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Abstract

The signal, we want to keep track of, is always modeled as a stochastic process.

The filtering problem is that, due to some random noise, we sometimes can only

access a distorted and corrupted partial observation of thesignals. The objective

of filtering is to find out the conditional distributions (expectations) of the signal

process based on the history of the observation process, denoted asπn. In the thesis,

we always assume that the signal processX is a discrete-time stochastic process,

and this type of problem is called the discrete-time filtering problem. Different

from the previous solutions, we do not estimateπn directly. Instead, we estimate the

unnormalized filterσn, which is defined under a new fictitious probability measure

Q. We will show the relation betweenπn andσn as πn ( f ) = σn( f )
σn(1) . If we can

construct some particle systems, called particle filters, to estimate the unnormalized

filter σn, it is enough to construct a particle system approximation to πn.

In the weighted particle system, each particle is an independent copy from the

signal process, and there is a weight associated to it. We prove the Strong Law of

Large Numbers and the Central Limit Theorem for the weightedparticle system. In

addition, we calculate the random variance and the expectedvariance of the Central

Limit Theorem.

The problem with the weighted particle system is that some particles do not

behave like the signal process due to randomness. This problem manifests itself

in a large random variance or expected variance of the Central Limit Theorem. To

combat this problem, we will introduce another particle filter, that utilize resam-

pling. Our key to analyzing this new particle filter mathematically is to simplify

it to a fictitious particle system, which is mathematically simpler but can not be



implemented on a computer. We prove the Strong Law of Large Numbers and the

Central Limit Theorem for the fictitious particle system. Inaddition, we calculate

the random variance and the expected variance of the CentralLimit Theorem. An

example is given where the expected variance of the weightedparticle system is

infinite while the fictitious system’s is still finite, proving the need for resampling

like that introduced within.
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Chapter 1

Introduction

1.1 Nonlinear filtering

1.1.1 Background and motivation

Filtering theory is an active research field with wide applications to real world prob-

lems in areas such as: signal processing, target detection and tracking, weather pre-

diction and financial market.

To introduce it intuitively, we show an example to illustrate the objective of the fil-

tering theory. This example comes from the wireless communication that was the

main motivation for the filtering theory in the early stage. Thesignal(process)Xn

has some randomness and is always a stochastic process. At time n, the signal is

transmitted to a receiver and the receiver will receive the signal, defined ash (Xn−1),

whereh is a function. However, there are some randomnoise Vn during the trans-

mission. Therefore, what we observe from the receiver is notonly h (Xn−1) but also
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the noise termVn. We define the observation model as

Yn = h (Xn−1) + Vn, (1.1)

whereYn is called theobservation process.

At time n, we will get thenth observationYn from the receiver. The observation in-

formationY1,Y2, ...,Yn at each observation time 1, 2, ..., n is known to us now. The

objective of the filtering is to estimate the distribution ofthe signal process based

on the previous observation informationY1,Y2, ...,Yn.

In general, signals are always modeled as a stochastic processes and described by a

stochastic dynamical system, which can not be solved directly and completely. Due

to some random noise, we can only access a partial, distortedand corrupted obser-

vations of the signals. The goal of the filtering theory is to find the probabilistic

distribution of the signals conditioning on the back observations.

1.1.2 Notations and definitions

In the thesis, we useN andZ to denote the set of natural numbers (including 0)

and the set of integer numbers, respectively. Denote the product of d copies of

the real numbers setR asRd, whered ∈ N. TheBorel σ−algbra defined on the

setE is generated by all open sets inE, denoted byB (E). For example,B (R) is

defined as theσ−algebra generated by all open sets inR. TheBorel setis any set

in a topological space that can be formed from open sets. LetEP (·) denote as the

expectation with respect to the probability measureP.

A discrete-timeMarkov process{Xn, n ∈ N}with respect to the filtration{Fn, n ∈ N}

is defined as a sequence of random variables taking values in ameasurable space

(E,E) satisfying that
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1. Xn isFn-measurable for everyn ∈ N.

2. For allB ∈ E, we have

P (Xn+1 ∈ B |Fn ) = P (Xn+1 ∈ B |Xn ) , (1.2)

for everyn ∈ N.

Sometimes, the discrete-time Markov process is calledMarkov Chain.

Thefiltration {Fn, n ∈ N} is a sequence ofσ-algebras satisfying that

F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · (1.3)

As a Markov process, the conditional distribution of any future stateXn+1 given the

past statesX0,X1, · · · ,Xn−1 and the present stateXn, is independent of the past states

and depends only on the present state.

A function K : E × E → R is said to be atransition kernelif

1. For eachx ∈ E, A→ K (x,A) is a probability measure on the space(E,E).

2. For eachA ∈ E, x→ K (x,A) is a measurable function.

We say that{Xn, n ∈ N} is a Markov process with respect to the filtration{Fn, n ∈ N}

with theMarkov transition kernel{Kn, n ∈ N} if

P (Xn+1 ∈ A |Fn ) = Kn+1 (Xn,A) , (1.4)

for a setA ∈ E andn ∈ N.

A Markov Chain is said to betime-homogeneous, if the conditional probability

P (Xn = j |Xn−1 = i ) = P (X1 = j |X0 = i ), for everyn > 1 and anyi, j ∈ E. That
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means,P (Xn = j |Xn−1 = i ) is independent from the time indexn and, the Markov

transition kernel can be denoted asK at any time.

We denoteB (E) andB (E)+ as the class of bounded measurable functions and non-

negative bounded measurable functions defined on the spaceE respectively. Let

C (E) andC (E)+ denote the class of continuous bounded functions and the class of

non-negative continuous bounded functions respectively.Define the norm as| f |∞ =

supx∈E | f (x)|. We also letM (E) andP (E) denote the space of finite measures and

the space of probability measures defined onE, topologized by weak convergence.

If η ∈ M (E) and f is an integrable function defined onE, η ( f ) is defined as

η ( f ) =
∫

E
f (x) η (dx) .

Weak convergence means, for{µn}∞n=1 , µ ∈ M (E), µn ⇒ µ if and only if µn ( f ) →

µ ( f ) for all f ∈ C (E), whenn→∞.

For a Markov transition kernelK andη ∈ P (E), Kη is defined as

Kη (dx) =
∫

E
K (z, dx) η (dz) ,

Kη is a probability measure defined on the spaceE, and

Knη = K
(

Kn−1η
)

.

K f is defined as a function on the spaceE satisfying that

K f (x) =
∫

E
f (z) K (x, dz) ,
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for any integrable functionf and x ∈ E. It now follows thatK f ∈ B (E)+ if

f ∈ B (E)+.

Then we have

(Kη) ( f ) =
∫

E
f (x) (Kη) (dx) (1.5)

=

∫

E
f (x)

∫

E
K (z, dx) η (dz)

=

∫

E

∫

E
f (x) K (z, dx) η (dz) ,

and

η (K ( f )) =
∫

E
η (dz) K ( f ) (z) (1.6)

=

∫

E
η (dz)

∫

E
K (z, dx) f (x)

=

∫

E

∫

E
f (x) K (z, dx) η (dz) .

We have shown that

(Kη) ( f ) = η (K ( f )) , (1.7)

for any integrable functionf , Markov transition kernelK andη ∈ P (E).

A Dirac measureis a probability measure defined on some measurable space(E,E)

as

δx (A) = 1A (x) =























0, x < A

1, x ∈ A
, (1.8)
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for a givenx ∈ E and any measurable setA ∈ E. 1A is the indicator function of the

setA.

A stochastic process{Xn, n ∈ N} is called amartingalewith respect to the filtration

{Fn, n ∈ N} if for any n ∈ N,

1. Xn isFn-measurable.

2. E (|Xn|) < ∞.

3. E [Xn |Fn−1 ] = Xn−1.

1.1.3 Filtering problem

Filtering theory deals with estimating the current state ofa non-observable signal

X based upon the history of a distorted and corrupted partial observation processY

living on the same probability space(Ω,F ,P) asX. For many practical problems,

the signal process is modeled as a time-homogeneous discrete-time Markov process

{Xn, n ∈ N} with the initial distributionπ0 and the Markov transition kernelK. The

signal process takes its values in some complete, separablemetric space(E, ρ). By

the definition of the Markov process, we can get

P (X0 ∈ A) = π0 (A) , (1.9)

and

P
(

Xn+1 ∈ A
∣

∣

∣F X
n

)

= K (Xn,A) , (1.10)
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for any setA ∈ E andn ∈ N. F X
n is theσ-algebra generated by{Xi , 0 ≤ i ≤ n}.

We also have

EP
[

f (Xn)
∣

∣

∣F X
n−1

]

=

∫

E
f (x) P

(

Xn ∈ dx
∣

∣

∣F X
n−1

)

(1.11)

=

∫

E
f (x) K (Xn−1, dx)

=K f (Xn−1) .

Now, we give a concrete example for the signal processX. Suppose that the sig-

nal process{Xn, n ∈ N} is a simple random walk defined on the probability space

(Ω,F ,P) and living onZ. The initial state isX0 = 0, which is the origin. At each

timen, it moves either+1 or−1 with equal probability12. That means,Xn+1 is either

Xn + 1 or Xn − 1 both with probability1
2. We have

P (Xn+1 = x+ 1 |Xn = x) =
1
2

andP (Xn+1 = x− 1 |Xn = x) =
1
2
, (1.12)

for everyx ∈ Z and everyn ∈ N. Therefore, the random walk is a time-homogeneous

Markov process. The initial distributionπ0 and the Markov transition kernelK are

π0 (dx) = δ0 (dx) , (1.13)

and

K (Xn−1, dx) =P (Xn ∈ dx |Xn−1 ) (1.14)

=
1
2
δ(Xn−1+1) (dx) +

1
2
δ(Xn−1−1) (dx) ,
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for anyn ≥ 1, respectively. dx is the infinitesimal neighborhood around the pointx

as

dx =
(

dx1, dx2, · · · , dxN
)

. (1.15)

The noise process{Vn, n ∈ N} is a sequence of independent and identically dis-

tributed random vectors with the common strictly positive probability density func-

tion g. Vn is defined on the same measurable space(Ω,F ,P) and takes its values

in the setRd. The noise process{Vn, n ∈ N} is independent from the signal process

{Xn, n ∈ N}.

Notice that the probability density functiong is always positive. For instance, the

noise process{Vn, n ∈ N} can be a sequence of independent normally distributed

random variables, where the probability density functiong is defined as

g (x) =
1
√

2πσ
exp

(

−(x− µ)2

2σ2

)

, σ > 0, (1.16)

for anyx ∈ (−∞,∞).

The noise process can be a sequence of independent random variables with the

double exponential distribution. The probability densityfunctiong is defined as

g (x) =



























1
2

exp(−x) , x ≥ 0, (1.17)

1
2

exp(x) , x < 0. (1.17′)

The noise process could also be a sequence of independent random variables with

the standard Cauchy distribution. In this case, the probability density functiong is
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defined as

g (x) =
1

π
(

1+ x2
) , (1.18)

for anyx ∈ (−∞,∞).

The sensor functionh is a measurable mapping fromE to Rd. h could be a lin-

ear function, such as the polynomial functionh (x) = ax+ b, wherea andb are

constants.h could also be a nonlinear function, such as the exponential function

h (x) = ex. If h is a linear function, it is called the linear filtering problem. Other-

wise, it is the nonlinear filtering problem.

Like the wireless communication example, the observation model for the filtering

problem is defined as:

Yn = h (Xn−1) + Vn, (1.19)

for anyn ∈ N.

The observation process{Yn, n ∈ N} is defined on the same measurable space(Ω,F ,P)

and takes its values in the setRd.

The objective of the filtering problem is to compute the conditional probabilities

πn (A) = P
(

Xn ∈ A
∣

∣

∣F Y
n

)

, (1.20)

for all Borel setsA, or equivalently, the conditional expectations under the proba-

bility measureP

πn ( f ) = EP
[

f (Xn)
∣

∣

∣F Y
n

]

, (1.21)
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for any f ∈ B (E) andn ∈ N, whereF Y
n � σ {Yk, k = 1, ..., n} is the information

obtained from the back observations.

While there are well-known mathematical formulae forπn under many situations,

these formulae are, with few exceptions, fundamentally infinitely dimensional and

hence not implementable on a computer. Still, there are manyways to approximate

these conditional distributionsπn in a computer workable manner.

1.2 Particle filter method

1.2.1 Introduction

To solve the filtering problem, we use the particle filter method invented in the

1960s. In the particle system, we createN ∈ N copies of the signal process

{Xn, n ∈ N} and, each particle evolves independently of each other. Dueto ran-

domness, most particles may not behave like the signal. Therefore, historically,

particle filters, also known as sequential Monte Carlo methods, were considered

poor choices for most filtering problems until resampling techniques were invented

that dramatically improved performance. Nowadays, resampled particle filters are

relied upon in a wide variety of applications in such diverseareas as econometrics,

target detecting and tracking.

For a resampled particle filter, at time 0, each particle is independently distributed

asX0. For anyn ≥ 1 andn ∈ N, the particle filter is a two-step mechanism, resam-

pling process and evolution process, from timen−1 ton. In the resampling process,

each particle is relocated according to some mechanisms. Different particle filters

have different resampling techniques. The resampling process will prevent some

particles from deviating from the signal too much. In the evolution process, each
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particle evolves forward independently of each other according to the Markov tran-

sition kernelK of the signal process.

The original (resampled) interacting and branching particle filters have been in-

tensely studied. However, Del Moral, Kouritzin and Miclo showed that the perfor-

mance, and even the very success, of a particle filter dependsheavily upon the type

of resampling used and little theory is known about which resampling procedures

should be used.

In the thesis, we will introduce and analyze the classical weighted particle filter

without resampling and a new class of particle filter with resampling. In the new

algorithm, the particles interact weakly through use of thetotal mass process in the

resampling procedure as well as in the particle control step. The analysis of this

algorithm is based upon a coupling to a fictitious particle system, corresponding to

an idealized, unimplementable particle filter. The Strong Law of Large Numbers

and the Central Limit Theorem are developed for this filter.

1.2.2 Resampled particle system

The new algorithm we will introduce and analyze in the thesisis explained in terms

of a fixed number of particlesN ∈ N. We define the following branching Markov

process
{

S
N
n , n = 0, 1, ....

}

as

Initialize: Particles
{

X
i
0

}N

i=1
are independent and identically distributed random vari-

ables with the same distributionπ0. The weight of each particle isL0 = 1.

Repeat: Forn = 1, 2, ... do

1. Estimate:SN
n−1 =

Ln−1
N

N
∑

i=1
δXi

n−1

2. Weight:Wi
n =

g(Yn−h(Xi
n−1))

g(Yn) andL̂i
n =W

i
nLn−1 for i = 1, ...,N

11



3. Resampled Weight:Ln =
1
N

N
∑

i=1
L̂

i
n

4. Offspring Numbers:
{

Z
i
n

}N

i=1
are independent Bernoulli random variables with

the probabilities
{

L̂
i
n
Ln
−
⌊

L̂
i
n
Ln

⌋}N

i=1
, respectively,

Z
i
n =























1, with probability L̂
i
n

Ln
−
⌊

L̂
i
n

Ln

⌋

,

0, with probability 1− L̂
i
n
Ln
+

⌊

L̂
i
n
Ln

⌋

.

(1.22)

The offspring numbers is defined asNi
n =

⌊

L̂
i
n

Ln

⌋

+ Z
i
n for i = 1, ...,N

5. Resample:X̂ j
n−1 = X

i
n−1 for j ∈

{

N1
n + · · · + Ni−1

n + 1, ...,N1
n + · · · + Ni

n

}

for

i = 1, ...,N

6. Particle Control: Remove
N
∑

i=1
Ni

n − N randomly selected particles, or

duplicateN −
N
∑

i=1
Ni

n randomly selected particles with replacement

7. Evolve Independently:P
(

X
i
n ∈ Ai ∀ i

∣

∣

∣X̂n−1

)

=

N
∏

i=1
K

(

X̂
i
n−1,Ai

)

The new resampled particle system is too complicated to analyze mathematically.

To make it accessible, the analysis of the new algorithm is based upon a coupling to

a fictitious particle system, that is mathematically simpler but unimplementable on

a computer. In the thesis, we will show that the fictitious particle system satisfies the

Strong Law of Large Numbers and the Central Limit Theorem. Inaddition, it can

be a better filter approximation toσn, whereσn is the unnormalized filter defined

later, compared to the classical weighted particle system.In Chapter 2, we will state

and prove the theoretical solution for the filtering problem. We will introduce the

unnormalized filterσn and its relation withπn. For comparison purpose, in Chapter

3, we will analyze the classical weighted particle system. The fictitious particle

12



system is introduced and analyzed in Chapter 4. Conceptually, one can think of the

above particle system as a weakly interacting one. In the fictitious particle system,

the particle control is eliminated andLn is replaced byσn (1).

13



Chapter 2

Unnormalized Filter

2.1 Fictitious probability measure

The objective of the filtering is to find the conditional expectations with respect to

the probability measureP

πn ( f ) = EP
(

f (Xn)
∣

∣

∣F Y
n

)

, (2.1)

for any f ∈ B (E). F Y
n is theσ-algebra defined as

F Y
n � σ {Yk, k = 1, 2, ..., n} , (2.2)

with the conventionF Y
0 = {∅,Ω}.

One of the best ways of constructing particle filters is to transfer all of the informa-

tion obtained from the observations into a likelihood or weight function by the way

of measure change.

In this reference probability method, a new fictitious probability measureQ is intro-

duced under which the signal, observation process{(Xn,Yn+1) , n = 0, 1, 2, ...} has

14



the same distribution as the signal, noise process{(Xn,Vn+1) , n = 0, 1, 2, ...} does

under P. In particular, this means that the observations become a sequence of

independent and identically distributed random vectors with the common strictly

positive density functiong that are independent of the signal processX under the

probability measureQ. In this case, all the observation information is absorbed into

the weight or likelihood process{Ln, n = 1, 2, ...} transformingQ back toP, which

in our case has the form

dP
dQ

∣

∣

∣F X
∞∨F Y

n
= Ln =

n
∏

j=1

Wj, (2.3)

where

Wj =α j

(

X j−1

)

, (2.4)

α j (x) =
g
(

Yj − h (x)
)

g
(

Yj

) ,

and therefore

Ln =

n
∏

j=1

g
(

Yj − h
(

X j−1

))

g
(

Yj

) , (2.5)

with the conventionL0 = 1. F X
n is theσ-algebra defined as

F X
n � σ {Xk, k = 0, 1, ..., n} , (2.6)

with the conventionF X
−1 = {Ω, ∅}. F X

∞ is theσ-algebra defined as

F X
∞ � σ {Xk, k = 0, 1, 2, ...} . (2.7)
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We can find that

Ln =

n
∏

j=1

Wj =

n−1
∏

j=1

Wj ·Wn = Ln−1Wn. (2.8)

To prove the following theorem, we first introduce some new notations. The setE∞

and
(

R
d
)∞

are defined as

E∞ = E × E × · · · × E × · · · , (2.9)
(

R
d
)∞
= R

d × Rd × · · · × Rd × · · · ,

which is the product of infinite copies of the setE andRd, respectively. As we have

stated before,B (E∞) andB
((

R
d
)∞)

is the Borelσ−algebra defined on the setE

andRd, respectively. Now, we introduce the Kolmogorov’s consistency theorem.

Theorem 2.1: For any set T and universally measurable space(St,Bt)t∈T , and

any consistent family of laws{PF , Fis finite, F ⊂ T}, where PF is defined on the

product space SF =
∏

t∈F St, there is a probability measure PT on the product

space ST =
∏

t∈T St with PT ◦ f −1
T F = PF for all finite set F⊂ T, where f−1

T F is the

natural projection from ST onto SF.

This is Theorem 12.1.2 in [14].

The following standard result constructs the real probability measureP from the

fictitious one.

Theorem 2.2: Suppose that the signal{Xn, n = 0, 1, ...} and the observation{Yn, n = 1, 2, ...}

are independent stochastic processes defined on the canonical probability space
(

Ω = E∞ ×
(

R
d
)∞
,F = B (E∞) ⊗ B

((

R
d
)∞)
,Q

)

, the observations{Yn, n = 1, 2, ...}

are a sequence of independent and identically distributed random vectors with

16



strictly positive density function g defined onRd and Vn = Yn − h (Xn−1), for all

n = 1, 2, .... Then, there exists a probability measure P such that (2.3) holds, the

noise{Vn, n ∈ N} are independent and identically distributed random vectors on

(Ω,F ,P) with the common probability density function g and{Xn, n = 0, 1, ...} is

independent of{Vn, n = 1, 2, ...} with the same law as on(Ω,F ,Q).

Proof. DefinePn on
(

Ω = E∞ ×
(

R
d
)n
,F = B (E∞) ⊗ B

((

R
d
)n))

by

dPn

dQ
= Ln, (2.10)

and let 1≤ j1 < j2 < · · · < jk ≤ n, 0 ≤ i1 < i2 < · · · < i l. Then, by the independence

of X andY

EPn

















k
∏

r=1

fr
(

V jr

)

l
∏

p=1

φp

(

Xip

)

















(2.11)

= EQ

















n
∏

m=1

g (Ym− h (Xm−1))
g (Ym)

k
∏

r=1

fr
(

Yjr − h
(

X jr−1

))

l
∏

p=1

φp

(

Xip

)

















= EQ

















l
∏

p=1

φp

(

Xip

)

∫

Rd

g1 (y1 − h (X0)) dy1 · · ·
∫

Rd

gn (yn − h (Xn−1)) dyn

















= EQ

















l
∏

p=1

φp

(

Xip

)

















∫

Rd
g1 (v1) dv1 · · ·

∫

Rd
gn (vn) dvn

= EQ

















l
∏

p=1

φp

(

Xip

)

















k
∏

r=1

∫

Rd
fr
(

vjr

)

g
(

vjr

)

dvjr ,

where

gi =























g fr , if i = jr

g, if i < { j1, ..., jk}
. (2.12)

By Theorem 2.1 and (2.11),{Pn} are consistent. �
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2.2 Notations and unnormalized filter

Under the new fictitious probability measureQ, we can define the unnormalized

filter as

σn ( f ) = EQ
(

Ln f (Xn)
∣

∣

∣F Y
n

)

, (2.13)

for anyn ∈ N.

Lemma 2.1: For the unnormalized filterσn ( f ) and the conditional expectation

πn ( f ), we have the following relation

πn ( f ) =
σn ( f )
σn (1)

, (2.14)

and

σ0 = π0, (2.15)

for any n∈ N and any f∈ B (E).

Proof. To prove that for anyf ∈ B (E),

πn ( f ) =
σn ( f )
σn (1)

,

we have to show that

πn ( f ) = EP
(

f (Xn)
∣

∣

∣F Y
n

)

=
σn ( f )
σn (1)

=

EQ
(

Ln f (Xn)
∣

∣

∣F Y
n

)

EQ
(

Ln

∣

∣

∣F Y
n

) ,

18



i.e., we need to prove that

EP
(

f (Xn)
∣

∣

∣F Y
n

)

EQ
(

Ln

∣

∣

∣F Y
n

)

= EQ
(

Ln f (Xn)
∣

∣

∣F Y
n

)

,

for everyA ∈ F Y
n , we have to show that

EQ
[

EP
(

f (Xn)
∣

∣

∣F Y
n

)

EQ
(

Ln

∣

∣

∣F Y
n

)

1A

]

=EQ [

Ln f (Xn) 1A
]

=EP [

f (Xn) 1A
]

.

However

LHS =EQ
[

EP
(

f (Xn)
∣

∣

∣F Y
n

)

EQ
(

Ln

∣

∣

∣F Y
n

)

1A

]

(2.16)

=EQ
[

EQ
[

Ln · EP
(

f (Xn)
∣

∣

∣F Y
n

)

· 1A

∣

∣

∣F Y
n

]]

(2.17)

=EQ
[

Ln · EP
(

f (Xn)
∣

∣

∣F Y
n

)

· 1A

]

=EQ
[

Ln · EP
(

f (Xn) 1A

∣

∣

∣F Y
n

)]

=EP
[

EP
[

f (Xn) 1A

∣

∣

∣F Y
n

]]

=EP [

f (Xn) 1A
]

=RHS.

SinceEP
(

f (Xn)
∣

∣

∣F Y
n

)

and 1A isF Y
n -measurable, we can get (2.17) from (2.16).

Therefore, we have showed that

πn ( f ) =
σn ( f )
σn (1)

,

for anyn ∈ N and anyf ∈ B (E).
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SinceL0 = 1, we have

σ0 ( f ) = EQ
(

L0 f (X0)
∣

∣

∣F Y
0

)

= EQ
(

f (X0)
∣

∣

∣F Y
0

)

,

and

π0 ( f ) =
σ0 ( f )
σ0 (1)

=

EQ
(

L0 f (X0)
∣

∣

∣F Y
0

)

EQ
(

L0

∣

∣

∣F Y
0

) = EQ
(

f (X0)
∣

∣

∣F Y
0

)

,

for any f ∈ B (E).

Hence, we can get

σ0 ( f ) = π0 ( f ) ,

and sincef is any function fromB (E)

σ0 = π0.

�

By Lemma 2.1, it is enough to construct a particle filter approximationσN
n to the

unnormalized filterσn, since we can then construct our filter approximation toπn

asπN
n ( f ) = σ

N
n ( f )
σN

n (1)
.

Now, we introduce some lemmas about the unnormalized filterσn ( f ).

As we have stated before, the signal process{Xn, n ∈ N} is a time-homogeneous

discrete-time Markov process, where the initial distribution is π0 and the Markov

transition kernel isK for any timen. Since the signal process{Xn, n ∈ N} has the

Markov transition kernelK under both the original probability measureP and the

new fictitious probability measureQ, we have that

Q
(

Xn+1 ∈ A
∣

∣

∣F X
n

)

= P
(

Xn+1 ∈ A
∣

∣

∣F X
n

)

= K (Xn,A) , (2.18)
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and by (1.11)

EQ
[

f (Xn)
∣

∣

∣F X
n−1

]

= EP
[

f (Xn)
∣

∣

∣F X
n−1

]

= K f (Xn−1) , (2.19)

for any setA ⊂ E andn ∈ N.

Theorem 2.3: If H is a sub-σ-algebra ofG, then

E
[

E (X |G) |H ]

= E
[

X |H ]

.

This is theTower Propertyfor the conditional expectation in [16].

By the pervious results, we can get the recursion formula forthe unnormalized filter.

Lemma 2.2: For the unnormalized filter, we have

σn ( f ) = σn−1 (An f ) , (2.20)

where the operator An is defined as

An f (x) =























g(Yn−h(x))
g(Yn) K f (x) = αn (x) K f (x) , n = 1, 2, ...

f (x) , n = 0
, (2.21)

for any f ∈ B (E), x ∈ E and n∈ N.
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Proof. By the definition of the unnormalized filter, we can get

σn ( f ) =EQ
[

Ln f (Xn)
∣

∣

∣F Y
n

]

(2.22)

=EQ
[

EQ
[

Ln f (Xn)
∣

∣

∣F Y
n ∨ F X

n−1

] ∣

∣

∣F Y
n

]

(2.23)

=EQ
[

EQ
[

WnLn−1 f (Xn)
∣

∣

∣F Y
n ∨ F X

n−1

] ∣

∣

∣F Y
n

]

(2.24)

=EQ
[

WnLn−1EQ
[

f (Xn)
∣

∣

∣F X
n−1

] ∣

∣

∣F Y
n

]

(2.25)

=EQ
[

WnLn−1K f (Xn−1)
∣

∣

∣F Y
n

]

=EQ

[

Ln−1
g (Yn − h (Xn−1))

g (Yn)
K f (Xn−1)

∣

∣

∣F Y
n

]

=EQ
[

Ln−1An f (Xn−1)
∣

∣

∣F Y
n−1

]

=σn−1 (An f ) ,

for any f ∈ B (E) andn ∈ N.

Due to the tower property of the conditional expectation, wecan get (2.23) from

(2.22). By the independence ofX andY under the new fictitious probability measure

Q, we can have (2.25) from (2.24). �

If we define the composite operator
{

Ai,n, n ∈ N, 1 ≤ i ≤ n+ 1
}

as

Ai,n f (x) =























Ai (Ai+1 · · · (An f )) (x) ∀i ≤ n

f (x) i = n+ 1
, (2.26)

by applying Lemma 2.2 repeatedly, we can get that

σn ( f ) = σ0
(

A1,n f
)

= π0
(

A1,n f
)

. (2.27)
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This immediately implies that

πn ( f ) =
σn ( f )
σn (1)

=
σn−1 (An f )
σn−1 (An1)

=
π0

(

A1,n f
)

π0
(

A1,n1
) . (2.28)

Now, we discuss the moment condition about the unnormalizedfilter.

Lemma 2.3: Suppose that f∈ B (E)+, then we have

EQ [

σn ( f )
]

= π0 (Kn f ) , (2.29)

and

EQ [

σn ( f )
]

< ∞,

for any n∈ N.

Proof. Notice thatg is the probability density function. Taking expectations over

Y, we have that

EQ
[

α j (x)
]

=EQ

















g
(

Yj − h (x)
)

g
(

Yj

)

















(2.30)

=

∫

Rd

g (y− h (x))
g (y)

g (y) dy

=

∫

Rd
g (y− h (x)) dy

=

∫

Rd
g
(

y′
)

dy′ Let y′ = y− h (x)

=1,

for any j ∈ N.
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Therefore, we can get

EQ [

σn ( f )
]

=EQ [

π0
(

A1,n f
)]

(2.31)

=EQ

[
∫

E
A1,n f (x) π0 (dx)

]

=EQ

[∫

E
A1A2,n f (x) π0 (dx)

]

=

∫

E
EQ [

A1A2,n f (x)
]

π0 (dx) By Fubini’s Theroem

=

∫

E
EQ

[

g (Y1 − h (x))
g (Y1)

KA2,n f (x)

]

π0 (dx)

=

∫

E
EQ

[∫

E
A2,n f (z) K (x, dz)

]

π0 (dx)

=

∫

E

∫

E
EQ[A2,n f (z)]K (x, dz) π0 (dx)

=

∫

E
EQ [

A2,n f (z)
]

Kπ0 (dz)

=

∫

E
EQ [

An+1,n f (z)
]

Knπ0 (dz) Apply the technique recursively

=

∫

E
f (z) (Knπ0) (dz)

=Knπ0 ( f )

=π0 (Kn f ) By (1.7).

Since the functionf is bounded, we have

EQ [

σn ( f )
]

< ∞,

for anyn ∈ N. �

Now, it will be helpful to give a new definition for the next lemmas.
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Theobservation variability functionis defined as

λ (x, ξ) =
∫

g (y− h (x)) g (y− h (ξ))
g (y)

dy.

It is also useful to define the single variable version

λ (x) = λ (x, x) =
∫ [

g (y− h (x))
]2

g (y)
dy.

We show the observation variability functions of two kinds of probability density

functions.

1. Suppose thatg is the probability density function of a normally distributed

random variableX, i.e. X ∼ N (m, σ), then

g (y) =
1
√

2πσ
exp

(

−(y−m)2

2σ2

)

, (2.32)

wherey ∈ (−∞,∞) andσ > 0.

Therefore we have

λ (x, ξ) =
∫ ∞

−∞

g (y− h (x)) g (y− h (ξ))
g (y)

dy

=

∫ ∞

−∞

1
√

2πσ
exp

(

−(y− h (x) −m)2

2σ2
− (y− h (ξ) −m)2

2σ2
+

(y−m)2

2σ2

)

dy

=

∫ ∞

−∞

1
√

2πσ
exp













−
[

y− (h (x) + h (ξ) +m)
]2

2σ2
+

2h (x) h (ξ)
2σ2













dy

=

∫ ∞

−∞

1
√

2πσ
exp













−
[

y− (h (x) + h (ξ) +m)
]2

2σ2













exp

(

h (x) h (ξ)
σ2

)

dy

= exp

(

h (x) h (ξ)
σ2

) ∫ ∞

−∞

1
√

2πσ
exp













−
[

y− (h (x) + h (ξ) +m)
]2

2σ2













dy

= exp

(

h (x) h (ξ)
σ2

)

.
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2. Suppose thatg is the probability density function of a double exponential

distributed random variableX, then

g (x) =



























1
2

e−x, x ≥ 0, (2.33)

1
2

ex, x < 0, (2.33′)

and the sensor functionh is non-negative.

Then, whenh (x) ≤ h (ξ), we have that

λ (x, ξ) =
1
2

e−h(x)−h(ξ)

(∫ 0

−∞
eydy+

∫ h(x)

0
e3ydy

)

+
1
2

eh(x)−h(ξ)

∫ h(ξ)

h(x)
eydy+

1
2

eh(x)+h(ξ)

∫ ∞

h(ξ)
e−ydy

(2.34)

=
1
2

e−h(x)−h(ξ)

[

2
3
+

1
3

e3h(x)

]

+
1
2

eh(x)−h(ξ)
[

eh(ξ) − eh(x)
]

+
1
2

eh(x)

=
1
3

e−h(x)−h(ξ) − 1
3

e2h(x)−h(ξ)
+ eh(x).

Hence, by symmetry, we have that

λ (x, ξ) =
1
3

[

e−h(x)−h(ξ) − e2h(x)∧h(ξ)−h(ξ)∨h(x)
]

+ eh(x)∧h(ξ), (2.35)

wherea∧ b = min(a, b) anda∨ b = max(a, b), for any numbersa andb.

Many of our constraints and calculations are naturally placed upon the observation

variability functionλ and the Markov transition kernelK. Indeed, they will largely

appear as the one and two variable combined kernels

Kλ (x, dz) = λ (x) K (x, dz) , (2.36)
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and

Kλ (x, ξ, dz, dζ) = λ (x, ξ) K (x, dz) K (ξ, dζ) . (2.37)

For any f ∈ B (E), we have

Kλ ( f × f ) (x, ξ) =
∫

E

∫

E
f (z) f (ζ) Kλ (x, ξ, dz, dζ) (2.38)

=

∫

E

∫

E
f (z) f (ζ) λ (x, ξ) K (x, dz) K (ξ, dζ) .

Lemma 2.4: Suppose that f∈ B (E)+, then we have

EQ [

Ln f (Xn)
]2
= π0

(

Kn
λ

(

f 2
))

, (2.39)

and ifπ0

(

Kn
λ

(

f 2
))

< ∞, then

EQ [

Ln f (Xn)
]2
< ∞,

for any n∈ N.

Proof. Taking expectation overY, we have that

EQ
[

α j (x) · α j (ξ)
]

=EQ

















(

g
(

Yj − h (x)
)) (

g
(

Yj − h (ξ)
))

g2
(

Yj

)

















(2.40)

=

∫

(g (y− h (x))) (g (y− h (ξ)))
g2 (y)

· g (y) dy

=

∫

g (y− h (x)) g (y− h (ξ))
g (y)

dy

=λ (x, ξ) ,

for any j ∈ N.
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Then we can get

EQ [

Ln f (Xn)
]2
=EQ

[

L2
n f 2 (Xn)

]

(2.41)

=EQ















n
∏

l=1

γ2
l (Xl−1) f 2 (Xn)















=EQ















n
∏

l=1

λ (Xl−1) f 2 (Xn)















=EQ















n−1
∏

l=1

λ (Xl−1) λ (Xn−1) K f 2 (Xn−1)















=EQ















n−1
∏

l=1

λ (Xl−1) Kλ f 2 (Xn−1)















=π0

(

Kn
λ

(

f 2
))

, Apply the technique recursively

for anyn ∈ N.

If π0

(

Kn
λ

(

f 2
))

< ∞, then

EQ [

Ln f (Xn)
]2
< ∞,

for anyn ∈ N. �

Remark: The condition

π0

(

Kn
λ

(

f 2
))

< ∞

might seem hard to verify. However, if the observation variability function λ is

bounded byB, then

π0

(

Kn
λ

(

f 2
))

< | f |2∞ Bn.

It follows by the previous example 1, we have thatλ is bounded if the obser-

vation noise is Gaussian distributed and the sensor function h is bounded. By

the previous example 2, if the observation noise is double exponential distributed

and the sensor functionh is bounded, then the observation variability function is
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bounded.

Lemma 2.5: Suppose that f∈ B (E)+, then we have

EQ
[

σ2
n ( f )

]

= π0 × π0
(

Kn
λ ( f × f )

)

, (2.42)

and ifπ0 × π0

(

Kn
λ

( f × f )
)

< ∞, then

EQ
[

σ2
n ( f )

]

< ∞,

for any n∈ N.

Proof. By (2.27), we can get

EQ
[

σ2
n ( f )

]

=EQ
[

π2
0

(

A1,n f
)

]

(2.43)

=EQ

[∫

E
A1,n f (x) π0 (dx) ·

∫

E
A1,n f (ξ) π0 (dξ)

]

=

∫

E

∫

E
EQ [

A1,n f (x) A1,n f (ξ)
]

π0 (dx) π0 (dξ) ,

and

EQ [

Ai,n f (x) Ai,n f (ξ)
]

=EQ [

AiAi+1,n f (x) AiAi+1,n f (ξ)
]

(2.44)

=EQ

[

g (Yi − h (x))
g (Yi)

KAi+1,n f (x)
g (Yi − h (ξ))

g (Yi)
KAi+1,n f (ξ)

]

=EQ

[

γi (x) γi (ξ)
∫

E
Ai+1,n f (z) K (x, dz)

∫

E
Ai+1,n f (ζ) K (ξ, dζ)

]

=

∫

E

∫

E
λ (x, ξ) K (x, dz) K (ξ, dζ) EQ [

Ai+1,n f (z)Ai+1,n f (ζ)
]

=

∫

E

∫

E
EQ [

Ai+1,n f (z) Ai+1,n f (ζ)
]

Kλ (x, ξ, dz, dζ) ,

for any i = 1, 2, ..., n.
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Therefore, we can get by substitution that

EQ
[

σ2
n ( f )

]

= π0 × π0
(

Kn
λ ( f × f )

)

< ∞,

for anyn ∈ N. �

Remark: The condition

π0 × π0
(

Kn
λ ( f × f )

)

< ∞,

might seem hard to verify. However, if the observation variability function λ is

bounded byB, then

π0 × π0
(

Kn
λ ( f × f )

)

< | f |2∞ Bn.

It follows by the previous example 1, we have thatλ is bounded if the obser-

vation noise is Gaussian distributed and the sensor function h is bounded. By

the previous example 2, if the observation noise is double exponential distributed

and the sensor functionh is bounded, then the observation variability function is

bounded.

Remark: By Lemma 2.3 and Lemma 2.5, the variance of the unnormalizedfilter

σn ( f ) under the new fictitious probability measureQ is

EQ
[

σn ( f ) − EQ (σn ( f ))
]2
=EQ

[

σ2
n ( f )

]

−
[

EQ (σn ( f ))
]2

(2.45)

=π0 × π0
(

Kn
λ ( f × f )

) − (π0 (Kn f ))2
.

By Lemma 2.3 and Lemma 2.5, we have showed that, under some conditions, the

first moment and the second moment of the unnormalized filterσn ( f ) with respect

to the new fictitious probability measureQ are bounded. These lemmas establish

sufficient regularity for our Strong Law of Large Numbers and Central Limit Theo-
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rem results

DefineF Y
∞ = σ {Yn, n = 1, 2, 3, ...}. In the sequel, we will fix an observation path,

set

QY (·) = Q
(

·
∣

∣

∣F Y
∞
)

, (2.46)

and letEY [·] denote the expectation with respect toQY.
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Chapter 3

Weighted Particle System

3.1 Introduction of the particle system

In the weighted particle filter, we create fixed numberN ∈ N independent copies

of the signal process, called theparticlesand simulate them simultaneously. The

weighted particle system do not utilize resampling.

At time n, the particle system is defined as
{

Xi
n

}N

i=1
. Each particle is a sample from

the signal process. That means, each particleXi
n is a time-homogeneous discrete-

time Markov process defined on the measurable space(Ω,F ,Q), where the initial

distribution isπ0 and the Markov transition kernel isK for any time.
{

Xi
}N

i=1
are

independent from each other, and under the new fictitious probability measureQ,
{

Xi
}N

i=1
are also independent from the observation processY. We note that

(

Xi ,Y
)

has the same distribution as(X,Y), for any 1≤ i ≤ N.
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The weight of each particle is defined as

Li
n =

n
∏

j=1

Wi
j, (3.1)

Wi
j =α j

(

Xi
j−1

)

=

g
(

Yj − h
(

Xi
j−1

))

g
(

Yj

) ,

and

Li
0 = 1,

for anyn ∈ N, 1≤ j ≤ n and 1≤ i ≤ N.

For each particle, we can define the single particle measures

βk
n = Lk

nδXk
n

and βk
−1 = π0, (3.2)

for anyn ∈ N and 1≤ k ≤ N.

Then we have the the following measure-valued evolution

βk
n ( f ) =Lk

n f
(

Xk
n

)

(3.3)

=Lk
n−1

g
(

Yn − h
(

Xk
n−1

))

g (Yn)
K f

(

Xk
n−1

)

+ Lk
n

[

f
(

Xk
n

)

− EY
(

f
(

Xk
n

) ∣

∣

∣F X
n−1

)]

=βk
n−1 (An f ) + Lk

n

[

f
(

Xk
n

)

− EY
(

f
(

Xk
n

) ∣

∣

∣F X
n−1

)]

=βk
0

(

A1,n f
)

+

n
∑

l=1

Lk
l

[

Al+1,n f
(

Xk
l

)

− EY
(

Al+1,n f
(

Xk
l

) ∣

∣

∣F X
l−1

)]

By recursion

=π0
(

A1,n f
)

+ Mβ
k

n ( f )

=σn ( f ) + Mβ
k

n ( f ) ,

33



where

Mβ
k

n ( f ) =
n

∑

l=0

[

Lk
l

(

Al+1,n f
(

Xk
l

)

− EY
[

Al+1,n f
(

Xk
l

) ∣

∣

∣F X
l−1

])]

(3.4)

=

n
∑

l=0

[

Lk
l Al+1,n f

(

Xk
l

)

− Lk
l E

Y
(

Al+1,n f
(

Xk
l

) ∣

∣

∣F X
l−1

)]

=

n
∑

l=0

[

Lk
l Al+1,n f

(

Xk
l

)

− Lk
l KAl+1,n f

(

Xk
l−1

)]

=

n
∑

l=0

















Lk
l Al+1,n f

(

Xk
l

)

− Lk
l−1

g
(

Yl − h
(

Xk
l−1

))

g (Yl)
KAl+1,n f

(

Xk
l−1

)

















=

n
∑

l=0

[

Lk
l Al+1,n f

(

Xk
l

)

− Lk
l−1AlAl+1,n f

(

Xk
l−1

)]

=

n
∑

l=0

[

Lk
l Al+1,n f

(

Xk
l

)

− Lk
l−1Al,n f

(

Xk
l−1

)]

=

n
∑

l=0

[

βk
l

(

Al+1,n f
) − βk

l−1

(

Al,n f
)

]

,

for anyn ∈ N and 1≤ k ≤ N.

If we average over the particles and defineσN
n ( f ) as

σN
n ( f ) =

1
N

N
∑

i=1

Li
n f

(

Xi
n

)

, (3.5)

then

σN
n ( f ) = σn ( f ) + MN

n ( f ) , (3.6)

where

MN
n ( f ) =

n
∑

l=0

[

σN
l

(

Al+1,n f
) − σN

l−1

(

Al,n f
)

]

, (3.7)
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for anyn ∈ N.

Lemma 3.1:
{

MN
n ( f ) , n ∈ N

}

is a zero-mean martingale in n with respect to QY.

Proof. First, we calculate the expectation ofMβ
k

n ( f ).

SinceLk
l isF Y

l ∨ F X
l−1-measurable for any 1≤ k ≤ N, we have

EY
[

Mβ
k

n ( f )
]

=EY















n
∑

l=0

[

Lk
l

(

Al+1,n f
(

Xk
l

)

− EY
[

Al+1,n f
(

Xk
l

) ∣

∣

∣F X
l−1

])]















(3.8)

=

n
∑

l=0

EY
[

Lk
l

(

Al+1,n f
(

Xk
l

)

− EY
(

Al+1,n f
(

Xk
l

) ∣

∣

∣F X
l−1

))]

=

n
∑

l=0

[

EY
(

Lk
l Al+1,n f

(

Xk
l

))

− EY
[

Lk
l E

Y
(

Al+1,n f
(

Xk
l

) ∣

∣

∣F X
l−1

)]]

=

n
∑

l=0

[

EY
(

Lk
l Al+1,n f

(

Xk
l

))

− EY
[

EY
(

Lk
l Al+1,n f

(

Xk
l

) ∣

∣

∣F X
l−1

)]]

=

n
∑

l=0

[

EY
(

Lk
l Al+1,n f

(

Xk
l

))

− EY
(

Lk
l Al+1,n f

(

Xk
l

))]

=0.

By the relation betweenMβ
k

n ( f ) andMN
n ( f )

EY
[

MN
n ( f )

]

=
1
N

N
∑

k=1

EY
[

Mβ
k

n ( f )
]

= 0.

Therefore, the expectation of
{

MN
n ( f ) , n ∈ N

}

is zero with respect toQY.
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For anyl ∈ N and 1≤ k ≤ N, we have

EY
[

Mβ
k

l ( f ) − Mβ
k

l−1 ( f )
∣

∣

∣F X
l−1

]

(3.9)

=EY
[

Lk
l

(

Al+1,n f
(

Xk
l

)

− EY
(

Al+1,n f
(

Xk
l

) ∣

∣

∣F X
l−1

)) ∣

∣

∣F X
l−1

]

=EY
[

Lk
l Al+1,n f

(

Xk
l

) ∣

∣

∣F X
l−1

]

− EY
[

Lk
l E

Y
(

Ak+1,n f
(

Xk
l

) ∣

∣

∣F X
l−1

) ∣

∣

∣F X
l−1

]

=EY
[

Lk
l Al+1,n f

(

Xk
l

) ∣

∣

∣F X
l−1

]

− EY
[

EY
(

Lk
l Ak+1,n f

(

Xk
l

) ∣

∣

∣F X
l−1

) ∣

∣

∣F X
l−1

]

=EY
[

Lk
l Al+1,n f

(

Xk
l

) ∣

∣

∣F X
l−1

]

− EY
[

Lk
l Al+1,n f

(

Xk
l

) ∣

∣

∣F X
l−1

]

=0.

Hence, we can get

EY
[

Mβ
k

l ( f )
∣

∣

∣F X
l−1

]

= Mβ
k

l−1 ( f ) .

By averaging over the particles, we have

EY
[

MN
l ( f )

∣

∣

∣F X
l−1

]

= MN
l−1 ( f ) .

That means,
{

MN
n ( f ) , n ∈ N

}

is a martingale inn with respect toQY. �

By Lemma 3.1, we know that
{

MN
n ( f ) , n = 0, 1, ...

}

is a zero-mean martingale in

n as well as the average ofN independent and identically distributed zero-mean

random variables overi both with respect toQY.

3.2 Main results

3.2.1 Strong Law of Large Numbers

First, we introduce a new definition and theorem stated in [1].
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Definition: A class of functionsM, defined on the topological spaceE, strongly

separate points(s.s.p) if for every x ∈ E and neighborhoodOx of x, there is a

finite collection
{

g1, ..., gk
}

⊂ M such that

inf
y<Ox

max
1≤l≤k

∣

∣

∣gl (y) − gl (x)
∣

∣

∣ > 0. (3.10)

Define a new class of functions as

A = { fi}∞i=1 =















l
∏

j=1

(

1− d
(

xj , ·
))

∨ 0 : l ∈ N, xj ∈ {yk}∞k=1















, (3.11)

for some dense collection{yk}∞k=1 ⊂ E. From [1], we know that the class of functions

A s.s.p.

Theorem 3.1: Suppose that(E,T ) is a topological space,{Pn}∪ {P} ⊂ P (E) and a

class of functionsM ⊂ B (E) that strongly separates points and is closed under

multiplication, and

∫

E
gdPn→

∫

E
gdP, ∀g ∈ M. (3.12)

IfM is countable, then

Pn ⇒ P, (3.13)

where(⇒) means weak convergence.

Now, we can state and prove the Strong Law of Large Numbers forthe weighted

particle filter.
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Theorem 3.2: Suppose that the unnormalized filter is defined as

σn ( f ) = EQ
(

Ln f (Xn)
∣

∣

∣F Y
n

)

, (3.14)

then for the weighted particle system,

σN
n ⇒ σn a.s.

[

QY
]

, (3.15)

when N→ ∞.

Proof. By (3.7),
{

MN
n ( f ) , n ∈ N

}

is defined as

MN
n ( f ) =

n
∑

l=0

[

σN
l

(

Al+1,n f
) − σN

l−1

(

Al,n f
)

]

, (3.16)

and it is the average ofN independent and identically distributed random variables

over i with respect toQY.

The expectation ofβk
n ( f ) is

EY
[

βk
n ( f )

]

=EY
[

σn ( f ) + Mβ
k

n ( f )
]

(3.17)

=EY [

σn ( f )
]

+ EY
[

Mβ
k

n ( f )
]

=EQ
[

EQ
(

Ln f (Xn)
∣

∣

∣F Y
n

) ∣

∣

∣F Y
∞
]

+ 0

=EQ
[

Ln f (Xn)
∣

∣

∣F Y
n

]

=σn ( f )

=π0
(

A1,n f
)

.
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Then the expectation ofσN
n ( f ) is

EY
[

σN
n ( f )

]

=
1
N

N
∑

k=1

EY
[

βk
n ( f )

]

= σn ( f ) = π0
(

A1,n f
)

. (3.18)

Since by Lemma 2.3, we have

EY
[
∣

∣

∣

∣

Li
n f

(

Xi
n

)

∣

∣

∣

∣

]

= EY [

σn ( f )
]

= π0 (Kn f ) < ∞, (3.19)

for any 1≤ i ≤ N and any functionf ∈ B (E)+.

Then, the Strong Law of Large Numbers implies that

MN
n ( f )→ 0 a.s.

[

QY
]

, (3.20)

so

σN
n ( f )→ σn ( f ) a.s.

[

QY
]

, (3.21)

for all f ∈ B (E)+.

For the setA defined above, it satisfies thatA ⊂ C (E)+ andA is countable. Notice

thatA ⊂ B (E)+, then we have

σN
n ( f )→ σn ( f ) a.s.

[

QY
]

, (3.22)

for all f ∈ A. In addition, the setA strongly separate points and is closed under

multiplication. Therefore, by Theorem 3.1, we can get

σN
n ⇒ σn a.s.

[

QY
]

. (3.23)
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�

3.2.2 Central Limit Theorem

Define an operatorA(2)
j as

A(2)
j f (x) =























α2
j (x) K f (x) , j = 1, 2, ...

f (x) , j = 0
, (3.24)

and also the composite operator

A(2)
i,n f (x) =























A(2)
i

(

A(2)
i+1 · · ·

(

A(2)
n f

))

(x) , ∀i ≤ n

f (x) , i = n+ 1
. (3.25)

Now, we state and prove the Central Limit Theorem for the weighted particle sys-

tem.

Theorem 3.3: Let f ∈ B (E)+ satisfy

π0

(

Kn
λ

(

f 2
))

< ∞, (3.26)

and

π0 × π0
(

Kn
λ ( f × f )

)

< ∞. (3.27)

Then, the weighted particle system satisfies

√
N

(

σN
n ( f ) − σn ( f )

)

⇒ N
(

0, γW
n ( f )

)

a.s.
[

QY
]

, (3.28)
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where

γW
n ( f ) =

n
∑

l=0

π0A(2)
1,l−1

[

A(2)
l

(

Al+1,n f
)2 − (

Al,n f
)2
]

, (3.29)

and

EQ
[

γW
n ( f )

]

=

n
∑

l=0

π0K l−1
λ

[

Kλ − Kλ
]

Kn−l
λ ( f × f ) . (3.30)

Proof. As we have stated before,
{

MN
n ( f ) , n ∈ N

}

is the average ofN independent

and identically distributed random variables overi with respect toQY. In addition,

by Lemma 2.4 and Lemma 2.5, we can learn that

EY
[

Li
n f

(

Xi
n

)

− σn ( f )
]2
≤ 2

{

EY
[

Li
n f

(

Xi
n

)]2
+ EY [

σn ( f )
]2
}

< ∞, (3.31)

for anyn ∈ N.

By the classical Central Limit Theorem, we have

√
N

(

σN
n ( f ) − σn ( f )

)

⇒ N
(

0, γW
n ( f )

)

a.s.
[

QY
]

. (3.32)

Since for the weighted particle system,
(

Xk,Y
)

has the same distribution with(X,Y),

for any 1≤ k ≤ N, we can just work with(X,Y), and denoteβl = LlδXl . By the
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martingale property, theF Y
∞-measurable random variance can be written as

γW
n ( f ) =EY

[

Mβ
k

n ( f )
]2
−

[

EY
(

Mβ
k

n ( f )
)]2

(3.33)

=EY
[

Mβ
k

n ( f )
]2

=EY















n
∑

l=0

βl
(

Al+1,n f
) − βl−1

(

Al,n f
)















2

=

n
∑

l=0

EY [

βl
(

Al+1,n f
) − βl−1

(

Al,n f
)]2

+2
∑

1≤i< j≤n

EY
[

(

βi
(

Ai+1,n f
) − βi−1

(

Ai,n f
))

(

β j

(

A j+1,n f
)

− β j−1

(

A j,n f
))]

=

n
∑

l=0

EY [

βl
(

Al+1,n f
) − βl−1

(

Al,n f
)]2

+2
∑

1≤i< j≤n

EY
[(

Mβ
k

i ( f ) − Mβ
k

i−1 ( f )
) (

Mβ
k

j ( f ) − Mβ
k

j−1 ( f )
)]

=

n
∑

l=0

EY [

βl
(

Al+1,n f
) − βl−1

(

Al,n f
)]2

+2
∑

1≤i< j≤n

EY
[

EY
[(

Mβ
k

i ( f ) − Mβ
k

i−1 ( f )
) (

Mβ
k

j ( f ) − Mβ
k

j−1 ( f )
)

∣

∣

∣F X
j−1

]]

=

n
∑

l=0

EY [

βl
(

Al+1,n f
) − βl−1

(

Al,n f
)]2

+2
∑

1≤i< j≤n

EY
[(

Mβ
k

i ( f ) − Mβ
k

i−1 ( f )
)

EY
[(

Mβ
k

j ( f ) − Mβ
k

j−1 ( f )
)

∣

∣

∣F X
j−1

]]

=

n
∑

l=0

EY [

βl
(

Al+1,n f
) − βl−1

(

Al,n f
)]2

=

n
∑

l=0

{

EY [

βl
(

Al+1,n f
)]2 − EY [

βl−1
(

Al,n f
)]2

}

=

n
∑

l=0

{

EY
[

L2
l

(

Al+1,n f
)2 (Xl)

]

− EY
[

L2
l−1

(

Al,n f
)2 (Xl−1)

]}

=

n
∑

l=0

π0A
(2)
1,l−1

[

A(2)
l

(

Al+1,n f
)2 − (

Al,n f
)2
]

.
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Now, we move to calculate the expected value ofγW
n ( f ). By the fact that{Yl} are

independent and identically distributed random vectors, and independent ofX, we

can find that

EQ
[

γW
n ( f )

]

=

n
∑

l=0

EQ















l
∏

k=1

λ (Xk−1)
(

Al+1,n f (Xl) − KAl+1,n f (Xl−1)
)2















(3.34)

=

n
∑

l=0

EQ















l
∏

k=1

λ (Xk−1)
(

K
(

Al+1,n f
)2 (Xl−1) −

(

KAl+1,n f (Xl−1)
)2
)















=

n
∑

l=0

EQ















l−1
∏

k=1

λ (Xk−1)

(∫

E
Al+1,n f (x) Al+1,n f (x) λ (Xl−1) K (Xl−1, dx)

−
∫

E
Al+1,n f (x) K (Xl−1, dx)

∫

E
Al+1,n f (ξ) K (Xl−1, dξ)λ (Xl−1,Xl−1)

)]

.

=

n
∑

l=0

EQ















l−1
∏

k=1

λ (Xk−1)

(∫

E
Al+1,n f (x) Al+1,n f (x) λ (Xl−1) K (Xl−1, dx)

−
∫

E

∫

E
Al+1,n f (x) Al+1,n f (ξ) Kλ (Xl−1,Xl−1, dx, dξ)

)]

.

Hence, it follows by (2.44) that

EQ
[

γW
n ( f )

]

=

n
∑

l=0

EQ















l−1
∏

k=1

λ (Xk−1)

(∫

E
Kn−l
λ ( f × f ) (x, x) λ (Xl−1) K (Xl−1, dx)

−
(

Kn+1−l
λ ( f × f )

)

(Xl−1,Xl−1)
)]

(3.35)

=

n
∑

l=0

π0K l−1
λ

[

Kλ − Kλ
]

Kn−l
λ ( f × f ) .

�
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Chapter 4

Fictitious Particle System

4.1 Introduction of the particle system

The problem with the weighted particle system is that, due torandomness, most

particles do not behave like the signal{Xn, n = 0, 1, ...} so their weights become rel-

atively small compared to the weights of very few good particles. This results in a

particle filter that effectively consists of an average over only a very small propor-

tion of the particles. This problem manifests itself theoretically in the large expected

variance of the central limit theorem in the previous chapter and practically in the

need to use a huge number of particles in most applications. To combat this effect,

we introduce the resampling process.

Initially, we pretend herein that we have access to the actual unnormalized filter to-

tal mass{σn (1) , n = 0, 1, 2, ...} and consider an unimplementable fictitious particle

system. In particular, we use the resampled algorithm givenin the Chapter 1 with

σN
n (1) replaced with (the computer unworkable)σn (1) and the particle control step

is eliminated.

Suppose thatN0 ∈ N and we have the following random variables:
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1.
{

ξ
k,i;x
n : k, i, n ∈ N, x ∈ E

}

are independent random variables with the distribu-

tion K (x, ·),

2.
{

χk
}∞

k=1
are independent samples fromπ0,

3.
{

Uk,i
n : k, i, n ∈ N

}

are independent Uniform[0, 1] random variables,

which are mutually independent.

We want to keep track of the fictitious particle system in terms of the first ances-

tor of each particle. In other words, our fictitious particlefilter will be the av-

erage ofN independent and identically distributed branching Markovprocesses
{

Bk
n, n = 0, 1, ...

}

, each starting from an independent sampleδχk. They evolve in-

dependently of each other only interacting withσn (1), which is deterministic with

respect toQY. At any time, many of theBk may have died out while others may

have branched into multiple particles. For clarity, the particles at timen, that are

offspring from the original particleχk, will be denoted as
{

Xk,i
n

}Nk
n

i=1
and the weight of

each particle after the resampling will only depend uponn and be denoted asLn.

Then, the branching Markov process corresponding to the initial particle and the

complete filter estimate will be

Bk
n = Ln

Nk
n

∑

i=1

δXk,i
n

and SN
n =

1
N

N
∑

k=1

Bk
n, (4.1)

for any 1≤ k ≤ N andn ∈ N, respectively.

Now, we define the branching Markov processes
{

Bk
n, n = 0, 1, ...

}

as follows:

Initialize: Xk,1
0 = χ

k, Nk
0 = 1 andL0 = 1, for k = 1, 2, ...,N.

Repeat: Forn = 1, 2, ... do

1. Estimate:Bk
n−1 =

Nk
n−1
∑

i=1
Ln−1δXk,i

n−1
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2. Weight:Wk,i
n =

g
(

Yn−h
(

Xk,i
n−1

))

g(Yn) andL̂k,i
n =Wk,i

n Ln−1, for i = 1, ...,Nk
n−1

3. Resampled Weight:Ln = σn (1)

4. Offspring Numbers:Zk,i
n = 1

Uk,i
n +

⌊

L̂k,i
n
Ln

⌋

≤ L̂
k,i
n
Ln

, Nk,i
n =

⌊

L̂k,i
n

Ln

⌋

+Zk,i
n , for i = 1, ...,Nk

n−1

andNk
n = Nk,1

n + · · · + N
k,Nk

n−1
n

5. Resample: Let̂Xk, j
n−1 = X

k,i
n−1, for j ∈

{

Nk,1
n + · · · + Nk,i−1

n + 1, ...,Nk,1
n + · · · + Nk,i

n

}

6. Evolve Independently:Xk,i
n = ξ

k,i,X̂k,i
n−1

n

For notational convenience, we defineNk,i
l =

i−1
∑

j=1
Nk, j

l , F U
n = σ

{

Uk,i
l , k, i ∈ N, l ≤ n

}

andF X
n � σ

{

Xk,i
l , k, i ∈ N, l ≤ n

}

for anyn ≥ 0, with the conventionF U
−1 = F X

−1 �

{∅,Ω}. Define theσ−algebraF UX
n � F U

n ∨ F X
n , for anyn ≥ −1. After the resam-

pling, we haveNk,i
n particles at locationXk,i

n−1 each with weightLn = σn (1).

Hence, the effective weight at locationXk,i
n−1 after the resampling satisfies:

EY
[

LnN
k,i
n

∣

∣

∣F U
n−1 ∨ F X

n

]

=Ln

(⌊

L̂k,i
n

Ln

⌋

+ 1

) (

L̂k,i
n

Ln
−

⌊

L̂k,i
n

Ln

⌋)

+ Ln

⌊

L̂k,i
n

Ln

⌋ (

1− L̂
k,i
n

Ln
+

⌊

L̂k,i
n

Ln

⌋)

=Ln ·
L̂k,i

n

Ln
(4.2)

=L̂k,i
n ,

which is the weight prior to the resampling. Therefore, the fictitious particle system

is unbiased.

However, we need to go further and establish a martingale property. Averaging over
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theUk,i
n , we can get that

EY





















Ln

Nk,i
n +Nk,i

n
∑

j=Nk,i
n +1

f
(

Xk, j
n

)

∣

∣

∣

∣

F Uk,i

n−1 ∨ F X
n





















(4.3)

= EY

































Ln

Nk,i
n +

⌊

L̂k,i
n
Ln

⌋

∑

j=Nk,i
n +1

f
(

Xk, j
n

)

+ Ln

(

L̂k,i
n

Ln
−

⌊

L̂k,i
n

Ln

⌋)

f



















X
k,Nk,i

n +

⌊

L̂k,i
n
Ln

⌋

+1

n



















∣

∣

∣

∣

F Uk,i

n−1 ∨ F X
n

































,

where theσ−algebraF Uk,i

n−1 = σ
{

U l, j
m : m≤ n, (l, j,m) , (k, i, n)

}

. ThenNk
n−1 isF UX

n−1-

measurable, for any 1≤ k ≤ N. Using (4.3) plus the factNk
n−1 ∈ F UX

n−1, we can get
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that

EY
[

Bk
n ( f )

∣

∣

∣F UX
n−1

]

=EY



















Nk
n

∑

j=1

Ln f
(

Xk, j
n

) ∣

∣

∣F UX
n−1



















(4.4)

=EY























Nk
n−1

∑

i=1

Nk,i
l +Nk,i

n
∑

j=Nk,i
l +1

Ln f
(

Xk, j
n

) ∣

∣

∣F UX
n−1























=

Nk
n−1

∑

i=1

EY























Ln

Nk,i
l +Nk,i

n
∑

j=Nk,i
l +1

f
(

Xk, j
n

) ∣

∣

∣F UX
n−1























=

Nk
n−1

∑

j=1

EY























EY























Ln

Nk,i
l +Nk,i

n
∑

j=Nk,i
l +1

f
(

Xk, j
n

)

∣

∣

∣

∣

F Uk,i

n−1 ∨ F X
n























∣

∣

∣F UX
n−1























=

Nk
n−1

∑

i=1

Ln
L̂k,i

n

Ln
K f

(

Xk,i
n−1

)

=

Nk
n−1

∑

i=1

L̂k,i
n K f

(

Xk,i
n−1

)

=

Nk
n−1

∑

i=1

Wk,i
n Ln−1K f

(

Xk,i
n−1

)

=

Nk
n−1

∑

i=1

Ln−1An f
(

Xk,i
n−1

)

=Bk
n−1 (An f ) ,

subject to

Bk
0 ( f ) = f

(

χk
)

, (4.5)
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for any 1≤ k ≤ N.

By using (4.4) recursively, we can find that

EY
[

Bk
n ( f )

]

=EY
[

EY
(

Bk
n ( f )

∣

∣

∣F UX
n−1

)]

(4.6)

=EY
[

Bk
n−1 (An f )

]

=EY
[

Bk
0

(

A1,n f
)

]

=EY
[

A1,n f
(

χk
)]

=π0
(

A1,n f
)

=σn ( f )

=EY [

σn ( f )
]

.

Applying (4.4), we have the following measure-valued evolution

Bk
n ( f ) =Bk

n−1 (An f ) + Bk
n ( f ) − EY

[

Bk
n ( f )

∣

∣

∣F UX
n−1

]

(4.7)

=Bk
0

(

A1,n f
)

+

n
∑

l=1

[

Bk
l

(

Al+1,n f
) − EY

[

Bk
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

]]

=π0
(

A1,n f
)

+ MB
k

n ( f )

=σn ( f ) + MB
k

n ( f ) ,

where

MB
k

n ( f ) =
n

∑

l=0

[

Bk
l

(

Al+1,n f
) − EY

[

Bk
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

]]

, (4.8)

49



for any 1≤ k ≤ N.

Averaging over the ancestral branches, we can find that

EY
[

SN
n ( f )

∣

∣

∣F UX
n−1

]

= SN
n−1 (An f ) subject toSN

0 ( f ) =
1
N

N
∑

k=1

f
(

χk
)

, (4.9)

EY
[

SN
n ( f )

]

= σn ( f ) = EY [

σn ( f )
]

, (4.10)

SN
n ( f ) = σn ( f ) + MN

n ( f ) , (4.11)

where

MN
n ( f ) =

n
∑

l=0

[

SN
l

(

Al+1,n f
) − EY

[

SN
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

]]

. (4.12)

Lemma 4.1:
{

MN
n ( f ) , n ∈ N

}

is a zero-mean martingale in n with respect to QY.

Proof. By (4.10), we have

EY
[

MN
n ( f )

]

= EY
[

SN
n ( f ) − σn ( f )

]

= EY
[

SN
n ( f )

]

− EY [

σn ( f )
]

= 0, (4.13)

and

EY
[

MN
l ( f ) − MN

l−1 ( f )
∣

∣

∣F UX
l−1

]

=EY
[

SN
l

(

Al+1,n f
) − EY

[

SN
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

] ∣

∣

∣F UX
l−1

]

(4.14)

=EY
[

SN
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

]

− EY
[

EY
[

SN
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

] ∣

∣

∣F UX
l−1

]

=EY
[

SN
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

]

− EY
[

SN
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

]

=0,

for any l ∈ N.

Therefore,
{

MN
n ( f ) , n ∈ N

}

is a zero-mean martingale inn with respect toQY. �

50



4.2 Main results

4.2.1 Strong Law of Large Numbers

Now, we state and prove the Strong Law of Large Numbers for thefictitious particle

system.

Theorem 4.1: Suppose that the unnormalized filter is defined as

σn ( f ) = EQ
(

Ln f (Xn)
∣

∣

∣F Y
n

)

, (4.15)

then for the fictitious particle system,

SN
n ⇒ σn a.s.

[

QY
]

, (4.16)

where(⇒) means weak convergence.

Proof. Since by Lemma 2.3 and (4.6), we haveEY
[∣

∣

∣Bk
n ( f )

∣

∣

∣

]

< ∞, for any 1≤ k ≤

N and any functionf ∈ B (E)+.

Hence, it follows by the Strong Law of Large Numbers for independent and identi-

cally distributed random variables that

SN
n ( f ) =

1
N

N
∑

k=1

Bk
n ( f )→ σn ( f ) a.s.

[

QY
]

,

for any f ∈ B (E)+.

Using the same setA in Theorem 3.2, we can get

SN
n ⇒ σn a.s.

[

QY
]

. (4.17)
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4.2.2 Central Limit Theorem

To establish the variance in the Central Limit Theorem for the fictitious particle

system, we need to define the remainder functionRl (x),

Rl (x) =
σl (1)
σl−1 (1)















σl−1 (1)αl (x)
σl (1)

−
⌊

σl−1 (1)αl (x)
σl (1)

⌋

−
(

σl−1 (1) γl (x)
σl (1)

−
⌊

σl−1 (1)αl (x)
σl (1)

⌋)2














,

which is an artifact of our resampling procedure.

Let M = σl−1(1)αl (x)
σl (1) −

⌊

σl−1(1)αl (x)
σl (1)

⌋

.We can get a bound forRl (x)

Rl (x) =
σl (1)
σl−1 (1)















σl−1 (1)αl (x)
σl (1)

−
⌊

σl−1 (1)αl (x)
σl (1)

⌋

−
(

σl−1 (1)αl (x)
σl (1)

−
⌊

σl−1 (1)αl (x)
σl (1)

⌋)2














=
σl (1)
σl−1 (1)

(

M − M2
)

(4.18)

≤ σl (1)
4σl−1 (1)

.

However, by the definition of the floor function, we have 0≤ M < 1. Therefore

M − M2 ≥ 0, (4.19)

and

Rl (x) ≥ 0. (4.20)

Now, we state and prove the Central Limit Theorem for the fictitious particle sys-

tem.
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Theorem 4.2: The fictitious particle system satisfies

√
N

(

SN
n ( f ) − σn ( f )

)

⇒ N
(

0, γR
n ( f )

)

a.s.
[

QY
]

, (4.21)

where

γR
n ( f ) =

n
∑

l=0

σl (1)π0A1,l−1

[

Al
(

Al+1,n f
)2 − αl

(

KAl+1,n f
)2
+ Rl

(

KAl+1,n f
)2
]

,

(4.22)

for any f (defined in Theorem 3.3).

Proof. For the fictitious particle system, we first establish the required second mo-

ment condition

EY
[

Bk
n ( f ) − σn ( f )

]2
≤ 2

{

EY
[

Bk
n ( f )

]2
+ EY [

σn ( f )
]2
}

(4.23)

≤ 2 | f |2∞ EY
[

(

Nk
nLn

)2
]

+ 2 · π0 × π0
(

Kn
λ ( f × f )

)

.

Moreover, by (4.2),

EY
[

(

LnN
k
n

)2 ∣

∣

∣F U
n−1 ∨ F X

n

]

= L2
n

Nk
n−1

∑

i=1

(

EY
[

(

Nk,i
n

)2 ∣

∣

∣F U
n−1 ∨ F X

n

]

−
∣

∣

∣

∣

EY
[

Nk,i
n

∣

∣

∣F U
n−1 ∨ F X

n

]

∣

∣

∣

∣

2)

+

Nk
n−1

∑

i, j=1

EY
[

LnN
k,i
n

∣

∣

∣F U
n−1 ∨ F X

n

]

EY
[

LnN
k, j
n

∣

∣

∣F U
n−1 ∨ F X

n

]

(4.24)

= L2
n

Nk
n−1

∑

i=1















L̂k,i
l

Ll
−



















L̂k,i
l

Ll



















−














L̂k,i
l

Ll
−



















L̂k,i
l

Ll

































2












+

Nk
n−1

∑

i, j=1

L2
n−1W

k,i
n Wk, j

n .

However, by the non-negativity and boundness of the function g, there is acY > 0
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such that sup
x∈E, j≤n

g(Yj−h(x))
g(Yj) ≤ cY. Therefore, by (4.24)

EY
[

(

LnN
k
n

)2
]

≤
EY

[

L2
nN

k
n−1

]

4
+ c2

YEY
[

(

Ln−1N
k
n−1

)2
]

, (4.25)

and

EY
[

Nk
l

]

= EY















Nk
l−1

Wk,i
l Ll−1

Ll















≤ cY
Ll−1

Ll
EY

[

Nk
l−1

]

∀l = 1, ..., n− 1. (4.26)

Using recursion on (4.25) and (4.26), one finds that

EY
[

(

LnN
k
n

)2
]

< ∞. (4.27)

Therefore

EY
[

Bk
n ( f ) − σn ( f )

]2
< ∞. (4.28)

It follows by the Central Limit Theorem for independent and identically distributed

random variables that

√
N

(

SN
n ( f ) − σn ( f )

)

=
1
√

N

N
∑

k=1

(

Bk
n ( f ) − σn ( f )

)

⇒ N
(

0, γR
n ( f )

)

. (4.29)

Now, we calculate the random varianceγR
n ( f ). To simplify our notations, we ab-

breviateMk
= MB

k

n ( f ). Therefore, by (4.4) and (4.8), we have

Mk
=

n
∑

l=0

[

Bk
l

(

Al+1,n f
) − EY

[

Bk
l

(

Al+1,n f
)

∣

∣

∣F UX
l−1

]]

(4.30)

=

n
∑

l=0

[

Bk
l

(

Al+1,n f
) − Bk

l−1

(

Al,n f
)

]

,
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with the conventionBk
1 = π0, for any 1≤ k ≤ N, and the martingale differences are

Bk
l

(

Al+1,n f
) − Bk

l−1

(

Al,n f
)

(4.31)

=

Nk
l

∑

i=1

LlAl+1,n f
(

Xk,i
l

)

−
Nk

l−1
∑

i=1

Ll−1Al,n f
(

Xk,i
l−1

)

=

Nk
l−1

∑

i=1























Nk,i
l +Nk,i

l
∑

j=Nk,i
l +1

LlAl+1,n f
(

Xk, j
l

)

− Ll−1

g
(

Yl − h
(

Xk,i
l−1

))

g (Yl)
KAl+1,n f

(

Xk,i
l−1

)























=

Nk
l−1

∑

i=1























Nk,i
l +Nk,i

l
∑

j=Nk,i
l +1

LlAl+1,n f
(

Xk, j
l

)

− L̂k,i
l KAl+1,n f

(

Xk,i
l−1

)























=σl (1)
Nk

l−1
∑

i=1























Nk,i
l +Nk,i

l
∑

j=Nk,i
l +1

Al+1,n f
(

Xk, j
l

)

− EY























Nk,i
l +Nk,i

l
∑

j=Nk,i
l +1

Al+1,n f
(

Xk, j
l

) ∣

∣

∣F UX
l−1













































.

Therefore, by the independence of the{U} as well as the independence of the{ξ}

EY
[

(

Bk
l

(

Al+1,n f
) − Bk

l−1

(

Al,n f
)

)2 ∣

∣

∣F UX
l−1

]

(4.32)

= σ2
l (1)

Nk
l−1

∑

i1,i2=1























EY























Nk,i1
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k,i1
l

∑
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k,i1
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(
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(

Xk, j2
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∣F UX
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
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
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
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− EY




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




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
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(

Xk, j2
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∣

∣F UX
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










































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l (1)
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




















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






















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




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
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
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
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
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




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
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
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




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












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














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


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
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
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

.
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However, by the independence of the{ξ} again

EY










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






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
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
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∣
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










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(4.33)

= EY
[

Nk,i
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K
(

Al+1,n f
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(
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l−1

)

− (
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(
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)}

+
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]
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+




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
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,
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
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


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








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


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=

(

EY
[

Nk,i
l KAl+1,n f

(

Xk,i
l−1

) ∣

∣

∣F UX
l−1

])2
(4.34)

=















L̂k,i
l

Ll















2
(

KAl+1,n f
)2

(

Xk,i
l−1

)

.

Combining the last three equations, we can find that

EY
[

(

Bk
l

(

Al+1,n f
) − Bk

l−1

(

Al,n f
)

)2 ∣

∣

∣F UX
l−1

]

(4.35)

=σl (1)Bk
l−1

(

Al
(

Al+1,n f
)2 − αl

(

KAl+1,n f
)2
+ Rl

(

KAl+1,n f
)2
)

.

56



By (4.4), we have

γR
n ( f ) =

n
∑

l=0

EY
[

(

Bk
l

(

Al+1,n f
) − Bk

l−1

(

Al,n f
)

)2
]

(4.36)

=

n
∑

l=0

EY
[

EY
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(

Bk
l

(

Al+1,n f
) − Bk

l−1

(

Al,n f
)

)2 ∣

∣

∣F UX
l−1

]]

=

n
∑

l=0

σl (1)EY
[

Bk
l−1

(

Al
(

Al+1,n f
)2 − αl

(

KAl+1,n f
)2
+ Rl

(

KAl+1,n f
)2
)]

=

n
∑

l=0

σl (1)π0A1,l−1

[

Al
(

Al+1,n f
)2 − αl

(

KAl+1,n f
)2
+ Rl

(

KAl+1,n f
)2
]

.

�

Remark: To make the calculations simpler, we cancel the remainder term of the

variance of the Central Limit Theorem. By (4.6) and (2.44), we can get the

expectation of the random varianceγR
n ( f )

EQ
[

γR
n ( f )

]

=

n
∑

l=0

EQ
[

σl (1)Bk
l−1

(

Al
(

Al+1,n f
)2 − (

KAl+1,n f
)2
γl

)]

(4.37)

=

n
∑

l=0

EQ
[

σl−1 (γl)σl−1

[(

K
(

Al+1,n f
)2 − (

KAl+1,n f
)2
)

γl

]]

=

n
∑

l=0

EQ

{

σl−1 (γl)σl−1

[

γl (y)

(∫ ∫

Kn−l
λ ( f × f ) (z, z) K (y, dz)

−
∫ ∫

Kn−l
λ ( f × f ) (z, ζ) K (y, dz) K (y, dζ)

)]}

=

n
∑

l=0

∫ ∫

(π0 × π0) K l−1
λ (dx, dy)

[

K1 − K1
]

Kn−l
λ ( f × f ) (y, y) λ (x, y) .

whereK1 andK1 are the combined kernels whenλ ≡ 1.

Now, we calculate some particular examples to compare the expected variances of

the Central Limit Theorem for both particle systems.

Suppose that the sensor functionh (x) = x and the probability density function
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g (x) = 1√
2π

e−
x2
2 , then the observation variability function is

λ (x, ξ) = exp(h (x) h (ξ)) = exp(xξ) . (4.38)

Let the Markov transition kernel asK (x, dz) =

√

2
π

e−2(x−z)2
dz, then we have

Kλ (x, dz) =K (x, dz) λ (x) (4.39)

=

√

2
π

e−2(x−z)2
dz · ex2

=

√

2
π

e−x2
+4xz−2z2

dz,

and

Kλ (x, ξ, dz, dζ) =K (x, dz) K (ξ, dζ)λ (x, ξ) (4.40)

=
2
π

e−2(x−z)2
dz · e−2(ξ−ζ)2

dζ · exξ

=
2
π

exξ−2x2
+4xz−2z2−2ξ2+4ξζ−2ζ2dzdζ.

UsingK l+1
λ

(x, dz) =
∫

K l
λ

(ζ, dz) Kλ (x, dζ), we have

K2
λ (x, dz) =

∫

Kλ (ζ, dz) Kλ (x, dζ) (4.41)

=
2
π

∫ ∞

−∞
e−x2

+4xζ−2ζ2dζ · e−ζ2+4zζ−2z2
dz

=
2
π

e−x2−2z2
dz

∫ ∞

−∞
e−3ζ2+4(x+z)ζdζ

=
2
√

3π
e−

2
3z2
+

8
3 xz+ 1

3 x2
dz,
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and

K3
λ (x, dz) =

∫

K2
λ (ζ, dz) Kλ (x, dζ) (4.42)

=
2
√

2
√

3π

∫ ∞

−∞
e−

2
3z2
+

8
3ζz+

1
3ζ

2
dz · e−x2

+4xζ−2ζ2dζ

=
2
√

2
√

3π
e−

2
3z2−x2

dz
∫ ∞

−∞
e−

5
3ζ

2
+( 8

3z+4x)ζdζ

=
2
√

2
√

3π
e

6
15z2
+

16
5 xz+ 7

3 x2
dz,

and

K4
λ (x, dz) =

∫

K3
λ (ζ, dz) Kλ (x, dζ) (4.43)

=
4
√

5π

∫ ∞

−∞
e

5
16z2
+

16
5 ζz+

7
3ζ

2
dz · e−x2

+4xζ−2ζ2dζ

=
4
√

5π
e

6
15z2−x2

dz
∫ ∞

−∞
e

1
3ζ

2
+(4x+ 16

5 z)ζdζ,

But the integration
∫ ∞
−∞ e

1
3ξ

2
+(4x+ 16

5 z)ζdζ is infinite. By (3.35), the expected variance

of the weighted particle system is

EQ
[

γW
n ( f )

]

=

n
∑

l=0

π0K l−1
λ

[

Kλ − Kλ
]

Kn−l
λ ( f × f ) . (4.44)

Whenn ≥ 5, the 5th term of the sum isπ0K4
λ

[

Kλ − Kλ
]

Kn−5
λ

( f × f ) and will be

infinite. Therefore, the expected variance of the weighted particle system will be

infinite.

Now, we calculate the expected variance of the fictitious particle system. Using

K l+1
λ (x, ξ, dz, dζ) =

∫ ∫

K l
λ (y, θ, dz, dζ) Kλ (x, ξ, dy, dθ) , (4.45)
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we have,

K2
λ (x, ξ, dz, dζ) =

∫ ∫

Kλ (y, θ, dz, dζ) Kλ (x, ξ, dy, dθ) (4.46)

=
2
π

∫ ∞

−∞

∫ ∞

−∞
exp

(

yθ − 2y2
+ 4yz− 2z2 − 2θ2 + 4θζ − 2ζ2

)

dzdζ

·2
π

exp
(

xξ − 2x2
+ 4yx− 2y2 − 2ξ2 + 4ξθ − 2θ2

)

dydθ

=
4
π2

exp
(

−2z2 − 2ζ2
+ xξ − 2x2 − 2ξ2

)

dzdζ

·
∫ ∞

−∞

∫ ∞

−∞
exp

[

yθ − 4y2
+ 4(x+ z) y− 4θ2 + 4(ζ + ξ) θ

]

dydθ.

The integration is calculated as

∫ ∞

−∞

∫ ∞

−∞
exp

[

yθ − 4y2
+ 4(x+ z) y− 4θ2 + 4(ζ + ξ) θ

]

dydθ (4.47)

=
2π
√

63
exp

[

63
64

(x+ z)2
+

63
64

(ζ + ξ)2
+

16
63

(x+ z) (ζ + ξ)

]

·
∫ ∞

−∞

∫ ∞

−∞

√
63

2π
exp















−4

[

θ −
(

4
63

(x+ z) +
32
63

(ξ + ζ)

)]2

− 4

[

y−
(

32
63

(x+ z) +
4
63

(ξ + ζ)

)]2

+

[

θ −
(

4
63

(x+ z) +
32
63

(ξ + ζ)

)] [

y−
(

32
63

(x+ z) +
4
63

(ξ + ζ)

)]}

dydθ,

Notice that the last two lines of (4.47) is a two-dimensionalGaussian distribution.

Therefore, we have

K2
λ (x, ξ, dz, dζ) (4.48)

=
4
π2

exp
(

−2z2 − 2ζ2
+ xξ − 2x2 − 2ξ2

)

dzdζ

· 2π
√

63
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[
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(x+ z)2
+

63
64

(ζ + ξ)2
+

16
63

(x+ z) (ζ + ξ)

]

=
8
√

63π
exp

[

−62
63

(

x2
+ ξ2 + ζ2

+ z2
)

+
79
63

xξ +
128
63

(xz+ ζξ) +
16
62

(xζ + zζ + zξ)

]

dzdζ.
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The idea of calculatingK2
λ

is that: we try to divide the integration into two parts.

The first part is the integration of the probability density function of a Gaussian

distributed random vector. The second part is the integration of some remainder

terms. By the same technique, we can calculateK3
λ

andK4
λ
, respectively,

K3
λ (x, ξ, dz, dζ)

=
16
√

63π2
exp

(

−62
63

z2 − −62
63
ζ2
+

16
63

zζ + xξ − 2x2 − 2ξ2
)

·

2
√

63π
√

2145
exp













188
2145

(

128
63

z+
16
63
ζ + 4x

)2

+
188
2145

(

128
63
ζ +

16
63

z+ 4ξ

)2

+
79

2145

(

128
63

z+
16
63
ζ + 4x

) (

128
63
ζ +

16
63

z+ 4ξ

)]

dzdζ

=
32

√
2145π

exp

[

−1282
2145

(

x2
+ ξ2 + ζ2

+ z2
)

+
1264
2145

zζ +
3409
2145

xξ

+
3136
2145

(xz+ ζξ) +
1024
2145

(xζ + zξ)

]

dzdζ.

and

K4
λ (x, ξ, dz, dζ)

=
64

√
2145π2

exp

(

−1282
2145

z2 − −1282
2145

ζ2
+

1264
2145

zζ + xξ − 2x2 − 2ξ2
)

dzdζ·

4290π
√

112567455
exp













796
7497

(

3136
2145

z+
1024
2145

ζ + 4x

)2

+
796
7497

(

3136
2145

ζ +
1024
2145

z+ 4ξ

)2

+
487
7497

(

3136
2145

z+
1024
2145

ζ + 4x

) (

3136
2145

ζ +
1024
2145

z+ 4ξ

)]

·

=
128

√
52479π

exp

[

−2258
7497

(

x2
+ ξ2 + ζ2

+ z2
)

+
6125
7497

zζ +
15289
7497

xξ

+
10240
7497

(xz+ ζξ) +
5888
7497

(xζ + zξ)

]

dzdζ.
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By (4.37), the expected variance of the fictitious particle system is

EQ
[

γR
n ( f )

]

=

n
∑

l=0

∫ ∫

(π0 × π0) K l−1
λ (dx, dy)

[

K1 − K1
]

Kn−l
λ ( f × f ) (y, y) λ (x, y) .

(4.49)

If n = 5, the expected variance of the fictitious particle system is

5
∑

l=0

∫ ∫

(π0 × π0) K l−1
λ (dx, dy)

[

K1 − K1
]

K5−l
λ ( f × f ) (y, y) λ (x, y) . (4.50)

By the previous calculations, we can see thatK i
λ

is finite wheni ≤ 4. Therefore,

the expected variance of the fictitious particle system is still finite when n = 5.

However, as we have showed before, the expected variance of the weighted particle

system is infinite whenn = 5. Hence, we have showed that, under these condi-

tions, the expected variance of the fictitious particle system is less than that of the

weighted particle system.
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Chapter 5

Summary and Future Work

In the thesis, we introduce two particle systems: weighted particle system and fic-

titious particle system, to approximate the unnormalized filter in the filtering prob-

lem. We prove the Strong Law of Large Numbers and the Central Limit Theorem

for both systems, and calculate the variances as well as the expected variances of

the Central Limit Theorem. Under some particular examples,we have showed that

the expected variance of the fictitious particle system is much less than that of the

classical classical weighted particle system.

In the previous calculations, we always eliminate the remainder term of the variance

of the fictitious particle system. But in reality, the remainder term exists since the

resampling process will create a lot of noise. In the future,it will be of great interest

to find some methods to eliminate the remainder term. In addition, we could inves-

tigate more examples proving that the expected variance of the fictitious particle

system is less than that of the weighted particle system.

In this thesis, we only discuss and analyze the fictitious particle system, which is

mathematically simpler but can not be implemented on a computer. We know that

the fictitious particle system is a coupling to the new resampled particle system in-
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troduced in Chapter 1. In the future, we could analyze the computer-implementable

resampled particle system with the results of the thesis.
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