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Abstract 
 

Low dose rate (LDR) brachytherapy is a minimally invasive form of radiation therapy, 

used to treat prostate cancer, and it involves permanent implantation of radioactive sources (seeds) 

inside of the prostate gland. Treatment planning in brachytherapy involves a decision making 

process for the placement of radioactive sources in order to deliver an effective dose of radiation 

to cancerous tissue in the prostate while sparing the surrounding healthy tissue. Such a decision 

making process can be modeled as a mixed-integer linear programming (MILP) problem. In this 

thesis, we initially introduce a novel MILP optimization model for interstitial LDR prostate 

brachytherapy that attempts to mimic the qualities of treatment plans produced manually by expert 

planners. Our approach involves incorporating a unique set of clinically important constraints, 

called spatial constraints, into our models. These constraints are combined with several proposed 

data processing techniques, and collectively these methods enable us to capture the fundamental 

aspects of the planning style present at a local cancer clinic. While this represents the primary 

clinical challenge to overcome in this thesis, the engineering challenge involves producing 

clinically acceptable treatment plans in a matter of seconds to minutes with our automated planning 

system. Such a goal initially presents itself to be a difficult one to accomplish, as our large-scale 

models exhibit tendencies of intractability while using high-resolution data sets. We introduce 

pseudo high-resolution data sets and constraint-violating feasibility-based modelling in order to 

overcome these issues related to solution performance of our model. Through the synergistic 

effects of these two modelling techniques, we demonstrate the ability to produce treatment plans 

with solution times suitable for pre-operative and intra-operative planning, which constitute the 

two main forms of treatment planning in LDR brachytherapy. Specifically speaking, our solution 
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times range from less than a minute to roughly five minutes for prostates of varying shapes and 

sizes (volume-wise, the tested prostates range from 20.4 cc to 63.1 cc).  Finally, with the help of a 

radiation oncologist, we verify the clinical acceptability of our automated plans through a pilot 

study involving data from twenty patients. Therefore, through this study we also confirm the 

clinical suitability of the several concepts introduced in this thesis; namely, these are spatial 

constraints, pseudo high-resolution data sets and constraint-violating feasibility-based modelling.  

Following these results, we consequently identify three main areas of improvements for our 

automated system: avoiding placement of strands outside of the prostate and seeds in the bladder, 

as well as lowering dose to the organs-at-risk. Moving forward, we suggest branching out and 

examining the clinical performance of our automated planning system in intra-operative planning, 

as the results obtained in thesis reflect the performance of our approach within pre-operative 

planning. In summary, through this thesis we demonstrate the ability to uniquely capture the 

planning style of expert planners at a local clinic in a fraction of the time that it currently takes 

expert planners to produce treatment plans.  
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Chapter 1 
Introduction 

 

 

Despite its fairly small size, the prostate gland plays a major role in the health of North 

American men. With an estimated 220,800 cases in 2015, carcinoma of the prostate is the leading 

type of new malignancy involving men in the United States (Siegel, Miller & Jemal 2015). Prostate 

cancer is also expected to cause 27,540 deaths in 2015, making it the second deadliest form of 

cancer among males  (American Cancer Society 2015). Early diagnosis and treatment of prostate 

cancer can eliminate disease-related symptoms and increase the prospects of patient survival  (Shore 

2014). Treatment options available today depend on the stage of the disease, as well as the personal 

preference, age, and comorbidity of the patient  (Heidenreich et al. 2008). Among the various 

treatment alternatives, which include androgen deprivation therapy, cryotherapy, external beam 

radiation therapy, and prostatectomy, one particular method stands out to be of high value for early-

stage prostate cancer: brachytherapy (Gomez-Veiga et al. 2012). In its early stages, when the disease 

has not yet penetrated the prostate capsule and spread to surrounding tissue, brachytherapy is 

considered to be an extremely effective treatment method with a low mortality rate (Zelefsky et al. 

2007). 
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Brachytherapy is a minimally invasive form of radiation therapy that can be classified under 

three general categories: interstitial, intracavitary, and surface brachytherapy. Interstitial 

brachytherapy involves the permanent or temporary surgical introduction of radioactive sources, 

inside a cancerous organ within the human body, such as the prostate or breasts (Lin et al. 2008). 

Intracavitary brachytherapy involves the temporary exposure to radioactive sources of cancerous 

tissue lining the inner cavities of the human body, such as the esophagus or cervix (Gorissen, Den 

Hertog & Hoffmann 2013). Surface brachytherapy involves the application of radioactive sources 

to body surfaces where cancer is present. All forms of brachytherapy treatment can be delivered 

using lower strength sources at low dose rate (LDR) or higher strength sources at high dose rate 

(HDR). Both permanent LDR and temporary HDR brachytherapy are suitable for prostate cancer, 

although the former is generally the more preferred option among clinicians.  

In permanent interstitial LDR brachytherapy, the main objective is to employ patient-

personalized treatment plans, or seed (source) distributions, that appropriately target tumors by 

delivering an effective dose of radiation to cancerous tissue while sparing surrounding healthy 

tissue. The prostate, a chestnut-sized gland oriented as an inverted pyramid, is securely suspended 

under the bladder and in front of the rectum, with the urethra tunneling approximately midway 

through the gland. Thus, a major challenge in treatment planning is the presence of these near-by 

critical organs-at-risk, for which the dose of radiation must be minimized or constrained. 

Overdosing otherwise healthy structures with radiation may lead to severe and undesired post-

operative medical complications, such as incontinence. Meanwhile, care must be taken not to 

underdose the target prostate tissue; otherwise the treatment itself may be rendered ineffective and 
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the patient may require further medical intervention in the future. Considering that LDR prostate 

brachytherapy is designed as a one-time procedure involving the permanent implantation of seeds 

within a patient, post-operative remediation of treatment planning or implantation-related errors is 

technically challenging. Thus, it is of utmost importance, for the success of the brachytherapy 

treatment, that both the treatment planning and the implantation are conducted with the greatest 

attainable accuracy. 

Treatment planning for brachytherapy can be categorized under two major classes: pre-

operative and intra-operative planning. In the pre-operative approach, treatment planning is 

conducted days or weeks prior to the surgical implantation of seeds in a patient. Intra-operative 

planning involves treatment planning during the actual surgical procedure itself, while the patient 

is under anesthesia. Thus, there exists a noteworthy restriction on the length of time treatment 

planning may take with intra-operative planning, whereas this time pressure to formulate seed 

distributions is almost non-existent in pre-operative planning. In many cancer centers, including the 

Cross Cancer Institute in Edmonton, Alberta, treatment planning is carried out pre-operatively 

through a manual approach (Liu 2014). In this approach, a brachytherapy team, consisting of 

oncologists and medical physicists, utilize their professional medical expertise to address the 

previously mentioned factors involving brachytherapy, and through a heuristic process, make 

decisions regarding the placement of seeds within the prostate. In this heuristic approach, repetitive 

location changes are made to a starting seed distribution in an attempt to achieve dosimetric 

improvements, while also paying close attention to the spatial characteristics of the resulting seed 
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distribution. This iterative improvement process eventually leads to a final seed distribution that is 

both spatially and dosimetrically sound.  

Such a manual planning approach typically takes between 1 and 4 hours, depending on the 

anatomical complexity of a given patient’s prostate as well as the expertise of the brachytherapy 

team. Despite the length of time associated with it, the manual treatment planning method can result 

in treatment plans that are of good clinical quality. In other words, these manually produced 

treatment plans typically satisfy all clinical requirements necessary for subsequent implementation 

in patients.  

 

1.1 Mathematical Programming in LDR Prostate Brachytherapy 

Generally, a more sophisticated approach, based on mathematical programming or 

operations research, may also be utilized to produce brachytherapy treatment plans. Through the 

use of mixed integer linear programming (MILP) optimization models, the previously mentioned 

fine balance between underdosing and overdosing requirements may be achieved with an automated 

computational approach.  Fundamentally, MILP models are devised to solve the problem of 

optimally locating seeds in order to produce acceptable radiation distributions within a target 

cancerous tissue or organ. Such an automated approach associates a mathematical guarantee to 

treatment planning, as this method essentially provides a theoretical verification that any given 

treatment plan, that is produced through a mathematical optimization approach, numerically offers 

the most optimal personalized treatment plan for a patient within the solution domain of the 

programming model. Furthermore, due to the automated nature of the process and its ability to 
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exploit the computational power of modern day computer systems, such an approach also offers an 

increase in the speed with which clinicians can obtain access to treatment plans.  

As we are interested in mathematical models involving permanent implantation of seeds 

rather than temporary dwell times, our focus will be on LDR brachytherapy in this thesis, rather 

than HDR brachytherapy or its variants such as medium dose rate (MDR) and pulse dose rate (PDR) 

brachytherapy. Thus far, MILPs and other mathematical programming techniques have been 

employed to a limited extent in order to attempt to solve the LDR brachytherapy problem, with the 

existing literature largely focusing on two areas: 1) achieving clinically acceptable solutions with 

greater reliability through refined dose-volume constraints and 2) achieving faster solution times 

through various algorithms. Perhaps one of the more prominent studies in literature was devised by 

the combined efforts of Lee et al. (1999), as they were among the first to introduce a basic MILP 

model specifically designed for interstitial LDR prostate brachytherapy. Another notable addition 

to LDR brachytherapy optimization literature was the contribution of D'Souza et al. (2001), who 

developed a sequential solution method through which they were able to simplify their large-scale 

linear programming models and thereby achieve considerably quick solution times using a branch-

and-bound algorithm. Other interesting solution approaches have also been investigated, including 

the use of genetic algorithms (Yu et al. 1996), simulated annealing (Pouliot et al. 1996), a greedy 

heuristic based on adjoint functions (Yoo et al. 2003) and a matching pursuit inspired algorithm 

(Guthier et al. 2015). However, despite the available academic research as well as the commercial 

optimization tools provided by established biomedical and life-science companies (VariSeed 

Volume Optimization/Inverse Planning Module, Varian Medical Systems, Palo Alto, CA) 
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(Oncentra Seeds Planning Module, Elekta AB, Stockholm, Sweden), we observe that the use of 

optimization techniques is not widely adopted by clinicians in cancer centers for interstitial LDR 

prostate brachytherapy. We believe that the root cause of this situation is a significant, and 

overlooked, research gap that exists in today’s brachytherapy optimization literature.  

 

1.2 Challenges and Current Research Gap in LDR Brachytherapy Optimization 

Perhaps the most valuable quality of optimization models is their capability to model real-

world problems and their ability to significantly simplify and speed up any given decision-making 

process. These characteristics render mathematical optimization an attractive option. However, 

optimization models are only as intelligent, in making decisions, as the set of instructions they are 

given. In other words, one needs to be diligent in providing specific and ample guidance to 

optimization models in order to obtain useful results that are of desirable quality. The utility of a 

linear programming optimization model is fundamentally dependent on three factors: 1) the input 

data that is supplied to a specific model, 2) the linear programming model itself, 3) the solution 

method or algorithm used to solve the model. These factors are not mutually exclusive, and only 

when considered collectively can they produce powerful optimization solutions for brachytherapy.  

Mathematically modeling clinical problems is a challenge. First and foremost, it is difficult 

to construct realistic linear programming models that incorporate all of the necessary parameters of 

a real-world clinical procedure such as brachytherapy. Care must be taken in specifically sculpting 

input data with a consideration for the technical limits of brachytherapy, as this data provides the 

initial set of information for an optimization model to work with. The objective function and 

constraints used in a linear programming model have to also be intricately crafted in order to guide 
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the model towards producing solutions desired by clinicians. Secondly, attempts at capturing 

realism usually result in extremely large-scale models that are computationally strenuous to solve 

due to their substantial size. In other words, the solution of these models may take days, weeks or 

even months. For purposes of practicality and utility, unique decomposition methods or solution 

algorithms must be implemented in order to attempt to compress the solution of these large-scale 

models into a reasonable or acceptable amount of time. Thirdly, and most importantly, considering 

that the first two goals are accomplished, the results produced by such optimization models need to 

be clinically relevant and applicable. In other words, it is not enough for treatment plans produced 

by optimization models to be theoretically suitable on paper. These treatment plans not only have 

to be beneficial on a per-patient basis, but also have to adhere to the specific clinical protocols 

followed by individual cancer centers. 

Although some research centers have devised brachytherapy optimization models and have 

achieved limited success in attempting to automate the treatment planning procedure  (Lee, Zaider 

2003), a significant number of cancer centers worldwide still resort to the manual planning 

approach. The reason behind this is that while there are some commercial optimization software 

programs available today for clinical use, many medical centers find these to produce treatment 

plans, or seed distributions, that are unsatisfactory from a clinical perspective. This situation stems 

in large part from the extensive focus that has been placed on achieving acceptable dosage both in 

research-based and commercial-based optimization approaches, and the relative lack of focus that 

has been placed on satisfying other general clinically important requirements. Although it is 

important to achieve dosimetric values that are satisfactory, this accomplishment alone does not 
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guarantee that a given treatment plan will be deemed as clinically acceptable. In other words, dose-

volume metrics are only half of the story; the quality of treatment plans depends on both quantitative 

factors, such as dose-volume metrics, and equally importantly, on qualitative parameters.  The other 

half of the story is captured by qualitative parameters, in the form of spatial considerations, that 

brachytherapy teams place considerable emphasis on during manual planning. These spatial 

considerations essentially focus on the geometric arrangement of seeds, both in the context of 

individual seeds as well as the seed distribution as a whole.  These constraints constitute a vital 

portion of the clinical protocols followed by brachytherapy teams everywhere and play a significant 

part in the quality of treatment plans created for patients. For example, among a set of dosimetrically 

similar treatment plans, the deciding factor on the clinically most acceptable plan will often come 

down to the “appropriateness” of the spatial arrangement of seeds and needles. In this context, 

“appropriateness” is essentially analogous to the ability of a seed distribution to geometrically 

capture the planning style of expert planners at a cancer center. We believe that one of the primary 

reasons behind the incapability of past research-based or commercial-based optimization 

approaches to achieve widespread use is their inability to produce “center-specific” results. This 

issue truly becomes apparent when considering that regardless of how minor or substantial the 

variations may be, every cancer center follows their own unique planning philosophy for LDR 

prostate brachytherapy. A clinic’s planning philosophy is usually developed and refined over years 

of clinical practice to a point where it is proven to deliver consistently high quality results. 

Brachytherapy teams grow accustomed to and comfortable with using their native planning style in 

the treatment of their patients, and therefore are understandably reluctant to deviate from it when 
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offered the option to utilize a foreign automated planning approach that produces solutions of little 

resemblance to theirs. It is through our design of spatial constraints that we hope to formulate a 

mathematical optimization model that possesses the functionality to capture planning styles 

common in clinics worldwide, and therefore the ability to produce results that brachytherapy teams 

will find familiar and be comfortable in using for the treatment of their patients. 

Prior to our work, a focused and explicit attempt to capture the planning style of expert 

planners through the design of spatial constraints has not existed in LDR brachytherapy literature. 

While the use of gEUD (or dose uniformity constraints), as presented in the works of Yoo et al. 

(2007) (for LDR brachytherapy) and Giantsoudi et al. (2013) (for HDR brachytherapy), as well as 

the use of geometric optimization, as presented in the study by Raben et al. (2007), have influenced 

spatial distribution of dose, we see that such approaches do not enable the geometric planning style 

of a clinic to be explicitly embodied within given constraints, as do the set of spatial constraints that 

we will be introducing in this thesis. This latter feature is one of the defining characteristics of our 

study and signifies the added value of our work within the context of existing brachytherapy 

optimization literature.  In the three studies by Karabis et al. (2009), Gorissen et al. (2013) and Holm 

(2013), constraints are introduced to guide catheter positioning in HDR brachytherapy, however 

similar constraints do not exist for LDR brachytherapy. While a few clinically common spatial 

considerations are mentioned in a recent article by McGeachy et al. (2015), the authors have not 

provided explicit mathematical formulations of the constraints required to achieve such clinical 

considerations. Fu et al. (2005) have examined spatial relationships of seeds and needles with their 

unique conical implantation approach, however the scope of their study differs significantly from 
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our spatial propositions which center around the use of rectilinear templates and parallel needle 

implantation.  Although, in their efforts to produce treatment plans, Lessard et al. (2006) have 

attempted to mimic an experienced dosimetrist, their line of work also substantially differs from our 

study as we attempt to mimic an expert’s planning style through constraint-based customized 

solutions rather than class solutions.  

Thus, in an effort to fill the current gap that exists in today’s literature, this thesis will 

introduce a novel modeling philosophy for interstitial LDR prostate brachytherapy that incorporates 

the previously mentioned spatial constraints. In doing so, our premise is that our optimization model 

will bridge the disconnect that exists between the often disappointing solutions that current 

optimization approaches offer and the clinically acceptable results that brachytherapy teams desire 

from such optimization approaches. Simply put, the fundamental goal of this thesis is to lay the 

foundation for a new MILP modeling approach that will enable automated construction of treatment 

plans that are of equivalent clinical quality to manually-produced treatment plans created by expert 

planners.  
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1.3 Research Objectives and Outline of the Thesis 

We will be attempting to overcome numerous clinical and engineering challenges in this 

thesis. In summary, our main objectives are three-fold: 

a. Formulate a novel mixed-integer linear programming model as well as practical data 

processing techniques for LDR prostate brachytherapy, in order to achieve a realistic 

mathematical representation of the treatment planning style that is predominantly 

utilized at the Cross Cancer Institute.  

b. Develop and employ unique linear programming modelling techniques for simplifying 

the solution of the resulting large-scale model, in order to be able to produce treatment 

plans with short solution times that are suitable for both pre-operative and intra-

operative planning. 

c. Verify the clinical acceptability of our automated treatment plans based on the clinical 

standards of the Cross Cancer Institute and develop pathways of further improvement 

for our automated planning system.  

We will attempt to achieve these objectives progressively throughout this thesis. Chapter 2 

will introduce the fundamentals of mixed-integer linear programming and discuss solution 

algorithms of interest. Chapters 3 and 4 will dive into depth on spatial constraints and data 

processing techniques for capturing treatment planning style at the Cross Cancer Institute. Several 

modelling techniques for shortening solution time will be detailed and examined in Chapter 5. 

Finally, we will investigate the real-world clinical utility and implications of our treatment plans in 

Chapter 6. This thesis will be concluded with suggestion for future avenues of research work.  
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Mixed-Integer Linear Programming (MILP) 

& Deterministic Solution Algorithms 
 

 

In this section, we will give a brief overview of mixed-integer linear programming 

(MILP). Furthermore, we will discuss the two deterministic solution algorithms of primary 

interest in this thesis: simplex and branch-and-bound algorithms.  

2.1 Mixed-Integer Linear Programming 

As mentioned earlier, mixed-integer linear programming (MILP) is a highly attractive 

method for modeling real-world decision making processes or systems and achieving the best 

outcome given a set of requirements. The basic structure of a typical mixed-linear programming 

model consists of decision variables (continuous, integer or binary), a linear objective function 

(that is either minimized or maximized), and a set of linear constraints (generally in the form of 

equalities and inequalities). Mathematically, a mixed-integer linear program may be described as 

in equations (2.1)-(2.6). Here, the integer decision variables are represented by vector x, the 

linear objective function by vector c, and the matrix equation (Ax ≥ b) designates the linear 

constraints that variable x is subjected to. Finally, vectors l and u represent the lower and upper 

limits (or bounds) on variable x.  
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The main difference between linear programming and mixed-integer linear programming 

is that where as in the former decision variables are continuous in nature, in the latter some 

variables are specifically designed to be discrete in form. In other words, decision variables only 

exist as continuous entities in LP models, while MILP models typically contain integer or binary 

variables in addition to continuous variables. Such integrality allows us to capture the discrete 

nature of decisions like the placement or non-placement of a seed (represented by a binary 

variable that is restricted to a 0 or 1 respectively).  Regardless of the model type, decision 

variables are generally assumed to be non-negative.  
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searched for while solving a MILP model. Furthermore, solutions falling on the boundaries 

defined by the constraints of the model are also included in this search space. The boundaries of 

the feasible region are important, as they generally contain the optimal solutions generally sought 

after in optimization models. Typically, distinct integer solutions exist exactly on (or close to) 

some of the intersection points found on the boundaries of the feasible region. As seen in Figure 

2.1, one of these extreme points houses the single best solution (assuming that the problem has a 

unique optimum). Such an optimal solution not only satisfies the entire set of constraints in the 

model, but also results in the lowest attainable value for a minimizing objective function. Of 

course, the extent of minimization in the objective function value is dependent on various 

factors, some of which are user-specified limits on permitted solution time, and the desired 

percentage of optimality that the final integer solution needs to meet. We will discuss these 

concepts in the next few paragraphs.  

2.2 Deterministic Solution Algorithms for Solving MILP Models 

In this thesis, our desire is to use a deterministic approach (the simplex method in 

combination with the branch-and-bound algorithm) to solve our MILP brachytherapy model. The 

main reason behind this decision is due to the relative unpopularity of the simplex method (and 

the branch-and-bound algorithm) in comparison to more extensively researched stochastic and 

heuristic methods in LDR and HDR brachytherapy optimization literature (De Boeck et al. 

2014). In the next two sections, we will give a brief overview of the simplex and branch-and-

bound algorithms.  
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2.2.1 Simplex Algorithm 

The simplex algorithm was formulated by Dantzig (1951), and to this day it continues to 

be one of the most effective and widely used methods for solving linear programming problems. 

The simplex method is based on an iterative process in which the goal is to find better solutions 

to the linear programming model in each successive step. The simplex algorithm outputs a final 

optimal solution when it is determined that the current best solution cannot be further improved. 

The degrees of improvement in successive solutions are determined through their resulting 

objective function values.  

The procedure for the simplex algorithm begins at a vertex (a corner point) of the feasible 

region. As we have previously mentioned, an intersection holds a single solution out of many 

feasible ones, and therefore possesses a particular objective function value. As shown in Figure 

2.2, the algorithm then attempts to locate and move to another neighboring vertex that may hold 

a solution with an improved objective function value (a lower value if the objective function is 

minimized, or a higher value if the objective function is maximized in the model). The search for 

vertices (containing improved solutions) is conducted along the boundary edges of the feasible 

region. This sort of a search is made possible through the mathematical property that if at a given 

vertex the objective function does not possess the maximum possible value, there still exists an 

edge (stemming out from that vertex) along which the objective function value grows smaller for 

minimization problems or larger for maximization problems. Thus, the simplex algorithm is 

guided towards improved solutions in each progressive step, regardless of whether it is finding 

solutions for a minimization or a maximization problem. Depending on the model size, the 
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feasible region may be a polygon (when the model has two variables), a polyhedron (when the 

model has three variables), or an n-dimensional polytope, where the number n of variables could 

be in the thousands or millions. In more technical terms, this search is carried out through 

iterative pivoting of the starting simplex tableau, which leads to new candidate solutions entering 

the basis. Considering that for any given polygon or polyhedron the number of vertices and 

edges is finite, the number of pivots that need to be executed (in order to introduce new solutions 

into the basis) is also finite. Thus, the simplex algorithm is guaranteed to eventually find an 

optimal solution to a linear programming model given enough time.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Depiction of a solution process using the simplex algorithm. 
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2.2.2 Branch-and-Bound Algorithm 

The branch-and-bound algorithm was first proposed by Land and Doig (1960). The 

algorithm can typically be categorized as a form of tree search, and is generally effective for 

finding optimal solutions to mixed-integer linear programming problems. The reason behind its 

efficiency is that the branch-and-bound algorithm aims to find successively better solutions in 

the search space of candidate solutions while concurrently eliminating large sections of the 

search space based on past and present bounds on the values of variables in a MILP model. 

In order to explain the basic operation of the branch-and-bound algorithm, we will now 

take a look at how the algorithm handles a minimization MILP problem that contains binary 

variables (which should only be assigned a value of 0 or 1). The branch-and-bound tree consists 

of nodes and branches, as shown in Figure 2.3.  

 

 

 

 

 

 

 

 

 

Figure 2.3 Depiction of a branch-and-bound algorithm search tree. 
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The initial node that the entire search tree stems out of is called the root node (which we 

will denote as nR). A relaxed version of the MILP model is solved in the root node (relaxed 

meaning all integrality restrictions on binary variables are removed). If the relaxed solution still 

happens to satisfy all of the original integrality restrictions on the binary variables, then an 

appropriate solution has been found to the original problem. However, this is usually not the 

case. If a relaxed solution is obtained in the root node where a binary variable x is not assigned 

either a 0 or 1, but a value of 0.45 for example, then additional work needs to be done. The 

algorithm has to branch out from the root node to two new nodes (n1 and n2) in which two 

specifically bound instances of the relaxed MILP problem are solved (a new bound, or 

restriction, of x≤0 is applied in node n1 and a bound of x≥1 is implemented in node n2). Through 

these two newly created sub-problems in nodes n1 and n2, the algorithm must determine whether 

it would be more appropriate to assign a 0 or a 1 to variable x. As we mentioned before, the 

branch-and-abound algorithm attempts to eliminate searches that are considered futile. If it is 

proven in node n1 that an integer solution of x=0 leads to an objective function value of at least 

Y, while an integer solution of x=1 in node n2 leads to an objective function value of at most Z 

(with Z<Y), then it is clear that it would be ineffective to further investigate instances where x is 

set to 0. Node n1 would be “pruned”, meaning that any further search down that node is halted 

and therefore no additional branching out of node n1 is necessary (nodes may also be pruned for 

other reasons, such as when a bound, or restriction, on a variable leads to an infeasible solution). 

The lower bound on Y and the upper bound on Z directs the branch-and-bound algorithm 

towards the right path to optimality (successively lower objective function values for integer 
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solutions) by eliminating large sections of the search space where x would be set to 0. Thus, the 

search tree is selectively grown out of the most promising nodes. Although we only examined 

how branching-and-bounding works for a single binary variable, this process is carried out for all 

binary variables in a MILP model. When all integrality requirements of a problem are satisfied, 

we have our first feasible integer solution to the original MILP problem. Linear programming 

solvers, such as Gurobi or CPLEX, utilize the simplex algorithm to find integer and relaxed 

solutions at each node of the branch-and-bound tree. 

 The branch-and-bound algorithm proves the optimality of a given solution based on the 

objective function value of the current best (incumbent) integer solution and the objective 

function value of the best bound relaxed solution. It should be noted that the incorporation of 

integrality requirements within a relaxed problem typically leads to higher objective function 

values for a minimization problem. Therefore, any given relaxed solution acts as a lower bound 

to an integer solution in the case of a minimization problem.  During its tree search, the branch-

and-abound algorithm leads to successively better feasible integer solutions (with decreasing 

objective function values) and successively tighter relaxed solutions (with increasing objective 

function values). These two objective function values converge until a desired level of optimality 

gap is reached, resulting in an optimal solution. The optimality gap between the best integer and 

the best bound solution is calculated as shown in equation (2.7).  

 

|Best Bound - Best Integer|Optimality Gap % = *100
Best Integer
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      (2.7)   
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Chapter 31 
The Basic MILP Model Formulation 

 

 

In this chapter, we will focus on defining the characteristics of the mathematical problem 

at hand, introducing basic data processing concepts for brachytherapy and formulating our base 

MILP model. Our ideas will then be demonstrated through a comparison of our results to those 

obtained from a benchmark model as well as a manual planning approach. However, it is 

important to note that the basic ideas introduced in this chapter will be enough to partially 

capture, through mathematical means, the ideas that exist inside the mind of an expert planner. 

Chapter 4 will further develop the concepts proposed in this chapter and will present more 

complex constraints and data processing techniques that will enable us to more fully capture the 

planning style of an expert planner. MILP solution performance, such as solution speed or time, 

will not constitute a major focus of either of these two studies, and will instead be 

comprehensively analyzed in a separate future investigation. This future study will also propose 

a shift of perspective away from solution strategies that have already been implemented in 

1A version of this chapter has been submitted for publication: Babadagli, M.E.; Sloboda, R.; 
Doucette, J. “An Integer Linear Programming Optimization Model for Capturing 
Expert Planning Style in Interstitial Low Dose Rate Prostate Brachytherapy”. Springer, Annals 
of Operations Research (submitted November 21, 2016). 
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brachytherapy MILP models, by introducing a novel modeling approach that enables rapid 

automated construction of treatment plans. The real-world utility of our MILP model (in other 

words, its ability to consistently produce high quality solutions for prostates of any shape and 

size) will also not be a major focus of our current study, and will instead be thoroughly examined 

in a future twenty-patient study.  

Our proposed system, outlined in Figure 3.1, is not meant to replace an expert planner 

(medical physicist) in the treatment planning process. Instead, our eventual aim is to provide 

computational assistance to experts, in both pre-operative and intra-operative settings, by 

developing an intuitive automated planning approach that integrates speed and versatility with 

clinically germane and high quality solutions. 

3.1 LDR Prostate Brachytherapy Problem Formulation 

In its essence, the brachytherapy problem is based on a complex supply-demand 

relationship that is in ways similar to those observed in facility-location problems (Aikens, 

1985). On the one side, there exists a demand for radiation by prostate tissue, as determined by 

the radiation dose that is prescribed by the oncologist. On the opposing side, there exists a 

limitation in the supply of radiation, as determined by the strength and quantity of radioactive 

seeds that can be placed in the prostate in a clinically viable manner. Such supply-demand 

relationships can be expressed as grid-based location problems (GBLPs)  (Noor-E-Alam et al. 

2012). We further build on that work by adding a third dimension to their two-dimensional (2-D) 

GBLP models and applying fundamental components of these models to LDR prostate 

brachytherapy. Our formulation of the prostate LDR brachytherapy problem, as presented here, 
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is specific to the clinical protocol followed at a local cancer centre, but the formulation itself may 

be generalized or modified to accommodate the requirements of any cancer centre. 

3.1.1 Grid and Coordinate System 

In our three-dimensional (3-D) GBLPs, anatomical structures of interest, such as the 

prostate, urethra and rectum, are partitioned into three-dimensional matrices containing voxels of 

small cells. Essentially, two types of grids need to be considered: 1) i-j-k indexed grids used for 

modeling the three anatomical structures, and 2) a x-y-z indexed grid used for modeling seed-

placement locations. Considering the rapid dose fall-off that occurs with radioactive seeds used 

in brachytherapy, a fine-resolution grid of 0.1x0.1x0.5 cm3 resolution is chosen for grids 

associated with anatomical structures. On the other hand, due to the spacing present in the 

physical template grids used in the surgical procedure itself, as seen in Figure 3.2, a coarse-

resolution grid of 0.5x0.5x0.5 cm3 resolution is suitable for modeling potential seed locations. 

The x-y-z (or similarly, the i-j-k) coordinate system that we utilize is oriented as shown in Figure 

3.3. In this coordinate system, the x or i direction varies medial-laterally, the y or j direction 

varies posterior-anteriorly and the z or k direction varies superior-inferiorly relative to the 

volumetric center of the prostate. 0.5 cm spacing is utilized for the z or k direction in both grids 

because the prostate data is imaged, via ultrasound, in transaxial slices spaced at 0.5 cm 

intervals. Thus, relatively speaking, the superior-most slice, where z=0.0 cm, corresponds to the 

base of the prostate. For the specific patient prostate we will be examining in this chapter, 

columns (i direction) and rows (j direction) are numbered from 0-64 with increments of 1 

(representing a length of 6.5 cm with a spacing of 0.1 cm) in the fine-resolution anatomical grids. 
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In the coarse-resolution seed-placement grid, columns (x direction) and rows (y direction) are 

numbered from 2-62 with increments of 5 (representing a length of 6.0 cm with a spacing of 0.5 

cm). For both types of grids, slices in z (or k direction) are numbered from 0-55 with increments 

of 5 (representing a length of 5.5 cm with a spacing of 0.5 cm). This system is depicted in Figure 

3.4 for a sample slice, where a fully populated coarse-resolution grid (represented by red voxels) 

is superimposed on a fully populated fine-resolution grid (represented by pink voxels). In order 

to underline the power of the spatial constraints that we are introducing in this chapter, we will 

use coarse grids of 0.5x0.5x0.5 cm3 resolution for modeling both the anatomical structures as 

well as the seed-placement locations. This approach will demonstrate that, through the 

implementation of spatial constraints, clinically viable results are achievable despite the use of a 

coarse-resolution grid for dosimetric calculations. In future studies, we will transition to using a 

high-resolution grid and demonstrate pragmatic methods to overcome issues of intractability that 

occur with the consequent large-scale MILP model.  
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Figure 3.2. A 0.5x0.5 cm2 coarse-resolution (x-y plane) physical grid for 
prostate brachytherapy. 

Figure 3.3. Three-dimensional coordinate system, displaying needle insertion points 
(based on the coarse-resolution grid). 

Figure 3.4. Coarse-resolution grid (red) superimposed on the fine-resolution 
grid (pink). 
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3.2 Preprocessing of Contour Data 

3.2.1 Discretization of Prostate Contour Data 

Anatomical contour data is obtained from the VariSeed (version 8.0, Varian Medical 

Systems Inc., Palo Alto, CA) treatment planning system (TPS) in the form of x-y coordinates of 

contour points for each imaged anatomical slice. We utilize MATLAB (MathWorks Inc., 2015) 

to further discretize this continuous contour data. Thus, a 65x65 grid (0.1x0.1 cm2 resolution in 

the x-y plane) is superimposed onto the contour data, and cells (or pixels) that fall within the 

polygon representing a contour in each slice are given a value of 1, while pixels that fall out of 

the polygon are given a value of 0. MATLAB’s built-in function, poly2mask(), is utilized to 

automate the decision on whether a given voxel is deemed to be within or outside of a polygon 

region, based on where the mid-point of each cell falls relative to polygon boundaries. 

Essentially, this function subdivides each cell in the 65x65 grid into a further 5x5 grid, and 

checks whether the middlemost square in each cell’s associated 5x5 grid falls within the 

boundaries of a given polygon. Before discretization, a 0.3 cm margin is added to the prostate 

contour in all directions, except the posterior, to construct the planning target volume (PTV) 

contour. The PTV is required in order to account for prostate contour location uncertainty. The 

resulting discretized data for a PTV slice, at z=3.0 cm, is shown in Figure 3.5 with the white 

voxels representing voxels that fall within the PTV contour. Image (A) represents the discretized 

PTV data in coarse-resolution while image (B) represents the discretized PTV data in fine-

resolution.  
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3.2.2 Processing and Conversion of Anatomical Contour Data 

For the purposes of this chapter, anatomical data is converted from a grid of 0.1x0.1x0.5 

cm3 resolution to a grid of 0.5x0.5x0.5 cm3 resolution for the PTV, urethra and rectum. The PTV 

contour is used for calculating prostate dose requirements, while the urethra and rectum contours 

are used to calculate dose to these respective tissues. The initial discretized PTV data has the 

corresponding physical urethra regions removed from it on each slice, before being converted 

from high resolution to low-resolution data. Algorithm 3.1 is utilized to execute the conversion 

from fine-resolution to coarse-resolution for the PTV region, T(i,j,k), itself. A procedure similar to 

Algorithm 3.1 (excluding step 2a) is executed to convert the urethra, URE(i,j,k), and rectum, 

REC(i,j,k), regions from high-resolution to low-resolution. 

Figure 3.5. Discretized PTV in coarse-resolution (A) and fine-resolution (B) in slice z=3.0 cm. The prostate is 
represented by the dark blue line, the planning target volume (PTV) by the red line, the urethra by the magenta line, the 

rectum by the yellow line, the pubic arch by the cyan line and the seed-placement grid by the orange circles. 
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3.2.3 Permissible Seed-Placement Region 

Defining the permissible seed-placement region involves a number of considerations. 

Placement of seeds outside of the PTV is not uncommon in clinical practice, and helps to achieve 

sufficient dose coverage within the PTV, especially at the base and the apical slices. One simple 

approach to achieve this, as is briefly described in the study by McGeachy et al. (2015), is to 

select the largest PTV contour (usually a mid-gland contour) and superimpose this contour as the 

permissible seed-placement region for all slices. We call this the “cylinder approach” or “global 

encapsulation”, as the seed-placement boundary is uniform throughout all of the slices and 

essentially encapsulates the entire prostate. In order to assess how this approach fares, we will 

apply it to our data with a slight modification. Our modification involves taking the largest two 

mid-gland PTV contours, slices z=2.5 cm and z=3.0 cm (out of a set of z=0.0-5.5 cm), and using 

these to act as the permissible seed-placement regions for the superior (z=0.0-2.5 cm) and 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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11 
12 
13 
14 
15 
16 

1. Start with the highest numbered (apical) slices of discretized (fine-resolution) PTV region 
(RawPTV[k]), urethra region (Urethra[k]), fully populated coarse-resolution grid (CRGrid[k]), 
and three empty grids (ProPTV[k], NegPTV[k], T[k]): 

2. k = apical slice coordinate 
   WHILE k ≥ 0: 

 a. FOR each voxel ProPTV[i,j,k] in slice ProPTV[k]: 
 Assign ProPTV[i,j,k] = MAX(0, (RawPTV[i,j,k] – Urethra[i,j,k])) 

     b. FOR each voxel NegPTV[i,j,k] in slice NegPTV[k]: 
IF ProPTV[i,j,k] + CRGrid[i,j,k] > 1: 
 Assign NegPTV[i,j,k] = 0 
ELSE: 
 Assign NegPTV[i,j,k] = ProPTV[i,j,k] 

  c. FOR each voxel T[i,j,k] in slice T[k]: 
 Assign T[i,j,k] = MAX(0, (ProPTV[i,j,k] – NegPTV[i,j,k])) 

     d. Perform k=k-1. 
3. End with (coarse-resolution) PTV region indexed as T[i,j,k] 
 
 
 

Algorithm 3.1.  Algorithm for transforming the discretized PTV region from high-resolution to low-resolution. 
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inferior (z=3.0-5.5 cm) halves of the prostate respectively. The resulting data will act as our 

initial seed-placement region.  

Considering shape differences among slices, the PTV contour of a single mid-gland slice 

may not always sufficiently encapsulate all other neighboring mid-gland slices, and therefore 

may leave out a number of seed-placement positions that may prove to be necessary. On the 

other hand, the PTV contour of a single mid-gland slice may also prove to be excessively large 

when used as a seed-placement region for relatively small slices, such as the base or apex. This 

situation may potentially lead to the placement of seeds that are significantly far from the PTV 

contour at the base and the apex. To overcome these issues, we will introduce “local 

encapsulation” in future studies, which results in a tighter, or more balanced fit, around the PTV. 

 

3.2.4 Seed-Placement Limitations Due to the Urethral Curvature and Rectum 

Generally, the urethra follows a curved path through the prostate, entering at the anterior 

base, dipping posteriorly, and rising anteriorly towards the apex. Due to this dip, oncologists 

must be mindful not to penetrate or cause other forms of trauma to the urethra with needles 

during seed implantation. Therefore, a specific region of the prostate, principally delineated by 

the entrance and exit points as well as the curvature and the diameter of the urethra, is off limits 

to needles. Thus, seeds cannot practically be placed in this region. We implement an additional 

protection zone around the urethral curvature, to prevent any seeds from being placed within 0.4 

cm of this region. This is a technique common in clinical practice that effectively decreases the 

likelihood of the urethra being penetrated with a needle. In order to account for these restrictions 

in the input data that we provide to our linear programming models, the initial seed-placement 
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region is processed so that the shadow or superimposition of the urethral contours (with the 0.4 

cm protection zone) from each slice (starting with the inferior-most slice) is removed or 

subtracted from seed-placement regions that fall superior to it, before being converted from high 

resolution to low-resolution data. We also extend this idea to the less pronounced, yet still 

present, rectal curvature as well (which also includes a 0.4 cm protection zone). Algorithm 3.2 is 

utilized for creating the final seed-placement region that will be used in our model. Generally, 

the shadow of the urethral curvature has a more pronounced effect on the removal of potential 

seed positions in slices that are closer to the base of the prostate, as observed in a sample slice of 

PTV (z=0.5 cm) in Figure 3.6. In image (A) only the corresponding physical urethral region is 

accounted for in this particular slice, while in image (B) the shadow of the urethral curvature, 

obtained from inferior slices, is also taken into consideration in addition to the corresponding 

physical urethral region. The PTV region, urethra region, rectum and the seed-placement grid are 

represented by pink, yellow, light blue and dark red voxels respectively in both images.  
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Figure 3.6. Visualization of the physical urethral region (yellow voxels) and the physical rectal region (light blue 
voxels) (A), both with a 0.4 cm protection zone, as well as the shadow of the urethral curvature and the shadow of the 
rectal curvature (B) along with the permissible seed grid (dark red voxels) and PTV (pink voxels) in slice z=0.5 cm. 



Chapter 3 – The Basic MILP Model Formulation  

 

Mustafa Ege Babadagli  33 
 

 

 

 

 

 

 

 

 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
 

1.  Start with the highest numbered (apical) slices of discretized (fine-resolution) initial seed-
placement region (InitSP[k]), rectum region with 0.4 cm margin (RECMargin[k]), urethra region 
with 0.4 cm margin (UREMargin[k]), fully populated coarse-resolution grid (CRGrid[k]), and 
four empty fine-resolution grids (ProSP[k], ProCurveSP[k], NegSP[k], SP[k]) 

2.  k = apical slice coordinate 
 m=k 
 WHILE k ≥ 0: 

  a. FOR each voxel ProSP[i,j,k] in slice ProSP[k]: 
 Assign ProSP[i,j,k] = MAX(0, (InitSP[i,j,k] – SUM(RECMargin[i,j,m], ... , 
RECMargin[i,j,k])) 

     b. Perform k=k-1. 
3. k = apical slice coordinate 
   m = k 
   WHILE k ≥ 0:  
    b. FOR each voxel ProCurveSP[i,j,k] in slice ProCurveSP[k]:  

 Assign ProCurveSP[i,j,k]= MAX(0, (ProSP[i,j,k] – SUM(UREMargin[i,j,m], ... , 
UREMargin[i,j,k]))) 

     c. Perform k=k-1. 
4. k = apical slice coordinate 
   WHILE k ≥ 0: 

 a. FOR each voxel NegSP[i,j,k] in slice NegSP[k]: 
IF ProCurveSP[i,j,k] + CRGrid[i,j,k]> 1: 
 Assign NegSP[i,j,k] = 0 
ELSE: 
 Assign NegSP[i,j,k] = ProCurveSP[i,j,k] 

     c. FOR each voxel SP[i,j,k] in slice SP[k]: 
 Assign SP[i,j,k] = MAX(0, (ProCurveSP[i,j,k] – NegSP[i,j,k])) 

     d. Perform k=k-1.  
5. End with finalized (coarse-resolution) permissible seed-placement region indexed as SP[x,y,z] 
 

Algorithm 3.2.  Algorithm to account for the shadow of urethral curvature and rectal curvature while creating the 
discretized permissible seed-placement region. 
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3.3 LDR Brachytherapy Optimization Model 

3.3.1 General Overview 

Our model consists of four main components: an objective function, dose-calculation 

constraints, dose-volume constraints and spatial constraints. The objective function is used to 

guide the model towards a specific goal, in our case minimizing the average dose to the urethra 

and the rectum. The dose-calculation constraints are used to calculate dose delivered to each 

tissue type. Dose-volume constraints are used to keep track of dose delivered to each voxel and 

ensure clinical dose limits are satisfied. Finally, spatial constraints are used to ensure that the 

final geometric distribution of seeds and needles matches the style of planning present at the 

local cancer clinic. Each of these components will be discussed in detail in the next few sections. 

Our model consists primarily of binary variables, with the exception of the variables used to 

calculate total dose, which are continuous.  
 

 

3.3.2 Sets, Parameters, Variables 

The sets used to formulate our model are given as follows: 

  

U  is the set of all x-coordinates {0,1,2...64} in the anatomical grid, indexed by i
V  is the set of all y-coordinates {0,1,2...64} in the anatomical grid, indexed by j
W  is the set of all z-coordinates {0,5,10...55} in the anatomical grid, indexed by k

  

  

Q is the set of all x-coordinates {2,7,12...62} in the seed-placement grid, indexed by x
R is the set of all y-coordinates {2,7,12...62} in the seed-placement grid, indexed by y
S  is the set of all z-coordinates {0,5,10...55} in the seed-placement grid, indexed by z
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The parameters used to formulate our model are given as follows: 

  

T( i, j ,k )  identifies a voxel in the PTV (target) region

URE( i, j ,k )  identifies a voxel in the urethra (organ-at-risk) region

REC( i, j ,k )  identifies a voxel in the rectum (organ-at-risk) region

SP( i, j ,k )  identifies a voxel in the permissible seed-placement region

  

 

 

  

α  is the preference coefficient for the average dose to the urethra (set to 1)
β  is the preference coefficient for the average dose to the rectum (set to 1)
ptvDoseV100 is the dose limit for PTV V100 (set to 145 Gy)
ptvDoseV150 is the dose limit for PTV V150 (set to 217.5 Gy)
ptvDoseV200 is the dose limit for PTV V200 (set to 290 Gy)
ptvMaxDoseD90 is the upper dose limit for PTV D90 (set to 189 Gy)
ptvMinDoseD90 is the lower dose limit for PTV D90 (set to 181.5 Gy)
urethraDoseD90 is the dose limit for Urethra D5 (set to 215 Gy)
rectumDoseD1cc is the dose limit for Rectum D1cc (set to 145 Gy)
ptvVolumeV100 is the percentage volume limit for PTV V100 (set to 0.98)
ptvVolumeV150 is the percentage volume limit for PTV V150 (set to 0.65)
ptvVolumeV200 is the percentage volume limit for PTV V200 (set to 0.25)
ptvVolumeD90 is the percentage volume limit for PTV D90 (set to 0.90)
urethraVolumeD5 is the percentage volume limit for Urethra D5 (set to 0.05)
rectumMaxVoxelD1cc is the voxel count limit for Rectum D1cc (set to 8)
upperLimitSeeds is the maximum permissible number of seeds (set to 125)
lowerLimitSeeds is the minimum permissible number of seeds (set to 75)

  

  

upperLimitNeedles is the maximum permissible number of needles (set to 25)
lowerLimitNeedles is the minimum permissible number of needles (set to 15)
maxNeedleRetraction is the maximum permissible needle retraction (set to 15)
minSeedsPerNeedle is the minimum permissible number of seeds per needle (set to 2)
maxSeedsPerNeedle is the maximum permissible number of seeds per needle (set to 10)
maxConsecSeeds is the maximum permissible number of consecutive seeds in a needle (set to 4)
r  is the radius, or Euclidean distance, from a voxel (indexed by i, j,k) to a seed (indexed by x,y,z)
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SK  is the air kerma strength (set to 0.502 U)

Λ is the dose rate constant (set to 0.965 cGy ⋅hr-1 ⋅U-1)
T1/2  is the half-life (set to 59.4 days)

gP(r) is the point-source radial dose function

gL(r) is the line-source radial dose function

φan(r) is the anisotropy factor

M  is a large constant (set to 50,000)

 

The variables used to formulate our model are given as follows: 

  

DoseP( i, j ,k )  is the total dose delivered to a PTV voxel (continuous)

DoseU ( i, j ,k )  is the total dose delivered to a urethra voxel (continuous)

DoseR( i, j ,k )  is the total dose delivered to a rectum voxel (continuous)

PTVLessV100(i, j,k)  checks if a PTV voxel receives a dose less than ptvDoseV100 (binary)

PTVExceedV150(i, j,k)  checks if a PTV voxel receives a dose greater than ptvDoseV150 (binary)

PTVExceedV200(i, j,k)  checks if a PTV voxel receives a dose greater than ptvDoseV200 (binary)

PTVExceedD90(i, j,k)  checks if a PTV voxel receives a dose greater than ptvMaxDoseD90 (binary)

PTVLessD90(i, j,k)  checks if a PTV voxel receives a dose less than ptvMinDoseD90 (binary)

UrethraExceedD5(i, j,k)  checks if a urethra voxel receives a dose greater than urethraDoseD5 (binary)

RectumExceedD1cc(i, j,k)  checks if a rectum voxel receives a dose greater than rectumDoseD1cc (binary)

Seed(x,y,z)  represents the use of a seed (binary)

Needle(x,y) represents the use of a needle (binary) 
 

3.3.3 Objective Function 

The decision of selecting which variables to include in the objective function is 

essentially a clinical one, and can be coordinated in a manner that accommodates local clinical 

practice. As such, most of the past approaches have been formulated as multi-objective 

problems. For the purposes of utility and simplicity, our objective function, shown in equation 
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(3.1), has been formulated to include the average dose delivered to urethra voxels, based on the 

work of Meyer et al. (2003). We further extend this approach to the rectum voxels as well. 
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 (3.1)

  
 

The specific weight to assign to each set of variables in the objective function is a highly 

subjective decision to make, and in operations research it is generally advisable to determine 

these values either through trial-and-error or an automated fine-tuning process. However, a 

posteriori adjustments of weights may prove to be exceptionally arduous and time-consuming, 

even for the case of a single patient (considering that the entire model has to be solved multiple 

times in order to reveal an appropriate set of weights that results in a desirable outcome for that 

patient). Furthermore, the performance of any given set of weights is highly specific to a 

particular patient’s prostate data and is usually not applicable to prostate data from other patients 

without further modification or adjustment. These realities render the entire fine-tuning process 

impractical in a high-paced clinical setting, especially during intra-operative planning.  

Due to the manner in which average dose is calculated (i.e. total dose divided by the total 

voxel count), our choice of objective function variables allows us to bypass any balancing 

coefficients required to level the two variables since their values are already normalized. 

Coefficients α  and β  are implemented simply to act as preference coefficients, in order to offer 

the end-user a choice to place greater emphasis on minimizing one of these two variables. 
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Similar to the choice of variables to include in the objective function, the choice of values to use 

for the preference coefficients essentially rests on a clinical decision, and can be set to 

accommodate local clinical practice. Considering that our model will be including dose-volume 

constraints to set strict dose limits (which have been tuned for each tissue type following years of 

clinical practice), it becomes redundant to further set weights in the objective function in order to 

fine-tune the task of minimizing average dose to the organs-at-risk. For the sake of practicality, it 

was deemed suitable to simplify this decision making process by setting the preference 

coefficients as  (hence, the relative importance of minimizing average dose to both 

the urethra and the rectum is considered to be equal for our local cancer center).  
  

3.3.4 1-D Point Source Dose Calculation 

There are several options, provided by the American Association of Physicists in 

Medicine  (Rivard et al. 2004), for calculating dose distributions for Amersham model 6711 

Iodine-125 seeds that we assumed in our model: 1) the 1D formalism, based on a point source 

approximation, and 2) the 2D formalism, based on a cylindrically symmetric line source. In our 

MILP models, we use the general 1D isotropic point-source approximation for dose distribution 

calculation, as outlined in equation (3.2). 

Even though the use of the 2D formalism is preferred for stranded seeds, the 1D 

formalism is still clinically acceptable as the differences between the two methods are relatively 

minor (Yu et al. 1999). In order to concur with local clinical practice, which uses stranded seeds 

as opposed to loose seeds during implantation, we implement the 1D formalism for the 

 α = 1,β = 1
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automated construction of treatment plans, and the 2D formalism for the post-optimization 

dosimetric analysis. 

Although the 1D formalism only approximates the more complex and fine-tuned dose 

distribution offered by the 2D formalism  (Rivard et al. 2004), there are major advantages to 

using the 1D point source formalism in a MILP model. One advantage is that the dose calculated 

through the 1D formalism essentially varies based on a single parameter, distance  r , through a 

predominantly inverse square relationship. Thus, the 1D formalism provides simplicity and 

practicality, as it can be readily utilized in our MILP models without the need of further 

linearization when used as a constraint. On the other hand, the 2D formalism requires the 

determination of the source longitudinal axis orientation, which introduces additional parameters, 

such as polar angle, into the dose calculation  (Rivard et al. 2007). The addition of these 

parameters inevitably requires linearization of the 2D dose calculation when used as a constraint, 

and such linearization can add considerable strain and complexity to the solution process of a 

MILP model.   

In comparison to the 2D formalism, the 1D formalism outlined in equation (3.2) is 

generally known to be susceptible to dose calculation inaccuracies for distances less than  rmin  = 

0.5 cm, which is the minimum distance for which data is listed for the anisotropy factor,   φan(r) . 

To account for potential inaccuracies, equation (3.3), which incorporates aspects of the line-

source approximation, is utilized specifically for distances less than  rmin , as suggested by Rivard 

et al. (2004) in the Update of AAPM Task Group No. 43 (TG-43) Report. 
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Equations (3.2) and (3.3) represent initial dose rate    !D(r)  with units of  cGy ⋅hr-1 as 

calculated for distances ranging from 0.10 cm to 15.00 cm. In these equations,  SK  is the air 

kerma strength of a seed source, set to 0.502 U. The dose rate constant Λ  is set to 0.965 

 cGy ⋅hr-1 ⋅U-1 , as recommended by the AAPM Update. Consensus data values, provided by the 

Update of the TG-43 report, are utilized for the point-source and line-source radial dose 

functions, 
  
g p (r)  and   gL(r)  respectively. These data values have been interpolated from 0.10 cm 

to 15.00 cm, with increments of 0.01 cm, using shape-preserving piecewise cubic Hermite 

interpolation (PCHIP) in MATLAB. Similarly, point-source anisotropy function data values have 

been interpolated from 0.50 cm to 15.00 cm, using the same incremental values and the same 

interpolation method. The total dose over time can be calculated by equation (3.4), where   T1/2

represents the half-life of 59.4 days for Iodine-125.   
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      (3.4)  

Using the above equation, we can calculate the dose contribution from any radioactive 

seed to any surrounding voxel. However, in deriving the total dose received by a voxel, we have 

to be mindful of several cases. Since we are using a different equation for dose rates calculated at 
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distances of   r < 0.5 cm  and   r ≥ 0.5 cm , for any given voxel, we need to firstly compute the dose 

contribution from seeds that fall within a radius of   r < 0.5 cm . Secondly, we need to calculate the 

dose contribution from seeds that are at a distance of   r ≥ 0.5 cm . Lastly, we need to be attentive 

of a case in which we may be required to calculate the dose received by a seed-containing voxel 

from the seed that the voxel itself holds. Theoretically, due to the inverse square relationship 

present in the dose rate equation, one would presume that the dose contribution at a distance of 

  r = 0 cm  away from the seed would be infinite. However, dividing by 0, or assigning an infinite 

dose, can lead to potential complications in linear programming models. One could bypass such 

a situation by assigning an arbitrarily high value (above 290 Gy) to the dose contribution at 

cm, which may provide a practical workaround considering that the highest dose to be 

taken into consideration by our models is twice the prescription dose (for the dose-volume metric 

PTV V200), which is 290 Gy. However, to be more consistent, we assign the dose contribution 

calculated at the shortest possible distance away from a seed in the 0.1x0.1x0.5 cm3 resolution 

grid, which is located at . The radiation dose value that corresponds to for this 

specific distance is ~1001 Gy, but for the sake of simplicity, we round that number to an easily 

identifiable value of ~1000 Gy. Thus, the dose calculation approach that we use for the PTV in 

our MILP model consists of summing doses from the previously mentioned three scenarios 

involving different seed distances from a voxel, as in equation (3.5). Equations (3.6) and (3.7), 

used for calculating dose to the urethra and the rectum respectively, do not contain dose 

contribution at cm, as seeds are not permitted to be placed within the urethra or the rectum. 

  r = 0

  r = 0.10 cm

  r = 0
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Despite the simplicity of the 1D formalism, the total dose equation given above produces 

acceptably accurate calculations of the dose contribution for all distances r for the purpose of 

seed distribution optimization (Rivard et al. 2004). 

3.3.5 Dose-Volume Constraints 

Clinicians evaluate the dosimetric quality of treatment plans based on a collection of 

specific dose-volume limits set for each tissue type. Several methods have been proposed, in 

current optimization literature, to achieve satisfactory radiation dosage in treatment plans 

produced through automated planning. In our view, these methods are essentially divided into 

two categories: 1) “crude dose-management” methods that are not designed to explicitly 

incorporate, within the MILP model, the dose-volume metric criteria used by clinicians; 2) “fine 

dose-management” methods that are designed to explicitly incorporate such dose-volume metric 

criteria within the model. Implementations of each of these two methods are found in the study 

by D'Souza et al. (2001). 

“Crude dose-management” methods involve underdosing or overdosing constraints 

(containing continuous dose-related variables), through which the goal is to minimize 
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underdosing of the target organ or overdosing of organs-at-risk in the objective function. Many 

of the past studies have adopted this method, perhaps due to the fact that such constraints are 

simple to design, as well as easier to implement since the use of continuous variables places little 

to no burden on the solution of a MILP model. The downside of this approach is that treatment 

plans are essentially produced using overly simplistic dose-management rules that are 

fundamentally different from the dose-volume metric criteria used by expert planners. Thus, with 

this approach, it is hoped that the dosimetric values of resulting treatment plans generally align 

with, or at least do not significantly deviate from, the dose-volume metric criteria used by 

clinicians during post-optimization analysis.  

Only a handful of past studies have adopted “fine dose-management” methods. Such 

methods involve the design of more complex constraints, called dose-volume constraints, which 

contain binary dose-related variables. The benefit of this approach is that it allows direct 

implementation of the exact dosimetric goals of expert planners within the MILP model, hence 

allowing precise control over dose limits unlike the “crude dose-management” method. Although 

not perfect, treatment plans produced through the “fine dose-management” method are more 

likely to align with the dose-volume metric criteria used by clinicians during post-optimization 

analysis. Perhaps the reason for this method’s relative unpopularity in past studies is due to the 

inclusion of binary variables in dose-volume constraints, which add significant burden on the 

solution of MILP models and lead to intractability in large-scale models. As such, even studies 

that have incorporated dose-volume constraints, such as D'Souza et al. (2001), have only done so 

for relatively small structures, like the urethra, perhaps in an attempt to limit the number of 
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associated binary variables that would need to be included in the model. Since it enables our 

solutions to achieve increased clinical relevance, in this chapter we implement dose-volume 

constraints for all tissue types (PTV, urethra, rectum).  

The structure of dose-volume constraints has been introduced for the “Vxxx” family 

(V100, V150, etc...) previously. We modify and apply these constraints to the “Dxxx” family 

(D90, D5, etc...) of dose-volume metrics as well. The specific dose limits set by the Cross Cancer 

Institute for each tissue type are given in Table 3.1. We should note that some differences are 

expected between the dose limits set in our optimization models, and the final values observed 

during post-optimization dosimetric analysis using VariSeed. This is due in minor part to the 1D 

formalism and in major part to the rough delineation of anatomical structures achievable with 

coarse-resolution grids (VariSeed uses the 2D formalism and high-resolution grids). Such 

differences will be negligible once we transition to high-resolution grids in future studies. 

 

Dose Parameter Objective 

PTV Prescribed Dose 145 Gy 

PTV V100 > 98% 

PTV V150 ≤ 65%  

PTV V200 ≤ 25% 

PTV D90 174-189 Gy 

Urethra D5 < 215 Gy 

Rectum D1cc < 145 Gy 

 

 

Table 3.1. Dose-volume requirements of the Cross Cancer Institute. 
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V100 is the percentage of the PTV volume that receives at least the prescribed dose of 

145 Gy. While V100 acts as a lower bound, V200 (percentage of the PTV volume that receives 

at least 200% of the prescribed dose) behaves as an upper bound on the allowable dose to the 

PTV. The V150 constraint is utilized as a method of establishing consistency among treatment 

plans created for different patients. D90 is the dose, in our constraints set between a range of 

181.5-189 Gy, which needs to be delivered to 90% of the PTV volume. Urethra D5 and rectum 

D1cc constraints follow a similar train of thought to PTV D90. Constraints used to accommodate 

the dose-volume requirements are given in equations (3.8) to (3.21). 

PTV V100: 

  
ptvDoseV150 − DoseP( i, j ,k ) ≤ M ∗PTVExceedV100(i, j,k)   

,∀i ∈U , j ∈V ,k ∈W |T( i, j ,k ) = 1     (3.8)              

  

  PTVExceedV100( i, j ,k ) ≤ (1− ptvVolumeV100)
k∈W |

T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑ ∗   T( i, j ,k )

k∈W |
T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑

    
 (3.9)

                        

 

PTV V150:

 
  
DoseP( i, j ,k ) − ptvDoseV150 ≤ M ∗PTVExceedV150(i, j,k)    

,∀i ∈U , j ∈V ,k ∈W |T( i, j ,k ) = 1        (3.10)  

  

  PTVExceedV150( i, j ,k ) ≤ ptvVolumeV150
k∈W |

T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑ ∗   T( i, j ,k )

k∈W |
T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑

 
 (3.11)  

 

PTV V200: 

  
DoseP( i, j ,k ) − ptvDoseV200 ≤ M ∗PTVExceedV200(i, j,k)    

,∀i ∈U , j ∈V ,k ∈W |T( i, j ,k ) = 1    (3.12)                       

  

  PTVExceedV200(i, j,k) ≤ ptvVolumeV200
k∈W |

T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑ ∗   T( i, j ,k )

k∈W |
T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑    (3.13)                                                     
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PTV D90: 

  
ptvMinDoseD90 − DoseP( i, j ,k ) ≤ M ∗PTVLessD90(i, j,k)    

,∀i ∈U , j ∈V ,k ∈W |T( i, j ,k ) = 1   (3.14)                          

  

  PTVLessD90(i, j,k) ≤ (1− ptvVolumeD90
k∈W |

T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑ )∗   T( i, j ,k )

k∈W |
T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑

     
 (3.15)

  
DoseP( i, j ,k ) − ptvMaxDoseD90 ≤ M ∗PTVExceedD90(i, j,k)   

,∀i ∈U , j ∈V ,k ∈W |T( i, j ,k ) = 1 		 	 (3.16) 									

  

  PTVExceedD90(i, j,k) ≤ ptvVolumeD90
k∈W |

T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑ ∗   T( i, j ,k )

k∈W |
T( i , j ,k )=1

∑
j∈V
∑

i∈U
∑

   
 (3.17)  

Urethra D5: 

  

DoseU ( i, j ,k ) − urethraDoseD5 ≤ M ∗UrethraExceedD5(i, j,k)

  

,∀i ∈U , j ∈V ,k ∈W |
URE( i, j ,k ) = 1   

(3.18)
 

  

   UrethraExceedD5(i, j,k) ≤ urethraVolumeD5
k∈W |

URE( i , j ,k )=1

∑
j∈V
∑

i∈U
∑ ∗    URE( i, j ,k )

k∈W |
URE( i , j ,k )=1

∑
j∈V
∑

i∈U
∑

 
 (3.19)  

Rectum D1cc: 

  

DoseR( i, j ,k ) − rectumDoseD1cc ≤ M ∗RectumExceedD1cc(i, j,k)

  

,∀i ∈U , j ∈V ,k ∈W |
REC( i, j ,k ) = 1   

(3.20)
 

  

   RectumExceedD1cc(i, j,k) ≤ rectumMaxVoxelD1
k∈W |

REC( i , j ,k )=1

∑
j∈V
∑

i∈U
∑ cc

 
 (3.21)  
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3.3.6 Spatial Constraints 

3.3.6.1 Seed/Position Coupling 

Equation (3.22) enables us to ensure that any seed, used to construct a treatment plan, is 

placed only in one of the permissible seed positions as determined by the SP(x,y,z) parameter. This 

constraint, in combination with equation (3.23), ensures that all needles are also confined to 

locations that are permitted by the SP(x,y,z) parameter. 

  
Seed( x ,y ,z ) ≤ SP( x ,y ,z )   ,∀x ∈Q, y ∈R, z ∈S

    (3.22)  

3.3.6.2 Seed/Needle Coupling 

Equation (3.23) is a common constraint borrowed from D'Souza et al. (2001), and it 

allows keeping track of the specific needles that are in use based on the seeds that have been 

placed within the seed-placement boundaries.  

  
Seed( x ,y ,z ) ≤ Needle( x ,y )    ,∀x ∈Q, y ∈R, z ∈S      (3.23)  

3.3.6.3 Avoiding Adjacent Seeds 

In treatment planning, one of the key issues to pay attention to is avoiding placement of 

adjacent seeds in the x-y plane (or the transverse plane) and to a lesser extent in the y-z plane 

(sagittal plane). Clumping of adjacent seeds in the x-y plane can lead to regions of high radiation 

exposure within the prostate tissue, regions that are also known as “hot spots”. Such hot spots are 

generally of concern when considering the V200 dosimetric criterion. V200 acts to limit the 

volume of the prostate that receives a dose greater than twice the prescribed dose. Staggering of 

seeds diagonally results in a separation distance of  0.5  cm between the closest pair of seeds, 

rather than the 0.5 cm separation distance observed with seeds placed in adjacent rows or 
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columns. The greater seed separation achieved in the x-y or transverse plane (through staggering 

of seeds) acts as a form of buffer against the formation of hot spots in the prostate.  

In addition to creating hot spots, placing adjacent seeds in clusters or clumps can also 

result in the opposite dosimetric scenario in other areas of the prostate, and this can lead to 

regions known as “cold spots”. Cold spots occur when a region of the prostate does not contain 

sufficient radioactive sources in its vicinity, and therefore, does not receive the prescribed dose. 

Thus, cold spots can be of concern when considering the V100 dosimetric criterion, which acts 

to limit the volume of the prostate receiving less than the prescribed dose. The presence of both 

hot spots and cold spots inevitably affects the homogeneity of the dose delivered to the prostate 

gland as a whole, and this can lead to inconsistent treatment plans from patient to patient. The 

staggering or checkering of seeds allows the above dosimetric issues to be largely avoided, and 

the prescribed dose to be distributed throughout the prostate in a more uniform or homogeneous 

fashion. Constraints (24) through (26) can be utilized to avoid placement of adjacent seeds in the 

prostate: 

  
Seed( x ,y ,z ) + Seed( x+5,y ,z ) ≤1     ,∀x ∈Q, y ∈R, z ∈S | x ≤ 57    (3.24)  

  
Seed( x ,y ,z ) + Seed( x ,y+5,z ) ≤1    ,∀x ∈Q, y ∈R, z ∈S | y ≤ 57    (3.25)  

  
Seed( x ,y ,z ) + Seed( x ,y ,z+5) ≤1    ,∀x ∈Q, y ∈R, z ∈S | z ≤ 50    (3.26)  

3.3.6.4 Symmetrical Seed Distribution 

Establishing symmetry in the x-y plane for a given seed distribution is a desired 

requirement in treatment planning for many brachytherapy teams. The prostate is usually imaged 

with a consideration for aligning the implant template grid’s Column D (or Column 32, 
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Figure 3.7.  Symmetrical (dark blue) and asymmetrical (orange) position pairs outlined in the permissible seed-
placement region (dark red voxels) for slice z=3.0 cm (PTV, shadow of the urethral curvature, shadow of the rectal 

curvature and Column D (Column 32) represented by pink, yellow, light blue and green voxels respectively). 

approximately the center, bisecting column of the grid) in a manner so that it bisects the prostate 

into two halves, left and right, in the transverse imaging plane. When imaging is aligned in such 

a fashion, interestingly enough, Column D also generally coincides with the urethral path inside 

the prostate. Column D is highlighted in green in Figure 3.7. Thus, when attempting to establish 

a symmetric seed distribution, clinicians pay special attention to placing seeds in a symmetrical 

fashion Column D in most cases. The resulting treatment plan consists of a prostate that contains 

a distribution of seeds in the left half that is a mirror image of the distribution of seeds in the 

right half. The vast majority of prostates are fairly symmetrical in the x-y plane, thus it is a valid 

anatomical consideration to create symmetrical seed distributions during treatment planning.  
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Symmetrical seed distributions also result in symmetrical needle insertions. This 

symmetry simplifies the verification of needle and seed placements during surgery, as an 

operative oncologist will not be required to keep track of irregular or odd placements of needles.  

Two factors need to be kept in mind when attempting to achieve symmetric seed 

distributions. These two factors are 1) the presence of symmetrical position pairs in and around 

the prostate, and 2) the presence of asymmetrical seed positions in the seed-placement region 

(seeds that do not contain an accompanying partner on the opposing side of Column D). A 

typical prostate possesses a roughly symmetrical geometry; therefore it is logical to use 

symmetrical position pairs for the majority of seeds placed in the gland. Slight irregularities in 

gland shape may be accommodated with the placement of seeds in asymmetrical positions. These 

two factors play a role in the amount of flexibility clinicians would like to have at their disposal 

in establishing symmetrical seed distributions. In some cases, a brachytherapy team might want a 

purely symmetrical distribution, while in other cases they may allow individual un-paired seeds 

to be placed when dealing with an irregularly shaped prostate in order to meet dosimetric 

requirements. Thus, it makes logical sense to handle these two types of position pairs separately, 

each with specific constraints of their own.  

3.3.6.5 Symmetrical Position Pairs 

In order to achieve a symmetrical distribution, seeds must be implanted in symmetrical 

position pairs that exist within the seed-placement boundaries. Symmetrical position pairs arise 

when a given seed position has a corresponding mirror image seed position that exists on the 

other half of the prostate in the transverse (x-y) plane, considering that the prostate is bisected by 
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Column D, as previously explained. This condition is depicted in Figure 3.7, with a single 

symmetrical position pair highlighted in blue circles in the seed-placement grid for a sample 

PTV slice, and Column D identified by a green zone.  

Constraint (3.27) can be utilized to establish symmetry in the transverse plane. This 

constraint only searches for symmetrical seed positions in the exploration space that exists within 

the seed-placement boundaries. Furthermore, searching only the left half of the PTV (or 

equivalently, only the right half) is sufficient to find all of the symmetrical position pairs within 

the seed-placement boundaries.  

      
Seed( x ,y ,z ) = Seed(64−x ,y ,z )  

  
,∀x ∈Q, y ∈R, z ∈S | SP( x ,y ,z ) + SP(64−x ,y ,z ) = 2,  x ≤ 32       (3.27)  

3.3.6.6 Asymmetrical Position Pairs 

Asymmetrical position pairs arise when a given seed position does not have a 

corresponding mirror image seed position that exists in the other half of the prostate in the 

transverse (x-y) plane. This situation is also depicted in Figure 3.7, with asymmetrical position 

pairs highlighted in orange circles.  

Constraint (3.28) is utilized to deal with placement of seeds in asymmetrical position 

pairs. This constraint only searches for asymmetrical seed positions in the exploration space 

within the seed-placement boundaries. The inclusion of this constraint forces a given solver to 

avoid placing seeds in asymmetrical position pairs. The exclusion of the constraint allows the 

solver to place seeds in asymmetrical position pairs if deemed fit.  Thus, this constraint on its 

own offers some level of flexibility to brachytherapy teams when dealing with irregularly shaped 

prostates.  
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Seed( x ,y ,z ) = 0   

  
,∀x ∈Q, y ∈R, z ∈S | SP( x ,y ,z ) + SP(64−x ,y ,z ) = 1   (3.28)  

It should be noted that 
  
Seed( x ,y ,z ) + Seed(64−x ,y ,z ) = 0 may also be used in place of 

  
Seed( x ,y ,z ) = 0  in equation (3.28), however both formulations would lead to the same result of 

preventing seeds from being placed on asymmetrical position pairs. As an aside, one may handle 

both symmetrical and asymmetrical position pairs in the same family of constraints, rather than 

in separate sets of constraints as we have done. Such a feat may be accomplished by removing 

  
SP( x ,y ,z ) + SP(64−x ,y ,z ) = 2,  x ≤ 32

 
from equation (3.27) and entirely omitting constraint (3.28) from 

the model. This search method provides potential simplification of the model at hand, as 

clinicians would only have to control a single set of constraints (placement/non-placement of 

symmetrical seed pairs) in a graphical user interface (GUI) environment, whereas including 

equation (3.28) would also provide a clinician control over the placement/non-placement of un-

paired, asymmetrically positioned seeds. However, it also offers less flexibility to the end user, 

as it only allows placement of seeds in symmetrical position pairs and explicitly prohibits 

placement of seeds in asymmetrical position pairs.  

3.3.6.7 Maximum/Minimum Number of Seeds 

A common goal is to implant 75 to 125 seeds of strength 0.5 U to treat a prostate of a 

given size and shape. To accommodate this guideline, in addition to the placement of the 

  
Seed( x ,y ,z )  variable in a minimizing objective function, as is usually done, constraints (3.29) and 

(3.30) have been developed. 

  
  Seed( x ,y ,z )

z∈S
∑

y∈R
∑

x∈Q
∑ ≤ upperLimitSeeds       (3.29)  
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  Seed( x ,y ,z )

z∈S|
∑

y∈R
∑

x∈Q
∑ ≥ lowerLimitSeeds

    
 (3.30)  

3.3.6.8 Maximum/Minimum Number of Needles 

When considering the number of needles used to implant seeds, an upper limit of 25 

needles is preferred for a given patient, although there is flexibility associated with this value as 

large prostates may require more needles. The associated constraints are shown in equations 

(3.31) and (3.32).  

  
  Needle( x ,y )

y∈R
∑

x∈Q
∑ ≤ upperLimitNeedles      (3.31)  

  
  Needle( x ,y )

y∈R
∑

x∈Q
∑ ≥ upperLimitNeedles      (3.32)  

3.3.6.9 Maximum Needle Retraction 

During brachytherapy, seeds are implanted into the prostate using needles. The depth to 

which a needle penetrates the prostate, along the z direction, is an important aspect of the 

surgical procedure to consider. Every penetration made with a needle causes trauma to the 

prostate tissue, which induces swelling. Such trauma might result in intra-operative 

complications for the oncologist conducting the seed implantation, because the subsequent 

swelling might distort the expected geometry of the prostate and hinder the surgeon’s ability to 

implant seeds in their correct positions as determined in the pre-plan study. Furthermore, trauma 

to the prostate and any associated swelling may also cause post-operative discomfort or 

complications for the brachytherapy patient, such as the restriction of the urethra. 

Thus, it is desired by most clinicians that every needle that is utilized in a typical 

brachytherapy procedure have a minimum needle penetration distance into the prostate, from the 
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inferior or apical end of the prostate along the sagittal z-axis. Such a minimum penetration 

distance can also be represented as a maximum needle retraction, as measured from the base of 

the prostate, which essentially takes the opposite reference point. The justification for using a 

maximum needle retraction constraint as opposed to a minimum needle penetration constraint is 

based on the procedure followed during transrectal ultrasound imaging of the prostate. During 

sequential transverse imaging, all prostate slices are imaged from the base to the apex with a 0.5 

cm retraction increment, or step-size, using a transrectal ultrasound (TRUS) probe. Thus, the 

imaging reference point is the base of the prostate at z=0.0 cm rather than the apex. Based on 

this, the apex may be assigned varying slice numbers depending on the shape or size of a 

particular prostate. To take advantage of this imaging reference point, it is preferable to use a 

maximum needle retraction constraint, which is based on the base of the prostate, rather than a 

minimum penetration distance constraint, which is based on the apex.  

Maximum needle retraction essentially represents the maximum distance that the tip of a 

needle is allowed to be located away from the base of the prostate. In our models, this distance is 

set to be 1.5 cm to conform to the clinical inclinations of the brachytherapy team we worked 

with. Equation (3.33) represents the maximum needle retraction constraint. 

  

Needle( x ,y ) ≤ Seed( x ,y ,z )
z∈S|

z≤maxNeedleRetraction

∑    ,∀x ∈Q, y ∈R     (3.33)   

The use of the above constraint ensures economical use of needles in brachytherapy, as it 

prevents penetrations of the prostate solely in order to deliver seeds close to the surface of the 

gland near and around the apex, which is proximal to the implanter during the surgical 
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procedure.  By preventing excessive puncturing of the prostate, unwarranted trauma to the gland 

is avoided. 

3.3.6.10 Maximum/Minimum Number of Seeds in a Needle 

To continue along with the theme of economical use of needles in brachytherapy, a 

minimum number of seeds per needle constraint is also incorporated into our models. The 

minimum acceptable number of seeds, to warrant the use of a needle, has been set at 2 seeds per 

needle. The constraint in equation (3.34) represents the minimum number of seeds in a needle. 

Similarly, the constraint in equation (3.35) represents the maximum number of seeds allowable 

in a needle, set at 8 seeds per needle. 

  
minSeedsNeedle∗Needle( x ,y ) ≤ Seed( x ,y ,z )

z∈S
∑    ,∀x ∈Q, y ∈R     (3.34)   

                
Seed( x ,y ,z ) ≤  

z∈S
∑ maxSeedsNeedle∗Needle( x ,y )   ,∀x ∈Q, y ∈R    (3.35)  

3.3.6.11 Maximum Number of Consecutive Seeds in a Needle 

The constraint for avoiding adjacent seeds in the z-direction may prove to be too arduous 

to implement especially in small prostates. Thus, a similar yet more flexible constraint, for 

minimizing adjacent seeds in the z-direction, is formulated. The maximum number of 

consecutive seeds in a needle constraint essentially helps to prevent excessive clustering of trains 

of seeds in a needle. Usually a constraint to place an upper limit on the number of seeds loaded 

into a needle is counterintuitive to the notion of establishing economical use of seeds and 

needles. However, this strategy can also result in some needles being fully loaded with seeds 

from needle tip to base. Generally, brachytherapy teams prefer to have spacers between seeds 
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that are loaded into needles, both for ease of seed implantation and to avoid the previously 

mentioned issue of adjacent seeds leading to hot spots. For our purposes, the maximum number 

of consecutive seeds is set to 4, as seen in constraint (3.36). Beyond this number of seeds, a 

spacer is required to be placed on both sides of any given sub-train of seeds.  

  

Seed( x ,y ,z ) + Seed( x ,y ,z−m)
m∈S|

5≤m≤20

∑ ≤ maxConsecSeeds    ,∀x ∈Q, y ∈R, z ∈S | z ≥ 20   (3.36)    

3.4   Experimental Design 

For the purposes of demonstration, we solve two instances of our brachytherapy model 

(benchmark and base), for a single medium-sized (42.5cc) prostate, in order to illustrate the 

improvement in treatment plan quality that is achievable after the implementation of spatial 

constraints and data processing techniques. Further test cases involving prostates of different 

sizes, shapes and geometries will be investigated in Chapter 5. The benchmark model contains 

the objective function given in equation (3.1), dose calculation constraints, as well as the 

complete set of dose-volume constraints associated with Table 3.1. With the exception of 

constraints (3.22)-(3.23) and (3.29)-(3.32), the rest of the spatial constraints are not applied to 

this model in order to illustrate the results that are attainable without them. For the base model, 

in addition to the objective function, dose calculation constraints and dose-volume constraints, 

we include the spatial constraints given in equations (3.22) to (3.36) with the exception of 

equations (3.26) and (3.35). These two equations are not included because they are not deemed 

as essential for capturing the specific planning style of our local cancer centre. For the 

benchmark model, the seed-placement region is confined to the PTV, while for the base model 

the seed-placement region is constructed through the “global encapsulation” method. For both 
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models, urethral curvature is accounted for; however, 0.4 cm protection zones around the urethra 

and rectum are only included in the base model, not in the benchmark model. Although our 

proposed base model may also be compared to other research-based or commercial automated 

planning approaches, the results of such comparisons may be less revealing due to the black-box 

design of these alternative systems. On the other hand, our experimental setup allows us to 

precisely control the internal algebraic structure of the benchmark and base models tested in our 

study. Therefore, we are able to visualize the direct impact of the inclusion (or non-inclusion) of 

the spatial constraints and input data processing techniques that we propose in this chapter. 

We use AMPL (Fourer et al. 2002) to construct and Gurobi 6.5.0 (Gurobi Optimization 

2014) to solve our models on a 20-core ACPI multiprocessor X64-based PC with Intel Xeon® 

CPU E5-2650 running at 2.3 GHz with 128 GB RAM. There were several reasons behind our 

decision to utilize AMPL and Gurobi: 1) the ease of use and high functionality of AMPL as a 

modeling language, 2) the consistently high performance results achieved by Gurobi, as a solver, 

for a wide range of optimization problems, 3) the extensive use of both AMPL and Gurobi in 

academia and industry, 4) our desire to use a deterministic approach (the simplex method in 

combination with the branch-and-bound approach) to solve our MILP brachytherapy model. Our 

rationale for this final point is based on the relative unpopularity of the simplex method (and the 

branch-and-bound algorithm) in comparison to more extensively researched stochastic and 

heuristic methods in LDR and HDR brachytherapy optimization literature (De Boeck et al. 

2014). For both models, the following parameters are set: presolve = 10 in AMPL and mipgap = 

0.0001, timelim = 3600, presolve = 2, heurfrac = 0.25 in Gurobi. The given presolve settings 
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in AMPL and Gurobi allow an aggressive presolve strategy to be implemented, which helps to 

effectively clean and simplify the models from redundant constraints and variables before the 

branch-and-bound solution process is started. The time limit has been set at one hour, to reflect 

the lower limit of the time that an expert planner takes to produce a treatment plan in the pre-

operative treatment planning approach at the local clinic. Since it is generally preferable to allow 

linear programming models to solve to low optimality gaps, we have set our optimality gap at 

0.01%. Gurobi has a built-in Relaxation Induced Neighborhood Search (RINS) heuristic (Danna 

et al. 2005), that enables its branch-and-bound search method to more effectively find improved 

feasible solutions. The Gurobi parameter heurfrac determines the fraction of the solution time 

and resources that should be allocated for using the RINS heuristic. After testing a range of 

values, including the default value of 0.05, we have set this parameter to 0.25, as it achieves a 

good balance between solution time and the number of feasible solutions found during the 

search. Keeping the mipgap and timelim parameters in mind, Gurobi halts its branch-and-bound 

search once one of these two limits is reached and provides the best integer solution, currently at 

hand, as the final result of the model.  

3.5  Results 

The treatment plans, or seed distributions, from the benchmark model and the base model 

are compared with each other, as well as with a manually-produced treatment plan for the same 

prostate.  Dose distribution results for the benchmark model and the base model are displayed in 

the left-most and middle columns, respectively, of Figures 3.9-3.11 and the manually-produced 

treatment plan is displayed in the right-most column. For all plans, the final (post-optimization) 
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dose distribution was calculated in the VariSeed LDR Treatment Planning System using the TG-

43 2D (line source) formalism (Rivard et al. 2004).  The isodose legend for these treatment plans 

is given in Figure 3.8. Furthermore, Figures 3.12-3.14 provide the resulting needle distribution 

and needle loading in the benchmark model, the base model and the manually-produced 

treatment plan, respectively. While detailed solution performance results are not a focus of this 

chapter, Table 3.2 provides the relevant numerical features of both models (following presolve) 

for demonstrative purposes. Table 3.3 provides the spatial characteristics of the two treatment 

plans that were produced.  

 

 

 

 

 Seeds Needles 

Treatment Plan Number X-Y 
Adjacency 

X-Y 
Symmetry Number Less than 2 

seeds/needle 
Greater than 4 

consecutive seeds 
Greatest 

Retraction 

Benchmark Model 91 37/91 22/85 24 2 8 5.0 cm 

Base Model 98 0/98 88/88 25 0 0 1.5 cm 

Manually-produced 104 0/104 102/104 22 0 0 1.5 cm 

	

 

 

  Variables Solution 

Treatment Plan Constraints Integer Total Obj. Func. Best Bound Optimality Iterations Time (s) 

Benchmark Model 3151 2751 3210 249.460 193.267 22.5% 6642485 3600 

Base Model 3666 2576 2856 236.150 208.074 11.9% 7250215 3600 

Table 3.2. Numerical features of branch-and-bound solution. 

Table 3.3. Spatial characteristics of treatment plans. 
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The solution of both models was terminated at the one-hour mark, with benchmark model 

and the base model resulting in 22.5% and 11.9% optimality gaps respectively. An interesting 

aspect to note is that the base model contained fewer variables but a greater number of 

constraints than the benchmark model. The lower number of variables in the base model was due 

to the introduction of spatial constraints enforcing the use of symmetrical position pairs for seed-

placement, which led to the restriction, or refinement, of the permissible seed-placement grid. 

The 0.4 cm protection zone added around the urethra and the rectum most likely led to the base 

model’s lower objective function value of 236.150 Gy (in comparison to the benchmark model’s 

value of 249.460 Gy) and hence the differences in their optimality gaps. However, the difference 

in the two objective function values is not of critical importance, as the urethral and rectal dose-

volume metrics for both models align with clinical requirements as seen in Table 3.4.  

Interestingly, both the benchmark model and the base model produced treatment plans 

that utilized a lower number of seeds and a higher number of needles than the manual plan: 91 

seeds and 24 needles for the benchmark model, 98 seeds and 25 needles for the base model. 

Although minimizing seed count was not a goal that was specifically set in our objective 

function, it is evident that Gurobi produced plans for the benchmark model and the base model 

with lower seed counts than the manual plan, which contained 104 seeds. The lower seed count 

might be attributed to the solver’s attempt to minimize average dose to the urethra and rectum, in 

combination with the effects of the PTV V200 constraint and the limited availability of seed and 

needle positions for potential use. There were clear differences in the spatial arrangement of 

seeds and needles between the two models. In terms of avoiding adjacent seeds, the benchmark 
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model performed poorly compared to the base model, as it contained 37 adjacent seeds in the x-y 

plane (40.7% of total seeds in the benchmark model), while none of the seeds in the base model 

were adjacent. In terms of symmetry, the benchmark model was once again subpar, as only 22 of 

its seeds (25.9%) were symmetric in the x-y plane, while this value was 100% for the base 

model. Seeds that were placed in Column D (Column 32) were taken out of this percentage 

calculation for symmetry (6 seeds for the benchmark model, 10 seeds for the base model), as 

these seeds technically cannot form symmetrical pairs. In other words, the base model was able 

to achieve a fully symmetric seed distribution in every prostate slice and was also able to avoid 

all possible cases of adjacency in the x-y plane. In regards to needle usage, the benchmark model 

encountered the exact potential issues that were mentioned earlier in this chapter. Namely, 8 

needles in the benchmark model contained more than 4 consecutive seeds; of particular interest 

was the needle positioned at e3.0 (coordinates e on the x-axis, 3.0 on the y-axis) containing 7 

consecutive seeds as see in Figure 3.13. Furthermore, the benchmark model utilized 2 needles 

loaded with only 1 seed, which amounts to an inefficient use of needles. The benchmark model 

also had difficulties with needle retraction, as 6 of its needles had a retraction of greater than 1.5 

cm. Specifically, needles utilized at locations c2.5 and c3.5 had a retraction of 5.0 cm. 

Considering that these two needles were also loaded with only two seeds each, this gives rise to a 

rather impractical, and perhaps unjustifiable, delivery method involving multiple implantations 

of peripherally located seeds. With the implementation of the spatial constraints, the base model 

encountered none of these issues that were present in the benchmark model. Needles utilized in 

the base model had a maximum retraction of 1.5 cm. Additionally, there were no cases of single-
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seed loading in the treatment plan of the base model, nor any cases of needles containing greater 

than four consecutive seeds. Thus, the base model was able to satisfy all of the technical spatial 

requirements, in a similar manner to the manual plan (which consisted of 98.1% symmetrical 

seeds, 0% adjacent seeds, no cases of needles with single-seed loading, no cases of needles 

containing greater than 4 consecutive seeds and no cases of needles with greater than 1.5 cm 

retraction). 

 

 

 

 

 

  

 

Dose Parameter Objective 
Treatment Plan 

Manual Benchmark Model Base Model 
PTV Prescribed Dose 145 Gy 145 Gy 145 Gy 145 Gy 

PTV V100 > 98% 99.6% 98.7% 98.3% 

PTV V150 ≤ 65% 64.2% 55.0% 52.7% 

PTV V200 ≤ 25% 22.8% 25.7% 21.3% 

PTV D90 174 – 189 Gy 186.2 Gy 174.4 Gy 171.2 Gy 

Urethra D5 < 215 Gy 199.7 Gy 210.7 Gy 191.1 Gy 

Rectum D1cc < 145 Gy 110.1 Gy 102.8 Gy 95.0 Gy 

 

 

Figure 3.8. Legend for treatment plan isodoses and contours. 

Table 3.4. Summary dose-volume metric values for the three treatment plans. 
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Benchmark Model Base Model Manually-produced 
 Figure 3.9. Comparison of treatment plans (slices z=0.0 cm to z=1.5 cm). 
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Benchmark Model Base Model Manually-produced 
 Figure 3.10. Comparison of treatment plans (slices z=2.0 cm to z=3.5 cm). 
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Benchmark Model Base Model Manually-produced 

Figure 3.11. Comparison of treatment plans (slices z=4.0 cm to z=5.5 cm). 
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Figure 3.12. Needle loading (left) and needle distribution (right) in the benchmark model treatment plan. 

Figure 3.13. Needle loading (left) and needle distribution (right) in the base model treatment plan. 
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3.6       Discussion 

In this section, treatment plans created through the benchmark and base models are 

clinically analyzed by an experienced planner (medical physicist) at the local cancer center.  The 

benchmark model plan, which is based on the dose-volume requirements in Table 3.1 but was 

created without any spatial constraints on seed placement, does not exhibit the spatial 

characteristics of a clinically acceptable seed distribution and therefore would not be used to treat 

a patient.  As the dose-volume data in Table 4 demonstrate, the benchmark model plan meets all 

of the dose-volume objectives with the minor exception of PTV V200.  This situation, in which 

the dose-volume requirements are met but the spatial distribution of seeds is unacceptable, 

occurs because the seed placement problem formulated using only the requirements in Table 3.1 

is under-determined, and so admits many solutions. 

Figure 3.14. Needle loading (left) and needle distribution (right) in the manually-produced treatment plan. 
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The base model plan exhibits many of the features of a seed distribution that would be 

deemed clinically acceptable at the Cross Cancer Institute.  It meets all but one of the specified 

dose-volume objectives, only missing narrowly for PTV D90.  The addition of spatial 

constraints, equations (3.22)-(3.36), to the dose-volume requirements has had the desired effect 

of largely eliminating non-viable solutions from the solution space.  That being acknowledged, 

further refinements to the base model plan are certainly desirable from a clinical perspective.  

With reference to Figures 3.9-3.11 and Table 3.4, these are as follows: 

• Improved dose coverage at the prostate base and apex (positions 0.0, 5.0, 5.5):  The 1.3% 

reduction in V100 relative to the manual plan is mostly due to reduced base and apex 

coverage. 

• Improved dose coverage at the posterior surface of the prostate near mid-gland (positions 

2.5, 3.0):  Although this coverage lapse is relatively minor, eliminating it would definitely 

improve the overall quality of the plan. 

• Seed placement closer to the PTV (positions 0.0, 0.5, 5.0, 5.5): Recent work by Liu et al. 

(2015) has shown that for some patients, seeds placed too far from the PTV do not follow 

the movements of the mobile prostate, which can lead to reduced dose coverage at the 

prostate surface.  For this reason, manual plans typically avoid placing seeds more than a 

few millimeters outside the PTV whenever possible. 

• Seed placement avoiding template Column D (positions 0.0-1.5, 4.0-5.5):  Many manual 

planners avoid placing seeds in Column D as a matter of conservative practice to avoid any 

unintended intersections of a needle path with the urethra.  However when the urethra is 
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visualized using aerated gel (as it is here), it could be argued that such avoidance is 

unnecessary. 

3.7       Conclusion 

This chapter proposes a new mixed-integer linear programming modeling approach for 

solving the interstitial LDR prostate brachytherapy problem through mathematical optimization. 

The novelty that is brought forward in this study rests in the spatial considerations of treatment 

plans. These spatial constraints, largely overlooked by previous optimization studies, constitute a 

vital aspect of the clinical protocols followed by brachytherapy teams generally. We demonstrate 

that with the inclusion of basic spatial constraints and input data processing techniques in our 

models, a result similar to that deemed clinically acceptable can be achieved even with simple 

dose calculation formalisms, such as the TG-43 1D isotropic point-source approximation, and a 

grid system based on a coarse 0.5x0.5x0.5 cm3 resolution. The treatment plan produced through 

our new approach is able to largely capture the qualities and characteristics of the manual plan 

created by an expert planner. Nevertheless, it is clear that further improvements are necessary in 

order to produce treatment plans that more closely mimic manually created plans. To achieve 

these results, we will be introducing more complex data processing and mathematical modeling 

techniques in a follow-up study.  

The benefits of our linear programming optimization approach have the potential to 

impact both healthcare practitioners and cancer patients. Implementation of our optimization 

models will potentially result in streamlining of treatment planning in brachytherapy, and 

therefore efficient use of resources (such as time, equipment and personnel) as well as cost 



Chapter 3 – The Basic MILP Model Formulation  

 

Mustafa Ege Babadagli  70 
 

savings for healthcare organizations. Most importantly, cancer patients can be provided with 

consistent and high quality treatment plans, regardless of whether they are treated in a 

specialized cancer center, with a highly-experienced brachytherapy team, or a community 

hospital, which may have less brachytherapy experience. The availability of high quality 

treatment plans should also result in patients experiencing less severe post-operative 

complications or side effects. The power of this study lies in the fact that the concepts proposed 

in our optimization model are also applicable within a broader context, both in HDR prostate 

brachytherapy as well as in the brachytherapy treatment of other forms of cancer, including 

breast, cervical, lung, and head and neck cancer. 
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Chapter 42 

The Enhanced MILP Model Formulation 
 

 

Despite attempts (and successes) at improving solution speed and dosimetric reliability of 

treatment plans over the years, the use of optimization techniques for interstitial LDR prostate 

brachytherapy is still not commonplace in cancer clinics. This may be due to the fact that 

although it is important to achieve fast solution times and satisfactory dosimetric values, these 

accomplishments alone do not guarantee that a given treatment plan will be deemed clinically 

acceptable. The inability to produce “center-specific” results stands out as the main culprit 

behind the incapability of optimization techniques to achieve extensive use in clinics. Center-

specificity essentially rests on spatial considerations that expert planners pay particular attention 

to during manual planning. Such spatial considerations focus on the geometric arrangement of 

seeds and these considerations define the treatment planning style of a cancer clinic. Considering 

that many cancer centers have developed and refined their own unique style of treatment 

planning, spatial characteristics play a crucial role in the perceived clinical quality of treatment 

2A version of this chapter has been submitted for publication: Babadagli, M.E.; Sloboda, R.; 
Doucette, J. “Enhanced Data Processing and Integer Linear Programming Techniques for 
Capturing Expert Planning Style in Interstitial Low Dose Rate Prostate Brachytherapy”. 
Springer, Annals of Operations Research (submitted April 8, 2016). 
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plans used in each clinic.  

In Chapter 3, we put forth a focused attempt to capture the planning style of expert 

planners through the design of spatial constraints, since in prior work spatial considerations had 

been largely overlooked in the LDR brachytherapy optimization literature. The main objective of 

our previous work was to lay the groundwork for a new mathematical modeling approach that 

would enable automated construction of treatment plans possessing clinical quality similar or 

equivalent to that observed in manually-produced plans. In order to validate our unique angle on 

brachytherapy modeling, we descriptively compared and contrasted our particular approach to 

various studies including those by Lessard et al. (2006), Yoo et al. (2007) and McGeachy et al. 

(2015). 

The basic concepts introduced in Chapter 3 were sufficient to generally capture the 

planning style of expert planners at a local cancer centre. In this chapter, we further develop 

those ideas by exploring relatively more complex data processing techniques and spatial 

constraints in order to improve upon our ability to realistically reproduce the planning style of 

expert planners. We believe that the ability to produce treatment plans that brachytherapy teams 

will find familiar to their own is a key feature for the practical integration of our automated 

planning approach in real-world clinics. The new concepts introduced in this chapter will be 

demonstrated through a comparison of our results to those obtained via a base model, formulated 

in Chapter 3, as well as a manual planning approach for a single prostate test case. MILP 

solution performance, such as solution speed or time, will not be a major focus of this study, and 

will instead be comprehensively evaluated in a future investigation. Similarly, the ability of our 
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automated planning approach to consistently produce high quality solutions for multiple 

prostates of different shapes and sizes will be analyzed in a future study. 

4.1     Benchmark LDR Prostate Brachytherapy Problem Formulation (Base Model) 

The mathematical structure and characteristics of the LDR prostate brachytherapy 

problem formulation established in Chapter 3 will act as the foundation, which we will build 

upon in this chapter. This base model includes the grid and coordinate system (both fine, 

0.1x0.1x0.5 cm3, resolution and coarse, 0.5x0.5x0.5 cm3, resolution), input data processing 

techniques and algorithms, sets, parameters, variables, objective function, dose calculation 

constraints (based on the TG-43 1D isotropic point-source approximation), dose-volume 

constraints, and spatial constraints with the exception of equations (3.26) and (3.35). Equations 

(3.26) and (3.35) are omitted as they are not deemed to be critical for capturing the planning 

style of our local cancer centre. The flowchart given in Figure 3.1 outlines the entire process 

followed in Chapter 3, consisting of data collection, data processing, model formulation, model 

solution and post-solution analysis. The sets, parameters, constraints and objective function used 

to construct the enhanced model in this chapter are provided in the next few sections. The 

specific formulation of the prostate LDR brachytherapy problem presented in this chapter is 

tailored to the clinical protocol followed at a local cancer centre. However, this formulation may 

be modified to satisfy the requirements of other cancer centres as well.   
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4.2. Improvements to the Base Model 

 In the following sections, we propose various improvements to the base model introduced 

in Chapter 3 that allow us to achieve an increasingly realistic representation of the planning style 

present at our local cancer centre. Some of these improvements are in the form of enhanced data 

processing techniques that are applied to the discretized anatomical data before it is passed onto 

our MILP model (as in the cases for determining expanded seed-placement margins, accounting 

for pubic arch interference as well as establishing urethral pathway protection margins). Other 

improvements are in the form of new linear constraints that are used in the MILP model itself (as 

in the cases for removal of seeds from the geometric midline of the PTV, enforcement of 

maximum seed separation distances in needles and implementation of minimum number of seeds 

per slice in the PTV).  

4.2.1     PTV Expansion and Seed-Placement Margins 

During treatment planning, achieving sufficient dose coverage and satisfying the entire 

set of dose-volume metric requirements may prove to be difficult if seed placement is restricted 

to the PTV. This is particularly the case for base and apical slices of most prostates, and may also 

be true for slices closer to the mid-gland in small prostates. Dose coverage issues may be 

attributed to the fact that prostate slices that are located near the mid-gland have dose 

contributions from seeds placed in slices superior and inferior to those particular slices. 

However, base and apical slices are not subjected to the same dose contributions because they 

define the ends of the prostate and lack neighboring superior and inferior slices, respectively.  

Placement of seeds outside of the PTV helps to achieve sufficient dose coverage within the PTV, 
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especially at the two longitudinal extreme ends of the prostate.  “Global encapsulation” or the 

“cylinder approach” is a method that has previously been utilized by McGeachy et al. (2015) to 

permit placement of seeds outside of the PTV. Global encapsulation involves superimposing the 

largest PTV contour, which is usually a mid-gland contour, as the uniform permissible seed-

placement boundary for all slices in the prostate. In Chapter 3, we applied global encapsulation 

with a slight modification to create an initial seed-placement region prior to further urethral 

pathway related data processing of this region. Our modification involved using the largest two 

mid-gland PTV contours, slices z=2.5 cm and z=3.0 cm (out of a set of z=0.0-5.5 cm), to act as 

the permissible seed-placement regions for the superior (z=0.0-2.5 cm) and inferior (z=3.0-5.5 

cm) halves of the prostate respectively. The global encapsulation method was carried out during 

the preprocessing stage of our input data, as seen in Figure 3.1, before the branch and bound 

solution process commenced.  

Although advantageous due to its simplicity, this approach possesses one major critical 

flaw. The PTV contour of a mid-gland slice may not always be an appropriate fit, both shape and 

positioning wise, when superimposed over other neighboring mid-gland slices. Therefore, the 

global encapsulation method may inadvertently omit a few seed-placement positions of high 

dosimetric utility on slices that it is being applied to. On the contrary, a mid-gland PTV may also 

prove to be too large a fit when superimposed over the base or the apex as seen in Figure 4.1. 

Such an imbalanced fit may not be restrictive enough to prevent seeds from being placed at 

distant locations from the PTV contour as depicted by green circles in Figure 4.1 and green dots 

in Figure 4.2. This clinically unacceptable scenario is especially problematic for the base slice, 
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upon which the bladder snugly rests superiorly, and possibly anteriorly as depicted in Figure 4.3. 

Although not explicitly contoured during transrectal ultrasound (TRUS) imaging, expert planners 

are still acutely aware of the presence of the bladder in the base slice ultrasound image. This is 

because distant placement of seeds from the PTV in the base slice may potentially increase the 

likelihood of puncturing the bladder with a needle during the operation, which may further result 

in seed migration into this organ.  Unless additional explicit direction is given to automated 

planners to avoid the bladder, utilizing global encapsulation to define seed-placement regions 

offers no specific measures to safeguard the bladder.  

A second, minor flaw of global encapsulation is that, as seen in Figure 4.1, it may not 

effectively limit the number of seed-placement binary decision variables for relatively small PTV 

slices, and therefore may lead to the creation of MILP models that are unnecessarily large and 

burdensome on a MILP solver. 

 

 

Figure 4.1. Seed-placement regions (dark red voxels), produced through global 
encapsulation, for the prostate apex (left) and base (right). PTV, urethra and 

rectum are represented by light pink, light yellow and light blue voxels 
respectively. 

Figure 4.2. Distant placement of seeds 
from the PTV at the base slice. 
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We now propose a unique approach for creating initial seed-placement regions in the 

prostate: slice-based local encapsulation. In this technique, the PTV contour of each individual 

slice is expanded by a specific amount to act as the seed-placement boundary for that given slice. 

The slice-based local encapsulation method is implemented during the preprocessing stage of our 

input data, as seen in Figure 3.1, before the branch and bound solution process begins.  PTV 

contour expansions are calculated as follows: 

• The PTV contour on the largest slice (usually a mid-gland slice) is expanded up to 0.1 

cm. Having a 0.0 cm expansion may prove useful for ensuring that at least a segment of 

all stranded trains of seeds are physically embedded within the PTV, as strand anchoring 

decreases the chances of seed migration (Lin et al. 2007) (Reed et al. 2007). It may prove 

practical to apply a 0.1 cm expansion in extremely small prostates for the purpose of 

gaining extra seed-placement positions of high dosimetric utility.  

Figure 4.3. The bladder appears (as a dark region) anteriorly to the base PTV slice 
(turquoise contour) in the right ultrasound (US) image, while it does not in the left US 

image for two different prostates. 
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• The PTV contours on the base and apical slices are expanded 0.3-0.5 cm, or as deemed 

clinically appropriate by the end-user (expert planner).  

• The PTV contours of all slices in between the base and the selected mid-gland slice are 

expanded by amounts that are calculated as linear interpolations of the expansions applied 

at these two slices, and rounded to the nearest millimeter (as most commercial 

brachytherapy software programs permit only integer millimeter expansions of 

anatomical contours). The same procedure is carried out for the slices between the apical 

slice and the mid-gland slice. The above methodology is applicable for a single chosen 

mid-gland slice, or alternatively a selection of two mid-gland slices (which may be useful 

for prostates consisting of an even number of slices). For the latter case, the local 

encapsulation procedure is separately carried out for the base and the apex, and their 

corresponding mid-gland slices (the closer of the two mid-gland slices).  

Slice-based local encapsulation results in a tighter, or more balanced, fit around the PTV 

as seen for two sample slices (apex and base) in Figure 4.4. This leads to placement of seeds that 

are relatively closer to the PTV, as depicted by green circles in Figure 4.4 and green dots in 

Figure 4.5. This is especially important to avoid potentially puncturing the bladder at the base 

slice during the brachytherapy operation. Due to the more conformal expansion of the originally 

PTV-bound seed-placement regions in each slice, seed-placement boundaries produced via local 

encapsulation also limit the number of seed-placement decision variables in the resulting MILP 

model. 
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4.2.2     The Pubic Arch 

The pubic arch is positioned anteriorly to the prostate gland and is usually delineated 

during transrectal ultrasound imaging. Generally there exists ample clearance between the 

prostate and the pubic arch, thus the entirety of the gland (and therefore the PTV) is comfortably 

accessible by needles. On occasion however, the clearance may not be enough and the anterior 

portion of the prostate (usually in mid-gland slices) may rest hidden behind the pubic arch as 

viewed transaxially. Attempting to implant seeds in these inaccessible portions of the prostate 

may prove to be futile, as needles used in the process are physically obstructed by the pubic arch 

and therefore are inhibited from travelling into the gland. Pubic arch interference may either 

occur due to the natural anatomy of the patient or due to an enlarged prostate as a result of 

disease progression (Kono et al. 2010). Restricted access to relatively large portions of the 

anterior prostate, as seen in Figure 4.6, may turn seed implantation into a difficult task, and 

therefore treatment plans need to be mindfully designed in order to accommodate such seed-

placement limitations. In Figure 4.6, the pubic arch and PTV are represented by magenta and 

Figure 4.4. Seed-placement regions (dark red voxels), produced through slice-
based local encapsulation, for the prostate apex (left) and base (right). PTV, 
urethra and rectum are represented by light pink, light yellow and light blue 

voxels respectively. 

Figure 4.5. Nearby placement of seeds 
to the PTV at the base slice. 
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turquoise coloured contours (respectively) in the US slice on the left, and by the light green and 

light pink voxels (respectively) in the discretized image on the right. The inaccessible seed-

placement positions are outlined by orange circles and the portion of the PTV that falls behind 

the pubic arch is represented by dark green voxels. 

Pubic arch interference transforms treatment planning into a more complex task, as dose-

volume metric requirements (specifically PTV V100 and PTV D90) become harder to satisfy. 

Anterior portions of the prostate still require adequate doses of radiation, however after sections 

of the permissible seed-placement region are removed in order to account for pubic arch 

interference, a planner has fewer positions to potentially place seeds in. For the prostate that is 

examined in this chapter, step 2 of Algorithm 4.1 accounts for pubic arch interference during the 

preprocessing stage of the initial seed-placement region input data, as seen in the flowchart given 

in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Pubic arch (magenta coloured contour) interference shown for a mid-gland 
slice in US image format (left) and discretized image format (right). 



Chapter 4 – The Enhanced MILP Model Formulation	 	
 

Mustafa Ege Babadagli  81 
 

4.2.3    The Urethral Pathway and Safety Measures 

Due to the urethral curvature, a specifically delineated region of the PTV is considered to 

be off-limits for needle penetration and seed placement. In Chapter 3, we considered the simplest 

case of this region, marked by the entrance point, exit point, the curvature and the diameter of the 

urethra. Additionally, we implemented a 0.4 cm protection zone around the urethral pathway as a 

safety measure. In order to further assist oncologists in avoiding the urethra during seed 

implantation, we propose two improvements in the processing of input data. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

1.  Start with the highest numbered (apical) slices of discretized (fine-resolution) initial seed-placement 
region (InitSP[k]), pubic arch region (PubicArch[k]), rectum region with 0.4 cm margin (RECMargin[k]), 
urethra region with 0.4 cm margin (UREMargin[k]), urethral shadow region with 0.2 cm margin 
(UREShadow[k]),  fully populated coarse-resolution grid (CRGrid[k]), and four empty fine-resolution 
grids (ProSP[k], ProCurveSP[k], NegSP[k], SP[k]) 

2. k = apical slice coordinate 
   m = k 
   WHILE k ≥ 0:  
    b. FOR each voxel ProCurveSP[i,j,k] in slice ProCurveSP[k]:  

 Assign ProCurveSP[i,j,k]= MAX(0, (ProSP[i,j,k] – SUM(PubicArch[i,j,m], ... , 
 PubicArch[i,j,k]))) 

     c. Perform k=k-1. 
3. k = apical slice coordinate 
 m = k 
 WHILE k ≥ 0: 

  a. FOR each voxel ProSP[i,j,k] in slice ProSP[k]: 
 Assign ProSP[i,j,k] = MAX(0, (InitSP[i,j,k] – SUM(RECMargin[i,j,m], ... , RECMargin[i,j,k])) 

     b. Perform k=k-1. 
4. k = apical slice coordinate 
   m = k 
   WHILE k ≥ 0:  
    b. FOR each voxel ProCurveSP[i,j,k] in slice ProCurveSP[k]:  

 Assign ProCurveSP[i,j,k]= MAX(0, (ProSP[i,j,k] – SUM((UREShadow[i,j,m], ... , 
 UREShadow[i,j,k]), UREMargin[k]))) 

     c. Perform k=k-1. 
5. k = apical slice coordinate 
   WHILE k ≥ 0: 

 a. FOR each voxel NegSP[i,j,k] in slice NegSP[k]: 
IF ProCurveSP[i,j,k] + CRGrid[i,j,k]> 1: 
 Assign NegSP[i,j,k] = 0 
ELSE: 
 Assign NegSP[i,j,k] = ProCurveSP[i,j,k] 

     c. FOR each voxel SP[i,j,k] in slice SP[k]: 
 Assign SP[i,j,k] = MAX(0, (ProCurveSP[i,j,k] – NegSP[i,j,k])) 

     d. Perform k=k-1.  
6. End with finalized (coarse-resolution) permissible seed-placement region indexed as SP[x,y,z] 
 
 
 

Algorithm 4.1.  Algorithm to account for the pubic arch, shadow of urethral curvature (with separate margins) and rectal 
curvature while creating the discretized permissible seed-placement region. 
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4.2.3.1     Removal of Column D (Column 32) 

In Chapter 3, we allowed seeds to be placed in Column D, however clinical consultation 

revealed that such placement of seeds should be avoided when possible. The prostate is generally 

imaged in a manner that aligns Column D (Column 32) on the implant template grid with the 

urethral path inside the gland. As such, seed-placement positions that fall on Column D may be 

removed from the input data as a safety measure. Column D is highlighted in green and the 

removal of seed-placement positions is outlined by dashed black circles in Figure 4.7. Removal 

of seeds may be carried out directly on the input data, during the preprocessing stage before the 

data is passed onto a MILP model, but may also be implemented via a hard constraint within the 

model itself, as seen in equation (4.1). The benefit of using a hard constraint is real-time 

flexibility; while making changes to the input data permanently removes seed positions on 

Column D, using a constraint to accomplish the same feat allows for these seed positions to be 

conveniently included or excluded as desired by the end-user. A soft constraint, implemented by 

adding a penalty term to the objective function as given in equation (4.2), may also be used in 

cases where avoiding Column D is preferable, but not absolutely critical. The same idea may be 

extended to essentially any other column or row, for example in situations where the urethral 

path does not fall on Column 32, but perhaps on a column immediately to the left or right of it.  

      (4.1)  

minimize: 
         

 (4.2)  

 

  
Seed( x ,y ,z ) = 0   ∀x ∈Q, y ∈R, z ∈S | x = 32

  
  Seed( x ,y ,z )

z∈S|x=32
∑

y∈R
∑

x∈Q
∑
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4.2.3.2 Separate Seed-Placement and Needle Penetration Margins 

 When accounting for the urethral curvature, the additional 0.4 cm protection zone 

restricts both seed-placement and needle implantation around the urethra. While this approach 

helps lower the likelihood of the urethra from being penetrated with a needle, it may prove to be 

too aggressive in the consequent removal of potential seed positions. Such removal of seed 

positions may not be a major issue with medium to large sized prostates (30 cc to 80 cc), which 

contain a relatively large number of potential seed positions on each slice. However, such a 

protection zone may prove to be very restrictive for smaller prostates (below 25 cc), which 

contain a relatively small number of potential seed positions. For these small prostates, achieving 

sufficient coverage in the prostate tissue surrounding the urethra, and specifically satisfying the 

PTV V100 and PTV D90 dose limits, may prove to be arduous.  

Thus, we suggest an alternative technique to establish a more reasonable balance between 

urethral protection and removal of seed positions. Instead of utilizing a single margin (0.4 cm) to 

define the protection zone for both seed-placement and needle penetration, we apply individual 

Figure 4.7. Removal of seed-placement 
positions on Column D. 

Figure 4.8. Comparison of a single 0.40 cm urethral protection margin (left) 
and two separate 0.40 cm and 0.20 cm protection margins (right), and the 

subsequent gain of seed-placement positions (solid blue circles). 
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margins. For each PTV slice, a 0.4 cm urethral protection margin is implemented to avoid seed-

placement, however, when accounting for the urethral curvature as observed from a given slice, a 

less restrictive 0.2 cm protection margin is utilized to avoid needle penetration. Algorithm 4.1 

outlines the data processing steps that are implemented to transform the initial seed-placement 

region to the final seed-placement region that is passed onto our MILP model. Step 3 of 

Algorithm 4.1 accounts for the 0.4 cm rectal protection margin that was introduced in Chapter 3. 

Step 4 of Algorithm 4.1 is executed in order account for the new separate seed-placement and 

needle penetration margins discussed in this section. 

 The technique of using separate margins is clinically permissible at our local cancer 

clinic, as implanters are comfortable in navigating needles within 0.2 cm of the urethra 

visualized with aerated gel. Through this approach, we gain a few critically located seed-

placement positions around the urethra and the midline of the prostate, which effectively allows 

us to more easily overcome the dose coverage issues encountered with the previously 

implemented protection zone (based on a single 0.4 cm margin). The gain of seed-placement 

positions is outlined by dashed and solid blue circles in Figure 4.8. The urethra, seed-placement 

margins and the needle implantation margins are represented by light yellow, yellow and dark 

yellow voxels respectively.   

 

4.2.4     Maximum Seed Separation in a Needle 

While it is important to control occurrence of consecutive seeds in a needle, it is also 

important to limit the spacing or separation of successive seeds within a needle. Historically, 

limiting maximum seed separation has been a more pressing concern for loose (non-stranded) 
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seeds than for stranded seeds, as this rule helps to ensure that the distance between seeds remains 

true to its planned value. For loose seeds separated by several fixed 0.45 cm length spacers, it 

can be difficult to deposit the spacer portion of the train uniformly as bunching of spacers may 

occur. Stranded seed trains mitigate both individual seed migration and neighboring seed 

distance variability observed with loose seeds (Sloboda et al. 2012). Thus, the maximum seed 

separation rule is more of a stylistic planning choice for stranded seeds where the distance 

between (even greatly separated) seeds is maintained by the stranding itself as well as the 

internal spacer materials. Furthermore, needles containing seeds that are placed excessively far 

apart may behave dosimetrically similarly to single seed loaded needles, especially in the case of 

the three needles depicted in Figure 4.9 (with seed separation distances of 4.0 cm, 4.5 cm and 5.0 

cm). While at first glance these seed configurations fulfill all other needle related requirements 

of the local cancer centre (minimum retraction is less than or equal to 1.5 cm, the needle contains 

2 or more seeds, and the needle does not consist of more than 4 consecutive seeds), these needles 

do not satisfy the maximum seed separation requirement, which is set to less than 4.0 cm 

between any two successive seeds.  

Constraints (4.3)-(4.5) are designed to limit maximum seed separation in a needle. 

Constraint (4.3) checks whether any two seeds in the needle are separated by 4.0 cm, and if so, 

enforces an additional seed to be placed anywhere between these two seeds. Constraints (4.4) 

and (4.5) are based on a similar line of thought, for separation distances of 4.5 cm and 5.0 cm 

respectively. One noteworthy aspect of these constraints is the right hand side. In each case, the 

zone that will house additional seeds (defined by m) is designed in a manner that guides the 
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placement of intermediate seed(s) to be a maximum of 4.0 cm away from the already existing 

two seeds. For example, in constraint (4.5), only the zone  is able to satisfy the 

maximum seed placement rule, as highlighted by the orange sections in Figure 4.9.  

          (4.3)  

          (4.4)  

          (4.5)  

 

 

 

 

 

The characteristics of constraints (4.3)-(4.5) may also be captured in a single general 

constraint, given in equation (4.6). Here, maxNumSeeds is equal to 3 and represents the total 

possible number of seeds that may be placed in position z=4.5 cm and beyond, until z=5.5 cm 

(the apical end of the prostate). Since we are attempting to design a single constraint that 

essentially encapsulates the governing rules behind constraints (4.3)-(4.5), we must be mindful 

of the choice of the right hand side. We see that only the zone  is capable of 

producing results that satisfy a maximum seed separation of 4.0 cm for the three cases of seeds 

separated by 4.0 cm, 4.5 cm, and 5. 0 cm.  

  15≤ m ≤ 40

  

(Seed( x ,y ,z ) + Seed( x ,y ,z+45) )−1≤ Seed( x ,y ,z+m)
m∈S|

5≤m≤40

∑   ∀x ∈Q, y ∈R, z ∈S | z ≤10

  

(Seed( x ,y ,z ) + Seed( x ,y ,z+50) )−1≤ Seed( x ,y ,z+m)
m∈S|

10≤m≤40

∑   ∀x ∈Q, y ∈R, z ∈S | z ≤ 5

  

(Seed( x ,y ,z ) + Seed( x ,y ,z+55) )−1≤ Seed( x ,y ,z+m)
m∈S|

15≤m≤40

∑   ∀x ∈Q, y ∈R, z ∈S | z = 0

  15≤ m ≤ 40

Figure 4.9. Seed separation of 4.0 cm (needle c4.0), 4.5 cm (needle D4.0) and 5.0 cm (d4.0). 
Permissible seed-placement positions are highlighted in orange. 
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 (4.6)  

4.2.5 Minimum/Maximum Number of Seeds Per Slice 

The design of constraints to enforce a minimum number of seeds per slice helps to 

alleviate a number of minor issues that could potentially occur with automated planning 

approaches. MILP models may produce treatment plans containing slices that house a very small 

number of seeds (specifically zero to two seeds). While having zero to two seeds in a single slice 

may still lead to dosimetrically sound results, as seeds placed in neighboring slices may 

adequately supplement the dose distribution for the given slice, such a style of planning is not 

clinically preferable as it makes poor use of the permissible seed-placement region. Designing 

constraint (4.8), which globally enforces a minimum number of seeds to be placed in every slice, 

might help produce solutions that are more clinically acceptable. In connection with the above 

point, MILP models may produce treatment plans that contain cold spots at the base or apex of 

the prostate (due to limited dose contribution from neighboring slices of the base and apex). 

Thus, it might prove beneficial to design constraint (4.10), which locally enforces a minimum 

number of seeds to be placed at the geometrical extreme ends of the prostate in order to ensure 

adequate dose coverage. In order to achieve a global minimum number of seeds in all slices, 

equation (4.7) is developed to keep track of individual slices that house single or multiple seeds.  

     (4.7)  

Although the idea of a minimum number of seeds per slice has been mentioned in 

D’Souza et al. (2001), the authors have not introduced a mathematical formulation of the 

  

(Seed( x ,y ,z ) + ( Seed( x ,y ,z+n)
n∈S|

45≤n≤(55−z )

∑ ) / maxNumSeeds)−1≤ M * Seed( x ,y ,m)
m∈S|

15≤m≤40

∑

  
Seed( x ,y ,z ) ≤ Slice( z )   ∀x ∈Q, y ∈R, z ∈S
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constraints required to achieve this rule. Furthermore, the authors’ stated reasoning behind such a 

rule is to “avoid overloading of one of two adjacent slices when the target is of comparable size” 

(D’Souza et al. 2001), in other words to overcome issues that arise specifically out of their 

solution process, which is based on iterative optimization of individual prostate slices. Our 

implementation of the minimum number of seeds rule arises out of the previously mentioned 

clinical reasons and solution-related trends that we have observed in our own automated 

planning approach. Despite being less of a concern clinically, equations (4.9) and (4.11) enable 

the end-user to implement global and local enforcement of maximum number of seeds per slice 

respectively. 

     (4.8)  

    (4.9)  

  

minSeedsPerSlice ≤  Seed( x ,y ,z )
z∈S|

z=0,55

∑
y∈R
∑

x∈Q
∑

     
 (4.10)  

  

maxSeedsPerSlice ≥  Seed( x ,y ,z )
z∈S|

z=0,55

∑
y∈R
∑

x∈Q
∑

    
 (4.11)  

4.3     Experimental Design 

For purposes of demonstration and continuity, we solve two instances of our 

brachytherapy model for a single medium-sized (42.5 cc) prostate: the base model and the 

enhanced model. The base model is obtained directly from Chapter 3 as described in Section 2, 

and the enhanced model is constructed with additional spatial constraints and data processing 

techniques presented in this chapter in order to illustrate the further improvement in treatment 

  
minSeedsPerSlice* Slice( z ) ≤ Seed( x ,y ,z )

y∈R
∑

x∈Q
∑  ∀z ∈S

  
maxSeedsPerSlice* Slice( z ) ≥ Seed( x ,y ,z )

y∈R
∑

x∈Q
∑  ∀z ∈S
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plan quality that is achievable. The base model contains the objective function given in equation 

(1), the complete set of dose calculation constraints (equations (3.2)-(3.7)), dose-volume 

constraints (equations (3.8)-(3.21)), as well as the spatial constraints given in equations (3.22) to 

(3.35) (with the exception of equations (3.26) and (3.35)). The enhanced model contains the 

exact same mathematical formulation (objective function, dose calculation constraints, dose 

volume constraints and spatial constraints) as the base model, with the addition of equation (4.1), 

equations (4.3)-(4.4) and two instances of equation (4.10) (to enforce a minimum of 4 and 6 

seeds for the base and apical slices respectively) from this chapter. For the base model the seed-

placement region is constructed through the global encapsulation method, while for the enhanced 

model the slice-based local encapsulation method is used. As seen in Table 4.1, an encapsulation 

margin of 0.50 cm is used for the base and apical slices (z=0.0 cm and z=5.5 cm respectively), 

while a margin of 0.10 cm is used for the two mid-gland slices (z=2.5 cm and z=3.0 cm). The 

urethral curvature is accounted for in each model, however a single 0.4 cm protection zone is 

utilized for the base model to protect against seed-placement and needle incursions, while two 

separate margins are used in the enhanced model (0.40 cm for seed-placement incursion, 0.20 cm 

for needle incursion). Furthermore, a 0.40 cm rectal protection margin is implemented in both 

models. Finally, the pubic arch is accounted for in the enhanced model, while it is not in the base 

model. The grid system utilized in both models is based on a 0.5x0.5x0.5 cm3 resolution in order 

to illustrate that clinically viable results are attainable even with the use of a coarse resolution 

grid for dosimetric calculations.  
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AMPL (Fourer et al. 2002) is used for the formulation and Gurobi 6.5.0 (Gurobi 

Optimization 2014) is used for the solution of our models on a 20-core ACPI multiprocessor 

X64-based PC with Intel Xeon® CPU E5-2650 running at 2.3 GHz with 128 GB RAM. The 

specific reasons behind our choice of modeling language and solver are discussed in Chapter 3. 

The following parameters are set for each model: presolve = 10 in AMPL and mipgap = 

0.0001, timelim = 3600, presolve = 2, heurfrac = 0.25 in Gurobi. We provide an extensive 

explanation for the use of these parameters and settings in Chapter 3. Gurobi stops its branch-

and-bound solution process once either the mipgap or timelim limit is reached. The best current 

integer solution is then extracted as the final result for each model.  

 

4.4     Results 

Treatment plans produced through the base model, enhanced model and an expert planner 

are compared in Figures 4.11-4.13, and the corresponding post-optimization dose distribution 

results, calculated in the VariSeed LDR treatment planning system, are displayed in the left, 

 Slice z (cm) PTV Expansion (cm) PTV Exp. Rounded (cm) 
Base 0.0 0.50 0.50 

 0.5 0.42 0.40 
 1.0 0.34 0.30 
 1.5 0.26 0.30 
 2.0 0.18 0.20 

Mid-gland 2.5 0.10 0.10 
Mid-gland 3.0 0.10 0.10 

 3.5 0.18 0.20 
 4.0 0.26 0.30 
 4.5 0.34 0.30 
 5.0 0.42 0.40 

Apex 5.5 0.50 0.50 

Table 4.1. Seed-placement boundaries used in slice-based local encapsulation. 
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middle and right columns respectively. The associated isodose legend is given in Figure 4.10. 

Needle loading and distribution results for the base model, the enhanced model and the 

manually-produced treatment plan are presented in Figures 4.14-16 respectively. Post-presolve 

numerical features of the base model and the enhanced model are provided in Table 4.2, while 

the spatial characteristics of the three treatment plans are given in Table 4.3.  

 

 It can be seen from Table 4.2 that the base model and the enhanced model resulted in 

relatively similar optimality gaps, 11.9% and 12.4% respectively. Since the urethral and rectal 

dose-volume metric values for the base and enhanced model adhere to clinical requirements as 

presented in Table 4.4, the difference in the objective function values for the two models is not 

of critical importance.  

  Variables Solution 

Treat. Plan Constraints Integer Total Obj. Func. Best Bound Optimality Iterations Time (s) 

Base Model 3666 2576 2856 236.150 208.074 11.9% 7250215 3600 

Enhanced Model 3216 2444 2722 243.417 213.297 12.4% 18423151 3600 

 Seeds Needles 

Treat. Plan Number X-Y 
Adjacency 

X-Y 
Symmetry Number Less than 2 

seeds/needle 
Greater than 4 

consecutive seeds 
Greatest 

Retraction 

Base Model 98 0/98 88/88 25 0 0 1.5 cm 

Enhanced Model 100 0/100 100/100 24 0 0 1.5 cm 

Manual 104 0/104 102/104 22 0 0 1.5 cm 

Table 4.2. Numerical features of branch-and-bound solutions. 

Table 4.3. Spatial characteristics of treatment plans. 
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There were similarities in the spatial arrangements of seeds and needles between the two 

models. Both the base model and the enhanced model produced treatment plans that contained 

nearly identical numbers of seeds and needles: 98 seeds and 25 needles for the base model, 100 

seeds and 24 needles for the enhanced model. The solutions for both the base model and the 

enhanced model completely avoided placement of adjacent seeds and consisted entirely of 

symmetrical distributions of seeds. Furthermore, both models contained needles with a 

maximum retraction of 1.5 cm, a minimum loading of two seeds and a maximum of four 

consecutive seeds. In addition, the two models avoided placement of seeds in inaccessible 

positions behind (superior to) the pubic arch, however this is expected as pubic arch interference 

was not a major concern for the specific prostate examined. There were also distinct differences 

between the two treatment plans. The base model contained 10 seeds in Column D, which is 

highly undesirable as the urethral pathway lies on this column in the prostate studied.  

Additionally, numerous seeds were placed significantly far from the PTV contour in the base 

model, specifically at positions b2.5 and e2.5 (coordinates b and e on the x-axis, 2.5 on the y-

axis) in the base, and B3.0 and F3.0 in the apex.  In terms of needle usage, the base model 

encountered issues adhering to the maximum seed separation rule. Two needles positioned at 

C3.0 and E3.0 contained seeds placed at z=0.5 cm and z=5.5 cm. Thus, the maximum seed 

separation in these two needles was 5.0 cm, which clearly violates the 4.0 cm limit of the local 

clinic.  

 With the implementation of additional spatial constraints and data processing techniques, 

the enhanced model did not encounter any of the issues that existed in the base model. While all 
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seeds were placed relatively closer to the PTV in the enhanced model, none were placed on 

Column D. All needles used in the enhanced model had a maximum seed separation of 4.0 cm. 

Thus, the enhanced model was able to satisfy all of the technical spatial requirements in a similar 

manner to the manual plan (which consisted of 98.1% symmetrical seeds, 0% adjacent seeds, no  

cases of seeds on Column D, no cases of seeds placed significantly far from PTV contours, no 

cases of needles with single-seed loading, no cases of needles containing greater than 4 

consecutive seeds, no cases of needles with greater than 1.5 cm retraction, and no cases of 

needles with a seed separation beyond 4.0 cm).  

 

 

 

 

 

Dose Parameter Objective 
Treatment Plan 

Manual Base Model Enhanced Model 
PTV Prescribed Dose 145 Gy 145 Gy 145 Gy 145 Gy 

PTV V100 > 98% 99.6% 98.3% 98.3% 
PTV V150 ≤ 65% 64.2% 52.7% 57.5% 
PTV V200 ≤ 25% 22.8% 21.3% 20.6% 
PTV D90 174 – 189 Gy 186.2 Gy 171.2 Gy 176.2 Gy 

Urethra D5 < 215 Gy 199.7 Gy 191.1 Gy 190.7 Gy 
Rectum D1cc < 145 Gy 110.1 Gy 95.0 Gy 106.9 Gy 

  

Table 4.4. Summary dose-volume metric values for the three treatment plans. 

Figure 4.10. Legend for treatment plan isodoses and contours. 
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Base model Enhanced model Manually-produced 
 Figure 4.11. Comparison of treatment plans (slices z=0.0 cm to z=1.5 cm) 
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Enhanced model 
Figure 4.12. Comparison of treatment plans (slices z=2.0 cm to z=3.5 cm). 

Manually-produced 
 

Base model 
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Base model Enhanced model Manually-produced 
Figure 4.13. Comparison of treatment plans (slices z=4.0 cm to z=5.5 cm). 
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Figure 4.14. Needle loading (left) and needle distribution (right) in the base model. 

Figure 4.15. Needle loading (left) and needle distribution (right) in the enhanced model. 
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4.5      Discussion 

In the discussion section, treatment plans created through the base and enhanced models 

are analyzed for their clinical quality by an experienced planner (medical physicist) at the local 

cancer center.  As also observed in Chapter 3, the base model treatment plan exhibits many of 

the features of a seed distribution that would be deemed clinically acceptable at the Cross Cancer 

Institute.  It meets all but one of the specified dose-volume objectives, only missing narrowly for 

PTV D90.  That being so, further refinements to the base model plan are desirable from a clinical 

perspective.  With reference to Figures 4.11-4.16, these were previously identified to be: 

1. Improved dose coverage at the prostate base and apex (positions 0.0, 5.0, 5.5). 

2. Improved dose coverage at the posterior surface of the prostate near mid-gland  

(positions 2.5, 3.0). 

Figure 4.16. Needle loading (left) and needle distribution (right) in the manually-produced treatment plan. 
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3. Seed placement closer to the PTV (positions 0.0, 0.5, 5.0, 5.5). 

4. Seed placement avoiding template Column D (positions 0.0-1.5, 4.0-5.5). 

The enhanced model plan meets all of the dose-volume objectives and exhibits the above-

itemized refinements with one notable exception: dose coverage at the prostate apex (positions 

5.0, 5.5) still bears improvement.  This localized deficiency is readily observed by a manual 

planner, but is not specifically addressed by the seed placement algorithm because the dose 

coverage objective is stated with respect to a global metric, ie. PTV V100 > 98%.  Rectification 

of this issue can be achieved by increasing the objective value to PTV V100 > 99%. 

Alternatively, implementing underdosing constraints exclusively for the apical and base slices 

(with underdosing calculated from the PTV prescribed dose of 145 Gy) may also help improve 

dose coverage at these locations. In general however, the enhanced model was better able to 

capture (in comparison to the base model) the planning style underlying the manually produced 

plan. 

4.6      Conclusion 

This chapter develops upon the mixed-integer linear programming modeling approach 

that was introduced in Chapter 3 for solving the interstitial LDR prostate brachytherapy problem. 

More complex data processing techniques and spatial constraints are introduced in order to 

address the shortcomings of our previous work and enhance our initial model. These features 

enable the ability to comprehensively capture the treatment planning style of our local cancer 

center, which is highly valuable for the practical and seamless integration of our automated 

planning approach within the pre-operative treatment planning process used there. Through our 
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results, we verify that even simple dose calculation formalisms and coarse resolution grid 

systems enable conception of a treatment plan similar to that deemed clinically acceptable can be 

conceived using our proposed automated planning approach. The treatment plan produced 

through the enhanced model (presented this chapter) is able to more fully capture the qualities 

and characteristics of the manual plan created by an expert planner (in comparison to the base 

model introduced in Chapter 3). Nevertheless, as only a single prostate case was examined in this 

chapter, further investigation is needed to comprehensively test the ability of our automated 

planning approach to consistently produce high quality solutions for prostates of varying shapes 

and sizes. Therefore, real-world utility of will be assessed in a follow-up twenty-patient study. 

Additionally, the concepts proposed here for low dose rate prostate brachytherapy may also 

prove beneficial for automated planning in other variants of prostate brachytherapy (high dose 

rate, medium dose rate and pulse dose rate), as well as in the brachytherapy treatment of breast, 

cervical, lung, and head and neck cancer. 
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Chapter 53 

Pseudo High-Resolution Data Sets &  
Feasibility-Based Modelling 

 

 

As mentioned in Chapter 3, treatment planning for brachytherapy can be categorized under 

two general classes: pre-operative and intra-operative planning. In the pre-operative approach, 

treatment planning is conducted days or weeks prior to the surgical implantation of seeds in a 

patient. Intra-operative planning involves treatment planning being carried out during the actual 

surgical procedure itself, while the patient is under anesthesia. The major difference between the 

two approaches is the amount of time allotted for the formulation of a treatment plan; whereas 

with pre-operative planning it may be permissible to produce a treatment plan in a matter of hours, 

the expectation in the intraoperative setting is that treatment plans are produced in a matter of 

minutes, or perhaps even seconds. The main reason for such a time difference is to minimize the 

risk for the patient during intra-operative planning: the less time a patient spends under anesthesia 

while treatment planning is carried out, the less risk (and potentially complicating consequences) 

3A version of this chapter will be submitted for publication: Babadagli, M.E.; Sloboda, R.; 
Doucette, J. “Mixed-Integer Linear Programming Modelling Techniques for Improving 
Treatment Plan Solution Times in Interstitial Low Dose Rate Prostate Brachytherapy”. 
Springer, Annals of Operations Research (to be submitted December 31, 2016). 
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he is exposed to.  Thus, in order to design our automated planning system so that it is useful to 

experts in both pre-operative and intra-operative planning, it is vital that our system consistently 

achieves solutions times in the vicinity of minutes or seconds. In this chapter, we will investigate 

two techniques in hopes of achieving such a feat: 1) the use of pseudo high-resolution data sets, 2) 

reformulation of our currently optimality-based model into a feasibility-based model. 

5.1 Pseudo High-Resolution Data Sets 

Despite leading to relatively accurate results with reasonably quick solution times in 

previous chapters, low-resolution anatomical data has its shortcomings.  The main disadvantage 

of using low-resolution data is the inability to precisely delineate anatomical structures. For 

example, despite being a relatively small structure, the urethra is considered to be the most critical 

organ-at-risk in LDR brachytherapy. Therefore each individual voxel associated with the urethra 

is critical in correctly defining its borders. However, due to the characteristic 0.5 cm voxel spacing 

of the low-resolution system, we have fewer and larger voxels at our disposal to discretize 

anatomical structures. Thus, it is not uncommon to run into difficulties in realistically representing 

the shape of the urethra, as depicted in Figure 5.1. Furthermore, there exists a significant dose fall-

off associated with radioactive sources the further one moves away from the source. In order to 

appropriately calculate the dose distribution, it is vital to accurately account for dose contributed 

by a source to voxels located at distances smaller than 0.5 cm. This is not possible in the low-

resolution system since the minimum distance r for which the radiation distribution can be 

calculated is 0.5 cm. This crude dose calculation system, coupled with crude delineation of 

anatomical structures, as previously seen in Figure 3.5, may lead to difficulties in achieving 
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sufficient dose coverage at the PTV periphery and also while avoiding the critical organs-at-risk. 

Perhaps the clearest example of such a scenario is evident in the treatment plans produced in 

Chapter 3. Despite achieving reasonably acceptable results, we noted some differences between 

PTV D90 dose limits set in our optimization models, and the final values observed during post-

optimization dosimetric analysis using VariSeed. In other words, there were slight deficiencies in 

the accuracy of our dose coverage calculations in our coarse resolution models.  

Crude dose calculation and structure delineation in the low-resolution system may also 

prove to be problematic for the bladder neck. Without the use of protective margins, some 

radioactive sources may be placed too close to the urethra during automated planning due to the 

low-resolution depiction of the organ. Such seed-placement is clinically unacceptable, as the high 

levels of radiation emanating from seeds placed too close to the bladder neck may cause stiffening 

of this region and lead to post-operative incontinence in patients. 

 

 

 

 

 

 

 

 

 

(A) (B) 

Figure 5.1 Comparison of low-resolution (A) and high-resolution (B) discretization of the urethra. 
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Therefore, the use of high-resolution anatomical data is ideally preferred to low-resolution 

data in treatment planning for LDR prostate brachytherapy. The high-resolution system is based 

on a 0.1x0.1x0.5 cm grid (in the x-y-z coordinate system), as opposed to the 0.5x0.5x0.5 cm grid 

of the low-resolution system. The improvement in delineating the urethra using high-resolution 

data is noticeable in Figure 5.1. However, there exists a significant problem in making the 

transition to high-resolution data, and that is the computational difficulty of solving the resulting 

large-scale linear programming models that involve a large number of binary variables. Whereas 

MILP models using low-resolution data may consist of anywhere from 2,000-3,000 binary 

variables for a typical medium sized prostate, these numbers increase to 50,000-60,000 binary 

variables in the high-resolution system. Due to the specific formulation of our model presented in 

Chapter 3, each voxel (data-point) that represents an anatomical structure possesses associations 

with often multiple binary dose-related variables. These binary variables are necessary for 

incorporating clinical dose-volume metrics into our mathematical model, and for achieving high 

reliability in dose-related results. However, as mentioned previously, large numbers of binary 

variables lead to large-scale optimization models that are exponentially harder to solve than if the 

problem consisted only of integer or continuous variables. The end result is that such large-scale 

problems are intractable and even finding an initial feasible solution using solvers based on the 

simplex and branch-and-bound algorithms (such as Gurobi and CPLEX) may turn into a nontrivial 

task. In our models, the true culprit of the spike in binary variables is PTV voxel data, as the gland 

constitutes as the largest anatomical structure in our data set and therefore is associated with the 

largest number of binary variables. The rectum also plays a part in the increase of binary variables, 
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but to a lesser extent than the PTV data. The increase in urethra voxel count may be ignored, in 

parts due to the much lower voxel tally but more so due to the criticality of the organ.  

Various mathematical decomposition methods have been developed in the past to simplify 

the solution of large-scale linear programming models, such as Dantzig-Wolfe Decomposition 

(Dantzig & Wolfe 1960), Bender’s Decomposition (Geoffrion 1972), and Cross Decomposition 

(Van Roy 1986). These techniques generally exploit a single, specific mathematical structure 

within the constraint matrix of a linear programming model. In doing so, these techniques are able 

to pacify complicating, or hard-to-solve, constraints or variables so that the original problem is 

decomposed into a simpler one and a standard implementation of the simplex or branch-and-bound 

algorithm is able to solve such large-scale models with increased relative ease. However, due to 

the plethora of structures present in the matrix structure of our LDR brachytherapy model, these 

methods (individually or in any given combination) were deemed not to be applicable or practical 

for the simplification of our mathematical model.  

To overcome these clinical and computational issues, we have developed a unique work-

around called “pseudo high-resolution” data, based on the simple concept of data sampling as 

displayed in Figures 5.2 and 5.3. This technique enables us to effectively decrease the size of our 

large-scale model (containing high-resolution data) and transform it into a medium-scale model 

(containing pseudo high-resolution data). The premise behind such a transformation is to reduce 

computational loads encountered during the solution of our model, and therefore decrease solution 

times. As outlined in Algorithm 5.1, our technique involves applying filters to our high-resolution 

discretized anatomical data during the pre-processing stage of our input data. Each filter begins as 
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an “unprocessed filter”, which is essentially a 0.1x0.1 cm resolution 65x65 grid of randomly 

distributed binary data, populated using a relatively simple approach defined in Steps 2 and 3 of 

Algorithm 5.1. A fully populated low-resolution (0.5x0.5 cm) grid is then incorporated into the 

unprocessed filter, resulting in the “processed filter”, which is applied to each anatomical structure. 

This approach ensures that we are able to not only capture every detail (data-point) originally 

provided by the low-resolution system, but are able to further supplement or enhance these details 

through the sprinkling of random high-resolution data points.  The incorporation of the low-

resolution grid also ensures that our anatomical data sets contain all of the voxels located at 

potential seed-placement positions (which is required for our dose calculation constraints to 

function properly).   
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1.  Start with the highest numbered (apical) slices of discretized (fine-resolution) processed 
PTV region (ProPTV[k]) fully populated coarse-resolution grid (CRGrid[k]), and three empty 
fine-resolution grids, one for the random number matrix (RandNum[k]), one for the sampling 
filter (SampFilt[k]) and one which will house the sampled PTV region (SampPTV[k]). 

2. k = apical slice coordinate 
         WHILE k ≥ 0:  
    b. FOR each voxel RandNum[i,j,k] in slice RandNum[k]:  

 Assign RandNum[i,j,k]= RANDOM(0...1)  
     c. Perform k=k-1. 
3. k = apical slice coordinate 
 sampRate = 0.10 
 WHILE k ≥ 0: 

  a. FOR each voxel SampFilt[i,j,k] in slice SampFilt[k]: 
 IF RandNum[i,j,k] <= sampRate: 
  Assign SampFilt[i,j,k] = 1 
 ELSE: 
  Assign SampFilt[i,j,k] = 0 

     b. Perform k=k-1. 
4. k = apical slice coordinate 
   WHILE k ≥ 0:  
    b. FOR each voxel SampPTV[i,j,k] in slice SampPTV[k]:  

 Assign SampPTV[i,j,k]= SUM(CRGrid[i,j,k], SamplFilt[i,j,k]) * ProPTV[i,j,k] 
     c. Perform k=k-1. 
5. k = apical slice coordinate 
   WHILE k ≥ 0:     
   FOR voxel SampPTV[i,j,k] in SampPTV[k]: 
  IF SampPTV[i,j,k] > 0: 
   Assign SampPTV[i,j,k] = 1.  
6. End with finalized (pseudo high-resolution) processed PTV region indexed as T[i,j,k] 
 

 
Algorithm 5.1. Algorithm for creating pseudo high-resolution PTV data. 
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Figure 5.2 Comparison of high-resolution (100% sampling) and pseudo high-resolution data (75 and 50% 
sampling) for the PTV, rectum and urethra. 
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Figure 5.3 Comparison of pseudo high-resolution data (25 and 10% sampling) and low-resolution data. 
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 A sampling rate is specified to control the desired ratio of 1s and 0s in the unprocessed 

filter and therefore control the sampling of the final discretized anatomical structure. A unique 

binary filter is applied to each slice of anatomical data in order to avoid introducing any form of 

bias or pattern into our data.  A comparison of high-resolution (100% sampled), pseudo high-

resolution (75%, 50%, 25%, 10% sampled) and low-resolution data is given for the PTV, rectum 

and urethra in Figures 5.2 and 5.3. Our approach enables anatomical data to be represented within 

a new fuzzy zone of the data spectrum that exists between low-resolution and high-resolution data 

(which are the two extreme ends of said spectrum and the sole focus of previous brachytherapy 

optimization literature). As seen in Figure 5.4, our pseudo high-resolution data sets are produced 

by combining a sense of order (present in low-resolution data sets) with elements of disorder 

(present in unprocessed filters). In the model-ready data sets, voxels are both randomly and 

deterministically distributed within a given anatomical structure at varying separation distances, 

rather than the structure being uniformly populated solely with voxels adhering to a single 

separation distance of 0.1 cm (as in high-resolution data) or 0.5 cm (as in low-resolution data). 

Such a scenario reveals the power of sampling, as we see that despite containing roughly a quarter 

of the information provided in its high-resolution counterpart, the 25% sampled PTV in Figure 5.3 

is still distinguishable and its associated data still reflects the essential characteristics of the 

original high-resolution data. The reason for the latter point is that with pseudo high-resolution 

data, the radiation distribution is still required to be calculated down to very small distances r from 

a source (specifically 0.1, 0.2, 0.3, 0.4 and 0.5 cm), similar to what occurs in high-resolution data. 

This is not the case with low-resolution data, where the minimum distance r for which the radiation 
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distribution can be calculated is 0.5 cm. The advantage of our approach is that a significantly fewer 

number of these dose calculations (as well as other decisions) have to be made during the solution 

of our model (in comparison to the use of high-resolution data), and this eases the computational 

loads encountered during the solution process without compromising solution quality (since we 

are still capturing the essential characteristics of each structure in a manner similar to high-

resolution data).  Pseudo high-resolution data sets enable us to effectively transform our originally 

30,000-85,000 binary variable large-scale MILP models (ranging from small to large prostates 

respectively) down to medium-scale models consisting of 3,500-10,000 binary variables.  

As evident, our pseudo high-resolution data may be moved to either end of the data 

spectrum (low-resolution or high-resolution) depending on the sampling rate utilized. Thus, there 

exists a tradeoff in this system, as too low a sampling rate may potentially lead to less accurate 

results due to loss of detail in anatomical structures and too high a sampling rate may not offer 

enough of a reduction in computational load. After trialing various values, sampling rates of 10% 

for the PTV, 30% for the rectum and 100% for the urethra (as calculated based on the processed 

filters) were deemed to provide the most appropriate balance between computational load and 

preservation of anatomical detail. One of the main advantages of our unique work-around is that 

pseudo high-resolution data is a modelling technique that is algorithm-independent. In other 

words, although we are primarily interested in the solution of our model through a combination of 

the simplex and branch-and-bound algorithms in this thesis, pseudo high-resolution data sets may 

be used within any deterministic, stochastic or heuristic solution paradigm as a practical method 

to decrease the size and solution times of large-scale models. 
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5.2 Feasibility-Based Modelling in LDR Brachytherapy 

5.2.1 Suitability of Feasibility-Based Models 

In many cancer centers, including the Cross Cancer Institute in Edmonton, Alberta, 

treatment planning is carried out pre-operatively through a manual approach (Liu 2014). After 

anatomical contour data is collected via TRUS imaging, an expert planner (medical physicist) 

starts the treatment planning process. As mentioned previously, an expert planner begins with an 

initial arrangement of seeds, and modifies this arrangement iteratively in order to improve the 

dosimetric quality of the plan (while also adhering to the spatial or geometric seed-placement rules 

that govern the expert’s planning style). This iterative improvement process eventually leads to a 

final seed distribution that is both spatially and dosimetrically sound. This particular stage of the 

process may be considered as the point of feasibility. With manual planning, this particular 

solution is suitable enough to be given to an oncologist for further review. In other words, the 

expert planner does not continue the iterative heuristic process in order to reach a point of 

optimality, in hopes of finding the single best (optimal) solution out of possibly millions of feasible 

ones. This scenario will soon become highly relevant in the rest of this chapter.  

 There are a number of instances in which modifications may be made to this unapproved 

(finalized) treatment plan, as seen in Figure 5.5. In regards to the pre-operative manual planning 

approach, this amounts to roughly three instances after the expert has finalized his or her plan. 

Once the expert planner is satisfied with the dosimetric and spatial qualities of the finalized seed 

distribution, the treatment plan is transferred to an oncologist for review. This represents an 

instance in which preemptive modifications may be suggested by the oncologist for the still 
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unapproved treatment plan. Once oncologist-suggested improvements are implemented by the 

expert planner, the plan is re-reviewed and finally approved by the oncologist. Radioactive sources 

are then ordered for the scheduled operation.  

 During the brachytherapy operation itself, there are two additional instances in which 

modifications (voluntary and involuntary) may also be made to the approved treatment plan. The 

most obvious, and unavoidable, modification to the approved treatment plan involves placement 

inaccuracies associated with the radioactive sources. Although a skilled operative oncologist can 

generally place most seeds very close to their suggested coordinate locations, implantation 

inaccuracies do occur due to a combination of imaging uncertainties, prostate deformation during 

needle penetration as well as gland swelling due to trauma. In order to correct minor changes in 

the dose distribution due to implantation inaccuracies, subsequent seeds may be implanted in 

slightly modified positions in relation to their original positions (adaptive modification). After all 

seeds have been implanted, a final check is carried out during which additional seeds that are not 

part of the original plan may be implanted to alleviate cold-spots in the prostate (corrective 

modification). Thus, seed placement modifications are not uncommon, and a single plan may go 

through several revisions during the treatment planning stage and the brachytherapy operation 

itself.  

 In practice, our automated planning system could be utilized to produce a treatment plan 

in place of the expert planner as indicated in Figure 5.5.  This treatment plan would initially be 

reviewed and finalized by the expert planner (with possible refinements). The unapproved 

treatment plan would then be transferred to an oncologist for further review and approval, 
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following the previously described process. Assuming that the initial solution produced by our 

automated system is globally optimized based on a given, fixed set of clinical goals, any changes 

made to this plan (however minor or major) would theoretically pull the solution out of optimality. 

The opportunities that exist for potential modifications by clinicians (four with the inclusion of the 

expert planner review) increase the likelihood that any given optimal solution will be progressively 

reshaped in numerical terms (even though these solutions may be progressively improved in a 

clinical sense). Such a scenario entirely defeats the purpose of numerical optimality, and raises 

questions in regards to whether spending computational time and resources to search for optimal 

solutions in LDR brachytherapy is truly necessary or appropriate.  
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The objective function is the primary tool employed in the quest for optimality. As 

mentioned in Chapter 3, the decision of selecting which variables to include in the objective 

function is essentially a clinical one, and can be coordinated in a manner that accommodates local 

clinical practice. As such, most of the past automated planning approaches have been formulated 

as single or multi-objective problems seeking to achieve single or multiple clinical goals. However, 

it needs to be questioned whether such objective function formulations are truly leading to 

favourable clinical outcomes. We say this because what may be considered numerical 

achievements on the optimization modeling side of the brachytherapy problem may not translate 

to clinical achievements in the eyes of clinicians.  

To be more specific, the usual approach until now has been to treat the brachytherapy 

problem as one that strives for an optimal solution. The constraints of a linear programming 

problem define the “playing field”, or the limits within which a solver should search for a solution, 

and therefore provide general guidance towards the final solution. On the other hand, the objective 

function has a much more precise and direct influence on the form that the final solution will take.  

 For example, one of the main goals set for objective functions in previous brachytherapy 

literature has been to minimize either the number of needles or the number of seeds in a particular 

treatment plan. While numerically this may be an important goal, perhaps to showcase the power 

of using automated planning in brachytherapy as opposed to manual methods, clinically it may 

prove to carry less weight. Many factors are involved in rendering a treatment plan as a high quality 

one and while keeping the number of needles and seeds at reasonable levels may be one of these 

factors, the treatment plan with a lower number of needles and seeds will not necessarily be 
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regarded as a more clinically acceptable one. Usually, a plan with perhaps a higher number of 

seeds and needles but one that achieves better dose coverage throughout the PTV may be 

considered to be clinically superior. This scenario captures one of the main potential pitfalls of 

using automated methods to solve clinical problems.  

This brings us to the objective function that we introduced in equation (3.1).  As explained 

in Chapter 3, for the purposes of utility and simplicity, this objective function was formulated to 

minimize the average dose delivered to urethra and rectum voxels. However, although engineers 

may consider achieving lower radiation levels in the urethra and the rectum as a favorable 

numerical goal, this may not necessarily translate to an ideal goal for medical experts. Clinical 

goals for the organs-at-risk are a bit more complex than simply minimizing the average dose to the 

urethra and the rectum. For example, at the Cross Cancer Institute, the brachytherapy team actually 

desires urethral V100 to be close to 100% so that any peri-urethral disease is adequately treated, 

and urethral V150 to be close to 0% to limit complications associated with radiation treatment. So 

once again, while a solution with a urethral V100 below 100% might lead an optimization solver 

to conclude that it has produced a better numerical solution than what was achieved manually by 

medical experts, such a solution might be viewed as sub-par in the eyes of medical experts based 

on the reasoning given previously. Usually dose-volume constraints are designed to be tight or 

specific enough to guide the solution towards clinically acceptable radiation levels, so much so 

that using an objective function to minimize average dose to the urethra and rectum may prove to 

be too crude a dose-management method in comparison to the use of dose-volume constraints.   
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This final point reveals one of the main reasons for the frequent utilization of a minimizing 

objective function to control dose in previous optimization literature, and also illustrates why such 

an objective function is not a necessity in our MILP model. As mentioned in Chapter 3, many of 

the past studies have adopted what we refer to as “crude dose-management” methods that are not 

designed to explicitly incorporate, within their MILP models, the dose-volume metric criteria used 

by clinicians. Such “crude dose-management” methods involve underdosing or overdosing 

constraints (containing continuous dose-related variables), through which the goal is to minimize 

underdosing of the target organ or overdosing of organs-at-risk in the objective function. In other 

words, an objective function is almost a necessity in order to manage dose within these models. 

Through the use of dose-volume constraints, we have adopted the “fine dose-management” 

method. This method is more likely to produce treatment plans that align with the dose-volume 

metric criteria used by clinicians during post-optimization analysis. Thus, an objective function 

that minimizes under or overdosing of tissues does not present itself to be a necessity in our case.  

Considering the extensive influence of the objective function on the final solution, for an 

item to be included in an objective function, it need to possess overbearing importance over other 

requirements that also need to be satisfied in a MILP model. In other words, whereas variables 

included in linear constraints are permitted to take on a range of predetermined values, the only 

truly ‘permissible’ value for a variable included in a minimizing objective function is the value for 

which the objective function reaches its lowest attainable value. While a number of clinical goals 

were initially considered for the objective function of our model (such as minimizing the number 

of seeds and needles, or minimizing average dose to the urethra and rectum), the brachytherapy 
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team of our local cancer clinic did not identify any of these objectives to be of overbearing 

criticality to the quality of treatment plans.  This means that it is acceptable for many of the clinical 

requirements, in our model, to take on a range of permissible values, as long as the dose-volume 

requirements are satisfied and the final spatial arrangement is clinically sound. When considering 

the nature of the LDR brachytherapy problem, this renders the use of a generic objective function 

unnecessary and in this case justifies the notion that a feasible solution may be equally acceptable 

to an optimal one. Therefore, it makes logical sense to transform the end-goal of our brachytherapy 

problem from one of optimality to one of feasibility. 

One final motivating factor is the lack of investigation into the suitability of feasible 

solutions for LDR brachytherapy in past optimization literature. While there have been a couple 

of instances where feasibility-based models have been mentioned in literature (Meyer et al. 2003), 

these cases were not followed by further inspection or analysis. For this reason, we deemed it 

suitable to investigate feasibility-based models for LDR brachytherapy in depth in this chapter.  

5.2.2 Various Methods to Obtain Feasible Solutions 

There exist numerous methods to seek an initial feasible solution in our MILP model. The 

first technique of interest involves maintaining the objective function presented in equation (3.1) 

and solving our model as was done in preceding chapters (a solution strategy in which a cascade 

of feasible solutions eventually leads to a final optimal solution). However in this case, the first 

integer solution that is found during the branch-and-bound search is extracted as our feasible 

solution (irrespective of its optimality gap). 
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The second technique involves transforming the objective function into a constant. In our 

case, a constant value of “0” is utilized for our objective function. The solution that is output at an 

optimality gap of 0.00% (also happens to be the first integer solution) is extracted as the feasible 

solution of our model.  

 While the previous two techniques are more obvious methods of obtaining feasible 

solutions, the third technique, which is the central point of this chapter, involves restructuring the 

mathematical formulation of our linear programming model. The focus of the problem is shifted 

from searching through a cascade of feasible solutions that eventually result in an optimal solution 

as was done in the original model, to searching through a cascade of infeasible solutions that 

eventually result in a feasible solution in the restructured model. The solution process for the 

original and restructured models are outlined in Figure 5.6. It should be noted that while the final 

solution obtained for the restructured model is still technically the optimal solution of this 

particular formulation of the model, such an optimal solution behaves as a feasible solution for the 

original model.  This is accomplished by first introducing artificial variables to the left-hand side 

of hard-to-solve or difficult constraints (constraints that normally cause an optimization solver to 

stall or take a considerable amount of time to progress throughout its branch-and-bound search). 

These variables essentially act as slack variables and they have opposite signs to the right-hand 

side of the constraint they are added to. Such artificial variables cause hard constraints to become 

relaxed, or violated, so that these constraints become easier to solve.  Secondly, the original 

objective function is replaced with one that contains a summation of the said artificial variables. 

This new objective function is structured to minimize the values of its artificial variables, or the 
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violations of the relaxed constraints, down to zero. Once an integer solution (resulting in an 

objective function value of 0 and an optimality gap of 0.00%) is reached, this solution is extracted 

as the initial feasible solution to our original model. This technique is similar in nature to those 

utilized in goal programming (Lee 1972), as well as “Phase I” of the two-phase simplex method, 

which is commonly executed by simplex-based solvers to find an initial solution and commence 

the simplex solution process (Winston, Venkataramanan, & Goldberg 2003).  

Dose-volume constraints that contain binary variables are considered to be the difficult 

constraints in our brachytherapy models. These constraints are coupled to the fine-resolution grids 

used for anatomical structures (as opposed to the coarse resolution grid used for seed-placement 

and therefore spatial constraints). Thus, dose-volume constraints occur in large quantities and 

hinder progress through the branch-and-bound tree in our original model formulation. In 

accordance with this, each dose-volume constraint is modified as shown in equations (5.2) and 

(5.3), which is specifically for PTV V100. The objective function is also restructured as given in 

equation (5.1).  Our method of seeking feasible solutions through the violation of dose-volume 

constraints stands out as novel, since such an approach has not been previously investigated in 

brachytherapy literature.  
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subject to: 

( , , ) *i j k (i, j,k)ptvDoseV150 DoseP M PTVExceedV100- £  ( , , ), , , | 1i j ki U j V k W T" Î Î Î =    (5.2)   

( , , ) , , )

( , , )
| |
1 1

  (1 )*   

i j k i j k

(i, j,k) i j k
i U j V k W i U j V k W

T T

PTVExceedV100 ArtifV100 ptvVolumeV100 T
Î Î Î Î Î Î

= =

- £ -å å å å å å   (5.3)     
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Optimal solution to formulations (1) and (2) 

	
Optimality-Based Model 
Formulations (1) and (2) 

Integer solution1 

Integer solution2 

Integer solutionn-1 

Integer solutionn 

START 
	

END 
	

 

 

	

 Feasible solution to formulations (1) and (2) 

Infeasible solution to formulations (1) and (2) 

	

	 	

Constraint-Violating Feasibility-Based Model 
Formulations (5) and (6) 

	 	

	 	

	 	

Integer solution1 

Integer solution2 

Integer solutionn-1 

Integer solutionn 

START 
	

END 
	

	

	

Optimal solution to formulations (5) and (6) 

Feasible solution to formulations (5) and (6) 

Figure 5.6 Solution processes of the optimality-based model and the constraint-violating feasibility-based model 
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5.3   Experimental Design 

In order to demonstrate the power of the concepts we have introduced in this chapter, we 

make use of pseudo high-resolution data sets and constraint-violating feasibility-based modelling 

to create treatment plans for four prostates of varying shapes and sizes. Specifically, our test cases 

include a small prostate (20.4 cc), medium prostate (42.5 cc), large prostate (63.1 cc) and an 

irregularly shaped prostate (36.1 cc). The anatomical contour data for these prostates are obtained 

from four patients previously treated at the local cancer clinic. Due to their diverse anatomical 

characteristics, these prostates collectively pose a range of clinical and computational challenges 

(in terms of treatment planning and the numerical solution of our models respectively). Therefore, 

these test cases enable us to examine the capabilities as well as the limitations of our proposed 

modelling approach in producing clinically acceptable plans with solution times suitable for pre-

operative and intra-operative planning.  

For purposes of continuity, the prostate previously investigated in Chapters 3 and 4 has 

been selected as the medium prostate for the study in this chapter. The irregular prostate used in 

this study possesses urethral pathway deviation, asymmetrical tendencies in the PTV shape and 

bilateral midline, as well as significant pubic arch interference. These characteristics render this 

prostate a particularly difficult one to plan manually, thus making it an ideal candidate to test our 

automated planning method. Furthermore, in order to assess how well our automated system 

performs when accommodating one of the more demanding manual planning styles employed in 

several clinics worldwide, we impose entirely symmetric seed distributions upon the irregular 

prostate in our automated plans.  
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Similarly, both the small and large prostates offer unique challenges of their own. As 

mentioned in previous chapters, manually planning for a small prostate, while adhering to the 

clinical spatial requirements of the local cancer centre, can be quite laborious. Given the relatively 

small volume throughout which seed placement is permitted, it becomes a fairly arduous task to 

avoid adjacent seeds, establish a symmetrical seed distribution, all the while ensuring safety 

margins for the urethra and the rectum. While the small prostate poses mainly clinical challenges, 

the large prostate poses a computational challenge to our automated planning system, as the size 

of this prostate has the potential to result in models that contain relatively larger numbers of binary 

variables, which may consequently result in longer solution times.  

A major experimental design factor to consider in our investigation is the selection of 

appropriate benchmarks or reference points for the numerical results of our models. It is important 

to be mindful of the fact that the concepts proposed in this chapter are based on novel MILP 

modelling strategies, rather than algorithmic solution strategies, to achieve improved (faster) 

solution times. Furthermore, as explained in Chapter 3, the simplex and branch-and-bound 

algorithms, in combination, are the sole solution strategies of interest in this thesis. Thus, it makes 

logical sense to maintain the use of this particular deterministic solution strategy for all of our 

models, rather than vary the solution approach by conducting comparisons with alternative 

algorithmic strategies (deterministic, stochastic or heuristic) that have already been investigated in 

LDR brachytherapy optimization literature. It is more fitting (and relevant) to our investigation 

that we vary the modelling approach instead, in order to reveal the solution performance 
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improvements that are possible through our new modelling methods (all within the realm of our 

chosen deterministic solution strategy). 

Since our proposed approach involves changes in the use of input data (a switch from the 

use of high-resolution data to pseudo high-resolution data) and modelling objective (a switch from 

optimality-based modelling to feasibility-based modelling), it is important to select appropriate 

benchmark models that exhibit meaningful points of comparison. Therefore, we solve several 

model formulations for each prostate size, as outlined in Table 5.1. For ease of interpretation, each 

formulation is associated with a unique designation. In each designation, “X” represents prostate 

size or shape and may appropriately be replaced with “S”, “I”, “M” or “L” to represent small, 

irregular, medium or large prostates respectively.  
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 Formulation Designation 

(1) optimality-based model (objective function (3.1)) +  
high-resolution data 

X.O.H 

(2) optimality-based model (objective function (3.1)) + 
 pseudo high-resolution data 

X.O.PH 

(3) feasibility-based model (constant objective function of “0”) +  
high-resolution data 

X.FC.H 

(4) feasibility-based model (constant objective function of “0”) +  
pseudo high-resolution data 

X.FC.PH 

(5) constraint-violating feasibility-based model (objective function (5.1)) +  
high-resolution data 

X.FV.H 

(6) constraint-violating feasibility-based model (objective function (5.1)) +  
pseudo high-resolution data 

X.FV.PH 

 

 
 Model Objective Input Data 

Resolution  

 Designation Optimality 
(objective func. (3.1)) 

Feasibility 
(constant obj. func. “0”) 

Feasibility 
(objective func. (5.1)) High Pseudo

High Count 

Fo
rm

ul
at

io
n 

X.O.H	 +   +  1 

X.O.PH +    + 1 

X.FC.H	  +  +  1 

X.FC.PH  +   + 1 

X.FV.H   +	 + 	 1 

X.FV.PH   +  + 50 

 

 

 

 

 

 

 

Table 5.2 Details of the objective functions and input data used in each model formulation. 

Table 5.1 Model formulations used in our experimental design. 
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Such an experimental design allows us to identify any improvements that our pseudo high-

resolution data sets may project on the solution of formulations (1) and (3). Furthermore, this setup 

also enables us to orient or rank the solution performance of formulation (6) (which uses pseudo 

high-resolution data in combination with constraint-violating feasibility-based modelling) in 

relation to other model formulations. For this purpose, we focus primarily on the length of time 

taken to produce a feasible solution with each formulation. Several techniques exist for the 

extraction of a feasible solution. Formulation (1) allows us to maintain the objective function (3.1) 

used previously, and extract the first integer solution out of many that are sequentially offered (the 

resulting optimality gap may take on any value). Formulation (3) represents a common technique 

where the objective function is transformed into a constant and we extract the first integer solution 

that is offered. Interestingly, this solution generally tends to be the only integer solution produced 

for the model (resulting in an optimality gap of 0.00%). With formulations (2) and (4), we 

investigate how the use of pseudo high-resolution data may improve the solution times achieved 

with formulations (1) and (3) respectively. Moving on, with formulation (5) we examine how our 

constraint-violating feasibility-based model is able to handle the same high-resolution data sets 

used in formulations (1) and (3). Finally, we examine the synergistic effects of mixing pseudo 

high-resolution data with constraint-violating feasibility-based modelling in formulation (6).  

Our experimental setup allows for a clear and direct comparison of results to be made as 

model formulations and input data resolutions are varied. This design also enables us to first 

numerically establish the common intractability issues encountered during the solution of large-

scale LDR brachytherapy models (when solved using the simplex and branch-and-bounds 
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algorithms), and then demonstrate the ways in which our newly proposed modeling approach is 

able to overcome such difficulties.  

Since feasibility-based models containing dose-volume constraint violations and pseudo 

high-resolution input data are the primary focus of this chapter, only one instance of formulations 

(1) to (4) and fifty instances of formulation (5) are solved for each prostate size (the single test 

cases used for formulations (1) to (4) are randomly selected out of the fifty test cases used for 

formulation (5)). For each prostate size, model formulations (AMPL model and data files) remain 

identical throughout the set of fifty feasibility-based test cases, and the only differences that exist 

among these test cases are the uniquely sampled PTV and rectum input data (sampled at 10% and 

30% respectively). While clinical parameters are kept identical among different test cases of the 

same prostate size, these parameters do slightly differ among prostates of different sizes in order 

to personalize the automated plans to individual prostate anatomies. Expert-produced plans used 

in the past treatment of the four associated patients are utilized as guidelines for determining the 

clinical parameters in Table 5.4.  

Each feasibility-based model containing dose-volume constraint violations (formulations 

(5) and (6)) consists of the objective function given in equation (5.1), the complete set of dose 

calculation constraints (equations (3.2)-(3.7)), modified dose-volume constraints (similar to the 

pair of equations (5.2) and (5.3)), the spatial constraints given in equations (3.22) to (3.34) (with 

the exception of equations (3.26) and (3.35)) and finally equation (4.1). Constraints enforcing 

lower limits on the number of seeds and needles, as well as those enforcing maximum seed 

separation in needles are not included in our model formulations since these constraints were not 
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deemed to be as critical in capturing the spatial requirements of treatment plans as the other spatial 

constraints. The slice-based local encapsulation method, explained in Chapter 4, is utilized to 

establish seed-placement margins in all models. Encapsulation margins used for each prostate size 

are given in Table 5.3 (the base, mid-gland and apical slices are highlighted in orange, green and 

blue respectively). Two separate margins are used to account for the urethral curvature for each 

prostate size (0.40 cm for seed-placement incursion, 0.20 cm for needle incursion). Furthermore, 

a 0.40 cm rectal protection margin is implemented in all models. Finally, the pubic arch is 

accounted for in each model as well.  

The optimality-based models (formulations (1) and (3)) are almost identical in form to the 

feasibility-based models (formulations (5) and (6)). The only differences that exist are the use of 

objective function (3.1) instead of (5.1), and the inclusion of the original dose volume constraints 

(3.10)-(3.21) instead of their relaxed counterparts.  Similarly, the structures of the feasibility-based 

models, outlined in formulation (3) and (4), are identical to those of the optimality-based models. 

The sole difference between these models is the use of a constant objective function value of “0” 

in formulations (3) and (4), rather than objective function (3.1). 
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Slice z 
(cm) 

Small (20.4 cc) 
(cm) 

Irregular (36.1 cc) 
(cm) 

Medium (42.5 cc) 
(cm) 

Large (63.1 cc) 
(cm) 

0.0 0.50 0.50 0.50 0.50 

0.5 0.40 0.40 0.40 0.40 

1.0 0.30 0.30 0.30 0.30 

1.5 0.20 0.20 0.30 0.30 

2.0 0.10 0.10 0.20 0.20 

2.5 0.10 0.20 0.10 0.10 

3.0 0.20 0.30 0.10 0.10 

3.5 0.30 0.40 0.20 0.20 

4.0 0.40 0.50 0.30 0.30 

4.5 0.50  0.30 0.30 

5.0   0.40 0.40 

5.5   0.50 0.50 

 

 

 

 

 

 
 Small (20.4 cc) Irregular (36.1 cc) Medium (42.5 cc) Large (63.1 cc) 

S
p

a
ti
a

l 
re

q
u

ir
e

m
e

n
ts

 Upper seed limit 74 93 108 134 

Upper needle limits 16 21 24 28 

Max. needle retraction 1.5 cm 1.5 cm 2.0 cm 1.5 cm 

Min. seeds per needle 2 2 2 2 

Max. consecutive seeds in needle 4 4 4 4 

D
o

s
e

-v
o

lu
m

e
 

re
q

u
ir

e
m

e
n

ts
 

Prescribed PTV Dose 145 Gy 145 Gy 145 Gy 145 Gy 

PTV V100 > 98% > 98% > 98% > 98% 

PTV V150 ≤ 65% ≤ 65% ≤ 65% ≤ 65% 

PTV V200 ≤ 25% ≤ 25% ≤ 25% ≤ 25% 

PTV D90 174-189 Gy 174-189 Gy 174-189 Gy 174-189 Gy 

Urethra D5 < 215 Gy < 215 Gy < 215 Gy < 215 Gy 

Rectum D1cc < 145 Gy < 145 Gy < 145 Gy < 145 Gy 

Table 5.3 Seed-placement margins used for the differently sized and shaped prostates. 

Table 5.4 Clinical parameters set for the differently sized and shaped prostates. 
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AMPL (Fourer et al. 2002) is used for the formulation and Gurobi 6.5.0 (Gurobi 

Optimization 2014) is used for the solution of our models on a 20-core ACPI multiprocessor X64-

based PC with Intel Xeon® CPU E5-2650 running at 2.3 GHz with 128 GB RAM. The specific 

reasons behind our choice of modeling language and solver are discussed in Chapter 3. The 

following parameters are set for each feasibility-based model (formulations (2), (4), (5) and (6)): 

presolve = 10 in AMPL and mipgap = 0.0001, timelim = 86400, presolve = 2, mipfocus = 1, 

heurfrac = 0.95 in Gurobi. The following parameter differs for the optimality-based model 

(formulations (1) and (3)): mipgap = 0.50. We provide an extensive explanation for the use of 

these parameters and settings in Chapter 3. The reason for using mipgap = 0.0001 for feasibility 

based models and mipgap = 0.50 for optimality-based models is due to the fact that Gurobi stops 

its branch-and-bound solution process once either the mipgap or timelim limit is reached. The best 

current integer solution is then extracted as the final result for each model. Our specific parameter 

values allow us to extract a solution that results in a 0.00% optimality gap in feasibility-based 

models, and to extract the first (initial) solution that is obtained in optimality-based models (from 

experience, this initial solution usually results in an optimality gap below 50.00%). Both of these 

extracted solutions are considered to be equivalent in nature (in other words, they are an initial 

feasible solution to the optimality-based model formulation).  The parameter heurfrac determines 

the fraction of the solution time and resources that should be allocated for using the RINS heuristic, 

as mentioned in Chapter 3. The parameter mipfocus determines the branch-and-bound search 

strategy followed by Gurobi; while mipfocus=0 (the default value) strikes a balance between 

finding good feasible solutions and proving optimality, mipfocus=1 focuses more extensively on 
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finding good feasible solutions.  After testing a range of values, including the default value of 

heurfrac = 0.05), the parameter values mipfocus = 1 and heurfrac = 0.95 were selected as they 

consistently resulted in the fastest solution times for all model formulations. 

5.4   Results 

 In this section, detailed solution performance results, obtained during the creation of 

treatment plans for the four prostate test cases, are compared among the six model formulations.  

For demonstration purposes, a single solution is obtained using formulations (1)-(5) for each 

prostate size. On the other hand, heavy emphasis is placed on formulation (6) as this particular 

modelling approach constitutes the main focus of this chapter. The numerical features of the 

branch-and-bound solutions of these formulations are provided in Table 5.5. This table has been 

colour coded to ease the interpretation of results. Each family (pair) of formulations possesses its 

own unique colour code: formulations (1)-(2) are coloured red, formulations (3)-(4) are coloured 

blue and formulations (5)-(6) are coloured green. In each pairing, the darker shade of color 

represents a formulation that utilizes high-resolution data, while its lighter counterpart represents 

a formulation utilizing pseudo high-resolution data. Colour coding enables the results of all high-

resolution models (the darker shades) to be easily singled out and compared to each other at first 

glance. This is also the case for the pseudo high-resolution models (lighter shades). Further details 

of the numerical results obtained for the fifty test cases of formulation (6) are presented in Tables 

5.6-5.15 and visualizations of these results are provided in Figures 5.7-5.13.  

 Numerous trends may be highlighted among the scores of results presented in this section. 

The first and most obvious observation is that high resolution models (formulations (1), (3), (5)) 
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generally result in unacceptably long total solution times.  Out of these three approaches, 

formulation (3) seems to result in relatively shorter solution times, notably reaching values as low 

as 13.58 minutes for the small prostate, while formulation (5) generally leads to the longest 

solution times, with a value of 583.33 minutes (or 9.72 hours) for the large prostate in particular. 

These results are expected, and essentially establish the problematic initial conditions which we 

initially hoped to overcome through the use of pseudo high-resolution data.  It is clear that the use 

of pseudo high-resolution data in formulations (2), (4), (6) has effectively managed to decrease the 

unsuitable total solution times that were initially observed with high-resolution data in 

formulations (1), (3) and (5). In particular, the total solution time of 583.33 minutes in formulation 

(5) has experienced an exceptional decrease to an average of 5.73 minutes in formulation (6). 

Furthermore, this reduction in solution time is consistent across all prostate sizes for presolve time 

as well as branch-and-bound time. This is a noteworthy achievement, considering that presolve 

times exhibited unreliable behavior, occasionally equaling or surpassing branch-and-bound times 

in high-resolution models. With pseudo high-resolution models, presolve times are consistently 

lower than branch-and-bound times.  

 Perhaps the most significant observation one can make throughout our results is that 

formulation (6), which combines pseudo high-resolution data with constraint-violating feasibility-

based modelling, results in the fastest solution times for all prostates tested (achieving average 

values of 0.96, 0.76, 1.55 and 5.73 minutes for small, irregular, medium and large prostates 

respectively). When all prostates sizes are collectively taken into consideration, the average 

solution time amounts to 2.25 minutes. These numbers exhibit a high likelihood of suitability for 
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intra-operative planning. While formulation (4) does come close to the solution times of 

formulation (6) for the irregular and medium prostate (with solution times of 3.42, and 1.05 

minutes respectively), the same cannot be said in regards to the 10.67 and 17.25 minutes obtained 

for the small and large prostates respectively. This scenario in a way reveals the unreliability of 

results achieved through feasibility-based models using a constant objective function. This 

observation is further exemplified through the branch-and-bound solution times obtained for 

optimality-based models (as opposed to total solution times). While branch-and-bound solution 

times of 238.43, 130.55 and 288.30 minutes are obtained for the small, irregular and large 

prostates, a solution time of 1.60 minutes is achieved for the medium-sized prostate. This trend in 

the branch-and-bound solution times is also reflected in the total solution times obtained through 

optimality-based models.  While an obvious criticism of our results may be aimed at the lack of 

extensive testing presented for formulations (1)-(5), such criticism would be misguided as to the 

true intent behind our results. The purpose of these results is not necessarily to provide a 

comprehensive account of all solutions attainable, but to reveal abnormalities (and perhaps 

extremities) in the solution time performance of these model formulations. In order to make our 

case, we point out the maximum solution time values of formulation (6). The corresponding 

solution times of 1.52, 1.62 and 9.20 minutes obtained for small, irregular and large prostates 

respectively are well below those obtained for the next fastest method, formulation (4) (the only 

exception to this trend is observed with a maximum solution time of 3.05 minutes for the medium 

prostate). The potential power of formulation (6) is further demonstrated through the minimum 
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solution times of 17 seconds, 17 seconds, 39 seconds and 127 seconds obtained for small, irregular, 

medium and large prostates respectively.   

 It is important to note that it may be common for expert planners to slightly alter clinical 

parameters used in treatment plans on a per-patient case, in order to ensure positive clinical 

outcomes through increased dose coverage for patients that present with extensive spread of 

disease in the prostate. As such, the solution time response of formulations (2), (4), and (6) to 

variations in several clinical parameters are further investigated and the results are displayed in 

Table 5.16. Formulations (1), (3), and (5) are not tested, as the primary focus of this investigation 

is the solution time performance of formulations involving pseudo high-resolution data sets. Once 

again, a single instance is solved for formulations (2) and (4), while fifty instances are solved for 

formulation (6) (with test cases that identical to those that were previously solved to obtain the 

results in Table 5.5, with the exception of several modified clinical parameters). Table 5.16 

includes two columns outlined in red: the left column highlights solution times obtained using the 

original clinical parameters (with solution time values migrated from Table 5.5), while the right 

column highlights solution times obtained for the modified clinical parameters. The modified 

clinical parameters were as follows: 

• PTV V100 increased from > 98% to > 99% for all prostate sizes 

• PTV D90 increased from 174-189 Gy to 181.5-189 Gy for all prostate sizes 

• Maximum needle retraction decreased from 1.5 cm to 1.0 cm for small and large prostates 

For formulation (2), the modified clinical parameters have led to an increase in solution 

times from 11.17 minutes to 32.87 minutes for the small prostate, from 1.13 hours to 9.14 hours 
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for the irregular prostate, and from 5.90 minutes to 3.81 hours for the medium prostate, while 

leading to a decrease in solution time from 2.82 hours to 1.99 hours for the large prostate. Likewise 

for formulation (4), the modified clinical parameters have resulted in an increase in solution times 

from 10.67 minutes to no-solution after 24 hours for the small prostate, from 3.42 minutes to no-

solution after 24 hours for the irregular prostate, from 1.05 minutes to 37.92 minutes for the 

medium prostate, and from 17.25 minutes to 17.58 minutes for the large prostate. These 

unpredictable solution time results obtained in response to variations in clinical parameters render 

the optimality-based model and the constant objective feasibility-based model inappropriate for 

use in intraoperative planning, and non-ideal for use in pre-operative planning.  Formulation (6), 

on the other hand, has only experienced a slight increase in solution times with the modified 

clinical parameters in comparison to formulations (2) and (4): from 0.96 minutes to 1.92 minutes 

for the small prostate, from 0.76 minutes to 3.07 minutes for the irregular prostate, from 1.55 

minutes to 4.32 minutes for the medium prostate, and from 5.73 minutes to 8.97 minutes for the 

large prostate.  

Considering the extensive testing carried out on formulation (6), these results not only 

reveal the efficiency but also the reliability with which we are able to produce treatment plans 

through our automated approach. These two characteristics render our automated planning system 

highly attractive for use in a high-paced clinical setting.  
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   Variables Solution Values Solution Time 

 Designation Constraints Integer Total Object. 
Function 

Best 
Bound 

Optim. 
Gap 

Presolve 
(mins) 

B&B 
(mins) 

Total 
(mins) 

Total 
(hours) 

Sm
al

l (
20

.4
 c

c)
 

S.O.H 34062 30500 33728 236.902 196.066 17.2% 3.42 238.43 241.85 4.03 

S.O.PH 4440 3602 4106 254.342 201.186 20.9% 0.08 11.08 11.17 0.19 

S.FC.H 34062 30500 33728 0.000 0.000 0.0% 5.08 8.50 13.58 0.23 

S.FC.PH 4440 3602 4106 0.000 0.000 0.0% 0.12 10.55 10.67 0.18 

S.FV.H 34062 30500 33735 0.000 0.000 0.0% 4.90 42.68 47.58 0.79 

S.FV.PH* 4558 3702 4237 0.000 0.000 0.0% 0.13 0.84 0.96 0.02 

Irr
eg

ul
ar

 (3
6.

1 
cc

) 

I.O.H 56469 50633 56040 274.679 204.560 25.5% 13.00 130.55 143.55 2.39 

I.O.PH 7135 5854 6706 250.507 207.154 17.3% 0.22 67.45 67.67 1.13 

I.FC.H 56469 50633 56040 0.000 0.000 0.0% 17.42 16.68 34.10 0.57 

I.FC.PH 7135 5854 6706 0.000 0.000 0.0% 0.28 3.13 3.42 0.06 

I.FV.H 56469 50633 56047 0.000 0.000 0.0% 17.11 327.64 344.75 5.75 

I.FV.PH* 7249 6827 5951 0.000 0.000 0.0% 0.24 0.53 0.76 0.01 

M
ed

iu
m

 (4
2.

5 
cc

) 

M.O.H 63279 56612 62702 263.288 166.094 36.9% 43.68 1.60 45.28 0.75 

M.O.PH 8518 6945 7941 265.647 188.214 29.1% 0.28 5.62 5.90 0.10 

M.FC.H 63279 56612 62702 0.000 0.000 0.0% 34.72 29.10 63.82 1.06 

M.FC.PH 8518 6945 7941 0.000 0.000 0.0% 0.48 0.57 1.05 0.02 

M.FV.H 63279 56612 62709 0.000 0.000 0.0% 32.72 84.53 117.25 1.95 

M.FV.PH* 8431 6871 7861 0.000 0.000 0.0% 0.44 1.11 1.55 0.03 

La
rg

e 
(6

3.
1 

cc
) 

L.O.H 95183 85365 94140 267.005 186.233 30.3% 152.62 288.30 440.92 7.35 

L.O.PH 12776 10259 11733 262.102 187.065 28.6% 0.90 156.58 157.48 2.62 

L.FC.H 95183 85365 94140 0.000 0.000 0.0% 133.68 189.32 323.00 5.38 

L.FC.PH 12776 10259 11733 0.000 0.000 0.0% 1.82 15.43 17.25 0.29 

L.FV.H 95183 85365 94147 0.000 0.000 0.0% 146.83 436.50 583.33 9.72 

L.FV.PH* 12607 10111 11571 0.000 0.000 0.0% 1.54 4.19 5.73 0.10 

*mean values calculated from 50 test cases 

 

 

Table 5.5 Solution performance results obtained for the six model formulations. 
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  Constraints 

Prostate Designation Minimum Mean Maximum Standard Dev. 
Small (20.4 cc) S.FV.PH 4339.00 4557.12 4782.00 104.73 

Irregular (36.1 cc) M.FV.PH 6921.00 7248.96 7568.00 156.86 

Medium (42.5 cc) I.FV.PH 8107.00 8430.64 8864.00 169.31 

Large (63.1 cc) L.FV.PH 12259.00 12606.72 12867.00 140.17 

 

  Integer (Binary) Variables 
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 3515.00 3701.56 3892.00 88.87 

Irregular (36.1 cc) M.FV.PH 5670.00 5950.76 6206.00 131.85 

Medium (42.5 cc) I.FV.PH 6594.00 6871.02 7247.00 144.46 

Large (63.1 cc) L.FV.PH 9815.00 10111.26 10322.00 117.30 

 

  Total Variables 
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 4012.00 4236.66 4455.00 102.65 

Irregular (36.1 cc) M.FV.PH 6499.00 6826.96 7146.00 156.86 

Medium (42.5 cc) I.FV.PH 7537.00 7860.64 8294.00 169.31 

Large (63.1 cc) L.FV.PH 11223.00 11570.72 11831.00 140.17 

 

  Starting Objective Function Value 
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 1112.96 1181.17 1253.96 32.81 

Irregular (36.1 cc) M.FV.PH 1880.00 1979.79 2083.04 49.38 

Medium (42.5 cc) I.FV.PH 2133.80 2227.20 2361.28 52.83 

Large (63.1 cc) L.FV.PH 3205.40 3328.39 3412.20 44.40 

Table 5.6 Number of constraints observed in constraint-violating feasibility-based models. 

Table 5.7 Number of binary variables observed in constraint-violating feasibility-based models. 

Table 5.8 Number of total variables observed in constraint-violating feasibility-based models. 

Table 5.9 Starting objective function values observed in constraint-violating feasibility-based models. 
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  Explored Nodes  
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 0.00 419.54 1376.00 341.84 

Irregular (36.1 cc) M.FV.PH 0.00 56.68 581.00 100.15 

Medium (42.5 cc) I.FV.PH 0.00 146.12 876.00 222.45 

Large (63.1 cc) L.FV.PH 0.00 76.66 317.00 80.04 

 

  Simplex Iterations 
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 10868.00 103952.06 288466.00 64024.46 

Irregular (36.1 cc) M.FV.PH 11587.00 29023.52 194063.00 28396.02 

Medium (42.5 cc) I.FV.PH 15664.00 54650.12 282405.00 55944.09 

Large (63.1 cc) L.FV.PH 31195.00 72865.70 243414.00 45134.85 

 

  Presolve Time (min) 
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 0.10 0.13 0.17 0.02 

Irregular (36.1 cc) M.FV.PH 0.20 0.24 0.28 0.02 

Medium (42.5 cc) I.FV.PH 0.38 0.44 0.53 0.04 

Large (63.1 cc) L.FV.PH 1.23 1.54 1.85 0.14 

 

  Branch & Bound Time (min) 
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 0.17 0.84 1.38 0.29 

Irregular (36.1 cc) M.FV.PH 0.08 0.53 1.37 0.35 

Medium (42.5 cc) I.FV.PH 0.22 1.11 2.58 0.63 

Large (63.1 cc) L.FV.PH 0.77 4.19 7.48 1.43 

Table 5.12 Presolve times observed in constraint-violating feasibility-based models. 

Table 5.13 Branch & bound solution times observed in constraint-violating feasibility-based models. 

Table 5.11 Number of simplex iterations observed in constraint-violating feasibility-based models. 

Table 5.10 Number of explored nodes observed in constraint-violating feasibility-based models. 
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  Total Solution Time (min) 
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 0.28 0.96 1.52 0.30 

Irregular (36.1 cc) M.FV.PH 0.32 0.76 1.62 0.36 

Medium (42.5 cc) I.FV.PH 0.65 1.55 3.05 0.63 

Large (63.1 cc) L.FV.PH 2.12 5.73 9.20 1.48 

All prostates - 0.28 2.25 9.20 2.19 

 

  Total Solution Time (sec) 
Prostate Designation Minimum Mean Maximum Standard Dev. 

Small (20.4 cc) S.FV.PH 17.00 57.80 91.00 17.67 

Irregular (36.1 cc) M.FV.PH 17.00 45.74 97.00 21.57 

Medium (42.5 cc) I.FV.PH 39.00 92.76 183.00 37.92 

Large (63.1 cc) L.FV.PH 127.00 343.74 552.00 88.51 

All prostates - 17.00 135.01 552.00 131.66 

 

 

 

 

 

 

 

 

 

Table 5.14 Total solution times (minutes) observed in constraint-violating feasibility-based models. 

Table 5.15 Total solution times (seconds) observed in constraint-violating feasibility-based models. 
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   Variables Solution Time 
(original parameters) 

Solution Time 
(modified parameters) 

 Designation Constraints Integer Total Total 
(mins) 

Total 
(hours) 

Total 
(mins) 

Total 
(hours) 

Sm
al

l 
(2

0.
4 

cc
) S.O.PH 4440 3602 4106 11.17 0.19 32.87 0.55 

S.FC.PH 4440 3602 4106 10.67 0.18 > 14400.00 > 24.00 

S.FV.PH* 4558 3702 4237 0.96 0.02 1.92 0.03 

Irr
eg

ul
ar

 
(3

6.
1 

cc
) I.O.PH 7135 5854 6706 67.67 1.13 548.42 9.14 

I.FC.PH 7135 5854 6706 3.42 0.06 > 14400.00 > 24.00 

I.FV.PH* 7249 6827 5951 0.76 0.01 3.07 0.05 

M
ed

iu
m

 
(4

2.
5 

cc
) M.O.PH 8518 6945 7941 5.90 0.10 228.40 3.81 

M.FC.PH 8518 6945 7941 1.05 0.02 37.92 0.63 

M.FV.PH* 8431 6871 7861 1.55 0.03 4.32 0.07 

La
rg

e 
(6

3.
1 

cc
) L.O.PH 12776 10259 11733 157.48 2.62 119.20 1.99 

L.FC.PH 12776 10259 11733 17.25 0.29 17.58 0.29 

L.FV.PH* 12607 10111 11571 5.73 0.10 8.97 0.15 

*mean values calculated from 50 test cases 

 

 

 

 

 

 

Original parameters: 
- PTV V100 > 98% 
- PTV D90 = 174-189 Gy 
- Needle retraction: 
  (S) 1.5 cm (I) 1.5 cm 
  (M) 2.0 cm, (L) 1.5 cm 

Modified parameters: 
- PTV V100 > 99% 
- PTV D90 = 181.5-189 Gy 
- Needle retraction: 
  (S) 1.0 cm (I) 1.5 cm 
  (M) 2.0 cm, (L) 1.0 cm 

Table 5.16 Solution performance results of the three model formulations containing pseudo high-resolution data. 
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Figure 5.8 Number of binary variables in relation to prostate volume, as observed in constraint-violating 
feasibility-based models. 
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Figure 5.9 Number of constraints in relation to prostate volume, as observed in constraint-violating feasibility-
based models. 

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

10 15 20 25 30 35 40 45 50 55 60 65 70

N
um

be
r o

f C
on

st
ra

in
ts

Prostate Volume (cc)

Number of Constraints in Comparison to Binary Variables

Small (Patient #13) Irregular (Patient #19) Medium (Pilot) Large (Patient #2)



Chapter 5 – Pseudo High-Resolution Data Sets & Feasibility-Based Modelling  

 

Mustafa Ege Babadagli  144 
 

 

 

 

 

 

 

Figure 5.10 Solution time in relation to prostate volume, as observed in constraint-violating feasibility-based 
models. 
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Figure 5.11 Solution time in relation to number of binary variables, as observed in constraint-violating 
feasibility-based models. 
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Figure 5.12 Solution time in relation to number of binary constraints, as observed in constraint-violating 
feasibility-based models. 
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Figure 5.13 Ordered solution times of all 200 prostate test cases, as observed in constraint-violating feasibility-
based models. 
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5.5   Discussion 

Several key inferences may be made from our results. Firstly, the improvement in solution 

time that is possible through the use of pseudo high-resolution data is apparent when comparing 

the results of formulations (2) and (4) with formulations (1) and (3). Our proposed modelling 

technique effectively advances the solution speeds of these formulations, which represent more 

obvious methods of obtaining feasible solutions.  

More importantly, the combination of using pseudo high-resolution data and feasibility-

based modelling has had the desired effect of decreasing the solution times of our models from 

unsuitable levels (as seen in many instances of formulations (1)-(5)) to those appropriate for intra-

operative planning. With solution times averaging a mere 2.25 minutes for the wide range of 

prostates tested (using the feasibility-based models given in formulation (6)), our automated 

planning approach has demonstrated its ability to comfortably meet the standards of our local 

cancer center and presumably other clinics worldwide.  

Our feasibility-based models based on formulation (6) do exhibit some variance in solution 

time for each size of prostate, as observed in Figures 5.7-5.13. This is expected, considering the 

variance that also exists for the numbers of constraints and binary variables for each prostate size, 

although these numbers generally display tighter clustering in comparison to solution time. While 

not consistent in their form, the spreads (deviation from the mean) of our solution time results do 

resemble normal distributions, especially for the small and large prostates. These results are, on 

occasion, skewed towards faster solution times (in the case of the irregular and medium sized 

prostate). Additionally, our solution times exhibit increasing spread with increasing prostate size. 
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This trend is particularly exemplified during the transition from the medium sized prostate (42.5 

cc) to the large sized prostate (63.1 cc). Also, while model size does seem to play a general role in 

solution speed, with increasingly larger prostates resulting in longer solution times, it is apparent 

that prostate (or model) size is not the sole factor involved in solution speed. Perhaps the most 

direct evidence of this is revealed through the solution times obtained for the small prostate (20.4 

cc) and the larger, irregularly shaped prostate (36.1 cc). Despite containing relatively more 

constraints and binary variables on average, the irregularly shaped prostate solves in a shorter 

period of time (on average) than the small sized prostate. This situation may be attributed to the 

previously mentioned clinical challenges faced during treatment planning for small prostates. 

Although the irregular prostate provides unique clinical challenges of its own, it appears as though 

the limited volume within which planning has to be carried out for the small prostate plays a more 

influencing role in solution time. Taking an alternative view, it is also surprising to see just how 

efficiently our automated planning system is able to produce fully symmetrical seed distributions 

for the irregular prostate, considering that the expert planner who had originally carried out manual 

planning for this particular prostate was forced to make extensive use of asymmetrical seed 

positions in order to achieve an appropriate dose distribution. These observations reveal that while 

certain clinical challenges faced by manual planners may translate to automated planning (in the 

case of the small prostate), other challenges may not (in the case of the irregularly shaped prostate).  

A second major finding is that while it may initially appear to the contrary, it is not 

necessarily a trivial task to obtain an initial (feasible) solution in large-scale models (consisting, in 

our classification, of more than 15,000 binary variables) or even medium-scale models (between 
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1,000 and 15,000 binary variables). As discussed previously, this is apparent for high-resolution 

models given in formulations (1), (3) and (5) using the original set of clinical parameters. However, 

the results obtained using the modified set of clinical parameters indicate that intractability is also 

a major issue for formulations (2) and (4), which utilize pseudo high-resolution data; formulation 

(4) results in solution times of 9.14 hours, 3.81 hours, and 1.99 hours for the irregular, medium, 

and large prostates, while formulation (2) is not able to produce an initial feasible solution even 

after 24 hours for the small and irregular prostates. These results reveal the unreliable nature of 

both the optimality-based model and the constant objective feasibility-based model. On the 

contrary, the constraint-violating feasibility based model (formulation (6)) does not experience 

such issues of intractability when coupled with pseudo high-resolution data sets.  

Our findings here demonstrate that pseudo high-resolution data is an exceptionally 

effective method for decreasing model size, and therefore solution time. It should be mentioned 

that the results produced through our constraint-violating feasibility-based model (formulation (6)) 

are generally deemed to meet the treatment planning standards of our local cancer center (as based 

on expert planner analysis). Although verification of clinical acceptability will be detailed in 

Chapter 6, feasibility-based modelling presently shows promise as a method for creating clinically 

acceptable results. 
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5.6   Conclusion 

 This chapter builds upon the mixed-integer linear programming modeling approach 

introduced in Chapter 3 and further enhanced in Chapter 4 for solving the interstitial LDR prostate 

brachytherapy problem. The low-resolution model utilized in these preceding chapters is first 

transformed into its high-resolution counterpart, which enables us to more accurately delineate 

anatomical structures within discrete data sets and more precisely calculate the radiation 

distribution to these structures. Collectively, these improvements increase the clinical reliability 

of treatment plans produced through our automated planning system. Furthermore, we demonstrate 

the common intractability issues associated with the deterministic solution of our large-scale 

models that arise from the use of high-resolution data sets. We propose two effective solutions to 

overcome such issues: the use of pseudo high-resolution data and the transformation of our 

originally optimality-based model to one of feasibility. The results obtained from comprehensive 

testing on prostates of varying shapes and sizes highlight our ability to produce treatment plans 

satisfying specified dose-volume and clinical constraints with solution times that range from less 

than a minute to roughly five minutes on average. Such a significant achievement renders our 

automated planning system relevant not only in pre-operative planning, but also in intra-operative 

planning. The speed with which we are able to obtain high quality treatment plans is highly 

valuable for the practical integration of our automated planning approach within real-world clinics. 

The concepts proposed in this chapter for low dose rate prostate brachytherapy may be 

applicable for achieving fast solutions in other variants of prostate brachytherapy (high dose rate, 

medium dose rate and pulsed dose rate), as well as in the brachytherapy treatment of breast, 
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cervical, lung, and head and neck cancers. Furthermore, our proposed approach may prove 

beneficial for increasing solution speed not only in the realm of deterministic solution algorithms, 

but also for alternative stochastic or heuristic methods as well. Lastly, the modelling techniques 

described may be utilized in solving other grid-based location problems, specifically in the 

resource, oil and gas exploration, telecommunications, and emergency service dispatch fields.   
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Chapter 64 
Clinical Assessment of Automated Plans 

 

 

The main focus of this chapter is to compare the quality and clinical acceptability of I-125 

prostate treatment plans created manually by experienced planners with plans created through our 

automated planning approach. The motivating factor behind this pilot study is to gain an initial 

understanding of the general clinical performance of our automated planning system and verify 

that it produces clinically approved results. More specifically, we are interested in deciphering the 

clinical requirements our automated planning approach excels in fulfilling, as well as those that 

our approach may fall short of satisfying. These observations will subsequently enable us to define 

new pathways of improvement in the design of our automated planning system. Furthermore, it is 

not our intention to surpass the clinical quality of manual plans, although this study does perhaps 

present an opportunity for it.  Our main goal is to determine if our automated plans fare roughly 

equally to manual plans in particular areas or as a whole.  

4A version of this chapter will be submitted for publication: Babadagli, M.E.; Sloboda, R.; 
Usmani, N.; Amanie, J.; Murtha, A.; Yee, D.; Jamaluddin, M.; Doucette, J. “Clinical 
Assessment of Center-Specific Automated Treatment Plans for Interstitial Low Dose Rate 
Prostate Brachytherapy”. Elsevier, Brachytherapy (to be submitted June 1, 2016). 
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In doing so, we also have a chance to assess the clinical acceptability and the real-world 

utility of the numerous concepts and techniques discussed in previous chapters. The concepts of 

primary interest are spatial constraints, pseudo high-resolution data sets, and feasibility-based 

modelling. The final purpose of this investigation is to reveal potential areas of disconnect or 

misalignment between the engineering and the clinical worlds. More specifically, despite our 

extensive attempt to approach treatment planning through the minds of expert planners, our hope 

is that this study reveals to us the more subtle considerations that clinicians utilize in assessing 

treatment plan quality, which may not have been initially obvious to us as engineers.  This final 

point may potentially facilitate significant leaps in LDR brachytherapy optimization by enabling 

us to uncover previously unrecognized gaps in present-day automated planning and encouraging 

us to fill said gaps to conceive a system that is highly applicable in real-world clinics.  

6.1 Study Design 

Treatment plans (involving I-125 sources) for twenty patients previously implanted at the 

Cross Cancer Institute were selected to span a wide range of prostate sizes, shapes and geometries. 

In terms of size, these prostates ranged from 20.4 cc to 85.4 cc, with an average volume of 42.2 

cc.  In regards to shape, both bilaterally symmetrical (regularly shaped) and asymmetrical 

(irregularly shaped) prostates were included. The irregularly shaped prostates possessed such 

features as urethral pathway deviation, asymmetrical tendencies in gland shape and bilateral 

midline, as well as pubic arch interference. The model formulation (6) detailed in Chapter 5 was 

utilized to replicate the planning approach practiced at the Cross Cancer Institute (both in terms of 

spatial and dose-volume considerations) and was utilized to independently generate twenty 
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corresponding plans from the same clinical data as the manual plans.  The resulting forty plans 

were anonymized and randomized for individual evaluation by five radiation oncologists.   A 

scoresheet, provided in Table 6.1, was created to facilitate clinical evaluation of these plans.   

For logistical reasons the study was conducted in two parts, each part involving the 

evaluation of twenty anonymized and randomized plans.  In both parts of the study and for each 

plan, a VariSeed report in the standard Cross Cancer Institute clinical format was provided at 

regular intervals to the participating radiation oncologists, along with a request for evaluation.  In 

each part of the study, the sequence of plans provided to each of the oncologists was different, and 

all twenty plans in that part of the study were continuously available for detailed review on the 

VariSeed Treatment Planning System.  The oncologists were requested to: 

• evaluate each plan in a timely manner, as for pending clinical implants; 

• make use of the “Comments” section of the scoresheet to identify specific concerns; 

• address any questions or concerns about a plan to the expert planner managing the study; 

• not accumulate a large number of plans for batch evaluation at one sitting; 

• not discuss evaluations of plans with colleagues participating in the study; 

• submit completed scoresheets to the expert planner managing the study. 

The scoresheet was composed of seven specific criteria for clinically evaluating the quality 

of treatment plans that were identified prior to the study by the participating radiation oncologists. 

These criteria are summarized as follows: 

• Has the plan resulted in adequate dose coverage of the PTV? 

• Has the plan avoided overdosing of critical structures? 
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• Has the plan avoided pubic arch interference? 

• Have strands been anchored within the prostate? 

• Have seeds been placed in the bladder? 

• Has the plan made efficient use of needles? 

• Has an acceptable distribution of strands and seeds been achieved? 

The scoring or rating system for each criterion was based on a five-point scale. An 

additional category was included to allow radiation oncologists to assess and provide their 

perception of the overall quality of each plan.  Finally, a response to a concluding question 

regarding the clinical acceptability of each treatment plan was requested of the evaluator. This 

question not only functioned as the main metric of concern in this study, but also allowed us to 

effectively avoid ambiguities associated with the rating system used for the previously mentioned 

eight criteria; such ambiguities had to do with the fact that the existence of a single critical flaw 

might be sufficient to render a treatment plan clinically unacceptable, regardless of the ratings 

received in the eight categories. The question regarding the clinical acceptability of each treatment 

plan confirmed the presence or absence of such flaws and presented the final decision of each 

radiation oncologist in clear terms.  

Ethics approval for this study was obtained from the Health Research Ethics Board at the 

University of Alberta (Study ID: Pro00056288). 
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Plan #:  ________          Radiation Oncologist:  __________________ 
 
                                      Date:  __________________ 
 

 
I-125 Plan Score Sheet 

 
Criterion to assess plan 

 
Unacceptable 

(1) 
Sub-optimal 

(2) 
Indeterminate 

(3) 
Acceptable 

(4) 
Excellent 

(5) 
Adequate dose coverage of 
PTV 
 

     

Critical structures not 
overdosed 
 

     

No pubic arch interference 
 

     

Strands placed within the 
prostate 
 

     

No seeds placed in the 
bladder 
 

     

Efficient use of needles 
 

     

Acceptable distribution of 
strands/seeds 
 

     

Overall Plan Quality 
 

     

 
Plan is clinically acceptable?        □ Yes         □ No 
 
 
 
 
 
 
 
 
 
 
 

Comments: 

Table 6.1 A representation of the score sheet given to radiation oncologists. 
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6.2 Results 

In this section we compare the numerical features of the manual and automated plans, as 

well as their clinical analysis results for the twenty patient test cases. The associated dose-volume 

metric results are highlighted in Figures 6.2-6.7. For all plans, the final dose distribution was 

calculated in the VariSeed LDR Treatment Planning System using the TG-43 2D (line source) 

formalism (Rivard et al. 2004). The red lines, in Figures 6.2-6.7, represent the clinical dose-limits 

set by the Cross Cancer Institute and the red shaded area of each graph represents range of values 

that are acceptable for each dose-volume requirement.  The spatial (or geometric) characteristics 

of all plans are displayed in Figures 6.8-6.11. Clinical analysis results from the five radiation 

oncologists are provided in Tables 6.2-6.5 for the manual and automated plans.  

 It is evident that both the manual and automated plans largely satisfied the dose-volume 

metric requirements of the local cancer clinic, as observed in Figures 6.2-6.7. In almost all cases, 

the dosimetric values of both types of plans remained within the set dose-limits (the red shaded 

region of each graph), with a few exceptions. These exceptions include the manual plan PTV V150 

value for Patient 9, the manual plan PTV V200 values for Patients 2, 5, 8, 9, 10, 11, 13, 14, 15, 18 

and 20, the automated plan PTV V200 value for Patient 19 and the automated plan Urethra D5 

values for Patients 7 and 17. We believe the two Urethra D5 violations in automated plans are due 

to differences in dose-calculation formalisms between our models (1-D point-source) and Variseed 

Treatment Planning System (2-D line-source), the piece of software used to calculate the dose-

volume results post-optimization. We base this conclusion on the fact that dose-volume constraints 

are entirely satisfied within our models. While these few instances technically constitute as 
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violations of dose-limits set by the local cancer clinic, they are minor in nature and therefore 

generally still are acceptable. It is interesting to note that such dose-limit violations are more 

frequent among manual plans rather than automated plans, which highlights the reliability of 

dosimetric results obtained through the incorporation of dose-volume constraints in our MILP 

model.  

 Having said that, there exist additional trends in our dosimetric results. For the large part, 

the PTV V150 values are lower in automated plans than in manual plans. This trend is also apparent 

for PTV V200 values between the automated and manual plans. These results tend to suggest that 

our automated planning approach generally produces treatment plans with “cooler” radiation 

distribution throughout the PTV. On the other hand, Urethra D5 values seem to be slightly higher 

in automated plans as opposed to their manual counterparts. A similar, but less pronounced theme 

is also present for Rectum D1cc values. The clinical implications of these trends are uncertain, 

considering that despite leading to slightly “hotter” radiation distribution around organs-at-risk, 

the automated plans still satisfy the dose-limits set for Urethra D5 and Rectum D1cc.  

 The lower urethral and rectal radiation doses achieved by the manual plans may be 

attributed to the extensive use of seed positions falling outside of the regular positions (holes) of 

the physical template grid. This situation is captured in Figure 6.1, and is frequently observed 

around the urethral pathway and on occasion near the rectum in manual plans. The outcome is that 

entire strands, and in effect their associated seeds, are pulled slightly away from their theoretical 

positions (which would normally be located closer to the organs-at-risk). This scenario occurs in 

9 out of the 20 manual plans, with 22 seeds being placed out of position for Patient 9 in particular. 
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While radiation oncologists at the local clinic are comfortable placing strands in positions that do 

not perfectly conform to the physical template grid, such irregular coordinate points cannot be 

incorporated into the grid system used in our model. Therefore, none of the automated plans in 

this study contain seeds that were placed out of position with respect to the coordinate system of 

the physical template grid. 

While less of a concern clinically, the manual plans do also possess an abundance of 

adjacent as well as asymmetrically positioned seeds. Specifically, 15 out of the 20 manual plans 

contain adjacent seeds, with Patient 8 plan notably possessing 36 adjacent seeds out of 113 total 

seeds. Furthermore, 11 out of the 20 manual plans exhibit asymmetrical tendencies within their 

seed distribution, with the plans for Patients 19 and 20 possessing 35 and 41 asymmetrically 

positioned seeds in particular (out of 89 and 99 total seeds respectively). On the other hand, only 

a single instance of adjacent seeds is encountered among the automated plans while no instances 

Figure 6.1 Placement of seeds in off-grid positions as indicated by the red arrows in a sample manual plan. 
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of asymmetrically positioned seeds are reported. These results serve to highlight the fact that the 

use of adjacent and asymmetrically positioned seeds are acceptable at the local clinic in order to 

accommodate geometrical variation in patient prostates. Furthermore, these results also accentuate 

the power of our automated planning approach in formulating entirely symmetrical seed 

distributions (with minimal use of adjacent seed positions) for prostates in which expert planners 

are forced to make extensive use of asymmetrical and adjacent seed positions to achieve 

appropriate dose coverage. This feature of our automated planning system may be of interest to 

brachytherapy teams that desire highly symmetrical seed distributions in their treatment plans.  

 In terms of pubic arch interference, both the manual and automated plans fared relatively 

equally. While potential pubic arch interference was observed in 6 out of the 20 automated plans, 

this number was 5 out of 20 for the manual plans. It should be noted that any form of contact 

between a planned strand location and the pubic arch contoured by the implanting radiation 

oncologist was deemed sufficient enough to result in potential pubic arch interference in our 

assessment. 

 Moving onto the clinical analysis of the manual and automated plans (as conducted by the 

five radiation oncologists involved in this study), we observe a mixture of results. For the most 

part, the manual plans consistently achieved results that were considered “Acceptable (4)” or 

“Excellent (5)” across the various categories that were used for assessing treatment plan quality, 

as seen in Tables 6.2 and 6.3. In particular, manual plans made efficient use of needles, 

comfortably achieved adequate dose coverage of the PTV, avoided overdosing of critical structures 

and steered clear of pubic arch interference (with average ratings of 4.26, 4.23, 4.22, and 4.18 out 
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of 5.00 respectively, across the twenty patient prostates examined). Manual plans also performed 

exceptionally well in achieving an acceptable distribution of strands and seeds, as well as avoiding 

placement of seeds in the bladder (with average ratings of 4.15 and 4.07 out of 5.00, respectively). 

Not strictly limiting strand placement to within the prostate was the only indicated source of 

clinician dissatisfaction with the manual plans (average rating of 3.88 out of 5.00). On average, 

the manual plans were considered to be clinically acceptable in 90% of the analyses conducted by 

the five radiation oncologists, with an average treatment plan quality rating of 3.93 out of 5.00.  

 The assessment involving automated plans produced slightly varied outcomes, as observed 

in Tables 6.4 and 6.5. Similar to manual plans, automated plans excelled in avoiding pubic arch 

interference and achieving adequate dose coverage of the PTV (with average ratings of 4.05 and 

4.00 out of 5.00 respectively). In regards to economical use of needles, critical structure overdosing 

and acceptable distribution of strands and needles, automated plans were evaluated to slightly 

lower average ratings (3.96, 3.90 and 3.69 out of 5.00 respectively) in comparison to their manual 

counterparts.  Finally, the two key problematic areas for automated plans stood out as seed 

placement in the bladder and strand placement outside of the PTV (resulting in average ratings of 

3.36 and 3.19 out of 5.00 respectively). The automated plans were considered to be clinically 

acceptable in 51% of the analyses carried out by the oncologists, with an average treatment plan 

quality rating of 3.09 out of 5.00. 
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Figure 6.8 Trends in asymmetrically positioned seeds in manual and automated plans. 
	

Figure 6.9 Trends in seeds placed in off-grid positions in manual and automated plans. 
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Figure 6.10 Trends in adjacent placed seeds in manual and automated plans. 
	

Figure 6.11 Trends in strands with potential pubic arch interference in manual and automated plans. 
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 Patient No. 
Criterion to 

assess plans 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Adequate dose 
coverage of PTV 4.20 4.20 4.20 3.60 4.40 4.60 4.60 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.00 4.20 4.20 4.60 4.20 

Critical structures 
not overdosed 4.20 3.80 4.20 4.20 4.60 4.60 4.40 3.80 4.40 3.80 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.40 4.40 4.20 

No pubic arch 
interference 4.20 4.40 3.40 4.40 4.60 4.60 4.60 4.20 3.60 4.20 4.60 4.40 4.40 4.20 4.40 3.00 3.80 4.20 4.00 4.40 

Strands placed 
within the prostate 4.00 3.40 3.60 3.80 4.40 4.80 4.20 4.00 3.80 3.80 4.00 3.60 4.00 4.00 3.80 3.40 4.00 3.60 3.60 3.80 

No seeds placed 
in the bladder 3.60 3.40 4.00 4.40 4.40 4.60 4.40 4.20 4.00 3.80 4.40 4.20 4.00 4.20 3.40 3.80 4.40 4.00 4.00 4.20 

Efficient use of 
needles 4.00 4.20 4.25 4.20 4.40 4.60 4.40 4.20 4.20 4.20 4.20 4.40 4.20 4.20 4.40 4.20 4.20 4.20 4.40 4.20 

Acceptable 
distribution of 
strands/seeds 

4.00 4.20 3.80 4.20 4.60 4.60 4.40 4.20 4.20 4.20 3.80 4.20 4.00 4.20 4.20 3.20 4.20 4.20 4.40 4.20 

Maximum 4.20 4.40 4.25 4.40 4.60 4.80 4.60 4.20 4.40 4.20 4.60 4.40 4.40 4.20 4.40 4.20 4.40 4.40 4.60 4.40 

Mean 4.03 3.94 3.92 4.11 4.49 4.63 4.43 4.11 4.06 4.03 4.20 4.17 4.14 4.17 4.09 3.69 4.14 4.11 4.20 4.17 

Minimum 3.60 3.40 3.40 3.60 4.40 4.60 4.20 3.80 3.60 3.80 3.80 3.60 4.00 4.00 3.40 3.00 3.80 3.60 3.60 3.80 

Standard 
Deviation  0.20 0.38 0.31 0.28 0.10 0.07 0.13 0.15 0.26 0.20 0.24 0.25 0.14 0.07 0.34 0.45 0.18 0.24 0.32 0.17 

                     

Overall plan 
quality 3.60 3.50 3.20 4.20 4.40 4.25 4.25 4.20 3.80 3.80 4.00 4.20 4.00 4.25 4.20 2.50 4.20 3.75 4.00 4.20 

Plan is clinically 
acceptable? (%) 80 80 60 80 100 100 100 100 80 100 80 100 100 100 100 60 100 100 80 100 

 
 
 

Rating Colour Scale: 
 

 (5) Excellent 

 (4) Acceptable 

 (3) Indeterminate 

 (2) Sub-optimal 

 (1) Unacceptable 

 
 
 
 

Table 6.2 Details of the clinical quality analyses conducted on manual plans by five radiation oncologists. 
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Criterion to assess plans 
 

Minimum 
 

Mean 
 

Maximum Standard 
Deviation 

Percentage (%) of plans* 
receiving a rating of 
“Unacceptable (1)" 

Adequate dose coverage 
of PTV 3.60 4.23 4.60 0.21 0 

Critical structures not 
overdosed 3.80 4.22 4.60 0.22 0 

No pubic arch 
interference 3.00 4.18 4.60 0.42 1 

Strands placed within 
the prostate 3.40 3.88 4.80 0.32 0 

No seeds placed in the 
bladder 3.40 4.07 4.60 0.33 0 

Efficient use of needles 4.00 4.26 4.60 0.13 0 

Acceptable distribution 
of strands/seeds 3.20 4.15 4.60 0.30 0 

Overall plan quality 2.50 3.93 4.40 0.44 0 

                *based on a total of 100 plans analyzed by oncologists 
 

 Percentage (%) of plans 
receiving a “Yes” 

   

Plan is clinically 
acceptable? 90    

 
 

Rating Colour Scale: 
 

 (5) Excellent 

 (4) Acceptable 

 (3) Indeterminate 

 (2) Sub-optimal 

 (1) Unacceptable 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.3 Summary of the clinical analyses conducted on manual plans by five radiation oncologists. 
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 Patient No. 
Criterion to 

assess plans 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Adequate dose 
coverage of PTV 4.00 4.40 3.80 4.20 4.00 4.20 4.20 4.00 3.40 3.80 3.80 4.00 4.00 4.20 3.80 4.40 4.20 4.40 4.20 3.00 

Critical structures 
not overdosed 3.80 3.80 3.40 4.20 3.80 4.20 4.20 4.20 4.00 3.60 3.60 4.20 4.20 4.20 3.80 3.20 3.60 4.60 3.60 3.80 

No pubic arch 
interference 3.40 4.40 2.40 4.40 4.40 4.40 4.40 4.40 3.20 3.60 3.80 4.40 4.60 4.20 4.20 3.20 4.40 4.60 4.20 4.40 

Strands placed 
within the 

prostate 
3.00 1.80 2.80 3.20 3.40 3.80 3.80 2.60 2.80 3.60 2.80 3.60 3.00 3.00 3.20 3.80 3.20 3.60 3.60 3.20 

No seeds placed 
in the bladder 3.40 2.80 2.80 2.60 3.80 3.60 3.80 2.20 2.60 3.40 3.20 4.00 4.20 3.80 2.80 3.20 4.20 4.20 3.60 3.00 

Efficient use of 
needles 3.80 3.20 3.60 4.20 4.20 4.00 4.20 3.60 3.60 4.20 4.20 4.20 4.20 3.80 4.20 4.20 4.20 4.40 4.20 3.00 

Acceptable 
distribution of 
strands/seeds 

3.50 3.00 3.20 3.80 3.80 4.00 4.00 3.00 3.00 4.00 3.40 4.20 4.40 3.80 4.00 3.80 4.20 4.40 3.60 2.60 

Maximum 4.00 4.40 3.80 4.40 4.40 4.40 4.40 4.40 4.00 4.20 4.20 4.40 4.60 4.20 4.20 4.40 4.40 4.60 4.20 4.40 

Mean 3.56 3.34 3.14 3.80 3.91 4.03 4.09 3.43 3.23 3.74 3.54 4.09 4.09 3.86 3.71 3.69 4.00 4.31 3.86 3.29 

Minimum 3.00 1.80 2.40 2.60 3.40 3.60 3.80 2.20 2.60 3.40 2.80 3.60 3.00 3.00 2.80 3.20 3.20 3.60 3.60 2.60 

Standard 
Deviation  0.31 0.87 0.46 0.61 0.30 0.25 0.21 0.78 0.45 0.26 0.42 0.24 0.48 0.40 0.49 0.46 0.40 0.32 0.30 0.56 

                     

Overall plan 
quality 3.60 3.50 3.20 4.20 4.40 4.25 4.25 4.20 3.80 3.80 4.00 4.20 4.00 4.25 4.20 2.50 4.20 3.75 4.00 4.20 

Plan is clinically 
acceptable? (%) 40 0 0 60 40 100 100 40 20 60 60 80 60 60 0 20 80 100 80 20 

 
 

Rating Colour Scale: 
 

 (5) Excellent 

 (4) Acceptable 

 (3) Indeterminate 

 (2) Sub-optimal 

 (1) Unacceptable 

 
 
 
 
 

Table 6.4 Details of the clinical quality analyses conducted on automated plans by five radiation oncologists. 
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Criterion to assess plans 
 

Minimum 
 

Mean 
 

Maximum Standard 
Deviation 

Percentage (%) of plans* 
receiving a rating of 
“Unacceptable (1)" 

Adequate dose coverage 
of PTV 3.00 4.00 4.40 0.33 0 

Critical structures not 
overdosed 3.20 3.90 4.60 0.34 4 

No pubic arch 
interference 2.40 4.05 4.60 0.58 1 

Strands placed within 
the prostate 1.80 3.19 3.80 0.48 4 

No seeds placed in the 
bladder 2.20 3.36 4.20 0.59 4 

Efficient use of needles 3.00 3.96 4.40 0.37 0 

Acceptable distribution 
of strands/seeds 2.60 3.69 4.40 0.50 0 

Overall plan quality 2.00 3.09 4.25 0.67 8 

                *based on a total of 100 plans analyzed by oncologists 
 

 Percentage (%) of plans 
receiving a “Yes” 

   

Plan is clinically 
acceptable? 51    

 
 
 
 

Rating Colour Scale: 
 

 (5) Excellent 

 (4) Acceptable 

 (3) Indeterminate 

 (2) Sub-optimal 

 (1) Unacceptable 

 
 
 
 
 
 
 
 
 
 
 

Table 6.5 Summary of the clinical analyses conducted on automated plans by five radiation oncologists. 
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6.3 Discussion 

The results that we have presented in the previous section may be interpreted in numerous 

ways. The main focus of this section will be automated plans, as the manual plans have produced 

excellent results overall and present little room for further improvement. It is important to keep in 

mind that these manual plans were previously used to treat patients at the local clinic, meaning 

they were already approved by the implanting clinicians. This fact renders the results of the manual 

plans less surprising. Moving on, there appear to be three key areas to concentrate on with our 

automated plans. Judging by the ratings received, these three areas of concern are placement of 

seed strands outside of the prostate, placement of seeds in the bladder and projection of higher-

than-desired doses to the urethra and on occasionally the rectum.  

Firstly, it may be concluded that our spatial constraints have, in large part, had the desired 

effect in producing treatment plans with a distinct style that captures what is current practice at the 

Cross Cancer Institute. Having said that, there are two key opportunities of improvement for our 

models. The first opportunity concerns the relatively higher number of strands placed outside of 

the prostate in automated plans. Such an outcome may have been due to our seed-placement limits 

(and in the correlated strand placement limits) utilized for most of the prostates. Seed placement 

was generally confined to the PTV (or in many cases to extra margins between 0.1-0.4 cm 

extending from the PTV, created using slice-based local encapsulation as discussed in Chapter 4), 

which reflects our initial understanding that placement of strands slightly exterior to the PTV was 

clinically acceptable. While this appeared to be the case for some prostates, it obviously was not 

for others as evident from the clinical analysis results obtained. However, the strand placement 
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issue can be easily addressed by requiring all needles to intersect the prostate within our models. 

This planning technique may be executed directly through a slight modification of the input data.   

The second, and perhaps more critical issue concerning the spatial arrangement of seeds in 

the automated plans involves the bladder. Several of our automated plans were deemed clinically 

unacceptable primarily due to the presence of seeds within the bladder (as indicated by multiple 

ratings of 1.00 for this criterion in some of the individual clinician scoresheets). Figure 6.12 

demonstrates a situation in which seed-placement occurs unacceptably close to the bladder in an 

automated plan, as indicated by the orange arrows.    

 

 

 

 

 

Figure 6.12 Placement of seeds in the 
bladder (indicated by the arrows). The 

prostate is represented by the red contour. 
	

Figure 6.13 Removal of seed-placement positions immediately anterior to the 
base slice PTV in image (A) creates input data, seen in image (B), that can better 

guide our MILP model to avoid the bladder. 
	

(A) 
 

(B) 
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Such an outcome was not expected, as we initially believed our attempt to limit seed-

placement to a tight margin around the PTV in the base slice (through the use of our local-

encapsulation method) would be sufficient to protect the bladder. Evidently, this was not always 

the case. However, before painting this as a deficiency of our model, we must remember that a 

linear programming model is only as intelligent as the direction or guidance provided to it. As 

mentioned previously in this thesis, this guidance may be passed on in the form of linear constraints 

or input data. Considering that the bladder is neither contoured during TRUS imaging by radiation 

oncologists, nor delineated afterwards by expert planners, our models could not benefit from 

anatomical data associated with the bladder. Without a clinical source to identify the location of 

the bladder at our disposal, it is not surprising that our automated planning system was imprecisely 

guided at times, leading to seeds in the bladder across several plans. As mentioned in Chapter 4, 

although not explicitly contoured during TRUS imaging, expert planners are still acutely aware of 

the presence of the bladder in the base slice ultrasound image. Since the possibility of acquiring 

clinical contour data for the bladder is uncertain, an alternative approach may be followed to 

safeguard the bladder.  Considering that the bladder snugly rests superiorly and anteriorly to the 

prostate, the simple removal of seed-placement positions immediately anterior to the prostate 

contour in the base slice (as demonstrated in Figure 6.13) and the neighboring inferior slice would 

be effective in avoiding the bladder. Once again, this planning technique may be achieved through 

a simple modification of our input data.  

Having looked at the general performance of our spatial constraints and data processing 

techniques, we now examine how well our use of pseudo high-resolution data fared.  Immediately, 
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we see that our unique technique was highly effective in allowing us to discretely represent 

anatomical structures with sufficient accuracy. Considering the clinical analysis conducted on the 

twenty automated plans, the key metric to focus on would be whether these plans achieved 

adequate dose coverage of the PTV. It is clear that the average rating for PTV dose coverage is 

high (4.00 out of 5.00), indicating that our approach had the desired effect. Pseudo high-resolution 

data enabled us to discretely model anatomical structures with enough detail (originally lacking in 

low-resolution data) without resulting in larger scale models that exhibit intractability. As observed 

in previous chapters, the use of low-resolution data occasionally resulted in relatively less reliable 

dose distribution results, both due to its characteristic coarse dose calculation and rough anatomical 

delineation. Considering the excellent dose coverage achieved through the use of pseudo high-

resolution data, it seems as though such issues of reliability have been resolved. This finding 

suggests that high-resolution data sets may not be an absolute necessity to achieve clinically 

acceptable results.   

Moving on to the performance of our feasibility-based modelling (as opposed to 

conventional optimality-based approaches for the LDR brachytherapy problem), we can deduce 

that our approach of searching for feasible solutions is in fact clinically acceptable. This is evident 

from the numerous automated plans that were deemed acceptable following clinical analysis. 

Furthermore, it is doubtful if we can shift the blame for the clinical unacceptability of other plans 

onto the use of feasibility-based modelling. As previously mentioned, several issues arising out of 

our spatial constraints were key culprits in many of the rejected plans. Strand-placement outside 

of the prostate and seed-placement in the bladder are input-data related issues and possess no 
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connection to our decision to not seek a generic clinical goal in the objective function of our model. 

Perhaps one understandable criticism of our feasibility-based modelling approach may point out 

the urethral and rectal dose levels, which were relatively higher in the automated plans than the 

manual plans. On occasion, some of the radiation oncologists indicated that the dose to the critical 

structures (in the automated plans of specific patients) was relatively higher than the dose levels 

the clinicians were individually comfortable with. As a result, the associated automated plans were 

deemed to be clinically unacceptable in the eyes of those oncologists. However, one has to be 

mindful of the fact that the urethral and rectal dosages, in the majority of our automated treatment 

plans, were well within the dose-volume requirements of the local cancer centre. As such, 

overdosing of organs-at-risk was given an average clinical rating of 3.90 for our automated plans 

(in comparison to 4.22 for manual plans). The clinical concern surrounding the dose delivered to 

organs-at-risk in the previously mentioned select few automated plans may be that these values 

are higher than what is normally expected and observed in manual plans by radiation oncologists. 

Perhaps minimizing average dose to the urethra and rectum, as was done in previous chapters, may 

have resulted in slightly more clinically satisfactory results. However, it is important to re-iterate 

the frequent use of seed-placement positions off of the physical template grid, a phenomenon 

encountered frequently in the manual plans. This technique may have extensively helped lower 

dose to the organs-at-risk by pulling sources away from their originally intended positions. 

Considering that our automated plans could not make use of such a work-around, it is uncertain if 

a fair comparison and critique may be made of the dose delivered to the organs-at-risk between 

the two planning methods. As a possible remedy, enlarging the protective margins around the 
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urethra and the rectum, or lowering the dose limits (D5 and D1cc respectively) to these organs 

may help to improve this aspect of our automated plans.  

6.4 Conclusion 

The clinical quality and acceptability of I-125 treatment plans, created manually by experts 

as well as through our automated planning system, were compared in this study. Our results reveal 

that, unsurprisingly, manual plans used to treat patients fared exceptionally well during clinical 

analysis. Our results also reveal that it is clinically suitable to create treatment plans through a 

modelling approach that does not involve optimizing a single (or multiple) overbearing clinical 

goal(s). The nine clinically accepted automated plans in this study serve as validation of this 

finding. Furthermore, while demonstrating that feasibility based modelling leads to clinically 

acceptable solutions, we also observe that plans that fail to do so do not necessarily falter as a 

result of the search for feasibility in our models. As such, while the use of spatial constraints and 

data processing techniques have been largely successful in capturing expert planning style at the 

local clinic, there exist a few areas of further improvement. On the other hand, the use of pseudo 

high-resolution data has led to clinically acceptable dose coverage of the PTV in automated plans. 

This is an exciting finding, as such data sets allow us to produce high quality brachytherapy 

treatment plans without the need of solving much larger scale models. 

A final note to point out is that the automated treatment plans examined in this study did 

not receive any expert planner review or modification prior to the analysis conducted by radiation 

oncologists. It is estimated that roughly 5-10% of treatment plans created by expert planners 

receive further modification by oncologists at our local cancer clinic. Therefore, gaining clinical 
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acceptability in 51% of the plans sourced straight from our automated planning system may be 

deemed a formidable achievement in our initial attempt at capturing expert planning style. With 

the suggested improvements implemented in the design of our automated planning system, we 

believe these clinical acceptability levels may experience exceptional increase. Finally, regardless 

of the extensity of features that may be incorporated into a model, it cannot avoid producing 

treatment plans that may not always satisfy clinicians. Indeed, even plans created by expert 

planners are not always found to be clinically acceptable without modification. This is expected, 

as expert planners and clinicians within a clinic may also exhibit different preferences within the 

overall planning style they are comfortable with. Considering that in a real-world setting our 

automated plans would receive multiple reviews by expert planners and oncologists before being 

approved, we believe that slight dissatisfactions may be easily addressed through additional minor 

modifications.  
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Chapter 7 
Conclusion & Future Work 

 

 

In this thesis, we set out to introduce a novel modeling philosophy for interstitial LDR 

prostate brachytherapy in an effort to fill a gap that currently exists in today’s literature. Prior to our 

work, spatial constraints and data processing techniques had not been comprehensively investigated 

in an attempt to explicitly capture expert planning style. The premise was that our research would 

bridge the disconnect that currently exists between the often disappointing solutions that available 

optimization approaches offer and the clinically acceptable results that brachytherapy teams desire 

from such automated approaches. The fundamental goal of this thesis was to lay the foundation for 

a new MILP modeling approach that would enable automated construction of treatment plans that 

were of equivalent clinical quality to manually-produced treatment plans created by expert planners. 

Furthermore, we also hoped to create such treatment plans in a matter of seconds or minutes, so that 

our automated planning system would be suitable for both pre-operative and intra-operative 

planning. However, as previously stated in the introduction, we will remind ourselves of the  

objectives of this thesis in more specific terms: 

a. Formulate a novel mixed-integer linear programming model as well as practical data 

processing techniques for LDR prostate brachytherapy, in order to achieve a realistic 
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mathematical representation of the treatment planning style that is predominantly 

utilized at the Cross Cancer Institute.  

b. Develop and employ unique linear programming modelling techniques for simplifying 

the solution of the resulting large-scale model, in order to be able to produce treatment 

plans with short solution times that are suitable for both pre-operative and intra-

operative planning. 

c. Verify the clinical acceptability of our automated treatment plans based on the clinical 

standards of the Cross Cancer Institute and develop pathways of further improvement 

for our automated planning system.  

We can see that each of these objectives were progressively accomplished throughout this 

thesis and our main contributions to brachytherapy optimization literature can be summarized as 

follows: 

• In Chapters 3 and 4, we introduced a novel mixed-integer linear programming model with 

an extensive catalogue of spatial constraints and data processing techniques. Through the 

results obtained in these chapters, we demonstrated the ability to capture the treatment 

planning style of a cancer clinic (specifically, the Cross Cancer Institute).  

• In Chapter 5, we introduced pseudo high-resolution data sets and feasibility-based modeling 

(based on the violation of dose-volume constraints). Through the synergistic effects of these 

two modelling techniques (which were not previously investigated in brachytherapy 

optimization literature), we demonstrated the ability to produce treatment plans with 
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solution times suitable for pre-operative and intra-operative planning (specifically, ranging 

from less than a minute to roughly five minutes for prostates of varying shapes and sizes).  

• Finally in Chapter 6, we verified the clinical acceptability of our automated plans through a 

pilot study involving data from twenty patients, which was the first of its kind in 

brachytherapy optimization literature. Through this study, we also identified three main 

areas of improvements to enhance the clinical utility of our automated planning system. 

Thus, it can be concluded that both the clinical as well as the engineering goals of this thesis 

were met.  We will now consider several opportunities for further research that may branch out from 

this thesis.   

 

7.1 Pathways to Future Research  

 Now we ask ourselves the question of where to take this research from this point forward. 

Perhaps the most obvious path would be to involve more radiation oncologists in the clinical 

analysis of the same set of twenty automated and manual plans examined in this thesis. A bigger 

study may further confirm the initial clinical performance results for our automated planning 

system, or may reveal newer trends. Following such a study, all necessary improvements (both 

mentioned in this thesis and also concluded from the bigger study) may then be implemented in our 

linear programming model.  

Solving more test cases of formulations (1)-(6) from Chapter 5, but with different clinical 

parameter values might shed light on the solution performance of these models and their ability to 

handle input variation.  Although not reported in this thesis, we have previously observed numerous 

cases of intractability with formulations (1)-(4) after PTV D90 dose levels where changed from 
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174-189 Gy (as was used in Chapter 5) to 181.5-189 Gy (as was used in Chapters 3 and 4). This 

was also the case for a change in PTV V100 from >98% to >99%. Formulations (5)-(6) were 

considerably more reliable in producing feasible solutions using these new dose-limits. Once again, 

formulation (6) may be made the primary focus of such a study, as performance data concerning 

solution speed and response to input variation may further emphasize our automated system’s 

suitability for pre-operative and intra-operative planning.   

We mentioned in Chapter 3 that treatment plans consisting of symmetrical seed distributions 

are not uncommon in clinical practice. In some centers, symmetric distributions are highly desired, 

in part due to their apparent dosimetric robustness. As discussed previously in this thesis, slight 

seed implantation errors do occur during the brachytherapy operation, arising from a combination 

of imaging uncertainties, prostate deformation during needle penetration as well as gland swelling 

due to trauma. Based on clinical experience, symmetrical seed distributions are considered to be 

dosimetrically more robust in comparison to seed distributions that are highly conformal to the 

shape of the prostate. In other words, post-operative analysis of dose-volume metrics generally 

suggest that symmetrical seed distributions are less prone to undesirable dose deviations due to 

misplacement of seeds, in comparison to highly-conformal seed distributions. However, we believe 

a study (whether clinical or theoretical in nature) concerning such a phenomenon does not exist in 

literature. Therefore, a study comparing the dosimetric robustness of automated plans containing 

symmetrical and asymmetrical seed distributions may be carried out. Final seed positions may be 

varied in both types of plans through a probabilistic numerical method. The resulting dose 
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distributions may then be compared between the two families of plans, allowing for inferences to 

be made on their dosimetric performance.  

Now that we have taken an extensive look at how brachytherapy is pre-operatively planned 

at the Cross Cancer Institute, the next logical step would be to examine intra-operative planning. 

Tom Baker Cancer Centre in Calgary may be a suitable candidate for this purpose. Collaborating 

with experts at this clinic would allow us to determine how well our automated planning system 

performs intra-operatively, both in terms of the clinical quality of treatment plans and their solution 

times. Furthermore, our model may also be further enhanced through modifications necessary to 

accommodate the general planning style of Tom Baker Cancer Centre.  

Lastly, as mentioned several times in this thesis, the modelling techniques we introduced for  

low dose rate prostate brachytherapy may be applicable for other variants of prostate brachytherapy 

(high dose rate, medium dose rate and pulse dose rate), as well as in the brachytherapy treatment of 

breast, cervical, lung, and head and neck cancer. Thus, branching out towards these areas of 

brachytherapy may be a potential option.  Finally, as our proposed modelling techniques are 

relatively algorithm-independent, we may also examine the solution performance of our linear 

programming model as solved through alternative deterministic, stochastic or heuristic solution 

algorithms. Considering the plethora of algorithms that exist for the solution of mixed-integer linear 

programming models, we may potentially uncover better performance results with other solution 

methods.  
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