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Figure 3.2: kAE1 WT immunoprecipitates and colocalizes with the AP-1 adaptor 

complex. A. paraffin-embedded 2 µm thick mouse kidney sections were submitted to 

heat-induced antigen retrieval before blocking and incubation with rabbit anti-kAE1 

antibody and mouse anti-gamma adaptor subunit. Slides were then incubated with anti-

rabbit antibody coupled to Alexa 488 (green) and anti-mouse antibody coupled to Cy3 

(red), followed by nuclear staining with DAPI (blue). Samples were examined using an 

Olympus spinning disk confocal microscope and a 100 X objective. Bottom: 

enlargement of the region contained in the white square in the above picture. Note that 

only few cells, that correspond to alpha IC, show basolateral membrane staining of 

kAE1. Non-stained cells are likely beta, and non-alpha non-beta IC, and principal cells.  
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(Continued from figure 3.2) 

White arrows indicate the location of overlapping red and green staining. Bars =10 µm. 

B. kidney homogenate was prepared from freshly dissected mouse kidneys and either 

directly loaded on an 8 % gel or immunoprecipitated with a goat anti-AE1 antibody. 

Coimmunoprecipitated endogenous µ1A proteins were detected with a rabbit anti-

murine µ1A antibody. 
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Importantly, the rabbit anti µ1A/B antibody detects both µ1A and µ1B (263) proteins, 

therefore, the 40 % and 50 % reduction represent the reduction in both µ1A and B 

together. µ1A is 79 % identical to µ1B (166,264) thus, although the siRNA we designed 

presents 3 bases out of 19 mismatching with µ1B mRNA, we performed a quantitative 

RT-PCR to determine the respective amount of endogenous µ1A or B mRNAs remaining 

in cells knocked-down with siRNAs against µ1A, relative to cells treated with siRNAs 

against luciferase. Quantitative RT-PCR indicated that 48 hours post-transfection, there 

was 63 ± 3 % (n = 7, ± SEM) endogenous µ1B and only 38 ± 4 % (n = 7, ± SEM) 

endogenous µ1A mRNAs remaining in cells transfected with siRNAs against µ1A. 

Concomitant with this significant decrease of endogenous µ1A/B mRNA and proteins, 

our immunoblot showed an abrupt decrease (43 ± 5 % (n = 3, ± SEM)) in the amount of 

kAE1-WT protein after 48 h incubation and an 81 ± 5 % (n = 3, ± SEM) decrease of 

kAE1 protein amount after 72 h (Fig 3.3 A and B). No change of endogenous amount of 

housekeeping protein actin was observed in any of these conditions. The quick 

disappearance of kAE1 in MDCK cells where µ1A and to a lesser extent µ1B were 

knocked down suggests mis-sorting and premature degradation of kAE1 in these cells.  

              To determine the respective role of µ1A or µ1B knock down on kAE1 stability, 

we specifically knocked down endogenous µ1B using a previously published siRNA 

sequence (216) (Fig 3.3 C). Interestingly, this siRNA was reported to knock down 90 % 

of endogenous µ1B protein in MDCK cells but increased µ1A protein levels by a 1.5 to 2 

factor without altering µ1A mRNA levels. Accordingly, we were unable to detect a 

significant decrease of µ1A and B proteins using the non-discriminating rabbit antibody 

against µ1A/B. However, although RT-PCR results indicated that endogenous µ1B 
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mRNA was knocked down by 80 ± 2 % (n = 3, ± SEM), consistently with data previously 

published, there was only a 21 ± 5 % (n = 3, ± SEM) decrease of steady-state kAE1 

protein in these cells after normalizing the intensity of kAE1 bands to the internal control 

actin. These results indicate that the knock down of either µ1A or µ1B results in 

decreased expression of kAE1. 

              To confirm these findings, we investigated the sub-cellular location of kAE1 WT 

protein in cells where µ1A and to a lesser extent µ1B were knocked-down by 

immunostaining. MDCK cells expressing kAE1-WT were transiently transfected with 

siRNA against µ1A or luciferase and grown for 48 or 72 hours prior to detecting kAE1 

(red staining) and CD-MPR (green staining) (Fig 3.3 D). CD-MPR binds to newly 

synthesized hydrolases carrying mannose-6-phosphate in the TGN and target them to 

endosomes before they reach their final destination in lysosomes (259). AP-1A interacts 

with CD-MPR via the µ1A subunit. In MDCK cells transfected with siRNA against 

luciferase and incubated for either 48 or 72 h, kAE1 WT protein (red) localized 

predominantly at the plasma membrane, and CD-MPR was located in a perinuclear 

compartment, likely the TGN. In contrast, 48 h after transfection with siRNA against 

µ1A, the staining from kAE1 WT protein was dramatically decreased and plasma 

membrane staining was no longer detected (Fig 3.3 D). In the same cells, the CD-MPR 

TGN marker (green) showed a diffuse, non - perinuclear staining, in agreement with 

previous findings in µ1A-/- mouse embryonic fibroblasts (228). Seventy-two hours post-

transfection, there was almost no more red staining corresponding to kAE1 protein in the 

three cells transfected with siRNA against µ1A (as verified using fluorescein dye 

attached to the siRNA, data not shown) (white stars, Fig 3.3 D). In these three cells, CD-
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MPR also showed diffuse staining in the periplasm, but the top cell that was not 

transfected displayed normal plasma membrane red staining for kAE1 protein and normal 

perinuclear staining of CD-MPR. These data are consistent with the degradation of 

kAE1-WT protein in MDCK cells expressing reduced levels of µ1A/B.  

3.3.5. Expression of human µ1A-HA and µ1B-HA rescues kAE1 stability in 

µ1A/B siRNA transfected cells 

Since RT-PCR results indicated that the siRNAs we used were not exclusively specific to 

canine µ1A but also significantly knock down µ1B, we determined what effect siRNA 

resistant human µ1A or µ1B proteins expression would have on kAE1 stability in cells 

knocked down for endogenous canine µ1A/B. Figure 3.4 A shows that human µ1A HA 

and µ1B HA proteins are unaffected by the µ1A/B siRNAs since there is no significant 

decrease of human µ1A HA or µ1B HA in cells either transfected with siRNA against 

luciferase or against canine µ1A/B. Furthermore, in µ1A/B siRNA transfected cells, 80 ± 

6 % (n = 4, ± SEM) of kAE1 was detected after expressing human µ1A-HA while only 

67 ± 7 % (n = 4, ± SEM) kAE1 was present after pcDNA3 transfection (see materials and 

methods for detailed calculation) (Fig 3.4 B). Similarly, 86 ± 6 % (n = 4, ± SEM) of 

kAE1 was detectable after transfection with human µ1B HA in the µ1A/B siRNA 

transfected cells. These findings indicate that transfection with siRNA resistant human 

µ1A or µ1B stabilizes kAE1 in µ1A/B siRNA transfected cells. Thus, both µ1A and µ1B 

are involved in the stability of kAE1 at the steady state in epithelial cells. 
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Figure 3.3: Knocking down µ1A affects the stability of kAE1 as well as trafficking of 

cation-dependent mannose 6-phosphate receptor (CD-MPR) and kAE1 in MDCK 

cells. A. MDCK cells expressing kAE1 WT were transiently transfected with either 200 

nM of canine-specific siRNA duplexes targeting µ1A or 200 nM of control siRNA 

targeting luciferase and grown for 24, 48, or 72 h. Cell lysates (7 µg of proteins) were 

loaded on SDS-PAGE gel and proteins were examined by Western blotting using mouse 
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(Continued from figure 3.3)  

anti-HA antibody, rabbit anti- µ1A/B antibody that detects the endogenous µ1A and µ1B 

proteins, and mouse anti-actin antibody, followed by anti-mouse and anti-rabbit 

secondary antibodies coupled to HRP. Blot represents 3 independent experiments. B. 

histogram representing the percentage of kAE1 remaining in cells transfected with 

siRNA against µ1A, 48 or 72 h after transfection, after normalization to amount of actin. 

Amounts were calculated by densitometric analysis of 3 independent experiments, 

including the 1 presented on A. Intensity of the bands was measured using the Image J 

software. Error bars correspond to means ±SE. C. MDCK cells expressing kAE1-WT 

were transfected three times at 72-h intervals with 200 nM of siRNA against µ1B using 

the NEON transfection system according to a previously published protocol (19). 

Seventy-two hours after the third transfection, 15 µg of proteins in the cell lysates were 

immunoblotted with anti-µ1A/B, anti-actin or anti-HA antibodies. Table indicates the 

percentage of endogenous µ1B mRNA quantified by RT-PCR (n = 3), and the percentage 

of remaining kAE1 protein in these cells (n =3). D: 48 or 72 h posttransfection, cells 

grown on glass coverslips were fixed, permeabilized and blocked before incubation with 

rat anti-HA antibody and mouse anti-CD-MPR antibody. Secondary antibodies were 

donkey anti-rat antibodies coupled to Cy3 (red) and donkey anti-mouse antibody coupled 

to Cy5. Nuclei were stained with DAPI (blue). For the purpose of this figure, Cy5 

staining (corresponding to µ1A) is here shown in green. White stars indicate the location 

of 3 cells transfected with the siRNA against µ1A. Images represent 3 separate 

experiments. 

 



 94 

3.3.6. In presence of AP-1A, newly synthesized kAE1 does not traffic 

through recycling endosomes  

AP-1B, which is predominantly located in RE, is required for basolateral trafficking of 

some newly synthesized membrane proteins such as VSVG (256). Since kAE1-WT binds 

to both AP-1A and AP-1B, we wondered whether AP-1B is necessary for newly 

synthesized kAE1 to reach the plasma membrane in renal epithelial cells. Since kAE1 

reaches the basolateral membrane in polarized LLC-PK1 cells (159 and our own 

data,160), we suspected that this hypothesis would be wrong. Nevertheless, we asked 

whether newly synthesized kAE1 traffics to the plasma membrane when RE, which 

contain AP-1B, are inactivated.  

              We obtained a construct encoding a chimeric protein where the modified 

haloallcane dehalogenase haloTag (HT) protein (Promega) is fused to the kAE1 amino 

terminus (kAE1-HT). We first confirmed that this fusion protein is properly targeted to 

the plasma membrane and to the basolateral membrane of polarized MDCK cells, despite 

some intracellular retention of the fusion protein (Fig 3.5 A). The HT system allows 

studying trafficking of a single pool of proteins, using pulse-chase-like protocols with 

multiple membrane-permeant, fluorescent HT substrates. We transiently co-transfected 

MDCK cells with VSVG, which traffics through RE on its way to the plasma membrane 

(256), and kAE1 WT HT protein in MDCK cells. After transfection, we stopped 

trafficking of newly synthesized VSVG in the Golgi by incubating the cells at 19 °C for 

18 hours. We then blocked all pre-existing kAE1-HT with a first coumarin-HT ligand, 

labeled newly synthesized kAE1-HT with a TMR (red) fluorescent HT substrate and 

allowed its trafficking to the Golgi at 19 °C. We inactivated RE using transferrin coupled  
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Figure 3.4: siRNA resistant µ1A stabilizes kAE1 in cells knocked down for µ1A 

and/or B. A. MDCK cells expressing kAE1 WT were transiently transfected with either 

5 µg of µ1A HA, µ1B HA or pCDNA3 as control. Twenty-four hours later, cells were 

transfected with 200 nM of siRNA targeting µ1A or 200 nM of control siRNA targeting 

luciferase and grown for 48 h. Cell lysates (20 µg of proteins) were loaded on SDS- 
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(Continued from figure 3.4) 

PAGE gel, and proteins were detected by immunoblotting using mouse anti-HA antibody 

and mouse anti-actin antibody. Blot represents 3 independent experiments. B. Histogram 

representing the percentage of kAE1 present in cells transfected with siRNA against µ1A 

or luciferase and either subsequently transfected with pCDNA3 vector, µ1A HA or µ1B 

HA. Amounts were calculated by densitometric analysis of 4 independent experiments; 

see EXPERIMENTALPROCEDURES for calculation details. Intensity of the bands was 

measured, using the Image J software. Error bars correspond to means ±  SE. *P < 0.05 vs. 

control. 
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to horseradish peroxidase (Tfn-HRP) (see methods for details) and then released 

trafficking of proteins from the TGN by transferring cells from 19 °C to 30 °C for 0 (no 

chase) or 3 hours (3 hours chase). This protocol was adapted from (256) and exploits the 

reaction catalyzed by HRP, which forms an insoluble precipitate with DAB and H2O2. 

We then immunolocalized VSVG (green), the kAE1-HT being already labeled with the 

red fluorescent substrate in side views (X-Z sections) of the cells (Fig 3.5 B). If newly 

synthesized kAE1 traffics through AP-1B positive RE prior to reaching the plasma 

membrane, it should be retained intracellularly in inactivating conditions, along with 

VSVG. In contrast, if kAE1 traffics independently from AP-1B positive RE, the RE 

inactivation should only retain VSVG intracellularly without affecting kAE1 cell surface 

localization. As seen in Figure 3.5 B, in contrast with control conditions, kAE1 was 

detected at the plasma membrane in cells where VSVG was retained intracellularly due to 

RE inactivation. We observed that after 3 h chase in control conditions (active recycling 

endosomes), 81 % (n = 121) of the kAE1 transfected cells displayed kAE1 at the cell 

surface and 76 % (n = 83) of VSVG transfected cells showed VSVG at the plasma 

membrane. In contrast, when RE were inactivated, 75 % (n = 86) of the kAE1-transfected 

cells displayed kAE1 at the cell surface while only 45 % (n = 86) of VSVG transfected 

cells showed VSVG at the plasma membrane. This result indicates that newly 

synthesized kAE1 does not traffic through RE prior to reaching the plasma membrane 

and suggest that kAE1 preferentially use another adaptor protein complex than AP-1B. 

3.3.7. Expression of µ1A rescues trafficking of newly synthesized kAE1 to 

the plasma membrane  
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Our previous data strongly suggest that, when AP-1A is present, AP-1B is not involved in 

trafficking of newly synthesized kAE1 to the plasma membrane. Since kAE1 does not 

interact with the TGN-located AP-4 adaptor complex that is involved in basolateral 

targeting of some proteins (262), we hypothesized that AP-1A may be involved in 

targeting of newly synthesized kAE1 to the plasma membrane.  

              To test this hypothesis, MDCK cells with knocked down µ1A/B were 

transfected with kAE1-HT and either human µ1A HA, µ1B HA or the empty vector. 

Forty eight hours later, we performed a pulse-chase like experiment as follows: pre-

exisiting kAE1-HT proteins were first blocked with coumarin-HT substrate, and newly 

synthesized proteins were stained with TMR (red) fluorescent HT substrate and either 

allowed to traffic for 0 or 3 hours (3 hours chase) at 37 °C (Fig 3.6). After fixation, cells 

were examined using a confocal microscope. Cells transfected with the fluorescein 

coupled siRNA displayed green labeling and expression of µ1A HA or µ1B HA was 

confirmed using a mouse anti-HA antibody coupled to Cy5. To better assess plasma 

membrane targeting, we took multiple sections in the z-axis through the cell and show X-

Z views of kAE1 staining. Figure 3.6 showed that kAE1 is detectable at the plasma 

membrane of cells where µ1A HA was transfected. In this experiment, 88 % of the cells 

(n = 9) that were transfected with kAE1, µ1A/B siRNA and µ1A HA displayed cell 

surface kAE1. As seen in the “µ1B HA” representative images on Figure 6, only 53 % of 

the cells rescued with µ1B HA (n = 15) displayed cell surface kAE1 while the remaining 

47 % showed intracellular retention of kAE1. This last finding suggests that µ1B can 

partially compensate for the absence of µ1A, in agreement with previously published 

works (206). Based on these results, we propose that µ1A from AP-1A adaptor  
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Figure 3.5: Newly synthesized kAE1 traffics in a µ1B independent pathway and does 

not travel through recycling endosomes. A. 24 h after transfection in MDCK cells, 

kAE1-HT was stained with 50 nM of FAM-HT substrate (green) for 10 min at 37 °C. 

After 3 washes for 5, 5, and 10 min with culture medium without FBS or antibiotics on 

ice, cells were fixed, blocked with 1 % BSA, and incubated with Bric 6 antibody  
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(Continued from figure 3.5) 

followed by anti-mouse antibody coupled to Cy3 (red) before being mounted the 

coverslip on slides. Samples were examined using an Olympus spinning disk confocal 

microscope and a 100 X objective. Note that Bric 6 antibody recognizes an extracellular 

epitope of kAE1 on these nonpermeabilized cells. Right: kAE1-HT expression, stained in 

red with TMR HT substrate, in polarized MDCK cells. Blue staining indicates nuclear 

staining with DAPI. Bar = 10 µm. B. MDCK cells were transiently transfected with 

cDNAs encoding VSVG and kAE1-HT, and newly synthesized proteins were blocked in 

the Golgi by incubating cells at 19 °C (see EXPERIMENTAL PROCEDURES for 

details). After blocking all the preexisting kAE1 with a first HT substrate, newly 

synthesized kAE1-HT was stained with TMR-HT substrate (red) and allowed to traffic to 

the Golgi by incubating cells at 19 °C. During that incubation, Tfn-HRP was added to the 

medium at 19°C to allow its accumulation in RE. RE were then either inactivated as 

described in EXPERIMENTAL PROCEDURES (“inactivated recycling endosomes”) or 

kept intact (“control conditions”). Newly synthesized proteins were then released from 

the Golgi by incubation at 30 °C for 0 or 3 h before fixation. VSVG protein was detected 

using an anti-GFP antibody (green), and total kAE1 is stained in red. Samples were 

examined using an Olympus spinning disk confocal microscope and a X 100 objective. 

Blue staining corresponds to DAPI nuclear staining. Yellow staining indicates 

colocalization between red and green colors. Bar =10 µm. 
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complexes facilitates kAE1 targeting to the plasma membrane of non-polarized epithelial 

cells. 

3.4.  Discussion 

The physical interaction between kAE1 carboxyl-terminus, via a canonical tyrosine / 

aspartate / glutamate / valine (YDEV) sequence, and µ1A protein from the adaptor 

complex 1A was recently reported (52). In our study, we characterized the novel 

interaction between kAE1 protein and µ subunits from the AP-1 adaptor complexes in a 

physiologically relevant model cell line, the renal epithelial MDCK cells. In this cell line, 

kAE1 protein behaves similarly as when expressed in renal IC: kAE1 protein is properly 

folded (156), and traffics to the basolateral membrane (158-160). When expressed in 

porcine LLC-PK1 cell line that is devoid of endogenous µ1B, kAE1-WT was also 

predominantly located at the basolateral membrane (159,160). In both MDCK and LLC-

PK1 cells, we were able to co-immunoprecipitate heterologously expressed kAE1 WT 

with endogenous µ1A and/or B and with endogenous gamma adaptin, indicating that 

kAE1-WT physically interacts with AP-1 adaptor protein complexes. In addition, in 

MDCK cells, we show that kAE1-WT immunoprecipitates with heterologously expressed 

µ1A HA and µ1B HA subunits. Using siRNA knock down, we confirmed that AP-1 

adaptor complexes are required for normal stability of kAE1 in MDCK cells (Fig 3.3).  
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Figure 3.6: µ1A HA allows newly synthesized kAE1 to reach the plasma membrane. 

µ1A HA allows newly synthesized kAE1 to reach the plasma membrane. MDCK cells 

were transfected with siRNA against luciferase or fluorescein-labeled siRNA against 

µ1A/B. Twenty-four hours later, the cells were transfected with kAE1-HT and either µ1A 

HA, µ1B HA, or pCDNA3 vector as a control. Forty-eight hours after this second 

transfection, preexisting kAE1-HT proteins were blocked with coumarin-HT substrate, 

and cells were incubated at 37 °C for 30 min to allow synthesis of new kAE1-HT. Newly 

synthesized kAE1-HT were then stained with TMR-HT substrate and incubated at 37 °C 

for 0 (no chase) or 3 h to allow trafficking of the protein. Cells were then fixed, 

permeabilized, blocked with 1 % BSA, and incubated with mouse anti-HA antibody to  
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(Continued from figure 3.6) 

detect µ1A HA or µ1B HA. Slides were examined using an Olympus IX81 microscope 

equipped with a Nipkow spinning-disk optimized by Quorum Technologies and a X 100 

objective. Bar = 10 µm. Top: kAE1-HT localization on side (X-Z) views of the cells. 

Green staining corresponds to cells transfected with the µ1A/B siRNA, blue staining 

indicates the location of human µ1A HA or µ1B HA, and red staining corresponds to 

cells expressing kAE1-HT; Two right columns correspond to the 2 phenotypes observed 

with cells rescued with µ1B HA. 
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Furthermore, introducing siRNA resistant human µ1A or µ1B stabilized kAE1 in these 

cells (Fig 3.4). In support of these findings, we were able to co-immunoprecipitate kAE1 

with µ1A from freshly dissected mouse kidneys (Fig 3.2 B) and we observed a co-

localization of endogenous kAE1 and AP-1A and/or B in intracellular vesicles of mouse 

kidney sections (Fig 3.2 A). Thus, our results strongly support that AP-1A is required for 

processing of the polytopic basolateral protein kAE1 to the plasma membrane in renal 

epithelial cells. Although further work is needed in polarized epithelial cells, our results 

highlight the unsuspected key role of AP-1A adaptor complex for targeting of this 

basolateral membrane protein. Our results are in agreement with recent findings from 

Gravotta and colleagues who showed that AP-1A is involved in basolateral targeting of 

membrane proteins and that AP-1B can partially compensate for the absence of AP-1A 

(206). Of note, had our µ1A/B siRNA been exclusively specific to µ1A subunit, we 

would likely have been unable to see any effect on kAE1 protein stability as endogenous 

µ1B may have compensated for the loss of endogenous µ1A. 

              Interestingly, only AP-3A µ but not AP-4 ε was also found to co-

immunoprecipitate with kAE1 (Fig 3.1 C and D). AP-4 is located in subdomains of the 

TGN and is involved in basolateral targeting of LDL receptor or MPR46 but not of TfnR 

in epithelial cells (262). The lack of interaction of kAE1 with AP-4 ε suggests that the 

AP-4 adaptor is not involved in kAE1 targeting to the plasma membrane. Nevertheless, 

we cannot exclude an interaction via other AP-4 subunits such as the µ subunit that binds 

to cargo proteins (205). AP-3A is ubiquitously expressed and is found in the TGN and in 

endosomes. We hypothesize that endocytosed kAE1, targeted for lysosomal degradation, 

traffics via AP-3A positive endosomes. 
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              µ1B from AP-1B protein complex was found to physically interact with kAE1 

protein. Since both kAE1 and AP-1B are expressed in epithelial cells (166), such 

interaction between kAE1 and AP-1B was not surprising. AP-1B is involved in the 

targeting of some basolateral membrane proteins such as VSVG to the basolateral 

membrane (256): newly synthesized VSVG proteins exit the TGN and within a few 

minutes, enter transferrin-positive RE prior to reaching the cell surface. Therefore, we 

tested whether AP-1B, which colocalizes with TfnR (219), is also involved in kAE1 

targeting to the plasma membrane by inactivating TfnR-positive RE (Fig 3.5). We found 

that inactivating RE did not affect cell surface trafficking of newly synthesized kAE1 to 

the cell surface, in contrast with trafficking of VSVG. Thus, newly synthesized kAE1 

protein, a protein normally expressed in epithelial IC, traffics to the basolateral 

membrane in a fashion independent of the epithelial-specific µ1B adaptor protein. Since 

in MDCK cells, endocytosed kAE1 co-localizes with TfnR (our own unpublished data), a 

protein that co-localizes with AP-1B adaptor complex (219), we hypothesize that 

endocytosed kAE1 interacts with AP-1B in transferrin receptor-positive RE. Indeed, 

plasma membrane kAE1 may be constitutively endocytosed and targeted to recycling 

endosomes where it may interact with AP-1B protein complex prior to returning to the 

cell surface. This hypothesis is consistent with the clear stabilization of kAE1 after 

expression of siRNA resistant µ1B in cells where endogenous µ1A and B were knocked 

down (Fig 3.4), but remains contradictory with the predominant basolateral targeting of 

kAE1 at the basolateral membrane of LLC-PK1 cells. One would expect that if AP-1B is 

required for proper recycling of endocytosed kAE1 to the basolateral membrane, kAE1 
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would either be prematurely degraded or apically mistargeted in polarized LLC-PK1 

cells. 

              The physical interaction of kAE1 with µ1A from adaptor complex 1A was more 

unexpected. To date, AP-1A has been reported to be important for CD-MPR trafficking 

between the TGN and endosomes (228). In agreement with our findings, two recent 

works reported the key role of AP-1A for basolateral targeting of various membrane 

proteins (206,265), suggesting that AP-1A may play an under-estimated role for normal 

processing of a wide number of basolateral membrane proteins. In our study, we 

observed that kAE1 is destabilized and degraded via a lysosomal pathway in cells where 

µ1A and to a lesser extent µ1B were knocked down (data not shown) and that expression 

of siRNA resistant µ1A restored stability of the protein (Fig 3.4). This last finding 

confirms that AP-1A is important for kAE1 stability and trafficking. It also suggests that 

kAE1 is degraded via specific mechanisms that differ from CD-MPR, which is not 

rapidly degraded when mis-sorted in µ1A-deficient cells (228).  

Our results from Figure 6 suggest that µ1B can occasionally compensate for the absence 

of µ1A for kAE1 processing. This is in agreement with the compensatory action of AP-

1B in absence of AP-1A for sorting of mannose 6-phosphate receptors and coxsackie and 

adenovirus receptor (265,266); however, the clear rescue of kAE1 trafficking in µ1A HA 

transfected cells strongly suggest that µ1A is the major adaptor complex involved in 

kAE1 processing. Thus, the role of the interaction between kAE1 and AP-1B remains 

unclear and will require further investigations. Interestingly, kAE1 is not the only protein 

reported to traffic to the basolateral membrane in a µ1B independent way. Like kAE1, 

the Na+, K+-ATPase that resides at the basolateral membrane of epithelial cells, also 
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traffics in an AP-1B independent way to the basolateral membrane of MDCK cells. The 

identity of adaptor proteins involved in the Na+, K+-ATPase pump trafficking remains to 

be elucidated (261). 

              In addition to adaptor proteins, the carboxyl-terminus of kAE1 is the site of 

interaction with other proteins (267). Recently, GAPDH was also reported to interact 

with the D902EYDE motif in the kAE1 carboxyl terminal domain, which includes tyrosine 

904 from the Y904DEV907 motif that interacts with µ1A protein (53). The Y904DEV907 

motif contains tyrosine 904 that can be phosphorylated and its phosphorylation status 

determines whether the protein remains at the plasma membrane or undergoes 

endocytosis (57). Further studies will be needed to investigate whether binding of 

GAPDH affects the interaction of the carboxyl terminus of kAE1 with adaptor proteins 

and whether these overlapping interactions are part of a regulatory mechanism for kAE1 

targeting to the cell surface. 

              Two dRTA patients have been reported to carry mutations that cause carboxyl-

terminal truncations of kAE1 protein by 11 (R901X) or 23 (A888L/D889X) amino acids 

(167,268). The kAE1 R901X mutant either mis-trafficked to both basolateral and apical 

membranes in polarized MDCK cells or exclusively to the apical membrane in highly 

polarized MDCKI cells (159,160). We postulate that mis-trafficking of the R901X 

mutant and possibly of the A888L/D889X mutant cause dRTA due to the lack of 

interaction with µ1 subunits from adaptor protein complexes 1A or B, and perhaps with 

GAPDH. This would result in loading of newly synthesized kAE1 proteins in the wrong 

trafficking vesicles en route to the apical membrane instead of the basolateral membrane. 



 108 

It is possible that the phosphorylation status of this tyrosine potentially regulates kAE1 

interaction with µ1A adaptin. 

              All together, our study strongly supports that AP-1A regulates normal trafficking 

of newly synthesized kAE1 to the plasma membrane. Further studies are required to fully 

understand the respective physiological role of AP-1A and B on stability and polarized 

trafficking of newly synthesized or endocytosed kAE1 to the basolateral membrane of 

type-A IC in the kidney and the consequences of its mis-sorting on the development of 

dRTA. 
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4. Chapter four: Adaptor Protein - 1B regulates recycling of 

the kidney Anion Exchanger 1 in renal epithelial cells 
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4.1.  Introduction  

Plasma bicarbonate is the predominant extracellular buffer minimizing changes in 

extracellular pH. Alpha and beta-IC in the renal collecting duct participate directly in the 

maintenance of plasma bicarbonate. In polarized alpha-IC, the concomitant activity of at 

least three protein ensure proper bicarbonate reabsorption to the blood: cytosolic 

carbonic anhydrase II, apical H+-ATPase and basolateral kAE1 that is encoded by the 

SLC4A1 gene (136). Other proteins such as SLC26A7 or SLC26A11 may also play a 

role in this process. When mutated, the gene encoding basolateral kAE1 either induces 

dominant or recessive dRTA, a disease characterized by metabolic acidosis, 

hypokalemia, nephrocalcinosis and failure to thrive in children (269). kAE1 dRTA 

mutants are usually mis-trafficked either to the endoplasmic reticulum, to the Golgi or to 

the apical membrane instead of the normal basolateral membrane (136).  

              A growing number of either point or frameshift mutations in the SLC4A1 gene 

that cause dRTA affect the cytosolic C-terminus of kAE1 (168,169,268,270). The 

integrity of the carboxyl terminus plays a crucial role for normal kAE1 targeting to the 

cell surface as truncation of the last five amino acids is enough to reduce cell surface 

abundance of kAE1 by 50 % in HEK 293 cells (246). The C-terminal domain of kAE1 

physically interacts with cytosolic CAII, thus providing a functional metabolon that 

directly provides the exchanger with one of its substrate (11,271,272). The cytosolic C-

terminus of kAE1 also interacts with the β subunit of Na+/K+ ATPase pump in alpha-IC 

(273), this interaction being important for kAE1 residency at the basolateral membrane 

(273). In addition, the C-terminal domain of kAE1 encompasses the phosphorylatable 

tyrosine 904 (57) that is part of a canonical tyrosine based YXXΦ. Phosphorylation of 
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the tyrosine 904 residue is important for kAE1 residency at the basolateral membrane in 

polarized MDCK cells (57). Moreover, tyrosine 904 also participates in kAE1 interaction 

with GAPDH in both kidneys and MDCK cells (53) as well as in the interaction with 

adaptor proteins (52). 

Adaptor protein complexes comprise five heterotetrameric members which provide an 

anchor between cargo proteins and clathrin to form CCV (274). These physical 

interactions involve various canonical motifs within cytoplasmic domains of cargo 

proteins, ranging from canonical tyrosine-based motif YXXΦ, di-leucine motifs or 

acidic motifs (211,212,275). AP-1 complexes exist as two isoforms, A and B. The 

ubiquitously expressed AP-1A is thought to mediate basolateral polarity (206) while the 

epithelial-specific AP-1B is involved in post-endocytic recycling to the basolateral 

membrane (276). AP-2 mediates the internalization of coated-pits from the plasma 

membrane and AP-3 targets cargo proteins to the lysosome. AP-4 also participates to 

basolateral targeting of some cargo proteins (262). The most recently described AP-5 is 

involved in endosomal sorting (202). AP-1 is a tetramer protein composed of four 

subunits, two large subunits (one β and one γ), a medium µ and one small σ subunit.  

              The C-terminus of kAE1 interacts with the µ1A subunit of AP-1A protein 

complex through the canonical tyrosine motif Y904DEV (52,215). Interestingly, the 

interaction site on kAE1 C-terminus is either disrupted or missing in most of the reported 

C-terminal mutants that cause dRTA. The first reported dRTA mutant affecting the C-

terminus of kAE1, kAE1-R901X, was shown to traffic either to the apical membrane or 

to both apical and basolateral membranes of MDCK cells, depending on the polarization 

degree of the cells (159,160) The engineered kAE1 Y904A/V907A double mutant 
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lacking the AP-1A binding site localizes exclusively to the apical membrane of MDCK 

cells [15]. Our work showed that AP-1A is essential for proper plasma membrane 

trafficking of newly synthesized kAE1 protein (215). This work found that kAE1 not 

only co-immunoprecipitates with the ubiquitous AP-1A but also with the epithelial 

specific AP-1B (215).  

              The epithelial specific AP-1B sorts basolateral proteins including VSVG along 

its biosynthetic route and the TfnR along both its biosynthetic and recycling routes in 

MDCK cells (216). LDLR is another known cargo protein that needs µ1B for recycling: 

when µ1B was knocked down in MDCK cells, LDLR was mistargeted to the apical 

membrane (216). When LDLR and TfnR were expressed in the porcine kidney epithelial 

cell line LLC-PK1, which lacks µ1B, they were both mistargeted to the apical membrane 

(276). Thus, AP-1B protein complex plays a specific role in sorting basolateral 

membrane proteins in their biosynthetic and recycling routes.  

              kAE1 was rapidly degraded and did not reach the cell surface in MDCK cells 

that were knockdown for the endogenous µ1A and to less extent µ1B by siRNA  (215). 

When either human µ1A or B was expressed in the knocked down cells, they stabilized 

and partially rescued kAE1 trafficking to the cell surface (215). Based on these previous 

findings, we aimed to identify the physiological role of the kAE1 and AP-1B interaction. 

We hypothesized that the interaction between kAE1 and µ1B is important for kAE1 

recycling in renal epithelial cells. According to our hypothesis, AP-1B would be 

important to maintain adequate amount of kAE1 at the basolateral membrane to 

efficiently reabsorb bicarbonate back into the blood. Herein, we examined the effect of 
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µ1B heterologous expression on kAE1-WT and R901X mutant’s cell surface expression, 

endocytosis and recycling in LLC-PK1 cells that are devoid of µ1B.  

4.2.  Materials and Methods 

4.2.1. Plasmid construct and antibodies 

The pCDNA3 plasmid constructs containing human kAE1-WT and R901X cDNA with a 

hemagglutinin (HA) or myc epitope in position 557 (in the third extracellular loop) were 

used to express kAE1 protein in the transfected cell lines. We used the Quick change II site- 

directed mutagenesis kit (Stratagene) or Q5 Site directed mutagenesis (New England 

Biolabs), according to the manufacturer’s instructions and confirmed the mutations by 

automated sequencing. The constructs encoding human µ1A-HA and µ1B-HA were 

provided by Dr. Heike Folsch (Northwestern University). The mouse monoclonal antibody 

against the HA epitope was purchased from Covance (Covance, Princeton, NJ). The mouse 

monoclonal and the rabbit polyclonal antibodies that detect myc epitope were purchased 

from Cell signaling, or from Santa Cruz Biotechnology respectively. Rabbit polyclonal 

antibody against the Na+/K+ ATPase was purchased from Cell signaling. Rat anti HA 

antibody was purchased from Roche (Roche Diagnostics). Anti-AE1 antibodies were 

provided by Drs. Reinhart Reithmeier (University of Toronto) and Joe Casey (University of 

Alberta), Bric 155 antibody was purchased from the International Blood Group Laboratory; 

the anti-phosphotyrosine 904 antibody was a kind gift from Dr. Ashley Toye (Bristol 

University). The anti-GAPDH antibody was purchased from Millipore. 

4.2.2. Cell culture 

MDCK (CCL-34), LLC-PK1 (CL-101), and HEK 293T (CRL-11268) cells were purchased 

from the American Type Culture Collection (ATCC). LLC-PK1 cells expressing kAE1-WT 
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were prepared according to methods previously described (247). Briefly, HEK 293 cells 

were transfected with p-VPack-GP, p-VPack-VSV-G, and pFB-Neo-kAE1-HA557 WT, 

pFB-Neo-kAE1-myc557 WT or mutant plasmids using XtremeGENE9 (Roche Applied 

Science). Cell culture supernatants containing infectious viral particles were added to 

dividing LLC-PK1 cells complemented with 8 µg / ml of polybrene (Sigma-Aldrich). After 

24-hours incubation, a heterogenous population of LLC-PK1 cells expressing kAE1 was 

selected with 3 mg / ml geneticin (Sigma-Aldrich). The cells were further maintained in 

DMEM: F12 containing 10 % FBS, 3 mg / ml geneticin, 1 mg / ml penicillin/streptomycin. 

For immunofluorescence experiment, 50 % confluent LLC-PK1 cells were transfected with 

1 µg cDNA and 4 µl XtremeGENE 9. 

4.2.3. Immunoprecipitation and western blotting  

Confluent LLC-PK1 cells expressing µ1B-HA and pCDNA3 empty vector or µ1B HA and 

kAE1-myc WT or R901X mutant were lysed in PBS containing 1 % Triton X-100 and 

protease inhibitors (1 µg / ml aprotinin, 2 µg / ml leupeptin, 1 µg / ml pepstatin A, and 100 

µg / ml PMSF). Protein concentration was measured using BCA assay (Pierce).  A fraction 

of the cell lysate (15 µg) was saved as total lysate; the remaining cell lysates were incubated 

with 4 µl rabbit anti AE1 N-terminus antibody (provided by Dr. Reinhart Reithmeier, 

University of Toronto) at 4 °C on rocker for 2 hours. Forty microliters of protein G-

Sepharose beads (Thermo Scientific, Rockford, IL) were added to each sample for 1 hour at 

4 °C on rocker to pull down the antibody. The bound proteins were eluted from the beads 

with 40 µl Laemmli buffer and detected by immunoblotting with mouse anti-myc and 

mouse anti-HA antibodies overnight at 4 °C. The blots were further incubated with anti-

mouse secondary antibody coupled to horseradish peroxidase (HRP) for 1 hour at room 
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temperature. Enhanced chemiluminescence (ECL western blotting substrate from Thermo 

Scientific, or ECL prime western blotting detection reagent from GE Healthcare) was used 

after to detect proteins. Relative band intensities were determined using the freeware Image 

J. 

4.2.4. Proximity ligation assay  

Semi confluent LLC-PK1 cells were seeded on coverslips and transfected with empty vector 

and µ1B as a negative control, kAE1-WT myc and CAII as a positive control, and with 

kAE1 myc and µ1B HA. The following day the cells were fixed with 4 % 

paraformaldehyde (PFA), then quenched with 50 mM NH4Cl, and permeabilized with 0.2 % 

Triton X-100. The slides were then blocked in 5 % donkey serum (Jackson Immunoscience, 

Jackson Immuno Research Europe Ltd, Suffolk, UK), 2 mg / ml salmon sperm (Sigma), 5 

mg / ml bovine serum albumin (Sigma) and 2 mM cysteine (Sigma) in TBS-Tween (TBST) 

with 5 mM EDTA (Sigma) for 30 min in humidifying chamber at 37 °C. The samples were 

then incubated with the appropriate combination of primary antibodies mouse anti-HA and 

rabbit anti-myc or rabbit anti-CAII diluted 1:50 in blocking solution for 1 hour at 37 °C. 

After washing, the slides were incubated with Duolink PLA Rabbit MINUS and PLA 

Mouse PLUS proximity probes (Olink Bioscience, Uppsala, Sweden) and proximity ligation 

was performed using the Duolink detection reagent kit (Olink Bioscience) according to the 

manufacturer’s protocol. High resolution images were acquired using the 60 X oil 

immersion objective on an Angstrom Illumination system (Quorum Technologies Inc.) 

equipped with OptiGrid structured illumination (Qioptiq), excitation and emission filter 

wheels (Ludl Electronic Products) and the Flash 4.0 camera (Hamamatsu). The Angstrom 

and associated hardware are mounted to the 100 % sideport on a DMI6000 (Leica 
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Microsystems), fully motorized inverted microscope. All hardware was controlled with 

Metamorph software (Molecular Devices). 

4.2.5. Peptide spot assay 

Fifteen amino acid long kAE1 peptides, covering the entire human kAE1 sequence were 

synthesized on cellulose membranes (277). Each peptide overlapped by 12 residues with the 

adjacent peptide. A positive control peptide was included based on the published interacting 

site of µ1B with the VSVG protein (HTKKRQIYTDIEMNR) (257,278). The negative 

control consisted in a 15 amino acid poly-alanine peptide. Two membranes containing 

exactly the same peptides were first blocked with 3 % skim milk in 1X TBST buffer (50mM 

Tris HCL, 150mM NaCl, 0.1%Tween 20, pH 7.4) for 4 hours at room temperature with 

gentle shaking. LLC-PK1 cells stably expressing µ1B HA and grown to confluency in two 

15 cm dishes were lysed in PBS containing 1 % Triton X-100 and protease inhibitors (1 µg / 

ml aprotinin, 2 µg / ml leupeptin, 1 µg / ml pepstatin A, and 100 µg / ml PMSF) and 3 ml of 

either lysis buffer or cell lysate containing a total of 6.75 mg of protein were added 

overnight to membrane 1 and 2, respectively, at 4 °C. The membranes were washed 4 times 

for 15 min with TBST buffer and incubated with a rat anti-HA primary antibody overnight 

at 4 °C, washed and incubated with a secondary anti-rat HRP antibody for 1 hour at room 

temperature. The membrane blots were developed using a scanner developer (In-Vivo FPro 

Carestream Imaging system). Results were analyzed using Image J freeware analysis 

program. The intensity of each spot on membrane 1 was subtracted from the intensity of the 

corresponding spot on membrane 2, and the average intensity of negative controls spots on 

membrane 2 was subsequently subtracted from the corrected value of each spot on the same 

membrane. This double correction approach ensured that only the strongest signals were 
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taken into account. As AP-1B is a cytosolic protein complex, interaction sites within 

transmembrane segments and extracellular loops were excluded, based on the topological 

model from (32). 

4.2.6. Cell surface biotinylation  

Confluent LLC-PK1 cells expressing kAE1-WT or R901X were transfected with pCDNA3 

empty vector or µ1B HA. Twenty-four hours after transfection the cells were incubated 

twice with EZ-Link Sulfo-NHS-SS-Biotin reagent (1 mg / ml) (Pierce) at 4 °C for 15 min in 

borate buffer (10 mM Boric acid, 145 mM NaCl, 7.2 mM KCl, 1.8 mM CaCl2, pH 9). The 

excess of biotin was quenched with 100 mM glycine in PBS four times for 1 min each 

wash. The cells were lysed in 300 µl TNT lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1 

% Triton X-100, 0.2 % SDS, 1 µg / ml aprotinin, 2 µg / ml leupeptin, 1 µg / ml pepstatin A, 

and 100 µg / ml PMSF). Ten percent of the lysate was kept as total lysate and the remaining 

was incubated with 100 µl streptavidin agarose resin (Thermo Scientific) for 1 hour at 4 °C. 

Cell surface proteins were eluted with 50 µl Laemmli buffer that contained 15 % beta-

mercaptoethanol. Samples were immunoblotted with a mouse anti-HA antibody to detect 

both kAE1 WT and µ1B proteins. Relative band intensities were determined using the 

freeware Image J. To quantify the ratios of surface kAE1, we considered that amounts 

loaded in “Total kAE1” fraction only represented 1/9 of the amount incubated with avidin 

beads.  

4.2.7. Cycloheximide treatment  

Confluent LLC-PK1 cells expressing kAE1-WT HA transfected with pCDNA3 empty 

vector or µ1B HA. Twenty-four hours after transfection, the cells were treated with 10 µg / 

ml cycloheximide (Fluka) for 0, 4, 8, 24 hours, the cells were then lysed in PBS containing 
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1 % Triton X-100 and protease inhibitors. Protein concentration was measured using BCA 

assay (Pierce). Samples were loaded on SDS-PAGE and mouse anti-HA was used for 

immunoblotting to detect both kAE1 WT and µ1B HA proteins. Relative band intensities 

were determined using the freeware Image J. 

4.2.8. Phosphorylation experiment  

Two groups of MDCK cells (3 X 106 each) were either transfected with 5 µg cDNA 

encoding kAE1-myc and µ1A HA or kAE1-myc and µ1B HA using the NEON 

electroporation system (Invitrogen) (1400-V pulse voltage, 20-ms pulse width, and 3 

pulses). Twenty four hours after transfection, one group of cells were treated with 200 µM 

pervanadate in warm DMEM:F12 media for 30 min at 37 °C, the other group was kept as 

control (warm media only). The cells were lysed with 500 µl phosphatase inhibitor lysis 

buffer (0.05 % Triton X-100, 10 mM HEPES, 100 mM NaCl, 14 mM beta - 

mercaptoethanol, 0.5 mM EGTA, MgCl2, PhosSTOP Phosphatase Inhibitor Cocktail Tablets 

(Roche), 100 nM Calyculin A (Sigma), pH 7.5). Protein concentrations were measured 

using BCA assay. A 20 µg aliquot of the total cell lysate was kept as the total fraction. The 

remaining lysate (1 mg) was divided into two parts: one immunoprecipitated with 3 µl 

mouse anti myc antibody and the other with 3 µl mouse anti Bric 155 antibody for 2 hours 

at 4 °C, followed by 40 µl protein G-Sepharose. The bound proteins were eluted with 50 µl 

Laemmli buffer and phosphorylated kAE1 was immunoblotted with an antibody raised 

against phosphorylated tyrosine 904 overnight at 4 °C. Total kAE1 was detected by a rabbit 

anti-AE1 N-terminus antibody (provided by Dr. Joe Casey, University of Alberta), µ1A or 

µ1B HA proteins were detected by rat anti-HA antibody. The stock solution of pervanadate 

contained 200 mM sodium orthovanadate in PBS and 3 % (W/W) H2O2, the mixture was 
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incubated for 15 min at room temperature in the dark. This concentrated pervanadate 

solution was diluted to 200 µM in DMEM:F12 medium supplemented with 10 % FBS. This 

diluted pervanadate solution was added to cells for 30 min at 37 °C. 

4.2.9. Competition between µ1 and GAPDH binding to kAE1 protein 

Two groups of MDCK cells (3 X 106 each) were transfected with 2 µg of kAE1-myc and 5 

µg pCDNA3 empty vector cDNA or with 2 µg of kAE1-myc and 5 µg µ1A HA or µ1B HA 

cDNA using the NEON electroporation system. Twenty-four hours after transfection, the 

cells were lysed and fractions containing fifteen-µg of proteins were kept as total cell lysate. 

Proteins in the remaining lysate (approximately 300 µg) were immunoprecipitated with 3 µl 

rabbit anti kAE1-myc antibody for 2 hours at 4 °C, followed by 40 µl protein G-Sepharose 

for an hour at 4 °C. Eluted protein were analyzed by immunoblotting. µ1A HA or µ1B HA 

were detected with rat anti-HA antibody overnight at 4 °C. Mouse anti-GAPDH antibody 

was added for 15 min at room temperature to detect the endogenous GAPDH protein. 

Relative band intensities were determined using the freeware Image J. 

4.2.10.   Endocytosis experiment  

Semi confluent LL-CPK1 cells were transfected with total of 1 µg of kAE1-myc and 

pCDNA3 as control or with kAE1-myc and µ1B cDNA using 4 µl X-tremeGENE 9 

transfection reagent (Roche). Twenty-four hours later, the cells were incubated with mouse 

anti-myc antibody for 45 min on ice. The antibody was washed three times with cold PBS, 

before incubation with warm DMEM:F12 medium at 37 °C for 20 minutes to induce 

endocytosis. An acid-wash was performed with a citrate buffer (40 mM citric acid, 100 mM 

KCl, 135 mM NaCl, pH 1.5), which was added to the cells for 10 min on ice to wash out 

non-endocytosed antibodies. The cells were then fixed with 4 % PFA for 10 minutes on ice, 
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permeabilized with 0.2 %, Triton-X 100 for 15 min, blocked with 1 % bovine serum 

albumin (BSA) for 20 min before incubation with the secondary antibody anti-mouse Alexa 

488 (Invitrogen) to detect endocytosed kAE1-myc. Rat anti-HA antibody was added for 20 

minutes followed by anti rat Cy3 to detect µ1B HA. Mouse anti myc antibody was added 

again for 20 minutes followed by anti mouse Dylight 649 secondary antibody to detect total 

kAE1. 4', 6-diamidino-2-phenylindole (DAPI) was used to stain the nucleus.  

              To inhibit endocytosis with Dynasore, semi-confluent LLC-PK1 cells stably 

expressing kAE1-myc were incubated at 37 °C in DMEM: F12 medium without FBS for 1 

hour for serum starvation to promote the intake of Transferrin-Alexa 488 conjugate (Life 

technology). The cells were incubated with mouse anti-myc antibody for 45 minutes on ice, 

prior to three washes with cold PBS. The cells were incubated with Dynasore hydrate (120 

µM)  (Sigma, Cat no. D7G93) and Transferrin-Alexa 488 conjugate (10 µg / ml) in DMEM: 

F12 medium without FBS for 20 minutes at 37 °C to induce endocytosis. After three 

washes, citrate buffer was added for 10 minutes on ice to wash out the non-endocytosed 

antibodies. Then endocytosis experiment proceeded as described above. Colocalization 

between kAE1-myc and Tfn-Alexa 488 was measured using Pearson’s colocalization 

coefficient Fiji freeware. High resolution images were acquired using the 60 X oil 

immersion objective on an Angstrom Illumination system (Quorum Technologies Inc.) 

equipped with OptiGrid structured illumination (Qioptiq), excitation and emission filter 

wheels (Ludl Electronic Products) and the Flash 4.0 camera (Hamamatsu). The Angstrom 

and associated hardware are mounted to the 100 % sideport on a DMI6000 (Leica 

Microsystems), fully motorized inverted microscope. All hardware was controlled with 

Metamorph software (Molecular Devices). For quantification of endocytosed kAE1 protein, 
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fluorescence intensities were measured using Volocity Imaging analysis program (Perkin 

Elmer). The ratios shown in histograms for endocytosed kAE1 represents (endocytosed / 

total) for each cell from three independent experiments.  

4.2.11.   Caveolin colocalization with kAE1  

Semi confluent LLC-PK1 cells were transfected with kAE1 myc and pCDNA3 as control or 

with kAE1-myc and Caveolin-YFP using FuGENE 6 transfection reagent (Roche) as 

described for the 12-well plate 0.5 µg cDNA: 3µl FuGENE 6 reagent. Twenty-four hours 

after transfection the cells were incubated with mouse anti-myc antibody diluted in 

DMEM:F12 medium for 45 minutes on ice. After three washes with cold PBS, the cells 

were incubated with warm DMEM:F12 medium at 37 °C for 20 minutes to induce 

endocytosis as described above. Anti-mouse Cy3 antibody was used to detect endocytosed 

kAE1. Total kAE1 was detected by mouse anti-myc antibody followed by anti-mouse 

antibody coupled to Dylight 649 for 20 minutes. DAPI was added to detect the nuclei. 

Colocalization between kAE1-myc and Caveolin was measured using Pearson’s 

colocalization coefficient with Fiji freeware analysis program. 

4.2.12.   Recycling experiment  

Semi confluent LLC-PK1 cells were transfected with both kAE1-myc and pCDNA3 as 

control or with kAE1-myc and µ1B HA. Twenty-four hours later, the cells were incubated 

with mouse anti-myc antibody for 45 minutes on ice, followed by three washes with cold 

PBS. Warm DMEM:F12 medium was added and cells were incubated at 37 °C for 20 

minutes to induce endocytosis. After an acid-wash with citrate buffer at pH 1.5 on ice to 

remove non-endocytosed antibodies, the cells were incubated again with warm DMEM:F12 

medium for 80 min at 37 °C to induce protein recycling then fixed at 4 °C with 4 % PFA. 
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The cells were blocked with 1 % BSA and incubated with goat anti mouse secondary 

antibody coupled to Alexa 488 to detect the recycled proteins. The cells were next 

permeabilized, blocked again and incubated with rat anti-HA antibody followed by anti-rat 

Cy3 antibody to detect µ1B HA. Mouse anti-myc antibody followed by anti-mouse Dylight 

649 secondary antibody detected non-recycled kAE1. DAPI was used after to stain the 

nuclei. Samples were examined using an Olympus IX81 microscope equipped with a 

Nipkow spinning-disk optimized by Quorum Technologies (Guelph, ON, Canada) and a 

100 lens. For the quantification of recycled kAE1 protein, the image colors intensities were 

measured using Volocity imaging program (Perkin Elmer). The ratios shown in histograms 

for recycled kAE1 represents (Recycled / total) for each cell from three independent 

experiments.  

4.2.13.    Statistical Analysis  

All the experiments were repeated at least three times. Results are expressed as mean values 

± standard error of the mean (SE). All statistical comparisons were made using unpaired 

student t-test. P < 0.05 was considered significant.    

4.3.  Results 

4.3.1. KAE1 interaction with AP-1B 

4.3.1.1. kAE1-WT is immunoprecipitated with µ1B in LLC-PK1 cells 

The interaction between kAE1 and AP-1A was originally identified using a yeast two-

hybrid assay and the carboxyl-terminal tail of AE1 as bait (52). In our previous work, we 

confirmed that kAE1 immunoprecipitates with µ1A as well as with µ1B in MDCK cells 

(215). As the carboxyl-terminus of kAE1 contains a potential canonical YXXΦ adaptor 

protein binding site (Y904DEV907) (52), we hypothesized that µ1B interacts with kAE1 via 
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this site. To test this hypothesis, we examined the interaction with the truncated kAE1-

R901X that is missing the last 11 amino acids [15]. To confirm that kAE1 and µ1B interact 

with each other, we transiently transfected LLC-PK1 cells (that do not express endogenous 

µ1B (276)) with µ1B and kAE1, both carrying HA epitopes. We immunoprecipitated 

kAE1-WT or R901X using anti kAE1 N-terminus antibody, and immunoblotted the 

membrane with mouse anti-HA antibody to detect both kAE1 and µ1B. As seen on Figure 

4.1 A, kAE1 protein migrates as two main bands in LLC-PK1 cells: the top band 

corresponds to proteins carrying complex oligosaccharide (open circle) and the bottom band 

corresponds to kAE1 carrying high mannose oligosaccharide (closed circle) (158). In 

agreement with our previous findings (215), these results show that µ1B co-

immunoprecipitates with kAE1 in LLC-PK1 cells (Fig 4.1 A). These results confirm our 

previous results supporting a physical interaction between AP-1B and kAE1 protein. 

4.3.1.2. kAE1 is in close proximity with µ1B protein 

To confirm that kAE1-WT and AP-1B are in close proximity to interact with µ1B in the 

cells, a proximity ligation assay was performed (279). In this assay, if the two proteins of 

interest are within 30 to 40 nm distance from each other, a specific, red signal is detected by 

fluorescence microscopy (280).  In our experiment, LLC-PK1 were transiently transfected 

with empty vector and µ1B HA as a negative control, kAE1-WT myc and CAII as a 

positive control, or with kAE1-WT or R901X myc and µ1B HA. Cells were then incubated 

with rabbit anti-myc antibody to detect kAE1 and mouse anti-HA to detect µ1B, and 

proximity ligation was performed using the Duolink detection reagent kit according to the 

manufacturer’s protocol.  
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Figure 4.1: µ1B interacts and colocalizes in the perinuclear region with both kAE1-

WT and kAE1-R901X truncated mutant in LLC-PK1 cells. A. LLC-PK1 cells 

expressing kAE1-WT HA or mutant were transfected with µ1B HA cDNA, kAE1 was 

immunopreciptated with anti kAE1 N-terminus antibody before immunoblotting with 

mouse anti-HA antibody to detect kAE1 and µ1B proteins. Open circle corresponds to  
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(Continued from figure 4.1) 

kAE1 carrying complex oligosaccharides, and filled circle indicates kAE1 carrying high 

mannose oligosaccharides. µ1B migrates as a 50 kDa band. B. For the proximity ligation 

assay, LLC-PK1 cells were transiently transfected with empty vector and µ1B as a negative 

control, kAE1-WT and CAII as a positive control, and with kAE1 WT or R901X and µ1B. 

Red dots appear when the two proteins are in close proximity to each other. Nuclei were 

stained with DAPI (blue). C. immunofluorescence experiment showing colocalization 

between kAE1 carrying a myc epitope and µ1B HA. Twenty-four hours post transient 

transfection, LLC-PK1 cells expressing kAE1 and µ1B were fixed, permeabilized and 

blocked before incubation with an anti myc antibody to detect kAE1 followed by secondary 

anti mouse antibody coupled to Alexa 488. Subsequently, cells were incubated with rat anti-

HA antibody to detect µ1B followed by secondary anti-rat antibody coupled to Cy3 (red). 

This sequential staining avoids cross reactivity of the anti-mouse secondary antibody on the 

rat primary antibody. Nuclei were stained with DAPI (blue). Bar = 10 µm. The inset shows 

a zoomed region of the cell showing yellow staining (colocalization). 
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Red fluorescent dots were detected in the positive control and in cells expressing kAE1-WT 

and mutants and µ1B but not in the negative control sample (Fig 4.1 B). These results 

indicate that kAE1-WT and R901X, are in close proximity to AP-1B mu proteins and 

support our immunoprecipitation results.  

4.3.1.3. KAE1-WT colocalizes with µ1B in the perinuclear region of 

LLC-PK1 cells 

To further determine whether kAE1 and µ1B colocalize in the same organelle in cells, we 

performed immunofluorescence. LLC-PK1 cells were transiently transfected with kAE1-

WT myc or kAE1 R901X myc and with µ1B HA cDNAs. KAE1 protein was detected using 

mouse anti-myc antibody (Fig 4.1 C, green) and rat anti-HA primary antibody (red) to 

detect µ1B HA by immunostaining. Our results show that AP-1B and kAE1-WT or mutant 

colocalize in the perinuclear region as shown by the yellow signal (Fig 4.1 C), confirming 

that kAE1-WT or mutant are in close proximity to µ1B in renal epithelial cell. 

4.3.1.4. AP-1B interacts with kAE1 via multiple biding sites 

As the expected C-terminal binding site for µ1B was either deleted or mutated in kAE1-

R901X mutant, we did not expect to see interactions or colocalization between µ1B and 

kAE1-R901X proteins. However, Figure 1 shows that µ1B interacts and colocalizes with 

kAE1 mutant. Therefore, we determined whether µ1B interacts with kAE1 via binding 

sites other than kAE1 carboxyl-terminus. To test this hypothesis, we performed a peptide 

spot assay (Fig 4.2). Fifteen amino acid long peptides were synthesized on two 

nitrocellulose membranes that were subsequently incubated either with lysis buffer as a 

control (membrane 1) or with a µ1B HA expressing LLC-PK1 cell lysate (membrane 2). 

The membranes were then incubated with anti-HA antibody and appropriate HRP-coupled  
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Figure 4.2: AP-1B complex has multiple interaction sites on kAE1 protein 

A. Nitrocellulose membranes containing overlapping peptides (15 amino acid per 

peptide) encompassing the entire kAE1 protein sequence were either incubated with lysis 

buffer only (membrane 1) or a cell lysate from LLC-PK1 cells expressing µ1B HA 

(membrane 2). The two membranes were then blocked and incubated with a rat anti-HA 

antibody followed by an anti-rat antibody coupled to HRP, to detect µ1B. Each spot 

corresponds to one of the overlapping peptides. The intensity of each spot was measured 

using Image J freeware. B. Topological model of kAE1 (modified from (32)) showing the 

sites of AP-1B interaction to kAE1 peptides with AP-1B complex. The sites of 

interaction represent the amino acid sequence that overlap within the peptide spots.  



 128 

(Continued from figure 4.2) 

Barrels represent transmembrane domains; grey diamonds represents the N-glycosylation 

attached to the fourth extracellular loop. 
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secondary antibody to detect HA antibody-interacting spots by immunoblotting. The 

binding sites within the transmembrane domains and the extracellular loops were 

excluded since µ1B is an intracellular membrane protein. After corrections for negative 

controls (see materials and methods for details), we confirmed that µ1B complex interacts 

with the carboxyl-terminus of kAE1 (Table 4.1, peptides 9 and 11). Interestingly, in 

contrast with peptides 9 and 11, no binding was found for peptide 10, suggesting that 

residues downstream of C-terminal alanine 908 may stabilize the binding. We identified 

several other binding sites in addition to the carboxyl-terminal Y904DEV motif (Table 4.1 

& Fig 4.2). Specifically, the S510FLVRF sequence within the second intracellular loop 

(between transmembrane domains 4 and 5) and the sequence T796SLSGIQLFDRILLL 

within the sixth intracellular loop (between transmembrane domains 12 and 13) showed 

the strongest signals, supporting the existence of additional binding sites of µ1B to kAE1. 

Overall, these results support that AP-1B interacts with kAE1 via the Y904DEV binding 

motif and suggest additional binding sites within the second and sixth cytosolic loops.  

4.3.2. Factors that affect kAE1-WT and AP-1B interaction  

4.3.2.1. Phosphorylation of the C-terminal tyrosine 904 does not affect 

kAE1 / AP-1B interaction 

In kAE1 cytosolic carboxyl-terminal domain, tyrosine 904 is phosphorylated in MDCK 

cells (57). As our results support the interaction between AP-1B and the carboxyl-terminus 

of kAE1, we next tested the effect of kAE1 phosphorylation on kAE1-µ1B binding. MDCK 

cells stably expressing kAE1 WT myc were transiently transfected with µ1B HA and either 

kept in control conditions or treated for 30 minutes with pervanadate to promote 

accumulation of phosphorylated kAE1 within the cells, following the protocol from  
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Table 4.1: Sequence of kAE1 peptides that interact with AP-1B by peptide spot assay. ICL 

corresponds to intracellular loop. C-ter corresponds to carboxyl-terminus of kAE1.  

 

 
Peptide 
number Peptide sequence 

Band intensity after 
correction for negative 

controls and spot-specific 
background 

 
Location in kAE1 

secondary structure 

1 V501VLVVAFEGSFLVRF 434.3 ICL2 

2 V504VAFEGSFLVRFISR 1837.3 ICL2 

3 F507EGSFLVRFISRYTQ 100.7 ICL2 

4 S510FLVRFISRYTQEIF 144.3 ICL2 

5 F792LYMGVTSLSGIQLF 587.8 ICL6 

6 M795GVTSLSGIQLFDRI 1191.5 ICL6 

7 T798SLSGIQLFDRILLL 567.3 ICL6 

8 L810LLFKPPKYHPDVPY 455.2 ICL6 

9 A891KATFDEEEGRDEYD 12.9 C-ter 

10 E897EEGRDEYDEVAMPV 798.7 C-ter 
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Williamson and colleagues (57). KAE1 proteins were immunoprecipitated with either an 

anti-myc or a Bric155 antibody that recognizes the carboxyl-terminus of kAE1. Eluted 

proteins were detected either with anti-myc antibody or an antibody that specifically detects 

phosphorylated tyrosine 904 (57), and anti-HA antibody to detect co-immunoprecipitated 

µ1B HA. Figure 4.3 A shows that in conditions when tyrosine 904 was phosphorylated (Fig 

3 A, lane 6), µ1B HA still co-immunoprecipitated with kAE1, supporting that the 

phosphorylation status of this tyrosine does not dramatically impair the interaction between 

kAE1 and µ1B HA subunit. Of note, tyrosine 904 phosphorylation did not affect the 

interaction between kAE1 and µ1A either (Fig 4.3 B, lane 12). When kAE1 was 

immunoprecipitated with Bric155, which specifically detects kAE1 carboxyl-terminus, 

pervanadate treatment sharply, reduced the amount of immunoprecipitated protein (compare 

Figure 3, lanes 3 and 4 and lanes 9 and 10), supporting that tyrosine 904 phosphorylation 

impairs the interaction with Bric155 antibody. In absence of pervanadate, Bric155 

immunoprecipitated predominantly non-phosphorylated kAE1 protein as seen by the 

absence of a band in lanes 3 and 9 (top blots), suggesting that at the steady-state kAE1 

tyrosine 904 is mostly non-phosphorylated. As µ1A and µ1B binding sites on Y904DEV907 

amino acids overlap with the GAPDH interaction site (D902EYDEV) (53). We next tested 

whether µ1B and GAPDH are competing for the same or an overlapping interaction site on 

kAE1. 

4.3.2.2. AP-1B binding to kAE1 displaces GAPDH interaction with 

kAE1 

kAE1 protein physically interacts with GAPDH (53) via the carboxyl-terminal D902EYDE 

motif, which encompasses the binding site for µ1A that was reported by Saswadee and  
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Figure 4.3: Phosphorylation of tyrosine 904 does not impair µ1A HA or µ1B HA 

interaction with kAE1. MDCK cells co-expressing kAE1-WT myc and µ1A HA (A) or 

µ1B HA (B) were either kept in control conditions or treated with pervanadate for 30 

minutes prior to cell lysis and imunoprecipitation of kAE1 proteins. Eluted proteins were 

resolved by immunoblot and identified, using an anti-HA antibody to detect µ1B HA and 

µ1A HA , an anti-kAE1 antibody to detect kAE1 and anti-phospho-tyrosine 904 antibody to 

detect phosphorylated kAE1. The difference of band intensities in immunoblots with anti-

HA antibodies (A and B) results from the difference in the exposure times of the films but 

rather than a difference in protein expression level. Open circle corresponds to kAE1 

carrying complex oligosaccharides, and filled circle indicates kAE1 carrying high mannose 

oligosaccharides. This is a typical experiment out of 3 independent experiments. 
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colleagues (52). We thus asked whether binding of kAE1 to the µ1B subunit of AP-1B 

complex impedes binding to GAPDH. To answer this question, kAE1 WT-myc stably 

expressing MDCK cells were transiently transfected with vector cDNA or cDNA encoding 

for µ1B HA. In MDCK cells that express endogenous µ1A and µ1B, kAE1 interacts with 

µ1B (215). KAE1 protein was then immunoprecipitated and eluted proteins were detected 

with anti-myc antibody (to detect kAE1), anti-HA antibody (to detect µ1B) and anti-

GAPDH antibody to detect endogenous GAPDH (Fig 4.4). Heterologous expression of µ1B 

HA displaced GAPDH interaction with kAE1 as seen by the decreased band intensity of 

GAPDH in Figure 4.4 A (compare lane 3 to lane 1). Similar observations were made with 

the µ1A isoform (lane 2, Fig 4.4 A). Quantification of the relative band intensities from a 

minimum of 4 independent experiments confirmed that only 44 ± 7 % (n = 5, ± SEM) and 

28 ± 7 % (n = 4, ± SEM) of GAPDH co-immunoprecipitated with kAE1 protein after 

expression of µ1A and µ1B subunits, respectively (Fig 4.4 B). These experiments indicate 

that GAPDH and adaptor protein complexes AP-1A and B compete for the same binding 

site on kAE1 carboxyl-terminus. 

4.3.3. The effect of µ1B expression on the amount of cell surface kAE1 at 

the steady state 

4.3.3.1. In non-polarized LLC-PK1 cells, kAE1 is more abundant at 

the plasma membrane than kAE1 R901X mutant 

To better understand the physiological role of µ1B in kAE1 trafficking, we quantitatively 

characterized phenotypic differences between kAE1-WT and carboxyl-terminal mutants in 

LLC-PK1 cells that do not express endogenous µ1B (165). We first asked whether 

carboxyl-terminal kAE1 mutants have a similar abundance to kAE1-WT at the cell surface.  
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Figure 4.4: Expression of µ1B HA subunit displaces GAPDH interaction with kAE1 

carboxyl-terminus. A. MDCK cells stably expressing kAE1-WT myc were either 

transfected with vector cDNA, pcDNA3-encoding µ1A HA or µ1B HA. Twenty-four hours 

after transfection, cells were lysed and kAE1 was immunoprecipitated with a rabbit anti-

myc antibody. Proteins were immunoblotted using anti-myc antibody (to detect kAE1), 

anti-HA antibody (to detect µ1A or B HA) and anti-GAPDH antibody. The blot 

corresponds to one experiment from at least three independent experiments B. GAPDH and 

kAE1 band intensities were measured using Image J software and the ratio of GAPDH band  
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(Continue from figure 4.4) 

intensity in the absence of µ1A or µ1B HA (vector) and after the expression of either µ1A 

or µ1B HA was measured. Error bars correspond to standard errors of the mean, from a 

minimum of 3 independent experiments. 
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In MDCK cells, kAE1-WT is predominantly located at the plasma membrane in non-

polarized cells and at the basolateral membrane of polarized MDCK cells (159,160,247). In 

contrast, kAE1-R901X is predominantly found intracellularly in non-polarized MDCK cells 

but is found at the apical membrane when the cells are polarized.  

              To determine the amount of cell surface kAE1-WT and R901X mutant at the 

steady state, two experimental approaches were used: cell surface biotinylation and 

immunofluorescence. Plasma surface abundance was first determined in LLC-PK1 cells 

expressing kAE1-WT HA or R901X HA mutant, using EZ-Link Sulfo-NHS-SS-

biotinylation reagent (Fig 4.5 A). Eluted streptavidin fractions were analyzed by 

immunoblot with mouse anti-HA antibody to detect kAE1-WT and mutant.  Immunoblot 

results showed that kAE1-WT is more abundant at the cell surface than kAE1-R901X 

mutant (Fig 4.5 A). Densitometric quantification of cell surface kAE1 relative to total kAE1 

protein showed that the ratio of cell surface kAE1-WT is significantly higher than kAE1-

R901X (0.19 ± 0.01 % (n=3; ± SE) versus 0.15 ± 0.01 (n=3; ± SE), respectively) (Fig 4.5 B 

dark bars).   

              Immunofluorescence was used to confirm our biotinylation findings (Fig 4.5 C). 

Non-polarized LLC-PK1 cells were transiently transfected with µ1B HA cDNA and either 

kAE1-WT myc or kAE1-R901X myc mutant. To detect surface kAE1, fixed but non-

permeabilized cells were incubated with anti-myc primary antibody followed by Alexa 488 

(green) secondary antibody. After permeabilization, intracellular kAE1 was detected by 

incubating cells again with anti-myc antibody followed by a secondary antibody coupled to 

Dylight 649 (blue). The green fluorescence intensity measured using Volocity software 

reflected the amount of cell surface kAE1 and was normalized to the blue fluorescence 
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intensity (total kAE1). We found significantly less kAE1-R901X mutant at the cell surface 

compared with kAE1 WT as Figure 4.5 D shows that the ratio of cell surface kAE1-R901X 

mutant was 0.37 ± 0.06  (n=3; ± SE), which is 60 % less than kAE1-WT (0.94 ± 0.11 %, 

n=3; ± SE) at the steady state (Fig 4.5 D, dark bars). These results confirm that kAE1-

R901X mutant is less abundant at the plasma membrane than kAE1 WT. This decrease 

could originate from a decreased processing of newly synthesized kAE1, from increased 

internalization rate of kAE1-R901X or slow recycling of kAE1-R901X.  

4.3.3.2. In LLC-PK1 cells, the kAE1 R901X truncated mutant has a 

similar half-life as kAE1 WT 

We next determined whether the mutant is more rapidly degraded than kAE1-WT. LLC-

PK1 cells expressing kAE1-WT or mutant were incubated with the protein synthesis 

inhibitor cycloheximide for up to 24 hours and the relative amount of kAE1 remaining in 

the samples was determined by immunoblotting (Fig 4.5 E). We observed a slight reduction 

in kAE1-R901X half-life to 15.5 hours, compared with kAE1-WT (17 hours).  Similar 

results were obtained in MDCK cells (281). To investigate the effect of µ1B on kAE1 half-

life, the experiment was repeated with LLC-PK1 cells expressing kAE1-WT or mutant and 

transiently transfected with either vector or µ1B (Fig 4.5 E). Expression of human µ1B in 

these cells did not significantly affect the half-life of either kAE1-WT or R901X.  

4.3.3.3. Expression of µ1B decreases cell surface amount of kAE1 WT 

and R901X mutant  

AP-1B is located in common recycling endosomes and is necessary for recycling of 

basolateral membrane proteins (282). We therefore next determined whether expression of 

µ1B affects the amount of kAE1 proteins at the plasma membrane. To investigate the effect 
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of µ1B in these cells, we heterologously expressed human µ1B in LLC-PK1 cells (which do 

not express µ1B endogenously), a strategy known to restore a functional AP-1B complex in 

these cells (165,263,283). As AP-1A and AP-1B only differ in their µ subunit, expression of 

µ1B subunit in these cells is enough to create de novo AP-1B complexes. LLC-PK1 cells 

expressing kAE1-WT or R901X mutant and transiently transfected with µ1B cDNA or 

vector were first submitted to cell surface biotinylation. As shown on (Fig 4.5 A & B), cells 

expressing µ1B displayed a reduced ratio of cell surface kAE1-WT over total kAE1-WT 

(0.15 ± 0.01) compared to kAE1-WT expressing cells transfected with vector only (0.19 ± 

0.01). A similar result was obtained with cells expressing kAE1-R901X (0.09 ± 0.01 

compared with 0.15 ± 0.01 in absence of µ1B). Therefore, expression of µ1B significantly 

reduced the relative amount of cell surface kAE1-WT and kAE1-R901X.  

              A similar trend was obtained by immunofluorescence (Fig 4.5 C & D). Cells 

expressing kAE1-WT or R901X and transiently transfected with vector only or µ1B cDNA 

were stained for cell surface kAE1 (green), total kAE1 (blue) and µ1B expression (red). 

Consistent with cell surface biotinylation results, comparison of the ratio of surface kAE1 

over total kAE1 by immunofluorescence showed that µ1B expression significantly 

decreased the amount of surface kAE1-WT by 8 fold (0.94 ± 0.11 versus 0.12 ± 0.01), and 

R901X by two fold (0.37 ± 0.07 versus 0.17 ± 0.02).  

              This decrease could have three origins: expression of µ1B could (i) reduce the 

amount of newly synthesized kAE1-WT protein that reaches the cell surface, (ii) accelerate 

the rate of endocytosis of kAE1-WT; or (iii) reduce the amount of recycled kAE1-WT to 

the cell surface. We showed earlier (215) that expression of µ1B in MDCK cells knocked  
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Figure 4.5: In non-polarized LLC-PK1 cells, kAE1-WT is more abundant at the 

plasma membrane than the kAE1-R901X mutant, but its surface expression 

decreases upon µ1B expression. A. Cell surface biotinylation: confluent LLC-PK1 cells 

stably expressing kAE1 WT-HA were transiently transfected with empty vector or µ1B  
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(Continued from figure 4.5) 

HA cDNA. Twenty-four hours after transfection, the cells were incubated with 

membrane impermeable EZ-Link Sulfo-NHS-SS-Biotin reagent; the cells were lysed and 

incubated with streptavidin resin. Surface proteins were eluted from the beads with 

Laemmli reagent and immunoblotted with mouse anti HA antibody to detect kAE1 and 

µ1B. B. Histogram showing the ratio of surface kAE1 to total kAE1 in cells were 

transfected with kAE1-WT or R901X mutant and either µ1B or empty vector.  Band 

intensities were determined by densitometric analysis (using Image J freeware) of more 

than three independent experiments, taking into account that “Total kAE1” fractions 

correspond to 1/9 of the kAE1 amount used in “Surface kAE1” fractions. *P < 0.05 

versus kAE1-WT or R901X-expressing cells transfected with vector only, #P < 0.05 

versus the same kAE1-expressing cells transfected with µ1B. Error bars correspond to 

means ± SE. C. Immunofluorescence experiment of LLC-PK1 cells showing surface 

kAE1 in the presence and absence of µ1B: LLC-PK1 cells grown on glass coverslips and 

expressing kAE1 and µ1B were fixed and incubated with mouse anti-myc antibody to 

detect surface kAE1 followed by a secondary antibody coupled to Alexa 488 (green). The 

cells were then permeabilized and incubated with rat anti-HA antibody to detect µ1B HA 

followed by a secondary antibody coupled to Cy3 (red). Total kAE1 was detected with an 

anti-myc antibody followed by a secondary antibody coupled to Dylight 649 (blue). Bar 

= 10 µm. D. Histogram representing the ratio of green fluorescence intensity (surface 

kAE1) to blue fluorescence intensity (total kAE1) in LLC-PK1 cells that were transfected 

with kAE1-WT and mutant with either µ1B or empty vector. Fluorescence intensities for 

at least 50 cells for each condition from 3 independent experiments were measured using  
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(Continued from figure 4.5) 

Volocity Image analysis program. Error bars correspond to means ± SE. *P < 0.05 versus 

kAE1-WT or R901X expressing cells transfected with vector only, #P < 0.05 versus the 

same kAE1-expressing cells transfected with µ1B. E. The carboxyl-terminal truncated 

mutant has a similar half-life as kAE1-WT: LLC-PK1 cells stably expressing kAE1-WT 

HA or R901X mutant were transiently transfected with cDNA encoding µ1B HA or 

vector. Twenty-four hours later, cells were treated with the protein synthesis inhibitor 

cyclohexamide (CHX) for 0, 4, 8 or 24 hours. Remaining kAE1 proteins were detected 

by immunoblot with a mouse anti-HA antibody. Band intensities were analyzed by 

densitometric analysis, using the Image J software from more than 3 independent 

experiments, error bars correspond to means ± SE. The relative amount of kAE1 was 

normalized to the intensity of the band at initial time point.  
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down for endogenous µ1A and µ1B increased cell surface trafficking of newly synthesized 

kAE1-WT protein and increased the stability of total kAE1. We therefore considered the 

first hypothesis unlikely. Thus, we first tested the hypothesis that expression of µ1B 

accelerates the rate of kAE1 endocytosis. 

4.3.4. The effect of µ1B on kAE1 endocytosis 

4.3.4.1. KAE1 is endocytosed via a clathrin dependent pathway  

We first examined kAE1 endocytosis pathway as it is not characterized (193,284). We 

performed two sets of experiments for this characterization: in the first set, we asked 

whether endocytosed kAE1 colocalizes with endocytosed TfnR, which is well known to be 

endocytosed via a clathrin-dependent pathway (216). As a control, we used dynasore, an 

inhibitor of dynamin-dependent endocytosis that blocks Tfn endocytosis (285). The second 

set determined whether endocytosed kAE1 colocalizes with endocytosed caveolin protein, 

which is known to be endocytosed in a clathrin-independent pathway (286,287).  

              For the first set of experiments, serum starved LLC-PK1 cells expressing kAE1 

myc were incubated with mouse anti-myc antibody on ice to label cell surface kAE1. Cells 

were then incubated with Dynasore or vehicle and Tfn-Alexa Fluor 488 conjugate for 20 

min at 37 °C. Cells were then washed with a citrate buffer at pH 1.5 to remove antibodies 

remaining at the cell surface (Fig 4.6 A). Cells were fixed, permeabilized, and endocytosed 

kAE1 proteins were detected with anti-mouse secondary antibody coupled to Cy3 

fluorophore (red). Total kAE1 expression was detected by re-adding mouse anti-myc 

antibody followed by anti-mouse secondary antibody coupled to Dy649 (blue). 

Representative pictures on Fig 4.6 B (compare columns 1 and 2) show that Dynasore 

inhibited endocytosis of both kAE1 and Tfn, as neither red (kAE1) nor green (Tfn) was 



 143 

observed after acid wash. In absence of Dynasore (Fig 4.6 B column 1), kAE1 and Tfn 

colocalized in a perinuclear compartment, likely in recycling endosomes (216). 

Colocalization measurements between kAE1 and Tfn using Pearson’s colocalization 

coefficient showed that kAE1 and Tfn colocalize to some extent (Fig 4.6 C).   

              In the second set of experiments, LLC-PK1 cells expressing kAE1 myc and 

Caveolin-YFP were incubated with mouse anti-myc antibody followed by anti mouse Cy3 

(red) to detect endocytosed kAE1 (Fig 4.6 B, column 3). Colocalization measurement 

showed that endocytosed kAE1 did not colocalize with caveolin protein (Fig 4.6 C). As 

these previous experiments support that kAE1 is endocytosed in a clathrin-dependent 

pathway, we next determined whether kAE1-WT is endocytosed at the same rate as the 

carboxyl-terminal truncated kAE1-R901X mutant. 

4.3.4.2. The amount of endocytosed carboxyl-terminal kAE1 mutant 

R901X is higher than kAE1-WT 

As we were unable to efficiently remove the biotinylation reagent remaining at the cell 

surface in living cells in endocytosis experiments, we used immunofluorescence to 

quantitatively compare the relative amount of kAE1 protein endocytosed, by taking 

advantage of the extracellular myc epitope that has been added to the third extracellular 

loop of kAE1 (247). 

               After incubation with anti-myc antibody on intact LLC-PK1 cells expressing 

kAE1-WT or kAE1-R901X, and incubation at 37 °C to promote endocytosis of the protein, 

we were able to efficiently remove the antibody attached to kAE1 proteins that remained at 

the cell surface by performing an acid-wash of the cells for 10 minutes at 4 °C (Fig 4.6 A). 

To perform endocytosis experiments, the cells were incubated with anti-myc antibody at 4  
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Figure 4.6: kAE1 is endocytosed via clathrin coated vesicles and colocalizes with 

endocytosed transferrin receptor. A. As a control for the efficacy of the acid wash, LLC-

PK1 cells expressing kAE1 myc and µ1B HA were incubated with mouse anti-myc 

antibody on ice. The cells were then acid washed, fixed, and incubated with a secondary 

antibody coupled to Alexa 488 (green). After permeabilization, the cells were incubated 

with rat anti-HA antibody followed by anti-rat antibody coupled to Cy3 (red) to detect µ1B. 

Mouse anti-myc antibody followed by secondary antibody coupled to Dy649 (blue) was 

finally added to detect total kAE1. Bar = 10 µm. B. Immunostaining experiment showing 

that endocytosed kAE1 colocalizes with transferrin receptor but not with caveolin. In 

columns 1 & 2, intact LLC-PK1 cells expressing kAE1-myc were transferrin-depleted 

before incubation with mouse anti myc antibody on ice, then with dynasore hydrate and  
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(Continued from figure 4.6) 

Tfn-Alexa Fluor 488 conjugate at 37°C for 20 minutes. The cells were then fixed and 

permeablized before incubation with secondary antibody coupled to Cy3 (red) to detect 

endocytosed kAE1 protein. Samples were next incubated with the same anti-myc antibody 

followed by secondary antibody coupled to Dylight 649 (blue) to detect the intracellular 

kAE1-myc. In column 3, LLC-PK1 cells were transfected with kAE1-myc and Caveolin-

YFP. Twenty-four hours after transfection, the cells were incubated with an anti-myc 

antibody followed by a secondary antibody coupled to Cy3 (Red) to detect the endocytosed 

kAE1. C. Histogram showing the average Pearson’s Coefficient values for colocalization 

between kAE1 and transferrin receptor or kAE1 and Caveolin for a minimum of 50 cells. 

Error bars correspond to means ± SE. 
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°C for 45 minutes. Then, the cells were washed from the excess of antibody and transferred 

to 37 °C for 20 minutes (visible amount of endocytosed kAE1). After removing the 

antibody remaining at the cell surface with an acid-wash, cells were fixed, permeabilized 

and endocytosed proteins were detected with a secondary antibody coupled to Alexa 488 

(green). Intracellular kAE1 protein was subsequently detected using the same primary 

antibody and a differently labeled secondary antibody (blue). Using this procedure, we first 

established that incubation of the cells for 20 minutes at 37 °C was sufficient to detect 

endocytosed kAE1-WT proteins after acid-wash (Fig 4.7 A, first row). Comparison of 

endocytosed kAE1-WT, and R901X using Volocity Image analysis software showed that 

the ratio of kAE1-R901X internalized after a 20 minute incubation at 37 °C was slightly but 

significantly higher than that of kAE1-WT (0.19 ± 0.01 versus 0.14 ± 0.01 (n=3; ± SE), 

respectively) in non polarized LLC-PK1 cells. (Fig 4.7 B black bars), The slightly higher 

amount of endocytosed kAE1 R901X than kAE1-WT could explain the lower abundance of 

kAE1-R901X at the steady state compared to WT.  

              Overall, these experiments support that kAE1 is endocytosed via a clathrin-

dependent pathway and that endocytosed kAE1 colocalizes with Tfn. As (i) AP-1B is a 

clathrin adaptor complex that tethers cargo proteins to clathrin-coated recycling vesicles 

(166), and (ii) endocytosed kAE1 will likely be recycled to the plasma membrane, we next 

asked whether AP-1B plays a role in kAE1 endocytosis and recycling machinery. 

4.3.4.3. In the presence of µ1B, kAE1 is less efficiently endocytosed   

We next tested whether there is a difference in kAE1 internalization in presence or absence 

of µ1B subunit. As seen on Figure 4.7 A, we not only observed a decrease in number but 

also in apparent size of green intracellular vesicles. To quantify this effect, we used 
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Volocity image analysis software to measure the ratio of fluorescence intensity seen in the 

green channel (endocytosed kAE1) relative to the blue fluorescence intensity (total kAE1) 

to normalize for kAE1 protein expression in approximately 50 LLC-PK1 cells from 3 

independent experiments either transfected with µ1B (red channel) or empty vector. This 

quantification revealed a dramatic decrease of green fluorescence in cells expressing kAE-

WT or R901X and µ1B, compared with cells that were transfected with the vector only. The 

fluorescence intensity ratio decreased from 0.14 ± 0.01 in absence of µ1B to 0.07 ± 0.01 in 

cells expressing µ1B and kAE1 WT. Similar results were obtained for kAE1-R901X with a 

ratio decreasing from 0.19 ± 0.01 to 0.12 ± 0.01 (Fig 4.7 B black versus light grey bars). 

Therefore, unexpectedly, µ1B expression decreased significantly the amount of 

endocytosed kAE1-WT and R901X. We next asked whether µ1B expression also affects the 

amount of recycled kAE1 in LLC-PK1 cells. 

4.3.5. The effect of µ1B expression on kAE1 recycling 

4.3.5.1. Carboxyl-terminal kAE1-R901X mutant recycles less 

efficiently to the plasma membrane than kAE1-WT 

 To determine whether kAE1-R901X is less abundant at the plasma membrane because it is 

less efficiently recycled back to the plasma membrane, we incubated intact LLC-PK1 cells 

expressing kAE1-WT or R901X with anti-myc antibody for 45 minutes at 4 °C, prior to 

washing and transferring the cells to 37 °C for 20 minutes to allow protein endocytosis. 

After an acid-wash to remove proteins remaining at the cell surface, we re-incubated the 

cells at 37 °C for an additional 80 minutes to allow endocytosed kAE1 protein to recycle 

back to the plasma membrane. After washing, cells were fixed and recycled proteins were 

detected by adding a green secondary antibody. Cells were next permeabilized and total  
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Figure 4.7: kAE1-R901X mutant is endocytosed at a higher rate than kAE1-WT, but 

µ1B expression decreases both kAE1 WT and R901X endocytosis rates. A. LLC-PK1 

cells transfected with kAE1-myc and pCDNA3 as control or with kAE1-myc and µ1B HA 

cDNA were incubated with an anti-myc antibody on ice. The cells were incubated with a 37 

°C medium to induce endocytosis, prior to fixation, permeabilization, and incubation with a 

secondary antibody coupled to Alexa 488 (green). µ1B HA was detected with a rat anti HA 

antibody and a secondary antibody coupled to Cy3 (red) and total kAE1 with an anti myc  
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(Continued from figure 4.7) 

antibody coupled to Dylight 649 (blue) B. Histogram representing the ratio of endocytosed 

kAE1 to total kAE1 in cells expressing kAE1-WT or R901X mutant and either µ1B or 

empty vector. Fluorescence intensities were measured using Volocity image analysis 

program for at least 50 cells for each condition from 3 independent experiments. Error bars 

correspond to means ± SE. *P < 0.05 versus kAE1-WT or R901X expressing cells 

transfected with vector only, #P < 0.05 versus the same kAE1-expressing cells transfected 

with µ1B. 
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kAE1 proteins were detected by re-incubating with anti-myc antibody, detected with a blue 

secondary antibody (Fig 4.8 A). By normalizing green fluorescence intensities 

corresponding to recycled kAE1-WT or R901X, to that of the blue fluorescence 

corresponding to total kAE1, we determined the ratio of recycled kAE1 proteins after 80 

minutes. As seen on Figure 4.8 B (dark bars), kAE1-R901X mutant recycled significantly 

less efficiently to the cell surface than kAE1-WT (0.66 ± 0.03 versus 0.88 ± 0.05, 

respectively). This impaired recycling may contribute to the lower cell surface abundance of 

kAE1 mutants compared to kAE1-WT in non-polarized LLCPK cells.  

4.3.5.2. Expression of µ1B in LLC-PK1 cells reduces the amount of 

recycled kAE1 WT but not that of kAE1 R90X mutant    

We next wondered whether expression of µ1B would affect the recycling rate of kAE1-WT 

or R901X mutant. To answer this question, we performed endocytosis and recycling 

experiments in LLC-PK1 cells expressing kAE1-WT or kAE1-R901X mutant and 

transfected with either µ1B or empty vector (Fig 4.8 A, lower row). Expression of µ1B did 

not significantly alter the recycling rate of kAE1-R901X mutant (Fig 4.8 B, light grey bars). 

This result indicates that µ1B is not involved in kAE1-R901X mutant recycling, and 

importantly, rules out that the µ1B effects observed on kAE1 trafficking originate from a 

non-specific overwhelming of the processing machinery upon expression of µ1B. In 

contrast, we observed a 30 % decrease in the recycling rate of kAE1-WT upon expression 

of µ1B (from 0.88 ± 0.05 to 0.58 ± 0.03). Thus, as expected, recycling of the carboxyl-

terminal kAE1 R901X mutant is independent of µ1B, while kAE1-WT recycling was 

inhibited by µ1B expression in LLC-PK1 cells. 
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Figure 4.8: The kAE1-R901X mutant recycles less efficiently to the plasma membrane 

than kAE1-WT, and its recycling is independent of µ1B. A. LLCPK1 cells transfected 

with kAE1 myc and vector as control or with kAE1 myc and µ1B HA cDNA were 

incubated with an anti-myc antibody on ice. The cells were incubated with a warm medium 

for 20 minutes to induce endocytosis, acid washed and reincubated with warm media for 80 

minutes to induce protein recycling. The cells were then fixed and incubated with secondary 

antibody coupled to Alexa 488 (green) to detect recycled protein. Cells were then  
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(Continued from figure 4.8) 

permeablized before incubation with rat anti HA antibody followed by secondary antibody 

coupled to Cy3 to detect µ1B HA (red). Mouse anti-myc antibody was added again 

followed by secondary antibody Dylight 649 to detect the total kAE1 (blue). B. Histogram 

representing the ratio of recycled kAE1 to total in cells were transfected with kAE1-WT and 

mutants and either µ1B or empty vector. Fluorescence intensities for at least 25 cells for 

each condition from 3 independent experiments were measured using Volocity image 

analysis program, see statistical analysis for more details. Error bars correspond to means ± 

SE. *P < 0.05 versus kAE1- WT or R901X expressing cells transfected with vector only, #P 

< 0.05 versus the same kAE1-expressing cells transfected with µ1B. 
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4.4.  Discussion 

AP-1A and epithelial AP-1B tetrameric complexes share the small and two large subunits. 

These two complexes only differ by their medium subunit, µ1A for AP-1A and µ1B for 

AP-1B. Both AP-1A and AP-1B regulate basolateral trafficking of cargo proteins (216). 

However, the respective functions of these two complexes are a matter of debate in the 

current literature. Original studies pointed toward a different sub-cellular localization of 

the two complexes, with AP-1A mostly localized at the trans-Golgi network and AP-1B 

predominantly located in recycling endosomes (206,219,263). However, the absence of 

one AP-1 complex could be compensated by the presence of the other (206,266). More 

recent data supported that AP-1B sorts basolateral cargo proteins that are not efficiently 

recognized by AP-1A (288). In animals, µ1B is required for protein sorting and 

polarization of mouse intestinal cells, as lack of this subunit in these cells causes cell 

proliferation, hyperplasia and mistargeting of E-cadherin / beta-catenin complex (229). 

Both AP-1A and AP-1B interact with kAE1 protein (215). In the current work, we 

confirmed that AP-1B binds to kAE1 and that  binding is important for kAE1 endocytosis 

and recycling in LLC-PK1 cells. We performed our experiments in porcine epithelial 

LLC-PK1 cells that are devoid of endogenous AP-1B complex (263,283). Understanding 

the physiological role of this adaptor complex for kAE1 trafficking would ideally require 

studies conducted in polarized epithelial cells. However, we were unable to obtain 

properly polarized LLC-PK1 cells expressing sufficient amounts of kAE1, and we 

therefore pursued our experiments with non-polarized LLC-PK1 cells. 

              First, we showed that µ1B immunoprecipitated and colocalized with kAE1-WT 

and kAE1-R901X mutant in LLC-PK1 cells (Fig 4.1). This result confirmed our previous 
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finding that both AP-1A and µ1B co-immunoprecipitate with kAE1 WT in MDCK cells 

(215). As µ1A binds to kAE1 via the C-terminal Y904DEV motif (52) and µ1B binds to 

canonical tyrosine motifs YXXΦ (289), we assumed that µ1B binds to kAE1 via the same 

Y904DEV motif. Interestingly, our results indicate that deletion of Y904DEV motif did not 

abolish the interaction between kAE1 and µ1B (Fig 4.1). However, in contrast to kAE1-

WT, recycling of kAE1-R901X mutant was clearly independent of µ1B expression in 

LLC-PK1 cells, supporting a role for kAE1 C-terminus in protein recycling. These results 

point toward additional binding sites in kAE1 to AP-1B.  

              To determine whether µ1B interacts with kAE1 via different binding sites, we 

conducted a peptide spot assay, using peptides covering the human kAE1 sequence and a 

µ1B expressing cell lysate or a lysis buffer as control (Fig 4.2 & Table 4.1). We found 

that in addition to the kAE1 C-terminal E897EEGRDEYDEV sequence that includes the 

Y904DEV motif, µ1B also interacted with kAE1 S510FLVR sequence in the second 

cytosolic loop and with S799GIQLFDRILLL sequence within the sixth cytosolic loop of 

kAE1. Importantly, this assay was not designed to identify a direct interaction between 

kAE1 and µ1B, as it was performed with whole cell lysates expressing epitope tagged 

µ1B subunit. While the S510FLVR sequences has never been reported before as interacting 

motif with adaptor complexes, the E897EEGRDEY904DEV contains a typical acidic cluster 

signal and a YXXΦ motif known to interact with the µ1 adaptin (212). D805RILLL is 

another typical (D/E)XXXL(L/I) motif known to interact with β1- and  γ-σ1 subunits 

within the AP-1 complex (211,290). Together, our results suggest that kAE1 interacts via 

a combination of interacting sites with various subunits of the AP-1B complex. These 
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results reconcile our findings with previous data that showed no direct interaction between 

kAE1 and the µ1B subunit (245). 

              Phosphorylation of tyrosine 904, within the Y904DEV binding motif to µ1B, 

induces internalization of cell surface kAE1 (57), and the DEY904DEV motif within kAE1 

C-terminus also interacts with GAPDH (53). Thus, we next determined whether 

phosphorylation of tyrosine 904 could alter kAE1/AP-1B interaction. Upon pervanadate 

treatment to induce phosphorylation (57), we found that binding of kAE1 to AP-1B was 

similar to control conditions, supporting that phosphorylation of tyrosine 904 did not 

affect kAE1/AP-1B interaction in MDCK cells. Of note, this phosphorylation did not 

affect kAE1/AP-1A interaction either (Fig 4.3). Interestingly, our results demonstrate that 

phosphorylation of tyrosine 904 does not disrupt kAE1/GAPDH interaction as previously 

shown (53). They also infer that AP-1B and GAPDH are competing for the same 

interaction site on kAE1 (Fig 4.4), as expressing µ1B or µ1A decreased the binding of 

kAE1 to endogenous GAPDH (53). This finding together with our peptide spot assay 

results support that AP-1B binds to kAE1 via the C-terminal Y904DEV motif. 

Interestingly, a recent report showed that µ1B does not directly interact with kAE1 protein 

(245). This seeming contradiction may be explained by the interaction of kAE1 with AP-

1B via other subunits than µ1B, such as β1 and γ, σ1 as 

explained by the interaction of subunits within the AP-1B complex (211,290). Indeed, we 

do not have evidence supporting that the interaction between kAE1 and AP-1B occurs 

directly via the µ1 subunit.  

              To understand the physiological role of a kAE1 interaction with AP-1B, we first 

expressed kAE1-WT or R901X mutant in LLC-PK1 cells that are devoid of endogenous 
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AP-1B (283), and characterized kAE1 WT and mutant protein’s behavior. Both 

biotinylation and immunofluorescence results showed that kAE1-WT is more abundant at 

the plasma membrane of LLC-PK1 cells than mutants (Fig 4.5 A, C). Importantly, the two 

experimental approaches provided very different ratio of cell surface protein amounts. 

This discrepancy is likely due to an incomplete release of biotinylated proteins after 

elution, or in a difference in accessibility of the biotinylation reagent or antibody to the 

epitope or primary amine at the surface of the cells. Nevertheless, both approaches 

showed the same trend with a significant decrease in cell surface kAE1 after µ1B 

expression. In agreement with our results, kAE1-WT was predominantly located at the 

plasma membrane in non-polarized MDCK cells and at the basolateral membrane of 

polarized MDCK cells (159,160,247). In contrast, kAE1-R901X was found 

predominantly intracellularly in non-polarized MDCK cells but was apically located in 

polarized MDCK cells. Our results could reflect three scenarios: (i) kAE1-R901X mutant 

is less efficiently processed which would likely result in premature degradation, (ii) kAE1 

R901X mutant is endocytosed faster than kAE1-WT, or (iii) kAE1-R901X mutant is 

recycled less efficiently than kAE1-WT to the plasma membrane. As shown in Figure 4.5 

E, the half-lives of kAE1-WT and R901X were not different in LLC-PK1 cells, indicating 

that the reduced amount of kAE1-R901X at the cell surface was not due to accelerated 

turnover of the mutant.  

              To test the possibility that kAE1 mutants are endocytosed faster than kAE1-WT, 

we first briefly characterized the human kAE1-WT endocytosis pathway. We observed 

that kAE1 is constitutively endocytosed in a dynamin-dependent pathway and that 

endocytosed kAE1 colocalizes with the TfnR, a protein known to accumulate in recycling 
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endosomes after clathrin-mediated endocytosis (Fig 4.6) (291). In agreement with our 

findings, in erythroleukemia K562 cells and in HEK 293 cells, murine erythroid AE1 is 

also endocytosed in a clathrin dependent pathway and colocalizes with the TfnR after 20 

minutes (292).  

              We found that the rate of kAE1 R901X endocytosis is higher than that of kAE1-

WT (Fig 4.7).  The kAE1-R901X mutant is truncated at the last 11 amino acids, a part 

which contains three important motifs, the Y904DEV canonical interaction motif with 

adaptor proteins, the D902EYDE motif that interacts with GAPDH, and the putative PDZ1-

binding domain A908MPV, which may be responsible for kAE1 apical mistargeting in 

polarized cells (159,164,293). The instability and the rapid endocytosis of kAE1-R901X 

may be due to the absence of one or several of the above described motifs. Consistent 

with this, we observed that the absence of the last 11 amino acids of kAE1 influences the 

endocytosis rate of kAE1 protein. Finally, we found that kAE1-R901X mutant recycled 

less efficiently to the plasma membrane than kAE1-WT (Fig 4.8). Together, our data 

support that the C-terminal kAE1-R901X mutant is endocytosed at a higher rate and 

recycled less efficiently to the plasma membrane. This pattern may reflect the activity of 

the peripheral quality-control machinery, which was previously shown to prematurely 

degrade other kAE1 mutants that had escaped the endoplasmic reticulum of MDCK cells 

(294).  

              We next examined the effect of µ1B expression on kAE1-WT and the C-terminal 

kAE1-R901X mutant in LLC-PK1 cells. Using immunofluorescence and cell surface 

biotinylation, we found that upon expression of µ1B, relative kAE1 cell surface 

expression decreased significantly in LLC-PK1 cells expressing both kAE1-WT and 
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kAE1-R901X mutant (Fig 4.5 B & D). Previous work (215) has shown that AP-1A 

interacts with the kAE1 Y904DEV motif (52) and that this interaction is important for 

newly synthesized kAE1 trafficking to the cell surface (215). In light of these previous 

findings and knowing that LLC-PK1 cells express endogenous AP-1A (283), it is possible 

that kAE1-R901X mutant is less efficiently processed to the plasma membrane due to an 

inefficient interaction with µ1A. Alternatively, the R901X truncation is also predicted to 

disrupt the GAPDH binding site composed of the D902EYDE motif in kAE1 (53). This 

motif overlaps with the µ1A and B binding sites. Knock-down of GAPDH resulted in 

intracellular retention of kAE1 protein (53), consistent with GAPDH also regulating 

kAE1 intracellular trafficking.  

              Expression of µ1B in LLC-PK1 cells significantly decreased the amount of 

endocytosed kAE1-WT and kAE1-R901X (Fig 4.7). This finding was unexpected, as AP-

1B is not known to be involved in endocytosis (276), but it supports a destabilization of 

the endocytosis machinery upon expression of µ1B in LLC-PK1 cells. Interestingly, the 

amount of recycled kAE1 WT also decreased by a third upon expression of µ1B in LLC-

PK1 cells (Fig 4.8). However, µ1B expression had no effect on kAE1-R901X recycling 

rate, supporting that the truncation of the last 11 amino acids is enough to abolish the 

effect of µ1B on kAE1 recycling. This finding also supports that the effects of µ1B on 

kAE1 trafficking are not originating from overwhelming of the cellular processing 

machinery. The fact that kAE1-WT efficiently recycled back to the plasma membrane in 

LLC-PK1 cells that do not express endogenous µ1B support that these cells have an 

alternative recycling mechanism. 
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              We chose to perform these experiments in LLC-PK1 cells because they do not 

express endogenous µ1B and are thus devoid of AP-1B complex (165). Therefore, 

heterologous expression of µ1B was expected to restore functional AP-1B complexes as 

previously shown (165), and based on the role of AP-1B in protein recycling, to increase 

the recycling rate of kAE1-WT protein. Unexpectedly, µ1B expression in LLC-PK1 cells 

significantly decreased the recycling rate of kAE1-WT but did not affect that of the 

mutant (Fig 4.8). This unexpected decreased recycling rate of kAE1-WT upon expression 

of µ1B may originate from the use of non-polarized LLC-PK1 cells that could behave 

differently compared with polarized cells (206,216).  

              Despite our repeated attempts to test the effect of µ1B expression on kAE1-WT 

and mutant’s endocytosis and recycling in polarized LLC-PK, we were unable to keep the 

levels of kAE1 and µ1B expression high enough to be detected by immunofluorescence. 

Overall, our results show that expression of µ1B affects kAE1 WT endocytosis and 

recycling, but not that of the truncated kAE1-R901X dRTA mutant. This finding provides 

a possible mechanism for dRTA pathophysiology, where in polarized collecting duct 

epithelial cells, kAE1-R901X may be unable to properly interact with µ1B and therefore, 

is mistargeted to the apical membrane. 
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5.1.   Introduction 

This PhD thesis discussed the role the AP-1A and B on kAE1 protein trafficking and 

recycling in epithelial cells. This general discussion will focus on limitations and 

alternative approaches that could have been used to complement our studies.  

5.2.  Validity of the cell models 

Our study of the effect of µ1A expression on kAE1 trafficking used MDCK cells. The 

MDCK epithelial cell line was derived from canine kidney cortex in 1958 (295) MDCK 

cells are  considered a prototypical model of epithelial cells because of their ability to 

polarize and form tight junctions that separate the apical from the basolateral 

compartment (229). We chose MDCK cells for the following reasons: 1) when kAE1 is 

expressed in MDCK cells, it is located at the basolateral membrane mimicking its 

physiological location in alpha-IC (247), 2) when heterologously expressed in MDCK 

cells, kAE1 exchanges chloride for bicarbonate, as described in red blood cells (296,297) 

demonstrating that MDCK cells are a good model of renal epithelial cells, 3) MDCK 

cells do not express endogenous kAE1,  4) MDCK cells have been widely used to study 

the behavior of many membrane proteins that are implicated in human diseases. For 

example, MDCK cells have been used to investigate the polarized expression and 

trafficking of WT and ΔF508 CFTR mutant and for validation of novel therapeutic 

compounds for treatment of cystic fibrosis (298). In the case of kAE1, several studies 

have used MDCK cells to investigate kAE1-WT trafficking and phosphorylation (57), the 

behavior of different disease-causing point and truncation kAE1 mutants (159,160) or the 

role of chemical chaperones to rescue mis-trafficking and function of these mutants 

(296,297). The fact that in MDCK cells, kAE1 is properly localized at the basolateral 
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membrane and is functional support that these cells have the machinery needed for kAE1 

to behave as in its physiological environment, alpha-IC. 

              The effect of µ1B expression on kAE1 endocytosis and recycling was studied in 

LLC-PK1 cells. LLC-PK1 cells are porcine kidney epithelial cells, derived from proximal 

tubules (299) and they are naturally devoid of µ1B (276). LLC-PK1 cells get polarized 

and form tight junctions as in alpha-IC, but they have a low trans-epithelial electrical 

resistance, typical of proximal tubular cells. In agreement with previously published data 

(160), when expressed in polarized LLC-PK1 cells, kAE1 is located at the basolateral 

membrane. This cell line has also been widely used to study the role of µ1B in trafficking 

of a number of membrane proteins such as LDLR and VSVG proteins (216). 

              However, neither MDCK nor LLC-PK1 cells originate from the collecting duct 

and truly mimic intercalated cells. The collecting duct contains at least four types of cells, 

including alpha, beta, non-alpha non-beta intercalated cells and principal cells (134). This 

nephron segment is the only one that contains such a heterogenous population of cells. 

Importantly, depending on the acid-base status, intercalated cells can convert from beta to 

alpha-IC (129). This unique plasticity is very likely lost in cultured renal epithelial cells, 

which further limits the validity of the cell lines. Additionally, MDCK cells have been 

cultured for more than 40 years and are very likely to have lost many epithelial 

characteristics of renal epithelial cells. The best cell model to investigate kAE1 

trafficking is alpha-IC, where kAE1, µ1A and µ1B are endogenously expressed. One cell 

line that would more closely resemble the physiological environment of kAE1 is the 

mouse inner medullary collecting duct (mIMCD) cell line (300). However, this cell line 

does not express endogenous kAE1 protein and kAE1 has to be exogenously expressed in 
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order to study its trafficking. This suggests that although originating from the collecting 

duct, this cell line has lost some characteristics of intercalated cells. Moreover, mIMCD 

cell are not as well characterized as MDCK and LLC-PK1 cells, which limits the number 

of biological tools (antibodies, etc) we can use. Consequently, MDCK and LLC-PK1 

cells were the cells of choice to perform our studies. 

5.3.  Studies in non-polarized epithelial cells 

As µ1B is involved in polarized recycling of membrane proteins (216), our experiments 

investigating the role of µ1B in kAE1 trafficking and recycling should have been 

performed in polarized cells. However, for several reasons, we were unable to perform 

these experiments in polarized cells. In the third chapter, when we knocked down the 

endogenous µ1A/B using canine µ1A/B siRNA, we noticed that 72 hours after 

knockdown, around 20 % of the cells detached, which made it difficult to do further 

studies on polarized cells.  

             In the fourth chapter, LLC-PK1 cells were used to study the role of µ1B in kAE1 

endocytosis and recycling. The cells were transiently transfected with kAE1 and µ1B 

cDNA and grown for 3-5 days to reach polarization. Unfortunately, we were unable to 

find conditions where cells reached full polarization and maintained enough kAE1 and 

µ1B protein expression to study kAE1 protein endocytosis and recycling. Alternatively, 

we tried to stably co-express kAE1 and µ1B in LLC-PK1 cells. The cells were 

transfected with infectious viral particles first to express kAE1 protein, then transiently 

transfected to express µ1B protein. Once again however, our attempts to co-express 

kAE1 and µ1B proteins were unsuccessful as we were unable to find cell co-expressing 

kAE1 and µ1B in the same cells. Importantly, kAE1 expression has already been reported 
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to affect MDCK cell polarization by affecting the integrity of their tight junctions (159). 

This finding could explain our difficulties in expressing sufficient amounts of kAE1 and 

µ1B in polarized cells. 

5.4.  Role of the canonical YXXΦ  motif for kAE1- R901X mutant’s 

trafficking 

In the fourth chapter of this thesis, we compared the trafficking and recycling of kAE1-

WT with that of the truncated kAE1-R901X mutant. As mentioned earlier in this thesis, 

this mutant lacks the last 11 amino acids of kAE1 protein, which include two important 

motifs, the Y904DEV and the putative type II PDZ domain A908MPV (165,166).  In our 

discussion, we focused on the loss of AP-1 binding sites to explain the differences in 

steady-state cell surface expression, endocytosis, and recycling between kAE1-WT and 

the kAE1-R901X. However, these differences could either originate from the absence of 

Y904DEV motif, the PDZ type II binding domain or both. The kAE1 PDZ type II binding 

domain could play a role in kAE1 membrane targeting and retention. The truncation 

mutant kAE1-V911stop in the PDZ type II binding domain caused an increase in the 

intracellular level of kAE1, but the mutant predominantly localized at the basolateral 

membrane (159). Further, the kAE1 M909T dRTA mutant affects the PDZ type II 

interaction domain (A908MPV) (164). This mutation converts the type II PDZ domain (X-

Φ- X-Φ-) into a type I PDZ domain (X- S/T-X-V/L) (164). Trafficking of this mutant 

mimics that of the kAE1-R901X mutant, as it is found at both the apical and basolateral 

membranes when expressed in polarized MDCK cells (164).  

              To discriminate between the role of the PDZ domain and adaptor protein domain 

on kAE1 trafficking, endocytosis and recycling, one should use kAE1 specifically deleted 
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or mutated on either the Y904DEV motif or the PDZ domain. Previously studied 

mutations such as Y904A, Y904F, and Y904A/V907A would be the best controls to 

compare the importance of the Y904DEV for kAE1 trafficking and recycling (159). 

5.5.  Functional consequence of kAE1 trafficking 

Although this thesis focused on a chloride/bicarbonate transporter, we do not provide 

evidence of kAE1 function in our work. In fact, the function of most mutants studied here 

has already been investigated. However, kAE1 protein can perform its physiological 

function only if it reaches the cell surface, and kAE1 mutations that affect its trafficking 

affect its function as well. For example, kAE1-R901X and M909T dRTA mutants are 

retained intracellularly or mistargeted to the apical membrane (159,160,164). When 

expressed in Xenopus oocytes, these mutants are functional and retained the same Cl- 

transport activity as kAE1-WT (162,164). However, a question that remains un-answered 

is whether intracellular retention of kAE1 mutants affects the intracellular acid-base 

status or vesicular pH. Indeed, a number of sodium-proton exchangers are 

physiologically expressed in the membrane of endosomes or lysosomes where they 

participate in vesicular acidification (301). It is thus possible that by transporting 

bicarbonate and chloride, intracellularly retained kAE1 mutants alter physiological 

lysosomal degradation or endoplasmic reticulum pH, although this has never been 

investigated. Further functional studies will thus be needed to compare the effect of 

kAE1-WT or mutants expression on vesicular pH. 

5.6.  Transient versus stable transfections 

In this work, MDCK were transiently transfected, using electroporation, and LLC-PK1 

cells, using XtremeGENE transfection reagent with cDNA coding for different kAE1-
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WT or mutant proteins. Although transient transfection is a very efficient way to 

heterologously express a protein in cells, it often results in its over-expression, which can 

be overwhelming for the cell machinery. This over-expression can result in abnormal 

intracellular accumulation of the protein and misleading colocalization results within 

intracellular compartments. For best results, our experiments should have been performed 

in MDCK and LLC-PK1 cell lines stably expressing kAE1-WT and mutants with either 

µ1A or µ1B proteins. 

5.7.  kAE1-WT and kAE1-R901X protein expression 

In the fourth chapter of this thesis, the trafficking and recycling behaviors of kAE1-WT 

and kAE1-R901X mutant were compared. kAE1-WT or mutant protein were transiently 

expressed in LLC-PK1 cells using the same amount of cDNA encoding kAE1-WT and 

kAE1-R901X mutant. However, kAE1-WT expression level was repeatedly noticed to be 

higher than kAE1-R901X mutant despite using the same amount of cDNA. This difference 

could reflect a less efficient protein synthesis for kAE1-R901X, compared to the WT. 

Importantly; this difference could have affected our conclusions on recycling and 

endocytosis of kAE1 proteins, where we assumed a similar protein expression after 

transfection. To circumvent this problem, the amount of transfected cDNA encoding 

kAE1-WT and kAE1-R901X proteins should have been adjusted to perform our 

experiments with the same initial amount of protein. 
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6. Chapter six: Summary and future directions 
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6.1. Summary  

The purpose of this study was to investigate the physiological role of kAE1 interaction 

with AP-1A and B. We assumed that (i) this interaction is crucial for kAE1 residency at 

the basolateral membrane in polarized epithelial cell, and (ii) the lack of proper interaction 

between AP-1A and/or B and kAE1 affects kAE1 trafficking and surface expression, and 

may cause dRTA disease. My thesis work confirmed most of these hypotheses and 

improved our current knowledge of kAE1 interaction with AP-1A protein complex. The 

first part of this thesis confirmed the interaction between kAE1 and AP-1A in 

immortalized cells (MDCK cells) and tissue homogenates (mouse kidney cells) by 

immunoprecipitation and immunofluorescence colocalization. The knock down of the 

endogenous µ1A/B in MDCK cells by siRNA reduced the amount of kAE1 at the cell 

surface and resulted in kAE1 degradation. Interestingly, the stability and localization of 

kAE1 at the cell surface were restored by expressing human siRNA-resistant µ1A or µ1B 

in MDCK cells knock down for endogenous µ1A/B. We showed that newly synthesized 

kAE1 proteins traffic directly to the cell surface without traveling through recycling 

endosomes and that both µ1A and µ1B are important for normal kAE1 trafficking. 

Reciprocal immunoprecipitation confirmed an interaction between kAE1 and AP-1B.  

              The second main part of this thesis focused on studying the role of kAE1 

interaction with AP-1B in kAE1 endocytosis and recycling. This interaction was confirmed 

by immunoprecipitation, immunofluorescence, and proximity ligation assay in kidney 

epithelial cells. We identified multiple interaction sites of AP-1B on kAE1 protein by 

peptide spot assay, which explained the persistent interaction between AP-1B and kAE1-

R901X mutant. kAE1 endocytosis pathway was investigated for the first time in this thesis, 



 169 

and appeared to be dynamin- and clathrin-dependent. The kAE1-R901X mutant was 

endocytosed faster and recycled slower than kAE1-WT. Surprisingly, µ1B expression in 

LLC-PK1 cells that lack endogenous µ1B reduced the amount of cell surface kAE1-WT at 

the steady state. This decrease correlated with an increased rate of kAE1 endocytosis and 

decreased rate of recycled kAE1-WT. Unlike that of kAE1-WT, kAE1-R901X recycling 

was independent from µ1B expression. Table 6.1 compares endocytosis and recycling 

pattern of kAE1-WT and kAE1-R901X mutant in the presence and absence of µ1B. These 

data lead to the proposal that the apically mistargeted kAE1-R901X dRTA mutant fails to 

recycle back to the basolateral membrane due to its inability to properly interact with AP-

1B. 

6.2.  Future directions  

In this thesis, the physiological relevance of kAE1 and AP-1A/B interaction was 

investigated in non-polarized epithelial cells.  However, to exactly mimic the 

physiological situation in alpha intercalated cells, one should conduct these interaction 

studies in polarized kidney epithelial cells. Despite their common use as models for 

collecting duct cells, MDCK and LLC-PK1 cells are not originally collecting duct cells, 

but instead were either derived from the proximal tubule (302,303) or a mixture of kidney 

epithelial cells (295). A collecting duct cell line that endogenously expresses kAE1 and 

AP- 1A or B would be the most suitable model to mimic the situation in vivo.  
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Table 6.1 Endocytosis and recycling of kAE1-WT and kAE1-R901X mutant in the 

presence and absence of µ1B. 
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              In this project we identified multiple interaction sites of AP-1B on kAE1 protein 

by peptide spot assay. This assay did not determine which adaptin(s) of the AP-1B 

complex is involved in this interaction. Further, it is possible that more than one binding 

site for the same adaptin exists within kAE1 protein, as kAE1 protein form dimers (48). 

In my work, I have used a cell lysate expressing exogenous µ1B, which is enough to 

form a functional AP-1B complex using the endogenous γ1, β1, and σ1 adaptins 

(189,201) To determine which subunit(s) of the tetrameric AP-1 complex directly 

interacts with kAE1, pure AP-1B adaptin subunits should be incubated with kAE1 

peptides spotted on cellulose membranes.  

              More investigation needs to be done on the binding motifs between kAE1 and 

AP-1B that we have identified in addition to the expected canonical tyrosine (Y904DEV) 

motif. We identified a binding to a dileucine (D806RILLL) motif, to the acidic cluster 

E897EEGRDEYD within kAE1 C-terminus and to the S510FLVRF motif in the second 

intracellular loop of kAE1 (Table 4.1). It will be interesting to mutate these motifs and 

test the effect of these mutations on kAE1 trafficking and function and interaction with 

AP-1B. 

              Both the dileucine  (D806RILLL) in the 6th kAE1 intracellular loop and the 

tyrosine (Y904DEV) motifs in kAE1 C-terminus are important for kAE1 trafficking and 

localization at the plasma membrane. Our preliminary unpublished data indicate that 

quadruple mutations in both motifs DRIL[L810L/AA] and [Y904/A]DE[V907/A] affect 

kAE1 normal processing to complex oligosaccharide as shown by immunoblotting 

(Figure 5.1 A, lane 4). The double mutations affect also kAE1 surface localization as 

immunofluorescence showed that the kAE1 quadruple mutant is retained intracellularly, 
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unlike kAE1 with mutations in either the dileucine or tyrosine motif (Figure 5.1 B). 

These data suggest that the tyrosine and dileucine motifs within kAE1 protein are 

synergically required for the normal processing and localization of kAE1 at the cell 

surface.  

              More experiments need to be performed in order to explore the importance of 

these two motifs. Cell surface biotinylation, binding to SITS/DIDS inhibitors, functional 

assay, and the mutants expression in polarized cells experiments will answer more 

questions regarding the role of tyrosine and dileucine motifs in kAE1 protein trafficking, 

folding, and function in chloride/ bicarbonate exchange activity. 
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Figure 5.1 Mutations in kAE1 tyrosine and dileucine motifs affect kAE1 processing 

and surface localization. MDCK cells were transiently transfected with kAE1-WT, and 

kAE1 mutants DRIL[L810L/AA], [Y904/A]DE[V907/A] and the quadruple mutant 

DRIL[L810L/AA], [Y904/A]DE[V907/A]. A. The cells were lysed and lysate proteins 

separated on SDS-PAGE, then transferred to nitrocellulose and incubated with anti-HA and 

anti-GAPDH antibodies to detect both kAE1 and GAPDH (loading control) respectively. 

Open circle corresponds to kAE1 carrying complex oligosaccharides, and filled circle 

indicates kAE1 carrying high mannose oligosaccharides. B. Cells were fixed and incubated 

with anti-HA antibody followed by secondary antibody coupled to Alexa 488 (green). The 

cells were then permeabilized and incubated again with anti HA primary antibody followed 

by Cy3 (red) coupled secondary antibody. Nuclei were stained with DAPI (blue). Bar = 10 

µm.  
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