University of Alberta

TERNARY CONTENT ADDRESSABLE MEMORY DIRECTED REDUNDANCY FOR
SEMICONDUCTOR MEMORY YIELD ENHANCEMENT

by

Craig Joly ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-96496-5
Our file  Notre référence
ISBN: 0-612-96496-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

I describe a redundancy mechanism, known as associative ternary CAM redundancy,
that is able to repair single cell, row, column or cluster faults by mapping a com-
mon pool of redundant memory to replace these defective regions. This is achieved
by accessing a ternary content addressable memory, containing addresses of faulty
regions, in parallel with the main memory.

Associative redundancy is completely transparent to the DRAM, allowing full
regular operation and no reduction in frequency. Also, there is no increase in area
over conventional row and column redundancy or extra fabrication steps.

Yield modeling shows that, in a 1-Gbit DRAM, associative redundancy performs
better than conventional redundancies in most cases. A fault model comprised of
single cell, row, column and cluster failures shows that associative redundancy can

handle over 20 times greater fault densities at 50% equivalent yield.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In the Kamigata area they have a sort of tiered lunchbox
they use for a single day when flower viewing.
Upon returning, they throw them away, trampling them underfoot.
The end is important in all things.

Yamamoto Tsunetome, Hagakure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To Keiko.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

This research was supported by Micronet R&D, MOSAID Technologies Inc, the
Canadian Microelectronics Corporation and the University of Alberta. I would like
to give special thanks to my supervisor, Duncan Elliott for the help and direction. I
would also like to thank Bruce Cockburn, Tyler Brandon, Daniel Leder, John Koob,
Kris Breen and Curtis and Jennifer Wickman for listening, making suggestions and
letting me bounce ideas off of them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

1 Introduction

2 Background
2.1 Semiconductor Memories . . .. ... ..o
2.2 The DRAM Market . . . . . . . . . ... ... ...
2.3 DRAM Architecture . . . . .. . . . . . ...
2.4 Row and Column Redundancy . ... ... .. .. ... ... ...,
2.5 FError Correcting Codes . . . . . . . .. . ... .. ..
2.6 Defects, Faults and Yield . ... ... .. ... ... ... .....
2.7 Content Addressable Memories . . . . . .. ... ... ... .....
2.8 Associative Repair . . . . . . . ... ...

3 Ternary CAM Redundancy
3.1 Overview . . . .. e
3.2 Associative Indirect . . . . .. .. ... o
3.3 Associative Direct . . . . . .. . ... ...
3.4 Multiple Column Access . . . . . . . . . . e
3.5 DDR Concerns and Set Associativity . . . . . . . .. .. .. ... ..
3.6 Implementation Technology . .. ... ... ... . ... ......

4 Yield Comparison
4.1 TheYield Model . . . . . . .. . . . . ... . . ... ..
4.2 Equivalent Yield . . .. ... .. ... oo oo
4.2.1 Overhead of Ternary CAM Redundancy . . . . .. ... ...
422 IBM16-Mbit DRAM . . . . . . ... ... ... ........
4.2.3 Samsung 1-Gbit DRAM . . . ... .. ... ... ... ...,
4.3 Inferences . . . . . . . .
4.4 A Combined Fault Model . . . . .. ... ... ... ... .....
4.41 IBM 16-Mbit DRAM . . . . . . .. ... ... ... ......
4.4.2 Samsung 1-Gbit DRAM . . . ... ... ... ... ......

5 System Modelling, Design & Simulation
51 TheCritical Path . . . . .. ... ... ... ... ... ........
5.2 Modeling and Simulation . . . ... ... ... . 0000
5.3 Schematic and Simulation . . . . ... ... ... ... ... .....

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—

—
O 00O O W W

—



6 Conclusions 65

6.1 Synopsis . . . . . ... e 65
6.2 Advantages . . . . . . .. ... 66
6.3 Liabilities . . . . . . . . .. e 67
6.4 Future Work . . . . . . . . . 68
6.5 Coda. . ... .. . . . 69
Bibliography 70
A DRAM Data 73
A1 IBM16-Mbit DRAM . . . . . . ... .. . 73
A.2 Samsung 1-Gbit DRAM . . .. . ... ... ... ... .. ... 74
B Redundancy Overhead 77
B.1 IBM 16-Mbit DRAM . . . . . . . . . .. ... . 77
B.2 Samsung 1-Gbit DRAM . . . ... ... ... .. .. ... . ... 77
C Yield Calculations 79
C.1 Single Cell Fault Model . . . . . ... ... .. ... .. ... .... 79
C1.1 NoRedundancy . . ... ...... ... ... .. ...... 79
C.1.2 Row and Column Redundancy . ... .. ... ... ..... 79
C.1.3 ECCRedundancy . ... ... ... ... ... ..... 32
C.1.4 Row and Column Redundancy with ECC . . ... . ... .. 82
C.1.5 Associative Direct Ternary CAM Redundancy . . . . . . . .. 85
C.1.6 Associative Indirect Ternary CAM Redundancy . . . . . . .. 87

C2 Row Fault Model . . . . . .. .. ... .. ... 89
C21 NoRedundancy . ............. ... .. . ..., 89
C.2.2 Row and Column Redundancy . .. .. ............ 91
C23 ECCRedundancy .. ... ... ... ... ... .. 91
C.2.4 Row and Column Redundancy with ECC . . .. ... .. .. 91
C.2.5 Associative Direct Ternary CAM Redundancy. . . . . . . .. 91
C.2.6 Associative Indirect Ternary CAM Redundancy . . . . . . . . 94

C.3 Column Fault Model . . . . .. ... ... .. ... . .. ... ... 97
C3.1 NoRedundancy ... ... ... .. ... ... .. .. .... 97
C.3.2 Row and Column Redundancy ... ... ........... 97
C33 ECCRedundancy . ..... ... ... .. ... ...... 97
C.3.4 Row and Column Redundancy with ECC . . .. .. ... .. 100
C.3.5 Associative Direct Ternary CAM Redundancy . . . . . . . .. 100
C.3.6 Associative Indirect Ternary CAM Redundancy . . . . . . .. 105

C4 Cluster Fault Model . . . . . . . . .. ... .. ... 107
C4.1 NoRedundancy ... ....... . ... ... ... ..... 107
C.4.2 Row and Column Redundancy . .. ... ... .. ...... 108
C4.3 ECCRedundancy . ... .. ... ... . . ... .... 110
C.4.4 Row and Column Redundancy with ECC . . .. .. ... .. 114
C.4.5 Associative Direct Ternary CAM Redundancy. . . . . .. .. 114
C.4.6 Associative Indirect Ternary CAM Redundancy . . . . . . . . 116

C.5 Combined Fault Model . . . . .. .. ... ... ... ... ..... 118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5.1 NoRedundancy . . ... .. ... ... ... ... 118

C.5.2 Row and Column Redundancy . ... .. ... ........ 121
C53 ECCRedundancy . ... .. .. .. ... ... 121
C.5.4 Row and Column Redundancy with ECC . ... . ... ... 123
C.5.5 Associative Direct Ternary CAM Redundancy. . . . . . . .. 126
C.5.6 Associative Indirect Ternary CAM Redundancy . . . . . . . . 127

D Yield Model C Code 131
D.1 Single Cell Fault Model . . . . ... .. ... ... .......... 131
D.1.1 NoRedundancy . ... ... ... ... . .. .. ....... 131
D.1.2 Row and Column Redundancy . ... ... .. ... ..... 131
D.1.3 ECC Redundancy . .. ... ... ... ... ... ... 133
D.1.4 Row and Column Redundancy with ECC . .. ... ... .. 133
D.1.5 Associative Direct Redundancy . . . . . . ... ... .. ... 135
D.1.6 Associative Indirect Redundancy . . . .. ... ... ... .. 136

D2 Row Fault Model . . . . . . ... .. ... .. .. .. ... .. .. 137
D.2.1 NoRedundancy . ... ....... ... . ... ...... 137
D.2.2 Row and Column Redundancy . ... ............. 138
D.2.3 Associative Direct Redundancy . . . . .. ... .. ... ... 139
D.2.4 Associative Indirect Redundancy . . . .. .. ... ... ... 140

D.3 Column Fault Model . . . . . . . ... ... ... ... ... ..., 141
D.3.1 NoRedundancy .. ... ...... .. .. ... ....... 141
D.3.2 Row and Column Redundancy ... ... .. ... ...... 142
D.3.3 ECCRedundancy . .. .. ... ... ... . ... ... 143
D.3.4 Row and Column Redundancy with ECC . . ... ... ... 144
D.3.5 Associative Direct Redundancy . . . . . . ... .. ... ... 145
D.3.6 Associative Indirect Redundancy . . . . . .. ... ... ... 146

D.4 Cluster Fault Model . . . . ... .. .. ... ... ... ..... 147
D.41 No Redundancy . ......... ... ... . ....... 147
D.4.2 Row and Column Redundancy . .. ... ... .. .. .... 148
D.43 ECCRedundancy ... ... ... ... .. ... .. ..... 150
D.44 Row and Column Redundancy with ECC . . ... ... ... 151
D.4.5 Associative Direct Redundancy . . . . . . ... .. ... ... 153
D.4.6 Associative Indirect Redundancy . . . . . ... .. ... ... 155

D.5 Combined Fault Model . . . . . . .. ... ... ... ... ..., 157
D.5.1 NoRedundancy . . ... ...... ... .. ... . ..... 157
D.5.2 Row and Column Redundancy . ... .. .. ... .. .... 158
D.5.3 ECC Redundancy . .. ... ... . ... ... .. ..... 159
D.5.4 Row and Column Redundancy with ECC . .. .. ... ... 161
D.5.5 Associative Direct Redundancy . . . .. ... ... ... ... 162
D.5.6 Associative Indirect Redundancy . . . . . . .. .. ... ... 165

E Model VHDL and Ruby Code 169
Ed Top Level . . . . . . . . . . o 169
E2 Package . . . . . . . . 171
E.3 Match Array . . . . . . . . 173
E.4 Flash (Data) Array . . . . . . . . .. . 174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E.5 Shifter (Ruby) . . ... ... .. ... . ...
E6 OR (No-carry Adder) . . . ... ... ... ... ... ... .....
E.7 Redundant DRAM decoder (Ruby) . . . ... ... .. ........
E.8 Multiplexer (2-1) . . . . .« . .
E.9 Multiplexer (4-1) . . . . . . . .
E.10 Redundant Data Array . . . . . . . . . . . . e

Testbench VHDL Listings
F1 Testbench . . . . . . . . . . . .. i
F.2 Msrgeneric . . ... ... ... ...

SKILL Code

G.1 Rowmatcharray . . . . . . . . . . i
G.2 Column match array . . . . . . . . . . ... o
G.3 Associated data array . . .. .. ... oo

H Schematics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Taxonomy of solid-state memories . . .. ... ... ... .. .... 3
Basic DRAMcell . . . . . . .. . .. 5
Block diagram of a typical DRAM [1] . .. ... ... ........ 6
IC manufacturing process defects and relationships with IC faults [2] 10
Typical defect size distribution function [3] . . ... ... ... ... 12
Associative memory CAM and data arrays [4] . . . . ... ... ... 15
Compare function for each CAM row entry [4] . . . . . . . ... ... 15
SRAM-based CAMcell ... ... ... ... .. ... . ....... 16
DRAM-based ternary CAM cell [5] . . . .. .. ............ 17
Associative repair memory block diagram . . .. ... ... ... .. 18
8 row by 8 word memory organization with bad words . . . . . . .. 22
Associative indirect tCAM redundancy block diagram . . ... ... 24
Cross-bar shifter with switch equations (Associative Indirect). . . . . 25
Associative direct tCAM redundancy block diagram . .. ... ... 27
Cross-bar shifter with switch equations (Associative Direct). . . . . . 28
Splitting the match array to handle page mode and reduce power

consumption . . . ... .. e e 29
Ternary flash CAM cell configuration . . . . ... ... .. ...... 30
Twin ploy-silicon thin-film transistor memory cell [6] a. Cross section

b. Topview . . . . . . . . e e 31
Planar non-volatile ternary CAM cell . . . . . . . ... .. ... ... 31
Equivalent yield of a 16-Mbit DRAM for a single cell fault model for

conventional and associative redundancies. . . . . ... ... ... .. 40
Equivalent yield of a 16-Mbit DRAM for a row fault model for con-

ventional and associative redundancies. . . . . . . .. .. ... .. .. 41
Equivalent yield of a 16-Mbit DRAM for a column fault model for

conventional and associative redundancies. . . . . . ... ... .. .. 42
Equivalent yield of a 16-Mbit DRAM for a cluster fault model for

conventional and associative redundancies. . . . . . ... ... . ... 43
Equivalent yield of a 1-Gbit DRAM for a single cell fault model for

conventional and associative redundancies. . . . . .. ... ... ... 46
Equivalent yield of a 1-Gbit DRAM for a row fault model for conven-

tional and associative redundancies. . . . ... ... ... .. .. .. 47
Equivalent yield of a 1-Gbit DRAM for a column fault model for

conventional and associative redundancies. . . . . . .. .. ... ... 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.8 Equivalent yield of a 1-Gbit DRAM for a cluster fault model for
conventional and associative redundancies. . . . . . . ... ... ...
4.9 Equivalent yield of a 16-Mbit DRAM with various redundancy meth-
ods for a combined fault model . . . . . . .. ... ...
4.10 Equivalent yield of a 1-Gbit DRAM with various redundancy methods
for a combined fault model . . . ... ... ... ... ... .. ...

5.1 VHDL model source file organization . . . . . .. ... ... .. ...
5.2 VHDL testbench source file organization . . . . . ... ... ... ..
5.3 Timing waveforms showing row access latency. . .. ... .. .. ..
5.4 Timing waveforms showing column access latency. . ... ... ...

A.1 Simplified block diagram of the IBM 16-Mbit DRAM without redun-
dancy . .. . . e e e e e e
A.2 Simplified block diagram of the Samsung 1-Gbit DRAM without re-
dundancy . . . . . ...

C.1 Single cell fault model yield of a 16-Mbit and a 1-Gbit DRAM without
redundancy . . . . ... ..o e e
C.2 Single cell fault model yield of a 16-Mbit and a 1-Gbit DRAM with
row and column redundancy . . . . .. ... ... Lo oL
C.3 Single cell fault model yield of a 16-Mbit and a 1-Gbit DRAM with
ECCredundancy . . . . . . . . . . . . ...
C.4 Single cell fault model yield of a 16-Mbit and a 1-Gbit DRAM with
row and column redundancy and ECC . . . .. . ... .. ... ...
C.5 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
direct ternary CAM redundancy using a single cell fault model
C.6 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
indirect ternary CAM redundancy using a single cell fault model . .
C.7 Row fault model yield of a 16-Mbit and a 1-Gbit DRAM without
redundancy . . . . . ... e
C.8 Row fault model yield of a 16-Mbit and a 1-Gbit DRAM with row
and column redundancy . . . .. ... . ... oo
C.9 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
direct ternary CAM redundancy using a row fault model . . . . . . .
C.10 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
indirect ternary CAM redundancy using a row fault model . . . . . .
C.11 Column fault model yield of a 16-Mbit and a 1-Gbit DRAM without
redundancy . . . . . . . ..
C.12 Column fault model yield of a 16-Mbit and a 1-Gbit DRAM with row
and column redundancy . . . . .. .. .. ...
C.13 Column fault model yield of a 16-Mbit and a 1-Gbit DRAM with
ECCredundancy . . . . . . . . .. . . ...
C.14 Column fault model yield of a 16-Mbit and a 1-Gbit DRAM with row
and column redundancy and ECC . . . ... ... ... .......
C.15 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
direct ternary CAM redundancy using a column fault model . . . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.16 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative

indirect ternary CAM redundancy using a column fault model. . . . 106
C.17 Cluster fault model of a 16-Mbit and a 1-Gbit DRAM without re-
dundancy . . . . . . ... 109
C.18 Cluster fault model of a 16-Mbit and a 1-Gbit DRAM with row and
column redundancy . . . . . . ... Lo 111
C.19 Cluster fault model of a 16-Mbit and a 1-Gbit DRAM with ECC
redundancy . . . . . .. .. L 113
C.20 Cluster fault model of a 16-Mbit and a 1-Gbit DRAM with row and
column redundancy and ECC . . . . . ... .. ... .. ... ... 115
C.21 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
direct ternary CAM redundancy using a cluster fault model . . . . . 117
C.22 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
indirect ternary CAM redundancy using a cluster fault model . . . . 119
C.23 Combined fault model of a 16-Mbit and a 1-Gbit DRAM without
redundancy . . . . . .. ..o 120
C.24 Combined fault model of a 16-Mbit and a 1-Gbit DRAM with row
and column redundancy . . . . . .. . . . ... 122
C.25 Combined fault model of a 16-Mbit and a 1-Gbit DRAM with ECC
redundancy . . . . . . ... L e 124
C.26 Combined fault model of a 16-Mbit and a 1-Gbit DRAM with row
and column redundancy and ECC . . .. .. .. ... ... .. ... 125
C.27 Combined fault model of a 16-Mbit and a 1-Gbit DRAM with asso-
ciative direct ternary CAM redundancy . . ... ... .. ... ... 128
C.28 Combined fault model of a 16-Mbit and a 1-Gbit DRAM with asso-
ciative direct ternary CAM redundancy . . ... .. ... ... ... 130
H1 Toplevel . . . . . . . . . 192
H.2 Associative memory (match and data arrays) . ... ... ... ... 192
H.3 Row match component . . . . . . ... ... ... ... ........ 193
H.4 Row access strobedelay . . .. ... ... ... ... .. ....... 194
H.5 Row match array match-line pre-charge . .. ... .. .. ... ... 194
H6 Rowmatch array . . . . . . . . . .. . . . . . i i 195
H.7 Rowmatch control . . . .. .. .. .. ... ... ... ........ 196
H.8 Column match component . . . . . . ... ... .. .......... 197
H9 Column access strobedelay . . . .. ... ... ... ... .. .... 198
H.10 Column match array match-line pre-charge . . ... ... ... ... 198
H.11 Column match array . . . . . . . . . .. . . . . . 199
Hi12Match control . . . . . . . ... ... .. ... 200
Hi13Dataarray . . . . .. . ... 201
H14 Bitshifter . . . . . . .. .. . 202
H.15 OR (No-carry adder) . . . . . ... ... ... ... .. ....... 203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

2.1

2.2

23

24
2.5

4.1
51

Al
A2

B.1
B.2

Average number of sustainable memory cell defects at a 50% Yield-
/Equivalent Yield with Row and Column Redundancy (7} . . . . ..
Average number of sustainable memory cell defects at a 50% Yield-
/Equivalent Yield with Error Correcting Codes {7] . . . . ... ...
Average number of sustainable defects at a 50% Yield/Equivalent
Yield with multiple redundancy [7] . . . . ... ... ... ......
Typical relative defect densities for a CMOS process [8] . . . .. ..
Fault Modeling Abstraction . . . . . . .. ... ... .. ......

Selected sizes of associative redundancy schemes for comparison . . .

Capacitive and resistive loads for memory arrays . . ... .. .. ..

Data for the IBM 16-Mbit DRAM [9]. . . . . .. ... ........
Data for the Samsung 1-Gbit DRAM [10}. . . . . ... ... ... ..

Areas and overheads for the IBM 16-Mbit DRAM. . . ... ... ..
Areas and overheads for the Samsung 1-Gbit DRAM. . ... .. ..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Acronyms

ASIC Application Specific Integrated Circuit

CAM Content Addressable Memory

/CAS Column Access Strobe (active low)
CAROM Content Addressable Read Only Memory
CMOS Complementary Metal-Oxide Semiconductor

DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Mem-
ory

DRAM Dynamic Random Access Memory

ECC Error Correcting Code

EEPROM See E2PROM

EPROM Electrically Programmable Read Only Memory
E?2PROM Electrically Erasable and Programmable Read Only Memory
FeRAM Ferroelectric Random Access Memory

IC Integrated Circuit

MOS Metal-Oxide Semiconductor

MRAM Magnetic Random Access Memory

NOR Not OR (logical operation)

NVRAM Non-Volatile Random Access Memory

PCM Phase Change Memory

RAM Random Access Memory

/RAS Row Access Strobe (active low)

ROM Read Only Memory

SEC Single Error Correcting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SEC-DED Single Error Correcting, Double Error Detecting
SDRAM Synchronous Dynamic Random Access Memory
SRAM Static Random Access Memory

TCAM Ternary Content Addressable Memory

TSMC Taiwan Semiconductor Manufacturing Company Ltd.

XOR Exclusive OR (logical operation)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Terms

Associative Memory A type of memory that will return data associated with the
input data (such as a hash)

Book Area of memory array that column redundancy is applied to

Content Addressable Memory A compare array which will return a “match”
or “no-match” for any input data

Codeword Grouping of bits along a word-line containing data and check bits for
error correcting coding

Complexity A model’s accuracy in accounting for an actual event’s mechanisms

Critical Path The path within a design that dictates the fastest time at which the
entire design can run

Defect Physical imperfection causing a variation from the design
Dimensionality The degrees of freedom in a model

Equivalent Yield Yield normalized to the area of a device without redundancy
Fault Failure attributable to some defect in the system

Fault Model Global abstraction level about what kinds of failures can occur
Fidelity Accuracy of a model’s prediction compared to the actual event
Functional Fault Faults affecting a small area that cause a circuit failure

Gray code A binary code in which consecutive decimal numbers are represented
by binary numbers that differ in the state of one bit (also Synonym reflected
code)

Hamming code Common type of error correcting code

lambda In yield models, A is commonly used to denote the fault density. Note that
this is contrary to the typical VLSI usage of A to denote one half the minimum
feature size. This thesis also uses p, x and v to denote fault densities.

Memory A semiconductor device that stores data

Page A single row of memory cells in a book

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Parametric Fault Faults affecting large areas resulting in functional devices that
do not meet all specifications (timing, electrical, etc)

Redundancy Duplication of design elements for preventing failure of an entire
system upon failure of a single component

Section Area of memory array to which row redundancy is applied
Synergy A result greater than the sum of its parts

Word Smallest addressable portion of a memory. A word can also refer to all cells
on a word line, but the first definition is used in the context of this thesis.

Yield The ratio of fully operating integrated circuit dies to the total number of
dies fabricated

Yield Model A mathematical model for predicting yield, characterized according
to fidelity, complexity and dimensionality

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

Dynamic Random Access Memories (DRAM) accounted for 11% of the entire semi-
conductor market in 2002 [11]. This is about $15.5 billion dollars. In order for a
DRAM to be sold, it must be operating at 100% of its specified capacity. All of the
storage cells must be functioning correctly. With millions of storage cells on a single
DRAM die, this is an impressive feat. In order to lower the number of nearly per-
fect memory ICs that will be thrown out and to raise yields, memory manufacturers
employ redundancy and, occasionally, error correction.

In the RAM world, redundancy almost always means row and column redun-
dancy. In this thesis, I propose an alternate redundancy method using a ternary
content addressable memory (CAM) to watch for and redirect addresses of bad
storage cells. The ternary CAM allows single cells, columns, rows and rectangular
groupings of cells to be marked as bad and electrically replaced. This gives a large
amount of flexibility in marking bad areas, either reducing the area required for
redundancy, thereby shrinking die size and reducing cost [12] or permitting earlier
production of fully functional chips while defect rates are still high.

This redundancy scheme can be applied to all semiconductor memories with
binary addressing. I develop this scheme and analyze its performance applied to
DRAM. I have chosen DRAM since it is a common and representative memory
type. Also, the benefits of new redundancy methods should be especially significant

in the highest density memories, which are DRAMs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 discusses pertinent background on DRAMSs, yield, redundancy schemes
and CAMs. In Chapter 3, I outline the redundancy scheme, propose two imple-
mentations and discuss considerations for integrating the scheme into conventional
DRAM fabrication processes. In Chapter 4, die yields for various classes of faults
are estimated. I compare the two proposed ternary CAM redundancy methods’
handling of the faults with previous redundancy methods using effective yield as a
metric. Critical path timing of the two proposed methods are investigated in Chap-
ter 5. Chapter 6 concludes with a summary of results and suggestions for future

work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Background

2.1 Semiconductor Memories

Semiconductor memories can be divided into two main classes: volatile and non-
volatile, as shown in Figure 2.1. Volatile memories, such as SRAMs and DRAMSs
lose their contents when power is lost. Conversely, non-volatile memories, such as
flash, electrically erasable and programmable read only memories (E2PROM), elec-
trically programmable read only memories (EPROM), read only memoriess (ROM),
ferroelectric RAM (FeRAM), magnetic RAM (MRAM) and phase-change memories
(PCM) retain their contents, even when power is not applied.

All of the solid-state memories shown in Figure 2.1 are random access. This
means that any bit can be accessed in any order with the same access time. Of the

memories, DRAM has the lowest cost per bit because of its density. Although flash

Dynamic
{DRAM)

Figure 2.1: Taxonomy of solid-state memories

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 The DRAM Market

approaches and sometimes exceeds DRAM in bit density, it requires extra processing
steps and more comprehensive testing requirements, both of which increase its cost

above that of DRAM.

2.2 The DRAM Market

The DRAM market is a high volume, low profit margin, commodity business where
every cent saved is important. The goal of this thesis is to match or improve yields
at less cost, thereby improving manufacturers’ profit.

DRAM manufacturers have to be able to supply the market at the right time
with the right devices [8]. At this time, the highest volume device is the 256-Mbit
DRAM, with the 1-Gbit DRAM quickly gaining market acceptance. The cost of the
DRAM IC is determined by several factors:

Design Effort Due to the high volume of DRAM ICs shipped, these costs are less

important as they are a one-time cost amortized over all ICs shipped.

Silicon Area Based on the technology and production, a price per area of processed

silicon can be calculated [8].

Production Yield Because DRAMs tend to be the first devices fabricated in a
smaller feature size, production yield is a significant contributor to the cost.
They also use their own process, different from the more common logic pro-

cesses.

Packaging Cost The costs of the package itself and the packaging process are
relatively high. Minimizing the number of defective DRAMs being packaged

will reduce costs [8].

Test Costs DRAMs must be 100% functionally correct to be sold. With larger
storage capacities, a proportionally larger time is required to test the dies.

Test related costs are increasing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3 DRAM Architecture

word-line

j. access transistor
3— storage node

I cell capacitor
cellplate

(a)

bit—line

Figure 2.2: Basic DRAM cell

2.3 DRAM Architecture

A random access memory must provide a continuous address space of fully func-
tioning cells that can be read and written. Every cell must also meet all timing
constraints. In order to provide this, DRAM manufacturers use redundant bit-lines
and word-lines to replace any faults within the array, so that the sold DRAM chips
appear to provide a full-capacity continuous space of functioning cells [7].

The 1T1C (one transistor, one capacitor) DRAM has become ubiquitous because
it can be implemented in a smaller area than any other memory cell type. The cell
uses a single capacitor to store a certain amount of electrical charge that represents
its bit. The charge representing the bit can be sensed by comparing the voltage
difference between the storage node voltage and a mid-range reference voltage. A
single MOS transistor is used to connect and disconnect the storage capacitor from
other circuits. A typical cell is shown in Figure 2.2a.

In order to read the data stored in a cell, the bit-line is pre-charged to ‘—/1-21’-2, then
the word-line is asserted to turn on the access transistor. The charge on the cell
capacitor is shared with the charge of the bit-line, causing a slight change in bit-line
voltage. This slight change (up or down) is sensed by a sense amplifier to determine
what bit value was stored.

Because the charge on the capacitor is shared, the voltage signal on the storage
node is greatly attenuated, and so, the value must be rewritten after it is read. Also,

due to leakage currents, the data must be periodically refreshed. Refresh is provided

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4 Row and Column Redundancy

WRITE & Data In [*— DI
Buffer

CAS
No. 2 Clock Data Out — DO
Generator - > Buffer
~™ Column >
Address Column
e Buffers I Decoder
—
Refresh [*— S A
— Controller €nse Amp. —
=] 1/0 Gating
—
g
-
'é — Refresh
a Counter
—
— U
—* R > Row Memory
— ow Decoder Atrra;
2 Address | Y
Buffers
—_— No. 1 Clock
]
RAS Generator
Substrate Bias *— Ve
Generator - Vg

Figure 2.3: Block diagram of a typical DRAM [1]

by sense and write amplifiers attached to each pair of bit-lines.
A typical DRAM architecture, such as the one shown in Figure 2.3, consists of
a refresh controller and counter, row and column address buffers, input and output

data buffers, clock generators and other circuits.

2.4 Row and Column Redundancy

Redundancy has been used in DRAM designs since the 256-Kbit generation to im-
prove yield by providing spare components that can be used to replace faulty ones
[13]. In the case of semiconductor memories, redundancy means providing rows
and columns of extra memory cells on the die that can be electrically swapped for

bad ones [14]. Unfortunately, redundancy increases access and cycle times, power

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4 Row and Column Redundancy

dissipation, IC area and requires design modifications [15]. These downsides are
justified because redundancy reduces the cost per bit in large capacity memories,
increases the memory bit capacity in immature processes and aids in providing fully
functional parts in low volume productions. Smaller die sizes also reduce cost per
bit, so the first point can sometimes be at cross-purposes. Excessive redundancy
can also become a yield limiting factor in mature processes [15] (beyond a limit,
where the reliability increase is balanced by the reliability loss due to the inflated
number of elements in the memory, a reliability decrease (nuisance) appears).

Redundancy is achieved by having extra columns and rows of memory cells on
the die. Originally, if a row or column was not 100% operational, it could be swapped
out by way of a selection mechanism, such as a laser-blown fuse. In the abstract,
the laser acts as, and can be replaced by, a non-volatile programmable memory. As
feature sizes shrunk, the size of conventional fuses became prohibitively large. They
could not be sufficiently shrunk and still enable a laser to be focused on them. This
led to redundant sections of rows or columns, usually all rows or columns attached
to one address decoder, still controlled by fuses. Fuses have their own reliability
problems. Openings blown by lasers in the passivation layer can cause moisture
contamination, relocation of blown fuse material can cause stresses in other layers
of the die and partially blown fuses can cause poor reliability [14]. An alternative
is to use programmable non-volatile memory in place of fuses.

In [7], the yield of an 16-Mbit and a 1-Gbit DRAM are discussed. The average
number of defects at 50% yield and 50% equivalent yield (normalized yield to the
area of a DRAM without redundancy) are used to compare redundancy effectiveness
in terms of the number of recoverable defects. These values are shown in Table 2.1.

The data shows that row and column redundancy work together synergistically.
That is, the effects of row and column redundancy together are more than the sum
of their effects individually. This is because multiple errors along one row or column
can be repaired with a single replacement.

Up to 90% of memory failures are single-bit failures [16]. This implies that,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5 Error Correcting Codes

Memory Redundancy 50% Yield 50% Equivalent Percent Area

Yield Overhead
Column Only 28 28 1.54
16-Mbit Row Only 79 79 0.58
Row and Column 234 233 2.10
Column Only 28.5 28.5 0.098
1-Gbit Row Only 430 430 0.78
Row and Column 705 705 0.82

Table 2.1: Average number of sustainable memory cell defects at a 50% Yield/E-
quivalent Yield with Row and Column Redundancy (7]

without error correction, a 99.9% good row or column of memory can, and will be,

swapped out because of one bad cell.

2.5 Error Correcting Codes

Error correction employs redundancy of a different type. It is usually employed to
reduce the effects of soft errors, however, it can be used to eliminate the effects of
a single faulty cell (hard error) in a word. When a word is written to the memory,
check bits are calculated and stored along with it. The check bits can be as simple as
a parity code, which can detect, but not repair, a single bit error in the stored word,
however, more often it is a Hamming code. The most common type of Hamming
code in semiconductor memories can detect two bit errors and correct a single bit
error [7].

All error correcting codes work by recalculating the check bits when the word is
read from the memory array. The newly calculated check bits are compared with
the stored check bits, usually by taking the bitwise XOR [7], and syndrome bits
are obtained. The syndrome bits may indicate whether an error has occurred and
possibly where,

Table 2.2, when compared to Table 2.1, shows the average number of recoverable
defects at 50% yield and 50% equivalent yield (yield normalized to the area of
a memory without redundancy) for error correction codes in 16-Mbit and 1-Gbit

DRAMs. These are 128 data bit, 9 check bit and 512 data bit, 11 check bit Hamming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Defects, Faults and Yield

Memory Redundancy 50% Yield 50% Equivalent Percent Area

Yield Overhead
16-Mbit  ECC Only 428 407 6.57
1-Gbit ECC Only 1707 1680 2.1

Table 2.2: Average number of sustainable memory cell defects at a 50% Yield/E-
quivalent Yield with Error Correcting Codes [7]

Memory  Redundancy  50% Yield 50% Equivalent Percent Area

Yield Overhead

16.Mbit ZCC Rowand g0, 7977 10.41
Column

1-Ghit ECC Rowand o gq) 54751 4.94
Column

Table 2.3: Average number of sustainable defects at a 50% Yield/Equivalent Yield
with multiple redundancy [7]

codes, respectively. Error correction is much more effective than row and column
redundancy in this example, but uses more area. This effectiveness is in part because
up to 90% of memory failures are single-bit [16]. This implies that with column and
row redundancy, most of the replaced rows and columns contain only a single error.
Error correction is much more effective in dealing with random, single errors. This
also implies that the co-ordinated use of column and row redundancy and error
correction will have a very high synergy. Column and row redundancy can be used
to address the 10% of clustered, column and row errors, while error correction is
used to address the 90% of single bit errors. The data in Table 2.3 shows that this

is indeed the case.

2.6 Defects, Faults and Yield

Yield is the ratio of fully operating integrated circuit dies to the total number of
dies fabricated. Yield loss is caused by faults, which are in turn caused by defects.
This relationship is shown in Figure 2.4. The solid lines indicate the faults which
are more likely caused by specific defect types. Dashed-lines indicate less likely

possibilities. Defects can be broken up into five classes [8]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Defects, Faults and Yield

IC failure

Performance faults
Structural
faults Hard performance | Soft performance
fault fault

Local Global | Local Global
Local Global

Local
Spot .
Defects Lateral Vertical
Electrical
Effects

Geometrical effects

Defects

Figure 2.4: IC manufacturing process defects and relationships with IC faults [2]

Wafer Defects These are usually the result of contaminants and micro-cracks.
Human Errors Although automation is reducing the human factor, scratches, pol-

lutants and process mistakes still do happen.

Equipment Failure Equipment failure is the main defect mechanism in modern
manufacturing [8]. For the most part, these defect mechanisms are similar

to human errors, however, incorrectly tuned equipment also often leads to

systematic defect behaviour.
Environmental Impact This is typically caused by airborne contaminants such

as dust.
Process Instabilities Temperature and pressure gradients can cause uneven de-

position, etching or oxidation.
Statistical Variations Similar effect as process instabilities, resulting in variations

in dopant atom concentrations, oxide thicknesses, etc.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Defects, Faults and Yield

Relative Defect Density

Layer Extra Conductive Material Missing Conductive Material
Metal 100 1
Polysilicon 50 1
Thick oxide 2 5
Gate oxide 20 -
Doped area 1 1

Table 2.4: Typical relative defect densities for a CMOS process [8]

These defect mechanisms can lead to global or local defects. Global defects occur
over a large area and tend to be caused by more systematic mechanisms such as
mask misalignment, line registration errors or differing implant levels. They tend
to result more often in parametric faults. Local defects influence only a small area
and tend to be caused by dust, contaminants, scratches, cracks or pinholes in the
thin gate oxides of transistors and capacitors. In other words, a local defect is a
certain amount of extra or missing material that may cause a difference between the
designed and implemented electrical structures [8]. They tend to result in functional
faults.

In a DRAM, global defects affect the entire IC, resulting in parametric faults such
as timing failures. For the most part, these effects are not repairable by redundancy.
These chips must either be rejected or sold at lower speeds. Hence, global defects are
not considered in this thesis. Local defects result in specific functional unit failures,
many of which can be mitigated using redundancy.

Local defects have three main characteristics: density, size distribution and clus-
tering behaviour. These parameters change between layers and process steps. Man-
ufacturers closely guard this data; however, Table 2.4 shows approximate relative
defect densities between CMOS layers.

The size of the defects will have a significant impact on their final effects. The
Ferris-Prabhu distribution [17] is often used to describe the probability density func-
tion for defect sizes. This probability function is shown in Figure 2.5. The inde-

pendent variable is multiples of A, where 2) is the minimum feature size of the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Defects, Faults and Yield

06 | 1

S(x)

0.4 9

02 4

0 1 L ! )
] 2 4 6 8 10

Defect size (lambda)

Figure 2.5: Typical defect size distribution function [3]

technology. There are two reasons for the sharp increase of smaller defects. First,
any mechanism that creates large defects is likely to create many small defects at
the same time. Second, the ambient air is continuously filtered, so most particles
larger than a specific threshold will be removed.

Defects also tend to cluster instead of having a completely random spatial dis-
tribution on a wafer. Quantitative explanations are unknown, however, many defect
mechanisms, such as edge handling sensitivity, micro-cracks and equipment distur-
bance, give an intuitive explanation for the existence of clustering [8]. Clustering
does not cause a significant electrical effect, but can be significant when calculating
yield based on defect data.

The importance of a defect is determined by whether or not it affects the be-
haviour of an IC [3]. If it affects the IC’s behaviour, it causes a fault. Basically,
a fault is the measurable effect of a defect. Several abstraction levels are defined
for faults. More common ones are shown in Table 2.5. In this thesis, the system
level fault model is focused on, specifically faults of the memory core or faults that
can be mapped onto memory core faults. These would be cell, row, column and
cell cluster faults, plus address decoder, word-line driver, sense-amplifier or other

faults that manifest themselves as faults of groups of cells and can be eliminated by

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Defects, Faults and Yield

Abstraction Fault Types
Engineering Architectural Blocks
System Behavioral Modules
Logic Functional Gates
Circuit Electrical Devices
Symbolic Geometrical  Primitives
Physical Process Incongruities

Table 2.5: Fault Modeling Abstraction

redundancy.

The presence of a fault decreases yield. Yield models are used to estimate yield
and to characterize a design’s sensitivity to defects. Yield models can be character-
ized according to their fidelity, complexity and dimensionality [18]. Fidelity is the
accuracy with which yield can be predicted compared to the actual fabricated yield;
complexity is the accuracy in predicting yield loss mechanisms, and dimensionality

is the number of features used in the model. These features are [3]:

o IC area

Defect density

Spatial distribution of defects on wafer (clustering)

Defect size distributions

o Global disturbances on wafers

Layout information

Technological process information

I use the binomial model for all yield calculations [8]. This model takes into
account the IC area, defect density and defect size distribution. It is a simplistic
model that tends to give pessimistic yield estimates [8]. For the purpose of this
thesis, fidelity and complexity are not very relevant since the yield model is used

to compare redundancy schemes assuming they are manufactured with the same

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.7 Content Addressable Memories

technology process under the same conditions. As mentioned earlier, global distur-
bances are considered “die-killers” and will not be considered. The binomial yield

model has the basic form:

Y = e ADo (2.1)

where A, is the critical area and D, is the defect density. The critical area is the
area of a design susceptible to defects of a certain size. The critical area depends
on the size of the defect. For example, a defect could be some extra metal of a
certain size that could cause a bridge fault. Only those areas where wires or other

components are close enough together to be bridged are critical.

2.7 Content Addressable Memories

This thesis takes a narrower view of what is traditionally considered a content
addressable memory, or CAM. For the purpose of this work, a CAM refers to a
compare array. The compare array along with its associated data array is referred
to as an “associative memory.”

An associative memory determines its addressing based on already stored data,
rather than an address location [4]. For example, an associative memory storing
colours would return “blue” for “sky” or “purple” for “eggplant.” To perform this
association, an associative memory is composed of two parts: a compare array (the
CAM) and a data array, as shown in Figure 2.6. The compare array compares
incoming data with all of its entries in parallel. If a match is found, a “hit” occurs
and a word-line in the data array is activated. The data array operates identically
to a conventional random access memory, however, the word-lines are controlled by
the compare array instead of address decoders. In some cases, more than one hit
in the compare array may be possible and arbitration logic is typically included to
select which one word-line of the data array to activate. Alternatively, logic can
be added to prevent multiple identical entries from being written, thus preventing
multiple matches.

The CAM array operates by comparing, in parallel, incoming data with every

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.7 Content Addressable Memories

Compare
Data

Compare Array
(CAM) f— Data

Array
Data
Out

Figure 2.6: Associative memory CAM and data arrays [4]

oW

Compare Compare Compare Compare
Data Data Data Data
0 1 2 n
Row Row Row Row
Data Data Data Data

1

Hit

Figure 2.7: Compare function for each CAM row entry [4]

entry it has stored. Functionally, this occurs by performing an XOR operation for
each bit and feeding the output into a wide NOR gate. If any bit does not match,
the XOR output goes to “1” and the NOR output goes to “0” indicating a mismatch
for that entry. This is shown in Figure 2.7.

The XOR operation is built as an integral part of each cell and the wide NOR
gate makes use of dynamic logic. Figure 2.8 shows a static CAM cell with the built-
in XOR operation. Any type of random access memory cell can be modified for
compare operations. The match line connects to all cells in the entry and, in most

implementations, is pre-charged high before a compare operation. If any bit in the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.7 Content Addressable Memories

Word-Line
. H
r I
gl | T | e ) O
Al v ol 3
gl & g s
S| o~ | s
AL L [ Lla
ol & | H| oy e
F T T i
g = g
@] = - O
TJTC JLC
Match-Line

1

Figure 2.8: SRAM-based CAM cell

entry does not match, it is pulled low, providing the functionality of the wide NOR
gate from Figure 2.7.

A CAM cell may also be dynamic. Like a dynamic RAM cell, the dynamic CAM
cell must be periodically refreshed to retain its stored value. Also, like the dynamic
RAM, it requires many fewer transistors than its static variant, and is therefore,
much more dense and cost effective. A schematic is shown in Figure 2.9.

A ternary CAM (tCAM) operates like a regular binary CAM, but can also store
a don’t care value. If a cell contains a don’t care, it will return a match for either
compared value. The tCAM operates by using two connected 1-bit storage cells, as
shown in Figure 2.9. The CAM cell has three states, stored on its two storage nodes
as follows:

01 (data =0)
10 (data = 1)
00 (don’t care)
It also is possible to store a “11” value, however, then that cell will always return

a non-match. This may be useful for marking that there is no data in that specific

CAM word.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.8 Associative Repair

Word-Line

}—q
-

- Ven . TT
T |

J

Match-Line

Bit-Line
Bit—Line

It
Compare Data Line

Compare Data Line

|
Jj -

Figure 2.9: DRAM-based ternary CAM cell [5]

2.8 Associative Repair

Associative repair operates by accessing a CAM in parallel with the memory array.
If the addressed location contains a fault, the faulty address is matched in the CAM
and the data from the associated data array is placed onto the data pins in place of
the data from the regular memory array.

Associative repair has several advantages over other repair mechanisms. It has
completely transparent operation because the replacement memory is much smaller
and has an access time on the order of a tenth of the main memory [15]. Also, all
entries in the CAM are compared in parallel, so these two added together do not
add any significant overhead to the DRAM access time. The CAM and replacement
memory are small so have little power consumption compared to the main memory
and together have approximately a 5% area overhead [15].

Associative repair operates as shown in Figure 2.10. An incoming memory ad-
dress is sent to the CAM and the main memory in parallel. If the CAM matches
an address, it may shut off (depending on the implementation) access to the main
memory while the secondary memory is accessed.

Associative redundancies seem to have first appeared in radiation hardened
SRAMs for space applications [19, 20]. The first occurrence was an iterative ap-
proach where the memory array was split into equal size blocks [19]. If a block

contains a fault, any accesses within that block are redirected to another memory.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.8 Associative Repair

Data In
Address Main
> Memory
secondary <
> CAM > Memory
Match (M) -
Data Out

Figure 2.10: Associative repair memory block diagram

The bits that address the block are replaced, using the associative memory, with bits
to address an equal size block in the redundant memory. This redundant memory
can also be split into smaller blocks that are replaced, and so forth.

Another scheme for radiation hardened SRAMs, known as associative cache re-
dundancy, was proposed independently several years later. This scheme uses a CAM
to store the entire address and replaces single words [20]. The associated data array
contains the replaced words.

Two researchers, Jien-Chung Lo and Jung H. Kim, have discussed the possible
cache memory mapping schemes: fully associative, direct-mapped, associative set
and associative multiple, in [21]. Unlike the iterative approach mentioned above,
their approach uses triple modular redundancy (TMR) to guarantee that the com-
pare array matches correctly. Each scheme operates as would be expected from
memory hierarchies and cache design. It was found that the fully associative ap-
proach is the most expensive due to the wider match array, but does allow for less
CAM entries because any entry is free to map any location in the primary mem-

ory address space. Direct-mapped and associative multiple (without TMR) require

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.8 Associative Repair

approximately the same amount of hardware complexity, however, direct-mapping
offers no flexibility for replacement because once a tag address in fixed in the CAM,
no more repair is possible for the memory locations with the same tag. Associative
multiple (multiple copies of direct-mapped) yields better spare memory utilization
for cluster memory cell failures. They determined that the set associative scheme is

the most cost-effective approach.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.8 Associative Repair

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Ternary CAM Redundancy

3.1 Overview

Ternary CAM redundancy/repair operates in much the same way as binary associa-
tive repair, as discussed in Section 2.8; however, the addition of the ternary CAM’s
don’t care state enables compression of certain groups of words with bad cells. As
with associative redundancy, words are replaced because they are the smallest ad-
dressable quanta of data in a memory. Consider the 8 row by 8 word memories
shown in Figure 3.1. Words with bad bits are shown in grey. CAM entries for
marking the bad bits are shown below the memories.

As can be seen, a single word in the CAM can be used to mark large, regular
groupings of words with faulty cells in the main memory. It is even possible, in
rare cases, that bad, non-contiguous groupings of words could be marked. Although
groupings of bad words will not often fall nicely along easily marked addresses, using
Gray code to address words does mitigate this problem somewhat. The row and
column parts of the address each increase in Gray code order instead of a linear
progression. This can be achieved by simply re-ordering the lines output from the
row and column decoders. Notice that the entire address is not considered to be a
Gray code; the row and column components in the address form a set of two Gray
code values.

The Gray code property of having only a single bit differing between adjacent

addresses ensures that any area that is two steps wide can be marked with a single

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1 Overview

[=]

2010
O - OO =
O =2 =4 = = O O
o OO O o~ =~
000
001
011
g
S010
5110
111 [
101
100
(a) 111011
000{0
001
011
010
§01
0110
]
111
101
100
(d) 0000XX
asaiag
O =H = O O = = Q
S QO ™ o o - O O
O O O O v —

(g) 1XXOXX

azai1ao
Q=2 -4 O O A +Q
QO = - H OO
OO0 OO0 ~ —H —H -
000
001
011
)
3010 [
5110 Ll
111
101
100
(b) X10010
aza1aq
Q = — O O — - Q
Q@ d =4 4 A O O
O O O O = = ~ =
000
001
011
010
3
0110
S
111
101
100
(e) X101XX
azalag
Q= = O O - =9
Q Q ™= = - O O
O O O O ~ = = —
000
001

101

100

(h) 01XXXX

aga1 a0
O - —= OO — — O
QO o - -~ O O
[ R e R e R e i M
000
001
011 e
o ¥
3010 Lo
$110
]
111
101
100
(c) 01X11X
aza1a9
O =H H OO = = O
QO 4 = A =~ O O
o OO0 O =H =+ -
000
001
011
3010
3
0110
S
111
101
100
(f) XXX110
azalag
Q == O O e
QO = = = - O O
O O O O = — —
000
001
011
g
010
S
110
5]
101
100

(i) 11X—

Figure 3.1: 8 row by 8 word memory organization with bad words

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Associative Indirect

entry using a don’t care. If the grids in Figure 3.1 were numbered using regular
binary addresses, cases (b) and (e) would require either two CAM entries or the
marking of a larger area than necessary. However, bad areas larger than two steps
wide, such as grouping (i), can still cause problems.

Modifying the column and row decoders in the DRAM so that addresses increase
using a Gray code should not impact any functionality, such as the ability to do
page mode. Instead of words being transferred in order (in terms of location), they
will instead be pulled in a more “random” order. Since, addresses are sent by the
memory controller, even during page transfers and other high speed operations, the
location of subsequent addresses should not be a concern. An alternative is to leave
the primary addresses as usual, but Gray encode incoming addresses as they enter
the redundant path. Now the redundancy mechanism will have a “virtual” address
that it matches on to replace words in physical primary memory addresses.

In [12], T discussed the possibility of adding XOR terms for marking groups of
faulty cells that do not fall along conveniently markable addresses. Most of the
usefulness of employing XOR terms is eliminated by the single-bit difference in
Gray code. The elimination of XOR terms simplifies the logic and shrinks the area
required for the redundancy scheme, so the trade-off is justified. Large groupings of
bad words, such as case (i) will have to be split across multiple CAM entries.

Two possible methods of storing data from bad words are discussed in the fol-
lowing sections. I call these associative indirect and associative direct ternary CAM

redundancy.

3.2 Associative Indirect

The associative indirect variant is the slower of the two designs, but it is more
flexible in terms of fault coverage and requires fewer entries in the CAM array for
the same number of replacements.

This variant is composed of four main components, plus several multiplexers.

The components are the associative memory, bit selector, adder and secondary (re-

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Associative Indirect

Data In
Data from
Primary Memory
Memory
Address
| Data Array ' Bit Redundant
CAM ' ! Select
! Redundant ' Don’t + Memory
Array  [Sections “edundant -,
# | Memory | Care
! Base ! Mask
Match
Data Out

Figure 3.2: Associative indirect tCAM redundancy block diagram

dundant) memory. A block diagram is shown in Figure 3.2.

The associative memory is non-volatile or loaded from non-volatile storage and
programmed based on manufacturing test data. The compare array is ternary and
contains addresses of faulty cells in the main memory core. Whenever possible,
don’t care bits are used to reduce the number of CAM entries. The associated
data array contains two or three values. The first is the optional section number.
Modern DRAMs tend to split the storage of words into multiple sections. The
section number allows only faulty sub-words to be stored, instead of the entire
word, reducing memory requirements. For example, the 1-Gbit DRAM discussed
later is a 32Mbx32 device. It is composed of four banks with two sections each.
Each section in the bank stores half of the 32 bit word. The chance of both halves
being faulty is minuscule. Therefore, only the 16 bits from one section need be
replaced. Note that this introduces the restriction that, unless there is a redundant
path for each section, all parts of a word cannot be replaced. The multiplexer at
the top of the diagram selects which portion of the word is stored in the redundant

memory array. A similar set of multiplexers at the bottom reconstruct the data

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Associative Indirect

b:mg k:mg -y - Ty - Mg - My
0, c:Mgp-m l:mg-m{ TNz M3 T4 -ms
R 0, d: g - Ty - Mo m:mg-my - ma
mo I [ P €:Mg M1 M3z M3 n:mgo-mp-mMmg--msa
A e 1 f:Mo-Mmyi g -Ma-my 0:mg-my - Ty T3 - My
S S o, g:Tg-Mi-My-Tg Mg -ms p:mo-my Mz M3 -Mg-ms
r” S E O L h:mo-mp q:mg-my-mg- M3
a, a, a, a; a, ag 1Mo My Mo TIMg M1 - Mo - T3 - My
JiMmg-MmqMg- M3 S:Mp-M1-Mo-M3z-MyMs

Figure 3.3: Cross-bar shifter with switch equations (Associative Indirect).

word from the stored and working main memory portions.

The second value in the associated data array is a base memory address for the
redundant memory. The third value is a mask of the don’t care bits (if the address
stored in the CAM is 01X1X0, the mask will contain 001010).

The next component is a bit selector. The selector’s job is to extract the bits
marked as don’t care from an incoming memory address. It does this by ANDing
the don’t care mask with the incoming address then moving the masked bits to the
lowest significant bits. For example, assume that the address 011100 is sent in. It
matches with the 01X1X0 CAM entry. The mask value of 001010 is sent to the
selector which outputs an offset of 000010. The least significant ‘10’ are the input
address bits corresponding to the two don’t care bits in the mask.

The simplest, and fastest selector is a cross-bar. A cross-bar with a six-bit
address (main memory) and a 4-bit offset is shown in Figure 3.3. Each of the letters
‘6’ through ‘s’ represents a switch controlled by the equation on the right side of the
figure. The ‘m’ values represent the mask bits stored in the associative memory’s
data array.

The third component adds the produced offset with the base address stored in
the associated data array. This produces the address of the replaced word in the
redundant memory. Although, at first glance, the requirement for an adder may
seem to make the associative indirect method very slow, in fact, the adder can be
as simple as an OR gate for each shifter output bit. The CAM programmer has

full control of where in the secondary memory to place redundant words. Careful

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.8 Associative Direct

placement of redundant groupings will greatly reduce the required adder logic. The
base for single word failures can be placed anywhere in the secondary memory array.
The base for double word failures can be placed at any even address. The base for
four-word failure clusters should point to any address that is a multiple of four. And
so on. This ensures that there will never be a carry-out signal as at least one of
each pair of bits entering the adder will be a zero.

The match signal indicates whether an incoming address matches an entry in
the CAM array. If so, it can turn off access to the main memory and set the output
multiplexer so that data is sent from the redundant memory instead of the main
memory. The section value will place the correct portion of a word in the correct
place (if sub-words are being stored), or determine which portion of the word should
be stored in the redundant memory.

Associative indirect redundancy has the advantage of having a dense redundant
memory with all stored words consolidated together. This makes it easy for the
redundant memory to be shrunk as the DRAM process matures and defect densities

decrease and still keep the increased yield for a small number of defects.

3.3 Associative Direct

I developed the associative direct variant before I decided to use a no-carry adder in
the associative indirect method. I believed there was a possibility that associative
indirect would not be fast enough to complete its operations in the necessary DRAM
access time. Chapter 5 will show that my concern was unfounded.

Associative direct ternary CAM redundancy sacrifices flexibility and some fault
coverage for greater speed by removing the adder and redundant DRAM access.

An associative direct redundancy block diagram is shown in Figure 3.4. It is
composed of an associative memory, a bit selector and several multiplexers.

The compare array of the associative memory is identical to the associative
indirect case. It is ternary and matches on the addresses of faulty cells. The one

difference is that the number of don’t care bits is limited. The design in Figure 3.4

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.8 Associative Direct

Data In
""""""""""" = Data from
: Primary Memory
Memory s \
Address oo ﬁ \1
T T f , T T T
! Lo : ! Data Array X
CAM ! | : 1 | )
. ' Don’t! : ! ' '
Armay | Sectioni ' iword0 ) Wordl [ Word2 |,  Word3
4 o Care | ; ' X .
' Mask : ! ! !
] ] N N ] ] 1
T T : : T T T
Match - I

5 S\
— Bit |:
Select

Data Out

Figure 3.4: Associative direct tCAM redundancy block diagram

is limited to two don’t cares. However, the associated data array is quite different.
Each word line has two parts, a non-volatile part and a volatile part. The non-
volatile part (programmed along the the match array entries during manufacturing
test) holds the section number and don’t care mask. Both of these are identical to
the associative indirect case. The difference is the volatile part. This contains a
certain number of spaces for storing data words; four in the design I analyzed. This
is why the number of don’t care bits is limited to two. If there were to be eight
places for words, up to three don’t care bits would be allowed.

The bit selector operates exactly as before; however, it only outputs one bit for
each allowed don’t care bit. These bits select which of the word locations are written
to or read from.

The top multiplexer in the diagram selects the sub-word to be stored. The large
demultiplexer underneath it places it in the correct word. The bottom multiplexer

selects which word (or sub-word) is read.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Multiple Column Access

b:m
I him
04 T i:mg -] - My
| ho[v i d:mmg - - My L oo
%0 7y -TT -5 -ma J Mo - 1My =g - M3
o) ¢ d 4 f'—o—m—l——m— m k:mo.ml.m2.m3.m4
' m 7
a, a a,a, a, a B R e e l:mg- Ty Ty T3 Mg M5
0 "1 72 73 T4 75 g Mg My M9 Mg T4 + My

Figure 3.5: Cross-bar shifter with switch equations (Associative Direct).

For small faulty clusters, the associative direct method works well with Gray
code addressing, especially for faults that render a 2x2 grouping of cells inoperable.
The need for adder circuitry is also removed. Unfortunately, this method can be
very inefficient in terms of secondary method usage because, as mentioned earlier,
up to 90% of memory failures are single bit failures [16]. Only the first word storage
area in the data array will be used in most cases, leading to a much larger CAM

than in the associative indirect case.

3.4 Multiple Column Access

A common trait of modern DRAMs is that row and column addresses share the
same pins. This reduces the pin count and allows high speed operations such as
page mode where multiple columns are accessed per row access. In this case, each
column is held open until a subsequent column address appears [13].

This offers a challenge and an opportunity to associative redundancy schemes.
The simple solution is to have the CAM treat each new column address as an
individual memory access. This is fairly expensive in terms of power dissipation
because each match line has to be pre-charged for each new input address, and
most, if not all, will be discharged without being used.

I propose a more effective solution by splitting the match array into two, as shown
in Figure 3.6. After the /RAS signal is asserted , the first match array compares the
row address. After the /CAS signal is asserted, only those entries which matched
after the /RAS signal will be pre-charged and used in the comparison. The figure

shows three of the row entries matching (grey match lines). Therefore, only these

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5 DDR Concerns and Set Associativity

g 3
oy =1 ’s]
) l ;l 5] g \
E: 3 J 2
Q
Row Column
Match S S Match
Array Array

Figure 3.6: Splitting the match array to handle page mode and reduce power con-
sumption

three lines are pre-charged in the column array.

Splitting the match array allows multiple column accesses per row access for
page mode and avoids the wasteful power consumption of charging then discharging
all of the match lines every cycle. If, for example, the row address is changed once
for every four column addresses, on average, the power dissipation will be nearly
quartered, even before including the effects of halving the number of cells connected

to each match line.

3.5 DDR Concerns and Set Associativity

A significant portion of commodity synchronous DRAMs are now DDR. DDR stands
for “Double Data Rate,” meaning that data is transmitted to and from the DRAM
on both the rising and falling edges of the clock signal.

As described, it is difficult for ternary CAM redundancy to operate quickly
enough for more than a conventional, single data-rate DRAM (see Chapter 5 for
timing simulations). The solution is to move to a set associative design. This gives
a separate redundant path for even and odd column address acceses, allowing DDR

frequencies to be reached. It is also possible to share the row match array between

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6 Implementation Technology

Match—Line

J 0
il

3

Figure 3.7: Ternary flash CAM cell configuration

Compare Data Line
Compare Data Line

sets, leaving the column match component to be set associative.

3.6 Implementation Technology

Any implementations chosen for the components of the ternary CAM redundant
mechanism must be compatible with DRAM processing technology. There are three
reasons for this; adding processing will require additional masks, additional masks
will require production changes, and, as noted in Section 2.6, increasing the number
of processing steps can increase defect densities. The first two increase manufactur-
ing complexity, increasing cost, and the last decreases yield, also increasing cost.

The redundancy scheme implementation should be as compact as possible to
reduce area overhead, once again, leading to reduced cost. The CAM array and,
in the case of the associative indirect method, the associated data array should be
non-volatile.

Achieving process compatibility and compactness is trivial for the redundant
memory array. Non-volatility is not a concern, so a DRAM array can be used.
If access speed is an issue, SRAM technology may be employed as the redundant
(secondary) memory instead; however, this should not be an issue as the shorter
bit-lines and word-lines in the small DRAM array lead to much faster access.

A compact and non-volatile ternary CAM cell is demonstrated in [22]. The cell
is composed of two floating gate transistors as shown in Figure 3.7. The threshold
voltage of each transistor is programed to be either under -;—VDD or much over

Vpp. For a compare operation, each compare data line is set at either Vgg or Vpp,

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6 Implementation Technology

Control

Control Gate

Floating Gate

@

Figure 3.8: Twin ploy-silicon thin-film transistor memory cell [6] a. Cross section
b. Top view

Match—-Line |

Compare Data Line
L
I
I | H _ E“-—
L
Compare Data Line

Figure 3.9: Planar non-volatile ternary CAM cell

depending on the value of the data bit being searched for.

Although combined flash-DRAM processes are available, it is unlikely that they
are available in commodity DRAMs. Hence, the extra processing steps to produce
the required floating gate are undesirable. Instead, a floating gate planar device, as
in Figure 3.8 can be constructed. It is composed of two transistors, where the gates
of the two transistors are connected to form the floating gate, while the source and
drain of the larger transistor are connected to form the control gate [6]. The cell
is programmed and erased by Fowler-Nordheim tunneling through the gate oxide
of the small transistor. This happens through the smaller transistor because the
smaller gate leads to less capacitance and a higher voltage difference. The planar

devices can be connected to form a non-volatile ternary CAM as in Figure 3.9.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6 Implementation Technology

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Yield Comparison

4.1 The Yield Model

As mentioned in Section 2.6, the binomial yield model will be used for all calculations

in this thesis. This has the basic form:
Y = e ADo (4.1)

where A, is the critical area (area susceptible to defects of a certain size) and D, is
the defect density. The quantity A.D, can be simplified to A, the average number

of faults, leading to:
Y =e? (4.2)

This yield model will be combined with various fault models to predict yields and
compare redundancy schemes. Single cell, row and column and cluster fault models
will be discussed in depth. Faults in the periphery and in redundancy circuitry will
be covered briefly.

Although this is a simplistic model, and there are much more accurate models,
this model is used because it does not account for clustering. Clustering is usually
considered a benefit because it more accurately models the behaviour of single cell
faults. This behaviour probably also extends to cluster faults, but it is unclear if
and how this mechanism occurs with row and column failures. In order to keep the
treatment of all considered fault types equal, the simplistic binomial model, which

does not include clustering of faults, is used.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Equivalent Yield

Single cell faults are faults that affect individual memory cells. These can be
due to defects in the access transistors, substrate defects affecting the capacitor
structure, or even problems with the address decoders not allowing access to certain
cells. Row and column faults can be caused by defects in the bit or word-lines
or problems with the sense amplifiers, word-line drivers or address decoders. Since
these faults should be independent, row and column faults will be treated separately.
Clusters may be caused by large defects affecting several cells, defects in the bit or
word lines (causing clusters at the far ends), defects in sub-bit-lines and others.

All yield equations and plots for the four fault models can be found in Appendix
C.

4.2 Equivalent Yield

There is more to the cost equation than just the effectiveness of the redundant
system. After all, triple modular redundancy (TMR) is an extremely effective yield
mechanism used in many mission critical systems. Unfortunately, TMR has at least
a 200% area overhead. This is simply not cost effective for conventional, everyday
use. Silicon and packaging costs are also very relevant at the commodity volumes
of DRAMs.

Equivalent yield is the yield of a DRAM normalized to the area of a DRAM
with no redundancy. Estimates for overheads of conventional redundancy methods
are calculated in Appendix B. The overhead of associative direct ternary CAM
redundancy depends on the number of entries, while the overhead of associative
indirect ternary CAM redundancy depends on the number of entries and the size of
the secondary memory array.

A normalized average fault density, expressed as faults per die containing no
redundancy, is used as the independent variable for all plots in the following sec-
tions. The number of cells, rows and columns in a DRAM change depending on the
redundancy mechanism. Therefore, for a given fault density, the absolute number

of faults per die will be different. To simplify the presentation of the data, the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Equivalent Yield

average number of faults per die on the z-axis is normalized to a DRAM with no

redundancy.
4.2.1 Overhead of Ternary CAM Redundancy

The planar EEPROM devices discussed in Section 3.6 and [6] do not have area
information available. However, a similar single-poly EPROM device is discussed in
[23]. This EPROM cell is 22 um by 54 um in a 3-um process.

The IBM 16-Mbit DRAM was produced in a 0.5-um process [9]. By scaling the
EPROM cell directly, it can be assumed that in a 0.5-um process, a flash cell will be
approximately eight times the size of a DRAM cell, while a ternary CAM cell will
be approximately 16 times the size of a DRAM cell. Scaling to the 0.16-pm process
used in the Samsung 1-Gbit DRAM [10], a flash cell is approximately 10 times the
area of that of a DRAM cell while a ternary CAM cell is approximately double that.
Values of 8 and 16 times, for flash and ternary CAM cells, respectively, will be used
for both DRAMs studied.

The associative direct redundant path contains the CAM entry, the section num-
ber and don’t care mask in flash and, in this case, four words in conventional DRAM.
There are also the bit selector and multiplexers. There must be one multiplexer for
each section. Each must multiplex five words down to one. A five-to-one pass-
transistor multiplexer can be constructed from eight transistors, an area of approx-

imately 8 cells. This loads to a redundancy area of:

Aoyr = - Neoam X [baddr - (Acam + Afiash) + bsec * Afiash + 4bword * Aceil]
+Aselector + Amur

= Acell [4U . NC’AM (Gbaddr + 2bsec + bword) +T+ 8Ns : bword] (43)

where v is the wiring overhead, Acam, Afiashs Acells Aselector and Apyz are the
areas of a CAM cell, flash cell, DRAM cell, the bit selector and the multiplexers,
respectively. Ngoapr is the number of CAM entries, bogdqr, bsec and byorq are the

numbers of bits in an address, the number of bits to specify the section and the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Fquivalent Yield

number of bits in a word, respectively. Ny is the number of sections a word is split
into and T is the number of transistors in the selector and multiplexers. For the
16-Mbit DRAM, N; is four while T is 69, while for the 1-Gbit DRAM, Nj is two
while T is 273. This assumes that a cross-bar shifter takes up the area of one cell
for each cross-bar.

The associative indirect path contains the CAM entry, section number, secondary
memory pointer and don’t care mask in flash, plus the secondary memory array.
There is also a bit selector, adder and multiplexer. Assuming that the maximum
replaceable area is 64 x 64 words, then the selector will have twelve outputs. This is
198 transistors for the 16-Mbit DRAM and 234 transistors for the 1-Gbit DRAM.
Twelve adders (OR gates) are required, resulting in 48 transistors. The multiplexer’s
are two-to-one, requiring two pass transistors each. This totals to 262 transistors
for the 16-Mbit DRAM and 378 transistors for the 1-Gbit DRAM. The area of the

redundancy mechanism is:

Aorr = v{Ncam [beddr - (Acam + Afiash) + (bsec + bred) Aflash]
Nred : bword . Acell

+ E } + Aselector + Aadder + Amua:
red

= Acey-v |:8NCAM(3baddr + bsec + bred) +

Nred ) bword
Ered

+T + 2N,  buord] (4.4)

where N,.q4 is the size of the redundant memory in words and E,.q4 is for the overhead
of the sense amplifiers and other periphery circuitry in the redundant memory. This
is assumed to be 0.67, an approximate average of the cell efficiencies calculated in
Appendix B.

Both of the area equations make the conservative assumption that the area
required for the periphery is proportional to the number of memory cells on the die.
It is more likely that the periphery area is fixed.

For both DRAMSs, three amounts of CAM entries for each of the associative
repair mechanisms will be used to compare effective yield. In all cases, the wiring

overhead, v, is assumed to be 1.02 (2%). This is the same wiring overhead as

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 FEgquivalent Yield

Host memory CAM  Redundant Red. mem. overhead

size (bits)  entries Address bits  size (bits) (%)

2K - - 3.91

16M 6K - - 11.73

Associative 8.5K - - 16.62
Direct 73K - - 3.10
1G 100K - - 4.24

124K - - 5.26

1.6K 15 32K 3.96

16M 45K 17 128K 11.60

Associative 6.9K 15 32K 16.51
Indirect 66K 15 512K 3.08
1G 72K 19 8M 4.23

76K 20 16M 5.23

Table 4.1: Selected sizes of associative redundancy schemes for comparison

assumed in [7]. The overheads for these will be approximately equal to the overheads
of the conventional memory schemes (see Appendix B). For associative indirect
redundancy, I chose to have the number of bits in the redundant memory always be
a power of two. This is not a necessity, but it does constrain the possible choices of

the number of CAM entries. The chosen amounts are shown in Table 4.1.
4.2.2 IBM 16-Mbit DRAM

The three amounts of CAM entries for associative direct ternary CAM redundancies
were chosen so that the area overhead came out to approximately the same as the
three conventional redundancies. This works out to 2K, 6K and 8.5K CAM entries,
giving the same overheads as row and column, ECC and row and column with ECC
redundancy, respectively. For associative indirect ternary CAM redundancies, the
amounts of CAM entries and the size of the redundant memory array were chosen in
an attempt to maximize yield under all four fault models, giving 1.6K CAM entries
with 15 bits, 4.5K with 17 bits and 6.9K with 15 bits for row and column, ECC and
row and column with ECC redundancies, respectively. Plots for equivalent yield
versus fault density for the four fault models are shown in Figures 4.1 through 4.4.

The associative direct redundancy method performs very well for single cell and

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 FEquivalent Yield

cluster faults. With 2K CAM entries, associative direct redundancy can handle 8.5
times more single cell faults than row and column redundancy and 5.4 times more
single cell faults than ECC redundancy for 50% equivalent yield. With 8.5K CAM
entries, 1.05 times more faults per cell can be handled than row and column with
ECC redundancy.

An interesting effect is seen for ternary CAM redundancies when dealing with
failing columns. All of the other fault types show constant yield/equivalent yield
until a threshold is crossed, followed by a quick drop to zero (or not so quick in
the cluster fault case). With column faults, the yield/equivalent yield drops linearly
until the threshold, where it drops off quickly as expected. The reason for this is
that failures in the redundancy mechanism are included in all of the fault models.
This effect is only seen with column failures because they are the only fault type that
seriously affect the performance of the redundancy method. Other types of failures
can be handled gracefully, but with the current design, a column failure may render
the entire redundancy mechanism inoperable. The probability of a column failure
rendering the entire redundancy mechanism inoperable is proportional to the fault
density, leading to the linear decrease in yield, as shown in Figure 4.3.

For cluster faults, associative direct with 2K entries can handle 2.4 times more
faults than row and column redundancy, 930 times more faults than ECC and 1.9
times more faults than row and column redundancy with ECC to achieve a 50%
equivalent yield.

Unfortunately, associative direct ternary CAM redundancy does not perform as
well for row and column faults. Only with prohibitive area overhead can associative
direct redundancy improve on the performance of row and column redundancy for
row or column failures. On the other hand, associative direct redundancy does
perform satisfactorily well compared to ECC.

For single cell faults, the number of faults that can be handled by associative
redundancies is proportional to the number of CAM entries. Hence, it is not sur-

prising that the chosen sizes for associative indirect redundancy do not perform as

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Equivalent Yield

well as the associative direct redundancies of the same area overhead. The graphs
would be very different if the size of the redundant memory array had been sacri-
ficed to make room for more CAM entries. The 1.6K CAM entry associative indirect
redundancy with 32K of redundant memory still outperforms row and column and
ECC redundancies. Unfortunately, 6.9K entries is not enough to outperform row
and column redundancy with ECC.

For cluster faults, the relationship between the fault density and the number
of CAM entries is more nebulous. The size of the redundant memory array also
plays an important part. Both the 1.6K and 4.5K associative indirect redundancies
outperform the associative direct redundancies of the same area. However, the 6.9K
associative indirect redundancy is starved by its comparatively small redundant
memory. Conversely, the large 128-Kbit redundant memory coupled with 4.6K of
entries performs extremely well.

Associative indirect redundancy does not struggle as much as associative direct
with the row or column failures. Contrary to single cell faults, the number of faults
that can be handled is more affected by the size of the redundant memory. In this
model, most of the CAM entries are vacant. Unsurprisingly then, the 4.5K case with
the large 128-Kbit redundant memory performs extremely well. Even the smaller
1.6K entries with 32 Kbit case outperforms all of the conventional redundancies.
For a 50% equivalent yield, the 1.6K CAM case can handle about 1.6 times more
faults per row or 1.8 times more faults per column than both row and column and

row and column redundancy with ECC.
4.2.3 Samsung 1-Gbit DRAM

To match the overheads of conventional redundancies, associative direct redundan-
cles with 73K, 100K and 124K CAM entries and associative indirect redundancies
with 66K entries and 15 address bits, 72K entries and 19 bits and 76K and 20 bits
are studied. These correspond to row and column, ECC and row and column with

ECC redundancy overheads.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Equivalent Yield

none —+—
row & column ---x---
ECC - %
‘ COEEADCCODECDEEaREa0EnnE00nER0000REaREE 07 & column w/ ECC &
1 2] i
i
Ix g
B
D 06EX J
= 3
£ X 9
ks *
g
w  04FTx B
o @
X
X
t
02F% % 9 i
o
0 —u L 1 L 1 m‘ﬂ.
0 2000 4000 6000 8000 10000
Average number of single cell faults per die (normalized)
1 1 T 1
ad 2K —+—
ad 6K ——x-—
ad 8.5K ---%---
ai 1.6K, 15bits -8
' o k5K, 17bits --w-—
0.8 i b ; XK, 15bits ----- |
' '* : i *
o} i X i X
1 ! ! H
o *
i X *
S 06 f u] | i } 1 : 4
2 ! i
> I | X i ¥
- i 1 | H
s ': . x
g i x : :
2 Q . i i x
wooar i o X I
! | ! :
i .
i x % *
a1} ! 1 \ i
1 } R .
i X ; *
L ! i i : q
02 o] i X ; X
z P i
! X ! .
1 ; i %
! X i %
% 0 i
0 2000 4000

6000 8000 10000
Average number of single cell faults per die (normalized)

Figure 4.1: Equivalent yield of a 16-Mbit DRAM for a single cell fault model for
conventional and associative redundancies.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Equivalent Yield

Equivalent Yield

0 1 1

0 20 40

60

80
Average number of row faults per die (normalized)

100

T T
none ——+—
row & column -=-x---
ECC ---%---
row & column w/ ECC &

12 140 160

Equivalent Yield

80

I '

ad éK —_—
ad 6K ---x---
ad 85K ---%---
ai 1.6K, 15bits &
ai 4.5K, 17bits -—-m-—
|, ai 6.9K, 15bits ---0-- |
n
[ ]
\
[ ]
\_
n
\.
. -
\A
'
1
»
\.
1
[
1
t
\.
"
\
B!
"
L] ]
\
]
| ]
N
! L ..k
100 120 140 160

Average number of row faults per die (normalized)

Figure 4.2: Equivalent yield of a 16-Mbit DRAM for a row fault model for conven-

tional and associative redundancies.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 FEquivalent Yield

1 T T T . : | l
none —+—
row & column ---x---
ECC ---%---
row & column w/ ECC 8-
o]
2o
>-
b=
2
3]
2
3
o
i}
1 T T ' : . I
: ad 2K —+—
ad 6K -——-x---
ad 8.5K ---%---
ai 1.6K, 15bits &~
ai 4.5K, 17bits —-m—
ai 6.9K, 15bits ---o-- |
: 4
2
=
€
K
]
2
=
O
i}

"
0 10 20 30 40 50 60 70 80

Average number of column faults per die (normalized)

Figure 4.3: Equivalent yield of a 16-Mbit DRAM for a column fault model for
conventional and associative redundancies.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Equivalent Yield

none ——
row & column ---x---
ECC ---%---
row & column w/ ECC &~
o .
L
=
€
K
]
2
3
o
8 4
i 1 1 1 1 |
100 150 200 250 300 350 400
Average number of cluster faults per die (normalized)
1 T T T T T
ai 4.5K, 17bits —-m-~
ai 6.9K, 15bits ---o--- |
kel
2
b
€
£
[
2
3
o
il

0 1 1 )3 L L ] 1
0 50 100 150 200 250 300 350 400
Average number of cluster faults per die (normalized)

Figure 4.4: Equivalent yield of a 16-Mbit DRAM for a cluster fault model for
conventional and associative redundancies.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Equivalent Yield

All three associative direct cases surpass the performance of conventional redun-
dancies for single cell and cluster faults. The smallest, with 73K entries achieves
50% equivalent yield with 53, 45 and 0.96 times more single cell faults than row and
column, ECC and row and column with ECC redundancies, respectively. Although
row and column redundancy with ECC slightly outperforms a 73K entry associa-
tive direct design, it does with 2.1% more area overhead. With cluster faults, the
performance of associative redundancies depends on whether the DRAM employs
contiguous or interleaved words. For contiguous words, the 50% equivalent yield
point is achieved with 10, 19230 and 8 times more cluster faults. For interleaved
words, 4.6, 8641, 3.6 times more cluster faults for row and column, ECC and row
and column with ECC redundancies, respectively, can be handled and still achieve
50% equivalent yield.

For row and column faults, the outcome is similar to that of the 16-Mbit DRAM.
Associative direct ternary CAM redundancy cannot achieve the performance of row
and column redundancy. All three associative direct cases achieve greater than 75%
of the 50% equivalent yield point of row and column redundancy for row faults,
but only about one third of the column faults. The effect of column failures on the
redundancy mechanism is still visible, but much less prominent.

The smallest associative indirect case, with 66K CAM entries, is still large
enough to perform comparably to all conventional redundancies for single cell and
cluster faults. For single cell faults, it reaches 50% equivalent yield with 47, 41 and
0.87 times more faults than the three conventional redundancies. For cluster faults
in both, contiguous and interleaved word DRAMs, these numbers are 0.84, 1538 and
0.66 times more faults.

With row faults, the 512-Kbit redundant memory of the 66K entry case is not
large enough to pose a challenge for conventional row and column or row and column
with ECC redundancies. Increasing the redundant memory to 8 Mbits solves this.
The 72K entry with 19 address bits case reaches 50% equivalent yield with 1.2

times more row faults than both row and column and row and column with ECC

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3 Inferences

redundancies.

None of the associative indirect ternary CAM redundancies offer much com-
petition to row and column and row and column with ECC redundancies for row
or column failures. The cases studied simply do not have large enough redundant

memories. A case with 22 address bits, would drastically change this picture.

4.3 Inferences

From this the previous section, several conclusions can be reached.

ECC is only effective for single cell and column faults. It cannot deal with
more than one fault in a codeword. It should also be slightly more effective in
interleaved DRAMs. For ECC, Only DRAMSs with contiguous words were modeled.
A contiguous DRAM stores all of the bits of a word together in adjacent cells along
a word-line. An interleaved DRAM stores all of the bits from the same bit position
in a word in adjacent cells. Because of this, it is much less likely that a cluster fault
will affect two cells from the same codeword, thereby improving the effectiveness of
ECC repair.

The overhead of ECC when coupled with row and column redundancy is not
worth it for most fault types, however, the large performance increase offered for
single cell faults makes this option very attractive.

When dealing with cluster faults, the effectiveness of the associative redundan-
cies is somewhat reduced for interleaved DRAMSs. This is because associative re-
dundancies are a word-replacement scheme. With interleaving, words are split up,
causing a cluster to affect a greater number of words, meaning more words require
replacement.

Associative direct ternary CAM redundancy performs very well for single cell and
cluster faults. Unfortunately, redundant memory is wasted when replacing single
words. This wasted memory cannot be used for another fault. When dealing with
row failures, associative direct redundancy performs nearly as well as a conventional

redundancy of a comparable area, but this redundancy method is not well suited to

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.8 Inferences

' n‘one —
row & column ---X---
ECC ---%---
row & column w/ ECC -8
el p
2
5
€
o
a
2
3
o
u_' -t
1 1 ! o
0 20000 40000 60000 80000 100000 120000 140000
Average number of single cell faults per die (normalized)
d 73K —+—
K —--%---
ad 124K ---%---
: ai 66K, 15bifs 8-
o ai 72K, 19bits —--m-—
08 F ' ai 76K, 20b|t5 Q-
o i
o 06} ; : E
2 : H
> i 5
= i :
< H H
o H H
2 i '
& E 5
w 04 F i E
02| i 4
% x
o H 1 1 i Fi
0 20000 40000 60000 80000 100000 120000 140000

Average number of single cell faults per die (normalized)

Figure 4.5: Equivalent yield of a 1-Gbit DRAM for a single cell fault model for
conventional and associative redundancies.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.8 Inferences

' " none —+——
row & column ---X---
ECC ---%--
row & column w/ ECC &
i
—
; :
3
; é‘&
E x
o o06% & i
g *
z A %
5 L {
o 3 )
g k
£ i i
g oaf 3? g
;
0.2 * .
u
L]
]
0 L L b L 1
0 200 400 600 800 1000 1200
Average number of row faults per die (normalized)
1 T
-------------------------------- ad 73K ——
B ad 100K ---x---
i % dad 124K ---%---
g ! ot ai 66K, 15bits &
u X *n ai 72K, 19bits —-=-—
08 g ! H ai 7616, 20bits o~
2 X o
D ! i !
g koox :
© b ¢
o 06 | i g i -
2 @ 1 ** ¢
z @ X P .
c 1 o b !
3 ¥ : P .
s [ | " q?
o X il i
& o04f9 : . Q i
1] i : |- /
] i fi ®
@ Yoo ]
il { Xu &
1] i ol !
02 4 * %; & -
o | Vi ¢
: ¥ ¢
& X *
g % 'x~ 3
0 L - ’ﬁa—-&-— 1 L
0 200 400 600

800

1000
Average number of row faults per die (normalized)

1200

Figure 4.6: Equivalent yield of a 1-Gbit DRAM for a row fault model for conventional
and associative redundancies.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.8 Inferences

nong —_
row & column e QIS

ECC ---x...
Tow & column wy ECC --.g-..

'E 0.6
5
H
2
e}
g o4
0.2 ¢
|
i
0 E SR o .
0 100 150 200 250 300 350 400
Average number of Column fayjtg per die (normah‘zed)
1
ad 73K —
ad 100K -~y
ad 124K ...y ..
~ G%S%oeaooeooge% ai 66K, 15bjts ... oo
"% % ai 72K, 19bits ——pp...
08 L X % 2l 76K, 20bits - .-
& kL] |
B *| €
5 : -
2 o
® g o i :
= 8 ful *i '
@ : i
& & L ¢
s : il i
3 & S ®
3 H 4 x! i
§ o4 : Y ;
@ L o
+ *i 3
5 Tor s
o *!
: ’
02 k|
iy
(ol
i

Figure 4.7. Equivalent yi

ield of g I-Ghit DRAM for a colump fault model for ¢op.
ventiona] and associative redundancies.

48

Reproduced with Permission of the Copyright Owner. Further reproduction prohibiteq without Permission.



Interleaved Word DRAM

¢
08k
3 osf
5
€
3
©
2
3
g o4
02
3
0
0 500

T T T
none —+—
row & column ---x-—-

*
row & column w/ ECC 8-

!
1000

L L i 1 t

1500

2000 2500 3000 3500 4000 4500

5000
Average number of cluster faults die (normalized)

Contiguous Word DRAM

08 ¢
g os
B4
€
2
o
Z
3
g o4
0.2
0 1 1 aQ 1 1 L 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Average number of cluster faults per die (normalized)
Interleaved Word DRAM
1 T T T T T T T T T
ad 73K —+—
A ad 100K ---x---
A ad 124K
ai 66K, 15bits
i ai 72K, 19bits
0.8 ai 76K, 20bits
B
o
o
g osf@
s g
E |3
=1
o 04} mm
A
fy
02k
3 1 H I 1 1 1 1
0 500 1000 1500

2000 2500 3000 3500 4000 4500 5000
Average number of cluster faults per die (normalized)

4.8 Inferences

Figure 4.8: Equivalent yield of a 1-Gbit DRAM for a cluster fault model for con-
ventional and associative redundancies.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 A Combined Fault Model

dealing with column failures.

Associative indirect ternary CAM redundancy offers a large amount of flexibility
in tailoring the redundancy to the predominant failure type. In addition, only the
amount of redundant memory needed to replace failing word portions is used. The
rest can be used for another failure, theoretically, reducing the area overhead.

The equivalent yield plots show that, for the most part, it is advantageous to
maximize the size of the redundant memory at the cost of CAM entries.

This would indicate that the best choice for a 16-Mbit DRAM is to have 1.1K
CAM entries and 18 address bits. This has an area overhead of 4.06%, less than
row and column redundancy, and allows more faults to 50% equivalent yield than
row and column redundancy for all fault types. It is only out-performed by row and
column with ECC redundancy for single cell faults, a solution that occupies 12.43%
more area.

For the 1-Gbit DRAM, such a trade-off is more difficult to find. An associative
indirect redundancy with 2K entries and 22 bits will exceed the performance of
row and column redundancy in all cases. Unfortunately, it has an overhead of
6.28%, even greater than that of row and column with ECC redundancy. The best
trade-off at a comparable overhead to row and column redundancy is 32K CAM
entries with 20 bits. At 3.10% overhead, the number of faults that can be handled
by all conventional redundancies at 50% equivalent yield is exceeded for row and
cluster failures. The number of faults handled by row and column redundancy is
also exceeded for single cell faults. This associative indirect redundancy size can
also handle approximately five sixths of the column faults that row and column

redundancy can.

4.4 A Combined Fault Model

In Section 4.2, I compared the performance of the three conventional redundancies
and my two associative redundancies using four different fault models. Unfortu-

nately, these faults do not occur independently. In a real fabrication process, all

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 A Combined Fault Model

four types of faults will occur on the die. In order to investigate this, performance
will be compared with a combined fault model. Using the inferences from Section
4.3, I have chosen the best all-round sizes at the same overhead as row and column
redundancy for my two redundancy methods in the two DRAMs. For the 16-Mbit
DRAM, this is a 2K entry associative direct tCAM redundancy and a 1.1K entry
with a 256-Kbit redundant DRAM associative indirect tCAM redundancy. The 1-
Gbit DRAM will have 73K entry associative direct and 32K entry with 16-Mbit
redundant DRAM associative indirect tCAM redundancies.

The four fault types are independent, requiring four independent variables and
one dependent variable for the yield. Not only is this computationally prohibitive:
it is difficult to display the data in a meaningful manner. Instead, I have chosen to
fix the ratios of the four fault densities. The number of single cell and cluster faults

per cell are equal. Individual fault densities are calculated as follows:

2F

\= RO (4.5)
P BTRTC (4.6)
X = 4b+++0 (4.7
W= 4b—+21§_:f-_0 (4.8)

where A is the number of single cell faults per cell, p is the number of row failures per
row, X is the number of column failures per column and ¢ is the number of cluster
faults per cell. The values b, R and C are the number of bits, row and columns,
respectively, in a die without redundancy. The value F' is the number of normalized
faults per die. The ratios of the four fault types can be trivially adjusted in the
equations in Appendix C.5.

This ratio of fault densities does not correspond to a real process. In fact, it is
unlikely that the ratios of fault types will remain fixed as the fault density increases.
It may be likely that there is a correlation between single cell and cluster faults, but
no such relationship exists for row and column failures. The following data is for a

completely arbitrary combination of faults.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 A Combined Fault Model

T
no redundancy —+—
o.. % row & column ---X---
©a ECC ---%---
NN ’§column w/ ECC -8

asooc. direct —-=
assoc. indirect ---o---

Equivalent Yield

1
0.1 1 10 100
Total faults per die (normalized)

10000

Figure 4.9: Equivalent yield of a 16-Mbit DRAM with various redundancy methods
for a combined fault model

4.4.1 IBM 16-Mbit DRAM

The 2K entry associative direct scheme has an overhead of 4.73 pm, or 3.91%. The
1.1K entry with 256-Kbit redundant memory associative indirect scheme has an
overhead of 4.91 um, or 4.06%. Equivalent yields are shown in Figure 4.9.

The plot shows that for this ratio of faults, when there are less than about 80
faults (40 single cell, 40 cluster, 0.019 row and 0.0096 column faults per die), row
and column redundancy offers the best performance. Above this amount, associative
indirect is a better choice.

The ternary CAM redundancy plot lines are not smooth. This is because the
portions of the CAM entries used for each fault type are calculated by computer
algorithm. Non-linearities and jumps are caused by the algorithm shifting CAM

entries between fault types.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 A Combined Fault Model

1

none ———
row & column --->---
€CC - ¥---

Equivalent Yield

0.01 01 1 10 100 1000 10000 100000
Total faults per die (normalized)

Figure 4.10: Equivalent yield of a 1-Gbit DRAM with various redundancy methods
for a combined fault model

4.4.2 Samsung 1-Gbit DRAM

Both the 73K entry associative direct scheme and the 32K entry with 16-Mbit
redundant DRAM associative indirect scheme have an overhead of 17.11 mm?2, or
3.10%. Equivalent yields are shown in Figure 4.10.

The equivalent yield plot is quite different for a 1-Gbit DRAM where there is
greater area for entries and redundant words. Except for a very narrow range, both
associative redundant schemes are superior to conventional redundancies for this
mix of faults.

The plot lines for the ternary CAM associative redundancy methods are much
smoother in the 1-Gbit DRAM than the 16-Mbit one. This is because the yield
calculations were run several times with adjustments to the algorithm coefficients.
Data from each run was then pieced together to give the best yield at every fault

density, resulting in a much smoother curve.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 A Combined Fault Model

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

System Modelling, Design &
Simulation

5.1 The Critical Path

In this chapter, I show that ternary CAM redundancy can operate at DRAM page
speeds. The critical path of a design is the path within the design that dictates the
smallest cycle time at which an entire design can run. It can also be thought of
as the worst-case delay over all possible input patterns [24]. In DRAM, the critical
path is the time from the column-access strobe signal lowering to the time when the
data appears on the output pins or when the data is written into the cells.

Synchronous DRAM latencies are specified with three numbers of the format z-
y-z. For instance 3-2-2 is a common specification. The numbers signify the number
of cycles for CAS latency, the RAS-to-CAS delay and the RAS pre-charge time [25].
The CAS latency is the number of cycles necessary for data to appear on the output
pins after the /CAS signal pin is activated. RAS-to-CAS delay is the number of
cycles that must be waited after activation of the /RAS pin before activating the
/CAS pin. RAS delay is the number of cycles that must be waited after /RAS pin
deactivations and activations.

With 3-2-2, there is a five cycle (3+2) delay from the activation of the /RAS
signal. With the most relaxed timing, during a read operation, ternary CAM re-
dundancy must have data available within five cycles. However, multiple /CAS

activations may occur for every /RAS activation. This means that data must be

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2 Modeling and Simulation

available within three cycles. Current SDRAMs operate at speeds up to 200 MHz.
To be employed in these DRAMs, ternary CAM redundancy must have a critical
path of less than 15 ns.

In order to determine whether reaching this critical path delay is possible, I
created two models of the associative indirect method. The first, a VHDL model,
was created to determine the design’s functionality. A VHDL test-bench wrapper
was written. The second model is a schematic in the Cadence tool-set. This was
used to determine timing. Unfortunately, an extracted layout is not possible due to

the unavailability of a DRAM process.

5.2 Modeling and Simulation

I created a VHDL model in order to simulate the functionality of my associative
indirect design. A full simulation, using the CAM and redundant memory sizes
determined at the end of the last chapter, is not necessary for this purpose and
would take a prohibitively long time for a full simulation. Instead, I assumed a
16 x4 bit memory in two banks with half of the memory word stored in each bank.
The CAMs were given 8 entries and the redundant memory 16 entries (16x2 bits).
Although this is excessively large compared to the size of the main memory, it allows
for a very high percentage of faults, giving a more complete functional simulation.
The offset (see Section 3.2) was set to 3 bits, allowing a maximum fault size of eight
memory cells.

The VHDL model was created with 10 files as shown in Figure 5.1. The most
prevalent objects denote regular VHDL files, while the other two denote VHDL
packages. Standard packages are not included in this figure. The components all
correspond to components in Figure 3.2. The file nc_adder.vhdl corresponds to the
adder while decode.vhdl and red_array.vhdl form the secondary memory.

The three files dealing with memory were written behaviorally. This is because
flash and DRAM devices are difficult to create in VHDL and are not synthesizable.

In fact, the flash devices are described as ROMs. This is valid because the flash

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2 Modeling and Simulation

redun_pkg

[—>{ cam_array L]

+behavioral

—>> data_array

+behavioral

> selector

+generated from ruby
nc_adder
ene—
1

> decode

+generated from rubyi

=

red_array
+behavioral

Figure 5.1: VHDL model source file organization

devices are expected to be programmed during manufacturing test, and not by the
user. The txt_util.vhdl package is a small collection of functions used to convert
between VHDL types for reading and writing data files. In this case, the functions
are used to load the ROMs (flash).

Two of the components, the bit selector and decoder, are very regular compo-
nents that depend on the sizes of other components. Unfortunately, this regularity is
not expressible with the VHDL generate iterator due to the many combinations of
the input signals. Instead, I wrote a Ruby script to produce the VHDL descriptions
[26]. The VHDL and Ruby files can be found in Appendix E.

The test-bench is composed of two files, plus the associative indirect model files,
as shown in Figure 5.2. The Ifsr_generic.vhdl file is from a university course in ASIC
design [27]. In this case, the txt_util.vhdl package is used to record the generated
input to and output from the model. The VHDL source can be found in Appendix
F.

The VHDL simulation showed that my design is functional and can handle page

operations.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Schematic and Simulation

l assoc_test i

[assoc_pkﬂ | txt_util]

Ifsr_generic assoc_| I

+not author

Figure 5.2: VHDL testbench source file organization

5.3 Schematic and Simulation

In order to determine if my redundancy method is fast enough to include in com-
modity DRAM, I performed timing simulations based on schematics in Cadence.
Preparation of the schematics was done in three stages. The first was a direct port
of the functional VHDL mini-design to a schematic. The second stage consisted of
scaling the schematic up to 32K CAM entries with 25 address bits per entry and
20 bits of secondary address space. I estimated capacitances and resistances of the
long metal lines in the memory arrays and added these loads to the design for the
third stage.

Simulation was done with TSMC’s CMOSp18 180-nm technology. This is a logic
process, therefore, comparisons with DRAMs implemented in memory processes is
somewhat suspect. Memory processes are optimized for density while logic processes
are optimized for speed. The Samsung 1-Gbit DRAM I've used for comparison
is implemented in a 0.16-um technology [10]. The 2002 International Technology
Roadmap for Semiconductors states that current DRAM production is at 0.10-pm
[28]. The smaller feature sizes should give the DRAMs a speed advantage, therefore,
if my design performs favorably at 0.18 pm, it should also perform well enough after
a process shrink and switch to a DRAM process.

I automated the conversion from VHDL to schematic as much as possible. The
two RTL components, the bit selector and non-carry adder, where synthesized in
Synopsys and imported into Cadence. This could not be done with the behavioral

memory elements. However, the memory elements are very regular, making it easy

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.8 Schematic and Simulation

for me to create SKILL code that would generate the match and data arrays from
input files [29]. The SKILL code, after capacitive and resistive loads are added, is
included in Appendix G.

Timing and control circuitry was created manually. These do not have equiva-
lents in VHDL. This circuitry is for pre-charge signals and timing signals, ensuring
that pre-charging lines are not shorted to ground and that operations occur in the
correct order.

In Section 3.4, I explain how and why only column match-lines whose associ-
ated row match-line already matched are pre-charged on the /CAS signal. Unfortu-
nately, due to timing constraints, the associated data array cannot be pre-charged
only if a column matched. Instead, the data array is pre-charged along with the
column-match array on /CAS if there was a match in the row-match array. This
is undesirable due to power consumption, but a satisfactory compromise since it is
not pre-charged on every DRAM access and only discharged if necessary.

The direct port of the mini functional design was carried out in order to deter-
mine if my schematics were functional. Although the timing data is not very useful,
it shows an upper bound of 825 MHz with a CAS latency of 2 (provided a 2x16 bit
DRAM with an access time of 1.21 ns can be found).

Scaling the mini-design to the full 34200 entries was obviously not practical.
Instead, the design was kept at eight entries and the capacitive load of the other
34192 entries was calculated and added. Because I was only scaling the design,
resistances were not estimated at this time. Simulations showed that with this
many entries, the match-line pre-charge transistors could not be turned on fast
enough. Therefore, I split the design into 32 1K entry components. Even so, I had
to lengthen the duration of the pre-charge signal. Row match-line pre-charge now
occurs in 400 ps and the row-match operation takes 1.92 ns. Due to the higher
capacitance of the OR gates enabling column match-line pre-charge, this pre-charge
is slightly slower at 450 ps.

Although the associated data array could be pre-charged more than quickly

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Schematic and Simulation

enough, with 1024 cells attached to each bit-line, the small cell transistors could not
pull down the bit-lines fast enough. I split each 1024 entry data array into four 256
entry arrays. Now the data lines could be pulled down fast enough, plus this offers
greater control over pre-charging the data arrays and an easy match-line arbitration
logic. Only data arrays attached to rows that matched need to be pre-charged, thus
saving power.

Match-line arbitration logic is frequently used in CAMs to ensure that, if more
than one entry matches the incoming data, only one associated data is accessed. In
associative redundancy, this can occur in cases where a single cell belongs to two fault
types, such as a faulty row crossing a faulty column. My original design assumed
this would be taken care of by splitting up groups of faulty cells, ensuring that no
two match-lines would ever match, during programming of the flash devices after
manufacturing test. Instead, the encoding of the four match signals from each of the
data arrays into a two bit multiplexer select ensures that only one data signal will
be chosen, provided that the two or more matched signals are in the same group of
1024 CAM entries, but in different groups of 256. As before, this constraint, along
with a cell being present in not more than four faults (an extremely rare, if not
impossible, case) can be ensured by the programming equipment.

I made one more major design decision. Samsung’s 1-Gbit DRAM consists of
four banks of 256 Mbits [10]. One of the advantages of associative redundancy is
that it is a pooled redundancy, able to replace any faulty cells anywhere on the die.
Although a significant area can be recovered by removing conventional redundancy
methods from a DRAM, it is dubious whether or not this area can be collected into
a single area large enough for 32K CAM entries and a 16-Mbit dynamic memory.
Instead, I opted for a four-way set associative design with one set per bank. This
better reflects the way associative redundancy would be used in DDR or DDR-
II memory and allows for the use of four smaller, and therefore faster, redundant
memories instead of one larger one at the cost of some yield. I still performed the

simulations with 25 address bits and 20 secondary memory address bits instead of

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Schematic and Simulation

Length Resistance/00 Resistance/cell

(pm) (€/0) )
Compare Line
. . .366
(metal 1) 1.08 0.078 0.3
Match Line ¢ o 0.076 1.41
(metal 2)

Length over Length over Capacitance Capacitance Capacitance

active poly to active to poly [cell

(m) (pm) (fF) (F) ()

Compare Line 0.89 0.19 0.246 0.249 0.266
(metal 1)

Match Line 3.84 1.37 0.218 0.219 1.14
(metal 2)

Table 5.1: Capacitive and resistive loads for memory arrays

the 23 and 18 that should have been used for a four-way design.

The simulation showed that this design has a RAS-to-CAS latency of 1.9 ns
and a maximum frequency of 268 MHz. A 256K x16 bit redundant DRAM with an
access time of 3.5 ns would allow for a CAS latency of 2 cycles.

Adding the estimated capacitive and resistive loads slowed the RAS-to-CAS
latency to 3.27 ns. These loads are shown in Table 5.1. This latency can be seen in
Figure 5.3. The top plot shows the (inverted) pre-charge and discharge of the the
match lines. This takes approximately 1.5 ns from the row-access-strobe lowering.
The bottom plot shows the row-access-strobe signal and the four (inverted) match-
occurred signals for each group of 256 match lines. These are pre-charge enable
signals for the associated data array. The charging and discharging of these lines
limits the RAS-to-CAS latency.

The frequency was slowed to 222 MHz at a CAS latency of two cycles after
adding the capacitive and resistive loads. As show in in Figure 5.4, the column
match, associated data access and calculation of the redundant memory address
take 4.5 ns. Only the data line that takes the longest to discharge is shown.

The Samsung DRAM has a cycle time of 143 MHz meaning that at CAS-2, the

redundant memory’s access time would only have to be about 9 ns (with 0.5 ns for

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.8 Schematic and Simulation

cssoe.’ sim_row_pre scherrctic @ Nov 5 11:53:15 2036)

Transient Response

o: /row_m_n<@> st frow_m_n<1> < frow_m_n<2> x: /row_m_n<3>
199 b /row_m_n<4> 1t /row_m_n<5> = /row_m_n<6> A frow_m_n<7>
150 L W
119 ¢
>
~ 700m L
300m t L
{ -—
-100m L | L )
o) /ngt8 00 frow_match_n<@> -: /row_match_n<1>
19g & /row_match_n<2> v: /row_match_n<3>
1.58
118 ¢
>
= 7pem t
300m ¢
i B /
~108m L L L 1 |
2.2 2.@n 4.0n 6.@n 8.6n 1@n
time ((s)
A % 29 BZp T1.62065) deltaT (3274030 ~ 1.44227)
B: (3.82385n 178.437m) slope: -440.5M

Figure 5.3: Timing waveforms showing row access latency.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Schematic and Simulation

Transient Response a

v: /pointer<3>
19 U /net8@

d | N

9PBmE

(v)

7@@mL

5@0me

3@@mf

18@mE

\
) L L I 1

|
9.0n 12n 1n 12n 13n
time (s )

~1@8m L L
5.0n 6.0n 7.8n 8.9n

AT (5. 549E8Tn 1.6206Y) delta: (4508141 — 1.44989)
H &10.049%\ 179.799m} slope: —32@,188M

Figure 5.4: Timing waveforms showing column access latency.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Schematic and Simulation

the required multiplexing). Current SDRAMSs at 200 MHz are also not a problem.
The lowest latency DRAM currently on the market (216 MHz - 433 MHz DDR)
has a latency of 9.26 ns, and is presumably manufactured at 0.1 gm. The highest
frequency DRAM operates at 250 MHz (500 MHz DDR) and has a CAS latency
of 3 (12 ns). My associative redundancy design operates more that fast enough
for inclusion into these designs, even when modelled in an IC process with a much

larger minimum feature size.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6

Conclusions

6.1 Synopsis

In this work, I have presented two designs for associative redundancy using ternary
content addressable memory in DRAMs. The first of these, which I call associative
direct redundancy, uses the compare array of the CAM to match on faulty cell
addresses and stores the replacement data in the associated data array. The second,
associative indirect redundancy, again uses the compare array to match on faulty cell
addresses, but it uses the associated data array to store a base memory address for a
secondary memory array. It calculates the memory address of the replacement data
cells in the secondary memory by adding the base memory address to the shifted
don’t care bits. This is a slightly slower, but much more flexible approach.

The designs were given four constraints: they must be implementable in a stan-
dard DRAM process; occupy the same or less area than typically used redundancies;
increase DRAM yield and not reduce the operating frequency or functionality of the
DRAM in which they are included.

I have made suggestions on how my designs can be implemented in typical
DRAM processes with planar flash cells for non-volatile memory. Both designs
allow easy tailoring of the amount of entries and, hence, the area they occupy.

Using a binomial yield model and four fault models: single cell, row, column
and cluster faults, I compared the yields and equivalent yields (yield normalized to

area overhead) of DRAMs using my designs with DRAMs using three conventional

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2 Advantages

redundancy schemes: row and column redundancy, error correction coding and row
and column redundancy with error correction coding. As expected, my indirect
associative design outperformed the associative direct design. The associative indi-
rect design, using comparable area, also outperformed all conventional redundancy
types, except when dealing with column faults in some cases. Dealing with a column
fault requires a large number of CAM entries and a large portion of the secondary
memory. In a design where column faults are a limiting factor, the designer may
want to consider a hybrid column/associative redundancy design.

I performed the timing simulation in Cadence with a 0.18-pm logic process using
the slower and more flexible associative indirect design. My simulations showed that
a DRAM including associative indirect redundancy should be able to operate at a
frequency of 222 MHz and a /CAS latency of two cycles. This is more than fast
enough for the 143 MHz, 0.16-um 1-Gbit DRAM the schematic design was geared
for. It also shows much promise for inclusion into currently shipping DRAMs topping
out at 250 MHz (500 MHz DDR) with a /CAS latency of three cycles or 216 MHz
(433 MHz DDR) with a /CAS latency of two cycles.

6.2 Advantages

Ternary CAM associative redundancy’s primary advantage is in its flexibility. Di-
verse types of faults can be replaced, all with the identical CAM entries. Pooled
redundancy resources mean that the number of entries or the amount of redundant
cells can be scaled down as yield ramps up. The amount of associativity can be
set, allowing redundancy on a per chip, bank, section, book or other basis. Set
associativity should allow for inclusion into DDR and other high-speed DRAMs.
Section-level associativity allows more than one sub-word to be replaced in DRAMs
that split data words across several sections. At lower associativity, the designer
can choose whether to replace entire words, or sub-words. For embedded DRAMs,

the two-stage match array can be removed to allow SRAM-style access.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.3 Liabilities

6.3 Liabilities

Associative redundancy’s two functional liabilities both deal with column failures.
A memory column failing due to a fault can be replaced, but it takes a large number
of redundant memory cells since every word (or sub-word depending on the design)
that the column traverses must be replaced. A failing column of cells is treated like
a failing column of words. As I mentioned before, a manufacturer encountering a
large amount of failing columns may want to consider a hybrid column/associative
redundancy approach.

In a completely pooled design, a column failing in a redundancy system array or
a fault in the control logic renders the entire redundancy mechanism non-functional.
This could be seen from the linear decrease in yield/equivalent yield in the column
failure models. In the original design, such a failure was catastrophic; however, the
need to break up the match and data arrays into several parts due to capacitance
greatly mitigates this problem. A column failure or control system (timing and
control circuitry) fault in a redundancy mechanism greatly reduces the amount of
redundancy, but does not, in most cases, result in a non-fully-functional DRAM.

From a design perspective, the design choices necessary for conventional redun-
dancies are fairly fixed and the extra components are regular and periodic in the
data array. This makes for easy scripting and automation, reducing design time
and cost. Associative redundancy’s flexibility make scripting and automation more
difficult because it is not simply extra rows and column with their associated bit
steering. The content addressable memories require timing circuitry, signals must
be multiplexed onto and off of the data and address buses in the DRAM, and refresh
of the redundant memory array must be considered. All of these add complexity
that is not found in conventional row and column redundancy. The point at which
the lowering recurring costs due to greater yield offsets these greater upfront costs
cannot easily be determined but are likely insignificant due to amortization of design

cost over the huge number of manufactured DRAM dies.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.4 Future Work

6.4 Future Work

Future work with ternary CAM associative redundancy should focus on several
areas. First, the fault models should be refined to match fabrication data, if such
information can be obtained. This could include more accurate yield models, such
as the negative binomial model, a physically accurate size distribution for cluster
faults and a more realistic mix of fault densities for the combined fault model. Also,
the yield models assumed a monolithic associative redundancy path. Modifying this
to closer approximate the simulated device (32 1K entry CAMs instead of one 32K
entry CAM) would make a large difference in modelling column failures.

A comparison of yields and equivalent yields for various levels of associativity
and replacement of words or sub-words should be performed. Intuitively, higher
associativity should lower yield, but the advantages may out-way the costs. Also
along this line of investigation are modifications necessary for DDR and other high-
speed DRAM operation.

A cost analysis for the non-recurring design time and recurring manufacturing
yield increase should be performed. This will determine the necessary yield im-
provement to make associative redundancy cost effective.

If the redundant memory array is implemented in DRAM, the stored data must
be periodically refreshed. How this is to be accomplished was not considered. Along
a similar line of enquiry, I did not consider how to program the non-volatile CAM
and flash cells after manufacturing test. The necessary circuitry and wiring must
be added and the method to get the programming data onto the die should be
determined.

A more accurate simulation with a system that can model DRAM fabrication
processes would be beneficial. This would allow for an estimate of power consump-
tion.

Finally, an associative design should be manufactured in a DRAM process. This

will enable a direct investigation of overhead, yield, speed and power consumption.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.5 Coda

6.5 Coda

Ternary CAM associative redundancy is a redundancy method for a DRAM manu-
facturing process where all cell failures do not fall into the nice categories of single
cell faults or row and column failures. With minimum feature sizes shrinking, the
likelihood of a contiguous grouping of DRAM cells failing is increasing. The tra-
ditional redundancy methods are ill-equipped to deal with these arbitrary-shaped
faults. Ternary CAM associative redundancies, specifically the associative indirect
variant, offer the flexibility and speed, with no increase in area, to handle intractable

faults in today’s and future dynamic random access memories.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.5 Coda

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] Graham Allan. MOSAID In-House DRAM Design Course. MOSAID Tech-
nologies Inc., July 1996.

[2] W. Maly, A.J. Strojwas and S.W. Director. VLSI yield prediction and esti-
mation: A unified framework. IEEE Transactions on Computer Aided Design,
CAD-5(1):114-130, Jan 1986.

[3] José Pineda de Gyvez. Integrated Circuit Defect Sensitivity: Theory and Com-
putational Models. Kluwer Academic Publishers, Boston, 1993.

[4] R. Dean Adams. High Performanec Memory Testing: Design Principles, Fault
Modeling and Self-Test, volume 22 of Frontiers in Electronic Testing. Kluwer
Academic Publishers, Boston, Sept 2002.

[5] V. Lines et.al. 66MHz 2.3M ternary dynamic content addressable memory.
In Proc. Intl. Workshop on Memory Technology, Design and Testing, pages
101-105, Aug 2000.

[6] M. Cao et.al. A simple EEPROM cell using twin polysilicon thin film transis-
tors. IEEE Electron Device Letters, 15(8):304-306, Aug 1994.

[7] Curtis Wickman. File store memories. Master’s thesis, University of Alberta,
Edmonton, Alberta, November 2000.

[8] J.P. de Gyvez and D.K. Pradhan, editor. Integrated Circuit Manufacturability:
The Art of Process and Design Integration. IEEE Press, Piscataway, 1999.

[9] H.L. Kalter et.al. A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip
ECC. IEEF Journal of Solid-State Circuits, 25(5):1118-1128, Oct 1990.

[10] K. Lee et.al. A 1 Gbit synchronous dynamic random access memory with an
independent subarray-controlled scheme and a hierarchical decoding scheme.
IEEE Journal of Solid-State Circuits, 33(5):779-786, May 1998.

[11] J.-P. Dauvin. State of the semiconductor market. Online, January 2003. http:
//www.st.com/stonline/company/investor/prescast/document/q4fy2002.pdf.

[12] Craig Joly. Semiconductor memory redundacy through ternary content ad-
dressable memory: Single cell fault model. University of Alberta, EE 652:
Semiconductor Memories, Project Report, September 2002.

[13] B. Keeth and R.J. Baker. DRAM Clircuit Design: A Tutorial. Microelectronic
Systems. IEEE Press, Piscataway, 2001.

[14] J. Jex and A. Baker. Content addressable memory for flash redundancy. In
IEFE Pacific Rim Conf. on Communications, Computers and Signal Process-
ing, pages 741-744, May 1991.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.st.com/stonline/company/investor/prescast/document/q4fy2002.pdf

BIBLIOGRAPHY

[15] Tegze P. Haraszti. CMOS Memory Circuits. Kluwer Academic Publishers,
Boston, 2000.

[16] D. Siewiorek and R. Swarz. The Theory and Practice of Reliable System Design,
pages 216, 226, 298. Digital Equipment Corp., Hudson, MA, 1982.

[17] A.V. Ferris-Prabhu. Defect size variations and their effect on the critical areas
of VLSI devices. IEEE Journal of Solid-State Circuits, 20(4):878-880, Aug
1985.

[18] W. Maly. Yield simulation - a comparative study -. In Proc. Intl. Workshop
on Defect and Fault Tolerance in VLSI Systems, Oct. 1989.

[19] Tegze P. Haraszti. A novel associative approach for fault-tolerant MOS RAMs.
IEEE Journal of Solid-State Circuits, 17(3):539-546, June 1982.

[20] M.A. Lucente, C.H. Harris and R.M. Muir. Memory system reliability im-
provement through associative cache redundancy. IEEE Journal of Solid-State
Circuits, 26(3):404-409, March 1991.

[21] J.-C. Lo and J.H. Kim. Highly available memory systems with fault tolerant
associative repair mechanisms. Journal of Microelectronic Systems Integration,
3(3):205-216, 1995.

[22] T. Miwa et.al. A 1-Mb 2-Tr/b nonvolatile CAM based on flash memory tech-
nologies. IEEE Journal of Solid-State Circuits, 31(11):1601-1609, Nov 1996.

[23] D.H.K. Hoe et.al. Cell and circuit design of single-poly EPROM. IEEE Journal
of Solid-State Circuits, 24(4):1153-1157, Aug 1989.

[24] J.M. Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice Hall,
New Jersey, 1996.

[25] J. Stokes. Ars technica ram guide part II: Asynchronous and synchronous
dram. Online, July 2000. http://arstechnica.com/paedia/r/ram guide/ram.
guide.part2-1.html.

[26] Ruby, the object-oriented scripting language. Online, August 2003. http:
//www.ruby-lang.org/en/.

[27] R. Sung and J. Koob. Autonomous linear feedback shift register. Online,
Oct 2000. EE 552 Student Application Note. http://www.ece.ualberta.ca/
~elliott/eeb52/labs/labb/1fsr generic.vhd.

[28] ITRS. International technology roadmap for semiconductors 2002 update.
Technical report, Semiconductor Insdustry Association, 2002.

[29] Cadence Design Systems, Inc. Cadence SKILL Language User Guide, 06.00
edition, June 2000.

[30] C.H. Stapper and H.-S. Lee. Synergistic fault-tolerance for memory chips. IEEE
Transactions on Computers, 41(9):1078-1087, Sep 1992.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://arstechnica.com/paedia/r/ram.guide/ram-
http://www.ruby-lang.org/en/
http://www.ece.ualberta.ca/

Appendix A

DRAM Data

A.1 IBM 16-Mbit DRAM

The IBM 16-Mbit DRAM has on-chip error-correcting code (ECC), supports either
11/11 or 12/10 RAS/CAS addressing, can be packaged as a 2Mbx8, 4Mbx4, 8Mbx2
or 16Mbx1 DRAM, and is capable of operating in fast page mode, static column
mode or toggle mode [9]. The DRAM has four quadrants, four array blocks per
quadrant and two segments per quadrant. For the purpose of this work, the DRAM
is assumed to be a 4 Mbx4 DRAM with 11/11 RAS/CAS addressing.

Each quadrant (section) is an independent 4 Mbx1 DRAM [30]. The quadrants
contain 4096 word lines and 1024 bit lines. For bit-line redundancy, the quadrant
is subdivided into books. Eight books are formed, each containing 2048x 128 bits.
Two additional redundant bit-lines per book can be used for replacements of any
bit-lines within the book. A book has 2048 pages, each addressed independently.
There are also 24 redundant word-lines available for substitution of any of the 4096
word-lines in a quadrant [30].

Error correcting codes add an extra nine bits for every 128 bits [9]. This increases
the page and book widths by 9 bits, making them 137 bits wide. The section width
is increased to 1096 bits.

For yield calculations, the 16-Mbit DRAM is treated as four 4Mbx1 DRAMs
because the words are spread across all four sections. Each 4Mbx1 DRAM has one

section with 16 books. The section is 1024 (1096 for ECC) bits by 4096 bits. It has

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.2 Samsung 1-Gbit DRAM

Bits (nominal) 16x1024x1024
Address bits 22
Words 4x1024x1024
Word size (bits) 4
Banks 1
Sections 4
Word size per section 1
Books per section 16
Pages per book 2048
Pagewidth (Bits per page) 128
Redundant columns per book 2
Redundant rows per section 24

Bits (w/ ECC) 17956864
Codewords per book 2048
Bits per codeword 137
Pagewidth (w/ ECC) 137

Table A.1: Data for the IBM 16-Mbit DRAM [9].

24 redundant rows. Each book is 128 (137 for ECC) bits by 2048 bits and has two
redundant columns. Since each section stores a single bit word, bit-line interleaving

can safely be ignored.

A.2 Samsung 1-Gbit DRAM

The Samsung 1-Gbit DRAM contains eight independent 128-Mb blocks (sections)
and a hierarchical decoding scheme [10]. Externally, it is a 32Mbx32 DRAM. In-
ternally, it is eight 8Mbx 16 DRAMs. The blocks are paired into four banks, each
bank comprising an 8Mbx32 DRAM.

The DRAM has 64 redundant rows per 128 Mbits and 16 redundant columns
per 32 Mbits [10]. Therefore, a section is a 128-Mbit block and there are four books
per section. This assumption allows for the greatest flexibility in row and column
redundancy, increasing the calculated yield. There are 256 memory cells connected
to each bit-line and 512 cells connected to each sub-word-line. The entire memory
is constructed of 256-Kbit cell arrays. The cell arrays are aligned along word-lines,

therefore, they are composed of two sub-word-lines. From the die photo, the blocks

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.2 Samsung 1-Gbit DRAM

2048 bits

. 128 bits

bit lines

L
word lines

Figure A.1: Simplified block diagram of the IBM 16-Mbit DRAM without redun-
dancy

(sections) are roughly square. The cells have approximately a 2:1 aspect ratio.
Assuming the larger dimension is along the bit-line, the cell array also has a 2:1
aspect ratio, with the larger dimension aligned with the word-lines. Assuming the
section is split into four nearly square books, there must be 8x16 cell arrays per
book. This leads to a pagewidth of 8 Kbits and 4K pages per book.

Following the same assumption as [7], the ECC codeword is set to 512 data bits
plus 11 check bits.

For yield calculations, the 1-Gbit DRAM is treated as eight 8Mbx 16 DRAMs.
Each 8Mbx16 DRAM has one section with 4 books. The section is 16 kbits (16736
for ECC) by 8 Kbits. It has 64 redundant rows. Each book is 8 Kbits (8368 for
ECC) by 2 Kbits and has 26 redundant columns. Bit-line interleaving must be

considered.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.2 Samsung 1-Gbit DRAM

Bits (nominal) 1024x1024x 1024
Address bits 25

Words 32x1024x1024
Word size (bits) 32

Banks 4
Sections 8

Word size per section 16

Books per section 4

Pages per book 4K
Pagewidth (Bits per page) 8K
Redundant columns per book 16
Redundant rows per section 64

Bits (w/ ECC) 1046x1024x 1024
Codewords per book 64K

Bits per codeword 523
Pagewidth (w/ ECC) 8368

Table A.2: Data for the Samsung 1-Gbit DRAM [10].

8Kbits

F—— 4akbits —

word lines

]
bit lines

Figure A.2: Simplified block diagram of the Samsung 1-Gbit DRAM without re-
dundancy

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Redundancy Overhead

In [7], Wickman makes the assumption that the area required to implement bit
steering for ECC and row and column redundancy is 2%. This has been extended
to assume that any redundancy requires 2% overhead. From this data, the cell
efficency for row and column and row and column and ECC redundancies has been
calculated.

The calculated overheads are considerably different from those calculated by
Wickman and also used in [12]. However, Wickman’s numbers do not match with

the 11% overhead of error correction in the IBM DRAM, as stated in [9].

B.1 IBM 16-Mbit DRAM

The IBM 16-Mbit DRAM has a chip size of 140.86 mm? [9] with 18325760 cells at
a size of 4.13 um? per cell. It has ECC and row and column redundancy. Error
correction, including all cells, sense amplifiers and wiring increased the the chip
area by 15 mm?2. Without ECC there are 17139200 cells in a chip of 125.86 mm?.
The cell efficiencies for no redundancy and ECC are simple interpolations. The

calculated values are presented in Table B.1. Data stated in [9] is shown in bold.

B.2 Samsung 1-Gbit DRAM

The Samsung 1-Gbit DRAM has a die size of 569.7 mm? with 1084243968 cells at

a size of 0.344 um? per cell. As above, after subtracting 2% for bit steering, the cell

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.2 Samsung 1-Gbit DRAM

none row & column ECC r & c & ECC

Chip area (mm?)  120.92 125.86 134.89 140.86

# of cells 16777216 17139200 17956864 18325760
Cell area (mm?)  69.29 70.78 74.16 75.69
Periphery area (mm?)  48.75 55.08 60.73 65.17
Cell Efficiency (%) 57.3 56.2 55.0 53.7
Area Overhead (%) 0 4.09 11.55 16.49

Table B.1: Areas and overheads for the IBM 16-Mbit DRAM.

none row & column ECC r& c & ECC

Chip area (mm2) 552.59 569.7 575.97 581.59
# of cells 1073741824 1084243968 1096810496 1107492864
Cell area (mm?2)  358.63 362.14 366.33 369.90
Periphery area (mm?) 193.9 207.46 209.64 211.69
Cell Efficiency (%) 64.9 63.6 63.6 63.6
Area Overhead (%) 0 3.10 4.23 5.24

Table B.2: Areas and overheads for the Samsung 1-Gbit DRAM.

efficiency is 64.9%. This value is kept constant for all redundancies.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix C

Yield Calculations

C.1 Single Cell Fault Model

C.1.1 No Redundancy

The negative binomial yield model for DRAM begins with the yield of a single cell:
Vie =™ (C.1)

where Y. is the yield of a single DRAM bit and X represents the average number
of faults per bit. The yield of a DRAM bit is the probability any given cell will be
functional. The yield of a DRAM, Ypran is then:

Ypray = YiPRAM (C.2)

where bprapy is the number of bits in the DRAM. Yields for 16-Mbit and 1-Gbit
DRAMs are shown in Figure C.1. From the graph, for both DRAMs to achieve better
that 50% yield, there can be a less than one fault per die. This is an extremely small
fault density and serves as a telling example of why redundancy is used in nearly

all commercial memories.
C.1.2 Row and Column Redundancy

Some terms must first be defined for row and column redundancy techniques. A
book is the area of memory to which column redundancy is applied. A section is the
area of memory to which row redundancy is applied. In DRAMs, a section tends to

be larger than a book [7]. The number of columns in a book is the pagesize.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Fault Model

16Mb ——

h=)
2 T
>
O 1 1 1 ] 1 1 1
0 5e-08 1e-07 1.5e-07 2e-07 25e-07 3e-07 3.5e-07 4e-07 45e-07 5e-07
Average number of fauits per cell
1 T T T T T T 1 T
1Gb ——
9
Q@ e
>-
0 1 1 1 1 1 1 1
0 Se-10 1e-09 1.5e-09 2e-09 2.5e-09 3e-09 3.5e-09 4e-09 4.5e-09 5e-09

Average number of faults per cell

Figure C.1: Single cell fault model yield of a 16-Mbit and a 1-Gbit DRAM without
redundancy

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Foult Model

The yield of a column inside a DRAM is given by:
Yeotumn = Y'sbccommn (03)

where Y, is the yield of a column and beojumsn 1S the number of bits in a column. The
yield of a book is then calculated by summing over all contributions to the yield

distributions from zero errors to the number of redundant columns:

< + c Te—1 %
Yioor = E ( ’ ir ) . YCIZJ-lthn ' (1 - Ycolumn) (04)
=0

where Yoo is the yield of a book, 7. is the number of redundant columns per book
and p is the page size. The first term of the equation chooses which columns are
bad, the second is the yield of the good columns and the third is the yield of the
bad columns.

From the yield of a book, the effective yield of a single cell when column redun-
dancy is determined:

bbook —

Yscbook 1/I)OOIC (0.5)

where Y,

scpoor 15 a0 estimate for the effective yield of a single cell inside the book.

This effective yield is used to determine the yield of a row:

Yeow = Yirow (C.6)

SChook

where Yoy is the yield of a row and b4y, is the number of bits in a row. The yield

of a section is then calculated:

Ysection = Z < s + " > : K«%Tyrr_i ) (1 - Y;ow)i (C7)

i=0 ¢
where Ysection 18 the vield of a section, r; is the number of redundant rows per section
and s is the number of rows in a section. The yield of the DRAM with redundant

rows and columns is then given by:
— Nsec tons
YDRAMpe = Yseliion (C.8)

where Ngections 18 the number of sections in the DRAM.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Fault Model

Yields for 16-Mbit and 1-Gbit DRAMs with row and column redundancy are
shown in Figure C.2. To achieve a 50% yield, the 16-Mbit DRAM can handle up
to approximately 240 faults per die while the 1-Gbit DRAM can handle about 1400

faults.
C.1.3 ECC Redundancy

An ECC codeword is the complete ECC word stored in memory including the data
and check bits. The yield of a SEC (single error correcting) code word can be

calculated as follows:

Yoo = Yo + ( by ) Yl (1-Y) (C.9)

where Yy, is the yield of an ECC code word and b, with the number of bits in the

code word. The yield of a book is then calculated as:

}/bookEcc = YNcw (C].O)

cw

where Yyook o is the yield of a book with ECC and N, is the number of codewords

in a book. The yield of a DRAM with ECC is then:

N 00K S
YpraMece = YVioohmoo (C.11)

where Npooks is the number of books in the DRAM.

Figure C.3 shows DRAM yield when ECC redundancy is employed. For a 50%
yield, the 16-Mbit DRAM can handle less than approximately 400 faults while the
1-Gbit DRAM can handle less than approximately 1665 faults.

C.1.4 Row and Column Redundancy with ECC

Equation C.9 gives the yield of an ECC codeword. From this, the effective yield of

a single cell when using ECC is calculated as follows:

Yo =Y, (C.12)

SCECC

The effective yield of a column is then given by:

YcolumnEcc = walumn (013)

SCECcC

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Fault Model

T T Ll 1 16Mbl
08 1
0.6 + i
K]
Q
5
04 B
0.2 + _
O 1 J i 1 1 1 1 L 1
0 2e-06 4e-06 6e-06 8e-06 1e-05 1.2e-05 1.4e-05 1.6e-05 18e-05 2e-05
Average number of faults per celi
1 1 1 T T T U ] T
1Gb ——
08 [ R
06 [ 4
kel
2
5
04 F B
02 | 4
0 1 1 1 1 1 L 1 1
0 2e-07 4e-07 6e-07 8e-07 1e-06 1.2e-06

1.4e-06 1.6e-06

1.8e-06 2e-06
Average number of faults per cell

Figure C.2: Single cell fault model yield of a 16-Mbit and a 1-Gbit DRAM with row
and column redundancy ‘

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Fault Model

16Mb ——

Yield

1 1
0 4e-05 6e-05
Average number of faults per cell
1

0.0001

1G6b ——

08

06

Yield

04

1 1
0 5e-07

1 1 1 1 i

1e-06 1.5e-06 2e-06 2.5e-06 3e-06 3.5e-06 4e-06 4.5e-06 5e-06 5.5e-06
Average number of faults per celi

Figure C.3: Single cell fault model yield of a 16-Mbit and a 1-Gbit DRAM with
ECC redundancy

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Fault Model

and the effective yield of a book is:

Te
ptr +re—i '
%OOkcol&ECC = Z ( 'L ¢ ) ) )/;Z;lJmnEcc ) (1 - YCOl’U,mnECc)z (C14)
=0

The effective yield of a single cell when using ECC and column redundancy is

estimated as:

bbook —_
SCcol®& ECC nwkcoz&Ecc

(C.15)

The yield of a DRAM with ECC, row and column redundancy is calculated as
in Equations C.6 through C.8.

As mentioned, in Section 2.5 error correcting code redundancy and row and
column redundancy have very high synergies. This is shown in Figure C.4 where
the 16-Mbit DRAM is shown to be able to achieve a 50% yield ratio with up to
about 7650 faults while the 1-Gbit DRAM can achieve the same with up to about

76200 faults.
C.1.5 Associative Direct Ternary CAM Redundancy

Since ternary CAM redundancies are based on replacing bad words, the yield of a

word must first be calculated:
Yiporqg = Yiwerd (C.16)

where byorq is the number of bits in a word. The effective number of CAM entries

must also be calculated:

— b dd badd +b e b
¢ =YouMe  Yiiashee Yamen® - Noaum (C.17)

where Yo apr,. is the yield of a single CAM cell. It is calculated as in Equation C.1
with Acan, the average number of faults per CAM cell. Yy,,,. is the yield of a single
cell of the associated memory and Yyqep,, is the yield of a single cell of the don’t care
mask. Unless the associated memory is created in a different technology, Yum,,. will
be the same as Y,.. The don’t care mask will most likely be stored in non-volatile

memory. bgggr and byerq are the number of address bits and the number of bits in

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Foult Model

T T 1 T 1 T 16MbI
08
06 i
]
2
>
04 r 1
0.2 N
0 1 1 1 1 1 1 1 1
0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
Average number of faults per cell
1
' ' ' 1Gb ——
08 B
06 [ B
]
2
>
04 -
0.2 | N
0 1 1 1 1
0 2e-05 4e-05 6e-05 8e-05 0.0001
Average number of faults per cell

Figure C.4: Single cell fault model yield of a 16-Mbit and a 1-Gbit DRAM with row
and column redundancy and ECC

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Fault Model

a word, respectively. bse. is the number of bits to mark which section should be
replaced. Although each CAM entry has several associated words, in the single cell
case, only the first word contains valid data, therefore, it is the only one included
in the above calculation.

Assuming the redundant memory is the same technology as the primary memory,
the yield of a DRAM using associative direct redundancy is:

Yppam = i ( I/;/ ) YV (1= Yaord)' (C.18)
i=0
where W is the number of words in the DRAM. The number of CAM entries is not
included in the equation (except for the sum), because that yield is accounted for
in the above equation for c.

Figure C.5 shows the 50% yield lines for DRAMs using associative direct ternary
CAM redundancy with variable amounts of CAM entries. This is different from the
graphs for conventional redundancy methods. A single cell fault density of five
times that of the DRAM cell has been chosen for the CAM cell. The fault density
of non-volatile flash cell has been set to half of that of the CAM cell. Although
the CAM and flash cells are much larger than a DRAM cell, they do not have
the large capacitor structure, so this number should be conservative for the yield
calculations. With these numbers, the graphs show that with a CAM of 256 entries,
this redundancy method achieves better yield than row and column redundancies
for the 16-Mbit DRAM. The 1-Gbit DRAM will require a CAM with 1024 entries.
Associative direct redundancy with 512 CAM entries can also beat ECC redundancy
in the 16-Mbit DRAM. The 1-Gbit DRAM will require 2K CAM entries to better
ECC redundancy. To beat ECC, row and column redundancy, 8.5K and 65K CAM
entries will be required for the 16-Mbit and 1-Gbit DRAMs, respectively.

C.1.6 Associative Indirect Ternary CAM Redundancy

As in the associative direct case, the effective number of CAM entries must be found:
ba ' bsec ba s b’re
c = Yo, - Yo s et . Noam (C.19)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.1 Single Cell Fault Model

0.004 T T T T T T T
16Mb
0.0035 | 1
0.003 ]
E
3 0.0025 T
Q
pa]
=
g N
5 0.002
1
@
&
¢ 00015 4
2
0.001 | 1
0.0005 + i
0 1 1 1 1 1 1 1
0 16384 32768 49152 65536 81920 98304 114688 131072
Size of CAM (in entries)
0.00012 T T T T T U
1Gb ——
0.0001 |- E
= 8e-05 | E
)
a
b
=
g8
5 6e-05 -
#*
[
o
I
g
< 4e-05 [ E
2e-05 |- ]
0 i J 1 1 1 1 1
o] 16384 32768 49152 65536 81920 98304 114688 131072

Size of CAM (in entries)

Figure C.5: 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative direct
ternary CAM redundancy using a single cell fault model

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.2 Row Fault Model

where b,.4 is the number of address bits for the redundant memory.

The yield of a DRAM is the same as with the associative direct method. The
difference is in the effective number of CAM entries, c.

This yield equation will hold true if the secondary memory is of sufficient size.

The minimum size is given by:

(¢

Nyee > (C.20)

buword
redsc

where Y,.q,, is the yield of a single cell of the redundant memory array. In most
cases this will be the yield of a single DRAM cell.

The 50% yield lines for 16-Mbit and 1-Gbit DRAMSs using associative indirect
ternary CAM redundancy are shown in Figure C.6. The fault densities of the CAM
and flash cells have been set to 5 times and 2.5 times the fault density of a DRAM
cell, respectively, as in the associative direct case.

As with the associative direct case, with 256 CAM entries and 9 redundant
memory address bits, associative indirect will beat row and column redundancy,
512 entries and 10 address bits will beat ECC redundancy and 8.5K entries with 13
address bits will beat row and column redundancy with ECC for a 16-Mbit DRAM.
For the 1-Gbit DRAM, 1K, 1.7K and 65K CAM entries with 11, 11 and 17 address
bits, respectively, will be required. Notice that the yield lines of these plots are very

similar to those of the associative direct method.

C.2 Row Fault Model

C.2.1 No Redundancy

Analogous to the single-cell fault model, the yield of a DRAM row is:
Yiow =€ ° (C.21)
The row fault density is represented by p. The yield of the DRAM is:

YDRAM = YNTOws (022)

Tow

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.2 Row Fault Model

0.004 T T T T T T 20
16Mb ——
Address bits -------
0.0035 |
0.003 [ rmm e ! 415
! o
- /’ """" ! il
3 o
§ 0.0025 - | 8
[« "~ %
@ ! ]
g g
< 0002 H 410 g
o i)
* E
3
5 0.0015 H B
S g
O
7]
0.001 | 4 5
0.0005 p
0 1 1 1 1 1 i 1 O
0 16384 32768 49152 65536 81920 98304 114688 131072
Size of CAM (in entries)
0.00012 T T T T T T T 20
1Gb ——
Address bits ----~-
0.0001 | ’,’
e
e ’ 4 15
! 7
[ B
= 8e-05 - @
o [
g J 5
i) / ®
£
b 6e-05 f 410 g
* £
> >
E Q
g g
>
< 4e-05 { ]
[
%]
45
2e-05 -
O 1 1 1 1 i 1 1 0
0 16384 32768 49152 65536 81920 98304 114688 131072

Size of CAM (in entries)

Figure C.6: 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative indirect
ternary CAM redundancy using a single cell fault model

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.2 Row Fault Model

Yields for 16-Mbit and 1-Gbit DRAMs without redundancy are graphed in Fig-
ure C.7. For a yield better than 50%, there must be less than one fault per die, a

result very similar to the single cell fault model.
C.2.2 Row and Column Redundancy

In this fault model, columns do not fail, therefore, only the yield of a section is
necessary. The yield of a row is as in Equation C.21 while the yield of section is the

same as in Equation C.7. The yield of the DRAM is calculated as follows:

YDRAMTO,_U — YNsections (0.23)

section

As shown in Figure C.8, for a 50% yield, the 16-Mbit DRAM can average 80
row faults per die while the 1-Gbit DRAM averages 432. This is lower than the 96
and 512 redundant rows per die because the failures will not be evenly distributed

over all of the sections.
C.2.3 ECC Redundancy

ECC can only repair a single bit error in its codeword. Therefore, it can do nothing
for a failing row. ECC redundancy gives no improvement and will confer the same

results as no redundancy, shown in Figure C.7.
C.2.4 Row and Column Redundancy with ECC

For the same reasons as the previous subsection, adding ECC will give no improve-

ment over row and column redundancy. These results are shown in Figure C.8.
C.2.5 Associative Direct Ternary CAM Redundancy

Assuming that associative direct redundancy holds four words per CAM, entry it
is implied that 4%%’; CAM entries will be required to replace an entire faulty row,
where b,y is the number of bits in a row (section width) and byerq is the number

of bits in a word. The effective number of CAM entries is given by:

c= YCAMTW - Noam (C.24)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.2 Row Fault Model

16Mb ——

kel
Q@ .
>
0 1 1 | 1 I 1 1
0 5¢-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005
Average number of faults per row
1
' ' ' 1Gb ——
k]
2 N
p
0 1 1 1 (]
(¢} 2e-05 4e-05 6e-05 8e-05 0.0001

Average number of faults per row

Figure C.7: Row fault model yield of a 16-Mbit and a 1-Gbit DRAM without
redundancy

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.2 Row Fault Model

1 1 T
16Mb —
08 | 4
0.6 |- B
k]
2
>
0.4 E
0.2 | _
o 1 i 1 1
0 0.002 0.004 0.006 0.008 0.01
Average number of faults per row
1 T 1 T T
1Gb ——
08 B
0.6 .
hed
QL
>
04 | E
02 | _
o 1 i i
0 0.002 0.004 0.006 0.008 0.01
Average number of fauits per row

Figure C.8: Row fault model yield of a 16-Mbit and a 1-Gbit DRAM with row and
column redundancy

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.2 Row Fault Model

where Yoans,.,,, is the yield of an entire row of the associative memory, including

the CAM cells, flash cells and regular DRAM cells.

4c-b

b.
row Nrow ~ ;

YprAM 0w = Z ( i >-Y}]X§;"“ (1 =Yrow) (C.25)
1=0

A row fault density of double that of the DRAM row fault density has been
chosen for the associative memory row. This should take into account any faults in
the pre-charge circuitry and match-line.

As shown in Figure C.9, to match the 50% yield point of row and column,
redundancies, a 16-Mbit DRAM using the associative direct method requires ap-
proximately 20K ternary CAM entries. The 1-Gbit DRAM will require nearly 110K

ternary CAM entries.
C.2.6 Associative Indirect Ternary CAM Redundancy

Unlike associative direct redundancy, associative indirect only requires one CAM
entry per failed row or column. This allows for much smaller redundancy compo-
nents.

The effective number of CAM entries is as before in Equation C.24. Failing rows
contribute to the DRAM vyield as follows:

c
YDRAM o = ), < N’;’“’ ) CYNrowt (1 — V)" (C.26)
i=0

As with the single cell fault model, the secondary memory must be large enough

to contain the redundant rows:

c-b
Niee > <—w___> c.27
see = bword ’ }f'redmw ( )

Figure C.10 shows that in order to meet the 50% yield mark of row and column
redundancy, a 16-Mbit DRAM using associative indirect redundancy will require
80 CAM entries with 17 secondary memory address bits. The 1-Gbit DRAM will
require 448 ternary CAM entries with 19 secondary memory address bits. This

model seems to break down after 10% of the rows are faulty.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.2 Row Fault Model

0.03 T T T T T T T
16Mb
0.025 e
2
IS
E 0.02 .
Q
_tg
=
]
k<]
5 0.015 1
o
£
E]
g
©
o
[ 0.01 by
o
>
k=4
0.005 E
0 1 1 ] L 1 t L
0 16384 32768 49152 65536 81920 98304 114688 131072
Size of CAM (in entries)
0.008 T T T T T T T
1Gb ——
0.007 + .
0.006 B
z
1]
g
2 0.005 B
=l
g
k-]
5 0.004 E
o
E
]
3
g 0.003 - E
Y
5]
>
<
0.002 -
0.001 4
0 ] L 1 1 1 1 L
o] 16384 32768 49152 65536 81920 98304 114688 131072

Size of CAM (in entries)

Figure C.9: 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative direct
ternary CAM redundancy using a row fault model

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.2 Row Fault Model

0.1 ; T T T ; : 25
16Mb ———
Address bits -------
01 |
0.09 - , / 1 2
008 F oot .
z o
o ! @
007/ 8
3 / 115 3
£ oo06 |t >
O g
5 | 5
= 005 | g
o ! 410 %
g 004} o
z 3
0.03 @
0.02 F 15
0.01 }
O i i 1 1 i 1 1. O
0 256 512 768 1024 1280 1536 1792 2048
Sive of CAM (in entries)
011 L] 1 T T )] L 25
1Gb ——
Address bits -------
01
............ ; /
i
0.09 - ot 1 2
0.08 — P
3 o
2 go7 | 2
3 ! 415 B
£ ®
£ 006
5
« 005f g
& 410 2
§ 004 2
z 8
0.03 «
0.02 f 1°%
0.01 |
0 1 1 1 1 1 1 1 O
0 1024 2048 3072 4096 5120 6144 7168 8192

Sive of CAM (in entries)

Figure C.10: 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
indirect ternary CAM redundancy using a row fault model

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.8 Column Fault Model

C.3 Column Fault Model
C.3.1 No Redundancy

The yield of a DRAM column is:
Ycolumn =e X (028)
The fault density of columns is represented by x. The yield of the DRAM is:

YDRAM — YNcolumns (029)

column

Yields for 16-Mbit and 1-Gbit DRAMs without redundancy are graphed in Fig-
ure C.11. For a yield greater than 50%, there must be less than approximately one

faults per three dies, a result very similar to the single cell fault model.
C.3.2 Row and Column Redundancy

Opposite to the row fault model, in this fault model, columns do not fail and only
the yield of a book is necessary. The yield of a column is as in Equation C.28 and

the yield of a book is the same as in Equation C.4. The yield of the DRAM is:
YDRAMcalumn = Y;)];[gIZOkS (C30)

As shown in Figure C.12, for a 50% yield, the 16-Mbit DRAM can average 28
row or column faults per die while the 1-Gbit DRAM handles 310 faults. As with
the row fault model, this is less than the 128 and 512 redundant columns available.
This number of faults for the 16-Mbit DRAM is low because there are only two
redundant columns per book, while the 1-Gbit DRAM has 16 redundant columns

per book, offering much more flexibility.
C.3.3 ECC Redundancy

The yield of a book can be calculated by treating it as a stack of codewords:

N,
bcw — “r
moﬁ(ﬁw( 1 ) ol 1-(1—Ycoz>) (C.31)

where Ny, is the number of codewords per row in a page.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.3 Column Fault Model

16Mp’ ——

kel
K] 1
5>
0 L 1 1 1 L L 1
0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
Average number of faults per column
T 1 T T 1
1Gb ——
kel
Q2 =
>-
.
O i 1 1 1 1 1 1 1
0 5e-06 1e-05 1.5e-05 2e-05 25e-05 3e-05 3.5e-05 4e-05 4.5e-05 5e-05

Average number of faults per column

Figure C.11: Column fault model yield of a 16-Mbit and a 1-Gbit DRAM without
redundancy

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.8 Column Fault Model

16Mb —

09 |

08 1

0.5 F .

Yield

0.4+ .

03 ]

02 1

Q 1 1 i 1
0 0.002 0.004 0.006 0.008 0.01

Average number of faults per column

1 T T T T T T

1Gb ——

06 |

Yield

04

02

0 1 b H 1 1 1 1 L
0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002
Average number of faults per column

Figure C.12: Column fault model yield of a 16-Mbit and a 1-Gbit DRAM with row

and column redundancy

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.8 Column Fault Model

The yield of a DRAM with ECC redundancy is:

YDRAMpoe = Yibooks (C.32)

As shown in Figure C.13, ECC redundancy performs worse than row and column
redundancy for the column fault model. The 16-Mbit DRAM can handle 9 faults
while the 1-Gbit DRAM can handle 26 faults to achieve a 50% yield ratio. This is
because, in the 16-Mbit DRAM, ECC can only replace one column per book. In
the 1-Gbit DRAM, ECC can replace 16 columns per book, the same amount as row
and column redundancy, but only one column per 523 bit codeword can be replaced,

greatly reducing the flexibility of the replacement scheme.
C.3.4 Row and Column Redundancy with ECC
The yield of a column of codewords is found:

col 1 col
The effective yield of a column is then found:

bcodeword — Y

colpoc colcw

(C.34)

From this, the yields of a book with ECC and column redundancy are found as in
Section C.3.2.

These equations lead to the graphs in Figure C.14. The 16-Mbit DRAM can
handle 26 column faults for a 50% yield while the 1-Gbit DRAM can handle about
307 faults. This is slightly less than row and column redundancy only. This is most
likely because ECC'’s ability to handle one extra column failure per codeword is

offset by the extra columns required.
C.3.5 Associative Direct Ternary CAM Redundancy

Using the same assumption as the row fault model, associative direct redundancy
can hold four words per CAM entry. Therefore, bJZQL CAM entries will be required to

replace an entire faulty column, where b, is the number of bits in a column (book

height).

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.3 Column Fault Model

16Mb ———

09 “
08 .
07 b

0.6 |- h

Yield
o
w

T
1

0.4 b

03 r b

02 r -

o i 1 1 ) 1 4 1 1
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005
Average number of faults per column

1 T T T T T T T T
1Gb ——
09 | B

0.8 .

06 B

05 1

Yietd

04} .

0.3 | i

01 .

0 ] ! 1 1 1 il L 1 1
0 5e-05  0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005
Average number of faults per column

Figure C.13: Column fault model yield of a 16-Mbit and a 1-Gbit DRAM with ECC
redundancy

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.3 Column Fault Model

16Mb —

09

08

07

Yield
o
4]

T

04

03

02 |

0.1 |

0 i ) 1 )
0 0.002 0.004 0.006 0.008 0.01

Average number of faults per column

08

06 |

Yield

04

0 1 1 1 1 1 1 1 1 )
¢ 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002
Average number of faults per column

Figure C.14: Column fault model yield of a 16-Mbit and a 1-Gbit DRAM with row
and column redundancy and ECC

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.8 Column Fault Model

Rows do not fail, therefore, all of the CAM entries will be operational. However,
a column failure in the redundancy system will, in most cases, kill the die and must
be considered (this problem is not as severe in the simulated design, due to the

splitting of the compare array into several smaller arrays):

— 2badd1‘ baddr+bsﬂc 4bword
YTEdcoL — fCAM .’ Yflashcol : Yamcol (C35)

The Yoam,,, component is squared due to the double bit-line in the ternary CAM
cell.

Since associative redundancy replaces words, the yield of a column of words must
be considered instead of the individual columns. Otherwise, a word that has two
faults in it may be replaced twice. The yield of a column of DRAM words is given
by:

Yiord,,, = Y uord (C.36)

col

The contribution of failing columns to the DRAM yield is:

4c

beol NQQl bNQQl —1 .
YDRAMcol = Z ( bngd ) ) ng}’f?écdol ’ (1 - onrdcol)z (C37)
1=0

The b%%it component is due to this being a word-level redundancy mechanism.
The entire group of columns in a word is always replaced.

The final yield is given by:
Ypram = YDram,,, - Yeed,,, (C.38)

There are very few column failure mechanisms in the CAM, therefore the same
column density as that of the DRAM array is used. As shown in Figure C.15, to
match the 50% yield point of row and column, ECC and row and column redun-
dancy with ECC, a 16-Mbit DRAM using the associative direct method requires
approximately 15K, 4.5K and 14K ternary CAM entries, respectively. The 1-Gbit
DRAM will require 310K, 26K and 304K ternary CAM entries, respectively.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.8 Column Fault Model

0.011 T T
16Mb

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

Average number of faults per column

0.002

0.001

0 1 1 1
0 16384 32768 49152 65536

Size of CAM (in entries)
0.004 T T T T T T

0.0035 |- 4
0.003 b
0.0025 |- .
0.002 R

0.0015 R

Average number of faults per column

0.001 1

0.0005 | R

0 1 1 1 1 L 1 1
¢} 131072 262144 393216 524288 655360 786432 917504 1.04858e+06
Size of CAM (in entries)

Figure C.15: 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative direct
ternary CAM redundancy using a column fault model

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.3 Column Fault Model
C.3.6 Associative Indirect Ternary CAM Redundancy

Once again, the column yield of the redundancy system has a great effect on the
yield:

— 2b dd b dd +b d+bsec
)fredcol - CALIM:Ol ) flizsf:colre (039)

Unlike associative direct, only a pointer is stored in the associative memory, giving
greater yield.
The yield of a column of DRAM words is given by Equation C.36. Failing

columns of words contribute to the DRAM yield as follows:

Y, _s [ n s 1-Y, : C.40
DRAM , = Z w;r “Lwordey ( - ’lUOTdcol) ( . )
=0

The yield of a DRAM using associative indirect redundancy is then:
Ypram = Ypram,,, * Yred,, - Youore (C.41)

where Y, is the column yield of the secondary memory array. The last term of
the above equation will, in most cases, be equal to Equation C.36. The secondary

memory array must also be large enough to contain the columns:
Ngec > cC- s (C42)

This equation does not include a yield. This yield is included in Equation C.41
because a column fault in the secondary memory will kill the chip, not only reduce
the number of redundant elements.

The same CAM column fault densities are used as in the associative direct
case. Figure C.16 shows that in order to meet the 50% yield mark of row and
column, ECC and row and column redundancy with ECC, a 16-Mbit DRAM using
associative indirect redundancy will require 30, 9 and 28 CAM entries with 16, 15
and 16 secondary memory address bits, respectively. The 1-Gbit DRAM will require
320, 32 and 304 ternary CAM entries with 21, 17 and 21 secondary memory address

bits, respectively.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.3 Column Fault Model

0.007 T T 25
16Mb ——
Address bits ----->
0.006 F
- 20
L 2
< 0.005 , £
3 / w
° e v 173
o i o
ot jrmmmmm e / 115 3
& o004 S T
g ,_/’ g
3 £
= / 0E>
[e] I
0.003 |
o | {10
& | £
o | o
> ]
< 0002 H B
| K
0.001 |
0 1 L L o
0 16 32 48 64
Size of CAM (in entries)
0.004 T T T T T i 25
1Gb ——
Address bits ----> =
0.0035 | ;
fmmmmmmeee / 1 20
0003 - /T
c i ]
£ 5
=} 7 P
3 00025 H 3
) ! 11 3
=% ! ]
£ i )
3 0.002 H 2
- H @
o ! =
* i >
; 4 10
% 0.0015 f g
[ | 9
< f 3
0.001 |
15
0.0005 }
O 1 1 1 1 L 1 1 0
0 128 256 384 512 640 768 896 1024

Size of CAM (in entries)

Figure C.16: 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
indirect ternary CAM redundancy using a column fault model

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

C.4 Cluster Fault Model

The cluster fault model is based on the single cell fault model, however, with vari-
able size faults. The faults are assumed to be rectangular clusters of cells with z
and y sizes conforming to a Feris-Prabhu distribution [17]. Although this distribu-
tion is commonly used to describe the probability of a defect of a certain diameter
occurring, a quantized version will be used to describe the probability of a cluster

of cells of a certain dimension being covered by a fault:

caqiir 0<6<6,
5(8) = (C.43)

& 5 <5<6
0517 o = >0M

(ghe=1) 42
(e)~(a+1) ()
c= (C.44)
(¢+1) =1
14+(g+1) In %M- P

where p and ¢ are parameters to fit the model, d, is the location of the peak in the

probability density function and d,s is the size of the largest fault.
C.4.1 No Redundancy

The yield of a rectangular cluster of cells can be modeled as:
Yeoiuster = e—w-S(z)-S(y) (C.45)

where 1) is the average number of cluster faults per cell, and S(z) and S(y) are the
probabilities of the cluster having those z and y dimensions.
This can be extended to all possible cluster sizes by taking the product of all

possible cluster faults:

Imax Ymaz
Yoraw = [ 11 Y Dyl (C.46)
r=1 y=1
where N; and Ny are the dimensions of the DRAM array in cells.
Figure C.17 shows the yield lines for the 16-Mbit and 1-Gbit DRAM with no

redundancy. The Feris-Prabhu distributions coefficients for both the z and y coor-

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

dinates have been set as follows:

p = 2

g = 1

0o = 2
oy = 64

p has been chosen to give a lower peak with a more gradual drop-off in the size.
As usual, ¢ has been set for reasons of simplicity [8]. The placement of the peak is
rather unusual. It should normally be smaller than the minimum feature size (in this
unusual usage, less than one cell); however, clusters of that size are covered by the
single cell fault model. The larger value has been chosen to emphasize the multi-cell
nature of the cluster fault model. The maximum fault size has been arbitrarily set
to 64 cells. These graphs show that approximately two faults for every three dies

can be handled to achieve a 50% yield.
C.4.2 Row and Column Redundancy

In order to simplify calculations, it is assumed that cluster faults do not cross page

and section boundaries. As before, the yield of a cluster of cells is:
Y;:luster = e—¢~S(w)-S(y) (C47)
and the yield of the columns containing the cluster is:
— bco wmntTr— +1
}/COZ'U‘mncluster - }/;lu.slter Y (048)
The average yield of a column containing the cluster is given by:
1
(prre—25+2) T y2i re
T Te—
)/C‘glumn = Y;olZmncluster ) H )/CO’Llumncluster (C49)
i=0
This equation takes into account all clusters that can cross a column and requires

some explanation. The first term accounts for all columns that can be traversed by

a fault of a certain width. The second term accounts for the columns near the sides

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

16Mb ——

Yield

o 1 1 1 1 i 1 1 1
0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07 3.5e-07 4e-07 4.5e-07 5e-07

Average number of faults per cell

1
T T T T T T T T 1Gbl
09 r —

08 _

0.6 |- 4

05 - b

Yield

0.4 5

03 4

0 1 1 1 1 1 1 L 4
0 5e-10 1e-09 1.5e-09 2e-09 25e-09 3e-09 3.5e-09 4e-09 4.5e-09 5e-09
Average number of fauits per cell

Figure C.17: Cluster fault model of a 16-Mbit and a 1-Gbit DRAM without redun-
dancy

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

of the array that have reduced locations where the fault can be. The exponent = +T

averages the total for one effective column.
The column yield for one cluster fault size must then be extended to account for

all possible fault sizes:

ITmazx Ymazx

columneq H H Ycolumn (050)
z=1 y=1

The yield of a book is:

ptr - :
Yoooketuster = Z < ‘ ) Yo (1= Yeotumne, ) (C.51)

This is used to determine the effective yield of a row in a DRAM with column

redundancy:
brogz
Y, = Y, bk (C.52)
TOWcluster book ey ster
The yield of a section is:
s + T —i ;

)/secmondusw" = Z < ' ) ’ YﬁO‘Z’ﬂc?usier ) (1 - 1/t"o'l'ucluster)1’ (053)

=0

The yield of a DRAM for a cluster fault model is given by:

N, ectt
YDRAMcluster Ytsecstzccm(:;;ster (054)

The yield versus cluster fault density is shown for the two DRAMs in Figure
C.18. As expected, the yields are much lower than the single cell fault model case.
They work out to about one fifth of the single cell model’s values. This is because of
the larger size of the faults, making it harder for the redundant rows and columns

to cover and replace them.
C.4.3 ECC Redundancy

Since ECC redundancy works along rows, the yield of the rows containing the cluster
is calculated first.

Y, =yp-otl (C.55)

TOWelyster — ~ cluster

The average yield of a row containing the cluster is given by:

1

Yy— beol
— y(bcolumn_2y+2 21
Y!‘O’LU - (Kowcluster ) ) H K‘owclusttzr (056)

=0

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

T T 1 T T T 16Mbl
08 b
06 1
e}
2
>
04 F b
02 E
o 1 1 1 L 1 i 1 1
0 5e-07 1e-06 1.5e-06 2e-06 25e-06 3e-06 3.5e-06 4e-06 4.5e-06 5e-06
Average number of faults per cell
1 T T 1 Ll 1 T T 1Gbl
08 b
06 B
e}
2
>
04 B
02k B
0 1 1 1 1 H 1 1 L L
0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07

3.5e-07 4e-07

4.5¢-07 5e-07
Average number of faults per cell

Figure C.18: Cluster fault model of a 16-Mbit and a 1-Gbit DRAM with row and
column redundancy

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

The row yield for one cluster size is then extended for all possible cluster sizes:

Tmaz Ymaz

Yroweq = H H Yiow (C57)

=1 y=1
Clusters that only affect one bit-line can be repaired. The yield of such a cluster
is:

Yy, = e #S50Sw) (C.58)

The average of the yields of these clusters in a row is:

1

y—1 beol
bco umn_2 +2 ]
Yigrow = ( ySbectumn =24 >~HY£@) (C.59)

i=0

The product of all possible such clusters is:

Ymazx

Yly = H Ylymw (060)
y=1

The effective yield of a codeword is then calculated:

bew b bew—1
Y::w = K'Oﬁ)eq + ( i’w ) . )/'"O'wpeq ’ (1 - Yly) (C61)

The yield of a book is calculated as follows:
Yoook = Yoiev (C.62)

The yield of the DRAM is then simply the product of the yields of all of the
books:

Yoran = Ypour™ (C.63)

The yields with ECC redundancy for the 16-Mbit and 1-Gbit DRAMs are shown
in Figure C.19. Both give about one fifth of the yield with no redundancy. The
extra elements required for ECC cannot cope with the arbitrary sizes of cluster-type

faults. This should improve somewhat for DRAMs with interleaved codewords.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

16Mb, ECC re'dundancy

09 F -
08 h
0.7 1

06 |- .

Yield
(=]
[,]

T
1

04 b

03 _

02 ]

01 B

0 L i 1
0 2e-08 4e-08 6e-08 8e-08 1e-07

Average number of faults per cell
1 T T

1Gb, ECC re'dundancy

09 _

08 4

06 -

0.5 r _

Yield

04 | g

03 b

01 -

0 I 1 | 1
0 2e-10 4e-10 6e-10 8e-10 1e-09

Average number of faults per cell

Figure C.19: Cluster fault model of a 16-Mbit and a 1-Gbit DRAM with ECC
redundancy

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model
C.4.4 Row and Column Redundancy with ECC

The yield for row and column redundancy with ECC added is calculated the same as

for row and column redundancy only, with Equation C.52 replaced by the following

equations:
bew bew—1
— Vv bbook bbook _
ch - }/'bOOkcluster + bcw ) }/IbOOkcluster ) (1 Yly) (0'64)
brow
Kowcluster = }/C'lejcw (C65)

The term (1 — Yy,) imparts a significant error because many failing cells may
already have been repaired in the column redundancy equation.

This modification produces the plots shown in Figure C.20. The addition of ECC
gives nearly a 30% increase in the number of cluster faults that can be handled over

row and column redundancy alone.
C.4.5 Associative Direct Ternary CAM Redundancy

Since ternary CAM redundancy replaces words, it gives different performance for
DRAMs that use interleaved or contiguous word placement across a page. Although
the cases are similar, both will be considered.

It is assumed that a cluster fault can occur anywhere in the DRAM, Although it
is not very likely that cluster faults will cross sense amplifiers or word-line drivers,
and even if this occurs, it will result in row or column failures, the difference in
yields should be negligible. The entire DRAM is considered because this redun-
dancy mechanism is pooled for the entire die and not specific to pages, sections or
codewords, as with column, row or ECC redundancies.

As before, we begin with the yield of a cluster as in Equation C.45. A cluster of

a certain size cannot overlap another. This means that there are:

Ni s
Ny = =5t (C.66)
-y
possible non-overlapping places where a cluster of faults can be located.
From this, we find the yield of DRAM due to the specific cluster:
X[ Nu Ny—i i
YDRAMcluster = Z i ) 1/'Cluc.;ife’f‘ ’ (1 - )/CIUSteT) (067)
=0

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

T T
16Mb ————

09
08

07 I

Yield
(=]
(&

T

04

03

02

0 il 1 1 1 1 | 1 1 i
0 5¢-07 1e-06 1.5e-06 2e-06 2.5e-06 3e-06 3.5e-06 4e-06 4.5e-06 5e-06 5.5e-06
Average number of fauits per cell

1 T 1 T 1 T i 1 1

1
1Gb ——
0.8 E
06 .
ked
2
=
04| -
0.2 —
O i 1 1 i 13 1 1 1 1
0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07 3.5e-07 4e-07 4.5e-07 5e-07

Average number of faults per cell

Figure C.20: Cluster fault model of a 16-Mbit and a 1-Gbit DRAM with row and
column redundancy and ECC

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

The value c¢zy is the portion of redundant elements devoted to the replacement
of a cluster of a certain size. For each faulty cluster size, the number of effective

replacement clusters, c;, can be estimated by:

oy = Neam. - S(z) - S(y) (C.68)

Ce

where Noap, is the effective total number of CAM entries after yield and c. is the
average number of CAM entries required to replace this specific cluster size. The
number of CAM entries after yield can be roughly calculated as in Equation C.17.
The number of required CAM entries depends on the fault size, the word size and
whether the word bits are contiguous or interleaved.

The yields due to each cluster size are then multiplied together to give the final

yield of the DRAM:

Imax Ymazx

Ypram = || ] YorAM.wser (C.69)
z=1 y=1

Figure 4.5 shows the 50% yield line for DRAMs with associative direct ternary
CAM redundancy. For simplicity, it is assumed that cluster faults do not occur in
the CAM, flash and redundant memory. Instead, a single cell yield model is used
in the redundant path with the same fault density as the cluster fault density. For
both contiguous and interleaved 16-Mbit DRAMs, less than 1K CAM entries are
required to more than best all conventional redundancy types. The contiguous 1-
Gbit DRAM will require 3K CAM entries to match row and column redundancies,
less than 1K to match ECC and slightly more and 3K CAM entries to match row
and column redundancy with ECC. The interleaved 1-Gbit DRAM will require 6K
CAM entries to best conventional row and column redundancy, less than 1K to best

ECC and 12K to best row and column redundancy with ECC.
C.4.6 Associative Indirect Ternary CAM Redundancy

The yield equation for associative indirect is the same as for associative direct;
however, the number of CAM entries for most faults is much lower since there is a

much larger limit on the number of words that can be replaced by a single CAM

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.4 Cluster Fault Model

0.00012 T T T T T T
16Mb ——

0.0001 | 1

8e-05 y

6e-05

Average # of faults per bit

4e-05 _

2e-05 B

O 1 1 i 1 1 1 1
0 16384 32768 49152 65536 81920 98304 114688 131072

Size of CAM (in entries)
6e-06 T T T T

1Gb con'tiguous wor&s
1Gb interleaved words -------

5e-06 - —

4e-06 |- -

3e-06 [ -

Average # of fauits per bit

2e-06 +- -

1e-06 + R

0 16384 32768 49152 65536 81920 98304 114688 131072
Size of CAM (in entries)

Figure C.21: 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative direct
ternary CAM redundancy using a cluster fault model

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

entry. The secondary memory must be large enough to contain all of the replaced

words. It should be able to hold at least:

Nsee 2 zmz yiz Cry * Nay (C.70)
e=1 y=1
where N, is the average number of words required to replace this specific cluster
size.

The 50% yield lines for the 16-Mbit and 1-Gbit DR AMs using associative indirect
ternary CAM redundancy are shown in Figure C.22. In the case of the 16-Mbit
DRAM, 256 CAM entries with 10 address bits and 384 CAM entries with 11 bits
are required to match the performance of row and column redundancy and row and
column redundancy with ECC, respectively. To match ECC, less than 10 CAM
entries, with 2 address bits, are required. For the contiguous 1-Gbit DRAMs, 2K
CAM entries with 16 address bits are required to beat the 50% yield points of row
and column and row and column redundancy with ECC. The interleaved 1-Gbit
DRAM will require 2K CAM entries with 14 address bits and 3K entries with 15
bits in for the same 50% yield points. In both cases, much less than 128 CAM

entries will be required to match the performance of ECC.

C.5 Combined Fault Model

C.5.1 No Redundancy

For DRAMs with no redundancy, the yield equations already derived for the four
models may be simply multiplied together:
Tmax Ymax
YDRAM — e_A'bDRAMe_X'Ncole'_P'N’row H H e"w's(x)'s(y)'(Nz—T+1)(Ny_y+1)

r=1 y=1
(C.71)

The yields of the 16-Mbit and 1-Gbit DRAM are shown in Figure C.23.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Average # of faults per bit

Average # of faults per bit

C.5 Combined Fault Model

0.0011 T T T T T T 25
16Mb ——
Address bits -------
0.001
0.0009 20
0.0008 ]
2
[72}
0.0007 3
15 3
[
0.0006 2
(=]
§
0.0005 H £
10 g
0.0004 2
Q
(6]
®
0.0003 |
0.0002 5
0.0001
0 1 1 1 1 1 L 1 0
0 16384 32768 49152 65536 81920 98304 114688 131072
Size of CAM (in entries)
4e-05 T T T T T T N T 25
contiguous
interleaved ---
Address bits (cont}
35e05fF g Address bits* (int) -
4 20
3e-05
2
S
(23
2.5e-05 &
4 15 §
-
2e-05 | i g
r—— Q
5
e 2
_/ -~ 10
1.5€-05 g
e 5]
_— 2
1e-05
-_""— a 18
5e-06 1
O """ 1 1 H 1 1 | 1 0
0 16384 32768 49152 65536 81920 98304 114688 131072

Size of CAM (in entries)

Figure C.22: 50% yield line of a 16-Mbit and a 1-Gbit DRAM with associative
indirect ternary CAM redundancy using a cluster fault model

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

16Mb ——

Yield

O 1 1 1 H L 1 i
0 5e-08 1e-07 1.5e-07 2e-07 25e-07 3e-07 3.5e-07 4e-07 4.5e-07 5e-07

lambda

1Gb ——

Yield

o] 2e-09 4e-09 6e-09 8e-09 1e-08
lambda

Figure C.23: Combined fault model of a 16-Mbit and a 1-Gbit DRAM without
redundancy

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model
C.5.2 Row and Column Redundancy

The yield of a column, taking into account single cell, column and cluster faults is

first determined:

Tmax Ymazx

Y;ol = e‘/\'(bcol+TT)e—X H H Y’Colum’neq (072)
r=1 y=1

where Y olumn,, 18 the column yield for all cluster sizes from Equations C.47 through
C.50.
The yield of a book is found as usual for column redundancy:
= +7c re—i i
Yoook = ( P ir ) CYPIT (1= Vo) (C.73)
i=0
Then, the effective yield of a row, taking into account row faults, can be calcu-
lated:

bl ow

S (C.74)

From this point, the section and DRAM yield are found as usual:

Tr + 7',,. s » .
Ysection = Z < s 3 ) : KO_ZJTT . (1 - Y;«ow)z (075)
=0
Yoran = Yoegia™ (C.76)

The yields of the 16-Mbit and 1-Gbit DRAM are shown in Figure C.24. Adding
row and column redundancies allows the 16-Mbit DRAM to handle 135 times greater
fault densities and still achieve 50% yield. The 1-Gbit DRAM can handle 2180 times

greater fault densities than a DRAM without redundancy.
C.5.3 ECC Redundancy

The yield of a codeword, taking into account single cell and cluster faults is calcu-
lated:
YVie=e? (C.77)
bow g

bew bew _
Yow = [YE + ba - Y711 = Yao)] [ﬁofuewbm%o&eq (1-Yy)| (C78)

where Y;ou,, and Yy, are calculated from Equations C.55 through C.60.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

0.9 F
08

07 I

Yield
=]
o

T

04

03 F

02

0 1 1 H ) 1 1 1 1 L
0 1e-06 2e-06 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05
lambda

9
T T T T T T T T 1Gb, T
09 I

08

06

05

Yield

04 r

03

01 |

0 1 1 1 1 1 1 1 1 1
0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07 3.5e-07 4e-07 45e-07 5e-07
lambda

Figure C.24: Combined fault model of a 16-Mbit and a 1-Gbit DRAM with row and
column redundancy

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

The yield of a column of codewords is then calculated:

Yoo =e X (C.79)
ol col

Ycolcw = Ycl;c,oz [chbcw + bcw ‘ bcw—l(]- - chol)] (080)

Finally, the yield of a book, and the yield of the DRAM, taking into account

row yield, are found:

Yiow =€7° (C.81)

NC'UJ
Yoook = Ycolcwp (082)
Ypram = Yihegeks - Y Nrous (C.83)

where N¢,,p, is the number of codewords across a page.

The yields of the 16-Mbit and 1-Gbit DRAM are shown in Figure C.25. Adding
ECC redundancies allows the 16-Mbit DRAM to handle only 6.7 times greater fault
densities and still achieve 50% yield. The 1-Gbit DRAM can handle 1.6 times
greater fault densities. This low number, compared to row and column redundancy,

is expected due to the previously shown ECC difficulty with row and cluster faults.
C.5.4 Row and Column Redundancy with ECC

Equations C.77 through C.80 are first used to determine the yield of a column of

codewords. Then, the equivalent yield of a column is found:

1

Yooty = Y000 (C.84)

colew

From this point, the yield of the DRAM is found, as in the row and column
redundancy case, with Equations C.73 through C.76.

The yields of the 16-Mbit and 1-Gbit DRAM are shown in Figure C.26. Adding
row and column redundancies allows the 16-Mbit DRAM to handle 116 times greater
fault densities and still achieve 50% yield. The 1-Gbit DRAM can handle 408 times
greater fault densities. This is rather surprising. Intuitively, ECC should handle
single cell faults, leaving more redundant rows and columns for other fault types, but
instead, the extra cells required for ECC have lowered yield significantly compared

to row and column only.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

16Mb ——

08 1

0.6 - -

Yield
=]
o

T
1

04 .

02 r 4

O 1 1 1
0 5e-07 1e-06 1.5e-06 2e-06

lambda
1 1 1 T

1Gb ——

Yield

0 5e-09 1e-08 1.5e-08 2e-08
lambda

Figure C.25: Combined fault model of a 16-Mbit and a 1-Gbit DRAM with ECC

redundancy

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

16Mb ——

09 |

08

06 [

05

Yield

03

0.2

o 1 1 1 1 1 1 1 1
0 1e-06 2e-06 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05
lambda

1 T T T T T T T

16Mb ——

08 4

06 b

Yield

04| -

02 .

0 1 L 1 1 1 1 L L L
0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07 3.5e-07 4e-07 45e-07 5e-07
lambda

Figure C.26: Combined fault model of a 16-Mbit and a 1-Gbit DRAM with row and
column redundancy and ECC

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model
C.5.5 Associative Direct Ternary CAM Redundancy

First, the number of CAM entries after yield must be found. This is split into four

parts, one for each of the fault types:

— baddr baddr+bse 4byord
Yr‘esc — fTCAM;. : Yflashsc < }/Ilmigcr (0.85)
Yierow = Yrow (C.86)
3baddr+bsect+4byor
K‘ecol - }/;ol e ¢ (C87)

2baddr Ymaz
Yee, = H H e~ (bagar—z+1)-(Neg—y+1)-S(z)-S(v) .

r=1 y=1

baddr+bsec Ymax

H H e‘“"/’"(baddr+bsec_x+1)'(Ncg_y+1)'s(z)'s(y) .

r=1 y=1
Wmax Ymaz
H H e~ ¥ (4buwora—z+1)-(Nag—y+1)-5(x)-5(y) (C.88)
=1 y=1
c= }/resc : }/rerow : Y;"eml : Yvrecl -Ncam (C89)

Next, the remaining working CAM entries, N, must be split up for each fault
type. This is an optimization problem that is solved differently for each DRAM. The
idea is to maximize the yield of all fault types for each fault density. See the source
code in Appendix D.5.5 for how this is achieved in these two cases. The determined

numbers are then entered into their respective individual fault type equation:

Yy, = NZ ( H ) Yoord * (1= Yuora) (C.90)
=0

et gubaare

Ya,0, = brzm:v < Nriow ) . Kgﬁ)ow_i (1~ me)i (C.91)
4Ne =
Ve = X% ( EIL ) VI (= Yaa ) (C.92)
g = N 'Si‘:) S (C.93)
Ny = Dbits (C.94)
T-y
126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

e Nc -1 4
DD ( il ) YR (1 - Ya) (C.95)
1=0
Tmax Ymazx
chl = H H YDRAMcluster (096)
z=1 y=1
Ypram = Y4, Va0 Va0 Yd, (C.97)

See Figure C.27 for plots of the DRAM yield with associative direct redundancy.
The 2K entry associative direct method in a 16-Mbit DRAM does not supply enough
entries to be match the 50% yield performance of row and column redundancy. It
only handles 85% of the fault density. On the other hand, the 1-Gbit DRAM with
73K entries can handle 15 times and 7 times greater fault density in contiguous
and interleaved word DRAM, respectively, than row and column redundancy. The
discontinuities in these graphs are caused by entries being used for different fault
types. The large jump in the 16-Mbit DRAM plot signifies that fault coverage can

be better optimized for low fault densities.
C.5.6 Associative Indirect Ternary CAM Redundancy

As has been the case with the separate fault models, the associative indirect case

closely follows the associative direct case. The number of CAM entries is found by

parts:
Yre,, = Y3y - Yppdrtbeectbrea (C.98)
Yierow = Yrow (C.99)
Vo = Ygrtartheeethred (C.100)
2b4ddr Ymaz
Yie, = H H o~ (2bagdr—z+1)-(Neg—y+1)-S(2)-5(y) |

=1 y=1

(baddr+b886+bred) Ymaxzx
H e“?/)'(baddr +bsec+bred—x+l)~(Ncg—y—i—l)-S(:t)S(y()C‘ 101)

=1 y=1
c= }/;"esc ' S/"'erow : Yrecol ' Y"ecl ' NCAM (0102)

The number of CAM entries, N,, devoted to each fault type is found through

an iterative process that does not lend itself well to mathematical representation.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

T Lf T 1 T T ] 1 16Mbl
09 |
0.8
07 |
0.6
el
Q2 05 b
>
04 -
03 b
02 4
01 A
O L I3 i 1 1 1 1 1 1
0 1e-06 2e-08 3e-06 4e-06 5e-06 6e-06 7e-06 8e-06 9e-06 1e-05
lambda
1 A T T L
\ 1Gb, contigous words
b 1Gb, interteaved words -------
0.9 |-\ B
‘\
\\
Y
08| \ .
\
o7tk N -
06 | ]
\\
k] \
& 05 ~
> S\
\\
0.4} -
03| 4
0.2 F 4
01 F -
0 L LT = 1
o] 5e-06 1e-05 1.5e-05 2e-05
lambda

2.5e-05

Figure C.27: Combined fault model of a 16-Mbit and a 1-Gbit DRAM with asso-
ciative direct ternary CAM redundancy

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

See the C source code in Appendix D.5.6 for details. Once the number of CAM
entries for each fault has been determined, the individual contributions to the yield

are calculated:

Ne
sC W _i 1:
=0
Nerow .
Ydrow = Z < Nzo’w ) R K‘]X’Z)ow—’i . (1 — Yrow)’t (C.104)
=0
Necol NQQl Nggl - )
chol = Z < bwgrd ) . Ylﬁg):gjol : (1 - onrdcoz)l (C-105)
1=0
by = Nea @) 5W) (C.106)
Yy Ce
Ny = it (C.107)
el Nc —1 3
chl = Z < p [ > . chlvcl . (1 _ Ycl) (0108)
i=0
Tmaz Ymax
chl = H H YDRAMcluster (C.].Og)
=1 y=1
Yporam = Ya,.Ya 00 Yoo Ydo (C.110)

See Figure C.28 for plots of the DRAM yield with associative indirect redun-
dancy. As with the associative direct case, the plots are not smooth due to the ad-
justing of percentages of CAM entries used for each fault type. With an associative
indirect ternary CAM redundancy of 1.1K entries and a 256-Kbit secondary memory,
the 16-Mbit DRAM can handle twice the fault densities as the same DRAM with
row and column redundancy. With 32K entries and a 16-Mbit redundant memory,
a contiguous 1-Gbit DRAM can handle 24 times more faults than row and column
redundancy, while an interleaved DRAM can handle 18 times more faults at 50%

yield.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5 Combined Fault Model

" 16Mb ~——

08 |- 4

0.6 |- 4

Yield

0.4 =

02 ,

0 1 i 1 1 1 1 1 1 1 1
0 5e-06 1e-05 15e-05 2e-05 2.5e-05 3e-05 3.5e-05 4e-05 4.5e-05 5e-05 5.5e-05
lambda
1 T T T
AN 1Gb, contigous words
N 1Gb, interleaved words ------~
09 | ]

08 AN ]

086 RN -

05 | Y .

Yield

04 + RS -

03 | _

0 ] 1 1
0 5e-06 1e-05 1.5e-05 2e-05

lambda

Figure C.28: Combined fault model of a 16-Mbit and a 1-Gbit DRAM with asso-
ciative direct ternary CAM redundancy

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix D

Yield Model C Code

D.1 Single Cell Fault Model

D.1.1 No Redundancy

/* Program to calculate graphs for DRAM yiecld without redundency using
* the negative binomial yield model.

* Craig Joly, December 12, 2002

*/

#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <math.h>

int main (int argc, char *xxargv)

double alpha;
double Ysc, Ydram;
double lambda;
double lstep , ltop;

int b,c;
opterr = 0;
while ({(c = getopt (argc, argv, "bil:s:h”)) != —1)
switch (c¢)
case ’'b’' :
b = atoi(optarg);
break;
case 'l’
ltop = atof(optarg);
break;
case 's’
Istep = atof(optarg);
break;
case 'h’:

fprintf(stderr , "Usage:%s.—b_bits.—l_.end_-lambda.—s_lambda.step\n” , argv[0]);
return 1;

default:
abort ();

}

for (lambda = 0; lambda < ltop; lambda += lstep) {
Ysc = exp(—lambda);
Ydram = pow{Ysc,b);
printf ("%1.10f_%1.10f\n” , lambda, Ydram);

}

return 0;

}
D.1.2 Row and Column Redundancy

/* Program to calculate graphs for DRAM yield with row and column
* redundancy wusing the negative binomial yield model.

x Craig Joly, December 13, 2002

*/

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.1 Single Cell Fault Model

#include <stdio.h>

#include <stdlib .h>

#include <getopt.h>

#include <gsl/gsl.sf.pow_int.h>
#include <gsl/gsl_sf.gamma .h>

#ifdef _16MDRAM
#define BITS ((unsigned int)(16x1024%1024))
#define RED.COLS 2
#define RED.ROWS 24
#define NBOOKS 64
#define NSECS 4
#define BITS.P.ROW 1024
#define BITS_P.COL 2048
#define SEC_HEIGHT 4096
#define PAGESIZE 128
#endif

#ifdef .1IGDRAM
#define BITS ((unsigned int)(1024x1024%1024))
#decfine RED.COLS 16
#define RED.ROWS 64
#define NBOOKS 32
#define NSECS 8
#define BITS_.P_.ROW 16384
#define BITS_P.COL 4096
#define SEC_HEIGHT 8192
#define PAGESIZE 8192
#endif

int main (int argc, char xxargv)

double Ysc, Ycol, Yscbook, Yrow, Ydram;
double Ybook, Ysec;

double partl, part2, part3;

double lambda;

double lIstep , ltop;

int i, ¢;
opterr = 0;
while ((c¢ = getopt (arge, argv, "l:s:h”)) l= —1)

switch (c¢)

case 'l :
ltop = atof(optarg);
break;
s o
Istep = atof(optarg);
break ;
case 'h’:
fprintf(stderr, " Usage:%s.—a_alpha.—l_end.lambda.—s_.lambda_step\n” , argv [0]);
return 1;
default:
abort ();

case

}

Ydram = 1.0;

for (lambda = 0 + Istep; lambda < ltop; lambda += lIstep)
zf (Ydram != 0)

Ysc = exp(—lambda);
Ycol = gsl_sf_pow_int(Ysc, BITS.P.COL);

Ybook = 0;
for (i = 0; i <= RED.COLS; i++) {
Ybook += gsl_sf_choose (PAGESIZE + RED.COLS, i) *
gsl_sf_pow_int (Ycol, PAGESIZE + RED.COLS — i) =x
gsl_sf_pow.int (1 — Ycol, i);

}

Yscbook = exp(log(Ybook) / (BITS.P.COL x PAGESIZE));
Yrow = gsl_.sf_pow_int (Yscbook, BITS.P.ROW);

Yscc = 0;
for (i = 0; i <= REDROWS; i++) {
Ysec += gsl_sf_choose (SEC_HEIGHT + REDROWS, i) *
gsl_sf_pow.int (Yrow, SEC_HEIGHT 4+ RED.ROWS — i) =
gsl_sf_pow_int (1 — Yrow, i);

}

Ydram = gsl_.sf_pow_int (Ysec, NSECS);
}

printf (”%1.10f.%1.10f\n” , lambda, Ydram);

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



}

return 0;

}

D.1 Single Cell Fault Model

D.1.3 ECC Redundancy

/* Program to
* redundancy
* Craig Joly,
*/

nLs

#include
#include
#include
#include
#include

<stdlib
< getopt
<gsl/gs
<gsl/gs

#ifdef _16MDRAM
#define
#define
#define
#define

#endif

#ifdef _1GDRAM
#define
#define
#define
#define

#endif

int main (int argc,

double
double
double
double
double
int i

alpha
Ysc,

Ybook
lambd
lstep
, <

opterr = 0;

while ((c
switch (

case

case

case

calculate

graphs for DRAM yield with ECC
negative binomial yield model.
2002

ing the
December 16,

<stdio.h>

.h>

.h>
l_sf.pow_int .h>
l_sf_exp .h>

NBOOKS 64
NSECS 4
CODEWORD 137
NCW 20438

NBOOKS 32
NSECS 8
CODEWORD 523
NCW 65536

char xxargv)

Yew, Ydram;
a;
ltop;

)

getopt (argc, "l:s:h")) I= —1)

<)

K
ltop
break;
's? o
Istep
break ;

'h':
fprintf(stderr, "Usage:%s.—l_.end_lambda_—s.lambda_step\n” , argv[0]);
return 1;

argv ,

atof (optarg);

atof (optarg);

default:

}
Ydram

1.0;5

for (lambda
{

if (Ydram

{
Ysc

Yew

Ybook

Ydram

}

printf(”
printf (”

/7

return 0;

}

O

abort

0 + lstep; lambda < ltop; lambda += lstep)

1= 0)

gsl_sf_exp(—lambda);

gsl_sf_pow.int (Ysc, CODEWORD) + CODEWORD x
gsl_sf_pow_int{Ysc, CODEWORD-1) * (1 — Ysc);

gsl_sf_pow_int (Yew, NCW);

gsl_sf_pow.int (Ybook, NBOOKS);

%1.5f %1.5f %1.5f\n”, Ysc, Yew, Ybook);
%1.10f.%1.10f\n” , lambda, Ydram);

D.1.4 Row and Column Redundancy with ECC

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.1 Single Cell Fault Model

/* Program to calculate graphs for DRAM yield with row aend column
* redundancy using the negative binomial yield model.

* Cratg Joly, December 18, 2002

*/

#include <stdio.h>

#include <stdlib.h>

#include <getopt.h>

#include <gsl/gsl.sf.pow_int.h>
#include <gsl/gsl.sf.log .h>
#include <gsl/gsl.sf_exp .h>
#include <gsl/gsl_sf_gamma.h>

#ifdef .16MDRAM
#define BITS ({(unsigned int)(16%x1024%1024%x137/128))
#define RED.COLS 2
#define REDROWS 24
#define NBOOKS 64
#define NSECS 4
#define BITS.P_.ROW 1024
#define BITS.P.COL 2048
#define SEC_HEIGHT 4096
#define OODEWORD 137
#define PAGESIZE 137
#endif

#ifdef .1GDRAM
#define BITS ((unsigned int)(1024%x1024%1024%523/512))
#define RED.COLS 16
#define REDROWS 64
#define NBOOKS 32
#define NSECS 8
#define BITS_.P_.ROW 16384
#define BITS.P.COL 4096
#define SEC_HEIGHT 8192
#define CODEWORD 523
#define PAGESIZE 8368
#endif

int main (int argc, char xxargv)

double Ysc, Ycol, Yscbook, Yrow, Ydram;
double Ybook, Yscecc, Ycw, Ysec;
double lambda;

double lstep , ltop;

int i, c¢;

opterr = 0;
while ((c¢ = getopt (argc, argv, "l:s:h”)) I= —1)
{
switch (c¢)
case 1’ :
Itop = atof(optarg);
break ;
case ’'s'
Istep = atof(optarg);
break;
case 'h’:
fprintf(stderr, ”Usage:%s.—lc.end_-lambda.—s_.lambda.step\n” , argv[0]);
return 1;
default:
abort ();

}

Ydram = 1.0;

for (lambda = 0 + lIstep; lambda < ltop; lambda += Istep)
if (Ydram != 0)
{ Ysc = gsl_.sf_.exp(—lambda);

Yew = gsl_sf_pow.int(Ysc, CODEWORD) + CODEWORD x
gsl_sf_pow.int (Ysc, CODEWORD — 1) * {1 — Ysc);

Yscece = gsl_sf_.exp(gsl.sf_log(Yew) / (CODEWORD));
Ycol = gsl_sf_pow.int (Yscecc, BITS.P.COL);
/7 printf(” Yecol=%f\n", Ycol);
Ybook = 0;
for (i = 0; i <= RED.COLS; i++)
Ybook += gsl-sf_choose (PAGESIZE + RED_.COLS, i) =

gsl_sf_pow_int (Ycol, PAGESIZE + RED.COLS — i) =
gsl.sf_pow_int (1 — Ycol, i);

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.1 Single Cell Fault Model

}
printf(” Ybook=%e\n",

/7 Ybook ) ;
Yscbook = gsl_sf_exp(gsl-sf_log(Ybook) / (BITS.P_.COL x PAGESIZE));
// printf(” Yschook=%f\n”, Yscbook);
Yrow = gsl_sf_pow.int (Yscbook, BITS.P.ROW);
// printf (" Yrow=%f\n", Yrow);
Ysec = 0
for (i = 0; i <= RED.ROWS; i++)
{ Ysec += gsl-sf_choose (SECHEIGHT + RED.ROWS, i) =
gsl-sf_pow_int (Yrow, SEC_HEIGHT + REDROWS — i) «*
gsl_sf_pow_int (1 — Yrow, i);
/7 zvrintf(” Ysec—%f\n”, Ysec);

Ydram gsl.sf_pow.int (Ysec, NSECS);

}
printf(”%1.10f_.%1.10f\n” , lambda, Ydram);

return 0;

D.1.5 Associative Direct Redundancy

/*

* Craig
*/

#include
#include
#include
#include
#include

Program to
* redundancy using

calculate
the
December

graphs for DRAM yield with associative
negative binomial yield model.

Joly , 13, 2002

<stdio.h>
<stdlib.h>
<getopt.h>

<math.h>
<gsl/gsl-sf_.gamma .h>

direct

#define L.RATIO 0.2

#ifdef _16MDRAM

#define BITS ((unsigned int)(16+1024x1024))
#define WORD.BITS 1
#define ADDR.BITS 22
#define SEC_BITS 2
#define MAX.CAME 131072
#endif

#ifdef _1GDRAM

#define BITS ({unsigned int)(1024%1024%1024))
#define WORDBITS 16
#define ADDR.BITS 25
#define SEC_BITS 1
#define MAX.CAME 131072
#endif

int main (int argc, char xxargv)

double Ysc, Yword, Ycam.sc, Ymask.sc, Ydram;
double lambda, l_.cam , l_-mask;

double 1.h , 1.1;

double partl, part2, part3;

int cam_.e, n.cam_c;

int i, ¢, reduce;

opterr = 0;

while ({(c¢ = getopt (argc, argv, "h")) != —1)
{

switch (c¢)

hs
fprintf(stderr ,
return 1;

case
?»Usage:%s\n” , argv [0]);

default:
abort ();
}
}
for (n.cam.e = 0 ; n.cam-e <= MAX.CAME ; n.cam.e += 1024)
{
lambda = 0.1;
1_.h = 0.1;
1.1 = 04
reduce = 1;
while (1)
{
Ysc = exp(—lambda);
Yword = pow(Ysc, WORDBITS);
Ydram = 0;

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.1 Single Cell Fault Model

l.cam = lambda / L.RATIO;

l.mask = l.cam / 2;

Ycam.sc = exp(—l-cam);

Ymask.sc = exp(—l-mask);

cam.e = floor (pow(Ycam.sc, ADDRBITS)
pow( Ymask.sc, ADDRBITS + SEC_BITS) x
pow(Ysc, WORDBITS) * n._cam_e);

for (i = 0; i <= cam.e; i++)
partl = gsl.sf_Ilnchoose (BITS / WORD.BITS, i);
part2 = (BITS / WORDBITS — i) * log(Yword);
part3 = i * log (1.0 — Yword);
Ydram += exp{(partl + part2 + part3);

}

if (Ydram > 0.53)

{
reduce = 0;
1.1 = lambda;

lambda = (lambda + 1.h) / 2;
}
else if (Ydram < 0.47)

if (reduce)
lambda /= 10;
else

1-h = lambda;
lambda = (lambda + 1_1) / 2;
}

else break;

if (fabs(l_.l1 — 1_.h) <= le—15) break;
}

printf(”"%1.10f.%d.%1.5f\n” , lambda, n_.cam.c, Ydram);

return 0;

D.1.6 Associative Indirect Redundancy

#include <stdio.h>

#include <stdlib.h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl_sf.gamma.h>

#define L.RATIO 0.2

#ifdef _16MDRAM
#define BITS 16%x1024%1024
#define WORDBITS 1
#define ADDRBITS 22

#define SEC.BITS 2

#define MAX CAME 128x1024

#define CAMSTEP 1024
#endif

#ifdef _1GDRAM
#define BITS 1024%1024%1024
#define WORD.BITS 16
#define ADDRBITS 25

#define SEC_BITS 1

#define MAX.CAME 128%1024

#define CAMSTEP 1024
#endif

int main (int argc, char *xargv)

long double Ysc, Yword, Ycam.sc, Yflash.sc, Ydram;
long double partl, part2, part3;

double lambda, l_.cam, l_-flash;

double 1_h , 1_1;

int cam.e, n_cam.e, red_bits , cam.e.p, cam.e.2p;
int ¢, i, reduce, f;

opterr = 0

while ((c¢ = getopt (argc, argv, "h")) I= —1)

switch (c¢)

case ’'h’:

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fprin

D.2 Row Fault Model

tf(stderr, ”"Usage:.%s\n” , argv[0]);

return 1;

default:
abort

}

for

(cam_e 0;
lambda
1_h 0.1;
1.1 0;
reduce = 1;
while (1)

0.1,

Ysc =
Yword
Ydram

l_cam
I_flash

Ycam.sc
Yflash_sc

red_bits =

n.cam._e =

pow( Yflash_sc ,

for (i =
partl
part2
part3
Ydram

}
if (Ydram

cam.e <= MAX_CAM.E;

0

O

cam_.e += CAMSTEP)

exp(—lambda);
pow(Ysc, WORDBITS);
0;

lambda / L_RATIO;

l.cam /[ 2;

exp(—~l-cam);
= exp(—1_flash);

ceil (log{cam_e / Yword) /

log (2));
ceil (cam_.e / (pow(Ycam.sc,

ADDR.BITS) «

SEC.BITS + ADDRBITS + red_bits)));
i <= cam.e; i++)
gsl.sf_.lnchoose (BITS / WORD.BITS,
(BITS / WORDBITS — i) =

i * log(l — Yword);

exp(partl + part2 + part3);

= i);
= log (Yword );
+=

> 0.53)

reduce = 0;

1.1

lambda

else

{

lambda;
(lambda + 1_h) / 2;

if (Ydram < 0.47)

if (reduce)
lambda /= 10;

else

1-h
lambda

}

= lambda;
(lambda + 1_1) / 2;

else break;

if (fabs(1.1

}

printf (" %1.10f.%d.%d-%d\n"” , lambda,

return 0O;

}

— 1.h) < 1le—15) break;

n.cam_c, red_bits , cam.e);

D.2 Row Fault Model

D.2.1 No Redundancy

/x
=/

Program to
the negative
Craig Joly,

#include <stdio .h>
#include <stdlib.h>
#include <getopt.h>
#include <math.h>

#ifdef .16MDRAM

calculate
binomial
December 12,

graphs for DRAM yield without redundancy using
yield model.
2002

#define NROWS 16384
#endif
#ifdef _1GDRAM

#define NROWS 65536

#endif

Reproduced with permission of the copyright

137

owner. Further reproduction prohibited without permission.



D.2 Row Fault Model

int main (int argc, char xxargv)

double Yrow, Ydram;
double rho;

double rstep, rtop;
int b,c;

opterr = 0;

while ({¢ = getopt (argc, argv, "r:s:h”)) != —1)

switeh (c¢)
case 'r’ :

rtop = atof (optarg);

break;
case ’'s’
rstep = atof(optarg);
break;
case 'h’:
fprintf(stderr, ”VUsage:%s.—r_end_.rho.—s_rho_step\n” , argv{0]);
return 1;
default:
abort ();
}
for (rho = 0; rho < rtop; rho += rstep) {
Yrow = exp(—rho);

Ydram = pow(Yrow, NROWS);
printf ("%1.10f_.%1.8f\n” , rho, Ydram);
}

return 0;

}
D.2.2 Row and Column Redundancy

/* Program to calculate graphs for DRAM yield with row and column
* redundancy wusing the negative binomial yield model.
* Craig Joly, Jan 18, 2003

*/

#include <stdio.h>

#include <stdlib.h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl_sf_pow.int.h>
#include < gsl/gsl_sf_gamma .h>

#ifdef _16MDRAM
#define NSECS 4
#define RED.ROWS 24
#define SEC_HEIGHT 4096
#endif

#ifdef _IGDRAM
#define NSECS 8
#define RED.ROWS 64
#define SEC_HEIGHT 8192
#endif

int main (int argc, char xxargv)

double alpha;

double Yrow, Ysec, Ydram;
double rho;

double rstep , rtop;

int i,b,c;

opterr = 0;
while ((c = getopt (argec, argv, "r:s:h”)) l= —1)

switch (c¢)

1

case 'r’ :
rtop = atof(optarg);
break;
‘s’ o
rstep = atof(optarg);
break;
case 'h’:
fprintf(stderr , ”"Usage:%s.—r_end-rho_—s_.rho_step\n” , argv[0]);
return 1;
default:
abort ();

case

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for (rho = 0; rho < rtop; rho += rstep) {
Yrow = exp(—rho);
Ysec = 0
for (i = 0; i <= REDROWS; i++)

}

Ysec += gsl_sf_choose (SEC.HEIGHT 4 RED_ROWS,

D.2 Row Fault Model

gsl_sf_pow.int (Yrow, SEC_HEIGHT + REDROWS — i) =«
gsl.sf_pow.int (1 — Yrow,

Ydram = gsl_sf_.pow_int (Ysec, NSECS);

printf ("%1.10f.%1.8f\n” ,

}

rho, Ydram});

return 0;

}
D.2.3 Associative Direct Redundancy

/* Program to calculate graphs for DRAM yield with associative direct
* redundancy wusing the negative binomial yield model.
* Craig Joly, Jan 18, 2008

*/

#include <stdio.h>

#include <stdlib .h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl_sf_pow.int.h>
#include <gsl/gsl_sf_gamma .h>

#ifdef 16MDRAM

#define NROWS 16384
#define PAGESIZE 128
#define MAX CAM.E 128%1024
#define CAMSTEP 1024
#define ADDRBITS 22
#define BITS_.P.ROW 1024
#define WORDBITS 1

#endif

#ifdef _IGDRAM
#define NROWS 65536
#define PAGESIZE 8192
#define MAX.CAME 128x1024
#define CAMSTEP 1024
#define ADDRBITS 25
#define BITS_P.ROW 16384
#define WORDBITS 16

#endif

int main (int argc, char xxargv)

double Ydram, Yrow;
double Ycam_row;
double partl, part2, part3;

double rho;

double r_h, r.l1, reduce;

int cam_e, n.cam.e;

int i,c;

opterr = 0

while ((c¢ = getopt (arge, argv, "h"”)) !l= —1)

switch (c¢)
{

case 'h’:
fprintf(stderr, ”Usage:%s\n” , argv[0]);
return 1;
default:
abort ();
}
}
for (n.cam_-e = 0; n.cam_-e <= MAX.CAME; n_cam.e += CAMSTEP)
{
rho = 0.1;
r-h = 0.1;
r-l = 03
reduce = 1;
while (1)
{

Yrow = exp(—rho);
Ycam_row = exp(~—2*rho);

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.2 Row Fault Model

cam-e = Ycam.row x n.cam-e;
¢ = floor(4 * cam-e * WORDBITS / BITS.P.ROW);
Ydram = 0;
for (i = 0; i <=c¢; i ++)
partl = gsl_sf_.lnchoose (NROWS, 1i};
part2 = (NROWS — i) * log(Yrow);
part3 = i % log(l — Yrow);
Ydram += exp (partl + part2 + part3);
}
// printf("%d %f\n”, ¢, Ydram);
if (Ydram > 0.53)
reduce = 0;
r_1 = rho;
rho = (rhoe + r.h) / 2;

else

if (Ydram < 0.47)

if (reduce)

rho /= 10;
else

r-h = rho;

rho = (rho + r.l) / 23
}

else break;

if (fabs(r.l — r_.h) <= 0.0000000001) break;

}

printf(”%1.10f.%d-%d\n” , rho, n_.cam.e,

<)

return 0;

D.2.4 Associative Indirect Redundancy

/* Program to calculate
* redundancy wusing the
* Craig Joly, Jan 18,
*/

#include <stdio.h>

graphs for DRAM yield with
negative binomial
2003

associative direct

yield model.

#include
#include
#include
#include

<stdlib.h>

<getopt .h>

<math.h>
<gsl/gsl.sf_pow.int .h>

#include <gsl/gsl_.sf_.gamma.h>

#ifdef _16MDRAM

#define NROWS 16384
#define PAGESIZE 128
#define MAX.CAM.E 2%1024
#define CAMSTEP 16
#define ADDRBITS 22
#define BITS.P.ROW 1024
#define WORDBITS 1

#endif

#ifdef _1GDRAM
#define NROWS 65536
#define PAGESIZE 8192
#define MAX.CAME 8+1024
#define CAMSTEP 64
#define ADDR.BITS 25
#define BITS_P.ROW 16384
#define WORDBITS 16

#endif

int main (int argc,

char xxargv)

double Ydram, Yrow;

double Ycam_row;

double partl, part2, part3;
double rho;

double r_.h, r.l, reduce;

int cam_e, n_cam_e, red_bits;
int i,c;

opterr = 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140



D.3 Column Fault Model

while ({(c¢ = getopt (arge, argv, "h”)) != ~1)
switch (c)

case ’'h':
fprintf(stderr , ”"Usage:%s\n” , argv [0]);
return 1;

default:
abort ();

}
for (n.cam_e = 0; n.cam-e <= MAX.CAME; n_cam.e += CAMSTEP)

rho
r.h
r-l
redu

s
s

while (1)

Yrow = exp(—rho);
Ycam.row = exp(—2xrho);

cam.e = Ycam.row * n.cam-e

red_bits = ceil(log((cam-o’* BITS.P_ROW) /(WORDBITS * Yrow)) /
log (2));

Ydram = 0;
for (i = 0; i <= cam.e; i ++4)

partl = gsl.sf_.lnchoose (NROWS, i);
part2 = (NROWS — i) * log(Yrow);
part3 = i * log(l — Yrow);

Ydram += exp{(partl + part2 4 part3);

/) w printf("%d %f\n", cam_.e, Ydram);
if (Ydram > 0.53)

recduce = 0
r-1 = rho;
rho = (rho + r.h) / 2;

}
else if (Ydram < 0.47)

if (reduce)
rho /= 10;
else

{

r-h = rho;

rho = (rho + r.1) / 2;
}

else break;
if (fabs(r_-l — r.h ) <= 0.0000000001) break;

}

printf(”%1.10f_%d_-%d-%d_%f\n” , tho, n.cam_.e, red_bits , cam_.e, Ydram);

return 0;

}

D.3 Column Fault Model
D.3.1 No Redundancy

/* Program to calculate graphs for DRAM yield without redundancy using
* the negative binomial yield model.

*x Craig Joly, December 12, 2002

*/

#inciude <stdio.h>
#include <stdlib .h>
#include <getopt.h>
#include <math.h>

#ifdef _16MDRAM
#define NCOLS 8192
#endif

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.8 Column Fault Model

#ifdef _-IGDRAM
#define NCOLS 262144
#endif

int meain (int argc, char xxargv)

double Ycol, Ydram;

double chi;
double cstep , ctop;
int b,c;
opterr = 0;
while ((c¢ = getopt (argc, argv, "c:s:h”)) != —1)
switch (¢)
case ‘¢’ :
ctop = atof(optarg);
break;
case ’'s’
cstep = atof(optarg);
break;
case 'h’:

fprintf(stderr, "Usage:%s.—l_end.chio—s_.chi_step\n”, argv[0]);
return 1;

default:
abort ();
}
for (chi = 0; chi < ctop; chi += cstep) {
Ycol = exp(—chi);

Ydram = pow(Ycol, NCOLS);
printf ("%1.10f.%1.8f\n”, chi, Ydram);

return 0;

}
D.3.2 Row and Column Redundancy

/* Program to calculate graphs for DRAM yield with row and column
* redundancy using the negative binomial yield model.
* Craig Joly, Jan 18, 2003

*/

#include <stdio.h>

#include <stdlib .h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl.sf_pow.-int . h>
#include <gsl/gsl_sf.gamma .h>

#ifdef _16MDRAM
#define NCOLS 8192
#define NBOOKS 64
#define RED.COLS 2
#define PAGESIZE 128
#endif

#ifdef 1GDRAM
#define NCOLS 262144
#define NBOOKS 32
#define RED.COLS 16
#define PAGESIZE 8192
#endif

int main (int argc, char xxargv)

double Ycol, Ybook, Ydram;
double chi;

double cstep , ctop;

int 1,b,c;

opterr = 0;
while ((c = getopt (argc, argv, "c:s:h”)) != —1)
{

switch (c¢)

case 'c’ :
ctop = atof(optarg);
break;

case ’'s’
cstep = atof(optarg);
break;

case 'h’:
fprintf(stderr , ”Usage:%s_-—c_end.chio.—s_chi.step\n” , argv[0]);
return 1;

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.3 Column Fault Model

default:
abort ();

}

for (chi = 0; chi < ctop; chi += cstep) {
Ycol = exp(~chi);

Ybook = 0;
for (i = 0; i <= RED.COLS; i++)

Ybook 4= gsl.sf.choose {PAGESIZE + RED.COLS, i) =*
gsl_sf_pow.-int (Ycol, PAGESIZE + RED.COLS — i) *
gsl_sf_pow_int (1.0 — Yecol, i);

}

Ydram = gsl_sf_pow._int (Ybook, NBOOKS);
printf (”%1.10f_%1.8f\n” , chi, Ydram);

}

return 0;

}
D.3.3 ECC Redundancy

/% Program to calculate graphs for DRAM yield with row aend column
« redundancy wusing the mnegative binomial yield model.

« Craig Joly, Jan 18, 2008

*/

#include <stdio.h>

#include <stdlib .h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl_sf_pow_int.h>
#include <gsl/gsl_sf_gamma .h>

#ifdef _16MDRAM
#define NCOLS 8768
#define NBOOKS 64
#define CODEWORD 137
#define NCWP 1
#endif

#ifdef _1IGDRAM
#define NCOLS 267776
#define NBOOKS 32
#define CODEWORD 523
#define NCWP 16
#endif

int main (int argc, char xxargv)
double Ycol, Ybook, Ydram;
double chi;
double cstep, ctop;
int i,b,c;

opterr = 0;

while ((c¢ = getopt (argc, argv, "c:s:h”)) I= —~1)
switch (c)
{
case ‘¢’ :
ctop = atof(optarg);
break;
case ’'s' :
cstep = atof(optarg);
break ;
case 'h':
fprintf(stderr, "Usage:%s_—c_end_chic—s_chi_-step\n” , argv[0]);
return 1;
default:
abort ()};
}
for (chi = 0; chi < ctop; chi += cstep) {
Ycol = exp{—chi);

Ybook = gsl_sf_pow-int(gsl_sf_pow_int(Ycol, CODEWORD) +
CODEWORD * gsl_sf_pow_int{Ycol, CODEWORD-1) «
(1 — Ycol), NCWP);

Ydram = gsl_sf_pow._int (Ybook, NBOOKS);
printf ("%1.10f_-%1.8f\n”, chi, Ydram);

}

return 0;

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.3 Column Fault Model

}
D.3.4 Row and Column Redundancy with ECC

/* Program to calculate graphs for DRAM yield with row and column
* redundancy wusing the negative binomial yield model.

* Craig Joly, Jan 18, 2008

*/

#include <stdio.h>

#include <stdlib.h>

#include <getopt .h>

#include <math.h>

#include <gsl/gsl.sf_pow.int . h>
#include <gsl/gsl.sf_.exp .h>
#include <gsl/gsl-sf_log .h>
#include <gsl/gsl_sf_gamma . h>

#ifdef _16MDRAM
#define NCOLS 8768
#define NBOOKS 64
#define RED.COLS 2
#dcfine PAGESIZE 137
#dcfine CODEWORD 137
#define NCWP 1

#endif

#ifdef _1GDRAM
#define NCOLS 267776
#define NBOOKS 32
#define RED.COLS 16
#define PAGESIZE 8368
#define CODEWORD 523
#define NCWP 16

#endif

int main (int argc, char xxargv)

double Ycol, Ycw, Ycolecc, Ybook, Ydram;
double chi;

double partl, part2, part3;

double cstep , ctop;

int i,b,c;

opterr = 0

while ({c = getopt (arge, argv, "cis:h”)) I= —1)

switch (c¢)
case 'c’

ctop = atof(optarg);

break;

case ’'s’ :
cstep = atof(optarg);
break;

case ’h':
fprintf(stderr, ”"Usage:%s.~c_end.chi.—s—chi-step\n” , argv[0]);
return 1;

default:
abort ()};
}
for (chi = 0; chi < ctop; chi += cstep) {
Ycol = exp(—chi};

Ycw = pow(Ycol, CODEWORD) + CODEWORD * pow(Ycol , CODEWORD-1) =
(1 — Ycol);

Ycolecc = exp(log(Ycw) / CODEWORD);

Ybook = 0;
for (i = 0; i <= RED.COLS; i++)
Ybook += gsl_sf_choose (PAGESIZE + RED.COLS, i) =
pow(Ycol, PAGESIZE + RED.COLS — i) =
pow(l — Ycol, i);

}

Ydram = pow(Ybook, NBOOKS);

printf ("%1.10f_%1.8f\n” , chi, Ydram);
}

return 0;

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.3 Column Fault Model

D.3.5 Associative Direct Redundancy

/* Program to calculate graphs for DRAM yield with associative direct
* redundancy wusing the negative binomial yield model.

* Craig Joly, Jan 18, 2003

*/

#include <stdio.h>

#include <stdlib .h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl_sf_pow_.int .h>
#include <gsl/gsl_sf_gamma .h>

#ifdef _16MDRAM
#define NCOLS 8192
#define SEC.HEIGHT 4096
#define MAX.CAME 64%1024
#define CAM.STEP 512
#define ADDRBITS 22
#define WORD_BITS 1
#define BITS_P.COL 2048
#define SEC_BITS 2

#endif

#ifdef _1GDRAM
#define NCOLS 262144
#define SEC.HEIGHT 8192
#define MAX.CAME 10241024
#define CAM.STEP 1024
#define ADDRBITS 25
#define WORD.BITS 16
#define BITS_P_.COL 4096
#define SEC.BITS 1

#endif

int main (int argc, char *xargv)

double Ydram, Ycol, Ywordcol, Yredcol;
double Ydcol;

double partl, part2, part3;

double chij

double c¢_.h, c_1, reduce;

int cam.c, n.cam-.e;

int i,c¢;

opterr = 0;
while ((c = getopt (argc, argv, "h”)) != —1)
switch (c¢)

case 'h’:
fprintf(stderr, "Usage:%s_—~a~alpha\n”, argv[0]);
return 1;

default:
abort ();

for (n.cam.e = 0; n.cam.e <= MAX.CAM.E; n.cam.e += CAMSTEP)

chi
c.h
c.l
redu

S

while (1)
Ycol = exp(—chi);
Ywordcol = pow(Ycol, WORDBITS);
Yredcol = pow(Ycol, 3 x ADDRBITS 4+ SEC_BITS + 4 x WORDBITS);

¢ = floor(4 * n.cam_e / BITS_.P.COL);

Ydcol = 0;

for (i = 0; i <= c¢j i ++)
partl = gsl.sf.lnchoose (NCOLS / WORDBITS, i);
part2 = (NCOLS / WORDBITS — i) * log(Ywordcol};
part3 = i % log(l — Ywordcol);
Ydcol += exp(partl 4+ part2 + part3);

}
Ydram = Ydcol * Yredcol;
if (Ydram > 0.53)

reduce = 0;

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.3 Column Fault Model

c_l
chi

chi;
(chi + c¢.h) / 25

else if (Ydram < 0.47)

if (reduce)

chi /= 10;
else
c-h = chi;
chi = (chi + <c.1) / 2;
}
else break;
// printf(”"%1.10f %1.10f %1.10f %1.10f\n”, c-l, c.h, chi, Ydram};
if (fabs(c-]l — c_.h) <= 0.0000000001) break;
}
printf(”%1.10f.%d-%d_%1.10f\n” , ¢chi, n_.cam.e, c, Ydram);
return 0;
}
D.3.6 Associative Indirect Redundancy
/* Program to calculete graphs for DRAM yield with associative direct
* redundancy wsing the negative binomial yield model.
* Cratig Joly, Jan 18, 2003
“/
#include <stdio.h>
#include <stdlib .h>
#include <getopt.h>
#include <math.h>
#include <gsl/gsl.sf_pow.int.h>
#include <gsl/gsl_sf_gamma .h>
#ifdef 16MDRAM
#define NCOLS 8192
#define SEC_HEIGHT 4096
#define MAX_.CAME 64
#define CAMSTEP 1
#define ADDRBITS 22
#define WORDBITS 1
#define BITS_.P.COL 2048
#define SEC_BITS 2
#endif
#ifdef 1GDRAM
#define NCOLS 262144
#define SEC_HEIGHT 8192
#define MAX CAME 1024
#define CAMSTEP 16
#define ADDRBITS 25
#define WORDBITS 16
#define BITS_P.COL 4096
#define SEC_BITS 1
#endif
int main (int argc, char xxargv)
double Ydram, Ycol, Ywordcol, Yredcol;
double Ydcol;
double partl, part2, part3;
double chi;
double ¢_h, c.l, reduce;
int cam.e, n_cam-e¢, red_bits;
int i,c;
opterr = 0;
while ({(c¢ = getopt (argc, argv, “h”)) I= —1)
switch (c¢)
case ’'h’:
fprintf(stderr, "Usage:%s\n" , argv|[0}]);
return 1;
default:
abort ();
}
}
for (n.cam_e = 0; n.cam_e <= MAX CAME; n_cam.e += CAMSTEP)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146



D.4 Cluster Fault Model

chi
c_h
c_1
redu

0.1;
0.1;
H

ol

e = 1;
while (1)
{

Ycol = exp(—chi);
Ywordcol = pow(Ycol, WORDBITS);

red_bits = ceil (log(n.cam_e = BITS.P.COL) / log(2));

Yredcol = pow(Ycol, 3 *+ ADDRBITS + red.bits 4+ SEC.BITS);

Ydcol = 0;
for (i =

o-

; i <= n_.cam.e; i ++)

partl gsl_sf_lnchoose (NCOLS / WORDBITS, i});

part2 = (NCOLS / WORDBITS — i) * log(Ywordcol);
part3 = i * log(l — Ywordcol);
Ydcol += exp(partl + part2 + part3);

}
Ydram = Ydcol * Yredcol *x Ywordcol;
if (Ydram > 0.501)
c_.l = chi;
chi = (chi + c.h) / 25
}
else if (Ydram < 0.499)
if (reduce)
chi /= 10;

else

{

c.h = chi;

chi = (chi + c.1) / 2;
}

else break;
// printf("%1.10f %1.10f %1.10f %1.10f\n”, r_l, r.h, Ytarget, Ydcol);
if (fabs(c-1 — c¢c_h) <= 0.0000000001) break;
}
printf(”"%1.10f.%d_%d_.%1.10f\n" |, chi, n_.cam.e, red.bits, Ydram);

return 0;

}

D.4 Cluster Fault Model

D.4.1 No Redundancy

/% Program to calculate graphs for DRAM yield without redundancy wusing
* a cluster fault model and e binomial (poisson) yiled model

* Craig Joly, December 12, 2002

*/

#include <stdio.h>
#include <stdlib .h>
#include <getopt.h>
#include <math.h>

#ifdef _16MDRAM

#define BITS 16%1024%1024
#define N.X 2048
#define N.Y 8192

#eondif

#ifdef _IGDRAM
#define BITS 1024%1024%1024
#define NX 32%«1024
#define N.Y 32x1024

#endif

#define Q 1.0

#define P 2.0

#define DNOT 2.0

#define DMAX 64.0

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.4 Cluster Foult Model

#define FPPARAM 0.68085
double sprob (int delta)

return (delta < DNOT) 7 (0.68085 x delta / 4.0):
(0.68085 x 2.0 / (delta x delta));

}

int main (int argc, char xxargv)

double Yel, Ydcl, Ydram;
double psi, fpparam;
double pstep, ptop;

int b,c, x, y;

opterr = 0;

while ((c¢ = getopt (argc, argv, "b:l:s:h”)) I= =1)
switch (c¢)

case 1’ :
ptop = atof(optarg);
break;
st
pstep = atof(optarg);
break;
case 'h’:
fprintf(stderr, "Usage:%s.—1l_end_.lambda_—s_.lambda.step\n” , argv{0]);
return 1;

case

default:
abort ();
}
for (psi = 0; psi < ptop; psi += pstoep) {
Ydram = 1;

for (x = 1; x <= DMAX; x++)
for (y = 1; y <=DMAX; y++)
{

Yecl = exp(—psi * sprob(x) x sprob(y));
Ydel = pow(Ycl, (NX — x 4+ 1) = (NY —y + 1));
Ydram *= Ydecl;

}

}
printf ("%1.10f.%1.10f\n" , psi, Ydram});
}

return 0;

}
D.4.2 Row and Column Redundancy

/* Program to calculate graphs for DRAM yield with row and column
* redundancy wusing the negative binomial yield model.

* Craig Joly, December 13, 2002

*/

#include <stdio.h>

#include <stdlib .h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl_sf_gamma.h>

#ifdef _16MDRAM
#define BITS ((unsigned int)(16+1024x1024))
#define RED_COLS 2
#define REDROWS 24
#define NBOOKS 64
#define NSECS 4
#define BITS_P.ROW 1024
#define BITS_.P.COL 2048
#define SECHEIGHT 4096
#define PAGESIZE 128
#endif

#ifdef _1GDRAM
#define BITS ((unsigned int)(1024+1024x1024))
#define RED.COLS 16
#define REDROWS 64
#define NBOOKS 32
#define NSECS 8
#define BITS.P.ROW 16384
#define BITS.P_.COL 4096
#define SEC.HEIGHT 8192
#define PAGESIZE 8192
#endif

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D./ Cluster Fault Model

#define Q
#define P
#define DNOT
#define DMAX 4.0
#define FPPARAM 0.68085

[0 S S
(=N =)

double sprob (int delta)

// return (delte < DNOT) ? (FPPARAM x pow(delta , Q) / pow(DNOT, Q+1)) :
// (FPPARAM * pow(DNOT, P—1) / pow(delta, P));
return (delta < DNOT) ? (FPPARAM x delta / 4.0) :
(FPPARAM * 2.0 / (deltaxdelta));

int main (int argc, char **argv)

double Ycl, Ycol, Yschook, Yrow, Ydram;
double Ycolcl, Ybook, Ysec;

double ycpl, ycp2, ycp3;

double partl, part2, part3;

double psi;

double pstep, ptop;

int x, y;

int i, c;

opterr = 0;
while ((¢ = getopt (argec, argv, "l:s:h”)) I= —1)
switch (c)

case 'l :
ptop = atof(optarg);
break;
s’ o
pstep = atof(optarg);
break;
case ’'h’:
fprintf (stderr , "Usage:%s.—1_end_psi-—s_psi_step\n", argv[0]);
return 1;
default:
abort ();

case

}
for (psi = 0 + pstep; psi < ptop; psi += pstep)

Ycol = 1.0;
for (x = 1; x <=DMAX; x++)

for (y = 1; y <=DMAX; y++)
{

Ycl = exp(—psi * sprob(x) * sprob(y));
Ycolcl = pow(Ycl, BITS_P_.COL+RED_ROWS-y +1);
yepl = pow(Ycolcl, x+«(PAGESIZE + RED.COLS — 2xx + 2));
yep2 = 1;
for (i = 1; i < x; i++)
yep2 *= pow{Ycolcl, 2x1i);
Yecol x= exp(log(ycplxycp2)/(PAGESIZE4RED.COLS));
}

}
/7 printf("%f\n”, Ycol);
Ybook = 0;

B

for (i = 0; i <= RED_.COLS; i++4)
{

partl = gsl_sf.lnchoose (PAGESIZE + RED.COLS, 1i);
part2 = (PAGESIZE + RED.COLS-i) x log(Y¥Ycol);
part3 = i x log(l — Yecol);

/7 printf(*%1.10f %1.10f %1.10f\n”, partl, part2, parts);
Ybook += exp(partl + part2 4+ part3);

Yscbook = exp(log(Ybook) / (PAGESIZE x BITS_.P.COL));

Yrow = pow(Yscbook, BITS_P.ROW);

// printf("%1.10f %1.10f %1.10f\n”, Ybook, Yscbook, Yrow);
// printf(”here8”);
Ysec = 0;
for (i = 0; i <= REDROWS; i+4)
partl = gsl.sf_.lnchoose (SEC.HEIGHT + RED_ROWS, i };
part2 = (SEC.HEIGHT + RED.ROWS-i)} % log(Yrow};
part3 = i x log(l — Yrow);
Ysec += exp(partl + part2 + part3);

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.4 Cluster Fault Model

// printf("%1.10f”, Ysec);
Ydram = pow(Ysec, NSECS);

printf(”%1.10f.%1.10f\n” , psi, Ydram);

return 0;

D.4.3 ECC Redundancy

/* Program to calculate graphs for DRAM yield with row and column
* redundancy wusing the negative binomial yield model.
* Creig Joly, December 13, 2002

*/
#include <stdio.h>
#include <stdlib .h>
#include <getopt.h>
#include <gsl/gsl-math.h>
#include <gsl/gsl.sf_log.h>
#include <gsl/gsl_sf.exp.h>
#include < gsl/gsl.sf_gamma .h>
#include <gsl/gsl_.sf_pow.int.h>

#ifdef _16MDRAM
#define BITS ((unsigned int)(16%1024%x1024))
#define RED_COLS 2
#define REDROWS 24
#define NBOOKS 64
#define NSECS 4
#define BITS_.P.COL 2048
#define CODEWORD 137
#define PAGESIZE 137
#define NCW 2048

#endif

#ifdef _IGDRAM
#define BITS ({(unsigned int)(1024%x1024x1024))
#define RED.COLS 16
#define RED.ROWS 64
#decfine NBOOKS 32
#define NSECS 8
#define BITS_P_.COL 4096
#define OODEWORD 523
#define PAGESIZE 8192
#define NCW 65536
#endif

#define Q
#define P
#define DNOT
#define DMAX 4.0
#define FPPARAM 0.68085

DN =
Qoo

double sprob (int delta)

{
// return (delta < DNOT) ? (FPPARAM * pow(delta , Q) / pow(DNOT, Q+1)) :
/7 (FPPARAM * pow(DNOT, P—1) / pow(delta, P));
return (delta < DNOT) ? (FPPARAM x delta / 4.0) :
(FPPARAM * 2.0 / (deltasxdelta));
}
int main (int argc, char xxargv)
{
double Ycl, Ycw, Yrow, Ydram;
double Yrowcl, Yly, Ybook;
double yrpl, yrp2;
double partl, part2, part3;
double psi;
double pstep, ptop;
int x, y;
int i, c¢;
opterr = O0;
while ((c = getopt (argc, argv, "l:s:h”)) != —~1)
switch (¢)
case 'l’
ptop = atof(optarg);
break;
case ’'s'
pstep = atof(optarg);
break;
case ’'h’:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.4 Cluster Fault Model

fprintf(stderr, ”"Usage:%s.—l_end.psi——s_psi-step\n”, argv[0]);
return 1;

default:
abort ();
}
}
for (psi = 0; psi < ptop; psi += pstep)
Yrow = 1.0;
for (x = 1; x <=DMAX; x++)
for (y = 1; y <=DMAX; y++)
{
Ycl = gsl_sf_exp(—psi x sprob(x) * sprob(y));
Yrowcl = gsl_pow_int (Yecl, PAGESIZE-x+1);
yrpl = gsl.pow.int(Yrowecl, y*(BITS.P.COL — 2xy + 2));
yrp2 = 1;
for (i = 1; i <y; i++4)
yrp2 = gsl_pow_int (Yrowecl, 2x1i);
Yrow *»= gsl.sf_.exp(gsl-sf_log (yrplxyrp2)/BITS_.P.COL);
}
}
// printf("%f\n”, Ycol);
Yiy = 1.0;
for (y = 1; y <=DMAX; y++)
{
Ycl = gsl_osf_exp(—psi * sprob(1l) % sprob(y));
yrpl = gsl.pow.int(Yel, y*(BITS.P.COL —2xy + 2));
yrp2 = 1;
for (i = 1; i < y; i++)
yrp2 *= gsl_pow_int(Ycl, 2%i);
Yly = gslosf_exp(gsl-sf_log(yrpl » yrp2)/BITS_.P.COL);
}
partl = gsl_sf.exp (gsl-sf_log (Yrow)+«CODEWORD/PAGESIZE);
part2 = CODEWORD * gsl_sf_exp (gsl_sf_log (Yrow) ((OCODEWORD-1)/PAGESIZE));
part3 = 1 — Yly;
Yew = partl + part2 x part3;
Ybook = gsl_sf_pow_int (Ycw, NCW);
/7 printf("hered”);
/7 printf("hered”);
Ydram = gsl_pow.int {Ybook, NBOOKS);
printf(”"%1.13f.%1.10f\n” , psi, Ydram);
}

return O;

D.4.4 Row and Column Redundancy with ECC

/* Program to calculate graphs for DRAM yield with row and column
* redundancy wusing the mnegative binomial yield model.

* Craig Joly, December 18, 2002

*/

#include <stdio.h>

#include <stdlib.h>

#include <getopt .h>

#include <math.h>

#include <gsl/gsl_sf_gamma.h>

#ifdef _16MDRAM
#define BITS ((unsigned int)(16x1024%x1024))
#define RED_COLS 2
#define REDROWS 24
#define NBOOKS 64
#define NSECS 4
#define BITS_.P_LROW 1096
#define BITS_P_.COL 2048
#define SEC_HEIGHT 4096
#define PAGESIZE 137
#define CODEWORD 137
#endif

#ifdef _IGDRAM
#define BITS ((unsigned int)(1024%x1024%1024))
#define RED.COLS 16
#define REDROWS 64
#define NBOOKS 32
#decfine NSECS 8
#define BITS.P.ROW 16736

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.4 Cluster Fault Model

#define BITS_P_.COL 4096

#define SEC_HEIGHT 8192

#define PAGESIZE 8368

#define CODEWORD 523
#endif

#define Q 1
#define P 2
#define DNOT 2
#define DMAX 64.0

#define FPPARAM 0.68085

(=N i)

double sprob (int delta)

// return (delta < DNOT) ¢ (FPPARAM * pow(delta , Q) / pow(DNOT, Q+1)}) :
// (FPPARAM x pow(DNOT, P—1) / pow(delta , P));
return (delta < DNOT) ? (FPPARAM x delta / 4.0)
(FPPARAM x 2.0 / (deltaxdelta));

int main (int argc, char xxargv)

double Ycl, Ycol, Yscbook, Yrow, Ydram;
double Ycolcl, Ybook, Ysec;

double Y1y, yrpl, yrp2, Ycw;

double ycpl, ycp2, ycp3;

double partl, part2, part3;

double psi;

double pstep, ptop;

int x, y;

int i, c¢;

opterr = 0;
while ((c¢ = getopt (argc, argv, ”l:s:h”)) !I= —1)
{

switch (c)

case 'l1’ :

ptop = atof(optarg);

break;

s’

pstep = atof(optarg);

break;

case ’'h’:
fprintf(stderr , "Usage:%s.~l_end_psi.—s_psi-step\n”, argv[0]};
return 1;

default:
abort ();

case

}

for (psi = 0 4+ pstep; psi < ptop; psi += pstep)
{
Ycol = 1.0;
for (x = 1; x <=DMAX; x++)
for (y = 1; y <=DMAX; y++)
{

Yecl = exp(—psi * sprob{(x) * sprob(y));
Ycolcl = pow(Ycl, BITS.P.COL+REDROWS-y+1);
yepl = pow(Ycolcl, x*»(PAGESIZE + REDCOLS ~ 2xx + 2));
yep2 = 1
for (i = 1; i < x; i++)
yep2 #= pow(Ycolcl, 2xi);
Ycol x= exp(log(ycplxycp2)/(PAGESIZE4+RED.COLS) );
}

}
7/ printf("%f\n", Ycol);
Ybook = 0O;
for (i = 0; i <= RED_COLS; i++)

partl = gsl_sf_lnchoose (PAGESIZE + RED.COLS, 1i);
// printf(”diel”);

part2 = (PAGESIZE + RED_.COLS-i) * log(Ycol);
// printf(”die2”);

part3 = i * log(l — Ycol);
// printf(”died8”);

Ybook += exp{partl + part2 + part3);
7/ printf(?died *);

}

// printf(”here2”);

Yy = 1;
for (y = 1; y <=DMAX; y++)
{

Ycl = exp(—psi * sprob (1) x sprob(y));
yrpl = pow{(Ycl, y*(BITS_.P.COL — 2xy + 2));

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.J Cluster Fault Model

yrp2 = 1;

for (i = 1; i < y; i++)
yrp2 *= pow(Ycl, 2x1i);

Y1y *= exp(log(yrpl = yrp2) / BITS_P.COL);

}

partl = exp(log(Ybook)+CODEWORD/(PAGESIZE+BITS_P_.COL));

part2 = CODEWORD =* exp (log (Ybook) *( (CODEWORD~-1)/({PAGESIZE+BITS.P.COL}));
part3 =1 — Yly;

Yecw = partl + part2 % part3;

Yrow = pow(Ycw, BITS_P_.ROW /CODEWORD) ;

// printf(”hered3”);

Yscec = 0;
for (i =

{

0; i <= REDROWS; i++4)

partl = gsl_sf_lnchoose (SEC.HEIGHT + RED_ROWS,
part2 = (SEC.HEIGHT + RED.ROWS-i) x log(Yrow);
part3 = i x log(l — Yrow);

Ysec += exp(partl + part2 + part3d);

i)

¥

/7 printf(”here4 ”);

Ydram = pow({ Ysec,

NSECS);

printf (" %1.10f_.%1.10f\n” , psi, Ydram);

}

return 0;

}
D.4.5 Associative Direct Redundancy

/* Program to calculate graphs for DRAM yield with
* redundancy using the binomial yield model.

* Craig Joly, December 18, 2002

*/

associative direct

#include <stdio.h>

#include
#include
#include
#include

<stdlib.h>

< getopt .h>

<math.h>

< gsl/gsl.sf_.gamma . h>

#define L.RATIO 0.2

#ifdef _16MDRAM

#define BITS 16%1024%1024
#define WORDBITS 1
#define NWORDS 4%4%x1024%1024
#define ADDRBITS 22
#define SEC_BITS 2
#define MAX.CAME 128%1024
#define CAMSTEP 1024

#endif

#ifdef _1GDRAM
#define BITS
#define WORDBITS
#define NWORDS
#define ADDRBITS

#define

#define

#define
#endif

SEC_BITS
MAX_CAM-E
CAM.STEP

#define DNOT 2.0

#define DMAX
double sprob (int delta)

return (delta < DNOT) ? (0.68085 =x

64.0

1024%1024%1024
16
2x32+1024%1024
25

1

128x1024

1024

delta / 4.0):

(0.68085 = 2.0 / (delta = delta));

}
int main (int argc, char xxargv)
{

FILE xfc, xfw;

float cams([64][64], words[64][64];

double Ycl, Ydcl, Ydram;

double Ycam.cl, Ymask.cl;

double psi, psi-h, psi_l, psi.cam, psi_.mask;

double partl, part2, part3;

int x, y;

int cam_-e, n.cam-c, cxy, nr;

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.4 Cluster Fault Model

int ¢, i, j, reduce;
opterr = 0;

#ifdef _16MDRAM

fc = fopen(”16M._ad.lut” , ”r”);
fw = fopen (”16M._word.lut” , ”r”);
#endif
#ifdef .cont
fc = fopen(”1G_.ad_cont.lut”, "r”);
fw = fopen(”1G.word_cont.lut”, ”r”);
#endif
#ifdef _int
fc = fopen(”1G_ad.int.lut”, "r”);
fw = fopen (”1G._word.int.lut”, "r”);
#endif

for (j = 0; j < 64; j++)
for (i = 0; i < 64; i++)

fscanf (fc, "%f", &(cams[i][]j]));
fscanf (fw, "%f”, &(words[i]{j]));
}
while ((c¢ = getopt (argc, argv, "h”)) != —1)
switch (¢)
case 'h’:
fprintf(stderr, " Usage:%s\n”, argv[0});
return 1;
default:
abort ();

}
for (n_cam.e = 0; n_cam.e <= MAX.CAME; n_cam.e += CAMSTEP)
{

psi = psi-h = 1;

psi-l = 0y
reduce = 1;
Ydram = 1.0;
while (1)

{

Ydram = 1.0;
for (x = 1; x <= DMAX; x++)

for (y = 1; y <=DMAX; y++)
{
Ycl = exp(—psi * sprob{x) x sprob(y));

psi_cam = psi / L.RATIO;
psi-mask = psi_cam / 2;

Ycam-cl = exp(—psi-cam);
Ymask.cl = exp(—psi-mask);

cam.e = floor (pow(Ycam.cl, ADDRBITS) =«
pow(Ymask_cl, ADDRBITS + SEC.BITS) =«
pow(Yecl, 4 * WORDBITS) *x n_cam_e);
cxy = floor ({double)cam.e % sprob(x) x sprob(y) / cams|[x—1}[y—1]);

nr = ceil (BITS / (x * y));

// printf("%d %f %d\n”, NWORDS, words[z—1]{fy—1], nr);
Ydcl = 0;
for (i = 0; i <= exy; i+4++)
partl = gsl_sf_lnchoose(nr, i);
part2 = (nr — i) * log(Yecl);

part3 = i * log(l — Ycl);
// printf("%f %f %f\n”, partl!, part2, part3);
Ydecl += exp(partl 4+ part2 + part3);

}
Ydram x= Ydcl;

}
}
if (Ydram > 0.51)
{
reduce = 0;
psi-1 = psi;

psi = (psi + psi-h) / 2;
}
else if (Ydram < 0.49)
{

if (reduce)
psi /= 10;

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.4 Cluster Fault Model

else
psi = (psi + psi-l) / 2;

else

break ;

}
printf("%1.10f-%d_-%1.5f\n” , psi, n.cam_c, Ydram);

}

return O;

}
D.4.6 Associative Indirect Redundancy

/* Program to calculate graphs for DRAM yield with associetive direct
* redundancy using the binomial yield model.

* Craig Joly, December 13, 2002

*/

#include <stdio.h>

#include <stdlib.h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl-sf_gamma . h>

#define L.RATIO 0.2

#ifdef _16MDRAM

#define BITS 16%1024%1024
#define WORDBITS 1
#define NWORDS 4%4%x1024%1024

#define ADDR.BITS 22
#define SEC_BITS 2
#define MAX.CAME 128x1024

#define CAMSTEP 1024
#endif
#ifdef _1GDRAM
#define BITS 1024%1024%1024
#define WORDBITS 16
#define NWORDS 2%32%1024x1024

#define ADDRBITS 25
#define SEC_BITS 1
#define MAX_CAME 128%1024

#define CAMSTEP 1024
#endif
#define DNOT 2.0

#define DMAX 64.0
double sprob (int delta)

return (delta < DNOT) 7 (0.68085 % delta / 4.0):
(0.68085 % 2.0 / (delta x delta));
}

int main (int argc, char xxargv)

FILE xfc, »fw;

float cams{64][64], words[64][64];

double Ycl, Ydel, Ydram;

double Ycam-_cl, Yflash_cl;

double psi, psi_h, psi-l, psi_cam, psi_flash;
double partl, part2, part3;

int x, y;
int cam_e, n_cam.e, cxy, nr, dword, red_-bits;
int ¢, i, j, reduce;
opterr = 0;
#ifdef _16MDRAM
fc = fopen(”16M_ai_cam.lut” , "r”};
fw = fopen(”16M_word.lut” , "r");
#endif
#ifdef _cont
fe = fopen(”1G.ai_cam.cont.lut” , "r");
fw = fopen(”1G._word_cont.lut” , "r”};
#endif
#ifdef _int
fc¢ = fopen{(”1G._.ai_cam.int.lut”, "r”);
fw = fopen (”1G_word_int.lut” , 7r”});
#endif

for (j = 0; j < 64; j++)
for (i = 0; i < 64; i++)

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.4 Cluster Fault Model

{
fscanf(fc, "%f”, &(cams[i][j]));
fscanf (fw, "%t”, &(words[i][j]));
}
while ({(c¢ = getopt (argc, argv, "h”)) != -1)

switch (¢)

case 'h’':
fprintf(stderr, "Usage:%s\n”, argv[0]);
return 1;

default:
abort ();
}
}
for (n.cam.e = 0; n_cam.e <= MAX.CAME; n_cam.e += CAMSTEP)
{
psi = psi-h = 1;
psi-l = 0;
reduce = 1;
Ydram = 1.0;
while (1)
Ydram = 1.0;
dword = 0;
for (x = 1; x <=DMAX; x++4)
{
for (y = 1; y <=DMAX; y++)
{
Yecl = exp(—psi * sprob(x) % sprob{(y));
psi.cam = psi / L_RATIO;
psi-flash = psi.cam / 2;
Ycam-cl = exp(—psi_cam);
Yflash.cl = exp(—psi-flash});
cam.e = floor (pow(Ycam.cl, ADDR.BITS) =*
pow(Yflash_cl , ADDRBITS + SEC_BITS) =x
n_came-_e);
cxy = floor ((double)cam_e * sprob(x) * sprob(y) / cams{x—1][y—1]);
nr = ceil (BITS / (x * y));
// printf(*%d %f %d\n”, NWORDS, words[z—1]{y—1], nr);
Ydcl = 0;
for (i = 0; i <= cxy; i++)
{
partl = gsl_sf.lnchoose(nr, i);
part2 = (nr — i) * log(Yel);
part3 = i * log(l — Yecl);

/7 printf("%f %f %f\n", pertl, part2, part3);
Ydcl 4= exp(partl + part2Z + part3);

}
Ydram x= Ydcl;
dword += cecil ((double)cxy * words[x—1][y—1]);

}

}

if (Ydram > 0.51)
reduce = 0;
psi.l = psi;

psi = (psi + psi-h) / 25
else if (Ydram < 0.49)
if (reduce)
psi /= 10;
else
psi = (psi + psi.l) / 2;
else
break;
}
red-bits = cecil (log({(float)dword) / log (2.0));
printf("%1.10f.%d_%1.5f.%d\n” , psi, n_cam.e, Ydram, red_bits);
}

return 0;

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

}

D.5 Combined Fault Model

D.5.1 No Redundancy

/* Program to calculate graphs for DRAM yield without redundancy using
* a cluster fault model and a binomial (poisson) yiled model

*x Craig Joly, December 12, 2002

*/

#include <stdio.h>
#include <stdlib .h>
#include <getopt.h>
#include <math.h>

#ifdef .16MDRAM
#define BITS 16%1024%1024
#define NROWS 16%1024
#define NCOLS 8768

#define NX 2192
#define N.Y 8192
#endif

#ifdef 1GDRAM
#define BITS 1024%1024%1024
#define NROWS 65536
#define NCOLS 262144
#define NX 32x1024
#define N.Y 32x1024
#endif

#define Q 1
#define P 2
#define DNOT 2
#define DMAX 64.0

#define FPPARAM 0.68085

.0
.0
.0

double sprob (int delta)

return (delta < DNOT) ? (0.68085 x delta / 4.0):
(0.68085 = 2.0 / (delta x delta));

}

int main (int argc, char xxargv)

double Ysc, Yrow, Ycol, Ycla;
double Ycl, Ydel, Ydram;
double lambda;

double lstep , ltop;

int b,c, x, y;

opterr = 0;
while ((c¢ = getopt (argc, argv, "l:s:h”)) I= —1)
switch (c¢)
case '}’ :
ltop = atof(optarg);
break;
case 's' :
Istep = atof(optarg);
break;
case 'h’:
fprintf(stderr, ”"Usage:%s.—l_end.lambda_~s.lambda_step\n” , argv[0]);
return 1;
default:
abort ()

for (lambda = 0; lambda < ltop; lambda 4= Istep)

Ysc = exp(—lambda « BITS / 3);
Ycol = exp(—lambda / 6 x NCOLS);
Yrow = exp{—lambda / 6 x NROWS);
Yela = 1;

for (x = 1; x <=DMAX; x++)

for (y = 1; y <=DMAX; y++)
Ycl = exp(~lambda /3 * sprob(x) * sprob(y));

Ydecl = pow(Yel, (NX — x + 1) » (NY — y + 1));
Ycla *x= Ydcl;

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

Ydram = Ysc * Ycol x Yrow * Ycla;
printf ("%1.10f_%1.10f\n”, lambda, Ydram);

return 0;

D.5.2 Row and Column Redundancy

/* Program to calculate graphs for DRAM yield with row and column
x redundancy using the negative binomial yield model.

* Craig Joly, December 13, 2002

*/

#include <stdio.h>

#include <stdlib . h>

#include <gectopt.h>

#inciude <gsl/gsl_sf_gamma .h>
#include <gsl/gsl_pow_int.h>
#include < gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_log.h>

#ifdef _16MDRAM
#define BITS ((unsigned int)(16+x1024%x1024}))
#define RED.COLS 2
#define REDROWS 24
#define NBOOKS 64
#define NSECS 4
#define BITS.P.ROW 1024
#define BITS.P_.COL 2048
#define SEC_HEIGHT 4096
#define PAGESIZE 128
#endif

#ifdef _1GDRAM
#define BITS ((unsigned int)(1024x1024%1024))
#define RED.COLS 16
#define RED.ROWS 64
#define NBOOKS 32
#define NSECS 8
#define BITS_PLROW 16384
#define BITS_P_.COL 8192
#define SEC_HEIGHT 8192
#define PAGESIZE 8192
#endif

#define DMAX 64.0
#define DNOT 2.0
#define FPPARAM 0.68085

double sprob (int delta)

return (delta < DNOT) ? (FPPARAM x delta / 4.0) :
(FPPARAM + 2.0 / (decltaxdelta));
}

int main (int argc, char xxargv)

double Ysc, Ycol, Yscbook, Yrow, Ydram;
double Ye¢l, Ycoleq, Ycolcl, Ycolcluster;
double ycpl, ycp2, Yel, Yc2, Yril;

double Yroweq, Ybook, Ysec;

double partl, part2, part3;

double lambda;

double lstep , ltop;

int x, y, i, ¢;

opterr = 0y
while ((c¢ = getopt (argc, argv, "l:s:h”)) I= —1)
{
switeh (c¢)
{
case 'l :
ltop = atof(optarg);
break

case ’s’
Istep = atof{optarg);
break ;

case ’h’:
fprintf(stderr, " Usage:%s.—l_end_-lambda_.—s_lambda_step\n” , argv[0]);
return 1;

default:

abort ();

}

for (lambda = 0 + lstep; lambda < ltop; lambda += lstep)

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

{
Ysc = exp{(—lambda /3);
Ycol = exp(—lambda /6);
Yrow = exp{(—lambda /6);
Ycl = gsl_pow.int(Ysc, BITS_P.COL);
Ye2 = 1.0;
for (x = 1; x <=DMAX; x++)
for (y = 1; y <=DMAX; y++)
{
Ycl = exp(~lambda / 3 * sprob(x) * sprob(y));
Ycolecl = gsl_pow_int (Ycl, BITS.P.COL+REDROWS-y+1);
yecpl = gsl_pow_int(Ycolcl, x+(PAGESIZE + RED.COLS — 2xx + 2));
yep2 = 15
for (i = 1; i < x; i++)
ycp2 *= gsl_pow.int (Ycolel, 2x1i});
Yc2 = gsl_sf.exp(gsl-sf_log (ycpl*ycp2)/(PAGESIZEH+RED.COLS) );
}
}
Ycoleq = Ycl * Ycol * Yec2;
/7 printf (" Yecol=%f\n", Ycol);
Ybook = 0;
for (i = 0; i <= RED.COLS; i++)
{
partl = gsl_sf_lnchoose (PAGESIZE 4+ RED.COLS, i);
part2 = (PAGESIZE + RED.COLS — i) * log(Ycoleq);
part3 = i * log(1.0 — Ycoleq);
Ybook += exp{partl + part2 + part3);
}
Yscbook = exp(log(Ybook) / (BITS.P.COL x PAGESIZE));
Yrl = gsl_pow_int (Yscbook, BITS.P.LROW);
Yroweq = Yrl * Yrow;
Ysec = 0;
for (i = 0; i <= REDROWS; i++)
partl = gsl_sf_lnchoose (SEC_HEIGHT + RED.ROWS, i};
part2 = (SEC_HEIGHT + REDROWS — i) * log(Yroweq});
part3 = i * log(l — Yroweq);
Ysec += exp(partl + part2 + part3);
!
Ydram = gsl-pow.int(Ysec, NSECS);
printf(”%1.10f.%1.10f\n” , lambda, Ydram});
}

return 0;

D.5.3 ECC Redundancy

/% Program to calculate graphs for DRAM yield with row and column
* redundancy using the negative bimomial yield model.

* Craig Joly, Jan 18, 2008

*/

#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <math.h>

#ifdef _16MDRAM
#define NCOLS 8768
#define NBOOKS 64
#define NROWS 16%x1024
#define NSECS 4
#define OODEWORD 137
#define PAGESIZE 137
#define BITS_.P.COL 2048
#define SEC._HEIGHT 4096
#define NCWP 1

#endif

#ifdef _1GDRAM
#define NCOLS 267776
#define NBOOKS 32
#define NROWS 65536
#define NSECS 8
#define CODEWORD 523
#define PAGESIZE 8368
#define BITS_P.COL 4096
#define SEC_HEIGHT 8192
#define NCWP 16

#endif

#define DMAX 64.0
#define DNOT 2.0

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

#dcfine FPPARAM (0.68085
double sprob (int delta)

return (delta < DNOT) ? (FPPARAM x* delta / 4.0) :
(FPPARAM * 2.0 / ( deltaxdelta));
}

int main (int argc, char xxargv)

double Ysc, Ycwl, Ycw2, Yew, Ycl;

double yrpl, yrp2, partl, part2, part3, Yly, Ycolcwl, Ycolew2;
double Yrowcl, Ycolcw;

double Yrow, Ydrow, Ycol, Ybook, Ysec, Ydram;

double lambda;

double lstep , ltop;

int x, y;

int i,b,c;
opterr = 0;
while ((c = getopt (argc, argv, "l:s:h”)) I= —1)
switch (c¢)
case '1’ :
ltop = atof(optarg);
break;
case 's’
lstep = atof(optarg);
break ;

case ’'h':
fprintf(stderr, "Usage:%s——l_end_lambda_—s._lambda_step\n" , argv[0]);
return 1;

default:
abort ();

}
for (lambda = 0; lambda < ltop; lambda += Istep) {

Ysc = exp(—lambda /3);
Ycol = exp(—lambda /6);
Ydrow = exp(—lambda /6 x NCOLS);

Yewl = pow(Ysc, CODEWORD) + CODEWORD * pow(Ysc, CODEWORD-1) % (1 — Ysc);

i x <= DMAX; x++)
for (y = 1; y <=DMAX; y++)
{

Yel = exp(—lambda /3 * sprob(x) * sprob(y));
Yrowcl = pow(Ycl, PAGESIZE—x+1);
yrpl = pow(Yrowcl, y*(BITS.P.COL — 2xy + 2));
yrp2 = 1;
for (i = 1; i < y; i++)

yrp2 == pow(Yrowecl, 2xi);
Yrow x= exp(log(yrpl * yrp2) / BITS.P.COL);

}
}
Yiy = 1.0;
for (y = 1; y <=DMAX; y++)
{
Ycl = exp(—lambda /6 x sprob (1) x sprob(y)});
yrpl = pow(Ycl, y*(BITS_.P.COL — 2xy + 2));
yrp2 = 1;
for (i = 1; i < y; i++4)
yrp2 = pow(Ycl, 2x%i);
Y1y *= exp(log{(yrpl = yrp2)/BITS_P.COL);
}
partl exp (log (Yrow) * CODEWORD / PAGESIZE);

part2 = OODEWORD * exp(log(Yrow) * ((CODEWORD — 1) / PAGESIZE));
part3 = 1 — Yly;
Ycw2 = partl + part2 » part3;
Ycw = Yewl = Ycew2;
Ycolewl = pow(Yew, BITS_P_.COL);
Ycolew2 = (pow(Ycol, BITS_P.COL) + BITS_P.COL =
pow (Ycol, BITS.P.COL — 1) % (1 — Ycol));
Ycolcw = Ycolcwl » Ycolew2;
Ybook = pow(Ycolcw, NCWP);
Ydram = pow(Ybook, NSECS) » Ydrow;
printf(”%1.10f_.%1.10f\n” , lambda, Ydram);

}

return O;

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

}
D.5.4 Row and Column Redundancy with ECC

/* Program to calculate graphs for DRAM yield with row and column
* redundancy using the negative binomial yield model.

* Craig Joly, Jan 18, 20038

*/

#include <stdio.h>

#include <stdlib.h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl.sf.gamma . h>
#include <gsl/gsl_-pow.int . h>

#ifdef _16MDRAM
#define RED_COLS 2
#define REDROWS 24
#define NCOLS 8768
#define NBOOKS 64
#define NROWS 16%x1024
#define NSECS 4
#define CODEWORD 137
#dcfine PAGESIZE 137
#define BITS_P.COL 2048
#define BITS_P.ROW 1096
#dcfine SEC_HEIGHT 4096
#define NCWP 1

#endif

#ifdef _1GDRAM
#define RED_COLS 16
#define REDROWS 64
#define NCOLS 267776
#define NBOOKS 32
#define NROWS 65536
#define NSECS 8
#define CODEWORD 523
#define PAGESIZE 8368
#define BITS_P.COL 4096
#define BITS.P.ROW 16736
#define SEC_HEIGHT 8192
#define NCWP 16

#endif

#define DMAX 64.0
#define DNOT 2.0
#define FPPARAM 0.68085

double sprob (int delta)

return (delta < DNOT) ? (FPPARAM * delta / 4.0) :
(FPPARAM * 2.0 / ( deltaxdelta});
}

int main (int argc, char xxargv)

double Ysc, Ycwl, Yew2, Yew, Yecl;

double yrpl, yrp2, Yrl, partl, part2, part3, Yly, Ycolewl, Ycolew2;
double Yrowcl, Ycolcw;

double Ycoleq, Yroweq, Yschook;

double Yrow, Ydrow, Ycol, Ybook, Ysec, Ydram;

double lambda;

double lstep , ltop;

int x, y;
int i,b,c;
opterr = 0;
while ((c = getopt (argc, argv, "l:s:h”)) != —1)
switch (c¢)
{
case ‘1’ :
ltop = atof(optarg});
break;
case ‘s’
Istep = atof(optarg);
break;
case 'h’:

fprintf(stderr , ”Usage:%s.—!.end.lambda.—s_.lambda.step\n” , argv [0]);
return 1;
default:
abort ();
}

for (lambda = 0 + lstep; lambda < ltop; lambda += lstep) {

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

Ysc = exp(—lambda/3);
Ycol = exp(—lambda/6);
Yrow = exp(—lambda /6);

Yewl = pow(Ysc, CODEWORD) + OODEWORD * pow(Ysc, CODEWORD-1) * (1 -~ Ysc);

’; x <= DMAX; x++)
for (y = 1; y <=DMAX; y++)
{

Ycl = exp(~lambda/3 * sprob(x) * sprob(y));
Yrowcl = pow(Ycl, PAGESIZE—x+1);
yrpl = pow({Yrowcl, y*(BITS.P.COL — 2*xy + 2));
yrp2 = 1;
for (i = 1; i <y; i++4+)

yrp2 #= pow(Yrowcl, 2x%1i);
Yrow *x= exp(log(yrpl * yrp2) / BITS_P.COL);

}
}
Yy = 1.0;
for (y = 1; y <=DMAX; y++)
{
Ycl = exp(—lambda /6 * sprob(1l) * sprob(y));
yrpl = pow{(Ycl, y*x(BITS.P.COL — 2xy 4 2));
yrp2 = 1;
for (i = 1; i <y; i++)
yrp2 *= pow(Yecl, 2xi);
Y1iy *= exp(log(yrpl = yrp2)/BITS_.P_.COL);
}
partl exp{log(Yrow) *» OODEWORD / PAGESIZE);

part2 ;(DDEWORD * exp(log(Yrow) x ((CODEWORD — 1) / PAGESIZE));
part3 =1 — Yly;
Yew2 = partl + part2 *x part3;

Yew = Yewl x Yew2;
Ycolewl = pow(Yecw, BITS_P.COL);
Ycolew2 = (pow(Ycol, BITS.P.COL) + BITS.P.COL *
pow (Ycol, BITS.P.COL — 1) % (1 — Ycol)};
Ycolecw = Ycolcwl % Ycolcw?2;

Ycoleq = exp(log{Ycolew) / CODEWORD);

Ybook = 0;
for (i = 0; i <= RED.COLS; i++4)
{
partl gsl_sf_lnchoose (PAGESIZE + RED.COLS, i);

part2 = (PAGESIZE + RED.COLS — i) * log(Ycoleq);
part3 = i = log(1.0 — Ycoleq);
Ybook += exp(partl + part2 + partd);

}

Yscbook = exp(log(Ybook) / (BITS_P.COL x PAGESIZE));

Yrl = gsl_-pow.int {Yscbook, BITS.P_ROW);

Yroweq = Yrl * Yrow;

Ysec = 0;

for (i = 0; i <= REDROWS; i++)
partl = gsl_sf_.lnchoose (SEC_HEIGHT + RED_ROWS, i);
part2 = (SEC.HEIGHT + RED.ROWS — i) * log(Yroweq);
part3 = i % log(l — Yroweq);
Ysec += exp(partl + part2 + part3);

}

Ydram = gsl_pow.int{Ysec, NSECS);

printf(”%1.10f_.%1.10f\n” , lambda, Ydram);

return O;

D.5.5 Associative Direct Redundancy

#include <stdio.h>

#include <stdlib .h>

#include <getopt.h>

#include <math.h>

#include < gsl/gsl_sf_.gamma .h>
#include <gsl/gsl_pow_int .h>

#define L.RATIO 0.2

#ifdef _16MDRAM

#define BITS 16%x1024%1024
#define WORDBITS 1
#define N.WORDS 16+1024%1024

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5

#dcfine NROWS 16384
#define N_COLS 8192
#define ADDR.BITS 22
#define SEC_BITS 2
#define BITS_.P_.ROW 1024
#define BITS_.P.COL 2048
#define NCAM 2048
#define NSUP 8
#define NCRDN 2

F#endif

#ifdef _IGDRAM
#define BITS 1024%1024%1024
#define WORD.BITS 16
#define N.WORDS 64%1024%1024
#define NROWS 65536
#define N_COLS 262144
#define ADDRBITS 25
#define SEC_BITS 1
#define BITS.P.ROW 16384
#define BITS_P.COL 4096
#define NCAM 74752

#Fendif

#decfine DNOT 2.0

#define DMAX 64.0

#define FPPARAM 0.68085
double sprob (int delta)

return (delta < DNOT) ? (FPPARAM * delta / 4.0) :
(FPPARAM x 2.0 / (delta % delta));

int main (int argc, char xxargv)

Combined Foult Model

argv [0]);

FILE x*fc, *fw;
float cams{64][64], words[64][64];
double Ysc, Yword, Ycol, Ywordcol, Yrow, Ycl, Ydram;
double lambda, l_.cam, l_.mask;
double ltop, Istep;
double Ycam, Ymask, Ycamsrc, Ycamcl;
double Ycamcll, Ycamcl2, Ycamcl3, Ycamsrcl, Ycamsrc2, Ycamsrc3;
double partl, part2, part3;
double Ydl, Yd2, Yd3, Yd4, Ydcl;
int Nesc, Nerow, Necol, Necl, nr, cxy;
int cam_e;
int ¢, i,j,k,I,x,y, xtop;
opterr = 0;
#ifdef _16MDRAM
fc¢ = fopen(”16M._ad.lut” , "r”);
fw = fopen (”16M_word.lut” , ”"r”);
#endif
#ifdef .cont
fc = fopen(”1G_ad_cont.lut” , "r”);
fw = fopen (”"1G_word.cont.lut”>, ”r”);
#endif
#ifdef _int
fc = fopen(”1G_ad.int.lut”, "r”};
fw = fopen(”1G_word.int.lut” , ”"r”);
#endif
for (j = 0; j < 64; j++)
for (i = 0; 1 < 64; i++)
fscanf(fc, "%f", &(cams[i][j]));
fscanf (fw, "%f”, &(words[i][j]));
while ((c¢ = getopt (argc, argv, "l:is:h”)) != ~1)
switch (c)
case 1’ :
ltop = atof{optarg);
break;
case ’'s’' :
lstep = atof(optarg);
break;
case 'h’ :
fprintf(stderr , ”"Usage:.%s.—]_max_lambda_.—s_lambda_step\n” ,
return 1;
default
abort ();
}
}

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

Nesc = —=50;

for (lambda = 0; lambda <ltop; lambda 4= lstep)
l.cam = —lambda / (3 * L.RATIO);
l_mask = l.cam / 2;

Ysc = exp(—lambda / 3);
Ycol = exp(—lambda / 6);
Yrow = exp(—lambda / 6);

Ycam = exp(—l.cam);
Ymask = exp(—Il.mask);

Ycamsrcl = gsl_pow.int(Ycam, ADDR.BITS) =«
gsl-pow.int (Ymask, ADDR.BITS 4+ SEC.BITS) =
gsl_pow.int (Ysc, WORD.BITS);

Ycamsrc2 = Yrow;

Ycamsrc3 = gsl_pow-int(Ycol, 3 ¥+ ADDRBITS + SEC.BITS + 4x WORDBITS);
Ycamsrc = Ycamsrcl *x Ycamsrc2 * Ycamsrc3;

Ycamcll = 1.0;

for (x = 1; x <= 2 x ADDRBITS; x++4)

for (y = 1; y <=DMAX; y++)
Ycamcll x= exp(—lambda / 3 %= (2 %+ ADDRBITS — x + 1) =*
(1024 — y + 1) * sprob(x) » sprob(y));

Ycamcl2 = 1.0;
for (x = 1; x <= ADDRBITS + SEC_BITS; x++)
for (y = 1; y <=DMAX; y++)
Ycamcl2 = exp(—lambda / 3 x (ADDRBITS + SEC.BITS — x + 1) »
(1024 — y + 1) % sprob(x) * sprob(y));

Ycamci3 = 1.0;
xtop = (4 = WORD.BITS > DMAX) 7 4 «+ WORD.BITS : DMAX;
for (x = 1; x <= xtop; x++)
for (y = 1; y <=DMAX; y++)
Ycamcl3 *= exp(—lambda / 3 % (4 * WORDBITS — x + 1) =*
(256 —y + 1) % sprob(x) * sprob(y));

Yecamel = Ycamell * Ycamcl2 ¥ Ycamcl3;
cam_.e = NCAM x Ycamsrc * Ycamcl;

#ifdef 16MDRAM
Nesc = NSUP x ceil ((float)cam_e /
(2.0 + (float)(BITS_.P_.COL + BITS.P.ROW) / 8.0));
Nerow = (Nesc / NSUP — NCRDN) % BITS_P.ROW / (8 x+ WORDBITS);
Necol = (Nesc / NSUP — NCRDN) x BITS_.P.COL / 8;
#endif
#ifdef _1GDRAM
Nesc += 200;
Nerow = 1024;
Necol = 5120;
#endif

Necl = cam.e¢ — Necol — Nerow — Nesc;

Yword = gsl_pow_int{Ysc, WORDBITS);
Ywordcol = gsl_pow.int (Ycol, WORD.BITS);

Ydl = 0;
for (i =

o

; 1 < Nesc; i+4)

partl = gsl.sf_lnchoose (NWORDS, i);
part2 = (NWORDS — i) * log(Yword);
part3 = i * log(l — Yword);

Ydl += exp(partl + part2 + part3);

}
if (Ydl > 1.0) Ydi = 1.0;

Yd2 = 0;
for (j = 0; j < 4 * Nerow * WORDBITS / BITS_.P.ROW; j++4)
{
partl = gsl_sf_.Inchoose (NROWS, j);
part2 = (NROWS — j) x log(Yrow);
part3 = j * log(l — Yrow);
Yd2 += exp(partl + part2 + part3);
}
Yd3 = 0;
for (k = 0; k < 4 * Necol / BITS_.P.COL; k++)
{
partl = gsl_sf_.lnchoose (N.COLS / WORDBITS, k);
part2 = (N.COLS / WORDBITS — k) * log(Ywordcol);
part3 = k x log(l — Ywordcol);
Yd3 4= exp(partl + part2 + part3);
}

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Yd4 = 1.0;
for (x = 1;

x <= DMAX; x++)

for (y = 1; y <=DMAX; y++)

Ycl = exp(—lambda / 3 x sprob(x) % sprob(y))
floor ((double)Necl » sprob(x) * sprob(

ceil ((float)BITS / (float)(x * y));

cxy =
nr =

Ydcl = 03

for (1 = 0; 1 <= cxy; l++4)

partl = gsl_sf.lnchoose(nr, 1);
part2 = (nr — 1) * log(Yecl);

part3 = 1 x log(l — Yecl);

Ydcl += exp(partl + part2 4 part3);

}
Ydd *= Ydcl;

¥
}
Ydram = Ydl = Yd2 * Yd3 x Yd4;
// printf(’%d %d %d %d %d\n”, cam.e, Nesc, Nerow, Necol
printf("%1.10f_%1.10f_%1.10f.%1.10f.%1.10f.%1.10f\n" ,
return 0;
}

D.5.6 Associative Indirect Redundancy

#include <stdio.h>

#include <stdlib.h>

#include <getopt.h>

#include <math.h>

#include <gsl/gsl_sf_.gamma .h>
#include <gsl/gsl_pow.int . h>

#define L.RATIO 0.2

#ifdef _16MDRAM

D.5 Combined Fault Model

y) / cams[x—1}{y —1]);

, Necl);

lambda, Ydl, Yd2, Yd3, Yd4, Ydram);

#define BITS 16+1024%1024
#define WORDBITS 1
#define N.WORDS 16x1024%1024
#define NROWS 16384
#define N.COLS 8192
#define ADDRBITS 22
#define SEC.BITS 2
#define RED_BITS 18
#define BITS.P.ROW 1024
#define BITS_.P.COL 2048
#define NCAM 1126
#define NX 256 // dimensions of redundant mem
#define N.Y 1024
#define MINSC 100
#define MAXC 1
#define MAXR 1

#endif

#ifdef _IGDRAM

#define BITS 1024%1024%1024
#define WORD.BITS 16
#define N.WORDS 64+1024%1024
#define NROWS 65536
#define N.COLS 262144
#define ADDR.BITS 25
#define SEC.BITS 1
#define RED_BITS 20
#define BITS.P.ROW 16384
#define BITS_.P.COL 4096
#define NCAM 32768
#define NX 1024 // dimensions of redundant mem
#define N.Y 512
// #define MIN.SC 1000
#define MAX.C 3
#define MAXR 2
#endif
#define DNOT 2.0
#define DMAX 64.0

#define FPPARAM 0.68085
double sprob (int delta)

return (delta < DNOT) ? (FPPARAM x* delta / 4.0)

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

(FPPARAM x 2.0 / (delta * delta));

int main (int argc, char xxargv)
{
FILE xfc, *xfw;
float cams[64][64], words[64][64];
double Ysc, Yword, Ycol, Ywordcol, Yrow, Ycl, Ydram;
double lambda, l.cam, l_mask;
double ltop, lstep;
double Ycam, Ymask, Ycamsrc, Ycamcl;
double Ycamcll, Ycamcl2, Ycamcl3, Ycamsrcl, Ycamsrc2, Ycamsrc3;
double Ycla, Yclb, Yclc;
double partl, part2, part3;
double Ydi, Yd2, Yd3, Yd4, Ydcl;
float RI1, Rl2, RI3, RIl4;
int Nrw, Nesc, Nerow, Necol, Necl, nr, cxy, N1, N2;
int Wesc, Werow, Wecol, Wecl, dword;
int cam.e, min.sc;
int ¢, i,j,k,l,x,y, xtop;

opterr = 0;
#ifdef _16MDRAM
fc = fopen (”"16M_ai_cam.lut”, "r”);
fw = fopen (”16M_word.lut” , "r”);
#endif
#ifdef _cont
fc = fopen(”1G_ai_cam_cont.lut”, "7 );
fw = fopen ("1G_word_cont.lut” , "r”});
#endif
#ifdef _int
fc = fopen(”1G_ai.cam._int.lut”, "r”);
fw = fopen(”1G_word.int.lut” , 7"r”};
#endif

for (j = 0; j < 64; j++)
for (i = 0; i < 64; i++4)

fscanf (fc, "%f", &(cams{i][j}));
fscanf (fw, "%f”, &(words [i]|[j]));
}

while ((c¢ = getopt (argc, argv, "l:sim:h”)) != —1)

switch (c)

case 1’ :
ltop = atof(optarg});
break
case 's'
Istep = atof(optarg);
break;
case 'm’ :
min_.sc = atof(optarg);
break;
case 'h’
fprintf(stderr , "Usage:.%s.—l_max.lambda_—s.lambda_step\n” , argv [0]);
return 1;
default
abort ();
}
}
for (lambda = 0; lambda <ltop; lambda += lstep)
l.cam = —lambda / (3 % L.RATIO);
l-mask = l_.cam / 2;

Ysc = exp(—lambda / 3);
Ycol = exp(—lambda / 6);
Yrow = exp(—lambda / 6);

Ycam exp(—l_cam);
Ymask = exp(—l_-mask);

Ycamsrcl = gsl.pow-int{Ycam, ADDR.BITS) =

gsl_pow.int (Ymask, ADDRBITS + SEC._BITS + RED.BITS);
Ycamsrc2 = Yrow;
Ycamsrc3 = gsl.pow-int(Ycol, 3 + ADDRBITS + SEC_BITS 4+ RED.BITS);

Ycamsrc = Ycamsrcl * Ycamsrc2 % Ycamsre3;
Ycamcll = 1.0;
for (x = 1; x <= 2 » ADDRBITS; x+4)

for (y = 1; y <=DMAX; y++)

Ycamcll *= exp{(~lambda / 3 x (2 % ADDRBITS — x + 1) *
(1024 — y + 1) % sprob(x) * sprob(y));

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Foult Model

Ycamcl2 = 1.0;
for (x = 1; x <= ADDRBITS + SEC.BITS 4 RED_BITS; x++)
for (y = 1; y <=DMAX; y++)
Ycamcl2 x= exp(—lambda / 3 x (ADDRBITS + SEC_BITS + RED.BITS
—x + 1) * (1024 — y 4+ 1) * sprob(x) * sprob(y));

Ycamel = Ycamcll * Ycamcl2;
cam.e = NCAM » Ycamsrc * Ycamecl;
Ycla = 1;

for (x = 1; x <= DMAX; x++)
for (y = 1; y <=DMAX; y++)
{

Yeclb = exp(—lambda / 3 * sprob(x) * sprob(y));
Ycle = gslopow.int(Yeclb, (NX — x + 1) * (N.Y — y + 1));
Ycla *= Yeclc;
}
RI1 = lambda / 3 * gsl_pow.int (2, RED.BITS) x WORD.BITS;
Rl2 = lambda / 6 * N.Y % gsl_pow._int (2, RED.BITS) /
(NX = N.Y);
RI3 = lambda / 6 * N_X x gsl_pow.int (2, RED.BITS) /
(NX » NY);
Rl4 = lambda / 3 * gsl_pow_int (2, RED.BITS) x WORD.BITS = 1024;

Nrw = gsl.pow.-int (2, RED.BITS) — RI1 — RI12 — RI3 — RIl4;;
Wese = Nrw / (5 + (BITS.P_.COL + BITS.P.ROW / WORDBITS) / 2);
if (Wesc < min_sc) Wesc = min_sc;
#ifdef _cont
if (lambda > 0.000016) Wesc += 2000;
#endif

Nerow = Wesc / 2;
Necol = Wesec / 2;

if (Nerow > MAXR) Nerow = MAXR;

if (Necol > MAX.C) Necol MAX.C;
Nesc Wesc ;
Necl cam.e — Nesc — Nerow — Necol;

Werow = Nerow x BITS.P.ROW / WORD.BITS;
Weecol = Necol » BITS_P.COL;
Wecl = Nrw ~ Wesc — Werow — Wecol;

Yword = gsl_pow.int (Ysc, WORDBITS);
Ywordcol = gsl_pow_.int (Ycol, WORD.BITS);

dword = Wecl + 10;
Necl += 500;
while (dword > Wecl)

{
Necl —= 500 ;
Yd4 = 1.0;
dword = 0;
for (x = 1; x <=DMAX; x++)
for (y = 1; y <=DMAX; y++)
Ycl = exp(—~lambda / 3 * sprob(x) % sprob(y));
cxy = floor ((double)Necl % sprob(x) * sprob(y) /
cams [x—1][y —1]);
nr = ceil ((float)BITS / (float)(x * y));
Ydcl = 0;
for (1 = 0; 1 <= cxy; 1++4)
partl = gsl.sf.lnchoose(nr, 1);
part2 = (nr — 1) * log(Ycl);
part3 = 1 x log(l — Yecl);
Ydcl += exp(partl + part2 4+ part3);
'
Yd4 sx= Ydel;
dword += ceil ((double)cxy » words[x—1][y—1]);
}
}
}
N1 = Nrw — (Werow + Wecol + dword);
N2 = cam_e — Necl — Necol — Nerow;

Nesc = (N1 < N2) 7 N1 : N2;
Wesc = Nesc;

Ydl = 0;
for (i = 0; i < Nesc; i++)

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D.5 Combined Fault Model

partl = gsl_sf_.lnchoose (NNWORDS, i};
part2 = (NWORDS — i) * log(Yword);
part3 = i * log(l — Yword);

Ydl += exp(partl + part2 + part3);

}
if (Ydl > 1.0) Ydil = 1.0;

Yd2 = 0;
for (j = 0; j < Nerow; j++)
{

partl = gsl_sf_lnchoose (NNROWS, j);
part2 = (NROWS — j) x log(Yrow);

part3 j * log(l — Yrow);
Yd2 += exp(partl 4+ part2 + part3);

}

Yd3 = 0

for (k = 0; k < Necol; k++)

{
partl = gsl_sf.lnchoose (N.COLS / WORD.BITS, k);
part2 = (N_.COLS / WORDBITS — k) * log(Ywordcel);
part3 = k * log(l — Ywordcol);
Yd3 += exp(partl + part2 + part3);

}

Ydram = Ydl * Yd2 * Yd3 *x Yd4;
printf("%1.10f_.%1.10f.%1.10f_%1.10f_%1.10f_.%1.10f\n” , lambda, Ydl, Yd2, Yd3, Ydd4, Ydram);
}

return 0;

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix E

Model VHDL and Ruby

E.1

Top Level

library IEEE;

use [EEE.STD_.LOGIC.1164 .ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD.LOGICUNSIGNED.ALL;
library work;

use work.redun_pkg. all;

entity assoc_.i-16 is

port ( gclk in std.logic;
a : in std_logic.vector (21 downto 0);
d : in std_logic.vector (3 downto 0);
qp : in std_logic_-vector (3 downto 0);
q : out std_logic.vector (3 downto 0);
cas-n : in std_logic;
ras.n in std_logic;
cs-n in std_logic;
rw.n in std_logic;
mem._cen.n inout std.logic

3
end entity assoc-i-.16;

architecture struct of assoc_i_16 is

Code

constant cam_depth positive := 1152;
constant a.bits positive := 22;
constant row_bits positive := 11;
constant c_bits positive 1= 11;
constant red_width positive := 18;
constant sec_width positive := 2;
constant off_width positive := 12;
constant word_width positive 1= 4;
constant s_word.width positive := 1;
signal match std_logic_vector (cam_depth — 1 downto 0);
signal red_en std_logic
signal section std_logic-vector (sec_width — 1 downto 0);
signal base, pointer std.logic.vector (red_-width — 1 downto 0);
signal mask std_logic-vector(a-bits — 1 downto 0);
signal offset std_logic.vector (off_width — 1 downto 0);
signal wl_sel, bl_sel std-logic.vector (511 downto 0);
signal dr, qr std_logic-vector (s-word.width — 1 downto 0);
signal qp0, qpl, qp2, qp3 std-logic-vector (s_.word_width — 1 downto 0);
signal q0, ql, q2, q3 std.logic_vector (s_.word_width — 1 downto 0);
signal d0, d1, 42, d3 std.logic.vector {s_word_.width — 1 downto 0);
signal sel0, sell, sel2, sel3 std.logic
signal selin0 , selinl std_logic;
begin
compare component match_array
generic map (

addr-width => a.bits,

entries => cam-_depth,

row_width => row.bits ,

col_width => c.bits

port map (
addr =>a,
cas_n => cas_n,

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E.1 Top Level

ras.n => ras.n,
match => match,
red_en => red-en ,
meme._en_n => mem-en-n
)i
data : component flash_array

generic map (
addr_width => a_bits ,

red_bits => red_width ,
sec_bits => sec_width ,
entries => cam_depth

)

port map (

match => match,
section => section ,
base => base,
mask => mask

)i

shift : component switch.22_12
port map (

addr =>a,
dc-mask => mask,
offset => offset
)i
compute : component nc.adder
generic map (
b_red => red_width ,
b.off => off_width
)
port map (
base => base,
offset => offset,
peointer => pointer
)i
x-decode : component decode.9_512
port map (
input => pointer (17 downto 9),
enable => red.en,
output => wl.sel
)i

y-decode : component decode.9-512
port map (

input => pointer (8 downto 0},
enable => red.en,
output => bl_sel

)i

—— redundant memory array
r.array : component red_array
generic map (

row_bits => 9,
col_bits =>9,
word_width =>1
port map (

rows => wl.sel ,
cols => bl_sel ,
d => dr,

q =>qr,
rw.n =>rw.n

)i

—— combinational logic for four output muzes

sel3 <= mem_en_n and section (1) and section (0};

sel2 <= mem.cn_n and section (1) and not section (0);
sell <= mem.en_-n and not section (1) and section (0);
scl0 <= mem-en.n and not section (1) and not section (0);

—— splice wectors
ap3(0) <= qp(3);
qp2(0) <= qp(2);
ap1(0) <= qp(1);
qp0(0) <= qp(0);

—— output muzes to determine if date should come from primary or
— redundant memory

outmux3 : component mux-2.1
generic map (
width =>1
)
port map (
in.0 => qp3,
in-1 => qr,
sel => sel3 ,

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



output

)5

outmux2
generic map
width
)

port map (
in.0
in_1
sel

)i

outmuxl
generic map
width

port map (
in_0
in_1
sel
output

)3

outmux0

=> q3

component mux-2.1

(

=>1

component mux.2-1

(
=> 1

=>qpl,
=>qr,
=> sell,
=> ql

component mux.2_1

generic map (

width
)
port map (
in.0
in_1
sel
output
)i

=>1

=>qp0,
=>g9qr,
=> sel0 ,
=> q0

q<=q3 & q2 & ql & q0;

— input muzr to
—— MecCessary

place data in the redundant memory array

selin0 <= mem-en.n and section (0);
selinl <= mem.en.n and section (1);

d3(0) <= d(3);
d2(0) <= d(2);
d1(0) <= d(1);
do(0) <= d(0);

inmux
generic map
width

port map (
in_0
in_1
in.2
in_3
sel0
sell
ocutput

)3

end architecture str

component mux._4.1

(
=>1

=>do,
=>d1,
=>d2,
=>d3,
=> selinO ,
=> selinl ,
=> dr

uct ;

E.2 Package

—— package file for
—— components

library icce;
use ieee.std.logic_1

package redun.pkg is
—~— DRAM specific

constant data.wi
constant addr.wi

constant row_bits

constant col.bit
constant s_.word.
constant sec_bit

if

associatiev indirect ternary CAM redundancy

164 . all;

contsats
dth : positive := 32;

—— redundancy specific constants

constant red_bit

E.2 Package

constant off_width
constant cam.depth

dth : positive 25;
i positive 12;
s : positive 11;
width positive 16;
s : positive = 1;
s : positive := 21;
positive := 12;
positive := 24268;

Reproduced with permission of the copyright owner. Further reproduction

prohibited without permission.



L.2 Package

—— redundancy system components

component match_array is
generic (

addr.width : positive := addr.width;
entries : positive := cam_depth;
row_width : positive := row._bits;
col_width : positive := col_bits
)
port (
addr : in std_logic-vector (addr.width —1 downto 0};
cas.n : in std_logic;
ras_n : in std_logic;
match : out std.logic_-vector(entries — 1 downto 0);
red_en : out std_-logic;
mem._en.n : out std.logic

)5

end component match_.array;

component flash_array is
generic(

addr_width : positive addr_width ;
red.bits ¢ positive red_bits;
sec.bits : positive sec.bits;
entrics : positive cam.depth

)5

port (
match : in std_.logic.vector(entries — 1 downto 0);
section : out std_logic-vector(sec.bits — 1 downto 0);
base : out std_logic-vector(red.bits — 1 downto 0);
mask : out std.logic_.vector (addr_width — 1 downto 0)

)5

end component flash_array;

component switch_22_12 is

port (
addr : in std.logic-vector (21 downto 0);
dc_mask : in std_logic_vector (21 downto 0);
offset : out std_logic_-vector (11 downto 0)

)i

end component switch_.22.12;

component nc_adder is
generic (

b.red : positive := red.bits;
b_off : positive := off_width
)i
port (
base : in  std.logic.-vector{b.red — 1 downto 0);
offset : in  std.logic-vector (off.width — 1 downto 0);
pointer : out std_logic-vector(b.red — 1 downto 0)
)i
end component nc._adder;
component decode_9.512 is
port (
input : in std_logic.vector (8 downto 0);
enable : in std_logic;
output : out std_logic-vector (511 downto 0)
H
end component decode_9.512;
component mux-2_1 is
generic (
width : positive := s_word.width
)i
port (
in_0 : in  std_logic-vector (width — 1 downto 0);
in_1 : in  std_logic.vector (width — 1 downto 0);
sel : in std_logic;
output : out std_logic-vector (width — 1 downto 0)
)5
end component mux_2.1;
component mux_4_.1 is
generic (
width : positive := s_word.width
)i
port (
in.0 : in std.logic_vector (width — 1 downto 0);
in_1 : in std_.logic_vector(width — 1 downto 0);
in.2 : in std_.logic_vector (width — 1 downto 0};
in_3 : in std_logic.vector (width — 1 downto 0);
selQ : in std_logic;
sell : in std_logic;
output : out std_-logic_vector (width — 1 downto 0)
)3

end component mux-4.1;

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



component red_array

E.3

is

generic

positive 9;
positive 9,

positive :=

row.bits
col_bits
word_width

(1]}

s_word_width

)i

port (
Tows in std.logic_.vector(row.bits — 1 downto 0);
cols in std.logic_-vector(col.bits — 1 downto 0);
d : in std-logic.vector (word_width — 1 downto 0);
q : out std_logic.vector {word_width — 1 downto 0);
rw-n in std_logic

)

end component red_array;

end package

redun.pkg;

E.3 Match Array

library

use ieec.

ieee;
std.-logic_-1164 . all;

use std.textio.all;
use work.txt_util.all;

entity match_array is

generic (
addr_width positive 25;
entries positive 1024;
row_width positive 12;
col_width positive := 13

)

port (
addr in std-logic_.vector(addr-width — 1 downto 0);
cas.n : in std.logic;
ras_n in std_logic;
match out std_logic.vector{(entries — 1 downto 0);
red_en out std.logic; —— enable red. mem outputi
mem.en_n out std.logic —— disable primary memory

5
end entity match.array;

architecture struct of match_array is

signal match_row std.logic-vector(entries — 1 downto 0);
signal match_col std_logic-vector{(entries — 1 downto 0);
signal row._addr std.logic.vector(row-width — 1 downto 0);
signal col_addr std.logic.vector(col_-width — 1 downto 0);
signal row.addr.n std_logic.vector (row-width — 1 downto 0);
signal col_addr.n std.logic-vector(col.width — 1 downto 0);
subtype word.rs is std_logic_vector (0 to row.width — 1});
subtype word.cs is std_logic_vector (0 to col_width — 1};

type row_rom
type col_rom

signal row.carom ,
signal col.carom ,

begin

load_caroms

array (0 to entries
array (0 to entries

is
is

-1

of word_rs;
of word.cs;

row.carom.n
col_carom_n

row._rom;
col_rom ;

process is
variable 1: line;
sr: string (word.rs 'range);

variable
variable

variable

file

sc: string(word.cs 'range);

index natural;

load_file.rs

TEXT open read_mode is "cam.row_true.dat”;
file load.file_rs_n TEXT open read_mode is ”cam.row.not.dat”;
file load_file.cs TEXT open read.-mode is "cam_col_true.dat”;
file load._file_cs_n TEXT open read_mode is ”"cam_col.not.dat”;

begin
index := 0;

while not endfile(load_file.rs) loop

readline (load_file_rs , 1);

read (1,sr);

row.carom(index) <= to.std.logic_.vector(sr);
readline(load.file_rs_.n , 1);

read (1 ,sr);

row_carom.n{index) <= to.std_logic_vector(sr);
readline(load._file_cs , 1);

read (1 ,sc);

col_carom (index) <= to.std_logic.vector(sr);
readline{load_file_¢cs_.n , 1);

read (1,sc);
col_carom_n(index) <= to.-std.logic_-vector(sr);
index := index + 1;

173

Match Array

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FE.4 Flash (Data) Array

end loop;
end process load.caroms;

row.addr <= addr(addr.width — 1 downto addr_.width — col_width);
col_addr <= addr(col_width — 1 downto 0);

row_addr_n <= not row._addr;

col_addr.n <= not col_addr;

matchlines : for depth in 0 to cntries — 1 generate
begin

row.precharge : process is

begin

if falling_edge(ras_n) then
match_row (depth) <= "17;
end if;
end process row._precharge;

row_match : for i in row.width — 1 downto 0 generate
begin
match_row (depth) <= '0’ when (row.carom(depth)(i) = '0’
and col_addr(i) = ’1’) or
(row_carom_n{depth)(i) = '0’
and col.addr.n(i) = ’1') else
'z
end generate row._match;
col_precharge : process (cas_n) is
begin
if (falling-edge{(cas-n) and match.row(depth) = ’1’) then
match_col(depth) <= "17;
end if;
end process col_precharge;
col_match : for j in col.width — 1 downto 0 generate
begin
match_col(depth) <= ’0’ when (col_.carom (depth)(j) = '0’
and col_addr(j) = '1’) or
(col_carom.n (depth)(j) = '0°
and col.addr.n(j) = '1’) else
AR
end generate col_match;
end generate matchlines;
end architecture struct;
E.4 Flash (Data) Array
library icee;
use iece.std_logic-1164.all;
use std.textio.all;
library work;
use work.txt_util.all;
entity flash_array is
generic (
addr_width : positive 25;
red_bits : positive 21;
sec_bits 1 positive 1;
cntries : positive := 1024
5
port {
match : in std-logic_vector(entries — 1 downto 0);
section : out std-logic_-vector(sec.bits — 1 downto 0);
base : out std_logic.vector(red.bits — 1 downto 0);
mask : out std_logic.vector(addr-width — 1 downto 0)
)i
end entity flash_array;
architecture struct of flash_array is
subtype word.sec is std_logic_vector(sec_bits — 1 downto 0);
subtype word_bse is std.logic_vector(red_bits — 1 downto 0);
subtype word_msk is std_-logic.vector{(addr_width — 1 downto 0);
type sec_rom is array (0 to entries — 1) of word.sec;
type bse.rom is array (0 to entries — 1) of word_bse;
type msk.rom is array (0 to entries — 1) of word.msk;
signal sec : sec.rom;
signal bse : bse_rom;
signal msk : msk.rom;
begin
load_roms : process is

variable 1: line;
variable ss: string(word_sec 'range);

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



variable sb: string(word_bse 'range);
variable sm: string(word-msk’range);
variable index natural;
file sec.dat
file bse_dat
file msk_dat

begin

index := 0;
while not cndfile(sec_dat) loop
readline (sec.dat , 1);
read (1 ,ss);
sec(index) <= to.std_logic-vector(ss);
readline (bse_dat , 1);
read (1,sb);
bse(index) <= to.std_logic.vector (sb);
readline (msk.dat , 1);
read (1 ,sm);
msk(index) <= to_std_logic_vector (sm});
index := index + 1;
end loop;

end process load_roms;

wordline

begin

section <= sec(depth) when match(depth)
base <= bse(depth) when match(depth) =

= 1y
mask <= msk(depth) when match(depth) = ’17;

TEXT open read_mode is "sec.dat”;
TEXT open read_mode is ”bse.dat”;
TEXT open read_mode is ”msk.dat”;

for depth in 0 to entries — 1 generate

1,

end generate wordline;

end architecture struct;

E.5 Shifter (Ruby)

#!/usr/bin/env ruby

require "optparse”
a_bits = 25
o-bits = 12

ARGV .options { |opt|

}

opt.banner = "Usage: #{$0} —a addr_bits —o offset_bits\n”
opt.on(”Options:™)

opt.on(”—a” , "—~addr_bits NUM” , Integer , "Number of address
opt.on(”—0” , "——offset_bits NUM", Integer , "Number of offset
opt.on_tail ("—h” , "——help” , "Show this message”) { puts opt;
opt . parse!

# print a header, entity and start of architecture

puts "—— Crossbar shifter automagically generated by gen_shift”
puts "—— input address and mask widths are #{a_bits}”

puts "—— output width is #{o_bits}”

puts "

puts "library ieee;”

puts "use ieee.std.logic-1164.all;”

puts ”7

puts "entity shifter is?”

puts "\tgencric (”

puts "\t\tb_addr\t: positive := #{a_bits};”

puts "\t\tb_off\t: positive := #{o_bits}”

puts "\t);”

puts "\t port (7

puts "\t\taddr\t: in\tstd.logic-vector(b.addr — 1 downto 0);”
puts "\t\tdc.mask\t: in\tstd.logic-vector(b.addr — 1 downto 0);”
puts "\t\toffset\t: out\tstd_logic_vector(b_.off — 1 downto 0)”
puts "\t);”

puts "end entity shifter;”

puts "7

puts "architecture rtl of shifter is”

puts “begin”

puts »?

# creete the crossbar

O.upto{o-bits — 1) {|vline}|
print "\toffset(#{vline}) <="
vline .upto(a_bits — 1) {]hline}
print "addr(#{hline}) when (”
m = Array.new( hline, —1)
m[ hline] = 1

0.upto(vline —=1) {Jt| m[t] = 1}

175

E.5 Shifter (Ruby)

bits”) {}|a-bits]|}
bits”) {]o-bits]}
exit 0}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner

E.6 OR (No-carry Adder)

m.each_index {|h]

print ”dc-mask(#{h}) =~
if m[h] ==
print 7’1’7
else
prlnc nogr
end
if (m.size — 1) ==
if hline == (a.bits — 1)
puts *);”
else
print ") else\n\t\t\t\t”
end
else
print ” and ”
end
}
}
puts "7
puts "end architecture rtl;”

E.6 OR (No-carry Adder)

library
use iece.

iecee;

std_logic.1164 .all;
entity nc_adder is
generic (

b_red in positive := 21;
b_off in positive := 12
)
port (
base in std_logic.vector(b.red — 1 downto 0);
offset in std_logic.vector(b_off — 1 downto 0);
pointer out std.logic.vector(b.red — 1 downto 0)
)i
end entity nc.adder;
architecture rtl of nc_adder is
begin
adder for bit_index in 0 to b_off — 1 generate
begin

pointer (bit-index) <= base(bit.index) or offset(bit_.index);

end generate adder;

pointer(b.red — 1 downto b_off) <= base(b.red — 1 downto b_off);

end architecture rtl;

E.7 Redundant DRAM decoder (Ruby)

#!/usr/bin/env ruby
require "optparse”
a.bits = 25
ARGV.options {|opt|
opt.banner = "Usage: #{$0} —a addr_bits\n”
g
opt.on(” Options:”)
opt.on("—a” , "——addr_bits NUM” , Integer , ”"Number of address
opt.on_tail ("—h” , "——help” , "Show this message”) { puts opt;
opt.parse!
}
# print a header, entity and start of architecture
o_lines = 2 *x a_bits
puts "—— Address decoder automagically generated by gendecode”
puts "—— input address width is #{a_bits} bits”
puts "—— there are #{o_lines} output lines”
puts 7
puts "library ieee;”
puts "use ieee.std_logic.1164.all;”
puts "7
puts "entity decoder is”
puts "\t port ("

176

bits”) {|a_-bits]|}
exit 0 }

. Further reproduction prohibited without permission.



E.8 Multiplezer (2-1)

— 1} downto 0);”

— 1} downto 0)”

puts ”"\t\t input\t: in\tstd_logic_-vector(#{a_bits
puts "\t\t enable\t: in\tstd.logic;”
puts "\t\t output\t: out\tstd_logic-vector(#{o-lines
puts "\t );"
puts "end entity decoder;”
puts "7
puts "architecture rtl of decoder is”
puts "7
puts "\t signal in_t std.logic-vector(#{a-bits} downto 0);”
puts "7
puts "begin”
puts 77
puts ”\tin-t <= input & enable;”
puts 77
puts "\twith in_t select output <="
out_a = Array.new(o.lines);
in_a = Array.new(a_bits + 1)};
O.upto(o-lines — 1) {]int|
in.a.clear
a_bits.times {in_a << 0}
out_a.clear
o.lines.times {out_a << 0}
out-a[int] = 1

out-a.reverse!

i =0
while 0
if int == 0
break
elsif i

end
if int.modulo(2) == 0
int /=2
else
in_a[i] = 1
int = (int

-1 /2

end

in.a .reverse!
in_a << 0

print "\t\t \"”
print out.a

print "\” when \"”
print in.a

puts "\”,”

}

out_a.collect {| bit |
print \t\t \"”
print out.a

bit = 0}

puts ”\” when others;”
puts 77
puts "end architecture rtl;”

E.8 Multiplexer (2-1)

library
use icee.

iece;
std-logic-1164 .all;

entity mux_2.1 is
generic (

width positive := 32

)i

port (
in_.0 in std.logic.vector (width
in_1 in std_logic.vector (width
sel in std.logic;
output out std_logic.vector(width

H
end entity mux.2.1;

architecture rtl of mux.2_1 is
begin
with sel select
output <= in_.0 when ’0°’,

in.1 when others;

— 1 downto 0);
—~ 1 downto 0});

— 1 downto 0)

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E.9 Multiplezer (4-1)

end architecture rtl;

E.9 Multiplexer (4-1)

library ieecc;
use iecc.std_logic_1164.all;

entity mux-4_1 is
generic (

width : positive := 32

)i

port (
in.0 : in  std_logic_vector (width — 1 downto 0};
in-1 : in  std-logic_.vector (width — 1 downto 0);
in.2 : in  std-logic.vector (width — 1 downto 0);
in.3 : in  std-logic.vector (width — 1 downto 0);
selO : in std-logic;
sell : in  std.logic;
output : out std_logic.vector{width — 1 downto 0)

3
end entity mux.4.1;

architecture rtl of mux.4.1 is
signal lower, upper : std.logic_-vector{width — 1 downto 0);
begin
with sel0 select
lower <= in_.0 when 0",
in.1 when others;

with sel0 select
lower <= in_-2 when '0’,
in_3 when others;
with sell select
output <= lower when ’'0’,

upper when others;

end architecture rtl;

E.10 Redundant Data Array

library ieee;
use ieee.std_logic-1164.all;

entity red_array is
generic (

row.bits : positive 11,
col_bits : positive 10;
word._width : positive := 16

)i

port (
rows : in std_logic.vector (2x*xrow_bits —~ 1 downto 0);
cols : in std.logic.vector(2x*xcol_bits — 1 downto 0);
d : in std_logic_vector (word.width —1 downto 0);
q : out std_logic_vector (word-width —1 downto 0);
rw.n : in std-logic

H
end entity red.array;

architecture behaviour of red.array is

subtype word is std_logic.vector (0 to word_width — 1);
type d-array is array (0 to 2+xrow.bits — 1, 0 to 2xx col_bits — 1) of word;
signal dram : d_.array;
begin

wordline : for decpth in 0 to 2x*xrow_bits — 1 generate
begin

bitline : for column in 0 to 2xxcol.bits — 1 generate

begin

q <= dram{depth ,column) when rows(depth) = 1’
and cols(column) = ’1’ and rw.n = '07;

1y

II

dram(depth ,column) <= d when rows(depth)
and cols(column) 'l1’ and rw.n =

end generate bitline;
end generate wordline;

end architecture behaviour;

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix F

Testbench VHDL Listings

F.1 Testbench

library icece;
use ieee.std_logic.1164.all;

package test.pkg is
component lfsr.generic is

generic (Width: positive := 4); —— length of sequence
port (
clock : in std_logic;
reset : in std.logic; — active low
load : in std_logic; —— active high
enable : in std_legic; —— active high
parallel_in : in std_logic.vector (Width — 1 downto 0);
parallei_out : out std_logic-vector (Width — 1 downto 0);
serial_out : out std_logic

)s

end component lfsr_generic;
end package test.pkg;

library ieece;
use icee.std_logic.1164.all;

package assoc_l6.pkg is
component assoc-i-16 is

port (  gclk : in std_logic;
a : in std_logic.vector (21 downto 0);
d : in std_logic.vector (3 downto 0);
qp : in std.logic.vector (3 downto 0};
q : out std_logic_vector (3 downto 0);
cas-n : in std_-logic;
ras.n : in std.logic;
cs.n : in std.logic;
rw.n : in std.logic;
mem.en.n : inout std_.logic

5
end component assoc.i_16;

end package assoc.16.pkg;

library icee;

use ieee.std_logic.1164.all;
use std.textio.all;

library work;

use work.test_pkg.all;

use work.assoc_-16_pkg.all;
use work.txt_util.all;

entity assoc_-l6_test is
end assoc.-l6_test;

architecture mixed of assoc_.16._test is

constant T_halfclock : time := 3.75 ns; ——(corresponds to 266 MHz DDR)
constant T_prop : time := 0.5 ns; —— avoid hold time wviolations
constant T_latch : time := 1 ns;

signal clock, reset : std_logic;

signal seed_addr : std_logic.vector (21 downto 0);

signal seed_data : std_logic.vector (3 downto 0);

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F.1 Testbench

signal serial_.addr , serial_data : std_logic;

signal addr.internal , addr_delay : std_logic.vector (21 downto 0};
signal data_internal , data.delay , qdata : std_logic_vector (3 downto 0);
signal main.mem_.q : std.-logic.vector (3 downto 0);

signal load.ga , load_gd , req.addr, req.data : std.logic;

signal cas_n, ras_.n, cs_n, rw.n : std_logic;

signal match : std_leogic;

signal start : std_logic;

type state_type is (s.reset, s.0, s_.1, s5.2);
signal state, next_state : state_type;
begin

seed.addr <= "0101010111110101000100";
seed.data <= "1001";

main.mem.q <= "UUUU";

start <= ‘07

start <= '1’ after 10 ns;
start <= '0’ after 11 ns;
gen_addr : component lfsr.generic

generic map ( Width => 22)
port map (
clock => clock,

reset => reset ,
load => load.ga,
enable => req-addr,
parallel.in => seed.addr,
parallel_out => addr_internal ,
serial.out => serial_addr
)s
gen_data : component lfsr_generic

generic map (Width => 4)
port map (

clock => clock ,
reset => recset ,
load => load_gd ,
enable => req.data,
parallel.in => secd_data ,
parallel_out => data_internal ,
serial_.out => serial_data
)i
redun : component assoc-i.16
port map (
gelk => clock,
a => addr_delay ,
d => data_-delay ,
qp => main-mem._q,
q => qdata,
cas_n =>» cas-n,
ras.n => ras.-n,
cs_n => cs-n,
rw.n => rw.n,
mem-en.n => match
)i
clock_gen : process
begin

clock <= 1%

wait for T_halfclock;

clock <= '07;

wait for T_halfclock;
end process clock_gen;

state.logic : process (state)
variable count : integer;
file write.out : TEXT open write.mode is ”write.dat”;
file read-out : TEXT open write_.mode is “rcad.dat”;
variable read.line , write_line : line;

begin

case state is

when s_reset =>
ras.n <= ’'17;
cas.n <= '1";
req.data <= '0’;
load.gd <= '1’;
load_.ga <= '1";
rw_n <= '17;
count := 0;
next_state <= s_reset;

when s.0 =>
load_gd <= '0’;

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



load_ga <= '07;
req-data <= '1';

cas.n <= '1";

if count < 262144 then

addr.delay <= addr.
data_delay <= data.

else
rw.n <=
end if;
ras.n <= '0’
next-state <= s.1;
when s_.1 =>

g7,
5

F.2 lfsr_generic

internal
internal

after T_prop;
after T_prop;

after T_latch;

req-data <= '0";
ras.n <= ’'1";
cas-n <= '0’ after T_latch;

next-state <= s.2;
when s_2 =>
if count

262143 then

load_gd <= ’'1°;
load.ga <= '1";
end if;

if count < 262144 then
write ( write_-linc ,
write ( write-line ,
write ( write.linec ,
writeline

else
write ( read_line,
write ( read.line,
write ( read_line ,
write ( read.line ,
write ( read_line ,
end if;

if count 524287 then
next.state

else
count := count 4 1;
next-state <= s.0;
end if;

end case;
end process state.logic;

state.register process {clock ,
begin
if reset = ’'1’ then
state <= s_reset;
elsif rising.edge(clock) then
if start = ’1’ then
state <= s5.0;
else
state <= next_-state;
end if;
end if;
end process state.register;

end architecture mixed;

F.2 lfsr_generic

( write_out ,

str{addr_-delay ));
string '("_"));
str{data_delay ));
write_line);

str(addr.delay ));
string ' (72" ));
str(match));
string "(”"."));
str (qdata));

<= s.rcset;

reset)

Ifsr_generic.vhd

Revised 2001/02/09

—— Authors: Raymond Sung

—— Date: Oct 10, 2000

—— Course: EE552

—— Modifited: John Koob & Ray Sung

—— Source EE 552 Student Application Note
—— Desc:

—— Awutononmous Linear Feedback Shift Register

Description: Implementation

—_ that generates

— The Bit—Width or Length of the
—_ can be instantiated with the
— The length of the pseudorandom
—_ (272 = 4 numbers in

— The seed input variable allows

— a certain position in

of a Linear Feedback Shift
a sequence of 2°N—1 non—repeating pseudo—random

sequence and 2716 numbers

the pseudo—random

Register

Pseudo Random Sequence
generic " Width.”

sequence can be
sequence [}
to start the pseudo—random

sequence.

one

181

anywhere from 2

sequence

numbers.

to 16.

at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F.2 lfsr_generic

Uses : Digital Signael Processing
Wireless Communications
Encryption/Decryption
Direct Sequence Spread Spectrum
Pseudo—Random Number Generation
Scrambler/Descrambler
Built—In Self Test

—— References: "HDL Chip Design” — Douglas J. Smith

?Linear Feedback Shift Register MegaFunction” — Nova Engineering

library IEEE;
use [IEEE.STD_Logic-1164.all;

entity LFSR.GENERIC is

generic (Width: positive := 4); —— length of pseudo—random sequence

port ( clock: in std.logic;
reset: in std_.logic; — ective high reset
load: in std_logic; —— active high load (assert this to use as regular
enable: in std.logic; —— active high enable
parallel_in: in std._.logic_vector (Width—1 downto 0); —— parallel seed input
parallel_out: out std.logic_.vector (Width—1 downto 0); — parallel data out
serial_out: out std_logic — serial date out (From last shift register)

)

end entity LFSR.GENERIC;

architecture RTL of L¥FSR.GENERIC is

type TapsArrayType is array(2 to 16) of std_.logic.vector (15 downto 0);
signal Taps: std.logic_.vector (Width—1 downto 0);

begin

LFSR: process (clock)

—— internal registers and signals

variable LFSR_Reg: std_logic-vector (Width—1 downto 0);
variable XOROut: std_logic-vector (Width—2 downto 0};
variable OR_Chain: std_logic.vector (Width—2 downto 0);
variable NOR_All: std_logic;

variable Feedback: std_logic;

variable TapsArray: TapsArrayType;

begin

Taps <= TapsArray (Width)(Width~1 downto 0); —— get tap points from lookup table

reset ='1’ then

LFSR_Reg := {(others=>'1");
OR_Chain (others=>'0");
Feedback 07,

NOR.AIl := '0°’;

—— Look—=Up Table for Tap points to insert XOR gates as feedback into D-FF
—— outputs. Taps are designed so that 2°N—1 (N=Width of Register) numbers
—— are cycled through before the sequence is repeated

TapsArray (2) " 0000000000000011”

TapsArray (3) »0000000000000101 " ;
TapsArray (4) = »00000000000010017 ;
TapsArray{(5) := 7 0000000000010010”
TapsArray (6) 1= ”»3000000000100001 7 ;
TapsArray (7) *0000000001000001 " ;
TapsArray (8) ”0000000010001116”;
TapsArray (9) = ”0000000100001000™ ;
TapsArray (10) = ”0000001000000100" ;
TapsArray (11) = » 0000010000000010" ;
TapsArray (12) = »00001000001010017
TapsArray (13) = »0001000000001101"” ;
TapsArray (14) = ”?0010000000010101 " ;
TapsArray (15) 1= ”70100000000000001” ;
TapsArray (16) = ¥10000000000101107 ;
elsif rising.edge(clock) then
—— load signal asserted, use seed value on port to determine where

—— to start in the pseudo—random sequence
if enable = ’1’ then
if load = ’1’ then
LFSR.Reg := parallel_in;

else

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reg)



F.2 lfsr_generic

Feedback := LFSR_Reg(Width—1) xor NOR.All;
—— look at old walue;

for N in Width—1 downto 1 loop
if (Taps(N—1)="1") then
XOR-Out(N—1) := LFSR_Reg(N—1) xor parallcl.in(N) xor Feedback;
else
XOR.Out(N—1) := LFSR_-Reg(N—1) xor parallel.in(N);
end if;
LFSR_Reg(N) := XOR_Out(N—-1);

end loop;

OR_Chain (0) := XOR.Out(0) or XOR.Out(1);
for N in 2 to Width—2 loop
OR._.Chain (N—1):= OR.Chain(N—2) or XOR.Out(N);
end loop;
NOR_.All := not OR_Chain(Width—2);
LFSR-Reg(0) := parallel.in (0) xor Feedback;
end if;

end if;
end if;

parallel.out <= LFSR_Reg; —— parallel date out
serial_out <= LFSR_Reg(Width-1); —— serial datae out

end process;

end RTL;

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F.2 Ifsr_generic

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix G

SKILL Code

All functions beginning with tf_ are part of the tf functions written by Tyler Bran-

don at the University of Alberta VLSI Design Lab.

G.1 Row match array

procedure( ai_match_row.array (filename)
let ( (cv inst_pfet inst_.cN inst.cX inst_.cO0 inst-cl inst_-tnet

inst_noConn inPort word bits x y i)

cv = tf_getWinCV ()

inst.pfet = dbOpenCellViewByType (" cmosp18” ”pfet” ”symbol”)

inst.inv = dbOpenCellViewByType (” vst_nl8_sc.tsm.c4” "INVD1” "symbol”)
inst.cN=dbOpenCellViewByType (" assoc.i” "carom.off” ”symbol”)
inst_.cX=dbOpenCellViewByType (" assoc.i” "carom.dc” ”symbol”)
inst.c0=dbOpenCellViewByType (" assoc.i” "carom.0” ”symbol”)
inst.c1=dbOpenCellViewByType (" assoc-i” ”carom.1" "symbol”)

inst_-tnet = dbOpenCellViewByType (” assoc-1” ”t.model” ”symbol”)
inst.noConn = dbOpenCellViewByType (” basic” "noConn” "symbol”)

inPort = infile (filename)
when( inPort
y =0
while { fscanf( inPort "%s” word )
bits = strlen ( word )}
x =0

dbCreateParamlInst (cv inst_pfet nil —0.5:3%xy+4+0.375 "R0O”
1 list (list ("w” ”float” 800n)))
tf.schCreateWire(cv list(—5:48xy+6 —4:48xy+6 —4:48%xy+12)
Pvdd!” —5:48xy+12 "R270”)
tf_schCreatcWire(cv list (—8:48+xy+6 —10:48%y+6))
for(i 1 bits
case{ substring(word i 1)
("X” dbCreatelnst{cv inst_cX nil xx3:y*x3 "R0” 1
(”0” dbCreatelnst(cv inst-c0 nil x*3:y*3 "RO” 1
("1” dbCreatelnst(cv inst.cl nil xx3:y*3 "R0” 1
(t dbCreateParamInst (cv inst.cN nil x*3:y*3 "R0” 1
list (list ("mult” ”float” 1))))

)
dbCreateParamlInst (¢v inst_tnet nil x*3+1.125:y*3+40.25 "R0” 1
list (list ("RES” ”float” 1.41)
list ("CAP” " float” 1.31f)))
tf.schCreateWire(cv list (48+xx—4:48xy+3 48%x+423:48xy+3))

dbCreateParamlInst (cv inst_tnet nil x*3+0.4375:y*3—-0.25 "R270” 1
list (list ("RES” "float” 0.366)
list ("CAP” " float” 0.265f)))
dbCreateParamlInst (cv inst_tnet nil xx3+1.125:y*3-0.25 "R270” 1
list (list ("RES” "float” 0.3686)
list ("CAP” " float” 0.265f)))

if{ y == 0 then
tf_schCreateWire(cv list (48*x+6:48xy+18
48%x+6:48xy—9) strcat("cl-n<” concat( x )
PSP Y 48xx+5:48+y+18 "R90")
tf_schCreateWire(cv list (48%x+4+17:48xy+18

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G.2 Column match array

48xx+17:48xy~9) strcat ("cl<” concat( x )
"S") 484x+16:48xy+18 "R90”)
else
tf_schCreateWire(cv list (48+x+6:48%y+18
48%x+6:48xy—9))
tf-schCreateWire(cv list (48xx+17:48xy+18
48%x+17:48%xy—~9))

dbCreatcParamlInst (cv inst_pfet nil x%34+0.5:3xy+40.375 "MY”
1 list (list("w” ”float” 250n)
list ("1” "float” 360n)))
dbCreatelnst (cv inst-inv nil x*3+0.75:3xy+0.1875 "MX"” 1)
tf.schCreateWire(cv list (48+x—4:48xy+3 48xx+12:48xy+3)
strcat ("ml<” concat( —y ) ">")
48+x:48xy+2 "R0O")
tf_.schCreateWire(cv list (48+*x435:48%xy+3 48xx+40:48+y+3
48%x +40:48+y+8 48%x+8:48xy+8
48+ x+8:48xy +6)
strcat ("ml-n<” concat( —y ) ">")
48xx+40:48xy+3 "R0")

tf_schCreateWire(cv list (48%x+5:48%y+6 48*x+4:48+y+6
48xx+4:48+y+9 48xx+4:48xy+12)
Pvdd!” 48xx+44:48xy+12 "R0O”)
tfoschCreateWire(cv list (48xx+23:48xy—5 48+x+23:48*y~7)
"vss!” 48xx+22:48xy—5 "R270”)
tf_schCreateWire(cv list (48+x+425:48+y—5 48+x+25:48»y~7)
“vdd!"” 48xx+24:48xy—5 "R270")

dbCreateParamlInst (cv inst_tnet nil —0.5625:y%x3-0.25 "R270” 1
list (list ("RES” ”float” 0.366) list ("CAP” ”"float” 0.265f)))
tf_schCreateWire(cv list(—10:48xy+18 —10:48xy—9))

close ( inPort )

for(i 0 x—1 ; the loads for placing up to 1024

dbCreateParamlInst (cv inst.tnet nil i%*34+0.4375:y%3 "R270” 1

list (list ("RES” ”float” 372) list ("CAP” ”float” 0.269p}}))
dbCreateParamlInst (cv inst_-tnet nil i*34+1.125:y*3 "R270” 1

list (list ("RES” ”float” 372) list ("CAP” "float” 0.269p)))
dbCreateParamlInst (cv inst.cN nil i*3:y*x3-2.1875 "R0” 1

list (list ("mult” "float” 1016)))
dbCreatelnst {(cv inst_noConn nil i*x3:yx3—-2 "R0” 1)
tf.schCreateWire(cv list (48%1+46:48xy+18 481 +6:48+xy—5))
tf.schCreateWire(cv list (48%i+17:48*y+18 48xi+17:48xy—5))

)
dbCreateParamlinst (cv inst_pfet nil —0.5:3xy—2 "R0” 1

list (list ("w” ”float” 800n) list(” multiplier” ”float” 1016)))
tf.schCreateWire(cv list (—5:48+y—32 —4:48%y—32 —4:48xy—26)

"vdd!” —5:48xy—26 "R270")
dbCreateParamlInst (cv inst_tnet nil —0.5625:yx3 "R270” 1

list (list ("RES” "float” 372) list ("CAP” "float” 0.269p)))
tf.schCreateWire(cv list (—10:48xy+18 —10:48%y—5))
tf.schCreateWirc(cv list (—10:48xy—26 —10:48xy—32 —8:48xy—32))

dbCreatelnst (cv inst_noConn nil ~0.25:y*3—~2.1875 "R0” 1)

tf.schCrecatePin (cv strcat("ml.n<” concat( —y—1 ) ”:0>") “output”
(x+1)x48:y=10)

tf_schCreatePin(cv strcat ("mi<” concat( —y—1 ) ”:0>”) "output”
(x+1)x48:(y—1)x*10)

tf.schCreatePin(cv strcat(”cl.n<” concat( x—1 ) ”:0>”) "input”
x*x12—-8:25, "R270”)

tf.schCreatePin (cv strcat(”cl<” concat( x—1 ) ”:0>") "input”
x*12+8:25, "R270")

tf.schCreatePin (cv "precharge.n” "input” —10:18 ”"R270”)

; schHiCheckAndSave()
»

G.2 Column match array

procedure( ai.match.col.array (filename)
let( (cv inst.pfet inst_nfet inst_inv inst_or inst_cN inst_cX
inst.cO0 inst.cl inst_noConn inst_tnet inPort word bits x y i)

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G.2 Column match array

cv dbOpenCellViewByType (" assoc-i” "match_col_array” ”"schematic” nil "w”)
cv = tf_getWinCV ()

inst.pfet = dbOpenCellViewByType (" cmospl8” ”pfet” "symbol”)

inst.nfet = dbOpenCellViewByType (" cmospl8” "nfet” ”symbol”)

inst_.inv = dbOpenCellViewByType (" vst.nl18_sc_.tsm_c4” "INVD1” "symbol"”)
inst_.or = dbOpenCellViewByType (" vst_.nl8_sc_tsm.c4” "OR2D4” ”"symbol”)
inst.cN=dbOpenCellViewByType (" assoc_i” "carom.off” "symbol”)
inst.cX=dbOpenCellViewByType (" assoc.i” "carom.dc” "symbol”)
inst.c0=dbOpenCellViewByType (” assoc_-i” "carom.0" ”symbol”)
inst_.c1=dbOpenCecllViewByType (" assoc_i” "carom.1” "symbol”)

inst_.tnet = dbOpenCellViewByType (" assoc-i” "t_model” ”symbol”)
inst_.noConn = dbOpenCellViewByType (" basic” "noConn” "symbol”)

inPort = infile (filename)
when( inPort
y =0
while { fscanf( inPort "%s” word )
bits = strlen ( word )
x =0

dbCreatelnst (cv inst_-or nil —2.75:3xy+0.4375 "R0”)
dbCreatcParamlInst (¢cv inst-pfet nil —0.4375:3%xy+0.4375 "MYR90”
1 list (list("w” ”float” 800n))) ; pre-charge
dbCreatelnst (cv inst-nfet nil —0.3125:3xy "R0”) ; pull down
tf_schCreateWire(cv list (—20:48+xy+7 —7:48xy+7)) ; OR — pull—up
tf_schCreateWire(cv list (—49:48%xy+7 —~44:48xy+7)
strcat ("match_row.n<” concat(—y) ">") —51:48xy+8 "R0")

tf.schCreateWire(cev list (—46:48+y+5 —44:48xy+5)) ; ep — OR

tf.schCreateWire(cv list(—7:48+xy+4 —7:48+y+3 —15:48%y43)
"vdd!” —15:48xy+4) ; PC pull—up wvdd!

tf_schCreateWire(cv list (—36:48xy+15 —33:48xy+15) " vss!”
~37:48xy+15 "R0”) ; vss! for OR

tf_schCreateWire(cv list (—31:48xy+15 —28:48xy+15) "vdd!”
~30:48%y+15 "R0”) ; vdd! for OR

tf.schCreateWire(cv list{(—2:48xy —1:48%y —1:48%y—3 —1:48xy—6)
"ves!” —2:48xy—4 "R270") ; vss! for pull-down

tf.schCreateWire(cv list (—5:48xy —12:48xy) ; pull—down ctrl
strcat (" match.row._n<” concat(—y) ">”) —18:48xy+1 "R0”)

for(i 1 bits
case( substring(word i 1)
("X” dbCreatelnst(cv inst_cX nil x*3:y%x3 "R0O” 1
("0” dbCreatelnst(cv inst.c0 nil x*x3:yx3 "R0” 1
("1” dbCreatelnst(cv inst.cl nil x*3:y*3 "RO” 1
(t dbCreateParamlInst (cv inst.¢cN nil x*3:y*3 "R0” 1
list (list ("mult” ”float” 1))))

)

dbCrcateParamlInst (cv inst_tnet nil xx341.125:y*3+40.25 "R0” 1
list (list ("RES” "float” 1.41)
list ("CAP” "float” 1.31f)))
tf_schCreateWire(cv list (48%xx—4:48+y+3 48xx+23:48xy+3))

dbCreateParamlInst (cv inst_tnet nil xx3+40.4375:y*3-0.25 "R270” 1
list (list ("RES” " float” 0.366)
list ("CAP” "float” 0.265f)))
dbCreateParamlInst (cv inst_tmet nil x*34+1.125:y%3—-0.25 "R270” 1
list (list ("RES” ”float” 0.366)
list ("CAP” " float” 0.265f)))

if ( == 0 then
tf_schCreateWire(cv list (48+x+6:48xy+18
48+ x+6:48+%y—9) strcat(”cl.n<” concat{( x ) ">")
48%x+5:48+y+18 "R90”)
tf_schCreateWire(cv list (48xx+17:48xy+418
48%x+17:48%xy—9) strcat ("cl<” concat( x ) ">")
48%x+16:48xy+18 "R90")

else
tf_schCreateWirce(cv list (48xx+6:48%y+418
48+ x+6:48%y—9))
tf.schCrecateWire(cv list (48xx+417:48xy+18
48+ x+17:48xy—9))
)
x =x + 1

dbCreateParamlInst (cv inst-pfet nil x*340.5:3xy+40.375 "MY”
1 list (list("w” ”float” 250n)
list (717 " float” 360n)))
dbCreatelnst(cv inst.inv nil x*340.75:3%xy+0.1875 "MX"” 1)
tf.schCreateWire(cv list (48%x—4:48xy+3 48%xx+12:48%y+3)
strcat ("ml<” concat( —y ) ”">") 48xx:48xy+2 "R0”)

tf.schCreateWire(cv list (48+x+35:48xy+3 48%xx+40:48%y+3

48%x+40:48xy+8 48%x+8:48xy+8 48%x+8:48xy+6)

strcat ("ml.n<” concat( —y ) ">") 48%xx+40:48xy+3 "R0O”)

tf.schCreateWire(cv list (48*x+4+5:48*y+6 48*xx+4:48*xy+6

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G.3 Associated data array

48+x+4:48+y+9 48xx+4:48xy+12)

Pydd!” 48%x44:48%xy+4+12 "R0O”)
tf_schCreateWire(cv list (48xx+23:48+xy—5 48*x+23:48*y—7)

Pvss!” 48+x+422:48xy—~5 "R270")
tf.schCreateWire(cv 1ist (48+x+25:48+y—5 48xx+25:48»y—7)

Pvdd!” 48xx+424:48xy—5 "R270")

dbCreateParamlInst (¢cv inst_tnet nil —2.8125:y%x3-0.25 "R270” 1
list (list ("RES” "float” 0.366) list ("CAP” ”float” 0.265f)))
tf.schCreateWire(cv list (—46:48+xy+18 —46:48+y—-9))

y=y -1
)
close{ inPort )
)
for(i 0 x-1 ; the loads for placing up to 1024

dbCreateParamInst (¢cv inst_tnet nil i%*3+40.4375:y%3 ”"R270” 1

list (list ("RES” " float” 372) list ("CAP” "float” 0.269p)))
dbCreateParamlInst (cv inst_-tnet nil i%34+1.125:y+3 "R270” 1

list (list ("RES” ”float” 372) list ("CAP” ”float” 0.269p)))
dbCreateParamlInst (cv inst.¢N nil i%3:y%x3-2,1875 "RO” 1

list (list ("mult” "float” 1016)))
dbCreatelnst (¢v inst.noConn nil i*3:y*3—-2 "R0” 1)
tf_schCreateWire(cv list (48%1+6:48+xy+18 48xi +6:48xy—5))
tf_schCreateWire(cv list (48%i417:48xy+18 48+i+17:48%xy—5))

)
dbCreateParamlnst (¢cv inst_tnet nil —2.8125:y«3 "R270” 1
list (list ("RES” ”float” 372) list ("CAP” "float” 5.43p)))
tf_schCreateWire(cv list (—46:48%xy+18 —46:48xy—5))
dbCreatelnst (cv inst-noConn nil —2.875:3xy—1.625 "R0” 1)

tf.schCreatePin (cv "precharge.n” "input” —46:18 "R270")

tf.schCreatePin (cv strcat(”"ml<” concat( —y—1 ) ”:0>”) "output”
(x+1)x48:y=10)

tf_schCreatePin(cv strcat (”match.row.n<” concat{ —y—1 ) 7:0>")
"input” —60:yx7)

tf.schCreatePin (¢cv strcat{(”cl_n<” concat( x~1 ) 7:0>") "input”
x*x12—8:25, "R270")

tf_-schCreatePin (cv strcat(”cl<” concat( x—1 ) ”:0>") "input”
x*x12+4+8:25, "R270”)

schHiCheckAndSave()

G.3 Associated data array

procedure( ai.data_array (filename )
let ( (cv inst_r0 inst_rl inst_pfet inst.tnet inst_.noConn inPort

word bits x y ¢ i })

cv = tf_getWinCV ()

inst.r0=dbOpenCellViewByType (" assoc_i” "rom_0" "symbol”)
inst_r1=dbOpenCellViewByType (" assoc_-i” "rom_1" "symbol”)
inst_pfetz=dbOpenCellViewByType (*cmosp18” ”"pfet” ”symbol”)

inst_-tnet = dbOpenCellViewByType (” assoc-i"” "t.model” ”symbol”)
inst-noConn = dbOpenCellViewByType (” basic” "noConn” "symbol”)

inst_nand = dbOpenCellViewByType (" vst_n18_.sc_tsm_c4d” "NAN2D2” "symbol”)
inst_mux = dbOpenCellViewByType (” vst_-nl18_sc_.tsm_c4” "MUX4D2” "symbol”)

inPort = infile (filename)
when( inPort
y =0
while ( fscanf( inPort "%s” word )
bits = strlen ( word )
x =20
for(i 1 bits
¢ = substring(word i 1)
if { strcmp(c¢ 7"1”) == 0 then
dbCreatelnst(cv inst_rl nil 3%x:3xy "R0O” 1)
else

dbCreatelnst(cv inst_r0 nil 3*xx:3xy ”"R0O” 1)
)

dbCrecateParamInst (cv inst_-tnet nil x%3+1.125:yx3+0.0625 "R0” 1
list (list ("RES” ”float” 0.705) list ("CAP” ”float” 0.565f)))
if ( x == 0 then
tf_schCreateWire(cv list (48+x—4:48xy 48+x+23:48xy)
strcat (Pwl<” concat{ —y ) ">”) 48xx—4:48xy "RO")
else
tf.schCreateWire(cv list (48xx—4:48xy 48xx+23:48xy))

)
dbCreateParamlInst (¢v inst.tnet nil x*340.75:y*3—0.25 "R270” 1
list (list ("RES” “float” 0.366) list ("CAP” " float” 0.265f)))

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G.8 Associated data array

if( y == 0 then ; precharge circuity
dbCreateParamlnst (cv inst_pfet nil 3%*x+4+0.4375:1.32 "R0” 1
list (list ("w” " float” lu))) ; pull—up
tf.schCreateWire(cv list (48xx+10:21 48xx+11:21 48%x+11:27)
Pvdd!” 48xx+10:27 "R270") ; pull down vdd
tf_schCrecateWire(cv list (48*xx+7:21 48xx+5:21 48xx+5:29))
dbCreateParamlInst (¢cv inst.tnet nil x%341.125:1.875
"RO” 1 list(list ("RES” ”float” 0.705)
list ("CAP” ”float” 0.565f)))
if( x == 0 then
tfoschCreateWire(cv list (48%x—4:29 48%x+423:29)
”»precharge.data.n<0>" 48%x-4:29 "R0")

elsc
tf_schCreatecWire(cv list (48*x—4:29 48%x423:29))
)
)
tf_schCreateWire(cv list (48%x+11:48+y+18 48+xx+11:48xy—9))
x =x + 1;
)
dbCreatelnst (cv inst-noConn nil 3% (x—1)+2.75:y*3 "R0”)
y=y -1

close( inPort )

)
dbCreatelnst (cv inst_-noConn nil 3*x(x—1)+42.75:1.8125 "R0")

for(i 0 x—1 ; the loads for placing up to 256
dbCreateParamlInst (¢cv inst-tnet nil {*3+40.75:y*3 "R270” 1
list (list ("RES” ”float” 90.8) list (”CAP” " float” 1.32p)))
tf.schCreateWire(cv list (48+i+11:48xy+18 48%i+411:48xy—5))
tf_schCreateWire(cv list (48%i+11:48*y—26 48%i+11:48xy—32)
strcat ("bl0<” concat( i ) ">") 48%i+10:48*y—30 "R90”)

)
y=y —86
for(j y y+2 ; up to 1024
for(i 0 x—1
dbCreateParamlInst (¢v inst_pfet nil 3%14+0.4375:3xj "R0” 1
list (list ("w” "float” 1lu))) ; pull—up
tf_schCreateWire(cv list (48+1+10:48«j 48%i+11:48%j 48%i+11:48xj486)
Pvdd!” 48xi410:48%j+6 "R270") ; pull down wvdd
tf_schCreateWire(cv list (48+%i+7:48x*j 48xi+5:48xj 48x%i+5:48x%j+8))
dbCreateParamlInst (cv inst_tnet nil i%3+41.125:j%3+40.5625
"RO” 1 list(list{(”RES” "float” 0.705)
list ("CAP” "float” 0.565f)))
if( i == 0 then
tf_schCreateWire(cv list (48%i—4:48x% j+8 48] +4+23:48%j+8)
strcat (" precharge_data_.n<” concat{—j—11) ">”) 48%i—4:48xj+8 "R0”)
else
tf_schCreateWire(cv list (48%1—4:48xj+8 48%i+23:48xj+8))
)
dbCreateParamlInst (¢v inst_tnet nil i%x34+0.75:j%x3 YR270” 1
list (list ("RES” "float” 93.7) list ("CAP" "float” 1.36p)))
tf_schCreateWire(cv list (48%i+11:48%j—3 48%i4+11:48%j—5))
tf.schCreateWire(cv list (48%1411:48%j—26 48%i+4+11:48%j—32)
strcat (”bl” concat( —j—11 ) ”<” concat( i ) ">")
48% i +10:48%j—30 "R90”)
)
dbCreatelnst(cv inst_noConn nil 137.75:j%340.1875 "R0”)
)

dbCreatelnst (cv inst_.nand nil 20:-48 ”"R0”)
dbCreatelnst (¢cv inst_nand nil 20:-52 "RO")
dbCreatelnst (cv inst.mux strcat ("IMUX<” concat( x—1 ) 7:0>") 25:-50 "R0")
tf_schCreateWire(cv list (316:—-768 320:—-768) "row.match_.n<0>” 308:-768 "R0”)
tf_schCreateWire(cv list (316:—-770 320:—-770) "row-match.n<2>” 308:-770 "R0”)
tf_schCreateWire(cv list (316:—-832 320:—832) "row_match_n<0>" 308:—-832 "R0”)
tf.schCreateWirce(cv list (316:-834 320:—834) "row-match_n<1>" 308:—-834 "R0”)
tf_schCreateWire(cv list (344:—768 360:—-768 360:—-808 400:—-808))
tf_schCreateWire(cv list (344:—-832 360:—832 360:—810 400:-810))
tf.schCreateWire(cv list (425:—800 432:—800))
tf_schCreateWire(cv list (400:-800 390:-800)

strcat ("bl0<” concat( x—1 ) ":0>") 390:-800)
tf.schCreateWire(cv list (400:—802 390:-802)

strcat ("bl1<” concat( x—1 ) ":0>") 390:-802)
tf_schCreateWire(cv list (400:—804 390:-804)

strcat (”bl2<” concat( x—1 ) ”7:0>7") 390:-804)
tf_schCreateWire(cv list (400:—-806 390:—806)

strcat ("bl3<” concat( x—1 ) ”:0>") 390:-806)

tf.schCreateWire(cv list (331:—760 331:—750) "vss!” 330:=755 "R90")
tf.schCreateWire(cv list (333:—760 333:—750) ”vdd!” 332:-755 "R90")
tf.schCreateWire(cv list (331:—-824 331:-814) "vss!” 330:-819 "R90”)
)
)

tf.schCreateWire(cv list (333:-824 333:-814) "vdd!” 332:-819 "R90”
tf.schCreateWire(cv list (412:—792 412:—782) “vss!” 411:—787 "R90”

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G.3 Associated data array

tf_schCreateWire(cv list (414:—-792 414:-782) "vdd!” 413:—787 "R90")
tf.schCreatePin (cv "precharge_data_n <3:0>” "input” —10:24xy "R0"); bit_line
tf.schCreatePin (cv strcat ("wl<” concat( —y—7 ) 7:0>") “input” —4:y*7)
tf.schCreatePin(cv strcat(”bl<” concat( x—1 ) 7:0>") "output”
432:—800 "RO")
tf.schCreatePin (cv "row_match.n<3:0>" "input” 288:-—800 "R0")
; schHiCheckAndSave()

))

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix H

Schematics

These are the schematics for an ternary CAM associative indirect design to be placed
in a 1-Gbit DRAM. I assumes four-way set associativity, but all 25 address bits and

20 redundant memory bits are still in the design.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rsemas

1 1
sctenr
. ] %
) e - gosctins
st 2[RI L wm Y
¥ T

1] 1J
seain | prases
g, B L gl B
[ [
. O ]
2 L3 s @

W poicte< 0>

Figure H.1: Top level schematic of associative indirect redundancy. It does not
include the redundant memory (connected via pointer).

cas_n I

i
cal<11:0> - ‘
f cus_n mem_en_n =
ros-n ®—|ras_n teh._rodtgmateh_n<3:a> —
row< 12:8> match_row.

= precharge..data..n<3:8>
col<11:8> motch_coP EEhArge-data.n< 3:@> —-—rr—r-— mw_mutcruy{is,’mﬂj\'w-’"‘d
row<12:0> Tow_m_n<7:8> row_m_n<7:6> - wi<7:8> wi<7:8>
row_maotch_n<3:@8>

El<45:2

5 <4523
<eowg |

section gg2<@>
bose<19:0> fi<1:20>
mask<24:0> <245

Figure H.2: Associative memory (match and data arrays)

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



juouoduwiod yoyewr moy :gH oInsig

<@ >UTWTRO ff—m—] <pi>uTIW

—a— <gi>w Esis,swus-ﬁii 5. d *:JFESEJEEUE%ES cd_%c# uTsou
AR a18zt
IS
Sk
vy |
£282
o
3
g
b
_ [Ery—— = o
P ITROIT YW N PRED] 5
<@IESUTURIOWT IO | <p0>UTusIoNI MOl <@L 2
<@R>UTIIoW, et 2
Ra:ed: N
S
v
L . ], voeow [ 1o Aerop-argous
= <
S& &
84 i
<@ >3¢82] T seet 7
.
813
— z
2.2 >PT MO
<@:z1 >7582Zk °
g
@ <@zTi>nos
|
ZgAN vi—=s
X |
<gzispat |4 <o:z1>058zk

<@ZL>1¢82

wPP’\.
issA

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vss!
vdd}

D0
=

vss!

vdd!

| guddt

>
@
Gvss

vss!
vdd!
[

A2

0o
0o

]
nanzoa 2 & Bout

728
4 7 A RB2 z
in ——e .
_JL \
28
A S 7
Figure H.4: Row access strobe delay
“vcr‘ ]
1:18@.2@n JI S P s
w:509.9n s g g ‘g g'} g*
7 j " j 1 ey 7<1:8>
%8 8 28
NoRaDS A RG22z A BUFEBI6 2
enable_n [h——

Figure H.5: Row match array match-line pre-charge

194

B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g
¥
a

.
4
el
i
-1 I 1 I | I 1 N ) IR 1 . .
PRI . o= e - . . o
£ H § § § § g ¢ §
<uiuT 73 xu Fﬂ \5 W |c F“ |‘7 ’u%ﬂg
ju
- > s | e 2 | L 1 Al n
<gLar = L) - LS ) L) ™ T 5 —ep 3
i £ § g § § ¢ g
<giu o =t ot s e - G e ——e—lvpd
L U 15 S N -SS  JSUNS N I SN U I JUNOS py S _ii
—®
_ 2 - - -8 -3 - S i A I - S
. . As - o A
<gru" - i T LI il i T ¥
R ]
— e B B B B | =
- =
<o 7 ™ wg = = ™y %
£ 5 ¢ § § £ @
i 3 : i : £
e ' - . : . i o
e | ) U 1R S [ O SN [ B S B & S t ] S
=
,,,,, -1 N1 WU § NUN | SE-1 I E _— £
E E £ E £ E ! g
e \ - . s : \ . g
wee® R ®l & & &L Bl & & ..
Nej
RO . . " - e s o+ . !
§ § 5 § § 5 ¢ ¢ jus
g 3 g H % g
<o — . . . . . . :
B L e L e e e S — ) ] o
=
- -3 - 3| I gl ) - S - - B0
B
< - ds H= o= A a4 as 5
§ i § § s § ;
<gouT ] 3 '5 B \5 \ﬁ > i T
SIS IS | AN { E§ U - NN N S
- - de o= ! - A= .
§ £ ¢ ¢ g § ¢ g ¢
J L . i : 2 &
o - r S S I O I ;
J
3 -1 I -1 I | WURR | B § S § S H— S
PP - e d- . - s -
¢ § 1 : ¢ ¢ ¢
<e> ot ot ot - G § s L wpl
1S R I SO R & S [ S [ S I S e -
e
3 S 1 S . -3 L 3 - I - I 2
<@ o L T = o= oy ™y
PE e e Iid T s = ¥ b T
- 4 I I IR | BN N I B 1 N
—‘ -y =
<m— P I 1 G T, I T G L]
' i : g : ; ¢ {
o : 8 i : g b ol
:
SN S R & S R b L 5 S
[=
i — = D— 0 2 Ft— . I 2 - SN
i A o= - .. o .- .
£ § § § § § : : :
§ § & § : § g i

R

ELITTR Y iy w
1

vrstvyzed I

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(;Ae1re oY) Ul 9I9YMAUR INODO YOJRW B PIP) [0IJU0D YO MOY L H 0Indi

E>UTUDLIMG)
<EE>UTN L i

(.,,.
- _.QME o <o

|
.,

gpsien

@ vabiouzad

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

161

cot<11:8> P——4

row_mateh_n<3:6> P

——I—. mem_en_n

row_m_n<7:8> '

W %‘
» o
>15
1t "
2131
14<11:0>
| %8
- H%ol_n<ﬂ:®> Al > > 7 col_d_n<11:0>
no <> AND2D4
22 A2
A RvB2 7
vss! vdd!
—
T T
- s . O‘ 5<11:0> il
%10 =}
212 o At 2L col_d<11:8> ng
4
- A2 AND2D |
j2
g § g 8 mi<7:8> mem_en_n
Al EXOR2D2 Z - A EUF§D4 = out_en match_ctri_mid
A2 precharge_n<3:8>
3
N
)
o
°
1
©
P}
4
®
_
°
o
£ 9<3:0>
_d_n<3:0>
] - A; EXOR202 z P . prechorge_data_n<3:0>
o
2
§ & o 17<7:@>
¥ ‘:’ Al £2 zt—a—p wic7:2>
_ R - col_m AND2D2 ’
& mG‘ChJOW~M@Zco\_Tmrmy_mid mi<7:8> - A2
i t precharge_n
cas._n .—0—!—1 sncbie,mom,cci,prechcrge_prﬁuthurge_nJ—F

Figure H.8: Column match component



enable_n [I——4

vss!
vgd!
(EPRLLLN

Y "o "
83 8 8 4l
—a—1a g0fEbs 7 A 80FEDs 7 A B2 2z % g+
Y
E
NAN2D4 o
in [ ——80
wlw
gf\
1
48
W2z
Figure H.9: Column access strobe delay
5
3
g
MY
oFinn ]
1180, — —
e 82 a3 B
+>+ >+ & g*
" n 7<1.8>
48 23 E
PO z Wwe:  z BuUtEBsz  z »o
15, Noraoz

Figure H.10: Column match array match-line pre-charge

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



|
'E

[3

199

@

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- %iﬁ Exse Lﬂ @L—-ﬂ B LT B
. i e L ERS S e ey
i ol R R { R ol
10 == 1 [ o ===
I R N | R { R Vi
21 = 1 0 [ [
i 0 4] i o o 1] o
[ T | S eryy o SO | SR =N | S ey S S e c SR | SO - OO - — O -
= A = = =9 0 00 === 1 =
|V N (N R { R
1062 ] =P == P 0= 1 0= 0 = 10 ==
O R S N | A 4 R 4 I 1
TEEmE TS I E TS TE e e =
CHIC TR RO N /NN (| N 4
0= 1 2 105 = == 10 = = ===
I A (R N
5 1 5P =0 1 50 02 [ o= ]
T T 4 €A i B {1 N
- w - O e U | L = =
eI e N = = =
SR el il = il il = = gl il b =
ST T 4 N { A { I
I =S S SR | SO SO S ey | Sy S | SN -y o M | S s UL | S ey
] 0 0 0 =D
I | N | I
P s — S S s R | S s B s R | Sy S == WO | T W S S =)
0 T == = D = =< M ===
IV I A
. T % $- ! 't‘- |
:
e i e ol i e i

Figure H.11: Column match array



g
§
T
§
H
aon

(;ypjew SSAIPPe Ue PIP) [0I3U0D YPYR]N T H 9InS1

yazane
EE

—
1ep%,
e

@ <oyt

i g i H H H i
e, Ehe Ele, T T @ o
_ _ N f N | S !
] pi=e o ] et
iz

ot b s0u0309

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(sfsewr pue aseq ‘uo10as Jururejuod) Aeire ee(] ¢l H oINS

-

D {1 ; ui H m 0 5} B 0 B} (} B { Ul | [ ul

IERREER

SARRERREAREEY

o ot o od o o d-odo b od-oh-odadad ob obododobosod ob obobod ok asodosodobodobosod o obodod-od ododododododod
ook oo ot o b o d od ododad-od-osob ot ot obabobad shobododosod o obosnd obodobod ndodododododobsodosodod
cd ok od-osob ok ob oo obobadohahobosodosodod ot obabododosododhododbadodadodododabododododadodododod
Seh-orb-odh o - - R - b S O el Db O G e O e D Db O OO b Db b-O - b oo o ok o o d-od-oh-Od- oD o
ootk o ok o o b-oh-od os ob ok od o ad od obsodosob obod od os odododobob o ohodosod-oscs o odod ok odododod
oo b od od ododoh-obob ot o adodododododobodobobotododod ododobododobcdosod obododobodadodosodod

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T
] | |
LB m
T T | R
|\1:'__;_= ;E ::“'!“; ' ST T
; RRL AT i

RN AR AT iR
| ARdIR | i
J(* 11 R R LL i
ﬁj TG TR T SRR T et
I EUT T LLLWL‘W'L' LL#L*LAL%LU i
i ‘ ! ! = | ] i
i T L
[ LTy i :
i T T Rl
u i MU' T T i
iy i L
—— im == % & h i

AR I R i

t Tt T 4
g S %ﬂz |
{ |
LI EIJI
§ §

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure H.14: Move don’t care bits in address to lowest order bits



— s &8
L &3 2
| A
e
e T - & T - it
| e m—— ‘—| SN memeise——t L"ﬁ %
) ] 38

Figure H.15: OR (No-carry adder)

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



