - : - .
T c.. a8 = T. c 'eu which measures the proper time deviation
~ o 00 e cee € - : )
of the tensor Ta"' from the Christoffel symbol (or semicolon)

Ceos

Fermi transport or equivalently the colon pafalle ansport along the -

world lines., Here we can use~an§ covariant derivative (to replace :
) .

'

or °)‘ that saﬁisfies K. u® = -2y u i.e. that is wu-autoparallel
, abc . fa’b] ~ .

and spatially nonrotating. We then have

RTa' . —VSTa"' _,Te . ma - e & Ta;.. we $oaen
C. Ceos C.. . . Cc
relating the two flow derivatives. ,
]
(1.25) The Riemann Tensor. . : "

' a a a a
Recall Ehat R dbe = R dbe "~ C dbe . wvhere R dbe is the Christoffel

symbol Riemann tensof and.

a ‘ a a , o, £ . a £ ., a
Cabe Xd csp ~ Kabse VKo bKe ¢~ Ka Ke b

1s the contorsion curvature.tensor (1.17).
For example, corresponding to the covariant differentiation
we have

Cadbc,= éu[dua]u[c;b] * A(u[dua]);[buc] )

For the =+ covariant difféfentiation,

¢ = 4(u

adbe [aud];[c);b] + ud;buaﬁc _.ud;pua;b'

For the * covariant differentiatioﬁ

%*

Cadbc = 4(u[a_ud];[c);b] + Z(MdSQfé);b] +u, .
' R PUA PR P TR

For the fundamental covériant’derivative | we have

-

4
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£ £ ‘
Codbe = Ydac;b ~ Ddabse t %4 birac T %a cPfab

N ~f
a0 5] T 20@aat e sy T Y atarE Y e

v £ ' ’
+ 4w [aAd]f[buc] + ud;bua;c - ud;cua;b
£ . .
+ .
: 4? s (c'b1¥E[a"d]

: - ,
In each case we see that Cadbc =‘¢[ad][bc]’ a result»which

‘follows from the gorrespondiﬁg antisymmetry properties of the Riemann

" tensors for the Chrigtoffel'symbols and for general metric preserving

connections. B /

.

(1.26) ‘Matérial Deyivative of - the Volume Element. ;

- , o
We‘?an.seg that €abedhe =beeeabcd and € bche eeeabc _where
o v a o ] . v f
= . : = + ,
ee Ba e To prove this we‘writg € bedAe Fabcd|e . Efbcdea eA+
e . 6f ve 8F 4 e §F andset a=1, b=2 =3
afcd’b e © Fabfd c e ' ‘abef d e and set a = &, o ¢ ’
_ ) o . _

d = 4. Also eab@d = -0 eade and - eabc = —5 eabc. By contracting

) v Ae e : Ae e X ‘

': with? u® we get the familiar formulas for the convective dertvq&izes

: : ) v e a
of each of the € tensors, since eeu =06 = 0 ar

As we have seen, the 1lifts of the given volume element tensors on
T . . ° . °

» . ) ! ""a ~%
B have zero material derivative, i.e. n be 0 and n =

h ‘Ae abcAe 0. R
n?/Y

.k - ,
TKis was true since and naBY had zero covariant derivative on

"the body since.théy'were material or intrinsic volume tensors. .But

. ~ ’ ~% T '
eabc =.pnab° and € = ;-n , so taking material derivatives we
o abc p abc ,
find se = -(%n p) o Thus Ge is the negative of the gradient of the
. , . o

1dgarithm of the density, and measures the material's expansion relative

) ’ 1% o
to its volume along any specified direction. We also have 6 =8 a8 =

ae
a a ) : . a S ‘
-8 "u =9 -06u where 6 =16 ig the contraction of the
ae a e e e ae :

~-

e
orthogonal part of eaby,~ and is therefore'orthogonal. Thus e

[
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N a ) .
0 = - 2 = | {v ) d
Y ( n p) , £ 6 gi es us a condition on 6 b the Or;hogonal

1

general stretch tensor.

(1.27) Mixed Tensors and Generalized Fermi’fransgggt.
Let M be space time and u the unit ‘time like future pointing

flow vector field on M. Let ~§J be another unit time like future
pointing vector field and c0nside; a curve ¢ in M with parameter
. a .

: ~a d :
¢ "and tangent u = Tﬁf at each point of ¢, and let r? _be a vector

field defined on €. We suppose.that r? is Fermi Transported along

a
¢ using a connection T - that is not necessarily metric, but is

bec
. : a su ~
done with respect to the field ‘ua, 'i.e."§£—-= a[;:j = ~aublcucrb.

This transport process preserves orthogonality to u at ‘each point of

- o ~ : ~a a, ~a~ -
X € ¢ . and preserves u itself‘ Let _Yb pFuws Yoy gab Auaub
and put P = OLNb-—P +3%  ‘where U = P%G%. Put -

a b a a- ) a
. bN . :
.ouu o . . N L .

B> = Pb‘— : B where U, = G'Pb and u-*0 =ud <0 since they are

B B -U'G:, B b B A a - )

both time like and future pointing. Then it is easily seen that

POP2 = Ga and P Sb =y . If we put r® = %% and # = B™® then-
a B a a a a- a \ .
: o
- ra = 5“ dr® + raS“ ﬁc where ﬁc need not be normalizedfor even
do = . a do. a,c ) ‘ / N

time like. Now we.impose a condition of material transport along ¢

Jpreserving vectors in M X € ¢ where- M "coﬁsiéts of those
‘ X o ~0
~ : 8¥ - dr
vectors in M orthogonal tp u| .,  The condition is 0 = 54— = — +
. _ X ='x S . de . do
?BFBa GY_ on the image of ¢ under P in B where u = P'u C o
' Y ~a ~c b  drix b, a ~c a dr aia c
a. - - dr™ + AC .
Therefore u U U o r Fb U and 0= a 1o :‘ a,c +
~B, O ~Y : P ar . ac b ~a dr ~y b a ~c
P . = P _ er 4+ P .
T As a result w tain O b| zPa do ar'Fb QU
or 0= rP c[—P -88r o PY4-FQP a ). We define the mized covariant
b,e b B Y a.b c
derivative-of'*?b, as - ' )
S0 ;u ~B o PY _pa. a

Pb|c' h b,c b B Y ¢ garb c’
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whérp $BaY' is the given material connection on B and Fbac is the

connection on M.  If the Fermi transport condition is to hold for ‘all

curves ¢ in M (i:e. for all tangents ﬁa) and for all transported

-

vector fields ra then we require that ﬁglc = 0. To completely
determine the connection Pbac on M we.simply have to specify Fbacu
and we do this by requiring u = 0. The connection T a. we get

alb ] ‘ b ¢

T @  the contorsion by Ebac and the covariant differ-

r
we denote by b c

entiation by ~, and call these the G-material comnection (contorsion,

differentiation) respectively. - Thus the Fermi transport becomes the

8 . ~ .
parallel ‘transport ji;-= 0, because we have taken u_p = 0. ., We let
Pa be the mixed covariant derivative uéing the material connection

b;ec )
on B and the Christoffel symbol connection on M, 1{i.e.

~a ~oL ~B_. o _Y ~ar a
P = + r - S
bsc Pb,c Pb B YPc Pa b c}
i . o~ ~ a ~a_o ~A~
= = - + .
sqwghat gsing Pb“t 0 we find Kb o Pan c u‘,ub;C Therefore
~a ~a ' ~by a "~ a ~b ~b ~a~t  ~a ~a
= - P = =
U u sc u Kb o an d Kb U ‘e a?b u - so that u ~c 0
also. In particular, 1if ‘E = u everywhere we get the usual material\
u ~a a_a a o |
= - + . .= . -
de7ﬁvative'go Kb . Pan;c u ub;c and PbACC 0. Also the con
dition ;a = 0 means that likewise Fb =0 sinc: &% and ;a
b~c . a~c B b
have zero u-material derivative, (Fb =3 4 par b . por B PY).
' o~ o,c o ac Raye
In particular’.PzAc = 0. The gontb%sions can be writteﬁ out as
~ a ~a~u NaNB o ~g d ~a e . v
= - ;- | R .
Kb c Pan,c PanP By Yd{b’c} +.u Ub;c’ and
> a a_.a Ry " ap d a
= -P ' - P P + v .
Kb c a b,c PbP B v Yd{b c} + u~ub;c .
a ax” ;a o '
Since P = ——— = P we see that the torsion for the material
b,c b ¢ "¢c,b
. , IX 9x 'a ap By G a
connection 1is Tb = n (u b, ) + P PP T6 ¥ where; TB-Y = FB v
|
r® . Expressing the material contorsion in terms of the delta tensor

Yy B

P

a
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(I.21) we have

N c.a c c *C
A + PP = U . +u u 4+uyu
ab a a;b u 3b a ;&b ab

and the right hand side is symmetric in a and b. Hence we see that

if there is no torsion on the body manifold then the delta tensor, is

symmetric, in fagt A[acb] = l'PyPaPSTB . Contraction with uU giygs

us Papa bub = -uc;a, and of course we can see_directly that

Cuan = -uC . 7 o g

a  a;b ;b v udﬁ
Sincei ﬁgud'= (DT we get P = P%) wher A4 - d: - b

o =T, b d*' b

From this we can show that

/
o

|e

|c:..2

d~
~ d ~o : uu_,
K d YeK cad vad o _asb » - and

ab aeb c a ;b ~
. : Lty

. Yde 5 ud(ﬁe~‘ )

% d __ﬁ'd -3 ~d __u “anb _ Yenb
ab ab a  Ap ~. ' ~
4tu a4

. ) a
For the spatially nonrotating Fermi transport we have r° is "

and ";" Fermi transported along ¢ so
& | ~do cb dr b, a ~c
2 = g e = + "
do = " Uple™T Tgg FrT v and
6r _ ~an Gcrb _dr? + rb{ a }:c ,
do iy TS - do b ¢ )
- ~é~ d ~c b b_a ~c . o )
Subtracting we get u uth UT =T Kb qu and if this is Fo hold
- ~ ~a~b
for a1l u° and all rb orthogonal to 4o we have Yy K = 0. 1In
. : 4 e abc .
case we are dealing with flow frames g(:a = ua) then dbe be = 0 so
= ) + - . N . - . ‘,
KabF ubwac‘ uavbc for arbitrary tenso;s Yoo and Vie If the
contorsion is metric Kb then v. = -w . If we im-
ac ac ac

pose_the additional condition Yile = 0 then uaIC = 0 also and |

1s merely the covariant derivative, which is shown here to be

spatially nonrotating along arbitrary curves in épace'time. Of course

v

A



@

& ab

_3—form Vaber
1‘then B o = odav

uexacﬁ k—form is the derivative of a k-1 form. EVery exact form' is

) than a metric deri®ative. Of course d u_ |0 = 2(w_, =u;_u ).
g ab [a'b]

by

[T LI At

since u- has zero gerivative we mily use parallel trans

instead of Fermi transports. ' : ’

-

(1.28) The ExteéQOr Derfvative,

ports

A k-form v ' is a completely skew covariant tensqQr field

a [ IR ) a
1’ » k ) .
of order (or rank) k., We define the exteriorderivative d

= (k+l)v

be a k+l-form given by dv
. N . a a.**+*a

A 1y
For instance, for a scalar field ¢, d¢ a ¢ a’ e for a cova

s

vector field Vs dv for a 2-fo

alb i 2v[a,b] “Va,b ~ Vb,a’

= b= N +
ba’ dvablc 3V[ab,cﬂ" vab,c'+ vbc,a vca,b and f

v = -y

N N ’ ) * ’ ' 9 ' i .~ N v
is a fk+l)~-form %nd that the exter{er derivative of an exterior
5 LC §

A ’ - : a
derivative 1is zero. If Vabe is.a 3-form and u a vector

abc abc|d

A+l L8178y

= = -— -f- -
dvabcld -'av[abe,d] Vabe,d ~ 'bed,a | 'cda,b
and simdlarly- for higher orders. It is easy to see _that dv
, : e ) . :

of v

1°
riant

rm

or a

Y4

a ..;a

1

to

W

ab,c’

k! 3K+l

field,

o+ d(v ud)| and more generally for k-forms.

A k—form with zero exterior derivative i§~saLd to be cZosed while an

l

z«- -

= QlOSéd, and the converse is true in a local neighborhood

We can apply these results to our material medium and see that -

njahc|d} ;abcd usinee» vsabc = iueebc because: € b is orthogomnal
) %k ~ ~% v Ak
and COVariant Also dn abc|d = 0 and Dn abesd - (pr»:abc);d = :edn abe

alb

(1.29) Exterior Derivative Lifting Theorem.

Vthis shows that the exterior derivative behaves more like a material

If Va i8 a 1l-form on B then v, = nga is an orthogonal con-

vedtive tnvariant 1-form on M. Furthermore dva b= PzPsdv

gimilarly for °2-forms v and 3~forms v on B.

aB afy

alB’

and

71.
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: Proof{ We show this for 1- forms only — the higher cases are similar
L TR, .

o but somewhat more c6mplicated 1early dv |$ is" orthogonal since.

B and shearfree 1f ‘é 6.

’ - 1

. time. Essentially P(o)(;) (g (r)] {in components] is obtained by

Ca
(Pava) b

P“psdv

L‘v- =1)va .0‘.== u® dVa b 1n:_fact dvalb Vb
(P v = V“(p° ) +.PGPB(V -y o

b a’ ,a o a b'-oh, 80 that

Yalv =

« c|a

‘;since in*;ei is of maximal order and hence hasozero exterior derivative
on B. /yhere is no projection theorem like'this—fbr non—orthogonal
forms on M . for.instance ual has an exterior derivative with ortho—

part -2m ‘i ”Yet thevprojectioh of - ua_ to Q is zero.j

- N . ‘ .“ ,0

L (I 30) Specific Motions'— Motion of Constant Stretch Histogx. .

Certain couditions can be specified which describe the’ nature of
the motion undgr consideration.i iS4 ua =0 (on M or the region -c

being examineQ) we say the motlon is geodesic and if

.

. u)ab i Q We Say
1 3
it is 1rr0tattonal and -du ‘b O if and only if ‘the mot ion is both
irrotational’and geodesic We will see later on that this is equivalent
v
to the ex1stence of symmetric Galilei connectirns (Chapter II) ‘A

.

motion is zsochortc (volume preserving) tf 6=20, rzgzd if ag.é'0?<e

-

o ab-" 3 Yab = 0. It is of constant acceleratzon

if/ﬂx is Ch;istofﬁel Symbol Fermi invariant along flow lines, i.e.
“a b |

u_ybU' = u (u u) ) It is worth extending at this time the notion of
B | . "

»

o a motion of coustant stretch history (see Truesdell [105] p. 65 Noll

<

[77] P 35)to a general relativistic setting.

Let ~\\E amine the deformation propérties of a material medium in

pace—time.~ We consider the deformatiOn process ?0 FO d } + S
. : o .
determi ed by the motion of the material medium in the Lorentz space—

o g
M»-».'lr'i_ng the ilonotphim P*i:; ‘H: ’4 Bx to. 1owet the metric ﬁetemined

§ N

.8 s,\iﬂ ‘ﬂ’ N
This result tells us that dn abe = ,-;(as we have alreadyfseen)f o

o
r

*
(B Bxl;



r==d’:
A po o
3 . :
P
3 . _ '
' x (Broper time: 7) .-
3 L U e
o "-&' - ‘ : -\ﬁ-/u
N ﬁ‘ sa
€ Sym (M M ) naturally related to the component “fo tensor’f &b @
y H(X) = gdb(x) +u (x)ub(x) If we let P, = Poye 't ( )(T)
.pxsﬂ fdi» r e [O d >] where X ié’thejpoint in' P (X) c M
associated with the world 1ine proper time . =In component form. f
! - ST . ] .
: 8
= P i = N .
(0) (t) (P «'a )(x), or alternat vely Y b( X) Pa (O)aB(T)Pb
Of course ‘?a = i§— and P ax R There is no unique'way
Y} a
¢ 9X . ' BX = constant ‘ .

~to, telate the valuea of T on ad]acent world lines, however any relation— .
L N g b2 TP SRR W E
1h_ship with the hypersurface r‘g'constant, orthogﬁhal to the world line -

at the ‘one p01nt X defines Pzé‘above at X. ;Inﬂgeheral then, a

<

different relationshlp is needed for different X,
We have seen that by placing material connectione on’ both B and
M that the material derivative of the mlxed tensor 'Pz could be calcu-.

lated' and determined to equal zero,’ i.e.

a s | - 'B Y - _aa ¢ a aﬂ c

. a .
= ) - B - ] = + . -
B R N R Pcra b~ Fajb PcKab .

“In general mixed’covariant dlfferentiation can- be defined fo’ vector

i

K fields .on either M _o‘rt 1} aS»‘bede and e?“_cended using the Leibniz

» 3 ¥

rule for differentiation of a product . - - .
T T SR

I

o,



R R it b e B i i PE
. . . . \

'“.
»
Ca ol B oy a . a C era
= +0 . P = + W : , o
LV Ab v ,b __.;_'V._I-‘B Y b’ w Ab 'w‘,b_ . I1c b.
‘ o Ac .-1-:5" . Y. -
mw sy TS oy ey Ly Y .o
waAb: wa,bu_ wc,a bﬂl‘YaAb "Avo,b’ YY a;ﬁpb
" S Cg. b :al'.uab e g TR e “f
AR inc P =- s '<5 4'. ) . = = P s .
%ﬁ"x, Slnce ( Pb)Ac ﬁbAC ( uluy ) ‘ 0“ PaAch (because bAc ..9)
t“”_j ' " we see that _?ZAC;=] In mixed vovariant dlferentiatlon,,tensor
. . -h-*.“,.“r - S i

fieids on, - B may be allowed to be/functions of. proper time T and not **

merely constant flelds For 1nstance the field P (T )'vcan be'differ:

- T : (0) B ,
L : . . LA b_ _a. - b ay v . '
P entloted co get (O) SAC '.?aYabAcPB AvPagabAcPB = ZPQBabCPB Qf coursa
. “ R
s ;aéhé is already orthogonal in its flrst two indices so - the orthogonaliz—‘-»

1ng effect of the pro]ectlon can Ba 1ghored . Essentially this gives us

, . Ve .
.the doformatlon expan31on,rate along the dlre€t1on v when,contracted

.

wlth vc.v of greatest interestlls‘thg deﬁormatlon rate along flow lihes,
L.e. : ] v i
S e aw be T _a b :
008 T Formarct T Falabcfet T Pulafe
Ve ML P . : . B. . ' -
‘ ‘dT (O)QB at»tixedv X e B y | o » '

| _ s ) |
l]lf‘ 2 = - Q - G
Tl we have 1n‘compooent form P(O‘ e P Lty b 8 nd DI(O) 3 »PaZ #

| -

For a mondtonous - (conorant stretth hlstory or substant1ally stagnant)

process P we have (Noll f]7] p. 35) .P TT) exp(TE )P exp(rﬁ)i for

0
. s N * :
E « Lin(BX) where Pé.=- (r=0). Thus DP (T) = ——-P (T) =-F P (r) +
Pq(j)E.: Of course ' E is 1ndependent of for each X but. w1ll
~ | v RRSRS o X N
- depend upon X cﬁB"since E. ¢ Lln(B ) . In component form on™ B we

N ; .

can. write: Ef.as.a tensor Eae. If deflned as a field on ‘B, it oan

::K"'be lifted to an orthogoqal tensor field on. M which is materlally
:invarlant along flow 1ines and can be written as E k : (Otherwise.lt
. o - 4 RN o -
< is only.defined onA- (X)) Hence ubEab_= 0. = uaEabé?andl pEab 0,
VR E2 B a ’ a_ b o '_.-'*' i
E 4 Ey 3 E 6P and o 3 % E bPB ‘The mapping E € LinFBX)
R fcomponents is given by E B = EB . Hence Ji' (O)GB(T) F

EEITN
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Wl '

Y p

P(O)ayE 8 E o (O)YB (0) Y B Lifting this equat on up to. the
space time we Jhtain, s
. : . -
Yp Y 58,cq o
P P P P E P P
% a8 " Fab'E: " ()68 ¢ PES * P (0)as oo
Cor E TS S ‘
= c c =/ . )
2%.b ,FJa cbl+ Yack b Eba.+ Eab -

RN

>

: e - : '-".
since E a is orthogonal Therefore we obtain E(ab) _eab. -Hence ' the

~space time motien is monotonous if and only if there existsan antisymmetric

B ‘orthogonal tensor w such that if we define E° -8 + W . then
. ab ) ab . ab

q : N .ab
’“’DEéb = 0. We say the motion is a utscometrzc flow (as in Truesdeli [i05])
if EabEb =0 identi'f The/tensor~ wab is called the monotonOASl

. cel ry ' -
~qotatzonvten30r.

: C Lo g S " 4' o . T S ‘a. .
‘We can introduce ,‘-etric contorsion_ K ..+ on M with wu =

. S N cba . B ob .
‘Ea = g2 + Wa@ e ivalentl Au = E If we re uire the eon~
R S Y. Y%aob T “ab’ 4 y
vective.dér iative to be expressed in Lie derivative form, then the 7”
v : v &
¥ )
general sglutipn is- - +
*o . ' ) . : \ . . . 3 . ' S A R it
. N Y _ N RN ' ,
,gcba‘g, ua-(wcbj wcb:+9bPe‘ ubue) _uc(wab wab)‘ ub(m wac) + A ba.’
where‘«Z : iis orthogonal'and satisfies Zf'*-+'Z o= 0; The monotonous ‘
B o ‘cba o BN ~.cba ~bca , . . s
- ET e a0 noa o DA e
floyvcondition is DE b= O,f:Dn ob which_inplies ut U= 0, using

‘ ':theﬁLiebderivativerform for D. . If the motion is a Viscometric'flow,

c -a c- . a c a ¢

oa Z - v = =0
IFhen‘ % oc" op 0 Aand 2o 9 °cbu_ Q since u .U A,E.cq 1‘0'
: efor a . a C _a L ooeds e ode ’
: vTherefore (q ope " U °ch)9 —-0). and‘so.since Tb M T uy for
the §g¥sion,~.§adbcu u® =f0 - Since I bc is a metric connectiony
‘ﬁ'°. 'ﬁ “and of course g, =R 5 as for all'ﬁiemann7“
adbc d b adbc c-adeb s T T , e

E tensors. - If any one index of R adbe isncontracted with us %he |

’remaining covariant order 3 tensor is orthogonal (in the casevof a
] . »



oy

: vi‘sc"ome'tric flow). For the torsion we have

. ; . ’ . ‘ ) y( ,‘ ) ' 76.

"‘i)h

;

‘=T K -K =ub(1.1u —;1u)'+2ub(w -W ,)+Z' -8 2.
c a ca .ac ac ‘ca- - eca ca” e.c a

We can use, (for -a- monotonous process) Ca’\ to lower indic‘e’s in

.0(9. b,+‘w'b) = 0 and from DYca = Zeca we have,\separating symmetric

and éntisymmet:i’c _parts, o ', - ‘ \} N
a R . X .
.= . : . A ; R .
chb zea[cw bl T S - )
Do =:20 .02 +28 W . S
tb “ca b " al(c b) ﬂ oo o
- ¥ " 2 monotonous (or constan‘t stretch i—xistory)'b flow DEa-b‘ = 0 and héence
2 va 4 6 uéI ”wperey 8 = ea = -u? . But & = - 4 n p
a d‘l’ »a o %i . a ;a dr-
'so fn p = —B(X)T + !anw zwhere ',~= p(-r—O) on P 1(X—), : i.e. e "

p(x). = Poe G(X)‘r where kx"“- B&;t) e°P ( X).- In %sochoric motions I -a_

(9 -;-"'0)', all deformatigm)s are shearings, a gﬁear‘mg being a motion for

o ) 3,3& _ '_’i"'-:'_._e_ » T R :
which _o‘ab eab 'ghere by c_lefi‘nit:ionr‘ oab eab"~ 3 _ab.sﬁ%;.
R e
5 I ) :



\ .map 'K:/Gx

: CHAPTER II o _‘E
' e 435:3.,1 . o S ‘\“
| GROUP;STRUCTURES“ON A MANIFOLD V~./
(1T. 1) Definitions and Agéms.- I / -
: . : '
Let ‘M be an n-dimensional differentiable manifold (Dieudonné [22]

4

Forqeach X € M we 'let M;c M at X
' which s Hh n—d£§%nsiona1 R f\.}'. ve * :: ' ety
',v- Unim(M ), _ SL(M )'~ denote ns of ;11 1ineer .ison.ivorp_hism-ﬁ those
; whth positiVe determinan'ﬁ, » ‘ y‘ith._det;e-rminant_%tlv,,i and tho_ée"with;

a Lie subg
"1a1d out b
is structu

©

in the set

elow. , We writ'e G G(M° ),*isomrﬁ{gq‘ M _+. M‘

4

roup. ,G(Mx-)‘ of GL(M ) with each xeM '- 'subject to axioms«,'

y
re preservwg if ke G oK 1 -;%{;y, Trivially G 1is contained

of -all structure pre&rving isomorphisms of M “with itéel'f;"

" Axio k. For' each x,y eM there emsts a. 3truatw'e preserving ’

“)Ig“omorp%m Kt M > My (Uniform nature of group structure) . The - o

and- a diff

Lie groudps

| algebri\of

4 C'y defined by K(g) = K og oK 1,‘ is a group isomorphism

eomorphism, i e. a Lie group isomorphism. He_nce all’the S \ :

i o
p ERNN S

G ’ X € W are isomorphic w We let g denote.the Lie

* which we: 9w111 c’haracterize 1at:er. Let- v be'aﬁ

& e

S n—dimensional real vector space and let G(V) ‘be a Lfe Subgroup of

GL(V) which is Lie group isomorphic to any (and every)

77 . - _,’ . AT v":_" ‘r" ?1-',1*"‘:' ~r;'~ Ry

" ﬁ- determinant +1 respectively ) o : R .
SRRy Group S¢ruature on S is an association X > G(M ) < GL(M )y of’;fl
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Axlom II. M can be; covered by a,jhmzly of reference charts [108

“

p. 40] of ‘the form (U ,ra) where "Ua 1s an'open subset of M and

r.: T(U ) i v :is/a)smooth map (T(U ) = XKEJMX) w‘ith T ™ ralMx':lix-»v

o

7

iy a structure preserving isomo;phism for each X € U . 'Thusl'f ‘ ;
a"J\ .

-1 ~
ax.er °rax = G(V) .rox is a Lie group isomorphism from G ‘ to » :
‘ "‘Q},“ s
C(V) =G, A maximal family {(U T, ), & € A} of reference charts is " ‘%},
. "PV. R
atl

' called a reference atlas. This axiom (Axiom TII) describes the smooth v

_‘nature of the group structure.. Because compositions and inverses of

<

L structure preserving isomorphisms arq structure preserving we see that

Axiom 1 is implied by this axiom. “¥. \u ‘ T
o Axiom. III (Group sufficiencyég‘Fbr aZZ & B € A and all
A, 2 ““‘—f“‘
‘ - X € U n"UB’ Vrax or;x € G. This impliesékrom Axiom TI above that
) "r_lor e"G‘. ( " @ - g » s ' ©
Bx ax X0 SR Co o
.. R . . |
The differential structure on a'finite dimeg al vector space
..-jgu~ L .
such as 'V is taken to be the canonical one" (Dieudonné [22] p..7)
-5

We say that M is ZocaZZy homogeneous (Weng {108] p. 50) if it can

be covered by a. family {(U Ty ), a € B} of reference charts where o

"W

rax'=,fa*x,.x € U for some: smooth émbedding f : Uaﬂﬁlv We‘have

\ made the natural identification of the tangent bundle TV with V %V

v .

here.’ . ,'> h, ;
S ‘ » . o B Kg‘ﬁg . E) . . ‘ ‘ L
R e a denote the Lie Algebra of G = G(V) We can'write the-

group structure On ‘M. in the following way G(M) = (M G U V ,G)

el

f where G = {Gx, X € M} and~-U = {(U % ), a e A} Since the reference

= atlas is»maximil (U ,r ) € U if and only if (U '8 °r ) e u for . ‘"il:
every g € G. If g € GL(V) we can write g u -~{(U ,g °r ), a e A}

- : ;gg )
and we obtain another groupfstructure .g G(M) = (M G,g U V g Gg )

The reference atlas U for any group structure is cIearly unique.

-

}

SR LA " DG
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Also gbG(M) = G(M) 1if and onk

1 ; ek
Let V = V¥V and 'V1 AY
Vi denote the tensor spacé con

Then g €6 -nG(V) induces a'n

y if, g, € G. o . o
the dual of .-V. More‘generally let -
travagiant ordqy\ k- COvariant order .

& P
atural g~ € G ) G(m . the dual map of
K .

" the isomorphism g v -+ V. Likewise g € G induces gz € G, = G(VQ)

.

‘ similar way we, define V

and gt Vk + Vi A tensor ]k

ko

iﬁducgégby elements of G)."’ Ev

«av;od’, '9

%%) = T for all g% € G

qlifted uniquely to a smooth ten

each point of . M.

The tensor notation canmin
?' .
well.  For instance ,V(z) and -
V2_= V( ® V[2] V(Z) ‘con51s

of order -2 and V[2] allicov
[

€ Vk is said to EE tnvartant if

G: conslsts of all isomorphisms of ‘VE

ery invariant tensor on V can be

sor field on M which is invariant at

4

o
& :

€

3 o .
. S 3y v
Bd Py g

clude symmetric ﬁnd skew tensors 4s

"&2] are subSpaces of V2 =‘Vg with

ts of all symmetric covariant tensors
ariant skew tensors of order 2. " 1In a

4] [2], ‘the 1atter‘being a torsion _

type of tensgor. The existence of invariant tensors of. various types

depends completely on the group

on M which is a 1ift through

of an invariant ‘tensor on - V. i

There are a number of spec

. of particular interest.. If M

L od
)

is a subgroup of GL (V) we say that G(M) is an orzentatzon preservtng

‘ group structure. For any M,

G and its- properties. A tensor field
the structure preserving isomorphisms
s called an znvareant tensor fteld on M.%
ial types of group-struetures which are’

is an orientable differential manifold
7 ,

(i.e. is equipped with an oriented atlas of coordinate charts) and G .|

if G- is a subgroup of Unim(V) we say

that G(M) is a. volume preservzng group structure. If both these

B conditions ‘hold we have an orientation and volume preserving group

K structu:e, and G is a Lie subgroup of SL(V)
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‘The group Qtructure on Mﬁi‘efines for us some associatedvfibre |
: B _ :
‘bundles (Steenrod [101]).'»The Li tangenf bundlq T, W) =ffT(M),M,P,V,é)
assoclated with the group'st'. ure G(MS "is defined naturally and P
uniduelyvin_the‘foliowing way; T(M) " is‘Called‘the fibre space, ‘M the

base.space, P .the projection, V the‘fibrehand'_c the structure group.

. _ ‘ I , \ : C
" We h%éf T(M) = M (disjoint union) s P: T(M) + M defined by
L l . A : xEM X o . , i
¥V x' e M - and the bundle charts for T(M U) are U =

[o}

“vu‘e A} . where *'U {‘(Ua,r\d),‘_ a e A} and ¢ : U x V32 T(U ) =

-u,,

_’ W : o . -1 ' . .
is deﬁgged’by )¢&x = Tox v4+'Mx, for x € Uaf wherej ®ox = ¢a(x’.)7
1Each ¢ ? ds a diffeomorphism and ¢ X e'UOl is a structure preserving

isomor

between V and Mx’ and ¢ o G+ G is a Lie group iso-
fmorphisQﬁr G acts naturally as 'a’ left translation”on V (being a

' subgroup of GL(V)) and the coordinateAtransforﬁationsh_GaB(x): V>V

PR _ -1.0 -
for. X, € U n.UB defined by G (x) ax st

GGB' U n UB -+ G where G has the Lie group differentiable structure.

’

are smooth maps

zt}. There ig<nmamore bundle of importance worth considering here

namely the Lte prtnczpal bundZe E(M - —V(E(M m,M, 7,6 G) associated‘

with the group structure G(M) = (M G U V G) Here vEfM,U) is the

¥

fibre space, M is the base space, m is the'projection and G is
_ both the fibre and the structure group. Weilet'.Lx(Uo)~= { i’ V > M lxtsU s

‘%,e.A} and define E(M uy = k_) L, (U ). The map pi'E(M,U) + M 1is given’
- . S XM » o S .
by ﬁ(Lx(uo)) ='x. The bundle charts for E(M,U) are the collection

U1 = {(Ua,wa); q'€ A} where. wa: U X G+ E(U U = &?gvax(uo) is

y ; ' ; ‘ . b . » ‘ 3 . A = a ’
defined in terms ofv wax' G 7 LX(UO) by w (gx(y) ¢ux(gv).e Mx ,
'for‘ &€ G c GL(V) and v é V. The structure group' G 'acts as a left

A ]

._‘g{anslation on itself, and the coordinate transformations E;B(X)J G { G .

: defined.by ‘GQB(X)’?ewqx ?;?BXf fort_x f'Uo n UB correspond to left .



’\\

translation by an element of

«

¢ which turns out to be equal to GaB(x)'

In a sense then, we can look upon the coordinate transforms. GuB(x) and
\ ) ’

G (x) as being the same.

‘gi We let Lin(V) 'denote the set of all linear maps from V to

itself, and GL(V) all the invertible ones. Lin(V) 1s a vector -space

underxr natural addition and sc

N

Exp Lin(V) -+ GL(V) defined by Exp(a) = lv + z ——. where a_ € Lin(V),

lV) is the identity on V, an
is a Lie subgroup of GL(V)
of all those ae Lin‘V) for
g = {aie_bin(leExp(ta) e G,
Lin(v) with- the property tha

Exp(g) generates the largest

alar. multiplication of maps; and it has |

dimension - nz since V has dimension n: There {s a natural map .

n

. n= l e
d a =acac- " oa (n cimes)., If G

then the Lie algebra g - of G consists
which Exp(ta) € G for all t eiR, ’ire.
Nt elR}: g is-a vector ubsp e of

t if a,b € g then [%,b] _‘ab ; ba € g.

connected Lie subgroup of G (Sagle'f*e,u'ui_‘_~

oy

, Walde [89] P. 141) The connected Lie subgroups of G. are in one to

one correSpOndence with the L

by the exponential of its cor

L3

ie subalgebras of g, each group generated :

responding algebra. The dimension of the

vector space g equals the dimension of the manifold G.' The elements _

of g vcan be put into a natural one to one correspondence with the

‘tangent Space_to G at the identity and also with the left invariant

.vector fields on G.- QXery connected Lie subgroup G of GL(V) (i.e.

G is the intersection of all Lie subgroups containing exp g) i

: orientation preserving, i.e.

det g > 0, ¥ g e G. If G 1is a volume

,pxeserving Lie subgroup, then every a € g has tr(a) = 0. If

8 € GL(V) then G = 8, Gg =1

-~

is 3150 a Lie group conjugate to. G

- with conjugate Lie algebra g gg =g . It is the Lﬁe algebra of
..90

’

f//’f]

the group structure g GCM)

~

If jgx' is thé Liegalgebra of - Gx :Weg,

81
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have the naturally defined Lie algebra isomorphiSm ;ax: 9 - J» .

— A

xe U by r (a) =r_ cacor
T T T ax ax ax

.

f(II.Z? Riemann and Lorentz Structures

There are particular group structures on a mapifold which are of .

t

special interest. If' G(M)~- m,G,u,v,G) 1is a group structure and

. . , ' _ T .
if there exists I €. Sym (V V ) [a 1inear jgomorphism from V to V

hY

naturally identified with a pOSitive definite symmetric bilinear form

. *

on. V] such that 8 olog = I for all g e @, we say that the

“-rs L‘, . ,@ «

group structure s Rzemannzan I determines a unique smooth 1nvariant

a

' covariant tensor field of order 2 on M called the metrzc tensoz’u

If Invlin(V, V ) denotes the set of all linear isomorphisms

’ *
from V to V as in Noll [77] ‘then an ele
is said to be a’ Loremtz inner prodggt if the £0 lowing conditiOn holds N
. =
@

Sym(V v )rwlnvlin(V V )

= e 4
ihere exists a basis Vv {vl,vz, n+1} of \4 (assumed to be of
. . * - MR BBV A
dimension n + 1) such that I(v ) = Vs 1 <i<n and I(vnjfﬁ = f‘

k L :
Vo4l Such a basis v is called a Lorentz baszs. ‘If g: V>V is

a lineal.hsomorphism which maps ( omponentwise) a Lorentz basis to a
Lorentz basis, we say 8 is a Lorentz map The. set of all Lorentz

maps. is called1the.Lorentz.group.‘ We let LI denote the group of a11.7

Lorentz mapt.corresponding to‘ I. TItcan be shown that LL is a Lie

subgroup of ' GL(V).

-

‘ (II 3) Abstract Minkowski and Newtonian Spaces

An Abstract Minkowskt space is a vector space 'S equipped with
a Lorentz inner product I, written .(Y’I)' If v e V?_we say that
}(reiative to 'I) v is space _1ike 1f <Iv,v> > 0, time- sze if"
_<IVzV>-< 0 and‘nylb_if <Iv,v> = 0. futting iy = 0,. i=zi],
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7

n = .1" 1= 1)"':“) = -l) i.e. (nij) = diag(lyl".':l')"l):

11 "n+1,n+l

then <Ivi,vj> = n for any Lorentz basis, so Votr. 18 time-like

13
: vy
and Vi, 1 <1<nq 5are Space-like. A
I 3

If vl,v2 €V are arbitrary, and 2: V + vV g a Lorentz isomor-

phisgm, it ig easgy to see that <Ivl,v2> <Izv1,£v2>.f Hence ¢ Ig = I.

We can'identify \ with V* ‘using I . and will do this from now on
without further specffying it. A subspace of V .1s said to be space-
Ztke if every Vector in it ig space like except for zero. A subspace’ \
is ttme-lzke if 1t contains a time like vector and nuZZ if it is neither
' space—like or time—like : o ‘ : o -
One always has 'det'l =11 for i € LI _since :2-l‘= Z*j whenvwe
use I_ to identify ;V* and V, g ig sald to be proper if det ¢ = 41
and‘9ﬁtéaéhronous if; <Iv, £v> < 0 for all time-like ‘v € v, The proper'
Lo;entz group LI+'/consists of all proper Lorentz isomorphisms. We

.shall prove later that L 1is orthochronous if and only if <Iv,fv> < Q

for any one time-like vVev,

Remarks: 1) 4 subspace of ‘v generated by sﬁ%ce Ztke veetors is

space sze if the veetors are orthonormal

2) There do not exist two orthogonal tzme like vectors, z e.,
« <Iv,v> < 0, <Iw,w> < Q = <Iy,v> .2 0, 1 fact if w is orthogonal

to a time-like vectorf\b,”then w 1is sbace-like or zero.,

- Lemma: Let Vs W, X be three ttme like veetors in V Suppose
<Iv,w> P 0 .and <Iw x> < Q Then <Iv ,X> < 0. ) %“ &

3

4 _ o - S P SR

be a Lorentz basis for- V with .w 4 =W, oo :

."Proof: Let‘ Wl ,WZ’..‘._ w n+l1 ' 'q,‘j

n+1

-, . *

'(We assume <Iw,w> = -] without loss of generality) Then Iwi==niwi
. - : , ' , - n+l '

’ WheFe nl = n2' = 0-. = nn = 1’~ nn+l‘»= -1. Let v = igl aiwi an’d{._

.
B A et e o



e
A

e

: 2
x time-~like implies Bn+l > ,z Bi. Also <Iv,w> = <Iv,w__ .> < 0

L gt e .
n+l 2 no,
x = E B v Then we have v time-like implies a > z o, and-
=1 b1 | S g
n 4

n+l

> 0. Therefore

implies a1 0 and <Iw,x> <0 Implies Bg+1. ,

n n 2 ) ‘, . 3
<IV,X> = )‘ aiBi n+1 n+1 = y y Bi - an+18ﬂ+1 < an"’lv

i=1 v o ¥i=1 : A

. . : - .
an+16 = 0. From this result we quickly obtain,

n+l ) 7” .
* @ . ¥

Proposition 1. <(a) If there exist time-like vectors v and w with

1

1
(b) If 2 e'LI 18 orthochronous, then-fbrvqny time-

.<Iv,w>‘< 0 and <Iv,iw> <0 where & e L_ then & 18 orthochronous.

. .
1)
s

like vectors v', w' with fIv',ﬁ'$ < 0 we have <Iv',Rw'>"< 0.

3
B

Prooj:' Suppose v and w exis: as specified in (a) and let ‘v', w'
be time—like and arbitrary with <Iv',w'> < 0. Since time-like veqtors
are never . orthogonal (Remark 2) we havé <‘Iv,v’>.> 0 or ‘<Iv,y}5 < 0.

ki

If <Iv,v'> > 0 we can replace Vv by -v and w by =-w and éa?
. , . . 1 - N

'still holds, so we may take <Iv,v'> < 0 without loss of generalit&:

. ) - . s

By the lemma, <Iw,fw> < 0, <Iv',w> < 0 and <Iv',%w> < 0. ‘Since
. . . »

<Iv',w'> < 0 we see that <Iw',fw> < 0 and <Iw'",w> < O, But

<Iw',w> = <Ifw',lw>+so <Ifw',w'> < 0 by the iemma,-and <I[fw',w> < 0
so <Ifw',v'> < 0. Hence <IV',%w'> < 0 ‘as required. We define L;

to be the set of all orthochronous Lorehtz automorphisms of V and
4 ' '

. 4 . C B N T .
L., =L n L to be the proper orthochronous ones. " Then,

I+ I+ I

I

) ) , X , ,
Proposition 2: L 13ra gggup caZZed the orthochronous Lorentz group,

k)

" and therefore L+" is q graup caZZed the restricted or special Lorentz

I+

group.

-
/

Proof: - Let | 21 and '22’ be or;héchronoﬁs, and consider 219 22. For

- P N
~5 , - . 1
4 .

M A




L%

wo, ‘
WY o
e ' s .
& ..
¥

time-1like vectors’ r‘v.,~w €V wﬂ "<Iv,w> < 0 we -have <Iv,llo22w> =
i

ﬁIv,le> where - x = sz. Now <Iv,12w> < 0 since <Iv w> < 0 and

22 is orthochfonOus, i.e. <Iv,k> < 0 so then <Iv,11x> < 0 since

. [ ] . +..
21 is orthochrofious. Hence so is ll 622. Furthermore, if 2 ¢ LI
o " -1

. . X -1,
then <Iv,fw> < 0 so <Iw,% v* = <Iw,% lv> <0 so ¢ e L.. so L
is indeed a group.

. .
A - -

Remarks: .3) If a subspace of V- contains a space-like and a time-
1ike vector, it muet conmtain a non-zero null veector. | ,

4) If a tune like and null vector are ‘orthogonal ‘then the
null vector i8 zeho

5) ff a non-zero subspace of V hgs all ﬁgn—zero veotors
timé-like, then. it is one dimensional. o S .

-~ o

£ 6) Any null subspace of V 18 one dimensional and g?enerdted'

by a single null vector.

If (V,I) is an abstract Minkowskl space andVHG is either L

LI’ LI+ or -LI+’ all.of which are Lie subgroups of GL(V) _as can be

, : * o L
verified, then g Ig =1 for all g ¢ G. In-fact, we may take ‘! to -

be any Lie subgrOUp of L I fThen if GZM9.='(M;GsU;ViG) 1s avgroup'
structure on a manifold M we say the group structure is Lorentzian,
-and the Lorentz inner product "I on V can\be lifted uniquely to

an. invariant smooth covariant second order symmetric tensor field on

M called the (Lorentz) metzﬂ'l.al tensor. 1f 2,1 is the component form

B

"
g this tensor, we have that ( x’(gab)lk) is an abstract Minkowski

space at x iSOmorphic to (V, I) for each x.-

®

It is also worth considering the Abstract Newtonian space at - this

LY

time. Let \ be an n+1l dimensiTnal‘vector spece eqnipped with a.

-—

'-.‘-._ . ‘ . v
. R .l - . .

1.

"85
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' ) < *x . ke LA . ' T . R Lo :

hon-zero-eleme:pt u ¢V, and hence a distinghished subspace"Vf, of
) . Tk . . . 1 ’ o c N 7

- ‘dimension n . ith <u ,v> =.0, yvy'e Vv~. Suppose also there is . a

- » ' o * o * Yok * v

distinguished element yie Sym(V. ,V) with y(u ) = 0 and <y(v),v > > 0

X .k - st Co A 2 . * - .

if v Z Au for any rea}v,N(4KWQ say that the triple (V,u ,y) 1is an
- ' e S . . '
Abstract Newtonian space. _Clearly ‘ker(y) -is the space generated by

- . ; . L _Lf K . . . ) P
u and Im(y) =V

A basién.v 2'(v1,v2,-f;° ) for eV is said

-’Kq+l
b GZ'Z’.b' f'* oF d.t v, + +v ©
. == = v ehet vy v
to be a Ga 1lel basis=i vn+1 u an. Y. v1 1 a '
* ok * @k W
where (vl,vz,'°r,vn+1) =v is the dual basis to Vv and we define

* ok *x .
a®b e Lin(Vv ,V) by (a®b)(e ) = <b,c ~a, a,b e V. A Galilei
autémorphism g: V>V is a linear map that .transforms one- Galtlei
basis Coﬁbodentwise into\énother[ ‘The Galilei groqpﬁ,@v Ais thejgrquﬁ'

"of all.Galilei«isomorphisms from V toliv; which is also aQLiéigféup,
and a subgroup of Unim(V). We write GV+ = GV n SL(V) uamd“callJtHis

thefproper_qalileﬁ group. The restricted (Qr~special)’Lqrentzwgf6up
Y ;

and the proper Galilei group are connected Lie groups.

A ‘ : ‘ .
If (V,u ,y) 1is an abstract Newtonian space and G(M) = M,G,U,;v,6)
is_a group structure on a manifpld M where G 1is a Lie subgroup of

. . * Y . . T N .
GV’ then u - can be.lifted to a smooth invariant l-form on M twh

[y

we denote by ua in pémpogi:i form) and Y can be lifted to a smooth

{nvariant symmetric contrdhagiant second order tensor field on M
N ol

(whicY\wedenéte by Yab)‘ We say M is equipped with a Galilei structure,
and write (M,ua,yab)‘ where uayab = 0.
If we take G = GV or GV+ then we can explic{t}y evaluate the

a

Lie. algebra g. Since 4 cohsists bfxmua%from V to. V we can
take a Galilei hasis and find .the elements of g aréwfepresented by
matrices of the form shown'beiow, Likewise for a Lorentz structure

on M, taking G = LI’ LI+’ LI or I+ and using a Lorentz basis, v
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' 7 ' ) A / “- . v /—>
 the gorresponding Lie algebra g can be described by the set all

matrices as shown below.  ° o
' | . ’ ”,' . , R 2 . ‘

‘ 0 " a3z -ap by ‘ 0 ‘a3 waz by

Galilet S Lorentz -

d?. ' case, ~aj 0 - a; by -aj 0 aj bz‘ ‘ “
ay -ay 0 by| ‘ ap =aj 0 by| (II.3.1)

0 o 0“-0’ . ’ ok by - bz’ by O

Here wé/£aVe raken n,+ 1 =74, and since théré:gre-‘6j]parameters,
the dimension of the vector space g 1is 6 1in eaég case. If

a,beg ~are repreéented.by matrices A and B rgspeétively, then
R - S . o
[a,b] is represented by AB - BA  which is a matrix of the same form

?
! . -

as the above in edch case. We can, in this way, mnaturally associate
q withr{bejténgent space Ge to the Lie group G at the identity e
e : A i . . v

and hence also with the left invariant vector fields on G. For

. c 7
: \}

further infotmgtion on palilei.structures expegially, see Kiinzle [46].
Let G(M) = (MG,U,V,G) be!a group structure on M. Ve say that
G'(ﬁ) = (M;b;gU',V,G') is a s@bgroup étrycture of GM) if G;’ is
wa Lie sdbgmodp‘df lGx V x ; M  (G = {Gk’ X € M}; G' = {G;, X ; MR
and 1if G;,'is a Lie\éubgrouﬁiof G. and if U= f(Ua;fa),‘a G,A?
then U 2-{(Ua’ra); o-E A{} 3w@éré' A'jé Mt Any subgroup structure

of a Riemannian [Lorentzian, Galileian] group structure is again a
Riemannian [Lorentzian, Galileian] group étructure. In general, the

subgroup structure will possess a widér possible variety of different

Bl

. * C o . ) i -
lements I or (u ,y) -satisfying the group structure conditions
_slem £y

~ . . [} ’
than the original structure. “For the Galilei structure it is worth

N k3 * S RO
foting that these conditioms for g ¢ GV are gdyeog =y and
R X ‘ x K * N ‘
g (u) =u  where g:V >V, g: V>V

The concept of a group structure can be applied immediately to

y p
4 .
Y



the theory of -a smooth materially uniform simple Hgdy (Waﬁg [108] p; 46)
s “l ‘
,and permits us to describe the properties of a body manifold in terms of

&8 SR . ;
a vector space. The material connections on the body d space time

¢bnnections can be described in terms—of-the concept of a connection on

the group structure, which we now investigate in some detai%;

; .

3

(11.4) Counections on a Group Structure
In an abstract and general sense, a connection can be looked upon
as a smooth field ?f horizontal subspaces following Kobayashi and
\ : > . - 3 ,

Noﬁizu [44] and Wang [108}.

%

1

o p, .
ﬂII.S) The Fundagiérital Fields on the Principal Bundle

" Let G(M) be a group structure on the manifold M and let EM,U) .

be the principal fibre spége associated with G(M)‘ as we have definéd
it. Then E({x},U) = LX(UO) is the fibre in ‘the pfinéipal bundle

associated with x € M. A natural difflerentiable structure appears ou

L (U) treated as a manifold making each v :G>L (U) a diffeomo;—'
ox 0 ax x 0 ot

phigmn ¥a such that x ¢ Ua' An element a € g, the Lie algebra of

R
the ﬁtrudture group G can also-<be viewed as a left invariant vector
field on G. Then for each a €g we can associate with a, a vector

field a on L (U)) for. x € M.
x -0

We call a the fundamental field associated with a ¢ g. It is

anl‘b_‘

al way from/the diagram below as a = wax* ax”

defined in the nat

Yoxk We only have to prove that a
TG _ — TLX(UO) ; :
as defined here is independent

(Left invariant

a < . a
i vector field)

’ x ¢« U . Choose also B with

wax a
G .
Lx(uO). x ¢ U.. We can use the left

g

iy,

of the choice of ‘&, such that

88
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‘—\ {
L4
- ] L , . ' . o, a )
invariant property of a e€.g to prove this. Left invariance means that
for each g € G, Lg*‘oa = a oLg as illustrated in the diagram. Taking
' . ’ i S N -1 -
E = = o ) ] =
TG ~——IT————» TG . g aB(T wax wa ye ave wax* l‘()'Bx’: a
. g* . ‘ o. -1 ) ’ : i Y - ' i -
{ ' “[ g_ wax wa or, since all the» ] s and deriva
a a . . » LT oaoy Lo o
_ tives are invertible, a = wak* a wax = wa*

e
G G -1

a OWBX' Consequently, the fundamental field

is well de%ined, independent of the choice of a.

We can 1lift a  1in a natural way to a cross section a oﬂ the

principal bundle. We. let 'ix denote the incldsion map from LX(UO) to

\

TLx(UO) TEM, ) | E(M,U). Since E(M,U) 1is a disjoint

i
* -
x union of the L (U.) for x e M we
- -~ . VAN X 0 A
|-a a ’ . ~ Z oz J
¢ . « . define a(¢ax) ix* a§¢ax) for all
. x ’ .
—_—
Lx(uO)" E(M,U) ¢ax € Lx(uO) and all x ¢ M, (a “isJ

such that x e Ua)' We 14t §!={;|a eg}

and define [;,E] = L;g. Then just as [a,b] = Lab in g
\ .

b are interpreted asvlefg invariant vector fields on G, the parallel

~ ~ A~ TN 3
relation for g gives us [a,b] = [a,b]. Thus the Lie algebras g and

~

g are isomorphic Lie a@gebraé.

Now we ¢an look upon TE(M,U) = k_) E(M’u)¢ax as a disjoint
¢GX€ E(M,U)

union of the respective tangent spaces. We have that {;(¢ax)[5'e 5} IS

", E(M,U)¢‘ 1s a vector ‘subspace of the
T(M) « TE(M,U) ~ same dizznsion as the Lie a}gebrat and
P o‘\\ it also equals Ker %; at that point
ooom : ‘é& Oyx' As a result m, oa = 0 for all
M E(M,U)

a e g. A horizontal subspace of

E(M,U)¢ - 1s a vector subspace H¢ with the property that E(M,U)¢ =
CiTox ox - - » ax

a -and



H ®V where V = ker(n*|E9M,U) ) = {§(¢ )‘a'e g} An |

¢ . ¢ ¢ ) N ¢ ‘ .

ax ax N “ax ax
abstract global comnection on M is a smooth map Y: V X E(M U) - TE(M Uy’
| ' ° = ‘ ' ) = d : V> E M, U
with n* Y(V % ) ; ¢ax(v), p o y(v, ¢a¥) box 2nd Y, . M, )%x
is a linear one to one map whose image H¢- is a horifonta ubspace.

ax

Thus a connection determines a smooth field of horizontal subspaces, and
also conversely. In the obvious®way we define an abstract local connection

y: V x E(U,WU *’TE(U,U)\ on neighborhoods in M.

We can define a natural projectipn map

\VLX E(M’u)
. \: V> E(M, U)—*TM by x(v . )—¢dx(v)
Y This makes the diagram on the left\ébmmu— ’
™ <+ ‘ '
tative in every case. If & smooth field
P . S
H¢ is specifie@, we define Y¢ : Vo>
m ' ax - ox
L ‘ EM,U) EéM, W) for each ¢ by vy, =
- . ¢ ax ¢
-1 . ax . Tax
(n*¢ IH ) o ¢a , "and this determines our connection Y. 0f course,
_ ax o | ' o
dim V¢ a= m = dim g and dim H¢' =n = dim M. Thus the conﬂ%ction c¢an
ox ax )
also be représented by a field of prOJection maps h¢_ : E(M,U)¢‘ > V¢
ax ax ax
for .each point ‘¢a , such that ker h¢ = H¢ . We have the natural
2 * . ax ax-’ '
vector space isomorphism [¢axz'g - V¢ (evaluation map) which can be
' ax.
used to define w¢ = ];l o h¢ : E(M,UTJ“\‘*\Q<\ which is a linear
. ax X ax . ax ’ N
ogto map for each ¢ox" In addition w<~have thé isomorphisms
n = (m_ ‘H ): H =M, x e U . Clearly, then,
*
¢ax ‘ _1¢d ¢ax ¢ax “(¢ax) * ¢
Y =n o ¢
¢ax ®ax ox h

(I1.6) Horizontal Lift'and Parallel Transport

Let x: [0 1] > M be a smooth curve in M with X, =‘x(t), X =;x(0),

0

x1'= x(1), and supposel vy 1s an abstract 1oca1 connection defined on a
\ //

neighborhood of the curve x. Let ¢0 e E(M, U) be arbitrary with

by J/

n(¢p) = X5 i.e. ¢0 € Lx u

0). [In Egse/’y is ndt global, simpli
0 ‘ ﬁ ) ‘



91
/

replace M by U every time it occurs.]

¥

-V x E(M,U)

b L n*.éy

. . natural projectioh

U= peoy
second

compdnent
projection

M T E(M,U)

Then ‘there exist unique functions wv: [O,l] +V and ¢: [0,1] ~» E(M,U)

) . dx } e .o
such that\hk(yt,¢t) = x, =Laz:t and -Y(vt’¢t) = ¢t’ ¥te [0,1] where
T d(0) = ¢d. The.curve ¢, clearly a solution to a-differential’equation
with a smooth -function, satisfies n(¢t) =‘xt and is called the horizontal
Lift of x with sfarting point ¢O. 0f course, v, = ¢;1(it) and
}¢ = ¢t:«Vd+ Mx , .and n*(¢t) =X, -
't t .
If x is fixed the curve ¢ wifx/depend on' the choice of the initial
point ¢O. We can therefore define a ‘one parapeter family of diffeomorphisms

of the fibres, nameiy ot Lx'(uo) * Lx ) for t e'[O,lj by
1 0 . _ ‘

t. 0
. t .
pt(¢(0)) = ¢(t). They are called the parallel transports along x with

reéspect to y. If X, € Ua for t € [0,e] for some -0 < g <1 we can

" define a class of transformations on the group G, namely w_l o'p. oy :
: > . axt t axo

G + G which 1s a diffeomorphism, although not in general a left multipli-

cation. We say that vy 1is a G-comnection if for every curve x the

.
-

transformation above on G 1is a left multiplication_ by an element of G,



-1 —
so that: wax ‘ pt v =L

-

o
Le]
7
<]
<
]

If x. ¢ U also we have P

Lg . 'Theicomparison is

0 8 Bx Bx
I‘:', '.\
—_ s
0GaB(xo), or
=L =L
GaB(xt) “gt .CQB(*O) t
o = -1 ‘e . . non ' .
Hence 8, _GaB(xt) 8, GaB(XO) where _ is group multiplication.
G g . - . ) :
Recall that o : on(uo) > pxt(uo) and L (U) = {¢ax.‘v-+Mx xeU_,
aeA}l. Thus we can write - .
p (¢ ) = ¢ .
E %%y **e
¢ VoM ¢t VoM
ax Xg a X, rox,

SO P maps one 1lsomorphism to another isomorphism. From this we obtain

t
the tangent space parallel transport on M namely St: Mx - Mx by
. 0 t
, ~. I S R | ~ , .
.taking P, = ¢tht ¢axO = [ﬁtf¢axO)] ° ¢ax0' p, 1is an isomorphlsm )
o - ‘ S e |
that is well.?éfined if an@ only 1if FPt(¢ax0)]» ¢de [pt(¢BXO)] o ¢BXO

for each a,8 with x, € Ua nu Aliernatively‘we can write

0 B*

. = ] . - 1 :
pt(¢ax0) CH ¢ax0'»v MXt, and thig characterizes the type of

parallel transport pt which allows pt to exist.
. A connection on the group struature G(M) is a connection Yy whose

tangent space parallel trénsports pt' exist along any curve, and the

[

corresponding isomorphisms are always structure preserving.

Now look at the fpllowing diagram. We have wax(g) = ¢, Where

g ¢ G and ¢, x € LX(UO). Take v ¢ V. Then ¢ax(gv) =9, V) = [wax(g)](v)
2 . — v g .



v , which is the original definition of "

. _ ax
;////////. as it was given. o
g € U .
. K . , -
v 1 ‘ _ .
, We‘clear y nave ¢ax° g ¢a X and
iience b x By ° 0~ x = bax ° 81 ° By
®ox ' T 1B A
The particular choice of dg’ g e
fixed here may not be unique. We can \
y .
easiiy see that V. x(g_z)-==11>OL S for
" o , : . T e |
X _ : Tany gifgz € Y this we can prove
~ . oo ) '
. ';-1 ° . \ = —1. . - = ;
that ¥ o wa](g)' CR ¢Bx) g.‘wbere B e
2 oo . = -1 N
RGO NP W, o Vg (8) Vil @)
8,8 | ax oy
! , 1
| - o _ —_ - . "'-l ‘ _ 3 .
and thereforen‘tpaxowBx = Pgl = GGB(X). But ¢ax ¢a X 8, = ¢ax‘>¢8x

) " g1 -
(x), s0 we indeed obtain the required equivalence This simply gives
a detailed proof of a fact we have known all along. The purpose for this

digression is to introduce the required notation- for the following analysis.

" w - @
proposition: ¥ i8 a G-connection if and only if Yy 18 a conriection on

the group structure. R : _

LA

Proof:. ({5) We have bt ='m“¥t()Lgt °¢ax0 and have to show that
N '~ . R . e N
o (b, ) =0, d¢ﬁﬁ for some.structuré preserving {somorphism
- i 0 . . ' B : h
or M M Let f =a0a , 8¢ ¢. Then
> X X, - g
. 0 t .
o) T el ) T e e PR
0 g 0 t Bt l 0 g O !
=8
= ¥y (gtg)r« - | .
t . .
It we let 5, = [y, (B E)]° 5L = gy (88 R RGO e )
, t 0 t g 0 0 0
~ : - -1 _ . -1 Ly )
then 0, = [waxt(gtg)d o g ¢ax0 [waxt(gt)l ¢ % which is independent

R
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of g and hence B. Thus ;t is well defined. Since p_=19¢ - Lo
o . g t -0
it is therefore also structure preserving.

-

~

(<) 'Since ,pt is structure preserving, we have an equation of the form

~ -1 - -
=p o = o .
Py % x ¢ax along the curve x. Also pt(¢BX ) P, ¢Bx for
gt t. 0 . 0 0
each B. Hence
-1 | -1 -1
Wl oep e T =Wt e 1. d=v (o (6 )
axt t axo axt t agxo axt t agxo
1~ ! _
= Vox (pt °% x >-_wax @, | X ) = g8
t g 0 t 8,8 t
Obsegve that
5 -1 = [+] o - —1
pt - ¢a xt °¢ax0 - ¢a xt & & °¢ax -
.gt gt N R . |
3 ot
¢) o
a X o X
g .8t 0
t
= ¢ °¢ql " in the expression above
¢a X o X € exXpress :

gtg t | g 0 a

This completes the proof of the prQPosition.
/

(I1.7) The a-Coordinate Representation of vy .

Choosing a‘c'A we can examine in more detail the behavior of the
connection vy for a particular bundlé chart‘ (Ua’¢a)' If x ¢ Ua is
a point of M{ we can take |
(x,;) € TUQ (using ¢a as identifying d;ffeomorphisﬁ), ; e V.
(x,8) € E(UG,U) (using wa as the ide?tifying diffeomorpﬁism), geG.
[(x,g);(;,a)] CQ}E(UG,U)- (x,g) is the base point and (;,a) is
7 the tangent V%Ftor. ; ¢ V identifies (x;;5 € TUa Vand aeg identifies

an element of TG at g since there is a natural isomorphism (L;i)

between Gg and Ge ‘where e ¢ G 1is the ‘identity, and the latter can



WXV ' Vx E(U LU
X N 31

{

' diffeomorphism"
: Y

v,V « V, v = gy .
TUq ﬁ—fjr———-" TE(UQ,U) P(x,v) = x
. oo | 5
n(x,g) = X

ol (x,8) s (voa)] = (x,8)
: |
u € EU_,U)

o : kv) . ' Av,x,g) = (X,;) °
=\ v W) -

era ’ . u(v,x,g) = (x,8)

L Ga8), (v, ] = (x,v)

‘ . y(v,x,8) = [(x,8),(v,a)]
" diffeomorphism T% . S :
U x¢ V¥ ‘
T
be identified Qithvfhe Lie algebra. Clearly also (v,x,g) is naturally
[&ith a specified] identified with an element of V?KE(Ua,U). Thus
our connection Yy can be looked upon, in local coordinates as a ﬁap
Y :VxG~>»g for X € Ua' It is specifying the functional dependence

ax -

of a ¢« g which determines the nature of the abstract connection.

(1I1.8) Change of Coordinate Relations

For x € U“ n UB we can write Yax(va’ga) = aa and YBX(VB;gB) = aB.

~ ~
[

We clearly have vy = Vg wax(gu) = wa(gB)i ¢ax(va) = ¢Bx(v8) where

. —_ °
Vy =By, and vV, = gavg. Therefore 8g = GBa(X)(ga)

and vB = GBa(X)(va)’ as defined -in (II.1).

Now let us consider how 'aa transforms to’ ag-
need to’consider the Lie algebra and group in a different light. G,

GBa(X). ga

First of all, we

first of all, is a subgroup and submanifold of GL(V) and g 1is a

linear SQbspace of Lin(V) = {a: vV > V|a “is linear}.’ g can be looked

upon as the tangent space to G at the identity e, (e:V > V 1is the

>

K

PRSRENRAE Y o
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identity map). The tangent space to G at g . is obtained by left

translating g by g, namely

G = gq . o v (11.8.1)

g
[(gllal)) (gziaz)] ™ (gjaj) Now 83 = glgz and
mult* ‘
(Gxg) x(Gxg) — Gxg mult(g, ,8,) = 8185

Recall that gng is actually

a composition gl ° 8, of linear
mult

96

invertible maps from V onto V.

Now, mult(g, +ng B, g,+ng,a,) T B8y T N8 318, ¥ N8 Bya,, (to first
order in n)
so’ mult(g) +ng a,,g,+ng,a,) ~mult(g,,g,) = n(g,a,8,+8,8,a,)
| = N818%
which implies
. . ] . . ,
az = 8, alg2 + ay. X (I1.8.2)
v

This then defines the derivative of the multiplication operation i

{ * .
terms of the Lie algebra. By setting a; = 0 we see that the derivative

of left translation leaves the Lie algebra element uﬁhhanged — an obvious

result that we naturally expect, 1.e.

(';xg-—L—-—-—’—» Gxg }
gl* . )
) Ly x(85,3,) = (g;8,,3,) = (g55a,) -
1 .
Lg _ : :
G l g G i

On the other hand, setting a, = 0 gilves us the operation of right

translation by 8y-



()/

o
’ -1
(;( U ; i = \d 4 14 R y = y s il .
q % G<g Rg,*(gl'll) (B 8y Ry ayry) = (Ryain))
8w 2
We also see (roﬁ thié'that iff a+« g, g+« G, then
R .
G ..jild_-, a g-lag ¢ g. We define this to be the Adjoint map,
namely adg: 9 *g, g € G by adg(a) = gag_l.
-1 - -
Hence R -1 (g,a) = R (g,a) = (ggol, ad (a)) and (I. ¢ R _l)*(g,a) =
_p 80 % o Pox Bo . Bo o wpt )
(g g8 ,ad (a)). We can define Ad : G > G as Ad_ (g) = g .gg S0
0770 P.O I 2 Nnesn
Ad =L oR .. Then Ad =ad , i.e. Ad_,(g,a) = (Ad (g),ad (a)).
- * * O ’
By 8y gol Bo* B 84 By 8
inv, ~ Similérly, if we let (gz,az) = inv*(gl,al) and use

mult*((gl,al), inv*(gl,ai)) = (e,0) we can show
1 -1

‘7 that inv*(g,a) = (g_l,—gag_ ) = {g ,-adg(a)}.
inv Notice that ad Oéd = ad . Now let us
¢ —Y—— g & g2 8152 , o
: ~ consider again the transformation of a, into aB.
G
- ‘ . Bk ~
\(X,VB,gB,aB) (x,va,ga,aq)
. —
T(U, n Ug) xGxg '—]E;TT”) TE(Ua{wUB,U) T, T&UaerB)x Gxg
(P,ul) o
| vy b ‘
, -
(UaerB)ixc —_— E(UaerB,U) (UaerB) x G
(X,gB) L —_ _1 (x,ga)
G = ° v
Ba 8 a,
(Ua n UB) x v .
GBa* °¢a‘ GBa*
@a d T(UaﬂUB)xGxg —_— (G X g
| . !
T(U nU,) ———> G
( an 8) GBa* Xg (P)Ul) U-l
first . second
P comp. |u "2 comp. z
l +Cgy proj. projJ. (U nU,)%G _Ba &
U ony, —2% ¢ g
a B
I
‘ v



Now we have, (;l‘ (x,pg) = (JH (x) " p -~ mult i(ll_l(x).g) ., and o
(YR 31 “a

G““*((x,vu),(g,u)].“ mull*fﬁud*"m“(x,v“),(x,J)). o1

represgentat fon

: : = : G o clp .
(““*(X.V“.K“.l“) mull*( ik rd(x'vw)‘(hd'lw)]
In our formula (11.8.2) for mult,, ill U) “(HM‘* ‘tnrin,vw).
.-
B 7 'HW(X)' £ =‘g“,n2 A Ay Ay Py R hfd(X)Hw. Henee
‘ - -1 )
a. = a., = g ¢ +a, = ¢ oG a Yy +a . L I P
R 15 gZ ‘ng 2 A [“2 gk bq(x'vrt I oy we
Gﬁa*xf » g denote the 1inear map naturally detined ffnm HY"GV‘*"Jl
at  x we can write
a, = g_l G (; g + a . (11.8.1)
9 o Boakx al T o .
5 = 1 ~ G ¢ is s consiste noay :
Of course CQB* inv, Ba* 1nd\th1q i1s consistent when applied to

n the above relation as it interchanges the roles of « and . We also

see that

G (v DERY n(x)G \x (v D0, 00 = 0. (I1.8.4)

(11.9) Parallel Transports in Coordinates

Consider a smooth curve x: [0,1] ~ Uu’ x(t) = X,
x V -
(¢}
’XP(U LU
éa
TU TE(U LD
o Tx
P P

U DU EU_,U)

CNDCN)

U x G
a

9y
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Bevdr ~ 8¢
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M dx . ’ ' “ ~ - ._1/ . . ~
Let x_=-—"| €M «c TUa and let (xt,vt) —.¢a (xt) define v, € V.

t

“

. 9 !
We use the a-coordinate representation here to express the operation

of ,the various functions ﬁnder consideration If ¢ 1is the horizontal
. S

’ A i -

lift of x = (with value '¢t “at - t) and initial point ¢0 we may let

PN

-1 : ) - -1
(Xt,gt) = ¥, (¢,) define g,- I~ vy =g v

¢ clearly A(v , X 028 ) = (xt,vt)

t

2

so that Y(vt,x -5 ) = [(x '8, ), (v 8, )] for some a, €4, or altern ely,

Y x (Gt,g£)= a:. Since :ét =“gt we have the differential equation

t
det(Yt,gt) =8, whicﬁ can be solved to give us 8, pﬁpvided g, 1is
specified. ‘ . .
}
a o .When g is given, g is °©
0. t ;
(xt,vt,gt,at) ‘ -
uniquely determined for each
¢>t t. We can-now ask what the °

e ot .
TE(U ) . TU xGxg condition is for y to be

p 1(P “1): a G—copnection in the a-
» coordinate representation.
E(Ua’u) a -1- -
If v _(v,g)=g vy (gv)g.
(X ) ) O.)(A - .\ ax
fbt _ t*8¢t

H where v = gv ¢ ﬁ\\for some
function ';' then the equation is 8¢ ét g—1 = ;;x (Vt) and with\ v,
t 1

initially specified and determined, 8, has a left translation d pendence

on the initial choice qﬁ—vﬁg. In approximating differential fo

b

g
— ~ Ct "
= vy (vt). From this we can obtain the lgft translation relation

ét dt = g;gtdt viewed as maps. : V + V where \

_ (1if the limit exists) as

o
]

n -+ o

lim ex ta a 2x E.; . E-;
t [FPlR %n-1 Pla ®n-2 |7TO*Pn o) (g

joo]
o]

il

t — t — r —
lim {1-+n a _ }(1-+;—an_ t}' [1-+;~ao]g0.
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N 4 o e ‘ ] )
In the special case where. [at,as] =0 for all t,s ¢ [0,1] we have

: t <o . 7 . _
8, = xp(f ;;dSJgo' Of course™ a, € g 1is.viewed as a linear map from

.0
to itself as is 8> and 1 1is e the identity map on V 1in the
. ‘

limit expression above.

(I1.10) Transformation of Coordinates for a G-connection

4

A G-connection Y can be répresented by a map ;; :

x \ f g, and

1}Y

A RPN ~

we may write- ?;x(va) = ;& and‘ ;éx(vs) = Eé where v8 = Gsa(x)(va) f
— _l —

-1 _
and a = By 3u8y aB'j gBaBgB - Then using (II.8.3),

aB =bga GBa*x(va)ga + a,s S0

1 _ o~ g = -1— -1
Ba?pBy = Cpuay(Vy) +a = By8p 23858,
Since GBa(x) =88 we have
a, = GaB(x)aBGBa(x) - GBa*x(va) o (1I1.10.1)

and this is the transformation of coordinate relation for the a;represen-
tation of the connection Y, - when Y 1is a connection ‘on the group
Structure. |

Recall that in the definition of a connection, the fibre maps

Y V> E(M,U) were onme to one, linear, with images H which
¢}ux ¢ax ' ¢ax

were horizontal subspaces. 1In the a-coordinate representation

Y¢ (v) = (v,yax(v)) which 1is one-one and horizontal provided only that .
X N

Yux (and hence Yax) is linear. The transformation équatiog cap be

written in the more convenient form '

a = GGB(X)[?P + CQB*X(VB)]GBOEX)' ) (11.10.2)

a ]
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(Ii)ll) Components of a Connection

, ' : ' e i )
.Let v e a~basis for V and a(l)} ,a(m) a basis

CORARRRANCY

for g. Since g cons;sts of MNnear maps from V to V we have nxn

matrices A ,** LA corresponding to This satisfies
(1) (m) P &

3y T AW 5 YW
Ja

2wy T my”

j h|
so that £ r scalars v, a v .
° SR
and the Components of v = vJv(j) are trangformed by

k
A1) 5 (k)

left multiplication by the matrix A(i)'

There are structure constants Ciij which describe the Lie Algebra
- IN C k a | s0 A A - A A = C k A
(1)*7(3) 13 (K’ WG T TMHTW T L 3T

These constants depend upon the choice of the basis of - g.

. 2y ()

A .change of basis can be represented in the following simple form

such that [a ] =

. - » - = 1
using primed apd unprimed 1nd1ces.7 veggave v(i,) Pi'Y(i) anq
v Pi'v i =1,*"*,n where Pi Pi' = 6i (inverses) and
(1) (1’ ) ? ’ i’ j
i' ] i' i it
= ¢ . = i = v e = .
Pj Pj' g Similarly a(i,) Qi'a(i)’ i 1, },m, a(i) Qi 3(1')
. i i i i' ] i’
where Q. = ¢, and . o= 8, .
ere Q.0 = 8 Q Q3 = b, .
In order that . a(i,)(v(j,)) A(i') 5 V(k') we require that
k' i k' j- k .
A(i') it Q P PJ A(i) and also we can easily see that
k' k' 1 ] k —
= . Li i : -
Ci' 3! Qk Qi'Qj'Ci ' ikewise Y ax V g can be represented by
- — i
an mXn matrix rax' Bt Y (v) a where v =v v(i) and .a = a a(i)
where vi,ai eR, 1=1,2,*++,n (or m) then F;xljvj = ai. Under a
. 1! i R i' i
change of basis it is clear that a = Qi,a and v = Pi v and so
— i‘ 1' j__ i .
therefore T , = Q. p,,T . We define the connection symbol
ox j i 3" ax j
~ k k = 1 ~ k' k' j L ¥ k
r . = T .1 =
ax § & A(i) 3 Tax 27 t transforms as Fax g Pk Pj'Pl' axj 2’
i ~ k . .
and furthermore 1f v = v V(i) then Faxxj Vv represents in (kj)
matrix form the image of v in g wusing the basis v(i) and viewed

as a linear map from V to itself.
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\%’

(II:iZ) Change of Coordinates in Components D |

Now for a fixed basis let us see how Faxjkf, transforms under a“.
change of coordinates to Fijkz. Letting v(i), i-= lf"',n ,be the

A

~ ~

™~ o

LB

i _ —_— ~ _ —_— o
fixed basis, we have YG =V, v(i) and _vB —‘VB v(i) where Yax(va) a,

s

A

» and .7 gv )\= Also a - 1s associated with a matrix A and a
Bx B a a R

aB.'

with another nxn matrix ‘KB using the fixed basis {v(i)} of V.

- _ 73] ) — 71 k "2 _+k
Theﬁ aa(v(i)) Aa iv(j) and aBQv(i)) AB iv(j) and Fax.j Vs A(1 3
~ ~ 1’ — ~ . ~
and fo ij,VB = ABkj" We have VB_='GBG(X)(YQ)’ and with our basis
{v<i)} of V we can view GBa(x) € G as amap V + V and represent
it by a matrix that operates on components. Thus v Y-¢ i_ 3 and
: 7 B Bax j o
. L A . ~ .
also GBa(X)(V(j)) = GBa)(j v(i). Likewise the map GBa*x' V> g can
. ' k — . '
be represented in component form as GBa*x_j . exactly as Y ax -is
: ~ k
represeqted by Taxj ¢ Then
a, = Gas(ﬁ?[aB-FGaB*X(vB)]GBG(x) from g;I.lO.Z), and
Kal =”Ga8xik[-8k' + GaB*x ,klvBQ]GBOl 3, so .
L eP, ebxk 83, 3 x P
I , I
— : 1 — —
~ i ~ 0 k.02 t L " q
T .
61;otxp qva Bx-j ZVB o |G8ax q Va
| i -~ i k k “‘; i f‘
~ i q - ~ e _ j . ¥
T = T + » . .
ax p qva ,Gaﬁx k[ Bx j ¢ GaB*xj 2] VB GBax P
. ~q = |
Since this is to hold for all v, we have the transformation
relation for the connection components under a change of coordinates as
roto. LF K k L J (I1.12.1)

FO.Xp q - Gan k[erj 1+ GaB*x\j 2 ]GBax q GBax P
e ' ‘
i k i

Of‘coursé, we have 'the inverse relation G G =4
- aBx k Bax 2
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(I1.13) Homogeneous Bundle-Charts <

. \
" Because 'all the Lie Groups are subgroups of GL(V) .and all Lie

Algebras subalgeSraé of gZ(V), every G-connection is a GL(V)—cbhnection
~with the same éomponigts in the corresponding charts, with a wider

range’®f charts and transfdfms correspoﬁding to thg bigger group GL(V).

Howeveg the transformation relgkions, includiné the one above, are the

same. Hence we can consider a special group of bundle charts (Ua,¢a)

which are homdgeneous. If there exists a one—dne smooth map fa: u v

a
: such that fa*x = ¢;i: Mx + V for all x ¢ Ua
TU_ : Vxvy :
a* , then we say that (U ,¢ ) 1is homogeneous.
first : oo aan o
P comp. 'If f’ exists it is not unique since f + v,
¢ proj. a ' a 0
Ua LA v | . Vg € V for fixed vy will also serve just
as well. If (U ,¢ ), (U,,,) are homogeneous
: a’a BB
t M >V
akx” x .

. - -1
charts with x e Ua n UB’, then ¢ax °¢8x =
1

Gug(®) = (£, o £,7), . With the basis {

(is linear isomorphism)
| Yy

for V we have this expressed in matrix component form as

ST oag t
Ganlj = ;;25~ where we understand it 1s the components of the function
B 'x ‘
£, ofél; V >V with respect to {v(i)} that are differentiated and

evaluated at the point corresponding to x € Ua nu Each fa is a

g’
smooth functdion fi: U +R such that f = fov . and similarly
a” Ca a a (1)

f, = fiv . In general f °f-l is ﬁot linear and is not defined on
B 8" (1) a

B
‘all of V but only on fB(UafWUB). More explicitly, if ‘
‘ i

. . 3f i

£ ot t(vlv,. ) = Wy then a = 3V
a B8 () (1) j j

, afB X v Vkv = (x)
' (k) 77

: V~>g 1is represented in components by

Similarly, the map GaB*x’ | ]
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K Bka Bzf 1 ' . ‘ )
= , ;a .. In component form, the derivative
Brx § & -1 h| L .
of af - df »
, B B
22e ¢ AR
map of G, ., = in the B8 representation is a Lie
»¢ ot " IR Y: : .
B B 8
algebra element reprebented when con-
tracted with some Vv
&
lated to the origin by GaB(x) = Ba(x)’
and this is Eﬁe purpose of the -~
o
. : : —_— term. As a consequence, we
P . U i _
1 - of v -
: a 'x | . _
. determine the transformation law of the
Uuny — G
o B GaB

connection components-withArespect to a

change of homogeneous coordinates as

r

‘ i 21 [ i
g 3 ,
~ i {F K afd . fa ‘ afB afB
axp q Bx3 & g ki gp Jap M) 5 9] o P
B 'x 6_ B 'x a 'x Ta 'X;
If we then set T L. -T * and T .k .= -T .k we see that
. axp q  axp q Bx j ¢ Bx j %

. I' satisfies the usual familiar transformation law for components of a

+

connection, namely

k

- ;oefg o I ot " afek ézfal'
=T oo+ - .(11.13.1)
Bxj & - axpaq 5p 1f e B 5p ] 3¢ 1| af Jag *

o X

B 'x g 'x a 'x B B

(11.14) Asides and Comparisons

To give us confidence in the correctness of these results,'and to
relate them to more familiar properties of a connectlon, let us take the
\
following,digression on the transformation of 8, and the parallel trans-
I/ l ! V '
port formula.
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'111.15) The TransYormation of ét a ! ’ .
‘ | . ey
. d _ . .
Viewing gt af amap V > V we have ac B¢ gtgt. where gt € g i

and is the ratural left translate representative.of the derivative of

-1

By For a ceordinate change, GBa(Xt) = Bg, "8y SO that Bay = Gﬁd(xt)gat'
Differentiatiﬁg these as linear maps éig? V to V we have f
d d \ \ d
— = | — + - .
dt Bgt [dt GBa(xt)] Bat GBa('x,t) dt Bat
: N JL-G (x) 1 lement f“jG . “ d i gro ht &
vow at Cpa*e s an element o ¢ (x) an S ug to a
. Bo Tt =
| . -
Lie algebra element by left translation by GQB(xt)' From the diagram
below, we see that the Lie algebra element is E (v ). ‘Hence
hﬁa*xt at
d _ C A » ~
dt GBa(xt) - GBa(xt)GBq*xt(vat)'
(Ua n UB) xV

Ba*
P Ul
Y G '
. X i Ba
. ; ’ . %
(x =x, (1)) . GBa(xt)’ tel. u

» = o d
Now we can substitute this into the formula above for E?.gBt and obtain,

~

o = T c ¢ + 3 " ‘ :

BacBor Cﬁa(xt)cﬁa*xt(vat)gat CBa(xt)gat ot and therefore L
o =gt ¢ ] (; :) + g usi G, (%) = -
%Bt Bat Bq*xt at’Bat © Bat né R *t? T Bpe " Bar

This transformation relation is the same one as we had between a(1 and

ag and indeed it must be if the relation a = é we used is to be

coordinate iqgependént (c.f. (II;8.3)j.
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(II.16)‘ The Parallel Transpoit Formula

We have seen that the parallel

3

transport rglation pt(¢ax ) = Pa x

0 .t t
: u u
mapp%ng P, on( 0) > L ('0)
: : ‘ t
_1 :
satisfies wax Pe wax =L -1
' t 0 88

This allowéd the introduction of another

map, a linear 1sbmorphism E’:"M > M
B Xy X
. - ~ . _l ) s
defined by p =¢ °¢ .~ (cf. II.6),
t atxt axQ,
-1
=[p (¢ )] od ~ .
.t 'aXO axo
_ , Wyl
Now Dt = wax L . a1 °wax lso that
t g go . 0

b4 .

t

. . -1
p (o, )=V oL __od " (p )=w (gg ).
0 - ¢ gtg01 o %% | ax F 0

. - identity inG

~

SR TN |
Hence P, = [waxt(gtgo )] ¢ax

0

ht in coordinates naturally through the map' ¢ax TV o> Mx for each ¢,

- - t Xt

We represent the parallel transport

" and pt is- thereby reduced to a linear isomorphism : V > V whic¢h can .

4

be reduced to a matrix using a basis {V(i)} for V. This map is
-1

. _l o~

K - = o o] . S .

8.8 .’V V since gth ¢axC pt ¢axo Also Dt itself can be

looked upon through the ¥ and ¥ . diffeomorphisms as a map
S ) ax *x _

. -1
Hence we may write gt = gth &g

: G > G which is equal to L
' 8t80

and for fixed gtgal and variable 8y We see the usual left transla-

tion relation reflected in the parallel transport.

(I1.17) The Components of the Connection — Covariant Differentiation

L

Condition

i .
Let wtv(i) € V be’'represented by the components wi of a vector

, i
f - .
ield on the curve.- x, the value at X, being ¢axt<wtv(i))' Let us
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suppose that this fleld is parallel transport invariant. Then ~
8 1 d i k, 1 | -1
= — = — r = . . t -
.0 : it (yt ) it wt -+wt K j Vo where Vot ¢ax (xt) The trans
T -1 1 15 .
port condition is wt v(i) = gtgofwo v(i) or wt gt y(i) is a constant

' ),I -
independent of t. If w_ = is the vectof field in V repre-

w iV
t t (1)

senting the one on x, then gzlwt = constant. Viewing g;1 as a map

from V t&-V and w_ as an element of V we can differentiate with

t
\ -
respect to t. We see that ‘ ‘ *
d ;-1 -1 4d d , -
. = —— + —_— = a—
O=3c (8 v *8, T Y ' 0 =3¢ (g\t g,)
-1;d -1 -1 d ~ld -1 -1 d
E — + - = - _—
0= -8, [dt gt]gt Ye T8 dr Vv 0 [dt 8¢ ] B, ¥ 8 Tt 8¢
L
8. 8 - d -1 _ _-1id -1
te 7 de B¢ Be  |ac Bt B¢ -
¢ ~1 -, -1 4d s
= BB W TBL I Ve
- Also, at gt 8.8 where
d o s L
dt 't gt tgt t *
S gt € g.
_d (w i)v
dt’ Ut V()
.k S
T T ax, k'] Var¥ (1) a
-1 k., i 0 . - - -1
3 = ] . = . =
| ’yt gtgtgt V(i) wt aXt k_jvatv(i) Using at gt and at gtatgt s
./// we have
- 1 a. v = —-w kF i ; J
Ve t (1) t a‘xtk j OLtY(i)’
and i 2 -3 3
and -in matrix form, using at(v(ig) At i V(j) we have
1< i3 Ck
e RV T e o 1k Ve V)

. , i
Since for any given fixed t we can make an arbitrary choice of w

(which will determine it for all t) we have A 9, = -T Iy k.
. t i ax, ik ot
his pives. r I ] ' . ,
This gives us ax 1 k rax ik by direct computaglon, since
~. k7 - k :
r . vl = A as we have seen,
ax j 2 «a a
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(11.18) The Riemann Tensor

The linear map ;ax: V > g 1is smoothly varying as a function of
x and ma”itself be differentiated. We write it as ;&: Uu + L(v,g),
and its derivative as a linear mapping ?&x:,v + L(V,g). As the nega-
tive of the representative of
r
Yax in components is ik’

so the negative of the repre-

TUd — > L(v,9) xL(v,9) sentative of ?&; is denoted
Yox R “lfirst j , .

P» - component by Faxi_k,l’ If v=v Vi)

U, a\ > L(V,9) then v(v) 1is represented.by

3

-7 -
ax i k,lv The gomma re

duces to a partial derivative in the case of homogeneous coordinates.
\ .

The comma generalizes the partial d;&ivative, in fact

i .k i ; : : _
Can K Gaﬁ*x.j g = Gasx 3,8 .and in homogeneous coordinates, 1if-they

i - B ¢ : . i
Gan IR GOLBX Q,j' Observe that Gan N

derivative of GaB(x) in the .V > v representation with components

exist is the directional
given in terms of the fixed bases {v(i)} at the point x € U 0 U; <M
along the vector direction ¢Bx(v(2))‘ and proportional to its magnitude.

The comma differentiation is understood as a matter of notation to be

{in the representation identified by the Greek letter closest to it,

-

i

i.e. in G g 5 the differentiation is in the B-representation. For.
s : .

‘ - 1 .

any Vv we see that GaBle,QV _ represents a map : V> V corres-.

ponding to element of G We write Y 1 =T i =T i
P 8 an Gue(x)" ax jk& axj k,2 axj k.2

— i 24 T = i .
and qu Pax ke Y x ke Yax jek 2Yux jlkel”

~ L l2d

We can also introduce Rax: \Y + g which is linear and defined

by the conditiov ‘Rax(v(i) Av(j)) = [Yax(v(i))’ ;;x(v(j))] where

1 (2]

A L = — - / i
v(j) Z(V(i) ®v(j) v An element w eV is

V(1) () ®viy)-
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-

ji

.represented in components by miJ' where wij + W = 0 and
13, 13 - \
= AV , and w = 2 w AV . Hence
LEETV@ T W i)\:j SRCOIARACD
~ S C— . ~
= . t =
Rax(w) w [Yax(v(i))f Yax(v(j))] In component form Rax k8
i P o1 P ~ >
- r v .
ox p k Fax-j N Faxp 2 Tax 3 k and R__ jklw represents Rax(m)

Likewise the components R__ . define a linear map R _: V[Z] > g.
: : . ox jk2& ax

A A A

~

=R + R . R is the
ax ax ox

: V[Z] +~dg by> R

We can then define R
. ‘ ax

ax
familiar Riemann tensor in a-coordinate representation, and it has the

- 1 i ) i ~ i
. =T - T + R .
components Rax jk2 ax j £,k ax j k,2 ax jk&

Notice that the trans@brmékion law for the connection symbols

k i . k q P k
=T + .
"bx je  oxp q'GBax 1 Capx 2Capx j Cap*x i ¢

i k q P . k i
T G G G + G G -
ax p q Bax i afx Lafx j Bax 1 aBx j,2

will ﬁreserve syﬁ&etr§ of the connectioﬁ‘symbols only for a transfor-
mation begween homogeneous coordinates in general. Thus a syﬁmetrid
connection is one with‘symmétric connection symbols in any (and every)
cgofdinate system whiéh is homogeﬂeous. Such coordinates may not be
consistent with the given group structure\on'the manifold M. Also,
in structure preéerving coordinates, a symmetric connection may have
a non-symmetric connection symbol representation.

If we &ifferentiaCe Ganijb in the o-representation to obtaiﬂ,
Ga@xijq,l‘ we cgn easily see that Ganija,Q = Ganij,kGBaxkl'

The comma obeys the usual product rules of differentiation. We

can best illustrate this by an example, rather than a proof. The

]

equation GBa*x(va) + GaB(X)GaB*x(VB)GBa(X) 0 which we have-already

seen in (I1.8.4) can be expfessed as

il
o

G () 8gaux (Vo) * Cogrx V) Caa )

and written in component form as
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i k "~ R B T 1 X
G =
GBax<k Ba*x i 2 Vo * GGB*XK R:B GBax 3 0

~

' L
and since this holds for all components Vv = We Se€ that

-

Caax kGBa*xj 4 *;fcas*xk QOGBax 2CBax

.

and hence

o1,k p i P | Lo k =
; G + G G =0,
GBax k(can p Box j,l) (CBax pGan k,lo) Bax £ Bax j 0
i i P k s
+ ; G =
GBax j, 2 GBux pCan ka,% Box ] 0,
TP i P i
+ =
- Gan iGBax j, % Gan ia,QGBax j 0,

p iy

g = : = p
(Gopx 1%Bax j = 0= (8, ¢

a, %

Notice that the differentiation must be consistently done in the

_a or B representation, and the extra a is added merely to indicate

i

which representation. ‘ »

1

(11.19) Covariant Differenfiation.

A tensor field dn M or some neighborﬁood of a point X .%n M
can be represented in the a bundle‘zﬁart and.the basis {V(i)} for
V by components in the natural wa&. For a covariant (contravarianti
vector field uy (Vi) in the & repreoentation we writéAthe 
covariant'derivati;es as ugy T uiak - quijk S ST Yuik T uajraijk
andtv.ai =v t +v T i A

Ik a .k o Taj k where the x 1is dropped indicating each

term is a function of x, at least in some local neighborhood. The

components of these vector fields transform as u . = G J u,. and
. : ai  Ba i Bj
v“1 = GasiijJ. We can apply the comma e}fferentiation to these

expressions (remembering to stay i a fixed representation) and obtain

, . {
the transformation law for u and Vv . changing o to B.
ai; a ,k



e

gubstituting into the formula for the covar Lant derivative and

g using the transformation law for the connection symbols we see that
1Y

£ i 2 i

N
: - G
and = v Cug 1 Ra k MK

3 L
= A ' . S t these
Uitk CB“ iCBa K qulﬁ a 1k so that ese

symbols transform as tensors.

(11.20) Coordinate Torsion Symbols . ' . ‘
TUG Let Vv = viv w = w1
y’

i
u=u v(i) ¢ V. For each x ¢ Ua’ $

ax

can be used to 1ift v, u, W to

¢ vectors in M so ¢ 1ifts u, v, W
a X o

. to vector fields U, v, W on U« 1t
Ua><V a

(LUV)(X) = -W(x) = [U,V](x) for some

. s . “ q
x ¢ U we write wh o= ’I.‘Ol ?’ ujvk. where Ta,i is the coordinate
o xj k- xj k
torsion of the o system at x 1n component “form. Tajlk is understood
, ‘ i i i
to be a function of X € Ua apd Tij“k = —Tak}j' We write Ta8 5k as

the value of TOl {n the B representation. For a homogenéous coordin-

ate chart with map ¢;1 - f .we have TY = 0. Clearly Ta8 -

Y* j k
o p 2 q i ;
T © 3 h .
\Q q GaB 3 (‘OlB K GBa . changes the representation
Let a, B be arbitrary representatioﬁs and 7y a homogeneous
. representation. Let v, W, u be as above wher the ¢ nents vl, wl,

4" as well as the basis {V(i)} “are fixed. Let V(a)’ W(a), U(a) bo

the lifted fields in the aLrepresentation (each a vector field on Ua)

and simi ' Voo, W Wooos LU, - x
and similarly for Vegy» Teyy> T(p)” " (1) L M x e U nlgnly

and suppose we consider only this neighborhood. Let w(a)é be the i

component of the vector field W(a) in the B representation. This is

clearly a function of x and its value at X may be denoted by w(a)zx'

We can make similar definitions for other fields,. and then clearly

1

i i : i i i i
= v ' z
‘v V(m)ax x ¢ U n UB n UY and also W(B)B w k U(Y)Y u



i i '
V(l*)l* S ete.  Also we have the transtormat fon relat long between

{ { ] i
or simply W(”)V

feprpsontatiunu u? w(“)“x “HYX i W(")Yx.
G ! W J as a function of  x, and stmitar}y for t he other fields
Ry § (v ;

1

and representatlons.

Let h: U[‘ »R be a smooth function. We demate by h(1 i the

{—dertvative of h In the a-representation. Pick a curve x with

" o d . Th
x(0) = Xy and Xy = (b(xx (v“)). Then hu,i = 1 (h X)t . This
0 X t=0

value is independent of the choice of the.curve x, and x is

commonlyntaken to be the integral curve of the a-lift fleld of v

)
i = Ypa 1h(<,>]

(1)

through x,.. Clearly the derivative transforms as h& on

0

’

U nU,. In a similar way we can differentlate a vector or tensor

o 8

valued function h, or even transiormation or connection symbol com-

ponents in the a-representation. We denote the secopd derivative in

components by h .. =h .. In homogeneous coordinates Y,
a,ij a,i,] )
h ..=h_ ... Now
Y,1] AERE
Woo<c¢ dn soon =6 doon +c A ot
a,d ya 1y, a,ik ya i,k v,] l ya i y,j? vo k‘J

Symm. in i and k

and so N
]
= G h .
Po, [ik) “o (1,k17,3

Since the y-representation 1s homogeneous, the Lie derivative

takes the usual component form, i.e.
i i j 4

L = v~ i e
I OO I O MO} SO

Switching to a-representation we have,

17



2

[;1

i k i ] 3 i
G L \Y =V, - . U ' U .
Yok Uy (@) T(e)ve,j (e (a)a “(a)ya,j ’
o <
. and so at x,
1k k. iy ' ' ki
- Vo= ) v, -vy,3 U
Gya k L (V(u)acya kla,j U(a)a V(a)a ( (a)a Gya_k)u,j ]
¥ . g
k. i . § k. i ’ :
=V ek, TV Ca g
{
_ i i ko _ oo 1 3k
(Cra 6,57 Cya 5,10V = 2000 5,k
2 ) 1 ik a g g i
- = £2 G . > =
Hence W Gay i Sya [j,K]ufv T ik ZGOLY”i GYG [j’k] s

and this holds provided Yy 1is a homogeneous representation.

>

,

For the derivative expression ha i above we can see that

b4

.ha,[ik] ='%-Taigk ha,l which is a result solely in the a-representation.
o , i i
Notice that G = G . so that
aB j ay k vB8 j . ,
¢
i i k- 1 - p Kk
G .. =G G ) + G G G )
af 3,2 ay k "vB j,*% ay k,p YB L "YP j ’
and .
1 - i k i . p k
G . =G G A + G G A
al [j,2] ay k “vB [j,2] ay [k,p] vB 2 2yB j
From G i G i 61 we obtain, taki o derivativ |
T va i Cay K s ng riva es,
¢ Y ¢ o4y At g I c P <o
Yo j,0 ay kﬁ‘ Yo j ooy k,p ve & >
or : }
k i -
, 6. Y 4g K gt g a g P T
L//,jf-\ —> ya j, & ., ya j ya q ay k,p ya 2
rd
« so that
i k i q p
G ] + G . G G G =0
ya [j,2] vya j ya q oy [k,p] “ya ?
- i 1 .,ai iox
“This means that G = - =T, ; and hence
oy [k,pl 2 '3 4 Tay k ay p o
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i ' i Bk a i P q:

= 11.20.1
ZGaB (3,2} aB kT3 2 paq oBj GaB 4 ( )

. k ._ i k q P k i
Now * Ty (41 " Tafp q] Cea 1 Cag 2 Sap 3 7 Sea 1 %as [5,2]
k 1 R k i

. 1
DB[j 0] " z—T i 2 transforms like a tensor to Fa[p ql >

, SO

¢t
P q
k 8 k K kK . Bk

. ko _ _ . _
We write T8 ') = ZFB[j 2] T 2 = FBj 0 I‘B2 j ? 52 and call

& . . _
a%s the torsion tensor of the comnection T 1in the B8 representation.
“.‘ N -

{

a F
A simple evaluation of A a . -
s a |bc

A for an arbitrary vector
a leb .

. a : . . »
field Aa in the o representation gives us

a a a d d a a
= . - - + -
Aa Id(FQB/ rac b) A A

)

e a s
- A
o a ebc

. a a _ a ,ad .. .
Using Aa be @ ,cb Aa ,dT b c we have the Ricci identity
a a a d e _a I :
- = - T - 171.20.2
Aa |be Aa leb Aa ld "ab c Aa Ra ebc ( )
a " a ~r a a d
. - 4T
where Ra ebe Ra ebe se d T b e : or
A
S a a a a d a d a .od

+ (11.20.3)

o ébc:zrae c,b-.rae b,c Fad brae c.-rad crae b-FFae dT b’

This modified form of the Riemann tensor with the coordinate torsion

@ added transforms like a tenéor under a change of coordinates because
the commutator equation for covariant differentiation is a tgnsor
equation, and the usual quotient rule applies in this more general
sétting. It is clear that'the usual familiar Riemann tensor 1s only a
tensor with respect to homogeneous coordinate transforms. Tﬁe new
Riemann tensor can be looked upon as a map Rax: V[z]‘4'94 for each

X € Ua’ and the tensor transformégion law has important implications

with regard to the image of Rax and holonomy groups and algebras.
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We can also verify the following important equations:

d e

BaalbcmBaalcb:Bad Ra abe -Baa]e Tab c (II.ZQ.A)

where Baa are the components of a smooth covector field in the a-
representation, "

[+]

.a _ ) -
Baive = Maleb = “Ma,a T e (h,a h ) (11.20.5)

where h 1is a smooth scalar field. In such results as these when a
L]

single representation « is used throughout it may be dropped in

order to simplify theé notation. For instance, in the case of a second
] ab
order contravariant tensor field vy in components,

ab ab _ .ae b eb_a ab e
N Y lcd—-Y lde Y Rogca™ Y R Y leTc d

[2]

Because of the tensor transformation properties of Ra HEAY - g

it can be viewed as a map naturally lifted Rx: MLZ] > gx, where Gx

‘is the Lie group (of transformations on Mx) and 9, is the Lie
AAlgebra. Allowing this to be a function of x we have R: TM[Z] > AMM, WD)

where TM[Z] = kv) MLZ] is the tensor bundle of second order tontra-
xeM
variant skew tensors and A(M,U) is the Lie Algebra bundle, i.e.

AM, U =t;J) gx which is a vector bundle. The torsion tensor, written
. P .

xeM
Tu with indices in component form, can likewise be viewed as a map

2 <
T: TM[ ] > ™M on the tensor bundles which is a smooth map. Eqﬁivalently

1 1

'1‘X ‘ TM[Z]’ RX ¢ T™ 1{2] give us examples of the use of this notation.

1 % o .
Obviously T = TM and T M = TM,. To“see the reasoning behind these

[+
equations, let us introduce some descriptive notation. Corresponding

<
(SN ~

. -1
to ¢ F v - Mx we define ¢ax: G > G, by ¢ax(g) = ¢ax og o %X

where G ¢ GL(V) and Cx c GL(MX) and these subsets are Lie subgroups,

~

and ¢ax is a Lie group isomorphism. Define KaB:‘T‘UB[WUa) -+ T(Ua) by



= ¢ °¢—1 and K, : M *M by K = ¢

“aB a B oxBy 'y x 7 . oxBy. ax

K denote « an element of G so - K =
abx ox Bx x> afx

~
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o ¢ . Let

PRCA R

The map ¢Gx is actually a more general function defined on all of

L(v) with image in L(y) the linear maps from V

-

to itself. Conse-

quently we also have that ¢_: g > gx is a Lie algebra isomorphism.

ox

~

The ¢a: U XQ-*A(UG,U) are the bundle chart maps for the Lie algebra

~

bundle A(M U). Furthermore ¢ax commutes with the~exponential map

S

i > G d a *> G o =‘o g > G .
exp which maps g 'C and -gx CX so that ¢ux exp = ‘exp ¢ax g G

~ ~

Also ¢—l ° ¢ = Ad

X

Bx ax G (x) or adGBq(x) for‘a_domain of G or ¢

Ba.

respectively. In the Lie algebra bundle, the structure‘group G acts
~

can look upon ad as a left translation since ad. d = ad L.
N C B8 : B By BBy
. » ¢
The coordinate transforms on the Lie algebra bundle.

as a left translation on the fibre g threugh the mapf‘adg, g € G. We.

.

/\-1- ~
charts are ¢
> ax G

Ba(x)

o

between two bundle

8y op = ad which is "left translation' by the

element GBa(g) of G as in the case of the Lie tangent bundle and

principal bundle. Of course adg:.g +g, for g€

~ad (a) = gag_1 is avlinear'isomorphism from .g to

G defined by

itself (i.e. an e

automorphlsm) for each g ¢ G. There exists a naturally defined

linear map tr: g > R called the trace which is preserved by ad

’

i.e. 'tf[adg(a)) = tr(a): Lie algebras obtained from Lie group

o~
structures whose groups are Lie subgroups of the unimodular or special’

linear groups will contain only elements of zero trace. In this case

. i :
the contraction R _. of the Riemann tensor for a structure preserving

ijk
tr a

connection will be zero. We also have e. = det(exp(a)) for a € g.

~ u

The adjoint operatlon on the Lie algebra g clearly‘commutes

with the bracket {adga, adgb] = ad [a,b] indicating that adg is a

Lie algebra automorphism. Clearly also (adg)_ . We can see
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-~

=
Fhat ¢ax °¢ﬁx = Ad .or more ngerally

Kan
6 oot =ad and & oAd o4 l=Ad ' .
= o, =
ax By KaxBy ° ax B BXJ Kangy ‘
where € G and « =4 . og °¢—l'
© 8 axgBy ax o By

We have developed a general formulation for the components of a

s

tensor In an abstract (non—homogeneous) coordinate systeg. The laws of
tensor manipulation qnd differentiétidﬁ are very. similar to those for
the usual homégéneOus coorQinates and are,thus easily understood both
by theoretical physicists and mathematiqians Qho work with differential
geometry. Fdf example, lep us determine the formula for the Lie

derivative of a vector field. Let X and Y be two vector fields on

Ua n UY, Assuming the Yy system is homogeneous, we have

(L Y)i -y . x3 - X1 ] yJ and so - : :
. Xy v,3 5y T Ly
i k iy ]
6 k(LXY)a = Yo k),l'Gay j XY
XQ VYQ
~ o o’
‘ . . 1
. _ ~x e 'y ¢ 3

o yo k7,2 ay j oy

S ¢ 2 i k2 i k L i L i
= 3 + . -~ -
B QXacya k Yaxacya k,% xa,l a vo k Xa acya k,%

N

; k L k L k i i

.k j 8 .
' = - + -
(LXY)a Ya ,Qxa Xa ,ZYa Gay i(Gya j,2 Gya R,j)Yaxa
N k ) k 2 o k _j 2
N Ya ,lxa - Xa ,EYQ +T i ZYaxa ’

o : ) . ‘ ‘ . :
where T id the torsion of the o coordinate system. 1If a G-connection

' is specified, we can express the Lie derivative as

—ar s

kK 2k % K i
- T yixt

k .
vy© = -
(LX )u Ya (2 a a |2 o aj L aa
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where T ,k = --Ta,k + T ko r k is the torsion tensor of the
aj 2 j e aj L af j ;
connectionn I and | 1is its covariant derivative.
Since everjthing is done in the « representation we can drop
the o for simplicity. TFor covariant veqtofs the form is

- b, o b '
= +
~LXwa walbX * wb |a Tua cX Wb

b b a b _c
Wa;bX f WbX . - WbT a CX .

"In general then,-we can extend this to obtain

. Rabc - Rab b e e f

RPed T adle x° - 1 ed ¥ e f Toe £
+ Rabce(xeld + Tad?fxf) _ REbcd(Xa‘e + Taeafxf)
;— Raecd(Xt')|e'+ TaebEXf) |
ﬂ/ = Rébcd,e¥e + Rabed(xe,c - facefo) *
+ Rab‘ce(xe’d _ Tadefxf) Reb d(xa,e._ T&eéﬁxf)
B Rae(:d(xb,e _ Taebfxf)

for the case of a 2—contra—2¥cdbariant tensor, and in the obvious way

cd

4

. : . ab . .
for more general tensors. Here R is simply any tensor, not

specifically the Rlemanrr tensor.

(II.ZI) iEXamplés: Galilei and Lofentz Structures and Comparisons-

We can place Lorentz and Galilei group structures on a manifold M

as a means of describing space-time, as well as a material connection
on the body manifold B which is equipped with a gfoup structure of

material uniformity using the symmetry group of the material element,
. | <

that 1is referréd to by somé authors as the isotropy gréup. If M is

’.
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«
a differential manifold which has a Lorentz metric 8.b defined
everywhere, which is smooth, then gas induces the Lorentz group )
structure on' M. Similarly #f M has defined tensor flelds Yab .and
. ab ab . :
u which are smooth, with Y  u,_ =0 and Y vv. >0 for v * Au
c . b ab a a

i
!

for any * € R, then (Yab,ug) induces a Galilei group 'structure on M.
. s \ B
If M has a Galilei group structure, P: M > B 1is ‘the projecrion to

the body B, and u? 1is a field on M tapgent to the flow we require

a . ) a . a
u ua;’ 0 everywhere, and mormalize u so that u u = ~1. Then there

.is a Lorentz metric gab = Yab‘_ uaub defined on M, :so M has a Lorentz

group structure also. Conversely, if M has a Lorentz group structure

and ua is the flow vector uaua = -1, then Yab = gab + uaub and

u, = gébub éan be used to construct a Galilei groﬁpbstructure‘ (Yab,u

b)

on M. .The relationship bgkween these two strUCtﬁres'will be considered

at length ahead. It suffié§§ to say for now that.ﬁhe Galilei structure

approximates the Lorentz structure for velocities relative to the

material rest frame that are mpch less than light, or equivalently,

whose world lipes'are nearly‘cangent to the flow wog}d lines. (Kiinzle [47]).
Let (M’gab) be a Lorentz space time~pith Lorentz\gropp structure

G(M) = (M,G,U,V,G) where G 1is 'LV' For the remainder of this chapter '

-
1

let ds work in (homogeneous) coordlnates unless otherwise speci&ied
returning to frame components (coordinates with tor31on) in Chapter ITI.

A connection Fjik on the group structure G(M) 1is simply a metric

connection, i.e. one satisfying g or K %'0. The following

ablc‘= (ab)c

results are easy to check.. ’ : -~///

Proposition: '(a) The manifold M is orientable if and only if G(M)

has a.subgroup structure with G = LV+'

(b) * The Lorentz space (M,gab) 18 time-sense preserving
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if and only if G(M) has a subgroup structure with G = LV+

The time—like vectors in Mx at x can be classified into»two
groups ''future pointing" and Ypast pointing", and the notion of (M,gab)
being time sense preserving merely means that thefhotion of future .
pointing (which in a sense is arbitrary since it is one of two ‘classes
in an equivalence relation) can be defined continuously everywhere on M.

| In particular if M 1is that portion of space-time through which
a material medium B moves with proiection P: M~ B; then the time-

l1ike flow vector u? defined on all of M Singles out an equivalence

-~

class of time-like vectors at each pornt/ x € M. (we say for fy,w e V,

v and w are equivalent if .slv,w> < 0, (V,I) being an abstract
nkowski space. Since M; also has the structure of an abstract

Minkowski space, the notion aboye {s well defined). Hence M 1is

t{me sense preserving. Since Bﬂ is orientable, we have seen that we’
A*/
"1k Ykl 0

so M 1is orientable. Therefore for the Lorentz space (M,gab)

an (n+1=4) construct the everywhere non—zero.A—form

-

corresponding to a material body B, we find G(M) has a subgroup

i
]

+ . :
structure with G = LV+ , - and we can always assume the restricted or

special Lorentz group is used in our group structures. Likewise for

the corresponding Galilel structure of (M, Yab,ub) we can assume that

the proper'Galilei group is the one under consideratlon when working
with material media. 1If G(M) is this Galilei group structure o
how do we characterize a connection Pbac on thils group structure’

b ' - )
K is the contorsion of a covariant derivative | whose c©

ac
' {s Galilei then u =0 and Yab“ = 0, and hence the contor:;i‘%

alb |e

~ satisfies



d d
(uaub);c B KdacYb +K cYa ?

X : e d -0
4(de)cYaYb

’ e
= +
Kade Y4 ua;c YdKaec

121

(I1.21.1)

or equivalently ~

(1I1.21.2)

We call such a contorsion a Galilei contorsion.,

)

The Galilei group is deriVed from the physical Newtonian trans-

formation of frames just as the Lorentz group is derived from the

4
Poincare t:ansformation by differentiation. The general formula (in R)

for a change of frame (P.3) in classical space time is given by

where

- .rotation).

1

X 0 X

y Q(e) | O y
= Z = - 0 Z

t 00 0 1 t
Q(t)

The vdlues of

and’ t

cy(t)
/ co(t) |
+ 03(t) (11.21.3)

0

is an orthogonal matrix with determinant +1 (i.e. a

are constants,

*0> Yo %0 0
t' =t - to: We then get by diffgrentiating
L
dx bj il dx o
dy ace) by ||y by X = Xg c1' (t)
IrE = by || az where by | = Q' (&) |y -vyol| + |[c2'(®)

dt 0 0 0 1|ldt b3 Z - 20 c3' (t)

The»fransformation (II:21.3) above satisfies t' =t -t and for

fixed ¢,

(proper) Galilei group in Hﬁ

2 2 2

ds” = dx” + dy + dz2

by
( b
2 2 are arbitrary parameters.
b ‘
3

Q 0..0.1

/

= ds'2

0

so length is preserved. The

is the collecetion of all matrices below.

Q is an arbitrary 3-rotation matrix and bi;,bz, b

This matrix has determinant

+1 ahd is the matrix exponential of the Galile'i Lie
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algebra matrix in (I11.3.1), the bl’ 97 b3 parameters, of course,

being different. The 3x3 orthogonabmatrix Q'/ is the exponential of

b

—— T 2
-a3 0 ay|= A, Q = exp A = (cos a)l - (COS 3 ;)2 a .t §12 2 A
. ‘ . . ’

ap =aj 0

where 1 1is the. 3x3 1identity and a 1is the\column vector
2 2 . 2 2

: T
[al,az,a3] , a =a; +a, +ag,

1 9 a = Vaz. 'Q is a 3-rotation about

the axis of the direction a through an angle equal to. "a" according
to the usual righé hand rule.
The Galilei structure oﬁ a spaceQCime is an important alternative
o

to the Lorentz structure fo; approximating a description of space-time
where all velocities of significanée‘relative to the fesf frame at

gach point are small éompared to the speed of light. In this case the
-field.eqﬁations of G;neral Relativity cén be significantly simplified,
as we shall shbw.

. ’ 4,
Just. for review, the proper orthochronous Lorentz group on R is

the six:dimensional Lie subgroup of GL(H#» generated (in canonical

matrix form) by the following three abelian 2-parameter Lie subgroups,

for arbitrary values of the parameters [cf. (IT.13.1)],
\ .

[0 o 0o b1| [ecash b 0 0 sinh by
1 0 0 a; O 0 cos -a;  sin aj 0

€XPlo ;al o o 0 -sin a; cos a) 0 (I1.21.4)
b1 0 0 0] sinh by 0 0 cosh by !
[0 0 -ap 0] [cos as 0 ~sin ap 0
0 0 0 by | 0  cosh by 0  sinh by |

FxP a, 0 O 0" |sin a, 0 cos as 0 (IIf21is)
10 ‘bz 0 0] 0 _ sinh by 0 ’cosh bo




g

o a3 0 0} cos ay sin aj 0
a3 0 0 0 -sin a3 cos a3 0.
exp| g o 0. b3| 0 0  coshb
0o 0 b3 O 0 0 sinh-b

The intersection of the Lorentz and Galilej gr

the rotation Jgroup and is simply the 3 “paramet
' 4 4 .

the spacelike part of R (where R is equi

Lorenti inner product) . 1f M 1is a Lorentz S

those world points through which a material me

123

0
0
, sinh b (11.21.6)

3 cosh by

oups on RQ is called

er rotation subgroup on
pped with the éahonical
pace—timé consisting of

dium B moves, then . T,

N LY
as we have seen, has a Galilei structure which is the material rest

bframe approximatibn to its Lorentz strugFurg.
cection of the groups in the Lorentz .and Galil
us the rotation group structufé. We can then
connectioﬁs(connections on the rotation struct

covariant differentiation and contorsion. Ac

The pointwige inter-

ei group structures give
talk about rotation

uré) and’the corresponding

onnection is clearly a

rotation connection if and only if it is both metric (Lorentz) and

Galilei if and only if g = 0 and ua\b =

ablc
covariant differentiation. The star, dot and

are therefore rotation1 connections (P.2): As

and principle pundles and in (11.20) the Lie a

0 for the corresponding
fundamental connections
in (II.1) the Lie tangent

lgebra bundle can be

.

determined for the Lorentz, Galilei and rotation group structures, &s

well as for the symmetry group §gfructure on B

(11.22) Kinematics\in,the Calilei Structure
One of the most important properties of G

the covariant derivative of the metric volume

-

1 .
A connection is rotation if and only if it i

Vs

as in Wang (1081, p- L6-62.

£
alilel connections is that

element 1is always zero, i.e.

s metric and flow constant.
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uade =0=€ - for | a Galilei differentiation. To prove
le abcdle
1234 _ 1234 a _ a
this we observe FhaF e‘ le = € Ka o and 81234|e 81234Ka o
and then Kaae = 0 from (II.21.2). 1In fact the Galilel structure

(Yab,ua) on M defines for us (sign handled by orientation) a volume

element without specifically méntioning the flow u?. Then for any

a a » . .
smooth "flow vector" u~ with u'u_ = -1 on M, the corres onding
. : a & p army

-
. ab ab ab :
Lorentz metric g =y - uu has the same volume element, inde-

pendent of u?  which is also the Galilei volume element. This comes

from the fact that every element of the proper Galilei group on 'Ré has
determinant +1. | |
" The' next important result to‘show is that the deformation of a
material medium is the same, whether measured in a Lorentz Sﬁace M or
the Galile} structﬁre approximating this for flow rest frames.
Suppose that M 1s equipped with a Galilei structure (whose
‘tensors are) (Yab,ua),' with body B, world lines P_l(X), X € B.

If x'c'P_l(X), let Mi be the tangent subspace of Mx orthogonal

ab IR S . _ X
to u_ at x. Then Y lx ¢ Sym (MX ,Mx) and putting p_ T P*XIMx
which is an isomorphism : Mi_» BX we have the naturalealilei deforma-

tion gaB(r) at X Eérresponding to x as (pe°y 09*)—1 € Sym+(BX,B;).
Thiélis, as we have seen, precisely the sémé as the usual Lorentz
deformation at (X,t). Hence, for kinematical description, it does not
matter whether we use Lorentz or Galilel structure invériant tensors to

méasure deformation.

(11.23) Galilei Connections

There are particular types of Galilei connections (which need not

he metric) that are worth considering here, on a space-time with a

~

material medium. Since the parallel transports of a Galilei connection
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o L .

map M; ilsomorphically and isometrically onto Mx' for x,x' ¢ ¢, a
. N )

curve, we can naturally introduce the. notion .ef a restricted class of

‘Galilei connections known as material Galilei connectlons.

A Galilei connection is material if the induced parallel trens-

) 1
ports on the orthogonal spaces Mg for x Szgllgzgffundamental trans-—

ports for every curve c. Thus'it is assumed, as in the case of the
fundamental connection (I.21), that a material connection is provided
“on the smooth materially uniform simple body B,

v "
Let Kbac denote a material Galilei contprsion‘(with material
ab ,

Galilei derivative -v so Uavh = 0 and v ve = 0 in particular),

and let Kbac denote the fundamental contorsion with fundamental

covériant derivative | (I.21). Then recall that Kba

~

~

¢ K[ba]c
where Kbéc is the material contorsion. The condition for fundamental
transport of orthogonal vectors along any: curve ¢ by the contorsion
K "1s easily seen to be Ybﬁ = YbK . A material Galilei

bac d bac d bac’
connection is not unique since we have not specified how vectors with

a component parallel to u will transport along c¢. In terms of the

delta tensor (I.22)

Ys%béc::Adac'+ud;c93_+uc(u[d;a]-Fu[dua]x
. =Adac+ud,cua+u'mda . (I1.23.1)
5 ‘" /
It is clear that this ;atisfies (I1.21.2), i.e. it.is consistent with
K Aud = -y and gives us Yaybﬁ = A + u w, . Moreover complete \
adce a;c e'd bac , dec c de
a by

orthogonalization gives

tensor. \~///

. . by v
Since we have determined Ydeac’ the contorsion 1is completely

c
K = A hi
YerYd bac def which recovgrs the delta
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‘ hv
known i{f we determine u K = q - ut . (Notice that u = 0,
bac HENE ave . avb
b ‘ b :
ut = g N0 s ). [f we take' u = () then Vo osimply becomes
ave %nb Ve ) Ve ply
the fundaméntal covartlant derivative (which Is rotation - hence Galflel
i a
and Lorentz). ui s subject to the condition u'u+ = 0, gince
. {)V}) ! B . ﬂvh IS
learl un 0 B
Cled u = .
M a Vb
5 _ .
N AWe recall that a connection with contorsfon K. {g spatially

\\3 abe
nonrotating along arbitrary curves in space-time (sece the end of

t

section (I1.27)) if for some w , v. , K = u w +uv, . If it is
ac be abc b ac a bc

also to be Galilei, we impose (1.21.2), and the condition is

b .
w = u + ua(u v, ) which is necessary and sufficient. The simplest

ac a;c bc

case, taking v, =0 giving Ka =

u, u is called the basie Galilei
be be b ajc ;

contorsion. This will be »f great importance in the following sections.

(IT.24) Symmetric Galilei Connec;ions

A Galilei connection is symmetric if its contorsion satisfies
1Y ‘ o
K = K Al Because of (I1.21.1) such connections exist if and only
if u =0 and o = 0? i.e. the motion is geodesic and irrotational,
"M/“a,b = ub,a’ or ~dualb =0 or ua;b = eab' When these connections
do exist, they are not unique, as in the case of symmetric Lorentz or '
Riemann connections, where«gne unique connection of this Eype always

exists.

! ' abc |
For a symmetric Galilei connection, KachdYer‘ 1s symmetric in

d and .f and antisymmetric (II.Zl.E) in d and e and is therefore

a e ’ : '
- A .k . . -
aecYbYd dble where‘ Adb 1s antisymmetric and ortho

= + .21, “
Kadc udub;c Adbuc from (I1.21.1) and thereforg/

zero. Hence K

a

gonal, Now Yb

°

ade udua;c M Adauc * Adcua * tduauc (I1.24.1)

d
where tdu =0 for some ¢t

s 4’ gives us the general solution. Of
| A
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course it is asgumed in this section that a symmetric Galilei connection

exists, i.e. 8 Under these conditions, the basic Galilei

ua;b - Yab’

-

connection ((11.23), 1last ba;p) is always symmetric. Unlike some of

the earlier connectdons we,{gtroduced, the symmetric Galilei connection

/ ‘ -

.is intended to be an altérnate (approximate) description of the dynamical

. properties of "space~time (Papapetrdu [81], pp. 55-59) and for this reason

we choose it to be symmetric. If it is to describe the space-time
apbropriately,‘acting as a low velocity approximation to the Lorentz
v ‘

space-time in rest frames, it should be spatiglly nonrotating (I1.23,
last part). In (II.24.1) we are required to take the‘spatia11y4non-

rotating Galilei contorsion

¢

d .
= + + . .
Kabc ubua;c ubuau vdC uavbc (11.24.2)
and comparison gives Vb T taub - uavb S0 ( .
e
= + . . .
KbaC uaub;C/ ubucta (11.24.3)

for the spatially nonrotating symmetric Galilei contorsion. Dynamical

considerations later on will have us take ta = (J for the basic con-

. B»
torsion to be considered.

' 3
The antisymmetric orthogonal tensor Ada and orthogonal vector

td' in (II.24.1) can be combined in a unique way to give an anti-
£

symmétric tensor Rda' This is
eo eo
A + + - = +
"da"c A cMa. tdu Ye Yd/\eauc YdAcha
or, more simply, . * .
7\4- = A + t,,. L2404
da ~ "da T Yata) (TT.24.4)

£

Thi$ will be used later in our study of Newtonian connections. In
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¥

4

es . . .
is the difference between the svmmetric

. » . A
partlgular, ZYd e(auc)

Galilei . connection (I1.24.1) and the basic symmetric Galilei connecticn.
The difference between any two symmetric Galilei connections (or con-
* . torsions) is also of this form. (cf. Kiinzle [46],-p.'349f,

Theg Galilei structure is made’ to approximate the Lorentz structure

so that for low velocities we can have a transition from relativistic

i

‘to Newtonian mechanics. However if we talke a Galilei strug e defining

1

: 1 : ' S, -
orthogonal spaces Mx representative of time tangent frames® to the

flow lines of a material medium, it may, in the most general cases vcot
be integrable i.e. dua' z 0.

b ' o ‘,
R - ~ab ~ , . ' \
A Galilei structure (¥ ,ua) on M . is said to be compatici= !

i : ; ~a ab~ . ~a ~a~b '
with the metric ga if we let u =g bu then g?b = v b - uau . \

b . b
Clearly, given any/éitric tensor field gab on M (of Lorentz tvpej
and any l-form u_ with du ‘ =0 and g0 4
. a aiy , ab

= -1 we can find

a compatible integrable Galilei structure simply by-taking ;ab =
ab ~a~b ~a ab~

g

+uu, where u =g LUy A symmetric Galilei contorsion (con-

sistent with this Galilei structure) is of the form

=au .+ + ~\7~ )
Kadc Uglac Adauc Adcua + tqu v (II.Z&AA)

where UL, is symmetric in a and c. It satisfies-the relations

~e~d - ~e e , ~e~
Y= ; =3 (S -+
(de)cYaYb 0 (Ya a U Ua)
~ ~ .~ (1I1.24.5)
K = u.u + Ye
s adc d a;c d aec

A L ,~ab ~ Lo .
» which characterize a (y° ,ua)—Galllel connection, as well as the

t l - - . A : . . . .
symmetry relation Kdec Kced da is antlgymmetrlc and both it and

~a

A frame is time tangent to a time-like normal field u>, if u° is

the time-like vector for the frame under consideration.

, ..



ty are orthogonal .to u?  in (11.24.4).

(11.25) The Riemann Tensor and Torsion for Galjlei Connections
N / “ % a _a

. = 8 =
Suppqse' ud;c de and Kd c uuy

H

is the basic (symmetrié)
Galilei contorsion. The associated basic Galilei Riemann tensor

a a - :
R e = Radbc - 0, . is glven (I.17) by

2 =K_a K a +K f X a f a

dbe =54 eib Kd b TR v¥e e TFa M b (11.25.1)

. a . -
Using K = uug. where u = is orthogonal, we have

a
d c d;c uc;d

E » - + - ’
adbce Ua;bud;c ua;cud;b uaud;cb uaud;bc

(11.25.2)

Yy u -u__u -u R® _u
ajb d;c  ajcd;b a dbce’

where’ R® is therChristoffel symbol Riemann tensor (for the Levi-
dbc : .

" . . C = -
Civita connection) Clearly aldbe] 0 so Ra[dbc] 0, and

a _ a < . . _
¢ a2db 0 so R4, 0. Contracting the cyclic identity Ra[dbc] -0

. a : :
we get Rdb = Rbd -where Rdb =R dba is the Ricci tensor, and thg

Lorentz metric is-used to raise indices. Wé may also write» Rdb =

a _ . @ o _(u?
Rdb - Cdb where Cdb = C dba = Ky bia (uu
. i TX

) where, of course
d;b’ ;a ’ ’

Yq;b T Pab’ -

The symmetry rgsults illustrated here for the basic Galilei

connection on the Riemann tensor hold in a more general setting. Recall
s Y i

= o 4
that for a connection on a group structure with torsion tensor Tb 6

129

we may write in torsion-free homogeneous frame components (coordinates),

a a . a f a f a

=T -1 + I - s
Rigpe = Ta e,b ™ 'd bye T d Jeb T TabE e
a . a ‘a d a d
Aipe T Alep T -R dbcA -,A [dTb c
8 —~8, =" B -3 1¢ (11.25.3)
albe alch abc d ald™d ¢ . R
; d
®1be T ®heb T ’¢,dTb c
pab iy Pab °_ _PaeRb B 1:,ebRa N Pab e

led lde ecd A ecd |eTc d

-
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a

where T,° =T - T ? and these equations are the Ricci identities.

Tbe be c b
Now if (Yab,ua)

ol

"is .a Galilei structure on M and Fbac is a Galilei

connection, | 1is its covariant derivative and Rabcd is its Riemann
. A : N { N
tensor, then Yablc =0 and wuy = 0 so we get (putting Pab_= Yab)
a aéﬁb be_a '
= + = A - -
WRY T 0 T R g Y Rq =0 (11.25.4)

For any connection which is 'symmetric on ‘M we can prove the Cyclic

and “Bianchi identities, namely

u s
a = a ) = ,. ' : ’ s
R pea] = O R bledle] 0 | (IT.25.5)

and this will be done more generally (for non-zero torsion) in Chapter
© .
I1I. Thus-we can see that the Ricci temsor R . for a symmetric

Galilei connection is symmetric. In fact, from the cyclic identity

this is true if and only if Raabc = 0, and from (11.25.1),
a a a Y, a f a
= e - K +’ - X =
¢ abc Ka csb - a bsc a be c Ka ch b 0
'ﬁ’*‘l:; ‘ ‘
, : . : ' a ad .
since the last two terms cancel, and K =g K = 0 directly from
‘ ac adc »
(11.24.1).

>

(11.26) Comparison og Lorentz Structures Compatible with a Galilei

Structure

Let (Yab,u ) be an integrable Galilei structure (dua = 0)

c

and let u® be a vector field on M with uu® = -1, Let v?  be

] a a a a
any smooth field with v ua = () everywhere on M and let u'® =wuw +v

\ab ab 1@ b

ab .
ab uqu and g =y - u u and let 8.1’

Define - gab =y -

1

< . . . a a : .
LN be the corresponding inverses, {b“ }, {b c} . the corresponding

“ ]

. , _ a _gpay) _ a ,a _ g a N
Lhr}stoffcl symbols and T = {b c} uTuy L and T7.0 {b C}

Uy ‘the corresponding basic Galilei connections. Then

130.
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,ab _ ab . b _ . a b 2 b . . - + )
g =g vy - u v vy and writing g . ° B hab we
o 2 .
find h =vu +uv + v2u‘u where v = vy and g (and not g')
: ac ac ac a c. a : _
' . > ,ab _ - ab
is used to raise and lower indices. Also we can write g =g -
ab ~ab ab a_b a b a ' _gpa a
P where p =vu.+tuv + vV Let {b C} = {b c} Kb ff:-ié
" Then we can see that '
a l¢ , ab . ae ' eb ' \ca
= - = + g' - : -
Ka £ (8'paP ip Y Blef? ;a7 BefP ;P ba® )
d .
and
a a a a - a a d
r - T = - - Ce - + .
b c b ¢ Kb d M Upic (u M )ude c G-

(11.27) Newtonian Connections

A s etric Galilel connection is said to be Néwtonian if

Yp[aRc] = Q; wﬁere” RC‘ is the Riemann tensor derived from -
(bd)p bdp ‘ ,

. -
this connection (cf. Kiinzle [46], p. 350). 1% we have a vector field

u%  wiﬁh uaua = -1 and the usual associated Lorentz metric with

: o plapel . p [apel] T s
curvature tensor R bdp’ then vy R (bd) p u u: R (bd)p since
R[C al = 0 by symmetries o% the Christoffel}symbdi Riemann tensor.

(bd)
For the basic Galilei connection (11.25.2) holds and hence

plape] _ fapc] e . o _ pC e
Y ¢ (bd)p u R (bd)'ue' Slnce‘ R bdp R bdp C bdp we see

that YpﬁaRC] - 0 so that any basic symmet¥ic Galilei connection

(bd)p

is a Newtonian connection. The basic Galilei connection is equation

°

(4.6), p. 348 of [46]. Thus if an integrable Galilei structure

ab :
(v 'u

b)@ dub =-0 is given on M then cqrresponding to any vector

) c
a a . : :
field wu with u u, = -1 everywhere, the associated ‘basic Galilei
5]
connection is a Newtonian connection on M.

. Since a Newtonian connection-is a symmetric Galilei connection

we see that every Newtonian corinection must be of the form

A
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- uu -Au - A u - tau u (11.27.1)
. c > c B

. ) - ‘ k \ . .
since the contorsion is given by (I1.24.1). The condition for a

plapc] _ lapel]
yore (bd)p utRE (bd)e

+ 8C%  is given by (IF.25.1), and C
dbc

e ]
Newtonian connection is u where of course

Ca =C a
dbc basic dbc

(1I1.25.2). We have only to set Yp[aACC] =0 ~ since we. know the”

basic by~

(bd)p

N

required condition holds for C We can also write the contorsién,

basic”

‘ . . o i
in terms of the antisymmetric non-orthogonal A which incorporates

eb

both uAeb and the orthogonal vector ty (IT1.24.4). 1In this case

.u .. In this general case we can show that
e(b¢c) » S ' ‘

+u ucdfo\

ﬂ o c o
= ) A
2Y [pACa](db)c , gd{dAap\b p balc+uau d

}

Pb'c

¢ .o c.o
A + K
+ upu d da'c Ya d pd'c}

° - . e f ‘
) _.ZdAef (bud)YaYp . . (11.27.2) 3

: L] a ' 0 - o
; - 4 + . . . . .
ngel dAef!b Aef,b be,e 'Abe,f 1s‘the exterior derivative of

e
'3

the 2-form R in component form. If AK 20 _then_cleariy
- ef : ~ ef|b T
o e f ' ' ‘ ' .,
dAef'bYaYp'z 0 so one.can see that a necegigry and sufficzgnt con- —

dition for T °

L o to be Newtonian is. dXef‘b =0 ‘[f6’ p. 350].

Now 18t us take a look at the difference between two basic Galilei

. P . ab :
connectilons 6n a fixed Galilei. structure’ (y ,uh) corresponding to

a a

:ué and u = u® + v? where ° _is‘orthogonai. Redall that in

: ' coa a a ' a - a
. = - Tt -
(I1.26) we had expressions for Kd ¢ {d f} {d f} and b e Fb‘c

and we put g'ab.ﬁ gab ﬁﬁiab, g' = éab + ha where all these symbols

ab b

wvere defihed. We let o = %r > 0" for simplicity and also introduce
= . _ b L _ b
the notatioq we = u“;fvb (so we is othogonal) and “We = u Vb;f'

LClearly a =vv, . Letting s, =v v we

£
b YpifY - L f b;f b b f

can introduce scalars R, y, § 'with
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va=a vf—B s’ub- vf—

b S A
* b f * b f

vpuo o= -weun = 0, v Vo= a’fu = §,

0y

éuBstituting into the above expression for “the-difference Kdaf of
_the two Christoffel symbols we obtain after a lengthy calculation
_ab
(using g to raise indices) °
K & = l(v a8 ]u +-l—(v ;a_*va ]u
df 2% TV eta T2V ;a0
1 a a 1« Coe a
- + - = +
: Z(Sfud ufsd)(u +v) 2(vfud _ufvd)v
,a, '-al a - a 1 . a a
Y- - - - +
.t ufud(a Bu F6+B)v ) u(;;fv Z(Vd;f 'Vf;d_)‘(u +v)
. 1 ’ a 1 ~ a a
. - = + -= + :
2(wfud ufwd)v Z(a,fud a’duf) (u +v .)’v
We thus have .
ya a _ 1, a_ a _1 ;a __a ,
Mo~ Tas =720 ~v P 2%~V d%
-.u_.u a’a—l[(\.l +w_ )u +(v +w )u ]ua~6uuua.
TTfd. 27 f f°°d "'d "d’f . fd
< :
We can then write
va _pa _ _, aeg - _.,ae.? R
Mo~ Tqg =72y Aguey = v (Rgup i puy)
" .a a a : .
= — - A - -
R A T
i . N . - . t f d
We can now compare the two expressions. Multiplying by uu we
get ta =W+ v+ su® + o’?  which is orthogonal.v Next, ‘substituting

for t* and multiplying by uf picks out /\ad and we can obtain the

v

following form which is clearly orthogonal and antisymmétric

-1 : 1 : 1 - ’
Aad B 2(wd+vd)ua 2(wa+ya)ud + Z(Vd;é Va;d)'
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a .
ally Ro=n 4 hat R =L )+
.Final y, we gptain from ad = Mad u[dta]' that A 4 =5 Vd;a Va;d
‘i(u @ -u o ,). Thus R . is an exact 2-form which can be written )
2°°d",a "a ,d . ad -
. . 2 _ arl 1 ' ‘ .
alternatively as Aad = d(zvd+2 aud)’a as an exact differentlél.

1t is clearly a closed 2-form which we could see would be necessary

since every basic Galilel connection is Newtonian. Thus the connection

4

P'daf which is the primed basic Galilei connection is given-by.

ya _[a)_ a _ ., aee
4t {q gt gy~ 2Y ,Ae(duf)’ A :
‘ i ' (11.27.3)
a’ ,a a ae . ,
= - = F - K .
ol v uge = T e A vy
(11.28)  DXgamics for the Galilei Structure
It may tufn out, particularly for cosmology, that the Einstein ,

equations may be needed to describe the structure of the universe as a
whole, but lﬁcally, for the conéfitutivg equations (pressure volume,
tempefature félations) usual Classical physics is adequate.' For thiéf
reéson, it is worth examining the simplifying approximation of the

field eQuationé in General relativity for the rest'frame approxim;ting
Ggiilei structure for a material medium. We shall show that the gquation43
(4.18) given in [46, p. 351] for thé Ricci tensor in terms ofAthe

density is the result obtained by taking the abpropriéte Galilei and

Newtonian approximations of Einstein's equations. 1t is shown [46,

‘ pp; 351-2] that these field equations yield the classical Newtonian

gravitational field under an appropriate asymptotic condition. On
the other hand, since this 1is knowﬁ for the usual general relativistic
field equations, .the derivation we give here will also yield this

o

result.
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Let M be that portion of space-time through which a material

medium moves in an irrotatiqnal geodesic motion. Let gaﬁ be the

. a T ab
Lorentz metric, u the flow vector, and (Y ’ua) the rest frame

approximating Galilei structure. Let ; denote Christoffel symbol
covariant diffferentiation and | basic Galilei covariant differentia~
tion. Of course, u;_b = eab' We assume in this approximation that

. ; ,

heat flows and internal energy storage are not significant compared

) 2 ~ab: ~ : .
to mass density, so that Tab = -pc uaub + Tab .where Tab is symmetric

[l

. ) a .
and orthogonal (the 3-stress tensor) and (DUV)‘a.= 0 (mass conservation).
Of ; : ) N

These assumptions are typical for local classical theory. Then.

ab _ ,ab db, a ad, b b _ b ab
e = T ;e T K4 ¢ ? Ka ¢ where Kd ¢ T Y ¥g5e 5° T

if Tab = 0 since =0 and (Tabu ) b

b
;b Kg b b”sa

T

]
- QO

° A
. a
0, i.e. . T

it
o

. bsa
ab - ' a
Thus we have T b =.0 and {(pu )la = 0 and the conservation

equations are written in terms of 1. In fact if Tab = % then

;b
ab a_d , " . ;.
T b = YdF , orthogonalizing the external force'.
The basic Galilei connection is not the only one with these
properties. In fact if @ is the covariant différentiation for an

arbitrary symmetrichalilei connection (II.2£.1) with td =0 and

b d

AK = A éuc + A cua‘ is the contorsion difference between its con-

ac
torsion and the basic contorsion then Tab = Tab -TdbA —TadAdeb.

a
0b Ib Kd b
Recall that Ada is antisymmetric-and orthogonal. Therefore Adeb==O.

2.d . ~db o
- Using Tdb = —pc u.ub + Tdb where Tdb is orthogonal, we readily see
db a

. A =
also that- T Kd b

ab _ _a/b 1
0b b = YbF or equals zero

depending on whether or not external forces exist. We will assume

0. Hence ¢ab =T

F? = 0 -always. Since AKbaa =0 we1similarly have (pua)aa =

d ' ' : '
If t =0 for the symmetric Galilei contorsion, i.e. AKad; =_Adauc +

I
o

d ' "
Amu +t uauC ;hen we still have Adeb = 0 " however the equation

A »
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db a

T Kd b

0 fails in this case, and .energy and momentum are not

conserved. Thus, on physical grounds, we set td = 0. However the

‘spétially'nonrotating cohdition, as (II.24.3) shows, leaves ty

arbitrary but forces. Ada = 0. The two conditions together, one

kinematic, one dynamic, leave us only with the basic Galilei connection
to choose out of all symmetric ones. It is the only spatially non-

rotating connection satisfying Ta-bl = 0. The Einstein equations

b

()/”RQP - %—gabR =;Gab = KTab, K = §%§ trivially satiéfy' Gab.b =0 as a
C b4

result of geometry, but also must satisfy Gab‘b =0 kforjﬁasic“calilei

w? R = Rabu or
sa a;b

o

N

covariant differentiation. This implies
1.
2 . N
time T exists on neighborhoods wit"‘r

Clearly. Rab = Gab - %-gabG where G

oR = R2Pg It is worth noting that since u =

ab’ a,b

"
[
1]
[

,a a gab
G2 = R = -Raa, and hence

A = 1 l . = - ; = - d
\/&/r_, Rab = K(Tab -3 gabT). Using R . Rab Ca where Cab = -(u ua;b);d

(I1.25) we may write (from Ta

n

2
= pe uaub + ab

: . 2 oo
basic Galilei Ricci tensor as Rab = ud_du ~fudu qtkl- v -
2 N . - . ’ ‘
pc -1 (1
e + - = T+ Zud
2 Yab Tab 2 Yab 2 Ya bT) where
L
U-;d ajb

b ) an expression for the

aj;

Pe e vl = o
= abY Slncg‘ u ua;bd = D

d L

we see that u u

a;bd is symmetric in a Aand b and ortho-

gonal in these indices. Hence multiplication by u? yields

. o
a S 2 - 41G 2 "0 . .2
Rabu =3 (pc -T)ub = C4 (pc -T)ub, so we see immediately that
R =S -~ 4nG ( c2-i)u u wher S is orthogonal and tri
ab = Sab C4 p 29 e Sy s gona nd symmetric.
o Cf d - K 2
Orthogona}izing we find that Sab = (u ua;b);d + KTab -3 (pc -+T)Yab.

These equations give a direct comparison between the Lorentz and

Galilei caéesf If | 1is thevbasic Galilei/derivative we have seen
o.ab o ab ~ab - _ “ab . _
that T b = 0, T b " 0, T b = 0, T b o 0. Using Bbe to

lower indices it is not hard to show that the equations for the Galilei

case can be written as
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- be - b ¢

(Oua),a =0, ¢ =0, T . uu =o. (11.28.1)

Tablc ~ “ablc

In the Newton&fn case above we have madé an approximation by taking

the relativistic field equations which are assumed exact and seeing

a

what they give in a case where application of Newtonian mechanics seems

» appropriate. Further approximations then could be called for._ First

of all, the principal stresses of the stress tensor Tab are'small
' - .2 - 2 Cor —_
compared .to the rest mass density ope , 1i.e. iTab << pc Yab and

A

2 . . .
T << pc”. Hence our field equations become

416G ; - 4 <
Rab = Sap ~ 2 pujup and Sy R (o ua;b);d BERACLI

Now the mass density is the only source of the gravitatiohal field
and the stress does not contribute — a rééult we would expect for a
non-relativistic gravitatioﬁal theory.

In Newtonian theory- any velocity vector vo lof the motion of a

particle or frame of reference must be small compéred to the velocity

of light in order for the Galilei trénsformation{to be abprOpriate.

This means that v? differs only slightly from u? the flow field
of the material medium, va being time like, vava = =1. We can then
a

. a a . a a
write .v. = u + ¢h where h ua =0, h ha =1, ¢ >0, € <<1 to

first order in ¢. The answer as to which terms '"dominate'" in the above

. . . ~ . : . ' b
expression for Rab can be answered by contracting with vav' and
. ) -
seeing which terms are of order « to be disposed of» (v'a =u? + e'h'?).
Since Sab is orthogonal 1its contribution is of order €2 so that
_ 4G B /
Rab = - CZ pu_u, ’ (1I1.28.2)

are the Newtonian-Galileian’field equations in agreement with [46, p. 351]].



CHAPTER III

SOLUTION OF EINSTEIN'S EQUATIONS USING‘RICCI COEFFICIENTS

(ITT.1) Lorentz and Riemann Structures on Manifolds.

In this chapter we réturn to the use of frame components and
"coordinate torsién" associated with a reference chart for a manifold
"equipped with a group'structure that was discussed in (II.20). At

this time it would probably be good to feview that secfion before

prqceeding to read this chapter. The notation used here wiillbe that

of (II.20) and we will r;fer to the Tajik as the Ricet (Rotatiqn)

CQefficientS'for the local frame component system on M with sfructure

.G(M) associated'with’the reference chart indexed by a. Our purposé

here will be to use frame components and thesé Ricci coefficients té-

find new techniques for sol?ing the field gquations of general felativity.

As we proceed the utility and power of this method will become evide?t.
"Let M be a differential ﬁénifold‘with a smoothwtoreﬁzz or

Riemann metric g. In general non-homogeneous coordinates: (i.e. frame

components) the Chriétoffel symbol connection is determined from

4 2

L
gij;k = 0 and Taj K 0, 1i.e. gij,k-_glj{i k}'-gil{j k} =0 ?nd
i a i i i
= = - + - . " : "
0 Tuj K T ik {j k}\‘{k j} In these '"coordinates gij -is
symmetric but {jik} is not, while {jlk} is symmetric in homogeneous

coordinates (IIL.20) which is what we usually think of when referring to
poordinates.' Permuting and adding the equation involving gij K Ve

obtain ‘ ﬂ
- _ , o “

e

138



-

- 139

ST AL N (A S AU RT TR ESRN)

\ B v, (L +D)

J .
' 3 £ L
N .
=wgzkraj 1847 k*’gjz({i MESE
Hence, ‘ . N
. . 4
L SRR _ _ aa o a
. . Ve
but {igk}-_{kgi} =Tuilk and so therefore

Ly _1 32 B _ aa a a 1
et =78 (85 k™ By, 17 Bua,j "8ak” 3 17 Bial WrT Tk

‘ - 2 , ' )
and the two terms divide {i k} into its symmetric and antisymmetric

; . a -
part. Of course in homogeneous coordinates where T = 0 this reduces

k)

to the usual formula for the Christoffel symbols.
Now we can work in a reference chart of the Lorentz or Riemann
metric group structure itself (i.e. that preserves the metric structure)

such that the components

are constant and equal to n,, = diag,
o 1] iy

gij

(1,1,.7.,1,—1) for the Lorentz case, or nij’é 6ij for the Riemann

case. Here, all the derivatives of gij vanish, and we;may'write

°

2 _l‘al _1 ji " aa a.a
(=31 gl gt

. Tl 5 17 Nial k). (I1I.1.1)

<

From this we can calculate the Riemann tensor components in this

generaliied coordinate (frame component) sfsteq using the general
. - A\

formula involving coordinate torsion which we obtained in (II.ZO)l
Because of the nature of the coordinatées we are using, we actuéily
appear to reduce General Relativity to Special Relativity, because the

‘'simple diagonal constant metric nij is used to raise and lower indices.

or
-] L4

. ()
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. .
All the Information about the curvature Is contained in the coordinate

torsion. Furthermore, Finstein's second order fleld equations are

reduced in this case to first order equations for the coordinate

torsion which are linear in the first derivative. .

We can write-(as 1in (IT.20)), »

Rijk’? 2,{'191} i ik},z+ {aik}{jaf&} ) {:Q}{-ak‘}# {‘.i bt 2

(ITI.1.2)

- %
where the comma refers (as above and in the remaihé@? of this chapter)

. ¢
to the derivative with respect to the natural parameter along the
: @ 0

integral curve:‘ the veétor field identified by -the number following

ctor field is the coordinaée congtant vecgor field
propriate base vector in V, the n+1 dimépsional
vector space of the group.structure G(M) where dim M = n+1l. See
(ITI.2) below for a discussién of coordinate constant vector fields.

Because nij is{constant, index loweri?é éoﬁmutes with ghis ;
generalized "partial diﬁfereniiation" and solwe have,

- {in.},k - {31k}, + {aik‘}'{jal} - {aiz}{~jak} + {jia}’l'akaz

b

Rijkz

Even though the coordinate torsion is not a tensor; We can use the

- J . ‘ / \,.. [ . _i a _i _
to lower indices and obfain ({ilk}4-{21k}—-0) {12k}-—2 T ok 2 ans
1 o , . '
E—T ik’ and also
211 01 1 ot 1 ag
. {i k}—?_T -7 > T . (11

There are actually an infinite number of such (generalized)
coordinate systems consistent with the metric, and these correspond to

the”chqices of bundle charts containing a particular x &M in the

24
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tangen% bundle associated with the group tructure on M. The con-

dition gij = nij; can be achieyed by an appropriate choice of fixed

basis for V. This basis must be a Lorentz basis with respect to the
- . . . : 4 w
Lorentz inner product I on V which generates -the metric .tensor

on M as an invariant tensor field in the wa& discussed in Chapter II.

oL -t
To keep our notation consistent with the first two chapters we use R

. instead of R when talking about the Christoffel symbol Riemann

tensor, this being the only oge of importance herc. In pcheral we

restrict ourselves. to (generalized) coordinate svstems compatible

§

] - , ,
with the group structure, and if the space is not locally homogeneous,

we mayynot be able to find torsion free coordinates (of this type) at

every point. , - . s e

3

\ (III.2) Coordinate ConStaﬁt~Vector.Fields.

_-V'Let (Ud’¢a)' be a bundle chart [(Ud;ra) the éorresponding
reference.chéft (II.l)J for a group structure G(M)f‘ A vector field
“on Ua is -said to be a coordinate constant field with respect to o

~if it is’'the 1ift through ¢a of a fixed vector in V. Hence, in
5 : . ‘

©

component form, if X1 is such a field, then Xl*_ = 0 for all
i,j = 1,2,'°',n+1 = dim M. If X7, Yj are coordinate consfant on
_ . k in o i
.U then (II.20), x,v1% = TO‘i jYix? which is not in general

’ : . . , - §
coordinate constant, i.e.- Y

a k
13

. , ¥
and X3 as components are constant

for each xrqua but T is a functioﬁ‘of X.
(II1.3) Jacobi's Idenfity for the Coordinate‘ngsion..

»

o e il ) N
- An important and powerful relation iggflving EB? coordinate tor-
- ) 2 . o

. sion that'holds in general can be obtained by using the‘formdla
ootk kb ) k k : |
Ce [X,Y] T =Y 2X -ka:QY 4—Taj ngX£==WZ from (11.20) in the Jacobi

IS

[
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7 - T . on
!
¢ L

&

Identity [[X,¥],23+[[¥,2],X1+[(2,X],Y]

0. We put [[X,Y],ZJC =

¢ oy 44 c awb and substitute for W above. Then

Cc
w21 =z W -W 42 +T A bZ

cyclically permuting X, Y, Z, adding and simplifying, using the fact

-} a a

that the equatjon must be true for all fields X , Y ,;ébh’we obtain

[ 4
o C o e a c g ¢ oQ b

ac.ob ,.ac ap
: ( = + o+ S :
i i,k k j,1i ik,jkaTji_'Ti%Tk‘jijTgk ¢
B ¢

This important result is strictly a consequence of- the associative
p >

/

. N /
property of the composition (of point ﬁggivative operators which /
vector fields are) in the relation [X,Y] =.XY - YX. The derivation
can be simplified somewhat by the use of coordinate constant vector

fieids if desired. This result is valid in general frame components —

ab _
3 1]

a ¢ c
etric or not. We may altlernatively write T + T
metric y y ot [«

as the Jacobi identity for inate forsion.

(III1.4) The Riemann Tensor and Einstein's Equations. f@‘

Using the Jacobi identity we find that the Riemann Tensor fqr the"

Christoffel éympols can be ekpfessed in metric frame components as.

R T + -

13k~ 27 Tkin, 3 7 T, 1 T Tikg, e Tig5,10
o ' .
v i, l - i l
- +
zc c

1 4
1k 7% (505%™ Caxs )

+= S+ +F., . . +F .
4(Fi2kj Fizjy Fiixs Flijk)

1 1
= + + + += - -
4 (Fiklj Firie T Pkies T Feig z] 4 (Mk;jz Mg T Mok M lik)

1, . : :
- Z(Miijk—miljk+Mkin_ —Mjkil).’ (11I.4.1)
's.wheré . L
M =T7-, T2 M +M;. , =0) \ C :
ikje “Taik "3 2 ikje o dkei o o s Ly
F =T . Ta (F .‘ =.F ) . : 1 . ‘ ‘.’:. N . . ‘;‘"
ikej Taik 2 ikej  ejik’’ - L o
= ' a : .= —-. . ‘ 'k}"‘
Cikjl -Tiak Tj ) Cika ’Ckijl B '

f\%‘ ik = "Cikes
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and where a has been dropped from T as we understand this to
represent the coordinate torsion. Indices on T, which is not a

tensor, have been freely raised and lowerﬁusing n ‘and its inverse

1]

niJ. .As there 1is no cdnnection being considered with non-zero torsion,

the o dindex on the éoordinaté_torqion can be\drop‘edkwithout'coﬁfusion;'
We have ﬁot as yet'entirely_specified the fr;;[_cémponent system -

tohthe degree we would like simply by requiring it to be metric. We.
can view the metri& frame component systém as a smog;ﬁ association&of
an orthonormal tetrag at Sach pointvof_”Ua c M'.w?th a fixed ortho-
normal tetrad fn  V. Consequently we can furthér specify‘our frame

. céﬁponentbsystem.by rqu;zing'the syﬁmetric;Riéci tensor to be‘;n tﬁe
simplest possible canonical fofm. In the‘cgse of ; Reimannian structure{

where the metric is positive 4bfinite; and n = Gi,j)weccan choose the

1]
metric frame components so as to dlagonalize the Rlcci tensor ‘Rik. In .
“ ) . : a‘-."
the Lorentz case where nij =0, 1= j, nii';,l, l <1 <n,
nn+1,n+l = l’ we can write the gtress Fensor T~ and the energy
momentum tensor Tab in the case n =,3% as ST
2 b b “ab - . ,

1P = —(pc® + )u?u® - avP - AP+ 10 (111.4.2)

o v i .
where  u? is'time—like,\'uau.,= -1, u T3P = 0, uv® =0, vv?=1,

'}1 B a d e a a
- o a b :

and Tab olrarb-+028 sb-+c3t t’ where (r?,s anlorthonormal.

trgad orthogonal to’ T§§ and o, are the principal \gtyesses. Through

j

éfb Einstein field equations R .-i-n R = KT i where K==81rG/c4 we

ij -2 i}
see that the-Ricci tensor is in a simple reduced form. Let"
2 3 a ‘ 2 .
v2 = alr +a’ sa-+a t®  where (al) -+(a2) ,tﬂq3) =1. 1In adapted
- a:‘- = 8 | La“;=' = E a= =
(generalizgd) coordinates. u = u 5 4 T =T, Gal’ s =s_ 6a2’
a

t =ta=6a3 for aé1,2:§,4. We-.c", .t:‘heh write

# l‘\- )
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Tab==_(pcz+e)uaubf-Aua(alrb+azsb+a3tb)'-Aub(alra+azsa+a3ta)

.-
ab a b v :
)8 8 +03t t , i

-

-a b

+ g rar +C
o1 '
- : . . /

v T
- in matrix form in adapted frame components as

.

5B 0 0 .'_TAGI

. ‘ .’, _ 2
| (Tab) ) ’ 2 ° Xaa (II1.4.3)

.0 0 03 -ia”

o T e e

AE ' :
and Tab ‘¢ame components except the minus sign is dropped.
from before each. A term. The a terms are dimensionless while A,
and oc2+e Nave dimensions of' pressur‘e or energy density.. By con- ﬁ[%
. . B . " ';vl
tracting the Einstein equations in adapted coordinates with the metric
ij Y= _l- = A ij
n we can rewrite them as Rij K(Tij > Tnij) where T u?ijn s
and from this we have thenmatrix of Ricci tensor components be
given by h
R~ = - E-(“pc2+e—o +o ;0,) ! R,, = - ﬁ(pc2+e+0 Po +o ) i
11 2 1772 737 022 2 7273
Tk 2 SN ke 2
= — — +§ . — = - — -g -G _ -
R33 2(pc +eto 4o, 03), R44 | 2(pc +e=0,-0, 03)
Ry, = Ryg = Rypy = Ryy = Ryy = Ryp =0, and
- 1 - ' ‘
Ria = R&i = Kka‘, i=1,2,3. (111.4.4)

We can obtain the Riccl tensor Rjk in adapted coordinates in

'vfterms of the coordinate torsion and its first derivative by contractigg
' N . ' ) . N s —’/
the long expression (III.4.1) we had for Rijkl with niRA which is

P

a coﬁgtaht ahd has zero 'partial' as well as zero covariant derivative

in these frame components. We find that . ,

R 1 L Lg +a

R Taon T «i),172 B8 B A 7 (TT1.4.5)
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4‘1,, ‘
N SR A_
_ i . a _ - a
where Tk = ?k i Bjk T ajTi Kk Bkj’ Akj TaT K3’
- i,.a _ i a ' _ R
Ekj = TakLT Ji Ejk and ij = ’I‘a k'I.‘i 3 ij. ‘Slmllar}y we can
jk : k a | ‘
obtain the curvature scalar R =n" R, as R = 2T K + TaT -+ A Bk+- v
1k k k aki k a. . : ik, a '

E-Gk’> where Bk = Ek f TakiT s Ak =T Ta Iand Gk = Ta Ti K

Provided we are dealing w1th a group structure that admits trans=

formations with positive determinant only (which has been assumed), the
. )

completely skew symbol Eabcd cransfcrms like a. tensor. In adapted
coordinates  €_y .4 ='C€abcd where' 61234 =1 an@’we are con51der1ng
' . ' ab e ! abed | abced-
n+1l-= 4 here. Raising indices using N we have ¢ =i - '\
- .7
where e?de = ¢ (1.11). Furthermore since { a } =0 in
abcd . ae
adaﬁted coordinates, and _Eabcd,e =0 eiyhave €abedie 0 as we have
seen already. Likewise eade o 0 = eade‘e
R w. ’ ’
Now -u =u ﬂi’*‘u { ¢ } = -u { 4 } = { 4 } in adapted (generalized)
) Tab a,b ~c’a b 4la b’ ab
LT b 1l 4 4 4
coordinates. Hencekﬁrom (IT1.1.3), ua;b = ZETa b T ba T ab] SO
: o A a -’ _ . . - b
that clearly ua,bw—‘O, i.e. u ua;b = 0. Likewise u_ = ua’bu is
. . 4 . ) »
given by u, = T 4 and u, = 0. éﬁ@i

As we let 'a,‘b, c, etc. run from 1 up,fo 4 we l@g- A, ﬁ,JC, D

run from 1 to 3 to cover the orthogonal part. Define € =€ v,
. . abc abed

Eabc = cadeu | u =v +uu Then ¢ Eabc u are
. 4> “aib Ya3b ab’ ‘abe’ * Ta:b

. - ; 7 .
orthogonal, i.e. any contraction with "u oF U, on any index vanishes.

ABC ‘ABC

In adapted coordlnates we may write € = -c € = —¢ where

ABC . ABC’
123

€193 = ¢ =1 .and € 1is completely skew 1n 3 space, and we under- -

stand that any ‘index involving a 4 means a zero value for the tensor

l(T 4 T4‘ -4

?ben we aave IUA:B =5\, 8~ BA-F AB)' 'Settlng wAB = [AiB] and
eAB = U(A:B)-.we have that -
: 1.4 I TRV .
w8 =7 Ta B and 8, =~ 2(T BA+1:.2,,AB),. ‘A,B—vl,2,3.
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.

. AB 4 iR

= ’ = = = T
If we let © ) eAB then. 6 T T4 where Tk n Trig:
i I

1~ T '
along flow lines (I.1l1). If we let the vorticity (I.16) be given by

vA =1 ABCm where conQersel W, =€ UC we have Ul = - l-T A
T2 % “gpe S€LY Ysm T famc e 7 23

2 1 4 3 _ 1 4.,
—w23, Vo o= - 7 T3_1 = -w31 and Vv == Tl 5 = W

Thus

8 ='T4 determines the expansion rate of the material medium

12 in adapted

‘

frame components.

(IIT1.5) Dynamics of Motion in a Space—timé.‘

<Recall‘that the Eneggy-Momentum tensor Tab was given in (IiI.4.2)

by Tab = —(oc2+e)uaub - )\uavb - AvaubA+ Tab. Here T20 is the symmetric
: . . 2 ) .., 2a a
orthogonal stress tensor and . pé~ > 0, = > 0, (oc‘u )'a =0, v v, = 1,

N " < b4 .
Vaua = 0. We inﬁerpret ¢ as the mass density, ¢ as the-thermal
triagae: 3 ) ’ - + ’ .

energy density, Aw? as the heat flow véctor, A the magnitude and

~,

a S e a : . .
v the orthogonal normalized direction. If u is another time-like

unit vector representing a speed of motion” v = ¢ tanh Y in a space

1]
(@]
~

direction determined by ha(haha = l,lh u 'relative tofthe rest

frame of the material medium which has four-velocity u? (the flow

»Vector) we have 0o = (cosh Y)ha + (sfnh y)ha; Y e R. If we let

“ab ab ab Loab o . a a a a
T = clr r + ozs s + 03t_t where- u , r , s, t ' form an ortho-
. b~ ~
a r d if o = maxi|o g g .
popm 1 ‘tetrad, an | nax ax{ | ll,l 2"' 3 u u

for all vy and h? 1f oc2 + € E’ZA + Omax' This is the basic con-
ab

I} ‘then o0 > 1%

-

dition of positive energy density in any frame that we impose on T

’ - ab~ ~ . ,

It is to be noted that the condition that T buéub_ be negative is
. : ; , ~ ~g L .

simply a consequence of our choice ‘uu = ~1 instead of +1. In

a * . . , .
this case T b maps future pointing time-like vectors to future

~

pointing time-like vectors, indicating positive energy density, if
a-~b -, 2 . ab~ . . , s 2
T bu is time-like. In fact, . T ub 1s not space—-like if pc™te222 40

max
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~
Putting Tab.b = 0 and contracting with u_ ~we obtain
Tabaab-kvaﬁa . = (eub)_é +‘a (Avb).b .
| - i I ; ]

Energy flow into system per
unit-4-volume due to work
done on the system by
stresses and heat flux.

4-volume.

.Internal energy gained
by the system per unit

Heat flow out .of
the system to the
environment per
unit 4-volume.

We refer to this as the equation of conservation of emergy tn the rest

a a

S 4 |
_ frame. If we let- Y, Gc + u Ugs Yao < B + uu and take the ~

spacelike part of Tab_b =0 we get

(oc2+e)fxa = TCb" 2 - (n® aa uP?
L S R ;b7 b .-
: a c b_a
mass_x acceleration 3-force on body . + AV 4y ;bu'Yc) -
'of body per unit © per unit 3-volume L_ ‘ J

due to contact .
. stresses

3-volume.

- as the momentum conservation equation in

Of course: the Gondition Tab_B =0
’ -

and momentum is‘a#tomagically implied by

'Momentum' transfer from system _
to environment due to heat flow“
(per unit 3-volume per unit time).

the rest frame.-

giving conservation of energy

the Einstéin field equations

usingufhe.contractqd Bianchi identity. 1In fact if we use the equation

B Rd - B

Ba]cb = 24" abe from

S e
‘ Balbc - ale’b o

. : e
connection on a group structure and Tb .

torsion tensor, we can antisymﬁefrize in
. -
. d _ d d e
| R [abe] T[a

a, b, ¢

bic] + ?e [aTb c]‘

: . a
(I1.25.3) where Fb c .

are the compdnentégof the

is a

and simplif§'to obtain.

(I1I.5.1)

‘which is the basic cyclic identity. 1In a similar way by evaluating

Balbcd
in béd’

e . pe £
R atbeldal = R agple 4] °

- Balbdc and 2Ba|§hc]ld using (II.25.3), antisym@etrizing

and éomparing we obtain (using the above cyclic identity)

" (I11.5.2)
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. S~ ‘
which is the general Bianchi identity. Ineparticular on a l'orentz space

with Christoffel .symbol connection {bac} the torsion tensor is zero,

d

so R [abc]

-0 and R [p..q) =0 (e (11.25.5)).

We can evaluate the energy and momentum flow terms in adapted

coordinates. For example ag%ab = (T llol-PTa22 2-+T43303) = Tﬁilg T+
T&ZZOZ'FT433O3 41101-+T 202-+T433p3 . Using the suﬁmation convention
(explainéd below) Gab%ab‘= TAIIOI"'(GU );b = €T AII + 6,4, (xv )’ b
(AaI) + kdITIbb, Ava AaITI4A. Thué the eﬁergy equat{on in
adaptid cooidinaZes {f 1 . X . | X .
0. = AQ + € + a + :

e TIAJ/ Ty 1 ,AJ‘( Yt Ty

WOrk.déng on system Internal enefgy Heat lost to environment

.

gained

0f course we also have DTAI; +o, = 0 since '(ﬁ>c2ua).a = 0. Also we
, ; : ‘
. 4
may, write (pczfe)uA = (oc2+e)TA 4? and using the summation convention
on repeated indices in a term which do not match those in other terms
. . 3 . -
r on the othe side of the equation %Cb =g +0 T b -—o T I
or on k- 9 ’ ;b'cA ~ CA,A IT'A T
(This holds for all A =1,2,3 with sums on other i\aices - If the

equation contains any term in which the index does not appedr at least

twice then there is mo sum = otherwise sum over it, if it is a free

: A
index not in every term. Then .%uA_bvb==XuA.BvB Z(TAAB-I-T4 A TAAB)GB,
- b b
b A i A c b - A Ir A A '
: = : = A A = A b= X
.A,bu Va },Aa . AGVA‘ T4 & v ;bu TAC‘ a ’44-Xa {I 4} o ,4-t
%{TIA4+- AT )a . From this we obtain (A = 1;2,3) the momentum - -

equation in the form

2 4 : b B 4 BB
l (e +e)Tyy 7 95,7 %A b“’&zz - T, g T, e

. i ) A-%A A ]
mass X acceleration 3-force due to stresses 4 1 0. Tae L4

Rate of transfer of momen-
- tum due to heat flow.
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(ITI.6) Exact and Inexact Differentials - The Exterior Derivative.

i

In homogeneous coordinates the exterior derivative in component

form haé the following fqrm\c.f- (1-28)‘ df a =f , dfa|b =f

N ’ a,b -
3 v .
= = T+ + =
fb,a Zf[a,b]’ dfab c fab,c ‘ fbc,a fca,b 3f[ab,c] where
£ = -f,, and similarly for higher orders, e.g. dfabc'd = fabc;d -
£ = where f Here d

bed,a © feda,b T fdab,c T “Frabe,d) abe ~ Flaber”

takes a k-form to a "k+1 form, where a k-form is a completely skew
covariant tensor field of rank k.
Jf Y represents a homogeneous system and o a frame component

system with coordinate torsion T* d we may write f =f G b
_ ac . 0a . yb vya a
and so (c.f. (II1.20)) )

b b - ¢

faa,c fyba,cGYa a fybcya a,c )
| d . b b ' | b
= M + !
fo,dcya cGya a fybcya a,c and
. - » ' 'e
£ = f G vd G b +f G b so
ac,a Yb,d ya a’ya ¢ “yb ya c,a
| d . b b b
- = - M + -
fOLa,c fotc,a (fo,d de,b)CYa cGYa a fo(GYa a,c GYa c,a)
. d . b . d b b
= G + -
dfyb‘d Yo ccya a fudGaY b(GYa a,c Gya c,a)
= df ” +¢ 149
cajc - ad a c

Hence, dropping the obvious reference to &, we have

) | d _ . d ‘
e " fae T fea T fala e T 2a ) " Ty, (ILe)

as the formula for exterior derivative of a l1-form in frame components.

»

Similarly we can show that if f + £ = 0, » - . '
) ab ba -
: _ ' - ¢ d c
dfab‘e - fab,e+fbe,a-*-'fea,b-*-fcb’re a-+fdaTb e-ffceTa b’ se
df | =3g  « +3¢, 9 (I11.6.2)
ab’c ‘[ab,c] dfa™b ¢]° T

(&4
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This gives us a basic idea of the form of the exterior derivative in
ﬁonhomogeneous coordinates with torsion.

Now we are in a position to consider exact and inexact differentials.

If A is a scalar and "," is frame component differentiation we have

seen (II1.20) that A - A =1 S A If we take X = xi. the i-th

,ab ,ba a bx,c'

. component of a chart function in a homogeneous coordinate system, then
1 .

x = (A )i I S vi is the i-th homogeneous coordinate of
,C ,C 5C (c) . . ‘
.
V(c) the c-th vecpor field of (V(l)’.'.’v(n)) that determine the .

~ frame component system (if dim M = n). Hence

i i e i

Y),a T Y@,b T Thae) Y - (I11.6.3)

1

If b 1is the partial derivative in the homogeneous coordinate system

1 n i '
e A = A .
X, {x then - Siv(d) for any scalar field ) In partiqg}af

. XJ’a = xjsivj(hd) = (SJ 1th) = VJ(d) as we have séen. The basis ./
' b d d °
“(V(l)’ ,v(n)) cankaISQ be denoted by [81 ’ ’ én} and .the dual
basis of l1-forms by (31,..:’an).. We can, of course, evaluate these
i i : , d| b *
at.particular points x € U_. ©'M say -— e M and 3 ' e M.
i : a . }aa x X X ‘ X .

. : ' . n : .
Likewise the homogeneous coordinate system (x,°*:*,x ) has a basis

. : 3
at x of M for each x ¢ U, namely [—~I » % —EE} and a
. X Y ax~ 9% : o
/ * . 1 n M3 :
“dual basis of Mx at x namely (dx™,+++*,dx )2- We have that

) \ . | . ' - %§%; | |
-7 , —~5- = 0 and d(dx”) = 0. The corresponding results do not
9x 9x : ;

hold for inexact derivatives and différentials; We have

d dl _ _ s C _.c d i La(a)y
[;; , ;E] [x(a)’xfb)] Tb a¥(c) Tb a ;E-, and d(3"77) 'in com-
(a) a . g (a) a
9 = . = .
ponents is d( b ) c TC'b in ame componfits, since Bb ) éb

(the dual basis) using (I1I1.6.1). FromAkIII.6.2) tHe condition

d(d(a(a))) =.0 1is seen to be.equivalent to the Jacobi identity



a T a e )
+ = 0, S§i ' -
T[b c.d] Te [ch d] 0 nce a closed 2-form is locally exact,
this gives us an existence condition on the dual basis ”a(a).
j 3 :
=G is th .
Of course Vid) yo d st ? transformation (II.20) between

the homogeneous coordinate system Y and the frame component system a.

cgl -¢t - ¢t 1f we use indices

' c 1
e may write Tb av(c) = Tb a% ¢ b,a a,b

, §, k etc. for the Y -system and a, b, ¢, etc. for the o system

151

and it is understood that GiC = Gyaic' The Jacobi identity can be
i a -a i e - ‘ a _ a
A : T = = .
written as V[(d)Tb c1%i Te[b c dl 0 and fo? n 4 if Te b Tb o

are smooth f%elds defined (as scalars) on some'oben set in U_ then we

have a set of 16 ‘1inear equations in 16 wunknowns (vl

. @’

_ a bedf i
'for the vector fields. For n = 4 we have (Tb Ce )Siv(d) +

edef eached = 0 .as a restatement of these 16 equations where
1234 ’ ' ! i .
€ = 1. It may or may not be possible to determine v(d) from

to solve

these equations. Of course, if both the fields T a and T, 2
» b c,d b c

a ‘ a i . .
are known, they must satisfy Tb‘c,d = Tbacsiv(d)_ for.sgme invertible

transformation VEd), and this may provide a simple-way to determine

i
V(d)'

-

(1I1I1.7) The Cyclic an Bianchi Identities.
N

Our expression (IIT1.4.1) for R, .~ in terms of T,i and its
: , ijke ik

derivatives clearly satisfies the symmetry conditions Ri‘kl =

. =R =

§1kg ‘Rijlk = Rklij' On the other hand, the condition Ri[jkl] =0

when simplified, using the Jacobi identity, gives us

* -

i 1 mi 1 i a ia
= - =T ~ + = 2 o+ :
0=T (k21 =2 “[kjel,m" 2 Tatk T3 21 T TaresT W
or
i 1 mi 1 i i
0="T , - =T Lo + — M i + M A
[kj,2] ~ 2 “[kjr],m" 2 [k j2] [23 k]
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e ’
&

We call this result the eyclic kdentity for the coordinate torsion (or-

~

¢ . N :
Riceil rotatioﬂ’coefficients) Tj K .
£ - . °

Likewise, if we write R . oln ¢he form mentioned-in (III.1),

1jk |
: e

®—
(&) -

-k{%ik}{jal}-{511}{jak}4-{jia}Tkag
D . .

| ) )
where,. of course, (III.1.3) holds, i.e. rilk} = %{Ti k"Iﬁik-lei)

R ={jiA}k—?jikL:

13k 2

y o1 : _ . :
and {ifk} = E(Tilk-TZki-_TliR) so  {ditk} + {2ik} —‘0 we can evaluate
e o : b (b b b

Rijkz;m B Rijkz,m - Rb}kz{i_m} - Ribkl{j m} B Rijbl{k m} ijkb{z m}

by direct substitution of Ri' %bovg; Then antisyﬁmetrizing'to get

jk2

Rij[kl;m] and equating ;his to zero we find the result is a trivial

consequence of the Jacobi identity (III1.3) and tfle integrability condition _

for lek' This is merely the %5atement that these coefficients of
exp;;ssion of the Lie brackets of the comionent biase vector fields in

: w i i
terms of themselves are simply scalars, i.e. Tj k, & Tj K,m2 T.

) R .
T 1 Clearly by (II1.1.3) the integrability conditio _ lek

Tem j k,c¢’ P o

is equivalent to the integrability condition for {jlk}’. nameY&gh o
i iq c i ,

{j k},im - {j k},ml —:Tg m{j k},c' Thus the Bianchi identity is a

trivial consequence of _the Jacobi identity and integrability conditionms.

A similgr result holds fof the cyclic identity, namely it is a.consé—

queﬁce of the Jacobi idenkity and. the antisymmetry condition lek==—Tklj.
This can be seen by introducing & collection of scalar fields Si05L

_called the Geometry Structure Scalars, defined by the differential

c c b c .
i + + = +
‘equatloqi Ti i,k Tb kTi j .Si jk 0 or equivalently Tijk,l :

Mjlik + Sijkl = 0. They satisfy linear constraints determined by the

conditions on T,

j K namely

: c ¢ _
(1) Si jk-ksj ik 0 (2) s

c
[1 jk]

1 i 0

— . \i — =
=0 O Sy T2 Sy 7O

(Antiéymmeﬁry) (Jacobi) (Cyclic)

.
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v . : . .
) ® R P

and as we remarked before by lowering the i index on the evyclice identity-

(35 we can See it 1is implied by (1) and (2). In pq;tichar then for any

P 1 ) 4 . i o i.
» -P - )
scalars 5 KL - n in numher, we have.that j k% [j k]2 ?ij kg]A

satisfies the, required conditions (1) through (3) for ‘Sjik2 and. gives o
. T v s

us the-form for the symmetry projection onto the vector.space of all

Sqékli satlsfying the required conditions Furthermore, a"required’ofj'

any projection, it equals th% identity when restricted to its image

vector space. This makes it possible, within’the constraints of .the.. = =
; s . : . o

. . v o . .o -

Jacobi identity; to reformulate the ‘geometry structyre scalars in order
) s to . A _ . .

to simplify the expression fqr‘the Riemann tensor. . This will bechne
¢ ' . [} ) . .
in the néxt section. . C : .
. » . .

In clos1ng, we should. remark that the thtegrability condition for

i
T. can be used to give us an important equation in the geometry

jk , o
\aj:ucture scalars.’ If\we differentiawe the defining equation for Sicjk
o y ) - R .. "l . )
‘with respect to direction ¢, antisymmetrize in k and £ and use
_ integrability for T1C3 we find that ° - L ¢
. e c .. d ' b oC 3
= + +
0=T; 414 e§¥.2 T3 555 el zsi J[k
P ’ S
+ 250 c

: “
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w

e

(iII.8) Reduced Geometry Structure Scalars

Let us write down a summary qf~theicontia§ﬂ bns.oﬁ~wTj}L ‘4hd the N
identities that hold.. N . N
S y pi B ‘

(II1.8.1) Contractions of Tj K
M =T T2 (M, . +M. = ‘ :
ikijL aik’j 2\ HkiL " ikej

B 4

( .
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a
= 3 = F
Fieeg = Tan® o3 Fieey = Foypd
c =7, T2 (64 = —C = —C =C...)
ikje tak j 2 ki kije  Tikef Jeik’’ o
. . i. b
(111.8.2) Double Contractions of T, (T =T )
j k a ab .
a 1. a Y.
= - . T .
A T Tal kg Dy T T T
d a
Bl = T asTy (Bjk Byy)
* = i a ': 4
kkj =T, T 51 (1-:kj Ejk)
o i A ’ : ¢
= T G =G . ' 3 &
© G T Ta Tty g T O 0
. ) e . N~
(I11.8.3) Coptraction Identities E
S ko
M kit e }%_km “Dig = Ay
i i i
. .. = B ., ., = F .= L
= F kij kj F kji j ik Ek] N
FaRTy w : -
N i i i
Coiz = Bror Mg T Mgk
‘The linear projection function is P To,gt _p t -p 1t
projectipn i R Y R FR S E A FIR N
‘ i 1oy i i A i i i i’
: = = - i + <= + P ~ - . i
s° 5 3(3 ke " Tk s Yy g Py P oy TPy g BY replacing
the derivative of lek terms in the Riemann tensor expression (II1.4.1)
by/ M terms and S terms using the differentital equation for T we
. have . >
1 1
. = =(- + .- + - =
N Riske 7 (Spi05 * Sisei " Siwge t g T 3 ke
1 1
+ .- - + = + + + .
*'a(cizjk Cika) Q(Fizkj Fioik " Frixg FRijk)
1 - ; o1
- =(F . +F + L +F ) v = -M, .
4( ikej ikjt Fring Ekl}l) A(Mkijl' ikj2
+ M -M )_Lm M+ -M, )
ik " ik 94U ik T Mingk T Megie T Mkae
+<£L¢1 +M - CEM
2 ijke jike Mkiij Lkij
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In the. eXpression above for . R _the part invdlvihg~the;four S

15k2. '
tergs‘only satisfies all the symmetries 2{ the Riemann tensor, namély(\
- = - - ! . { s
Ri jict. Rklij ,Rjikl- Ri 2K and Ri[jkll 0, ihe seme.holds trse \\‘“T,‘

d-‘\‘\ @ for the parts of the expression involving only C. terms, ‘E,_terms or -
“M- terms. . o v : . S . -

:'_,iu,»-'. i We may/write Sjikl;;gj'ik2 + jikl .;hééét_PjikE.; gi%kl i sjihl .
R e TP T e S e T ke P[jjk‘il and-
FNj}k£‘==§[jik]l _i;fjihﬁ]'~ Remarkably enougniifvwe chosse_.l\gijkg = B
;ﬁihcijkz f‘%'Fijkin— ; iJZk | Mijkl snd substitute, alllthehterhs ’

SRR

wn<

‘vlnvolVing.'C, F and M cancel out of the expression for. the Riemanﬁ

h-tehsprfand we ébtain

, . . . .

— .

= +5 -S. . +8 .
Rijkl 2 (=8 Tkt * S0 Sika4lsigjk)
| O T Vo .

If ‘we write out. the differen al equation for. Tj'k' now in terms® of

¥

(111.8.4)

o7 - s S

. i + = 0, tuti

- S we have Tjik; iljk § Jikl 0, and substituting the

) ’ . o
full expressionmfot’ gjikl we'heye

1

s+2c. . ) +XF . +F
zclijk) 5 Frsgi ¥ Fraas

; ‘1 : :
R - <
Tii,e ¥ Migge * sﬁcjizk*7ck1jz

;-,J .
T+

= Fiien " Fyiok

LYo, . - ~
.2_(Mkij2"Mj_ik9; +2M2,1:|k) + Sjikl = 0

) N o : L ‘ : (iII.SLS) PR

Thus' we may specify gjikl satisfying the symmetry conditions for ‘, ‘ !'
v ) 'S, and Rijk9 (in frame components) is vety simply determined from it
R - . e . - - . i

,usihg (111.8.4). 1If Tjik.,is then specified independently ;(Tj1k¥= Tk J) i ‘_"

‘then lek.ﬁ is determined by (III 8. 5) w1th the Jacobi identity satis»
- ’

~
%

fied. . This can be done‘arbitrarily at any one point, and in. neighborhoods

iS'suhject to the integrability condition for T. The expressions in

-~
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F only or "M only<eseh satisfy

'g1ven by

,§o Tl JTd ek 1

’tzons of the form T 1

ythe'differentiaL equation (III.8.5) for T, " abave ifnvolving. C only,

jk

J

gxmmetry conditions on % where

it isrnnderstood the term Mil ; teleted from the M term expression.

jiL k i kl £k31 o k&4j

,Wevmay write ,Si kl [i k]l [i kL] 3 E Qik. 50
1sz = %[izk 1sz “ekji sklij) Then p“tti“g SiJkl = Sijke T
SleZ we see that S. satlsfies the usual symmetries of S »aS‘wel% ?51*3
: * - * IR S B
“the additional symmetry S .+ 8 ;= O and therefOreh:

J'the dependence on the Rlemann tensor in (III.8. 5) can be factored out to

give, -~ . * co o e

—

1

+2 3o+ = +
Coisid * T Fhase * Frsey

M+ =(c . 4+
Tiik, e * Migsk «/B(Ciilk Ck;jz
] T a o .1 T
- . , o+ - - = o . . [
Fitke ™ ]12k)» (Mkigz 31Ke’ My 151 2 Rioge * Sy
* ‘ ’ ) ’ - .

S : _;_:j_"'
of course i K 4 S

~

1 43 aE e i
13k T FC51a* Sugi *Siagy)  2nd €his is inde

~

_pendent of the Riemann Tensor. The  S. scalars are calledﬁthe reduded

geometry structure'scalars, and S are the reduced geometrye®structure

1

. * e~ Lo
scalaps fbr fZat space tzme,~ S = =R + 8., .+ The Ric¢i Tensor,

Syike = 2 Taegk T Syike”
L. 1. .3 SR i . i
R =B, -+E._+2G. +A, . ¥D, . ~8 . - g o g
1 S D | R I | S 1 SN G 1O RN €1 SF SR ¢ S DI TR
csn'also:be‘simgiified greatly by the use of ‘reduced scalars. -

[
e

‘(III.9) Spec1f1c Examples ‘and Physical Interpretation

Let us - look first at the case where i ik 0 identically on U
€qgcqd O (I1.7. l) from 1nte'rabilit and T +T b .=0
R g y 3§,k b K 15

The largest. class of simple solutions o (II 7. l) are the f&ctored soZu-

K _/ « J

u_

Jk o gk " jk K] , _
c . c . b . o é B .- ’ ¢ Y S o . i . ,
Ti j,k + v Abkv'Aij =0 T,Tifj,kf TRTi i where Tk —:Tk'i' ‘We may

v

N L1

vaA,; where A KN . =0. Then \ ‘.('
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L) o " y v . . ’ n . : :

: write ~(Ln Ti j) is a constant;

1
]
w
o

[}
th
3
3]
=n
®
la}
(1]
=]

. & c : c-
Jk ko aded 13 - 1]
~ C AN ' . e y

a.ef i 5,k =0,

=}
(2]
!
4
. ]
=
?
0
I
o
]
(o]

1jf 1V,;i = ',ij,k. Thus (%n f),k
. o~ i . ~i~ e . e ! S 2~
Tk =-ka \where ‘Tk =T i = v A isga constant. Hence f;k f Tk _
TR AU~ - _.‘ 1_ cn phap BN -
implies [— f),k f Tk' Let - T —F 80 that - Tk T,k’ i.e. T is a

T .s@%lar fleld which has gll derivatives constant.v Clearly T kg =.0 and

- T - o= = fyv ~_~' = - v
hthls is consistent with T K2 A?;Rk. ka Ty 7 kehiyV” .O by
antisymmetry of Kij,'-ﬁéu ¥ 1. o '4/4 ‘

_ Let us look “at the Ricc1 tensor in thls case._ We have RJk = %—Bjk -
1 3 , L L

Ejk > ij,‘ A(jk) D(jk) since Si ik 0 ‘and_these terms are
definedolni(IfI.B.Z)._ We now: substitute in the expression Tbaé-fVaNbc,

e em L ama NEN: SR S i ~“=" Cougl .
f —»fT fT and put v = AuT '+ h Aik uigk~' ey + eiklw

» L 2 a
: ] 3 . T, : ¢ .
where g, h W are constant vectors in R (i.e. have zero 4 component
» A; . in these adapted'frame components). This is the most general form of-
- .'7 the faetored solution‘" Using the usual notation for dot, cross product

and vector length squared in- ZR., we find that

- S S 1,222 1 |
o _,_.fz,_Rj-k ﬁk+ (h Vi 2(h A)ww + (3?,: +g )hh

&g; [g (hxw) 4—(th) g Q(h w) (hxw) '-A[h (5xw) 4—(gXW) h ]

- (h* g)[hkg +h gk]-(h w)[h W, +h K ]

k

1, 2 A, 2 20 03
2(h -3X )(ng)k+[2(w -g") -,g-gxg By t5(heg) (hxw),
| +1n. o Taeaeb - .
. 2. (f B) &y AR D . ' _ : N
1 B
| + v ,Z(h Z3X% )(ng) +[2(w -g ) -8 h><w]hJ +—(h g) (h><w)

- - o

(111.9.1)
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- Here we see that Rjk is simply f ™~ times a constant matrix. The field

. : ; 4
equations tell us that (with «x = 8nG/c ),

S -R..-R.. . R -R.. -
0y = = 7 (Ry3* Ry =Ry =Ryy)s 0y = = 5o(Ryg+ Ry - Ry - R,
o » ‘ 2. : ‘
03 = = 3Ry ¥Ry ~Ryg =Ry )y petHe = - 2.<(R1‘1+R22'+R33+R44)
et = TR, Wi 0H2 e @Hia1. | (1T1.9.2)
i0f course if we are to be working ,in adapted fnramﬂe components then 'I'i
(an'd hence Rij) must be diagonal in the orthogonal part. One way off . *
achi‘eving this in (I1I.9.1) is to take h = hr , g = gs , wW_ = wﬁ
a a a "a a a
where. ra = ‘dal’ s = 632’ }:a = 6a3' Doing this we find that
2 ' =22 . ‘ :
f -2 2 3 22 Aw : .- .
01—-.-'2—'(( —3>\ghw—7gh+ 2) - :
g2 72,2 ' '
0_2 = —‘ E—K— ( +—""‘—>\ghW)
-2 : 22 22,
_ £ (522 h g _Aw 2
Oy = T ¢ ()\ > 7 7>\ghw)
2 ” -2 2 L ’ S
pc +e€ = - £ &-—}l——3)\ghw+4h2w2—3>\ ¥ s ' ~
2« 2 2 _ . : “
. . '&
a1=1, a2=a3=0, and
' £2 0 1,2 —é' : A, 20 20, R
A o= — |- -;2‘(h -3x7)gw - —2-(w -g°) +ghw)h| . o0

o : 2 L G e
0f course we must have pc +¢ 2 2) +0fnax' ‘We .can satisfy- this inequality

'strlctly if - h =0 and _:’w2 > 6[gw| + 4g2, and by continuity it must -

hold for all (h,g w) ,ﬂ]R"3 in a neighborhood of such a point, Of

course A, h, g, w ai'e constants in any one solution to the field

eqdationsl and spdace and time dgpendence is only in - f Wxth av =r = 6 a1’
s = s = F<S ta‘ =t =8 44 W=y =6 we havé in this ’special i
. a a2’. a ay¥’ a , ab Y

E

PURRET
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e

u.d
a _ .,~a a N o
Tb = f(Au -I-hrA)[g(ubsc ucsb) + w(rbsc rcsb}]
a = A . : 2~ ' '
= = - . g = A—
and Tb Tb a f(Ag hw)sb Therefore, f’2 £f7(Ag - hw) end
f 1= f 3 = f 4= 0. 7Using this we 'see that from the relations
) ’ ’ ’ ,
1.4 C1pb b
“ap =7 Tan an =" 7T pa*T ap)
. I - 4 . | ) P
6 = = . = . ' I11.9.4)
T m Ty YAt iy (I11-5.4)
t .
. that. w, , = l—fin = - Wi, = W, =w,. = @, = 0 i.e.-
S 12 T 2 217 713 © 23 Y317 Y32 T e |
11 o1 1 P e
vo o= fowF , eAB‘ 5 fgh(rAsB-+rBsA), 8 o, u, —,ngSA' Notic
égat ABBAB = 0 since we are working'in adapted frame components.

¢ Hence we have an 1sochoric motion in which the stresses do no work on
‘the system and for which the vorticity and acceleration are orthogonal
to one another and aleng.two of the principal axes of sfress;
of course we can check the equations (11I1.9.3) by us1ng the energy
tand.momentum conservatlon equations, namely the ones we derlved in °

(I1I1.5) i.e., B o o

v .
o I . I T iob g )
T = , N + . ) .
T, 1°1 €T, 1 et Qo )’ + o (TI BTy 4) ,
2 4 b 1 -
(pcTH+ )T o + o0 T . -~ 0o.T (I11.9.5)

K4 A,A A'Ab TAI

’

and subsﬁituping in. ' This is rather tedious in general, but has been -
y S » B -

~done {for -specific examples.
. :

One other case of interest where (I11.9.1) is diagonal in the

. . . . : 8 .
orthogorial part and therefore represents the Ricci tensor in an adapted

7 . ' L
frame component system is the case ha

2

hr = or w = wr .
a’ B 8T, a .a’,

2 .
w h(ujrk

N>

+ Br.r -~

1 1,2 <2,
Then 5 Rjk = 2(h ADw 3T

+u f;} - (hzwszB)u,u
£ k' j

jk

<



v/

- =22 . 1=22 22 22 c .
= 2X + = A - - 2h . :
where B8 22"g 5 w h'w hg Of ‘course ij rjrk+-s sk+

'tjtk and has ;hg components of thé 3x3 ddentity matr?x ij = ij

in.adapted coordinates. Using (III.9.2) we find that

o, = f————- ()\ -3}‘12), o. =g = _f_K_ (hz_xz)(%__._ 2g2) ,

1 b4k 2 3
. 2 2 2 2—
,pc2-+é - £ w (31 -—hz), al =1, a2 = a3.= 0, x = i—%zih
. _ o e | (I11.9.6)

In particular the condition pc2 + ¢ Z'ZIAI + Gma# ,1mpliés thaf.forvé
hontriﬁial solutioﬁ,. 8% 0. It-s cléar that if we consider Kiz 0,'
‘h'= g =0, QHr'O'/then wé have the condition on,éﬁe énergy momenfumuf
tensor holding Withvstriqf_ihéquality, and therefore by contiﬁuity i£
holds for values'o{'fﬂese parameters in a neighborhood of such a péint

(in pgggmeter‘space).

-

a
\ B . . + ’
In thlsvgase_we have Tb : = f (Au + hr )(2gu[b c] 2ws[btc])
- and S0 . T, = fg(xrb4-hu ). Therefore f,l = f.T2 = f g(kr£4-hu£) 80
_2 Co_ 2—“ _ - ' ’ : - '
f’4 = ~f gh, f’l'— fogh, f’2 f,3 ‘0. If we w?ite f;g —‘fug + f'r
* — . W 3y . .
then f' = fng and f = fzghv since L, = -1.  This is the notation

wefwiil uée in the“éection_on unidirectional,space times late¥ in thid

chapter, and in féct the solution We’are.considering here is in fact

unidirectional and aAspec*?l case of the more general result (III.15).

v Now we can see (using (III.9.4)) that w23 = %~5§ vl -4 Evfkw,_
2 3. B e
v, =vi'=0, eAB = fghrArBf ? = ‘fgh, u, = ngr . gg&ﬁthls motion

vortic1ty and acceleratLon are parallel, and along the same principal

. B4
- a N

axis.

'In these solutlonggéo the‘field y ions of .relativity, we have

;ﬁ%_

not - introduced a constitut
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relationship between deformation (or its history) and the stress.

This, of course, puts further 1imits on the possible choice of the free

ot )
{giﬁameters specified, which are constants in any one solution but arbi-

trary over a range of problems suoject to the positive energy density

.condition on the energy momentum tensor, namely pc + € 2 2\ + Omax’

The solutions, in this section, to the Einstein equations are of a :
very special and: limited type that are given to illustrate the technidue
of solving and interpreting physically using the Ricci coefficients.

More«generalfand phisical%y interesting solutions will come later.

(III. lO) Transformation into Homggeneous Coordinates.

: It 1s of interest to be able to transform solutions we have in a

metric frame component system over to a homogeneous coordinate system

’Ewith a line element ds2 = gijdx;dxj. Let x(a)’ a = 1;-~-,n. be n '

%gctor fields determining a frame component system in. an open neighbor-

 hood U~ of some .x in a differential manifold M of:dimension n.

Let v identify a homogeneous coordinate system about x ¢ U_ and

let v( y 1= 1 +++,n be the n coordinate components -of lx(a) in

the Y system. We let a; be thg”index of' the frame components
o :

determined by v( ) and let Tb c denote the Ricci rotation coefficients.

We let T a’ denote the Y coordinate partial derivative,.and Tba

b cbi c,d

the frame component derivative. For the sake.of this discussion here

we will use indices i, j, k, etc.,for;the, Yy system.and a, b, ¢, etc.

Fob ¢ S S " . .
fof” the d_»systemi Clearly V(a) = Gya'a is’inYertlble, {.ef there
eXiStS GG.".Yb- ,%th i G a - 6 , i ) b _ (Sb

G . G =
3,3\;<A . yo a, ay i~ ] Yo aay i 5a

In spec1fying conditions for the existence of v% ),
f
ﬂ
;hood we see that if it is iQVertible'at one point™ it will
o8 .

=

‘ 2
set containing that point by eontinuity Of«coursegwegﬁ.

. -'f P . - ool i B
A T R ) 34 . .
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' 1

. . !

a’ ‘and require the Jacobi identity .T a +17 8 T € ! T
Ty e’ (d) q “*[b c,d] " e [bec d]

"can be written’

= 0.
c
The basic Lie bracket condition [v( ),v(b)] = ib al(c)
i i c ‘ '
- = A i t 111t
V(b),a y(a),b Tb av(c) This s simply the in egrab ity
. . 3 | <
condition for vi_ where th) = vi b and vi are the y-coordinate
system scalar functions defined on UY c M. In terms Lf homogeneous

vl i Laoc i
(b)93 (a) V(a)g3' (b) Ty av () We ha

ib) a + v(a) b Y ( ) for some scalars Y ¢ = # Then

b a b
i lem c

- b
V(b ,a 2( b a-PY ] vy This permits us to obtai% V(b)sj y

multiplying by the inverse of vJ and thén the condition v
\ (a) (bY9ik

as

derivatives ve that

(b)skj of local integrability can be” imposed Equi alently we can

o d 1 liirectly for

%mpose the condition V(b) ae V(b),ea = Ta ', d |

‘1ntegrability. We see

i -1 c c coi l i
== L+ = +
V(b) ,ae Z[Tb a,e Yb a,e) (e) Z(T Yb a)v(c),e .
i 1., d d .1 : : '
: = = . . ‘ thi : .
Vhere Vi), e Z(Tc e-fYC e)v(d) If we substitute this above,
: i N ' 1.4 (¢ cy 1
; - = _—
evaluate v(b),ae Vib),ea- and equate.this te ) Ta (Tb a Yb d)v(c)
~and simplify, we.can eliminate all reference to v(c) ang bbtain, ’

using the Jacobi identity, the geometry structure seaLarséjn the form

d c .. d d.c 1 d_c , ,d d
=T. + += - '
Sa.eb Ta‘eTb c 2 Tc aTe b 2 Tc eTb affo e,a Yb q, e -

[

c.d 1.c,d 1.c,d loc d 1 c.d
+Te eYb c_ZTb aYc e+2Tb e?ca 2Yb aTc *3 beTca
1 d 1.c,d )
-_— +__
2 b aYc e Z.Yb"eYc a (I11.10.1)

If we find a smooth field of scalars cha = Yadé satisfying this’

‘eqnation, we have e direct differential equation, namely th) Q=

%{Ibc -&Y ) Vie) for the frame component to coordinate transfer

a ‘ : |

eoefficients v%c). In (III.lO.l) Sa» automatically satisfies the

eb
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required symmetry conditions. This equation, a consequence of the :
] ) o ‘ ‘ ; .
integrability condition of"v%é)' gives us an extra condition on
d ' _ .
Yb [e a] w? would not otherwise have.
In the special solutions of (111.9) we had Si ik =0 and
1 ~ o~ ~1
Tj,k =f v Ajk whe?e v and Ajk were constants, anch“f,k = f°T
and %k NiKki. As we saw, this satisfied the Jacobi identity and
integrability conditiéns for f. It is easy to see that (III.10.1) -
d ~d ~d v ~ o~ e
= - = - +
hold; for Yb . fyb c where Yb . =5 (vbTC Vch) where
‘ » . o v)
(\7)2 = ;a;a is non-zero (i.e. v 1is non-null). Using this we can

<

1 linc ey 1 . .
V(b),a Z(Tb at Y a)V(C) ' . (I11.10.2)
for. V( ) taking Say V](-c) = 62‘ . i,C - 1,2’3’4 at x ¢ M and wOrking

W

in ‘a- neighborhood of x. ‘We will illustrate-thié technique in (I11.14)
when we discuss the omnfhirectional space-times and obtain, using thiS»h
method, a Friedmann metric from one of the omnidirectional soldtions.

. The equations (iII.lO.l)'can be split up into\é form that can more

easily be handled. We may write it as two equations, némely'

g :
d _ =d —d o L
Sa’eb —Qb.ea Qb ae’ and ' . o :
) . o - (II1.10.3)
d 1,c¢c...d l.,c..d 1 d ,—d
= + = ; + = = :
0 Yb e,a 2 Ybﬂewc a 2 Ta ewb c-+2 Ta bwe c-+Qb ea’
a  _,a bé —d ‘  {?ﬁ | d ‘;
where Wb o Yb e + Tb c fnd Qb ea has %%pionly symmetry Qb en
—d ’ . ; R PRy —d -
Qe ba" Theref?re we also have Qa b and
. ¥
adding we obtain
e d c .. d 1
0-wb e,a + 2 Yb ec a 2
srdrc +gd ,gd Lgd (111,10.4)
cabe b ea a be aeb ' o S,
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The equations could also be written in the form

d 1 c.d 1.c.d . l.cod 1.cod d -
O_H)ma+2Ybe%:a+2Ybea:a+2?aeﬂac—2Tbaﬁ:e+Qbea’-

. d c.d 1.d_ec¢ 1_.d_c .24

hoy = T & 4= — !
wpere Sa eb Ta éTb c 2 Tc aTg b-FZ Tc eTb a-+sa eb Wish

o d d d , .

= - +
a eb Qb ca Qb ae For second ordgr derivatives we have the.
a f a

a
condition W

b c.de - wb c;ed = Td ewb . of integrability.

(I1I.11) Special Solutions Using Transformation In;egrabiligx.b

“" Using the relation (IIT.10.1) for the integrability of v%é)"we

dan find a family of special solutions in which the Riemann and Ricci

tensors can be explicitly calculated. The Ybac‘ arengivén in terms of

a R '
Tb c which allows easy transformation into\coo:dinates, and there are

no pointwise geometrical restrictions on Tbac as (III.7.1) iﬁplied in
the cases considered in (III.9). As in (II1.9) we assume the geometry
struéture écalars are given as a linear combination of projectioné on

their symmetry space of the contractions (I11.8.1) of .Tbac with itself.

A2

The most general *such expression is of the form

| ) e )
S1jke al(Fiij Fiak ™ Fiokg -Flikj)- .

X

+ a.

2 (Figns *Fagon ™ Fraeg ™ Frarg) * % (F

. -— +'> -—
125k " Fyiee Y Feigk Fjuk)

* oy, (Fi{]ijl “ Pkt Fyaak ™ P )t _81(.“1jkz tMgei ZMljki)

+ BZ(Miklj+M'kij2+M$Lijk'+M$Lkij) + Bj(Muij’Mkuj+Mzijk+Mzkij) |
R [Mjkli_ZMj21k+Mj-ika)~ + Y(Cijk2+2¢ikjl+ciljk)’ N _ OI
where the 9 coefficients al, Ays a3, a&’-Bl’ 32,-33’ 84, Y are -

‘arbitrary consiants. Without explicitly assuming dimension 4 “and
/ -

using the volume element as a dual transformation, the only natural

i

‘ t i i i
way to express Y, in terms of T is by taking Yj k==(c—1)(T jk-FT kj)‘

ik 3k
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.f‘

)

which gives the appropriate symmetry We assume ¢ 1is a constant

parameter. If ¢ = 0 we see that ka) = l{ ) becomes

i
V(b),a

each fixed 1. Since this covector

- [ 4.1 : ( ) -
= {b a}v(d) using (III.1.3) and so therefore vy 0 for

x( ) (for each ‘i) is covaggantly.

constant in the frame component system, it is also so in the homogeneous

MY 1) i ' i
= 0. But v, = § here, so that ) = 0 1in the
Yk h| 3 {J,k} "

homogeneous system. Thus the space-time is flat and the Riemann tensor

system, say

‘is zero, in thevcase c = 0.
: o 1
Using the aboye forms for Sijk£~:and Yj x We can substitupe
into the integrability condition (III.10.1). When differentiating

Y,;‘, we differentiate the. Ti; and Ti . terms, express in terms' of
jk . jko kj

By lowering indices, and supstitute,for S,., above. If &e

Siike )

do this, and collect up coefficients, assuming complete independence

ekcept fdr naturél symmetries, we find that dz = a, = 8. = 82 _ o, Q,
2 . ) _
o ftesl)” - Le-1) (2¢-3) 1, 1 -1

Therefore we have the geometry structure scalars given as

_ (e-1)? " ,
515k = 2(6-30) (Fijkl 130k~ Figki Flikj)

' (c~1) (2¢-3) _ ‘ P

* 230 (Fy5k Fiaie * Foagi Fyaad #
1 . .

+ 3(1-0) 1zj!'+MkziJ T B T

(c-1) _ )
530y (Cigirt Capga * Ciggi)

o -

/ . | S+

(I1I1.11.1)

If we write out the reduc?d geometry structure scalars (III.8) as

S = a 4ooee ‘,/~ ces eeo ' eke. '
Sijkﬁ‘:-al(Fijkl ) +;a2(Fik2j+- ) + te. exactly as for
Sijkl with "~ over allfthe parameters, we see/that -; =y + % s
~ R 1 : ' ’ ~
= + — = —_ X Y . =
a, = o ta, Bl Bl + 2 and the others are unchénged, i.e a, = Gy,

~

~ ‘ 1 ~
= . . i = —| - + —
_a3: 'a3 etc We write out phe Riemann tensor Rijkl 2( Skilj Skjli
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~ ~

Sikj£'+siljk) using a, = @, = 82 = 0 as
. . = ~ —~ - - - . - +
Rigee = (9 u3).(F21kj FFotmc T Fagit ™ Fyanet * Fanng + Frang Finge * Fiogi)
BB,

2 (M.Qikj FMesnt Mg T Myt Mgt Mokt My Mg

MTTRL e My +2M.k2ji)

27 (Cp g + 205 *Cond o
B. =8 =1 3 . L1._ .1, c-1
mdusing By =By =g By =g, V=gt
A . i
v =1, (-1 S = L(c-1)(2c-3) 7
o =7 + 235y 0 % 204-30) we 'find that
_¢(3-2¢) | ' )

= ===/ ' ~-F - _ - ] - +F .
Rijke = 3(a=30) (F!Likj-'-lilijk_ ot " Fyakt " Faeg * Figies = Fipgg Fiosn)

..
PTG oty F s+
/

f

/ . .
This is the final form for our Riemann Tensor. Thus we see by a different

(I11.11.2)

>

method éltogether that the space is flat for ¢ = 0. 1If we work out the

. o e, ) :
Ricci Tensor Rjk n Rijkz using (III.8.3) we f%ﬁd that |
2c2 .

_ ¢(3-2¢) , _ ‘ ;
R a5y ™ ) ~Bey) * 7030y By

jk = m (III.ll'.3) *

(44

There are several special cases which it 1s of interest to examine. If
X : "

-3 . .9 .
‘we take c¢ = > theq Rjk i Bjk and .the differential equation for
. v - :
"Tj Kk ;s
1 1 A «
Tegi,0 = E(Mjkzi+Mj1kz) - 4(Fijk£+Fij2k “Fiok3 ~ Foing) )

1 | 1.
- Z(M_izjk+Mkuj_+Miijk+M&;kiJ) - —Z—ECijk2+2Cikjl+CiJljk)'

(I11.11.4)



-

s

Oon the other hand if c¢ = 1,  then we obtain". Tkji Q= (M" 4— jik&)

2V ke
-Llp -Lg Ll
and R =5 B =7 EnctAgy ~7 D It is easy to check. dir@%tljw?m
oty ag i’ 5
=

i

. _ T | ? ) ;
for this differential eqoation fhat Tj I, Ty ke Ty %j“l a',>%ﬁ
holds identically without any restrictions on Tjikn such aszﬁe found

in- (III 9) This means that the equivalent form (ITI.7.1) also holds.

The verification of this result for (III.1l. l) with c * 1 is extremely

- tedious, because substitution  gives numerous cubic terms .in T with

2 -contractions each'

It would be nice to find TJi£ that diagonalizes ij in (III.11.3)q

in the orthogonal part (1,2, 3 comppnents) and such that the condition '
. o
(III 11:1) on the geometry structure scalars would maintaih TJ K. in

-that form. This would give us a_ solution in adapted frame components,

and the restriction on '( j k) eﬁmzh gives us a. constraznt manifold if

Bl

these conditions are satisfied.

(I1I.12) The Omnidirectional Solutions. .

We are interested here in imposing conditions of spatial isotropy

on the R1cc1 coefficients directly, in order to limit the class of

’ space t1mes to those which can be handled with some degree of simplicity.

The naturalycondition we obtain, which is especiallyquseful in cos—:
lmology,_is that of omnidirectionality.f A space—time is omnidireotional
1f no particular spatial direction orthogonal to .the matter flow can be
singled out . any process whatsoever (including frame component»
differentiation) from the Ricci rotation coaffipients of some adapted
frame component system This definition includes a dependence on the
matter flow of the material medium but 1is independent of any homogeneous

coordinate systems. Aside from beinnglmple, these solutions are also

physically interesting and reasonable. Of neCessity, any solution using



4w

L

©

. ‘abc £abed”

f .
frame comgaﬁgnts in which » spatial direction is distinguished must

have equal principal stresses and no heat flow, and has the energy

ééa?or type of a "perfect fluid". In &4 dimensions we then have
c c PR e} S ' :
= + -
Ta b fY[gub] + fea b’ and the f term is mis?ing in n+1 dimen ‘
sions generallyf Here Yap = GAB’ Y4a ™ Yaémz 0, Y, = -1, u, = 0,

.= 4 Ame1,2,3, ab=1,2,3,4 and Ny 1s used to

raise and lower indices. The omnidirectional condition implies

. : - 2 . ’ o
f Q= fu2 and f . = ful so the motion is irrotational and geodesic

bl

with local time coordinate Tt upon which f and f depend.  1f we

wish a transformation into cobrdinates we may write PO

; ' \
c c - c c
= ¥ +
Ya b gY(aub)' hu Yab ku u_uy

Y . A
\ 3

where g Q= éug, h, =rﬁu£, k ¢ = kul so that g, h and k are
v ’

» b

also functions of 1. The functions f, f, g, h, k are clearly ‘inte-

e

k

grable, i:e. f,km'-f,mz =0 = TQ mf,k etc , and the Jacobi identity
implies f .= %-ff. if-we substitute into the integrability condition”
oL 1 . : v
* ¥III.l0.l)>for v(i) we get.. .
A1 S | S
\f -62 Aff ' (l)n
Ley 12,11 .21, 1 V
FE=g i +3e+ze +3 kg af(k-i-g) (2) _
~ , (I11.12.1)
0=2 4L n(s-g) (3)
2 4 :
Cum s 1 3 1 ‘
- 0 =h-5 hk-7hf-7 hg (4)
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If we differentiate (3) and use (1), (2) and (4) to eliminate all.é@

derivatives in the resulting equation we obtain an identfty. }hus it

A

is easy to see thgt if f and f  are given as functions of < sub—fﬁ@ )

~

ject to the Jacobi identity f = %—ff" we can find functions g, h, k

of 1t satisfying (1) through (4) in more than one way." In the particu-



Y

- f+0 as 1 + 4= g0 for 1&rgeb - weé have f

v 1 ‘e 212 .
P,~ i (4f - 3¢ -f’) and pe” + €

'oﬁly to'the.éohditioh' f,=i% ff. . o o

Af = 3f + f~ and f = —-ff; These canvbe combin

e
lar case ‘f = 0 Qe.may take - g = f, h=f= O‘ as a pgiﬁicuiafly

L
N

’ sim;lé form that.gfyes us ' " T . T
P 1‘ 1c4c i'_‘f c‘ 1 o
R P E(Ta;ﬁi qé'b)v(c) f,E-Yaubv(c? e 5 (111.12.2).
f & 0 and we are given functibns f, % of ‘r ‘satisfying
. ; ",; ff we can obtaiz' g, h, k satisfving (III 12, l) in the follow1ng
manner. Solve the differential’eqdation.-g —”f f2 + —-(g -f ) for -
g wi&h,any'iniﬁial cphdftions, dhen p;t h = g%;  and k= -g—h.‘:ﬁe“.

)
s

c

lo?téin ‘?3?5A=’g6( Uy + hun b from which we'can }ntegrate to obtain

homogeneous cbordlnates. ‘This is not the only”sblution of (ITII.12.1)
for f 2 0O, but-1idecludes all“casesbfor‘whiéh & +¢g+ h=0.

. The Ricci tensor can be obtained from (III.4.5) and substituting

we obtain

. so rhat putting P .= -0, = -0, = -0, as the pressure we have that °

Ve

vf%-(f -+f2) using Einstein's

A

eqdations, where f and f are arbitrary functions of 1 :subject

v

(III.iB) “The Zero Pressure-Case.

A

The‘duét solution obtained by putting P = 0 is of great interesf

.-COSmologically. We obtain two first order differential equations

Ap~ .
to form a single

equation 8EE = 202 + 1% for f or 2f = 5ff - % £

/

'the céséf‘f = 0 we can solve-explicitly for" f -to ge f = 311(:
l , e :, , oy . o ~ ] } ’, ' . -
-~ for a conbtant <, of integration.. For#.3+ - positive

4 |
decreasing so
- ‘E T v N -

e



N . e T e

pc2.4 ei 1s decreasing and we have an expanding universe that conx
. Ly .
always to expand We call this the parabolzc solutton since it corres—

1

ponds'in:Newtonian meehanigs to the matter having Just-barely enqugh o

energy to escape to infinity afterlexpanding‘frqm'the initial infinite Fx

c
density singularity at 71 = —e%g,
'.7,’ ‘ Ty A . R l . ) ‘
Now let’ us examine the £ # 0 ‘case (which we have only for : S

n+1l-= A); We shall see thlS gives us the eAthticﬁé sqluttons in o

l .
which after expanding from the infinite de siﬁy sin%‘damity, it has 'ef .
ot = ° e T

insufficient energy and contracts back. of course, for these dust

solutions, all the energy in the rest frame-is of the form of mass.

) we may put €.=0. It fs'easy.

L]

and nq heat'is;stored.by'the_sy tem

to see that-'pgff%-fo byidifferentiating' f2 + f2- Dividing this
equation by f§ =,%pff 'and integrating we have p = cof . for some
constant-‘c in~the\case where f = 0. -Hence £ must‘remain.non—

O B
zeto,*and wlthout Ipss of generality we ‘can insis!’that At is positive
%y .

°

ey

"r'n) PR * - . i K oo .
&5l I AT - s :
Foé%Zome e %refhave f2-+ f2 = ¢ Eﬁr.so f = ,f:clf;-l and

1 LTy S 1
FT = 2‘[ 754—i£—*—¥ +cye This can be found in a table of integrals,
f /,”"‘—A - . L " . . .
c.E-1n_ o : . ~

,, L . : ‘ o Ve £l 1
and ignoring Cys the time shift, we have L %7= —_— + cl tan ( élf-l).
We require f 2 éL->rﬂ\\at‘all times. . If we graph the curve of this:-

. . l . - ‘ . .

S ) BN . . . . ! . .
function we find that this universe has a finite lifetime. Expansion

>

Oécuts from -Clﬂ <1< 0 and it
collapses for 0 .< t’< clﬁ;‘ The
. T - : ré‘:a’ Ve

f

'

I

‘ .. B .

: ‘sélution fot.jr'.too close to

'l —cyn and bejm wifl Aot’be vall
: s :cln an cln wi *Fﬁ,%’ ‘ d@ p
! .
[

|

i

1

R

a because high density wil&gdeStrOy éé'.v .

~

the P =0 appnoximation : OPF massi

E——

1 i . WCI‘ ‘ density 1g .given at each t %y R

-



91,

, 3c1 . . T dt’ o o o .
“p = ———=——,. Noticewthat f = - == and T = -u, for proper time
LI NORREEITER dt ¢ L% % P
: e L, : s .
sense, i e. T = =1 o o o /-
o Finally we have the hyperbolzc 8oZutwns in which the universe :

expands to infinity with energy to- spare. These solutions we will

]

' obtain in (ITE. 19) where we discuss specific unidirectional cases.‘

£

They aré physically but not geometrically omnidirectional ~i.e. the
Rlcci coefficients single out a spatial direction which cannot be

' '-'fdetected through the ph‘ysical parameters It is worth noti~ng that in-
these dust solutions we have introguced no cosmological parameter A |
and in:fact A = 0. ‘f"' - R : o
o ol o | | .
k (III 14) Integration for the Mz}l;ric. ’ L

As an example to. find a form for the metric tensor in (homogeneous)

,coordinates, we " t:ake the omnidirectional solution with £ =0, g=f,
e ‘

‘Ah =..h = 0. From (I111.12. 2) we obtain v(i) b f C b (c ) Thén '
-2 ' j ij . ab i i 3
ds™ = d d he d L= '
) s g x dx” where g ' Via ) (b) an v( ne v(a)‘-,jv(-:b)
‘where . ‘) is the partial derivative in homogeneous coordinatés. Then -
i ,’A; A SR 1 _ g,,c i - _
Y@, " V@2 T V@, 0 nd Ve, T T2 Ya Ve 0 Y@ T
- : . v o0 - : . T
and ‘v(J) e %V(J)’ so, __@ll_zi = -,—g- and | ln(v;(\?)) = - %— J f(o)dao + -
o S Yy , S0
! A ! i i o i i .
constant. Hence 1f we put v =8 ‘at T =0 we have . v =
Lt o (c) c Vo PRAEEM G
st exp -.-"L £f(o)do) , J = 1,2,3, ‘and v 1. 6,1.‘ From this we obtain
J N2y ‘ A ‘ (4) 4 > r
A the metric components igij as g .‘= »g22 = g33.='equ0 f(.o)do).. R ;
&4 = -1 ~with the off diagonal components zZero. Puttin'gu X = X,
2 _ o . o S
x2'= Y, x3 =z, x4 = 7t we have the metric = L N
. : : ) ‘
. ‘ . PR . v

T v N ’ . T N ‘ ‘e )
ds2 = -d1'2 -+ equ -f'(o)dca‘ (dxf2 + dyzj\ﬁ. o
. . ] o ‘ o . -' , *y_?m‘

We recognize this as the Robertson—Walker metric witb the constant
. N fr



coordinates wenfind that {. } = o) - exp f(o)do and { I } - £(0)
: ' I1I 0 ST S § 2.

where 1 = 1 2 3 for- each I with no sumion I. All others are zero

' another direction would‘befsingled out. This would apply

e

P

X, ‘ ‘ Rt .
. . ” P

Normally; integration for the metric is a complicated and tire- L‘

172

k=0, if we put dr2’+.r2dé2 + rz sihze'doz in place of ‘dxz + dy2 +.

some procedure that is worth avoiding, particularly when all the.

physical information is’available from the Ricci rotation;coefficients_
.

T, .. If we work out the Chrlstoffel symbols in these homogeneous

ik

'2

-

except for symmetry, i.e. {114}. ‘We can ‘evaluate .

e "1y a vy a : .
5 L + ‘ _ .
b '{j Gt TG
s N . &: - N : 4 .
inates-and we get (using ‘f = —f>4 since f 2 =‘fu2).
(3 Faz o\ o e
)ujuk + (2 £ )ij 'exactlyAas before §w1th f=0) ;
0‘ and (Yij‘= 0, 1 #j with Yi1 < exp(Jolf(o)do),
and u, = =1, up = U, = ug = 0. The tepsor trausformation

.- i . . <o

through v(:); back to frame components,ﬂgives'us the usual form for

o d . , : ; .
Y and u_ S ,

(III.lB)' Unidirectional SpaceQTimes.

_We look for a forh for the Ricci rotation»coefficienCS'Which

singles out just one spatial direction orthogomal to the fYow. This

o, a ‘ i . . :
directlon»can be taken as. r , the first principal stresg direction,

< Avr

.since the un1t normal dlrection.must ‘have zero derivativ

'

+— otherwise

r instance

[}

"~ in spherical symmetry. R - o , ' .
In adapted frame compohents, ‘€jklnk 6 k @J and Eijkl =
—24r[isjtkul] S0 e1234 = lr We‘put jk bjkE "Sjtk"—usktj |
. 2 : L i,\ §
anc _?ijk = ijkl .:‘The most.general form for’ 5K subject to the

Ny



]

P

w N

: i i i -1 i i :
' = + + + +
‘unidirectional symmetry is Tj k fY[ k] fe, x ¥ oeu Ajk hr Ajk ‘
=1 1 : :
e + A "4 + su r + tr r , Where
W g TR Ay k] Ytj K1 (5% 13"
1 - = ) v ' N
f,l' fu + f T, -f,l fu l_+ f Tos g’z gu2 + g r2 and similarly
for h, h _p etc. Theofunctiens r,.-s, t ‘are not to be confused with
the vectors L, 8, £ which have unit length and components ri = 5; ,
s, = 6? etc. ‘We see that f , = fu u + £'r r. + f u T +£r u s
3 j S _ , m £'m 2 m m £7m
o - = f r_ ' * - .. T= ‘-C Coh
and se. {,zm-' f,m& (f f )(u r ‘umrz) . mf,c. This must hold.
,.\T,,.simiiatly. for the other funet@ls, and so if f. o B £ . etc.
,,: are not all parallel to the same vector wz‘réquire that “g = p ‘3nd
~ "-5" “ ’ ) .K
; =h Under these»circumstances, the’ motion is irrotational i.e. o
L x‘O nce T74 _10_, " T o
5 mij \ﬂéﬂ A B ». . ‘ - - - .
In gener%% we can write out the integrability conddi}ons»as
P# . ) ' . O ‘ , . .
g - —é-(fs-fl (f+t‘*))£r, f(p g) +E (h—f) N | Lo
A ,\..".1“: A.v ﬁé ' 7" h@ ‘ - ' ' o ”"’.,
£, - f =‘—i(f8’—f'(f+t)) , 0= f(p-g)+f ,&h—f) - oo Ry
' - - , (I11.35. 1) 0.
. 'e 1/- : . N ' ' .
g -8 .= 5les-g (F+0)) , . 0 = g(p-g) +_g (h;f) ‘
.' ". l .'. 7 ' ‘,‘_ . , . , R : i a ‘_U . ’;& ‘ ’
h -h’' = E(,hs~_h (f+t)’)-, 0 = h(p-g) +h:(h-£) B [T
| ST C w
- and similarly for ky; P, ¢, ¥, s, t. . s

.

A space—time (not necessarily unidirectional) is said to be onw— A

A,éﬁaftc 1f the Ricci-coefficients for a set of adapted frame components

-

‘ ) : 1 I - /.T . : :
satisfy T =0 and T = 0 for-all 1i,j4k =71,-+,4, I,J = 1,2,3.

Jklo LT 4
This of course is defined 1ocally, meaning it is flow—static on a .

_neighborhood U or "perhaps on all’ of M. This means~all 4—deriva;ives‘

\i _ . ‘ ‘ i - 7 : . : Ca e
say T 1 T etc. vanish. For a unidirectional

of T 3,24 5 k,tmé

J{k:.

space time, this mears all 4—derivatives of > £, f, g, h’vetEQNVaﬁish;‘/'.‘i u

°

. . .
. N p—
AN . h
NS . . \
. - - -

g

A space—time 1is said,tgihe_fiom_statzonary if 6, = 6,1_i.e;.;he~k\\;;' -

)

A . L . P . R
. FE o : - by ) . , . o : ' R



. . - A . ' ' .
motion is rigid. Since for a scalar field. ¢, L¢ugab = 0 if and

only if ~eab =0 and ﬁb = (in ¢)»b, a flowfstaticnarxﬂ?pace-time

34 'AB

174

with a gravitational potential is stationary. Since T =0 = 6_=0, \\\\

a-flow-static space 1is always flow stationary (see (III.9.4)). For

‘o . -l_

L R . . . :
. a 'elationsgip,of flow-static to the usual definition;of.stationary-

see (V.18).

"<
. ; :
when thére exists scalars 1 locally with 1 l'=‘~u2/
gﬁd X, = ré. This holds if{ay;gﬁ;fNJ 53 an T are zero,

ive. g=1p £+t In this case the derivatives
‘ R I | v, . ' :

commule, i, -g' =g , h =h etc. and we have two

naturally s oordinates T and x forming part of a coordinate

»

aystem; tneﬁ : uvlar funcgions bein. adapted to,the metric.

i We obtain the kinematic parameters “in the unidirectional case

e G AR

‘frqm’(III.9.4)‘asf &a

,‘ o 2y ,e’_z. e
AB 2 TAB ’ 2 T2
(IIIll6>v The Jaé%oi Identity T - e S

) . S L ‘ {Rw:
The coordinate torsion TJik for a unidirectional space must

‘Wgteresting special case occurs

~

7 % eatisf the-‘J‘acobi identit T 1 + T i .'I"a 0 qf we work out :
» | Y . RO 6,00 T Talety k] ,
. i _jkim i N
. TJ'k 2 , by differentiating the- formula for TJ Kk in (III.lS) we,

. ‘. o o + . \\ 4 : 9.
. ©find that - . . ,,~;‘ o Yy
' wo ~ 't‘k't R i' - :
9 T Jkim _ L . '
SR o ‘ P :
N g - k"*ZP '-Zf)Y +¢ 2(h’wf )r u” b 2(g—p)u e+ 2(g -p )u T
. o . ) . ‘ ) ) ) . i
7 In calculating this we should reca l that in adapted frame com—’
| o Ak ijkz ( - "_ : L C ik ik
- ponents, SR 1 M R ) Eijk gk © €T
' - . ) . . v & - (- \v, . .
‘ 3 : ) - }-“-"".o, ’ "? ?'7 » =
: T e T e T 3 LS

e,
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$ L
b’ ¥

awhere ,E;:, is the tensor whose indices are raised and lowe‘qed using

th.:a metric ‘nij;: .Ft.xrthermore ijkl 24r[i 3 kuv“’ €ijk2 =
Ar[? jtk s “"51234 = 61234 =1, €593 =‘~e%-42n3 = 1, 6ijk. = 6r[isj:tk]’
’eijk [i ]’- E‘i . jk]’ -(;_-423"»2 -1, ~E‘ij’k€ilm‘= :
ijheijk = ZYE v Cqgaf TP < 6o SN

S
2y 2 m YSL
371 T T3’k

6k Lt ijke L ) ik é‘-ei.juu

rmo
ke - -
€ eijmg ,4 [On]’ €7 “ijkn _66n’ gk T Cagre® & ™TE O Ter
Next we evaluate T 1pa ejklm ‘and find that = +h RO
altjk - . r Py
C o :
i jklm imfrf . tr fs im ks

= I = + -5

Ta SLTJ K€ ‘ A‘ (2 > 2) rr“(fh th +ps

.+ '9i+-q£+'th iR fer 4 e +E- ps ~4f . 4t
T T2 TR 7 “PSTTT T2
f/’

im e )}ﬂ‘ - | 1m, ‘ .
- P 4+ rTu fg—fp~2¥ﬁ+2f<5+t&— tp) +u'r (-2fg+ 2fp - sf + sh)

n

+ ot (-2gr +2pr+sg-sp)i o

Therefore the six condition mplied by% Jacobi identity are .
0, e . (1)

'-‘%h-_—Z%t-.%E+ps+gz—f;+%E+_‘th=?‘O, (2)

-,c}—k"-i-?.p' '.—_Zf, ff+ft+%§-~ps—,%—%E%O,_“ - (3)
2h'~-2f' + fg - fp - 2rh + 2fr + tg - tp-= 0, ] ‘ (4):
2g - Zp - 2fg + pr - sf ¥ sh = 0, SRV (5) £\
\,g ' ) S . _ . o
- 2g"-2p' -2gr. +»_2pr+sg-sp= . L . .i(6)‘,"‘*»m
We-can add (2) and (3) to obtain the auxiliary result (7) -which is
given below and is simpler,_namely
. - o ‘ \ﬁz’ i ;o | . .\‘ .
2b—2f+ff}-fh—ft+th 0. 0. - o a7
We can use (7) to replace one of the more complicated equations (2) or
, : : L
: \Q: “X. . - \\vl; ’ - ' .
Pl R » - '
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1
\

a?’ T

(3). These forms;for the unidirectional Jacobi identity will be

\]
|

. ¥ .
. referred to as (IT1I.16.1) through (111.16.7). !
\ ¢ : : )

u(III 17) The Ricci Ten'sor. ‘“‘m\;,iy s

~ .
Next, we work out the Ricel tensor for the unidirectional space-
‘time using the formula (III 4.5), namely
. -
i

4. ly Llp o
L R,Jk “Ta,n Tt *7 B T a Bt A

i~

Lo
ik (jk) 7 Sy

’ ~ﬂfWe can see from symmetry arguments that it contains function multiples

-

of YJk’ rJrk only, and these coeffidient functions

j K\ (j k) g
are quadratic in the given functions (in T ik),tan¢nlinear in their
3f+t 2r +s o

first derivati&es We can check that ij = -T2 rj and .
: > - - , :

AL

S0

f3f+t 2r' +s' 3E' 4t +2r+ s

T(j,k) AR R LR T\T 2 NEROM

2
i

- I_ i .
2 jk T aj i Kk and all

the others. We find after this 1engthy calculation that the Rjk we

obtain (which is automatlcally diagdjal in the orthggdhal part and

and simllarly we can evaluate Ti(kj) i

therefore of the form for an adapted frame component system) is given by .

.o 2 2 2 2 2y
‘. s'_‘_éi_-tf_tﬁ_f__s_,_s_ _p__xs| - .
Rjk_-ujuk«[Z R M S S i S L 2‘] ¢
. 2 2 22 % 2 2 2
£ g g h" £° fg ko p  xr  rs 3
+ij[2 I R Sl R 2+2+2I4<'§”

ET 2T 2] 2%
+EB-1£-.-ES__EB_+£@:/"§_§E.-EEV + ( + r.) |- ' _}-._4. ’
2 274 2 274 T4 T, “j “k 72
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Just for ‘reference we record the intermediate vaw}m, calculation.’

-
i _t'+f'+s8 . f-r! L t+r! s'
T (ki) 1 N (% D B ' G T P LI WL LN

| | 2 204, 2 2 | ]
o fr (367 k" -2 8 2 5 e 2 *
o Bjk—ujuk( ~2kp +5- .‘4 S+ 2p - 4¢\+ 4) jk(2f -2fh-fq-g" __

. 9 D™ g ‘
S 2 k 2 47 = f£7) ft o0 2 :
. +2gpfh --rl-‘—;+k_p—2p +T+T_T) + rjrk( .2.+2fh-+g . 2gp
Loy 1 . . .
o 2 2 2 2 .2
R ' -h2+£—-kp+2p —qf+q—+‘4 -g-;—_t_)
35 OO '
*r . . R kq &&‘
ﬁ’? 3%; : . +. (1:kuj + ukrj) ( fk_.+ 2fp +-—§—.- pq) ,
1 %{‘& W - . . .

D 2 s2 f2 22
Ejk j k(Zg -4pg+2p —-7—) + v, k(— T+2f —2fq+2kp

2,2 “ 2 - Lo .
+5 2)+rjrk(tf—4hf+2f_q+2h -2kpty -
| 2 2 2 . | -
DY A S oty - fs s 2Fn - 2ho st
e +‘2p - ~2) + _(rkuj :}-uer)( ) 2gf+2f,p - 2hp + 2gh .2) s
2 5 .2 ' - \ |
L 3£° £t k 2 e
gjk = uJuk(—Z—rl- ) —_—+ 2’?_)9 2p + ) + v, k( =-2f" + th ) ):-
"+ fg+gh -"ng-_pk+2p_'—qh) + rjrk(—2£h+£q-—gh+ 2gp

g 22y £,
‘ e +pk-_.2pv;‘—-2—+qh+7i‘ A + (rkuj +ujrk)( 4

. st kg o e .
: +§4—+pq,——2—+fk—2fp) o

Substituting the expression for »into (III 9 2) we obtain the:

:%k

principal stresses, mass and energy density and heat flow from

N
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) [}
Einstein's equations as.

oA ey s bt f7 387 17 3£t s”
0y =04== 5 (Zf r'-s'+t-—=-7 > +2_. 5 5
.2 2 :
( + hf —£—+§——pg+—p—2—+—s ,
2 2 -
2 2. 22 | 2
I Sy P-4 21__5_ : 3p* T
% 2K (Zf 5+t +fQ kP+ 2 +rs
3f

~2+gk gh - pg - hf)

2. 1 2.2 .2 .2 -
pc“+e = -7 [-2rt+h” 3£ 3f"  3r p
T - 2x ( 7 "5 5 + 5 - ft+hf

. 2 . . 2 Ty
- 3%——+ £q - kp+%+ gh-qh+ pg) S

o

l—h>

_1 (£, r_gf fp hp gh fs fr er ST
fx‘.c(z 2‘2+2'2+2+4 sYe ) | @
, ‘ S o CH IR ‘ T

We have formulated the Einstein equations ln eomplete generality
for'the unidirectional space—times. There are great simplifications
in special cases, for instance if h'=v§ and g.= P the Jaeobi
Identities (III 16.4) through (7) are trivial and we need only cons1der

._ (1) and (2) explicitly " Likewise the Ricel tensor (or equivalently
N : ’ '

I" pc2-+e, A above) and the tegrability_oonditions (111.15.1) are
» ' . L : _
simplified ebnsiderably,-and many o%xthe\iuhctione need not be considered.
. by
(III 18) Examples of Unidirectional Space—Times

We remarked earlier that’ the conditions p =-g “and f = h were

’

required 1f not all derivatives £ , £ . g , h , k etcﬂ are
,a’> ,a’ ,a’ ¥ ,a

going to be parallel. With the notable exception éf flow—static cases,

&
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ways without affecting t

4,
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these will in general be nonﬁparallel s&wthat tQ}S'condition p=g

f = h which greatly simplifﬂes the Jacobi identity, integrability

conditions and Ricci tensor should be_considered. In this ‘case

, 2 2 2 2 .
= oL e v 3 x 3t st LTS
. 02 = 03 = -5 (Zf r'-s'+t¢t 5 +A2’ 2v+ 5 7 + 2) ,
L2 2N . 2 .2 -
o1 g rt, o 3%\ 2.1 382 3r :
01 f‘&ﬁ (2f+—§~+rs————.2 ) . .pbc + € - 2 (—Zr > +———2 —ft) s
L ff T fs fr tr R
A‘K(zfz““z.’a*a)' , -

7

- .
Notice that these phikical parameters depend only on 4 functions

£, r, s, t,w the precise ones which remain in the expression for T

: 'j ok

21

if we examine unidirectionality in general n+1l -dimensions where

nt+l 2 4.

i
F

rf

The Jacobi identity (I1I.16.1) s is, némely £ _r+_2_+_é__
- %;~= 0 and (2) can bg@written as _h}-ﬁ;-q-+q (f+t)-+2h vh(f+;) -
: . ' . @ "
- 2p'+ps = 0 - which can be satisfied, for instance, if k =qg=h=p E;O,.

o P ‘wb‘):»‘f T Rany

though we need not impose this condition. It can be fulfilled in many

ysical quantities A,ﬂpc2~+e above or

OI,

the kinematic 6 w, which here depend only on f, r, s, t.

]

Hence we gan:éimplylignore (2} and the other Jacobi identities (4)

throngh’(7) are trivial in (III.16).J Hence only the one\eqnation is

_ndededxfor the Jacobi identity,‘and we can use it to rewrite Y .as i K
A =-% (f'vﬁ%f) . The'integrability conditions are
£ 'v- ‘1 '-‘ \ * ‘lo 1 | ) )
fr-f'" = E{fs-f (f+t)),- r' -r .=.§{rs-r (f+t))
. ® / ) "- R ) ..
s'-s'" = %{ss-—s (f+t)) ! -t'" = %{ts-7t'(f+t))

=% o
H o

As an important check on the accuracy of our calculatiohs for the Ricc1

tensor and .,the Jacobi identity, we can substitute back into the equations
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of conservation of energy and momentum namely (III.9.5) which -are
equivalent to the contracted Bianchi identity. We know this in general
is implied by the Jacobi identity and integrability conditions. For

our . unidirectional Ricci coefficlents with p =g and £f=H  wS have,

.11411 - f+2-“t ’ %22 _ T433 - % , TAVII - 3f2+t (sum on I)
LT Ty =‘"(2r2+ S) g e T, = -(rbe)
| T244 =AT3‘44 =0, _'Tz;bb- - TA% 'G‘%ﬁ) ré" ngz = TA33 - AT
TAll - Q" TA41 =0, Tz.lA = 5t I:A’ T;ii =T, = g%f‘t‘ :

We C%P then put these values into‘(III.Q.S) putﬁing'\pCZQ-e for ¢
because of mass conservation, and for A'fwe use the Jacobi simplified w
;/ﬁgfm A =-% (ﬁﬂiv%}) - The result is an identity in each case, con-

firming the calculatioﬁé as correct.

(I11.19) The Dust Solutions. A

v . . o 2 C
\ The perfect fluid condit‘ion is r' +sf -t = '—b%}-+%—-%——rzﬁ
(i.e. Ul = 02 = 03 = -P) 'and the zerO@peat flow condition A =0
implies f' + %§-= 0 and coﬁbining this with the Jacobi identity we
. f(r-s) . " . . < 3f2 ’ : r2
have 'r = — - The condition P = 0 for dust is 2f = -7?——-rs-7r .

For a dust sdlution,there'is no work done by stféSS'or heat Tlow, so

Tab’= ;OC?uaub and Ta‘b.b =0 implieé u? = 0 'so s'=0. Hence we
have )
fr-—t2 L fr o et H =..3_f.’2-ﬁ
2 2 7 ' 2 002 /SN (/S
. o S
’ . : S : . e . >
'\Using these expressions we.can check that f'-f'* = -f%(‘f+t) ‘
. e L o ’ - ? ' o+ A .. .-"\:
identically, its value being %(ftr-+f2r),_:1f we impose the condition R

r'-r'" = - %-r!(f+t) we get a second order differential equation for
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t involylng time derivatives only, namely

7

w

343 i a S 2,3 2,5 2. ¢ : \‘
5 ft+2 te-t " B tr f8 tf +\4 ft + 5 . III.‘19.1)

wThe simplest way to solve this is to take t = 2 - get

f'' =r'" =0 and our physical parameters haye only tgpendence

even though a spatial direction r 1is singled out..“?ﬁhrefore we have

) concealed" spatial dependence and are very close ﬁhe original e
. fr : 3f2 r2

omnidirectional dust cosmologies. We obtain r = 5 f =-7I———Z—

and pc24-e.= i%:(fz-srz), 80 r = 0 1is the Friedmann solution in-

(I1I1. 14) again in the special case P = 0, i.e. the parabolic solution

o ey

- of (III 13) Of course we may take € = Q0 1ip pc2-+e

" For r =0 'we can find a dust cosmology which is physically but
3

1

not geometrically omnidirectional It is easy to see that “5 = E-fp,
"So p = con3< for a constang co. We may:write fz-r2‘= chB for
gome constant c. go that .f = ;.rfc r4-1‘; Since the motion is

\_

t'1rrotatlona1 and geodesic there is a local time coordinate 1 which

is proper time for each world line, Thusv'gf = -r = - %;- irz/gzrjrl‘
' o o c,r+1 '
and integrating we find + %~= - 1r - + ¢ tanh-l(—__l,__g . If

we take ey 0, r >0 and the”minns sign'above, we have an‘expanding

universe: that continues always to expand. This is:thevhyperbolic case

. mentioned in.(III.l3).':Not1ce its similarity to the elllptlcal case.

o A

a, ) : }

(III.ZQ) “Only f and r Non-Zero. A " Y |

As- we have jua; done\for the dust solution ahove, let us: take f
. . a” A .
and r -as the only functions which are non-zero in the unidirectional

g% “

case, but allowing a pressure P this time. Again, - £f' = 0 and

&

T .=KQ S0 the/solutidn is physically omnidirectional. Furrhermore

v
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1 + {!I' N
r = %“rf P = ——-(Af-—3f +r ) and pc2-+€ - ;L_(fZ__rZ). Compare ‘

these carefully ‘with the cﬁhqesponding results at the end of (III.12)

-~ ~

if £ 1s replaCed by «r and .the signs are changed on. fz. The duality
hoids even bétween f = %—ff and t .= %-rf. If r =0 we get the

’ samensoiution as taking bfr= 0 ,in (iII.lZ) which is also the one o

whose mettic we obtained in (I11.14)

(111.21) Unidirectional Flow—Static Solutions.

These solutionslare.of great intetest'in solving stable gravitationai

problems such as considered_in (V.6). We impose the flow-static con-

.
~

. | 1 . v . « . :
ditions Tj K,b 0 and TJ 4 = 0. Hence f, f, g, h' etc. are(all
\’ : ‘
zero, and. 0 = TJI4 = f k =p=+t =0, The integrability conditions
. 2

k(III.lﬁll) imply h=f. All Jacobi identity equations are identically

~

zero and are satisfied except (III.l6.6)‘which,becomesf 2g'- 2gr +sg = 0.

. v 2 2
' y : N S SRS SIS - |
The.physical quantities are 0, 03 f‘- 7% (r s' +Z 2 +3 = + = 5 +Z2 2 s
2 -2 ‘- 2 2 :
R S A - S SN B (7 ORI S -3 I -
ol— ZK( 2+2+rs), pc +e€ Te (2 2 5 _., and A= 0.
The solution is independent of the. functions h.= f, and q. o

~

The dust solutial is’ .easily obtained by putting §'¥ 0 and g =
uWe find r' =.f2 and ‘pc = %:-= EE—. Other coni’itutive equations
(than .-P =;0) can be imposed easily, for instance the radiatxve -
constitutive.equation"P é‘—-(oc2-+e) 'and the high temperature rela-
tiV1st1c ideal gas equation P = Eﬁ(oc2~k€5 (c:f. Cnaptet V);

. There is a functiOn x of positi0n defined 1oca11y with ﬁba==r;
if and only if dr_|, = o:' i.e. ?b}c

% for‘our.unidIEEctional_f;ow—static case._hTheréfore; for the dust soiu—'

N

= 0. .This holds ‘automatically

tion, abgorbing the constant'of“integration=into x, we have £

SEI SRR e o S L

T Tx 0P 2" . ‘
KX’




‘case we have f

.
.

(111.22) Weakly Flow-Static Unidirectional Cases. - -« -~ ~ -

For ﬁunidirectional space time we do not need ‘the full force of

»

the definition of flow-static to-guarantee t&me independence to all

orders of the derivativ?s’\pf the functions in jik It is enough to

require the weakened c0nditions jik 4 =0 and Tlll; = Oy since the

functions alréady are . 1ndependent of two spatial directions In this

’

t =20 whwilé‘ p and k may }be non-zero, generalizing

L]

the solution in (IIff.Zl). A‘géin, éll tim'e.de'rivatives are zero’, inte-

grability implies h = f, arid- the Jacobi identities in (III ]6) give

us the two equations; ‘fz‘ - 2p' -%—+ ps = O and - 2p - 2gr+2pr+ sg -
o ) : _ : 2
"sp = 0. From (II1.}7) we have o, = 0© R -r'-s +—+—(—&—E)—-+
2 + 3 2x \- 2 2.

rs ST 1N . N rz 2 Rt 3r2

— = - — - y -— e = - — = L —
2)’ it 2K<2(p g) Op+g-2R) + 2‘+'r“°.’)f pe +e = 'QK(Z?' + 7t
1 ‘ S i i

F(p-g) Bgtp-2R)}-, A = 0. , o -

Let us look for dust solutions. Fo‘.ﬁthese _the acceleration is

‘zero, so s=0 and o, = O = r = (g-P3p+g- Zh) Also

1
. 2 .
02 = oj,= 0= r' = 7 + —LB—— so differentiating the equation

. 2 . “
for r we obtained by purting, ol = (0, using the Jacobi identities, <

. .t ’ 3
and comparing with this latter equation we find the . 9 = 0 condition

_’aut:omaticeilly impI‘ies o, = 0, = 0. Of course g'-p*“= (g~p)r and

2 3

k = 2.p+c0k for a constant 'cO.' Hence -pc2+e = _(ig_%[?)__ Avhere

g'-p' ; (g-fp)/fé.-p)(g-'bt‘zco)' Thus g-p 1s the only function élﬁ\\—;
the pnysics of.this problem depends upon ,and ¢y = 0 ‘gives us the

same type of soiution as in (IT1.21) but w1th different Ricci coefficients.
As in the prev1ous section we have a ﬁlgid geodesic motion with

rotation. The motion is rigid (8 -—0) and hence the space—-time is

flow—stationary for any weakly flow-static unidirectional Lfase, not ' wo

6 ‘ : - 4

s



just the dust solution, since =1t
coordinate function x  exists with

/

. ‘/_.______,____2
we may write w' = w4w(w-2co), .oc

can be integrated and we find w =
. N N A l

-

iﬁtegration((whiéh'is th

~constant of

. o | o184

\‘_)D . a0, .
= 0. Again Tbch? 0 so a local

X =7 éﬁd putting w =g - p
@ e - e _
= 3%— Of course ——2-—% = dx _
f [ ! - -
2CO wv‘w(‘w' ZCO)_‘ .
52 where we have absorbed the = -
Seex t .

Y o,

e position shift) into the coordinate

Junction x. Tﬁis iéJfor o z 0, sincé cy = 0 was handled in (1I1.21). (7/#
¢ : S 2 T - o \L\
' 2 b 1 L -
Here we find -pc” = ——==-—-—= and we redquire x > — > 0 to avoid
, , 2. 2.2 . d )
K(l—cbx ) " 0 :
the singularity at yx = P and cover all physically interesting caees. _
L .0 - '
The dust ‘solutions here and in (%IT.21) are sustained bv rotation i.e.
- . S
vorticity, and ﬁn‘féct ol = - % in this case. As in (III.21) the
ébmations here are well adapted to the imposition of equations of state x

2

for non-zero pressure fFelated to the

v

-

mass and energy densitv.

(IIT1.23) Directional Invariance - GeneralizZtion of Axisvmmetrv.

“The symmetry conditions imposed

on coordinate.solutions’ in General

Relativity have, as we have seen, counterparts in frame component

solutions. The typicai coordinate solutions conditions.— static,

stationary, homdgeneoué‘agd isotrppic, spherically symmetric — have

the analogs of flow-static, flow stationary, omnidirectional and uhi- :

directional. The coordihdte solutions are usefwl for an observer at

infinity examining a system, which may have imposed boundary conditions
- , ; 3

» B

, o .
such as being asymptotically flat. -  The frame component solutions are

* : »‘/ r N Av
useful in continuum mechanics for an

observer who rides ‘along in the

rest frame of the material medium examining) what is hapﬁening locally.

' Here the physics of the material's constitufive properties are manifest

.and weé can work without reference to

b
~

a coordiwate system or even the

frame compoment system — we need only the Ricci coefficients and their

/
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derivatives to obtain all useful physétél information. On the other
‘ ‘ N )
hand boundary conditions and global propertfies ‘are more difficult to

agestablish. The concept in frame component$ which corresponds to axial

'symmetry in coordinates'is directional invariance (along one:spacelike_

direction). o . -

A space-time 1is directionally invariant_(along‘ t?) 1f the Riceci
coefficiénts for an adapted frame component system shtisfy' 11J3 =
2 ' ‘ “°
. i o B -
for j = 3 and 'Tj k.3 0 “Vi,j,k' 1,2,3,4. Similar results hold
for other principal directions. Thus a direttionally invartant set of
' 1 : E :
Ricci coefflcients satisfy T "k, 23 =0 = TJ k, 2m3 etc. If we use

direc%ignal invariance without reference:to a principal unit* 4;Zt;}f

that vector 1s understood to be t2. Clearly M is directionally

q

-

invariant albng_,‘ua if and only if it is flow-static.

-

If nfore than one directional tnvariant symmetry is imposed we may

weaken the restrictive condition on Tjik and still guarantee all
orders of derivatives to be zero along these directions. For example ‘)

if 'lek is to give weak directional invariance along sa aﬁd«-ta we

i v . a _ _ L _
‘have Tj K3 " =0 = j K2 and wac =0 for -a,b=1,4 .énd ¢ | 2’3f

This holds in particiNar for a unidirectional space-time., Likewise if

[N “un s ),

M 1is weakly direc nally invariant along ra, s® and ‘tat7then

T. = 0, and TAAJ = 0. A speclal case of this, is the omnidirectional

vurthermore wdak directional invariance along all 4 axes

S

equivalent to being constant. This. does not:

i
Ty k ‘

imply weak ditectional invariance along 3 axes.

(IiI.24) Unidirectionality and ra ~ Directional Invariance.

If we combine the unidirectional condition with weak ra directional

. .
~

. . . -

invariance, then only time derivatives such as f, f, g, h, k etc. .
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survive, and TZ‘AJ =0 implies s = 0 and the .integrability conditions

imply p = g So the motion is irrotational and geode51c guaranteeing

-

the existénce of a local time coordinate T on which all of our functions

depend. The chobi’idehtities fromD(IIIf16) aré‘(l), r = % (f4+t),

— !

(2), ¢ + 20 - £n - 26c + L+ LE 4 en <0, ), 2r(f-h) =

) (5)\andwg6),‘trivial, (7) 5 Z(ﬁ—g) = kf—t)(h—f). We can solve these in

ohe.way by-taking f = h, ¢ = 2h and r = %—(f+t). Then
Y S RV g a
-%”:;“7:(““‘7“‘7'7-7)’
: 2 2 2 b
o Ly oz 3£ (e,
\bl—_z'((Zf+2 2)’”OC+€ —ZK( 7t ft),
) tr : e
A= P . AN ) ) . .

Then 1f. t = 0 -we have the physically omnidirectional solution of

(II1.20), so t'z 0 generalizes this tb.non—zero éh ar:V-Thé.eqﬁélﬁ

2
. . ft+t
stress condltion t = E——f_—— puts a constraint equ tlon on the shear

t for a perfect fluid, which is, of course, satisfiqg or t =0. -

Aiternat1Vely, we may.put r = 0 and f #z h so that we have the

“"differential equations 'é = 2h - fh - 2ft + %;—+-%; + th and ~

2(h=f) = (f-t) (h-f). Then

L2 2 2.2
_ _ 1 [ 3f +  3ft  t=  (h-f) ,
9 T3 T T % éf R B M ) ’
1 (. 3£t S
o, = - 5 @f =+ -(h £) (3htf— 2q9 , A =0,
2
pe” 4+ e = - le( 3; + l (h- £) (h+3£-29) g ft) ) /—\

This reduces to the omnﬁ&irecfional solution (111.12) for g = h =1t = 0,

and therefore generalizes it to include, amorig other things, the shear t.

If we have zero shear (t = 0) we expect, even for a viscous

fluid, that the perfect fluid condition 9 ='02 = 03 = .—-P should hold.
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If h'-.f = 0 'we see this implies ¢ = 2h which aiso holds in the
Jacobi identity for -q. if 1t = Oi, Putting w = see that
.o Y ' 202y T u
R SR B AT T lie Sl [pp J3EN "
w o= fw and ”02-93 il - @fz > 2),, 9 ' 2K’@f 2 2) ,
: 2 1 [ 3£2 3w o L
A =0, pc +e =~ E;f— —Zr—s'z ., -Comparing this to the omnidirectional
. 2. . _ ) ,
solutions in (III,lZ)'we see they are identical if w is replaqu by
f. Therefore we have hgré teo, a generalization of the.omnidirectional
solution for the clse t = 0. ‘ , .
(III.25) Particular Motions in Frame éomhonenté. e Q?\
In order to examine the notion of a motion of. constant stretch
" histqry for a unidifgctional space—Eimém(I.BO) we need to express-the
convective deriVativé“(I:S):in framé-componentsdagris done for the Tie
v . : g . / ‘
derivative in (II.20). From these results,, g
) o/ - 'I. N < .
.- L3 .2 “
LES =g JGogbdd o+ Ef G sl b gkl Y
4 m m, % m ., 2 ,m mj 2 %Im '3 :
l.. - V-; ( .)
and _ ’
o
DEk = L Ekﬂ - EQ uk& + Ek uzﬁ B i 4
m o om m L 27 m — )
k - < ) k Ly - ’ .
For E . orthogonal we can drop the E.Qu_um term from' here, agd then

N

" k. _ _k k - . . ae . A
put E g = W . +-8 . where- wkg = §;;;CQT'TFQ€ the unidirectional case,JLw

' m- -
. ‘W = _ v .
we requir K - wgkﬂmr wAk£ (n fna?e components for some function

w with F.w"\ind "w! derivatives only. ,Substitutingmand setting-
DEX = 0 welfind that 0 =85 , + B3 75 - g1 3 " g* 5 where
m m,4 . mj b j'm 4 m L
kK _f k,t k k k f Kk t k -k
== + = + = - = - = -
E m Z 'm 25 T wh m’ E m,4 2 'n 2 " Tn WA
Then we can easily see that EQ ukﬁl = ukrm - %? - %F) and
: 2 . : 2
ko j _  kfwk £ k [fp £k wf fe ¢t wk
EiTn 4 Ym<2 P 4) A m(2 G T2 ) TR\ T T T T 7))
and EJ;T.k = Ek.T o+ Ez ukﬁ . Therefore the condition for a motion
mj 4 imié m 2

>
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.

of ~constant stretch history in hevunidirectipnal case becomes f'= 0,

t =0, ~l.e. f and t ’e comsdants dlong flow 1ines ’The condition

for a motion to be a viscometric flow Ek Em2 =0 (I.30) is that it

be rigid in the unidirectional case, i.ﬁ. f =t =0. We see that

‘-
-

'-all unidirectional fIOsttatic solutions describe motions of constant

stretch history, in fact even weakly flow—static solutions (III.ZZ) are

viscometric flows. Of course*also w=0 so w is a constant along

g

-

flow 1ines:, .

A motion is isochorlc-if 3f +t = O‘ and of zero acceleration or

s -

geodesic 1f s = 0. We say, a motion 1g of constant acceleratzon if the

iac.cele},‘ation vector is Christoffel symbbl Fermi transported along the

«a
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flow fines i.e.  u ub =u (ubu ): TFor the unidirectional,case it is{

3b
easy to ‘show that this holds if and only if s = 0, so s is a .

constant along flowAlines; The shear tensor defined hy g 0

. a - . ' e -
has zero trace ¢ a = 0 and is given, for a unidirectional space-time

2.
. L R —‘—t_“' . —t— . ?.b=_t__ _ . .
. by gab = 2 rarb g Y so oabo e If it =0 thecmotion is

v
2

shear free and the expansion- is isotropic .
(III.26) ‘Progosed Bidirectional Solutions. o .
- T : =

k3

In order to_soive the broblem'of rotating-stars and galaxies and
other such phenomena we need to examine a set of Ricci coefficients
to cover a weakly flow static directionally invariant-cace. If two
spatial directions:are singled out.we,say the Ricei coefficients are
bidirectional. In.the'case' n+ 1= :this is the most general case.
If n 4.1i is completely general, then Tbaé is a linear combination
of 62 u- W Wy, s o
~ [bCJ’ [b cl’ [b cl’ [boc] ’ Ibc]’ Bl 7 " b
r r[bsc], [b ]’ SauTbrc]j sartb e’ s u[bsc]. The Ricci tensor

ab eab 3 Yab

b
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-~ . J ' '
Rjk will be in the form of adaﬁted frame components except for a

singie term of the feﬁm i + th ) which can be set to zero -

‘giving one'sggzéfai ﬁ@;ion -0f cpurse all functions which are

) W * and s ‘directed derivatives only
"? * J .

and none along the/6ther ~ 2 space-like principal directions.

¢

coefficiq@l

'Putting n/* 1 =4 in the unidirecEional case, if we ignore

the volume element determlned terms we have onlv four functions f,

T, s,ot-'instead of the regular-ten. ‘Likewise-in the bidirectional

case we have only 12 functions (one for each of the aforementionedt

terms) ingtead -of the complete 24. If we impose the condition that -
-, . ) K . .

the Ricci coefficients are weakly flow-static and directionally

invariant, then T Pos 0, i,j =1,2, k = 3,4, and so we have that

. 3k
(for n+1=24), =~ - 7 ' \ )
a . a a ' a ‘ a’ .
= f ' + + . -
T, . = ft Eple] 7B E[pTe] ht EbSe] ku UrpTey -7
a a ' a a
+ + + + .
Pu r[bsc] © qu u[bsp] rr r[bsc] é; r[bsc]
e i . "
where all functions have only 1 or 2 derivatives,-i.e. f 3= f'4 =
_ e = . a ‘a '
g,3 = g’4 : 0. We have replaced é[buc] by t F[buc] and ‘

*

2 r by 'tét r .etc. because of the combination degéneracy for

(b c] “ibTel . , .
n+1l=4 wi;h“dther terms, then eliminated the unneeded ones -using
the directional invariance cond}tion. The;higher dimeneional general-
izatien case'%or,the unidirectionai-solutions containez ﬁost of "the ones
of 1nterest and the 31hplest Jacob1 1aent1ty and 1ntegrab111ty con~
ditions, and we found it, 1s (I11.18) 31mply by putting f =h and . g =1p
which left us with only the four functlons f, r, s, t of physical
significance. Likewise we could expect.to capture the most important

~ o . .
solutions in the bidirectiomal case this way, limiting the amount of

4



190

calculation. We also have the advantage here of having only one

\equation instead of three to guarantee an adapted frame component

system, i.e. jk diagonal -in the orthogonal part. Working out the
, . 3 p 12
kinematical parameters we find that v~ = Wi T V=V =0
is the vorti it and u, = 2 rr ; 4 and 6 _ = £t t .from
¢ vorticity, and u =g, + 58, AB = 7 “A'p’

(III.9.4). For a flow- stationary solution we must have rigid motion

and so f = 0. These Ricci coeffi 140 e being designed to solve

the problem of'spheridal stars, axisi ;:vr.c rotating st;

r,6,%),

,rotating'galaxies. In the usual spherical polar coordinatés )

the r direction 1s radial and corresponds closely to r? as 6 -
%

direction does to g2 and - ¢ dtrection to ta. We shall see in (V.6)
that the Schwarzschild solution can be placed in frame components of

this form and thereby provides a way to match exteriotr vacuum solutions

for spherical stars to interior solutions.
Notice howevef that the vorticity appears oply along -the t
direction, cbrrespbnding to ¢' in polar coordinates wnich isinot\bhat

we would expect for Jotating stars. Thus we see even now the bi-

-

directional condition is too strong for the rotating case, where we

have to examine “the general weakly flowistatic directionally invariant

“

case which leaves us with 16 functions of two variables to determine.

AB ='O, but the problem of

'solving the rotating stars with say an exterior Kerr solution converted

This can be reduced somewhat by putting o

to frame components is left for (V. lO)

Returning to the bidirectional case, we seé that {f f = 0 then
we have the Ricci coefficients (strongly) flow-static and directionally
invariant. If we demand the existence of a radial coordinate we obtain
=0, a basic condition for spherical symmetry. if the gravitational

acceleration 1is radially directed then ¢ = 0 and similarly zero
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,vorticity“heans p = 0 which we must have if our gsolution is physically ﬂ,
unidirectioﬁalf Thué, comBining all these results, we have the Ricci

coefficients

|

“a a ...a a o a> -
= . + + : .26.
Tb . gtft[brc] + ht t[bscj ku u[brc] As r[bsc] ‘Jh(III 26.1)

for the spherically‘symmefric,caée. Here g, h, R, 4  have only 2
and s° difectedAderivatives,”and we write g % g,.r, + g,8,,
- . P S 272

h’Q = hyry + hys, and similarly fo? k and 4. We Vrite "8y for

g.i2°rand similarly for other derivatives. We then find the integra-
’ - - R . ) - '
bility conditions are

5 ' s . ‘
Bip 81 “ 28 M2 TR T2 M2 L ' “
- s : ; (111.26.2)
iy = kyy =7 Rps 4y T4y T34y '
The Jacobi identity implies ' '
., - he o : '
8, - hl =5 .and hz = 0, . - . (I11.26.3)

and the Riccl tensor calculation>g1ves.h§‘the conditions

.. h
Byi™ 2 (gFs) and h

_gh o '
155 E | (I11.26.4)

for adapted frame components (R = 0) as well as

12
Ol_%2—1»<(_h2+h2"&2g-%é+kf),

» (111.26.
03:’515@1+41+%+%2+4—2@), A=0, HL26.9)
oc2+e=—-21—K(§1—g1—h2+—j5;+32-2—+_}1;:__6_2&).

Now o0, =0y implies .
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-8 _ gk _ 8" sk
RS T el M R S

and 9 =g implies (for isotropic pressure)

= DE.- Ei - EE._‘E£.+ ks
5 ‘

Ry + h R I B

2" 8

n
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(IT1.26.¢) -

»

(I11.26.7)

Testing the condition Tyig = 0 of physical unidirectionality we find
. 14 . .

it adtomatically holds using (2); (3), (4) and (6) above. In (V.7)

we shall use these results to examine spherical stars. If we impose

the| physical unidirectional condition (oc2-+e) 5 = 0 then we see that
' - »

r

using (2), (3), (4), (6) and (7) it isequiv7lent to kbz
. 1]

or for k'# 0 we have '
\ /
!

/
(g+s). . . | /

4

le‘.

2 By

/
+

We now differentiate (6) along the 2-direction and substitute

= ED-(gﬂ),

2

(I1I.26.8)

- from (2), (3), (4), (6) and (8) to bbtain_ 0 = h(g+A)2. Hence for-

h # 0 we have

g+ 4 =20, A =‘g2 = 0,

i

(III.26.9).

‘and (6) becomes a triviality. The chpices ofs k20 and h'2z 0 for

(8) and (9) will be seen as necessary when we conqider-the_Schwarzschild

solution and boundary matching to fhé'interior'solutibn in (V.6) and

v.7).

o

Finally if we take the 2-derivative of the expression for b, 1in

(4) andwapply (2)7and (9) we obtain

th =g h2 . S 8

which is the basic differential equation for h

S

2-derivative of (7) we have

| h22 = h h2

¢

Also taking the

1

(I1I1.26.10).

[N

(I1T1.26.11)
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This completes the bagic relgtions we need for the case of
spherical symmetfy in the flow-static ditectionélly lnvariant bi-
directionai cagse. Thé advantages of the‘methédyof Ricci coefficients,
using the Jacobi identity, iﬁtegrability conditions and conditions on
_Rjk. to find specific solutiéns under specified eﬁepgy—momeﬁtum tensor

restrictions are obvious. We simply have to differentiate, substitute

and solve repeatedly to reduce the problem.



CHAPTER 1V

“,

¥,

A GENERAL THEORY FOR A SMOOTH MATERIALLY UNIFORM

\,M

THERMODYNAMIC SIMPLE BODY

(1v.1) Tbg Thermod?namic Material Element.

Following the notation and approach of Noll [77] ve let (c.f. (P.9))
T bpe an n-dimensional real vector space, and Sym(T,T*) be the vector
sgacé of symmetric real bilinear forms on T, and Sym+(T,T*) the
positiyé definite ones. We let Lin(A,B) denote the set (a vedtor
space) of linear maps from the vector space A to thg vector .space B.
Configuration space G 1is defined to be a closed and connected sub-
nanifold of Sym (T,T1) x Lin(T, sym(T,T *J) xR x T" x T. An element
G ¢ G dis written as G = (D,H,@,g,U), where D 1s interpreted as
material deformation, H 8§'spatial gradient of deformation, 0 as

-

temperature, g as ﬁhermal gradient, and U as the acceleration of
the material medium. Because of the vector space structure, we can
canonically identify GG thé tangent space to G at G with a
vecipr subspace of Sym(T,T*) X Lin(T, Sym(T,T*)) x R X T* x T. 1If
'VG € G we write v, = (3D, dH, 230, 3g, 30) as its elements.

We shall assume the existence of a differential manifold Z

called the gtate mantfbld and a confzgurataon map G T » G which is

differentiable. From this we can easily obtain a vector bundte- _

T

structure for {( Va(o )) o e L, Va(o) © Gé(o)} over the base space

~

T. Suppose that for each G ¢ G a submanifold GG of the vector
T

space GG is selected such that the set EZ = {[G,Vé(o))'c € X,

va(o)ve Gé(o)} together with the natural projection m into the base

194
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space )} {8 a fibratfon. (See Dieudonné IBJ‘. p. 77). Then we call
GG the manifold of oonaiatent vectory at G and  EY  the evolution
fibre bundle of the state space I.

We assume there exists a smooth map S: EX + TL called the evolu-

tion funotion, where TI 1{s the tangent bundle of the state space. It

- “

satisfies m = n' oy and ) = G, © o -where T
N L N
EL —2 1 El -———t oy
™ ! A ',*
» :$
I —mm——— ¢ TG
lE

N

A(O’vé(o)) - Vé(c) € Gé(o) c Gé(o) and G, 1s the derivative of G.

Let o0 ¢ I be a state with G = G(0) ¢ G 1its configuration.

Let P: [0, d ] » G be a smooth curve with P(0) = G and dp > 0,

dP ° = 1
such that at ) P(t) € GP(t) for all t « [O,dp]. We call such a

map P a smooth process in G. We say P_ 1s a (general) process

0
- X Pk sa. %k y
if Po 18 a fini;e continuation PO P1 5 Pm og smooth

processes as defined (P.9) by Noll [77] p. 10. Thus PO is continuous
and plecewise smooth, and even at points of discontinuity of éO’ the

left and right hand derivatives with respect to t are consistent
vectors,

A basic 1ifting theorem of differential geometry tells us that
corresponging to our smooth process P there is a qnique lifted pro-

cess in the state manifold, which is a smooth curve Q: [O,dp] +~ I with

Q(0) = o, G o Q(t) = P(t), S(Q(c),f’(c)) =Q(t) ¥t e (0,4 ). Like-

wise, if Pl(O) =0

1 the process P has ak}ifted process QO in I

-0

with QO(O) =g being continuous and piecewise smooth.

l). QO



As Noll has done {77, p. lO] we can define special proceésses called
freezes (if the zero vector is consistent at each configuration), and

segments of processes3 and‘consider a class 1T of processes-satisfying

&

his axioms Pl through P4. .Later on we shall see how the first and

second laws of thermodynamics restrict the class of admissible processes

4

(77, p. 48].

o

Ve defirne the stress vector space S = Sym(T*,T) XIRZ, and an
element R € S . 1s written as R = (S,n,w) wheére S 1is intrinsic
stress, 7 1g entropy per unit volume and ¥ i; (Helmholtz) free
energy densitf. We assume 1he existence of a smoo;h.map S: L+ S
called'the (generalized) strees function, and a map ﬁ: EZ - T which
" 18 also differentiable and is called tne heat flux fhnction. ﬁy
defining H on the evolution manifold rather than. the state space,
ve are ‘able to avoiA the problem of infinite velocity of heat conduction
assoclated with Fourier's law discuéged by Maugin [58], Miiller [74] and

others. X

In order to limit the size of the state space I we introduce an
- f ’ .

axiom for determining the state by stress which corresponds to Noll's

Axiom ITI,
. P

State determination Axiom: If o,0' ¢ I are such that é(o) = G(o'") =

-
~ A

Ge6 and $(0) ;{é(o') and furthemore S, op(o,vy) = S, p(a",v)

G

fbr all &G € EG then o= ¢'.
~\
Notice that since S is a vectof space TS = S x § canonically
and é*: TZ + S x S, This axiom also tells us that a finite dimen-
sional state space will suffice.

The accessibility axiom of Noll can also be carried over here in

-slightly modified form.

196
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Accessibility Axiom. There exists o state og €I "witﬁ configuration

G, -‘:G(co) such that for any o € I there exists a configurdtion : ?

process P: [0, di"'] + G with P(0) = G, whose tangent vectors P(t)

<

are conawtent f'or each t and for which the sz'ted curve Q: [O,dp] > L

with Q(Q) = % satzsfhee Q(d ) = o,

4 s

i

This axiom implies: among other‘thiﬁgs; that thé.state'manifcld
fr ’ ' ) B

Q

I 1is connected. In order that all configurations coriespond to a

state, we assume G 1is surjective. Clearly the image S(I) is a

4

- connected set in S, and we assume, furthermore that it is a sub-

manifold of 8.

A Thermodynamic Material Element is a 10-tuple €=,_ (1,6,z,S,Ez,

G,S.H,S,m) subject to the conditions"above, with only m to be

defined yet, plus some further restrictions.

(IV.2) The Mass Element.

§

. ‘ v
For T an n-dimensional vector space and T its dual, the sym-
n n o,

bols AT and AT  represent n-fold exterior products and are each

one dimensional vector spaces. If v = (in),---,v( )) is a basis

(™)

* / *
for T and v = is the dual basis for T° then

n
€, = !(l) Aeee Av( ) is a»non—zero”element of ‘AT; and
% * * *
€, = g(l) Ao Av<n) is a non-zero element of AT . We have
(1)* = ¢l * = 1
<y ,g(j)> éj and <ev,e > =T
If an element D ¢ Sym (T,T ) 1s specified, an inner product and
nence a nérm is given for T. A basis v = (X(l)"'.’XCn)) is said
to be orthonormal with respect to D if ( ),D(v )) = 6;, i.e.
* L _ ...
D(V(i)) v i=1, ,N.

If v = (x(i))’ v' = (!(i))’ 1 <41 <n are orthonormal bases
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L. v * *
for T cprresponding to D then €, = iev,, e, = iev,.. Thus, up to o
. ‘ . . o “
.
'sign, a metric determines a volume element. Also: Ev " is obtained

naturally from £, bY\''lowering indices" using "the metric D", that

/ . -
1s, the natural transf ation from contravariant to covariant tensors
using D.

On a material element it is assumed that a.distinguished non-zero
n ’ v
. * ~ '
- n-covector m € AT 1is selected .which is called the rest mass of the

. ¢ : : *
material element. If a deformation D € Sym+(T,T ) 1is chosen for our
thermodynamic element, and we pick an orfhonormal basis v for T
. : *
corresponding to D then we can write m = pe, = pV. If p > 0 we

say that the basis v 1is oriented and call the scalar p the density

- « . : ]
and V = €, the volume occupied by the material element. The density

is independent of the choice of basis. ;

(IV.3) Material Isomorphisms of Thermodynamic Material Elements.

Let &= (T,G,r,S,EL,G,S,H,p,m) and &' = (T',G',2',S',EL',G’,

S',H',p',m') be two thermodynamic material elements. If n=n"'" and

&: T > T' 1is a linear isomorphism, we will proceed to define what is
meant by saying ¢ 1s a material isomorphism, (n' =dim T").
First ¢ must induce a diffeomorphism ¢G: G » G' by taking

*_1 -
oDoo L,

W

G = (D,H,O,g,ﬁ) to G' = (D',H',@';g',ﬁ') where D'

* . - - . L 3
o= logo(elxe™hy, o =0, g =0 L

¢

(8), U Q(ﬁ), and

where ¢*: T'* + T* is the dual isomorphism, and the map H: T - Sym(T,T*)
is written as H: TxT > T*, the first component of the product being
the original domain. t
Next ¢ must induce a diffeomorphism between the images é(E)
aﬁd é'(Z') in the stress spaces (which were assumed to be submapifolds

of S and S' respectively). We call this diffeomorphism"ész S(z)y»>s'(").

\



[ o
It £§*aef1ned byk QS(R) = R' where R = (S,n,w), R' = (8',n",y") ‘and
. « ,
S' m¢oeSod , m'=n and y' =y,

Furthermore, we require that there exists a diffeomorphism, 

1

02: L + L' such that the two diagrams shown below’tbmmute.w

!

¢ i . L
\ T X 45! ¥ X 53!
A ' ;‘ A ~t
G G S S
¢ ‘ ~ Q ~r
6 + G’ $(5) —=—— §(z")
n - n
S <« s’
. n *1 ' ‘ n *-1 :
We require also that m =.(A¢ )(m) where A® - is the naturally

°

"induced linear map on n-covectors induced from ©. ~Now we have a

/

naturally induced diffeomorphism &__: EL + EI' on the evolution

EL’ -
bundles defined by .¢Ez(g’vé(c)) - (Qz(o),¢G*(vé(c))), We require that

'

the evolution map diagram shbuld commute,

o
EI EL ~ EI'
] ~ ~t —
p P
¢
* .
77 ——E& . TE
. ~Y -~ -
and finally the heat flux functions should satisfy H = ¢ oH OQE%'

When all these conditions are satisfied, then ¢ 1s.a material isomor-
phism from € to E'.

If ¢: T~>T' and ¥: T' > T" are material isomorphisms then so

are Yo90, 0—1, W-l. Furthermore, for any material isomorphism

6: T > T' the state space diffeomorphism ¢_. 1is unique. If not, then

L
by composing ¢ with- Qfl we have the identity I: T - T a material

I ¥ L can be chosen

<

isomorphism whereas the corresponding map IZ:

199
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different from the identity lz, If Iz(o) =o', o0 # o' then
G(0) = G(0') and S(0) = S(¢') since ¢, and ¢ are identity maps.

Furthermore from our commutative diagrams S, Op(o,vG)==S* op(o',vG)

IEE ‘ where G = G(0) = G(o'). and _v’ eG..

Therefore, by our axiom for state

determinism, o = ¢' and in fact we
-

require that IZ = ].Z is the identity’

diffeomorphism. Therefore induced

diffeomorphisms on tme state spéces
are unique for any mater}a% isomorphism between thermodynamic material
eiements; -

The set of all material isomorphisms ¢: T > T from a material
element € to itself forms a group called the symmetry group g(€) ,of
the material elemént €. The condition m = (rli<1> )(m) for ¢ ¢ g(&)
‘lmpliea g(ﬁ?) is a subgroup.of SL(T), the spécial'linegr group of
-thosé linear transformation§;3f determinant 41,

Wé are now ready for the final basic axioms on our material element
to complete its.definition. We assume first that g(é?) is a Lie sub-
group of SL(T) which acts differentiably from the‘left on the state
manifold I. If ¢ ¢ g(@)_ so &: T > T is a symmetry of. &€,

o e . 1is a state we define the left multiplication & +0 ¢ I to be

o = ¢z(c). This is well defined as we have seen since QZ is

7/

uniquely determingd from the material isomorphism ¢. It allows us to
define an_equivalence relation (of being in the same orbit mf the action)
and a set of equivaience classes which is the orbit space, in this case
the reduced states of Noll [77] Ered = E/g(éﬁ?w It has been proved

(Dieudonné [22]; p. 60) thmt if {(ol,oz)lol=<b- Tys ® eg(ﬁﬁ} 0119, ez}.
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is a\differential mani-

is a closed submanifold of I x I .then» zredx

foid and the canonical projection Lo Zred "is a submérsion inducing
the quotien; topology’wﬁicﬁ is‘cénsistenﬁ with the . manifold topologyt
" As our final axiom on the ﬁaterial element we assume that this‘orbit
manifold Zred exists (i.e,. tﬁé ;onditions of the‘thgorem are satisfied).
This allows us to differentiaply factor out the material equivalence of
certain states. |

The.stabilizer- g(o). of a particulaf state 'g € I, 'A;mely'
‘g(o) = {<I>’€"g(€) ]tb e g = q} is a _Liev subgroqp of g(é‘)@’ [22, p. 601
'which is called the symmetry group of‘the state o. "As in Noll [77], p. 19,
‘.g(o) is a Lie subgroup of the orthogonal group o(D), where D is
the deformation defined by the configuration é(c). The grdup o(D)

5 {
consists of all linear isomorphisms.on- T which are isometries with

respect to the norm defined by D.

(IV.4) Stress Space Modification.

‘ ‘ %
It is frequently desirable to replace the Sym(T ,T) factor in

y

e : n n oo , : .
the definition of S by T xR . This is particularly helpful in the
consideration of adapted frame component systems in space-time, where
the stress tensor is to be diagonalized in terms of principal stresses

" and axes. Thus S = T" x R" x R? and R e€ S is written as R = (v,0,n;¢)

n

) <R,

where v = ( -,z(n)) is a?basi§ for T and g = [ .

v ) ¢ " b
(1)’ 7(1) 7 (n)
(g and O(i) are not to be confused wyith states ¢ which are elements

_ \
of Z.)' If 5 ¢ £ and G(o) =G =‘(D,H,®,g,ﬁ) and S(g) = R = (v,0,n,¢)

i

then wel require tﬁgt v be orthonormal with respect to D, and the stress

* ) ’ . : (l)* ~
S € Sym(T ,T) must be determined from S(v ) =0 1 <i<n
-2y : . .

(1)%(1)
* S % * * . *
where/ v is the basis of T dual to v, v = (X(l) ’...’X(n),).

A

Thus, in this case, the deformation D is determined from the stress map S.
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(IV.5) The Heat Flux Function H.
]

" A number of people have investigated the speed of thermal disturbances

4
3

in continuous media with the objective in mind of avoiding the paradoxes

of fourier’s law of conduction Maugin [58], p..465 whleh assumes a

direct telationship Between'thetmal gradient g and tne heat flux -

qa =:kva; See also Miiller [74], Carter [10] and Israell. Ratner than

to attempt to define the veloc:S;)“s>thermal propogation in the context -
of this general theory, or look at more specific media where kinetic

theory and transport processes can be dlscussed it is proposed that

the heat flux function H be defined on the evolution bundle EZ

rathe; than the state space . This allows for an equation of thermalJ

conductivity in which the heat flux depends on the temperature within

the past null cone in the infinitesimally recent-past.

'l

(IV.6) The Thermodynamic Body Manifold. , P

Let B be an n-dimensional differential manifold. B is said to
be a Thermodynamic Body Manifold if B 1is equipped with a group

struétufe G(B) = [B, {Gx, X e B}, {(Ui,ri), a € AB}, VB,GB), where

’VB is an'n—dimensional vector spaceﬁwhich is given the structure of a

A A

thermodynamic material element €==(V ,G,£,8,EL, G S H, p,m) whose
symmetry group 'g(gd ‘is Gé.' Thus we see that the material element &
induces for us the structure of a material element é& at each point

X € B and all the raBX: BX - VB are material isomorphisms. We may.

write € = (B4,0y,2 SEZGSH

< X’mX) where Q(EX) = GX. vTh,e

% Cx°xxeP

. *
mass element m € A(VB ) defines for us a smooth invariant n-form on B

- . . »

1 ' :
Israel, W. Annals of Physics 100, p. 310-331 (1976). °
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'

whose value at -X ¢ B is m the mass element of é%( Thus B 1is

X
orientable,'and moreover GB = g(éﬁv c SL(VB). The group structure -

“gives us a smooth materially uniform thermodynamic simple body structure

on B corresponding to the notions of material unifofmity introduced

by Noll {78] aﬁd Wang [108].

(Iv.7) The Motion of a Thermodjnamié Body Manifold in a Lorentz Space-Time.
- Let M ibe an nt+l-dimensional Lorentz space time. This means that

M has a group structure G(M) = (M,{Gx,xezM}, {(Ua’ra)’ a EAY;V,G)

and a Lorentz inner producte exists on V ~which is preserved by G. }By

'a Lorentz innet product on V we mean a symmetric bilinear form

I: Vx V>R for which thgré exigts a basis v = (y(l),- "X(n)fx(n+1))

.. = diag, . (1,1,---,1,-1). A linear iso-
1] 1]

morphism from V,6 to itself»which sends one Lorentz basis (a basis like

of V with I{v, ..,v,..]=n.
; ey )

v satisfying this céndition) to another (componentwise in ordér)‘is said
td be a Lorentz transformation. The Lorentz transformations are those
which preserve I, 1i.e. I(v,w) = I(gyv,gw). .Thué“ G 1is a Lie subgroup,

of the Lorentz grdup, and is taken to be the proper otrthochronous sub--

" group. This means our space-~time is orientable and time sense preserving. -

We expect M, or at least the open subset. of space-time through which
the material medium moves which we have identified with M, -to be

_ orientable, because B 1s, and we can by exXterior product with the

flow vector, construct an everywhere non-zero ntl-form on M wusing

the non-zero n-form we have on B. Because of the irreversible nature

of continuym deformation properties, we need the notion of "future

pointing" on time-like vectors to be well defined everywhere and this
explains the orthochronous requirement.

An gcceptable motion of a thermodynamic body manifold B in a

iy



Lorentz space-time M will be determined by a iibration map P: M-> B
whose fibres are time-like Wera lines ciffebmorphic to R, and which
*satisfies certain consistency relationships. "

We assume X ¢ P Y(X), the world line of X so P(x) = X. For

. each X ¢ M there is associated a state ci € EX. If we parametrize

the world line P_l(x)' according to proper time T say x = B(1) € P

T € R then the curve T + O in 5. 1is a smooth curve. (B 1is

/, 8(1) X |
defined at least on an open interval in R.) We let Gx(ox) =
(D Hx Gx,gx,Ux) - C andV'SX(cx) = (Vx’gx’nx’wx) where v, =

€ B and ¢ ¢ R®. Notice that

(x(l)x’ ’Y‘(n)x) X ~x"(°(1)x;”"’°(n)x),

g and © are not to be confused with states in L just as G
~X (i)x X

X’
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1,

and GX are different. 0f course. D € Sym (BX,B ) for each- x ¢ P 1(X)

(@

| ) JRCILY
and we require Dx(x(i)x) A where v (v s

~X

| . ’ ) » ? x ,
basis of Bx dual to <vx. . The stress Sx € Sym(BX,Bx) is calculated

- *
from the relation S (v(i) )

<y o(i)xz(i)x Yhere ag ¢ R. Thus vx

‘(i)x

is .the instantaneous metric orthonormal basis Which diagonalizes the

" gtress temsor. It may not be unique but does always exist, and we

G

have that the principal axes and Stresses are smoothly specified by

LA

-',v(n) ) is the
~X

the generalized stress function S on Z., as functions of 1 = B ( ).

X X’

034 course, we have "the flow vector of the material medium which is

tangent to the flow lines and of length -1 at each point of M, being

also future pointing. In coordinates it 1is denoted by u? and the

acceleratibn\is u? = ua_bub. If M; is the vector subspace of’ MX s
3 N -

) a . L
of those vectors orthogornal to u in the metric, then the projection

P: M > B induces a natural isomorphism between Mi and BX for each

X € P—l(X) and each X ¢ B, We insist that ﬁx € BX be the image of
&a % under this isomorphism. Also OX, x ¢ M defines a scalar field

)

on M. We require it to be smooth and to satisfy © bY: < = 8 where

/
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* *
.we have denti{ied‘ M: with BX using the given linear isomorphism

(oan}n'this case its dyal).. Using“the same 1somorphism on highér_

tensor spaces as an ide

ification we require Dx = Yablx’ Hx = 2eabc <’
‘where eabc was defined earlier, in (I{24), and is orthogonal (to ud)
' E . d
ané symmetric in a and b. If we define Dx P DB(T) r=s‘1(x)

then 6x - zeablx under -the identification if we take convective

derivatives. Likewise we can téke the proper time derivative,pf the

“configuration Cx at x to get Cx = (Dx’Hx’ox’gx’Ux)’« where™

D = Dy under identification as we have seen, and H = 208 R
X ab|x x abec|x

a *+ - b
‘ex G,au, g, (ve,bwa <’

Ux - Dyl x* Then if under identification .
';e ut q°| = ¢ (. ,C ) _then 8 = v in our old notation is the

% q ,x I'S( x’ x : € q u ’ .
heat flux vector that appears in the energy-momentum tensor.

Likewise, the image of SX when applied to 0*' glves us a basis?
for BX namely Vs which can be“transformed through our isomorphism
.~ w’ - . cee ' . 1 Ll . .

to a basis T, (:(l)x’ ’r(n)x) of Mx which 1s orthonormal in the
metric Yab' This corresponds to our 3 wvectors I, 8, t 1in 3~-space
(orlﬂ—space—tihe) and- along with the flow vector u € Mx’ the (n+l1)-
frame (r(l)k"..’r(n)X’Hx) ~gilves us ah orthonormal basis for MX in
the metric gab at x. This 1is the adapted frame whose Ricci Totation
toefficients we referred to as the coordinate torsion, and used for an

¢ . - .
expiicit formulation of the Einstein equations. Writing u. -as

rarb =n,,
ab" (D7) T "y

E(n+l)x

for the moment we have g for 1i,j = 1,2,--+,n+l.

l
i

(IV.8) Thermodynamics: The First and Second Lawg.

The first‘law of thermodynamics {is thé energy conservation relation
PdV + dU = dQ Fermi [28] p. 20 and Truesdell IldS] pP. 242 where PdvV
is thg.work done by the system on the Environmeﬁt, dU 1is the internal
energy gained.by.thg system and dQ is the heat the system picks up

&



L . / . .

from the environment. The éorreeponding equation in relativity is, as

. we have seen in (III.5),

(Tébub);a - Tabeab-kvauaAJ - (eub);
Energy flow into system Internal energy
.per unit 4-volume due galned by the
to work done on the system per unit
system by stresses and 4-volume (i.e.
heat flux (corresponds’  per unit 3-vol-

to =PdV) g ume per unit
, time) (corres-
ponds to dU)

N}

where we have divided the differential -form of

+

b
Oy
Heat flow out of

206

the system to the -

environment per
unit 4-volume
(corresponds to

thé.equapion by the

infin;;ésimal differential of 4-volume to obtain this finite form.

Enlers [25] p. 822, Day [21] p. 77, Truesdell [105] p. 245, Maugin

[58] p. 471 and others have treated entropy in terms of a vector called

entropy flux which needs some clarification here in this context

| because of diverse thermodynamic formulations (Mdller [73] p.'260)} It

is convenient to treat the concept of entropy and the second law in the

following manner. This is a refined technique of the one used in

classical thermodynamics of Fermi [28] where we pick out the TdS term

from the heat flow in the first law. .

» For our infinitesimally small 3-dimensional space of material

| . Ny
points moving along a world line in space-time in the rest frame we

have: ’ ~

¢ = energy density per unit 3-volume,

(eua)_a = internal energy gained by the system per unit 3-volume
b4

per unit time (= per unit 47volume),

p = mass density in rest frame (not including mass eduivalent

of thermai energy),

-Ta ‘ <
(o );a = 0 = mass gained by the §ystem per unit 4-volume,

!



n = entropy density (per unit 3-volume 1In rest frqme),

(nua)_a = total entropy gained by the system per unit 4-volume.

We let aint be the entropy 3-density gained by the system internally

as a result of irreversible processes, -per unit time. It has units of

entropy per unit 4-volume, Then

. v ; ' » | a
ay L EI R U .
ud g Mine TS T Mae (o ) L

b

where AQA 1s ‘the heat gained by the system per unit 4-volume at
] ) - '
temperature 0. We might ask why is 0 included in the differenciaté&s

: XVa (Av®) . _ . [P
and we put (———) instead of (—~—Er4§)? .

k 0] ‘a e
’ ' To see this we imagine a system.where heat
+ d flows into a system at tem;ératﬁre‘
T+ dT and. Q flows out at temperature- T,
T +dT .;> so the entropy change due to hegt flow 1s»
) ds = d(%) dQ Q and not simply %g .
' ’ " T a - .a Ca T aw?
For our space-time case we may write n, . = § where S§% = nu° + 22—
) . ) int ;a O]
is called the entropy flux, and 'aint is the ehtropyy(density)>creation
.rate. ~We have ﬁ, > 0 alwaYs (the ,second law) and 'ﬁ, = Oi‘for
int e int

reversible processes.

The free‘energy ¥ 1is again a 3—densi£y in rest frame séalar
function defined by v =< - n® Fermi [ZBl p; 78 Truesdell [lOS] p. 245.
It is also called the Helmholtz free energy by chemlsts who use the
symbol F for it, in contrast to ﬁhe,GiEgs freg energy. We méylwfite,

'differentiating and substituyting from the first law,

.. a «  “ab as a
- - - + - -
n (pu );a ne+T eab Av u, Av. (&n @),

o]
il

—o(@xFﬁé)-+Tabe fkvaﬁ —Ava(zn 0) > 0,
ab . a ,a
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N

where <"

ig proper time der lvative, and n = uﬁ. Y o= oy and we call
V¥ the specific free energy and n  the specific‘entropy. This glves
us the Clausius-Duhem form inequality Mgugin [38] p. 471, eqn. (25)

including the acceleration (Qa) term which he does not have. See

also Noll [77] p. 49.

(Iv.9) Axiom of Thermodynamic Reversiﬁilitz (A.T.R.).

It is possible’ to define reversibility for elements Iln the evo lu-
tion space that 7pecify for us infinitesimal configuration change rates.
1f (o,va(c)) 7/EZ, i.e. o €I and VG( ) ig a consisten; vector in

)

" the tangent space to G at the conf guratiop G(o) ,  then we say (O’Vé(o)

1s reveraible if the following condition holds. There exists another

consistent vector at G(c) such that O(O,Vé(o)) = —p(a,v' ) «

G(o) G(o)

réfers to scalar mdltiplication by -1 in the linear vector

where '"-"

. . ) - \( X ) (IR .
_space ;0 the tangent space to at 0. We say (o,v G(c)) is

‘opposite to (o, Va(o )) Since G, Ys lirear on the fibres we see that

~

*
v'é(o) - -vé(c) 1is necessaf§)#ug_gﬁtfsufficient for (O’V'é(O)) to be
,qﬁgosite to '(g;vé(o))f, épd this condition is sufficient if and only

if (U?Vé(c)?’ is reversible. We oBserve that™ o nged not be linear
on the fibres. If an 6pposite evolutioﬁ elément exists it must of
,édurséAbe unique. ' | | |

| ’VLet o-¢ I bea stéte and let VP} [0, dpj f,G bé a smooth
préce58~with P(0) = G = G(O),A and let Q: {O,dp] > ¥ be the lifted
state process with Q(0) = o. We sayithatﬂ P is a reversible»pﬁocess
if there exists a process P: [0, d_] » G with P(0) =AP(dp) such that
for the lifted process Q: [0, d_} + 3 with Q(0) = Q) we have | |
la(di) = 0. Hence also 5(dfg = G. P 1is sald to be completely rever-

sible if é%-?(t) - p'(t) satisfies the condition that (Q(t),P'(t)) e EI
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18 reversible for all . For a more general process P owe may tind P

0

i8 not differentiable at some € [O,AP] which can happen for tinitely

many points in the intexwval. Here we require the evolution element

(Q(toj,P'(to)) to be reversible when P'(to) {s replaced by elther the

right hand or left hand derivative at t_ . It {8 easy to see that a

0

completely reversible process 1is reversible, simply by taking dF = dp

and P(t) = P(dp—t). -

The second law, when expressed in the form analugous to the

Clausius-Duhem inequality, can be characterized strictly in terms of

[ad
the evolution element (o,v: ) under consideration. Interpreting

G(o)

Vé(o) = C as the (proper) time derivative of the configuration, we can

write the second law down in terms of intrinsic (body manifold) quantities

as ~
. as* a
. . T 8 AV u Av O
; - ¥ _v__08 ab a ,a
n ) 0 n 5 + 20

- -~

., © 0 2

0.
o wfex B\ _§_nd, xGesy DWHE
C] °] 0 20

O2

+ * *
where D ¢ Sym (T,T ), S ¢ Sym(T ,T) are deformation and stress, n

and y are entropy and free energy density respectively associated with

* .
g, g ¢ T 1is body thermal gradient, U ¢ T the acceleration,

indicates the time derivatives of these quantities determined by

~ab 1 . _1 . _tr D _
Observe that eabT =3 tr(DoS) = 3 tr(SoD) and 6 = 5 =
% tr(D_l Oﬁ) defines tr D. Thus for any element (o,vé(c)) €

can calculate asspclated with it. We now state two more

nint

for our material element.

Second Law of Thermodynamics. For any (0 )) ¢ EL we

’vé(o

(G’Vé ) =2 0.

Nint (o)

and H,.n

Vé(o).
L tr(b<)D_
2 -

EL we

axioms

have

1

)

87 B VG(0))”
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e ’ ;

Axiom of Thermodynamic Reversibility (A.T.R.). The element

$§’Vé}07) 18 reversible‘if’and only i1f aint(o’vé(o)) = 0.

. o
The latter axiom needs some clarification here. Fi;sf‘let us
look at the energy conservation relation (the first law). If the

‘evolution element (C,VG);% EL, G = G(o) 1is specified, then every-

thing in this equation is determined except qb.b = (>\vb).b by -(G,VG)

. . L b '
and ‘we may write the first law determining gq ., as
. ! ’

b, - “ab b _ as
(Av );b eabT ’ (eu );b v u

Ter(bos) - (penode - § - 16 - nd - <H(o,v),DD)>

where we have w;;ften the result in intrinsic tbody) form.. It is worth
noting that, <ﬁ(o,vG),D(ﬁ)> = <D Oﬁ(o,vc),ﬁ>. *Iﬁ words, the evolution
element determines the work done on the system, thebinternal energy
,géined by the system and thérefgre (by energy conservation) the heat

flow into the system from the environment.

-

Heuristically then, let ué understand the principle behind the

axfom of thermodypamic reversibility. It is easy to see that if

(o,v~, ) 1is reversible, then ine for this elémeﬂ%}is zero, for

G(o)
o-(‘é,Vé(O)) = *o(o,-Vé(o)) :>"”int(°’vé(o)) = —nint(o,i-v@‘(o)) which

means it is zero by the second law which states it is always 2= 0 for ;

any -evolution element. Physically, corresponding to (Q’YG) € EL,
G = G(0), in a time dt which is infinitesimal, our configuration
C = G(og) = G _changes to C + dC = C + Cdt = C + v dt,, since G is

G

R 1

) + * *
a submanifold of a vector space. (Notice that Sym (T,T ) < Sym(T,T )).
We can then, in the following time interval of equal length dt réverse
the direction of the process to return us to the original configuration.

If we have returned to the original state to within first order, our
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evolution element was reversible. If not, our state has changed, the
rate of which is ;(U,VG) + ;(c,-vG). If we return to the original
state in this two step infinitesimal process, there is no change of
internal- energy, nor can there by any.net Qork done on th? system (to
first order). Hence there is no net heat gained or lost by the system,
which means that if n, (c,vG) > 0 we have gredter en;répy }P/the

int
final than in the inigial state, since ﬁint(o,—vc) 2 0. This 1is

o

"{mpossible, since n 1s a state function, so ﬁint(c,vG)'= 0 by

physical arguments.

4]

It 1s the converse of this which states that thermodynamic
reversibility implies rheological reversibility which is new, and

-

Eharacteriieé thermodynamic material media.

(Iv.10) Thermolinear Materials.

In most cases we are interested in special additional require-
ments being imposed on the material elemeng é?. One of the most
common is to assume that every 6G is a vector subspace of GC fé;-
G e G, aﬁd\fprthermore_that Er 1s a vector bundle (Dieudonné»[ZZ]
p. 105), tﬁe base space of course being the state manifold L. We

say € 1is a thermolinear element if EI 1is a vector bundle, and if

po.-'p(o,-): Gé(c) > Zc is a linear mapping on the vector spaces. If

we follow Noll's approach of letting N be the csTiection of all
admissible processes, then every such process for a thermolinear

material element will be completely reversible. Thus 0= ﬁint(o,vc),

I

G = G(o) for all (o,vG) € EZ,,—We say € 1is thermoelastic (Day [21]

p. 18) if EI 1is a vector bundle, and G: I > G 1is a diffeomorphism.

Thus a (thermo) elastic material has no memory and the state is

/

determined by the configuration. This ié similar to the notion of a



perfect mate;fel, Lianis [49] p. 302. Clearly, every thermoelastlc
material is thermolinear, and therefore all its evolution elements are'
reversible. g : »

We say € is a flutd if g(&) = SL(T), and & 1s a solid if
g(& < o(1), the orthogonal group of I ‘where I.¢ Sym (T, ™ ), for
some deformation I. As ‘Noll [77] P i9 has done, we can define iso-
tropic states and isotropic material elements. A state O € r 1is
tgotropic if 1its symmetry group -is the orthogonal group of its deforma—
tion, i.e. g(o) = s0(D) where D 1s the deformation determined from
the configuration a(c). A material element € 1is isotropic 1if it |
has at 1eas£ one isotropic state. An isotropic state has the largest
possible symmetry Qroup since we know that for any state O,

a(o) < bO(D) n g(&) .

Propositions: Let & be a matemal element unth 9(8) z SL(T).
Then (&) =g(o) if and only if © ig wotropw.
ot o c 1 beastate, SeSmT,T), De Sym (T, T
be ‘the stress and deformation respectﬂ,vely, assocwted with o. Then -
V o € g(o) we have @®o8eD=S°D o®  Thus if o 18 an msotropwc

-1

state, S = -PD where P e R 18 called the pressure.

If ocel and ¢ ¢ g (&) then g@-0) = ¢°g(o) o7t

Proofsy” See No1¥ [77) p. 19, and follow his aﬁproach here.

/An isotropic  material element which is a solid 1§ called an
iao#ropic golid. TFor such a material element £ there exists a
defo¥mx£ion I with g(Eﬁ 40(I). The converse ie~c1early'also
true, nagely,éj/l € Sym (T;T ) with 3(&) ; 40(I) implies that our

isotropic material is a solid.

212
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A material which is not a solid is called a fluid erystal. 1f £
is a solid and g(@“ c o(I), where 1 of course .need not be unique,
then I induces an invariant Riemannian metric on the body manifold B

whose “material element is &. Wang [108] p. 83 has shown that if 8

N
is an isotropic s@lid, then for any I with g(éﬁ = 50(I), .the
Christoffel symbols of the induced Riemannian metric are the components
of a material connection (a connection on the group structure of the

Body manifold). For a thermoelastic material 8’ the function p 1is

~

determined uniquely in a trivial way (if we identify‘_G and L) and é.
carries the physical information. )

To explain the notion of a perfect material (of which there are
variations in the literature) Lianis [49]'p.v302g Sburiau [99] p. 345
and Lodge [55] p. 145, (Oldroyd's'form) in t%is general setting we intro-
duce the Yollowing definitions. We ééy that £ 1s symmetry-thermoperfect
(or s-therméperféct for sho§t)fif ¥VoeZI, ¢c¢ 9(63 , ¢ oSO ODé =
So oDO(>¢ where -SG € Sym(T*,T), DO € Sym+(T,T*) are‘the.stress and -
defqrmation respectively‘associated with 0; Also, 6' is“thermoperféct
if it is s-thermoperfect and tﬁermplinear. (We shall see that thermo-
linear corresponds to Oldroyd's form of*a perfect material.) We.say €
is eldstoperfectiif it is thermoperfect and thermoelastic. A thermo--
perfect fluid is a thermoperfect material which is a fluid. Likewise
we define an s-thermoperfect fluid apd elastoperfect fluid, by com-
biningtthe definitions. It is easy to see that for an s;thermoperfect
fluid, S_ = —P(O)D;l where P: L +R 1is a smooth function. For an
elastoperfect fluid P is a function of configuration and there is
no hereditary or history dependénce. | ‘

Let @’ be a thermolinear #ﬁ!erial element, P ¢ I a process with

duration dp and P(O) =G = G(g) for some ¢ < L. Let Q: [O,dp] +> z

¢
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be the lifted process with Q(0) = o, Let t:;[O,dp] > [O,dpj “be a
smooth monotone increasing function with’derivative strictly positive
‘everywhere satisfying f(O) 0, f(dp) = dF . Define. P: [O,d ] +6
by P2pPof -1 and Q: o, d§] + I by Q= Q °f—l. ~Then we can see
that P e 1 ig an admissible process, and Q is the unique lifted
State process corresponding to P and satisfying Q(O) = 0. In other
*words, this means that for a thermolinear material element the final
state depends on the initial state and the path’of the process in the .
configuration &pace but not on. the time parametrization Alternatively,
in deforming from confignration C, to configuration c

1 2
prescribed path, the result physically does not depend on whether the _

along a

deformation was slow or fast. The proof of this is immedia rom
the definition of thermolinearity. Hence we canlsay that the stress
responds immediately to the COnfiguration change {55, p. 145].

We can also see that an s- thermoperfect isotropic solid has
'So = -P<U)Do » 8ince 9(8) is a special ortﬁogonal group.‘ Let & be

s-thermoperfect. Now g(£€) acts differentiably from the left on 3
with orbit manifold Led’ and o € 3(0) <= 9:0 =0 so0 é(o) 18’

the stabilizer of o, & Lie subgroup of g(€) . Let & € 9g(€) and
*-] _—

N : %
o' = 0+06 80 S ,0D., =00S oo ° % oD o
‘ a’, o [e) ag

=00S oD o0 L =g oD . -
g g g ag . v

Thus S0 oDOe:Lin(T) 1s a constant on”the orgits and 1s therefore a
well defined function on Ered' which is smooth (Dieudonné [22] p. 63).

In the equation Sd oDc od = ¢ oSC oDo’ gdell, ¢ ¢ g(éU © if we drop
’ o R L % ' ‘
the o and write SoDod = ¢ o8 °oD, and uses D: T+ T as a linear

. " .
isomorphism identifying T with T (i.e. a metric or norm) then

using * to represent both dual maps and adjoints-—with respect to. D

. * * * * * * * -1 * @
we have ¢ oD oS =D oS o9 or, since D = D™ =D and S = 3§,
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* *
¢ oDoS =DoSed . Injthis form, we can drop the jdentification of T

. }

and T  using D' and so we see that if o' = ¢-o0, Do' OSO, =

k1 x ’ *

$ oD ©S o =D o5 . Therefore, also D o8 ¢ Lin(T )  1is copstant
o o] o o] , o g. _ o .

on the orbits and is hence a well defined>smooth‘functipn on Zréd' We

see that the conditionm S0 ODO = constant on orbits, is sufficient also
for é' to be s-thermoperfect, as is the condition D$<>SU'= constant on

orbits.

(IV.11) Electromagnetic Theory'in Relativity

We should like to include electromagnetic effects in this theory

specifying just what parts of the field or its derivatives are determined
L 4 . -

by the state or evolution element, and how Maxwell's .equations aid us
in determining the relations satisfied.. For a generallrelativistic
f,orentzian space-time we represent the»glectromagneti% field including

\ 1 , v
induction effects by two skew-symmetric tensors Fab and Ga We call

b

F, the electric field-magnetic induction temsor and Gy the electric

induction-magnetic field temsor . The corresponding dual tensors are

e _ 1 _dead . ode _

pde - 5 € Fb and G
ab 1 - _abde ab . 1

F7ro= -5 ¢ ‘Fde and G = -7

. ‘deab

€ 9ab
abde

& Gde

wigh inversion formulas

ol

where the metric is
_ > Eap

used to raise and lower indices. We can eXpress these tensors in terms

of two space-like vectors,brthogonal to the flow in the matter flow frame

. . — d -
in each case. We then ?ave (us;ng €1be €pedd €abed Vg €abcd)
C c ¢ -
F._ .=- B™ - + = - - '
ab € be Eaub Ebga and Gab EabcH ’Daub + Dbua so that the
1s are F, = - a4 = = - 3 4y -
duals are de EdeaE, Bdue Béud and Gde | EdeaD + Hdue Heud.

We call E® the electric field, B? the magnetic inductionm, ‘5% the - -

magnetic field and 0%  the electric induction. These are vector fields

1
Lichnerowicz, A., Relativistic Hydrodynamics and Magnetohydrodynamics,
W.A. Benjamin, Inc. N.Y. 1967, p. 84. :
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orthogonal to the flow ua. ‘As vectors in M; wq.write them as E, ﬁ, .
' )

- >
H and D.~

¢

The induction vectors.are given in terms of the field vectors by the

> > g - L. L.
relations B = uwH and D = xE. We ¢ill u the magretic permeability

‘and x the electric permitivity or susceptibility, x Dbeing directly

related to the dielectric constant. For isotropic media ‘these are scalar

/
functions of the state O ¢ ‘and in the non-isotropic case they aﬁe\

+ 4

positiveﬂdéfinite symmetric matrix functions of o -in a particular basis.

Maxwell's equations are dFab‘c =0 ‘(éqﬁivalently Fab.b = 0) and

ab . _- .a , _ o d ab _ _.ba. a _
G. i = q (equivalently dGablc.— eabch Y. Since G = -G ? J 0

which is conservation of charge, Ja"being thi chargeuflow vector for

electric charge. We can, write 2= ja + p(c)‘ua where jaua = 0. The

. . . .a
charge density in the matter rest frame 1s P (e) and the vector ] is

the current density. ,

The contribution to the energy momentum tensor due to electromagnetic

: o ab _ dc. b, 1 abecd. -
effectslls given by. T(em) = F GC + A g F ch. In terms of the

Iy

fields we haﬁé

ab _ HaBb _ Yab g .ﬁ _ (3)<§)a ub-+'Ean

T (em) . ,
C @D - @ DS 4T e EH-E D),
where (6><§)a = —eaCdb B,. Thus .T ab - is not in gene;al-symmetric
_ - cd , (em) E ’

but may be in specific cases, such as the unidirectional space-times

ab . - .
is not symmetric

/whereﬁgﬁ, 3, £ and .ﬁt arekall paraliel. 1f T(em)
thén_the electromagneﬁié effects by énd of themselveé are not conserving
anéular mdméntum, but when céupled fo the material conﬁributiohs the toéél
energy momentum tensor is sjmmetric and-represents:angular momentum con-—

servation. We have Tab =FT ab + T ab with an intricate inter-
(em) (mat) :
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relation between material stress and electromagnetic field. Here

ab ba- ab _ _ _ o
T T and T b " 0. In the case X 1 so Gab Fab we

have T(em)ab-b = Fade, and | T(em)ab is symmefric. Ihis holds in
’ . . . -

particular. for the vacuum case where Tab ﬁJT(em)éb and Ja = 0. It is
the tbtal energy mbmentuﬁ tensor Tab that will always be the one of

interest, with orthogonal parts determined by the constitutive theory}

‘ ab
- Henceforth we will refer no more to T

. (em) ‘ 3
Let us see how to represent first order derivatives of fields such

aa

as' B or E? on the body manifold. Clearly H® = PZHa and E¥ = PET,
E = P2 , E = PaE where the o index is raised and lowered using
a o a a aa A -
- L. a : . - p%
qu(f). Similar equations hold for D and Ba' Now using ‘O = PaAb‘
o B, a _¥y a’ ¢ o o a ~d
+ F b P = -— =
Pa,b Pa 8 YPb cra b and FB Y {B Y}(T) KB YKT)’ Aa b v
d_B_ Y, o e ¢ S e d; c ~d d d
J I‘ = - = - -
Pa?apbks Y(T)’ ab {a b} Ka b and\ YcKa b Aa b u ;bua v ;aub
- L.xduaub which are results from (I.22), (I.27), we obtain
a Br a Y a c C c '
= + < - + + .
0 Pa,b Pa{B Y}(T)Pb Pc({a b} u ;bua u ;aub +
e , | - ,
u uaub) . . | | (IV.11.1)
Now, H* = PPH® so cthht H® | = %) _ p° _ 5 ééﬂa + p%pPy? We
a ‘ ,B a ,b B a,b a B ,b’

’ ‘ . s
define the instantaneous -proper time covariant derivative (using Christoffel

o

symbols) on the,bodybmanifold as HO‘.B = g 8 + HY{YGB}(T)’ and of course

also Ha.b = y° b + hc{cab} on space-time. Then multiplying equation
b b 4 .

(IV.11.1) which we obtaine% earlier by HaPZ and éimplifying we Cl

< .
a agb..a . . . \ . . .
H .8 = PaPBH ‘b which is the covariant derivative projecti
> b4

first Christoffel symbol derivétive on the Body manifold. Frnm*

] “ _ | y
definition of {B Y}(T) in terms of gaB(T) we see that 8agsy 0
2 ‘ a b - PR , e . a
SO HG;B = PaPBHa;b' We héve similar projections for E b Ea;b’
a N
d . = f .
Da;bf B ‘b and so forth. Now gaB;Y 0 or each T, so using the
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1

material connection on B we have, 4

§ §
= + = .
gdBIY gaB;Y M gdBKa Y(T) gaGKB Y(T) ZK(GB)Y(T)

Lifting to space-time we find the orthogonal tensor eabc which is
determined by the configuration and hence the state of the material -

element at (X,t1) gives us all the information we need to obtain the

orthogonal defivatives of gaB(T) on the body.' In fact 6 =

abc |
a,BLy ._aBY L . . .
PanPcK(aB)Y‘ 5 Pa b CgOlBI Inwour or1g1nal‘conf1gurat10n notation
e = gaBIY(X’T)'

(IV.12) . Depepndence on the Choice‘Bf Matérial Connection
[ K 0y

Of course there may be more than one material connection on the body"

manifold, 1If FéaY and F'Bay ére both material connections on B it

is easy to see that a“ (r- ¢ --I“Say)tY x € gx- the Lie algebra at

B!X - By

a BIX: BX > BX as a linear map, and where the vectér

£Y is arbitrary. This isg simply the statement that parallel transports

X where we view

preserve material isomorphisms. Hence writing 6

a8y = K(GB)Y(T) we have
a = A8 ey = (8" -9 )tY.‘;here a’ l € g and g (v) i
(aB) apy" aBy  “agy S Toelx Sk ap &
used to raise and lower indices. Since H_ = 28 is the basic
- X aBylX
spatial gradient of deformation thé transfqrmation H - HX + 2A8 'X

ought to be tr1v1al in a certain sense when considering the state space,
&
‘stress and’ evolution map of the material element at X. If G = {e}

is &he frivial'group, the materlal connection on the body is unlque and

this prov1des no constraint. The larger the group G, the less able we
are to measure spatial gradlents of deformatlon in any canonlcal way. If
.G 1is a subgroup of Unim(V), then (T)AeasY

the other hand, if a particular material connection on B ig singled out

= 0, for instance. On

for dynamical purposes, we can find spatial gradient of deformation ﬁithout
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trouble, énd need not worry about the dependen_cﬁwhe dynamical
properties of the state on particular variations in H related to a

éhange in material connection on B.

(Iv.13) Thé Maxwell Equations /

It is straightforward to verify that Maxwell's equations on space~”

time can be written in the following form:

= 2% +uD? b
C a

—D(C) =D ;b
3 = EECd(H ,d+H fld) - De; o® + 48 ¥ -p%8 +u ,bD —
/ 0 = 2v3E - fded + Be; , s
0 = P2 L FEu )+Bb, .u. —u'u Ba+Bb8-u ;eBe .

¥ . ) . . A >
These are to be compared with the usual classical equations div D =

8] ’
> > ()
> - 9D -2 > 3B . Z
J = curl H.- FYSE div B =0 and curl E + Szj= 0. We see additional

acceleration expansion and rotation terms, some of which are obvious
contorsion type terms that can be incorporated by a change of connection
P
 Ae - o -
i.e. tr K = u, +uuu..
y = Ye%a < d

, Let us consider the appearance of Maxwell's equations on the body

A

maﬁifold. First of all observe that

a. a. a c d d
I? b (YC‘U uC)E ;d(Yb uub)

a B8 _a a c awc -4 a =+ _.C
PanF g u uC:bE YCE ;du ub- u ubuCE .
and then notice that EC ud = g° ud + EK ¢ ud = QEC-FEe(& WY =
;d CoAd e d e ;e

- " o C . . . ’ .
PiEY + (UaE Ju + uc.eEe. 1f we substitute in the above equation using -

-

DaB = gaB(T) as ;he components of the»deformatlon, uc:e = ece + TR

c.e 1 - d 1~ d 1 * S.yqe
5] = = =D = - — . = = ) d .
ve ey e 2 Dyeo 9o Ecedv o ncedv 0 nYedv PcPe, and using
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v

D a function of T, to raise and lower indices on the body manifold

aB’

we have

‘ - *
2 = p%fe* 41 2 PP 4L, 6PB
;b ab 3B 2 YR b w;\\\ YBG
a-~y 1 _a a8 e * Y 1 _a_aéd € a = Y
- = + = E - .
PYE qb + 5 PaD ubE nﬁeYU > PaD ub Dée u ubUYE

, , ) ) ° : a
Thus we have the covariant derivative of the orthogonal vector field E

in terms of quantities on the body manifold we can identify using the
general theory of a thermodynamic material element with slightly extended ~

state and configuration spaces. The same egquation with index a lowered is

]
/,

- a8 1. Yz 3] 1 Y * 6 B
= + = + = u E
Ea;b Pan?a;B 7 Y, E'D BPb 5 u, Y85 P‘
Y o0 er Y
- E — E - .
, PaDya ub + P u E n U b Dae uaubU E
There are similar equations for j:ii\ </€/T:P tc. It is worth
mentlonlng here that UY = &cpy’ that Greek indices are raised and
lewered on the body using D (), and D should not be con-

, ag = Bag a8

fused with the deformation rate D in Chaptér I. Substituting back we

obtain Maxwell's equations on the body manifold as

Y o
- = 2v'H -
°(c) y " P
e v§ . ce 2 _eak By T _ear B €
= + - 4. — o s
3 (H +HUg) =D + 2D "n g D'vi + D7D D"~ D6
0=2" +38° ,
o ;
. . 2 * .
0 = onBaY(E vE U ) + 85 - £ 0% %Y - pP% BY + 8.
a3y Ay p ady ay
€ dE ‘ ; . s .
Here E- = 4. as these body manifold quantities are functions of

proper time T.

|

We could extend the configuration space G so that an element G ¢ G'
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wquld be of the form G = (D,H,O,g,U,J,j,p(c)) where UeT 1is the

. 0

3 -
vorticity, J ¢ T 1is the current density, and 0 ey ¢ R 1is the charge

density. Likewise an eleﬁent'of the stress space R ¢ S would be

>
DR = (8,0, 0, EHGu)
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CHAPTER V °

RELATION OF CONSTITUTIVE AND FIELD EQUATIONS

(V.I) The Unidirectional Body Manifold.

In Chapter IIT we formed the field equations completely for the

Unldlrectional space-time in adapted frame components in a local nelghbor—

hood. Here we would like to introduce a frame component system on the

body manifold B (of three dimensions) definedlocally, which is con-

sistent with the group structure on B (i.e. ds obtained from a

reference chart of 'UB and a fixed basis of‘ ﬂgjq\k.f. (IV.6)). We(/

suppose that -U < B 1is this open neighborhood, X € U, the three

, . Lo Lo a '
vector fields on U are writtemas X , Y , Z where o =1, 2, &

the italicized numbers referring to the Body manifold, the variable
being a lower case Greek index. As before, for the space time, the

. a a >
tetrad is u, r , s , t where a =1, 2, 3, 4 are the regular

numbers, the variable being a Latin index. Of course in frame com-—

ah a al a a2 a a3

are

a : .
ponents u =6 , r =87, s = §77, t=29§ and in the case of

the bo&yi X% = 6a1, ¥ =8 A 6“3. The:Rigci coefficients

for .the space-time are T," or T.2 and for the body T:% 7 There

ik b c S

. , .o 1 .
is no confusion here about specific components, T2 3 1s for space-

time, TZZS for the”gody.

03

1f Xa, Y-, VA are vector fields defined on U < B detérmining

a frame component system, then there is a naturally defined material

connection on U which has zero Riemann tensor. It is material

because its parallel transpgggg/ére material isomorphisms, since we have

constructed this frame component system out of a material reference

“ 222
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chart on the group structure on B. We define this connection by the

conditions on {ts covariant derivative | 'namely,

x* (v.1.1)

|8 I8

a a
0 =Y -4; g’

Thus it parallel tféggggnta the frame defining the frame component
system to itself along any curve in U. Thus its holonomy groups are

trivial and so we expect the curvature tensor to be zero. This can be
a Y, @ o
= X + X'T o T = 0
8 .8 vye °° ‘18
r @

since X* _ =0 in frame components, and similarly *

seen another way. By (v.1l.1), O = x*

=T = 0, so

» 8 28 3 B
0 1in this frame system identically. Ihgrefore we see that

—
"

Q ‘ o a L g a g o o
=T - T + T r - T r + T 1
ays ~Ta s,y " Tey,e P ToyTe s "o stey v g 0Ty s 1mplies

R = 0, The components of the torsion tensor for this cdonnection in

frame components -are —TBQY (c.f. (11.20)).
The chart with domain U which determines this system is said to be

unidirectional if the Ricci coefficients TsaY single out just one

spatial direction which we take to he x°. The naturally defined mass

1 * ;
element n By (see (I.11)) has components in these frame components

* Ce -k -
‘vgiven b}g 123 = .—l, sO n aBy = —eaBY" We have a Riemannian metric
tensor defined on U 1in a natural way so as to make the frame components

orthonq}gi;. This metric is a property of the frame component system

and nJE the body manifold B. It is preserved by the special matg;ial

connection we have descfribed “here onW:U ¢ B but not necessarily by

other material‘éonngc ions. It is useful for switching to the céﬁgctor
. )

basis, and as a reference for the deformation measurements. We denote

it by 8,5 = GQB :in these components. It differs from the proper time .

1 . .
ecall that the symmetry group of a material element must be a sub-
groupoﬁjfthe spetial line group.

~

kY

N\
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~down from space-~tiMe. The mass element (n

-system, i.e. 3 = X ,

’ equivalent to w = v. The Jacobi identity implies T

“else w # v and they are both constant. If we have w =0 and v a

dependent metric gaB(T) at X e B defined as in (I.9) projected

.a6§ »in components) is
1. .2 .3

given by the exterior product -3! 3~ A 37 A9 of the three imperﬁect'~

differentials (III.6) whigP form the dual basis in this frame component

1 Qéz\ﬁkY , 83-= Z  where = § . 1is used to

a a a N a a o gaB af

lower indices. Hence Eg =_6: is the Kronecker delta.

\;. g = Y = -
We put AaB EGBYX YQZB ZaY87
o

coefficients can be written out as TBaY'= anABY + Vﬁqu for three

. . * . -
dimensions, where w =w X and v =vX, le. w _ =w = v =
; ’ ‘ ,0 o ,Q o -2 »3 » 2

Then the unidirectional Riccl

- . *. ' o
V= 0, w =W, V,=v. The integrability conditions w - w
’ b ) N

Yoo R {
Ta Bw,Y, and v,aB 4V’Ba Tu BV,Y

. ™
constants or else T2 3= 0. This latter condition, T I . 0 is

imply either v and w are both

2 3

-

1
2 3,1 = (0 and is

‘itself therefore implied, in this case, by the integrability conditionms.

Hence either w = v. and there is no restriction on the deq;yatiées or °
. . . . e .

3

BaYp= vﬁBaYi the chart with domain U 1is said to be

ommidirectional. If B 1is covered by a family of omni(uni) directional

constant with T

bundle or reference charts from the group structure then we say the
° 2 S

body manifold B is ommi(uni) directional respectively.
. N -

(V.2) Motion of a Unidirectional Body in Unidirectional Space-Time.

" In this section we will consider evaluating the components of the
projection tensor P: and its inverse P: in mixed frame components.
Using the results in (I.27) we have the material Herivative of the
mixed tensor extended té frame components as,

«

¢ - Pa' B. o oy _ poh a
Bac b,c bR YC abc?’

224"
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a a’ a ' CoL a
= t r
Pb,c Parb c siqce the components By

are zero in frame components. Using the equation in (1.27) for the

so of the material_connection'

torsion of the material connection in t7fms of the lift of fhevtorsion

on the body, and the result in (II.ZO)'that _FBac —‘Fcab is the sum -

of the space-time coordinate torsion and the torsion tensor in thegﬁ

generalized coordinates (i.e. frame components) we have that

kg
a ‘a a

= panBoY, .0 a _
b ¢ cb Tb c + PszPc( TB Y) tu (9c;b ub;c)

u [
since -TB Y are the components of the torsion tensor of##he material

connection on the body. Hence we see that

o o a., a B.Y. @ .
- = - P'T v.2u
Pb,c Pc,b PaTb c Pb c B vy (v.2-1)
L
. . Q . ‘“"‘m\;
is the integrability condition for Pb in frame components. S

~

directional space-time, there must be a correspondence of the singled

If we are Eg/éonSider a unidirebtional body manifold in a uni-

out directions, and a lack of specification of the other two. More

precisely, the vectors Xa,'Ya

, z* musé be orthogonal in gaB(T)
with Y* and 2% of equal length in thfs metric for each 1. . Thus

. ' w8 '
we write out the frame components of thg)mixed tensors as follows. s

a : ' - 2 3

Components of P°: P> =0, &« =1,2,3, P, =a >0, PS=P =bcos 8,
a 4 1 o 2 3
2 3 W
Py =-P, =bsins, b>o0.
a 4 1 2 3 1
Components of Pa: Pa =0, o=1,2,3, PZ = }/a, PZ = P3 = cos 8,
2 _ 3__1
PS = P2 = b sin 6. .
The othér components not listed are zero. Thus the relationms
PaPa = da and Pan = Yb = éb + ubu where ‘ua =1, ul = u2 = u3 = 0,
asg B aa a a a
1
u, = -1, will hold. Of course a, b and 6 are functions which (

The function 6 is not to be confused with the expansion rate 6.
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o ~
v

have 1 and 4 derivatives only, i.e. a 27= a 3= b 2 = s =,

The next step is to take the Ricci coefficients Tbac

time given by the 10 function form in (III.15) and the unidirectional
. ,

in space-

Ricci coefficients for the body manifold given by TBaY = anABY + vaéaY

and substitute into the integrability condition (V.2.1) using fhe forms

just given for - P:. We find that (1f T 1is defined on world lines)

/

da . L ._a ' £ = b2 (e

-d—T = a’4 = -a - 2 (f+t).’ a(h f) b (W V) >

b6' sin 6 - b' cos 6 = - % b cos 6 + (%-f)b sin 6 + avb sin 6,
b8 cos 8 + b' sin 8 = (% - £)b cos 6 + %—b sin 8 + avb cos 6,

. . . k £

b8 sin 8 - b cos 6 = (= - p)b sin 6 - = b cos 8,

2% 84 2 2 |

[ e h . f

b6 cos 8 + b sin 8 = fi - p)b cos 9 + E:b sin 6. .

. These are the complete equations we obtain by direct substitution. The
trigonometric forms can be simplified by recombining the equations

above and we end up with the conditions:
7

@=Z (), aef) = bi(w-v),
v-i_ﬁ l_'-ur. |
' =g -f+av, b <fb, (v.2.2) |
sk p - £ '
6=2-p , b = 3 b.
ds _

- = -9 according to our convention,
dt A :

We should remark aggép, that 6 =
Then (V.2.2) is the statement of the integrability

and similarly for
condition (V.2.1) for the unidirectional case.- It is the basic and
fundamental condition that tells us when a unidirectional space—time is

describing the motion of a body manifold. dg should observe that'

« . ' 1 .

w=v=0 and w' =w _ =Pw = aw and v' = av _, but that unless
1 1, )1 » 1

1
w =V, it must be that w _ = v _ = 0, Of course always we have a > 0

1,1
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“

and b > 0, so in particular these are non-zero. . From (V.2.2) we see

that w = v if and only if h = £, so we require h =f if w and v

are to have non-zero derivatiwves.

(V.3) The integrability Conditions.

In this section we wish to examine the conditions imposed on the

184

Unidirectional space-time and .its }0 functions in (III.15) by the
requirement that it represents the motion of a unidireétiqnal body mani-
fold. This means we must impose the integrability conditions (III.15.1)

on the functions a, b, and 6 to show that Pz ~exists. If we write

B = 7 =L B =L
b‘— anb so b 7 and b >
light of (III.16.1) the condition is f(p-g) + r(h-f) = 0. If we apply

and impose (III.15.1) we see that in

thé integ;gbility condition for @ we find that subsfituting for a

from (V.2.2) into it gives us the Jacobi identity (III.16.3). Hence
q - - kR i}

we need only impose 0 = CE - f + av)(h—f)w+-65 - p)(p-g). For the

case of @ we have no condition o “’ in (V.2.2), however we can

take the equation dkth) = bz(w—v) and take dot derivatives and sub-

" stitute and obtain h-f= --% (t-f) (h-f) which is (III.16.7). Thus
) .

we see there 1s no problem with the integrability for a and we end up

with two conditions ‘

f(p-g) + r(h-£) = 0
(v.3.1)

(% - P)(ﬁ‘g) + f% - % + av)(h-%) =0

(V.4) The Volumé Element and Material Contorsion.

. 1 % . o
If we write the equation eijk 5 n 15k from (Iill) in frame
' - 1 r 0 1 % LanBoy _
components we find €abe €. be p,n abe p“n aBYPanPc
1 a_ B 2

- =¢  P""PY. In the unidirectional case this implies p = ab”.
p aBy abc ;
dp

- we-
dt

Clearly, using (V.2.2) we see that 5 = pf, "so recalling 5 = -

tal



L

have (pua) = 0 as expected. In determining this we used the standard

Z -2 ’ya ‘
result 6 = éﬁii_E for a unidirectional space-time (III.15)..
Now we have 0 = u = u - u,T d 'so in frame components,
. anc a,c d ac
a  _pat a S a = p3p®
using the result Pb,c Pan . f?om (V.2) we find that ‘Fb c ?an,c

{

using the mixed frame component system notation. From the unidirectional

(i), k_),a
-+<2 f+av>Abrc+(2 p)Abuc.

A

From this the materfal contorsion is given by Kbac‘= {bac}- Fbac ’wheré B
a|1. 1l a _a a a L ' . : -
{p b =3, T, T .,) and T,°_ is the same as in (III.15). Of

course this is a‘special'type of material connection, namely a 1lift of

.a idéally;define& materiak cohneétion on B which has.zero curvature.

Nevertheless, the unidirectional symmetry of the body is made-manifest

through this connection. .

It is easy to check that K2 = ua + ua- <4 = and

- ’y » _ Kb 4 3b Yy’ _Kb‘c “bic

KAac = ua'c which is in agreement with the expressions in“{(I.22).
] c .

Thus we can orthogonalize the material contorsion to obtain the delta

tensor as

>

- - - -y.rd _y pd
abrc ~ "abac = Tabac T Yab,e T Tdbac ~ Yda'b c

zgabc from (I.24) using frame components.

L
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b

- Plolal 1 a (fre)
mixed tensor components in (V.2) we haveB Fl 152 Fl L= a >
2 _ %3 _b' ¢ 52 3 b f T2 _ 43 '
2177 $TE T2 Ty " T3 =572 T3 =T =8
q 3 _ 2 _s_ kR "
> f + av, 2 4 = F3 4 = 8 = > = P and all others zero. We can
therefore write (with Aab -as in I1I.15),

N :
~a _ [a' r\ a_ t .a r . a f -a
Ty~ (a B é)r e F27 U T2 e T2 %
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Thus eabc = -F(ba)c and so we find the generalized stretch to be

6 =(2-%) rrr -frry ~Ly, 5, £
abe \2 &) Fa'pFe .2 abec 2 Yabte T2 Yab‘c'.

. £  t -
of course eabcu 2 Yab + 7 rarb = eab and the orthogonalized ;tretch
v d : fr a' r
eabc - adec is eabc (2 - a) rarbrc T2 Yabrc’ anq of course
- o - .
'eabc = A(ba)c since Qab# = K(ba)c'
) - Y
Consider the results of (I.26) for a moment. We see that
S _sa _[z_a £, _3x 3 e e -
ee = Qa e = (2 a) Iy =3 pe‘ 5T, > ue, an§ so we can check
. ‘ v . :
immediately that Be = ~(4n p) o where p = abz. Thus the condition

for the density to be constant along directions orthogonal to o is
o' = 0, or a' = -ra, I% the density is to be constant along the past

null cone (observed deﬁsiﬁy) then o' =0=p is required. TIf
N ‘

a' + ra = 0 were imposed, then the conditions (III.15.1). would imply

for this special case that, among other tﬁings, £' + t' + 2r = (f+t)(r+s/2).

As wefl, the generalized rotation w =-A ., -w _u -can be
: abc abce ab ¢

~

determingd (see (I.24)). 0f course "Aabc = A[ab]c‘ is the o;thogonalized‘

| fundamental contorsion aﬁd is given by

(V.S) The Omnidirectional Case.
’ . . ) .
We discuss here the motion of an omnidirectional body in an omni-

directional space-time. Then in the expression for in (III.15)

i
= _ i x
all functions are zero except for f and f and these depend only on

time, i.e. f' =f = 0. TFor an omnidirectional body, w =0, v = con-

sFant and for an omnidirectional motion. § = 0, b=a and a' = b' = 0.

Then from (v.2.2y, & = %“f and f = av so the Jacobi identity
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[3
A

f =:l-ff gives ug the'triyiality f(av-f) = g, Therefore the two con-

2
ditions f = av, v = constant, and a = g f completely solve the prob-
lem for the omnidirectional case. Now the density ig p = ab2 3-,so

oc2 = a3c2 and using pc2 + € = —-Cf -+f ) from (III;lZ) we have that
€ (f -+f ) —‘a3 2 gives us the internal engrgy density. Recall

that'always a >.0. For a dust solution where % = Z%—(&f-3f2-f2) =

we have O-=‘(eua).a = €§ - év so that ¢ = %§ € which can be satisfied

by taking € = g which is true for an appropriate choice of v, 1if

N 4 .
.

£ # 0. wWith nonzero pressure, = é-f(P-te) g%-, so that f <o
means 1ncrea51ng internal energy, and f >.Q the opposite
‘Let us look now at the physicaIIY‘omnidirectional geometrically

unidirectional solutions of (III. 19) and (III 20) If we take the

general unidirectional solution (III 15) and impose only the conditlons

~ -

P e g, f=h, t=g= 0, and the perfect fluid condition r' = O and

zero heat flov condition' f' = O (see (III.18)) we obtain the pressure

and density of (III 20) with the two Jacobi identities r = % rf and

R' - ¢ + q —-+ 2h - hf - 2p' = 0. The basic integrability condition
w}ﬂ\ ; $ = - l-¢ f must be satisfies if ¢ is replaced by’ any of the

~ functions' £, r, R, ¢, h etc. View1ng this as the motion of a uni-

d1rect10nal body manifold we see from (V. 2 2) that w = v, &-- a ; .
and 8', é, 6 are as given in (V.2. 2) and are integrable‘to 8 and

b. Thus we have a fair degree of generality for 8 which is in essence
" the rotational position of the space frame at time T relative to a’
fixed reference Placement of X B “determined by the frame field |
spanning BX’ the basis for our frame Component system on U < B." This

is true even though the material ig irrotational {i.e. Wy = 0. To

4

measures
ab

rotational deviation from the Fermi-transported frame along P-l(X),

understand this difference we need to realize that . g
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/ .a a a
and the frame r , s , t ' is not necessarily Fermi transported. 'For

s=t=0, g=p, the condition that ra, sa, ta be flow Fermi trans-

. .

ported along world lines is b =p or 8 = 0.

2
We have seen that P = i%-(df-—3f2-Fr2)"and pc2.+ € = f% (fz-rz)

~ have zero derivatives along 2. If o = ab2 is also to satisfy o' =0
then from (V.4), a' + ra = 0 and the integrability condition 2r = fr
(for s =t = 0)) 1is already satisfied, so a. is integrable. In

particular then, the mixed projection tensor is not omnidirectional,

a . c 3r N Y P
i = — - = . Of
but a stretchlng ogcurs along r and eabcr =5 rarb 5 Yab
course, since o' = 0, this stretching is isochoric, i.e. Yabeabc = 0.

(V.6) Solution for Extended Mass Sheet of Comstant Thickness.
For this mass slab we shall impose the condition of zero rotation
. or vorticity, i.e. ,g'= P - on the unidirectional weakly flow-static -
solutions of (III.22). Thus instead of the dust solutions which are
supported by rotation but have zero acceleration, we have acceleration
and of course pressure, and gravity is felt in the local rest frames.
N : = ikt >

Putting g = p we obtain

1 ' ' r2 s rs

9279 T 7% ( - +T+”2“+T> ’ |

: ) £
o, == El; <£;+rs) ; pc2 + e = '2-—1— (—2r'+2—2-) » A =0 '

: 1 r2 S
Putting P = -0y = —qz = —03 we have P = ™ (§7+-r% , r'+s' = 5—(s—r)
"2 1 32

and pc” + € = e (Zr' ——2—-> /

. , - 2
As an example, we try the equation of state P = co(pc +¢) where

S i$ a function satisfying 0 < ed < 1. Although we have oversimpli-

fied and ignored thermodynamic effects, this equétion covers a surprizingly

wide range of interesting physical applications.as we shall see. This

N
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rs

gives the added equation r' = = éL) r2 + 5 in addition to

3+
¢
0/, 0
r' +s' = %-(s-r). The Jacobi identities in (III1.22) automatically

hold if we put R = 2p. It is worthy of note that there are vacuum

solutions if r =0, s' = 32/2 or 8 = ~- % and r' = %—rz.
2 . .
_r 1 ,. 2 _ 8
If we put § = - t s so that P = o= § and opc” + € = ey

then we obtain the two equations range to avoid frame

(in x>0
component breakdown)

9o et 3

where - § represents the mass-energy density and pressure, and s reprewy

1

! oo

' (V.6.
§' =3 (V.6.1)

1 . . . )
gsents the acceleration (ua = - % r?). If only r and s are nonzero
L i 1 .
in the expression for Tj K 'in (I;I.lS), then Tj " 0eso dra b 0
meaning the length coordinate x exists for our slab locally and not '
just along fntegral curves of 2.
A
. @ . . .
® rY £ - — ] 0'
®a - ¢ e . ) '
T . -" hd k/é
- P . . - ., ." R (4
/' . = .’u ' Q‘
N
- " 2> X
L4

=

Considering x = 0 as the centre of the slab, the §' equation

. .
tells us that s < 0 for x> 0 and Eonversely, s >0 for x <0

§

- %—ra this means that for x > 0 the acceleration is directed

since =0 Since

achieves a maximum at x on ﬁhysical gtounds.

a

.
u

away from the centre of the slab in the rest frame: This is reasonable,

The odd functionm r has finite discontinuity at x

/s

VO.. -

s
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[ 4
since on the earth's surface we seem to be accelerating away from the
centre of the earth at a rate of 9.8 meters per second squared. Also
. . . : . a P
for x < 0, the acceleration is directed in the -r direction, again

away from the centre. By symmetry f(x) = £(-x) and - s(x) = -s(-x).

This means that for the two possible exterior vacuum solutions (one

2 2
, s . 3 2 s
twith s' = 5 another with s' = -5 s ) we must choose s' = =
. . -2 ,
with solution s = e so that s has the correct sign for large
. 1
4),gusixive or negative values of x. By symmetry the constant ¢y must

be zero: This means also that in the s' equation ‘in (V.6.1) we are

required to take the minus sign (x > 0). Furthermore we find the

. . . 2
exterior vacuum solution with only 's nonzero, and s' = s /2 to have

. . 1 A
the acceleration dependence s * for an extended slab as contrasted to the

.Newtonian constant acceleration. If we were going to match the exterior
Schwarzschild solution for a spherical star to the interior case we
would need'po use bidirectional Ricci coefficients (IiI.Zé.lj since a
sphefically symmetric solutfon is physically unidirectional bﬁt

geometrically bidirectional.

s .

We can take the exterior vacuum solution for the_spheriéal case

_ which is static, namely the Schwarzschild solution
2 om\ . 2 am\™L 2 2,02 2.2
ds = - l——r— dt” + -7 dr° + r7(d8” +sin"6d¢ )

and express.it in a natural metric frame component system related to

this coordinate system by rescaling the coordinates since the metric
s . - i i .
is diagonal. The transformation coefficients V(a) = Gya a are given by

A w2 L2 D S S
() r (2) r’ (3) rsin® > (4) 2 ’
' )h___ﬂ
. : . & r

’

and all others are zero. The Ricci coefficients are given'by the

i .
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5

il

spherically symmetric form (111.26.1) with

. ) |

5= -g = 2 2™ - . 2cos8 = p o m__ o

r r - r sin 6 :
; 2 2m s
r [1-—!
T
Since dra b 0, 1{i.e. Talb = 0, there is a local metric radial
coordinate x . with %Fx— = ’1 —%ﬂl , so that x=mc-osh--l (%— ) + Vrz - Zmr
plus a constant_of'integration which we can ignore. Furthermore
1 . ' o1 :

e’b == sb in frame components, and ¢,b = Teino tb, the comma

being frame component differentiation.

(V.7) Solution for Spherical Stags. —~. T

/
/

: : e .
The techniques used for the extendéd mass slab in the last section,
. - . -//‘ ° m
with boundary conditions matching to the exterior vacuum solution can

.be applied also to the physically interes;ing spherically symmetric
case. It is easy to see that if the Schwarzschild values for A, B,
h, k given in (V.6) are substiLuted in,(III.26.l) then %1} the equations
(111.76.2) through (iII.26.11) are satisfied with zero mass density
and éressuré.

&

/ Using (III1.26.6) and (I11.26.7) in (III.26.5) we have

2 2
2 o1 38" kT _gk
pe” + € = - o~ (le 3gl+‘ 5 + 5 " Ak} , and of course
P ( k —5-—-§-+ > - If we impose the equation of state
P = c (pc2+c), co = co(x), 0.< o <1 then using (1I1I1.26.9), i.e. -
(5 = —g) we have, C/’,\,

. _1 2.1 2 1 _ ’
(1+3c0)gl—(1+c0)hl 7 (1+3c0)g +3 (1+c0)f; 5 (1- co)gk, (v.7.1)
and g, kR, 4 are functions only of the radial coordinate x, while h
. /
has also a nonzero 2-derivative.

’

Outside of the star we have functions 8 and r defined with
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.depend on derivatives of C..

) 4 ' : 235

) 2 ‘ 1
h = - c cot 8 and O’b = - 8

S0 as to maintain these equations, r of course being a function of «x-

b We propo to extend them to the interior

only. Integrability for 6 implies gﬁ = -8 44 (I111.26.10) and

2
. 2 \
d@n ) g _hf 2
(II1.26.11) hold. Of course TR = S and h2 ) rz since
h2 = J%-cscge. Substltuting in (III.26. 7) and combining with (v.7. 1) we
r 2 . ¢
kR gg_ ‘
have (from gl-kl r2 f— 7+ ) that o
+ o
i (l+3c0) 82,- 1 3c0 _ EE._ (l+c0)‘gk
1 4;0 e r2 >.2 2c01f :
. v.7.2) .
LU o ltey e r - _ 8T
817 T4 8 - 2 2. Ty 2
0 ‘CO r 0

where these three functions r, g, k depend"ohly on the metric radial ’

coordinate x and the subscript 1 indicates derivative with respect to

x. - C ‘.' IR
2 .
Putti cho-g b E LB g -4
Putting 4§ kl g1 5 5 > So Pﬂ 5o and
2 ' 2
pc+e = we see that § = &- _ - gk. Observe that
2xc : 2 2
0 r
l+3c0 kZ .
—525——-6 =-kl + 5 - gk and a%éov
' (l+c0) ’ .
1 = —Tké. ' ‘ (V.7.3)

This relation (3) is very important as it relates the change in mass

density and pressure along the metric radial coordinate to the gravitational
acceleration. Since u =<r here and u = -2
a 2 "a a 2

case, the relation (3) above is exactly the same as its sister equation in

ra for the unldirectlonal.

(V.6.1) .4 It is also worth noting that nowhere in thls derivation have we"

explicitly needed tO)have Co @s a constant, and these equations do not
N E

0

———"
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—> X
;
|
‘ e
We rewrite the differential equations in the form
- (14c ) 1+ 3c 2 .
0 : 0 k ’
§, = - ——— kf, k= —S5—— f - 5 + gk,
1 2c0 1 2cO 2
l+c0 - 53 gk ' .
gl”= o, g+_2 + 5 ) , S (VLT.8)

Schwarzschild exterior, and to reduce to Newtonian mechdnics with the

correct Kk = 81rG/c4 we must have g behave like - %_ neaj x = 0,
B . x(l+3c0)ﬁ(x) ‘
so Rk behaves like near x
: N 6c0 .

g(0) = 0 which is régular'at_ x = 0 1is not physically acceptable. Of

= 07 The solutfon with |

_course § 1is an even function {(-x) 7 §(x) and g and k arg odd.

“

We solve only in the region x > O and the other half follows by symmetry,

the frame component system breaking down at x = 0. In order to do

numerical integration we must introduce a new function’ w = kg which is

)

i \ 1+3C0 N 4
regular at x =\p <with w(0) = - % ( z ) £(0). :We can the eliminate
) 0

g in favour of tw to obtain the set of equations

“
-]
(1+c,) 1+ 3c 2
0 0 k
§o= - = hf, k= f -t
1 Zco 1 _2c0 2
' 1+ 3¢ S : (V.7.5)
—3-w+(———0-) 6 ® o
2 2¢c 1+c
w, =W 0 + 0} § . :
1 k ' 2c0 ’
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. : 1 1+ 3c0
where §(0) = 60'> 0, k() =0, w() = - T §(0) are the
0

initial cohditions. The quantity in square brackets is taken to be

zero at x = 0 using 1'Hdpital's rule.

The relation (V.7.3) 1s called the hydrostatic pressure equation

which reduces, for < << 1 to the classical form %% = pa where a 1is

Ut

acceleration. This equacion is used to determine atmospheric pressure

at various altitudes.

"

(V.8) Pressure in an Omnidirectional Universe

' 2
It is easy to see that the introduction. of pressure ¥P = co(oc +e)
- N

intoqxe omni&irec nal cosmology (III.12) with f = 0 1increases the

k4

rate pf expansion .Yhe universe as oné might expect. However, we can

4

show, as is well from the‘ k = +1 Robertson-Walker metric%that

pressure cannot halt a gravitational collapée. We might have expected
o . : . ' ~
'§f€his since for an omnidirectional case, the motion is geodesic meaning

. there is no acceleration.

For f = 0, using the results in (III.12) we see that for’

3¢, + 1. ’
- 2 ;-0 2,3 2 f-Ll s
P = cogpc +e¢) that f = A \f +134 (§p+l)f and f anf give
&% 3 N 22 2 ' 2 3 :
us” § = 3 (cyt1)Ef where f§ = £ + £, i.e. pc'te = 5- . This holds

-whéther or not % is constant. Hoqgvér,to integrate further, it is

“

convenient to take ¢y = %.’ o the value fér a universe filled only with'
isotropic radiation (with a “rest'" frame in which the isotropy is

observed at each point). This %ives Taafs 0, what we .expect-for

radiation, namely a trace-free emergy tensor. Then § = clf4 = f2 + fz
: . dr _ _ __df ‘
. where .©1 is a constant, so — = F —————— which can be integrated
” 2 22/ 22 : ¢
f Ve -1 : .
_ 1 .
' T - 22 : . 22 1
to give i A 1/£° . The lowest density is when £ = e
. . 5 . 1
l .

so § = = occurs at T =0 with expansion for -chl <1 <0 aﬁd‘
1 _

-
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energy density €

©

contraction for

0 <1< 2%c1 to infinite density at Td=

: »
chl

In this section we examine the unidirectiogal solutions in the case -

of weakIy flow static and directionaIly in@ariang

grincipal axes I, S and t.

. : _t
ThUS TJ. k

(V.9) No Unidirectional Steady-State COSmoI;;;As

.

i
Tj "

are constants with all

¢

derlvatives zero, and the in egrability condltions (III 15.1) are

trlvially‘satisfied. The Jacobi
following: ‘ T BN
r(£+t) = fs,. (£+t) (g-p) = 2r(h-£),

here is too great (and of the wrong sign for a fluid) to be consistent .-

with observ&tion.’ This high "pressdte"

so that as

QC,

remalns constant, maintaining ;?f steady state cquition.v
: , S . J . N _

undet ourVSteady state hypothesis, both P =

pcz+e
«

As an approximate estimate, if we say@ghe
stars that are’on the average 90% hggflgen and
like particles, that all radiation is obtained

which is 1% mass efficient and-all pressure is

2f(g-p)

decreases with expansion,

-OI’

are constants with no time or space derlvatives

un

from H to

de tities in (III.16) give us the

= s(h—%),

. . ~ L A L‘ - ;2 .
2r(g—p.)" = stg-p), f(h-f) = t(h-f), (f - %)(f-i—t) = s( - -2—) .
'If_the'universe is to be eXpanding (f >®) with zero shear - (t=0)
";:as is,ObserQeg,,then wetSee that h=f and g = p which means we are
reduced to the'case of'(III.18)._‘Putting r(f+t) = fsv into the
"expressions for OI, pc2+€,f and A we'find X =0 (since ¢t= O) so
T R -2 3,2 2 - '
r = s »and’ OI = pe +e = Z;-(f‘—s ) for I =1,2,3. The pressure

&

[ .
is needed so that as the uni- -

verse expands enough work will be done (of PdV type) to add enough

2
pe +e
of course
I =

1,2,3 and

iverse 1is filled w1th

107% heliym that behave

He

radiation pressure.

along all three

238
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n
: 1 S . 1,32
(= S-radlatlon energy density) then we would expect P = 3 x 10 ~(pc +e)
which is close to a dust solution, for the universe as a whole. For an
isothpically expanding universe this rules out the steady state condition

we have been cogsidering. As the universe ages, we can show that ultimately
J . © \

-~

. P : - . AR |
the value of ¢y = decreases, as more mass 1S converted to radlatlonz
’ pcte :

and the entropy increases. <. -

°

(V.10) The Kerr Metric in Frame Components - Interior Solutlons

N

We write the Kerr Metric in Schwarzschild llke<coo;d1nates as

; 2 >2
ds® = (f2+a2¢osze) dr + deé]‘ 4mar sin 9. dedt
2 2 2. 2
r -2mr+a : r“+a“cos 6

Putting the exact differentials in the form dl r, d = do,

&ﬁ = d¢://?d4 = dt and the inexact differentials for a metric frame
‘co&ponent system as 81, 82,783, 34 then we have ;he transformation

5 .

i i ; i b i )
relation- d= = V(b)a where vﬂb) GYa b }s (vector) transformation
from frame components to homogeneous coordlnates. ‘Using ds2 = 8181 +

8232,&+33a3 - a4§§ and solving for the th) 'we find Fhat,the'fbllowing

K ;ﬁ - 2oomeva  _ . 2. (r2+azcosze)—% -
(1) 242200520 4 1 (2) : 2
- ‘ —'I_ v
v4 C Q _ 2mr ) ’ -t
SO ' r2+azcosze 4 ‘ .
z N}
1 r2+égcosze—2mr -

3
v,y = .
(3 sin © (r2+a2c0326)(r2—2mr+a2)

2mar. sin ©

4
v = ;
(3) [ ‘
(r2+a2c0526 2mr)(r +a2cosze)(r2—2mr+az)
) ™

L

&



where all others are zero. 1f we choose dl, d2 parallel'to, al and

32 respécfivély, and insist that. = (0 in order to get TAAB = 0"

v3
(4)

so that eAB = TA(AB) =0 (i.e. rlg?d motion,. or flow statio§ary con-

. dition) then the above values for vtb) are uniquely determined;

As in the Schwarzschild case (which this reduces to for a.= 0)
we can get the Ricci coefficients by using the relation
vi > - vi v =T d vi ’ where the comma is frame com onent differen-
®),c ()b b (@ P
o i i 3 s s .
tiation. Of course‘ v(bQ¢S/7 v(b)ﬁjv(c) wherg 4 j is ordinmary partial

derivative with respé@ﬁ to T, 82‘¢; t - according as whethér\.j = lz 2,

3 or 4. From these results we obtain the Ricci coefficients as

T 1 _ azcose sin 6 _E 7 2 _ rJrz-Zmr+a2 _5
12 (r2+a2cbsze)3/2 2 - l ? (r2+a2cosze) 3/2 2
T 30 _ r(r2+a2cosze 2mr) - ma251n26(r —azcosze) _ B
= - ’
13 (r2+azcosze)3/2( Zmr) (r2+a2cosze 2mr) 2
O T 3 _ cot © + 2mrazsin 6 cos 6 _h
23 5 5 o 2 3/2 2 2 ST
] r2+a2c0526 (r +a cos 6) M (r +a cos 8-2mr)
T 4 _ 2ma sin e(rz—azcosze) _ P
© = Py -
13 (r +a cosze)3/2 +a?c0526—2mr) 2
. 4 - * 4mar cos § Vr2+é2—2mr _ 4
‘ 32 (r2+a2cos 6)3/2(r +a2c0529 2mr) 2
L 4 - - .
T 4 m(rz;azcdsze) r2—2mr+a2 - k
o 14 (r 2+a2c0326)3/2( +a200326 2mr) 2
R gg‘ Sy, "f‘:" & “7; . .
PEEI H",’a f’”."’ - i . ”
Vg T 4 _ 2mra2 sin 8 cos 6 __x
" B 4 2 (r +azcos 6) /2 +a cosze 2mr) 2
and all others are zero except for natural antisymmetry.
- _ o4 11 4. "2 _ Lo
Since ub Tb 4 apd, vt =5 3 2’ ¢ = Tl 3 we see that for

g =0 and 7/2 the accelerationﬁgggfadially directed, and for 6 =0

240



the vorticity i6 radial (i.é._along. r) and for 6 = %- tﬂeuvorticitY'is“

along gs. This is exactly what we would expect for a rotating star.

sl

We can now write out the'generai éxpreséion for the Ricci coefficients °.

in the rotating case (here a is an index, not angular momeritum) .as

vy
.

+ht?t s . +ku r

‘a _ ‘a; a
Ty ¢ “8F trpTyy [bSc] (b el 725 Tbde)
a \(/_ a a
§ [btc]-+qu t[bsc]-ﬁdu u[bsc] (Y.lO.l)

e 12 252
: 5.

functions. These Ricel coefficients are strongly flow-static and &eakly
\ ' . :

directionally invariant (along ;a). They include the Kerr metric as a

vacuum solution — the possible exterior solution'of a fbtating star

which we can Wﬁtch't¢ an interidr solution for say a rotatf 7"gpfect
fluid in adapted frame combonents{' Rotating galaxies will be considered
later.

s

(V.11) Solution for“Rotating’Sta%s (Rigid Motion)

We begin with the basic calculations for the Ricci coefficients
(V.lO.l) we obtained in the last section. The integrability conditions

for the functions here are o

R S R St
Bl27 821 T2 81ty B My thy Tyh o, ,_
- - ' : T , (V.11.1)
: - £ 4 - = £ 3
Rlavhyy gk tT ks S8y =T 458, | \

N

and similarly for f, p,-q,'h,w'while all other commutators gﬁk?famé

‘component derivatives are zero.

a a e

The Jacobi identity T[b c.d] Te [dib ¢l 0 gives us Fhe con

ditions

=h.r, + h,s and'similariy for the other

241
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- =‘_g. M..
I T e | |
ke b ge pr pf s L |
S R T N M B M el el | (V.11.2)
- kE L ns
RO T N

Working out the Ricci tensor we find there are off diagonal terms
?(jsk)v and u(jtk) ;n Rjk’ ang if we are iq an adapted frame com-
" ponent system with no heatﬁflow{aiong the t direction (which is

physically very reaéonable)fthen

[

Ch-h - ’ Pg , sh  fh s fg ¥
gz+h1 fzz ’Ll gh + k1 + +2‘+

) - / o . (V.11.3)
“p. = hp - ps , q9f . ~
q2 pl_lzp qn+23;2.} .

Writing]qut the principal stresses and mass and enetgy'dénsity we have

92 % - i(k;'gﬁ 22+%E+98£'%if%f"%k’-'hzi’%) ,
Oy = - ?l;(»sl+kl+n2-f2+%%+%:i-§-+%2+f§+§8£+%-f—;) ,
pc‘2+e = - z—l'zél-g -f -h2+iz+6—22—+%%+f72—-3—8&2—ig3+f2—h-%&)

“To solve for a rigidly rotating fluid we impose also the conditions

9y =0, =05=-P | . ' (v.11.4)

2 2 2 3 2 o
- ‘B LRT " p” A" b7 nf gs sk fr
My by ckytey =t S 2 "2 " (V.11.5)
for ¢, =0, and for o, = 0, we have =
2 2 2 2 :
- =8 & f A p” hf gk hn sk
8+, f2+gl -5 Tt A A (V.11.6)
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Now from (V.ll.Z)'We see that there exist functions & .and v

with g = 2¢l, h ;h2¢2, kR = 2?1, n = 2W2, ‘since these équations give

the integrability conditions (V.11.1) for® ¢ and ¥. We call ¢ the

logarithmic potential and Y the gravitational potential. 1In the case

of the exterior Kerr solﬁtion we find from the expressions for Tjik in

*

(v.10) that (for b -an arbitrary constant),

. r +a cos 8 ’

: = 2,2 2., 2

o = n(bV%3))'= ~n sin, 8 + %12n ér ;a cgs e—gmr;b ‘

" (r.+a cos 8)(r"+a —Zmr‘)

Combining (V.11.2) with (V.11.3)'we obtain :

_p - 8h kU pg  sh _sn
ST T NS N A S
) ' - CT (V.I1.T)
_n =B Rr  pg fR_ fg
- h, -4, = +»2 + 4 +. 2 =

In order to differentiate these expressions, substitute and simplify
it is necessary to specify the ftame'cémponent system in a unique way,

free of ambiguity. -

(V.12) Change of Frame Components for the Kerr Metric
By examining the equations in the last sectioé (V.il) forva'

rigidly‘rotating fluid,jge can see there would be a great advantaéé\ih-
T .

solving them to have % = 0. We achieve this by transfoiming the frame

: compbgenﬁvsyétem v(£,§,£,g) to the new'orthbnormal f;amé‘ (E',g',gw,g')
Qhere ‘ R , )
r'=cosyr+ sin.Y s, :5? =t,
s' = -sin Y [ +fcos Y;§" u' - u,’ and y 1is a function of r. aﬁd 8.

—

"~ Since g' = u; the new acceleration is” g?-= 2‘ because the metric is =

Y
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unchanged, and we can choose the rotation function Yy so as to make
. the acceleration parallel to r'. This will also have the advantage

of giving the hydrqstatic préssure‘equation (which ié a conseduenée

b
)

The transformation functions v%b) from the’coordinates in (V.10) to

only of T2 = 0 for a perfect fluid) in the simple form (V.7.3). "

" this new frame component system are the same as those in (V.10) except

for the following ones

2 cos Y
Y2y T =2 2 2~
r2+32c0526
v sin v

(v - 7 2 2
: r2+a2c0326

N -

?.ré2 sin 8 cos 6

: . In particular the functions
(rz-azcosze) \!rz-Zmr+az , ) ‘

¥ and ¢ defined in the last section are unchanged in their definition

~where tan Y = ~

/

and formulas. The Ricci“coefficiehts given in (V.10) are now all changed

n;(éhd much more complicated!) except for the fact that TA&Z = 0. The

commé‘diff;>hntiat10n is also-differént/how.

_(V.13) Solution for the Interior by Substitution
Now, with the framé.COmponeht system in (V.12) we havé eliminated

the uncertainty of the choice of systems and are ready to solve. For

. =0 1in the reéults of (V.11) we obtain immediately
y -8, pq, fR_ fg . RE
R SR S SR S
' (v.13.1)

. = RE _gh  pg sh -
 §2 = 21+- ) + 4 + 7 .

If we work out hle and substitute in from (V.ll.l).through.(V.ll.6)‘

. expressing everything in terms of l-derivatives only we finally obtain



A 2 2
-8 ,3p° sk _fn) 4..B__h s sk gk
@@1+8 278 T g (e ip- kg .

and putting' P = f&-; -01 we see the right hand side is simply —6
and the k on the left hand side tells ug this is simply the hydro-
static pressure equation, since &k is the acceleration.

If we take the equatipn g, - kz
then use (V. 11 1) through (V.11.6) to reduce it doyn to an expression

1nvolving 2- derivatives only we find that

2 2 2 2y
= - _&_L P~ _g” k_k_
0 .(gl I T 5

b
/

and comparing with the expression for 02 we see that { 9 = 0. This

is a most remarkable result. It states that the pressure is a function

only of the gravitational potential since it is a constant on the

"

sun{aces of constant'-W.

. ) : . 2 ‘
Next we considgr the equation of state P = > %o (pc +¢) for
: e ,". . .
0 <vc0.<;lf-where €y 1s a function of tempe{ature or .other thermo-

dynamie variables. The hydrostatic pressure equation is given by (v.7. 3)

and this 1mplies that

1+c¢ 8 " 277
2 2 b (V.13.2)
=-h -L B b sg sk gk h
R Sl s S

hydrostatic Pressure equation can be derived in any space-time by
. e ab ab
examining uaT b = 0 where T ‘ﬁ(pc +e)u u - Py is the energy
. ) b
tensor for a perfect fluid, whether or not Einstein s equations are

assumed Of course we could also write out P = co(pc2+e) directly

using the results of (V.11). This givesi

L
i
!
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; (g+A)-FEQ and take l—derivatives,
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‘2 2 .2
+L\h ,,s_ TS i A1\h™
gl+f'*( CJ 772 %2 é+c)2
1\ 2 [ 1\ o2 } 1\ &g LAk k‘ : :
_ _EVE L[5+~ T 1+~ —8-+ -Be (v.13.3)
CO 8 CO 8 c0 2 2 2c 2¢c

0. "0

Combining this with (V.11.6) to eliminate 41-f2 we obtain (V.13.2)

as a check of accuracy. This incidentaily could be used directly to

ob;éin ﬁhe hydrostatic pressure equation simply from the results in

(V.11) since we know that Einstein's equations imply. Tab.b = 0.

RN : . ,
The integrability conditions for g-k and h have already been

L .

iméoéed, so the next logical step is'to;examine the integrability
condition for k. Using 02 = -4/2¢ and (V.13.2) we see thatE“
2 2 - 2 :
by 3.8 _4C _pT sk gk k.
Ry =5 6+ 2e, T4 T & T2 MR (v.13.4)

and of course also

2¢

2 2 2 '
1,4 qb.gd 3t sk, mm N
25+ - PR 5 3 5 (v.13.5)

g =

These equations should be compared to the Schwarzschild ones in (V.7.4)

remqmbering that theré, £f=p=q = 0 and g = -3.

If we write ¢

02 = (CO),Z . the integrability cdndition forv‘h
. . ..
gives us the equation :
b(t +s) ot kgh ka5 e’
(B H8,) =+ ¥y TPy Ty PRET T Ty
- ( )fé 02 £§& , , - ©(V.13.6)
0 c ‘ o

0
’ Y

using (V.13.1), (V.13.4) and (V.11.1) through (V.11.3). Also, from

(v.13.5) and (V.11.6) we obpain

s £ =1 6__6_+9_+P__é___’f7_5£, (v.13.7)

'Nptice that the pair of equations (6) and (7) have a similar character
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to the equatlons in (V.11.2) and (V.11.3) for ql-+p2 and qz-pl.
Imposing the integrability conditions for‘ @, P, & and f on these

four equations, is the final stage of solving the problem. Just for

completeness, we record the remainder of the derivatives here:

2 2 .2 - :
‘h, = -4 -4 4P b sz sk gk /
T T T Tt S AR [
| | | | [
62 =.0’ - o y (V.13.8) ‘
(l+c-3
- _ __ 0
61 T 2c0 hﬁ

Now imposing the iangBability condition for { using (8) we see that

42 = 0 so not only P but also oc2~ke is a function only of V¥ the,

o AL . . -
gravitational potential. Hence the ¢ term can be dropped in

02
b_ 1+C0 e
(V.13.6) above. Since Wl =5 WZ =,Q, (2n 6)1 = ‘(fzaﬁf) Yl or
% . - / o :
_Qi_ggﬁl = _(L+E%) - Remember Y is negative and increases to zero as
o 0 '
we head from the ﬁentre of our star out to infinity: Since CO is 0

also a function of ¥, -if it is known, we can integrate out from the

interior of the star to obtain ¢ for. each value of V.

(V.14) Structure Identity for the Geometry'Structure Scalars

N T

If we "have a function ¢ satisfying the integrability conditions

c ) . . | A : Lo
¢,ab._¢,ba = Ta b¢,c’ then we can 41fferent1ate,to get ¢,ab£ ¢qba2 =
c c - " . .
'Ta b,Q¢,c + Ta b¢,c£ and using the integrability chdltlon
' c .
¢,2ab._¢,lba _'Ta b¢,£c for ¢’£ we obtain
. ' c c ., e’
- - "+ = +
¢,ab£ ¢,bal ¢,£ab ¢,£ba (Ta b, 2 Te lT b)¢,c .
“ = -5 < 4 (V.14.1)
a bt ,c . U

where Sacbg are the geometry structure scalars of (III.7). We call

(V.14.1) the structure.identity for Sacﬁz' It holds for any function ¢.
, _ o \ '
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Since '$ is arbitrary, antisymmetrizing in a, b, ¢ ‘éivescus the
 Jacobi identity.

This identity isvihtsresting in relation to the problem of rigid
rotatfoﬁ considered in (V.10) through (V.13?. Taking ¢ = ¥, the
gravitational potential, gives us the integrability cotdition for k,
i.e. (V.13.§), and ¢ - ¢ the logarithmic potential, gives us the

integrability conditions for g and h we had earlier.

(9
.

(V.15) The Vorticity Potential
= T R

If ¥ 1is the gravitational potentfial V¥, = = WZ

1 2
j

the logarithmic potential, ¢l.= %, ¢2 =-% » and if we put a =
2y

and B = e we see that using (V.llif) and (V.11.3) to obtain

=0 and ¢ is
oy
e

“(Q1+p2)FF8(Q2'p1) it folloys that

(ap+8Q) . - (Bp-uq), = = (ap+Bq) + 2 (8p-aq).
2 173 2 (PP

This statement is éimply an integrability condition, so there exists a

function A called the vorticity potential with Al = op+ 8¢ and

A2 = Bp rqu: . (The componedts of the vorticity are vl = %», v2 = % ,
v34= 0.) The functions a and 5! satisfy the conditions
- o[B8+ - b
%1 a(z: 2) 27 %70
. (v.15.1)
?l = Bk s ‘ 32 =0 7 :
N . /‘/j »
Furthermore we can show that ‘ /
al, + BA BA, - al .
1 2 1 2 = :
p = 5 3 > =75 > (v.15.2)
a“+ g~ a"+ 8
2. 2 Ai*'Ag
p +q = 5 "3 > so p and @ are .expressed in terms of functions
a +8

and derivatives of functions whose integrability cbndi%ions are known

to be satisfied.
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(V.16) Classification of.Ricci Coefficients )
' Althougﬁ the solution is hot ;omplete (integrability conditions
for 4 and f ﬁave not been imposed on (V.13.6). and (v.13.7)) we
have endughﬂépfofhation already to detail the interior structure of a v
riéidly rotating perfect fluid to quite an extent. The Riceci coefficients
(V.lO.l).with §d= 0 and the othgr 7 fuﬁctions having 1 and;élderivatives
only, describe‘thé adapted frame component systems in a class of space-
times that we say are of Kerr type for rigid motion which are radially

ada?%ed. The general Kerr type;Bicci coefficients are given by (all

functions have 1 and 2-derivatives only)

a a a L 4a a
= -+ +% +4
Tb c gt t[brc] ht t[bsC]. u u[brc] s F[bsc]
_a a a a
+ d + t + -ty
fr r[bsC] vpunr[b ¢l qu t[bscj s u[bsc]
R a : - ey
+ : + . ‘ .
< vt u[brC] wt u[bsC] . N16 1)
L S 4 R n¥e
For these, we have the acceleration i u_ =T == +58_ ¥
. . : a a4 2 a 2 a

the vorticity is v? = % 2+ %—sa and the deformation rate is

' v w L ‘
eAB = TA(AB) =-73 t(ArB) -3 t(ASB)'- These Ricci rotation coefficients
are weakly flow-static, directionally invariant, and represent an
isochoric §hearing.‘ They are not flow-stationary unless VvV =W * 0 in

. _ , :
which case the motion is (strongly) flpw—static and is therefore'rigid.
If n =0 we say they (the Ricci coefficients) are radially adapted
to the acceleration. ‘The Tbac in (V.16.1) are the most general‘
Ricci coefficients one could obtain from the Kerr metric in (V.10)
using a flow vecwor derived from the ¢ % and ¢ % directions, so as
N b b
to give the weak flow-static, directionally invariant condition. It
should be remarked that the ‘exterior may not be specifically the Kerr

R4
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1 ,
solution. Herlt claims a rigidly rotating perfect fluid cannot have
2 - , .
a Kerr exterior, but' Roos does not agree.

For a viscous fluid undergoing shearin%!_we could solve using

w0
%

(V.16.1) with 4 = 0 (radially adapted) and introduce a difference in

the principle stresses 02, 03 proportional to the shearing terms

Ol,

v and ‘Q and a coefficie%t,of viscosity. For rotating galdxies we
could take (V.16.1) and put 4 = kh = 0 (zero acceleration), P = 0,
(dust), and ¢ = 0. Thus we orient the frame component system along

the vorticity, so v? = g/éa and the r° direction is truly the

radial direction in a cylindrical sense. The existence of such§§olut10n$Q 

is not known now, or whether the Introduction of pressure is necessary.

A

The Kerr type Ricci coefficients cover all stationary axisymmetric
2

‘metrics of the form . dez-Adrz-de92-+Cdrd6-+Dd¢ + Edt -+Fd¢dt where

\\7i; B, C, D, E, F are functions of r and 8. The only transformation
<

efficients which can be non-zero are ﬁ%l)f V%Z)’ &%é),'vil), v%3),
b4 - L .

4 3
Vs Yy Y3y

Let us consider a3 few extra results here

3
‘ S TS Q& e T
formula for the exterﬁ or derivative in (III 6) Pkus the intégi biIity T eE

conditions and Jacobi identity thatﬁihetfollow1ng5isﬁ¢rue.

s

-

Derivative Contraction Thedrem: The 2- fbrm whose vai&e ane f?ame apm-'%
:@a DS
i A

L. i .
t . .e. d
ponents Ls TJ i S closed, t.e TJ

of

' o ’ 4?’. ‘:: : ’ '
whose exterior derivative is this 2-form in-a yery simple way, since -

l “ “ j‘ - .,E. ' N -
Herlt, E., Ann. der Physik 24, 177-187: %1970): . .

r2 N
Roos, W., G.R.G. 7, 431-444 (1976).
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We should also remark that

f.+4 )
12y Y I
( 2 ) (raSb_surb) - 4(2 ra 2 S;

the vorticity potential A for the Kerr metric is explicitly &nown to be

b

I

’ 2 . B .
n 4mra sin"® _4ma cos 8 . (V.16.1)

b(r2+azc0328—2mr) r2+a2c0526 , . -

Qhere b is an arbitrary constant Qith'dimensibns of length that is
the same b as found in the expression for ‘the logarithmic potential

 “$n (V.11). This is for the frame component system in (V.10) where
- ! < ) : 40
n =z 0, for which A can be defined analogously to (V.15). "

© o

(V;17)_ Elastic Unidirectional Solids — Exact Omnidirectional Solutions

In this section we will examine specific motion types that are

permissible for the special consfitutive equation of linear elasticity,

“namely Tab = Eade(YCd~yéd). ‘We assume that the material derivatiyes
° " abced o

Y “and E are zéro, and the space-time and body manifdids
cdae T Ae - :

~

are unidirectional (V.2). Furthermore, we will taRe. h=f and g =p

“in (IT1.15) in order to satigfy (V.G.l)%and as a consequence, we can use

"')._f“ A
the results of (III.18). " Since ‘Eade and Y

.

.q are materially constant,

~

d ‘ B, ”
an YdB on

which have zero material derivative with. respect to the material

they project to proper time independent tensors EJOLBY(S

s a a .
connectlonﬁ”f‘B . on B. But the components of T are zero in frame

By
aBy$ ~

components on B (V.1), so E and Yo are constants, independent

of X ¢ B, when evaluated in the unidirectional frame component éystem.
abed _ _cdab'_ _bacd _ _abdc |

We assume the s&mmetriesi E = E = E = E are valid, so

that we may write as dgg/;;lution, not the most general,

870 o XB‘( xS+ \)(Y vB42928) (Y ¥y 042729

+ o[x%x® (YYY6+Z z°%) + (Y*y +z %8y x¥x% ]
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Awhere u, v g are constants, which ire moduli of elasticity, and

Xaﬁ='5?; °Ya = 5;,:hZaA= 5;. This incorporates the unidirectional
' S - R
symmetry Furthermore, we will take, for »°O .eonstant, xaB = po 66 a8 ‘

' as 'the relaxation local metric on the body. In this system, on the

. -

bd&y.we have the constitutive equation ”Téﬁ = PQPBTab = EaBYG( (T) Y ) o

b
~ ab._ . ab ab a b seod
Whetﬁgés‘ lelr r .+ czs s + 03t t ng(t). Y. dP Ps, and |
'-f% =75il »sa.=v6;, ft? = 63 ;. a,b‘=.1,2;3:4.‘ﬁIf we substitqte,‘using
';’the'malmé~qf PZ ‘given in (V.2) namely -

“a « o a o . & gl
P Pa ' gx ré‘fib eeeAe(Y sa+Z ta)"-B e?nﬁQ(Y ta-Z sa?,
ptLloag gl ‘s.e( 3 +e37 ) ¥ Latn 8(cy -s%2 y,
e a Ta vaFo STt %y b s ‘ 0" “alr

. I A

‘me'fimd.that. gYs(T):= %%'XYX6'+fJ§ (Y§Y6+ZyZ6)‘ and using

LT

I . N ooa b o ‘ R .
Ove T Ny *yTs * Zy7g ve have finally ehac
T v ) ST : . s ‘ .
~ - - Y A 2 : : -2 22 . - .22 S
= ‘ ‘ . ‘ . . ’ o

'

and hence the-principalmstresses;are'giveh by’j'

. »s;L;' : —2 ,;%65, -2 @ | _ : ;;L. ",;2 _%gh‘ ".?2 _%é
9 ;dz_[“(a Py )Tlé(b‘ P M0y = 3-ab2 CICHET N 2+2v(b 05" 1.

g

(The\density- P =‘ab2 'is measured relative te' p = DO in the'relaxatiod'-

‘configuration of zero stress.) These are to be compared with the values

in (III.18), namely . . | | -
""dls——é-: 2f+—2—+rs—§'2‘—' s ‘02?033.—%‘; ’2£—r'-s'+t—‘.§§-— '
: N g ~ .
s e t .
. . 2
. . 3ft s t rs ‘
IEST S T R R I I ¢

3 . Coe

Of course all functions must be 1ntegrab1e with integrability conditioné :

like f, r, s, t satisfy in (III.18). Also the Jacobi identities of

, ,(III.IS)‘must'beiﬁatisfied,-as well as the equations (V.2.2). These

o



latter-equations*imply ;Q ='v (for the Ricci coefficients on the body),

a = % (f+t), b = % b and b b.- The Jacobi identity@

£' - ¢+ f gt _fs., ‘the integrability condition for b,

2. 22 2 L2
and we have -a'lso".' ""'pc.2v+e:_ = ‘-.2.-( '_'2!' . 3; +_3_1£._’_ ft) = ab C2“+€ . and
the heat flux is y o= —i- (f'-}--t—zr—)', ) '

This, then formulates the problem for a: unidirectional linearly

'elastic’solid Let ‘us solve specifically in the omnidirectional case

T apys & :
EaBY = GBGY so' u =V =0, and r,'s, 't are zero w1th T 2

" Here

"only" f non—zero and £ posse551ng only a proper time‘derivative,

’ :i.e;;~f'"= 0, f = -TSE-: Then.- a = b, "= 0, & = Eif and . -
dt : 2
';3 a (a 2; - &) = ; . 2f-—§£31’ wherern jfa d 'are-'o ta ts‘
-3u G ™ 2 wooand  pgo constants.

For the Ricci coefflcients on the body ve have W= 0 by omnidirectionality

(v. l) and in this case (where f = O) we also have v = 0 otherw1se

f by (V 2 2) and (V 3 l) -

’ The differential equation for a is (forl_ffsQ),

2aa __5a2 = —3Ku(a 0 45) whereA k, W' and po, are‘constants;. If
. . _‘., N 1 '. . v
T we look for a: solution of the form a = t(cla g-c2+c3a ) fo ‘where,-cl,‘
lc. c. are constants ‘we find c =3 Kh e IR A KUD 2/3"‘an'd cd- is.
20 73 » 1 7 > T2 5.0 73 -
undetermined. .0f course, p = a3 and thereforel‘a"> 0 always.- We : \
. ;', N . ) o N . . ) 3/ . . . - .
canhot have <y =0 otherwise the‘condition p S:(%J ,pb‘ would mean_

the principal stresses (a negative "pressure' here allowed for-solids
but not fluids) would be greater in magnitude than the mass and energy

density.} We‘must_have 1c3 > O "to keep the quantity (whose square root.

2

is being taken to determine a) positive for high density. Now

SR BT 2 3‘. 4 =2 3 :
f = ¢2\[;Ia 5 c2a dhg3a and f = —Ac a  + 2c2a -+3c3a . The
]

inequality that states that the magnltude of the stress does not exceed
4, T . .

m%ss and energy - densgty is ‘32 > f 2 0 whichjcan be qritten as ,

-

.
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. which must‘alﬁays7be positive in the'range ofuphysical interest for the

*2 Kcz 5

3

‘solution. Hence a° > == a”. - Because of thislcondition we'ﬁind«an

*

infinite density singularity:and aflOW’density breakdown'with finite\

s

‘a = ¢N/cla—2-c2-+c3a5-c4a4 where c, =

~

time separation, the system mov1ng toward the former if a < 0 and the

' latter if a> 0 This is true since gﬁ'=»—&; The low den%ity break—‘

dt

down is an indication of the failure of the naiv /linear elasticity

,approximation to be valid for a very large stretching. Of course the
%omnidirectional approximation is a physical oversimplification that is

-of more 1nterest,in cosmology than elasticity. For stars, we would'do,

better w1th the’ sp@krical Ricci coefficients (III 26. 17‘or the Kerr

type (V 16 l) _ but ‘we have elected this simple form in order to be

' ablé“to find explicit 'solutions to the differential equations that can

i be analyzed to show how the description of the motion of a body in space

¢/
time‘can be applied For simplicity weqhave also 1gnored thermodynamic
k]
effects on‘Fhe value of M.

-~

va f z 0, then f = Va"where y is a constant, *and T @ = Ve
By, BY
are the Ricci coefficients -6n the body (V.1). Here the differential
+2 VZaé ' -2 -2
equationiis VZaa - 5a = — - 3kula” fob "3)." with solution

2. _
v
T and“cl, Cz, o

4 are as

3

:‘before. ‘Also we have f = iZN/c'a-é af2-+h a3-c'a2 and

15 "% 3" 4

£ = -4c a—4+-2c a-z-f3c d3-2c'a%. The identdty that states that stress

1 2 3 4
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L A, I B . 4 -2 3 S

. bcia -6c,& T+6c,a” 2-4ca  +2c,a “+3c,a” 20, . . (v.17.1)
* which. is valid\for high densities, but not for very low densities. of
ycourse € = oc2-+e —-cza3- where ,C is the speed of light, so’ the

internal energy densigy is given by . - . ' “
v . . - - R ‘
. 3c 3¢, 3¢ T _ : S
e = .<‘1' ™ - KZ-a'?- * ( K3-c2)a3, R (v.17.2)

s



N

_(V.18) Static and Stationary Space—Times '

. gtationary or statgggi o

. [ & -
, N

is 1ess than mass and energy density is again (V.l7.l) without change,

and the 1nterna1 energy dens1ty is given by (V. 17. 2), the ¢, terms. .
| . ~;._1_-z?;"2
cancelllng out. Of course this time Ql = - ZK»%f'_Z f -3 ) .and

oc2-+e = i%—(f +f2). Here we may find a strongly flow-static solution

. 2 . .
with pc +e = 301 = =3P for negative "pressure’ fcorrespondlng to the

. elastic materlal being stretched to a greater volume and.lower den51ty

:than Py The conditlons are that a he constant, f and £ be
izero, and hence 7c4 ahd cq must be such that i
‘ - N )
d—Z ; c aS = cC +c a& | '
N R 3% 0T S 7 AT . . ' : ,
4 ) ~
and 7 Ac-a—2'+ 2¢ a = 2c, * 3c ds '

1 4 a2 3

hold for some a > 0.7 Also for this a we-fequire that
3 292 23 -

€ = erv a® - c a2z 0. .Since the argument‘of a square root must be

non—hegative; this value of & must be a relative minimum for .
2 . 5. - 4 " , A ,

c.af -c,*+c,a -c,a that reduces its value to zero. The

1 2 3 4
stabilitytof the equilibrium depends on the choice of sign in the

expression for a&.

P

»

Ce

i3

‘- In this section we ‘take these familiar definitions in relativity;

255

and apply them to frame components We are 1nterested only in those \fﬁff\\\_

'

symmetry condltlons where the time—llke Kllllng vector is parallel to

L

o the matter flow, and-will assume this from now on when referrlng to

S

The condition” L¢ugab = () for some Sealar field ¢ is:eQﬁivalent"

to eab ='0 and vy = W,a .where ‘W,= n ¢. ;n.tfamefe%mponents-
o =0 means T, .., = 0 d%d du | =0 noans W -u ~u TS =0
ab : A(AB) i alb -, ﬁ‘»a,?‘., 'b"’,a .. c a b "

or putting A& =T & we have
c ¢ b
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4 4 4 c

Tawp "o aa T TedTan (v.18.1)

' ;hese are the conditions reqdired for the space-time (with the

material flow) to be stationary. ' In partiéular this»implies the con-

ab

: /
coefficients for rigid motion describe a stationary-case (with Killing

ditién.of flow-stationary (8 ==Q).» We see the Kerr-type Ricci

vector parallel to the flow) since we proved in (V.1l) the existence of )
_ : co
, . : i

a gravitational poténtial V¥. We will examine the unidirectional

stationary solutions later.

In the static case we write the metric in (homogeneous) coordinates

- . >
. C 2 2¥Y 2 i, j A -
Y .as d? = - dt + yijdx dx where Yij$4 = 0 ?94 énd’ § is

S

‘coordinate partial differentiation. ¥ 1is the gravitational poténtial,

A S o y _ L . '
Buo = 78 g%J = 0 and gty T Yip° I,37=1,2,3. The flow veptor

in coordinates is

-~ 4 ¥ 1 2 3
u-=~=e , U =u =u =0,
¥ : a .
U, T e, Up T Uy =uz =0, u, =l g
" and ewg‘ is a time-like Killing vector. Evaluating‘%{jlk}[ for i =4
by g4 A L
gives  {";} = 0=, 4}" and =1, = Yoy - Morkimgoue
. . C . - . . :
= . - =0 - ¢ F = =
ua;b '*Qaﬁb uc{a b} ab + wab uaub giyes ‘eab wab 0 and

up = wﬁi' Hence we make the followiﬁg définition. L

The Ricci coefficients 'lek are said to be stationary if

T,1 ksag;sfy (v.18.1) and T

ik 0. They are static if they are

4(AB)

=>O, A,B = 122,3. Thus we have set w =0

stationary and also. T ab

A B

it

ab

as Well as 8 = 0, while; of course, dﬁa b

0. It is easy to see

that in the static caée, the condition T, = 0 can be assumed,

i
i k,4
by appropriate choice of metric frame components in transforming from

the coordinates above. Now we demonstrate a remarkable theorem showing

N that the general stationary metric has strongly flow static Ricci.

- @
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w2 .

coefficients for an adapted frame component system We can"also prove

: i{

‘the converse so that we may ‘say strongly flow-static is equtvalent to

stationary.
We write the general stationary metric in the form
2 2Y, 2 J v i3 i3 .
= - -+ + = ; =
ds e dt g4 dtdx Yijdx dx _gijdx dx whe;e j&j Q, |
¥ = = = X = 0 o= -ezw 4 = t: a d e‘yu is a "
94 gAJsa Yijen T Bighs - 0 Bas » X n u )
‘ : L o =Y
Killing vector, where ua = e. , ul = u2 ='u3 = 0, u, = —ew,
Ty . - . - ,
= - . = . 8 = = 4 . es.
ug = 8,58 > J = l,2,3,» and 15 0, %i ug in these eoordlnetfs
The 4-flow vector ut  is thus determihednand ului = -1. The objective
is to find Ricci coeff1c1ents w1th TAA’ = 0 and Tb 4 =0 (i.e.
[strongly] flow static). ertlng ds2 = alal + 3232 + . 83 3. 8434 with
i i .a SRR S SN R S TR
dx” = v(a)§ we can find V(a) with vv(a)94.~ 0 and Vi4) Vi4) (4)
= 0. We begin with Vi&) = e—w\'so ZW 2 = —348A and continue to ‘

- ; i J J .1, 2 2 3.3
solye»for_the other V(a) rom gAde dx 88 Y dx dx _‘3 +

L i - -1 - c . ' A
As a result using  Viy V(b),a an (c)‘ we see thaF Tﬂ;B 0
a - s g s = 4
and Tc b§4‘ 0. But for any -function b, ¢’4, @54V(4) so that
vr =0 = T'a . Hence these Ricci coefficients are flow-static.
(a))a b C’[" f -

. . ,a.: .
‘Furthermore,, we can rotate the' 3-frame orthogonal, to u without

A

affecting the condition V%A)'= 0 so as td put. us in adapted frame

* ]

components, W w1th the orthogonal part of the Rlcc1 tensor diagonal. |

Conversely, suppose the Rieci coeff1c1ents are flowfstatlc, i.e.

A

B a . e e a .
T4 B " 0 -and Tb c.b 0. In the llght,of‘the Jacobi identity .
4 ' 4 ¢ - . "
' + = V-' . i i : ®
, T[a b,4] Tc[éTa bl 0 we see that (V.18 l) fs equ1yelent Fe
4 4 A 4 A o .
+ T . =.0. " '
Ta b,4 TA aTb 4 + TA bT4 a. 0 ’ ’
S J
In thé flow-static -case, . Ta%b =0 and we can quickly check for
a,b =4 dnd I fferent combinations that the
‘6ther terms add to zer “‘-‘ L : inc _'eab = () 4is obvious,

>




L:d

the conditions for the Ricci coefficients to be stationary by definition

are satisfied, éo a time-like Killing vector parallel to the flow exists.

a

: S
ng; " We note that in the flow-static case, T +=0 also, so.

— o . b c,d4
R? bed, 4 =0 for the Riemann tensor in particular.

of course we may have non—rlgid motion, even though a time- like
Kllling vector exists which 1is not parallel to the flow Such would /

be the case if we took the Kerr metric with a different flow vector

258

than the one used in (V 10) and ended up with Kerr type RlCCi coefficients

. (V.16.1) with shearing. In that case, they would only be weakly

directionally invariant and (weakly) flow-static, an indication of the

non—parallei:Kiliing vector.
) It should be remarked that just from‘the definition of stationary
Ricei coefficients alone (namely T4(AB) =0 and (V.lS.l) holds) we
'cannot prove the flow-static conditions for' Tbac ‘are setisfied,t

since the orthogonal part of the frame defining . Tbaclrmay eontéin

time dependent rotatioms. In the flow-static case these have been

- transformed away. o i ' T

»

(v.19) Stationary Unidirectio}al Casesl(RelatiGistic Ideal Gas)

-

From (III.21) we see that in the flow-static unidirectional case

we have the'equetionr 2g' - 2gr + sg = 0 as$ well as the conditions -
| o.=o.=-i¥(q'—s'+£i+§3+5i¥5% ‘o ;.44—653+53%r%
2797 T T2 2y AT T w2 T '
A =0 and 'pe24-€ = - é%— —2r'-+2§*ﬁ9§%7)~; A local metric spatial
)#toordinete X gxists with X a =.raA.and r' ;‘%i , “g' =Q%§ ,

,l,— %3 ;’ = solutlon represents an extended ma%s sheet’ stationery

.

in time and ?otatlng (1f gz(» If 8 = 0 the mass
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" cloud of gas,'with density and pressure even functions of 'xx°aloﬁe that
fall to zero as x > +® or x * -», -All physical parametérs‘depend

‘ .. -» .
only on x in this problem. For the material, to behave as a classical

ideal gas (forvwhich we‘haye'all the explicit'thermodynamic functioné
known) the thermal engré& of the gas molecules musq/be much less fhan
their rest enefgy, and P << pc2+-é. The stationa;y unidirec:ioﬁal

case is vas£1§>ﬁiffefeqt from the Rdﬁertson—Waiker case (omnidirectional)
where pressure sgemed to have little effect. We.shall see that avsmall

-

but non-zero |pressure is entirely different from the dust,solutions.

considered iﬁ_(III.Zl) and (III.22) because in Ehié case. a genuine mass

®heet of‘finicé width exists. Deépitevthe fact that our gas is in the

-

.g?classical regime locally, if its mass is large enough we may expect to

need relativistic gravitational theory. -
. 4

- Because thé solution is stationary, it has time to reaph equilibrium,

and there is no problem with Fourier's Law of heat conduction (IV.5)

sd we may write the heat fl_uxl as qa = Ao = —EYéb(Q b-*@ﬁs) where ~ §
, : S : LA :
is the coefficient ofjthermal'conductivity which is in‘geﬁera;, 2 0,

- and we assumé’here’ é z 0. Fof'a stationary.so;ution- o = —.%% ‘1s
zero, i.e. 0’4 = —é_= 0 in frame components. Heﬁcé fbr zgrb heat
flow, as wg_havg here, 0 = O;b + @ﬁb so that © = Ole—v where ¥ is

..the graviQationai potential, W’a = Ga' In particulaf © 1is a f@nction

only of ¥ (which is trivial here) and this appliéé also to the rigidly
'rétabing perfect fluid case‘ofv(V.I3). In that solution, P, foc2-+e'
and O are functions only of ¥ which‘sﬁggests that the entire thermbjo

dynamicvstatéfmay'be a function only of ¥, even though the local magni-

tude of. gravitational acceleration is not.

B ‘ : _
Eckart, C. Phys. Rev. §§,.919(1940); "
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Returning now to the unidirectional case, we have for the monatomic
ideaT®gas, ¢ = %‘K()N where K 1is Boltzmann's constant, 0 is

temperature, and N = él- is the number of particles per unit volume

0
eachrﬁaving rest mags"mo.' The equation of state is P = E;§£2 =-§ €,
RN ' . ' ' 0
called the Zdeal gas law. We then also have
| 1 [ 53 r2 1 2 52 gi rs
= ~0g_ = — |- — == |-r'-g"+—+>+ = ‘
P=-o 2+<_( 2+2_+rs> u(r sttt 2+2)’
= ab? = -¥ ' s . dY ~
p =ab”, © —‘GOe e
All functions depend only on  x, in particular a=5b-= 6 =0 We may
take kR =p=¢qg=f=h=0 in (III.15). so from (V.2.2), w = v,
L]
2.
8'=av and b' =»§ b. Also 2@'*: -y'0 =-§ 0, r' +s'= %Z;+ g2 _ %;.’
. 2' . 3 mOC l;- .
P = co(pc +e), ¢y = (E + _RTT) . We can show that from a phygical

point of. view the solution exists uniquely. In analogy to thé static -
extended mass sheet of (V.6) we can solve in the stationary case to 3
obtain the generalizatiqp of (v.6.1) for x > 0  as

' = (H%) %ﬁ , g’ = —3—;5— g,/82+26+g2 ;

0

~ Sv=__;;(3+-—cl~> 6+g2—52——s’82+26+g2 .

0

(V.19.1)

" Here, 4 represents mass density and pressure, § = 2«P é@fﬁc (oc2+€),

- . *a s a, - , L.
s the acceleration (u = - 7T ), and g the rotation or vorticity
a_. g _a ' . : i 7 S
(vo = - 5T ). As functions of x, 4§ and g are even and s is

at

odd. 1If we specify the mass of a'molecule Jﬁmo), the value of . {

: . 1 Q.
x'= 0 (i.e. central pressure) the valueé oﬁ%é%kbat x =0 (i.e. central

- B E
3

, , o
temperature) and the value of g at x = s ‘then we can numerically

solve the following equations for a uni%pe‘éolutibn:

. ‘»-4‘, 1-‘ ” “ v ¢

1 ’ -
The ‘central “temperature should satisfy KO << mbcz.

&
¢ el Y
s W



_.for x > 0, s <\Q so Vs 2 -s. Assuming g << s (slow rotation)

‘\
we can take the exterior\vacuum equations

g' = - ~ g/ }s =g —'i——is s’2+-g2 (v.19.3)

1

and approximate to get s' 45 /2 g' = - %;4 so that approximately

’ .
g = = %-, g = clx, S 20 ﬁir constant cy- Thus the appréximati@n
conditjon is violated for sufffciently large x > 0, if ¢, # 0. ‘The

- %-S 6 < 0. The vacuum equations then

become
© 8" =W cos 8, w\-= _(14.51%@) w2 ' ' : " (v.19.4)
dw w’ Tt
and we may put 56-= rQ and separate variables, integrating to *get
cl(l—Sin 8 ‘ R ' ‘ .
W = ———————  vwhere c1 > 0 {is constant. The important property
' N cos o h ‘

is the relation - %-w zw' 2 —‘% w2 which guarantees the typical
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2
C . . m.c -1
" .84 = (3 0 ! 1\ sf
0T =8 e (2+ Ko) » (1+c >
/ 0 .
S 32_85 - g sl +2§+g% , . o (v.19.2)
! 1 2 ¢ [ 2
o 8' ¥~ I3+ f+g8 -5 -5 [s"+2§+g", x 20
K AN c 2 ,
‘ ) 0 ¢ ] : ;
AR ' ‘
of cgﬁ%se we take s = 0 at x =0 by symmetry. If we ’ - o
. P
g -
U/‘le .-
le——C -
14
L
[ .
/‘\(‘\“4 * .
0 taié g&x O) = 0 then g = 0 and:the solution is static. Remember
:/

equations (V.19.3) can be inte;iéted if we put g = W cos 8, s .= w sin 9,

o
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x ! behavior at least, for large x.

We can Fgg‘;hat the expression for 'w as a function of _6 Agiveé
us an.un;xpected result contrary to intuition inbNewtonian theory.
Since from (4), ©6' 20 always we expect 6 to increase as a function

2

as x + +», This follows from

of x. In fact it breaks out of the range - 256 s0 and into the

range O < 6 S.g- approaching/

c,(L-sin8) A _—
- W= ———————  and the fact that ¢, > 0 .and W+ 0 as x =+ 4=,

“/cos 0 1

Thus for large enough x, s switches signs Becomiﬁg,positive and our

NE

stationary rest frame feels 'gravitational repuldion'. This phenomenon
appears only when é = 0, i.e5 the massasheetris rotating.

Like 6; the températuré © 1s an even function of x with a
maximum at ‘x = 0. With the functions o, §, g and s determined byv
soiving (v.19.2) for x > 0 we can obtain r.= —é - Vsz‘+26-+gz as a

: _ B 2 2 . g
, function of x (from § = - %?ﬂ+%i~+rs). We then specify b(0)==b

0 % 0
arbitrarily and solve for b(x) using b’ ?-§ b, and b(-x) = b(x)
0 , .
determines b for x < 0. We then determine p from p = 0 as a

- . 2xKo

‘

function ofv x and obtain a from a = p/bz. VThevvaiues of ® and
'v =w in (V.2.2), (not the w 1in (V.l9,4)),'cén b% obtained with
'8' =av in a humbeerf'ngsrthat are not-of’direct‘intgrest to the -
physicé of the problem. We see that tﬁe thermodynamics, gquaﬁioﬁ;rOE
_ state and thermal conducti?ity dgtermine thg édlut%on physicaliy for the
relatiyistié gravitational problem of the stationary unidirectional e
classical ideal gés. The fact that (V.2.2) imposes no direct,condition
on q' as important for this solution to work. It is also.ciear
that (?Jz.l) holdslas well. The idéal-gas is thermoela;tiq in the
sense 04 (IV.lO), anﬂ ghé motion is\tigid . = 0 and therefore W

expansion and shear free, i.e. f = t = 0 in unidirectional 'notation.
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Even though' there is no temporal expansion (8 =0) or temporal

Pl

sheafing (0 . =0) we do have spatial expansion and shear even in the

ab

‘static case (g=-0).“‘Ffom (V.4) we have the orthogonalized generalized

stretch given by

r a' . T o
= [>~— ’ -3 - V.19.4
eabc' (2 a) Tafble 2 Tabrc (V.19.4)
which is non-zero in our case here, so along € a spatial defgrhation

i

©c
6 .. r exists.
abc v

- Of course the entropy demsity n for the monatomic ideal gas from
the classical Sackur-Tetrode equation is

m, Ko %& m_ ’ ,
e e | T @.19.5)
0 ‘ 2mh P : co

-where h 1is Planck's constant. We see that the entropy flux vector -

is 8% = nu® here since qa = w2 = 0, (cf. (1Iv.8)). 1In this -

stationary (équilibrium) configuration Sa_a = 0. since n 4 =@ in
N . ’ ’

frame compoﬁenté follows from © , = 0 and =0 using (V.19.5).

b P4

" (V.20) Spherical and Rotating Cases (Qgggnegate Fermi Gas)

N,

‘\\\ The rigidly rotating—perfect‘fluid is of great interest in astro-
i‘ . 2 ‘.‘/ . :‘
phystics. It’has been shown that a stationary star consisting of a

l , ) . .
ViSCduQ\hEii\iiiiiiﬁing general relativistic fluid must be axisymmetric

. o R
with rigid motion and .zero heat flow. Thus its energy tensor is of

the perféect fluid form and the Kerr type Ricci coefficients for rigid*

motion are appropriéﬁe (V.16).  We saw in (Vv.13) that P and pc2‘+k

-

were functions oﬁly of V¥, the»éravitationa; potential, with

X

1 . .
Kittel, Charles, Thermal Physics, John Wiley & .Sons, N.Y. (1969),
p. 167. . ,

2 .
Lindblom, Lee, Astrophysical J. 208, (1976), 873-880.
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Theorem:: In a space-time with a perfect fluid undergoing a tsochoric

motion with a gravitational potential ¥ fx@sting and for which the

' . a ' .
pressure satisfies P 4 =0, the pressure

b

'8 a function only of V.

Proof: We write. Tab = -(pc +e)uaub —“Pyab and substitute into
. » . '
T, =0 toobtain - ) -

0 = (oc?+€) bubua + (pc2+e)6a + (pcz+s)8ua

a

©

3 L pa® 4Py, ' (V.20.1)

+
P,bY
We mulktiply by ua using uaua = 1] to;get

0 = (oc2+€) bub + (Oc2+€+P)9-
4 :

"For isochoric motion 6 =0 so (pc2+e) v = 0 'so substituting this
and 6 = 0 into (V.20.1) we have
. 2 . .
0 = (pc ‘+5+P)7Ua + P bYab.
. a o L 2 . ] :
Now using P U= 0 we may write P b = -(pc +e+P)ub and since
&b = W"b ‘we find that on the hypersurface of constant Vv, P does -

does not change. Hence P is a function only of ¥.

Corollary: For g stationary space-time with a perfect fluid undeﬁg5ing
a motion with the flow vector parallel. to a time-like Killing vector,

the pressure is a function only of the gravitational potential.
¢ .

Proof: Here 6 = 0 since eab =0 aﬁd Y exists with e\yua d time-

like Killing vector, and P 4= 0 1in adapted frame components for the
v 2 ’ r

df _ -Gj+—£)6 , P = 4 CO(DC2+€). Alsomié (V.19) we saw ,é%:=/7OJ‘Aﬂ

The results in (V.13) can be seen as a'thsequencg-of the fOlloﬁgagg @'”i‘“



; o “ ot';;tained usihg (Vt.7.5) .

3

flpw=wtatid Ricci coefficients. Thus the theorem applies.
i ,

.. »
titutive equation that 1is easy to

N

state and is of interest

dwarfs and other dense, relatively cool stars

: ‘ 1
.1is the one fgr a degenerate Fermi gas . The condition for degeneracy

is KO << e_. where e, is the Fermi energy of one particle given by

2 - 2/3 “ -2 2 5/3
e_ = A 3ﬂ2 LY. The energy density is ‘e = ;liﬁ- 3n2) hle) " .3
f 2m Cm 10°m m 2
0 0 : % 7 \0 - 0
' R 5m0 3 -1 "
and so_ ¢ 1s obtained from ¢y = 7t WK Although it
(3n%) % 3
satisfies “EW!= -0,  the temperature 0O 1is mucb"léss‘than the Fermi
énergy at every point in the solution of our axisymmetric stationary
4 . rotating star, aﬁd”:his is assumed for the validity of.the above
¥ | ; ..
,‘éqgations.' :
ey T -~ , s o
. ' : e . /3 . d S/3 :
»-Since, § 1¢ a constant multiple of o we have E;-(o ) =
' 1 o 8 1 '
1 5/3 ’ 4 - , 3m0 /3 CZD /3 .
-(1 +?)o -and hence a—p\{; = -3 p - ——‘—2——27-7‘ which can be inte-
0 ) s A (31T ) 3 fl

grated to give us the dgnsitz p as a function of the gravitationmal
%

potential Y. In?the spherical tase, the complete solution may be ¢

o

Y

1 i ’_; h . i R . . -
Charles Kittel, .Thermal Physics, Wiley, N.Y. (1969), p.-~225-230.

4
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(V 21) Cylinddical Symmetry - Junction Conditions
¢ (o . \

"In this section we shall consider solying Einstein s equations\fOr;

\

.an exterior vacuum solution,“and internally for a material medium and
. matching the solutions across the bounding surface.° If the;hypersurface_-‘fl
S Letween matter and vacuug/is given by the equation ¢ = 04 . the
1 13

tichnerowicz junction conditions tell us that the Einstein tensor G

(equivalently the energy momentum tensor j» may'have a finite ‘dis-

",continuity ‘at points of S. However G J¢ ~dor TiJ¢ j) must be con-°
R ' ?.5 ‘

b__tinuoué at S for all admissible coordinates. These are the coordinate’

<

vayStems.jor,which gij is Cl' and pieceWise C3 which»is assumed for
obtaining these Junction conditions. For a perfect fluid this means that

the pressure P _must be continuous (and thus Have value zero) on S- while

. M n
N .

2 : ,
wpc +e may or may not be continuous’on S, depending on the constitutive

\

* equation, .or equation of state.. oy

1t is of interest to apply these conditions in frame components,’nhich

¥

we will do in this section for a cylindrical stationary perfect fluid. Our -

- g
admi351ble frame components w111 have: Tb c _continuous w1th p0551b1e finite

‘jump‘discontinuities at S ﬁor the derivatives Tb.ac 4
. ; )

Let us con51der a cylinder of 1nf1n1te length whose ax1s of symmetry

!

is the iz axis and which is underg01ng a stationary rotation about this
axis. We write'thebmetric forfthis case as

2 “ ZW(r)

st = i + F(r)dz? + G(r)dr + H(D)x 2462

+ K(r)dtde. .

2 3
(2> "3’

2
so that“only Tz 1’

We transform into flow static frame components with v%i); v

V(40 viz) "the‘only nonzero transition coeincient

v

coe

Licbnetowicz, A., Théories Relativistes de la Gravifation-et de

1' lecttomagn@tisme, Hasson et Cie, Pa&18"(1955 , :

S . : T -5
. . ,

«a."
s
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TS 1 T1~2 and T4 1 are nonzero and’ they have der1vat1ves only 1n the
1 diregtlon. We wrlte (A g =4 rz, gy " g'?g etc.)'-

a o a a_ aa_ . a.

_Tb o T 45 rIb?C],+ Bt tpT g + tu r[bsc]_f.kgbu{brc]ﬂ
Here the vorticity is v = - zft ’ the deformation rate eab =0

. and the‘acceleratfon &a"=<% r®.  The' Ricc1 coeff1c1ents are strongly

i

flow static and weakly dlrectlonally invariant along sé and pa;_ Since

1. 2 : W L
Ta b 0 weohave the existence of n;local}metrléh}adﬁel coordlnate x
Rt 4 P o oo

rom the ,ﬁzﬁ'axis (or ax1s ef

3

with X 4 =fra, X, belng,the dlstance
[y ! :

symhetfy)._'Théﬁ;}incipal stresses. aAd mass and energy.density‘are _

rd
<L (kg ks L7 i .
%17 2% (2, 2 b ) g
Cg g 2,2 2y
I S A O AT .- S AR - ‘
%2 T %« (g “R TR ST oY)
: g ___‘i_" A" ~ B! :_c_k_z___k_'é.’.,,.t_z_.b_z
3.7 % T2t e 1) .
3 0F, bX s ‘ ‘2 w 2
PR 2 . - ' 3 2 g .g_é_ A &
el » . oA Dol ! /t - — —_———
T TP —2%(5 R T i i M D A
o . -i‘. N

The Jacobi identity and integrability conditions are trivial and the -

. S a .,
zera heat flux condition (in s dlrectlon)/glves us

O = —2{' th + tg Lo o el

3 : . Y

For a perfect fluid -we put 9y é~0» =g, = -P = -{/2¢ . and :pc2+ e = P/cy.

This then implies that

. E . 2 K o _p . . . .
,’ 6 - _4@ +.&‘i+£~_ _gﬁ » . ;g .
B 2 292 8 2’ » v B
2\'.k 2 - ’ .- A . '
g' = ié_'_ £_+-g—- - .g.é.u- @_‘- _’_z_& B # 5 o . % .
CO 1€ 2 4 4 4 . “2 e
: 2 » - : o )
v 805 2 8 ke R gs v R
4 “’zco*l“ét B B R I e _
. g i L e i 2 ...—»"‘ . ; [N \‘,
S SN RSy VT T
¢ ‘*,2c0"ﬁ\t2-'4'T*4'2’ % : %

&
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0) h6 ) < ° v -
PRt T

.2 S o,
X7 to get the system of equatlons , o

/—\

from whichiwe;danfShdw that 6'-*

and eliminate

;I“*N

" We can solve for £ to get

R

_6_ ﬁ kg'lgd .
‘,‘:&":3‘7‘ . - ZC 7 ,. B "‘ “ o 2’ 2 ? " . . e
A S
_ﬂ _6__‘_ _3,
TN 2+kg+ g - 3 RS

.h"v‘-_ﬂg.ﬁ_ ».%._‘_25._-86 +~.@

. IR R PR S - h S
' : AN . : : . _ -

(v.21. 1)

0
KRR , A
R In the case of a vacuum solutiom, we put 4 =0 to: get

’

g _B kg g
= 7 T2 T2
s
A
k

. N
o+

. 3 3 : . », : | ' o l.v ‘
ke +Jes - ke S @)

W.
1]
o

B ST S S ’ e
R R S A T ‘ :

. 4." o . : o . ) )
Since: %; = (Un'g)' l—(g—k—b) we see that h + A = g - 2(2n g)' But

e .
R' + 4" = *~%‘(é+h) + & (A+k) so if we 1etA w=k+ 5 we find
: g

+-g . Hence (n'g)' =A% (g’w)  and

w=‘.gl‘— 'z(ln‘g)V and w' =._-:;; -

(4n w)' = l-(g—w) so that fn &) is a_Constént.' Let w = K g, k..
] ) 2 - . W 4 0 ) 0

- 't . = vz l - k'o o { i fag o = ____-:_2_—-—-—
a\génstant, so (an g) (—TE—P g whech 1mp11es} g : (l—ko)x-Fcl for
constant .cl. Here x ’is the local metric radial coordinate. By
syhmeﬁrywthe 51ngular1ty must occur at x =0 so ¢y = 0 and so

: 2k : .
g = ?EJ%TTE and w = kog_- ?iejgyg . Since 4 =W -  we write the -
. - . - . O - N Y
’diffeténtial equatlon for k ‘as 'ﬁk“" ) o ’ B
e, (l+k e kg . o ,
k' = —lz + C—— SR ‘ . (VL21.3)
22 : : = -
e (k l)x (ko;l) < i | A |
~ If we look for a solution of the form k = = whe%g,%ﬁfﬂ is ‘a constant,
o “ L R "' N ' ﬂ o
) . o . : %ﬂ e
= : o o Jy R

e
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and‘k'l"> 0 on physical grounds;'§Q¢n;the.implicif relation
'S o . (l+k0)k1 f‘4ko U - S
k, (k. -1) = : - must be satisfieqm which we can solve
11 - k-1 . 2 , A
0~ ~ (ko—l) S o X »
for k)~ to obtain . g ' S .;d, L e
. B _
k£ }k =4k - ‘
: . 0°N"0 0 :
R R Av.21.4)

o

¢

Another condition which musEvbé true for a physical solution is
) o & _ S ‘ ) s o
. %r = kg + g - ks 2.0. We find that £ = 0 for the exterior solution °
as can easily be verified. The boundary conditions imply. that the . -

I : K

interior ig free of vorticity since £ ‘must.be continuous at the tfansition o
: ree s 4 ' USh : t : »

surfa

fhe differential équatipn for"{j’tﬁéh~says Z} ='0 ‘on the
: . - : RN

¢//we sketch a graph of (V.21.4) iplwi}i look like the folioWing:_

C AKXy
L ‘ s ¢
, .
1
B v
i
) N
TN ’
. LR i

i

Only the positivé values of - kl are physically alioWable. As.
kb > @ .ye obtain the solution k‘? %-, t =g =45=0. The solutions
; . 5 ' . . : . v y : f
here in this graph are the'zero vorticity ones. To obtain non+-zero £
L - solutions with rotatfon, we need the solutions of (V.Zl.b) whicﬁ'are
‘ LT k. R ‘ : : ’
o not of the form 7% . o i
We can recast (V.21.3) in the form LN
dtky _ o 22 %k |
‘ X dx =k___lkx.—kx r‘—f——f‘*zf, - ; v
LU S SR ¢ E (kg=1)" |
,‘ H
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A\

which permits separation of variables. From the integration of
- ) . . + " | ) :
du = - QE-'Where u = kx and k, are-given by (V 21.4) we have
+ - X - - . 1 . ! - T
(u=k,) (u=k) , : o 4 : o
R RO § : ’ . ' -
: G T ) :
- —fc\1 T 4fcy 1 o ‘
_ 1-k1§*__k1§) , v.41.5
T \x Kt kT’ (v.21.5)
. -g_,l_(g)l ~
. . ’ x) Ax | -
for some constant of integration c¢ > 0. o
S e+
If we take the special limiting case as kO + »  then k1 + 2 and
- — ‘ ' B . ) T
"J‘kli? 0 so we obtain the functions o . 1 . c
) k. 2X 3 ’ -2C2 . l,t / +[6C ‘r‘ R » °
! # T ‘-"".’_’2_"2,>a g"v'01 b = 5 9 = 2*2 .
: g ¢’ =% SR x(c =-x") -X.. . )
‘,-,A’ H . o - . .
as’ a'parQQCQiar vacuum solution, c prov1ding a meggyrement of vort1c1ty S
kY , .
) - /. We have’é&f%gtlveiy solved the vacuum case entireﬁ§ nowfor the ,
. / i N a' P
orlglnal m%trlc, i ahl staéﬁbnary cylindrical solutlons. Now we 4
éépllcitmlnterloﬂﬁaolutlon and con31der the ~@‘ 4
. . . v&) "w b . _‘ R
. , e . e
, * : . o & ﬁ 3 §
- =»O,' andhput;h. @
R S
e §~ 4
&

would like to examlne an
boundary‘condltlons.
1f we look for interior solutions with noqrotat}on £

v=g-h=~4 we may write,the equations as,
. - 2 ‘”' N » €
/ *j_ v o ,
/ vi= 2c A TR I '
j . 0 ,
pr o= 2 —i—+-k- o (V.21.6)
R =0 2c0 2 .
6' _ Ezﬁ_ . ) - ﬁ ‘
- - 2co e o
s . - . -9 = ’ VZ R ’ ) 'ﬁ : T T 1
Putting v =4 so v'e= 5 we obtain the constitutive equation CO =3
; | v . 0
o - 3 : h Q_ﬂ_ o L
not entlrely unreasonable, as well as 46 =, = -3k{. This. -
EQD e dX J X dX’ ‘ I .
pair can be divided out and integrated to get k= 4x and . 7 ’
» 2b2 7 3(b +x ) : '
: ___7f_7?75 »There is another solution with V.. identically z) ro.
3GTHT)T ‘ S ‘ W
that has the undesirable property of having R approach a non-zeno p051t1ve ,
o ; ‘?

),’\



/and for x@; X, we take the vacuum solution whose Ricci rotation

value as x > =, :Thus v = - éé'<is the only soiutibn with’appfopria e

reflection symmetries that gives a physically reasonable soldtion,;7 th

Yol ¢

begxnning at , x O ﬁor given values of « K and E. The ﬁrocess is

aontinued untll x = xo where' % ='0._ At thatvpoint the matter stops,~

-0

. ot ' : . : L R A e v -
o : §/ e T
1 R . . RS N .o I R [
. . - . “1‘0 ‘ N P o e i

R(0) = 0. , s e
’ We then use g"=“féf =ig'+ %; to obtain. g ‘as .g = T__%E_E_
Co =0 L ' C - 3(bT+xY)
. .0 - ) ) Rd . ’ - . . 4
and hence - A t= Z. gx 7 For large x this solution asproximates
25 307D - \ O
. ) ) . 1
theﬁvacuumgdeetion k é‘jLu g = - RS 4 thch éorresponds to>
. ; ‘ 3x ‘%ﬁ" - 3x S
o . ' e - . <. 3
1kd =4 anda,\»_kl = %‘. ‘In'thfS'caSj; ’ actually have to impose‘
bohndary conditiOns'as we would sslble fluid with constant
dghsity. :if\we put Eé— =F% EW §. is a function of
%‘ ! I . ‘ . ST < . .
position X’ "hydrostétic pregsure equation can be integrated
. ’ . 3 ‘ ) >' ) ) " . - A ‘ x
. to give . § where K >E > 0 is condtant, and vy = [ -% dx
is the gravit aifpotengial‘with #(0) = 0. For large “x, k behaves
. Sk ORGS0 L e Y ' ’ —
like —= so ¥ increases logarithmetically to « as x > = Since
is decreasing,'thefe'must exist Xy fer\which’ 6(x )-= 0, and it ‘is
-at ,XO\ where the values of the RlCCl coeffic1ents are maae to corres-
- ' - *« : o .
"1pond to. those for the vicHum exterior at X For the cylindrlcal
static case, (V 21 6) becomes '
% ) ? v
!2 - s
[ L)
i | ‘"
- 2
‘ 5 o-¥Y v *
[ o 2 Yo -
v' 3E. 3 Ke +; 5 y
v . B} - ) 3 -y h T : . :
Voo =, = . .
k = -E £ 5 Ke \"+“2‘v . | ‘ _ \
» i ;2 B
'where v behaves 1ike T near x = 0 and k(O) 0,. W(O)
% (O) = = 18. - —-". These equatlons could be 1ntegr ted- numerically

e
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. ) . ’ "
e p :

v [ . ~

. v
."g’. x.'; ) N
This ‘incorporates

. coefflcients at .x equal those for the imterlor at x

0 0’
o, .

a finite iscontinuity across the transitlon surface (or hypersurface)

but Tabnb' must be contlnuous at the transition where n, is the

’

the bounj;;z;fondltions of Lichnerow1cz which ‘state that ;Tab may have

%
‘normal to the surface. ; . :
. ‘,’ a0 Ko
¥ el e
;- )

We cam have ’oundary conditlons and a transitlon surfaCe evgn {‘5 “
2 ,,, ™
cases where the~dénsity is not constant, under a more realistlc hanstltutlve-?ﬂﬁ
t, ' ' "5 . . N
equation.’ 1f in: (V.21.6) we .put Eé—-—’7§1= %{ a positive-constant,,

. , 0 _ 2
then we may integrate to ob?ién v = -k cot (%;) and §{ = = %;-+ Ceféw“"
where C 2ﬂ0»_ishconstant.ﬁ%i§%this case we obtain’
P § i - )
Y. & . . .
‘ -6y k” F Rk kx k B
|- e e i ] = e
k' = 4cCe e =Ty et (2) and ¥ 2" S
K

Again h(O) = ¥(0) = 0. ‘Because of the ' term ih fhe»exp;eésiOn
4
e

0.

:5'—6—

T X; we see that the preSsure 8 gd”hf
; : ® . :

is nom-zero.
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