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Abstract— Intra-domain traffic engineering is essential for
the operation of an Internet Service Provider (ISP). Demand-
oblivious routing [5] promises excellent performance guarantee
with changing and uncertain traffic demands. However, it is
non-trivial to implement it. We investigate an efficient and
deployable implementation of oblivious routing. We study its
performance by both numerical experiments and simulation.
The performance study shows that the multipath implementation
achieves a close approximation to oblivious routing [5], especially
when approximate knowledge of traffic is available. The study
shows its robustness under varying traffic demands, link failures
and an adversary attack. Its performance is excellent even with
a 100% error in traffic estimation. We open the door for a
deployable demand-oblivious routing, which can provide robust
network services with good quality to network users.

I. INTRODUCTION

Intra-domain traffic engineering is essential for the operation
of an Internet Service Provider (ISP). It is desirable to design a
routing protocol that can balance network utilization, mitigate
the impact of failures and attacks, and thus provide good qual-
ity of service to network users, with economic provisioning
of network resources. However, it is challenging to design
such a routing protocol due to traffic changes and uncertainty.
Network traffic is inherently changing and uncertain, due
to factors such as the diurnal pattern, dynamic inter-domain
routing, link failures, and attacks. Adaptive traffic resulting
from overlay routing or multihoming [2], [13], [25] further
aggravates the problems.

There are three classes of solutions: link weight optimiza-
tion [10], [11], [34], [35], traffic-adaptive approaches [8], [14],
[29] and demand-oblivious routing [4], [5], [33]. Link weight
optimization guarantees performance only for a limited set
of traffic demands, while how to find critical traffic matrices
is investigated in [36]. An adaptive approach is responsive
to traffic changes, so that the issues of stability and con-
vergence [15] have to be addressed both in theory and in
practice. Demand-oblivious routing is particularly promising;
it promises excellent performance guarantee with changing
and uncertain traffic demands. Its performance is particularly
good with approximate knowledge of traffic demands, which
is made available by the recent great progress in traffic
estimation, e.g. [7], [9], [16], [20], [31], [37], [38]. In [33],
the performance is optimized for expected scenarios and is
guaranteed for unexpected scenarios.

However, it is non-trivial to implement oblivious routing
in [5]. A straightforward implementation is for each node to
forward incoming packets according to the routing fractions

computed by [5]. However, without careful attention, such a
distributed implementation may lead to loops. Furthermore,
an oblivious routing may involve a large number of paths
between each origin-destination (OD) pair, which requires a
large number of labels in an MPLS deployment [28]. This is
shown in our previous study [17]. It is thus desirable to route
traffic on a small number of paths. However, since there are
many paths between each OD pair, it may be difficult to select
a small set of paths that gives good performance.

The challenges to implement oblivious routing are shared
by many other optimization-based routing strategies. Recent
progress along this line of research, including those being
linear [1], [21], convex [23] or with game-theoretic con-
cerns [3], has greatly advanced the state-of-the-art of routing.
However, to achieve the optimal solution, such optimization-
based approaches typically use an arc-formulation (see §III-A)
as oblivious routing [5]. Thus it may encounter the implemen-
tation issues as discussed above.

We investigate an efficient and deployable implementation
of oblivious routing. We design MORE, Multipath Oblivious
Routing for traffic Engineering, to obtain a close approxima-
tion to [5]. MORE can achieve very excellent performance
guarantee when combined with approximate knowledge of
traffic demands. However, it does not need frequent collec-
tion of network information like an adaptive approach. An
oblivious routing guarantees the performance for much broader
traffic demands than those specified by the traffic knowledge,
since its performance is invariant with the scaling of traf-
fic demands, thus temporary traffic spikes may be covered.
Oblivious routing optimizes a worst case performance metric.
However, our empirical study will show that MORE achieves a
performance close to the optimal. Its performance is excellent
even with a 100% error in traffic estimation. In addition, as
a quasi-static solution, MORE can be static on an hourly,
multi-hourly or even daily basis. Thus, MORE is much less
concerned with stability and convergence issues [15] than an
adaptive approach, which is responsive on a small time-scale,
like seconds. MORE does not need changes to core routers,
thus it can be efficiently implemented and gradually deployed.

Contribution. To the best of our knowledge, we are the first
to investigate a feasible implementation of demand-oblivious
routing [5]. We design MORE, a multipath approximation
to [5]. Through extensive numerical experiments and simu-
lation, we show the excellent performance of MORE under
varying TMs, link failures and an adversary attack. Our work
is complementary to [4], [5] and [33].
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We open the door for a viable deployment of oblivious
routing, thus providing an intra-domain traffic engineering
technique robust to changing and uncertain environments.
MORE is a promising option for traffic engineering, along with
link weight optimization [10], [11], [34], [35] and adaptive
approaches, like MATE [8], TeXCP [14] and [29].

Paper organization. We present related work in §II and
preliminaries in §III. Then we present the design of multi-
path oblivious routing in §IV, and evaluate its performance
in §V. After discussing implementation and deployment issues
in §VI, we draw conclusions.

II. RELATED WORK

Our work is built on the achievements of a large body of
previous work in traffic engineering.

With accurate knowledge of the traffic matrix (TM), an opti-
mal routing for a flexible architecture like MPLS is achievable
by solving a multi-commodity linear programming (LP) flow
problem [21]. For OSPF/IS-IS, Fortz and Thorup [10], [11]
deploy a local search technique to find a set of link weights for
shortest path computation, which gives good performance for
a given TM or a set of TMs. This is compatible with OSPF/IS-
IS. However, it may not guarantee good performance for some
traffic demands. Zhang and Ge investigate how to find critical
traffic matrices [36]. Zhang et al. [34], [35] investigate routing
optimization over multiple TMs and the tradeoff between
average- and worst-case performance.

The research on oblivious routing [5], [6], [26] has made
great achievements. The oblivious routing problem is to design
a routing that achieves close to the optimal performance, with
no or only approximate knowledge of the traffic demand,
without considering the current network load. Räcke [26]
investigates oblivious routing on general symmetric networks.
Azar et al. [6] show that an optimal oblivious routing can be
computed by an LP with a polynomial number of variables,
but an infinite number of constraints. Applegate and Cohen
[5] design a simple polynomial size LP to obtain demand-
oblivious routing schemes that achieve good performance. Ap-
plegate et al. [4] study demand oblivious restoration strategies.
Wang et al. [33] design a scheme so that the performance
is optimized for expected scenarios and is guaranteed for
unexpected scenarios. In [18], we design oblivious routing for
energy efficiency in wireless networks. This work is the first
to investigate a feasible implementation of oblivious routing.

Gallager’s work [12] is a classic in adaptive routing.
Recently, Kandula et al. [14] propose an adaptive routing
on multiple paths. Shaikh et al. [29] and MATE [8] are
also adaptive approaches. MORE, as a quasi-static solution,
operates in a static way on a large time-scale, thus the issues
of stability and convergence are much less severe than for
adaptive approaches.

Traffic estimation has made great progress, e.g. Feldmann
et al. [9], Medina et al. [20], Bhattacharyya et al. [7], Zhang
et al. [37], [38], Lakhina et al. [16] and Soule et al. [31].
The network community begins to enjoy deeper understanding
of the traffic structure and more accurate demand estimation.

Various models are proposed to study the spatial and temporal
structure of the traffic. Techniques for fairly accurate traffic
estimation are available, e.g., the Gravity model [37]. See
Soule et al. [31] for a recent survey.

III. PRELIMINARIES

In this section, we introduce preliminaries about routing and
the competitive analysis framework [5].

A traffic matrix specifies the amount of traffic between each
OD pair over a certain time interval. An entry dij denotes the
amount of traffic for OD pair i → j. The capacity of edge e
is denoted as c(e).

A. Routing
A routing specifies how to route the traffic between each

OD pair across a given network. Open Shortest Path First
Protocol (OSPF) and Intermediate System to Intermediate
System (IS-IS), two popular Internet routing protocols, follow
a destination-based evenly-split approach. The MultiProtocol
Label Switching (MPLS) architecture allows for more flexible
routing. Both OSPF/IS-IS and MPLS can take advantage
of path diversity. OSPF/IS-IS distributes traffic evenly on
multiple paths with equal cost. MPLS may support arbitrary
routing fractions over multiple paths. Our work is applicable
to MPLS, which is widely deployed by ISPs.

We differentiate arc- and path-routing (§IV-B). An arc-
routing fij(e) specifies the fraction of traffic demand dij on
edge e [5], [6]. An arc-routing is not readily implementable
for either OSPF or MPLS. We use in(k) and out(k) to denote
edges “entering” or “leaving” node k respectively. Arc-routing
f is defined as:



























∀ pairs i → j :
∑

e∈out(i)

fij(e) −
∑

e∈in(i)

fij(e) = 1

∀ pairs i → j, ∀ nodes k 6= i, j :
∑

e∈out(k)

fij(e) −
∑

e∈in(k)

fij(e) = 0

∀ pairs i → j, ∀ edges e : fij(e) ≥ 0

(1)

B. Link utilization
For a given arc-routing f and a given traffic demand tm,

the maximum link utilization (MLU) measures the goodness
of the routing, i.e., the lower the maximum link utilization,
the better the routing:

MLUarc(tm, f) = max
e∈E

∑

i,j

dijfij(e)/c(e) (2)

Given a TM tm, an optimal arc-routing minimizes the max-
imum link utilization:

OPTUarc(tm) = min
f

max
e∈E

∑

i,j

dijfij(e)/c(e) (3)

C. Competitive Analysis
The routing computed by (3) does not guarantee perfor-

mance for other traffic matrices. Applegate and Cohen [5]
developed LP models to compute an optimal routing that
minimizes the oblivious ratio with a weak assumption on the
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traffic demand. We present the metric of performance ratio
that follows the competitive analysis [5], [24].

For a given routing f and a given traffic matrix tm, the
performance ratio is defined as the ratio of the maximum
link utilization of the routing f on the traffic matrix tm to
the maximum link utilization of the optimal routing for tm.
The performance ratio measures how far routing f is from the
optimal routing for traffic matrix tm.

PERF(f, {tm}) =
MLU(tm, f)

OPTUarc(tm)
(4)

This applies to both an arc- and a path-routing, thus we do
not add a subscript to MLU. The performance ratio is usually
greater than 1. It is equal to 1 only when the routing f is an
optimal routing for tm.

When we are considering a set of traffic matrices TM, the
performance ratio of a routing f is defined as

PERF(f, TM) = max
tm∈TM

PERF(f, {tm}) (5)

The performance ratio with respect to a set of traffic matrices
is usually strictly greater than 1, since a single routing usually
can not optimize link utilization over the set of traffic matrices.

When the set TM includes all possible traffic matrices,
PERF(f, TM) is referred to as the oblivious performance ratio
of the routing f. This is the worst performance ratio the routing
f achieves with respect to all traffic matrices. An optimal
oblivious routing is the routing that minimizes the oblivious
performance ratio. Its oblivious ratio is the optimal oblivious
ratio of the network.

Suppose there is an oracle that knows the instant traffic ma-
trix tm and computes its optimal routing with link utilization
u. The link utilization of the optimal oblivious routing for tm
is guaranteed to be within [u, r ∗ u], where r is the oblivious
ratio. It may achieve lower link utilization than r ∗ u for the
particular traffic matrix tm. The oblivious routing guarantees
the performance of what an oracle can achieve multiplied by
the oblivious ratio for all traffic matrices.

Table III presents an example to illustrate the performance
metric of competitive ratio. Suppose all other TMs have
CR(f, {tm}) less than 1.5. Then, maxtm∈TM CR(f, {tm}),
or oblivious ratio, is 1.5. Table III also shows that for some
TM, the performance ratio can be lower than 1.5, e.g., for
TM3, the ratio is 1.2. This shows that the oblivious routing f
can performance better than the oblivious ratio predicts.

TM1 TM2 TM3 ... TM∞

MLU(tm, {f}) 0.7 0.6 0.6
OPTU(tm) 0.6 0.4 0.5

CR(f, {tm}) 1.1 1.5 1.2
max

tm∈TM
CR(f, {tm}) 1.5

TABLE I
EXAMPLE: OBLIVIOUS RATIO

IV. MORE: MULTIPATH OBLIVIOUS ROUTING FOR
TRAFFIC ENGINEERING

A. Overview
As discussed in the Introduction, there are obstacles to the

implementation of oblivious routing in [5], such as potential
routing loops and a large number of MPLS labels. We in-
vestigate a deployable oblivious routing, MORE, Multipath
Oblivious Routing for traffic Engineering.

We use a quasi-static routing, so that the fractions of traffic
on the multiple paths between an OD pair do not change over
a large time period, in contrast to an adaptive routing. The
routing fractions may have to change, e.g., after severe network
failures have happened. Such an implementation has the nice
feature that issues like stability and convergence are much
less severe than for adaptive approaches. As well, MORE
alleviates the reliance on global network information: it can
achieve excellent performance with a large time-scale traffic
estimation, but it does not need to collect the instantaneous link
load. The oblivious ratio can be computed by the reformulation
of the oblivious routing on K paths in LP (15), which gives
the worst case performance guarantee.

Figure 1 gives an illustration of MORE. Between the OD
pair, there are three paths, with routing fractions 0.5, 0.2 and
0.3, computed by LP (14) or LP (15). The incoming traffic
will be forwarded on the three paths according to their routing
fractions, i.e., 50%, 20% and 30% respectively.

Traffic 
Splitter

0.3

0.2

0.5

Fig. 1. Illustration of MORE

B. Multipath routing
Each OD pair i → j is configured with up to Kij paths. For

notational brevity, we use K paths for each OD pair. The set of
paths for OD pair i → j is denoted as Pij = {P 1

ij , ..., P
K
ij }. A

multipath routing computes, for each OD pair i → j, a routing
fraction vector, defined as

< f1
ij , ..., f

K
ij >,

∑

k

fk
ij = 1, fk

ij ≥ 0 (6)

on the set of paths for OD pair i → j. A path-routing f k
ij

specifies the fraction of traffic demand dij on path P k
ij . A

path-routing is readily implementable for MPLS.
Given path-routing f and traffic demand tm, the maximum

link utilization is:

MLUpath(tm, f) = max
l∈E

∑

ij

dij

∑

k

δk
ij(l)f

k
ij/c(l) (7)
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Here δk
ij(l) is an indicator function, which is 1 if l ∈ P k

ij , 0
otherwise. We use l ∈ P k

ij to denote edge l is on path P k
ij .

Given tm, an optimal path-routing that minimizes the
maximum link utilization is:

OPTUpath(tm) = min
f

max
l∈E

∑

ij

dij

∑

k

δk
ij(l)f

k
ij/c(l) (8)

C. LP Formulation
We give LP models for multipath oblivious routing. We

replace the arc formulation in Applegate and Cohen [5] with a
path formulation to compute an optimal oblivious routing and
its ratio. In an arc formulation, routing variables are on links
and flow conservation constraints are at each node for each OD
pair. In a path formulation, routing variables are on paths and
flow conservation constraints are implicitly satisfied on each
path. We start with the case in which there is approximate
knowledge of traffic demand.

Similar to Applegate and Cohen [5], the optimal oblivious
routing can be obtained by solving an LP with a polynomial
number of variables, but infinitely many constraints. With the
approximate knowledge that dij is in the range of [aij , bij ],
we have the “master LP”:

min r
f is a path-routing
∀ edges l, ∀α > 0
∀ TMs tm with OPTUarc(tm) = α, aij ≤ dij ≤ bij :

∑

ij

dij

∑

k

δk
ij(l)f

k
ij/c(l) ≤ αr

(9)
The oblivious ratio is invariant with the scaling of the traffic
matrices or the scaling of the edge capacity. Thus, when
computing the oblivious ratio, it is sufficient to consider traffic
matrices with OPTUarc(tm) = 1. Another benefit of using
traffic matrices with OPTUarc(tm) = 1 is that the objective
of the LP, the oblivious ratio r, is equal to the maximum link
utilization of the oblivious routing.

Since the oblivious ratio r is invariant with respect to the
scaling of TMs, we can consider a scaled TM tm′

= α · tm.
With α = 1/OPTUarc(tm), we have OPTUarc(tm′

) = 1.
Under these conditions, the master LP (9) becomes:

min r
f is a path-routing
∀ edges l :
∀ TMs tm with OPTUarc(tm) = 1,
λ > 0, λaij ≤ dij ≤ λbij :

∑

ij

dij

∑

k

δk
ij(l)f

k
ij/c(l) ≤ r

(10)

For the condition “∀ TMs tm with OPTUarc(tm) = 1”, we
need the flow definition on edges. Flow g is defined as,


























∀ pairs i → j, k 6= i, j :
∑

e∈out(k)

gij(e) −
∑

e∈in(k)

gij(e) = 0

∀ pairs i → j :
∑

e∈out(j)

gij(e) −
∑

e∈in(j)

gij(e) + dij = 0

∀ pairs i → j, ∀ edges e : gij(e) ≥ 0
∀ pairs i → j : dij ≥ 0

(11)

LP formulations can be simplified by collapsing flows gij on
an edge e with the same origin by gi(e) =

∑

j gij(e).
Given a path-routing f, the constraint of the master LP (10)

can be checked by solving the following “slave LP” for each
edge l to examine whether the objective is ≤ r or not. In (12),
routing fk

ij are constant and flow gij(e), demand dij and λ are
variables.

max
∑

ij

dij

∑

k

δk
ij(l)f

k
ij/c(l)

∀ pairs i → j : ⇐ wl(i, j)
∑

e∈out(j)

gi(e) −
∑

e∈in(j)

gi(e) + dij ≤ 0

∀ edges e :
∑

i

gi(e) ≤ c(e) ⇐ πl(e)

∀ pairs i → j : dij − λbij ≤ 0 ⇐ κ+
l (i, j)

∀ pairs i → j : −dij + λaij ≤ 0 ⇐ κ−

l (i, j)
∀ pairs i → j : dij ≥ 0, gk

ij ≥ 0
λ > 0

(12)
The flow conservation constraint is relaxed from equality to
≤ 0, which allows for OD pair i → j to deliver more flow than
demanded, and does not affect the maximum link utilization
of 1. The constraints of LP (12) guarantee the traffic can be
routed with maximum link utilization of 1.

The dual of LP (12) is LP (13). To help make the derivation
of the dual LP (13) clearer, we use leftarrow ⇐ to indicate dual
variables corresponding with primal constraints in LP (12). In
dual LP (13), we indicate primal variables corresponding to
dual constraints.

min
∑

e

c(e)πl(e)

∀ pairs i → j : ⇐ dij

wl(i, j) + κ+
l (i, j) − κ−

l (i, j) ≥
∑

k

δk
ij(l)f

k
ij/c(l)

∀ nodes i, ∀ edges (u, v) : ⇐ gi(u, v)
πl(u, v) + wl(i, u) − wl(i, v) ≥ 0

∑

i,j

{aijκ
−

l (i, j) − bijκ
+
l (i, j)} ≥ 0 ⇐ λ

∀ edges e : πl(e) ≥ 0
∀ pairs i → j : wl(i, j) ≥ 0, κ+

l (i, j) ≥ 0, κ−

l (i, j) ≥ 0
∀ nodes i : wl(i, i) = 0, κ+

l (i, i) = 0, κ−

l (i, i) = 0
(13)

According to the LP duality theory [1], the primal LP and
its dual LP have the same optimal value if they exist. That
is, LP (12) and LP (13) are equivalent. Because LP (13) is
a minimization problem, we can use its objective in place of
the objective of LP (12) in the “≤ r” constraints of LP (10).
Replacing the constraint in the master LP (10) with LP (13),
we obtain a single LP to compute the oblivious performance
ratio using K paths.
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min r
f is a path-routing
∀ edges l :

∑

e

c(e)πl(e) ≤ r

∀ pairs i → j :
wl(i, j) + κ+

l (i, j) − κ−

l (i, j) ≥
∑

k

δk
ij(l)f

k
ij/c(l)

∀ nodes i, ∀ edges (u, v) :
πl(u, v) + wl(i, u) − wl(i, v) ≥ 0

∑

i,j

{aijκ
−

l (i, j) − bijκ
+
l (i, j)} ≥ 0

∀ edges e : πl(e) ≥ 0
∀ pairs i → j : wl(i, j) ≥ 0, κ+

l (i, j) ≥ 0, κ−

l (i, j) ≥ 0
∀ nodes i : wl(i, i) = 0, κ+

l (i, i) = 0, κ−

l (i, i) = 0
(14)

When there is no knowledge of the traffic demand, i.e., the
range [aij , bij ] for dij becomes [0,∞), the LP to compute
the oblivious routing is obtained by removing the variables
κ+

l (i, j) and κ−

l (i, j), as in LP (15).

min r
f is a path-routing
∀ edges l :

∑

e

c(e)πl(e) ≤ r

∀ pairs i → j : wl(i, j) ≥
∑

k

δk
ij(l)f

k
ij/c(l)

∀ nodes i, ∀ edges (u, v) :
πl(u, v) + wl(i, u) − wl(i, v) ≥ 0

∀ edges e : πl(e) ≥ 0
∀ pairs i → j : wl(i, j) ≥ 0
∀ nodes i : wl(i, i) = 0

(15)

The derivation of LP formulation is based on the “master-
slave” approach in Applegate and Cohen [5]. We use multiple
paths for each OD pair.

D. MultiPath Selection
In this section, we discuss how to select multiple paths for

each OD pair. The objective is to select multiple paths that
give a low oblivious ratio. We investigate three approaches,
namely, spK, mixK and focusK.

In spK, we select K shortest paths with respect to hop
count for each OD pair.

In mixK, we first find K shortest paths with respect to
hop count, as in spK. These shortest paths serve as base
paths. Then, we sort the K paths in increasing order of their
hop counts. After that, for each shortest path, we search for
its edge-disjoint paths and record them, until K paths are
found. Long paths are not preferred, so that we only search
for disjoint paths that are not M hop longer than the base
paths (M = 3). We use the name “mixK” to reflect that it is
a mixture of shortest paths and their disjoint paths. We find
K shortest paths first, in case none of them has an eligible
disjoint path. In this case, the K shortest paths are chosen as
the mixK paths.

The method focusK is based on our previous work [17].
The oblivious routing in Applegate and Cohen [5] considers
the objective of lowering oblivious ratio, but not the number
of paths and path lengths. In [17], we design a method to
implicitly reduce the the number of paths and path lengths,
with only negligible increase of the oblivious ratio. The basic
idea is to put a penalty on using an edge far away from the
shortest path for an OD pair. Thus, this method essentially
focuses on short paths for each OD pair. We make an extension
to [17] by considering range restrictions on traffic demand.

LP (16) is from Applegate and Cohen [5]. It computes the
oblivious routing and its ratio of a topology, when knowledge
of traffic demands is given in the range restriction format, i.e.,
∀ pairs i, j, 0 ≤ aij ≤ dij ≤ bij .

min r
fij(e) is an arc-routing
∀ links l :

∑

m cap(m)π(l, m) ≤ r
∀ links l, ∀ pairs i → j :

pl(i, j) + s+(i, j) − s−(i, j) ≥ fij(l)/cap(l)
∀ links l, ∀ nodes i, ∀ edges e = j → k :

π(l, link-of(e)) + pl(i, j) − pl(i, k) ≥ 0
∀ links l :

∑

ij(bijs
+(i, j) − aijs

−(i, j)) ≤ 0

∀links l, m : π(l, m) ≥ 0
∀links l, ∀nodes i : pl(i, i) = 0
∀links l, ∀nodes i, j : pl(i, j), s

+(i, j), s−(i, j) ≥ 0

(16)

After computing the arc-routing f using LP (16), similar
to [17], we obtain the following “penalty LP”:

min r + t

f
′

ij(e) is an arc-routing by LP (16)
α =

∑

ij

∑

e{f
′

ij(e)penaltye(i, j)}

fij(e) is an arc-routing
∑

ij

∑

e{fij(e)penaltye(i, j)} −
α
β
t = 0

Other constraints and variables in LP (16)

(17)

Here β is the penalty factor and penaltyuv(i, j) measures the
distance from edge (u, v) to OD pair i → j. The larger β,
the more pressure deterring use of an edge far away from the
shortest path. The penalty penaltyuv(i, j) is half the sum of
the distances of nodes u and v to the shortest path of i to
j. Similar to [17], when computing the shortest path of OD
pair i → j, we use the metric of link weight; when computing
the shortest distance from a node to an OD pair i → j, we
use the metric of hop count. We use the CISCO heuristic of
setting link weight inversely proportional to the link capacity
(referred to as InvCap).

After computing the modified oblivious routing using
LP (17), we extract K paths. In the performance study, we
extract up to 20 shortest paths from the resultant oblivious
routing with routing fractions ≥ 0.001.

LP (16) and LP (17) can handle the case in which no
knowledge of traffic demands is available, by removing the
constraints about aij ≤ dij ≤ bij ≥ 0, i.e., by removing
variables s+(i, j) and s−(i, j).

The path selection methods are complementary to the work
using multipath routing, like TeXCP [14]. The path selection
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methods we discuss here are not exhaustive - we expect to see
better designs.

V. PERFORMANCE STUDY

We evaluate the performance of MORE by numerical exper-
iments and simulation. We use the oblivious ratio of a routing
and the maximum link utilization (MLU) a routing incurs as
performance metrics. We solve LPs with CPLEX.1

A. Data
Topology. ISP topologies and traffic demands are regarded

as proprietary information. The Rocketfuel project [32] de-
ployed new techniques to measure ISP topologies and made
them publicly available. Table II shows, for the topologies
from Rocketfuel, the AS name and number, as well as the
number of PoPs and links. The OSPF weights on the links
are also provided [19]. The capacities of links are assigned
according to the CISCO heuristics as in [5], i.e., the link
weight is inversely proportional to the link capacity. POP 12
is the tier-1 ISP topology in Nucci et al. [22], with the scaled
link capacity provided in [22]. We also use random topologies
generated by GT-ITM.2

Topology ID PoPs # links #
Ebone (Europe) AS 1755 23 38
Exodus (Europe) AS 3967 22 37
Abovenet (US) AS 6461 22 42
Sprint (Europe) POP 12 12 17

TABLE II
TIER-1 TOPOLOGIES: AS 1755, AS 3967 AND AS 6461

(ROCKETFUEL [32]) AND POP 12 ([22]).

Gravity TM. Similar to [5], [14], we use the Gravity
model [37] to determine the estimated traffic matrices. The
Gravity model is developed in [37] as a fast and accurate
estimation of traffic matrices, in which, the traffic demand
between an OD pair is proportional to the product of the
traffic flowing into/out of the origin/the destination. We use a
heuristic approach similar to that in [5], in which the volume
of traffic flowing into/out of a POP is proportional to the
combined capacity of links connecting with the POP. Then
we extrapolate a complete Gravity TM.

Lognormal TM. We also use the log-normal model in
Nucci et al. [22] to generate synthetic TMs. In the first step,
we generate traffic entries using a log-normal distribution.
Then these entries are associated with OD pairs according to a
heuristic approach similar to that recommended in [22]. That
is, OD pairs are ordered by the first metric of their fan-out
capacities. The fan-out capacity of a node is the sum of the
capacities of links incident with it. The fan-out capacity of an
OD pair is the minimum of the fan-out capacities of the two
nodes. Ties are broken by the second metric of connectivity,
defined as the number of links incident to a node. Similarly,
the minimum is taken for the two nodes.

1Mathematical programming solver. http://www.cplex.com
2http://www.cc.gatech.edu/projects/gtitm/

Similar to [5], in the experiments, when approximate knowl-
edge is available, we consider a base TM, with the entry dij

for OD pair i → j, and an error margin w > 1, so that the
traffic for i → j is in the range of [dij/w, w ∗ dij ].

B. MultiPath selection
First, we study the performance of the path selection meth-

ods, namely, spK, mixK and focusK. The benchmark is the
method in Applegate and Cohen [5], which can achieve the
lowest oblivious ratio for a given topology. Hereafter, we refer
to the method in Applegate and Cohen [5] as AC. Recall that it
is non-trivial to implement the routing computed by AC as we
discuss in Introduction. Thus a close multipath approximation
to AC is desirable.

In Figure 2, we show the performance of the various path
selection methods, when approximate knowledge of the TM
is available, with a Gravity base TM and w = 2.0. For AS
1755, all path selection methods have good performance when
the error margin is small, with sp20 jumping up when error
margin increases and mix20 maintaining the best performance.
For AS3967 and AS6461, focus20 has overall good perfor-
mance. For POP12, spK and mixK, for K = 10, 20, have
similar results, with performance very close to AC. As well,
comparing with the results in Table III, the performance of
focus20 for AS 3967 and mix20 for AS 1755 are much better
when there is approximate knowledge of traffic demand.

We compare our path selection methods with the link weight
optimization [10] (referred to as WtOpt) and InvCap.3 For
WtOpt, we search the set of link weights for 5 synthetic
Lognormal TMs [22] which have optimal MLU=0.3. We also
search link weights for a Gravity TM for WtOpt. The results
are not as good as those shown here.

Table III shows the oblivious ratios for various path selec-
tion methods, as well as the ratios for WtOpt and the ratios
computed by AC. As expected, there is a gap between the
oblivious ratios computed by AC and those by the multipath
approximation, namely, sp20, mix20 and focus20. With more
paths, e.g., 50 paths, the gap can become narrower. However,
a small number of paths may be desirable, thus we do not
present results for 30 or 50 paths. For POP 12, multipath ap-
proximation approaches sp20 and mix20 can achieve the same
oblivious ratio as AC. The results also show that WtOpt [10]
has large oblivious ratios. WtOpt can consider multiple TMs.
However, it is non-trivial for WtOpt to optimize for all or a
continuous set of TMs.4

We also study the performance of InvCap, WtOpt, focus20
and mix20 on 100 random TMs. We study the MLU an routing
incurs compared with an optimal, denoted as MLU/OPT.
When there is no knowledge of the TM, an entry is uniformly
set on [10, 100]; when the error margin w = 2.0, we first

3WtOpt and InvCap are methods to set link weights, with which, a shortest
path algorithm can determine a routing. We also use WtOpt and InvCap to
refer to the routings computed by the link weights they find respectively.

4WtOpt and InvCap are compatible with OSPF, while MORE is generally
not. Here we study which routing can achieve better performance w.r.t.
oblivious ratio, without considering its forwarding scheme.
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Fig. 2. Oblivious ratio vs. error margin for various path selection methods

Topology WtOpt sp20 mix20 focus20 AC
AS 1755 27.840 3.306 2.718 1.950 1.781
AS 3967 17.613 3.442 5.061 3.428 1.623
AS 6461 28.889 4.250 4.250 2.107 1.910
POP 12 3.813 1.785 1.785 2.161 1.785

TABLE III
OBLIVIOUS RATIOS FOR VARIOUS ROUTINGS METHODS: WTOPT [10],

SPK , MIXK , FOCUSK AND AC [5], WHEN NO KNOWLEDGE OF TRAFFIC

DEMANDS IS AVAILABLE.

decide dij by the Gravity model, then generate 100 random
TMs uniformly on [dij/w, dij ∗ w]. We show the average
MLU/OPT and the 95% confidence interval of each routing
method in Figure 3. The results show that MORE can achieve
good performance. When there is no knowledge of the TM,
focus20 has good performance for AS1755, AS3967 and
AS6461; while mix20 has good performance for POP 12.
When the error margin w = 2.0, both focus20 and mix20
have low MLU/OPT. InvCap and WtOpt may have good
performance in some cases, however, they may incur high
MLU/OPT. It is expected that the heuristic approach InvCap
may not have good performance for some TMs.

For lack of ISP topologies, we use random topologies
to attempt to justify the performance of the path selection
methods. We use GT-ITM to generate 100 random topolo-
gies with 25 PoPs. Link capacities are uniformly chosen on
[10, 100]. In Figure 4, we show the performance of focus20
and mix20 on random topologies, comparing with AC. We
order the topologies in increasing order of their oblivious ratios
using AC. We observe that on the studied random topologies,
both focus20 and mix20 have good performance: they can
achieve oblivious ratios close to that achieved by AC; while
mix20 performs particularly well, by tracking closely the curve
of AC, especially in the case where there is approximate
knowledge of traffic demands (w = 2.0).

We may not be able to make a conclusive judgment on the
performance of the proposed path selection methods based
on a sample of ISP topologies and 100 random topologies.
However, we gain high confidence that a multipath oblivious
routing can have a close approximation to AC.

In MORE, we can choose paths and compute an optimal
oblivious routing before conducting further traffic engineering
tasks. That is, we can choose the best path selection method
for a network. In later studies, we use path selection methods
according to Table IV. When there is approximate knowledge
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Fig. 4. Performance of path selection methods on 100 random topologies, comparing with AC.

of traffic demands, we use error margin w = 2.0, which can be
interpreted as a tolerance of 100% error in traffic estimation.5
The current traffic estimation techniques can achieve an error
much finer than 100%, e.g., Zhang et al. [37] and Soule et
al. [31]. Table IV also shows the oblivious ratios for w = 2.0
for the path selection methods.

Topology AS 1755 AS 3967 AS 6461 POP 12
Path selection mix20 focus20 focus20 mix10

obliv. ratio (w = 2.0) 1.068 1.156 1.513 1.422

TABLE IV
PATH SELECTION METHODS IN EXPERIMENTS

C. Link failure
Applegate et al. [4] study failure restoration for arc-based

oblivious routing [5]. We study failure restoration for MORE.

5An optimal oblivious routing for the range [aij , bij ] gurantees the perfor-
mance not only for TMs in the range, but also those scaled TMs.

We investigate three restoration strategies: nochange, reop-
timization and augmentation. In nochange, the routing keeps
unchanged (if the failure does not cause a path to break). To
evaluate this, we use LP (12) to compute the oblivious ratio.
In another extreme, reoptimization, we reoptimize multipath
oblivious routing for the new topology after link failures
occur, using LP (14) or LP (15). An approach in between,
augmentation, is to reoptimize only for the affected OD pairs,
which use the link(s) with failure. The LP derivation for
augmentation is similar to that for LP (14) and LP (15), and
the resultant LPs are similar, except that the routing variables
for the unaffected OD pairs are constant. We show the LP
formulation for augmentation with the approximate knowledge
that dij is in the range of [aij , bij ] in LP (18).

8



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8  2cu
m

ul
at

iv
e 

fr
ac

tio
n

oblivious ratio

AS 3967

reopt
aug

nochange
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  1.2  1.4  1.6  1.8  2cu
m

ul
at

iv
e 

fr
ac

tio
n

oblivious ratio

AS 6461

reopt
aug

nochange
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  1.2  1.4  1.6  1.8  2cu
m

ul
at

iv
e 

fr
ac

tio
n

oblivious ratio

POP 12

reopt
aug

nochange

Fig. 5. Cumulative distribution of the oblivious ratios, when one- or two-link failure (20% capacity reduction) happens.

min r
f is a path-routing defined on affected OD pairs
∀ edges l :

∑

e

c(e)πl(e) ≤ r

∀ pairs i → j :
wl(i, j) + κ+

l (i, j) − κ−

l (i, j) ≥
∑

k

δk
ij(l)f

k
ij/c(l)

(fk
ij is constant if OD pair i → j is not affected)

∀ nodes i, ∀ edges (u, v) :
πl(u, v) + wl(i, u) − wl(i, v) ≥ 0

∑

i,j

{aijκ
−

l (i, j) − bijκ
+
l (i, j)} ≥ 0

∀ edges e : πl(e) ≥ 0
∀ pairs i → j : wl(i, j) ≥ 0, κ+

l (i, j) ≥ 0, κ−

l (i, j) ≥ 0
∀ nodes i : wl(i, i) = 0, κ+

l (i, i) = 0, κ−

l (i, i) = 0
(18)

Usually a failure restoration approach like reoptimization
and augmentation causes routing disruptions. An arc-routing
may introduce a high degree of routing disruptions for failure
restoration. MORE may restrict the routing disruptions, since
it is a multipath approach. Moreover, simulation results in §V-
E demonstrate that MORE is robust to link failures and routing
changes. Thus, for MORE, reoptimization and augmentation
may provide affordable performance with respect to potential
routing disruptions.

Since a link in a PoP-level topology may represent many
physical links, we attempt to study reasonable scenarios of
20% capacity reduction of PoP links. We study all the cases in
which one or two links lose 20% of the capacity, with a Gravity
base TM and w = 2.0. Then we compute the cumulative
distribution of the oblivious ratios of all these failure cases.
For example, in Figure 5, for AS 3967, more than 60% of the
failure cases result in an oblivious ratio smaller than 1.40

From Figure 5, we observe that augmentation (optimize
only for the affected OD pairs) has a similar performance
to reoptimization. However, a more careful checking of the
results shows that there are indeed some portion of OD pairs
that are not affected by the failures. Even for nochange with
the routing, we see that for a large fraction of failure cases, the
20% capacity reduction may not increase the oblivious ratio
significantly. The results for AS 1755 are similar.

The analysis on link failure can also be used to improve
the network provisioning: for example, for those links whose

20% capacity reduction cause large oblivous ratio increases,
adding 25% of the link capacity will maintain a low oblivious
ratio when a 20% capacity reduction failure happens.

Simulation results in §V-E show the robustness of MORE
over link failures. It is desirable to further study more severe
failures, e.g., whole link or even node failures as studied in [4].

D. Adversary attack
We introduce an attack which can exploit a routing f, by

generating a TM for f to incur a high MLU. We will show
that an oblivious routing is robust to such an attack. However,
an adaptive routing may suffer much higher MLU.

We illustrate how such an attack works. For a given arc-
routing f,6 LP (19) computes the traffic demand d that gives the
maximum link utilization on edge l, assuming there is a range
restriction on traffic demand 0 ≤ aij ≤ dij ≤ bij . Then the
adversary demand is the demand that gives the largest MLU
over all edges. LP (19) is based on the work in [5]. We call
LP (19) “adversary LP”. To obtain the LP formulation when
there is no knowledge of the traffic, i.e., no range restriction,
we remove the constraints ∀ demands i → j : dij − λbij ≤
0,−dij + λaij ≤ 0 and λ ≥ 0.

max
∑

ij

dijfij(l)/cap(l)

∀ pairs i → j :
∑

e∈out(j)

gi(e) −
∑

e∈in(j)

gi(e) + dij ≤ 0

∀ edges e :
∑

i

gi(e) ≤ cap(m)

∀ demands i → j : dij − λbij ≤ 0
∀ demands i → j : −dij + λaij ≤ 0
∀ nodes i, edges e : gi(m) ≥ 0, λ ≥ 0

(19)
We compare MORE with an adaptive arc-routing, denoted

as adaptive-arc, which computes an optimal arc-routing for
a given TM. The experiments runs in iterations. In iteration
1, adaptive-arc computes an optimal routing f1 for demand
TM0. Before iteration 2, the attacker computes the adversary
demand TM1 for routing f1. In iteration 2, routing f1 is
used for the demand TM1, thus it incurs high MLU/OPT,
the MLU compared with an optimal. In Iteration 3, adaptive-
arc computes an optimal routing again and then the adversary

6For a path-routing, convert it to an arc-routing first. Alternatively, LP (12)
can be used to compute an adversary.
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attacker computes the adversary demand for the new routing.
And so on. MORE keeps the routing unchanged.

In Figure 6, we show how MORE and adaptive-arc perform
when there is an adversary attack. The top row shows the
results when there is no restriction on the demand, i.e.,
w = ∞. Adaptive-arc may have a very large MLU/OPT. We
truncate the y-axis at 100.0, and use log scale. The bottom
row shows the results when the error margin w = 2.0. We
also show the ratios of corresponding oblivious routings, as
the horizontal straight lines.

Figure 6 shows that the adversary attack can exploit an
adaptive routing, and make MLU/OPT prohibitively high.
However, MORE is robust to the attack. The oblivious ratio
predicts its worst performance. An oblivious routing can be
viewed as an optimal equilibrium point in a game in which
a network operator combats with all possible adversary traffic
demands (within the range restriction when it is stipulated).
This shows the robustness of MORE against the adversary
attack, and the potential vulnerability of an adaptive routing.
The results also show that MORE can perform better than
what the oblivious ratio predicts, i.e., the curve of MORE is
sometimes below the straight line for the ratio. The results for
AS 1755 are similar. For w=2.0, the ratio is 1.068, thus the
curve for MORE is very close to x-axis.

E. Simulation
We analyze the performance of LP models for MORE

in previous sections. In this section, we study the perfor-
mance of MORE using packet-level simulation with NS27.
We implement the robust weighted hashing by Ross [27],
so that traffic can be split into multiple paths according to
the routing fraction of each path. We use either the Gravity
or the Lognormal model to generate synthetic TMs. Then,
with the synthetic TMs, we generate Pareto traffic to obtain
variability in the actual traffic. Note that although a TM may
not change, traffic varies due to the Pareto distribution. For
every 0.5 second, we average the link utilization and take the
maximum to obtain the maximum link utilization (MLU).

Robust under varying TMs and routings. MORE is a
quasi-static solution, it may have to change the routing when
necessary. We attempt to study the robustness of MORE over
changing TMs and routings by simulation. We generate 10
Lognormal TMs [22]. Each TM lasts 10 seconds. MORE
computes an optimal multipath oblivious routing for a given
TM with error margin w = 2.0. Thus there are potentially
different routings for different TMs. AdaptiveK computes an
optimal routing with K-shortest paths for each TM, with
K = 20. We assume both MORE and adaptiveK know a
new TM and reoptimize the routing for it instantaneously.
AdaptiveK represents an adaptive scheme on K-shortest paths
that can respond to traffic changes without any delay, i.e., it
is an unachievable best case for adaptive schemes.

Results are shown in Figure 7. 8 We scale the TMs, so that
7http://www.isi.edu/nsnam/ns/
8For Figure 7 and 10, there are downward spikes for both adaptiveK and

MORE. These are due to the transition of stopping and starting TMs.

optimal arc-routings of these TMs have the same MLU. The
results show that MORE incurs similar MLUs over varying
TMs and routings. We also observe that MORE achieves
similar performance as adaptiveK.

TeXCP vs. MORE. We compare MORE with TeXCP,
an adaptive multipath routing approach [14]. TeXCP collects
network load information and adjusts routing fractions on
pre-selected multiple paths for each OD pair to balance the
network load. TeXCP also uses MLU as the performance
metric. For comparison with TeXCP, we set link capacity in
a way similar to [14], i.e., links with high-degree nodes have
large capacity and links with low-degree nodes have small
capacity. We use the setting for TeXCP as suggested in [14].
Traffic is generated according to a Gravity TM. During time
intervals [25, 50] and [75, 100], an extra TM is activated, so
that extra traffic is generated for each OD pair. Figure 8 shows
the comparison results. We show the results after 10 seconds,
so that TeXCP may have passed the “warm-up” phase. We
see both TeXCP and MORE respond to the traffic increases.
The results show that MORE has a comparable performance
to TeXCP. When TeXCP is in the transition of adapting to its
optimal routing, MORE may have better performance, e.g. in
the time interval [25, 50] for POP 12. However, TeXCP may
adapt to a better routing than MORE, e.g., in the time interval
[75, 100] for AS 3967. MORE, being oblivious to traffic
changes, saves resources consumed by TeXCP for frequently
collecting network information. With a longer time period (35
seconds) for the “warm-up”, TeXCP has similar performance.

Link failure. We study the robustness of MORE over link
failures using simulation. At each 10’s second, a random link
failure occurs with 20% link capacity reduction. After each
link failure, the augmentation strategy with w = 2.0 (§V-C)
for failure restoration is used to optimize the oblivious routing
for the affected paths. The TM keeps unchanged, generated
according to a Gravity TM. Figure 9 shows the results. We
observe that the networks have rather stable performance, after
several consecutive link failures. Reoptimization has similar
performance.

Adversary attack. We study the performance of MORE and
adaptiveK under an adversary attack.9 AdaptiveK computes
an optimal routing on K-shortest paths (K = 20) for a given
TM. An adversary attack can exploit an adaptive routing for
the last TM, by generating a new TM. Refer to §V-D for
details of how an adversary attack works. MORE does not
change paths and routing fractions.

The simulation runs in iteration, each with 20 seconds.
For the first 10 seconds, adaptiveK encounters an adversary
attack; while for the second 10 seconds, it uses the optimal
routing for the adversary in the last 10 seconds. We assume
adaptiveK can know the exact TM, and deploys the new
optimal routing instantaneously in the middle point of an
iteration. The oblivious routing does not change over the whole
run of the simulation.

9AdaptiveK responds to traffic changes instantaneously, while TeXCP takes
time for convergence, thus we do not compare MORE with TeXCP here.
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Fig. 8. TeXCP vs. MORE. During time interval [25,50] and [75,100], extra random traffic is generated.

The results are shown in Figure 10. We observe that when
adaptiveK is under the adversary attack, it has much larger
MLU than MORE. However, when adaptiveK operates in
optimal, its performance is comparable to or slightly better
than that of MORE. The results show that, MORE is robust
under an adversary attack, and it has a performance close to
adaptiveK when adaptiveK is not under attack.
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Fig. 9. Robustness of MORE over failures. At each 10’s second, a random
link failure occurs, and MORE uses the augmentation strategy for failure
restoration over the same set of paths. The TM does not change.

VI. IMPLEMENTATION AND DEPLOYMENT ISSUES

MORE is a quasi-static solution, so that it is not responsive
to traffic dynamics on a small time scale. Armed with recent
achievements in traffic estimation, we are confident with ad-
justing an oblivious routing on an hourly, multi-hourly or even
daily basis. However, we need to make routing adjustments
when severe failures occur or if we hope to enhance the
performance.

Adjustments are necessary if the current traffic deviates
much from the last estimation. We can leverage traffic esti-

mation techniques such as those in [31], [37] to keep track
of the accurate traffic estimation. In contrast to the frequent
collection of network information for an adaptive approach,
a large time-scale traffic estimation is sufficient for MORE.
Traffic estimation entails information about the traffic across
the network. However, the data for traffic estimation, e.g.
Simple Network Management Protocol (SNMP) data, are
available from routine network management tasks [37], so that
no extra network devices or software is needed.

With routing adjustments, there is an issue of how to
mitigate potential routing disruptions. An approach is to
exploit the robust weighted hashing [27], which claims the
least service disruption when failures occur. Simulation results
show that MORE is robust under varying routings due to
traffic changes (Figure 7) and link failures (Figure 9), with
the robust weighted hashing [27] for flow-based multipath
routing. Further improvements may be achieved by exploiting
the traffic burstiness, as studied recently in [30].

MORE provides an efficient implementation of oblivious
routing and is amenable to gradual deployment. MORE needs
to centrally compute the routing and to set up the routing
at edge routers. Then an edge router splits incoming traffic
according to the routing fractions. MORE does not need
to collect instantaneous network information. Thus, there is
no need to change the core routers. This also eases the
management and operation of the deployment of MORE.

VII. CONCLUSIONS

We investigate a promising approach for stable and robust
intra-domain traffic engineering in a changing and uncertain
environments. We present MORE, a multipath implementation
of demand-oblivious routing [5]. We evaluate the performance
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Fig. 10. AdaptiveK vs. MORE. During each iteration (20 seconds), for the first half, adaptiveK encounters an adversary attack; while for the second half,
adaptiveK operates with an optimal routing. MORE does not change the routing over the whole run of the simulation.

of MORE by both numerical experiments and simulation. The
performance study shows that MORE can obtain a close multi-
path approximation to [5]. The results also show the excellent
performance of MORE under varying traffic demands, link
failures and an adversary attack. Its performance is excellent
even with a 100% error in traffic estimation.

We open the door for a viable deployment of demand-
oblivious routing, thus an intra-domain traffic engineering
technique robust to changing and uncertain environments.
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