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Abstract

In this thesis, we study theoretically and empirically the additive abstraction-based heuristics. First

we present formal general definitions for abstractions that extend to general additive abstractions.

We show that the general definition makes proofs of admissibility, consistency, and additivity easier,

by proving that several previous methods for defining abstractions and additivity satisfy three simple

conditions. Then we investigate two general methods for defining additive abstractions and run ex-

periments to determine the effectiveness of these methods for two benchmark state spaces: TopSpin

and the Pancake puzzle. Third, we propose that the accuracy of the heuristics generated by abstrac-

tion can be improved by checking for infeasibility. The theory and experiments demonstrate the

approach to detect infeasibility and the application of this technique to different domains. Finally,

we explore the applications of additive abstraction-based heuristics in two state spaces with non-

uniform edge costs: the Sequential Ordering Problem (SOP) and the weighted Pancake puzzle. We

formalize a novel way of generating additive and non-additive heuristics for these state spaces. Fur-

thermore, we investigate the key concepts to generate good additive and non-additive abstractions.

Experiments show that compared to some simple alternative heuristics, well chosen abstractions can

enhance the quality of suboptimal solutions for large SOP instances and reduce search time for the

weighted Pancake problems.
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Chapter 1

Introduction

1.1 Motivation

In its purest form, single-agent heuristic search is concerned with the problem of finding a least-cost

path between two states (start and goal) in a state space given a heuristic function. Throughout the

thesis the heuristic function h(t, g) specifically refers to the estimation of the cost to reach the state g

from any state t, although in some literature the heuristic can be defined by other methods. Standard

algorithms for single-agent heuristic search such as IDA∗ [65] are guaranteed to find optimal paths

if h(t, g) is admissible, i.e., never overestimates the actual cost to the goal state from t, and their

efficiency is heavily influenced by the accuracy of h(t, g). Considerable research has therefore

investigated methods for defining accurate, admissible heuristics.

A common method for defining admissible heuristics, which has led to major advances in solving

combinatorial problems [16, 66, 69] and planning applications [22], is to “abstract” the original state

space to create a new, smaller state space with the key property that for each path ~p in the original

space there is a corresponding abstract path whose cost does not exceed the cost of ~p. Given an

abstraction, h(t, g) can be defined as the cost of the least-cost abstract path from the abstract state

corresponding to t to the abstract state corresponding to g. The best heuristic functions defined by

abstraction are typically based on using several abstractions.

Given several abstractions of a state space, the heuristic hmax(t, g) can be defined as the max-

imum of the abstract distances for t given by the abstractions individually. This is the standard

method for defining a heuristic function given multiple abstractions [50].

The sum of the costs returned by a set of abstractions is not always admissible. If it is, the

set of abstractions is said to be additive. One general method defined in [26, 68, 69] creates a set

of k additive abstractions for the sliding tile puzzle by partitioning the tiles into k disjoint groups

and defining one abstraction for each group by making the tiles in that group distinguished in the

abstraction. An important limitation of this and most other existing methods of defining additive

abstractions is that they do not apply to spaces in which an operator can move more than one tile at

a time, unless there is a way to guarantee that all the tiles that are moved by the operator are in the
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Figure 1.1: In the 4-Pancake puzzle, each state has three successors.

same group.

An example of a state space that has no additive abstractions according to previous definitions is

the Pancake puzzle. In theN -Pancake puzzle, a state is a permutation ofN tiles (0, 1, ..., N−1) and

hasN−1 successors, with the lth successor formed by reversing the order of the first l+1 positions

of the permutation (1 ≤ l ≤ N − 1). For example, in the 4-Pancake puzzle shown in Figure 3.4,

the state at the top of the figure has three successors, which are formed by reversing the order of the

first two tiles, the first three tiles, and all four tiles, respectively. Because the operators move more

than one tile and any tile can appear in any location there is no non-trivial way to partition the tiles

so that all the tiles moved by an operator are distinguished in just one abstraction.

Other common state spaces that have no additive abstractions according to previous definitions

are TopSpin and the Sequential Ordering Problem (SOP).

The SOP is a problem of searching with non-uniform edge costs, and it is a model for several

industrial applications, such as the stacker crane application [1] and helicopter routing between oil

rigs [85]. Given a graph G with n vertices and directed weighted edges with the start and goal

vertices designated, the goal of an SOP instance is to find a minimal cost Hamiltonian path from

the start vertex to the goal vertex without violating any constraint. The SOP is a variant of the

Asymmetric Traveling Salesman Problem (ATSP) with some precedence constraints. However, a

number of ATSP instances with hundreds of vertices can be solved easily, while there are several

SOP instances with less than 55 vertices which have not been solved optimally.

As problems scale up, one of the main issues being addressed in the study of heuristic search

is to enhance the accuracy of heuristics to speed up the search. Given additional memory, it is also

interesting to explore new techniques to enhance the search performance.

1.2 Contributions

This thesis addresses the general definition and applications of additive abstractions. The main

contributions of the thesis are summarized as follows.

1. The first contribution of this thesis is to identify general conditions for abstractions to be ad-

ditive. The new conditions subsume most previous notions of “additive” as special cases. The

greater generality allows additive abstractions to be defined for state spaces that had no addi-

tive abstractions according to previous definitions, such as TopSpin, the Pancake puzzle, and
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related real-world problems such as the genome rearrangement problem [24]. Our definitions

are fully formal, enabling rigorous proofs of the admissibility and consistency of the heuristics

defined by our abstractions. The importance of our contribution is that it should make future

proofs of admissibility, consistency, and additivity easier, because one will only need to show

that a particular method for defining abstractions satisfies only three simple conditions.

2. The usefulness of our general definitions is demonstrated experimentally by defining additive

abstractions that substantially reduce the CPU time needed to solve TopSpin and the Pancake

puzzle. For example, the use of additive abstractions allows the 17-Pancake puzzle to be

solved three orders of magnitude faster than previous state-of-the-art methods.

3. We study a technique to increase the abstraction-based heuristic values in some circumstances.

The key to the approach is to identify “infeasible” values that cannot possibly be the optimal

solution cost. Once identified the infeasible values can be increased to give a better estimate

of the solution cost. This approach roughly halved the search time for some domains.

4. The final contribution of this thesis is to introduce methods of defining additive and non-

additive abstractions to problems with non-unit edge costs. A novel way of generating additive

heuristics is introduced and evaluated for two state spaces with non-uniform edge costs: the

SOP and the weighted Pancake puzzle. New indexing schemes for ranking and unranking are

designed for storing and obtaining heuristics more efficiently in the state space of the SOP.

We analyse and identify some special structural types of problem instances and investigate the

design of good abstractions for instances with special properties. Experiments show that well

chosen abstractions can enhance the quality of sub-optimal solutions for large SOP instances

and reduce search time for the weighted Pancake problems.

1.3 Thesis Outline

Below is a brief summary of the remainder of this thesis.

• Chapter 2: First we describe the state space represented by a weighted directed graph con-

sisting of a set of nodes and edges. Then we briefly introduce and discuss some fundamental

search algorithms and their variants. These algorithms differ in the ways they prioritize node

expansion, deal with duplicate nodes and reconstruct the solution path.

• Chapter 3: We present formal general definitions for abstractions that extend to general ad-

ditive abstractions. We provide lemmas proving the admissibility and consistency of both

standard and additive heuristics based on these abstractions. This chapter also discusses the

relation to previous definitions. We show that the general definition makes proofs of admissi-

bility, consistency, and additivity easier, by proving that several previous methods for defining
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abstractions and additivity satisfy three simple conditions. This work was first published in

[94].

• Chapter 4: We describe successful applications of additive abstractions to some standard state

spaces of combinatorial problems (e.g. (18,4)-TopSpin and the Pancake puzzle). First we

investigate two general methods for defining additive abstractions. To illustrate the generality

of these methods we define them for the two most common ways of representing states–as a

vector of state variables and as a set of logical atoms. Then we run experiments to determine

the effectiveness of these methods for two benchmark state spaces: TopSpin and the Pancake

puzzle. This work was published in [96].

• Chapter 5: This chapter presents a new way to improve the quality of heuristic values defined

by additive abstractions in some circumstances. We show that given additional memory, the

new technique to identify infeasibility can be a competitive choice to enhance the search

performance. Empirical results show that the technique of identifying infeasibility can also be

effective for different domains. This work was published in [93, 95, 96].

• Chapter 6: First we overview the previous work on the Travelling Salesman Problem (TSP)

and its variations such as the Asymmetric TSP. Then we formalize the definitions of the SOP

state space and abstractions. We investigate the structure of the SOP instances and representa-

tive examples are given to illustrate the general situations. Some greedy methods of choosing

good abstractions are designed and discussed. The trade-off of the usage of greedy methods

is also discussed. We run experiments over a series of TSPLIB instances using heuristics gen-

erated from random abstractions and greedy abstractions. The results indicate the benefits of

using heuristics based on greedy abstractions for instances of larger size. We also ran experi-

ments over random instances of a new version of the Pancake problem, the weighted Pancake

puzzle. The experimental results show that the ideas learned for creating good abstractions

for non-unit-cost problems while studying the SOP (and the greedy abstraction methods them-

selves) can be transferred to another problem with a different search structure.

• Chapter 7: To conclude, we give a brief review of the main contributions of the thesis and

discuss future research directions.

Since the discussion of related work occurs throughout each chapter in the thesis, we do not have

a separated chapter for related work.
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Chapter 2

Background on Search Algorithms

In general, a large variety of classical problems in Artificial Intelligence can be modeled within the

following framework. A problem space is a weighted directed graph consisting of a set of nodes

and edges. The nodes represent states that are configurations of the problem, and each edge with

an associated cost represents an operator that maps one state to another. A problem instance is

a problem space together with an initial state and a goal state. Solving a problem instance can be

formulated as search in a problem space graph in order to find a sequence of operators that transform

the initial state into the goal state. Such a sequence is called a solution path to the problem and the

problem is usually called a pathfinding problem.

A search algorithm is a strategy used to decide which node to expand next (i.e., to apply operators

to the node to generate its successor nodes). As problems scale up, it is impractical to input the

whole graph structure at the beginning of the search algorithm. Typically, the search begins with an

implicit graph that specifies the initial node and applicable operators. Then the problem space can

be produced partially during the search.

Some fundamental algorithms and their variants will be discussed in the following subsections.

Unless otherwise stated, the discussion is restricted to pathfinding problems where the start and goal

states are explicitly stated, the goal is to find the optimal solution (i.e., the solution path with the

minimum cost), the search algorithm deals with a finite implicit graph, and the number of children

for each node (i.e., the branching factor of each node) is a finite number for each node.

2.1 Fundamental Algorithms

Search algorithms can be classified into two categories, best-first search algorithms and depth-first

search algorithms. These two algorithms differ in the ways they prioritize node expansion, deal with

duplicate nodes, and reconstruct the solution path.
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2.1.1 Best-First Search

A standard best-first search algorithm maintains two lists, a CLOSED list and an OPEN list. The

CLOSED list is used to store already-expanded nodes, and the OPEN list contains those nodes

that have been generated but not yet expanded. The two lists prevent duplicate search effort by

detecting nodes that have previously been generated. In addition, maintaining the CLOSED list

allows the optimal solution path to be reconstructed after completion of the search by tracing pointers

backwards from the goal node to the start node.

At each cycle, best-first search expands a node t of minimum cost f(t) among all nodes that have

been generated but not yet expanded, until the goal node is chosen for expansion. Individual best-

first search algorithms differ in the cost function f(t). It becomes a breadth-first search algorithm

if f(t) is the depth of node t, and it becomes Dijkstra’s algorithm [18] if f(t) = g(t), where g(t)

is the cost from the initial state to the node t. If f(t) = g(t) + h(t, goal), where h(t, goal) is an

admissible heuristic estimate of the cost from node t to a goal node, it is the A* algorithm [37].

Best-first search stores all nodes generated and typically requires space that is exponential in the

search depth. Hence it is easy to exhaust the available memory if the problem space scales up.

2.1.2 Depth-First Search

As decribed in [13], “the strategy followed by depth-first search is, as its name implies, to search

deeper in the graph whenever possible”.

Depth-first search (DFS) stores only the current search path being explored, rather than OPEN

and CLOSED lists. Hence the memory requirements of depth-first search are minimal, thereby

eliminating the space constraint of best-first search.

As the path is stored on the call stack in a recursive implementation, the solution path is con-

structed by tracing back up the call stack. However, depth-first search cannot detect duplicated

nodes efficiently, so the time complexity is increased inevitably. Moreover, DFS could continue to

probe deeper along some fruitless path and would be unable to backup and try a fresh search avenue.

For that reason, DFS algorithms are usually equipped with a depth bound in order to guarantee the

algorithm to recover from the fruitless path and try other search avenues.

The memory complexity of depth-first search is linear in the maximum search depth, rather than

exponential as in best-first search. Therefore, researchers refer to some depth-first search algorithms

as linear-space algorithms, as classified in [98]. For instance, depth-first iterative-deepening (DFID)

[65] simulates breadth-first search using memory that is only linear in the maximum search depth.

DFID is actually a sequence of iterations of depth-bounded DFS. For each iteration, it expands

all nodes up to a given depth. Combining the heuristic function and DFID, the successive iterations

of IDA* [65] correspond not to the increasing depth of search, but rather to increasing values of

the total cost of a path. At each iteration, IDA* expands all the nodes whose total cost f(t) does

not exceed a given threshold defined for each iteration. The threshold for the first iteration is the
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heuristic value of the root of the search tree and the threshold for the next iteration is the lowest cost

of a generated node from the current iteration that exceeded the current threshold. The algorithm

halts when the goal node is chosen for expansion. However, IDA* expands some nodes more than

once and it does not retain any path information between iterations. In addition, while searching

nodes whose costs are less than the current threshold, IDA* just proceeds with a depth-first search,

ignoring the information in the values of those nodes.

Another case of depth-first search is Depth-First Branch and Bound (DFBB) [98], which per-

forms a DFS with a global threshold for pruning nodes. DFBB starts at the root node with a global

threshold u which is typically set to an easy-to-compute upper bound and may just be infinity in

practice. Each time a goal node is reached whose cost is less than u, u is revised to the cost of

this new goal node. The DFS process is continued until a better solution is found. DFBB always

selects a most recently generated node, or a deepest node to expand next. When we select a node

for expansion whose cost is greater than or equal to u, we prune this node. DFBB uses space that is

linear in the search depth. The penalty for DFBB to run in linear space is that it expands some nodes

not explored by best-first search, i.e. some nodes whose costs are greater than the optimal goal cost.

2.2 Some Variants of Fundamental Algorithms

Based on best-first search and depth-first search algorithms, researchers developed several algo-

rithms for the intelligent use of available memory. These algorithms differ in the way they perform

the different search activities such as node duplicate detection, prioritizing node expansion, evalua-

tion cost calculation and search direction (uni-directional, bi-directional). The following subsections

take a close look at some of these algorithms.

2.2.1 Memory-bounded Search

As the capacity of memory increased, various search algorithms were developed to use the additional

memory to store more information. Reinefeld and Marsland [86] used additional memory for storing

transposition tables and they successfully enhanced iterative-deepening searches. MREC [91], MA*

[8] and SMA* [90] execute A* but differ in the ways they proceed when the memory is full. MREC

begins to execute IDA* on the leaves of the search tree which is currently stored in memory, while

MA* and SMA* delete the least promising nodes from the OPEN list to recover the memory for

new nodes. SMA* is a simplified version of MA* and it improves MA* in some details, such as

changing the data structure of the OPEN list, decreasing the number of cost values stored for each

node, etc.

Algorithms like MREC and MA* still maintain OPEN and CLOSED lists, and select the best

node from OPEN list for expansion and the worst node for pruning. So even if they generate fewer

nodes than IDA*, they do not always run faster than IDA*. Like IDA*, Iterative Threshold Search

(ITS) [31] employs a fast node generation scheme, while like MA*, ITS makes dynamic use of

7



memory. Therefore, in most practical search problems where the node-generation time is high, ITS

can provide more significant time savings than MREC and MA*. Both ITS [31] and SMA* [90]

represent attempts to significantly reduce the constant factor overhead of MA*.

2.2.2 Removing Closed Nodes from Memory

Instead of using the traceback method of solution reconstruction, it is possible to remove the CLOSED

list from memory and use a divide-and-conquer method for solution reconstruction. In this way,

memory is saved by storing one node in the middle of each generated path rather than the com-

plete path. The midpoint node is used to divide the original problem into two sub-problems. Each

subproblem is solved recursively by the same algorithm until all nodes on the optimal path are

identified.

Korf et al. [67, 70, 71] presented a class of best-first search algorithms that reduce the space

complexity. They called this technique frontier search [71]. The key idea is to store only the OPEN

list, and not the CLOSED list. Nodes that have been expanded are prevented from being regener-

ated by storing a list of forbidden operators in each node. Korf showed in [67] that the algorithm

dramatically reduces the memory required to store the CLOSED list. The solution path is recovered

by a divide-and-conquer technique, either as a bidirectional or unidirectional search.

Considering it is not necessary to remove the entire CLOSED list, Zhou and Hansen proposed

some algorithms that only select some nodes in the CLOSED list to be eliminated. In [99] they

proposed a different technique for preventing node re-generation that does not require forbidden

operators as in [70]. They associated with each node a counter that is initially set to the number of

potential parents of a node. Each time a node is expanded, the counter of each of its child nodes is

decremented. CLOSED nodes are not removed immediately. Instead, nodes in the CLOSED list can

be removed from memory when their counter is zero.

For the special case of the multiple sequence alignment application Zhou and Hansen [100]

proposed an even simpler technique. Because the search graph of the multiple sequence alignment

problem is a lattice, it can be decomposed into a sequence of layers such that each node in a layer

can only have successors in the current layer or the next layer, but not in any previous layer. If all

nodes in one layer are expanded before the next layer is considered, then all previously-expanded

layers can be removed from memory without risking node re-generation.

Zhou and Hansen [101] also presented a family of algorithms based on breadth-first search and

heuristic search. The OPEN and CLOSED lists are indexed by layers. By deleting previous lay-

ers, memory is recovered. This technique is called breadth-first heuristic search (BFHS). They

showed that when using divide-and-conquer solution reconstruction, BFHS outperforms Divide-

and-Conquer frontier search (DCFA*) [70] and sparse-memory A* [99] on the 15-puzzle.
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2.2.3 Bidirectional Search

Bidirectional search is another branch in the development of search algorithms. Most unidirectional

search algorithms may have a bidirectional counterpart, such as the bidirectional A∗ algorithm [55].

The traditional version of this general technique is to perform forward and backward searches al-

ternately. It includes both algorithms performing front-to-end and others performing front-to-front

evaluations.

The first proposed algorithm on bidirectional heuristic search called BHPA [83] performed front-

to-end evaluations which can be viewed as a combination of two traditional best-first searches in

opposite directions, as Kaindl and Kainz discussed in [58]. Given a start state s and a goal state g, it

employs evaluation functions h1(n, g) and h2(s, n), where h1(n, g) estimates the cost of an optimal

path from n to g in the forward search, and h2(s, n) from s to n in the backward search. However,

as shown in [83], BHPA’s results were less efficient than those of its unidirectional counterpart for

finding optimal solutions.

In order to improve the evaluation accuracy, front-to-front evaluations were proposed in algo-

rithms (e.g. BHFFA [17]). Given a start state s and a goal state g, these algorithms employ more

accurate dynamic heuristic evaluation functions H1(n) and H2(n). Take the search in forward di-

rection for example. When the nodes Bi on the backward search are available in the OPEN list,

H1(n) = max(h1(n, g),mini(h(n,Bi)+k2(Bi, g))), where h1(n, g) is the original estimate from

n to g, h(n,Bi) is the estimated cost from n to Bi, and k2(Bi, g) is the known cost from Bi to the

goal node g. These dynamic evaluations are more accurate than the static front-to-end evaluations,

therefore algorithms performing front-to-front evaluations can be efficient in terms of the number of

nodes generated [17]. But they need excessive computation effort especially when the number of

nodes Bi increases.

Hence, the traditional approaches did not succeed to improve on unidirectional search for finding

and guaranteeing optimal solutions [17, 58, 83]. This is mainly because most traditional bidirec-

tional algorithms are based on traditional best-first search that has exponential storage requirements.

Instead of executing two best-first searches alternately, it is possible to search in one direction and

store a reasonable number of nodes, then to search in the other direction. Perimeter search [19] is

one case of such algorithms working as follows: a breadth-first search starts from the goal to all

nodes at a predetermined depth d. The final frontier of this breadth-first search is called the perime-

ter P . The search then proceeds from the start state, targeting all of the perimeter nodes and using

the heuristic function hP (n) = minm∈P [H(n,m) +H∗(m)], where H(n,m) is the estimated cost

from node n to node m and H∗(m) is the true minimum cost of a path from m to the goal.

In fact, according to [19], any set of nodes which encompass the goal will work as a perimeter.

Then an alternative method to generate perimeter nodes would be to use A* with all resulting nodes

on the perimeter would have approximately the same cost (f value). If the perimeter is generated by

a breadth-first search it is called a constant depth perimeter and it is a constant evaluation perimeter

9



if it is generated by a heuristic search.

Perimeter search algorithms still require a much larger number of heuristic evaluations. There-

fore, perimeter search algorithms are effective only if the cost of computing the heuristic values is

small compared to the cost of generating a new node.

Manzini [76] proposed an improved perimeter search algorithm called BIDA*. By using a more

efficient technique for pruning the nonoptimal paths, BIDA* can generate fewer nodes and execute

fewer heuristic evaluations than IDA*. However, the improvement is still based on an additional

amount of memory space for storing the perimeter.
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Chapter 3

A General Theory for Additive
Abstractions

The use of abstraction to create heuristics began in the late 1970s [30, 34]. Over the past decade,

there has been tremendous progress on defining abstraction and additivity for specific ways of rep-

resenting states and transition functions. In this chapter, we give formal definitions related to state

spaces, abstractions, and the heuristics defined by them, and discuss their meanings and relation to

previous work. This work was published in [94, 96].

3.1 Heuristics defined by abstraction

To illustrate the idea of abstraction and how it is used to define heuristics, consider the well-known

8-puzzle (the 3×3 sliding tile puzzle). In this puzzle there are 9 locations in the form of a 3×3 grid

and 8 tiles, numbered 1–8, with the 9th location being empty (or blank). A tile that is adjacent to the

empty location can be moved into the empty location; every move has a cost of 1. The most common

way of abstracting this state space is to treat several of the tiles as if they were indistinguishable

instead of being distinct [15]. An extreme version of this type of abstraction is shown in Figure 3.1.

Here the tiles are all indistinguishable from each other, so an abstract state is entirely defined by the

position of the blank. There are therefore only 9 abstract states, connected as shown in Figure 3.1.

The goal state in the original puzzle has the blank in the upper left corner, so the abstract goal is

state z shown at the top of the figure. The number beside each abstract state is the distance from

the abstract state to the abstract goal. For example, in Figure 3.1, abstract state e is 2 moves from

the abstract goal. A heuristic function h(t, g) for the distance from state t to g in the original space

is computed in two steps: (1) compute the abstract state corresponding to t (in this example, this is

done by determining the location of the blank in state t); and then (2) determine the distance from

that abstract state to the abstract goal. The calculation of the abstract distance can either be done in

a preprocessing step to create a heuristic lookup table called a pattern database [15, 14] or at the

time it is needed [25, 54, 51, 73].
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abstract goal

z: 0id: distance to goal

a: 1b: 1
c: 2

e: 2d: 2

i: 4

x: 3 y: 3

Figure 3.1: An abstraction of the 8-puzzle. The white square in each state is the blank and the
non-white squares are the tiles, which are all indistinguishable from each other in this abstraction.

3.1.1 Maximum-based Method for Combining Abstractions

Given several abstractions of a state space, the heuristic hmax(t, g) can be defined as the maximum

of the abstract distances from t to g given by the abstractions individually. This is the standard

method for defining a heuristic function given multiple abstractions [50]. For example, consider

state A of the 3 × 3 sliding tile puzzle shown in the top left of Figure 3.2 and the goal state shown

below it. The middle column shows an abstraction of these two states (A1 and g1) in which tiles 1,

3, 5, and 7, and the blank, are distinct while the other tiles are indistinguishable from each other. We

refer to the distinct tiles as “distinguished tiles” and the indistinguishable tiles as “don’t care” tiles.

The right column shows the complementary abstraction, in which tiles 1, 3, 5, and 7 are the “don’t

cares” and tiles 2, 4, 6, and 8 are distinguished. The arrows in the figure trace out a least-cost path

to reach the abstract goal gi from state Ai in each abstraction. The cost of solving A1 is 16 and the

cost of solving A2 is 12. Therefore, hmax(A, g) is 16, the maximum of these two abstract distances.

3.1.2 Additive Abstractions

Figure 3.3 illustrates how additive abstractions can be defined for the sliding tile puzzle [26, 68, 69].

State A and the abstractions are the same as in Figure 3.2, but the costs of the operators in the

abstract spaces are defined differently. Instead of all abstract operators having a cost of 1, as was

the case previously, an operator only has a cost of 1 if it moves a distinguished tile; such moves

are called “distinguished moves” and are shown as solid arrows in Figures 3.2 and 3.3. An operator

that moves a “don’t care” tile (a “don’t care” move) has a cost of 0 and is shown as a dashed arrow

in the figures. Least-cost paths in abstract spaces defined this way therefore minimize the number
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1
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7 3

2

4 8

6

1 2

3 4 5

6 7 8

1

3 5

7

2

4

6 8

h=max(16,12) 16 moves 12 moves

abstract state A abstract state A1 2

abstract goal g1

state A

abstract goal g 2goal state g

Figure 3.2: Computation of hmax(A, g), the standard, maximum-based heuristic value for state A
(top left) using the two abstractions shown in the middle and right columns. Solid arrows denote
distinguished moves, dashed arrows denote “don’t care” moves.

of distinguished moves without considering how many “don’t care” moves are made. For example,

the least-cost path for A1 in Figure 3.3 contains fewer distinguished moves (9 compared to 10) than

the least-cost path for A1 in Figure 3.2—and is therefore lower cost according to the cost function

just described—but contains more moves in total (18 compared to 16) because it has more “don’t

care” moves (9 compared to 6). As Figure 3.3 shows, 9 distinguished moves are needed to solve

A1 and 5 distinguished moves are needed to solve A2. Because no tile is distinguished in both

abstractions, a move that has a cost of 1 in one space has a cost of 0 in the other space, and it is

therefore admissible to add the two distances. The heuristic calculated using additive abstractions

is referred to as hadd; in this example, hadd(A, g) = 9 + 5 = 14. Note that hadd(A, g) is less than

hmax(A, g) in this example, showing that heuristics based on additive abstractions are not always

superior to the standard, maximum-based method of combining multiple abstractions even though

in general they have proven very effective on the sliding tile puzzles [26, 68, 69].

The general method defined in [26, 68, 69] creates a set of k additive abstractions based on a

division of the tiles into k disjoint groups and defining one abstraction for each group by making

the tiles in that group distinguished in the abstraction. An important limitation of this method of

defining additive abstractions is that it does not apply to spaces in which an operator can move more

than one tile at a time, unless there is a way to guarantee that all the tiles that are moved by the

operator are in the same group.

An example of a state space that has no additive abstractions according to previous definitions

was given in Chapter 1, the Pancake puzzle. Another common state space that has no additive

abstractions according to previous definitions—for similar reasons—is TopSpin.

The general definition of additive abstractions presented in the next section overcomes the lim-
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h=9+5=14 9 distinguished moves

abstract state A abstract state A1 2

abstract goal g1

state A

abstract goal g 2goal state g

5 distinguished moves

Figure 3.3: Computation of hadd(A, g), the additive heuristic value for state A. Solid arrows denote
distinguished moves, dashed arrows denote “don’t care” moves.

Figure 3.4: In the 4-Pancake puzzle, each state has three successors.

itations of previous definitions. Intuitively, abstractions will be additive provided that the cost of

each operator is divided among the abstract spaces. Our definition provides a formal basis for this

intuition. There are numerous ways to do this even when operators move many tiles (or, in other

words, make changes to many state variables). For example, the operator cost might be divided pro-

portionally across the abstractions based on the percentage of the tiles moved by the operator that

are distinguished in each abstraction. We call this method of defining abstract costs “cost-splitting”.

For example, consider two abstractions of the 4-Pancake puzzle, one in which tiles 0 and 1 are dis-

tinguished, the other in which tiles 2 and 3 are distinguished. Then the middle operator in Figure 3.4

would have a cost of 2
3 in the first abstract space and 1

3 in the second abstract space, because of the

three tiles this operator moves, two are distinguished in the first abstraction and one is distinguished

in the second abstraction.

A different method for dividing operator costs among abstractions focuses on a specific location

(or locations) in the puzzle and assigns the full cost of the operator to the abstraction in which the

tile that moves into this location is distinguished. We call this a “location-based” cost definition.

In the Pancake puzzle it is natural to use the leftmost location as the special location since every

operator changes the tile in this location. The middle operator in Figure 3.4 would have a cost of 0

in the abstract space in which tiles 0 and 1 are distinguished and a cost of 1 in the abstract space in

14



which tiles 2 and 3 are distinguished because the operator moves tile 2 into the leftmost location.

Both these methods apply to the Pancake puzzle and TopSpin, and many other state spaces, but

the hadd heuristics they produce are not always superior to the hmax heuristics based on the same

abstractions. The theory in the remainder of the chapter and the experiments in the following chapter

shed some light on the general question of when hadd is preferable to hmax.

3.2 Formal Theory of Additive Abstractions

In this section, we give formal definitions and lemmas related to state spaces, abstractions, and the

heuristics defined by them, and discuss their meanings and relation to previous work. The definitions

in Section 3.2.1 are standard. The definition of state space abstraction in Section 3.2.2 differs from

previous definitions only in one important detail: each state transition in an abstract space has two

costs associated with it instead of just one. The main new contribution is the definition of additive

abstractions in Section 3.2.3.

The underlying structure of our abstraction definition is a directed graph (digraph) homomor-

phism. For easy reference, we quote here standard definitions of digraph and digraph homomor-

phism [43].

Definition 3.2.1. A digraph G is a finite set V = V (G) of vertices, together with a binary relation

E = E(G) on V. The elements (u, v) of E are called the arcs of G.

Definition 3.2.2. Let G and H be any digraphs. A homomorphism of G to H , written as ψ : G→

H , is a mapping ψ: V (G)→ V (H) such that (ψ(u), ψ(v)) ∈ E(H) whenever (u, v) ∈ E(G).

Note that the digraphsG andH may have self-loops, (u, u), and a homomorphism is not required

to be surjective in either vertices or arcs. We typically refer to arcs as edges, but it should be kept in

mind that, in general, they are directed edges, or ordered pairs.

3.2.1 State Space

Definition 3.2.3. A state space is a weighted directed graph S = 〈T,Π, C〉 where T is a finite set of

states, Π ⊆ T × T is a set of directed edges (ordered pairs of states) representing state transitions,

and C : Π −→ R∗ (i.e., non-negative real values) is the edge cost function.

In typical practice, S is defined implicitly. Usually each distinct state in T corresponds to an

assignment of values to a set of state variables. Π and C derive from a successor function, or a set

of operators. Although most of our examples are on integer domains, real-valued edge costs are

permissible provided conditions are imposed to ensure that the set of paths connecting any given

pair of states has a well-defined minimum cost.

In some cases, T is restricted to the set of states from which the goal can be reached. For

example, in the 8-puzzle, the set of edges Π is defined by the rule “a tile that is adjacent to the empty
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location can be moved into the empty location”, and the set of states T is defined in one of two

ways: either as the set of states from which the goal can be reached, or as the set of permutations

of the tiles and the blank, in which case T consists of two components that are not connected to

one another. The standard cost function C for the 8-puzzle assigns a cost of 1 to all edges, but it is

easy to imagine cost functions for the 8-puzzle that depend on the tile being moved or the locations

involved in the move.

A path from state t to state g is a sequence of edges beginning at t and ending at g. Formally, ~p

is a path from state t to state g if ~p = 〈π1, . . . , πn〉, πj ∈ Π where πj = (tj−1, tj), j ∈ {1, . . . , n}

and t0 = t, tn = g. Note the use of superscripts rather than subscripts to distinguish states and edges

within a state space. The length of ~p is the number of edges n and its cost is C(~p) =
∑n
j=1 C(πj).

We use Paths(S, t, g) to denote the set of all paths from t to g in S.

Definition 3.2.4. The optimal (minimum) cost of a path from state t to state g in S is defined by

OPT(t, g) = min
~p∈Paths(S,t,g)

C(~p)

A pathfinding problem is a triple 〈S, t, g〉, where S is a state space and t, g ∈ T , with the

objective of finding the minimum cost of a path from t to g, or in some cases finding a minimum

cost path ~p ∈ Paths(S, t, g) such that C(~p) = OPT(t, g). Having just one goal state may seem

restrictive, but problems having a set of goal states can be accommodated with this definition by

adding a virtual goal state to the state space with zero-cost edges from the actual goal states to the

virtual goal state.

3.2.2 State Space Abstraction

Definition 3.2.5. An Abstraction System is a pair 〈S,ℵ〉 where S = 〈T,Π, C〉 is a state space and

ℵ = {〈Ai, ψi〉 | ψi : S → Ai, 1 ≤ i ≤ k} is a set of abstractions, where each abstraction is a pair

consisting of an abstract state space and an abstraction mapping, where “abstract state space” and

“abstraction mapping” are defined below.

Note that these abstractions are not intended to form a hierarchy and should be considered a set

of independent abstractions.

Definition 3.2.6. An abstract state space is a directed graph with two weights per edge, defined by

a four-tuple Ai = 〈Ti,Πi, Ci, Ri〉.

Ti is the set of abstract states and Πi is the set of abstract edges, as in the definition of a state

space. In an abstract space there are two costs associated with each πi ∈ Πi, the primary cost

Ci : Πi −→ R∗ and the residual cost Ri : Πi −→ R∗. The idea of having two costs per abstract

edge, instead of just one, is inspired by the practice, illustrated in Figure 3.3, of having two types of

edges in the abstract space and counting distinguished moves differently than “don’t care” moves. In

that example, our primary cost is the cost associated with the distinguished moves, and our residual
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cost is the cost associated with the “don’t care” moves. The usefulness of considering the cost of

“don’t care” moves arises when the abstraction system is additive, as suggested by Lemmas 3.2.6

and 5.2.2 below. These indicate when the additive heuristic is infeasible and can be improved, the

effectiveness of which will become apparent in the experiments reported in Chapter 5.

Like edges, each abstract path ~pi = 〈π1
i , . . . , π

n
i 〉 inAi has a primary and residual cost: Ci(~pi) =∑n

j=1 Ci(π
j
i ), and Ri(~pi) =

∑n
j=1Ri(π

j
i ).

Definition 3.2.7. An abstraction mapping ψi : S −→ Ai between state space S and abstract state

space Ai is defined by a mapping between the states of S and the states of Ai, ψi : T → Ti, that

satisfies the two following conditions.

The first condition is that the mapping is a homomorphism and thus connectivity in the original

space is preserved, i.e.,

∀(u, v) ∈ Π, (ψi(u), ψi(v)) ∈ Πi (3.1)

In other words, for each edge in the original space S there is a corresponding edge in the abstract

space Ai. Note that if u 6= v and ψi(u) = ψi(v) then a non-identity edge in S gets mapped to an

identity edge (self-loop) in Ai. We use the shorthand notation tji = ψi(tj) for the abstract state

in Ti corresponding to tj ∈ T , and πji = ψi(πj) = (ψi(uj), ψi(vj)) for the abstract edge in Πi

corresponding to πj = (uj , vj) ∈ Π.

The second condition that the state mapping must satisfy is that abstract edges must not cost

more than any of the edges they correspond to in the original state space, i.e.,

∀π ∈ Π, Ci(πi) +Ri(πi) ≤ C(π) (3.2)

As a consequence, if multiple edges in the original space map to the same abstract edge ρ ∈ Πi,

as is usually the case, Ci(ρ) +Ri(ρ) must be less than or equal to all of them, i.e.,

∀ρ ∈ Πi, Ci(ρ) +Ri(ρ) ≤ min
π∈Π,ψi(π)=ρ

C(π) (3.3)

Note that if no edge maps to an edge in the abstract space, then no bound on the cost of that edge

is imposed.

For example, the state mapping used to define the abstraction in the middle column of Figure

3.3 maps an 8-puzzle state to an abstract state by renaming tiles 2, 4, 6, and 8 to “don’t care”.

This mapping satisfies condition (1) because “don’t care” tiles can be exchanged with the blank

whenever regular tiles can. It satisfies condition (2) because each move is either a distinguished

move (Ci(πi) = 1 and Ri(πi) = 0) or a “don’t care” move (Ci(πi) = 0 and Ri(πi) = 1) and in

both cases Ci(πi) +Ri(πi) = 1, the cost of the edge π in the original space.

The set of abstract states Ti is usually equal to ψi(T ) = {ψi(t) | t ∈ T}, but it can be a superset,

in which case the abstraction is said to be non-surjective [47]. Likewise, the set of abstract edges
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Πi is usually equal to ψi(Π) = {ψi(π) | π ∈ Π} but it can be a superset even if Ti = ψi(T ).

In some cases, one deliberately chooses an abstract space that has states or edges that have no

counterpart in the original space. For example, the methods that define abstractions by dropping

operator preconditions must, by their very design, create abstract spaces that have edges that do

not correspond to any edge in the original space (e.g. [82]). In other cases, non-surjectivity is an

inadvertent consequence of the abstract space being defined implicitly as the set of states reachable

from the abstract goal state by applying operator inverses. For example, if a tile in the 2× 2 sliding

tile puzzle is mapped to the blank in the abstract space, the puzzle now has two blanks and states

are reachable in the abstract space that have no counterpart in the original space [47]. For additional

examples and an extensive discussion of non-surjectivity see [52, 102].

All the lemmas and definitions that follow assume an abstraction system 〈S,ℵ〉 containing k

abstractions has been given. Conditions (3.1) and (3.2) guarantee the following.

Lemma 3.2.1. For any path ~p ∈ Paths(S, u1, u2) in S , there is a corresponding abstract path

ψi(~p) from u1
i to u2

i in Ai and Ci(ψi(~p)) +Ri(ψi(~p)) ≤ C(~p).

Proof. By definition, ~p ∈ Paths(S, u1, u2) in S is a sequence of edges 〈π1, . . . , πn〉, πj ∈ Π

where πj = (tj−1, tj), j ∈ {1, . . . , n} and t0 = u1, tn = u2. Because Πi ⊇ ψi(Π), each of the

corresponding abstract edges exists (πji ∈ Πi). Because π1
i = (u1

i , t
1
i ) and πni = (tn−1

i , u2
i ), the

sequence ψi(~p) = 〈π1
i , . . . , π

n
i 〉 is a path from u1

i to u2
i .

By definition, C(~p) =
∑n
j=1 C(πj). For each πj , Condition (2) ensures that C(πj) ≥ Ci(πji )+

Ri(π
j
i ), and therefore C(~p) ≥

∑n
j=1(Ci(π

j
i ) + Ri(π

j
i )) =

∑n
j=1 Ci(π

j
i ) +

∑n
j=1Ri(π

j
i ) =

Ci(ψi(~p)) +Ri(ψi(~p)).

For example, consider state A and goal g in Figure 3.3. Because of condition (3.1), any path

from state A to g in the original space is also a path from abstract state A1 to abstract goal state g1

and from abstract state A2 to g2 in the abstract spaces. Because of condition (3.2), the cost of the

path in the original space is greater than or equal to the sum of the primary cost and the residual cost

of the corresponding abstract path in each abstract space.

We use Paths(Ai, u, v) to mean the set of all paths from u to v in space Ai.

Definition 3.2.8. The optimal abstract cost from abstract state u to abstract state v in Ai is defined

as

OPTi(u, v) = min
~q∈Paths(Ai,u,v)

Ci(~q) +Ri(~q)

Definition 3.2.9. We define the heuristic value obtained from abstract space Ai for the cost from

state t to g as

hi(t, g) = OPTi(ti, gi).

Note that in these definitions, the path minimizing the cost is not required to be the image, ψi(~p),

of a path ~p in S.

18



The following prove that the heuristic generated by each individual abstraction is admissible

(Lemma 3.2.2) and consistent (Lemma 3.2.3).

Lemma 3.2.2. hi(t, g) ≤ OPT(t, g) for all t, g ∈ T and all i ∈ {1, . . . , k}.

Proof. By Lemma 3.2.1, C(~p) ≥ Ci(ψi(~p)) +Ri(ψi(~p)), and therefore

min
~p∈Paths(S,t,g)

C(~p) ≥ min
~p∈Paths(S,t,g)

Ci(ψi(~p)) +Ri(ψi(~p)).

The left hand side of this inequality is OPT(t, g) by definition, and the right hand side is proved in

the following Claim 3.2.2.1 to be greater than or equal to hi(t, g). Therefore, OPT(t, g) ≥ hi(t, g).

Claim 3.2.2.1 min~p∈Paths(S,t,g) Ci(ψi(~p)) +Ri(ψi(~p)) ≥ hi(t, g) for all t, g ∈ T .

Proof of Claim 3.2.2.1: By Lemma 3.2.1 for every path ~p there is a corresponding abstract path.

There may also be additional paths in the abstract space, that is, {ψi(~p) | ~p ∈ Paths(S, t, g)} ⊆

Paths(Ai, ti, gi). It follows that {Ci(ψi(~p)) + Ri(ψi(~p)) | ~p ∈ Paths(S, t, g)} ⊆ {Ci(~q) +

Ri(~q) | ~q ∈ Paths(Ai, ti, gi)}. Therefore,

min
~p∈Paths(S,t,g)

Ci(ψi(~p)) +Ri(ψi(~p)) ≥ min
~q∈Paths(Ai,ti,gi)

Ci(~q) +Ri(~q) = OPTi(ti, gi) = hi(t, g)

Lemma 3.2.3. hi(t1, g) ≤ OPT(t1, t2) + hi(t2, g) for all t1, t2, g ∈ T and all i ∈ {1, . . . , k}.

Proof. By the definition of OPTi as a minimization and the definition of hi(t, g), it follows that

hi(t1, g) = OPTi(t1i , gi) ≤ OPTi(t1i , t
2
i ) + OPTi(t2i , gi) = OPTi(t1i , t

2
i ) + hi(t2, g).

To complete the proof, we observe that by Lemma 3.2.2, OPT(t1, t2) ≥ hi(t1, t2) = OPTi(t1i , t
2
i ).

Definition 3.2.10. The hmax heuristic from state t to state g defined by an abstraction system 〈S,ℵ〉

is

hmax(t, g) =
k

max
i=1

hi(t, g)

From Lemmas 3.2.2 and 3.2.3 it immediately follows that hmax is admissible and consistent.

3.2.3 Additive Abstractions

In this section, we formalize the notion of “additive abstraction” that was introduced intuitively in

Section 3.1.2. The example there showed that hadd(t, g), the sum of the heuristics for state t defined

by multiple abstractions, was admissible provided the cost functions in the abstract spaces only

counted the “distinguished moves”. In our formal framework, the “cost of distinguished moves” is

captured by the notion of primary cost.
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Definition 3.2.11. For any pair of states t, g ∈ T the additive heuristic given an abstraction system

is defined to be

hadd(t, g) =
k∑
i=1

C∗i (ti, gi).

where

C∗i (ti, gi) = min
~q∈Paths(Ai,ti,gi)

Ci(~q)

is the minimum primary cost of a path in the abstract space from ti to gi.

In Figure 3.3, for example, C∗1 (A1, g1) = 9 and C∗2 (A2, g2) = 5 because the minimum number

of distinguished moves to reach g1 from A1 is 9 and the minimum number of distinguished moves

to reach g2 from A2 is 5.

Intuitively, hadd will be admissible if the cost of edge π in the original space is divided among

the abstract edges πi that correspond to π, as is done by the “cost-splitting” and “location-based”

methods for defining abstract costs that were introduced at the end of Section 3.1.2. This leads to

the following formal definition.

Definition 3.2.12. An abstraction system 〈S,ℵ〉 is additive if ∀π ∈ Π,
∑k
i=1 Ci(πi) ≤ C(π).

The following lemmas prove that hadd is admissible (Lemma 3.2.4) and consistent (Lemma

3.2.5) when the abstraction system 〈S,ℵ〉 is additive.

Lemma 3.2.4. If 〈S,ℵ〉 is additive then hadd(t, g) ≤ OPT(t, g) for all t, g ∈ T .

Proof. Assume that OPT(t, g) = C(~p), where ~p = 〈π1, . . . , πn〉 ∈ Paths(S, t, g). Therefore,

OPT(t, g) =
∑n
j=1 C(πj). Since 〈S,ℵ〉 is additive, it follows by definition that

n∑
j=1

C(πj) ≥
n∑
j=1

k∑
i=1

Ci(π
j
i ) =

k∑
i=1

n∑
j=1

Ci(π
j
i )

≥
k∑
i=1

C∗i (ti, gi) = hadd(t, g)

where the last line follows from the definitions of C∗i and hadd.

Lemma 3.2.5. If 〈S,ℵ〉 is additive then hadd(t1, g) ≤ OPT(t1, t2)+hadd(t2, g) for all t1, t2, g ∈ T .

Proof. C∗i (t1i , gi) obeys the triangle inequality: C∗i (t1i , gi) ≤ C∗i (t1i , t
2
i )+C

∗
i (t2i , gi) for all t1, t2, g ∈

T . It follows that
∑k
i=1 C

∗
i (t1i , gi) ≤

∑k
i=1 C

∗
i (t1i , t

2
i ) +

∑k
i=1 C

∗
i (t2i , gi).

Because
∑k
i=1 C

∗
i (t1i , gi) = hadd(t1, g) and

∑k
i=1 C

∗
i (t2i , gi) = hadd(t2, g), it follows that

hadd(t1, g) ≤
∑k
i=1 C

∗
i (t1i , t

2
i ) + hadd(t2, g).

Since 〈S,ℵ〉 is additive, by Lemma 3.2.4, OPT(t1, t2) ≥
∑k
i=1 C

∗
i (t1i , t

2
i ).

Hence hadd(t1, g) ≤ OPT(t1, t2) + hadd(t2, g) for all t1, t2, g ∈ T .
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We now develop a simple test that has important consequences for additive heuristics. Define
~Pi(ti, gi) = {~q | ~q ∈ Paths(Ai, ti, gi) and Ci(~q) = C∗i (ti, gi)}, the set of abstract paths from ti to

gi whose primary cost is minimal.

Definition 3.2.13. The conditional optimal residual cost is the minimum residual cost among the

paths in ~Pi(ti, gi):

R∗i (ti, gi) = min
~q∈~Pi(ti,gi)

Ri(~q)

Note that the value of (C∗i (ti, gi)+R∗i (ti, gi)) is sometimes, but not always, equal to the optimal

abstract cost OPTi(ti, gi). In Figure 3.3, for example, OPT1(A1, g1) = 16 (a path with this cost

is shown in Figure 3.2) and C∗1 (A1, g1) + R∗1(A1, g1) = 18, while C∗2 (A2, g2) + R∗2(A2, g2) =

OPT2(A2, g2) = 12. As the following lemmas show, it is possible to draw important conclusions

about hadd by comparing its value to (C∗i (ti, gi) +R∗i (ti, gi)).

Lemma 3.2.6. Let 〈S,ℵ〉 be any additive abstraction system and let t, g ∈ T be any states. If

hadd(t, g) ≥ C∗j (tj , gj) +R∗j (tj , gj) for all j ∈ {1, . . . , k}, then hadd(t, g) ≥ hmax(t, g).

Proof. By the definition of OPTi(ti, gi), ∀j ∈ {1, . . . , k}, C∗j (tj , gj) +R∗j (tj , gj) ≥ OPTj(tj , gj).

Therefore, ∀j ∈ {1, . . . , k}, hadd(t, g) ≥ C∗j (tj , gj) + R∗j (tj , gj) ≥ OPTj(tj , gj) ⇒ hadd(t, g) ≥

max1≤i≤k OPTi(ti, gi) = hmax(t, g).

Lemma 3.2.6 gives a condition under which hadd is guaranteed to be at least as large as hmax for

a specific states t and g. If this condition holds for a large fraction of the state space T , one would

expect that search using hadd to be at least as fast as, and possibly faster than, search using hmax.

This will be seen in the experiments reported in Chapter 4. The opposite is not true in general, i.e.,

failing this condition does not imply that hmax will result in faster search than hadd.

Lemma 3.2.7. For an additive 〈S,ℵ〉 and path ~p ∈ Paths(S, t, g) with C(~p) =
∑k
i=1 C

∗
i (ti, gi),

Cj(ψj(~p)) = C∗j (tj , gj) for all j ∈ {1, . . . , k}.

Proof. Suppose for a contradiction that there exists some i1, such that Ci1(ψi1(~p)) > C∗i1(ti1 , gi1).

Then becauseC(~p) =
∑k
i=1 C

∗
i (ti, gi), there must exist some i2, such thatCi2(ψi2(~p)) < C∗i2(ti2 , gi2),

which contradicts the definition of C∗i . Therefore, such an i1 does not exist and Cj(ψj(~p)) =

C∗j (tj , gj) for all j ∈ {1, . . . , k}.

Lemma 3.2.8. For an additive 〈S,ℵ〉 and a path ~p ∈ Paths(S, t, g) with C(~p) =
∑k
i=1 C

∗
i (ti, gi),

then Ri(ψi(~p)) ≥ R∗i (ti, gi) for all i ∈ {1, . . . , k}.

Proof. Following Lemma 3.2.7 and the definition of ~Pi(ti, gi), ψi(~p) ∈ ~Pi(ti, gi) for all i ∈

{1, . . . , k}. Because R∗i (ti, gi) is the smallest residual cost of paths in ~Pi(ti, gi), it follows that

Ri(ψi(~p)) ≥ R∗i (ti, gi).
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3.3 Relation to Previous Work

The aim of the preceding formal definitions is to identify fundamental properties that guarantee that

abstractions will give rise to admissible, consistent heuristics. We have shown that the following

two conditions guarantee that the heuristic defined by an abstraction is admissible and consistent

(P1) ∀(u, v) ∈ Π, (ψi(u), ψi(v)) ∈ Πi

(P2) ∀π ∈ Π, C(π) ≥ Ci(πi) +Ri(πi)

and that a third condition

(P3) ∀π ∈ Π, C(π) ≥
k∑
i=1

Ci(πi)

guarantees that hadd(t, g) is admissible and consistent.

Previous work has focused on defining abstraction and additivity for specific ways of represent-

ing states and transition functions. These are important contributions because ultimately one needs

computationally effective ways of defining the abstract state spaces, abstraction mappings, and cost

functions that our theory takes as given. The importance of our contribution is that it should make

future proofs of admissibility, consistency, and additivity easier, because one will only need to show

that a particular method for defining abstractions satisfies the three preceding conditions. These are

generally very simple conditions to demonstrate, as we will now do for several methods for defining

abstractions and additivity that currently exist in the literature.

Previous Definitions of Abstraction

The use of abstraction to create heuristics began in the late 1970s and was popularized in Pearl’s

landmark book on heuristics [82]. Two abstraction methods were identified at that time: “relaxing”

a state space definition by dropping operator preconditions [30, 34, 82, 92], and “homomorphic”

abstractions [4, 64]. These early notions of abstraction were unified and extended in [78, 84], which

give a formal definition that is the same as ours in all important respects except for the concept of

“residual cost” that we have introduced.1

Today’s two most commonly used abstraction methods are among the ones implemented in

Prieditis’s Absolver II system [84]. The first is “domain abstraction”, which was independently

introduced in the seminal work on pattern databases [14, 16] and then generalized in [47]. It assumes

a state is represented by a set of state variables, each of which has a set of possible values called its

domain. An abstraction on states is defined by specifying a mapping from the original domains to

new, smaller domains. For example, an 8-puzzle state is typically represented by 9 variables, one

for each location in the puzzle, each with the same domain of 9 elements, one for each tile and one

more for the blank. A domain abstraction that maps all the elements representing the tiles to the
1Prieditis’s definition allows an abstraction to expand the set of goals. This can be achieved in our definition by mapping

non-goal states in the original space to the same abstract state as the goal.
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same new element (“don’t care”) and the blank to a different element would produce the abstract

space shown in Figure 3.1. The reason this particular example satisfies property (P1) is explained in

Section 3.2.2. In general, a domain abstraction will satisfy property (P1) as long as the conditions

that define when state transitions occur (e.g., operator preconditions) are guaranteed to be satisfied

by the “don’t care” symbol whenever they are satisfied by one or more of the domain elements that

map to “don’t care”. Property (P2) follows immediately from the fact that all state transitions in the

original and abstract spaces have a primary cost of 1.

The other major type of abstraction used today, called “drop” in [84], was independently intro-

duced for abstracting planning domains represented by grounded (or propositional) STRIPS opera-

tors [22]. In a STRIPS representation, a state is represented by the set of logical atoms that are true

in that state, and the directed edges between states are represented by a set of operators, where each

operator a is described by three sets of atoms, P (a), A(a), and D(a). P (a) lists a’s preconditions:

a can be applied to state t only if all the atoms in P (a) are true in t (i.e., P (a) ⊆ t). A(a) and D(a)

specify the effects of operator a, with A(a) listing the atoms that become true when a is applied (the

“add” list) and D(a) listing the atoms that become false when a is applied (the “delete” list). Hence

if operator a is applicable to state t, the state u = a(t) it produces when applied to t is the set of

atoms u = (t−D(a)) ∪A(a).

In this setting, Edelkamp [22] defined an abstraction of a given state space by specifying a

subset of the atoms and restricting the abstract state descriptions and operator definitions to include

only atoms in the subset. Suppose Vi is the subset of the atoms underlying abstraction mapping

ψi : S −→ Ai, where S is the original state space and Ai is the abstract state space based on

Vi. Two states in S will be mapped to the same abstract state if and only if they contain the same

subset of atoms in Vi, i.e., ψi(t) = ψi(u) iff t ∩ Vi = u ∩ Vi. This satisfies property (P1) because

operator a being applicable to state t (P (a) ⊆ t) implies abstract operator ai = ψi(a) is applicable

to abstract state ti (P (a) ∩ Vi ⊆ t ∩ Vi) and the resulting state a(t) = (t − D(a)) ∪ A(a) is

mapped by ψi to ai(ψi(t)) because set intersection distributes across set subtraction and union

(Vi ∩ ((t−D(a))∪A(a)) = ((Vi ∩ t)− (Vi ∩D(a)))∪ (Vi ∩A(a))). Again, property (P2) follows

immediately from the fact that all operators in the original and abstract spaces have a primary cost

of 1.

Helmert et al. [45] described a more general approach to defining abstractions for planning based

on “transition graph abstractions”. A transition graph is a directed graph in which the arcs have la-

bels, and a transition graph abstraction is a directed graph homomorphism that preserves the labels.2

Hence, Helmert et al.’s method is a restricted version of our definition of abstraction and therefore

satisfies properties (P1) and (P2). Helmert et al. make the following interesting observations that

are true of our more general definition of abstractions:

2“Homomorphism” here means the standard definition of a digraph homomorphism (Definition 3.2.2), which permits
non-surjectivity (as discussed in Section 3.2.2), as opposed to Helmert et al.’s definition of “homomorphism”, which does not
allow non-surjectivity.
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• the composition of two abstractions is an abstraction. In other words, if ψ : S −→ A is an

abstraction of S and φ : A −→ B is an abstraction of A, then (φ ◦ ψ) : S −→ B is an

abstraction of S. This property of abstractions was exploited by Prieditis [84].

• the “product” A1 × A2 of two abstractions, A1 and A2, of S is an abstraction of S, where

the state space of the product is the Cartesian product of the two abstract state spaces, and

there is an edge π1×2 in the product space from state (t1, t2) to state (u1, u2) if there is an

edge π1 from t1 to u1 in A1 and there is an edge π2 from t2 to u2 in A2. The primary cost of

π1×2 is the minimum of C1(π1) and C2(π2) and the residual cost of π1×2 is taken from the

same space as the primary cost. Because they are working with labelled edges Helmert et al.

require the edge connecting t1 to u1 to have the same label as the edge connecting t2 to u2;

this is called a “synchronized” product and is denoted A1 ⊗A2 (refer to Definition 6 in [45]

for the exact definition of synchronized product).

Figure 3.5 shows the synchronized product, B, of two abstractions, A1 and A2, of the 3-state

space S in which the edge labels are a and b. A1 is derived from S by mapping states s1 and s2 to

the same state (s1,2), and A2 is derived from S by mapping states s2 and s3 to the same state (s2,3).

Note that B contains four states, more than the original space. It is an abstraction of S because the

mapping of original states s1, s2, and s3 to states (s1,2, s1) (s1,2, s2,3) and (s3, s2,3), respectively,

satisfies property (P1), and property (P2) is satisfied automatically because all edges have a cost of 1.

From this point of view the fourth state inB, (s3, s1), is redundant with state (s1,2, s1). Nevertheless

it is a distinct state in the product space.

a

1s 2s 3s

2,1s 3s

a

a

1s 3,2s

a

a

b

),( 3,22,1 ss

),( 3,23 ss
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a
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Figure 3.5: S is the original state space. A1 and A2 are abstractions of S. B = A1 ⊗ A2 is the
synchronized product of A1 and A2.

Haslum et al. [38] introduce a family of heuristics, called hm (for any fixed m ∈ {1, 2, ...}), that

is based on the idea of “critical paths” as classified in the recent literatures [20, 44], which are not

covered by our definition because the value of the heuristic for state t, hm(t, g), is not defined as the
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distance from the abstraction of t to the abstract goal state g. Instead it takes advantage of a special

monotonicity property of costs in planning problems: the cost of achieving a subset of the atoms

defining the goal is a lower bound on the cost of achieving the goal. When searching backwards

from the goal g to the start state s, as Haslum et al. do, this allows an admissible heuristic to be

defined in the following recursive minimax fashion (|t| denotes the number of atoms in state t):

hm(s, t) =


0, t ⊆ start

min
(t′,t)∈Π

C(t′, t) + hm(t′), |t| ≤ m

max
t′⊆t,|t′|≤m

hm(t′), |t| > m

The first two lines of this definition are the standard method for calculating the cost of a least-cost

path. It is the third line that uses the fact that the cost of achieving any subset of the atoms in t is a

lower bound on the cost of achieving the entire set of atoms t. The recursive calculation alternates

between the min and max calculation depending on the number of atoms in the state currently being

considered in the recursive calculation, and is therefore different than a shortest path calculation or

taking the maximum of a set of shortest path calculations.

Recently, Helmert and Röger [46] introduced a new way of defining abstractions for the pancake

problem called relative-order abstractions. Unlike the abstraction considered in previous work [27,

96], relative-order abstractions map two states s1 and s2 in the original state space to the same

abstract state s′ if the relative order of the distinguished tiles in the abstraction is the same in both

s1 and s2 (refer to Definition 7 in [46] for the exact definition of relative-order abstractions). The

abstraction induced by relative orders still preserves connectivity in the original state space (refer

to Theorem 1 in [46] for the proof) and hence it satisfies property (P1). Property (P2) follows

immediately from the fact that all state transitions in the original and abstract state spaces have a

primary cost of one.

Previous definitions of additive abstractions

Prieditis [84] included a method (“Factor”) in his Absolver II system for creating additive abstrac-

tions, but did not present any formal definitions or theory.

The first thorough discussion of additive abstractions is due to Korf and Taylor [69]. They

observed that the sliding tile puzzle’s Manhattan Distance heuristic, and several of its enhancements,

were the sum of the distances in a set of abstract spaces in which a small number of tiles were

“distinguished”. As explained in Section 3.1.2, what allowed the abstract distances to be added and

still be a lower bound on distances in the original space is that only the moves of the distinguished

tiles counted towards the abstract distance and no tile was distinguished in more than one abstraction.

This idea was later developed in a series of papers [26, 68], which extended its application to other

domains, such as the 4-peg Towers of Hanoi puzzle.

In the planning literature, the same idea was proposed by Haslum et al. [38], who described it

as partitioning the operators into disjoint sets B1, ...Bk and counting the cost of operators in set Bi
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only in abstract space Ai. The example they give is that in the Blocks World operators that move

block i would all be in setBi, effectively defining a set of additive abstractions for the Blocks World

exactly analogous to the Korf and Taylor abstractions that define Manhattan Distance for the sliding

tile puzzle.

Edelkamp [22] took a different approach to defining additive abstractions for STRIPS planning

representations. His method involves partitioning the atoms into disjoint sets V1, ...Vk such that no

operator changes atoms in more than one group. If abstract space Ai retains only the atoms in set Vi

then the operators that do not affect atoms in Vi will have no effect at all in abstract spaceAi and will

naturally have a cost of 0 inAi. Since no operator affects atoms in more than one group, no operator

has a non-zero cost in more than one abstract space and distances in the abstract spaces can safely

be added. Haslum et al. [39] extended this idea to representations in which state variables could

have multiple values. In a subsequent paper Edelkamp [23] remarks that if there is no partitioning

of atoms that induces a partitioning of the operators as just described, additivity could be “enforced”

by assigning an operator a cost of zero in all but one of the abstract spaces—a return to the Korf and

Taylor idea.

All the methods just described might be called “all-or-nothing” methods of defining abstract

costs, because the cost of each edge C(π) is fully assigned to be the cost of the corresponding

abstract edge Ci(πi) in one of the abstractions and the corresponding edges in all the other abstrac-

tions are assigned a cost of zero. Any such method obviously satisfies property (P3) and is therefore

additive.

Our theory of additivity does not require abstract methods to be defined in an all-or-nothing

manner, it allows C(π) to be divided in any way whatsoever among the abstractions as long as

property (P3) is satisfied. This possibility has been recognized in some recent publications [61, 62,

63]. This generalization is important because it eliminates the requirement that operators must move

only one “tile” or change atoms/variables in one “group”, and the related requirement that tiles/atoms

be distinguished/represented in exactly one of the abstract spaces. This requirement restricted the

application of previous methods for defining additive abstractions, precluding their application to

state spaces such as the Pancake puzzle and TopSpin. As the following chapter shows, with our

definition, additive abstractions can be defined for any state space, including the two just mentioned.

Helmert et al. [45] showed that the synchronized product of additive abstractions produces a

heuristic hsprod that dominates hadd, in the sense that hsprod(s) ≥ hadd(s) for all states s. This

happens because the synchronized product forces the same path to be used in all the abstract spaces,

whereas the calculation of each C∗i in hadd can be based on a different path. The discussion of

the negative results and infeasibility in the following chapters highlight the problems that can arise

because each C∗i is calculated independently.

In the planning literature, Haslum et al. [38] first defined a hmax over a collection of hadd

heuristics. In order to exploit the different strengths of different heuristics, recently Coles et al.
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[12] introduced a new structure for combining heuristics for planning which is a framework called

the Additive-Disjunctive Heuristic Graph (ADHG). This framework applies a directed acyclic graph

consisting of vertices and edges representing the dependencies of heuristics (refer to Definition 4.2

in [12] for the exact definition of ADHG Heuristics), and it allows hmax and hadd to be combined

more flexibly. Coles et al. [12] defined and proved that safely additive ADHG heuristics (refer to

Definition 4.4 in [12] for the definition of safely additive ADHG heuristics) are admissible whose

proof is a straightforward generalization of property (P3) in our definitions.

3.4 Chapter Summary

In this chapter we have presented a formal, general definition of additive abstractions that removes

the restrictions of most previous definitions, thereby enabling additive abstractions to be defined for

any state space.

We have proven that heuristics based on additive abstractions are consistent as well as admissi-

ble. Our definition formalizes the intuitive idea that abstractions will be additive provided the cost

of each operator is divided among the abstract spaces.

A distinctive feature of our definition is that each edge in an abstract space has two costs instead

of just one. This was inspired by previous definitions treating “distinguished” moves differently than

“don’t care” moves in calculating least-cost abstract paths. Formalizing this idea with two costs per

edge has enable us to develop a way of testing if the heuristic value returned by additive abstractions

is provably too low. Chapter 5 explores this in detail.

The importance of our contribution is that it should make future proofs of admissibility, consis-

tency, and additivity easier, because one will only need to show that a particular method for defining

abstractions satisfies the three preceding conditions. These are generally very simple conditions to

demonstrate, as we did for several previous methods for defining abstractions and additivity that

currently exist in the literature.
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Chapter 4

Additive Abstractions for
Combinatorial Puzzles

The aim of the formal definitions in the preceding chapter is to identify fundamental properties that

guarantee that abstractions will give rise to admissible, consistent heuristics. This chapter reports

the results of applying the general definition of additive abstraction given in the preceding chapter to

two benchmark state spaces: TopSpin and the Pancake puzzle. This work was published in [94, 96]

where a few additional experimental results may be found.

4.1 Defining Costs

We will investigate two general methods for defining the primary cost of an abstract state transition

Ci(πi), which we call “cost-splitting” and “location-based” costs. To illustrate the generality of

these methods we will define them for the two most common ways of representing states—as a

vector of state variables, which is the method we implemented in our experiments, and as a set of

logical atoms as in the STRIPS representation for planning problems.

In a state variable representation a state t is represented by a vector of m state variables, each

having its own domain of possible values Dj , i.e., t =< t(0), ..., t(m − 1) >, where t(j) ∈ Dj is

the value assigned to the jth state variable in state t. For example, in puzzles such as the Pancake

puzzle and the sliding tile puzzles, there is typically one variable for each physical location in the

puzzle, and the value of t(j) indicates which “tile” is in location j in state t. In this case the domain

for all the variables is the same. State space abstractions are defined by abstracting the domains.

In particular, in this setting domain abstraction ψi will leave specific domain values unchanged

(the “distinguished” values according to ψi) and map all the rest to the same special value, “don’t

care”. The abstract state corresponding to t according to ψi is ti=< ti(0), ..., ti(m − 1) > with

ti(j) = ψi(t(j)). As in previous research with these state spaces a set of abstractions is based on

a division of the domain values into disjoint sets E1, ..., Ek with Ei being the set of distinguished

values in abstraction i. Note that the theory developed in Chapter 3 does not require the distinguished
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values in different abstractions to be mutually exclusive; it allows a value to be distinguished in any

number of abstract spaces provided abstract costs are defined appropriately.

As mentioned previously, in a STRIPS representation a state is represented by the set of logical

atoms that are true in the state. A state variable representation can be converted to a STRIPS repre-

sentation in a variety of ways, the simplest being to define an atom for each possible variable-value

combination. If state variable j has value v in the state variable representation of state t then the

atom variable-j-has-value-v is true in the STRIPS representation of t. The exact equivalent of

domain abstraction can be achieved by defining Vi, the set of atoms to be used in abstraction i, to be

all the atoms variable-j-has-value-v in which v ∈ Ei, the set of distinguished values for domain

abstraction i.

4.1.1 Cost-splitting

In a state variable representation, the cost-splitting method of defining primary costs works as fol-

lows. A state transition π that changes bπ state variables has its cost, C(π), split among the cor-

responding abstract state transitions π1, . . . , πk in proportion to the number of distinguished values

they assign to the variables, i.e., in abstraction i

Ci(πi) = min
π,ψi(π)=πi

bπi ∗ C(π)
bπ

if π changes bπ variables and bπi of them are assigned distinguished values by πi. For example, the

4-Pancake puzzle is composed of 4 tiles. If a particular state transition reverses the order of all four

tiles (i.e., bπ = 4) and two of them are distinguished according to abstraction ψi (i.e., bπi = 2), the

corresponding abstract state transition, πi, would cost 2
4 .

If each domain value is distinguished in at most one abstraction (e.g. if the abstractions are

defined by partitioning the domain values) cost-splitting produces additive abstractions, i.e., C(π) ≥∑k
i=1 Ci(πi) for all π ∈ Π. Because C(π) is known to be an integer, hadd can be defined to be the

ceiling of the sum of the abstract distances, d
∑k
i=1 Ci(πi)e, instead of just the sum. Meanwhile,

we must be careful if an inequality arises due to round off errors. In our implementation we avoid

this possibility by simulating the rational numbers using integers obtained by scaling by the Least

Common Multiple of the denominators.

With a STRIPS representation, cost-splitting could be defined identically, with bπ being the

number of atoms changed (added or deleted) by operator π in the original space and bπi being the

number of atoms changed by the corresponding operator in abstraction i.

4.1.2 Location-based Costs

In a location-based cost definition for a state variable representation, a state variable locπ is asso-

ciated with state transition π and π’s full cost C(π) is assigned to abstract state transition πi if πi

changes the value of variable locπ to a value that is distinguished according to ψi. Formally:
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Ci(πi) =

 minπ,ψi(π)=πi
C(π), if πi = (t1i , t

2
i ), t1i (loc

π) 6= t2i (loc
π), and

t1i (loc
π) is a distinguished value according to ψi.

0, otherwise.

Instead of focusing on the value that is assigned to variable locπ , location-based costs can be

defined equally well on the value that variable locπ had before it was changed. In either case, if

each domain value is distinguished in at most one abstraction location-based costs produce additive

abstractions. The name “location-based” is based on the typical representations used for puzzles, in

which there is a state variable for each physical location in the puzzle.

For example, for a STRIPS representation of states location-based costs can be defined by choos-

ing an atom a in the Add list for each operator π and assigning the full cost C(π) to abstraction i

if a appears in the Add list of πi. If atoms are partitioned so that each atom appears in at most one

abstraction, this method will define additive costs.

Although the cost-splitting and location-based methods for defining costs can be applied to a

wide range of state spaces, they are not guaranteed to define heuristics that are superior to other

heuristics for a given state space. We determined experimentally that heuristics based on cost-

splitting substantially improve performance for sufficiently large versions of TopSpin and that heuris-

tics based on location-based costs vastly improve the state of the art for the 17-Pancake puzzle.1

The following subsections describe the positive results in detail. The negative results are dis-

cussed in Section 4.2.2.

4.2 Experimental Results

In all our experiments all edges in the original state spaces have a cost of 1 and we define Ri(πi) =

1−Ci(πi), its maximum permitted value when edges cost 1. The heuristic search algorithm is IDA∗

since it reduces the memory requirement compared to A∗. Algorithms are coded in C on a machine

with an AMD Athlon(tm) 64 Processor 3700+ with a 2.4 GHz clock rate and 2GB main memory.

We use pattern databases to store the heuristic values. The pre-processing time required to compute

the pattern databases is excluded from the times reported in the results, because the PDB needs to

be calculated only once and this overhead is amortized over the solving of many problem instances.

4.2.1 Positive Results

In this section we experimentally show that heuristics based on cost-splitting substantially improve

performance for sufficiently large versions of TopSpin and that heuristics based on location-based

costs vastly improve the state of the art for the 17-Pancake puzzle.

1This claim was true when this work was published. Recently Helmert and Röger [46] have improved the previous results
published in [27].
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TopSpin with Cost-Splitting

In the (N,K)-TopSpin puzzle (see Figure 4.1) there are N tiles (numbered 1, . . . , N ) arranged on

a circular track, and two physical movements are possible: (1) the entire set of tiles may be rotated

around the track, and (2) a segment consisting of K adjacent tiles in the track may be reversed. As

in previous formulations of this puzzle as a state space [28, 51, 53], we do not represent the first

physical movement as an operator, but instead designate one of the tiles (tile 1) as a reference tile

with the goal being to get the other tiles in increasing order starting from this tile (regardless of its

position). The state space therefore hasN operators (numbered 1, . . . , N ), with operator a reversing

the segment of length K starting at position a relative to the current position of tile 1. For certain

combinations of N and K all possible permutations can be generated from the standard goal state

by these operators, but in general the space consists of connected components and so not all states

are reachable [9]. In the experiments in this section, K = 4 and N is varied.
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764 5

Figure 4.1: The TopSpin puzzle.

The sets of abstractions used in these experiments are described using a tuple written as a1–

a2–. . . –aM , indicating that the set contains M abstractions, with tiles 1 . . . (a1) distinguished in

the first abstraction, tiles (a1 + 1) . . . (a1 + a2) distinguished in the second abstraction, and so on.

For example, 6-6-6 denotes a set of three abstractions in which the distinguished tiles are (1 . . . 6),

(7 . . . 12), and (13 . . . 18) respectively.

The experiments compare hadd, the additive use of a set of abstractions, with hmax, the standard

use of the same abstractions, in which as described in Section 3.1 the full cost of each state transition

is counted in each abstraction and the heuristic returns the maximum distance to goal returned by the

different abstractions. Cost-splitting is used to define operator costs in the abstract spaces for hadd.

Because K = 4, each operator moves 4 tiles. If bi of these are distinguished tiles when operator op

is applied to state si in abstraction i, applying op to si has a primary cost of bi

4 in abstraction i.

In these experiments the heuristic defined by each abstraction is stored in a pattern database

(PDB). Each abstraction would normally be used to define its own PDB, so that a set of M abstrac-

tions would require M PDBs. However, for TopSpin, if two (or more) abstractions have the same

number of distinguished tiles and the distinguished tiles are all adjacent, one PDB can be used for all

of them by suitably renaming the tiles before doing the PDB lookup. For the 6-6-6 abstractions, for
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example, only one PDB is needed, but three lookups would be done in it, one for each abstraction.

Because the position of tile 1 is effectively fixed, this PDB isN times smaller than it would normally

be. For example, with N = 18, the PDB for the 6-6-6 abstractions contains 17 × 16 × . . . × 13

entries. The memory needed for each entry in the hadd PDBs is twice the memory needed for an

entry in the hmax PDBs because of the need to represent fractional values.

We ran experiments for the values of N and sets of abstractions shown in the first two columns

of Table 4.1. Start states were generated by a random walk of 150 moves from the goal state.

There were 1000, 50 and 20 start states for N = 12, 16 and 18, respectively. The average solution

length for these start states is shown in the third column of Table 4.1. The average number of nodes

generated and the average CPU time (in seconds) for IDA∗ to solve the given start states is shown

in the Nodes and Time columns for each of hmax and hadd. The Nodes Ratio column gives the

ratio of Nodes using hadd to Nodes using hmax. A ratio less than one (highlighted in bold) indicates

that hadd, the heuristic based on additive abstractions with cost-splitting, is superior to hmax, the

standard heuristic using the same set of abstractions.

Average hadd based on
N Abs Solution

hmax cost-splitting Nodes
Length Nodes Time Nodes Time Ratio

12 6-6 9.138 14,821 0.05 53,460 0.16 3.60
12 4-4-4 9.138 269,974 1.10 346,446 1.33 1.28
12 3-3-3-3 9.138 1,762,262 8.16 1,388,183 6.44 0.78
16 8-8 14.040 1,361,042 3.42 2,137,740 4.74 1.57
16 4-4-4-4 14.040 4,494,414,929 13,575.00 251,946,069 851.00 0.056
18 9-9 17.000 38,646,344 165.42 21,285,298 91.76 0.55
18 6-6-6 17.000 18,438,031,512 108,155.00 879,249,695 4,713.00 0.04

Table 4.1: (N, 4)-TopSpin results using cost-splitting.

When N = 12 and N = 16 the best performance is achieved by hmax based on a pair of

abstractions each having N
2 distinguished tiles. As N increases the advantage of hmax decreases

and, when N = 18, hadd outperforms hmax for all abstractions used. Moreover, even for the

smaller values of N hadd outperforms hmax when a set of four abstractions with N
4 distinguished

tiles each is used. This is important because as N increases, memory limitations will preclude using

abstractions with N
2 distinguished tiles and the only option will be to use more abstractions with

fewer distinguished tiles each. The results in Table 4.1 show that hadd will be the method of choice

in this situation.

The Pancake Puzzle with Location-based Costs

In this section, we present the experimental results on the 17-Pancake puzzle using location-based

costs. The same notation as in the previous section is used to denote sets of abstractions, e.g. 5-

6-6 denotes a set of three abstractions, with the first having tiles (0 . . . 4) as its distinguished tiles,
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the second having tiles (5 . . . 10) as its distinguished tiles, and the third having tiles (11 . . . 16) as

its distinguished tiles. Also as before, the heuristic for each abstraction is precomputed and stored

in a pattern database. Unlike TopSpin, there are no symmetries in the Pancake puzzle that enable

different abstractions to make use of the same PDB, so a set of M abstractions for the Pancake

puzzle requires M different PDBs.
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Figure 4.2: The additive abstraction defined by the location-based method for the 3-Pancake puzzle.

Additive abstractions are defined using the location-based method with just one reference lo-

cation, the leftmost position. This position was chosen because the tile in this position changes

whenever any operator is applied to any state in the original state space. As defined in Section 4.1.2,

this means that every edge cost in the original space will be fully counted in some abstract space as

long as each tile is a distinguished tile in some abstraction. Take the 3-Pancake puzzle for example.

In Figure 4.2, there are three abstractions, each of which has only one distinguished tile. The pri-

mary cost of an edge (t1i , t
2
i ) is 1 in the abstract space i if the tile in the leftmost position of the state

t1i is distinguished according to abstraction ψi and 0 otherwise. Consider state t = 2 1 0 .

The corresponding abstract states in the first, second and third abstract spaces in Figure 4.2 are

* * 0 , * 1 * and 2 * * , respectively. Therefore the minimum primary cost

from ti to the abstract goal in each abstract state is 0, 0 and 1, respectively. As before, we use hadd

to denote the heuristic defined by adding the values returned by the individual additive abstractions.

For this example, the heuristic hadd(t, g) = 0 + 0 + 1 = 1.
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Our first experiment compares IDA∗ using hadd with the results1 for the 17-Pancake puzzle

published in [27] (shown in Table 4.2), which were obtained using a single abstraction having the

rightmost seven tiles (10–16) as its distinguished tiles and an advanced search technique called

Dual IDA∗ (DIDA∗).2 DIDA∗ is an extension of IDA∗ that exploits the fact that, when states are

permutations of tiles as in the Pancake puzzle, each state s has an easily computable “dual state” sd

with the special property that inverses of paths from s to the goal are paths from sd to the goal. If

paths and their inverses cost the same, DIDA∗ defines the heuristic value for state s to reach the goal

t, as the maximum of h(s, t) and h(sd, t), and sometimes will decide to search for a least-cost path

from sd to goal when it is looking for a path from s to goal.

The results of this experiment are shown in the top three rows of Table 4.3. The Algorithm

column indicates the heuristic search algorithm. The Abs column shows the set of abstractions used

to generate heuristics. The Nodes column shows the average number of nodes generated in solving

1000 randomly generated start states. These start states have an average solution length of 15.77.

The Time column gives the average number of CPU seconds needed to solve these start states on

an AMD Athlon(tm) 64 Processor 3700+ with 2.4 GHz clock rate and 1GB memory. The Memory

column indicates the total size of each set of PDBs.

Average h based on
N Algorithm Abs Solution a single large PDB

Length Nodes Time Memory
17 DIDA∗ rightmost-7 15.77 124,198,462 37.713 98,017,920

Table 4.2: The results1 for the 17-Pancake puzzle [27], which were obtained using a single abstrac-
tion having the rightmost seven tiles (10 − 16) as its distinguished tiles and an advanced search
technique called Dual IDA∗ (DIDA∗).

Average hadd based on
N Algorithm Abs Solution Location-based Costs

Length Nodes Time Memory
17 IDA∗ 4-4-4-5 15.77 14,610,039 4.302 913,920
17 IDA∗ 5-6-6 15.77 1,064,108 0.342 18,564,000
17 IDA∗ 3-7-7 15.77 1,061,383 0.383 196,039,920
17 DIDA∗ 4-4-4-5 15.77 368,925 0.195 913,920
17 DIDA∗ 5-6-6 15.77 44,618 0.028 18,564,000
17 DIDA∗ 3-7-7 15.77 37,155 0.026 196,039,920

Table 4.3: 17-Pancake puzzle results using hadd based on location-based costs.

Clearly, the use of hadd based on location-based costs results in a very significant reduction in

nodes generated compared to using a single large PDB, even when the latter has the advantage of

1Recently Helmert and Röger [46] improved the best results in [27].
2In particular, DIDA∗ with the “jump if larger” (JIL) policy and the bidirectional pathmax method (BPMX) to propagate

the inconsistent heuristic values that arise during dual search. See [27] for details. BPMX was first introduced in [28].
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being used by a more sophisticated search algorithm. Note that the total memory needed for the 4-

4-4-5 PDBs is only one percent of the memory needed for the rightmost-7 PDB, and yet IDA∗ with

4-4-4-5 generates 8.5 times fewer nodes than DIDA∗with the rightmost-7 PDB. Getting excellent

search performance from a very small PDB is especially important in situations where the cost of

computing the PDBs must be taken into account in addition to the cost of problem-solving [51].

The memory requirements increase significantly when abstractions contain more distinguished

tiles, but in this experiment the improvement of the running time does not increase accordingly. For

example, the 3-7-7 PDBs use ten times more memory than the 5-6-6 PDBs, but the running time

is almost the same. This is because the 5-6-6 PDBs are so accurate there is little room to improve

them. The average heuristic value on the start states using the 5-6-6 PDBs is 13.594, only 2.2 less

than the actual average solution length. The average heuristic value using the 3-7-7 PDBs is only

slightly higher (13.628).

The last three rows in Table 4.3 show the results when hadd with location-based costs is used in

conjunction with DIDA∗. These results show that combining our additive abstractions with state-of-

the-art search techniques results in further significant reductions in nodes generated and CPU time.

For example, the 5-6-6 PDBs use only 1/5 of the memory of the rightmost-7 PDB but reduce the

number of nodes generated by DIDA∗ by a factor of 2783 and the CPU time by a factor of 1347.

To compare hadd to hmax we ran plain IDA∗ with hmax on the same 1000 start states, with a

time limit for each start state ten times greater than the time needed to solve the start state using

hadd. With this time limit only 63 of the 1000 start states could be solved with hmax using the

3-7-7 abstraction, only 5 could be solved with hmax using the 5-6-6 abstraction, and only 3 could

be solved with hmax using the 4-4-4-5 abstraction. To determine if hadd’s superiority over hmax for

location-based costs on this puzzle could have been predicted using Lemma 3.2.6, we generated 100

million random 17-Pancake puzzle states and tested how many satisfied the requirements of Lemma

3.2.6. Over 98% of the states satisfied those requirements for the 3-7-7 abstraction, and over 99.8%

of the states satisfied its requirements for the 5-6-6 and 4-4-4-5 abstractions.

4.2.2 Negative Results

Not all of our experiments yielded positive results. Here we explore some trials where our additive

approaches did not perform as well. By examining some of these cases closely, we shed light on the

conditions which might indicate when these approaches will be useful.

TopSpin with Location-Based Costs

In this experiment, we used the 6-6-6 abstraction of (18, 4)-TopSpin as in Section 4.2.1 but with

location-based costs instead of cost-splitting. The primary cost of operator a, the operator that

reverses the segment consisting of locations a to a + 3 (modulo 18), is 1 in abstract space i if the

tile in location a before the operator is applied is distinguished according to abstraction ψi and 0
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otherwise.

This definition of costs was disastrous, resulting in C∗i (ti, gi) = 0 for all abstract states in all

abstractions. In other words, in finding a least-cost path it was never necessary to use operator a

when there was a distinguished tile in location a. It was always possible to move towards the goal

by applying another operator, a′, with a primary cost of 0. To illustrate how this is possible, consider

state 0 4 5 6 3 2 1 of (7, 4)-TopSpin. This state can be transformed into the goal

in a single move: the operator that reverses the four tiles starting with tile 3 produces the state

3 4 5 6 0 1 2 which is equal to the goal state when it is cyclically shifted to put 0

into the leftmost position. With the 4-3 abstraction this move has a primary cost of 0 in the abstract

space based on tiles 4...6, but it would have a primary cost of 1 in the abstract space based on tiles

0...3 (because tile 3 is in the leftmost location changed by the operator). However the following

sequence maps tiles 0...3 to their goal locations and has a primary cost of 0 in this abstract space

(because a “don’t care” tile is always moved from the reference location):

0 * * * 3 2 1

0 * * 1 2 3 *

0 * 3 2 1 * *

0 1 2 3 * * *

The Pancake Puzzle with Cost-Splitting

Table 4.4 compares hadd and hmax on the 13-Pancake puzzle when costs are defined using cost-

splitting. The memory is greater for hadd than hmax because the fractional entries that cost-splitting

produces require more bits per entry than the small integer values stored in the hmax PDB. In

terms of both run-time and number of nodes generated, hadd is inferior to hmax for these costs, the

opposite of what was seen in Section 4.2.1 using location-based costs.

Average hadd based on
N Abs Solution

hmax costing-splitting
Length Nodes Time Nodes Time

13 6-7 11.791 166,479 0.0466 1,218,903 0.3622

Table 4.4: hadd vs. hmax on the 13-Pancake puzzle.

Cost-splitting, as we have defined it for the Pancake puzzle, adversely affects hadd because it

enables each individual abstraction to get artificially low estimates of the cost of solving its dis-

tinguished tiles by increasing the number of “don’t care” tiles that are moved. For example, with

cost-splitting the least-cost sequence of operators to get tile “0” into its goal position from abstract

state * 0 * * * is not the obvious single move of reversing the first two positions. That

move costs 1
2 , whereas the 2-move sequence that reverses the entire state and then reverses the first

four positions costs only 1
5 + 1

4 .
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As a specific example, consider state 7 4 5 6 3 8 0 10 9 2 1 11 of

the 12-Pancake puzzle. Using the 6-6 abstractions, the minimum number of moves to get tiles 0–5

into their goal positions is 8, and for 6–11 it is 7, where in each case we ignore the final locations of

the other tiles. Thus, hmax is 8. By contrast, hadd is 6.918, which is less than even the smaller of

the two numbers used to define hmax. The two move sequences whose costs are added to compute

hadd for this state each have slightly more moves than the corresponding sequences on which hmax

is based (10 and 9 compared to 8 and 7), but involve more than twice as many “don’t care” tiles (45

and 44 compared to 11 and 17) and so are less costly.

There is hope that this pathological situation can be detected, at least sometimes, by inspecting

the residual costs. If the residual costs are defined to be complementary to the primary costs (i.e.

Ri(πi) = C(π)−Ci(πi)), as we have done, then decreasing the primary cost increases the residual

cost. If the residual cost is sufficiently large in one of the abstract spaces the conditions of Lemma

5.2.2 will be satisfied, signalling that the value returned by hadd is provably too low. This is the

subject of Chapter 5, on “infeasibility”.

4.3 Chapter Summary

In this chapter, we have presented two specific, practical methods for defining abstract costs, cost-

splitting and location-based costs.

These methods were applied to standard state spaces that did not have additive abstractions

according to previous definitions: TopSpin, and the Pancake puzzle. Additive abstractions using

cost-splitting reduce search time substantially for (18,4)-TopSpin and additive abstractions using

location-based costs vastly reduce the node generations for the 17-Pancake puzzle over the state of

the art.3

We also report negative results, demonstrating that additive abstractions are not always superior

to the standard, maximum-based method for combining multiple abstractions. By exploring some

trials and investigating the results, we shed light on the contributions which might indicate when

these methods will be useful.

3Note that our best results are still superior to the best results known for the 17-Pancake puzzle in the recent publication
[46].

37



Chapter 5

Infeasibility

This chapter explores a new way to improve the quality of heuristic values defined by additive ab-

stractions in some circumstances. More memory is needed to store extra information when applying

this technique. Given additional memory, is it a good choice to check for infeasibility? What is

infeasibility? How can we identify infeasibility? Is this technique effective for different problem

domains? These questions guide us to explore infeasibility further. Comparative experimental re-

sults show the potential benefits of this technique. The work has been published in [93, 95, 96]

5.1 What is Infeasibility?

Given a state t and a goal g, the heuristic value h(t, g) is infeasible if it is proved that the cost of

a solution for t cannot be h(t, g). An example of infeasibility occurs with the Manhattan Distance

(MD) heuristic for the sliding tile puzzle. It is well-known that the parity of MD(t) is the same as

the parity of the optimal solution cost for state t. If some other heuristic for the sliding tile puzzle

returns a value of the opposite parity, it can safely be increased until it has the correct parity.

5.2 The Approach to Identify Infeasibility

The key to the approach is to identify “infeasible” values—ones that cannot possibly be the optimal

solution cost. The example in Section 5.1 relies on specific properties of the MD heuristic and the

puzzle. Following the notations in Section 3.2, C∗i (ti, gi) represents the minimum primary cost of

a path in the abstract space from ti to gi, ~Pi(ti, gi) is the set of abstract paths from ti to gi whose

primary cost is minimum, andR∗j (tj , gj) is the minimum residual cost among the paths in ~Pi(ti, gi).

The following lemmas give a problem-independent method for testing infeasibility.

Lemma 5.2.1. Given an additive 〈S,ℵ〉 and a path ~p ∈ Paths(S, t, g) withC(~p) =
∑k
i=1 C

∗
i (ti, gi),

then
∑k
i=1 C

∗
i (ti, gi) ≥ C∗j (tj , gj) +R∗j (tj , gj) for all j ∈ {1, . . . , k}.

Proof. By Lemma 3.2.1, C(~p) ≥ Cj(ψj(~p)) + Rj(ψj(~p)) for all j ∈ {1, . . . , k}. By Lemma 3.2.7

Cj(ψj(~p)) = C∗j (tj , gj), and by Lemma 3.2.8 Rj(ψj(~p)) ≥ R∗j (tj , gj). Therefore C(~p) ≥
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C∗j (tj , gj) + R∗j (tj , gj), and the lemma follows from the premise that C(~p) =
∑k
i=1 C

∗
i (ti, gi).

Lemma 5.2.2. Let 〈S,ℵ〉 be any additive abstraction system and let t, g ∈ T be any states. If

hadd(t, g) < C∗j (tj , gj) +R∗j (tj , gj) for some j ∈ {1, . . . , k}, then hadd(t, g) 6= OPT (t, g).

Proof. This lemma follows directly as the contrapositive of Lemma 5.2.1.

As Lemma 5.2.2 shows, there is an interesting consequence when this condition fails for state t:

we know that the value returned by hadd for t is not the true cost to reach the goal from t. Detect-

ing this is useful because it allows the heuristic value to be increased without risking it becoming

inadmissible.
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Figure 5.1: Computation of the additive heuristic value for state A. Solid arrows denote distin-
guished moves, and dashed arrows denote “don’t care” moves.

To illustrate how infeasibility can be detected using Lemma 5.2.2 consider state A of the 3 × 3

sliding tile puzzle shown in the top left of Figure 5.1 and the goal state g shown below it. The

middle column shows an abstraction of these two states (A1 and g1) in which tiles 1, 3, 5, and

7 are distinguished tiles while the other tiles are “don’t care” tiles. The right column shows the

complementary abstraction, in which tiles 1, 3, 5, and 7 are the “don’t care” tiles and tiles 2, 4, 6,

and 8 are distinguished.

The arrows in the figure trace out a least-cost path with the conditional optimal residual cost to

reach the abstract goal gi from state Ai in each abstraction.

As shown in the middle column of the figure it takes at least 9 distinguished moves from the

abstract state A1 to the goal state g, so C∗1 (A1, g) = 9. The abstract paths that solve the problem

with 9 distinguished moves require, at a minimum, 9 “don’t care” moves, so R∗1(A1, g) = 9. A
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similar calculation for the abstract state A2 on the right of the figure yields C∗2 (A2, g) = 5 and

R∗2(A2, g) = 7. The value of hadd(A, g) is therefore C∗1 (A1, g) + C∗2 (A2, g) = 9 + 5 = 14. This

value is based on the assumption that there is a path in the original space that makes 9 moves of tiles

1, 3, 5, and 7, and 5 moves of the other tiles. However, the value of R∗1(A1, g) tells us that any path

that uses only 9 moves of tiles 1, 3, 5, and 7 to put them into their goal locations must make at least

9 moves of the other tiles, it cannot possibly make just 5 moves. Therefore there does not exist a

solution costing as little as C∗1 (A1)+C∗2 (A2) = 14. In short, (C∗1 , R
∗
1) = (9, 9), (C∗2 , R

∗
2) = (5, 7).

hadd =
∑2
i=1 C

∗
i < (C∗1 +R∗1). So hadd=14 is an infeasible heuristic value and the heuristic value

can be increased by one without risking it becoming inadmissible.

5.3 Improving Infeasible Heuristic Values

Given an additive abstraction system, the key to identifying infeasibility is to check whether there

exists some j (1 ≤ j ≤ k) such that hadd(t, g) < C∗j (tj , gj) + R∗j (tj , gj). If there exists such

a j, then hadd(t, g) is an infeasible heuristic value. Once identified the infeasible values can be

increased to give a better estimate of the solution cost. Formally, the heuristic hadd−check is defined

by hadd−check(t, g) = hadd(t, g) + ε, If hadd(t, g) is identified to be infeasible.

hadd(t, g), Otherwise.

Generally, ε is assigned to be one for a state space with unit edge costs, or more according to

some special structural property.

5.4 Experimental Results

To illustrate the potential of this method for improving additive heuristics, this section reports the

results with infeasibility checking for the sliding tile puzzle, TopSpin and the pancake puzzle.

All experiments in this chapter store the values of C∗ and R∗ defined by each abstraction in a

lookup table in the form of a pattern database, and we perform IDA∗ as the heuristic search algo-

rithm. Algorithms are coded in C on a machine with an AMD Athlon(tm) 64 Processor 3700+ with

2.4 GHz clock rate and 1GB memory.

In Tables 5.1-5.3, the N column shows the size of the problem. The Abs column shows the set

of abstractions used to generate heuristics. The “No Infeasibility Check” columns show the results

of hadd and the “Infeasibility Check” columns present the results of hadd−check. The Nodes column

shows the average number of nodes generated in solving 1000 randomly generated start states. The

Time column gives the average number of CPU seconds needed to solve these start states.

40



5.4.1 The Sliding Tile Puzzle

We experimented with the standard 15-puzzle and the glued 15-puzzle [73] which is a variation of

the traditional 15-Puzzle. In the glued 15-Puzzle, a particular tile is glued to the board in its goal

position. During the search the glued tile is fixed and only 14 tiles can be moved. Therefore the

solution path must work its way around an extra constraint.

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Figure 5.2: Different tile partitionings for the 15-puzzle. Left: 5-5-5 partitioning. Right: 6-6-3
partitioning.

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

Figure 5.3: Different tile partitionings for a glued 15-puzzle. Left: 4-5-5 partitioning. Right: 5-6-3
partitioning. The shaded square indicates that Tile 5 is glued to the board in its goal position.

Average hadd based on zero-one cost-splitting
N Abs Solution No Infeasibility Check Infeasibility Check

Length Nodes Time Nodes Time
15 5-5-5 52.522 2,237,899 0.552 912,661 0.340
15 6-6-3 52.522 1,261,566 0.336 479,781 0.173
14 4-5-5 53.280 2,945,864 0.594 996,210 0.230
14 5-6-3 53.280 2,185,207 0.457 739,990 0.183

Table 5.1: The effect of infeasibility checking on the 15-puzzle (N=15) and the glued 15-puzzle
(N=14).

Table 5.1 presents average results of IDA∗ solving 1000 test instances of the 15-puzzle and a

glued 15-puzzle using different tile partitionings (shown in Figures 5.2-5.3) and costs defined by the

method described in Section 4.1.

In Table 5.1 the first two rows are results on the 15-puzzle and the last two rows are results on

the glued 15-puzzle. As can be seen infeasibility checking reduces the number of nodes generated

and the CPU time by over a factor of 2. However, there is a space penalty for this improvement,
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because the R∗ values must be stored in the pattern database in addition to the normal C∗ values.

This increases the amount of memory required, and it is not clear if storing R∗ is the best way to

use this extra memory. This experiment merely shows that infeasibility checking is one way to use

extra memory to speed up search for some problems.

The blank is always regarded as a distinguished tile for each abstraction since there is sufficient

memory to store these pattern databases. It leads to the results that the performance of original hadd

reported in Table 5.1 is better than that reported in the previous work which compressed at the blank

[26, 96].

5.4.2 The TopSpin Puzzle

Average hadd based on costing-splitting
N Abs Solution No Infeasibility Check Infeasibility Check

Length Nodes Time Nodes Time
12 6-6 9.138 53,460 0.16 20,229 0.07
12 4-4-4 9.138 346,446 1.33 174,293 0.62
12 3-3-3-3 9.138 1,388,183 6.44 1,078,853 4.90
16 8-8 14.040 2,137,740 4.74 705,790 1.80
16 4-4-4-4 14.040 251,946,069 851.00 203,213,736 772.04
18 6-6-6 17.000 879,249,695 4,713.00 508,851,444 2,846.52

Table 5.2: The effect of infeasibility checking on (N, 4)-TopSpin using cost-splitting.

Table 5.2 presents the results obtained for the (N, 4)-TopSpin puzzle with costs defined by cost-

splitting that is described in Section 4.2.1. The “No Infeasibility Check” columns in Table 5.2

are the same as the “hadd based on cost-splitting” columns of the corresponding rows in Table

4.1. Comparing these to the “Infeasibility Check” columns shows that in most cases infeasibility

checking reduces the number of nodes generated and the CPU time by roughly a factor of 2.

When location-based costs are used with TopSpin infeasibility checking adds one to the heuristic

value of almost every state. However, this simply means that most states have a heuristic value of 1

instead of 0 (recall the discussion in Section 4.2.2), which is still a very poor heuristic.

5.4.3 The Pancake Puzzle

Infeasibility checking produces almost no benefit for the 17-Pancake puzzle with location-based

costs because the conditions of Lemma 5.2.2 are almost never satisfied. The experiment discussed

at the end of Section 4.2.1 showed that fewer than 2% of the states satisfy the conditions of Lemma

5.2.2 for the 3-7-7 abstraction, and fewer than 0.2% of the states satisfy the conditions of Lemma

5.2.2 for the 5-6-6 and 4-4-4-5 abstractions.

Infeasibility checking for the 13-Pancake puzzle with cost-splitting also produces very little

benefit, but for a different reason. For example, Table 5.3 shows the effect of infeasibility checking
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on the 13-Pancake puzzle; the results shown are averages over 1000 start states. Cost-splitting in this

state space produces fractional edge costs that are multiples of 1
360360 (360360 is the Least Common

Multiple of the integers from 1 to 13 and as mentioned in Section 4.1.1 we simulate the rational

numbers using integers obtained by scaling by the Least Common Multiple of the denominators to

avoid round off errors in our implementation), and therefore if infeasibility is detected the amount

added is 1
360360 . But recall that hadd, with cost-splitting, is defined as the ceiling of

∑k
i=1 Ci(πi).

The value of hadd will therefore be the same, whether 1
360360 is added or not, unless the sum of the

Ci(πi) is exactly an integer. As Table 5.3 shows, this does happen but only rarely.

Average hadd based on costing-splitting
N Abs Solution No Infeasibility Check Infeasibility Check

Length Nodes Time Nodes Time
13 6-7 11.791 1,218,903 0.3622 1,218,789 0.4453

Table 5.3: The effect of infeasibility checking on the 13-Pancake puzzle using cost-splitting.

5.5 Chapter Summary

The main contribution of this chapter is to show that the accuracy of the heuristics generated by

abstraction can be improved by checking for infeasibility. The theory and experiments shed some

light on the question of how to detect infeasibility of hadd and how to apply this technique to different

domains. Given additional memory, the new technique to identify infeasibility can enhance the

search performance of heuristic search.

Generally, we can safely add one to an infeasible heuristic value for problems with unit edge

cost. But this improvement seems weak when most of the edges cost more than one, and it is also

weak with hadd based on cost-splitting for the Pancake puzzle.
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Chapter 6

Additive Abstractions for Problems
with Non-uniform Edge Costs

Our previous results have shown that additive abstraction-based heuristics can reduce search time

substantially for some standard state spaces of combinatorial problems (e.g. (18,4)-TopSpin and the

17-Pancake puzzle). In these spaces edge costs were all one. A great number of industry applications

can be modelled as problems of searching with non-uniform edge costs. In this chapter we will

explore good additive abstractions in the state spaces where the edge cost is non-uniform. The

Sequential Ordering Problem (SOP) and the weighted Pancake puzzle are chosen as two testbeds

in this chapter. Although these two problems are on integer domains, real-valued edge costs are

permissible provided conditions are imposed to ensure that the set of paths connecting any given

pair of states has a well-defined minimum cost.

In the remainder of this chapter, we first present the definitions and background of the SOP (see

Section 6.1); then we investigate the structure of the SOP instances in Section 6.2 and design greedy

methods of choosing good abstractions in Sections 6.3 and 6.4; the experimental results (see Section

6.6) show that well chosen abstractions can enhance the quality of suboptimal solutions for large

SOP instances. In Section 6.6 we then design a new weighted problem based on the Pancake puzzle.

Recall our additive approaches performed very strongly on the unweighted version. Although this

problem has a very different structure than the SOP, we transfer the techniques for the SOP and show

that there is some generality to our ideas.

6.1 Definition and Background of the SOP

The Sequential Ordering Problem (SOP) is a problem of searching with non-uniform edge costs,

and it is a model for several industrial applications, such as the stacker crane application [1] and

helicopter routing between oil rigs [85].

An instance of the SOP is defined by a weighted directed graph G = 〈V,E,C, P 〉 where

• V is a finite set of vertices with the start s and goal g vertices designated. We define the
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intermediate vertices I = V \ {s, g}. We define n = |V |.

• E = (I×I)∪({s}×I)∪(I×{g}) is a set of directed edges (ordered pairs of vertices) repre-

senting vertex transitions. The graph is complete, except that in-degree(s)=out-degree(g)=0.

• C : E −→ N = {0, 1, 2, 3, ...} is the edge cost function.

• P is the set of precedence constraints. A constraint (u <p v) means that vertex umust precede

vertex v in any solution path. We define Psg =
⋃
v∈I{(s <p v), (v <p g)} and note that Psg

must always be a subset of P . We call P ′ = P \ Psg the prime constraints.

The objective is to find a minimum cost Hamiltonian path from s to g which does not violate P .

An SOP instance is typically represented [89] by an n× n cost matrix M , where the entry Mi,j

is the cost of the edge i −→ j in G, or it is a symbol to represent the constraint. In this chapter,∞

is used to represent the constraint, although in some papers, -1 is used.

The SOP is a variant of the Asymmetric Traveling Salesman Problem (ATSP) in which prece-

dence constraints can be specified. However, a number of ATSP instances with hundreds of vertices

can be solved easily, while there are several SOP instances with less than 55 vertices which have not

been solved optimally in the Traveling Salesman Problem Library (TSPLIB) [87, 89].

In the following sections, first we present the formal definitions for the SOP state space and ab-

straction, then we discuss both standard heuristics and abstraction-based heuristics. Representative

examples are studied to explore the situations when the abstraction-based heuristics are superior (or

inferior) to the standard heuristics.

6.1.1 State Space for Standard Search Algorithms

Standard search algorithms (e.g. DFBB, A*, and IDA*) for the SOP problem attempt to construct

a path from s to g by adding one vertex at a time. In the underlying state space of such searches, a

state on the kth level is a pair (−→p ,U) where−→p = 〈v1, v2, ..., vk〉 (v1 = s and vi ∈ I, i ∈ {2, ..., k})

is a sequence of vertices that have been visited, and U = I \ {v2, ..., vk} is the set of unvisited

intermediate vertices. If and only if U = ∅ may we add the goal vertex to the path. The initial

and goal states of the space are (〈s〉, I) and (〈v1 = s, v2, ...vn−1, vn = g〉, ∅). There are n levels

and (k − 1)!(n−2
k−1) intermediate states are on the kth level (k ∈ [2, n − 1]) since −→p may be any

permutation of the (k − 1) intermediate vertices. However some of the intermediate states and goal

states may not be reachable without violating the constraints.

Consider a state (〈v1, v2, ..., vk〉,U). If there exists i < j such that (vj <p vi) ∈ P then the path

represents a current violation of the constraints no matter how the continuation is made. The cost of

reaching a state (−→p ,U) from s is infinity if the path is in current violation, otherwise the cost is the

sum of the edge weights along the path −→p .

During search, we are interested in the “cost to go” of a state, that is we want to know how

much it costs to reach a goal state from the current state, in order to choose our next move wisely, or
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backtrack and try a different path. A state (−→p ,U) represents a forward violation if ∃v ∈ −→p , ∃u ∈ U

with (u <p v) ∈ P . If a state is in forward violation then the cost of reaching g is infinite. Note that

this condition can be determined independently of the order of the vertices in −→p . This motivates in

part the abstraction we develop in the next section.

6.1.2 The Dynamic Programming State Space

The state space described in this section abstracts the original search space in that various paths

may map to the same state in the dynamic programming state space. It is nearly identical to that

introduced by [5, 6, 40], and is an intermediate step towards our goal.

In this abstraction, a state is a pair (`,U) where ` ∈ I is the last vertex visited , and U ⊆ I \ {`}

is the set of unvisited intermediate vertices; thus the members of U are candidates for the next vertex

to be visited. If and only if U = ∅ may we add the goal vertex to the path. The initial and goal states

of the space are (s, I) and(g, ∅).

Note that this abstraction merges states of the original search space depending only on the last

vertex visited and the remaining unvisited vertices, and so in effect merges all original states in

which the path ending in ` is a permutation of the set p = I \ (U ∪ {`}). We define that a state

(`,U) represents a detectable violation of P if ∃y ∈ {`} ∪ U , ∃x ∈ I \ U , (y <p x) ∈ P . Note that

a detectable violation may represent a current violation or a forward violation of the original state

space.

The forward cost of a state to reach the goal can be defined as

cost(`,U) =

 ∞, (`,U) represents a detectable violation
M`,g, U = ∅
minr∈U{M`,r + cost(r,U \ {r})}, otherwise

An intermediate state in the dynamic programming state space is a state (`,U) when ` ∈ I.

For intermediate states, since ` ∈ I, U may be any subset of the remaining n − 3 intermediate

states. Thus, there are (n− 2)2n−3 intermediate states some of which may not be reachable without

violating the constraints. Although this represents a significant reduction over the size of the original

search space, it nevertheless grows quickly on instances with more than 20 vertices and it is not

practical to search this state space exhaustively.

6.1.3 State Space Abstraction

Next we introduce a cost preserving homomorphism to take the abstraction a step further. The

method we use for the non-additive abstractions is similar to those used by [48, 49].

In this abstraction, we partition I into equivalence classes. Vertices in classes with one element

are distinguished vertices, while vertices in larger classes are don’t-care vertices. For each abstrac-

tion, the distinguished set is the set of all distinguished vertices in I, and the don’t-care set is the set

of all vertices in I that belong to don’t-care vertices.
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We choose a set CR of canonical representatives, with one element from each equivalence class

of the partition. For example, suppose V has 6 elements with s = 1, g = 6 and I = {2, 3, 4, 5}.

If we partition I as {{2}, {3}, {4, 5}}, then we “ don’t care” which of the vertices 4, 5 are visited,

only how many of this subset. If vertex 4 is chosen to be the representative of the class {4, 5},

CR = {2, 3, 4}, the distinguished set is {2, 3} and the don’t-care set is {4, 5}. For each vertex u, we

let Ωu be the equivalence class containing u. In the above example Ω4 = {4, 5}.

Later we may have multiple abstractions, and so have several such partitions. Supposing this is

the ith, we define an abstract mapping ψi(u) = x ∈ (Ωu ∩ CRi) (i.e., the canonical representative

of u in the ith abstraction) with ψi(s) = s and ψi(g) = g.

This mapping induces a new instance with ψi(V ) = V i = CRi ∪ {s, g}. For x, y ∈ V i we

define the abstract edge cost by

M i
x,y = min

ψi(u)=x,ψi(v)=y
{Mu,v}

ThereforeM i
x,y =∞ only ifMu,v =∞, ∀u, v whereψi(u) = x, ψi(v) = y. Recall thatM i

x,y =∞

represents the constraint (y <p x).

We now apply this abstraction to the dynamic programming state space, that is ψi(`,U) =

(ψi(`), ψi(U)). Note that ψi(U) may contain multiple copies of the same element. For example,

a state (2, {3, 4, 5}) may map to an abstract state ψi(2, {3, 4, 5}) = (2, {3, 4, 4}) if we define that

the distinguished set is {2, 3}, the don’t-care set is {4, 5} and the canonical representative of {4, 5}

is vertex 4. We define a distinguished state as an abstract state (ψi(`), ψi(U)) when the intermedi-

ate vertex ` is a distinguished vertex in the ith abstraction. A don’t-care state is an abstract state

(ψi(`), ψi(U)) when the intermediate vertex ` is a don’t-care vertex in the ith abstraction.

We define that an abstract state ψi(`,U) represents a detectable violation if ∃y ∈ ψi({`} ∪ U),

∃x ∈ ψi(I \ U), M i
x,y =∞ (i.e., y <p x).

This abstraction may hide some precedence constraints, but the heuristic will remain admissible.

The vertex cost of the generic abstraction heuristic is then defined as

cost(ψi(`,U)) =


∞, ψi(`,U) is in detectable violation
M i
ψi(`),g

, ψi(U) = ∅
minu∈U{M i

ψi(`),ψi(u) + cost(ψi(u,U \ {u})}, otherwise

Clearly, the heuristic hmax(`,U) = maxi cost(ψi(`,U)) is an admissible heuristic.

Indexing schemes for rank and unrank

In order to store and get heuristic values more efficiently, it is necessary to define an indexing

scheme for abstract states. For indexing purposes, we consider the states of the abstract space in

blocks defined by the value of ` in the state (`,U). Let bi equal 1 plus the size of the ith equivalence

class. Then the number of states in the block defined by ` is B` = (b` − 1)
∏
i∈CR,i6=` bi and the

total number of intermediate abstract states is
∑
`∈CR B`. We lexigraphically sort states in the same
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` U rank(`, U)
2 {} 0
2 {3} 1
2 {4} 2
2 {3, 4} 3
2 {4, 4} 4
2 {3, 4, 4} 5
3 {} 6
3 {2} 7
3 {4} 8
3 {2, 4} 9
3 {4, 4} 10
3 {2, 4, 4} 11
4 {} 12
4 {2} 13
4 {3} 14
4 {2, 3} 15
4 {4} 16
4 {2, 4} 17
4 {3, 4} 18
4 {2, 3, 4} 19

Table 6.1: An example to rank the intermediate states in the abstract state space.

block B` and sort blocks in order of the increasing value of `. These lead to our indexing schemes

for rank and unrank.

We refer to the example at the beginning of Section 6.1.3, n = 6, I = {{2}, {3}, {4, 5}},

and CR = {2, 3, 4}. Table 6.1 shows the method used to order all the intermediate states. In this

example, the total number of states
∑
`∈CR B` = B2+B3+B4 = (b2−1)×b3×b4+(b3−1)×b2×b4

+ (b4 − 1)× b2 × b3. Since b2 = 2, b3 = 2 and b4 = 3,
∑
`∈CR B` = 20 and the rank ranges from

0 to 19.

As in the example, in this chapter we will have k distinguished vertices, and the remaining

n− 2− k vertices in I will be in a single don’t care class. The total number of distinguished states

is k(n− 2− k + 1)2k−1 and the total number of don’t-care states is (n− 3− k + 1)2k. Thus, the

total number of abstract states is k(n− 1− k)2k−1 + (n− 2− k)2k.

6.1.4 Additive Abstractions

In Chapter 4, one successful method of meeting the conditions of an additive abstraction system

was the location-based method. For a combinatorial problem, a special variable in the abstract

representation is chosen, and when that value is distinguished, the cost is assigned to the primary

cost of the abstract state space, otherwise the primary cost is zero. The obvious choice for the

distinguished variable here is ` in the state (`,U).

We have two obvious choices: either we charge the cost of a move when we step from a dis-

tinguished state; or when a distinguished state is reached. Using the first, given x, y ∈ V i and the
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distinguished set Di (Di ⊆ I) in abstraction ψi, the primary cost of an edge x → y in additive

abstraction can be defined as

Ci(x, y) =


M i
s,y, x = s, y ∈ Di

M i
x,y, x ∈ Di

0 otherwise

Thus the full cost of an original state transition is assigned to a state transition in the additive ab-

straction as a primary cost only if we step from a distinguished state, or we start from the start and

step to a distinguished state. Although s and g are distinguished in each abstraction, the definition

still guarantees a partition of the edges and each edge will be charged at most once over the set of

abstractions.

We define the residual cost Ri(x, y) = M i
x,y − Ci(x, y).

As described in Section 6.1.3, we say that an abstract state ψi(`,U) represents a detectable

violation if ∃y ∈ ψi({`} ∪ U), ∃x ∈ ψi(I \ U), M i
x,y =∞ (i.e., y <p x).

Therefore the primary forward cost of an abstract state is then defined as

Ci(ψi(`,U)) =

 ∞, ψi(`,U) is in detectable violation
Ci(ψi(`), g), ψi(U) = ∅
minu∈U{Ci(ψi(`), ψi(u)) + Ci(ψi(u,U \ {u})}, otherwise

The abstractions are chosen so that the sets of distinguished vertices in the different abstractions

partition I (e.g. Di ∩ Dj = ∅,∀i 6= j). Therefore each intermediate vertex is distinguished in at

most one abstraction and each edge can be charged at most once over the set of abstractions. It is

clear that our definitions of costs satisfy properties (P1), (P2) and (P3) of the theory summarized

in Section 3.3 and therefore hadd(`,U) =
∑
i Ci(ψi(`,U)) is an admissible heuristic.

6.1.5 Depth-First Branch and Bound Algorithms

In the SOP state space, edges have arbitrary (non-negative) edge costs. IDA* might be inefficient

when searching this state space because there might be too many distinct f -values, and A* cannot

be used due to the limitation of memory. Hence we apply Depth-First Branch and Bound (DFBB)

to the SOP.

Depth-First Branch and Bound (DFBB) has an important feature that it has a solution ready

whenever it stops (with possible exception of an initial time period before the first solution is found)

and the quality of the solution improves with additional computation time. This feature is very useful

for problem-solving under varying or uncertain time constraints. For example, some SOP problems

cannot be solved exactly with limited computation time, and in some circumstances we do not need

optimal solutions but rather good ones that can be found quickly.

Figure 6.1 gives the pseudocode of DFBB. It starts at the root node with a global upper bound

u on the cost of an optimal solution. Whenever a leaf node is reached whose cost is less than

u, u is updated to the cost of this new leaf. Whenever a state t is selected for expansion a cost

f(t) = g(t) + h(t, goal) is computed, where g(t) is the cost to reach state t, and h(t, goal) is a
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Initialized u
DFBB (node t)

IF (t is a goal node)
IF ( g(t) < u)

u←− g(t)
END IF
RETURN

END IF
Generate all nt children of t
Evaluate and Sort t’s children into order t1, t2, ..., tnt

FOR (i from 1 to nt)
IF (f(ti) < u)

DFBB(ti)
END IF

END FOR
RETURN

Figure 6.1: Depth First Branch and Bound.

lower bound (heuristic) on the cost from state t to a goal state goal. When f(t) ≥ u, this branch is

pruned, and thus the search will typically only visit some subset of the underlying space, depending

on the accuracy of the heuristic.

Figure 6.2 illustrates DFBB used to solve the SOP. A branch is also pruned when a state rep-

resents a violation. Given a state (`,U) in the dynamic programming state space, the violation is

detected by the following conditions.

• If ∃x ∈ I \ (U ∪ {`}) with (` <p x) ∈ P , then the state represents a violation. (Note that we

only detect a part of current violations defined in Section 6.1.1.)

• If ∃x ∈ I \ U and y ∈ U , such that (y <p x) ∈ P then the state represents a violation.

The early survey by Lawler and Wood [74] described the essential features of the branch-and-

bound (B&B) technique and discussed its applications to many problems in AI. Noticing that various

heuristic search procedures applied in AI are considered to be related to branch-and-bound approach,

Nau et al. [80] unified the varying conceptions and provided a general formulation for the B&B

approach. Therefore a number of heuristic search algorithms can also be considered special cases

of the B&B procedure. Labat and Pomerol [72] investigated this topic further and concluded that

B&B algorithms also rely on classical ideas of heuristic search. The effectiveness of B&B relies on

the quality of heuristics.

DFBB applies heuristics for two main purposes: node pruning and children ordering (i.e. the

branch selection). First, the heuristics are used as the lower bound to prune some nodes. Second, the

children are usually sorted by their costs in increasing order (f(t) = g(t)+h(t, goal)), as mentioned

in [97]. Thus the accuracy and the relative order are two critical issues when we consider the quality

of heuristics.
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Initialized u
SOP-DFBB (node t)

IF (t is a goal node)
IF ( g(t) < u)

u←− g(t)
END IF
RETURN

END IF
Generate all nt children of t
Evaluate and Sort t’s children into order t1, t2, ..., tnt

FOR (i from 1 to nt)
IF (f(ti) < u AND ti does not represent a violation)

SOP-DFBB(ti)
END IF

END FOR
RETURN

Figure 6.2: Depth First Branch and Bound for the SOP.

A number of heuristics [3, 21, 33, 49, 56, 88] used by DFBB have been proposed, compared

and discussed during the past thirty years for the Traveling Salesman Problem. In addition to the

focus on how to improve the accuracy, researchers [7, 32, 74, 75, 77] also recognized the importance

of child ordering and concluded in various combinatorial problem domains that different ordering

strategies can change the search performance of DFBB dramatically.

6.1.6 Overview of Previous Heuristics

The SOP is a variant of the Traveling Salesman Problem (TSP) which is a classical problem in

combinatorial optimization studied in computer science. Given a list of cities and their pairwise

distances, a tour is a path that starts from a city, visits each city exactly once and returns to the start

city. The task of the TSP is to find a cheapest possible tour (i.e., an optimal tour). In this section we

overview some basic TSP heuristics and discuss how to adapt them to the SOP.

As described in Section 6.1.5, branch and bound algorithms solve a problem by breaking it up

into successively smaller subproblems, calculating bounds on the objective function value over each

subproblem, and using these bounds to discard certain subproblems from further consideration. In

other words, if the best solution found so far costs less than the lower bound for a subproblem, we

need not explore the subproblem at all.

During search the branch and bound algorithm includes and excludes sets of edges, therefore

the subproblems are also TSP problems, and the corresponding lower bounds (heuristics) can be

obtained by replacing the subproblem with an easier problem.

In the TSP literature, a great number of heuristics have been proposed, improved, classified and

discussed [3, 10, 21, 36, 33, 35, 41, 42, 56, 75, 79, 81, 88]. Suppose a TSP instance is associated

with a graph G = (V,E) in which each vertex represents a city and the weight of each edge i −→ j
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represents the cost from i to j. The goal is to find a Hamiltonian cycle with minimal cost (i.e., an

optimal tour).

In the following sections, we briefly describe some basic TSP heuristics that can be used as

heuristics for the branch and bound algorithm. Then we discuss how to create a version of additive

abstractions related to some previous heuristics, and last we illustrate examples to show how to adapt

some TSP heuristics to the SOP.

Neighbourhood Heuristics I

These are perhaps the simplest TSP heuristics. Define Out(v) to be the least edge cost among

vertex v’s outgoing edges, and In(v) to be the least edge cost among vertex v’s incoming edges.

Then both Σv∈VOut(v) and Σv∈V In(v) are lower bounds for the TSP. One application of this idea

is the Nearest Neighbour (NN) algorithm. The key to this algorithm is to let the salesman start from

a random city, and then successively go to the nearest unvisited city (not just the nearest city). This

algorithm is easy to implement and executes quickly.

It is likely that there are much better tours if the cost of last few stages of the tour are large. For

example in Figure 6.3 the cost of an optimal tour is 22, but if starting from x, NN gets a tour x-y-

z-u-x with cost=1+1+1+1000=1003. There exist many specially arranged city distributions which

make the NN algorithm give the worst route [36].

y u
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1
10
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1000

11

1000

1

1
10
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1

If the salesman starts from x, one best tour is x-y-z-u-x, and the 
minimum cost = 1+10+1+10=22. 

But NN will get a tour x-y-z-u-x with cost=1+1+1+1000=1003

Figure 6.3: A simple TSP instance.

Neighbourhood Heuristics II

In this heuristic, two edges connected to a vertex are considered. Let Sum(v) be the minimum sum

of two edges connected to the vertex v. Here we require that for a directed graph these two edges
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must have only one endpoint in common (i.e., one edge is v′s outgoing edge and the other is v′s

incoming edge). For example, two edges a −→ b and b −→ a cannot be chosen at the same time.

Tour(v) is defined to be the sum of the two optimal tour edges connected with the vertex v. Noting

that Sum(v) ≤ Tour(v), researchers [79] proposed a lower bound L for a TSP as follows.

• L = 1
2Σv∈V Sum(v) ≤ 1

2Σv∈V Tour(v) = optimal tour cost.

For example, in Figure 6.3 L = 1
2 (11 + 2 + 2 + 11) = 13. Although it is easy to compute L,

there exist several situations where the lower bound may be ineffective (too small). As a result it

may not work effectively as a lower bound for some circumstances.

The Assignment Problem (AP)

The assignment problem (AP) [3, 81] is to assign to each city i a city j, with the weight of the edge

i→ j as the cost of this assignment, and it is required that the same city must be assigned only once

in such a way that the total cost of all assignments is minimized. A solution to AP provides a lower

bound on the cost of the TSP because the assignments need not form a single tour, hence either a

single cycle or a collection of disjoint cycles is formed.

We define an AP-based heuristic value for a TSP instance to be the solution cost to the corre-

sponding assignment problem.

Researchers [29, 60] noticed that the AP can be stated in the following equivalent form:

• Find a cycle cover of minimum weight in G. Here a cycle cover1 is a subgraph of G in which

each of the n vertices has in-degree 1 and out-degree 1.

The AP-based heuristic value can be increased by the patching algorithm that was first described

and analysed in [60]. The patching procedure converts the optimal solution of the assignment prob-

lem to an overall cycle by a sequence of patching operations, each of which joins two disjoint cycles

together by deleting one edge in each cycle and inserting two new edges. Zhang et al. [11, 57, 97]

applied this idea to the branch and bound algorithm for the ATSP.

DFBB needs to solve an AP for every node explored to obtain the optimal AP solution serving

as a lower bound. The AP is solvable in O(n3) time [81], hence it is time-consuming to solve an

AP at every node when n is large. As a result, the lower bound for a node may reduce the search

tree, but if the reduction is too small the overall search time may increase due to the time invested in

computing lower bounds.

The Held-Karp Lower Bound (HK)

The Held-Karp (HK) lower bound was first successfully used for the symmetric TSP by Held &

Karp [41, 42] and Christofides [10]. This lower bound is evaluated as a 1-tree relaxation, where a

1-tree on an n-city symmetric TSP is defined as follows:
1A vertex cycle cover (commonly called simply a cycle cover) of a graph is a set of disjoint cycles which are subgraphs

of G and contain all vertices of G.
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• A 1-tree is a connected graph G = (V,E) with vertices 1,2,...,n consisting of a tree on the

vertices 2,3,...,n together with the additional vertex 1 connected to the tree by two edges.

To obtain a HK lower bound requires solving the minimum cost 1-tree problem which can be de-

composable into two independent problems

• To find a Minimum Spanning Tree (MST) on the vertices 2,3,...,n; and

• To find two smallest cost edges among those connected with vertex 1 in G.

Solving the second problem requires O(|V |) comparisons, whereas the first problem can be

solved by the algorithm of Prim [13] of complexity of O(|E| + |V | lg |V |), or the algorithm of

Kruskal[13] of complexity O(|E| lg |V |). Therefore, the lower bound for a node may reduce the

search tree, but if the reduction is too small the overall search time may increase due to the time

invested in computing lower bounds. Held and Karp [42] also proposed an iterative version of the

HK lower bound. It involves computing a large number of minimum spanning trees, which is still

time-consuming for practical use. A solution to a minimum cost 1-tree problem provides a lower

bound on the cost of the TSP because the 1-tree need not form a tour. A tour is simply a 1-tree in

which each vertex has degree 2. If a minimum 1-tree is a tour, then it is a tour of minimum cost.

Discussions

Taking the neighbourhood heuristics and the AP-based heuristics for example, first we discuss how

to create a version of additive abstractions related to some previous heuristics. Then we illustrate

examples to show how to adapt some TSP heuristics to the SOP heuristics.

The neighbourhood heuristics can be regarded as a special version of our abstraction-based

heuristics. Given an n-city TSP instance associated with a graph G = (V,E) in which each vertex

represents a city and the weight of each edge i −→ j represents the cost from i to j, vertices are

assigned to n abstractions with only one distinguished vertex in each. In each abstraction if we only

charge the cost of a move when the salesman steps from a distinguished vertex to other cities, the

resulting additive heuristic value will be Σv∈VOut(v). In the same fashion, if we only charge the

cost of a step when the salesman moves to a distinguished city, Σv∈V In(v) is our additive heuristic

value. Applying the same partitioning, if we only charge half the cost of each move when the sales-

man steps from or to a distinguished city, then the lower bound L mentioned in Section 6.1.6 is the

resulting additive heuristic value. This method for defining primary costs is a kind of cost-splitting.

Regarding the assignment problem, we can construct abstraction-based heuristics according to

the vertex cycle cover. We partition the vertices corresponding to the subcycles in the minimum cycle

cover for the graph G and assign each set of vertices to be the distinguished set in each abstraction.

The sum of the minimum tour value of each abstraction is the additive abstraction-based heuristic

value. For most cases this abstraction-based heuristic value is not exactly the same as the AP-based

heuristic value which is the solution cost to the corresponding assignment problem. It is because
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there are abstract paths between distinguished vertices and don’t-care vertices, and sometimes the

resulting abstraction-based heuristic value is less than the real AP-based heuristic value.

Some heuristics for the TSP can be adapted to be the heuristics for the SOP. Given an instance of

the SOP defined by a weighted directed graph G = 〈V,E,C, P 〉 with the start s and goal g vertices

designated, as described in Section 6.1 our goal is to find a minimum cost Hamiltonian path (instead

of a Hamiltonian cycle) from s to g which does not violate P . Given an intermediate state t = (`,U)

and a goal state goal = (g, ∅) the neighbourhood heuristics can be adapted to be SOP heuristics as

follows.

• hout(t, goal) =
∑
v∈U∪{`}Out(v) where Out(v) is the minimum edge cost of v’s outgoing

edges whose other endpoint is u, u ∈ U ∪ {g}.

• hin(t, goal) =
∑
v∈U∪{g} In(v) where In(v) is the minimum edge cost of v’s incoming

edges whose other endpoint is u, u ∈ U ∪ {`}.

As for AP-based heuristics for the SOP, we assign each vertex u (u ∈ U ∪ {`}) to a vertex

v (v ∈ U ∪ {g}). In addition we require that ` must not be assigned to g if U 6= ∅, and each

vertex must not be assigned to itself. For example, given an intermediate state t = (1, {2, 3})

and a goal state goal = (g, ∅), there are totally six possible assignments (1 2 3
2 3 g), (1 2 3

2 g 3), (1 2 3
3 2 g),

(1 2 3
3 g 2), (1 2 3

g 2 3), (1 2 3
g 3 2), But only two assignments, (1 2 3

2 3 g) and (1 2 3
3 g 2), are feasible assignments. The

AP-based heuristic value for the SOP is the minimum cost among those of all feasible assignments.

6.2 Designing Good Abstractions

As the effectiveness of admissible heuristics increases with the heuristic accuracy, in this section we

consider how to design good abstractions to improve the quality of the heuristics.

6.2.1 Key Concepts

After preliminary experiments, we explore underlying keys for good abstractions considering ex-

pensive edges, cheap edges and precedence constraints.

Expensive Edges

The first key is to maximize the use of expensive edges as much as possible in the abstract state

space. Take Figure 6.4 for example. Vertex x is connected to each of its neighbours by a very

expensive outgoing edge. All the other edges that are not shown in the figure are cheap edges. If x

is distinguished in the abstract state space, at least one outgoing expensive edge will be part of the

abstract solution path. However, as shown in the right part of Figure 6.4 if x is a don’t-care vertex,

none of the expensive edges can be used because expensive edges will be replaced by other cheap

ones. As a result, the heuristic value is too low to be a good one.

55



b
cheap

c d
cheap

x

expensive
…

…

…

cheap
cheap

cheap

cheap

a
c

d

ba
cheap

cheap

cheap

expensive
expensive

expensive

expensive x

Figure 6.4: Vertex x is connected to each neighbour vertex by expensive outgoing edges. Edges that
are not shown are cheap edges. Left: If x is distinguished, at least one expensive edge must be used
in the solution path. Right: If x is a don’t-care vertex, all expensive edges can be replaced by cheap
edges.
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Figure 6.5: Vertices x,y and z are consisting of an expensive-edge cluster.

In practice (e.g. ft53.1 in TSPLIB) there exists a cluster in which some vertices are neighbours

connected by cheap edges while they are connected to other vertices by very expensive edges. All

other edge costs are not expensive. We refer to this cluster of vertices as the expensive-edge cluster

since these vertices are connected to other vertices by expensive edges. Formally, given a set of
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vertices V , a cluster of vertices U (U ⊂ V ) is an expensive-edge cluster provided that ui → uj is

not an expensive edge and ui → v is an expensive edge, ∀i 6= j, ui, uj ∈ U , v ∈ V \ U . Note that

vertex x shown in Figure 6.4 is just a single-node expensive-edge cluster.

Figure 6.5 is an example of this type. The vertices x, y and z form an expensive-edge cluster

because ui → uj is not an expensive edge ∀i 6= j, ui, uj ∈ {x,y,z} and ui −→ v is an expensive

edge, ∀ui ∈ {x,y,z} and v ∈ V \ {x,y,z}.

In the examples shown in Figures 6.4 and 6.5, expensive edges are edges starting from vertices

of the expensive-edge cluster U . In general, an expensive-edge cluster can also refer to the set

of vertices whose incoming edges are expensive. When we design abstractions, vertices of the

expensive-edge cluster have the top priority to be included in the same set of distinguished vertices,

since at least one expensive edge must be used in the abstract solution path.

Given an SOP instance represented by a weighted graph G = (V,E,C, P ) and the expensive

edge set expE ⊂ E, we identify the expensive-edge cluster U if it satisfies one of the following

definitions.

• If ui → v ∈ expE and ui → uj /∈ expE, ∀i 6= j, ui, uj ∈ U , v ∈ V \ U and 1 ≤ |U | < |V |,

then U is an expensive-edge cluster.

• If v → ui ∈ expE and ui → uj /∈ expE, ∀i 6= j, ui, uj ∈ U , v ∈ V \ U and 1 ≤ |U | < |V |,

then U is an expensive-edge cluster.

Cheap Edges

The second key for good abstractions is to eliminate the use of cheap edges as much as possible

in the abstract state space. Take Figure 6.6 for example. Vertex x is connected with many of its

neighbours by cheap edges. Here we refer to x as a cheap-edge cluster as it is a vertex connected

with many cheap edges. Given the cheap edge set cheapE, we define that a cheap-edge cluster U ’s

nearest neighbours are vertices connected to U by cheap edges, i.e., NN(U) = {v : v /∈ U, u ∈

U and (u → v ∈ cheapE or v → u ∈ cheapE)}. In Figure 6.6, if vertex x and its nearest

neighbours NN({x}) are distinguished in the abstract state space, only two cheap edges will be

used in the abstract solution path. However, if x is a don’t-care vertex and its nearest neighbours

are distinguished, more cheap edges can be used because there exist many cheap edges between the

distinguished vertices and don’t-care vertices. As shown in the right part of Figure 6.6, the path a

→ b→ c→ d can be replaced by the path a→ x→ b→ x→ c→ x→ d which consists of more

than one cheap edge. As a result, the heuristic value may be too low to be a good one. Thus it is

important to put x and its nearest neighbours in the same abstract state space. In the example shown

in Figure 6.6, vertex x is connected with many outgoing and incoming cheap edges. In general a

cheap-edge cluster can also be a vertex with only incoming or outgoing cheap edges.

In practice a cheap-edge cluster may be connected with a group of other cheap-edge clusters by
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Figure 6.6: x is connected to many of its neighbours by cheap edges. Edges that are not shown
are expensive edges. Left: If x and its nearest neighbours are distinguished, only two cheap edges
can be used in the solution path. Right: If x is a don’t-care vertex but its neighbours are not, many
expensive edges can be replaced by cheap edges between distinguished vertices and x.

cheap edges. A cheap-edge cluster consisting of a single vertex (shown in Figure 6.6) is a single-

node cheap-edge cluster which can also be called cheap-edge core in the remaining of this chapter.

Given a weighted directed graph G = (V,E,C, P ) and the cheap edge set cheapE ⊂ E, we

classify two basic types of the cheap-edge clusters as follows.
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Figure 6.7: Two basic types of the cheap-edge cluster. Only cheap edges are shown in the state
space.

58



• Star Type. U = {u}, V = {v1, v2, ..., vm}. If ∀vi ∈ V , vi → u ∈ cheapE then U is

a cheap-edge cluster of the incoming star type consisting of a single vertex; if ∀vi ∈ V ,

u → vi ∈ cheapE then U is a cheap-edge cluster of the outgoing star type. For example,

there are four cheap-edge clusters (i.e., {x},{y},{i},{p}) in the left part of Figure 6.7.

• Cyclic Type. U = {u1, u2, ..., um}. If ∀i ∈ [1..m − 1], ui → ui+1 ∈ cheapE and

um → u1 ∈ cheapE, then U is a cheap-edge cluster of the cyclic type. In the cheap-edge

cluster of this type, each element can be regarded as a cheap-edge cluster connected with some

neighbours by incoming cheap edges or outgoing cheap edges. For example, in the right part

of Figure 6.7, there are two cheap-edge clusters of the cyclic type, {x, y, z, d} and {c, b, e, f}.

Precedence Constraints

When designing abstractions, we first consider the edge cost and regard constraints as the secondary

consideration due to two main reasons as follows.

• Precedence constraints have played a role for the DFBB (described in Figure 6.2) to detect

and prune the states representing a violation. If there are as many precedence constraints as

possible, the Hamiltonian path is defined by the constraints and the heuristics don’t matter in

this situation.

• If there exist only a few constraints, the quality of heuristics cannot be improved provided that

there are many cheap edges available to form a cheap abstract solution path. In this situation,

edge costs play a more important role for the heuristics.

Therefore constraints are regarded as the secondary consideration. For example, if two vertices

have the same number of nearest neighbours it is better to have the vertex involved with more

constraints as distinguished, which will preserve more constraints in the abstract state space.

In short, expensive-edge clusters, cheap-edge clusters and the precedence constraints are under-

lying keys when we design greedy methods to generate abstraction-based heuristics. Since hadd and

hmax have different definitions and computations in the abstract state space, the ways of applying

these keys for hadd and hmax may differ.

6.2.2 Different Considerations For hadd and hmax

Figure 6.8 illustrates an abstract state space. D is the set of distinguished intermediate vertices, R is

the set of don’t-care vertices. Since the start s and goal g vertices are always distinguished in each

abstraction, we require that D ∪ R = V \ {s, g} = I. According to the definitions in Section 6.1,

there are two main differences in the computation of abstractions for hadd and hmax.

One difference is that for hadd each edge from R to D is zero (i.e., C(u→ v) = 0, ∀u ∈ R, v ∈

D). Therefore in additive abstraction we are interested in the cheap-edge cluster on incoming cheap
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Figure 6.8: An Abstract State Space.

edges. For example, in Figure 6.9 suppose the edges that are not shown are expensive. In the additive

abstraction (shown on the right part of Figure 6.9), the cost of each edge from R to D is always zero.

If x and its neighbours are distinguished, only one incoming cheap edge will be used in the solution

path; while if x is in R but its neighbours are in D, there are many cheap edges between R and D can

be used in the solution path. For example, the path a→ b→ c→ d can be replaced by the path a→

x→ b→ x→ c→ x→ d which consists of more than one cheap edge. To minimize the use of the

cheap edges, vertex x and its corresponding neighbours should be added to the same distinguished

set.

The other difference is that for hadd we don’t count edges between don’t-cares (i.e., C(u →

v) = 0, ∀u, v ∈ R), while for hmax the edges between don’t-cares also count to construct the

abstract solution.

Take the cheap-edge cluster of the star type for example. In additive abstractions we only con-

sider incoming cheap-edge clusters while in standard abstractions we should consider both incoming

and outgoing cheap-edge clusters. Furthermore, in order to identify the cheap-edge cluster in stan-

dard abstractions, we consider the number of incoming (or outgoing) cheap edges exclusively instead

of the total number of cheap edges. It is because at most two edges will be used in the solution path

if the vertex is connected with m mixed (i.e., both incoming and outgoing) cheap edges, while up to

one cheap edge will be used for the vertex connected with m incoming (or outgoing) cheap edges.

As shown in Figure 6.10 there are two cheap-edge clusters {x} and {y}. x has 3 incoming cheap

edges and 3 outgoing cheap edges, while y has 6 incoming cheap edges and 0 outgoing cheap edges.

If x and its nearest neighbours NN({x}) are distinguished, at most two cheap edges will be used in

the solution path, while if y and NN({x}) are distinguished, at most one cheap edge will be used
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Figure 6.9: An example of the cheap-edge cluster on incoming cheap edges. Other edges not shown
in the figure are expensive. Left: If x and its nearest neighbours are distinguished, at most one
incoming cheap edge will be used in the solution path. Right: If x is in R, but its neighbours are in
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in the solution path. Therefore y has the top priority to be identified first although both x and y are

connected with 6 cheap edges.
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Figure 6.10: Two cheap-edge clusters {x} and {y}. Each cheap-edge cluster is connected with 6
cheap edges.

A cheap-edge cluster U and its nearest neighbours NN({U}) should be put into the same set
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of distinguished vertices. However, there are situations when the size of distinguished set (i.e., |D|)

is too small to include all cheap-edge clusters and their nearest neighbours in one abstraction. It

may lead to the result that some cheap edges are left between don’t-cares. According to the second

difference, for additive abstractions, there is less harm to have some cheap edges between don’t-

cares. But the computation of hmax also counts the edges between don’t-cares, so here we discuss

two schemes (Scheme I and Scheme II) to eliminate the use of cheap edges when computing hmax.

• Scheme I is to have as many cheap-edge clusters and the corresponding nearest neighbours as

possible in the distinguished set. That is, we minimize the use of cheap edges between dis-

tinguished vertices by clustering as many nearest neighbours as possible in the distinguished

set;

• Scheme II is to avoid as many cheap edges as possible between don’t-care vertices. For this

purpose, we can avoid having cheap edges between don’t-care vertices by only putting into

the distinguished set one end point of each cheap edge. That is, more cheap edges may exist

between distinguished vertices and don’t-care vertices.

Both schemes have their own benefits and drawbacks for different situations. Figure 6.11 is

an example to discuss the benefits and drawbacks of these two schemes for hmax. The left part

illustrates the original state space; the middle part is the abstract state space constructed using the

first scheme (i.e., Scheme I); the right part shows the abstract state space constructed using the

second scheme (i.e., Scheme II). |D| is the number of distinguished vertices and |R| is the number

of don’t-care vertices. Assume that all cheap-edge clusters and their nearest neighbours have been

identified and labelled in the original state space. Only cheap edges are shown in the original state

spaces and other edges are expensive.

In the original state space (shown on the left part of Figure 6.11) of the example, if the cost of

an edge u → v is less than or equal to 10, we regard the edge u → v as a cheap edge. There is

a cycle consisting of four vertices x, y, z and d connected with each other by eight directed cheap

edges. Assume that |D| = 4. Applying Scheme I, we have distinguished set D = {x,y,z,d}, such

that at most three cheap edges will be used to construct the abstract solution path. While applying

Scheme II, D = {x,d,c,f} and at most four cheap edges are used to construct the abstract solution

path. Since the total number of edges in either the original solution path or the abstract solution path

is always the same, even one more cheap edge being used to replace an expensive one may lead to a

very small heuristic value.

For this example, if using Scheme I, D = {x,y,z,d} and the edge cost is defined as follows.

• C(u→ v) = 1, ∀u, v ∈ D.

• C(u→ v) = 10, ∀u, v ∈ R.

• C(u→ v) = 100, ∀u ∈ D, v ∈ R.
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Figure 6.11: An example to compare two schemes.

• C(u→ v) = 100, ∀u ∈ R, v ∈ D.

And using Scheme II, D = {x,d,c,f} and the edge cost is defined as follows.

• C(u→ v) = 100, ∀u, v ∈ D.

• C(u→ v) = 100, ∀u, v ∈ R.

• C(x→ v) = C(v → x) = C(d→ v) = C(v → d) = 1, ∀v ∈ R.

• C(c→ v) = C(v → c) = C(f→ v) = C(v → f) = 10, ∀v ∈ R.

Suppose that |D| = 4, |R| = 5 in the abstract state space shown in the middle part of Figure

6.11. One abstract solution path may be x→ y→ d→ z→ u → u → u → u → u where u ∈ R,

the heuristic value hI = 1 + 1 + 1 + 100 + 10 + 10 + 10 + 10 = 143; and in the abstract state

space shown in the rightmost part of Figure 6.11 one abstract solution path may be u → x→ u →

d→ u→ c→ u→ f→ u where u ∈ R, hII = 1 + 1 + 1 + 1 + 10 + 10 + 10 + 10 = 44. Scheme

I beats Scheme II in this situation because using Scheme I minimizes the use of the cheapest edges.

However, the advantage of Scheme I decreases as |R| increases. For example if we change

|R| = 7 and keep the other conditions, then two more edges between don’t-care vertices must be

added to the abstraction solution path. Thus hI = 143 + 20 = 163 and hII = 44 + 200 = 244.

Scheme II outperforms Scheme I in this situation because Scheme II maximizes the minimum edge

cost between don’t-care vertices.

63



6.2.3 Summary of Concepts

For both hadd and hmax our goal is to maximize the use of expensive edges and eliminate the use of

cheap edges as much as possible.

As shown in Figures 6.4 and 6.5, an expensive-edge cluster is defined to be a vertex or a group

of vertices that are connected to all other vertices by expensive edges, while the vertices in the same

expensive-edge cluster are connected to each other by cheap edges. The expensive-edge cluster

has the top priority to be distinguished in the abstractions, although it does not always exist in

all instances. Once there exists an expensive-edge cluster consisting of {u1, u2, ..., um}, we mark

u1, u2, ..., um distinguished before applying any other greedy method for cheap-edge clusters. Note

that the size of an expensive-edge cluster should be small enough to be included in the distinguished

set. Otherwise we neglect the larger expensive-edge clusters in the abstraction because it will be

ineffective when leaving some part of an expensive-edge cluster in the set of don’t-care vertices.

A cheap edge cluster is defined to be a vertex or a set of vertices that are connected to some

other vertices by cheap edges. Here we do not require a cheap edge cluster to be connected to

all other vertices by cheap edges. Figure 6.7 present two basic types of the cheap-edge cluster.

Since the cheap-edge cluster U has the close relationship with its nearest neighbours NN(U), we

have two obvious choices. Either we put U and NN(U) in the same set of distinguished vertices;

or we just have U to be distinguished. The former method eliminates the use of cheap edges in

the distinguished set as much as possible, but it may leave some cheap edges between don’t-care

vertices.

For additive abstractions, the computation of hadd does not count the edges between don’t-cares.

Thus no matter the value of |R| it is important to put U and NN(U) to the same distinguished set

in order to eliminate the use of cheap edges as much as possible.

The computation of hmax differs mainly in that edges between don’t-care vertices also count.

Given |D|+|R|, the total number of vertices, it is evident that enlarging the value of |D|will enhance

the quality of hmax. However, the memory requirements increase significantly when the abstraction

contains more distinguished vertices. Therefore there exists certain situations in which the value of
|D|

|D|+|R| must be relatively small and sometimes we are more interested to study how to define good

hmax in these situations, i.e., |D| ≤ |R|. According to the discussion in the previous section, when

|D| ≤ |R| it is better to apply Scheme II : we just put one endpoint of each cheap edge into the

distinguished set to maximize the minimum edge cost between don’t-care vertices.

We first consider the edge costs and then regard constraints as the secondary consideration. In

Sections 6.3 and 6.4 we will have more details of greedy methods for identifying the expensive-edge

clusters and the cheap-edge clusters. In the following sections, we refer to each single element in

the cheap-edge cluster as the cheap-edge core.

64



6.3 Greedy Methods for hadd

In this section we present algorithms to solve the problem defined as follows:

• Input: An SOP instance (G = 〈V,E,C, P 〉 and the cost matrix M ), and a sequence of

numbers < n1, n2, ..., nk > specifying the size of the distinguished set in each abstraction

where k is the total number of abstractions and Σki=1ni ≤ |I| where I = V \ {s, g}2.

• Output: a sequence of distinguished sets < D1, D2, ..., Dk > such that Di ⊆ V , |Di| = ni,

and Di ∩Dj = ∅, ∀i 6= j.

Algorithms are described in the pseudocode and each line of comments begins with “//”. Some

issues such as error handling are ignored in order to convey the essence of the algorithm more

concisely. Likewise, some variables such as < n1, n2, ..., nk > and < D1, D2, ..., Dk > are global

variables throughout all subroutines, and we will not repeat the claim in the subroutines for the

purpose of conciseness.

In Section 6.2 we described the expensive-edge cluster and the cheap-edge cluster that should be

distinguished to build good abstractions. In this section greedy methods are applied. First we present

a method called CHECK EXPENSIVE to check for expensive-edge clusters. Then we introduce

the method (CHEAP EDGE ADD) to identify the cheap-edge clusters. CHEAP EDGE ADD is

a general method consisting of subroutines that are designed for cheap-edge clusters of the star

type and the cyclic type, respectively. Finally in Section 6.3.3 we combine these greedy methods to

consider both the expensive-edge cluster and the cheap-edge cluster for designing good abstractions.

Note that greedy methods do not always yield optimal solutions, thus there exist certain situations

which make these methods not yield the best abstractions. More observations and discussions are

presented in the sections on experiments and future directions.

6.3.1 The CHECK EXPENSIVE Procedure

As discussed in Section 6.2.3, the expensive-edge cluster does not always exist in all instances. Once

a cluster of vertices is identified to be an expensive-edge cluster, these vertices have the top priority

to be distinguished in the abstractions.

An expensive edge is defined by an edge u −→ v with an edge cost no less than a parameter ω.

Given a weighted graph G(V,E,C, P ), an expensive-edge cluster can be identified if it satisfies

one of the following definitions.

1. If ∃U , 1 ≤ |U | < |V | such that C(ui −→ v) ≥ ω and C(ui → uj) < ω, ∀i 6= j, ui, uj ∈ U

and v ∈ V \ U , then U is an expensive-edge cluster.

2Here we are assigning the intermediate vertices I = V \ {s, g} to each distinguished set. The start s and goal g vertices
are always distinguished in each abstraction.
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Figure 6.12: An instance with an expensive-edge cluster {a, b, c}.

2. If ∃U , 1 ≤ |U | < |V | such that C(v −→ ui) ≥ ω and C(ui → uj) < ω, ∀i 6= j, ui, uj ∈ U

and v ∈ V \ U , then U is an expensive-edge cluster.

We take Figure 6.12 for example. If ω is set to be 50 for this instance, any edge whose cost

is larger than or equal to 50 is an expensive edge. Since ∀u1, u2 ∈ {a,b,c} and v ∈ {s, g,d,e},

C(u→ v) ≥ ω and C(u1 → u2) < ω, {a,b,c} is an expensive-edge cluster.

CHECK EXPENSIVE is a subroutine to check for the expensive-edge clusters. Its inputs in-

clude some global variables such as M , < n1, n2, ..., nk > and ω. The output is a sequence

< D1, D2, ..., Dk > indicating the distinguished set for each abstraction.

From the definitions of the expensive-edge cluster and the description in Figure 6.13 the op-

eration of CHECK EXPENSIVE is fairly straightforward. The FOR loop of lines 4-21 uses the

definitions of expensive-edge clusters to examine each vertex.

Lines 6-11 detect the expensive-edge cluster consisting of a single vertex. If not all of u’s

outgoing edges are expensive and not all of u’s incoming edges are inexpensive, we examine the

existence of an expensive-edge cluster consisting of a set of vertices U in lines 12-20 using the last

two definitions.

No matter what the size of U , one expensive edge must be used in the abstract solution path.

Suppose an expensive-edge cluster U consisting of m vertices is found. The number of expensive

edges which must be used in the abstract solution path per vertex of the expensive-edge cluster is
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Algorithm: CHECK EXPENSIVE
Key Concept: To identify expensive-edge clusters and assign them to distinguished sets.
Input: M (the cost matrix)

< n1, n2, ..., nk > (a sequence of numbers specifying the size of each distinguished set)
ω (the lower bound of the expensive edge cost.)

Output: < D1, D2, ..., Dk > such that Di ⊆ V , |Di| ≤ ni, and Di ∩Dj = ∅, ∀i 6= j.
1 Di = φ, ∀i. // Initialization.
2 CIndex=0.// Initialize the cluster index.
3 U0 = φ.
4 FOR each vertex u DO
5 Define Umark= ∪CIndexj=0 Uj .//Umark include vertices identified to belong to an expensive-edge cluster.
6 IF (u /∈ Umark) AND (Mu,v ≥ ω, ∀v ∈ V \ {u}) //all outgoing edges are expensive.
7 CIndex = CIndex + 1.
8 UCIndex = {u}.
9 ELSE IF (u /∈ Umark) AND (Mv,u ≥ ω, ∀v ∈ V \ {u}) //all incoming edges are expensive.
10 CIndex = CIndex + 1.
11 UCIndex = {u}.
12 // Check the first definition for the expensive-edge cluster consisting of more than one vertex.
13 ELSE IF (∃U , u ∈ U AND 2≤ |U | < |V |) AND (Mu,ui

< ω,∀ui ∈ U \ {u}) AND (U ∩ Umark = φ)
AND (Mui,v ≥ ω AND Mui,uj

< ω,∀ui,uj ∈ U , v ∈ V \ U )
14 CIndex = CIndex + 1.
15 UCIndex = U .
16 // Check the second definition for the expensive-edge cluster consisting of more than one vertex.
17 ELSE IF (∃U , u ∈ U AND 2≤ |U | < |V |) AND (Mu,ui

< ω,∀ui ∈ U \ {u}) AND (U ∩ Umark = φ)
AND (Mv,ui

≥ ω AND Mui,uj
< ω,∀ui,uj ∈ U , v ∈ V \ U )

18 CIndex = CIndex + 1.
19 UCIndex = U .
20 END IF
21 END FOR
22 IF (CIndex > 0)
23 SORT all expensive-edge clusters by the size,i.e., < Uτ(1), ..., Uτ(CIndex) >, ∀i, |Uτ(i)| ≤ |Uτ(i+1)|.
24 SORT < nπ(1), nπ(2), ..., nπ(k) > such that nπ(i) ≤ nπ(i+1),∀i.
25 t = 1. // π(t) is the index of each distinguished set.
26 FOR i = 1 to CIndex DO
27 IF (t ≤ k AND |Dπ(t) ∪ Uτ(i)| ≤ nπ(t))
28 Dπ(t) = Dπ(t) ∪ Uτ(i).
29 ELSE
30 REPEAT
31 t = t+ 1.
32 UNTIL (|Dπ(t) ∪ Uτ(i)| ≤ nπ(t) OR t > k).
33 IF (t > k)
34 break; // no more distinguished set to accommodate the cluster.
35 ELSE
36 Dπ(t) = Dπ(t) ∪ Uτ(i).
37 END IF
38 END IF
39 END FOR
40 END IF

Figure 6.13: The method to check for the expensive-edge cluster.
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1/m.

Therefore, the smaller value of m, the greater value of 1/m. Given a set of expensive-edge

clusters the greedy method begins by adding to the distinguished set the expensive-edge cluster of

smallest size because the smallest expensive-edge cluster has the greatest value of 1/m and it has

the top priority to be included in the distinguished set.

Here the expensive-edge clusters are sorted by size in increasing order. In line 23, τ(i) (i ∈

[1, CIndex]) is the index indicating the new order of all expensive-edge clusters. Then the distin-

guished sets are also sorted by the required size in non-decreasing order. The reason for this order

is that larger expensive-edge cluster can only be accommodated by larger distinguished sets and if

we first fill the large distinguished set with many small expensive-edge cluster, then there is no dis-

tinguished set to accommodate the large expensive-edge cluster. In line 24, π(i) (i ∈ [1, k]) is the

index indicating the new order of all distinguished sets.

The second part of CHECK EXPENSIVE is in lines 22-40. It starts if there exists some expensive-

edge clusters (i.e., if CIndex > 0). It sorts the expensive-edge clusters by the size |Ui| in non-

decreasing order and also sorts the sequence that specifies the size of each distinguished set by the

value in non-decreasing order. The FOR loop of lines 26-39 obtains expensive-edge clusters in turn

from the sequence < Uτ(1), ..., Uτ(CIndex) > and fills each distinguished set to capacity. Lines 30-

32 are executed to find a distinguished set that is big enough to include the current expensive-edge

cluster Ui. The algorithm terminates when the current expensive-edge cluster Uτ(i) is too big to be

included in the last distinguished set (i.e., |Dπ(k) ∪ Uτ(i)| > nπ(k)), or all expensive-edge clusters

have been assigned to the distinguished sets (i.e., i > ClusterIndex).

In our experiments, we set ω to be the value min+(max-min)×50% where min and max are the

minimum value and maximum values in the cost matrix, respectively. So in the following exper-

iments any edge cost no less than (min+(max-min)×50%) is regarded as an expensive-edge cost.

Based on this definition of ω, in the range of our experiments on larger instances of TSPLIB we

can identify one expensive-edge cluster in each of the instances ft53.1-4 and the identification of

expensive-edge cluster significantly improves the quality of heuristic values.

6.3.2 The CHEAP EDGE ADD Procedure

No matter what type the cheap-edge cluster is, the underlying key is to identify the cheap-edge core

and its corresponding nearest neighbours, and add them to the same distinguished set for additive

abstractions. Considering both the star type and the cyclic type, we design CHEAP EDGE ADD

which is more general for practical use.

The inputs of CHEAP EDGE ADD include G, α (the parameter used in the subroutine to set δ,

the upper bound of the cheap edge cost.), < n1, n2, ..., nk > and < D0
1, D

0
2, ..., D

0
k > (a sequence

of partly designated distinguished sets). The output is < D1, D2, ..., Dk > which specifies the

distinguished vertices for each abstraction.
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Algorithm: CHEAP EDGE ADD
Key Concept: considering cheap-edge clusters of the star type and the cyclic type.
Input: G, α, < n1, n2, ..., nk >, and

< D0
1, D

0
2, ..., D

0
k > where D0

i ∩D0
j = ∅, ∀i 6= j and |D0

i | ≤ ni, ∀i.
Output: < D1, D2, ..., Dk > such that D0

i ⊆ Di ⊆ V , |Di| = ni, and Di ∩Dj = ∅, ∀i 6= j.
1 SORT all edges by edge costs, S =< e1, ..., em >,∀i, C(ei) ≤ C(ei+1).
2 Di = D0

i ,∀i ∈ [1, k]. // Initialization.
3 FOR i = 1 To k Do
4 Obtain the cheap-edge core x from the outputs of CHECK INCOMING STAR(i,S,α).
5 IF (|Di| < ni)
6 Define Ex = {z → x : z ∈ Di}.//Ex is the set of x’s incoming edges.
7 Select the edge u→ v from Ex where C(u→ v) ≤ C(e), ∀e ∈ Ex.
8 NEAREST NEIGHBOUR(i, u, v)
9 END IF
10 END FOR

Figure 6.14: The greedy method designed for instances with cheap-edge clusters of both the cyclic
type and the star type.

Figure 6.14 gives the pseudocode for CHEAP EDGE ADD. After the initialization (lines 1-

2), the FOR loop of lines 3-9 adds vertices to the distinguished set for each abstraction. First it

calls CHECK INCOMING STAR to select a cheap-edge core x. In CHECK INCOMING STAR

x and its corresponding nearest neighbours are assigned to the current distinguished set. If more

vertices are still needed for the distinguished set (i.e., if |Di| < ni), CHEAP EDGE ADD calls the

procedure NEAREST NEIGHBOUR to start from the cheap-edge core x and construct a piece of

path by the nearest neighbour strategy. All vertices along the path are assigned to the distinguished

set until the set is big enough.

In this algorithm α is a parameter to define the upper bound of the cheap edge cost used in the

subroutine CHECK INCOMING STAR. We discuss the usage of α in the next section.

There is a step of sorting edges by costs in non-decreasing order in this algorithm. In the same

manner we define Pe = {u : x→ y = e, u <p x or x <p u or y <p u or u <p y}. If |Pei | > |Pej |

and C(ei)=C(ej), then ei is in front of ej in the sequence,i.e., S =< e1, ..., ei, ej , ..., em >.

CHEAP EDGE ADD does not always yield optimal solutions, thus there exist certain situations

which make it not yield the best abstractions. More observations and discussion are presented in the

sections on experiments.

CHEAP EDGE ADD is an algorithm considering cheap-edge clusters of the incoming star type

and the cyclic type. We focus on the incoming star type because we don’t count the edges starting

from a don’t-care vertex as we discussed in Section 6.2.2. Alternatively, if we change the definition

to charge the primary cost of a move when a distinguished state is reached, it is easy to adapt the

CHEAP EDGE ADD to focus on the outgoing star type as follows.

• In line 4 CHECK OUTGOING STAR is used instead to output the cheap-edge core of the

outgoing star type. The CHECK OUTGOING STAR procedure will be described later in this

69



section.

• In line 6 Ex is adapted to be {x→ z : z ∈ Di}, which is the set of x’s outgoing edges.

CHEAP EDGE ADD calls two subroutines: CHECK INCOMING STAR and NEAREST NEIGHBOUR.

The CHECK INCOMING STAR can be replaced by CHECK OUTGOING STAR if we change the

definition of edge costs in additive abstraction. The remainder of this section introduces the function

and structures of these procedures.

The CHECK INCOMING STAR Procedure

Algorithm: CHECK INCOMING STAR
Key Concept:To add a cheap-edge cluster of the incoming star type to the distinguished set.
Input: Index (the index of the current distinguished set)

S (a sequence of edges < e1, ..., em >,∀i, C(ei) ≤ C(ei+1))
α (a parameter used to define the cheap edge cost.)

Output: x (the cheap-edge core).
1 Define marked = ∪j 6=IndexDj .
2 Obtain ∆ from the output of SET INCOMING DELTA(marked,α,S).
3 CheapNo[v] = 0,∀v /∈ marked. // Initialization.
4 FOR i = 1 To m DO
5 Define βi = {z, y} where y → z = ei.
6 IF (βi∩ marked =∅)
7 CheapNo[z]=CheapNo[z]+1.
8 IF (CheapNo[z]=∆)
9 x = z; break; // terminate the loop and z is identified to be a cheap-edge core.
10 END IF
11 END IF
12 END FOR
13 DIndex = DIndex ∪ {x}.
14 FOR each vertex u ∈ {u : C(u→ x) ≤ C(ei), u /∈ marked } Do
15 IF (|DIndex| < nIndex)
16 DIndex = DIndex ∪ {u}.
17 ELSE
18 break;
19 END IF
20 END FOR

Figure 6.15: The greedy method designed to identify cheap-edge cores of the star type.

For a cheap-edge core of the star type, we set the criteria to identify it. We require that a

cheap-edge core is connected with at least ∆ cheap edges. Here we apply the procedure called

SET INCOMING DELTA to set the value of ∆. The SET INCOMING DELTA procedure will be

described later in this section.

CHECK INCOMING STAR is a subroutine to identify a cheap-edge cluster of the star type.

It takes several global variables as inputs, such as the graph G representing an instance and <
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D1, D2, ..., Dk > which specifies the distinguished vertices for each abstraction. Besides those

variables the inputs also include Index (the index of the current distinguished set), S (a sequence

of edges sorted in increasing order of the size), and α (a parameter used to define the upper bound

of the cheap edge cost). This algorithm computes the global values < D1, D2, ..., Dk > and also

outputs a cheap-edge core x.

Figure 6.18 presents the pseudocode of CHECK INCOMING STAR. First it obtains the value

of ∆ from the output of SET INCOMING DELTA which is described in Figure 6.16. ∆ is the

designated number of cheap edges on a cheap-edge core of the star type to be identified. The FOR

loop of lines 4-12 is to detect a cheap-edge core xwhich is connected with ∆ incoming cheap edges.

The value of ∆ described in Figure 6.16 guarantees the existence of x. Line 7 is executed provided

that two endpoints of a cheap edge are not in other distinguished sets. Line 9 terminates the loop

when the number of cheap edges on x first reaches ∆ (i.e., CheapNo[x]=∆). Note that C(ei) is

also obtained when terminating the FOR loop of lines 4-12 and C(ei) is used as the upper bound

of edge costs to select x′s nearest neighbours in line 13. The algorithm first adds x to the current

distinguished set (line 13) and the FOR loop of lines 14-20 iteratively adds each of x’s nearest

neighbours u to the current distinguished set. Here the nearest neighbours are connected with x by

x′s incoming edges with cost less than C(ei). Line 17 guarantees that this algorithm never fills the

distinguished set over its capacity. This algorithm terminates when all of x’s corresponding nearest

neighbours are added to the current distinguished set, or the current distinguished set is big enough.

In the subroutine CHECK INCOMING STAR, ∆ is a criteria to select the cheap-edge core. If ∆

is set to be only one, the overall algorithm of CHEAP EDGE ADD given in Figure 6.14 applies the

nearest neighbour strategy to add vertices to the distinguished set, which focuses on a cheap-edge

cluster of the cyclic type if there exists some; if ∆ is very close to the size of the distinguished set,

the algorithm of CHEAP EDGE ADD adds a cheap-edge core with as many nearest neighbours as

possible to each distinguished set, which focuses on a cheap-edge cluster of the star type.

In our experiments, ∆ is specified by the SET INCOMING DELTA procedure. The key concept

is to count the incoming cheap edges for each vertex and choose the maximum number of incoming

cheap edges of a single vertex.

The inputs of the SET INCOMING DELTA procedure include some global variables such as

G (the graph representing the instance). In addition the inputs also include marked (the set of vertices

that are in other distinguished sets), α (the parameter used to define the cheap edge cost) and S (a

sequence of edges sorted by costs in increasing order). The output is ∆ which specifies the number

of edges of a cheap-edge core of the star type.

Figure 6.16 gives the pseudocode for SET INCOMING DELTA. Line 1 defines the set of edges

E′ whose endpoints are not distinguished in other abstractions. Lines 2-3 define the minimum and

the maximum edge cost, respectively. Line 4 defines σ which is used as the upper bound of the cheap

edge cost. After the initialization (lines 5-6), the WHILE loop of lines 7-12 counts the number of
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Algorithm: SET INCOMING DELTA
Key Concept: to specify the number of incoming cheap edges connected

with a cheap edge core of the star type.
Input: marked (the set of vertices that are in other distinguished sets.)

α (the parameter used to define the cheap edge cost.)
S (a sequence of edges < e1, ..., em >,∀i, C(ei) ≤ C(ei+1))

Output: ∆
1 E′ = {y → x ∈ {e1, ..., em}|{x, y}∩ marked=∅}.
2 min = mine∈E′C(e).
3 max = maxe∈E′C(e).
4 σ = min+ (max−min)× α. //σ is the upper bound of the cheap edge cost.
5 degree[v] = 0,∀v /∈ marked.
6 i = 1. // Initialize the edge index i.
7 WHILE (C(ei) ≤ σ) DO
8 IF (ei ∈ E′ AND y → x = ei)
9 degree[x]=degree[x]+1.// update the in-degree
10 END IF
11 i=i+1;
12 END WHILE
13 ∆ = maxv/∈marked{degree[v]}.

Figure 6.16: The method to set ∆, the number of cheap edges connected with the cheap-edge core
of the star type.

cheap edges for each unmarked vertices. The last line defines the value of ∆.

(min+(max-min)*10%)

= 1+(21-1)*0.1= 1+2 = 3

0     5     9     4

2     0     1    10      

3    15    0    11 

4    21    2     0

Cost matrix

0     1     2     3

0

1
2

3

vertex # of incoming 
cheap edges

0 2

1 0

2 2

3 0

maximum 2

So any matrix value that is less than or 
equal to 3 is regarded as the cheap cost 
value.

Figure 6.17: An example to calculate ∆.

In the algorithm the parameter α is used to define the cheap edge cost. In our experiments, α is

10%.

Figure 6.17 gives an example for the computation of the cheap edge cost σ and ∆. In this

example, α = 10%, min=1 and max=21 as we do not count the value in the diagonal line. So any
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matrix value which is less than or equal to 3 (i.e., σ=1+(21-1)×10%=3) is regarded as a cheap cost

value. As shown in the table of Figure 6.17, assuming that vertices 0,1,2,3 are not distinguished in

any abstraction we calculate the total number of cheap incoming edges for each vertex by looking in

the corresponding column. ∆ is estimated to be 2 as the maximum number of cheap edges for each

column is 2.

The CHECK OUTGOING STAR Procedure

Algorithm: CHECK OUTGOING STAR
Key Concept:To add a cheap-edge cluster of the outgoing star type to the distinguished set.
Input: Index (the index of the current distinguished set)

S (a sequence of edges < e1, ..., em >,∀i, C(ei) ≤ C(ei+1))
α (a parameter used to define the cheap edge cost.)

Output: x (the cheap-edge core).
1 Define marked = ∪j 6=IndexDj .
2 Obtain ∆ from the output of SET OUTGOING DELTA(marked,α,S).
3 CheapNo[v] = 0,∀v /∈ marked. // Initialization.
4 FOR i = 1 To m DO
5 Define βi = {x, y} where x→ y = ei.
6 IF (βi∩ marked =∅)
7 CheapNo[x]=CheapNo[x]+1.
8 IF (CheapNo[x]=∆)
9 break; // terminate the loop and x is identified to be a cheap-edge core.
10 END IF
11 END IF
12 END FOR
13 DIndex = DIndex ∪ {x}.
14 FOR each vertex u ∈ {u : C(x→ u) ≤ C(ei), u /∈ marked } Do
15 IF (|DIndex| < nIndex)
16 DIndex = DIndex ∪ {u}.
17 ELSE
18 break;
19 END IF
20 END FOR

Figure 6.18: The greedy method designed to identify cheap-edge cores of the outgoing star type.

In the description of CHEAP EDGE ADD, we mentioned that if we change the definition to

charge the primary cost of a move when a distinguished state is reached, we will adapt CHEAP EDGE ADD

to focus on the cheap-edge cluster of the outgoing star type. One step is to apply the subroutine

CHECK OUTGOING STAR instead of CHECK INCOMING STAR.

Figure 6.18 gives the pseudocode of CHECK OUTGOING STAR which has a similarity to the

pseudocode of CHECK INCOMING STAR. The differences lie in the following three lines.

• In line 2, obtain ∆ from the output of SET OUTGOING DELTA(marked,α,S). The pseu-

docode of SET OUTGOING DELTA is almost the same to that of SET INCOMING DELTA
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(shown in Figure 6.16) except that in SET OUTGOING DELTA, line 9 is updated to be

degree[y]=degree[y]+1 which counts the out-degree of the start point of the edge ei.

• In line 5, x→ y = ei, i.e., x is changed to be the start point and y is the end point of the edge

ei. Thus line 7 counts the number of outgoing edges.

• In line 13, u ∈ {u : C(x → u) ≤ C(ei), u /∈ marked }, i.e., vertex u is x’s neighbour

connected by a cheap edge from x to u.

The NEAREST NEIGHBOUR Procedure

Algorithm: NEAREST NEIGHBOUR
Key Concept: To add unmarked nearest neighbours to the current distinguished set.
Input: Index (the index of the current distinguished set)

start (the start point of the partial path)
end (the end point of the partial path)

Output: < D1, D2, ..., Dk >.
1 PathS = {start, end}. //Initialize a set of vertices on the path.
2 REPEAT

//To define a set of the end point’s outgoing edges.
3 Define E1={u→ v:u = end and v /∈ ((∪j 6=IndexDj) ∪ PathS)}.

//To define set of the start point’s incoming edges.
4 Define E2={u→ v:v = start and u /∈ ((∪j 6=IndexDj) ∪ PathS)}.
5 Select the shortest edge e from E1 ∪ E2 such that C(e) ≤ C(e′), ∀e′ ∈ E1 ∪ E2

6 Define βe = {x, y} where x→ y = e.
7 IF (x = end) //The partial path is extended at the end point.
8 end = y
9 ELSE // y = start, The partial path is extended at the start point.
10 start = x
11 END IF
12 PathS = PathS ∪ βe.
13 DIndex = DIndex ∪ PathS.
14 UNTIL (|DIndex| = nIndex)

Figure 6.19: The greedy method using nearest neighbour strategy.

NEAREST NEIGHBOUR is a subroutine applying the nearest neighbour strategy. Its inputs

include some global variables such as the graphG representing an instance and< D1, D2, ..., Dk >

which specifies the distinguished vertices for each abstraction. Besides those variables the inputs

also include Index (the index of the current distinguished set), and two endpoints of a cheap edge

(x,y). The outputs include the global variables such as < D1, D2, ..., Dk >.

Figure 6.19 gives the pseudocode of NEAREST NEIGHBOUR. When it is called, this algorithm

starts from the edge start→ end, then iteratively applies the nearest neighbour strategy to construct

a piece of a path. When we apply the nearest neighbour strategy to choose the unmarked nearest

neighbour we choose in the range of vertices that are not in other distinguished sets and not in

the current path PathS (i.e.,v /∈ ((∪j 6=IndexDj) ∪ PathS)). In line 5 a shortest edge is selected

74



from E1 ∪E2. Recall that NEAREST NEIGHBOUR is called by CHEAP EDGE ADD only when

|Di| < ni, therefore E1 ∪ E2 6= ∅. All vertices along the path are added to the distinguished set

DIndex until the set is big enough, i.e., it iteratively adds a nearest vertex that is not distinguished

in other distinguished sets and does not belong to the current path PathS. We store the vertices

along the path in PathS as shown in line 12. Line 13 adds all vertices along the path to the current

distinguished set.

This method can detect some cheap-edge cores of the cyclic type and mark these vertices dis-

tinguished until the current distinguished set is big enough. For example, in the original state space

shown on the left part of Figure 6.11, there exists a cycle consisting of x, y, z and d connected by

edges that cost one. Assume that other edge costs are larger than one. Given distinguished vertices x

and y, this method will also mark vertices z and d distinguished provided that they are not marked in

other distinguished sets. However, if z or d is distinguished in another abstraction, this method will

not identify this cheap-edge cluster. Thus there also exist certain situations which make this method

not yield the best abstractions.

Note that NEAREST NEIGHBOUR has a step to select the shortest edge. If there is more than

one candidate, that is, there is more than one vertex that has the same distance to one of the endpoints

of the current path, we choose the vertex that has more constraints related to the distinguished set

of this abstraction. Formally, we define Pv = {u : u <p v or v <p u, u ∈ DIndex} where DIndex

is the current distinguished set. Suppose U is the set of candidates which have the same distance to

one endpoint of the current path. If |Px| > |Py|,∀y ∈ U , then vertex x is the choice.

As we have discussed in a Section 6.2, we often focus on cheap edges. It is because the cheap

edges play very important roles when designing good abstractions. If there is more than one candi-

date for a choice, constraints are the secondary consideration.

6.3.3 Combining Greedy Methods for hadd

Algorithm: HYBRID ADD
Key Concept: To combine greedy methods for expensive-edge cluster and cheap-edge core.
Input: G,M ,ω,α,< n1, n2, ..., nk >.
Output: < D1, D2, ..., Dk > such that Di ⊆ V , |Di| = ni, and Di ∩Dj = ∅, ∀i 6= j.

1 CHECK EXPENSIVE (M ,< n1, n2, ..., nk >,ω).
2 CHEAP EDGE ADD (G, α, < n1, n2, ..., nk >, < D1, D2, ..., Dk >).

Figure 6.20: The hybrid method

Our methods for defining abstractions combine the greedy methods for expensive-edge cluster

and cheap-edge core. Figure 6.20 gives the pseudocode of HYBRID ADD. First we call the proce-

dure CHECK EXPENSIVE to detect the expensive-edge clusters, then we call the greedy algorithm

to add the cheap-edge clusters and their corresponding neighbours to the distinguished sets.
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6.4 Greedy Methods for hmax

In this section we design abstractions for hmax. We present algorithms to solve the problem defined

as follows:

• Input: An SOP instance (G = 〈V,E,C, P 〉 and the cost matrix M ), and a sequence of

numbers < n1, n2, ..., nk > specifying the size of the distinguished set in each abstraction,

where k is the total number of abstractions and Σki=1ni ≤ |I| where I = V \ {s, g}3.

• Output: a sequence of distinguished sets < D1, D2, ..., Dk > such that Di ⊆ V , |Di| = ni,

and Di ∩Dj = ∅, ∀i 6= j.

As for the output, we require thatDi∩Dj = ∅, ∀i 6= j although distinguished sets of abstractions

for hmax can be overlapped. Our reason for this is that during search DFBB need information (i.e.,

heuristics) of some states, and the information may be more helpful if some designated vertices are

distinguished in the abstraction. For example, in the leftmost part of Figure 6.21 edges of the search

tree are labelled by the vertex to be visited next, and states are labelled with numbers. For state

1, there are three vertices (d, e and x) left before DFBB reaches a goal state, and information is

needed to determine the best order of these last three vertices in the solution path. Note that we have

the same heuristic values for these three states (state 2, state 3 and state 4) in the first abstraction

(shown in the middle of Figure 6.21) because vertices d, e and x are all don’t-care vertices in the first

abstraction. Therefore we need an abstraction in which vertices d, e and x are distinguished. The

second abstraction (shown on the right part of Figure 6.21) is a good abstraction for this situation.

In reality it is impossible to include all combinations of vertices in abstractions. For each ab-

straction we consider the underlying keys to a good abstraction, i.e., we identify the expensive-edge

clusters and the cheap-edge clusters in each abstraction.

One main difference between algorithms for hadd and those for hmax lies in that hmax is cal-

culated by counting all edge costs along the abstract path, while hadd is calculated by only count-

ing primary costs of edges along the path. In this section, first we describe the method called

CHECK EXPENSIVE MAX to check for the expensive-edge clusters for standard abstractions.

Then we present the greedy method CHEAP EDGE MAX designed for the cheap-edge clusters.

Finally in Section 6.4.3 we combine these methods to consider both the expensive-edge clusters and

the cheap-edge clusters for designing good abstractions.

6.4.1 The CHECK EXPENSIVE MAX Procedure

Figure 6.4.1 gives the pseudocode for the CHECK EXPENSIVE MAX procedure. It is similar to

the CHECK EXPENSIVE procedure in Section 6.3.1. The only difference lies in line 24 where

we sort the sequence to specify the size of each distinguished set by the non-increasing order. The
3Here we are assigning the intermediate vertices I = V \ {s, g} to each distinguished set. The start s and goal g vertices

are always distinguished in each abstraction.
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Figure 6.21: An example to explain how to choose complementary abstractions.

reason for this is that for additive abstractions, each abstraction contributes to the value of hadd,

while for standard abstractions, only one abstraction will contribute to the value of hmax. Here we

first add the expensive-edge clusters to the larger distinguished set as the abstraction of larger size

often determines the value of hmax.

6.4.2 The CHEAP EDGE MAX Procedure

Our experiments are focused on large instances for which it is impossible for the abstraction to

contain many distinguished vertices compared to the total number of vertices. According to the

discussions in Section 6.2.3, we apply Scheme II in this situation.

CHEAP EDGE MAX is designed based on Scheme II which was described in Section 6.2. It

aims to maximize the minimum edge cost between don’t-care vertices in order to avoid using cheap

edges many times (if |R| is much larger than |D|, i.e., the size of the don’t-care set is much larger

than the size of the distinguished set).

Figure 6.23 gives the pseudocode for the CHEAP EDGE MAX procedure. The inputs include

G,< n1, n2, ..., nk > and< D0
1, D

0
2, ..., D

0
k > (a sequence of initial distinguished sets). The output

is < D1, D2, ..., Dk > which specifies the distinguished vertices for each abstraction.

For each distinguished set that is not big enough (line 5), this algorithm iteratively adds edges

with the same edge costs to a subgraph G′(V ′, E′) and for each subgraph it tries to find a minimum

vertex cover for E′ such that at least one vertex of the vertex cover connects with each edge of

E′. The problem of finding a minimum vertex cover was one of Karp’s 21 NP-complete problems
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Algorithm: CHECK EXPENSIVE MAX
Key Concept: To identify expensive-edge clusters and assign them to distinguished sets.
Input: M (the cost matrix)

< n1, n2, ..., nk > (a sequence of numbers specifying the size of each distinguished set)
ω (the lower bound of the expensive edge cost.)

Output: < D1, D2, ..., Dk > such that Di ⊆ V , |Di| ≤ ni, and Di ∩Dj = ∅, ∀i 6= j.
1 Di = ∅,∀i. // Initialization.
2 CIndex=0.// Initialize the cluster index.
3 U0 = ∅.
4 FOR each vertex u DO
5 Define Umark= ∪CIndexj=0 Uj .//Umark include vertices identified to belong to an expensive-edge cluster.
6 IF (u /∈ Umark) AND (Mu,v ≥ ω, ∀v ∈ V \ {u}) //all outgoing edges are expensive.
7 CIndex = CIndex + 1.
8 UCIndex = {u}.
9 ELSE IF (u /∈ Umark) AND (Mv,u ≥ ω, ∀v ∈ V \ {u}) //all incoming edges are expensive.
10 CIndex = CIndex + 1.
11 UCIndex = {u}.
12 // Check the first definition for the expensive-edge cluster consisting of more than one vertex.
13 ELSE IF (∃U , u ∈ U AND 2≤ |U | < |V |) AND (Mu,ui

< ω,∀ui ∈ U \ {u}) AND (U ∩ Umark = ∅)
AND (Mui,v ≥ ω AND Mui,uj

< ω,∀ui,uj ∈ U , v ∈ V \ U )
14 CIndex = CIndex + 1.
15 UCIndex = U .
16 // Check the second definition for the expensive-edge cluster consisting of more than one vertex.
17 ELSE IF (∃U , u ∈ U AND 2≤ |U | < |V |) AND (Mu,ui

< ω,∀ui ∈ U \ {u}) AND (U ∩ Umark = ∅)
AND (Mv,ui

≥ ω AND Mui,uj
< ω,∀ui,uj ∈ U , v ∈ V \ U )

18 CIndex = CIndex + 1.
19 UCIndex = U .
20 END IF
21 END FOR
22 IF (CIndex > 0)
23 SORT all expensive-edge clusters by the size,i.e., < Uτ(1), ..., Uτ(CIndex) >, ∀i, |Uτ(i)| ≤ |Uτ(i+1)|.
24 SORT < nπ(1), nπ(2), ..., nπ(k) > such that nπ(i) ≥ nπ(i+1),∀i.
25 t = 1. // π(t) is the index of each distinguished set.
26 FOR i = 1 to CIndex DO
27 IF (t ≤ k AND |Dπ(t) ∪ Uτ(i)| ≤ nπ(t))
28 Dπ(t) = Dπ(t) ∪ Uτ(i).
29 ELSE
30 REPEAT
31 t = t+ 1.
32 UNTIL (|Dπ(t) ∪ Uτ(i)| ≤ nπ(t) OR t > k).
33 IF (t > k)
34 break; // no more distinguished set to accommodate the cluster.
35 ELSE
36 Dπ(t) = Dπ(t) ∪ Uτ(i).
37 END IF
38 END IF
39 END FOR
40 END IF

Figure 6.22: The method to check for the expensive-edge cluster.
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Algorithm: CHEAP EDGE MAX
Key Concept: Applying Scheme II for the cheap-edge cores.
Input: G, < n1, n2, ..., nk >, and < D0

1, D
0
2, ..., D

0
k > where D0

i ∩D0
j = ∅, ∀i 6= j.

Output: < D1, D2, ..., Dk > such that D0
i ⊆ Di ⊆ V , |Di| = ni, and Di ∩Dj = ∅, ∀i 6= j.

E′: a set of edges in G, E′ ⊆ E.
V ′: the set of endpoints of E′, V ′ = {u, v : u→ v ∈ E′}.
G′: a subgraph consisting of E′ and V ′.
Degree[v]: the degree (in-degree plus out-degree) of vertex v in G′. It is updated whenever G′ changes.

1 SORT all edges by edge costs, S =< e1, ..., em >,∀i, C(ei) ≤ C(ei+1).
2 Di = D0

i ,∀i. // Initialization.
3 FOR Index=1 To k DO
4 i = 1; // i is the index of the edge.
5 WHILE (|DIndex| < nIndex) DO
6 Define marked = ∪kj=1Dj .
7 E′ = ∅, V ′ = ∅
8 Cost = C(ei).// set the current edge cost.
9 WHILE (C(ei) = Cost) OR (E′ = ∅) DO
10 Define βi = {u, v} where ei = u→ v.
11 IF (βi∩ marked =∅) // both endpoints of ei are not distinguished in any abstraction.
12 E′ = E′ ∪ {ei}. // add ei to G′

13 V ′ = V ′ ∪ βi. // add endpoints of ei to G′

14 END IF
15 i = i+ 1.
16 IF (C(ei) 6= Cost) AND (E′ = ∅)
17 Cost = C(ei). // change the current edge cost.
18 END IF
19 END WHILE
20 REPEAT
21 Select v′ from V ′ where Degree[v′] ≥ Degree[u], ∀u ∈ V ′.
22 DIndex = DIndex ∪ {v′};
23 V ′ = V ′ \ {v′}. // delete v′ from G′

24 E′ = E′ \ {u→ v′, v′ → u},∀u ∈ V ′ . // delete all edges on v′ from G′

25 UNTIL ((E′ = ∅) OR (|DIndex| = nIndex)).
26 END WHILE
27 END FOR

Figure 6.23: The CHEAP EDGE MAX procedure.

[59] and is therefore a classical NP-complete problem in computational complexity theory. Here we

apply the greedy strategy to this problem by choosing the vertex with the largest degree (the sum

of in-degree and out-degree). Lines 6-7 initialize the set to mark the distinguished vertices and the

subgraph G′(V ′, E′). Line 8 sets a standard edge cost Cost to form a group of edges which have

the same edge cost (Cost).

The WHILE loop of lines 9-19 adds edges together with two endpoints on these edges to the

subgraph G′. Line 15 obtains the index of the next edge. Lines 16-18 changes the current standard

edge cost if there is no edge in E′. This happens when all edges with costs Cost have been marked

distinguished in another abstraction.

The REPEAT loop of lines 20-25 iteratively selects the vertex v′ with the largest degree in G′,
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adds v′ to the distinguished set, deletes v′ as well as edges on v′ from G′(V ′, E′), and updates

the degree of the remaining vertices. Note that if two vertices u, v have the same degree (i.e.,

Degree[u] = Degree[v]), the vertex involved with more precedence constraints will be chosen.

Formally we define Px ={y : y ∈ DIndex and (x <p y or y <p x)}. If Degree[u] = Degree[v]

and |Pu| > |Pv|, then u is the choice. The loop is executed until |DIndex| = nIndex or all edges

in E′ are deleted, i.e., the distinguished set forms a vertex cover for E′ that is constructed in the

WHILE loop of lines 9-19.

There is a step of sorting edges by costs in non-decreasing order in this algorithm (line 1).

As in previous sections we define Pe = {u : x → y = e, u <p x or x <p u or y <p u or

u <p y}. If |Pei
| > |Pej

| and C(ei)=C(ej), then ei is in front of ej in the sequence, i.e., S =<

e1, ..., ei, ej , ..., em >.

6.4.3 Combining Greedy Methods for hmax

Algorithm: HYBRID MAX
Key Concept: To combine greedy methods for expensive-edge cluster and cheap-edge core.
Input: G, M , ω, < n1, n2, ..., nk >.
Output: < D1, D2, ..., Dk > such that Di ⊆ V , |Di| = ni, and Di ∩Dj = ∅, ∀i 6= j.

1 CHECK EXPENSIVE MAX (M , < n1, n2, ..., nk >, ω).
2 CHEAP EDGE MAX (G, < n1, n2, ..., nk >, < D1, D2, ..., Dk >).

Figure 6.24: The hybrid method

Our methods for defining abstractions combine the greedy methods for the expensive-edge clus-

ters and the cheap-edge clusters. Figure 6.24 illustrates HYBRID MAX. First we call the procedure

CHECK EXPENSIVE MAX to detect the expensive-edge clusters, then we call the greedy algo-

rithm to add cheap-edge clusters to the distinguished sets.

6.5 The Greedy Method for Precedence Constraints

A distinct feature of the SOP instance is the existence of the precedence constraints and it is attrac-

tive to design abstractions regarding these constrains as the first consideration. For the purpose of

comparison we define a greedy method called GREEDY CONSTRAINT to group vertices by just

considering the precedence constraints instead of the edge costs.

Assume that the transitive closure of the precedence relation has been computed for G. The

inputs of the GREEDY CONSTRAINT procedure include G and < n1, n2, ..., nk >. The output is

< D1, D2, ..., Dk > which specifies the distinguished vertices for each abstraction.

Figure 6.25 gives the pseudocode for GREEDY CONSTRAINT. The key concept is to group

vertices with corresponding precedence constraints. The FOR loop of lines 2-20 fills each distin-

guished set to capacity. The WHILE loop of lines 3-19 iteratively defines Pv to be the set of vertices
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Algorithm: GREEDY CONSTRAINT
Key Concept: To group vertices with corresponding precedence constraints.
Input: G, < n1, n2, ..., nk >
Output: < D1, D2, ..., Dk > where Di ⊆ V , |Di| ≤ ni, and Di ∩Dj = ∅, ∀i 6= j.

1 Di = ∅,∀i. // Initialization.
2 FOR i = 1 To k Do// i is the index of the distinguished set.
3 WHILE (|Di| < ni)
4 Define marked = ∪j 6=iDj .
5 Define Pv = {u : (u <p v or v <p u) and u /∈marked}.
6 Select x where x /∈ (Di∪ marked) and ∀y /∈ (Di∪ marked), |Px| ≥ |Py|.
7 IF (|Px| = 0)// the situation when no more constraints are to be considered.
8 RETURN //terminate the overall method and return < D1, D2, ..., Dk >.
9 END IF
10 Di = Di ∪ {x}.
11 Sort all vertices of Px, < u1, u2, ..., um > such that ∀i,ui ∈ Px and |Pui

| ≥ |Pui+1 |.
12 FOR u = u1 TO um Do // add each vertex of Px to Di.
13 IF (|Di| < ni)
14 Di = Di ∪ {u}
15 ELSE
16 break // to terminate the FOR loop if |Di| = ni.
17 END IF
18 END FOR
19 END WHILE
20 END FOR

Figure 6.25: The greedy method designed to group vertices with corresponding precedence con-
straints.

having constraints related to v, selects a vertex x related with more precedence constraints, adds x

to Di, and adds each vertex of Px to Di, until |Di| = ni. Line 4 defines the set of vertices that are

not distinguished in other abstractions. Line 5 defines Pv to be the set of vertices having constraints

related to v. Line 6 selects a vertex x that is not distinguished in any abstractions and is related to

the largest number of precedence constraints. Lines 8 is executed to terminate the overall algorithm

if no more constraints are to be considered. Line 10 adds vertex x to Di. Lines 11-18 adds each

vertex of Px to Di, until |Di| = ni.

Algorithm: GreedyP ADD
Key Concept: To combine greedy methods by first considering the constraints and then considering edge costs.
Input: G, α, < n1, n2, ..., nk >.
Output: < D1, D2, ..., Dk > such that Di ⊆ V , |Di| = ni, and Di ∩Dj = φ, ∀i 6= j.

1 GREEDY CONSTRAINT(G, < n1, n2, ..., nk >).
2 CHEAP EDGE ADD (G, α, < n1, n2, ..., nk >, < D1, D2, ..., Dk >).

Figure 6.26: The hybrid method for hadd

As shown in Figures 6.26 and 6.27 the GREEDY CONSTRAINT method is used to create ab-

stractions for both hadd and hmax with the combination of methods considering edge costs.
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Algorithm: GreedyP MAX
Key Concept: To combine greedy methods for expensive-edge cluster and cheap-edge core.
Input: G, < n1, n2, ..., nk >.
Output: < D1, D2, ..., Dk > such that Di ⊆ V , |Di| = ni, and Di ∩Dj = φ, ∀i 6= j.

1 GREEDY CONSTRAINT(G, < n1, n2, ..., nk >).
2 CHEAP EDGE MAX II (G, < n1, n2, ..., nk >, < D1, D2, ..., Dk >).

Figure 6.27: The hybrid method for hmax

6.6 Experimental Results

First, we define the following heuristics used in the experiments.

• greedy hadd: hadd generated from abstractions defined by the HYBRID ADD method.

• greedy hmax: hmax generated from abstractions defined by the HYBRID MAX method.

• random hadd: additive heuristics generated by abstractions defined by choosing distinguished

vertices randomly.

• random hmax: hmax generated from abstractions defined by choosing distinguished vertices

randomly.

• greedyP hadd: hadd generated from abstractions defined by the GreedyP ADD method.

• greedyP hmax: hmax generated from abstractions defined by the GreedyP MAX method.

• neighbourhood heuristics hneighbor: given an instance of the SOP defined by a weighted

directed graph G = 〈V,E,C, P 〉 with the start s and goal g vertices designated, and given

an intermediate state t = (`,U) and a goal state goal = (g, ∅), recall that in Section 6.1.6

neighbourhood heuristics for an SOP state t are defined as follows.

hout(t, goal) =
∑
v∈U∪{`}Out(v) where Out(v) is the minimum edge cost of v’s outgoing

edges whose other endpoint is u, u ∈ U ∪ {g}.

hin(t, goal) =
∑
v∈U∪{g} In(v) where In(v) is the minimum edge cost of v’s incoming

edges whose other endpoint is u, u ∈ U ∪ {`}.

In our experiments the neighbourhood heuristic value hneighbour is the maximum value of the

above two heuristics, i.e., hneighbour(t, goal) = max{hout(t, goal), hin(t, goal)}.

The aim of our experiments is to answer the following key questions.

• How do greedy hadd and hmax compare to random hadd and hmax?

• How do algorithms for creating greedy hadd and hmax that focus on edge costs compare to

those that focus on constraints for the SOP?
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• How do greedy hadd and hmax compare to neighbourhood heuristics for the SOP?

• How does greedy hadd compare to greedy hmax for the SOP?

• How well do the ideas learned for creating good additive abstractions for non-unit-cost prob-

lems while studying the SOP transfer to other problems with a different structure?

6.6.1 Experiments with Selected SOP Instances of TSPLIB

The DFBB algorithm for the SOP described in Section 6.1.5 is used in the experiments. Algorithms

are coded in C on a machine with an AMD Athlon(tm) 64 Processor 3700+ with a 2.4 GHz clock

rate and 2GB main memory.

The experiments of this section are running on benchmark problems contained in the Travel-

ing Salesman Problem Library (TSPLIB) [87, 89]. Twenty larger SOP problems are chosen from

TSPLIB and DFBB is run on them with a 30-minute time limit. We select these problems accord-

ing to three criteria. First the selected problems are of different sizes and structures. Second the

problems have more than 40 vertices. Third, problems of the same size have different number of

random precedence constraints. According to [2], problems selected from TSPLIB can be classified

as follows.

• Problems ft53.x, ft70.x, ry48p.x and kro124p.x are generated from ATSP instances of TSPLIB

by adding k random precedence constraints to the n×n cost matrix, where k = n
4 , n2 , n, 2×n

corresponding to the problem name extension (.1, .2, .3, .4).

• Problems prob100 and prob42 are randomly generated problems.

• Problems rbg378a and rbg358a are real-life problems derived from a stacker crane application[1].

Note that the above numbers (n4 ,
n
2 , n, 2 × n) are just the number of random constraints added

to the instances with a check to guarantee that there are no cycles for the constraints. Since the

precedence relation is transitive (i.e., x <p y, y <p z ⇒ x <p z), the number of precedence

constraints may increase when the transitive closure of the relation is computed for each instance.

Table 6.2 presents more detailed properties of each SOP instance. The Name column shows

the name of the instance. The n column gives the size of the cost matrix in the instance. The Best

Known Solution column provides the optimal solution cost (or the best known solution range if the

optimal cost is not known) of each instance listed on TSPLIB [2]. The No.of Constraints column is

the total number of constraints among the intermediate vertices after the transitive closure has been

computed. The constraints related to the start and the goal vertices are not counted in this column,

because to designate the start and goal vertices there are always n − 1 constraints for the start and

goal vertices, respectively. The P% column provides the actual percentage of constraints after the

transitive closure has been computed. P% = (m × 100%)/
(|I|

2

)
where m is the total number of
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Name n Best Known Solution No.of Constraints P% Edge Range
ry48p.1 49 [15220,15805] 12 1.1 [54,2782]
ry48p.2 49 [15524,16666] 26 2.4 [54,2782]
ry48p.3 49 [18156,19894] 132 12.2 [54,2782]
ry48p.4 49 [29967,31446] 596 55.1 [54,2782]

ft53.1 54 [7438,7570] 12 0.9 [21,1834]
ft53.2 54 [7630,8335] 30 2.3 [21,1834]
ft53.3 54 [9473,10935] 217 16.4 [21,1834]
ft53.4 54 14425 759 57.2 [21,1834]
ft70.1 71 39313 17 0.7 [331,2588]
ft70.2 71 [39739,40422] 48 2.1 [331,2588]
ft70.3 71 [41305,42535] 215 9.2 [331,2588]
ft70.4 71 [52269,53562] 1,325 56.5 [331,2588]

kro124p.1 101 [37722,40816] 33 0.7 [81,4545]
kro124p.2 101 [38534,41677] 68 1.4 [81,4545]
kro124p.3 101 [40967,50876] 256 5.5 [81,4545]
kro124p.4 101 [64858,76103] 2,305 47.5 [81,4545]

prob100 100 [1024,1385] 41 0.9 [1,500]
prob42 42 243 19 2.4 [1,100]

rbg378a 380 [2761,2883] 63,585 89.2 [0,33]
rbg358a 360 [2518,2599] 56,536 88.4 [0,33]

Table 6.2: Properties of selected SOP instances in TSPLIB.

constraints among the intermediate vertices after the transitive closure has been computed (i.e., the

values shown in the No.of Constraints column), and
(|I|

2

)
is the total number of unordered pairs of

intermediate vertices. The Edge Range column shows the range of the edge cost, i.e., the range of

values in the cost matrix.

Table 6.3 shows the scheme of abstractions and the size of memory that we used for each SOP

instance. The Name and n columns are as in Table 6.2. The Abs column shows the set of ab-

stractions used to generate heuristics. For example (10*2)(9*3) means that there are 5 abstractions:

2 abstractions with 10 distinguished vertices in each abstraction, and 3 abstractions with 9 distin-

guished vertices in each abstraction. The Memory column indicates the total size of each set of

PDBs used to store heuristics.

Note that the number of distinguished vertices in each of our abstractions ranges from 8 to 10.

In our experiments that is enough to show the benefits of using our greedy methods when designing

abstractions. In addition each corresponding PDB can be computed in reasonable time and accessed

easily for the heuristic search algorithms.

In the following Tables 6.4–6.10, we compare heuristics according to the suboptimal solution

costs found by DFBB within the 30-minute time limit. The Problem column shows the name of the

TSPLIB instance. The n column gives the size of the cost matrix in the instance. The third and fourth

columns of Tables 6.4–6.10 are the suboptimal solution costs found by DFBB with the 30-minute

time limit using the heuristics as shown on the headings of these columns. For example, in Table 6.4,

the third and fourth columns are the suboptimal solution costs found by DFBB using greedy hadd
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Problem n Abs Memory
ry48p.1 49 (10*2)(9*3) 792,832
ry48p.2 49 (10*2)(9*3) 792,832
ry48p.3 49 (10*2)(9*3) 792,832
ry48p.4 49 (10*2)(9*3) 792,832

ft53.1 54 (9*4)(8*2) 608,256
ft53.2 54 (9*4)(8*2) 608,256
ft53.3 54 (9*4)(8*2) 608,256
ft53.4 54 (9*4)(8*2) 608,256
ft70.1 71 (10*6)(9*1) 2,376,960
ft70.2 71 (10*6)(9*1) 2,376,960
ft70.3 71 (10*6)(9*1) 2,376,960
ft70.4 71 (10*6)(9*1) 2,376,960

kro124p.1 101 (9*11) 2,813,184
kro124p.2 101 (9*11) 2,813,184
kro124p.3 101 (9*11) 2,813,184
kro124p.4 101 (9*11) 2,813,184

prob100 100 (9*10)(8*1) 2,645,504
prob42 42 (10*4) 757,760

rbg378a 380 (10*36)(9*2) 83,662,848
rbg358a 360 (10*34)(9*2) 74,840,064

Table 6.3: The scheme of abstractions and the size of memory that we used.

and random hadd, respectively. The δ% column compares the suboptimal solution costs obtained

by using two different heuristics. It is measured as U2−U1
Ubest

× 100% where U1 is the solution cost

presented in the third column, U2 is the solution cost presented in the fourth column, and Ubest is the

best upper bound of the solution presented in Table 6.2. A value of δ% greater than zero indicates

that U1 is closer to the best known solution than U2, and vice versa. The larger absolute value of

δ%, the greater difference between U1 and U2 relative to Ubest. The Ratio column compares greedy

hadd (or greedy hmax) to the best known upper bound of the solution presented in Table 6.2. It is

measured as U1
Ubest

where U1 is the solution cost presented in the third column, and Ubest is the best

upper bound of the solution presented in TSPLIB. A ratio close to one indicates that U1 is close to

Ubest.

greedy hadd vs. random hadd

Table 6.4 compares greedy hadd and random hadd. The random hadd column shows the average

value of suboptimal solution costs obtained by 10 different hadd heuristics, each based on choosing

the distinguished vertices randomly. For most instances, values of the δ% column are greater than

10%. Note that for instance prob100 the value of δ% is greater than 25%.

The results indicate that for instances of different sizes and structures, greedy hadd outperforms

random hadd in terms of the quality of suboptimal solution found within a 30-minute time limit.
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Problem n greedy hadd random hadd δ% Ratio
ry48p.1 49 17,129 18,879 11% 1.08
ry48p.2 49 17,721 19,846 13% 1.06
ry48p.3 49 21,793 23,811 10% 1.10
ry48p.4 49 33,307 36,654 11% 1.06

ft53.1 54 8,472 9,538 14% 1.12
ft53.2 54 10,561 12,017 17% 1.27
ft53.3 54 12,376 14,242 17% 1.13
ft53.4 54 16,246 17,295 7% 1.13
ft70.1 71 42,512 44,676 6% 1.08
ft70.2 71 44,163 46,621 6% 1.09
ft70.3 71 46,894 49,492 6% 1.10
ft70.4 71 57,976 60,523 5% 1.08

kro124p.1 101 48,065 50,663 6% 1.20
kro124p.2 101 50,129 54,728 11% 1.20
kro124p.3 101 63,808 70,149 11% 1.07
kro124p.4 101 90,022 97,202 9% 1.18

prob100 100 1,766 2,163 29% 1.28
prob42 42 270 303 14% 1.11

rbg378a 380 3,998 4,185 7% 1.41
rbg358a 360 3,954 4,299 13% 1.52

Table 6.4: greedy hadd vs. random hadd

Problem n greedy hmax random hmax δ% Ratio
ry48p.1 49 18,069 19,813 11% 1.14
ry48p.2 49 18,911 20,352 9% 1.13
ry48p.3 49 22,623 23,403 4% 1.14
ry48p.4 49 34,848 36,272 5% 1.11

ft53.1 54 8,916 9,759 11% 1.18
ft53.2 54 9,527 11,843 28% 1.14
ft53.3 54 13,986 14,253 2% 1.28
ft53.4 54 16,594 17,259 5% 1.15
ft70.1 71 44,349 45,487 3% 1.13
ft70.2 71 45,260 47,433 5% 1.12
ft70.3 71 49,260 50,591 3% 1.16
ft70.4 71 60,695 61,767 2% 1.13

kro124p.1 101 49,204 50,559 3% 1.22
kro124p.2 101 53,406 57,349 9% 1.28
kro124p.3 101 66,631 70,344 6% 1.11
kro124p.4 101 97,155 98,560 5% 1.25

prob100 100 1,900 2,284 28% 1.37
prob42 42 271 306 14% 1.12

rbg378a 380 4,083 4,299 8% 1.44
rbg358a 360 4,125 4,456 13% 1.59

Table 6.5: greedy hmax vs. random hmax

greedy hmax vs. random hmax

Table 6.5 compares greedy hmax and random hmax. The random hmax column shows the average

value of suboptimal solution costs obtained by 10 different hmax heuristics, each based on choosing
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the distinguished vertices randomly.

For most instances, the values on the δ% column are greater than or close to 5%. Note that for

instances ft53.2 and prob100 the ratios are greater than 25%.

The results indicate that for instances of different sizes and structures, greedy hmax outperforms

random hmax in terms of the quality of suboptimal solution found within the time limit.

greedy hadd vs. greedyP hadd

Problem n greedy hadd greedyP hadd δ% Ratio
ry48p.1 49 17,129 18,013 6% 1.08
ry48p.2 49 17,721 19,794 12% 1.06
ry48p.3 49 21,793 23,171 7% 1.10
ry48p.4 49 33,307 36,669 11% 1.06

ft53.1 54 8,472 9,487 13% 1.12
ft53.2 54 10,561 11,693 14% 1.27
ft53.3 54 12,376 14,533 20% 1.13
ft53.4 54 16,246 16,694 3% 1.13
ft70.1 71 42,512 43,333 2% 1.08
ft70.2 71 44,163 45,937 4% 1.09
ft70.3 71 46,894 50,089 8% 1.10
ft70.4 71 57,976 59,767 3% 1.08

kro124p.1 101 48,065 49,653 4% 1.20
kro124p.2 101 50,129 53,921 9% 1.20
kro124p.3 101 63,808 64,176 1% 1.07
kro124p.4 101 90,022 93,290 4% 1.18

prob100 100 1,766 2,001 17% 1.28
prob42 42 270 281 5% 1.11

rbg378a 380 3,998 4,080 3% 1.41
rbg358a 360 3,954 4,156 8% 1.52

Table 6.6: greedy hadd vs. greedyP hadd

Table 6.6 compares greedy hadd and greedyP hadd. The results show that greedy hadd produces

better solutions than greedyP hadd in the given time limit. The greatest value of δ% is 20% for the

instance ft53.3, which indicates that greedy hadd substantially outperforms greedyP hadd for this

type of instance. The advantage of greedy hadd on ft70.x, kro124p.x and rbgxxxa are modest. One

reason is due to the increasing number of constraints which strengthen the importance of constraints

and weaken the importance of edge costs.

greedy hmax vs. greedyP hmax

Table 6.7 compares greedy hmax and greedyP hmax. The greatest value of δ% is 27% for the

instance ft53.2, while for instances ft70.4 and kro124p.2 δ% is less than 0. The advantage of using

greedy hmax is not consistent for different instances.
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Problem n greedy hmax greedyP hmax δ(%) Ratio
ry48p.1 49 18,069 18,947 6% 1.14
ry48p.2 49 18,911 18,922 +0% 1.13
ry48p.3 49 22,623 23,998 7% 1.14
ry48p.4 49 34,848 35,174 1% 1.11

ft53.1 54 8,916 9,694 10% 1.18
ft53.2 54 9,527 11,745 27% 1.14
ft53.3 54 13,986 14,386 4% 1.28
ft53.4 54 16,594 17,050 3% 1.15
ft70.1 71 44,349 44,647 1% 1.13
ft70.2 71 45,260 48,452 8% 1.12
ft70.3 71 49,260 51,522 5% 1.16
ft70.4 71 60,695 60,673 -0% 1.13

kro124p.1 101 49,204 50,755 4% 1.22
kro124p.2 101 53,406 53,187 -1% 1.28
kro124p.3 101 66,631 72,241 9% 1.11
kro124p.4 101 97,155 97,155 3% 1.25

prob100 100 1,900 2,204 22% 1.37
prob42 42 271 283 5% 1.12

rbg378a 380 4,083 4,155 3% 1.44
rbg358a 360 4,125 4,258 5% 1.59

Table 6.7: greedy hmax vs. greedyP hmax

Problem n greedy hadd hneighbor δ% Ratio
ry48p.1 49 17,129 18,306 7% 1.08
ry48p.2 49 17,721 19,258 9% 1.06
ry48p.3 49 21,793 23,006 6% 1.10
ry48p.4 49 33,307 36,940 12% 1.06

ft53.1 54 8,472 9,010 7% 1.12
ft53.2 54 10,561 10,695 2% 1.27
ft53.3 54 12,376 13,941 14% 1.13
ft53.4 54 16,246 16,513 2% 1.13
ft70.1 71 42,512 42,497 0% 1.08
ft70.2 71 44,163 45,901 4% 1.09
ft70.3 71 46,894 50,050 7% 1.10
ft70.4 71 57,976 60,274 4% 1.08

kro124p.1 101 48,065 49,161 3% 1.20
kro124p.2 101 50,129 55,438 13% 1.20
kro124p.3 101 63,808 65,379 3% 1.07
kro124p.4 101 90,022 88,228 -2% 1.18

prob100 100 1,766 1,929 12% 1.28
prob42 42 270 283 5% 1.11

rbg378a 380 3,998 4,122 4% 1.41
rbg358a 360 3,954 3,737 -8% 1.52

Table 6.8: greedy hadd vs. hneighbor

greedy hadd vs. hneighbor

Table 6.8 compares greedy hadd and hneighbor. In terms of the value of δ%, greedy hadd retains its

advantage for instances with a low percentage of constraints (i.e., instances with P% less than 2%
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as shown in Table 6.2). One exception is that for ft70.1, the suboptimal solution values found by

hneighbor and greedy hadd are very close. Note that hneighbor outperforms greedy hadd for instances

kro124p.4 and rbg358a (the ratios of these instances are less than zero). We notice that in Table 6.2

P% = 47.5% for kro124p.4 and P% = 88.4% for rbg358a.

The results indicate that the advantage of greedy hadd increases as the percentage of constraints

decreases. We observe that there exist certain situations (e.g. high percentage of constraints) which

make our greedy method not yield the best heuristics.

greedy hmax vs. hneighbor

Problem n greedy hmax hneighbor δ% Ratio
ry48p.1 49 18,069 18,306 2% 1.14
ry48p.2 49 18,911 19,258 2% 1.13
ry48p.3 49 22,623 23,006 2% 1.14
ry48p.4 49 34,848 36,940 7% 1.11

ft53.1 54 8,916 9,010 1% 1.18
ft53.2 54 9,527 10,695 14% 1.14
ft53.3 54 13,986 13,941 -0% 1.28
ft53.4 54 16,594 16,513 -0% 1.15
ft70.1 71 44,349 42,497 -5% 1.13
ft70.2 71 45,260 45,901 2% 1.12
ft70.3 71 49,260 50,050 2% 1.16
ft70.4 71 60,695 60,274 -1% 1.13

kro124p.1 101 49,204 49,161 -0% 1.22
kro124p.2 101 53,406 55,438 5% 1.28
kro124p.3 101 66,631 65,379 -2% 1.11
kro124p.4 101 97,155 88,228 -11% 1.25

prob100 100 1,900 1,929 2% 1.37
prob42 42 271 283 5% 1.12

rbg378a 380 4,083 4,122 1% 1.44
rbg358a 360 4,125 3,737 -15% 1.59

Table 6.9: greedy hmax vs. hneighbor

Table 6.9 compares greedy hmax and hneighbourhood. We observe that for instances ft53.3,

ft53.4 and kro124p.1, the values of δ% are zero indicating that the solution costs obtained by greedy

hmax and hneighbor are very close. For instances ft70.1, ft70.4, kro124p.3, kro124p.4 and rbg358a,

hneighbor beats greedy hmax as the values of δ% are less than zero. But for other problems such as

instances ft53.1, ft53.2 and prob100, greedy hmax outperforms hneighbor.

The results indicate that comparing to the performance of hneighbor, the advantage of greedy

hmax is not consistent.

greedy hadd vs. hmax

Table 6.10 compares greedy hadd and greedy hmax. In terms of the value of δ%, greedy hadd

outperforms greedy hmax for all instances except for instance ft53.2. We should mention that the
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Problem n greedy hadd greedy hmax δ% Ratio
ry48p.1 49 17,129 18,069 6% 1.08
ry48p.2 49 17,721 18,911 7% 1.06
ry48p.3 49 21,793 22,623 4% 1.10
ry48p.4 49 33,307 34,848 5% 1.06

ft53.1 54 8,472 8,916 6% 1.12
ft53.2 54 10,561 9,527 -12% 1.27
ft53.3 54 12,376 13,986 15% 1.13
ft53.4 54 16,246 16,594 2% 1.13
ft70.1 71 42,512 44,349 5% 1.08
ft70.2 71 44,163 45,260 3% 1.09
ft70.3 71 46,894 49,260 6% 1.10
ft70.4 71 57,976 60,695 5% 1.08

kro124p.1 101 48,065 49,204 3% 1.20
kro124p.2 101 50,129 53,406 8% 1.20
kro124p.3 101 63,808 66,631 6% 1.07
kro124p.4 101 90,022 97,155 9% 1.18

prob100 100 1,766 1,900 10% 1.28
prob42 42 270 271 +0% 1.11

rbg378a 380 3,998 4,083 3% 1.41
rbg358a 360 3,954 4,125 7% 1.52

Table 6.10: greedy hadd vs. greedy hmax

value of δ% is −12% for instance ft53.2.

The results indicate that greedy hadd is more competitive than greedy hmax for most instances

of different sizes and structures.

Anytime Behaviours

We compare the anytime behaviours of different heuristics. The following figures demonstrate the

anytime behaviours of hneighbour, greedy hadd/hmax, greedyP hadd/hmax and random hadd/hmax

on large TSPLIB instances. The x axis depicts the time t and the y axis is ratio of the distance

from U(t) (the suboptimal solution found at time t) to the best-known solution (or upper bound)

Ubest listed on TSPLIB. The ratio is computed as U(t)−Ubest

Ubest
× 100%. The smaller value of the ratio

indicates that U(t) is closer to the best-known solution (or upper bound).

We explain the legend of each figure as follows.

• NN: the anytime behaviour of hneighbor.

• greedy add: the anytime behaviour of greedy hadd.

• greedyP add: the anytime behaviour of greedyP hadd.

• random add X: the anytime behaviour of Xth random hadd.

• greedy max: the anytime behaviour of greedy hmax.
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• greedyP max: the anytime behaviour of greedyP hmax.

• random max X: the anytime behaviour of Xth random hmax.

We select instance prob100 as a sample instance to show the anytime behaviours of different

heuristics.

In Figure 6.28, the upper part compares three heuristics hneighbor, greedy hadd, greedyP hadd.

The bottom part compares greedy hadd with 10 random hadd. Greedy hadd outperforms other heuris-

tics within 30 seconds and retains its advantage until the end of time limit.

In Figure 6.29, the upper part compares three heuristics hneighbor, greedy hmax, greedyP hmax.

The bottom part compares greedy hmax with 10 random hmax. Greedy hmax also outperforms other

heuristics within 30 seconds and retains its advantage until the end of time limit (1800 seconds).

Our observations on the anytime behavious of all selected instances are summarizes as follows.

• Greedy hadd beats hneighbor for all instances except for instances ft70.1, kro124p.1 and

rbg358a. The benefits of using greedy hadd begin to show after about 10 seconds for these

instances except for instance prob42 and keeps the advantage to the end of the time limit.

• Within the time limit greedy hadd beats greedyP hadd for all 20 instances.

• Greedy hadd beats all random hadd on all instances except for instances ft70.3 and prob42.

Greedy hadd shows its advantage after 10 seconds and keeps the advantage to the end of the

time limit. For some instances (e.g., ry48p.2, kro124p.4, prob100), the advantage of using

greedy hadd is even more evident. For instance ft70.3, greedy hadd outperforms nine random

hadd but there exists one random hadd on which DFBB obtains a better suboptimal solution

than that obtained by using greedy hadd. We note that for instance prob42, greedy hadd does

not beat all random hadd after 10 seconds. Instead, greedy hadd starts to show its advantage

after more than 400 seconds and later it keeps the advantage until the end of the time limit.

• Within the time limit greedy hmax beats hneighbor for instances ry48p.1, ry48p.3, ry48p.4,

ft53.1, ft53.2, ft53.3, ft70.3, kro124p.2, prob100, prob42, and rbg378a. But for other in-

stances, hneighbor is comparable to greedy hmax or even outperforms greedy hmax.

• After 200 seconds greedy hmax beats greedyP hmax and keep its advantage until the end of the

time limit for all instances except for instance ft70.4. For ft70.4, greedyP hmax outperforms

greedy hmax after more than 1000 seconds. Then the suboptimal solution vlaues obtained by

greedy hmax and greedyP hmax are very close until the end of the time limit.

• Greedy hmax outperforms all 10 random hmax heuristics for instances ry48p.2, ry48p.3,

ry48p.4, ft53.1, ft53.2, ft53.4, ft70.2, kro124p4. Note that for instance ft53.2, the advan-

tage of greedy hmax is most evident. For instances prob100 (the bottom part of Figure 6.29)

and ft70.1 , the suboptimal solution costs obtained by using greedy hmax are very close to the
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Figure 6.28: The anytime behaviours for prob100, including the anytime behaviours of hneighbor,
greedy hadd, greedyP hadd and 10 random hadd.
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Figure 6.29: The anytime behaviours for prob100, including the anytime behaviours of hneighbor,
greedy hmax, greedyP hmax and 10 random hmax.
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best suboptimal solution costs obtained by using random hmax. However, for other instances,

using greedy hmax did not obtain the best suboptimal solution costs obtained by using random

hmax.

Evaluating Different Heuristics

Problem hneighbor greedy greedyP random greedy greedyP random
hadd hadd hadd hmax hmax hmax

ry48p.1 4 1 2 5 3 6 7
ry48p.2 4 1 5 6 2 3 7
ry48p.3 3 1 4 5 2 7 6
ry48p.4 7 1 5 4 2 3 6

ft53.1 3 1 4 5 2 6 7
ft53.2 3 2 4 7 1 5 6
ft53.3 2 1 7 4 3 6 5
ft53.4 2 1 4 7 3 5 6
ft70.1 1 2 3 6 4 5 7
ft70.2 3 1 4 5 2 7 6
ft70.3 4 1 5 2 3 7 6
ft70.4 3 1 2 4 5 6 7

kro124p.1 2 1 4 6 3 7 5
kro124p.2 6 1 4 5 2 3 7
kro124p.3 3 1 2 5 4 7 6
kro124p.4 1 2 3 6 4 5 7

prob100 3 1 4 5 2 6 7
prob42 4 1 3 6 2 5 7

rbg378a 4 1 2 7 3 6 5
rbg358a 1 2 4 7 3 6 5

avg 3.15 1.20 3.75 5.35 2.75 5.55 6.25

Table 6.11: The rank of the heuristics for each SOP instance.

Table 6.11 ranks different heuristics for each SOP instance. The Name column gives the name

of the instance. The heading of each remaining column provides the name of each heuristic. For

each instance, these columns give the rank of each heuristic based on the suboptimal solution found

after 30 minutes. A rank of 1 means that heuristic found a better solution than all the other heuristics.

The last row presents the average rank for each heuristic on these TSPLIB instances. Note that the

best average rank is 1.20 for greedy hadd, which indicates the benefits of using greedy hadd on these

TSPLIB instances.

Summary of the Results on Selected TSPLIB instances

In conclusion, Tables 6.4–6.11 report the comparisons between greedy heuristics and some sim-

ple alternative heuristics. According to the observations of these results, we answer the first four

questions mentioned at the beginning of this section.

• Both greedy hadd and hmax beat random hadd and hmax, respectively (see Tables 6.4 and
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6.5).

• The algorithms for creating greedy hadd and hmax that focus on edge costs outperform those

that focus on constraints (see Tables 6.6 and 6.7).

• Compared to neighbourhood heuristics, the benefits of using greedy hadd are evident, while

the benefits of using greedy hmax are not prominent (See Tables 6.8 and 6.9).

• The results empirically show the benefits of using greedy hadd. Compared to greedy hmax,

greedy hadd performs more consistently well for instances of different sizes and structures.

That is, within the same time limit DFBB using greedy hadd can find better solutions.

In the next section we report experimental results on the weighted Pancake puzzle to test whether

the ideas learned for creating good additive abstractions for SOP problems will transfer to other

problems with a different structure.

6.6.2 Experiments with Weighted Pancake Problems

In this section the key question is as follows.

• How well do the ideas learned for creating good additive abstractions for the SOP transfer to

other problems with non-unit edge costs?

We first introduce the weighted Pancake problem as another problem with non-unit edge costs.

Recall that a state of the n-Pancake problem is a permutation of n tiles (1, ..., n ) and has n-1

successors, with the (l − 1)th successor formed by reversing the order of the first l positions of the

permutation (2 ≤ l ≤ n). For the n-weighted pancake problem, we randomly create an n×n matrix

M . Given a state s, if tile i is in position 1, and tile j is in position l, then the cost of applying the

operator that reverses the first l positions of state s is Mi,j . That is, the cost of an operation (i.e., a

swap) is the cost indicated in M by the tile i that moves out of position 1 and the tile j that moves

into position 1.

Suppose that each entry in the cost matrix ranges from 1 to m (m ≥ 1). Then the average cost

of each edge is m+1
2 . It is clear that the average solution cost increases as the value of m increases,

which leads to the result that the search algorithm needs more time to find the optimal solution if

IDA∗ is applied (we will explain the reason why we apply IDA∗ instead of DFBB shortly). In our

experiments we set m = 10 and thus the average edge cost is 10+1
2 = 5.5.

Given a set of weighted Pancake instances I , we define some values as follows.

•
∑
i∈I Cost(i). Cost(i) is the optimal solution cost for instance i;

•
∑
i∈I maxDepth(i). maxDepth(i) is the maximum depth of the optimal solution of in-

stance i;
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•
∑
i∈I minDepth(i): minDepth(i) is the minimum depth for the optimal solution of instance

i;

•
∑
i∈I unitP (i). unitP (i) is the optimal solution over the corresponding unit-cost instances

of i;

•
∑
I unitP Cost(i). unitP Cost(i) is the solution cost of i’s corresponding unit-cost in-

stance. Each solution path is the path first found by IDA∗ for the corresponding unit-cost

instance. We can use the value of unitP Cost(i) as the upper bound for DFBB.

Our experiments are executed on I which includes 100 randomly generated instances of the

12-Pancake problem. For this set we observed that

•
∑
i∈I Cost(i) = 2791;

•
∑
i∈I maxDepth(i) = 1655;

•
∑
i∈I minDepth(i) = 1561;

•
∑
i∈I unitP (i) = 1060;

•
∑
I unitP Cost(i) = 5013.

It is evident that the average edge cost on the solution path first found by IDA∗ for the cor-

responding unit-cost instance
∑

I unitP Cost(i)∑
I unitP (i) = 5013

1060 ≈ 5 which is the value being close to the

average edge cost. However, the average edge cost of the optimal solution path ranges from 2791
1561 to

2791
1655 , i.e., from 1.68 to 1.79. Note that the average edge cost on these paths is significantly less than

5.5 (i.e., the average edge cost). It is because the edges on the optimal solution paths are only a part

of the overall edges in the state space as edges with large costs are always replaced by cheap edges

to construct the optimal solution path.

We apply IDA∗ instead of DFBB to solve weighted Pancake problems because the structure of

the state space for the weighted Pancake problem is different from that for the SOP. Recall that in

the SOP search space, each step must add a new vertex to the current path and therefore the total

steps of a solution equals the total number of the vertices except for the start vertex. In contrast, in

the search state space for the weighted Pancake puzzle the search depth of the optimal solution can

be much larger than the total number of the tiles, which leads to the result that DFBB may spend a

large amount of time without finding any suboptimal solution.

In Figures 6.30-6.32 we compare different search depths to show why we apply IDA∗ instead

of DFBB to the weighted Pancake problems. In these figures, the dashed line is the line of x = y

and each diamond dot shows information about one of the 100 12-Pancake problems. All figures are

based on results over the same set of 100 weighted Pancake problems. Some dots are overlapped

due to the same coordinates so that there may appear to be fewer than 100 dots in the figures.
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Figure 6.30: Comparing unitP (i) and the maximum search depth of DFBB on the weighted Pan-
cake. The time limit for the DFBB is five seconds for each instance.

Figure 6.30 compares unitP (i) and the maximum search depth of DFBB on the weighted Pan-

cake. The time limit for the DFBB is five seconds for each instance.

A set of random (6-6) additive abstraction-based heuristics is applied when searching with

DFBB. There are 3,456 entry values in the PDBs to store (6-6) additive abstraction-based heuristics.

The initial upper bound of each weighted Pancake problem is pre-defined by computing the cost of

the first-found solution path for the corresponding unit-cost problem. The y axis is unitP(i). The x

axis shows the maximum search depth of DFBB with the 5-second time limit in the state space of

the weighted Pancake.

For example, there exists a point in Figure 6.30 with coordinates (50,10) which means that the

solution depth is 10 for this 12-Pancake problem with unit cost, while the maximum search depth

is 50 by DFBB within 5-second time limit for the same problem with non-uniform edge costs. As

shown in Figure 6.30, the solution depth of the unit-cost Pancake is always less than 13, while for

the same instance with non-uniform costs, the maximum depth of DFBB with the time limit ranges

from 35 to 53 in the search space.

Figure 6.31 compares unitP (i) and maxDepth(i) (or minDepth(i)). The top part compares

unitP (i) and maxDepth(i). The bottom part compares unitP (i) and minDepth(i). IDA∗

with additive random (6-6) abstraction-based heuristics is applied to obtain maxDepth(i) and

minDepth(i) for each instance i.
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Figure 6.31: Comparing unitP (i) andmaxDepth(i) (orminDepth(i)). Top: comparing unitP (i)
and maxDepth(i). Bottom: comparing unitP (i) and minDepth(i).
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The y axis is unitP (i). In the top part of Figure 6.31 the x axis shows maxDepth(i). In the

bottom part of Figure 6.31 the x axis shows minDepth(i).

For example, there is a point in the top part of Figure 6.31 with coordinates (12,10) which means

that the solution depth is 10 for this Pancake problem with the unit cost, while the maximum search

depth is 12 to find the optimal solution to the same problem with non-uniform edge costs. As shown

in Figure 6.31, the search depth of the optimal solution to the weighted Pancake ranges from 10 to

24, while the solution depth of the unit-cost Pancake ranges from 8 to 12.

Figure 6.32 compares the different search depths over 100 weighted 12-Pancake problems. For

each problem, we obtain the maximum and minimum search depths for IDA∗ to find an optimal

solution and the maximum search depth for DFBB within a 5-second time limit. A set of random

(6-6) additive abstraction-based heuristics is applied for both search algorithms (IDA∗ and DFBB).

The initial upper bound used by DFBB for each weighted Pancake problem is pre-defined by com-

puting the cost of the first-found solution path for the corresponding unit-cost problem. The x axis

shows the maximum search depth using DFBB with the 5-second time limit in the state space of the

weighted Pancake. In the top part of Figure 6.32 the y axis is maxDepth(i); in the bottom part the

y axis is minDepth(i).

For example, there is a point in the top part of Figure 6.32 with coordinates (50, 15) which means

that the maximum solution depth is 15, while the maximum search depth by DFBB with 5-second

time limit is 50 which is more than 3 times deeper than the maximum solution depth. As shown

in Figure 6.32 DFBB with the time limit always goes deeper than the depth needed to obtain an

optimal solution. In the following figure, we compare the initial upper bounds to the actual solution

cost to indicate an important reason why DFBB with the time limit always goes deeper than the

depth needed to obtain an optimal solution.

Figure 6.33 compares the optimal solution costs (Cost(i)) to unitP Cost(i) which is used by

DFBB as the initial upper bounds. The dashed line in this figure is the line of y = 1
2x and the

diamond dots show the distribution of the optimal solution cost and the initial upper bound for each

problem. The x axis presents the initial upper bounds used by DFBB and the y axis shows the

optimal solution costs. For example, there is a point in Figure 6.33 with coordinates (66, 30) which

means that the initial upper bound used by DFBB is 66, while the actual solution cost is 30 which is

less than the half value of the corresponding initial upper bound for DFBB.

As shown in Figure 6.33 the solution costs of the weighted 12-Pancake problems range from

20 to 35, while the corresponding initial upper bounds range from 24 to 75. Within 100 random

instances, about 60% of instances have the initial upper bounds which are equal to or close to

twice of the corresponding solution costs. DFBB can go deeper than the depth needed to obtain an

optimal solution if the initial upper bound is much larger than the optimal solution cost as it is in

these problems. This is an important reason to explain that in our experiments for most instances

DFBB with the time limit goes deeper than the depth needed to obtain an optimal solution. Therefore
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Figure 6.32: Comparing maxDepth(i) (or minDepth(i)) and the maximum depth of DFBB with
a 5-second time limit over 100 weighted 12-Pancake problems. Top: comparing maxDepth(i) and
the maximum search depth of DFBB. Bottom: comparing minDepth(i) and the maximum search
depth of DFBB.
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optimal solution costs vs. the upper bounds used by DFBB
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Figure 6.33: Comparing the optimal solution costs to the initial upper bounds used by DFBB. The
scale on the y-axis is half the scale on the x-axis, so the diagonal line represents y = 1

2x.

DFBB is not a good choice for the weighted Pancake puzzle. In the following experiments IDA∗ is

used instead.

n Abs greedy hadd random hadd Ratio greedy outperforms random
12 (6*2) 345,148,053 1,037,619,898 3.01 81%

Table 6.12: greedy hadd vs. random hadd

Table 6.12 compares the performance of IDA∗ using greedy hadd and random hadd. The n

column gives the size of the pancake instance. The Abs column shows the set of abstractions used

to generate heuristics. Here (6*2) means that there are 2 abstractions with 6 distinguished vertices

in each abstraction. The greedy hadd column is the average number of nodes generated in solving

100 randomly generated start states by using hadd generated by HYBRID ADD. The random hadd

column is the average number of nodes generated in solving 100 randomly generated start states

by using 100 sets of random hadd. The Ratio column compares the nodes generated by using two

different heuristics. It is measured as N2
N1

whereN1 is number of nodes presented in the third column,
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N2 is the number of nodes presented in the fourth column. The greedy outperforms random

column shows the percentage of the 100 randomly generated heuristics that are outperformed by

greedy hadd.

The results empirically show the benefits when using greedy hadd (i.e., hadd generated by HY-

BRID ADD), because the use of greedy hadd results in a reduction in nodes generated comparing to

using random hadd.

n Abs greedy hmax random hmax Ratio greedy outperforms random
12 (6*2) 69,199,466 205,552,030 2.97 77%

Table 6.13: greedy hmax vs. random hmax

Table 6.13 is the same as Table 6.12 but for hmax. As shown in Table 6.13, greedy hmax

generated by HYBRID MAX outperforms random hmax in terms of the number of nodes generated.

Greedy hmax beats over 70% of the random hmax heuristics.

Comparing hadd and hmax shown in Tables 6.12 and 6.13, we note that IDA∗ using greedy

hmax generates 4 times fewer nodes than IDA∗ using greedy hadd. In addition random hmax also

outperforms greedy hadd.

These experimental results show that our greedy methods can be applied to some non-unit-cost

problems with a different search structure. The resulting heuristics based on greedy abstractions

outperforms the random heuristics in terms of the nodes generated. The comparisons of hadd and

hmax show that hmax is superior to hadd when the size of the weighted Pancake problem is relatively

small and there is sufficient memory to store heuristics based on abstractions of relatively large size.

6.7 Chapter Summary

We formalized a novel way of generating additive and non-additive heuristics for the SOP state

space. We studied methods of defining additive and non-additive abstractions for the problems with

non-unit edge costs.

We explored the key concepts to generate good abstractions for hadd and hmax, respectively.

Some greedy methods of choosing good abstractions were designed and discussed. The trade-off of

greedy methods used in the method was discussed.

We ran experiments over selected TSPLIB instances using both hadd and hmax generated from

random abstractions and greedy abstractions. The results indicate the benefits using heuristics based

on greedy abstractions for these instances. hadd and hmax are compared and discussed.

We introduced a new version of the pancake problem called the weighted pancake puzzle. We

experimented over random instances of the weighted pancake puzzle. The experimental results show

that the ideas learned for creating good abstractions for non-unit-cost problems while studying SOP

can be transferred to another problem with a different search structure.
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For most TSPLIB instances, greedy hadd is superior to greedy hmax in terms of the suboptimal

solution found within a given time limit. For the weighted pancake problem, the comparisons be-

tween hadd and hmax demonstrate that additive abstractions are not always superior to the standard,

maximum-based method for combining multiple abstractions.
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Chapter 7

Conclusions and Future Directions

In this thesis, we have presented a formal, general definition of additive abstractions that can be

applied to any state space and proved that heuristics based on additive abstractions are consistent as

well as admissible.

Our definition formalizes the intuitive idea that abstractions will be additive provided that the

cost of each operator is divided among the abstract spaces, and we have presented two specific,

practical methods for defining abstract costs, cost-splitting and location-based costs. These methods

were applied to two standard state spaces of combinatorial puzzles that did not have additive ab-

stractions according to previous definitions: TopSpin and the Pancake puzzle. Additive abstractions

using location-based costs evidently reduce search time for the 17-Pancake puzzle. We also report

negative results demonstrating that additive abstractions are not always superior to the standard,

maximum-based method for combining multiple abstractions.

A distinctive feature of our definition is that each edge in an abstract space has two costs instead

of just one. This feature has enabled us to develop a way of testing if the heuristic value returned

by additive abstractions is provably too low (i.e.,infeasible). This test produced no speedup when

applied to the Pancake puzzle, but roughly halved the search time for the sliding tile puzzle and in

most of our experiments with TopSpin.

Using the new definition, we also explored the applications of additive abstraction-based heuris-

tics in two state spaces with non-uniform edge costs: the Sequential Ordering Problem (SOP) and

the weighted Pancake puzzle. We investigated the design of good abstractions for instances with

special properties. Experiments showed that compared to some alternative heuristics, well chosen

abstraction-based heuristics can enhance the quality of suboptimal solutions for large SOP instances

and reduce search time for the weighted Pancake problems.

7.1 Future Directions

We have investigated the general definitions of additive abstractions and addressed several key issues

for the design of good abstractions. There are numerous possibilities that can be investigated as
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future work:

1. The new theory and methods reported in this thesis are very general—they apply to a wide

variety of application domains. However most of the successful abstractions are not chosen

automatically for all domains with different properties and structures. We should investigate

specific guidelines for automatically applying these new ideas to an arbitrary domain.

2. Methods for defining costs. Our study shows that additive abstractions are not always the best

abstraction method. In our experiments the solution cost calculated by an individual additive

abstraction can sometimes be very low. In the extreme case, which actually arises in practice,

all problems can have abstract solutions that cost 0. This imposes a challenge for defining the

primary cost of an abstract state transition to improve the quality of additive abstractions in

this situation.

3. Regarding the design of abstractions for the SOP, we define the concepts of the cheap edges

and expensive edges. Further research is needed to offer guidelines for these rules considering

different structure properties.

4. Greedy Abstractions. Some experiments show that greedy abstractions do not always have

the best performance compared to those of random abstractions. We need to investigate the

trade-off of different abstraction schemes and improve our greedy abstractions for different

domains.

5. Up to now we can only detect the infeasibility of hadd. The study of the infeasibility of hmax

will be the next step of our research. In addition it would be of interest to investigate how

to best integrate structure properties into the presented scheme to identify infeasibility more

efficiently, and to analyse what impact this would have on the quality of heuristics and the

performance of heuristic search.

6. Generally, we can safely add one to an infeasible heuristic value for problems with unit edge

cost. But this improvement seems weak when most of the edges cost more than one. It is

necessary to explore the method to enhance the increment without losing the admissibility

of the infeasible heuristic values. One way is to introduce the second best cost based on the

abstraction for the improvement. But there is a space penalty because we need to store more

primary costs in memory and it is not clear if it is the best way to use this extra memory.

7. The applications of abstraction-based heuristics are not restricted to the areas of combinato-

rial problems and the SOP. More powerful abstraction-based heuristics for other pathfinding

problems should be addressed.

8. The extension to the heuristic search planner. Different heuristics target different bolts of

the planning complexity. It is challenging and interesting to design greedy abstractions to
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compose the individual strengths of numerous heuristics which will enable us to solve a larger

range of planning tasks and solve each task more efficiently.
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