
Community Detection in Node Attributed Networks: A
Late-fusion Approach

by

Chang Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

c© Chang Liu, 2019



Abstract

With the burgeoning of online social media and the deluge of information

in today’s “big data” era, traditional community mining that relies on the

connections of the nodes no longer suffices to find communities where the at-

tributes of these nodes play an important role. Though vast research has been

done to incorporate attribute information in search of network communities,

few has focused on the late-fusion approach, where two partitions of network

are identified with traditional community detection and clustering algorithms

respectively, and are later combined to produce the final communities. We

propose a new late-fusion method that assimilates two sources of information

by creating an integrated graph whose edges represent the agreement of com-

munities coming from the two partitions. We design a new technique to cope

with networks with binary or categorical attributes in a way that clusters re-

flecting node similarities are found by a community detection algorithm on a

virtual graph. We introduce a weighting parameter to allow for leveraging the

strength between node connections and attributes. We experimentally demon-

strate the performance of our method on various synthetic and real networks.

We show that our late-fusion method comes as a flexible, accurate and efficient

solution to the problem of community detection in attributed networks.

ii



Dedicated to

My parents,

And

Hao, my love.

iii



Acknowledgements

I would like to express my sincere thankfulness to my two supervisors, Os-

mar Zäıane and Christine Lageron, who have provided me with tremendous

guidance and help throughout my master. Without them, this work could not

have been completed. I have learned so much from the two of them both as a

researcher and a human being.

I am also thankful for Shiva Zamani Gharaghooshi, who is not only an amaz-

ing colleague but also a great friend. Special thanks to two of my dear friends

at University of Alberta, Fushan Li and Wenting Zhang, with whom I had the

best time outside of research.

I would like to thank my parents for their unconditional love and support.

Finally, I would like to thank my boyfriend, Hao Li, who accompanies me

when I am going through hardships, and is always there cheering for me when

I make it.

iv



Contents

1 Introduction 1

1.1 Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statements . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis Organizations . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Related Work 10

2.1 Community Detection Based on Node Connections . . . . . . 10

2.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Definitions of Network Communities . . . . . . . . . . 11

2.1.3 Graph Partitioning . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Agglomerative Hierarchical Methods . . . . . . . . . . 14

2.1.5 Divisive Hierarchical Methods . . . . . . . . . . . . . . 18

2.1.6 Spectral Clustering . . . . . . . . . . . . . . . . . . . . 18

2.1.7 Methods Based on Statistical Inference . . . . . . . . . 19

2.2 Clustering Based on Node Attributes . . . . . . . . . . . . . . 20

2.2.1 Agglomerative Hierarchical Methods . . . . . . . . . . 20

2.2.2 Centroid-based Clustering . . . . . . . . . . . . . . . . 21

2.2.3 Density-based Clustering . . . . . . . . . . . . . . . . . 22

2.3 Community Detection Methods on Attributed Networks . . . . 22

2.3.1 Methods Based on Optimization . . . . . . . . . . . . . 24

2.3.2 Methods Based on Unifying Edge Weights . . . . . . . 26

2.3.3 Methods Based on Graph Augmentation . . . . . . . . 27

2.3.4 Methods Based on Core Expansion . . . . . . . . . . . 30

v



2.3.5 Methods Based on Statistical Inference . . . . . . . . . 31

2.3.6 Methods Based on Embedding . . . . . . . . . . . . . . 33

2.3.7 Methods Based on Late Fusion . . . . . . . . . . . . . 35

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 External Measures . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Internal Measures . . . . . . . . . . . . . . . . . . . . . 38

3 The Late-fusion Method 40

3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 The Fusion Algorithm . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Late Fusion on Networks with Numeric Attributes . . . 43

3.3.2 Late Fusion on Networks with Binary Attributes . . . . 45

4 Experiments 48

4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Synthetic Networks with Numerical Attributes . . . . . 51

4.2.2 Numeric attributes, Sina Weibo network . . . . . . . . 56

4.2.3 Binary attributes, Facebook networks . . . . . . . . . . 57

4.2.4 Effect of Parameter α . . . . . . . . . . . . . . . . . . . 60

4.2.5 Complexity of Late Fusion . . . . . . . . . . . . . . . . 61

4.3 Late Fusion via Consensus Clustering . . . . . . . . . . . . . . 63

5 Conclusion 67

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 68

References 70

vi



List of Tables

4.1 Network and community characteristics of synthetic networks. 50

4.2 Network and community characteristics of Sina Weibo network. 50

4.3 Network and community characteristics of Facebook networks. 50

4.4 Results of experiment group 1, std = 0.5, time is measured in
seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Results of experiment group 2, std = 1.5, time is measured in
seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Results of experiment group 3, no attribute redistribuion, time
is measured in seconds. . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Experimental results of different community detection methods
on Sinanet network. Time is measured in seconds. . . . . . . . 57

4.8 NMI of different community detection results on facebook net-
work. Late-fusion 1 refers to Louvain + unweighted virtual
graph with equal-edge thresholding, Late-fusion 2 refers to Lou-
vain + weighted virtual graph with median thresholding, Late-
fusion 3 refers to SIWO + unweighted virtual graph with equal-
edge thresholding, and Late-fusion 4 refers to SIWO + weighted
virtual graph with median thresholding. . . . . . . . . . . . . 58

4.9 ARI of different community detection results on facebook net-
work. Late-fusion 1 refers to Louvain + unweighted virtual
graph with equal-edge thresholding, Late-fusion 2 refers to Lou-
vain + weighted virtual graph with median thresholdingl, Late-
fusion 3 refers to SIWO + unweighted virtual graph with equal-
edge thresholding, and Late-fusion 4 refers to SIWO + weighted
virtual graph with median thresholding. . . . . . . . . . . . . 59

4.10 Running time of different community detection results on face-
book network, measured in seconds. Late-fusion 1 refers to
Louvain + unweighted virtual graph with equal-edge threshold-
ing, Late-fusion 2 refers to Louvain + weighted virtual graph
with median thresholding, Late-fusion 3 refers to SIWO + un-
weighted virtual graph with equal-edge thresholding, and Late-
fusion 4 refers to SIWO + weighted virtual graph with median
thresholding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



4.11 Ratio of number of communities detected to ground-truth on
facebook network. Late-fusion 1 refers to Louvain + unweighted
virtual graph with equal-edge thresholding, Late-fusion 2 refers
to Louvain + weighted virtual graph with median thresholding,
Late-fusion 3 refers to SIWO + unweighted virtual graph with
equal-edge thresholding, and Late-fusion 4 refers to SIWO +
weighted virtual graph with median thresholding. . . . . . . . 60

4.12 Effect of α, evaluated by NMI . . . . . . . . . . . . . . . . . . 61

4.13 Effect of α, evaluated by ARI . . . . . . . . . . . . . . . . . . 61

4.14 Late fusion without consensus clustering (CC) vs with CC.
Time is measured in seconds. . . . . . . . . . . . . . . . . . . 65

viii



List of Figures

1.1 Examples of lattice and random graphs. . . . . . . . . . . . . 2

1.2 Example of a complex network. . . . . . . . . . . . . . . . . . 2

1.3 Community structure in social networks. (1.3a) Zachary’s karate
club, a standard benchmark in community detection. (1.3b)
Collaboration network between scientists working at the Santa
Fe Institute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Visualization of my LinkedIn connection network. . . . . . . . 4

2.1 Visualization of the steps of the Louvain algorithm. . . . . . . 15

2.2 A network example with categorical attribute . . . . . . . . . 24

2.3 Figure in [99], two generative probabilistic models of statistical
relationship between graph G, attributes A, and communities
C. Squares represent observed variables and circles represent
latent variables that need to be inferred. . . . . . . . . . . . . 32

3.1 Illustration of the elbow method using a simple example . . . 45

4.1 Node attributes for three groups of experiment. Each color
represents a unique community . . . . . . . . . . . . . . . . . 53

4.2 Running time of Louvain, SIWO, Late Fusion and I-Louvain on
networks of different sizes . . . . . . . . . . . . . . . . . . . . 63

ix



Chapter 1

Introduction

1.1 Thesis Motivation

We are living in a world filled with complex systems that can be represented

as networks. For example, we have biological systems such as protein-protein

interactions [18], [79], [83], where proteins act as nodes and the interactions

between them are the edges in a network; In online social networking sites

such as Facebook or LinkedIn, every member can be seen as a single node

and users are linked by their friendships or professional connections; Another

notable example is the World Wide Web (WWW) [30], [32], where each web

page can be taken as a node, and the hyperlinks that redirect to other web

pages are directed edges of the WWW network.

All of the complex mentioned above share properties such as power law

degree distribution [1], [2], high clustering coefficient, assortative mixing [66]

and so forth. In this thesis we focus on the community structure [37] of real-

world networks. These topological properties reflect the real world systems

and do not appear in simple networks such as a lattice or a random graph (see

Figure 1.1). The object of our study is this kind of complex networks. Figure

1.2 gives an example of a complex network.

Among all of the features of complex networks, we are most interested in

the community structure of these networks. Loosely speaking, the notion of

community describes a subset of nodes in a network that have denser connec-

1



Figure 1.1: Examples of lattice and random graphs.

Figure 1.2: Example of a complex network.

tions with each other than nodes outside of the subset. In real networks, the

communities can be determined by a wide variety of possible group organiza-

tions, such as affiliation, friendship, interest, functional modules, etc. Figure

shows two examples of community structure in networks. We will further

discuss the definitions of communities in a network in Section 2.1.1.

Identifying the communities of a network can help us better understand

the structure of the network. Furthermore, it can lead to many substantial

applications. First, community detection can be beneficial to medical research.

Consider for example protein-protein interaction (PPI) networks. The com-

munities in PPI networks often correspond to proteins that have the same

or similar functions, and these proteins are expected to be involved in the

same processes. Detecting communities in PPI networks is crucial to the un-

2



(a) (b)

Figure 1.3: Community structure in social networks. (1.3a) Zachary’s karate

club, a standard benchmark in community detection. (1.3b) Collaboration

network between scientists working at the Santa Fe Institute.

derstanding of the processes that could be associated to cancer or metastasis.

Second, identifying communities can help improve the web services and search-

ing results. In WWW networks, web pages related to similar topics tend to

cluster into communities. Identifying these artificial clusters can be a comple-

ment to the PageRank algorithm and lead to more accurate and reasonable

Google ranking results [19]. Third, network communities can be utilized for

resource optimization. For instance, clusters of large graphs can be used to

efficiently store the graph data to handle navigational queries [3] and gen-

erate compact routing tables [84]. We can also mention other applications

of community detection, such as node classification, online advertising and

recommendation, link prediction, etc.

There have already been a great number of methods that find communities

of a network. We provide an overview of these methods in Chapter 2. These

traditional methods focus on the inhomogeneous distribution of edges and de-

tect communities based on the linkage of nodes, i.e., the structural information

of networks. However, today’s networks bear with massive information more

than just the connections between nodes. Most notably we draw our attention

to the attributes attached to each node. The attributes of a node can take in

a wide range of forms. It can be the content of a web page, the profile of an

3



online forum member, or the functionality of a protein. Figure 1.4 shows a vi-

sualization of my own LinkedIn connections network, where nodes are colored

by different attributes. We can see that when looking at different colors, the

corresponding node attributes exhibit different degrees of homogeneity, and

hence indicate different perspectives of identifying the community structure.

For instance, according to the connections, the connected part of the net-

work in Figure 1.4 can be partitioned into two modules, the larger one on the

lower left and the smaller one on the upper right. However by looking at the

countries of these nodes (Figure 1.4b), we notice that a small subset of nodes

located at the lower left of the the larger module have a different attribute

from the module that it belongs by connections. Figure 1.4c consolidate that

these people are not only from the same country, but also the exact same lo-

cation. Hence we may consider putting these nodes in a separate community.

(a) Nodes colored by industry (b) Nodes colored by country

(c) Nodes colored by location

Figure 1.4: Visualization of my LinkedIn connection network.

4



The presence of this additional attribute information has brought both

opportunities and challenges to the community mining task. First of all, we

believe that considering both connections and attributes of nodes in the detec-

tion of network communities can lead us to methods that identify communities

more accurately. Researchers have found a reciprocal, co-dependent relation

between the social influence represented by edges and the attribute homo-

geneity of nodes [45], [47], [48]. This relation states that nodes that are linked

together tend to exhibit similar attributes, and at the same time, nodes are

also more likely to have connections with similar ones than dissimilar ones.

More importantly, utilizing attribute information has great potential to indus-

trial impact. For example, consider again the social networking applications,

Facebook and LinkedIn. Clustering the users considering both their social

relationships and personal profiles is particularly useful for applications such

as user-targeted online advertising, job positions recommendation, candidate

hunting, and so on.

On the other hand, we are also faced with a few challenges when we want

to take advantage of attribute information. Though the homophily in social

networks has been extensively studied by social scientists [50], [62], heterophily

(disassortativity) can also occur in networks, where links between nodes have

dissimilar, or even opposite attributes. Example of such is friends with differ-

ent political orientations or social status. Our analysis throughout this thesis

will only focus on the homophily attributes of networks. Another challenge is

the fact that not all attributes are useful in detecting a community structure.

How to properly select and exploit from an abundant amount of attribute in-

formation is another hard problem has yet to be solved. Last but not least,

the lack of network datasets with ground-truth communities makes the evalu-

ation of community mining algorithms a very challenging task. For attributed

networks, the situation is even worse. We will address several commonly used

evaluation measures in Chapter 2

For convenience, from now on we refer to networks with node attributes

as attributed networks. The problem of community detection in attributed

networks has been in the spotlight of the field of data mining, as we will see

5



in Chapter 2 where we review the existing methods that have already been

proposed to tackle this problem. Most of the attributed community detection

algorithms in the literature follow an “early-fusion” manner, meaning that

attributes are exploited before the final community structure is identified. Very

few methods have used a “late-fusion” approach, which detects two sets of

communities, one based on the structure and the other based on the attribute,

independently. Later on, a merging strategy is applied to find the ultimate

set of communities that integrates the two sets of communities that have been

previously identified. We will elaborate on our proposed late-fusion method

in Chapter 3.

With all being said, we are fully motivated to devote more efforts to the

problem of community detection in attributed networks.

1.2 Thesis Statements

Our work in this thesis focuses on the methodology of community detection

on attributed networks. It addresses the following statements:

• With the burgeoning of online social networks, traditional community

detection methods based solely on node linkages are no longer able to

accurately find online social communities with high accuracy, since node

attributes play an increasingly significant factor in the formation of social

communities. Methods that take the attribute information into consid-

eration can greatly improve the quality of the detected communities.

• While it has been rarely explored before, the late-fusion approach pro-

vides a powerful addition to the toolkit of attributed community detec-

tion. It has the following advantages when compared to other approaches

to the same problem:

– Simplicity: the frame of our late fusion approach is very easy to

understand and implement. It does not require arduous steps of

pre-processing and/or post-processing.

6



– Flexibility: since late fusion is a realization of combining commu-

nity detection based on link structure with clustering based on at-

tribute similarity, it can take advantage of the existing methods

on both sides. Moreover, we also introduce a weighting parameter

to leverage the influence of structural information against attribute

information in our framework. Hence depending on the nature of

the network under study, people can accordingly choose suitable

algorithms and/or the best weight.

– Accuracy: despite being simple and flexible, the late-fusion method

that we propose in this thesis exhibits great performance on a wide

range of real and synthetic networks when evaluated against avail-

able ground-truth communities.

– Scalability: unlike many other attributed community detection al-

gorithms that have a major drawback of being time-consuming, our

approach successfully circumvent this issue by utilizing matrix op-

eration which is scalable and easily parallelizeable by MapReduce

[29].

• Our late-fusion method identifies network communities with the follow-

ing two properties:

– Structure: nodes belonging to the same community have more dense

connections than nodes across different communities.

– Attribute: nodes belonging to the same community have more ho-

mogeneous attributes than nodes across different communities.

1.3 Thesis Contributions

We propose a novel community detection method applied to attributed net-

works that follows a late-fusion approach. A great many algorithms for at-

tributed community detection have been devised over the years (see Section

2.3), however they inevitably require careful and often complex design to incor-

7



porate node attributes into the process of community detection. Our method,

on the other hand, chooses to take advantage of the abundant existing commu-

nity detection algorithms based on node connections and also the clustering

algorithms based on node attributes.

Our method starts with identifying two sets of communities (i.e., two par-

titionings over a network), denoted by Ps and Pa where the subscript a stands

for “attribute” and the subscript s stands for “structure”. Ps and Pa are

obtained by employing a community detection algorithm and a clustering al-

gorithm to utilize the structure and the attribute respectively. Based on the

community assignment of the two partitionings, we can compute two corre-

sponding matrices Ds and Da with binary entries, where dij = 1 if nodes i and

j are assigned to the same community, and otherwise dij = 0. The “fusion”

part happens in the next step where we sum up Ds and Da to form an inte-

grated adjacency matrix D. By careful design, we can take D as an adjacency

matrix, based on which an integrated graph is built whose edges represent

the agreement between the two partitions. Now we can employ community

detection algorithms such as Louvain [10] or SIWO [36] to find the set of com-

munities on the integrated graph, which will be the final detected communities

that have the information of both structure and attribute combined together.

Networks exhibit various types of attributes. The attributes can be nu-

merical (such as people’s age, salary, etc.), categorical (for instance, people’s

occupation and education) or binary (whether or not a person has been on a

sport team, etc). Noticing that we can easily translate a categorical attribute

to a binary one by flatting a multi-label variable to a one-hot vector, we put

binary and categorical attributes in the same group and devise different ap-

proaches to treat numerical and binary/categorical attributes separately. As

for numerical attributes, we can easily apply clustering algorithms such as

k-means [57] or DBSCAN [31] to get the communities (i.e., clusters) based

on the node similarity. When it comes to binary/categorical attributes, we

build another virtual graph. On the virtual graph, the existence of an edge

between a given pair of nodes shows that these two nodes are similar enough

in terms of attribute.Then the communities that reflect attribute similarity

8



can be retrieved by applying classic community detection algorithms on this

virtual graph.

In the fusion stage, the integrated adjacency matrix is computed by the

equation D = αDs + (1− α)Da, where α is a real value range from 0 to 1 to

leverage the influence between the attribute and the structure. This hyper-

parameter gives users the freedom to put different weights on the two sources

of information according to their preferences or any prior knowledge about the

network.

1.4 Thesis Organizations

The contents of this thesis is organized as follows: In Chapter 2, we review

related work and divide our reviews into three parts. First, we revisit tradi-

tional community detection algorithms that only consider node connections

(Section 2.1). Second, we review several representative unsupervised cluster-

ing algorithms that consider only node attributes (Section 2.2). At last, we

introduce a typology of community detection methods that take both structure

and attributes into account (Section 2.3). We propose our late-fusion method

in Chapter 3, where we introduce two late-fusion algorithms that are devoted

to numeric and binary attributes respectively. Then in Chapter 4, we provide

a thorough empirical study on a series of real and synthetic network datasets.

By comparing the performance of our method against the others, we show the

strength and weakness of each method, and prove our earlier statements. At

last, we summarize our work and point out several future directions in Chapter

5.

9



Chapter 2

Background and Related Work

To figure out how to combine structure and attribute together, we need to first

understand how they have been used in separation. Therefore, in this section,

we review two aspects of work in the literature: classic community detection

methods based on linkage of nodes (Section 2.1), and classic unsupervised

clustering based on feature vectors of data points (Section 2.2). Then we review

previous methods that find communities using both structure and attribute

information, in Section 2.3. At the end of this chapter (Section 2.4), we discuss

different evaluation metrics that measure the quality of communities.

2.1 Community Detection Based on Node Con-

nections

2.1.1 Notations

The first important question that needs to be answered is the definition of

community and community detection. As a matter of fact, the definition of

community still evolves depending on the specific problem one tries to solve or

application one has in mind. To better formulate the problem, let us introduce

several useful notations that will be used throughout the manuscript. In this

thesis we use capital letter G to denote a network, or interchangeably, a graph.

Following the convention, a network G is written as G = (V,E) where V refers

10



to the set of nodes belonging to G, and E stands for the set of edges that link

the nodes. |V | and |E| are used to denote the number of nodes and edges. We

use calligraphy letter P to represent a partitioning over the node set V , and it

can be expressed as P = {C1, ..., Ck} where each Ci ∈ P forms a community

of G and k denotes the number of communities.

2.1.2 Definitions of Network Communities

The definitions of communities have been evolving over the time. Recently,

Fortunato and Hric [35] summarized a set of variables that people often use to

define network communities. These variables are categorized into three classes,

where the first class comprises measures based on internal connectedness, the

second class includes measures based on external connectedness, and the third

class contains measures that combine internal and external connectedness.

As for internal connectedness, interal degree kintC is defined as the sum of

internal degrees of nodes belonging to community C. Then the internal edge

density δintC is given by the ratio between the number of internal edges of C

and the number of all possible internal edges, which is expressed as δintC =
kint
C

nC(nC−1)
, where nC is the number of nodes in C. As for external measures,

we have the counterpart of kintC , kextC , which is the sum of external degrees of

nodes belonging to C. The external edge density δextC is the ratio between the

number of external edges of C and the number of all possible external edges:

δextC =
kextC

nC(|V |−nC)
. Finally, conductance is the measure combining internal and

external measures by the ratio
kextC

kint
C +kextC

.

From a classic point of view, definitions of communities seek to either max-

imize the internal connectedness or minimize the external connectedness. For

example, clique is a popular concept that requires every node is connected to

all other nodes in the same community [60]. Despite a clique has the largest

possible internal connectedness, communities usually are not complete graphs,

hence cliques cannot be considered a good candidate for a community defini-

tion. To relax the strict requirement of cliques, we have alternative definitions

based on reachability and diameter, which states that there should relatively

11



be short paths between two members from the same community. n-clique[59],

n-clans and c-clubs [64] are three variants falling into this class. A proper

definition of network communities should consider both internal and external

connections of nodes, i.e., the number of internal edges should be larger than

the number of external edges. Inspired by this idea, lots of evaluation measures

have been proposed. Here we briefly introduce a measure called modularity,

proposed by Newman and Girvan [69], and is deemed as one of the most effec-

tive metric to define and evaluate community structure. Modularity compares

the node degree distribution of each community with the expected degree dis-

tribution. This measure is based on a null model proposed by Newman and

Girvan, which is a randomized version of the original graph where edges are

rewired at random, but the expected degree of each node is kept the same. For

example, given a network G = (V,E), the expected number of edges between

two nodes i, j with degree di, dj is
didj
2|E| . The concepts of modularity and its

applications will be further discussed in later sections.

There are also other types of definitions for network communities. We can

mention the structural equivalence [58] which states that two nodes belong

to the same community if they have identical neighbors, and the automor-

phic equivalence [13] which assigns the same community to nodes that occupy

indistinguishable structural locations in a network. The problem with equiva-

lence is that most empirically observed networks hardly have any nodes that

are structurally or automorphically equivalent. In this thesis we formulate our

community detection problem as follows: Given a network G = (V,E), we aim

at finding a partitioning P = {C1, ..., Ck} of V into k subgroups such that for

each group C, (1) nodes belonging to the same community are densely con-

nected, and (2) nodes from distinct communities are loosely connected. By

definition, the partitioning P must also satisfy the following three conditions:

1. ∪i∈{1,2,...,k}Ci = V

2. Ci ∩ Cj = ∅, ∀i, j ∈ {1, 2, ..., k}, i 6= j

3. Ci 6= ∅,∀i ∈ {1, 2, ..., k}.

12



There are many methods that are able to find such partitionings of a net-

work. We will devote the following several sections to these algorithms. It

should be noted that in real-world networks, communities can have overlaps,

since a node may belong to more than one group. This is most commonly

seen in social networks. For example, an individual can belong to a com-

munity defined by the university goes to, and a different community defined

her high school [51]. We will not emphasize on approaches that find overlap-

ping communities, but interested readers can refer to [94] to learn more about

overlapping community detection in networks.

2.1.3 Graph Partitioning

Algorithms that fall into this category aim at dividing the original graph G

into k groups, so that the number of edges (which is called cut size, denoted by

R) running between communities is minimized. We introduce two algorithms

in this section: the Kernighan-Lin algorithm [44] and the spectral bisection

method [7].

The Kernighan-Lin algorithm indirectly minimizes the cut size by maxi-

mizing a value Q, which represents the difference between the number of edges

within the groups and the number of edges between the groups. It starts by

partitioning the graph into two groups S1 and S2 with predefined sizes. Then

the subsets of S1 and S2 that have the same number of nodes are swaped

between S1 and S2. By conducting different swaps repeatedly, we can find a

partitioning P of V that gives the largest value of Q. This approach can be

extended to find a partitioning of V that contains more than two groups [87].

The spectral bisection method uses the technique of eigen-decomposition

of the Laplacian matrix to represent and minimize cut size R. Given a par-

titioning P of graph nodes V that splits all the nodes of graph G into two

groups, S1 and S2. The spectral bisection method constructs a vector s of

length |V |, whose value v = si = 1 if node i belongs to group S1, and si = −1

when node i belongs to group S2. Therefore the cut size R can be expressed

13



by vector s and the Laplacian matrix L, written as:

R =
1

4
sTLs (2.1)

Note s can be written as a linear combinations of the eigenvectors of L, i.e.,

s =
∑

i aivi, where vi, i = 1, ..., n are the eigenvectors. Hence

R =
∑
i

a2iλi (2.2)

where λi is the eigenvalue corresponding to eigenvector vi. It turns out that

the minimum of R can be approximated by λ2 if λ2 is close enough to zero.

The group assignment of nodes in graph G can be set according to the sign of

v2.

2.1.4 Agglomerative Hierarchical Methods

In most cases of community detection, we do not know the exact number of

communities in the graph. Hierarchical methods provide an alternative class of

solutions to the problem. The implementations of hierarchical algorithms can

be further classified in two categories: agglomerative algorithms and divisive

algorithms. We devote this section to agglomerative methods. We will come

to divisive methods in the next section.

Agglomerative methods follow a bottom-up process in which nodes are ini-

tially treated as singleton community. Then communities that have sufficient

similarity are iteratively merged until an objective function is optimized, or a

preset number of communities have been found, or there is no more merging

that can be done. We further address three kinds of methods that follow this

approach: methods based on modularity, methods based on dynamics and the

SIWO approach.

Methods Based on Modularity

Modularity is a quality function firstly proposed by Newman and Girvan [69].

It measures the goodness of community partitioning based on the comparison

of degree distribution in each community with the expected distribution in

14



Figure 2.1: Visualization of the steps of the Louvain algorithm.

a null model. As stated earlier in Section 2.1.2, the null model is a random

re-organization of the edges that follows the node degree distribution of the

original network. The classic form of modularity is expressed as:

Q =
1

2|E|
∑
ij∈V

(Aij −
didj
2|E|

)δ(Ci, Cj), (2.3)

where Aij is the entry of the adjacency matrix, di and dj are the degrees of

nodes i and j and
didj
2|E| corresponds to the expected number of edges joining

nodes i and j, δ is the Kronecker function that takes the value of 1 if Ci = Cj

and 0 otherwise, and Ci and Cj are the communities that i and j belong to.

Since the optimization of modularity is NP-hard [14], a wide variety of ap-

proaches have been proposed to find decent approximations of the maximum

modularity, among which the Louvain method [10] is one of the most popular

and successful methods. The algorithm of Louvain starts by assigning a differ-

ent community to each node of the network. Then for each node i, move i to

the community which its neighbor j belongs to, to achieve the maximum mod-

ularity gain. The second phase is creating a weighted super-network, in which

the nodes are the communities obtained from the first phase. This two-phase

process is conducted repeatedly until there is no positive gain of modularity.

Figure 2.1 presents a graphical illustration of the Louvain algorithm.

15



The most notable advantage of Louvain method is that experimentally

it has been showed grow linearly with the network size. However, it fails

to solve an inherent defect in modularity, the resolution limit. Fortunato

and Barthelemy [34] state that modularity optimization may fail to identify

modules smaller than a scale which depends on the total size of the network

and on the degree of interconnectedness of the modules. Nowadays, community

detection algorithms that are improvements upon the Louvain method are still

being actively studied by researchers.

Methods Based on Dynamics

Dynamic process on a graph is also useful for detecting communities. Let us

consider a random walk on a graph G as a dynamic process. At each time

step, a walker is at a node and chooses to move to the next node randomly

and uniformly from its neighbors. Therefore a random walker tends to “get

trapped” into densely connected parts of the network, which reveals the com-

munity structure. In this section we introduce two representative methods of

this class, Walktrap [74] and Infomap [80].

Walktrap defines the similarity distance between two nodes i and j by the

probability that a random walker moves from i to j in a fixed number of steps

t. Having this distance well-defined, the algorithm also starts by assigning

a different community for each individual node. Then the Ward hierarchical

clustering algorithm [91] is applied where it repeatedly chooses two commu-

nities to merge based on their similarity distance, and updates the distances

between the new communities. Walktrap has a computational complexity at

O(|V ||E|H) with H being the height of the hierarchical dendrogram, so it does

not scale well on large networks.

Infomap is an extension of the Louvain algorithm to minimize a mapping

equation developed by Rosvall and Bergstrom [80], who use the random walk

on a network as a proxy for information flows in real systems. They construct

a mapping equation that connects the problem of finding the community struc-

ture in a network with the problem of encoding the network structure with as

16



little entropy loss as possible. Comparing with modularity optimization meth-

ods, Infomap runs at O(|E|) and is suitable to weighted and directed graphs

In particular, it naturally fits in network data where links represent patterns

of movement among nodes.

The SIWO Approach

The aforementioned two approaches have major drawbacks. Fortunato and

Barthelemy [34] showed that modularity suffers from the resolution limit,

meaning that by optimizing modularity, communities that are smaller than

a scale cannot be detected. The field-of-view limit [82] is in contrast to the

resolution limit which results in overpartitioning communities with a large di-

ameter. Schaub et al. [82] showed that both modularity and the map equation

are affected by the field-of-view limit.

SIWO, proposed by Gharaghooshi[36], is short for Strong In, Weak Out.

SIWO is a new objective to replace the modularity by using a novel concept

of edge strength that is defined according to the number of shared neighbors

between a given pair of nodes. Consider an edge eij = (i, j) that connects

nodes i and j. Let Sij denote the number of shared neighbors between i and j.

Define Smax
i = maxj:(i,j)∈E Sij, which is the maximum value of Sij with fixed

node i. In the same way we can define Smax
j . Now the strength wij of edge eij

is given by

wij =

Sij
2

Smax
i +1

+ 1
Smax
j +1

− 1, if CC(i) ≥ CC(j)

Sij
2

Smax
j +1

+ 1
Smax
i +1

− 1, otherwise
(2.4)

where CC(·) refers to the local clustering coefficient [92].

Having the edge strength well defined, the algorithm follows the same op-

timization manner as in Louvain with the modularity replaced by SIWO mea-

sure: ∑
i,j∈V

wijδ(Ci, Cj)

2
(2.5)

with δ(·) being the Kronecker function which also appears in Equation 2.3.

17



2.1.5 Divisive Hierarchical Methods

Contrary to agglomerative methods, divisive methods follow a top-down pro-

cess. We introduce two representative algorithms, proposed by Girvan and

Newman [37], and Radicchi et al. [77]. The shared idea of these two algo-

rithms is that they define an edge measure to identify edges that are most

likely to run across communities.

Newman and Girvan proposed edge betweeness, which is the number of

shortest path that pass through a given edge e. Therefore edges with large

values are more likely to be the“bridge” of communities. The algorithm iter-

atively removes edges with the largest value of betweeness, which will divide

the original graph into smaller communities. Since the concept of edge betwee-

ness needs to look up all possible node pairs, it is computationally expensive,

running at O(|V ||E|2). Different from [37], Radicchi et al. only considered

local measure of edges and proposed edge-clustering coefficient, defined as the

number of triangles to which a given edge belongs, divided by the number of

triangles that might potentially include it. Following the same procedure as

[37], the algorithms runs at O(|E|2).

2.1.6 Spectral Clustering

Spectral clustering [90] can be used to cluster data points based on their feature

vectors. Since the application of spectral clustering requires to construct a

similarity graph, spectral clustering is naturally extended to graph objects

and has become a very popular algorithm to detect communities in networks.

The core idea of spectral clustering is to find the eigenvalues (also known

as spectrum) of the Laplacian matrix, which is computed as

L = diag(d)−W (2.6)

with diag(d) being a diagonal matrix where the entities are the degree of nodes

of G. W is the (weighted) adjacency matrix. Let Λ ∈ R|V |×p denote the matrix

that contains the eigenvectors e1, ..., ep of L as the columns. Then every node

of the original graph G is now embedded to a p-dimensional feature space

18



and represented by yi ∈ Rp(i = 1, .., |V |) corresponding to the i-th row of

Λ. Next, k-means algorithms [61] can be applied to cluster the nodes into k

communities.

Since spectral clustering depends on a clustering algorithm such as k-

means, it usually requires prior knowledge like the number of communities.

Moreover, in real networks that are very sparse, obtaining the eigenvectors of

the Laplacian matrix becomes a hard problem [35].

2.1.7 Methods Based on Statistical Inference

Statistical inference is a powerful tool in community detection. The stan-

dard methods aim to fit the data into a model to probabilistically depict the

relations between nodes. For example, Bayesian inference [93] presumes a gen-

erative statistical model P with parameter set Θ, and tries to find the Θ that

maximizes the likelihood that the observed data is produced by the statistical

model given Θ, P (D|Θ). This can be represented by a probabilistic graphical

model, where the communities of the observed data are the latent variables to

be inferred.

Another popular generative method of this kind is called Stochastic Block-

models [39]. Given a graph G = (V,E), the community assignment of the

nodes is indicated by a set of labels {C}, where Ci = 1, 2, ..., k is the commu-

nity label of node i. The corresponding blockmodel is expressed by a k × k

block matrix B : BCiCj
= 1 if edges between classes Ci and Cj is allowed,

otherwise it is zero. The aim is to find the set of communities {C} as well as

the matrix B that best fits the adjacency matrix of the graph G.

Our review of classic community detection algorithms is by no means exhaus-

tive, since there have been numerous work devoted to this area. We recom-

mend interested readers go to more extensive literature review of community

detection such as [33] and [35].

19



2.2 Clustering Based on Node Attributes

Unlike traditional community mining algorithms which group network nodes

based on their connections, clustering algorithms aim at grouping a set of

data samples according the similarity between their features. The features of

the samples are embedded into a N -dimensional Euclidean space and hence

the similarity between them is often measured in terms of their distances. The

goal of clustering is to group the data samples into clusters so that (1) samples

within each cluster are similar to each other, and (2) samples from different

clusters are dissimilar. To fit network data in the context of clustering, we

regard the nodes as the samples, the attributes associated with every node as

features of each sample. In this section, we introduce a few commonly used

clustering algorithms that are based on the similarity of node attributes.

2.2.1 Agglomerative Hierarchical Methods

In Section 2.1.4 we presented some agglomerative hierarchical methods such as

Louvain and SIWO. The gist of Louvain and SIWO is to optimize an objective

function which encourages the set of densely connected nodes to form into a

community. Here we introduce another class of hierarchical clustering methods

which focus on the similarity between nodes rather than their connections. A

representative is called linkage methods [43].

The linkage methods can be summarized as the following four steps:

1. Start with |V | clusters where each node is treated as a singleton cluster:

Ci, i = 1, · · · |V |. Compute a |V | × |V | symmetric distance matrix D.

2. Search the distance matrix to identify the closest pair of clusters, Ci and

Cj. Denote the distance between Ci and Cj by dij

3. Merge Ci and Cj to form a new cluster Cij. Update the distance matrix

according to a pre-chosen aggregation measure.

4. Repeat Step 2 and 3 until (a) a preset number of clusters k has been

reached, or (b) all nodes are in a single large cluster.

20



Linkage methods differ in the measure of distance between clusters, i.e., the

computation of distance matrix D. The three most commonly used linkage

methods are: single linkage, where the minimum distance of any pair of nodes

coming from two clusters is defined as the distance between that two clusters;

complete linkage, which takes the maximum distance between two nodes from

two clusters as the distance between that two clusters; and average linkage,

which is similar in spirit of single linkage and complete linkage, but instead

uses the average distance between all pairs of nodes coming from two different

clusters.

2.2.2 Centroid-based Clustering

Centroid-based clustering is sometimes also referred to as partitional cluster-

ing, which bears the same idea as graph partitioning described in Section 2.1.3

that divides data samples into a predefined number of k non-overlapping clus-

ters. The clustering process is performed by minimizing a cost function based

on the distance of each sample to its clustering center, called centroid. The

most popular algorithm of this approach is k-means clustering, proposed by

MacQueen et al. [61]. K-means clustering aims to minimize the total intra-

cluster distance, defined as

k∑
i=1

∑
xj∈Ci

‖xj − ci‖2 (2.7)

where xj is the feature vector of a sample j, Ci is the cluster to which j belongs,

and ci is the feature vector of the centroid of Ci.

Looking for the global optimum of 2.7 is an NP-hard problem. But we can

approximate the solution with fast convergence by Lloyd algorithm [57]. The

stpes are described as follows:

1. Assign k centroids for the data samples, usually at random or based on

some prior knowledge.

2. Proceed through each sample to assign it to the cluster whose centroid

is the nearest. Recalcualte the centroids after every sample has been

21



assigned to a cluster.

3. Repeat step 2 until the centroids do not change any more.

There are a couple of restrictions when using k-means. First, the k-means

method requires prior knowledge of the number of real communities, which

is not always available in practice. Second, to circumvent the local minimum

resulted from Lloyd’s algorithm, it is recommended that we perform multiple

runs of the algorithm with random centroid initializations. Another caveat of

using k-means is that it assumes that the clusters are convex shaped.

2.2.3 Density-based Clustering

Density-based clustering algorithms identify clusters as areas of high density

separated by areas of low density. Therefore, as opposed to k-means, density-

based methods are able to detect clusters with any shape. The most represen-

tative density-based clustering algorithm is DBSCAN [31].

There are two important parameters of the DBSCAN algorithm, the mini-

mum number of samples m and the distance threshold ε. These two parameters

altogether determine when a set of data points should be regarded as dense.

First, a core sample is defined as a sampled data point such that there exists

at least m other data points within a distance of ε. These m data points are

defined as the neighbors of the core sample. Then the cluster is determined

by recursively starting with a core sample, then adding all of its neighbors to

the set of core samples, identifying the neighbors of the new core samples, and

so on. Any node that is not a core sample is regarded as an outlier.

2.3 Community Detection Methods on Attributed

Networks

The methods discussed Section 2.1 and 2.2 only consider a single source of

information, either node connections or node similarities based on attributes.

22



We would like to expand our review of community detection literature to the

approaches that take both sources of information into account.

The goal of community detection in attributed network can be formalized

as: Given an attributed graph G = (V,E,A), where V is the set of nodes, E

denotes the set of edges, and A represents the set of attribute vectors, the task

consists of building a partitioning P = {C1, C2, ..., Ck} of V in k communities

such that:

• nodes in the same community are densely connected and similar in terms

of attributes ;

• nodes from different communities are loosely connected and dissimilar in

attributes.

Let us use a simple example to better illustrate the idea of community

detection in attributed graph (Figure 2.2). Figure 2.2a presents a graph whose

nodes display two types of attributes, which we use grey and black colors to

represent. If we employ traditional community detection methods based on

the linkage, we would get a partitioning as shown in Figure 2.2b. On the other

hand, if we only consider the attributes, it will lead us to results shown in

Figure 2.2c. If we consider both the attributes and the connections, probably

the result would look like Figure 2.2d. This example tells us that by looking

at different information and metrics, we may get different partitionings even

on the same network.

There is abundant work focusing on community detection in attributed

networks, with different ideologies and applications. According to the ap-

proach where node connections and attributes are exploited, we categorize

these methods into the following seven classes: methods based on optimiza-

tion (Section 2.3.1), methods based on unifying edge weights (Section 2.3.2),

methods graph augmentation (Section 2.3.3), methods based on core expansion

(Section 2.3.4), methods based on statistical inference (Section 2.3.5), meth-

ods based on embedding (Section 2.3.6), and methods based on late fusion

(Section 2.3.7).

23



(a) Original graph (b) Structure-based

(c) Attribute-based (d) Structure and attribute

Figure 2.2: A network example with categorical attribute

2.3.1 Methods Based on Optimization

Methods that fall into this group follow the approach where node connec-

tions and similarities are fused into an objective function. By optimizing this

objective function, one can find a network partitioning that integrates both

sources of information. For example, PICS [4] is a parameter-free algorithm

that encodes a connectivity matrix A and a binary feature matrix F into a

cost function. Many other methods introduce the concept of node similarity

into the original function of modularity. For instance, Cruz et al. [24] include

an entropy-based data clustering algorithm in the optimization of modualrity.

24



They aim at finding the partitioning with low entropy and high modularity.

Dang and Viennet [26] follow the similar idea where a term representing the

node similarity: S(i, j) is added to the modularity function. Then a weighting

parameter α ∈ [0, 1] is used to decide the contribution of structural and at-

tribute information. Asim et al. [5] combine the gain in the modularity with

multiple common users’ attributes to detect communities in the network. In

particular, we would like to detail an algorithm following this approach called

I-Louvain, proposed by Combe et al. [22].

Let us first introduce the inertia based modularity : Given a partitioning

P = {C1, ..., Ck} of the node set V into k disjoint communities, the quality

measure Qinertia(P) is defined by

Qinertia(P) =
∑

(v,v′)∈V ·V

[(I(V, v) · I(V, v′)

(2|V | · I(V ))2
− ‖v − v

′‖2

2|V | · I(V )

)
· δ(Cv, Cv′)

]
(2.8)

In Equation 2.8, the inertia I(V, v) of V through v is equal to the sum of

the squared Euclidean distances between v and other nodes in V : I(V, v) =∑
v′∈V ‖v − v′‖2. The inertia I(V ) of V through its gravity center g, which is

also called the second central moment in statistics, is a homogeneity measure

defined by I(V ) =
∑

v′∈V ‖v− g‖2. Cv denotes the community of nodes v and

δ is the Kronecker function which equals 1 when Cv and Cv′ are the same,

and equals 0 otherwise. Based on the inertia modularity, the optimization

objective of the I-Louvain method is given by:

QQ+(P) = QNG(P) +Qinertia(P) (2.9)

with QNG being the Newman modularity [67].

The optimization of Equation 2.9 is similar to those in the Louvain method

[10] which includes a two-phase procedure. The first phase is to repeatedly and

sequentially move each node to the community of its neighbor to achieve the

maximum increment of QQ+ and the corresponding community partitioning

P , and the second phase is to merge all the all the within-community nodes as

a super node in preparation for community adjustment in the next iteration. It

should be noted that in the second phase, the attribute distance D also needs

25



to be merged. In the supernetwork G′ created by the second phase of Louvain,

the distance D′(x, y) between two nodes x, y in G′, which corresponds to two

communities of G obtained from the first phase, is given by

D′(x, y) =
∑

(i,j)∈V×V

D(i, j) · δ(τ(i), x) · δ(τ(j), y) (2.10)

where the function τ gives the mapping of a node v ∈ V to the node v′ ∈ V ′

which corresponds to the community of v in P .

It has been shown that I-Louvain outperforms k-means and Louvain meth-

ods in terms of NMI on real and synthetic networks. Since I-Louvain is an

inheritance of Louvain, the method is also very efficient as Louvain, in that in

practice, the time complexity grows linearly with the network size.

2.3.2 Methods Based on Unifying Edge Weights

Methods of this kind follow the idea of integrating node attributes into edge

weights. They design a similarity measure of the node attributes and later this

measure is used to (re-)weigh the edges in the network. Once the edges are

(re-)weighted, existing community detection algorithms that can be applied to

weighted networks are employed to find the communities.

Neville et al. [65] proposed a matching coefficient similarity measure that

counts the number of attributes that two connected nodes i and j have in

common. Matching coefficient is only applicable to networks with categorical

node attributes. Later on, Steinhaeuser and Chawla [85] extended matching

coefficient measure by defining the weight between two nodes i, j as wij =

1 − αt|ft(i) = ft(j)| for continuous attribute at, with αt being a normalizing

parameter corresponding to attribute at.

Cruz et al. [25] put forward another way to modify the weights of edges

according to the attribute similarity between nodes. To begin with, they use

self-organizing map (SOM, [46]) to discover groups of nodes that have similar

attributes. If a pair of nodes i, j belong to the same group, the weight of

the edge that connects them is changed to a value proportional to a constant

α > 1. In the last step, the network communities are identified using the

26



Louvain method.

There are other methods following the same approach. For example, Combe

et al. [21] used Euclidean and cosine distance to obtain new edge weights. But

all of these methods share a major drawback, that only the pairs of nodes that

are initially connected will be affected. Nodes that are disconnected will be

ignored and will probably be assigned to different communities regardless of

how close they are in terms of attributes.

2.3.3 Methods Based on Graph Augmentation

Graph augmentation refers to methods that deal with attribute by adding

virtual edges or nodes to the original graph, which results in an augmented

graph. Example of graph augmentation methods can be found in [42], [81],

[104], [105]. Next we detail some representatives of them.

The COmmunity Discovery Inferred from Content Information and Link-

structure (CODICIL) is a method proposed by Ruan et al. [81]. Given an

undirected graph G with each node being characterized by a term vector t ,

the algorithm firstly utilizes attribute information by generating content edges

based on the cosine similarity between the TF-IDF vectors of the content

vectors, using the top-k criteria. Secondly, a new graph is formed by sampling

from the union of content edges and topological edges with a bias towards

locally relevant ones, in order to only keep the edges that are relevant in local

neighborhoods. In the sampling procedure, the authors look at the neighbors

ngbr(v) = {ui} of each node v, compute the Jaccard coefficient of ngbr(v)

and each ngbr(ui) as a topological similarity between v and its neighbors ui,

and also compute their content similarity using TF-IDF vectors. Then the

topological and content similarities are combined with a weighting parameter

α. For each node v in the graph, only
√
|ngbr(v)| number of edges are retained

in terms of their aggregated similarity values. At last, standard community

discovery algorithms are applied to the final version of graph.

The time complexity of the CODICIL algorithm is O(|V |2 log|V |). In the

paper, the CODICIL method is applied to unweighted graphs with textual at-

27



tributes. But it is claimed by the authors that the algorithm can be extended

to weighted graphs by changing the aggregated similarity to the product of the

aggregated similarity and the original edge weight. It can also be extended to

categorical attribute since attribute assignment of a node can be represented

by an indicator vector, meaning whether a term exists or not.

kNN-enhance [42] shares the same idea as CODICIL as it also looks at the

k objects that are most similar in terms of attributes to a specific node v.

However in the next step, sampling is replaced by adding directed edges from

v to one of its k-nearest neighbors if there does not exit a structural link be-

tween them. To measure the attribute similarity between the nodes, the cosine

similarity xi · x′j (xi,xj are the normalized attribute vectors of nodes i, j) is

used for nodes with binary attributes, and 1−‖xi− xj‖ is used for numerical

attributes, where ‖xi − xj‖ is the normalized Euclidean distance between xi

and xj. After the kNN-enhanced network is established, the authors used a

K -rank-D method [54] which is based on centrality and dispersion of nodes, to

select the community centers. Later on, two attributed community detection

methods, kNN-Kmeans and kNN-nearest, are used to perform the community

detection tasks on real and synthetic datasets. kNN-Kmeans uses the strat-

egy of the K-means method, which iteratively updates the community centers.

kNN-nearest assigns each remaining node to the same cluster as its nearest

neighbor of higher Pagerank centrality.

Zhou et al. [104] developed an attributed communiyt detection algorithm

based on both Structure and Attribute similarities, called SA-Clustering.

They utilize attribute information to add virtual nodes and edges to the origi-

nal graph, hence create an attribute-augmented graph. They also take into ac-

count the fact that structural edges as well as different kinds of attribute edges

usually have distinct levels of importance, i.e., different types of edges should

have different weights. So they propose a weight self-adjustment method to

learn the degree of contributions of different attributes.

Firstly, to integrate the structural and attribute similarities into a unified

28



framework, the method starts by inserting a set of attribute nodes to the origi-

nal graph G. An attribute node vjk represents an attribute-value pair (aj, ajk),

which means that the attribute aj takes the value of ajk. The attribute node

vjk is connected to a structural node vi when vi has the value ajk on its at-

tribute aj, and are isolated otherwise. In this way the SA-Clustering creates

an augmented graph Ga. Next, the authors define a probability transition-

ing matrix over Ga in terms of the initial weights assigned to the edges, and

based upon which the node closeness is measured by a random walk distance.

The optimization objective function aims to maximize the between-community

random walk distance. A k-medoids clustering approach is used to partition

the graph Ga and the edge weights are iteratively updated via a majority vote

mechanism till convergence.

Though SA-cluster is proven to be able to find communities where nodes

within the community exhibit high density and homogeneity, efficiency be-

comes a major issue of this method. The random walk distance calculation

involves matrix multiplication, which has a time complexity of O(|V |3), and

is repeatedly calculated to update the edge weights. To overcome the com-

putational bottleneck in SA-Cluster, Zhou et al. [105] proposed Inc-Cluster,

which significantly increases the computational efficiency of the SA-Cluster.

Inc-Cluster seeks to avoid the repeated calculation of random walk dis-

tance in the clustering process in SA-Cluster algorithm. It is observed that

the weights only change for attribute edges, but not for the structural edges.

The authors develop an algorithm that divides the transition probability ma-

trix into submatrices and incrementally update each one such that only the

non-zero elements in the increment matrix of random walk distance 4R are

calculated. The upper bound of the calculation of the non-zero elements is

O(|V |2) and the lower bound is O(|V |). Experiment results show that Inc-

Cluster greatly enhances the efficiency while maintaining the clustering quality

of SA-Cluster.

29



2.3.4 Methods Based on Core Expansion

Methods discussed in this section follow a sequential approach to find com-

munities in attributed networks. They first detect a set of core nodes for each

community, based on either the linkage or the attribute of nodes. Later on

they employ a technique to expand the sets of core nodes to form the final

communities.

A representative method of this class is developed by Li et al. [53]. They

propose a four-step method that is applied to textual data. The method starts

by a core probing process, in which they identify representative nodes as com-

munity cores based on the relations. The cores are characterized by documents

that are frequently referenced. In the core probing step, a parameter t is used

as a filtering threshold for the core members. Next, a core merging process

is adopted to alleviate the sensitivity to the initial set of t. This merging

process is based on the topical similarity between documents, in which the au-

thors firstly find candidate cores that meet the criterion of having at least one

overlapping entity. Then they apply Latent Dirichlet Allocation (LDA) on all

candidates to study the topical similarities and decide which candidate cores

should be merged. The initial communities are formed in this step. After-

wards, all the remaining nodes (i.e. documents) are assigned to a community

through a repeated manner: For each document di in an initial community C,

all non-core documents that are linked to di are assigned to the same com-

munity C. A maximum number of iterations is set to avoid infinite loops.

Finally, a supervised classification method is applied to prune the nodes that

are weakly related to a community because of topical ambiguity. The authors

use Support Vector Machine (SVM) to train a binary classifier, and in each

community all the negatively classified documents are removed.

The FocusCO algorithm proposed by Perozzi et al. [73] is another exam-

ple following the approach of core expansion. Different from [53] that exploits

the structural information first, FocusCO starts by inferring the attribute rel-

evance and creating a weighted similarity for each pair of nodes. Next the

30



algorithm extracts the focused clusters by identifying good candidate sets in

which nodes have high weighted similarity to their neighbors. Then each core

set is expanded by continually choosing new nodes to include to the cluster

until there exist no more nodes that increase the quality of the cluster. The

authors choose the conductance (see Equation 2.24 in Section 2.4.2) as the

measure of cluster quality.

The peculiarity of the FocusCO algorithm is that FocusCO infers the corre-

lation matrix of all feature vectors of nodes by optimizing an objective function

formulated by the Mahalanobis distance. Therefore it is able to put different

weights for different node attributes. The weights learned for the attributes

are a reflection of user preference in real social network scenario. Further-

more, under the guidance of user preference, the algorithm can also be used

to extract outliers from the network under study.

2.3.5 Methods Based on Statistical Inference

In this section we introduce a class of methods that build a statistical model

for node attributes as well as their connections. Therefore the detection of

network communities is converted to inferring the community assignment of

the nodes.

Probabilistic inference offers an abundant amount of methods. To begin

with, we can mention the topic models that are based on LDA, including Rela-

tional Topic Models (RTM) [17], Topic-Link LDA [56], Block-LDA [6], Relation

Strength-Aware Clustering[88], etc. Moreover, we can cite the methods that

are based on the discriminative content (DC) model, such as PCL-DC [101],

PPL-DC [100] and PPSB-DC [16]. Next we have methods like cohsMix [103],

BAGC [95] and GBAGC [96] that incorporate node attributes into the MixNet

model [27]; Last but not least, there are other methods like BNPA [20], which

is an extension of Newman’s mixture model [70], and Metacode [68] which

represents attribute as metadata and embeds the metadata in a stochastic

block model. In this section, we choose an examplar model, CESNA [99], to

elaborate the idea of converting community detection to a statistical inference

31



problem.

Normally there are two ways of modeling the statistical relationship be-

tween a graph G, attributes A, and communities C. The first one assumes

that communities and attributes are marginally independent, as shown in Fig-

ure 2.3b. However, to allow for dependence between the network and the

attributes, [99] assume that communities “generate” both the attributes and

the network, as displayed by Figure 2.3a.

(a) (b)

Figure 2.3: Figure in [99], two generative probabilistic models of statistical

relationship between graph G, attributes A, and communities C. Squares

represent observed variables and circles represent latent variables that need to

be inferred.

Next is to build the generative models of the graph structure, i.e., unknown

links between known nodes, and of the attributes. The authors assume that

each node v has a non-negative affiliation weight Fvc ∈ [0,+∞). Then they

employ the probabilistic generative process of the BigCLAM [97], in which the

probability of two nodes u, v belonging to a community c is given by Puv(c) =

1 − exp(−Fuc · Fvc). In this way, each entry of the adjacency matrix auv is

generated from a Bernoulli distribution: auv ∼ Bernoulli(Puv). To predict the

attribute values of the nodes based on the community membership, the authors

only look at those with binary attributes, and thus a separate logistic regression

is considered to model the probability of the attribute k of node v taking the

value of 1, denoted by Qvk. Later on the attributes values of the nodes are

sampled from another Bernoulli distribution, Bernoulli(Qvk). Now having the

32



probabilistic model well built, the community detection task is accomplished

by maximizing the likelihood function of the community membership (and the

weight parameters in the model) based on observed network G and attribute

A.

2.3.6 Methods Based on Embedding

The embedding approach is an algorithmic framework for learning continuous

feature representations for nodes in networks, initially proposed as node2vec

by Grover and Leskovec [38]. Node2vec learns a mapping of nodes to a d-

dimensional space of features by maximizing the likelihood of preserving net-

work neighborhoods of nodes. Grover and Leskovec design a biased random

walk to explore diverse neighborhoods. As a result, the learned node rep-

resentations reflect the structural equivalence or homophily between nodes.

Another famous embedding method is called struc2vec [78], which learns node

representations from structural identity.

The feature representation of nodes can be applied to varied tasks, such as

multi-label classification, link prediction and community detection. Inspired

by the node embedding approach, Li et al. [55] design a novel community

structure embedding framework to utilize both structural and attribute infor-

mation to detect communities, called CDE (Community Detection Embedding

approach) model.

First, to exploit structural information, especially the inherent community

structures, the authors employ the skip-gram model with negative-sampling

[63] to obtain a new structure embedding matrix M|V |×|V | ∈ R|V |×|V |. For an

arbitrary pair of nodes i and j in graph G, a community membership matrix

U|V |×k is defined with k being the number of communities. Ui: is the ith

row of U that represents the community assignment for node i. The sigmoid

function σ(Ui:U
T
j: ) measures the similarity of i and j’s community membership.

Therefore the goal is to learn a matrix U such that σ(Ui:U
T
j: ) is maximized for

connected i and j, meanwhile minimized for randomly selected i and j. The

33



negative sampling objective function for nodes i and j is formulated as follows:

l(i, j) = wij(log σ(Ui:U
T
j: )) + s

didj
D

log σ(−Ui:U
T
j: ) (2.11)

where wij is the initial weight of the network under study, s is the size of

negative sampling, di, dj are degree of nodes i, j respectively, and D =
∑

v∈V dv

is the total degree for graph G.

The optimal Ui:U
T
j: is learned by finding the partial derivative of Equation

2.11 with respect to Ui:U
T
j: . Then the new structure embedding matrix M can

be expressed in terms of U , as given by Equation 2.12

Mij = max{Ui:U
T
j: , 0} = max{log

wijD

didj
− log s, 0} (2.12)

The maximization in Equation 2.12 is to avoid negative values for entities of

M . Hence the problem for detection without considering attributes can be

formulated as

min
U≥0

L(U) = ‖M − UUT‖2 (2.13)

Next, to incorporate attribute information, the authors define a community-

attribute matrix T ∈ Rk×p, where Tir represents the preference of i-th commu-

nity for r-th dimension of attribute. The discovery of community membership

based on attribute information is formulated by a nonnegative matrix factor-

ization problem below:

min
U≥0,T≥0

L(T ) = ‖A− UT‖2 + α
∑
r

‖T:r‖2 (2.14)

where A is a |V | × p node-attribute matrix, α is the learning rate to control

the sparsity of T .

Combining Equation 2.13 and 2.14 together, a unified objective function

for CDE model is given by:

min
U≥0,T≥0

L(U, T ) = ‖A− UT‖2 + α
∑
r

‖T:r‖2 + β‖M − UUT‖2 (2.15)

where weighting parameter β is used to leverage the strength of structure

information against attribute information.

34



Applying a non-convex optimization technique [41] over Equation 2.15,

one can achieve such communities where nodes are densely connected and

have homogeneous attributes in the same community, well-separated and have

heterogeneous attributes in different communities. The CDE model is able to

find overlapping communities since the entities in U have continuous numerical

values. It can also outperforms the CESNA model described in Section 2.3.5 in

terms of F1-score and Jaccard Similarity on real networks with ground-truth

communities.

2.3.7 Methods Based on Late Fusion

All methods in the previous six categories share one characteristic, that they

first employ a technique, which can be an optimization function, a statistical

model, an augmented graph, or any other possible approaches, to integrate the

network structure and node attributes. Following that direction, they move on

to detect the communities. We say these methods following an “early-fusion”

approach, because the two sources of information are considered together be-

fore any community is identified. There is another class of methods that first

detect two different sets of communities using two different partial informa-

tion: the structure and the attributes, separately and independently. Then

these methods try to combine these two sets of communities together to pro-

duce the final detection results. We call this approach “late fusion”. Cruz and

Bothorel [23] propose a method that follows this idea. After having identified

two sets of communities based on two different dimensions (the base dimen-

sion of structure and a compositional dimension of attribute, according to the

authors), a contingency matrix is computed by

C = CT
s Ca

where Cs and Ca are two node-community affiliation matrices of dimension

|V | × ks and |V | × ka. ks and ka are the number of communities detected by

the two algorithms. The value of entry cij of matrix C is the count intersection

between community i of Cs and community j of Ca. The final outcome is

35



obtained by manipulating rows of C to form the new communities. The authors

propose two ways to define the new communities: a naive approach where a

new community is formed if cij ≥ 0 , and a variance-based approach where a

new community is formed only when cij is greater than the avearge of row i

by at least a standard deviation of values in row i.

In the paper, Cruz and Bothorel used Louvain as the community detection

algorithm, and SOM (self-organized map, [46]) as the clustering algorithm.

They have achieved improvements from community mining based solely on

the node connections or attributes on real networks.

2.4 Evaluation

2.4.1 External Measures

The external measures evaluate detected communities against ground-truth

communities. Rabbany and Zäıane [75] have examined different evaluation

approaches for communities in attributed networks. They showed that there

exists a correlation between individual nodes and their connections. In this

thesis, we use two well-known external measures, Normalized Mutual Informa-

tion (NMI) [86] and Adjusted Rand Index (ARI) [40], to evaluate our method

described in Chapter 3.

NMI is the normalized version of mutual information, which measures the

mutual independence between two variables. Given two partitionings P1, P2

of a network G, the NMI of P1 and P2, denoted by NMI(P1,P2), is defined

as

NMI(P1,P2) =
MI(P1,P2)√
H(P1)H(P2)

(2.16)

where H(·) is the entropy of a partitioning, and MI(·), denoting the mutual

information, is given by

MI(P1,P2) = H(P1)−H(P1|P2) (2.17)

Therefore, when P1 and P2 have a perfect one-to-one correspondence, the NMI

reaches its maximum value of 1. When the community assignment of P1 differs

36



greatly from P2, i.e., P1 is independent from P2, the NMI is going to be close

to 0.

ARI is the adjusted-for-chance version of the Rand Index. Let P1 be the

detected community partitioning of graph G, and P2 be the ground-truth

partitioning. We define true positive as the number of node pairs that are

assigned to the same community in both P1 and P2, and true negative as the

the number of node pairs that are assigned to different communities in P1 and

P2. Using a and b to denote the number of true positives and true negatives

respectively, the Rand Index is calculated by:

RI(P1,P2) =
a+ b(|V |

2

) (2.18)

However the Rand Index does not guarantee that random community assign-

ments will get a value close to zero. To counter this effect, ARI is proposed as

follows:

ARI(P1,P2) =
RI − E[RI]

max(RI)− E[RI]
(2.19)

Let us use C
(1)
i and C

(2)
j to denote the ith community from partitioning P1

and the jth community from partitioning P2. Then nij is the number of nodes

in common between C
(1)
i and C

(2)
j . Hubert and Arabie pointed out that RI

can be written as:

RI =
∑
ij

(
nij

2

)
(2.20)

Accordingly the expectation term is:

E[RI] =

∑
i

(|C(1)
i |
2

)∑
j

(|C(2)
j |
2

)(|V |
2

) (2.21)

and the maximum of RI:

max(RI) =
1

2

[∑
i

(
|C(2)

j |
2

)
+
∑
j

(
|C(2)

j |
2

)]
(2.22)

Applying Equation 2.20, 2.21 and 2.22 to Equation 2.19, the ARI can be

written as:

ARI(P1,P2) =

∑
ij

(
nij

2

)
−
∑

i

(|C(1)
i |
2

)∑
j

(|C(2)
j |
2

)
/
(|V |

2

)
1
2
[
∑

i

(|C(1)
i |
2

)
+
∑

j

(|C(2)
j |
2

)
]−
∑

i

(|C(1)
i |
2

)∑
j

(|C(2)
j |
2

)
/
(|V |

2

)
(2.23)

37



The value of ARI is bounded to the range of [-1, 1]. It is negative when the

RI is greater than the expected RI.

Both NMI and ARI do not require assumption on the cluster structure of

the network, and their bounded values provide a good metric to compare the

performance of different partitionings found by different community detection

methods. Rabbany and Zäıane [76] generalize NMI and ARI and define a new

metric called Clustering Agreement Index (CAI). CAI and its variants are

very efficient for evluating overlapping communities. However, these external

measures require knowledge of the ground-truth labels, which is usually not

available in practice. In this case, we have to resort the internal measures.

2.4.2 Internal Measures

Internal measures use community scoring functions to manifest the density

and separation of communities detected by an algorithm. Since these methods

do not require known ground truth, therefore they can be applied to a wide

range of network datasets. One of the most popular internal measures is

the modularity as given in Equation 2.3. Recall that modularity measures

the difference between the number of edges that lie within communities in a

given partitioning P and the expected such number as if edges were placed at

random while maintaining the degree distribution of nodes. Therefore higher

modularity indicates better community quality.

Yang and Leskovec [98] studied 13 commonly used internal measures of

network communities and evaluated them on a set of 230 large real-world

networks. They found out that Conductance [11] and Triad-participation-

ratio [98] have consistently outperformed the other measures in identifying

ground-truth communities. We briefly mentioned conductance in 2.1.2 and

pointed out that conductance measures the fraction of total edges that point

outside a given community or cluster. Now let us give the formal definition.

Given a community C which is a subset of V , we denote Ecb = {(u, v) ∈ E :

u ∈ C, v /∈ C} as the set of edges running across the boundary of C. Then the

38



Conductance is formally defined as:

f(C) =
|Ecb|

min(
∑

u∈C du,
∑

v/∈C dv)
(2.24)

where d denotes the degree of a node in network G. The Conductance in

the above equation measures the quality of a single community in the given

network. To evaluate k communities produced by a partitioning P , we can

simply take the minimum of the conductance of all communities:

F (P) = min
C∈P

f(C) (2.25)

From Equation 2.24 and 2.25 we can see that lower conductance indicates

better communities.

Triangle-participation-ratio of a community C is the fraction of nodes in

C that belong to a triad. Define a set

S = {u : u ∈ C, {(v, w) : v, w ∈ C, (u, v) ∈ E, (u,w) ∈ E, (v, w) ∈ E} 6= ∅}

(2.26)

It can be seen that S is the set of nodes in C that also belongs to a triad.

Then a the definition of Triangle-participation-ratio is given by f(C) = |S|
|C| . A

high triangle-participation-ratio indicates a better quality of communities.

39



Chapter 3

The Late-fusion Method

We introduce another notation r, which we use to denote the number of at-

tributes in a network. Then an |V | × r matrix A refers to the node-attribute

matrix of a given network G, which is the counterpart of the feature matrix in

the context of classification and clustering. Next we illustrate the methodology

of our proposed late-fusion approach.

3.1 Motivations

Section 2.3 introduces a wide range of work devoted to community detection

on attributed networks. However all but the last category follow an “early-

fusion” manner, i.e., they consider the structure and attribute in the early

stage of the community mining process, notably before any community has

been identified. Contrary to early fusion, late fusion approaches aim at firstly

identifying communities from the perspectives of structure and attribute, and

then fusing two sets of communities in such a way that the final communities

represent an integration of the structure and attribute of the network.

Thanks to the nature of late fusion, it provides us with a flexible archi-

tecture with which we can try different combinations of classic community

detection and clustering algorithms in the implementation. For example, if at-

tributes are well clustered when projected into a r-dimensional feature space, a

simple clustering algorithm such as k-means can be applied. If the size of com-

munity is too small or too large, algorithms such as Louvain [10] or InfoMap

[80] might fall into the resolution limit or field-of-view limit respectively. In

40



this case, the SIWO method described in 2.1.4 is preferred. The choice of al-

gorithms mainly depends on our prior knowledge about the network: the real

number of communities, network size, community size, types and distributions

of attributes, and so forth. With early-fusion methods, we lost this flexibility

to accordingly adjust our approach in community detection.

To the best of our knowledge, the only published algorithm that follows

the late-fusion approach is the work done by Cruz and Bothorel [23] . As

we described in 2.3.7, the authors use Louvain as the community detection

algorithm, and SOM (self-organized map, [46]) as the clustering algorithm.

They obtain the final partitioning by manipulating rows of the contingency

table of two partitions based on node connections and attributes. We would

like to explore other possible combinations of algorithms, and other variants

of late-fusion techniques that can be more successfully applied to networks

with binary/categorical attributes. Therefore, we devote next a few sections

to describe our own late-fusion approach.

3.2 Method Overview

The idea of late fusion in attributed community detection is that one first iden-

tifies two sets of communities/clusters using two sources of information: the

linkage structure of the network and the node attributes. Then the ultimate

partitioning that has taken both information into consideration is achieved by

combining the aforementioned two sets of communities in a carefully designed

manner.

In our approach, we use the Louvain and SIWO algorithms described earlier

to obtain the set of communities based on linkage. To get the clusters based

on node attributes, we treat categorical or binary attributes differently from

numerical attributes. As for numerical attributes, we can directly apply classic

unsupervised clustering algorithms to identify the clusters. However regarding

categorical or binary attributes, we create a virtual graph based on the node

attributes. Concretely, if the attribute similarity between two given nodes

is large enough, i.e., higher than a precomputed threshold, we add a virtual

41



edge between these two nodes, otherwise there’s no edge between the nodes.

Having this virtual graph well-built, next we can apply Louvain or SIWO

on this virtual graph and it results in a partitioning represents the similarity

between the attributes of the nodes.

Next in the fusion step, we combine the two partitionings by processing

their node-community affiliation matrices and creating an integrated adjacency

matrix. In this way, the final partition is obtained by applying Louvain or

SIWO on an integrated graph induced from the integrated adjacency matrix.

We detail our proposed method in the following section.

3.3 The Fusion Algorithm

We begin by presenting our way of combining two sets of communities, as

displayed in Algorithm 1. Suppose we are given two partitions over a network

G:

Ps = {C1, C2, ..., Ck1}

Pa = {C1, C2, ..., Ck2}

where Ps is the partitioning obtained by using only the structural information

and Pa is the partitioning obtained by using only the attribute information.

Two other inputs are also given: a weighting parameter α to leverage the

strength between the two sources of information, and a community detection

algorithm Fs to find the final partition over the integrated graph.

In line 1 of Algorithm 1, we compute the node-community affiliation matri-

ces Cs (|V | × k1) and Ca (|V | × k2) for Ps and Pa respectively. The entries of

the affiliation matrices are binary, where cij = 1 if and only if node i is assigned

to community j. Next we multiply every affiliation matrix by its transpose, in

this way we obtain matrices Ds and Da of dimension |V |×|V | (see line 2). The

entries of Ds and Da are also binary because we only consider non-overlapping

communities hence each row of an affiliation matrix C is a one-hot vector. A

value 1 at the ith row and the jth column of Ds or Da indicates that nodes

i and j are assigned to the same community in Ps or Pa. Next we combine

Ds and Da by the equation in line 3. Since we only consider non-directed

42



networks in this work, we need to fill the diagonal of the matrix D to be 0s,

as shown by line 4. A value 1 at the ith row and the jth column (i 6= j) of

D shows that nodes i and j are assigned to the same community in both Ps

and Pa; A value of Dij equaling α or 1 − α indicates that nodes i and j are

assigned to the same community in either Ps or Pa, but not in both partitions;

Dij = 0 means the two corresponding nodes are never in the same community.

Now the matrix D can be taken as a weighted adjacency matrix, based upon

which we can build the integrated graph Gintegrated. However in practice, it

would make our algorithm run much faster without hurting the accuracy if we

make D unweighted. To do so, we set a threshold t ∈ (0, 1), below which the

entries of D are reset to zero. Immediately in line 5, we build an unweighted

virtual graph from the adjacency matrix D. Now the edges in Gintegrated is a

representation of the agreement between structural communities and attribute

clusters. The final partitioning is achieved by applying Fs on Gintegrated. The

partitioning P will be our output, containing k disjoint communities over the

original network.

Algorithm 1: The fusion algorithm

Input: Ps,Pa, α, Fs

Output: P = {C1, C2, ..., Ck}
1 Cs = get affiliation matrix(Ps), Ca = get affiliation matrix(Pa)
2 Ds = CsC

T
s , Da = CaC

T
a

3 D = αDs + (1− α)Da

4 D = fill diagonal zero(D)
5 Gintegrated = from adjacency matrix (D)
6 P = Fs(Gintegrated)
7 return P

With the late-fusion algorithm well-defined, we can apply it to networks

with node attributes. However for different types of attributes, the way to

identify Pa differs, which we illustrate in the following sections.

3.3.1 Late Fusion on Networks with Numeric Attributes

The most commonly-seen realization where node attributes are numeric are

document networks. For example, the polblog network [102] where a node is

43



an article of political comments, the edges are references to other articles in a

political blog, and the attributes are usually represented by a feature vector

obtained with techniques like LDA [9] or doc2vec [38] for each document.

Numerical attributes can also be associated to online forum members, in which

by analyzing all the posts of a user using similar techniques as in the political

blog network, we can attach a feature vector to each node (a member of a

forum) to demonstrate their opinions, interests, etc. Then the edges can be

defined as the interactions between the forum members in a natural way. An

example of such case is the Sina Weibo network developed by Jia et al. [42].

The extension of the fusion algorithm to networks with numeric attributes

is very simple, which we describe in Algorithm 2. The inputs are: the original

Algorithm 2: Late-fusion on networks with numeric attributes

Input: Gs, A, Fs, Fa, α
Output: P = {C1, C2, ..., Ck}

1 Ps = Fs(Gs), Pa = Fa(A)
2 P = Algorithm 1(Ps,Pa, α, Fs)
3 return P

graph Gs = (V,E) which is comprised by a set of nodes V and a set of edges

E; a |V | × r matrix containing the feature vectors of the nodes; two predeter-

mined algorithms FsandFa: Fs for detecting communities based on the node

connections, and Fa for clustering according to the node attributes; a weight-

ing parameter α that leverages the strength of two sources of information. We

apply Fs and Fa to Gs and A respectively, to obtain Ps and Pa. Then we can

directly feed Ps, Pa, α and Fs into the the fusion algorithm (Algorithm 1) and

we get the output partitioning P according to Algorithm 1.

Some of the clustering algorithms require the number of communities k

as an input (k-means and spectral clustering, for example), we can use the

elbow method to infer the value of k. The elbow method is used to visualize

the percentage of variance explained by the current clusters, i.e., the ratio

of the between-cluster variance to the total variance against k. We use a

simple example to illustrate the idea, as shown in Figure 3.1. Figure 3.1a is

a visualization of randomly generated 10 clusters. To simplify the process, we

44



just compute the sum of distance between data points to its clustering centers

against different choices of k, and plot the results in Figure 3.1b. We can see

that the “elbow point” is at when k = 10. Hence we choose 10 as the optimal

number of clusters/communities, which is the exact real number of clusters

that we have generated.

(a) Random generated 10 clusters on
2d plane

(b) The elbow method showing the
optimal k

Figure 3.1: Illustration of the elbow method using a simple example

3.3.2 Late Fusion on Networks with Binary Attributes

For online social networks, the user profile can be naturally taken as the at-

tribute of a node. A profile contains the information of an user such as ed-

ucation, occupation, hobbies, residence, etc. These attributes are not easily

quantifiable. On the other hand, however, we can convert a profile to a binary

feature vector indicating, for example, in an anonymous way that a person has

gone to university A for college, worked at a technology company B, and is

interested in activity C, etc. When the attributes of a network is no longer

numeric and do not cluster in the feature space, classic clustering algorithms

based on the physical distance between data points may not work well on this

setting anymore. To cope with this difficulty, we devise a new technique to

obtain the partitioning Pa. This new technique, presented in Algorithm 3, is

designed for networks with binary node attributes. However it is applicable

to networks with categorical attributes as well. We can do this by flattening

an integer label which represents categorical class to a one-hot vector. There-

fore for the rest of this thesis, we will not specifically distinguish categorical

45



attributes from binary attributes, and will focus on illustration of binary at-

tributes only.

Algorithm 3: Late-fusion on networks with binary attributes

Input: Gs, A, Fs, α
Output: P = {C1, C2, ..., Ck}

1 Ps = Fs(Gs)
2 S = AAT

3 Da = convert to adjacency(S)
4 Ga = from adjacency matrix (Da)
5 Pa = Fs(Ga)
6 P = Algorithm 1(Ps,Pa, α, Fs)
7 return P

Compared to Algorithm 2, we no longer need the clustering algorithm Fa.

Instead, to get clusters Pa, we take advantage of the fact that the entries of

A is binary. As shown by line 2, we multiply attribute matrix A with its

transpose. The outcome matrix S is a similarity matrix whose entry Sij is the

inner product of the ith row vector and the transpose of the jth row vector,

which is essentially the count of shared attributes between nodes i and j.

Therefore, the higher the value Sij is, the more similar nodes i and j are. The

next operation is to convert similarity matrix S to a virtual adjacency matrix

Da (line 3), from which a virtual graph Ga is built. To do so, we again need

to find a proper threshold, which we will address shortly. Now the edges in

Ga indicate that the similarities between the corresponding pairs of nodes are

higher than the threshold that we’ve chosen. Having Ga well-established, we

can apply Fs to Ga and get Pa. The rest is to just apply our fusion algorithm

(Algorithm 1) with inputs Ps,Pa, α and Fs (line 4 - 6).

Line 3 of Algorithm 3 requires to be carefully taken care of because there

are many variants that we can choose from. The idea is to find a threshold t

such that we set all entries of S below t to 0. Moreover, we can also reset values

greater than t in S to 1 to get an unweighted virtual graph, or we can leave

it as it is which results in a weighted graph. In practice, we notice that the

difference between weighted and unweighted graphs does not influence much of

the community detection result. However it is the way to define the threshold

46



t that matters. Next, we provide two ways to define the threshold:

1. Median thresholding: we choose the median of all the similarities as

the threshold. Specifically, we take all the off-diagonal, upper triangular

(or lower triangular) entries, find the median of these numbers and set

it as the threshold. In this way, for a given pair of nodes i and j (i 6= j)

to have a virtual edge in Ga, i and j must have more shared attributes

than at least half of all node pairs.

2. Equal-edge thresholding: in this way we use the number of edges

|E| in the original graph Gs as the proxy for the number of edges that

we should have in the virtual graph Ga. To do so, we compute the

density of the original graph by the formula: d(Gs) = 2|E|
|V |·(|V |−1) . Then

q = 1 − d(Gs) is the quantile of the similarity distribution at which we

should make the cut, i.e., we set entries in S whose values are below q

quantile of all the similarities to 0.

The choice of thresholds is a hyper-parameter of the late-fusion method

which can be tuned. We suggest the default option to be the equal-edge

thresholding, as we believe that the real number of edges in the original graph

reflects the appropriate density for the network. We will also see in the next

chapter, that equal-edge thresholding gives better detection results than me-

dian thresholding. Another advantage of creating a virtual graph to get Pa

is that in most cases it does not require the prior knowledge about the real

number of communities. Throughout the community detection process, we are

only dependent on Fs, for which we mostly land on Louvain or SIWO due to

their excellent performance. Both algorithms are a hierarchical optimization

procedure, which will automatically terminate when it has reached an (local)

optima.

47



Chapter 4

Experiments

We use this chapter to discuss our experiments. Before we come to the ex-

perimental results, we first introduce our experimental settings, including the

network datasets, the comparative methods, and the evaluation metrics. Then

we demonstrate our experiments and discuss the results. Next we provide an

empirical study on the effect of the weighting parameter α that is introduced

in line 3 of Algorithm 1. After that, we analyze the time complexity of our

late fusion approach and show its scalability. At the end of this chapter, we

demonstrate our work on the late fusion approach using census clustering. In

particular, we point out that consensus clustering is not a good choice for the

late fusion technique.

4.1 Experimental Settings

For our experiments, we choose 15 networks of various types and sizes. We

classify these networks into the following three groups:

• Synthetic networks with numerical attributes: We use an attributed

graph generator developed by Largeron et al. [49] to create four at-

tributed graphs with communities. The attributes of these networks are

generated by a k-dimensional multivariate normal distribution with zero

mean and a standard deviation specified by users. The communities are

created according to the homophily effect between the structure and the

attribute, which we have introduced earlier in Section 1.1. We treat the

48



generated communities as the ground-truth since it is in accordance with

our objectives put forward in Section 2.3.

• Real network with numerical attributes: The Sina Weibo 1 is the largest

online Chinese micro-blog social networking website. Jia et al. have

collected users from 10 major forums to build a network with 3490 nodes

and 30282 edges. The authors performed LDA topic modeling on the

micro-blogs of users and created 10 dimensional numerical attributes to

describe users’ interests. The ground-truth communities of this network

is provided by the authors based on the 10 forums where they collected

the users and their mutual relationships. This dataset is available online

2.

• Real networks with binary attributes: The Facebook dataset is devel-

oped by Leskovec and Mcauley [52]. It contains 10 egocentric networks

with binary attributes. The attributes of a node contain the anonymous

information of the user about name, work and education. The ground-

truth communities were gathered by a survey of 10 users who were asked

to manually identify all their social circles (i.e., communities) to which

their friends belonged. The circles could overlap, and there are also out-

liers which do not belong to any circle. This dataset is also availabe

online 3.

Table 4.1, 4.2 and 4.3 present several characteristics about the datasets,

including the number of nodes |V |, the number of edges |E|, the number of

ground-truth communities k, the number of attributes r, the moduarity Q of

the ground truth communities, and the within-inertia ratio I (formula given in

Equation 4.1) of the ground-truth communities (only for numeric attributed

networks).

To show the competitiveness of our approach, we take advantage of the

availability of the source code of four algorithms to compare with our method.

1http://www.weibo.com
2https://github.com/smileyan448/Sinanet
3http://snap.stanford.edu/data/

49

http://www.weibo.com
https://github.com/smileyan448/Sinanet
http://snap.stanford.edu/data/


Table 4.1: Network and community characteristics of synthetic networks.

|V | |E| k r Q I

Graph 1 2000 7430 10 2 0.81 0.18
Graph 2 2000 8378 10 2 0.72 0.18
Graph 3 2000 7445 10 2 0.65 0.18
Graph 4 2000 6988 10 2 0.54 0.19

Table 4.2: Network and community characteristics of Sina Weibo network.

|V | |E| k r Q I

3490 30282 10 10 0.05 0.04

Table 4.3: Network and community characteristics of Facebook networks.

Network ID |V | |E| k r Q

0 347 5038 24 224 0.179
107 1045 53498 9 576 0.218
348 227 6384 14 161 0.210
414 159 3386 7 105 0.468
686 170 3312 14 63 0.101
698 66 540 13 48 0.239
1684 792 28048 17 319 0.509
1912 755 60050 46 480 0.339
3437 547 9626 32 262 0.026
3980 59 292 17 42 0.242

50



We first choose two very successful community detection algorithms: Lou-

vain[10] and SIWO[36]. We have introduced both algorithms in Section2.1.4.

To assess our late-fusion approach under numerical node attributes, we select

two algorithms as our contenders. Due to the availability of the source code

implemented by the original authors, we have the I-Louvain [22] algorithm for

networks with numerical attributes and the CESNA[99] algorithm for networks

with binary attributes. Both I-Louvain and CESNA have been discussed in

Section 2.3.

In order to evaluate the performance of different methods, we measure the

results produced by each method in terms of accuracy and efficiency. Since

all of our experimental datasets have ground-truth communities provided, we

evaluate the accuracy using the two external metrics, NMI and ARI described

in Section 2.4. For efficiency, we calculate the time elapsed in seconds from the

inputted attributed networks to the outputted detected communities. Since in

the experiment of the Facebook networks we do not use any prior knowledge

about the real number of communities, we also compute the ratio of the number

of communities detected to the real number of communities and present the

results only for the facebook dataset.

4.2 Experimental Results

4.2.1 Synthetic Networks with Numerical Attributes

Users can change a set of different parameters of the attributed network gen-

erator [12] to control properties of the network such as network size, number

of ground-truth communities, structural quality, attribute quality (i.e., the ho-

mogeneity of the attributes of nodes residing in the same communities) and so

forth. The structural quality of the generated ground-truth communities are

measured by the formula of modularity in Equation 2.3. The attribute quality

is evaluated by another measure called within inertia ratio, whose definition

is given below:

I(G) =

∑
C∈P(WC

∑
vinC d(v, gC)2)∑

v∈V d(v, g)2
(4.1)

51



where gC is the center of gravity of nodes in C, WC is the weight of C and g is

the center of gravity of all the nodes. So for a set of communities, the higher

value of modularity indicates stronger structural strength, whereas lower value

of within inertia ratio shows better attribute homogeneity.

In this set of experiments, we generate four networks with the same number

of nodes, number of ground-truth communities, number of attributes, and

within inertia ratios, but with different modularities. In this way we are able

to examine the influence of the structural qualities of the networks to the final

partitionings without confounding factors. The properties of the four synthetic

networks are presented in Table 4.1

Attribute redistribution

The original node attributes created by the attributed graph generator [49]

follow a multivariate normal distribution with zero mean and a standard devi-

ation specified by users. This attribute distribution does not inherently cluster,

as we can see in Figure 4.1c. Therefore, we also reassign new attribute vectors

to the nodes of the experimental networks based upon their ground-truth com-

munity memberships, so that the node attributes have more clear clustering

structure. Concretely, the attribute redistribution procedure follows the two

steps below:

1. Given the number of communities, k, we first generate k center points for

each community following a multivariate normal distribution with zero

mean: N((0, 0), 5 · I2×2). Here I2×2 is the 2-D identity matrix. It should

be noted that the coordinates of the center points are not necessarily

attributes for certain nodes. They are used to determine the mean of

the attributes of nodes in same communities.

2. Suppose the center of community i is denoted by ci = (ai1, ai2). Then for

every node v belonging to a ground-truth community i, (i = 0, 1, ..., k −

1), we re-assign a new attribute vector to v generated by another multi-

normal distribution with the mean being the corresponding community

center, and a user-specified standard deviation: N(ci, std · I2×2).

52



Figure 4.1 plots the node attributes of one of the experimental networks

onto a two dimensional plane, using different colors to denote different ground-

truth communities. We visualize the attribute distribution with the std in step

2 set to 0.5, 1.5 as well as the original attributes provided by the attributed

graph generator.

(a) Attributes for the first group of
experiments, std = 0.5, within inertia
ratio = 0.009

(b) Attributes for the second group of
experiments, std = 1.5, within inertia
ratio = 0.022

(c) Attributes for the third group of
experiments, no redistribution, within
inertia ratio = 0.19

Figure 4.1: Node attributes for three groups of experiment. Each color repre-
sents a unique community

Experiment

As mentioned earlier, we have three different types of attribute distributions

for a set of four graphs that are generated by the same parameters except that

they have different modularities of their ground-truth communities. Hence

we conduct three groups of experiments, corresponding to the three node at-

53



tribute distributions that are plotted in Figure 4.1a, 4.1b and 4.1c. In each

group, we perform community mining using a various methods on the four

graphs. We measure the NMI, ARI and the running time of each method on

the four graphs to evaluate the performance of these methods. In all experi-

ments, the α parameter in step 3 of Algorithm 1 is chosen to be 0.5, i.e., the

same weights between structural and attribute information. For community

detection algorithm Fs, we use Louvain and SIWO in the experiment. For

clustering algorithm Fa, we choose spectral clustering (SC) and DBSCAN as

the representatives. Spectral clustering requires a user to specify the number

of clusters to identify, hence we pass the ground-truth number of communities

to the algorithm. Meanwhile DBSCAN requires two hyper parameters: an ε

which is the maximum distance between two samples for them to be consid-

ered as in the same neighborhood (i.e., community), and an m which is the

number of samples in a neighborhood for a point to be considered as a core

point. In our experiments we use the default value for ε in the Scikit-learn [15]

package, and choose m to be the average degree of nodes.

Table 4.4: Results of experiment group 1, std = 0.5, time is measured in
seconds.

Graph 1 Graph 2 Graph 3 Graph 4

NMI ARI time NMI ARI time NMI ARI time NMI ARI time

Louvain .795 .797 0.41 .696 .692 0.56 .695 .686 0.49 .665 .674 0.64
SIWO .836 .850 0.97 .739 .750 1.23 .702 .705 1.09 .504 .458 0.98

SC .802 .713 1.15 .798 .711 0.93 .777 .677 0.64 .768 .669 0.68
DBSCAN .469 .103 0.06 .465 .104 0.06 .434 .083 0.06 .465 .102 0.24

I-Louvain .515 .150 39.2 .732 .720 37.5 .718 .704 30.0 .608 .503 37.6

Louvain + SC .824 .704 7.34 .790 .650 6.68 .784 .618 5.74 .765 .597 7.14
Louvain + DBSCAN .818 .813 8.64 .742 .720 8.59 .730 .702 8.87 .704 .690 10.6
SIWO + SC .844 .738 10.3 .806 .689 9.28 .786 .636 7.33 .723 .508 6.46
SIWO + DBSCAN .818 .813 11.7 .742 .720 10.5 .730 .702 10.2 .704 .690 11.6

Table 4.4, 4.5, and 4.6 show us the NMI, ARI and running time of the

three groups of experiments, produced by two baseline algorithms, Louvain

and SIWO, that only use structural information; two clustering algorithms,

Spectral Clustering and DBSCAN, that only use attribute information; one

54



Table 4.5: Results of experiment group 2, std = 1.5, time is measured in
seconds.

Graph 1 Graph 2 Graph 3 Graph 4

NMI ARI time NMI ARI time NMI ARI time NMI ARI time

Louvain .795 .797 0.44 .696 .692 0.54 .695 .686 0.47 .665 .674 0.61
SIWO .836 .850 0.94 .739 .750 1.26 .702 .705 1.18 .504 .458 1.19

SC .529 .338 0.83 .527 .329 0.56 .522 .322 0.53 .538 .349 0.57
DBSCAN .096 .012 0.08 .102 .014 0.10 .066 .008 0.14 .065 .011 0.09

I-Louvain .517 .150 36.8 .726 .715 36.4 .707 .690 33.7 .614 .522 33.2

Louvain + SC .734 .450 5.62 .695 .398 6.49 .696 .390 5.96 .677 .392 5.66
Louvain + DBSCAN .755 .726 9.20 .663 .627 13.8 .670 .636 11.9 .641 .633 13.6
SIWO + SC .748 .469 12.7 .712 .424 5.27 .699 .402 7.12 .625 .335 7.44
SIWO + DBSCAN .744 .726 8.73 .663 .627 9.99 .670 .636 8.98 .641 .633 12.4

Table 4.6: Results of experiment group 3, no attribute redistribuion, time is
measured in seconds.

Graph 1 Graph 2 Graph 3 Graph 4

NMI ARI time NMI ARI time NMI ARI time NMI ARI time

Louvain .795 .797 0.67 .696 .692 0.62 .695 .686 0.40 .665 .674 0.73
SIWO .836 .850 1.02 .739 .750 2.14 .702 .705 1.46 .504 .458 1.92

SC .483 .270 3.31 .485 .270 2.29 .514 .307 2.32 .489 .276 2.45
DBSCAN .000 .000 0.06 .000 .000 0.06 .000 .000 0.06 .000 .000 0.14

I-Louvain .517 .150 35.1 .726 .715 34.3 .707 .690 34.3 .614 .522 39.5

Louvain + SC .770 .670 11.8 .704 .589 9.27 .705 .613 10.2 .689 .564 9.33
Louvain + DBSCAN .795 .797 11.2 .696 .692 10.0 .695 .685 10.4 .667 .674 12.9
SIWO + SC .797 .703 13.2 .731 .647 16.6 .709 .635 12.3 .601 .467 11.0
SIWO + DBSCAN .795 .797 11.6 .696 .692 10.6 .695 .685 11.3 .667 .674 12.6

contending algorithm, I-Louvain, whose source code is available online 4; and

four different combinations of late fusions. The node attributes of experiment

group 1 exhibit the best clustering property. Hence we can see that our late-

fusion methods outperform the other algorithms on all four networks in terms

NMI, and on graph 4 in terms of ARI. On the other hand, the structural

strength (i.e., modularity) decreases as we go from graph 1 to graph 4, at the

same time, we can see the advantage of our late-fusion methods over the oth-

ers increases in terms of both NMI and ARI. This observation indicates that

the information about attribute becomes more valuable when high quality of

structural communities are less available. As for running time, despite the

4https://www.dropbox.com/sh/j4aqitujiaifgq4/AAAAH0L3uIPYNWKoLpcAh0TPa

55

https://www.dropbox.com/sh/j4aqitujiaifgq4/AAAAH0L3uIPYNWKoLpcAh0TPa


fact that classic community detection algorithms are still the fastest, which is

as expected since they do not consider node attributes, our late-fusion meth-

ods outperform the attributed community mining contender I-Louvain with a

remarkable margin.

Now if we move on to Table 4.5 and 4.6, we can see the same trend going on

horizontally from graph 1 to graph 4. However vertically, the performance of

our late-fusion methods degrad in terms of NMI and ARI compared to Table

4.4. This degradation of accuracy tells us when the clusters based on attributes

are poorly detectable, it becomes harder to make use of attribute information

to improve the detection results. On the other hand, if the structure of the

network is strong enough, we can simply rely on the node linkages to achieve

decent community mining results.

4.2.2 Numeric attributes, Sina Weibo network

To further evaluate our proposed methods, we extend the experiments to a

real social network where every node represents a user and has 10 attributes

in numerical values indicating their interests in the fields of finance and eco-

nomics, literature and arts, fashion and vogue, current events and politics,

sports, science and technology, entertainment, parenting and education, pub-

lic welfare, and life style [42]. We seek to find the ground-truth forum that

every user comes from in this large network.

In this experiment, we have implemented our late-fusion methods a little

bit differently from what we did in the previous section. First of all, we

noticed that the clustering result is very sensitive to the ε parameter in the

DBSCAN algorithm and it is extremely difficult to infer a good value for it

without resorting to further knowledge. We decided to use a simple clustering

algorithm, k-means, as a supplement to spectral clustering. The second change

we made is that since the ground truth communities are based on the topics

of the forums that the users come from, we reckon that the formation of

communities depends more on the attribute than the structure. After trying

different values of α: 0.1, 0.2, 0.3, 0.4 and 0.5, we found that as long as α < 0.5,

the late-fusion methods give ideal results. In Table 4.7, α = 0.2. Readers can

56



refer to Table 4.7 that shows the NMI, ARI and running time of different

algorithms.

Table 4.7: Experimental results of different community detection methods on
Sinanet network. Time is measured in seconds.

NMI ARI time

Louvain .232 .197 1.98
SIWO .040 .000 3.26

SC .612 .520 3.16
k-means .649 .579 0.25

I-Louvain .204 .038 261.

Louvain+SC .611 .519 48.9
Louvain+k-means .649 .579 42.1
SIWO+SC .611 .519 37.9
SIWO+k-means .649 .579 50.4

The two baseline algorithms Louvain and SIWO and the contending algo-

rithm I-Louvain performed poorly on the Sinanet network, whereas the clus-

tering algorithms showed high accuracy. Especially, the k-means algorithms

together with our four late-fusion methods with the emphasis on attribute

information produce detection results with the best NMI and ARI. These re-

sults confirm our assumption that the communities of this network are mainly

determined by the attributes, i.e., the user interests of different topics. We

also noticed that by changing the weight, the community detection result is

dominated by the part of information that has the larger weight. As shown in

the table 4.7, even though the accuracy of SIWO algorithm on this network

is very low, the effect of misleading structural information is balanced out

when SIWO is combined with a suitable clustering algorithm. We will further

explore the effect of weighting parameter α in Section 4.2.4.

4.2.3 Binary attributes, Facebook networks

The properties of the Facebook networks are displayed in Table 4.3. For this

experiment, we do not use the ground-truth number of communities, and let

the algorithms themselves to infer the number of communities that should be

57



detected. Also we set α to its default value 0.5, because we do not know

the preference a user has between attributes and connections when identifying

social circles.

As mentioned earlier in Section 3.3.2, there are various implementations of

late fusion on networks with binary attributes with different combinations be-

tween weighted or unweighted virtual graph, median or equal-edge threshold-

ing, and Louvian or SIWO algorithms. Having extensively explored these dif-

ferent combinations, we found that on the Facebook networks, Louvain gener-

ally outperforms SIWO, equal-edge thresholding is better than median thresh-

olding. Results are better with weighted virtual network than unweighted if

using median thresholding, and better with unweighted virtual network than

weighted if using equal-edge thresholding. Therefore, we only provide results

of selective methods. We still treat Louvain and SIWO as our baselines. We

use CESNA algorithm [99] as our contender. The source code of CESNA is

available online 5. We provide the outcomes of two late-fusion methods: Lou-

vain + unweighted virtual graph with equal-edge thresholding, and Louvain

+ weighted virtual graph with median thresholding. We present the results

of NMI, ARI, running time and ratio of number of communities in Table 4.8,

4.9, 4.10 and 4.11 respectively.

Table 4.8: NMI of different community detection results on facebook network.
Late-fusion 1 refers to Louvain + unweighted virtual graph with equal-edge
thresholding, Late-fusion 2 refers to Louvain + weighted virtual graph with
median thresholding, Late-fusion 3 refers to SIWO + unweighted virtual graph
with equal-edge thresholding, and Late-fusion 4 refers to SIWO + weighted
virtual graph with median thresholding.

0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain .382 .332 .478 .609 .284 .281 .047 .565 .181 .729 .389
SIWO .390 .363 .375 .586 .215 .259 .053 .557 .174 .605 .358

CESNA .263 .249 .307 .586 .238 .564 .438 .450 .176 .552 .382

Late-fusioin 1 .558 .355 .525 .538 .463 .669 .462 .511 .310 .704 .509
Late-fusioin 2 .452 .341 .489 .556 .351 .479 .323 .491 .262 .696 .444
Late-fusioin 3 .541 .364 .452 .531 .406 .630 .460 .509 .310 .648 .485
Late-fusioin 4 .431 .353 .405 .538 .252 .406 .332 .491 .260 .588 .406

5http://snap.stanford.edu/

58

http://snap.stanford.edu/


Table 4.9: ARI of different community detection results on facebook network.
Late-fusion 1 refers to Louvain + unweighted virtual graph with equal-edge
thresholding, Late-fusion 2 refers to Louvain + weighted virtual graph with
median thresholdingl, Late-fusion 3 refers to SIWO + unweighted virtual graph
with equal-edge thresholding, and Late-fusion 4 refers to SIWO + weighted
virtual graph with median thresholding.

0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain .143 .148 .303 .558 .110 .000 .000 .461 .000 .398 .209
SIWO .220 .177 .127 .519 .000 .009 .000 .419 .002 .209 .167

CESNA .073 .097 .156 .480 .001 .202 .310 .361 .014 .067 .176

Late-fusioin 1 .024 .047 .103 .265 .006 .000 .043 .252 .000 .069 .008
Late-fusioin 2 .061 .079 .129 .413 .063 .000 .048 .235 .000 .084 .110
Late-fusioin 3 .043 .045 .124 .252 .003 .000 .057 .235 .000 .095 .009
Late-fusioin 4 .108 .079 .141 .391 .040 .016 .060 .223 .000 .073 .113

Table 4.10: Running time of different community detection results on facebook
network, measured in seconds. Late-fusion 1 refers to Louvain + unweighted
virtual graph with equal-edge thresholding, Late-fusion 2 refers to Louvain +
weighted virtual graph with median thresholding, Late-fusion 3 refers to SIWO
+ unweighted virtual graph with equal-edge thresholding, and Late-fusion 4
refers to SIWO + weighted virtual graph with median thresholding.

0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain 0.15 1.83 0.12 0.06 0.09 0.02 0.80 1.28 0.31 0.01 0.47
SIWO 0.34 3.78 0.31 0.16 0.17 0.03 1.46 3.79 0.51 0.02 1.06

CESNA 9.76 103. 6.02 2.47 3.12 0.63 38.3 22.9 21.1 0.60 20.8

Late-fusioin 1 0.72 4.68 0.40 0.25 0.24 0.07 1.95 3.83 0.78 0.03 1.30
Late-fusioin 2 2.90 20.0 0.82 0.48 0.44 0.08 8.22 9.41 3.28 0.06 4.57
Late-fusioin 3 1.73 24.4 2.87 0.68 0.76 0.14 5.76 28.5 4.26 0.12 6.92
Late-fusioin 4 9.45 91.4 5.27 1.73 3.14 0.34 44.9 43.4 13.5 0.17 21.3

In terms of NMI, experimental results in Table 4.8 show again that our late-

fusion algorithms can significantly improve the community detection accuracy

upon Louvain. On average, the late fusion of Louvain and unweighted virtual

graph with equal-edge thresholding outperforms Louvain, SIWO and CESNA

by 30.8%, 42.2% and 33.2% respectively. The late fusion of Louvain and

weighted virtual graph with median thresholding outperforms the three by

14.1%, 24.0% and 16.2% respectively. However all of the methods perform

poorly when evaluated by ARI. As for running time, we can see that again

59



Table 4.11: Ratio of number of communities detected to ground-truth on face-
book network. Late-fusion 1 refers to Louvain + unweighted virtual graph with
equal-edge thresholding, Late-fusion 2 refers to Louvain + weighted virtual
graph with median thresholding, Late-fusion 3 refers to SIWO + unweighted
virtual graph with equal-edge thresholding, and Late-fusion 4 refers to SIWO
+ weighted virtual graph with median thresholding.

0 107 348 414 686 698 1684 1912 3437 3980 Average

Louvain 1.32 1.90 0.83 2.33 0.73 0.71 0.89 0.54 1.04 0.78 1.11
SIWO 1.23 2.40 0.50 2.17 0.55 0.64 0.94 0.61 1.04 0.61 1.07

CESNA 0.16 0.44 0.21 0.57 0.71 0.77 0.29 0.06 0.23 0.76 0.42

Late-fusioin 1 10.6 34.3 8.75 10.8 9.55 3.50 23.6 7.39 14.9 2.28 12.6
Late-fusioin 2 5.05 18.5 5.25 6.00 2.36 1.64 11.3 5.21 8.30 2.00 6.56
Late-fusioin 3 9.77 32.4 7.17 9.83 7.91 2.64 22.6 6.79 13.8 1.89 11.5
Late-fusioin 4 4.09 17.7 3.67 5.33 1.09 0.86 9.67 4.93 7.65 1.39 5.64

our late-fusion methods are very competive even compared with Louvain and

SIWO. When comparing the ratio of number of communities detected to the

ground truth, it is observed that CESNA is prone to merge small communities

to larger ones, whereas late-fusion methods tend to over-partition a larger

community into smaller communities. The two classic community detection

algorithms are able to find the number of communities closer to the ground

truth. Moreover, SIWO together with Late-fusion 3 and 4, two methods which

have SIWO involved, are able to find more accurate number of communities

than Louvain and Late-fuion 1, 2.

4.2.4 Effect of Parameter α

In the Sinanet experiment, we saw the superiority of having a weighting pa-

rameter to accordingly leverage the strength of the two sources of information.

In this section we dive deeper into the effect of α to the community detection

results. To do so, we devise an experiment where we use the graph 1 and

3 introduced in Table 4.1. Since graph 1 is “strong” in terms of structure,

we assign weak attribute to it (set std = 1.5 in attribute redistribution). On

the other hand, considering that the ground-truth communities of graph 4 has

a relatively low modularity, we assign graph 4 with attribute that has con-

spicuous clusters in the feature space (std = 0.3). Then we perform our late

60



fusion algorithm on to these two graphs with varying αs. In our experiment

we choose SIWO as Fs and k-means as Fa.

Table 4.12 and 4.13 present the NMI and ARI of late fusion with SIWO

and spectral clustering when we vary α. Both NMI and ARI exhibit the same

trend for both graph 1 and 4 when we go from the left to the right of the

tables. Graph 1 has communities with strong structure and weak attribute,

so the accuracy score for NMI and ARI goes up as we put more weight on

the structure; On contrary, graph 4 has communities with weak structure and

strong attribute, hence the accuracy score decreases as we increase α. We also

notice that when α is sufficiently high or low, late fusion becomes equivalent

to using community detection or clustering only, which is in accordance with

our observation in the Sinanet experiment.

Table 4.12: Effect of α, evaluated by NMI

Graph ID Only attribute α = 0.2 α = 0.5 α = 0.8 Only structure

1 0.530 0.530 0.756 0.836 0.836
4 0.867 0.867 0.762 0.526 0.526

Table 4.13: Effect of α, evaluated by ARI

Graph ID Only attribute α = 0.2 α = 0.5 α = 0.8 Only structure

1 0.359 0.359 0.513 0.850 0.850
4 0.834 0.834 0.470 0.364 0.364

From the two tables we also notice that the late-fusion cannot outperform

Louvain on graph 0, or k-means on graph 3. Therefore, when either of the

structure or the attribute is strong enough to determine to communities, there

is no need to consider both sources of information.

4.2.5 Complexity of Late Fusion

We use this section to discuss the time complexity and the scalability of our

late-fusion method. The whole process of our method is comprised by two

major components: the first is to get the two partitions Ps and Pa, and the

second is the fusion process. Therefore, the time complexity of our method is

61



also dependent on the time complexity of these two components. The complex-

ity of the first components is determined by the chosen community detection

algorihtm Fs and clustering algorithm Fa. For example, in our experiments,

we choose Louvain or SIWO as Fs, both algorithms run in linear time with

the network size. Suppose we pick the k-means algorithm as Fa, it has a com-

plexity of O(|V |ktr) where k is the number of clusters, t is the number of

iterations, and r is the number of attributes. When k, t, r is relatively small

as opposed to |V |, we can regard k-means as linear in the network size, too.

As for the second component: getting the affiliation matrix requires to tra-

verse all the nodes in the network, hence the time complexity of this step is

O(|V |). The later fusion step only contains matrix operations: a matrix mul-

tiplication to compute matrices Ds and Da, and a matrix addition to get the

adjacency matrix D of Gintegrated. These matrix operations are scalable and

can easily be parallelized by techniques such as MapReduce [29], like in the

case of PageRank [71] for finding authoritative pages when ranking web search

results. This means that our additional matrix operations do not increase the

overall complexity of the community mining algorithm. After that, the com-

munity detection algorithm Fs is applied to Gintegrated, where we use Louvain

or SIWO. Therefore, the overall time complexity of the second component is

linear in the size of the network. Combining the two components together,

we can argue that the computational complexity of our proposed late-fusion

method is dominated by the chosen Fs and Fa. Since in practice most of the

options for Fs and Fa are very fast, our approach can easily scale up to large

networks.

It is a known drawback of attributed community detection algorithms that

they are very time-consuming due to the needs to consider node attributes.

Our late-fusion method tries to circumvent this problem by taking advantage

of the existing community detection and clustering algorithms and combines

their results by a simple approach. Next we conduct an experiment to illustrate

the running time of the late-fusion method compared to other methods.

We test the running time of four different community detection methods at

five graphs with the number of nodes varying from 2000, 4000, 6000, 8000, and

62



Figure 4.2: Running time of Louvain, SIWO, Late Fusion and I-Louvain on
networks of different sizes

10000. These graphs are also generated by the attributed graph generator that

we used in the synthetic network experiment. We control the modularity of

each graph at the range of 0.64−0.66, and perform attribute redistribution at

std = 0.5, to avoid confounding factors. For each size, we generate 10 different

networks with the same parameter setting and plot the average running time

of each method. As we can see in Figure 4.2, it is expected that our late-fusion

method is inevitably slower than the two community detection methods that

only utilize node connections. However our algorithm runs way faster than

the I-Louvain algorithm, albeit both being approximately linear in the growth

of network sizes.

4.3 Late Fusion via Consensus Clustering

This section is not considered as a major component of the methodology that

we propose, however we have spent a large amount of time exploring in this

direction. We would like to present our work on consensus clustering as to

demonstrate what we have learned.

Most clustering and community detection algorithms are indeterministic,

i.e., if we change the order of nodes that are being processed, we might end up

63



with a slightly different clustering result. Consensus clustering [28], [89] pro-

vides a way to take advantage of the inderterministic property of a clustering

algorithm and produce a consensus, more stronger partitioning. Starting with

a graph G and a community detection/clustering algorithm F , Fortunato and

Hric [35] describe consensus clustering in the following steps:

1. Apply F on G k times, yielding k partitionings.

2. Compute the consensus matrix D, Dij is the number of partitionings in

which nodes i and j are assigned to the same community, divided by k.

3. All entries of D below a chosen threshold t are set to zero.

4. Apply F on D k times, yielding k partitionings.

5. If all partitionings are equal, stop. Otherwise go gack to step 2.

Consensus clustering described above can also be translated to serve our

purpose. We can use consensus clustering to combine the two sets of communi-

ties detected from node connections and attributes. Let Fs be the community

detection algorithm applied to the graph structure, and Fa be the clustering

algorithm applied to the node attribute matrix A. The adjusted version of

consensus clustering for attributed community detection is as follows:

1. Apply Fs on G and Fa on A k times, yielding 2k partitionings.

2. For the first k partitionings that are based on G, compute the consensus

matrix Ds: each entry Dij is the number of partitions in which nodes

i and j of Gs are assigned to the same community, divided by k. Do

the same for the second k partitionings and obtain the corresponding

consensus matrix Da.

3. The integrated consensus matrix is D = αDs + (1 − α)Da where α is a

weighting parameter between 0 and 1.

4. All entries of D below a certain threshold t are set to zero.

64



5. Apply community detection algorithm Fs to D 2k times, yielding 2k

partitions.

6. If the partitionings are equal, stop. Otherwise re-compute the integrated

consensus matrix D: Dij is the number of partitions in which nodes i

and j of D are assigned to the same community, divided by 2k. And go

back to step 4.

We call this approach “late fusion via consensus clustering”. To concretely

show how it works, we apply this approach to the same four graphs as in

Table 4.1, with the same experiment settings as that of the first group of the

synthetic network experiments, whose results correspond to Table 4.4. We

select Louvain and SIWO as the Fs, spectral clustering and DBSCAN as the

Fa. The parameter k described above, which is the number of times we apply

an algorithm to the graph under study, is set to 5. This is the ususal option of

consensus clustering in practice. The results of NMI, ARI and running time

(in seconds) are displayed in Table 4.14

Table 4.14: Late fusion without consensus clustering (CC) vs with CC. Time
is measured in seconds.

Graph 1 Graph 2 Graph 3 Graph 4

NMI ARI time NMI ARI time NMI ARI time NMI ARI time

Without CC:
Louvain + SC .824 .704 7.34 .790 .650 6.68 .784 .618 5.74 .765 .597 7.14
Louvain + DBSCAN .818 .813 8.64 .742 .720 8.59 .730 .702 8.87 .704 .690 10.6
SIWO + SC .844 .738 10.3 .806 .689 9.28 .786 .636 7.33 .723 .508 6.46
SIWO + DBSCAN .818 .813 11.7 .742 .720 10.5 .730 .702 10.2 .704 .690 11.6

With CC:
Louvain + SC .830 .770 277 .750 .626 539 .763 .691 320 .816 .755 311
Louvain + DBSCAN .563 .306 561 .683 .645 398 .654 .524 516 .461 .327 638
SIWO + SC .772 .633 1627 .720 .592 1883 .721 .595 2071 .000 .000 4310
SIWO + DBSCAN .384 .145 6111 .000 .000 15302 .274 .045 10106 .000 .000 3845

The upper four rows of Table 4.14 are copied from the last four rows of

Table 4.4, which show the results of the late fusion method that we proposed

in Chapter 3, i.e., without consensus clustering. The lower four rows present

the same experiment on the same set of graphs, except that we use the consen-

sus clustering method described above. As we can see, in general, consensus

65



clustering deteriorates the accuracy from the late fusion method that we pro-

posed earlier. More importantly, consensus clustering renders the application

of community detection computationally expensive. This is due to the fact that

community detection and clustering are utilizing two totally different sources

of information of the network, hence they produce very different partitionings.

The large difference gaps between the partitionings make the convergence to

the consensus painfully slow, and can easily go astray. Therefore we forgo

pursuing under this direction and recommend the late fusion approach that

we proposed in Chapter 3.

66



Chapter 5

Conclusion

5.1 Summary

In this thesis we provide our work of community detection on attributed net-

works. We propose a new approach that follows a late-fusion manner. Con-

cretely, for networks with numeric attribute, we obtain two sets of communities

by applying a community detection algorithm to the original graph and a clus-

tering algorithm to the attribute matrix. For networks with binary/categorical

attribute, we devise a way to create a virtual graph Ga based upon the node

similarity in the original graph G. Hence we can get the communities that

reflect the clustering of node attributes by applying a community detection

algorithm on the virtual graph. Later we combine the two partitions using

the fusion method we proposed in Chapter 3, which results in a new set of

communities that fulfill our goal of community mining.

We show with extensive experiments that our late-fusion method provides

a simple yet powerful approach to the attributed community mining tasks on

different types of networks. We conclude our work as follows.

1. We proposed a new late-fusion framework that takes advantage of ex-

isting community detection and clustering algorithms and is capable of

finding communities with strong node connectivity and attribute homo-

geneity. The flexibility of the framework enables people to choose from

abundant combinations of algorithms and to pick the one that works the

best.

67



2. We designed a novel method to identify communities that reflect node

similarity for networks with binary attributes. Our method overcomes

the difficulty of applying traditional clustering algorithms to binary fea-

tures, by generating a virtual network based on the attribute similarity

between nodes. This new approach can also be regarded as a new clus-

tering algorithm for data samples with binary or categorical features.

3. We applied the late-fusion framework on 4 synthetic networks and 11

real networks of different sizes and attribute types, and evaluated the

outcome communities against ground-truth communities. We showed

that on both synthetic and real networks, with numeric or binary at-

tributes, our method consistently gives good results and significantly

improves the quality of communities that are identified solely based on

node connections.

4. We introduced a weighting parameter α and empirically studied its effect.

We showed that the weight α leverages the contribution from structure

and attribute to the final communities. It allows for human-control of

the strength of structure and attributes in the detection of communities,

which brings extra power when prior knowledge about the formation of

communities is known.

5. We analyzed the complexity of our method and proves the linear growth

of our method with the size of the network, given that the community

detection and clustering algorithms employed in late fusion are also lin-

ear in the size of network. In practice it is way more efficient than

other attributed community detection algorithms such as I-Louvain and

CESNA.

5.2 Future Directions

We would like to continue our efforts on the problem of community detection

on attributed networks. Especially, based on our experiments, we summarize

the following several directions in which we can push forward our study:

68



1. Hybrid attributes: A network can have a hybrid collection of at-

tributes, and these attributes are usually closely correlated as well. For

example, the attributes of an online social network member can include

salary (numeric), occupation (categorical) and his/her political view (bi-

nary). A possible extension of our late-fusion algorithm to networks with

hybrid attributes is to convert the numerical attributes in the network

to ordinal, i.e, categorical attributes.

2. Effect of structure and attribute in the formation of network

communities : A much deeper and more thorough study on the con-

tribution of structure and attribute to the formation of network com-

munities is desired. In particular, when the “homophily” effect is no

longer significant in the network understudy, we need to adjust our fu-

sion approach and choose the optimal α accordingly. Understanding the

interactive effect between node connections and attributes can shed light

on how we should appropriately utilize them. Ultimately, this study will

lead to more accurate detection algorithm.

3. Overlapping communities: So far our late-fusion approach is only

capable of detecting non-overlapping communities, due to the detection

algorithm Fs in the experiments can only produce a partitioning of the

node set V . A starting point towards overlapping community detec-

tion could be replacing Louvain and SIWO with algorithms that allow

overlaps. Several algorithms able to find overlapping communities are,

for instance, clique percolation approach [72], and the method based on

overlapping subgraphs [8].

69



References

[1] L. A. Adamic and B. A. Huberman, “Power-law distribution of the
world wide web,” Science, vol. 287, no. 5461, pp. 2115–2115, 2000. 1

[2] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman,
“Search in power-law networks,” Physical review E, vol. 64, no. 4,
p. 046 135, 2001. 1

[3] R. Agrawal and H. Jagadish, “Algorithms for searching massive graphs,”
IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 2,
pp. 225–238, 1994. 3

[4] L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos, “Pics: Parameter-
free identification of cohesive subgroups in large attributed graphs,” in
Proceedings of the 2012 SIAM international conference on data mining,
SIAM, 2012, pp. 439–450. 24

[5] Y. Asim, R. Ghazal, W. Naeem, A. Majeed, B. Raza, and A. K. Malik,
“Community detection in networks using node attributes and modular-
ity,” INTERNATIONAL JOURNAL OF ADVANCED COMPUTER
SCIENCE AND APPLICATIONS, vol. 8, no. 1, pp. 382–388, 2017. 25

[6] R. Balasubramanyan and W. W. Cohen, “Block-lda: Jointly model-
ing entity-annotated text and entity-entity links,” in Proceedings of the
2011 SIAM International Conference on Data Mining, SIAM, 2011,
pp. 450–461. 31

[7] E. R. Barnes, “An algorithm for partitioning the nodes of a graph,”
SIAM Journal on Algebraic Discrete Methods, vol. 3, no. 4, pp. 541–
550, 1982. 13

[8] J. Baumes, M. K. Goldberg, M. S. Krishnamoorthy, M. Magdon-Ismail,
and N. Preston, “Finding communities by clustering a graph into over-
lapping subgraphs.,” IADIS AC, vol. 5, pp. 97–104, 2005. 69

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003. 44

[10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical me-
chanics: Theory and experiment, vol. 2008, no. 10, P10008, 2008. 8, 15, 25, 40, 51

70



[11] B. Bollobás, Modern graph theory. Springer Science & Business Media,
2013, vol. 184. 38

[12] M. P. Boobalan, D. Lopez, and X. Z. Gao, “Graph clustering using
k-neighbourhood attribute structural similarity,” Applied Soft Comput-
ing, vol. 47, pp. 216–223, 2016. 51

[13] S. P. Borgatti and M. G. Everett, “Notions of position in social network
analysis,” Sociological methodology, pp. 1–35, 1992. 12

[14] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “On modularity clustering,” IEEE transactions on
knowledge and data engineering, vol. 20, no. 2, pp. 172–188, 2008. 15

[15] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O.
Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton,
J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for
machine learning software: Experiences from the scikit-learn project,”
in ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, 2013, pp. 108–122. 54

[16] B.-f. Chai, J. Yu, C.-y. Jia, T.-b. Yang, and Y.-w. Jiang, “Combining a
popularity-productivity stochastic block model with a discriminative-
content model for general structure detection,” Physical review E, vol.
88, no. 1, p. 012 807, 2013. 31

[17] J. Chang and D. Blei, “Relational topic models for document networks,”
in Artificial Intelligence and Statistics, 2009, pp. 81–88. 31

[18] J. Chen and B. Yuan, “Detecting functional modules in the yeast protein–
protein interaction network,” Bioinformatics, vol. 22, no. 18, pp. 2283–
2290, 2006. 1

[19] J. Chen, O. R. Zaıane, and R. Goebel, “An unsupervised approach
to cluster web search results based on word sense communities,” in
Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT’08.
IEEE/WIC/ACM International Conference on, IEEE, vol. 1, 2008,
pp. 725–729. 3

[20] Y. Chen, X. Wang, J. Bu, B. Tang, and X. Xiang, “Network structure
exploration in networks with node attributes,” Physica A: Statistical
Mechanics and its Applications, vol. 449, pp. 240–253, 2016. 31

[21] D. Combe, C. Largeron, E. Egyed-Zsigmond, and M. Géry, “Combining
relations and text in scientific network clustering,” in Proceedings of the
2012 International Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2012), IEEE Computer Society, 2012, pp. 1248–
1253. 27

[22] D. Combe, C. Largeron, M. Géry, and E. Egyed-Zsigmond, “I-louvain:
An attributed graph clustering method,” in International Symposium
on Intelligent Data Analysis, Springer, 2015, pp. 181–192. 25, 51

71



[23] J. D. Cruz and C. Bothorel, “Information integration for detecting com-
munities in attributed graphs,” in Computational Aspects of Social Net-
works (CASoN), 2013 Fifth International Conference on, IEEE, 2013,
pp. 62–67. 35, 36, 41

[24] J. D. Cruz, C. Bothorel, and F. Poulet, “Entropy based community
detection in augmented social networks,” in Computational aspects of
social networks (cason), 2011 international conference on, IEEE, 2011,
pp. 163–168. 24

[25] ——, “Semantic clustering of social networks using points of view.,” in
CORIA, 2011, pp. 175–182. 26

[26] T. Dang and E. Viennet, “Community detection based on structural
and attribute similarities,” in International conference on digital society
(icds), 2012, pp. 7–14. 25

[27] J.-J. Daudin, F. Picard, and S. Robin, “A mixture model for random
graphs,” Statistics and computing, vol. 18, no. 2, pp. 173–183, 2008. 31

[28] R. Dazeley, J. L. Yearwood, B. H. Kang, and A. V. Kelarev, “Consen-
sus clustering and supervised classification for profiling phishing emails
in internet commerce security,” in Pacific Rim Knowledge Acquisition
Workshop, Springer, 2010, pp. 235–246. 64

[29] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008. 7, 62

[30] Y. Dourisboure, F. Geraci, and M. Pellegrini, “Extraction and classi-
fication of dense communities in the web,” in Proceedings of the 16th
international conference on World Wide Web, ACM, 2007, pp. 461–
470. 1

[31] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.,”
in Kdd, vol. 96, 1996, pp. 226–231. 8, 22

[32] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee, “Self-
organization and identification of web communities,” Computer, vol.
35, no. 3, pp. 66–70, 2002. 1

[33] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3, pp. 75–174, 2010. 19

[34] S. Fortunato and M. Barthelemy, “Resolution limit in community de-
tection,” Proceedings of the National Academy of Sciences, vol. 104, no.
1, pp. 36–41, 2007. 16, 17

[35] S. Fortunato and D. Hric, “Community detection in networks: A user
guide,” Physics Reports, vol. 659, pp. 1–44, 2016. 11, 19, 64

[36] S. Z. Gharaghooshi, “Community structure in complex networks,” Mas-
ter’s thesis, University of Alberta, Nov. 2018. 8, 17, 51

72



[37] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002. 1, 18

[38] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining, ACM, 2016, pp. 855–
864. 33, 44

[39] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmod-
els: First steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983. 19

[40] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifi-
cation, vol. 2, no. 1, pp. 193–218, 1985. 36, 37

[41] D. R. Hunter and K. Lange, “A tutorial on mm algorithms,” The Amer-
ican Statistician, vol. 58, no. 1, pp. 30–37, 2004. 35

[42] C. Jia, Y. Li, M. B. Carson, X. Wang, and J. Yu, “Node attribute-
enhanced community detection in complex networks,” Scientific Re-
ports, vol. 7, 2017. 27, 28, 44, 49, 56

[43] L. Kaufman and P. J. Rousseeuw, Finding groups in data: An intro-
duction to cluster analysis. John Wiley & Sons, 2009, vol. 344. 20

[44] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs,” The Bell system technical journal, vol. 49, no. 2,
pp. 291–307, 1970. 13

[45] M. Kim and J. Leskovec, “Multiplicative attribute graph model of real-
world networks,” Internet mathematics, vol. 8, no. 1-2, pp. 113–160,
2012. 5

[46] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol.
78, no. 9, pp. 1464–1480, 1990. 26, 36, 41

[47] G. Kossinets and D. J. Watts, “Empirical analysis of an evolving social
network,” Science, vol. 311, no. 5757, pp. 88–90, 2006. 5

[48] T. La Fond and J. Neville, “Randomization tests for distinguishing
social influence and homophily effects,” in Proceedings of the 19th in-
ternational conference on World wide web, ACM, 2010, pp. 601–610.

5

[49] C. Largeron, P.-N. Mougel, R. Rabbany, and O. R. Zaıane, “Generat-
ing attributed networks with communities,” PloS one, vol. 10, no. 4,
e0122777, 2015. 48, 52

[50] P. F. Lazarsfeld, R. K. Merton, et al., “Friendship as a social process:
A substantive and methodological analysis,” Freedom and control in
modern society, vol. 18, no. 1, pp. 18–66, 1954. 5

73



[51] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Commu-
nity structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–
123, 2009. 13

[52] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in Advances in neural information processing systems,
2012, pp. 539–547. 49

[53] H. Li, Z. Nie, W.-C. Lee, L. Giles, and J.-R. Wen, “Scalable community
discovery on textual data with relations,” in Proceedings of the 17th
ACM conference on Information and knowledge management, ACM,
2008, pp. 1203–1212. 30

[54] Y. Li, C. Jia, and J. Yu, “A parameter-free community detection method
based on centrality and dispersion of nodes in complex networks,” Phys-
ica A: Statistical Mechanics and its Applications, vol. 438, pp. 321–334,
2015. 28

[55] Y. Li, C. Sha, X. Huang, and Y. Zhang, “Community detection in
attributed graphs: An embedding approach,” in AAAI, 2018. 33

[56] Y. Liu, A. Niculescu-Mizil, and W. Gryc, “Topic-link lda: Joint models
of topic and author community,” in Proceedings of the 26th annual
international conference on machine learning, ACM, 2009, pp. 665–
672. 31

[57] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982. 8, 21

[58] F. Lorrain and H. C. White, “Structural equivalence of individuals in
social networks,” The Journal of mathematical sociology, vol. 1, no. 1,
pp. 49–80, 1971. 12

[59] R. D. Luce, “Connectivity and generalized cliques in sociometric group
structure,” Psychometrika, vol. 15, no. 2, pp. 169–190, 1950. 12

[60] R. D. Luce and A. D. Perry, “A method of matrix analysis of group
structure,” Psychometrika, vol. 14, no. 2, pp. 95–116, 1949. 11

[61] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, Oakland, CA, USA,
vol. 1, 1967, pp. 281–297. 19, 21

[62] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, vol. 27, no.
1, pp. 415–444, 2001. 5

[63] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” ArXiv preprint arXiv:1301.3781,
2013. 33

74



[64] R. J. Mokken, “Cliques, clubs and clans,” Quality and quantity, vol. 13,
no. 2, pp. 161–173, 1979. 12

[65] J. Neville, M. Adler, and D. Jensen, “Clustering relational data using
attribute and link information,” in Proceedings of the text mining and
link analysis workshop, 18th international joint conference on artificial
intelligence, San Francisco, CA: Morgan Kaufmann Publishers, 2003,
pp. 9–15. 26

[66] M. E. Newman, “Assortative mixing in networks,” Physical review let-
ters, vol. 89, no. 20, p. 208 701, 2002. 1

[67] ——, “Modularity and community structure in networks,” Proceedings
of the national academy of sciences, vol. 103, no. 23, pp. 8577–8582,
2006. 25

[68] M. E. Newman and A. Clauset, “Structure and inference in annotated
networks,” Nature Communications, vol. 7, p. 11 863, 2016. 31

[69] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, p. 026 113,
2004. 12, 14, 18

[70] M. E. Newman and E. A. Leicht, “Mixture models and exploratory
analysis in networks,” Proceedings of the National Academy of Sciences,
vol. 104, no. 23, pp. 9564–9569, 2007. 31

[71] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.,” Stanford InfoLab, Tech. Rep.,
1999. 62

[72] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, p. 814, 2005. 69

[73] B. Perozzi, L. Akoglu, P. Iglesias Sánchez, and E. Müller, “Focused
clustering and outlier detection in large attributed graphs,” in Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2014, pp. 1346–1355. 30

[74] P. Pons and M. Latapy, “Computing communities in large networks us-
ing random walks.,” J. Graph Algorithms Appl., vol. 10, no. 2, pp. 191–
218, 2006. 16

[75] R. Rabbany and O. R. Zäıane, “Evaluation of community mining al-
gorithms in the presence of attributes,” in Trends and Applications in
Knowledge Discovery and Data Mining, Springer, 2015, pp. 152–163. 36

[76] ——, “A general clustering agreement index: For comparing disjoint
and overlapping clusters.,” in AAAI, 2017, pp. 2492–2498. 38

[77] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defin-
ing and identifying communities in networks,” Proceedings of the Na-
tional Academy of Sciences, vol. 101, no. 9, pp. 2658–2663, 2004. 18

75



[78] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “Struc2vec: Learn-
ing node representations from structural identity,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, 2017, pp. 385–394. 33

[79] A. W. Rives and T. Galitski, “Modular organization of cellular net-
works,” Proceedings of the National Academy of Sciences, vol. 100, no.
3, pp. 1128–1133, 2003. 1

[80] M. Rosvall and C. T. Bergstrom, “Maps of random walks on com-
plex networks reveal community structure,” Proceedings of the National
Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008. 16, 40

[81] Y. Ruan, D. Fuhry, and S. Parthasarathy, “Efficient community de-
tection in large networks using content and links,” in Proceedings of
the 22nd international conference on World Wide Web, ACM, 2013,
pp. 1089–1098. 27

[82] M. T. Schaub, J.-C. Delvenne, S. N. Yaliraki, and M. Barahona, “Markov
dynamics as a zooming lens for multiscale community detection: Non
clique-like communities and the field-of-view limit,” PloS one, vol. 7,
no. 2, e32210, 2012. 17

[83] V. Spirin and L. A. Mirny, “Protein complexes and functional mod-
ules in molecular networks,” Proceedings of the National Academy of
Sciences, vol. 100, no. 21, pp. 12 123–12 128, 2003. 1

[84] M. Steenstrup, “Cluster-based networks,” in Ad hoc networking, Addison-
Wesley Longman Publishing Co., Inc., 2001, pp. 75–138. 3

[85] K. Steinhaeuser and N. V. Chawla, “Community detection in a large
real-world social network,” in Social computing, behavioral modeling,
and prediction, Springer, 2008, pp. 168–175. 26

[86] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse frame-
work for combining multiple partitions,” Journal of machine learning
research, vol. 3, no. Dec, pp. 583–617, 2002. 36

[87] P. R. Suaris and G. Kedem, “An algorithm for quadrisection and its
application to standard cell placement,” IEEE Transactions on Circuits
and Systems, vol. 35, no. 3, pp. 294–303, 1988. 13

[88] Y. Sun, C. C. Aggarwal, and J. Han, “Relation strength-aware cluster-
ing of heterogeneous information networks with incomplete attributes,”
Proceedings of the VLDB Endowment, vol. 5, no. 5, pp. 394–405, 2012. 31

[89] A. Topchy, A. K. Jain, and W. Punch, “Clustering ensembles: Models of
consensus and weak partitions,” IEEE transactions on pattern analysis
and machine intelligence, vol. 27, no. 12, pp. 1866–1881, 2005. 64

[90] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007. 18

76



[91] J. H. Ward Jr, “Hierarchical grouping to optimize an objective func-
tion,” Journal of the American statistical association, vol. 58, no. 301,
pp. 236–244, 1963. 16

[92] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,”
Nature, vol. 393, no. 6684, p. 440, 1998. 17

[93] D. S. Wilks, Statistical methods in the atmospheric sciences. Academic
press, 2011, vol. 100. 19

[94] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community de-
tection in networks: The state-of-the-art and comparative study,” Acm
computing surveys (csur), vol. 45, no. 4, p. 43, 2013. 13

[95] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, “A model-based
approach to attributed graph clustering,” in Proceedings of the 2012
ACM SIGMOD international conference on management of data, ACM,
2012, pp. 505–516. 31

[96] ——, “Gbagc: A general bayesian framework for attributed graph clus-
tering,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 9, no. 1, p. 5, 2014. 31

[97] J. Yang and J. Leskovec, “Overlapping community detection at scale: A
nonnegative matrix factorization approach,” in Proceedings of the sixth
ACM international conference on Web search and data mining, ACM,
2013, pp. 587–596. 32

[98] ——, “Defining and evaluating network communities based on ground-
truth,” Knowledge and Information Systems, vol. 42, no. 1, pp. 181–
213, 2015. 38

[99] J. Yang, J. McAuley, and J. Leskovec, “Community detection in net-
works with node attributes,” in Data Mining (ICDM), 2013 IEEE 13th
international conference on, IEEE, 2013, pp. 1151–1156. 31, 32, 51, 58

[100] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, “Directed network com-
munity detection: A popularity and productivity link model,” in Pro-
ceedings of the 2010 SIAM International Conference on Data Mining,
SIAM, 2010, pp. 742–753. 31

[101] T. Yang, R. Jin, Y. Chi, and S. Zhu, “Combining link and content for
community detection: A discriminative approach,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining, ACM, 2009, pp. 927–936. 31

[102] T. Yano, W. W. Cohen, and N. A. Smith, “Predicting response to
political blog posts with topic models,” in Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics, Associ-
ation for Computational Linguistics, 2009, pp. 477–485. 43

77



[103] H. Zanghi, S. Volant, and C. Ambroise, “Clustering based on random
graph model embedding vertex features,” Pattern Recognition Letters,
vol. 31, no. 9, pp. 830–836, 2010. 31

[104] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on struc-
tural/attribute similarities,” Proceedings of the VLDB Endowment, vol.
2, no. 1, pp. 718–729, 2009. 27, 28

[105] ——, “Clustering large attributed graphs: An efficient incremental ap-
proach,” in Data Mining (ICDM), 2010 IEEE 10th International Con-
ference on, IEEE, 2010, pp. 689–698. 27, 29

78


	Introduction
	Thesis Motivation
	Thesis Statements
	Thesis Contributions
	Thesis Organizations

	Background and Related Work
	Community Detection Based on Node Connections
	Notations
	Definitions of Network Communities
	Graph Partitioning
	Agglomerative Hierarchical Methods
	Divisive Hierarchical Methods
	Spectral Clustering
	Methods Based on Statistical Inference

	Clustering Based on Node Attributes
	Agglomerative Hierarchical Methods
	Centroid-based Clustering
	Density-based Clustering

	Community Detection Methods on Attributed Networks
	Methods Based on Optimization
	Methods Based on Unifying Edge Weights
	Methods Based on Graph Augmentation
	Methods Based on Core Expansion
	Methods Based on Statistical Inference
	Methods Based on Embedding
	Methods Based on Late Fusion

	Evaluation
	External Measures
	Internal Measures


	The Late-fusion Method
	Motivations
	Method Overview
	The Fusion Algorithm
	Late Fusion on Networks with Numeric Attributes
	Late Fusion on Networks with Binary Attributes


	Experiments
	Experimental Settings
	Experimental Results
	Synthetic Networks with Numerical Attributes
	Numeric attributes, Sina Weibo network
	Binary attributes, Facebook networks
	Effect of Parameter 
	Complexity of Late Fusion

	Late Fusion via Consensus Clustering

	Conclusion
	Summary
	Future Directions

	References

