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Abstract

Recently, estimation of distribution function and quantiles has received considerable
attention in survey sampling. This thesis mainly considers estimation of distribution
function and quantiles under single-stage and two-stage sampling designs. In the
first part, for single-stage sampling process, estimation of distribution function and
quantiles is considered through the use of auxiliary information. In the second part,
along the lines of first part, the estimation problem under two-stage sampling plan is
considered. The idea of estimating population total under model-assisted approach is
also extended to estimate population distribution function and the resulting estimator
is shown to perform better than the conventional estimator for moderate sample sizes.
Through a Monte Carlo simulation study, proposed estimators are compared with

conventional estimators.
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Chapter 1
Introduction

In modern society, the need for statistical information has increased considerately for
making policy decisions. In particular, data are regularly collected to satisfy the need
for information about specified set of elements. The collection of all such elements is
called a finite population. But collecting the data for each element in a population
will be too expensive and/or time consuming; sometimes it is even impractical. So,
one of the most important method of collecting information for policy decision is

sample survey, that is, a partial investigation of the finite population.

A sample survey costs less than a complete enumeration and may even be more
accurate than the complete enumeration due to the fact that personnel of higher
quality can be employed for the data collection. So, designing an efficient sampling
scheme at possible lowest cost and to develop some efficient methods to estimate
population parameters from the sample data under given design have become major

issues in sample surveys.

In this thesis, I will only concentrate on the estimation of the distribution function

and associate quantiles of a finite population.

1.1 Background

Consider a finite survey population U which consists of IV distinct elements. Each

element is identified through label j (j = 1, ... , V). Let values of the population
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elements for variable Y be Y1, Y5, ..., Yy, then for any given number ¢t (—oco < t < o0),
the population distribution function Fy(t) is defined as the proportion of elements in
the population for which Y; < ¢, for j € U, that is
Fn(t):=NT")_ A(t—Y)), (1.1)
jeu
where
1, when t > Yj;
Alt—Y;) = (1.2)

0, otherwise.

Also, population o quantile (0 < « < 1) for Y is defined as
gy (@) == inf{t; Fy(t) > a}. (1.3)

Without loss of generality, we omit /N in notation of Fy(t) or gn(c).

Consider an auxiliary variable X, associated with Y, with the known values X;,

Xz, -y XN

Now, if a single-stage sampling scheme is undertaken to select a sample s = {j, o,

. yJn} of size n under some sampling design {S, p(-)}, where S denotes the set of

all possible samples of size n, p(s) is the probability of selecting the sample s, s €

S, such that > . cp(s) = 1. The values for Y in set s are observed as yj,, Yj,, --; Yjn-

Then, only with this information, a general class of design-based estimator of F(t) is
given by Rao (1994) as:

2 ies Gi(8)A(E — i) ’

F(t) = N (1.4)

. di A t - Yz .
ZZESZ (S)d ((s) ) , when N is unknown.
icg 4t

when N is known;




And naturally, the a®® quantile g(c) may be estimated as
j(@) = inf{t; F(t) > a}. (1.5)

So, in the following I will focus on the estimation of distribution function. The
associate quantile estimator willl be defined as (1.5) accordingly. In (1.4), d;(s) is
the basic design weight for singlee-stage sampling which can depend on both s and 2
(i € s) (see, Godambe, 1955), which also satisfies the design-unbiasedness condition:
D o(siesy P(8)di(s) = 1 for i =L, ..., N. To get an unbiased estimator of F\ it is
also essential to assume that the inclusion probabilities m; = > (. ;3 P(S) , fori =1,
... , N, are all positive (Rao, 1975). Under simple random sampling scheme, F(t)
reduces to the naive empirical destribution function estimator

Fop (8) =771 At — 1) (1.6)

ics

Plugging F.y for F' (1.5) gives the naive quantile estimator geg(cy)-

The above approach to estimate distribution function is called probability sam-
pling approach which is free fr=om model assumption. However, the above estima-
tors do not incorporate any supplementary information directly into the estimation
process, although the use of auxiliary information on population is known to increase
the precision of an estimator. Im theory, information on one auxiliary variable may
be used at the survey design stage by defining appropriate inclusion probabilities ;.
But this is not possible when information on several auxiliary variables is available.
So we may wish to introduce the auxiliary information at the survey estimation stage

also (Chambers and Dunstan, 1986). In recent years, several estimators of distri-
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bution function of a finite population have been proposed with the use of auxiliary

population information (Rao, 1994).

1.2 Objective

For single-stage sampling scheme, the most notable distribution function estima-
tors are the model assisted estimator (Rao, 1994) and the pseudo-empirical maximum
likelihood estimator (Chen and Sitter, 1996). The former uses the complete infor-
mation of auxiliary variable but with the assumption that the relationship between
Y and X follow a linear model. Eventhough, the latter does not assume any model,
the resulting estimator is optimal under a linear model. Also, the latter method is
computational intensive. In this thesis, I will develop an estimator of the finite pop-
ulation distribution function and associate quantiles such that it uses the complete
information of X and is exempt of model assumption. More precisely, this estimator

uses a nonparametric approach.

For a two-stage sampling scheme, Royall (1976) proposed the linear least-squares
prediction approach in the estimation of population total, with the cluster size as
supplementary information. In this thesis, The same approach will be used to get

an estimator of the finite population distribution function and associate quantiles.

All of the estimators proposed in this thesis will be compared with conventional

estimators through a Monto Carlo simulation study.

1.3 Thesis Overview



In chapter 2, some of the literature on the estimation of distribution function and
quantiles for a finite population under single-stage and two-stage sampling scheme
are reviewed. In chapter 3, by exploring the advantages of different methods under
single-stage sampling plan, a robust distribution function estimator is proposed. This
estimator can be used under single-stage sampling plan without model assumption.
The proposed method is examined through a limited simulation study. In chapter
4, this thesis presents some discussion of the estimation of distribution function and
associate quantiles under two-stage sampling scheme. Also, the basic idea of esti-
mating population total is extended to estimate population distribution function. A
Monto Carlo simulation study is also presented to assess the efficiency of proposed

estimator.



Chapter 2
Review of Literature

Single-stage sampling is the most simple sampling scheme in sample surveys. Several
methods are considered in the literature for estimating distribution function and quan-
tiles, which can be grouped under three broad headings: (i) design-based approach;
(ii) model-dependent approach, or prediction approach; and (iii) model-assisted ap-

proach.

However, in practice, multi-stage sampling is also frequently used, especially in
surveys of human populations. For example, Kish (1965) described a stratified three-
stage sample of dwellings, i.e., sampling counties at the first stage, sampling blocks
within selected counties at the second stage and sampling dwellings within chosen
blocks at the third stage. For this kind of surveys, there is a wide variety of possible
designs in any stage, and there is a much wider variety of possible estimators of

interested parameters.

So, this chapter mainly reviews some of papers that are relevant to the estimation
of finite population distribution function and quantiles under single-stage sampling

design.

2.1 General Estimation Method of Distribution Function

Consider a single-stage sampling scheme defined by {S, p(:)} and a sample set

s € S with design weight d;(s) for i € s. Also, we assume availability of auxiliary



information, say X, for all of the units in the population. Let y;,...,y;, be the
observed values for Y in set s. We consider below different approaches to estimate

the distribution function (1.1) and o** quantile (1.3).
2.1.1 Design-based Approach

Under the design-based approach, F'(t) can be estimated by the ratio estimator
F.(t), the difference estimator Fy(t) and the regression estimator F.,(t) (See Rao

and Liu (1992) and Rao (1994)).

In the case of a single auxiliary z-variable, denote g(z;) = A(t ~ Rz;) for j =
1,..,N; where, B = Y, di(8)¥:/ > ;e di(8)z:. Denote H = 5, di(s)A(t — u1),
G = Y ies di(8)g(xi), G = 3y 9(z;), and B = cov(H,G)/v(G). Then, for the

sample s, we have

E(f) = %gc (2.1)
Eyt) = % lh+@c-a}, (2.2)

and
Frg(t) = % [B+BG-&)}. (2.3)

The above three estimators have some good properties. For example, F(¢) re-
duces to F(t) and variance becomes zero when y; o z; for all 7 € U. This indicates
that the ratio estimator can gain large efficiency when A(t — y;) and A(t — Rz;)

have a stronger linear relationship. However, in real world, the correlation between
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A(t — ;) and A(t — Rz;) is generally weaker than that between y; and z;, so here
estimator Fy(t) actually gains very little efficiency over F'(t). As for estimators Fy(t)
and Frey(t), they suffer from the same drawback as the ratio estimator £,(t). Since
Freg(t) involves the computation of cou(H, G) and v(G), it is computationally more
cumbersome than the ratio estimator F} (t). Moreover, all of these three estimators
are not model-unbiased under a linear model assumption, although they are asymp-

totically design-unbiased (Rao, Kovar and Mantel, 1990 and Rao, 1994).
2.1.2 Prediction Approach

This approach, contrary to the design-based approach, assumes that the popula-
tion Y values are random and the relationship between Y and the auxiliary variable

X follows a certain model. The most-common used superpopulation model is given
by,

Yi = :ij -|-’U(l‘]')€j, .7 =1, .., N7 (24')
where § is an unknown parameter, v(z;) is a strictly positive function of z;, and
€;’s are independent and identically distributed (i.i.d) random variables with zero

means. Under this approach valid inference will be made with respect to the model

and irrespective of the sampling design p(s).

At first, note that Fj(t) can be decomposed as follows,

[\V]
(41}
g

Fy(@) =N _Alt—w)+>_ AF—y)}, (2.

ic€s jes
where s is the same as before, § = {j; =1, 2, ..., N and j ¢ s}. The only unknown

in (2.5) is the second term. It is also assumed that the y.’s are independent and

8



the population model holds for the sample, so there will be no sample selection bias
(Krieger and Pfeffermann, 1992). Under this assumption, a general estimator (refer-
enced as CD estimator) of distribution function, which was suggested by Chambers

and Dunstan (1986), is given by

F() =N AG-w)+5 3 M-} @)

iES ZES JES

where, b, = {3 ¢, vii /(%) H{ D e, 22 /0% (i) } 1, which is the best linear unbiased
estimator (BLUE) of 3, u,; = {v(z:)}1(t — b,z;). Rao and Liu (1992) noted that,

when v%(z;) = o%z;, (2.6) reduces to

Fp@) =N Af-w)+nt S A 2(t-Boz;) —wai)}, (2

€S i€s, JEI

N
-1
~—r

1
where, 8, = n 1 3, ¥/ (R Sy Ti) = Ts/Tsy Uni = T, (3 — ByTi), and the un;'s

are approximately independent with mean zero and variance o2.

In general, the model-based estimator of the distribution function will not be the
same as those suggested by the conventional design-based approach as in (1.4). But
there is one special situation “when the sample is a stratified random sample and the
auxiliary information X is a qualitative variable, indicating the stratum in which a
population element occurs” under which F};(t) and Fi(t) are consistent (Chambers

and Dunstan, 1986).

2.1.3 Model-assisted Approach

From earlier discussion, we see that although probability sampling approach is

assumption free, the associated inferences have to refer to repeated sampling instead

9



of just the particular sample, s, that has been chosen. Prediction approach, on
the other hand, ignores the sampling design completely and the definition of Fy(t)
depends on (2.4) being the “correct” model for the population. In particular, it
assumes that the heteroscedasticity function v(z) is correctly specified. However, in
practice, this is unlikely to be the case and in large samples, prediction inferences are

also very sensitive to model misspecifications (Hansen, Madow and Tepping, 1983).

To overcome the shortcomings in the above two methods, the model-assisted ap-
proach is proposed as an approach providing valid inferences under an assumed model
and at the same time protecting against model misspecifications in the sense of pro-
viding valid design-based inferences irrespective of the population Y -values. That is,
we can only consider design-consistent estimators that are also model-unbiased (at
least asymptotically) under an assumed model. So in the case of estimating a finite
population distribution function, we may assume that Y7, Y3, ..., Y come from the
superpopulation with model (2.4). Cases of this problem have been treated by Cham-
bers and Dunstan(1986), Kuk(1988), Godambe(1989), Rao, Kovar and Mantel(1990),
Chambers (1992), Rao and Liu(1992) and Rao(1994).

Let G denote the model cumulative density function (c.d.f.) of ¢;, then under the
superpopulation model (2.4),

N N v — 2.8
D #; =) A —y) — G(E—)] (2.8)
- - v(z;)
=1 j=1
is a population estimating function, each of those terms has expectation zero. Using

estimation function theory, Godambe (1989) arrived at a model-assisted estimator of

10



F(t) under the special case of d;(s) = m;!. Rao (1994) extended this to a general

design weight d;(s), where the case v?(z;) = z;0? was considered.

Under the model (2.4), a predictor of A(t — y;) is given by

§(z;) = (Z di(s)) {Z di(s)A [x;%(t — Rz;) — 6i] }, (2.9)

€S €S

where
_1 N
e; = x; 2 (y: — Rz;). (2.10)

Then a model assisted estimator of F'(¢) based on (2.9) can be given by the difference

estirmator:

Fra(t)=N"7! {Zdi(s)A(t — ) + ng(xj) - de(s)g(m,-)} } . (211)

i€s el €S
which is model-unbiased (at least asymptotically) under the assumed model, but its
asymptotic design-bias is zero only for a subclass of sampling designs. However, this

subclass seems to cover a wide variety of sampling design(Godambe, 1989).

For the special case of d;(s) = 7] !, Rao, Kovar and Mantel (1990) also proposed
an alternative model-assisted estimator (it can be reference as RKM estimator),
after noting that the ratio and the difference estimators, F,(t) and Fj(t), are not
model-unbiased for Fy(t). This estimator is asymptotically model-unbiased and

design-unbiased under all designs. Rao and Liu (1992) extended this estimator to

11



the general case of d;(s) as follows:

Fan®) = N A@AC —9) + (O 3(e) = L@} (212
where, ]

dile) = (3 dsto/Dy! { > dils/a = ¥ (¢ - Bz —e))] } S Bt

So, l*:'ma(t) and de(t) are different only in the last term of the formula.

2.2 Robustness of Model-assisted Distribution Function

Estimator

From above section, we know that the model-assisted estimator F),, (t) and F‘d.m(t)
have some good properties (Rao, Kovar and Mantel, 1990), but whether or not they
are better than F(t) as in (1.4) depends on the degree of validity of the

model, this is reflected in the prediction of A(t — y;). So, some improvements
might arise with the use of a more general model and the local fitting method which

could be employed to increase the robustness of the estimator.

Chambers, Dorfman and Wehrly (1993) also explored a robust estimation ap-
proach via nonparametric regression method against model misspecification. For a

general model

$(y) =n(z) +e, (2.14)

where 7)(-) is some reasonably smooth function, ¢(-) is some known function and e

is the random error with zero mean. This approach works by first getting a robust

12



(although may be inefficient) predictor of population total ® of ¢ with nonparametric
regression, then using bias calibration method to get a more efficient predictor. That
is, one smooths ¢(y) against z to obtain 7, (z) and then smooths ¢(y) —7;(z) against
Z to obtain 75(z). So, the final smoothing of ¢(y) against z is defined as 7,(zx)+
fla(z). In the case of estimating the finite population distribution function of ¥, we

can take ¢(Y) = N"1A(t — Y), then
N
e=F@)=N'>S At-Y;) = %Fs(t) +(1— %)Fns(t). (2.15)

Here, Fj(t) is obtained from (1.6) and 7(z,t) = Pr{Y < t/z} which is assumed
to be a smooth function of z for any t. Chambers, Dorfman and Wehrly (1993)
estimated 1t by
i(@.t) = 3w, @A - ), (2.16)
i€g

where the weights w; can be calculated using kernel smoothing method (Chambers,
Dorfman and Wehrly, 1993). Then the predictor of Fp,4(t) is:

Foo(t) =D ) wiz)Al —u) = Y wA(t — s)- (2.17)

JES €8 i€s

And a robust calibrated estimator is given by

N X 5 b — A(X5)
= I'ne(t i —Yi) — > ’ 2.1

Folt) = Fut) + Sl A -9 — G55} (218)

where uls are the nonparametric prediction weights defining F4(t), 2 and & are

sample-based estimators of the conditional model expectation £(Y/X) and standard

deviation (VAR(Y/X))? under the working model for the population. G(-) is a

sample-based estimator of the distribution function G(-) of the standardized error

13



_ -1 _
Y — E(Y/X) . If we put u, = ?—rl——l in (2.18) (where m; is the inclusion proba-
VVar(Y/X) n

N —
bility), then the resulting estimator is basically the same as that suggested by Rao,

Kovar and Mantel (1990). They also suggested that, by choosing the weights u; to
reflect the actual distribution of the sample X values, the robustness of the predictor
can be improved, and this heavily depends on the choice of the bandwidth h,. Some
rules of choosing bandwidth are also given in that paper. However, this method may

loss some efficiency by obtaining the bias robustness.

2.3 More Distribution Function Estimators

In above section, we saw some distribution function estimators with the utility of
complete information of the auxiliary variable X. However, in some situations, we
may not have any auxiliary variables, but with some auxiliary information about F or
its associate parameters available. This kind of situation has been discussed by Qin
and Lawless (1994) who used the profile empirical likelihood-based kernel method to
estimate the finite population distribution function under the semiparameter model
assumption. That is, they estimated F' as the maximum empirical likelihood estima-
tor (MELE) Fp.... by maximizing the profile empirical likelihood function L(F)

(Zhang, 1997) which is defined as

L(F) := max L(p) = mgxgp‘- = fe[p (2.19)
And
Frnete =Y D.A(t — ). (2.20)

i€s
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Zhang (1997) established the weak convergence of Fin. so that this approach not only
overcomes the disadvantage of the standard kernel method which can not exploit extra
information systematically, but also makes the variance of estimator smaller to arrive
at some degree of increasing of efficiency. In this thesis, this situation will not be

discussed further.

Another case is that we can not get the complete information about the auxiliary
variable X, but still with some summary available information on X. Usually this

kind of information can be represented as
Ex{n(X)}=0, I=1, .., ¢ (2.21)

where, T(X) = (71(X), ..., T(X))T. Then, how this information can be used to

improve the estimation?

Chen and Qin (1993) proposed an empirical likelihood approach to be used in
simple random sampling when this kind of auxiliary information (2.21) is available.
Their results suggested that this approach has desirable properties when population
distribution function and quantiles are estimated under this situation. But, the
formulation of their method did not extend to more complex survey designs. Chen
and Sitter (1996) generalized it to estimate the parameter which is some function of
the distribution function ¢ = {(F) under the situation when the sample s is drawn

using some sampling design {D,p(-)} as follows.

For a finite population U, if the entire finite population is available, the empirical

likelihood, originally introduced by Owen (1988, 1990) for constructing confidence
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regions in nonparametric settings, will be
L(F) =], (2.22)
jeU
with the corresponding log-likelihood function
I(p) = log(p,), (2.23)
JEU
where p; = P(Y =y,). Suppose that p/s (0 <p, <1)areunknown and } .., p;, < 1.
Then, in the presence of auxiliary information (2.21), (2.23) could be maximized
subject to

N N
Y p,=1land » pr(X;)=0forl=1, .., c (2.24)
j=1

=1

However, since we only have a sample set s of size n of the entire population available,
we can view (2.23) as a population total, then using the unified theory of sampling
methodology to get a design unbiased estimator of I(p), that is

i(p) = di(s)logp, (2.25)

ics

where d;(s)'s are the design weights which satisfy Ey(3",.,di(s)logp,) = S log(p,)
and F, stands for the expectation respecting to the sampling design. Chen and
Sitter termed (2.25) as pseudo-empirical likelihood. For auxiliary information
of the form (2.21), the problem reduces to maximizing (2.25) subject to (2.24) with
N replaced by n. Using the Lagrange multiplier method, they gave the resulting
pseudo empirical maximum likelihood estimator (PEMLE) of Fp(t) as

Foe(t) =D _B:iA(t — ws), (2.26)

€S
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where

~ di(s) 1
P S ) T+ AT ()

for i € s, (2.27)

and A satisfies

di(S) T(Xi) —
Zies di(s) 1+ AT"'()(i)

(2.28)

tES

2.4 General Estimation Method of Quantile

Compared to the estimation of distribution function, more attention has been
given to quantile estimation, for example, McCarthy (1965), Loynes (1966), Sedransk
and Meyer (1978), Gross (1980), Sedransk and Smith (1983), Chambers and Dunstan
(1986), Rao, Kovar and Mantel (1990), Olsson and Rootzen (1996). Many papers
discuss the estimation of the median, for the survey variable of interest under simple
random sampling or stratified random sampling, e.g., Gross (1980), Sedransk and
Meyer (1978), Sedransk and Smith (1983), without making explicit use of the auxiliary

variables in the construction of estimators.

To make use of the auxiliary information, Chambers and Dunstan (1986) consid-
ered briefly the estimation of a quantile by inverting a model-based estimator F of
the distribution function through formula (1.5). When the population size N and the
sample size n are large, the estimator suffers the possible bias problem resulting from
the model misspecification in addition to intensive computation. This approach also
assumes that the complete information about the auxiliary variable is known. But

in some applications, especially when the auxiliary information is extracted from the
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statistical reports or other secondary sources, only a certain summary measures or
a grouped frequency distribution of the auxiliary variable X are available. In such
situations, Kuk and Mak (1989) proposed three estimators of median: ratio esti-
mator A;IYR, position estimator My p and stratification estimator Mys under
the assumption that only the median My of X is known. They also showed that
the last two estimators are efficient when the relationship between Y and X departs

from the linearity assumption.

Rao, Kovar and Mantel (1990) studied the ratio estimator and regression es-
timator for a general a® quantile, and showed that their estimators could lead to
considerable gains in efficiency over the customary estimator ¢(c) when Y; is approx-
imately proportional to X; for j = 1,...,N. Olsson and Rootzen (1996) proposed a
quantile estimator for a nonparametric components of variance situation and proved

its consistency and asymptotic normality.
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Chapter 3

Distribution Function and Quantile
Estimator for One-Stage Sampling:
Non-parametric Approach

The estimators given in previous chapter assume the linear model as described in
(2.4). In this chapter, a general model is considered to obtain estimators similar to

the ones that are described in the previous chapter.

3.1 Formulation of the General Estimator of Distribution

Function

Suppose that nothing is known about the relationship between the study variable
Y and the auxiliary variable X except some population information about X. That
is, only the following general model can be assumed.

{ BY/X=2) = n(), o
Var(Y/X =z) = 4?(z),

where 7(-) is unknown, v(-) is some positive function of z. In this case, nonparametric
method is frequently used, and several methods have been proposed for estimating
7(+), for example, kernel, spline, and orthogonal series methods. Fan (1992) developed

a design-adaptive nonparametric regression method, which was based on a weighted

local linear regression. This method works as follows.

Suppose that the second derivative of n(zg) exists. Using Taylor’s expansion in a
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small neighborhood of a point =y gives
n(z) = n(zo) + 7' (o) (z — Zo) = a+b(z — o). (3.2)

Then estimating 7n(zg) is equiwvalent to estimating the intercept a of a local linear
regression problem. Now if the study variable ¥ and auxiliary variable X satisfy
(3.1), we can consider such a w-eighted local linear regression problem: to find a and

b by minimizing

g{y —a—b(z; — w@}ﬂK(f";—%,

where K(-) is some kernel function and h, is the smooth bandwidth. The solution
of b will not be discussed in this thesis. Then, the weighted least square solution of

a is defined to be the local linear regression smoother, i.e.,

i(zo) =a= Zwiyi/ Zwi ; (3.3)
with

g — I;

Hsnz2 — (To — :)sn,1}, (3.4)

where

sni= Y K@ —2), =12 (3.5)

=1
The bandwidth h, can be «<hosen either subjectively by data analysts or objec-

tively by data. Fan (1992) show=ed that the local linear regression smoother have high
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asymptotic efficiency (it can be 100% with a suitable choice of kernel and bandwidth)
among possible linear smoothers. It adapts to almost all regression settings and does
not require any modifications even at the boundary. I explore the use of this method

to obtain an estimator for distribution function and quantile.

The model-assisted estimator F,, in (2.11) has some advantages, and its efficiency
depends largely on the accuracy of the predictor of A(¢ —1vy;). So we can improve the
distribution function estimator via improving the predictor of A(t — y;). From the
predictor expression (2.9), we see that it uses the assumption of linearity between Y
and X. But in most cases, we can only use the general model (3.1) to describe the
relationship between Y and X, this gives a new predictor of A(t —y;) as

g(z;) = (Z di(3)> {Z di(s)A [x_y_% (t —7(z;)) — ei)]} ; (3.6)

ZES

where
1 -
e; =z; *{y: —7(z;)}, fori€s. (3.7)
By using an efficient predictor 7(z;) of Y; (see Fan, 1992), g(z;) should be more

efficient than §(z;) in (2.9). If we plug §(z;) into the formula (2.11), we will get a

new estimator, denoted as Fpma(t), of the distribution function as follows:

Fpma(t) = N7 {Z di(s)A(t —y:) + LZ az) = > di(s)a(xiﬂ } : (3.8)

i€ jelu i€ES

and expect that it has a better performance. In next section, we will present some

simulation results to compare the behavior of Foa, Fpma and Fpe.

About the estimation of a®* quantile of Y, we will estimate it by inverting the

distribution function estimator F(t) to get §(a). Since F'(t) is not necessarily non-
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decreasing function of ¢ (Olsson and Rootzén, 1996), to estimate the quantile g(c),
we have to modify F'(t) to £(t) such that F(t) is a nondecreasing function of t, i.e.,

we have
F(t) =sup{F(y) : y < t}. (3.9)

It can be showed that F'(t) and F(t) have the same limiting distribution function and
the above modification would not affect the value of o quantile §(a) (Olsson and

Rootzen, 1996).

In the simulation, we will compare some quantile estimators which are obtained
from the direct or indirect use of auxiliary information. They are denoted as §mq.(c),
Gpmal@), Gpe(@), G-(c) and Gu(cx). The former three are obtained from (1.5) when
F(t) is replaced by Fine(t), Foma(t) and Fe(t) respectively; the later two are the ratio

estimator and the difference estimator suggested in Rao, Kovar and Mantel (1990).
3.2 Simulation Study

In this section, a limited simulation is conducted to assess the estimation proce-

dures in earlier section.

Here, two sets of simulated population data are used. Suppose that there are NV
distinct elements in each population under study. One population data set (Popula-
tion 1) is generated from a linear model of the form y; = o + Bz; + v(x;)s;; Another
population data set (Population 2) comes from a nonparametric model of the form
y; = n(z;) +v(zj)e; for j = 1,...,N. In both cases, z;'s (z; > 0) and &;’s are
independent, z; « N(uy, 0%), €5~ N(0, 1) and v(z;) = 3:;“} for j =1,2,...,N.
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No matter which set of population data are being using, the basic procedures are
the same. In each simulation, we use the population value X,;,Xs,..., Xy of the
auxiliary variable X and the observed value of Y in a sample set s to estimate the
distribution function and associate quantiles of Y through model-assisted approach
under linear model assumption (Fing(t), gmae(c)), or under general model assumption
(Foma(t), dome()), except when we calculate the pseudo empirical maximum likeli-
hood estimators, Fy(t) and gmq(c), only the population mean Xy and the observation
value of X in the sample are available as auxiliary information. We will take Ngmuy

samples of size n from the simulated population. The procedures are given as follows.

In each simulation, we will use the simple random sampling without replacement
(SRSWOR) scheme to obtain a sample s of size n out of the population of /V elements,
because this simple sampling scheme actually plays an important role in practice. So
we get the observation data of Y as {y;, i € s}, the corresponding auxiliary values

are {z;, i € s} and the design weights are d;(s) = & for each sample point 7 € s.
Distribution function — estimation

Method 1: Model assisted estimator F,, proposed in Rao (1994), i.e., the esti-

mator calculated from (2.9) ~ (2.11). This estimator is based on the linear model
1

(2.4) assumption and v(z;) = z} with the utility of complete information of auxiliary

variable X.

Step 1: Predict y when given z.
Zies Y
Ziea T

which is a best linear unbiased estimator of 8 for any sample. Then, when given z;,

Under the above assumptions, 3 is estimated by the ratio estimate 3 =
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y; is predicted as 7; = B:z:j for each j € U.
Step 2: Calculation of the residual of y; for each 7 in s through formula (2.10).
Step 3: Predict A(t —y;) for each element j in the population U through formula
(2.9).
Step 4: Get the value of the distribution function estimator Fl,, at ¢ by using

(2.11).

Method 2: Model assisted estimator Fpma proposed here. This estimator is based
1
on the general model (3.1) and under the assumption that v(z;) = z? for 7 € U with

the utility of complete information of auxiliary variable X.

Step 1: Predict y when given .

Since the concrete form of the model is unknown, the auxiliary information of X
and sample data of Y are used to fit an appropriate model. Here, the local linear
regression method (Fan, 1992) is used for this purpose. That is, y; is predicted
through (3.3) when given z; for each j € U.

Step 2: Calculation of the residuals of y; for each 7 in s by using formula (3.7).

Step 3: Predict A(t —y;) for each element j in the population U by using formula
(3.6).

In this process, an appropriate kernel function K(-) and an appropriate bandwidth
hn are needed. Here, the uniform kernel function (see Table 3.3) is firstly used to
estimate the distribution function ﬁ’pma and the performance of F'pma is compared

with other distribution function estimators. Later on, the effect of different kernel

functions on the estimator Fpma will also be checked. As for the choice of smooth
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bandwidth h,, the cross-validation technique is used. So we choose

h, = arg{min Z(y,- — 71_4(z:))?}, (3.10)

where 77_;(-) is the regression estimator (3.3) without using the ith observation data
(z:, y;) of the sample s.
Step 4: Estimate the distribution function F'(¢) through (3.8).

1
Note that, in both of the above methods, it is assumed that v(z;) = z? and the

complete information of X is available.

Method 3: Pseudo empirical maximum likelihood estimator Fpe. This method
assumes that only the population mean and the sampled data of X are available as the
auxiliary information, but it does not need any model assumption for the relationship

between Y and X.
Step 1: Solve the equation (2.28).
Let Xy be the population mean of X, then 7(z;) = z; — Xn. Soc=11in (2.24),

and (2.28) becomes

d; (S T(X) —l T(X
= A1
where di(s) = £. To solve this nonlinear equation for A, the Newton-Raphson

method (Press, Flannery, Teukolsky and Vetterling, 1990) is used here. Plugging
one-term Taylor’s expansion of (2.27) into the constraint conditions (2.24) gives an

initial guess of A as

Yoieo di(8)T(m:) D (i — Xn)

M= S GO @I Sous(m — X )

(3.12)
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Then starting from this initial guess, an approximate solution of root A can be ob-
tained quickly.

Step 2: Using the formula (2.27) to calculate the optimal value p; for 7 € s.

Step 3: Using the formula (2.26) to calculate the value of distribution function
estimator Fpe at given L.

Also note that, since SRSWOR sampling scheme is being used, F}. is actually

coincide with Fmele here.
The o'* quantile — estimation

When estimating the quantiles of Y, the assumption is the same as that in the
preceding section. If the auxiliary information of X has already been used in the
estimation of the distribution function F'(t) as above, the distribution function esti-
mator will be directly inverted to estimate the corresponding quantiles of Y. That is,
the formula (3.9) and (1.5) will be used to estimate the quantile ¢(a). The resulting
estimators are denoted as pmq (@), dpma(@) and gpe(e) corresponding to Fing, Fyme and

Fye respectively.

However, if the quantile need to be estimated directly from the sampled data of
Y with the complete auxiliary information in hand, then it can be estimated by the
ratio estimator ¢, and the difference estimator ¢, proposed by Rao, Kovar and Mantel
(1990) as:

- dy

4r = <4z,
T

da = Gy+(qz— =),
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where §, §, are the sample a” quantile of X and Y respectively for a given sample
$; g, is the population a®® quantile of X. In this simulation, all these five kinds of

quantile estimator of Y will be compared.

Here the relative biases (RB) and relative root mean square errors (RRMSE)
generated in this simulation experiment are used as measurement to compare the
performance of different estimators 8(t), which may be either the distribution function
estimator F(t) or the quantile estimator ¢(e). But for the distribution function
estimator, its values only fall in the range between 0 and 1, so the mean square errors
(MSE) are also appropriate to measure the efficiency in this case and will be examined
too. For each sample s € S, let §" (t) denote the estimator 8(t) obtained from the rth

simulation sample, and 6(t) denote the population value of the interested parameter,

then
Naimu _
756 =yl 3 e (319
MSE(@) := Vj (6 (tj)vf o))" (3.15)
and
Nsimu (por
RRMSE(®) :=|—1)|[Z © (tz)v;mi(t)) 3 (3.16)

Note: Here, we are only interested in the distribution function values at the
three quartiles (0.25, 0.50 and 0.75** quantile), so RB and RRM SE are appropriate

measures for estimators of distribution function.
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A single-stage sampling scheme is usually used in the sampling from a small pop-
ulation, and in most cases, only a very small sample set are observed. So, in this
simulation, a small simulated population of size N = 500 are generated and small
samples of size n = 30 are taken out of each population. However, the methods
discussed here also apply to population and samples of any other sizes. After 1,000
times simulation runs, the simulation results become stable, so this section only shows

the simulation results of Ng;m, = 1,000.

The linear simulated population data come from model Y; = —2X; + X j%é']', and

the nonlinear simulated population data come from model Y; = 150+2.5e =%/ +Xj§ £js
t.i.d i.i.d

where,g; «~ N(0,1)and X; <« N(10.2,2.0%)forj =1,...,500. The population

data of these two data sets are shown in Figure 3.1 and 3.2.

Firstly, uniform kernel function is used to estimate F'(¢) through (3.8) and the
performance of different estimators are compared. Then the effects of different kernels
in the process of local regression on the estimator (3.8) of the distribution function

are also examined.
Comparison among different estimators of distribution function

The results of the estimation of distribution function F'(t) at three different points,
t = 0.25, 0.50 and 0.75" quantile of Y, are shown in Table 3.1 ~ 3.2. Where F,
stands for the population cumulative distribution function ; Fma, F'pma and Fpe stand

for the estimator obtained from method 1, method 2 and method 3, respectively. RB,
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MSE, RRMSFE stand for the relative biases, mean square errors and relative root of
mean square errors of the corresponding distribution function estimator respectively.
Figure 3.3a « 3.4c give the plots for the population distribution function and different

distribution estimators.

The results indicate that among the three kinds of estimator, if the underlying
relationship between the study variable Y and the auxiliary variable X is linear (see
Figure 3.1), for the estimation of the distribution function F'(¢), in terms of biases.
as measured by RB, and in terms of efficiency, as measured by MSE and RRMSE,
Fng has the smallest biases and is the most efficient estimator. The pseudo empirical
maximum likelihood estimator Fpe gives the worst performance among these three

estimators except that in the median of the population.

In the case of having a nonlinear simulated population data (see Figure 3.2), in
terms of biases, as measured by RB, and in terms of efficiency, as measured by MSFE
and RRMSE, Fpma and Fpe have comparable performances, but both of them are

less biased and more efficient than F’ma.

This indicates that when it is known that there exists a strong linear relationship
between Y and X in the underlying population, Fma can be used to estimate the
distribution function comfortably; but when no indication of strong linear relationship
appears, F'pma and Fpe may give a better estimation. In most cases, F’p,na is more
stable since it makes use of the complete information of the auxiliary variable, but
Fpe has the advantage that it can still be used when only the summary information

of the auxiliary variable is available and it is still bias robust.
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Figure 3.1: Scatterplot of Linear Simulated Population from Model

Y = —2X + X3¢
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Figure 3.2: Scatterplot of Nonlinear Simulated Population from Model

Y =150 + 2.5e~X + X3¢
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Table 3.1: Simulation Results with Linear Simulated Population Data:
Relative Biases (RB), Mean Square Errors (MSE) and Relative Root
Mean Square Errors (RRMSE) of Different Distribution Function Es-
timators (Population Size = 500, Sample Size = 30, Number of Sim-

ulation = 1000.)

F, 0.252 0.502 0.752
RB(Fma) 0.181576 | 0.099580 | 0.059823
RB(Fpma) 0.197171 | 0.104532 | 0.065344
RB(F,.) 0.197316 | 0.103682 | 0.065770
MSE(Fina) 0.003304 | 0.003885 | 0.003155
MSE(Fyma) 0.003858 | 0.004327 | 0.003706
MSE(F,.) 0.004014 | 0.004286 | 0.003881
RRMSE(F,,) |0.228111 | 0.124161 | 0.074691
RRMSE(Fyme) | 0.246488 | 0.131031 | 0.080958
RRMSE(F,) | 0.251428 | 0.130407 | 0.082846
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Table 3.2: Simulation Results with Nonlinear Simulated Population Data:
Relative Biases (RB), Mean Square Errors (MSE) and Relative Root
Mean Square Errors (RRMSE) of Different Distribution Function Es-
timators (Population Size = 500, Sample Size = 30, Number of Sim-

ulatiom = 1000.)

F, 0.252 0.502 0.752
RB(Frna) 0.297976 | 0.162664 | 0.096423
RB(Fpma) 0.256258 | 0.142478 | 0.081615
RB(Fye) 0.252221 | 0.142223 | 0.083809
MSE(Fma) 0.008937 | 0.010601 | 0.008348
M SE(Fpma) 0.006503 | 0.008131 | 0.005884
MSE(Fpe) 0.006225 | 0.008214 | 0.006146
RRMSE(Fpn,) | 0375137 | 0.205103 | 0.121496
RRMSE(f,m,) | 0.320012 | 0.179624 | 0.102006
RRMSFE(F,.) |0.313081 | 0.180538 | 0.104247
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Figure 3.3a: Plot of Population Distribution Function F, and Model As-

sisted Estimator F),, with Linear Simulated Population
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Figure 3.3b: Plot of Population Distribution Function F, and Proposed

Estimator £, with Linear Simulated Population
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Figure 3.3c: Plot of Population Distribution Function F, and Pseudo

Empirical Likelihood Estimator Fpe with Linear Simulated Population
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Figure 3.4a: Plot of Population Distribution Function F, and Model As-

sisted Estimator F),, with Nonlinear Simulated Population
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Figure 3.4b: Plot of Population Distribution Function F, and Proposed

Estimator £}, with Nonlinear Simulated Population
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Figure 3.4c: Plot of Population Distribution Function f, and Pseudo Em-
pirical Likelihood Estimator F}. with Nonlinear Simulated Population
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The effect of kernel on the model-assisted estimator

When the proposed model-assisted estimator l*:'pma is used to estimate the popu-
lation distribution function and associate quantiles, an appropriate kernel function is
needed. And the associate quantile esimator §pm, is just the inverse of the distribu-
tion function estimator F'pma. So in this section, only effects of kernel functions on
the proposed distribution function estimator are being examined by comparing the

following seven common kernels:

Table 3.3: Common Kernel Function

Name Function
Uniform I(Jul £1)
Triangle (1—Ju)I(|u] <1)

Epanechnikov | 2(1 —u?)I(|u| < 1)
Quartic 2(1—u?)?I(jul < 1)

Triweight B(1—u?)3I(jul <1)

Cosinus Leos(Fu)l(|u| < 1)
Gaussian = exp(—3u?)

The estimation results are given in Table 3.4 « 3.5.

40



Table 3.4: Relative Biases (RB) and Relative Root Mean Square Errors
(RRMSE) of F,,, at 0.25, 0.50 and 0.75** quantile of Y under Different

Kernels with Linear Simulated Population

RB RRMSE
Kernel Type a (Fpma(t) at (Foma(t) at
t = a'® quantile) t = o™ quantile)
0.25 0.197171 0.246488
Uniform 0.50 0.104532 0.131031
0.75 0.065344 0.080958
0.25 0.196066 0.245604
Triangle 0.50 0.105077 0.130627
0.75 0.065938 0.081446
0.25 0.196504 0.245687
Epanechnikov | 0.50 0.104650 0.130567
0.75 0.065620 0.081175
0.25 0.197204 0.247660
Quartic 0.50 0.105155 0.131291
0.75 0.065949 0.081499
0.25 0.197888 0.248405
Triweight 0.50 0.105654 0.132177
0.75 0.066328 0.082121
0.25 0.196497 0.245935
Cosinus 0.50 0.104901 0.130454
0.75 0.065759 0.081319
0.25 0.206267 0.259046
Gaussian 0.50 0.108356 0.136323
0.75 0.065838 0.082678
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(RRMSE) of £, at 0.25, 0.50 and 0.75" quantile of Y under Different

Table 3.5: Relative Biases (RB) and Relative Root Mean Square Errors

Kernels with Nonlinear Simulated Population

RB RRMSE
Kernel Type e (Fpma(t) at (Foma(t) at
t = o' quantile) t = o™ quantile)
0.25 0.256258 0.320012
Uniform 0.50 0.142478 0.179624
0.75 0.081615 0.102006
0.25 0.260487 0.323601
Triangle 0.50 0.143233 0.179927
0.75 0.082615 0.103401
0.25 0.259692 0.322613
Epanechnikov | 0.50 0.143080 0.179817
0.75 0.082315 0.102867
0.25 0.261260 0.324810
Quartic 0.50 0.143631 0.180126
0.75 0.082880 0.103578
0.25 0.261561 0.325889
Triweight 0.50 0.143937 0.180817
0.75 0.083200 0.103901
0.25 0.259759 0.322867
Cosinus 0.50 0.143231 0.179971
0.75 0.082427 0.103087
0.25 0.297373 0.374064
Gaussian 0.50 0.162365 0.204364
0.75 0.095283 0.120422
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The above results demonstrate that no matter which kind of model the underlying
population data truly comply to, in termm.s of biases and efficiency, as measured by
RB, MSE and RRMSE, the estimator of distribution function obtained from (3.8)
has a better performance when the Unifeorm kernel function is used. Especially,
when the underlying relationship between Y and X is nonlinear, the use of Uniform
kernel function produces an estimator with the smallest bias and the highese efficiency

compared to other kernel functions.

However, when any one of the kernel function 1 ~ 7 is used in the process of
estimating distribution function, the estirmator F’pma always has better performance
than Fj,, when the underlying distributiom function is nonlinear. So in the following

the Uniform kernel function is still used to obtain Gpma-
Comparison among different quantile estimators

In this simulation, five kinds of a'* qu antile estimator: Gma, dpma, dpes Gr, da are
compared. The first three stand for the inv-ersion of Fma, Fma and Fpe; the latter two
are the ratio estimator, the difference estirmator with the auxiliary information used,

respectively. The results are given in Table 3.6 ~ 3.7.

For the linear simulated population d.ata, in terms of biases and efficiency, as
measured by RB and RRM SFE, estimator {m. has the best performance among these
five estimators, but at the 0.75" quantile of Y, the bias of §,,, is larger than that of
ratio estimator §r. gpe has better performmance than ¢pm. except in the case of the
0.25* quantile. Generally, the first three esstimators have smaller biases, as measured

by RB, and more efficiency, as measured RFR M SE than the last two estimators except
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at the 0.75"" quantile, §, is better than g, and pme. So the first three estimators
are appropriate to be used. In particular, §,,, is encouraged to be used when strong

linear relationship exists in the underlying population.

For the nonlinear simulated population data, in terms of biases and efficiency, as
measured by RB and RREMSFE, estimator ym, is less biased and more efficient than
Gma, and even less biased than dpe in the median (0.5 quantile) of Y. However, gpe
has the highest efficiency at all of these three quantiles, and in the 0.25% and 0.75%
quantiles, gpe also has the smallest bias. In the 0.5*® and 0.75"® quantiles, ¢, has a
higher efficiency than gyms.. So in the case of nonlinear population as an interested

population, gpe and gpm, are suggested to be used when compared to §mq-



Table 3.6: Simulation Results with Simulated Linear Population Data:
Relative Biases (RB) and Relative Root Mean Square Errors (RRMSE)
of Different o Quantile ¢(c¢) Estimators (Population Size = 500,

Sample Size = 30, Simulation Times = 1000.)

et 0.25 0.50 0.75

" —23.2445 | —19.5589 | —16.5630
RB(Gma) 0.036742 | 0.034524| 0.058889
RB(Gpma) 0.039491 0.036819 0.064503
RB(pe) 0.039821 0.035828 0.063712
RB(g,) 0.056092 0.037986 0.058158
RB(4a) 0.048555 0.038254 0.062231
RRMSE(Gma) 0.044007 | 0.043401| 0.071810
RRMSE(gpme) | 0.047948 0.045569 0.080772
RRMSFE(gpe) 0.048059 0.044996 0.078924
RRMSE(g,) 0.071937 0.047087 0.071958
RRMSE(g,) 0.061875 0.047420 0.077631
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Table 3.7: Simulation Results with Simulated Nonlinear Population Data:
Relative Biases (RB) and Relative Root Mean Square Errors (RRMSE)
of Different o Quantile g(c) Estimators (Population Size = 500,

Sample Size = 30, Simulation Times = 1000.)

o 0.25 0.50 0.75

o 148.341 149.908 151.988
RB(gma) 0.004443 0.004151 0.004928
RB (Gpma) 0.003776 0.003554 |  0.004089
RB(gpe) 0.003638 |  0.003710 0.004034
RB(g,) 0.047821 0.035158 0.037198
RB(da) 0.041321 0.035177 0.041383
RRMSE({me) 0.058523 0.053216 0.063124
RRMSE(gpme) | 0.050050 0.045433 0.051267
RRMSE(gpe) 0.004770 | 0.004760 | 0.005054
RRMSE(g,) 0.060386 0.044779 0.045555
RRMSE(gy) 0.051528 0.044488 0.050660
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Chapter 4

Distribution Function and Quantile
Estimation in Two-stage Sampling

In this chapter, we consider the estimation of distribution function and a* quantile
of a finite population under two-stage sampling scheme. In practice, under the most
simple SRSWOR,/SRSWOR sampling plan, there are already several conventional
estimators of distribution function developed under design-based inference methods.
However, the estimation under a superpopulation model is considered in this chap-
ter. Section 4.1 gives a brief introduction to the conventional estimators. In section
4.2, along the same lines of chapter 3 and extending the results for estimating pop-
ulation total to population distribution function, a distribution function estimator
is proposed. Some of alternative estimators are given in section 4.3. Finally, in
section 4.4, the proposed estimator is compared with conventional estimators under

SRSWOR/SRSWOR sampling plan through simulation study.

4.1 Two-stage Distribution Function Estimator in

Conventional Theory

Consider a finite population which contains K elements and are arranged in N
clusters, the 7th cluster is known to contain M; elements, so that Zil M; = K.
Then the population can be represented as U = {Yi;, 1 = 1,...,N; 7 = 1,..., M;}.

First a sample s of size n units is taken out of N clusters at the first stage and
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then a sample s; of size m; for ¢ € s is chosen at the second stage. According to
the conventional sampling theory, there are several types of estimator for two-stage
cluster sampling. For the most common and simple design: simple random sampling
without replacement (SRSWOR) in both stages, the usual estimators are (see Royal,
1976):

( i) the expansion estimator

n 7—1e Zies miASi
Fe = K (4.].)

_ T, S MA,,
Fu P A 1ES _ i ‘2
K nM (4:2)
(iii ) the “ratio-type” estimator
_ T S MA,
Fr =T _— &n€s” 7% K
K nM, '’ (4.3)
where,
k=Y m, (4.4)
€S
- K
M=, (4.5)
- 1
M,==)" M, (4.6)
n i€s
and
. 1
Ay =— Z A(t —yy;), fori € s. (4.7)
JESs;
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Remark: The estimator £, is unbiased only if M, happens to equal M (Royal,

1976). Where as, in general, £, and F, are biased estimator.

In the next section, estimation of distribution function under a superpopulation

model will be consdered.

4.2 Proposed Method of Estimation: Distribution Function
in Two-stage Sampling

Assume the population U is generated from a two-stage superpopulation model:
Yij:'u'i_i_sij’ i=1""1N7 ]: 17""1‘/[1" (48)

By denoting F,,(-) for expectation operators under the above model, it is assumed

that (see Scott and Smith, 1969)

En(Yislts) = i .
Bnl(Yis — 1) (Yo — pia) s 1) = { 0. othermise.
En(p;) = u, 9 -

Eml(p: — 1) (po — )] = { S otherwise.

(4-9)

So, {Y;;}'s are identically distributed random variables with finite population dis-

tribution function Fy (), which is defined as

N M
1 - .
Fy(t) =22 > Alt—Yy). (4.10)
i=1 j=1
In current case, the population has nothing to do with the time of sampling. It is

easy to see that it satisfies the assumption A in Olsson and Rootzén’s paper (1996),

ie.,
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(i) The finite population distribution function Fy(t) of Y is (piecewise) contin-
uous.

(i) The N clusters are independent, so the vectors (Yi1,..., Y ), 2 = 1,..., N,
are independent.

(iii ) For each i, the correlation coefficient between A(t —Y;;) and A(t — Yi;)

depends only on ¢, so we can denote it as p,(t).

Now suppose that it is needed to estimate the distribution function Fy-(¢) of ¥
and the associate o' quantile. A two-stage sampling scheme is conducted to get the
observation data. That is, at the first stage, n out of N clusters are chosen through
some sampling scheme to get a primary sample s; at the second stage, m; out of M;
elements of each selected cluster 7 € s are chosen under designed sampling scheme to
get a subsample s;. Since K = Ef;l M;, then the same decomposition method as
that in chapter 2 can be used to decompose the finite population distribution function

Fy (t) as follows:

Fy (2)

ID Y A~ Yy) + 5 3 Al - Yy))

€3 j=1 €S j=1

A=Yy + 0 2 AT - Yy)

~{
K tES jES; i€g JES;

M; (4.11)
+2- ) At —Y)}
€3 j=1
= i{T Trr+ Trrr}
= FUI +irr IIry.
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Notice that only the first term 77 in (4.11) is completely known after the sampling;
so the other two terms, T;; and Ty, have to be predicted from the observation data
in order to obtain the estimator of the finite population distribution function Fy ().
When all the population cluster sizes, M; (i =1, ..., N), are known, estimating Fy (t)
is equivalent to estimating Th(t) — the population total of A(t —Y'), which is defined

as

Ta(t) = i Z A(t — Yy). (4.12)

Hence the prediction method (Royall, 1976) can be used to get an unbiased estimator

of Ta. Firstly, observe that

BIA(t — Vi) — Fr(8)] =0, (4.13)
and
0, for i # #;
Cov{(A(t = Vi), Alt = Yoy)IU} = { pach, fori=i j#J; (4.14)
o, fori=147 j=7,
where,
_ _ E{[AG-Yy) - B (O)][AR = Yyr) — B ()]IU} e
pA—pA(t) A E{[A(t_}/v)_Fy(t)]lU}Q ’ for 1 SJ ?é] S A[h

(4.15)
which is the common correlation coefficient between A(t —Y;;) and A(t — Y;;7) within

cluster Z, and

oA (t) = Var(A(t — ¥i)|U) = Fe(8)(1 - Fy (1)), (4.16)
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is the common variance of A(t —Y;;). Then under the above model, by assuming p,

is known, Ta(t) (see (4.12)) can be predicted as,

TA(t) = Zies Zje.e,; A(t - yij)

+ D ies(Mi — mi)[wills, + (1 —wi) Fo (4.17)
+ Zie§ IV[iFQ,
where
w; PaTi , fori e s. (4.18)

1= pa+maps

Hence, the resulting estimator for Fy (t), which is termed as predictive estimator.

is given by:

~ 1 -

Fyt) = =Tal® (4.19)

1 _ R -
= ?{Z Z A(t — yij) + Z([\/[, hand Tn,) [w,-Asi —+ (1 — wi)F()] -+ Z 1\/[,—Fo},
1ES JES: €S 1ES
where,
FO = Z ,u"iAS,_r

with the weight given by

m;/(1 — pp +mipp)
YoicsMi/ (1 —pp +mipp)’

U; = fories. (4.20)

Along the lines of Royall (1976), it can be shown that the above estimator Fj(t) is
the best unbiased estimator for the finite population parameter Fy (¢) when o3 and

pa are known, and the mean square error of F’g (t) is

)]
[N



MSE(F,(t)) = %{(1 —pa)(K —k) + pp Z M7

€3

pa Z(M m:)?(1 — pa)
1—pa +mapp

€S

[K =2 iesmi(l — pa + Mipp) /(L — pa + mip,))?
> .., mi/ (L= pa +mipa)

+ }(4.21)

In practice, values of 0% and p, are usually unknown. However, the estimate for o3
and p, can be used to obtain an approximately optimal estimator of the interested

parameter.

A simple estimator of p,(t), given in Olsson and Rootzen(1996), is as follows.

Denote m = #{i: m; #¥ 1 and 7 € s} and set

Ga(t) = % Z D ies VA —y3) — F(t)}2'

. m;
i€s and my#1

So
- _ 1 lej;éj’srni {A(t - yiJ) F(t)}{A(t — Yiy ) - F(t)}
palt) = *z(t) s an;mﬁél m;(m; — 1) ;
(4.23)
with
FO) =23 — S AC—us). (429

€S Jes,
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4.3 Alternative Estimators

This section gives some discussion on alternative estimators of the finite distribu-
tion function in two-stage sampling. The corresponding quantile estimators can be

obtained from formula (1.5) with different distribution function estimator plugged in.

At first, for the easy use of the predictive estimator (4.19), the simple estimator
F(t) of the distribution function is used in the process of estimating o2 (t) and p, (t).
In practice, for simplicity, £(£) can be replaced by Fi(t),

AO=£% > oAt —u) (4.25)
when it is reasonable to ignore the dependence within each cluster. When all the

sample size m/s are equal, they will result in the same estimator (Royall, 1976).

Some additional estimators can be obtained as special cases of the predictive
estimator (4.19). If py, =0, then w; =0 and u; = %— So Fp = Y ics wiA,, = Fy, in

this case the optimal estimator (4.19) becomes

FgO = Z Z A(t — yij) + E(A/[, — mi)Fe + Z 1\/[.,_Fe} (426)

1
Nl
€S JES; €S t€ES
This is actually the conventional expansion estimator F..

1 . - _ .
When p, =1, then w; =1, u; = ~ Fo = ) e wids; := Fp. In this case, the

optimal estimator can be represented as

R 1 x a ;
Fp= (T T Al -u)+ S04 —m)By + X MF) (4.27)

€S JES; i€s €S
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This also suggests that the conventional estimators F, as in (4.1) and F, as in (4.3)

be replaced in the third part of the predictive estimator, that gives

. 1 _ _
Fye = ?{Z D A —yg) + D (Mi—m)Ds + > MiF}, (4.28)
tES jES: €S €S
and
. 1 _ _
£, = ?{Z SOA(E—yy) + > (M —mi)Ag + > MiF} (4.29)
i€ES JES; €S tES
Another form with F, used in the third part of the predictive estimator can be given

as:

Foo= ={Z 5 AL =) + S0, — ma) By, + 3 MiFy ). (4.30)

t€ES jES; €S tEF

And, actually, Fgr and F'gp are just the predictive estimator representation of £, and

B,

The difference between (4.27) and (4.30) only exists in the second term which

predicts ZiES Zje.?,; A(t —Ys).

In the next section, results from a Monto Carlo simulation will be presented to
compare estimators F, as in (4.1), £} as in (4.3) and F, as in (4.2) with F, as in

(4.19) and F}. as in (4.28) under SRSWOR/SRSWOR. sampling scheme.

4.4 Simulation Study

In this section, the simulation study for some special cases of two-stage sampling

process is presented.



Since two-stage sampling scheme is usually used in moderate or large populations.
Here, three large simulated populations are generated using two-stage sampling pro-
cedure. In each population, it is assumed that there are N = 200 clusters and the
elements have a common correlation coefficient, p(Y;;, ¥;;+) within each cluster, for
Jj# j andt=1,..,N. The cluster sizes in each population considered in this study

are:

80, fori=1,...,50;
M; =< 100, fori=51,...,100; (4.31)
120, for 7z =101,...,200.

Finally we generate the data using the following procedure.
Step 1: Generate cluster means p;, {1y, .-, iy of each cluster such that p; ~ N(u, o)

independently, where x = 100.0, and
0.81, Population 1,

o, = 0.91, Population 2, (4.32)
50.91, Population 3.
Step 2: Within each cluster 4, &;1, ..., &;ar, are generated such that g;; ~ N(0,02),
for 5 =1, ..., M;, where

100.7, Population 1,
0. = 0.9, Population 2, (4.33)
0.9, Population 3.

Step 3: Generate the population data of size K = 21,000 {Y;;, ¢ = 1,...,N;

§=1,., M} as:
Y =+, fori=1,...,N; j=1,.., M. (4.34)
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Then, note that in each population, the correlation coefficient within cluster 7 is:

2
g . . . -
py = p(Yy, Yi) = ﬁ, fori1<j#j<M;andi=1,..,N. (4.35)

o €

In this simulation study, we consider three kinds of population in which every
cluster has a correlation coefficient satisfying: 1) pp = 0; ii) 0 < pa < 1; and iii)
pa = 1 by assigning p_ satisfying i), ii) and iii) too. The three simulated popula-
tions generated in section 4.4.1 have the correlation coefficients: p,, = 6.46968e~>,
py = 0.505525 and py = 0.999688 respectively. But in the process of estimating dis-
tribution function, oa and p, are assumed to be unknown. They can be estimated
through (4.22) and (4.23). The estimates 6o and p, are plugged in the predictive
estimator to obtain corresponding distribution function estimate F'g (t). We consider

two cases: case ( i ) with moderate sample size within cluster:
15, fori=1,...,5;
m; =< 20, fori=6,...,15; fori € s, (4.36)
25, for i =16, ...,20;
so that k = 400; and case ( ii ) with small sample size within cluster:
10, fori=1,...,5;
12, fori=86,...,15; forz € s, (4.37)
15, fori=186,...,20;

m;

so that k& = 245.

In both cases small sample is selected using two-stage sampling plan by first
selecting 20 clusters from 200 clusters using SRSWOR. Within ¢th selected cluster,
m; units, as defined in (4.36) for case 1 and in (4.37) for case 2, are selected using

SRSWOR.



After 10,000 simulation runs under above mentioned three populations, simulation
results become stable, then the relative biases (RB), relative root mean square errors
(RRMSE) and relative efficiency (RE) with respect to F,, (or g,) are computed for
the proposed estimators using Ngim, = 10,000. ARB and RRMSFE are computed

using (3.14) and (3.16) respectively; while RE is computed as follows.

Let 8, denote the unbiased estimator of 8, 6 denote any estimator of 8, then we

define

RE(0) = relative efficiency of § with respect to 8, := RRN[SE(&.") . (4.38)
RRMSE(6)

The above mentioned measures are computed based on 10,000 runs and results
for distribution functions are tabulated in Table 4.la, 4.2a, 4.3a for population 1, 2
and 3, respectively; for quantiles in Table 4.1b, 4.2b and 4.3b, respectively. Turning
to case 2, only estimation of distribution function has been considered and results are
tabulated in Table 4.4 ~ 4.6 for population 1 to 3 respectively. The minimum value

of RB and RRMSFE, and maximum value of RF will appear in bold font.

The simulation results in case 1 indicate that, although the estimates 6% and
pa rather than the population values for them are used in the estimation of distri-
bution function, the predictive estimator F'g still has better performance than the
conventional ones, especially (when p, < p,),

i) when p_ is close to zero, hence p, is also close to zero, F;, attains its optimal
value at Fgo which is also the conventional expansion estimator F,, and the alternative

predictive estimator Fge also performs better than the conventional estimator F,, F;.
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ii) when 0 < p, < 1, Fg is still better than F., F, and F, in terms of biases, as
measured by RB; efficiency, as measured by REMSFE; and relative efficiency with
respect to F,, as measured by RB.

iii) when p, is close to the unity, the results show that Fg does attain the optimum

Fyy.

For the estimation of quantiles, basically, g, has almost all of the good character-
istics of F,, except when p, is close to the unity, for the estimation of lower (upper)

tail quantiles, the bias, as measured by RB, of ¢, is bigger than that of g..

The results of distribution function estimation in case 2 (Table 4.4 ~ 4.6) show
that Fy still has a better performance than the conventional estimators of distribu-
tion function under sampling scheme SRSWOR/SRSWOR . when 0 < p, < 1, but
the relative efficiency (RFE) decreases. So, based on the simulation results, the pre-
dictive estimators Fg, gy are suggested to be used under two stage sampling plan

SRSWOR/SRSWOR, especially when a moderate sample data set is available.



Table 4.1a: Estimation of Distribution Function under Two-stage Sam-
pling Scheme (k = 400, p,, = 6.46968e°): Relative Biases (RB), Rel-
ative Root Mean Square Errors (RRMSE) and Relative Efficiency

(RE) with respect to F,

F 0.250048 0.500048 0.750048
RB(F,) 0.068441 | 0.039291 | 0.023295
RB(F,) 0.074332 0.047439 0.035329
RB(F}) 0.068998 0.039596 0.023494
RB(F,) 0.068551 0.039335 0.023321
RB(F,.) 0.068480 0.039310 0.023308
RB(F,) 0.069834 0.040066 0.023623
RRMSE(F,) 0.085812 | 0.049308 | 0.029165
RRMSE(F,) 0.092797 0.059348 0.044277
RRMSE(F,) 0.086313 0.049619 0.029419
RRMSE(F,) 0.085891 0.049353 0.020185
RRMSE(F,.) | 0.085821 0.049315 0.029177
RRMSE(Fy) | 0.087296 0.050144 0.029589
RE(F,) 1.081399 1.203618 1.518155
RE(F}) 1.075122 1.196074 1.505048
RE(F,) 1.080404 1.202521 1.517115
RE(Fye) 1.081285 1.203447 1.517531
RE(F,) 1.063015 1.183551 1.496401
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Table 4.1b: Estimation of Quantile under Two-stage Sampling Scheme
(k = 400, py = 6.46968¢7°): Relative Biases (RB), Relative Root Mean
Square Errors (RRMSE) and Relative Efficiency (RE) with respect

to ¢,

o 0.25 0.50 0.75

q 33.397644 |  100.530327 | 168.462555
RB(q.) 0.166154 | 0.049270 0.032852
RB(q.) 0.180235 0.060242 0.049784
RB(g,) 0.167222 0.049772 0.033106
RB(4,) 0.166879 0.049517 0.032910
RB(dge) 0.166549 0.049429 0.032915
RB(dg1) 0.168613 0.050382 0.033175

RRMSE(g.) 0.206488 | 0.062255 0.040994

RRMSE(q,) 0.223631 0.075853 0.062570
RRMSE(g,) 0.207851 0.062800 0.041396
RRMSE(g,) 0.207310 0.062432 0.041100
RRMSE(g.e) | 0.206955 0.062408 0.041120
RRMSE(G,)| 0.209678 0.063453 0.041390
RE(g.) 1.083022 | 1.218424 1.526321
RE(g) 1.075920 1.207850 1.511499
RE(4,) 1.078728 1.214970 1.522384
RE (Gge) 1.080578 1.215437 1.521644
RE(Gq1) 1.066545 1.195420 1.504448
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Table 4.2a: Estimation of Distribution Function under Two-stage Sam-
pling Scheme (k£ = 400, p,, = 0.505525): Relative Biases (RB), Relative
Root Mean Square Errors (RRMSE) and Relative Efficiency (RE)

with respect to F,

F 0.250048 0.500048 0.750048
RB(F.) 0.172682 0.105269 0.057185
RB(F,) 0.175874 0.108024 0.062422
RB(F}) 0.174016 0.105159 0.056874
RB(F,) 0.171048 | 0.104064 | 0.056440
RB(Fy) 0.172744 0.105213 0.057132
RB(Fy) 0.171082 0.104071 0.056426
RRMSE(F) 0.215411 0.131488 0.071282
RRMSE(F,) 0.219305 0.134922 0.077948
RRMSE(F,) 0.216766 0.131261 0.070910
RRMSE(F,) 0.213544 | 0.129717 0.070404
RRMSE(Fy) | 0.215439 0.131400 0.071209
RRMSE(F,)| 0.213599 0.129681 | 0.070407
RE(F,) 1.018077 1.026116 1.093516
RE(F}) 1.011713 1.027891 1.099253
RE(F,) 1.026978 | 1.040126 1.107153
RE(Fye) 1.017945 1.026804 1.094637
RE(F,) 1.026714 1.040415 | 1.107106
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Table 4.2b: Estimation of Quantile under Two-stage Sampling Scheme
(k = 400, p, = 0.505525 ): Relative Biases (RB), Relative Root Mean
Square Errors (RRMSE) and Relative Efficiency (RE) with respect

to q.
o 0.25 0.50 0.75
q 99.166565 | 100.025986 |  100.860977
RB(q.) 0.001710 0.001640 0.001656
RB(q.) 0.001741 0.001687 0.001806
RB(q:) 0.001722 0.001642 0.001646
RB(4,) 0.001676 | 0.001628 0.001638
RB(d,e) 0.001709 0.001638 0.001653
RB(4,,) 0.001676 | 0.001628 0.001637
RRMSE(g.) 0.002164 0.002048 0.002050
RRMSE(q,) 0.002201 0.002105 0.002249
RRMSE(g,) 0.002174 0.002049 0.002042
RRMSE(g,) 0.002120 0.002027 0.002032
RRMSE(jge) | 0.002161 0.002046 0.002048
RRMSE(g,) | 0.002119 | 0.002027 0.002032
RE(g.) 1.017098 1.027832 1.097073
RE(g.) 1.012420 1.027330 1.101371
RE(g,) 1.038208 1.038481 1.106791
RE(ge) 1.018510 1.028837 1.098145
RE(G,1) 1.038697 | 1.038481 1.106791
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Table 4.3a: Estimation of Distribution Function under Two-stage Sam-
pling Scheme (k = 400, p,, = 0.999688): Relative Biases (RB), Relative
Root Mean Square Errors (RRMSE) and Relative Efficiency (RE)

with respect to F,

F 0.250048 0.500048 0.750048
RB(F,) 0.293659 0.171238 0.098635
RB(F,) 0.295310 0.171568 0.101058
RB(F;) 0.293439 0.170194 0.098281
RB(F,) 0.286248 | 0.167078 | 0.095189
RB(F,.) 0.293534 0.171064 0.098562
RB(Fy) 0.286251 0.167078 | 0.095189
RRMSE(F,) 0.367103 0.213609 0.124315
RRMSE(F,) 0.369085 0.214062 0.126911
RRMSE(F,) 0.366856 0.212643 0.123786
RRMSE(F,) 0.362295 | 0.210097 0.121256
RRMSE(F,) | 0.366892 0.213408 0.124199
RRMSE(Fy) | 0.362297 0.210096 | 0.121255
RE(Fy) 1.005399 1.002121 1.020882
RE(F,) 1.006076 1.006673 1.025245
RE(F,) 1.018742 | 1.018872 1.046637
RE(F,.) 1.005977 1.003065 1.021836
RE(F,) 1.018736 1.018877 | 1.046645
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Table 4.3b: Estimation of Quantile under Two-stage Sampling Scheme
(k = 400, p, = 0.999688): Relative Biases (RB), Relative Root Mean
Square Errors (RRMSE) and Relative Efficiency (RE) with respect

to Gu
o 0.25 0.50 0.75
q 67.616135 | 98.518211 | 137.165283
RB(g) 0.169759 | 0.104066 0.080850
RB(qu.) 0.173338 0.101742 0.085348
RB(g,) 0.172874 0.101360 0.082424
RB(4,) 0.171031 0.098280 | 0.081960
RB(gge) 0.170669 0.102661 0.081919
RB(gg1) 0.171032 0.099484 0.081503
RRMSE(q.) 0.210285 | 0.136378 0.103265
RRMSE(q,) 0.215490 0.134474 0.108429
RRMSE(g,) 0.214798 0.133775 0.104848
RRMSE(G,) 0.212625 0.129826 | 0.104510
RRMSE(§,) | 0.212308 0.134689 0.104586
RRMSE(G,) | 0.212627 0.131263 0.103892
RE(G.) 1.024752 | 0.986039 1.050007
RE(g.) 1.003222 1.005225 1.034154
RE(g,) 1.013474 1.035802 |  1.037499
RE(dye) 1.014988 0.998404 1.036745
RE(§g1) 1.013465 1.024462 1.043670
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Table 4.4: Estimation of Distribution Function under Two-stage Sampling
Scheme (kK = 245, p, = 6.46968¢ °): Relative Biases (RB), Relative
Root Mean Square Errors (RRMSE) and Relative Efficiency (RE)

with respect to F,

F 0.250048 0.500048 0.750048
RB(F.) 0.088167 0.050435 0.029300
RB(F,) 0.092417 0.056881 0.039350
RB(F}) 0.088424 0.050633 0.029415
RB(F,) 0.088235 0.050473 0.029316
RB(F,.) 0.088155 | 0.050430 | 0.029298
RB(E,) 0.089240 0.051104 0.029650
RRMSE(Fy) 0.110900 0.063187 0.036686
RRMSE(F,) 0.116210 0.071352 0.049415
RRMSE(F,) 0.111221 0.063432 0.036899
RRMSE(F,) 0.110963 0.063239 0.036703
RRMSE(F,.) | 0.110880| 0.063182| 0.036690
RRMSE(F,) | 0.112131 0.064061 0.037101
RE(F,) 1.047881 1.129220 1.346972
RE(F,) 1.044857 1.124858 1.339196
RE(F,) 1.047286 1.128291 1.346348
RE(F,.) 1.048070 | 1.129309 | 1.346825
RE(F,) 1.036377 1.113813 1.331905
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Table 4.5: Estimation of Distribution Function under Two-stage Sampling
Scheme (k = 245, p,, = 0.505525): Relative Biases (RB), Relative Root

Mean Square Errors (RRMSE) and Relative Efficiences (RE) with

respect to F,

F 0.250048 0.500048 0.750048
RB(Fe) 0.178606 0.107402 0.058506
RB(F,) 0.182375 0.110442 0.063959
RB(F}) 0.180690 0.107715 0.058560
RB(F,) 0.178118 | 0.106991 | 0.058283
RB(Fy.) 0.178720 | 0.107369 | 0.058479
RB(Fy1) 0.178286 0.107055 0.058336
RRMSE(F,) 0.223048 0.134246 0.073079
RRMSE(E,) 0.227667 0.138483 0.080056
RRMSE(F,) 0.225493 0.134839 0.073194
RRMSE(E,) 0.222609 | 0.133681 | 0.072808
RRMSE(F,,) | 0.223182 0.134238 0.073054
RRMSE(Fy) | 0.222833 0.133757 0.072870
RE(F,) 1.020709 1.031561 1.095472
RE(F,) 1.009641 1.027025 1.093751
RE(F,) 1.022721 | 1.035921 | 1.099550
RE(E},e) 1.020096 1.031623 1.095847
RE(E,) 1.021693 1.035333 1.098614
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Table 4.6: Estimation of Distribution Function under Two-stage Sampling
Scheme (k = 245, p,, = 0.999688): Relative Biases (RB), Relative Root
Mean Square Errors (RRMSE) and Relative Efficiency (RE) with

respect to F,

F 0.250048 0.500048 0.750048
RB(Fe) 0.293583 0.168522 0.098635
RB(Fy,) 0.296829 0.169886 0.101908
RB(F;) 0.295322 0.168556 0.099076
RB(F,) 0.287794 | 0.165206 0.095962
RB(Fy.) 0.293490 0.168420 0.098590
RB(Fy) 0.287799 0.165205 | 0.095961
RRMSE(F,) 0.368370 0.210824 0.123406
RRMSE(F,) 0.372042 0.212882 0.127397
RRMSE(E,) 0.370401 0.211188 0.123952
RRMSE(F,) 0.365755 | 0.208841 | 0.121674
RRMSE(Fg) | 0.368392 0.210752 0.123397
RRMSE(F,) | 0.365758 0.208842 0.121673
RE(F,) 1.009968 1.009762 1.032340
RE(F,) 1.004430 1.008021 1.027793
RE(F,) 1.017189 | 1.019350 | 1.047036
RE(E,.) 1.009908 1.010107 1.032416
RE(F,) 1.017181 1.019345 1.047044
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