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- ABSTRACT

S .. .
g s h
The watés propagating in media with trans itiOn

i

Coa ‘ . . ‘
layers are 1nveﬁ(§garﬂﬂ theoretically with applicatiﬂ‘ to
the propagatfon of sedsmie waves yn th0‘Eap(h's,chst and
the upper mantle. The propagation of pressure pdturbation

from a point source 1in a”™Nutd- 1= studted in both the frequency
and time domain. The problem s solved dn the flat geometry

A~

under the assumption }hat the carth-flattening trapsformation
can berused to transform the nphcrival.geometry/énto the
flat geometry.
'
When the monotonic velocity transfition 1s broad the
Caustics are formed by the fﬁcussihg of rays due to therrépid
change 1in the vélbbity gradient. In such a case a triplicatioﬂﬂ

is {ormeduon the travel-time curve and the wave pfop&éatién iﬁﬂ
the neigibohrhooq of the endpéints {s studied, N;mericgg
evélu;ti@n of the responsé of the medium shows ‘that .at high
freqﬁéncies the decay into the %égioﬂ,béy@nd the caustic ‘is
lérge and that low fréquency waves ca?ry the significant

amount of energy. The amplitude maximum Ag sh1fted from the
endpoint into the 111uminated region'dﬁgtto constructhe

~ interference of the two arrlving waves. ' |

1f the monotonic transition 1s thin the partlal

reflection gccurs at sub~cr1tical angles of incidence and the-

head wave arises at the’ critical inc1dencé "Théy_are bothH'
- | R : o o | ' ; ) ' ' ;
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. i o R
effected by the thickness of the transition: ag the traﬁﬁitién
. 13 = o

. . K o N
becomes thinner, they behave more like sub-~critical refhectioﬁ

i

%

and head waves from sharp velocity transition.
’ e

[ [

—_—

When theé transition layer has a velocity maximum

Y

the amplitudes of the wavegy propagating along the veloclity

reversal decay exponentially with distance. This rapid - b 1

3 By
fXi

decrease of the amplitude causes a '"shadow" whos&ﬂpropertleéc

s

[AFS

are very different from a "true'" shadow due to an abrupt

L
velocity decrease. The first is frequency independent wh {1 e

. : r 1/3. A -y
theﬁgther depends on freauency as exp (-aw )
: ¥

{

The numerical results for the monotonic velocity tg
transition are compared to the results given by the complete
v vand partial ray expansions for medium with homogeneous layers.

. The results suggest that.if a good approximation of‘eﬂe -

%

inhomogeneous ﬁédipm by a stack of homogeneous layers 1s
- '( - ‘ ' ' -

required the number of 1aye;s must be very large. The érror

of theipartial ray expansion with respect to the exact solution

I

depends on the cholce qf,naygizénsidered. For large number

,9f layers the rays with multiple reflectionsg must ,be included

n -, ' ! ! ' '
in the expansion in order to obtain satisfactory results. .
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CHAPTEK 1 INTRODUCT TON

Improved coverage by stations of the USCOCS world-
wide petwork has provided berter data In the last decadé,
f

Thiifr processing has lead to hbre accuralte cstimates of elast{e
\
wave veloctities and dm)n‘l[,y within the Farth. All the rTecent

models (Johnson, 1967: Julian and Anderson, 1968, for example)
show remarkable sagreement with, the classical models of

i

Jeffreys and Bullen (L?AO) }ndACufeanrg (1958) eXCept at
regions of high velbcftyléraal&ntﬂcor low welocity channels

(Flgure 1,1). All these anamalots reglons in the wveloclity
structure are characterised by discontinultdes’or reversals .
«In the travel-time curves,* Increased resolution of these

f

curves 1s the basis for better interpretatfion and leads teo

better understanding of the Farth's interior. This thesis

i

tically a pumher 5f phenomena displayed by

(]
¥
ot
[a¥
i
{a4]
o ]
iy
—_
[
te]]
3
fs
el

waves pr;péﬁﬂtiﬁ% in media with velocity transitlons.

The first models of the velocity structure within

the Farth were dérived by simple géometrical ray theory

(Bullen, 1963; p. 109). It solves the problém of w;ve pPropagation
when energy propagates within a ray tube‘withoutjleaking

through its wails., The vector of energy flux is normal to

the wave front. The energy propaéation cannot be explained

so simply for many signais. For example the high velocity

gradients.in the upper mantle give rise to t{iplicacions on
. \ f :

/o



v, hm/zet
9 1 [ i2

" Figure 1.1

Velocity structure of
compressional waves in the
upper mantlec(from Johnson, 1967).
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2,

3o
' o o oy O .
the travel-timescurves at approximately 15 and 20 . The

later arrivals “were first carefully studied by«Johnsbﬁ (1967)
13 L . .

and thelir 1nt%rfreﬁation lead to model CIT 204 Fig. 1.1. The
¢ * -'l'l '
o

ray tube on théuwaugﬁic has a zero cross-section caused by
i .-

Y e . .
focussing of th& gdys, Therefore the simple assumption about
B \.\“: . . .

~ L
@ A
& : Ap

propagationnoﬁlééergy fails. The wave propagation in the
region of theﬂ;aistlc was first studied by Jeffrey&i{l939)

in connection with the PKP caustic. Other signals for which
the ge@metrical ray theory fis inapp]ica§]e are head waves 1n
Lﬁé vicﬁnity of cge critical angle. Thgse were first studied
by Cagqéard (1939) and recently Cerveny‘and Ravindra (1971)
published én excéileytibqok that studies head waves 1nﬁgreat
detai].r Diffraction signals cannot be explained byrgeometri—
cal ray theory efther (Knopoff and Gilbert, 1961; Alexapder !
and Phinney, 1966; Phignéy and Cathles, 1969 énd 0th€;s),

In all these cases tﬁe wave équatiégs tha% describe the

motion of the medium have to be solved exactly in the frequenc
¥ y
S /.

range needed as the response 1s frequengy dependeﬁgl, The . /
geometrical'ray theory forms the high frequency approximation.
' R ' A : 9 !

The solution must satisfy the source condition, the

-

boundary conditions and'the‘radi%;ion_conditions. This is :
) . ) . - . ] A\

equivalent to finding a‘réfleccion coefficient. The original, - -

equation 1is usually transformed to one variable. ' The trans-

formation is in effect a decomposition of a spherical or



¢ylindrical wave Into plane waves which are s&lu[lons of
simpler differential equations. The wave equation for one
variable must be solved and the reflection coeffi;;ént found.
But even the one-dimensional equation can be solved analyti-
cally for oply a few models. For more complicated velocity
structures numerical methods of solution must be eEPIOyed
(Chapman, 1969;;Mﬁiler, 1970; Chapman and Phinney, 1972).

With the great development';é powerful'computers t&e impor-
tance of analytic solutioﬁ; seems to have faded in recent
years. The numerical solutiob;; however, carry with them a
heavy computing penalty 1f we 'want to aéhieve the necessary
accuracy. It gseems useful to re;nvégtigéte exdisting sélutiOns
and look to othér fieldsipﬂ theprét@cal phyéic;, if problems
Soived there are relevga{ to elastic wave propagation; Analytic
solutions are stijl—a; indiépensibi% part of research in
btheoretical seismology. However limited the model, may appear
witch resp;cf to the Earth's structure the results‘bbfained
often prove themgélves to be very valuable.

When ‘the reflection coefficient has beén,found, the

-
’

seiémic response. of any medium fé %btained as.a produét of
elementary .waves t?at‘represent the source‘andtﬂn?réflectioﬁ

. N

, tcefficiéht. The combleté é&iution which covers all frgquen-
‘ciel égn so%etimaé'b%iqbtaiqed exact1y in analytic closed fdrﬁ;

That 1is the case when the reflection coefficient. is independent’

.
-

£ r



of frequency and the Cagniard-de Hoop method can be used

(Cagniard, 1939; de Hoop, 1960) . GiLb?Tt and Helmberger
(1972) expanded the spherical refleffion coefficient into
an asymptotic, frequency 1ndependen% form/in order to
obtain solution for response o0f a la;ered ;phere in Gime

| F
domain. Muller (1970) and He]mbergcr/and Wiggins (1;71)
applied an earth- flatteningm@pproxjmaclmn to the theeral
model and then applied the- exact ﬁagniard de Hoop method to s
. ‘ . .
the approximarte model of plane layers. But. generalﬁy the
reflection coefficient 1s frequency dependent and tne ‘response

L 0
of the medium in the frequency domain must be found f1 st

F

The time domain response can be obtained by inverSe Fourier“

transformation. In man{ cases the results in frequency domain
are more valuable as sgismological data are usually analysed
in the frequency domain., '

| The small family of models for which the r;flection
coefficient has been found includes the: homogeneous 1ayers H
linear transition 1ayers (Gupta 1966;;Nakamuré, 19643
Ward, 19729, exponential and parabolic layers (Merzer, 1971;
Rydbeck 1943) and Epstein layers (Epstein, 1930; Rawer; 1939;
Lang' and Shmoys 1968; Phinney, 1970) . Budden (1961) and
Brekhovskikh (1960) summarxze SOme‘of these results. Linearhyj

layers haVe discontinuities in velocity gradient which may

'hot be realistic. Merzer s study is‘conqerned only with head‘

~

D | B t
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\

waves and studies the vartiation of tﬁeir amplitudes with
frequency, layer tﬁiqkpess and shape of the transition. The
Epstein models 6ffer a wider ;ange of appldicability. We can
model a region of high velocity gradiént that éives rise to

the griplicétion on the travel-~time curve (Figure 1.2) or a

narrow transition for Investigation of ghe head wave (Figure

1.3). We have already mentioned that the classical ray theory

cannot describe the energy propagation in the neighbourhood .
of ‘the caustics and around the critical point. Furthgrﬁore
if the transition 1is éontinuous it cannot explain any sub~
critical ot_partiaf refléction. Epstqin?(1930) and Phinney
(1970) studied the modulus of the reflection coefficient’

to obtain an estimate of the amplitude of the partial reflec-
tion, The modulus of the reflection caef?icient itéeif,

ngever, cannot give a good picture about energy propagation

when the incident wave interacts with the strong velocity '~ \_

~

gradiedt. That can only be studied using the sbeqtraﬁ “-M

esponse of the model. A principle
. . . N \ o v .
contribution of this work is thelr evaluation and investiga~-

amplitudes and impulse r

P

tion‘(Chapter'4)a v P R ,
, Another velocity variatien wenqaniStudy is the
velocity reversal which does not cause any discqntinuitybon

the travel-time curve. Neverthelédss, at large ranges the FS
. Y . ' ' . . - ' :E : »r..,i%. N A
. signalgicarry very little energy dde to large geometrical

[
. ¥

L
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spreading along the wave patin. The low frequency signals leak

through the velocity barrier. The "shadow" caused by velocity

reversal has not been studied and the results can be useful
"

for investigation of the upper part of the low velocity

channel and the region D" at the base of the mantle. The

nature of "shadow'" caused by this velocity structur@%&s‘

basically very different from a true shadow f%gmed by an

interface with velocity decrease. The interface shadow has
a frequency dependent diffracted signal“(Scholtq, 1956;
Duwalo and Jacobs, 1959; Chapman, 1969; Chapman-and Phinney,

1972, and others) whereas the reversal "shadow" 1s indepen-
A

: B roo ’

dent of frequency. The d1sdussion of the results for the

W

reversal and the interface shadows 1s pr%sentgd in Chapter 5.

We Rave already mentioned that solu%iéﬂ for wave

‘féf'i‘-" ;

propagation

9
inhomogeneous media can be obgyine@ ?y numerical

tion of the wave equation and that this ﬁigufﬁe sophisti—
- g ’ -

ed high~speed computers. Approximation of Such meéia by
q

#f

-a stack of thQgeneous 1ayers ‘has often been used %g,solve the
probl approkimately, Solution for V{Qpagatiqn‘agﬁplane
' " : . : _—

waves in a layered ﬁedium‘waa found by Thomson (1950) and

®

Haskell (1953). Cisternas et al. (1973) showed that such
golution can be written as iﬂ inf TRt e series where‘eagh

ie;m>rebresents one r&y,~i-e~fwe C3ﬂ say .that the exact
solution is equivalent to the "complete" ray expansion. In |



10

practise only a "partial" ray expansion is used, i.e. only-

the rays with greatest amplitude are considered in evalua;ion
of the response of,;he medium’(Mﬁller, 1970; Hron,rﬂh, 1971).
The rest of the serfes is neglected‘under the assumétioq that
the series is convergent. The ronvergence has not been B
proved to date,vand we will-iﬁQiétAgate it in Chapter 6. The
estimate of the error introduced by tﬁeiapproxim;tion of the

inhomogeneous medium by stratkffed‘medium of homogene

i B

ous layers
can be obtained by comparison of ?Leucggglete ray expansion

a— ‘ ‘7\;“‘3 A
with the exact solution (analytic, when exists, or numerical).
In spite of grgwing"importance of partial ray expansion<%o<
theoretical seismology (Gilbert and Helmberger, 1972; Waddington,
1973) very little 4is known aboﬁt the error introduced by
using It in place of the complete ray exfgnsion. From this
éoint of view the study presented in Chapter 6 can be regarded

as a contribution to the sofution./of this complex problem.

i
i

-

Ry



| -

. 4"3] .

CHAPTER g;BASIC EQUATIONS
il -
4/:

2.1 Equations of motion
7

[ . '
i Il s . /
The .displacement equation of elastic motion may be

; s

found from the equation of conservation of momentum:

o
2

0 ' 37u . .
p(x) 7 = Veg + p(x) f ' (2.1)
It

ey

-
whege 3(§,£) is infinitesimal elastic displacement, p(x)
is Fhe)density and g(x) is the stress tensor. f(x)is the
Vapg}ied force per unit mass acting at x. Richards (1971)
hesvinCroduced a potential representation of the displacement

: (x,8 ¢> ‘(\\
\f; : -

e
D)
s,

406 2 2 (G B 4 7 x ¥ x (rg e 0k G I )
‘ ‘ “Top H

\ . P Y

Pt S | «2.2)

which provides the correct separation in spherically 1nhomo;
. Ax N L
geneous madia The density p(r) and shear modulus u(r) are

1
H 1

functionsyof radius and 8o 1ig: che 5calar functiOn g(r) -The
E potencials P(x t), S(x t) and T(x t) can be considered as
: 3 o

represeﬂting P, SV and " SH wave motion in the high frequency

iimit ('When (2. 2) 1s substituted 1nto (2 1) and f(x c) 1s ‘
i \; : N ‘
‘ represenbed similarly, ‘a . second order differential equation
for T(X,CX‘plue two coupled secoad ordet differential equations
. . Y i P . . \ .

oyl

P -

e [
N o
N ]
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[y 9 " . ‘
for P(x,t) and S(x,t) are obtained. At high frequencies or

when the medium is nearly'homogeneon the coupling te.‘%’hre
small. ThuQJ at high frequencies we have three Helmholtz
wave equations for P, SV and SH wavL motion seParately. Their
solution can be used as approximatJ solutions for P and _. SV
waves and are exact for. SH wavés. ¢We'know;from observations
that the freqhency range where P‘and SV waves are clearly
distinguishable i1s quite wide. Thus the solutions of the
ﬁelmholtz equation a%e of great importance.

- We shall study motion in a fluid whose-parggg#érs
vary smoothly with depth. We shall solve.thé problem by
Epstein's method (Epskeiﬁ; }930) for pressure P rather thaﬁ

-3

The déﬁsity variation will be Included

i o
in the solution. . In Richard's formulation, the Helmholtz

for potential Pp

equation for potentiai Pp‘_s2 is valid only under the assumption
" of small density¥Variations with reSpec£ t§ the wavenumber"i
(Hill; 197{;. This condition is violated fdr a discontinuity
iﬁ'density'ana, tt erefore, other methods of solutions must be
employed in thia case (Brekhovskikh 1960 p 171). fThgv’

b

solutions for. a?essure P has no Such diaadvantage and 18

Rl

~app11cable to the decoupled P- SV motion or SH]motion subjectil
‘to the aformentioned constraints. 8 f' . ;1” /

x

Pkessure 1n the fluid is given by ‘ﬁ “J‘&ﬂfffb‘; 
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and the equation of motlon by

2
Ou

p(z) —— = -V P(x,t) (2.4)
at . :

ra

L

" K(z) and p(z) are coefficient.of incompressibility and
density, respectively. wu(x,t) is the displacement at
x(r,¢,z) and P(E,t) is the pressure. We assume that the

4

source and the solution are azimuthally symmetric. In
; 9
cylindrical coordinates (T,®%,2) this means that Yo 0
-In practice this is not i\serious limitation as_ the frequency

range .of the acoustic waves of interest to us 1is such that

lateral inhomogenejties would,effectAthe propagatioﬁ vefx )

little. . e
If we eliminate u = g(r;¢,z,t) in (2.4) we get
. x
1 ézp o ) 1 o
27 5 = p(2)V - (ETET - V). . o (2.5)
v 2t . o
whe . [K(z) ) ' ' 8 e
where v(z) = 5(z) 18.the velocity of acoustic pressure-

perturbaticns. ' Equation (2.5) is a second order differential
fgquation and in'order to-solve such an equation analytically

" we must transform the variables. ' o w

“‘2;2 The‘cdogdfnateﬂtr
' Eiréﬁ,:equatipﬁ;(z;S) is Fourier transformed with

o

S s "\\ " ‘u.l
' respect to time, iJeil .
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) .
A 4 o0 . A
1 ) ~fwt . fate ! . ; ~twt
f(r) = i J e W J' f(t'")e ( ) ., At dw = ;AI; j F(w)e w dw
. (2.6)

- i

. ¢
The Fouriler trapsformation {s denoted by curly .tilde. f

4

(‘lé\n()(uh‘ any function of t, Further, the finite Fourtler

A
‘

transform with respect tq the angle ¢ is used, 1. e,

< *

R _ ’2117 \ . : ,
A0 oA - A-ixs . !
s 1 , iR / R ! 1 - I 1R«
RO N L P (T e R AT g B fett
e - : , - Qzﬁ\(()\i
' Qo AN “' '
“ Y ~(2.7)
a R «

The finlte Fourler transform is denoted by capped tilde. Since

f(¢) must pbe a single valued fupction of $ , & must be an

integﬁii ‘In our case of aéimuthal symmetry 2 = () 1s the only

‘non-zero term, The Hankel transform or the Fourier—-Bessal
transform with respact to r 1s used, Ale. o
ﬁ s -
H o o r‘} i &
s w6 e art an = [ 6 Foo g ) an
! [N e] O V v,rﬁ 7 O
A TR
A\Mt’""’ .‘;“ ’ N
, FANE z,ry ki oo (2'8)
. . ‘I-, AN . ' ) - B :;\7;:

The Hankel trénsﬁofmzis.denoted by double capped tilde:

,‘Jrsf Lt

A




,\ ’ . 2

'N> also delfne the Laplace transformation of time

4§ oo - ‘ 41 .
R st ' st . ] 1 ) st )
f(1) = Sy I S J f(t')e dr ds = LR j f(s) e ds
‘ —~ f O A .-.iu‘
;
(2.9)
wheh Laplace tf@nsforma(ion is used to transform time t,
tﬁe l.aplace~Bessel transform is used to transform r.
,;f Lr+3 ' A7
\ ¥ !
N N CO RPN [ p K, (spr) j FUodg(apr’) £(x') dr' dp -
~f = o
St e f) KGer) dp (2.10)
Fie ' ’
Ki(épr)fand Tzfspr') Are the modified Bebsel functions. The
equivalence of the Laplace=Bessel and Fourier~Bessel trans-
formations 4s evident/4f we change 'the variables s = ~-iw and
isp = Qiand convert the modified Bessel functions to Ig(spr)
- "Ii ¢ .
and KK<Spr) to Jl(Kr).‘ The relationship between thebcrgns—
formed functfions is § .
~ i ,
[ 2 ~ -*i,Q?Q ' '
f(p) = e f (k) . ) (2.ll(M



7 ST e r

v »f\"‘r.
Bl

e
poiﬁtwprassure source P (t) ,
5

resfiding at where the medfum varfes slowly.

3 W
S !

The homogencous eduat fon (2.5) is“replaced by

A

O T 10 S S ‘
p(z) V-(H(Zy VP) -~ :7 ::? =7 Pﬁ(l) S(r) A(Z”ZS? (2.12)

After transforming the eqguation (2,12) with respect L6

t, ¢, r we get the following equatfion for transfoim}dhv s
. :: 2 e R AR
_pressure TP o= P(w,k,R,2)
d ; d? 2 2 ~
w : ~ ) : i _
—— ————— 4 —_— ey = - .
0 G oy o) S LRLILR N ORI (2.13)

for & = 0, and equal to zero for £ # 0 . k = %:is the wave~-

|
number, K = kesin 0 is the hqrizontal wavenumber "and
. mz 2 A ¢ ]
Q = (*7 =~ K') ='k.cos 0 is the vertfical wavepumber. The
vt .

Riemann surface Im Q » 0 1s the "physical” Riemann sheet.

This choice is bound to our choice of the Féurier transform.

It assumes the time dependence of the wave being e~imt

wt

rather than ei which has often beeﬁ used'Ln earlier works

on elastic wave prbpagation. .Our choice makes the physicé;“

ideqtification of solutions easier as we shall see in the

next chapter.
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The ultimate aim of the transformattons i§ to
describe the motion by a one~dimensional wave equation which
can be solved for several velocity-depth structures. We |

Introduce a new varfable ( that will measure depth {in terms

of density ChaQﬁES,with depth:
N

. ,
C =J p(z) 4{ (2.124)

P, = p(zo) 1s a constant value (Phinpey, 1970). We can see

‘that for constant depnsity £ and (z~z ) are 4dentical. The
(9]

i

equation (2.13) becomes

|
1 ~

27 ~ 0
S2 % s % () St ) (2.15)
dr p(z) ° :

P
q Q’BT%T Q can be interpreted as a vertical wavenumber that

includes the change of density,
_The homogeneous part of the equation (2.15) 1s the

one~dimensional wave equafion. If the velocity-~depth
dependence 1s such that an analytici.solution can be found,
the solution of the equation with the source is easy to

‘find; The homogenéous equation has two independent solutions

and every linear combination of these is a solution too.

The equation (2,15) has two approximate WKBJ |

ot

@
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Y,
Lo e .
Pl?z(c) n e ' (2.16)

{'\‘ q
except in regions of high velocity grédient, where ()
varies rapidly, or near the turning point CT , Wwhere q(LT) = 0
QA N

. : ’ "
(Morse and Feshbach, 1953; p. 1094). The fhctor q ~ in the

WKBJ solution 48 such that the #nergy flux P - vV remains

constant in the vertical direction. Mathematically, the

validity of the WKBJ solutions is explained in greal detail

in Budden (1961; p. 133),

The source lies 1in a region where parameters of
Ehé medium vary slowly and the two independent WKBJ solutions’
;1(C) and ;Z(C) represent waves, travelling in posdtive and
negative directibps, respectively. We expect that the signal
propagates alongrfhe\same path from' the source to the recéiver
as 1f 1t p%opagatéd %rom the receiver t;'the source. Hence

the particular solutfon of (2.15) must be symmetrical with

respect to [ and CS . Such a'solutioén is

a

S(C,Cs) = Q;Pl(C<) : PZ(C>) ‘ ‘ (2.11)

ja~2b 22

at
B »

whgre L. is the lesser of (C,Cs) and ;_ 1is the greater of
(C,;s). " This is a prandard method uéed.in electromagnetic

field theory to find,Gfeenféffunctions (Jackson, 1965; p. 84).

/
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The constant factor D is implied by (2.15):

[ 4t ~

b ~

dQPS 2: o}

O

A G IR
dr. s 7

( o~
8

where ¢ » Q0 {s an arbitrary real pnumber. From the Iimiting

case where ¢ > (0 we obtain
-2 P (m)
D= — . (2.18)
W
(P (L), 2, (C))

[y

where W(Pl(cs)’ P2<Cs)) 1s the Wronskian. In homogeneous
~ 2 f -
mediuﬁ, R] and P2 are the exact solutions of the wave

equation and’ the result (2.17) together with (2.18) is
equivalent to solutions obtained by other methods (Ewing

et al » 1957; p."19; Chapman and Phinney, 1972). Richards
1970) has shown thét in Slightly homogeneous medium the
Wronskian can be obciéned from the approximate solutions valid
in the Source region. Thus the particular solutflon may be

written as z
l.\

~ N .L_.:‘——« .
Pa(ea) = 3 2 P Pic) Pyry (2.19)

\i v s : , ‘ ,
I . ’ ‘ i . m' . ) B -

4

p

i

. ‘ : Vo
The general problem of a source in inhomogeggous@medium‘is

'a_éomplicated'one, Effects of both the point ‘source and the,
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inhomogeneous medium exist together and complipite‘thc
solution. Ward (1973) used the principle of sgismic recipro-
city to solve a problem reciprocal to a problem of a.point
source near or within a linear transiting layer. ITn the
reciprocal problem the effects of a point source and the
medfum are .separated and the solutfon is relatively easy

to find.‘ In the problems discussed here the source is

always 1n the nearly homogeneous part of the model aqd we

oy,

shall use (2.19).

2.4 The response integral

. . The source solution (2,19) represents waves

travelling away from the source in both positive and negative

¢ directions. We are going to study the waves reflected by
L L4

.

an anomalous region below the ‘source. Therefore only the

downward travelling solution will be considered:

™ ) 7~ ~
”~

i 0 iy h P —

]
s

©

Its amplitude at the source is

i~p°'rs'<u;>§<t>§() o | <'z"21>
2 “3; 8 2 ¢ ‘ o ‘ -
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While prppagating downwards this wave changes by interaction
with the medium. If reflected by the anomalous regiom, it"

propégateﬁ upwards towards the recelver Cr’ 1f transmitted,

.
I

it cont}nucs to propagate downwards. Therefore, there are
two w;ves above the transition, the incident and the reflected
waves, while thére 1is 091y th;;transmitted wave below the

transfition. The generalized reflection coefficient R(cs,cr,K)
is a result of these boundary conditions and thus it describes

the response of the medium. Hence the transformed pressure

response 1is

Lv ]

: p A ~
i T o ) ) 7 -
P(w,r,Cr) i) o Ps(w) { Pl(cg) PZ(CS) R(Cs,cr,x) J (kr)x dx
gt ST o .

A

(2.22)

" The result of (2.22) is standard in seismology and has been

used by many'authors e.g. Ewing et 'al. (1957,-p. 94) and

Y

Chapman and Phinney (1972), The reflection‘coeffiéienf
R(Z_,t_,k) will be determined in the next chapter from the
A

exact solutions of (2.15) for Epstein veloclity structures.

14

Then the response integral (2.22) can be evaluated asympto~
-tically or numerically. Both methods are eéually important

4n the theoretical investigatidqtof spectral amplitudes.

The first, while of limited range'of vaiidi;y, indicates

the‘most effic&ent way of perfoiming the numerical integra-

1 ‘ c e S
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tion in th; complex ¢ plane. It also determines the correct
asymptotic behaviour of the numerical results. The numerical
method, while valid fn the entire frequency range needed for
computation of synthetic seismograms, demands sophisticated
computers and fs still  vrather costly. Richards‘(l973’
suggested a middle way between the two. His approach 1involves
the numerfical integration of (2.22) but the solutions used
‘are the WKBJ solutions rather than exact wave solutions. It
contains thé higher order terms of the sgcond order saddle

point method but ignores the higher order terms of the wave

.
7

solution. For the problems we shall consider the wave

solutions are simple analytic functions so we need not resort

to this approximation.

?}



CHAPTER 3 SOLUTION OF THE WAVE EQUATION BY EPSTEIN'S MFTHOD

)

In the previous chapter the equations of motion
were established anfl reduced to the one~dim-&sional wave
equation., We are going to f{nvestigate the e propagation
in media with continuous velocity transitions. The non-
geometrical effects at caustics, critical points and shadow
;an bd.srudied for the Epstein velocgry structures (Fig.
3.1). We dghonstrate here the method of circuilt relations
first used by Epstein (1930). His approach was d{scussed
ilater in books by Budden (1961, p. 369);:Brekhovsk1kh (1660,
p.- 172) and 1rts app]ication to seismic waves 1s due to

Ph'iinney (1970)

3.1 Statement of the problem

We will assume that. the veloclity~depth structure

15 one of those drawn in Fig. 3.1. The transition zone: is

centered around T = (0 where the veiécity is A\ Its thickness
1s measured by factor o so that g’ = %i, .The transition zone

grades smoothly 1into homogeneous haif—spaées above and below
the anomalous region and velocity there approaches constant .

values vl and vz; respectively. Thus we expect that in thesge

regions the downwards and upWards travelling waves can be

-
;o

distinguished This is an 1mportant property Qf our medium

Qs it will help us 1dent1fy the right. solutions as waves

M

23 1,
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iﬁcldent, reflected and transmitted through the anomalous

region, {
With the new varifable for depth 9 ~ % the equation
to svlve is . -
2/\ ~
d 2 2
"hl)—l'qu (g)p=0 (3.1)

7
This equation has two approximate WKBJ solutions (2\16)

i

which represent two waves travelling in the opp051te direc—
)

IS
5

tions and are valid 1in the reglons above and below the
anomalous region. We assume the source placed above the
transition f.e. no wave travelling in the negative ,; ‘direc-

tion exists far below the transition (Fig. 3.2). Tha solution

!

that satisfies this boundary condition is
™ . . ' PR

, -
A 16!jgd , v—iojﬂadg !
P(w K, ?) no A (e - + Rie , ) for 0 >
aq

:ag ' j ;

A ‘ tag 21
P(m K g) “n— T e j for 0 <% 7
oq . .. ' e
_ | . (3.2)

'and every exact solution of (3 1) nmust’ aeymptotically app;k)ﬂhw/; ’

to 03 2). Coefficients R and T are; the reflection and crans*,

]Qsion coefficients. "It is,therefore essentia; to find thel

L
YA v . : . - R T . d
. o . T i . . . T . . ‘//
P ' . ! : ' 1 ‘ ' ! N R % .
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!

Figure 3.2 - The WKBJ solutions in the medium with .
velocity transition.



relationship between the field 1in the region of incideﬁce
and the field i1n the reglion of transmission. Mathematically
this is equivalent Lo‘determining the correct analytic
continuation of these asymptotic solutions outside the
"
range of thefr validfity, |
Epstein's method shows how the solutions above

and below the transition can bBe matched and the correct

reflection and transmission coefficients found.

3.2 Compatibility of the wave and the hypergeometric equations

Epstein (1930) showed that the hypergeometric

/f\q

equation

Y

-
. ae | 40
£(1-¢) — * (¢ -~ (atb+l) &) —% -~ 46é = 0 (3.3)
a at
is equivalent to the wave équation .
S N C W
d? ’ ! :
9 . . ‘ g . - ‘
Af 5 d - £ = e 1 : (3.5)

-

7/

o = W(g)e'%(c"lb (1 + e 4 g < 5((;+b;-(c-1))‘"g3;qi

and' »
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h 2 ((‘ - .1 ) 4 (& - 1 ) - ( a- l)) ; 4 ;(»ﬁjji:‘j:_ly) (“+b_:j{‘i’1~)_ . 3
) A(JH) 4etsyy?
/ ~
Poe ? & 9 - .
=t + ( t 2 —t ) - = A F e e - ( 3.7 )
L B (e 41y e y? ,

The hYl)&‘Fgﬂth‘tf1"C!U(]\li;li()ﬂ has three ’filn;{ularft,iaﬁ, Cl = 0,
f,? = 1, f,3 = = . The change of varfables {3.5) maps the

insfide of the unft rcircle in § plane on the left—-hand half
plane of g ~ The outside of the unit circle in £ plane maps
“ . into the right hand half-plane of 3 (Fig. 3.3).

‘éﬂ Tpe solutions @i (L = 1,2,3,4,5,6) are all in terms

"of hypergeometric series of type

. (e ) e o
‘F(aab,C¢E>" {f‘?; (:C)n;;!"‘ [,ﬁ (ﬂ)ﬂ I!(a) R (3*8)

n={

.and are all defined 4n Appendix A.l, Thé§ are valid only

1n thone regiﬁﬂs of & plane whére the series érdpﬁgﬁvergent.

L ®

If we map these 'into g planebwe have the fo]lowing solutlopsf

Cof (3. 4) % ‘ ' .

For§‘<0 7

2

‘%ﬁlfg) = F(a,b}t —ea)e%(bf])? (1 + e-J)d

¥

»

E2

Y0 - Fla-et13bmctl;2-0;-ed) e7rlenlly edyd
E L

[4
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For g = ()

T

YB(g) F(a,h;a+bfl~c;l+e§) e5(0"1)3 (1+e3)d

% Li(e - ) b
Wé(g) = F(C«b,c—a;c~a~b+l;l+eg) 62(( 1%3 (]+ej)‘ a~htd

r (3.9)
For 5 > 0
Ys(ﬁ) = F(b>b”‘C+12b*—a+l;~eﬁ?) o 2(a=b)g (1+e’“3)‘1

e (g) - Fa,a ctlja~bal;-a 2y ;%(amb); SH;:})dd |

i

“Outside the region of convergence of the series, each of the
solutions cap be analytically continued into the rest of the

a linear combina-

L7}

5 plane,. The sciutibn iﬁ;théﬁgéxpfésséd a
tion of the two series solutién;ccnygrgeﬂt in tlrat fegicﬂa
The analytic continuation 1s possible because an integral
solution of (3.3) exists that is valid througho;t thg £ plane

with exception of the singularities, £ 52 and €3 (AppgndixJ

1’
A.l). The relationship between the solution in diffegent

regions of the ceconvergence is given by their analytic continua-

3

tion can be writren in a simple matrix form:

w

® = A O P4 g o (3.10)
1,j = 1,2,3

(S
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® 15 a 2 = 1 vector of two independent solutions in the

region of convergence around ﬂi. 11é is a 2 x 2 matrix of

analytic continuation from region &1 to reglon &] (Apbendtx

A.l).

«

We are looking for solutions of equation (3.4).
These are connected to the ;olutions of (3.3) by (3.6).
Therefore the same matrix relationship as (3.10) (s valid
for solutions 1!, 11 is a vector of two independent

solugions in regions of convergence around}1 (j] = oo,

jz = 0, 53 = +«), By inspection of the asymptotic solutions

(342) we conclude we pneed the following relatlonshib:

- i - f (3.11)

\\ 6 61 7 62 2

The matrix is the continuation matrix 31A glven by (A.1.11)

I'(l-c)T(L+b~a) I'(c~-1)T'(1+b-a)
P(1-a)T(1+b-c) I'(c~a)T(b) .

(3.12)

xI(1~c)F(l+a—b) F(c—l)rk1+a~b)
Rfl-b)F(l+a—C) 7 T(e-b)T(a)

If the solutio? W(ﬁ) for ? > 0 is given by, WS or Wé and fbr

i on of W and ¥, prescribed by

~;_#htinuation 314 vwe can’ be sure we

" have chosen the riight solution, 'Iden;ification:of Wlt‘Y and

2

i
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W5 or Yé as 1ngident, reflected and transmitted waves depends

on the cholfce of Im(c-1). 1If Im(c-1) > 0, the leading term
in Yl (?,9) glves the wave travelling in the positive 27
directt#n and in our problem Yl is an incident wave. Wz
repres;nts the wave traveiling in the negative ? direction
f.e. the reflected wave. If Im(e-1) < 0 the directions of
propagation of Wl and Yz would be interchanged anq Yz would

»

represent @nqident wave while Wl would be the reflected one. .
The sign ofxim(a~b) which determines‘the wave propagation
for g > 0 hasrto be taken in agreement with the sign of
Im(c~1), In caseé of constant velocity throughout the
med{um the wave travels without change.x The}efore,if Im(c~1)
>0 1ic s ?Brthat representsatﬁe transmit}ed waveﬁr‘i’6
represents the transmitted wave 1if Im(c~-1) < 0 (Fig. 3.4a,b).
The matrix of analytic qontinuaﬁion.répresentsgthe
law of reflection when the ifcident 'wave propagates from -%,.
31é§‘ represents the law of reflection
should the incident wave propagate froﬁ 4o (Fig.. 3.4c,d).

The 1inverse métrix l3é

There is, however, a better way or more common way to wtite
the reflection law once we choose the sign of Im(c-1). The

equation (3.11) represents two physicaljproblemé that never
‘ e »

R

arise at the same time . This is due to aﬁbiéd{ty in sign
of;Im(c-i).g Once that 1is chosen, one of the,edu;Ei%Hé'in

©(3.11) has no physical meaning. The same {is true should ‘the
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o

Figure 3m4 Analytic continuation interpreted physically -as
reflection~ transmission law.
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source be positioned art o

For Iwm(c-1) » 0 and Im{a-b) ;'O we can write

Fal
¥y 711 S12\ ¥y .
- - ' (3.13)
I
v /
521 822 ¥s
where Sll - 22 SlZ =~ XlA
: 51 51
3 - - d6t3£ & . . fﬁi
) ¢
2 A 22 Ag,
a=b ; ’
€t o
*

The vsnfnr on the L.H.S. represents waves travelilngiiowsrds

the transition 1.e. incident waves from:abose and belsw."fhe
vector sn the R.H.S. represents the waves ‘travelling away‘

from the transition after reflection or transmission (Fig. 3 5)
The dlagnnal ferms of the matrix S are the reflec21on coeffi—
cients, the off diagonal terms. are the transmission coefficients.
~We will show that suitable normslizagion of the vectors with
respect to constant energy flux in theg <Umection will yield
1dent1ca1 transmission coefficients in both directions. rhen 
the matrix 3 is symmetrical. We have found a. sew formulatlon

of our problem which &5 analogous to that used commonly in

selsmology (see for example Chapman, 1971, unpublished lesturea

P
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Figure 3.5 Reflection laws for 'incidence from above and

below the interface. '

;e



- s

36

for Physics 521). it must be used with care, however, as all
the reflection and transmission coefficients are valid {n

far reglions. The field

v _ F(e~1)I'(1~a) (l+b-c) | T
w(ﬁ) wl(j> + H’TTF“A)F( b T (1~c) t,(g) (3.14)

is valid throughout the reglon above the transitiop i.e. for
? < 0 without restriction. The field p

< i -

r{l-a) - I(1+b*c)

Y L S P Sy ts(5) (3.15)
is also valid for 5 > 0 with no constraints. The réfIECtion
/ b
r,;
coefficient A oAt s

P~ (1-a) (a4be) 12040 S

"Gerge) 7 Mle-a) TOTA-0" © 7,0 (2:46)
: ;
and the transmission éoéffiéiént
I(1-a)P(1+b-c)  ¥5(j¢) (3.17)

?(gs,jt) T T(1+b- ~a)I'(1-¢) ° Wl(js)

however, are valid only in regions where we can be sure that
&

Y Y, - and ?5 represent waves incident, reflected and trans-~

1 T2
mitted, respectively. And this is only in the region where

medium is nearly homogeneous. Throughout this work we have

‘found that Lhe reflection coefficient and transmission
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coefficlent are accurate enough for frequency range and

®
thicknesses considered. Comparison of the leading terms

|

in the solutfon with the next terms gives the estimate

of the error (Appendix B).

N
£

To apply these results to equation (3.1) we hmust

assign suftable physical meaning to constants a, b, o,

Fquations (3.1) and (3.4) are equivalent 1f 0q = h. Solutions
(3.14) and (3.2) of the equations (3.4) and (3.1) must be

equivalent.. By inspection of (3.2) and (3.14) we get

' po po wz 2 &
c~1 = 2409, = 48 —~=~ cos 0. = 516 - (5 -~ k")
. 1 o, 1 o) 2
_— 1 ) :
1
R . b Vi j 2 32 P . )2 2 12
a=b = 240q, = 15 =2 (— - g1p 0,) = 210 -2 (if ~ k%
02 V2 ; Py 7 .
2 : 2 .
. : (3.18)
where S is the effective thickness )
’ r
' 27 : w ;
S = v 20 = — - 20
Ay S
From 02q§ =,h2(0) we obtadin
' 2,2 2 2. .3 f
atbrc = t 2y = é (1 + lé6c (qo ~ 3§(q1 +-q2))) (3.18a)

The sign is arbitrary and each gives the identical reflection

and transmission coefficients (Appendix B). The analytic
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expresslon for vertical wavenumber for the Epstein models
’,
is

%

e 2 ) 2
T A A(q - Mlq, + ql)) ~
(e/+1) o 1 277 (eday?

gg ) (3.19)

and f{ts form is shown in Fig. 3.1 for various values of K

2 2 2 2
q (g) = a4, - (ql-qz) >

v, and Vo - The law of reflectlgﬂ with normalization of

2

solutions to preserve consrtant energy flux hm‘; direction 1s
i

-

IV S ) ’
T Ry @ )
: (¢?% ; (Wz A
R 511 512 R
1 1,
- - (37.20)
¥ y
i S 5 P
RS v21 22 &Fg
\ 42 — 12/

where matrix § 1is Syﬁmetricalzwith elements

F(}+2ioql)T(%—Y-iU(§1+q2))T63+Y—10(q1+q2))
1" T<?52f6q1>r(%?VIio<q1—q2))r(%+v+io<q1—q2>>

N

a5 TCsmy=10(a;+a)) T Crty-40(q, ¥4,))
512 =7 % - T(1-210q ) T(-210q)) S S
“94 "2 1
| 'T(1+2104q,) | FC5=v-10(q;+3,))T Ci+i-10(a,+9,))
. | ‘ | _

Sap = T(1—216q2) ',F(%?Yfio(qi-ﬂz))T(%*Y+ic(qi'q2)y

T e
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b

If we use the ésymptotic expressions for nggs) and Yz(ﬁr)

in (3.16) we obtain the following reflection coefficient:

- ""+ :
io(qus G50

“Gergd T e e g0

(3.22)
- 1
Py wz 2 G _ Po wz 2 2
where q, = Em (~7 -~ k) . and a. < ;ﬂ (-5 - k)
s v r v
S -~ r

The term in the exponent gives the change of the phase of the
¥ B .
wave on its' path from the source to the receiver. Using

asymptotic expressions for Wl(;s) and Y5(5T) 1§ (3.17) we

get the transmdission coefficient

~ ~to(a_z. -~ q_7.)
. tft S
Togrge) =~ 8y, @ s / (3.23)
, P, w2 2 %
where 9@ =5 ° (*7 - K7 C e
t : Vt :

o
"

The reflection coefﬁgcient (3.22) will be used
for evaluation of the pressire response “(2.22) for the
-

monotonic vélocity.tranSition KChépter 4) and forsthe

veloeity reversal (ChapteiVS).v



. ig X ,
Y .“-\ .
CHAPTER 4 ‘Q@USTIES AND HEAD WAVES DUE TO MONOTONIC
VELOCITY TRANSITIONS

4.1 jhe reflection coefficient

For the monotonfc velocity transftion in Figures 1.2,

1.3 and 4.1 g7 2

: + qg) and the vertical wavenumber 1is
given b~

%(q

h(al qéz - %) - qd) ranh & (a1

\ g (
i ' 1 \\ LY \
Thy reflection coefficient (3\22) becomes

L 4yma,  Ta+2ioq) : r?(1-101q, +q 22) " . ~t(agC ta T
57 r Wiy TU-He) oy (1+io\q1 a,))

,‘ \

A N (4.2),
\

-

A\

The reflection coefficient (4:2) was sgﬁkied éyaEpstein‘(l9§0),
. AR Y
Rawer (1939) and Phinney;(1970), although they‘only studied
' \

its modulus and not the full wave reSponse . The term
\\

F(1+210q Y/T(1~ 210q ) effects only the phase change -that

,:‘v‘\

occurs during the reflection. en attenua:iOn is not.

N ‘—!‘f. ©

considered q (C) is real. %@r angles of emergence less thah
L g ' n X | o v .
the'critical angle 6 ‘=nsihul ti , the vercical waéenumber

.

below che transition is real and paxtial rgflecticn«occurs‘

3In this case

40 ﬁ, e , ' ’; ;£“ Mﬁ;:”
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)
1.6 km transition zone at 20 km
10 K ) ‘
D

r:‘ 5

bt

. k

200 -
'V [km/sec] |

.Figure 4.1 The partial reflections and‘head,waveé near i+ y
I  the critical point for monotonic veldciqy o
increase. ' : “

@,
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N

sinh” (1o (q ~q)))

/ Lkl\a sinh. Uu;?q +q Yy (4.3)

)
- v

o . , -
Al sub-critical angles the parttatl reflection depends on the

r

effective thickness S (3,18).  The reflection and transmission
through the medium depend on the absolut e thickness of the

layer 0 as well as the wavelenpgth of the propapating wave and

]

the effective fhff"knf*ss‘?i includens . both effects, 1f 5 1=

small the reflegetion 1s nearly as strong as the sub-crfitical

reflection for the sharp veloclty fncréase from vy to V-
Then the reflection coeffi{c 1eﬂf:fﬁ the well~known Fresnel

-
A

formula ‘

El

Y1,

R oy

Y]

t

In this case the reflection coefficient 18 independent of

éVélEéEiiﬂﬁﬁf the response integral (Cagniaxd,

{a¥
vl
&
o
hoS

o
<Y
D
=
e
e}
g
A

IT the effective tgicknégf is 1%fgé the nature of
the:partial réfléétiﬁn.is chaﬂgéd. Tha‘ﬁﬂrcial reflection,

which 4is quite strong at nearrVertlcal angles when the transi-
g 1 B N "‘ '
~ N

cioa is thin becomes very weak for thick tranmsitions with
triplications (Fiéure 1.2). Most of: the energy is transmitted

through the trans1t10n and only in, the neigthurhood of the

.

!
14
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cusp some energy returns.  The decay of the modulus of the

"

retlection coefficient fnto the reglon before the critical

point 1Is given by

2 L

') v . :

o 1 .2

s - (—,7 - in U.)

0 £

7 v

y 2 )

[R] = « (4.5%

For angles of emergence from the source exceedﬂng the crifica]
apgle, |[R| = 1 and total reflection occurs whether or not the
transition zone is thin or thick. Thus the reflectidn coeffi-
clent (4.2) gives the phase change élong the wave path,

Thé studyi%f‘fhﬁ analytic behavi@hr of the fe{]eciiﬁn

coefficient is negessary for the evaluation of the response
—

Y
lntegral'(zjzzgﬁ

A

Only perfect understanding of the reflectdion

fent 1in the complex plane of the horizontal wavenumber

£
&l
.
L]
=
e
g’
P

Kk enables us to perform, the evaluation of the response integral

: w . W ) W w
points K, = & ~—— ., #K Se= 4 —— A = 4+ — and TK = + —
v 1 v 2 v 5 v . r ! v
due to zeros of the vertical wavepumbers 930 99> 9y and=qr

(3.18) and (3.22), respectively, The complex k plane has,
therefore, sixteen Riemann surfaceé separated by branch cuts

but only four are impbrtanp in our discussion (Figures 4.2

and 4,3). The twelve remaining sheets need never be considered.

1
i
’

In ounr prohlem‘the best chbiceréf branéh}cuts are lines +KP 5

B . , A
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+r S Y ~ =~ , wherea p = 1, 2, s or r. The

-K K respectively,

branch cuts from v , ¥ and ¥_ to ~x_,
S 1 s r 1 s

W
‘?f: very close together and ”NC“ speaking about the top sheet
of q, we fmplicitly assume also top sheet of qa,. and 9. - The
bottom sheet of 4, Is also assumed to be a bottom sheet of a,
and 9. - The notation (4+) sheet has been used by several
authors including Phinney (1961) and Gfilbert and lLaster (1962).
Their definftion fs slightly different from ours which suits
our problem best (Appendix C) . The (++) indicates the sligns
of the 1maginary parts of q2 and ql, respectively. The (++) |
sheet 1is sometimes referred to as the "top" or "upper" Riémand
sheet 4in this thesis,

| The reflection coefficient has poles at the poles
of the‘gamma fupnctions in the numerator of (4.2). The
Concributisﬁ from poles of reflection coefficlents bfteﬂ has
important physical intef%retation. For example: Laéb (1904)
interpreted whe residue a£ the pole of the reflection.coeﬁfi~
clent in a homogeneous half-space as the ﬁayleigh wéve. Pekeris
(1958) interpreted normal modes, i.e.rwaves due to interference
within layers of a layered medium, as éontributiénéyfrom‘poleé
of the reflection coeffiéien;s. Phinney' (1961), Gilbert and
Laster (1562) aﬁd Chaﬁman (1972) have shown how poles on

other Riemann sheets may cause separate arrivals or modify

geometrical ray arrfials ffoﬁ the top sheet, We mﬁst‘thereforé



‘ w

investigate all the poles of the reflection coefficient,
There are three characteristic or secular e¢quatfons which

determine the pusltidn of poles fn our problem:

21aql = -n no= 1,2,3,... (4.6a)
IQ(ql+q2) = n Conoe 1,23, .. (4.6b)

+ - .
a,*ta, = 0 (h.6¢)

The first secular equation gives poles on the top
Riemann sheet, They lie on the real axis "beyond" the branch

points tKl (Fig. 4.2a)

7) (h.7)

‘The signals arising from their contribution decay exponentially

in the vertical direction and propagate with phase velocity

:§m311€rvthaﬂ vl:
2
2 p, -k '»-
. e = ov (1 4 2 . R #l) L
1 2 Aiz 2
. ﬁ] o po

We are mainly interested in waves propagating with phase

i

velocities betweén vl and v, i.e. arriving earlier than signals

‘arisins from the pole's contribution. ‘ CL

A

~



N
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~

~
s

The secular equation (4.6b) gives sets of poles
¢ither on (~t) or on (~-) sheet. We will treat here ondy
tlvw case of constant density as the algebra is simpler and
overall conclusions are analogous. The poles on‘(r+), (+-)
and (~--) sheets must be Investigated aé they sometimes
contribute signals called "leaking" modes, In contrast to
signals ardising from poles 150 which decay with depth, signals
arising from poles on other sheets grow exponentially with

depth. The energy "leaks" into the lower medium. The
: e
"leaking'" modes arise from poles that are within certain

nefghbourhood of a branch point and, therefore, influence

the reflection coefficient on the top Riemann sheet (Chapman,

1972) . In our problem, the poles C
[ 'mQ wzr ﬂQV 62 ;2 wz,Z—E;

BRI S A 2 A (4.8)
vl v? ’ f Vi 2

would have to approach the branch points th;to cause such
effect, This 1s very unlikely as the poles lie always on
the real axis "beyond" the branch points 2 k; (Fig. 4.3). .

At low frequencies all poles lie on thei(—d) Riemann sheet.

.
7

The zero frequency posfition is

n
+ =+ 2
ZKn 20
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As frequency Increases the poles move towards the branch
\
points and 'a cutoff frequency exists for each order n when

+ K appear at the branch polints iKl and pass from (--) on
n :

—2

(~+) sheet:

w o= = (s
n 0 ( 2
1

For higher frequencies the poles 12Kn move away from the
branch pofints on the (~+) sheet (Flg_ 4.3a)., Thus the two

sets of poles tzﬁn will not become important when evaluating

the response integral (2.22).
The roots of equation (4.6¢c) give poles amalogous

to those fin two fluild half-spaces, Gilbert (1964). They l1ie

on the real or imaginary axis of (~t) and (+~) sheets:
2 2

P1v2

| )
R = 1§(A) r p 2 4 >

¥

Depending on the parameters pl, pz and vl, Voo the poles can
£ ;ﬁ ! - T

¢
contribute to signals propagating along the thin transition.

We are interested in the propagation at the receiver point
! - ’ 7

well above the transition and the comntribution of these pulsges

ig. negligable there.
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We can conclude the investigation of poles by
saying that for the mopotonfc¢ velocity transition, the
signals arfising from’poles' contribution arrive at later

24

times than those we are going to study.

4.2 The WKBJ7r¢ELSS£19n coeffl{igﬂi

4
In Chapter 3 the reflection Fdefficient for Epstein

models was established by solving the wave equation (3.1)
‘exactly. The approximate WKBJ reflaction 7Oéff1cient ;an be
obt?ined from the WKBJ solutions (3.2> aﬁd it ;s glven by the
well known "phase-jintegral™ formula

o
1 ﬁxiq dc,
G
5

R(T K) = -1 (4 .10,
R(,S,Z:r,r\)r 1 e (4.10)

b

(Budden, 1961; p, 329). The {integral in the exponent may

be r&ga;ded ag a line integral 4n the complex { plane around
the branch cut given by Im q(z) = 0 (Fig. b.4) . Lo is8 the
turning point of the ray and the formula (4.10) can be deduced
by so}ving the wave;éqdatian in 1ts neighbourhood. The WKBJ

solutions break down 1in this region and'ﬁUSt be replaced by

solutions valid ghere. For linear behavipdr of q2

S IR R _ o (4,11) 0

= ~

the égve propagation in the vieinity of: the turnin% point 1is
- ;
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described by Stokes equation

2 n
d
‘ m;, XP = 0 (4.12)
dx
where /;X qui/j (¢ ~ CT)

Selutions to this equation are any independent combination

2mi- 214

3 ) or Aikxe 3 ). (See

of Afry functfons A{(x), Bi(x), Ai(xe
Appendix A.2). The WKBJ reflection coefficient (4.10) is

fmplied by the formula (A.2.2) if we assume ]xl large. -“Then
274 ‘ ;o 2n1 \

Al (xe 3 ) and Ai(xe 3 ) represent waves travelling downwar&s
and upwards 1n regions above the turning point. In the rggion
gélcw the turning point A1(x) describes the evanescent wave.

The WKBJ solutions for real and imagipary wave~ | .

number q represent either oscillatory or exponential solutions.

’

They remain valid for complex wavenumbers (Budden, 1961; p. 437).
This will occur 1n the response integral (2.22) qh%h the

ir"; T. .
stationary phase point corresponding to the ray is off the .

peal axis in the complex Kk plane. The vertical'wavenﬁmber

Lo 2 . He I

g = (25 -‘KZ)% cannot have zero for cémplex K unless the
v : ‘

velocity v = v(Z) is~analytically,conpinued to th?.complgk,

AR
o ,

8 plane: Then a comblex depth tT exisc51so‘chat<q(cT) = Q‘;

The Stokes linés, which for réalacT agreed with the Stokes
‘ ) . , ¢

a

b/
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Iines of the Airy functions, (see Appendix A.2), are moved

'in the complex 0 plane. 'If we define

a = q dr , (4.13)

the Stokes lines are defined by Re o = 0 amd the anti~Stokes

-lines by Im a = 0 ,° For complex wavenumber Kk they start at

complex depth!CT, CT < 0

as follows from the Cauchy~Riemann conditions (Figs 4.5b) .a

q(CT) = 0 . If Tm ¢ » 0 then Im

Both the downward and upward travelling solutions are
dominant on the real { axis (Fig. 4.6b), {.e, exponentially

growing din their direction of propagacioq.i If Im x < 0 then

&

Im FT-> 0 and both solutions are now subdomi?ant on the real
C a%is, and, therefore, they both;decgy in their difection
of propagation (Fig, 4:6a). This case also_corresponds to
thﬁiphysicai problem of absorption when the wgwe:L? phr{fy

i

‘gttenuaﬁed }n thg medium. Ewihg ef;al. (1957, p. 272) showed
th;g attenuation can be‘tﬁeofetically expressed using cémplexv
wavé velocities. Thus for real wavenumber K‘the Fig.RA.Sa
”appligs'tq this case. 1If the wavenumber K 1is coﬁplex,ﬁzhe
presende_of,attehuation reduces Im i& . Effepti@ely,“it
decréaseS'tﬁé equnéntial gro&th of WKEJisolﬁtiohs if Imx > 0
Lgnd increases their exponEntia; deé%yvif Im K <.O*<Heading;l

1962; p. 75).

L]

R
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A

Figure 4.5 The 2omp1ex L plane for K complex
(a) Im k. < 0, (b) Im k¥ > 0. The
Stokes (8S) and anti- ﬁtokes (Aa) lines
are also 1ndicated .

5

56
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DOWNGOING = SUBDOMINANT

UPCOING = SURDOMINANT

5

UPGOING & DOMIMNANT
7 DOWNGQOING z DOMINANT

i

. UPGOING * SUBDOMINANT  * %7y

'Figure 4.6 The BStokes diagrams describing the
behaviour Of the WKBJ solutions. '(a)
for Im [ 0, (b) for Im T <™Q). When

inside tge circle the heavy line indicates

: the subdominant solution and when outside
- ’ the dominant.

)
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The approximate reflection coefficient for the

monptonic veloclity increase can be derived from the phase-~

integral result (4.10),. The vertical wavenumber

o
. 4,
2 2. 2 2 Iy i )
=~ (%(q" + q7) - M ~ P e 4
q() (%2 (a, a,) lz(ql 9,) tanh 2()) (4. 14)
- has branch polints at q = 0 and q = =
22
- ~ ; A ql * q? - i K A
. = 20 {ar<tanh Q:—;va) 4+ 1(21 + 1) =} \
L« o4 ‘ 2 q . i
' 'Ut. ’ . q] 2
X\y .
, o U ki o
mf,j = 1 + Z2a{(j + 1) 7 , 1 = 0,213,222, ..

(4.15)

 respectively (Fig, 4,7, Budden, 1961; p, 4@8?; o .

£

From analogy with the linear behaviour of q° ()

sk

we expect that one of the branch points q( ,) = 0 above the’
. o .

]

real [ axis must/be Ebnsidéred for evaluation of the phase

f

integral., We perform the integration alon® the branch cut

Im q = 0 starting at the source Cs’ where q(CS) ek B + €y

and ending at the receiver Cr on the  other Riemann sheet where
. , N

This is represented by qurve C1 in the

complex [ plane or|complex q plane (Fig. 4.7). In the

complex q plane thle curve C, can be moved to our convenience,

1

provided we take intg accoufit all singularities enclosed or
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comeiex g
PLANE
LA
COMPLEX q-

Req  PRANE

Figure 4.7, The complex I, and q planes showing the

A contours of integration used in the
evaluation of the WKBJ reflection
coefficlient for Fpstein profile (Budden,
1961: p. 448 and 449). :

-
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crossed by the deformation of the contour, The best fntegra-

tion path In the q plane (s C because the Integration 1is

l A
then very simple. For ['s = ()r We HU“(
\ q. - ’
. q? q?
A 1 q.,
'K q d¢ = 20 (_?,7; syt m?r—z—;r—«j)dq +
- 1, - 4 9 - 4,
Cl ttql
q .
+ 211 Res (—r—é%)
-, o
\ q=-q,
and finally
4
Aq, 9 * 9,
= 204, 108 5 = 204, log o~ - 2q) L
9 " %~ 2 !

(4,16)

This result obtaipned from the phase integral is identical to
the approximation of the exact reflection coefffclent (4.,2)
‘for large effective thickness. ' Then we may use the Stirling

approximation for gamma functions (C°11) and

RCC .0 k) = 1 ALY Lo W)

where 1 $(x) = q dg for G_=¢_ .



The phase ¢(r) 15 real for angles of emergence from the source
greater than critical. The phase change % is In agreement
with the phase fhange un to total reflection. The two .
logarfthmic te;‘mﬁ can be integproeted as phase change due (o
the transition layer and ?ql('s {5 the usual phase change along
the wave path.,

The fact that the WKBJ reflection COEFfjcieqt agrees
with the high frequency approximation of the exact reflection

oefficile

i

o]
fe]
)

t justifies the cholce of the branch polnt [ for

o o
evaluation of the phase 1integral., The branch point El, for
o
0o
example, would give A wrong constant of. integifation due to

encircling both poles q = 1, and q = ~q, (éée curve 62 in ¢

and q planes in Fig. h,7%, The singularities must be well

o
14

separated so that they do not {nfluence th valuation of the

(]

A

Sirztégfal- This requirement, however), 1is implicltly satisfied
as the WKBJ solutions are valid 1in slowly varying media 1i.e.
in our case broad transitions. Horé detailed description of

phase~integratl method may Be found in Budden (1961, p- 437)

“and Heading (1962). = | o | f

-

j.BvAsymptoth behaviour of the response integral

A

For the monotonic velocity cfansitioh the response

”

integral (2.22) is s

+oo y
‘ o _ s ety
Pw,x,0,) =7 - =2 P ()" | R(;S;cr,x)‘u(l)(gr) %— d< - (4.18)

o

s . s

4 p

-_ 0
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thre R(Cﬁ,cr,ﬁ) is given by (4.2) (see Appenci* C). The
integral (4 18) can be evaluated approximately at high or
low frequencles. These approximations will show the best
way of performing the numerical contour integration 1n the
# plane fn the entire frequency range.
At hlgh frequencies the WKBJ reflection coefficient

]

‘he previous scection may be used. 1f we use the

. C o
. e T . r
P (w) p =1 1k -1 J qdi + 1§ J qdr, ‘K5
Plw,r,0_ ) & ————r2 & " e / / g Z‘ dx
wf2ne Ps o T 5
4 R .
- Ps(m) pn 7:1T dkr 4+ 19(x) K%
B oemTme—m B e 8 & [+ R dk
2d2ne Py , s
(4.19)
where
, "qi 19 * 9,
¢ (<) = 204y log ~m———p ~ 20q, log q a. ~ %%s T oy
q1 ~ q, 2 1
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The.integrand in (4.19) is oscillatory along the real ¥ axis

and contrfibution from the integrand is significant only ai
points of stationary phase. The contour of 1ntegra(ion~along
the real axis can be moved to pass through the stationary

phase pofnts (Fig. 4.8) and the Integral evaluated approximately
by the second order saddle point mechod (Morse and Feshbach,
1953; p. 440) . The phase fn (4.19) is

~»

G C

I ‘r
f(r) = kr - q dg o+ q d0 = ¥r + $(x) (4.721)
T I8
s L
The stationary phase condition 1
8 G
5 T
ar *ar_J; (4.22)
dx q q :
o !
p Lo
where
2 - 2
p 4q () P «
a0 R
Py 1 9,79, 0y s
2
p ¥ .
1 +.—.9. . —_— C
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b3

glves at least one saddle podnt on the real axis between Mo
and K- Lo is the depth of t(he turning point of the ray
represented by the saddle point and it is a function of x .
This, however, does not effect the result of the different {a-

tion in (4.21) as q"(f"l‘) -~ 0 . The resul?in (A.22) can be

compared to the classical result glven by Bullen (19673, p. 111).

We just have to rtransform his result to flat geometrry to get

horizontal range X(p) = r(rv) of the ray that bottomed at

tl N
depth ZT

z z
8 r
. dz dz
= D —F - 4 p — e . h 24
X(p) p 2 7 1 P ] 2 3 LI { Z2 )
(n -p ) (n"-p")
zT ZT
\ i
sin 0 1 x [
p = i‘; = ? 1s the ray parameter or horizontal slowness
n = % ' i is the slowness of the acoustic waves
Z L]
i w 7 ] , .
,P..,._ q = w(nz_Pz);? , K = — 8in 6 = wp and L = I f_gﬁl dz
P v )
o : . o
: z
O

‘Forythe mon0tonic velocity transition where the triplication
o¢eurs (Fig. 1. 2), three qasgle points exist on the real

K axis at ranges, between OC and OB (Fig." 4.8),, The saddle

@ .

W
poxnt close to —— represents the ray close to the crit1cal

" . -
k d o A :
o B ; 5 .



6H6

W
the saddle point ¢lose to - Is the shallow ray and the
\%

1
saddle point dn the middle fs the ray reflected by the

4

high velocity gradient, At ranges () = Uﬁ only the near-

-
) W
critdfcal ray exists l.e. the saddle polnt close to M
] v
C 2
At ranges (O < ”C only the shallow ray with a saddle point
N (1)
close to — exlsts.,
Y1

For narrow transitlon in Filgure 4.1 the statfonary
phase condition gives two real saddle points at horizontal
distances greater than the critical X (Fig. 4,9). They are

the head wave and the reflected wave shown 1in Filigure 4.1. The

narrovw saddle point that

o]
o
ja¥
€
o]
<
A
=
iv/]
-
4]
>
"1‘
ar
o ]
2
=
r
by
fa'¥
feg
<
o]

. ,,: < < (1) .

approaches the branch point %:=as the transition: gets thinner,
e ? ) i ! /! )

Concurrently, the steepest descent path through this saddle

peint ajarrééhei the branch cut fintegral which 1s interpreted
as é head wave 1in case of the sharp velocity 1n5reas§ (Cagniard,
1962).

The stationary phase condition (4.22) is a trans-

cendental equation and must be solved numerically. The phase

i

at the saddle pofnt k* gives the arrival time of the ray

g 4 ‘
s L r 3 A,

£(c*) = | a(x*)dn 4| q(xkr)de 4 kx £(r%) = o7 (4.25)

. ‘A !)(.
S S Ly
“ar

Ag?in,lT aérees with the classical result given by Bullen

(1963, p. 112)
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T = p

The second

68

- X(p) (IIZ‘P ) dz + (nz~p ) dz (4.26)

der{vative at the saddle point 1is

2 2
a7 R dr () d ¢
o AR L] oo
dv w A oA dr K*
where
o 4 ’ 2 7 ) .
dgqrz -7 SQ . ﬁi — log giziq + 25 =2 Wi L 1 RN
d?z T ;A 2 ~3 OF 2% 7 g9 74 72 3 qz ql
K 1V Y 11Ty P2 V2 U
4 i 4
D 2 P 2
g L0 Low 1 Joo w1 Aok
R I S PR Y S A NP 2ad)
pﬁ s q; Dt qr ql ql qz é
pA p?qZ p2q2 , ) o ,
171 22, ' -
Ty (20 gy - ) | (4-28)

& The sign. of
N

franches of

s travel furt

2
d . s
4~%|v determines the direction of the saddle
dx= k*

r
.

2 ' ’
d ~i : »
;_%| g gimes the amplitude of the ray. The forward
dk , v

the triplication AB and CD are due to rays that

her in horizontal direction 1f¥they penetrate

dgeperninto the med{um. The saddle pOinté are pasitioned at

]



no C r
angle 7 with respect to the real K axls since %; ~ 0 . For

these rays the second order saddle point evaluation glves

Pﬁ(m) 13 ; l’;: dwl
5 O [ -
P (w,r, r) = ;—:/7724*' - E)‘ SR e —“W""‘;‘;‘W")'jﬁ (4,2 9) /,rjh’
7 .
oa e |55

Thus there 1s no phase shift of the resultinébresponse

with respect to the source P (t) and the ampii(ude is
. s A

-

frequency independent. The factor I{r 3;[} represents the
: ‘ 7 >
geometrical spreading of the ray tjﬁg adong the ray path.. .
. ‘F;’J

The rays 5 the reversed branch of the tripjication

d&rrlve at shorter ranges if they penetrate the medium deeper. /

/
. s ¢ i
The same 1s true for the reflected branch in Filgure,4.1. /
Thus the saddle point is situatéd at angle -~ % towards the’
real x axis since %f,? 0 . For thESE,gsys the préssuré
response 1s
¢ {4 . s
o Ps(e) Do v K%seimT )
Plw,r,g ) "= ~ §f —= = — - (4.30)
r 2J2m Ps £
= a fr(K) I 1)

'

and they are shifted by ~‘% with respect to the source

function P (t) ./ As frequency decreases the "geometrical"

PN

amplitudes (4. 29) and (4 30)° become poor approximations and

Y

(4 18) must be evaluated numerically.

*
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‘ The (riplication has t(wao cusps at B oand C and the
—_ ~ dr .
CUrve vovn, fi (L e, Lo va,. U curve) hins two roeversals at
S
dr
lrﬁ‘ ‘ O (Fip. 4.10a). The travel time curve for narrot
dr

! A
tranaftion has a cunp at & which Approachen the oritical pofnt

ol the shavp dliscantinuity as the transition hvc:rmu:i thionner.
N [}
| .
The pova, X curve §o oy ur e A.10L ha altvo a reveranl at
d X dr I3 . ) : o*
-~ ‘| =00, Av all these pointsa the second derivat fve of
“t', Klf’ —
b .
the phase (4.27) Is zero and the second otder soadd e potnt
method cannot Boe usod,  Ihe saddle polata approach each other
, ¢
At rTanges olose tao f'),;: i or X and separate evaluation of
:—. Y Eb j p " : ‘
., Lthelr copntribution As pot vial jd, Howevel , the width of the
f’s" [ . 7 . 4 7 i
) : o o ) RO BT =15 _
saddle jpoint. 1a, proportional tao [r*:sﬁ 1.0, and, therefore
at high'frequency remaineg valid ac
) ) : ) L1 ~
distances.closer ta alither of 0O_, ()T;
H 27 ) % '?E “ L.
-k >0 at the "far" &ndpoint .
; ‘ « IS ' o " : S
. 3 L3 2 v Aal 7
glief* wde f, d_ b 67 o0 log’ ) 4 2 K [ §+
~ © e W e R Ll ¢ X1 — == C = o et E
PUEER 5 108 27 7Ty Ly .
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When approacvhing the ranpye v from the flluminated regtoy

two verv simllar waves arrclve, They differ only
slightly in thelr path-lengths and amplitudes, they
intertfere and cannot be separatoed, This 1s causcd by focusing

of rays [nto a caustic due to the change 1n veloclity gradient.

Other examples of caustleos exist In selsmology which are

formed by focusing of rays due to geometry as, [or example,

the PKP caustic in the Farth's core, AL the caustic tht’f

&
saddle points coalesce, and at ranges out of the fllumtnated
A
rﬁkiﬂn they separate again and move to complex positions in

the v plane, The steepest descent path passes now through

one of these saddle points only (Flgures 4.8 and 4.9) and

1ts contribution gives partial reflection decaying rapidly

y “the 1dlluminated

be @va;ﬁatéd by the third order Saddlé’quﬂt qéthﬁd (Aify,

1838). The first term in the asymptotic series was used in

:seismolﬂgy by jefff:l"eys ;\(19‘59): . : ‘
A0 " ' o '
: ' - . ,3 ~1/3 . ’
y i 3 —, 1f d ~
g) T ae 2 g@T o Ly ) a0 a3y
; C dr . K
e ' ) V4
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3
whie e
) 3 -1/73
df d7 f
U T A
dr -
dx 3

The definiftion of thy Alry functlon Al(x) {s in Appendix A.7Z.
The fnteyral expression for Alry function (A.2,7) has two
‘'Wstattionary points in reglon "before” the caustic (x - 0)

which corrasponds (0\ the {l1luminated regfon:

x < 0 MYT . E;*: |7\[ y real

aon

o
Jod

y] correaponds to the minimum of the phase {.e. to T

Y

-

branches AB or (D, Yy represénts the maximum phase saddle
the reversed branch BC, The two saddle

No real stationary p

oo’
ral]
s
e/}

ke ]

austic (x » 0) where 'no geometrical

"

rayr&zfzir:riveﬁ On the caustiec (x = 0) the two saddle rp@inits

Y and Yo coalesce at the origin, )
The phases at the gaddle points before the caustic
are ) '
. .= 2y 3/2
- f(ry) = 16 - 5 Ixl |
' . ! * . ‘\-' . * \([‘pSA)
’ C i 2 132
R P2 S OB I P ,
‘and B lXI = [Z (f(}’Z) - f(}’l))]: :
o . ) \



We have obtalned

argument of the A

to one of (he poeometrfeal endpoints of (he

Thoerefore (f woe k

r{r*) in

distance

the fntegral at d

range r' is symme

depot e 'I‘(i and

Ty

r’(rh),

Frespactive

correspondihe tao

Th
I

respectively.,

the

|
el
=
%

near

att expression for absolute value of the

Yy function in 4.3y, . = 0 corresponds

X
triplicatfon.

now the nhases n\{ the two rays ‘arriving at

the "1l luminated reglon, we can caleulat e

tatance ©' = r(pv) + r(v) - r{r4) . The

trical to r(yr#n) with'respect to v(x) . We

the geometrical arrtval times ot r(r'(;) and

T and T

ly. 1., 1. ,
Y 1 s 3

are arrfval times

\
LC and CD at range r(r*),

[l

branches

AB,

© Asymptotic expression {or the pressure’

1

caustic ¢ 1=

where r_ {5 the greater

tic B the response 15

] ] )
13
T
a
i

-

: ’ = AL(A [glu)(zT‘?w* Tl)] ) 4,3’2)
:égi . ' .
WY + “ L ‘ #

-

5
]
s
7
1
;
;
. . ) X
BB st e g b P e 1
'
.



Toand ‘I‘1 are arrival times at r » where r o is the lesnaer

of (r, ry (TB = r)), . fthe - and 4 signs correspond to

response before and beyond the (‘ailfit'ir', reapectively, And

e r '

d r Q-

[=0 ] Is given by (4.32) .

o .
- dhe shifte of the amplitudé max{mum from the geometro -
“

cal endpoint r(;l) towards the Ilnlumilnatcd region s shown

Vr

{n Flpure 411, The prak of the constructiva Interferonce

occurs béfore the cauntic and causes the maximum amplitude,

. ' , ' A 4 : -
Figure 4:11 also shows the amplLltude curves obtained from
. . i oy a_(
contour fdntegration In the complex r planer The agréent .

of the "exact" amplitude at w = 20 with the asymptotio

v
i

o'l

o

g I

amplitude (4,35) 1s very gﬂffﬁl? The exact amplitudes osci’

duye to Interference of Thﬁ*fﬂyﬁ on g?anéhes BC -and CD., Their

osclllaté around this value. . Out
\ t -
from t?é iLluminatedrtegiQn théﬁamplitudﬁs decréase rather

1

quickly at bigh frequency, 'Thé contribution ihcreases as ° A
frequency decreases and confirms ‘the fact' that pax"tial :
' , 4 , ' R ! F

= : ! . 4

4 3 3 i V Py
reflection 1s enhanced at lower frequencies:

] ' ’ # .P‘
)
o " s, 3

Resul ts (4.35) and (4.?6) based'onithe leffreyé“

~evaluation of the first term in the asymptotic serdies ar{ll

~

Vccfrect when thé‘ﬁw’iniérferiqi Tays afe,ideﬁcical'dn;Jin
other words; the two apbrnaching saddle points gilve ddentigcal
; ~ : o ‘ , ‘ . o .

if’

2 . . ¥ . . " . ' 1

N ’ TA
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N

/7

contribution when considered separately. Which means that

"

the b oy 0 N or O Ccurves g symmetrfcal around the reversals

|

(Fipure 4,10). This Is the chse of the broad transitions but

Af the dransitlon becomes thinaer the curve fs distorted t111
/

Lt coinetdes with curves for wharp discontinuity, We  expec

e )

this to hhappen asx U indicates the transition from the caustic

bebaviour to the crttical point behaviour, The dapaflurv

™
from ’Th(" Afrys phase behaviour can be compared In Figures 4,17
apd 4.13 whi¢h show the amplitude curves for two npnarrow

: 3 : R
[i?"fiﬂﬁi(i()ﬂ thicknesses, For w = 110 the agrcement is gz ood

for 1.6 km transitlon while at the same frequency far .2 ka
transition, the ddeay ﬂ‘t,in‘* exact amplitude 18 glower, The
partial reflection Is stronger for thinner tragsition and

Vft"ﬁll]t{ﬁ in enrichment of the amplitudes before Ulﬁ;ﬁfitiéaﬁ

x

angle,  TIn Figure 4,12 'the high frequency hel

the reflection coeffilcient (4.5) 1s indicated. It docs not

Einﬁlude the remaining terms in the igcegfand;hut its shape

v 4

agreas ngl with the decay of tamplitude at w = 110 .,

The highe} order corrections to the Jeffreys' result

-
A

(4#.32) can be obtalined from.the further terms .in .the asympto-

tic series. These include differences between th%{inte§féring

Chester et al. (1957) and Yanovskaya . «

- B 3o

Y

s il
rays and were given’by
‘ ( ' 1y ;e : , A , z

(1966)y O

T A /\\/ ,‘:“‘ V‘g
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Thoe

Is distinctly

core of the Farth

of both problems

sdimultancously

of the I’ri}al fcation

th e direct and
th

[§)

The contribution

shadow edge 1In

R

P
o/
N
~
-

4 ~ «In spitie

A
to high frrjufﬁcit‘}ﬁ
caslest way to perf

tudes are also
Fféqueﬁéy end .

section.

be obtained.

cransirinnﬁ the reflection cbeffidieﬁt approaches:the reflec~

treatment of e

at the

reflected

approached whi llr‘

(Chapman

BURPes e <

»

r

{~rom

cof

difterent from

and Phinney, 1972) . V';Fhr
by the Tact rthat two rays
edge of the shadow, and at (he
is only superficilal. In case
rays have different

t r;-n(mcnl

the direct

the Mimitation of the previous

hynthvtii selsmogr

caustic

ray remains

the

useful \+ They smhow

[e1V]

region described here

of the shadow at llxr

~

==

. »
raflected s{gnal

N

5

iﬁtﬂk%atiﬁﬂ in the

time Indispensi

The geometrical ampli~

) 1
finfire

~

sim{larfty

arrive

far «nd
s

of shadow

as - the

results

characteristics.,

that the

used to form'paii of the spectrum at the high

usgs el

A

in-

In section 4.] we hawve

more detail 1in

~

hS)

the next

i

At low frequencies:a different apanximaéion can

shown ‘that for thin

,tion oefficient for a diwﬁont;nuous velocity in¢rease (4. 5)

Thls is indegendent of frequency and in such cases the

P \

.

complex

»©
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P
-~

gf‘t;a?x‘xiurdfd« Hoop method of evaluation of the Pressure response

"

in the time domatn 1s posstble (Cagniard, 1962; de Hoop, 1960).

We shall fnvestigate 1o what extent the method s appltcable

to our problem,

. , )
N pThe gamma functions 11? the refiectfion coefficlent
c .2) can be expanded 1n power serfes according to
‘ e . )
I . k
O - 0 A al <= )
+ i !
HCEE NN .
4 s complex and a_ 4 1 , a_ = 577216 , a, = ~,655878 (sec
».i‘ﬂ \ 0 1 i 27
"i— " F o3 e s = -~ = < = # = N
“bramowitz and Stegun (1965, p. 256)). This expansion gives
a product of three power series fin the numerator and deno-~
’ " h
'mipnator of the reflection coefficient For lxl << 1 the

" restricts the walidity of the following results to small |
t'hlri.i‘kﬁés.’és 0 and: low frequencies, i.e, ty/smali values of
the effective thickness 5 (3.18). . Tn this.case the reflection
coefficient. is ’ ‘ - I
. i ? R ; R . . ; j"
Vo "dyma,n Mgy (gl ) ! - _
i . ~’s Tr L 2. 2 3.
ROC o0 ,K) = 22t ST wRaymat)o’a a,) + a(s))
- A A D X : . 2 717 12 .
: . 1 72 _ ' o )
L A "\ ' L4.38)
& ’ ' 7 : ' ! '
1 #A“ , . . \‘ . )
I% , “
. g" )1
. &
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We

4
A5 S e (;.-" I‘/'S"](‘rl and Iqll 1, ,(12’ <o ] The first

term reducens to the reflectian coefficient between two fluid

half ~spaces with velocities and densit {es vl, Dl and v?, ()2

For use of Cagnfard-de Hoop merhod 'the resylts havé to be
»

reformulated fn terms of Laplace and Laplace-Bessel transforms

(2.9) and (2.10), We were using “the Fourier_ and the Hanke!
. . . ' 4

- ; - - A ey T
transformatlions as the Inverse Fourfer transforym {s easi&r

.

.

%6 evaluate numerfcally. After the change of variables
. Aﬁﬁ .
N 1 2 0
-5 = fw sp = 1 —-fHn o= = ﬁ(*%.) ~ p ) 2 1L +— q
2 : 0
v©o o
" . .
the pressurc response becomes .
o ?
! T o ‘»f:{ﬁ;b
5 : J’P"i(s) g ,E
P (s .1 Ve = o 2 O .81 SDT — dp P
Pla,r,2. ) s = . Im J R(z yz20,8p) K_(spr) n; dp o
: f*i‘:‘T 7 i '
[ ! ?
-\ AN
(4.39)
whéré for z = z ’
) r 8
o 1 P27 N,0 2 2 2 oo ~2sn,
Rz iz ,8P) = == (1 - 480" (2a,-a]) - O s 1ynp)e :
' 172720 * P1P2. |
1 i(\ ‘ - '
| . _ : .
sn](zr zo) .
(4.40)

- RO(I + fl(p)s Ye

. u
I e . ‘ i
i )
i P

The\inVersion nto'thé';ime\domain of the regpopsg‘integra}‘
(4‘3%) can be aé@omplishéd.by method intrqducgd by de Hoop (1

»

s At -

960):

-



B
and used by Helmberger (19Y68) . The paper by Helmberger s '
' . &,
the best reference tor detalls of The method used to find
R |
, ®
the results presented here, If we assume a Heavistide step
functlon to be the ?inul'(‘,t‘,‘ {. e f’s(() = H(t), the time pressure
response s " )
- -
v
: ) -1
(1) for 6 < 0O = sin ;"-l'
i [ v -
i ;}
’ 2
) d?
Mp(r,r,z.) = P (t,r,z ) + —x (P t 2 ) (4. 41
s JULSTSULI TR R
4 f ®
‘ . 4
(2) for oo = O
C ] ‘H po
% n [
B b /
» * I %
v P(c zZ =P (¢t ,r.z ) + P _(t. 7 +
(tur,z ) u(t;,r_,zf) Pg( ?,r‘,’xfﬁ]) v L
] Do | 7 \ e )
.2 s ! '
+ o [T (¢ ) AP (¢t z
, . AT ILLETE ’r*}) 1R ES T2 Ey) /
d dt Y i
i —
7 / .
14 ' (4.42)
. . o/ .
/~ , - A T e o
7 '7 L. . = 5 e ‘,ii R R i R 72 ) -~ :
.~ where t _ {13 the lesser of =(t,T) and t, 1s the £
. : . i
2 3o o ] S
(t,2—), and R = (r" 4 4]z -2z ]');: : i -,
t i .
P (t,r,z ) =~ [ Ref '
R " 7?%r (i
t
i -
Ly L1 S sin_28 dtv ' | C iy
, Po(t,r,z ) = = I r p el A 4t el (4.43)
A U PR S T N
‘ L ty (t=TA2Zpr) T(E-T) Tl T) ‘ -
. ; S ) Co ‘ v o o
- . s ?.! ; R ,l,) iy ll t"
¢ - & .
, 3 .
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L

. ‘. e lr]zlpl 4
where f = arctan (- ——
~ }lpr) -
L= opr £ o2n, | 2 hzolk\J'“

84

(4. 44)
&

defines the so-called de Hoop clontour 1n the p plane along

wlni{th Ilm1 = 0 (Figure holh) . }’R([,l‘,zr) represents the

) {
reflected from sharyp veloclty dncrease arriving at.t

R

=

wav e o

Pli(i’r’zr) is the head wave anﬁlng at critdical incidence and

’ /

propn;:,atlug along the 1nterface. Its arrival time 1is,

| -
r 1 1 ?
H :/; + 2 - '"2_) ZIL mLOI (4.45)
.4, : v1 v2 )
The rematioing terms In (4.40) afd (4.41)
; Y B N o . | L.
?1'(51‘*?2& = 71”,‘2” (T’lR:(t:,r,zr)) Efﬁf O < ()(ﬁ
\ dt -
!(152 .
Plét,rfir) f 5;2 {P1H(§<;rzzr) +t Ryg(t,er,2 ) for 0 > 0
) : : A b = R J
. (6.46)
: , o .’
wher4
2 t :
1 v oo p N, n,*p-R ,
172 ¢ (=T 4 2px) (E;T)%(T2_57>
R 3 .
= " - }71
1) . : s
P, = = « 4(a’-2a, )07 b J Nylnyle cos 2g ©dt
= = . - ¥ > -
H T 172 195 (t~1 + 2pr)* 5 & , %
-, ty - ~ (t-1) (=5 ~ 1)
v ;
1
ot \ A
(4.47)
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are the corrections to the reflected wave and the head wave.
They are due to finite thickness and continuity of the
transition. In expressions (4.43) and (4.47) the ' parameter

p Is a functfon of 1 (Ftg. 4.14) and all the integrals are

Just tcmpo?al convo]ﬁtions that can be evaluared numerically.

For computation oé cheoreéical sgdsgograms, this~however is
') uneconomical, as the freqdency.range where the pulses are

valld 1is very limited, The evaJuatién'of the response 14n

:'the }requency‘aomain and the‘dnv;rse Foﬁrier trénsfo;m Are
\more(prﬂcticaL ghd havgﬁwider‘ranges of gppldcabilic; in
ourproblen. | o g _

| » The ampbitudevfor a hg ; wave propagatdng along a

,]velocity discontibuity ib inverSely pxoportionai to frequ@ncy

§ [

S e

.

Thus even, if the velocity increase 1s Continuous we expect
i : ] s

the amﬁr xnde beha&iour of similar nature .For«thi‘ yurpose

/‘ ’,.

I s,

i the amplitudes ofﬁche head wave‘weregeyaldated’by con:

yr)

:

We mqsc discinguish two separate effects. One 15

1nterference of the head wave with the reflqﬁ;ed wave' which

K

changes the freqdency dependence of the head wave within the !

interference zone (Cerveny, 1962). This explains why the
. 4

amplitude-f:gquency_dependence approaches to that of %'as.

eplcentral distance frcreases. The other effect is that of

[}

transition thickness. For thi?ﬁer transitions the head yaVe:u

s . . ' . 4
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{s more Illke the "real" head wave at the velocity discontinuity

and, therefore, its amplitude becomes tnversely proportional

|

to Irequency as the transition thickness decreases . At high
frequencies the amplitude approaches the geometri{cal amplitude

(4.29) which 1s fndependent of frequency. This is another
)

{ ho »

phenomenon that does not exist éf‘sharp discontinuities while
the amplfitude is (nversely proportional to frequency tmn the

i -~
entire frequency range. Thus, whenever the velocity change

has finfte dimensions, a finlte frequency exists at which the

7 : : 1 :
amplitude behaviour changes continuously from " tj}:‘> This

frequency depends on the dim8‘§10ns of the traméit and

with decreasing thickness it mdves to higher” frequencies.
g | .

This 1s alsa well"demo$strated in Figures 4,15 and 4.16.

Equivalent results were obtained by Lang and Shmoys (1968)

.

who studied analytically high frequency asymptotic approxima-
s ! » . ,
tion for the reflected field, Their approximation consists

af two terms; the first is’ipter?ret%d!as a reflected wave

for arbitrary transitién thidkness while the second represents

A

a head wave when the waveléng%%w{g/puﬁh”&reater than the
J ' - ' '

' AR ,—" : 3 * 1 5
tfansfition’thickness 0, and a refllected wave when the wave-
length 4s much smaller ‘than the transition thickness o .

T N be e

4

o' B . ' 4-
s . R . s
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a-avSynthetiC seiémograms

. -

‘The results of the previous sections are not correct

A
L]

in application to wave propagation within thz Earthﬁif the
transition is In great depth. 'Th@h the Ea;th's curvature
cannot be neglected and the probdém should be solved for
spherical gfomeyry. The earth—flattening transformation has
been used Ly many authors (ﬁﬁller, 1971; H111, 1972;
Helmberger, 1972) to obtain approximgte solutions fin flat

geometry. The following transformatfon was used by H11ll (1972)

ahd,appl]ed to our problem:

z = R log R

r R
X
- R r . ,
vf(z) =5 YS(R) L (4.48)

LY

where (R,0,9¢)- are the 5pherical coordinates and Rr 1s some

N

reference radius, 1in our casé the radius of the receiverp. j

Be

vs(R)Iana vf(z) denote the velocities in spherical and flat
geometry, respectively. Chapman (1973) showed that for a

fluid the optimum transformation requires the ﬁ%llowing

dénsity transformation - |

“ i

Lo R ) g ‘ S
Cpe(2) = 2 e (R) o , (4.48a)
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L

where pS(R) and Qf(Z) are the densities in spherical and flat
gevmetry, reppectively. The eArth-flattening transformation

does not change the kinematic properties 1n the transformed
. j
model. The rays emerging at the same angle arrive at the
. :
.

same horfzontal range at the same time. Thus the 4ncreased

veloclity 1n the flat model compensates for the longerJray

path due to the depth Eransformatlon (Fifg. 4.17). Thd dynamic

properties, {.e. amplitudes do change and Miller (1971) showed

that the ratios of the geometrical amplitude (A.29) to its
4
equivalent in spherical geometry 1is
A
£ _ (sin O);2
A O j

|

Thus the amplitudes in the flat half-space are systematically
‘ i
smaller than those in a sphere. . )
/ : .
Three models for monotonic velocity transition we#e-

. 1
chosen for calculation of synthetic seismograms.

+Model X of broad velocity transition 4n Fig..l.2;

/

/

/

Vig f 8.4 km/sec | Vig vs(6200) = 8.4 km/s \
Vog T 10.4!km(sec Vg © vg(SSlO) =;9.74 km/s
= 35 e : : ‘ "(
Z = 180 km ‘ Lo
) ‘ ‘ N
z_ =z = 0 km R = 6200 km/s
T 8 ’ r, & .

= constaht S S L . Co
: ‘ o o ' (4.49)
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. 1
»

Figure 4.17

\

Effect of the'éarth-flattening, '

, transformation on the .ray pathi

' s .
5 R




T

The spherical velJcities are close to valhes given\by

Johnson (1967) .for the upper mantle tr nsition at 400 'km.
. A
The transftion in model X is assumed t begin,at R = 6200 km,

~.

i.e. below the low velocity zone, \\

< .
Model 1V of 1.6 km ransition at 20 km 1in Fig. 4.1:

" -
v, = 6.63 km/s
v2\= 8.05 km/s *
o, = .2 r
z = 20 km]s' z = z = 0 km o
o ! s r o
fo) = ¢constant
] (4.50)
* ‘ , T
Model VvV of .2 km transition\Et 20 knf 1in Fig. 1.3
v \
v, = 6.63 kn/s \
v, = 8.05 km/s
g = .025 v .
z = 20 km/s ‘ Z .= 2z =0 km
o 8 r ,
P = constant o ‘ _ ' 0
| S | S . 451
‘ . o Ly

Wl

Velacities used in models IV and V are charécteristic forfthg

“

Earth's crust and the models differ only in the thickness of

the transition. o Lo R
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/ M N

The density was kept constant in all the models )

which is not a realistic assumption. Basically the change

of densfty must be very similar to change of velpgity. However,

the assumption about denstfty being constant is not a serious

limftation. The density‘variation 1n£toduces a small

’

asymmetry into the mdel due to stretching of the verticea:
coordinate. This 1is result of transformation (2.14) and

provided the Birch's relation for density change is valid
R ,

~ 0 = .328v + .613. S

(Wéné; 1972), the effect of density variation on model X 1is

shown 1h Fig. 4.18 and in Table 4.1. For models IV and V

the distorted models are displayed 1in Tables 4.2 and 4.3,

-
v

respec‘ively We see that the difference between the

origfnal and the distorted models is very small.

For computat&on of synthetic seismOgrams the reSponse

integral (6 18) must bé evaluated in wide range of frequencie&.

In a previous section the asymptotic pressure re%ponse was

found in limited range of frequencies outside the 1imits! of

’ ]

velidity of cheiaﬁf}mentionedfﬁpsults, the numerical integra—

|! :
tion must be QOFe.“ This involves’ the calculation of the

gamma function F(z) and Hankel function H(I)(z) for gomplex

arguments.  Programs for these were written with algorithms

o

ﬁbased on formul?e valid 1n~d1fferent regione of complex z planeﬂ

‘°“,
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. VELOQITY { &m /3ec) -
'] Y] ‘ . ! s © ©3
o T ; T
- g . -
LI 3
S0

2{km)

200

250t

350

<,
>

fighiq:ﬁlLB‘

The effect ofrdensity variation on the
fvelocity profile in’ “odel X. (fu}l line)
"'The triangles indica:e the velocities in

(v;jthe model that includes density Variation_# i

g



Veloctity

h

v km/s]

N

Ral

A

. INFLUERCE' OF

B

e 96

. =

pENSITY WERIATION ON

VELOCITY PROFILE IN MODEL X

P

Original Coordinate

z~z [km
O

}

-180
-160
~140Q
~120
~100

20-,

. 40
' .60
80
100
120
140

160

180

g

Transfbrmed‘ﬁobrdinate
/ C [km’gﬂ f

- 5
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»

1

0

‘LUENCE OF DENSITY VARIATION ON
VELOCITY PROFILE 1IN MODEL 1V

fginal Coordinate

z-z [km] r
- o —

Table 4.2

Transformed Coordina

o

[km]

97

te

ge;nu_

L

18,69

14.02
9.35
4.69
0.95
0.49
0.
0.52
1.06
5.42

10.86

16,31

21.75



Veloctty
vikm/s])

A U

6

6
6
6
6

7

7.
.02
.05
.05
8.05
8.
8.
8.

8
8
8

6.
24

L 673
3
63
.63
.63,
63

- 65

76

83

05
05
05

98

INFLUENCE OF DENSITY VARIATION ON
VELOCITY PROFILE IN MODFL V

Original Coordinate

;~zo[km] i
——— u—-ﬁ._:—-_“_u_.ﬁ

~20.
~15.

~ .05

Transformed Coordinate
¢ {km]

~18.67
~14.01
~ 9,34
-~ 4,67 §
~ ' .94
~. .47
- .096
~ 049

052

106
Y
1.08
5,43

1088 .
16.33
21.77
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)

(see Appendix D). It 1s easy to achieve accuraci‘cémparable

to that of other functions fncorporated 1n the(Fortran language.

\

Thus the maln concern is about the efficiency and

accuracy oﬁ'the integration procedure. The amalytic solutions

of Section 4.3 showed that the integration contour can be

moved to pass through the saddle points via the steepest

/
descent path,. The approximations are only good at high

frequencies and they deterlorate as frequency decreases. To

find a suitable contour 1n the cémplex K plane, the integrand
) .

in (AEIB)‘must be studied. Tts analytic' behaviour 1is studied

: Yo
using contour maps of logarithm of 4ts modulus and phase

(Fig. 4.19). The grid depends on frequency, widths of saddle

points and steepness pf the descent paths. For example: in

#

case of the tripldication, different grids are used in regions

near to caustics at O, and 0, (Fig. 4.19 and 4.21). The

B

signals at caustic @B are wveaker than signals at the caustic

OC which results narrower saddlé,points in the first case.

As low frequency end is approached the Saddle;point
c?rre3ponding due tg\the rays of branch AB disappears, this

is due to the source being placed‘in inhomogeneous‘medium:
, : « .

i

. the high frequency waves at é@pllqw angles encounter the

/

small changé 1n,veloc1ty’gradient around the source and con-

S | r
, tribute to signals forming branch AB. The long period waves

»

are not effeéted and, therefore they contribute vefy'iift%e ‘

«

to”dmglituﬂngof branch AB. ' v‘ .

~
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When the steepest descent path 1s found on the
contour map it is approximated by straight line segments
(Fig. 4.19). On the contour map of the phase in Fig. 4.20, these
{ |

approximately follow the constant phase line. iThus

the numerical integration can beigfrformed,accurare]y using

9
one of the simplest pumerical methods -~ the Simpson's method.
1f the contour were not along a line of constant phase, the
oscillatory character of the integrand would make the
integration extrxemely difficulrc. According to the Simpsoﬁ's
method (Abramowitz and Stepun, 1965; p. 886)

K1+1 \ 7 . ' o,
7 | o o ‘
S + s +
r(w,K,r)qK 30K {f GE) 4 2f, 4 Af -l .
KJ .

where fo, f], ~»» £ are values of 4dntegrand at
o , ,

successive steps of ihterva1’<Kj,Kj+1> .. Rigorously, cﬁe \¥

1y

" A)
"step *size should be evaluated from the error term im the =,
. ' ' ) < s . (1‘7) '
Simpson’'s method. This is proportional to f '~ ‘(x) because the
Simpson's rule is correct to the second order, and it‘i;s,'rfa,ther_~

‘tedious to evaluate the steplsiZe fromtic. ‘0;& integrand is :f

.. ) , L] , ‘?\ s ' ‘
a smoothly varying function along the path.of integratiom and,
. . - o o Lt

therefore, the step size is simply estimated from the first

'R

derivative
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‘J Fydn = A (£(-0k) + 4E(o) + £y ge £ e e
A

>
4 (4.53)
‘where -~ Ax < ﬁl < Avo 1f we assume that within (-AK , DKk ),
the integrand 1s an exponential function:
b
B - o
k. f(xk) = a - P" :
‘ - s
the fraétional error
£ o= 1 . rl bA AKA
m : : lBOf(Ez)AK .180 ,
Thus ok | = 3.7 15451—| el/% (4.54)
. f (x)
-4 : -
For a fractiopal error € = 10 wé can take
. ' ' b @
, : (<) '
A | = 4.55
., ‘ ‘ l l llOf () | ( )

.

-

-

where factor 3.7 was ignored fdr safety. Arg(AK) is: chosen -

A\r

in the diredtion of the.contour ﬁggmént‘ This methodihas been

used by Phinney and Cathles (1969) and Ch?pman and PhAnney
¢

"[(1972)* The first derlvative in the denominator can be

' |

' estimated by taklng thg gradlent at the endpoints of' the

segment., The step size of two neighbouring segments is
o, ) 2 ' ' ' i :
, Do o
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revaluated and finally their minimum is chosen fo; integration:

IAKJ(r)I = hi?{]Ag(Kj,r)J, ]AK(KJ+l,r)|} (4.56)
where
V N f(., w,r) bk

!AK(KJ; | = l OT?YK +5K w,r) - f(Kj»w»}TTl
Then
, "1 P w ‘

. -1 - ,
AP(w,r,zr) = I f(k,w,r)dc + T I f(x,w,r)dx + I f(k,w,r)dx

: L - j=1 ( ¢
- ) Kj KJ

(4.57)

Klnand K, are chosen so that the integrals to infinity (which

are deep 4in valleys) are small. Again aéauming exponential

L]

decay their contribution can be estimated!as

- | i :
1 : fz(Kl,w,r) f (KJ,m T)
[ foc,0,00ac + [ fc,w,mra0 = —— -

; f (Kl%g,r) f (K ,w,r)

— K3

N ' | (4.58)
: ' A
'The accuracy of the algorithm can be tested integrating around
closed curves with or without singularities enclosed Allpn

thesg trials proved to be within the required accuracy e = 10 44

\ , L ;o
. . L v Y R
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=

But, even if the integration is performed by
Simpson's rule, the am;unt of the computing tim® needed
would be enormous, {f further savings were not made, Many "
ccmputations can be saved when ope contour is ufed to
evaluate the response at several ranges r . Only the Hankel
fuoction Hil>(xr) 1is dependent o; r and only these values
have to be recalculated for every r. The rest of f%;
integrand ls stored and reused every time thé?response is
computed for new r . The contour of intéegration i8 no longer

the approximation of the steepest descent path, but 4if chosen’

- r -
with care, a useful range of integrals can be revaluated with .

i
p -

no signtfiehnt loss in pccﬁracyi Usually, the contour 1{s
i‘

chosen to be a steepest’descent path for r which 4s 1in the
&

S

middle of the interval of r's where the same?éontour is'used.

This 1s very efficient at low frequencies andﬂgn the neighbour—

I
hood of thelc¢dustics where the saddle pointg%Fhang& Qﬁeir
S . m
‘xign slo%ly with changing r . 1In the illumingﬁga region,
4\,»1)'_)

the contour must be changed more oﬂxen‘as the saadle points

-

3 ' ‘ ef o
separ more and more rapidly, until/a 5395¥%FF cont;ibution
. A ) ' / > . Rk 1 p"*’ R

from eath has to be computed, \The phase difference between
the tﬁo.rays 15 grqwiﬁg andvinterfetencerecomes 1mportant

and causes . oscillation of the total amplitude (Fig 4.22),

‘The’ contour integral cannot be evaluated along the ‘real. axis

between the saddle points. It must be taken into the valley

by o
&
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e ~

7z
above  ‘{be1ow the real axis which i{s common to both saddle

pointﬁ{ZFig. 4.23).‘ The Figure 4.22 showing the results of
the bétour integration i{s similar to those shown and’
f
discf ed in the former section. 4dn the illumin;ted'regibn
the*ggflected wave of the reverse branch BC is stronger and
the/amplitude o;cillatesoaboutlits geometrical amplitude

'

(4. 30)

For the synthesis of pulses in the time domain the’

method described by Chapman and Phinney (1972) was used. 1In -

o%der to synthesize theoretical seismograms, spectral values
é#er a wide rangé of frequencies are needed. To limit the
fﬁequengy range we have gimulated a critically damped sgism6~
mé@gr fésponsg with transfer functioﬁ

’ﬁg | oy | . w3; .
Ll BRcAN 7% } 3 C 0 (4.59)
R : (Qg—w —1wA)(ws—w ~1ws)

where Qé and w, are natural frequencies of the seismometer and

galVandmecei.‘ For critical damping, 8

4

Although in period range used here (T = .45 sgec, Tg‘é 1.5 séb)

B

2w, and A = ..
8 . B %

seismo&eters do not use galvanometers,‘the trandfér.funﬁtioﬂ |
N e - SR

(4 59) still rePresenta ‘a band limited 1nstrument. T ey

TR o

:H_ W; The transfer function 19 convolved with the soche

@”‘ o g oo P

of umit /Step function i. e. P (:) - H(t) o Their combined spectrum“
St 'l' LU

§

]-rand che!reéultﬂnt seismografjfre shown in Figures 4 24 and 4 25 1x

-

! N
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Figure 4 .25
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The response of the critically damped
seismometer to the upit step function

‘Marks on the time scale are
Second, "



The spectral amplitudes (4.29) and (4.30) are independent

of frequency and, therefore, the pulses on forward branches

of the travel-time curve have the same shape as In Figure 4.25.
The‘pulsdﬁ of the reversed branch will be shifted by - % » l.e.
they are "allfied” pulses to that in Flgure L. 75 .

The finverse Fourier transform (2.6) 1is evaluated
uglng finfite Fourfer sum, Effi{fclent programs, which use the
algorithm for fast Fourier transform deyeloped by éoaiey and
Tukey (1965), exist in Fortran and we ophly supply éhe spectral
émplitudES. Théﬁspertfal amplitudes callculated by evaluating
the response integral (4.18) must be interpolated, P(m,r,cr)'
1s complex and 41ts modulus and phaéa mujst be dpnterpolated
separately, Whﬁre P(m,r,cr) is evaluéteq, the phése is a
discontinuous fuqction in the range ~7/to 1 . The geometrical
results can be used té remove the 27 amhiguity.in the phase

various frequencies and rangésg From (4.21) and (4,23)

,F b ’
of " . dr
i ar r K w dl"
. (4.60)
s ] & £ ‘ : : ,
and k e ?- . - . ) .
where f(x) 1s the continuoﬁs phase function. The equalities

in (4.60) are valid only at -high ffequencies. At finite

_frequen61e§ thef can‘befreﬁlaced by approximate equalities.
. _ : _ L

3 :
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l \3/*

1nterp01at10n In the region before
the cauati vaf%%Qal time is formed by solving the stationary

?‘ /I
phase (ondition (4 22) in complek x plane. The arrival time

{s the real part of ££El The same applies to regions before
the critical point where the transition is thin. 1In thisé case,

however, the times of arrival of sub-critical reflections from
a sharp velocity increase can also be used, especially where
e

the tramsition is very thin.

-

i

The theoretical selsmograms e;éluatéd using the
transfeér functions (4.59) with step fuhction as a source are
- shown 1in Filigures 4.26 to 4.29., They are normalized with
respect to the maximum amplicude at caustic or at the critical
point. 7 |

Thé;seismograms in Figures 4.26 and 4.27 for pressure
at ‘the near andifir ends: of the triplication. Thg maximum
amplitude at 10030' aan;c ZQO i1s the Aliry phase due tﬂrintér~
ference, Thé ggometricél endpoints aré,at 10220 and 21° and
as we-move/AQay from ghe {l1luminated région the signals decay

; . ! s

rather quickly. The first pulse 1in bptg cases corresponds to
the f;rward bfanches and is in phase with the sodrce ;ﬁise.
The pulses of the reyerse branch BC are the allied pulses,

-2
jdtfference in phase can be clearly‘d~stinguishedlat ranges

[N

.shifted by - 1 with. respeqt to the»@irst arrivals. The
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The synthetic seismograms for Model X at .
ranges near ;ﬂe caustic €. The marks on  the ..

time scale ar®:every second. The geometrical
arrival times are indicated by longer vertical
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Figuré 4.28 Synthetiq séismogréms'for’Model‘IV at
' - ranges near the criticéljpoint.“(Time_
scale as in Figure 4,26.).
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4

.o 4
12°20' and 13° which are well inside the illuminated region.
In this example, the response function (4.18) was calculated
by numerical integration for 12 frequencies ranging from
w =.5"rad/sec to w = 60 rad/sec. From w = 60 rad/sec to
w = 110 rad/sec the geometrical values (4.29) and (4.30)
were used. 12 spectral values were interpolated using cubic
spline 16 O;der to obtain 128 gpectral values between
w, = .82 rad/seé and Wy = 104.7 rad/sec (Nyquist frequency)
with step 0w = .82 rad/sec. These were used as Inputnto the
Inverse Fourier transformation.

A The seismograms in Figures 4.28 and 4.29 are for
pressure in the meighbourhood 9f the critical point when the
trané?tié; is thin.  For soth transitions the amplitudes are
normalised with respgg; to amplitude at 70 km. For .2 km
transition,’this coincbdes with the maximum amplitude while
for 1.6 km transition, maximumroccurs at 80 km. This agrees
with the shift of the critical:points, X, = 60.5 knm And{67.8 km
for .2 and 1.6 km transitions, respectively. 1In the région*
before the Efisicalmpoint, the seiémogramS'shOW that partial
reflection érj;s honsiderébly as theftransition becomes
thinner. For .2 km trahsition, the’sigdal at 20 ki 18 quite
.strong g#ilq f?r'l,é km traﬁsigian 4t would barely show. Also
theit shape for ﬁhe thinnef’craﬁsitidn.appears to ye mofg like’
eheigub;crificaﬂ rééle&fi;h at‘gharﬁ-éiscdﬁ;iﬁuit;."The pafﬁiallv

-

EY)
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‘reflections are in phase with the.source pulse which agrees
with the fact that at sub-critical reflections, no phase change §§
occurs. The amplitude maximum {is due to interference of the ’
reflected wave and head wave, Further beyond the critical
range the two waves starl to separate into first arriving
head wave and later re%iected wave. The reflected wave
beyond the critical point 1s totally reflected and, therefore,
shifted by -~ % with respect to the source pulse. This 1s
clearly observable atQISO km.
For calculation of the seismograms for thin
transitions, the geometrical vralues £4.29) and (4.30) could

not be used and the numerical evaluation of the pressure

spectrum: was performed;at 17 frequencies between w = .5 rad/sec

and w = 1iO rad/sec.; Their interpolation was performed in
the same mannerwae for the triplication.

The .results presented in this section demonstrate
that the numerical methods can be used efficlently to compute
’the spectral response and the synthetic seismograms. This
should be an encouragement for cheir wider use 'in seismology
“In applicatien to the interpretation of data, the %;sults

‘

for the response in the frequency domain are probably of

‘greatest importance as the different propercies are then

o A

easily seen and can be interpreted Although resulcs pre*

}sented here were obtained for relatively simple models, some
2t u ; %v"‘ ., v
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of their basic features (behaviour near caustics and critical
p&lnts) should be very similar to those which one would get

'
even for more complex models. Furthermore these results can
sérve as calibratfion results for approximaéghmethods. Their
1mAXrtance has increased conside;aﬁéy in rségnt years but
the error estimates have adways been v;f; Qégué. These can

only be evaluated rfgorously 1f the approximations are

compared to éxact results.



CHAPTER 5 DIFFRACTION AT THE VELOCITY REVERSAL
4

Wave propagation in media with a monotonic velocity

fncrease has been studied 1n the last chapter. The medium

.

response was found and aluated‘both exactly *(or rather

,»as accurately as {s n:;:Zically required) and asymptotiéélly
(analytically). Triplications and critical points are not the
only ambiguous regions for fnterpretation of travel-time
curves. Problems also arise when a discontinuity is present

such as the shadow due rto the core-mantle interface or low
3

3

velocity zone at the top of the mantle. The shadow is caused
by a sudden decrease 1in velocity that may be abrupt or con-
tinuous. This information cannot be found easily from the

travel-time curves. The boundary between the illuminated
A\

region and shadow zone is not sharp even for a first order
discontinuity {n &elocity structure. The diffracted signals

. propagating ‘along the interface bring considerable amount of
N E \ ,
energy beyond the shadow boundary. 1In case of a continuous

'velocity decrease ‘the amplitude of the signals decrease with
dlstande'sozrap%dly,thac a shadow is observed too. The

. \ .
amplitude decay of these Signals into the shadow is very
‘diffe:ent:frdﬁ‘the‘decay into the '"true" .shadow- ‘Only'aftet

amplitude studies can the nature of the velocity‘strhcture;

which causes the shadoﬁ; bé revealed. .

a2
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”

The diffracted sighal caused by a first order
discontinuity has been studied by{many authors (Scholte, 1956;

Phinney and Alexander, 1966; Teng and Richards, 1969; Chapman

s .
k“J‘and Phinney, 1972) although the. interpretatjon of~daté is

still uncertain (Phinney‘and Alexander, 1;69; Bolt, 1970).
This probably reflects regional differences in the core-mantle
interface but may be caused by a velocity reversal just above
the incarface (Bolt, 19?0). Noxghorough treatment of the
velocity reversal se;ms to have abpeared in the literature.
In particular the non-geometrical nature of the shadow and-
the decay ra;e of the signal does not appear to be fully
appreciated (Bolt, 1972). \

The present chabter studies the wave propagation in

/ [ N

Epstein medium with veiocity maximum (Epstein, 1930). The,

-

rqsults are;compared to those obtained ehrli%ﬁﬁfor a parabolic
profile and sharp velocity decrease.

Py -

5.1 The reflection coefficient for velocity reversal
7 — . v ; . = i

Some of the Rroperties mentioned in this section

T ) o . S
\ﬂwefe dtudied previously by Epstein (1930Q), Phingey (1970). and
f';heirﬁsummary may be foﬁ@d in Budden (1961,"p, 80)‘or
j ;3rékhqukikh (1960, p. 185). Some_ are included for the sake

- of completeness, others are essential for discussion .of the

r . v

gsponse integral: which nome of the aformentioned authors

~ attempted. = " I e e /

o
L PR
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- T . .
% . ’ ) ’ %
For Epstelin -profile with velocity maximum v, and
velocitlies above and below the transititon vy (Fig. 5.1), the
- » ) . X ~ ;.
vertiqé:/wave number (3.17) becomes
2 2 2 .20 2 -
Q = a, - (a9 - q_ ) sech S . (5-1)

~

The reflection and transmission coeffic iente are

~1(q_¢ P )
F(l+210ql)~ F(&—Zioql—y) F(% 210q +y)

RELHC KD = - r(1-21oq,) ) T(%-v) ) T(%+y)
;! 7’
‘ v ; (5.2)

~1(q 2 _~q,C )

Ziaqlf(% 21Gq1 y) T (3s- 210q1+Y)

T(L ,T, ,K) = y (5.3)
F (1~ Zioq ) '

where for p constant

2 v T \ % .
1 2w B 1 2 2 :
= = — —~— = {~ ~ . . 5.4
Yy = {4 4o 7 (1 2)}_ {4 S cos OC} . ( )
v v .
1 o
q“‘li .
. CRE o
'-and‘ec is the critical aﬂgle'GC = sinfl ;i . Instead of the
. ¢ A o * /J

absolute mea3ure of the’thickdess of'the layer ¢ , the =

effectiye‘thickness S ='%§ f 20 is introduce?l :The refiectidu-v l§ 

and transmission coefficients depend on the thickness of- the Ch

llayer 0 as, weli ;s the wavelength of the propagating wave and ji{fﬁf
,‘\Athe effective thickness S 1nc1udes both .:e¢§§;:: A ! vﬂ,”'

|

A
i
¥

n N
o, ) R
[ R A - o S RN,

oy . R , R N E N L ' [ o . W
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verOCITY REVERSAL
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! - The absolute values of the reflection and
transmission coefftcient are (Budden, 191; p. 381)
1 .
Cos 2mny + 1 ;
= — - - - , 5.
IR cos 21y 4+ cosh (21 8 cos 01)} (5.5)
/
cosh (2n 8 cos 91) ~ .1 Y
T ~ {— —— _ S 5.6
_l | {qos 2y 4 cosh (21 S cos 01)} 5 .)

For thin layers or long wavelengths the effective thickness
! r

is small and the re}leccicn is very weak . s /o
S20 1,y ok and IR = 0
- ;'Tl s l V !
i . s

For thick fayefs:or short wavelengths when thé’effectivq

ﬁhickﬁéss 1s large the ambunt of réfleéEiﬁﬁ depends on the
emergent aﬂglegfrom the sourcezel. (Brékhcvgkﬁ?ﬁ,il9éﬁ; p. 185)

- b

' ’ © : v
S » w .y =ﬂ17 :‘Land; [IR]» 0o, , !Tl* 1 1f sin 01 , 1

3 | ’ o]

“

, ) . - 1 1 . v
L DRl =, 1|+ A= 1f sin 0, = 3~
. . 3 £ Vo

1 v

CIR]- 1, [T]®0 if sin 6. > —k
, I ! 5

“ r
4 » g
. R .



At angles 01 less than critfcal most energy Is (rapsmitted

d .

while at angles of emerpgence greater than §  most energy

c
Is reflected. The range of angles when both, the reflection
and the transmiss{ionh, occur depends on the effevt}ve thlgkﬁ
ness (Fig., 5.2). The boundary between totaa tPansmission
and total reflection Ls blurred by partia‘l reflection at
sub-critical angles and tunnelling effectsiat angles beyond

critical. Both partial reflection and transmission bx

ﬁunnelling Increase as the efféctive thickness decrease.

-nS(cos OIHCOS 0 )

‘[Rl noe ¢ 6. < 0

M . l C

, N _ (5.
¢ ~MS(cos 0 ~cas 0]) -7
Q- : B -
. . rg. »
A 0, 0
w At thisfpaint 1t 18 desirable to point out the advanragér
of the Epstein proflle over the parabolic profile 4ip

)

Fig. 5.3. The solutions of the wave equation for a paras i

bolic!vélo5ity’struéture : .
e :
V" 3 i -
o .2 -
= A e 5.8).
v v 4 gt (5.8)

<
<
M

tan be expressed in terms of pagébolic cylinder functions

‘(Phinney, 1970). Then the refiection coaefficient is

Iy
0 *

: ‘ IA et :
: IR|= (5.9),

. * e
/l 4+ eZﬁa . < 'J
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Figure 5.3

Parabolic velocity profile;

e}
a = |2,
v
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where a*# is a complex conjugate of

2 — v % 7?2~

SRV S € A A AN (D)
o a - e X (o) (sin” 0 > (5.10)
o [e] v
! o)
v 'k ,
and Op = |;%l 1s so~called half-thickness of the
o ' a
parabolic layer. The reflection coefficlient (5A9)‘was first

”

deduced ?;ERydbeck (1943) for propagdtion of waves in the

ionOSphere. It is evident that it does not give correct
: o}
answers for thin layers (72 + Q) which 48 R ~ 0 rather

than R n L . This discrepancy 1s caused by discontipulties

J2
of the velocity gradient on the boundaries of the layer,

Northover (1962) found a power series éolutinn fo; thin
ﬁarabolic layers which ylelds the correct reflection
coefficient. His results were rec&ntl} confirmed by Chesell
(1971) who determined the reflectfon coefficlent by exact
numerical integration of the wave equ&tionr(Fig. 5.4). Northover

(1962) criticizes the method of matching the solutiop above

N A

and below the transition: zone in:order to satisfy the boupdary
" conditions. While partly justified in the case of the parabolic

layer solved by Rydbeck (1943), his criticism does not apply

'\-

to the Bpstein  models. The latter has no gradient dis—

I

continuity and no additional conditlons have to He satisfied

s ~

The correct, values of the reflection coefficient (5.5) at:,
~ different limiting cases prove that‘the methqd of matching
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Variation of the ‘modulus' of the !
reflection coefficient with frequency
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effective thicknessess U 2na /X
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the solutions may be used in Epstein's problem. It can only
be used 1n a limlited range of frequeﬁ¢1es‘and thicknesses for

the parabolic layer. Subject to the aformentioned <onstraints

the reflection coefficlent (5.9) glves useful results.

I
In the complex xk plane the reflection coefficient

(5,2) has three scts of poles due to the gamma functions and

»

N w w w
saix branch points 2k =t K = t*—— and K om A
. 1 vy 8 v r v
s T

Of total number eight only two of the Riemann surfaces are
important In our discussfons. The branch cuts from Kp to

—x via infinity, p = 1, s or r; are very close to each other
and the top (#+) and the bottom!(r) sheets ofrq1 are taken 1in
agreement with the convention introduced 4in Section ALY,

' *
The secular equations that determine the position

of the poles are-

2109, = ~n no=1,2,3,... 0 (a)
="Mcql = n 4 H'+y n=0,1,2,3,..- (b)
ZiOq1 = n 4k -~y n.=0,1,2,3,..: " (e)
(5.11)
N The sets of poles are given by (5.11a)
s, 2 2 3 g |
- " 2 N ~
PP G . - (5.12)
1on N2 2 -
vy 4o”
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A
are on the top Riemann sheet "beyond” the branch polints
w
* T (Fig. 5.5%a). The signals arising from the contri-
1 ’ ' .

bution of these poles propagate in horizontal direction and
decay exponentfally with depth. Their phase veloclity

/ 12,2 -k

c = v. (1 4 )
Aozwz

is smaller than_v1 and they arrive to the receiver much
later than signals we are interested in.
The setp of poles given by (5.11b) are

1,
2
03]

+ k=t [—= 4+ (n 4+ % + Y)2/462] (5.13)
2 'n v2
' 1

At low frequencies when vy {s real the poles lie on the

real axis "beyond” the branch points 2 %q on the lower
: 1

Riemann sheet (Fig, 5.6b). The zefo frequency position 1s

fi

o n+l f . ) 7
L 43 25 ‘(5.14)

‘As frequency increases they move towards the branch points.

At frequency w* -

v .
whk = —& sec O . (5.15)
Lo c

- they are in ﬁosition‘
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o

@ %

" "\ 5 w 2 2
Nk = {~— 1
+ zK'n + [ 2 + (n+ ’5) /AO ] (5'16)
v
1
and they leave the real axis. As frequency increases they

move anticlockwise in the first and third quadrants of the lower”
Riemann sheet, their real part decreasing in absolute value
and imaginary part increasing in absolute value. They reach

4
w
the branch cut where lReanl ~% — and pass onto the top
v

1
Riemann sheet. Then they continue to move towards the high
\\‘ v \ ,
frequency position where they slow down and "set(&e" at
, “\ ' \ [
2 ' 5
2 -2 2
s ook =2 2 4 {(n+h)” + l}/éd\ + 1 (ntk) S (cos ——*~) ] :
e 2 ' n 2 4 \ X 2 c
@ v . 4g 0 4 S
o B ' :¥ * : o ‘
N : \\ . L] X , \ B
h Y § (5:17)

3 F \ = ! i
(Fig, 5.5a). The complex poles on Rhe top Riemann sheet

contribute to signals propagating wig§\ hase velocity between ‘

“‘ \
v1 and v and are 1mportant in the evs&uatiqn\of the tesponse
‘ 1
1ntegral. Only the poles in the first qqadran; contribute,
l\ -
_however, as xhey are close to the steepest descent path

L

" Further discussion of the bg viour of the reflection coeffi—'

. 0y N .
7cient 1n the neighbourhood of these poles is left to the .
:'next sectioﬂ, ,1 ;-H';} S LT :‘7  iﬁ\’ '
‘ The two aete of poles given by (5 lﬁi) are R
. o , SN . v
R LR SO ! "2 - DI " R L
(ﬂhﬁgeséag [7+(n+k~ﬂ/w] Cot e (A8 e

1 S . ¢ L N . L Ny :

Lo ‘ . . , . N v s . . S T - .
N : P ' i - . ’ Lo o
; R ) o . ‘ L Lo
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and they lie on the lower R1iém#nn sheet. Thelr zero frequéncy

positions are

n ; ~
z K = % —2? (5.19)

As frequency fincreases the poles move along the real axis
away from the branch points. As w = w* they reach the
positlon QK; and coalesce with the set of poles 20 (5.13).

They leave the real axis 1n the direction apposite to that

of 2K, and.move clockwise in the gecond and fourth quadrants of

the lower Riemann sheet, (Fig. 5.6b). As high frequency

-

limit 1s approached, their movement slows down ‘and they

-

settle at positions

2 k-
30 = Byt Lo ? v 211y (eos? 0 - Lk
Voo 40 . b’ *} .. 48
& ' 7 ‘ N
! (5.20)"

‘e

. : A o
“(Fig. 5.5b). The polsés K B being on cify &tom sheet

3.n
have no.. effect on the reflection coefficien

nd n .signals .
“.arise from their contributﬁon. '. - . ‘ % w ‘. )

% LS N . N
( ‘ ' 4 & - ‘
a ' X ;
: ' 4 P ‘
"
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94 5
. ’ o
5.2 The respon®e integral
: Le Fespoiise it e

The rays most cffected\hf‘rhe velocity reversal are

"

those emerging at angles close to critical ‘angle 9F$v\ The

. r : |
response jintegral (g.ZZ) for the velocity reversal\whera

!

density is cvonstant {s . . o \,
r
’
. 400,

v ! ‘ ? ' ‘ (1 '\:J B
P(u),r,(,r) A Ps‘(m) J R([,S,Cr,K) H(’) )(KI‘) qr, dx

' ‘ > s

p — \F‘Q .
(5.21)

wheare R(CS,Cr,K) is the reflectlion coefficient given by (5.2).

At high frequencies the same. method of évaluation can be used

as that used’previously for the monotonic veloc¢dity transition
(see Section 4.3). The reflectlion cdoefficient Can:bﬂfﬂpptﬁxi’ﬁ

‘mated by the WKBJ reflection C@éffieieﬁt;(4,17)!and its phase

is )
z 422 L e g,
(kY m 2ha dom 407y T (Be210q,Y) (Gamy)
$(k) = 24q, log ——- =~ Y L0 Ty
Y ok 7 {(5§21g91)2H72) (H 210q1'Y)(% Y)
| ",9555 9. Y ,kiw,‘; | g (5.22)

‘The point Jf 'stationary phase of the integrand r* is ‘given by

‘the condition

) - . : < . . ;di B ':A 5 F ' )
+ - = =05
. o . Tt 0, | #5.23)
) f .o
where o
s AN
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‘ The rays most effected by the velocity reversal are
those emerging at angles close to critical angle O . The
c

response integral (2.22) for the velocity reversal where

density 18 constant s

+Ou
i ISP U S
Plosr,c) m 4 Po [ oo 10t G e
o =) ‘
(5.21)
1

where R(CS,CT,E) {s the reflection coefficient. given by (5.:2).

At high frequencf{es the same method of evaluatjon can be used

"as that used previously for the monotonic velocity transition
R , :

see Section 4.3). The reflection coefficlent can be approxi-
: p

mated by the WKBJ reflection coefficient (4.17) and {ts phase

is
. a2 2 e A ey (A
. 40%q) (42409, +Y) (=7)
‘4’("() = ?Uél lﬁg " o : 2 "éz"? -~ 41y log 7(%2{*0* )(12+)
| (2109 ) ~y5) 0 VEAROS TR
”qgﬁ“> ) | ) i C
! - qSCé - qur (5.22)
The point of’stationary(phase of the integrand K¥* 1s given by;
i \ the conditioni
| dg L (5.293
L r + ax 0 (5.23)
¥ ’ Lo
ehgre o
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2 2
4 . 40 9, 20&(%—210q1)
- = ~20 — log ~ - -4
dk q. 2 2 2 2
" " ((2-210a ) =v")  q) ((4=2109,) "~y ")
- K K .
t—- A (H.24)
q‘) S qr r

The equation (5.23) must be solved numerically for complex X

This gives two saddle points very close to the real K axls

(0] )

,Jpetween k¥ = —— and K, = -—— if the horizontal distance s
o v 1 \'
, o 1 .
greater than XC . There are two arrivals at these distances

(Fig. 5.1) which at high frequencies are represented by two

aforementioned. saddle points, The ,saddle point close to %w

. [y]
represents the ray close to the critical ray and is most

effected by the velociéy reversal while the other’represents

the ray reflected by the large velocity gradlent (Fig. 5.5a).

~The amplitude at the saddle point KA 4is proportional

\

co 7 |

~k 2 ~ !
cdr ! - d i .
‘ IR e T C(5.25)
' KR dk " KA
where
b | 2 2 . ,
2 - 2 4o (}%~24i0q,) -
dx” vi9 {(%ﬁZioql) -Y7) ((%—Zioql) ~y) a;
;o , 2 2, 2
1603'(2 8107k (5~210ql) m2 L m2 .
NP 7 2. * 7 22" 2 3% 73
ql((%—21oq1) ~Y7) l((ﬁ—Zioql) -y ) vy 9 Ve 9

-
3



' 141

At high frequencies the saddle point approximation gives the
response
* A
Pﬁ(m) x*helK-r + 1¢(k*)

Plw,r,0 ) = —Son Nrel 1 0 (5.27)
2Jd2n dr
q { - }

for the wave propagating along the reversal. The saddle point
3

approximation for the reflecréd wave is
,ép

. P‘(w) K*% ixkAr + 1®k“*)
Po,r, 6 ) = = e e S e (5.28)

220 ,
- " q {-r » i%] }
5 B

The geometrical arrival time is;giVén by

T = % Re{crr + ¢(x*)} (5-29)

The second order saddle point approximation faills near the

caustic ¢ (Figure gﬁl), I?ﬁits vicinity the same Lreatment

as that ;ESCTibEd in detailﬁ;n 5e€t{on 4.3'can be used to

obtain the h{gh frequency ?pproxiaation in terms of Airy
function, The behavio?r in the caustic ;egion wagrinvestigated
in Chapter 4 while in this qhap;er the’actention is concentrated

on the effecr of the velocity maximum on the wave propagation.

As the éngle“of emergence Ol > OC approaches the critical angle

3

the ray travels further tn the region of the reversal and 1its

S
3

»
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amplitude decays. The saddle point which is the approximation
. .
of this ray at high frequencies approaches the zeroch pole

in the syring, an (5.13). The contribution from the integra-

tfon through the saddle point becomes equivalent to that of
the residue of the zeroth pole (Fig. 5.7). The amplitude

Blven by the residue of the zeroth order pole decays exponen-—

tially when r 1s large (Appendix ().

, ] Ps(m) 9 o Lokor Ay ~1q Rt C
P(w,r,c ). = 2 22 _ 8 .| . .
> ) q -
s0 [k r
. 2 o
(h+ 2 " }
Hlog ””“ll‘ + 2y log i”%ll . (5.30)
- & "‘ZYI ZY .
UZ 2 %
where qpﬁ = ‘;7 - zﬁo) for p = 1, s Orir
1

1gnal 1s given by the 1maginary part

w
[+

The decay rate of the

el

of the zMPoth pole. To first order in° frequency

: Yo 1 Y1001 "
Im Kk, = (nth) — 25 (LI = 3) = —5) (5.31)
1 Vo 4s

Thus the decay rate at high freéyéncies is,independ;nt‘bf\
frequency. The dashed line in Figure:?.S represents thé
rggidue evaluat}on of che'requnse integr;% (5.21), gyheq
the numerical 1nﬁegra£ion was computed for this signé%

separately, .the amplitude curves. coincided with this Llne at’

frequencies w 2 8 for distances X = r 2 700 km

'
X
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O

Figuré{5.7 The. steepest descent path in the complex
' ‘ ¥ plane for large horizontal distances.
Thee ctlosses indicate the poles QKn,

n=0,1.2,3,4.

i
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VELOCITY REVERSAL
7T"7'77' R | S | S T i 77?‘7;1

1

Figurxe 5.8

1 1 1 : 1 1 4
500 600 700 800 900 . 1000 N00 1200 1300

X (km)

. The amplitude curves evaluated numerically for.

different frequencies (full lines). The geo-

.metrical amplitudes from.the saddle point

evaluation (chained lines) and the residue of

' 'the zeroth pole (broken line) are also indicated,'

A
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Chapman (1969) studied the decay rate of rays
effected by the parabolic velocity reversal (5.8). Then the
reflection coefficient has poles at
v" l';
R T +h) 5.2
£ =2 (n (5.32)
(22 Q
&
and the decay of the low order poles (
VII 12
Q
- i 44
el (o)
N e o

also independent of frequency. Both profiles have the same

curvature at the max{imum {f °

2
' l 'VO ’ 2
e e Y (5-33)
v 40 v,
o 1

and the decay of the amplituces with gr@wing distance 1is
'identical then, This result could be anticipated a;rgh?SE
rays are effected mainly by the velocity structure at the
cwlaximum. CHapman (bersonal communication) showed, that.the
: . dr ~%

geometrical ampligude given by |r EEI reduces to the same
exponential decay as that given by the zeroth order pole.

It can be said that due to the rapid decay of the amplitudes

a "shadow" 15 observed. Although the signals are present their

amplifude is so small that théy cannot. be detected. Thus: the

P Aea
A

"shadow" caused by the velocity reversal is very diffeérent .

fromathe real shadow caused by an interface when no rays
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propagate beyond the shadow boundary. \

The signals near a real shadow caused by an inter-

L
!

face are diffracted signals grazing the interface. These
diffracted signals propagate along the Inter@pce and emefge
-

at distances beyoyd the shadow boundary given by the grazing
ray and, therefore, blur the shadow poundary. Their contribu-
tion {s obtafined from the resfdues at the poles of the coeffi-
clent of reflection from the Interface, Duwalo and Jacabs
(1959) found the approximate positions of the low order poles
for a model of a fluid sphere 1in a homogeneous fledium. Thedir
result (in sphertcal Coordinates R, O, ¢)

3 3n

: , 2/
. = - [‘ )
Vo T kRO (14 u(hp + ) o Gere oy

giyes a decay constant proporxtional to wl/J- (v 18 the wave~

number 1in O direction i.e. equivalent to K in our case; R_

is the radius of the sphere and L Eiigj—is the wavenumber
at the surface¢ of the séhere ) The position of poles {is /77

slightly modified if a layered or inhomogeneous medium 1is

7

'assumed (Ph1nney and Alexander, 1966, 1969, respectively)
but thg asymptotic frequency dependence remains unc&anged.
The constant c depends on the boundary conditions and for

the models just mentioned le] < 1 . 1t is, however, ;rather

o
4

difficult to find c analytically. Chapman (1969) also gives

useful approximace expressions for positions of poles when

fy
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the parabolic velocity reversal lies near an interface. Then
the decax rate depends on the relative position of the inter-
face and the reversal and on the frequency range considered.
The diffractqg signéls propagating along the inter-
face or velocity reversaizére mathematically given by contri-
bution from poles of the reflectfion coefficient. The dis-
continuity on the travel-~time curve due to the shadow can
unl; be fnterpreted correctly when the amplitudes are analysed.
The frequency dependent amplitude decay Is basically different
from the frequency independent decay due to the reversal,
At short distances the evaluatiop of the integral
by method of residues is not valid (Appendix C) and the high
frequency approximation i given by (5,27) indicated by thé
chained line i1n Figure 5.8. This can be called the "{llumina-~
ted"” region in analogy go the case of an 1nférface shadow
for which the residue é%é}u&tion 1s not valid either gefcre
. :
the Shédowlbﬂﬂﬂdﬂry. The region Whénﬁthé saddle point
evaluation k5.27)‘1s nét a good approximation due to the
‘poles' influence, and the high frequency approximation is
.o .
%iven by residues (5.30), can be coﬁsidered a fshadow",‘ As

frequency decreases the poles' positions become frequency

» %
kY

dependent and both approximations become invalid and the

response integralumust be  evaluated numerically. 1Its values

~are 'shown in Figure 5.8 in dependence on range r = X . The

3
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: i
oscillatory character of the total amplitude for w = 8 is

gliven by the interference. of the two waves arriving at the
.
receiver almost together near the cusp C (Fig. 5.1). The /

)
amplitude oscillates around the geometrical values (5.28)

of the wave reflected by the velocity gradient.y These paves
.

form the. reversed branch of the travel-time curve in Figure
5.1 and are much stronger than the waves propagat‘ng along
the reversal whose geometrical amplfitude at large ranges 1is /

given by the pole's contribution (5.30). These come to the

'
receiver earlier than the reflected waves and form the forward

f

branch CD. All the amplitdﬂes for frequencies larger than
w = 8 oscillate around the geometrical value of the reflected
wave For frequenecies w < 3 the total amplitude is smaller

7

than the geopetrical value and decreases rather rapidly with

v
&

frequency. VThé EransmiSSion of the energy thrOugh the veldéity
barrier inCreAses at.low freéue;cies and the amount of reflec~'
tion decréases. ‘

'The resulté of this chapter;indic;te that "diffrac;
tion" at velocity reveréal; depends entirely on the velocity
structure near the maximum. The "shadow" 1s caused by‘large
geometrical‘spre;ding along the ray path. Us§ng the geomeprical
ray theory, Chapman (personal comm;nicgtion5 has’shown that

its growth 1s exponential. This is confirmed by the résultg'x

of the full wﬁge theory presentedvin this section, The o

-
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2
equivalence of the parabolic and "sech™ profiles is a very
encouraging conclusion as {t gives us a tool for investigation
of shadow caused by more complex structures. Provided the
wyoon 2o
sech profile has the same curvature as the part of the
‘complicated velocity structure that causes the shadow, the

amplitude decay shodld be equivalent.

‘.—"

5.3 Synthetic seismograms

The parameters of the Model 11 which was used to

compute the amplitude curves in Figure 5.8 are:

v, = vz = 7_.83 km/s

1 =
v = 8.05 km/s

Q .

o ~ 10 ' " (5.34)
z = 35 km z =gz = 0 km

[¢] & ) s r .

P = constant ' ¢

The velocities were éhosen close io velocities at the top of
the low velocity zone in Ehé Earth's mantle.

l Theorétiééi seisﬁograms in Figures 5.9 and 5.10 were
‘comphted Qsing the method desc}ibed in Section 4.4, Firgflthe
response integrél‘(S.ZI) was cglqulated by numerical contou;
integratidn for 8 frequencies rgnginé f{om w'= .5 réd/séc to
w = 30 rad/sec. Srom W =;60‘réd1$ec‘tp‘w’= 110 rad/sec‘the’/‘

fhigﬁ‘freqqepdy approximdtions were used. For the reflected

\
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Figure -5.9 The synthetic seismograms for the Model II normalized
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normalized with
At X = 700 km.
5.9.)

respect-to the amplitude
(Time scale-as-in Fﬁgure
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wave (5.28) was calculated for all Agrances. | The amplitude
of the "ditfracted" wave (or wave propagating along the
reversal) wasgapproximated by (5.27) when r = X < 650 km

and by (5.30) when r ~ X 5 650 km 1 / spectral values were

interpolated using cubic spline to obtaln the complete

,Speccrﬁm (Sectibn 4.4) . The unlt step fupnction source !
Pﬁ(t) = Hkt) and the (rsnsfér functifon of a selsmometer
given by (4.59) was ﬂssumedﬁ. Their ‘Qvoﬂvolutiﬂn ﬂf\;’ﬁr‘i the
spectrum~ in Figuwre A.23 andkthe Eééﬁanﬁﬁ of the selsmometer
to Ps(r) is 1in Fiéure‘é.Qéi

rhe synthetic“?eismogramﬁ in Figures 5,9 and 5.10
show Eleariy the rapid décay of the first arrlviﬁg wvave
that prépAga}eS along the maximum. The seigmigwiis in
Figure 5.9 are nﬁrmaliZEdleth respect to the méximum ampli=
tude at X = 500 km given by the Adlry.phase due: to caustic
Ctin Figure 5.1, The marks on the time scale are every second

~and the géametrical arrivals are marked by longer vertical
marksi The first arrival at X = 900 km is negligable when

ﬁprmalized wiEhjjesbéctho the amplitude at the cé&stic. For

g

greater distances thegfirsé:azxiving signal cannot be seen.

The same seismograms but normalized with resPéct‘to the
amplitude at x = 700 km are shown in Figure 5.10.. The sgcohd

arrivals are the waves reflected at the velbcity gradient and

Y
-

are much sfronger; At large distances only these can be

. . :
observed.



CHAPTER 6 CONVERGCENCE OF THE RAY EXPANSION

' ' é . .

Theoretical selsmograms presented 1in this thesis
were computed from exact Epstein'ﬁ solutions (3,.20) of the

wave equation (Epsteln, 19130). One questign arlises immediately:
, &Y :
what would the Sais_mogramé look like 1f the Epﬁein profiles

were replaced by a stratifled medfum copsinting of homogencvous'

layers, The last has been studied extensively by fnany authors
I #

(Thomson, 1950; Haskell, 1953; Brekhovskikh, 1960; Gilbert

and Backus, 1966; Miller, 1968, 1969: Hron, F. and Kapasewich, 197
A 7 . :
as 1t represents the simplest approach to studies of wawe

/

propagation within the Farth. (isternas et al. (1973)

showed that the exact solution Hf this problem, represented
by Thomson~-Haskell matrices ﬁaJ be expressed as infinite serles

i

=

T

™

whose terms can be physically [interpreted as rays, Fac 'y

is represented by a product o reflection and transmission
| , ;
coefficlients at the interfacejs on {its path. Thegsaare inde-~
' £ ! . A i » :{g ‘
pendent of frequency and Cagnliard-de Hoop can be applied to

obtain the solutioﬁs in the |time domain for each ray (Cagniérd,
1962; de Hoop, 1960). If;tﬁe contribution from all rays in o
the "complete" ray expansioh given by Cisternas et al. (1973)

were evaluated and added to give the exact reSponFe of the

medium, enormous amount of compufing time would be required

even f.r a smdll number of layers. Thus only the most important
2 v . B / sT o i

. rays, i.e. those 6£_max}mpm amplditude, arxe usually included

]

-

g

3 R . [
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and huf rcsF of the serifes Is neglected, Jhe use of the
"partial’” ray expansien is only justified {f the ray serles
is convergent. “The convergence, while assumed, has never
been proved apnalytically, and the reason probably 1s that

- A
ft 1s rather difficulrt. Some¢ of the problems encountered
when attempting to prove the convergence of the ray ser{es
as well As a proof In one special case are discussed 1n

Section 6. 3.

The wave equation can be dntegrated numerically \
; 2 Eany
~ » A

for thé~rnntinuaus veloclty profile and for the layered
medfum, The solution to the firsc prnbrem is equivalent
to the analytic solution obtained by Epstein while the other

is equivalent to the complete ray expanslion. .The errors

Introduced by the approximation O6f ‘the continuous model by

n 6.2, We also,study

<

layered medium arce Studiédgiﬂ Secti

the partial ray expansion. that includes only the once reflected
rays and investigate the error arising from neglecting rays

with more réflections.s

i in re 1 N £
6.1 Fundamental solution : .

0O ~ gﬁg;__ u
wp(z) i o7
= 2 b (6.1)
pw 0 ‘ P
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after the transformations with respect to time t and r
The equations (6.1) can be written {n the matrix form
dX(Z)
s = MOV (7)) : 6. %
dz = ”( ) (6-%)
and the solution of such an equation is glven by
v(z = P(z,=z V{(z 6.3
V() = RCeam ) V) (6.73)

~
2

where P(z,z ) 13 so~called propagator, introduced
= . O . r ;

seismology by CGilbert and Backus (1966), Tt i1s a fupndamental

i

matrix such that P(z ,z ) = I {(ddentlty matrix) and 1t can
= "0’ 0 =

pe.

be found from

=~
-
N
-
N
o
i
=
A
N
"
e
o~
N
]

""lj é (6.4)

El

£

where f(z} is- any fupdamental matrix, A fundamental matrix
is a néﬁgsiﬂguiar solutdion of (Ssi), Gilbert and Backus

!

(1966) stated that formally

z
P(z,z ) = exp | M(E) aC | (6.5)
2z

‘which is applicable parficularlygié ﬁ(&) is independent of =z .
Thus, if we ;;sumé:a medium of homogeneous fayers (Fig. 6.1)
and‘cthse ad'interméﬁiate pointf;i in i-th layerx

. \ .
g(Z)v=‘§(€i), s ?i*} S z< oz v (6.6)
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The propagator (6.5) s,
d
\ Pz y oot T 6.7)
LT @ n().
- ‘{'
where L‘li =M ) and (11 - [‘1 -7y ] We %18”0(,(* N a matrix
of elgenvectors of M, 1.e |
’ = !
!
moeon e - (6.8)
R B 5 f
bere 5(O) ,,J , e
where B 15 a diagonal matrix of eige ues (we use the
notaticn Introduced by Chapman (1973)). /The columns of N
are plane wave solutions and the elemen Tﬁ (f‘B(D)
i AN 5/ (6.9)
/
. |
are their wavenumbers VWE denote N, = N(f )} and E(C) = E<67(F )
? G aL HAVERMADELE. 22 T =g RS & 24 = 1
% i -
where 1 corresponds to the 1~th homogeneous laye The
pfopégation in the i~th layer is given by
| (o)
M:d _ i : B .7 4d .
_ =1 1 2 2 , =1 1 -1
P = = ] 4 d P = N, N
=( i’ 1»1) € 1 Ei i Ei 1 f =i © = {
/
r |
i Q : / (6.10)
’ ko o)k | -1
since gi §1 B Ei
Thus the solution at the i-th layer can be written
(0)
(6.11)

' 4 w0l ,
Y(zg) = Qi«??“ ; ERACTISY)
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and the physfcal Interpretation is evident: N; resolves the
displacement and stress at z = 2.1 | into plane wave components

o
i_i( )(11 )
[ mul(lpll:‘s each component by fts phase across the

f-th layer and i}}l recombines the plane wavas Into displace~

ment and stress at z = £y The total propagator across the

@

layered medium was given by Gllbert and Backus (1966)

K
P(z_,z ) = 11 P(z,, ' L
Lrynz ) mokCz, 2 ) (6.12)
‘ 1=1 .
Therefore it contafns products
7 = ’:7 76"
ii ={+1 Ei ( 13)

which represent the transfer fupnction of the {i-th interface.

The vector of amplitudes of individual waves at

]

the (4~1)-th Unterface is i .
= N, V(z, .) (6.:14)

while the vector of complete solutions -in terms of plane
' A 4

waves including phase function in the 1-th layer is

(o)
By (rmzy y)

Z,(2) = e X (z, ) (6.15)

TWéﬂreflegtiﬂn—transmission problem at the i~th intesrface is

a solution of
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Viz, -~ 0) = vz, 4 0) (6.16)

"

b.e. Ny Xy (20 = Ny X (50

There will be as many possible- reflection and transmission
problems as there are columns of N (see Flgure 3.5 (n Chapter
3 for acoust{c case). Thus, the reflection-t alsmissioﬁ
problem can be solved‘using’matrices at each {interface,
which, of course, i;'nothing new because it represents the
Thomson—-Haskell method, develépéd twenty years ago (Thomson,
1950; Haskell, 1953). Thus the Thomson-Haskell matrix method

is equivalent to finding the propagator E(ZK’ZC)

: {24 C o)y gloha
PCz_,z ) = N_ e K Kz ' U/ S - 2 'z-z e 1 1 Nﬁl
A Ex , Ex~1 © thrtttoER 21 =1

- (6.17)

and , V(z) = B(z,s2) ¥(z ) (6-18)

)

Cisternas et al. (1973) showed‘that if a vector X
is formed of all Geqtors 51 1 =1, 2, ..- K, the reflect16n~
transmission p:oblem in a layered medium can be written in the

following form ¢

X =2 X+ X : O (6.19)
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\

where X {8 the source term. This can be expanded 1nto

infinlte serifes
X = QX (6.20)

and Cl{sternas et al. (1973) veri%led that terms in this
power gﬁ}ies represent physlval rays. This 18 an 1mp0rfﬂnt.
conc]uéﬁ%p because 1t gilves a new interpretation to the
Thoméonfﬂaskell matrix solution which 1s a complete solumioy
of (6.2).

Hron, F. (1972) showed how to generate unconverted
rays 1n such layer;d medium and the fo;%ulae he obrtained
determine all rays possible 1n the layered medium, He

T

introduced to seismology so-called "kinematic" and ;dynamié

ganélég%és“ in order to déS?Tibé groups of rays with identical
properties. . The waves which travel in tﬁé layered medium
along different paths but with {dentical travel-time g ves
(F1g. 6.2) are kinematically equivalent and thug called

"kinematic analogues". Their total number Nk depends on the

half-number: of segmentgﬂin each layer 0, (Hron, F., 1971)

\5@ .
. J-1 n, +n -1 )

+ v : :

Ny, -oeomp) = o oc At (6.21)
: o d=1 i+1 :
: .
;where “ s,
1 , Cn +ni+1 1 ) (n1 + ni&1 1)1 s
n ' n, '(n, 1) <



161

(¢

Lely
Uuelu

J

—

——

—

29 2i1nipy
i

(Fu = "luy 1y sanbojeue anewrsury Jo saqiny

"

i

2= 1 .

dNOY9 IILYWINIH

3

v

<

e

g

Ay



162

are combination numbers, The group of kinematic analogues

consists of several subgroups of waves which have identical

amplitudes. These are called groups of "dynamic anélogues“

(F1g. 6.3) and the number of waves within each group depends

!
on the number of reflections m1 at each interface:

. J-1 n, n1+x~1
N(on,, ... n 3 m , .,.m_ _) = 1 ¢ ¢ (6.22)
d 1 J 1 J-1 (=1 m vy 1
- \ ’ //
where vl = n1 - m1 is the number of transmissfions through the

i-th interface (Hron, F,, 1971), The amplitude of the whole
group of d;namio analogues called sometimes "total dynamic

effe

o)

t of the group' 1s evaluated as a product of the
amplitude aof one dynamic analogue and‘the'number,Nd . This

aves a great deal of computations where the thé7rétiéal

8
selsmograms are calculated,
Based on results by Eron, F. (1972), Ehapman (personal

communication) showed that the complete unconverted ray

exPénsion in the medium consisting of K homogeneous layers

i

overlaying 2 homogeneous half-space (Figure 6.1) 1is given by
the expression in Figure 6.4, Although this expénsion is
!

basically equivalent to that of Cisternas et al. irs ferms

LR

can be interpreted more easily than the complicated products

-

of matgices in the series (6.20). The time transformation

given by the Cagniard-de Hoop method is (Helmbgrger, 1968)

” * .
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1 - pr + iél 2n1nV1dir (6.23)
and the term ‘
h¥el \
nJ—l_l nl»I ny J~1 n1 _n1+l~l mi4B \)1
S22 5% 1) G Sy T 15210 %22

m1=max(0 ,n1~n2)
: -

Y . (6.24)

mj_1=max(0 » 1 g ~nf)

represents the total amplitudeﬁof all rays with identica’l

%are the COEffiLiEﬂtS I

I B & 3 . S . a :
arrival time T 511 and i 22
Ll H !
reflection from the top and bottomfof the 1-th 4interface,
N L \ N '
- / B 4
respectively. 1512 and 1821 are c§§ coefficients of{trans~

mission thﬁaggh the 1- th dinterface in positive and 1egatiVe

v
z directlon, respectively (Flgure 6. 1)
In pract;se ‘only the partial" ray expansldn is
used, which means that for given number of .layers K only a

finite number of kinematic groups is considered, and within

.i , ) J
these only the dynamic groups with significant dynamic effect
are taken into account (Hron, F. and ﬁa;asewiéh, 1971*-
Miller, 1970;  Gilbert and Helmberger, 1972). ‘The partial .

el

Mie1”
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Bulirsch and Stoer. (1966) was wsed to ohtain the ‘soJution

» 166 ,

. ( .

'
Fay expansiop may be viewed as an approximate solutfion of

-

(6.2) that does not satisfy exactly the boundary condit {ops .
At each Interface.

The equation (6.2) can be solved mumerically fpr.

both models, the FEpsteln monotonic transitdon and a stratificd
4

medium of homogencous layers, The first ylelda the exact

# A ' . . .
csolutions (3,.20) and the other will g2lve the complaete ray L

A

expansion {n Flgure 6,4 which should converpe to the {irst

+

one as the "layer thickpness decreanes,  The partial ray

. . ) ¢
cexpansion can be obraiped adding raya with certlain pumber
- V 5 V Fr :;\\ ; H
of reflactions Mt each Interface, The bebhaviour of the r
7 AL ) o !
ﬁWlJﬁinﬂﬁ wirh respect teo the layer thicknessen in studied
:" : ' . : N H
in éhﬂ next sectinn, )
/ 4 .
6.2 The 'r’hﬁfﬁﬁkﬁ'\ﬁ’ cquatien
e e T T e e ———
E? H
LS
o nccions

numbers
i

Eﬂnatiﬁﬁi(6.2) represents four equations,
' b . B -

gan he y integraved step by satsq

a knowr function., Many mumerical methdds axist for Intogra-
: : z !

~ ¢
N E
P : |

gliqn Of}o_systémé— t:x.U'(".]l CAE (6: 1) .. A very Fﬁfi(‘iﬁﬂt Vmét_h(’)d' by h

L.}

J

»

~

! v . AT , : ' )
V(z), Foér this .méthod, the initial values must be known*and#» |
N r . ' ! ! ' Ct

the aQQgTaCy pf the integration depends on thelr accuracy’.

f K & [ Y
LI : "'1 . . » if . » . 4
. : . ot T " » ! [ -~ [
. ‘ . . - p B
;
] ’ “.‘ +=7F 5 S
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In our problem it Is not difficult to determine the {nftia
values as in regions far above or far below the apomalous
region centered around 7.=21 the plane wave sol@tlons are
1 .
valid (see Chapters 72 and 3).
R L.}
‘ For the monotonic velocity fncrease glven by
~
1 \ ./ o Y
) ) /a0, RN e
v(iL) = (g t 5 e ) o (LA et ) » (6.79)
Ve v v,
1 2
where 1. =~ (z—-2z ) for ¢ = const, according to (2.14)
) mn
the verrfical wavenumber 1s
X,—.
A 2. S
Qo) = = K) (6.26)

&
Above the turning point of a ray., LT’ two travelling solutions

should be presecnt while below the turnipg polnt only the

solutdion 45 valid, From this, the
‘ H

@

o
where Re 0(L_) = 0 at L >» 0. .
x . i ( B ) ? K . ;’I ’
. 1- [
ir .
' ! e ' 1
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boremalng

whone

turning

.
i
n
constant and
pofnt s

represents th
at ('l‘ (h.24) .

e parameter of

Severa

At ter
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the nay

1 testns of

the program {0 was found that the {uftlial values should be

taken at

lengths below the transition,

depth with

computing

he depth f”)W

respoect to {

time required

[t is evident

hich 15

This seems to be an
he accuracy of the results
to calculate them,
from the ipnirial values

approximately four wave-

optimum

and the

(6.23) a/{m

%

the matrix M fa (6,1) ghat the pumeyr feal solution V(L) of
R -

A
P

(6.2) remalns real for all 70, Thus above the turning polint

it represents a standing .

»
ez

wave rather than travelling waves

Analagously ro "(6.14) these solutions

we rwould like to study,
=1 ¢
can be obtalned from the matrix gﬁ i _
. ¢
: g
a,j,) s! E &
" 7 ) , 5 \
The matrix of cigenveotors N ip glven by .
- Coe
’ - 19€%) LAecn)
L e j ﬁﬁQZ' 9“2'4 -
i E (C) = - ((). 29)
. 1. 1 : T
. ~
b and’ the vector X (L) {s f¥rmed by ' the solutions repreéesenting

_the Qavesitravelling in the positive (X+) agd negative (X )

i .

. C~dire

dtion:



>

an«l

1\'{5‘"%‘

from (6.1) we

7

Lo
20(r)

() =
7
! ipw’
F2Q(8L)
obtain
2
bYe = Lp _ ij;)i‘;
x* Lp 70 u,
1 2
= S 4= :EJ” ii
Xﬁ I+ N i -

—
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(6.30)
(6.11)
((i).B?)

where

[}

wihen [

"B =

/

Z.fkm

b4

-

W

it

=

100 rad/sec, sin 0, = .887965 and the
relétive—grfﬁrlgf the integration is less than ¢

10;'5,» are

1

The, numer{cal soluftions of (6.1) for ﬁddel TV (4.50)
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denoted )(1 and X . These are conmparcd with pumer leal

solutions of (6.1) for a stratifded me i of homopgeneous

layers which are denoted I‘X* and I.X . The last Tepresent
the complete ray expansion in Figure (3.»4 and V;lu)ul(l be better
approximations of X; and - X as number of layers Increasces.
The layered m(':<1iullx I's obtained from the continuous velocity
MD&TE;] IV (4,.50) by dividing 1t lnt'nﬂn‘quﬂl steps In velocity
bv The moduius of X+ {s ﬁnmparﬁd At the point [r-nnd at

the turning point (’T‘ to the modulus of the complete ray

-
5 h)
expansion IIX ], The polnt f,  lfes 70 km above (he center
o r

of the transition 1.e, at the same level as the soure e and
recofvar for synthetic sedismograms dn Chapter 4, The percen-
tage error L

H S~

N
&

for Model IV, w = 100 rad/sec and A .5 km 14 givém 1in i

”

Table 6.1. 1t {s evident that at thip frequency the results

for both models become gquiva}éﬁt only {f the number Qf’layéfﬁ-

PR B : ) . _

is very large. The percentage errors at both points are less

than 2% if the number of layefs is greager than 400. That 1is

" ¥

il - P F

such a great pumber of layers that Lf the %agniaidfdé'ﬂoﬁhf
. ! )

method wiere used to evaluate the synthetic ?eismograms it
] s b 7 ) : . N ’ _ V -
would consume enormous amount of computing %ime. Thus we! can
It ')" t " .
.i 43

.t

i o S
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THE PERCENTAGCE FRROK OF THE COMPLETE RAY EXPAMSTON
FOR MODEL 1V AND W = 100 rad/sec
Number of Layvers ’ Frror at f_r*?«if’(’).km Frror at "
K ) B3 I VS
)’ 99.98 99 .98
4 \98.96 99 12
) 95 1 4 95711
? Ba 172 813,81
10 68 .44 . 61-7*.‘}‘
rs 8. 05 50011
20) ‘ 18,673 " o WGI
30 7 76,18 26.99
40 ‘ "19. 84 20 .41 L
50 16,05 16, 34 , ’ .
60 13,50 . 13,58
70 11L.66 i 17,78'
80, , 10,27
90 95108 ) . 9,091
100 | 186 8,144
A126 6.760 A : 6 .83 »
1140 5,730 5,703
160 i 4,946 E . 4,940 = 1\
180 ~ 4.316 - 4:347
260 : ©oo3.853 3,963 a
250 " 3.005 s 3102 o
\ 300 ﬁ 2465 o 2591,
350 T 2,095 o ,.’2~17‘
o 400 Ly " 1.828 . 1,878 :
450 .. 1.625 '1 1.672
L 500 1465 R Y
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an

aparn apprecliate the value of the exact solution (3.20) from P
which we were able to compute the exact ri\'/n[hvtlt' S MoK ams
withont runoing into the atorement loned dfitffeulty., Muller
(1970) computed theoretf{cal selsmograms for a llonear (ransi-

4

tion 1. km thick with velocities Vl = 6.4 km/sg, v, = 8.7 km/m
] ) ) R 3 ) o - 3 ) B
and densities {)1 = 3.0 g/ecm and ;)2 = 3.3 g/cm . He found

,

that the selsmograms at epleentral distance of 1950 km for

the lipear transitfon are equivalent to seismograms conputed

3

for., a layered medium with 240 layeras. The transition In our
Model 1V (4.50) 1s thicker and continuous and the rartio

Is greater. Thus.the first guess on the basis of Mfller's
: 1 -

conclusion 1s that the number of layers necessary fpr a good

aur

~”y
—

1 i
ol
Bl
7
b
W

1
2
1
=
™

el
o]
s}
=]
i
2y
>
~
p
el
pon
o]
X
-

ed by Cagniaxd-de Hoop method require a great ST

deal:of domputing time., That is why only the most impottant

rays 1.,e. rays whose amplitude are the”largest, are considered,

. , ;o ] ‘
i _ ! ; T : :

‘when the cgmputation of the synthetice séismogram is performed.,

» . .

"The amplitude. i1s dependent on Number of reflections and
- . | - ' o
transmissions the ray buffers o’ its path from the source to RS
o L. * . L ) \» i “i;\
the recetver. - We @ill suudy,%he convergence of %Ee ray . ¢
Lo - ' » ISR : " R N
C . R ; , . o o
expansion analytically {in the next section. ' Tn this seéctdon,
’ ; . N + N
b ) ~~
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however, we would Tlke to demonstrate some of the weaknesses

that the partfal ray expansion can® have. The accuracy ol
the partial ray expansfon depends on the correct choflee of

rays that contribute most to the amplitude. Such ¢hotlce 1s

often biased by the personal judgement of the authors -~ ssually
the rays that suf fer” onld one reflection are copsldered to

be of greatest Importance, The rays with multiple reflections
; 2 N
¥are considered to be weaker, We shall try to point out that
’ . a - B
this 415 not always valid and that alse other than the rays

with bne reflection must be taken Into account 1f wo want t

e

¥

obtain a meaningful result. To demonstrate th» nature of the

)

approximation gjlven gg,rays with only one reflection a pro-

gram was, written which adds all contributions of oneec~

”

reflected rays (Flg. 6,5), . i ®

The congribution pertinent te the ray

P o iwg(n) n
J) w5 . 5 . .5, S ' 6.3A
X px(l) 0 B A PO P P 1721 © { ?
- i=1 i
where X( is tbe“ampiifude at the pointjCS~.
- > : : \
o A 0
LS = .S ﬂ‘iyglpjiil g are trénsmissioh~iéaffjcients -
1712 1”21 0.4Q, .. re, ‘ moelt ' ,
- "1 : _
# . ‘ . racrbss the 4d-th interface , -
, , : -
Q ~Q 41 s :
leu it freas L “ s atlte coeﬁﬁfcient of ;reflec~
P U N AR |
o . N ‘tion from the L-th interface
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l.plane waves propagating in the layeced
. :  medium.” '\ o ¢



O = wl5 = p ) and ¢ = pw = constant are vertical and

horfzontal wavenumbers in
the I-th layer, respearively.
¢
G(r) is a phase xalin attributed to the ray path covered by
) <
the ray on 1ts way down from polant ¢ to the reflecting
5

fnterface and up from the reflecting tnterface to the

recefver, ’ -
~ ' :
The contiduous velocity profile from Model 1V was

.
e

divided into hom 7g neous layers 1n”"the same manner as when
< il 6 R o i B
the complete ray expansion was studled, f.e, Into equal steps
- ! . * ~ ”

in velocity, The amplitude at the point [ =~ [ was set
' 8

equal to the exact value X, at L _ =1 (20'km aboveg the center
a A s T ) . / i

of the tyansition). At each finterface the contriburion of

rays-reflected once ar Interfaces below weréfhdd ed to form
the amplitude of the wvave golng upwards, Sue h additiﬂn”

! ' : Q
depends on frequency, and layEI‘ thicknesses and we observe an.

B 2 N
»

1nterferenCe phenomenon. Thus ¢he returning wave has varying e .
. [ LI

,amp litude which depsy Pr#&weqpﬁﬁc and the numbériof layers.

e o % )
Thus we cannot compatie :ﬁis vaL# in any way to the complete
s i

- e . i \

ray. expansion result or to ‘the Tésu]t for*the continuous

.
B

ivelocity ptofilé. We chn,'bokqver, compate the amplitudés at
. ‘ LT S
‘che Lurning point of the ray FT'of the’do?ngbing wave which

represents the first term in the ray sérias Yn Figure 6. 4. Ihéi

&

perCentage error of chis partial Fay expanslon N

o
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evaluated for the same parameters as in the previous example

N

in diaplhycd in Table 6.2 as a function pf number of layers

n ) £
K . We "see that the error does not decrease with the number

¢

of layers but remains rather large " 147, We can plot the
o ) . .
absolute values,of' the percentage errors for the complete
. o .
fay:éxpansion and the partial ray expamsion (Figure 6.6) .
: , . ,
The shaded arca between the two curves can be interpreted as

-
5

the difference: due to the <On rriburﬁon of multiple ne flécfed
rays In this sﬁfady state case,. The di:uatian 18 slightly ',
differenct 1f response to an impulsive Bource 1s investigated,

11y for the first arrivals. Several authops showed

o

&

¢
s’

ﬁ

i

Gl

e
Py
%y
£

r

that in this case o ed rays give sufficiently

3
s

e refl

accurate rksults (séé for example, Helmberger, 1968). For

later arrivals the 1Luatio€}is different and multiply rEflected

rays must be taken {ntd account. Miller (1970) computed

~

5
theoretical seismograms for media consisting q{ homogeneous

#

}  §
layers using rays W1th different number of reflections. He =

.‘ "-,s

showed that only minor differences exist between the ! Selsmo~
zgrams whieh include rays with only one reflection and thdSe

which include rays with three.or five’ reffectlons, prov;ded

©
N

iﬁhg meding Has "moderate" number of -layers. (10 15 in his case)

~
!
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THE PERCENLAGE T'RROK OF THE PARTIAL RAY

EXPANSTON FOR MODEL IV AND w = 100 rad/see

Number of Lﬂyvrn” Frror at [T
77777 R el
- v A
3 W 15.79
4 - 3.618
5 2.608
7 . ' ~ 4,987
. 10 ~ 5.AT75
15 - 8,532
20 ’ ~10,15
30 -7 ~11.83
40 ’ ~12,69
50 ~13.22
60 ~13,58 N
70 ~11.74
BO ' ~12.18 .
90 f ! ~12.52
T 300 y. ~12.79
120 e 21320
140 ) . ~13.52 .
" 160 ' N -13.,75
180 . 1'- . 713.93 .
R L S S 1332 p
NN ) 250 AR . ‘ ~13.72 ’
| © o300 .. . \ Lo-13.49 .
] 350 o ~13.76 - . .
460 S § ~13.96. .
450 o Yoo -13a78 0,
= Y .. e
e /

“Table 6.2
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T ro'le in evaluaé}on of the amplituqé.

- 179
A,
Nevertheless, for media with greater pumber of layers, /the
multiply reflected fays cannot be neglected. Wadding
: T ' Y,

(1973) also showed that considerable fifferences exdAst @
between the seismograms which include only once reflected
rays and those which fInclude multiply reflected rays. . "

The purpose of ihis study was to demonstrate the

i . . ,
nature of the approximations of the solution for continuous
velogity trapsition by complete or partial ray expansions,?

. .

lt Was shown that the error. in the complete ray €xpansion ¢
i , ‘ ) N g‘
with respect to the exact Solution 15 due to, the bad s

v

approximation of the continuous model by 1ayeﬁed médium when
! -~ : *, N I

'v’-, . ) A ) - ! B
number of layers @xAmall. The main source qf the error 1in
" ; EQ 59
ahe partial ray expansion is in the cholce 0f’rays that tdke ~J

»

1 L

part in'the partial ray e¢xpansien., With increasing numhej of

layérg the number ofwtays with Chjﬁé’éf five réfléétiﬁﬁs/ -

grows considérably ‘and fheir. contribution plays a signifAbant
i é ) R .

A - 5 : . i
s i . . : f- i . s f
! 5 sz 0 . n :
. o ! ‘ . . '

6.3 Convergence of che‘réy-engnsfon

"

“In any ray éxéansion thevamplipu :‘rafs décrease
. . ' ) R PR | ‘ ) i .
with ingreasing number of reflections and reﬁr%ﬁti ns.. This
‘ ' B . * « ] ' ! .
o ‘ v e o .
justifies the use of partial ray expansion in practise. The

itude of one dynamic analqgue:may,'however;'

F

decrease in. ampl

‘ [

"beﬁcamﬁmnsgtgd’ﬁy their;humbér-in the“dynamik'gtoup.-ﬁThe

.
K &

4 : eyt : : . < : v
N B i . | 7 i ) ! : '-«




& . !//,'
totwl dyndmie effect pf the group of dynamic analogues dvpv'mis

on their number fn the gproup N1 (().&and on the amplitude
[ B e - '
ot the dynamfic analogue., Iln order .o study the behaviour

of the total dynamic effect the proolem will be simpliftied

o .
by assuming only verttcal or near vertical reflections. The

reflection and trapsmissfiod coefficlents at the f-th Interface

L2
“ar e
0O -
’ S‘ = — CA L —?717.1;#7,1
{1 1727 Vo4« .
: 2 21+1
- - :"( )
P ) ) Z ()i )1*71 o3
= B SN S-S R
- PR .
i 1z i 21 Q% ?ifl
r , - A
o B n B ,('A)f) ,2' ? i
where - . Q‘ = (—Q K ) .
- v
p !
fg ' ’
In the case of near vertical reflectians they become
! % £ 3
' P
v
G O
g s A o= 5 0= 3.2 e
11 1 2
i 1 J . 71 2 Vi%j .
-~ g
A s 7 3&5"1) g .
) P I S_. = = A 6,
1712 ° q¥ 72 B LA (0
r i+
& f % .
for Y << 1,
Vi+1 ’ : ﬁ
A ; . ‘ A

Tt 4s.assumed that at the free surface z = z (Figure 6.1)
. . e c ‘

"the reflection céefficient 0522 =~ 1 . The layers, are

t o - \



('(lut;tn fh such a way that the reflection and [rilllt‘ilniﬁ%ﬂrv

constant (i M. the dindlees in (6.36) can be omftred). Thus

the amplitude of a dynamic analogue depends only .on the total
. Y

number of reflecqtions and does not depend on thedrndistribu-

. .
t{on on the Inrterlaces. The number of reflectiong at each

interface s subject to condittlops : ‘
A
ax (0, -n ) © m P | (RS 1,,~~‘1= ! 6.7
mar { ny l'fl) | o 1 R (6 )
A
implied by (6.,24), In analogy E‘i(lh the dynamic analogue

.
characterized by number of reflections at cach fnterface,
! *

the dynamic analogue Charﬂﬁterized\ by total number of reflec-

a1

, - 7\ : ~
4 tions can be called a “generaltzed dynamic analogue'. This

is an 1mp6ftén@ﬁimp1ifiéatiﬁn which 'allows us to rewrite

the total amplicude (6,24) of the group of kinematic analogues

arriving at time (6.23) . )
T 3 V ,I : A
» T ‘& W* 7 zﬂiﬁvrdi
- Fodsl +q
in the Tollowing form .
4
Mmax ’1 Mmax
2 Ay rnsMy = Lo /% (6.38)
Al . M=M L K M=M . ﬁt
min min .
\ /T( is the totalsnumber of reflectiops alnhg the ray pf%ﬁ

-



}/t = L m,_ + 3} (n hvi) t,n] + n. ~1 = 2M + ?“I - 1 (6.39)

M (s the total pumber of reflections from above the

fnterfaces 1 = 1, ...val
M = Looom (6.40)

Every kinematic analogue (6.23) has total pumber of segments

equal to

TCZN o~ 2 N (6.41)
1=1

I3 Y‘ ! .
where ny is the half-number of segments In//lchNIaye?i The
/ :
minimum number of reflections from above the Interfa (e

e

4o~ 1, ... J-1 1s glven by

T I
‘3 : s i O 1 "—‘7 A
Mmiﬁ ifi max{ Ry ﬂi*l) ///f (6.42)

1

i

The maximum number of reflections ffom above the interfaces
1 =1, ... Jd=1 48 gdven by .
J~1 .
= r n ~1 = ] ~ - J + 6.
Mmax (‘1 ) P nJ 1 (6.43)

1=1 .

The total dynamic effect of groups of generalized dynamic:

anaibgugs is denoted m and Jthe number of generalized ana-~

[



~

logues dn the group is L (N,M).

/ of nmo ’aAQ A, m : . (6. h4)
' . A .
where
M4n -1 ! //{ T i
A = (=1) J (fy) ! (6.465)
ﬁ{ | 2y &

Is the amplitude of the generalize. dvnamic analogue

caaracterfzed by //( reflections, Thus the total amplitude
-

of all rays (or all kinematic apalogues) arriving at Cfime
UM

1 is the sum (6.38) of total dynamic effects of groups of

generalized dynamic analogues. 7t (N,M) fs the -total number

¢

of generaliz=d dypamic analogues in the group of geperalized

dynamic analogues with //(réf:l@(jt'i(’)ﬂsﬁ

b

M)~ 1 N (e (k) f : (6.26)
. k=1 . \

n

and the summation is over all possible distributions of M

reflections into J-1 layers so that in the i~th layer the

pumber of reflections satisfies the condition (6.37) . b

N (ni,mi(k)),is thernumbef of dynamic analogues 1in the gfoup,
d ) ' ! \

where rnumber of reflectidnsrmi at i-th interface is given

by k-th distribution of M . The number of distributions of

M reflections into J-~1 layeré, subject to condition (6.37) is
R ta .

denoted by KM . . To .determine this we must solve the p}oblem

-y

‘'of determination_ of ghésﬂumber‘bf distinct w&ys,in which M_ .

, ‘ o ! o . .
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[

putions {s given by a simple recurrent formula

onrmula analogausly tgq that in (6.48);‘

: , 184+
i ! - ;‘;E \‘;
‘ i vy
. , - - . ) l., . %‘;‘{' i i \1
. balls can be distributed into J-) different ﬁi@:(»ckets ali‘?x,}wing %
. N - - x 5 . . V2 a
. - . ’ | )
at most I_ balls in {i-th pocket (1 = 1, ... ,él'—l).’ e J .
i “q . ‘ “-}:' "\;?‘i
e
- d { )
. l1 = n1~} - Max(_(),n1 - ”1*12 (6.47) 7
Eisen (1969; p 96) glves the solution to a simpler problem "
' . B )

Ley

of distinct distributions of M balls into J-1 pockets allomiﬁ&

at most 1 balls peér pocket. . Then the number of these distri~

N

k
Y 23\'«1

3 Ky = KM3J-1,1) =~ 2 K(M-2;0-2, (6.48)

s 2.=0 .
ue

and its results are displayed in Table 6.3 for the cage of”

maximum number of balls allowed pér pocket befing I = 3

By convention ao ' : ~ "
# 7 .l
b : ‘ : : : g '7 ~
¢ K(0;0;1) = 1 and K(M;0,1) = 0 forQ~g £ 0
, C o (6.49)

The formula (6.48) C&ﬂ;b?:g%ﬂéraliZéd for the céée, when the

A ) ] , o
maximum number of balls allowed per pocket is different for

\

different pockets. 'Generally, we can wrire

),
KM = K(M;J-1,1) = K(M;Il,lz, .o IJFI) (p.SO)
(£
fer Ii =1, 4 = L, cee J-1 Jand.generaté the‘récurrent \



CTHE NUMBER OF DISTINGT WAYS IN WEICH M-BALLS CAN B

DS

v

-

TRIBUTED INTO J-1 POCKETS ALLOWING AT
'MOST 3 BALLS PER POCKET '
. '

185

0 1 2 3 4 5 6 7 8 9
Lo . , rJ .
: Ll ! ! ) ‘ i
7 N
1 ‘_,& 3 4 3 - 2 1
1 3 [‘6 10 12 172} 10 6 3 1
1 4 10 20 3] 40 Lh 40 31 - 20

T
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/ ' [

‘11 1 -

K.oo="K(Msl_ I, ) = X KM-f51 I )

) : - ; -
M PR R 0 =0 / J-1
! - . N
R
(6.51)
f.e. 1t the first pocket contatins & bu]ls; where £ 0= Y or 2 ..,

or I ., the remaining M-% balls can he'dfstrlbuted into J-2

1
remaining'pockeLQ in K(M‘R;Iz, s n e 11~1) WAYS . Table 6.4
\
gives the numbers of distributions for I] ~ 2, l2 = 3, I3 = 2,

L, =~ 4 . The inftial values remain the same as in (6.49).

»For every distribution of N, given by ni,i =~ 1,2,...1,

~

f.e, for every kinematic analdgue, each of the - dfstributions

k, k=1, ,.,. K ~of M-reflections represents a group of dypamic

M = L3 -
analogues Nd(nffmi(k))" Thus . : el -
Moo 7 -
max : ~ -
% K, = number of all groups of dynamic
MeM - analogues !

R
e

When inveétigating Table 6.4 we see, that évery row has

maximum*for

: y | ,
s M = ~—'2’33’5 : Y (6.52)

' ~ : : s N
rounded up or down 1if M 1s odd. The fraction rounded down

-

in denoted .
- » ’ ) 7

M o= (525 . (6.53)

4
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THE NUMBER OF PISTINCT WAYS IN WHICH M BALLS

DISTRIBUTED INTO J-1 POCKETS ALLOWIHG AT MOST
YR THE FIRST AND "TH1RD POCKETS, 3 BALLS 1IN

1

CAN BFE

;)

87

BALLY

THEY

SECOND POCKET AND 4 BALLS l?\l THE FOURTH POCKET

M
1-1 0 1 2 3 4 % 6 7
0 1 7/
1 1 1 1 1 * |
o~ |
i i >
2 1 {7 7‘3 i F 2 1
3 1 3 L_6 8 8 6 3 B 1
4 1 4 10 18 26 31 31 26
Table 6.4
s (

4
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Afeter studying the Table 6.3 ft can be seen that the pumbers
i R . . . -

of distribution K , M = M s e M In each row mhsg
. My min : ma x P

always be’ smaller than the maximum {n the previous row added

. . A
I 4 1 times. Thus for I =z 2 -
)
K ¢ K t (I+1)"]‘?“ = M M | (6.54)
f MM l - min® °"" max .

-

‘In. the general case when the number of balls in the pockets ~

s not equal for all pockets the numbers of distribution K

- # M ’

can be bounded by 7 - 2

. i P \

Ky © Mag(1 =1, ... j-1)]772 M =M nenas M
M J‘,j,; ’ . k min’ " max
(6.55)
. j &
]

Fvery group of Reneralized dynamfc analogues contains
one group of dynamic anélbgués with maximum number of analogues
for glyen M., We will dénote this number of dynamic analogues

(ni,mi(k)) and we dan write an upper limit for'7T (N,M)

¢

by MNd
1

[vs])
e’

a ollows:

~t

(ICR TIPS (Max (1,921, ... J‘~1:>13"2 © Mg (R m (K)) (6.56)

N

To find the "most powerful” group of dynamic analogues
~MNd(ni,mi(k)) i1s analytically very difficult since from (6.22)

! n -1
1 P14l

Ng(rgomy )y = ¢ *c 70

4 1A 1=1. ™y PRyl
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Y

J'*] ' :-: .,
where M = .. m1 and n}i(k) is glven by the k-th distribution
=1 - : . [ "
of M, subject to the restriction (6.37). We were not able to .
find an analytfc way of de(frminlng Myd(nliﬁT4 )) . vaiuGleN
, Aan upper Hmid oy (6.272) can be given by N 7
L} > A )
n n-1 J-1
< (¢ 6.
ity (00 e e (6.57)
, 2 2
wher¥ n = Max(n1,1=l, J=1). This overestimates MNd(ni’mi(k))

but we do not know a better wa? at this maoment .

The pumber of

generallzed.dynamlr analogues 1In a group with i reflections

Is bounded by

. (v,

J-1
y AT n-1 - )
$ o3 ((n-1) §2 icﬂ—l): <6'5d), 0
2 ‘AN
Y

and total dynamic effect of the group of generalizeld dynamic

analogues is

el

/

| < 1

Thus if we can prove that the upper limit of /l7ﬂ tends to

‘zerg faster than (M

Loy o
l‘ﬁ((nl)c_
2

n

In

{
1 J=l =
- ¢ (6.59)
21
3l

the partial ray'expansion has been proved.

AL [N

(€.11) can be used to approximate C

Then

/

g
=M »”1 as n > ®, the convergence of
max “‘min
L
For large yalues of n the Stirling's approximation
\ : ‘ ' g ‘ S
® and ¢! 1n (6.577. P
LLE n. '
a 2

7" o o (
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~
—
Ly
<

“
' -
,
+1 J-1
¢ o (‘n_1 S 22" NS (n+l~ ) J}J rf ven
,E IEA]' - g ;:b or n eve
2 2
. (6.60)
b n+l J-1
2 1
¢t vAE 2 oL - (e } for n odd
n 2y m ntl
2 2 s

The only est'imate we could find for the amplitude of one

generalized dynamic analog A”f from (6.44) 1s

»

/A 1 - n 2n quv

: 1 v }
r la | - (Zv) 7 <(§2—V—> ! (6.61)

Tf we substitute (6.60) and (6.61) into (6.59), we see cthat
the upper limit of !/}WVI grows with n. Thus all the esti-
mates were {oo reugh to yield a useful resulr.

Many attemptsg have been made to finA a fiper

estimate and prove the convergence in the general case, But

-

all with no success. XThe,convgrgence was ﬁroved Only;fpr one
. . - ) e

special group of kinematic analogues which is the group of

) e ’ B _ i . g 7 R
kinematic analogUes with uniform distributidn -of segments Ynto

the layers (FLg 6.73} The symmetry of the problem intro-

3 e
duces nymmetry into the "mostﬁbowerful" group of dynamic

analogues (h ,mi(k)) which, in the general case, had to

"
a

be introduced artificially (see Eq. 6.57). This, as we shall

"see, 1s an impdttanc‘property‘and allows us 'to give more

- realistic est}ﬁatgs‘to all thé/g;ctots that éqntfibuge to the

[
K R . . .
) v i

5 :
S e
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Figure 6.7 Some .of the dynamic analogues
in the group of kinematic

analogues N{(ZJ,Z) r

-3
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total dynamic effect af the group of géeraldz.e;d dynamic

a "o §‘
EE ¢

r

analogues .

-
w

We will denote n a half-number of ®cgments Iin each

layer. Thus .
VRS
’ = S - 0 Cm ~1y ) -13 .
N n J s Mmln . Mmax C(a~1) (n-1) (6.62)
and " 0 < m, & n~1 -
- ’ L
J~1 7 ’
- ~~ o™
If M = ¥ m, then the recurrent formula [ (6.48) for the numbers
A (=1 . . ,
of distributions %f M tnto J-1 layers 4s valid 1Y 1 is re-~ .
. oo )

placed by n~1. The "most powerful' group of dynamic analogues
- ' . .
fs that with number of reflections m,;i'beiﬁg equal to (521) o
-~

(fractifon rounded down). Thus the number of generalized

analogues wttl; 77(' reflections can be estimated by

JUUN M) < xﬁ”-'-\,méfn; ()= 1N, M) (6.63)
X8 0 ’ )
' : '.‘1 # - w%’
where Y : ; P
‘ N L, ntl J-1 S iy
—~ 1 e .20 n~1 o1 P ~ 6. 64 L
+1 J-1 o A
. lp__\ — —~ -
N JF (N, M) E%T {% 22" 551 (nil); } for n odd .
o 7 : ;
After a c_onsifl,erab‘le amount of algebra it can be shown that )’

¢

W&i,M) has maximum.at M arﬁ the function is diagramatically

‘drawn in Figure 6.8. . 77 : o

“’(»‘\ .
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™~
e

N
/
Y

/
sv\"l/ .. . ,\\ |
(§TV> <:ERELAZC'. o : u<&; N
B S e L —y -

i - IR _ N — . ] -,: - ! =
- Flgure 6.8 Sthematic diagram of. the behaviour of the ampli-
- : tude |A N,[ of generalfzed dynamic analogues, of

-

ﬁﬁf number of generalized dymamic apalqgueé , '
JEAN,M), and of the total dynamic effectfl/%ﬂqJ.
The scales along the grdinate are diffé%ent for-

, all three functigns. The only purpose is to show.
the approximate shape of #hose’ functions. )

-
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The amplitade ot the

By It = M oo e
ma X

tertzed

n (hoth even and odd) dAs

A ‘ WYET: n’

— ,‘K)\/
~ Azl - (50

m o

The upper estlmate of the dynamie

peneral i,ed

reflectlions ¢nn be o

= A

effece t per

194

0

annlopue charae-

sUdmat ed tor

Ay (n=1)(J-1) . ,
7%)(“ ) ) (6.69)

\

tainl ng Lo ,('hv:

group H&t g(ntrﬂll/ﬂl dynmnh_ dﬂdl()}\l( 5 with N\ re fﬁx«tln& 15

. . ;_

I -

’v

IIGWYI

can write

i ﬂ{

Y

apd for — < 4% we
v

i 1im
n-Eoi

50 far we have proved that the
te the mpst pumerous or
dynamic ﬂnﬂlugu””
segments n. But this
+ 1fand represeants
*c .

1s to

a
(6a3§)i The next step

lﬂ’ﬂ?l e

total

¥most powerful': g

only one term in the

show that any of

}T(N,MT ' (6.66)
i (6,67)
dynamic effect pertinent

group 1s only dne of their total

serles

the M ' + 1
N ma x

groups of generalized dynamic analogues decreases with

!
increasing n.

1.e.

If M 1s the point where |/}

¢

has ifts maximum

(6.68)

all
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We are abl e

)
dM
where

Al

TdM

and-

)1
Therefore M =
o )

in

and therefore
approaches to

for any € »,0

}hé follewing

’

where ﬁv =

Lo

Figure 6,8,

2(+n) -1 and JI¥ -

C e 195
R L
find 1Tt posltlon with respect I()xwf"i:
dia | (
: Vi o d /(M)
N e 4 IA/HI T (6.69)
VAR P
by dv . B - § . .
0y ~2 log (;)fv) -~ 0 Yor M » 0 (6.70)
M o< M
WINEN > - ,
ARG =0 for M =M (6.71)
dM < o
‘ M M
M (i.e, /n = 2{M4n)-1 flﬁl) and the behaviour of

ﬂﬂdx/‘(N,M) as functions of M is diagramatically drawn

The derivative : ; s
(IIA;-V—I i '
— dM,Z( -+ 70 as n + ™ (6»«77)
M+ Mas n = = apd the maxinum of !g:ﬁil
the maximum of 7T(N,H). S0 we can say that
real, t\ére exists M .such that f?r any M > MO
, : o ! 7 ;
relatdion 1s valid
|4 [ 4., + ¢ (6.73)
b= T Ve

2(N0+n)—1.. Our objective 1s to

1nvestigatg the convergernce of the partial ray expangion when

the amplitude

of individqal events 1is estimated by “
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Mmis X - \
U A, 0 (NLM) N o=~ J , M =M+ 20 - |
SISO /4 . “
e ,
R (6.74)
° ¥ " 4
. “.u b .
et A .
I1f we use hffqr '}:thc’”uppbr l1imit of Un #
. 5;““% \ ° :
-, (“ | « M - y e A !
o ‘; ("‘(l “nl = ma x l/{ 7"' " (6 75)
. p X
,7\‘ —~— \';' '
e
whare Mmax = (n-1)(J-1) and 7“ = 2M 4+ 2n ~ |1 we can prove that
1tm U | = 0 )
~ n
n-+e
and therefore also
. . 1dm U = Q

n-+o n

Thus we have proved the convergence of the partial ray serfegs

which consist only

»f ,kinematic analogues wWith untform

into i{ndividual layers. We hope = /

jam

tstribution of segment

¢

fAe:]
iy
=
[

that the procedure showed the enormous difficulties encoun7/
n ! . / 3
tered in the attémpt to prove thé'conﬁgxgﬁnce generally. /It

- # £

looks that the decision about slignificance of contributdon
from different groups of dynamic analogues must be dohe

B H . : g A
numerically for individual cases. We haye not foundgany

b}

. -

theoretical criterion, according to which the ray series can

‘
b

be terminated at certain points with‘aésurancefthat the
remainder is negligable. Ce o ' o
v
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CONCILUSTIONS

r

pon—gcometri(al ef fects of the

|

wave propagation from a poinn‘sourve in the Fpstein medium p\\‘%

“In this thesis the

were studied,  The response « the medfum fn the frequency

L4 ' '

domain was expressed as an fdtegral {n the complex plane of

*

the horizontal wavenumber. The fntegrand contained the source

strength and the refléction coefficient that describes the
’ [
change of the wave onp 1ts path from the source to the receiver,

-

The reflection FO?fficienf for Epstein medium is an analytic

5
’

function -and the integration was performed both analytically:
and numerically. The analytic gvaluation is an asymptotic
LY

one valid only At high frequencies, The numerical fintegration

can be performed for an9,frequénpy'néeded for the determinaticn

r

~ % .
of the spectrum used to synthesize the seismograms., The approach

re to study acoustic waves in fluid media is well

m

used h

suited CO'5H waves in elastic media. In princip]e it can also

bé applied to 1nvestigation of é SV waves in elastic media

provided a suitable potential representation is emp10yed that

results in the decoupling of P and SV waves .at high‘frequenéiés.
. o ¢

The behaviour ofythe‘:isgénse integral in the

. ‘ *
vicini;y ef caustics shows large amplitude decay at high

”

N ™~

ffequencies. The amplitudes are much sttonger at low frequencles
i

v bf - a "

which 1is the result of stronger partlal reflection for longer

)

wavelengths., 1In Qhe region before the caustic that is the



-

., have very similar characterlistics.

198

]

illuminated region, 4he oscillation of amplitude due to the

interference of two arriving waves is observed. The maximum

amplitvrde is shifted from the geometriqai endﬁoiht into the

" & Ll
{}luminated regfon. For narrow transitions the behaviour near
‘ '

the céustic changes to critical point behavieur characterized
i

by interferepnce of the totally reflected wave and the thead

wave, The partial reflection 1q;strong4r and more like the

i
)
A

sub-critical reflection from a sharp vé3ocitymincrease. It 1is

() C . y
evident that the effect of finite dimensions of the %ransitldn

lalyer on partially reflected wave and tﬁe,hega wave g}owﬁ
ijh 1ncr¢asi:g thickness. The depe;dénc%jéf the heah\jii:éf
amplitude changfs with increasing thféknzss from'% tdfl andfd
should be useful for the 1ntérprétation of daf; when the
,tranqitionrthickness ?s determined.

For transitions with Qelocicy re?ersal the amplitude o

of the wave propagating along the reversal décays eiPonentially
‘'with dis%ance. The "shadow'" caused by this amplitude decrease
. ) Ll ' %
is frequency independent which 4is \quite different from a "true"

: ) P
shadow. The amplitude decay into the shadow caused by a

1/3

sudden vglocitj decrease dépends on exp (-aw ). Therefore when

'interpretation is done these phenomena can be used to distin-
) 7
guish between these‘two‘caSes.which.on the ;rave1~t1me curves
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!

The exact solutions for Epsteip veloclty profiles
can be compared with approximate solutions, for layered media.

o , v
When the continuous FEpsteln structure {s rfeplaced by a ldyered

N

medium, a'brocedure often used 1in seismolo%y to find approxi-
ma%e solutions fér inhomogeneous ﬁedla, the error arising ¢
from this approximation can be estimated. This approximation,
which depends on rhe'numbe? of layers and the wavelength of

propagating waves, 1is good oply 1f a very large number of

1

layers 1s used. WIthQXhe computers available at th'é present

time, 1t is impossible to compute the synthetlc selsmograms
i
- |

by Cagniard-de Hoop technique for that many, layers. Therefore
we must be satisfied with less accurate approximations of the

medium. But even for a small number of layers further .

approximations are~wade by considering waves that contribure

most to the total amplitude and neglecting the rest, The

study of the partial ray expansion shows that not only the

once'reflected waves are significant but that multiply reflected

i

waves often contributg significantly as well. Their contri-
bution grows with growing. number of layers and unless they

are included in the evaluation of the amplitude the results

s

are inconclusive. .
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APPENDIX A TRANSCENDENTAL FUNCTIONS

‘
This appendix contains detalls aboutl some proper-—
tles of the hypergeometric and Alry functions frequently
~ ' . -
usovd in this thesis. The results are srated for reference
~ : Ps

purpdses and their V’llsf'i\f‘(‘riltif);l s not fncluded.
: |

i
ALl Hypv Uomvlrlﬂ fun(flnn y

-~

'rTha formwlée An thls sectlon are taken from Erdelyl
et al., (19533, (haptc&: 2) Copbon (193‘) Chapter 10) and

Abramowt te and‘ﬁtﬂgun ()965 pié556),

The hypgfgéometric function : 7
R o V ,’ ..
. e €a) Ab)  n :
e o £
F(a,bc56) = 7 %ﬁ7§7~-n " ALl
Y =0 ' n i :
w#ﬁfé .
[(atn)
@) = T

2 L )
& B q) T ) ) )
0 £€1~8) E~—2+ {L—(a*b+19€} a2 . ab® = 0 A.Ll.2
\ dgz d{ ) : s
7,ﬂ,‘, . ’

The equation A:l. 2 ‘has three’fegular %ingularities at €1 = 0,

52'= 1 and ,3 = o, Copson (1935, p- 237) shows that a second

order differential equacion with regular singularities has,
' l

.
'

é
two independent 8olutions 4in” termq of ‘series. These series are
, : i 8 . ,
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convergent in certain feglons near the regular singularities.

For equation A.1.2 the serfes solutionsd are:

a1 f'l = 0 ‘IJl = F(a,bjsc;8)
Jl-c
'T‘? = (~1) Fa-ct+l,b-ctls2~c;6)
at £ o~ ] ' ¢, = F(a,bjatbtl-c;l-£)
A2 (Q,_a,_,‘) . i R
b, o= (=0) F(e-b,c~ajc-a-b+1;1-£)
. ﬁf -b . =S
at f = = Qi =~ (-£) F(b,b~c+lib—ahl;f )
Y - . e Nl '
@6 ~ (=) F(E,H%C*l;ﬂfb*;}ifjj
e
A.l,3

36) 1s defined E? the

.

The hypergeometric function ¢ = F(a,b;

P, » F(a,b;e
series solution in region |£| < 1 and hy the analycic’
continuation for |E[2 1n It is %§ggl§? for |€] ¢ 1 and we

shall ;Eé froﬁ?ﬁts‘anafytig scontinuation th;t 1t has two

branch pciﬁtszﬁt Fz = 1%and 53 ﬁ:m . ’ | (wﬂ;

5 \ 5 T : o , -
The analytic continuation 1s possible due to the

fact, that regions of coS&ergence around each singularity have

’

common regions throﬁgh thch the line of continuation can be

]

drawn. At the same time, an integral solution was found by

'
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A

B b {VBIid everywhere in { plane with
y i " ?’/1 ,\

Jarities\ F'“ [‘7 aud ["'5:

Bax‘xlc‘,é
exceptggns /
o

PFCats)'(b4s) ' (~s)

FL(E) = e (S sty (~6)7 ds ALl .4

4

The evaluation of this integral 1n different regions
of . plane which correspond to the reglons of convergence
around the singularit LQ*S glves the correct analyri'b: continua-

R N

tion for every solutfon 1n A,1.3. By confour integration in

the ,complex s plane along curve C. (Flg. A.1) we get for

1
el < an ,
/
IB(C) T F(a,bja3£) : A.l1.5

=%

(Copson, 1935; p. 254)., C1 avoids all poles of the integrand

in A.1.4 except those of I(-s).

For [Cl 7 0 the- integration 4inm the complex B plane
is férfﬁrméd along curve CQ which avolds 'all poles of ['(-s),

r

Thus we get

I (5) F L(b-a)T(a) (-£)"? F(a,a~c+l;a—b+1;£‘_1)' +

I'(c-a)

I'(a“b) I (b) b, I
T (e-), ) Fa,bctlboatl; £
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N +1/2

3

Figure A.1 The complex s pléne showing contour
for Barnes integral.



for || » 1 . The formula )
f I

Bives the correct analyrtic continualion of QJ. [t defines
the hypergeometric function ®1 for |£] > 1 . Similar formulae
can be obrtalined for all hyper§eometr1v functions A.1.3,

The merhbd ofvanalyﬁic continuation 1s well demon-
Btrated through matrix notation. If ’é denotes a folumn
vector of solutions convergent around 51 and 1Jé A matrix
of analytic | continuation from region €i=t0 region EJ, we
can write

£
13“1,1}313 1,4 = 1,2,3 / A.l1.8
v o o .
2 = <¢;‘> - <¢j>- L gt = <¢z> A-1.9

The following expression demonstrates the analytic éﬂﬂﬁinuation

”

of 1® throughout the entire ¢ plane;

¢ = . A .0 = ¢ = A .0 A.1.10

1— 12= 2— 12

>
N
W

>
At

> £ ‘ R
It is easy to~reglize that l3é 1

matrices of analytic continuation can be found froﬁ the
. N i . .

Blé . The elements of the

connection formulae between different sdlucions which aré

!

A

R



listed in Erdelyi et al. (1953, p. 10k). We are interested

/

mainly in matrix A which 1s

31

[(1-c)T(1+b-a) F(c—lLF(l+b—a2

Ag)  Asy F(1-a)T(1+b-¢) F(c-a)T(b)
312 ° -
A N (J~c)T(U+a-b)  I'(c~1)I(1+a-b)
61 62 F'(1-b)T(14+a-c) [(c-b)T(a)

A.1.11

The {indices of the elements of the matrix are due to the

components of the vectors they are connecting:
o o '
5 Asi o As2\ [

¢ = = i =

\ %6 Ao1 Aoz %,

' A.1.12

mw

: . -
" 'This may seem redundant but for use 4in Chapter 3 it proves

‘useful, Similarly, fof matrix 138 ve have

A5 Are\ Aoy Asgy ,

’ I p ~ 1 1]

132 = L G ™ PRI A.1.13

A2s  Aze “Re1  Asy 4=

o«
: | e
: a~b ) 1
where det 311; = —(ﬁ (det 13A) .
L g .
{
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A.Z Airy func[ionb and Stokes phenomenon

The results and formUIaerpresenCed In this appendix
are taken from Budden (1961, Chapter 15) and Abramowitz and

Stegun (1965, p. 446).

Solutions to the differential equatioy

[ ’ 2 .
Cs o xw=o0 “ A.2.14
dx : ’
- L2114 ;
are Alry functions Af(yx), BL(X) or Af1(x e 3 ) or any linear
combination. The following linear relation connects them
2nd
AL(X) AL(x e )
B E 24 A.2.2
B1 (x) AL(x e 3 )

.
The elements of the matrix are given by Abramowitz and Stegun

5

(1965, p. 446)

i 1
3 43
e e
Mo A.2.3
mi _ma
6 6
e e .

©

For real x < 0, Ai1(x) and Bi(x) répreeent oscillafory soldtions
which in wave. propagation can be.thought of as standing waves.
Far x > 0 real CAL(x) 1is exponentially decaying while Bi(x)

.gfows exponéntially (Fig. A.2). fThis is ev1dent from their

|

'.\/)' |
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Figure A.2 Airy functions A1(x), Bi(x) for
real values of X . (Budden, 1961;
p. 290). '



t

asymptotic expressions which are in fact linear combinations

of the WKBJ solutions to A.2.1: ?}
AL(yx) = &ﬂ—h Xﬁ& e 3 ' Iarg xl <
- b - . 2 3/2 2
ALGO = 1T x|t st 5 1P e ) Jare (0] < g
, \ , A.2.4
3 214

N

From this we get asymptotlic formulae for AL(Xx e ) on the

negative real'x axis in the form:

$2ﬂi " LS *1g|x|3/2
i -3 ~X =% 12 7 )
AL(X e ) = hm | x| e e o larg x| < =
A.2.5
Thus *in application to wave propagation Al(x e ) rEPE%iéntS

a wave travelling 4in positive x directfon while AL(x e- A )

is a wave travelling in negative X directioq?
The asymptotic hehaviour of the function A1(x) 1is

described in different regiomns of the X.piaﬂé by different

linear cqmbinatiohs of the WKBJ solutions. Thisgsfoperty of

. the asymptotic approximations to the solutions of the differ-

o | L o .
ential equations 1s called "Stokgs phenomedon". The WKBJ

sglutians of A.2.1 are

’

212 o S
w = % o >> L ’ 2.6
=X e . Ix] >> % A.2.

¥
. R o . .
. © . ’
’ ' A,
. [N L
' .

.4

wir
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They are in fact the second order saddle point contributions

of the integrand in Afiry integral (Fig. A.3)

1 ' "5 Y + Xy ' 3
/ Al(x) = m e . d)' A.2.7

Two saddle points at y = ixa glve the contributions
—2 3/2
4=
,.5; . 3 X : L
m X e
< .

L4

which differ from the WKBJ solutions A.2.6 only by constant

factors, On the l4nes arg x' = 0, %ﬁ,;- %1 the exponents 1n
A.2.6 are purely real. These lines are called the Stokes

lines and Oﬂe solution aiways exponentially grows with -|x|
1ncreasing and we call this tﬂe dominant solution, The other
decays and is called théfsubdominaﬁt solution. Onzthé lines
rarg X - §, m, - % the exponent in A.2. 6 is purely imaginary, )

i
the solutions have equal moduli and have an oscillatory

i

character. We call these lines the anti*Stokesrliﬁesr The
region between two anti-Stokes lindes ére called the Stokes -
+reglons where both solutions are present -~ the domidqnt anﬁ;///;,~

the subdominart: If we evaluate th; Afry ifntegral A.2,7 an

L

|arg x| < %E-thb contour C, passes oﬁl§ through one saddle

point y = )(;2 (Fig:-A.Q.a). 'Fof“]arg‘x{ '.%3 the second saddle

4

point contribution must be considered too as C1 passes through
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Lo

with the contours C

P R ’
5

‘The complex y plane: The curve

C. can be distor%kqgtp coincide

1
2+C3,~' The endﬂ )

of contours must'be‘restficted to the

shaded regions. (Budden, 1961; p.:289).

a7
’
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S
a)

xS
\ .

 Comp1ex y plane with Stokes lines (S)

and anti~Stokes lines (A) of the-Airy
functions. The position of saddle
goeints y_, Y o changes with .arg X in
Ad(x) . ,A'rrowq show the path of . ‘
integratign' (a) for axg 'y = 0, (p)Ffor

_dtg x = m (Buddgn, 1961; p. 303 and 307).
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. - e
o - w s
. 5 . R N
bpth saddles y = 1 x (Fig. A.4.b). This 1s wﬁ the\ Stokes

.phenomenon occurs. On the Stokes lines the e;:ﬁi/}mkréduced
Ca - -

by the saddle point method of evaluation of the integral 1is

greater than the subdominant term obtained from the contri-~

bution of the other saddle poing. This 1svwhy we can neglect .

the subdominant term 6n the Stokes lines and express the
L ) : A
asymptopic approxim 19n only as one WKBJ'solutidn, The
, ~ ’

detailed study of pHe Stokes phenqﬁ?ﬁé for Q‘l“four Adlry

functlions can be found in Budden (1961, 5. ZQﬁ). The Stokes

diagram in Fig. A.5 "shows. the asymptotic hehaviaur of'Ai(x)

- -t 2 o .
and B1(x) in dependence on arg X, . For any argument a line

insfide . the circle means the subdominant term is present and

a line outside the€ circle means the dominant-term 15 present.



3

Figure A.5

Stokes diagram-for the functions

(a) Ai1(x), (b) Bi(x). '(Budden, 19
P. 294). o - :

615
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APPEND1IX B VALIDITY OF TBE REFLECTION COEFFICIENT

[

The reflection coefficient for Epsteln velocity
~

) '
transitions was found I?/Chapger 3. From (3.16) we get

R(g ) = Fe~1)T(l-a)'(1+b-c)
;5 F(e~a)T(b)T(1~c)

(B-1)

for 74 ~ 45 < 0 . This 18 only valid wheén the leading term
) r 15 -
1n the hypergeometric serles is considered 1.e. far from the

transittlon reglon. 'The remaining terms are dependent onp

frehuen y and thickness, since from (3,18) for .p conbtant
el = ?1Gq1 4 8 cos 0, "
~ L \
S SR S
axb = Z10q, = 4 8 (=3 - sin” 6 /
) Y, ®
‘1 B <
v , , I SN S TN
b atbre mox (1 41607 (e ~ M(qptfa,0))

e X

o

For monotonic welodity transition atb-c = +1 ., First'we show

“.that the sign in the th{pd equation is arbitrary and does not

»

" .
effect the repults.  We introduce new variables

;

a~b = 2o | ”E

a+b = 28 where . B = czt % ’ (B.2)

221
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F(0~1)F(1~u~%15)T(l~umgiiz}

and the reflection coefficient becomes

R(4.) - SO

;x1~c>r(~u+%1a)r(~q+éza)
“ Cf 7 C+ - - 35
{k(l#(xw;j,‘z’ 1~§x—~f2ﬁ5;,2~‘c,»e ) .
Patyth, —q*%tﬁic;ﬁeﬁﬂ)
| B .3)

—Ci~®e

The term 4in the first curly brackets is evidently 1nvariable

W
]
P

W

F(gtl,h+1:2
, ot

I\(ﬁ?

& to the change of sign. It remains to prove that

Egﬁihizifijﬂgﬁ)ﬁ
~a’ ™y F(-h+1l,-g41;

F(~h,~g;03
=

where A v
! :
. i . K a0

+ k and homomoa- ootk

G,

N that,thg L.H.S. of the eguatioﬁ (Bib)ais ‘equal to’
h F(g,h+l;2-c;-e" %) —g Fg+l,h;2~c;-e °)

=

A
# B
-

h F(-h+l,-g;c;-e" °) ~g F(-h, g+ljc;-e

From Abramowitz and Stegun (1965) foEmulariﬁab,ld we get
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From formula 15.2.19 of Abramowitz and Stegun (1965)
we‘gel that the R.H.S. of (B.4) 18 equal to (B.5). Thus the
e%preaﬂion (3:3) is 4nvarfiable with respeét to the charge of
sign. To astess the validity of Qh% reflection coefficient
In (B.1) we must evaluate the absolute values of the second

terms in the hypergeometric series;

A

z , 9
2
j ab o v 4 o(e ?B)

F(a,bj;ci~e S) - ] -~ = e

Q
et iz, 4 L a0 Geie) Ju 0(e 7%
7 - B 7 2-a
, E 2 o
R R = x5t Q- ==~><1 + 5% cos? 0)7"
V2

for v. < v_. . Thus the conditdion E)r validity of the reflééﬁ
PRECRTES (8.6)

Where 2§r f‘?s , the same condition applies to‘f concurrently.

The transmission Loefficient (3,17) for ;t = [;sl is

B o - —~— A —
T ( >= F(l—a)P(1+B~c) . F(@ib—c+1;b-a+1;~e?;t) e2 2t 2 k?t.
7t - T(1+b-a)T(1-¢) F(a,b;c;-e_;t) ~

- (B.7) %
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and

- b(b~ - ~2 4
F(h,b—c+l;b~a+l;—e )r} = 1 - F_I)(Ti?::‘]r—ll e ;t + o (e 2/()

i

The transmission coefficient 1s valtd {f

p »» 1 > ] . 8
l}(, O A] 108 AZ (B )
wherae
V2 Vz
b(b-ctl) 2.0 2,71 2 ~by
A, = l b at] | %S7 (1 vz)(l + 55 (— sin® 60,))
2 V2
the condition (B.6) applies as well.
%s jt
The condition (B. 6) Is satisfied for models (4. A9),
(4,50), (4.51) and (5.34) 4in the frequency range used 1in:

this thesis:



APPENDIX C CONVERGENCE OF THE RESPONSFE INTEGRALS

To evaluate the response integral (2.22) we must

fVAlw?Le'lhe inverse Bessel transform
4l

) p [e =} 4
1 o) : K
[ = — _ g - - -
P(m,r,)r) 7 ’ ps ps(w) J R<C61Crfk) Jo(kr) E; dr
O -

(C.1)

S

where R(i;,cr,ﬁ) is given by (A,Z)Aor (5.2). If we use the

following properties of the Bessel-functions

kaﬁf) f %[Hél)(ﬁr) + H;Z)(Kr)]
Hél)(ﬁr) - ;H§2>(ﬁﬁr) (C.2)
the response integral (C.1) becomes
p i
Poyre) =g s g2 P @ [ oree 0 1 oy S
Y s ' 5
(Cc.3)

The integrand in (C.:3) 1is ‘a multivalued function due to vertical

7

wavenumbgr q". The complex k plane consists of different

Riemann surfaces given by:di}ferent values of they quare
roots, . The passage from one Riemann surface at a branch

cut which is defined as anyrlinerconﬁectiqg two branch points

<
T O,

@ s
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often via infinfty. Its choice s arbitrary, depending on

the problem solved. The contour of integration along the

real axis can be moved into any suftable position, provided

»

it starts and ends on the same Riemann sheet, and, at the

~same time, the contributtions from any singularities enclosed

or ecrossed are taken 1nto account .

For the velocity reversal the reflection coeffictent

15 given by (5.2)

F(l+210q1) F(%~210ql—y>r(5~zioql+y)\ ~1(qscs+qrcr)
, Ve e

SR T e ST IO B N (S (e N

R(Cs,cr

and the: contour of integration in (C.3) can be moved to!
position in Figure 5.5 which 1is the steepest descenft pach.
There are no poles in the firsc quadrant beyond the branch

cut mor 4in the second. Only the poles ¢ 1% (5-12) on the real

193 7 ] .
axis exist and the contour is taken initially above these.

+ The copntribution along the arcs tends ‘to zZero {itheir =
radius grows ' to infinite values. For large thgzasympqotic
eipréssion for the reflectioﬁ coefficient (5.22) may be used:

. v i¢<K) 5
o ; . R(Cs._Cr,K) noe ,,
where ‘ : v2 2
4g q1

$) = ~at - a0, 4+ 20q) log (s-210q,) 2~y 2
N 2 N ! : . l .
o Gem210q,4y) (5-y)

1y log (s-210q, =) (5-v) . o
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' 1
For large argument the asymptotic expression for Hé )(Kr) is
us ed
a .
fer~4 -+
(1) 2. b .
Ho (kr) ™ e e (C.4)
y
(formula 9.2.3 ip Abramowitz and Stegun, 1965).
L) If xk = Rek + 1Imk and Rex = : « while Imxk = 0 we can
do the following estimates:
2]~
s
] g ™

ﬂg )(Kr) ~ k| I (C.5)

and the reflection, coefflclent - *
. L, Im qS+CrIm a, )
[RCc_,c_x)[n e » 0 (C.6)
5 T i . LS
- . - _ _ . o = _ B 'y
since Im qsﬁ7 0, Im 9. 7 0, CS < 0 and Cf < 0 .

(Z)EIf Img + + < and Rek * 0 _or Rex - + B—I; , the following -

vl +
estimates can be made:
=] ~ 1 |
qs A ‘l:
IHgl)(Krzi N e"FIme' lKl'-*:e_+ 0

and 7 e ‘
: o = : -2mMoRe ;.
IRCE .2 k)| v e > 0

rbecauae’ge q1‘> 0‘.

»

.7,

(C.8)
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This proves that the contributions due to integration along
the arcs’ can be neglected.j Thus for the velotity reversal
the main contribution to the response Integral (C.3) 1s from
the integratfon along the steepest descent path {in Flgures

5.9 and 5.6. '

L )

At high frequencies where the saddle point approxima-
tion is valid the saddle point close to gm represents wave
effected most by the velocfity reversal aSOWas explained 1=
Chapter 5. This saddle point approaches the pole ZKO (5.13),
(5.17) and 1s finfluenced by 1t. The dintegration contour can
be moved so thét 1t passes between the j-th and (1+1)~th pole
of &he scring 2Kn i{ we 1include their cantributionA! The
residue contribution of the reflection coefficient at the

j~th pole is’

= 7 73 L 2 » q
214 Res [R(C_,C_y Kk, ] = 5, S08 1Y . ( 1)J :—i %E%I’,Ejg:;’i;)

p2hp? 2Ry g sin 271y

. — !v : D
. 1(qsgcis+qrj ) “ ‘ (.9)

!

The remaining term in the integrand {is

21 1 (C.10)




A

The residue series whose terms are (C.9) 1s not convergent .
This becomes evident {f the Stirling approximation for the

gamma fupnction {s used

Y o~z z-%

F(z) ~ (21) " e z z » = . |arg z| < 7

(c.11)

(formula 6.1,37 in Abramow{tz and Stegun, 1965)., " Then

~itk log ii%%;leiiill + ] log (try)
Uttty ) P2 rtty) Ne (34xy) 7 ez 1ot
F(j*l)r(j+1+zy) .

éY log Liiﬁill-

' : (3+142v)

- e *masj;—kw

The term

~1(q

|e

Sjcs+qrjsr) Cﬁihiq,f*c Im q |

)

because Im <0, Im <0, ¢ <0,C_ <0 . Only if the
9 » qrj . ? y )

8 r

s]

exponential decay of the Hankel function due to distance over~
comes the exponential growth of the reflection coeffictent, the
reéidh; sqfies will decrease for poles up, to certaln order.
Thiélhappen; at large distances r aﬁd thén,‘only the zeroth pole
is important and the rest ¢an be neglected. 1t 1s not possible,
however, to write the response as a complete residue series,

we can only 1nc1ude the low order poles, say k, whose contribu-
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tion decreases as order increases. The residue serie§ forms

an asymptotic serjes. That means the contour passes between

'k~[h and (k+1)~th poles. The remalnger of thL contour jntergration
is of the same order of magnitude as the residue contribution

of the (k+1)_-¢h pole. Ylf the higher orde; poles WEE;@: included
the ?ntegral would Increase 1n magnitude. The ordef k when

the serfies should be terminated aépends on distance: as range
increases k also Increases. This is due to thé rapid deca{

given by distance between the poles

r - Im(zrk+l - Zwk) >» 1 ’ (C.12)
s

In such cases only the zeroth order pole need be considered.

If the residue ﬁf‘thezerétﬁ order pole given by

: o, 2
’ i CsImqsofCrImqrofklog E;Ef
lomiRes R(r r w3 = (M 1., "o ‘ N 2y
'2“11{53 R(cs?grgzK,) (,2) g ’KG,I = ;o 7 AN ' »
2" o
where vy = 1 y (C.13)

1s of comparable modulus as the exponential term from Hé;)(Kr)

(C.10), the residue of the first pole contribution

, 24 Imq_ .+ _Imq
: - ook 1 91 8 sl °r rl <
|ZmiRes Rlc o .k ] 2 7 5 'zm"e ' |
=2:.9. -2 2 ‘ ol ‘
. Cery YT . kv
52103 "‘4‘__‘—37—2——-‘4“ 2y arctan 2y ~ 'Y arctan 5
B(1+4y) ' = 3
& -
L] e + N i . ' .
Y \ (C.14)

. . . ‘ ‘ B
. E ) . . .
r B ) . .
N . R [ . N
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1s greater and the residue series grows from the very beginpnting.
This ﬂappens in the "flluminated” region and the integral
cannot be evaluated by method of residues.,

For monotoniz velocity tﬁaésition the reflection //Y

coefficient 1n (C.3) 1is given by (4.2). The steepest descent

~

patg is shown 1in Figurés 4.8 apd 4.9, The integrand tends to
zero 1in the second quadraht Of’complex K-plane and Alsn in
the first quadrant beyond the branch cut of S PIE This can

be proved 4in the Same way as that used above in éhe éaSe of
velocity reversal (Eqs, (C 5), (C.6), (C.7) and (C. 8)) provided
we take theﬂbpproxima{e reflection coefficient (4 17) . The
:Steepest descent path in Figure 4.8 ends in the valley above
the real axisland if tﬁéroriginal contour was deformed 1in
this direction 1t would{cross thg brancﬁ Cdt. Thus wEEEQould
return along the branch cut Eﬁdithén the rontour can end
anywhere in the fist quadranc beyond the branch cut, The
steepest descentrpath in Figure 4.9 leads in the wvalley in‘
the third quadrant. Thé contour cénnot be distorted to énd
1n;th% third quadrant as the in;egrand does not decay there
with-]flrgrowiﬁg. #Kgain the 1ncegrationbshouid return'to

the real axis or first dﬁadfant.

!



APPENDIX D JALCORITHMS FOR SPECIAL FUNCTIONS NEFDED FOR
EVALUATION OF THE RESPONSE INTECRAL

D.1 Complex gadmma function

-~

An algori(hﬁ for evaluation of the gomplex gamma
fupnction and fts logafithm had to be develop;d in order to
evaluate the reflection coefficient (3.22). At the time
when thié work had begun no standard program was available
and we will'describe here the algorithm developed for use
15‘0&r computations. Since then, several algorithms appeared

in literature as, for example, Algorithm 404, Complex gamma

function, by Lucas/and Ter11ll (1971)-and Algorithm 421;

Camplef-gamma function with erro; control by Kuki (1972).
| The 1§vers€ gamma funcFion T%ijand the logarithm
lcgq(r(z}) {or é complex wege‘computed using the'f?llcwing
fmefhods: 7 7 i
[(z*) = I'*(z) o 7 L (D.1.1)
& %
(fbrmula 6.1.23 ffom Abramoﬂgtz and Stegun, f§65,ihenceforth.r
rgéerred to as Réf.‘l) 1; u@pd to réstri;t tﬁg argument into

the first and second quadfants 'of the“complex z plane

\ L

LRI -, T(2) = r(z + 1.). . (D.1.2)

N

(6.1.15 4n Ref. 1) 1s used to move the argument into thé'first'

 v?q§drant so that SR -
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(a) -~ Re(z)\4 E%%* ) Im(z) s 2

(b) Re(z)\a 10 ’ if Imfz) > 2 . ‘ -

The adymptotic formula is used to evaluate the logeF(z) if

Re(z) = 10

‘ | , 1
log I'(z) ™ (2-%) log _a-z + hlog (21) + 5= 16022

)

(D.1.3)

(6.1.41 in Ref, 1). 123 &e(z) <,10 the fOllowlng(ralations
are used to restrict the argumeni\so that 0 € Re(z) < 1 and

0 < Im(z) € O . The Caussxmnlciplication formula

log I'(nz) = %(1-n) Tog_(21) + (hz=%) lag_n + I 1oger(z+§)
bt “ , "
’ \ (D.1.4) /

%‘ 5

(6 1.20 1in Ref. 1) is used 1f 1 < Im§§§ £ 2 to reduce to
Y

$\ - 4 {

0 < Im(z) <1 ' .

A a .

M(z) = (2-1)T(z-1) ' (D.1.5)

(6.1.15 in Ref. 1) 1s used 1gg3e(z) > 1, 0 < Im(Z) < 1 to
reduce to 0 stRe(z) £ 1-. Then Pade pd/;r ser}es determined

a

by Lee (1962) 1is used .to evaluate the inverse 3ahma tunstion

. b o 'Z’~3121 . o X oL

T 1 i=1 . 0 (D.1. ¢
L bzt .3 S N

.
-
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A o -

for O = Re(z) (71, 0 € Im(z) € 1 . This 4is too accurate for
“ad IBM 360/65 computer and some simpler series could be
employed to 1mprove the efficiency.
The Fortran 1V subroutineg ar; used for real
argument%-after'they were shifted to positive values
'performing step (Dl}.Z) above.

When compared to Table 6.7 in Ref. 1 the results

5
are accurate to 1 part in 10

tr

D.2 Hankel functtion of the zeroth order

An algorithm for ;valuation of the Hankel funcci;n
H§1)<z) for z complex was developed. Itrusés the Hanke1'§‘
asymptotic expansion for lz' > 5 and the ascending series
for |z| < 5 . . , L

From fofmula (9,2.7), (9.2.9) and (9.2.10) in

- Abramowitz and Steguni(1965, from now on Réf.%l) we obtain

Is

the foi}owin? asymptoti® expdnsion for cha&pank%} function

. i.,‘,',‘ N ‘ ’é

iy B : 1z-1%
M@ = dn” @, 1a0iEne

a

where

2

- ' P(0,2) w To(-1)" [(5k—l)!§2k
e ke (2K 1(8) T

o
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Y ,
7
and
L 4
0 o é 2
" , bk oo .
QCO,z) ~ ) (-1 )k "‘li“”"f;J“wmégijf (D.2.M

k=0 (2k+1) 1 (8z) """

whiere

A

(hk~1)!t = ¢ 2 p2k

n 200 T(Zk+h) . (2Kk)A = T (2k+1)
. Ve
Terms up to k = 3 are tneluded {n the computations. For small
values of QZI the f0ﬂ10WiﬂK method 18 used:
(1, . : :
. , 4 7,
ool (z) UNEY 1Y _(z) (D.7.4)
where atcording to (9.1.12) and (9.1.13) in Ref, 1
; | w (in)k
B R e o (N.2.5)
' k=0 (k!)
and *
Y (z) = ) 4 vl J () = 2
; aQ L’ v kfl
» E B | ? (D.2.6)
- i’y isi the! Fuler's’ constant, Theifirﬁt ‘fOlHj‘g terms are used for
© 0 < Jz| € 1.5 then next three terms are added 1f 1.5 < |z]| % 3,
,and for 3 < |z| € 5 another three terms are a;dgged.,!
When compared to Table 9.1 in Ref. 1 the results are
, : S . s ' '
ratcurate to 1,§art in 105 . .



