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ABSTRACT

This dissertation deals with the finite element analy-
sis of cracking of earth dams. The principal objectives of
this investigation are (1) to conrtribute to an understanding
of the tensile behaviour of a low-plastic core soil which has
a high susceptibility to tensile cracking, (2) to study the
relative importance of the factors that influence the analy-
sis of cracking of earth dams, and (3) to develop analytical
procedures for prediction and control of tensile cracks that
are likely to develop during and at the end of the construc-
tion period.

The indirect tension test (Brazilian test) was used
to conduct laboratory tensile studies on Mica Till. A pro-
cedure was developed to determine the tensile stress-strain
relationship based on the results of the biaxial, indirect
tension test.

The laboratory studies showed that a core material of
low plasticity has a very low tensile strength which, for
the purpose of analysis of cracking of earth dams, can be
ignored. A rapid increase in flexibility of soil in tension
was accompanied by a rapid decrease in tensile strength when
water content was increased beyond the standard Proctor opti-
mum. However, with the addition of a small percentage of
bentonite to till it was possible to increase the flexibility
of the mixture without an appreciable reduction of its tensile

strength. 'An increase in the compactive effort increased the
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tensile strength of till and decreased its f]exibi]ity, for
water contents well below the Proctor optimum. For water
contents above optimum, the tensile strength and the stiff-
ness of soil were slightly decreased with the increase of
compactive effort. The rate of tensile loading had a conside-
rable influence on the tensile characteristics of till.

Rates of loading mobilizing the minimum tensile strength

and tenéi]e failure strain were observed.

From the finite element analysis conducted with two and
three dimensional modelling of earth dams, it has been cb-
served that the construction step sequence, the non-linear
stress-strain relationships of soil, and the boundary condi-
tions associated with the three dimensionaTity of a dam are
the moét_important factors to be properly simu]ated in the
- analysis for reasonable predictions of cracking of earth dams.

Such simulation procedures were developed and their useful-
ness in practice was tested by analyzing a case study of
cracking at Duncan Dam. The predicted location of cracks
and sequence of their occurrence showed reasonable agree-
ment with the field observations.

The analytical procedure developed can also be used
as a design tool to study the influence of different factors
on control of cracking of earth dams. A method is indicated
for controlling tensile cracks in an earth dam, built in a
narrow valley with rigid abutments and on incompressible
foundations. The method consists of performing analyses

with non-homogeneous modelling of the core material of the



dam to specify the placement conditions of core material

for an effective control on the development of tensile cracks.
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CHAPTER I

INTRODUCTION

1.1 Scope
In this chapter the problem of cracking of earth and
rockfill dams is introduced, the past work done on the topic

is reviewed, and the purpose of the present work and its scope

are presented.

1.2 Importance of the Problem of Cracking of Earth and
Rockfill Dams

Cracking of the core of an earth or rockfill dam has
been a subject of considerable importance to the designers of
dams for a number of years. Cracking of several earth and
rockfill dams and in some cases, subsequent failures caused
by erosion of soil through the cracks have been reported in
the literature (Marsal and Ramirez, 1967; Patrick, 1967;
Pope, 1967; Schober, 1967; Kjaernsli and Torblaa, 1968; Gordon
and Duguid, 1970; Vaughan et al., 1970). The cracking pheno-
menon is a matter of considerable concern because, most of
these dams in which this distress occurred were built with
the best available construction practices developed over
recent years. The.ASCE Committee on Earth and Rockfill Dams
(1967) stressed the importance of research concerning crack-
ing of the core of earth and rockfill dams. It is necessary
to evolve suitable design and construction procedures for

earth and rockfill dams to resist cracking. This necessity



has been strengthened further by the increasing need to
utilize heterogeneous compressible foundations, irregular
steep valley walls, declining quality of embankment materials

at many sites, and fills of ever increasing height.

1.3 General Information on Cracking of Earth and Rockfill Dams

Covarrubias (1969) and Lowe (1970) have noted several
factors that contribute to the cracking of earth and rockfill
dams, the different types of cracks, and their relative import-
ance with respect to the safety of the structure. For complete-
ness some general information on cracking of earth and rockfill

dams is discussed in the following sections.

1.3.1 Factors Contributing to the Formation of Cracks

Stress states favouring the formation of cracks in earth
and rockfill dams are'genera11y caused by any one or a combina-
tion of the factors listed below:

(a) Excessive differential settlements caused by non-homo-
geneous compressible material in the foundation.

(b) Steepness and/or irregular shape of valley walls or
abutments.

(c) Differential deformations caused within the dam due te:

(1) the presence of rigid structures such as conduits,

concrete cut offs, etc. within the body of the dam,

(ii) the softening of certain materials of the dam due

to saturation, and



(d)

(e)

(f)

(iii) the large difference in stress-strain properties
of materials in adjacent zones or layers within
the dam.

Large rates of strain caused in the upstream shell by

the rapid filling of reservoir, especially during the

first filling.

Large transient stresses caused by earthquakes and other

dynamic loads.

Shrinkage effects caused by excessive drying of the core

of the dam for long periods either during construction

or operation of reservoir.

1.3.2 Types of Cracks

The cracks occurring in earth and rockfill dams are

classified in different ways. Three well-known classifications

are:

(a)

Classification by the orientation of the crack (Fig. 1.1):

(i) Transverse cracks: are those that are perpendicular
to the longitudinal axis of the dam. These could
be horizontal, vertical, inclined or skewed. They
provide a free path for the passage of water from
the upstream to fhe downstream side and are con-
sidered to be the most dangerous in causing failures
due to erosion in dams.

(ii) Longitudinal cracks: are those running in a direc-

tion, approximately parallel to the length of dam.

Though these cracks do not create a free passage of



(b)

(c)

water from the upstream to downstream faces, they

may however aggravate a piping failure in a dam

by connecting the transverse cracks.

Visible classification of the cracks (Fig. 1.1):

(1)
(i1)

Interior cracks are those not visible from outside.
Exterior cracks are those which are formed at the
surface (e.g., transverse or longitudinal cracks

at the crest). Interior transverse cracks are the
worst type of cracks which could cause unexpectéd

failures due to erosion in dams.

Classification according to the mode of formation (Fig.

1.2):
(i)
(i1)

(ii1)

(iv)

Tensile cracks ave those caused by tensile stresses.
Shear cracks are those caused by sliding failures.
Tearing cracks are those caused by torsional (ro-

tational) shear failures.

Shrinkage cracks are tension cracks formed due to

shrinkage effects.

In the investigation that forms the basis of this thesis

only tension cracks have been considered. Therefore, in the

remainder of this )2port, the term 'cracking' is implied to

mean ‘tensile cracking'.

1.4 VUsefulness of an Analysis for the Prediction of Cracking
of Dams

An analysis that can reasonably predict the extent of

tensile zones that are likely to develop in a dam structure

during critical periods will be useful in designing and in-



strumenting the structure in a rational manner. From the
performance of the structure as revealed by field observa-
tions, the analysis could be checked and causes for any dis-
crepancies be ascertained. It is hoped that such endeavours,
as the one made in this thesis, will lead to a better under-

standing and control of cracking .of earth and rockfill dams.

1.5 Brief Review of Past Work on Cracking of Dams

A comprehensive review of investigations of the cracking
of earth and rockfill. dams has been made by Covarrubias (1969).
These investigations, which were described in detail by
Covarrubias, are mentioned only in brief here. The investi-
gations carried out by Covarrubias (1969) and later workers
have been considered in some detail for the purpose of justi-
fying the need for the present work.

Terzaghi (1943, p. 431) observed that tensile cracks
would be caused by the tensile stresses prevailing at some
distance behind the face of a vertical cut in clay overlying
a rigid base. The distance at which maximum tensile stress
occurs and the resulting maximum depth of tension zone were
estimated to be about one-half the height of the cut.

Casagrande (1950) recognized the possibilities of piping
failures that could be caused by cracks in earth and rockfill
dams. He suggested that enough provisions should be made in
the design of dams to make the cracks self healing.

Sherard (1952}, after a comprehensive study on the per-

formance of several earth dams, some of which cracked, arrived



at criteria to classify the soils that are susceptible to
cracking. These criteria were based on the grain size and
consistency limits. A similar classification was also made

by Tamez and Springhall (1960). From these studies it was
concluded that, in general, silty soils with uniform gradation
and low plasticity index are highly susceptible to cracking.
Even though- these criteria help to classify soils with regard
to their susceptibility to cracking, they are of very Timited
use in the overall evaluation of the cracking potential of an
earth structure.

Nonveiller and Anagnosti (1961) proposed a Timit analy-
sis for investigating horizontal cracks in a narrow vertical
clay core supported by less compressibie rockshells. This
analysis disregards the elastic strains which by themselves
could produce cracks.

Narain (1962) tried to compare the tensile strains at
failure obtained by the laboratory beam tests on soils with
the tensile strains computed for a number of dams which were
jdealized as homogeneous isotropic linearly elastic beams of
uniform cross section. He concluded that when the computed
tensile strains exceeded the laboratory failure tensile
strains, cracks would occur in the real structure. Even
though some correlations with observed cracking were made,
the analysis recommended by him is not applicable for all
classes of problems involving irregular valley profiles and
non-homogeneous materials because of his over-simplified

idealization of the real structure.



Lee and Shen (1968) analyzed the longitudinal section
of dams using a finite element method to compute the horizon-
tal stresses and strains. Results of such computations made
on E1 Infiernillo Dam agreed well with the field observations.
The ana]ysﬁs was performed in a single step under plane strain
conditions with the appropriate linear stress-strain relation-
ships. -

Covarrubias (1969) analyzed a number of Tongitudinal
and transverse sections representing different simple geo-
metrical shapes of earth dams. In all cases a finite element
method was used and the analyses were performed in a single
step using the assumption of linear stress-strain relation-
ships and plane strain conditions. The purpose of these
analyses was to evaluate the effect of the shape of valley .
and compressibility of different materials in dams and founda-
tions on the development of tensile zones. Similar analyses
were conducted on the longitudinal sections of existing dams
to predict transverse cracking. Reasonable correlations were
obtained even though the tensile stresses and s%rains were
over-estimated due to the single step linear elastic analysis
used.

Dolezalova (1970) considered the effect of steepness
of a triangular valley on the formation of tension zones to
predict transverse tensile cracking. A finite difference
method was used to perform a linear elastic analysis in a
single step and in a number of steps under plane strain condi-

ticns. These analyses have the same disadvantages mentioned



before in addition to the lesser adaptability of the finite
difference technique to more complex problems.

Strohm and Johnson (1971) included the construction
step sequence and non-linear material behaviour in the finite.
element analyses they have conducted for different valley pro-
files under plane strain conditions. These studies revealed,
that by introducing the realistic non-linear material proper-
ties and the construction step sequence, the extent of tensile
zones computed was very much smaller than that obtained by
a single step linear analysis. In addition the principal
stress ratios computed by the incremental non-linear analysis
are closer to reality than the ones obtained by a single step

linear analysis.

1.6 Requirements of an Analysis for Predicting Cracks

For a successful prediction of cracking of an earth
structure particular attention has to be paid to the following:
(1) The idealization of the structure for the analysis has
to be such that the geometry of the structure, the bound?
ary and body forces, the boundary displacement conditions,
and the construction sequence are represented as close
to the prototype as possible.

(2) The material properties and the stress-strain relation-
ships used in the analysis should be such that fhey lead
to the proper simulation of the deformational behaviour

of the structure.

(3) The tensile behaviour of the materials of the structure
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should be known so that the results of analysis are

interpreted properly for the prediction of cracking.

Objectives of the Present Investigation

Since a procedure satisfying the requirements stated in

Section 1.6 is not available yet to deal with the problem of

cracking of earth dams, the present investigation was under-

taken with the following objectives:

(1)

~~
Ny
.

(3)

(1)

To conduct laboratory studies that contribute to an
understanding of the tensile behaviour of soils,

to conduct analytical studies that contribute to an
undergtanding of the influence of certain factors on
cracking phenomena and to the development of a procedure
for a reasonable prediction of the cracking of earth
dams, and

to suggest a design procedure that contributes to the

minimization of the possibilities of cracking of earth

dams.

Scope of the Present Work

Laboratory studies on tensile behaviour of soils are
restricted to a mountain till that represents a typical
core material generally used for the dams constructed
in western Canada. The influernce of the most important
factors, namely the water content at failure, the com-
pactive effort, the rate of loading, and the addition

of bentonite to till, on the tensile characteristics of
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soil has been investigated. The laboratory studies are
described in Chapter II.

(2) Suitable simulation procedures for linear and non-linear
finite element analyses for two and three dimensional
conditions have been developed. These procedures are
described in Chapter III.

(3) Parametric studies to investigate the influence of
construction sequence, non-linear stress-strain relation-
ships of materials, and three dimensional effects on the
development of tensile cracks during or at the end-of-
construction period have been conducted. Studies on the
first two factors namely, the construction sequence and
non-linear material properties are extensions of the work
done by Strohm and Johnson (1971). The other critical
states, such as the first_fi]]ing of reservoir, or an
earthquake, have not been investigated. A1l the studies
in this work are restricted to tensile cracking. Cracking
due to shrinkage effects and shear is not considered.

A11 the parametric studies are described in Chapter 1IV.

(4) A design procedure that takes into account the redistri-
bution of stresses due to non-homogeneity of the materials
of the dam, has been suggested to minimize the transverse
tensile cracks near the abutments. This procedure has
been described in Chapter IV.

(5) The simulation procedure that utilizes the analytical
tools developed in Chapter III has been applied to a

case study for verifying its usefulness in practice.



This case study is presented in Chapter V.

11
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CHAPTER II

LABORATORY STUDIES ON THE TENSILE
BEHAVIOUR OF SOILS

2.1 Scope

This chapter discusses the usefulness of the laboratory
studies on the tensile behaviour of soils for the analysis
of cracking of earth dams. Laboratory tensile studies on
soils by the previous investigators are briefly reviewed.
Different tensile test methods applicable to soils are exa-
mined and the indirect tension test procedure used in the
present work is described. Tests performed to evaluate the
influence of different factors on the tensile behaviour of a

typical core material are described and the results discussed.

2.2 Introduction

When compared to the extent of work done on the shear
strength and the deformational behaviour of soils, the amount
of research directed towards an understanding of the tensile
behaviour of soils is very meagre. This is mainly. due to
the generally low tensile strength of soils. Although it is
reasonable to assume zero tensile strength for soils in the
analysis and design of earth dams, a knowledge of the behaviour
of soil in tension is still required for an effective control
of cracking of earth dams. Laboratory tests were undertaken

to study the tensile behaviour of Mica Till, a soil represent-



14

ing typical core materials generally used for dams in western
Canada. The effects of the moisture content, the strain rate,
the compactive effort, and the addition of bentonite to till

on the flexibility characteristics of till were examined.

2.3 A Brief Review of Previous Studies on the Tensile
Behaviour of Soils

A systematic study on the tensile strength of compacted
soils, by testing relatively large specimens under direct
tension, was reported by Tschebotarioff et al. (1953). The
soil sample had the shape of a briquette, similar to the one
normally used in testing cement mortar in tension. The speci-
men was 52" in total length and 3" 1in thickness. The width
was reduced froém 18" at the ends to 6" at the test section,
which had a length of 16". The specimen, compacted by stand-
ard proctor tampers, was supported horizontally on ball bear-
ings to avoid friction. The important findings of this study
were as follows:

(1) The tensile strength and the strain at failure of a clay
depended on the type of clay mineral in the soil.
Montmorillonite exhibited the highest tensile strength
and tensile strain at failure whereas the corresponding
quantities for kaolinite were the lowest.

(2) The tensile strength was affected by the water content,
the time elapsed between mixing and testing and the rate
of strain.

(3) The addition of bentonite to sand increased the tensile
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strength of bentonite by about 50% when the mixture had

a composition of about 15% bentonite and 85% sand.

Further addition of sand decreased both the tensile
strength and the tensile strain at failure of the mixture.

From the preceding observation one can expect the possi-
bility of considerably improving the tensile behaviour of a
relatively non-plastic soil such as ti11 by the addition of
an optimum quantity of bentonite.

Narain (1962) studied the tensile behaviour of six soil
types of which five were obtained from earth embankments with
known construction conditions. The sixth soil was a limestone
clay of relatively high plasticity that had a plasticity index
of 45% and a 1iquid limit of 72%. The soils from embankments
varied from non-plastic to a plasticity index of 16. For a
given soil type, relationships were obtained between the ten-
sile strain at the initiation of cracking and the compactive
effort, moulding water content and the rate of loading. A1l
the tensile tests were performed on soils moulded into beams
3" wide, 2.75" deep and 22.125" long. The soil was compacted
in ten equal horizontal layers with an actuated vibrator hav-
ing a 2.5" square base plate, weighing 16 1bs. Different
compactive efforts could be simulated by adjusting the time
of compaction. Loss of moisture from the specimen was pre-
vented by coating the specimen with a layer of 50% petrowax
plus 50% petrolatum oil. The beams were loaded at the centre
by adding dead weights at rates that caused failure in 2 days

to 6 months. From the deflections of beams obtained by cathe-
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tometer observations of tungsten pins insefted intoc the beams,
the tensile stresses and strains were computed. The computa-
tion of stresses and strains was based on a solution obtained,
using the elastic theory, for a rectangular beam with known
dispiacement boundary conditions. The rupture of beam in-
variably occurred near the midspan after the formation of the
first crack. Paraillel compression tests were conducted on
all the soils to compare their behaviour in compression with
that in tension. The main conclusions drawn from these tests
were as follows:
(1) The ratio of tensile strains at cracking to the compres-
sive strain at failure varied widely from 0.071 to 0.1

Wwith no consistent pattern, indicating that compression

tests are of little value in assessing the tensile strains

in soils at cracking.
(2) An increase of moulding water content from 2% to 3% dry

of optimum to nearly optimum substantially increased the

flexibility of soil. At comparable moisture contents with

respact to the optimum, an increase of compactive effort
substantially decreased the flexibility.

(3) Clays of high plasticity are, in general, more flexible
than clays of low plasticity. However, the flexibility
of soils with low plasticity could not be correlated with
their plasticity characteristics.

(4) Rapid straining of soils caused failure at lower tensile
strains and stresses compared to those obtained from

siow rates of testing.
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Inglis and Frydman (1963) examined the suitability of
the different tensile test methods for soils. Direct tension
tests, indirect tension tests and flexure tests were performed
on soil specimens of different sizes and different composi-
tions. In order to cover a wide range of strengths‘in the
specimens tested, Portland cement was added to kao]in and
sand in varying small amounts. It was concluded that an
indirect test would be useful and sensitive for sta-
bilized materials as extreme as kaolin and uniforh]y graded
coarse sand. Simplicity in test operation, low variability,
and sharp failure were observed. The length of the specimen
did not affect the test results significantly indicating that
relatively thin specimens could be tested with minimum compac-
tion inhomogeneities.

Hasegawa and Ikeuty (1966) tested a soil with a plastic
1imit of 80%, a liquid limit of 98%, and an optimum water con-
tent of 82% in direct tension, using briquette shaped speci-
mens, similar to those used by Tschebotarioff et al. (1953)
but of much smaller dimensions. The overall Tength of the
specimen was 19 cm. with a middle test section of 2 cm. x
2 cm. in cross section and 7 cm. in length. The tensile load
was transmitted to the specimen through thin steel plates
embedded into the specimen at the enlarged ends during com-
paction. The specimen was kept horizontal and the friction
was avoided by floating the specimen on mercury. The tensile
strain was measured by cbserving through a cathetometer, the

movement of two ceramic marks, kept initially at a distance
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of 5 cm. apart. The failure took place perpendicular to the
axis of loading but at different locations along the length
of the specimen, sometimes occurring even at the ends. A
maximum strain of 5.5% was measured for the soil tested. A
decrease of tensile strength and increase of failure strain
with the increase in moisture content were observed.

Narain and Rawat (1970) tested six soil types, covering
a wide range of plasticity characteristics, under a diametral
compression to determine their tensile strength at different
moulding water contents. The specimen, 4" dia. x 4.6" in
size, was supported on 5/8" wide and 1/4" thick rubber strips
for even distribution of the load along its length. The good
reproducibility of the results reported, indicates the suit-
ability of the indirect tension test (Brazilian test) for com-
pacted soils. Comparison of the ratio of unconfined compres-
sive strength to the tensile strength at the optimum water
content for different soils tested showed that the ratio was
less for the more plastic soils. |

Fang and Chen (1971) developed a new simple test, known
as the double punch test, for testing soils in tension. The
test consists of loading a cylindrical soil specimen by apply-
ing two steel punches at the centre on both top and bottom
surfaces of the specimen. A simple formula, based on the
theory of plasticity was developed for computing the tensile
strength of soils. The test results for various materials
including concrete, mortar, soil, and bituminous concrete were

compared with those of the indirect test and good agreement

~d
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among the results were reported. However the measurement of

tensile strain during a double punch test on soil specimen

appears to be difficult.

2.4 Different Types of Test for Tensile Testing of Soils

Based on the experiences reported in previous investiga-
tions on tensile testing of soil, stabilized soil, concrete,
rock and bituminous concrete, a general evaluation of the

common tensile test methods appears to be possible.

2.4.1 Direct or Uniaxial Tension Test

A direct tension test, although quite sfmp]e in inter-
pretation, is rather difficult to apply to soils and other
materials which have a low tensile strength. The main diffi-
culty arises in the satisfactory application of load to the
ends of the specimen. A number of methods such as freezing
the ends of specimen (Haefeli, 1951), cementing the ends of
specimen to loading blocks with a quick-setting po]yesterAresin
(Bofinger, 1970), enlarging the ends of the specimen to form
a briquette (Tschebotarioff et al., 1953) and embedding load-
ing plates in the enlarged ends of specimen (Hasegawa and
Ikeuty, 1966) were adopted. Slight eccentricities in loading,
stress concentrations at the ends, and compaction planes in
the case of cylindrical speiimens (Ingles and Frydman, 1963)
affect the reproducibility of test results to a considerable
extent. When soils are to be tested at high water contents

or when the dimensions of the specimen are large, the horizon-
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tal application of load is preferred. This necessitates an
elaborate arrangement for the application of load without

friction and eccentricity (e.g., Tschebotarioff et al., 1953).

2.4.2 Flexure or Beam Test

This test is considerably easier to conduct than the
direct tension test. The preparation of the specimen and the
application of load do not require as much care. To some
extent the loading conditions in this type of test are simi-
lar to the field loading conditions of an earth daé which, for
purpose of analysis, can be considered as a beam (Narain,
1962). However, as the failure is induced at the surface,
skin effects produced by the uneven distribution of compaction
pressures, especially in soils of low plasticity tend to
influence the results to a large extent (Ingies and Frydman,
1963). Since a part of cross section of the beam passes into
the plastic range, the stress distribution in the specimen is
not defined. Hence the tensile strength computed by the simple
bending theory will be in error. However, Bofinger (1970),
using a theory that accounts for a different moduli in tension
and compression and p]éstic behaviour of soil, obtained ex-
treme fibre flexural stresses which are not markedly different
from the strengths of soil-cement specimens obtained by direct

tension tests.

2.4.3 Indirect Tension Test or Brazilian Test

An indirect tension test that involved loading of a cir-
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cular cylinder or disc with compressive loads along two dia-

metrically opposite generators, was developed by Carneiro aﬁd

Barcellos (1953) in Brazil and also by Akazawa (1953) in

Japan. A relatively uniform tensile stress perpendicular to

and along the diametral Elane containing the applied load

usually causes splitting failure along the loaded plane (Fig.

2.1). The test was originally developed for concrete and

mortar specimens, however its use has been found satisfactory

for materials such as rock (Mellor and Hawkes, 1971), stabi-
lized soils (Thompson, 1965), bituminous mixtures (Breen and

Stephens, 1966) and soils (Narain and Rawat, 1970). Based on

the previous investigations it is generally recognized that

an indirect tension test has the following advantages:

(1) Specimen preparation and its handling are considerably
easier. _

(2) Equipment.needed for the test is similar to that of a
compression test.

(3) Failure is relatively insensitive to the surface condi-
tions and compaction planes of the specimen and is initi-
ated in a region of relatively uniform tensile stress.

(4) Variation of the test results is Tow.

(5) For brittle materials and when performed properly, the
test is capable of giving a good measure of uniaxial
tensile strength (Mellor and Hawkes, 1971).

However, since the formula used to compute the tensile stress

in the test is based on the assumption of homogeneous, iso-

tropic elastic material there will be an error in the estimate
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of tensile strength of real materials. In addition the rela-
tionship between the tensile stress and tensile strain cannot
be obtained directly because of the biaxial stress conditions

of the test (Bofinger, 1970).

2.4.4 Choice of the Type of Test for Present Studies

The simplicity in preparation and handling of test speci-
mens and the consistency of test results lead to the adoption
of the indirect tension test in this investigation. The error
caused in the estimate of tensile strength of materials whose
moduli.differ in tension and compression is examined in
Séction 2.5.2. A procedure to derive the tensile stress-

strain relationship is indicated in Section 2.5.3.

2.5 Theoretical Consideration of the Indirect Tension Test

2.5.1 Theoretical Stfess Solutions

Hertz (1883) obtained a stress solution for a disc or
cylinder compressed normally by 1ine loads along diametrically
opposite generators. Later, a number of investigators (e.g.,
Timoshenko and Goodier, 1951; Wright, 1955; Frocht, 1957)
considered the same pfob]em. Hondros (1959) gave a complete
stress solution for the case where the load is distributed
over finite arcs, valid for conditions of both plane stress
and plane strain. Colback (1966) observed that the presence
of a diametrical fracture plane originating from centre is

essential if the test is to be accepted as valid. Favourable
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conditions for the acceptability of the test are generailly
obtained by distributing the applied 1oad over small areas.

A distributed load, when applied over a length less than a
tenth of the diameter of the specimen, prevents local com-
pressive failure without significantly altering the stress
conditions at the centre of specimen that are valid for a
line load. Fig. 2.1 compares the theoretical distribution

of vertical and horizontal principal stresses along the verti-
cal or loading diameter for conditions of line loading and
distributed loading over an arc of length equal to 1/12 of
the diameter of the specimen. The two principal stresses
along the vertical diameter for distributed loading are given

by Hondros (1959) as:

2. . 2
_ P [1-(r/R)“Isin 2a -1-1+(r/R)
o, = + { - tan [ tan o]}
6 mREE Ty o (p/R)%cos 20 + (r/R)Z 1-(r/R)
(2.1a)
P [1-(r/R)%]sin 2a ~1:1+(r/R)?
o, = - { + tan '[———5 tan «]}
r TRtQ "1 2(r/R)%cos 2a + (r/R)? 1-(r/R)2
(2.1b)

where P is the applied load. R is the radius of the specimen,
t is the thickness of the specimen, 2a is the angular distance
over which P is assumed to be distributed radially (normally
< 15°), and r is the distance from the centre of the specimen
(Fig. 2.1). At the centre of speéimen the stresses are given

by:
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G = + sin 2a _ 1)

P
0 ;EE ( . (2.2&)

P sin 2a
r ~ ~ wRt ( s T 1)

Q
|

(2.2b)

For Tine loading the stresses along vertical diameter are given

(Frocht, 1957) by:

_ P

o'e = + _ﬂRt (2.33)
_ P 4

°n = - TRT { 1} (2.3b)

C1-(r/R)2]

It will be noted that, for o < tan'(1/10), both Egs. 2.2 and

2.3 give the same stresses at centre, viz.,

p

O'e = TRT (2.43)
_ 3P
Se = - IRT (2.4b)

Fig. 2.1 shows that a distributed load gives a finite
value of compressive stress at the point of load application
whereas the compressive stress in the case of a line load is
infinite. Because of the stress condition that exists at the

centre (30e + g = 0) the initiation of tensile failure for a

r
brittle material, according to Griffith's criterion, should

occur at the centre of tne specinmen. The tensile stress

corresponding to the initiation of faiiure at centre is tnen
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equal to the uniaxial tensile strength of the material. When
the load Pf corresponding to the failure is known, the tensile

strength of the material tested can be obtained from:

P

- _f
O't - 'IT“Rt (2.5)

It is interesting to note that an identical formula for the
failure tensile stress could be derived assuming the material

to be perfectly plastic (Chen, 1970).

2.5.2 Effect of Different Elastic Moduli in Tension and
Compression

In the derivation of the stress solution discussed in
the previous section it was assumed that the elastic moduli
in tension and compression were equal. In general, for mater-
jals of very low tensile strength it is observed that the modu-
lus in tension is considerably smaller in magnitude than that
in compression. Bofinger (1970) observed that for an inactive
clay (liquid limit 53% and plastic limit 20%) when stabilized
with 6 to 10% ordinary Portland Eement, the ratio of modulus
in compression to that in tension varied from 7.5 to 11.1.
Because of different elastic moduli in compression and tension,
the tensile strength of the material estimated with the use
of the Eq. 2.5 will be higher than the correct value. A
numerical solution that considers different elastic moduli
in tension and compression has been obtained here with the
use of the finite element method. When moduli differ in ten-

sion and compression the material can be considered as bilinear
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and the solution technique by successive approximations
suggested by Wilson (1963) can be used to obtain a numerical
solution to the problem. The stress-strain relationship for
a bilinear material is of orthotropic form and can be written

in terms of principal coordinate system for plane stress

condition as:

¢ ) — - )
04 Et vcEt 0 €4
_ 1
ﬁO’C?' —]—_\Ttv— vtEC EC 0 ﬁ€c> (2.6a)
Cc
0 0 0 G 0
0 _ J Y

where 04 the tensile principal stress
c the compressive principal stress
€4 the tensile principal strain
€ the compressive principal strain
Et the modulus in tension
E the modulus in compression
Vi the Poisson's ratio associated with tension
Ve the Poisson's ratio associated with compression

G the shear modulus prescribed independently.

From symmetry considerations of the constitutive matrix given

above

v .E, = vtEC (2.6b)

Writing Ec/Et = n and G = gEC the constitutive matrix can be

expressed as:
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1 5 vcz 0
n-vc n-vc
AY
[c] = E, < L, 0 (2.7)
n—vc n-vc
B 0 0 g

The constitutive matrix [c] is defined if EC, v., n and g are

c
prescribed. For an isotropic material the extreme values of

é corresponding to Poisson's ratios of zero and 0.5 are 0.5
‘and 0.33 respectively. As g is an independently prescribed
quantity it is reasonablc to assume that about 0.4 represents
approximately an average condition for soils that have differ-
ent moduli in tension and compression. However, solutions

for different values of g ranging from 0.2 to 0.5 are obtained.
The variation of n'is considered from 1 to 15. The finite
element procedure is given in detail in Appendix D. Fig. 2.2
compares the finite element solution with the theoretical
solution for the distribution of tensile and compressive
stresses along the horizontal diameter of the specimen. A
close agreement between the solutions cén be noticed. Finite
element soiutions for EC/Et = 10 and g = 0.4 are also shown

in Fig. 2.2 for two values of v_ namely 0.10 and 0.35. An

c
increase in compressive stress and decrease in tensile stress
when compared to the isotropic case, at the centre of the

specimen can be seen. The solution is little affected by the
value of Poisson's ratio used in the analysis as can be seen

from Fig. 2.2. Fig. 2.3 gives the tensile and compressive
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stress at the centre of specimen obtained by the finite element
method for different values of Ec/Et and g. The stresses are
not significantly sensitive to the variation of g especially
over the range between 0.3 and 0.5. Hence it is reasonable,

in the absence of a correct estimate of g, to assume that the
variation of the stresses at centre as dictated by the ratio
Ec/Et for an averaée value of g equal to 0.4 serves the pur-
pose of evaluating an indirect tension test. Based on this,
the variations of the tensile and compressive stresses at the
centre with the ratio Ec/Et for the value of g = 0.4 is plotted’
in Fig. 2.4. This plét was used in subsequent computations
(Section 2.9). The distribution of the tensile and compres-
sive stresses along the horizontal diameter of the specimen

for various values of Ec/Et is shown in Fig. 2.5.

2.5.3 Evaluation of the Tensile Stress-Strain Relationship

Since the indirect tension test involves a biaxial
stress state at the centre of the specimen, the tensile strain
obtained from the test includes that caused by the compressive
stress in the vertical direction. To obtain thevtensile
stress-strain relationship it is necessary to deduct the ten-
sile strain due to the compressive stress from the observed
tensile strain. As the tensile stress at failure for soils
is generally low, the compressive stress that exists at the
centre of the specimen while it fails in tension is also Tow,
this being equal to three times the tensile stress at failure.

For the range of this low compressive stress an appropriate
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compression modulus (Ec) and a Poisson's ratio (vc) cﬁn be
obtained by conducting an unconfined compression test on the
same soil. The observed tensile strain at the centre of speci-
men in an indirect tension test can be expressed for plane

stress condition as:

C

o o
_ %xe¢
€xe ~ F;_ ¥ Ve c (2.8)

where Oye> O represents respactively the tensile and com-

yc

pressive stress at the centre, e . the observed tensile strain

at centre and Et the modulus in tension. The tensile strain

due to tensile stress alone can be obtained from:

(e} [e)
E—’:E = e, - V¢ —LE < (2.9)
[od

Initially, as Et is not known, Oyve an§ °yc can be computed
for Ec/Et = 1. From tensile stress-strain relationship

obtained after the first trial, Et is derived and the ratio
Ec/Et computed. In the second trial the appropriate values

yc
and used in Eq. 2.9 to obtain the new tensile stress-strain

of Oye and ¢ are derived from Fig. 2.4 for the known Ec/Et

relationship. Now the Et can be derived from the present ten-
sile stress-strain relationship and the Ec/Et can be recom-
puted and compared with previous value of Ec/Et° The procedure
can be repeated until close agreement is achieved between the
successive va’ues of Ec/Et' An example illustrating the pro-

cedure appears in Section 2.9.
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2.6 E;perimenta] Set-Up for Laboratory Tensile Tests

2.6.1 Load Measuring Device

Since the tensile stress to be measured for soils is
small, the load measuring device should be sufficiently sensi-
tive to record small loads. The system should be rigid caus-
ing negligible deformation in the load measuring device. The
recerding equipment should be such that it is possible to
record measurements of load and deformation at close inter-
vals. Thfs will lead to a precise evaluation of the stress-
strain relationship especially at the failure of specimen.

All tensile tests were performed on a strain controlled
loading machine having various constant speeds including a
minimum of 0.000013"/minute. The load was measured by a
sensitive, 300 1b. capacity tension-compression miniature
transducer load cell, (Fig. 2.6) manufactured by Intertechno-
logy Ltd., Don Mills, Ontario. The load cell is temperature
compensated, has 50% over load capacity, and could be operated
satisfactorily in a moist room at 95% relative humidity and
at a temperature of 45°F to reduce the loss of moisture from
the specimen. The load cell is supplied with 10 volts d.c.
and the output is picked on one.of the channels of the d.c.
strain gauge control (Figs. 2.7 and 2.8). The channels were
scanned and recorded by a Hewlett-Packard data acquisition
system (Figs. 2.7 and 2.8). The readings could be taken at
intervals of time ranging from 1 second to 1 hour. The mini-
mum load that could be recorded with the system is 0.1685 1bs.,

equivalent to 0.01 millivolts.



31

2.6.2 Tensile Deformation Measuring Device

Tensile deformation measurement in soils is rather
involved because of the difficulty in'attaching the tensile
deformation measuring device to the soil specimen and the
need to measure extreme1y~sma11 tensile deformations. In
the present studies a clip gauge shown in Figs. 2.9, 2.10(a)
and 2.70(b) was used to measure the displacement between two
brass guage blocks attached to the specimen on either side
of its centre by means of Phenyl Salicylate. Similar clip
gauges were successfully used in the past by.the Alberta Re-
search Council, Highways Division, Edmonton to obtain the tensile
deformations of soil-cement specimens.

The clip gauge consists of two arms of 1%" long, %"
wide and 0.015" thick "feeler gauge" material firmly soldered
to two brass blocks as shown in Fig. 2.9(a). The two arms
were provided with brass knife edge points at their ends so
that the clip gauge sits snugly between the grooved sides of
the gauge blocks (Fig. 2.10(a)). The brass ends of the clip
gauge were kept at a fixed distance apart on either end of a
spacer by means of a screw and a pin (Fig. 2.9(a)). The
thickness of the spacer selected was such that a distance of
0.915" between the ends of knife edge points was obtained in
the unstraired state. When the gauge sits within the grooves
of the gauge blocks the distance between the knife edge points
is 0.84" so that a maximum tensile strain of 8.92% can be
read over the entire range of the clip gauge. A distance

greater than 0.915" was not found to be desirable as in this
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case the two arms of clip gauge in the initial strained posi-
tion, exerted excessive pressure on the gauge blocks causing
them to come off the specimen. The two cantilever arms, which
tend to reach the unstrained position as the specimen under-
goes tensile deformation, were fitted with two Budd's metal
film strain gauges (type C6-111, gauge factor 2.4, 120 ohms)
to measure the tensile deformation (Fig. 2.9(a)). To achieve
a maximum signal output, one of the gauges was fixed on the
compression side of one arm whilé the other was on the ten-
sion side of the other arm. Two resistors of 120 ohms each
were put into the circuit to make it a full bridge circuit
(Fig. 2.9(b)). The transducer amplifier indicator (Figs. 2.7
and 2.8) supplies 3 volts a.c. at 3kHz to the strain gauge
circuit, receives back the a.c. signal from the circuit,
amplifies and converts into a d.c. signal whfch is read by

the data acquisition system. As the tensile deformations were
to be read from both ends of the specimen, two clip gauge
units with two transducer amplifier indicators have been used
(Figs. 2.7 and 2.8). The minimum tensile strain that could

be read with the set up used is 0.002%, equivalent to 0.01
millivolts. A L.V.D.T. (linear variable differential trans-
former) of 6 Qolts was fixed to the loading head (Fig. 2.10(b))

to check the rate of loading of the specimen.

2.7 Experimental Set-Up for Laboratory Compression Tests

The unconfined compression tests were conducted on the

same loading machine with the same load cell used for the ten-
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sile tests. The tests were performed on 4" dia. x 8" long
samples with lateral strain measurement (Fig. 2.11). The
lateral strain measuring device used is a modification of

the lateral strain indicator described by Bishop and Henkel
(1962) for performing compression test on 4" dia. samples
under zero lateral strain. The modification was the replace-
ment of the diaphragm-mercury indicator by an L.V.D.T. of 24
volts with a thin wire tied to the lower end of the core while
the upper end was supported by a spring (Fig. 2.12). The
relative movement of two curved metal pads which bear 1lightly
on the surface of the sample is magnified twice by the hinged
ring which embraces the sample and is imparted to the thin
wire, stretching across the two ends of the ring (Fig. 2.12).
The wire causes the vertical movement of the core of L.V.D.T.
equivalent to twice the amount of the lateral displacement of
the specimen. Lateral strains are measured here to compute
the Poisson's ratio during the unconfined compression of the
specimen. The vertical displacement of the specimen is mea-
sured by a 6 volt L.V.D.T. attached to the loading plunger

of the triaxiai ceil as shown in Fig. 2.11.

2.8 Description of Laboratory Tests

2.8.1 Description of Soil Used for Tensile and Compressive
Tests

Mica Till was used in all tensile and compressive tests
to represent the tensile and compressive stress-strain char-

acteristics of a typical brittle core material of an earth dam.
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Some tension tests were performed on Mica Till mixed with 6%
bentonite to study the effect of adding a plastic material

to the core material. Mica Till .tested, has the following

properties:

Liquid 1imit 18.2%
Plastic limit 14.7%
Plasticity index 3.5
Proctor maximum dry density 132.0 pcf

(material passing #4 sieve)

Proctor optimum water content 9.2%
(material passing #4 sieve)

The gradation curve for Mica Till for sizes less than 3/4"
is shown in Fig. 2.13. Mica Till mixed with 6% commercial

bentonite (1iquid Timit 591%, plastic limit 87%, and activity
5.6) has the following properties:

Liquid limit 42.0%
Plastic 1imit 21.2%
Plasticity index ' 20.8
Proctor maximum dry density 126.0 pcf

(material passing #4 sieve)

Proctor optimum water content 10.8%
(material passing #4 sieve)

2.8.2 Tests Performed

Fifty-two tension tests and four unconfined compression

tests were performed altogether as detailed in Table 2.1.

2.8.3 Soil Preparation and Compaction of the Sample for
Tension and Compression Tests

The ti11 obtained from borrow area of Mica dam had a
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water content of about 12%. The soil was forced through a
#£ sieve and the material passing the sieve was air dried
for a week. The dried soil was stored in plastic bags.
Twenty-six hundred grams of the air dried soil was mixed
with the required quantity of distilled water by weight in
a mechanical mixer for 3 minutes. The soil thus mixed was
forced through a #4 sieve to remove all Tumps. A uniform
mixture was achieved without difficulty because of the non-
plastic nature of soil. However, when 6% bentonite was mixed
with Mica Ti1l it was relatively difficult to force the soil
through a #4 sieve when the water content was well above
optimum. In such cases the lumps were broken by hand. The
loss of water during mixing and compaction was compensated
by adding about 0.5% more water than required. The soil
mixed with water was kept in a moisture proof plastic bag
and stored for 24 hours in a moist room.

The soil was compacted in a mould 4" in diameter and
1.53" high fitted with a collar. An automatic compactor with
a hammer weighing 5.5 1bs. and a height of fall 12" was used
for compacting the specimen. A specimen of 4" diameter and
1.53" was obtained after trimming. Three such specimens were
obtained from each batch of 2600 grams of air dried soil.
A1l the tensile test specimens were prepared using dynamic
compaction. The effect of type of compaction such as knead-
ing or vibratory compaction was not studied. The rumber of
blows was maintained at 25 for M, B and T series of the tests

(Table 2.1) and varied only for the C series in which the
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effect of compactive effort was studied. Greater compactive

effort was simulated by increasing the number of blows while

the height of fall and the weight of the hammer were kept
constant at 12" and 5.5 1bs. respectively. The thickness of
sample selected was 1/3 the height of the standard proctor
sample. A sample 4" dia. x 1.53" was preferred over the full
proctor sample (4" dia. x 4.59") for the following reasons:

(1) The quantity of soil to be handled for each specimen
is smaller.

(2) Non-homogeneity caused due to compaction of standard
proctor sample in three layers is avoided.

(3) For the evaluation of tensile strains a plane stress
condition can be assumed with the size of sample selected
while it is neither a plane strain nor a plane stress
condition for the full proctor sample. Also a piane
stress‘condition simplifies the evaluation of tensile
strain when modulus in compression differs from that in
tension (Sections 2.5.2, 2.9, and Appendix D). In the
case of a plane strain analysis the Poisson's ratio
associated with the third direction also enters the con-
stitutive hatrix.

(4) A thinner specimen would lead to a better correspondence
between the tensile deformations measured on the two ends
of the specimen.

For the compression tests the soil mixed with water as
described above, was compacted in a 4" diameter by 8" high,

3 part split mould in 5 equal layers. Twenty-five blows of
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a standard 5.5 pound hammer with a3 12" drop were given on

each layer.

The compaction curves obtained on different size samples
are compared in Fig. 2.14. A close agreement among the moijs-

ture-density relationships can be noted.

2.8.4 Specimen Preparation for Tension Test

blocks are fixed to both ends of the specimen to receive the
tensile clip gauges. To facilitate correct location of the
gauge blocks at both ends of the specimen, ga gauge-block iocat-
ing jig, from here on in referred to as Jig, was used. The

Jig as shown in Fig. 2.16 had four straight edges fixed to a
brass disc of 4" diameter. The disc had two square holes to
receive the two gauge blocks of 3/8" x 3/8" size separated

by a fixed distance of 0.84", Two straight edges were fixed

on the ends of the diameter joining tkre gauge blocks while

the other two were fixed on the ends of the diameter perpendi-

cular to the former. The soil specimen was kept on a wooden

edges of the Jig (Figs. 2.15 and 2.16) . Marking the genera-
tors facilitated the setting of gauge blocks on the other end
of the specimen exactly in Opposite positigng and at the same

gauge length of 0.84", After marking the generators a few
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a standard 5.5 pound hammer with a 12" drop were given on

each layer.

The compaction curves obtained on different size samples
are compared in Fig. 2.14. A close agreement among the mois-

ture-density relationships can be noted.

2.8.4 Specimen Preparation for Tension Test

The compacted soil specimen Tor a tension test was
weighed for the determination of its density. Two gauge
blocks are fixed to both ends of the specimen to receive the
tensile clip gauges. To facilitate correct location of the
gauge blocks at both ends of the specimen, a gauge-block locat-
ing jig, from here on in referred to as jig, was used. The
jig as shown in Fig. 2.16 had four straight edges fixed to a
brass disc of 4" diameter. The disc had two square holes to
receive the two gauge blocks of 3/8" x 3/8" size separated
by a fixed distance of 0.84". Two straight edges were fixed
on the ends of the diameter joining the gauge blocks while
the other two were fixed on the ends of the diameter perpendi-
cular to the former. The soil specimen was kept on a wooden
block with two holes to receive the gauge blocks, the jig was
placed on the specimen and the four generators on the circum-
ference of the specimen were marked along the four straight
edges of the jig (Figs. 2.15 and 2.16). Marking the genera-
tors facilitated the setting of gauge blocks on the other end
of the specimen exactly in opposite positions and at the same

gauge length of 0.84". After marking the generators a few
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drops of phenyl salicylate at 200°F temperature were dropped
into the square holes and the gauge blocks were set in posi-
tion by 1lightly pressing them into the molten 1iquid. The

jig was removed from the specimen without disturbing the
blocks. In a few minutes the l1iquid set and held the gauge
blocks firmly to the specimen. To the other end of the speci-
men also the gauge blocks were attached in a similar manner
after turning the specimen upside down and orienting it pro-
perly so that the 1ines marked previously coincided with the
straight edges of the jig. Any phenyl salicylate that

entered the grooves of the gauge blocks was removed with a
sharp knife. The specimen was then held on a stand (Fig.
2.17(a)) and dipped into a mixture of‘50% petrowax and 50%
petrolatum kept in a molten condition at about 55°C. A thin
and pliabie coat of the mixture thus formed not only prevents
the loss of moisture from the specimen but also forms a pro-
tective coat to prevent the edges from spalling. The specimen
thus prepared was cured in the moist room for about 2 weeks
before testing.

Before performing the tensi]e'test the wax covering the
gauge blocks of the specimen was removed to insert the knife
edge points of the clip gauge into the grooves of the gauge
blocks. A strip of wax aleng the thickness of the specimen
was removed at both ends of the vertical diameter so that
the surface of soil was in direct contact with the loading
strips. The loading strips used were butyl rubber 0.385"

wide and 0.185" thick. From the preliminary tests it was
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found that the type of rubber used was neither too soft nor
too rigid for the proper distribution of load to the samples
tested. The width chosen for the loading strips was slightly
less than a tenth of the diameter of the sample so that the
theoretical stress distributions at the centre of the speci-
men for a concentrated load was valid. A greater width for
the loading strip causes the specimen to mobilize greater
resistance than that needed to cause the initial fracture.

A typical brittle failure observed in all the tension tests

performed is shown in Fig. 2.17(b).

2.8.5 Tension Test Operation

A11 the tension tests were performed in the moist room
at 45°F and 95% relative humidity. The variations in tempera-
ture and the relative humidity were +2°F and +5% respectively.
The purpose of conducting the test in a moist room was to
avoid loss of moisture from the specimen especially during
long term tests. The specimen was properly positioned in the
loading machine before the application of the load as shown
in Figs. 2.10(a) and 2.10(b). While the load was appiied to
the specimen the load cell, the two strain gauges and the
L.V.D.T. readings were recorded on a paper by the data acquisi-

tion system at an interval of time, set on the digital clock.

2.8.6 Computation of Tensile Stress and Strain

The readings obtained in volts and millivolts on the

recording paper were converted to the proper units by using
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the appropriate calibration factors determined prior to test-
ing. It was assumed that a tensile crack was initiated at
the peak load and the tensile stress at failure was computed
using Eq. 2.5. From the tensile deformations recorded at
peak load from both ends of the specimen the tensile strains
were computed and were averaged. The resulting strain was
taken as the average observed tensile strain at failure. The
average tensile strain was observed over a gauge length of
0.84". To obtain the tensile strain at the centre of the
specimen, the average observed tensile strain has to be
multiplied by a coefficient which can be evaluated from the
tensile strain distribution on the horizontal diameter of the
specimen. This tensiie strain distribution can in turn be
computed from tke stress distribution shown in Fig. 2.5. For
the plane stress condition the horizontal tensile strain at

a distance r from the centre can be expressed as:

g v
X c
€, =g +t =— ¢
X Et EC y

or

TRt wRt Et TRt

5 exEt =0, 5t 3vc T % 3P (2.10)

c

The tensile strain at the centre can be expressed as:

_ %%c |, Ve
€xc¢ T E, T E_ %ye
t c
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or

m

mRt - Rt _t TRt
7 €xcft T Ixc P F 3ve E. Syec T3P (2.11)
From Eqs. 2.10 and 2.11
s TRE . 5. St TRt
€y x P c Ec y 3P
= E (2.12)
Xxc mRt t 7Rt
o Pt 3¢ E. Oyc 3P
€x
Using Eq. 2.12 and Fig. 2.5 E——-a]ong the horizontal diameter
Xc
can be computed for a given value of Ve and Ec/Et' From the
€
distribution of Eé— along the horizontal diameter the central
XxC
tensile strain, €yc® can be related to the strain exl, observed
over a length /] as:
L/2 ¢
P
€ f =— -dr
Y /M < (2.13)
xq £
or
€y = 92 X exl (2.14)

where
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ge = 172 f (2.15)
X_ . dr
-J72  Exc

The variation of coefficient Cl determined by graphical inte-
gration of Eq. 2.15 for v, = 0.365, J = 0.84", and for E./Eq
ranging from 1 to 15 is shown in Fig. 2.18. The use of this
coefficient in the evaluation of the tensile stress-strain
relationship is shown in Section 2.9.

The terms pertaining to the tensile strain used in
all the subsequent sections mean as follows: Observed tensile
strain is the tensile strain computed from the tensile deforma-
tion measured over a gauge iength of 0.84". Average observed
tensile strain is the tensile strain obtained by averaging
the observed tensile strains computed for both ends of the
specimen. Observed central tensile strain is the tensile
strain at the centre of the specimen obtained by multiplying
the average observed tensile strain by a coefficient (Eq.
2.15). Tensile strain ("true" tensile strain) is the strain
caused at the centre of the specimen by the tensile stress
alone. This strain is obtained by deducting from the observed
central tensile strain, the tensile strain caused by the com-

pressive stress at the centre of specimen.

2.9 An Example to Illustrate the Procedure of Deriving the
Tensile Stress-Strain Relationship

As mentioned in Section 2.5.3, in a biaxial indirect

tension test, the observed central tensile strain consists of
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strains due to both tensile and compressive stress at the
centre of the specimen. The following example illustrates
the procedure for deriving the tensile stress-strain relation-
ship (Section 2.5.3).

An unconfined compression test performed on a 4" dia. x
8" sample with lateral strain measurement yielded the results
presented in Fig. 2.19. The water content at failure was
10.65%, about 1.5% gfeater than the optimum. The compressive
stress-strain relationship and the Poisson's ratio, computed
from measured lateral and axial strains throughout the test,
are shown in Fig. 2.19. An increase in Poisson's ratio with
axial strain can be noticed. A tension test was also per-
formed on 4" dia. x 1.53" sample at the same rate of loading
(0.005"/min.) as that used in the compression test. The
results of the tension test are shown in Fig. 2.20 and Table
2.2. The water content at failure (10.68%) was almost the
same as that obtained in the compression test. The tensile
stress was computed using Eq. 2.4(a). This formula is valid
when the modulus in compression is equal to that 1in tension.
In Fig.2.20 the tensile stress is plotted-against the observed
tensile strains, computed from the measured tensile deforma-
tion on both ends of the specimen over a gauge length of
0.84". 1In the same figure the relationship between the ten-
sile stress and the average of the observed tensile strains
is also shown.

The relationship between the %ensile stress and tensile

strain is obtained using the following steps (Table 2.3):
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Step 2:

Step 3:
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A representative value for Ec and Ve is chosen from
the compression test results for the range of com-
pressive stress realized in the tension test. For
the example considered, the failure tensile stress
from Fig. 2.20 is 0.525 psi and the corresponding
compressive stress at the centre of specimen would

be 1.575 psi, i.e., three times the tensile stress.
From Fig. 2.19 representative values for EC and V. can
be selected for a range of compressive stress between
zero and 1.575 psi. These are 260.9 psi and 0.365
respectively.

The relationship between central tensile stress and
central observed tensile strain, shown by a solid
line in Fig. 2.21, is derived by multiplying the
observed average ténsi]e strain, shown by a solid
line in Fig. 2.20, by a coefficient equal to 1.048.
This coefficient, corresponding to Ec/Et =1, 1is
obtained from Fig. 2.18 in which the value of coeffi-
cient is plotted against Ec/Et for a v, equal to
0.365.

From the relationship between central tensile stress
and the observed central tensile strain the relation-
ship between the tensile stress and the tensile strain,
for EC/Et = 1 is obtained. This relationship is
shown by a solid 1ine passing through solid circles
in Fig. 2.21. This relationship is obtained by

deducting the tensile strain at the centre caused by
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the compressive stress from the observed central
tensile strain (Eq. 2.9, Section 2.5.3).

Step 4: The secant modulus (Et) at 2/3 of the failure ten-
sile stress is obtained from the tensile stress-strain
relationship derived in Step 3. The value is 31.99
psi (Table 2.3) and the corresponding ratio of E_/E,
is 8.16.

The relationship in Step 3 is obtained for Ec/Et =1,
whereas the actual Ec/_Et computed from the relationship is
equal to 8.16. Steps 2, 3 and 4 are repeated for the Ec/Et =
8.16, making use of Figs. 2.18 and 2.4, and the new value of
Ec/Et is computed. The procedure is repeated until the values
of Ec/Et obtainéd in two successive cycles of computation
agree reasonably with each other (Table 2.3). In this example
the final relationship between tensile stress and strain,
derived for a value of Ec/Et = 11.64, gives Ec/Et = 12.10
whick is reasonably close to 11.64. Further calculations
are not necessary because the corresponding change in the
final tensile stress-strain relationship is negligibie. 1In
Fig. 2.21 the final tensile stress-strain relationship is

shown by a solid Tine through squares.

2.10 Discussion of Tension.and Compression Test Results

Since the tensile deformations were measured on the
same gauge length in all the tests performed, the influence
of various factors has been studied in terms of the observed

failure strains instead of "true" tensile failure strains.
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Similarly the tensile strength of the soil as influenced by
different factors was computed using the formula given by

Eq. 2.5. Since the purpose of the present study was mainly
to compare the influence of different factors on the tensile
characteristics of soil, the somewhat simplified approach
adopted here was considered to be appropriate enough to bring

out the salient points.

2.10.1 Effect of Water Content

The tensile strength of the Tow-plastic till tested,
decreases with an increase in water content at failure (Fig.
2.22). The observed average tensile strain at failure on the
other hand increases with the increase in water content at
failure (Fig. 2.23). The increase in strain becomes dispro-
portionately high at water contents greater than the optimum.
Assuming for the present studies, the ratio of the failure
"tensile stress to the observed average tensile strain as a
measure of stiffness of the soil in tension it can be seen
from Fig. 2.24 that the stiffness decreases with an increase

in the water content at failure.

2.10.2 Effect of Compactive Effort

As stated in Section 2.8.3, the amount of compactive
effort was varied by changing the number of blows. The
weight of the hammer (5.5 1bs.) and the height of fall (12")
were constant for all the tests. The water content-dry den-

sity relationships obtained for 25, 50 and 70 blows are shown
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in Fig. 2.25. The tensile stress at failure increases with
the compactive effort for water contents below the optimum
and decreases slightly with the compactive effort for water
contents above the optimum (Fig. 2.26). The observed average
tensile strain at failure and the stiffness of the soil in
tension are plotted against water content at failure in Figs.
2.27 and 2.28 respéctive]y. Increasing the compactive effort
for water contents greater than about 7% causes a decrease

in the stiffness of the soil in tension. This éppears to be
due to the effect of some softening induced by over compacting
the non-plastic Mica Till at water contents above and close
to the op*imum. However, increasing the compactive effort
at water contents well below the optimum increases the stiff-

ness as well as the tensile strength of soil.

2.10.3 Effect of Rate of Loading

The effect of rate of loading on the tensile strength
and on the observed average tensile strain at failure is shown
for water contents at 9% and 10.4% in Figs. 2.29 and 2.30.
Both the tensile strength and the strain at failure attain
the minimum values at a certain rate of loading depending on
the water content at failure. Tschebotarioff et al. (1953)
reported a decrease in tensile strength and tensile strain
at failure with an increase of the duration of the test. The
test duration for the tests conducted by Tschebotarioff et al.

(1953) ranged approximately from 5 to 430 minutes. Narain

(1962) reported an increase in the tensile strength and ten-
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sile strain at failure with the increase of the test duration.
The duration of tests conducted by Narain (1962) ranged from
2 days to 6 months. The two opposite effects of test duration
on the tensile characteristics of compacted soils reported by
Tschebotarioff et al. (1953) and Narain (1962) appear to be
mainly due to the different ranges of test durations used in
the experiments. The test durations of the present tension
tests cover the range of test durations reported by Tsche-
botarioff et al. (1953) and extend to the lowest of the range
reported by Nar;in (1962). From Figs. 2.29 and 2.30 it can

be seen that the duration.of test has a significant effect on
the tensile characteristics of a compacted soil. The critical
rate of loading at which the minimum tensile strength is
mobilized is almost the same as that needed to produce the
minimum tensile strain at failure. However the critical

rate of loading is influenced by the water content at failure
(Figs. 2.29 and 2.30). From a practical point of view, it

can be concluded that a fairly rapid loading, comparable to
the test durations lasting between 1 to 2 days, causes condi-
tions favourable to the formation of cracks. Considering only
the effect of rate of loading, it is unlikely that extremely
rapid or extremely slow rates of loading would cause tensile
failures in compacted soils of low to medium plasticity. By
conducting a number of representative'1aboratory tension tests
at different rates of loading it appears possible to define
the minimum tensile strength and the minimum tensile strain

at failure for a given compacted soil of the type tested here.
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2.10.4 Effect of Adding Bentonite

As a means of increasing the flexibility of the core
of an earth dam a small percentage of bentonite may be added
to the almost non-plastic till. For example, in the case of
Duncan Dam (Chapter V) about 6% bentonite was added to the
core material. To study the effect of adding the bentonite,
tension tests were conducted on a mixture of Mica Till and
6% by weight of commercial bentonite. Fig. 2.31 shows the
water content-dry density relationships for Mica Till with
and without bentonite. Addition of 6% bentonite decreased
the maximum dry density by 6 pcf and increased the optimum
water content by 1.6%. The liquid 1imit and plasticity index
are also increased by 23.8% and 17.3 respectively.

The effect of water content at failure on the tensile
strength of Mica Till is shown in Fig. 2.32 with and without
bentonite. A significant difference between the variation
of the tensile strength for water contents below optimum
is evident. For Mica Till without bentonite the tensile
strength decreases steadily with the water content while for
Mica Till with 6% bentonite the tensile strength increases
up to the optimum water content and then decreases beyond
the optimum.

The tensile strain at failure increases with water
content at failure both for Mica Till and Mica Till with
bentonite (Fig. 2.33). However the increase in failure strain
is more rapid in the case of Mica Till for water contents

greater than optimum. To achieve the required flexibility,
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the soil mixed with bentonite requires a higher percentage

of water than that needed for a soil without bentonite. The
stiffness of Mica Till with and without bentonite is shown
against the tensile strength in Fig. 2.34. For Mica Till
without bentonite a decrease in stiffness is followed by a
decrease in tensile strength. On the other hand for Mica

Till with bentonite a decrease in stiffness up to the optimum
water content is followed by a slight increase in tensile
strength. Beyond the optimum ﬁoisture content, the tensile
strength decreases with the stiffness. Comparing the two
soils at a given stiffness it will be noted that till with
bentonite has a greater tensile strength than till without
bentonite. The decrease in tensile strength for water con-
tents beyond the optimum is more rapid in the case of Mica
Ti11 without bentonite than that with bentonite. The addition
of bentonite to till makes it possible to increase the flexi-
bility without appreciably decreasing the tensile strength.

In Fig. 2.35, the percent decrease in tensile strength that
occurs with an increase of water content of 2% above the opti-
mum for different soils is shown. The results for soils from
A to F were obtained from the work of Narain and Rawat (1970).
The results for soils G and H are from the present work. As
can be seen from Fig. 2.35, the percent decrease in tensile
strength is more for sof]s of low plasticity than that of

soils of high plasticity.
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2.10.5 Comparison of Compression and Tensile Characteristics

The stress-strain relationship obtained from unconfined
compression tests on Mica Till are shown in Fig. 2.36. The
variation of the compressive strength and strain at failure
with water content is shown in Fig. 2.37. A comparison of
compression and tensile characteristics of Mica Till appeafs
in Fig. 2.38. The ratio of compressive strength to tensile
strength increases with the water content. This is due to
the fact that the reduction of tensile strength with water
content is more rapid than that of compressive strength. The
ratio of compressive failure strain to the tensile failure
strain decreases initiaily and stays relatively constant for
water contents greater than 7%. The secant moduli, assumed
here as the ratio of the failure stress to failure strain,
are also compared in Fig. 2.38. The ratio of secant moduli
increasés with the water content. This increase is mainly
due to the greater percent reduction of tensile strength with
water content as'compared to the percent reduction of compres-

sive strength (Figs. 2.22 and 2.37).

2.11 Summary

Soils are extremely weak in tension. The tensile
strength of an earth dam core, comprised of soils of low to
medium plasticity, can be assumed to be zero for purposes of
design and analysis. The tensile strength measured here for
a till of low plasticity, compacted at a water content 1.5%

greater than the optimum, is only about 0.5 psi. Considering
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different methods of tensile testing, the Brazilian or the
indirect tension test offers the maximum facility for test-
ing soils in tension. However, because of the biaxial stress
state that exists, the interpretation of the test becomes
somewhat involved. When the moduii in tension and compression
are not equal, as is usually the case for soils of.]ow to
medium plasticity, the theoretical stress so]utioné obtained
under isotropic conditions over-estimate the tensile strength
of the material. Numerical solutions, using the finite ele-
ment method, for cases involving different moduli in tension
and compression, have been obtained in this report to estimate
the tensile strength of soils. By conducting parallel
unconfined compression tests, the relationship between tcnsile
stress and tensile strain can be determined from the data

of an indirect tension test.

At water contents greater than the optimum the flexibi-
1ity of a soil increases accompanied by a considerable de-
crease in tensile strength. The percent decrease of the tensile
strength is higher for a less plastic soil compared to that
of a more plastic soil. Addition of bentonite with the appro-
priate water content aids in increasing the flexibility of
the soil, at the same time without a considerable reduction
in the tensile strength. For a compacted till of low plasti-
city, the rate of loading has a significant influence on the
tensile strength mobilized at failure and the associated ten-
sile strain. Rates of loading comparable to a laboratory

test duration of one to two days appears to be critical for
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the type of soil tested in this {nvestigation.

The ratio of unconfined compressive strength to the
tensile strength increases with the water content. The ratio
for the soil tested varied from 11 to 31.2 for water contents
3.56% below optimum to 1.45% above optimum respectively.

As the water content increases, for a low plastic soil the
tensile strength decreases very rapidly while the reduction
in compressive strength is comparatively less. The ratio

of modulus in compression to that in tension also increases
with the water content. The ratio for the till tested varied
from 2.68 to 15.40 for water contents 3.56% below the optimum
to 1.45% above the optimum.
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D D.C. STRAIN GAUGE CONTROL,
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=PACKARD MODEL 3440a
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FIG, 2,8 SCHEMATIC DIAGRAM SHOWING THE DATA ACQUISITION
SYSTEM AND TRANSDUCER AMPLIFIERS
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FIG, 2.10[A] A CLOSE-UP VIEW OF SPECIMEN
WITH CLIP GAUGE IN POSITION

FIG. 2.10[B] A SIDE VIEW OF SPECIMEN WITH
CLIP GAUGE IN POSITION
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FIG. 2.14 WATER CONTENT-DENSITY RELATIONSHIPS FOR
SAMPLES OF DIFFERENT SiZES PREPARED UNDER
PROCTOR STANDARD COMPACTION
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FIG. 2,15 SPECIMEN WITH GAUGE BLOCK JIG
IN POSITION

AT S e

TNz

FIG. 2.16 COMPONENTS FOR ATTACHING GAUGE
BLLOCKS TO SOIL SPECIMEN



[A] SPECIMEN KEPT ON A STAND BEFORE
WAXING

[B] TYPICAL BRITTLE FAIL.URE OF SPECIMEN

FIG. 2,17 TENSILE TEST SPECIMEN BEFORE AND
AFTER FAILURE
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CHAPTER III

SIMULATION PROCEDURES FOR LINEAR AND NON-LINEAR
" FINITE ELEMENT ANALYSES

3.1 Scope
This chapter discusses the simulation procedures
developed for the finite element analyses and theé validity

of their app]icafion to the problem of cracking of earth

dams.

3.2 Introduction

Classical theory of elasticity, with the assumptions
of isotropy, homogeneity, linear elastic stress-strain
relationships, and simplified boundary conditions has been
used in the past (e.g., Jurgensen, 1934; Terzaghi, 1943;
Scott, 1963; Harr, 1966) to obtain closed form solutions for
a2 certain limited number of boundary value problems, concerned
with the determination of stress and strain fields in soil
masses. Since the ideal conditions assumed in obtaining such
solutions are rarely satisfied in practical problems, these
analytical procedures can be used only to a very limited ex-
tent in the field of soil mechanics.

Finite difference numerical analyses (e.g., Bishop,
1952; Dolezalova, 1970) that assume linear elastic stress-
strain relationships, were used for solving some boundary

vaiue probiems concerned with earth dams.
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The finite element method, which has more flexibility
than other methods for dea]ipg with complex boundary condi-
tions, non-homogeneous materials, and non-finear stress-strain
relationships, has been in active use for some ten years.

It has been shown by a number of workers (e.g., Clough and
Woodward, 1967; Girijavallabhan and Reese, 1968; Kulhawy

et al., 1969; Chang and Duncan, 1970; Desai and Reese, 1970;
Ku]hawy and Duncan, 1970) that with a proper application of
the finite element method one can obtain reasonably good
solutions for problems concerned with the stresses and strains
in soil masses. It is evident that success in obtaining a
good solution depends to a considerable extent on close
simuiation of field behaviour of the structure. At present,
research on the application of finite element method to soil
problems is largely directed towards developing suitable
simulation procedures to obtain close agreement between the
results of analysis and field or experimental observations.
In the,ﬁresent investigation, the finite element method has

been used because c¢f its capabilities.

3.3 Use of Isotropic Elastic Theory and Its Limitations

The stress-strain relationships for soils are non-linear,
partially inelastic, and debend on stress path and stress
level. Geometric anisotropy and stress-induced anisotropy
are quite common in soils. Volume changes take place not
only due to changes in all around pressure but also due to

factors such as pure shear and rotation of principal stress
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axes,

A theory that comp]etely'describes the deformation
properties of soiis is not available yet, although the appli-
cation o} such a theory in the analysis is highly desirable
(Scott and Ko, 1969). Some attempts have been made to intro-
duce volume changes due to shear into the analysis (e.g.,
Chang et al., 1967; Smith and Kay, 1971). The limitations
that exist in the experimental determination of soil para-
meters needed for the application of more complex non-linear
theories, seriously limit, at present, the finite element
analysis. Until sufficient progress in the development of
suitable laboratory procedures for obtaining stress-strain
reiationships undef conditions that simuiate field behaviour
of soil is achieved, the use of simple isotropic elastic _
theory appears to be reasonable. The parameters needed for
such a theory are easily obtained from conventional laboratory
tests. Perhaps the most significant disadvantage, from a
practical engineering point of view, in usfng the small-strain
isotropic elastic theory to represent soil behaviour is that
it cannot account for the dilatancy effect of soils (Scott
and Ko, 1969).

Despite these limitations successful solutions using
isotropic elastic theory have been reported in literature
(e.g., Clough and Woodward, 1967; Girijavallabhan and Reese,
1968; Kulhawy et al., 1969; Chang and Duncan, 1970; Desai and
Reese, 1970; Kulhawy and Duncén, 1970). These solutions are

based on the assumption of a piecewise linearity between the
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stress and strain. The appropriate stress-strain relation-
ships used in the analyses were derived from conventional
triaxial tests. A conventional triaxial test refers here to a
test. in which'the deviatoric stress is increased under a
constant cell pressure.

Based on the comments of the previous paragraphs, iso-
tropic elastic theory for small strains has been applied
to the finite element analyses performed in this work. Piece-
wise linearity between stress and strain has been assumed
during each increment of the load. The appropriate stress-
strain relationships, dependent on stress level, have been
derived from the conventional triaxiSI tests. The volume
change data of the triaxial tests has been used to derive

the second parameter needed.

3.4 Types of Analyses Performed

Different types of finite element analyses, pertaining
to the studies on cracking of earth dams, were performed in
this work. Explanatory definitions'of the analyses are given
with each type:

(1) Linear analysis is an analysis in which the two elastic
parameters defined either by K and G or by E and v are
maintained constant in the analysis.

(2) Non-linear analysis is an analysis in which the loads
are applied in a number of small increments. A piece-
wise linear relationship between stress and strain has

been assumed during each increment of the load. The



(3)

(4)

(5)
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elastic parameters during a certain increment of load
are defined either by K and G or by E and v. The dis-
placements, s%yesses and strains determined in each
increment of loads are dccumulated to obtain the total
values corresponding to all increments of loads.

Single step linear analysis is an analysis in which the
loads are applied instantaneously and the analysis is
performed with constant values of elastic parameters
defined either by K and G or by E and v.

Incremental linear analysis is an analysis in which
loads are applied in a number of small increments with
the elastic parameters used in a]i the inc}ements remain-
ing constant.

“No tension" analysis is an ana]ys{s in which soil is
considered incapable of sustaining tension and the ten-
sile principal stresses are removed by replacing them by
equivalent nodal forces. The "no tension" analysis
procedure has been elaboratéd in detail by Zienkiewiecz
et al. (1968).

In all types of analyses listed above Poisson's ratio

is not allowed to exceed 0.49. Generally the results of an

analysis obtained for Poisson's ratio exceeding 0.49 and very

close to 0.5 are not accurate (Herrmann, 1964). For Poisson's

ratio equal to 0.5 the analysis cannot be performed as some

elements of the constitutive matrix become infinite. These

limitations are inherent in the formulation based on the mini-

mum potential energy principle. Using a variational principle
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which is equivalent to the elastic field equations expressed
in terms of the displacements and a function of mean pressure,
Herrmann (1964) showed that sufficiently accurate results

can be obtained for all values of Poisson's ratio ranging

from 0 to 0.5. The formulation proposed by Herrmann (1964) .
is particularly suited to incompressible materials such as

]

rubber. Such a formulation is no£ used in this Qork for two

reasons:

(1) For soils which dilate during shear, Poisson's ratio
exceeds the permissible value of 0.5 hence volume change
behaviour of such a soil cannot be represented by a value
of Poisson's ratio equal to 0.5.

(2) By limiting Poisson's ratio to 0.49, reasonably good
correlations between the results of analysis and field
or experimental observations have been achieved in a
number of cases (e.g., Girijavallabhan and Reese, 1968;
Kulhawy et al., 1969; Chang and Duncan, 1970; Kulhawy

and Duncan, 1970) involving nearly incompressible soils

(v = 0.5).

3.5 Two Dimensional Finite Element Analyses

The two dimensional finite element analyses in this work
were performed by using the computer program given in Appendix
A. In this program constant strain triangular elements each
having six degrees of freedom are used. More refined elements
such as guadrilateral elements, each having four constant

strain triangular elements (Covarrubias, 1969) or two linear



98

strain triangular elements are possible (Felippa, 1966).
However the results obtained using constant strain triangular
elements for the cases considered in this work are in good
agreement with those of Covarrubias (1969) who used more
refined quadrilateral elements along with constant strain
triangular elements. The comparison of results appears in
Section 4.4 of Chapter IV. The equations are solved by
Gauss-Seidel iterative procedure. The original computer
program which could perform a linear single step analysis
was developed by Wilson (1963). The program was modified to
incorporate the following additional facilities:
(1) the automatic generation of element and nodal data,
(2) the performance of an incremental analysis with an
option to analyze each step once or twice,
(3) the calculation of elastic parameters from the labora-
tory test data needed for each increment of loads,
(4) the performance of a "no tension" analysis.
The jterative method of solution of equations, used in the
program is particularly suitable for the "no tension" analy-
sis, because it involves an iterative procedure. Since the
element stiffness formulation for a constant strain triangile
is well known it will nof be discussed here. Details regard-
ing the computer program for two dimensional finite element

analysis are in Appendix A.
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3.6 Three Dimensional Finite Element Analyses

The three dimensional analyses were performed using a
computer program (Appendix B) developed by the author. In
this program, isoparametric hexahedral elements, each having
twenty-four degrees of freedom, are used. Each element is
specialized to represent triangular prisms and tetrahedra
(Appendix B). The equations are solved in blocks using the
direct Gaussian elimination method and the necessary integra--
tions for the evaluation of element stiffness and stresses
are performed numerically by using Gaussian quadrature for-
mulae. The program includes facilities that:

(1) automatically generate nodal and element data,

(2) perform a single step linear analysis,

(3) perform an incremental analysis with an option to
analyze each step once or twice,

(4) calculate elastic parameters for each increment of loads
from the laboratory test data.

Provision for "no tension" analyses has not been made due to

the excessive amount of computation effort needed for the

iterative procedure in a three dimensional analysis.

The selection of isoparametric hexahedral elements for
the three dimensional analysis is based on the comparative
studies on three dimensional finite elements conducted by
Clough (1969). His conclusions regarding the performance
of the various types of three dimensional elements are as

follows:

(1) the isoparametric hexahedral elements are distinctly
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superior to any tetrahedron assemblages, both with
respect to the individual element properties and in
application to jdealized structural systems. Also the
isoparametric elements have the advantage of isotropy
whereas the stiffness of the tetrahedron assemblages
are slightly different along their three axes.

(2) based on the comparative efficiency studies of 8 node
and 20 node isoparametric hexahedral elements, it is
recommended that an 8 node element be used in standard
three dimensional programs for analysis of general elas-
tic solids and the 20 node element be applied primarily
in systems or local regions when the plate bendiﬁg
mechanism is likely to dominate the behaviour.

From the preceding conclusions it can be seen that an
8 node isoparametric hexahedral element would be well suited
for the analysis of earth dams in which shear effects domin-
ate the behaviour of the structure.

The details regarding the main features of the program,
its limitations and the computation time needed are discussed
in Appendix B. The element stiffness formulation for the
isoparametric hexahedral element used in this work is dis-

cussed in Appendix C.

3.7 Determination of the Elastic Parameters for Non-Linear
Analysis

Since an incremental loading procedure is used to simu-

late the construction sequence of an earth dam, the elastic
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parameters to be used during each increment of the load are
to be calculated from laboratory or field test data. The
elastic parameters are either K and G or E and v. Generally
two approaches are possible to feed the test data into the
computer for the evaluation of the parameters. 1In one
approach the test data is supplied in digital form and in
the other it is supplied in functional form.

In the digital form, a number of closely spaced points
on a stress-strain curve are given as input. Hence the
modulus calculated by considering two adjacent points (by
chord slope) approximates the tangent modulus. Because of
their dependency on the stress level, the relationships
between stress and strain must be supplied at a number of
closely spaced values of stress levels. From the set of data
supplied in digital form the moduli are calculated at the
required stress level.

In the second approach, the stress-strain relationships
are supplied in functional form assuming either hyperbolic
stress-strain relationships (Kulhawy et al., 1969; Duncan and
Chang, 1970) or using mathematical spline functions (Desai,
1971). The hyperbolic representation involving the use of a
small number of parameters with identifiable physical signi-
ficance has the advantage that it is easier to compare the
properties of different soils, and to develop experience and
judgment in terms of the parameters (Duncan and Chang, 1972).
However, in general, it involves greater approximations to

the measured stress-strain behaviour than those obtained by
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the sp]jne function representation (Desai, 1971; Duncan and
Chang, 1972). 1In the present work the digital form was used
because, although it may involve more computation time for
interpolation than other methods, no approximation of the

stress-strain relationships is necessary.

3.8 Validity of Triaxial Test Data for Interpolating the
Elastic Parameters

The conventional triaxial tests are performed by increas-
ing the deviatoric stress with constant cell pressure.
Sever;] other stress paths consfstent with the type'of pro-
-blem considered can be simulated in the triaxial tests. How-
ever, because of the axisymmetric conditions maintained in
triaxial tests the behaviour of the soil under plane strain
or general three dimensional conditions cannot be simulated.
To simulate such conditions a plane strain test apparatus or
a "true" triaxia1'£est apparatus in which stresses and strains
can be confro]led in all three directions is needed. Since
the data from such tests are not readily available, the con-
ventional triaxial tests may continue to find their applica-
tion in the analysés, at least for some years to come. Tri-
axial data obtained from tests performed on representative
soil samples with the proper simulation of stress paths and
dfainage conditions could be of a considerable value in rea-
sonably predicting the deformatiﬁns and stresses. However
research is needed to develop suitable laboratory tests, the

data from which can be used in the analyses for reasonabiy
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accurate predictions. On the other hand if the conventional

triaxial test data obtained under a particular stress path

are used for problems involving different types of stress
paths, the results predicted by the analysis are bound to be
inaccurate fof some cases. Duncan and Chang (1972), based

on the investigations conducted under different stress paths,

indicated that the simple incrementa] procedures using the

conventional triaxial test data result in a reasonably good
prediction of strains for unloading-reloading stress-paths
and for a range of stress-paths in the primary loading range.

However the predictions are poor for primary loading under

constant or nearly constant stress-ratios (03/01) and for

certain other tybes of stress paths.
In the present work only the conventional triaxial test
data have been used for the following reasons:

(1) Data from either plane strain tests or "true" triaxial
tests are not available.

(2) As the present work is primarily concerned with the
evaluation of tension zones caused by tensile stresses,
it is to be expected that the stresses computed would
be less sensitive to the changes in the derived elastic

parameters than the computed displacements or strains.

3.8.1 Simulation of the Drainage Conditions

Duncan (1972) and Lowe (1972) discussed the importance
of a proper simulation of the drainage conditions in the finite

element analysis. The data from the unconsolidated undrained
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tests are used to simulate the undrained conditions while

the consolidated drained test data are used for the fully
drained conditions. However, the simulation of partial drain-
age conditions in the analysis is rather difficult. Because
of the uncertainty involved in the evaluation of the amount

of drainage that occurs in the field, the laboratory test
results simulating a paftial drainage condition will be of
lTimited value. Chang and Duncan (1970) performed two types

of analyses for an excavation probiem involving a partial
drainage in the clayey soil. 1In one of the analyses no .drain-
age was assumed to occur within the clayey soils while in the
other full drainage was assumed to occur in all types of
soils. The extreme drainage conditions assumed in the two
analyses resulted in two sets of displacements that bounded
the observed displacements.

In earth dams with relatively thin cores of low plastic
till a certain amount of drainage is normally expected to
occur within the 1mperv1ous and semi-pervious zones during
the period of construct1on The stress-strain relationships
used in the analysis are to be derived from the laboratory
tests that simulate the proper stress paths and the partial
drainage, consistent with the field conditions. For the pur-
pose of the present investigation such tests were not performed
Instead the results from the consolidated undrained tests were
used to simulate the behaviour of the impervious and the semi-
pervious materials (Chapter V). It was believed that such

an approach would simulate a condition that lies between the
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two extreme poséib{lities of the fully drained and the un-

drained conditions.

3.9 Method of Deriving the Moduli of Elasticity

The derivation of the moduli proposed in this work con-
sists of converting the conventional triaxial test data to

a form involving the three stress invariants, the axial

strain, and the octahedral shear strain. The elastic para-

meters based on the three stress invariants are computed in
the finite e1emént?énalysis for each element. The proposed
method has the following advantages:

(1) Approximations involved in representing the test data
are eliminated by using a digital form for the actual
stress-strain relationships.

(2) The method proposed to derive the modulj in terms of
stress invariants, removes'the necessity of making an
assumption regarding the intermediate principal stress.

(3) Even though the derivation procedure given here was deve-
loped for theqconventiona] triaxial tests, the generality
of the use oflétress invariants can easily be applied
with suitable modifications to other types of tests
(e.g., triaxial tests with different stress paths, plane
strain tests, etc.).

One obvious disadvantage of the method is that it in-
volves greater computational effort than other methods that
consider functional form of representing the test data. How-

ever, the time involved in the calculations is a minor part
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of that needed for the solution of equations in the finite
element analysis. In the subsequent sections the procedure

of derivation of moduli and its accuracy are discussed.

3.9.1 Derivation Procedure

From the deviatoric stress versus axial strain (e])
and voiumetric strain (ev) versus axial strain relationships
of the triaxial test results, two plots can be generated.
The first plot is the octahedral shear stress (Toct) versus
axial strain for a set of chosen values of J3/(c°ct)2 where

J3 is the third stress invariant and o is the octahedral

oct
normal stress. The dimensions of J3/(°oct)2 is that of stress.
To determine the octahedral shear (Toct) and J3/(°oct)2 one
has to consider the three stress invariants in order that the
three principal stresses are uniquely represented. The second
plot is the octahedral shear strain (Yoct) plotted against

the axial strain. Fig. 3.1 shows a typical conventional

plot of the triaxial test data obtained by performing con-
solidated undrained triaxial tests on a silty sand represent-
ing the semi-pervious material of Duncan Dam (Chapter V).
The net volumetric expansion is neglected as shown by the
dotted lines. Fig. 3.2 shows the relationships between Toct
and €4 and Yoct and €4 for a set of chosen values of J3/
(GOCt)2° For clarity the relation between Yot and e 1is
shown only for two values of J3/(°oct)2 (0 psi and 80 psi).
The triaxial data are given as data input to the computer pro-

gram and the conversion to the stress invariant form is a
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part of the program.

The following expressions were used to calculate the

stress invartants and Yoct from the conventional triaxial

test data:

Ooct = (07 + 203)/3 o (3.1)
Toct = (¥2/3)(0y - 03) (3.2)

I3 = oy(03)? (3.3)
Yoct = (¥2/3)(3¢y - ¢) ‘(3.4)

The following procedure was used for the determination

of the elastic parameters:

(1)

(2)

The three stress invariants were computed from the three
known principal stresses in an element. For a two dimen-

sional plane strain analysis, the intermediate principal

stress was computed from

o, = v(c] + 63)

where v was a trial value of Poisson's ratio (say 0.35).

Since v in turn depends on the stress condition, an

iterative method was used.

For the values of Toct and J3/(coct)2 computed, the incre-

mental ratio, (AT /Ae]) was interpolated from the T

oct
versus e plot. Similarly from the vy

oct

oct Versus g plot,
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the incremental ratio, (Ayoct/Aa]) is interpolated for
the same value of J3/(°oct)2 and the corresponding axial
strains used for interpolating (Aroct/Ae]). The shear

modulus was obtained from:

G = (AToct/Ael)/(AYoct/Ael) (3.5)

Since the value (AYoct/AEI) obtained above corresponds
to a particular constant value of g in the triaxial

test, Poisson's ratio was computed from:
v = (3/2/2)(Ayoct/Ae]) -1 (3.6)

and was limited to a maximum of 0.49. The bulk modulus

was computed from:
K= 6(2/3)(1 + v)/(1 - 2v) (3.7)

When one of the principal stresses becomes negative
(tensile) it was artificially set to zero hence J3,((c°ct)2
should be zero. Under isotropic compression J3/(°oct)2

would be equal to O3-

In case of a two dimensional analysis steps 1 and 2

\

were repeated until the intérmediate principal stress values

computed in two consecutive trials agree closely with each

other.
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The elastic parameters used in a particular increment
of Toad can be derived from the stress state corresponding to
the conditions that existed beforé the increment of load. The
solution obtained by such a procedure was called a "past
stress" solution by Kulhawy et al. (1969). Since this pro-
cedure usually gives a poor result, it was recommended that
the use of the "average stress" be made for the derivation
of moduli. The "average stress" was defined as the average
of stresses that exist immediate]y before and after the load
increment. A similar procedure has been used in this work
to improve the solutions of the non-linear analysis. The
incremental load was added to the existing load and the
stresses were computed using the elastic parameters calcu-
lated on the basis of "past stresses" and these stresses are
termed the "present stresses” (Kulhawy et al., 1969). - The
elastic parameters based on the "present stresses" were cal-
culated. The average elastic parameters were computed from
those calculated on the basis of “past stresses" and "present
stresses” and were used in the reanalysis of the same incre-
ment. This ﬁrocedure termed the "average moduli" procedure
here, has been used in this work because of computational
advantages in terms of storage. It is obvious that the
"average moduli" or "average stress" procedure takes twice

as much time as the "past stress" solution.
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3.9.2 Studies to Check the Accuracy of the Procedure of
Derivation of ETastic Parameters

To check the accuracy of the present method of deriva-
tion of elastic parameter;, a weightless soil block 4" x 4" x
1" was considered to be ldaded vertically, in five increments,
of 20 1bs. each which cause a vertical incremental stress of
5 psi. The problem was analyzed both in two and three dimen-
sions. The finite element idealizations for two and three
dimensional analyses for a half of the soil block (because
of symmetry) are shown in Fig. 3.3. The nodal loads imposed
in each increment are also shown. The initial moduli for the
first increment of load for all these studies were derived
Trom the experimental data (Fig. 3.2) for the condition:

Toct = 0 and J3(ooct)2 = 0. The following cases were studied:

(1) Plane stress analysis using the elastic parameters
derived from "past stresses".

(2) Plane stress analysis using "average moduli".

(3) Three dimensional analysis using "average moduli® for
the unconfined compression of the soil block.

Fig. 3.4 shows the comparison between the “past stress"
solution and “"average moduli" solution, the latter agreeing
very well with the experimental curve obtained under uncon-
fined compression (Fig. 3.1). The three dimensional analysis
gives the same result as the two dimensional one for the
particular case. The better accuracy of the "average moduli"
approach led to its adoption in all the subsequent studies

in this work uniess otherwise stated.
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3.9.3 Effect of Intermediate Principal Stress on Stress-
Strain Results

The effects of the assumption regarding the intermediate
principal stress on the stress-strain results are of interest.
The following studies have been conducted for this purpose:
(1) Two dimensional plane strain analysis assum%ng that

G, = 0.

(2) Two dimensional plane strain analysis assuming that

o, = v(c] + 03).

(3) Two dimensional plane strain analysis with lateral res-
traint in the x-direction (Fig. 3.3). This has been

done merely to compare the solution with plane stress

and plane strain solutions.

Fig. 3.5 indicates that the assumption 0, = 03 gives greater
strains compared to the correct strains obtained from o, =

v(o] + 03). This is due to the lower moduli calculated for

the former assumption. However the difference between the
results is not significant for the lower range of axial strains
(up to 2% for present casé). Fig. 3.6 compares the results

for cbnditions of plane stress, plane strain and plane strain
with lateral restraint. The progressively increasing slope

of the stress-strain curve or the "locking" effect can be

seen in the case of the plane strain analysis with lateral

restraint.

3.10 Isotropic Compression

Compression under an all around stress is dealt with
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by considering the initial-tangent Young's moduli and Poisson's
ratios at the appropriate confining stressés. In terms of
stress invariants they correspond to the initial-tangent
shear and bulk moduli at the appropriate confining stresses.
An example of isotropic compression is shown in Fig. 3.7.

The axial stress (61) is plotted against axial strain (e])
both for isotropic and deviatoric compression for a silty
sand tested at a water content 3% greater than the opfimum

in a triaxial apparatus for consolidated undrained conditions.
The deviatoric compression results are shown only for Oq

equal to 15 psi and 40 psi for clarity. The predicted iso-
tropic compression curve obtained by using the incremental
procedure described previously agrees reasdnab]y well with

the experimental curve even though the drainage condition

is not the same for the isotropic and deviatoric compressions.

3.11 Summary

Satisfactory simulation procedures for two and three
dimensional finite element analyses with a method of deriving
moduli based on stress invariants and "average moduli" have
been developed. The main limitation of the procedure is the
restriction of Poisson's ratio to a maximum value of 0.49.
However this is not serious because the dilatancy effects of
soil become more important at comparatively large strains such
as those caused due to shear failures. Since the present
studies are concerned essentially yith the temsile cracking

of earth dams, and not with the shear failure of earth dam,
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it is believed that the above limitation has no significant

effect on the prediction of tensile zones in earth dams.
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CHAPTER 1V

IMPORTANCE OF CERTAIN FACTORS IN THE ANALYSIS
OF CRACKING OF DAMS

4.1 Scope

In this chapter the importance of considering the con-
struction step sequence, non-linear stress-strain relation-
ships, no tensile strength for soils, and three dimensional

effects in the analysis of cracking of dams are discussed.

4.2 Introduction

Several factors contributing to thg development of ten-
sile cracks in earth dams were outlined in Section 1.3.1 of
Chapter I. The influence of the shape (Covarrubias, 1969)
and the steepness (Dolezalova, 1970) of the valley walls on the
development of tension zones during the construction of a
dam has been studied elsewhere. The effects of considering
a number of steps that simulate the construction sequence,
and the non-linear stress-strain characteristics of soil in
the analysis have been discussed by Strohm and Johnson (1971).
The studies conducted by Strohm and Johnson were restricted
to the period during and at the end of construction of the
dam.

As mentioned in Section 1.6 of Chapter I, an analysis
should be able to simulate field conditions as closely as

pessible sc that the predictions regarding cracking of dams
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would be of some practical value. In order to develop a
procedure for reasonable prediction of cracking it is neces-
sary to study the influence of certain assumptions made in

the -‘analysis on the predicted resu]té. As outlined in

Section 1.8 of Chapter I the parametric studies carried

out in this work are restricted to the period, during and

at the end of construction of a dam. The studies are directed
towards evaluating the influence of construction sequence,
non-linear stress-strain relationships of soil, zero tensile
strength for‘soil, and three dimensional effects on the pre-
dicted results. The first two factors, even though considered
by Strohm and Johnson (1971) before have been studied and

inciuded in the present studies for the sake of completeness.

4.3 Selection of Sections for Parametric Studies

The section shown in Fig. 4.1 represents a half of the
maximum Tongitudinal section passing through the centre line
of an earth dam founded in a narrow, steep, symmetrical valley.
The same section, though not with'the same number of elements,
was used in all two dimensional analyses. The abutment was
assumed to be rough and rigid. The same section was also
considered previously by Covarrubias (1969) and Strohm and
Johnson (1971). Therefore comparison of results to test the
accuracy of the present analyses was facilitated. In order
to evaluate the three dimensional effects on a comparative
basis, the same symmetrical triangular valley was used for

the three dimensional model. 1In this case, the dam was
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symmetrical in the transverse direction also, with a central-
1y located core having sides inclined at 1:10 and outer
slopes of 2:1. A view of one quadrant of the three dimen-

sional model with the type and size of the spatial elements

used is shown in Fig. 4.2.

4.4 Accuracy of Two Dimensional Analyses

Since the accuracy of the finite element analysis de-
pends to a large extent on the type of element and the number
of elements chosen for the analysis, it is of interest‘to com-
pare the results of the present work with other available
solutions. For this purpose the section shown in Fig. 4.1
was analyzed under plane strain conditions in a single 1ift
assuming linear stress-strain relationships. One hundred
constant strain triangular elements as shown in Fig. 4.1
were chosen. The elastic parameters used are shown in Fig.
4.3. The results obtained by Covarrubias (1969) for the same
problem using slightly more refined quadrilateral elements
are compared with the present results in Fig. 4.3. The
horizontal and vertical displacements compared at the crest
of the dam are almost identical. In Fig. 4.4 the extent of
tension zones computed by Covarrubias (1969), Strohm and
Johnson (1971), and the present analysis are compared for
the same problem. The good agreement of results shown in

Fig. 4.3 and 4.4 indicates that the number and type of ele-

3

nent selected are satisfactory for subsequent analyses on

the same section to elicit parametric effects.
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4.5 Influence of the Construction Step Sequence

Since an earth dam is constructed in a number of layers
of small thicknesses, an analysis that simulates the con-
struction step sequence is necessary to predict the stresses
and strains in a realistic manner (Clough and Woodward, 1967;
Kulhawy et al., 1969). It is not economically possible to
deal with a large number of steps in an analysis. Hence it is
necessary to determine the number of steps that result in
reasonable prediction of stresses and strains. To assess
this feature, two dimensional linear elastic anélyses were
performed for a different number of steps. The maximum verti-
cal displacement at centre line of valley, the maximum hori-
zontal tensile stréss and strain at the crest are compared
for different number of steps in Fig. 4.5. The vertical dis-
placement compared includes the settlement due to self weight
of each layer as it is placed. It can be seen from Fig. 4.5
that all the three quantities compared are reduced with the
number of steps and the reduction becomes insignificant after
ten steps. Based on these results it is considered that ten

steps would be sufficient for the purpose of present para-

metric studies.

4.6 Two Dimensional Linear, Non-Linear, and "No Tension"
Analyses .

Since the deformational behaviour of soil is essentially
non-linear, the computation of realistic stresses and strains

requires that a non-linear stress-strain relationship be used
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in the analysis, even though such relationships are employed
within the framework of the theory of isotropic elasticity.
In order to compare the results of linear and non-linear
analyses, a typical set of conventional triaxial test re-
sults, obtained by perfdrming consolidated undrained tests
on a silty sand was selected (Fig. 4.6). The soil tested
represents the semi-pervious material of Duncan Dam (Chapter
V). For the purpose of linear analyses an average linear
stress-strain relation that represents the stress conditions
at the mid height of the dam and close to the centre line of
valley is also shown in Fig. 4.6. The initial tangent
Poisson's ratio corresponding to the preceding linear rela-
tion is 0.26. The curves relating volume changes to axial
strain are discontinued after they become horizontal.
Poisson's ratio was taken as 0.49 for subsequent stress
levels. A density of 2.16 G/CM3 was used in all analyses’
and the construction was simulated by ten 1ifts in every
case. As déscribed in Section 3.9.1 the elastic moduli were
derived in terms of stress invariants and each step was
analyzed twice to use the "average moduli". |

The results illustrating the development of tension
zones in the incremental linear analysis are shown in Fig.
4.7. Since it was assumed that soil can withstand a sub-
stantial amount of tension, it can be seen from the final
stage of the analysis shown in Fig. 4.7, that a fairly large
zone remains in tension. However since soils in general and

the soils used in the analyses here in particular have very
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low tensile strengths, it is more approbriate to ignore the
tensile strength in the analysis. 1In other words it may be
assumed that as soon as an element goes into tension crack-
ing would take place in that element. To simulate such a
condition Zienkiewicz et al. (1968) suggested a "no tension"
analysis in which the tensile principal stress in an element
is artifically replaced by a systam of equivalent nodal
forces for that element thereby the redistribution of stresses
due to removal of tensile stress in an element after cracking
is achieved in a number of iterations. This method of analy-
sis is found to be more efficient than one in which the ten-
sile element is treated as anisotropic by assigning a very
low elastic modulus in the direction of the tensile principal
stress and the analysis is performed iteratively. Kulhawy
et al. (1969) treated a tensile failure, similar to a shear
failure, by assigning a zero value of shear modulus to the
element in which tensile failure occurs. Strohm and Johnson
(1971) assigned an overall low Young's modulus to the element
in which tension failure took place. Since a "no tension"
analysis is more realistic and efficient than other methods
it has been used here. After removing the tensile stress
the element is assigned moduli calculated from unconfined
compression test data since the confining stress is zero.

The effect of a "no tension" analysis on the development
of the tensile zone, major and minor principal stresses, and
the displacements is of interest. The resulfs of incremental

linear analyses performed with and without the removal of
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tensile stresses are compared in Fig. 4.8. The extent of
the tensile zone, as indicated by the contour of the zero
minor principal stress, is smaller when ténsion is removed.
The distribution of the minor principal stress is affected
to a fair degree by the "no tension" analysis whereas the
major principal stress and the vertical displacement along
the centre line are re]ative]yiinsenéitive to the removal of
tension. The variation in the distribution of the minor
principal stress that occurs due to the "no tension" analysis
depends to a large extent on the magnitude of the tensile
stresses removed. If the tensile stresses removed are very
small the "no tension" analysis does not significantly alter
the results regarding the development of tension zones. In
such cases analyses performed without the removal of tensile
stresses may be preferred as it considerably saves the com-
putation effort needed especia11y in a three dimensional
analysis.

The growth of tension zones in an incremental non-linear
'ana1ysis is illustrated in Fig. 4.9. It can be seen that the
extent of the tension zone and the mégnitude of tensile
stresses developed are quite small compared to the results
obtained in a linear analysis. A similar result was also
obtained by Strohm and Johnson (1971). 1In this analysis it
was assumed that the intermediate principal stress is equal
to the minor principal stress (i.e., o, = 63) while calculat-
ing the elastic moduli. For the elements in which tension

occurs the modulus is calculated from the stress-strain curve
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corresponding to unconfined conditions. A "no tension"

analysis is not performed as the tensile stresses developed

are very small in magnitude.

4.7 Effect of the Intermediate Principal Stress

It is of interest to assess the effect of the inter-
mediate principal stress on the analytical results. To deter-
mine any effects the intermediate principal stress was com-

puted from:
o, = v(o] + 03)

and its value was utilized in calculating the stress invari-
ants for deriving the moduli. An iterative procedure was
used because of the dependence of Poisson's ratio on stress.
Results obtained from such an ana]ysié are compared in Fig.
4.10 with those obtained by assuming 9, is equal to O3 It
is apparent that the intermediate principal stress has prac-
tically no effect on the horizontal stress and strain at the
crest of dam. However, vertical displacements at the centre
line of the valley are about 2.5% greater for the analysis
in which it is assumed that o, is equal to O3-
The small difference between the results obtained for

the plane strain cases analyzed can be attributed to the

condition, close to a confined compression with relatively
small vertical strains, that exists over a major portion of
the valley. Under small vertical strains the effect of inter-

mediate principal stresé is not significant (Fig. 3.5, Chapter
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III). Because of the closeness to confined compression 5, =

=

2 " 93

4.8 Three Dimensional Effects

4.8.1 General

Finite element analyses for embankments are performed
mostly for plane strain conditions even though some solutions
were obtained recently by three dimensional analysis (e.g.,
Frazier, 1969; Lefebvre and Duncan, 1971; Palmerton, 1972).
The major drawback of a three dimensional analysis /is its
high computational cost compared to a two dimensioga] analy-
sis. However, for certain situations a three dimensional
finite element analysis for an embankment structure becomes
very useful and sometimes irreplaceable. A three dimensional
analysis may be preferred when the complex boundary geometry
and boundary conditions cannot be represented by the plane
strain conditions assumed in a two dimensional analysis.
Considering the complexity of the problem of cracking of
earth dams founded on irregular, non-homogeneous, compress-
ible foundations, it appears that a three dimensional analysis
is more relevant than a two dimensfona] analysis. Under such
conditions a three dimensional analysis may be justified as

its cost forms only a minor part of the total cost of the

project.

4.8.2 Three Dimensional Studies

Paimerton (i1972) compared the resuits of piane strain
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and three dimensional analyses performed on an earth dam
located in a narrow triangular valley, similar to that in
Figs. 4.1 and 4.2. The plane strain anajysis was performed
only on the maximum transverse éection. The analyses used
non-Tinear stress-strain relationships in the hyperbolic
functional form and an incremental construction was simulated.
Considerable differences in stress conditions were observed
between plane strain and three dimensional analyses but the
displacements predicted by both analyses were more or less
similar. 'The differences between the stresses were mainly
due to the arching action aided by the valley walls.

From these results it appears that a two dimensional
analysis performed on the maximum transverse section of an
earth dam founded in a symmetrical or nearly symmetrical
narrow rigid valley may provide useful information regarding
the displacements which can be verified easily by field
observations at the maximum section.

In the present studies, the results of three dimen-
sional analyses performed on the dam shown in Fig. 4.2 are
compared with those of two dimensional analyses. For the
purpose of comparison linear three dimensional analyses in
sinb]e and multiple increments were performed. Linear analy-
ses were performed to facilitate comparison of two and three
dimensional analyses at the same moduli values.

Fig. 4.11 and Fig. 4.12 show the comparison of vertical
displacement and horizontal stress and strain at the crest of

the dam respectively. As seen from the comparison the results
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obtained by plane strain and three dimensional analyses are
not significantly different. The difference between the maxi-
mum vertical displacement of the crest obtained by the two types
of analysis is 4.7%. Incremental linear anﬁ]yses with five
construction steps were performed for two and three dimen-
sional sections shown in Figs. 4.1 and 4.2. The results of
- horizontal and vertical stresses in the core, and the vertical
displacements at the centre line of the valley obtained by
plane strain and three dimensional incremental linear analy-
ses are compared in Fig. 4.13. The horizontal and vertical
stresses near the crest obtained by both analyses are very
much the same. However, significant differences in stresses
are evident in the Tower portion of the dam, the stresses being
smaller in magnitude in the three dimensional case. The
difference between the maximum vertical settlements at the
centre line of the valley is about 13.6%.

From these studies it emerges that the results of plane
strain analyses are useful to predict, with some reliance,
the tensile stresses close to the crest of a homogeneous
earth dam founded in a narrow symmetrical steep valley.

However, when the rigidity of the core differs from that
of the shell the predictions by plane strain analyses lead to
large errors in tensile stresses near the crest. This is
revealed by the comparisons shown in Fig. 4.14. The plane
strain analysis predicts much higher magnitudes of tensile
stresses compared to the three dimensional analysis when the

core is ten times softer than the shell. The reverse is true
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when the shell is softer than core. The results are similar

both in a single step and 5-step incremental ané]yses evén

though the absolute magnitude of stresses developed in the
incremental analysis is considerably less.

The reason for these large differences in stresses can
be understood from the displacement patterns shown in Fig.
4.15. The displacement results were obtained from three
dimensional linear 5-step incremental analyses for .two ratios
of e]astic.hoduli of core to shell. The ratios chosen for
rigid and ﬁoft core are 10 and 0.1 respectively. The dis-
placement of the surface points in the x-y plane are shown
by dotted lines for the rigid core case and by full lines
for the soft core case. The displacement vectors both in
magnitude and direction and the locations of the zones in
which tensile stresses develop are also shown for both cases.
The following features can be observed from this figure:

(1) For the rigid core case, the displacements in the core
are away both from the crest and the abutment.

(2) For the soft core case, the displacements in the x-
direction are towards the crest, and in the y-direction
they are away from the abutment.

(3) Plane strain conditions along the maximum longitudinal
section, assumed in a two dimensional analysis, will
not be satisfied in both cases.

(4) Longitudinal tensile strains produced in a core of a
given flexibility close to the crest are influenced by

the flexibility of shell. A shell more flexible than
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core produces greater longitudinal tensile strains in
core than those produced by a shell stiffer than core.
For example in Fig. 4.15 the displacements shown by
dotted 1ine would increase by ten times if an analysis
is performed with the ﬁodu]us of core equal to 200 KG/CM2
(same as that used for the soft core case) and with the
modulus of shell equal to 20 KG/CMZ. Larger longitudinal
strains produced in a rigid core due to greater flexibi-
1ity of shell result in larger tensile stresses in com-
parison to the case of a soft core with a rigid shell.
(5) In a rigid core both longitudinal and transverse cracks
are possible whereas in the case of a soft core the
cracks that are likely to occur in the core are mainly
in the transverse direction. The locations where tensile
stresses developed in the transverse and longitudinal
directions, for the two cases studied, are shown in
Fig. 4.15.
The distribution of vertical and horizontal stresses in
core and shell for two cases discussed above is shown in
Fig. 4.16. Large reductions in both horizontal and vertical
stresses in the soft core can be seen. Such reductions are
usually the cause of hydraulic fracturing, a factor that
could cause internal cracks leading to piping failures
(Bjerrum, 1967; Kjaernsli and Torblaa, 1968; Sherard et al.,
1972). Fig. 4.17 shows the effect of the difference in
flexibilities between core and shell on the maximum tensile

principal stress developed in the core. The results were
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obtained by performing three dimensional linear analyses in

a single step for different ratios of moduli of core to shell
ranging from 0.01 to 100.0. The variation of the maximum
tensile stress is predominant between ratios 0.1 to 10.0.

For ratios less than 0.07, representing conditions seldom
realized in practice, the computed stress may not be reliable
and it is thought that the dashed line is more representative.
While the result shown in Fig. 4.17 is applicable to tﬁe geo-
metry and the conditions assumed in the analysis, it never-
theless indicates that by controlling the compaction and mois-
ture content of shell and core, placement conditions of the
fill can be specified which will contribute significantly

to the design of dams against cracking.

4.9 Considerations of the Flexibility of the Core to
Control Cracking

One of the common methods used to control the cracking
of earth dams is to place the fill at water contents 1 to 2%
greater than the optimum. It is assumed that the increase
in flexibility of the core thus acﬁieved, prevents the core
from cracking due to tens%]e stresses. However, when the
f]exibf]ity of the core is to be increased, it is necessary to
distinguish between two common situations:
(1) A dam built on a highly compressible foundation, will

: undergo differential settlement which causes tensile
cracks in the core (e.g., Duncan Dam, Chapter V). The

stresses in the core are governed mainly by the settle-
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ment of the foundation and the flexibility of the core.
When the flexibility of the core is increased the tensile
stresses in the critical zones are generally reduced.
(2) The tensile zones developed in the core of a dam built
in a valley with more or less rigid abutments and incom-
pressible foundations are governed mainly by the settle-
ment that occurs within the core. Two dimensional finite
element analyses under plane strain conditions were per-
formed on the section shown in Fig. 4.1 for the following
three cases to illustrate the effect of increagjng the
f]exibi]ity(of the core and the non-homogeneity of the
core on the development of tensile zones:
(i) A homogeneous dam (Fig. 4.18(a)) consisting of
material with E = 200 KG/CM2 and v = 0.35.
(ii) A homogeneous dam (Fig. 4.18(a))'consisting of
material with E = 100 KG/CMZ and v = 0.35.
(iii) A homogeneous dam (Fig. 4.18(b)) consisting of

two  materials with
(a) E = 100 KG/CM? and v = 0.35 in the tensile
| zone as determined in case (i) or case (ii)
and
(b) E = 200 KG/CM? and v = 0.35 elsewhere in
the dam.
Fig. 4.18(a) compares the tensile zone and the tensile
strain along the crest for cases (i) and (ii). An increase in
the flexibility of the core does not change the tensile stresses

or the extent of the tensile zone because, for the type of
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boundary considered, the stresses are independent of the
values of the modﬁ]i used in the analysis. The tensile
strains along the crest, on the other hand, increase with
the flexibility of the core.

Fig. 4.18(b) shows the results of a finite element
analysis berformed on a non-homogeneous section. This sec-
tion consists of two types of material. A material with a
high flexibility is incorporated in the tensile zones deter-
mined previously for homogeneous section (case (i) or case
(ii)), whereas material with a low flexibility is retained
elsewhere in the dam. The non-homogeneity of the material
in the dam causes a favourable stress redistribution, the
magnitude of tensile stresses is lowered as well as reducing
the extent of the tensile zone. The tensile strains along
theé crest are slightly more than those obtained in case (i).
Introducing another type of material of higher flexibility
than that corresponding to 100 KG/CM2 into the tensile zone
indicated by tensile stresses in Fig 4.18(b), further reduces
the tensile stresses and the extent of tensile zone.

For the type of boundary considered above, the reduc-
tion of tensile zones or even their elimination would become
possible if materials with appropriate flexibility characteris-
tics are properly distributed within the suspected tensile
zones. An overall increase in flexibility of material through-
out the core, for the type of boundary considered, is of Tittle
use in controlling of tensile cracks. A finite element analy-

sis with non-homogeneous modeiiing can be empioyed conveni-
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ently, as shown, to assess the relative influence of changing

the placement conditions of the fill in the critical zones of

a dam.

4.10 Summary

An analysis which considers realistic boundary condi-
tions, representative non-linear stress-strain characteristics
of soils and the construction step sequence is a considerable
contribution to the proper evaluation of tensile zones in
earth dams both during and at the end of construction. A
single step linear analysis, even though simple and straight-
forward, exaggerates the tensile zones and results in unrea-
1istic displacements and stress distributions. Consideration
of incremental loading is of utmost importance even for an
approximate evaluation of displacements. The influence of
the intermediate principal stress on the results of a plane
strain analysis is small when geometry analyzed almost repre-
sents conditions of confined compression with relatively small
strains. This generally occurs for a valley having a narrow
profile. The removal of tensile stresses in cracked zones
("no tension" analysis) influences the results of the non-
linear incremental analysis of cracking only to a minor
extent. As a non-linear incremental analysis in general
results in tensile stresses of low magnitude compared to those
obtained by a linear incremental analysis, the redistribution
of stresses caused by the removal of tensile stresses does not

significantiy aiter the extent of tensile stresses subseguent-



138

1y computed in the upper layers. As the "no tension" analy-
sis involves an iterative procedure its use in a three
dimensional ané]ysis increases the cost of computatioen con-
siderably. Because of its rather minor effect on the results,
and also due to the high cost of computation involved, a

"no tension" analysis was not introduced into the three
dimensional finite element program for the purpose of the
present work. The extension of the "no tension" analysis

to three dimensioﬁa1 problems is however possible. While a
two dimensional analysis provides reasonably accurate solu-
tions in the analysis of cracking of homogeneous earth dams
founded in narrow steep valleys, significant errors could be
caused when core and shell differ in their deformational pro-
perties. The tensile stresses are under-estimated when the
shell is more fTexible than core whereas they are over-
estimated when the shell is less flexible than core. For
certain boundary conditions a finite element analysis with a
non-homogeneous modelling of dam may be used to assess the
relative influence of changing the flexibility of the fill.

Such an assessment is useful in designing dams against tensile

cracking.
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- CHAPTER V

ANALYSIS OF CRACKING AT DUNCAN DAM

5.1 Scope
In this chapter the analytical procedures developed
in the previous chapters are applied to the analysis of the

cracking of the Duncan Dam 1o assess their practical appli-

cation.

5.2 Introduction

As pointed out in Chapter III, any analytical procedure
that attempts to model a real structure mathematically in
order to predict its behaviour can only yieid approximate
answers. This is a result of the various simplifications
ijntroduced into the analysis in repreéenting factors such
as the complex stress-strain behaviour of soils, geometry
of the structure, the boundary conditions, and the history
of construction. In addition, the laboratory stress-strain
data used in the analysis can sometimes introduce an appreci-
able error in the prediction of in-situ behaviour (Alberro,
1972; Low, 1972). These factors introduce an ﬁnknown error
into the model. The magnitude of this error can be assessed
by comparison with an actual case history. Hence studies of
the behaviour of well documented earth structures are of ut-
most importance for the evaluation of analytical procedures

based on the finite element method (Chang and Duncan, 1970).
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The recorded behaviour of the Duncan Dam in Southern British
Columbia, Canada has proved to be particularly valuable for
verifying the usefulness of the proposed procedures in the

analysis of cracking of earth dams.

5.3 History of Cracking at Duncan Dam

5.3.1 Salient Features

A detailed account of cracking at Duncan Dam and the
remedial measures taken for its successful completion are
given by Gordon and Duguid (1970). Only the features rele-
vant to the present analysis are described here.

Duncan Dam is an earthfill dam built during 1964-1967
on the Duncan River in British Columbia, Canada. The dam
makes it possible to increase the power generation at down-
stream plants and also provides a measure for flood control.

The dam is about 120 feet high and 2500 feet long with
an upstream sloping core. It was built across a valley,
underlain by sediments about 1240 feet deep infilling a
canyon. The stratigraphy of the foundation, shown in Fig.
5.1, is rather irregular with deposits ranging from the rela-
tively incompressible gravel to silty clay layers, possessing
considerable compressibility. The poor foundation conditions
and previous experiments with dams on deep alluvial deposits
dictated the use of conservatively flat side slopes. A
typical cross-section of the dam is shown in Fig. 5.2. The

designers of the dam anticipated iarge settiements and made
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prbvisions in the design and cohstruction procedures to avoid
excessive cracking (Gordon and Dugid, 1970). The main steps
taken were the delayed placement of core-abutment ties, place-
ment of overwet till core (1% to 2% greater than Ehe optimum
water content) and the self healing zoned section of the'dam.
Also the dam has been profusely instrumented with settlement
gauges and piezomeéers both in longitudinal and transverse
directions. The locations of the settliement gauges in plan
view are indicated in Fig. 5.3. The positions of centrally

located gauges (numbers 9 to 18) are shown in Fig. 5.1.

5.3.2 O0bserved Differential Settlement Cracks

The settlement records for the period from May, 1965 to
October, 1966, taken from the construction reports, are plotted
in Fig. 5.4. Each settlement line in Fig: 5.4 corresponds to
the particular date indicated, and the corresponding level of
fi1l is shown on the longitudinal section in Fig. 5.1. The
settlement records clearly indicate a significant shift of
the maximum settlement towards the left or east abutment.
Although the maximum settlement agreed with the anticipated
settlement in magnitude, its shift towards the left side was
rather unexpected. These large differential movements result-
ed in transverse cracks in an area located on the upstream
side of the dam and between the left abutment and settlement
gauge No. i8. The extent of the area of visible cracking
shown in Figs. 5f1 and 5.3 is between Sections 2 and 3 with

the centre of the area located approximately 440 feet along
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the crest from the left abutment.

5.3.3 Sequence of Appearance of Cracks

The cracks did not all appear simultaneously and at
the same level of construction of dam. The sequence of
cracking is illustrated in Fig. 5.5. Cracking was first
observed on August 14, 1966 on the upstream slope of the dam,
about 210 feet from the centré line. Within a week the num-
ber of cracks increased with new ones appearing closer fo
the centre line of the dam, as indicated between Sections A
and C in Fig. 5.5. It is of interest to note that during
this particular week (August 15-22) the increment of settle-
ment recorded by gauges Nos. 16 and 17 was about half a foot.
As the settlement of the foundation continued and with the
addition of some fill subsequent to August 14, 1966, further
cracks appeared in the same zone in October, 1966. This time
the cracking was located between Sections B and C as shown in
Fig. 5.5. The approximate zones of cracks, as revealed by
exploratory trenches and test shafts, and their sequence of
development is shown in Fig. 5.6 along with the settlement
of the base of dam in the transverse direction on August 14,
1966 and on October 28, 1966. The cracks revealed by the
test shafts varied from one to three inches in width and
extended downwards approximately to E1. 1810.00, intercepting
many large voids of about 10 inches in width.

Gordon and Dugid (1970) have described the measures

subsequently adopted to control the cracking. These measures




161

essentially consisted of preloading the area to the west of
the cracked zone with a surcharge of 260,000 cubic yards of
material to induce as much settlement as possible ahead of
placing core and core-abutment tie, sluicing the gravel shell
material with water to close all the previous cracks, increas-
ing the capacity of gravel blarket and drains on the down-
stream side of the dam to handle more leakage, and changing
the section of the dam in this area. The impervious core was
brought closer to the upstream face where it could be placed
as late as possible. An additional benefit of the surface
core was its better accessibility for reworking any cracked
area that might result from the settlement continuing at a
substantial but decreasing rate for a number of years. The
core material was made more plastic by mixing it with about
6% bentonite. This increased the plasticity index of core
material from 4 to approximately 20. The downstream siope of
the upper fill was flattened from 2:1 to 3:1 to increase the
slope stability as a precaution against the saturation due

to leakage through possible futufe éracks. The adoption of
these measures and careful inspection since construction has

resulted in satisfactory operation without any leakage.

5.4 Analysis of Cracking

The analysis presented here is concerned only with the
period up to the end of October, 1966. The core material of
Duncan Dam is a glacial till with the following characteristics

(Gordon and Dugid, 1970):
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Liquid limit 17.6%
Plasticity index 4.3
Proctor optimum moisture content 9.8%
Proctor maximum dry density 128 1bs./cft.

The grain size distribution is shown in Fig. 5.11. There is

a considerable similarity between Duncan Till and Mica Till
(Section 2.8.1). From the tensile studies conducted on Mica
Till it can be concluded that a low plastic till such as
Duncan Ti11 will have a negligible tensile strength especial-
ly at water contents wet of optimum. The low tensile strength
of the core material of Duncan Dam suggests the reasonable
assumption that the cracks have appeared when one of the prin-
cipal stresses became tensile. The problem of assessing the
suitability of the finite element method for the prediction of
cracking is one of calculating the zones of tension and com-
paring them with the zones of cracking observed in the actual
structure.

A three dimensional finite element analysis has been
used as it is more relevant in this present case than a two
dimensional analysis. Nevertheless for the sake of compari-
son a two dimensional analysis has also been performed.

During construction, the deformations and stresses in a fill
dam result from the compression of the foundation and the
gravity loading of the embankment itself. The effect of
foundation settlement, which was the dominating factor in
the case of Duncan Dam has been introduced into the analysis

by specifying the incremental settliements derived from Fig.
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5.4 at the base of the dam for various levels of construc-
tion as shown in Fig. 5.1. This represents a boundary condi-
tion of known displacements. The gravity loading was intro-
duced by specifying the s2lf-weight of only the newly added
material of the fill. The analysis was performed in 5 1ifts
as shown in Fig. 5.1 with each 1ift analyzed twice. The
three dimensional finite e]emenf idealization used is shown
in Fig. 5.1 in the longitudinal direction and in Fig. 5.7 in
the transverse direction. A total of 310 elements and 426
nodes were used.v The material idealization consisting of
core, pervious, semi-pervious, and common pervious types is
also shown in Fig. 5.7.

The non-1inear.stress-strain,re1ationships were intro-
duced into the analysis in digital form as described in
Chapter III. The triaxial test data used in the analysis
for the materials are shown iﬁ Figs. 5.8, 5.9 and 5.10.
Consolidated undrained test results were used for the imper-
vious and the semi-pervious materials because it was thought
that such data would be the most representative of the field
conditions. These are somewhat in between the two extreme
limits of unconsolidated-undrained and consolidated-drained
conditions. This is partly because of the rapid loading dur-
ing the embankment construction and partly due to the low pore
pressures generally developed in thg core and the semi-
pervious zone. However it is recogﬁized that the approach
can only be approximate as the partial consolidation that

occurs in the field cannot be represented accurately by the
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conventional consolidated undrained tests.

The stress-strain data used for core and semi-pervious
zone in the analysis were derived from the available tri-
axial test results of Duncan Dam materials obtained prior
to the construction of the dam. These tests were performed
on samples comprising materials below 3/4" size. The test
specimens were prepared in a 4" diameter by 8" high, 3 part
split mould. Soil was compacted in five equal layers of
approximately 1.7" thicknesses. Twenty-five blows of a
standard 5.5 1b. hammer with a 12" drop were applied to each
layer. Tests were performed on samples prepared at optimum
water content and 3% greater than optimum. Since the placement
wéter content was approximately at 1% to 2% greater than the
optimum the stress-strain data used in the analysis was derived
from the available test data by averaging thé stress-strain
relationships. Stress-strain data were not available for the
pervious and the common-pervious material used in Duncan Dah,
therefore drained triaxial test results of a gravelly material
having similar gradations as at Duncan was used in the pre-
sent analysis. The stréss-strain relationships (Figs. 5.9
and 5.10) used in the analysis for the pervious and the
common-pervious materials were derived from the available
extensive triaxial test data obtained in connection with the
design of Mica Dam for different gradations of sand and
gravel. The test results were partly reported by Skermer
and Hillis (1970). The tests were performed on 6" X 12"

samples, at different cell pressures ranging up to 450 psi.
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The corresponding gradations of pervious and common pervious
material, for which the stress-strain relationships were
derived, are shown in Fid. 5.11. The average gradation
curves of pervious, semi-pervious and core material of the
Duncan Dam are also shown in Fig. 5.11.

As discussed in Chapter III Poisson's ratio was limited
to a maximum value of 0.49. “"No tension" analysis was not
performed for the reasons given in Section 4.10. The calcula-
tion of the elastic parameters in terms of K and G was done
using the procedure described in Section 3.9.

The two dimensional analysis was performed assuming
plane strain conditions along the central longitudinal sec-
tion, the idealization of which is shown in Fig. 5.14. The
analysis used 235 nodes and 388 constant strain triangular
elements. The number of 1ifts and the construction levels
were kept the same as for the three dimensional analysis

(Fig. 5.1).

5.5 Results of Analyses

5.5.1 Three Dimensional Analysis

The aim of the analysis was to compare the locations
of the tensile stresses computed for the idealized analytical
model of the dam with the location of the cracks observed in
the real structure. The zone of cracking, as noted earlier,
was confined between transverse sections 2 and 3 (Figs. 5.3

and 5.5). It is convenient to deal with the development of
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the cracks between these sections by considering an inter-

mediate section located at a distance of 440 feet from the

left abutment (Fig. 5.5). This section is located approxi-
mately in the centre of the cracked area. To facilitate the
comparison of progressive development of cracks along the

‘transverse direction and height of the dam, vertical lines

I, II, IITI and IV in Figs. 5.5 and 5.6 are considered. These

are the vertical lines at which the sections A, B, C and D

intersect the intermediate section, referred to above.

The distributions of minimum prinﬁipa] element stresses
and strains along the vertical lines I, II, III and IV have
been computed by three dimensional analysis for two different
time instances, August 14 and October 28, which correspond to
two different levels of filling and settlement of foundation.
The results of the present three dimensional analysis along
with those of a previous three dimensional analysis (Eisen-
stein et al., 1972) are shown in Fig. 5.12. The previous
analysis differs from the present one only in the following
respects:

(1) Because of the limitation on the number of material
types that could be handled by the previous computer
program only three types of material namely the pervious,
core, and semi-pervious materials were considered in
the previous analysis. The common-pervious material
considered in the present analysis was assumed to be the
same as the semi-pervious material. The zone represented

by the common-pervious material of the present analysis
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is in general stiffer than the corresponding zone of
the previous analysis.

(2) The elastic moduli were calculated directly from the
conventional plots of triaxial test data, instead of
the stress invariant approach, used in the present
analysis. The reference confining stress was assumed
to be average of the mindr and_infermediate principal
stresses that occur in an element. Whenever a principal
stress assumed a negative value it was considered to be
zero in calculating the confining stress needed for ‘the
derivation of moduli. When both the minor and inter-
mediate principal stresses were negative, the confining
stress was assumed to be zero.

The results by the previous and the present analysis
are discussed below. '

On August 14, 1966 the first cracks appeared in the
area upstream of vertical 1ine I and in its vicinity. The
analytical results obtained for this stage show that the only
tensile stress found is along the vertical 1ine I and above
an elevation of about 1830 feet. A11 other parts of the dam
remain in compression at this time with regard to stresses,
although principal tensile strains are common. Within a
week, more cracks developed extending towards the centre
line. However no analysis has been performed for conditions
at this date (August 22, 1966).

In October, 1966 a new distinct crack was observed

within the same transverse section but now extending between
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sections B and C (Fig. 5.5). The stresses calculated along
vertical lines II and III clearly indicate tension between
sections B and C for the conditions existing at the end of
October. Tension is not indicated along vertical line IV
and no cracks were detected iq its vicinity. Therefore, the
calculations indicate reasonably well the sequence of crack-
ing along the transverse section. It is interesting to note
that fhe previous and present analysis, although introducing
slightly different elastic parameters into the computations,
lead to the same conclusions as regards the sequence of crack-
ing. This indicates that the most dominant factor in the
analysis of cracking at Duncan Dam is the effect of the
settlement of the foundation.

In order to verify the location of the cracks in the
longitudinal direction, the distribution of minimum principal
stresses and strains along centre line and section B are
shown in Fig. 5.13. The stresses and strains are plotted
for surface elements fcf two dates namely, August 14, 1966
and October 28, 1966. Since these stresses and strains
obtained by the previous and the present analyses are almost
the same (Fig. 5.12), the results of only the present analy-
sis are shown in Fig. 5.13. From this figure, it can be seen
that the analysis indicates the location of the cracks along
the longitudinal section of the dam with reasonable accuracy.
Some tensile stresses are also indicated adjacent to the right

abutment and, indeed, limited cracking was observed in this

area as well.
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5.5.2 Two Dimensional Analysis

The distributions of minimum principal stress and

strain along the central longitudinal section (Fig. 5.14)

for two dimensional analysis are shown in Fig. 5.15. It can
be seen that the location of the transverse section along
which cracks appeared is predicted properly by the two dimen-
sioﬁa] analysis. However, the sequence of cracking and the
distribution of cracks along the transverse section cannot

be predicted as a plane strain condition is not satisfied

on sections A, B and D (Fig. 5.5).

5.6 Summary

Duncan Dam, constructed on an extremely compressibie
fdundation, was subjected to severe cracking due to large
differential foundation settlement. Accurate and detailed
observations of.settlements and cracks at Duncan Dam con-
stitute an important case history. Advantage of this was
taken to test the usefulness of finite element analysis for
assessing the cracking potential of earth structures.

The stresses and strains in Duncan Dam were computed
using a three dimensional finite element program including
the realistic boundary conditions, the non-linear stress-
strain relationships and the actual construction step sequence.
. Two dimensional finite element analysis has also been per-
formed assuming a plane strain condition along the central
longitudinal section. The results of the three dimensional

analysis predict reasonably well both the location and sequ-
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ence of development of the cracks. The two dimensional
analysis predicts reasonably well the location of cracks
along the longitudinal section, although the sequence of
development of cracks along the transverse section cannot

be predicted. The agreement found between analysis and
observation is noteworthy since it is unlikely that the
stress-strain relationships used in the analysis are wholly
representative of the in-situ behaviour. One might anticipate
that sometimes the agreement between the observed and pre-
dicted displacements will be less impressive compared to

the agreement between stresses. This is due to the fact

that displacements are, in general, more sensitive to the
variation of elastic parameters used in the analysis than are
stresses. From the results of the finite element analyses
performed on Duncan Dam, it may be concluded that the finite
element method has a considerable potential in the analysis
of cracking of earth dams. Reasonable predictions regarding
the cracking of earth dams appear to be possible even with

the use of simple, isotropic elastic theory in the analysis.



r—
~

SMOVHO 40 NOILLYOO™1 ANV IAONINDIS NOLLONULSNOD

* .
SNIMOHS WVYA NYONNQ 40 NOILD3S TIVNIGNLIONO1  1°S "Old
99762 33801200 S 1400Z 001 [
| o a— 1 ZU1SS 13 1S3IMO1
Q9/%1 1SNONV 14 . ———— 3HI0Yd %O0¥ 038 ——p~,

99/§1 ¥av € 3vos

§9/61 INNS z 1BAVYED ONV OGNVS

S9/8Z AVW i T ——

. p —
Q3134W0) 31va ‘ON 14N \\\.\ AVDS - 1S
- — e - ——— —
INIWLNBY T e e e e e e
= ANVS GNV 1S
IHOW ¥O ISIM s - e D INIWIONGY
e — T e e e e AV1D - 1S 1331 30 15v3
- Y3GWNN _30NVO T ————
IN3WIUIL3S ._Zuwmxmmxlf AGNVS ONv .:.m 13A31 NOILVANNQI
o T T T gm0 M2 __ S0 __ S~ sp. o3
2= meypm e ; : : e e
A i W ¥, : : R — e T o~
6 O @u\ ® o) .\@ OG—0 © ® © « Wﬁo 1)
¥3OWNN
¥IAWNN 1310 IN3ISIYIIY 002061 13 TWNI3 NOIL1D3S INISIY4TY SADVYD 4O NOIVIOT
| 1 L 1 (| [ 1 i i 1 1 1 i 1 [l 1 1 1 1 i 1 [ 1 I L 1 1
008z 0092 0072 00z 0002 0081 0091 oovl 0021 0001 009 009 oor 002

(1}) 18330 ONOIV 3DNVISIA

059t

054t

osei

0sél-

{45) NOILVAZ13



‘p.\

172

[ oz61 ‘@ainSna ANV NOQUOO

Y3 Ldv ] Wwva NVONNG 40 NOILD3S SSO¥D "1VOIdAL V

331714 @3$S300¥d

INOZ SNOIAYId NOWWOD
INOZ SNOIA¥3Id W3S

dvy -diy

INOZ SNOIA¥Id ISYIVOD 1OIAN3S
INOZ SNOIAY¥3Id 1D313S

INOZ SNOIAYIIWI

ST13M 43113y
JYNSSIYd

$¥31IWOZ31d—>

3

2‘'s ‘old

4 00€ 00C OO0t 0
[ I

| |
'3IVvIOS

nu._\W.u Mv ®_zé68l 1S4
LIINNVIE

SNOIAY3dWI ,006—




173

SOVYHD 40 VINUY ANV SIONVD LNIWITTLLIS
40 NOLLYO0™1 SNIMOHS WYA NVONNG 40 M3IA NVYld £°s ‘old

300z 00l 0
— Wv3315dn
‘31vD$ . o :
vz ST ¥9oT
"6l AT "1z A e
w o
m_u $NOV¥D 40 <m~_<l..ﬂ..,
wawenay I oo —— — e ,
1HOM o] "I *71 S T 7 g ot 21T T8l INIWLNEBY
o_..
WVQ 40 3NIT JULNID 2)s g 1331
o
5 =T (N |
_ .S IR |- R\ A
$¢6; 5«.\//
~os, / ¥IAWNN m_o:<o|\ @/1
~sze! INJW3IL13S SLN3ISTUdIY w)_
AN o
oa& : LB
. — - N " m v
‘ﬂ‘\)
/
WV331SNMOQ mﬂlo NON53S
NOI123§

l 1 i 1 { 1 1 1 1 1 | 1 | | | 1 | 1 1 1 1 1 1 1 1 1 1
0082 0092 oove 00Ze 0002 008t 0091 oovt 00¢t 0001 008 009 0oov 00z 0
(1) 1S3¥D ONOIV IDNVISI




174

DISTANCE ALONG CREST (ft)

] 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
L i | i i i ' 3 4 1 L) T 1 3 i 1 L) 1 i 2 1 L) i i i ) 1 LI 1 I
HORIZONTAL POSITION OF GAUGES ¢ ¢ g g
; +0.1 _ "-_—,u,....mg“\‘
APPSR TN 2t e Movaty '—'—w — ‘\yl
5 ] .%"T‘; _____._m—'____-—— ---____‘- s
2 ~~~‘ —— ---_____._— - o
w3 -0.1 pe PR St
=
5 02 SETTLEMENT ALONG DOWNSTREAM TOE GAUGES (Nos.)tod)
w
8 4 6 5
3 7 ? 7
- 0 ———
5 e T Y= " TarTer o
P e
S
-2
=
= -3
]
w4

SETTLEMENT ALONG DOWNSTREAM MIDDLE GAUGES (Nos. 5 to 8)
18 17 16 15 14 13 12 u 10

A S A A A A |

-
<=
—
4
io
5 \
pr} 1 prid wemmeemamemmee JUNE 18765
= -6 [} R
o \ e enencsssrasessssonesse APRIL 15766
[ AN R
S R e e wee - AUGUST 14766
-,
-8 - Soa =’ cmme=mm——=- OCTOBER 28/66
-9 L SETTLEMENT ALONG CENTER LINE GAUGES (Nos. 9 to 18)
22 21 20
? ¥ 7

or reverey aeese

£ af S g
Cd

z 2F / e
w /-‘/ f”
< st ~— -
= -

-4 —
: \ _—""’
a st e ===

-6 L SETTLEMENT ALONG UPSTREAM MIDDLE GAUGES [Nos. 19 to 22)

126 25 24 23

- ¢ 7 g
<051
z o - —
Z ~—— e
Zosr RS
pr} \‘\_—’—'
= .10
::l SETTLEMENT ALONG UPSTREAM TOE GAUGES (Nos. 23 to 20)
»

FIG, 5.4 SETTLEMENT ALONG LONGITUDINAL SECTIONS



175

S)HOVYD 40 LNIWdOTTAA3A 40 3ONANDAS §‘'s ‘old

8l '°N 39NVO hzwimd:mmn\ﬁ 3

24!S WV3ILISNMOQ

NOI1D3S _ 5NOILDIS NOILD3S NOILD3S
|m__uw > 5 “O : 4 @ —@®NOID3S
. . .w 1 -~
| —--—$3IVHD WI8Z 120 |2 | ! -
! —ee— SHDVUD PUZT ONV {5 { . -
! —-— SNDVED Yipl ONV [z | T INIVIVIILYIA T 1INIWINGY
: o b e— & ="2" 1331 WO¥i 00V
p—— - WCTINIT IVOILEIA DNvISIa
A7 3N TVOILaIA N S-— = — j : o aNvisig
' - —_—
: ASTE IR VATITEL —.
p 0g ! ~
£ 2 ]
L\ i @NOND3S
= =0\
gy
ozal 7@3-5.!3«:: m or oz 0
T
: $27928
0Es!
2 ool

ot

3QIS Wv3ylsdn



176

{(14) NOILVA313

oSzl
oost
os8l
0061

ATIAISSTUOOUd AIdOTINIA SHOVHED HOIHM
NI SaNOZ ILVAIXOUddY DNIMOHS LNIW.LNngy L4371

WOMd 1334 Oovy 40 IDNVLSIA V LV AVYA 4O NOILD3S

9°'s ‘Old

9961 150 O1 dN Q3IAYISAO SHIVYD YIHI¥NG 40 INOZ %%
9961°ONV ONIYNG AIAYISBO SHOVYD TVYNIOWO 40 INOZ  NN§
WVa 40 INIT FYINTD - 3}
Q31aN1S 38V SNIVYLS ANV S3SSIYLS HOIHM ONOIV SINIT WWDIL¥IA - A'I'D']

an3on

NOILD3S IHL ONOTV NOIVANNOS 30 LINIW31LL3S

9961 '8Z ..—uO.\

9961 'vi .o:<.\

T

9961 '82 100 - 1IAN :I

7

14 0st o0l 0§ O

3IVOS

ov
ot
0
ol

(14) IN3W31113S



177

SISATIVNY TVYNOISNAWIG J3dH.L

¥O4 € NOLLOIS LV NOLLVZITVIAl INIW3T3 JLINId  L°S "Old
$NOIA¥Id NOWWO)D - d>
400l 05 O SNOIAY¥Id IW3S - ds
—Tr SNOIAYAd - d
‘37V98 330D - 2 SINIW3M3 NI STIVI¥ILVW
- ,S21L ¥
) dd> dd> | d> : ~ 1ds /> / > > _Q.W\\\\“uu
0641 1 3] d> ds 7 57 5 g\
8 dd ds 2 d 1
s S
T
0981




178

(0] 200 i LI T T 1 T T T
9B o3 =60 psi i
m—

N

wn o -
0Z ]
= i
Q¢

<< ' -
S b |
u_‘\-—

0 —

VOLUMETRIC
STRAIN (%)

0 1 2 3 4 5 6 7 8.
AXIAL STRAIN (%)—>

CORE MATERIAL
200 T T I T T T ) ;

(o) ~o5) IN PSI

STRAIN (%)

VOLUMETRIC  DEVIATORIC STRESS

0 1 2 3 4 5 6 7 8
AXIAL STRAIN (%) —

SEMIPERVIOUS MATERIAL

FiG, 5.8 CONSOLIDATED UNDRAINED TRIAXIAL STRESS-STRAIN
RELATIONSHIPS FOR THE CORE AND SEMIPERVIOUS
MATERIAL OF DUNCAN DAM



179

400 1 1 1 1 i i i 1
- B o3 =60 psi
& 350 4
Z -
> 300 ~
lb o4 =45 psi
5 250 -
$ -
& 200 C 3 =30p5i |
-
w -
ot -
& 10 o3:15psi
O -
—
S_ 100 -
g c3:0 7
50 .
0 -
g% _
& -~
wx> 0S5 -
=3
S -
=
O t"; 1 1 1 1
S 0o 1 2 3 4 5 6 7 8

AXIAL STRAIN (%)—>

FIG. 5.9 CONSOLIDATED DRAINED TRIAXIAL STRESS-STRAIN
RELATIONSHIPS FOR PERVIOUS MATERIAL



300

180

250

200 |-

150

100

DEVIATORIC STRESS (o) -0o3)
IN PSI

S0

o3 =45 psi

<——0o3= 30psi

:w: =45 psi
1 1 i o3 = 601 psi | \

=3

VOLUMETRIC
STRAIN (%)

FIG, 5.10

1 2 3 4 5 6 7 8
AXIAL STRAIN (%)—>

CONSOLIDATED DRAINED TRIAXIAL STRESS~STRAIN
RELATICNSHIPS FCR COMMON PERVIOUS MATERIAL




181

WYQ NVONNQ 40 .
STIVINILVYIN 04 SIAMND NOLLNAIYLSIA 3ZIS NIVYD 1I°S ‘9l

WVa NVONNG 40 MVINILVW 3HOoD D
WVYQa NVYONNG H40 "IVINILYN SnolAdadinags dS SISATIVNY NI Q3sn IVINILVW SNOIAHIAd NOWWOD HO NOLLVAVHD = we

WVYQ NVONNG 40 "IVINALVYW sSnolAdad o SISATIVNY NI Q3sn “IVINILVIN SNOIANID 4O NOILYAVYUD eeesem

SOLPWIIIN — 0ZIS  UIDJY

1000 10:0 -0 0l (4]] 00l
~ e ™ 0
[y 1/[ i . AN
}/' I /r Jy o_ v
N Ny, 4/ /o

N N NN ) ONH
N P
/4/ III ./ : o¢ m
AN K/. I
N NN NN 0v3

N / N N / 4/ 0%
/I! 4// / ..u'..
SN N K o ou

AN RN
7N [ as NN a-\1 0L
N NSAN

> / 08

Il .
N\, o\ \ .

NSV

001

002, 001,09, 0%, 02, Ol, b, wF ol WS €



VERTICAL LINE @

1850 oo
:-71800 TR D B L (R | I N |
w
~— 7 6 54 3 21 0- -2-3
Z MINIMUM PRINCIPAL STRESS (KSF)
O
-
<
>
= 1850 | \
ws a e\

1800 I N N T N | agl

1.5 10 0.5 0 -05

MINIMUM PRINCIPAL STRAIN (%)

VERTICAL UNE (D)

1850
:1800 AT 11
X 76543210423
- MINIMUM PRINCIPAL STRESS (KSF)
(o]

S :
w 1850 T
o /
E
BOOE |, v 4 4 3T eeNy
5. 10 05 (o} -0.5

MINIMUM PRINCIPAL STRAIN (%)
LEGEND:

—  AUG. 14, 1966 [ PreEVIOUS ANnALYSIS ] °
—~——= OCT. 28, 1966 [ PREVIOUS ANALYSIS ] .

FIG, 5.12

182

VERTICAL LINE @
‘1850

BOOE , , s\ V| S B
7 6 5 4 3 21 041-2-3

MINIMUM PRINCIPAL STRESS (KSF)
1850 ";;)
of
800 | 4 4 4 oy ool
1.5 1.0 0.5 0 -05

MINIMUM PRINCIPAL STRAIN (%)

VERTICAL LINE

1850
L/,
L
18004;11’,1111

7 6 54372101-2-3
MINIMUM PRINCIPAL STRESS (KSF)

\
u;/
WOOE |, 4 4oy oy AT

15 10 05 0 -05
MINIMUM PRINCIPAL STRAIN (%)

1850

[ PRESENT ANALYSIS ]
[ PRESENT ANALYSIS ]

DISTRIBUTION OF MINIMUM PRINCIPAL STRESSES AND

STRAINS ALONG VERTICAL LINES I, II, HI,AND IV



200 400 600 800 1000 1200 1400 1600
T

DISTANCE ALONG CREST (ft)

183

1800 2000 2200
T T

SECTION AT DISTANCE 440' FROM LEFT ABUTMENT (IN CENTRE OF CRACKING)
_‘V-ZDNE OF OBSERVED CRACKING AT CENTRE LINE (OCTOBER 28, 1966)
v

[P

ey P
M =S R
N ——

MIN. PRINCIPAL STRESSES AND STRAINS ARE
PLOTTED FOR THE SURFACE ELEMENTS ALONG
THE CENTRE LINE OF DAM

%@% P

RESULTS OF THREE DIMENSIONAL ANALYSIS ALONG CENTRE LINE OF DAM

'/-SICYION AT DISTANCE 440° FROM LEFT ABUTMENT (IN CENTRE OF CRACKING)

| 20NE OF OBSERVED CRACKING AT SECTION B (100' UPSIREAM FROM CENTRE LINE)
A (ocToBEr 28, 1966)

H
-<
S s ~
=—
I < - = N T
\‘— -—

LEGEND:

APRIL 15766  ~eememmcecee
AUGUST 14766 = oo o e
OCTOBER 28/66

~,

=2 -20
g 3
S~ 210t
== &
L 0
b4
)
¥ 2! wof
E3
2 3 20l
¥ g
-8
; 5-]'0.
s 2
U w -0.5
-
E] T
e -_— 0
=3 3
38 2y ost
25 2
z % 10
E
o st
30
Zz
3 & -20}
2 3
S £4.0t
2T
e — 0
zwz
S& 21 10}
25 2
Z & a0}
z 3
v 30
13-
- s 10k
i
QS “heost
]
TZ — o
g 2
53 glo.s-
=5 g
2 5 op
2 L
8 s
FIG, 5.13

RESULTS OF THREE DIMENSIONAL ANALYSIS ALONG SECTION B8
(100 fr UPSTREAM FROM CENTRE LINE) OF DAM

MINIMUM PRINC!PAL STRESSES AND STRAINS
'‘ALONG TWO LONGITUDINAL SECTIONS FOR THREE
DIMENSIONAL ANALYSIS

-~ -
\_ .- ey



184

SISATIYNY TTVYNOISNIWIA OML dOd NOLLD3AS
TYNIONLIONOT TTVHLNAD ONOTIV NOILVZITVAAlI LNAW313 JLINIA  pI°S °*Sld

0S4l
]
n
- (]
\A ﬂ \ ¥ 4 oos) ¥
< d
]
/ = g
3
K\ NN 2 4 oss1
< V/
AV
A ;
0061
009z  00YZ 0022 0002 008/ 0091 oO¥l 002] 000/ 008 009  oov 002 0

_..lrm Tmmcu ONO"IV 3ONv.isla



185

SISATIVNY

“IYNOISNIWIaQ OML ¥Od4 NOILDOAS TTVYNIANLIONO™ TIVHLNIO
FHL ONOTV SNIVHLS ANV S3ISSIULS 1VdIONINd WNWINIW

9979 ¥110150
llllll 99/1L 1SnONY
------------- 99/¢1 ¥4V

Ny~ oo SN

-
/4

%

GI°s ‘*9ld

(9961 ‘FL 1SNONV) 3dO1S WVIYISIN IV ONINDIVED Q3AY¥ISEO 40 mZONI\WA.v_

(9961 °8Z ¥380100)3NIT 34INID IV ONINOVED (3A¥3SE0 40 mzown\.“_?
(ONINDVYD 40 J¥IN3D Ni) INIWLNAY 1431 WO¥4 ,0vY IDNVISIA IV NOID3IS

0092 oore 11744 0002 0081

oori

(43) 1S33D ONOIV IDINVISIO

009 (114

ol

NOISSIYIWOD

NOISN3L

NOISN3L NOISS3¥dW0OD

(35%1) NIVILS
TVAIDONIYd WNWINIW

(%} $S3¥1S
IV4IDNINd WAWINIW



186

CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 General

The finite element method is a very useful and versatile
tool for the analysis of cracki%g of earth dams. To obtain
results that are useful in the brediction of cracking of
earth dams during and at the end of the period of their con-
struction, the geometry of the dam, the displacement boundary
conditions, the construction step sequence, and the stress-
strain relationships of soil are to be simulated properly in
the analysis.

For a proper simulation of certain complex geometries
and boundary conditions of the dam a three dimensional analy-
sis becomes a necessity. In general a three dimensional
analysis requires a considerable amount of computer memory
and computer time. However, with the availability of large
capacity computers three dimensional finite element analyses
for large structures such as earth dams, are now feasible.

Any procedure, that attempts to simulate the real
stress-strain behaviour of a soil, can only be approximate
for the following main reasons:

(1) A satisfactory theory which can completely account for
the deformational behaviour of soils is not presently
available. |

(2) The limitations that usually exist in the field and
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Taboratory test procedures make it difficult to obtain the
necessary parameters to describe the deformation of soils
under different conditions of loading.

Assuming piecewise linearity, isotropic elastic theory
has been used in the present analysis of cracking of earth
dams. Though the theory cannot account for the dilatancy
effect of soils, it is simple and the parameters needed for
its application to the analysis are easily obtained from the
conventional Taboratory tests. The acceptable agreement
obtained in this work between the results of analysis and
the field observations at Duncan Dam suggests that the theory
used in the analysis is satiSfactory for the prediction of

cracking of earth dams.

6.2 Criterion for Failure of Soil in Tension

Soils are extremely weak in tension. From the results
of the tensile studies conducted on a low plastic gTacia] _
ti11 (Chapter II) it can be concluded that when the placement
water content is above optimum the tensile strength of soil
is practically equal to zero. Hence, a criterion for tensile
failure, based on zero tensile strength for the core of the
dam, appears to be appropriate. When the analysis is aimed
at evolving a suitable design for an earth dam against ten-
sile cracking it is prudent to neglect the tensile strength
of the material of core. A criterion based on tensile strain
at failure has been suggested (e.g., Narain, 1962). This has

the following disadvantages when compared to the criterion
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based on zero tensile strength:

(1)

(2)

(3)

The tensile strain at failure for a soil is a sensitive
parameter depending on factors such as type of §oi1,
water content, rate of strain, type and the amount of
compaction, state of stress in the directions normal to
the direction of tensile stress, and the type of tension
test used. In comparison'to the compression tests, ten-
sion tests are more difficult to perform as routine soil
tests. The tensile strains are usually observed over
large distances along tﬁe crest of dam whereas the
laboratory tensile strains are observed on comparatively
small spe;imens tested under certain particular stress
states. As such the correlation achieved between the
field and laboratory tensile failure strains can only

be approximate.

In general when compared to the strains the stresses
computed in an analysis are less sensitive to the changes
in elastic moduli. Because of the present limitations
that exist iﬁ simulating tﬁe stress-strain behaviour of
soil using laboratory test data it is unlikely that the
stress-strain relationships used in the analysis would
be wholly representative of the field behaviour of soil.
Under these circumstances it appears reasonable to place
more reliance on the computed stresses rather than on
the computed strains.

There is a possibility for a principal strain to be

tensile while the three principal stresses remain com-
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pressive. This situation does not lead to a tensile
crack. The analysis of cracking at Duncan Dam (Chapter
V) indicated the observed tensile cracks only occurred
at locations where one of the principal stresses and
the corresponding strain were tensile. This indicates
that the criterion based &n tensile strain alone is
inadequate for the analysis of cracking. Whén the ten-
sile strength of the soil is assumed to be zero no reli-
ance on tensile tests need be made in the analysis.
Laboratory tensile tests are, however, useful for mak-
ing comparative studies on tensile characteristics of soils.
Such studies are useful in specifying the type of core material
and its piacement conditions for an éffective control of
cracking. In spite of the limitations outlined previously
the Tlaboratory tensile failure strains still provide useful
information to aid in the'interpretation of the field ten-

sile strain measurement data.

6.3 Tensile Characteristics of Soil

The indirect tension test procedure, used in the pre-
sent work for evaluating the tensile characteristics of a
typical till, was found to be satisfactory. The test proce-
dure can be used for soils with low to medium p]asficity to
ensure a brittle failure. A procedure to obtain the tensile
stress-strain relationship for soils with different moduli
in tension and compression is.indicated.

Based on the laboratory tests performed on Mica Till
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with and without the addition of small amounts of bentonite

the following conclusions are drawn:

(1) When the water content is above optimum the flexibility of
a soil increases rapidly with the water contént whereas
the tensile strength decreases with the water content.
The percentage decrease in tensile strength, with a
given percentage increase in water content above optimum,
is more in a low plastic soil compafed to that of a Eoil
with high plasticity. Hence the addition of highly:
plastic bentonite to atlow plastic till aids in achiev-
ing the required flexibility without much reduction in
the tensile strength.

(2) Rate of loading has considerabie effect on the tensile
stress and strain at failure. From the results obtained
on Mica Till and from those reported by Tschebotarioff
et al. (1953) and Narain (1962) there éppears to exist,
for compacted soils, a critical rate of loading that
mobilizes the minimum tensile stress and strain at fail-
ure. A knowledge of the critical rate of loading is use-
ful in obtaining the minimum tensile strain at failure
for a given 5011 at a given water content.

(3) An increase in compactive effort decreased the flexibi-
1ity and increased the tensile strength of till when the
water conten®t is well below the Proctor optimum. For
water contents near and above the Proctor optimum the
tensile strength decreased with the compactive effort.

For the type of soiil tested, over compaction at water
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contents greater than the Proctor optimum hardly improves

the tensile strength of soil.

6.4 Factors Affecting the Development of Tensile Zones
in Earth Dams During Construction

The results of a finite element analysis, concerning
the development of tensile zones in an earth dam during its
construction depends on the simulation of a number of factors
in the analysis. To evaluate the influence of differént
factors parametric studies were conducted. From the results

of these parametric studies the following conclusions are

offered.

6.4.1 Single Step and Incremental Loading

One of the important factors to be considered in the
simulation of the construction of an earth dam in the analy-
sis is the construction step sequence. While a single step
analysis is simpler and less time consuming than an incre-
mental analysis, it results in unreaiistic displacements
and exaggerated tensile zones. For a proper simulation of
the construction step sequence an incremental analysis be-
comes a necessity. The optimum number of increments needed
for an analysis is governed by the cost of computation and
the accuracy of the results required. After a given number
of load increments, the results become practically insensi-
tive to further increments. In the case of a three dimen-

sional analysis, because of its high cost of computation, the
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limitations on the number of increments becomes more severe

than a two dimensional analysis.

6.4.2 Linear and Won-Linear Analyses

A non-linear analysis, which simulates the non-linear
stress-strain behaviour of soils, is more realistic than a
linear analysis. Comparison of linear and non-linear ané]y-
ses showed that the tensile stresses obtained by a linear
analysis are higher than those computed by a non-linear
analysis. The non-linear behaviour of a soil can be simi-
lated conveniently in an incremental analysis. A procedure
to determine the elastic parameters from the laboratory test
data, converted to a stress invariant form, is suggested.

The use of this procequre offers the following advantages:

(1) An assumptionvregarding the third principal stress is
not necessary.

(2) Approximations in representing the laboratory stress-
strain relationships are eliminated because the experi-
mental data is supplied in digital form.

A close agreement between the experimental stress-strain
relationship and those obtained in the analysis is possible
if each step is analyzed twice. The "average moduli" approach

used in the analyses here is found to be satisfactory.

6.4.3 "No Tension" Analysis

In an incremental non-linear analysis the tensile

stresses computed in the zones of tension are of small magni-
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tude. Hence the local stress redistribution, that occurs

due to the removal of tensile stresses from the tensile zones,
does not alter the development of tensile zones computed
subsequently in the upper layers. As a "no tension" analysis
involves an iterative procedure considerable savings in the
cost of computation can be effected in a three dimensional

analysis by not removing the tensile stresses.

6.4.4 Three Dimensional Effects

The plane strain condition, generally assumed in the
analysis of cracking of earth dams, is satisfied only for
homogeneous dams with a symmetrical cross section. The non-
homogeneity of the materials and complexity of the geometry
of the dam are often the main reasons necessitating a three
dimensional analysis. Where the material of core differs
from that of the shell significant errors arise from a two
dimensional analysis. The tensile stresses are under-esti-
mated when shell is more flexible than core and they are over-

estimated when shell is less flexible than core.

6.5 Control of Cracking by Non-Homogeneous Modelling

As indicated in Chapter IV (Section 4.9) a considerable
reduction in tensile stresses is possible by changing the
placement specifications of the fill in critical tensile
zones. To derive suitable placement specifications, the
finite element method can be used to a considerable advantage

in analyzing the effect of changing the flexibility of core
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in the zones of computed tensile stresses.

6.6 Applicability of the Analysis of Cracking to a Rea
Structure :

A three dimensional finite element analysis when applied
to a case study of cracking at Duncan Dam, showed a reasonably
good agreement between the computied and the observed tensile
zones. This indicates, with proper simulation of the various
factors (Section 6.3) in the analysis, the finite element
method can be used with reliance for the analysis of cracking
of earth dams during and at the end of their construction.
Finite element analytical procedure may also be used as a

design tool to control cracking in earth dams (Section 6.5).

6.7 Suggestions for Further Research

Based on the work presented here, the following further
research and field studies on deformation and cracking of
earth dams are suggested:

(1) The stress-strain relationships used in the analysis
should be such that they enable a proper simulation to
be made of the deformational behaviour of soil under
different conditions of loading. To obtain such stress-
strain relationships suitable laboratory test procedures
should be evolved. A theory, which also considers the
di]atahcy effect of soils, is desirable, especially for
problems involving large strains and failures due t&

shear.



(2)

(3)

(4)

(5)
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The analysis of cracking of earth dams presented here

is limited to the period of construction of dam. It is
desirable to consider other critical conditions such as
the first filling of reservoir and earthquake loading.
The tensile tests presented give, in broad terms, the
behaviour of a typical low plastic core material under
tension. Information obtained by more extensive tensile
testing on different types of soil is useful in readily
recognizing the soils susceptible to tensile cracking.
In addition to obtaining information on the tensile
behaviour of soils, it is highly desirable that research
aimed at determining the factors contributing to the
tensi]é strength of a soil be conducted. This will pro-
vide a better insight into the problem of tensile crack-
ing.

Effectiveness of different preventati&e measures, taken
against cracking and subsequent erosion failure in earth
dams, should be evaluated. Laboratory tests, aimed at
determining the erodability of soil through cracks, the
self-healing properties of soil, and the dependability
of filters in prevention of erosion failures are of
value.

Information concerning stresses, deformations, deveiop-
ment of tensile cfacks, and erosion failures, obtained
by reliable field observations is of a great value in
testing the usefulness of the analytical and laboratory

procedures developed for the analysis of cracking of
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earth dams. In addition to recording the movements of
the surface monuments, stress and strain observations
should be obtained from the instruments located within
the suspected, critical zones of tension. Such observa-
tions greatly contribute to the evaluation of the con- |

ditions responsible for tensile cracking.
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APPENDIX A

COMPUTER PROGRAM FOR TWO DIMENSIONAL
FINITE ELEMENT ANALYSIS

A.1 Scope

This appendix contéins a description of the computer
program used for two dimensional finite element analyses and

a listing of the program.

A.2 Language, Code and Limitations

Language. The computer program presented here was
written in FORTRAN IV ianguage and run on an IBM 360/67 com-
puter with an MTS operating system at the University of
Alberta, Edmonton.

Code. The title of the code is Finife Element Non-
Linear Ana]ysié in Two Dimensional Probiems (FENA2D).

Limitations. The program in the present form can handle

~a problem less than or equal to the following size:

Number of elements = 400
Number of nodes A = 250
Number of read elements = 150
Number of read nodes = 250
Number of boundary nodes = 50
Number of materials = 5

Number of cell pressures
at which triaxial data is
supplied = i0



" Number of axial strain
points at which triaxial
data is supplied = 20
If the size of a problem exceeds the above limits the dimen-
sions have to be increased accordingly. The minimum required

dimension for eacn array is given in A.4.1.

A.3 Development and the Main Features of Program

The program in its original form was developed by
E.L. Wilson (University of California; 1962) to perfdrm a
two dimensional finﬁte e1emént ané]ysis either for plane
strain or plane stress condition using constant strain tri-
angu1ar elements. The analysis had to be linear and the 1loads
were to be applied in a single step. The equations of equili-
brium were solved by Gauss-Seidel iterative procedure.

Z. Eisenstein (University of Alberta, 1969) added to
the above program the automatic generation of nodes and ele-
ments. - The author (1970) modified the program to its present
form, given in the listing, to perform, in addition to the
linear single step analysis, a non-linear two dimensional
analysis in a number of steps with an option to analyze each
step once or twice. An option for a "no tension" analysis is
possible. A facility to generate a uniform element pattern
(detailed in A.5) in addition to the existing generation of
non-uniform pattern is available.

The program consists of a Main and a Subroutine called
TESTD. Only the main features of the program are given below

since a detailed description appears in A.5.




(1)

(2)

(3)

(4)

(5)

(6)

The input data regarding elements, nodes, boundary condi-
tions, type of generation, number of materials and type

of analysis ére read.

Thée nodes and elements are generated in the prescribed
manner and the appropriate elastic parameters are assigned
to each element. In the case of a non-linear analysis the
triaxial test data are converted to the stress-invariant
form by the subroutine TESTD. The elastic parameters for
each element are determined from the converted form of
the test data. The stresses considered for calculation
of the initial moduli are those corresponding to the "at-
rest" condition.

The information regarding the number of steps, whether
each step to be analyzed once or twice, whether "no
tension" analysis to be performed‘or not is read. The
number of elements, nodes and the boundary conditions

for the particular step are also read.

The element stiffness is formed for all the elements in
the particular step, the equilibrium equations are set

up and solved by Gauss-Seidel iterative procdure.

The displacements, stresses and strains are computed and
the elastic moduli are calculated from the test data in
case of a non-linear analysis. If the step has to be
repeated once more the "average moduli" are used. "No
tension" analysis is performed if it is opted for.

In the multiple step analysis the stresses, strains and

displacements are accumulated. When a particular step
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is to be repeated the added stresses, strains and dis-

placements of that step are deducted from the total

values before the analysis is repeated with the "average

moduli".

A.4 Nomenclature

In Section A.4.1 that follows the variables that need

a change in their dimension declaration according to the size

of the problem are designated by parentheses after the vari-

able name.

the variable are also indicated.

minimum sizes are given as input to the program.

A.4.1 Description and Size of Variables

Name

ACOEF( )

AI( )

AK( )

BCOEF( )

BI( )

BK( )

Description

Shear strength parameter associated
with cohesion given by 2c cos ¢/
(1-sin ¢)

X-distance between nodes i and j of
an element

X-distance between nodes i and k of
an element

Shear strength parameter associated
with o5 given by 2 sin ¢/ (1-sin ¢)

Y-distance between nodes i and j of
an element

Y-distance between nodes i and k of
an element

The description and the minimum required size of

The variables defining the

Minimum
Size When
Applicable

(NUMAT)

(NUMEL)
(NUMEL)
(NUMAT)
(NUMEL)

(NUMEL)



Name

COED( )

COEDR( )

CONFAC

DSX( )

psxa( )
DSXR( )

DSY( )

psyQ( )
DSYR( )

DT( )

DTR( )
EBREAD( )

EBULK( )

EMAX( )

EMIN( )

CEPXV( )

EPYV( )

Description

Coefficient of thermal expansion
assigned for each read or gene-
rated element

Coefficient of thermal expansion
assigned for each read element

Conversion factor used to convert
the triaxial test results to the
units in which analysis is performed

Displacement in X-direction given
as 1nput for already generated nodes

Total displacement in X—d1rect10n

Displacement in X-direction given
as input only for read nodes

Displacement in Y-direction given
as input for already generated nodes

Total displacement in Y-direction

Displacements in Y-direction given
as input only for read nodes

Temperature change in a read or
generated element

Temperature change in a read element

Bulk modulus read for each material
type

Bulk modulus assigned for each
element

Percent maximum pr1nc1pa1 strain in
each element

Percent minimum principal strain in
each element

Percent .total X-strain in each ele-
ment

Percent total Y-strain in each ele-
ment

A.5

Minimum
Size When
Applicable

(NUMEL)

(NUREL)

(NUMNP)

(NUMNP)
(NURNP)

(NUMNP)

(NUMNP)
(NURNP)

(NUMEL)

(NUREL)
(NUMAT)

(NUMEL)
(NUMEL)
(NUMEL)
(NUMEL)

(NUMEL)



Name

ESHEAR( )
ESREAD( )
ET{ )
ETR( )
GAMV( )
GOCT( )
HEAD( )

IANLYS
IGEN

ITOPT

KOPT

MAT( )
MATN

N
NANLYS

A.6

Minimum
_ Size When
Description Applicable
Shear modulus assigned for each (NUMEL)
element '
Shear modulus read for each material (NUMAT)
type
Young's modulus assigned for a read (NUMEL)
or generated element
Young's modulus assigned for a read (NUREL)
element
Total percent shear strain in each (NUMEL)
element
Percent octahedral shear strain (NSTRN,
NCELP,NUMAT)
Heading for the identification of 18
the problem
Code to identify whether the analy-
sis is for plane stress or for plane
strain condition
Code to identify whether the element
generation is of uniform or non-
uniform pattern _
Code to identify whether a step is
to be analyzed once or twice.
Code to identify whether "no ten-
sion" analysis is to be performed
or not
Element or nodal number
Material number assigned to each (NUMEL)

element

Number of elements to which material
number other than 1 is to be assigned

Element or nodal number

Code to identify whether the analysis
is linear or non-linear



Name

NAP( )

NBOUN

NCELP

NCPIN

NCYCM

NFIX( )

NLOAD

NOBSET

NOPIN

NP( )

NPB( )

NPI( )

NPIR( )

NPJ( )

NPIR( )

Description

A vector to store the

adjacent

nodal points from a given node

Number of nodes at which the bound-

ary displacements are
in a particular step

specified

Number of confining pressures at
which triaxial test data is supp-

1ied as input

Cycle interval for the print of the

force unbalance

Maximum number of 1terat1ons per-

mitted in one step

Code to indicate the type of bound-

ary dispiacement conditions pre-

scribed

Number of nodes at which the loads
are specified in a particular step

Number of sets of elements for which
the overburden factor is prescribed

Cycle interval for the print of dis-

placements and stresses

A vector used in the process of in-

version of nodal point stiffness

and modification of boundary flexi-

bility

Nodal number at which

boundary displacement is specified

Nodal number for node
or generated element

Nodal number for node
element

Nodal number for node
or generated element

Nodal number for node
element

thé.type of
i of a read
i of a read
j of a read

j of a read

Minimum
Size When
Applicable

(NUMNP)

(NUMBC) .

(NUMNP,10)

(NUMBC)
(NUMEL)
(NUMER)
(NUMEL)

(NUMER)



Name

NPK( )
NPKR( )
NPNUM( )
NPNUR( )
NSET
NSTEP
NSTRN
NTENS

NUMAT

NUMBC

NUMBCS

NUME( )

NUMEL
NUMELS

NUMER( )
NUMNP
NUMNPS

NUREL

Description

Nodal number for node k of a read
or generated element

Nodal number for node k of a read
element

Nodal number of the read or generated
nodes

Nodal number of the read nodes only
Number of elements excluding the
one read for which the same over-
burden factor has to be assigned
Number of steps for the analysis

Number of axial strain points at
which the triaxial data is supplied

Code to identify whether shear fail-
ure is .to be considered or not

Number of material types present in
the given problem

Number of boundary points at which

displacements are prescribed in the
problem

Number of boundary points at which

displacements are specified in the

step considered

Element number for read or generated
elements

Number of elements in the problem

Number of elements in the step con-
sidered

Element number for read elements only
Number of nodal points in the problem

Number of nodal points in the step
considered

Number of read elements
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Minimum
Size When
Applicable
(NUMEL)
(NUMER)
(NUMNP)

(NURNP)

(NUMEL)

(NUREL)



Name
NURNP
OBFAC( )
PA( )

RO( )
ROR( )
ROREAD( )

sb( )

SIGINT( )

SIGINV( )

sL( )
SLOPE( )

ST( )

SXX( )
SXY( )
SYX( )

SYY( )

Description

Number of read nodal points
Overburden factor

Angle of inclination in degrees of
the major principal stress with x-
axis in an element

Density of the material in read or
generated elements

Density of the material in read ele-

ments only

Density of the material read for
each material type

Deviatoric stresses read from test
data

A vector used in the coversion of
data from triaxiai form to stress
invariant form

A vector used in the coversion of

data from triaxial form to stress
invariant form

Number of triaxial cell pressure
values at which data is supplied

Slope of the boundary along which
a boundary point moves

Number of percent axial strain va-
lues at which triaxial data is
supplied

Vector used in the inversion of
stiffness

Vector used in the inversion of
stiffness

Vector used in the inversion of
stiffness

Vector used in the inversion
stiffness

Q
-h
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Minimum
Size When
Applicable

(NUMEL)

(NUMEL)
(NUREL)
(NUMAT)
(NSTRN,
NCELP,NUMAT)
(NCELP,
NUMAT)

(NSTRN,
NCELP,NUMAT)

(NCELP,
NUMAT)
NUMBC

(NSTRN,
NUMAT)

(NUMNP,9)
(NUMNP,9)
(NUMNP,9)

(NUMNP Q)



Name

TAD( )

TAL( )

THERM( )
TOCTD( )

vs( )

VSTN( )

XMAX( )

KMIN( )

XLDR{ )
XLOAD( )
XORD( )

XORDR( )
Xu( )

XUR( )

XYV( )
Xv( )
YLDR( )
YLOAD( )
YORD( )

Description

A vector used to identify the nodes
at which displacements are specified

A vector used to identify the nodes
at which loads are specified

Thermal stress in an element
Octahedral shear stress

Volumetric strain obtained from
triaxial test

A vector used in the conversion of
the triaxial test data to stress

invariant form

Maximum principal stress in an
element

Minimum principal stress in an
element

X-1oad at read nodes only
X-load at read or generates nodes

X-coordinate for read or generated
nodes .

X-coordinate for read nodes only

Poisson's ratio assigned to read
or generate elements

Poisson's ratio assigned to read
elements

Total shear stress in an element
Total x-stress in an element
Y-load at read nodes only

Y-load at read or generated nodes

Y-coordinate for read or generated
nodes

A.10

Minimum
Size When
Applicable

(NUMNP)
(NUMNP)

(NUMEL)

(NSTRN,
NCELP ,NUMAT)

(NSTRN,
NCELP ,NUMAT)

(NSTRN,
NCELP ,NUMAT)
(NUMEL)

(NUMEL)

(NURNP)
(NUMNP)
(NUMNP)

(NURNP)
(NUMEL)

(NUREL)

(NUMEL)
(NUMEL)
(NURNP)
(NUMNP)
(NUMNP)
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Minimum
Size When
Name Description Applicable
YORDR( ) Y-coordinate for read nodes only (NURNP)
YV( ) Total y-stress in an element (NUMEL)

A.5 Input Data Procedure

A.4.1 has to be referred for the explanations of the

name of variables used in this section.

(1) Control cards (Number of Cards = 2)

(a) Card 1

1-72

(18A4)

HEAD

(b) Card 2 (915)

1-5

6-10
11-15
16-20
21-25
25-30
31-35

36-40

41-45

NUMEL
NUREL
NUMNP
NURNP
NUMBC
NUMAT
NANLYS

IANLYS

IGEN

Title card for identification of
the problem

Equal to zero for linear analysis;
equal to 1 for non-linear analysis

Equal to zero for plane strain analy-
sis; equal to 1 for plane stress
analysis

Equal to zero for non-uniform pattern

of generation of element; equal to 1

for uniform pattern of generation of
elements. The patterns are given below.

Uniform Pattern:
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Non-Uniform Pattern:

(2) Element data cards (Number of cards = NUREL) (4I5)
1-5  NUMER( )

5-10 NPIR( )
11-15 NPJR( )
16-20 NPKR( )

Example for uniform element pattern generation:

2 4 (]

e _“le ®
2% 1% 012 |26

°6 12612626 %%

13 14 15 16 17 18

The element numbers'have been circled. To generate the

above mesh patterh it is necessary to supply the informa-
tion regarding the first and the last element in é€ach
row. Here for example elements 1, 10, 11 and 20 are to
be read in. The nodes i, j and k for these elements are

to be given in the anticlock wise direction as shown below:

Name of Element Node i Node j Node k

1 2 1 7
10 6 1 12
11 8 7 13
20 12 17 18

NUREL for this example is 4 and NUMEL is 20.



1 3 5 -

First Row ! ® e @ ® ® ® ®

Second Row o @ @ o ® CRNE®) ® |
13 14 3 17 18

The element numbers have been circled. To generate the
above mesh pattern it is necessary to supply information
regarding the first and last elements in the first row
and the first three lements and the last element in the
second row. This is due to the difference between the
orientation of the element 11 and the element 1. The
following gives the nodal data to be supplied in the

anticlock wise direction.

Name of Element Node 1 Node j Node k

1 2 1 7
10 6 11 12
11 7 13 14
12 7 14 8
13 9 8 14
20 11 18 12

NUREL for this example is 6 while NUMEL is 20.
The intermediate elements will be assigned the same

values of modulus, density, étc. as those read for the

end eiements.



(3)

(4)

Nodal data cards (Number of cards = NURNP) (I15,4F10.0,
2F12.8)

1-5 NPNUR( )

6-15 XORDR( )

16-25 YORDR( )

26-35 XLDR( )

36-45 YLDR( )
46-57 DSXR( )

58-69 DSYR( )
When the intermediate nodes between the two extreme nodes
are equally spaced in one coordinate direction with the
distance in other coordinate direction being the same,
the intermediate nodes are generated with equal distances
between them, each distance being equal to the total dis-
tance between the extreme nodes read divided by the differ-
ence between the nodal numbers. The intermediate nodes
are assigned the proper nodal numbers. The other quanti-
ties like displacements, loads, etc. for the intermediate
nodes wiil be the same as those read for the extreme nodes.
Boundary point displacement cards (Number of cards =
NUMBC) (215,F8.3)

1-5 NPB( )

6-10 NFIX( )

11-18 SLOPE( )

The following codes have been used to define the mode

of displacement at a given boundary point.
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- Sloping
x-direction y-direction  Boundary NFIX( ) SLOPE( )
Zero Zero 0 0
displacement displacement
Zero 1 0
displacement
Zero 2 0
displiacement
Free to move
along a slop- 2 tan ©
..... ing boundary .
y
. x
Sloping boundary is as shown:

Sloping boundary

(5) Material type generation card (1 card) (I5)
1-5 MATN If there is only one material a blank card is
required and the material number cards given

in (6) below are omitted. A1l elements are
automatically assigned a material number equal

to 1.
(6) Material number cards (Number of cards = MATN) (2I5)
1-5 M E]ement number
6-10 MAT(M) Assigned material number
(7) Material properties cards (Number of cards = NUMAT) (5F10.0)
1-10 ROREAD( )
11-20 EBREAD( ) Normally assigned in a linear analysis
21-30 ESREAD( ) Normally assigned in a linear analysis

31-40 ACOEF( ) Needed if shear failure has to be
considerad

41-50 BCOEF( ) Needed if shear failure has to be
considered

(8) Overburden factor control card (1 card) (I5)

1-5 NOBSET If the analysis is linear NOBSET= 0 and (9)
is omitted .



(9)

Overburden factor cards (Number of cards = NOBSET)
(215,F10.0)
1-5 M Element number

6-10 NSET

11-20 OBFAC( ) To be given only if value is not equal
to one.

The following example provides an explanation for (8)

and (9).

29 32 ]33 T
0} 31 4 h3 Y3 density of material
= ol T 28-¥ for elements 29 to 34
h2 Yo density of material
18119 22|23 26|27 for elements 17 to 28
2|3 17 to it ta s hy v, density of material
4 15 2|9 1213 6], for elements 1 to 16

When a non-linear analysis has to be performed for gravity
loaded structures the initial moduli are computed for

each element considering the. overburden pressure at the
ﬁid height of the element. 1In the sketch shown above
there are 34 elements to be considered in a particular
step. The overburden pressure at the mid height of a
certain element say 16 is (y]h]/2 + yyh, + y3h3) where
Yis Yo and Y3 are the densities of the materials and h],
h2 and h3 are the heights as shown. Now the overburden
factor can be defined for the element 16 as follows:
OBFAC(16) = (yqh,/, + Yoho * Y3h3)/(yqhy/,).

If for example h.l = h2 = h3 = h and Yy T Y, Y35 Y then
the overburden factor control card and the overburden fac-

tor cards will be as given below.



NOBSET = 3
M NSET  OBFAC(M)
5 5 3.0
11 5 5.0
23 5 3.0

OBFAC(M) = 1.0 is automatically set in the program and
hence need not be supplied in the data. 1In the present
example elements 1 to 4, 17 to 22 and 29 to 34 will have
an overburden factor equal to unity.
(10) Triaxial test data control card (1 card) (215,F10.0)
1-5  NCELP
6-10 NSTRN
11-20 CONFAC
If the analysis is linear a blank card for (fO) has to
be substituted and (11), (12), (13) are to be omitted.
(11) Cell pressure card (1 card) (10F5.0)
If the test results are to be supplied say at 0, 5, 10

H

30 and 40 psi cell pressure values, the input is as

follows:
1-5 0.0
6-10 5.0

11-15 10.0
16-20 30.0
21-25 40.0
(12) Axial strain and deviatoric stress cards (Number of cards =

NSTRN) (11F5.0)

Each card will have the axial strain punched in the first



(13)

(14)

(15)

(16)

(17)

(18)
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five columns and the deviatoric stresses corresponding

to the various cell pressures (given in (11)) at that
particular axial strain are punched in the subsequent
columns.

Axial strain and volumetric strain cards (Number of

cards = NSTRN) (11F5.0)

Each card will have the axial strain punched in the first
five columns and the volumetric strain corresponding to
the various cell pressures (given in (11)) at that parti-
cular axial strain are punched in the subsequent columns.
Volume expansion has to be neglected while giving the
volumetric strain input.

Option for "no tension" analysis (1 card) (I5)

1-5 KOPT Equal to zero when “"no tension" analysis is
not needed and equal to one when it is needed

Option for analyzing each step once or twice (1 card) (I5)
1-5 ITOPT Equal to zero for analysis once and equal
to one for analysis twice. If the analysis is
lTinear ITOPT = 0.
Number of steps and option for consideration of shear
failure (1 card) (21I5)
1-& NSTEP For a single step analysis NSTEP = 1

6-10 NTENS If shear failure is to be considered NTENS =
1, otherwise NTENS = 0

Nodal loads control card (1 card) (I5)

1-5 NLOAD If NLOAD is equal to zero (18) is omitted
Nodal loads specified in the step considered (Number of
cards = NLOAD) (I5,2F10.0)

1-5 N Nodal number

6-15 YLOAD(N)
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16-25 XLOAD(N)
(19) Nodal displacements control card (1 card) (I5)
1-5 NBOUN If NBOUN is equal to zero (20) is omitted
(20) Nodal displacements specified in the step considered
(as many as the number NBOUN) (I5,2F10.0)
1-5 M Nodal Number
6-15 DSY(M)
16-25 DSX(M)

A.6 OQutput of Results

The following results are obtained as output:

(1) The complete nodal and element data with the initial
values of the elastic parameters assigned to each element.

(2) Cumulative nodal displacements, element stresses, and
strains for each step of the analysis.

(3) Element principal stresses and strains for each step of

the analysis.

(4) Elastic parameters assigned to each element in each step

of the analysis.

A.7 Listing of Program

A listing of the two dimensional program follows.
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TWO DIMENSIONAL FINITE ELEMENT PROGRAM WITH CONSTANT STRAIN TRIANGULAR
ELEMENTS ‘OF &6 DEGREES OF FREEDCM FOR EACH ELEMENTePLANE STRAIN/ STRESSe
LINEAR/ NONLINEAR s SINGLE/ MULTIPLE STEP ANALYSIS (WITH OPTION FOR

REMOVAL OF TENSILE STRESSES) CAN BE PERFORMED.

OR1GINAL PROGRAM DEVELOPED BY EeLeWILSON (UNIVERSITY OF CALIFORNIAL1962)
PROGRAM MODIFIED 8Y Z.EISENSTEIN (UNIVERSITY OF ALBERTA+1969) AND

AeVeGe KRISHNAYYA (UNIVERSITY OF ALBERTA, 1970)

MAIN PROGRAM

DIMENSION AND COMMON STATEMENTS

DIMENSION EBULK{400)ESHEAR(400) +OBFAC(400)¢HEAD(18) +
1osx(zso).osv(zso).xLvotzso).VLqu(zso).Npczso.xo).sxxtzso.Q).
2SXY(25009) s SYX{ 25049 ¢ SYY (250+9) +NAP(2501 «PA(400) 4
3upnuntzso).xonon(zso).vonon(zso).xuon(zso).VLontzsoy.osxR(zso).
ADSYR(2%50) ¢ TAD(250) «MAT(400) s TAL(250) « ET(400)
SXU(500) +RO(400) sCOED( 4001 s0T(400) s THERM(400) +AJ(400)+

6BJ(400) s AK(A00) +BK(400) +GAMVI400) ¢
75Lops(so).Nuuentxso).Nptacxso).NpJn(xso).upxn(1sox,atn(xso).
8 aoattso).xun(xso).coeoa(tso).otn(xso).Npa(so).erxtso).LNtS).
OAL6+6) ¢ B(6e6) ¢S(6:6) ¢ THETALSO)

COMMON/AREA1/SXX ¢ SXY o SYX e SYY

COMMON/ AREA2/ .

1 XOQD(250)-YORD(zSO).NP!(‘OO).NPJ(‘OO)cNPK(COO)-NPNUM(ZSO)n
INUME(400) s NUMNP o NUMEL

DIMENSION DSXO(250)+0SYQ(250) XV (400}
XVV(QOO)cXYV(‘Oo).EPXV(‘OO).EPYV(‘OO).xnhxlhoo).XMlN(COO)vENAXt‘OO)
2,EMINLA00)

COMMON/Z AREA3/

1 ST(20e5) +SLI20+5)9SD(20010¢5) sVS(20010+5) +NUMAT
2NCELP ¢ CONFAC s NSTRN

DIMENSION ROREAD( S)<EBREAD( S),ESREAD( S)eACOEF( 5) +BCOEF( 5)

READ PROBLEM CONTROL CARDS

150 READ(S+100)HEAD
WRITE(6499)
WRITE(6+ 100 HEAD K



62 READ(Se 1 INUMEL « NUREL « NUMNP s NURNP ¢ NUMBC « NUMAT s NANLYS s TANLY S+ I GEN
63 WRITE(6¢ 101 )NUMEL

64 WRITE (6+825) NUREL

65 WRITE(6,102 )INUMNS®

66 WRITE(6. 824 )NURNP

67 WRITE (64 103)NUMBC

68 WRITF(62000) NUMAT

69 C

70 C

71 C WHEAD FLFMENT DATA

72 [+

73 c

74 READ(S5+9) (NUMER(N) « NPIRIN) ¢ NPIR (N ¢ NPKR(N) o N=1 ¢ NUREL )
7S

76

77 C READ NODAL DATA

78 4

79 4

80 READ(S+3)

81 1 (NPNUR (M) ¢ XORDR (M) » YORDR{M ) « XLDR( M) +YLDR(M) o
82 20SXR(M) s DSYR(M) ¢ M=1 « NURNP)
83 c

8a c GENERATION OF NOT READ ELEMENTS
8s c

86 DO 161 N=1.NUREL

87 M=N+1

88 IF{M—NUREL3 1€2,1€2.i63
89 162 I=NUMER(M)~-NUMER(N)

90 IF(1-1)1632,163. 164

91 166 L=NUMER(N)

92 NPA=NPIR (N)

93 NPC=NPKR (N}

7Y =0

9s KOz2%K .
96 KE=1

97 10=1+1

98 IF(IGEN.EC.0) GO TO 3000
9 00 3166 JO=1.10
100 J=40-1
101 LIsLey
102 NUME(LJ)=NUMER(N)+J
103 1F(2-KE) 3168:3168:3167
108 3167 NPI(LJI=NPA4KO
105 NPJILJIIENPA-1+KD
106 " NPKELJ)IZNPC+KO
107 GO TO 3174
108 3168 NPI{LJI=NPA+KO
109 NPJ(LJI=NPCHKO
110 NPK(LJ)=NPC+14+K0
111 K=K+ 1
112 KO=K
113 KE=0
114 3174 ET(LJI=ETRIN)
115 RO(LJ)I=RORIN)
116 XUCLJ)=XUREN)

117 COED(LJ)=COEDR(N)

118 OT(LJ)=DTRIN)

119 KE=KE+1

120 3166 CONTINUE

121 GO TO 161



122
123
124
125

127
128
129
130
131

132
133
13e
135
136
137
138
139
140
141

182
143
148
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
168
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

3

anno

000

167

168

169
171

172

174

166

163

161

152

186
154

DO 166 JO=1,.10
J=J0-1

Li=L+J
NUME(LJ)=NUMER(N) +J
IF(2-KE) 169,168,167
NP1 (LJ)I=NPA+KO
NPJ(LJ)=NPA-14+KO
NPK(LJ)=NPC+KO
GO TO 174
NPI(LJI=NPA4KD
NPJ(LJII=NPC+KD
NPK(LJ) =NPC+1+KO
GO TO 174
IF(3-KE) 172171166
NP I{LJ }=NPA+KO
NPJ(LJI=NPC+1+KO
NPK(LJ)=NPC+24K0
GO TO 174

NPT (LJ)I=NPA+KO
NPJ (LJ) NPC+24K0
NPK (LJ)=NPA+14KO
K=K+1

KO=2#%K

KE=0
ETC(LII=ETR(N)
ROCLJII=ROR(N)
XUCLJI=XURIN)D
COED(LJ)=COEDR(N)
DT(LJII=DOTR(NI
KE=KE+1

CONTINUE

GO TO 161
L=NUMER{N)

NUME (L)=NUMER(N)
NPT (L)=NPIR(N)
NPJ(LI=NPJIRIN)
NPK (L )=NPKR(N)
ET(LI=ETRIN)
RO(L)=ROR(N)
XUCL)=XURINY
COED(L)=COEDR(N)
DT(L)=DTRIN)
CONYINUE

GENERATION OF NOT REAOC NODAL POINTS

DO 151 M=1.NURNP
NEM+1

IF (N=NURNP) 152+152.186
I=NPNURCN)=NPNUR (M)
GO TC 154

1=0

LENPNUR(IM)

10=141

00 156 JO=1.10
J=J0~-1

LJ=L+d
NONUM(LJI)I=NPNUR (M) +J
IF(1-0) 188¢188¢189



219
220
221
222
223
224
228
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

188

189

191

159
158

153

157

156
151

606

10

11

nonNnn

AN

XORD(LJ)=XORDR( M)
YORD(LJ)=YORDR(M)
GO YO 191
XORD(LJ)=XORDR (M) +( {XORDR(N)=~XORDR(M) )}/ 1 )%y
YORO(LJI=YORDR{M) +{ { YORDR(N)=YOROR(M) )/ 1) *J
IF(J-0) 1584158,159
IF(J=-T) 157+1%3,156
XLOAD(LJ)SXLDR(M)
YLOAD(LJ)I=YLDR(M)
DSX(LJ)=DSXR(M)
OSY(LJI)=DSYR(M)

GO TO 186
XLOAD(LII=XLOR(N)
YLOADCLJ) =YLORIN)
DSX(LJIuOSXR(N)
DSY(LJ)=DSYR(N)

GO TO 156
XLOAD(LJI=O
YLOAD(LY) =0
DSX(LJ)=0

DSY(LJ)=0

CONTINUE

CONTINUE

INITIALIZE TOTAL DISPLACEMENTS AND STRESSES AND STRAINS
DO 10 J=1.NUMNP

DSXQ(J)=0.0

DSYG(J)=0.0

CONTINUE

DO 11 J=1.NUMEL

XV(J)=0e

YV(J)=0e

XYV{J)=0e.

EPXV(J)=0.

EPYV{J)=0.

CONTINUE

WRITE(6e111)

WRITE(G:s109) (NPNUM(M) ¢ XORD(M) s YORD(M) s XLOAD (M) s YLOAD( M),

1OSX (M) +DSY(M) s Mx1 ¢ NUMNP)

READ BOUNDARY CONDITIONS.

READ(S¢4) (INPBIL)+NFIX(L)+SLOPE(L), L=1+NUMBC)

WRITE(6.112)
WRITE(Ge4) (NPBIL) +NF IX(L)«SLOPE(L) L=1+.NUMBC)

C ASSIGN PROPER MATERIAL NUMBER IF NECESSARY

854

5S

nNoon

D0 854 I=1,NUMEL
MAT(I)=1

READ(S+6) MATN
IF(MATNG.EQ.0) GO TO Sé
DO S5 Ix=1¢MATN
READ(S5¢20) MeMAT(M)

ACOEF=2.C‘COS(PHI)I(l.-SlN(PHX)).BCOEF:Z.‘SIN(PH[)/(I;SIN(PH!))



242 C READ MATERIAL PROPERTIES.

243 C

244 C

245 S6 DO 850 Ix1eNUMAT

246 READ(542010) ROREAD(l)vEﬁREAD(!)qESREAD(I)-ACOEF(I)'BCOEF(I)
2487 HR!TE(é.ZOZO)ROREAD(!).EBREAD(!).ESREAD(!)-ACOEF(I)vBCDEF(!)
248 850 CONTINUE .
249 D0 57 N=1.,NUMEL

250 I=MAT(N)

251 RO(N)=ROREAD(I)

2%2 EBULK (N) =EBREAD(I)

253 ESHEAR(N)=ESREAD(I)

254 Q0BFAC(N)=1.0

255 57 CONTINUE

256 C

257 C

258 ° C READ OVERBURDEN FACTOR

259 c

260 C

261 READ (5.6) NOBSET

262 IF(NOBSET+EQ.0) GO TO 48

263 DO 771 1=1+NOBSET

264 READ (S5e¢753) MNSET «0BFAC(M)

26S IF (NSET.EQ.0) GO TO 771

266 DO 772 J=1.NSET

267 M=M+1

268 772 OBFAC(M)=0BFAC(M=-1)

269 771 CONTINUVE

270 C

271 <

272 ¢ READ TRIAXIAL TEST DATA CONTROL CARD.
273 [

274 c

275 48 READ(S+2021) NCELP«NSTRNeCONFAC
276 IF(NCELP.EQe0) GO TO 44

277 CALL TESTD

278 [

279 <

280 ¢ INTERPOLATE INITIAL MODULI FOR ALL ELEMENTS
281 [

282 C

283 DO 600 M=1,NUMEL

284 IF(ROIM)+LE0.0) GO TO 600

28% I=NPI(M)

286 J=NPJI (M)

287 KxNPK (M)

288 Y1=ABS{YORD( I)-YORD(J))

289 Y2=ABS(YORO(JI)=YORD(K))

290 ¥3=ABS{YORD(K)-YORD( 1))

291 OEPTH=0,0

292 IF(Y1.GT<.DEPTH) OEPTH=Y1

293 IF(Y2.GT+DEPTH) DEPTH=Y2

294 IF(Y3.GTeDEPTH) DEPTH=Y3

295 DEPTH=DEPTH/ 2.

296 NCOUNT=0

297 N=MAT(M)

298 0BP=DEPTH*RO (M) #0BFAC(M)

299 AVGSI1G=0BP#*0 +5

300 18 NCOUNT=NCOUNT+1

301 SIGM1=08BP



302

308

334
338
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
3s2
353
354
355
356
357
358
359
360
361

720
721

790
791

S0
S1

52

600

a4

SIGM2=AVGSIG

SIGMAZAVGSIG

STGOCT=(SIGMI 4SIGM2¢SIGM3) /3.
SIGINZSIGMI®SIGM2eSIGM3
CONFS=SIGIN/(SIGOCTe#2)
DIVOCT=SARTC(SIGMI-SIGM2) *#24+(SIGM2-SIGMI ) #9824+ (SIGM3-SIGM])*»2)
OtVOCT=DIVOCT/ 3.

DO 720 J=1.NCELP

JLS=J

IF( CONFS—=SL{JeN)) 721,720,720

CONTINUE

CONTINUE

00 790 K=1.NSTRN

J4S1=K

IF(DIVOCT=SD(KeJLS~1N)) 79147904790
CONTINUE

CONTINUE

DO S0 K=1+NSTRN

J452=K

IF(DIVOCT~SD(K+JLSeN)}) S1+50+50

CONTINUE

CONTINUVE .
PR1IZ1.0618(VSIJIS1 ¢+ JLS=1eNI=VS{JISI=1+JILS=1eN}I/(ST(JIS1,NI}-ST(IS1~1,
IN)}=1.0

IF(PR1.GTe0.489) PR1=0.49
PR2=1.061%{VS(JS2+JLS oNI=VS(JIS2~1eJLS NI I/Z(ST(US2.N)-ST(JIS2~1.
IN))=-1.0

IF(PR2GTe0e49) PR2x0439

PRI=PR1+( (PR2-PR1I*( CONFS=SLIJILS~1eNII/Z(SLI(JILSsNI=SLIJILS=1eN}))
IF(PR3.GT+0.49 )} PR3=0.49
CONST=PR3/(1.=PR3)

HPR=0BP*CONST

HPR=(HPR®AVGSIG)/ 2.

CSTRS=ABS (HPR=-AVGSIG)

IF(NCOUNTaGE«21) GO TO S2
IF(ABS{HPR=~AVGSIG)elT+0.01) GO TO S2
AVGSIGE=HPR

GO TO 18

WRITE(6+125) M NCOUNT+HPR+CSTRSWPR3
DIF1=SDIJS1eJLS=1eN)=SO(JS1=14JLS~1sN)
ETP1=DIF1/(ST(JIS1sNI=ST(JISI=1N))
GTPIZETP1/(0.9428%(4 «+PR1))
DIF2=SD{JIS2+JLSeN)I=SD( JS2=1+JLSsN)
ETP2=DIF2/(STCIS2eNI=STLJIS2=1N))
GTP2TETP2/(Ce9428%(1 . +PR2))

GTP=GTP1+ (GTP2=GTP1 )S(CONFS =SLIJLS=1eN))I/(SL(ILSeNI=SLIJILS=1+N))
GTP=100.*GTP
EBULK(M)IZGTP#2,%(1.+PR2)I/(3%(14~2.*PR3))
ESHEAR (M) =GTP

CONTINUE

IF(NCELP.NE.0) GO TO 46

IF{NANLYS.EQ.J) GO TO 46

46 WRITE(&6.110)

s XaNaRi Xl

PRINT ELEMENT DATA

WRITE(6+,2055) (INUME(N) «NPI(N) s NPJ(N) e NPK (N} ¢ EBULK(N) ¢ RO(N) s ESHEAR(N
13+ MATIN) N=z1¢NUMEL)



362
363
364
365
366
367
368
369
370
37

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

annonnon

nonoon

noanonn

READ PARTICULARS OF CURRENT STEPe

T61

READ(S5+6) KOPT

READ(S.6) ITOPT

READ(%+20) NSTEPWNTENS

00 %00 JM x 1.,NSTEP
REAO(Svl3]NUMELSoNUMNPS.NUNBCS.NCPIN-NOPINoNCYCNoTOLER-XFAC.LNUN
NUMEL=NUMELS

NUMNP=NUMNPS

NUMBC=NUMBCS

DO 761 AN=1.NUMNP

TAD(N)=0.0

TAL(N)}=0.0

CONTINUE

READ BOUNDARY LOADS FOR CURRENT STEP

READ(S+'5) NLOAD

IF (NLOAD+EG.0) GO TO 4050

DO 4051 I=1.NLOAD

READ(S¢602) NoYLOADCN) ¢ XLOADEN)
IF (YLOADIN) «NE<0<0) TAL(NI=2.0
IF CXLOAD(N) eNE<0+0) TAL(NI=1.0

4051 CONTINUE

READ BOUNDARY OISPLACEMENTS FOR CURRENT STEP

4050 READ(S«&) NBOUN

601
a1

{F(NBOUN.EG.0) GO TO 4l

00 601 N=1+NBGUN

READ(5¢602) MeDSY(M)¢DSX(M)
IF(DSY (M) eNE+0<0) TAD(M)I=2.0

IF(DSX(M) eNE«O+0) TAD(MI=140

CONTINUE

WRITE (6¢101) NUMEL

WRITE(64+102) NUMNP

WRITE(&¢103)NUNBC

WRITE(6+108)NCPIN

WRITE(6+10SINOPIN

WRITE (69 106)NCYCM

WRITE(6.107)TOLER

WRITE(6+108)XFAC

WRITE(6e 117ILNUM

NITER=0

IF(NSTEP.EQ.1) GO TO 160

IF(NCELP.EG.0) GO TO 160

WRITE(64110)

WRITE (62055 (NUMECN) « NPT (N) ¢ NPJCN) ¢ NPK(N) » EBULKCN) s ROIN) s ESHEARCN
1)e MATI(N) e N=1, NUMEL )

WRITE(64111)

WRITE(6s109) (NPNUM{M3+XORD{M) ¢« YORD(M) + XLOAD(M) + YLOADI M) o
1DSX{M)I +OSY( M) o M=1 ¢ NUMNP)



e22
a23
424
425
a26

428
429
430
a3
432
a33
434
43S
436
437
438
439
440
a4y
482
443
LYY
445
446
447
448
449
450
451
452
as3
454
a45s
456
457
458
459
460
461
462
463
a6a
465

467
468
469
470
471
72
ar3
a7e
47s
ave
477
a78
a79
480
aRn1

[alNa N ol

AN

160

170

175

176

177

701

180

INITIALTIZATION

NCYCLE=O
NITER=NITER+1
NUMPT=NCPIN
NUMOPT=NOPIN
DO 17S L=1«NUMNP
D0 170 M=1,9
SXX(LeM)=0.0
SXY(L +M)=0.0
SYX(LeM)=0.0
SYY(LeM)=0.0
NP(LeM)=0
NP(L+10)=0
NP(L o1)=L

MODIFICATION OF LOADS AND ELEMENT DIMENSIONS

NERROR=0

DO 180 N=1.NUMEL

ET(N)=0.0

COED{(N)=0,0

DT(N)}=0.0

XUINDI=0.0

I=NPI(N)

J=NPI(N)

K=NPK(N)

AJ(N) =XORO(J)I=XCRD( 1)
AK(N)=XORD(K)-XORO(T)
BJINI=YORD(J)I~-YOROD(1)
BK(N)=YORD(K)-YORD( 1)
AREA=(AJ(NI*BK(N)-BJ(N)*AK(N) ) /2.
IFCAREA) 70147014177
THERM(N)=ET(N)*COEDC(N) sDT (NI} /(XU(N)I~1.)
DL=AREA®RO(N)/3.

XLOAD(I)=THERM(N) #(BK{(N)-BJI(N))I/2.+XLOAD(T)
XLOAD( J)==THERMIN)I*BK(N) /2. +XLOAD(J)
XLOAD(K)=THERM{N)®BJI(N) /2, +XLOAD(K)
YLOAD(I)=THERM(N)I®(AJ(NI-AKIN) I/ 2.4+YLOAD(I )=-DL
YLOAD(JII=THERM(N)®AK(N)/2,4YLOAD(J)-DL
YLOAD(K)==THERMIN) *AJ(N} /2. +YLOAD(K)~DL
IF(AREA«GT+0.0) GC TO tA0
WRITE(6«731IN

NERRCR=NERROR®1

CONTINUE

IF(NERRUR.GT.0) GO TO 925

FORMAYION OF STIFFNESS ARPAY

DO 200 N=1.MUMEL
AREA=(AJIN)I*RK(N)-AK(N)}*BI(N) ) .S
COMM=0.25/ARE A
AC11)=BI(N)-RK(N)
A(l+2)=0.0
Al1e3)=8K(N}
A(1+4)=0.0
All1+5)=-BJI(N)
Al1+6)=0.0
Al2.1)=0.0
A(2+2)=Ar {(N}=AJ(N)



ag82
483
484
48s
486
a87
a88
489
490
a91

492
493
494
49s
496
497
a98
499
500
501
502
s03
504
50S
506
S07
508
509
s10
s11

512
513
sia
518
516
517
sig
519
s20
s21

522
523
S524
s2s
526
527
528
529
530
s31
s32
533
s3a
s3s
s36
s37
s38
s39
540
sat

nno

182

183

184

185

190
195

196

200

A(243)=0.0

A{2+48)==AK(N)

A{2+5)=0.0

A(2+6)=AJ(N)

A(3+1)=AK{N)=AJ(N)

A{342)=BJIN)-BK(N)

A(3e3)==AK(N)

A(3+4)=BK(N)

A(3e5)I=AI(N)

A(3+6)=<-BJIN)

{FUIANLYS<EQe0O) COMIZEBULK(N)¢*ESHEARIN)I®(4./3.)
IF{IANLYS+EQe0) COMR=EBULK(N)-ESHEAR(N)$(2./3.)
IF(IANLYSeGTe0) COM1=4,.8ESHEARI(N)S(EBULK(NI+ESHEAR(N) /3. )/(EBULK(N
1)¢(8 /3. )*ESHEARIN)Y)

IF(IANLYSaGTe0) COM2=2.*ESHEARINIS(EBULKINI-(2./3. )*ESHEAR(N) )/ (EB
TULK(N)+( 873, )*ESHEAR(N))

B(lel)= COMMsCOM1

B(1+2)=COMM®COM2

B8l{1¢3)=0.0

B(24¢1)=COMM®COM2

B8(2+2)xCOMMSCOM1

B8(2+3)=0.0

B(3¢1)=0.0

B(3+2)=0.0

B(3+ 3) =COMM®ESHEAR(N)

00 182 J=1.6

00 1821=1,3

StleJ)I=0e0

D0 182 K=1,3
S(I1eJIES(1eJ)4B(IK)IZA(KLI)
D0 183 J=1.6

DO 183 I=1,3

B(Je 1)=S(1ed)

D0 184 J=1,6

00 184 1I=1,6

S{leJ)=0e0

D0 184 K=1,:3
Slled)=S(1eJ)4BlI+KISA(KeI)

LM(1)I=NPI(N)

LM(2)=NPJI(N)

LM{3)=NPK (N)

00 200 L=1,3

00 200 M=1,3

LX=LM(L)

MxX=0

MX=MX+]

IF(NPILX s MX)=LM(M)) 1904195190
IF(NP(LXosMX)) 185.195.185
NPILX oMX) xLM(M)

IF(MX=10) 196+702,702

SXXELXs MX)FSXX(LXoMX)+S(2%L =1 o 28M—1)
SXY(LXeMXITSXY(LXeMX)+S(20L—1,2%M)
SYX(LXsMX)IRSYX(LX e MX)+S(20L o 2%M-1)
SYYCLX s MX)=SYY(LX oMX }+S(20Ly2%M)

COUNT OF ACJACENT NODAL FGINTS

D0 206 M=1.NUMNP



562
543
Sa4
545
546
547
S48
549
550
551
552
553
554
556
556
557
SS8
559
560
S61

562
563
564
565
566
567
568
569
570
s71

572
573
574
575
$76
577
578
579
%80
E1-1

582
583
Sea
s8S
$86
587
588
589
590
591

592
$93
594
595
$96
597
$98
599
600
601

205

206

[aNaXal

210

ann

218

220
22%
230
23S

240

[aXa Mgl

243

244

27s

280

285
290

MX=1

MX=MX4+]

IF (NP(M.MX)) 20642064205
NAP(M)=MX=1

INVERSINN OF NODAL POINT STIFFNESS

DO 210 M=1.NUMNP
CONM:SXX(M-I)'SYY(M'I)—SXY(M.!)‘SYX(Nol)
TEMP=SYY{Ms1)/COMM
SYY(Me1 ) =SXX({Me1)/7COMM

SXX(Me1)=TEMP

SXY{Me1)==SXY(Me1)/CCMM
SYX(Ms1)m=SYX(Ms1)/CCMM

CONTINUE

MODIF ICATION OF BOUNDARY FLEXIBILITIES

DO 240 L=1,NUMBC

M=NPB(L)

NP(Me1)=0

IF(NFIX(L)=1) 225¢220+215
C‘(SXX(M.l)‘SLOPE(L)vSXY(M.l)l/(SYX(M-l)‘SLOPE(L)—SYY(N-I))
R=1 +=C*SLOPE(L) .
SXX{Me1)={SXX(Ms1)-CESYX(¥s1) /R

SXY (Me 1) (SXY(Ms1)=CRSYY(Me1))I/R
SYX{Me1)ZSXX(Me1)*SLOPE(L)

SYY(Me1)=SXY (He1ISSLOPECL]

GO TO 240
svv(n.x)-svv(u.xx-svx(u.x)tsxV(u.1)/sxx(u.1)
GO TO 23¢C

SYY(Me1)=0.0

SXX{Me1)=0.0

SXY{Me1)=0.0

SYX(Ms1)=0.0

CONTINUE

ITERATION OF NODAL POINT OISPLACEMENTS

KOUNT=0

WRITE(6+119)

KOUNT=KOUNT+1

SUM=0.0

DO 290 M=1,NUMNP

NUM=NAP (M)

IF (SXX{Ne1)4+SYY(N.1)) 2754290275
FrAmXLTADIM)

FRY=YLOAD(M)

DO 280 L=2,NUM

N=NP(M.L)
FRX-FRX-SXXtﬂgL)‘DSX(N)—va(M-LIODSY(N)
FRYIFRY-SYX!!cL).OSX(N)-SYV(HoL)‘DSY(N)
DX=SXX(Mel ) SFRX$SXY(Me1) SFRY=DSX{M)
DY-SYX(N-I)‘FRXQSYY(M.X)‘FQY-DSY(M)
DSX(M)=DSX(M) +XFACKDX

DSY (M) =DSY(M)+XFACOY

IF(NP(Ms1)) 285+290,28S
SUH-SUH+ABS(DXISXx(ﬂ.I))OABS(DY/SYV(M-I))
CONTINUE



602
603
604
605
606

6oe
609
610
611
612
613
6148
-3 %]
616
617

618

619
620
621

622
623
624

625
626
627
628
629
630
631

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

NnNonNn

300

308
310
315
320

400

430
440
TS

405
410

415
420

CYCLE COUNT AND PRINT CHECK

NCYCLE=NCYCLE+1

IF (NCYCLE-NUMPT)} 305+300.300
NUMPT=NUMPT+NCPIN
WRITE(64 120 INCYCLEsSUM

IF (SUM-TOLER) 40C+400.310
IF(NCYCMaNCYCLE) 40044004315
IF (NCYCLE-NUMOPT) 244,32204320
NUMOPTENUMOPT+NOP IN

PRINT OF CISPLACEMENTS AND STRESSES

CONTINUE

IF (SUM=TOLER) 440:440,430

1F (NCYCM=NCYCLE) 440,440,243
WRITE(6+497S)SUM,TOLER
FORMAT(SHOSUM=1E15.6+6HTOLER=1ELS.6)

DO 421 N=1,NUMEL

I=NPL(N)

J=NPJI(N)

K=NPK(I(N)
EPX=(BJINI-BK(N) )*DSX (1) +BKIN) $0SX( J)~BI(N)*DSX(K)
EPY= (AK (N)>AJ(N) ) *DSY (1 )=AKIN) #DSY (J ) +AJ(N) #DSY (K}
GAM=C(AKIN)I=AJIN) ISDSX(1)+~AKIN)*DSX(JI+AJ(N) $DSX(K)
14+(BICN)=BK(N) I $DSY( T ) 4BKCN)#DSY(J)-BJ(NI*DSY (K)
COMM=R] o 7CASIN) *BKIN) ~AK(NISBJI(N))

IFCIANLYSeEQe0) CCMISEBULK (N)+ESHEAR(N)I®(44+/30)
IF(IANLYS.EG.0} COM2=EBULK{N3I-ESHEARIN}$(2/3.}
IF(IANLYSeGTe0) COM1m4,2ESHEAR(N)*(EBULK(N) +ESHEARIN) /34 / (EBULK(N
11404473, I SESHEAR(N) )

IFCIANLYSeGT.0) CCM2=2.#ESHEAR(N)#(EBULK(N)=(2./3¢) *ESHEAR(N) )/ (EB
TULKEN)+(4 o/ 3. ) SESHEAR(N) )

COM3=ESHEAR(N)

X=COMM® ( COM1%EPX+COM22EPY ) 4 THERM(N)

YRCOMM® (COM2#EPX+COM1SEPY ) $THERM(N)

XY= COMMSCOM3#GAM

XVENI=XVIN)+X

YVINI=YV(N) &Y

XYVINIZXYVEN) XY
EPXVIN)=EPXV(N) 4 (EPX%1004 ) /¢ AJIN) SBK (N)=AK(N) *BI(N) )
EPYV(NI=EPYVIN) +{EPY*100¢)/(AJ{N) $BK (N) -AK(NI*BJI(N))
GAMV(N)=GAMV(N) +GAM®]1 00 *COMM

CE(XVIN)+YVIN))/2.0
RESQRT((({YVINI=XV(N) ) /2.0)#324XYV(N)*%2)
XMAX (N} =C+R

XMIN(N)=C=R .
PAIN)I=0e5%57 ¢ 295STESATAN(2 ¢ *XYV(N) Z(YV(N)=XV(N))I)
IF(2e%XVIN)=XMAX(N)=XMIN(N))405+4200420

IF(PACN)) 81044204415

PA(N)=PALIN) +90 .0

GO TO 420

PAINI=PAINI~90.0

ANGEPA(N)*11./€30.

CC=COS(ANG)I*#2

SS=SIN(ANG) 232

SC=COS(ANG) #S INCANG )

EMAX(N)I=EPXV(N)*CC+EPYV(N) #SS~SCEGAMVIN}
EMIN(NISEPXV(N) ®SS+EPYV{IN)SCC+SCEGAMV(N)
IF(ITOPT.EQ.0) GO TO a21



66?7
663
664
665
666
667
668
669
670
571
672
673
674
675
676

677

678
679
680
681
682
683
68a
685
686
687
688
689
690
691
692
693
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695
696
697
698
699
700
701
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703
704
708
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

421

no

IF(NITER.£Q.2) GN TO 421

WRITE(Ge128) NUME(N) e XVIND) o YVIN) o XYV IN) e XMAX(N) « XMINCN) ¢ PAIND o
TEPXVIN) ¢EPYV(N) oEMAX(N) +EMIN(N)

XVIN)=XVIN)=X

YV(NI=YV(N)-Y

XYVINI=XYV(N)=XY
EPXVIN)=EPXVIN)}~(EPX#100+ )/(AJIN) *BKINI-AK(N)I*BJI(N))
EPYVIN)=EPYV(NI—(EPY*100+)/7(AJIN)*BK (N) ~AK(N)I*BJI(N))
GAMVIN)I=GAMV(N)~GAM*]100 « *CGMM

CONTINUE

C FIND THE MAXIMUM AND MINIMUM PRINCIPAL STRESSES

631

630

770

$001

650

SIG1=0.0

SI1G2=0.0

M1=0

M2=0

DO 630 M=1+NUMEL

IF(XMAX{M) sLT+S1IGl) GO TQ 631
SIGI=XMAX(M)

Mi=M

IF(XMIN(M).GTS1G2) GO TO 630
SIG2uXMIN(M)

M2=M

CONTINUE

WRITE(G61173 JM

WRITE (6¢633) (SIGlsM1+S51G2.4M2)

D0 6S0 J=1+NUKNP
IF(ITOPT«ECe1eANDeNITER.EQel) GO TO 770
XLOAD(J)=0.0

YLOAD(J)=0.0

XORD(J)=XORD({J)I+DSX(JI)
YORD(J)=YORD(JI+DSY(J)

DSXQ(J) s0SX(J) +0SXA( )
OSYQ(J)=DSY(JI+DSYQLJ)

DSX(J)=0.0

OSY(J)=0.0

GO TO 650

DSXQ(J)I=DSX(JI+DSXA(J)
OSYO(J)=DSY(J)+DSYQ(J)

WRITE (6¢122) NPNUM{J)+DSXC(J)eDSYQ(J)
OSXQLJI=DSXQ(J)=DSX(J)
DSYQ(JI=DSYQ(J)=DSY(JI)
IF(TAD(J)sEQel40) DSY(J)=0.0
IFC(TAD(J)EQa240) DSX(JI)=0.0
IF(TAD(J)eNE.0Q.0O) GO TO 5001

0SX(J)=0.0

DSY(J)=0.0

IF(TAL(J)eEQel+¢0) YLOAD(J)=0.0
IF(TAL(J)eEQe240) XLOAD(J)=0,0
TF(TAL({J)«NE+0+0) GO YO 6850
XLOAD(.))=0.0

YLOAD(J)I=0.0

CONT INVE

IF(KOPT.EQ.0) GO TO 664
IFCITOPTeGTa0eANDeNITER<EQel ¢ ANDeKOPT.GT<0) GO TO 664
IF(KOUNT«GT«1) GO YO 681

WRITE(G6.121)

WRITE(6¢122) (NPNUM(M) 4DSXQA(M) ¢+ DSYQ(M} cMx=1 ¢ NUMNP)



722
T23
724
728
726
727
728
729
730
731
732
733

735
736
T37
738
739
740
741

742
743
7aa
745
746
747
748
749
750
751

752
753
754
755
756
757
758
759
760
761

762
763
764
765
766
767
68
769
770
771

772
773
774
75
776
77
778
779
780
T81

c

68!

WRITE(64123)

WRITE(6¢128) (NUME(N) s XVIND) s YVE(N) o XYV (N} s XMAX (N) ¢ XMIN (N} ePA (N
L1EPXVIN) sEPYVIN) sEMAX (N)¢EMIN (N) oN=1oNUMEL)

iIFI(NSTEP.EQ.1) GO TO 925

IF(JMeEQ«NSTEP) GC TO 925

IF{SIG1.LE.0.00S) GO TO 664

TENSILE STRESS REMOVED

661

660

664

DN 660 Mx=14.NUMEL
IF{XMAX(M) oLE 0 0) GO TO 660
ANG=PA{M)}*11./630.

I=NPI(M)

J=NPJ M)

K=NPK(M)

AJI(M)I=XORD(JI-XORC(I)

AK{ M) =XORD(K)=XORD(1)

BJ (M) =YORDI{J)-YCRD(I)

BK({M)=YORD(K }~YORD(I)
AJ1I=AJ(M)ECOS(ANG)I+BI (M) SSIN(ANG)
BJ1=~AJ(M)$SINC(ANG) +BI(M) $COS(ANG)
AK1=AK (MY*COS(ANG) +BK(M) *SIN(ANG)
BK1==AK (M) *S IN(ANG) +BK(M) $3COS(ANG)
R1I=XMAX(M)*(BK1-EJ1}/2.

R11==R11
R1J==XMAX(M)*BK1/2.
R1J==R1J
RIK=XMAX(M)*BJ1/2e
R1K=-R1K
XMAX(M)=040

XV{M)=XMINC(M) #{SIN(ANG) #%2)

YV(MIZXMINLEM)* (COS(ANG)I*$2) .
XYV{M)=XMIN{MIXSIN(ANG) *COS(ANG)
IF(XMIN(M).LE.O0.0) GO TO 661
R2I=XMIN(M)*(AJL1I=AKL) /2

R21=-R21

R2J=XMINIM) 2AK1/72.

R2J=-=R2J

R2K==XMIN{M)SAI1/2.

R2K==R2K

XMIN(M)}=0.0

XV(M)=0.0

YV(M)=0.0

XYV(M)}=0.0
XLDAD(X)lCO$(ANG)‘RII¢XLOAD(l)-SlN(ANG)‘RZ!
XLOAD(J)=COS{ANG ) #R1 J+XLOACCJ =S INLANG } #R2J
XLOAD(K) =COS{ANG) #R1K4+XLOAD(K)=SINCANG) R 2K
YLOAD(!)’SlN‘ANG)'RIIQYLDADll)QCOS(ANG)‘RZX
YLOAD(J)=SIN{ANG) #R1 J+YLOAD(J )} +COSCANG)*R2J
YLOAD(K)SS!N(ANG"RIKQVLOAD(K)QCOS(ANG}‘RZK
GO TO 660

XLOAD(I )=COS(ANG)*R114XL.OAC(I)
XLOAD{J)=COS(ANG)*#R1J4XLCACLJ)
XLOAD(K)=COSCANG)*R1K 4XLOAD(K)
YLOAD(II=SINCANG)SR1I4YLOAD(I)

YLOAD(J) =SINCANG) SR1J4YLCAC(S)
YLOAD(K)=SIN(ANG)#R1K+YLOADIK)

CONTINUE

WRITE(G+62KOUNT

GO TC 243

IF(ITOPT «GT 0 cANDSNITEReEQe1) GO TO 764
WRITE (6.121)



782
783
784
78S

787
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789
790
791
792
793

795
796
797

798

799
800
801

802

803
804
805
806
807
808
809
810
811
812
813
8la
815

817
818
819
820
821
822
823
824
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826
827
828

830
831
832
833
834
835
836
837
838

840
aa1

NADONO

WRITE(65¢122)(NPNUM(M) sDSXQA(M) sDSYOQ(M ) s M=1 ¢ NUMNP)

WRITE(64123)

WRITE(6¢128) (NUME(N) ¢ XVIN)+sYVIN) e XYV(N) ¢ XMAX (N} oXMIN (N)ePA (N)o
1EPXVIN)«EPYVIN) sEMAX (NISEMIN (N) oN=1+NUMEL)

INTERPOLATE WMODULIL

764

950

26
27

28
29

751
752

00 S01 JJ=1.+NUMEL

NCOUN=0

IFCITOPTEQ.0) RO(JINI=0.0

IF(NITEREQe2) RO(JJ)=0.0

IF (NANLYS.EQ.0) GO TO S00

IF(KOPTeGTe0aAND e ITOPT eEQel c ANCeNITERGEQa1ANDXMAX(JJI)eGFe0e0) GO
1T0 S01

AVGSIG=ABS{XMAX(JJ))

IF(XMAXC(JIJ) eGE«O0aO0)AVGSIGX0.0

DIVS=ABS¢(XMIN(JIJ) )-AVGSIG

DIVS=ABS(DIVS)

N=EMAT(JIJ)

DIVSF=ACOEF(N) +BCOEF (N) *ABS(XMAX(JJI)Y)

IF(XMAX(JIJ) «GE«Oe0) DIVSF=ACOEF(N)

IF(NCELP.EQ.0) GO TO 852

SIGM1=ABS(XMIN(JJ))

SIGM2=(AVGSIG4SIGM1) /2.

SIGM3=AVGSIG

IFCIANLYSeGT0) SIGM2=0.0

NCOUN=NCOUN+1

SIGOCT=(SIGMI+SIGM24SIGM3) /3. '
SIGIN=SIGM1*SIGW2#SIGM3 v
CONFS=SIGIN/(SIGOCT*»2)

DIVOCT=SQRT((SIGMI-SIGM2) #%2+(SIGM2-SIGM3) #¢2+4(SIGM3~SIGM1)**2)
DIVOCT=DIVOCT/ 3.

D0 26 J=1.NCELP

JLS=J

IF( CONFS=SL(JeN)) 27+26+26

CONTINUE

CONTINUE

DO 28 K=1,NSTAN

JIS1=K

IF(DIVOCT-SO(KeJLS~1aN)} 29.28.28

CONTINUE

CONTINUVE

DO 751 K=31+NSTRN

Js2=K

IF(DIVOCT—SO(KeJLSN)}) 752751, 751

CONTINUE

CONTINUE
PRIZ1.061%(VS{JIS1eJLS=1NI=VS(JIS1=1.JLS=1eN)I/(ST(ISTN)=ST(IS1=1,
IN))-1.0

IF{PR1.GTe0e49) PR1=0.49

PR2=1.061%(VS(JIS2+JLS «NI=VS(JIS2-1eJLS NI I/Z(ST(JIS2N)=ST(JIS2~1,
IN})~-1.0

IF(PR2¢GT«0.45) PR2=0.49

PR3=PR1+((PR2-PR1)I*( CONFS~SLIJILS=1eNII/(SLEJILSN)-SLIJILS=1eN}))
IF({PR3.GT«0e489 ) PR3I=0.49

DIF1=SD(J351¢JLS—1eN)-SO(US1=1eJLS~1eN)

ETPI=DIF1/{ST(JSL +NI=ST{JISLI=1.N )

GTPI=ETP1/(0.9428% (1 .4PR1))



BAa2
843
844
84S
846
847
848
849
850
851
852
8%3
854
8s5%
856
857
8s8
859
860
861
862
863

865
866
867
868
869
870
871
872
873
874
875
876
-y ard
878
879
-1-1.]
881
882
883
88a
83s
886
887
p-1-1-]
889
890
891
892
893
894
895
896
897
e98
899
900
901

annn 0

(2 Xa N2 Xa Nl

851
852

501

500

70

2

DIF2=SD(JS2¢JILSeN)=SD(JIS2=10JLSN)
ETP2=DIF2/(ET(IS2eN)=ST(JIS2-1¢N))

GTP2=ETP2/{0.9428%(1.4PR2))

GTP=GTP1¢ (GTP2-GTP1)*(CONFS =SLIJLS=1eN)I/Z(SLLILS«NI=-SLIJLS=1eN)}
GTP=100.0GTP

BULKM EGTP42,¢(1.4PR3J/(3.%(1.-2.%PR3))

SHEARM=GT P

IF(IANLYS.GT.0) GO TO 852

SIGMM2=PR3I$(SIGM]1 ¢SIGM3)

SIGMM2=(SIGRM2¢SIGM2)3/2.

STRS=ABS(SIGMM2-SIGM2)

IF (NCOUN.GE.11) GO TQ 851 °

IF(ABS(SICMM2-SIGM2)+L.T«0.01) GO TO 851

SIGM2=STGMM2

GO To 950

WRITEC6.125) JJeACOUNeSIGM2+STRS.PR3

CONTINUE

IFINITEREQe1 ) TEBULK=BULKM

IF(NITEREQ.2)EBULK( JJ)=BULKM

IFCITOPT oaGToO0ANDNITEREQ1 )EBULK(JJII=(EBULK(III+TEBULK) /2,
IF(ITOPTEQeO«ANDNITER.EQ.1)EBULK(JIII=TEBULK
IF(NITEREQ.1)TSHEARESHEARM .
IF(NITER<EQe1 e ANDeDIVSeGE «DIVSF e ANDeNTENSeGT «0) TSHEAR=EBULK(JJ)/S
10e

IF(NITEREQ.2)ESHEAR(JIJI=SHEARM

IF(NITERGEQe2ANDDIVS.GE «DIVSFeANDNTENS.:GT+0) ESHEAR(JJI=EBULK(J
1J)/50.

IF(ITOPT eGT 0o ANCINITERGEC o1 JESHEAR(JJI=(ESHEAR( JJI+TSHEAR)/ 2.
IF(ITOPTeEQeO«ANDoNITER.EQe1) ESHEAR(JSIIETSHEAR

IF(ESHEARCJJI I «GT o (12 4SIEBULK(JIJI ) I IESHEAR(JIJ) B1 . 4SHEBULK(IJ)
IF(ESHEAR(3J) oL T+ (EBULK(JIJI/S0. ) )ESHEAR(JIIIZEBULK(JII)I/SO.
CONTINUE

WRITE(6,110)

WRITE(S+ 20SSIINUKELIN) o NPT (N) e NPJIN) + NPK(N) ¢ EBULK(N) ¢ RO(N) s ESHEAR(N
1)e MATIN). N=1,NUNMEL )

IF(1TOPTLEG.O0) GO TO S00

IF(NITER.EQ.1) GO TO 160

CONTINUE

GO TO 925
PRINT OF ERRORS IN INPUT DATA

WRITE(6+.712)LX
FORMAT STATEMENTS

FORMAT (915)
FORMAT(1I2¢314,4E12.4,41F8.48)
FORMAT(IS+4F100+2F12.8)
FORMAT (21S.1F8.3)
FORMAT (3E1S5.8)
FORMAT(115)
FORMAT(1&4.,6F8.0)
FORMAT(214+2F8.0)
FORMAT(AIS)
FORMAT{615¢27F10.0.15)
FORMAT (21S5)



Q02
903
904
90S
906
907
908
909
910
11
912
913
914
91S
916

917 |

%18
919
920
s21
922
923
924
925
926
927
928
929
930
o931
932
933
93a
935
936
937
938
939
940
941
a2
943
94s
945
946
947
%48
949
950
981
952
9s3
954
9ss
956
957
9s8
959
960
961

21 FORMAT(7FS.0)

23 FORMAT (1Xe*LATSTRESS® ¢6Xe 6FB8e3/)

24 FORMAT (1Xe*STRAIN® ¢3Xe1F8a2¢ 6FB8.37)
40 FORMAT(12F6.0)

99 FORMAT (1H1)

100 FORMAT(18A4)

101 FORMAT (30HONUMBER OF ELEMENTS =114/}

102 FORMAT (30H NUMBER OF NODAL POINTS =114/7)

103 FORMAT (30H NUMBER OF 8CUNDARY POINTS =114/7)

104 FORMAT (30H CYCLE PRIAT INTERVAL =114/7)

10S FORMAT (30M OUTPUT INTERVAL OF RESULTS =1la/)

106 FORMAT (30H CYCLE LIMIT =3114/)

107 FORMAT (30H TOLERANCE LIMIT =IE12.47)

108 FORMAT (30H OVER RELAXATION FACTOR =1F6e3)

117 FORMAT (30H LIFT NUMBER =113/)

109 FORMAT (118+4F12.64:2F12.8)

110 FORMAT (74H1EL. b 4 J K EBULK DENSITY ESHEAR
1MAT NO. )

111 FORMAT(80H1 NP X=-0RD Y=0RD X=LOAD Y-LOAD
1 X=-CI1SP Y=-DISP ) '

112 FORMAT(20H BOUNDARY CONDITICNS)

119 FORMAT(34M0 CYCLE © FORCE UNBALANCE)

120 FORMAT (1112+1E20.6) ) .

121 FORMAT(42HONODAL POINT X<-DISPLACEMENT Y<DISPLACEMENT)

122 FORMAT (1112,2E15.6)

123 FORMAT(SHIELNO 4Xe8HX-STRESS 4X¢B8HY-STRESS 3X.9HXY-STRESS 2X ¢ 10HMA
1X=STRESS 2X ¢+ 10HMIN-STRESS 2XeSHDIRECTION 3X¢8HX=STRAIN 3Xe8HY=STRA
2IN 1Xs 10HMAX=-STRAIN 1Xe 10HMIN=STRAIN)

124 FORMAT(1IS+SE12.5¢5E11.4)

125 FORMAT(21S¢3E12.5)

126 FORMAT(114,2Ei2.5)

602 FORMAT(IS5:2F1040)

633 FORMAT (*0°,
1°MAXe PRINCIPAL STRESS®?¢F10.5¢*AND OCCURS IN ELEM.®,16//
2°MINe PRINCIPAL STRESS=?¢F10.%5¢*AND OCCURS IN ELEM.®¢16//)

711 FORMAT(32MHOZERDO OR NEGATIVE AREAs EL oNOe =114)

712 FORMAT(33HOOVER 8 NoPe ADJACENT TO NoPe NO.114)

670 FORRAT(//4I5.6F12.6)
753 FORMAT(2IS.F10.0)

823 FORMAT(SHINODE 4X+8HX-STRESS 4X:8HY=-STRESS 3X 9MNXY-STRESS)

824 FORMAT (30H NUMBER OF REAC NODAL POINTS =114/)

825 FCRMAT (30H NUMBER OF REAC ELEMENTS =114/

1010 FORMAT(IS6F5.0)
1020 FORMAT(IS.4F15.6)
1030 FORMAT(3IS)
2000 FORMAT(*0%,*NUMBER OF THE MATERIALS=®,S/)
2010 FORMAT(5F10.0)
2020 FORMAT(®0%410Xs *OENSITYR® (F15.6//¢10X+*BULK MODULUS=® o F1546//+10Xe
1°SHEAR MODULUS=® ¢F15.6//+10Xe* ACOEFe=¢F1546// ¢10X s 'BCOEF om ¥4 F15,6)
2021 FORMAT(2I5:K10.0)
2051 FORMAT(10FES.0)
2052 FORMAT(11F5.0)
2053 FORMAT(®0°+10Xs *STRESS=STRAIN RELATIONSHIPS FOR MATERIAL=®15//)
2055 FORMAT(IS(314¢3E12.4015)
c
c
925 sSTOP
<
END
c



962
963
964
96S
966
967
968
969
970
971

T2
973
974
975
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o977
978
979

981
s82
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992
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996
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998
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1010
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1016
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1020
1021

[aXaNa)

[ X2 N2 NaXal nonnonn (1 X2 XaXa XaNa Xa Xal

noanon

SUBROUT INE TESTO

CONVERSION OF TRIAXIAL TEST DATA FRCM CONVENTIONAL FORM TO STRESS
INVARTANT FORM AND INTERPOLATION

OIMENSION SL(10+5)+SD(20610:5)sVS(2010¢5) +SIGINV(20410+5)+
1VSTN(20+10+5)

COMMON/AREA3/

1 ST(ZO'S)'SIGINTQZO-S)'TOC+D(20o10'5)-GOCT(ZOOlOvS)'NUMATc
1INCELP+CONFACNSTRN ’

READ CELL PRESSURE CATA FOR GIVEN MATERIALS

DO 10 N=1¢NUMAT

READ(5¢1010) (SL(JeN)eJI=1,NCELP)
DO 15 J=1.NCELP
SLEJeNIESL{JeNISCONFAC
SIGINT(JeNIESL(JIN)

CONTINUE

READ DEVIATORIC STRESS DATA FOR GIVEN MATERIALS

25
20

DO 20 K=]1.NSTRN

READ(S5¢31020) STIK M) e (SO(KeJeN)eI=14NCELP)
00 25 J=1.NCELP
SD(KeJeNIRSD(KeJeNISCONFAC

CONTINUE

CONTINUE

WRITE (641030) N

WRITE(6+41080) (SL{J«NIeJI=1NCELP)

READ VOLUMETRIC STRAIN CATA FOR GIVEN MATERIALS

30

35
10

D0 30 K=1.NSTRN

READ (5¢1020) ST(KN)e(VSIKeJeN) eIJ=1sNCELP)
WRITE(6+1050) ST(KINIe(VS(KeJsN) oJ=1+NCELP)
CONTINUE

DO 35 Kx1+NSTRN

WRITE(G641050) ST(K¢NI«(SO(KeJIeN) eJ=1,NCELP}
CONTINUE

CONTINUE

D0 40 N=1NUMAT

DO 45 Jx=1.NCELP

DO SO K=3 NSTRN

PROD= (SL(JeNI*#2)#(SC(KeJeN)+SLLJsN))
SIGOCT=SL(J+NI+LSDLlKeI NI I/3e



1022
1023
1026
1025
1026
1027
1028
1029
1030
1031
10232
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1083
1044
1045
1046
1047
1048
1049
1080
1081
1052
1083
1086
1088
1086
1057
1088
1059
1060
1061
1062
1063
END OF FILE

£3
50
5

60
61

S5
70

s}

80

1000
1010
1020
1030
1031
1040
1041
1050
1060
1070
1071

(4

[

IF(JeEQe1eANDeK+ECs1) GO TO S1

SIGINV(KeJeN)IZPROD/ (SIGOCTE®2)

IF(JeEQel ¢ ANDoKoEGQel) SIGINVIKeJoNI=0eO

CONTINUE

CONT INUE

DO 70 Im1eNCELP

00 S5 K=l ¢NSTRN

DO 60 J=m1eNCELP

JLS=J

1F(SIGINT(1sN)=SIGINV(KeJeN})61460+60

CONTINUE

CONTINUE
Tocro(k.x.n)-so(K.JLs-x.N)+(su(K.JLs.N)-sotx.JLs-x.N))-(sxcxNT(x.N
t)—S!G!NV(K.JLS—l'NI)I(S!G{NV(K-JLS.N)-S!GINV(K-JLS-I-Nl)
TOCTD(KsIcN)ISTOCTO(Ks ToN)$0.4714
VSTN(K;!.N)IVSIK.JLS-!oN)t(VS(K.JLSoN)—VS(KoJLS-!oN))t(s!GlNY(!.N)
l-S!GlNV(K-JLS-loN))I(SXGINV(K.JLS.N)—SIGINV(K-JLS-!oN))
GOCT(Ke 1eN)B0e4T148(3.#ST(KeN} —VSTNIXsIeN))

CONTINUE

CONTINUE

WRITE(6+1031) N

WRITE (6¢1081) (SIGINT(I+N)sI=1¢NCELP)

DO 7S K=1NSTAN
WRITE(6+1050) STC(K+N) s (TOCTD(Ke TeN) s Im1 s NCELF)

DO 80 K=1NSTRN

WRITE(6+1080) STCKsN) 1 CGOCT( Ko JoN) e Jm1 ¢ NCELP)

CONTINUE .

FORMAT(31S5:F10.0)

FORMAT(10F5.0)

FORMAT(11FS.0)

FORMAT{ 909, 'DATA IN CONVENTIONAL FORM FOR MATERIAL NOe* ¢ 15/)
FORMAT(®0%,¢ DATA IN STRESS INVARIANT FORM FOR MATERIAL NOeo *+157)
FORMAT(1Xs 'LATSTRESS® ¢6X¢10F8.3/)

FORMAT(1X¢*J3/(SIGOCT )##2¢¢1X+10F8.,3/}
FORMATC1X ¢ * STRAIN® ¢ 3X (F6e2010F83/)

FORMAT(IS)

FORMAT{3F10.0)

FORMAT(3F8.3.4F12.4)

RETURN

END
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APPENDIX B
COMPUTER PROGRAM FOR THREE DIMENSIONAL
FINITE ELEMENT ANALYSIS

B.1 Scope
This appendix contains a description of the computer
program used for three dimensional finite element analysis

and a listing of the program.

B.2 Language, Code and Limitaticns

Language: The computer program presented here was
written in FORTRAN IV language and run on an IBM 360/67 com-
puter with an MTS operating system at the University of
Alberta, Edmonton.

Code: The title of the code is Finite Element Non-Linear
Analysis for Three Dimensional Problems (FENA3D).

Limitations: The program as presented in this appendix
is dependent on the MTS system subroutines and can handle a

problem less than or equal to the following size:

Number of elements = 350
Number of nodes = 450
Number of materials = 5
Number of cell pressures

at which triaxial data

is supplied = 10
Number of axial strain

points at which tri-

axial data is supplied = 20

If the size of a problem exceeds the above 1imits the dimen-
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sions have to be increased accordingly. The minimum required
dimension for each array is given in B.4.1.

One of the main limitations of a three dimensional
analysis is the requirement of a large computer storage. In
the present program the equation solver solves the equations
in blocks using a core storage of (2*MBAND*(MBAND+1)) loca-
tions, MBAND being the half-band width. The core storage
needed increases rapidly with the halif-band width. On a com-
puter with an available capacity of 1000K a maximum band width
of about 320 can be handled with the use of the present pro-
gram. Also it is to be noted that the computation time
increases very rapidly with the half-band width. So it is
normally preferable :to 1imit the half-band width to about

250 while using the present program.

B.3 Development, The Main Features of Program and Computa-
tion r(ime

B.3.1 Development

The development of the present program was based on
the ideas used by E.L. Wilson (University of California,
1966) in coding a two dimensional finite element program with
a solver that solves the equations by Gaussian elimination in

blocks. The program was developed by the author in the year

1971.

B.3.2 Main Features

The program consists of eight subroutines and a main
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program. Eight other system-dependent subroutines are refer-

enced in this program. These are:
TIME,ADROE,RCALL,SETDSN,NRITE,READ,NOTE,POINT

the details of which can be obtained from the manual of the

MTS system subroutines. Fig. B.1 shows the sequence of call-

ing the different subroutines written for the present program.

The %unction of the Main Program and each subroutine is des-

cribed here in brief.

Main Program. Variables whose dimensions are prescribed
depending on the half-band width computed for the current
analysis, are passed to other subroutines. These variables
change the dimensions of certain arrays appearing in certain
DIMENSION statements of other subroutines.

Subroutine MSUB. This is the master subroutine which

calls other subroutines necessary for the analysis. In this
subroutine the coefficients needed for integration by Gaussian
quadrature are computed, and the elastic parameters needed

for each step in _the non-linear analysis are calculated.

Subroutine READIN. This subroutine reads all the data

pertaining to nodes, elements, materials, loads, and boundary
conditions and interpolates the initial moduli needed in the
non-linear analysis for all elements. It also calculates the
half-band width for the current problem.

Subroutine TESTD. This subroutine reads the triaxial

test data and converts it into the stress-invariant form.

Subroutine ASTIF. This subroutine assembles the lgad

vector, and the total stiffness matrix from the element stiff-
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ness obtained by calling the subroutine ELSTIF. It calls the
subroutine MODIFY in order to modify the total stiffness
matrix, and load vector to suit the given displacement bound-
ary conditions. Formation and modification of the total
stiffness matrix, and the load vector are done in blocks of
size MBAND*(MBAND+1) and the information is written on a
temporary sequential disc file.

Subroutine ELSTIF. This subroutine forms the element

stiffness matrix for each element and returns to ASTIF. An
isoparametric, eight-node hexahedral element has been used for
the present program. The same element is specialized to repre-
sent triangular prisms or tetrahedra. The subroutine also
forms the element stress matrix, computes the element stresses,
and returns them to the subroutine STRESS.

Subroutine MODIFY. This subroutfne modifies the total

stiffness matrix, and the load vector according to the pre-

scribed boundary displacement conditions and returns them to

the subroutine ASTIF.

Subroutine BAND1. This is an equation solver which

solves the equations by the direct method of Gaussian elimina-
tion. The equations are solved in single precision and in
blocks by transferring parts of stiffness matrix, and load
vector from sequential files to core and vice versa. Two
temporary sequential disc files of sufficient size are used.
The required size of sequential files in terms of the number of
tracks (NTRACK) can be determined as follows:

Let each track of the file correspond to NBYTES
(about 7000) ' A
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Let the number of equations to be solved be NEQ
Let the half-band width be MBAND

Number of blocks needed to write information into
a file is obtained from NBLOCK=(NEQ/MBAND)+1

Number of tracks needed for the file can be ob-
tained from NTRACK=(NBLOCK)*(MBAND)*(MBAND+])/(NBYTES)+].

File 2 is used to write the total stiffness matrix, and the
load vector as formed in the subroutine ASTIF and File 1 is
used to write information regarding the reduced equations

obtained in the process of Gaussian elimination.

Subroutine STRESS. This subroutine computes the stresses
and strains related to elements and nodes by calling the sub-

-routine ELSTIF for the formation of the element stress matrix.

B.3.3 Computation Time

It has beén observed that considerable savings on the
cost of computation (even uﬁ to 50%) can be effected by intro-
ducing an efficient method of data transfer between core and
sequential files. 1In the present program such transfers are
effected by calling certain system-subroutines and by making
suitable EQUIVALENCE statements. Table B.1 compares the com-
putation time needed for solving 738 equations with a half-
band width of 171 by using different methods of handling the
transfer of data between core and files. The example con~
sidered here was concerned with a three dimensional finite
element analysis of an earth dam. Total computation time for
the complete analysis of the problem and the percent reduc-

tions in time have been presented in Table B.1. 1In the present
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program, Method 5 indicated in Table B.1, has been used as

it effects the maximum reduction of the computation time.

B.3.3.1 Estimation of Computation (CPU) Time

It is generally useful to estimate before hand the
approximate computation time spent in the assembly of the
total stiffness matrix and the solution of equations for a
given problem. The cost of computation sometimes dictates
the size of the problem in terms of the number of nodes and
elements. By knowing the number of nodes, the half-band width
and the number of elements for a given problem the computaticn
time needed for the solution of equations may be estimated by
referring to Fig. B.2. This figure shows the relationship
between the half-band width (MBAND) and the computation time
for solution of equations equal to MBAND in number, in each
block. This relationship has been obtained by solving pro-
blems of different sizes using the three dimensicnal program.
The computation time needed for the soiution of equations in
a problem is obtained by multiplying the number of blocks with
the computation time per block, read from Fig. B.2 at the
given half-band width. The time needed for the assembly of
the total stiffness matrix is estimated between 0.8 sec. and
1.2 sec. per element depending on whether a two-point or
three-point integration formula is used for the formation of
the element stiffness. This time multiplied by the number

of elements gives the time for the formation of the total

stiffness matrix.



Since the time required for solution of a given number

of equations at a given half-band width depends on the number

of displacement boundary conditions imposed, the time given

by Fig. B.2 should be considered as approximate.

B.4 Nomenclature

In Section B.4.1 that follows, the variables that need

a change in their dimension declaration according to the size

of the problem are designated by parenthesés after the vari-

able name. The description and the minimum required size of

the variable are also indicated. The variablies defining the

minimum sizes are given as input to the program.

B.4.1 Description and Size of Variables

Name Description

ACOEF( ) Shear strength parameter associated
with cohesion given by 2c cos ¢/
(1-sin ¢)

BCOEF{ ) Shear strength parameter associated

with o5 given by 2 sin ¢/(1-sin ¢)

CONFAC Conversion factor used to convert
the triaxial test results to the
units in which analysis is performed

DISPX( ) Total displacement of a node in x-
direction

DISPY( ) Total displacement of a node in y-
direction

DISPZ( ) Total displacement of a node in z-
direction

EBREAD( ) Bulk modulus read for each material
type

Minimum
Size When

Applicable

(NUMAT)

(NUMAT)

(NUMNP)
(NUMNP)
(NUMNP)

(NUMAT)



Name

EBULK( )
EDEV( )
ESREAD( )
GOCT( )
HED( )
ITOPT

KODE( )
KOEL( )

KOUNT(')
KTERMI

M

MAT( )
MATN
MBAND

N
NANLYS

Description

Bulk modulus assigned to each ele-
ment '

Shear modulus assigned to each ele-
ment

Shear modulus read for each material
type

Percent octahedral shear strain
Heading for the identification of
the problem

Code to identify whether a step is
to be analyzed once or twice

Code for each node to identify the

type of boundary displacement con-
dition .

Code for each element to identify
the type of integration formula to
be used

Counter used for computing the nodal
stresses

Code to identify whether the execu-
tion toc be stopped after the genera-
tion of the element and nodal data
Element or nodal number

Material number assigned to each
element

Number of elements to which material
number has to be changed

Half-band width as calculated in
program

Element or nodal number

Code to identify whether the analysis
is linear or non-linear

B.8

Minimum
Size When
Applicable
(NUMEL)
(NUMEL)
(NUMAT)
(NSTRN,
NCELP ,NUMAT)
(18)

(NUMNP)
(NUMEL)

(NUMNP)

(NUMEL)



Name

NBOUN

NCELP

NOBSET
NP( )

NSET

NSHEAR

NSTEP
NSTRN

NUM1

NUM2

NUMAT
NUMCE
NUMEL
NUMELS

NUMJK

Description

Number of nodes at which the bound-
ary displacements or loads are
specified in a particular step

Number of confining pressures at
which triaxial test data is
supplied as input

Number of sets of elements for which
the overburden factor is prescribed

Vector to store the eight nodes of
each element

Number of elements (excluding the
one read) for which the same over-
burden factor has to be assigned

Code to identify whether shear fail-
ure is to be considered or not

Number of steps for the analysis

Number of axial strain points at
which the triaxial data is supplied

Number of sets of nodes for which
codes other than zero are to be
assigned

Number of nodes (excluding the one
read) for which the same code has
to be assigned

Number of material types present in

the given problem

Number of sets of hexahedra and
base triangular prisms to be gene-
rated

Number of elements in the problem

Number of elements in a particular
step

Number of hexahedra or base triangular
prisms (excluding the one read) to
be generated

3.9

Minimum
Size When
Applicable

(8,NUMEL)



Name

NUMNP
NUMTH
NUMTP

OBFAC( )
RO( )

ROREAD( )
so( )

SGTEL
SGTNP
SGTPS( )

SIGA( )
SIGINT( )

SIGINV( )

SL( )

ST( )

TOCTD( )

Description

Number of nodes in the problem
Number of tetrhedra in the problem

Number of triangular prisms in the
problem

Overburden factor

Density of the material in an ele-
ment

Density of the material read for
each material type

Deviatoric stresses read from test
data

Total element stresses
Total nodal stresses

Principal stresses and strains in
an element

Nodal stresses in a particular step

A vector used in the conversion of
data from triaxial form to stress
invariant form

A vector used in the coversion of
data from triaxial form to stress
invariant form

Number of triaxial cell pressure
values at which data is supplied

Number of percent axial strain
values at which triaxial data is
supplied

Percent nodal strains in a parti-
cular step

Percent total noda?! strains

ct

Percent total element strains

Octahedral shear stress

B.10

Minimum
Size When

Applicable

(NUMEL)
(NUMEL)

(NUMAT)

(NSTRN,
NCELP,NUMAT)

(NUMEL,6)
(NUMNP,6)
(NUMEL,7)

(NUMNP,6)
(NCELP,
NUMAT)

(NSTRN,
NCELP,NUMAT)

(NCELP,
NUMAT)
(NSTRN,
NUMAT)
(NUMNP,3)

(NUMNP,3)
(NUMEL,6)

(NSTRN,
NCELP ,NUMAT)
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Minimum
Size When

Name Description Applicable

u( ) Force or displacement in x-direction (NUMNP)
given as input at a nodal point

V() Force or displacement in y-direction (NUMNP)
given as input at a nodal point

VS( ) Volumetric strain obtained from tri- (NSTRN,
axial test NCELP ,NUMAT)

VSTN( ) A vector used in the conversion of (NSTRN,
the triaxial test data to stress NCELP,NUMAT)
invariant form

W( ) Force or displacement in z-direction (NUMNP)
given as input at a nodal point

X( ) x-coordinate of a nodal point (NUMNP)

Y( ) y-coordinate of a nodal point (NUMNP)

Z( ) z-coordinate of a nodal point (NUMNP)

B.5 Input Data Procedure

B.3.4.1 has to be referred for the explanation of the |

name of variables used in this section.
(1) Problem Control Cards (2 cards)

(a) Problem Identification Card (1 card) (18A4)
1-72 HED

(b) Preliminary Information Card (1 card) (716)

1-6  NUMNP
7-12 NUMEL
13-18 NUMAT
19-24 NUMCE
25-30 NUMTP

31-36 NUMTH



(2)

B.12

37-42 NANLYS Zero for linear analysis and one
for non-linear analysis

Figs. B.3 and B.4 show an example of a three dimensional
idealization of a model dam representing different types

of elements as given below:

Type of Elements Element Numbers

Hexahedra 2,3,5,10

Base triangular prisms 7,8

Triangular prisms 1,4, (for element 9 back-

face is inclined)

Tetrahedra 6

The preliminary information card for this problem would

be as follows:

NUMNP = 23

NUMEL = 10

NUMAT = 1 (number of material types equal to one

for this example)

NUMCE = 4

NUMTP = 3

NUMTH = 1

NANLYS = 0 (analysis is linear)

Nodal Point Daté Cards (Number of cards less than or
equal to NUMNP) (215,6F5.0)

1-5 N

6-10 KODE( )
11-15  X( )
16-20 Y( )
21-25 Z( )



(3)

26-30 U( )
31-35 V()
36-40 W( )

In an earth dam problem the nodes can seldom be arranged
with equal spacing. However in problems where nodes can
be spaced equally with the other two coordinate distances
being constant only the extreme nodes need to be given

as input. The intermediate nodes are generated with
nodal displacements and loads equal to zero and nodal
code equal to zero. The following nodal codes are used

to represent the various boundary displacement conditions.

X-Dispiacement Y-Displacement Z-Displacement

KODE(N) Specified Specified . Specified
| 0 NO NO NO

1 NO NO YES

2 NO YES NO

3 YES NO NO

4 YES NO , YES

10 YES YES NO

11 NO YES YES

12 YES YES YES

Nodal Code Change Control Card (1 card) (I5)

1-5 NUM1 (If no changes are needed NUMI is equal to
zero and (4) is omitted)

As mentioned before the intermediate nodes are generated
with zero nodal codes. However if some of them happen

to have codes other than zero it becomes necessary to
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assign the proper codes. NUM1 gives the number cf sets
of nodes to which the proper codes are to be assigned.
Nodal Code Change Cards (2*NUM1 cards)

(a) Number of nodes in a set excluding the one read (15)

1-5  NUM2 .

(b) Nodal Number and the Code (2I5)
1-5 N ‘
6-10 KODE(N)
As an example for (3) let it be assumed that the
nodal points shown in the sketch below are spaced
equally in x and z directions for a particular value

of y and have a code equal 2.

s Z 2 19 o Z
A
1 12 13 14 {5
6 7 8 9 10
! 2 3 4 s
Y=

If the intermediate nodes namely 2,3,4,7,8,9,12,13,
14,17,18 and 19 are generated with the extreme nodes
as input they will be generated with a code equal to
zero. Since the proper code to be assigned to the
intermediate nodes is 2, the fo]]owing input cards
are necessary.

4 (NUM1) (15)



2 (NUM2) (15)
2 2 (N,KODE(N)) (215)
2 (NUM2) (15)
7 2 (N,KODE(N)) (215)
2 (NUM2) (15)
2 2 (N,KODE(N)) (215)
2 (NUM2) (15)
17 2  (N,KODE(N)) (2I5)

1

(5) Cards for Generation of Hexahedra and Base Triangular
Prisms (2*NUMCE cards)

(a)

(b)

Number of elements (excluding the one given as
input) to be generated (15)

1-5 NUMJK
Element data card (1115)
1-5 M
6-10 KOEL(M)
11-15 NP(1,M)
16-20 NP(2,M)
21-25 NP(3,M)
26-30 NP(4,M)
31-35 NP(5,M)
36-40 NP(6,M)
41-45 NP(7,M)
46-50 NP(8,M)
51-55 MAT(M)
Considering the example in Fig. B.3 the sets of
base triangular prisms and hexahedra to be generated

are 4 which is given by the number NUMCE. Each set
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is represented by two cards. The first card gives
the value NUMJK and the second card gives the de-
tails of the element from which the other elements
equal to NUMJK in numbers are generated in that
particular set. The element code to be given as
input indicates the type of integrafion formula (two
or three point) to be used for that particular ele-
ment. If the element is a reguldr body, e.g., a
rectangular prism or a triangular prism, a two point
integration formula is used and in the case of a skewed
element a three point integration formula is used

for better accuracy. In addition, the code indicates
whether the given element is a hexahedron or not.

If the element is not a hexahedron, the evaluation

of stresses at the corners of the element (for the
purpose'of computing the nodal stresses) has to be
done very close to the corner (but not at the corner)
to avoid a division by zero. The following element

codes are used in the present program:

Element Code 1Integration Formula Used Type of Element

0 Two point Gaussian quad- Regular hex-
rature hedron
1 Two point Gaussian quad- Regular element
rature other than a
hexahedron
2 Three point Gaussian Skewed element
quadrature other than a
hexahedron
3 Three point Gaussian . Skewed hexa-

quadrature hedron

o



The following gives the set-up of cards for the
generation of the hexahedra and the base trianguiar
prisms for the example given in Fig. B.3 and Fig. B.4.

T(NUMJK(I5)

2,0,12,3,2,11,15,6,5,14 1(M,KOEL(M),(NP(KK,M),KK=],8),
MAT(M))(]]IS)

0(NUMJK(I5)

5 0 16,7,6,15,1
8) MAT(M))

1(NUMJK)(IS)

7,1,12,12,11,11
=1,8],MAT(M)) {

0(NUMJK)(15)

10,3,21,16,15,20,23,
KK=1,8) ,MAT(M)) (1115

? 17 > 1(M,KOEL (M), (NP(KK M),

,20,15,14,19,1(M,KOEL (M), (NP(KK,M),
(1115)

;8,]7,22,1(M,KOEL(M),(NP(KK,M),
The elements 3 and 8 will be generated accordingly
with the same element code and material numbers

given for elements 2 and 7 respectively.

Cards for the Generat1on of Triangular Prisms (NUMTP
cards) (1115)

If NUMTP is zero (6) is to be omitted.
-5 m
6-10 KOEL(M)
11-15 NP(1,M)
16-20 NP(2,M)
21-25 NP(3,M)
26-30 NP(4,M)
31-35 NP(5,M)
36-40 NP(5,M)
41-45 NP(7,M)



(7)
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46-50 NP(8,M)
51-55 MAT (M)
In the example shown in Fig. B.2, NUMTP=3. The cards

set up would be as follows:

,14,5,5,14,1(M,KOEL(M), (NP(KK,M),KK=1,8),
,17,8,8,17,1(M,KOEL(M),(NP(KK,M),KK=1,8),

,1;,17,22,1(M,KOEL(M),(NP(KK,M),
I5

[ ~ O
~~

Cards for the
(1115)

eneration of Tretrahedra (NUMTH cards)
If NUMTH is zere (7) will be omitted.
1-5 M
6-10 KOEL(M)
11-15 NP(1,M)
16-20 NP(2,M)
21-25 NP(3,M)
26-30 NP(4,M)
31-35 NP(5,M)
36-40 NP(6,M)
41-45 NP(7,M)
46-50 NP(8,M)
51-55 MAT(M)
In the example shown in Fig. B.3 NUMTH=1. The card set

up would be as follows:

9,]?,14,]9,1(M,KOEL(M),(NP(KK,M),
115

~~
— —d



(8)

(9)

(10)
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Cards for Changing the Material Numbers for Certain Ele-

ments

(a)

(b)

Control Card to Change Material Numbers (1 card) (I5)
1-5 MATN

Cards to Change Material Numbers (MATN cards) (2I5)
1-5 M |

6-10 MAT(M)

As the material number for the generated elements
will be the same as that assigned to the element
given as input, it would sometimes be necessary to
alter the material number in some of the gene-

rated elements. When these changes are not necessary

MATN is équa] to zero and (b) is omitted.

Overburden Factor Control Card (1 card) (I5)

1-5

NOBSET (If the analysis is linear NOBSET=0 and
(10) is omitted)

Overburden Factor Cards (Number of cards = NOBSET)

(215,F10.0)
1-5 M Element number
6-10 NSET

11-20 OBFAC( ) To be given only if the value is not

equal to one

The following example provides an explanation for (9)

and (10)
¥ . . .
15 | 16 17 h3 Y3 1S density of material
% for elements 15 to 17
s 1o | 1 12 | 13 |14 h2 Yy is density of material
s for elements 9 to 14
3 | 4 5 | 6 177 L LT 6 is density of material
£ % for elements 1 to 8
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When a non-linear analysis has to be performed for gravity
Toaded structures the initial moduli are computed for

each element considering the overburden pressure at the
mid height of the element. 1In the sketch shown above
there are 17 elements to be considered in a particular
step. The overburden pressure at the mid height of a
certain element say 8 is (y]h]/Z +yyh, t y3h3) where

Yis Yo and Y3 are the densities of the materials and

h

1° h2 and h3 are the heights as shown. Now the over-

burden factor can be defined for the element 8 as follows:
OBFAC(8) = (y]h]/z + yzh2 + Y3h3)/Y]h]/2).

If for example hy = h, = hy = h and y; = v, = v53 =7,
then the overburden factor control card and the overburden

factor cards will be as given below:

NOBSET=3
M NSET OBFAC (M)
3 2 3.0
6 2 5.0
12 2 3.0

OBFAC(M)=1.0 is automatically set in the program and
hence need not be supplied in the data. In the present
example elements 1,2,9,10,11,15,16 and 17 will have an
overburden factor equal to unity.

Triaxial Test Data Controi Card (i card) (2i5,Fi0.0)

1-5  NCELP




(12)

(13)

(14)

(15)
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6-10 NSTRN
11-20 CONFAC
If the analysis is linear a blank card for (11) to be
supplied and (12), (13), (14) are omitted.
Cell Pressu?e Card (1 card) (10F5.0)
If the test results are to be supplied say at 0,5,10,30
and 40 psi cell pressure values the input is as follows:
1-5 Cc.0
6-10 5.0
11-15 10.0
16-20 30.0
21-25 40.0

Axial Strain and Deviatoric Stress Cards (Number of
cards = NSTRN) (11F5.0)

Each card will have the axial strain punched in the first
five columns and the deviatoric stresses corresponding to
the various cell pressures (given in (12)) at that parti-
cular axial strain are punched in the subsequent columns.

Axial Strain and Volumetric Strain Cards (Number of
cards = NSTRN) (11F5.0)

Each card will have the axial strain punched in the first
five columns and the volumetric strain corresponding to
the various cell pressures (as given by (12)) at that
particular axial strain are punched in the subsequent
columns. Volume expansion is to be neglected while giv-
ing the volumetric strain input.

Card for the Termination of Execution After the Generation
of Element and Neodal Data (1 card) (I5)

1-5 KTERMI (XTERMI=1 terminates execution and
KTERMI=0 does not terminate execution)



(16)

(17)

(18)

(19)

(20)
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When the data is run for the first time it is preferable
to terminate the execution after the generation of ele-
ment and nodal data so that the correctness of generation
can be verified. Also the correct value of MBAND computed
during this first run can be utilized in setting the
dimensions of certain vectors in MAIN PROGRAM as des-
cribed in (21).

Card to Control Iteration Option (1 card) (I5)

1-5 ITOPT (ITOPT=1 causes each step to be analyzed
twice and ITOPT=0 causes each step to be
analyzed only once. In the case of a linear
analysis ITOPT=0)

Card to Indicate the Number of Steps and the Option for
the Consideration of Shear Failure (1 card) (2I5).

1-5 - NSTEP

6-10 NSHEAR (NSHEAR=1 causes the shear failure to be
considered and if NSHEAR=0 shear failure
is not considered)

Card to Read the Numberfof Elements Involved in a
Particular Step (1 card) (I5)

1-5  NUMELS

Card to Read the Number of Nodal Points at Which Incremental

Loads or Displacements are Pruscribed in a Given Step
(1 card) (15?

1-5  NBOUN

i

Cards that Input Incremental Nodal Loads or Displacements
(NBOUN cards) (15,3F10.0)

1-5 N
6-15 U(N)
16-25 V(N)
26-35 W(N)

U( ), V() and W( ) could be either the prescribed forces



- (21)
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or the prescribed displacements in x, y and z directions.
In a particular coordinate direction if a displa;ement
boundary condition is specifiéd then the read quéntity
becomes a prescribed displacemenf in that direction;
otherwise it is taken as a prescribed force in that
direction. It is not possible to prescribe a force and

a displacement simuItanéously in a given direction at a
given nodal point.

Procedure to Set the Dimensions of the Arrays in the .

MAIN PROGRAM

The dimensions of these arrays are based on the half-band

width and the number of equations which in turn depend on

"the problem. So it is netessary to know the value of the

half-band width and the number of equations for.the pro-
blem on hand to set the dimensions of arrays in MAIN
PROGRAM. Because of the facility provided to terminate
the execution of the program after the generation of the
element and nodal data, and the calculation of the half=-
band width (MBAND) in subroutine READIN, it is not necess-
ary to know the correct value of MBAND beforehand. An
arbitrary value of say 100 can be assumed during the
first run for setting the dimensions of arrays in MAIN
PROGRAM. The dimension of these arrays do not effect

the execution up to‘the generation of nodes and elements.
After obtaining the correct value of MBAND the dimensions
of the arrays in MAIN PROGRAM are reset for the fiﬁa]
run. The number of equations (NE1) is given as three

times the total number of nodes involved in the problem
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on hand. The dimensioning of arrays is as follows:

DIMENSION B(NE]),A(MBAND,Z*MBAND),BL(MBAND),BR(MBAND).
AL (MBAND**2) ,AR(MBAND**2)

EQUIVALENCE (B(1),BL(1)),
AL(1)),(A(1,MBAND+1),AR{1

NET1=3*NUMNP

§§(MBAND+1),BR(1)),(A(1.1),
MB1=MBAND

The quantities that appear in MAIN PROGRAM of the listing
given in Section B.8 correspond to the value of MBAND

equal to 114 and NE1 equal to 405.

Control Cards to Create Sequential Files and to Run Data

The following control cards were used to create the

sequentiail files and to run the data:

" $CREATEB-TBTYPE=SEQBSIZE=nT

$CREATEp-TEMP2BTYPE=SEQBSIZE=nT
$RUNP-LOAD#P1=-TP2=-TEMP2

The value n representing the number of tracks was obtained

using the procedure given in Section B.3.2

B.7

(1)

(2)

(3)

Qutput of the Results

The following results are obtained as output:

The complete nodal and element data with the initial
values of the elastic parameters assigned to each element.
Cumulative nodal displacements, stress and strains for

elements and nodes for each step of the analysis.

™

lement principal stress and strains for each step of

the analysis.
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(4) Elastic parameters assigned to each element in each

step of the analysis.

B.8 Listing of Program

A 1isting of the computer program appears after the Fig. B.4.
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EACH BLOCK EXCEPTING THE LAST ONE
Has MBAND ecuaTions

RESSOoRamE EEEEE‘==EB§§EE"'—
e e
= = ga_
= |

100

i
T T ;

100 150 200

HALF BAND WIDTH [ MBAND ]

i
I

0

FIG, B.2 APPROXIMATE CPU TIME FOR SOLUTION
OF EQUATIONS IN 3-D PROGRAM
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SECTION 3

FIG, B,3 THREE DIMENSIONAL VIEW OF A MODEL
DAM [ ELEMENT NUMBERS ARE CIRCLED ]
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FIG. B.4 SECTIONAL VIEWS OF MODEL DAM
[ ELEMENT NUMBERS ARE CIRCLED ]
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TAREE DIMENSIONAL FINITE ELEMENT FROGRAM USING~ISUPA?ANETR!C HEXAHEDRA
WITH 24 DEGREES GF FREEDOM PEF EACH ELEMENT. EQUATIONS ARE SOLVED BY
GAUSSIAN ELIMINATION IN BLOCKS. ’

DEVELOPED € CODED BY AeVeGoKRISHNAYYA, CIVIL ENGe. DEPTee U OF Ae1971.

MAIN PROGRAM THAT CHANGES THE OIMENSIONS AND EQUI VALENCE STATYEMENTS
ACCORDING TO THE SIZE OF YHE PROBLEM

OIMENSION 8(405), AC114,228)¢BL(114)BR{116).AL(12996)¢AR(12996)
EQUIVALENCE (B(l)-BL(!l)o(B(ll5)oBR(ll)o(A(lvl)oAL(l))-(A(l-llS)o
1AR(1))

NE1=40S

“B1=114

MB2=2#MB1

LA=MBl%#2

LAZ=LA

CALL MSUB(BeAsBLIBR.ALeARIMB1 ¢MB2+LAJLA2.NEL)

STOP

END

SUBROUT INE MSUB(AP +STIFsAPLeAPReSTIFL+STIFR«MB1sMB24LAILA2,NEL)

THIS IS THE MASTER SUEROUTINE WHICH CALLS OTHER SUBROUTEINES REQUIRED
FOR ANALYSISe IT INTERPOLATES THE ELASTIC PARAMETERS FOR EACH STEP.

COMMON NANLYSoKSHIFT, ROL3S0)«X(A50) «Y(850)¢Z(450) sU(450),V(450),
1WCG50) s SGTEL (3504 6)¢SGTPS(350¢7)+» STRNT(3506) + STNT(4S043)
2 ECMI(3+3)STRN(E) CESTIF(24424) sECM(6:6) EBM{G+24) +ESMI6424) oWT
COMMON NUMNP¢NUMEL + NE2s KODE( 450)¢SGTNP(450+6)
INP(Be 350) ¢MAT( 3%0) ¢MBAND+NEQeMelM(24) -KOEL( 350)s
2PSY(52) yETA(S2) e 2TA(S52) s AQ(A3) 4 PP(24 ) +ELDISP(24) ¢
IKOUNT( 450)¢SIGA( 450:6)¢STN( 450,3) ¢SIGEL(6)eSIGP(7)+NUMBLK.
4 DISPX(4S0)¢DISPY(450)+.0ISPZ(450)
COMMON EBULK(350) ¢EDEV(350)«NITERITOPTACOEF( S)¢BCOEF( 5)e5TR(3)
CONNON/AREAI/ST(ZO.5)oSL(10-5)-50(20'IO'S)-VS(ZO.XOos)oNU“AToNCELP
1« CONFAC+NSTRN
DIMENSION AP(NE1) +STIF(MB1.MB2) ¢ APL(MBL) s APR(MB1)+STIFLILA2).
1STIFR(LA)

[+
C COORDINATES OF PARENT ELEMENT ARE STORED IN THREE VECTORS

100
600

101

CALL TIME (O)

EXTERNAL GETFOD

INTEGER ADROF.FDUB

CALL RCALL(GETFDs2+0+ADROF(*~T ¢)+1+FOUB,E100}
CALL SETDSN(1.°=T *.FDUB+£100)
GO0 TC 101

WRITE(6.600)

FORMAT(®* FILE ERROR®)

sToP

CONTINUE

NE2=NE1



89
a8

90

o1

61
60

62

63

CARGUMENTS AND WEIGHTING FACTORS ARE STORED IN FOUR VECTORS

C Two

79

82

00 88 [=1.5+8
Ji=1+41

D0 89 K=1,41
PSY(K)==1,
PSY(K+2)=el,
CONTINUE
CONTINUE

DO 90 I=1,S5.4
ETA{l)=~1,
ETA(I+1)=x1,
ETA(1+2)=1.
ETA(I+43)=-1.
DO 91 I=1,.4
2TA(I)=~1.
ZTA(1+4)= 1.

00 60 I= 45.,49.4

Ji=lel

DO 61 K=l.J1
PSY (K )x=0499
PSY(K+2)=0.99
CONT INVE
CONTINUE

DO €2 [=4%,46.4
ETA(1)==0.99
ETA(I+1)50.99
ETA(I+2)20.99
ETA(143)=-0.99
DO 62 Imas,.48
ZTA(I)==0.99
ZTA(144)20.99

POINY FORNMULA
Ti==0.57735027
T2==(T1)

DO 79 I=9,12
PSY(1)=T1
PSY(144)=T2
DO 81 I29413.4
ETA(1I)=aT}
ETA{I#1)sT)
ETA(142)=T2
ETA(1¢3)=T2

DO 82 I=9415.2
ZTAlL }=TY
ZTAl1+1)=T2

C THREE POINT FORMULA

8S

TIx=0e 77459667
TaA=0.0
TSa=(T3)

Al=0 55855556
A2=0,.888888889
00 85 I=17.25
PSY(I)=T3
PSY(149)=Te
PSY(1+18)=TS
DO 86 I=17e35.9
Jisle2

00 87 K=l.J1
ETA(K)}=T3
ETA(K+3)=To



122
123
124
125
126
127
128
129
130
132

132
133
134
138
136
137
134
13195
140
141

142
143
144
14%
148
147
148
149
150
151

152
153
154
158
156
157
158
159
160
161

162
161
164
165
106
167
168
169
170
172

172
173
174

17s
176
177
178
179
180
181

ETA(F4g) =15
87 CONTINUg
A6 CONTINUE
PO 92 (=17.41:3
ZTA(l)=T73
ZTALI+1) =14
ZTA(I¢2) =TS
Q2 CONTINug
AQL17)=¢A14%3)
AGC19)=(A19*3)
AO(23)=(Atee3)
AOC(2S)zcAle23)
AQ(3S)z(A1823)
AQT37)=cAL1993)
20Ca1)=cAlne)
ARCAd )= ALe»Y)
DU S3 1=108+2842
Qg AQGUI)a(Aar0e2) %2
DO 96 1=32,42.2
96 AGLI)=ta1082)9A2
ACG(2L)ngA20e2)mA1
AG(27)a( A2082)8A)
AG(29)=¢A2e02) %A
AGE3Ll)xgA2em2)8A1
AG(33)ngA2ee2) A
ACU39)=tA2892)0A1
ACL30)n(A2eel)
CALL READINCAPSTIF ¢APLeAPRSTIFL STIFRIMEL ¢MB2,LAILA2)Y
CALL TImME(1el1)
CRTERMIDOTERMINATES EXECUTION AFTER GENERATION OF NODAL & ELEMENT DATA
CPee0e st ntenstst READ STATEMENT S80stsstsnsnnsst st sser sntstosssesstenes
' READ(%,1015) KTERMI
1F(KTERMILGT«0) GO TO 24
C 1voPT=0 PAST STRESS SOLUTION
C I1YOPT=1 AVERAGE STRESS SOLUTICN
Coopesnttssangnisstas READ STATEMENT LR PR LR R I T2 PRI Y P I T P Y T T )
READ(S,101%) ITOPT
[4
C INITIALIZE THE TOTAL ELEMENT AND NODAL STRESSES.STRAINS AND
€  NODAL DISPLACEMENTS
00 10 f=1,NUMNP
OISPX(1)=0.0
DISPY(1)=0.0
01SPZ(1)=0.0
00 10 y=1,6
10 SGTNP(I,J)=0.0
00 15 1=1,NUMNP
00 15 4x1,3
15 STNT(1,09)2060
DO 30 p=1,NUMEL
00 30 y=1.6
30 SGTEL(I44}1=0.0
00 31 I=1.NUNEL
00 31 y=1,6
31 STANT(1,J4)=0.0
DO 35 1=1,NUMEL
DO 35S g=1.7
35 SGTPS(1,J)=0.0
C NSTEP=NUMBER OF INCREMENTS
C NSHEARTO SHEAR FAILURE NOT CONSIOERED



182
183
teq
185
186
187
188
189
190
191
192
193
194
198
196
197
198
199
200
201
202
203
20a
208
206
207
208
209
210
211
212
213
214
218
216
217
218
219
220
221
222
223
224
228
226
227
228
229
230
231
232
233
234
23S
236
237
238
239
240
241

€ NSHEAR=1 SHEAR FAILURE CONS IDERED
CHEARIER 924462040888 READ STATEMENT 5884504008882 200804000 ¢4 3020t RRENSRsSe
READ (5.1000) NSTEP ¢ NSHEAR
DO 20 [JK=]1 NSTEP
C NUMEL= NUMBER OF ELEMENTS CONSIDERED IN CURRENT INCREMCNTY
CHEREERIE 204 42%02% READ STATEMENT S48 4506880045000 R0000 0 S2RE et SNRRSEoEEE
READ (5.1015) NUWELS
WRITE(6.1015) TJK
WRITE(6+1015) NUMELS
NUMELZNUMELS

(<
(<
[
CEBIPIIBIEEII4400 4245 READ STATENENT 2290804485444 3808 20802008 00004028880 000sns
READ(S+1015) NBOUN
IF(NBOUN.EQ.O) GO TO 222
WRITE(6+2003)
00 206 J=1.NBOUN
CHEINNIRETEIEEI80088E READ STATEMENT #00880 44000440t sssettsvtsstsnsst st sngassss
READ(S+2020) NeUIN)sVINI oW(IN)
WRITE(642002) NaUIN) VNI W(N)
206 CONTINUE
222 NITER=0
205 NITER=NITER+1
CALL ASTIF(AP+STIF+APLAPReSTIFLSTIFR.MB] +MB2JLALLA2)
CALL TIME(1.1)

CALL BANDI{AP+STIF+APL+APRSTIFL.STIFRoMBI eMB2.LALAZ, FDUB)
WRITE (6.2003)
DO 25 N=1+NUMNP
DISPX(N)=DISPX(N)+AP(3eN-2)
DISPY(N)=DISPY(N)¢AP( 3I*N~1)
DISPZ(N)3DISPZ(N)+AP(32N)

25 WRITE (642002) N.DISPX{N),OISPY(N).CISPZ(N)
CALL TIMEC(1,.1}
IF{ITOPT.EQ.0) GO TO 255
IF(NITER.EQ.2) GO TO 255
D0 251 A=1.NUMNP
DISPX(N)=DISPXIN)~AP{3¥N-2)
DISPY(N)=OISPY(NI-AP(3*N~1)
DISPZ(N)=DISPZIN)-AP{32N)

251 CONTINUE

2S5 CALL STRESS(APSTIF.AFL eAPRSTIFLSTIFRLMEL +MB2.LALAZ)
CALL TIME(1.,1)
IF(NSTEP.EQel « ANDITOFT +€0.0) G@ TO 28
DO 26 M=1.NUMEL
MTYPE=MAT (M)
IF(ITOPT.EQ.0) RO(M)I=0.,0
IF(NITER.EQez2) RO(M)=%0.0
IF{NANLYS.EGQ.0) GO TO 26
AVGSIGEABS(SGTRAS(NM.1))
IF({SGTPS(Ms1)eGEe0<0}AVGSIG=0,0
DIVS=ABS(SGTPS(Me3))~AVGSIG
DIVS=ABS(DIVS)
VSTR=ABS{SGTPS( M, 3)}
N=MAT (M)
OIVSF=ACOEF(N)+BCOEF(N)2ABS(SCTPS(Me 1))
IF(SGTPS(Me1)eGE0040) DIVSFEACOEF(N)
IF(NCELP.EQ.0) GO TO 450



242
243
244
24S
246
247
248
249
250
251
252
253
254
25S
256
-257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

L 23
42

3
as

300
301

450

SIGM1=ABS{SGTPS(M.3))

SIGM2=ABS{SCTPSI(M.+2))

IF(SGTPS{Me2)eGE+0e0) SIGM2E0.0

SIGM3=ABS(SGTPS(Me1))

IF(SGTPS(Me21)aGEL00) SIGM3I=0.0

SIGOCT=(S IGM1eSIGM2¢SIGMN3) /3.

SIGIN=SIGM1ISSIGM2eSIGMN3

CONFS=SIGIN/(SIGOCTS»2)
DXVOCT=SORT((SlGﬂl-SlGlz)tnzo(SXGMZ—SIGMB)#‘20(516~3-SIGMI)“2)
DIVOCT=DIVOCT/3.

DO 41 JIx=1NCELP

JLS=d

IF(CONFS=SLIJeN)) 42041441

CONTINUE

CONTINUE

D0 &3 KX=! ¢NSTRN

Is1=K

IF (DIVOCT=SD(KeJLS=1eN)) 44+43,43

CONTINUE

CONTINUE

DO 300 K=1.NSTRN

J52=K

IF(DIVOCT=SO(KeJLSeN)) 301¢300+,300

CONTINUE

CONTINUE
PRISI-OGIO(VS(JSIoJLS-I.N)—VS(JSI—]'JLS-loN))I(ST(JSI.N)-ST(JSI-!-
1N))-1.0 :

IFI(PRIeGT«0eB89) PRIZ] 49

PR2=1.0618(VS(JIS2.JLS oN)=VS(JS2-1¢ JLS NI IZ(STLIS2eN)-ST(IS2~1»
1N)}=1.0

1F(PR24GT+0.49) PR2x0.49

PR3I=PR1+( (PR2-PR1)I( CONFS-SL(JLS-!.N))I(SL(JLS.N)-SL(JLS-!.N)))
IF(PR3.GY+0s49 ) PR3u0.49

DlFltsolJSI'JLS-!oN)OSD(JSl-inJLS-lcN)
ETP1=DIF1/(ST(JIS1eN)-ST(ISI~1N))

GTPI=ETP1/(0.94288( 1. ¢PR1))

DIF2mSD(JIS2¢ LS eNI=SD(JIS2=1¢JLSeN)
ETP22DIF2/(ST(JIS2eN)=ST(JS2=1¢N))

GTP2=ETP2/(0.9426%(1 . +PR2))

CTPuGTPL+ (GTP2-GTP1 )E(CONFS ~SLLJLS=1sNI)/(SLIJLSIN)=SLLILS=1eN))
GTP=100.3GTP

BULKM =GTP82.8(1e+PR3)/(3.8( 1e=2.8PR3))

SHE ARM=GTP
IF(NCELP.NE.O) GO TO 45S
CONTINUE

C DETERMINE MODULI FRCM OTHER TRAN TRIAXIAL DATA

ass

CONTINUE

IFINITER<EQGe1) TEBULK=BULKM

IF{NITEREC+2)EBULK(M)=BULKM .

IFCITOPT «GTeOeANDNITEREQe1) EBULK(M)I={ TEBULK+EBULK(M))/2.

IF (I TOPTeEQeO e ANDeNITER<EQ 1 JEBULK(M)=TEBULK
IF(NITER<EQ1)TEDEVESHEARM
XF(N!TER-EO.!oAND-BlVS.GEoDXVSF-AND.NSHEAR.GT.O)TEDEV'EBULK(u)/SO-
IF(NITEREQ.2)EDEV(M)InSHEARM
IF(N!TER.EO.Z.ANO.DIVS.GE.DIVSF.AND.NSHEAP-GT.O)EDEV(N:‘EBULK(M)/S
10«

IFC(ITOPTGT 0 ANDNITEREC 1) EDEVI(M)I=(TECEV4EDEV(M) )/2.
IFCITOPTEQeO«ANDoNITER.EQe1) EDEV(M)=TEDEV

IFCEDEVIM) oGT o {1 s 4SHEBULK (M) ) JEDEV( R} =1 .4 5SSEBULKI )
IFCEDEVE M) oL T« CEBULK(M)/50+1) EDEV(M)=EBULK(M) /50,



331
332
333
33a¢
33S
336
337
338
339
340
341
3a2
343
344

.348

346
347
348
349
330
351
352
353
354
35S
356
357
358
359
360
361

.c

26 CONTINUE
WRITE(6¢2010) (MeEBULKC M) JEDEVIM) ¢RO(M) s M=1 ¢ NUMEL)
IFC(ITOPT.EQ.0) GO TO 20
IF(NITER.EQ.1) GOQ TO 208
CALL TIME(1+1)
20 CONTINUS
4
1000 FORMAT(215)
1015 FORMAT(IS)
1050 FORMAT(2F15.6)
2002 FORMAT (14.3E15.5)
2003 FORMAT(®1°,10X¢*NODAL DISPLACEMENTS®//, *NGDE X_DiIsSP
1Y-01SP 2-D1SPe//)
2005 FORMAT(///7+.1H +10Xe 21H WATERIAL PROPERTIES /7
11Xe BHELEe NOosdXs GHBULK MODe ¢4X,14HSHEAR MODULUS+4X+11HUNIT WER
2GHT/7/)
2010 FORMATC(IH oIS eF17.4:F1Se3.,F17.450
2027 FORMAT(IS.3F10.0) '
28 RETURN
END

no

SUBROUTINE READINCAPsSTIF+APLeAPReSTIFLeSTIFReMB1+MB2+LALLA2)

THIS SUBROUTINE READS AND PRINTS MATERI AL DATA. NODAL DAYAs ELEWENT CATA.
IT GENERATES COOROINATES OF INTERMEDIATE NODAL POINTS ANO CALCULATES
THE BAND WIDTH AND NUMBER OF ECUATIONS

s
COMMON NANLYS sKSHIFTs RO(350)eX(450)¢Y(450)¢2(450),U(450)+VIAS0),
19W(450) s SGTELL 350.6) 9 SGTPS(35047) ¢ STRNT (350463 +STNT(45043) ¢
2 ECMIC(3¢2)sSTRN(E) ¢ESTIF(28¢24) sECM(6+6) ¢EBMIG24)eESMI6924 )W T
COMMON NUMNP o NUMEL+ NE2¢ KODE( 450)+SGTNF(450+6),
INP(8e 350) oMAT( 350) «MBANDsNEGQeMoLM(24) «KOEL( 350)
2PSY(S2) ¢ETAIS2) ¢ ZTA(B2) ¢ AG(A3) 4 PP(24)4ELOISP(24),
3KOUNT( 450)¢ SIGA( 450¢6)sSTN( 45043) ¢SIGEL(6),SIGP{7)¢NUMBLK,
4 DISPX(450)¢DISPY(450)¢DISPZ(450)
COMMON EBULK(C350) +EDEV(3S0)¢NITERITOPTSACOEF( S)¢BCAEF( S)eSTP(3)
COMMONZ AREA1/STC20+5)eSLE10¢5)9SD(20410¢5)¢VS(20010¢5) s NUMAT ¢NCELP
1 s CONFACINSTRN

DIMENSICON APCNEZ2)¢STIF(MB1eMB2) APLIMB1) s APR(MBL)+STIFLILA2) .
1STIFRILA)

2 NaNaNaNaNaNal

DIMENSION HED(18) +OBFAC{350),ROREAD( S),EBREAD( S).ESREAD( 5)

€ READ PRELIMINARY INFORMATION

C NANLYS TO BE ZERO WHEN NUMAT=1 AND ANALYSIS 1S LINEAR

CHEREEBI LIRSS 28082s READ STATEMENT 4234208838883 8E00SRRERER S4S ST SIS0 SE04S
READ (5¢1000) HED+NUMNP ¢ NUMEL ¢ NUMAT ¢ NUMCE ¢ NUMTP ¢ NUMTHe NANLYS

WRITE (6+2000) HED s NUMNP ¢ NUMEL « NUMAT s NUMCE ¢ NUMTP o NUMTH

READ AND WRITE MATERIAL PROPERTIES

READ AND WRITE NODAL DATA AND GENERATE INTERMEDIATE NODAL DATA

nNnONDO

32 WRITE(6,2015)
L=1
CHesntstasAsd04 88888 READ STATEMENT #0484 50880R SRR EEIUI0RBESEDIBE TSR

READ(S¢1020) NoKODECNDI o X{N)eY{NI«ZINIsU(NI«VINIW(N)
GO TO &0



362
363
364
36S
366
367
368
369
370
37
372
373
374
37s
376
377
378
379
380
381
382
383
384
388
386
387
38
389
350
391
392
393
394
398
396
397
398
399
400
401
402
403
404
408
406
407
408
409
410
L2389
a12
413
414
415
416
417
418
419
420
821

20 READ(S5.,1020) NoKODE(N)cX‘N)oV(N)-Z(N)vU(N)oV(N’oH(N)
ON = Nei
OX =C(X{N)=X(L))/ON
OY ={Y{N)-Y(L))/DN
DZ=(Z(N)-Z{L))/DN
25 LaL ¢

IF(N=L) 50.,40,30
30 X(L) = X(L-1)+DX
Y(L) = Y(L~1)4DY
Z(L)=2(L-1) +D2
KGDE(L)= ©
uiL) = o0
vit)= o
w(L)=0
GO To 25
c
40 IF(NUMNP~N)7%50+60,20
750 WRITE (6.202%5) N
CALL EXIT
c
C ASSIGN PROPER CODE FOR NODES GENERATED BEFORE WITH KODE(N)=0
C
Cosass s e READ STATEMENY RaAA ALl LI L L2 1T 1T 1 T D PP Py ppmewpemmey
60 READ (S5,1037) NUMi
IF{NUR1+EQ.0) GO TO a3
00 81 I=1,NUN)
Casdts L 88 REAC STATEMENT BIXSEINETEGESIERS SRR SRS IS SRS EISSEENDSS
READ (S.1037) NUM2
CHESEE 482852989 088868 READ STATEMENT b dd A d A d Al Lo d S T Y PRI T T ey
READ (5.310186) NsKCOE(N) ’
IF (NUM24EQeC) GO TO 81
DO 82 J=3 ,NUM2
NaN+1
KODE(N)=KODE(N=1)
82 CONTINUE
81 CONTINUE
a3 lRlTE(Q-ZO?O)(N.KODE(N)-X(N).V(N)-Z(N).U(N).VCN).!(Nl'N-l.NUUNP)

[+
C
C READ AND WRITE ELEMENT DATA
[
<

GENERATE THE HEXAHEDRA AND BASE TRIANGULAR PRISMS [F ANY
* WRITE (6+2030)

00 70 lJ=1.NUNCE

CEI22000488238 0088488 READ STATEMENT S00000E000EII00I0000000000002008800080 0
READ (8.1037) NUMJK
WRITEC6+1037) NUNJK

CEBE2088488800808882% READ STATEMENT bbhtttasadadd LI LTTITT LT LT TT TP PwPeperr
READ (S5,1036) MoKOEL (M) ¢ (NPIKKoM) ¢KKML:8) s MATC(M)
JRITE(6+1036} chOEL(N)o(hP(KK.N)-KK-l.a).MAT(M)
IF (NUMJK.EQ.0) GO TO 70
D0 71 JK=mi,NUMJIK
Mupe ]
KOEL(M)=KOEL(M=~1)
MAT (M) sMAT(M=1)
NP{1oM)ENP(LoM=1)41
NP(2eM)IENP(2M~1) 41
NP(3e M)SNP(I sM=1) 4]



422
423
428
428
426
az27
428
a29
430
431
a32
433
434
435
43¢
437
438
439
440
431
442
443
444
445
446
447
448
449
450
451
452
433
454
455
456
457
(2.1
489
460
461
462
4863
464
465
466
467
468
489
470
A7
472
473
474
L x4
476
477
a78
479
480
481

NP(AM)uNP(AcN=1)¢L
NP(SsM)ENP( S, M1 141
NP(SsM)=NP(BoM=1)¢1
NP(7eM)ZNP(7oM=1)¢1
NP(8sM)=NP(BoM=-1)¢1
WRITE(64+1036) HOKOEL(-,.(NP(KK.“’.KK'IIB)!“AT(“,
71 CONTINUE
70 CONTINUE
IF(NUMTP.EQG.0) GO TG 74
C READ THE TRIANGULAR PRISHNS
D0 84 [=1.NUMTP )
Coet80050 3300009888 ¢ READ STATEMENT ..“‘.“.‘.‘?.“’.“‘.‘.‘.‘.“.‘..“..‘...
RFEAD (S501036) MeKOELINFI o (NPIKK M) eKK=]1e8) s MAT (M)
WRITE(601036) M KOEL(M) o INPIKKoM)oKKR1o8) o MAT(M)
84 CONTINUE
74 IF (NUMTH.EQ.0) GO TO 7S
C READ THE TETRAHEDRA
D0 73 =1 «NUMTH
CHECES P20 080838 READ STATENENT 9650500828883 4 0420000 ¢C¢ I 00 ¢SS 4008808808
READ (5.1036) Mo KOEL(#) o ANPIXK M) sKK= ] o8) ¢ MAT (M)
WPITE(G:1036) MoKOBLUIM) ¢ (NPIKK M) oKKEIol1) s MAT (M)
73 CONTINUE
?S  IF(NUMAT.EG.1) GD YO 810
C ASSIGN PROPER MAT(M) FOR ELEMENYS WHOSE MAT{M) eNE.1
CHIPIIPENNVEILEIS086S READ STATEMENT SOSSS0SSELEESINEEITECIISER IS INSNSSEISS
READ(S+1037) NATN
IF(MATN.EG.0) GO YO S10
CHE038888580053088088 READ STATEMENT S0880 608038852482 ANISOSESISSIS SIS G0SS ENEEBS
D0 2 Ixl MATN
H READ(S+1016) MeMATIN)
$10 00 200 I=m1,NUMAT
[4

C ACOEF=2.CPCOSIPHII/Z{1e~SIN(PHI))«BCOEFn2 48 IN(PHI )/ (1=SIN(PHL))

c‘.t.t“tt.ttt..tt‘.. READ STATEMENT 50308888300 SESRINNSRSERNABER ISRV ESARSES
READ (Z¢2087) ROREAD(L)EBREAD(I)IESREADLL) ¢ACOEP(L )+ BCOEP(])
WRITE(6,2039) ROREACII)EBREAD(IIESREADCT)ACOEF(1)+BCOEF(I)
200 CONTINUE
D0 140 N=1 . NUMEL
1=MATC(N)
RO(N)=ROREAD(I)
EBULKC(N)=EZEREAD(L)
EQEV{NI=ESREAD(L)
. OBFAC(N)=1,0
140 CONTINUE
CHESEPISS I8 S30300% READ STATEMENT 80550285050 RRRS FEERESINS OIS SES VS0 88888
READ (S,1037) NOBSET
IF(NOBSET.EC.0) GO TQ 150
00 1435 I=1,NOSSET
CHRISE20480808 0888608 READ STATEMENT G408 30040080402V 00 4SS0 SENNEE SIS SOOEST
READ (5,1050) MNSET.08FACIN)
IF(NSET.EQ.0) GO TO 145
DO 155 J=m1.NSET
MapMey
155 OBFACIMN)=0OBFAC(M-3)
145 CONTINVE
CHECRTIIRENNIP PR ERE READ STATEMENT 0O XIP XA FAERRE RIS S UDS SBSCSEBBBS
150 READ(S+1030) NCELPeNSTRNeCONFAC
IF(NCELP.EQ.0) GO TO 100
CALL TESTD

,_5m‘



482
483
AB84
485
486
487
488
489
490
491
492
493
494
49S
496

97

ag8
499
500
s01

s02
503
soe
sos
308
so7
s08
509
s10

s11

512
513
514

515
516
517
s18
519
s20

521

s22
523
s2e
s28
526
527
s2e
529
s30
s31

532
533
s34
535
536
537
538
s39
540
se1

18

T20
r23

790
791

S0
s1

S2

600

DO 600 M=) NUMEL
IF(RO(M)LE.0.0) GO TO €00
N=MAT (M)

NCOUNT=0
DEPTH={AB5CZC(NP(SeM) ) =2(NP(1sM) ) I+ABS(ZINP(6eM))=2(NP(2.M)))
14ABSC2INP{TeMII=ZINP(3sM) ) J+ABSLZINP(B,M) I~Z(NP(&:+M))) }80.125

0BP=DEPTHARO (M) SOBFAC (M)

AVGSIG=0BP$0.5

NCOUNT=NCOUNT#1

SIGM1=0BP

SIGM2BAVGSIG

SIGM3=AVGSIG
SIGOCT=(SIGM14SIGM24SIGMI) /3,
SIGIN=SIGM1SSIGM2¢SIGM3
CONFS=SIGIN/(SIGOCT#82)
OIVOCT=SORT((SIGM]I=SIGMN2)8$24+(SIGM2~SIGM3) #4224+ (SIGMI-SIGM1)ee2)
OIVOCT=DIVOCT/ 3.

D0 720 Jmi NCELP

JLS=J

IF( CONFS~SL(JeN)) 72147204720

CONTINUE

CONTINUE

00 790 K=1,NSTRN

JSi=K

IF(DIVOCT=SOIKsJLS~1eN)) 7914790790
CONTINUE

CONYINUE

DO SO K=m1¢NSTRN

JS2=K

IF(DIVOCT@SDI(KsJLSeN)) %51,50+50

CONTINUE

CONTINUE
PRIZEL1,0618(VSIJISLeJLS=1eNI=VS(IS1=1,4JLS=1eN)I/Z(ST(JIS1¢N)=ST(JSI=1,
iN))=1.0

IF(PR1.GT«0.49) PR120.49
PR2x1,0618(VS(JS24JLS sNI=VS(JIS2=2+JLS NI IZ(STIIS2eNI=ST(JIS2=1¢
IN))=1.0

IF(PR24GT¢0645) PR2=:0 .49
PR3=PR1+((PR24PR1)*( CONFS=SLIJILS=1eN}IZ(SLIJLSsNI=SLIJILS~1sN)})
IF(PR3IeGT.0.49 } PRI=0.49
CONST=PR3/ (1 «.~PR3)

HPR=OBPECONST

HPR= (HPR*AVGSIG)/ 2.

CSTRS=ABS{HPR=-AVGSLIG)

IF(NCOUNT.GE.21) GO TO S2
IF(ABS(HPR=AVGSIG) «LT40.01) GO TO S2
AVGSIGEHPR

GO TO 18
WRITE(6¢125) MeNCCUNT sHPRe CSTRS.PR3
DIF1=SDlJS1eJLS=1 eN}=SD(JIS1-1+JLS-1N}
ETP1=DIFI/Z{ST(JS1«N)=ST{JIS1-1.N))
GTPI=ETP1/(049428%(1.4PR1))
DIF2aSD(JS2+JLSsN)=SD(JS2~1eJLSeN)
ETP2=D1F2/7/1ST{IS2eN)=ST(JIS2=1.N))
GTP2mETP2/(0.9428%( 1. 4PR2))

GTP=GTPL+ (GTP2-GTP1 }8{CONFS =SLIJLS=1eN)I/Z{SLIJILS:N)=SLIJLS=1sN)})
GTP=100.%GTP
EBULK{M)BGTPS2.8( 1 4PR3)1/€3.8(1 .=2.*PRI))
EODEV(M)aGTP

CONT INUE



S42
S43
S48
545
S46
S47
S48
549
550
551

582
%53
554
555
556

857 .

558
559
560
561

562
$63
564
56S
566
S67
568
569
570
571

s72
573
S74
$7S
576
577
578
579
580
581

582
583
S8e
585
s8é
587
se8
s$89
590
591
592
593
594
595
596
597
598
599
600
601

100

310
76

noan

80

C
3000
90

C

IF{NCELPeNELO) GO TO 310
IF{NANLYS.EQ.0) GO TO 210

C ASSIGN MODULI FROM OTHER THAN TRIAXIAL DATA
DO 76 M= 1.NUMEL
WRITE(601036) MKCEL (M) o (NPC{KNsM) JKNE1:8)+sMATIM)
WRITE(642009)
WRITEC6.2010) (M EBULK{M) ¢EDEV(M) ¢RO(M) ¢ Mx1, NUMEL)

DETERMINE BAND WIDTH AND NUMBER OF EQUATIONS

L=0

DO 80 M=] (NUMEL
00 A0 I=1.7

tI=1e1

00 80 J=11.8
TABSINP(IeM)I=NP(JIM))
IF (K«GTel)
CONTINUVE
WRITE(643000)

K=

L=K

MBAND=3#(Le1)
NEQ1 =38 NUMNP

WRITE(6420840)MBAND ¢ NEQ]
IFCMBANDSLE.300)G0 TC 90
CALL EXIT

FORMAT( ¢ READIN COWMFLETED °* 7//)
RETURN

C FORMAT STATEMENTS

OF NODAL POINTS = 16/
OF ELEMENTS = 16/
OF MATERIAL S+ s JI6/
OF HEXAe« READ = o167
OF PRISMS = 16/
=

OF TETRAKECORA o16)

125 FORMAT(2I5¢2E15¢6¢F805)
1000 FORMAT{(18A4/ 716)
1016 FORMAT(21%)
1036 FORMAT(1119)
1037 FORMAT(1S)
2000 FORMAT(IH1¢10Xs18A&,//7//
1 1H 26H NUMBER
2 1H 26H NUMBER
3 1H 26H NUMBER
4 1IH o 26N NUMBER
S 1H o 26H NUMBER
6 1H 26H NUMBER
2005 FORMAT(///+1H ¢10Xe

1010
2010
2012
201S

1020
2020
2028
2030

103S
2040

2050

214  MATERIAL PROPERTIES //

11Xe BHELEe NOeo&Xs SHBULK MODesdXe1AHNSHEAR MODULUS+&X+11HUNIT WEIL
2GHT 27} X

FORMAT(6XsF12¢002F64C)

FORMAT(IH ¢ISeF17e4:F15.3:F17.4)

FORMAT (F17.4,F153.F17.4)

FORMAT(®1° ¢10Xe *NODAL POINT INPUT®//.*NODE KODE XCOORD ¥
1 COCRD
FORMAT(2I5,6F5.0)

FORMAT(I4,1646F1243)

Z COORD

X FORCE Y FORCE 2 FORCE'//)

FORMAT(1MO 28K ERROR IN NODAL DATAJNODE = .14)
FORMAT(® 19 ,10X¢* ELEMENT DATA®///¢ *ELEM EL.CODE N1 N2 N3 N&
7 NE& MATNUM,*//)

1 NS

N6 N

FORMAY (616,
FORMAT(///710Xe* BAND WIDTH =, 167

10Xe *NUNBER OF EQUATIONS =*,16)
FORMAT(///710X+ 334 PROBLEM EXCEEDS SPECIFIED LIMITS )

1

F6.0)



602
603
604
605
606
607

608

609
610
611

612
613
614
615
616
617
618
619
620
621

622
623
624
62S
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

2051
2052
20S3
2055
2056
2087
2059
1050
2060
c

[

c

FORMAT(SFS.0)

FORMAT(6FS.0)

FORMAT(%0%+10Xs YSTRESS - STRAIN RELATIONSHIPS FOR MATERIAL®s16//)
FORMAT(1X¢*LATSTRESS® ¢6XeS5FBe3/)
FORMAT(1X ¢ * STRNo=® ¢ 3X¢F €24 5F8e3/)

FORMAT(5F1040)

FORMAT(SF1546)

FORMAT(2IS+F1040)

FORMAT (5F1042)

END

SUBROUTINE TESTD

C THIS SUBROUTINE CONVERTS TRIAXIAL TEST DATA FROM CONVENT IONAL FORM

< TO
c
<

Coses

1S

INVARIANT FORMe

DIMENSION SL(IO-S)-SO(2°-lOoS)-VS(ZO.lOoS)gSlGXNV(ZOolccslo
1VSTN(204+10e5),

COMMONZ AREAY/

1 ST(20-5)cSIGXNT(10.5)-TOCTD(2°'IOl5).GDCT(20lecS)0NUNATo
INCELP+CONFACsNSTRN

00 10 N=1eNUMAT

.“““".'.‘.t"“‘.‘RElD STATEMENT SEEESEREFEER IV A ERBREVERER R SR LRSS &
READ(S¢1010) (SL(JeN)eJ=1 +NCELP)

DO 15 J=1.NCELP

SLEJeNYI=ESLCJsN) #CONFAC

SIGINT(JeNDI=SLIJIeN)

CONTINUE

DO 20 K=1+NSTRN

Ceetsseessnsssssttsss READ STATEMENT "."““tt.‘.."tl“tlt‘...l“'..‘t‘t.".

25
20

READ(S¢1020) ST(KeN) s {SDEKeJoN) o J=1¢NCELP)
DO 25 J=1eNCELP
SD(KeJeN)=SD(KeJeN)®CONFAC

CONTINUE

CONTINUE

WRITE (6+1030) N

WRITE(6+1040) (SL{JeN)eJ=1¢NCELP)

DO 30 K=1¢NSTRN

CHesse st s tsssstesds READ STATEMENT ".‘.‘tt‘ttt‘t."..‘t.‘l".t“t"..‘.tl‘tl

30

35
10

51

45

READ (5+1020) ST(K.N)'(VS(KvJ'N)'J!IoNCELP)
WRITE(6+1050) STCK oN) e (VS{KeJsN) 0. Jm1¢NCELP)
CONTINUE

DO 35 K=1+NSTRN

WRITE(641050) STI{K eN)e(SD(KeJeN) e J=1eNCELP)
CONTINUE

CONTINUE

DO 40 N=1¢NUMAT

DO AS J=1.NCELP

DO SO K=1e+NSTRN

PROD= (SLEJoNI #8218 {STIKeJeNI+SLIJIN))
SIGOCTESLEJeNI+(SD(KeJsN) /30
IF(JeECe1eANDeKEQel) GO TO Si
SIGINVIKeJsNI=PRODZ (S IGOCT#$2)

IF(JeEQel «ANDeK+EQel) SIGINVIKsIeNI=0eO
CONTINUVE

CONTINUE

DO 70 I=1.NCELP

D0 S5 K=1«NSTRN



662
663
6¢a
665
666
6567
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
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686
687
688
689
690
691
692
693
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695
696
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699
700
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704
70S
706
707
708
709
710
711
712
713
714
718
716
nz
718
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T20
721

0

AnNNANONON

60
61

SS
70

75

80

1000
10t0
1020
1030
1031
1040
1041
1050
1060
1070
1071

THI
MAT
70T
THE
MOD

DO 60 J=1eNCELP

JLS=J

IF(SIGINT(I«N)=SIGINV(KeIeN))I6E1e60.60

CONTINUE

CONT INUE

TOCTO (Ko TeNI=SD(KeILS=1 +NI+(SDIKeILSeN) =SO(KeILS-1 NIV ®(STGINT(IWN
11=SIGINV (KeJLS=1sNII/(SIGINVIKeJIl SeNI)-SIGINV(K IJLS-1+N)})
TOCTO(Ks TeN)=STOCTD( Ko 1eN) 20,8714

VSTNIKe I e NIZVSIKeJLS=1 NI +{VS(Ka JLSeN)-VS(KeJIJLS—1 NI I*(SIGINT(I,N)
1=SIGINVIK s JILS~1eND)I/Z(SIGINVIK+ILSeNI=SIGINVIK JLS=1eN))
GOCT(KeIeNI=0487188(3.¢ST(KeN) ~VSTNI(Ks1IsN))

CONTINUE

CONTINUE

WRITE(6.1031) N

WRITE (6+41041) (SIGINT(IeN)eI=1.NCELP)

DO 75 K=1«NSTRN
WRITE(6+1050)ISTIKeN) «{ TOCTD(Ke IeN)e I=1NCELP)

DO 80 K=1+NSTRN

WRITE(6+1050) STIKeN) e (GOCT(KsJIeN) «J=1NCELP)

CONT INUE

FORMAT( 21S5.,F1C.0)

FORMAT(10FS.0)

FORMAT(11FS.0}

FORMAT(®0%s *OATA IN CONVENTIONAL FORM FOR MATERIAL NO.*.157)
FORMAT(*0%,* DATA IN STRESS INVARIANT FORM FOR MATFRIAL NO. *,15/)
FORMAT( I1X s *LATSTRESS® «6Xs10F8.37)
FORMAT(1Xs*J3/(SICOCT)I®92°,1X,10F8.3/)
FORMAT(1X+* STRAIN® ¢ 3XsF6e2¢10F6.3/)

FORMAT{1S?

FORMAT(3F10.0)

FORMAT(3FB8.3.4F12.4)

RETURN

END

SUBROUTINE ASTIF(AP STIFAFLIAPRGSTIFLISTIFR.MB1 «MBZ,LALLA2)

S SUBROUTINE TAKES EACH ELEMEAT IN TURN ANC FORMS THE ELE MENT STIFFNESS
RIX (BY CALLING ELSTIF).IT ASSEMBLES THE ELEMENT STIFFNFSSES [NTO

AL STIFFNESS MATRIX o ASSENMBLES THE APPLIEC LOAD VECTOUR € MNODIFIES
ASSEMBLAGES FOR DISPLACEMENT BOUNDARY CONDITIONS ( BY CALLING

IFY)e

COMMON NANLYSsKSHIFTe RO(350)¢X(4850).Y(4503,2(450).U(850) V(&SN
1W(RS0) e SGTEL(350¢£ )¢ SGTPS{35047 )¢ STRNT(25Ce 6« STNT{85043)
2 ECMIC3¢2)eSTRN(G) +ESTIF(28028) sEIM(E+6)eEBMIRB28) oESM( 628 ) o wT
COMMON NUMNP s NUMELe NE2s KODE( 450)+SGTNP(4AS50e06) .

INP(8s 3S0)eMAT( 350) +MBANC.NEGeMyLM(248),KOELL 3IS0).
2PSY(S52)+sETAIS2) +ZTA{S2) o A0(43) e PP(24) sELDISP(24)

3KOUNT( 450} ¢SIGAL AS0+E)eSTN( 450+3) +SIGEL(6)«SIGPIT)eNUNMBL K

4 DISPX(450).DISFY(A50).DISPZ(4S0)

COMMON EBULK( 350) sEDEVE3SO0)+NITERITOPTACOEFL S)ECQOEF( S)ySTHN(3)
COMMON/AREAL/ST(2005)¢SL(1065)eSD{20+10¢5) +VS(20e1065) «NUMAT (NCELP
1+CONFACsNSTRN

DIMENSION AP(NE2) ¢STIF(MEI+NB2) ¢APL(MB1) « APR(MBL1) «STIFLILAZ),
ISTIFRILAY

INTEGER®*2 LEN

NBYTES=MB AND*MBAND®*4
FNUMRC=FLOAT{(NBYTES)/7232000
NUMREC=NBYTES/32000



722

724
725
726
727
728
729
730
731
732
733
73a
738
736
737
738
739
740
741
742
743
7448
745
746
747
748
749
750
7St
752
753
754
758
756
757
758
759
760
761

762
763
764
765
766
767
768
769
r70
?73
772
773
774
775
776
rT7?
778
779
780
ray

[aXaNa)

nn

~00

10

21

TF C{FNUMRC=NUMREC ) «GT«0+0) NUMRECZNUMREC+ 1

FORMAT( °*FILE ERRGR IN ASTIF*)
INETISLIZATION

REWIND 2
NB=MBAND/ 2
ND=3%NB
NEQ=2¢ND
NUMBLK=0

DO 10 I=1,.,NEQ
AP({ 1)=0.0

DO 10 J=1eND
STIF(Je1)=0.0
DO 21 I=1+6
00 21 J=1,6
ECM(T.J)=0.0
CONTINUE

FORM ELEMENT CONSTITUTIVE MATRIX (ECM)

20

IF(NUMAT.NE.1) GO TO 20
IF{NANLYS.NE.O) GO TO 20

COM1=EBULK(1)+1.33333*EDEV(])
COM2=EBULK(1)~0.666667*EDEV(L)
COM3=EDEV(1)

ECM{1+1)=COM1

ECM(2+2)=COM1

ECK{S.35=COML

ECM(4+4)=C0OM3

ECH(S+S)=COM3

ECM({6¢6)=COM3

ECM(1,2)=COM2

ECML1+3)=COM2

ECM(241)=CaM2

ECM(2,3)}=CaM2

ECM(3¢1)=C0OM2

ECM{3y2)=COM2

TF NUMAT=1)

DET=COMI #9342, 8CCH29 4= 1, 4NN COMP RS

COMA=(COMI®¥2-COM2+*2 ) /DE T
COMS=(COM2¥82~-COMISC CW2 ) /DF 1
ECMI(141)=COMa
ECNI{24,2)=CCMa
ECMI(3.3)=COMa
ECMI(1.,2)=COMS
ECMI{1.,3)=COMS
ECMI(241)=COMS
ECMI(243)=COMS
ECMI(3,1)=CcOMS
ECMI(3.2)=COMS

FORM STIPNESS MATKIY 1IN BLACKS
NUMBLK=NUMBLK ¢ 1
NHENBS(NUMBLK+1)

NM=ENH~-NB

NL=NM~-NB+1 .
WRITE(641001) NUMBLK,N . NV
KSHIFT=3*N(L.~3

00 110 M=t NUMEL



782

794
795
796
797
758
799
800
801

802
RO3
804
805
806
807
808
809
810
321

812
813
s1s
815
816
817
818

820
821

823
a2a
825
826
827
828
829
830
831

832
833
834
83s
836
837
838
839
840

8sl

a0

75

100

a6
110

11

62

72

82
8

IFCMAT(M) ) 1104110425
DO 35 (=18
IF(NP(1+M)~NL)I3S5+¢20+30
1F (NP(L<M)=NM)E04404+35
CQONT INUE

GO TO 110

caLL ELSTIF(AD'STlF-AFL.AFR.STIFLvSTlFQ-MPl-MB?.!A.LA?-I)
MATEM)=-MAT(M) '

ASSEWBLI ESTIF INTO TOTAL STIFFNESS MATRIX

00 75 1=1.8

12=3*1

LM(12)=3*NP(1.M)

LM(T2-1)=LM(12)-1

LM 12-2b=LM(I2)-2

00 100 I=1.24

TI=LM(1)=KSHIFT

DO 100 J=1.24

JISLMIN) =TT +1-KSHIFT

IF(JJILE-0) GO TO 100

ST!F(JJ-I!)=STXF(JJ-II)0ESTIF(!-J)

CONTINUE

ADD GRAVITY LOADS IN TO AP VECTOR

D0 46 1=3424.3

TI=ULM(I)~KSHIFT

APCII)=AP(T1)~¥WT

CONTINUE

WRITE(6+1000)

WRITEC(G+1002) (MNAT(M) o¥=1¢NUMEL)

ADD NODAL LOADS INTO AP VECTOR

DO S1 N=NLsNM

N2=38N=-KSHIFT

AP (N2) =AP(N2) +W(N)

AP(N2=1)=AP(N2-1)+VIN]}

AP(N2~2)=AP(N2-2) +UINI

MODIFY STIFFNESS AND LOAD VECTOR FOR DISPLACEMENTS

DO 102 N=NL«NH

IF{N-NUMNP} 111.111.102

N2=3#N-KSHIFT

IF (KODE(N)-10)82.72.€2

IF(KODE(N)EQe12)G0O TO 61

IK=N2-1

CALL nooIFY(AP.STXF.APL.APR.ST!FL.S?!FR.MBI.Mez.LA.LAz.XK.N)
CALL uoolFV(AP.STIF‘ADL.APR.sTxFL.STlFR.Mel'Maz.LA.LAz'NzoN)
GO T0 102

II=N2=2

IK=M2-1

CALL uoova(AP.ST:F.APL.APR.STlFL.STlFR.ME!.MEZ.LA.LAz.xx.N)
CALL NOD!FV(AD.sTlF.APL.APR.STIFL.S?IFR.MBI.usz.LA.LAz.Nz.N)
CALL uoolFY(AP.STXF.APL.APR.ST:FL.ST!FR.MB:.uaz.LA.LAa.xr.N),
GO TO 102

11=N2-2

IK=N2-1

CALL uooxFV(AP.STIF.APL.APR.STIFL.ST!FR.usx.MsZ.LA.LAz.xx.N)
CALL MooxFY(AP.STxF.APL.Apn.sTXFL.sTxFR.Mel.MBZ.LA.LAz.lK.N)
GC TO 102

TEEKODE(N)~1)102+784101

CALL KODIFV(AP.STIF.ADL-APF.STIFL.ST[FR.ME!-MBZ.LAoLAZvN2-N)
GO TO 102



842
843
844
84s
846
eaz
848
849
830
8s1
8s2
853
854
855
856
857
858
859
860
861
862
863
864
8¢s
866
867
868
869
870
871
ar2
873
874
ars
876
817
878
e?9
880
as1
882
es3
-1. 77
8as
886
.1 x4
.1-1.]
889
890
891
892
893
894
89S
896
897
898
899
900
901

(s X2 X1

101 1F(KCOE(N)-3) 105+106+107
106 Il1=N2~2
CALL NOD!FY(AP'STIF-AFL.APR'STIFL-STIFR-“BX-NBZ'LA-LAzo!!.N)
GO TO 102
105 IK=N2-1
CALL NOD!FY(AP.S?lFoAFLcAPF-ST!FL-ST!FR'NBI-MBZ-LA'LA2-IK.N)
GO TO 102
107 II=N2-2
CA"L NODIFY(AP.STIFcAPL.APR'ST!FL-STIFR-nal-HBZ.LA.LAZ.!!.N)
CALL NODIFY(AP'$T!FoAPLoAPR-STIFLoSTIFR.MBI.MBZ'LA'LAZoNZ-N)
102 CONTINUE
[
(4 WRITE BLOCK OF EQUATICNS ON DISC AND SHIFT UP LOWER BLOCK
LEN=32000
=1
DO 400 L=1+NUMREC
1F (Lo EQ e NUMREC) LENENBYTES={ (NUMREC—~1)%32000)
CALL WRITE(STIFL(LL) cLENsOole2+£401)
WRITE(6+1005) LLJLENsSTIFLLLL)
LL=LL+8000
GO TO 4d0
401 WRITE(64600)
STOP
400 CONTINUE
LEN=MBAND*4
CALL WRITE(APLoLENsOe142+84013
WRITE(6+1005) MBAND+LEN.APL(1)
1008 FORMAT(2110,E20.7)
DO 270 Im1¢ND"
K=l 4ND
AP(1)=APIK)
AP(K)=0.0
D0 270 J=1.ND
STIF(Je13mSTIF(JeK)
270 STIF(JeK)=0.0
c
C CHECK FOR LAST BLOCK
[
IF (NM=NUNNP) 20280 280
280 CONTINUE
RETURN
1000 FORMAT( /10X +*ELEMENT STIFFNESS FORMED FOR ELEMENTS WITH =VE MAT(M
1)IN THE FOLLOWING:*/)
1001 FORMAT( /10X¢*8LOCK NUMBER=® . IS/10Xs *LOWEST NODE NUMBER=®,15/10Xs
1*HIGHEST NODE NUMBERsS® 1S/)
1002 FORMAT (2618) !
END
c .
SUBROUTINE ELST!P(AP.ST!F-APL-APR.STIFL.STIFR.NBI-MBZoLA.LAZ.KOP)
THIS SUBROUTINE FORMS THE ELEMENT STIFFNESS MATRIX (ESTIF) OR
ELEMENT STRESS MATRIX (ESM)

COMMON NANLYS +KSHIFT, RO(3S0) e X(4S0) «Y(450)¢Z2(450),U(450)V(4350)
1'(‘50)QSGTEL(350-6)cSGTPS(350.7)’STRNT(Ssooé)-STNT(CSO-J)o
2 ECMI(3¢3)+STRN(6) CESTIF(24+24) sECH(Ge6) ¢EBM(6424) sESN(6024)4¥T
COMMON NUMNP.NUMEL+ NE2e¢ KODE( 4%50)sSGTNP(450¢6)s
INP(8e 350) ¢+MAT( 3%50) sMBANCSNEQeMeLM(24) «KOELL 350),
2PSY(S2) +ETA(S2) e 2TALIS2) s AQ(43) e PP(2¢)+ELDISP(24) 4
AKOUNT( 450)+SIGAL 450:6)¢STN( 450:3)+SIGEL(6)+SIGP(7).NUMBLK.
4 DISPX(450)+D1ISPY(450).01ISPZ(450)



902
903
908
905
906
907
so08
909
910
S11
912
913
914
915
916
917
918
19
920
921
922
923
924
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926
°27
928
$29
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932
933
934
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936
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938
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940
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70

€ FOR

17

11

12

14

COMMON EBULK(350)+EDEV(350) +NITERITOPT «ACOEF( S).BCOEF( S)STR(3)

COMMON/AREA1/ST{20+5)¢SL10+5)+SD(20410¢5) sVS(204104+5) « NUMAT « NCELP

1 o CONFAC o NSTRN
DIMENSION AP(NE2)+STIF(MB1,MB2)¢APLIME1)+APRIMBI)¢STIFLILAZ)

1STIFR(LA)

00 70 I=1.24
DO 70 J=1.24
ESTIF{1441=040
VOL=0.0
L1=NP(1¢M)
L2=NP (24 M)
L3=NP(3. M)
L4=NP(4+M)
LS=NP(S.M)
LE=NP(6+M)
L7=NP(7,M)
LB=NP(8 M)

M CONSTITUTIVE MATRIX
IF(NANLYS.NE«O) GO TO 2
IF(NUMAT.EQ.1) GO TO 17
COM1=EBULK(M)+1.33333#EDEVIM)
COM2=EBULK(M) ~0 « ECEEEETSEDEV (M)
COM3=EDEVI(M)

ECM(141)=CaML
ECM(2,2)=CONM1
ECM(3.3)=COML
ECM(4,4)=CON3
ECH(S.S3=COK3
ECM(646)=COM3
ECM(1,2)=COM2
ECM(1,+3)=CON2
ECM( 24 1)=COM2

ECHM(2,3) =COM2
ECM(3.1)aCON2
ECM( 3. 2) =COM2
DET=COMI$#342.#COM2882-3.5COM1SCON2*$2
COMa=(COM1%¢2-COM2%+2)/DET
COMS={COM28#2-CCH18CCH2) /DET
ECHI(1e1)=COMa
ECMI (2 2)=COMG
ECMI(3+3)=COMS
ECMI(142)=CONS
ECMI{1,3)=COMS
ECMI(241)=CONMS
ECMI(243)=COMS
ECMI(3.1)=COMS
ECMI(3.2)=COMS

IF(KOP«EGe2) GO TC 14
IF(KOEL(M)<LE.1) GO TC 11
IF(KOEL(M)eGE+2) GO YO 12
00 21 LN1=9,16

L=LN1

GO0 To 13

OC 22 LN2=17.43

L=LN2

GO TO 13

IF(KOEL(M)}.EQs1) GO TG 81
IF(KQEL(M).EQ.2) GO TO 81
DO 20 ULN3=1,8



962 L=1. N3

963 GO TO 13

964 81 DO 25 LNA4=485,%2

965 L=LNa&

966 GO 10 13

96T 1S L=aa

968 PSY(44)=0.0

969 ETA(GQ3:0.0

970 ZTA(44)x0.0

971 C FORMULATE DERIVATIVE MATRIX

972 13 PEP1==(1e/8.)%(1e~ETA(L)I®(1.-2TALL))

973 PEP2m=(1¢,/8e) {1 +ETACL)IN(1.-ZTA(L))

974 PEP3= (1+/8.)%(1.4ETA(L))IS{(1.-ZTA(L))

975 PEPA= (1e/8.78(1~ETAILII*(1.-2ZTALL))

976 PEPS=-(1e78413%(1o-ETALL})#(1.42ZTALL))

977 PEPGE=(1e/8.1%(1+ETALL) I #(1.42TAILD)

978 PEPT7=4(1e78.)8(1.+ETALL)IF(1.42ZTA(L))

979 PEPSx+(1e/8e) ®(1.=ETA(L))I*(1.42TA(L))

980 PET1=~(1e/8s1%{1.~PSY(L))}2(1.-2ZTA(L))

981 PET2=4(1e/84)18(1e~PSY(L)I*(1.~ZTAIL))

982 PET3m4(1./8.)%(1.4PSYIL))*(1.-ZTAIL))

983 PETA==(1e/8.)%(14PSY(LII#(1.~2TACL))

984 PETS==({1./8¢)%(1.-PSY(L))#(1.42ZTAIL))

985 PETOHE4{1784)%(1.=PSY(L))#(1.42ZTA(L))

986 PET7=4{1:28.)8( 1:4PSY(L))*(1.¢ZTAILY)

987 PETE=~(1e/78¢)8(1e4PSY(L)IF{14ZTA(L)

988 PZT1==(1e784)%(1~PSY(L)I*(1.-ETAIL))

989 PZT2m=(1/84)8(1—PSY(LIIICTLOETALLYD

990 PZT3Ix=(1./8)%(1.4PSY(L)II2(14ETAIL))

991 PZTA=~(1e784)%(14PSY(L)I* (L. ~ETAIL))

992 PZTE=4{1e/8.)%(1o—PSY(L)II*(1.—ETA(L))

993 PZTOEE4(1e/8.1%(1=PSY(L))I(1.¢ETA(L))

994 PZT734( 16784181 .4PSY(L)IZ( L. ¢ETAIL))

995 PZTBE4(1e/84)#(1e4PSY(L) )2 (1.~ETAIL))

996 C FORM THE JACOBIAN MATRIX

997 X1J=PEP1EX(L1)+PEP23X (L2)4+PEP3#X (L3 ) 4PEPARX(LA) +PEPSEX(LS)+
998 1PEPGEXILG )+PEPTEX (LT )4PEPBEX(LS)

999 X2JmPET 1#X(L1)4OET28X(L2) ¢PETIOX(LI) +PETA*X (LA) +PETSEX(LS)+
1000 1PET6SX (L6 )+PETTEX(L7)4PETESX(LS)

1G01 X3J=PZTI8X(L1 ) +PZT2oX(L2)+PZTIEX(LII+PZTARX(LA)+PZTSEX(LS)+
1002 1PZTESX(LE)+PZTTEX(LTI+PZTESX(LS)

1003 Y1JmPEP18Y(L1)+PEP2#Y (L2)+PEP3*Y (LI )+PEPSSY(LA)+PEPSAY(LS)+
1004 1PEP6SY(LEI+PEPTRY (L7 )+PERBSY(LS)

1005 Y2J=PET14Y(L1)+PET28Y(L2) +PETISY(LI)+PETASY(LA)I+PETSHY(LS )+
1006 1PET6SY(LOI+PETTRY (L7 )+PETB*Y(LS) .

1007 Y3J=PZTISY(L1)4PZT28Y(L2) 4PZTIY(LII+P2ZTARY(LA)+PZTSEV(LS)+
1008 1PZTERY(LE) +P2T 7Y (LT ) +PZTBEV(LE)

1009 Z1JmPEP1$Z(L1)+PEP2¢2Z(L2) +PEP3# 2 (LI )+PEPASZ(L4)+PEPSIZ(LS)+
1010 1PEPG#2(LG )+PEP7#Z (LT ) +PEPESZ(LS)

1011 Z2J=PET18Z(L1)4PET2¢Z(L2) ¢PETISZ (L3I +PETASZ(LAI+PETSSZILS)+
1012 IPETO®ZILGI+PETTSZILTI4PETE*Z(LS)

1013 Z3JmPZT18Z(L1)4P2T282Z(L2)+PZTI*ZILI ) +PZTASZ(LA)+PZTSEZ(LSI+
1014 1PZTERZILE)+PZTTSZ(L7)+PZTRSZ(LE)

1015 C INVERT THE JACOBIAN MATRIX

1016 DETJInX1J8(Y¥2J823J-228Y3J)-Y1I%(X2J$Z3J-22J¢X3J) +T1JI8( X208V I-YV2J*
1017 1x39)

1018 iF{CETS«LEe040) GO TO 7S

1019 X1I2(1e/DETIIR(Y2IRZI2-224¢Y3S)

1020 X21%(1e/0ETIIS(YII*ZLI~Z3IeY1I)

1021 X31=(1+/0ETIIS(Y1JIEZ2I~2158Y2J)



1022 Y11=(1./DETJI*(22J8X3J-X2J#23J)

1023 Y2I=(1./DETIIS(Z23IeX1I-X3J*21d)
1024 YII=l1e/DETII®( 221 38X2J-X1J%22J)
1025 211201 ./DETJI)*(X2J*YIJ=-Y2I%X3J)
1026 221=(1e/DETII*(X3JsY1J-YII*X1J)
1027 Z31=(1./DETJI)S{X1JeY2JI~Y1J%X2D)
1028 PP )=X1I*PEPLI+X2I*PET14X31#P2T1
1029 PP(2 )=YII+PEPLI+V2I+PETI+VY3I2P2ZT]
1030 PP(3 I=Z11*PEPI4Z2I*PET1+231#P2T1
1031 PP(A )=X1I*PEP24X2I*PET24X3I*P2T2
1032 PPIS I=YI1*PEP24Y2QISPET24Y3I*P2T2
1033 PPI6 )=Z1I*PEP2+22I*PET24231*P2T2
1034 PP(7 I=X11%PEPI¢X21*PETI+ X3IT*P2T3
1035 PP(8 )I=Y11I&PEP3+Y2ISPETI+VY312P2T3
1036 PP(9 I=ZL1I*PEP3+Z2ISPETI+231*P2ZT3
1037 PP(10)=X11%PEPA+X2I*PETE+X3LI*P2ZTS
1038 PP(11)=Y1I*PEPA+Y2ISPETA+YII*PZTS
1039 PP(12)=211¢PEPA+Z2ISPETA+Z3IPZITS
1040 PPL13)=X1ISPEPS+X2ISPETS+XII*P2YS
1041 PP(14)=YII®PEPS+Y2I*PETS+Y31#P2T5
1042 PP{15)=Z 1 I¢PEPS+22I4PETS+231%P2TS
1043 PP(16)=X11%PEP6+X2I*PETE+X3I*PZTE
1044 PP17)=Y1ISPEPGH+Y2ICPETE+YII ®PZTE
1045 PP(18)=Z1I+PEP6+Z2I*FETE+23I#PZTE
1046 PP{19)=X]1I*PEPT+X2I#PET74X319P2T7
1047 PP(20)=Y1 I*PEPT+Y2ISPET74Y31#P2TT
1048 PP(21)x=Z1I*PEPT7422ISPET 74231 #P2ZT7
1049 PP{22)=X11sPEPS+X2ILPETB+ XII#P2TE
1050 PP(23)=Y 1 I1SPEPO4Y2ISPETO+Y3I*P2ZTE
1051 PP(24)=Z1 I*PEPB+Z2IXPETE+Z31#P2T8
1052 C FORM ELEMENT B MATRIX

1053 DO 10 I=1.6

1054 DO 10 J=1,.24

1055 10 EBM(I+J)=0.0

1056 DO 30 J=142243

1057 EBM(4.J)=PP(J¢1)

1058 EBM(6¢J)=PP(J+2)

1059 30 EBM(1.J)=PP(J)

1060 D0 31 J=2423¢3

1061 EBM{4.J)=PP(J~1)

1062 EBM(SeJ)=PP(J+1)

1063 31 EBM(2.J)=PP(J)

1064 D0 32 Jx3+24,.3

1065 EBML S« ) =PP{J~-1)

1066 EBM(G ¢ J)=PP(J~-2)

1067 32 EBM(3.J)=PP(J)

1068 C FORM ELEMENT STRESS MATRIX

1069 DO SO0 I=1.6

1070 . 0 S0 J=1,24

1071 ESM(14+J)=040

1072 DO S0 K=1,6

1073 S50 ESM(IJIZESM{T I JISECM(IKI*EBM(KI)
io7a IF (KOP.EG.1) GO TO S1

1075 IF(L.NE<.44) GO TO 16

1076 DO S2 1=1,6

1077 SIGEL(I)=0.0

1c78 D0 S2 J=1,24

1079 S2 SIGEL(I1)I=SIGEL{IIGESM{IJIBELDISEI{J)
1080 D0 510 I=1,6

1081 STRH(1)1=0.0



1082
1083
1084
108S
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
110S
1106
1107
1108
1109
1110
nn
1112
1113
1114
1118
1116
1117
1118
1119
1120
1121
1122
1123
1124
112%
1126
1127
1128
1129
1130
1N
1132
1133
1134
1138
1136
1137
1138
1139
1140
1141

500

510

&0
21
7S

80

c

c
1000
c

C

C

[+

[

C

16

83

84
2%

82

35

36

20

S1

00 S00 J=1.24
STRNCI)=STRN{II+EBM{1.J)*ELDISP(J)
STRN{ I)=STRN(1)*100.

CONTINUE

GO TO 80

IF(KOEL(M) .EQe0) GO YO 82
IF(KOELI{M).EQ.3) GO TO 82
N=NP{L=-23«M)

KOUNT (N)=KOUNT(N) 41

DO 83 I=1.6

D0 83 J=1.,24

SIGAIN. I )=SIGA(NI)+ESMIT.J)*ELDISP(J)
DO 84 I=1.3

DO 84 J=1.24
STN(NeI)I=STNI(N. I} 4EBM(1+J)*ELDISP(J)
CONTINUE

GO TO 15

N=NP(L M)

KOUNT (N)=KOURTIN) +1

00 35 I=1.6

DO 35S J=1.24
SIGA(NeI)=SIGAIN+I)4ESMIIJ)I*ELDISP LY}
D0 36 I=1,3

DO 36 J=1.24

STN(N¢I)=STN(NeT )4EBM(1.JISELDISP(J)
CONTINUVE

GO TO 15

IF(KOEL(M).LEs1) GO TO SS

FORM ELEMENT STIFNESS MATRIX THREE POINT INTEGRATICN

61

22

00 61 I=1,24

00 61 J=1,24

00 61 K=x1.6
ESTIF(L¢J)RESTIF(1+J)+AQILISEBM(KI)SESM(K.J)SDETY
VOL=VOL+AG(L)*DETJ

WT=VOL*RO( M)/8.

CONTINUE

GO TO 80

FORM ELEMENT STIFFNESS MATRIX TwO POINT INTEGRATION
S5 DO 60 I=1,24%

DO 60 Jx=1.24

DO 60 Km=1.6
ESTIECLeJIBESTIF(1+J)+EENIKII)IPESM(KJ)*DETY
VOL=VOL+DETJ

wWT=VOL*RO( M)/8.

CONTINUE

GO TO 80

WRITE(G¢1000)M

CALL EXIT

RETURN

FORMAT (1Hle. 18M VOLUME OF ELEMENT +14s 18BH IS LESS THAN ZEROQ)
END

SUBROUTINE STRESS(AP+STIF ¢ APL+APRsSTIFL +STIFReMB1 ¢MB2eL 2L A2)

THIS SUBROUTINE FORMS THE ELEMENT STRESS MATRIX (ESM) «+MULTIPLIES BY
THE ELEMENT DISPLACEMENT VECTOR (ELDISP)AND RECORDS THE STRESSES IN
SIGEL (BY CALLING ELSTIF)e IT THEN COMPUTES PRINCIPAL STRESSES AND

STRAINS FOR ELEMENTS AND NODAL STRESSES.



1142
1143
1144
114S
1146
1147
1148
1149
1150
1151
1152
1183
1154
1188
1156
1137
1158
1159
1160
1161

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

1172
1173
1174
1178
1176
1177
1178
1179
1180
1181

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

nn

onn

C

1

<

15

$00

COMMON NANLYSKSHIFTe RO(250)4X(850),Y(450)«Z(85G) sU(A50) ,V(450),
IW(450) s SGTEL( 350+€) e SGTPS(35047 )¢ STRNT(35046) ¢STNT(450¢3)0
2 ECMI(3¢2)¢STRN(GE) ¢ESTIF(24:24)ECH{6¢6)sEBMI6428) JESM(6+24) o WT
COMMON NUMNP ¢ NUMELs NEZs KODE( 4503 ¢ SGTNP{G50+6) s
INP(8s 350)¢MAT( 350) e MBAND<NEQe MoLM(24) KOEL( 350).
2PSY(S2) sETAUS2) e ZTA(Z2) s AQG(A3)+PP(24) +ELDISP(24) o
3KOUNT( 450)¢SIGA! 4S046)eSTN 45043)¢SIGEL(S) +SIGP(7) ¢ NUMBLK,
4 DISPX(450) 4DISPY(450)+DISP2(450)
COMMON EBULK(350) ¢EDEVI350).NITER.ITOPT4ACOEF( 5) +BCOEF( S),STP(3)
COMMON/AREAY/ST(20¢5) +SLL10+5)eSD(20610+5) oVS( 200100 5) ¢ NUMAT o NCELP
1+ CONFAC +NSTRN

DIMENSION AP(NE2) «STIF(MB1+MB2)+sAPLIMB1) ¢ APR(MB1) oSTIFLILAZ),
1STIFRILA)

00 S N=1 +NUMNP
KOUNT (N} =0

DO S J=1.6
SIGA(N«J)=0.0
D0 6 N=1 ¢ NUMNP
DO 6 J=143
STN(NeJ)=0.0

SIG1i=0.0
SIG2=0.0
S1G3=0.0
M1=0
M2=0
KR3=0

WRITE(6+2000)
DO 100 M=1,NUMEL
COMPUTE ELEMENT DISPLACEMENTS

00 10 I=1,8

12=391

LMI2=3&NP (I« M)

ELDISP(12)=AP(LMI2)

ELOISP(I2-1)=AP{LMI2~1)
O ELDISP(12-2)=AP(LMI2+2)

OMPUTE ELEMENT STRESSES

MAT(M)=TABSCVMAT(M))

CALL ELSTIF(AP+STIFsAFLAPReSTIFL STIFRAMEBLIMB2:LALAZ+2)
DO 15 I=1.6

SGTEL(MeI)=SGTEL(M. I)+SIGEL(])

DO S00 I=1.6

STRNT(Ms I )=STRNT(MI)+STRN( )

WRITE (6¢2010)Me(SGTEL(MeIdeIx146)s (STRNT(Mel),
1I=1,3) .

C COMPUTE ELEMENT PRINCIPAL STRESSES AND PRINCIPAL STRAINS

C

T1=SGTEL(Ms 1) +SGTELIM2)4SGTEL M, 3)

T28SGTEL(Ms 1) #SGTELIMe2)¢SGTEL(Me2) #SGTEL (M3} +SGTEL Ms 3) SSGTEL (M,
11)=SGTELIM14) $32-SGTEL(Me SIS$2=SGTEL (M. 6) 482

TInSGTEL (Mo )SSGTEL(Me2)8SGTEL (Me3)¢2.8SGTEL(Med ) SSGTEL(M,5) =
1SGTEL(Me6)1=SGTEL(M1)#(SGTELI M S)#82)=SGTEL(Me 2)®(SGTEL(N6)%82)



1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1232
1233
1234
123S
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
12<3
1254
1255
1256
1257
1258
1259
1260
1261

2-SGTEL(MesI)#(SGTEL(V.8)#02)

CSOLUTION OF CUBIC EQUATIOM BY NEWTON METHOD

12

1t

31
32

36

C PRI

3S

3a
33

IF(ABS(T3)eLEc1.E-50) GO TO 36
S=0.0

00 31 I=1.20
FSESs%3-T19(Se8Z)+T205-T3
FPPE3.#(5892)~2.8T19S5+T2
1IF(ABS(FPR)«LEs1+E~30) GO TO i2
GO TO 11

WRITE(6,2060) FPR

FPR=1.0

X1=S-FS/FPR

IF(ABS({X1=5 )eLTele.E=€) GO TO 32
S=x1

Ta=(T1-X1)/2.
TS=SART(({T1-X1)*92)/4.-T3/X1)
IF(ABS(T3) sLE«1.E-S0) Ta=Ti/ 2.
IF(ABS(T3)eLEe1eE=50) TS=SQRT((T1%%2)/4.-T2)
IF (ABS(T3)eLEe1+E~50) X120.0
X2=T4+TS

X3=T4=-TS

SIGP(1)=X1

SIGP(2)=X2

SIGP(3)=Xx3
NCIPAL STRESSES ARRANGECD IN CROER
DO 33 1=1+2

J9=3~1

DO 36 J=1eJJ
IF(SIGP{JIaL.TeSIGP(I®12]1GO TC 35
GO TO 34

Xa=SIGPLJ)

XS=S1GP(J+1)

SIGP(J+1)=Xa

SIGP(J)=XS

CONTIRUE

CONTINVE

CCOMPUTE MAXIM. SHEAR STRESS

20

S12

511

531
532

SIGP(A)=(SIGP(1)=SIGP(3)) /2.

D0 20 IxieH

SGTPS(M, I)=SIGP(T)

T1=STANT(Me 1) +STRNT(Me2)+STRNT(M3)

T2mSTRNT(Me 1) $STRNT(Me2)¢STRNT(Me2) #STRNT(Me3)+STRNT (Ms3) SSTRNT (Me
11100288 ( STRNT(MeA) S #24STRNT( M, 5) $424STRNT (M. 6) #%2)
T3=$TRNT(N-1)‘STRNT(F.ZItSTRNT(H.S)OO.ZSO(STRNT(N-Q)'STENT(M.S)*ST
LRNT(Me6)=STRNT(Me 1) #{ STANT(M¢ 5} ##2) —STRNT(Ms 2) *(STRNT (M. 61 ¥82) =
2STRNT(Me3)S(STRNT(M.4)%22))

TFCABS(T3)eLE1.E=S0) GO TO 536

Sx0.0

00531 I=1.20

FSlsttS-TlO(S'tz)072.5-73

FPRuE3,9(S892)~2.,2T18SeT2

IF(ABS(FPR) «LE.1.E~30) GO TOS12

GO TOS1t

WRITE(6¢20€0) FPR

FPR=1.0 °

X 1= S-FS/FPR

IF(ABS(X1=S )eLT+1.E-€) GG TOS32

sax1

Ta=(T1=X1)/2.

TExSART(((T1-X1)¥82)/4.-T3/X1)



1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1272
1273
1274
127
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1308
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321

536

IFC(ABS(T3)eLEel1.E~50) T4=T1/2.
IF(ABS(T3)el.Ee1eE~50) TS=SORT((TIH®2)/4e~T2)
IF(ABS(T3)eLEel1+E=50) X1=0.0

X2=Ta+TS

X3rT4=-TS

STP(1)=X1

STP(2)=x2

STP(3)ax3

C PRINCIFAL STRAINS ARRANGED IN ORDER

S38

534
533

$20

200

201
C

00 533 [=1.2

Jy=3~-1

DO 534 Jx1.JJ
IF(STP(J)alT.STP(J+12) GO TO S35
GO TO 34

X4=STP(J)

XS=STPlJ*1)

STP(J+1)=Xxa

STP(J)I=XS

CONTINUE

CONTINUE

D0 520 I=1.3

J=144

SGTPS(MeJ)=STP(I)
IF(ITOPT.EQ.0) GO TO 350
IF(NITER.EQ.2) GO TO 3%0

DO 200 I=1.6
SGTEL(Me I )=SGTEL(Ms I)=SIGEL(I)
00 201 t=1.,6
STRNT(MI)=STRNTUN I I=STRN(I)

c FIND MAXIMUM ELEMENT STRESSES

350

115

120

100

<

IF(SGTPS(Me1) L T4SIG1) GO TO 115
SIG1=SGTPS(M.1)

Miz=m

IF(SGTPS{M.3) «GT.SIG2) GO TO 120
SIG2uSGTPS(M.3)

M2=m

IF{SGTPS(Me48) .LTSIG3) GO TO 100
SIG3xSGTPS(M.4)

M3=m

CONTINUE

WRPITE(642040) SIGleM1+SIG2:M2,S1G34M3
WRITE(6,2001)

WRITE(6+2002) (Me(SGTPS(Mel)Im1,+7)eM=14NUMEL)

C FIND AVERAGE NOCAL STRESSES AND STRAINS (X)

116
110

117
111

DO 110 N=1.NUMNP
RK=KOUNT (N}
IF(RK¢EQe0.0) GO TO 110
DO 116 I=1.6

SIGA(NsI)= SIGA(N+I)/RK
CONTINUE

CONTINUE

D0 111 N=1.NUNNP
RP=KOUNT(N)

IF(RF «EQ«0.0) GO TO 111
D0 117 I=1.3
STNINCI)=100.*STN(NI)/RP
CONTINUE

CONTINUE



1322
1323
1324
132
1326
1327
1328
1329
1330
133
1332
1333
1334
133s
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
135S
1286
1357
1358
1359
1360
1361
1362
1363
1368
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

WRITE(6+2050)
DO 27 N=1eNUMNP
IF(KOUNT({N)+EQ.0) GO YO 27
DO 25 Ix146
25 SGTNPINsI)=SGYNPINe 1)4SIGACN. 1)
DO 26 J=1.3
26 STNTINeJIESTNTI(N+J)+STN(N:J) :
WRITEC6+2055) NeSGTNP(Ne1) s SGTNP(Ns2) ¢ SGTNP(Ne3) s SGTNP¢ No &)+ SGTNPL
1Ns5) s SGTNPING6) ¢+STNT(Ns1)sSTNTINs 2) s STNT(No3)
IF(ITOPT.EQ.O0) GO TO 27 :
IF(NITER.EQe2) GO TO 27
DO 250 I=1.6
250 SGTNPINsI)=SGTNP(Nel)=SIGAI(Ns1)
DO 251 J=1.3
251 STYNT(NeJ)I=mSTNTI(NesJ)=STNI(N.J)
27 CONTINUE

RETURN
C
2000 FORMAT(*1°,10Xe*ELEMENT STRESSES®///¢ *ELEM SIGMA X SIGMA Y
1 SIGMA 2 SIGMAXY SIGMAYZ SIGMAZX STRAINXX ST

2RAINYY STRAEINZ22%//7)

2010 FORMAT(I&. 9E12.5) )

2001 FORMAT(®1%,10Xes*PRINCIPAL STRESSES*///+'ELEM SIGMA 3 SIGMA 2
1 SIGMA 1 MAXSHEAR STRAIN3 1 STRAIN2 STRAIN1'//)

2002 FORMAT(14+7E12.5)

2040 FORMAT(1H1.
1 27H HAXIMUM PRINCIPAL STRESS = ¢E15¢5+19H AND OCCURS IN ELEM.I6//
2 27H WININUM PRINCIPAL STRESS = +E15¢5+19H AND OCCURS IN ELEM.I6//

3 27H MAXIMUM SHEAR STRESS = sE15.5:19H AND OCCURS IN ELEM.16)

2050 FORMAT(®1%+10Xe*AVERAGE NCDAL STRESS*///+¢*NNDE SIGMA X SIGMA
1y SIGMA 2 SIGMA XY SIGMA YZ SIGMA ZX STRAINX
2 STRAINY STRAINZ*///)

20SS FORMAT(I4,9E12.5)
2060 FORMAT(E12.5)

[4]

END

nn

SUBROUTINE MODIFY (AP+STIF+APLsAPReSTIFL.STIFRMBloMB2eLALAZs1eN)

THIS SUBROUTINE MOOIFIES THE TOTAL STIFFNESS MATRIX AND LOAD VECTCR
FOR DIPLACEMENT BOUNDARY CONDITIONS.

anoon

COMMON NANLYSKSHIFTe RO(3S0)¢X(450)¢Y(450)¢Z(450)U(450),V(450),
1W(450) s SGTEL(3504&)e SGTPS{350¢7) e STRNTI350+63 «STNT(450e3) 0

2 ECNIt3e¢3)eSTRRIG) oESTIF(24:24) ¢ECMIOI6) sEBMIGe28) sESHIE24) 0T
COMMON NUMNP ¢ NUMEL e NE2¢ KODE( 450)+SGTNP(4504+6) ¢

INP(8¢ 3350)eMAT( 3%0) «MBAND¢NEQe¥LM(24) +KOEL( 350)+

2PSY(52) ¢ETA(S2) ¢ ZTA(S2) s AG(43) o PP(24) +ELDISP(24)

3KOUNT( 450) ¢« SIGAL 450¢6)¢STN( 45S0¢3) +SIGEL(6) +SIGP(7) e NUNBLK.

& DISPX(450).DISPY(4S50)+0ISPZ(450)

COMMON EBULK{350) EDEV(3ISO)eNITERIITOPT,ACOEF( S5)+BCOEF( S)eSTP(3)
COMMON/ZAREAL/ST(2005) ¢SL(10e5)eSD(2001005)¢VS(20¢1005) ¢ NUMAT ¢ NCELP
1eCONFACINSTRN

DIMENSION AP(NE2) oSTIF(MBL1sMB2)sAPLIMBL i ¢ APR(MB1)+STIFL(LA2) .
1STIFR(LA)

DISP=U(N)
IF((I=3%N¢14KSHIFT) sEQe0) DISP=VIN)
IFC((I=3ONOKSHIFT) ¢EQ.0) DISP=TIN}



1382 C

1383 DO S0 J=2,MBAND
1384 IL=1+J=1
1385 U=1-J4+1
1386 IF(IULLE.O0)GO TO 10
1387 AP(IUI=AP{IU)=STIF(J.IU)®DISP
1388 STIF(JsIU)=0.0
1389 10 IF(IL .GT.NEQ) GO TO SO
1390 APCIL)ITAP(IL)~STIF(J+1)9DISP
1391 STIF(Je1)=0.0
1392 s0 CONTINUE
1393 AP(L)=DISP
1394 STIF(141)=1.0
1398 RETURN
1396 C
1397 END
1398 c
1399 c
1400 SUBROUTINE BAND1 (E«A+BLIBRAL+ARIMB1 +MB2,LA+LA2. FOUB)
1401 c
1402 C THIS SUBROUTINE SOLVES EQUATIOAS IN BLOCKS USING GAUSSIAN ELIMINATION.
1403 C SYSTEM SUBROUTINES READ AND WRITE ARE CALLED FOR DAYTA TRANSFERS BETWEEN
1404 C CORE AND FILES. SYSTEM SUBROUTINES NOTE AND POINT ARE CALLED FOR BACK
140S C SPACEING DATA IN FILE 1 OURING BACK SUBSTITUTION.
1406 c

1407 COMMON NANLYS.KSHIFT, RO(350)+X(450)Y(450)+Z(450) +U(450)+V(850),
1408 1W(850) e SGTELL 35046) s SGTPS(350,7)+ STRNT(350+6) +STNT (45043 ),
1409 2 ECMI(3+3)sSTRNIGE) ¢ESTIF(24+24) sECM(Ge6)1EBM(6¢24)+ESM(64248) oW T
1410 COMMON NUMNPsNUMEL+ NE2¢ KODE( 450)¢SGTNP(450+6)
1411 INP(B8s 350)¢MAT( 350) MM oNECeMoLM(24) ¢ XDEL( 350),
is12 2PSY(S2) ¢ETAIS2) ¢ 2TAUS2) ¢ AG(A3) PP (24)+ELDISP(24)
1413 3KOUNT( 450)eSIGAL 450¢6)+STN( 4503 )SIGEL(6)SIGP(7)«NUMBLK,
1414 - 4 DISPX(450).DISPY{450).DISPZ(450)
141S COMMON EBULK(350) ,EDEV(3S0),NITER.ITOPT.ACOEF( S)+BCOEF( 5).STP(3)
1416 COMMON/AREAL/ST(20e5)eSL(310+5)eS0(20¢10¢5)eVS(20¢12005) «NUNAT (NCELP
1417 1+ CONFACINSTRN
1418 DIMENSION INFG(4)+INDEX(20) :
1419 DIMENSION B(NE2) ¢A(MB1,MB2)+BLIMB1) «BR{V¥B1)+ALILA2)+AR(LA)
1420 INTEGERS2 LEN
1421 NEBY TES=MMEMMS S
1422 FNUMRC=FLOAT(NBYTES )}/ 32000
1423 ©  NUMRECaNBYTES/32000
1424 1F{ (FNUMRC=NUMREC) o GT 20.0) NUMREC=NUMREC+1
1425 600 FORMATC *ERROR FILE IN BAND1®)
1426 NN=NEG/2
18427 S
1428 c
1429 REWIND 1
1420 REWIND 2
143 N8Bz 0
1432 WRITE( 641002 JMM. NUMREC
1433 1002 FORMAT(2110,E20.7)
143e GO TO %0
1435 c
1436 c SHIFT BLOCK OF EQUATIONS
1437 c
1438 10 NBaNBe1
1439 00 20 N=1,NN
1440 NM=ENN+N

144} B{(N)=B(NNM)



1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
148S
1456
1457
1458
1459
1460
1461

1462
1463
1464
1468
1466
1467
1468
1469
1670
1473

1472
1473
1474
1478
1476
1477
1478
1479
1480
1481

1482
1483
1484
14885
1486
1487
1488
1489
1490
1491
1492
1493
1494
1498
1496
1497
1498
1499
1500
1501

20

so

550

$00

1003

<

60

638

70

90
100

ano

110

700

BI(NM)=0,0

DO 20 M=) MM
A(MIN)I= ALMNN)
A(M(NM)=0,0

READ EQUATIONS IN TO CORE

IF (NUMBLK=NB) 50 ¢ 60450

L=y

DO SO0 L=1.NUMREC

CALL READCARCLL) ¢LEN:OcL.D+2+£550)
WRITEC(Ge 10033 LENLL ¢« Mo NUNREC, AR(LL )
LL=LL+8000

GO TOo So00

WRITE(6,600)

svTop

CONTEINUE

CALL READ (BRILEN:0+LDe2+L550)
WRITE(G6¢1002) LENINN.BRC1)
FORMAT(4130,E20.7)
IF(NE)B0610,60

REDUCE BLOCK OF EGQUATIONS

DO 100 N=m1,NK

- IFCAC1eN) 2650100468

BIN)=B(N)ZA(1.N)

D0 90 L=2,MM
IFCALLeN) 370090470
C=AIL oNIZAL Lo N)
I=NeL=-1

J=0

DO 80 K=mi oMu

JuJel -
ACJeEI=A(JI e 1) ~CPALIKIN)
BLII=B(I)-A(LINISB(N)
AlLeNI=C

CONTINUE

CONTINUE
WRITE(6.2000) N8B
CALL TIME(1.1)

WRITE BLOCK OF RECUCEC EQUATIONS

IF(NUNBLK=NB)110¢120+110

CONTINUE

CALL NOTEC(FOUB. INFO)
INDEX{NB)=INFO(2)

LEN=32000

ti=]

00 700 L=1.NUMREC

IF (LeEQ.NUNREC) LEN=NBY TES ~ ( (NUMREC~1 ) *32000)
CALL WRITECALILL) LEN+Ool+FDUBLESS0)
WRITEC6¢1002) LLSLENJALLILL)
LL=LL+8000

CONTINUE

LEN=MMSS

CALL WRITE(BLWENsOs1+,FDUBLLSSO)
WRITE(G691002) LLLEN:BLC1)

G0 T0 10



1544
END OF FILE

-
N
o
-

NON

120

130

140

150

800

onon

160

180

190
C
1000
1001

BACK SUBSTITUTION

DN 140 M=1 NN

N=NN&1=-M

DO 130 K=2+MM

L=N#K~-1
BI(N)=B(N)=~A(K:N)*B(L)
NM=N&NN

B(NM) =B(N)

AINBJNM)I=B(N)

WRITE(641001) NB

CALL TIME(1.1)

NB=NB-1

IF(NB)}150,160+150

CONTINUE

INFO(1)=INDEX(NB)

CALL POINT(FOUB.INFO.1)
tL=1

DO 800 L=1+NUMREC

CALL READCAL(LL) +LENeO'LZ+FDUB+ESS0)
WRITE(S+,10023 LL.LENJSALILL]
LL=LL+8000

CONTINUVE

CALL REAC(BLOLEN+OLZ+FDUBESSO)
WRITE(6.1002) LLLEN,BL(1)
GO TO 120

ORDER UNKNONNS IN B8 ARRAY

=0

NUME Q=32 NUMNP

D0 180 NB=1,NUMBLK

DO 180 N=1 NN

NM=N+NN

K=K+1

IF(K+GT+NUMEQ)} GO TO 190
BIK)IZA(NBINM)

RETURN

FORMAT(//710X ¢ *EQUATICAS FECUCED IN BLOCK NUMBER=¢,15//)

FORMAT(//10Xs *BACK SUBSTITUTICN CCMPLETED IN BLOCK NUMBER=',1S5//)
END
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APPENDIX C

ELEMENT STIFFNESS FORMULATION FOR
ISOPARAMETRIC HEXAHEDRON

C.1 Scope

This appendix contains the element stiffness formula-
tion for an isoparametric,eight-node hexahedral element with
24 degrees of freedom. The formulation given here is essen-

tially based on the one described by Clough (1969).

C.2 1Interpolation Functions

An isoparametric eiement is the one in which the dis-
placements and the geometry of the element are described by

the same interpolation functions. It can be shown that such

an element with a proper choice of the jnterpolation functions,

satisfies the necessary requirements for the convergence of
the finite element solution to the correct answer (Zienkie-
wicz et al., 1969). For the eight node hexhedron shown in
Fig. C.1 the relationship between the local coordinates (&,m,
z) of the parent element and the global cartisian coordinates

(x,y,z) of the element is provided by a set of linear inter-

polation functions as:

yb= 1o N O y} (c.1)

._..J:
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in which X, y, and z are the coordinates of the eight nodes

of the element (Fig. C.1(b)) expressed in Cartesian global

coordinate system as:

_T _
X1 = <XqXy .. X3 x8>
._T _
y = <y1y2 R R y8>
__T _
z = <z]z2 .o z_.I .o 28> .
and
N = <N]N2 . Ni h8> .

The linear interpoiation functions are expressed in terms of

the local coordinates of the parent element as:

Ny = 1/8(1 + g2) (1 + ang )T+ ggy) (c.2)

in which &i, n; and g5 are the coordinates of the eight nodes
of the parent element as shown in Fig. C.1(a). According to
the definition of an iSOparametrﬁc element the displacements
(u,v,w,) of the element should be expressed by the same inter-
polation functions used to describe the geometry. By analogy

with Eq. C.1 the displacements are expressed as:

u) N o o] |u

(C.3)
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where u, vV, w are the nodal displacement vectors expressed as:

—T _

u - <U-IU2 o s » U]- e o o U8>

__T _

Voo <vgv, vy Vg>

W= <wow W Woo
My e PERRE 8

C.3 Element Stiffness Evaluation

The element strains are expressed in terms of the nodal
displacements by performing the appropriate differentiation

on Eq. C.3. The resulting expression is:

C B ]
EXX ﬁ' 0 0
‘ N
eyy 0 3y 0
N )
- aN =
< €22 > 0 0 2z u
oN N =
ny '57 W 0 ﬁ v >' (C.4)
aN aN —
Y.yz 0 E .a_.y- kw..J
oN oN
Yzx 2z 0 3x :
- J —_ -

Eq. C.4 can be expressed in the abbreviated form as:

{e} = [B] {r} . (C.5)
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The derivatives needed in the strain matrix of Eq. C.4 are

obtained from:

£ ) VRN
aN an
X X3
SR SIS L3S (c.6)
SN N
9z o9z
\ / .

where [J] is the Jacobian matrix which can in turn be ob-

tained from:

fe— p— ( =

ax  ay oz an

3f 9%  °g ¢t oF

= B. gl 3_2 = ..a—N T v 7
[JJ an an an jan ; [X y ZJ (c'7)

ax 8y oz aN

g 14 g 3z
e ) .,

By inverting [J] obtained from Eq. C.7 and using Eq. C.6 and
Eq. C.4 the strain matrix [B] is evaluated. As the strain
matrix is expressed in local coordinates, the integration
necessary to evaluate the element stiffness has to be per-

formed in the same local coordinates using the relationship

for the elemental volume:

dv = dx dy dz = det[J] dg dn dz (c.8)
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The element stiffness can now be evaluated from:

1 1 1 -
[k1 = J [T [C1[Bldv = { ,]f { [B]'[c][Bldet[J]dE dn dz  (C.9)
v -] -1 =~

where [C] the constitutive matrix given by:

—;-v v v 0 0 0——
v 1-v v 0 0 0
¢l = o=y | ¥ v 1.y 0 0 0 (c.10)
o o o 2 o 0
6o 0 o0 0o L2 o
6o 0 0 0 0o L&

The integrations are performed numerically using Gaussian

quadrature formulae.
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APPENDIX D

FINITE ELEMENT METHOD FOR THE ANALYSIS OF
INDIRECT TENSION TEST

D.1 Scope

This appendix describes the main features of a two
dimensional finite element method used for the analysis of an
indirect tension test when the material is assumed to be bi-

linear, having different moduli in compression and tension.

D.2 Basic Considerations for a Bilinear Material

A finite element method for solving two dimensional
problems involving a bilinear material was suggested by Wilson
(1963). Thg method that uses a successive approximation
technique can be handied very conveniently by the two dimen-
sional fihite element program that uses an iterative equation
solver (Wilson, 1963). The program given in Appendix A was
modified by the author, following the procedure suggested by
Wilson (1963), to consider the bilinear property of material.

A bilinear material has the following three possible

stress-strain relationships depending on the stress state:

Type 1 - Both principal stresses are compressive
Type II - Both principal stresses are tensile
Type III - One principal stress is compressive while

the other is tensile.
For Type I and Type II the stress-strain relationship in x-y

coordinate system is of the normal form. For Type III the

i
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stress-strain relationship is a function of the angle of inclina-
tion of the major principal stress with the x-axis. In terms
of the principal coordinate system the stress-strain relation-

ship is written ds:

{o} = [c] {&e} (D.1)

where [C] is given by Eq. 2.7 of Chapter II. If {o} and {e}

represent stresses and strains in x-y coordinate systaem then

(g} = [117 {e} (D.2)

{c}

[T] {o} (D.3)

with [T], the transformation matrix, given by:

2 .2 . -
cos 6 sin” 6 2 sin A cos ©
_ < 2 : 2 .
[1] = sin® @ cos“ 8 -2 sin 8 cos © (D.4)
: . N 2 . 2
{:s.n 6 cos © sin 8 cos © cos® 8 - sin© ©

Since {0} = [c] {e} the constitutive matrix in x-y coorindate

system for a bilinear material is given as:

[c] = [T1 1 [T17 (D.5)

In the finite element program the constitutive matrix for
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Type III as given by Eq. D.5 is computed for an element con-

sidering the angle 6 obtained from the previous solution.

D.3 Analysis of Indirect Tension Test

The finite element idealization of a quadrant of the
circular section analyzed is shown in Fig. D.1. To start‘
with the solution was obtained for EC/Et = 1 and for the
assigned value of G/Ec. Before the next solution was attempted
each element was assigned the appropriate constitutive matrix
depending on the type to which it belongs. For Type III the
constitutive matrix was obtained from Eq. D.5. The solution
thus obtained for Ec/Et = 1 was used to perform the necessary
modifications for obtaining the next solution. The solution
procedure was repeated until the stresses and displacements
obtained in two successive solutions closely agree with each

other. For the analyses performed the final solution could

be obtained after 10 to 15 repetitions.
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FIG, D.1 FINITE ELEMENT IDEALIZATION OF A QUADRANT
OF THE CIRCULAR SECTION ANALYSED



