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ABSTRACT

This study focuses on numerical evaluation of the response and recovery of turbulent pipe

flow to three-dimensional perturbed wall changes at a range of Reynolds numbers. These

perturbations (pipe inserts) were designed based on distinct azimuthal Fourier modes cor-

responding to m = 3 (Case I), m = 15 (Case II), and their superposition at m ∈ 3 + 15

(Case III). A thorough validation and verification analysis enabled creating a benchmark

study in simulating perturbed wall-bounded turbulent flows using turbulence models. The

long-lasting response of the flow and the recovery was examined by characterizing both the

mean and turbulent fields in the wake of pipe inserts for each Reynolds number. Although a

fast turbulence decay was observed immediately past the perturbation for all cases at higher

Reynolds numbers, Case I showed a faster overall recovery compared to the other two cases

with higher Fourier Modes. The flow response for Case I depicted a monotonic response,

while the other two cases presented a non-monotonic second-order response characteristic

along with a delayed recovery trend. Dominant flow structures were further identified in the

downstream wake of each wall shape, which enabled a qualitative description of potential

mechanisms behind the observed recovery trends. This study was then extended to the im-

plications of Reynolds number. Increasing the Reynolds number was identified to prolong

the flow recovery until it approached an asymptotic range at Re ≥ 7.5× 104. The recovery

trend was scaled with Re4 for both the mean velocity and turbulence kinetic energy. In

addition, the mean velocity along the wake centerline showed two peaks, where the location

of peaks followed a power-law trend in the form of Lp/D ∝ Re4/3. The long-lasting flow

response impeded the return to the fully-relaxed state at a distance of 20D, even for the

lowest Reynolds number considered here. Overall, the recovery exhibited a second-order

response. This study provides a thorough characterization of targeted turbulent pipe flow

response and recovery with applications in flow manipulation in pipelines for reduced drag,

improved efficiency, lower rates of erosion and corrosion, as well as lower greenhouse gas

emission for energy transportation.
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Chapter 1

INTRODUCTION

The response and recovery of pipe flow perturbed by targeted wall shapes, corresponding to

certain azimuthal Fourier modes, is essential in fundamental understanding of turbulent flow

dynamics. Particularly, this study sets the platform to investigate the dynamics of Large-

Scale Motions (Jiménez, 1998; Balakumar and Adrian, 2007) and Very-Large-Scale Motions

(Kim and Adrian, 1999; Guala et al., 2006), as well as their manipulation implications

on flow response and recovery. Using computational fluid dynamics (CFD), the flow past

targeted perturbations (pipe-inserts) were examined in three dimensions. Three distinct

wall geometries were simulated at a wide range of Reynolds numbers, which corresponded to

Re = U∞D/ν = 5× 103 − 1.58× 105. Here, D is the pipe diameter, ν is the fluid kinematic

viscosity, and U∞ is the bulk inlet velocity. This works expands on the experiments of

Van Buren et al. (2017) on turbulent pipe flow over pipe-inserts with walls shapes based

on certain azimuthal Fourier modes. This dissertation investigates the implications of three

wall shapes (Figure 1.1) targeting Fourier modes m = 3, 15, and 3 + 15 at a range of Re.

1.1 Overview

Since the pioneering work of Ludwig Prandtl in 1904 on the boundary layer theory devel-

opment of viscous flows (Schlichting and Gersten, 2016), there have been numerous studies

1



(a) (b)

(c)

Figure 1.1: Schematics of the pipe-insert resembling Fourier mode (a) m = 3, (b) m = 15,
and (c) m ∈ 3 + 15.

attempted to characterize (Bradshaw and Wong, 1972; Balachandar, 1990), scale (Roache,

1982; Zagarola and Smits, 1998), and model (Deardorff et al., 1970; Launder and Spalding,

1983; Wilcox et al., 1998) the dynamics of separated flows. These phenomena can be found

in internal (Simpson, 1989) and external (Von Kármán, 1963) flows alike, where the flow

separation past wall-mounted obstacles or the existence of steps in elevation is often accom-

panied by a reattachment. This has been a challenging topic for modeling and predicting

various turbulence behaviors (Good and Joubert, 1968; Eaton and Johnston, 1981; Adams

and Johnston, 1988; Tomas et al., 2015; Van der Kindere and Ganapathisubramani, 2018).

The flow separation is of considerable interest for several reasons. In the engineering con-
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text, rough surfaces may be used to enhance heat transfer, delay transition, reduce drag,

low pressure loss, improve turbulence mixing, and manipulate the rate of erosion and corro-

sion (Nesic and Postlethwaite, 1990; Leonardi et al., 2003). Their application includes a wide

range of engineering configurations, including pipes (Shah et al., 2012; Yamagata et al., 2014)

and channel flows (Kim et al., 2001; Saito and Pullin, 2014), as well as external flows, i.e.,

flow over buildings in urban areas (Paterson and Apelt, 1989; Baskaran and Kashef, 1996),

flow over vehicles (Hucho and Sovran, 1993; Katz, 2006), and flow past fixed-wing aircrafts

(Ravindran, 1999; Gursul et al., 2014). The particular application that motivated this dis-

sertation, however, was on lowering the greenhouse gas emissions associated with energy

transportation using pipelines through enhanced axial flow acceleration, increased mixing

that reduces condensation and slugging, lowered pressure losses, and minimized rates of

erosion and corrosion.

Many researchers focused on the flow separation phenomenon induced by sudden vari-

ations of the wall condition over the past decades. This included large-step (defined as

h/δ ≫ 1, where h is the perturbation height and δ presents the boundary layer thick-

ness), small-step (h/δ ≪ 1), and smooth-curved boundaries. The large and small-step wall-

mounted obstacles, such as backward and forward-facing steps, produced a single separation

point followed by a wake region, which is not affected by the far-downstream flow conditions,

i.e., presence of another perturbation. In particular, a large backward-facing step has been

the topic of interest for numerous studies that characterized flow over abrupt changes in

surface conditions (Bradshaw and Wong, 1972; Adams and Johnston, 1988; Simpson, 1989;

Jovic and Driver, 1995). In case of internal flows, pipe flow past sudden perturbations were

shown to experience contraction and thereby exhibit a class of out-of-equilibrium flows with

complex characteristics (Smits et al., 1979, 2019). As a result, the flow response to the step-

change revealed an overshoot of flow parameters in the regions close to perturbation, i.e.,

amplification of Reynolds stresses, larger pressure gradients. This introduced long-lasting

changes of flow structures in the wake region that extended far downstream. Therefore,

3



extensive studies have explored the immediate flow response and recovery past large-step

wall-mounted obstacles in pipes and channels (Smits et al., 1979; Durst and Wang, 1989;

Yamagata et al., 2014; Smits et al., 2019; Martinuzzi and Tropea, 1993; Leonardi et al.,

2003). However, limited studies focused on the flow over small steps or perturbations. The

early experimental studies of this topic, such as Durst and Tropea (1983) and Perić and

Tropea (1993), investigated the turbulent flow over surface-mounted obstacles in plane and

axisymmetric geometries. Later, Durst and Wang (1989) experimentally studied the re-

sponse of turbulent flow past an axisymmetric small-step obstacle at a range of Reynolds

numbers. This was then expanded by the experiment of Jiménez (2004), who suggested that

small steps acting as isolated roughness elements have a considerable impact on the wake

characteristics. More recently, Smits et al. (2019) experimentally investigated the turbulent

pipe flow perturbed by a single thin square bar roughness element with bar heights of 0.05D

and 0.1D at Re = 1.56 × 105. Their analysis included the flow response and quantification

of the recovery process by tracing the transport of Reynolds shear stress in the wake zone.

They also observed a prolonged recovery behavior for the flow past the smaller roughness

element that implied an extended region of lower skin friction downstream of the pertur-

bation. Smits et al. (2019) looked at the feasibility of introducing sudden periodic changes

in surface conditions to achieve an extended zone of lower turbulence levels, lower surface

friction, and reduced drag. However, their study was limited in terms of introducing detailed

recovery mechanisms and their effects with respect to Reynolds number. This was then ex-

panded by Goswami and Hemmati (2020, 2021), who investigated the response and recovery

of turbulent pipe flow over single and multiple tandem square bar roughness elements. They

addressed previous experimental knowledge limitations by conducting numerical simulations

using a larger domain and a wider range of Reynolds numbers (5× 103 − 1.56× 105).

Past studies have revealed some intriguing aspects of high Reynolds number turbulent

flows subjected to small abrupt changes in surface conditions. For example, in the recent

experiment of Van Buren et al. (2017) the wall shape varied sinusoidally in the axial direc-
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tion, and the maximum perturbation height was comparable to the experiments of Smits

et al. (2019). Their study was mainly focused on manipulation of the Large-Scale Motions

(LSMs) and Very-Large-Scale Motions (VLSMs) in wall-bounded turbulence by designing

the circumferential wall-shape based on specific azimuthal Fourier modes. However, there

are no comprehensive studies that look at the flow response and recovery for this particular

problem over a large range of Reynolds numbers. The current study addressed the existing

gap in the literature on characterizing the response and recovery of turbulent pipe flow with

targeted perturbations at a wide range of Reynolds numbers.

This work is part of a larger project that looks at new technologies to improve the

efficiency of pipes for energy transportation towards lower greenhouse gas emissions. Thus,

the application of this work in the energy industry, especially in Alberta, is enormous.

However, the fundamental aspects of this study has a broad reach in industrial applications,

such as sewage systems, water treatment plants, geothermal infrastructure, coolant systems,

heat exchangers, and space vehicles. Here, the principal interest is in designing energy

transport pipelines to provide operational benefits while enhancing the life span of facilities

and reducing maintenance costs. For example, the presence of high viscous fluids, e.g., crude

oil bitumen (Muñoz et al., 2016), amplifies the wall shear stress and increases friction on the

pipe walls. This is also the case for water sewage pipelines, where the fluid has a mixture

of various phases, i.e., dilute, slurry. Besides, blockades in pipeline systems resulting from

slog formation is another prominent issue that needs to be considered while designing the

system (Mendes et al., 1999). In the energy industry, abrupt variations in the form of steps

(Perić and Tropea, 1993), roughness elements (Smits et al., 2019) and smooth-wall variations

(Van Buren et al., 2017) can be manipulated to introduce flow disturbances and improve

mixing to decrease the rate of corrosion and erosion (Ilman et al., 2014). Moreover, Smits

et al. (2019) recommended that introducing sudden wall-changes in the periodic patterns

can provide extended regions of lower drag in the downstream wake by minimizing pressure
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m=15 (Case II)
m ∈ 3+15 (Case III)

m=3 (Case I)

(a) (b) (c)

Figure 1.2: Side view of pipe-insert geometries in axial direction indicating (a) Case I, (b)
Case II, and (c) Case III.

m=3 (Case I) m=15 (Case II) m ∈ 3+15 (Case III)

Baseline

(a) (b) (c)

Figure 1.3: Schematics of the pipe-insert cross-sections representing (a) Case I, (b) Case II,
and (c) Case III.

losses and transporting the stress concentrations away from the walls. Therefore, this can

be used as a novel passive flow control technique with extensive operational benefits.

1.2 Pipe-Inserts

Pipe-inserts are three-dimensional (3D) sinusoidally varying wall geometries that were de-

signed to target specific azimuthal Fourier modes (see Figure 1.2). In particular, three

distinct azimuthal Fourier modes were targeted, corresponding to m = 3 (Case I), m = 15

(Case II), and m ∈ 3+15 (Case III). The purpose of introducing these pipe-inserts was to di-

rectly manipulate secondary flows (Prandtl, 1953; Perkins, 1970; Anderson et al., 2015) that

are induced by spanwise gradients of Reynolds stresses (Van Buren et al., 2017). Gessner

(1973), experimentally investigated the mean flow vorticity balance along a corner bisector
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and suggested that gradient of Reynolds stresses direct the flow towards the corner in the

diagonal direction. Also, Einstein and Li (1958) implied that gradients of Reynolds stresses

acting as the production terms of the streamwise vorticity, can induce the formation of

secondary flow.

In addition, a handful of studies, e.g., Bailey and Smits (2010); Baltzer et al. (2013);

Hellström and Smits (2014); Hellström et al. (2016); Van Buren et al. (2017) revealed that

the azimuthal Fourier mode corresponding to m = 3, which was identified by 3 pairs of

azimuthal structures (low/high momentum) contained the highest magnitude of turbulence

kinetic energy (k). The self-similarity was further identified for another few azimuthal Fourier

modes (i.e., m ∈ [5, 15, 32]) which hinted at the possibility of introducing a novel passive

flow control strategy by targeting specific modes. These perturbations were introduced in

the main domain, whose geometries were created based on the experiments of Van Buren

et al. (2017). A schematic of the maximum variation in cross-sectional shape is presented in

Figure 1.3.

The perturbation amplitude (am) advanced smoothly as a cosine wave in streamwise

(axial) direction, where the average displacement angle of the wall with respect to the axial

location was 2.8◦ and 1.4◦ for Case I and Case II, respectively, following the experiments of

(Van Buren et al., 2017). The cross-sectional corrugation was outlined based on the following

formulation in radial direction:

r(θ,m, x) =
D

4

[︄
2 +

(︂
cos(

πx

2D
) + 1

)︂∑︂
m

amsin(mθ)

]︄
. (1.1)

Here, r indicates the radial distance as a function of the azimuthal angle (0 ≤ θ ≤ 2π),

Fourier mode number (m), and the axial location (−2D ≤ x ≤ 2D). The total length of

the pipe-inserts was 4D, where D = 2R represents the pipe diameter and R is the pipe

radius. The amplitude of the perturbation was am = 0.2 for Case I, am = 0.1 for Case II,

and am ∈ {0.2, 0.1} for Case III, with Case III being the superposition of Case I and Case
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II. The maximum perturbation height (h) was 0.1D, 0.05D, and 0.15D for Case I, Case II,

and Case III, respectively. The change in cross-sectional area of the pipe-inserts was based

on the following formulation (Van Buren et al., 2017):

∆A =
1

2

∑︂
m

(
2am
D

)2, (1.2)

with a maximum change of 2% for Case I, 0.5% for Case II, and 2.5% for Case III.

1.3 Tools

Initially, a three-dimensional CAD model of the pipe-insert was developed for each case. The

fluid domain, or pipe system, was meshed using ANSYS ICEM, as one of the most potent

and well-known mesh generation tools, by means of three-dimensional hexahedral grids. The

simulations were conducted using the Open-source Field Operation And Manipulation (Open-

FOAM) as the main solver, which is formulated based on the finite volume method. “Foam”

was primarily introduced by Henry Weller in 1989, where the libraries and software were

designed based on C++ language for CFD simulations. Later in 2004, it was first released

as an open-source finite volume software for CFD under the name of “OpenFoam”, including

various libraries, solvers, and pre− and post−processing tools. A series of approaches were

performed to determine the best performing solver, in which the Standard k − ε turbulence

model was nominated for modeling the turbulence effects in the flow, details of which are

presented in Chapter 3. In terms of the turbulence modeling, detailed formulations for the

Standard k − ε model are provided in Chapter 2. The data obtained from simulations were

then extracted and processed using a combination of Paraview, Tecplot, and MATLAB.
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1.4 Motivation

Although the flow past large-scale wall-mounted obstacles (h/δ ≫ 1) has been studied

extensively over the past few decades (Schofield and Logan, 1990; Martinuzzi and Havel,

2000; Farhadi and Rahnama, 2006; Doolan and Moreau, 2016; Yin et al., 2020), the recovery

of the perturbed flow past small-scale (h/δ ≪ 1) wall-changes towards the equilibrium

conditions of the new surface following such a transition is far from understood, to date.

This includes studies on the dynamics of separated flows (Bradshaw and Wong, 1972; Kim

et al., 1980; Kiya and Sasaki, 1983; Dimaczek et al., 1989; Jovic and Driver, 1995; Mollicone

et al., 2017), and boundary layers (Smits et al., 1979; Hoffmann et al., 1985; Simpson, 1989).

However, the investigation of flow response and recovery over small-scale uniquely curved

walls at a range of Reynolds number remains unexplored. Here, numerical simulations are

used to provide physical insights into the flow dynamics and recovery behavior. These

insights address the existing knowledge gap in explaining how different targeted wall-shapes

dictate the flow response and recovery through the development and interaction of different

flow structures in the downstream wake.

This study was industrially motivated by technology developments to reduce greenhouse

gas emissions in extraction, processing, and transportation of energy and other bi-products.

Particularly, this study combines fundamental analysis of flow dynamics in pipes, wall-

bounded turbulent boundary layers, and wakes to introduce a new concept for pipe flow

manipulation. The main objective for the energy industry, which is the main end-user of the

final technology, is to reduce pressure losses (reduced pump energy requirement), increase

axial flow rate (led to faster transportation of products), lower rates of erosion and corro-

sion, and minimize condensations or slur formation. These benefits will translate to lower

emissions in transportation of energy and energy-products using pipelines. It also increases

the safety of these systems, which is essential for the economic and environmental prosperity

of Canada.
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1.5 Research Objectives

The primary research objectives are to:

(1) characterize the dynamics of flow manipulation based on targeted wall shapes;

(2) determine and characterize the turbulence response and recovery behavior past tar-

geted wall-shapes;

(3) investigate, thoroughly, disturbed flow properties due to the pipe-insert shapes, i.e.,

mean axial velocity, velocity and pressure gradients, Reynolds stresses, turbulence

kinetic energy;

(4) evaluate the effect of Reynolds number on flow disturbance, response, and recovery,

due to targeted wall-shapes.

To this effect, the current study focuses on turbulent flow past a 3D pipe-insert that fol-

lows three distinct azimuthal Fourier modes, m = 3, m = 15, and m ∈ {3 + 15}. The

detailed mechanisms and differences for different pipe-insert geometries are compared based

on azimuthal Fourier modes at a high Reynolds number of 1.58 × 105. This comparison

provides insightful information on the flow dynamics at three different targeted wall-shapes.

Moreover, this study aims to detailed characterization of turbulent pipe flow disturbance,

response, and recovery due to targeted perturbations, in the form of curved walls, at a wide

range of Reynolds numbers (5×103−1.58×105). This includes developments of scaling laws

for the effect of Reynolds number on recovery length, maximum stresses, and the response

of the mean flow.

1.6 Novelty

The present work concentrates on addressing a knowledge gap on the response and recovery

of pipe flow perturbed by wall-mounted obstacles. It is the first of its kind to characterize
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the effect of Reynolds number on the immediate flow response in the wake and the flow

recovery in both near and far downstream regions. Another unique novelty of this research

relates to the characterization of the wake structures, flow response, and flow recovery at high

Reynolds numbers, based on the alternation of Fourier modes upon which the geometry was

created. The detailed mechanisms and flow dynamics identified and characterized here, e.g.,

a non-monotonic second-order response characteristic along with a delayed recovery trend

was observed for cases with higher Fourier mode wall-shapes, constitute a novel finding that

advances the frontier of pipe flow dynamics and turbulent flow manipulation.

1.7 Structure of the Thesis

This thesis begins with a review of fundamental topics in fluid dynamics, a brief overview of

flow modeling, and OpenFOAM as the principal platform employed to carry out the simula-

tions. Further details on the state of the literature on the pipe flow dynamics are presented

in the initial sections of Chapters 4 and 5. More specifically, these sections provide a com-

prehensive review of the existing literature on out-of-equilibrium flows past changes of the

surface condition. The research methodology and numerical setup description, including grid

quality, domain size analyses, and validation of numerical solvers, are outlined individually

per study in Chapters 4 and 5. The latter chapter discusses turbulent pipe flow response to

targeted wall shapes at a range of Reynolds numbers varying between 5× 103 − 1.58× 105.

This follows a thorough investigation of the implications of different targeted wall geome-

tries on the response of turbulent pipe flow at high Reynolds numbers(1.58×105) in Chapter

4. Finally, the main conclusions and potential research topics for future developments are

introduced in Chapter 6.

11



Chapter 2

BACKGROUND

This study employs computational fluid dynamics methods, tools, and techniques for a fun-

damental analysis of fluid flow in pipes with targeted wall shape variations. Thus, it is

essential to discuss, in brief, an overview of fundamental topics in fluid mechanics, compu-

tational fluid dynamics, and turbulence modeling within the scope of this work. This sets

the state of literature for this dissertation.

As stated by Batchelor (2000), a “simple” fluid can be referred to as material in which the

elements can displace significantly on account of applying a sensible force. The Collins dic-

tionary defined “dynamics” as “the scientific study of motion, energy, and forces.” Thereby,

the definition of the term “fluid dynamics” can be presented as the study of motions, energy,

and forces performed on or applied by a fluid matter. In continuum mechanics, “stress” (σ)

is a measure of the internal forces that neighboring particles of a continuous material exert

on each other. Thus in orthogonal coordinates, i.e., Cartesian coordinate system, stress can

also be expressed as the fraction of internal forces exerted by adjacent particles by the area

on which forces are applied,

σij =
Fi

Aj

(2.1)
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Here, σij, Fi, and Aj represent the stress tensor, force vector, and the planar area, respec-

tively. According to Batchelor (2000), “dynamic viscosity” (µ), which is a fluid property,

can be described as the fraction of tangential stress by velocity gradient:

µ =
σij

(∇iuj)
(2.2)

The compressibility of a fluid matter is defined as the relative volume change on account

of pressure variations (Babu, 2008). Although some fluids, such as water, are considered

incompressible under natural atmospheric pressure conditions, all fluids are compressible to

an extent. The exact definition of a fluid state has been classified and presented by aero-

dynamics experts, where the most prominent classifications were stated based on the fluid

flow compressibility, viscosity, steadiness, and its randomness. Based on White and Corfield

(2006), the Reynolds number (Re) is defined as a principal non-dimensional controlling cri-

terion of a fluid state. Particularly, the Reynolds number determines the ratio of inertial to

viscous forces, which resembles the dominant fundamental flow characteristics of the wake

region. The formulation of Reynolds number is:

Re =
ρuc

µ
=

uc

ν
, (2.3)

in which u presents the velocity scale, c is the characteristic length scale, ρ is the density of

fluid material, µ is the dynamic viscosity, and ν denotes the kinematic viscosity. As discussed

earlier on definitions and classifications, the fluid’s viscosity is of considerable importance

in fluid dynamics. As a matter of fact, viscosity determines whether the fluid is viscous or

inviscid. The tangential component of the latter is zero, and the stress tensor components

are similar to that of arbitrary fluid at rest (Batchelor, 2000). A viscous fluid, however,
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experiences the presence of internal frictions because of the existence of velocity gradients

between neighboring molecules (Batchelor, 2000). Another primary fluid parameter that

characterizes the fluid flow is density (ρ). To this end, compressible flow is defined as a fluid

motion with variable (inconstant) density, whereas incompressible flow consists of a fluid

with a constant density. According to Anderson (2003), the incompressible flow assumption

can be used for air flowing at a velocity up to 30% of the speed of sound. Moreover in wake

dynamics, understanding the transient nature of the flow (that is, steady versus unsteady

flow) is essential. In unsteady flows, the flow characteristics change over time, such that

transient effects dominate the wake. Contrarily, flow properties associated with steady flows

are not time-dependent, and their spatial variations dominate (Kuethe, 1976).

Turbulence is a complicated flow characteristic that arises at high Reynolds numbers due

to propagation of perturbations and cascade of the energy associated with flow structures.

Although there is not a simple definition for turbulence, the community described turbulent

flows based on their particular features. These include (Davidson, 2017):

Irregularity: Turbulent flows are governed by the Navier-Stokes equations. However, they

are irregular in nature and random in behavior, while exhibiting arbitrary characteristics.

Diffusivity: The momentum exchange increases between different flow layers in turbulent

flow, which thereby amplifies the heat transfer and wall friction for internal flows. In

addition, the diffusivity of turbulent flows is higher compared to laminar flows.

Three-dimensional: Turbulent flows are unsteady and three-dimensional in nature.

However, time-averaged equations can be treated as two-dimensional for two-dimensional

geometries.

Large Reynolds numbers: The transition to turbulent flow occurs with increasing

Reynolds numbers due to larger fluctuations and propagation of perturbations in laminar

flows. For example, transition to turbulent for pipe flows and boundary layers occur at

ReD ≃ 2.3× 103 and Rex ≃ 5× 105, respectively.
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Dissipation: The energy transport in turbulent flow follows a cascade, such that turbulence

kinetic energy transfers from the largest scales to smaller scales in a cascade process. The

flow is dissipative because of viscous force effects, which implies that the kinetic energy

inherited in the small-scale eddies is dissipated as heat.

Continuum: The molecular-scale fluid particles are still significantly smaller than the

smallest scales of a turbulent flow, and the flow is considered a continuum. Thus, turbulence

is not regarded as a fluid characteristic, and it is rather a flow property. To this effect, the

smallest scales in turbulent flows are characterized in terms of “Kolmogorov Scales”. By

definition, these scales are (Landahl et al., 1989):

η = (
ν3

ε
)1/4 , τη = (

ν

ε
)1/2, (2.4)

where, η is the length-scale, and τη represents the time-scale.

The continuity (conservation of mass), momentum, and energy equations are governing

equations of a fluid motion that can be modified according to the state of the flow. In the

current work, the pipe flow is considered to be viscous, incompressible, steady, and turbulent

in Cartesian coordinate (x, y, z). We assumed that ensemble averages are steady in time, i.e.,

∂(φ)/∂t = 0, where φ is any flow quantity. Therefore, the governing equations are (Durbin

and Reif, 2011):

∂iUi = 0, (2.5)

Uj∂jUi = −1

ρ
∂iP + ν∇2Ui − ∂jujui. (2.6)
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2.1 Computational Fluid Dynamics (CFD)

The computational fluid dynamics method was first developed and introduced in the early

1930s to solve the linearized potential equations (Milne-Thomson, 1973). The advancement

of technology motivated extensive research on this topic, and development of new techniques

and schemes, over the past several decades. Here, the governing equations of fluid motion

(e.g., Navier-Stokes and continuity equations) are solved numerically using different setups,

including flow conditions, initializations, and boundary conditions (Versteeg and Malalasek-

era, 2007). Moreover, the accuracy and precision of numerical simulations are dependent on

numerous parameters, e.g., the range of Reynolds number, boundary conditions, geometry

scales, and non-linear interactions within the flow. Therefore, accurate numerical simulation

of the flow characteristics in the wake of pipe flows with wall-mounted obstacles is challenging

due to the complex flow behavior. The Finite Volume Method (FVM) is used in CFD codes

in which the system of equations are solved by discretization of the domain into multiple

control volumes or mesh elements. The FVM method has advantages over other methods in

calculating high Reynolds number turbulent flows, such as reduced computational memory

requirements and faster calculations. Different commercial and open-source CFD toolboxes

are available that employ the FVM method. For example, ANSYS CFX, ANSYS Fluent,

and STAR-CCM+ are robust commercial CFD packages. The prominent open-source CFD

packages are OpenFOAM, SU2 code, and Fire Dynamics Simulator (FDS). In the current

study, OpenFOAM is employed as the main platform for simulating the problem. A review

of the CFD simulation setup manipulated in this dissertation is provided in Chapters 4 and

5.

2.2 Turbulence Modeling

Accurate prediction and modeling of the flow is very critical in numerical simulations, par-

ticularly when the geometry has a complex shape or the flow is at a high Reynolds number.
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The performance of different RANS models, i.e., Standard k − ε, Realizable k − ε and SST

k − ω, in capturing the main flow features in a pipe flow with targeted wall-shapes was

investigated at the early stages of the research to identify the best tool for the numerical

simulations. The results provided in Chapter 3 motivated focusing on using the Standard

k − ε turbulence model for extensive study of the pipe flow problem in Chapters 4 and 5.

Detailed formulations for all these models are provided below, with a major emphasis on

the Standard k − ε model. Calculation of both time and length scales in turbulent flow at

high Reynolds numbers requires a large amount of computational resources at higher costs.

Therefore, RANS turbulence models were designed to reduce the computational costs while

providing adequate prediction of the mean flow field. In turbulent flows, any flow variable

(i.e., φ) consists of mean (φ) and fluctuating components (φ′). RANS-based turbulence

models utilize the mean flow variable (φ) for calculations, as shown below (George, 2013):

φ(xi, t) = φ(xi, t) + φ′(xi, t), (2.7)

φ(x) = lim
T→∞

1

T

T∑︂
i=1

φi(x, t). (2.8)

Here, T indicates the averaging interval. Averaging of the governing equations following the

incorporation of the Reynolds decomposition returns (Durbin and Reif, 2011):

∂iUi = 0, (2.9)

Uj∂jUi = −1

ρ
∂iP + ν∇2Ui − ∂jujui. (2.10)

These are referred to as the RANS equations, in which the right-hand side consists of three
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terms, the mean pressure, viscous stresses, and the Reynolds shear stresses (averaged effect

of turbulent convection). These formulations hint at the “closure problem” in turbulence.

RANS solvers utilize a combination of eddy viscosity approximation and Boussinesq approx-

imation to “close” the formulations through modeling of the Reynolds stress tensor, i.e.,

−uiuj ≈ νT [∂jUi + ∂iUj]. However, modeling of stress tensor differs between turbulence

models, which can provide specific features for one versus the other, e.g., enhanced near-wall

predictions. The transport equation and initial conditions of the four common turbulence

models, including Standard k− ε, Realizable k− ε, k−ω, and Shear Stress Transport (SST)

k − ω, are presented below based on OpenCFD (2019).

2.2.1 Initial Conditions

As shown by Vold (2017), the turbulence kinetic energy (k) term for an isotropic turbulent

flow can be evaluated using:

k =
3

2
(I U∞)2, (2.11)

where I indicates the turbulence intensity, and U∞ presents the inlet bulk velocity (for the

pipe flow case). Similarly, the rate of turbulence dissipation (ε) can be estimated by:

ε = Cµ

3
4
k

3
2

l
, (2.12)

where Cµ = 0.09 indicates a model constant, and l = 0.038D shows the turbulent flow

length-scale and stands for the hydraulic diameter of the pipe (Greenshields, 2015; Pope,

2001). Lastly, the turbulence specific dissipation rate (ω) formulation is as follows:

ω = Cµ

−1
4
k

1
2

l
. (2.13)
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2.2.2 Standard k − ε Model

This is the most prominent simulation model for engineering applications. As it appears on

its title, Standard k − ε model utilizes the conservation equation for k and ε. According

to Joshi and Nayak (2019), the turbulence kinetic energy (k) equation of Standard k − ε

turbulence model is presented as:

∂j(kUj) = ∂j

[︃
(ν +

νT
σk

)∂jk

]︃
+ pk − ε, (2.14)

where Pk indicates the turbulent production by the interaction of mean velocity gradients

and Reynolds stresses. And the turbulence dissipation rate (ε) is estimated using:

∂j(εUj) = ∂j

[︃
(ν +

νT
σε

)∂jε

]︃
+

C1ε

k
pε +

C2

k
ε2, (2.15)

where νT = Cµk
2/ε is the eddy viscosity, Pε represents ε production by the gradients of

fluctuating velocity. C1, C2, σk, and σε are presenting the model closure coefficients. The

coefficient values are as follows:

C1 = 1.44; C2 = 1.92; σk = 1.00; σε = 1.30. (2.16)

2.2.3 Realizable k − ε Model

The Realizable k−ε turbulence model has an additional feature in which a damping function

is used in the near-wall regions. This causes the turbulence to damp faster than the Standard

k − ε model in the near-wall area (Joshi and Nayak, 2019). In Realizable k − ε turbulence

model, the transport equation for k is similar to 2.14 and 2.15. However, the equation for ε

changes to:
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∂j(εUj) = ∂j

[︃
(ν +

νT
σε

)∂jε

]︃
+

C1ε

k
pε −

C2

k +
√
νε

ε2, (2.17)

where model constants are (Joshi and Nayak, 2019):

C1 = 0.43; C2 = 1.92. (2.18)

2.2.4 Standard k − ω Model

Similar to the k − ε turbulence model, the first transport variable is k, and the difference

belongs to the second transport variable, that is ω (specific dissipation rate). This model is

one of the conventional turbulence models that was first used by Kolmogorov (1941), and

further developed and improved by Saffman (1970) and Saffman and Wilcox (1974), who

demonstrated its accuracy for a wide range of turbulent flow applications. The turbulence

kinetic energy transport and the turbulence specific dissipation rate (ω) equations are:

∂j(kUj) = ∂j

[︃
(ν +

νT
σk

)∂jk

]︃
+ pk − C2kω, (2.19)

∂j(ωUj) = ∂j

[︃
(ν +

νT
σω

)∂jω

]︃
+

C1ω

k
pω − C2ω

2. (2.20)

Here, νT = k/ω, and closure coefficients are as follows (Joshi and Nayak, 2019):

C1 = 0.56; C2 = 0.075; Cµ = 0.09; σk = 0.5; σε = 0.5. (2.21)
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2.2.5 Shear Stress Transport k − ω Model

Menter (1993) Introduced the Shear Stress Transport k−ω model, in which the k−ω model

is used to resolve the near-wall region, and k − ε model is utilized for the remaining flow

domain. In addition, SST k − ω model calculates Reynolds stresses and turbulence kinetic

energy based on Standard k−ω model, and a modified dissipation rate of ω = ε/k based on

Standard k − ε model. Therefore, the equations for k and ω are (Joshi and Nayak, 2019):

∂j(kUj) = ∂j

[︃
(ν +

νT
σk

)∂jk

]︃
+ pk − C1kω, (2.22)

∂j(ωUj) = ∂j

[︃
(ν +

νT
σω

)∂jω

]︃
+ αS2 − βω2 + 2(1− F1)σω2

1

ω
∂ik∂iω. (2.23)

Here, the closure model coefficients are given as:

α1 = 0.31; S =
√︁
2SijSij; σk = 0.85; σω = 0.50; σω2 = 0.856; γ2 = 0.44

β∗ = 0.09; β1 = 0.075; β2 = 0.083.

(2.24)
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Chapter 3

MEAN PIPE FLOW SCALING &

RANS MODELING

3.1 Introduction

The accuracy in the numerical modeling of pipe flows with small-scale wall-mounted ob-

stacles is of considerable importance, especially at high Reynolds numbers. The Standard

k − ε turbulence model has been extensively used in industrial applications, where the flow

separation and reattachment over curved surfaces are common. This is the most widely used

and validated turbulence model. It has the capability to capture the mean flow physics of

complex geometries cost-effectively (Haroutunian and Engelman, 1991; Launder and Spald-

ing, 1983). This chapter provides a brief study on the performance of different RANS-based

turbulence models to identify the best tool for simulating turbulent pipe flow response and

recovery past targeted walls at moderate and high Reynolds numbers. This chapter is struc-

tured in such a way that a brief background is provided in Section 3.2. A description of

the numerical setup is presented in Section 3.3 and followed by assessing the performance of

various RANS models in Section 3.4 and the mean flow scaling in Section 3.5.
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3.2 Background

Numerical simulations have been widely used in industrial applications to examine pipe flow

in the presence of various obstacles and disturbances at moderate and high Reynolds numbers

(Shah et al., 2012; Yamagata et al., 2014). Pipe flow past sudden wall changes including

roughness elements and orifice are studied at low and moderate Reynolds numbers (Re ≤ 104)

using Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES), e.g., Leonardi

and Castro (2010), Leonardi et al. (2003), Nyg̊ard and Andersson (2013), Cui et al. (2003),

and Chang and Scotti (2004). High Reynolds number cases (i.e. 104 − 106) are simulated

using Reynolds−Averaged−Navier−Stokes (RANS) models, e.g., Goswami and Hemmati

(2020, 2021) and Cappelli and Mansour (2013). Despite some differences between numerical

results obtained using different turbulence models (Hemmati et al., 2018), these techniques

have proven reliable in capturing the main flow (bulk flow) features. Although DNS studies

are limited to Re ≤ 104, the lower computational cost of RANS models over LES and DNS,

and reasonable engineering accuracy, increased the Reynolds number range (i.e., 104 − 106)

that is considered in these studies. For example, Cappelli and Mansour (2013) studied the

flow over a wall-mounted hump using the Standard k − ε, k − ω, Shear Stress Transport

(SST) k − ω and Spalart-Allmaras models in OpenFOAM at Re = 9.3 × 105. Comparing

their results with experiments of Rumsey et al. (2004) illustrated that the Standard k − ε

turbulence model performed better in determining the Reynolds shear stresses and pressure

coefficients compared to the other RANS models. Similarly, Fogaing et al. (2019) simulated

the highly unsteady wake of a sharp-edge normal flat plate using the Standard k−ε, Reynolds

Normalization Group (RNG) k − ε, k − ω and SST k − ω models at Re = 1.2 × 103.

The comparison of their results with DNS of the same wake (Hemmati, 2016) reiterated

the conclusion of Cappelli and Mansour (2013) on the better relative performance of the

Standard k − ε model in the presence of large pressure gradients. More recently, Goswami

and Hemmati (2020, 2021) analyzed the flow over square bar roughness in a turbulent pipe

flow at Re = 1.56× 105 and compared their results with experiments of Smits et al. (2019).
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Figure 3.1: Schematic of the primary computational domain utilized in this study (not to
scale) is shown in the first row, and the mesh distribution is shown in the second row (scales
are different in radial and axial directions).

Once again, they observed that the Standard k − ε model performed better than other

turbulence models at high Reynolds numbers. However, these studies all corresponded to

cases with large streamline curvatures, such as abrupt changes in the wall-shape through

square elements or thin flat plates. The reasonable agreement of numerical and experimental

results suggested that Standard k − ε RANS model is a suitable model with capability of

predicting the main flow parameters, while capturing the recovery and response of pipe

flow to small modifications to the wall and abrupt flow disturbances. Here, we provide a

comparative evaluation of the performance of various RANS-based turbulence models in

simulating turbulent pipe flow response and recovery with smooth variations in wall-shape

(targeted walls).
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3.3 Simulation Setup

The computational domain was designed to follow the experimental setup of Van Buren

et al. (2017). In order to reduce computational costs, the three-dimensional domain was

designed in two segments. The first part includes a long smooth pipe with an overall length

of 220D that enabled the flow to achieve fully-developed conditions at the outlet boundary

(see Figure 3.1). In the second part, the designated perturbation was introduced by placing a

pipe-insert, the geometry of which was designed based on Case III introduced in Chapter 1.2.

The schematic of the main domain is presented in Figure 3.2. The 89D domain length was

extended from −27D to +62D in the streamwise or axial (x−) direction. The perturbation

amplitude (am) followed a sinusoidal curve in the streamwise direction, and the wall shape in
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the radial direction was changed based on the variation of axial location (x), Fourier mode

number (m), and azimuthal angle of θ, where the formulation was:

r(θ,m, x) =
D

2

[︄
1 +

cos( πx
2D

) + 1

2

∑︂
m

amsin(mθ)

]︄
, (3.1)

where x ∈ [−2D, 2D], θ ∈ [0, 2π], m ∈ (3 + 15), and am ∈ {0.2, 0.1}. The Reynolds number

based on the bulk flow (Re = U∞D/ν) changed between 2× 104 and 1.58× 105, where U∞

indicates the bulk velocity introduced at the inlet of the 220D smooth pipe case, D is pipe

diameter, and ν is the fluid kinematic viscosity.

A non-homogeneous 3D structured mesh was designed for both domains, with a total

number of 6.8 × 106 and 1.22 × 107 hexahedral elements for the 220D domain and Case

III (main domain), respectively. For the main domain, the more refined grid was placed in

the vicinity of the pipe-insert section, where the grid size increased towards inlet and outlet

boundaries with an expansion ratio of 1.02. The fully-developed inflow condition (Dirichlet

and Neumann boundary conditions for velocity and pressure fields, respectively) was applied

at the inlet boundary, which was mapped from the outlet boundary of the smooth pipe case.

However, at the outlet boundary, a Neumann boundary condition was implemented for

both velocity and pressure fields. In addition, a no-slip boundary condition was applied at

walls, along with a standard wall-function (Liu, 2016). The friction Reynolds number was

defined as Reτ = uτD/ν, where the friction velocity (uτ ) was obtained based on McKeon

et al. (2004) correlations. Six Reynolds number cases were investigated: Re = 1.58 × 105

(Reτ = 7144), 7.5 × 104 (3635), 5.0 × 104 (2525), 4.0 × 104 (2053), 2.5 × 104 (1399), and

2.0 × 104 (1149). Three turbulence models, e.g., Standard k − ε, Realizable k − ε and

SST k − ω, were used in OpenFoam (Versteeg and Malalasekera, 2007) to carry out the

simulations. The second-order accurate discretization schemes were implemented for both

advection and diffusion terms of the RANS equations, with a convergence criterion of root-

mean-square (rms) of momentum residuals of lower than 10−5. A steady-state solver based
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Table 3.1: Grid distribution information based on Case III. ∆x+ and ∆θ+ resemble the
grid spacing in the axial and azimuthal directions in wall units based on inflow parameters,
respectively.

Study First Cell (r+) ∆θ+ ∆x+ Number of Cells
Grid 1 16 110 98 6.70× 106

Grid 2 4 95 165 8.95× 106

Grid 3 4 95 127 10.37× 106

Grid 4 4 95 98 12.20× 106

Grid 5 2 94 98 14.49× 106
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Figure 3.3: Effects of (a) domain length and (b) grid distribution on main flow features.

on Semi-Implicit-Pressure-Linked-Equation (SIMPLE) (Greenshields, 2015) algorithm was

employed to complete the simulations. The results were normalized using the upstream

friction velocity (uτ ) and bulk velocity (U∞) at the inlet of the smooth pipe.

The simulations were verified at the initial stage, where the domain and grid sensitivity

was examined comprehensively on the main domain with the aid of Standard k − ε model.

Three cases with an axial domain length of 59D (Domain 1), 69D (Domain 2), and 89D

(Domain 3) were investigated. The outlet boundary was adjusted in such a way that it pro-

vides sufficient axial extent for accurate calculation of mean and turbulent fields (i.e., axial

velocity and turbulence kinetic energy) along the pipe centerline. As shown in Figure 3.3(a),

Domain 3 exhibited an adequate axial extent to accurately predict perturbed turbulent pipe
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Figure 3.4: (a) Mean axial velocity, and (b) Reynolds shear stress distribution obtained using
various turbulence models at Re = 1.58× 105.

flow characteristics in the downstream wake and therefore manipulated for further simula-

tions. In addition, the grid sensitivity analysis was conducted by consecutive refinement of

the hexahedral mesh distribution in all three directions and using five grids (see Table 3.1

for grid details). The results presented in Figure 3.3(b) indicated a difference of less than

3% among the mean velocity and Reynolds stress profiles of Grid 4 and 5. This provides us

the confidence that Grid 4 can adequately capture the main flow properties. More details

on the grid sensitivity and domain analysis are provided in Chapters 4 and 5.

3.4 Performance of RANS Models

The initial analysis was a validation study that involved comparing the flow predictions from

different turbulence models in a pipe compared to experiments of Smits et al. (2019) at a

high Reynolds number of Re = 1.58 × 105. Turbulence models considered in this study

included: Standard k− ε, Realizable k− ε and SST k− ω, whose performance in predicting

the main flow features were examined relative to experiments.

Figure 3.4 shows the simulation results for a fully-developed state of a long smooth pipe

with an overall length of 220D. Figure 3.4(a) compares the mean axial velocity profiles from
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different models to the experiments of Smits et al. (2019) and Zagarola et al. (1996). Here,

the Standard k−ε turbulence model had a better agreement with experiments in comparison

with other turbulence models considered here, for both core flow and regions close to the

wall. The largest deviation of simulation results from experiments was less than 3%.

In addition to the mean flow parameter, the turbulence field was also examined. Specif-

ically, the Reynolds shear stress profiles are presented in Figure 3.4(b), wherein the dashed-

line indicate the “Fully Developed” profile based on the theoretical shear stress data given

in Kaneda et al. (2003). Significant differences were identified for the Realizable k−ε turbu-

lence model, which failed to accurately capture Reynolds shear stresses close to the wall. The

SST k−ω model, however, performed better compared to the Realizable k− ε model, where

a difference of ≈ 10% was evident compared to the expected fully-developed value. Since

Realizable k − ε model employs a near-wall treatment, while SST k − ω model incorporates

the enhanced near-wall treatment (Menter and Esch, 2001), the main reasoning behind such

inaccuracies could be related to high Reynolds number effects. Such flow features are difficult

to model numerically, as discussed previously by Hultmark et al. (2012). More information

regarding the validation study at lower Reynolds numbers are provided in Chapter 5.

The performance of RANS models in capturing the pipeflow response to targeted wall-

shapes and its subsequent recovery is compared in Figure 3.5. The results obtained using the

Standard k− ε and Reynolds Stress Models (RSM) at Re = 104 showed that the two models

performed similarly in capturing the flow profiles, while the latter required substantially

more computational power. The Standard k − ε model case required 40 cores and 160

GB of RAM with an average simulation time of ≈ 96 hours to reach convergence within

7× 103 iterations. The simulations based on RSM required 40 cores and 160 GB of RAM to

reach convergence within 6× 104 iterations at an average simulation time of ≈ 158 hours.

The maximum variation between the Standard k − ε and RSM results was less than 8% in

velocity and stress profiles at x/D = 60D, which corresponds to a fully recovered state of

the flow. However, contour of changes in the axial velocity due to the targeted wall-shapes
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Figure 3.5: (a) Mean streamwise (or axial) velocity, and (b) the
Reynolds shear stress profiles at x/D = 60 downstream of the pipe-insert for Re = 1× 104.
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Figure 3.6: Comparing contours of axial velocity change relative to a smooth pipe at x/D = 5
downstream the pipe insert using the Standard k − ε model at (a) Re = 1.58 × 105 and
(b) Re = 1 × 104, compared to the results from (c) the Reynolds Stress Model results at
Re = 1× 104.

shown in Figure 3.6 show inconsistencies of the RSM results compared to the Standard k−ε

model and experiments (Figure 3c) of Van Buren et al. (2017). The discrepancies observed

in RSM results at even a low Reynolds number case correspond to the difficulties of this

model in capturing main features of the flow accurately in the presence of smooth pipe wall-

shape variations. This could potentially be due to the calculation of stresses near the wall.

The Standard k − ε model agreed well with the experiments (Van Buren et al., 2017) at

high Reynolds numbers, while retaining the same trend at lower, post-transition, Reynolds

number of 1× 104.
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Figure 3.7: Mean axial velocity profiles of various turbulence models (a) Scaled with uτ , (b)
Scaled with UCL − U∞ at Re = 1.58× 105.

3.5 Mean Flow Scaling

This study was further extended to analyze the performance of RANS models specifically

for flows encountering smoothly varying perturbations. Particularly, the scaling of mean

streamwise velocity was examined for fully-recovered state of the flow with different models.

Zagarola and Smits (1998) introduced a velocity scale for the outer region of the flow, which

is valid for Re ≥ 1.3× 104, in the form of:

(UCL − Ux)

Uη

= g(r/R), (3.2)

where Uη denotes the velocity scale for the outer region of the flow. In section 3.4, it was

observed that Standard k − ε and SST k − ω models exhibited a better performance than

Realizable k − ε model in capturing the mean flow field. As such, the proposed mean flow

scaling was employed to examine how accurately turbulence models simulate the flow past

perturbations at Re = 1.58 × 105. The data were captured at x/D = 60. Figure 3.7 shows

that both models agreed with using (UCL − U∞) for the scaling. However, results obtained

from the Realizable k − ε model showed discrepancies using both outer scaling methods.
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Figure 3.8: Mean flow scaling of Standard k − ε turbulence model (a) Scaling with uτ , (b)
Scaling with UCL − U∞.

Once the performance of different models was tested, and accuracy of the Standard

k − ε turbulence model was established, the analyses was extended to assess the validity

of simulation data in following known scaling laws (Zagarola and Smits, 1998) that were

developed with respect to Reynolds number. Figure 3.8 illustrated collapsing of the fully-

developed mean velocity distribution at x/D = 60 at different Reynolds numbers: 1× 104 ≤

Re ≤ 1.58× 105. Scaling the results with friction velocity (uτ ) did not lead to a reasonable

collapse even in the outer region (0.07 < 1 − r/R < 0.3). However, the profiles collapsed

well using (UCL−U∞), especially at (1− r/R) > 0.03. This was consistent with the findings

of Zagarola and Smits (1998). The comparative assessment of velocity scales thus suggested

that the velocity deficit (UCL−U∞) was a better parameter to scale the results, compared to

uτ , in the recovered flow region far downstream of perturbation. The change in the velocity

scale did not seem to affect the collapse of mean velocity profiles at the center of the pipe.

3.6 Summary

The good agreement between the Standard k−ε results and experiments suggested that this

approach is adequate in simulating pipeflow disturbance, response, and recovery of internal

32



flows encountering smooth perturbations in the form of targeted wall shapes at moderate

and high Reynolds numbers. The Standard k − ε model can adequately predict the flow

physics, despite unavoidable discrepancies (amounted to ≈ 3%−10% in mean and turbulent

flow fields) on account of inherent modeling errors. Normalizing the velocity profiles of

the turbulent pipeflow past targeted wall shapes using the velocity deficit (UCL − U∞) led

to proper collapse of the mean axial velocity distribution in the outer flow region. This

was found to give significantly better agreement between different Reynolds number cases,

compared to the friction velocity (uτ ), and was also found consistent with the literature.

Therefore, all simulations in the present research are computed using the Standard k − ε

formulations.
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Chapter 4

EFFECTS OF TARGETED WALL

SHAPES

4.1 Introduction

The implications of targeted wall-shapes on disturbance, response, and recovery of turbulent

pipe flow is analyzed here using the Standard k − ε model at the highest Reynolds number

considered here, Re = 1.58 × 105. Three different wall shapes were tests, as described

previously in Section 1.2. The results and discussions provided in this chapter provide

insightful details on characterization of the flow response and recovery due to the targeted

perturbation introduced by the pipe-inserts. This chapter addresses the primary objectives

(1), (2), and (3), as outlined in Section 1.5, by characterizing the pipe flow past targeted wall

shapes. This chapter is set up, such that a brief background is provided in Section 4.2. The

problem description along with details on the numerical setup are provided in Section 4.3,

followed by verification and validation of the results in Section 5.4. Demonstration of the

results and their discussion are provided in Section 4.5. A summary of the main conclusions

for this chapter are outlined in Section 4.6.
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4.2 Background

The response and recovery of wall-bounded turbulent flows have great importance in engi-

neering applications, such as designing energy transportation pipelines, marine vehicles, and

buildings. Wall-bounded turbulent flows at high Reynolds number (Re) with sudden changes

in wall conditions represent a class of non-equilibrium flows that are not yet well-understood

(Van Buren et al., 2019). These include flow over a step (Smits et al., 2019; Jiménez, 2004;

Goswami and Hemmati, 2020, 2021), presence of surface curvature (Van Buren et al., 2017;

Ding et al., 2019; Smits et al., 1979), and the change in surface roughness (Van Buren et al.,

2019, 2020; Saito and Pullin, 2014). In the study of turbulent flow past rough walls, Jiménez

(2004) indicated that small-size steps that act similar to isolated roughness elements can have

a significant impact on drag, and induce changes in downstream flow features, i.e., noise pro-

duction, surface pressure fluctuations, and structural vibration (Ji and Wang, 2010). Hence,

the flow response and recovery past the perturbation inspired extended studies in this field.

Modification of pipe wall geometry has considerable impacts on stabilizing (Muck et al.,

1985) and destabilizing (Smits et al., 1979; Hoffmann et al., 1985) the flow turbulence, and

the performance of passive flow control devices (Ding et al., 2019). Further, pipe flows with

wall-mounted perturbations are extensively used in the energy industry and health sciences

to characterize the flow field, e.g., orifice flow meters (Feng et al., 2020).

There are several numerical and experimental studies that investigated non-equilibrium

wall-bounded turbulent flows. Antonia and Luxton (1971) experimentally examined the

response of turbulent boundary layer past a surface roughness that transitions to a smooth

wall. They found a deviation of mean velocity and Reynolds shear stress distributions from

the self-preserving state in the far downstream region while observing a non-monotonic flow

behavior. Later on, the effects of concave curvature on turbulent pipe flow were investigated

by Smits et al. (1979). It was observed that an initial amplification of Reynolds stresses

occurred that was followed by a turbulence collapse (in Reynolds stresses) in the outer layer

to levels below the equilibrium state attained in the far downstream region (Smits et al.,
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1979). They attributed this second-order flow response to the interaction between mean

shear and turbulent shear stress, which further led to long-lasting changes in turbulent flow

properties. Also, studies that focused on turbulent boundary layers subjected to sudden

perturbations, e.g., Smits and Wood (1985), observed slow adjustments of the flow to the

new wall condition. However, pipe flow and boundary layer represented different responses in

the outer regions of the flow since the pipe flow geometry restricted the large-scale motions

(LSMs) in the core region (Chung et al., 2015). It should be noted that non-monotonic

response was not specific to flows undergoing smooth-wall changes as was recognized in very

recent studies (Van Buren et al., 2019, 2020). Durst and Wang (1989) numerically and

experimentally investigated the effect of axisymmetric ring-type wall-mounted constriction

in a fully-turbulent pipe flow over a range of Reynolds numbers. The overshoot of the flow

response in the vicinity of the wall-mounted perturbation was observed, which eventually

extended to the downstream region and was followed by a rapid decay in Reynolds stresses.

The Standard k−ε turbulence model further exhibited a good agreement with experimental

data in terms of predicting flow characteristics. Dimaczek et al. (1989) also investigated the

flow over two-dimensional planes and axisymmetric surface-mounted obstacles at moderately

high Reynolds numbers (5 × 103 < Re < 5 × 104). The comparison of turbulent structures

and their downstream development for two geometries highlighted the important role of

upstream flow conditions in determining the flow reattachment length. Later on, Jiménez

(2004) analyzed the influence of rough walls on turbulent flow and concluded that small steps

(described as h/δ ≪ 1, where h is height of the step and δ is the boundary layer thickness),

which behaved similar to the isolated roughness elements, could cause considerable change

in the flow features, e.g., drag.

Hultmark et al. (2010) examined near-wall turbulence scaling in pipe flows over a wide

range of Reynolds numbers (2.4 × 104 − 1.45 × 105). They identified a primary peak in

turbulence intensity in the near-wall region. However, a weaker secondary peak in turbulence

intensity also existed in the downstream wake, which was quite evident at high Reynolds
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numbers. This study was further expanded by Hultmark et al. (2012) and Hultmark et al.

(2013), in which they observed a similar behavior in turbulence intensity that they identified

as a prominent characteristic of high Re flows. Despite these studies, the case of turbulent

pipe flows that undergo changes in wall shapes following specific azimuthal Fourier modes

remains unexplored, particularly the investigation into their effects on flow response and

recovery at high Reynolds numbers.

The most recent experimental studies of the response and recovery of flow past abrupt

variations in wall conditions at high Reynolds numbers (1.31×105−1.56×105) includes Smits

et al. (2019), Van Buren et al. (2019), and Van Buren et al. (2020). The first study quantified

the response and recovery of the perturbed flow over axisymmetric square bar roughness

elements and introduced a novel flow control method (Smits et al., 2019). The experiments

were conducted using two bar heights of 0.05D and 0.1D at Re = 1.56×105. They observed

that perturbed flow was not fully recovered within 10D downstream of perturbation. A

sudden contraction and expansion of the flow also occurred due to the presence of a square bar

roughness element, which further induced an overshoot of flow response in the vicinity of the

perturbation. Smits et al. (2019) also quantified the Reynolds shear stress recovery process.

They proposed a power-law trend upon which the location of maximum Reynolds shear stress

moved away from the wall toward the pipe centerline, and thus revealed the advantages of

a passive flow control mechanism. Analysis of flow past the smaller bar roughness element

indicated a prolonged recovery behavior that suggested an extended region of low skin friction

past the bar roughness element. Smits et al. (2019) hinted at the feasibility of introducing

abrupt changes in a wall-bounded flow in periodic patterns to obtain an extended region

of lower turbulence levels, reduced drag, and lower surface friction. A second-order flow

response was observed that indicated similarities to previous studies investigating turbulent

pipe flow recovery after sudden changes in wall conditions (Smits et al., 2019). To obtain

the evolution of a fully-equilibrium state, turbulence production should exceed dissipation

in the near-wall region and the excess near-wall turbulence should then be transported away
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from the wall (Smits et al., 2019). Moreover, turbulence transport in the far downstream

region appeared to be affected by the geometrical constraint of pipe flow, which was not the

case for boundary-layer studies (Antonia and Luxton, 1971; Smits et al., 1979; Smits and

Wood, 1985; Chung et al., 2015). More recently, Goswami and Hemmati (2020) observed

that the long-lasting changes of the downstream wake resulted in a longer reattachment

length compared to flows over backward-facing steps at a similar Re. The Reynolds shear

stress experienced an amplification close to the bar roughness and represented a slow decay

rate in the further downstream region, and therefore caused a slow and long-lasting recovery.

The response of turbulent pipe flow to a step-change in surface roughness was also ana-

lyzed by Van Buren et al. (2019, 2020). The overshoot of Reynolds stresses was observed with

a peak at the location close to the step-change. The mean velocity and Reynolds shear stress

distribution represented an oscillatory response and did not attain equilibrium within 60D

downstream of the perturbation (D being the pipe diameter). They attributed this behavior

to a second-order flow response that was previously identified in studies of flow past a concave

curvature (Smits et al., 1979). Most recently, the response and recovery of fully-turbulent

pipe flow across single (Goswami and Hemmati, 2021) and multiple (Goswami and Hemmati,

2020) small square bar roughness elements (two bar heights of 0.05D and 0.1D) was examined

by Goswami and Hemmati (2020, 2021) at Reynolds number of Re = 5.00×103−1.56×105.

They also compared different Reynolds-Averaged-Navier-Stokes (RANS) turbulence models

in predicting turbulent pipe flow response in the presence of small roughness elements. The

Standard k − ε model showed a reasonable agreement with experimental data (Smits et al.,

2019), which implied that it could capture the main flow features accurately, and predict

response and recovery of turbulent pipe flow effectively. These findings were in agreement

with previous studies that examined the performance of turbulence models in simulating

flow in pipes (Cappelli and Mansour, 2013) and wakes (Fogaing et al., 2019).

A handful of recent studies (Van Buren et al., 2017; Liu et al., 2019; Smits et al., 2019;

Van Buren et al., 2020; Goswami and Hemmati, 2020, 2021) have highlighted the significant
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impact of upstream flow conditions in determining the overall flow response and recovery

behavior, such as wall shape, perturbation height, and periodicity of wall-mounted impulses.

However, there exists a knowledge gap on the effects of targeted pipe wall-shapes, based on

particular Fourier modes, on response and recovery of the perturbed flow. In this chapter,

we focus on the flow response and recovery by simulating a fully-turbulent pipe flow at

Re = 1.58× 105 in the presence of wall shapes that target distinct azimuthal Fourier modes

of m = 3, m = 15, and m ∈ {3 + 15}. This complements an earlier experimental study by

Van Buren et al. (2017) at the same Reynolds number.

4.3 Problem Description

We numerically studied the response and recovery of fully-developed turbulent pipe flow past

changes in wall shape following specific azimuthal Fourier modes in wall-bounded turbulence.

The bulk flow Reynolds number (Re = ρU∞D/µ) was 1.58× 105, such that ρ is the density,

U∞ represents the bulk axial velocity at the inlet of the smooth pipe, D is the pipe diameter,

and µ is the fluid dynamic viscosity. The change in the pipe wall was introduced by placing

a pipe-insert based on the study of Van Buren et al. (2017), while the flow behavior was

assessed up to a distance of 60D past the perturbation. The perturbed inserts targeted

three particular azimuthal Fourier modes corresponding to m = 3 for Case I, m = 15 for

Case II, and superposition Fourier mode of m ∈ {3 + 15} for Case III. The perturbation

amplitude followed a sinusoidal variation in the axial direction, where the formulation for

wall configuration was:

r(θ,m, x) =
D

2

[︄
1 +

cos( πx
2D

) + 1

2

∑︂
m

am sin(mθ)

]︄
. (4.1)

Here, m represents the Fourier mode, θ ∈ [0, 2π] denotes the azimuthal angle, and x ∈

[−2D, 2D] is the axial (streamwise) location. Perturbation amplitude was am = 0.2 for
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Figure 4.1: Schematic of the computational domain utilized in this study (not to scale) is
shown in the first row while the pipe-insert cross-sections at x/D = 0 are shown in the
second row.

Case I, am = 0.1 for Case II, and am ∈ {0.2, 0.1} for Case III. The cross-sectional area of

the pipe-insert followed ∆A = 0.5
∑︁

m(2am/D)2 with a maximum change of 2%, 0.5%, and

2.5% for Case I, Case II, and Case III, respectively (Van Buren et al., 2017). Figure 4.1

presents schematics of the three-dimensional computational domain, which extended from

−27D to +62D in the axial (x−) direction. The cross-sections of three insert geometries

are also depicted in Figure 4.1. The turbulent pipe flow sensitivity to the domain size was

investigated by adjusting the outlet boundary location. Details on the domain sensitivity

analysis are provided in later sections.

A non-homogeneous three-dimensional structured grid with a total of 12.2× 106 hexahe-

dral elements were used for the simulations. A higher density of grid elements was placed

near the critical region of the pipe-insert segment while the grid expanded towards the inlet

and outlet boundaries with a maximum expansion ratio of 1.02 (see Figure 4.2. The ade-

quate refinement of spatial grid close to the inlet boundary, which followed a separate long

section of a smooth pipe, allowed a stable transition of the fully-developed inflow profile.
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Figure 4.2: Schematic of spatial grid over the cross-sectional area and central plane of the
pipe (scales are different in radial and axial directions). Case I is shown as an example.

At the inlet boundary, a three-dimensional fully-developed turbulent inflow condition was

applied, i.e., Dirichlet and Neumann boundary conditions for velocity and pressure fields,

respectively. This condition was mapped from a fully-developed outlet profile of a smooth

pipe. The length of the three-dimensional smooth pipe was 220D, similar to the domain size

considered in experiment (Van Buren et al., 2017). This allowed us to perform a validation

study using available literature at high Re, e.g., Zagarola et al. (1996) and Smits et al. (2019).

The Neumann boundary condition (∂φ/∂n = 0, where φ is any flow variable) was imposed

at the outlet boundary, which was located far from the pipe-insert segment (60D). The

no-slip boundary condition along with a standard wall function (Liu, 2016) was set at the

walls. The upstream friction velocity (uτ ) for all three cases was obtained based on McKeon

et al. (2004) correlations and the friction Reynolds number was Reτ = ρuτD/µ = 7144.

All simulations were performed in OpenFOAM, which is a finite-volume-based open-

source platform (Versteeg and Malalasekera, 2007). The Standard k − ε turbulence model

(Launder and Spalding, 1983) was further employed based on previous studies that had

shown it to perform better than the Realizable k − ε, k − ω, and SST k − ω models in

simulating such flows (Morrison et al., 1993; Shah et al., 2012), and providing accurate

predictions for the mean flow compared to experiments, especially at high Re cases (Goswami

and Hemmati, 2020). This has been further validated for simulating turbulent pipe flow by
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Goswami and Hemmati (2020, 2021). A validation analysis was also performed for a three-

dimensional smooth pipe using the Standard k − ε turbulence model, the details of which

are included in the next section. The second-order accurate bounded numerical schemes

were utilized for discretizing both advection and diffusion terms. The convergence criteria

were set based on reducing root-mean-square (rms) of momentum residuals below 10−5.

The discretized equations were solved using simpleFoam, which is a steady-state solver for

incompressible, turbulent flows based on Semi-Implicit-Pressure-Linked-Equation (SIMPLE)

algorithm (Greenshields, 2015). All simulations were conducted using Compute Canada

clusters, each with 40 CPUs in parallel and 160 GB of memory over ≈ 120 simulation hours.

4.4 Validation and Verification

A series of verification and validation studies were carried out to ensure the accuracy of

numerical simulations compared to available experimental results, e.g., Smits et al. (2019),

and Zagarola et al. (1996). The flow field was normalized using the pipe diameter and radius,

D = 2R, the maximum value of mean velocity from the fully-developed profile, i.e., bulk

velocity Ub, bulk velocity at the inlet, U∞, and upstream friction velocity (uτ ).

4.4.1 Domain Sensitivity

The effects of domain size on numerical results were examined using three cases with axial

domain lengths of 59D (Domain 1), 69D (Domain 2), and 89D (Domain 3). Particularly, we

examined the implications of the separation distance between the outlet boundary and the

critical flow region. These cases were based on pipe insert configuration of azimuthal Fourier

mode m = 3 + 15 (Case III) at Re = 1.58 × 105. The main quantity of interest was the

change in mean velocity and turbulence kinetic energy along the pipe centerline downstream

of the perturbation. Figure 4.3 shows that two traced flow features were not sufficiently

developed in the downstream region using Domain 1 and Domain 2. The presented results
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Figure 4.3: Effect of domain size on (a) mean axial velocity and (b) turbulence kinetic energy.

confirm that Domain 3 (89D) had sufficient axial length to properly capture the recovery of

disturbed turbulent pipe flow at the highest Reynolds number studied here. The very small

variations (< 1%) between these cases indicated that the outlet boundary condition has no

significant impact on simulating the critical flow region immediately after the pipe insert.

Thus, Domain 3 was employed for all the simulations in this study.

4.4.2 Grid Sensitivity Analysis

The grid sensitivity study was designed by successively refining the hexahedral grid distri-

bution based on the first cell spacing, which dictates the vertical extent from the wall at

which equilibrium laws hold, and the grid resolution in the circumferential direction. The

results from five grids are presented for Case III (m = 3+ 15) at Re = 1.58× 105. Table 4.1

outlines the parameters for each grid. For brevity, the mean flow and turbulent field results

are presented only at x/D = 11. Velocity profiles in Figure 4.4 show a difference of less than

3% between Grid 4 and Grid 5. Reynolds shear stress profiles obtained for all grids indicated

a difference of less than 3%. Thus, it is apparent that Grid 4 is adequate in capturing the

mean flow features and the turbulent field in the current study.
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Table 4.1: Details of the grid distributions based on Case III. ∆x+ and ∆θ+ correspond
to spacing in the streamwise and circumferential directions in wall units based on inflow
parameters, respectively.

Study First Cell (r+) ∆θ+ ∆x+ Number of Cells
Grid 1 16 110 98 6.70× 106

Grid 2 4 95 165 8.95× 106

Grid 3 4 95 127 10.37× 106

Grid 4 4 95 98 12.20× 106

Grid 5 2 94 98 14.49× 106
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Figure 4.4: Effect of grid refinement on (a) mean axial velocity and (b) Reynolds shear stress.

4.4.3 Validation of Turbulence Model

The accuracy of numerical simulations is validated by comparing the radial mean velocity

profile with experimental data. The simulation was performed for a fully-developed flow at

Re = 1.58 × 105 in a smooth pipe with a total length of 220D using the Standard k − ε

turbulence model. The numerical simulation was further performed using Realizable k − ε

and SST k−ω turbulence models whose results were also compared with experimental data.

These results (not shown here for brevity) confirmed the better performance of Standard

k − ε turbulence model in accurately predicting the main flow features. The mean axial

velocity profiles of the smooth pipe (Ux/U∞) in Figure 4.5(a) exhibited a close agreement
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Figure 4.5: Comparison of the mean axial velocity profiles (a) between simulation and with
experimental data at similar Re. (b) shows the mean axial velocity contour plot extracted
at x = 5D.

with experiments of Smits et al. (2019) and Zagarola et al. (1996), for both the core region

and close to the wall. The maximum mean centerline velocity was found to be within 3%

of the experimental data. The validation study was further extended in Figure 4.5(b) to

compare the mean axial velocity contour with those provided by Van Buren et al. (2017) at

a similar location and Re for the same targeted modified wall shape. Here, ∆
⟨︁
U
⟩︁
= Ux−U∞.

The comparison of our numerical data with experimental results provided in Figure 3c of

Van Buren et al. (2017) suggested a good agreement, which provides more confidence in

the current numerical setup. This conclusion was also consistent with previous studies that

assessed the accuracy of numerical simulations and Standard k − ε turbulence model: e.g.,

Durst and Wang (1989), Shah et al. (2012), Cappelli and Mansour (2013), Yamagata et al.

(2014), and Goswami and Hemmati (2020). Therefore, the Standard k− ε turbulence model

was utilized to study the effects of various pipe-insert geometries on the mean flow properties

and the recovery of turbulent pipe flow.
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Figure 4.6: Mean axial velocity profile development for (a) Case I, (b) Case II, (c) Case III.
(d) depicts axial variation along the wake centerline for all three cases.

4.5 Results and Discussion

The modified turbulent pipe flow response is first assessed through variation in mean axial

velocity profiles along the radial direction for all three cases in Figure 4.6(a-c). The assess-

ments were made at several axial locations downstream of the pipe-insert segment. The

mean axial velocity (Ux) was normalized by the friction velocity (uτ ), while the pipe radius

was normalized by r+ = ruτ/ν. We examined the recovery of Ux/uτ within 2D− 8D down-

stream of the perturbation by tracking its overshoot and undershoot as well as its relaxation
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toward the equilibrium state. Data are shown for r+ > 102 in order to assess the dominant

flow response characteristics more clearly. Case I showed deceleration of Ux/uτ at r+ ≈ 102

and its acceleration in the outer region, r+ ≈ 103. Contrarily, Case II and Case III exhibited

an increased axial velocity when approaching the wall (r+ ≈ 102), which decelerated near

the outer region of the flow at r+ ≈ 103. We further observed that at r+ ≈ 102, all three

cases retrieved their equilibrium state within x = 8D. The fully-developed state of the mean

axial velocity was obtained by “pivoting” (Van Buren et al., 2020) about a central point to

balance the velocity deficit. This was in agreement with the approach of Van Buren et al.

(2020), which attributed the balance of velocity profile to characteristics of enclosed flows

(e.g., pipe and channel flows).

In the present study, the asymptotic behavior was defined based on consecutive vari-

ations of less than 1%. In order to examine the mean axial velocity variation within the

core flow region, we looked at the wake centerline profiles depicted in Figure 4.6(d). Due to

the contraction of incoming flow within the pipe-insert, the mean axial-flow was observed

to accelerate for all three cases. A similar overshoot response in the mean velocity distri-

bution have been previously observed in different types of non-equilibrium flows, such as

the recovery of a boundary layer from a short region of Smits et al. (1979). Case I re-

vealed a monotonic response in approaching the fully-relaxed state while depicting recovery

by x ≈ 16D. However, Case II and Case III presented a non-monotonic behavior, where

the axial mean velocity profile exhibited two peaks. Case II resembled a stronger primary

peak within the pipe-insert at x ≈ 1D while the primary peak for Case III was located

at x ≈ 2.2D, which is outside the pipe-insert segment. Additionally, the axial location of

second peak was found similar for these two cases at x ≈ 7D. The acceleration of flow

caused long-lasting effects on velocity profiles of Case II and Case III, which introduced a

delayed recovery process past x = 20D. This delayed recovery is preceded by an under-

shoot below equilibrium at x ≈ 21D. The mean axial velocity gradually adjusted to the

fully-developed state at x ≈ 34D. Therefore, the oscillatory flow response accompanied by a
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Figure 4.7: The mean axial velocity gradients along the pipe radius for (a) Case I, (b) Case
II, and (c) Case III, and (d) the wake centerline for all three cases.

delayed recovery trend supports the existence of non-monotonic flow behavior. This remains

consistent with observations on similar flows undergoing recovery past perturbation, such as

Smits et al. (1979), Smits et al. (2019), Van Buren et al. (2020).

To further explore the mean flow features, the response of mean axial velocity gradient

(∂Ux/∂x) was investigated at several axial locations downstream of the perturbation. The

radial profiles of ∂Ux/∂x are shown in Figure 4.7(a-c). For all three cases, a larger magnitude

of the velocity gradient was identified in regions corresponding to r/R → 1. The collapse of

velocity gradients is apparent near the pipe centerline (r/R → 0), which was consistent with
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Figure 4.8: The mean axial (streamwise) Reynolds shear stress along the pipe radius for (a)
Case I, (b) Case II, and (c) Case III. Downstream variation of the peak in −uxur are shown
in (d) for all three cases.

findings of Goswami and Hemmati (2020) for the case of a square bar roughness element with

a similar height. Furthermore, the overshoot of velocity gradients attenuated and approached

a self-similar state (∂Ux/∂x = 0) as the flow gradually recovered in the downstream region.

This was further in accordance with Smits et al. (2019), where the overshoot of velocity

gradients in the wake region was attributed to the contraction of incoming flow on account

of the square bar roughness. Moreover, negative values of ∂Ux/∂x for Case I at wall-normal

location of 0 < 1−r/R < 0.2 coincided with deceleration observed in the mean axial velocity
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field close to the wall (Figure 4.6(a)). The slow recovery of ∂Ux/∂x to the fully-developed

state hinted at long-lasting impacts of the perturbation on flow, which led to a delayed

recovery process. A close inspection of the centerline profile for ∂Ux/∂x in Figure 4.7(d)

revealed that Case I had a monotonic recovery trend, similar to the mean axial velocity in

Figure 4.6(d), where ∂Ux/∂x recovered within x ≈ 12D. However, Case II and Case III

showed a second-order oscillatory behavior, where the equilibrium was not achieved until

x ≈ 38D.

The variation of Reynolds stresses (−uxur and ux
2) was examined in Figure 4.8 to assess

the impacts of perturbed flow on immediate turbulence response. Downstream of the pertur-

bation, all three cases depicted a fast decay of Reynolds stresses, which also appeared to have

an overshoot above the equilibrium profile. This observation agreed with previous studies

of similar flows (Smits et al., 2019; Van Buren et al., 2019; Ding et al., 2019; Van Buren

et al., 2020). Downstream development of the Reynolds shear stresses with respect to fully-

developed flow, as depicted in Figure 4.8(a-c), was assessed in terms of the difference with

respect to the equilibrium state, ∆(−uxur/uτ
2). The flow corresponding to Case I showed

that higher Reynolds shear stresses were concentrated at 0.2 < 1 − r/R < 0.6, while the

concentration was closer to pipe wall at 0 < 1− r/R < 0.4 for the other wall shapes. Smits

et al. (2019) described that a fully-developed state was attained when additional near-wall

turbulence moves away from the wall. This provided us a hint for a faster recovery process

in Case I, which was also observed previously with respect to Ux/uτ and ∂Ux/∂x. Further,

the maximum shear stress decayed and transported away from the wall towards the center

of the pipe for all three cases. This behavior was also in agreement with recent studies on

perturbed high Re flows (Smits et al., 2019; Goswami and Hemmati, 2020, 2021) or flows

past sudden changes in wall roughness (Van Buren et al., 2019, 2020). The maximum per-

turbation height of the geometry considered in this study was 0.1D, 0.05D, and 0.15D for

Case I, Case II, and Case III, respectively. This was comparable to perturbation heights of

0.05D and 0.1D assessed by Smits et al. (2019). This allowed us to compare the maximum
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overshoot of shear stresses between these two studies. The peak in −uxur observed here

decreased by 94%, 88%, and 40% for Case I, Case II, and Case III, respectively. Despite

close similarities in bulk flow characteristics (e.g., Re), there are expected to be differences

in maximum overshoot values due to both differences in geometrical characteristics of the

perturbations (square bar roughness with a sharp edge compared with smooth bump pertur-

bation in our study) and the modeling effects. Figure 4.8(d) further showed the downstream

changes in the peak for the initial response of shear stresses for all three cases. At x = 14D,

Case I attained recovery while shear stresses for Case II and Case III remained higher than

the equilibrium state. A prolonged recovery process ahead of x = 14D was therefore evident

for Case II and Case III, along with an almost similar decay rate in −uxur.

The axial evolution of Reynolds normal stress (ux
2) is depicted in Figure 4.9, which

represent the difference of ux
2 and the fully-developed (equilibrium) profile. Similar to

Reynolds shear stress, all three cases exhibited an overshoot in response to the perturbation.

Downstream of pipe-insert along the centerline, ux
2 initially increased. Van Buren et al.

(2020) attributed the increment of ux
2 along the wake centerline to the response of mean

axial velocity due to the balance of continuity. This was also in accordance with the flow

acceleration along the centerline that was previously shown in Figure 4.6(d). For all three

cases, the flow response near the pipe center was found different from that of regions located

closer to the wall, wherein the initial amplification of turbulence was followed by a decay

in downstream region. Since the initial turbulence response was in the near-wall region

(Van Buren et al., 2020), the location closest to the pipe-insert showed a peak at a distance

of ≈ 0.2R from the wall. The peak gradually decayed and widened in far downstream

regions and eventually moved away from the wall. This trend had been observed previously

in flow over a square bar roughness (Smits et al., 2019) and flow across a step-change in

wall roughness (Van Buren et al., 2020) at such high Reynolds numbers. Case I showed the

least variation in ux
2 compared to other wall shapes, while obtaining a relaxation within

x = 14D. However, Case II and Case III presented a second-order response with a peak
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Figure 4.9: The mean axial (streamwise) Reynolds Normal stress along the pipe radius for
(a) Case I, (b) Case II, and (c) Case III. Axial variation of the peak in ux

2 is shown in (d)
for all three cases.

at ≈ 0.2R from the wall. A slow recovery rate caused the overshoot of ux
2 for these cases

to remain higher than the fully-developed (equilibrium) state even at x/D = 14. The axial

variations in the maximum values of ux
2 for all three cases are also exhibited in Figure

4.9(d). Despite the similar response behavior between Reynolds shear and normal stresses,

they depicted different recovery rates. This could be associated with differences in turbulence

energy budget ahead of the pipe-insert.
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Figure 4.10: Axial development of (a) turbulence kinetic energy (k) and (b) the pressure
gradient (dp/dx) along the wake centerline.

As suggested earlier, the turbulent features show different variations in the core com-

pared to regions close to the pipe wall. Hence, the evolution of mean centerline turbulence

kinetic energy (k) normalized by friction velocity (uτ ), and mean axial pressure gradient

(dp/dx) normalized by the far downstream value (x = 60D), are depicted in Figure 4.10.

Downstream of the pipe-insert (2 < x/D < 7), an initial sudden drop in turbulence kinetic

energy was observed for all three cases. Case I again depicted a monotonic recovery trend

with the flow being recovered at x ≈ 19D. Case II and Case III, however, represented a

different characteristic recovery trend. k/uτ
2 consisted of a secondary peak at x ≈ 14.5D

followed by a fall below their fully-developed (equilibrium) values at x ≈ 36D. Finally,

the flow asymptotically reached a fully recovered state at x ≈ 45D. The long-lasting and

oscillatory recovery trend therefore resembled the second-order response, which was consis-

tent with the study of Van Buren et al. (2020). Furthermore, within the pipe-insert section

(−2 ≤ x/D ≤ 2), a large pressure gradient was evident for all three cases compared to

equilibrium state values. Case I recovered within 1D ahead of the pipe-insert. Case II and

Case III presented a similar recovery rate with a fully-relaxed state attained at x = 14D.

This relatively fast recovery suggested that the velocity variations have greater contribution
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Figure 4.11: The Q-criterion contour plots for (a) Case I, (b) Case II, and (c) Case III.

towards determining the overall flow recovery behavior compared to pressure gradients. In

comparison with the study of turbulent pipe flow response to rough-to-smooth step-change

in roughness (Van Buren et al., 2019), axial pressure gradients depicted a delayed recovery

by 40% that could be associated with the differences in Re and geometrical characteristics

of the current study.

The results thus far hint that higher Fourier modes implemented in the wall shape dom-

inate the flow disturbance and recovery. This was particularly supported by the consistency

in flow recovery and response past wall shapes corresponding to the higher Fourier mode

of 15 (Case II) and the superposition shape of 3 + 15 (Case III), while there were topo-

logical differences with m = 3 in Case I. Case II and Case III exhibited similarities in the

recovery behavior of “global quantities” (Van Buren et al., 2020) (i.e., Ux/uτ , dp/dx) as well

as turbulence properties (i.e., k/uτ
2). The longer-lasting effect of the perturbation, which

exhibited the same height, also indicates that wall modifications following a higher Fourier

mode will have more profound effects on the flow. To further depict the similarities in flow

features, we investigated the regions dominated by high rotations that might be evident

in the downstream wake of pipe insert geometries. Figure 4.11 depict the contour plots of

normalized Q-criterion (Q∗ = QD2/U2
∞) at x = 2.5D for all three cases. Case I reflected

three regions of high rotation, with each extending 60o along the azimuthal direction. Case

II, however, presented fifteen localized regions of high rotations that were evident at each
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30o interval along the wall. These regions also coincide with the geometrical feature of each

case, where the maximum perturbation height was located (see Figure 4.1. The dominant

effects of geometry observed for Case I and Case II also seem to be evident for Case III

(with a superposition Fourier mode), wherein the wide regions of high rotation (observed in

Case I) seem to be broken into localized elliptical regions. This appears to combined the

effects from Case I and Case II. Since Case II and Case III depicted a high concentration of

Reynolds shear and normal stress in the region of 0 < 1− r/R < 0.4, it is hypothesized that

the formation of multiple localized regions of high rotation along the wall contributes to the

initial intensification of Reynolds stresses, and possible disturbance of large-scale and very-

large-scale motions. Thus, they lead to a prolonged recovery. Moreover, this is analogous

with the experimental study of Van Buren et al. (2017) at a similar Re, which concluded

that targeted Fourier mode wall shapes produced the intended flow structures (according

to their corresponding Fourier mode number), and the effect of Case I with an azimuthal

Fourier mode of m = 3, and Case II with m = 15 was evident in azimuthal structures of

Case III with m ∈ {3 + 15}. These results hint at the need to expand our analysis in future

studies to near-wall turbulent features, including large-scale and very-large-scale motions,

and their disturbances induced by the targeted wall shapes.

4.6 Conclusions

The turbulent pipe flow response to wall changes that target particular Fourier modes (m =

3, 15, and 3 + 15) was investigated numerically at Reynolds number of 1.58 × 105. The

mean axial (streamwise) velocity along the centerline depicted acceleration at x = 2D− 7D

for all three cases due to flow contraction within the pipe-insert. Cases of m = 15 and

3+15 depicted two peaks in the velocity profile, which indicated characteristics of a second-

order response. The response of turbulent field due to these wall modifications further

indicated a second-order feature similar to a channel flow with abrupt variations of surface
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roughness (Saito and Pullin, 2014). A faster recovery in mean flow properties compared

to the turbulent field was also observed, which was also identified in a turbulent pipe flow

past a sudden change in wall roughness at high Reynolds numbers (Van Buren et al., 2020).

Contrarily, the case of m = 3 depicted a non-oscillatory trend corresponding to a monotonic

response. In particular, the lower Fourier mode wall shape demonstrated a faster recovery

in both mean flow and turbulent features in comparison with the other two cases. The flow

disturbance, response, and recovery due to the wall shape modifications corresponding to

the higher Fourier mode (m = 15) dominated when low and high modes were combined

(m = 3 + 15). This hinted at a relatively more significant impact of the higher Fourier

mode wall modifications on the boundary layer structures (Adrian, 2007). In addition, the

Q-criterion contours depicted regions dominated by high rates of rotation in the downstream

wake. The presence of intermittent regions instead of wide distributed regions with a high

rotation rate suggests a greater capability to concentrate Reynolds shear and normal stresses

closer to the wall and for a longer axial distance. This could lead to a prolonged recovery

process observed for cases corresponding to wall shape modifications based on higher Fourier

modes.
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Chapter 5

EFFECTS OF REYNOLDS

NUMBER

5.1 Introduction

The implications of Reynolds number on the flow response and recovery are examined nu-

merically using the Standard k − ε turbulence model at Re = 5 × 103 − 1.58 × 105. The

long-lasting flow response was examined by characterizing both the mean and turbulent field

in the wake of pipe insert targeting Fourier mode of 3 + 15 for each Reynolds number case.

This chapter addresses primary objectives (3) and (4) of the thesis on the effects of Reynolds

number variation on the flow behavior of targeted wall shapes outlined in Section 1.5. The

chapter is structured so that the problem description and numerical setup are presented in

Section 5.3, followed by a brief review of the verification and validation in Section 4.4 and

presentation of the results and discussions in Section 5.5. The summary of the main findings

are presented in Section 5.6.
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5.2 Background

The response and recovery of wall-bounded flows to an abrupt change in surface condition

have great importance in the engineering design of various systems, e.g., energy transport

in pipelines and ship architecture. Turbulent flows at high Reynolds number (Re) that

experience abrupt variations in surface conditions correspond to a class of perturbed or non-

equilibrium flows that have not received sufficient attention (Van Buren et al., 2019), such

as the flow over a small step (Smits et al., 2019; Jiménez, 2004; Goswami and Hemmati,

2020), forward and backward-facing step (Van der Kindere and Ganapathisubramani, 2018),

or variations of the surface roughness (Van Buren et al., 2019, 2020; Saito and Pullin, 2014;

Li et al., 2019). According to Jiménez (2004), small-sized steps that act similar to isolated

roughness elements can impose a considerable impact on drag and induce significant changes

in the downstream wake with different operational benefits (Ji and Wang, 2010). Despite

several studies on pipe flow response to rough surfaces, a knowledge gap exists on the associ-

ation of canonical wall-bounded turbulence (that is confined by a flat plate or parallel walls)

with flows that encounter modifications of the surface condition. The streamlined curvature

and pressure gradients significantly affect the turbulence behavior for flows over non-uniform

cross-sectional regions and uniquely curved boundaries (Ding et al., 2019). These types of

flow can be recognized in the energy industry (Yin et al., 2021), agriculture production

(Feng et al., 2020), medicine (Hatoum et al., 2019), marine vehicles (Smits et al., 2019), and

biological processes (Van Buren et al., 2019, 2020).

The physics of perturbed and non-equilibrium flows have been the focus of many re-

searchers for decades, which has enriched our understanding of pipe flow and wall-bounded

turbulence. Antonia and Luxton (1971) investigated the effect of a step-change in sur-

face roughness (from rough to smooth) on the turbulent boundary layer and observed a

non-monotonic flow response. Later on, Smits et al. (1979) studied the impact of surface

condition modification on turbulent pipe flow and identified that a turbulent boundary layer

exposed to a short concave curvature region initially induced an intensification of Reynolds
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stresses, which was followed by a fast reduction below the equilibrium state. They attributed

this phenomenon to the interaction of mean shear and turbulent shear stress. Thus, there

was a second-order response that led to long-lasting changes in turbulent structures. Smits

and Wood (1985) also observed a slow adjustment of the flow to the new wall conditions

due to step changes. The non-monotonic response was not specific to flows encountering

curvature changes as was identified in a very recent study (Van Buren et al., 2019).

The numerical study of Durst and Wang (1989) on the flow over an axisymmetric ring-

type wall-mounted obstacle in a turbulent pipe flow revealed overshoot of the flow response

(second-order response) in proximity of the obstacle (perturbation). This was consistent

with experimental results, which along with similarities on other flow features predicted

by Standard k − ε turbulence model, indicated a good agreement between numerical and

experimental data. Dimaczek et al. (1989) also performed an experiment on the surface-

mounted obstacles at moderately high Reynolds number using two-dimensional planes and

axisymmetric geometries. They concluded that the upstream flow condition affected the flow

reattachment length in different geometries. This was then expanded by Durst et al. (1989),

who experimentally studied the response of turbulent flow past an axisymmetric obstacle at

a range of Reynolds numbers. They identified two peaks in the reattachment length based on

variations with Reynolds number, which corresponded to Re = 1.2× 103 and Re = 3× 104.

At Re ≥ 4 × 104, however, there was a slow change in the reattachment length. Similar

observations were reported by Dimaczek et al. (1989) for flow response to an axisymmetric

obstacle and sudden expansion at various Reynolds numbers.

Reynolds number scaling for turbulent pipe flow was another area of extensive research.

Zagarola and Smits (1998) studied the mean-flow scaling of fully-developed turbulent flow in

a smooth pipe at a range of Reynolds number between 3.1× 104 and 3.5× 107. They deter-

mined two scaling laws (inner and outer region scaling) based on wall-normal distance, and

identified the existence of a logarithmic law between the inner and outer regions (logarithmic

overlap region). Furthermore, a new velocity scale was proposed in the outer region that
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depicted better agreement at various Reynolds numbers. The influence of turbulent flow

past rough walls was then examined by Jiménez (2004), who reported that small steps that

act similar to the isolated roughness elements introduce a significant change in flow features,

such as drag. Later on, Hultmark et al. (2010) reported a near-wall turbulence scaling in

pipe flow at a range of Reynolds numbers (2.4× 104 − 1.45× 105). The inner scaling region

near the pipe wall indicated a good collapse of turbulence intensity. A secondary peak in

turbulence intensity with a lower magnitude emerged in the wake region while increasing

Re. A similar observation was also reported by Hultmark et al. (2012) and Hultmark et al.

(2013), which showed that there is a secondary peak in the wake region, and it is a gen-

uine characteristic of high Re turbulent flow. Although several studies proposed Re−scaling

methods for the mean-flow features in a smooth pipe, there remains a gap in predicting the

scaling behavior for turbulent pipe flows undergoing modifications of wall shapes following

specific azimuthal Fourier modes.

Van Buren et al. (2019) and Smits et al. (2019) were the most recent experimental

studies of the response and recovery of flow past sudden changes in the surface condition.

These studies looked at turbulent flow over a roughness element at Re = 13 × 104 − 16 ×

104. Particularly, Van Buren et al. (2019) analyzed the flow response to a step-change in

roughness. They observed the oscillatory response of the mean velocity and the distribution

of shear stress, which did not indicate recovery even after 60D downstream of the step-

change, where D is the pipe diameter. A similar overshoot phenomenon was observed for

the Reynolds shear stress, where the peak was identified at the nearest location to the step

change. Their results hinted at a second-order feature, which was previously observed in

the flow downstream of the small area with concave curvature, where the boundary layer

recovered from a step-change in surface roughness (Smits et al., 1979).

Smits et al. (2019) studied the behavior of perturbed flow past axisymmetric square bar

roughness elements at Re = 1.56 × 105 along with bar heights of 0.05D and 0.1D. The

flow past perturbation experienced contraction and expansion that caused the overshoot of
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flow response in the proximity of the roughness elements and imposed long-lasting changes

in the downstream wake. A long-lasting recovery process occurred because of the slow rate

of collapse in the Reynolds shear stress variation after an initial intensification close to the

bar roughness. They further found that the Reynolds shear stress moved away from the

wall, with a power-law trend, toward the center of the pipe which presented benefits such

as extended zone of lower surface friction, lower turbulence levels, and reduced drag (Smits

et al., 2019).

Senturk and Smits (2019) reported one of the more recent numerical studies on pipe

flow over perturbations at lower Reynolds numbers. They examined the effect of multiple-

tandem roughness elements in periodic arrangements on a fully-developed laminar pipe flow

at Reynolds numbers between 200 and 2000. Particularly, they focused on the effect of Re

variation on the friction factor. This was then expanded by Liu et al. (2019), who assessed

the impacts of changing Re on response and recovery of fully-developed pipe flow at low Re.

They found that the principal factor impacting the response and recovery behavior of the

flow is the height of bar roughness elements and their separation distance.

Most recently, Goswami and Hemmati (2020) assessed the response and recovery of tur-

bulent pipe flow over single and multiple square bar roughness elements (two heights) at

Re = 1.56 × 105 to determine the implications of the number of roughness elements, their

periodicity and separation patterns on flow recovery. They also presented a benchmark study

on the performance of Reynolds-Averaged-Navier-Stokes (RANS) models on simulating tur-

bulent pipe flow response in the presence of small roughness elements. They reported that

in comparison to experiments of Smits et al. (2019), the Standard k − ε model performed

better than other conventional turbulence models at high Reynolds numbers. The reasonable

agreement of their numerical results with experiments implied that the Standard k−ε RANS

models can adequately predict the main flow features and capture the recovery and response

of pipe flow due to small wall modifications, i.e., roughness elements. This conclusion was
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in agreement with findings of Cappelli and Mansour (2013) and Fogaing et al. (2019) on

performance of RANS models in simulating pipe flows and wakes, respectively.

Liu et al. (2019), Smits et al. (2019), and Goswami and Hemmati (2020) have shown

that upstream flow conditions, including Reynolds number variations and geometric per-

turbations, made a substantial contribution in the flow response and recovery. Hence, the

effects of changing Reynolds number on response and recovery of the flow over modified wall

shapes still require further examinations. The current chapter focuses on the implications

of Reynolds numbers on turbulent flow recovery past pipe wall shapes targeting specific

Fourier modes, which complements an earlier experimental study by Van Buren et al. (2017)

at Re = 1.58× 105.

5.3 Problem Description

This chapter numerically examines response and recovery of fully-developed turbulent pipe

flow past changes in wall configuration resembling azimuthal Fourier modes in wall-bounded

turbulence. The Reynolds number varied between 5× 103 and 1.58× 105 based on the bulk

flow, such that Re = U∞D/ν, where U∞ is the bulk axial velocity at the inlet of the smooth

pipe, D is the pipe diameter, and ν is fluid kinematic viscosity. Moreover, the flow response

was evaluated up to a distance of 60D downstream of the wall change. The change in the

pipe wall was implemented through a pipe insert, the geometry of which was designed based

on the experiments of Van Buren et al. (2017). The perturbations on inserts targeted three

distinct azimuthal Fourier modes corresponding to m = 3 (Case I), m = 15 (Case II), and

m = 3 + 15 (Case III). Amongst all three cases, the results for Reynolds number effects

are only presented for Case III (m = 3 + 15). However, Reynolds number effects were also

evaluated for Case I and Case II, which showed similar effects for all cases. Here, only

results for Case III are provided for brevity. The implications of wall shapes on recovery are

discussed in a future publication. The amplitude of the perturbation followed a sinusoidal
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Figure 5.1: Schematic of the computational domain employed in this study (not to scale).

wave in the axial direction, while the formulation for the wall shape was:

r(θ,m, x) =
D

2

[︄
1 +

cos( πx
2D

) + 1

2

∑︂
m

amsin(mθ)

]︄
(5.1)

Here, m denotes the Fourier mode, θ(∈ [0, 2π]) is the azimuthal angle, x(∈ [−2D, 2D]) is

the streamwise location, and D is the pipe diameter. Amplitude of the perturbation was

am = 0.2 for Case I, am = 0.1 for Case II, and am ∈ {0.2, 0.1} for Case III. Note that

Case III is the superposition of Case I and Case II, with a maximum perturbation height of

0.15D. The cross-sectional area of the pipe varied following ∆A = 0.5
∑︁

m(2am/D)2 with a

maximum variation of 2.5% for Case III (Van Buren et al., 2017).

Schematics of the three-dimensional computational domain is shown in Figure 5.1, which

extended from −27D to +62D in the axial (x−) direction. A non-homogeneous three-

dimensional structured mesh was used for this analysis with a total of 12.2× 106 hexahedral

elements to simulate Case III at Re = 1.58 × 105. For lower Re cases, a similar mesh was

constructed with the same overall quality. A finer mesh was implemented near the pipe insert

segment, while the grid expanded towards the inlet and outlet boundaries (see Figure 5.2)

with a maximum expansion rate of 1.02. The average non-dimensional wall-normal distance

(r+) was maintained below 25 for the entire domain, which ensured proper modeling of the

flow behavior in the logarithmic region, especially at high Re (Liu, 2016).

63



-20 0 20 40 60
x/D

Figure 5.2: Screenshot of the spatial grid distribution over the cross-sectional area and central
plane of the pipe (scales are different in radial and axial directions).

A fully-developed inflow condition was imposed on the inlet boundary, which was mapped

from a fully-developed outlet profile of the smooth pipe case at the same Reynolds number.

The overall length of the three-dimensional smooth pipe was 220D, which allowed a fully-

developed profile to be developed at the outlet. The mapped inflow conditions included the

Dirichlet boundary condition for the velocity field and the Neumann boundary condition for

pressure field (dp/dn =0). The Neumann boundary condition was applied for both velocity

and pressure at the outlet boundary. For pipe walls, a no-slip boundary condition was

imposed with a standard wall-function, details of which can be found in Liu (2016).

The upstream friction velocity (uτ ) for all cases were obtained based on the correlations

of McKeon et al. (2004). The friction Reynolds number was defined as Reτ = uτD/ν. Nine

bulk Reynolds numbers were examined, based on the inlet bulk velocity of the smooth pipe

(U∞). These corresponded to Re = 1.58 × 105 (Reτ = 7144), 7.5 × 104 (3635), 5.0 × 104

(2525), 4.0× 104 (2053), 2.5× 104 (1399), 2.0× 104 (1149), 1.0× 104 (630), 7.5× 103 (492),

and 5.0× 103 (343).

The Standard k − ε turbulence model (Launder and Spalding, 1983) was used in Open-

FOAM to simulate the flow. OpenFOAM is a finite-volume method open-source solver

(Versteeg and Malalasekera, 2007), which has been extensively validated for simulating tur-

bulent pipe flow, e.g., Goswami and Hemmati (2021) and Goswami and Hemmati (2020).
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Second-order accurate discretization schemes were utilized for discretizing both advection

and diffusion terms. The convergence criterion for root-mean-square (rms) of momentum

residuals was set below 10−5. The discretized equations were solved using a steady-state

solver based on Semi-Implicit-Pressure-Linked-Equation (SIMPLE) (Greenshields, 2015) al-

gorithm. According to past studies, the Standard k − ε turbulence model presented better

performance compared to Realizable k − ε, SST k − ω, and k − ω in simulating such flows

(Morrison et al., 1993; Shah et al., 2012). It was also shown to provide accurate predic-

tions for the mean flow, which were in good agreement with experimental studies, especially

at high Re (Goswami and Hemmati, 2020). Simulations were completed using Compute

Canada clusters (Cedar and Béluga) with 40 parallel CPUs and 160 GB of memory over an

average of 96 simulation hours.

5.4 Validation and Verification

The simulations are first verified through an assessment of their accuracy in terms of vali-

dation with available experimental results of Smits et al. (2019) and Zagarola et al. (1996).

Verification included comprehensive grid and domain size sensitivity analyses to obtain an

optimum spatial grid and domain setup, details of which are provided in Chapter 4. A brief

description of the verification studies are provided here for completion. Please note that

the results were normalized based on the pipe diameter and radius (D = 2R), maximum

fully-developed mean velocity (i.e., the bulk velocity, Ub), inlet bulk velocity (U∞), and the

upstream friction velocity (uτ ).

The impacts of domain size on numerical results were investigated by adjusting the

distance of outlet boundary from the pipe-insert segment. Three cases were considered with

axial domain lengths of 59D (Domain 1), 69D (Domain 2), and 89D (Domain 3), details

of which are shown in Table 5.1. The profiles of mean axial velocity and turbulence kinetic

energy along the pipe centerline revealed that the simulations in Domain 3 has an adequate
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Table 5.1: Spatial grid distribution details based on Case III. r+, ∆θ+, and ∆x+ resemble
spacing in the radial, circumferential, and axial directions in wall units based on inflow
parameters, respectively. Lpipe denotes the total length of the pipe.

Study Lpipe First Cell (r+) ∆θ+ ∆x+ Number of Cells
Domain 1 59D 4 95 98 11.80× 106

Domain 2 69D 4 95 98 11.94× 106

Domain 3 89D 4 95 98 12.20× 106

Grid 1 89D 16 110 98 6.70× 106

Grid 2 89D 4 95 165 8.95× 106

Grid 3 89D 4 95 127 10.37× 106

Grid 4 89D 4 95 98 12.20× 106

Grid 5 89D 2 94 98 14.49× 106
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Figure 5.3: Effect of (a) domain size and (b) grid refinement on flow field predictions.

axial extent to accurately predict perturbed turbulent pipe flow recovery at Re = 1.58×105.

There existed a minimal difference of less than 1% between these cases (see Figure 5.3(a)),

which implied that the outlet boundary condition had a negligible effect on simulating the

critical flow region ahead of the pipe-insert. Hence, Domain 3 was employed for all the

simulations.

The grid sensitivity analysis was completed by successively refining the hexahedral grid

distribution in all direction through five grids, details of which are also outlined in Table

5.1. The results in Figure 5.3(b), and others not shown here for brevity, revealed a difference
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of less than 3% between Grid 4 and Grid 5 for the mean velocity field and the Reynolds

shear stress profiles. Hence, it was apparent that Grid 4 was sufficient in predicting both

the mean flow features and the turbulent field in the current study. Details of these results

are provided in Chapter 4.

5.4.1 Validation of Turbulence Model

The accuracy of numerical simulations in capturing the flow profile is validated using a

radial comparison of the mean velocity with experiments. First, the performance of various

turbulence models (i.e., Standard k−ε, Realizable k−ε and SST k−ω) in capturing the main

flow features was investigated and compared with experiments at Re = 1.58 × 105, which

are not shown here for brevity. The Standard k − ε turbulence model presented a better

agreement with experimental data. The fully-developed turbulent pipe flow in a smooth pipe

with a length of 220D is simulated at Re = 1.58× 105, 1.0× 104, and 5.0× 103. The mean

axial velocity profiles showed a close agreement with experiments of Smits et al. (2019) and

Zagarola et al. (1996) in both near the wall and core regions of the flow. The maximum

mean centerline velocity difference was within 3% of the experimental data. Moreover, there

was a good agreement with experiments at lower Re of 5.0× 103 and 1.0× 104 based on the

experiments of Kühnen et al. (2018), Eggels et al. (1994), and Den Toonder and Nieuwstadt

(1997). The maximum difference between these data was within 5% of the experimental data.

These series of validation studies confirmed that the current numerical setup is sufficiently

accurate in predicting the main flow features. This conclusion is consistent with previous

findings related to the accuracy of numerical simulations, and particularly the Standard k−ε

turbulence model (Shah et al., 2012; Cappelli and Mansour, 2013; Yamagata et al., 2014;

Goswami and Hemmati, 2020).
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Figure 5.4: Comparing the mean axial velocity from simulations with experimental results
at (a) Re = 1.58× 105, and (b) Re = 5× 103 and 1× 104, where the data corresponding to
Re = 5× 103 was shifted by 1 non-dimensional unit in the vertical direction.

5.5 Results and Discussion

We begin by looking at the radial profiles of mean axial velocity for Case III at different

streamwise (axial) locations at Re = 1.58× 105. The mean axial velocity profiles in Figures

5.5(a) and 5.5(b) are normalized by the friction velocity (uτ ) and bulk velocity (Ub), respec-

tively. Here, r+ = ruτ/ν represents the wall-normal distance. The friction velocity (uτ ) was

calculated for the smooth-pipe at the same bulk Reynolds number. Immediately downstream

of the perturbation, that is x = 2D − 8D, the mean streamwise velocity increased near the

wall and the flow decelerated near the outer region at r+ ≈ 103. Close to wall, flow recovery

was observed at x/D = 8, at which the mean velocity profile approached the fully-relaxed

state by “pivoting” (Van Buren et al., 2020) about a middle point at a distance of ≈ 0.5R

(r+ ≈ 5.5 × 102). This was consistent with the observations of Van Buren et al. (2020),

who attributed this to a balance of velocity deficit in pipe flows. Figure 5.5(b) shows the

mean axial velocity profile (Ux/Ub) along the wake centerline. The contraction within the

pipe insert accelerates the mean axial flow, which is apparent from the profiles for the entire

range of Reynolds numbers considered here. A close inspection of the velocity profile for
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Figure 5.5: Mean streamwise velocity profile development in (a) spanwise radial direction,
and (b) along the wake centerline.

Re = 1.58 × 105 revealed two peaks at x/D ≈ 2.2 and x/D ≈ 6.8, respectively. The latter

resembled a stronger secondary peak. The accelerated flow persisted for a longer distance

(x/D = 25) at higher Reynolds numbers, which was then followed by an undershoot below

equilibrium at x/D ≈ 15. The flow appeared to slowly recover past this point, and gradually

approach a fully-relaxed state at x/D ≈ 27. The slow and oscillatory recovery trend hinted

at a non-monotonic response of the perturbed flow (Van Buren et al., 2020). Further, At

lower Reynolds numbers, magnitude of the two peaks increased, while their axial location

moved upstream towards the pipe insert. This implied an earlier recovery and significant

Reynolds number effects on flow response. The trend of velocity profiles appeared to be

altered at Re ≤ 1.0 × 104, where magnitude of the first peak was larger compared to the

second peak.

The change in peak of Ux/Ub in Figure 5.5(b) was further investigated quantitatively

by tracing the locations of their maximum value (Lp). The variation of Lp with Reynolds

number are shown in Figure 5.6, which revealed that both peaks exhibited a power-law trend

in the form of Re4/3.
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Figure 5.7: Radial profiles of (a) Reynolds shear stress, and (b) normal stress at Re =
1.58× 105.

The immediate turbulent flow response was also examined by looking at the behavior of

Reynolds stresses. Figure 5.7 depicts the evolution of Reynolds shear stress (−uxur) and

axial normal stress (ux
2) with respect to fully-developed flow profiles, where ∆ indicates

the difference from fully-developed state and r/R represents the non-dimensional radial

coordinate. The fully-developed state refers to the conditions far downstream the pipe insert,

where no further changes are observed in the flow profiles. Downstream of the pipe insert at
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Figure 5.8: (a) The change of maximum −uxur in the downstream wake as a function of
x/D, and (b) Radial profiles of Reynolds shear stress at x/D = 4, for the entire Re range
considered.

a distance of ≈ 0.15R from the wall, turbulence properties, i.e., −uxur and ux
2, show a rapid

decay and thereby overshot the fully-developed profile. This behavior was consistent with

the observations of Van Buren et al. (2020) on pipe flow response to step-change in surface

roughness. Further downstream at x/D = 11, the turbulence level was observed to remain

higher than the fully-developed state. Close to the pipe insert (x = 2.05D), however, a peak

in ∆(−uxur) was observed at ≈ 0.15R from the wall, which decayed with increasing axial

distance from the pipe insert. The overshoot of ∆(−uxur) persisted longer downstream,

leading to a longer recovery process that extended beyond x/D = 14.

Figure 5.8(a) shows the change in the maximum values of −uxur with axial distance

downstream of the pipe insert. The decay of −uxur within x = 2.5D − 4D indicated a

power-law behavior in the form of (x/D)−1/3, for all Re cases. The maximum value of

−uxur at x/D = 8 was also compared with that observed in the study of Goswami and

Hemmati (2020). The peak in −uxur observed here decreased by 22%. It is important to

note that since maximum perturbation height in the current study (0.15D) was comparable

to that taken in Goswami and Hemmati (2020), the difference obtained would be attributed
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Figure 5.9: Contours of (a, b) the mean streamwise velocity, and (c, d) the turbulence kinetic
energy at (a, c) Re = 1.58× 105, (b, d) Re = 5× 104 downstream of the perturbation.

to the smooth bump perturbed geometry for our study, compared to the sharp step taken

in Goswami and Hemmati (2020).

A similar response behavior was observed for ux
2 at ≈ 0.1R from the wall, which consisted

of a peak. This overshoot remained intact, approaching the central region of the pipe with

a slow recovery rate. The overshoot of ux
2 was not recovered towards equilibrium even at

x/D = 14. The flow response in the core region also appeared different from the near wall,

which is further discussed later with respect to the variation of turbulence kinetic energy and

mean velocity. As presented earlier, flow accelerated in the core region to balance continuity

due to the flow contraction imposed by the wall perturbation. Thus, mean axial velocity

response caused the overshoot of ux
2 in the core region (r/R → 0) (Van Buren et al., 2020).

As shown by Smits et al. (2019), flow approached an equilibrium state when the excess

turbulence, close to the wall, moved towards the core region. This trend was also evident in

the current study, as depicted by variation of Reynolds stresses in Figure 5.7. Furthermore,

Figure 5.8(b) presents the variations of ∆(−uxur) with respect to Re, obtained at x/D = 4.

The peak in ∆(−uxur) appeared to move towards the pipe wall with increasing Re. This

also highlighted the effect of Re in delaying transport of Reynolds shear stress towards the

core region. This also alters the mean velocity on account of mean momentum equation

(Van Buren et al., 2020). This was consistent with the delayed recovery trends observed by

Smits et al. (2019), Van Buren et al. (2020), and Goswami and Hemmati (2021).
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The cross-sectional contour plots for mean axial velocity and turbulent kinetic energy are

depicted in Figure 5.9 at x/D = 3 for the highest and lowest Re. The contours clearly depict

the change in flow dynamics due to Reynolds number effects. At higher Re, the velocity field

shows a decreased magnitude in the core region compared to the lower Re case, which was

also observed via mean centerline axial velocity profiles presented in Figure 5.5. However, in

regions close to the wall (0.9 < r/R < 1), a larger velocity deficit is observed for the lower

Re case. The contours of turbulence kinetic energy are also presented in Figure 5.9(c, d)

for the high and low Reynolds number. For the case of high Re, greater concentration of

k/u2
τ can be observed in the region close to the wall (0.8 < r/R < 1), compared to the low

Re case, which is in accordance with the observations made in Figure 5.8(b). This further

supports the early transport of Reynolds stress away from the wall and thus achieving a

faster recovery at lower Re. The flow contraction within the pipe-insert caused amplification

of velocity gradients in regions close to the perturbation, which further led to the increase

in Reynolds shear stress. This can be seen in the contour plots of −uxur in Figure 5.10,

which suggests that the shear stress increases in regions close to the wall at higher Re. In

summary, both quantitative and qualitative results discussed above for Reynolds shear and

normal stresses depicted similar response characteristics, while possessing different rates of

recovery. This hints at differences in the variations of turbulence energy budget terms in

responding to the pipe perturbations.

Figure 5.11 traces the evolution of turbulence production (Pk) and dissipation (ε) along

the pipe centerline. The production term defined as,

Pk ≡ −uiuj
∂Ui

∂xj

,
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Figure 5.10: Reynolds shear stress contours at (a) Re = 1.58× 105, and (b) Re = 5× 104 in
the downstream wake.

was normalized by the friction velocity (uτ ) and pipe diameter (D) (Pope, 2001; Walters

et al., 2013). The dissipation rate, defined as,

ε = 2νsijsij = Cµ
0.75k

1.5

l
where sij =

1

2
(
∂Ui

∂xj

+
∂Uj

∂xi

),

was normalized using its value at the farthest downstream location, representing the fully-

relaxed state (Greenshields, 2015; Pope, 2001). Close to the pipe insert (−2 ≤ x/D ≤ 2),

an initial amplification of Pk was observed with a peak around x/D ≈ −0.5. This peak was

followed by a sharp decay and an overshoot around x/D ≈ 1.8. Downstream of x/D ≈ 2,

the flow eventually recovered to a fully-developed state. The secondary peak along the

wake centerline suggested that Pk decreased during the recovery relaxation process. This

second-order flow response was also observed previously by Smits et al. (1979) and Smits

et al. (2019). The former study observed that the second-order response was responsible

for the initial intensification of Reynolds stresses, followed by a rapid decay, which was

previously observed and discussed with respect to Figure 5.7. At lower Reynolds numbers,

the magnitude of turbulence kinetic energy production increased at the center of the pipe

insert on account of the flow contraction and thereby larger velocity gradients. The variation

of turbulent dissipation rate in Figure 5.11(b) implied that the dissipative nature of the wake
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Figure 5.11: Turbulence kinetic energy production (a) and dissipation (b) along the wake
centerline.
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Figure 5.12: Axial evolution of (a) turbulence kinetic energy, and (b) the axial pressure
gradient along the pipe centerline normalized by their corresponding fully-developed state.

immediately following the pipe insert led to the collapse of velocity gradients towards their

fully-developed state. Again at lower Reynolds numbers, the maximum dissipation rate

moved upstream towards the pipe insert.

The evolution of time-averaged turbulence kinetic energy and axial (streamwise) gradient

of pressure (dp/dx) along the centerline are shown in Figure 5.12. Here, both variables are

normalized by their value at x/D = 60, where a fully-relaxed state was achieved. The

75



mean turbulence kinetic energy showed small oscillations that persisted up to x/D = 30,

hinting at a long-lasting and oscillatory recovery. These oscillations also showed resemblance

to a second-order response previously observed by Van Buren et al. (2020) for pipe flow

with a step-change in roughness resulting in an oscillatory response of turbulence kinetic

energy. At lower Re, the peak shifted closer towards the pipe insert. In addition, the

large pressure gradient existed for a short region inside the pipe insert (−2 ≤ x/D ≤ 2)

compared to the values achieved in a fully-developed state. However, this quantity showed a

relatively fast recovery, that is within 14D. This implied that velocity variations dominated

the recovery process compared to pressure variations. As expected, in combination with

previous observations, the lower Reynolds number led to a smaller pressure gradient.

Flow recovery can be best quantified by locating the axial position where the flow profiles

appear to approach an equilibrium state, i.e., fully-developed conditions. To this end, an

asymptotic flow behavior was assumed if the consecutive variations in flow gradients in the

axial (streamwise) direction were less than 5%. A quantitative comparison of the normalized

recovery location (Lr/D) over the range of Reynolds numbers is shown in Figure 5.13. These

recovery locations were obtained based on the axial (streamwise) gradient of peak mean

velocity (Ux/uτ ) and turbulence kinetic energy (k/u2
τ ) downstream of the pipe insert. These

results indicated that increasing the bulk Reynolds number delayed the mean flow recovery,

thereby leading to a longer recovery length. The asymptotic trend was observed at Re ≥

7.5 × 104 in Figure 5.13(a), where the variations in flow recovery length was within ∼ 3%

of the highest Reynolds number. Furthermore, the mean flow appeared to recover faster

than the turbulent field, which implied that the turbulence field was responsible for the

prolonged recovery process and the overall recovery trend. At higher Reynolds numbers, the

recovery process was slower. The results in Figure 5.13(b), specifically, revealed that the flow

recovery length scaled with Re4 for both mean and turbulent fields. Previous studies had

mainly focused on the recovery of the flow over a square roughness element using the same

approach. Goswami and Hemmati (2020) studied the recovery by tracing the transport of
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Figure 5.13: Variation of the recovery length at a range of Reynolds number for Case III in
(a) linear, and (b) semi-log plotting style.

turbulence quantities (i.e., Reynolds shear stress) in the flow, based on which they observed

a prolonged recovery.

Radial profiles of mean axial (streamwise) velocity gradients (∂Ux/∂x) at different ax-

ial locations downstream of the perturbation are shown in Figure 5.14(a) for the case of

Re = 1.58 × 105. Larger velocity gradients were observed near the wall (r/R → 1), which

diminished and moved towards the center of the pipe (r/R → 0). The larger velocity gra-

dients near the pipe insert (x = 2D − 8D) coincided with the peaks in Reynolds stresses

that were observed previously in Figure 5.7. Further, as the flow developed downstream, a

self-similarity in terms of near-zero velocity gradient was observed. This was in agreement

with the findings of Smits et al. (2019), who attributed the overshoot of velocity gradients

to the contraction of flow produced by the square roughness element. The abrupt collapse

of the gradients toward the pipe center was also consistent with their observations, and that

of Goswami and Hemmati (2020). The slow recovery of ∂Ux/∂x towards the pipe center

therefore depicted a long recovery process. The axial profile of velocity gradients along the

pipe centerline at a range of Reynolds numbers are shown in Figure 5.14(b). With increasing

Re, a reduction in the magnitude of ∂Ux/∂x was clearly observed.
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Figure 5.14: Profiles of the mean axial (streamwise) velocity gradients along (a) the pipe
radius at Re = 1.58× 105, (b) the pipe centerline at a range of Re, both for Case III.
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Figure 5.15: Fully recovered and fully-developed mean velocity profiles normalized by the
inlet bulk velocity (U∞).

Radial profiles of fully-developed mean velocities at x/D = 60 are compared for the

entire range of Reynolds numbers in Figure 5.15. With increasing the Reynolds number,

mean velocity decelerated near the pipe center, while it accelerated near the wall. This may

be attributed to the effect of turbulence on transporting higher-momentum fluid towards

the walls, as previously suggested by Malin (1997). At a distance of ≈ 0.25R from the wall,

the bulk velocity approached the mean velocity with the corresponding location remaining
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independent of the Reynolds number. This observation was consistent with those of Zagarola

and Smits (1998) and Furuichi et al. (2015), who developed an outer flow scaling law (see

Chapter 3.5), based on which the point where mean velocity approaches bulk velocity was

found to be a function of wall-normal distance (r/R).

This chapter only focused on thoroughly analyzing turbulent pipe flow response to wall

geometry of Case III at a range of Reynolds number. However, the flow variations in Case

I and Case II show very similar behaviors with respect to Reynolds number, although their

individual flow dynamics differ substantially. These were not shown here for brevity. The

effect of pipe insert shape, meaning the azimuthal Fourier modes, on the flow dynamics and

response was presented in Chapter 4.

5.6 Conclusions

The response and recovery behavior of turbulent flow in a perturbed pipe were numerically

analyzed at a range of Reynolds numbers between 5 × 103 and 1.58 × 105. The perturba-

tion targeted specific Fourier modes 3, 15, and 3 + 15, while the Reynolds number effects

were mainly discussed in terms of the superimposed shape (m = 3 + 15). The immediate

flow response revealed that the mean flow accelerated near the wall and decelerated towards

the center of the pipe. The mean velocity response in the wake revealed two peaks whose

axial locations were observed to follow a power-law trend as Lp/D ∝ Re4/3. A fast turbu-

lence decay past the pipe insert was also observed, which was consistent with the literature

(Van Buren et al., 2020). The maximum Reynolds shear stress in the wake decayed with

a power-law trend in the form of (x/D)−1/3 for all Reynolds numbers. A long-lasting flow

response was observed for the entire range of Reynolds numbers considered here, while the

mean flow recovered faster than the turbulent field. The overall recovery length increased

with increasing Reynolds number, and it appeared to approach an asymptotic behavior at

Re ≥ 7.5× 104. The turbulent field resembled a second-order response, similar to a channel
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flow with a step-change in surface roughness (Saito and Pullin, 2014). Tracking the changes

in axial flow gradients within the core region suggested a slower recovery compared to the

near wall region. The flow recovery length scaled with Re4 for both mean velocity and

turbulence kinetic energy.
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Chapter 6

CONCLUSION

The main objective of this study was to characterization turbulent flow response and re-

covery over different pipe-inserts ranging from moderate to high Reynolds numbers. In

particular, this thesis numerically examined the implications of wall changes that target

particular Fourier modes (m = 3, 15, and 3+15) on pipe flow response at different Reynolds

numbers using RANS-based turbulence models. A thorough validation study was completed

to determine the performance of different RANS turbulence models in predicting the mean

flow features, such as the mean streamwise velocity profile and Reynolds stress distributions.

This includes Standard k − ε, Realizable k − ε, and SST k − ω. The Standard k − ε turbu-

lence model performed the best overall, implying the closest approximation to the available

experimental data, which was also consistent with recent literature.

First, the effect of wall shape on flow dynamics, response, and recovery was examined at

a high Reynolds number of 1.58×105 for the three Fourier modes. The acceleration of mean

axial velocity along the wake centerline appeared at x = 2D − 7D for all three cases due to

flow contraction within the middle of the pipe-insert. Cases ofm = 15 and 3+15 depicted two

peaks in the centerline velocity profile, which indicated characteristics of a second-order flow

response. Similar to the mean flow, turbulent field response due to these wall modifications

was also a second-order feature similar to a channel flow with abrupt variations of surface
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roughness (Saito and Pullin, 2014). The mean flow properties presented a faster recovery

compared to the turbulent field, which was analogous to a turbulent pipe flow response past

an abrupt change of wall roughness at high Reynolds numbers (Van Buren et al., 2020). The

case of m = 3, however, represented a non-oscillatory behavior corresponding to a monotonic

response. Specifically, the lower Fourier mode wall shape (m = 3) illustrated a faster recovery

trend in both mean flow and turbulent features in comparison with the other two cases. The

flow disturbance, response, and recovery in the wake of perturbation geometry corresponding

to the higher Fourier mode (m = 15) dominated when low and high modes were combined

(m = 3 + 15). This suggested a relatively more dominance of the higher Fourier mode

wall modifications on the overall characteristics of the boundary layer structures (Adrian,

2007). Moreover, the investigation of Q−criterion delineated flow regions dominated by

higher rates of rotation in the wake of pipe-inserts. In addition, localized regions of higher

rotations rates in the downstream wake was assumed to be a contributing factor in the

concentration of Reynolds stresses to the region closer to the wall. This can be a reason

for the prolonged recovery process observed for cases resembling perturbation geometries of

higher Fourier modes.

This study was then extended to analyzing the implications of Reynolds number on

the flow response and recovery due to the implementation of different pipe inserts. The

simulations were performed at a wide range of Reynolds numbers between 5 × 103 and

1.58 × 105. For this part, the analyses focused on the case of m=3+15, which exhibited

the most significant response and recovery behavior compared to the other two cases. The

immediate flow response showed that the mean flow accelerated in regions closer to the wall

and decelerated towards the center of the pipe. The mean velocity response in the wake

region consisted of two peaks, whose axial locations were determined to follow a power-law

trend in the form of Lp/D ∝ Re4/3. The turbulence field exhibited a fast decay past the

pipe-insert, where the maximum Reynolds shear stress decayed with a power-law trend as

(x/D)−1/3 for all Reynolds numbers cases. The change axial flow gradients hinted at a slower
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recovery of the core flow compared to the regions close to the wall. The flow response was

found to be long-lasting for the entire range of Reynolds numbers. However, the mean flow

recovered faster than the turbulent field. The overall recovery length increased at higher

Reynolds numbers, and it resembled the asymptotic behavior at Re ≥ 7.5 × 104. The flow

recovery location was scaled with Re4 for both mean velocity and turbulence kinetic energy

properties.

6.1 Future Work

The findings of this study provide a framework to improve our knowledge and understanding

of the out-of-equilibrium wall-bounded turbulent pipe flows. While a significant analysis was

presented on the flow response and recovery behavior, some remaining unchallenged questions

require further research, including:

(a) The implications of perturbation thickness on the flow response and recovery.

(b) The effect of pipe-insert length on the flow response and recovery.

(c) Analysis of the implications of non-Newtonian fluid features on the response and re-

covery of these perturbed flow.

(d) Studying the separation distance of inserts with potential pipe-angles on the response

and recovery of the flow.

(e) The flow dynamics, response and recovery associated with multiphase pipe flow.

(f) The near-wall turbulence implications of the pipe-inserts, in terms of manipulation of

Large-Scale motions and Very-Large-Scale motions using Direct Numerical Simulations

at moderate Reynolds numbers.

(g) Examination of the detailed flow fields using Direct Numerical Simulations at different

flow conditions (e.g., laminar, transition and turbulence).
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(h) Implications of the pipe-inserts on heat transfer in pipe flow.
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