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Abstract

One of the most stunning results of information theory is the channel coding

theorem addressing the maximum rate of reliable communication over a noisy

channel, known as channel capacity. In this thesis, we consider two prob-

lems emerging from the classic channel coding theorem. First, we study the

extremal problems of the channel reliability function, which is the exponent

with which the probability of making a wrong decision vanishes. To this end,

we introduce a set of fundamental channels which exhibit significant mono-

tonicity properties and invoke the theory of Chebychev systems to utilize such

properties. We show that the binary symmetric channel (BSC) and binary

erasure channel (BEC), which happen to be among the fundamental channels,

are the two extremes of the channel reliability function. Also, we show that

given a rate and a probability of error as a performance measure, BSC (BEC)

needs the longest (shortest) code length to achieve such performance.

While the first problem is pure theoretical, the second problem addresses

a challenging practical scenario. The most fundamental assumption in the

classic channel coding theorem is that we receive as many symbols as we

send. In reality, however, this is not always true, e.g., a miss-sampling at a

conventional receiver might duplicate a symbol. The extra symbol confuses a

receiver as it has no clue about the position of duplication. Such scenarios are

collectively known as channels with synchronization errors. Unlike their classic

counterparts, there is only little known about either the capacity or coding

techniques for channels with synchronization errors, even in their simplest

forms. In this part, we study the duplication channel by introducing a series

expansion for its capacity.
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Chapter 1

Introduction

The information era has begun by the seminal work of Claude Shannon [1]

through which he introduced a set of mathematical tools, known as informa-

tion theory, to model data transmission. Communication is subject to chan-

nel’s imperfection. The effect of channel can be in the form of distorting

signals, corrupting a stream of bits, etc. Since then, the attempt of channel

coding theory has been finding practical schemes to battle the channel’s noise.

In today’s applications, there is hardly one without a channel coding tech-

nique embedded in it. Talking on a mobile phone, streaming video content

over the internet or even watching a Blu-ray disk are among everyday activ-

ities that enjoy the power of channel coding. Information theory, by finding

the fundamental limits and extremes of possibilities in channel coding, sheds

light to design of more efficient solutions. This thesis studies some of these

fundamental limits and extreme cases.

1.1 The Classic Model of Communication

The Shannon’s model of communication is:

1. A priori-unknown message is selected randomly from the set {1, . . . ,M}.

2. A noisy channel takes an input symbol from the input alphabet X ,

applies a random transformation and puts out a symbol from the output

alphabet Y .

1



3. An encoder maps a message from the message set to a word of channel’s

input alphabets, i.e., e : {1, . . . ,M} 7→ X n. We call e(i) = ci ∈ X n the

codeword of length n associated with the message i. The set of codewords

{c1, . . . , cM} is called a code or codebook of length n. Since messages

are chosen uniformly random, the required number of bits per channel

use to describe the code denotes the code rate and equals R = 1
n
log2M

bits.

4. A decoder tries to recover the original sent message from the channel out-

puts, i.e., d : Yn 7→ {1, . . . ,M}. Note that the decoder is provided with

the codebook that the encoder uses to encode messages at the transmit-

ter side. The ultimate goal is to minimize probability of making decoding

errors while maximizing the code rate (equivalently, maximizing M).

In this setup, it is assumed that we receive exactly as many symbols as we

send over. This means that if we feed the channel with 100 symbols, we will

receive 100 symbols at the receiver. Shannon showed that there exists a max-

imum code rate, called channel capacity, below which reliable communication

is possible [2]. By reliable communication we mean that the probability of

making a wrong decision vanishes as n grows.

Consider the binary symmetric channel (BSC) where X = Y = {0, 1}. A

BSC flips every input bit with probability p known as the crossover probability.

BSC is used to model hard-decision decoding scenarios. According to Shannon,

the maximum rate of reliable communication over BSC is 1 + p log2 p + (1 −
p) log2(1 − p) bits per channel use. Fig. 1.1 presents a graphical sketch of

BSC. The binary erasure channel (BEC) is another channel of our interest

where X = {0, 1} and Y = {0, e, 1}. It is used to model scenarios where the

decoder has the option of refusing to make a decision by putting out an erasure

symbol. BEC is also shown in Fig. 1.1. As it can be seen, the decoder declares

an erasure (e) with probability ǫ. The capacity of a BEC is 1−ǫ. In the rest of

this chapter, we will see several properties of BSC and BEC. We observe that

although these channels look very simple, they exhibit fundamental properties.
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Figure 1.1: Left: A BSC with crossover probability p. Right: A BEC with
erasure probability ǫ.

1.2 Thesis Overview

The contents of the current thesis revolves around studying the simplest, yet

most fundamental, noisy channels. In this section, we briefly overview two

scenarios where these fundamental channels appear. We keep this overview

simple and leave the details to future chapters.

1.2.1 Extremal Problems of Error Exponents

Shannon showed that reliable communication is possible at any rate below the

capacity, denoted by C. This means that using random coding, probability of

making a wrong decision vanishes as n → ∞. However, it is not clear how fast

the probability of error goes to zero. To elaborate, let us denote a code with

three major parameters: (n,R, Pe) representing the code length, code rate and

maximum probability of decoding error. Shannon result shows that for any

rate less than the capacity, there exists a random code (in fact a sequence of

codes indexed by n) such that Pe → 0 as n → ∞. Define P ∗
e (n,R) as the

least probability of error among all random codes of length n and rate R. It

is desired to find a channel–dependent exponent E(R) such that for R ≤ C,

P ∗
e (n,R) ≈ 2−nE(R). Clearly, this representation suggests that P ∗

e (n,R) → 0

when R < C. E(R), called channel’s reliability function, indicates how fast

the probability of error vanishes at rate R [3]. Since reliable communication

is impossible for rates greater than the capacity, we have E(R) = 0, R ≥ C.

Unfortunately, the reliability function is only known for Rcr ≤ R ≤ C

where Rcr is the critical rate which is a function of the channel. There are
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several lower and upper bounds known for the reliability function, mostly for

the range of 0 ≤ R < Rcr. Given a set of channels, we would like to find

out which channel has the maximum (minimum) of reliability function. In

other words, we are seeking a channel with the fastest (slowest) converging

probability of error at a given rate. To make a fair comparison, we assume

that all given channels have the same capacity.

In this thesis, we address the following questions:

1. Among all binary-input symmetric channels of the same capacity, which

channel has the maximum (minimum) of the error exponent?

2. Among all binary-input symmetric channels of the same capacity, which

channel does exhibit the maximum (minimum) of the critical rate?

3. How does one modify these extremes when an additional constraint is

imposed, e.g., a constraint on the uncoded probability of error of the

channel?

In a similar way, one can define R∗(n, Pe) as the maximum rate of trans-

mission that is possible using a random code of length n such that the original

codeword can be recovered with probability at least 1−Pe. According to Shan-

non, R∗(n, Pe) → C when n → ∞ and Pe → 0. A very interesting question

is remained to be answered: Which channel needs the highest (lowest) code

length to achieve a desired rate/probability of error?

To answer all these questions, we define a set of simple channels with equal

capacity, which includes BSC and BEC, that spans the space of symmetric

channels. For obvious reasons, we call it the set of basis channels. Then, we

invoke the theory of Chebychev systems from approximation theory to study

monotonicity properties among the basis channels. We show that extreme

channels for several error exponents lie in the set of basis channels.

1.2.2 Duplication Channels

As it was mentioned before, in the classic model of communication, we suppose

that the number of sent and received symbols exactly match. In other words,
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we assume that there is a perfect synchronization between the transmitter

and receiver. In modern communication systems, timing recovery methods

are essential and used to overcome synchronization problems. In these sys-

tems, achieving perfect synchronization is not possible even with such recov-

ery methods. In reality, there are several applications suffering from imperfect

synchronization. For example, in a mobile communication system where the

clock of the transmitter and receiver are not synchronized, a miss-sampling

at the receiver may result in a deletion of a symbol which can hinder the

overall performance. As the modern communication systems become faster

and operate at lower signal-to-noise ratios the synchronization errors become

more relevant. The situation gets particularly worse when a coding method

is involved. In this case, a single uncorrected duplication/deletion error can

result in a burst of errors. Synchronization errors happen more frequently in

the magnetic recording systems (hard disk drive) where due to improper head

movements, one unit of data might be read/written either twice or none during

a read/write process [4–7]. When synchronization is not perfect, the decoder

is not aware of the position of duplications/deletions. Channels with synchro-

nizations can be found in other sciences, e.g., symbols from DNA and RNA

sequences are deleted and duplicated in genetic processes. Studying channels

with synchronization errors may give us important insight into these genetic

processes [8, 9]. These applications demand a whole new theory regarding

capacity analysis and coding methods. Unfortunately, unlike their “synchro-

nized” counterparts, there is only little known about either the capacity or

coding for channels with synchronization errors [10–27].

It is important to note that in case of duplications, the extra bits should

not be mistaken with the redundancy that we add in coding methods. While

the former is random and is caused by the channel, the latter is intentional

and is used to add data protection.

Dobrushin [28] defines a channel with synchronization errors as a chan-

nel transforming every input symbol to a word (of possibly zero length). This

means that symbols might be deleted from or inserted into the input sequence.

The classic model does not capture this characteristic of channels with syn-
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Figure 1.2: The input sequence on the left is fed to different channels. The
corresponding output sequences are shown on the right. In the case of a duplication
channel, the duplicated bits are shown in red.

chronization errors. The simplest form of such channels are the binary deletion

and binary duplication channels, where each input bit is either transmitted in-

tact or deleted (duplicated) with some probability.

Fig. 1.2 shows how binary symmetric, binary erasure, binary deletion and

binary duplication channels act on an input sequence. It is important to note

that in the case of BEC, when an erasure happens, the decoder declares an

erasure and an erasure symbol is received. However, in a deletion channel, the

actual bit is deleted and the decoder has no idea about the position of deleted

bits. In the case of duplication channel, the decoder does not know which bit

is duplicated unless for example, there is a single zero bordered by ones.

Two fundamental questions arise here:

1. How well can one communicate reliably over such channels? In other

words, if it exists, what is the capacity?

2. Is there any efficient coding method?

In this thesis, we focus on the first problem. The interested reader may

look at [8, 29] for literature context of coding methods for synchronization

channels.

To see where the difficulty in finding the capacity of such channels comes
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from, let us examine the ultimate goal in finding the capacity, i.e., analyzing

the maximum likelihood decoding. Let Xn = (X1, . . . , Xn) be the channel’s

input. We denote the received sequence corresponding to Xn by Y (Xn). The

reason behind such notation is that the length of received sequence is a ran-

dom variable which can be greater than, equal to, or less than n. We have

P(Y (Xn)|Xn) ∝ ℵ(Xn, Y (Xn)) where ℵ(Xn, Y (Xn)) denotes the number of

insertion/deletion patterns that transform Xn into Y (Xn). There we have a

decoding algorithm: take the received sequence, count how many times it ap-

pears as a super/subsequence of each codeword, and output the codeword with

the largest count [8]. This means that the decoding performance is limited by

the efficiency of the counting process as n grows. It turns out that the analysis

of ℵ(Xn, Y (Xn)) is very complicated and there is no efficient method to do

so. Hence, most of the research done in this venue has been around studying

subclasses of synchronization channels. Even for the simplest models, i.e., the

binary deletion and duplication channels, the single letter characterization of

capacity is unknown.

In this thesis, we study the single letter characterization of capacity of

duplication channels. Let C(p) denote the capacity of a binary duplication

channel that duplicates each input bit with probability p. C(p) is unknown

except for p = 0 and p = 1 where C(0) = C(1) = 1 bit per channel use. We

find a series expansion of C(p) around p = 0 and show that some upper and

lower bounds of C(p) match up to a term of order p. Moreover, we will see

that surprisingly C(p) is not a symmetric function of p. This observation leeds

to some interesting system design perspectives.

1.3 Thesis Organization

Chapter 2 covers the preliminary background material to understand the rest

of this thesis. The set of equal-capacity basis channels and their properties

are studied thoroughly in Chapter 3. The extremal problems of classic error

exponents are solved in details in Chapter 4, where we use the theory of
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Chebychev systems to solve such extremal problems1. Finally, in chapter 5,

we study the capacity of duplication channels in terms of a series expansion

for small duplication probabilities2.

1.4 Notations Guide

P is reserved for a generic probability measure. The expected value and vari-

ance are designated by E and V. A nonempty set is denoted by calligraphic

letters A, B, . . . A set difference, cardinality and an n-time Cartesian product

of a set are shown by A\B, |A|, and An respectively. Small bold letters indi-

cate vectors, while capital bold letters show matrices. log and log2 denote the

natural logarithm and the logarithm in base 2. The binary entropy function

in bits is shown by h(x) = −x log2 x− (1− x) log2(1 − x) for x ∈ [0, 1]. Also,

h−1 : [0, 1
2
] 7→ [0, 1

2
] indicates the inverse binary entropy function. A mass

point at x = p is ∆p(x). Also, for ǫ ∈ [0, 1], ǭ = 1− ǫ. The set of real numbers,

non-negative real numbers, extended real numbers and natural numbers are

designated by R, R+, R̄ and N. 1A is the indicator function of set A. The

first, second and nth, n ≥ 3 derivatives of a function f are presented by f ′,

f ′′ and f (n), respectively. A BSC with crossover probability ǫ, ǫ ∈ [0, 1], is

shown by BSC(ǫ). Also, a BEC with erasure rate of ǫ, ǫ ∈ [0, 1], is denoted by

BEC(ǫ). xn ↑ x∗ (xn ↓ x∗) indicates a monotonically increasing (decreasing)

sequence converging to x∗.

1The results of Chapter 3 and 4 have been submitted to IEEE Transactions on Informa-
tion Theory.

2The results of Chapter 5 have been accepted for publication in IEEE Transactions on
Communications.
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Chapter 2

Preliminaries

In this chapter, we present preliminary background material used in Chapter 3

and 4. We leave the preliminaries for channels with synchronization errors to

Chapter 5. If the reader decides to follow the results on duplication channels,

they may fast forward to Chapter 5.

2.1 Symmetric Channels

Let X and Y denote the input and output of a binary-input channel. We

denote the channel’s conditional probability measure by PY |X : {−1,+1} 7→ Y ,

where Y is a subset of R̄. Let Xn = (X1, . . . , Xn). We say that a channel is

memoryless if each channel use is independent of other instances, i.e., for all

xn ∈ X n and yn ∈ Yn

PY n|Xn(yn|xn) =
n∏

k=1

PYk|Xk
(yk|xk).

The log-likelihood ratio (LLR) of the channel output y is given by the function

l : Y 7→ R̄ defined as

l(y) = log
PX|Y (+1|y)
PX|Y (−1|y) = log

PY |X(y|+ 1)

PY |X(y| − 1)
+ log

PX(+1)

PX(−1)
.

Strictly speaking, the first term on the right hand side (RHS) denotes the

LLR. While the second term on the RHS is called a priori LLR, the left hand

side (LHS) is called a posteriori LLR. In this thesis, we assume an equiprobable

input, meaning that a posteriori LLR is equal to the LLR [30].

9



LLR values are extensively used when one is to estimate the reliability

of a decision. For example, consider a binary-input additive white Gaussian

(BIAWGN) channel: Y = X + Z where X is uniformly distributed and Z is

a Gaussian random variable with mean zero and variance σ2. A hard decoder

declares x = +1 when the received value is positive and declares x = −1

otherwise. However, it does not matter to a hard decoder whether y > 0 is

very large or very small; it will decode the received value to x = +1 anyways.

However, a soft decoder computes the LLR value as

l(y) = log

1√
2πσ2

exp
(

− (y−1)2

2σ2

)

1√
2πσ2

exp
(

− (y+1)2

2σ2

) =
2y

σ2
. (2.1)

Instead of making a hard decision, LLR values are usually combined to en-

hance the reliability. Now, a larger y produces a more confident decision.

Moreover, l(y) contains channel’s characteristic σ2: the noisier the channel,

the less reliable the estimation. We will see that for a broad class of channels,

the probabilistic behaviour of l(y) fully characterizes the channel.

It is clear that L = l(Y ) is a random variable. In fact, L is a sufficient

statistic for estimating X given Y . This means that an optimal decoder can

be based on l(y) instead of y itself [31]. Furthermore, according to the data

processing inequality, the mutual information between X and Y is equal to

the mutual information between X and L.

For a discrete memoryless channel (DMC) where Y is countable, the tran-

sition matrix is a matrix whose rows indicate inputs and columns indicate

outputs. The element at the row corresponding to x and the column corre-

sponding to y is PY |X(y|x). For example, the transition matrices of BSC(ǫ)

and BEC(ǫ) are

GBSC(ǫ) =

[
+1 −1

+1 1− ǫ ǫ
−1 ǫ 1− ǫ

]

are

GBEC(ǫ) =

[
+1 e −1

+1 1− ǫ ǫ 0
−1 0 ǫ 1− ǫ

]

.
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Figure 2.1: The L-densities of a BSC(ǫ) (left) and a BEC(ǫ) (right).

Definition 2.1 [Symmetric Channels [2]]: A channel is said to be symmetric

if the rows of the channel transition matrix are permutations of each other

and the columns are permutations of each other.

Although we cannot define a transition matrix for a general binary-input

channel PY |X : {−1,+1} 7→ Y , Y ⊂ R̄, we could partition the transition

probability matrix for a countable output alphabet into sub matrices of the

form

[
y −y

+1 PY |X(y|+ 1) PY |X(−y|+ 1)
−1 PY |X(y| − 1) PY |X(−y| − 1)

]

.

Now, if PY |X(y| − 1) = PY |X(−y| + 1) for all y ∈ Y , then each row (column)

will be a permutation of each other row (column), hence a symmetric channel.

Definition 2.2 [MBIOS Channel]: A memoryless binary-input channel PY |X :

X 7→ Y is said to be output-symmetric if PY |X(y| − 1) = PY |X(−y|+1) for all

y ∈ Y . Such channel is called a memoryless binary-input output-symmetric

(MBIOS) channel.

2.1.1 L-densities

In this section, we borrow most of the notations and definitions from [31]. Let

Y denote the observation and L = l(Y ) the LLR associated with Y . Also,

let a be the density and A be the distribution of L given X = +1. We say

that a is an L-density and A is an L-distribution. Let Ht(x) = 1{x≥t} be the

Heavyside distribution and ∆t(x) be its associated density. The L-density and

L-distribution of BSC(ǫ) and BEC(ǫ) are given by
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aBSC(ǫ)(x) = ǫ∆− log 1−ǫ
ǫ
(x) + (1− ǫ)∆log 1−ǫ

ǫ
(x),

aBEC(ǫ)(x) = ǫ∆0(x) + (1− ǫ)∆+∞(x)

and

ABSC(ǫ)(x) = ǫH− log 1−ǫ
ǫ
(x) + (1− ǫ)Hlog 1−ǫ

ǫ
(x),

ABEC(ǫ)(x) = ǫH0(x).

Also, according to (2.1), the L-density of a BIAWGN channel is Gaussian with

mean 2
σ2 and variance 4

σ2 . The L-densities of a BSC(ǫ) and a BEC(ǫ) are shown

in Fig. 2.1.

Definition 2.3 [Symmetry of L-density [31]]: We call an L-density symmetric

if for all x ∈ R̄, a(−x) = e−xa(x). Equivalently, we call an L-distribution

symmetric if1
∫

f(x)dA(x) =

∫

e−xf(−x)dA(x)

for all bounded continuous function f such that f(−x)e−x is also bounded.

It is easy to check that aBSC(ǫ) and aBEC(ǫ) are symmetric densities. It is

important to note that since LLR values can be infinite with a positive prob-

ability, we have to tweak the definition of a distribution to capture such char-

acteristic. To do so, let AL be the space of right-continuous, non-decreasing

functions A defined over R satisfying

lim
x→−∞

A(x) = 0, lim
x→+∞

A(x) ≤ 1.

According to Kolmogorov [32], we can associate a random variable L to each

distribution A ∈ AL such that L ∈ (−∞,+∞]. This is quite similar to the con-

ventional definition of a distribution, except that we allow L to have some prob-

ability mass at +∞ by letting limx→+∞ A(x) ≤ 1. The integral
∫
g(x)dA(x)

for an L-distribution A ∈ AL and any non-negative continuous function g is

interpreted as
∫
g(x)a(x)dx, where a is A’s corresponding L-density. However,

if limx↑+∞ A(x) < 1 and the limit limx→+∞ g(x) exists, then we have to include

1Integrals are understood in the Lebesgue-Stieltjes sense.
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the term (

1− lim
x↑+∞

A(x)

)

lim
x→+∞

g(x)

in the definition of
∫
g(x)dA(x). For example,

∫

log2(1 + e−x)dABEC(ǫ)(x) =

∫

log2(1 + e−x)aBEC(ǫ)(x)dx+ (1− ǫ)× 0 = ǫ.

Theorem 2.1 [Symmetry of L-distributions for MBIOS Channels [31, Theo-

rem 4.26]]: Let A denote the L-distribution of an MBIOS channel. Then A is

symmetric.

The L-density completely characterizes its associated MBIOS channel. In

this thesis, we refer to an MBIOS channel by its associated L-density.

2.1.2 P -densities

Let a be the L-density of a symmetric channel. There are two interesting facts:

1. Due to symmetry, the negative tail of an L-density can be made from

the positive tail.

2. An insightful observation about a is that it can be seen as a probabilistic

weighting of the family {aBSC(ǫ)}ǫ∈[0,1]. As an example, a BEC can be

seen as a weighted combination of BSC(0) (aBSC(0)(x) = ∆+∞(x)) and

BSC(1
2
) (aBSC( 1

2
)(x) = ∆0(x)). This fact has been used originally in [33]

and later in [34–36].

The first fact suggests that an L-density (assuming X = +1) carries re-

dundant information and can be reproduced from the density of |L| which is

independent of X . To elaborate, let |a| denote the density of |L|. We say |a|
is an |L|-density. We have

|a|(x) = a(x) + a(−x) = a(x)(1 + e−x), x ≥ 0. (2.2)

Therefore, a can be recovered from |a| by

a(x) = 1{x≥0}
|a|(x)
1 + e−x

+ 1{x≤0}
|a|(−x)

1 + e−x
, x ∈ (−∞,+∞].
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Figure 2.2: The P -densities of a BSC(ǫ) (left) and a BEC(ǫ) (right).

Having used the first fact, we exploit the second fact in this way: |a| can
be seen as a probabilistic weighting of {|aBSC(ǫ)|}ǫ. Note that

|aBSC(ǫ)|(x) = ∆log 1−ǫ
ǫ
(x), x ≥ 0. (2.3)

implying that ǫ must fall in the interval [0, 1
2
] instead of [0, 1]. This ensures

that we only sweep the positive tail of a. Therefore, the family

{|aBSC(ǫ)|}ǫ∈[0, 1
2
]

is rich enough to reproduce any |L|-density and consequently any L-density.

According to (2.3), there is a random variable P ∈ [0, 1
2
] such that |L| =

log 1−P
P

or, equivalently

P =
1

1 + e|L|
. (2.4)

In order to quantify the “probabilistic weighting of |aBSC|”, we have to find

the density of P from the |L|-density by the change of variables given in (2.4)

and using (2.2) as

g(p) =
1

p(1− p)
|a|
(

log 1−p
p

)

=
1

p(1− p)2
a
(

log 1−p
p

)

, p ∈ [0, 1
2
]. (2.5)

In this dissertation, we call g a P -density. Similar to an L-density, a P -density

completely characterizes its associated MBIOS channel. Also, one can define

the associated P -distribution in the conventional way. We will use P -densities

extensively throughout Chapter 3 and 4.
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P -densities imply that an MBIOS channel can be seen as a collection of

BSCs with crossover probabilities p ∈ [0, 1
2
], each happening with probability

g(p). For example as shown in Fig. 2.2, BSC(ǫ) is expressed by g(p) = ∆ǫ(p)

and BEC(ǫ) has a P -density of the form

g(p) = (1− ǫ)∆0(p) + ǫ∆ 1
2
(p).

Remark 2.1: Although we used the random variable P in a technical context,

we have to add that P = P (Y ) has an important meaning. According to [36],

P represents the uncoded probability of error upon receiving Y , i.e.,

P = min{PX|Y (+1|Y ), PX|Y (−1|Y )}.

Remark 2.2: In terms of optimization, dealing with P -densities is much

easier than L-densities because not only the support of P is finite, but also its

density does not impose any symmetry constraints.

2.1.3 Functionals over Symmetric Densities

In this section, we present three functional over the L densities which will be

used in Chapter 3 and 4.

The capacity of a symmetric channel is achieved by a uniform input distri-

bution [2]. Therefore, capacity of an MBIOS channel in bits per channel use

is

C = E

[

log2
PY |X(Y |X)

PY (Y )

]

= E

[

log2
2PY |X(Y |X)

PY |X(Y |X) + PY |X(Y | −X)

]

= E

[

log2
2

1 + e−L

]

. (2.6)

Given X = +1, a decision error occurs at an optimal receiver whenever L(y) <

0 with probability one or L(y) = 0 with probability one half. Taking into

account all realizations of y, we can infer that the uncoded probability of error

of an MBIOS channel, given X = +1, is the area under the negative tail of its
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L-density plus a half of the mass at the origin, i.e.,

Pu,e =

∫

1{x<0}dA(x) + lim
δ↓0

1

2

∫

1{−δ<x<δ}dA(x)

= lim
δ↓0

E

[

1{L<0} +
1

2
1{−δ<L<δ}

]

(2.7)

=
1

2
E

[

exp

(

−1

2
(L+ |L|)

)]

.

The Bhattacharyya parameter of an MBIOS channel is

B = E[e−
L
2 ].

It can be seen that in fact 1
2
B is the tightest Chernoff bound on the probability

of error [37].

2.2 Chebychev Systems

In this section, we briefly mention definitions and key results of the theory of

Chebychev systems. The reader is referred to [38, 39] for more information.

In the classic moment problem, one tries to find a measure with the pre-

scribed moments, e.g., mean, variance, etc, where the underlying system of

interest is the set of polynomials {1, t, t2, . . .}. The theory of Chebychev sys-

tems generalizes this problem to other sets of functions exhibiting a specific

structure.

Definition 2.4 [T–System]: A set of real-valued continuous functions U =

{u0, . . . , un} defined on the interval [a, b] is called a Chebychev system or T–

system if the determinant

D(u0, . . . , un; t0, . . . , tn) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

u0(t0) u0(t1) · · · u0(tn)
u1(t0) u1(t1) · · · u1(tn)

...
...

...
un(t0) un(t1) · · · un(tn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.8)

does not vanish for any a ≤ t0 < t1 < . . . < tn ≤ b. A T–system is called

a Complete Chebychev system or CT -system if {u0, u1, . . ., uk} is a T–system

for k = 0, 1, . . . , n.
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The letter T in “T -system” stands for Tchebycheff, the Russian spelling of

Chebychev . It can be seen that for 0 ≤ t0 < t1 < . . . < tn ≤ 1, the determi-

nant D(1, t, . . . , tn; t0, . . . , tn), which was mentioned before, is a Vandermonde

determinant, hence strictly positive.

Remark 2.3: From the continuity of D(u0, . . . , un; t0, . . . , tn), it is deduced

that U is a T–system if and only if the determinant of (2.8) maintains a single

sign for any choice of tk’s. Without loss of generality, we may multiply each

function uk by a +1 or −1 to have a positive determinant. Such T–systems are

called T+–systems. From now on, we assume that such multiplications have

already been made and the system U is a T+–system.

Remark 2.4: The definition of T–systems can be extended to any proper

interval. Moreover, a T–system on a proper interval I ⊂ R is a T–system on

any proper interval embedded in I.

Remark 2.5: An equivalent characterization of T–systems is expressed in

terms of the number of zeros of an arbitrary linear combination of {u0, . . . , un}.
A system U is a T–system on a proper interval I if and only if any function in

the linear space spanned by U has at most n zeros in I. The term polynomial

is used to refer to a function in the span of U . We will be using the polynomial

characterization of T–systems whenever it suits our problem.

If the system is sufficiently smooth, we may allow equalities among ti’s [38].

Let Ci(I), i ≥ 0, be the class of functions defined on the proper interval I that

posses i continuous derivatives. If the functions ui ∈ Cn(I), for any set t0 ≤
t1 ≤ · · · ≤ tn of points in I, the determinant D∗(u0, . . . , un; t0, . . . , tn) is defined

to be the determinant of the RHS of (2.8), where for each set of consecutive tk,

the corresponding columns are replaced by the successive derivatives evaluated

at the point. For example,

D∗(u0, u1, u2; t0, t1, t1) =

∣
∣
∣
∣
∣
∣

u0(t0) u0(t1) u′
0(t1)

u1(t0) u1(t1) u′
1(t1)

u2(t0) u2(t1) u′
2(t1)

∣
∣
∣
∣
∣
∣

and D∗(u0, . . . , un; t, . . . , t) = W(u0, . . . , un)(t) is the Wronskian of U :
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W(U)(t) = W(u0, . . . , un)(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

u0(t) u′
0(t) u′′

0(t) · · · u
(n)
0 (t)

u1(t) u′
1(t) u′′

1(t) · · · u
(n)
1 (t)

...
...

...
. . .

...

un(t) u′
n(t) u′′

n(t) · · · u
(n)
n (t)

∣
∣
∣
∣
∣
∣
∣
∣
∣

, t ∈ I,

where u
(n)
i is the nth derivative of ui [40].

Definition 2.5 [Extended T–System]: The system U is called an Extended

Chebychev system or ET–system on I provided that for any set t0 ≤ · · · ≤ tn of

the points in I, D∗(u0, . . . , un; t0, . . . , tn) > 0, and it is called an Extended Com-

plete Chebychev system or ECT–system if {u0, u1, . . . , uk} is an ET–system

on I for all k = 0, . . . , n.

Theorem 2.2 [[38, Theorem 1.1, Sec. XI.1]]: Let U be of class Cn(I). Then, U
is an ECT–system on I if and only if for k = 0, . . . , n we have W(u0, . . . , uk) >

0 on I.

In the sequel, all integrals are understood in the Lebesgue-Stieltjes sense.

Let c = (c0, c1, . . . , cn) ∈ Rn+1.

Definition 2.6 [Moment Space]: The moment space Mn+1 associated with

the T–system U is the convex cone

Mn+1 =

{

c : ci =

∫ b

a

ui(t)dσ(t), σ ∈ Σ, 0 ≤ i ≤ n

}

,

where Σ is the set of all non-decreasing right continuos functions (distributions)

of bounded variation.

The definition of σ falls into the general class of distributions. To deal with

probability measures, we introduce an extra moment by letting u0(t) = 1, i.e.,
∫ b

a
dσ(t) = 1. Define the set

Σ(c) =

{

σ ∈ Σ :

∫ b

a

ui(t)dσ(t) = ci, 0 ≤ i ≤ n

}

.

If c ∈ Int Mn+1, the set Σ(c) contains infinite distributions. Σ(c) contains

only one distribution when c ∈ ∂Mn+1, i.e., when c is a boundary point
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of Mn+1 [38]. Let σ ∈ Σ(c) be a distribution with finitely many points of

increase, i.e.,

dσ(t) =
m∑

j=1

κj∆tj (t),

where κj is the mass at point tj. Then a representation of c associated with

σ is

ci =

∫ b

a

ui(t)dσ(t) =
m∑

j=1

κjui(tk), 0 ≤ i ≤ n,

where the points {tj}mj=1 are called the roots of representation. The index of

representation is defined as
∑m

j=1 ǫ(tk) where the index function is ǫ(t) = 2 for

t ∈ (a, b) and ǫ(t) = 1 for t = a, b.

Lemma 2.1 [[39, Theorem 4.1, Sec. III.4]]: c ∈ ∂Mn+1 if and only if it admits

a representation of index not greater than n.

Definition 2.7 [Principle and Canonical Representation]: Let c ∈ Int Mn+1.

A representation of c of index n + 1 is called principle. A representation of

index n+2 is called canonical. If b is a root of representation, it is called upper

principle/canonical, if not it is called lower principle/canonical.

Theorem 2.3 [Roots of Principle Representation [39, p. 77]]: There are only

two possible types of principle representation:

1) n = 2ν − 1:

• lower principle: {t0, . . . , tν−1} where a < t0 < · · · < tν−1 < b

• upper principle: {t0, . . . , tν} where a = t0 < t1 < · · · < tν−1 < tν = b

2) n = 2ν:

• lower principle: {t0, . . . , tν} where a = t0 < t1 < · · · < tν < b

• upper principle: {t0, . . . , tν} where a < t0 < t1 < · · · < tν−1 < tν = b

Let U be a T–system and Ω be a continuous function. The following

theorem gives the extremes of
∫ b

a
Ω(t)dσ(t) when σ ∈ Σ(c) and c ∈ Int Mn+1:
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Theorem 2.4 [Extremal Distributions [38, Theorem 1.1, Sec. III.I]]: Let c ∈
Int Mn+1. If both U and the augmented system U ∪{Ω} are T–systems, then

sup
σ∈Σ(c)

∫ b

a

Ω(t)dσ(t)

is attained uniquely for σ∗, the measure corresponding to the upper principle

representation of c and

inf
σ∈Σ(c)

∫ b

a

Ω(t)dσ(t)

is attained uniquely for σ∗, the measure corresponding to the lower principle

representation of c.

Remark 2.6: Note that as long as the augmented system is a T–system, the

optimizing distributions σ∗ and σ∗ are independent of the objective function

Ω.
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Chapter 3

Fundamental Basis Channels

3.1 Introduction

In this chapter, we introduce a set of equal-capacity symmetric channels over

which any MBIOS channel can be decomposed. We call this the set of basis

channels and denote it by G(C) to emphasize its dependency on a given ca-

pacity. We will show that there are several monotonicity properties among

the set of basis channels. These properties will be exploited in Chapter 4.

In Appendix E, we will present an application of the set of basis channels in

designing universal codes over MBIOS channels of the same capacity.

3.1.1 From L-densities Towards P -densities

In Section 2.1.2, it was shown that for a given symmetric channel, the P -

density can be obtained from the channel’s L-density. In this section, we

elaborate the migration from P -densities to L-densities. To this end, we show

how to take an expected value with respect to an L-density using the corre-

sponding P -density.

Lemma 3.1 [Change of Measures]: Let ϕ be a continuous function. We have

E[ϕ(L)] = E
[
(1− P )ϕ

(
log 1−P

P

)
+ Pϕ

(
− log 1−P

P

)]
.
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Proof : By symmetry of a, we have

E[ϕ(L)] =

∫

R

ϕ(l)a(l)dl

=

∫ ∞

0

ϕ(l)a(l)dl +

∫ ∞

0

e−lϕ(−l)a(l)dl

=

∫ ∞

0

[ϕ(l) + e−lϕ(−l)]a(l)dl.

Now, taking l = log 1−p
p

for p ∈ [0, 1
2
] and using (2.5), we obtain the desired

form by

E[ϕ(L)] =

∫ 1
2

0

[

ϕ
(

log 1−p
p

)

+
p

1− p
ϕ
(

− log 1−p
p

)]

a
(

log 1−p
p

) dp

p(1− p)

=

∫ 1
2

0

[

(1− p)ϕ
(

log 1−p
p

)

+ pϕ
(

− log 1−p
p

)]

g(p)dp.

�

An immediate application of Lemma 3.1 is the representation of the functionals

over L-densities introduced in Section 2.1.3 using P -densities. The capacity

of an MBIOS channel in bits per channel use is

C = 1− E[h(P )],

where we used Lemma 3.1. From now on, we denote the equivocation of the

channel by H = 1 − C [41]. Also, by (2.7), the probability of error of an

MBIOS channel given X = +1 is

Pu,e = lim
δ↓0

E
[
1{L<0} +

1
2
1{−δ<L<δ}

]
= E[P ],

where we used Lemma 3.1 and the Lebesgue’s dominated convergence theorem

(DCT) [42].

Note that the derivation of above equations is rather intuitive considering

the probabilistic interpretation of an L-density as a family of BSCs1. By the

concavity of the binary entropy function and the fact that it lays above 2p,

p ∈ [0, 1
2
], it is straightforward to see that by the Jensen’s inequality [36]

2E[P ] ≤ E[h(P )] ≤ h(E[P ]),

1Recall that the uncoded probability of error and capacity of BSC(ǫ) are Pu,e = ǫ and
C = 1− h(ǫ).
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where the left (right) bound is tight for a BEC (BSC). Thus, for a fixed capacity

C, the error probability is bounded by

h−1(H) ≤ Pu,e ≤
H

2
. (3.1)

Finally, the Bhattacharyya parameter of an MBIOS channel can be shown as

B = E

[

2
√

P (1− P )
]

.

We have [31, Lemma 4.64]

2Pu,e ≤ B ≤ 2
√

Pu,e(1− Pu,e),

where the left (right) inequality is tight for a BEC (BSC).

3.1.2 New T–Systems

We mentioned in Remark 2.2 that since the support of a P -density is finite, it

is a perfect candidate for optimization problems including symmetric channels.

We will see that the theory of Chebychev systems is a great tool for solving such

optimization problems analytically. In this thesis, we will exploit several T–

systems in our development. The following theorem summarizes those systems.

The proof is postponed to Appendix A.

Theorem 3.1 [New T–Systems]: Let µ : [0, 1
2
] × R+ 7→ [0, 1] be a function

defined as

µ(x, ρ) = 2−ρ
(

x
1

1+ρ + (1− x)
1

1+ρ

)1+ρ

.

The following systems are T–systems over [0, 1
2
]:

U0 :
{
1, h(p)

}

U1 :
{
1, h(p), p

}

U2 :
{
1, h(p),− (pa1 + (1− p)a1)b1 (pa2 + (1− p)a2)b2

}
,

0 < a1, a2 < 1, 0 < b1, b2, a1b1 + a2b2 = 1

U3 :
{
1, h(p), p, µ(p, ρ)

}
, ρ > 0

U4 :
{
1, h(p), 1− (1− 2p)2

}
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U5 :
{
1, h(p),− lim

ρ→1

∂

∂ρ
µ(p, ρ)

}

U6 :
{
1, h(p),−ps(1− p)1−s − p1−s(1− p)s

}
, s ∈ (0, 1)

U7 :
{
1, h(p),−p log22 p− (1− p) log22(1− p)

}

U8 :
{
1, h(p), p, p log22 p+ (1− p) log22(1− p)

}

Proof : See Appendix A.
�

For simplicity, we drop the arguments wherever possible, e.g., we write {1, h}
instead of U0.

3.2 Equal-Capacity Basis Channels

Let S(C) be the set of MBIOS channels of capacity C for some C ∈ (0, 1)

(we consider non-trivial cases). We showed in [43] that there exists a set of

equal-capacity basis channels such that every channel from S(C) is included

in their convex hull. We will study the monotonicity and extremal properties

of these channels. Let η = h−1(H) be the crossover probability of the BSC

with capacity C. As shown in [43], a basis channel is constructed by mixing

two BSCs with crossover probabilities x and y. The P -density of such channel

is

gx,y(p) = γ(x, y)∆x(p) + γ̄(x, y)∆y(p), (3.2)

where x ≤ η ≤ y, (x, y) ∈ D(C), and

D(C) =
{
(x, y) ∈ [0, η]× [η, 1/2] : η = h−1(H)

}
.

It is important to note that x ≤ η ≤ y must hold, since the capacity of BSC(x)

(BSC(y)) is greater (less) than or equal to C. Therefore, there exits a convex

combination of them with capacity C. The coefficient γ(x, y) represents the

probability of BSC(x) (1 − γ(x, y) corresponds to BSC(y)) and is uniquely

determined such that the capacity of the basis channel gx,y is equal to C, i.e.,

γ(x, y) =
h(y)−H

h(y)− h(x)
, ∀(x, y) ∈ D(C)\{x = y = η}. (3.3)
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By the construction given in (3.2), a basis channel is an MBIOS channel in

essence. A typical basis channel is shown in Fig. 3.1 which demonstrates that

a basis channel is essentially a convex combination of two BSCs with different

capacities, each happening with its associated probability γ and γ̄, while the

mixture has a fixed capacity C. The transition probability matrix of a gx,y is

Gx,y =

[
αx̄ αx ᾱȳ ᾱy
αx αx̄ ᾱy ᾱȳ

]

, (3.4)

where the rows and columns are the channel inputs and outputs, respectively.

Note that if x (or y) is equal to η, then γ(x, y) = 1 (γ(x, y) = 0) in (3.2). We

denote the set of equal-capacity basis channels by

G(C) =
{
gx,y(p) : (x, y) ∈ D(C)

}
.

Clearly, BEC and BSC belong to this set and G(C) ⊂ S(C). The following

theorem is by [43].

Theorem 3.2 [Equal-Capacity Decomposition [43]]: Any MBIOS channel with

capacity C and P -density g can be decomposed as

g(p) =

∫∫

D(C)

gx,y(p)Pg(x, y)dxdy,

for some probability assignment Pg over D(C).

3.2.1 Monotonicity and Extremal Distributions

We shall see that studying monotonicity properties of G(C) will prove ex-

tremely helpful in Chapter 4. We denote the expected value operator taken

under gx,y by Ex,y[·]. To elaborate why we are interested in monotonicity

properties of the basis channels, assume that we are supposed to maximize

E[ϕ(P )] for some continuous function ϕ : [0, 1
2
] → R. By the Fubini-Tonelli’s

theorem [42], we have

E[ϕ(P )] =

∫ 1
2

0

ϕ(p)g(p)dp

=

∫ 1
2

0

ϕ(p)

∫∫

D
Pg(x, y)gx,y(p)dxdydp

=

∫∫

D
Pg(x, y)Ex,y[ϕ(P )]dxdy.
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0 1
2

γ(x, y)
γ̄(x, y)

x yη

+1

−1

+1x

−1x

+1y

−1y

Figure 3.1: Left: The P -density representation of a basis channel. Right:
The same basis channel is represented graphically, where each output is labeled
according to the corresponding subchannel. Solid lines show BSC(x) happening
with probability γ(x, y) while dashed lines indicate the connections of BSC(y)
happening with probability γ̄(x, y). Probabilities are according to Gx,y given in
(3.4).

Assume that all of the basis channels obey Ex,y[ϕ(P )] ≤ Ex∗,y∗ [ϕ(P )] for some

fixed x∗ and y∗. Then

E[ϕ(P )] ≤
∫∫

D
Pg(x, y)Ex∗,y∗ [ϕ(P )]dxdy = Ex∗,y∗ [ϕ(P )].

Therefore, under certain conditions on ϕ, we might be able to find extremes

of E[ϕ(P )] by studying the extremes of Ex,y[ϕ(P )]. The following lemma

establishes monotonicity of the basis channels:

Lemma 3.2 [Extremes and Monotonicity of Basis Channels]: Let ϕ : [0, 1
2
] → R

be a continuous function such that {1, h, ϕ} be a T–system. Then, supE[ϕ(P )]

(resp. inf E[ϕ(P )]) over all MBIOS channels in S(C) is achieved by a BEC

(resp. BSC). Moreover, the following monotonicity properties hold:

∂

∂x
Ex,y[ϕ(P )] ≤ 0,

∂

∂y
Ex,y[ϕ(P )] ≥ 0.

Proof : Optimizing E[ϕ(p)] over the set of MBIOS channels with the same

capacity imposes two constraints on the P -density of the channel: the distri-

bution must exhibit capacity C (or equivalently, it must exhibit equivocation

equal to H = 1−C) and it must be a probability distribution. In other words,

we are seeking optimizing distributions for

opt E[ϕ(P )]
s.t. E[1] = 1

E[h(P )] = H.
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According to Theorem 3.1, {1, h} is a T–system. We claim that the point

c = (1, H) is not a boundary point of M2. In fact, if it was, by Lemma 2.1

it would admit a representation of index one. This is impossible unless either

C = 0 or C = 1. Therefore, c ∈ Int M2. By Theorem 2.4, if the augmented

system {1, h, ϕ} is a T–system, then supΣ(c) E[ϕ(P )] over all MBIOS channels

of capacity C is attained uniquely for a distribution associated with the upper

principle representation of c for n = 1 which is the BEC(H) (see Theorem 2.3).

Similarly, infΣ(c) E[ϕ(P )] is attained for a distribution associated with the lower

principle representation of c for n = 1 which is the BSC(η).

To prove the monotonicity properties, let us restrict ϕ to the interval [x, y],

where 0 < x ≤ η ≤ y < 1
2
. Clearly, {1, h, ϕ} is a T–system on [x, y] too.

Therefore, BSC(η) is the minimizer and gx,y is the maximizer of E[ϕ(P )]. Let

Sx,y(C) =
{
g : Pg(x

′, y′) = 0, ∀(x′, y′) ∈ [0, x)× (y, 1
2
]
}
.

Now, we restrict ϕ to [x − δ1, y + δ2] for some small positive δ1, δ2. Clearly,

Sx,y ⊂ Sx−δ1,y+δ2 and

sup
Sx−δ1,y+δ2

(C)

E[ϕ(P )] ≥ sup
Sx,y(C)

E[ϕ(P )].

However, these supremum values are attained by gx,y and gx−δ1,y+δ2 , i.e.,

Ex−δ1,y+δ2[ϕ(P )] ≥ Ex,y[ϕ(P )].

Since δ1 and δ2 are arbitrary, we get the result by

lim
δ1→0

Ex,y[ϕ(P )]− Ex−δ1,y[ϕ(P )]

δ1
≤ 0

and

lim
δ2→0

Ex,y+δ2 [ϕ(P )]− Ex,y[ϕ(P )]

δ2
≥ 0.

�

3.2.2 Ordering on G(C)

An important consequence of Theorem 3.1 and Lemma 3.2 is that one can order

the set of basis channels G(C) and set of equal-capacity MBIOS channels S(C)
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with respect to those functionals defined over L and P -densities that satisfy

the conditions of Lemma 3.2. Here, we exemplify the ordering among the

set of basis channels. The probability of error of an MBIOS channel is given

by ϕ(p) = p which forms a T–system with {1, h} (see U1 of Theorem 3.1).

Therefore, the minimum (maximum) of probability of error over S(C) and

G(C) is given by the BSC (BEC). We have obtained this result using the

Jensen’s inequality in (3.1). Moreover, among the basis channels, as we move

inward (by increasing x and decreasing y, see Fig. 3.1), the probability of

error will decrease monotonically. This means that for x1 ≤ x2 ≤ η ≤ y2 ≤ y1,

Ex1,y1[p] ≥ Ex2,y2[p].

As we have seen in Section 2.1.3, the Bhattacharyya parameter of an

MBIOS channel is given by ϕ(p) = 2
√

p(1− p). By Theorem 3.1, {1, h,−ϕ}
is a T–system by taking s = 1

2
in U6. Thus, the minimum (maximum) of

probability of error over S(C) and G(C) is given by the BEC (BSC), i.e.,

1

2
(1− C) ≤ B ≤ 2

√

η(1− η).

As final example, the mean-squared error of X̂(Y ), an estimator of X given

Y , is a random variable given by

E[(X − X̂(Y ))2|Y ] = 1− 2E[XX̂(Y )|Y ] + X̂2(Y )

= 1− 2X̂(Y )E[X|Y ] + X̂2(Y ),

where we used the fact that X̂(Y ) is measurable with respect to the σ-algebra

generated by Y [44]. The minimum of this error is achieved by the minimum

mean-squared error (MMSE) estimator

X̂MMSE(Y ) = E[X|Y ] = PX|Y (+1|Y )− PX|Y (−1|Y ).

Using the Bayes’ theorem and assuming a uniform priori distribution, we have

X̂MMSE(Y ) =
PY |X(Y |+ 1)− PY |X(Y | − 1)

PY |X(Y |+ 1) + PY |X(Y | − 1)

=
eL(Y ) − 1

eL(Y ) + 1

= tanh L(Y )
2

.
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Table 3.1: Summary of the extremes of various functionals over G(C) and S(C)

Functional ϕ(p) inf E[ϕ(P )] supE[ϕ(P )] Monotonicity of Ex,y[ϕ(P )]

Pu,e p BSC BEC ∂
∂x ≤ 0, ∂

∂y ≥ 0

B 2
√

p(1− p) BEC BSC ∂
∂x ≥ 0, ∂

∂y ≤ 0

MMSE 1− (1 − 2p)2 BSC BEC ∂
∂x ≤ 0, ∂

∂y ≥ 0

By Lemma 3.1, the MMSE can be expressed using the P -density of the channel

as

MMSE = 1− E[X̂2(Y )] = 1− E
[
tanh2 L

2

]
= 1− E[(1− 2P )2].

The extremes of MMSE can be obtained in a similar fashion. Table 3.1 sum-

marizes the extremes and monotonicity properties of some functionals over

symmetric densities.
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Chapter 4

Extremal Problems of Error
Exponents

4.1 Introduction

Consider a DMC with a conditional probability measure PY |X : X 7→ Y where

X and Y are the input and output sets. A codebook is a set of M code-

words (c1, . . . , cM) where each ci ∈ X n and n is the code length. The code

rate, measured in bits, is R = 1
n
log2M . According to Shannon’s model of

communication, a message from the set {1, . . . ,M} is mapped to one of the

codewords and is passed through the channel. At the receiving side, the de-

coder produces an estimate of the original message by observing the channel

outputs. Assuming equiprobable messages, the average probability of error is

Pe =
1

M

M∑

i=1

Pe,i,

where Pe,i denotes the probability of decoding error, averaged over the channel

imperfections, when message i has been sent. We denote a code with three

major parameters: (n,R, Pe) representing the code length, code rate and the

probability of error. Let R∗(n, Pe) be the maximum rate of transmission that

is possible using a codebook of length n such that the original codeword can

be recovered with probability at least 1− Pe [45]. Shannon showed that

lim
Pe→0

lim inf
n→∞

R∗(n, Pe) = C,

where C is the channel capacity in bits per channel use. For a DMC, C =

supPX
I(X ; Y ) where I(X ; Y ) is the mutual information between X and Y ,
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and PX is a probability assignment on X . Let

P ∗
e (n,R) = inf{Pe : ∃(n,R, Pe)–code}

denote the least probability of error among all codebooks of length n and rate

R. An important characteristic of a DMC is the channel reliability function,

defined as

E(R) = lim inf
n→∞

−1

n
log2 P

∗
e (n,R).

and is the exponent with which the probability of error for a given rate may

be made to vanish with increasing n [3]. The reliability function is a function

of channel and is known exactly for Rcr ≤ R ≤ C, where Rcr is called the

critical rate. Since reliable communication is impossible for rates greater than

the capacity, we have E(R) = 0, R ≥ C. There are several lower and upper

bounds known for the channel reliability function. In this chapter, we study the

extremes of these bounds over the set of MBIOS channels. More specifically,

we consider the random coding error exponent, expurgated error exponent,

sphere-packing error exponent, and exponent for the erasure/list decoding.

The following questions will be addressed in this chapter:

• Among all MBIOS channels of the same capacity, which channel does

have the maximum (minimum) of the error exponent? In other words,

given a sequence of codes {(n,R, Pe)}n, R < C, which channel does have

the fastest (slowest) vanishing probability of error?

• Among all MBIOS channels of the same capacity, which channel does

exhibit the maximum (minimum) of the critical rate?

• How does one modify these extremes when an additional constraint is

imposed, e.g., a constraint on the uncoded probability of error of the

channel?

The analysis of the reliability function (P ∗
e (n,R)) and channel capacity

(R∗(n, Pe)) are asymptotic in code length. A very interesting question is

remained to be answered: How does the code length affect P ∗
e (n,R) and

R∗(n, Pe) for a finite code length? In other words, how does one choose the
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code length to achieve a desired rate/probability of error? Polyanskiy et al. [46]

answer this question by re-introducing an important characteristic of channel

called channel dispersion, V , which measures the stochastic variability of the

channel relative to a deterministic channel with the same capacity [46]1. For

a large enough code length, it is proved that2

R∗(n, Pe) ≈ C −
√

V

n
Q−1(Pe),

from which, one can approximate the required code length for the given

rate/probability of error. Similar to the error exponents, one can find the

channel, among all symmetric channels of the same capacity, which maxi-

mizes (minimizes) the channel dispersion, hence the maximum (minimum) of

required code length.

To answer all these questions, we introduce a mathematical framework

translating these problems into well-defined optimization problems. We de-

fine a set of equal-capacity basis channels over which every MBIOS channel

can be decomposed. Then, we invoke the theory of Chebychev systems from

approximation theory to solve these optimization problems analytically. We

find several monotonicity properties among the basis channels and show that

the set of basis channels is rich enough to answer these questions. It turns out

that the BEC and BSC, which are two instances of basis channels, are these

extremes when the only constraint is the capacity. We will show how one can

modify these extremes when other constraints are imposed. In those cases, the

extreme channels are still among the basis channels. This shows that the the-

ory of Chebychev systems and the set of basis channels are powerful tools and

can be used to solve even more complicated extremal problems of symmetric

channels.

There are two related works. Fàbregas et al. [49] studied the Gallager’s

random coding error exponent. Using the properties of convex functions, it is

shown that BSC and BEC are the extremes. The work of Alsan [50] shows the

same extremality of BSC and BEC. The author then applies this result in the

1Channel dispersion was previously used in [47, 48] in a similar context.
2Q(x) =

∫∞

x
1√
2π

e−t2/2dt
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context of channel polarization [51]. In this thesis, we present a framework

which not only provides these results, but also allows for solving extremal

problems of other error exponents as well as solving the extremal problems

under extra constraints.

The application of Chebychev systems to solve extremal problems related

to symmetric channels has been considered by [52] and partly by [36] to solve

extremal problems of information combining. The problems considered in this

thesis, however, are different in nature and require totally different Cheby-

chev systems.

4.2 Extremal Problems of Error Exponents

In this section, we shall solve several extremal problems related to the reliabil-

ity function. Lower bounds on the reliability function including the Gallager’s

random coding error exponent and expurgated error exponent will be consid-

ered. The sphere-packing error exponent is studied as an upper bound on the

reliability function. In addition to the conventional decoder, we also study the

error exponent for decoders with erasure/list option. The extremal problems

of channel dispersion, which can be obtained via the reliability function, will

be solved at the end of this section.

4.2.1 Gallager’s Random Coding Error Exponent

Let PY |X : X 7→ Y be a DMC. The average probability of decoding error

with an (n,R [nats], Pe) code under maximum-likelihood decoding is bounded

by [3, Theorem 5.6.2]

Pe ≤ exp (−nEr(R)) ,

where

Er(R) = sup
ρ∈[0,1]

(E0(ρ)− ρR)

is called the random coding error exponent, E0(ρ) = supPX
E0(ρ, PX) and

E0(ρ, PX) = − log
∑

y∈Y

[
∑

x∈X
PX(x)PY |X(y|x)

1
1+ρ

]1+ρ

.
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As we mentioned in Section 2.1, any MBIOS channel is completely charac-

terized by its L-density or P -density. In this section, we derive an alternative

representation for E0(ρ) based on the channel’s P -density. We will utilize this

representation to solve the extremal problems of random coding error expo-

nent.

For symmetric channels, the uniform input distribution maximizes both

I(X ; Y ) and E0(ρ, PX) [3, Theorem 4.5.2, 5.6.5]. We write E0(ρ) = E0(ρ, PX ≡
1
2
). The next lemma shows the representation of random coding error exponent

using the P -density of the channel.

Lemma 4.1 [Representation of E0 by a P -density]: For an MBIOS channel,

we have

E0(ρ) = − logE[µ(P, ρ)], ρ ≥ 0,

where

µ(p, ρ) = 2−ρ
(

p
1

1+ρ + (1− p)
1

1+ρ

)1+ρ

, p ∈ [0, 1
2
].

Proof : Assuming that the channel has a continuous output alphabet, we can

change the summation to integral. We have

exp (−E0(ρ)) =

∫
(
∑

x

PX(x)PY |X(y|x)
1

1+ρ

)1+ρ

dy

=

∫ (
1

2
+

1

2
e−

L(y)
1+ρ

)1+ρ

PY |X(y|+ 1)dy

(a)
= E

[

2−(1+ρ)
(

1 + e−
L

1+ρ

)1+ρ
]

(b)
= E

[

2−ρ
(

P
1

1+ρ + (1− P )
1

1+ρ

)1+ρ
]

,

where (a) holds by the change of measures3 PY |X(y| + 1)dy = a(l)dl and (b)

follows from Lemma 3.1.
�

Now that we have the representation of Gallager’s error exponent using the

P -density of channel, we are ready to find its extreme distributions, which are

3Note that the LLR is a sufficient statistic for X given Y .
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the optimizing distributions of

opt Er(R)
s.t. E[1] = 1

E[h(P )] = H.

It is noteworthy that since

Er(R) = sup
ρ∈[0,1]

(E0(ρ)− ρR),

the optimizer of the above problem is also the optimizer of the following prob-

lem provided that the optimizing distribution is independent of ρ:

opt E0(ρ)
s.t. E[1] = 1

E[h(P )] = H.

As we will see later in Theorems 4.1, 4.2 and 4.3, this is the case and those

distributions do not depend on ρ. Note that maximizing Er(R) is equivalent to

maximizing E0(ρ) = − logE[µ(P, ρ)] and it leads to minimizing E[µ(P, ρ)] since

the logarithm is a monotonically increasing function. The following theorem

shows the extremes of the Gallager’s error exponent.

Theorem 4.1 [Extremes of Er]: Among all equal-capacity MBIOS channels

with capacity C, the minimum (maximum) of the error exponent Er(R) for

every rate below the capacity is achieved by BSC(H) (resp. BSC(η)).

Proof : First, note that according to Theorem 3.1, the system

u0(p) = 1

u1(p) = h(p)

u2(p) = −µ(p, ρ), ρ ≥ 0

is a T–system. To see this, let a1 = a2 = 1
1+ρ

, b1 = 1 and b2 = ρ in U2.

Now, by Theorem 2.4, the maximum (minimum) of E[µ(P, ρ)] is obtained by

the BSC (BEC). Since the extremes are independent of ρ, this means that

the maximum (minimum) of E0 and Er are achieved by the BEC (BSC) of

capacity C.
�
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Figure 4.1: Comparison of the extremes of Er for MBIOS channels of capacity
C = 0.4 and probability of error P0 = 0.1921 (= Pu,e of the corresponding
BIAWGN channel of capacity 0.4).

Theorem 4.1 shows extremal properties of the BSC and BEC. When there

is a constraint on the channel’s probability of error, the BEC and BSC are

no longer the extremes of random coding error exponent. For example, the

extremes of Er among all MBIOS channels in S(C) with the probability of error

equal to error probability of the Gaussian channel in S(C) contains neither the

BEC nor the BSC. Mathematically speaking, we are interested in the solution

of optimization problems of the following kind:

opt Er(R)
s.t. E[1] = 1

E[h(P )] = H
E[P ] ≥ P0 (or E[P ] ≤ P0)

In other words, we are seeking a single MBIOS channel from S(C) which

satisfies a constraint on the probability of error and maximizes (minimizes) Er

for every R < C. It is important to point out that according to (3.1), P0 must

satisfy h−1(H) < P0 < H
2
, otherwise the condition on E[P ] will be relaxed
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automatically. Furthermore, if P0 is either H
2

or η, then the only feasible

channel will be BEC and BSC, respectively.

We will see how the set of basis channels facilitates solving such complicated

optimization problems. The extremes are stated in the following theorems:

Theorem 4.2 [Constrained Minimum of Er]: Among all the equal-capacity

MBIOS channels with probability of error greater (resp. less) than P0, the

minimum of Er for every rate below the capacity is achieved by gx∗, 1
2
(resp.

gη,η = BSC(η)), where x∗ is the unique solution of

h(x) = 1− C
1− 2x

1− 2P0
, x ∈ (0, η). (4.1)

Theorem 4.3 [Constrained Maximum of Er]: Among all the equal-capacity

MBIOS channels with probability of error less (resp. greater) than P0, the

maximum of Er for every rate below the capacity is achieved by g0,y∗ (resp.

g0, 1
2
= BEC(H)), where y∗ is the unique solution of

h(y) = y
H

P0

, y ∈ (P0,
1
2
). (4.2)

Proof : [Theorem 4.2 and 4.3] See Section 4.4
�

In Fig. 4.1, the error exponents for various channels from S(0.4) are de-

picted. According to Theorem 4.1, the BEC and BSC have the maximum and

minimum of Er, respectively. By Theorem 4.2 and 4.3, if the set of channels

is limited to those whose error probability is equal to 0.1921, i.e., the error

probability of the BIAWGN∈ S(0.4), then the maximum and minimum of Er

are attained by the basis channels g0,y∗ and gx∗, 1
2
, respectively. As it can be

seen, there is a visual ordering among basis channel: as we move inward from

the BEC (by increasing x and decreasing y), Er gets smaller until we reach

the BSC.

Critical rate

The stationary ρ ∈ [0, 1] for maximizing E0(ρ)− ρR is obtained by

R =
∂E0(ρ)

∂ρ
.
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By [3, Theorem 5.6.3], E0(ρ, PX) is a concave function for all ρ ≥ 0 and PX ,

particularly, for the optimal input distribution, i.e., E0(ρ) = E0(ρ, PX ≡ 1
2
) is

a concave function of ρ. This means that

∂E0(ρ)

∂ρ

∣
∣
∣
∣
ρ=1

≤ R ≤ ∂E0(ρ)

∂ρ

∣
∣
∣
∣
ρ=0

[nats].

From Lemma 4.1 and Lemma C.1, we have

∂E0(ρ)

∂ρ

∣
∣
∣
∣
ρ=0

=
−1

E[µ(P, 0)]
E

[

lim
ρ→0

∂µ(P, ρ)

∂ρ

]

= E[1− h(P )] log 2

= C log 2 [nats],

where C is the capacity in bits per channel use. The point ∂E0(ρ)
∂ρ

∣
∣
ρ=1

is called

critical rate of the channel and is denoted by Rcr. Note that for 0 ≤ R ≤ Rcr,

ρ = 1 is the optimal choice and

Er(R) = E0(1)− R.

In other words, the slope of the exponent is −1 for 0 ≤ R ≤ Rcr, increases

monotonically for Rcr ≤ R ≤ C [nats] and approaches zero as R approaches

C [53].

In the following Theorem, we find the extremes of critical rate over S(C).

Theorem 4.4 [Extremes and Monotonicity of Rcr,x,y]: The maximum (min-

imum) of critical rate over the set of MBIOS channels with capacity C is

attained by the BEC (BSC). Furthermore, let Rcr,x,y be the critical rate of

gx,y. The following monotonicity holds:

∂Rcr,x,y

∂x
≤ 0,

∂Rcr,x,y

∂y
≥ 0.

Proof : By Lemma C.1, we obtain

Rcr =
−1

E[µ(P, 1)]
E

[

lim
ρ→1

∂µ(P, ρ)

∂ρ

]

=
E[µ◦(P )]

E[µ◦(P )]
,

where µ◦(p) = 1 + 2
√

p(1− p), and

µ◦(p) = −2 × lim
ρ→1

∂µ(P, ρ)

∂ρ

=
(√

p+
√
p̄
) (√

p log
√
p+

√
p̄ log

√
p̄
)
+
(√

p+
√
p̄
)2

log
2√

p+
√
p̄
.

38



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

BIAWGN

BEC

BSC

R

E
r
(R

)

Figure 4.2: Comparison of critical rates for three channels from S(0.4). Dashed
lines show the critcal rates.

Unlike the previous cases where we optimized a single expectation, in this case

we are dealing with a ratio of expectations. According to Theorem 3.1, the

system {1, h, µ◦} is a T–system implying that4

EBSC[µ
◦(P )] ≤ E[µ◦(P )] ≤ EBEC[µ

◦(P )].

Moreover, by taking s = 1
2
in U6 of Theorem 3.1 and subtracting one, the

system {1, h,−µ◦} is a T–system , i.e.,

EBEC[µ◦(P )] ≤ E[µ◦(P )] ≤ EBSC[µ◦(P )].

Since µ◦ is strictly positive, we conclude that the BEC and BSC are the ex-

tremes. To show the monotonicity, we observe that

Rcr,x,y =
Ex,y[µ

◦(P )]

Ex,y[µ◦(P )]

4EBSC ≡ Eη,η and EBEC ≡ E
0, 1

2
.
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and

∂Rcr,x,y

∂x
=

1

E2
x,y[µ◦(P )]

(

Ex,y[µ◦(P )]
∂

∂x
Ex,y[µ

◦(P )]
︸ ︷︷ ︸

≤0

− Ex,y[µ
◦(P )]

∂

∂x
Ex,y[µ◦(P )]

︸ ︷︷ ︸

≥0

)

≤ 0,

where we used the monotonicity properties of the basis channels and the fact

that µ◦ and µ◦ are positive
5. A similar approach applies to the derivative with

respect to y.
�

Shulman-Feder bound (SFB)

So far, we have considered the random coding error exponent. What happens

if the code has some specific structure, e.g., a linear block code? This leads

to a natural question: How does one modify the random error exponent for a

linear block code to incorporate the specific structure?

Let C be a specific binary linear code of length n and rate R. Also, let

{Aℓ}ni=0 be its weight distribution, i.e.,

Aℓ = |{codewords with Hamming distance = ℓ}|.

According to the SFB [54], the average block error probability of C over an

MBIOS channel is bounded by

Pe ≤ exp

(

−nEr

(

R + log
α(C)
n

))

,

where Er is the random coding error exponent and α(C) is a function of the

distance spectrum of the code. It is the maximal ratio of the distance spectrum

of a code and the average distance spectrum. In other words,

α(C) = max
1≤ℓ≤n

Aℓ

2nR − 1

2n
(
n
ℓ

) ,

5To see this, note that

µ◦(p) =
(√

p+
√
p̄
)
[
(√

p log
√
p+

√
p̄ log

√
p̄
)
+
(√

p+
√
p̄
)
log

2√
p+

√
p̄

]

.

A simple application of Jensen’s inequality with function x log x, x ∈ [0, 1

2
] to the expression

in the brackets shows positivity.
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where
(nℓ)
2n

is the probability of choosing a codeword of length n with the weight

ℓ using a uniform distribution, and Aℓ

2nR−1
is the same probability under the

assumption that we choose randomly one of the (nonzero) codewords in the

code [54]. Therefore, if the code’s spectrum is close to the spectrum of a

random code, then we have α(C) ≈ 1 and we get the same random coding

error exponent.

Corollary 4.1 [Extremes of SFB]: The extremes of the SFB of a linear code C
over the MBIOS channels in S(C) is the same as the extremes of the random

coding error exponent for any rate R such that R + log α(C)
n

< C.

The SFB can be generalized to an ensemble of (rather than a specific)

binary linear codes. Let C̄ denote an ensemble of linear codes. Let U ∈
{1, 2, . . . , n} and its complement U c = {1, 2, . . . , n}\U . According to Miller

and Burshtein [55, Theorem 1], the block error probability under maximum

likelihood decoding is bounded by

Pe ≤
∑

ℓ∈U
ĀℓB

ℓ + 2
−nEr

(

R+log
α(C̄)
n

)

,

where B is the Bhattacharyya parameter of the channel, Āℓ denotes the average

number of codewords of Hamming weight ℓ in the ensemble and

α(C̄) = max
ℓ∈Uc

Āℓ

2nR − 1

2n
(
n
ℓ

) .

Corollary 4.2 [Extremes of Miller-Burshtein Bound]: The extremes of the

Miller-Burshtein bound of an ensemble of linear codes C̄ over the MBIOS

channels in S(C) is the same as the extremes of the random coding error

exponent for any rate R such that R + log α(C̄)
n

< C.

4.2.2 Expurgated Exponent

The construction of the error exponent Er(R) is based on the argument of ran-

dom codeword generation which chooses codewords independently according

to some fixed input distribution. This means that there exist poor codewords

with high probability of error in an ensemble of random codes. It turns out
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that such poor codewords have an adverse effect on the random coding er-

ror exponent at low rates. By expurgating those codewords, we can reduce

their contribution in the overall probability of error [3]. The following theorem

establishes existence of the expurgated ensemble.

Theorem 4.5 [Expurgated Exponent [3, Theorem 5.7.1]]: For any DMC chan-

nel, let n be a positive integer and R be any positive number. There exist

codes of length n and rate R nats such that for m = 1, . . . , enR,

Pe,m ≤ exp

(

−nEex

(

R +
log 4

n

))

,

where the function Eex is called the expurgated error exponent and is given by

Eex(R0) = sup
ρ≥1

(Ex(ρ)− ρR0) , (4.3)

Ex(ρ) = supPX
Ex(ρ, PX), and

Ex(ρ, PX) = −ρ log
∑

x,x′

PX(x)PX(x
′)

(∫ √

PY |X(y|x)PY |X(y|x′)dy

) 1
ρ

.

It has been shown that the expurgated error exponent is greater than the

random error exponent at low rates which means that it provides a tighter

lower bound on the channel reliability function. In the case of MBIOS chan-

nels, we can find the extremes of the expurgated error exponent by identifying

the proper T–systems.

Theorem 4.6 [Extremes of Eex]: For an MBIOS channel with a Bhat-

tacharyya parameter B,

Ex(ρ) = − log
(

1
2
+ 1

2
B

1
ρ

)ρ

, ρ ≥ 1.

Moreover, among all MBIOS channels of capacity C, the maximum (resp.

minimum) of Eex is achieved by the BEC (resp. BSC).

Proof : Consider an MBIOS channel with capacity C. Let w = PX(+1). For
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x 6= x′, we have

∫ √

PY |X(y|x)PY |X(y|x′)dy =

∫
√

PY |X(y| − 1)

PY |X(y|+ 1)
PY |X(y|+ 1)dy

= E[e−
L
2 ]

= E[2
√

p(1− p)] = B.

Therefore,

exp (−Ex(ρ, PX)/ρ) = w2 + (1− w)2 + 2w(1− w)B
1
ρ

= 1 + 2w(1− w)
(

B
1
ρ − 1

)

,

which is symmetric with respect to w → 1−w. Since B ≤ 1, w = 1
2
maximizes

Ex(ρ, PX), thus

Ex(ρ) = − log
(

1
2
+ 1

2
B

1
ρ

)ρ

.

According to Theorem 3.1 (take s = 1
2
in U6), the maximum and minimum

of the Bhattacharyya parameter over all MBIOS channels with the same ca-

pacity is achieved by BSC and BEC, respectively. Thus, the maximum and

minimum of Ex (for all ρ ≥ 1) and Eex is achieved by the BEC(H) and BSC(η),

respectively.
�

The analysis of critical rate for the expurgated error exponent is similar to

the random coding error exponent. Solving (4.3) for R0 gives the parametric

representation of rate in terms of Ex as

R0 =
∂Ex(ρ)

∂ρ
= log

2

1 +B
1
ρ

+
logB

ρ
(

1 + B
−1
ρ

) .

Simple calculus shows that Ex(ρ) is a concave function of ρ:

∂2Ex(ρ)

∂ρ2
= − B

1
ρ log2B

ρ3
(

1 +B
1
ρ

)2 ≤ 0,

which means that

0 = lim
ρ→∞

∂Ex(ρ)

∂ρ
≤ R0 ≤

∂Ex(ρ)

∂ρ

∣
∣
∣
∣
ρ=1

,
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Figure 4.3: Comparison of expurgated error exponents for MBIOS channels of
capacity C = 0.4. Dashed lines indicate the expurgated critical rate. R0 is in bits.

where Rcr,ex = ∂Ex(ρ)
∂ρ

∣
∣
ρ=1

is the expurgated critical rate. Therefore, the ex-

purgated error exponent monotonically decreases for 0 ≤ R0 ≤ Rcr,ex and

decreases linearly as Ex(1) − R0 for Rcr,ex ≤ R0 ≤ Ex(1), where Ex(1) is

the R0-intercept and is equal to log 2
1+B

. The expurgated critical rate can be

expressed as

Rcr,ex = log
2

1 +B
+

B logB

1 +B
.

Theorem 4.7 [Extremes of Expurgated Critical Rate]: Among all MBIOS

channels of capacity C, the BEC (BSC) maximizes (minimizes) the expurgated

critical rate.

Proof : The proof is straightforward by considering the facts that the max-

imum (minimum) of the Bhattacharyya parameter over all MBIOS channels
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with the same capacity is achieved by the BSC (BEC), 0 < B < 1 and

∂Rcr,ex

∂B
=

logB

(1 +B)2
< 0.

�

Fig. 4.3 compares Eex for three channels from S(0.4). As it can be seen

from the figure, BEC (BSC) maximizes (minimizes) both the expurgated error

exponent and the expurgated critical rate.

4.2.3 Sphere-Packing Exponent

So far, we have only considered the lower bounds on the reliability function.

Sphere-packing bound provides an upper bound for the reliability function.

The following theorem summarizes the sphere-packing bound.

Theorem 4.8 [Sphere-Packing Bound [3]]: Let PY |X : X 7→ Y be a DMC.

Any (n,R [nats], Pe) code satisfies

Pe ≥ exp (−n(Esp(R− o1(n)) + o2(n))) ,

where

Esp(R) = sup
ρ>0

(E0(ρ)− ρR),

and E0(ρ) is given in Section 4.2.1. Moreover,

o1(n) =
log 8

n
+

|X | logn
n

,

o2(n) =
log 8

n
+

√

2

n
log

e2

Pmin
,

where Pmin = min{PY |X(y|x) : PY |X(y|x) > 0}.

Similar to random-coding error exponent, Esp is a non-negative convex

function of R. In fact, using the same analysis as in Section 4.2.1, one can see

that for symmetric channels

0 = lim
ρ→∞

∂E0(ρ)

∂ρ
≤ R ≤ ∂E0(ρ)

∂ρ

∣
∣
∣
∣
ρ=0

= C [nats].

The extremes of sphere-packing error exponent is given by the following the-

orem. The proof is straightforward using the results of Section 4.2.1.
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Figure 4.4: Comparison of sphere-packing exponents for MBIOS channels of
capacity C = 0.4. R is in bits.

Theorem 4.9 [Extremes of Sphere-Packing Bound]: Among all equal-capacity

MBIOS channels with capacity C, the minimum (maximum) of the sphere-

packing error exponent Esp(R) for every rate below the capacity is achieved

by BEC(H) (resp. BSC(η)).

Sphere-packing error exponents for MBIOS channels of capacity 0.4 bits

per channel use are compared in Fig. 4.4

4.2.4 Erasure/List Decoding Exponent

In this section, we will consider two decoders, in addition to the ordinary

decoder of the classic setup in Section 4.1. These decoders prove beneficial

when the transmitted data contains some redundancy, when a feedback chan-

nel is available, or when further stages of coding (concatenation) are contem-

plated [56].

1. The decoder has the option of not deciding at all, of rejecting all esti-
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mates. The resulting output is called an erasure. We have an undetected

error only if the decoder makes an estimate, and it is wrong.

2. The decoder has the option of putting out more than one estimate. The

resulting output is called a list. Only if the correct codeword is not on

the list do we have a list error [56].

Let Rm, defined over the space of channel outputs, be the region such

that if the channel output falls into it, the decoder declares the message m ∈
{1, . . . ,M} as an estimate of what has been sent. In an ordinary decoder, the

decision regions are disjoint and occupies the whole space (the channel output

falls into only one of the regions). With the erasure option, the decision

regions are still disjoint but there are channel outputs that belong to none of

the regions. With the list option, the decision regions overlap and a channel

output may belong to a list of regions.

Let E2 be the event of undetected errors. The probability of undetected

errors of an ordinary decoder is

P(E2) =
∑

m

∑

y∈Rm

∑

m′ 6=m

PXn,Y n(cm′ ,y),

which is minimized by the maximum a posteriori decoding rule. The perfor-

mance of a decoder with erasure is characterized in terms of probability of

undetected errors and probability of erasure. Define E1 as an event which

the received y does not fall in the decision region Rm, corresponding to the

transmitted code word cm [56]. When E1 occurs, either an undetected error

or an erasure occurs. Therefore, the probability of E1 is

P(E1) =
∑

m

∑

y/∈Rm

PXn,Y n(cm,y) = P(E2) + P(E),

where E is the erasure event. There is a fundamental tradeoff between these

two probabilities; letting more erasure happen on unreliable receptions will

decrease the probability of undetected errors; equivalently, there is a tradeoff

between P(E1) and P(E2). The optimal decision criterion can be obtained

using the Neyman-Pearson lemma [2].
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Theorem 4.10 [Forney [56, Theorem 1]]: Let T be an arbitrary number.

There is no set of decision regions other than

Rm =

{

y :
PXn,Y n(cm,y)

∑

m′ 6=m PXn,Y n(cm′ ,y)
≥ enT

}

, (4.4)

which gives both a lower P(E1) and P(E2) than this region does.

The arbitrary parameter T governs the relative magnitudes of P(E1) and

P(E2); clearly as T increases, P(E1) increases while P(E2) decreases, since the

decision regions Rm shrink. One can observe that T must be positive, in order

for the decision regions to be necessarily disjoint [56].

The performance of the decoder with list option is characterized via two

parameters: the probability of list error where the transmitted codeword is not

in the list and the average number of incorrect messages on the list. It is shown

in [56] that with a slight modification (allowing the summation in P(E2) to

be performed over the overlapped regions), these parameters are respectively

given by P(E1) and P(E2). Note that in this case the optimum tradeoff is still

given by Theorem 4.10 with the exception of T being negative to allow the

regions overlap.

Similar to an ordinary decoder, one can find the error exponents for P(E1)

and P(E2) using the technique of Gallager [3]. The following theorem by

Forney states so.

Theorem 4.11 [Forney [56, Theorem 2]]: There is a block code of length n

and rate R nats such that when the likelihood ratio criterion of (4.4) is used

with a threshold T , one can simultaneously obtain

P(E1) < exp (−nE1(R, T )) ,

P(E2) < exp (−nE2(R, T )) ,

where E1(R, T ) is given at high rates by

E1(R, T ) = sup
0≤s≤ρ≤1

(E0(s, ρ)− ρR − sT ),

48



where E0(s, ρ) = maxPX
E0(s, ρ, PX), and

E0(s, ρ, PX) = − log

∫
(
∑

x

PX(x)PY |X(y|x)1−s

)(
∑

x′

PX(x
′)PY |X(y|x′)

s
ρ

)ρ

dy,

and at low rates by

E1(R, T ) = sup
s∈[0,1],ρ≥1

(Ex(s, ρ)− ρR − sT ),

where Ex(s, ρ) = maxPX
Ex(s, ρ, PX), and

Ex(s, ρ, PX) = −ρ log
∑

x

∑

x′

PX(x)PX(x
′)

(∫

PY |X(y|x)1−sPY |X(y|x′)sdy

)1
ρ

,

and E2(R, T ) = E1(R, T ) + T .

The following theorem gives the extremes of E1(R, T ) and E2(R, T ) over

the set of symmetric channels of capacity C.

Theorem 4.12 [Extremes of E1 and E2]: For any MBIOS channel, we have

E0(s, ρ) = − logE[µ(P, s, ρ)],

where

µ(p, s, ρ) = 2−ρ
(
p1−s + (1− p)1−s

) (

p
s
ρ + (1− p)

s
ρ

)ρ

, 0 ≤ s ≤ ρ ≤ 1.

and

Ex(s, ρ) = − log
(

1
2
+ 1

2
E

1
ρ
[
P s(1− P )1−s + P 1−s(1− P )s

])ρ

, ρ ≥ 1, s ∈ [0, 1].

Moreover, among all the MBIOS channels with capacity C, the maximum

(minimum) of E1(R, T ) and E2(R, T ) is attained by the BEC (BSC) for all

rates 0 ≤ R < C [nats] and arbitrary T .

Proof : Using the techniques used in Lemma 4.1 and by letting w = PX(+1),

one can see that at high rates

exp(−E0(s, ρ, PX)) = E

[(
w + (1− w)e−(1−s)L

) (

w + (1− w)e−
s
ρ
L
)ρ]

= E

[ (
wP 1−s + (1− w)(1− P )1−s

) (

wP
s
ρ + (1− w)(1− P )

s
ρ

)ρ

+
(
w(1− P )1−s + (1− w)P 1−s

) (

w(1− P )
s
ρ + (1− w)P

s
ρ

)ρ ]
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will not change if w → 1 − w. In Appendix B, it is proved that the function

inside the brackets will be minimized by a uniform PX , i.e., w = 1
2
. Therefore,

we obtain

E0(s, ρ) = − logE
[

2−ρ
(
P 1−s + (1− P )1−s

) (

P
s
ρ + (1− P )

s
ρ

)ρ]

.

Similarly, for low rates we have

exp(−Ex(s, ρ, PX)/ρ) = w2 + (1−w)2 + w(1−w)
(

E
1
ρ [e−sL] + E

1
ρ [e−(1−s)L]

)

,

which is symmetric with respect to w → 1−w, hence minimized by a uniform

input distribution. Thus,

Ex(s, ρ) = − log
(

1
2
+ 1

2
E

1
ρ
[
P s(1− P )1−s + P 1−s(1− P )s

])ρ

.

The extreme part is proved through Lemma 4.1 and Theorem 3.1 (U6 and U2

with a1 = 1− s, a2 =
s
ρ
, b1 = 1 and b2 = ρ).

�

4.2.5 Channel Dispersion

As we mentioned in Section 4.1, channel dispersion plays an important role

in the non-asymptotic analysis of R∗(n, Pe) and P ∗
e (n,R). Polyanskiy et al.

defined channel dispersion (measured in squared information units per channel

use) as

V = lim
Pe→0

lim sup
n→∞

n

(
C − R∗(n, Pe)

Q−1(Pe)

)2

= lim
Pe→0

lim sup
n→∞

n
(C − R∗(n, Pe))

2

2 log 1
Pe

. (4.5)

The rationale for this definition is the following expansion, valid for a number

of different channels (the Pe > 0 is fixed and n → ∞) [46]:

R∗(n, Pe) = C −
√

V

n
Q−1(Pe) + o(n).

In this section, we explore the extremes of channel dispersion among channels

with a given capacity. The main key to our analysis is studying the second

derivative of the reliability function. An alternative way to obtain the results
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of this section is the representation of the channel dispersion via the variance of

information density. This definition is from [47,48]. This approach is explored

in Appendix D.

Recall the definition of channel dispersion given in (4.5). At rates close to

capacity, when n is large and Pe is small enough, one can obtain the following

approximation:

V ≈ (C −R)2

2E(R)
.

The fact that the reliability function behaves parabolically for rates near the

capacity was known to Shannon (see Fig. 18 of [46]). Therefore, channel

dispersion is obtained by the second derivative of the reliability function at

the capacity [46] as

V = lim
R→C

(
∂2

∂R2
E(R)

)−1

.

Lemma 4.2 [Channel Dispersion]: For an MBIOS channel, channel dispersion

in squared bits per channel use is

V = E[ν(P )]−H2,

where

ν(p) = p log22 p+ (1− p) log22(1− p), p ∈ [0, 1
2
].

Proof : For rates above the critical rate, the reliability function is known and

is equal to the random coding error exponent. We have6

V = lim
R→C

(
∂2

∂R2
Er(R)

)−1

= − lim
ρ→0

∂2

∂ρ2
E0(ρ).

6We have R = ∂E0

∂ρ and ∂R
∂ρ = ∂2E0

∂ρ2 . Moreover, since Er(R) = E0(ρ)− ρ∂E0

∂ρ , we have

∂Er

∂ρ
= −ρ

∂2E0

∂ρ2
,
∂Er

∂R
=

∂Er

∂ρ

∂R
∂ρ

= −ρ,

which gives [3]

∂2Er

∂R2
= − ∂ρ

∂R
= −

(
∂2E0

∂ρ2

)−1

.
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According to Appendix C.1, one can now obtain

V = lim
ρ→0

1

E2[µ(P, ρ)]

(

E[µ(P, ρ)]
∂2

∂ρ2
E[µ(P, ρ)]−

(
∂

∂ρ
E[µ(P, ρ)]

)2
)

=
1

E2[µ(P, 0)]

(

E[µ(P, 0)]E

[

lim
ρ→0

∂2

∂ρ2
µ(P, ρ)

]

− E2

[

lim
ρ→0

∂

∂ρ
µ(P, ρ)

])

= E

[

lim
ρ→0

∂2

∂ρ2
µ(P, ρ)

]

− E2

[

lim
ρ→0

∂

∂ρ
µ(P, ρ)

]

,

resembling a variance expression. Also, we have

lim
ρ→0

∂2

∂ρ2
µ(p, ρ) = log2 2 + p log2 p+ (1− p) log2(1− p)− 2h(p) log2 2

= log2 2 (1 + ν(p)− 2h(p)) ,

where

ν(p) = p log22 p+ (1− p) log22(1− p), p ∈ [0, 1
2
],

and

lim
ρ→0

∂

∂ρ
µ(p, ρ) = − log 2(1− h(p)).

Therefore, channel dispersion in bits squared per channel use is

V = 1 + E[ν(P )]− 2E[h(P )]− C2 = E[ν(P )]−H2.

�

For a BSC with the cross probability p ∈ [0, 1], it can be shown that the

dispersion is

V (p) = p(1− p) log22
p

1− p
.

One might speculate that since every MBIOS channel can be expressed as a

stochastic BSC, the channel dispersion for an arbitrary MBIOS channel can

be calculated by the expected value of V (P ). This is in fact not true and

V 6= E[V (P )] because the variance operator is not linear on the information

density (see Appendix D). Clearly, BSC is the only MBIOS channel with such

a property. In fact, Lemma 4.2 shows that V = E[ν(P )−H2] for all MBIOS

channels.
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Figure 4.5: Sketch of channel dispersion versus the capacity. BSC and BEC are
the extremes.

The following theorem summarizes the extremes of channel dispersion. It

is important to note that by Remark 2.6 and Theorem 3.1, the extremes of

channel dispersion (with or without the constraint of probability of error) are

the same as the extremes of E[µ(P, ρ)].

Theorem 4.13 [Extremes of Channel Dispersion]: Among all MBIOS channels

of capacity C, the maximum (minimum) of the channel dispersion is achieved

by the BSC (BEC). Let x∗ and y∗ be defined as (4.1) and (4.2). When there

is a probability of error constraint, the extremes will be modified as:

1. E[P ] ≥ P0: The maximum and minimum of channel dispersion are given

by gx∗, 1
2
and BEC(H), respectively.

2. E[P ] ≤ P0: The maximum and minimum of channel dispersion are given

by BSC(η) and g0,y∗ , respectively

Channel dispersion for several channels are depicted in Fig. 4.5 versus the
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capacity. For each value of capacity, BSC and BEC are the ultimate extremes.

We fix P0 = Q
(
1
σ

)
where σ is the standard deviation of the BIAWGN with

the given capacity. Among all MBIOS channels with the given capacity and

given probability of error, gx∗, 1
2
and g0,y∗ are the extremes. We have seen

this behaviour when we studied the extremes of E[µ(P, ρ)] with capacity and

probability of error constraints. As we mentioned before, this similarity comes

from Remark 2.6 and shows the power of Chebychev systems in analyzing such

optimization problems.

Remark 4.1: As we mentioned in Section 4.1, it is proved that for a large

code length, R∗(n, Pe) ≈ C −
√

V/nQ−1(Pe). This means that to achieve a

fraction δ of capacity, i.e., R = δC, at probability of decoding error of Pe, the

required code length is approximately

n '

(
Q−1(Pe)

1− δ

)2
V

C2
.

For a fixed probability of error and a given capacity, it can be deduced from

Theorem 4.13 that BSC needs the largest code length and BEC requires the

shortest codewords. We are going to compare the require code length to

achieve δ = 80% of the capacity of the BSC, BIAWGN and BEC from S(0.5)
at 10−3 probability of error. Approximately, the required code length is 240 for

BEC, 630 for BIAWGN and 850 for BSC to satisfy the desired performance.

For a detailed study, one can see [46] (see Figures 1, 3 and 6).

4.3 Discussions and Summary

Discussion 4.1 [Handling other constraints]: We observed in this chapter

that one can solve extremal problems of error exponents when a constraint

on the channel’s probability of error is imposed. It can be proved that other

constraints can be handled in a similar way. For example, the maximum and

minimum of random coding error exponents among all channels from S(C)

whose Bhattacharyya parameter (or MMSE) satisfies some constraint can be

obtained by identifying the proper T–system. Results, similar to Theorem 4.2

and 4.3, are possible to obtain.
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Discussion 4.2 [Constraint on probability of error]: Although we only solved

the extremal problems with probability of error constraint for random coding

error exponent, it is possible to obtain similar results for other exponents we

considered. The same ordering among basis channels holds for other exponents

as well. For brevity, we did not mention such results.

In this chapter, we solved the extremal problems of various error exponents

over the set of MBIOS channels. We showed that BSC and BEC are the

two extreme channels of several error exponents, which bound the reliability

function. Based on this evidence, we conjecture the following:

Conjecture 4.1 [Extremes of Reliability Function]: Among all MBIOS chan-

nels of capacity C, the maximum and minimum of the channel reliability

function

E(R) = lim inf
n→∞

−1

n
log2 P

∗
e (n,R),

for any rate below the capacity are achieved by the BEC and BSC, respectively.

Note that the channel reliability function is known for Rcr ≤ R ≤ C and

the exponents we considered bound it for 0 ≤ R ≤ Rcr. It was shown that

the set of basis channels with their monotonicity properties is a powerful tool

to analyze problems of error exponents. We believe that this method can be

used with other extremal problems of symmetric densities provided that the

proper T–system is identified correctly.

4.4 Proof of Theorem 4.2 and 4.3

First, we solve the following related optimization problem:

O= :

opt Er(R)
s.t. E[1] = 1

E[h(P )] = H

E[P ] = P̃

First, note that if P̃ = η (P̃ = H/2), then only the BSC (BEC) will satisfy

the constraints. Thus, we exclude the BSC and BEC from the search space
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Figure 4.6: A sample plot of h(x) = 1 − C 1−2x
1−2P

for C = 0.4 and P̃ = 0.22.
The intersection point is x∗ = 0.0790 < η = 0.1461.

by assuming η < P̃ < H/2 or equivalently, 2P̃ < H < h(P̃ )7. Next, according

to Theorem 3.1, u0(p) = 1, u1(p) = h(p), u2(p) = p form a T–system. The

point c = (1, H, P̃ ) cannot be a boundary point of M3 because if it was, by

Lemma 2.1, it would admit a representation of index not greater than two.

This implies that one of the following cases will happen:

1. A representation of index one corresponds to either a useless channel,

i.e., g(p) = ∆ 1
2
(p), or a perfect channel, i.e., g(p) = ∆0(p), either of

which is not possible as H ∈ (0, 1).

7If P̃ > H/2 or P̃ < η, the constraint on the probability of error is automatically relaxed.
In this case, Theorem 4.1 is applied.
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2. A representation of index two corresponds to either a BSC (H = h(P̃ ))

or a BEC (H = 2P̃ ).

Thus, c is an inner point of M3. By Theorem 3.1, the augmented system

with u3(p) = µ(p, ρ) is a T–system. Therefore, according to Theorem 2.4,

supΣ(c) E[µ(P, ρ)] is achieved by the distribution associated with the upper

principle representation of c, i.e., a mass point at p = 1
2
and a mass point

at an interior of [0, 1
2
]. Since this representation must exhibit capacity C, we

conclude that the optimizing channel is the basis channel

gx∗, 1
2
(p) = γ(x∗, 1

2
)∆x∗(p) + γ̄(x∗, 1

2
)∆ 1

2
(p),

where x∗ ∈ (0, η) is obtained by replacing γ(x∗, 1
2
) from (3.3) in the constraint

on the probability of error, i.e.,

γ(x∗, 1
2
)x∗ +

1

2
γ̄(x∗, 1

2
) = P̃ ,

and is given in (4.1). To show that (4.1) has a unique solution in the interval

(0, η), let f(x) = h(x) − 1 + C 1−2x
1−2P̃

. f is a continuous function in [0, 1
2
] and

by (3.1), f(0) = 2P̃−H
1−2P̃

< 0, and f(η) = 2C P̃−η

1−2P̃
> 0. According to the

intermediate value theorem, there exists x∗ ∈ (0, η) such that f(x∗) = 0.

Therefore, (4.1) has a unique solution in (0, η). The line given in (4.1) passes

the point (1
2
, 1) and its slope is 2C

1−2P̃
> 2 as shown in Fig. 4.6.

On the other hand, infΣ(c) E[µ(P, ρ)] is attained by the distribution associ-

ated with the lower principle representation of c, i.e., a mass point at p = 0 and

a mass point at an interior point of [0, 1
2
]. Similarly, the optimizing channel is

the following basis channel

g0,y∗(p) = γ(0, y∗)∆0(p) + γ̄(0, y∗)∆y∗(p),

where y∗ ∈ (η, 1
2
) is obtained by plugging γ(0, y∗) from (3.3) into the constraint

on the probability of error. The solution of (4.2) is unique in (P̃ , 1
2
). To

see this, let f(y) = yH
P̃

− h(y). f is a continuous function in [P̃ , 1
2
] with

f(P̃ ) = H − h(P̃ ) < 0 and f(1
2
) = H

2P̃
− 1 > 0. Thus, by the intermediate

value theorem, there exists y∗ ∈ (P̃ , 1
2
) such that f(y∗) = 0. Therefore, (4.2)

has a unique solution in (P̃ , 1
2
). A sample plot is shown in Fig. 4.7.
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Figure 4.7: A sample plot of h(y) = yH
P̃

for C = 0.4 and P̃ = 0.22. The

intersection point is y∗ = 0.3386 > P̃ = 0.22.

It is important to note that the optimizing channels are independent of ρ

which means that they give the extremes of O= too. Now, we prove Theo-

rem 4.2 and 4.3. Since there is a same logic behind both proofs, we only prove

Theorem 4.2, i.e.,

O≥ :

sup E[µ(P, ρ)]
s.t. E[1] = 1

E[h(P )] = H
E[P ] ≥ P0.

Consider a collection of optimization problems O= indexed by P̃ , where

P̃ ∈ [P0,
H
2
] (see (3.1)). Let gx∗(P̃ ), 1

2
be the maximizer of E[µ(P, ρ)] where
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x∗(P̃ ) is the unique solution of

h(x) = 1− C
1− 2x

1− 2P̃

in (0, η). This means that solving O≥ is accomplished by maximizing E[µ(P, ρ)]

over the set of basis channels

{

gx∗(P̃ ), 1
2
: P̃ ∈ [P0,

H
2
]
}

,

where P̃ = Ex∗(P̃ ), 1
2
[P ]. It can be seen that Ex∗(P̃ ), 1

2
[µ(P, ρ)] is a decreasing

function of P̃ because according to Theorem 3.1 and Lemma 3.2

dEx∗(P̃ ), 1
2
[µ(P, ρ)]

dP̃
=

∂ Ex∗(P̃ ), 1
2
[µ(P, ρ)]

∂x∗(P̃ )

(

dP̃

dx∗(P̃ )

)−1

=
∂ Ex∗(P̃ ), 1

2
[µ(P, ρ)]

∂x∗(P̃ )
︸ ︷︷ ︸

>0

(
∂ Ex∗(P̃ ), 1

2
[P ]

∂x∗(P̃ )
︸ ︷︷ ︸

<0

)−1

< 0, (4.6)

Therefore the maximizer of O≥ is obtained when P̃ = P0, i.e., gx∗(P0),
1
2
= gx∗, 1

2
.

For the other case, we wish to solve

O≤ :

sup E[µ(P, ρ)]
s.t. E[1] = 1

E[h(P )] = H
E[P ] ≤ P0.

The same argument holds again: solving O≤ is accomplished by maximizing

E[µ(P, ρ)] over the set of basis channels

{

gx∗(P̃ ), 1
2
: P̃ ∈ [η, P0]

}

,

where P̃ = Ex∗(P̃ ), 1
2
[P ]. Thus, according to (4.6), O≤ is maximized when

P0 = η, i.e., gη, 1
2
≡BSC(η)8.

8It is easy to see that γ(η, 1

2
) = 1 and there will be no mass point at p = 1

2
.
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Chapter 5

Capacity of Duplication
Channels

5.1 Introduction

5.1.1 Channels with Synchronization Errors

A channel with synchronization errors is defined by Dobrushin [28] as a channel

that independently transforms every input symbol to a word of random (pos-

sibly zero) length. As it was mentioned in Chapter 1, since insertion/deletion

channels are generally difficult to deal with, there have been various attempts

to understand them by studying subclasses of such channels that ease the

analysis. Most of the research on channels with synchronization errors have

been on the deletion channel which deletes input bits independently with some

probability. For a general survey on deletion channels, the reader is referred

to [8].

In this chapter, we study the independent and identically distributed (i.i.d.)

duplication channel , the simplest insertion channel, which duplicates each in-

put symbol independently with a certain probability. We focus on the binary

case where the duplication probability is denoted by p and capacity is shown

by C = C(p). Generalization of the results to the non-binary cases is straight-

forward.

Sticky channels is a subclass of insertion channels where each symbol is

duplicated multiple times according to a probability distribution on positive

integers. These channels are studied in [57] where numerical upper and lower
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bounds on the capacity of sticky channels are presented. For a single duplica-

tion channel (the channel of our interest), it is trivial that an i.i.d. Bernoulli(1
2
)

process achieves the capacity of one bit per channel use when the duplication

probability is either p = 0 or p = 1. It has been pointed out in [57] that

numerical optimization shows that for values of p close to either 0 or 1, the

optimal distribution is very close to the i.i.d. Bernoulli(1
2
) process. We shall

prove this observation by providing a series expansion of the capacity around

p = 0 of the form

C = 1 + p log2 p+ α1p+ α2p
2 + · · ·

We show that an i.i.d. Bernoulli(1
2
) process achieves the capacity up to term

p. Furthermore, we find tight lower bounds on α2 and conjecture the optimal

process to improve the series expansion up to term p2. Capacity behaviour

when p → 1 will be discussed and some achievable rates will be presented. We

will show that when p → 1, duplication capacity takes a series expansion of

the form

C = 1 + 2(1− p)2 log2(1− p) + β2(1− p)2 + · · ·

5.1.2 A Naive Approach Towards the Capacity

Dobrushin [28] showed that channels with synchronization errors are informa-

tion stable and their capacity is expressed as:

C = lim
n→∞

Cn, Cn = sup
PXn

1

n
I(Xn; Y (Xn)), (5.1)

where Xn = (X1, . . . , Xn) is passed through the channel and Y (Xn) is the

received sequence of symbols upon sending Xn. Since the length of the received

sequence is a random variable, we denote the output sequence by Y (Xn). Also,

I(Xn; Y (Xn)) denotes the mutual information between Xn and Y (Xn) [2]. It

is easy to check that if we eliminate all synchronization errors, (5.1) reduces

to C = supPX
I(X ; Y ).
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Let X = {0, 1} be the channel input set and Wn be a channel that accepts

n input bits and duplicates each bit independently with probability p, i.e.,

Wn : {0, 1}n 7→
2n⋃

k=n

{0, 1}k,

where the number of output bits varies between n and 2n. According to (5.1),

finding the duplication capacity is equivalent to finding the limit of 1
n
C(Wn)

as n → ∞, where C(Wn) = nCn indicates the capacity of Wn.

Define q = 1− p. Let us examine a few of these channels. The capacity of

W1, whose transition matrix is

W1 =

[
0 1 00 11

0 q 0 p 0
1 0 q 0 p

]

,

is one bit per channel use, which is achieved by a uniform distribution on X .

Similarly, the transition matrix of W2 is as follows:

W2=







00 01 10 11 000 001 011 100 110 111 0000 0101 1010 1111

00 q2 0 0 0 2pq 0 0 0 0 0 p2 0 0 0
01 0 q2 0 0 0 pq pq 0 0 0 0 p2 0 0
10 0 0 q2 0 0 0 0 pq pq 0 0 0 p2 0
11 0 0 0 q2 0 0 0 0 0 2pq 0 0 0 p2







Note that there are elements of
⋃2n

k=n{0, 1}k which will not be produced dur-

ing the duplication process of X n, hence not shown in the transition matrix.

Clearly, each possible output of W2 is only connected to one of the inputs

which shows that C(W2) = 2 bits per channel use. However, as we proceed

with W3, the capacity is no longer trivial, because, for example, 01111 can

be produced from either 011 (one duplication pattern) or 0111 (three possible

duplication patterns). In this case, C(W3) depends on the value of p. To

obtain the capacity numerically, one can use the well-known Blahut-Arimoto

algorithm [58,59]. However, the size of Wn grows exponentially with n which

makes the calculation of C(Wn) infeasible for n > 10.

Although duplication capacity is expressed as (5.1), it is difficult to obtain

its single-letter characterization C(p) from (5.1).

It is shown in [60] that in fact C = infn≥1Cn, thus
1
n
C(Wn) = Cn for n ≥ 1

upper bounds the duplication capacity.
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Remark 5.1: In the case of deletion channels, one can define a similar

set of channels {Vn}n≥1, where Vn : {0, 1}n 7→ ⋃n
k=0{0, 1}k accepts n input

bits and deletes each bit with some probability. The maximum value of n

for which computing C(Vn) is feasible is significantly larger than the one for

duplication channels. This is because of the fact that the size of Vn is of

order O(2n) compared to O(22n) for Wn. Studying the capacity of Vn for

n = 1, 2, . . . provides upper bounds on deletion capacity. This approach is

thoroughly studied by Fertonani and Duman [15] by introducing various genie-

aided scenarios.

5.1.3 Notations Guide

Binary processes are shown by letters X,Y, . . .1 For a binary sequence, a run of

zeros (ones) is defined as the maximal chunk of zeros (ones) bordered by ones

(zeros). H(X) stands for the entropy rate of the process X [2]. S designates the

set of stationary and ergodic processes. For a sequence of random variables,

Xn = (X1, . . . , Xn) and Xm
n = (Xn, . . . , Xm). Let P1 and P2 be two discrete

probability measures defined on the same probability space. We denote the

total variation distance between P1 and P2 by

‖P1−P2 ‖TV =
1

2

∑

x

|P1(x)− P2(x)| .

Also, the Kullback–Leibler divergence between P1 and P2 is [2]

D(P1 ‖P2) =
∑

x

P1(x) log2
P1(x)

P2(x)
.

A binomial distribution of size n and success probability p is shown by B(n, p).

The big-O and little-o notations are defined as follows:

• Let f : [0, 1] → R and g : [0, 1] → R+ be two functions. We write

f(p) = O(g(p)) if there exists M > 0 such that |f(p)| ≤ Mg(p) for all

p ∈ [0, 1].

1We follow the notations of [60].
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• Let f : N → R and g : N → R+. We write f(n) = o(g(n)) as n → ∞ if

and only if

lim sup
n→∞

∣
∣
∣
∣

f(n)

g(n)

∣
∣
∣
∣
= 0.

5.2 Setup

Let X be a binary process {Xn}∞−∞ as the input to the duplication channel.

We are going to study such binary sequences in terms of their runs. We

characterize the duplication channel by an i.i.d. binary process Q indicating

whether the corresponding bit of X is duplicated (Qn = 1) or not (Qn = 0).

The probability of duplication is denoted by p ∈ [0, 1] i.e., for all n, P(Qn =

1) = p.

The binary process Y = Y(X,Q) is the result of passing X through the

duplication channel. Table 5.1 shows an example of such processes. Although

not present in reality, a character “|” is used to distinguish consecutive runs.

As it can be seen, an input bit is duplicated wherever the corresponding bit

in Q is one. The bits introduced by the channel are shown in gray. Because

of the nature of the duplication process, we can map each run of Y uniquely

to a run in X. Assume that the vector Xn is passed through the duplication

channel. The length of the received sequence Y (Xn) will be

Mn = n+

n∑

k=1

1{Qk=1}. (5.2)

Thus, Mn − n ∼ B(n, p) and E[Mn] = n(1 + p).

The mutual information between X and Y is denoted by

I(X) = lim
n→∞

In
n
, In = I(Xn; Y (Xn)).

For any X ∈ S, the process Y is also stationary and ergodic as Q is an i.i.d

process. We denote runs in X and Y by L and T , respectively, and their

lengths by L and T where according to (5.2), T = L+G and G is a binomial

B(L, p) variable.

For a stationary and ergodic process X, we indicate the limit of the empir-

ical distribution of run lengths by PL(ℓ), ℓ = 1, 2, . . . Following the notation
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Table 5.1: An example of processes X, Q, and Y.

X . . . |000|11|0|111|00| . . .
Q . . . 101 11 0 001 01 . . .
Y . . . |00000|1111|0|1111|000| . . .

of [60], we call PL the block perspective run length distribution. Assuming a

finite average run-length E[L] < ∞, the run length distribution of the run at

position 0, denoted by L0, is simply obtained by

PL0(ℓ) =
ℓPL(ℓ)

E[L]
, ℓ ∈ N (5.3)

and is called the bit perspective run length distribution [60]. Clearly, for the

process X∗, i.e., an i.i.d. Bernoulli(1
2
) process, the run length distribution is

geometrically distributed. We denote the corresponding block and bit per-

spective run length distributions by P ∗
L = 2−ℓ and P ∗

L0
= ℓ2−(ℓ+1) for ℓ ≥ 1.

Correspondingly, we denote the expected value with respect to the process X∗

by E∗. Moreover, it is not difficult to see that the run length of the received

symbols is distributed as

PT (ℓ) =

ℓ∑

k=⌈ℓ/2⌉
PL(k)

(
k

ℓ−k

)

pℓ−k(1− p)2k−ℓ, ℓ ∈ N,

where we use the fact that T = L+G and G ∼ B(L, p). The letters L, T , and

G will be used for the random variables drawn according to such distributions.

Before presenting the main results, we generalize the statement in [60,

Lemma II.2] to a general class of insertion/deletion channels. Let D be a

random variable taking non-negative integer values with probability

P(D = k) = dk, k = 0, 1, 2, . . .

Consider a general class of insertion/deletion channels where each input bit is

repeated multiple times based on an outcome of D, i.e., if D = k, the corre-

sponding bit will be repeated k times. Note that D = 0 implies a deletion and

D = 2 means a duplication. Also, for a channel without any synchronization

errors, D = 1 all the times. The capacity of such channels can be calculated by

(5.1). In the following lemma, we show that the set of stationary and ergodic
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processes suffices to achieve the capacity of such channels. Moreover, the role

of limit and supremum in (5.1) can be exchanged.

Lemma 5.1 [Sufficiency of Stationary Ergodic Processes]: Consider a memory-

less channel that repeats each input bit multiple times according to an outcome

of D, a random variable on non-negative integers such that E[D], H(D) < ∞.

There exists a binary stationary and ergodic process X that achieves the ca-

pacity of this channel. More precisely,

C = sup
X∈S

I(X),

where

I(X) = lim
n→∞

In
n
, In = I(Xn; Y (Xn)).

Proof : See Section 5.5.1. �

5.3 Main Results

In this section, we provide the main results regarding the capacity of duplica-

tion channels. We only state the results here and leave their technical proofs

to Section 5.5.

First, we start by providing a lower bound to the capacity as a consequence

of Lemma 5.1:

Theorem 5.1 [Information Rate of X ∈ S]: The capacity of a binary dupli-

cation channel is lower bounded by

I(X) =
H(T )

E[L]
− h(p) +

E
[
log2

(
L
G

)]

E[L]
, (5.4)

where X can be any stationary and ergodic process with i.i.d. runs distributed

according to some PL defined on N.

Proof : See Section 5.5.2. �

Next, the following theorem shows that the process X∗, an i.i.d. Bernoulli(1
2
)

process, achieves the capacity of a binary duplication channel for small values

of duplication probability.
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Figure 5.1: The comparison of the lower bound of Theorem 5.1 evaluated for the
process X∗ and the series expansion given in Theorem 5.2 without the O(p3/2−ǫ)
term.

Theorem 5.2 [Capacity Expansion around p = 0]: The capacity of a binary

duplication channel is

C = 1 + p log2 p+ α1p+O(p3/2−ǫ)

for some small ǫ > 0, where

α1 = log2(2/e) +

∞∑

ℓ=1

2−(ℓ+1)ℓ log2 ℓ ≈ 0.8458362348.

Furthermore, the capacity is achieved by the process X∗.

Proof : See Section 5.5.3.
�

Theorem 5.2 shows that the Bernoulli(1
2
) process is optimal for small dupli-

cation probabilities as conjectured in [57]. Fig. 5.1 compares the lower bound

on the duplication capacity based on Theorem 5.1 for X = X∗ and the series

expansion given in Theorem 5.2.
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Figure 5.2: The comparison of I(X∗) and the bounds proposed by [57].

Discussion 5.1 [Comparison with the deletion capacity]: A comparison of

the result of Theorem 5.2 with the result of [60] regarding the deletion channel

shows that both capacity expansions are quite similar, except for the coefficient

of the linear part. In fact, the capacity of a deletion channel is C = 1+d log2 d−
A1d + O(d3/2−ǫ), where d is the deletion probability and A1 = log2(2e) −
∑∞

ℓ=1 2
−(ℓ+1)ℓ log2 ℓ [60]. Moreover, α1 + A1 = 2.

Discussion 5.2 [Comparison with other bounds]: To compare Theorem 5.2

with the numerical results reported by [57] for sticky channels, the upper

and lower bounds proposed by [57] have to be implemented using the Jimbo-

Kunisawa iterative algorithm [61]. These bounds are based on a mapping that

transforms a sticky channel into a DMC with integer alphabets. Mitzenmacher

in [57, Theorem 2.1] showed that the capacity of a sticky channel is equal to

the capacity per unit cost of the corresponding integer-alphabet DMC, where

the cost of sending ℓ bits is ℓ [62,63]. The comparison given in Fig. 5.2, shows

that the numerical bounds are very tight and in agreement with Theorem 5.2.
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5.3.1 Lower Bounds on α2

By Theorem 5.2, we have obtained the capacity of duplication channels up

to the first term in the series expansion. In this section, we provide lower

bounds on α2 by limiting X to specific p-dependent processes from S. Then,

we optimize these bounds to obtain tight lower bounds.

In this section, we use the fact that for an arbitrary run-length distribution

PL defined on N [60], we have

D(PL‖P ∗
L) =

∞∑

ℓ=1

PL(ℓ)(ℓ+ log2 PL(ℓ)) = E[L]−H(L).

Therefore, we may write

H(T )

E[L]
= (1 + p)

(

1− D(PT‖P ∗
L)

E[T ]

)

. (5.5)

In what follows, to lower bound α2, we restrict X ∈ S to a class of stationary

and ergodic perturbations in P ∗
L and the class of symmetric first-order Markov

processes. A similar approach is used for deletion channels in [64]. Although

our methodology is totally different, we use the same symbols as in [64] to

distinguish such processes.

Perturbation in P ∗
L

In this section, by limiting the process X ∈ S to the class of stationary and

ergodic perturbations in P ∗
L, we find a tight lower bound on α2.

From the proof of Theorem 5.1 (see (5.14) and (5.15)), one can deduce that

for any process X ∈ S with non-i.i.d. runs we have

I(X) <
H(T )

E[L]
− h(p) +

E
[
log2

(
L
G

)]

E[L]
≤ C.

This shows that the capacity of duplication channels is achieved with a sta-

tionary and ergodic process with i.i.d. runs. For small duplication proba-

bilities, the optimal run-length should not be very different than P ∗
L. Let

P †
L(ℓ) = 2−ℓ(1 + ǫ0(ℓ, p)) be a perturbation in P ∗

L such that the following con-

ditions hold:

lim
p→0

ǫ0(ℓ, p) = 0, ℓ ∈ N (5.6a)
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∞∑

ℓ=1

2−ℓǫ0(ℓ, p) = 0 (5.6b)

Condition (5.6a) ensures that there is no perturbation at p = 0 and condition

(5.6b) is required to make P †
L a valid probability measure.

A Taylor series expansion of ǫ0 around p = 0 gives ǫ0(ℓ, p) = pǫ(ℓ) +O(p2)

where ǫ(ℓ) = limp→0
∂ǫ0
∂p

. We take

P †
L(ℓ) = 2−ℓ(1 + pǫ(ℓ)), ℓ ∈ N,

and let

E∗[ǫ(L)] = 0 (5.7)

in order to satisfy (5.6b). We denote a process with i.i.d. run-lengths according

to P †
L with X†. Similarly, E† is reserved for the expected value operator under

P †
L. In order to find the tightest bound on α2, we wish to find ǫ(ℓ) such that

it maximizes I(X†). The following theorem does so:

Theorem 5.3 [Optimal Perturbation]: Let X† be a stationary and ergodic

process with i.i.d. runs distributed according to P †
L(ℓ) = 2−ℓ(1+ pǫ(ℓ)), ℓ ∈ N,

a perturbation in P ∗
L such that E∗[ǫ(L)] = 0. The maximum of I(X†) over all

eligible ǫ(ℓ)’s is achieved by

ǫ∗(ℓ) = ℓ log ℓ− ℓ(1
2
τ + 1) + 2, ℓ ∈ N,

where τ = E∗[L logL] ≈ 1.78628364. Moreover, the maximum of I(X†) is

equal to

I(X†) = 1 + p log2 p+ α1p+ α†
2p

2 +O(p3),

where α1 is the same as Theorem 5.2,

α†
2 = α∗

2 +
E∗[ǫ2∗(L)]

4 log 2

=
1

4 log 2

(

E∗[L2 log2 L]− (4 + τ)E∗[L2 logL]

+ 2E∗ [(L
2

)
log
(
L
2

)]
+

3

2
τ 2 + 8τ − 2

)

≈ −2.74700879,
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and α∗
2 is defined as

α∗
2 = − 1

log 2
− 1

2
E∗ [L(L− 1) log2 L−

(
L
2

)
log2

(
L
2

)]
≈ −2.87845825. (5.8)

Proof : See Section 5.5.4.
�

First-order Markov processes

In this section, we limit X ∈ S to the class of symmetric first-order Markov

processes to find a lower bound on α2. Consider a symmetric first-order sym-

metric Markov source depicted in Fig. 5.3 where P(Xi = b|Xi−1 = b) = δ,

b = 0, 1. Let X◦ denote such a process. Clearly, if either of states is se-

lected uniformly at random (the stationary distribution), the process X◦ will

be stationary and ergodic. The runs of X◦ are i.i.d and distributed as

P ◦
L(ℓ) = (1− δ)δℓ−1, ℓ ∈ N.

It is important to note that X◦ coincides with X∗ when δ = 1
2
. Therefore, we

expect that δ − 1
2
= O(p) when the duplication probability is small enough.

We wish to find the optimal O(p) term to maximize I(X◦). We denote the

expected value operator under P ◦
L by E◦.

Theorem 5.4 [Optimal Markov Source]: Consider the class of symmetric

first-order Markov sources where δ is the probability of transition from 0 to 1

and vice versa. The optimal p-dependent value of δ to maximize I(X◦) is

δ∗ =
1

2
+ Ωp,

Ω =
1

4
E∗[L(L− 3) logL]− 1

2
≈ 0.10409610

Moreover

I(X◦) = 1 + p log2 p + α1p+ α◦
2p

2 +O(p3),

where

α◦
2 = α∗

2 +
2Ω2

log 2
≈ −2.81592784,

and α∗
2 is given by (5.8).
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Figure 5.3: A symmetric first-order Markov process.

Proof : See Section 5.5.5.
�

By letting ǫ(ℓ) ≡ 0 in the proof of Theorem 5.3, it can be deduced that

α∗
2 ≈ −2.87845825 is in fact the multiplier of p2 in the series expansion of

I(X∗), i.e.,

I(X∗) = 1 + p log2 p + α1p+ α∗
2p

2 +O(p3).

Hence,

α∗
2 < α◦

2 < α†
2 ≤ α2.

In other words, by limiting the process X to the class of perturbations satisfying

conditions (5.6a) and (5.6b), and the class of first-order Markov processes, we

have improved the achievable rates over the process X∗. Although we do not

prove the converse, we conjecture that the process X† achieves the capacity of

duplication channels up to a term O(p3) in the series expansion.

Conjecture 5.1 [Capacity of Duplication Channels at p → 0]: The capacity

of a duplication channel near p = 0 is

C =1 + p log2 p+ α1p + α†
2p

2 +O(p3)

α1 ≈ 0.8458, α†
2 ≈ −2.7470,

which is achieved by a stationary and ergodic process with independent runs

distributed according to P †
L given in Theorem 5.3.

It is interesting to point out that numerical results show that

sup |I(X†)−max{Il, Iu}| = 5× 10−7

for all p < 0.15, where Il and Iu are the numerical lower and upper bounds

given in Discussion 5.2.
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5.3.2 Capacity at p → 1

Similar to the analysis for small duplication probabilities, one can expand

I(X∗) given in Theorem 5.1 when p → 1.

Lemma 5.2 [I(X∗) at p → 1]: The rate of the process X∗ when p → 1 is

I(X∗) = 1−O
(
(1− p)2−ǫ

)

for some small ǫ > 0.

Proof : See Section 5.5.6.
�

Since I(X∗) is a lower bound to the duplication capacity, this result shows

that

1−O((1− p)2−ǫ) ≤ C ≤ 1,

and

lim
p→1

dC

dp
= 0,

i.e., the duplication capacity has a slope of zero at p = 1 (see Fig. 5.2).

Although we do not know the exact capacity expression, this approximation

helps us to understand the behaviour of capacity around p = 1. According

to Theorem 5.2, the slope of capacity when p → 0 is −∞ which means that

the capacity of duplication channels is not symmetric with respect to the

probability of duplication.

Further approximation shows that

I(X∗) = 1 + 2q2 log2 q + β∗
2q

2 +O(q3−ǫ),

where q = 1− p and

β∗
2 =

1

2
E∗ [(L

2

)
log2

(
L
2

)]
− log2(2e) ≈ 0.4417.

One might wonder whether it is possible to perform a perturbation analysis

similar to the case of p → 0. By the same logic, let P †
L(ℓ) = 2−ℓ (1 + qǫ(ℓ)),
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ℓ ∈ N such that E∗[ǫ(L)] = 0. Without stating the long technical proof, we

have I(X†) = 1 + 2q2 log2 q + β†
2q

2 +O(q3−ǫ), where

β†
2 = β∗

2 −
E∗[ǫ2(L)]

4 log 2
≤ β∗

2

shows that the optimal choice is ǫ(ℓ) ≡ 0. Similar to the case of p → 0, this

strong evidence suggests the following conjecture:

Conjecture 5.2 [Capacity of Duplication Channels at p → 1]: For small ǫ > 0,

the capacity of a duplication channel near p = 1 is

C =1 + 2(1− p)2 log2(1− p) + β∗
2(1− p)2 +O

(
(1− p)3−ǫ

)
, β∗

2 ≈ 0.4417,

which is achieved by the process X∗.

Discussion 5.3 [System design perspective]: Based on above discussion, ca-

pacity drops much faster for values of p ≈ 0 compared to p ≈ 1 (see Fig. 5.2).

This means that from a practical point of view, it is more desirable to com-

municate over a near perfect duplicate channel rather than a channel which

barely duplicates. To elaborate, we compare two duplication channels: One

with duplication rate of ε and another one with duplication rate of 1 − ε,

where ε is very small. We decode the second channel using a simple (yet

sub-optimal) decoder: Starting from left, remove the bits at even positions of

every run of length two or more. For example, assuming p very close to 1,

0|11|0000|1|000 will be decoded to 0|1|00|1|00. The decoder makes an error

only when two equal consecutive bits are neither duplicated which happens

with probability 1
2
ε2. The second channel with the sub-optimal decoder re-

sembles a deletion channel with the deletion rate of d = 1
2
ε2. As we mentioned

in Section 5.3, the capacity of a deletion channel with the deletion rate of d,

is C ≈ 1 + d log2 d− A1d, where A1 = 2− α1. Therefore, the ratio of the gap

to capacity of the second case and the first case is

lim
ε→0

d log2 d− A1d

ε log2 ε+ α1ε
=

1

2
× lim

ε→0

ε2 log2
(
1
2
ε2
)
− A1ε

2

ε log2 ε+ α1ε
= 0.

Therefore, for duplication probabilities near one, the sub-optimal decoder

achieves higher rates than a duplication channel with small duplication prob-

abilities. It is important to point out that although the sub-optimal decoder
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does not capture the “zero-slope behaviour”, it is a proper tool for explaining

the asymmetric shape of the duplication capacity.

5.4 Summary

In this chapter, we studied the capacity of duplication channels. It was shown

that the set of stationary ergodic processes suffices to achieve the capacity.

Then, for small duplication probabilities, we showed that a Bernoulli(1
2
) pro-

cess achieves the capacity up to term p in a series expansion (with an error

of order p3/2). We also gave two tight lower bounds for the next term in

the series expansion by limiting the input process into two subclasses of sta-

tionary ergodic processes. We showed that the best lower bound is given by

a p-dependent perturbation in a Bernoulli(1
2
) process. Although we did not

prove its converse, we believe that the perturbed process achieves the capacity

up to a term p2.

Moreover, we provided achievable rates for the capacity when p → 1. A

similar perturbation analysis showed that a Bernoulli(1
2
) process can achieve

the rate up to a term (1−p)2 when p → 1. We observed that unlike the case of

p → 0, the slope of the capacity is zero when p → 1. This study showed that

the duplication capacity is not a symmetric function and behaves differently

for small and large duplication probabilities which can be used in practical

setups.

5.5 Proofs

In this section, we provide the proofs of main results, where we exploit the

renewal theory [65] in some parts. Let xn be a realization of Xn from a

stationary and ergodic process X with i.i.d. runs drawn according to a common

distribution PL. Assume that there are Kn runs in xn. The process Kn is in

fact a counting process, where an increment occurs by the birth of a new run.

According to the renewal theory [65],

lim
n→∞

E[Kn]

n
=

1

E[L]
.
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Moreover, Kn ∈ {1, . . . , n} and

H(Kn) ≤ log2(n) = o(n),

due to the fact that the entropy of any distribution on a finite alphabet is not

greater than the entropy of the uniform distribution [2].

Furthermore, the law of total expectation (also known as the tower rule)

will be used in this section [44, Chapter 9]. Let X be an integrable random

variable, i.e., E[|X|] < ∞ and Y be any random variable on the same proba-

bility space. Then, E[X ] = E[E[X|Y ]], where the outer expected value on the

RHS is taken with respect to Y . Note that E[X|Y ] is a random variable itself.

To illustrate, we calculate E[G] as an example. The same logic is applied to

other similar cases. From Section 5.2, G is a B(L, p) random variable, i.e., the

size of the binomial distribution is a random variable itself. Therefore, by the

law of total expectation, we get

E[G] = E[E[G|L]] =
∞∑

ℓ=1

PL(ℓ)E[G|L = ℓ]
︸ ︷︷ ︸

=pℓ

= pE[L].

Instead of expanding the expected values, we write

E[G] = E[E[G|L]] = E[pL] = pE[L]

as a proxy.

5.5.1 Proof of Lemma 5.1

The proof is similar to that of [60] with some extra considerations. For the

sake of completeness, we state the complete proof. For any ǫ > 0, we construct

a process Xǫ ∈ S such that ∀N > N0(ǫ),

IN
N

≥ C − ǫ.

According to (5.1), there exists n such that Cn ≥ C − ǫ/2. We construct Xǫ

with i.i.d. blocks of length n with a common distribution P ∗
Xn that achieves

Cn (see (5.1))2. To make Xǫ stationary, we introduce a random offset s ∈
2Clearly, Wn is a DMC. Therefore, there exists an optimal input distribution achieving

its capacity [3]. The optimal input distribution is denoted by P ∗
Xn .
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{1, 2, . . . , n} from which we move the first complete block to the right. Since s

is uniformly random, every window of length n will have the same distribution

which confirms stationarity. Also, ergodicity inherits from the construction.

Let N = kn+ r for some k ∈ N and r ∈ {0, 1, . . . , n− 1}. We have

XN = (Xs−1
1 , X(1), . . . , X(k − 1)

︸ ︷︷ ︸

Blocks of length n

, XN
s+(k−1)n),

Y (XN) = (Y (Xs−1
1 ), Y (1), . . . , Y (k − 1), Y (XN

s+(k−1)n)),

where X(i)’s are i.i.d. blocks of length n generated according to P ∗
Xn , and

Y (i)’s are the corresponding received blocks according to the realization of D.

Now, consider a genie-aided channel where a character “|” is placed by a

genie after each segment of XN gone through the insertion/deletion process.

The output of this channel is

Ỹ (XN) = (Y (Xs−1
1 )|Y (1)| · · · |Y (k − 1)|Y (XN

s+(k−1)n)).

It is important to note that since we allow deletions, a whole block might

disappear, hence two adjacent “|”. Since (X(i), Y (i))’s are i.i.d., we have

H(Y (XN)|XN) ≤ H(Ỹ (XN)|XN)

(a)

≤ (k − 1)H(Y (1)|X(1)) + (n+ r)H(D)

(b)

≤ (k − 1)H(Y (1)|X(1)) + 2nH(D), (5.9)

where (a) holds by the fact that there are k − 1 blocks of length n and

(X(i), Y (i))’s are i.i.d. The ambiguity of the remaining (s−1)+(N −s− (k−
1)n + 1) = n + r bits is the uncertainty about the outcomes of D. Also, (b)

follows from r < n.

Let M be the length of Y (XN), i.e., M =
∑N

i=1Di, hence E[M ] = N E[D].

Given Y (XN), the ambiguity that remains in Ỹ (XN) is the logarithm of the

number of possible placements of k synchronization character “|”. This is the
number of non-negative integer solutions of the Diophantine equation u1+u2+

· · ·+uk = M where ui ≥ 0 represents the number of bits between between the

(i− 1)th and ith character “|”. Thus, we get
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H(Ỹ (XN)|Y (XN)) = E

[

log2

(
M+k

k

)]

(a)

≤ k E[log2 (e (1 +M/k))]

(b)

≤ k log2 (e(1 +N E[D]/k))

(c)
< k log2 (e(1 + 2nE[D])) , (5.10)

where (a) is due to the upper bound on the binomial coefficient
(
n
k

)
≤
(
en
k

)k
,

(b) follows from the concavity of logarithm and E[M ] = N E[D], and (c) is by

r < n. Moreover,

H(Ỹ (XN)) ≥ (k − 1)H(Y (1)). (5.11)

Now, since E[D], H(D) < ∞ and Cn ≤ 1, we can bound I(XN ; Y (XN)) by

IN = H(Y (XN))−H(Y (XN)|XN)

= H(Ỹ (XN))−H(Ỹ (XN)|Y (XN))−H(Y (XN)|XN)

≥ (k − 1)H(Y (1))− k log2 (e (1 + 2nE[D]))

− (k − 1)H(Y (1)|X(1))− 2nH(D),

where the last inequality results from combining (5.9), (5.10), and (5.11). Since

X(1) is a block of n bits generated by the optimal input distribution P ∗
Xn to

achieve Cn given in (5.1), H(Y (1))−H(Y (1)|X(1)) = nCn. Thus, we continue

as

IN ≥ (k − 1)nCn − k log2 (e (1 + 2nE[D]))− 2nH(D)

= (k + 1)nCn − k log2 (e (1 + 2nE[D]))− 2n(H(D) + Cn)

≥ NCn − k log2 (e (1 + 2nE[D]))− 2n(H(D) + 1),

where we used the fact that (k + 1)n > N and Cn ≤ 1. This implies that

IN/N ≥ Cn − ǫ/2 provided that

1

n
log2 (e(1 + 2nE[D])) <

ǫ

4
,

2n

N
(H(D) + 1) <

ǫ

4
,
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i.e., N > N0(ǫ) =
8n
ǫ
(1 +H(D)). By construction, Cn ≥ C − ǫ/2. Thus

IN
N

≥ C − ǫ.

According to Fekete’s lemma, the limit limn→∞ In/n exists [60]. Since ǫ is

arbitrary and IN/N ≤ CN (see (5.1)), letting ǫ → 0 results in C = supX∈S I(X).

5.5.2 Proof of Theorem 5.1

The process X consists of i.i.d. runs, so does Y. By Lemma 5.1, any process

X ∈ S gives a lower bound on the duplication capacity. We have

I(X) = lim
n→∞

1

n
(H(Y (Xn))−H(Y (Xn)|Xn)).

A sample realization of X will look like

xn = . . . 111

L1
︷︸︸︷

0000

L2
︷ ︸︸ ︷

111111

L3
︷︸︸︷

000 11 . . . (5.12)

and causes a realization of Y as

y(xn) = . . . 111

T1
︷ ︸︸ ︷

000000

T2
︷ ︸︸ ︷

111111111

T3
︷︸︸︷

000 11 . . . (5.13)

Note that each run in y(xn) (Li) is uniquely mapped to a run in xn (Ti).

Assume that there are Kn runs in xn. Given each run Li, the uncertainty

that remains in the corresponding run Ti is the ambiguity on the number of

duplications, i.e., H(Gi). Therefore, using the fact that (Li, Ti)’s and Gi’s are

i.i.d., we obtain

lim
n→∞

1

n
H(Y (Xn)|Xn) = lim

n→∞

1

n

∑

xn

p(xn)H(Y (Xn)|Xn = xn)

= lim
n→∞

1

n
E
[
H(TKn

1 |LKn
1 )
]

= lim
n→∞

1

n
E

[
Kn∑

i=1

H(Gi)

]

= lim
n→∞

1

n
E

[

E

[
Kn∑

i=1

H(Gi)

∣
∣
∣
∣
Kn

]]

= lim
n→∞

E[Kn]

n
H(G)

=
H(G)

E[L]
. (5.14)
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Also, since G ∼ B(L, p) has the binomial distribution, the average run length

at the output of the channel is

E[T ] = E[L+G] = E[L] + E[E[G|L]] = (1 + p)E[L].

We continue evaluating H(G)/E[L] as:

H(G)

E[L]
= − 1

E[L]
E

[

log2

((
L

G

)

pG(1− p)L−G

)]

= − 1

E[L]

(

E[G] log2 p+ E[L−G] log2(1− p) + E

[

log2

(
L

G

)])

=
1

E[L]

(

E[L]h(p)− E

[

log2

(
L

G

)])

= h(p)− E
[
log2

(
L
G

)]

E[L]
.

Moreover, one may characterize Y (XN) by its run lengths (T1, . . . , TKn, Kn)
3;

except that it might start with either 0 or 1. Since (T1, . . . , TKn, Kn) charac-

terizes Y (Xn) within one bit of ambiguity and Ti’s are i.i.d., one may continue

as follows:

lim
n→∞

1

n
H(Y (Xn)) = lim

n→∞

1

n

(

H(Y (Xn), TKn
1 , Kn)−H(TKn

1 , Kn|Y (XN))
︸ ︷︷ ︸

=0

)

= lim
n→∞

1

n

(

H(Y (XN)|TKn
1 , Kn)

︸ ︷︷ ︸

=1

+H(TKn
1 |Kn) +H(Kn)

︸ ︷︷ ︸

=o(n)

)

= lim
n→∞

1

n

n∑

j=1

P(Kn = j)H(TKn
1 |Kn = j)

︸ ︷︷ ︸

=jH(T )

= lim
n→∞

E[Kn]

n
H [T ]

=
H [T ]

E[L]
. (5.15)

Therefore, the capacity of duplication channels is lower bounded by

I(X) =
H [T ]

E[L]
− h(p) +

E
[
log2

(
L
G

)]

E[L]
.

3Here, the length of the sequence of run lengths is random itself.
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5.5.3 Proof of Theorem 5.2

In order to prove this theorem, first, we calculate I(X∗). Then, we prove

that for any other process X ∈ S, I(X) cannot be greater than I(X∗). Note

that for simplicity of presentation, we use the symbol ǫ for all the polynomial

approximations with the big-O notation.

Achievability

For small values of p, we can approximate the binary entropy function as

h(p) = −p log2 p+ (1− p)

∞∑

k=1

pk

k
log2 e (5.16)

= −p log2 p+ p log2 e+O(p2).

Now, we are going to approximate the remaining terms of the lower bound

given in Theorem 5.2 for X∗. Clearly, the run lengths are distributed geo-

metrically according to P ∗
L(ℓ) = 2−ℓ, ℓ = 1, 2, . . . The following moments,

calculated by simple calculus, will prove handy as we go on:

E∗[L] = 2, E∗[L2] = 6, E∗[L3] = 26.

Since G is a binomial B(L, p), we get

E
[
log2

(
L
G

)]

E[L]
=

1

E[L]
E

[
L∑

g=0

(
L

g

)

log2

(
L

g

)

pg(1− p)L−g

]

=
1

E[L]
E

[
L∑

g=0

(
L

g

)

log2

(
L

g

)

pg (1 +O(p))

]

= p
E[L log2 L]

E[L]
+O(p2)

= pE[log2 L0] +O(p2), (5.17)

where the last equality holds by (5.3). Note that (5.17) is valid for any run

length distribution. Moreover, the probability of receiving a run of length

ℓ = 1, 2, . . . can be written as

P ∗
T (ℓ) =

ℓ∑

k=⌈ℓ/2⌉
2−k

(
k

ℓ−k

)

pℓ−k(1− p(2k − ℓ) +O(p2))

= 2−ℓ(1− ℓp) + 2−ℓ+1(ℓ− 1)p+O(p2)

= 2−ℓ (1 + p(ℓ− 2)) +O(p2),
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which implies that the ambiguity in the received run lengths will be

H(T ) = −
∞∑

ℓ=1

2−ℓ(1 + (ℓ− 2)p+O(p2)) log2
(
2−ℓ(1 + (ℓ− 2)p+O(p2))

)

=

∞∑

ℓ=1

2−ℓ(1 + (ℓ− 2)p+O(p2))
(
ℓ− (ℓ− 2)p log2 e +O(p2)

)

= 2(1 + p) +O(p2). (5.18)

Proof of achievability is complete due to the fact that Theorem 5.1 provides a

lower bound on the capacity and by combining (5.16), (5.17) (using E∗), and

(5.18), i.e.,

I(X∗) = 1 + p log2 p+ α1p+O(p2),

where

α1 = 1− log2 e+ E∗[log2 L0]

= log2(2/e) +

∞∑

ℓ=1

2−(ℓ+1)ℓ log2 ℓ.

Converse

Before proving the converse, it is worth mentioning that by the achievabil-

ity part, we can focus on those stationary and ergodic processes for which

I(X) ≥ 1 − p log2 1/p (otherwise, I(X) ≤ I(X∗) and we are automatically

done). Furthermore, because H(X) ≥ I(X), we can confine our attention to

those processes whose entropy rate satisfies

H(X) ≥ 1− p log2 1/p.

This restriction allows us to use the results of [60, Lemmas IV.1, IV.2, IV.3].

Lemma 5.3 [Distance between PL0 and P ∗
L0

[60, Lemmas IV.3]]: There exists

p0 > 0 such that for any X ∈ S with H(X) ≥ 1− p log2 1/p and any p < p0,

‖PL0 − P ∗
L0
‖TV = O(

√

p(log2 1/p)
3). (5.19)

Lemma 5.3 demonstrates that when the probability of duplication is small

enough, the distance between the run length distributions of X and X∗ cannot
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be large. In the sequel, we use the fact that for any ǫ > 0, log2 1/p = O(p−ǫ),

i.e., log2 1/p can be absorbed into any power of p.

Take any stationary and ergodic process X, not necessarily composed of

i.i.d. runs. We have to upper bound I(X) in order to prove the converse. First

of all, Y (Xn) contains Mn ∈ {n, n + 1, . . . , 2n} bits (see (5.2)) and does not

necessarily exhibit i.i.d. runs. We have

H(Y (Xn)) = H(Y Mn
1 |Mn) +H(Mn)

=

2n∑

j=n

P(Mn = j)H(Y Mn
1 |Mn = j) +H(Mn)

≤
2n∑

j=n

P(Mn = j)

j
∑

i=1

H(Yi) +H(Mn)

(a)

≤ E[Mn] + log2(n + 1)

(b)
= n(1 + p) + o(n),

where (a) is due to H(Yi) ≤ 1 and (b) follows from (5.2). On the other hand,

we have

H(Y (Xn)|Xn) = H(Qn|Xn)−H(Qn|Xn, Y (Xn))

= nh(p)−
∑

xn,y(xn)

P(xn, y(xn))H(Qn|xn, y(xn)).

Given a pair of sequences (xn, y(xn)) (see (5.12), (5.13)), the ambiguity re-

maining in the duplication sequence Qn is the total uncertainty about the

duplication patterns given all runs in xn and y(xn). Assume that there are Kn

runs in Xn and let Q(i) be the part of the duplication process corresponding

to the ith run, i = 1, . . . , Kn, of X
n. One can continue as

H(Qn|Xn, Y (Xn)) = E
[
H(Qn|LKn

1 , TKn
1 )

]

≤ E

[
Kn∑

i=1

H(Q(i)|Li, Ti)

]

= E

[
Kn∑

i=1

log

(
Li

Gi

)]

= E[Kn]E

[

log

(
L

G

)]

,
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where equality holds if Xn has i.i.d. runs (in other words, if (Li, Ti)’s are inde-

pendent). Combining this with (5.17) and using a renewal process argument,

we obtain that4

I(X) ≤ 1 + p log2 p+ p(log2(2/e) + E[log2 L0]) +O(p2). (5.20)

Now, we are left to bound E[log2 L0] from above. To do so, let SL∗ denote the

set of stationary ergodic processes in which with probability one, no run has

length more than L∗, i.e., L ≤ L∗ almost surely. To obtain the corresponding

process in SL∗ , i.e., XL∗ , one has to flip the L∗ + 1 consecutive bit in X. This

limitation will help us to bound E[log2 L0] using (5.19), i.e., for any ǫ > 0, we

obtain that

∣
∣E[log2 L0]− E∗[log2 L0]

∣
∣ ≤

L∗
∑

ℓ=1

log2 ℓ
∣
∣PL0(ℓ)− P ∗

L0
(ℓ)
∣
∣

≤ ‖PL0 − p∗L0
‖TV log2 L

∗

≤ Kp1/2−ǫ log2 L
∗ (5.21)

for some large enough K < ∞. The following lemma is directly inferred

from [60, Lemma III.2]:5

Lemma 5.4 [Distance between I(X) and I(XL∗) [60, Lemma III.2]]: For any

ǫ > 0, there exists p0(ǫ) such that the following happens for all p < p0(ǫ). For

any X ∈ S such that H(X) > 1 − p log2 1/p and for any L∗ > log2 1/p, there

exists XL∗ ∈ SL∗ such that

|I(X)− I(XL∗)| ≤ 2p1/2−ǫL∗−1 log2 L
∗. (5.22)

This Lemma shows that by restricting the run length, we will not lose too

much information rate, provided that L∗ is large enough. Note that (5.20)

is valid for any stationary and ergodic process. Therefore, I(XL∗) can be

bounded using (5.20) and (5.21) as

I(XL∗) ≤ 1 + p log2 p+ α1p+O(p3/2−ǫ log2 L
∗) +O(p2). (5.23)

4As noted before, (5.17) is valid for any run length distribution.
5Our result differs from [60, Lemma III.2] inH(F ) ≤ 2n(1+p)h(α)+o(n) ≤ 4nh(α)+o(n).
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Taking L∗ = ⌊1/p⌋ and by adding (5.22) to (5.23), since O(p2) = O(p3/2−ǫ),

we get

I(X) ≤ 1 + p log2 p+ α1p+ 2p3/2−ǫ log2 1/p
︸ ︷︷ ︸

O(p3/2−ǫ)

+O(p3/2−ǫ′ log2 1/p)
︸ ︷︷ ︸

O(p3/2−ǫ)

+O(p2)

= 1 + p log2 p+ α1p+O(p3/2−ǫ),

which shows that for any process X ∈ S, I(X) ≤ I(X∗). This completes the

proof.

5.5.4 Proof of Theorem 5.3

The average run-length of X† is

E†[L] = 2 + pE∗[Lǫ(L)].

Also, the received run-length distribution can be written as

P †
T (ℓ) =

ℓ∑

k=⌈ℓ/2⌉
2−k(1 + pǫ(k))

(
k

ℓ−k

)

pℓ−k(1− p)2k−ℓ

= 2−ℓ(1 + pδ1(ℓ) + p2δ2(ℓ)) +O(p3),

where for ℓ ∈ N,

δ1(ℓ) = ǫ(ℓ) + ℓ− 2

δ2(ℓ) = 2(ℓ− 1)ǫ(ℓ− 1)− ℓǫ(ℓ) +
1

2
(ℓ2 − 9ℓ+ 16).

The following moments are straightforward to obtain using condition (5.7) and

the fact that for every ϕ : N ∪ {0} 7→ R such that ϕ(0) = 0, 2E∗[ϕ(L− 1)] =

E∗[ϕ(L)]:

E∗[δ1(L)] = 0

E∗[δ21(L)] = E∗[ǫ2(L)] + 2E∗[Lǫ(L)] + 2

E∗[δ2(L)] = 2
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A Taylor expansion of D(P †
T‖P ∗

L) around P ∗
L gives

D(P †
T‖P ∗

L) =

∞∑

ℓ=1

P †
T (ℓ)

(

ℓ + log2 P
†
T (ℓ)

)

=
1

log 2

∞∑

ℓ=1

(

P †
T (ℓ)− 2−ℓ

)

+
1

2 log 2

∞∑

ℓ=1

2ℓ
(

P †
T (ℓ)− 2−ℓ

)2

+O(p3)

=
1

log 2

(

pE∗[δ1(L)] + p2 E∗[δ2(L)] +
1

2
p2 E∗[δ21(L)]

)

+O(p3)

=
p2

2 log 2

(
E∗[ǫ2(L)] + 2E∗[Lǫ(L)] + 6

)
+O(p3),

where we used the fact that
∣
∣
∣P

†
T (ℓ)− 2−ℓ

∣
∣
∣ = O(p). Also, we have

E†[T ] = (1 + p)(2 + pE∗[Lǫ(L)]) = 2 +O(p).

Thus, by (5.5) we yield

H(T )

E†[L]
= 1 + p− p2

4 log 2

(
E∗[ǫ2(L)] + 2E∗[Lǫ(L)] + 6

)
+O(p3).

Similarly, one can obtain

E†
[

log2

(
L

G

)]

=pE∗[L log2 L] + p2
(

E∗[Lǫ(L) log2 L]

− E∗ [L(L− 1) log2 L−
(
L
2

)
log2

(
L
2

)] )

.

The reciprocal of E†[L] can be approximated as

1

E†[L]
=

1

2
(
1 + 1

2
pE∗[Lǫ(L)]

) =
1

2
− p

4
E∗[Lǫ(L)] +O(p2),

provided that p|E∗[Lǫ(L)]| < 2. Combining these results, we get

E† [log2
(
L
G

)]

E†[L]
=

p

2
E∗[L log2(L)] +

p2

2

(

E∗[Lǫ(L) log2 L]

− 1

2
E∗[Lǫ(L)]E∗[L log2 L]− E∗ [L(L− 1) log2 L−

(
L
2

)
log2

(
L
2

)]
)

+O(p3).

The information rate of process X†, using Theorem 5.1, will be

I(X†) = 1 + p log2 p+ α1p+ α†
2p

2 +O(p3),
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where α1 is the same as Theorem 5.2 and α†
2 = α∗

2 +
α2,1

4 log 2
and

α∗
2 = − 1

log 2
− 1

2
E∗ [L(L− 1) log2 L−

(
L
2

)
log2

(
L
2

)]
≈ −2.87845825,

α2,1 = −E∗[ǫ2(L)] + 2E∗[Lǫ(L) logL]− E∗[Lǫ(L)](2 + E∗[L logL]).

It is clear that α†
2 is a lower bound of α2. We wish to maximize α†

2 to obtain

the tightest lower bound. We are left to find the optimal ǫ(ℓ), denoted by

ǫ∗(ℓ), that maximizes α2,1 (and α†
2) provided that E∗[ǫ(L)] = 0. To do so, first

note that

τ = E∗[L logL] ≈ 1.78628364

is independent of ǫ(ℓ). Then, we rewrite α2,1 as

α2,1 =
∞∑

ℓ=1

2−ℓ
(
−ǫ2(ℓ) + 2ℓǫ(ℓ) log ℓ− ℓǫ(ℓ)(2 + τ)

)

and use the Lagrange method. The optimal point can be obtained via

−2ǫ∗(ℓ) + 2ℓ log ℓ− ℓ(2 + τ) + θ = 0, ℓ = 1, 2, . . . ,

where θ > 0 is the Lagrange multiplier. Now, by constraint (5.7), we ob-

tain θ = 4 independent of ℓ. Therefore, the optimal p-dependent run-length

distribution is

P †(ℓ) = 2−ℓ(1 + pǫ∗(ℓ)), ℓ ∈ N

ǫ∗(ℓ) = ℓ log ℓ− ℓ(1
2
τ + 1) + 2.

It is easy to see that

α2,1 = −E∗ [(ǫ(L)− ǫ∗(L))
2]+ E[ǫ2∗(L)],

which gives the maximum value of α†
2 as

α†
2 = α∗

2 +
E∗[ǫ2∗(L)]

4 log 2

=
1

4 log 2

(

E∗[L2 log2 L]− (4 + τ)E∗[L2 logL]

+ 2E∗ [(L
2

)
log
(
L
2

)]
+

3

2
τ 2 + 8τ − 2

)

≈ −2.74700879.

One can verify that E∗[Lǫ(L)] ≈ 0.42, satisfying p|E∗[Lǫ(L)]| < 2.
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5.5.5 Proof of Theorem 5.4

Let x = δ − 1
2
= O(p). A Taylor expansion of P ◦

L(ℓ) = (1 − δ)δℓ−1 around

δ = 1
2
gives

P ◦
L(ℓ) = 2−ℓ

(
1 + xδ1(ℓ) + x2δ2(ℓ)

)
+O(p3),

where

δ1(ℓ) = 2(ℓ− 2), δ2(ℓ) = 2(ℓ− 1)(ℓ− 4), ℓ ∈ N.

The received run-length distribution can be written as

P ◦
T (ℓ) = 2−ℓ

(

1+xδ1(ℓ) + x2δ2(ℓ) + p
(
ℓ− 2 + x(ℓ2 − 6ℓ+ 6)

)

+
p2

2

(
ℓ2 − 9ℓ+ 16

)
)

+O(p3).

A Taylor expansion of D(P ◦
T‖P ∗

L) around P ∗
L gives

D(P ◦
T‖P ∗

L) =
∞∑

ℓ=1

P ◦
T (ℓ) (ℓ+ log2 P

◦
T (ℓ))

=
1

log 2

∞∑

ℓ=1

(
P ◦
T (ℓ)− 2−ℓ

)
+

1

2 log 2

∞∑

ℓ=1

2ℓ
(
P ◦
T (ℓ)− 2−ℓ

)2
+O(p3)

=
1

log 2

(
4x2 + 4xp+ 3p2

)
+O(p3),

where we used x = O(p) and
∣
∣P ◦

T (ℓ)− 2−ℓ
∣
∣ = O(p), and the following moments:

E∗[δ1(L)] = 0

E∗[δ2(L)] = 0

E∗[δ21(L)] = 8

Also, we have

E◦[T ] = (1 + p)(2 +O(p)) = 2 +O(p),

which gives the reciprocal of E◦[T ] by

1

E◦[T ]
=

1

2
+O(p).
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Thus, we get

H(T )

E◦[L]
= (1 + p)

(

1− D(P ◦
L‖P ∗

L)

E◦[T ]

)

= 1 + p− 1

2 log 2

(
4x2 + 4xp+ 3p2

)
+O(p3)

= 1− 2x2

log 2
+ p

(

1− 2x

log 2

)

− 3p2

2 log 2
+O(p3).

Next, one can obtain

E◦
[

log2

(
L

G

)]

= pE∗[L log2 L] + 2xpE∗[L(L− 2) log2 L]

− p2 E∗ [L(L− 1) log2 L−
(
L
2

)
log2

(
L
2

)]
.

The reciprocal of E◦[L] can be approximated in a similar way as

1

E◦[L]
=

1

2 (1 + 2x+O(p2))
=

1

2
− x+O(p2).

Combining these results, we get

E◦ [log2
(
L
G

)]

E◦[L]
= p (E∗[L log2(L)] + xE∗[L(L− 3) log2 L])

− p2

2

(
E∗ [L(L− 1) log2 L−

(
L
2

)
log2

(
L
2

)])
+O(p3).

Using Theorem 5.1, the information rate of process X◦ will be

I(X◦) = 1− 2x2

log 2
+ p log2 p+ p

(

α1 +
x

log 2
(E∗[L(L− 3) logL]− 2)

)

+ α∗
2p

2 +O(p3),

where α1 is the same as Theorem 5.2 and α∗
2 is given by (5.8).

To find the optimal x, we take the derivative and obtain

x =
p

4
(E∗[L(L− 3) logL]− 2) .

Therefore, the optimal p-dependent transition probability for a first-order

Markov process is

δ∗ =
1

2
+ Ωp,

Ω =
1

4
E∗[L(L− 3) logL]− 1

2
≈ 0.10409610.
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If we plug the optimal value back into I(X◦), we obtain

I(X◦) = 1 + p log2 p + α1p+ α◦
2p

2 +O(p3),

where

α◦
2 = α∗

2 +
2Ω2

log 2
≈ −2.81592784.

5.5.6 Proof of Lemma 5.2

To simplify the analysis, it is important to note that the second term on the

right-hand side of (5.4), i.e., h(p), is symmetric about p = 1
2
. The third term is

also symmetric around p = 1
2
because

(
L
G

)
=
(

L
L−G

)
and a binomial distribution

is symmetric with respect to its success probability (see (5.17)). This means

that the approximations in (5.16) and (5.17) are valid for p → 1 if we change

p to q = 1− p. Therefore,

h(p) = −q log2 q + q log2 e+O(q2), (5.24)

and

E∗ [log2
(
L
G

)]

E∗[L]
= qE∗[L log2 L] +O(q2). (5.25)

We are left with the first term of I(X∗) in Theorem 5.1. We derive an approx-

imation of P ∗
T for the even and odd values of t, separately. Let t = 2k, k ≥ 1

and q = 1− p. We have

P ∗
T (2k) =

2k∑

ℓ=k

2−ℓ

(
ℓ

2k−ℓ

)

(1− q)2k−ℓq2ℓ−2k

=
2k∑

ℓ=k

2−ℓ

(
ℓ

2k−ℓ

)
(
1− (2k − ℓ)q +O(q2)

)
q2ℓ−2k

= 2−k (1− kq) +O(q2).

Now, for t = 2k − 1, k ≥ 1 we have

P ∗
T (2k − 1) =

2k−1∑

ℓ=k

2−ℓ

(
ℓ

2k−ℓ−1

)

(1− q)2k−ℓ−1q2ℓ−2k+1

=

2k−1∑

ℓ=k

2−ℓ

(
ℓ

2k−ℓ−1

)
(
1− (2k − ℓ− 1)q +O(q2)

)
q2ℓ−2k+1

= 2−kkq +O(q2).
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To obtain the entropy of the received run-length, we divide the summation

into the odd and even parts as

H(T ) = He(T ) +Ho(T ),

where

He(T ) = −
∞∑

k=1

P ∗
T (2k) log2 P

∗
T (2k)

= −
∞∑

k=1

(
2−k(1− kq) +O(q2)

)
log2

(
2−k(1− kq) +O(q2)

)

= −
∞∑

k=1

(
2−k(1− kq) +O(q2)

) (
log2 2

−k − kq log2 e+O(q2)
)

=

∞∑

k=1

(
2−kk + 2−kkq log2 e− 2−kk2q

)
+O(q2)

= 2 (1 + q log2 e− 3q) +O(q2),

and

Ho(T ) = −
∞∑

k=1

P ∗
T (2k − 1) log2 P

∗
T (2k − 1)

= −
∞∑

k=1

(
2−kkq +O(q2)

)
log2

(
2−kkq +O(q2)

)

= −
∞∑

k=1

(
2−kkq +O(q2)

) (
log2 q + log2(2

−kk) +O(q)
)

= −
∞∑

k=1

(
2−kkq log2 q + 2−kk log2(2

−kk)q
)
+O(q2 log2 1/q) +O(q2)

= 2

(

−q log2 q − q

∞∑

k=1

2−k−1k log2 k + 3q

)

+O(q2−ǫ),

where we used the fact that for small ǫ > 0 and q → 0, log2 1/q = O(q−ǫ).

Thus,

H(T )

E∗[L]
= 1− q log2 q + q(log2 e− E∗[L log2 L]) +O(q2−ǫ). (5.26)

By adding (5.24), (5.25) and (5.26), we get I(X∗) = 1− O (q2−ǫ)6.

6The negative sign is used to emphasize on C ≤ 1.
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Chapter 6

Conclusion and Future Work

In this chapter, we summarize the contributions of the current thesis and

present some possible future research directions.

6.1 Extremal Problems of Error Exponents

We solved the extremal problems of several classical error exponents over the

set of MBIOS channels of the same capacity. The key ingredients of our

analysis are the set of equal-capacity basis channels and the theory of Cheby-

chev systems. It was shown that properly identified Chebychev systems show

a detailed ordering among the set of basis channels. Using these orderings, we

are able to solve extremal problems of error exponents with additional con-

straints. It was shown that the BEC and BSC are the two extremes of the

error exponents considered in Chapter 4. The framework introduced in this

thesis can be used to solve extremal problems of other error exponents such as

the joint source-channel coding error exponent [66]. Moreover, it would be in-

teresting to solve the extremal problems of error exponents using the calculus

of variations.

The set of basis channels can be used for studying other extremal problems

over the set of MBIOS channels of the same capacity. For example, the trans-

mission of low-density parity-check (LDPC) codes takes place on an MBIOS

channel [37]. It would be of a great practical and theoretical interest to find

the extremal densities of one iteration of belief propagation decoding of LDPC

codes [67]. This could lead to a universal design over all MBIOS channels of
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the same capacity [43, 68]. In fact, this is a generalization of the information

combining problem which addresses the extremal densities in a half iteration

of belief propagation [34, 36, 52, 69, 70].

6.2 Capacity of Duplication Channels

The capacity of the duplication channel for small duplication probabilities was

studied. We started by presenting an analytical lower bound on the duplication

capacity. We showed that a Bernoulli(1
2
) process achieves the capacity up to

term p in a series expansion (with an error of order p3/2). To find a more

refined expansion, two lower bounds for the next term in the series expansion

were introduced. We believe that the one obtained from a perturbation in a

Bernoulli(1
2
) process is the capacity, although we have not proved its converse

statement. A similar analysis was carried out for p → 1.

The i.i.d. duplication channel is a great model to analyze and gain insight

into the behaviour of channels with synchronization errors. In practice, it is

unlikely to have independent successive duplications. Therefore, it is more

realistic to consider a channel model with memory for duplications. For exam-

ple, the duplication process Q can be generated by a first-order Markov chain

where with a high probability, the duplication state remains 0 and if it is in

state 1, with a high probability it goes back to 0.

In this work, we studied the duplication capacity by means of a series

expansion up to a term of order p2. Finding a systematic way to update the

optimal input distribution to achieve higher order terms is a great path to

follow.

It is of great interest to study a duplication channel that also flips the bits

with some probability. This is equivalent to a duplication channel concate-

nated by a BSC. Similar scenarios are studied in [12, 71–73].

Genie-aided bounds on the capacity, similar to the work of Fertonani and

Duman [15], can be obtained for duplication channels. However, it can be

shown that these bound are not as tight as the bounds introduced in [57].

Improving such genie-aided bounds for duplication channels when the dupli-
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cation probability is neither close to zero nor close to one is another possible

research direction.
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Appendix A

Proof of Theorem 3.1

This appendix is devoted to proving that the systems introduced in Theo-

rem 3.1 are T–systems. We will take different approaches suited for each set.

Before starting the proof of Theorem 3.1, we prove the following lemma:

Lemma A.1 [CT–Systems and ECT–Systems]: The system {1, u1, . . . , un},
uk ∈ Cn([a, b]), k = 1, . . . , n, is a CT–system on [a, b] if {u′

1, . . . , u
′
n} is an

ECT–system on (a, b).

Proof : Consider the polynomial

f(t) = D(1, u1, . . . , un; t0, . . . , tn−1, t), a ≤ t0 < · · · < tn−1 < t ≤ b.

Clearly, f(tn−1) = 0. An application of the mean-value theorem to f gives

D(1, u1, . . . , un; t0, . . . , tn) = (tn − tn−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 · · · 1 0
u1(t0) · · · u1(tn−1) u′

1(ζn)
...

...
...

un(t0) · · · un(tn−1) u′
n(ζn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where tn−1 < ζn < tn ≤ b. Another application of mean-value theorem gives

D(1, u1, . . . , un; t0, . . . , tn) = (tn−tn−1)(tn−1 − tn−2)×
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 · · · 1 0 0
u1(t0) · · · u1(tn−2) u′

1(ζn−1) u′
1(ζn)

...
...

...
...

un(t0) · · · un(tn−2) u′
1(ζn−1) u′

n(ζn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where tn−2 < ζn−1 < tn−1. Repeating the same procedure leads to

D(1, u1, . . . , un; t0, . . . , tn) = D(u′
1, . . . , u

′
n; ζ1, . . . , ζn)

n∏

k=1

(tk − tk−1),
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where a < ζ1 < · · · < ζn < b. If {u′
1, . . . , u

′
n} is an ECT–system on (a, b),

it would also be a CT–system on (a, b) and D(u′
1, . . . , u

′
k; ζ1, . . . , ζk) > 0 for

a < ζ1 < · · · < ζk < b, k = 1, . . . , n. Since the choice of a ≤ t0 < · · · < tn ≤ b

is arbitrary, D(u′
1, . . . , u

′
k; ζ1, . . . , ζk) > 0 for any a < ζ1 < · · · < ζk < b,

k = 1, . . . , n, and {u1, . . . , un} is a CT–system on [a, b].
�

Lemma A.1 is the key step in proving Theorem 3.1. Note that

W(1, u1, . . . , uk)(p) = W(u′
1, . . . , u

′
k)(p)

for k = 1, . . . , n. Therefore, a system is a T–system on [0, 1
2
] if we show that

W(1, u1, . . . , uk)(p) > 0, p ∈ (0, 1
2
), k = 1, . . . , n. (A.1)

To prove Theorem 3.1, we introduce a new variable defined as q = 1−p
p
, for

p ∈ (0, 1
2
). Clearly, q > 1. After the change of variables, we will have functions

of the form uk(q) =
λk(q)
1+q

for some continuous function λk. Using the Jacobian

dp
dq

= −(1 + q)2, we get

u′
k(q) = −(1 + q)2 × d

dq

(
λk(q)

1 + q

)

.

In the same manner, the rest of the derivatives are

u′
k(q) = λk(q)− (1 + q)λ′

k(q)

u′′
k(q) = (1 + q)3λ′′

k(q)

u
(3)
k (q) = −(1 + q)4(3λ′′

k(q) + (1 + q)λ
(3)
k (q)).

For example, for the binary entropy function

h(q) =
(1 + q) log(1 + q)− q log q

(1 + q) log 2
, q > 1.

Therefore,

h′(q) =
log q

log 2
,

h′′(q) = −(1 + q)2

q log 2
,

h(3)(q) =
(q − 1)(1 + q)3

q2 log 2
.
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Let f be a continuous function on q > 1. A sufficient condition for f to be

strictly positive is1

lim
q→1

f(q) = 0 and f ′(q) > 0. (A.2)

We will encounter several instances of such functions for which we need to prove

strict positiveness. In those cases, condition (A.2) will be used frequently to

get the result. It is important to note that by change of variables, we do not

change the interval over which the T–systems are defined. It is just the matter

of calculation that we rather use q instead of p for some of the systems. We

now prove Theorem 3.1.

U0 : {u0, u1} where

u0(p) = 1

u1(p) = h(p).

Since u1 is a strictly increasing function on [0, 1
2
], for 0 ≤ p0 < p1 ≤ 1

2
, we

obtain

D(1, u1; p0, p1) = h(p1)− h(p0) > 0,

hence a T–system.

U1 : {u0, u2, u2} where

u0(p) = 1

u1(p) = h(p)

u2(p) = p.

We use the polynomial characterization of T–systems (Remark 2.5). Let f1

be a polynomial in the linear space spanned by U2, i.e., f1(p) = a0u0(p) +

a1u1(p) + a2u2(p) for ai ∈ R, i = 0, 1, 2. If a1 = 0, then f1 will be a linear

function having at most one zero in [0, 1
2
]. If a1 6= 0, f ′′

1 (p) = a1h
′′(p) shows

that f1 is either convex or concave. Therefore, it cannot have more than two

1It is noteworthy that q is strictly greater than 1. Therefore, one may replace the limit
condition with limq→1+ f(q) > 0.
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zeros in [0, 1
2
], hence a T–system. An alternative proof is by the fact that

W(1, u1)(p) = h′(p) > 0 on [0, 1
2
) and W(1, u1, u2)(p) = −h′′(p) > 0 on [0, 1

2
],

hence by condition (A.1), U1 is a T–system.

U2 : {u0, u1, u2} where

u0(p) = 1

u1(p) = h(p)

u2(p) = − (pa1 + (1− p)a1)b1 (pa2 + (1− p)a2)b2 ,

0 < ai < 1, 0 < bi, i = 1, 2, a1b1 + a2b2 = 1.

We have

u2(q) = −(1 + qa1)b1 (1 + qa2)b2

1 + q
, q > 1

and

λ′
2(q) = −q−1 (1 + qa1)b1−1 (1 + qa2)b2−1

× [a1b1q
a1(1 + qa2) + a2b2q

a2(1 + qa1)]

λ′′
2(q) = q−2 (1 + qa1)b1−2 (1 + qa2)b2−2 [a1b1ᾱ1q

a1(1 + qa2)2

+ a2b2ᾱ2q
a2(1 + qa1)2 + a1a2b1b2 (q

a1 − qa2)2
]
.

Therefore, the Wronskian can be written as

W(U2)(q) = u′
1(q)u

′′
2(q)− u′′

1(q)u
′
2(q)

=
(1 + q)2

q log 2
(q(1 + q)λ′′

2(q) log q + λ2(q)− (1 + q)λ′
2(q))

=
(1 + q)2

q2 log 2
(1 + qa1)b1−2 (1 + qa2)b2−2 f2(q),

where

f2(q) = a1b1(1 + qa2)2ta1f2,a1(q) + a2b2(1 + qa1)2qa2f2,a2(q)

+ a1a2b1b2(1 + q) (qa1 − qa2)2 log q,

and

f2,α(q) = (1− α)(1 + q) log q − (1 + qα)(q1−α − 1), α ∈ [0, 1).
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Note that we excluded α = 1 because f2,α=1 ≡ 0. It is clear that if f2,α is

strictly positive, then W(U2)(q) > 0. In order to show that, we use condition

(A.2): limq→1 f2,α = 0 and

f ′
2,α(q) = (1− α)(log q + 1 + q−1)− ((1− α)q−q−1 + 1− αqα−1).

An application of condition (A.2) to f ′
2,α, shows that limq→1 f

′
2,α(q) = 0 and

f ′′
2,α(q) =

1− α

q2
(
q − 1− α(qα − q1−α)

)
.

Now, one can see that for a fixed q, supα α(q
α − q1−α) is by α = 1. Thus

α(qα − q1−α) < q − 1,

which shows that f ′′
2,α, f

′
2,α and f2,α are strictly positive, hence U2 is a T–

system.

U3 : {u0, u1, u2, u3} where

u0(p) = 1

u1(p) = h(p)

u2(p) = p

u3(p) = 2−ρ
(

p
1

1+ρ + (1− p)
1

1+ρ

)1+ρ

, ρ > 0.

We know that W(1, u1) and W(1, u1, u2) are strictly positive on (0, 1
2
). Also,

it is straightforward to see that

λ′′
3(q) = −ρ2−ρq

1
1+ρ

−2(1 + q)3

1 + ρ

(

1 + q
1

1+ρ

)ρ−1

,

λ
(3)
3 (q) =

ρ2−ρq
1

1+ρ
−3(1 + q)4

(1 + ρ)2

(

1 + q
1

1+ρ

)ρ−2

×
[

(ρ+ 2)
(

q − q
1

1+ρ

)

+ (1 + 2ρ)
(

q
1

1+ρ
+1 − 1

)]

.

We have

W(U3)(q) = u
(3)
1 (q)u′′

3(q)− u
(3)
3 (q)u′′

1(q)

= (1 + q)3λ′′
3(q)

(
h(3)(q) + 3(1 + q)h′′(q)

)
+ (1 + q)5h′′(q)λ

(3)
3 (q)

=
ρ2−ρq

1
1+ρ

−4(1 + q)6

(1 + ρ)2

(

1 + q
1

1+ρ

)ρ−2 [

q − q
1

1+ρ + r(q
1

1+ρ
+1 − 1)

]

> 0.

105



Therefore, U3 is a T–system.

U4 : {u0, u1, u2} where

u0(p) = 1

u1(p) = h(p)

u2(p) = 1− (1− 2p)2.

The binary entropy function can be expressed using the following Taylor series

expansion [74]:

h(p) = 1−
∞∑

k=1

hk(1− 2p)2k, hk =
1

2k(2k − 1) log 2
, p ∈ [0, 1].

Let 0 ≤ p0 < p1 < p2 ≤ 1
2
. By multiplying the second and third rows by −1

and adding the first row, we have

D (u0, u1, u2; p0, p1, p2) = D (1, 1− u1, 1− u2; p0, p1, p2)

=
∞∑

k=1

hk D
(
1, (1− 2p)2k, (1− 2p)2; p0, p1, p2

)

(a)
=

∞∑

k=2

hk D
(
1, (1− 2p)2, (1− 2p)2k; p2, p1, p0

)

(b)
=

∞∑

k=2

hk

∏

0≤i<j≤2

(aj − ai)
∑

i0+i1+i2=k−2
i0,i1,i2≥0

ai00 a
i1
1 a

i2
2

> 0,

where (a) follows from switching rows 2 and 3 and columns 1 and 3, and (b)

follows from letting ai = (1 − 2p2−i)
2, i = 0, 1, 2, a0 < a1 < a2, and using the

generalized Vandermonde determinant [75]. Thus, U4 is a T–system.

U5 : {u0, u1, u2} where

u0(p) = 1

u1(p) = h(p)

u2(p) =
1

2

(√
p+

√
p̄
) (√

p log
√
p+

√
p̄ log

√
p̄
)

+
1

2

(√
p+

√
p̄
)2

log
2√

p+
√
p̄
.
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By change of variables, we have

λ2(q) =
1

2
(1 +

√
q) (log 4− 2 (1 +

√
q) log (1 +

√
q) +

√
q log(4q))

λ′
2(q) =

1

4
q−

1
2 (−4(q − 1) log (1 +

√
q)− 2

√
q log q + (q − 1) log(16q))

λ′′
2(q) =

1

8
q−

3
2 (1 + q)3 (2 + 4 log (1 +

√
q)− log(16q)) .

The Wronskian can be written as

W(U5)(q) =
q−

3
2

4 log 2
(1 + q)2f5(q),

where

f5(q) = (
√
q − 1)2 log q + 2 log

(
1 +

√
q

2q
1
4

)

f ◦
5 (q),

and f ◦
5 (q) = 2 − 2q + (1 + q) log q. It is easy to check that by condition A.1,

f ◦
5 > 0. Since 1 +

√
q > 2q

1
4 , the Wronskian is positive and U5 is a T–system.

U6 : {u0, u1, u2} where

u0(p) = 1

u1(p) = h(p)

u2(p) = −ps(1− p)1−s − p1−s(1− p)s, s ∈ (0, 1).

We have

u2(q) = −qs + q1−s

1 + q
,

λ′
2(q) = −q−1(sqs + (1 − s)q1−s), and λ′′

2(q) = s(1 − s)q−2(qs + q1−s). The

Wronskian can be expressed as

W(U6)(q) =
(1 + q)2

q2
f6(q),

where

f6(q) = s(1−s)(1+q)(qs+q1−s) log q+(1+q)(sqs+(1−s)q1−s)−q(qs+q1−s).

Note that applying condition (A.2), limq→1 f6(q) = 0 and

f ′
6(q) = (1− s)q−sf6,s(x)

∣
∣
x=q2s

+ sq−(1−s)f6,1−s(x)
∣
∣
x=q2(1−s),
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where

f6,s(x) = ((1 + s)x+ 1− s) log
√
x− x+ 1, x > 1.

Again, applying condition (A.2), we have limx→1 f6,s(x) = 0 and

f ′
6,s(x) =

1

2

[
(1 + s) log x+ 1 + s+ (1− s)x−1

]
− 1

≥ 1

2

[
(1 + s)(1− x−1) + 1 + s+ (1− s)x−1

]
− 1

= s(1− x−1) > 0.

Therefore, f6,s, f
′
6, and f6 are strictly positive meaning that U6 is a T–system.

U7 : {u0, u1, u2} where

u0(p) = 1

u1(p) = h(p)

u2(p) = −p log22 p− (1− p) log22(1− p).

By change of variables, we have

u2(q) = − log2(1 + q) + q log2(1 + q−1)

(1 + q) log2 2
,

and

λ′
2(q) = −(1 + q) log2(1 + q−1) + 2 log q

(1 + q) log2 2

λ′′
2(q) =

2(1 + q)(log(q + 1)− 1)− 2 log q

q(1 + q)2 log2 2
.

The Wronskian is obtained by

W(U7)(q) =
(1 + q)2

q
[q(1 + q)λ′′

2(q) log q + λ2(q)− (1 + q)λ′
2(q)]

=
q2 − 1

q log3 2
log2 q > 0.

Therefore, U7 is a T–system.

U8 : {u0, u1, u2, u3} where

u0(p) = 1

u1(p) = h(p)

u2(p) = p

u3(p) = p log22 p+ (1− p) log22(1− p).
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Similar to U7, we obtain

λ′
3(q) =

(1 + q) log2(1 + q−1) + 2 log q

(1 + q) log2 2

λ′′
3(q) = −2(1 + q)(log(q + 1)− 1)− 2 log q

q(1 + q)2 log2 2

λ
(3)
3 (q) =

2(1 + q)(1 + 2q) log(1 + q)− 2(1 + 3q) log q − 3q(1 + q)

q2(1 + q)3 log2 2
.

The Wronskian is now

W(U8)(q) = u
(3)
1 (q)u′′

3(q)− u′′
1(q)u

(3)
3 (q)

= (1 + q)3λ′′
3(q)

(
h(3)(q) + 3(1 + q)h′′(q)

)
+ (1 + q)5h′′(q)λ

(3)
3 (q)

=
2(1 + q)4

q3 log3 2
(q2 − 1 + q log q) > 0.

Hence, U8 is a T–system.
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Appendix B

A Note Regarding
Theorem 4.12

For w ∈ [0, 1], 0 ≤ s ≤ ρ ≤ 1, p ∈ [0, 1
2
], define

θ(w) =
(
wp1−s + (1− w)(1− p)1−s

) (
wps/ρ + (1− w)(1− p)s/ρ

)ρ
.

We would like to find the minimum value of ζ(w) = θ(w) + θ(1−w). Clearly,

ζ(0) = ζ(1) = 1. We have

θ′(w) = zρ−1(w)
[
(1− p)s/ρ(p1−s − (1− p)1−s) + ρ(1− p)1−s(ps/ρ − (1− p)s/ρ)

+ w(1 + ρ)(p1−s − (1− p)1−s)(ps/ρ − (1− p)s/ρ)
]

= zρ−1(w)
[
ps/ρ(p1−s − (1− p)1−s) + ρp1−s(ps/ρ − (1− p)s/ρ)

− w̄(1 + ρ)(p1−s − (1− p)1−s)(ps/ρ − (1− p)s/ρ)
]
,

where z(w) = wps/ρ + (1 − w)(1 − p)s/ρ. For w < 1
2
, z(w) > z(1 − w). We

obtain

ζ ′(w) = θ′(w)− θ′(1− w)

< zρ−1(w)(2w − 1)(1 + ρ)(p1−s − (1− p)1−s)(ps/ρ − (1− p)s/ρ)

≤ 0.

It is important to note that for w < 1
2
and p 6= 1

2
, ζ ′ < 0. We would not worry

about the case of p = 1
2
since it corresponds to a useless channel. Similarly for
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w > 1
2
, z(w) < z(1− w) and we have

ζ ′(w) = θ′(w)− θ′(1− w)

> zρ−1(1− w)(2w − 1)(1 + ρ)(p1−s − (1− p)1−s)(ps/ρ − (1− p)s/ρ)

≥ 0,

which means that ζ decreases for 0 ≤ w < 1
2
and increases for 1

2
< w ≤ 1.

Since ζ ′(1
2
) = 0, we conclude that ζ is minimized at w = 1

2
.
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Appendix C

Limit of E[µ(P, ρ)] and Its
Derivatives

In this appendix, we prove the following lemma:

Lemma C.1 [Limits of E[µ(P, ρ)] and Its Derivatives]: For the function µ

defined in Lemma 4.1, the following hold for ρ∗ ∈ [0, 1]:

(a) lim
ρ→ρ∗

E[µ(P, ρ)] = E[µ(P, ρ∗)]

(b) lim
ρ→ρ∗

∂

∂ρ
E[µ(P, ρ)] exists and equals E

[

lim
ρ→ρ∗

∂

∂ρ
µ(P, ρ)

]

.

(c) lim
ρ→ρ∗

∂2

∂ρ2
E[µ(P, ρ)] exists and equals E

[

lim
ρ→ρ∗

∂2

∂ρ2
µ(P, ρ)

]

.

Before proceeding with the proof of Lemma C.1, we state the following

lemma which will prove handy later.

Lemma C.2 [Integrability]: The random variables µ(P, ρ), ∂
∂ρ
µ(P, ρ) and

∂2

∂ρ2
µ(P, ρ) are bounded and integrable for any ρ ∈ [0, 1].

Proof : Clearly, µ(P, ρ) is bounded by one, hence integrable. We have

∂

∂ρ
µ(P, ρ) = −2−ρ

(

P
1

1+ρ + P̄
1

1+ρ

)ρ

ζ1(P, ρ),

where

ζ1(p, ρ) = p
1

1+ρ log p
1

1+ρ + p̄
1

1+ρ log p̄
1

1+ρ +
(

p
1

1+ρ + p̄
1

1+ρ

)

log
2

p
1

1+ρ + p̄
1

1+ρ

.
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Using the Jensen’s inequality for the convex function x log x, x ∈ [0, 1
2
], it is

straightforward to see that the function ζ1 is non-negative. Moreover,

ζ1(p, ρ) ≤
(

p
1

1+ρ + p̄
1

1+ρ

)

log 2.

Therefore, we have
∣
∣
∣
∣

∂

∂ρ
µ(P, ρ)

∣
∣
∣
∣
≤ log 2× µ(P, ρ), ρ ∈ [0, 1]

almost surely. For the second derivative, we obtain

∂2

∂ρ2
µ(P, ρ) = µ(P, ρ)

ζ2(P, ρ)

(1 + ρ)3
,

where

ζ2(p, ρ) =

(

p̄
1

1+ρ

p
1

1+ρ + p̄
1

1+ρ

)2

× ρ log2
p̄

p
+ (1 + ρ)3 log2

2p
1

1+ρ

p
1

1+ρ + p̄
1

1+ρ

+
p̄

1
1+ρ

p
1

1+ρ + p̄
1

1+ρ

× log
p̄

p

(

log
p̄

p
+ 2(1 + ρ)2 log

2p
1

1+ρ

p
1

1+ρ + p̄
1

1+ρ

)

is apparently non-negative. Furthermore, we obtain

ζ2(p, ρ)

(1 + ρ)3
≤ p̄

1
1+ρ

p
1

1+ρ + p̄
1

1+ρ

log2
p̄

1
1+ρ

p
1

1+ρ

+ log2
2p

1
1+ρ

p
1

1+ρ + p̄
1

1+ρ

+
2p̄

1
1+ρ

p
1

1+ρ + p̄
1

1+ρ

log
p̄

1
1+ρ

p
1

1+ρ

log
2p

1
1+ρ

p
1

1+ρ + p̄
1

1+ρ

.

Let x =
(

1−p
p

) 1
1+ρ

, x ≥ 1. We have

ζ2(p, ρ)

(1 + ρ)3
≤ ζ2(x) =

x

1 + x
log2 x+ log2

2

1 + x
+

2x

1 + x
log x log

2

1 + x

=

(
x

x+ 1
log x+ log

2

1 + x

)2

+
x

(1 + x)2
log2 x, x ≥ 1,

where ζ2(x) is continuous and non-negative for x ≥ 1, ζ2(1) = 0 and

lim
x→∞

ζ2(x) = log2 2.

Therefore, it is bounded. In fact, simple calculus shows that x∗ = 2e(
√
e2 − 1+

e) − 1 ≈ 27.51 maximizes ζ2 and ζ2(x
∗) ≈ 0.66 < log 2. Thus, the second

derivative is bounded by an integrable random variable, i.e.,
∣
∣
∣
∣

∂2

∂ρ2
µ(P, ρ)

∣
∣
∣
∣
≤ log 2× µ(P, ρ), ρ ∈ [0, 1]

almost surely.
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�

Proof : [Lemma C.1] (a) holds by DCT and Lemma C.2. Note that treating

ρ → ρ∗ using sequences in n is accomplished by any monotone sequence {ρn} ↑
ρ∗ or {ρn} ↓ ρ∗.

For (b) and (c), we use [44, Section A16.1] to interchange (multiple) differ-

entiation and the expected value operator. Once we took the derivatives inside

the expectation, the proof will be complete by using DCT (via Lemma C.2).

To apply [44, Section A16.1], we have to show that two classes which are

Pb = {µ(P, ρ), ρ ∈ [0, 1]} and Pc = {
∫ ρ

0
µ(P, s)ds, ρ ∈ [0, 1]} are uniformly

integrable. In both cases, uniform integrability is clear by the fact that both

Pb and Pc are bounded1.
�

1Note that in order to apply [44, Section A16.1] in part (c), one has to reapply [44,
Section A16.1] to Pc.
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Appendix D

Channel Dispersion Revisited

In this section, with a slight abuse of notation, we write PY |X=x for the measure

PY |X(·|x). The information density of a pair of random variables X and Y

measured in bits and defined on X and Y is a random variable defined as

i(x, y) = log2
dPXY

d(PX × PY )
(x, y) = log2

dPY |X=x

dPY

(y),

with the understanding that if PY |X=x is not absolutely continuous with re-

spect to PY , we define i(x, y) = +∞ for all y in the singular set, and we define

i(x, y) = −∞ for any y such that
dPY |X=x

dPY
= 0 [46].

For an MBIOS channel for which the input distribution is uniform, we

have PY (y) =
1
2
PY |X=+1(y) +

1
2
PY |X=−1(y). Therefore, PY |X=x ≪ PY , i.e., the

measure PY |X=x, x = ±1, is absolutely continuous with respect to PY .

Theorem D.1 [Sufficient Statistic and Information Density]: Let PY |X : X 7→
Y be an MBIOS channel with uniform input distribution and L be the LLR

at its output. The information density between X and Y is equal to the

information density between X and L, i.e., i(X, Y ) = i(X,L(Y )). Moreover,

E [ϕ(i(X, Y ))] = E
[
ϕ
(
log2

2
1+e−L

)]
,

holds for every continuos function ϕ.

Proof : Let x be either +1 or −1. Define

Yx = {y ∈ Y : PY |X=x(y) 6= 0}.
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We assume that all output alphabets can be reached with a positive probability,

i.e., Y+1 ∪ Y−1 = Y . If y ∈ Yx, we have

i(x, y) = log2
dPY |X=x

dPY
(y)

= log2

(
1

2

d(PY |X=x + PY |X=−x)

dPY |X=x
(y)

)−1

= log2
2

1 + e−xL(y)
.

Otherwise, i(x, y) = −∞. Let λ be the Lebesgue measure on R. On the other

hand, we have

i(+1, l) = log
dPL|X=+1

dPL
(l)

= log
dPL|X=+1

dλ
(l)− log

dPL

dλ
(l)

= log a(l)− log
(
1
2
a(−l) + 1

2
a(l)
)

= log
2

1 + e−l
.

Similarly, i(−1, l) = log 2
1+el

. For y /∈ Yx, i(x, y) = −∞ corresponds to

i(x, l(y)) = −∞. This shows that i(X, Y ) = i(X,L(Y )) almost surely.

Finally, We have

E [ϕ(i(X, Y ))] = E [ϕ(i(X,L(Y )))]

=
1

2

∫

ϕ(i(+1, l(y)))a(l)dl +
1

2

∫

ϕ(i(−1, l(y)))e−la(l)dl

=
1

2

∫

ϕ(i(+1, l(y)))a(l)dl +
1

2

∫

ϕ(i(+1,−l(y)))e−la(l)dl

=

∫

ϕ(i(+1, l(y)))a(l)dl

= E
[
ϕ
(
log2

2
1+e−L

)]
.

�

Note that using Lemma 3.1, one can get the P -density representation

of Theorem D.1. For a memoryless channel, the channel capacity is C =

supPX
E[i(X ; Y )]. Also, according to Strassen [48, Theorem 1.2], channel dis-

persion is expressed as the minimum variance of the information density, i.e.,

V = inf
X: C=E[i(X;Y )]

V[i(X ; Y )].
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According to Theorem D.1, for an MBIOS channel, C = E[log2
2

1+e−L ] which

is the same as (2.6). To calculate the variance of the information density with

the capacity achieving input distribution, we take the same steps and arrive at

the following expression for the channel dispersion in squared bits per channel

use:

V = E[i2(X ; Y )]− E2[i(X ; Y )]

= E
[
log22

2
1+e−L

]
− C2

= E
[
log22(1 + e−L)

]
−H2.

Using Lemma 3.1, we obtain exactly the same expression as the one we ob-

tained in Section 4.2.5. Although having proved it for n = 1, 2, we conjecture

that all cumulants of information density can be obtained via the derivatives

of E0(ρ):

Conjecture D.1 [Cumulants of Information Density]: The following holds:

κn(i(X, Y )) = − lim
ρ→0

∂n

∂ρn
E0(ρ),

where κn(Z) is the nth cumulant of random variable Z.
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Appendix E

Basis Channels in Other
Applications

We introduced the set of basis channels in [43] for design of universal low-

density parity-check (LDPC) codes [37,76,77] whose transmission takes place

over MBIOS channels. Universal codes are of great practical and theoretical

interest. On the other hand, LDPC codes are extremely powerful and their

performance, if properly designed, can be very close to the channel capacity

[78, 79]. Here, we briefly mention the importance of the set of basis channels

in the design of universal LDPC codes.

The primary characteristic of an ensemble of LDPC codes is a pair of de-

gree distributions (λ, ρ) which shows how the code is constructed [80]. By

convergence of an LDPC code over an MBIOS channel, we mean that the

probability of error under iterative belief propagation vanishes as the number

of iterations goes to infinity. Based on strong supporting evidences, we con-

jectured in [43] that if an LDPC code converges on two MBIOS channels, it

does so on any channel from the convex hull of those channels. Note that the

L-density of a channel in the convex hull of two symmetric channels is a con-

vex combination of the L-densities of those channels. Since the basis channels

span the space of equal-capacity MBIOS channels, we come to the conclusion

that if an LDPC code converges on the set of basis channels, it does converge

on any MBIOS channel of the same capacity. A very high percentage of the

capacity is achieved using this method [43]. In this appendix, assuming that

the density evolution process is monotone [31], we prove the conjecture we
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made in [43]. For information on channel degradation and density evolution,

refer to [31].

Theorem E.1 [Convergence over the Convex Hull]: Let (λ, ρ) be a pair of

degree distributions converging on two equal-capacity MBIOS channels with L-

densities a and b. Under the assumption of monotonicity of density evolution,

(λ, ρ) converges on any channel from the convex hull of a and b.

Proof : Fix s and let c be a channel from the convex hull of a and b such

that c = sa+ (1− s)b. We prove this theorem by contradiction: assume that

f 6= ∆∞ is the fixed point of the density evolution of c (see [31, Theorem 4.119]).

According to [81, Theorem 2], f →֒ c, i.e., c is physically degraded with respect

to the fixed point of its density evolution. We show that both a and b are

physically degraded with respect to f. The transition matrix of the channel c

can be written as

C = [sA | (1− s)B],

where the output of each channel can be relabelled even if they represent

the same symbol (a simple example in the case of basis channels is shown

in Fig. 3.1). Let F be the transition matrix of f. From f →֒ c, there exist a

channel w with transition matrixW, such that C = FW. It is straightforward

to see that W can be decomposed as W = [sW1 | (1 − s)W2] which means

that both a and b are degraded with respect to f.

For some starting density d, let aℓ(d) and bℓ(d) denote the L-density of the

ℓth iteration of density evolution of a and b, respectively. According to [31,

Lemma 4.105], since a and b are degraded with respect to f, for any ℓ ≥ 0 we

have

aℓ(f) →֒ aℓ(a) and bℓ(f) →֒ bℓ(b).

Now, by [31, Lemma 4.106] and letting the number of iterations grow, we get

lim
ℓ→∞

P(aℓ(f)) = lim
ℓ→∞

P(bℓ(f)) = 0,

where we used the convergence of the code over both a and b. This implies

that if we start the density evolution of either a or b from the fixed point of
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c, we will have convergence too. However, after one iteration of the density

evolution of c starting from its fixed point f, we obtain [31]

P(f) = P(c1(f))

= P(c⊛ λ(ρ(f)))

= P((sa+ (1− s)b)⊛ λ(ρ(f)))

= sP(a⊛ λ(ρ(f))) + (1− s)P(b⊛ λ(ρ(f)))

= sP(a1(f)) + (1− s)P(b1(f))

≤ max{P(a1(f)),P(b1(f))}

< P(f),

which contradicts the initial assumption. Thus, f = ∆∞ and by [31, Theo-

rem 4.119], the pair (λ, ρ) is convergent over the channel c. Since the choice

of c is arbitrary, it follows that the pair (λ, ρ) is convergent over the convex

hull of a and b.
�
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