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Abstract

Geostatistics provides us an effective and powerful tool to estimate ore grades. High
resolution geostatistical models characterize the spatial variability of the orebody. It
is often useful to predict the time variation of mineral grades prior to mining since the
processing plant efficiency depends on the statistical behavior of the time variation
of mining production before decision-making. A methodology is presented for this
purpose.

Time variation depends on the mining sequence and rate. A Spatial-Temporal
Modeling(STMOD) methodology, is developed to calculate the grade variation in a
series of time intervals. It transforms variability from a spatial distribution to a
time domain. Several examples are presented to demonstrate the algorithm and the
associated program.

STMOD program has been developed to predict the time variation of studied
mining process. The results for intermingled waste and ore must be evaluated on
the basis of total mining rate. Furthermore, advanced applications, such as multiple

mining faces have been explored with the proposed methodology.

A detailed case study using oil sands mining has been presented as an application

of the STMOD methodology and program.
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Chapter 1

Introduction

Quality control in mine extraction is a very important problem for the geologist and
mining engineer [10]. They must consider the quality of the ore in terms of ore grade
and processing characteristics. They must also consider different time frames. The
problem to be addressed here is the characterization of the temporal variability of the
raw materials used by the processing plants, i.e., time variation of ore grade. This is
not a new problem, however, it is becoming more serious.

The practice of ore reserves is difficult given the geological variations, mining
methods, and information effect. As a result, mine development often carries uncer-
tainties and risks related to reserve quality and quantity, capacity to develop the mine
within budget and schedule, ability to meet the mine production targets, startup date,
length of break-in period, costs, quantity and quality, and projected cash-flow [12].

Time variations of ore grades are based on space-time relations. Time variation
will be generated using an orebody model. High resolution geostatistical simula-
tions can be designed to answer a variety of practical questions about the interaction
between the mining procedure and the spatial distribution of ore grades within a

mineral deposit. A common problem is how to select a mining procedure that will



somehow minimize the variability of ore grades delivered to a processing plant, while
satisfying constraints on product quality [13]. If the variability of the delivered ore
can be cheaply reduced by a change in mining scheme, it may be possible to simplify
or reduce the capacity of the plant’s homogenization systems. The mining methods
that affect variability include: the dimensions and orientations of mining blocks; the
number of blocks being mined and blended together; the geologic information used
to select the blocks to be blended; and the possibility of splitting some heterogeneous
blocks into ore and waste sub-blocks.

Extraction plants commonly rely on homogenization and proportioning facilities
to reduce the natural variability of incoming run-of-mine materials and to blend
different materials to satisfy chemical specifications. To determine appropriate design
and capacity for such facilities, engineers must know the time variation of the run of
mine materials as they arrive at the plant.

As a common means for ore reserve estimation, geostatistical simulation [1, 2, 3,
4, 6] provides numerical tools to quantify spatial variability, make optimal predictions,
and assess spatial and temporal uncertainty. These simulated data should reproduce
all statistical characteristics of the deposit, including the spatial variability observed
in the sample data from the real deposit. The result of a mining simulation applied
to a numerical orebody is a time-series simulation of mining products that mimics the
statistical behavior of real materials to be delivered to the plant in the future. It is
especially useful for processing plants to predict variations of ore grade in successive
time periods of mining and processing.

Application of geostatistical modelling generates conditional realizations, which

consists of a large set of regionalized variables distributed among nodes within a two



or three dimensional regular grid covering the region of the deposit to be mined. The
predicted mining production is determined directly from the specified mining scheme
and mining rate within this modelled space.

For the mining industry there is little or no resources available concerning the char-
acterization of time variation of mine production based on geostatistical simulation.
Much research work is focused on the optimal ore reserve estimates and predictions.
Examples of this work include, “Conditional Simulation and Kriging as an Aid to
Oil Sands Development”, which was presented in 1985 by Dimiitrakopoulos et. al.
Also, a recent CIM paper “Optimal Drill-hole Spacing and Uncertainty in Prediction
of Oil sands Bitumen and Fines Content” by C. V. Deutsch and A. Beardow dealt
with this subject. The latter paper also demonstrates the application of geostatistical
tools to quantify the “Goodness” of bitumen/fines predictions for different drill-hole
spacing. These reports provide the practical experience necessary for the application
of geostatistical tools to the time variation problem.

The STMOD algorithm, which is presented in this thesis, allows for flexibility in
the applied mining scheme, variable mining rate and spatial models. Simulations of
alternative mining and homogenization procedures applied to an orebody illustrate
the method of using conditional simulation to select the optimized mining and homog-
enization procedures before mining of deposit. By directly applying this algorithm,
a time-series simulation of material compositions that mimics real materials to be
delivered to the processing plant is produced. Furthermore, multiple mining faces

and different mining schemes can be used simultaneously in this algorithm.



Chapter 2

Geostatistical Modeling for Ore
Reserve Estimation

Before a mine is planned in detail, a preliminary analysis should be conducted first.
This preplanning permits the mining engineer to make a rapid assessment as to
whether or not a particular mining property warrants further consideration [12].
The estimation of the various characteristics of a reserve, such as quantity, grade,
and thickness, is an ongoing process throughout the life of a mining venture. Be-
cause mining investments are generally large, the economic consequences of making
investment decisions are very important. Therefore, it is crucial that we evaluate the
mineralization and its potential very carefully. In particular, it is critical that we
consider all the existing information at each decision step.

Resource evaluation is therefore a process, not an event. Resources will always be
estimated sequentially and with more information as the project progresses.

Geostatistics provides a consistent conceptual framework for resource evaluation
that makes maximal use of available information.

In this Chapter we give a summary of geostatistical application for ore reserve

estimate. Geostatitics is a powerful tool for mining engineering. A simple description



of this concept follows.

2.1 Introduction

The term “geostatistics” naturally should mean “statistics applied to earth sciences”

[11], and originally that is exactly what it did mean. However, after the development
in the past several years, the definition of geostatistics has gradually been changed
into “application of the theory of regionalized variables” [1], regardless of whether
those applications happen to the applied earth sciences. Geostatistics (as the term
is now applied) is used to infer and interpret phenomena that appear to vary contin-
uously in space and time according to a spati®al probability law, such as ore grades,
porosities, pollutant concentrations, chemical analysis of rocks, and so forth. Such
values are implicitly assumed to be correlated with each other, and the study of such a
correlation is usually called a “structural analysis” [1] or “variogram modeling”. Af-
ter structural analysis, estimations at unsampled locations are made using “kriging”
or they can be simulated using “conditional simulations”, e.g., Gaussian Sequential
Simulation.

In mining applications, useful results that can be obtained by geostatistical meth-
ods include optimal estimates of total reserwes, local ore grades, and recoverable
reserves in mineral deposits, estimates of vartability of different-sized blocks of ore,
selection of best drilling locations for the improvement of quality of ore estimation,
and simulations of the spatial distribution of ore grades for use in mine and process
planning.

Briefly, the steps in a geostatistical study [4] (lec 02-17) include:

(a) Define a population / area (A) for averaging;



(b) Collect all information relevant to special variability within A;

(c) Synthesize all the information into a stationary RF model representative of A,
e.g., variogram ~y4(k) (calculation and modeling of variograms).

(d) Use this model, e.g, v4(h), for further calculations.

A clear and concise introduction to basic geostatistical concepts can be found in
Chapter I of Journel and Huijbregts(1978) [1]. The terminology and most of the

notation used in this thesis conform to their usage.

2.2 Random Functions and Regionalized Variables

Random Function theory (RF) is a common mathematical terminology. Now it is
applied to many disciplines, such as geostatistics. That is, the samples v; are viewed
as outcomes of a random variable that is a function of the spatial coordinates V'(z;).
A regionalized variable is any variable that is distributed in space (or time). The
theory says any measurement can be viewed as a realization of a random function
(or random process, or random field, or stochastic process). This theory forms the
underpinnings of geostatistics. Though the true values of the variable are strictly
deterministic and uniquely exist, the opportunity for measurement and other errors
allows one to take this probabilistic approach. The linear estimator v(0) is then
viewed as an outcome of the RF V' (z,) which approximately represent the true value
at spatial location zo. The actual error due to measurement and other factors can
then be viewed as an outcome of the RF R(z0) = V(z0) — V0 which is called the
estimation error in statistics.

To facilitate the understanding and explanation, let’s consider the following sce-

nario. You collect some samples at a number of locations. Applying the linear



estimator with some fixed choice of weights, you can produce and estimate by linear
estimator at some unsampled location. Suppose now that you return to the same
sample locations and resample. Due to measurement error, the sample values may
be slightly different or largely distinct. Applying the previous linear estimator you
produce a second estimate for the same unsampled location. And so on. Each time,
you are in fact producing a realization of the estimation error. The estimation error
is a kind of RF process.

What would be the desirable properties of this estimation error RF? In fact we can
not exactly determine true value of estimation error. However we can describe it by
statistical analysis. Ideally, it should be identically zero. Failing this one should focus
on two things. Firstly, the estimation error should be unbiased. That is, its expected
value is zero: E[R(z0)] = 0. This loosely means that on average the error incurred
is zero. The second property is that the estimation error should have minimum
spread. That is, its variance Var[R(z0)] is minimal. Linear estimators which produce
estimation error RF’s having the properties of unbiasedness and minimum variance

are called BLUE (Best Linear Unbiased Estimators) [5].

2.3 Estimation

First let us begin with a brief look at the more common estimation techniques. A
group of techniques known as Inverse Distance propose the following formula for the
weights: wi = D(z0, zz)"?/W. The non-negative parameter p is chosen to reflect the
assumed measure of spatial continuity of the variable. For example, with p = 5 much
more weight is given to the nearest sample, than if using p = 1. The factor W is a

normalization factor chosen so that the weights sum to unity. This gives the estimate



the desirable property of unbiasedness. Four variants of Inverse Distance estimation
are common:

Local Average: p=0

Inverse Distance: p=1

Inverse Distance Squared: p=2

Polygonal: p —: infinity

The Local Average (LA) technique assumes no spatial continuity of the variable,
and simply uses the arithmetic mean of the sample values. The Inverse Distance (ID)
and Inverse Distance Squared (IDS) techniques assume a loss in spatial continuity over
greater distances, with the loss assumed greater for the latter. Finally, the Polygonal
(P) technique is perhaps the simplest and uses the value of only the nearest sample
as the estimate.

Which of these techniques is best? We can not make any conclusion without an
exhaustive data set. Only examples can be found, which rank each of the techniques
as superior. Here what we also need to mention is that samples should be represen-
tative for all studied areas. If the samples collected do not have representativity we
need to perform declustering [4, 5]. Even more we need to use the secondary infor-
mation, e.g., calibration approach with conditional distributions [4, 5] due to data
scarcity. Therefore, in practice, the criterion used to rank the techniques becomes
vague and less subjective and tend to depend heavily on the practitioner’s experience
and judgement.

From last section we know there exists certain estimation error for linear estimator.
The geostatistical estimation problem is to obtain a BLUE estimator by choosing the

weights wi, i=1, ... , n. Krigingis a typical BLUE. The unbiasedness property is easily



achieved if one is willing to assume that the= expected values of the sample values are
equal, and identical to the expected value of the true value at the unsampled location:
EV(zj)] =v, j =0,1,...,n. This is the asssumption of stationarity and is probably
realistic, if the sample locations and unsamymled location are not too distant from one
another. The constraint on the weights can easily be deduced as: wl + ... +wn = 1.
Note that this constraint is explicit in the fomrmula for the Inverse Distance estimators,
i.e., they are unbiased linear estimators.

Geostatistics was developed to address tihis problem of subjectivity and to give a
firmer mathematical foundation for the estirmation of spatially varying quantities. No
attempt will be made here to give a compl-ete or necessarily accurate description of

the theory. Sufficient references exist for th3s purpose [1, 4, 5, 6].

2.4 Variogram

Conceptually, variogram is defined to describe the spatial variability of variable in
study area. The variogram (or its counterpsart, the covariance) underpins all of geo-
statistics. You can use the variogram to mo-del the conway two values which in space
or time are correlated. Most people intuitiively know that two values in space that
are close together tend to be more similar tthan two values farther apart. Univariate
statistics cannot take this into account. Two distributions might have the same mean
and variance, but differ in the way they are correlated with each other. Geostatistics
allows one to quantify the correlation betwesen any two values separated by a distance
h (usually called the lag distance) and uses this information to make predictions at

unsampled locations.
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Consider two numerical values z(x) and z(x+h) separated by the vector h. The
variability between these two quantities is characterized by the variogram function

2v(z, h), which is defined as the expectation of the random variables [z(z) — z(z + R)]?:
2v(z, h) = Elz(z) — z(z + h)]° (2.4.1)

In all generality, this variogram 2v(z, h) is a function of both the point x and vector
h. In practice, at least in mining applications, there is an intrinsic hypothesis—-
stationary. The hypothesis is that the variogram function 2-(z,h) depends on the
separation vector h and not on the specific location x. The physical meaning is there
is strong spatial continuity in certain direction.

It is then possible to calculate the variogram 2v(z,h) from the available data.
An estimator 2y(z, h) is the arithmetic mean of the squared differences between two
experimental measures [2(z;), 2(z;+h)] at any two pair points separated by the vector
h:

L M
2v(z,h) = NGB Z[z(:z:,-) — z(z; + h))? (2.4.2)

=1

Where N(h) is the number of the experimental pairs [z(z;), 2(z;+h)] of data separated
by the vector h. This is also called the experimental variogram calculation. In
the definition of the variogram 2v(z, k), h represents a vector of modulus [|A|| and
direction a. Consider a particular direction ¢, beginning at the origin, v(0) =0, the
variogram increases in general with the modulus ||h||. This is simply an expression
of the fact, on average, the difference between two grades taken at two different
points increases as the distance ||h|| between them increases. The manner in which
this variogram increases for small values of ||h|| characterizes the degree of spatial

continuity of the variable studied.
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Variogram models are usually described mainly by six parameters. We here con-
centrate on three main parameters. The range is the lag distance at which all suc-
cessive values are independent of each other. The sill is the variogram value corre-
sponding to the range. When we want to model the variogram, we have to specify
a type of model as well. Nugget effect is the value of variogram for h=0. Though
nugget effect should be strictly equal to zero, several factors, such as sampling error
and short scale variability, may cause the sample values to be quite different. This
causes a discontinuity of variogram at origin. Variogram modeling is a prerequisite
for kriging and Gaussian sequential simulation. Variogram modeling is a modeling of

such a spatial correlation structure.

2.5 Kriging

In practice sample data for many physical parameters often and invariably occur on
irregular grids. Frequently, the values of the variable are desired on a regular and
significantly finer grid than that is practical to sample. This presents the problem of
estimation, or of using sample data to predict values in areas which are not sampled.
The simplest estimation techniques use weighted linear combinations of nearby sample
values to estimate the value at a point: V(0) = wl % vl + ... + wn * vn. Here,
V(0) is an estimate of the value of the variable at x0, the unsampled location. The
estimation problem is how to choose the weights wi,% = 1,..., n to minimize the error
in estimation. However, this goal is impossible to achieve in practice, since it would
require prior knowledge of the true values at the unsampled locations. As a result,
most estimation techniques make substantial simplifying assumptions regarding the

behaviour of the variable in order to predict unsampled values.
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Most methods give greater weight to samples which are closer to the point being
estimated. That is, wi is inversely proportional to D(x0, xi) where D(A, B) is the
distance between samples A and B. This intuitive notion is an implicit statement of
continuity of the variable, in that values nearby are more likely to be similar than
values far apart. This is indeed true for most variables occurring in physical and earth
sciences. However, these methods do not take into account the observable spatial
correlation between sample points. That is, the continuity between v: and vj, or
called redundancy between the data [4, 5]. This can be used to improve the weighting
given to vi based initially on D(z0, z7) by the information contained in the correlation
between vi and the other nearby samples based on D(zi,zj). Kriging, which is the
core of Geostatistics, is the technique which utilizes this additional information to
produce more reliable estimates. Perhaps, this technique also produces an estimate
of the error incurred.

However, only Inverse Distance estimators are not BLUE. Kriging estimators are.
Kriging is a procedure for constructing a minimum error variance linear estimate at
a location where the true value is unknown [4, 5]. Mathematically, we have a con-
strained minimization problem so that the method of Lagrange Multipliers is used.
The mathematics is somewhat messy but not too difficult. The end result is a set
of linear equations, the ordinary kriging system [6], that the weights must satisfy:
Cij * w + mu = di and the unbiasedness equation, where the elements C;; are the
covariances between samples vi and vj, and the elements di are the covariances be-
tween the sample vi and the unsampled value v0. The parameter mu is the Lagrange
multiplier, and is useful for calculating the resulting minimized error variance.

All of the covariances in this linear system are actually unknown. Instead, we
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approximate these by the sample covariance of samples separated by the same distance
and direction. Due to data scarcity, we often ignore the direction and incorporate
adjustable tolerances to produce sufficient data pairs to give more reliable estimates
for the covariances. In practice, to facilitate the calculation and interpretation we
often calculate the sample variogram or semi-variogram «y(h), which is defined as “one
half the average squared difference of data values separated by h.” The variogram

plus the covariance must equal the sample variance [4, 5]:

~(hY = e(h) + (D)
I\ VE M

To guarantee a unique solution to the kriging equations, the variogram model
must be positive definite (a legitimate measure of distance) [4]. We usually model

the sample variogram with a smooth curve having the following properties:
7(0) =c0 20

(@) =c>c0, a>0
v(h) =¢, h2>a.

The constant c0 is called the nugget and represents any small-scale data variability
or possible sampling errors. The constant c is called the sill and should roughly equal
the sample variance. The smallest distance at which the variogram reaches the sill,
h=a, is called the range and represents the largest separation the correlated samples
could have. The increase of the variogram from the nugget to the sill can be modelled
in several ways. There are a number of known legitimate models that are commonly

used, such as spherical, exponential, Gaussian, linear and so on. The most common
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is the spherical model:
v(h) =0+ (c—c0) * [L.5xh/a—0.5% (h/a)®], h<a

Returning to the kriging equations, one can now see how the spatial correlation be-
tween samples can influence the weight given to a single sample. If the samples
were uncorrelated, then the off-diagonal entries of C would be zero, and the weights
would be wi = di/C'i. Since the covariance decreases with distance from the unsam-
pled location, this formula for the weights is akin to the Inverse Distance estimation
weights. We know that covariance or variogram is a measure of geostatistical distance,
not physically geometric distance. However, if the samples are spatially correlated,
then the off-diagonal entries are non-zero, and the weights are given by w = Cinv «d.
This premultiplication by Cinv adjusts the raw statistical distance weights in d by
accounting for possible redundancies due to sample clustering.

For example, two samples close together will generally contribute less information
to the estimation than samples farther apart and will be reflected by larger values
in the C matrix off-diagonal entries. The raw weight assigned to these samples will
generally be redistributed to other samples that are farther away but less redundant.
This possible redundancy between samples does not just depend on the geometric
distance between them, but also depends on the spatial continuity.

Thus the kriging system accounts for two important aspects of estimation at
unsampled locations. As with the Inverse Distance estimation techniques, the distance
to the samples that reflects the general weight distribution, or called data closeness.
Secondly, the clustering between samples, or called data redundancy, is recorded by a
statistical distance measure, which can be used to redistribute the weights according

to any redundancies present.



Kriging is a geostatistical estimation technique. It uses a linear combination of
surrounding sampled values to make such predictions. To make such predictions,
we need to know the weights applied to each surrounding sampled data. Kriging
allows you to derive weights that result in optimal and unbiased estimates. Within
a probabilistic framework, kriging attempts to: (a) minimize the error variance; and
(b) systematically set the mean of the prediction errors to zero, so that there are no
over- or under-estimates.

There are some cases when other, usually more abundantly sampled data, can be
used to help in the predictions. Such data are called secondary data (as opposed to
primary data) and are assumed to be correlated with the primary data. For example,
we can predict porosities based not only on the well measured porosities but also on
seismically derived porosities. In this situation, we can try a cokriging. To perform
cokriging, we need to model not only the variograms of the secondary and primary
data, but also the cross- variograms between the primary and secondary data.

Kriging is expressed in a so-called “kriging system”, which relates the covariance
between the samples, the covariance between each sample to the location to be esti-
mated, and the unknown weights. The covariance matrix is inverted to solve for the
weights. However, Kriging is a smooth estimator. The shorter scale variability there
exists in data, the smoother for kriging estimation; the wider, the data spacing, the
smoother [4, 5]. But the smoothing effect can be quantified, namely we can add the
missing kriging variance, this will lead us to develop the simulation method which we

will discuss in the next section.
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2.6 Simulation

All kriging estimates and other estimates provide a smooth image of underlying real-
ity: the variogram of these estimates would not reproduce the data variogram. The
concept of conditional simulation allows generating alternative, equiprobable, images
which honor data values at their locations and reflect a series of spatial continuity
functions [8]. Unlike kriging or other estimators, simulation provides alternative

global representations of the variables studied, not just the local and unique estima-

local and several locations.

Kriged estimates are too smooth and therefore inappropriate for most engineering
applications. Simulation corrects for this smoothness and ensures that the variogram
/ covariance is honored [4]. Although the covariance between the kriged estimat and

data is correct, the variance is too small:
Var{Y*(w)} = c(0) — o2 ()

the missing variance is the kriging variance 0%, (u). We need to add back in the
missing variance without changing the covariance reproduction.

There are many different simulation algorithms, sequential Gaussian is simple and
most widely used. Gaussian distribution has a distinct feature that the global N(0,1)
distribution will be preserved if we always use Gaussian distributions. Therefore, if
we transform the samples to normal score, next we perform a serials calculations,
then we transform the results back to original distribution domain. A key idea of
sequential simulation is to use previously kriged/simulated values as data so that we

reproduced the covariance between all of the simulated values. To perform this we
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need to select the random path during the sequential simulation. In brief, the steps
in Sequential Gaussian Simulation [4] are as follows:

1. transform data to “normal space”

2. establish grid network and coordinate system

3. assign data to the nearest grid node (take the closest of multiple data assigned
to the same node)

4. determine a random path through all of the grid nodes (a)find nearby data and
previously grid nodes (b)construct the conditional distribution by kriging (c)draw
simulated value from conditional distribution

5. check results (a) honor data (b) honor histogram: N(0,1) - standard normal
with a mean of zero and a variance of one? (c) honor variogram? (d) honor concept
of geology?

6. back transform to original data space



Chapter 3

Time Variations in Mineral Grades
from High Resolution
Geostatistical Models

In this chapter, an algorithm for transferring spatial variation of ore grades to time
domain is presented. Geostatistics provides an effective and powerful tool to build an
orebody model. High resolution geostatistical models characterize the spatial vari-
ability in an ore body. This spatial variability must be transferred to time variation
of mining production to help with decision-making. Examples for sensitivity analysis

are presented as well.

3.1 Introduction

Extraction plants commonly rely on homogenization and proportioning facilities to
reduce the natural variability of incoming raw materials and to blend different mate-
rials to satisfy chemical specifications. To determine appropriate design and capacity
for such facilities, engineers must know the statistical behavior of each raw materials

arriving at the plant. Conventional ore estimations reproduce the spatial variability

18
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of the grades. They do not represent the variation of ore grades in successive time
periods of mining and processing.

High resolution geostatistical simulations could be designed to answer a variety of
practical questions about the interaction between mining procedures and the spatial
distribution of ore grades within a mineral deposit. A common problem is the selec-
tion of a mining procedure that will somehow minimize the variability of ore grades
delivered to a processing plant, while satisfying constraints on product quality. If the
variability of the delivered ore can be cheaply reduced by a change in mining scheme,
it may be possible to simplify or reduce the capacity of the plant’s homogenization
systems. The methods that affect the variability include: the dimensions and orien-
tations of mining blocks; the number of blocks being mined and blended together;
geologic information to select the blocks to be blended; and the possibility of splitting
heterogeneous blocks into ore and waste sub-blocks [10].

Application of geostatistical modeling generates conditional simulations, which
consist of a large set of simulated raw material analysis distributed among the nodes
of a fine two- or three-dimensional regular grid covering the region of the deposit to
be mined. Mining production results directly from the specified mining scheme and
mining rate.

An algorithm (STMOD), which allow an flexible mining scheme, variable mining
rate and spatial models, is presented. By applying this algorithm, a time-series sim-
ulation of material compositions that mimics real materials to be delivered to the
processing plant, is reproduced. Furthermore, two mining work faces and different

mining schemes can be used by using this algorithm.
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3.2 Algorithm for Time-variation calculation

To obtain time variations, the mining scheme must be specified. Next, by incorporat-
ing the mining scheme and mining rate, time variation can be generated based on the
relationship between the spatial distribution of the grades and the mining scheme.
Figure 3.1 shows a classical 3-D block model. Here we assume that the size of blocks
in the 3D model is dz by dy by dz. Orebody of simulated site consists of nz by ny
by nz blocks, the number of blocks in x, y, z directions, respectively. Then the total

volume (m3) can be calculated as follows:
Volume =nz-dz-ny-dy-nz-dz, [m? (3.2.1)

The specific gravity, SG, could be locally variable. The tonnage of ore on the bench
is given by:

Tonnage = Volume - 5G , [¢] (3.2.2)
Where SG is the average specific gravity (tonnage per cubic meters, t/m3) of the

ore. The total time (in days, d) needed to mine the ore can also be obtained as:

__ Tonnage , [t

rate , [t/d] ’ (4]

(3.2.3)

Where rate is the mine production rate (Tonnage per day, t/d) in the mining. Note
that here we assume that the entire bench is ore. A mixture of ore and waste could
be considered; however, this assumption simplifies presentation of the time variation.

The mining operation follows the sequence illustrated by numbers in Figure 3.3,
3.4. Here fa, fw and bh define mining scheme and the means to transfer spatial
variability to temporal variability. fa is the length of face advance in blocks(x direc-
tion), fw is the width of face advance in blocks(y direction), and bh is the height of
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“benches” (vertical direction). In general, all benches have same height, but could be
different one from another if different mining process is considered by using high res-
olution geostatistical simulation. The mining volume in direction of one face advance
consists of fw by fa by bh blocks, which are dz by dy by dz. Therefore, time, t¢, to

mining one face advance is as follows:

fa-fw-bh-dz-dy-dz- S'G'

t
f= rate

[d] (3.2.4)

Accordingly, the average grade in the time ¢; can be as follows:
fa fw bh

G, = Fa-Fuw - bh fw o Zzzg(w,k) (3.2.5)

i=1l j=1 k=1

where g; j ¢ is the ore grade in the block (%,7, k) which is dz by dy by dz. In the
same way, the time variations in the next time interval {; can be calculated for next
successive fa by fw by bh blocks and so on.

To facilitate calculation, we transform 3-D cell grades to one dimension cell grades
of time series based on mining scheme, namely from the g ;r), (1 =1,2,3,...,nz;j =
1,2,3,...,ny;k = 1,2,3,...,n2) to gg,(l = 1,2,3,...,L;L = nx -ny -nz) . The
process of analysis can be explained as Figure 3.5 in which we assume that fa = 3dz,
fw = 3dy and bh = 3dz. Then we can get the time variation of grade in time interval
ts by averaging grades in the successive time series. Here the time interval directly

depends on mining rate. The final time variation can be expressed as following form:
tp-l

th(l)=ti' >, 9w (3.2.6)

foimirq-1)ty
[1=1,2,3, .., T/ty; ty= fa-fw-bh; T is total mining time.

The mining scenario illustrated in Figure 3.2 translates spatial variability to a
particular pattern of time variation. Once we obtain average grade in the time inter-

val, by the same way time variation of grades can be calculated in subsequent time
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intervals. The dash lines in Figure 3.6 show grade variation in the ¢; time intervals
and solid line 6 - t; time intervals.

Further, we can consider the utility of multiple mining work faces. By choosing
multiple mining work faces, the high and low grade ore averages out and reduces the
time fluctuation of ore grade. Figure 3.3 is the mining scheme of two working faces.

However, the orebody is a mixture of ore and waste. This requires us to separate
ore and waste in the mining process since the processing plant only receives ore. To
realize this objective, firstly we need to select the proper block size to effectively
separate waste and ore. Then, we can calculate the responding time variation of ore

and waste. We will leave this issue to next chapter.
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Figure 3.2: Plan view of mining scheme.
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Figure 3.5: Grade transform from spatial variability to time domain
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Parameters for STMOD

S BEELEEE SR EERE

START OF PARAMETERS:

1 - 2: two working faces, 1: one working face
5.5 - cutoff grade

5600 - total number of time units
\matlab\bin\STMOD - output file for time variation output
back_l.out - input file with simulated 3D data I

2 - column for variable

328 288 15 - nx,ny,nz

1 1 1 - Cell size

-1.E+21 1.E+21 - trimming limits(variable limits)

1 1 - 1: regular(1) or irregular bench(0), number of benches
15 13 15 13 15 - bench height for working face I

32 48 - advance and width of working face I

960 - mining rate I (m"3/unit_time)

back_2.out - file with simulated 3D data IT

2 - column for variable

328 288 15 - nx,ny,nz

1 1 - Cell size

-1.LE+21 1.E+21 - trimming limits(variable limits)

1 1 - 1: regular(1} or irregular bench(0), number of benches
15 13 15 13 15 - bench height for working face I

32 48 - advance and width of working face II

960 - mining rate Il (m*3/unit time)

Figure 3.7: Example Parameter file for STmod.
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3.3 Implementation of the algorithm

A C implementation of this algorithm is coded in program STMOD. The program is
designed for general use by changing the parameters in the input file. Considering
the variable amount of 3D data, the dynamic memory allocation has been adopted in
the program. The parameters required by STMOD are listed below and are shown

in Figure 3.7:
e wkface: 2, two work faces; 1, one work face.
e cutoff: cutoff grade setting.
e totalT: total number of time units.
e OutputFile: file for time variation output.

e datafile: a input data file in simplified Geo-EAS format containing the simulated

data variable.
e ivr: the column number for the variable.

e nx, ny, nz: definition of the grid system of data, number of blocks in horizontal

x, y and vertical z directions.
e dx, dy, dz: size of each block is dz by dy by d=z.
e tmin, tmax: all value beyond the range will be ignored;

e ire-bench, nbenhts: if ire-bench is zero, all benches have same height, namely

equal bench height. if ire-bench is 1, different bench height is considered;
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e heightl, height2..., : if the ire-bench is 1, then different bench height are se-
lected, otherwise there exists only one bench, bench height is heightl;

e fa, fw: are the length and width of mining working face in one advance of

selected the mining scheme;

e rate: mining rate (t/d) in the unit time;

3.4 Examples for Sensitivity Analysis

To illustrate the effects of different parameters on time variation, we use the same
data with different mining schemes and mining rates, respectively. Here we select the
3D model, 328 by 288 by 15, the corresponding size in three directions x, y and z.
Some results are shown in Figures 3.8, 3.9 and 3.10, which correspond to different
mining schemes by changing parameters fa, fw, mining rate and number of mining

working faces.

3.4.1 Changing parameter fw

The fa = 8, bh = 15, mining rate = 960m?/unit time are held constant and fw
is varied (8, 24, 48, 96, 144, 288). The time variation appears cyclic in Figure 3.8.
This can be directly related to geological model trends and cyclic mining method.
With the increase of fw, the cyclic changes in time variation is not seen. When
fw reaches length of dz - nz, 328 m, the new periodicity appears again as shown
in Figure 3.8. The new periodicity occurs due to mining back and forth along Y
direction. In general, this conclusion is based on observing the outcomes above: by

setting other parameters in mining scheme as constants and only changing fa, the



30

time variation of ore grade will depend on the variability of z direction. The more

variable in z direction, the greater the variability in time variation.

3.4.2 Changing parameter fa

Next, fw = 48, bh = 15, mining rate = 960m3/unit time are constrained and
fa is varied (4, 8, 16, 32, 64, 328). For this setting no apparently cyclic changes
in time variation can be observed, as shown in Figure 3.9. This means that ore
distribution in that direction appear more anisotropic. However, when fa reaches
length nz - dz = 328 m, periodicity in time variation of grade can be observed as
shown in Figure 3.9(f). This is due to the trend that mining proceeds back and forth

along X direction. Similarly, we can obtain the same conclusion as in section 3.4.1.

3.4.3 Changing mining rate

Next, fa = 32, fw = 48, bh = 15 are constrained and mining rate is varied
(60, 240, 960 and 3840 m® / unit time). The outcomes from these different parameter
settings are shown in Figure 3.10. From these figures it can be observed that time
variations become smoother with increasing of mining rate. When we increase the
mining rate, we extract more blocks in same amount of time. This results in the av-
eraging of more single block grades over a unit time, which results in less variance in
the averages of each unit time. This reduces the fluctuation and it results in smoother

time variation.



31

3.4.4 Two Mining Faces vs. Single Mining Face

Furthermore, we can observe different trends of high or low ore grade distributions
for different mine sites. To reduce the variability in the plant feed, blending could be
utilized between two mining faces or between two mine sites. This will smooth out
the time variation. We can reduce the fluctuation of time variation by selecting the
proper parameters by trial and error.

To illustrate the difference of time variation between single mining site and two
mining sites, an example was constructed. For this example the prerequisite condi-
tions is that overall mining production rate is the same, specially the mining rate for
a single mining working face is equal to the combined mining rate of two working
faces. All other parameters were held constant over both cases. Then, we compare
the outcomes from four mining schemes as shown in Figure 3.11 and Figure 3.12. It
can be observed that a smoother time variation is realized by utilizing two mining
sites. The production of waste with respect to time should show similar reduction in

variance as well.

Discussion

In general, it can be observed that the mining scheme has a great impact on the
time variation. The extent of the impact of mining scheme depends on spatial struc-
ture of the geologic features. The mining rate does not change the general trend of
time variation. In addition, an increase in the number in mining faces decreases the
fluctuation of time variations due to blending.

The accurate prediction of time variation will greatly increase the recovery realized
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at the process plant. Optimized low variability feed depends on the correct setting
of the mining and blending parameters. The desired mining parameters depend on
pit grade, reasonable mining scheme and fine blending. To meet this requirement, we
need to evaluate the time variation in detail and perform the corresponding sensitivity
tests. This chapter has demonstrated a potential method for accomplishing this time
variance modelling and analysis.

Time variation is modelled in the time interval size assigned to ore, since ore may
be extracted in a smaller volume unit than waste. Note, it is possible to scale up to
a larger support size, but it is not possible to scale down. The time variation of ore
grade in this small scale does not provide appropriate information for the processing
plant to make decisions. The small time intervals must be scaled up through linear
averaging to the support size handled by the plant. This specific plant support size
is dependent on the blending and stockpile facilities at the plant.

Due to the varying market factors, such as interest rates, price fluctuations, the
cost of labor and time value of money, processing plants need to adjust the cutoff
grade or production output rate. The ability to dynamically change the operation
plan is essential for a plant to optimize profit. By combining all significant factors
mentioned above, plants can dynamically alter the operation strategy provided that
the pertinent grade variation information is available. In the future, further post
processing tools should be developed to aid in the design of homogenization facilities
and stockpile size.

In actual operations, the processing plants deal with the larger time interval than
that we used in STMOD. Therefore, there are two common problems required to be

solved for the processing plant. The first is the distribution of proportion of ore to
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waste during equal time intervals. Another is the distribution of waste time variation
assumed that amount of ore production are constant. In the next chapter we need to

build a new model to deal with these problems.



TIME VARATON CFGRRCE
>

o

—
(=]

(34

() fa=4

500 1000

0
= Time (/unit)
515(0) fa=16 ‘
Swj
2 5
w
P
"0 . .
0 500 1000
(e) fa=64  Time (funi)
E15 :
E““w”w’\/\
w
P
T 0 . .
0 500 1000
Time (funit)

TIME VARATCN CFGRRADE TIME VARATON CFGRRDE
-h vy

TIME VARATON OFGRDE
~3

(b) fa=8

0 500 1000
(d) fa=32 Time (luni‘t)

-~
o

W

(24

0 I N
0 500 1000
5 () fa=328  Time (/unit)

10
5
0 " L
0 500 1000
Time (funit)

Figure 3.8: Time variation with fa = 8 and different fw in the mining scheme.
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(e) fw=144; (f) fw=288;
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Figure 3.10: Time variation with fa = 32, fw = 48 and different mining rates.
(a) Mining rate=60; (b) Mining rate=240;
(c) Mining rate=960; (d) Mining rate=3840;



37

15 v 15

-
Q

=
[« ]
—_ )
P~
FSymm—

TIME VARATON CFGINE
TIME VARATKON CFGRCE

5 5
0 i 0 i A
0] 500 1000 0 500 1000
Time (/unit) Time (unit)
15 T 15
% 5 ?, 5t \’\J w
= =
= E
0 A A a " i
0 500 1000 (4] 500 1000
Time (funit) Time (/unit)

Figure 3.11: Time variation of ore grade from four different mining schemes for single
working face with mining rate = 960 / unit time. Left top: fa = 8, fw = 8, Right top:
fa =8, fw =36, Left bottom: fa =41, fw = 8, Right top: fa =41, fw = 36



15

TIME VARATON CFGROE

15

TIME VARATON CFGRE

ey
o

[44]

0 500 1000

Time (funit)

-
o

4]

o 500 1000

Time (/unit})

15

TIME VARATCN GFGRNCE

15

38

-2
Q

4]

500 1000
Tima (/unit)

WWMVM\J"‘W

500 1000
Time (/unit)

Figure 3.12: Time variation of ore grade from four different mining schemes for two working
faces with mining rate = 960 / unit time. Left top: fa = 8, fw = 8, Right top: fa =
8, fw = 36, Left bottom: fa =41, fw = 8, Right top: fa =41, fw =36



Chapter 4

Post Processing for Time Variation

Spatial-Temporal Modeling (STMOD) has been used to predict the time variation
of mining process. However, the processing plant can not completely depend on
the outcomes from time variations for decision-making. They also need to know
the variation between ore and waste in certain larger time periods, says production
statistics for one-week time interval. Post-Processing analysis is designed to conduct

this process simulation in detail.

4.1 Introduction

In mining operation, the two factors, mining rate and production rate (ore mining
rate, not including waste), are of direct interest to mining engineers. Before evaluating
the mining process, the mining rate must be known. The cutoff grade is key factor
to determine the production rate. The ore reserve estimate can be modeled by the
widely applied geostatistical tools [1, 2, 3, 4, 6]. First, the time variations of the ore
grade distributions will be produced by STMOD program. Next, we can determine
the production rate by the cutoff grade, mining rate and time variations of grade.

Here it is assumed that the mining proceeds with the same mining scheme as used in

39
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the calculation of time variation. In this way, we can evaluate the statistical behavior
of the mining processes. This statistical behavior includes the distribution of waste to
the amount of ore constant and the proportion distributions of ore and waste during
sequential time intervals.

Due to market factors, such as interest rate, price fluctuation, and the cost of
labor, time value of money, the processing plant need to tune the mining schedule
for obtaining the maximum profit. This is a dynamic process. On one hand, plants
need the proportional distributions of ore and waste during equal-time intervals. This
includes the forecasting of the maximum production rate and maximum waste rate,
the average waste and ore production during the mining process. The selection of
equipment would be required to handle with the maximum amount of ore. The
stockpile and dump are designed to consider the maximum amount of ore and waste
during certain larger time intervals. On the other hand, if the plant needs to keep the
unchanged production rate (ore rate), they must take waste production into account.
Due to the fluctuation of time variation of ore grade, the time spent on obtaining
the equal amount of ore is always varying no matter what mining rate plants run at.
Correspondingly, the amount of waste in the equal-time intervals is also subject to
changing. The stockpile size are directly related to the amount of waste produced in
this time period if we need to keep amount of ore production constant. Combining all
factors mentioned above, plants can dynamically alter the operation strategy provided

that plants could obtain necessary information.

4.2 Application of STMOD in Mineral-Processing
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4.2.1 Design of homogenization Facilities and Stockpile Size

An important and difficult feature to specify is the size of stockpile required to achieve
the required reduction in material variability between successive stockpiles. If the
design is insufficiently precise then the stockpiles must be made extra large for safety,
causing excessive cost[Parnaby et., 1973, p. 325].

The output of a mine is a time series of ore grades and ore tonnages. Stockpile
homogenization systems are designed to filter out some of the variability in this time
series. To a close approximation, the effect of a stockpile prehomogenizer can be
concisely expressed, in geostatistical terms, as a regularization of time series. If the
mine-output time series were stationary and observable over a long period of time,
the effectiveness of any homogenizer could be calculated straightforwardly from the
variogram of time series [11].

If both tonnage and grade time series are available, the time series might be
converted to a “tonnage series”, in which grade is expressed as a function of the cu-
mulative tonnage of ore delivered to the stockpile. The tonnage-series representation
is the correct choice if the stacker is designed to stack a constant tonnage per unit
length along the axis of the stockpile. This is the only approach available in a simula-
tion and grades delivered to the stockpile. A detailed simulated time series of tonnage
would involve some modeling of the hauling and crushing systems, or reliance on his-
torical tonnage data. This level of detail is not justified in most simulation studies of
homogenization systems, where the main parameter of the interest is the size of the
pile. The rate at which the pile is built is of little or no relevance in determining pile
sizes.

The principal objective of a homogenization system is to reduce the variability



D?(Q, L) of a raw material to be used in the plant. The support Q is a critical
sampling quantity that is actually determined by the sampling system and quality-
control objectives of the plant, but in this discussion it is more convenient to identify
Q with the amount of material contained in one “slice” recovered from the face of the
stockpile by a reclaiming device [15, 11|. Some reclaimers, such as bucket wheels,
move cyclically back and forth across the face of the pile, so that a slice can be well
defined as the material reclaimed from the pile during a single cycle. Some more
elaborate reclaimers attempt to recover material from the whole face simultaneously
and continuously, so that the definition of a slice may become arbitrary. The support
“L” may be taken to be “oo” if the plant operates continuously for a long period of
time, or it may be some finite tonnage of material if the plant works on a “ batch”

basis. Each variance can be decomposed into “slice” and “pile” terms, i.e.,
D?*(Q, L) = D*(Q,P)+ D*(P,L) (4.2.1)

where “P” is the amount of material contained in a full stockplie. A stockpile homog-
enizer of a given capacity is able to reduce only D?(Q, P), the slice-to-slice output
variability from an individual pile. D2?(P, L), the pile-to-pile output variability, re-
mains equal to D?(P, L). However, D?(P, L) can be decreased by increasing the size
of pile or by somehow decreasing the large-scale variability of the input time series,
e.g., by selective mining, or by blending mined materials from several faces into each
pile.

The effect of a stockpile homogenizer can be represented exactly as a regularization
if D?(Q, P) can be reduced to zero, e.g., if the material within the stockpile has been
completely homogenized. In theory this could be accomplished by building up the pile

from a practically infinite number of very thin layers. In practice this variance never
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vanishes and does not usually decrease noticeably with the number of layers increase.
However, if the mill has a large enough capacity to mix several slices of material
together, or if the plant has a powder homogenization silo, the output from the total
stockpile-mill-silo system may have very nearly a zero D?(Q, P). In a simulation
study, we can normally assume that the stockpile will be built a sufficient number of
layers to make D?(Q, P) small in comparison to D?(P, L).

4.2.2 Design of Proportioning Facilities

If the time-series realizations (real or simulated) are available for all (or at least all
“variable”) raw materials to be used by a plant, valuable information can be gained
on the degree of flexibility that should be built into the plant’s proportioning facilities
[11]. The solutions to deterministic long-term proportioning problems provide only
an impression of the “typical” amount of each raw material that will be required
by the plant. If the chemical quality specifications are tight and some of the raw
materials are variable in composition, the actual day-to-day or even year-to-year
raw-material proportions that the plant will require may depart severely from the
deterministic solution. In this application the time-series data must first be expressed
as “tonnage” because the rate at which material is consumed will vary according to
the instructions provided by the specified proportioning algorithm. The maximum
proportions suggest how much storage and feeder capacity should be installed for each
material. The minimum proportion suggests whether facilities should be available to
measure out very small quantities of some materials, and whether some sources of

raw materials may not be used at all from time to time.



4.2.3 Dilution of ore Grades During Mining

“Dilution” is defined as the material which is below the marginal grade but is ex-
tracted along with the ore. Dilution occurs at the following steps [10]: (a). at
the deposit interpretation/inventory step(internal dilution); (b). at the mine design
and planning step(planned waste); (c). at the mine exploitation step(mined waste):
material included because of deviations from the mining plan, and material that fall
from the roof or wall. There are, of course, some compensatory phenomena from
one step to the other. For instance, dilution at the exploitation stage could actually
consist of mineralization above the marginal grade that was unduly omitted from the
deposit interpretation or was beyond the outline of the stope contours. Typically di-
lution occurs when mining activities accidentally wander across an ore-waste contact
and a small amount of waste material is incorporated into the recovered ore, diluting
its grade. The effects of this kind of dilution on the time (or tonage) series of ore
grades delivered to a processing facility can be studied by simulation, provided that
the ore grades in question have been simulated in both ore and waste population and
provided that the locations of ore and waste within the simulation domain have also
been simulated. In surface mines, dilution by incompletely stripped overburden may
be an important source of contamination of the ore [11].

The effects of this kind of dilution are more difficult to reproduce in a simulation,
as the amount of overburden recovered depends not only on the nature of the orebody
surface but also on the effectiveness of stripping operation, which is difficult to model.
In some cases, a comparison of historical delivered ore grades with simulated grades of
clean ore mined from the same area may permit estimation of the statistical properties

of overburden contamination experienced in the past. For a new mine, one would
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simply have to make “reasonable assumption” or reply on experience from similar
operations.

Assessment of the extent of this kind of contamination cannot be made directly
using only core-drilling records, as the unconsolidated clay and other materials filling
the cavities are washed out of the rock during the drilling. The local departure of
individual data from the simulation can be attributed to this results. For practical
mining, to reduce this problem, we can adopt the geostatistical tools to predict the
range of this ore fluctuation mined according to the specified proportioning require-

ment.

4.3 Method and Application for Post-processing

Assume that we know the time variations of ore grade g;, i = 1, 2, 3, ...n, cutoff grade
Jeutoff, and the mining rate MiningRate. The time variations of waste based on

obtaining the constant amount of ore can be calculated as follow:

i=K
Z t; - MiningRate = SizeOre (4.3.1)

=1

i=K
Z(l — t;) - MiningRate = SizeW aste (4.3.2)

i=1

0<t; <1, Gk 2 Geutors
0, otherwise.

where i=1, 2, 3, ... , K, K is the number of time interval needed to obtain equal
amount of ore production SizeOre. Similarly, the waste distributions SizeWaste

can be obtained according to the equation (4.3.2).
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On the other hand, in a series of larger equal-time intervals 7", the proportional

distribution of ore versus waste could be described as follows:

k=K
OreOfT = > _ t; - MiningRate (4.3.3)
k=1
k=K
WasteO fT = Z (1 — t&) - MiningRate (4.3.4)
k=1
0< tk S 1: gk Z Geutof f» k= 17 2137 T
0, otherwise.
where k=1, 2, 3, ..., K, K is the number of equal-time intervals. OreOfT and

WasteOfT are the amount of ore and waste during the equal time interval T, corre-

spondingly.

4.4 Post Processing Program

For analysis and calculation, a C/C++ program has been buiit based on the above
algorithm. The input data come from the result of time variation — STMOD. This
program can provide the plant more information given the cutoff and mining rate.
The time of maximum waste and the amount of waste can be predicted provided
that we keep the ore production rate constant. Then, the requirement of maximum
handling capacity of equipment for ore and waste can be determined. Totally, by this
program we could realize the following estimations: time variation of waste for the
whole mining process, the distributions of ore and waste in bigger equal-time interval
T, waste variation by keeping the same amount of ore, the maximum value of waste
for getting same amount of ore, and time to reach maximum waste. The parameters

shown in Figure 4.1 for the program are listed as follow:
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datafile: a data file in simplified Geo-EAS format containing the time variation

of the mine site;

ivr: the column number for the variable;

nx : definition of the size of data variable;

tmin, tmax: all value beyond the range will be ignored;
cutoff: cutoff grade for the mine site;

m-rate: mining rate in the unit time;

T: the bigger time interval, namely, number of time intervals during which the
distributions of ore and waste are related to mining process. For instance, if
we assume that the basic time unit is hour, and T may be chosen as 24, in this
case we say that the bigger time interval is daily time interval, 24-hour interval.
Then we need to determine the distribution of ore and waste during the 24-hour

time interval;

SizeOre: the amount of ore to be sent to plants for processing in a specific time
interval; we also say that this item mean the processing rate of plant. However,
here we are more concern about the amount of ore to be treated. In order to
keep this processing rate, plant need to adjust the mining rate by the different

time variation of ore grade.

outdata: the three output data files for the post processing. First one is used to
store the data of time variation of waste for reaching equal amount of ore. The

second is used to store the data of ore and waste during equal time intervals.
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The last one is used to store the data of time variation of waste during the

whole mining process.

4.5 Case study

An example has been presented to illustrate the application of this program. Input
data come from the modeling of the geostatistical application, the time variation of
grade for the mining process could be produced by the STMOD program. However,
STMOD program does not consider such factors as the cutoff grade, equipment and
site selection requirement for mining and processing plant. The program of POST-
STMOD conducts the sensitivity analysis for different potential factors. There are
several evaluation indexes, such as the maximum waste mining for keeping constant
ore production rate, the average value of waste for equal time intervals in the mining
process, the proportional distributions of ore and waste during equal time intervals.
These predictions will provide us the detailed outline for planning the production
process.

First, we focus on proportional distributions of ore and waste on the equal time
interval T. Time variations of ore grade can be produced by using STMOD. And we
estimate an economic cutoff grade which is determined by the classification of ore
and waste. Then we can use post processing program, POSTSTMOD, to predict the
results we need. Figure 4.2 show the time variation of waste, the amount of waste to
be produced by keeping equal amount of ore production, proportional distribution of
ore versus waste during the equal time intervals. In order to illustrate the extent of
the impact of cutoff grade to production process, three different cutoff grades have

been selected and get the different results. Figure 4.2, 4.3 and 4.4 correspond to
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cutoff 4.5, 6.5, 8.5. As the cutoff increases, more wastes is encountered, see Figure 4.2,
4.3.

Second, considering a bigger time interval T by keeping same ore production rate,
we can obtain the distributions of waste during the consecutively equal time interval
T. Figure 4.5 shows another result of PostStmod, in which cutoff grade = 6.5, number
of time interval =500, MiningRate=20. In Figure 4.3 and 4.5, we kept the same
cutoff grade, but different mining rate and number of time intervals. Now let’s take
a look at the corresponding ocutcomes. On one hand, due to same cutoff grade, the
upper parts of Figure 4.3 and 4.5 should look same. On the other hand, because
of different mining rate and different number of time intervals, the times of arriving
local maximum waste have been changed, and the time interval of waste variation

has been changed as well.

4.6 Future work

We also need to estimate the amount of waste and the amount of ore during equal
time intervals assuming that we have known specific gravity of ore. Furthermore, we
assumed that the production price and cost of operation are provided, we can directly

evaluate operation cost and project profit.



Parameters for PostTime
START OF PARAMETERS:
stmod.out - input file of time variation
1 - column for variable
6000 - size of data
6.5 - cutoff grade
-1.0e21 1.0e21 - trimming limits(variable ore limits)
20 - mining rate in unit time interval
500 - number of time interval
7500 - amount of ore to plant in time interval T
PostStmod.out - Outpaut file for keeping the time variation of waste
PostStmod.rat - file for ratio of ore to waste
PostStmod.rak - file for ratio of ore to waste

Figure 4.1: An example of parameter file for PostStmod program.
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Figure 4.2: Results from PostStmod program, cutoff grade is 4.5, MiningRate 20, SizeOre
40000, number of time interval 300.
Upper: time variation of waste for the whole mining process;

Middle: Ore versus waste during the equal time intervals;
Lower: Time variation of waste during the time period for getting equal ore production.
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Figiare 4.3: Results from PostStmod program, cutoff grade is 6.5, MiningRate 20, SizeOre
400080, number of time interval 300.
Upp-er: time variation of waste for the whole mining process;

Midaddle: Ore versus waste during the equal time intervals;
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Figure 4.4: Results from PostStmod program, cutoff grade is 8.5, MiningRate 20, SizeOre
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Figure 4.5: Results from PostStmod program, cutoff grade is 6.5, MiningRate 20, SizeOre
7500, number of time interval 500.

Upper: time variation of waste for the whole mining process;
Middle: Ore versus waste during the equal time intervals;

Lower: Time variation of waste during the time period for getting equal ore production.



Chapter 5

Case studies

Bitumen and fines content are important factors affecting hydrocarbon recovery in oil
sands extraction. Estimates of bitumen and fines prior to the production process has
potential to greatly increase recovery. A detailed case study for oil sands is presented

in this chapter.

5.1 Introduction

Canada’s oil sands are the emerging giant of the petroleum industry. Currently
there are numerous oil sands projects and expansions in the construction, design
or conceptual stage representing billions dollar investments over the next 9 years.
Production will increase by 470% and represent about 50% of Canada’s crude oil
production[10].

The practices in mineral field are elusive targets, given the variation of geological
conditions, mining methods, the great variation of grade, and information effect.
As a result, the investment required for mine development often carries undue risks
regarding reserve quality and quantity, capacity to develop the mine within budget

and schedule, a capacity to meet the mine production targets: startup date, length
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of break-in period, costs, quantity and quality, and projected cash-flow. All these
properties always play a vital role in decision-making in mine operations.

The processing plant needs to understand time variations of ore grade to reduce
the natural variability of incoming raw materials and to blend different materials into
plant feeds. Processing parameters, like the amount of solvent, amount of energy
consumed, can be adjusted accordingly. Therefore, it is useful to know the bitumen
and fine content prior to processing.

For this purpose, the time variations of bitumen and fines content in different
volumes transported from oil sands field to the operation plant are estimated. Based
on the spatial variability of oil sands, the transform from spatial continuity to time
variation is realized through a mining scheme. The algorithm for time variation was
presented in previous chapters, a detailed case study is shown here.

The analytical variogram models have been established by applying geostatistical
theory. Due to the different volume support from core sample data to simulation cell,
up-scaled variograms and histograms have been presented in this study. We know that
bitumen and fines are related. Bitumen sample data are often collected and data are
rarely collected for fines. Then, bitumen content is first simulated using Gaussian
sequential simulation. Cosimulation is adopted for fines. The average changes of

time variation and variograms of time variation are also analyzed.

5.2 Data

The data comes from an oil sands deposit in the Fort McMurray area. There are
875 vertical drillholes over a 40 km area. Bitumen content are measured for 47331

samples and fines content was measured for 16153. Figure 5.1 and Figure 5.2 show



the histograms for bitumen and fines. The bitumen content appears to have a bimodal
distribution related to either porosity facies or water saturation. The fines do not
show this behavior. Figure 5.3 shows the cross plot between bitumen and fines for
15030 of collocated sample pairs. A fairly strong negative correlation with correlation
coefficient of -0.71 can be seen from Figure 5.3, which is expected since the existence
of fines reduces the available space for bitumen in the pores.

We assume that about 25,000 cubic meters of oil sands are taken to the plant for
processing every day. The thickness of the oil sand layer being mined is about 15
meters, which means there is about an 8 by 8 by 15 meter volume mined each hour.
Since the bitumen and fines have strong spatial variability, the bitumen and fines have

related time variation.

5.3 Procedures of analysis and calculation

To assess the temporal variation of bitumen and fines it is necessary to establish the
relation between the time domain and spatial domain. We first need to estimate the
spatial variations in bitumen and fines in the oil sand volume to be processed. This
will be done through geostatistical simulation. Then, the average content of bitumen
and finesin the volume for a unit time (say an hour) processing can thus be estimated.

For the spatial estimation of bitumen and fines content, we need variogram models
that quantify the spatial variability of the bitumen and fines. Variograms are calcu-
lated from the sample data and then modeled. However, in geostatistical modeling,
volume support of core sample is generally smaller than that used for the simulation.
In this study, the core volume could be considered as quasi-point, e.g. 0.05 by 0.05

by 0.61 meter (where 0.05 meter is the radius of the drillhole and 0.61 meter is the



median length of the core samples), but the simulation cell will be realtively large,
say 1 by 1 by 1 meter. Since the variance is reduced as the volume increases, the
variogram model from the core samples should not be used directly in subsequent
simulation. It is necessary to scale up (or down in other cases) the variogram from
the core to the simulation cell. This can be accomplished analytically by considering
known volume-variance relations.

Bitumen and fines should not be modeled independently. A model of coregion-
ization is required for cosimulation. For this purpose, we model the experimental
variograms with a linear model of coregionalization.

Most geostatistical algorithms are devised to work with the normal distribution.
Therefore, the bitumen and fines variables are transformed to standard normal dis-
tributions prior to variogram calculation and simulation. The simulated values are
then back transformed from the normal distribution to the units of the original data.

Overall, our procedure consists of the following steps:

e normal score transform of bitumen and fines,

e calculate experimental variograms in principal directions of continuities of bitu-

men and fines, and cross variogram of bitumen and fines with gamv,

e model direct variogram of bitumen and fines with vmodel for the purpose of

simulation,

e construct a linear model of coregionalization (LMC) for bitumen and fines for

the purpose of cosimulation,

e define a volume which is about one day’s production (say 8 by 8 by 15 meter )

and divided into small cells e.g., 1 by 1 by 1 meter,



e scale-up the direct variogram models and LMC from core volume support to
simulation volume support. Analytical functions are based on volume-variance

relations,

e estimate the content of bitumen for each small cell in the defined daily processing

volume with sequential Gaussian simulation (sgsim in gs1ib),

e estimate the content of fines for each cell of the volume through cosimulation

of sgsim by considering the content of bitumen already assigned,

e assess the temporal variation of the content of bitumen and fines by observing
the correlation between variable values in successive unit time (say successive
hours); average the variation in volumes of one hour processing and plot the

expected value versus time,

Quantify time variation and plot the variation.

5.3.1 Experimental Variograms, Modeling and LMC

For Gaussian simulation, data should obey a Gaussian histogram. However, in prac-
tice, data are rarely Gaussian. Therefore, data must be transformed into a Gaussian
or normal distribution prior to simulation. The transformation is done by program
nscore. Figure 5.4 shows the cross plot between normal scores of bitumen and fines
of the 15030 collocated samples. The correlation does not change much with a new
correlation coefficient of -0.704 compared to the raw correlation shown in Figure 5.3.

Figures 5.5 show the directional variograms and cross variogram of bitumen and
fines in the two principal horizontal directions together with the omnidirectional

variograms. There is little difference in the spatial continuity in the two principal
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horizontal directions. Therefore, it is assumed that the spatial variabilities of bitumen
and fines are isotropic in horizontal plane.

The red dots in Figure 5.6 show the vertical and isotropic horizontal experimental
variograms for bitumen and fines, and the cross variogram of bitumen and fines.

In order to have legitimate covariance everywhere in the kriging, it is necessary

to model the experimental variogram with legimate analytical functions:

v(h) = C° + §C*F‘(h)
i=1
where (k) is the variogram model, C° is the nugget effect, nst is the number of
nested variogram structure used to fit the variogram, C* is the variance contribution
of each nested structure, i = 1,...,nst, and I'*(h) is the nested structure consisting of
an analytical function such as spherical, ezponential, Gaussian etc. The experimental

variograms shown in Figure 5.6 are modeled as the follows:

,y(h)bztumen = 0.35+0.35 Engoo,la (h) +0.13 Gau700,25 (h) + 0.17 GGU5000,25(11)

,Y(h)fines =0.35 -+ 0.45 E$p200,35 (h) -+ 0.10 E.'Epsoo,‘;o (h) -+ 0.10 Sph;gooo,so (h)

The fitted variograms are also shown as red solid lines in Figure 5.6. As shown in
Figure 5.6 the models above that the nugget effect is 0.35 for both bitumen and fines.
That means there is 35% of total variance contributed by randomness and short scale
variability. The horizontal correlation of fines decreases faster than that of bitumen

as the distance increases, but the vertical correlation lengths of fines is larger than
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that of bitumen. All the variance contributions and ranges of each nested structure
are associated with the current sampling volume. The variance will go down and the
range will be longer when the volume increases.

For the purpose of cosimulation, the variograms of bitumen and fines, and the cross
variogram of bitumen and fines must be modeled together to form a licit linear model
of coregionization (LMC). That means all three variograms must be modeled with
the same nested structures with the same ranges and different variance contribution
coefficients. The coefficients in the nested structures must satisfy constraints defined

as followed:
Cyy =0, Cy2z>0, Cyy x Cy 7z > Cy 5°

The LMC for the experimental variograms shown in Figure 5.6 are as follows and

shown in Figure 5.7:

’)’(h) Bitumen — (.35 4+ (.35 Expgoo,l_s (h) +0.13 Sphmoo,g,o(h) +0.17 Sphsooo,so (h)

,Y(h)Fines =0.35 + 0.45 EZL‘pgoo,ls(h) + 0.10 SphLOOO,30(h) + 0.10 Sphsooo,so(h)

,Y(h)Craas = —0.20—-0.30 E:Epzoo,]_s(h) —0.10 Sphwoo,so(h) —0.11 Sph,sooo,so (h,)
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5.3.2 Scale up variogram models and LMC from core to sim-
ulation cell

There are always volume support issues in geostatistical modeling. The variogram
model, calculated from data associated with a certain volume support (data scaling),
only specifies the spatial variability of the variables at that scale. In geostatistical
simulation, smaller or larger volumes than data volume support may be preferred. It
is then necessary to scale the variogram calculated from a data volume to simulation
cell.

Consider a variogram model at arbitrary scale v, where v often represents the

small core scale:
nst

Yo(h) = CS+ ) CiTi(h)

i=1

where v, (k) is the variogram model at the v scale, CJ is the nugget effect, nst is the
number of nested variogram structure used to fit the variogram, C? is the variance
contribution of each nested structure, i = 1, ..., nst, and [} (k) is the nested structure
consisting of an analytical function. Here the “sill” of each nested structure I} (h) is
unity, the C describes the variance contributions of each nested structure. The sum
of the variance contribution is the variance at the v-scale and is called the dispersion

variance:
nst

D*(v,A)=CS+ > C:

i=1

where D?(v, A) is the variance of volumes of size v in the entire area of interest A.
The variance decreases as the volume increases. That is because high or low values
are averaged out as the volume of investigation increases. The ranges increase as the

averaging volume increases. Moreover, experience has also shown that the variogram
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shape does not change much. Therefore, the following scaling relations are established

in the geostatistics:

e The range at a large volume V increases in volume size (|V| — [v|) in each
particular direction:
ay = ay + (|V| = |v])

where || means the size of the volume in a specific direction.

e Assuming the variogram shape does not change, we must quantify how the
variance contributions C%,i = 1,.. ., nst, change.
For the nugget effect, it is due to random variance, and it decreases with an

inverse relationship of the volume, i.e.,

v

where |v|, |V| represent the volume of each scale, respectively.

The variance contribution of each nested structure changes as following:

i _ i 1—T(v,v)
=TT

where [(V, V) and ['(v,v) are the average variogram or “gamma-bar” values.
Notice here the change in the variance contribution is calculated separately for
each nested structure. The “gamma-bar” values are thus calculated based on

the unit variogram of each nested structure.

e When all variance contributions have been corrected for each nested structure
separately, the coefficients C}{,,7 = 0,1,...,nst of a variogram model will be
normalized by the corresponding dispersion variance for normal score simula-

tion.
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The “gamma-bar” value represents the mean value of v(h) when one extremity
of the vector h describes the domain v(u) and the other extremity independently de-
scribes domain V(u’). In mathematical notation the “gamma-bar” value is expressed

as:

30, v =55 [ [ o= y)avay

Although there exist certain analytical solutions to F(v(u), V(u')), the value of
“camma-bar” is usually estimated numerically by discretizing the volume v(u) and

V(v') into a number of points and simply averaging the variogram values:

n
o), V) & == 3D 9w — o)
i=1 j=1

where n is the number of regular spacing point discretized for volume v(u) and =’
is the number of regular spacing point discretized for volume V(u'). Each point
normally represents the same fractional volume of v(u) or V(u').

For the scaling up of direct variogram models, Table 5.1 and Table 5.2 list the
[ values, original and corrected range, original, corrected and normalized variance
contributions after correction of each nested structure of variograms for bitumen and
fines, respectively. It can be seen from Table 5.1 and Table 5.2 that range does not
change much since the change of volume is relatively small. From row 7 of Table 5.1
and Table 5.2 it can be seen that nugget effect decreases much faster than the variance
contributions of the nested structures as the volume increases. This is expected
because nugget effect is due to randomness and small scale variability, the randomness

will be reduced quickly with volume averaging. From row 7, one will see slight

influence of the volume change on the variance contributions. However, the significant
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change of the nugget effect and the normalization of all variance contribution, the
variance contributions in the final corrected model, which are shown in the last row
of Table 5.1 and Table 5.2, have big changes to the original variogram models. The
solid line in Figure 5.8 show the variogram models after scaling.

For the LMC model, since the nested structures are the same for three variograms,
the “gamma-bar” values of each nested structure are the same for the correction of
variograms of biturmen and fines, and of the cross variogram of bitumen and fines. Also,
the range changes in each nested structure are also the same for three variograms.
Table 5.3 list the 7 values, original and corrected range for LMC scaling up of the
three nested structures. The corrected and normalized variance contributions after
correction are tabulated in Table 5.4 for each nested structure together with the
variance contributions in the original LMC. The LMC after scaling up are shown as
green solid lines in Figure 5.9. Note that the constraints for variance contributions of
a LMC still hold.

Compare the variogram models after scaling up to the simulation volume (solid
lines in Figure 5.8 and Figure 5.9) with the original variogram models in the core
volume (dash lines in Figure 5.8 and Figure 5.9), there is higher connectivity in the

shorter scales.

5.3.3 Correct Histogram Using Variance-Volume Relation

The variogram models have been scaled up from the drillhole vloume to the simulation
volume. It should be noted that the histogram will also be changed after such volume
change. For the correction of histogram associated with the support volume effect,

we need to have the mean, variance value and shape of the new histogram. The



nugget effect iy r's r;
7(v, ) 0.0449 0.000891 0.000891
¥(V, V) 0.0733 0.002386 0.002380
a9 200.0,200.0,13.0 | 700.0,700.0,25.0 | 5000.0,5000.0,25.0
a®’" 200.9,200.9,13.4 | 701.0,701.0,25.4 | 5000.9,5000.9,25.4
cog 0.35 0.35 0.13 0.17
ceorr 0.0005 0.3396 0.1298 0.1697
crorm 0.0008 0.5309 0.2029 0.2654

Table 5.1: 4 values, original and corrected range, original, corrected and normalized
variance contributions of variogram model of bitumen

nugget effect rs r3
¥(v, v) 0.0171 0.01495 0.000891
F(V, V) 0.0299 0.02477 0.008290
a9 200.0,200.0,35.0 | 600.0,600.0,40.0 | 3000.0,3000.0,60.0
a®™r 200.9,200.9,35.4 | 601.0,601.0,40.4 | 3001.0,3001.0,60.4
cs 0.35 0.45 0.10 0.10
ceor 0.0005 0.4441 0.0990 0.0.0993
cnorm 0.0008 0.6908 0.1540 0.1544

Table 5.2: 4 values, original and corrected range, original, corrected and normalized
variance contributions of variogram model of fines

Ty

i

IV

¥(v, v) 0.03885

0.01008

0.006085

3(V,V) 0.06415

0.01658

0.009881

Q%9

200.0,200.0,15.0

1000.0,1000.0,30.0

5000.0,5000.0,50.0

a

200.9,200.9,15.4

1001.0,1001.0,30.4

5000.9,5000.9,50.4

Table 5.3: ¥ values, original and corrected range, of LMC of bitumen and fines



nuggeteffect | Tz | Tp | T
Bitumen

cos 0.35 0.35 0.13 0.17

ceerr 0.0005 0.3408 | 0.1291 | 0.1694

grerm 0.0008 0.5326 | 0.2019 | 0.2647
Fine

core 0.35 0.45 0.10 0.10

ceor 0.0005 0.4381 | 0.0993 | 0.0996

cnorm 0.0008 0.6871 | 0.1558 | 0.1562
Cross

corg -0.20 -0.30 -0.10 -0.11

ceor -0.0003 -0.2921 | -0.0993 | -0.1096

crorm -0.0004 -0.4137 | -0.1407 | -0.1552
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Table 5.4: original, corrected and normalized variance contributions of LMC of bitu-
men and fines

global mean remains unchanged when the support volume changes. Variance will be
reduced when the support volume increases. The magnitude of the variance change
is predictable as documented above.

There is an additivity relation (Krige relation) in the dispersion variance:
D?*(., A) = D*(.,v) + D?*(v, A)

The quasi-point dispersion variance, i.e., total variance D2(., A) in the entire area
A is the within blocks variance, D?(.,v) plus the between block variance, i.e., the block
dispersion variance D2(v, A) in the entire area A.

We can calculate average covariance values(or C-bar) in a similar manner to
gammar-bar values. We simply replace ¥ by C, which is equal to C(0) — ¥ after

the decision of stationarity. Thus,

D*(v, A) = 3(A, A) — ¥(v,v)
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¥(v, v) f
bitumen | 0.3796 | 0.6214
fines 0.3671 | 0.6329

Table 5.5: 4 values and variance reduction factor f of bitumen and fines

When A is sufficiently large, 7(4, A) — o? and the dispersion variance may be
written:
D*(.,A) =a® - 7(,.) = o?
When we consider quasi-point volumes within any arbitrary volume v the disper-

sion variance is written simply as:
Dz(': U) = ’7(1)1 U) = ’7(1 ) = ’7(”: ’U)

Then a variance reduction factor f which is the ratio of the block dispersion

variance D2(v, A) and the quasi-point dispersion variance D?(., A) is defined as:

f — D2(U1A) — D2(1A) - Dz(':v) =1— D2('1U) =1— ’7(7)71})
D2(, A) D*(, 4) D, A) >

Table 5.5 shows the “gammabar value” and variance reduction factor f of bitumen
and fines.

The last issue about the histogram correction is the “change of shape”. The affine
correction and indirect correction based on permanence of a lognormal distribution
model are two easily applied analytical models for change of histogram shape. For
our case study the sample histogram before variance reduction is not lognormal, then
we choose the affine correction.

The basic idea behind affine correction is that the variance of a distribution can
be reduced without changing its mean simply by moving all the values closer to the

mean.
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The affine correction transforms g, a quantile (or value) of one distribution, to ¢/,

a quantile (or value) of the corrected distribution using the following linear formula:

¢ =vVfx(@-m)+m

where f is the variance reduction factor and m is the mean value.

Figure 5.10 and Figure 5.11 are the histogram of bitumen and fines after affine
correction. It is noted that the ratio of variances of the distributions of bitumen
and fines before and after the transformation are 0.6246 (%:‘l’—g;) and 0.6324 (%%%; ,
respectively, which are consistent with the variance reduction factors f, 0.6214 and
0.6319 as shown in Table 5.5. The shape change in the histograms and averaging effect
can be noticed from the minimum and mazimum values of the histograms before and
after the correction. Mazimum values become smaller and minimum values become

larger after the correction.

5.3.4 Mining scheme

We assume there are about 1000 m? of oil sands treated per hour in the plant. we
are trying to estimate the time variation in different time scales, say hourly, six-
hour, 12-hour, 24-hour and up to monthly variations. Seven weeks of operation is
needed to establish this time variation, it is then needed to simulate volume for
7 X 7 X 24 = 1176 hours operation. It is assumed that the oil sand bench is about
15 meters and the width of the mine face is 8 meters, we define one hour’s digging
volume to be 8 x 8 x 15 = 960m3 (approximate 1000 m?®). To facilitate the average
calculation, field size of 328 by 288 by 15 meter is designed for the simulation, namely,
parameters L = fw = 288, W = 328, H = 15,a = b = 8 (unit: meter) in Figure 5.12

and 5.13. There are total 1,416,960 unit cubic meter simulation cells. The hourly
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mining rate is 960 cells and each cell is 1 cubic meter; then, we take six-hour blocks,
which are 5760 cubic meters. The detail of this process is shown in Figure 5.14,
in which each dashed block expresses hourly operation and the arrows indicate the

mining sequence.

5.3.5 Simulation

The simulation is conducted in a two-step procedure. First, the content of bitumen is
estimated by sequential Gaussian simulation. Then, by using the simulated values of
bitumen, the content of fines is cosimulated with the option of co-located cokriging.
Unconditional simulations are adopted. From the previous calculation of up-scaling
model, the corresponding parameters have been used in the sequential Gaussian sim-
ulation.

To back-transform the simulated results, one needs to have the distribution of
bitumen and fines for conducting the transformation. The histograms of bitumen and
fines after affine correction have been used. The direct variogram model tabulated in
Table 5.1 and shown in Figure 5.6 is used for the simulation.

The variograms between model and simulation are compared in Figure 5.18, in
short scale the variograms from simulation are produced well, the deviations of vertical
direction from the input model could be explained by the smaller simulation size so
there exists fewer pairs in that direction.

A better correlation coefficient -0.75 between bitumen and fines has been gotten
by simulation. Cross plots in Figure 5.15 show the relation before and after the

sirnulation.
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Figure 5.16 and Figure 5.17 show a 3-dimensional view of one realization of bitu-

men and a joint simulation of fines.

5.3.6 Time Variation

After simulation we assess the temporal variation of bitumen and fines content in
successive volumes of hourly processing based on the mining scheme. In order to
observe trends of time variation for different time intervals, six-hour, twelve-hour and
twenty four-hour time intervals are also adopted. Figures 5.19 and 5.20 show the
time variations in bitumen and fines based on different time intervals, respectively. In
order to compare their corresponding change trends in the real same time we draw
time variations of two variables together in the same plot shown in Figure 5.21. From
this plot it is relatively easy to detect the related variation trend existing between
them, namely, the bitumen content increases while the fines content decreases in
general. Histograms of both variables are shown in Figures 5.22 and 5.23, from
which one can notice that histograms of time variation for different time intervals
are generally similar. Figure 5.24 shows the variances at different time intervals,
respectively. From the variance we can find the ranges of alteration of each time
variation, namely, for both of the variables with the the lengthening of time interval,
the variance has a downward trend which means that the change trends become
weak. It is reasonable that the variance decreases with the increase of volume. The
relations of dependence for two variables at different time intervals can be depicted in
the cross plot of Figure 5.25. There are stable correlation coefficients at different time
interval, we think it is appropriate due to the average effects which smooth out some

extreme values, so the coefficient factors may enhance a little with the time interval
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increase. Like spatial continuity of the attributes the variograms of time variations for
bitumen and fines have similar variabilities as shown in Figures 5.26 and 5.27. And
the time variation variograms can tell us the continuity of variation for bitumen and
fines content in time domain. Further, we can observe the histograms of average time
variation in successive time intervals in Figures 5.28 and 5.29, namely, the change
from last time interval to next time interval. Distribution of this kind of change is
very useful for predicting the next time interval content of the variables. And the

plant can use this value to control the related operation processes.

5.4 Conclusion

The objective of this case study is to obtain the time variations for content of bitumen
and fines in the different volumes transported to processing plant. we assume the
bitumen and fines content must have related time variation since they reappears
strongly spatial variability. Based on this relations time variation was generated and
analyzed in detail.

To estimate the time variation, we need to simulate the spatial variability of
bitumen and fines using the geostatistical simulation. First variogram inference and
analytical models have been established for bitumen and fines based on the data
spatial continuity. Due to the different volume support from core samples, e.g. 0.05 by
0.05 by 0.61 meter to sirnulation cell, say 1 by 1 by 1 meter the up-scaling variograms
and histograms have been done according to the volume-variance relations. From
the given sample data we also can notice that bitumen and fines content have strong
negative correlation, data for bitumen are collected preferentially and taken sparsely

for fines, therefore bitumen content needs to be simulated first by using sequential
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Gaussian simulation, then, cosimulation is adopted for fines content with the option
of collocated cokriging. In order to meet the on-site mining requirement we need
produce the final time variations by selecting proper mining scheme. The curves of
time variations and related histograms have been presented in this study.

Once we obtain the result of tirme variations for bitumen and fines, variograms of
time variations and the average changes in the next time interval for bifumen and
fines are also generated. The distribution of average changes of time variations are
useful for the plant to design the production plan and adjust corresponding operation
parameters. This is also the purpose of this paper. However, we also know that the
outcome just came from limited realizations, the production rate is an constant or
linear variables, and a single bench is considered. Therefore, in the future we still
need include multiple benches in the modeling, perform the simulation of mining
rate and process dynamic optimization simulation, and consider the optimal use of
multiple realizations in presence of uncertainty in prediction of oilsands bitumen and

fines content.
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Figure 5.1: Histogram of bitumen content %
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Figure 5.3: Cross plot of fines content % versus bitumen content %
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Figure 5.10: Histogram of bitumen content % after affine correction.
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Figure 5.11: Histogram of fines content % after affine correction
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Figure 5.12: A 3D block model, which could come from geostatistical simulation.

Figure 5.13: Plan view of mining scheme.

82



Finea

83

Total Volume:
288*328*15
Block: 8*8*15
Cell: 1*1*1
2
A |
’ |
°°T— e Unit: meter
8
328

Figure 5.14: Mining scheme.

100., . 5030 100 Number of dats ~
r&nt'm :503 Number piotted 1416
trimmed 34068
80. ] X Variable: meen 8.275 80.} X Variable: mean 8.767
sid. dev. 4.025 4 std. dav. 3.399
Y Variable: mesan 29.486 1 Y Varisbie: maan 29295
4 sii. dev. 18798 4 std. dev. 16.820
80-4 cormaletion -.711 0. comslation -.751
rank cormeiation -.724 lg rank corrolation -.780
0. 40.]
20. 20. ]
- 4
0. o]
T ™ - 1 TrrrrT T 1
a 5.0 10.0 15.0 200 25.0 (+] 50 10.0 15.0 20.0 25.0
Bitumen Bitumen
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result, right is the simulated one.



Figure 5.16: 3D view of simulated bitumen content

Figure 5.17: 3D view of cosimulated fines content
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Figure 5.21: Comparison of time variations for bitumen and fines in different time intervals.
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Figure 5.27: Variograms of time variation of fines at different time intervals. Line 1: Left
is for hourly interval for fines content, right is 6-hour interval for fines content. Line 2: Left
is for 12-hour interval for fines content, right is 24-hour interval for fines content.
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Figure 5.28: Time variations for bitumen content in successive two time intervals. Line 1:
left is hourly time interval for bitumen, right is 6-hour time interval for bitumen. Line 2:
left is 12-hour time interval for for bitumen, right is 24-hour time interval for bitumen.
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//* Time variation recently modified date : 1/16/00 *
[ [ 3%tk e ke s e e s e e e ke e s sk e ok e sl e e o e s o ke ke oo o ook ok s ek oo o ok
#include "math.h"

#include "stdio.h"

#include "stdlib.h"

#include "malloc.h"

#include "string.h"

// External functions

void readpara();
void readdata();
void writepara();
void disres();
void timevari();
void fintime();

// Variables read parameter file

int nx,ny,nz,var_colum,
nx2,ny2,nz2,var_colum?2;

int unitx, unity, unitz,unitx2,
unity2, unitz2;//cell size

char *inputdata[60], *inputdata2[60],
*outdata[60] ,*var_name [80] ;

float tmin,tmax,tmin2,tmax?2;

int ire_ben,nben,mbenht[20];

int ire_ben2,nben2,mbenht2[201 ;

int nux,nuy,nuz;//(fa,fw) ;benht int



nux2,nuy2,nuz2;//(fa,fw) ;benht
float mining _rate,mining_rate2;
float total_mining, cutoff;
int mwface;
// Variables read data file

float *xvar ,*iorder,*time, *time2;

int main() {
char mfname[60]={"stmod.par"},ft; // name of parameter file
printf("The parameter file is ’STmod.par’, Y/N? [Y]:");
ft=getchar();
if((£t=="n’) | | (£t=="N"))
{ ©printf("\nPlease input new parameter file:");
scanf ("%s" ,&mfname) ;
printf ("\nThe parameter file is %s\n",mfname);
}
readpara(mfname) ;
disres();
timevari(Q);
fintime() ;

return 1;

//Read data file
void readdata(fname,colum_v) int colum_v; char *fname[40]; {

FILE *frp;
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char ch;
int i,l,colum,txyz,s8ize;
float cx[10];
txyz=nx*ny*nz,
size=4;
var=calloc(txyz,size);
if (var==0){printf("Allocate memory error!\n"); exit;}
if ((frp=fopen(fname,"rb"))==NULL)
{printf("\nCan not open the data file or not exist!");
exit(0);}
else{
//fw=fopen("read.txt", "wb");

ch=fgetc(frp);
while(ch!=10){ ch=fgetc(frp);}

fscanf (frp,"/d\n",&colum) ;

for(i=0;i<colum;i++)

{
// if(i==(colum_v-1))
fscanf (frp, "%80s\n" ,&var_name) ;
ch=fgetc(frp);
while(ch!=10){ ch=fgetc(frp);}
}

colum_v--;



for(i=0; i<txyz;it++)

{

}

for(1=0; 1<colum; 1++)
{ size=
fscanf (frp,"%f" ,&cx[11);
if (size<1)
{ printf("Error!
No enough data in
the data file!\n");

exit(0);

}
var[il=cx[colum_v];

//fprintf (fw,"%f \n",var([il);

//printf ("size= Yd",size);

fclose (frp);
//fclose(fw);

void readpara(fnamel) char *fname1[60]; {

FILE *frp;
char ch;

int i,tem;
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if (! (frp=fopen(fpamel,"rb")))
{printf("\nCan not open the parameter file,
Or %s does not exist!!
\nA new formatted parameter file has been
produced! !\n",fnamel) ;
writepara() ;
exit(0);
}
else{
for(i=0; i<4; i++)
{
ch=fgetc(frp);
while(ch!=10){ ch=fgetc(frp);}
}

//printf ("Read line 4 \n");

// Mutiple work faces? 2(two w faces) or 1 (one w face)
fscanf (frp,"%d" ,&mwface) ;
ch=fgetc (frp) ;
if(ch==".") {printf("’-number of work
faces ’ errorl
in parameter file\n"); exit(0);}
if (mwface<0){printf ("’-work face ’
error in parameter
file\n"); exit(0);}

while(ch!=10){ ch=fgetc(frp);}
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// cutoff
fscanf (frp, "4f" ,&cutoff) ;
ch=fgetc(frp);
if (cutoff<=0) {printf("’ -Cutoff
grade’ error in
parameter file\n"); exit(0);}

while(ch!=10){ ch=fgetc(frp);}

// total mining time units

fscanf (frp,"%f" ,&total_mining);
// printf(“"Total mining time = Jf,
\n",total_mining) ;
ch=fgetc(frp);
if (total_mining<=0)
{printf("’ -total number of time
units ’ error in parameter file\n");
exit(0);}

while(ch!=10){ ch=fgetc(frp);}

// file outputing data
fscanf (frp,"%s",&outdata) ;
// printf("output data = %s, \n",outdata);
ch=fgetc(frp);
while(ch!=10){ ch=fgetc(frp);}

//ch=fgetc(frp);
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// file for inputing data of site one, work face one
fscanf (frp, "%s",&inputdata) ;
// printf("Read file name = Y%s
\n",inputdata);
ch=fgetc (frp);
while(ch!=10){ ch=fgetc(frp);}
// column for variable
fscanf (frp, "%d",&var_colum) ;
// printf("var colum = %d \n",var_colum);
ch=fgetc(frp);
if(ch==.") {printf("’-column for
variable I’ error\n");
exit(0);}
if (var_colum<=0){printf (" ’-column
for variable I’
error in parameter file\n");
exit(0);}
while(ch!=10){ ch=fgetc(frp);}
// nx, ny,nz
fscanf(frp,"id %d Y%d ",é&nx,é&ny,é&mz);
//printf("Nx = Yd, ny= %d, nz= %d \n",
nx,ny,nz) ;
ch=fgetc(frp);
if(ch==’.’) {printf("’-nx,ny,nz’
error in parameter

file\n"); exit(0);}



if ((nx<=0) |[[(ny<=0) || (nz<=0))
{printf("’-nx,ny,nz’
error in parameter file\n");
exit(0);}
while(ch!=10){ ch=fgetc(frp);}
// unit size of x, y, =
fscanf (frp,"%d %d %d",Zunitx,&unity,&unitz);
//printf(“Cell size x= %d, y= 4d , z= %d\n",
unitx, unity,unitz);
ch=fgetc(frp);
if(ch==’.") {printf("’-cell size’ error in
parameter file\n"); exit(0);}
if ((unitx<=0) || (unity<=0) || (unitz<=0))
{printf (*
’-cell size’ error in parameter file\n");
exit(0);}

while(ch!=10){ ch=fgetc(frp);}

// limit for Min and Max
fscanf (frp,"%f %f ",&tmin,&tmax);
//printf("tmin = %5.2f, tmax= %5.2f \n",
tmin,tmax) ;
ch=fgetc(frp);
if ((tmin>tmax) | | (tmax<=0))
{printf("’~trimming limits’

error in parameter file\n");
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exit(0);}

while(ch!=10){ ch=fgetc(frp);}

// 1 iregular bench?
fscanf (frp,"%d %d ",&ire_ben, &nben);
//printf("Regular ben = %d, num ben= %d
\n",ire_ben,nben);

ch=fgetc(frp);

if(ch==’.") {printf("’-number of benchs
’ errorl in
parameter file\n"); exit(0);}

if (nben<=0){printf (" ’-number of

benchs ’ error2 in parameter file\n");

exit(0);}

while(ch!=10){ ch=fgetc(frp);}

if(ire_ben>=1)
{
fscanf(frp,"%d", &nuz) ;
//printf("benht = %d \n",nuz);
ch=fgetc(frp);
if (nuz<=0){printf("’-bench height
’ error in
parameter file\n");
exit(0);}
while(ch!=10){ ch=fgetc(frp);}
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else{
if (nben<=1) {printf("’-number of benchs ’
error in parameter
file\n"); exit(0);}
tem=0;
for(i=0; i<nbem; i++)
{ fscanf (frp,"%d",&mbenht[i]);
if (mbenht [1]<=0){printf ("’ -bench height
for irregular benchs
’ error in parameter file\n");
exit(0); 3}
// printf("Multi-ben %d \n",mbenht[i]);
tem=tem+mbenht[i] ;
}
if ((tem<=0) | |(tem>nz)) {printf("’~bench
height for irregular
benchs ’ exror of sum of multi_bench:
in parameter file\n");

exit(0);}

ch=fgetc (frp) ;
while(ch!=10){ ch=fgetc(frp);}
}

//Advance and width of mining scheme



// Mining rate

108

fscanf (frp,"d Yd ",&nux,&nuy);
//printf("Advance length, width = %d,
%d \n",nux,nuy);
ch=fgetc(frp);
if(ch==’.’) {printf("’-advance and
width of working
face(scheme) ’ error in parameter file\n");
exit(0);}
if ((nux<=0) || (nuy<=0)){printf("’-advance and
width of working face(scheme) ’ error in
parameter file\n");
exit(0);}

while(ch!=10){ ch=fgetc(frp);}

fscanf (frp,")f" ,&mining_rate);
//printf("Mining rate = %f, \n",mining rate);
chk=fgetc(frp);

if (mining_rate<=0) {printf("’ -mining rate
IT (m~3/unit time)

WF I’ error in parameter file\n"); exit(0);}

while(ch!=10){ ch=fgetc(frp);}

1111111 10707710017070777077777717111117171117117777177

//// Second II work faces parameters setting ////
[1771177777771777770777771777777171111117771177777/17



if (mwface>1)

{

// file for inputing data of site one, work face one

fscanf (frp, "%s" ,&inputdata2);
ch=fgetc (frp);
while(ch!=10){ ch=fgetc(frp);}

// printf£("\n file is %s \n ",inputdata2?);

// column for variable

// nx, ny,nz

fscanf (frp, "%d" ,&var_colum2);

ch=fgetc (frp) ;

if(ch=="."’) {printf("’-column for variable
II’ error\n");

exit(0);}

if (var_colum2<=0) {printf("’-column II
for variable’error in parameter file\n");
exit(0) ;}

while(ch!=10){ ch=fgetc(frp);}

fscanf(frp,"4d U%d %d ",&nx2,&ny2,&nz2);

// printf("\n unit 2 %d Y%d %d \n ",

nx2,ny2,nz2);

ch=fgetc(frp);

if(ch==’.’) {printf("’-nx,ny,nz II’ error in
parameter file\n"); exit(0);}

if ((nx2<=0) || (ny2<=0) | |(nz2<=0))
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{printf (" ’-nx,ny,nz
II’ error in parameter file\n");
exit (0);}
while(ch!=10){ ch=fgetc(frp);}
// unit size of x, y, z
fscanf (frp,"%d %d Y%d",&unitx2,&unity2,Zunitz2);
//
ch=fgetc(frp);
if(ch==’.") {printf("’-cell size II’ error
in parameter file=%d\n",ch);
exit(0);}
if((unitx2<=0) || (unity2<=0) || (unitz2<=0))
{printf("’-cell
size’ error in parameter file\n");
exit(0);}

while(ch!=10){ ch=fgetc(frp);}

// limit for Min and Max
fscanf (frp,"4f Uf ",&tmin2,&tmax?2);
ch=fgetc(frp);
if ((tmin2>tmax2) | | (tmax2<=0))
{printf ("’—trimming limits
II’ error in parameter file\n");
exit(0);}

while(ch!=10){ ch=fgetc(frp);}
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// I iregular bench?

fscanf (frp,"%d %d ",&ire_ben2,&nben2);
ch=fgetc(frp);

if(ch==".’) {printf("’-number of benchs II’
errorl in parameter file\n");

exit(0);}

if (nben2<=0){printf ("’-number of benchs

II’ error2 in parameter file\n");
exit(0);}

while(ch!=10){ ch=fgetc(frp);}

if (ire_ben2>=1)

{
fscanf (frp,"%d",&nuz2) ;
ch=fgetc(frp);
if (nuz2<=0){printf (" ’-bench height II’ error in

parameter file\n"); exit(0);}

while(ch!=10){ ch=fgetc(frp);}

}

elseq{

if (nben2<=1) {printf (" ’-number of tanchs
II’ error in parameter file\n");
exit(0);}

tem=0;

for(i=0; i<nben2; i++)
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{ fscanf(frp,"%d",&mbenht2[il);
if (mbenht2[i]<=0)
{printf (" ’-bench height for
irregular benchs II ’ error in
parameter file\n");
exit(0);}
tem=tem+mbenht2[i];

}

if ((tem<=0) || (tem>nz2))
{printf ("’-bench height
for irregular benchs II ’ error of s
um of multi_bench:
in parameter file\n");
exit(0);}
ch=fgetc(frp);
while(ch!=10){ ch=fgetc(frp);}
}
//Advance and width of mining scheme
fscanf(frp,"%d %d ",&nux2,&nuy?);
ch=fgetc(frp);
if(ch==’.’) {printf("’-advance and width of
working face(scheme) II ’ error in
parameter file\n");
exit(0);}
if ((nux2<=0) || (nuy2<=0))

{printf ("’-advance



and width of working face(scheme)
' error in parameter file\n");
exit(0);}
while(ch!=10){ ch=fgetc(frp);}
// Mining rate

fscanf (frp,"%f" ,&mining_rate2);
ch=fgetc(frp) ;
if (mining_rate2<=0)
{printf ("’ -mining rate II
(n~3/unit time) WFII’error in
parameter file\n");

exit(0);}
// while(ch!=10){ ch=fgetc(frp);}
// pay attention to
// printf("Mining rate = %f,
\n",mining_rate2);

}
L11770177770077777777707771777177712777717777771777771777777
}
fclose(frp);

[1117111177771177777177177/
// write parameter file //
[1177111171111771711777777

void writepara() {
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FILE *fwr;

fwr=fopen (“STMOD.par","wb");

fprintf (fwr," Parameters for STMOD\n
Aotk ook kokskookckoksokkk\n\n ") ;

fprintf (fwr,"START OF PARAMETERS:\n");
fprintf (fwr,"2

-2: two work faces, 1: one work face\n");
fprintf (fwr,"5.5

-cutoff grade\n");

fprintf (fwr,"60

-total number of time units\n");
fprintf (fwr, " "STMOD.out

-file for time variation output\n");
fprintf (fwr,"data.dat

-file with site I data input\n");

fprintf (fwr,"2

-column for variable\n");

fprintf (fwr, 328 288 15
-nx,ny,nz\n") ;

fprintf (fwr,"t 1 1

-Cell size\n");

fprintf (fwr,"-1.0e21 1.0e21

-trimming limits(variable limits)\n");
fprintf (fwr,"1 1

-1: regular(l) or irregular bench(0), number of benches\n");

fprintf (fwr,"15 3 5 3 3



-bench height for irregular benchs\n");

fprintf (fwr,"8 8

-advance and width of working face(scheme)\n");
fprintf (fwr,"44.2

-mining rate(m~3/unit time)\n");

fprintf (fwr,"data2.dat

-file with site I data input\n");

fprintf (fwr,"1

~column for variable\n');

fprintf (fwr,"300 200 50

-nx,ny,nz\n") ;

fprintf (fwr,"1 1 1

-Cell size\n");

fprintf (fur,"-1.0e21  1.0e21

~trimming limits(variable limits)\n");

fprintf (fwr,"1 1

-1: regular(1l) or irregular bench(0), number of benches\n");
fprintf (fwr,"15 3 5 3 3

-bench height for irregular benchs\n");

fprintf (fwr,"5 6

~advance and width of working face(scheme)\n");
fprintf (fwr,"50.5

-mining rate(m~3/unit time)\n");

fclose(fwr);
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// Check and display the result from reading the parameter //
// & data files //
[I1111777777707777777077177717777717177777771747777777¢77777777

void disres() {

int i;
if (mwface>1)

printf ("TWO mining work faces for calculating time

variation!\n");

else printf("ONE mining work face for calculating time
variation!\n");
printf ("Cutoff grade: %f\n",cutoff) ;
printf("Total mining time units: %f\n",total_mining) ;

printf ("Output data file: %s \n'",outdata) ;

// Site omne

printf("Data file for site I: 4s\n",inputdata) ;
printf("Variable colum is: %d\n",var_colum);
printf(''nx, ny, nz: %d, %4, %d \n",nx,ny,nz);
printf("Cell size: %d, 4d, 4d\n",unitx, unity,unitz);
printf ("tmin=Y%6.3e, tmax=%6.3e \n",tmin,tmax);
printf("Regular 1: Y%d bench number: %d\n",ire_ben,nben);
if (ire_ben>=1)

{
printf("bench height: %d \n",nuz);

if (nuz>nz){printf ("Bench height is too big!\n");
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exit(0);}

else{ printf("Multi-bench height:");
for(i=0; i<nben; i++)
{
printf(" %d, ",mbenht[i]);
if (mbenht [i]>nz) {printf("Mutiple
Bench height is too big!\n");
exit(0);}
}
printf ("\n");
}
printf("Advance length, width: %4, %d \n",nux,nuy);
if (nux>nx){printf (*Advance length is too big!\n");
exit(0);}
if (nuy>ny) {printf ("Advance width is too big!\n");
exit(0);}

printf("Mining rate: %f \n",mining rate);

// Site II
if (mwface>=2) {

printf("Data File for Site II: ¥%s\n",inputdata2);

printf("Variable colum is: %d\n",var_colum?2);
printf("nx, ny, nz: %d, %, %d \n",nx2,ny2,nz2);
printf("Cell size: %d, %d, %d\n",unitx2, unity2,

unitz2);
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printf ("tmin=%6.3e, tmax=%6.3e \n",tmin2,tmax2);
printf (“Regular 1: %d bench number: ¥%d\n",
ire_ben2,nben2) ;

if(ire_ben2>=1)

{
printf("bench height: %d \n",nuz2) ;
if (nuz2>nz2) {printf("Bench height is
too big!\n");
exit (0);}
}

else{ printf("Multi-bench height:");
for(i=0; i<nben2; i++)
{
printf(* %d, ",mbenht2[il);
if (mbenht2[i]>nz2){printf ("Mutiple
Bench height is too big!\n");
exit(0);}
}
printf ("\n") ;
}
printf("Advance length, width: %d, %d \n",nux2,nuy2);
if (nux>nx){printf("Advance length is too big!\n"); exit(0);}
if (nuy>ny){printf("Advance width is too big!\n"); exit(0);}
printf("Mining rate: %£" ,mining_rate2) ;

}



// readdata(inputdata,var_colum) ;

[771177771771777777777117777777777777777777¢77/777777777
/// Time Variation Calculation 1111117171717/
1171177777010 1177777777177777/77777/77777777777777777777

void timevari() {

long i,j,k,num,ii; // loop count
int nxyz,nxyz2,enxyz,enxyz2; // nxyz =nx *ny*nz;
int ix,iy,iz;

// index of cell in the mining scheme

int numsx,numsy,numsz,numsx2 ,numsy2,numsz2 ;
// number of segments in x,y,z direction

long  index, indexx,indexy;

int mining_unit, mining_unit2,mining_count;
int int_1,int_2;

float float_1, float_2, teml, tem2;

readdata(inputdata,var_colum) ;
mining_unit=unitx*unity*unitz;
NXYZ=nX*ny*nz;

numsx=nx/nux;
numsx=(int)numsx;
numsy=ny/nuy;

numsy=(int)numsy;
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if(ire_ben>=1) // determine Z value

{
numsz=nz/nuz;
numsz=(int)numsz;
for (i=0;i<numsz; i++)
{ mbenht [i]=nuz;}
NUZ=NUZ*NUmsZ;
// printf("ire_ben=Yd, nuz= %d, numsz=Jd
height= %d \n",ire_ben,nuz, numsz,mbenht[0]);
}
else
{ numsz=nben;
nuz=0;
for(i=0; i<nben; i++)
nuz=nuz+mbenht [i] ;
}

enxyz =(numsx*nux)x*(numsy*nuy)*nuz;
teml= enxyz*mining unit/mining rate;
mining_rate = mining_rate/mining_unit;

if (temi< total_mining) total_mining=temi;

iorder=calloc(nxyz,4);
if (iorder==0) {printf("Allocate memory for
’jorder’ I error!\n"); exit;}

num=0 ;
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for(i=1; i<=numsz; i++)

{
nuz=0;
for(ii=0;ii<(i-1); ii++)

nuz=nuz+mbenht [ii] ;

for(j=1; j<=numsy; j++)
if (fmod (j,2)==1)
{
for(k=1; k<=numsx; k++)
{
for(iy=0; iy<nuy; iy++)
/7L

{ indexy=(iy+(j-1)=#*nuy)*nx;

for(ix=0; ix<nux; ix++)
//{{{
{

indexx=ix+(k-1)*nux;

for(iz=0; iz<mbenht[i-1]; iz++)

{
index=indexx+indexy+ (iz+nuz) *nx*ny;
iorder [num]=var[index] ;

num=num+1 ;

}



} /7 L
Yy /7 K
}
}
else
{
//printf("This is even = Yd\n",j);

for (k=numsx; k>0; k--)
{
for(iy=0; iy<nuy; iy++)
//{{
{ indexy=(iy+(j-1)*nuy)*nx;

for(ix=(nux-1); ix>=0; ix--)
//{{{
{

indexx=ix+(k-1) *nux;

for(iz=0; iz<mbenht[i-1]; iz++)

{index=indexx+indexy+(iz+nuz)*nx*ny;
iorder [num]=varindex];
num=num+1 ;
}
/A
W/
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free(var) ;

int_1=0;

float_1=0;

mining_count=0;

time=calloc((int)total_mining,4);

if (time==0){printf("Allocate memory

for ’time’ I error!\n"); exit;}

vhile(mining_count<(int)total_mining)

{
// determine the range of cellss for calculation;
teml=(mining_count+1)*mining_rate;
int_2=(int) teml;
float_2=temi-int_2;
// average time variation;
tem2=iorder[int_1]*(1-float_1) 3
for(i=(int_1+1); i<int_2; i++)

tem2=tem2+iorder[i] ;

tem2=tem2+iorder[int_2]*float_22;
time [mining_count]=tem2;
// Loop again;
int_1=int_2;
float_1=float_2;

mining_count=mining_ count+1;
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free (iorder) ;

if (mwface>=2)

{ // if {
mining_unit2=unitx2*unity2*unitz2;
nxyz2=nx2*ny2+*nz2;
numsx2=nx2/nux2;
numsx2=(int)numsx2;
numsy2=ny2/nuy2;
numsy2=(int)numsy2;
if (ire_ben2>=1)

{
numsz2=nz2/nuz?2;
numsz2=(int)numsz2;
for (i=0;i<numsz2; i++)
{ mbenht2[il=nuz2;}

nuz2=nuz2*numsz?2;

else{ numsz2=nben2;
nuz2=0;
for(i=0; i<nben2; i++)
nuz2=nuz2+mbenht2[i] ;

}
enxyz2=(numsx2*nux2) * (numsy2+*nuy2) *nuz2;
temi=enxyz2*mining_unit2/mining_rate2;
mining_rate2=mining_rate2/mining_unit2;

if (temi<total_mining) total_mining=temi;
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printf (*\nReal Mining Time Units is %d!\n",

(int) total_mining);

readdata(inputdata2,var_colum?);
iorder=calloc(nxyz2,4);
if (iorder==0) {printf("Allocate memory for
’jorder’ II error!\n"); exit;}

num=0;

for(i=1; i<=numsz2; i++)

{
nuz2=0;
for(ii=0;ii<(i-1); ii++)

nuz2=nuz2+mbenht2[ii];

for(j=1; j<=numsy2; j++)
if (fmod (j,2)==1)
{
for(k=1; k<=numsx2; k++)
{
for(iy=0; iy<nuy2; iy++)
/7
{ indexy=(iy+(j—1)*nuy2)*nx2;

for (ix=0; ix<nux2; ix++)
//{{{
{
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indexx=ix+ (k—-1)*nux2;

for(iz=0; iz<mbenht2[i-1]; iz++)

{
index=indexx+indexy+(iz+nuz2) *nx2*ny?2;
iorder [num]=var [index];
num=num+1 ;

}

}y 77 {
Yy /71 |
}
}
else
{
//printf("This is even = %d\n",j);

for (k=numsx2; k>0; k--)
{
for(iy=0; iy<muy2; iy++)
/7L
{ indexy=(iy+(j-1)*nuy2)#*nx2;

for (ix=(nux2-1); ix>=0; ix—-)
/A
{

indexx=ix+(k-1)*nux2;

for(iz=0; iz<mbenht2[i-1]; iz++)
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{ index=indexx+indexy+(iz+nuz2)*nx2*ny?2;

iorder [num] =var [index] ;

num=num+1 ;
}
/L
/L
}
}
}

free(var);
int_1=0;
float_1=0;

mining_count=0;
time2=calloc((int)total_mining,4);

// printf("\nTime 2 is %f!\n",total_mining);
if (time2==0) {printf("Allocate memory for
'time’ II error!\n"); exit;}
while(mining_count<(int)total_mining)

{
// determine the range of
// cells for calculation;
teml=(mining_count+1)*mining_rate2;
int_2=(int) temi;

float_2=temi-int_2;



}

// average time variation;

tem2=iorder [int_1]*(i-float_1);

for(i=(int_1+1); i<int_2; i++)
tem2=tem2+iorder[i];

tem2=tem2+iorder [int_2]*float_2;

time2[mining_count]l=tem2;

// Loop again;

int_1=int_2;

float_1=float_2;

mining_count=mining_count+l;

free(iorder);

} /7 if }

[117771771777777771777777/777777777777/7777777/
// Final time variation calculation //

L[I11777777771770717777771777777777777777711777

void fintime() {

//
//
//

int i;

FILE *out;

float teml,tem?2;

strcpy(outdatal,outdata);
strcat(outdata,'.out");

strcat(outdatal," .was");
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out=fopen(outdata, "wb");
// printf("\n String out= ¥%s, %s \n",outdata,outdatal);
// outi=fopen(outdatal, "wb");
i=1;
// if (to
fprintf (out,"STMOD--Time variation calculation
\n/d\nTime Variation of %s\n",i,var_name);
// fprintf(outl,"STMOD--Time variation of Waste
\n%d\nTime Variation of waste\n",i);

if (mwface>=2)

{
for (i=0; i<(int) total_mining; i++)
{
temi=(time[i]+time2[i])/(mining_ rate+mining_rate2) ;
if(temi<cutoff) tem2=1.0;else tem2=0.0;
fprintf (out,"4f \n",teml);
// fprintf(outl,"%f \n",tem2);
}
free(time2);
free(time) ;
}
else
{

for (i=0; i<(int) total_mining; i++)

{

temi=time[il/mining_rate;



if (temi<cutoff) tem2=1.0;else tem2=0.0;
fprintf (out,"%f \n",teml);
// fprintf(outl,"%f \n",tem2);
}
free(time) ;
}
fclose(out);

//fclose(outl);
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[ /e ke ek e e ke A e e s ok i e sk e s sk i ok ok o sk ok ok ok skl e ke sk ok sk ok ok ok

// Post Processing for Time variation based on the output file from *

// Timel.c, in which there are two columns, one for grade variation,*

// another for waste using binary expression(0 is the ore, 1 for

// waste). First created on Jan. 3, 2000.

*

*

[ [ e e e e ek ek ek sk ek Aok ek ok i ok sl il ok sl ok sk ks s e s e o ook o ok ok Kk kK ok

#include "math.h"

#include ''stdio.h"

#include "“stdlib.h"

#include '"malloc.h"

#include "string.h"

// Extermal functions

void
void
void

void

readpara() ;
readdata();
writepara();

disres();
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void postp();

// Variables read parameter file

int var_colum, total_mining,dsize;

char *inputdata[60],
*outdata[60] ,*outdata2[60],
*outdata3[60] , *var_name[80] ;

float tmin, tmax;

float Ore_total_mining, mining rate;

float cutoff;// total_mining is the time interval.
// Variables read data file

float *var;

int main() {

char mfname[60]={"PostTime.par"},ft;

// name of parameter file

printf("The parameter file is ’PostTime.par’, Y/N? [Y]:");

ft=getchar();

if ((ft=="n’) | | (ft=="N"))

{ printf("\nPlease input new parameter file:");
scanf ("%s" ,&mfname) ;
printf("\nThe parameter file is %s\n",mfname) ;

}

readpara(mfname) ;

disres();

readdata(inputdata,var_colum,dsize);
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postp();

return O;

//Read data file
void readdata(fname,colum_v,txyz) int colum_v; char *fname[40]; {

FILE *frp;

char ch;
char *temvar [60] ;
int i,1,colum,size;

float cx[10];
size=4;
var=calloc(txyz,size);
if (var==0){printf("Allocate memory error!\n"); exit;}
if ((frp=fopen(fname,'"rb"))==NULL)
{printf(*\nCan not open the data file or not exist!");
exit(0);}
else{
//fw=fopen("read.txt", "wb");
ch=fgetc(frp);
while(ch!=10){ ch=fgetc(frp);}

fscanf (frp,"%d\n",&colum) ;

for(i=0;i<colum;i++)
{
do { ch=fgetc(frp); //putchar(ch) ;
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}while(ch!=10);
// putchar(ch);
}
colum_v--;

for(i=0; i<txyz;i++)

{
for(1=0; 1l<colum; 1++)
{
size=fscanf (frp,"%f", &cx[1]);
if (size<1)
{ printf("\n column=yd ,
dataN=%d \n",colum, 1i);
printf ("Error!
No enough data in
the data file!\n");
exit(0);
}
}
var [i]=cx[colum_v];
//printf("\ncolumn, i=Y%f", var([il);
//fprintf (fw,"%f \n",var[il);
}

//printf ("size= %d",size);
fclose(frp);

//fclose(fw);
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void readpara(fnamel) char *fnameil[40]; {
FILE *frp;
char ch;
int i;
if ((frp=fopen(fnamel, "rb"))==NULL)
{printf("\nCan not open the parameter file, Or %s
does not exist!!\nA new formatted parameter file has
been produced!!\n",fnamel);
writepara();
exit(0);}
else{
for(i=0; i<4; i++)
{
ch=fgetc(frp);
while(ch!=10){ ch=fgetc(frp);}
}
//printf ("Read line 4 \n");
// file for inputing data of site one, work face one
fscanf (frp, "%s" ,&inputdata) ;
//printf("Read file name = Ys
\n",inputdata);
ch=fgetc(frp);
while(ch!=10){ ch=fgetc(frp);}

// column for variable



// size of data

// cutoff

fscanf (frp, "%d" ,&var_colum) ;

//printf("var colum = %d \n",

var_colum) ;

ch=fgetc(frp) ;

if(ch==".’) {printf("’-column for
variable’ error\n");

exit(0);}

if (var_colum<=0){printf ("’-column

for variable’ error in parameter file\n");
exit(0);}

while(ch!=10){ ch=fgetc(frp);}

fscanf (frp, "%d" ,&dsize);

//printf("Total mining time = %f,
\n",total_mining) ;

ch=fgetc(frp);

if (dsize<=0) {printf("’ -total number

of time units ’ error in parameter file\n");
exit(0);}

while(ch!=10){ ch=fgetc(frp);}

fscanf (frp, "%f" ,&cutoff) ;

ch=fgetc(frp);

if (cutoff<=0) {printf("’ -Cutoff grade’
error in parameter file\n");

exit(0);}
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while(ch!=10){ ch=fgetc(frp);}

// limit for Min and Max
fscanf (frp,"%f Uf ",&tmin,&tmax);
//printf (“tmin = %5.2f, tmax= %5.2f \n",
tmin, tmax) ;
ch=fgetc(frp) ;
if ((tmin>tmax) | | (tmax<=0))
{printf("’-trimming limits’ error
in parameter file\n");
exit(0);}
while(ch!=10){ ch=fgetc(frp);}

// Mining rate in given interval
fscanf (frp, "%f" ,&mining_rate) ;
//printf("Mining rate = %f, \n",
mining rate);
ch=fgetc(frp);
if (mining_rate<=0)
{printf ("’
-mining rate II (m~3/unit time)
WF I’ error in parameter file\n");
exit(0);}
while(ch!=10){ ch=fgetc(frp);}

// Ttime _intervals for mining in given intervals
fscanf (frp,"%d",&total_mining);
//printf("Mining rate = %f, \n",

mining_rate);



// Ore Mining rate
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ch=fgetc(frp);

if (total_mining<=0) {printf(™’

-Total mining ITI (m~3/unit time) WF I’
error in parameter file\n");

exit(0);}

while(ch!=10){ ch=fgetc(frp);}

fscanf (frp, "%f",&0re_total_mining) ;
//printf("Mining rate = %f, \n",
mining_rate);

ch=fgetc(frp);

if (Ore_total_mining<=0)

{printf("’ -mining rate II (m~3/unit time)
WF I’ error in parameter file\n");

exit (0);}

while(ch!=10){ ch=fgetc(frp);}

// file outputing data 1

fscanf (frp, "%s\n" ,&outdata) ;
//printf("output data = %s, \n",outdata);
ch=fgetc(frp);

wvhile(ch!=10){ ch=fgetc(frp);}

// file outputing data 2

fscanf (frp, "%s\n" ,&outdata?2);
//printf("output data = %s, \n",outdata);
ch=fgetc(frp);

while(ch!=10){ ch=fgetc(frp);}
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// file 3
fscanf (frp, "%s\n" ,&outdata3d) ;

//ch=fgetc (frp) ;

LIVIITIIIIII7 0777770177070 77777707077777777717777177771777

}
fclose(frp);

L11111777171177717171177777
// write parameter file //
L1171171177777771771177111/
void writepara() {
FILE *fwr;
fur=fopen ("PostTime.par","wb");

fprintf (fwr,"

Parameters for PostTime\n

rokeok ko ok ik ks ko skokokokokokkok ok \n \n ' ) ;

fprintf (fwr,"START OF PARAMETERS:\n");
fprintf (fwr,"stmod.out

-input file of time variation\n");
fprintf (fwr,"1

-column for variable\n");

fprintf (fwr,"60

-size of data\n");



fprintf (fwr,"11.5

-cutoff grade\n");

fprintf (fwr,"-1.0e21 1.0e21

-trimming limits(variable ore limits)\n");
fprintf (fwr,"3.1

-mining rate in unit time interval t\n");
fprintf (fwr,"2

-number of time interval t\n");

fprintf (fwr,"4.0

-amount of ore to plant in time interval T\n");
fprintf (fwr,"PostStmod. ouT

-Output file 1\n");

fprintf (fwr,"PostStmod.raT

-Output file 2\n");

fprintf (fwr,"PostStmod.raK

-Output file 3\n");

fclose(fwr);

[I1I11777177777777771771717771777771777
// Check and display the result from//
reading the parameter & data files/ //
[I11777777771777771771177717771717177177
void disres() {

printf("Data file for site I: %s\n" ,inputdata) ;

printf("Variable colum is: %d\n",var_colum);
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printf("Size of data : %d\n",dsize) ;

printf ("Cutoff grade: %£f\n" ,cutoff) ;
printf ("Tmin=%6.3e, Tmax=%6.3e \n",tmin,tmax);
printf("Mining rate: %f\n" ,mining_rate) ;

printf("Total mining time units: %d\n",total_mining);
printf("Ore mining rate: %f\n",0re_total_mining);
printf("Output data file 1: ¥%s \n",outdata);

printf ("Output data file 2: ¥%s \n",outdata2);

printf("Output data file 3: Y%s \n",outdata3);

void postp() {
FILE =*fwu;
long int i,j;
double rem_test,tem;
long int nloop;
double n_ore, rem, temfw;
fu=fopen(outdata3, "wb");
if (fw==0) {printf("\nThe output file can not be opened\n");
exit(0);}
fprintf (fw, "Ore ranking by cutoff grade\n2\nEqual time
intervals\nTime Variation of Waste, 1:waste, 0: ore\n");
for (i=0; i<dsize; i++)
{
if (var[i]<cutoff)

{
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var[il=1;
}
else
{ wvar([i]=0.0;
}
fprintf(fw, "%-6d %-5d\n",(i+1),(int)var([i]l);
}

fclose(fw) ;

11711717777 777777777777777171177771777177777177177177717777
// use to calculate the waste distribution
// number in obtaibing equal ore volume
LI11177771777777477777777777177777771770777777771777777777
n_ore=Ore_total_mining/mining rate;
rem=n_ore;
rem_test=10.0;
i=0;
tem=0;
fw=fopen(outdata,"wb");
if (fw==0) {printf(“\nThe output file can not be opened\n");
exit(0);}
fprintf(fw, "Waste variation with time interval
by obtaining equal ore\n3\nTime intervals\nOre
distribution\nWaste distribution\n");
do
{



while (rem_test>1.0)
{ if(var[i]>=1.0){ tem=tem+1 ;}
else
{ if (rem>=1.0) {rem=rem-1;}
else
{
rem_test=0.0;
rem=n_ore-(1l-rem) ;
temfw=tem+rem;

tem=1-rem;

i=i+1;
}
rem_test=10.0;
fprintf(fw, "/%-6d %-9.3f %-9.3f\n",i,
n_ore*mining_ rate,temfw*mining_rate);
}while(i<dsize);

fclose(fw) ;

117117177777777777777777177777777777/7777777777777
// use to calculate ratio of ore to waste volume

in equal time interval//

I1111111777777777777777777714771711777771771177777

nloop=(int) dsize/total_mining;

fu=fopen(outdata2,"wb");

if (fw==0){printf("\nThe output file can not be opened\n");

142



143

exit(0);}

rem=(float) total_mining;

fprintf (fw,"Ratio of Ore to total mining amount in equal

time intervals\n3\nTime intervals \nOre ratio \nWaste ratio\n");

for (i=0; i<mloop; i++)

{
tem=0;
for(j=0;j<total_mining; j++)
{
if (var[i*total_mining+jl<1) { tem=tem+1;}
}
n_ore=100*(tem/rem) ;
fprintf(fw, "%-6d ¥%-9.3f U-9.3f \n",(i+1l)*total_mining,
n_ore*mining_rate, (100.0-n_ore)*mining_rate) ;
}
fclose(fw);
free(var);

}



