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Abstract

The signal, we want to keep track of, is always modeled aschastic process.
The filtering problem is that, due to some random noise, weesiomes can only
access a distorted and corrupted partial observation ofigrels. The objective
of filtering is to find out the conditional distributions (eegiations) of the signal
process based on the history of the observation processteteasr,. In the thesis,
we always assume that the signal prockds a discrete-time stochastic process,
and this type of problem is called the discrete-time filtgrproblem. Diferent
from the previous solutions, we do not estimatelirectly. Instead, we estimate the

unnormalized filtewr,, which is defined under a new fictitious probability measure

Q. We will show the relation betweem, and o, asn,(f) = ‘;:EB If we can
construct some particle systems, called particle filtersstimate the unnormalized
filter oy, it is enough to construct a particle system approximaiom,t

In the weighted particle system, each patrticle is an indegeicopy from the
signal process, and there is a weight associated to it. Weeghe Strong Law of
Large Numbers and the Central Limit Theorem for the weiglpticle system. In
addition, we calculate the random variance and the expeetgahce of the Central
Limit Theorem.

The problem with the weighted particle system is that sonrégbes do not
behave like the signal process due to randomness. Thisegpnoimanifests itself
in a large random variance or expected variance of the Qdningt Theorem. To
combat this problem, we will introduce another particleefiltthat utilize resam-

pling. Our key to analyzing this new particle filter mathercaty is to simplify

it to a fictitious particle system, which is mathematicaligngler but can not be



implemented on a computer. We prove the Strong Law of Largaldérs and the
Central Limit Theorem for the fictitious particle system.dddition, we calculate
the random variance and the expected variance of the Céimnél Theorem. An

example is given where the expected variance of the weigbaeticle system is
infinite while the fictitious system’s is still finite, prowgnthe need for resampling

like that introduced within.



Acknowledgements

First of all, I would like to express my sincere gratitude tgp master’s supervi-
sor, Professor Mike Kouritzin. He patiently provides mehahiis unreserved help
and guidance, and leads me to finish the thesis step by steglwdgs inspires me
to think in a diferent perspective, which is extremely helpful for my thegsiss
encouragement and advice are of great significance for meteed through the
master program as well as complete my thesis. He is a strashgugpportive su-
pervisor during my master study, but he always gives me dreatlom to pursue
independent study and research.

Moreover, | want to give gratitude to the rest of my committeembers, Pro-
fessor Yau Shu Wong, Professor Arno Berger and Professar @Thbulli, for their
support, guidance and valuable suggestions.

Furthermore, | also would like to thank all of my friends. Vigve me contin-
uous support and encouragement during my master study.

Last but not least, special thanks to my parents. They peavie with a carefree
environment to grow up. In addition, their encouragememppsrt and love are

always my driving forces and inspire me to pursue my goal.



Table of Contents

1 Introduction 1
1.1 Nonlinearfiltering. . . . . . . . . . . . .. . 1
1.1.1 Background and motivation . . . ... ... ... ..... 1
1.1.2 Notations and definitions . . . . . . ... ... ... .... 2
1.1.3 Filteringproblem . . . . .. ... ... . oL 6
1.2 Particlefiltermethod . . . . ... .. ... ... ... L. 10
1.2.1 Introduction. . . . .. ... .. .. ... .. .. ..., 10
1.2.2 Resampled particle system . . . . . ... . ... ... ... 11
2 Unnormalized Filter 14
2.1 Fictitious probability measure . . . . ... ... ... ...... 14
2.2 Notations and unnormalizedfilter . . . . .. ... .. ... ... 81
3 Weighted Particle System 32
3.1 Introduction of the particlesystem . . . .. ... ... ... ... 32
3.2 Mainresults . . . . . . ... 36
3.2.1 Strong Law of Large Numbers . . . . . .. ... ... ... 36
3.2.2 Central LimitTheorem . . . . . ... ... ... ...... 40

4 Fictitious Particle System 44



4.1 Introduction of the particlesystem . . . . . ... ... ... ... 44

4.2 Mainresults . . . . . . . 51
4.2.1 StrongLawoflLargeNumbers . . . .. .. ... ... ... 51
4.2.2 Central LimitTheorem . . . . .. .. ... ... ...... 52

5 Summary and Future Work 63

Bibliography 65



Chapter 1

Introduction

1.1 Nonlinear filtering

1.1.1 Background and motivation

Filtering theory is an active research field with wide apgiions to real world prob-
lems in areas such as: signal processing, target detectibmacking, weather pre-
diction and financial market.

To introduce it intuitively, we show an example to illusedhe objective of the fil-
tering theory. This example comes from the wireless compaitiun that was the
main motivation for the filtering theory in the early stagdneBignal (process)X,
has some randomness and is always a stochastic processneAt, tihe signal is
transmitted to a receiver and the receiver will receive tgpead, defined ab (X,_1),
whereh is a function. However, there are some randwooise \, during the trans-

mission. Therefore, what we observe from the receiver ionbth (X,_1) but also



the noise ternV,. We define the observation model as

Yn = h (Xn_l) + Vn, (1.1)

whereY, is called theobservation process

At time n, we will get then™ observatiory, from the receiver. The observation in-
formationYy, Yo, ..., Y, at each observation time 4, ..., n is known to us now. The
objective of the filtering is to estimate the distributiontb&é signal process based
on the previous observation informati¥in Y, ..., Y.

In general, signals are always modeled as a stochasticgzesand described by a
stochastic dynamical system, which can not be solved tiirant completely. Due
to some random noise, we can only access a partial, distangdorrupted obser-
vations of the signals. The goal of the filtering theory is talfthe probabilistic

distribution of the signals conditioning on the back obaéons.

1.1.2 Notations and definitions

In the thesis, we usl andZ to denote the set of natural numbers (including 0)
and the set of integer numbers, respectively. Denote theéuptcoof d copies of
the real numbers s@& asRY, whered € N. TheBorel o—algbra defined on the
setE is generated by all open setsk) denoted byB (E). For exampleB (R) is
defined as ther—algebra generated by all open setRinTheBorel setis any set

in a topological space that can be formed from open setsEE¢) denote as the
expectation with respect to the probability mead@re

A discrete-timeVarkov process$X,, n € N} with respect to the filtratiofiF,, n € N}

is defined as a sequence of random variables taking valuemgaaurable space

(E, &) satisfying that



1. X, is F-measurable for evenye N.

2. For allB € &, we have

P (Xhi1 € B|Fn) = P(Xni1 € BIXy), (1.2)

for everyn € N.
Sometimes, the discrete-time Markov process is cdMadckov Chain
Thefiltration {7, n € N} is a sequence af-algebras satisfying that

FiCcFoC---CFpC--- (1.3)

As a Markov process, the conditional distribution of anyfetstatex,,; given the
past stateXo, Xy, - - -, X,_1 and the present stak, is independent of the past states
and depends only on the present state.

A functionK : E x & — R is said to be @ransition kernelf
1. Foreachx e E, A — K (X, A) is a probability measure on the spdée&).
2. ForeachA e & x — K(x, A) is a measurable function.
We say thatX,, n € N} is a Markov process with respect to the filtratigfn, n € N}
with the Markov transition kerne{K,, n € N} if

P (X1 € AlFn) = Knpa (X, A), (1.4)

forasetA e &andne N.
A Markov Chain is said to béime-homogeneousf the conditional probability

PXh=jXnr=1) = PXy=]|Xo=1), for everyn > 1 and anyi, j € E. That
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meansP (X, = j|X,-.1 = i) is independent from the time indexand, the Markov
transition kernel can be denotedkast any time.

We denoteB (E) andB (E), as the class of bounded measurable functions and non-
negative bounded measurable functions defined on the $paespectively. Let

C (E) andC (E), denote the class of continuous bounded functions and tke ofa
non-negative continuous bounded functions respectiizdfine the norm ad|_, =
sup.e If (X)|. We also letM (E) and® (E) denote the space of finite measures and
the space of probability measures defined=mopologized by weak convergence.

If € M(E) andf is an integrable function defined & n (f) is defined as

n(f)szf(x)n(dx).

Weak convergence means, for},, ,u € M(E), un = pif and only if y, (f) —
u (f) forall f € C(E), whenn — co.

For a Markov transition kernéd andn € # (E), Kn is defined as
(@9 = [ Kz a9,
Kn is a probability measure defined on the spacand
K™ = K(K™p).
K f is defined as a function on the spdesatisfying that

Kf(x):fEf(z)K(x,dz),



for any integrable functiorf and x € E. It now follows thatKf € B(E), if
f € B(E),.

Then we have

(Kn) (f) = f £ (%) (Kn) (0 (1.5)

:fEf(x)fEK(z,dx)n(dz)
:fEfEf(x)K(z,dx)n(dz),

and

n(K(f)) =fE77(dZ)K(f)(Z) (1.6)

- (1@ [ K9 109
:fEfEf(x)K(z,dx)n(dz).

We have shown that

(Kn) (f) = n (K (), (1.7)

for any integrable functiori, Markov transition kerneK andn € P (E).
A Dirac measuras a probability measure defined on some measurable $pacg
as

0, x¢ A

ox(A) =1a(X) = , (1.8)
1, xeA



for a givenx € E and any measurable s&te &. 14 is the indicator function of the
setA.

A stochastic proceds(,, n € N} is called amartingalewith respect to the filtration

{Fr,n e N}if foranyne N,
1. X, is F,-measurable.
2. E(X]) < oo.

3. E [Xn |7'~n—1] = Xn-1.

1.1.3 Filtering problem

Filtering theory deals with estimating the current state @ion-observable signal
X based upon the history of a distorted and corrupted pattstivation procesg
living on the same probability spa€®, ¥, P) asX. For many practical problems,
the signal process is modeled as a time-homogeneous eidtret Markov process
{Xn, N € N} with the initial distributiontg and the Markov transition kern&l. The
signal process takes its values in some complete, sepanaiitie spac€E, p). By

the definition of the Markov process, we can get
P(Xo € A) =m0 (A), (1.9)
and

P(Xne1 € AlFY) = K (X0, A), (1.10)



for any setA € & andn € N. X is theo-algebra generated KX, 0 < i < n}.

We also have

EF’[f(Xn)|?'n>fl]:jl;f(x)P(Xnedx|Tn>fl) (1.11)
- [ 10K (s
E

=Kf (Xn-1) -

Now, we give a concrete example for the signal procésSuppose that the sig-
nal procesgX,, n € N} is a simple random walk defined on the probability space
(Q, F,P) and living onZ. The initial state isXg = 0, which is the origin. At each
timen, it moves either1 or -1 with equal probability%. That meansX,, 1 is either
Xn + 1 or X, — 1 both with probability;. We have
1 1

PMXni1 =X+ 11X, =X) = > andP (Xn,1 = X—1|X, = X) = > (1.12)

for everyx € Z and evenn € N. Therefore, the random walk is a time-homogeneous

Markov process. The initial distributiory and the Markov transition kern&l are

o (dX) = do (dX) , (113)
and
K (X1, dX) =P (X, € dX[Xn_1) (1.14)
1

1
= 55(xn,1+1) (dx) + 55(xn,1—1) (dx),



for anyn > 1, respectively. gis the infinitesimal neighborhood around the point

as
dx = (dx, b, - -, dx"). (1.15)

The noise proces8V,, h € N} is a sequence of independent and identically dis-
tributed random vectors with the common strictly positivel@ability density func-
tion g. V, is defined on the same measurable sq&xe, P) and takes its values

in the sefRY. The noise proces¥,, n € N} is independent from the signal process
{Xn, N € N},

Notice that the probability density functianis always positive. For instance, the
noise proces$V,, n € N} can be a sequence of independent normally distributed
random variables, where the probability density functios defined as

(x—p)?
202

g(x) = ! exp(— ) o >0, (1.16)

V2o

for any x € (—co, ).
The noise process can be a sequence of independent randaileamith the

double exponential distribution. The probability denditgctiong is defined as

0 % exp(-x), x>0, (1.17)
gx) =
> exp(x), x<0O0. (2.17)

The noise process could also be a sequence of independdotmarariables with

the standard Cauchy distribution. In this case, the praibadensity functiong is



defined as

g(x) = (1.18)

n(1l+x2)°

for anyx € (—oo, 00).

The sensor functioh is a measurable mapping froBito RY. h could be a lin-
ear function, such as the polynomial functib(x) = ax + b, wherea andb are
constants.h could also be a nonlinear function, such as the exponenitnation
h(x) = €. If his a linear function, it is called the linear filtering probie Other-
wise, it is the nonlinear filtering problem.

Like the wireless communication example, the observatiodehfor the filtering

problem is defined as:
Yo = h(Xq-1) + Vi, (1-19)

for anyn e N.
The observation proce$$,, n € N} is defined on the same measurable sgcé, P)
and takes its values in the $ef.

The objective of the filtering problem is to compute the ctindal probabilities
7 (A) = P(Xy € Al ). (1.20)

for all Borel setsA, or equivalently, the conditional expectations under thabp-

bility measureP

m (1) = E[f (%) [77]. (1.21)



for any f € B(E) andn € N, whereF,” = o {Y,,k=1,..,n} is the information
obtained from the back observations.

While there are well-known mathematical formulae #grunder many situations,
these formulae are, with few exceptions, fundamentallyitgly dimensional and
hence not implementable on a computer. Still, there are mayg to approximate

these conditional distributions, in a computer workable manner.

1.2 Particle filter method

1.2.1 Introduction

To solve the filtering problem, we use the particle filter noethnvented in the
1960s. In the particle system, we crealé € N copies of the signal process
{X,,n € N} and, each particle evolves independently of each other. tbuan-
domness, most particles may not behave like the signal. efére, historically,
particle filters, also known as sequential Monte Carlo meshaevere considered
poor choices for most filtering problems until resamplinght@ques were invented
that dramatically improved performance. Nowadays, resadnparticle filters are
relied upon in a wide variety of applications in such diveaseas as econometrics,
target detecting and tracking.

For a resampled particle filter, at time 0, each particle adgependently distributed
asXp. Foranyn > 1 andn € N, the patrticle filter is a two-step mechanism, resam-
pling process and evolution process, from time€l ton. In the resampling process,
each particle is relocated according to some mechanisntgeréit particle filters
have diferent resampling techniques. The resampling process rellegnt some

particles from deviating from the signal too much. In thelation process, each

10



particle evolves forward independently of each other atiogrto the Markov tran-
sition kernelK of the signal process.

The original (resampled) interacting and branching plartiidters have been in-
tensely studied. However, Del Moral, Kouritzin and Miclcosbed that the perfor-
mance, and even the very success, of a particle filter degeadsly upon the type
of resampling used and little theory is known about whiclanegling procedures
should be used.

In the thesis, we will introduce and analyze the classicabited particle filter
without resampling and a new class of particle filter witharapling. In the new
algorithm, the particles interact weakly through use ofttital mass process in the
resampling procedure as well as in the particle control.stpe analysis of this
algorithm is based upon a coupling to a fictitious particlgtsgn, corresponding to
an idealized, unimplementable particle filter. The Stromgvlof Large Numbers

and the Central Limit Theorem are developed for this filter.

1.2.2 Resampled particle system

The new algorithm we will introduce and analyze in the thesexplained in terms
of a fixed number of particlesl € N. We define the following branching Markov

proces{si.n=0,1,...} as
N
Initialize: Particles{X'o}  are independent and identically distributed random vari-

ables with the same distributiarg. The weight of each particle isy = 1.

Repeat: Forn=1,2,...do

N
1. Estimates) | = =2 3 651
i=1 ™

2. Weight:W! = W andLi = WiL,,fori=1..,N

11



. Resampled Weight, = & Y L}
i

Itz

N
. Offspring Numbers{Z'n}i  are independent Bernoulli random variables with

i i I N
the probabilities{% —{H , respectively,
no L l)ic

1, with probability%—{%J,

Z = (1.22)

0, with probability 1 %ﬂH ’

The dfspring numbers is defined & = {%J +7 fori=1,.,N

. ResampleX) , = X}, for j € {NF+---+ Nyt + 1. N+ + Ni} for

i=1..,N

N
. Particle Control: Removg, N/ — N randomly selected particles, or
i=1

N
duplicateN — 3} N/ randomly selected particles with replacement
i=1

pd

. Evolve Independently? (X'n ceAVI |§§n_1) = [1K (X‘n_l,Ai)
i=1

The new resampled particle system is too complicated toyaeahathematically.

To make it accessible, the analysis of the new algorithmsgthapon a coupling to

a fictitious particle system, that is mathematically simplgt unimplementable on

a computer. In the thesis, we will show that the fictitioudigle system satisfies the

Strong Law of Large Numbers and the Central Limit Theoremaddition, it can

be a better filter approximation t@,, whereo, is the unnormalized filter defined

later, compared to the classical weighted particle systei@hapter 2, we will state

and prove the theoretical solution for the filtering problevde will introduce the

unnormalized filterr, and its relation withr,. For comparison purpose, in Chapter

3, we will analyze the classical weighted particle systernhe Tictitious particle

12



system is introduced and analyzed in Chapter 4. Conceptoak can think of the
above particle system as a weakly interacting one. In thiéidias particle system,

the particle control is eliminated arig) is replaced byr, (1).

13



Chapter 2

Unnormalized Filter

2.1 Fictitious probability measure

The objective of the filtering is to find the conditional exfsmons with respect to

the probability measur@

7 () = EP( (X0) |5rnY), (2.1)
forany f € B(E). 7, is thec-algebra defined as

Fl=o{Yk=12 ..n}, (2.2)

with the conventiorF,” = {0, Q}.

One of the best ways of constructing particle filters is tagfar all of the informa-
tion obtained from the observations into a likelihood orgteifunction by the way
of measure change.

In this reference probability method, a new fictitious prabty measureQ is intro-

duced under which the signal, observation prodé€xs Yn.1), n=0,1,2,...} has

14



the same distribution as the signal, noise pro¢éss V,.1), n=0,1,2, ...} does
underP. In particular, this means that the observations becomegaesee of
independent and identically distributed random vectotth wWhe common strictly
positive density functiory that are independent of the signal proc&ssnder the
probability measur€. In this case, all the observation information is absoriéal i
the weight or likelihood proced&,,, n= 1,2, ...} transformingQ back toP, which

in our case has the form

dP
0l = Ln= H W, (2:3)
]=
where
WJ :(y] (X]—l) N (2.4)
—h
a;j (X —g(YJ (X)),

and therefore

Ln = , (2.5)
=1 g (YJ)
with the conventiorL, = 1. 7 X is theo-algebra defined as
Fa =0 {Xok=0,1,..n}, (2.6)
with the conventiorF X = {Q,0}. FX is theo-algebra defined as
FX=0{Xk=012..}. 2.7)

15



We can find that

n n-1
L, = HW,- - HW,- Wh = LW, (2.8)
1= 1=

To prove the following theorem, we first introduce some netations. The seE®

and(Rd)m are defined as

E*X=EXEXx---XEXx---, (2.9)

(Rd)w:Rdedx---dex---,

which is the product of infinite copies of the g£andRY, respectively. As we have
stated beforeB (E™) andB((Rd)m) is the Borelo—algebra defined on the sEt

andRY, respectively. Now, we introduce the Kolmogorov’s coresisty theorem.

Theorem 2.1 For any set T and universally measurable sp&8g B;)..t, and
any consistent family of law#r, Fis finitg F c T}, where R is defined on the
product space S = [« St, there is a probability measurerFon the product
space S = []r St with Py o -1 = Pg for all finite set Fc T, where {1 is the

natural projection from $ onto &.

This is Theorem 12.2 in [14].
The following standard result constructs the real prolighimheasureP from the

fictitious one.

Theorem 2.2 Suppose that the signgf,,n = 0,1, ...} and the observatiofY,,n= 1,2, ...}
are independent stochastic processes defined on the cahpnibability space
(Q - E® x (Rd)m JF = B(E®)® B((Rd)m) : Q), the observationgY,,n=1,2,...}

are a sequence of independent and identically distribugediom vectors with

16



strictly positive density function g defined BAand \, = Y, — h(X,_1), for all

n=12,... Then, there exists a probability measure P such that (28)4) the
noise{V,, n € N} are independent and identically distributed random vextan
(Q, F, P) with the common probability density function g &, n=0,1, ...} is
independent ofV,,, n = 1, 2, ...} with the same law as off2, ¥, Q).

Proof. DefineP, on(Q = E* x (Rd)n,?’" = B(E®)® B((Rd)n)) by

@ =\ (2.10)

andletl< ji<jo<---<jk<n0<i;<i,<---<i. Then, by the independence

of X andY

EPn (2.11)

[T Jost,)

1

k |

9 (Ym—h(Xn-1))
28 s o

= 7

=E°|| [#0(X,) fR (911 —h(Xo))dys - fR 9 O —h (Xn-1)) dyn]

f O1 (V) dvy--- f On (Vn) dvy,
Rd Rd

’_ 1 k
=] Too (%) [ ] fR fr (vio) 9 (vi.) dvi.
Jr=1

L J

= E° bp (Xip

[ p=1
where
fo, ifi=]
g=12" I . (2.12)
g, ifié¢{js...
By Theorem 2.1 and (2.11)P,} are consistent. O

17



2.2 Notations and unnormalized filter

Under the new fictitious probability measu@ we can define the unnormalized

filter as
on(f) = E?(Laf (Xo) |7 ).

for anyn e N.

(2.13)

Lemma 2.1 For the unnormalized filterr, (f) and the conditional expectation

7n (), we have the following relation

an (f)

m ()= T

and

0o = 7o,

forany ne N and any fe B(E).

Proof. To prove that for anyf € B(E),

O'n(f)

m (f) = o)’

we have to show that

on(f)  EQ(Laf (%) |7
7 () = EP (1 06 [77) = 220 (Lof (X |7)

o) EQ (|_n |7_~nv)

18
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i.e., we need to prove that
EP(f (o) |7 ) EQ (La] 7Y ) = EQ (Laf (o) |7).
for everyA € F.', we have to show that

E?|EP(f (X0) |72 ) E?(Ln |7 ) 1a] =E°[Laf (Xo) 1a]

=EP[f (X1) 1a].
However

LHS =E°[EP (f (X) |7 ) E?(Ln| 70 ) 14] (2.16)

EQ[EQ Ly EP(f (Xo) 7)) - 1a| 7Y ] (2.17)

E?|La- EP(f (X0) |7) - 14]

E?[Ly- EP(f (Xo) 1a |7 )]

EP [EP [f (%) 1a |5FnY]]
=EP[f (Xn) 1A]

=RHS

SinceEP (f (Xn) |9fnY) and 1 is FY-measurable, we can get (2.17) from (2.16).
Therefore, we have showed that

an (f)

m(f) =T

for anyn € N and anyf € B (E).

19



Sincely = 1, we have

oo (f) = E2(Lof (X0) |75 ) = E2( (X0) |75 ).

and
_oo(f)  E%(Lef (X0)|7Y)

mo(f) = o) EQ(L0|(f0Y)

= E°(f () [73).

forany f € B(E).
Hence, we can get

oo (f) = mo (1),

and sincef is any function fronB (E)
go = 7.

O

By Lemma 2.1, it is enough to construct a particle filter appration o to the

unnormalized filtew,, since we can then construct our filter approximatiomn{o

on (f)
on(@)”

asal (f) =
Now, we introduce some lemmas about the unnormalized #i{€r ).

As we have stated before, the signal procg§sn € N} is a time-homogeneous
discrete-time Markov process, where the initial distribatis 7o and the Markov
transition kernel iK for any timen. Since the signal proce$X,, nh € N} has the
Markov transition kerneK under both the original probability measuPeand the

new fictitious probability measui®, we have that
Q(Xne € A|F) = P(Xnis € AFR) = K (X0, A). (2.18)

20



and by (1.11)
EC[f (%) [754 | = EP [ O [F4 ] = KE (%), (2.19)

for any setA c E andn € N.
Theorem 2.3 If H is a suber-algebra ofg, then

E[EXIG)IH] = E[X[H].

This is theTower Propertyfor the conditional expectation in [16].

By the pervious results, we can get the recursion formulth®unnormalized filter.

Lemma 2.2 For the unnormalized filter, we have

on (f) = on1 (Anf), (2.20)
where the operator Ais defined as

N K (%) = an () KT (X),N=1,2, ...
Anf (X) — g(Yn) ( ) n( ) ( ) R (221)
f(x), n=0

forany fe B(E), x€ E and ne N.
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Proof. By the definition of the unnormalized filter, we can get

o (f) =E?[Laf (Xo) |7 | (2.22)
=EQ[E°[Lnf (%) |7 v 724 |17 ] (2.23)
=EQ[EC [WaLn1 f (X0) |70 V 7y | |7 ] (2.24)
=EQ[WoLn1EQ [ (Xo) |72, |17 ] (2.25)
=EQ [WalLn 1K f (Xo_a) | 7Y |
_EQ [l—n 9 (Ya _(I;S(n—l)) K (Xoa) |7:nY]
=EQLnaAnt (%) |74 |
=on-1(Anf),

foranyf € B(E) andn € N.

Due to the tower property of the conditional expectation,caa get (2.23) from
(2.22). By the independence ¥fandY under the new fictitious probability measure
Q, we can have (2.25) from (2.24). O

If we define the composite operafdy ,,ne N,1<i <n+1}as

At () = A (A (AT (¥ Vi<n ’ (2.26)
f (%) i=n+1

by applying Lemma 2.2 repeatedly, we can get that

U'n(f):U'O(Al,nf):ﬂO(Al,nf)- (2.27)
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This immediately implies that

O'n(f) _ O'n_l(Anf) _ ﬂo(Alynf)

- (F) = = = ) 2.28
" ( ) On (1) On-1 (Anl) Tto (Al,nl) ( )
Now, we discuss the moment condition about the unnormafited
Lemma 2.3 Suppose that & B(E),, then we have
EQ[on (f)] = mo (K"), (2.29)
and
EQ [O-I’l (f)] < o,
for any ne N.

Proof. Notice thatg is the probability density function. Taking expectationgio

Y, we have that

E? e ()] =E?

g(Y;-h (x))] (2.30)

g (V)
_ [ 9y=h(¥)
e O(Y)

S IELALIOLY
- [Lot)dy Lety —y-he

g(y) dy

-1,

foranyj e N.
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Therefore, we can get

EC [on (f)] =E° [0 (Arn )] (2.31)

[
EQ [ Al,nf (X) o (dX)]
EQ [ A]_Az’nf (X) o (dX)]

EQ[ALAn T (X)] 70 (dX) By Fubini's Theroem
E

[
fE EQ [g (=00 p, ¢ (x)] 170 (dX)

g(Y1)

= Q n

G Az,nf(z)K(x,dz)] (0

~ [ [ ETAent @IK (x )0 (@0
E JE

. f E2 A, f (2)] Krro (d2)
E

:fEQ [Aniinf (2] K"mo (d2) Apply the technique recursively
E

- fE f(2) (K"ro) (d2)

—K"70 (f)

=mo (K"f) By (1.7).
Since the functiorf is bounded, we have
EQ [O-I’l (f)] < oo,

for anyn e N. O

Now, it will be helpful to give a new definition for the next lenas.

24



Theobservation variability functioms defined as

g(y—h(X))g(y—h(f))Ol

Ax8) = g(y)

Y.

It is also useful to define the single variable version

96~ hIP,

i(x):ﬂ(x’x):f 9(y)

We show the observation variability functions of two kindspoobability density

functions.

1. Suppose tha is the probability density function of a normally distrileat

random variablé, i.e. X ~ N (m, o), then

(y—m)z),

5 (2.32)

g(y) = eXp(—

V2ro

wherey € (-0, o0) ando > 0.

Therefore we have

“g(y-h(x)g(y-h()
(X&) = dy
_ %)’ 1 exz(i)(y— h(-m? (y-h(©)-m? N (y- m)2)OIy
—0o \/ZO'

202 202 202

© 1 —(h h 2 2h(¥)h

_ Lo — exp ly=(h(x) 2+02(§)+m)] . (22 (6)) dy
~ _ 2

_ Lo \/% - exp ly=(h(x) ;Gf;(fhm)] ) exp(h(x;f;(f)) dy

h(X)h(f))
0.2

_ v 1 _[y—(h(X)+h(§)+m)]2)
= exp( f: " Voo exp( 552 dy
_ exp(h () h(f)).

o2
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2. Suppose thag is the probability density function of a double exponential

distributed random variabl¥, then

1
5675 x20, (2.33)
1

€. x<0, (2.33)

9(x) =

and the sensor functidmis non-negative.

Then, wherh (x) < h(¢), we have that

0 h(x) h() =
A(%,€) zle—h(x)—h@) f &dy + f " eVdy +}eh(x>—h(§> eydy+1eh(x)+h(f> f evdy
2 o 0 2 h(x) 2 h(&)
(2.34)
1 h-n@ ]2 L e | L Lo [oh© ] s Lo
—Ee - »§+§e +§eh [eh—eh ]+§eh
zle—h(x)—h@) _ }eZh(x)—h@) 4
3 3
Hence, by symmetry, we have that
1
A(x, &) = 3 [e—h(x>—h(§> _ eZh(X)Ah(f)—h(f)vh(X)] + nh@) (2.35)

wherea A b = min(a, b) anda v b = max(a, b), for any numbers andb.

Many of our constraints and calculations are naturally gdiagpon the observation
variability functiona and the Markov transition kern&l. Indeed, they will largely

appear as the one and two variable combined kernels

Ki(x,d2) = A(X) K (x,d2), (2.36)
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and

Ki(x ¢, dz d7) = 1(x §) K (x, dz) K (£, dZ).

For anyf € B(E), we have

Kﬂ(fxf)(x,f)=fEfEf(z)f(4)KA(x,f,dz,dg)
:fEfEf(z)f(4)A(x,f)K(x,dz)K(f,d4).

Lemma 2.4 Suppose that € B(E),, then we have
E[Lnf (X0)]* = 70 (K5 (7))
and ifzo (K7 (2)) < oo, then
EQ[Lnf (X)) < oo,

for any ne N.

Proof. Taking expectation ove¥, we have that

(9(Yi-=h))(a(Yi - h©))
QU (x) - a: (&) =ER
E?[ej (9 - e (©)] =E #00)
I CTRIENI T G))
92 (y)
_ (9-h()gy-h()
g(y)

-g(y)dy

dy

=1(x,€),

foranyj e N.
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Then we can get

E[Lnf (Xo)]* =E°[L7 1% (X0)] (2.41)

=E°|| | f (X0 £2 (Xn)]

= L

=EQ A (X|_1) f2 (Xn)]

T
=

:EQ A (X|_1) A (Xn_]_) K f2 (Xn—l)]

T
=

=EQ A (X|_1) K,l f2 (Xn—l)]
L1=1

=mo (K7} (f2)). Apply the technique recursively

for anyn e N.
If 70 (K7 (£2)) < oo, then
EQ[Lnf (X)) < oo,

for anyn e N. O

Remark: The condition

no(Kg(fZ)) < o0

might seem hard to verify. However, if the observation Maitigy function A is
bounded byB, then
mo (K5 (7)) < 2 B"

It follows by the previous example 1, we have thais bounded if the obser-
vation noise is Gaussian distributed and the sensor funttis bounded. By
the previous example 2, if the observation noise is doulpp@eential distributed

and the sensor functidmis bounded, then the observation variability function is
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bounded.

Lemma 2.5 Suppose that € B(E),, then we have
E?[o2 (f)] = mo x 7o (K] (f x 1)), (2.42)
and ifz x 70 (K7 (f x f)) < oo, then
EC[o?(f)] < o,

for any ne N.

Proof. By (2.27), we can get

E?[02 ()] =E° [3 (Aun )] (2.43)
—EQ [ fE Aqnf (X) 70 (dX) - fE Al,nf(f)no(df)]
_ f f EQ[Aunf (X) Arnf (€)] 7o (%) 7o (c).

and
EC[ART () Anf (&)] =E? [AAL T () AA LT (©)] (2.44)
_eof9i-h(), g(Yi-h@), . ]
E [ g (Y|) KA|+1,nf (X) g (Y|) KA|+l,nf (é:)

—EP |y . _ _

E [% (X) Yi (é:) £A+l,nf (Z) K (X’ dZ)LAHl,nf (g) K (ér, d{)]
:fEfE/l(x,g)K(x,dz)K(g,dé«) EQ (A 1nf @A 1nf ()]
:LLEQ [Avinf @ Asinf ()] Kai (X &,dz d0),

foranyi =12, ...n.
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Therefore, we can get by substitution that
E? o2 (f)] = mo x 7o (K] (f x T)) < oo,

for anyn e N. O

Remark: The condition

ﬂoXﬂo(Kg(f X f)) < 00,

might seem hard to verify. However, if the observation Maitigy function A is
bounded byB, then
mo X mo (K (f x f)) < |f2 B".

It follows by the previous example 1, we have thais bounded if the obser-
vation noise is Gaussian distributed and the sensor fumttis bounded. By
the previous example 2, if the observation noise is doulpp@eential distributed
and the sensor functidmis bounded, then the observation variability function is

bounded.

Remark: By Lemma 2.3 and Lemma 2.5, the variance of the unnormahited

o () under the new fictitious probability measupas

E[crn () ~ E? (e ()] =EQ 02 ()] - [E (rn ()] (2.45)

—10 x 710 (K] ( X 1)) = (0 (K"F))?.

By Lemma 2.3 and Lemma 2.5, we have showed that, under sonaktioos, the
first moment and the second moment of the unnormalized #i{éf) with respect
to the new fictitious probability measuf@ are bounded. These lemmas establish

suficient regularity for our Strong Law of Large Numbers and @aritimit Theo-
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rem results
Define7Y = o {Y,, n=1,2,3,...}. In the sequel, we will fix an observation path,

set
Q' () =Q(|7Y). (2.46)

and letEY [-] denote the expectation with respeciQd.
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Chapter 3

Weighted Particle System

3.1 Introduction of the particle system

In the weighted particle filter, we create fixed numbee N independent copies
of the signal process, called tiparticlesand simulate them simultaneously. The
weighted particle system do not utilize resampling.

At time n, the particle system is defined m}tl Each particle is a sample from
the signal process. That means, each parditles a time-homogeneous discrete-
time Markov process defined on the measurable sfAcg, Q), where the initial
distribution ismq and the Markov transition kernel ¥ for any time. {X‘}:\:Il are
independent from each other, and under the new fictitioulsgimtity measureQ),
{X‘},Nl are also independent from the observation prodesée note thafX', )

has the same distribution 8%, Y), forany 1< i < N.
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The weight of each patrticle is defined as

Ll = ﬁ Wi, (3.1)
j=1
N I g(Yj _h(xij 1))
W, =a; (X]_;) = o(v)
and
Lh=1

foranyneN,1< j<nand1<i<N.

For each patrticle, we can define the single particle measures
B =Lk and B =m0, (3.2)

foranyne Nand 1< k < N.

Then we have the the following measure-valued evolution

B () =LK (XK) (3.3)
g(Yo - N (X3.,))
9(Yn)
=851 (A f) + L[ £ (X6) - EY(f (X)X,

n

=B85 (Aunf) + D L [Avraf (X) = EY (Avanf (X)[£,)] By recursion

=1

=70 (Aen ) + ME“ ()

Lk, K (XK )+ Li [ (XE) - EY (F (%) |754)]

= () + ME (),
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where

n

ME (1) = 3 [L (Aanf () ~ E [Awaaf () 72 )

1l
o

NIEENSE ;buﬂ L= IV

[L:(A|+1,nf (Xlk) — LKA, 10 f (Xlk—l)]

g(¥ - h(X5,))
a(¥)

LA 10T (X) - LS,

LA Laf (XF) = LG AALLf (X))

[ LA () - LA ()

I
S o

B (An) = By (AR T)].

1=0

foranyn e Nand 1< k < N.

If we average over the particles and defirf(f) as
1 N
N _ i i
o (f) =5 D Lt (%)
then
op (f) = o (F) + M) (),

where

n

MY (F) = >~ [o (Auanf) = oy (AR )]

=0
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for anyn e N.

Lemma 3.1 {M,’ﬂ (f),ne N} is a zero-mean martingale in n with respect t6.Q

Proof. First, we calculate the expectation Mﬁk ().

SinceLkis FY v FX,-measurable for any £ k < N, we have

n

e 0] [ 31t (Aot ) asnt (O] | @9
- 3B (et )~ " (st ()25

Y (UAcanf (%) - £ LEE (Acuat (X) 72

Y (UAcanf (X) - £¥[E¥ (Acant (K] 72)]

[EY (LFAwnT (X)) — EY (LiAwa T (40))]

= 1vs I 2

I
o

|
o

By the relation betweeMZ" (f) andMN (f)
19 ‘
= E‘ 4
M (f) N 24 M (f)

Therefore, the expectation (i1} (f).n € N} is zero with respect t@".
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For anyl e Nand 1< k < N, we have

£ M (F) - M, (D7 | 39)

|
EY L (Aranf (X) = EY (Aanf (X1 [77%)) 1774
EY [Li A1 (X) |75 ] = EY [LFEY (Aceinf (XF) [75) |75 ]
[
[

EY [L¥AL 1 f (X |75 | - EY [EY (LiAwn (X)) |75 ]
) |7

|7:| 1] —-EY [L:(A|+1,nf (Xlk) |¢|)—<1]

E"[LfAL1n f (X

=0.

Hence, we can get

EY | (h |7 | = ME ().

By averaging over the particles, we have
EY[MN (1) |77, ] = MY, ().

That means{,M,‘}' (f),ne N} is a martingale im with respect taQ". O

By Lemma 3.1, we know tha{ﬂ\/l,?‘ (f),n=0,1, } IS a zero-mean martingale in
n as well as the average &f independent and identically distributed zero-mean

random variables overboth with respect t@".

3.2 Main results

3.2.1 Strong Law of Large Numbers

First, we introduce a new definition and theorem stated in [1]
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Definition: A class of functionsM, defined on the topological spa&g strongly
separate pointgs.s.p) if for every x € E and neighborhoo@®y of x, there is a

finite collection{gl, gk} c M such that

: Lo o
;QJXQQQHQ v) - d (9| > 0. (3.10)

Define a new class of functions as

A= (f)2, = {ﬂ (1-d(x.-))vO:leN,x e {yk}‘;;l}, (3.11)

=1

for some dense collectidwy},, € E. From [1], we know that the class of functions

A ss.p.

Theorem 3.1 Suppose thaiE, 7) is a topological spacgP,}U{P} c # (E) and a
class of functiong\l c B (E) that strongly separates points and is closed under

multiplication, and
ngdPn - ngdP, vge M. (3.12)
If M is countable, then
P,= P (3.13)

where(=) means weak convergence.

Now, we can state and prove the Strong Law of Large Numberthéoweighted

particle filter.
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Theorem 3.2 Suppose that the unnormalized filter is defined as
on(f) = EQ(Laf (X0) 7). (3.14)
then for the weighted particle system,
o =0, as. [QY], (3.15)

when N— co.

Proof. By (3.7),{MY (f).n e N} is defined as

n

MY (F) = D" [o (Aa) = oy (AT (3.16)

=0

and it is the average ™ independent and identically distributed random variables
overi with respect taQ".

The expectation g8¥ (f) is

E" [5 ()] =E [ra (1) + ME ()] (3.17)

EY [on ()] + EY[M5" ()]

EQ[EQ(Lnf (Xo) |7 ) [7Y] +0
=E°|Lnf (Xo) |7 |
=0 (f)

=70 (Al,n f) .
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Then the expectation efN (f) is

N

D E BN =on(D=mAnh. (318

k=1

EY [0 ()] =

2|+~

Since by Lemma 2.3, we have

Q[

L f (xin)] — EY [0 (F)] = 70 (K™) < oo, (3.19)

forany 1<i < N and any functiorf € B(E),.

Then, the Strong Law of Large Numbers implies that
MN(f) >0 a.s. [QY], (3.20)
SO
o (f) > on(f) as. [Q7]. (3.21)

forall f € B(E),.
For the sefA defined above, it satisfies thatc C (E), andA is countable. Notice

thatA c B(E),, then we have
oN (f) > on(f) as. [Q7]. (3.22)

for all f € A. In addition, the seA strongly separate points and is closed under

multiplication. Therefore, by Theorem 3.1, we can get

oN =0 as. [QY]. (3.23)
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3.2.2 Central Limit Theorem

Define an operatoh’® as

2 T—
A§2>f () - a; Kf(x),)j=12,.. ’ (3.24)
f(x). j=0

and also the composite operator

AP (AZ - (APT)) (). Vi<n

AT () =
f(x), i=n+1

(3.25)

Now, we state and prove the Central Limit Theorem for the Wiad particle sys-

tem.

Theorem 3.3 Let f € B(E), satisfy
7o (K5 (7)) < oo, (3.26)
and
o X 7o (K] (f X f)) < c0. (3.27)
Then, the weighted particle system satisfies

(o ()= on(F)) = N (0 (F) as. [Q]. (3.28)
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where

' (f) = Zn A2 AP (Anan)? = (AT (3.29)
and

E?|yn' ()| = inoK';l [Ki— KK (f x ). (3.30)

Proof. As we have stated befor{d\/l,’ﬂ (f),ne N} is the average o independent
and identically distributed random variables overith respect taQ". In addition,

by Lemma 2.4 and Lemma 2.5, we can learn that
EY [LL (X)) = o ()] < Z{EY (Lot ()] + E¥ o (f)]z} <o,  (3.31)

foranyn e N.

By the classical Central Limit Theorem, we have
W(oh () - () = N (0 (F) as. [QY]. (3.32)

Since for the weighted particle systefX, Y) has the same distribution wiX, Y),

for any 1< k < N, we can just work with(X, Y), and denotg, = L,dx. By the
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martingale property, th&_’-measurable random variance can be written as

W (8 =EY [ME (D] - [EY (M ()] (3.33)

—EY[Mg (0]
2

=EY Z'B' (Aiin®) =B (Anf)
1=0
= > E[B (Au1n) = B (AR 6P
1=0

+2 Z EY [(,Bi (Aisinf) = Bic1 (Ainf)) (ﬁj (Aj+1,n f) - Bj-1 (Aj,n f))]

I<i<j<n

= Z EY [ﬁl (A|+1,nf) _ﬁl—l (Alnf)]2
=0

2 3 EY| (M (h - ML) (M7 (o - M ()]

1<i<j<n

- Z EY 8 (Aanf) = Bia (AL
=

2 ) EY[EY[(Miﬁk(f)— Mf_kl(f))(lvlfk(f)— Mffl(f))l?',-ﬂ”

1<i<j<n

- Z EY 8 (Aanf) = Bia (ALD)
0

2 3 e (M- L ) e (- L ) |

1<i<j<n

= Z EY [ﬂl (A|+1,nf) _ﬁl—l (Alnf)]2
=0

(EY I8 (AsnDP = E" (A1 (A D)F)

D= 8-

(EY[LF (Awan®)® (4)] = EY L1 (A ) (X0) ]

s L
o

= 7T0A(l?|)—l [AI(Z) (Al+l,n f)2 - (A”‘ f )2] '

=0
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Now, we move to calculate the expected valug/¥f(f). By the fact thaty,} are
independent and identically distributed random vectand,iadependent oX, we

can find that

n [

E? [y (0] = ) E°Y| |

1=0 L k=1

EQ|[ [ 21Xt (K (Au1n )2 (Xic2) = (KA 1a f (x|_1))2)]

L k=1

A(Xic1) (Appn T (X) — KA 10 f (Xl—l))zl (3.34)

I
° o

[1-1

| A0k 1)(f/sq+lnf(xm+lnf(x)ux| DK (%1, 0

L k=1

fAHlnf (X) K (Xi-1, dX)fAHlnf () K (Xi_1, d€) A (X1, Xi- 1))]

= i E®
1=0

- L LAHl,nf (X) Aern f (€) Ky (X212, Xi_g, dX, df))] :

-1
(106 [ [ et 09 Aanf (09 10X-0) K (51,09
k=1 E

Hence, it follows by (2.44) that

-1

EQ ' ()] = ) E° [ﬂ (%) ( f K (X 1) (6 ) 106 K (%1, 09
=0

k=1

= (K (% ) (-1, X)) (3.35)

n
= Z""Klfl [Ky — K K (F x ).
=0
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Chapter 4

Fictitious Particle System

4.1 Introduction of the particle system

The problem with the weighted particle system is that, dueatmlomness, most
particles do not behave like the sighl, n = 0, 1, ...} so their weights become rel-
atively small compared to the weights of very few good p&sic This results in a
particle filter that &ectively consists of an average over only a very small propor
tion of the particles. This problem manifests itself theicadly in the large expected
variance of the central limit theorem in the previous chaptel practically in the
need to use a huge number of particles in most applicatiomsombat this ffect,

we introduce the resampling process.

Initially, we pretend herein that we have access to the datuaormalized filter to-
tal masqo, (1), n=0,1,2, ...} and consider an unimplementable fictitious particle
system. In particular, we use the resampled algorithm givéhe Chapter 1 with
N (1) replaced with (the computer unworkabte) (1) and the particle control step
is eliminated.

Suppose thal, € N and we have the following random variables:
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1. { ,'?“X c ki,neN,xe E} are independent random variables with the distribu-

tion K (X, -),
2. {¥¥],", are independent samples from
3. {U,'?i s ki,ne N} are independent Uniform[Q] random variables,

which are mutually independent.

We want to keep track of the fictitious particle system in tmwhthe first ances-
tor of each particle. In other words, our fictitious partiéléer will be the av-
erage ofN independent and identically distributed branching Markowcesses
{85, n=0.1,..}, each starting from an independent samjle They evolve in-
dependently of each other only interacting with(1), which is deterministic with
respect toQY. At any time, many of the3 may have died out while others may
have branched into multiple particles. For clarity, thetiohes at timen, that are

Ny

offspring from the original particlgX, will be denoted a{s/\’ﬁ’i} . and the weight of

i=
each patrticle after the resampling will only depend upand be denoted as,.
Then, the branching Markov process corresponding to theliparticle and the

complete filter estimate will be

1 N
BE=Ly ) 6w and S)= 3 > 8, (4.1)

forany 1< k < N andn € N, respectively.

Now, we define the branching Markov procest@§ n =0, 1,...| as follows:
Initialize: X§* = x*, N& = 1andLo = 1, fork=1,2,...,N.
Repeat:Forn=1,2,...do

Ni 1
1. EstimatesBk_ = Lo 16y
i=1 n-
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2. Weight Wy' = % and L&' = WKL, fori=1,.., N

3. Resampled Weight£, = 0, (1)

4. Offspring NumbersZy' = 1

s
In

i NKT = Vh'J +Z8 fori =1,..., NK

Ln

andNK = Nt 4 ... o N

5. Resample: Lex®) = XX forje {Nl?l o+ N NS N,'?‘}

6. Evolvelndependentlyl(n —frlf'x

For notational convenience, we defing' = E]ll N, 7Y = {uf kieN,I <n
and7X = a-{X:“i,k,i eN,I < n} for anyn > J(;, with the conventiorFy, = 7% =
{0, Q). Define theo—algebraF V* = FY v X, for anyn > —1. After the resam-
pling, we haveNy' particles at locatiok' ; each with weightZ,, = o, (1).

Hence, the fective weight at locatioX ﬁll after the resampling satisfies:

Pk pki ki ki pi | gk
. Lq Ly Ly

Y ki |V x| = =n =n _ - = 4=

Bl |¢"-1V¢”]‘£”({Ln|+l)(zn {LD L”L:n|(l £ LID

rkii
=L, = 4.2
L Ly (4-2)

zgﬁi,

which is the weight prior to the resampling. Therefore, thgtfous particle system
is unbiased

However, we need to go further and establish a martingalegotg Averaging over
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theUX', we can get that

N,‘,"i +N,‘§’i

el S ()

=N L

ki
FlLVFS

4.3)

. ~kii

ki, | £

Np'+| 5 AKi
Ln 5

| s WO E= A
—EY|Z, Z f(X§J)+Ln(Tn—{Z|)f[xn 7 ]

=AML

Uk X
7:n—l \ 7:n ’

where ther—algebraF ”} = o {Usl : m<n, (I, j,m) # (k.i,n)}. ThenNk_, is 7%

measurable, for any £ k < N. Using (4.3) plus the fadil¥ , € 7°X, we can get
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that

EY[85() |7 ] =E” Zznf(xw)lﬁ”f] &
=
[N AN

Y)Y L (X4) |7

] i=1 j:MKi+1

v r ki, ki
Ny g Ny Nn

:ZEY L Z f(XﬁJ)|7‘~nLi>1(

=1 | e
= > E"|E

-1 K.i
_ Zl:n-l:nl Kf (Xﬁll)
N
- Bk (x4
i=1
N

_ Z WH Lo 1K (XS)

le*i +Nr'f’i

Lo Y, f(x8)

J=Nf

ki
For V T

UX
|7

i1

NK,
= Z Lo 1At (X Ell)
i1

=853 (Anf),

subject to

B5(F) = 1 (), (4-5)
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forany 1< k < N.

By using (4.4) recursively, we can find that

EY[85 ()] =EY [EY (8 () |72Y)] (4.6)

[
EY[ 851 (A)]
=E" [Bf (Ava )]

=E¥[Aunf ()]

=0 (Arnf)

=0 (f)

=EY [on (F)].
Applying (4.4), we have the following measure-valued etiolu

B (1) =B, (Auf) + Bi () — EY [B5 (1) |7} | (4.7)

=B (Auaf) + ) [BK (Asaal) = EY [ (Aian ) 7|

=1

=70 (Arn f) + MZ ()

=0 () + MZ* (),

where
n

M2 () = > [ B (Auin) - EY B (Aa D) |7 (4.8)

=0
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forany 1< k < N.

Averaging over the ancestral branches, we can find that

. 1
EY[SN () |75 ] = Sh.y (Anf) SubjecttQS’g‘(f):NkZ:;f(Xk), (4.9)

EY[SY (D] = o () = EV[n(F)]. (4.10)
SN (f)=on (f) + MY (), (4.11)

where
M (F) = > [SM (Auraf) = EY [N (Aa D [F5]] - (4.12)

=0

Lemma 4.1 {Mr’}' (f),ne N} is a zero-mean martingale in n with respect t4.Q

Proof. By (4.10), we have

EY[MY ()] = E[SY (1) —on(D)] = EY[SY (D] - E"[on(D] =0, (4.13)

and

EY[MN () = MY, (D) [A%] =EY [SN (Aurnf) = EY[SY (Arn ) |7 ] 7]
(4.14)
=E"[SY (A O |7 | - BY [EY[ S (Aan D IR 1721
=EY [SN (Aurn D) |72 - EY[SN (Aurn D) 7]

-0,

for anyl € N.

Therefore,{Mr'}' (f),ne N} is a zero-mean martingale inwith respect toQ". o
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4.2 Main results

4.2.1 Strong Law of Large Numbers

Now, we state and prove the Strong Law of Large Numbers foli¢chiBous particle

system.

Theorem 4.1 Suppose that the unnormalized filter is defined as
o (f) = EQ(Laf (X0) 7). (4.15)
then for the fictitious particle system,
Sy =0, as. [Q']. (4.16)

where(=) means weak convergence.

Proof. Since by Lemma 2.3 and (4.6), we hah‘iéHBﬁ (f)|] < o0, forany 1< k <
N and any functiorf € B(E),.
Hence, it follows by the Strong Law of Large Numbers for inelegent and identi-

cally distributed random variables that

N
2, B —on(f) as. [Q.

k=1

S (f) =

Z| =

foranyf € B(E),.

Using the same sétin Theorem 3.2, we can get
S\ =on as. [Q]. (4.17)
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4.2.2 Central Limit Theorem

To establish the variance in the Central Limit Theorem fa ftictitious particle

system, we need to define the remainder fundRa(x),

0@ [ru@a® [ca@a®| (a@n® _[ca@a |
R() = o1 (1) { o (1) { a1 (1) | ( o1 (1) { o1 (1) |) }’

which is an artifact of our resampling procedure.

LetM = 2l _ | 2a@al | e can get a bound fdR (x)

R (X) _ (o] (1) o1 (1) ) (X) _ \‘Oﬂ_l (l) o] (X)| B (0’|_1 (l) Q) (X) _ \‘O-I—l (1) a (X)|)2
o1 (1) a1 (1) a1 (1) a1 (1) a1 (1)
:;I_'l(a) (M- Mm2) (4.18)
O (1) ’
4021 (1)

However, by the definition of the floor function, we have M < 1. Therefore

M — M? >0, (4.19)

and

R (x) > 0. (4.20)

Now, we state and prove the Central Limit Theorem for thetiozis particle sys-

tem.
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Theorem 4.2 The fictitious particle system satisfies
VN(SY (F) = oa (F)) = N (0.9R(F)) as. [Q7]. (4.21)
where

YR(6) =" o1 (DmoAwi [A (Auinf) = a1 (KAL) + R (KA, )]
1=0

(4.22)

for any f (defined in Theorem 3.3).

Proof. For the fictitious particle system, we first establish theunexgl second mo-

ment condition

EY [B5(F) - o (D] < 2{EY [84(D)] + EY[o, (f)]z} (4.23)

<2IfP EY [(Nﬁzjn)z] 2 7o x 7o (K (f x ).

Moreover, by (4.2),

N
= [l v | = 2 3B (N e v - [ s s )
i=1
N
+ Z E [L”Nﬁ’i |(f7~nLil v (an] E [£ner?j |(fnti1 \% (f’-nx] (4.24)

i,j=1

However, by the non-negativity and boundness of the fundjdhere is acy > 0
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such that supg%;—h@ < cy. Therefore, by (4.24)

xeE,j<n )

Y 2N\IK
SN e feny]. @

e[|« =5

and

E"[Nf, | vI=1...n-1 (4.26)

WHIL, L
EY[NIk] — EY [le_l |LII 1] <c, II_—Il

Using recursion on (4.25) and (4.26), one finds that
EY [(LnNnk)Z] < . (4.27)
Therefore
EY[B5(F) - o ()] < oo. (4.28)

It follows by the Central Limit Theorem for independent addntically distributed

random variables that
N
VN (SN (D) - (D) = —= 3 (B~ o (1)) = N (0.0R(D).  (4.29)
W

Now, we calculate the random variang®(f). To simplify our notations, we ab-

breviateMX = Mﬁgk (f). Therefore, by (4.4) and (4.8), we have

n

M= 0 [BH (A~ B[ B (a7 ] (4.30)

= [ﬂk (Aanf) = B4 (Anf )] :

1=0
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with the conventiorX = r,, for any 1< k < N, and the martingale fferences are

BE (Asinf) = By (Anf) (4.31)
Nk Nk

—Z£|A|+1n Xkl ZLl 1A f(XFIl)

NE, (AN (Y _ h( XK ))
. gy -1 .
- LA f (X - £ KA 10 f (X
- j:%ﬂ 1F+1n ( | ) -1 g(v) Ln ( |1)
NE, (VNS
= Z .£IA|+1n £K'KA|+1n (X:(Il)
i=1 JNk'+1
NN N“'+N"'
=a (1)2 Z A1t Z Ainf :
=1 =AML J=NE A
Therefore, by the independence of th as well as the independence of ¢
EY (8 (Auaah) - B (A D) 7% (4.32)
N|71 MleJerle lei2 Nki2
=of(@) Y B D0 A (X)) DT Anaaf (XR)[RY
i1ix=1 jllek’i1+1 jo= Nk'2+l
Nkil Nkil levi2+levi2 '
D0 Al (X FESIEY D A (X12) R
j1=A 141 j2=A 241
NN Nk'+Nk" 2
= 0] (1)2 el S A (459) | TS A () 70| 1.
=N +1 =N+
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However, by the independence of 3¢ again

2

uXx
[

<

E (4.33)

[ )Vlk,i_'_le,i |
[ S At (X8)

| j:le*i+l
= B[N (A )2 (KE) = (KA 2 (X)) + (N K A ) (X 72

13"" .
= 7 {K A (K%)= (KA ) (K1)}

SRt e |
[EY

Combining the last three equations, we can find that

)Vlk,i +N|k,i

Z AI+1,nf (X:(’J) |97|L_J]?(

j:le’i+1

= (EY [NE KA1 f (X)) 75 )) (4.39)

Le
(1: ] (KA1 )7 (X1%).

EY| (8 (A f) - B (A ) 7% (4.35)

=01 (1) B 1 (A Az ) = a1 (KA1 ) + R (KAL1a T)?).
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By (4.4), we have

V() = D EY (8 (i) - B (A )| (4.36)
1=0

- Izjol EY [EY [(B:( (Anf) - B, (A"”f))z |T'L‘Jlx”

= > o1 (DEY B4 (A (Aurn )’ — a1 (KA1 )P + R (KA1 )]
0

=}

= > o1 (DmoAr1 | A (Auraf)? = on (KAL) + R (KA1 TP

1=0

Remark: To make the calculations simpler, we cancel the remaineten of the
variance of the Central Limit Theorem. By (4.6) and (2.44§ wan get the

expectation of the random variang®(f)

E?[yR(N)] = D E?[o1 (MBI (A (Auanf)® = (KA1 f) )| (4.37)
1=0
= Z EC [0'|—1 (y)oi-1 [(K (Apinf)? - (KAI+1,nf)2) Yl”
1=0
AN EQ{O-_ e [ ([ [k xHE)K(.d)
; |17||17|Y(ff X 1)z ) Ky, 0z

}

3 [ [ o xmo) K (e ) [Ra = Ka KT (F X ) 02y) 2x)-
1=0

- fng—'(fxf)(z,g)K(y,dz)K(y,dK))

whereK; andK; are the combined kernels where 1.

Now, we calculate some particular examples to compare theated variances of
the Central Limit Theorem for both particle systems.

Suppose that the sensor functibfx) = x and the probability density function
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1

XZ . . oy . .
g(x) = e z, then the observation variability function is

5

A(x. &) = exp(h(x) h(£)) = exp(xs) .

(4.38)

. 2
Let the Markov transition kernel a6 (x, dz) = \/je‘z(H)Zdz, then we have
T

K, (%, d2) =K (x,d2) A (X)

- errae
T

— \/? e—x2 +4xz-27> dz,
T

and

K/l (X’ ‘f’ dZ, d{) =K (X’ dZ) K (f’ dg) A (X’ f)
2ty ey . g

T

2 D e 2P 2P A2 G

T

UsingK'tt (x,d2) = [K' (£,d2) K, (x, dZ), we have

R2 (x, d) = f R, (£, d2) K, (x. 40)

:g f e a2 g ;- g Prau-22 4,
TJ-wo
_2 - Zzzdzfoo e—3§2+4(x+z)§dév

T

2
\/—

e 222+ 8xz+ ] XZdZ,
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and

K3 (x ) = [ KE (@ d K, (x ) (4.42)
22
~Var
2‘/2 22 X2 dz f ( +(3z+4x)(d§

2 \/éef522+ Bxzr L3 dz,

\ar

f 222+3§z+3£2dz X 2L AX,— 2§2d{

and

i () = [ K3 (@.dK, (x ) (4.43)

_ 4 f 815622+ 5(z+3(2dz e—x2+4xz sz{
V5
4 81522 X dzf e%§2+(4x+%32){d§’
" \Br 0

But the integration|” e3¢**(*+¥7¢dy is infinite. By (3.35), the expected variance

of the weighted particle system is

E?|yn' ()] = inoK';l [K, = KK (F x f). (4.44)
=0

Whenn > 5, the 3" term of the sum isoK4 [K, — K] K5 (f x f) and will be
infinite. Therefore, the expected variance of the weightadigle system will be
infinite.

Now, we calculate the expected variance of the fictitiousigdarsystem. Using

KU (x, £, dz, d) = f f K\ (y.60.dz. d) K, (x & dy.d), (445
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we have,

K2 (x, & dz d2) = f f K, (y, 6, dz d2) K, (x, &, dy, do) (4.46)
:7_2T I: j:: exp(yo — 2y° + dyz— 22 — 207 + 40 — 20°) dzdg
; exp(xg — 2% + dyx— 247 — 282 + 480 — 2(92) dydo
:% exp(-2Z - 20 + x¢ — 2x° - 2¢%) dzdg
-foo fwexp[y¢9—4y2 +4(X+2)y - 46° +4({+§)9] dyde.

The integration is calculated as

fw fw exp[y9—4y2+4(x+z)y—402+4(§+§)9] dydg (4.47)
~2 expl g O 2+ g (€ P4 o (X4 D48

SRl o)

32 4
- (G d+ g5+ o)

2 2
~aly- (G0 a+ e+ a)

—+

4 32
9—(ag(x+z)+a3(§+§))

} dydo,

Notice that the last two lines of (4.47) is a two-dimensioBalssian distribution.

Therefore, we have

K2 (x, &, dz df) (4.48)
:ﬂi'2 exp(—Zz2 — 2074 X - 2% — 2§2) dzds

T exp| g (x4 24 G (4 4 g (A 4
:% exp[—g—; (C+&+2+2)+ g—gxg + %(xu ZE) + Els_g (X + 2 + z£) | dzde.
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The idea of calculating(? is that: we try to divide the integration into two parts.
The first part is the integration of the probability densitywétion of a Gaussian
distributed random vector. The second part is the integnatf some remainder

terms. By the same technique, we can calcugtendK?, respectively,

K3 (x. &, dz d?)
16 62, 62, 16
exp-822 - 822,16, o e o).
V63 Xp( 63° ~ B3t Tk T X 25)
2V63  [188(128 16 \° 188 (128 +Ez+4§2
iz Pl 2145\ 63" 63° 2145\ 63° * 63

79 (128 16 128 16
+ —2145(524- 6—34 + 4X) (g{ + 6—3Z+ 4{:)] dng
32 12820 , .o, 2, 2, 1264 ~ 3409
= o 1a5e eXp[ 51a5 < +HE T+ D)+ S+ S
3136 1024
+ —2145(xz+ L&) + —2145(x§ + z£) | dzdc.

and

K1 (x & dz d?)

64 1282, 1282, 1264
= Vo1d5e eXp(_mszz ~o1ad topggk T2 252) dzd-
42900 l796 (3136 L1024 4X)2+ 796 (3136§+ 1024 46)2
iiose7ass P\ 7a97\2148° T 2145 7497\ 2145 © 2145
, 487(3136 1024  \(3136 1024 |
7297\ 2125 2145 o1a% T ot
128 exp[—@(x2+§2+§2+ 22)+6125 , 15289,
V5247% 7497 7207° * 7297
+ %)(xu ’E) + %(x{ + z£) | dzd/.
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By (4.37), the expected variance of the fictitious partigietem is

EC[yR (D] =D f f (0 X 7o) KI™ (dx, dly) [Ky = Ka] KT (f x ) (1, 1) 2 (x.Y).
=0

(4.49)

If n =5, the expected variance of the fictitious particle system is
5 —
S [ [ roxa K e (Ko - Kal K3 (Fx DB A (450)
=0

By the previous calculations, we can see tKatis finite wheni < 4. Therefore,

the expected variance of the fictitious particle systemiisfstite whenn = 5.
However, as we have showed before, the expected varianke wfdighted particle
system is infinite whem = 5. Hence, we have showed that, under these condi-
tions, the expected variance of the fictitious particle aysis less than that of the

weighted particle system.
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Chapter 5

Summary and Future Work

In the thesis, we introduce two particle systems: weightatigde system and fic-
titious particle system, to approximate the unnormalizielrfin the filtering prob-
lem. We prove the Strong Law of Large Numbers and the CentraitTheorem
for both systems, and calculate the variances as well asxprected variances of
the Central Limit Theorem. Under some particular exampleshave showed that
the expected variance of the fictitious particle system ishnrass than that of the
classical classical weighted particle system.

In the previous calculations, we always eliminate the rehai term of the variance
of the fictitious particle system. But in reality, the rengn term exists since the
resampling process will create a lot of noise. In the futiingill be of great interest
to find some methods to eliminate the remainder term. In Eufgitve could inves-
tigate more examples proving that the expected variancheofittitious particle
system is less than that of the weighted particle system.

In this thesis, we only discuss and analyze the fictitiousigdarsystem, which is
mathematically simpler but can not be implemented on a coenpWe know that

the fictitious particle system is a coupling to the new redanhparticle system in-
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troduced in Chapter 1. In the future, we could analyze thepedger-implementable

resampled particle system with the results of the thesis.
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