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Abstract

Let a locally compact semitopological semigroup S have a separately con-

tinuous left action on a locally compact Hausdorff X. We define a jointly

continuous left action of the measure algebra M(S) on the bounded Borel

measure space M(X) which is an analogue of the convolution of measure alge-

bras M(S). We further introduce a separately continuous left action of M(S)

on the dual of a M(S)-invariant subspace A of M(X)∗ in analogue with Arens

product. We consider the fixed point of this action on the set of means on A

(topological S-invariant mean on A) and characterize its existence in analogue

with topological right stationary, ergodic properties, Dixmier condition etc. A

notion of topological (S,A)-lumpy is introduced and its relation with topolog-

ical S-invariant mean on A is studied. The relation of existence of topological

invariant means on a subspace of X and on X itself is also studied.
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Chapter 1

Introduction

Let S be a locally compact semitopological semigroup, X be a locally

compact space under separately continuous left action of S. We denote by

M(S) and M(X) the Banach space of bounded Borel measures respectively

on S and X. The main purpose of this thesis is to build a separately continuous

left action of M(S) on M(X)∗ through the convolution of measures in M(S)

and M(X). Hence we construct a separately continuous left action of M(S)

on the continuous dual of M(S)-invariant subspaces A in M(X)∗. Then we

characterize the existence of M(S)-invariant means on A. We use topological

S-invariant for M(S)-invariant in this thesis.

In Chapter 2, we introduce some known results on locally compact semi-

topological semigroup relating to this thesis.

In Chapter 3, we first show that we can properly build an jointly continuous

left action of M(S) on M(X) in section 3.1. Then we introduce the notion of

topology S-invariant means on an M(S) invariant subspace A of M(X)∗ which

is a generalization of topological left invariant means in the case where X = S.

We generalize some of the well-known characterizations of the existence of

topological S-invariant means from X = S case in section 3.2, e.g., Dixmier

condition, topological right stationary, ergodic property, etc.. In section 3.3,

we generalize results in [32] and characterize the existence of topological S-

invariant mean on M(X)∗ by identifying M(X)∗ as a Banach subspace of
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∏
µ∈M(X)

L∞(|µ|). In section 3.4, we study a subset T of X for a topological

S-invariant subspace A in M(X)∗, such that there exists a mean M on A

and M is topological S-invariant on the set {F ∈ A; χT ≤ F ≤ 1}, where

χT is the characteristic functional of T in M(X)∗. Such set is said to be

topological (S,A)-lumpy. We prove that for each (S,M(X)∗)-lumpy subset,

we can always find a topological S-invariant subspace A of M(X)∗ such that it

has a topological S-invariant mean M with M(χT ) = 1. Then in section 3.4,

we study locally compact Borel subspace T of X which is closed under the left

action of locally compact Borel subsemigroup R in S (in particular, we may let

R = S). We prove that there exists a topological R-invariant mean on M(T )∗

if and only if there exists a topological R-invariant mean M on M(X)∗ with

M(χT ) = 1. If we assume further that R is topological S-lumpy, we prove that

the existence of topological R-invariant mean on M(T )∗ is equivalent with the

existence of topological S-invariant mean on M(X)∗.

In chapter 4, we generalize the results in [18] and [23] to show that the

existence of S-invariant means in the convex hull of multiplicative means on

LUC(S,X), where S is a semitopological semigroup and X is a topological

space under separately continuous left action of S, reflect the structure of S,

i.e., we can decompose S into finitely many open and closed disjoint subsets.
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Chapter 2

Preliminaries

2.1 Definition and Notations

Throughout this thesis, a topological space is assumed to be Hausdorff.

Definition 2.1.1. A semigroup S which is also a topological space is a topo-

logical [resp. semitopological] semigroup if multiplication in S is a jointly

[resp. separately] continuous.

A group G is a topological [resp. semitopological] group if it is a topological

[resp. semitopological] semigroup and further the inverse map G → G by

g 7→ g−1 is continuous.

Remark 2.1.2. Note that when S is a locally compact semitopological group,

S is also a topological group (see [12]). However in general, a semitopological

semigroup is not necessarily a topological semigroup.

Example 2.1.3. ( [21, P133]) Let R be equipped with the usual topology.

Let S = R ∪ {∞} be the one point compactification of R. Let s, t ∈ S,

define s · t =
{ s+ t s, t ∈ R
∞ s =∞ or t =∞

. Then S is a semigroup under “·”.

In addition, the multiplication of S defined by “·” is separately continuous.

Thus, S is a compact semitopological semigroup. Assume the multiplication

defined by · is jointly continuous, let sn = n+ 1, tn = −n be two sequences
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in S, we have that ∞ = limn sn + limn tn = limn(sn + tn) = 1, which is

impossible. Therefore, S is compact semitopological semigroup that is not

a topological semigroup.

Let S be a locally compact space. We denote by M(S) the Banach space of

bounded Borel measures on S equipped with total variation norm and by P (S)

the set of probability measures on S. By Riesz representation theorem, M(S)

is identified with continuous functionals on C0(S), where C0(S) is the space

of continuous functions on S that vanish at infinity. It is shown in [20] that

when S is a topological semigroup, we may define the convolution of measures

in M(S) using Fubini’s theorem, i.e., let ν, µ ∈M(S), define∫
fd(ν ∗ µ) =

∫∫
f(st)dν(s)dµ(t) =

∫∫
f(st)dµ(t)dν(s) (2.1)

for all f ∈ C0(S). The new measure ν ∗ µ in M(S) is uniquely identified by

Riesz representation theorem. Further, the above equation can be extended

to the case where f ∈ L1(|ν| ∗ |µ|) (details see [20]).

Wong generalized ( 2.1) to the case where S is a locally compact semitopo-

logical semigroup in [33] using Glicksberg’s result in [15].

Theorem 2.1.4 ( [15]). Let f be a separately continuously and bounded func-

tion on S × T , where S and T are locally compact spaces. Then for each

µ ∈M(S), the map

t 7→
∫
f(s, t)dµ(s)

is continuous.

This theorem enables the convolution of measures in M(S) to be well-

defined. Wong [33] manage to extend ( 2.1) to the case where f ∈ L1(|ν| ∗ |µ|).
From now on, we will let S be a locally compact semitopological semigroup.

With the convolution of measures in M(S) being defined, we may construct

the action of M(S) on its second dual using Arens product. Let ν ∈ M(S),
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F ∈M(S)∗, N , M ∈M(S)∗∗, we define

ν � F (µ) = F (ν ∗ µ)

M � F (µ) = M(µ� F )

N �M(G) = N(M �G)

(2.2)

for all µ ∈M(S), G ∈M(S)∗.

Similarly, let ν ∈M(S), F ∈M(S)∗, we define F � ν(µ) = F (µ ∗ ν) for all

µ ∈M(S).

Definition 2.1.5. Let A be a subspace of M(S)∗. We say that A is topological

left invariant, if {ν � F ; ν ∈ M(S), F ∈ A} ⊂ A. We say A is topological

left introverted, if A is topological left invariant and {M � F ; F ∈ A,M ∈
A∗} ⊂ A.

The property of A being topological left introverted allows us to define

N � M in A∗ for all N,M ∈ A∗, while A being topological left invariant

enables us to define ν � F in A for all ν ∈M(S), F ∈ A as ( 2.2).

Definition 2.1.6. Let A be a topological left invariant subspace of M(S)∗

containing 1, where 1 ∈ M(S)∗ and 1(µ) = µ(S) for any µ ∈ M(S). We

say M ∈ A∗ is a mean on A if M(1) = 1 = ‖M‖. We denote by M(A)

the set of means on A. We say M ∈ M(A) is topological left invariant if

we have M(ν � F ) = M(F ) holds for all ν ∈ P (S) (or equivalently for all

ν ∈M(S)). We abbreviate M(M(S)∗) as M(S).

2.2 Topological Left Invariant Means

Throughout this section S shall be a locally compact semitopological semi-

group. We shall give some characterizations of the existence of topological left

invariant means on M(S)∗ in this section that have been shown in literature.

Definition 2.2.1. We say S is topological right stationary if for any F ∈
M(S)∗, there exists a net µα in M(S) such that F � µα

weak∗−−−→ c1 for some
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scalar c.

Theorem 2.2.2 (Wong [29]). The following are equivalent:

1. M(S)∗ has a topological left invariant mean.

2. |ν(S)| = inf{‖ν ∗ µ‖ ; µ ∈ P (S)} holds for all ν ∈M(S).

3. There is a net µα in P (S), such that ‖ν ∗ µα − µα‖ → 0.

4. S is topological right stationary.

Wong [32] introduces another characterization of the existence of topolog-

ical left invariant means on M(S)∗ by identifying M(S)∗ with a subspace of∏
µ∈M(S)

L∞(|µ|).

Definition 2.2.3. We say f ∈
∏

µ∈M(S)

L∞(|µ|) is a generalised function on S,

if it satisfies

i) ‖f‖ = supµ∈M(S) ‖fµ‖µ,∞ <∞.

ii) fν = fµ |ν|-a.e., if |ν| � |µ|, where ν, µ ∈M(S).

We denote by GL(S) the set of all generalised functions. The set GL(S)

with the norm ‖·‖ defined in i) is a Banach space (see [32]). We say f ∈ GL(S)

is non-negative if fµ ≥ 0 µ-a.e., for all µ ∈ M(S). It is shown in [32] that an

action of M(S) on GL(S) can be properly defined by letting

(ν � f)µ = ν � fν∗µ =

∫∫
fν∗µ(st)dν(s)dµ(t)

for any ν, µ ∈M(S), f ∈ GL(S).

Definition 2.2.4. A functional m ∈ GL(S)∗ is a mean on GL(S) if ‖m‖ =

m(1) = 1, where 1 ∈ GL(S), 1µ = 1 for all µ ∈ M(S). Suppose, further,

m(ν � f) = m(f) for all ν ∈ P (S), f ∈ GL(S), then m is said to be a

topological left invariant mean on GL(S).
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Theorem 2.2.5 (Wong [32]). The linear map T : (GL(S), ‖·‖)→ (M(S)∗, ‖·‖)
by Tf(µ) =

∫
fµdµ for any µ ∈ M(S) is an isometric order preserving

isomorphism. Moreover, T commute with the action of M(S) on GL(S).

Therefore, GL(S) has a topological left invariant mean if and only if M(S)∗

has one.

2.3 Support of Topological Left Invariant Means

In the case where S is a discrete semigroup, subsets of S that support left

invariant mean are studied by Mitchell [25]. For locally compact semitopo-

logical semigroup, [31] and Day [9] introduce topological left thickness and

topological left lumpy respectively to generalize the notion of left thickness

in discrete cases. Throughout this section, we let S be a locally compact

semitopological semigroup.

Definition 2.3.1. (Wong [31]) A Borel subset T ⊂ S is said to be topological

left thick, if for each 0 < ε ≤ 1 and each compact subset K ⊂ S, there

exists µ ∈ P (S), such that ν ∗ µ(T ) > 1 − ε holds for all ν ∈ P (S) with

ν(S −K) = 0.

Definition 2.3.2. (Day [9]) A Borel subset T ⊂ S is called topological left

lumpy, if for each 0 < ε ≤ 1 and ν ∈ P (S), there exists µ ∈ P (S), such that

ν ∗ µ(T ) > 1− ε.

Comparison of both definitions as supports of topological left invariant

means are shown in the following.

Theorem 2.3.3 (Wong [31]). Let T ⊂ S be a Borel subset. Suppose there ex-

ists a net µα in P (S), such that for each compact subset K ⊂ S, ‖ν ∗ µα − µα‖ →
0 uniformly for all ν ∈ P (S) with ν(S − K) = 0, then the following are

equivalent:

1. T is topological left thick.
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2. There exists a topological left invariant mean M ∈ M(S) such that

M(χT ) = 1, where χT is the characteristic functional of T in M(S)∗,

i.e., χT (µ) = µ(T ) for all µ ∈M(S).

Theorem 2.3.4 (Day [9]). Let T ⊂ S be a Borel subset. If M(S)∗ has a

topological left invariant mean, then the following are equivalent:

1. T is topological left lumpy.

2. There exists a topological left invariant mean M ∈ M(S), such that

M(χT ) = 1.

As it is shown in Theorem 2.2.2, the requirement in Theorem 2.3.3 is stricter

than the existence of topological left invariant mean on M(S)∗. Hence topo-

logical left lumpy is a better characterization of the support of a topological

left invariant mean.

However, the two definitions are equivalent when M l
a(S) ∩ P (S) is not

empty, where

M l
a(S) = {µ ∈M(S); s 7→ δs ∗ µ is continuous for all s ∈ S}

Measures in M l
a(S) are said to be left absolutely continuous. It is well

known that in the case where S is a locally compact group, M l
a(S) is identified

with L1(S). The equivalence of topological left thickness and topological left

lumpiness is implied by the following theorem.

Theorem 2.3.5 (Ghaffari [13]). Assume that M l
a(S) ∩ P (S) is not empty.

Then the following are equivalent:

1. M(S)∗ has a topological left invariant mean.

2. There exists a net µα ∈ P (S), such that for each compact subset K

of S, we have ‖ν ∗ µα − µα‖ → 0 uniformly for any ν ∈ P (S) with

ν(S −K) = 0.
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An example of a locally compact semitopological semigroup that does not

have a absolutely continuous probability measure is given in the following.

Example 2.3.6 (Wong [30]). Let S = [0, 1] be equipped with the usual topol-

ogy. Multiplication on S is defined by st = s for any s, t ∈ S. Then S

is a compact semitopological semigroup. We denote by C(S) the Banach

space of continuous functions on S with supremum norm. Let ν ∈ M(S)

we have δs ∗ ν = δs for all s ∈ S, where δs is the Dirac measure of s, i.e.,

δs(E) =
{ 1 s ∈ E

0 otherwise
for any Borel subset E of X. Suppose there exists

ν ∈M l
a(S)∩P (S), then the closed unit ball of C(S) is equicontinuous, since

for each f ∈ C(S), we have

|f(s)− f(t)| =
∣∣∣∣∫ fdδs ∗ ν −

∫
fdδt ∗ ν

∣∣∣∣ ≤ ‖δs ∗ ν − δt ∗ ν‖
Hence by Arzela-Ascoli theorem (see [11, IV. 6.7]), the closed unit ball of

C(S) is compact, which is impossible.

Wong generalizes the definition of topological left lumpy to topological left

A-lumpy in [35], where A is an topological left invariant subspace of M(S)∗.

Definition 2.3.7 ( [35]). Let A be a topological left invariant subspace of

M(S)∗, T ⊂ S be a Borel subset. We say T is topological left A-lumpy,

if for each triple (ε, ν, F ) where 0 < ε ≤ 1, ν ∈ P (S), and F ∈ A with

χT ≤ F ≤ 1, there exists µ ∈ P (S), satisfying ν ∗ µ(F ) > 1− ε.

It is clear that if A contains χT , then T being topological left A-lumpy is

equivalent with T being topological left lumpy. It is shown in this paper that

T “supports” a topological left invariant mean on A when A is a topological

left introverted subspace of M(S)∗.

Theorem 2.3.8 (Wong [35]). Let T ⊂ S be a Borel subset and A be a topo-

logical left introverted subspace of M(S)∗ containing 1. Assume that A has

a topological left invariant mean, then the following are equivalent:

9



1. T is topological left A-lumpy.

2. There exists a topological left invariant mean M ∈ M(A), such that

M(F ) = 1 for any F ∈ A with χT ≤ F ≤ 1.

When T is a topological A-lumpy Borel subsemigroup of S for a topological

introverted subspace A of M(S)∗, Wong proves the following theorem in the

same paper.

Theorem 2.3.9 (Wong [35]). Let T ⊂ S be a topological A-lumpy Borel sub-

semigroup of S and A be a topological left introverted subspace of M(S)∗

containing 1. Then A has a topological left invariant mean if and only if

A|T = {F |T ; F ∈ A} ⊂ M(T )∗ has one, where F |T (µT ) = F (µ) for all

µ ∈M(S) and µT (E) = µ(E) for all Borel subset E of T .

10



Chapter 3

Topological S-invariant means

on Locally Compact Space

In this chapter, we shall look at the setM(X) of all bounded Borel measures

on a locally compact space X which is under separately continuous left action

of a locally compact semitopological semigroup S. We shall properly build

a separately continuous left action of the measure algebra M(S) on M(X).

Further we introduce the left action of M(S) on the second dual of M(X)

using Arens product and defined the notion of topological S-invariant mean on

a proper subspace A of M(X)∗ which is a generalized notion of topological left

invariant mean when X = S. We shall first give some characterizations of the

existence of such means. Then we shall look at a Borel subset T in X that will

potentially supports a topological S-invariant mean M on A. We say a subset

T of X support a mean M on M(X)∗ if M(χT ) = 1, where χT (µ) = µ(T ) for all

µ ∈M(X). In the last part of this chapter, the relation between the existence

of topological R-invariant mean on M(T )∗ and on M(X)∗ itself will be studied,

where R is a locally compact Borel subsemigroup of S (in particular, R = S)

and T is a locally compact Borel subspace of X which is closed under the left

action of R.

11



3.1 Convolutions of Measures

Let X be an locally compact space. We denote by BM(X) the space of

bounded Borel measurable functions on X, by CB(X) the space of continuous

bounded functions on X, by C0(X) the subspace of CB(X) of functions that

vanish at infinity and by Cc(X) the subspace of CB(X) of functions that have

compact supports. The supremum norm on CB(X) is denoted by ‖·‖. It is

well known that the spaces (CB(X), ‖·‖) and (C0(X), ‖·‖) are Banach spaces

(see [3]).

We denoted by M(X) the Banach space of all bounded regular Borel mea-

sure with total variation norm ‖·‖, i.e. for µ ∈M(X), ‖µ‖ = |µ| (X). By Riesz

representation theorem, the Banach space (M(X), ‖·‖) is isomeric isomorphic

with the continuous dual of C0(S) via < µ, f >=
∫
fdµ, where f ∈ C0(X),

µ ∈M(X).

We say µ ∈ M(S) is positive (µ ≥ 0), if µ(E) ≥ 0 for any Borel subset E

in X. The cone of positive measures on X is denoted by M+(X). We denote

by P (X) := {µ ∈M+(X); ‖µ‖ = 1} the set of all probability measure on X.

Let ν, µ ∈M(X), we say that ν is absolutely continuous with respect to µ

(ν � µ), if ν(F ) = 0 for any compact |µ|-null set F .

Now let S be a locally compact semitopological semigroup, X be a locally

compact space, The left action S × X → X by (s, x) 7→ sx is separately

continuous. Let f ∈ BM(X), define lsf(x) := f(sx), rxf(s) = f(sx), for any

s ∈ S, x ∈ X.

For each Borel subset E of X, s ∈ S and x ∈ X, we define s−1E = {x ∈
X; sx ∈ E}, Ex−1 = {s ∈ S; sx ∈ E}. We denote by ξE the characteristic

function of E on X, i.e., ξE =
{ 1 s ∈ E

0 otherwise
; by χE the characteristic

functional of E on M(X), i.e., χE(µ) = µ(E) for all µ ∈M(X).

Remark 3.1.1. If f ∈ BM(X), let s ∈ S, there is no guarantee that lsf stays

in BM(X). Let f ∈ CB(X). Let xα be a net converging to x in X and

s ∈ S, then sxα → sx. Hence |lsf(xα)− lsf(x)| = |f(sxα)− f(sx)| → 0.

12



Therefore lsf ∈ CB(X) ⊂ BM(X). Similarly, rxf ∈ CB(X) for all x ∈ X,

f ∈ CB(X).

It is shown in Glicksberg [15, 1.2] that whenever f is a bounded separately

continuous function on S×X, we have
∫∫

f(sx)dν(s)dµ(x) =
∫∫

f(sx)dµ(x)dν(s)

for all ν ∈ M(S), µ ∈ M(X). This result allows us to define convolution of

M(S) and M(X). Let ν ∈M(S), µ ∈M(X), we define ν ∗ µ by setting∫
fdν ∗ µ =

∫∫
f(sx)dν(s)dµ(x) =

∫∫
f(sx)dµ(x)dν(s) (3.1)

for all f ∈ C0(X). The convolution ν ∗µ is uniquely defined in M(X) by Riesz

representation Theorem.

Let ν1, ν2 ∈ M(S), µ ∈ M(X). By the convolution we constructed above,

we have
∫
fdν1 ∗ (ν2 ∗ µ) =

∫∫
lsf(x)dν2 ∗ µ(x)dν1(s), for any f ∈ C0(X).

However lsf may not stay in C0(X) even in the case where X = S. An

example is given in the following.

Example 3.1.2. Let S = X = R be equipped with usual topology and the

multiplication be defined by a · b = max{a, b} for all a, b ∈ S. Then S is a

semitopological semigroup. Let f be a continuous function that is supported

on [a, b], we have (−∞, b) ⊂ supp (lbf). Thus lbf /∈ C0(S).

In order to define an action of M(S) on M(X), we want to extend ( 3.1)

further to the case where f ∈ L1(|ν| ∗ |µ|). Similar to the construction shown

in [20, 19.10], we approach our desired result by a series of lemmas.

Definition 3.1.3. Let f be a non-negative real valued function on X. We say

f is lower semicontinuous, if for each x ∈ X, α ∈ R such that f(x) > α,

there exists a neighborhood U of x such that f(y) > α for any y ∈ U .

Remark 3.1.4. 1. Note that if f is lower semicontinuous on X, then it is

measurable. Since {x ∈ X; f(x) > α} is open for any α ∈ R.

2. Note that for each open subset V of X, its characteristic function ξV is

13



lower semicontinuous.

3. For each lower semicontinuous function f onX, we have f(x) = sup{g(x); g ∈
Cc(X), 0 ≤ g ≤ f} (see [20, 11.8]).

Lemma 3.1.5. Let V be an open subset of X, let ν ∈ M+(S), µ ∈ M+(X).

Then x → ν(V x−1) and s → µ(s−1V ) are defined everywhere and Borel

measurable. Moreover∫
ξV dν ∗ µ =

∫∫
ξV (sx)dν(s)dµ(x) =

∫∫
ξV (sx)dµ(x)dν(s)

Proof. Since V is open, by the remark above, ξV is lower semicontinuous and

ξV (x) = sup{f(x); f ∈ Cc(X), 0 ≤ f ≤ ξV }

Hence ξV x−1(s) = ξV (sx) = sup{rxf(s); f ∈ Cc(X), 0 ≤ f ≤ ξV } holds

for all s ∈ S. Since the action of S on X is separately continuous, the set

V x−1 is open in S. By [20, 11.13],

ν(V x−1) =

∫
ξV x−1dν = sup{

∫
rxfdν; f ∈ Cc(X), 0 ≤ f ≤ ξV } (3.2)

By Glicksberg [15, 1.2], the function x →
∫
rxfdν is defined everywhere

and continuous. Hence it is Borel measurable on X. Then by Monotone

convergence theorem, x 7→ ν(V x−1) is Borel measurable on X. Similarly,

we have s 7→ µ(s−1V ) is Borel measurable on S. Furthermore, by [20, 11.13]

again, we have∫
ξV dν ∗ µ = sup{

∫
fdν ∗ µ; f ∈ Cc(X), 0 ≤ f ≤ ξV }

= sup{
∫∫

f(sx)dν(s)dµ(x); f ∈ Cc(X), 0 ≤ f ≤ ξV }

=

∫∫
sup{f(sx); f ∈ Cc(X), 0 ≤ f ≤ ξV } dν(s)dµ(x)

=

∫∫
ξV (sx) dν(s)dµ(x)
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The proof of the other equivalence is similar.

Lemma 3.1.6. For each compact subset K of X, the functions x→ ν(Kx−1)

and s → µ(s−1K) are defined everywhere and Borel measurable for all ν ∈
M(S)+, µ ∈M+(X). Furthermore,∫

ξKdν ∗ µ =

∫∫
ξK(sx)dν(s)dµ(x) =

∫∫
ξK(sx)dµ(x)dν(s)

Proof. Since X is Hausdorff, K is closed in X. Hence Kx−1 is also closed in

X since the action of S on X is separately continuous. Then we have

ν(Kx−1) =

∫
ξK(sx)dν(s) =

∫
(1− ξX−K)(sx)dν(s)

= ν(S)− ν((X −K)x−1)

Therefore, by Lemma 3.1.5, the function x → ν(Kx−1) is defined every-

where and Borel measurable. Similarly, we have that s→ µ(s−1K) is defined

everywhere and Borel measurable. Moreover,∫
ξKdν ∗ µ =

∫
(1− ξX−K)dν ∗ µ

=

∫∫
dν(s)dµ(x)−

∫∫
ξX−K(sx)dµ(s)dν(x) By Lemma 3.1.5

=

∫∫
ξK(sx)dν(s)dµ(x)

We can prove the other equivalence similarly.

Lemma 3.1.7. For each σ-compact subset Λ of X, let ν ∈ M+(S), µ ∈
M+(X). The functions x → ν(Λx−1) and s → µ(s−1Λ) are defined every-

where and Borel measurable. Furthermore,∫
ξΛdν ∗ µ =

∫∫
ξΛ(sx)dµ(s)dν(x) =

∫∫
ξΛ(sx)dν(x)dµ(s)

Proof. Since Λ is σ-compact, there is a sequence {Kn} of compact sets in

X, such that Kn−1 ⊂ Kn and Λ = ∪Kn. Then Λx−1 = ∪Knx
−1 is Borel
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in S since it is a union of closed sets. Since ξKn ↑ ξΛ, ξKnx−1 ↑ ξΛx−1 .

Then by monotone convergence theorem and Lemma 3.1.6, we have that

x→ ν(Λx−1) is Borel measurable. Further,∫
ξΛdν ∗ µ = lim

∫
ξKndν ∗ µ = lim

∫∫
ξKn(sx)dν(s)dµ(x)

=

∫∫
ξΛ(sx)dν(s)dµ(x)

The proof of the other equivalence is similar.

Lemma 3.1.8. Let ν ∈ M+(S), µ ∈ M+(X). Let N be a ν ∗ µ-null subset

of X, i.e., ν ∗ µ(N) = 0. Then ν(Nx−1) = 0 for µ-almost all x. and

µ(s−1N) = 0 ν-a.e..

Proof. By the regularity of ν ∗ µ in M(X) and Lemma 3.1.5,

0 = ν ∗ µ(N) = inf{ν ∗ µ(V ); N ⊂ V, V is open in X}

= inf{
∫∫

ξV (sx)dν(s)dµ(x); N ⊂ V, V is open in X}

= inf{
∫
ν(V x−1)dµ(x); N ⊂ V, V is open in X}

≥
∫
ν(Nx−1)dµ(x)

Since µ ∈ M+(X), ν(Nx−1) = 0 µ-a.e.. Similarly we can prove that

µ(s−1N) = 0 ν-a.e..

Lemma 3.1.9. Let ν ∈ M+(S) µ ∈ M+(X) and A be a ν ∗ µ-measurable

subset of X. Then x → ν(Ax−1) ∈ L1(µ) is defined µ-almost everywhere

while s→ µ(s−1A) ∈ L1(ν) is defined ν-almost everywhere. Moreover,∫
ξAdν ∗ µ =

∫∫
ξA(sx)dν(s)dµ(x) =

∫∫
ξA(sx)dµ(x)dν(s)

Proof. By [20, 11.32], there exists a σ-compact subset Λ of X and a ν ∗ µ-null

subset N of X, such that Λ ∩N = ∅ and A = Λ ∪N . By Lemma 3.1.7, we

have that Λx−1 is Borel for all x ∈ X. By Lemma 3.1.8, Nx−1 is defined
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ν-almost everywhere and is ν-measurable. Thus Ax−1 is defined ν-almost

everywhere and is ν-measurable. Moreover, we have ν(Ax−1) = ν(Λx−1) +

ν(Nx−1) = ν(Λx−1) ∈ L1(µ), since
∫
ν(Λx−1)dµ =

∫∫
ξΛdν ∗ µ ≤ ∞ by

Lemma 3.1.7.

Furthermore, by Lemma 3.1.7 and 3.1.8, we have∫
ξAdν ∗ µ =

∫∫
ξΛ(sx)dν(s)dµ(x) + ν ∗ µ(N)

=

∫
ν(Λx−1)dµ(x) =

∫
ν(Ax−1)dµ(x)

=

∫∫
ξA(sx)dν(s)dµ(x)

The rest can be proved similarly.

Lemma 3.1.10. Let ν ∈ M+(S), µ ∈ M+(X). Then for each f ∈ L1(ν ∗
µ), x →

∫
f(sx)dν(s) ∈ L1(µ) is defined µ-almost everywhere while s →∫

f(sx)dµ(x) ∈ L1(ν) is defined ν-almost everywhere. Moreover,∫
fdν ∗ µ =

∫∫
f(sx)dν(s)dµ(x) =

∫∫
f(sx)dµ(x)dν(s)

Proof. Define f+(x) := max{f(x), 0}, f−(x) := −min{f(x), 0}. Since f ∈
L1(ν ∗µ), both f+ and f− are nonnegative and f+, f− ∈ L1(ν ∗µ). Without

loss of generality, it suffices to prove the result for the case where f ∈
L1(ν ∗ µ) and f is non-negative.

Let Ak,n := {x ∈ X; k
2n
≤ f(x) < k+1

2n
} (k, n ∈ N). Then Ak,n is ν ∗ µ-

measurable since f is ν ∗µ-measurable. Thus fn :=
∑n2n−1

k=1
k

2n
ξAn,k , n ∈ N is

an increasing sequence of ν ∗µ-measurable functions and fn ↑ f pointwisely.

Since

∫
fn(sx)dν(s) =

n2n−1∑
k=1

k

2n

∫
ξAk,n(sx)dν(s) =

n2n−1∑
k=1

k

2n
ν(Ak,nx

−1)

by monotone convergence theorem and Lemma 3.1.9,
∫
fn(sx)dν(s) ↑

∫
f(sx)dν(s)

is defined µ-almost everywhere and is µ-measurable.
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Moreover, by Lemma 3.1.9∫
fdν ∗ µ = lim

n

∫
fndν ∗ µ

= lim
n

n2n−1∑
k=1

k

2n

∫
ξAk,ndν ∗ µ

= lim
n

n2n−1∑
i=k=1

k

2n

∫∫
ξAn,k(sx)dν(s)µ(x)

= lim
n

∫∫
fn(sx)dν(s)dµ(x) =

∫∫
f(sx)dν(s)dµ(x)

Since f ∈ L1(ν ∗ µ), we have that
∫
f(sx)dν(s) ∈ L1(µ). The rest of this

lemma can then be proved similarly.

Lemma 3.1.11. Let µ, σ ∈ M+(X) such that µ � σ, then ν ∗ µ � ν ∗ σ for

all ν ∈M+(S).

Proof. Let F be a compact subset ofX such that ν∗σ(F ) = 0. By Lemma 3.1.8,

we have σ(s−1F ) = 0 ν-a.e. Since µ� σ, we have µ(s−1F ) = 0 ν-a.e. Hence

by Lemma 3.1.9, ν ∗ µ(F ) =
∫
µ(s−1F )dν(s) = 0. Therefore, by [20, 14.19],

ν ∗ µ� ν ∗ σ.

Corollary 3.1.12. Let µ, σ ∈M(X) such that µ� σ, then |ν| ∗ |µ| � |ν| ∗ |σ|
for any ν ∈M(S).

Lemma 3.1.13. Let ν, θ ∈ M(S) such that ν � θ, then |ν| ∗ |µ| � |σ| ∗ |µ|
for any µ ∈M(X).

Proof. Similar to Lemma 3.1.11

Below is an interesting remark on the relation between absolute continuity

of measures and measurability of functions on X.

Proposition 3.1.14. Let X be a locally compact space. Let σ, µ ∈M(X), such

that σ � µ. Then any µ-measurable set is σ-measurable. In particular, any

µ-measurable function is σ-measurable
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Proof. Let E be a µ-measurable subset of X, then it is also |µ|-measurable.

By [20, 11.32], we have E = Λ ∪ N , where Λ is a σ-compact subset of X

and |µ| (N) = 0. Since σ � µ, we have σ(N) = 0 which implies N is

σ-measurable. Therefore E is σ-measurable.

Let f be a µ-measurable function on X, then {x ∈ X; f(x) < a} is µ-

measurable for all a ∈ R. Consequently, {x ∈ X; f(x) < a} is σ-measurable

for all a ∈ R from the above argument. Therefore f is σ-measurable.

For each µ ∈ M(X), let µ+ = (|µ| + µ)/2, µ− = (|µ| − µ)/2. Then

µ+, µ− ≥ 0, µ+, µ− � µ.

We now come to prove our first main theorem.

Theorem 3.1.15. Let S be a locally compact group, X be a locally compact

space. Assume the left action of S acting on X is separately continuous. Let

ν ∈M(S), µ ∈M(X), f ∈ L1(|ν| ∗ |µ|). Then x→
∫
f(sx)dν(s) ∈ L1(|µ|),

s→
∫
f(sx)dµ(x) ∈ L1(|ν|). Moreover,∫

fdν ∗ µ =

∫∫
f(sx)dν(s)dµ(x) =

∫∫
f(sx)dµ(x)dν(s)

Proof. Since |ν| ∗ |µ| = (ν+ + ν−) ∗ (µ+ + µ−), by Lemma 3.1.11 and 3.1.13,

we have νi ∗ µj � |ν| ∗ µj � |ν| ∗ |µ|, where i, j ∈ {+,−}. Then by

Proposition 3.1.14, f is νi ∗ µj-measurable (i, j ∈ {+,−}). In addition,∫
|f | dνi ∗ µj ≤

∑
i,j∈{+,−}

∫
|f | dνi ∗ µj =

∫
|f | d |ν| ∗ |µ| <∞

Thus f ∈ L1(νi ∗µj). Hence x→
∫
f(sx)dνi(s) ∈ L1(µj) by Lemma 3.1.10

for all i, j ∈ {+,−}. Therefore,
∫
f(sx)dν(s) ∈ L1(|µ|).
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Furthermore, by Lemma 3.1.10∫
fdµ ∗ dν =

∫
fd(µ+ − µ−) ∗ (µ+ − µ−)

=

∫
fdν+ ∗ µ+ −

∫
fdν+ ∗ µ− −

∫
fdν− ∗ µ+ +

∫
fdν− ∗ µ−

=

∫∫
f(sx)dν+(s)dµ+(x)−

∫∫
f(sx)dν+(s) ∗ µ−(x)

−
∫∫

f(sx)ν−(s)dµ+(x) +

∫
f(sx)ν−(s)dµ−(x)

=

∫∫
f(sx)dν(s)dµ(x)

Thus we have extended ( 3.1) to L1(|ν| ∗ |µ|) where ν ∈M(S), µ ∈M(X).

Even in the case where X = S, our result is more general than Wong [33], in

which ( 3.1) is only shown for ν, µ ∈M+(S).

The following corollary of Theorem 3.1.15 shows that the action of M(S)

on M(X) defined by convolution is proper.

Corollary 3.1.16. For any ν1, ν2 ∈M(S), µ ∈M(X), we have ν1 ∗ (ν2 ∗µ) =

(ν1 ∗ ν2) ∗ µ.

Proof. By Riesz representation theorem, it suffices to prove
∫
fdν1 ∗ (ν2 ∗µ) =∫

fd(ν1 ∗ ν2) ∗ µ for any f ∈ C0(X).

Let f ∈ C0(X), s ∈ S, x ∈ X. Then rxf ∈ CB(S) ⊂ L1(|θ|) for all

θ ∈M(S) and lsf ∈ CB(X) ⊂ L1(|σ|) for all σ ∈M(X). Thus∫
fd(ν1 ∗ ν2) ∗ µ =

∫∫
rxf(s)dν1 ∗ ν2(s)dµ(x)

=

∫∫∫
rxf(s1s2)dν1(s1)dν2(s2)dµ(x)

On the other hand, by Theorem 3.1.15, we have x →
∫
f(s1x)dν1(s1) ∈
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L1(|ν2| ∗ |µ|). Hence,∫
fdν1 ∗ (ν2 ∗ µ) =

∫ ( ∫
f(s1x)dν1(s1)

)
dν2 ∗ µ(x)

=

∫∫∫
f(s1s2x)dν1(s1)dν2(s2)dµ(x)

Therefore,
∫
fdν1 ∗ (ν2 ∗ µ) =

∫
fd(ν1 ∗ ν2) ∗ µ for any f ∈ C0(X).

Further, it is clear that the action of M(S) on M(X) is jointly continuous

when M(S) and M(X) are equipped with the norm topology.

Before we go on to the next section, we shall give an interesting corollary

of Lemma 3.1.9 in the following. Let µ ∈ M(X), we denote by supp (µ) the

support of µ, i.e.,

supp (µ) = {x ∈ X; |µ| (Nx) > 0, for any open neighborhood Nx of x}

Corollary 3.1.17. For any ν ∈ P (S), µ ∈ P (X), supp (ν∗µ)= supp (ν)supp (µ).

Proof. Let A = supp (ν), B = supp (µ) and C = AB. C ⊂ supp (ν ∗ µ) is

clear.

Since C is closed, C is ν ∗ µ-measurable. Then by Lemma 3.1.9, we have

1 ≥ ν ∗ µ(C) =

∫∫
ξC(sx)dν(s)dµ(x) ≥

∫
ξAB(sx)dν(s)dµ(x)

≥
∫
ξA(s)ξB(x)dν(s)dµ(x) = ν(A)µ(B) = 1

This implies supp (ν ∗ µ) ⊂ C. Hence C = supp (ν ∗ µ).

3.2 Topological S-invariant Means

In this section, we let S be a locally compact semitopological semigroup,

X be a locally compact space and we assume the left action of S on X is

separately continuous.
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As we have shown in the end of last section, the action of M(S) on M(X) is

jointly continuous which naturally introduces an separately continuous action

of M(S) on M(X)∗. Let ν ∈ M(S), F ∈ M(X)∗, define ν � F (µ) = F (ν ∗ µ)

for all µ ∈ M(X). Then ν � F ∈ M(X)∗ and ‖ν � F‖ ≤ ‖ν‖ ‖F‖. Similarly,

let F ∈ M(X)∗, µ ∈ M(X), define F � µ(ν) = F (ν ∗ µ) for all ν ∈ M(S).

Then F � µ ∈M(S)∗ and ‖F � µ‖ ≤ ‖F‖ ‖µ‖.
Let A be a subspace of M(X)∗, we say A is topological S-invariant, if

{ν�F ; ν ∈M(S), F ∈ A} ⊂ A. We say that A is S-invariant, if {δs�F ; s ∈
S, F ∈ A} ⊂ A where δs is the Dirac measure of s.

Remark 3.2.1. The definition of topological S-invariant subspace A of M(X)∗

is equivalent as requiring ν � F ∈ A for any ν ∈ P (S), F ∈ A, since P (S)

spans M(S).

Let A be a topological S-invariant subspace of M(X)∗. For each M ∈ A∗,
F ∈ A∗, we define

M � F (ν) = M(ν � F ) (ν ∈M(S))

We will write MLF for M � F in this thesis. It is easy to check that

‖MLF‖ ≤ ‖M‖ ‖F‖ and MLF ∈ M(S)∗. Further, using Arens product, for

each N ∈M(S)∗∗, M ∈ A∗, we define

N �M(F ) = N(MLF ) (F ∈ A)

Thus N �M ∈M(X)∗∗, ‖N �M‖ ≤ ‖N‖ ‖M‖.
Let Nα

weak∗−−−→ N ∈M(S)∗∗ be a net in M(S)∗∗. Then we have

Nα �M(F ) = Nα(MLF )→ N(MLF ) = N �M(F ) (M ∈ A∗, F ∈ A)

Thus the convolution of M(S)∗∗ and A∗ is weak* continuous on the first

variable.
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Let Mβ
weak∗−−−→M ∈ A∗ be a net in A∗. We have

MβLF (ν) = Mβ(ν � F )→M(ν � F ) = MLF (ν) (ν ∈M(S), F ∈ A)

which is equivalent as Qν �Mβ
weak∗−−−→ Qν �M , where Q is the natural em-

bedding of M(S) into M(S)∗∗

Hence the action of M(S) on M(X)∗ is separately continuous. However, it

is not true in general that N�Mβ
weak∗−−−→ N�M for any N ∈M(S)∗∗ which is

equivalent as requiring MβLF
weak−−−→MLF for any F ∈ A. This further requires

that weak and weak* topology coincide on the set {MLF ; M ∈ A∗, F ∈ A}.
In the end of this chapter, we will introduce a topological S-invariant subspace

A of M(X)∗, such that the action of M(S)∗∗ on A∗ is separately continuous.

Now let A be a subspace of M(X)∗ containing 1, where 1 ∈ M(X)∗ and

1(µ) = µ(S) for any µ ∈M(X). A mean M on A is an element M in A∗ such

that M(1) = ‖M‖ = 1. We denote by M(A) the set of means on A. In the

case where A = M(X)∗, we will abbreviate M(M(X)∗) as M(X).

Remark 3.2.2. Let N be a mean on M(S)∗, M be a mean on A. Then

ML1(ν) = M(ν � 1) = M(1) = 1 for all ν ∈M(S). Hence

N �M(1) = N(ML1) = N(1) = 1 ≤ ‖N �M‖ ≤ ‖N‖ ‖M‖ = 1

Thus N �M is a mean on A.

Proposition 3.2.3. Let A be a subspace of M(X)∗ containing 1. Then

QP (X) is weak* dense in M(A).

Proof. Note that QP (X) is convex, hence QP (X)
weak∗

is convex. Assume

QP (X)
weak∗

( M(A), let M ∈ M(A) − QP (X)
weak∗

. Since (A∗, weak∗)

is locally convex, by Hahn Banach separation theorem, there exists F ∈
(A∗, weak∗)∗ = A, such that M(F ) > a and N(F ) ≤ a whenever N ∈
QP (X)

weak∗

. Let b = sup{F (µ); µ ∈ P (X)}. Then there exists a net

{µα} ∈ P (X), such that Qµα(F ) = F (µα)→ b. Thus we have b ≤ a. Hence
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M(F ) > a ≥ b = sup{F (µ); µ ∈ P (X)}, which implies ‖M‖ > 1. This

contradicts with the fact that M is a mean on A. Therefore, QP (X)
weak∗

=

M(A).

Let A be a [topological] S-invariant subspace of M(X)∗ containing 1. We

say M ∈ M(A) is [topological] S-invariant if M(δs � F ) = M(F ), for any

s ∈ S, F ∈ A [M(ν � F ) = M(F ), for any ν ∈ P (S), F ∈ A].

Theorem 3.2.4. Let A be a [topological] S-invariant subspace of M(X)∗ con-

taining 1. If M(S)∗ has a [topological] left invariant mean, then A also has

a [topological] S-invariant mean.

Proof. We only prove for the case where A is a topological S-invariant subspace

of M(X)∗ containing 1. The S-invariant case is similar.

Let M ∈M(A), N be the topological left invariant mean on M(S)∗, then

N � M is a mean on A by the above remark. Moreover, let ν ∈ P (S),

we have N �M(ν � F ) = N(ML(ν � F )) = N(ν �MLF ) = N �M(F ).

Therefore, N �M is a topological S-invariant mean on A.

In the following, we let A be a topological S-invariant subspace of M(X)∗

containing 1. We shall show a few characterizations of A having a topological

S-invariant mean.

Definition 3.2.5. Let F ∈ A, Z(F ) := {F � µ; µ ∈ P (X)}
weak∗

, K(F ) :=

{c ∈ R; c1 ∈ Z(F )}. We say A is topological X-stationary if K(F ) is not

empty for all F ∈ A.

Lemma 3.2.6. For each F in A, we have

i) Z(F ) is weak* compact and ‖G‖ ≤ ‖F‖ for any G ∈ Z(F ).

ii) Z(F ) = {MLF ; M ∈M(A)}.

iii) Z(cF ) = cZ(F ), K(cF ) = cK(F ), for any c ∈ R.

iv) Z(c1 + F ) = c+ Z(F ), K(c1 + F ) = c+K(F ) for any c ∈ R.
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v) Z(F +G) ⊂ Z(F ) + Z(G) for any F,G ∈ A.

vi) If A is topological X-stationary, then K(F − ν � F ) = {0} for any ν ∈
P (S).

vii) If M is topological S-invariant mean on A, then M(F ) ∈ K(F ).

Proof. i) Let U be the norm closed unit ball of M(S)∗. By Banach-Alaoglu

theorem, U is weak* compact. Hence it is weak* closed. Since ‖F � µ‖ ≤
‖F‖ ‖µ‖ = ‖F‖ for any µ ∈ P (X), we have Z(F ) ⊂ ‖F‖U

weak∗

= ‖F‖U .

Thus for each G ∈ Z(F ), ‖G‖ ≤ ‖F‖ and Z(F ) is weak* compact since it

is weak* closed in ‖F‖U .

ii) Let Mα be a net in M(A). Since M(A) is weak* compact, passing

through a subnet if necessary, there exists M ∈M(A), such that Mα
weak∗−−−→

M . Then MαLF (ν) = Mα(ν�F )→M(ν�F ) = MLF (ν) for all ν ∈M(S).

Thus MαLF
weak∗−−−→MLF . Therefore {MLF ; M ∈M(A)} is weak* compact.

Hence,

Z(F ) = {F � µ; µ ∈ P (X)}
weak∗

= {QµLF ; µ ∈ P (X)}
weak∗

⊂ {MLF ; M ∈M(A)}
weak∗

= {MLF ; M ∈M(A)}

Conversely, since QP (X) is weak* dense in M(A), then for each M ∈
M(A), there exists a net σβ in P (X), such that Qσβ

weak∗−−−→ M . Hence

F � σβ(ν) = Qσβ(ν � F ) → MLF (ν) for any ν ∈ M(S) which implies

MLF ∈ Z(F ). Therefore, Z(F ) = {MLF ; M ∈M(A)}.
iii) By definition.

iv)Z(c1+F ) = {ML(c1+F ); M ∈M(A)} = {c+ML(F ); M ∈M(A)} =

c+ Z(F ). In particular, K(c1 + F ) = c+K(F ).

v) Let F,G ∈ A, µ ∈ P (S). Since (F +G)� µ = F � µ+G� µ

Z(F +G) ⊂ {F � µ; µ ∈ P (X)}+ {G� µ; µ ∈ P (X)}
weak∗
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By [11, 415, Lemma 4], since Z(F ) is weak* compact and convex

{F � µ; µ ∈ P (X)}+ {G� µ; µ ∈ P (X)}
weak∗

= Z(F ) + Z(G)

Hence Z(F +G) ⊂ Z(F ) + Z(G).

vi) Since A is topological X-stationary, by ii) if there exists c 6= 0, M ∈
M(A), such that ML(F − ν � F ) = c1. Then kc =

∑k
i=1MLF (νi) − ν �

MLF (νi) = MLF (ν) − MLF (νk+1) ≤ 2 ‖F‖ holds for any k ∈ N, which

contradict the fact that ‖F‖ ≤ ∞.

vii) If M is a topological S-invariant mean on A, then MLF = M(F )1 ∈
Z(F ), thus M(F ) ∈ K(F ).

Theorem 3.2.7. Let H = {ν�F−F ; F ∈ A, ν ∈M(S)}. Then the following

are equivalent:

i) A has a topological S-invariant mean.

ii) There exist a net {µα} in P (X), such that ν ∗µα−µα
σ(M(X),A)−−−−−−→ 0 for all

ν ∈ P (S).

iii) A is topological X-stationary and there exists a sublinear functional p on

A, such that p(F ) ∈ K(F ), for all F ∈ A.

iv) For any G ∈ H, 0 ∈ K(G)

v) For any G ∈ H, sup{G(µ); µ ∈M(X)} ≥ 0.

vi) inf{‖1−G‖ ; G ∈ H} = 1.

Proof. i)⇒ ii) Let M be a topological S-invariant mean on A. Since QP (X) is

weak* dense in M(A), there exists a net {µα} in P (X), such that Qµα
weak∗−−−→

M . Thus

F (ν ∗ µα)− F (µα) = Qµα(ν � F − F )→M(ν � F − F ) = 0

holds for all ν ∈ P (S), F ∈ A. Therefore, ν ∗ µα − µα
σ(M(X),A)−−−−−−→ 0 for any

ν ∈ P (S).
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ii)⇒ iii) Since M(A) is weak* compact, passing through a subnet if nec-

essary, there exists M ∈ M(A), such that Qµα
weak∗−−−→ M . Then for any

F ∈ A, ν ∈ P (S), we have

F (ν ∗ µα − µα) = Qµα(ν � F − F )→M(ν � F − F ) = 0

Hence M is a topological S-invariant mean on A. Let p = M , p is clearly a

sublinear functional on A. Moreover, by Lemma 3.2.6 vii) p(F ) = M(F ) ∈
K(F ) for all F ∈ A.

iii) ⇒ i) Since p(0) ∈ K(0) = {0}

0 = p(F − F ) ≤ p(F ) + p(−F )⇒ −p(−F ) ≤ p(F )

holds for all F ∈ A.

Fix G ∈ A, by [3, Corollary 6.6], there exists M ′ ∈ (span{G})∗, such that

−p(−G) ≤M ′(G) ≤ p(G). Let c ∈ R, if c ≥ 0, we have

−cp(−G) ≤M ′(G) ≤ cp(G) = p(cG)

If c < 0, we have

cp(G) ≤M ′(G) ≤ −cp(−G) = p(cG)

Thus M ′ is dominated by p on the linear span of G. Therefore by Hahn-

Banach extension theorem, there exists M ∈ A∗, such that M(F ) ≤ p(F )

for any F ∈ A. Hence

−‖F‖ ≤ −p(−F ) ≤ −M(−F ) = M(F ) ≤ p(F ) ≤ ‖F‖

for any F ∈ A. In particular, we have

1 = −p(−1) ≤M(1) ≤ p(1) = 1
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By Lemma 3.2.6 vi), we have

0 = −p(ν � F − F ) ≤M(F − ν � F ) ≤ p(F − ν � F ) = 0

holds for all ν ∈ p(S), F ∈ A. Thus M is a topological S-invariant mean on

A.

iii)⇒ iv) Let G ∈ H, then G =
∑n

i=1 ai(Fi − νi � Fi), where νi ∈ P (S),

Fi ∈ A, ai ∈ R. By Lemma 3.2.6 iii), we have

p(ai(Fi − νi � Fi)) ∈ K(ai(Fi − νi � Fi)) = aiK(Fi − νi � Fi) = {0}

Hence

0 = −
n∑
i=1

p(−ai(Fi−νi�Fi)) ≤ −p(−G) ≤ p(G) ≤
n∑
i=1

p(ai(Fi−νi�Fi)) = 0

Thus 0 = p(G) ∈ K(G).

iv)⇒ v) By Lemma 3.2.6 ii), there exists M ∈ M(A), such that MLF

vanishes on M(S). Then let ν ∈ P (S), we have

0 = M(ν �G) ≤ sup{ν �G(µ); µ ∈ P (X)}

≤ sup{G(µ); µ ∈ P (X)}

v) ⇒ vi) For each G ∈ H, −G ∈ H. Then by ii)

sup{−G(µ); µ ∈ P (X)} ≥ 0⇔ inf{G(µ); µ ∈ P (X)} ≤ 0

Thus for any ε > 0, there exists µ ∈ M(X), such that G(µ) ≤ ε. Hence

1− ε ≤ 1−G(µ) ≤ ‖1−G‖. Therefore

1 ≤ inf{‖1−G‖ ; G ∈ H} ≤ ‖1− 0‖ = 1

vi) ⇒ i) Since inf{‖1−G‖ ; G ∈ H} = 1, then 1 /∈ H. By [20, B.15],

28



there exists M ∈ A∗, such that M(G) = 0 for any G ∈ H, M(1) = 1 and

‖M‖ = 1. In particular, M(F − ν � F ) = 0 holds for all ν ∈ P (S), F ∈ A.

Therefore M is a topological S-invariant mean on A.

A local characterization of the existence of topological S-invariant means

is given in the following.

Theorem 3.2.8. Let A be a topological S-invariant subspace of M(X)∗ con-

taining 1. Then A has a topological S-invariant mean if and only if for any

finite subset F in A and finite subset Θ in P (S), there exists a mean M on

A, such that M(ν � F ) = M(F ) for any ν ∈ Θ, F ∈ F .

Proof. Let α = {F ,Θ} be a directed set, where F is a finite subset in A, Θ

is a finite subset in P (S). We say {F0,Θ0} = α0 ≤ α = {F ,Θ}, if F0 ⊂ F
and Θ0 ⊂ Θ. Let {Mα} be a net in M(A), such that for each α = {Θ,F},
Mα(F − ν � F ) = 0 whenever F ∈ F , ν ∈ Θ. Since M(A) is weak*

compact, passing through its subnet if necessary, there exists M ∈ M(A),

such that Mα
weak∗−−−→ M . Consequently, M(ν � F ) = M(F ), for all F ∈ A,

ν ∈ P (S).

An interesting consequence of M(X)∗ being topological X-stationary is

proved in the following.

Proposition 3.2.9. Assume M(X)∗ is topological X-stationary, then for each

ν ∈M(S), |ν(S)| = inf{‖ν ∗ µ‖ ; µ ∈ P (X)}.

Proof. Let ν ∈ M(S), µ ∈ P (X), then |ν(S)| = |ν(S)| |µ(X)| = |ν ∗ µ(X)| ≤
‖ν ∗ µ‖. Let a = inf{‖ν ∗ µ‖ ; µ ∈ P (X)}, then |ν(S)| ≤ a. Let Iν :=

{ν ∗ µ; µ ∈ P (X)}
‖·‖

. Since Iν is convex, by Hahn Banach extension theo-

rem, there exists F ∈M(X)∗, such that ‖F‖ = 1, |F (σ)| ≥ a for any σ ∈ Iν .
In particular |F � µ(ν)| ≥ a for any µ ∈ P (X). Hence |MLF (ν)| ≥ a for all

M ∈M(X). Since M(X)∗ is topological X-stationary, let c ∈ K(F ), then

a ≤ |c1(ν)| = |c| |ν(S)| ≤ |c| a ≤ ‖F‖ a = a
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Therefore |c| = 1 and |ν(S)| = a.

We denote by mwp(S,X) the subspace of all F in M(X)∗ such that {F �
µ, µ ∈ P (X)} is relatively compact in weak topology of M(S)∗. Such functions

are called almost periodic functions on M(X).

Proposition 3.2.10. Let A = mwp(S,X), then

i) A is topological S-invariant subspace of M(X)∗ containing 1.

ii) {F � µ, µ ∈ P (X)}
weak

= Z(F ) for any F ∈ A.

iii) MLF ∈ mwp(S) for any F ∈ A,M ∈M(A).

Proof. i) Let F ∈ A, {µα} be any net in P (X). Since {F � µ, µ ∈ P (X)}
weak

is

weakly compact, passing through a subnet if necessary, we have F�µα
weak−−−→

G ∈M(S)∗. Therefore, let ν ∈ P (S), we have

M((ν � F )� µα) = Qν �M(F � µα)→ Qν �M(G) = M(ν �G)

holds for all M ∈ A∗. Thus (ν�F )�µα
weak−−−→ ν�G ∈M(S)∗ which implies

that {(ν � F )� µ, µ ∈ P (X)}
weak

is weakly relatively compact. Thus ν �
F ∈ A, A is a topological S-invariant subspace of M(X)∗ containing 1.

ii) Let G ∈ {F � µ, µ ∈ P (X)}
weak

, then there exists a net {µα} in P (X),

such that F � µα
weak−−−→ G. Since M(A) is weak* compact, passing through

a subnet if necessary, there exists M ∈ M(A) such that Qµα
weak∗−−−→ M ∈

M(A). Hence

G(ν) = Qν(G) = lim
α
Qν(F � µα) = lim

α
Qµα(ν � F ) = MLF (ν)

for all ν ∈M(S). Therefore {F � µ, µ ∈ P (X)}
weak
⊂ Z(F ).

Conversely, let M ∈ M(A). Since QP (X) is weak* dense in M(A), there

exist a net µα in P (X), such that Qµα
weak∗−−−→M . Thus

F � µα = (Qµα)LF
weak∗−−−→MLF
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for all F ∈ A. On the other hand, {F � µ, µ ∈ P (X)}
weak

is weakly com-

pact, passing though a subnet if necessary, F � µα converge weakly. There-

fore F � µα
weak−−−→MLF .

iii) Let {θβ} be a net in P (S), let M ∈M(A), F ∈ A. Then

MLF � θβ(ν) = M((ν ∗ θβ)� F ) = M(θβ � ν � F ) = (Qθβ �M)LF (ν)

for all ν ∈M(S).

Since from ii) we know that {MLF ; M ∈ M(A)} is weakly compact.

Passing through a subnet if necessary, there exists G ∈M(S)∗ such that

MLF � θβ = (Qθβ �M)L(F )
weak−−−→ G ∈M(S)∗

which implies {MLF � θ, θ ∈ P (S)} is weakly relatively compact. Thus

MLF ∈ mwp(S).

Theorem 3.2.11. Let A = mwp(S,X). The action of (M(S), weak∗) on

(M(A), weak∗) by convolution we defined previously is separately continu-

ous.

Proof. Considering the argument we give in the beginning of this section.

It suffices to prove that for each N ∈ M(S), the map (M(A), weak∗) →
(M(A), weak∗) by M 7→ N �M is continuous.

Let Mα
weak∗−−−→ M , F ∈ A, then MαLF

weak∗−−−→ MLF . Since {MLF ; M ∈
M(A)} is weakly compact, passing through a subnet if necessary, MαLF

weak−−−→
MLF . Therefore

N �Mα(F ) = N(MαLF )→ N(MLF ) = N �M(F )

for any N ∈M(S). Thus N �Mα
weak∗−−−→ N �M .
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3.3 Generalised Functions and Topological S-

invariant Means

3.3.1 Properties and Connections

Let X be a locally compact space. Let µ ∈ M+(X), let h be a Borel

measurable function on X. The essential supremum norm corresponding to µ

on X is

‖h‖µ,∞ = inf
µ(N)=0

sup
x/∈N
|h(x)| = inf{M ∈ R; |h(x)| ≤M µ− a.e.}

For each µ ∈ M(X), we denote by L∞(|µ|) the space of Borel measurable

functions h such that ‖h‖|µ|,∞ <∞. The space L∞(|µ|) is Banach space with

the essential supremum ‖·‖|µ|,∞ (see [28]). As there will be no conflicts in the

future in this thesis, we will write ‖·‖µ,∞ for ‖·‖|µ|,∞.

Definition 3.3.1. We say f = (fµ)µ∈M(X) ∈
∏

µ∈M(X)

L∞(|µ|) is a generalised

function on X, if it satisfies:

i) ‖f‖ = sup
µ∈M(X)

‖fµ‖µ,∞ <∞

ii) Whenever µ� σ (µ, σ ∈M(X)), fµ = fσ |µ|-a.e..

Here we say µ� σ if µ(F ) = 0 for each compact F ∈ X with |σ| (F ) = 0

(see [20, 14.19]). We denote by GL(X) the set of generalized functions on X.

Remark 3.3.2. 1. Note that for any µ ∈ M(X), a ∈ R, we have fµ = f|µ|

|µ|-a.e., faµ = fµ |µ|-a.e.. Thus ‖·‖ in Definition 3.3.1 can be equivalently

defined as ‖f‖ = supµ∈P (X) ‖f‖µ,∞.

2. It is clear that ‖·‖ satisfies positivity and triangle inequality. Let f ∈
GL(X), ‖f‖ = 0 implies fµ = 0 |µ| − a.e. for all µ ∈ M(X). Thus ‖·‖
defined in Definition 3.3.1 is a norm on GL(X).

Theorem 3.3.3. The space (GL(X), ‖·‖) is a Banach space.
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Proof. Let {fα}α∈I be a Cauchy net in GL(S). Then {fαµ } is a Cauchy net in

L∞(|µ|) for any µ ∈ M(X). Since (L∞(|µ|), ‖·‖µ,∞) is Banach, there exists

fµ ∈ L∞(|µ|), such that fαµ
‖·‖µ,∞−−−−→ fµ. Let f = (fµ)µ∈M(X). Since {fα}α∈I

is Cauchy in GL(X), for any ε > 0, there exists β ∈ I, such that

∥∥fα − fβ∥∥ = sup
µ∈M(X)

∥∥fαµ − fβµ∥∥µ,∞ <
ε

2
(α > β)

Moreover, since fαµ
‖·‖µ,∞−−−−→ fµ, there exists αµ > β, such that

∥∥fαµµ − fµ∥∥µ,∞ <

ε
2

for each µ ∈M(X). Hence

∥∥fµ − fβµ∥∥µ,∞ ≤ ∥∥fαµµ − fµ∥∥µ,∞ +
∥∥fαµµ − fβµ∥∥µ,∞ < ε

This implies fα
‖·‖−→ f . In addition, ‖f‖ ≤

∥∥fβ∥∥+
∥∥f − fβ∥∥ < ∥∥fβ∥∥+ ε <

∞.

Let µ, ν ∈ M(X) such that µ � ν. Then fν − fαν → 0 |ν|-a.e.and

fαν = fαµ → fµ |µ|-a.e.. Hence fµ = fν |µ|-a.e.. Therefore f ∈ GL(X),

(GL(X), ‖·‖) is a Banach space.

Further, we order GL(X) by saying f ≥ 0 if fµ ≥ 0 µ-a.e. for any µ ∈
M(S). We denote by 1 the function f ∈ GL(X) such that fµ = 1 for any

µ ∈ M(X). We also denote by 1 a functional in M(X)∗ such that 1(µ) =

µ(X) for any µ ∈ M(X). There will be no confusions in future. The norm

‖·‖ on M(X)∗ is the usual dual norm, i.e. for each F ∈ M(X)∗, ‖F‖ =

sup{|F (µ)| ; µ ∈M(X), ‖µ‖ = 1}.

Theorem 3.3.4. The linear map T : GL(X) → M(X)∗ by Tf(µ) =
∫
fµdµ,

where f = (fµ)µ∈M(X) ∈ GL(X), is an isometric order preserving isomor-

phism. In particular, T (1) = 1.

Proof. First we prove that T maps GL(X) into the continuous dual of M(X).
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Let µ, ν ∈M(X), f = (fσ)σ∈M(X) ∈ GL(X), we have

Tf(µ+ ν) =

∫
fµ+νd(µ+ ν) =

∫
f|µ|+|ν|d(µ+ ν) µ+ ν � |µ|+ |ν|

=

∫
f|µ|+|ν|dµ+

∫
f|µ|+|ν|dν

=

∫
fµdµ+

∫
fνdν

= Tf(µ) + Tf(ν)

Let a ∈ R, µ ∈M(X), f ∈ GL(X),

Tf(aµ) =

∫
faµdaµ = a

∫
faµdµ = a

∫
fµdµ = aT (f) |µ| � |aµ|

Moreover,

‖Tf‖ = sup{|Tf(ν)| ; µ ∈M(X), ‖µ‖ = 1}

= sup{
∣∣∣∣∫ fµdµ

∣∣∣∣ ; µ ∈M(X), ‖µ‖ = 1}

≤ sup{‖fµ‖ν,∞ ; µ ∈M(X), ‖µ‖ = 1} = ‖f‖ By Remark 3

Thus T maps GL(X) into M(X)∗.

Let F ∈M(X)∗, then for each µ ∈M(X), F introduces a linear functional

Fµ on L1(|µ|) = {σ ∈M(X); σ � |µ|} by setting Fµ(σ) = F (σ) for all σ ∈
L1(|µ|). Thus there exists some fµ ∈ L∞(|µ|), such that Fµ(σ) =

∫
fµdσ,

for all σ ∈ L1(|µ|). In particular, Fµ(µ) =
∫
fµdµ.

Let f = (fµ)µ∈M(X), then for each σ, τ ∈M(X) such that σ � τ ,
∫
fσdσ =

F (σ) = Fτ (σ) =
∫
fσdτ . Thus f ∈ GL(X). Moreover,

‖fµ‖ν,∞ = ‖Fµ‖ = sup{fµ(σ); σ ∈ L1(|ν|), ‖σ‖ = 1} ≤ ‖F‖
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for all µ ∈M(X). Thus ‖f‖ ≤ ‖F‖. Conversely

‖F‖ = sup{|F (µ)| ; µ ∈M(X), ‖µ‖ = 1}

= sup{
∣∣∣∣∫ fµdµ

∣∣∣∣ ; µ ∈M(X), ‖µ‖ = 1}

≤ ‖f‖

Thus ‖f‖ = ‖F‖, T is an isometric isomorphism.

For each f ∈ GL(X), such that f ≥ 0. We have Tf(µ) =
∫
fµdµ ≥ 0 for

all µ ∈M+(X). Thus the order is preserved by T .

3.3.2 Convolutions and Topological Invariant Means

Let S be a locally compact semitopological semigroup, let X be a locally

compact space. Assume the left action of S on X is separately continuous.

We denote by BM(X) the space of bounded Borel measurable functions on

X.

Let ν ∈M(S), h ∈ BM(X), µ ∈M(X), we define

ν � h(x) =

∫
h(sx)dν(s) =

∫
rxhdν

h� µ(s) =

∫
h(sx)dµ(x) =

∫
lshdµ

Since h ∈ BM(X) ⊂ L1(|ν|∗|σ|) for all σ ∈M(X), by Theorem 3.1.15, ν�
h is defined σ-almost everywhere and ν�h ∈ L1(|σ|). Moreover, ‖ν � h‖σ,∞ ≤
‖h‖|ν|∗|σ|,∞ ‖ν‖. Hence ν � h ∈ L∞(|σ|) for all σ ∈ M(X). Similarly, h� µ is

defined τ -almost everywhere and h� µ ∈ L∞(|τ |) for all τ ∈M(S).

Let f ∈ GL(X), ν ∈ M(S), µ ∈ M(X), we define ν � f ∈
∏

µ∈M(X)

L∞(|µ|)

by setting (ν � f)µ = ν � f|ν|∗|µ|. This definition is proper since f|ν|∗|µ| ∈
L∞(|ν| ∗ |µ|) ⊂ L1(|ν| ∗ |µ|). Hence by Theorem 3.1.15, (ν � f)µ ∈ L∞(|µ|).

Let σ ∈ M(X), such that µ � σ. By Lemma 3.1.13, we have |ν| ∗ |µ| �
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|ν| ∗ |σ|. Thus by Theorem 3.1.15, we have∫
(ν � f)µd |µ| =

∫
ν � f|ν|∗|µ|d |µ|

=

∫∫
f|ν|∗|µ|(sx)dν(s)d |µ| =

∫
f|ν|∗|µ|dν ∗ |µ|

=

∫
f|ν|∗|σ|dν ∗ |µ| =

∫
(ν � f)σd |µ|

This implies (ν � f)µ = (ν � f)σ |µ|-a.e.. It is clear that ‖ν � f‖ = ‖f‖.
Thus {ν � f ; ν ∈M(S), f ∈ GL(X)} ⊂ GL(X).

Assume f = f ′ ∈ GL(X), then f|ν|∗|µ| = f ′|ν|∗|µ| |ν| ∗ |µ|-a.e. for any

µ ∈M(X). Thus by Theorem 3.1.15∫
ν � f|ν|∗|µ|d |µ| =

∫∫
f|ν|∗|µ|(sx)dν(s)d |µ| =

∫
f|ν|∗|µ|dν ∗ |µ|

=

∫
f ′|ν|∗|µ|dν ∗ |µ| =

∫
ν � f ′|ν|∗|µ|d |µ|

Hence (ν � f)µ = ν � f|ν|∗|µ| = ν � f ′|ν|∗|µ| = (ν � f ′)µ |µ|-a.e.. Therefore

the convolution “�” is well-defined.

Similarly, for each f ∈ GL(X), µ ∈ M(X), we may define f � µ ∈ GL(S)

by setting (f � µ)ν = f|ν|∗|µ| � µ and we have ‖f � µ‖ ≤ ‖f‖.

Theorem 3.3.5. Let T : GL(X) → M(X)∗ be the isometric isomorphism as

we defined in Theorem 3.3.4. Then ν�Tf = T (ν� f), Tf �µ = T (f �µ),

for all ν ∈M(S), µ ∈M(X), f ∈ GL(X).

Proof. Let ν ∈M(S), f ∈ GL(X). Then by Theorem 3.1.15, we have

ν � Tf(µ) = Tf(ν ∗ µ) =

∫
fν∗µdν ∗ µ

=

∫
f|ν|∗|µ|dν ∗ µ =

∫∫
f|ν|∗|µ|(sx)dν(s)dµ(x)

=

∫
(ν � f)µdµ = T (ν � f)(µ)

The proof of Tf � µ = T (f � µ) is similar.
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Definition 3.3.6. A functional m on GL(X) is a mean on GL(X) if ‖m‖ =

1 = m(1). Further, we say m is a topological S-invariant mean if m(ν�f) =

m(f) holds for all ν ∈ P (S), f ∈ GL(X).

The commutativity of T with the convolutions allows us to relate the

topological S-invariant mean on M(X)∗ with topological S-invariant mean on

GL(X). This gives another characterization of the existence of topological

S-invariant mean on M(X)∗.

Theorem 3.3.7. GL(X) has a topological S-invariant mean if and only if

M(X)∗ has one.

Proof. Assume that M(X)∗ has a topological S-invariant mean M . We denote

by T ∗ the adjoint operator of T : GL(X) → M(X)∗ as we introduced in

Theorem 3.3.4. We claim that T ∗M is a topological S-invariant mean on

GL(X).

It is clear that T ∗M is in the algebraic dual of GL(X). Besides

‖T ∗M‖ = sup{T ∗M(f) = M(Tf); f ∈ GL(X), ‖f‖ ≤ 1}

≤ ‖M‖ ‖Tf‖ = ‖M‖ ‖f‖ ≤ 1

In addition, T ∗M(1) = M(T (1)) = M(1) = 1. Thus T ∗M is a mean on

GL(X). Moreover, T ∗M(ν�f) = M(T (ν�f)) = M(ν�Tf) = M(T (f)) =

T ∗M(f). Therefore T ∗M is a topological S-invariant mean on GL(X).

Conversely, for each F ∈ M(X)∗, by Theorem 3.3.4, there exists a unique

f ∈ GL(X), such that Tf = F . Then

T−1(ν � F ) = T−1(ν � Tf) = T−1(T (ν � f)) = ν � f = ν � T−1F

Thus T−1 commutes with convolution of M(S). Similar as we argued

above, we complete the proof.

As we have proved in Theorem 3.2.7, the existence of topological S-

invariant means on M(X) is equivalent to the existence of a net in P (X)
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that is weakly convergent to its topological S-invariance. Since it is more

concrete and easier to work with M(X) compared to working on the dual of

GL(X). We want a similar characterization for topological S-invariant mean

on GL(X).

Theorem 3.3.8. Let L∞(|µ|) = L1(|µ|)∗ be equipped with weak* topology and

GL(X) ⊂
∏

µ∈M(X)

L∞(|µ|) be equipped with relative product topology τ . Then

T : (GL(X), τ)→ (M(X)∗, weak∗)

is a linear homeomorphism.

Proof. It suffices to prove both T and T−1 are continuous. Let fα
τ−→ f be a

net in GL(X). For each µ ∈ M(X), since fαµ
weak∗−−−→ fµ and µ ∈ L1(|µ|), we

have

Tfα(µ) =

∫
fαµ dµ→

∫
fµdµ = Tf(µ)

Conversely, assume Fα
weak∗−−−→ F . Let fα = T−1Fα, f = T−1F . Let µ ∈

M(X). Then ∫
fαµ dσ = Fα(σ)→ F (σ) =

∫
fµdσ

holds for any σ ∈ M(X), σ ∈ L1(|µ|). This implies fαµ
weak∗−−−→ fµ. Hence

fα
τ−→ f .

Corollary 3.3.9. Assume M(X)∗ is topological X-stationary, then for each

f ∈ GL(X), there exists a net µα in P (X), c ∈ R,such that f � µα
τ−→ c1.

Proof. Directly apply Theorem 3.3.5 and Theorem 3.3.8.

Theorem 3.3.10. The following are equivalent

i) M(X)∗ has topological S-invariant mean.
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ii) There exist a net {µα} in P (X), such that ν ∗ µα − µα
weak−−−→ 0, for any

ν ∈ P (S).

iii) GL(X) has topological S-invariant mean.

iv) There exist a net {µα} in P (X), such that (ν�f)µα−fµα → 0, |µα|−a.e.,
for any ν ∈ P (S), f ∈ GL(X).

Proof. We have proved i)⇔ ii) in Theorem 3.2.7, i) ⇔ iii) in Theorem 3.3.7.

ii) ⇒ iv) Let f ∈ GL(X). Since ν ∗ µα − µα
weak−−−→ 0, we have Tf(ν ∗

µα) − Tf(µα) → 0. This implies T (ν � f)(µα) − Tf(µα) → 0. Hence∫
((ν � f)µα − fµα)dµα → 0, which implies (ν � f)µα − fµα → 0 |µα|- a.e..

iv) ⇒ i) Define m(f) = limα

∫
fµαdµα for any f = (fµ)µ∈M(X). It is clear

that m is linear, |m(f)| ≤ ‖f‖ and m(1) = 1. Thus m is a mean on GL(X).

In addition,

m(f) = lim
α

∫
fµαdµα = lim

α

∫
(ν � f)µαdµα = m(ν � f)

Therefore m is a topological S-invariant mean on GL(X).

By the definition of generalised function, we may embed BM(X) into

GL(X) by f 7→ (f)µ∈M(X) where f ∈ BM(X). In Theorem 3.2.4, we showed

that if M(S)∗ has a topological left invariant mean, then M(X)∗ has a topo-

logical S-invariant mean. We shall use generalised function to show in the

following that if a subset of M(S)∗ has a topological left invariant mean, then

M(X)∗ has a topological S-invariant mean when X has S-absolute continuous

probability measure.

Definition 3.3.11. Let M(X) be equipped with uniform topology. A measure

µ ∈ M(X) is said to be S-absolutely continuous if the map s → δs ∗ µ is

continuous, where δs represents the Dirac measure of s. We denote by

Ma(S,X) the set of all S-absolutely continuous measure on X.

Lemma 3.3.12. Let µ ∈ Ma(S,X) ∩ P (X), ν ∈ M(S), s ∈ supp (ν). Then

δs ∗ µ� |ν| ∗ µ.
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Proof. Let K be any compact set, such that |ν| ∗ µ(K) = 0. Suppose δs ∗
µ(K) > 0, by the continuity of s → δs ∗ µ, there exists ε > 0 and an open

neighborhood U of s in S, such that δt ∗ µ(K) ≥ ε for any t ∈ U . Since

s ∈ supp (ν), we have |ν| (U) > 0.

Therefore, by Theorem 3.1.15

|ν| ∗ µ(K) =

∫∫
χK(sx)d |ν| (s)dµ(x) =

∫
µ(s−1K)d |ν| (s)

=

∫
δs ∗ µ(K)d |ν| (s) ≥ ε |ν| (U) > 0

This contradicts with the fact that |ν| ∗µ(K) = 0. Thus δs ∗µ� |ν| ∗µ.

Lemma 3.3.13. Let µ ∈Ma(S,X)∩P (X). Then F (ν ∗µ) =
∫
F (δs ∗µ)dν(s)

for all ν ∈M(S), F ∈M(X)∗.

Proof. Since T is bijective, for each F in M(X)∗, there exists f ∈ GL(X),

such that Tf = F . Then by Theorem 3.3.5 and Lemma 3.3.12,

F (ν ∗ µ) = ν � F (µ) = T (ν � f)(µ) =

∫
(v � f)µdµ

=

∫∫
f|ν|∗µ(sx)dµ(s)dν(s) =

∫∫
δs � f|ν|∗µ(x)dµ(x)dν(s)

=

∫∫
f|ν|∗µdδs ∗ µdν(s) =

∫∫
fδs∗µdδs ∗ µdν(s)

=

∫
F (δs ∗ µ)dν(s)

Definition 3.3.14. Let CB(S) be equipped with the supremum norm topol-

ogy. We say f ∈ CB(S) is right uniformly continuous on X if the map

s → rtf is continuous, where rtf(s) = f(st) for any s ∈ S. We denote by

RUC(S) the set of right uniformly continuous functions on S.

Lemma 3.3.15. Let f ∈ RUC(S). Then ν�f ∈ RUC(S) for any ν ∈M(S).
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Proof. Let t1, t2 ∈ X, s ∈ S,

‖rt1(ν � f)− rt2(ν � f)‖ = sup
s∈S
|rt1(ν � f)(s)− rt2(ν � f)(s)|

= sup
s∈S

∣∣∣∣∫ (f(wst1)− f(wst2))dν(w)

∣∣∣∣
≤ ‖rt1f − rt2f‖ ‖ν‖

We denote by 1 the constant 1 function on S, it is obviously in RUC(S).

We say RUC(S) has topological left invariant mean m in RUC(S)∗, if m

satisfies,

1) m(1) = ‖m‖ = 1

2) m(ν � f) = m(f) for any ν ∈ P (S), where P (S) is the set of probability

measures.

Theorem 3.3.16. Assume Ma(S,X)∩P (X) 6= ∅, then whenever RUC(S) has

topological left invariant mean, M(X)∗ has topological S-invariant mean.

Proof. Let µ ∈ Ma(S,X) ∩ P (X). For each F ∈ M(X)∗, define f(s) :=

F (δs ∗ µ) for any s ∈ S. It is easy to check ‖f‖ ≤ ‖F‖. Since f is the

composition of continuous function F and s→ δs ∗ µ, it is also continuous.

Moreover,

‖rt1f − rt2f‖ = ‖F (δst1 ∗ µ)− F (δst2 ∗ µ)‖ ≤ ‖F‖ ‖δt1 ∗ µ− δt2 ∗ µ‖

Thus f is in RUC(S).

Let ν ∈ P (S). Note that if t ∈ supp (ν), then ts ∈ supp (ν ∗ δs) by

Corollary 3.1.17. By Lemma 3.3.13

ν � f(s) =

∫
f(ts)dν(t) =

∫
F (δts ∗ µ)dν(t)

=

∫
F (δa ∗ µ)dν ∗ δs(a) = F (ν ∗ δs ∗ µ) = ν � F (δs ∗ µ)
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Let m be a topological S-invariant mean on RUC(S), we define M(F ) =

m(f) for any F ∈M(X) and correspondingly f = F (δs ∗ µ). Consequently,

we have m(1) = M(1) = 1 ≤ ‖M‖ ≤ ‖m‖ ‖f‖ / ‖F‖ ≤ 1. Thus M is

a mean on M(X). Moreover, M(ν � F ) = m(ν � F ) = m(F ) = M(f).

Therefore, M is a topological S-invariant mean on M(X)∗.

3.4 Support of Topological S-invariant Mean

Throughout this section, we let S be a locally compact semitopological

semigroup, X be a locally compact space that is closed under separately con-

tinuous left action of S. Let A be a topological S-invariant subspace of M(X)∗

containing 1. Let T be a Borel subset of X, we denote by χT the character-

ization functional of T on M(X)∗, i.e., χT (µ) = µ(T ) for all µ ∈ M(X). We

let AT := {F ∈ A; χT ≤ F ≤ 1}.

Definition 3.4.1. A Borel subset T ⊂ X is said to be topological (S,A)-

lumpy, if for any triple (ν, ε, F ), where ν ∈ Pc(S), ε > 0, F ∈ AT , there

exists µ ∈ P (X), such that F (ν∗µ) > 1−ε. When A contains χT , we usually

write topological S-lumpy for topological (S,A)-lumpy. In the case where

X = S, we write topological left A-lumpy for topological (S,A)-lumpy,

topological left lumpy for topological S-lumpy.

Remark 3.4.2. It is clear that if a Borel subset T is topological S-lumpy,

then T is topological (S,A)-lumpy for all topological S-invariant subspace

A of M(X)∗ containing 1.

Let A1, A2 be topological S-invariant subspaces of M(X)∗ containing 1,

if A1 ⊂ A2, then T ⊂ X being topological (S,A2)-lumpy implies T being

topological (S,A1)-lumpy.

In the following whenever we mention triple (ν, ε, F ), we mean that ν ∈
Pc(S), ε > 0, F ∈ AT unless specify otherwise.

Theorem 3.4.3. Let T be a Borel subset in X. Then the following are equiv-

alent:
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i) T is topological (S,A)-lumpy.

ii) For each triple (ν, ε, F ), where ν ∈ P (S), there exists µ ∈ Pc(X), such

that F (ν ∗ µ) > 1− ε, F (µ) > 1− ε.

iii) For each triple (ν, ε, F ), where ν ∈ P (S), there exists x ∈ X, such that

F (ν ∗ δx) > 1− ε, F (δx) > 1− ε.

Proof. It is clear that iii) implies ii) implies i).

i) ⇒ ii) Let γ ∈ P (S). Since Pc(S) is norm dense in P (S), there exists

τ ∈ Pc(S) such that
∥∥τ − ν∗γ+γ

2

∥∥ ≤ ε
8
. Since T is topological (S,A)-lumpy,

there exists σ ∈ P (X) such that F (τ ∗ σ) > 1− ε
8
. Hence

F (
ν ∗ γ + γ

2
∗ σ) = F (τ ∗ σ)− F ((τ − ν ∗ γ + γ

2
) ∗ σ)

≥ F (τ ∗ σ)− ε

8
‖F‖ > 1− ε

4

As we have F ≤ 1, it implies that F (ν ∗ γ ∗ σ) > 1− ε
2
, F (γ ∗ σ) > 1− ε

2
.

Since Pc(X) is norm dense in P (X), there exists µ ∈ Pc(X), such that

‖µ− γ ∗ σ‖ ≤ ε
2
. Therefore, F (ν ∗ µ) > 1− ε, F (µ) > 1− ε.

ii) ⇒ iii) By Theorem 3.3.4, there exists f ∈ GL(X), such that Tf = F .

Let θ = ν∗δs+δs
2

there exists µ ∈ Pc(X), such that,

1− ε/2 < F (θ ∗ µ) =

∫
fθ∗µdθ ∗ µ =

∫
fθ∗µ(sx)dθ(s)dµ(x)

=

∫
supp (µ)

fθ∗µdθ ∗ δxdµ(x)

=

∫
supp (µ)

fθ∗δxdθ ∗ δxdµ(x) By Lemma 3.1.13

=

∫
supp (µ)

F (θ ∗ δx)dµ(x)

Since µ ∈ P (X), there must exist some x ∈ supp (µ), such that F (θ∗δx) =

F (ν∗δs+δs
2
∗ δx) > 1 − ε/2. Hence it implies that F (ν ∗ δsx) > 1 − ε and

F (δsx) > 1− ε since F ≤ 1.
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Remark 3.4.4. Assume A contains χT . By Theorem 3.4.3 iii), T is topological

S-lumpy if and only if for each triple (ν, ε, F ), there exists x ∈ T , such that

ν ∗ δx(T ) > 1 − ε. Assume further that T is compact, then there exists

y ∈ T , such that ν � δy(T ) = 1 for any ν ∈ P (S).

It is interesting to note that even for the case when T is dense in X, T

may not be topological S-lumpy. An example of this is given in the following.

Example 3.4.5. Let S = X = R be equipped with the usual topology and

R act on itself by addition. Let T = Q be equipped with the subspace

topology of R. We denote by m the Lebesgue measure on R. For each Borel

subset E of R, define µ(E) = m(E∩ [0, 1]). Thus µ ∈ P (R). For any x ∈ X,

we have µ∗δx(Q) = µ(Q−x) ≤ m(Q−x) = m(Q) = 0. Thus by the remark

above, Q is not topological S-lumpy in R despite the fact that Q is dense in

R.

Example 3.4.6. Let T be a Borel subset of X. If there exists x ∈ X, such

that Sx = {sx; s ∈ S} ⊂ T . Then for each ν ∈ P (S), ν ∗ δx(T ) =∫
χT (sx)dν(s) = 1. Thus T is topological S-lumpy.

However the converse statement of Example 3.4.6 is not true.

Example 3.4.7. Let S = X = R be equipped with the usual topology and R
act on itself by addition. Let T be the set of irrational numbers in R. Then

Sx 6⊂ T for all x ∈ R. However, let µ be defined as Example 3.4.5. We have

ν ∗ µ(T ) =

∫
µ(s−1T )dν(s) = 1

holds for all ν ∈ P (S). Thus T is topological S-lumpy and hence is topo-

logical (S,A)-lumpy for all topological invariant subspace A of M(X)∗.

Lemma 3.4.8. Let T be a Borel subset in X. Then the following are equiva-

lent:

a) T is topological (S,A)-lumpy.
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b) There exists M ∈ M(A), such that M(ν � F ) = M(F ) = 1, for any

ν ∈ P (S), F ∈ AT .

c) There exists M ∈ M(A), such that N � M(F ) = M(F ) = 1, for any

F ∈ AT , N ∈M(S).

Proof. a) ⇒ b) Let C = {ν1, · · · , νn} be a finite subset in Pc(S), D =

{F1, · · · , Fm} be a finite subset in AT . Then
∑m
j=1 Fj

m
∈ AT and

∑n
i=1 νi
n
∈

Pc(S).

Let α = (ε, C,D), we say α ≥ α′ if ε < ε′, C ⊃ C ′, D ⊃ D′. Since T is

topological (S,A)-lumpy, thus by Theorem 3.4.3 iii), for each α, there exists

xα ∈ X, such that∑m
j=1 Fj

m
(δxα) > 1− ε

nm

∑m
j=1 Fj

m
(

∑n
i=1 νi ∗ δxα

n
) > 1− ε

nm

This implies Fj(δxα) > 1−ε/n ≥ 1−ε and Fj(νi∗δxα) > 1−ε. Equivalently,

we have 1 ≥ Q(δxα)(νi � Fj) > 1 − ε and 1 ≥ Q(δxα)(Fj) > 1 − ε, for all

1 ≤ i ≤ n, 1 ≤ j ≤ m.

Since M(A) is weak* compact, passing through its subnet if necessary,

there exists M ∈ M(A), such that Q(δxα)
weak∗−−−→ M . Hence, M(ν � F ) =

M(F ) = 1 for any F ∈ AT , ν ∈ P (S).

b) ⇒ c) Let M ∈ M(A), such that M(ν � F ) = M(F ) = 1 for any

ν ∈ P (S), F ∈ AT . Let N ∈M(S), by Proposition 3.2.3, there exists a net

νβ in P(S), such that Qνβ
weak∗−−−→ N . Therefore,

N �M(F ) = lim
β
Qνβ �M(F ) = lim

β
M(νβ � F ) = 1

c) ⇒ a) If T is not topological (S,A)-lumpy, there exists a triple (ν, ε, F )

such that F (ν ∗ µ) ≤ 1 − ε for all µ ∈ P (X). Equivalently, Qµ(ν � F ) ≤
1 − ε, for all µ ∈ P (X). Since QP (X) is weak* dense in M(A), we have

M(ν � F ) ≤ 1− ε for all M ∈M(A). Therefore Qν �M(F ) ≤ 1− ε which

contradicts c).
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Remark 3.4.9. Let MT (A) := {M ∈M(A); MLF = 1, F ∈ AT}. The subset

T ⊂ X is topological (S,A)-lumpy if and only if MT (A) is not empty by

Lemma 3.4.8 b). Actually, MT (A) is an M(S)-invariant subset of M(A). In

particular, if X = S, MT (A) is an ideal in M(A).

Corollary 3.4.10. Let T be a Borel subset of X. Assume A has a topological

S-invariant mean M such that M(F ) = 1 for all F ∈ AT . Then T is

topological (S,A)-lumpy.

Proof. By Lemma 3.4.8 and the fact that M is positive.

Denote ZA := {MLF ; M ∈M(A), F ∈ A} ⊂ M(S)∗, where M(A) is the

set of all the means on A as we mentioned in Section 3.2.

Let B be a topological S-invariant subspace of M(S)∗. Conventionally, we

say that B is topological left invariant. A topological left invariant subspace B

of M(S)∗ is said to be topological left introverted if {MLF ; M ∈M(B), F ∈
B} ⊂ B. It makes convolution of means on B defined by Arens product from

convolution of measures on S well-defined.

Lemma 3.4.11. For each S-invariant subspace A of M(X)∗, ZA is topological

left introverted.

Proof. Let ν ∈M(S), MLF ∈ ZA. Then

ν �MLF (θ) = MLF (ν ∗ θ) = M((ν ∗ θ)� F )

= M(θ � (ν � F )) = ML(ν � F )(θ)

holds for all θ ∈ M(S). Since A is topological left invariant, ν �MLF =

ML(ν � F ) ∈ ZA. Thus ZA is topological S-invariant.

Let N ∈M(ZA), MLF ∈ ZA. We have

NL(MLF )(ν) = N(ν �MLF ) = N(ML(ν � F ))

= N �M(ν � F ) = (N �M)LF (ν)

holds for all ν ∈M(S). Therefore ZA is topological S-introverted.
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Corollary 3.4.12. Assume ZA has a topological left invariant mean and T

is a (S,A)-lumpy subset of X. Then A has a topological S-invariant mean

M ∈MT (A).

Proof. Let N be a topological left invariant mean on ZA. Since T is (S,A)-

lumpy, MT (A) 6= ∅. Let M ′ ∈ MT (A). Then N �M ′ ∈ MT (A) by Re-

mark 3.4.9. Moreover,

N �M ′(ν � F ) = N(M ′
L(ν � F )) = N(ν �M ′

LF )

= N(M ′
LF ) = N �M ′(F )

holds for all ν ∈ P (S), F ∈ A. Therefore, M = N �M ′ is a topological

S-invariant mean in MT (A).

Let X = S. Let T be a Borel subset of X. Day [9] shows that if M(S)∗ has

a topological invariant mean, then the existence of topological left invariant

mean M on M(S)∗, such that M(χT ) = 1 is equivalent with T being topologi-

cal left lumpy. We generalize this result to the case where T is (S,A)-lumpy for

some left introverted subspace A of M(S)∗ that has a topological left invariant

mean.

Theorem 3.4.13. Let S be locally compact semitopological semigroup and A be

a topological left introverted subspace of M(S)∗ with topological left invariant

means. Then the following are equivalent:

a) T is topological left A-lumpy.

b) There exist a topological left invariant mean M on A, such that M(F ) = 1

for all F ∈ AT .

Proof. b) ⇒ a) Followed from Lemma 3.4.8.

a)⇒ b) Let N be a topological left invariant mean on A. By Lemma 3.4.8,

there exists M1 ∈ M(A), such that M1(ν � F ) = M1(F ) = 1 holds for all

ν ∈ P (S), F ∈ AT . Let M = N �M1. Then M is a mean on A and for all

F ∈ A, ν ∈ P (S), M(ν � F ) = N(M1L(ν � F )) = N(ν �M1LF ) = N �
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M1(F ) = M(F ). Moreover, we have M(ν � F ) = M(F ) = N(M1L(F )) = 1

for all F ∈ AT .

In the case when X is a general locally compact space, the author do not

know if the above equivalence holds for general topological S-invariant sub-

space of M(X)∗. However, we can construct a topological S-invariant subspace

A of M(X)∗, such that T being topological S-lumpy implies the existence of

a topological S-invariant mean M on A with M(χT ) = 1.

Theorem 3.4.14. Let T be topological S-lumpy subset of X. Then there exists

a topological S-invariant norm closed subspace A of M(X)∗ containing 1 and

χT , such that it has a topological S-invariant mean M on A with M(χT ) = 1.

Proof. Since T is topological S-lumpy, there exists M ∈ M(X), such that

M(ν � χT ) = M(χT ) = 1 for all ν ∈ P (S). Thus the set H = {F ∈
M(X)∗; M(ν � F ) = M(F ) for all ν ∈ P (S)} is not trivial. It is clear that

H is a S-invariant linear subspace of M(X)∗ containing 1. Let A be the

norm closure of H. Let F ∈ A, then there exists a net Fα
‖·‖−→ F in H.

Let ν ∈ P (S), then ‖ν � F − ν � Fα‖ ≤ ‖F − Fα‖ → 0. Then ν � F ∈ A
since H is topological S-invariant. Thus A is topological S-invariant norm

closed subspace of M(X)∗ containing 1. Let N(F ) = M(F ) for all F ∈ A.

Then 1 = M(1) = N(1) ≤ ‖N‖ ≤ ‖M‖ = 1 and N(ν �G) = M(ν �G) =

M(G) = N(G) for all ν ∈ P (S), G ∈ H. Hence, let F ∈ A, Fα
‖·‖−→ F be a

net in H, then lim
α
N(ν�F )−N(ν�Fα) ≤ lim

α
‖ν � F − ν � Fα‖ = 0 for all

ν ∈ P (S), lim
α
N(F )−N(Fα) ≤ lim

α
‖F − Fα‖ = 0. Thus N(ν�F ) = N(F )

for all ν ∈ P (S), F ∈ A. Therefore N is a topological S-invariant mean on

A.
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3.5 Topological S-invariant Means on Locally

Compact Subspace

In this section, we first let X be a locally compact space, T be a locally

compact Borel subspace of X.

Remark 3.5.1. A Borel subspace of a locally compact space may not be

locally compact. For example. Let R be equipped with usual topology,

Q ⊂ R is Borel since it is a countable union of rational points in R. However,

Q is not locally compact since all of its compact subsets have empty interior.

On the other hand, open or closed subspace of locally compact space is

again locally compact (see [27, 2.3.29]).

Lemma 3.5.2. For each µ ∈M(X), we define a set function on T by setting

µT (E) = µ(E) for all Borel subset E ⊂ T . Then µT is a bounded Borel

measure on T and ‖µT‖ ≤ ‖µ‖.
In particular, let f ∈ BM(T ), we have

∫
f̄dµ =

∫
fdµT , where f̄(x) ={ f(x) x ∈ T

0 otherwise
.

Proof. Since µ is a regular bounded Borel measure, it is clear that µT is a

Borel and finite measure on T and ‖µT‖ ≤ ‖µ‖ by definition. So it suffices

to prove regularity of µT .

Let K ⊂ T be compact, it is then compact in T , since for any net Vα of

open sets in T that covers K, it corresponds with a net Uα of open sets, such

that Vα = Uα ∩ T . Conversely, if K is compact in T , K is then compact,

since for any open net Uβ that covers K, Uβ ∩ T is a net of sets open in T
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covers K. Therefore

µT (E) = µ(E) = sup{µ(K); K ⊂ E,K compact}

= sup{µT (K); K ⊂ E,K compact in T}

= µ(E) = inf{µ(U); U ⊃ E,U is open }

≥ inf{µ(V ); V = U ∩ T ⊃ E for some open set U}

= inf{µT (V ); V ⊃ E is open in T}

Thus µT is regular Borel measure on T .

Let f ∈ BM(T ),
∫
f̄dµ =

∫
fdµT follows directly from the fact that if E

is Borel subset of T ,
∫
ξEdµT = µT (E) = µ(E) =

∫
ξEdµ.

Lemma 3.5.3. For each µ ∈M(T ), there exists a unique measure µ̄ in M(X),

such that µ̄(E) = µ(E ∩ T ) whenever E ∩ T is µ-measurable. Moreover,

‖µ‖ = ‖µ̄‖.

Proof. Without loss of generality, we assume µ ∈M+(T ). Let f ∈ C0(X), we

denote by f |T the restriction of f on T . Then I(f) =
∫
f |Tdµ is a linear

functional on C0(X). By Riesz representation theorem, let µ̄ be the unique

corresponding bounded Borel measure of I on X.

Let U be an open subset in X, then ξU is lower semicontinuous as it is

shown in Lemma 3.1.5. Thus

µ̄(U) =

∫
ξUdµ̄ = sup{

∫
fdµ̄; f ∈ Cc(X), 0 ≤ f ≤ ξU} [20, 11.13]

= sup{
∫
f |Tdµ; f ∈ Cc(X), 0 ≤ f ≤ ξU}

≤ sup{
∫
gdµ; g ∈ Cc(T ), 0 ≤ g ≤ ξU∩T} = µ(U ∩ T )

The last inequivalence holds since f |T ∈ Cc(T ) whenever f ∈ Cc(X) as we

have shown in the proof of Lemma 3.5.2.

On the other hand, let ε > 0, by the regularity of µ, there exists a compact

subset K in T such that K ⊂ U ∩ T , µ(U ∩ T ) ≤ µ(K) + ε. In addition,
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since X is locally compact, there exists h ∈ Cc(X), such that h(K) = 1,

h(X − U) = 0. Thus

µ̄(U) ≤ µ(U ∩ T ) ≤ µ(K) + ε ≤
∫
h|Tdµ+ ε =

∫
hdµ̄ ≤ µ̄(U) + ε

Therefore, µ̄(U) = µ(U ∩ T ) for any open subset U in X.

Let C be a closed subset of X. Then µ̄(C) = µ̄(X)− µ̄(X − C) = µ(T )−
µ((X − C) ∩ T ) = µ(C ∩ T ).

Let B be any Borel subset of X. Let ε > 0, by the regularity of µ̄, there

exists an open subset U ⊃ B such that

µ̄(B) ≥ µ̄(U)− ε = µ(U ∩ T )− ε ≥ µ(B ∩ T )− ε

This implies µ̄(B) ≥ µ(B ∩ T ). On the other hand, there exists a compact

subset K ⊂ B, such that

µ̄(B) ≤ µ̄(K) + ε = µ(K ∩ T ) + ε ≤ µ(B ∩ T ) + ε

Thus µ̄(B) = µ(B ∩ T ). In particular, ‖µ̄‖ = µ̄(X) = µ(T ) = ‖µ‖.

Remark 3.5.4. Lemma 3.5.3 implies that the map from M(X) to M(T )

defined in Lemma 3.5.2 is surjective. Thus from now on, we let µT denote

measure in M(T ) while µ ∈M(X).

Note that for each µ ∈M(X), µ = µT + µ(X−T ), since

µ(E) = µ(E ∩ T ) + µ(E ∩ (X − T ))

= µT (E ∩ T ) + µ(X−T )(E ∩ (X − T ))

= µT (E) + µ(X−T )(E)

for all Borel subset E of X.

Now let S be a locally compact semitopological semigroup, X be a locally

compact space that is closed under separately continuous left action of S.
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Let R be a locally compact semitopological subsemigroup of S, T be locally

compact subspace of X that is closed under separately continuous left action

of R. We say M(X)∗ has a topological R-invariant mean M , if M is a mean

that satisfies M(ν � F ) = M(F ), for all ν ∈ P (S) with ν(R) = 1.

Lemma 3.5.5. Let ν ∈ M(S), µ ∈ M(X). Let νR, µT , (ν ∗ µ)T defined

respectively as in Lemma 3.5.2. Then

‖(ν ∗ µ)T − νR ∗ µT‖ ≤
∫
µ(Es)dν(s) +

∫
T

ν(Ex)dµ(x)

where Es = {x ∈ X − T ; sx ∈ T}, Ex = {s ∈ S −R; sx ∈ T}.

Proof. Let f ∈ BM(T ), define f̄ as in Lemma 3.5.2, we have,∫
fdνR ∗ µT =

∫∫
f(sx)dνR(s)dµT (x)

=

∫
T

∫
R

f̄(sx)dν(s)dµ(x) By Lemma 3.5.2∫
fd(ν ∗ µ)T =

∫
f̄dν ∗ µ =

∫∫
f̄(sx)dν(s)dµ(x)

Thus, by Theorem 3.1.15,∣∣∣∣∫ fdνR ∗ µT −
∫
fd(ν ∗ µ)T

∣∣∣∣ ≤ ∣∣∣∣∫∫
X−T

f(sx)dµ(x)dν(s)

∣∣∣∣
+

∣∣∣∣∫
T

∫
S−R

f(sx)dν(s)dν(x)

∣∣∣∣
≤ ‖f‖ (

∫
µ(Es)dν(s) +

∫
T

ν(Ex)dµ(x))

Therefore

‖(ν ∗ µ)T − νR ∗ µT‖ ≤
∫
µ(Es)dν(s) +

∫
T

ν(Ex)dµ(x)

Theorem 3.5.6. There is a topological R-invariant mean on M(T )∗ if and

only if M(X)∗ has a topological R-invariant mean M such that M(χT ) = 1.
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Proof. Assume M(T )∗ has a topological R-invariant mean MT . Let F ∈
M(X)∗, define FT (µT ) = F (µT ) for any µT ∈M(T ), where µT is defined as

in Lemma 3.5.3. In particular, 1T (µT ) = µT (T ). It is clear that FT is linear

and ‖FT‖ ≤ ‖F‖. Further we define M(F ) = MT (FT ). The function M

is well-defined since FT 6= GT implies F 6= G. It is clear that M is linear,

M(1) = MT (1T ) = 1 = ‖M‖. Thus M is a mean on M(T )∗.

Moreover, let ν ∈ P (S) with ν(R) = 1, µ ∈ M(X)∗ with µ(X − T ) = 0.

By Lemma 3.5.5, we have

ν � F (µ) = F (ν ∗ µ) = FT ((ν ∗ µ)T ) = FT (νR ∗ µT ) = VR � FT (µT )

Hence M(ν � F ) = MT (VR � FT ) = MT (FT ) = M(F ).

Conversely, assume that M(X)∗ has topological R-invariant mean M with

M(χT ) = 1. HenceM(χ(X−T )) = 0. Let F ∈ M(T )∗, define F (µ) = F (µT )

for all µ ∈ M(X) while µT defined as in Lemma 3.5.2. Since µT 6= σT

implies µ 6= σ for any µ, σ ∈ M(X), F is well defined. It is easy to check

that F is linear and
∥∥F∥∥ ≤ ‖F‖. Thus F ∈M(X)∗.

Now define MT (F ) = M(F ). It is easy to check that MT is linear and

MT (1T ) = 1 ≤ ‖MT‖ ≤ ‖M‖ = 1. Moreover, let ν ∈ P (S) with ν(R) = 1

∣∣νR � F (µ)− ν � F (µ)
∣∣ = |F (νR ∗ µT )− F ((ν ∗ µ)T )|

≤ ‖F‖ ‖(ν ∗ µ)T − νR ∗ µT‖

≤ ‖F‖
∫
R

µ(Es)dν(s) Lemma 3.5.5

≤ ‖F‖µ(X − T ) = |F |χ(X−T )(µ)

holds for any µ ∈ P (X). Thus

∣∣M(νR � F )−M(ν � F )
∣∣ ≤ |F |M(χ

X−T ) = 0

Therefore MT (νR � F ) = M(νR � F ) = M(ν � F ) = M(F ) = MT (F ).

Then MT is a topological R-invariant mean on M(T )∗ since νR runs out of
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M(R) by Remark 3.5.4.

Theorem 3.5.7. Assume further that R is a topological S-lumpy subsemigroup

of S. Then M(T )∗ has a topological R-invariant mean if and only if M(X)∗

has a topological S-invariant mean M and M(χT ) = 1.

Proof. By Theorem 3.5.6, we have the later implies the former. Now we assume

M(T )∗ has a topological R-invariant mean MT . Define M(F ) = MT (µT )

for any F ∈M(X)∗. Then M is a topological R-invariant mean on M(X)∗

by Theorem 3.5.6.

Since R is topological S-lumpy, by Lemma 3.4.8, there exists P ∈ M(S),

such that P (ν�χR) = P (χR) = 1. Since M(S) is weak* compact. Let θα be

a net in P (S), such thatQ(θα)
weak∗−−−→ P . Then lim

α
ν∗θα(R) = lim

α
θα(R) = 1.

Let N = P �M . It is clear that N is a mean on M(X)∗. Let ν ∈ P (S),

then by Remark 3.5.4

N(ν � F ) = P (ML(ν � F )) = P (ν �ML(F )) = lim
α
ν �ML(F )(θα)

= lim
α
M((ν ∗ θα)� F )

= limM((ν ∗ θα)R � F ) + limM((ν ∗ θα)S−R � F )

= M(F )

N(F ) = P (MLF ) = lim
α
M(θα � F )

= lim
α
M(θαR � F ) + lim

α
M(θαS−R � F ) = M(F )

Therefore N is a topological S-invariant mean on M(X)∗.
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Chapter 4

Related Results and Open

Problems

4.1 Definitions and Notations

Let S be a locally compact semitopological semigroup, X be a locally

compact space. We assume the left action of S on X is separately continuous.

We denote by CB(X) the Banach algebra of bounded continuous functions

on X with supremum norm and pointwise product. Let f ∈ CB(X), s ∈ S,

x ∈ X, we define lsf(x) := f(sx), rxf(s) := f(sx).

Let A be a subspace of CB(X), we say A is S-invariant if lsf ∈ A for any

s ∈ S, f ∈ A.

Let f ∈ CB(X), we say f is S-uniformly continuous if s → lsf is con-

tinuous. We denote by LUC(S,X) the space of all S-uniformly continuous

functions on X. It is clear that LUC(S,X) is a norm closed S-invariant sub-

space of CB(X).

Let A be a subspace of CB(X) containing constants. A functional φ ∈ A∗

is a mean on A if it satisfies φ(1) = ‖φ‖ = 1, where 1 is the constant 1 function

on X. We denoted by M(A) the set of all means on A. By Banach-Alaoglu

theorem, M(A) is weak* compact and convex. In this chapter, we usually

write M(X) for M(LUC(S,X)).
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Suppose A is a subalgebra of CB(X) containing constants, a mean φ ∈
M(A) is multiplicative if φ(fg) = φ(f)φ(g) for all f, g ∈ A.

Let A be a subspace of CB(X) containing constants. Let Q : X → A∗

by Qx(f) = f(x) for all x ∈ X, f ∈ A. It is easy to check that Qx ∈ M(A).

Actually if A is in further an algebra, Qx is a multiplicative mean on A, for

all x ∈ X. Since M(A) is convex, Co {Qx} ⊂ M(A), where Co {Qx} stands

for the convex hull of {Qx}. Means in Co {Qx} are called finite means.

Proposition 4.1.1. 1. The set of finite means is weak* dense in the set of

all means on A.

2. QX := {Qx; x ∈ X} is weak* dense in the set of all multiplicative means

on A.

Proof. 1. Similar as the proof of Proposition 3.2.3

2. Paterson [26, 2.27]

Throughout this section, we shall let A be a S-invariant subspace of CB(X)

containing constants. Let s ∈ S, φ ∈ M(A), we define Lsφ(f) = φ(lsf) for

all f ∈ A. It is clear that Lsφ ∈ M(A). We say a mean φ is S-invariant if

Lsφ = φ for all s ∈ S. Let φ ∈M(A), f ∈ A, we define φlf(s) = φ(lsf) for all

s ∈ S.

Remark 4.1.2. Let φ ∈M(X) and M(X) be equipped with weak* topology.

Then the map Tφ : S →M(X) by s 7→ Lsφ is continuous. This is not true

for an arbitrary S-invariant subspace of CB(X).

Corollary 4.1.3. 1. Let φ in M(A). Then there exists a net of finite means

{φα} such that for each f ∈ A, we have (φα)lf
pointwise−−−−−→ φlf

2. Assume A is in further a subalgebra of CB(X). Let φ be a multiplicative

mean on A. Then there exists a net {xα} in X, such that for each f ∈ A,

we have (Qxα)lf
pointwise−−−−−→ φlf .

Proof. 1. Since the set of finite means is weak* dense in M(A) as we have

shown in Proposition 4.1.1, let {φα} be a net of finite means such that

φα
weak∗−−−→ φ. Then (φα)lf(s) = φα(lsf)→ φ(lsf) = φlf(s).
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2. Similar to the above argument, we finish the proof.

Proposition 4.1.4. For each f ∈ LUC(S,X), let Z(f) := {φlf ; φ ∈M(X)} ⊂
LUC(S). Then Tp coincide with Tc on Z(f), where Tp is the topology of

pointwise convergence and Tc is the topology of uniform convergence on com-

pacta.

Proof. Let φ ∈M(X), f ∈ LUC(S,X),

|φlf(s)− φlf(t)| = |φ(lsf − ltf)| ≤ ‖lsf − ltf‖

Thus Z(f) is equicontinuous. Hence by Kelley [22, 232], Tp coincide with

Tc on Z(f). Moreover,

‖ls(φlf)− lt(φlf)‖ = sup
a∈S
|φlf(sa)− φlf(ta)| = sup

a∈S
|Laφ(lsf)− Laφ(ltf)|

≤ ‖lsf − ltf‖

Therefore Z(f) ⊂ LUC(S).

Corollary 4.1.5. Let φ ∈M(X), then there exists a net of finite means {φα}
such that (φα)lf → φlf uniformly on compacta for all f ∈ LUC(S,X). In

particular, if φ is a multiplicative mean on LUC(S,X), there exists a net

{xα} in X, such that rxαf → φlf uniformly on compacta.

Proof. Directly apply Corollary 4.1.3 and Proposition 4.1.4.

4.2 In the Convex Hull of Multiplicative Means

Throughout this section, we let X be a topological subspace under the sep-

arately continuous left action of a semitopological semigroup S. We shall focus

our attention on the subalgebra LUC(S,X) of CB(X). We shall show that

the existence of S-invariant means in the convex hull of multiplicative mean
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reflects the structure of S. We denote by ∆(X) the set of all multiplicative

means on LUC(S,X).

Lemma 4.2.1. 1. ∆(X) is weak* compact.

2. Elements in ∆(X) are linear independent.

Proof. 1. Let φα be a net in ∆(X), since M(X) is weak* compact, there exists

φ ∈M(X) such that φα
weak∗−−−→ φ. Let f, g ∈ LUC(S,X), we have

φ(fg) = lim
α
φα(fg) = lim

α
φα(f)φα(g) = φ(f)φ(g)

Thus φ ∈ ∆(X) and ∆(X) is weak* closed in M(X). Hence ∆(X) is weak*

compact.

2. Let ∆(X) equipped with weak* topology. Consider the natural em-

bedding Q : LUC(S,X) → C(∆(X)) by Qf(φ) = φ(f) for any f ∈
LUC(S,X), φ ∈ ∆(X). It is clear that Q is an isometric isomorphism when

C(∆(X)) equipped with pointwise product and supremum norm. Then the

adjoint operator Q∗ of Q maps point measure on C(∆(X)) onto elements in

∆(X). Therefore elements in ∆(X) are linear independent by the linearity

of Q∗.

Theorem 4.2.2. If LUC(S,X) admits a S-invariant mean in the convex hull

of ∆(X), then S can be decomposed into a finite union of disjoint open and

closed cosets of a finite quotient group.

Proof. Let ψ ∈ Co(∆(X)), then ψ =
∑n

i=1 aiφi, where ai > 0,
∑n

i=1 ai = 1,

{φ1, . . . , φm} are distinct in ∆(X). Let H = {φi}ni=1. Since elements in

∆(X) are independent, we have LsH = H for all s ∈ S.

Since H is finite, the restriction of Ls on H is bijective for all s ∈ S. We

define an equivalence ”∼” on S by setting s ∼ t if Lsφ = Ltφ for any φ ∈ H.

It is easy to check that ”∼” is a two sided equivalence by the bijectivity of

Ls. Thus S/(∼) is finite and cancellative, hence it is a group. We let e

denote the identity of S/(∼).

58



Let π : S → S/(∼) be the canonical quotient map. Let E := π−1(e) =

{s ∈ S; Lsφ = φ, for all φ ∈ H}. Then E is a closed subsemigroup of S.

Let {ti}mi=1 be a set of representatives of S/(∼), where t1 ∈ E. Since S/(∼)

is a group, for each s ∈ S, there exist a unique i (i ∈ N, 1 ≤ i ≤ m), such

that π(tis) = π(ti)π(s) = e. The first equivalence holds since ”∼” is a two-

sided equivalence. Thus we have S =
⋃m
i=1 t

−1
i E and the family {t−1

i E}mi=1

is pairwise disjoint. By the separate continuity of the action of S on X, we

have t−1
i E is closed for all 1 ≤ i ≤ m. Hence E = S −

⋃m
i=2 t

−1
i E is open.

Further, t−1
i E is open for all 1 ≤ i ≤ m, i ∈ N.

4.3 Open Problems

The following problems are open.

1. Let S be a locally compact semitopological semigroup. When does

M(S)∗ has a multiplicative S-invariant mean? We know that when S

is discrete, this is equivalent with, for any a, b ∈ S, there exists c ∈ S,

such that ac = bc = c (see [16]). Do we have similar characterization for

the existence of multiplicative S-invariant mean on M(S)∗ when S is a

locally compact semitopological semigroup?

2. Let S be a locally compact semitopological semigroup, X be a locally

compact space. The left action of S on X is separately continuous. Does

topological X-stationary of a S-invariant subspace A implies the existence

of topological S-invariant mean on A? Does the sublinear functional p

on A always exists as we mentioned in Theorem 3.2.7?

3. Let S be a locally compact semitopological semigroup, X be a locally

compact space. The left action of S on X is separately continuous.

From Theorem 3.3.4, we know that we can identify M(X)∗ with GL(X).

Can we identify mwp(S,X) with a subspace of GL(X)? We denote by

mwp(S,X) the set of function F in M(X)∗ such that {F�µ; µ ∈ P (X)}
is weakly relatively compact.
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4. As we have shown in Theorem 3.4.14, for each topological S-invariant

subset T of X, there exists a topological S-invariant subspace A of

M(X)∗ containing χT , such that A has a topological S-invariant mean M

and M(χT ) = 1. A natural question is for each [topological] S-invariant

subspace A of M(X)∗ that has [topological] S-invariant means, does it

guarantee the existence of [topological] (S,A)-lumpy subset T of X such

that χT is included in A?

5. Let S be a locally compact semitopological semigroup, X is a locally

compact space under separately continuous left action of S. It is known

that M(S)∗ has a topological left invariant mean if and only if there

exists a net µα ∈ P (S), such that ‖ν ∗ µα − µα‖ → 0 for all ν ∈ P (S).

Does there exist a net µα ∈ P (X) such that ‖ν ∗ µα − µα‖ → 0 for all

ν ∈ P (S) when M(X)∗ has a topological left invariant mean?

6. Suppose that S is a semitopological semigroup and for each f ∈ LUC(S)

there exists a meanmf = 1
n

∑
i=1

nφi, where φi ∈ ∆(S), such thatmf (lsf) =

mf (f) for all s ∈ S. Does LUC(S) has a left invariant mean m =∑
i=1

naiφi, where ai ∈ R, φi ∈ ∆(X)?
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