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Abstract 

The railway industry is one of the major contributors for the transportation of goods and the 

backbone of Canada’s economy. Safe railway operation is vital for public safety, the environment, 

and property. Concurrent with climbing amounts of rail traffic on the Canadian rail network are 

increases in the last decade in the annual accident counts for derailment, collision, and highway 

railroad grade crossings (HRGCs). 

The development of community areas near railway tracks increases the risk of HRGC accidents 

between highway vehicles and moving trains, resulting in consequences varying from property 

damage to injuries and fatalities. Also, the 2018 Railway Safety Act showed concern over 

increasing trend of HRGC accidents and casualties. Thus, authorities have shown concerns about 

HRGC improving safety in rail network of Canada. 

Various technologies have been used in the railway industry that improves decision-making, 

reduces errors, lower costs, save time and keep the safety of railway operation. Transport Canada, 

in the 2018 Railway Safety Act, highlighted the incorporation of new technological innovations or 

Canadian railway network to enhance operation and reliability. One of such technological solution 

used for inspection of railcars is Train Inspection Portal System (TIPS). This system uses multiple 

camera systems with 360° images of railcars, which are then inspected by remote certified car 

inspectors (CCIs) and flag any defects/potential defects in the railcars of the trains. This technology 

is faster and better than manual inspections conducted by CCIs at rail yards. 

The first study is focused on improving HRGC safety by identifying major factors that cause 

HRGC accidents and affect the severity of associated casualties using ExtraTree classifier method. 

Combining these causal factors and ensemble algorithms, machine learning (ML) models were 
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developed to analyze HRGC accidents and the severity of associated casualties that occurred 

between 2001 and 2022 in Canada. Furthermore, spatial autocorrelation and optimized hotspot 

analysis tools from ArcGIS software were used to identify hotspot locations of HRGC accidents 

on the railway network. 

The second, third, and fourth studies of my research focus on technology assessment of the Train 

Inspection Portal System (TIPS). The second study employs a fuzzy-FMEA method, which uses 

machine learning to account for the imprecision and vagueness of real-life language, to conduct a 

risk assessment of the TIPS system. The study provides recommendations for reducing the risk of 

failure by addressing high RPN failure modes and enhancing the overall reliability of the TIPS 

system. 

In the third study, we assess human factors in remote inspection tasks using the Human Factor 

Analysis and Classification System (HFACS) framework. The study identifies key HFACS 

elements that contribute to human errors in remote inspection processes and recommends 

strategies for reducing these errors and improving the overall quality of remote inspections. The 

fourth study aims to determine the detectability of rare railcar component defects in a TIPS 

technology environment and examines the response of remote CCIs. We performed simulations of 

artificial defects and supported the claim of human factors influence remote inspection 

performance.  

This research is one of the small contributions to the railway network of Canada. The machine 

learning models developed to identify causal factors for HRGC accidents and severity of casualties 

can be used with future data to improve safety strategies. The assessment of POI technology using 

fuzzy-FMEA has identified high-risk causes of system failure and recommended control measures 

to improve reliability. Additionally, the artificial defect simulation and human factor assessment 
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have highlighted the need to address rare defect capturing and the impact of human error on remote 

inspection performance. In summary, this research work has contributed to improving the safety 

of HRGC railway network and evaluating a futuristic technology that brings efficient, faster, and 

safer railcar inspection tasks. The findings of this study can improve policy and decision-making 

for railway safety and inspire future research in this field. 
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Preface 

This thesis comprises two papers and two reports that I have co-authored with the principal 

investigators of the study, Drs. Lefsrud, Hendry, and Sattari. The primary focus of this thesis report 

is to achieve two objectives. Firstly, to evaluate the safety of highway railroad grade crossings 

(HRGC) using machine learning techniques. Secondly, to conduct a technology assessment of 

portal office inspection (POI) technology under the Automated Machine Vision Inspection System 

(AMVIS) project. The POI technology is used for remote inspection of railcars using a camera 

image which captures a 360˚ view of railcars.  

In the first study on HRGC safety assessment, I worked in collaboration with Drs. Lefsrud, Hendry, 

and Sattari identify causal factors for safety assessment utilizing machine learning algorithms. To 

perform the safety analysis of HRGC accidents and casualties, I used data from the Government 

of Canada website and the Transportation Safety Board (TSB) website. Machine learning 

techniques were then applied to the collected data for analysis, and machine learning models were 

developed. The recommendations were also provided to improve the causal factors and improve 

the safety of HRGC. 

The study for the technology assessment of POI technology was a collaborative effort involving 

Drs. Lefsrud, Hendry, and Sattari, contributed to the development of the methods for technology 

assessment. For the technology assessment, we performed a risk assessment of POI technology, 

human factor assessment and artificial defect simulation of rare defects. The risk assessment of 

POI technology involved a combined effort from Canadian Pacific Railways (CPR), National 

Research Council of Canada (NRC), and University of Alberta (U of A), with the fuzzy Failure 

Mode and Effect Analysis (fuzzy-FMEA) and rare railcar component defects simulation 

techniques being utilized. Dr. Lefsrud provided the HFACS framework and interview questions 

for identifying human factors in POI technology. I along with CP employees performed the rare 

defect simulation to analyze rare defects capturing of POI technology and to observe the response 

of remote certified car inspectors using POI technology.  

Throughout the project, NRC and Transport Canada (TC) provided valuable insights. Arpit Patel, 

a U of A graduate student and I, conducted interviews with participants at CPR headquarters in 

Calgary. We both conducted 4 interviews to collect data. Also, I performed the simulation of 
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artificial defects along with CPR employees in Alyth yard, Calgary. CPR provided necessary 

resources and facilities for the research work at their Calgary headquarters, and Alyth yard. 

I analyzed all four datasets with support from Drs. Lefsrud, Hendry, and Sattari. As the lead author, 

I wrote both papers and reports, incorporating comments and feedback from the principal 

investigators. 

Chapter 1 of this thesis, in its entirety, is my original work. 

Chapter 2 of this thesis is submitted to the Transportation Research Record journal on February 

21, 2023 and is under review. The data for this chapter was available on public websites. I was 

responsible for methodology, data analysis and manuscript composition. Drs. Lefsrud, Hendry, 

and Sattari provided assistance with data analysis, and contributed to manuscript edits. 

Chapter 3 of this thesis is based on the risk assessment of POI technology. The experts of the 

technology contributed to the collection of data and data was used for performing the risk 

assessment. I was responsible for methodology, data analysis, and manuscript composition. Drs. 

Lefsrud, Hendry, and Sattari provided assistance with data analysis, and contributed to manuscript 

edits. 

Chapter 4 of this thesis presents the human factor assessment of POI technology. Dr. Lefsrud 

played a crucial role in designing the interview process, which included three open-ended 

questions. I collaborated with Arpit Patel (U of A graduate student) to conduct the interviews with 

participants. The data was collected through these interviews and the responses were transcribed. 

I was responsible for the methodology, data analysis, and manuscript composition for this study. 

Drs. Lefsrud, Hendry, and Sattari provided valuable assistance with data analysis and contributed 

to manuscript edits. 

Chapter 5 of this thesis presents a study on defect simulation on railcar components to assess the 

detectability of rare defects and the response of remote inspectors in the POI technology 

environment. The research involved simulating various railcar defects on the railcar components 

and collecting images from the POI technology software portal. Thanks to Chathula Adikari and 

Solange De Blois for helping us in performing the simulation experiment at Alyth yard, Calgary, 

and Dr. Alireza Roughani, Yan Liu and Transport Canada regional officers for their insights on 

defect simulation. I was responsible for the data collection, methodology development, data 
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analysis, and manuscript composition. Drs. Lefsrud, Hendry, and Sattari provided valuable 

assistance with data analysis and contributed to manuscript edits. 
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Chapter 1: Introduction  

Introduction 

Canada has a huge rail network, operated by numerous rail partners under challenging 

environmental conditions. The railroad industry plays an important role in the economy of the 

country. Hence, its safe working is crucial for the safety of all the stakeholders, the public, and 

the environment (Salas, 2022).  

The accident statistics of the Transportation Safety Board of Canada (TSB) surfaced that more 

than 10000 accidents happened between 2011 and 2020 and were classified under main-track 

derailment, non-main track derailment, main track collision, non-main track collision, trespasser 

accident, crossing accidents, and fire/explosion accidents categories. All such accidents cause 

wide range of consequences which can result up to serious injuries and sometimes casualties (Rail 

Transportation Occurrences in 2020, 2020).  

 

Figure 1. Rail network traffic of Canada (2011-2020) 

The railway industry uses different metrics such as gross tonne miles (GTM) and passenger miles 

(PM) for defining tonnes of goods and passengers transported per year and per mile, respectively. 

Apart from these two, train mile (TM) is used to define the number of trains and length of travel, 

which measures the train traffic in sector. The Canadian railway network has shown an upward 

trend for train miles (TM) and gross tonne -miles (GTM) from 2011 to 2019 (Figure 1). There is 

a sharp drop in train miles for 2020 which is due to the impact of COVID-19 restrictions. At the 

start of the period, TM value was 78.4 million train miles which increased to 81.6 million train 
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miles in 2014. However, it suddenly dived to 74.9 million train miles in 2016, which is the lowest 

for the period. The decrease in value is due to lower oil prices in the Canadian economy. After 

2016, the TM value increased to 83.3 million train miles in 2019. Similarly, GTM value continued 

to rise from 478.2 billion gross train miles in 2011 to 581.25 billion gross miles in 2019. GTM 

value slightly decreased from 2015 and 2016 consecutively but it increased again from 2017 and 

onwards. GTM value for the year 2020 is not available for comparison. 

 

Figure 2. Percentage of railway accidents (2011-2020) 

 

 

Figure 3. Percentage of railway fatalities in railway accidents (2011-2020) 
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Due to the large railway operation and high traffic on the rail network of Canada, it is susceptible 

to various kinds of railway accidents such as main track derailment, non-main track derailment, 

main-track collision, highway railroad grade crossing accidents, trespassing accidents, etc. Figure 

2 shows the percentage of accident and Figure 3 shows the percentage of fatality in accidents for 

the rail network of Canada between 2011 and 2020.  

Figure 2 depicts that non-main track derailment accident accounts for 49% of accidents followed 

by HRGC accidents (15%). When fatality data of Figure 3 were compared, it was found that 

trespasser accidents contributed to 57% of fatalities followed by HRGC accidents (32%). Upon 

comparing the two charts, it becomes evident that HRGC accidents have a high frequency and 

high consequences, making them a significant risk among all railway accidents. With the growth 

of residential neighborhoods near railway tracks, there is an increased possibility of HRGC 

accidents involving moving trains and highway traffic, which could result in severe consequences 

ranging from property damage to injuries and fatalities. The consequences of HRGC accidents are 

not only limited to the delay of rail traffic, property/environment damage, casualties but also have 

devastating effects on the people involved and their families, friends, responders, and locomotive 

operators. These accidents can result in severe psychological and social imbalances, leading to 

trauma and emotional distress. The Railway Safety Act review conducted by Transport Canada in 

2018 highlighted the concern about the lack of decline in HRGC accidents and casualties, 

emphasizing the need for improved safety measures ("Enhancing Rail Safety in Canada: Working 

Together for Safer Communities," 2018). Consequently, railway authorities have been putting 

forth efforts to reduce HRGC accidents and improve safety.  

My literature review on HRGC safety in the Canadian railway network revealed that current 

research has mainly focused on the causal factors associated with highways and railroads such as 

train speed, road speed, daily train and vehicle traffic, and number of highway lanes. Thus, my 

coauthors and I identified the gaps: (1) Despite efforts to improve safety measures, the rate of 

accidents related to grade crossings has not shown a significant decrease over the past few years 

and it has become a concern for the public  (2) Despite current initiatives and investments aimed 

at improving grade crossing safety, they have not been sufficient in making a significant difference 

and implementing the safety strategies across every HRGC of the railway network is a huge and 

capital-intensive task. 
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To address the above-mentioned gaps, I conducted an analysis of HRGC accidents and casualties 

in the Canadian railway network. Using machine learning algorithms, ExtraTree classifier, I 

identified critical causal factors that contribute to HRGC accidents and the severity of casualties. 

My literature review on HRGC safety identified significant gaps in the literature, specifically in 

the identification of critical causal factors. Previous studies have largely overlooked the impact of 

human actions in HRGC accidents, the type of vehicles involved, seasonal and lighting variations, 

and the type of protection in place at HRGCs. These findings of causal factors can help in the 

development of safety strategies for HRGCs. Furthermore, we developed two classification models 

to analyze the HRGCs based on accident risk and severity of casualty. These models are useful 

classification tools that can also be used with future data as datasets get updated. However, 

focusing on all HRGCs is impractical, which highlights the need to identify high-risk locations. 

To address this, I chose to perform hotspot analysis using ArcGIS software, which enabled us to 

identify HRGC hotspots and concentrate safety efforts accordingly. 

In this thesis paper, I provide recommendations on reducing the impact of critical causal factors to 

decrease the occurrence and severity of HRGC accidents. These findings can ultimately help 

making HRGCs a safer spatial area on the railway network. 

The next three studies are focused on Portal Office Inspection (POI) technology which is a part of 

the Automated Machine Vision Inspection System (AMVIS). This project is the response of the 

Railway Safety Act which was reviewed by Transport Canada (TC) in 2018. In the review of 

Railway Safety Act, TC highlighted the crucial role that technology plays in ensuring safe railway 

maintenance and operation. As the railway industry moves towards a more technology-driven 

approach, it is expected that this trend will continue, providing opportunities to reduce risk, 

improve efficiency, and enhance overall safety. 

The railway industry in Canada has made significant strides in developing and utilizing innovative 

safety processes and technologies. The railway companies have partnered with government and 

academic institutions for developing and testing various technologies such as imaging and drone 

technologies for the inspection of assets. Advancements in technology have demonstrated 

remarkable results in managing risks associated with rail maintenance and operations. For 

instance, in 2016, the percentage of derailments caused by equipment and track failure decreased 
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from 66% to 57%, owing to the integration of technology and processes designed to enhance safety 

(“Enhancing Rail Safety in Canada: Working Together for Safer Communities,” 2018). 

In order to capitalize on the opportunities presented in Railway Safety Act review about 

technological advancements in Canada's rail sector, Transport Canada made several 

recommendations to improve railway safety. One of these recommendations was the creation of a 

specialized research and development group known as the Railway Research Advisory Board 

(RRAB). The purpose of this board is to prioritize and promote research initiatives in technology 

and innovation, with the ultimate goal of enhancing safety within the rail industry. 

The Automated Machine Vision Inspection System (AMVIS) project is part of Transport Canada’s 

response to the 2018 Railway Safety Act Review’s recommendation on technology and innovation.  

The project is guided by RRAB which involves experts from different railway organizations, 

research organizations, and from federal departments as well. This team is providing guidance and 

technical support for AMVIS technology which is being developed by Canadian Pacific Railways 

(CPR).   

According to regulations of TC, a railway company shall perform safety inspections to ensure that 

rail cars in a train consist are free from safety defects. These inspections are performed by certified 

car inspectors (CCIs) at rail yards where trains are made up, cars added to trains, or where cars are 

interchanged. However, in 2020, CPR got an exemption from TC to allow remote safety inspection 

(RSI) using high-resolution camera technology instead of traditional safety and maintenance 

(S&M) inspection on potash trains (602/603 and 618/619) as per inspection requirement. Train 

numbers 602/603 are bound between Sutherland, Saskatchewan, Canada, and ports of Vancouver, 

British Columbia (BC), Canada. And, with number 618/619 are bound between mining locations 

in Sutherland, Saskatchewan, Canada, and ports of Portland, Oregon, United States (US). 

The AMVIS technology, at CPR, is consist of two technologies. (i) Wayside detector technology, 

and (ii) Portal Office Inspection (POI) technology. The wayside detector technology consists of 

different wayside detectors such as wheel impact load detector (WILD), Wheel Profile Detector 

(WPD), Hot Box Detector (HBD), and Trackside Acoustic Detector (TAD). These wayside 

detectors generate alerts for various defects in wheels, bearings, brakes, and trucks when the train 

passes over them. The POI technology uses Train Portal Inspection System (TIPS). The TIPS 

portal is located at milepost 85.66 in the Maple Creek subdivision (Figure 4). The TIPS is a system 
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with high-definition infrared spectrum cameras that capture a 360-degree view of the railcar when 

a train passes through it. The TIPS has four sub-systems that capture the images of different target 

parts of railcars. 

 

Figure 4. CPR’s train inspection portals located at Maple Creek 

1. TrainView system: It captures images of external components such as hand brake wheel, 

ladders treads, sill steps, car body condition, reflectors, foreign objects, car ID, etc. The 

system has 10 camera boxes with total of 20 cameras. 

2. TruckView system: It captures components such as axle cap screw, wheel, side frame, 

bearing, springs, friction wedges, etc. The system has 4 camera boxes with total of 8 

cameras. 
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3. CSCView system: It captures undercarriage components such as side sill, center sill, 

hopper doors, couplers, and related components, brake beams, axle, and journal 

components, etc. The system has a total of 8 lasers and 5 cameras. 

4. AHView System: It captures defects related to peaked air hose coupling, coupler defects, 

retain key, etc. The system has 2 camera boxes with a total of 4 cameras. 

The scope of defects in the AMVIS project is selected based on defects detection challenges, 

occurrence frequency, and potential impact on safety. We consulted TC inspectors and railway 

companies to decide the defects for the scope of AMVIS project. Finally, a total of 13 defects were 

selected for AMVIS scope:  

1. Cracked wheel 

2. Cracked axle 

3. Axle cap screw missing 

4. Truck bolster crack 

5. Truck spring missing/bent 

6. Brake beam bent 

7. Side sill bent/cracked 

8. Center sill cracked 

9. Cracked coupler knuckle 

10.  Cracked draft gear 

11. Coupler body crack 

12. Hand brake 

13. Angle cock 

I conducted the literature review using AMVIS project documents, vendor/supplier documents, 

and research articles. The thesis work on the AMVIS project is primarily focused on evaluating 

the effectiveness of POI technology for defect capturing, rather than comparing the safety aspects 
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of manual yard inspections versus remote inspections using POI technology. As we were 

conducting the technology assessment of POI technology, we also consulted the NRC, CPR and 

TC team to understand the technology and identified following gaps: (1) TIPS portal system gets 

affected due to various factors such as equipment failure, power failure environmental conditions 

which affects the reliability of TIPS operation; (2) Human errors affect the defect identification 

and quality of remote inspection using POI technology; (3) POI technology is effective in 

capturing high frequent defects such as hand brake, angel cock. broken truck spring) but response 

to rare defects (such as cracked draft gear, cracked side sill) is not very clear in POI based remote 

inspection. 

To address the research gap regarding the reliability of TIPS portal operation, we employed a fuzzy 

Failure Mode and Effect Analysis (fuzzy-FMEA) to perform a risk assessment. This machine 

learning technique utilizes expert knowledge to determine the fuzzy Risk Priority Number (fuzzy-

RPN) of identified failure causes. We analyzed the results of the assessment and identified the 

high-risk causes based on the fuzzy-RPN number. We then recommended additional control 

measures to reduce the risk of failure and improve the reliable operation of TIPS portal. The 

application of fuzzy-FMEA in this study provided a novel approach to addressing the research gap 

and improving the reliability of TIPS portal operation. 

To identify the underlying causes of human error affecting the performance of remote inspection 

tasks in POI technology, we conducted a thorough human factor assessment. We utilized the 

elements of HFACS as codes and applied thematic analysis, a qualitative analysis technique, using 

Nvivo software. Dr. Lefsrud, along with the NRC team, formulated three questions to probe the 

root causes of human error, while Arpit Patel, a graduate student from the University of Alberta, 

and I conducted four interviews with remote CCIs. The resulting transcripts were meticulously 

analyzed to identify codes and themes using a hybrid approach of thematic analysis. Our study 

revealed that the "Technical Environment" was the most significant cause of human error in remote 

inspection using POI technology. The findings shed light on a critical area of improvement for the 

safe and efficient implementation of POI technology in the railway sector. 

To assess the ability of POI technology in detecting rare defects, we conducted a simulation study 

using artificial defects created with metal wire, silicon caulk, and magnets. To better understand 

the methodology for artificial defect simulation, we reviewed relevant literature from 



9 
 

organizations such as Transportation Technology Center, Inc. (TTCI) and the University of Illinois 

at Urbana-Champaign. Our simulation results revealed that POI technology is effective in 

identifying rare defects; however, during remote inspection of railcars, human inspectors still 

missed some of the defects. This finding reinforces the notion that human error can impact the 

quality of remote inspection technology. 

The Canadian railway network has contributed significantly to the country's economy but safety 

remained a major concern for public safety, the environment, and railway operations in recent 

years. My research thesis was motivated by the 2018 Railway Safety Act review conducted by 

Transport Canada, which emphasized the to improve HRGC safety and need for technological 

advancements in the railway network to improve safety and efficiency in railways (“Enhancing 

Rail Safety in Canada: Working Together for Safer Communities,” 2018). In my work on HRGC 

safety, I specifically targeted the Canadian railway system and identified causal factors for HRGC 

accidents and the severity of casualties, which had been overlooked in previous studies. 

Furthermore, I developed machine-learning classification models that can be used on new datasets 

in the future. I also utilized a hotspot analysis tool to visualize high-risk clusters for HRGCs. In 

addition, my work on TIPS technology evaluation under the AMVIS project used a quantitative 

risk assessment technique to assess the technology, conducted human error assessment using the 

HFACS framework, and simulated defect installations to examine rare defects and remote CCI 

response. Overall, my work on AMVIS assisted the project team in identifying failure modes of 

the TIPS portal, causes of human error in remote inspection tasks, provided insight into rare defect 

inspections, and developed a defect dataset for fully automated AI-machine learning-based 

technology for railcar inspection. 

My final thesis has had a significant impact on the railway sector of Canada by contributing to the 

prevention of HRGC accidents and casualties, as well as promoting the integration of technological 

innovation for efficient and safer railway operations. I adopted a multidisciplinary approach to 

identify hazards and increase the visibility of risks associated with TIPS technology. Moreover, I 

uncovered crucial factors contributing to human error in remote inspection processes. The findings 

and recommendations of my thesis work provide targeted solutions to the issues faced by the 

railway sector of Canada and offer actionable insights to mitigate risks and manage hazards. 
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Chapter 2: A Machine Learning Approach to Enhance Highway Railroad Grade Crossing 

Safety by Analyzing Accident Data and Identifying Hotspot Accident Locations 

 

Abstract 

Safe railway operation is vital for public safety, the environment, and property. Concurrent with 

climbing amounts of rail traffic on the Canadian rail network are increases in the last decade in the 

annual accident counts for derailment, collision, and highway railroad grade crossings (HRGCs). 

HRGCs are important spatial areas of the rail network, and the development of community areas 

near railway tracks increases the risk of HRGC accidents between highway vehicles and moving 

trains, resulting in consequences varying from property damage to injuries and fatalities. This 

research aims to identify major factors that cause HRGC accidents and affect the severity of 

associated casualties. Using these causal factors and ensemble algorithms, machine learning (ML) 

models were developed to analyze HRGC accidents and the severity of associated casualties that 

occurred between 2001 and 2022 in Canada. 

Furthermore, spatial autocorrelation and optimized hotspot analysis tools from ArcGIS software 

were used to identify hotspot locations of HRGC accidents. The optimized hotspot analysis shows 

clustering of HRGC accidents around major Canadian cities. The analysis of cluster characteristics 

supports the results obtained for causal factors of HRGC accidents. These research outcomes help 

to better understand the major causal factors and hotspot locations of HRGC accidents and assist 

authorities in implementing countermeasures to improve the safety of HRGCs across the rail 

network. 

Keywords: Canadian rail network, Highway railroad grade crossing, SMOTE, Machine learning, 

ArcGIS 
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Introduction 

The railway industry of Canada is a major contributor to the country’s economy and the safety of 

the rail network is very crucial as accidents on railway network can seriously harm the system, 

environment, and result in numerous fatalities (Canada’s Freight Railways: Moving the Economy, 

2023; Ouedraogo et al., 2018). Canada’s rail network is the third largest in the world, with more 

than 41,700 km of rail tracks featuring 25,155 highway railroad grade crossings (HRGCs) (Rail 

Safety in Canada, 2021; Grade Crossings Inventory, 2022). An HRGC is an intersection of railway 

tracks and roads at the same grade level (Grade Crossings Inventory, 2022). Accidents at HRGCs 

are a safety concern and have attracted the attention of transport authorities, the public, and the 

railway sector (Tey et al., 2013). The expansion of municipalities and the development of high-

population areas near railway lines poses a greater risk of accidents that can result in fatalities, 

injuries, extensive property damage, and delays in railway and highway traffic, making HRGCs 

spatial areas of paramount importance for transportation safety (Lu & Tolliver, 2016; “Enhancing 

Rail Safety in Canada: Working Together for Safer Communities,” 2018). Between 2011 and 

2020, 10,705 railway accidents were recorded in Canada, with the leading categories being non-

main track derailments (49.3%) followed by HRGC accidents (15.4%) (Table 1) (Rail 

Transportation Occurrences in 2021, 2021). A non-main track derailment is when one or more 

railcar wheels come off the rail surface on non-main tracks (such as yard rail lines). These 

accidents usually happen at speeds below 10 miles per hour and are hence considered low-

consequence accidents (Rail Transportation Occurrences in 2021, 2021). On the other hand, 

accidents at HRGCs that include trains and highway vehicles are known as HRGC accidents 

(Highway-Rail Grade Crossings Overview, 2019). These accidents usually happen at track speed 

between vehicles and a moving train and are considered high-consequence accidents. According 

to the data in Table 1, the number of HRGC accidents (1,648) is less than the number of non-main 

track derailment accidents (5,278), but the fatality counts for HRGC accidents is far higher (227 

vs. 1). Thus, HRGC accidents are considered higher risk than non-main track derailments and can 

result in more fatalities (Das et al., 2022).  

Table 1. Rail accident based on accident type (2011-2020) (Rail Transportation Occurrences in 

2021, 2021). 

Type of accident Accident count Percentage Fatality count 
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Table 1 shows the time-trend analysis of HRGC accidents and associated casualties in Canada 

from 2011 to 2020. The analysis was conducted using accident and casualty counts from the 

Transportation Safety Board of Canada (TSB) dataset. For comparison purposes, these counts were 

normalized using million train miles (MTM) data for each year. HRGC accident counts per MTM 

have not changed much over the last decade (Figure 5a); however, fatality and serious injury counts 

per MTM have fluctuated. Fatality and serious injury percentages for HRGC accidents have both 

shown an overall decreasing trend in the last decade; yet, the percentage of fatalities (Figure 5b) 

and serious injuries (Figure 5c) caused by HRGC accidents is high, both at ~30% in 2020. HRGC 

accidents were the second-highest contributor to railway fatalities after trespasser accidents from 

2011 to 2020; however, HRGC accidents have been the highest contributor to serious injuries on 

the Canadian railway in the last decade (Rail Transportation Occurrences in 2021, 2021). 

Figure 5b shows a sudden drop in 2013 with respect to %HRGC fatalities. In 2013, a total of 47 

fatalities were reported in “main-track derailment” category due to an accident in Lac-Mégantic, 

Non-main-track derailments 5278 49.30 1 

Highway railroad grade crossing 

(HRGC) accidents 
1648 15.40 227 

Other (e.g., fire, employee/ 

passenger accidents) 
1346 12.60 20 

Non-main-track collisions 933 8.71 3 

Main-track derailments 825 7.70 54 

Trespasser accidents 625 5.83 403 

Main-track collisions 50 0.47 0 

Total 10705 100 708 
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Quebec which resulted in a lower % of HRGC fatalities. Thus, the %HRGC fatalities value is 

considered an outlier for fatality data in 2013. Figure 1c shows the %HRGC serious injury 

experienced a sudden rise in 2013. The total serious injury count was 39 in 2013 and relatively 

fewer injuries were reported in other categories. This resulted in an unusually large contribution 

of HRGC accidents to the total. Thus, the 2013 value is considered an outlier for serious injury 

data (Rail Transportation Occurrences in 2021, 2021). 

 High occurrences and consequences of HRGC accidents have raised concern, resulting in many 

studies aimed at improving the safety of HRGCs. For instance, a study by Lu et al. (2018) uses 

generalized linear models such as the Poisson, Bernoulli, and Hurdle Poisson models, to predict 

HRGC accident frequency. The dataset contained crossing, highway, and rail traffic variables of 

HRGC accidents in North Dakota, United States (US), between 1996 and 2014. The study 

highlights variables such as average daily vehicle traffic, daily train traffic, warning system, 

nighttime through-train traffic, train maximum speed, and the number of traffic lanes on the 

highway as contributors to HRGC accidents. Mok & Savage (2005) use negative binomial 

regression on HRGC accident data from the US from 1975 to 2001. Two separate models are 

developed in their study, one for predicting the number of HRGC accidents and another for 

predicting the number of casualties that occurred in HRGC accidents. The results indicate daily 

train traffic and vehicle traffic increase the risk of HRGC accidents and fatality counts, while an 

active warning system, locomotives with ditch lights, and safety campaigns reduce the risk. 

Another study by Brod & Gillen (2020) developed two models for HRGC risk assessment. The 

authors use the zero-inflated negative binomial model to predict HRGC accidents and the 

multinomial regression model to find the probability of severity (fatal, injury, and no injury). The 

study shows significant relations between HRGC characteristics, warning devices, and traffic 

exposure in HRGC accidents. Brabb et al. (2017) studied HRGC accident data to analyze various 

factors in injuries and fatalities caused by HRGC accidents. The report identifies the effects of 

traffic, driver demography, environment, and crossing characteristics on the severity of casualties 
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Figure 5.Trends in (a) HRGC accidents, (b) fatalities, and (c) serious injuries (2011-2020) (Rail 

Transportation Occurrences in 2021, 2021) 

in HRGC accidents. Soleimani et al. (2021) use federal railroad administration (FRA) data to 

develop an HRGC consolidation model for public crossings using text mining, spatial analysis, 

and an XGBoost algorithm to identify possible HRGCs that can be considered for closure in future. 

Several recent studies employ ML models to improve the safety of HRGCs. For instance, Zheng 

et al. (2016) use ML to identify HRGC accidents based on accident risk in the US between 1996 

and 2014. The classification model was developed using a decision tree (DT) and gradient-

boosting (GB) algorithm and obtained good classification accuracies (0.7705) for accidents and 

no accident cases at HRGCs. The authors found factors such as daytime train movement, nighttime 

train movement, daily train traffic, train speed, and highway speed are the most important factors 
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related to HRGC accidents. Another study by Lasisi et al. (2020) uses various ML classifiers, such 

as support vector machine (SVM), random forest (RF), gaussian naïve bayes (GNB), multi-layer 

perceptron-neural network (MLP-NN), and logistic regression (LR), to predict casualties resulting 

from HRGC accidents using HRGC casualty data from California, US. High prediction accuracy 

(0.989) is achieved with the SVM. A total of 15 features are taken into account, including features 

related to railway and highway traffic and crossing characteristics that revealed train speed, 

average daily train, and vehicle traffic are essential factors affecting casualties in HRGC accidents. 

The spatial distribution and hotspot locations of HRGC accidents have been assessed using spatial 

autocorrelation and optimized hotspot analysis using ArcGIS software. These tools generate 

significant and valuable spatial analysis results by employing accident counts/rates and geographic 

data as inputs. The results of spatial autocorrelations and optimized hotspot analysis show the 

statistically significant locations on maps called hotspot locations of accidents. Various studies 

have been conducted to analyze aviation accidents and road accidents using different ArcGIS 

software. Y. Li & Liang (2018) performed a study for aviation accidents in Florida, US, using 

hotspot analysis tools and data from the National Transportation Safety Board (NTSB) for 2002 

to 2017 and reports 75 hotspot locations for aviation accidents. Studies conducting spatial 

clustering of road accidents were undertaken by Prasannakumar et al. (2011) in India and Mulugeta 

Tola & Gebissa (2019) in Ethiopia using ArcGIS. The results of these studies give information on 

hotspot and coldspot locations, which provide insights for traffic management and accident 

reduction. 

To the best of the author's knowledge, limited research has been conducted on HRGC accidents in 

Canada’s rail network. Many contributing factors are involved in HRGC accidents, including both 

highway and railway factors. The study performed by Heydari & Fu (2015) uses Canadian railway 

HRGC data (2008-2013) to assess the effects of HRGC location attributes. The study only 

investigates a few factors, such as train speed, road speed, daily train traffic, daily vehicle traffic, 

and number of highway lanes. Furthermore, a study by researchers at the University of Waterloo 

developed a tool called GradeX to assess HRGCs in Canada (Grade Crossings Inventory, 2022). 

It supports decision-making so authorities can identify high-risk HRGCs. The tool uses factors 

such as daily traffic of trains and vehicles, speed of trains and vehicles, location, and warning 

system at HRGCs. However, in both studies, important factors such as visibility, season, type of 
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vehicle, and driver actions were not included. To address this research gap, all of these variables 

were considered in this research. This study focuses on identifying the most significant causal 

factors for HRGC accidents and the severity of casualties and helps in minimizing the chances and 

consequences in HRGC accidents. These causal factors are used with ensemble classifiers to 

analyze HRGC accidents based on accident risk and severity of associated casualties. The results 

can inform the implementation of strategies to increase HRGC safety in Canada. However, 

targeting all HRGCs within a rail network with respect to the implementation of safety strategies 

is a very wide scope and highly capital-intensive task. Thus, locating the hotspots of HRGC 

accident locations is beneficial in terms of allocating appropriate resources. ArcGIS software helps 

not only visualize the spatial distribution of HRGC accident locations but also locate hotspot 

locations. Information about hotspot locations and causes of HRGC accidents will contribute to 

quicker implementation of safety strategies and enhanced safety at HRGCs.  

The main objectives of this research are to: 

1. Identify the causal factors of HRGC accidents and the severity of associated casualties using 

a feature selection technique (ExtraTree classifier); 

2. Apply ensemble-supervised ML algorithms (RF, AdaBoost, and XGBoost) to analyze HRGC 

accidents; 

3. Apply ensemble-supervised ML algorithms (RF, AdaBoost, and XGBoost) to analyze 

casualty severity in HRGC accidents; and 

4. Determine HRGC accident hotspot locations using ArcGIS software for Canada’s rail 

network. 

Methodology 

Data for ML Model 

The HRGC crossing information and accident data were taken from two public sources. The 

HRGC inventory data, which was collected from the Government of Canada website (Grade 

Crossings Inventory, 2022), was used in the analysis of HRGC accidents. The dataset contained 

information about HRGC accidents that occurred at every HRGC in the Canadian rail network. 

The original HRGC inventory dataset (Grade Crossings Inventory, 2022) contained 25,155 

samples with 26 feature columns, such as the number of daily vehicles, number of daily trains, 
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maximum road speed, maximum train speed, type of protection, and number of tracks at the 

HRGC. 

The data containing information about the severity of casualties associated with HRGC accidents 

were taken from TSB’s Railway Occurrences Database System (RODS) (Dataset from January 

1983 - Transportation Safety Board of Canada, 2020), and were used in the severity of casualty 

analysis using the ML model. The dataset included information about casualties reported in HRGC 

accidents. The original dataset contained information of 6,581 HRGC accidents with 348 features, 

such as rank, HRGC ID, railway owner, region, province, number of daily vehicles. Figure 6 shows 

the methodology for this research. 

 

Figure 6. Methodology for supervised classification ML model 

Data Preprocessing 

The raw datasets from the data sources need preprocessing to address missing cell entries, 

duplicate rows, and categorical variables (Ajayi et al., 2020; Zhu et al., 2021). If not treated 

beforehand, these missing cell entries and duplicate rows in datasets cause biased performance 

estimation for the ML model. Techniques such as deleting rows with missing cells or entering 

arbitrary or mean values of the feature are commonly used to manage missing cell entries (Chorev, 

2021). The datasets used in the present study contain many feature columns, including location, 

Data input
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and casualty data as .csv 
file

Data preprocessing

•Treatment of empty 
and duplicate cells

•Encoding text into 
numerical form

Feature selection

•Use of extra tree classifier 
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highway, railway, and environmental factors. However, some of the feature columns in the dataset 

had empty cells and therefore were excluded. In addition, duplicate row entries and feature 

columns with less important information were manually removed from the datasets.  

The HRGC inventory dataset contained feature columns such as rank, Transport Canada (TC) 

number, railway owner, region, and province; these were removed because they added little value 

to the analysis (n=15). Thereafter, some sample entries were removed as they had empty cell 

entries (n=6,001). Categorical features such as "Access", "Protection", "Regulator", and "IsUrban" 

were converted to numeric variables using "LabelEncoder", which generated the matrix of data for 

the classification. Finally, 10 input features and one output feature were selected with 19,154 

samples for feature selection. The output feature is a binary class feature, where 0 (zero) indicates 

an HRGC with no accident in history and 1 (one) indicates an HRGC with at least one accident 

reported in history. Definitions of each feature of the model are given in Appendix A. 

The HRGC casualty dataset from RODS contained features such as railway owner, region, 

province, and subdivision that were not useful for the supervised classification model and, hence, 

were removed from the dataset. Additionally, some of the feature columns (such as dangerous 

goods released cars, ballast type, and temperature) were reported with many empty cell entries and 

therefore were also removed from the dataset (n=330). Furthermore, duplicate sample entries were 

removed from the dataset (n=174). Finally, after the data preprocessing, 17 input features and one 

output feature with 555 samples were selected. In addition, three more features were incorporated 

into the dataset to examine the effect of season, hour of the day, and train speed. The features 

named "Season" and "OccHour" were extracted using the time and date for given accidents from 

the dataset. The time was reported in "hhmm" format in the “OccTime" column. Thus, "OccHour" 

is extracted as "hh" from the "OccTime" column. "Season" is extracted from the "OccDate" feature 

column. The season of an accident was given a categorical variable, with 1 for winter (December 

to February), 2 for spring (March to May), 3 for summer (June to August), and 4 for fall 

(September to November). The “Train_Speed_MPH” feature was extracted using the HRGC-ID 

number, for the effect of train speed on casualties associated with HRGC accidents. The HRGC 

inventory dataset was used to extract train speed values based on the HRGC-ID for the RODS 

dataset. Output feature is a multi-class feature, where 0 (zero) indicates an HRGC accident with 

no serious injury, 1 (one) indicates an HRGC accident with atleast one serious injury, and 2 (two) 
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indicates an HRGC accident with atleast one fatality. The final classification dataset had 20 input 

features and one output feature with 555 samples. Definitions of features are given in Appendix 

B. 

Feature Importance by ExtraTrees Classifier 

An ExtraTrees classifier is an ensemble method that helps identify the most important features for 

obtaining the output of the classifier (Arya et al., 2022). As a part of the ExtraTrees classifier, 

initial training samples are used to build each DT in the extra tree forest. Then, each tree is given 

a random sample of k features from the features at each test node. It must choose the best feature 

to divide the data according to a particular criterion (Gini index or entropy). The feature importance 

value ranges from zero to one, with higher feature importance values indicating features with a 

higher pertinence for predicting the output (Manoj, 2021a, 2021b). 

Based on the output of the ExtraTrees classifier, the optimum number of features gets selected 

from the dataset for the classification model. According to the ranking of features in the ExtraTree 

classifier, an optimum number of features can be selected by assessing the accuracy value of the 

classification model for different numbers of features (Janecek et al., 2008). When less than an 

optimum number of features is selected, the model gives a low accuracy value for the classification 

model. When the number of features increases, the accuracy value increases. However, the 

accuracy value will not significantly improve after the optimum number of features is reached. 

The classification model takes a long time to train and test a dataset and can be computationally 

expensive when more than optimum features are selected (Kwon & Sim, 2013). 

Data Balancing 

Initial analysis of the datasets showed an imbalance in class distribution (i.e., one class label has a 

large number of observations, and the other has a small number of observations (Ajayi et al., 2020). 

Imbalanced datasets cannot be used for conventional classification algorithms because such 

algorithms are based on three main assumptions: (1) the use of the precision of the model for 

assessment criteria, (2) nearly equal distribution of classes in the dataset, and (3) the consequences 

of incorrect prediction of the class are identical for every class (J. Li et al., 2011). These 

assumptions are not valid for most real-world datasets, which often have an imbalanced 

distribution of classes (Ghofrani et al., 2022). High-performance classification models are built 

with a balanced dataset, which has near-equal sample counts of every class (Wei & Dunbrack, 
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2013). To balance the class distribution, advanced techniques from the “imblearn” package in 

Python, such as the oversampling technique, undersampling technique, and synthetic minority 

oversampling technique (SMOTE), are available (Tanha et al., 2020). 

The oversampling technique increases the minority class samples by duplication and equalizes the 

class distribution but raises concerns about overfitting. On the other hand, the under sampling 

technique reduces the number of majority class samples, which leads to the omission of helpful 

information about a dataset (Handling Imbalanced Data Using Python, 2020). Another applicable 

technique is the introduction of synthetic samples around the existing samples, called the SMOTE, 

which creates minority samples by linear interpolating two identical classes using Eq. (1) and 

adding to the dataset (J. Li et al., 2011).  

 𝑋𝑁𝑒𝑤 =  𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑖 − 𝑋𝑗)                                                                                         (1) 

The SMOTE approach uses sample Xi of a given class from the dataset and calculates the distance 

from neighboring identical classes. The neighboring sample Xj will be randomly selected to 

populate new XNew using Eq. (1). Hence, SMOTE can reduce overfitting and improve the 

classification model performance (J. Li et al., 2011). Therefore, SMOTE technique was used in 

our study. 

Splitting of the Dataset 

For supervised ML, datasets are divided into training and testing datasets using the 

"test_train_split" method with stratify parameter. This method divides the dataset according to the 

input ratio from the user and stratify parameter splits the dataset with an identical output class ratio 

in both the training and testing datasets. In this research, an 80:20 split ratio was used, meaning 

80% of the data were partitioned into a training dataset and 20% into a testing dataset. In supervised 

ML, a training dataset is used to train the model, which allows the model to learn. After training, 

model performance is evaluated using the testing dataset (Kürs et al., 2020). 

Classification Model Development 

Ensemble classification algorithms were used in research to implement ML models. An ensemble 

classifier method is a meta-approach for improving the predictive performance of the ML model 

(Lu et al., 2020). Ensemble classifiers generate one optimal ML model by combining multiple base 

models. The ensemble method is advantageous because it guarantees the prediction and provides 
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an ML model with high stability and resilience (Kurama Vihar, 2020). Vijaya & Sivasankar (2018) 

conducted a comparison study of ensemble and conventional classifiers to predict 

telecommunication customer churn. The outcome identified that the accuracy of ensemble 

classifiers, such as boosting and bagging, is greater than traditional classifiers. Hence, this research 

utilizes several ensemble-supervised ML classification models, such as RF, AdaBoost, and 

XGBoost.  

The RF classifier employs DTs as individual models and uses bagging as an ensemble method (L. 

Chen, 2019). Bagging is fitting several models to various samples of the same dataset and 

averaging the resulting predictions (Kurama Vihar, 2020). The algorithm develops many trees, 

which happens in parallel, and then these trees vote for the most popular class (Nikulski, 2020). 

The algorithm has two phases: the first is the development of the RF, and the second is the 

prediction of results from the RF developed in earlier stages. As RF uses the bagging method, it 

helps to reduce overall variance by combining the results of several classifiers trained on various 

training data samples. The RF classifier requires considerable computational power and time for 

training the model, as it creates several DTs to integrate their outputs (Yamini, 2021). For RF, the 

greater the number of trees, the better result of the model. One fundamental problem that can 

worsen the results of the RF algorithm is overfitting. However, when the RF classifier has 

sufficient trees for the model, then the outcome of the model is not prone to overfitting (Gupta & 

C, 2021). 

The AdaBoost classifier employs DTs as individual models and uses boosting as an ensemble 

method. Boosting is the repetitive application of a weak learning algorithm to different 

distributions over the training data and then merging of the weak learner's classifiers into a single 

composite classifier. AdaBoost is one of the popular ensemble ML methods that target 

misclassified instances in a previous weak classifier while training a new weak classifier. 

Obtaining high accuracy in the classification model is a primary objective; however, achieving 

high accuracy with only one classifier may not be possible. This problem can be rectified when 

multiple weak classifiers are employed, as each one gradually learns from the misclassified 

samples of the previous classifier. When training a new weak classifier, the weights of training 

samples are changed to improve learning. The weights are increased (decreased) for training 

samples that are incorrectly (correctly) classified in weak classifiers (An & Kim, 2010). The 
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AdaBoost algorithm is easy to implement, flexible, and prone to overfitting. However, it is 

sensitive to noisy data, outliers and takes longer to train as it trains the weak classifiers one by one 

(T. Chen & Guestrin, 2016). 

Extreme gradient boosting (XGBoost) is a supervised ensemble ML algorithm that uses gradient-

boosted DT as a model and boosting as an ensemble method (An End-to-End Guide to Understand 

the Math behind XGBoost, 2020). The input variables are assigned weight factors used by5 

gradient-boosted DT to predict the results. Variables that the previous weak learners incorrectly 

anticipated are given more weight before being placed into the following DT. The models trained 

with this approach provide a more accurate and more potent model for ML applications (XGBoost, 

2022). The model is popular due to its ability to manage sparse data as well as parallel and 

distributed computing while handling large samples (T. Chen & Guestrin, 2016). By incorporating 

regularisation parameter, learning rate, and column subsampling, the XGBoost lessens overfitting 

and improves in terms of speed and performance. Compared to AdaBoost, XGBoost is more 

challenging to comprehend, visualize, and tune. The XGBoost model requires significant resources 

to train and even to tune the model to get significant results. 

 

Figure 7. Confusion matrix for binary classification (Mohajon, 2020)  

Performance Assessment Using Evaluation Metrics 

Classifier models were evaluated using performance metrics, such as confusion matrix, 

classification reports, and accuracy. The confusion matrix is a table that is frequently used to 

describe how a classification model performed on the test data. The confusion matrix provides the 
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counts for true positive, false positive, false negative, and true negative (Figure 7) (Mohajon, 

2020). 

A classification report is simply a consolidated representation of precision, recall, F1-score, and 

support values of the testing dataset for the classifier model. The equations for precision, recall, 

and F1-score are given in Eqs. (2-4). The macro average in the classification report indicates the 

mean value of the evaluation parameters (precision, recall, and F1-score). However, the weighted 

average in the classification report indicates the weighted value of the evaluation parameter by 

multiplying the respective proportion of each class in the test dataset (M, 2019). Accuracy is a 

ratio of correctly predicted observations to total observations (Eq. (5)). In this research, the K-fold 

cross-validation technique is used with K=10. The use of cross-validation helps to eliminate 

overfitting and underfitting scenarios. It also generalizes the model accuracy for any independent 

data (Wong & Yeh, 2020). A classification model must have high accuracy, high precision, high 

recall, and high F1-score values to be called a high-performance classifier (Mohajon, 2020). 

The algorithms described above were implemented using Python version 3.9.7. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
                                                          (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
                                                                     (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  
                                                                      (4) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                             (5) 

Hotspot Analysis of HRGC Accidents 

Hotspot analysis is an advanced technique to identify hotspot locations using incident/accident 

data. This approach is superior to existing techniques for identifying accident frequency, rate, and 

density. In this research, hotspot analysis was conducted by incorporating two tools included in 

ArcGIS software: (1) spatial autocorrelation (Moran's I method) and (2) optimized hotspot 

analysis. 
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Spatial Autocorrelation (Moran's I method) 

The spatial autocorrelation method uses global Moran's I statistics, which consider feature values 

and location coordinates. Moran's I was one of the earliest measures of spatial autocorrelation 

globally and is still used to assess spatial autocorrelation (Eq. (6)). The spatial autocorrelation tool 

provides results that include Moran's I, Z-score, p-value, etc. (Spatial Autocorrelation (Global 

Moran’s I) (Spatial Statistics)—ArcGIS Pro, 2020). Moran's I helps identify spatial patterns such 

as random, dispersed, or clustered, while the Z-score and p-value help determine statistical 

significance and reject or accept the null hypothesis (Prasannakumar et al., 2011). Moran’s I can 

be calculated using the following equation: 

I = 
𝑁 ∑ ∑ 𝑊𝑖,𝑗 × (𝑋𝑖−𝑋) × (𝑋𝑗−𝑋)𝑗𝑖

(∑ ∑ 𝑊𝑖,𝑗)𝑗𝑖  ∑ (𝑋𝑖−𝑋) × (𝑋𝑗−𝑋)2
𝑖

,                                                                      (6) 

where N is the number of samples, Xi is the variable value at one location, Xj is the variable value 

at another location, X is the variable's mean, and Wij is a weight applied to the comparison between 

locations i and j. 

A Moran's I value near +1 indicates clustering (positive spatial autocorrelation) and near −1 

indicates dispersion (negative spatial autocorrelation); a value of zero indicates a random (no 

spatial autocorrelation) distribution. In some cases, when the Z-score is extensive, but the 

significance value indicates rejection of the null hypothesis, Moran's I needs to be assessed. The 

result displays a clustered pattern if the Moran's I value is greater than 0 and a dispersed pattern if 

the Moran's I value is less than 0 (Prasannakumar et al., 2011). 

Optimized Hotspot Analysis 

Optimized hotspot analysis is an ArcGIS software tool that helps search for the region with a high 

concentration of occurrences within a defined limit (Prasannakumar et al., 2011). Optimized 

hotspot analysis is similar to the hotspot analysis tool but uses a parameter from the input data to 

run Getis-Ord Gi* statistics such as counts of accidents and counts of fatalities. The results provide 

statistically significant spatial clusters of the hotspots (high-value points) and coldspots (low-value 

points). This tool operates by examining each characteristic and considering its surrounding feature 

points. The outcome of optimized hotspot analysis gives a GiZScore and GiPValue for every 

sample of the dataset. These values help analyze the statistical significance and spatial clustering 

of the samples using Eqs. (7-9). The features with a high GiZScore and a low GiPValue indicate 
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hotspots or high-value clustering locations, while features with a low GiZScore and low GiPValue 

indicate coldspots or low-value clustering locations (How Hot Spot Analysis (Getis-Ord Gi*) 

Works—ArcGIS Pro, 2020; Prasannakumar et al., 2011). 

𝐺𝑖
∗ =

∑ 𝑤𝑖,𝑗𝑥𝑗−𝑋𝑛
𝑗=1 ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑆√
𝑛 ∑ 𝑤𝑖,𝑗

2−(𝑛
𝑗=1 ∑ 𝑤𝑖,𝑗)2𝑛

𝑗=1

𝑛−1

                                                             (7) 

X = 
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
                                                                          (8) 

S = √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (𝑋)2                                                             (9) 

where 𝐺𝑖
∗ is the Z-score for analysis, 𝑥𝑗 is the attribute value of feature j, 𝑤𝑖,𝑗 is the spatial weight 

between features i and j, and n is the total number of features. X is mean centre and S is the 

standard deviation of all measurements. 

Results 

Feature Selection for HRGC Accident Data 

Figure 8 shows the importance of each feature of the HRGC accident dataset generated by the 

ExtraTrees classifier. “Vehicles_Daily” is the most contributing feature and “Access” the least 

contributing feature. 

 

Figure 8. Feature importance for HRGC accident causes 
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Feature Selection for Severity of Casualties in HRGC Accident Data 

Figure 9 shows the importance for each feature with respect to severity of casualties associated 

with HRGC accidents as obtained by the extra trees classifier model. “Train_Speed_MPH” is the 

most contributing feature and “NumberTrainsInvolved” the least contributing feature.   

 

Figure 9. Feature importance for the severity of casualty causes 

Analysis of Results of Classification Model of HRGC Accidents 

The HRGC accidents classification model was developed using features obtained from the feature 

selections, with the feature importance of each feature (Figure 8) considered in the model. The 

model accuracies were compared using a different number of features (based on the output of the 

ExtraTrees classifier) to obtain the optimum number of features for the classification model. The 

highest accuracy was obtained with the top seven features of the dataset, as reported in Table 2.  

Table 2. Features for the analysis of HRGC accidents 

Input features Output feature 

Trains_Daily, Vehicles_Daily, 

Train_Max_Speed_(mph), 

Road_Max_Speed_(km/h), Lanes, Tracks, 

Protection 

0 for an HRGC with no accident in history 

1 for an HRGC with at least one accident 

in history  
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The classifiers were then evaluated using the mean accuracy of the classifier models (value of 

accuracy after K-fold cross-validation) (Lasisi et al., 2020). The highest mean accuracy value was 

obtained with the XGBoost (0.90), followed by the RF (0.87) and AdaBoost (0.82) classifiers. 

Performance parameters (precision, recall, and F1 score) for the XGBoost classifier are reported 

in Table 3. Both classes (0 and 1) show high accuracy, high precision, high recall, and high F1-

score with XGBoost classifier. 

Table 3. Classification report for XGBoost classifier for HRGC accidents 

 Class Precision Recall F1-score Support 

0 (no accidents) 0.95 0.98 0.96 3718 

1 (at least 1 accident) 0.98 0.95 0.96 3718 

Accuracy  - -  0.96 7436 

Macro avg 0.96 0.96 0.96 7436 

Weighted avg 0.96 0.96 0.96 7436 

 

Analysis of Results of Classification Model of the Severity of Casualties Associated with 

HRGC Accidents 

The classification model was developed using features obtained from the feature selections, with 

the feature importance of each feature (Figure 9) considered in model. The model accuracies were 

again compared using a different number of features (based on the output of the ExtraTrees 

classifier) to obtain the optimum number of features for the classification model. The highest 

accuracy was obtained with the top 11 features of the dataset, as reported in Table 4.  

Table 4. Features for the analysis of severity of casualties associated with HRGC accidents 

Input features Output feature 
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Season, OccHour, ImpactTypeID, 

CrossingLocationID, NumTrainsDaily, 

NumVehiclesDaily, RoadSpeed_KPH, 

DriverActionID, NumOfOccupants, 

VehicleTypeID, Train_Speed_MPH 

0 for an HRGC accident with no serious injuries 

1 for an HRGC accident with at least one serious 

injury 

2 for an HRGC accident with at least one fatality 

 

The classifiers were then evaluated using the mean accuracy of the classifier models (value of 

accuracy after K-fold cross-validation) (Lasisi et al., 2020). The highest accuracy was obtained 

with XGBoost (0.79), followed by the RF (0.75) and AdaBoost (0.53) classifiers. 

The performance parameters (precision, recall, and F1 score) for the XGBoost classifier are 

reported in Table 5. All three classes (0, 1, and 2) show high accuracy, high precision, high recall, 

and high F1-score with XGBoost classifier. 

Table 5. Classification report for XGBoost classifier for severity of casualties associated with 

HRGC accidents 

 Precision Recall F1-score Support 

0 (no serious injuries) 0.80 0.74 0.77 77 

1 (at least one serious injury) 0.87 0.88 0.86 77 

2 (at least one fatality) 0.81  0.86 0.84 76 

Accuracy - - 0.83 230 

Macro avg 0.83 0.83 0.83 230 

Weighted avg 0.83 0.83 0.83 230 
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Results of Hotspot Analysis 

The hotspot analysis of the HRGC accidents was conducted using the HRGC inventory dataset. 

The dataset contained accident counts at different HRGCs across the rail network with GPS 

coordinates of each HRGC. The spatial autocorrelation of the dataset resulted in a z-score value of 

8.1851, p-value of zero, and Moran's I more significant than zero (0.0116), which together indicate 

positive spatial autocorrelation and spatial clustering of HRGC accidents in the rail network 

(Lakshmi et al., 2019). The data are distributed as clusters for the rail network, which can be 

helpful for further analysis of causal factors of HRGC accidents for each cluster.  

After obtaining the clustering distribution of HRGC accidents, optimized hotspot analysis was 

applied. The results of the optimized hotspot tool identified a total of 1,514 hotspot locations (with 

99% confidence) of HRGC accidents in Canada’s rail network (Figure 10).  

 

Figure 10. Hotspot locations for HRGC accidents with cluster number 

The details of hotspot locations were used to define different clusters based on their location across 

the rail network (Table 6).  

Table 6. HRGC accident cluster details 

No. Cluster number Cluster area Location counts 

1 Cluster 1 Winnipeg 394 

2 Cluster 2 Vancouver 354 

3 Cluster 3 Edmonton 232 
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4 Cluster 4 Toronto 190 

5 Cluster 5 Lethbridge 117 

6 Cluster 6 Regina 93 

7 Cluster 7 Yorkton 45 

8 Cluster 8 Brandon 35 

9 Cluster 9 Saskatoon 18 

10 Cluster 10 Halifax 17 

11 Cluster 11 Calgary 16 

12 Cluster 12 Prince George 1 

13 Cluster 13 Sudbury 1 

14 Cluster 14 London 1 

Total hotspot locations (with 99% confidence) 1,514 

Discussion of Results 

Causes of HRGC Accidents 

According to Figure 8, the most important causal factor of HRGC accidents is "Vehicles_Daily", 

which is the number of road vehicles per day over a given HRGC. An assessment of crossing 

inventory data shows the probability of HRGC accidents increases as the number of daily vehicles 

increases for HRGC (Figure 11a). The second most influential factor for HRGC accidents is 

"Trains_Daily", which is the number of trains per day over a given HRGC. Figure 11b shows the 

probability of HRGC accidents for different daily train counts and indicates a positive relation 

with daily train count. 
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Figure 11. HRGC accident probability vs. (a) vehicles daily and (b) trains daily 

Train_Max_Speed_(mph) is the third most influential causal factor for HRGC accidents. The 

fourth most important causal factor for HRGC accidents is Road_Speed_(km/h). Upon assessment 

of HRGC inventory data, the probability of HRGC accidents increases with an increase in train 

speed and road speed (Figure 12a, 12b). 
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Figure 12. HRGC accident probability vs. (a) train speed and (b) road speed 

The fifth most important causal factor of HRGC accidents is "Tracks", which means the number 

of rail tracks at an HRGC. Figure 13a shows the probability of HRGC accidents rises with an 

increase in track numbers at HRGCs. "Lanes" on the highway are the sixth most important cause 

of HRGC accidents. Similar to the number of rail tracks, the probability of HRGC accidents 

increases with an increase in the number of lanes at HRGCs (Figure 13b). 
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Figure 13. HRGC accident probability vs. number of (a) tracks and (b) lanes 

"Protection" is the seventh most important causal factor for HRGC accidents and refers to the type 

of protection device installed at HRGC. The data from Canadian railways show 45% of HRGC 

accidents happen at passive crossings, followed by 30% at crossings equipped with flashlights, 

gates, bells, and 25% at crossings equipped with flashlights and gates. These data indicate 

protection devices at HRGC help to reduce the number of HRGC accidents. 

Causes of Severe Casualties Associated with HRGC Accidents 

The most important causal factor for the severity of casualties associated with HRGC accidents is 

“Train_Speed_MPH”. Figure 14 shows the probability of accidents at HRGCs with fatalities and 

serious injuries increases with train speed. The figure also shows the probability of serious injury 
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is less at higher train speeds compared to the probability of fatality, likely due to higher train speeds 

resulting in more fatalities. 

 

Figure 14. Effect of train speed on the probability of severe injury or fatality associated with an 

HRGC accident 

The second most important causal factor for the severity of casualties associated with HRGC 

accidents is "NumTrainsDaily", which indicates the number of trains passing over the given 

HRGC. Figure 15 indicates the probability of a fatal accident increases with an increase in daily 

trains, with the highest probability of a fatal accident associated with >25 daily trains. The 

probability of serious injury accidents varies with daily train count, with the highest probability 

associated with 5-10 daily trains at HRGCs. 
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Figure 15. Effect of number of daily trains on the probability of severe injury or fatality 

associated with an accident at an HRGC 

"NumVehiclesDaily" is the third influential causal factor for the severity of casualties associated 

with HRGC accidents, and refers to the number of vehicles crossing over a given HRGC. Figure 

16 shows the probabilities of fatal and serious injury accidents both vary over the range of daily 

vehicles. The highest probability of a fatal accident is observed for <1,000 daily vehicles and the 

highest probability of serious injury accidents is observed for 1000-2000 daily vehicle. 

 

Figure 16. Effect of number of daily vehicles on the probability of severe injury or fatality 

associated with an HRGC accident 

"OccHour", the hour of the day when an accident occurred, is the fourth most important causal 

factor for the severity of casualties associated with HRGC accidents. Figure 17 shows the 

probability of fatal and serious injury accidents varies with the time of day and is highest between 

06:00 and 18:00. This is likely due to factors such as high volumes of commuter traffic, traffic 

jams/impatience, and sleepiness in the late afternoon. A high probability also occurs between 18:00 

and 23:00 and is likely due to factors such as low visibility, slower reaction time, and tiredness 

(Hao et al., 2016).  
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Figure 17. Effect of hour of the day on the probability of severe injury or fatality associated with 

an HRGC accident 

 The fifth most influential causal factor is "VehicleTypeID", which refers to the type of vehicle 

involved in the accident. Figure 18 shows the probability of a fatal accident is highest for 

motorcycles, followed by bicycles and automobiles, and the probability of serious injury is highest 

for motorcycles, followed by heavy trucks and bicycles.  

 

Figure 18. Effect of vehicle type on the probability of severe injury or fatality associated with an 

HRGC accident 
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"RoadSpeed_KPH" is the sixth most important feature and refers to the maximum road speed at 

an HRGC. Figure 19 indicates the number of both fatal and serious injury accidents increases with 

maximum road speed.  

 

Figure 19. Effect of road speed on the probability of severe injury or fatality associated with an 

HRGC accident 

The seventh most important causal factor that affects the severity of casualties associated with 

HRGC accidents is "Season". Table 7 shows that highest number of fatal and serious injury 

accidents happen in winter conditions and the lowest number in the fall. Weather conditions such 

as low visibility, presence of snow, and poor road conditions are contributing factors to high 

severity accidents in the winter (Singh et al., 2021). 

Table 7. Effect of season on the severity of casualties associated with HRGC accidents 

Season Fatal accident Serious injury accident 

winter 31 49 

spring 15 19 

summer 18 22 

fall 7 12 
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Discussion of Hotspot Analysis Results 

Figure 10 and Table 6 show major accident-prone clusters are located near major cities. The top 

three HRGC accident hotspot clusters are located near Winnipeg (cluster-1), Vancouver (cluster-

2), and Edmonton (cluster-3), with 394, 354, and 232 HRGC accident hotspot locations, 

respectively.  

The characteristics of cluster-1 were examined based on the HRGC features examined earlier 

(§3.1). This assessment of cluster characteristics shows that of these HRGCs: 1) 50% were 

equipped with passive protection and 50% with active protection equipment; 2) 22% handle 

vehicle traffic volumes greater than 5000 vehicles/day; 3) 29% handle more than 10 trains/day; 4) 

40% have a road speed of more than 60 km/h; 5) 20% have a train speed of more than 60 mph; 6) 

21% have more than one track; and 7) 14% have more than two lanes. Targeting these features 

from the given analysis can help reduce the accidents at HRGCs in cluster-1.   

Recommendations 

The ML algorithms highlight how railway, highway, environmental, and human factors contribute 

to HRGC accidents and the severity of associated casualties. Important railway and road factors 

discussed above include maximum train speed, number of tracks, daily train volumes, number of 

lanes, maximum road speed, and traffic volume. Environmental factors such as season, hour of the 

day, and visibility also contribute to HRGC accidents and consequences. Human factors include 

intentional attempts to cross, distracted/confused drivers, visibility obstructions, fatigue, slip of 

memory/attention, cognitive and emotional distractions, etc. (Baysari et al., 2008; Sekasi & Solihu, 

2021). 

Based on the results of this study, possible strategies to reduce HRGC accidents and related 

casualties are as follows: 

1. Installing gates and automatic railway-controlled crossings can restrict vehicles from 

entering the tracks (Report on Railway Safety and Interoperability in the EU - 2022, 2022). 

Upgrading passive crossings to active crossings by installing flashing lights, bells, and 

gates can help to reduce HRGC accidents (Mok & Savage, 2005). Additionally, installing 

four-quadrant and median barriers reduce the chances of accidents at HRGCs and reduce 
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severity in case of crashes (Dezhkam & Eslami, 2021). Table 8 shows the effects of 

crossing features on HRGC accidents and the severity of casualties.  

Table 8. Effect of crossing features on crossing accidents and fatalities (Chadwick et al., 2014) 

No. Crossing feature Effect 

1 Flashing lights 

1. Reduction by 64% in HRGC crash accidents in contrast to 

HRGCs with only crossbucks. 

2. Reduction in injuries by 84% and reduction in fatalities by 

83% when compared with only crossbucks. 

2 
Lights and gates (2) 

with flashing lights 

1. Reduction by 88% in HRGC crash accidents compared to 

HRGCs with only crossbucks. 

2. Reduction in injuries by 93% and reduction in fatalities by 

100% when compared with only crossbucks. 

3. Reduction by 44% in HRGC crash accidents compared to 

HRGCs with flashing lights. 

3 Median barrier Reduction by 80% in violations compared to 2-gate system. 

4 
Long arm gates (3/4 

of road coverage) 

Reduction by 67 to 84% in violations compared to 2-gate 

system. 

5 
4-quadrant gate 

system 
Reduction in violations by 82% compared to 2-gate system. 

6 

4-quadrant gate 

system + median 

barriers 

Reduction in violations by 92% compared to 2-gate system. 
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2. The development of grade separations for crossings that handle high daily vehicle and train 

traffic is a good solution to reduce the risk of crashes between trains and vehicles 

(Blagojevi et al., 2021). Grade separation showed a 100% decrease in injuries and fatalities 

(Chadwick et al., 2014). 

3. Advanced warning devices can be implemented to address the effects of a large number of 

highway lanes and tracks at HRGCs (Keramati et al., 2020). Chadwick et al. (2014) 

recommend an automated photo and video enforcement system to help investigate vehicle 

users' compliance with existing warning infrastructure at HRGCs. This system has reduced 

HRGC-related violations by 34-94%. 

4. Reduction of train and vehicle speeds during their approach to high-risk crossings can 

reduce HRGC accidents and the severity of associated casualties (T. et al., 2011).  

5. Reduced lighting and/or hindrance to recognizing the incoming train are factors in HRGC 

accidents. Thus, installing a lighting source and clearing obstructions from the nearby area 

could reduce the risk of HRGC crashes (Blagojevi et al., 2021). Provision of lighting 

sources at HRGCs resulted in a reduction of nighttime accidents by 52% (Chadwick et al., 

2014). 

6. Pavement strips/rumble strips near crossings are noticeable and effective features in 

helping drivers recognize upcoming crossings (Tey et al., 2013). 

7. Education through campaigns, for drivers and pedestrians, about traffic discipline and the 

consequences of HRGCs crashes to individuals and railway can be effective (Sekasi & 

Solihu, 2021). Awareness campaigns have resulted in a 15% reduction in HRGC accidents 

and a 19% reduction in fatalities associated with HRGC accidents (Chadwick et al., 2014). 

Conclusion 

HRGCs are regarded as high-risk areas on railway networks because of the catastrophic 

consequences that can result from HRGC accidents. Thus, transportation authorities place a great 

focus on safety at HRGCs. This study identified the major causal factors for HRGC accidents, and 

the severity of casualties associated with HRGC accidents in Canada. The results indicate high 

train traffic, high vehicle traffic, high highway speed, and high track speed are major factors that 

contribute to HRGC accidents, while occurrence hour, type of vehicle, high train traffic, high 
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vehicle traffic, high highway speed, and high train speed are major factors that contribute to the 

severity of casualties associated with HRGC accidents. The ML models help predict HRGC 

accidents and the associated severity of casualties by employing supervised ML algorithms. These 

supervised ML models are handy tools for authorities to interpret the data and re-apply using 

updated data whenever required in the future. The causes identified in this research are matching 

with the study identified in the introduction section. In addition, optimized hotspot analysis using 

ArcGIS software recognized the spatial patterns of HRGC accidents in Canada’s rail network. 

Identifying such HRGC accident hotspot locations will allow authorities to target high-risk 

accident-prone areas of the railway network.  

The findings of this research can benefit authorities and policymakers with respect to decision-

making, allocating resources, and implementing countermeasures to reduce the number of HRGC 

accidents and the severity of associated casualties in Canada’s rail network. However, this study 

is not without limitations. The source datasets used for this research had many empty features due 

to poor reporting, which were thus excluded from the datasets used in the analysis. As such, the 

analysis may not have identified all causal factors for HRGC accidents and the severity of 

associated casualties. Furthermore, the classification model datasets did not consider human-

related features such as driver experience and state (physical/mental) and gender. Thus, future 

research should investigate the role of human factors in HRGC accidents and the severity of 

associated casualties to provide more insight and help improve the safety of HRGCs in the rail 

network. 
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Chapter 3: Risk Assessment of the Train Inspection Portal System (TIPS) using a Machine 

Learning-Fuzzy-Failure Mode and Effect Analysis (Fuzzy-FMEA) Technique 

 

Abstract 

New technologies are being developed worldwide to improve decision-making, reduce errors, 

lower costs, and save time while ensuring integrity, safety, and reliability are not compromised. 

The train inspection portal system (TIPS) is one such technology currently used for the remote 

inspection of railcars. Conducting reliability and risk assessments of this technology at the early 

stage is very helpful in identifying and rectifying potential issues that will affect the technology at 

later stages of implementation. Failure mode and effect analysis (FMEA) is one of the most 

promising techniques for risk assessment, identifying potential system failures as well as their 

impacts and repercussions. Although FMEA is widely used in many industries, the approach does 

have some limitations. To overcome the challenges for FMEA and identify the important potential 

failures for the TIPS, this study used a fuzzy failure mode and effect analysis (fuzzy-FMEA) as a 

machine learning approach for better decision-making considering the vagueness and imprecision 

of real-life language. This study used a 5-point scale to determine rankings for severity, 

occurrence, and detectability. Ultimately, recommendations are made for addressing the high-risk 

priority number (RPN) failure modes for which implementation in the field would significantly 

reduce the risk of failure and enhance the system’s overall reliability. 

Keywords: Fuzzy-FMEA, Fuzzy-RPN, TIPS, Triangular fuzzy number, Reliability 
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Introduction 

Advancements in technology have revolutionized various industries, including manufacturing, 

communication, healthcare, education, and transportation, among others. These technologies are 

helping humans with better decision-making, reducing mistakes, lowering costs, and saving time. 

The reliability of any technology or system depends upon its various subsystems, components, and 

equipment. The reliability of a component is the likelihood that the component will work 

satisfactorily for at least a specific period when employed under specific conditions (Johansson et 

al., 2013). Thus, a crucial concern during the initial phase of system design is the reliability of the 

entire system and limiting the required downtime (Afolalu et al., 2018). Conducting an early risk 

assessment of technology can help identify potential issues and implement preventative measures. 

Failing to do so can result in significant costs during later stages of development. The failure mode 

and effect analysis (FMEA) technique is widely used to improve an overall system's reliability 

(Huang et al., 2020). This systematic risk assessment technique uses historical failure data to 

evaluate and reduce the risk of failures of design, processes, and services (Liang & Li, 2021).  

FMEA was first developed by the United States (US) military in 1940 and used as a semi-

quantitative risk assessment method (Akbari et al., 2013). Since then, FMEA has been widely 

employed as a promising technique for ensuring safety and reliability in the nuclear, aerospace, 

automotive, chemical, mechanical, and electronics industries (Huang et al., 2020; Nuchpho et al., 

2014). FMEA is a suitable method for assessing design reliability by considering the causes and 

effects of failure modes in a complex system (Balaraju et al., 2019). It is a systematic team 

approach that identifies and examines the possible failure mode of a system or product or process, 

and gives its possible adverse outcomes. It also provides recommendations that could reduce or 

nullify the chance of system failure. Conventional FMEA is based on three factors: severity (S), 

occurrence (O), and detectability (D). FMEA uses a risk priority number (RPN) calculated by 

multiplying rankings of the S, O, and D factors (Eq. 10) (Nasruddin et al., 2018):  

RPN = S (Severity) × O (Occurrence) × D (Detectability).     (10) 

Many studies have been conducted in various sectors, such as manufacturing, healthcare, and 

product design, using the conventional FMEA method. These FMEA studies were conducted using 

different ranking schemes, such as the 10- and 5-point schemes for S, O, and D ranking. Goel and 

Graves (2007) conducted an FMEA study for increasing reliability in the electronic system 
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production industry using a 10-point scale; these authors stated FMEA was a simple method for 

evaluating the reliability of complex electronic systems that identified 48 potential failure modes. 

Lago et al. (2012) used the FMEA technique to reduce the hazards associated with drug delivery 

to children at Padua University Hospital in Italy. Five multidisciplinary teams conducted this 

study, and high-risk failure modes (RPN>48) were treated with risk-reduction strategies. A group 

of researchers from China used the FMEA technique for product development in a nuclear plant 

facility; their study implemented a 10-point scale for conducting FMEA on reheat valve design 

that helped enhance the product’s stability at an early stage (Wu et al., 2012). Feili et al. (2013) 

conducted an FMEA study for geothermal power plants (GPP) in Iran to reduce potential failures. 

Experts from five different organizations were involved in the study to collect the S, O, and D 

rankings for various failure modes, with overhauling/replacing equipment, regular 

maintenance/calibration, conducting root cause analysis and redesigning the system offered as 

mitigative strategies. Another risk management study conducted by Ebrahemzadih et al. (2014) 

for an Iranian steel company used the FMEA technique and a 10-point scale. The study identified 

17 failure modes for the steel processing complex and the high-risk failure modes using the RPN. 

The authors provided corrective actions for high-risk modes, and a reassessment of failure modes 

after implementing these actions showed a reduction in RPNs. Thakore et al. (2015) used a 10-

point scale and the FMEA technique to enhance the quality and efficiency of the bearing 

manufacturing process in India. These authors identified seven failure modes, and the output of 

the FMEA identified the ranking of the failure modes based on the RPN. This study helped 

prioritize the most critical causes of failure in the manufacturing process. Martin et al. (2017) used 

an FMEA study with a 5-point ranking scheme at Seattle Children’s Hospital, US, to reduce 

medication errors in pediatric anesthesia. The study identified eight high-risk failure modes and 

resulted in the implementation of countermeasures that helped reduce the median medication error 

rate from 1.56 to 0.95 per 1000 anesthetics. To reduce the errors in dispensing medicines in 

pharmacies and improve patient safety, Stojković et al. (2017) used an FMEA study with a 5-point 

ranking scheme in Germany. The analysis was conducted by a ten-member team that identified 30 

failure modes for the medicine dispensing process and found the top 14 failure modes of the high-

risk category with RPN values greater than 12. The outcomes of the analysis aided in the 

implementation of corrective actions and led to a reduction in risk for most high-risk failure modes.  
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Although conventional FMEA helps lower the risk of system failure and enhances safety and 

reliability, it still has a few drawbacks. Conventional FMEA gives equal weights to rankings of S, 

O, and D for RPN calculations, and thus returns the same RPN for different combinations of S, O, 

and D using Eq. (10). As such, the value of the RPN cannot be used to define the order of corrective 

action for mitigation (Liu et al., 2013). For example, in the RPN calculation, a failure mode with 

very high severity, low rate of occurrence, and very high detectability (say S = 9, O = 3, and D = 

2) may have a lower RPN at 54 than one with all parameters moderate (say S = 4, O = 5, and D = 

6) that has an RPN of 120. In this case, the criticality of the former failure mode is high compared 

to the latter due to its high severity ranking, yet the RPN value is equally high for the latter, 

arguably less critical situation. Also, precise value estimation for S, O, and D ranking is difficult. 

In practical applications, the criteria used to evaluate the three risk factors are often expressed in 

natural language, leading to imprecision, ambiguity, and vagueness when using conventional 

FMEA. RPNs are scattered over the range of 0 to 1000 (for a 10-point scheme) and 0 to 125 (for 

a 5-point scheme) and are distinct values and not continuous in nature. 

To overcome the shortcomings of conventional FMEA and incorporate the vagueness of real-life 

systems, an advanced technique known as fuzzy-FMEA was developed (Zúñiga et al., 2019). In 

this approach, the three hazard variables S, O, and D are described based on fuzzy linguistic terms, 

and risk is evaluated by applying fuzzy system fundamentals. Fuzzy logic works on natural 

language, mostly used in normal life. Subject matter experts can build such models requiring no 

additional training. The mathematical concepts of fuzzy interface systems are relatively 

straightforward. A fuzzy logic system is adaptable and can accept data inaccuracies in the datasets. 

Complex non-linear models can also be handled accurately and efficiently (Balaraju et al., 2019). 

Fuzzy-FMEA is used in various industries, including the oil and gas industry and medical industry, 

and for the maintenance of technical systems in mining and shipping (Łapczyńska & Burduk, 

2021). Sharma et al. (2005) conducted a failure risk assessment of a hydraulic system using the 

fuzzy-FMEA technique in India. The study's findings support the conclusion that the fuzzy logic-

based approach not only overcomes the drawbacks of traditional RPN evaluation methodology but 

also enables experts to provide a more flexible and realistic way of using their knowledge, 

experience, and expertise. A Romania-based group of researchers compared FMEA and fuzzy-

FMEA for failure risk evaluation of injection pumps (Rachieru et al., 2014). A risk assessment 
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study in medical product development performed using a traditional FMEA and fuzzy-FMEA 

approach in India found the fuzzy-FMEA approach produces more exact, appropriate, and logical 

conclusions than traditional FMEA (Kirkire et al., 2015). The study results demonstrate that 

applying the fuzzy-FMEA method can lead to a reasonable ranking and help the FMEA team more 

accurately assess and rank risks. Ivančan & Lisjak (2021) conducted a reliability evaluation study 

for various equipment in an oil refinery in Croatia. The study used fuzzy logic for severity, 

occurrence, and detectability and found the fuzzy-RPN for various failure modes. The outputs 

increased the quantification of failure mode risk accuracy and the prioritization of mitigation 

efforts. Overall, the fuzzy-FMEA approach is more accurate than conventional FMEA and reduces 

the likelihood of producing comparable RPN values with different consequences (Rahimdel & 

Ghodrati, 2021; Sifwat et al., 2021). The estimated fuzzy-RPN could be used to better prioritize 

mitigation measures/recommendations to identify all high risks.  

This study focused on performing a risk assessment of the train inspection portal system (TIPS) 

system using fuzzy-FMEA method. TIPS is a semi-automated machine vision technology used to 

remotely inspect railcars in trains and identify different railcar defects using images captured by a 

camera system. The camera system captures 360° images of railcars, which are then inspected by 

remote certified car inspectors (CCIs) and flags any defects/potential defects in the railcars of the 

trains. This system consists of equipment including automatic equipment identification (AEI) tag 

readers, cameras, cloud servers, blowers, heaters, air conditioning units, etc. Ensuring the 

reliability of the system is crucial for conducting remote railcar inspection, and this reliability 

depends on various pieces of equipment. To the best of the authors’ knowledge, limited research 

has been conducted on remote railcar inspection technology in the railway industry. Therefore, we 

conducted a risk assessment during the early design stages of TIPS technology implementation to 

identify potential risks and implement appropriate mitigative measures. The main objectives of 

this research were to i) conduct a risk assessment of TIPS using the fuzzy-FMEA method and ii) 

identify the ranking of various failure modes and provide recommendations to improve the 

reliability of this technology. 

Methodology 

This research developed a fuzzy-FMEA based on fuzzy logic theory and the conventional FMEA 

method. The advantage of fuzzy theory application for risk assessment is that the resulting system 
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assessment is qualitative and can operate with linguistic variables as some events cannot be 

described numerically. The fuzzy sets overcome two significant complications related to 

modelling with mathematical language (Zimmermann, 2001): first, real-life circumstances are 

rarely straightforward and deterministic and thus difficult to define precisely; and second, a 

comprehensive description of a genuine system frequently necessitates far more specific data than 

a human could ever identify, interpret, and comprehend. The fuzzy logic methodology comprises 

four steps: fuzzification, if-then rule base, fuzzy inference system, and defuzzification (Figure 20). 

 

Figure 20. Flow chart for fuzzy logic methodology 

Fuzzification 

Fuzzification refers to the conversion of crisp input data into a fuzzy input set using membership 

functions and linguistic terms (Fuzzy Logic Fundamentals, 2001). A membership function (MF) 

is a curve that specifies how each point in the input space is mapped to a degree of membership that 

ranges from 0 to 1. The MF is a building block for fuzzy set theory, which is used to determine the 

fuzziness of the system. MFs have a shape that is chosen by the individual based on experience, 

such as triangular, trapezoidal, Gaussian, or π-shaped (Adil et al., 2015). All MFs should have a 

unique degree of membership for all values of the set. The shape of MFs is determined by one's 

beliefs about a particular linguistic variable. Deciding the number of MFs and distribution of 

intervals is equally important as the shape of the MF (Fuzzy Logic Fundamentals, 2001).  

The number of MFs and their shapes influence the computational time in solving fuzzy logic 

problems. Princy & Dhenakaran (2016) compare fuzzy controller performance using three 

different MFs; the triangular and trapezoidal MFs both performed better than the Gaussian MF, 
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but the results of the fuzzy output in terms of memory usage and arithmetic operations clearly 

indicated the triangular MF consumed less computer memory than the trapezoidal MF. 

The triangular MF is a widely used MF for solving problems with a fuzzy approach. Triangular 

MFs can be defined with three parameters, a, b, and c, as shown in Figure 21. The (a, b, c) is 

defined as a triangular fuzzy number (TFN). The degree of membership µ can be calculated using 

Eq. (11), where x is any point on the x-axis:  

µ𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 (𝑥; 𝑎, 𝑏, 𝑐) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥−𝑎

𝑏−𝑎
,

𝑐−𝑥

𝑐−𝑏
) , 0).    (11) 

 

Figure 21. Triangular fuzzy MF 

If-then rule base 

After deciding on the MFs of the fuzzy system, the next step is to decide the if-then rule base. The 

if-then rule base is a set of fuzzy rules used to identify the relationship between input and output 

variables. Developing fuzzy rules requires a high level of system knowledge and sufficient 

experience with the system (Tay & Lim, 2006). A single-variable fuzzy rule is defined as “if x is 

A, then y is B”, where “x is A” is the antecedent and “y is B” is the consequent. When more than 

one variable is available in the system, different logic operators are used in the antecedent to 

develop a fuzzy rule (Xu et al., 2002). Logical operators (e.g., intersection, union, and 

complementation; Figure 22) are used to develop fuzzy system rules. A rule’s output is shaped by 

the firing strength, which is the outcome of the operators used in defining the rules (Dernoncourt, 

2013). 

The intersect operator (also known as t-Norm) finds the common elements of the two fuzzy sets 

and retains the lowest membership value if an element is available in both sets. Thus, the intersect 
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operator finds the lowest degree of MF for elements (Eq. 12). For example, consider two sets, A 

and B, in the universe of U. The intersect operator is denoted as A Ո B (Popescu & Pistol, 2021): 

µA Ո B = min[µA(x), µB(x)].          (12) 

The union operator (s-Norm) connects the two sets together to create a new set. The union operator 

considers the element value only once and takes the highest value of the MF for elements. Thus, 

the union operator finds the maximum degree of membership for given elements (Eq. 13). For 

example, consider two sets A and B in the universe of U. The union operator is denoted as A U B 

(Popescu & Pistol, 2021): 

µA U B = max[µA(x), µB(x)].         (13) 

 

Figure 22. Types of fuzzy logic operators (Wang, 2015). 

The complement operator behaves opposite to the degree of membership (Eq. 14). For example, 

consider a set A in the universe of U. The complement of A is denoted as Ā (Popescu & Pistol, 

2021): 

µ Ā(x) = 1 - µA(x).          (14) 

The two most widely used fuzzy rule-based models in the fuzzy logic system are the Mamdani 

model and Takagi-Sugeno-Kang (TSK) model (Kumru & Kumru, 2013). The present study 

employs the Mamdani model, which uses linguistic variables in the antecedent and consequent for 

establishing a fuzzy rule-based system. Mamdani’s model is highly efficient for linguistic inputs 

by humans (Riza et al., 2019). The Mamdani system features two types of if-then rules 

(Khosravanian et al., 2016): multiple input and single output (MISO) and multiple input and 
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multiple-output (MIMO). An example of MISO would be as follows: if X1 is A1 and . . . and Xn is 

An, then Y is B. Here, Xn and Y are linguistic variables and A1,…, and An and B are linguistic 

terms of respective variables (Ding et al., 2000). 

Fuzzy rules calculate the system’s output based on different linguistic terms used in the input and 

fuzzy operators employed in individual rules. Defining the fuzzy rules by if-then structure is 

important for obtaining the fuzzy output. For any given system, the number of fuzzy rules can be 

calculated using Eq. (15): 

Number of fuzzy rules = mn,          (15) 

where m is the number of MFs in variables and n is the number of input variables in the system 

(Geramian et al., 2019). 

Fuzzy inference system 

The fuzzy inference system obtains fuzzy output from fuzzy input sets by applying different fuzzy 

rules defined in the rule base (Rizvi et al., 2020). The fuzzy inference system determines the 

number of antecedents of rules that apply to a given fuzzy input set. More than one rule may be 

satisfied for a given fuzzy input. The fuzzy rules are fired in parallel with the inference system and 

rule base to obtain a fuzzy output set (Fuzzy Logic Fundamentals, 2001). The results of every rule 

are then combined, which is called aggregation. The final fuzzy set represents each rule's output 

integrated into a single fuzzy set as the aggregation of multiple rules. 

 

Figure 23. Center of gravity method for defuzzification (Center of Gravity (CoG) Method for 

Defuzzification, 2023) 
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Defuzzification 

Defuzzification processes the output fuzzy set to obtain a crisp output value. The fuzzy output set 

from the fuzzy inference system is obtained in the form of Gi (i=a, b, c, d, e) on the output MF 

(Figure 23), where a, b, c, d, and e represent the value on the MF (Rizvi et al., 2020). Many methods 

are available to give a crisp output from a fuzzy output set, such as centroid, maximum membership 

method, mean of maxima method, weighted average method, etc. (Defuzz: Defuzzify Membership 

Function, 2023). The most widely used defuzzifier is the centroid method (also known as the center 

of gravity), which gives a crisp value based on the center of gravity of the aggregated fuzzy output 

set using Eq. (16) (Kumru & Kumru, 2013): 

𝒁 =  
∑ 𝒁𝒋∗µ𝒄 (𝒁𝒋)𝒏

𝒋=𝟏

∑ µ𝒄 (𝒁𝒋)𝒏
𝒋=𝟏

 ,         (16) 

where µ𝒄 represents the fuzzy membership set, 𝑍𝑗 is the value of the membership, and Z is the crisp 

output of the fuzzy system. The center of gravity method was used in our research as the 

defuzzification method (Sharma et al., 2005). 

Proposed Framework for Fuzzy-FMEA 

For the fuzzy-FMEA, failure is defined as the inability of TIPS “to perform its intended function” 

(Abdelgawad & Fayek, 2010). In this fuzzy-FMEA study of TIPS, we defined the linguistic terms 

and triangular MFs for three input variables (S, O, and D) and one output variable (fuzzy-RPN) as 

a part of the fuzzy system. MATLAB R2021a software was used to develop the fuzzy-FMEA 

machine learning code. The fuzzy-FMEA was conducted using an FMEA sheet containing various 

elements, including item/function, failure mode, potential failure cause, severity, potential failure 

effect, occurrence, current design control, detectability, fuzzy rule base for fuzzy-FMEA, and 

fuzzy-RPN (Ivančan & Lisjak, 2021). 

Item/function 

An item/function is the system/process or section of the system/process on which the team 

performs FMEA. 
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Failure mode 

Failure mode refers to how the product or process could fall short of fulfilling its intended purpose 

and any necessary conditions. It may also involve executing an unwanted or undesirable function, 

performing a function insufficiently, poorly, or intermittently, or failing to complete a task.  

Potential failure cause 

Potential failure cause is the precise reason for the failure of an item/function, ideally discovered 

by repeatedly asking “why” until the underlying cause is identified. 

Severity 

The severity is the ranking given to the failure mode based on its worst possible effect. Table 9 

shows the crisp severity ranking for FMEA on a scale of 1 to 5, with 1 being the least severe effect 

and 5 being the highest severe effect of the failure mode on the system (J. Singh et al., 2020). The 

experts assess the severity of effects caused and give a crisp severity ranking to the failure mode 

of the item/function from Table 9. 

Table 9. Severity ranking table (Modified from Chin et al., 2009). 

Severity ranking Severity 

1 No effect on TIPS. 

2 

TIPS is operable with a minor reduction in the quality of TIPS 

images. 

3 

TIPS operable with a moderate reduction in the quality of TIPS 

images. 

4 

TIPS is operable, but a major reduction in the quality of TIPS 

images and inspection is very difficult. 

5 

TIPS is inoperable, and no images are captured or no image access 

on the remote server. 
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Three linguistic terms (low, medium, and high) were defined for the severity variable for the fuzzy-

FMEA technique. The TFNs were used to map the linguistic terms over the universe of discourse 

(U of D) [0,5], which is defined as the set of potential values that can be allocated to the variable. 

Hence, three MFs were used to define the severity variable over the U of D (Table 10). Figure 24 

shows the MFs generated using TFNs for the severity variable. 

Table 10. TFNs and linguistic terms for severity (Modified from Balaraju et al., 2019). 

TFN 
Linguistic 

term 
Meaning 

0-0-2.5 Low System operable with relatively less severe failures. 

0-2.5-5 Medium System operable with relatively moderate failures. 

2.5-5-5 High System inoperable due to destructive/harsh failure. 

 

 

Figure 24. MFs for severity 

Potential failure effect  

The potential failure effect is the result of a failure mode for the system or process. All possible 

potential worst effects of failure modes are noted on the FMEA sheet. 

Occurrence 

Occurrence is the likelihood/probability of an identified cause happening during the life cycle of 

the item/function. The occurrence ranking is calculated based on the mean time between failures 
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(MTBF). Table 11 shows the crisp occurrence ranking for conventional FMEA, where 1 represents 

the least likelihood, and 5 represents the highest likelihood of occurrence (J. Singh et al., 2020). 

Experts provide the crisp ranking for occurrence from Table 11, based on MTBF data from the 

previously published incident report and experience of different failures. 

Table 11. Occurrence ranking table (Modified from Sharma et al., 2005). 

Occurrence ranking MTBF (Mean Time Between Failure) 

1 >3 years 

2 1-3 years 

3 6 months – 1 year 

4 3-6 months 

5 <3 month 

 

 

Figure 25. MFs for occurrence 

Similar to the severity variable, three linguistic terms (low, moderate, and high) were defined for 

the occurrence variable, with the TFNs used to map the linguistic terms over the U of D [0,5]. 

Hence, three MFs were used to define the occurrence variable over the U of D (Table 12). Figure 

25 shows the MFs generated using TFNs for the occurrence variable.  
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Table 12. TFNs and linguistic terms for occurrence (Modified from Sharma et al., 2005) 

TFN Linguistic term Meaning 

0-0-2.5 Low Cause has a low frequency of occurrence. 

0-2.5-5 Medium 
Cause has an occasional frequency of 

occurrence. 

2.5-5-5 High Cause has a repeated frequency of occurrence. 

 

Current design control 

Current design controls are the strategies or measures currently being considered available to 

lessen or eliminate the risk related to each potential cause. Control measures can be used to stop 

or identify the cause during the product development process or activities taken to identify an issue 

during service before it becomes catastrophic. 

Detectability 

Detectability ranking refers to current design control for how effectively it detects the failure 

occurrence. The FMEA team uses the lowest ranking of detectability when accessing more than 

one design control. Table 13 shows the crisp detectability ranking in which 1 indicates when design 

control can undoubtedly detect the problem, and 5 indicates when no design control is available 

for failure mode (J. Singh et al., 2020). 

Table 13. Detectability ranking table (Modified from Chin et al., 2009). 

Detectability 

ranking 
Detectability Description 

1 
Controls will almost certainly detect the 

problem of the system. 
Detected 9/10 times 
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2 
Design control will be sufficient for 

detecting a problem. 
Detected 7/10 times 

3 
Design control has a moderate chance of 

detecting a problem. 
Detected 5/10 times 

4 
Design control will be insufficient for 

detecting a problem. 
Detected 2/10 times 

5 
Control will not and/or cannot detect a 

problem, or there is no design control. 
Detected 0/10 times 

 

Again, three linguistic terms (low, moderate, and high) were defined for the detectability variable. 

The TFNs were used to map the linguistic terms with the U of D of [0,5]. Hence, three MFs were 

used to define the detectability variable over the U of D (Table 14). Figure 26 shows the MFs 

generated using TFNs for the detectability variable.  

Table 14. TFNs and linguistic terms for detectability (Modified from Sharma et al., 2005) 

TFN 
Linguistic 

term 
Meaning 

0-0-2.5 Likely High probability of detection. 

0-2.5-5 Medium Moderate probability of detection. 

2.5-5-5 Unlikely Low probability of controls to detection. 
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Figure 26. MFs for detectability 

Fuzzy rule base for fuzzy-FMEA 

In this research, the S, O, and D variables each have three MFs. Thus, 27 (mn=33) rules were 

required for the fuzzy-FMEA system. The fuzzy logical operator AND was used for the fuzzy 

system as S, O, and D are dependent on each other to generate output variables (fuzzy-RPN). The 

Mamdani model was used to define fuzzy rules in a fuzzy rule base, as it is highly efficient with 

human reasoning modelling (Rizvi et al., 2020). The fuzzy rules were developed with expert 

knowledge; all rules are available in Appendix 3. Fuzzy output is generated based on the fuzzy 

inference system by using the fuzzy rule base and fuzzy inputs. 

Fuzzy-RPN 

The output of the fuzzy inference system is the fuzzy output that was defuzzified using the center 

of gravity method. The final crisp output shows the crisp output value of the fuzzy-RPN for 

comparison of failure modes of the system.  

Three linguistic terms (low, medium, and high) were defined for the fuzzy-RPN output variable 

(Table 15). TFNs were used to map the linguistic terms with the U of D of [0,125]. Hence, three 

membership functions were used to define the fuzzy-RPN variable over the U of D (Table 15). 

Figure 27 shows the MFs generated using TFNs for the fuzzy-RPN variable.  

Table 15. TFNs and linguistic terms for RPN 

TFN Linguistic term 

0-0-62.5 Low fuzzy-RPN 
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0-62.5-125 Medium fuzzy-RPN 

62.5-125-125 High fuzzy-RPN 

Fuzzy-RPNs give an idea about the risk associated with each individual failure mode. A higher 

fuzzy-RPN indicates higher risk is associated with the failure mode (Yucesan et al., 2021). The 

range of fuzzy-RPNs is between 0 and 125. To implement mitigative measures for the system, 

high-risk failure causes must be found and identified. In this study, we used a measure of 66.67% 

of the range value (66.67% × 125 = 83.33) as a threshold (Farhanah, 2020). Thus, a failure cause 

with a fuzzy-RPN value greater than 83.33 is considered a high-risk failure cause. 

 

Figure 27. MFs for fuzzy-RPN 

Fuzzy-FMEA Applied to TIPS 

This study is part of the automated machine vision inspection system (AMVIS) project and was 

conducted as a team effort involving experts in portal office inspection (POI) technology, some 

from a renowned railway company and others affiliated with a prominent research and 

development organization. The ranking scores required for different failure modes were 

determined based on opinions from the experts. Their knowledge helped to provide rankings of 

the three factors (S, O and D) that were used to conduct this risk assessment of POI technology. 

We classified the system into various subsystems to analyze the TIPS technology’s failures and 

fully understand all failure modes. TIPS is comprised of three subsystems. First, the AEI tag 

system is used to identify the railcar ID by TIPS software to assign the camera images. This system 

comprises the wheel detector electronics and cables connected from the trackside to bungalow 

equipment. Based on the AEI data, the photos and data are matched to specific cars, making the 
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car parts available for inspection and study. Second, TIPS has four camera systems — CSCView, 

AHView, TruckView, and TrainView that function to capture images of the railcar when it passes 

through the TIPS portal. The cameras are located around the tracks using structures called the 

gantry. Five cameras are installed in the bottom tie of the rail to inspect the railcar's undercarriage. 

Combined, these camera systems capture 360° views of railcars. Third, TIPS has a bungalow 

structure that houses various equipment that is part of the system. This includes: i) two air 

conditioning units to maintain the temperature inside the bungalow, which is required for working 

system computers and server units; ii) a communication system to transfer the images captured by 

camera units to cloud servers. Remote CCIs can use the images on the servers to inspect the 

railcars. Data are transferred over the local area network (LAN), and Trimble (the company that 

developed the inspection technology) can access the system remotely for system management and 

diagnosis; iii) power distribution units supply power to trackside equipment. The power lines are 

protected against power surges using circuit breakers. The power and connection cables from 

trackside equipment are connected to different systems inside the bungalow. These cables are 

connected using underground conduits; iv) a heater/blower system to blow snow from the 

CSCView cameras. This system activates based on the environmental conditions of the site 

location. The AEI tag reader activates the system before the train passes through the TIPS portal; 

and (v) servers to transfer the images captured by the TIPS camera system to the company-owned 

server. Through the WISE server, these images are available to the Train Watch software that is 

used for the inspection of railcars for any type of defects. 

Procedure for fuzzy-FMEA 

The steps followed for the fuzzy-FMEA of TIPS technology are as follows: 1) a subsystem or 

component of the system is selected for fuzzy FMEA; 2) different failure modes or potential failure 

modes are identified for the subsystem/ component of step 1, and experts recognize failure modes 

based on their experience with subsystems/components; 3) experts identify the potential failure 

effects for the failure mode selected in step 2; 4) using the experts’ knowledge and experience, the 

crisp severity ranking of the identified failure effect is selected from Table 9; 5) using the expertise 

of POI technology experts, potential failure causes are identified for the failure effects found in 

step 3; 6) the crisp occurrence ranking of the identified failure causes is chosen from Table 11 

using the experts’ expertise; 7) current design controls for the potential failure cause, if any, 

available in the system are identified; 8) the crisp detectability rankings for identified current 
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design controls are chosen from Table 13 using the experts’ expertise; 9) all crisp rankings of 

severity, occurrence, and detectability are input in MATLAB code, and the crisp input is processed 

into a crisp output based on the MFs of fuzzification, fuzzy rules, and defuzzification methods; 

10) output is obtained as a fuzzy-RPN from the MATLAB code for fuzzy-FMEA; 11) after 

analysis of all failures/potential failures of subsystems/components, failure modes are ranked 

according to descending order of fuzzy-RPNs; and 12) high-risk failure modes are identified 

according to fuzzy-RPN values, and recommendations provided to reduce the risk of POI 

technology failure and improve reliability. Figure 28 is a flowchart of these steps for the fuzzy-

FMEA applied to TIPS technology.  

 

Figure 28. Steps for fuzzy-FMEA 

Results 

The fuzzy-FMEA study of TIPS allowed us to conduct a systematic analysis to identify failure 

modes and their effects on the performance of TIPS in its entirety.  

The team followed the procedure outlined above and identified 16 failure modes that led to 

potentially 29 failure causes for TIPS. The experts unanimously decided on severity, occurrence, 

and detectability rankings based on their experience and previous troubleshooting issues/problems. 
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Finally, fuzzy-RPN values were calculated using the developed MATLAB code. Appendix 4 

outlines the results of this process.    

A comparison of all failure causes shows a total of 16 causes had fuzzy-RPNs greater than 83.33; 

these were identified as high-risk failure causes that strongly affect TIPS operation and reliability 

(Table 16). These high-risk failure causes were associated with the AEI tag reader, camera, cable, 

power supply, bungalow, heater/blower, and algorithm/software issues. The potential failure 

modes for TIPS were a malfunction of items, full/partial power failure, software issues, damaged 

power cables, AEI tag circuit failure, and black/no images from cameras. Some other low-risk 

failure causes (13) have fuzzy-RPN values below 83.33; these causes had less severe effects on 

TIPS, or their occurrence rate was low, or these failure causes had good detectability.  

Table 16. High-risk failure modes of TIPS 

No. Item 

Potential 

Failure 

mode 

Potential 

effect of 

failure 

Potential 

causes of 

failure 

Current design control 

Fuzz

y-

RPN 

1 Camera 

No clear 

camera 

images 

Full view 

blocked in 

images 

Banding/blurri

ng/darkening/o

ver-exposure 

in cameras 

Remote CCI performs a 

visual check for 

checking full-view 

blockage in images. 

104 

2 
Power 

supply 

Loss of 

partial 

power 

supply  

No images 

from certain 

camera view 

systems 

Power 

distribution 

unit failure 

A notification about any 

problem is sent to 

vendor, and then vendor 

contacts railway 

organization about 

problem. 

104 

3 

Algorithm/

Software 

issue 

Beena 

vision 

software 

breakdown 

(TruckView

, CSCView, 

AHView) 

Failure of 

some camera 

systems of 

TIPS (for a 

few hours to 

maybe a day) 

Software 

update 

requirement 

Necessary for system 

update. Railway 

company tries to plan it 

beforehand but 

sometimes affect the 

remote train inspection. 

104 

4 
Heater / 

blower 
Malfunction 

of 

Full view 

blocked in 

Power failure 

to 

heater/blower 

Inspection frequency 

once per two months. 

No backup for power. 

104 
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heater/blow

er 

images due to 

snow 

5 
AEI tag 

reader 

Loss of 

power 

supply to 

AEI reader 

Failure to 

sense the 

presence of 

the train and 

failure to 

start the TIPS 

Power supply 

failure 

Auxiliary power using a 

battery is available for a 

few hours, and after that 

no backup supply. 

84.5 

6 
AEI tag 

reader 

Track 

circuit 

failure 

Failure to 

sense the 

presence of 

the train and 

failure to 

start the TIPS 

Track 

condition-

shunting 

Inspection frequency is 

one time per year. 

Remote CCI can check 

the health of the track 

circuit by logging into 

system. 

84.5 

7 Camera 

No clear 

camera 

images 

Partial view 

block in 

images 

Banding/blurri

ng/shadowing/

over-exposure 

in cameras 

Remote CCI can check 

by visual check. 
84.5 

8 Camera 

No clear 

camera 

images 

Partial view 

block in 

images 

Blowing snow 

in winter 

season 

Fencing provided on 

north side of TIPS 

portal to restrict 

incoming snow. It is 

performing well. 

84.5 

9 Camera 

Black 

images 

from 

camera 

No image 

from cameras 

Environmental 

condition dirt 

& water 

logging 

To avoid water logging, 

the track is elevated 

above the ground. 

84.5 

10 Camera 

Black 

images 

from 

camera 

No image 

from cameras 

Electric 

overloading 

During the design 

phase, power 

requirement for camera 

system is calculated and 

sufficient power supply 

is allocated accordingly. 

84.5 

11 Cable 
Damage to 

power cable 

No image 

capturing as 

TIPS is out of 

power 

Insulation 

damage and 

continuity loss 

for cable 

Images would not be 

captured. Failure can be 

noticed by remote CCI.  

84.5 
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12 Cable 

Damage to 

fibre cable 

of data 

transfer 

Storage of 

images on 

local servers 

but not able 

to see on 

remote 

server. 

Insulation 

damage and 

continuity loss 

for fiber cable 

Inspection frequency is 

1 time per year. Images 

can't be accessible, 

remote CCI can notice a 

failure to connect and 

dispatches the 

technician. 

84.5 

13 
Power 

supply 

Loss of 

power 

supply 

No power 

supply & no 

image of 

railcars 

Power outage 

in region due 

to wind 

blowing/ snow 

blowing 

The external hard wire 

connection is available 

on-site to connect 

electric generator in 

case of power outage. 

84.5 

14 
Power 

supply 

Loss of 

power 

supply 

No power 

supply & no 

image of 

railcars 

Lighting strike 

on TIPS 

equipment 

Lightning protection is 

provided on TIPS 

equipment. 

84.5 

15 
Heater/blo

wer 

Malfunction 

of 

heater/blow

er 

Full view 

blocked in 

images due to 

snow 

Failure of 

thermostat 

Inspection frequency is 

one time per year. 
84.5 

16 

Bungalow 

air 

conditione

r 

Malfunction 

of air 

conditioner 

Bungalow 

temperature 

increase with 

effects on 

bungalow & 

internal  

instruments. 

Some 

systems can 

also go down. 

Power failure 

to air 

conditioning 

Inspection frequency is 

once in two months. No 

power backup. 

84.5 

Recommendations 

A comparison of failure modes using fuzzy-RPNs identified the high-risk failure causes for the 

TIPS technology. Based on the results and the experts’ judgment, we recognized 16 high-risk 

failure causes with fuzzy-RPN values greater than 83.33. Recommendations are provided below 

for the high-risk causes, so that preventive strategies can be implemented to reduce the risk of 

system failure and increase the reliable operation of TIPS. 
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Power supply failure 

The fuzzy-RPN results from the fuzzy-FMEA study indicated the failure of the power supply to 

the AEI tag reader, heater/blower, air conditioning (AC) units, and overall TIPS were high-risk 

causes. Failure of the AEI tag reader related to the power supply can result in failure to sense the 

train’s presence and failure to start the TIPS. Failure of the power supply to the heater/blower 

assembly can cause the accumulation of snow on CSCView cameras, which obstructs images from 

these camera systems. The bungalow houses the TIPS electronic equipment and instruments, all 

of which can fail due to increased bungalow temperature if the power supply to the bungalow AC 

fails. Failure of the mainline power supply to TIPS can cause an outage of all TIPS electronics. 

Thus, the following are recommendations to reduce the effects of power supply failure: 

• Provide redundant power sources for TIPS, the heater/blower system, and the bungalow 

AC, such as electric generators, to sustain system operation in case of a power outage 

in the region (Miles et al., 2016; Preparing for Power Loss, 2023). 

• Develop strategic plans and procedures for responding to and recovering from 

snowstorms to lower the likelihood of longer power outages and lessen their 

consequences on TIPS operation (Hou et al., 2009). 

• Provide a redundant power supply for the AEI tag reader to ensure system functioning 

after the battery backup is discharged (Benabid et al., 2019). 

Failure due to blurring/over-exposure in cameras 

Failure of the camera due to blurring/darkening/over-exposure can result in view blockage in 

images. Blurring in the images can be caused by low shutter speed and dirt/foreign particles on the 

lens of a camera, while overexposure can be caused by the heterogeneity of alternating current. 

Thus, the following are recommendations to reduce such issues: 

• Increase the shutter speed of the camera to capture good-quality images without 

blurring (Ahuja & Barkan, 2007). 

• Use a direct current (DC) power source (also called a “stabilized power supply”) to 

reduce power source illumination heterogeneity and help in controlling overexposure 

problems in images (Jonker et al., 1997). 
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Failure due to software upgrade 

The failure of TIPS can occur due to software upgrades of various camera systems, such as 

TruckView, CSCView, AHView, and others. These software upgrades are necessary and are 

typically designed for one camera system at a time. As a result, when a camera system is being 

upgraded, it will not be available to capture images, and inspection of railcar components 

through that camera system will not be possible. Following is the recommendation for reducing 

TIPS failure during software upgrades: 

• To minimize any disruption to TIPS during software upgrades, it's essential to plan 

the update and identify a suitable time slot. Additionally, railway traffic should be 

managed through the TIPS portal to ensure that TIPS remains operational and can 

capture images for remote inspection both before and after the software upgrade. This 

will help ensure that the system remains functional and minimizes any delays in the 

inspection process. 

AEI track circuit failure due to shunting 

Failure of AEI track circuit due to shunting causes the failure of detecting the presence of the 

railcar axle and initiate the image capturing through TIPS camera system. Any kind of 

discontinuity in the AEI track circuit can lead to failure to sense the presence of train on the track. 

Following is the recommendation to reduce the effect of shunting: 

• AEI track circuit condition to be monitored from the remote inspection desk for its 

availability and regular maintenance should be performed for it. Also, in case of 

detection of AEI circuit failure, a technician is to be sent out in the field for assessment 

and repair of the issue. 

Camera failure due to electric overloading 

Electric overloading of the camera is one of the high-risk causes that can hamper the safe operation 

of TIPS. The following are recommendations to reduce the electric overloading of cameras:  

• Check for the overall power requirement by the camera system in TIPS and supply 

enough amperage through the breaker (CCTV 101: Camera Power Explained - Clinton 

Electronics, 2023). Use the 80% rule, which states that the breaker can be continuously 

loaded up to 80% of its continuous rating (What Is the 80 Rule in Electrical? 2023). 
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• Avoid extension cords and temporary connections, as this increases the risk of 

overcurrent because loose, tangled cords are more likely to be cut, frayed, or suffer 

other damage (Salvaraji et al., 2022). 

• Perform regular preventative maintenance of camera systems, circuit breakers, cables, 

and connection points to reduce the risk of overloading, as such maintenance helps 

reduce system downtime (Handt et al., 2008). 

Damage to the power supply cable and fiber cables 

Insulation damage on the power supply cable and fiber cable can cause high-risk failure because 

TIPS will not capture images due to continuity loss. The power cables and fiber cables used for 

TIPS are mostly connected through underground conduits, and thus damage cannot be easily 

observed. The following are recommendations to reduce problems related to power supply cable 

and fiber cable damage: 

• Achieve high system reliability by providing redundant power cables for the system, 

as these are useful when in-service power cables experience failures (Strategies for 

Increasing System Availability, 2001). 

• Use of metal tape, fiber glass insulation, and chemical infused jacket can protect the 

fiber cables from damage such as animal attack, weather changes, and chemical attacks 

from the surrounding conditions (Fiber Optic Cables Cuts: Most Common Causes & 

How To Combat Them, 2023). 

• Conduct regular inspection, testing, and maintenance of cable insulation to detect 

damage due to chemical exposure, moisture exposure, and improper installation. 

Power failure due to lightening strike on TIPS 

The TIPS equipment is installed with the lightning strike protection equipment. However, during 

one instance, the lightning strike damaged some of the TIPS equipment. Following are the 

recommendations for protecting the TIPS against lightning strikes (Isaed & Znaid, 2018; Okyere 

& Eduful, 2007): 

• Thoroughly inspect the connection between air terminals and down conductors to ensure 

their proper functioning.  
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• Establish a connection for equipotential bonding with nearby metallic components, and 

this should be done with utmost care. 

• Regular maintenance and inspection of earth pit, air terminals, and connections used for 

grounding and bonding of equipment. 

Environmental conditions, dirt, and waterlogging 

In North America, TIPS is susceptible to harsh weather conditions such as snow, wind, dirt, and 

rain. During the winter, snow accumulates in the vicinity of the system. When the temperature 

increases in the spring, snow melts and can cause water to collect around the railway tracks and 

CSCView camera system. Wind can cause dirt to accumulate on the equipment; such dirt will turn 

into mud if it comes in contact with water. These environmental conditions affect the CSCView 

camera system installed on railway ties for undercarriage image capture. The following are 

recommendations to reduce problems associated with environmental conditions: 

• Install a proper drainage system to reduce waterlogging around the system, especially 

the CSCView camera system, which can be achieved using ditches around the rail 

tracks, drainpipes, carrier drains, attenuation ponds, and culverts  (Railroad Track 

Facts… Construction, Safety and More., 2022; Engineering Track Maintenance Field 

Handbook, 2022; Drainage Maintenance, 2017).  

• Ensure the railway tracks are built and maintained a few inches above ground level at 

the TIPS location, as this elevated design avoids waterlogging conditions in snowmelt 

and rainfall seasons. Conduct inspection and maintenance of the TIPS site before the 

spring and winter seasons to assess the conditions and implement actions to rectify any 

causes of waterlogging (Engineering Track Maintenance Field Handbook, 2022). 

Failure of the power distribution system  

Power distribution units (PDUs) are designed to supply power devices such as servers, networking 

hardware, and telecom equipment in a rack structure (Choosing A Power Distribution Unit, 2021). 

The study identified the failure of PDUs as one of the high-risk causes, as it can result in the failure 

of multiple devices involved in TIPS. The following are recommendations to reduce problems 

associated with failure of the power distribution system: 
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• Determine the type of power, type of outlets, type of circuit breakers, and possible 

future power consumption due to expansion work, as consideration of all of these 

factors can mitigate failure causes at the early stages (Choosing A Power Distribution 

Unit, 2021).  

• Use an overcurrent protection device (e.g., fuse, thermal magnetic circuit breaker, or 

hydraulic magnetic circuit breaker) to prevent overcurrent conditions that can be caused 

by conditions such as temperature change and high current demand (Vertiv, 2016).  

• Inspect and maintain the connection of power cables and outlet locking mechanisms 

for any loose connections that can cause a sudden drop in the system’s power.  

• Conduct preventive maintenance of overcurrent protection devices on an opportunity 

basis, as downtime for replacing such devices can be high (Vertiv, 2016). 

Failure of thermostat 

The thermostat signals the heater/blower system to blow snow from the CSCView camera system. 

The camera photos from the CSCView system, which record the undercarriage part of railcars, 

may be affected if the heater/blower system fails to start. The following are recommendations to 

reduce the failure of the thermostat: 

• Calibrate the thermostat at least once per year, perform regular inspections for loose 

connections, and clean thermostat components, as wiring connections must be free 

from corrosion (Kight, 2013; What You Need To Know About AC Thermostat 

Calibration, 2021). 

Conclusion 

TIPS is a new technology for the remote inspection of railcars in the North American railway 

region. TIPS can perform all-around view capturing faster than manual inspections conducted in 

the yard by human inspectors. Continual and reliable operation of TIPS is crucial as it affects the 

quality of inspection of railcars. This study performed a risk assessment of TIPS using fuzzy-

FMEA, a machine-learning technique for handling the vagueness of our daily language. Fuzzy-

FMEA is a valuable tool for decision-making as it helps identify potential failure modes that may 

impact the ability of TIPS to effectively support remote inspections. This fuzzy-FMEA study used 
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expert judgment to decide severity, occurrence, and detection ranking along with membership 

functions, fuzzification, if-then rules, and defuzzification methods for deriving the fuzzy-RPN. 

The fuzzy-RPN values indicated important high-risk failure causes such as full/partial power 

failure, software issues, damaged power cables, AEI tag circuit failure, environmental 

conditions/dirt/waterlogging, failure of air conditioning unit, and black/no images from cameras. 

These causes could affect the operation and reliability of TIPS. Recommendations were made to 

address the high-risk failure causes identified. On-field implementation of recommendations for 

high-risk failure causes can help organizations maintain highly reliable TIPS operation and, in so 

doing, sustain the high quality of railcar inspection with increased efficiency and lower costs. 
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Chapter 4: Assessment of Human Factors in Portal Office Inspection (POI) Technology 

Using the Human Factors Analysis and Classification System (HFACS) Framework 

 

Introduction 

Human factors is an area of study that focuses on optimizing human performance in the workplace 

to improve safety and efficiency. The consideration of human factors has gained much attention 

in the aviation, marine, chemical/petroleum, and railway industries (Ebrahimi et al., 2021). Despite 

many technological advancements in railways, significant human involvement is still required. 

Hence, human factors play a vital role in the complicated and safety-critical technologies of 

railway networks (Integrating Human Factors in European Railways Safety Management Systems, 

2016). According to the European Union Agency for Railways (ERA), human factors is a branch 

of science that studies how people crucially interact with various system components by applying 

theory, principles, data, and other techniques to design and improve the performance of the human 

user and the system (The Importance of Human Factors in the Rail Industry, 2021): 

1. Development of new tools/equipment and user interfaces to increase human performance; 

2. Risk assessment and emergency planning; 

3. Accident investigation for the role of human perception and human behavior; and 

4. The critical condition for decision-making and teamwork. 

In the past, the railway industry's tasks for technology assessment and accident/incident 

investigation have primarily concentrated on mechanical or technological failures (Reinach & 

Viale, 2006). However, there have been limited studies that study failures directly related to human 

factors. Human factors are important in the design phase and in routine activities as they help 

locate gaps in tasks and operations, which can be important for managing the safety of the system. 

Human factors are crucial for managing work more effectively in complex organizations, such as 

railways, where safety is very important for all stakeholders (The Importance of Human Factors 

in the Rail Industry, 2021). Therefore, the main objectives of this report are to: 

• Identify the most influential human factors affecting remote CCIs performance during 

reviewing TIPS images; and 

• Provide recommendations to improve human performance.  
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Literature review 

Several studies have identified the role of human factors in safety performance in different 

industries. For instance, A Finland-based study by Poranen et al. (2021) used 15 qualitative 

interviews for human factor assessment of paramedics working at emergency medical services. 

The results show the performance of paramedics is affected by factors related to the nature of 

work, the organization of work-related tasks, and the work environment. Another study conducted 

a qualitative study to explore the experience of pilots on mixed-gender crews (Robertson, 2014). 

The study included 12 interviews with commercial pilots and identifies a gender impact on crew 

resource management. Human factors were investigated using Transport Safety Board of Canada 

(TSB) accident reports and results show human factors such as high workload, misuse of 

technology, and poor communications impact accidents in the Canadian railways (A Study of the 

Role of Human Factors in Railway Occurrences and Possible Mitigation Strategies, 2007).  

A study in Great Britain was conducted to identify the role of human factors in the automation of 

railway infrastructure. The results indicate organizational influence is one of the most important 

human factors impacting monitoring through automation technology in railways. Introducing new 

technology affects how operators carry out their roles and need to adapt to the new technology. 

The study also reported how human factors such as situational awareness of employees, workload, 

human-machine interaction, supervisor instruction, and planning of tasks contribute to human 

errors (Dadashi et al., 2014). Another study investigates the role of human factors in the 

maintenance-inspection task of railway components and reports factors such as physical work 

environment, organizational influence, and task-related knowledge affect the performance of 

humans (Singh et al., 2017).  

The most widely used framework for the identification of human causes in accidents/ risky 

circumstances is the Human Factors Analysis and Classification System (HFACS). The HFACS 

was initially proposed by Dr. Scott Shappell and Dr. Doug Wiegmann in 2001 for the US Navy to 

identify the causes of human errors and provide a framework to help plan preventive measures to 

reduce the occurrence of errors or incidents (Wiegmann et al., 2005). However, it has since been 

adopted by various sectors, such as construction, railroads, oil and gas, and marine, to identify and 

categorize human factors (Ergai et al., 2016). The HFACS framework is based on the Swiss cheese 

model, which has four levels representing the four levels of human failure (Figure 29). 
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Unsafe acts 

The first level of HFACS is unsafe acts, which can occur for various reasons ranging from failure 

to follow established safety procedures to intentional acts and technology failures. Unsafe acts are 

classified into two categories: errors and violations (The HFACS Framework, 2014). 

Error is a mistake that reflects the mental or physical activity of people who did not accomplish 

what they set out to do (Griggs, 2012). Based on regular operation activities, errors are divided 

into skill-based errors, decision-based errors, and perceptual errors. A skill-based error occurs 

when an operator is skilled and experienced in carrying out the task at hand but loses focus when 

working on other duties, leading to skill-based mistakes. These mistakes significantly impact 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 29. The HFACS framework (Mendonca et al., 2017) 
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regularly performed tasks such as routine maintenance checks and checklist reviews. A decision-

based error occurs when an operator is aware of the protocol but performs unnecessary steps to 

achieve the intended outcomes in critical circumstances. These mistakes frequently result from 

improper procedures, poor judgment, or misinterpretation and/or exploitation of pertinent 

information. A perceptual error occurs when inadequate/wrong information is transmitted to the 

operators responsible for decision-making (Human Factors Analysis and Classification System 

(HFACS), 2023). 

Violation means deliberate disregard for the laws and regulations. Violations are classified into 

two subcategories: routine violations and exceptional violations. Routine violations are habitual 

because of the nature of the work and are typically accepted by organizations. However, 

exceptional violations are not approved by the organization and are not indicative of an 

individual’s typical behavior pattern (Human Factors Analysis and Classification System 

(HFACS), 2023). 

Precondition of unsafe acts 

The precondition of unsafe acts is the second level of HFACS, and refers to latent and/or active 

preconditions that impact the operator’s routines and behaviors and lead to mistakes or critical 

circumstances. The precondition of unsafe acts is divided into three categories: environmental 

factors, condition of operators, and personnel factors (Celik & Cebi, 2009). 

Environmental factors influence an individual’s thought processes, situations, and actions resulting 

in human mistakes or unsafe circumstances. Environmental factors are classified into two 

categories: the physical and technical environment. The physical environment includes various 

surrounding conditions of the workplace that contribute to incidents, such as operational settings 

(e.g., weather, terrain, etc.) and ambient conditions (e.g., lighting, noise, vibrations, etc.). 

Technical environment factors include various aspects such as the design of equipment, control of 

processes, user interfaces, check sheets and automation strategy of the process (Yıldırım et al., 

2019). 

The condition of operators is divided into three categories: adverse mental state, adverse 

physiological state, and physical/mental limitations. Adverse mental state considers the effect of 

mental conditions such as diminished situational awareness, task focus, diversion, and mental 
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tiredness brought on by insufficient sleep, which impacts performance. Griggs (2012) and Shappell 

& Wiegmann (2000) include physical or medical situations that make it unsafe to perform specific 

tasks; visual illusions, spatial disorientation, physical exhaustion, injuries, pre-existing illness, and 

a wide range of pharmacological and medical disorders are all known physiological states of 

operators that affect performance. Physical/mental limitation is when the operator does not have 

the physical or mental capacity to handle the demands of the operation, resulting in a critical 

situation. Fundamental sensory and information processing limitations are two common 

physical/mental limitations (Ebrahimi et al., 2021).  

Personnel factors are categorized into crew resource management and personal readiness. Crew 

resource management examines the connections between the people and groups engaged in 

planning and carrying out an activity that involves human error. The personal readiness of an 

operator for any task is important in the organization. Personal readiness-related failures happen 

when an operator needs to physically or mentally prepare for duty (Shappell & Wiegmann, 2000). 

Unsafe supervision 

The unsafe supervision level considers how ineffective supervision can result in an unsafe 

circumstance. This level is divided into four categories: inadequate supervision, planned 

inappropriate operation, failure to correct known problems, and supervisory violation (Reinach & 

Viale, 2006).  

Inadequate supervision means the supervisor needs to provide adequate chances to achieve 

operational performance through the strategic plan, chances for training, and leadership to their 

subordinates. Planned inappropriate operation means supervisor decisions that might be 

appropriate in unusual circumstances but inappropriate in routine operations, such as giving 

workers extended shift timings with management approval or giving employees unrelated tasks 

(Yıldırım et al., 2019). The situations in which a supervisor is aware of flaws in people, tools, 

training, or other related safety areas but permits them to remain uncorrected are referred to as 

failure to correct known problems. Lastly, a supervisory violation is when supervisors intentionally 

violate existing laws and procedures. Supervisory violations can be common and challenging to 

spot (Griggs, 2012). 



75 
 

Organizational influence 

The fourth level of HFACS is organizational influences. This level considers latent conditions 

involving communication procedures, upper-level management actions, and policy omissions that 

impact the other three levels of HFACS. The organizational influences level is divided into three 

categories: organizational culture, organizational process, and resource management (The HFACS 

Framework, 2014). 

A group of underlying commonly held views about a company’s values, appropriate behavior for 

employees, and notions of what is “normal” within the organization is known as the organizational 

culture (Agboola et al., 2013). The term organizational process includes corporate policies and 

guidelines that guide daily operations inside a company, such as the development and application 

of standard operating procedures. Resource management considers all corporate-level decisions 

about the distribution and upkeep of organizational assets including staff, financial assets, 

technology, and buildings (Bickley & Torgler, 2021). 

Methodology 

The University of Alberta (U of A) and the National Research Council (NRC) conducted semi-

structured interviews with remote CCIs to identify the important factors that can help to reduce 

errors, boost proficiency, increase safety, and ensure their comfort while reviewing TIPS images 

(What Is Human Factors and Ergonomics, 2022). The U of A and NRC team members had a 

meeting and finalized three questions for interviews. These open-ended questions allowed for the 

extraction of valuable and relevant information from the remote CCIs as the interviews were 

conducted as interactive sessions. The CPR team arranged the required facility/meeting for the 

NRC and U of A team to conduct interviews with four remote CCIs. These four semi-structured 

interviews were conducted on September 29 and 30, 2022, to investigate the routine of portal office 

inspection (POI) activities. Three interviews were conducted in person, and one was conducted 

remotely. The interviews all began with a summary of HFACS elements and an understanding of 

the routine shift activities associated with the participants. The three open-ended questions used in 

the interviews were as follows: 

1. What makes a good portal office inspection? Why? 

2. What are the challenges for portal office inspection? Why? 
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3. How can poor inspections be improved?  

Data analysis 

Thematic analysis was used for the qualitative analysis of interview transcripts using NVivo 

software v.12. Thematic analysis uses codes and themes to perform a qualitative analysis aimed at 

comprehending experiences and thoughts or identifying patterns from collected data (Roberts et 

al., 2019). Codes are defined as the most basic segments, or elements, of the raw data or 

information that can be assessed in a meaningful way regarding the phenomenon (Boyatzis & E, 

1997). Themes are developed by clustering the codes and research text assigned to codes that 

combined provide a pattern or central idea in the research data.  

Generally, three approaches are used for thematic analysis: deductive, inductive, and hybrid. In 

the deductive approach, there is some foreknowledge of the themes, and the thematic analysis 

results in these prepared themes (Kiger & Varpio, 2020). In the inductive method, themes are 

derived as the content of the qualitative research is being read and are developed according to 

research data. However, they may not represent the inquiries made by participants nor necessarily 

indicate the researcher’s interests or viewpoints on the matter (Kiger & Varpio, 2020). On the other 

hand, the hybrid approach uses a combination of both inductive and deductive approaches. This 

approach helps to allow themes to arise directly from the data using an inductive approach and 

integrate existing research frameworks into the deductive thematic analysis approach (Fereday & 

Muir-Cochrane, 2006). Combining these approaches facilitates the construction of patterns from 

unknown elements that might not follow the deductive approach codes, leading to a more thorough 

study and identification of codes (Roberts et al., 2019). Therefore, a hybrid approach was used for 

data analysis in this research. The qualitative analysis using a hybrid or mixed approach involves 

six steps as shown in Figure 30: 
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Figure 29. Steps in the thematic analysis (Fereday & Muir-Cochrane, 2006) 

Step 1: Developing a code manual 

The first step is developing a code manual that serves as a data management tool for organizing 

segments of similar or related text to assist in the interpretation of research data. For this study, a 

code manual was developed based on the four HFACS category elements (Table 17) (Fereday & 

Muir-Cochrane, 2006).  

Table 17. List of initial codes for code manual 

No. Code 

1 Resource management 

2 Organizational culture 

3 Organizational process 

4 Inadequate supervision 

5 Planned inappropriate operation 

Step 1- Developing a 
code manual

Step 2- Testing the 
reliability of code

Step 3- Summarizing 
the data and 

identifying the themes

Step 4- Applying 
template of codes and 

additional coding

Step 5- Connecting the 
codes and identifying 

themes

Step 6- Finalizing 
coded themes 
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6 Failed to correct a known problem 

7 Supervisory violation 

8 Physical environment 

9 Technological environment 

10 Physical/mental limitation 

11 Adverse mental states 

12 Adverse physiological state 

13 Crew resource management 

14 Personal readiness 

15 Decision error 

16 Skill-based error 

17 Perceptual error 

18 Routine violation 

19 Exceptional violation 

 

Step 2: Testing the reliability of the code 

This step checks the importance of codes developed in the previous step by assessing the relevance 

of codes to the research dataset or interview transcript. This is a crucial step as it confirms the 

applicability of the HFACS framework to the data collected in the interviews (Fereday & Muir-

Cochrane, 2006). For instance, a remote CCI response of “This is the new tech for everyone in the 
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job. So, he feels like there is a lot of cancel culture, he feels like change is key, and they need to 

educate the staff” was assigned to the code “Organizational culture.” 

Step 3: Summarizing data and identifying themes 

This step is primarily to get familiar with the data by reading through transcripts, recognizing any 

patterns or themes, and observing the meanings of sentences that are available in the data. 

Depending on the project, the dataset may contain interviews, group discussions, recorded 

observations, field notes, diary entries, or other media such as photos or videos (Kiger & Varpio, 

2020). This research identified codes and themes in interview transcripts according to the HFACS 

framework (Table 17). 

Step 4: Applying the template of codes and additional coding 

This step has two parts: the first is a guided approach that attaches sections of interview data to the 

relevant code of the coding manual, while the second is a non-confined approach that identifies 

the codes, based on an inductive approach, as the researcher goes through the interview transcript 

(Fereday & Muir-Cochrane, 2006). Interview transcripts were loaded into NVivo software, and 

codes were entered as nodes from the coding manual. As the reading continued, the text from each 

interview transcript was assigned to respective codes. As a part of the inductive approach, two 

additional codes (experience with technology and dedication to safety) were found while reading 

the interview transcripts.  

Step 5: Connecting the codes and identifying the themes 

Connecting codes is the process of identifying themes and patterns in the data. The codes are 

grouped based on their similarity as themes (Fereday & Muir-Cochrane, 2006). The research 

started with the codes mentioned in Table 17, to which two further codes were added, as mentioned 

in Step 4. Some codes were excluded from the analysis because no relevant text arose in the 

interview transcripts; these included organizational process, planned inappropriate operation, 

perceptual error, and personal readiness. The remaining codes were gathered into the different 

levels of HFACS, and the two additional codes (experience with technology and dedication to 

safety) were also treated as themes at this step. Hence, a total of six themes were identified from 

the analysis of qualitative data.  
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Step 6: Finalize coded themes  

This step checks the process to allow further clustering of themes found in the coded text, if 

possible. This step ensures the identified themes are indicative of the initial data analysis and given 

codes; the earlier steps were carefully examined at this stage. The two themes added later in the 

analysis, namely experience with technology and dedication to safety, were combined into one 

theme, “Experience and safety,” as they both refer to the personal element of employees. Thus, a 

total of five themes were finalized based on the coded text: four based on the HFACS framework 

plus the additional theme of “Experience and safety”. The final themes are shown in Table 18. 

Table 18. Finalized themes 

No. Themes 

1 Precondition of unsafe act 

2 Organization influences 

3 Experience and safety 

4 Unsafe act 

5 Unsafe supervision 

 

Results and Discussion  

Thematic analysis was applied to the qualitative data collected in the semi-structured interviews. 

Among the four interview participants, two of the participants are part of POI technology team 

since its inception and the third participant has been working for more than 2 years. However, the 

fourth participant joined the team only a few weeks ago. Using the HFACS framework, the human 

factors affecting performance with POI were identified. The results of the qualitative analysis are 

shown in Table 19. The themes are based on HFACS, and counts show the frequency of each 

element in the interview transcripts. 
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Table 19. Themes and codes with associated counts from NVivo software 

No. Themes Counts Percentage  

1 Precondition of unsafe act 17 56.67 

1.1 Technological environment 8 26.67 

1.2 Physical/mental limitation 7 23.33 

1.3 Physical environment 2 6.67 

2 Organization influences 5 16.67 

2.1 Resource management 3 10.00 

2.2 Organizational culture 2 6.67 

3 Experience and safety 4 13.33 

3.1 Dedication to safety 2 6.67 

3.2 Experience with technology 2 6.67 

4 Unsafe act 3 10.00 

4.1 Decision error 1 3.33 

4.2 Skill-based error 1 3.33 

4.3 Exceptional violation 1 3.33 

5 Unsafe supervision 1 3.33 

5.1 Inadequate supervision 1 3.33 
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The results reported in Table 19 show the highest counts (17) are associated with “Precondition of 

unsafe act,” followed by “Organization influences” (5). However, the least counts were identified 

for “Unsafe supervision” (1). From the results of Table 19, it can be found that the top three codes 

are “Technical environment”, “Physical/mental limitation” and “Resource management”, which 

need to be addressed first to improve human errors in POI. 

Precondition of unsafe act 

Technical environment 

Participants stated that various technological issues related to TIPS, such as inspecting the trains 

using black and white images, affect performance. They highlighted that using color images can 

be beneficial in terms of better distinguishing foreign objects. Additionally, TIPS provides 2D 

images which do not allow inspectors to measure depth or distance within an image. As an 

example, for a brake beam that looks bent, the amount of bent has to exceed a safety limit (set by 

regulators) but the remote CCIs cannot verify from the image if that is exceeded. Under such 

circumstances, the remote CCIs flag the issue and ask the field CCIs to verify and take action. The 

following are some excerpts from the interviews: 

When foreign objects are found hanging, they are very difficult to find using black & white 

(B&W) images. So, sometimes having a colored image can give confirmation about foreign 

objects. 

There is a measurement problem. They have to call Carman to verify the measurement. Field 

staff has the advantage of measurement. 

The results of the study are in line with those of other research studies. For instance, A study by 

Hadj-Mabrouk (2018) in Europe for railways and another study by Nkosi et al. (2020) in South 

Africa for mechanical maintenance industries report that equipment used for a task, work 

complexity, inadequately designed equipment, improperly matched tools for the task at hand, and 

human-machine-interface affect performance and human error risk. Technical environment errors 

are mainly due to the inadequate design of the operating system, checklist, and level of automation 

(Scarborough et al., 2005). Re-engineering the system design and re-designing the human interface 

are possible solutions to improve the technical environment and reduce errors. However, based on 

the experience of inspectors, access to color images would be helpful for them to identify foreign 
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objects and actual defects.  

Physical/mental limitation 

The participants highlighted that work often challenges their mental and physical limits. The 

participants reported that, on some days, they inspect more than three trains with more than 5000 

images per train; this drastically increases screen time, which affects their eyes. In addition, 

extended and long 12-hour work shifts impact their work-life balance: 

Sometimes they need to do a lot of work. They may be working on different things. One train 

may take around 2.5 to 3 hours to inspect and make a report. It is an issue to handle if they are 

getting 3 trains back-to-back. He says that this job is tough. Not everyone can do this job. In 

their very busy schedule, they ask for help from different departments. This can’t be a one-

man show. They act as a unit and infant for lots of days. They are only getting 2 trains, so it 

is not terrible every day. 

I don’t think it will be much to do with productivity or accuracy, but inspectors can have a 

better work-life balance with 8-hour shifts. 

The main problem participant-1 feels is screen time; he gets around 12 hours in a shift. So, 

the eye gets wet or hurts. 

Sometimes work is boring due to constantly sitting in the chair and remaining in the office. 

A European study Hadj-Mabrouk (2018)  reports that operator condition, such as physical/mental 

fatigue, increases the risk of human error. Furthermore, a study by Nkosi et al. (2020) identifies 

that a decrease in attention span, repetition of tasks (regular work), exhaustion, and stress impact 

the performance of employees. Mental limitations can cause a reduction in employee productivity, 

job satisfaction, and mood, which overall affects an employee’s mental health. This can be 

improved by giving a manageable workload in the shift time, giving clear instructions for tasks, 

and recognizing employee work can help in reducing human error (Mental Health in the 

Workplace, 2015). Breaks during shift hours, body movement, and walking around the building 

can be good solutions to tackle physical limitations. 

Physical environment 

The participants conveyed that the physical environment of the TIPS site contributes to human 
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performance using the POI system. Blowing snow in the winter season obstructs the camera and 

makes it causes images with poor quality. Conditions such as dirt and muddy water impede the 

camera’s view, which can affect the inspection of some important components. 

Another problem is in winter; train throws snow on the cameras when it snows, so it hampers 

the operation or blocks the view. 

Weather is one of the challenges. The snow in maple creek is very light, and the blowing wind 

obstructs the view of railcar components in images. The mud and snow affect the image 

capturing in the TIPS portal. 

A study by De Fabio & Petrillo (2011) reports the physical environment is the highest contributing 

factor to human error in railway transportation systems. A study about human error and marine 

safety reports that environmental factors such as temperature, lighting conditions, noise, and 

weather affect human performance (Rothblum, 2020). During the winter, clearing the ice from the 

railway tracks reduces the snow thrown on the cameras. CPR has installed fencing on the north 

side of the gantry to restrict the entry of blowing snow. Another way to mitigate the blowing snow 

is the installation of a shelter around the TIPS; however, this approach has been reported as not 

very successful in preventing blowing snow (Railcar Inspection Portal, 2022). Although installing 

a shelter that covers the cameras and restricts the entry of snow/flurries to the visual line of cameras 

is a potential solution. Developing a training plan using previously captured poor-quality images 

or images captured in the winter season for remote CCIs could also help to improve human error. 

Organization influences 

Resource management 

Participants stated that high employee turnover in the organization also affects the performance of 

the POI. Training more people and retaining experienced personnel is good for the organization 

and efficient working of shift tasks: 

Training more people would be good, having a second person is good and in the case of two 

trains that would help a lot. Having a backup will give them less stress. Currently, only a 

single person works at a desk; if they need help, they need to call someone from the Network 

Management Centre (NMC) department. Also, NMC is very busy in winter, so it will be hard 

for remote CCI to get the backup person at that time. 
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I think they need to train more people from the NMC department because they have been 

working on a train for a long time, and it would be super easy to train them. 

CPR is going through a lot of organizational change. And people leave this job and need new 

talent, so it will take more time to train a new person. 

Organizational resources are a contributing factor that affects human performance in railway 

operations (Kyriakidis et al., 2018). Poor operating efficiency, poor utilization of the workforce, 

and poor selection/retention of the workforce are related to human resource management in 

railways (T & K, 2016). Humans as a resource can be managed by considering them as part of the 

organization and developing their overall knowledge, skills, creative abilities, talents, aptitudes, 

and potential to carry out the tasks and responsibilities successfully delegated to them (Ahmad, 

1997). There were some new recruits that happened around the timeline of the interview as CPR 

has identified the need for new team members for POI technology. Good compensation and better 

welfare policies are other important factors that help manage human resources (T & K, 2016).  

Organizational culture 

The participants also stated how organizational culture affects human performance during POI. 

The field CCI in the yard sees the POI as creating extra work, and some CCIs consider this 

technology a competitor for their job. Information may not be effectively transferred between the 

yard and office inspector if the yard and remote CCI do not get along: 

This is the new tech for everyone on the job. So, he feels like there is a lot of cancel culture, 

he feels like change is key, and they need to educate the staff. 

I feel that field workers feel competition with remote CCI, which is not right. The ultimate 

goal of remote CCI is to make trains safe, but Carman feels threatened by this new technology. 

A study of human errors on the UK railway by Kyriakidis et al. (2018) reports organizational safety 

culture is the highest contributing factor to human errors. Another study highlights how the 

absence of a strong safety culture affects human performance (Rafieyan et al., 2022). 

Organizational culture can be influenced by the business environment, leadership, and 

management practice (Agboola et al., 2013). The organizational culture can be improved by the 

leader of the organization, who sets an example for every employee of the company. Also, clear 

communication of policies and company vision, managing trust in the workforce, offering learning 
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opportunities, mentoring and coaching, and people safety-oriented policies can help build and 

manage good organizational culture (Tenney, 2022). 

Experience and safety 

Dedication to safety 

The hybrid method revealed this code during the thematic analysis of interview transcripts. The 

participants reported that the safety dedication of individuals is an important human factor that 

affects the performance of POI. Individuals must be open to getting feedback from supervisors or 

colleagues and understanding safety in every aspect of POI technology-driven inspection: 

Seriousness for the project is a must for everyone on the team. They need to be dedicated to 

the process. 

The very important thing for any inspector is to get feedback from the supervisor or CCI about 

the inspection work he/she has conducted. Due to constant feedback and tips from the 

supervisor, remote safety inspectors can review his/her work and improve in identifying 

defects. 

An India-based study by Poddar et al. (2015) performed human factor analysis for railway coach 

and bogie maintenance operations. This study reveals that personal dedication to safety and 

motivation directly impacts the reliability and safety of the railroad system. The safety dedication 

of a team can be developed by encouraging the group in different ways, such as recognition, 

incentives, getting feedback from the team, celebrating safety week, and developing a safety 

culture fueled by the involvement of management leaders of the organization (Best Ways to 

Motivate Employees to Become More Safety Conscious, 2022). 

Experience with technology 

This code was also derived from the thematic analysis of interview transcripts. The participants 

conveyed that an individual’s experience with the technology is a human factor that affects POI 

performance. Experienced inspectors indicated they could handle situations such as multiple train 

inspections and prioritizing tasks better than newly hired ones. Also, their experience with TIPS 

allows them to conduct overall inspections in less time than new hires and to better manage critical 

situations: 

Due to my current experience, I am not feeling any rush while working. It is always important 
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to prioritize the train. 

 Time to inspect the train is higher because he is new; as a more experienced guy, he has built 

a memory muscle and can quickly inspect the car. 

An Iran-based study of oil and gas industry found that lack of experience in a given task contributes 

to human error (Jafarinodoushan & Abdar, 2021). A UK railway-based study reports that 

familiarization with task/operation is the second-most important factor affecting the chance of 

human error (Kyriakidis et al., 2015). Providing on-the-job training and conversing with senior 

employees are possible ways to increase employee experience with technology. Conducting 

weekly/bi-weekly meetings with the team and brainstorming sessions are other ways to address 

existing issues.  

Unsafe act 

Decision error 

The participants reported that poor decisions and incorrect responses to specific defect 

identification sometimes affect human performance with POI technology. For instance, when a 

remote CCI is unsure about whether the defect in the image is valid or just a foreign object, the/she 

marks it as defective car: 

Also, sometimes they can make decision errors like they come up with something that they 

think is a defect, but it is not. For example, grease on the wheels often looks like a crack, but 

it is not. If they bad order that, Carman must walk around that wheel and ensure there is no 

crack. 

This practice is good because remote CCIs don’t want to miss any defects that cause accidents of 

train.  A UK-based analysis of railway accidents using the HFACS framework reports that decision 

errors are the second-most contributing factor to the unsafe act category that causes human error 

(Madigan & Golightly, 2016). Poor decision-making and judgment were reported in decision 

errors in a study from China (Zhan et al., 2017). Decision errors are often due to improper 

procedures, incorrect decisions, or merely a misinterpretation or misuse of available information 

(Module 4 - Human Error, 2010). Offering improved and correct information, automation, and, to 

some extent, training can reduce decision errors in any operation (S. Shappell & Wiegmann, 2009). 

More formal instruction or procedural tools such as checklists might be beneficial in terms of 
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reducing the frequency of decision errors by human operators (Patterson & Shappell, 2010). 

Skill-based error 

The participants stated that they sometimes found an important update for the team and other 

departments, but forgot to communicate it due to failure of memory or attention: 

Many times we have to store something in their mind to communicate later with other 

departments; it becomes stressful when that happens. 

An investigation of 407 railway accidents/incidents in China revealed that skill-based errors are 

one of the top four causes of human error in the HFACS framework and can lead to 

accidents/incidents (Zhou & Lei, 2018). A study by Baysari et al. (2009) used data from the 

Australian transport safety bureau (ATSB) and HFACS framework for human error classification. 

This study found that skill-based errors significantly contribute to the unsafe act category. Skill-

based errors can be due to high workloads, distractions, work deadlines, fatigue, and other 

demanding factors of the workplace (Morgan et al., 2016). One potential way to reduce skill-based 

error is the use of the STAR methodology, which is very effective for new technology with a high 

degree of automation (Reducing Errors and Improving Safety Through a Human-Performance 

Initiative, 2023). Furthermore, refresher training, improved procedures, and practice protocols can 

help reduce skill-based errors (Reinach & Viale, 2006). 

Exceptional violation 

According to participants, ignorance of any issue or task is one of the major human factors that 

affects the performance of POI:  

I would say ignorance is the enemy while working on POI; small details can play a big role. 

A US-based study about restricted railway speed train accidents reports that violation of rules is 

one of the major contributors to railway accidents (Zhang & Liu, 2020). The violations are 

avoidable types of human errors that can be contained by providing more training about the task’s 

risk and the consequences. Planning, supervision, analyzing the potential for rule violations, 

analyzing and learning from violations, and designing better procedures, including meta-rules to 

deal with exceptions, are the preferred methods to reduce violations (Hale et al., 2003). 

Encouraging employees to report the violation and to be more vigilant about the procedure can 

reduce exceptional violations. Senior management can change the task procedures, reducing 



89 
 

employee violations and the risk associated with the task (Hudson & van der Graaf, 1998). 

Unsafe supervision 

Inadequate supervision 

The participants reported that supervision is key for the performance of remote CCIs using TIPS 

images. Only one inspector works in the office during night shifts, and no supervisor is available. 

The participants reported that when they had questions about the bad order of railcars, they had to 

call their supervisor at night: 

I think that sometimes reaching to director or manager is hard. While working in night shift 

with no supervisor, and if there is a bunch of bad order that they are unsure about, they need 

to call the supervisor at midnight, around 2 am- 3 am night, when they are sleeping, inspector 

feel bad to call and many times don’t call. 

A study by Kumar & Sinha (2008) in India about human error in railways states that poor 

supervisory actions and decisions made in the railway industry lead to extremely risky and 

accident-prone circumstances. Failing to provide guidance, review daily performance, and notice 

mistakes in tasks are aspects of inadequate supervision (Shappell & Wiegmann, 2000). Regular 

supervisor training is necessary to give the team the appropriate input to improve the supervision 

of inspection tasks. Weekly or bi-weekly review assessments of remote CCI work can provide 

input about their inspection techniques in the early stages of their career (Zhan et al., 2017). 

Synthesis of remote CCI responses to interview questions 

What makes a good portal office inspection and why? 

• All of the interviewees unanimously agreed that TIPS is ground-breaking technology. TIPS 

can capture images of moving railcars without interrupting the operation. Using this 

technology, remote inspectors can inspect the train from all possible angles from the 

comfort of their offices. The railcar images are black and white with zoom-in, zoom-out, 

contrast adjustment, and very high resolution, which facilitates easy inspection of tiny 

details of the railcar. 

• The alternative to TIPS is a comprehensive inspection of railcars by field inspectors. 

Manual inspection of railcars requires nearly 4-5 people for inspection of a full train and 

takes nearly 2-3 hours, depending upon the number of repairs. This manual inspection 
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activity can be challenging during harsh winter conditions. In addition, the components 

located under railcars are less visible and difficult to each. Using TIPS, a remote CCI can 

inspect various components of railcars using images at their desk while the train is still 

moving and thus improve productivity. This would also allow the inspectors in the field to 

focus more on repairing than finding defects. 

• A communication protocol between the inspection desk and the yard is important. 

Whenever a remote CCI finds any severe defect that can cause derailment or failure of train 

operation, they immediately inform the RTC and yard. Remedial actions are then taken to 

eliminate the cause at the yard or on the railway tracks by stopping the train. Thus, this 

technology helps to identify potential causes of accidents before they occur. 

• Railcar images can be easily tracked on the TIPS server. office inspectors can review the 

previously captured images of the railcar and understand the defect propagation over a few 

passes of the portal. The images can be useful in training new employees for POI. 

What are the challenges for portal office inspection, and why? 

• All of the interviewees identified that on-site weather factors such as blowing snow and 

muddy water affect the operation of the TIPS. During the winter, blowing snow obstructs 

some portions of railcar images. Recently, they also encountered the bottom camera 

(CSCView) getting clogged due to improper drainage of the bottom tie, which resulted in 

the obstruction of one camera. This kind of weather or environmental factors partially or 

completely affect the operation of the TIPS. 

• The TIPS is comprised of many electronic devices, which can affect the reliability of the 

overall system. Some issues with cameras and connecting cables have already created 

reliability problems for the TIPS. The camera is positioned on the portal to cover all 

important areas, but some locations remain inaccessible, such as the top of the brake shoe.  

• The usual shift duration for an office inspector is 12 hours. During regular days when train 

flow is high, a person must spend most of the time looking at a screen. High screen 

exposure can result in strain on the eyes and body. The number of images captured per 

railcar is also high. However, these images cover almost all angles (front and back) and 

thus can help to identify defects in railcars. Inspecting a train using TIPS takes 2-3 hours 
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of highly repetitive work. The repetitive nature of the work and the potential loss of 

concentration increase the chances of decision errors. 

• Images are black and white, which helps eliminate shadows of objects. However, this can 

pose problems when an inspector needs to confirm any grease marks, oil spills, or foreign 

objects. Hence, access to colored images can be helpful in some scenarios. 

How can poor inspections be improved? 

• The POI can be improved by training inspectors and providing feedback on their 

inspections. Supervisors/managers can play a vital role in this respect. Constructive 

feedback for employees is valuable input on their work, and passing on experience to the 

team can impact the effectiveness of the team and POI approach. 

• Field inspector awareness about POI is very important because feedback from the field to 

the office desk is crucial for educating employees about any defects they missed. 

• Training more employees on POI would enable shifts to be reduced from 12 hours to 8 

hours, which would help to improve the effectiveness and productivity of the office 

inspections. With reduced shift hours, desk inspectors can maintain a work-life balance 

and have less screen time. To overcome this challenge, CPR has recently recruited new 

team members for POI team. 

• Reducing the number of images per railcar is one possible way to reduce screentime 

exposure. 

• The availability of color images could potentially help desk inspectors to better discern 

grease marks, oil spills, and foreign objects. 

• The inspection of railcars from the top is not providing enough zoomed in images and thus 

not useful in capturing any defects for the top of coupler and top of railcars. Coupler 

inspection from the top side is also not feasible using the available setup. Both of these 

aspects could be improved. 

• The images captured for the trains are stored for a limited time and then overwritten by 

new images. However, the deleted images have value with respect to training employees. 

Hence, more storage space would be beneficial.  
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Conclusion 

This collaboration between NRC, CPR, and the U of A on human factors assessment provided 

useful inputs and helped smooth the conduct of the semi-structured interviews. The human is one 

of the important entities in POI, and factors affecting human performance are critical for enhancing 

the overall performance of this technology. Semi-structured interviews and thematic analysis were 

employed to analyze latent and underlying causes of human error when using POI technology. The 

interviews were conducted with remote CCIs with a wide range of experience and helped capture 

important qualitative data for human factors assessment. The findings of the thematic analysis 

indicate precondition of unsafe acts is the most contributing theme, followed by unsafe 

supervision. Among the top two themes, the technological environment, physical/mental 

limitation, and failure to correct a known problem were the most frequent codes. This indicates 

that human-technology interaction and supervisory inputs/actions are critical issues with respect 

to reducing the probability of human errors and improving the performance of POI technology. 

Experience and safety was an additional theme that emerged from the interview data, and considers 

how the level of experience and safety dedication affect the chances of human error with POI 

technology. Chances of human error decrease with increasing level of experience with POI 

technology. The least contributing theme is unsafe supervision and the lowest percentage for 

unsafe supervision indicates the CPR’s effort to reduce human errors and shows good supervision 

practice for POI. The findings of the human factor analysis and recommendations suggested by 

this research can help CPR minimize the frequency of human errors, improve human performance, 

and improve the safety of their railway fleet on the railway network. 
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Chapter 5: Artificial Defect Simulation on Railcar Components for Automated Machine 

Vision Inspection System (AMVIS) 

Introduction 

The original plan was to check the repeatability of defects by passing it multiple times through 

TIPS camera system, but it was not covered here due to operational challenges of railway 

operation. So, this research is focused on assessing the visibility of safety-critical defects in the 

images taken by CPR’s Maple Creek TIPS. The list of safety-critical defects were determined by 

the project’s steering committee and includes: a broken wheel, cracked axle, missing axle cap 

screw, truck bolster crack, missing/bent truck spring, bent brake beam, bent / cracked side sill, 

cracked center sill, cracked coupler knuckle, cracked centre sill, cracked coupler body, hand brake, 

and angle cock. The preliminary analysis suggested that some of these defects have a very low 

frequency of occurrence and it's possible that they may not be found on images during the course 

of this project. 

Furthermore, the current state of using TIPS requires human inspectors to review images. Such 

inspections are tedious and time-consuming and as discussed in the report of "Assessment of 

Human Factors in Portal Office Inspection (POI) Technology Using the Human Factors 

Assessment and Classification System (HFACS) Framework”, are subjected to human factors 

effect. Using effective AI algorithms can potentially offer more accuracy and consistency than 

visual inspection and the capacity to gather and organize massive amounts of visual data 

quantitatively (Sawadisavi et al., 2009). The algorithms are trained on sample datasets and their 

effectiveness are correlated with the number of samples or cases they have been trained on. 

However, as mentioned previously, some defects do not occur very frequently and thus prevent 

the development of highly efficient AI algorithms.  

To overcome the abovementioned limitations, the simulation of low-frequency defects was 

conducted in this project to test their visibility from TIPS images and enable creating a larger 

dataset of them for future training of AI algorithms. The researchers of NRC provided useful 

guidance in proposing and simulating defects in the field environment.  This project was focused 

on simulating the following defects on the railcar components: cracked wheel, cracked axle, and 

missing truck springs, etc. These fake defects can replicate the scenario of actual defects on the 

rail car. 
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Therefore, the objectives of this study are: 

• To simulate rare artificial (fake) defects on the railcar components to see how defects look 

in the POI technology environment; and 

• To check the reliability of POI technology and how the remote CCIs respond to rare 

defects. 

Literature review 

Various organizations, such as Transportation Technology Center, Inc. (TTCI) and researchers at 

the University of Illinois at Urbana-Champaign have conducted studies to develop fake defects on 

railcars. According to the TTCI research (Witte & Lindeman, 2017), there are five different ways 

to introduce fake defects onto railcar undercarriage components to determine defects' detectability 

using machine vision algorithms. The use of silicon caulk, magnets or magnet sheets, grease pens, 

white plastic containers, or wires are a few examples of potential methods.  

For railcar undercarriage inspection, TTCI used silicon caulk for artificial defects for Vehicle 

Undercarriage Examiner (VUETM) from Duos technologies (Witte et al., 2017). This experiment 

was conducted at the accelerated service testing (FAST) facility at the TTCI center in Pueblo, 

Colorado. For defect detection, TTCI introduced an artificial (synthetic) defect on the center sill 

of the railcar. This defect was a crack that was created by silicone caulk (Figure 31).  

 

Figure 30. Silicone caulk used for fake defect (Witte et al., 2017) 

https://www.ttci.tech/
https://www.ttci.tech/
https://www.ttci.tech/
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In another experiment, TTCI used magnets to generate anomalies on railcars. Notably, the size of 

the magnets was larger than the threshold limit of the detection system to simulate the defect (Witte 

& Lindeman, 2017). Another inspection from TTCI mimicked the defects of the undercarriage of 

the railcar using magnetic sheets, a grease pen, a white plastic container, and wires. Initially, they 

used white and grey containers for defect generation, but the grey container was difficult to 

simulate the defect because of its similar color to the undercarriage of the railcar. On the other 

hand, the white containers simulated the defects correctly, and the algorithm identified defects. 

The wires were used to replicate the crack defects on components. In addition, a grease pen was 

used to generate the crack defect on the center sill of the railcar. The defect size must be larger 

than the threshold limit of error detection of the algorithm. They used a 1-foot x 1-foot white 

magnetic sheet for defect generation in the railcar (Witte & Chaparro, 2015). Figure 32(a) shows 

the defects detected by the system, and Figure 32(b) shows the objects used in simulating artificial 

defects. 

 

a)  

 

b) 

 

Figure 31. White container, grease pen, and magnetic sheet used for fake defect (a) detection by 

the system for fake defect objects and (b) fake object image. 

The researchers at the University of Illinois at Urbana-Champaign used a virtual model of a railcar 

for defect generation. This model was used to develop defects, which were expected to be rare 

during algorithm development for machine vision inspection techniques. This virtual model also 
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helped the team to test the defects under different lighting situations, on different railcar types, and 

from different camera angles (Edwards et al., 2007). 

 

 

(a)                              (b) 

Figure 32. A Virtual model of an open-top hopper for defect simulation (a) actual railcar, (b) 

virtual model of a railcar 

As seen in Figure 33, the virtual model of the railcar shows the high-level 3-D model of the open-

top hopper-type railcar. The deformation of the ladder can also be seen in the virtual model as it is 

visible in the actual hopper. The researchers have used Autodesk's 3DS MAX  8 computer 

modeling software for developing a 3-D model of an open-top hopper (Edwards et al., 2007). 

Methodology for defects simulation 

To simulate defects on the railcars, we targeted defects that were pre-identified from the AMVIS 

project such as the cracked wheel, broken axle, broken coupler, broken side sill, cracked brake 

beam, and broken truck spring. The location for the simulation of defects on railcars was selected 

based on discussions with the highly experienced Transport Canada regional inspector, CPR 

railway yard supervisor, CPR’s field CCIs, and NRC researchers. The U of A team conducted the 

experiment at CPR Alyth yard, Calgary, and the CPR team managed the necessary arrangements 

for conducting this part of the research. The simulation of fake defects was conducted using metal 

wire, magnets, and silicon caulk. We conducted this experiment in two different parts: 

1. Part 1-Defect simulation of stationary railcar; 
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2. Part 2-Defects simulation on railcar that passed through TIPS. 

Part 1- Defect simulation of stationary railcar 

The first part of the study was conducted at a CPR yard located in Alyth, Calgary, on July 22, 

2022. We simulated different defects, such as a cracked wheel, cracked center sill, cracked 

knuckle, cracked axle, and cracked truck spring using magnets and metal wire. The images were 

captured using a phone camera. 

 

Figure 33. Fake defect simulation steps for Part 1 

This part included simulating defects on components of a railcar that is in a stationary condition. 

Figure 34 shows the procedural steps for part 1 of the experiment. The purpose of this step was to 

check how we can install the defects on the components of the railcar before implementing them 

on moving railcars.  

Part 2-Defects simulation on railcar that passed through TIPS 

We conducted part 2 at the CPR yard located in Alyth, Calgary, on January 09, 2023. The purpose 

of part 2 was to check how simulated defects look in the POI technology environment and how 

remote CCIs respond to simulated defects. Thus, we simulated the defects on components of the 

railcar, which will pass through the TIPS portal. Figure 35 shows the procedural steps for part 2 

of the experiment. 

We developed different fake defects such as broken truck springs, cracked side sill, cracked 

knuckles, broken brake beams, broken step sill, and cracked yokes using magnets, metal wire, and 

Step 1: Simulate the fake 
defects on the railcar 
components using metal 
wire and magnets. 

Step 2: Use a phone 
camera to capture images 
of simulated defects.

Step 3: Conversion of 
RGB images into B&W 
images. (To replicate 
infrared image condition)

Step 4: Images were 
reviewed by remote CCI 
to identify the defects that 
we simulated. 
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silicon caulk. These defects were simulated on two different railcars, DOWX20758 and 

CCBX71731. 

● DOWX20758 railcar was simulated with three defects, a cracked coupler, a cracked yoke, 

and a broken truck spring. The railcar DOWX20758 departed from Alyth yard and passed 

the TIPS portal on January 09, 2023. 

● CCBX71731 railcar was simulated with five defects, a broken truck spring, two cracked 

side sills, a broken brake beam, and a cracked step sill. CCBX71731 departed from Alyth 

yard on January 15, 2023, and passed the TIPS portal on January 16, 2023. All five defects 

were visible in the images which were captured by TIPS portal camera systems. 

 

Figure 34. Fake defect simulation steps of Part 2 

We removed the simulated defects in Moose Jaw yard, from the railcars once they had been passed 

through Maple Creek, Saskatchewan's TIPS camera system. Because the railcars may depart from 

the mine loading site for other railway operators, it is extremely unlikely that the same railcars will 

return to CPR rail lines and pass via The TIPS camera system on their subsequent journey. 

Step 1: Note the railcar ID, type of 
defect, and location of defects on 

railcar.

Step 2: Install the fake defects on 
railcar from CPR Alyth yard.

Step 3: Communicate fake defects 
information to mechanical planner 

of Moose Jaw Yard.

Step 4: Images of the railcars gets 
available when train passes TIPS.

Step 5: Ask on-duty remote CCI to 
inspect the railcars, without 

passing any fake defects 
information. 

Step 6: Check whether the fake 
defects were identified by remote 

CCI.

Step 7: Remove fake defects when 
the train reaches Moose Jaw.
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Otherwise, these flaws might mislead other railroad operators. Thus, we were unable to determine 

the repeatability of flaws in part 2 of the experiment. 

We did not simulate cracked wheel and cracked axle railcar defects in the part 2. It is not possible 

to simulate a wheel crack using metal wire and magnets since the railcar wheel is rotating at a fast 

rate and the equipment may come off from the railcar. Also, we didn’t simulate the cracked axle. 

Because it is one of the high-risk defects and seeing cracked axle through TIPS image can cause 

implementation of critical procedure such as stopping of train and taking out the railcar from fleet 

immediately. This could lead to various consequences in railway operation and thus we didn’t 

simulate it. 

Results and Discussion 

The results of the defect simulation are analyzed using captured images. For part 1, images were 

captured using a phone camera, and for part 2, images were captured by TIPS camera systems 

located in Maple Creek, SK.  

Results and discussion of part 1 (Defect simulation on stationary railcar) 

The images from the TIPS camera system are IR images, but for part 1 the images were colored 

in type because we used a phone camera for image capturing. Thus, we converted the phone 

camera captured images to IR images which remote CCI usually sees on their computer system. 

We used Python software code to convert red-green-blue (RGB) images to (B&W)/IR images 

(Figure 36). 

 

Figure 35. (a) RGB image from the camera, (b) B&W image from the python code 
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Fake defect 1-cracked wheel 

 

Figure 36. (a) Wheel (b) Cracked wheel with simulated defect 

A crack on the railcar wheel was simulated using metal wire, and magnets were used to keep the 

metal wire in its position. Figure 37(a) is a captured image, and Figure 37(b) shows the location 

of the simulated crack at 2'o clock position. 

Fake defect 2-cracked center sill-2 location 

 

Figure 37. (a) Center sill, (b) Cracked center sill with simulated defect (Location-1) 

A crack on the center sill was simulated using metal wire, and magnets were used to keep the metal 

wire in its position. Figure 38(a) is a captured image of the center sill, and Figure 38(b) shows the 

location of a simulated crack on the center sill. 
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Figure 38. (a) Center sill, (b) Cracked center sill with simulated defect (Location-2) 

Another crack on the center sill was simulated by wrapping metal wire around the corner of the 

center sill at the second location. Figure 39(a) is captured image of the center sill, and Figure 39(b) 

shows the location of a simulated crack on the center sill. 

Fake defect 3-cracked truck axle 

 

Figure 39. (a) Truck axle, (b) Cracked truck axle with simulated defect 

A cracked truck axle defect was simulated by wrapping a metal wire around the axle. Figure 40(a) 

is a captured image of the truck axle, and Figure 40(b) shows the location of a simulated crack on 

the truck axle. 
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Fake defect 4-broken truck spring 

 

Figure 40. (a) Truck spring nest, (b) Broke truck spring with simulated defect 

Wrapping metal wire around the spring coil simulated a broken truck spring. Figure 41(a) is 

captured image of the truck spring nest, and Figure 41(b) shows the location of the simulated crack 

on the truck spring coil. 

Fake defect 5-Cracked coupler 

 

Figure 41. (a) Coupler knuckle, (b) Cracked coupler knuckle with simulated defect 
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A crack on the coupler knuckle was simulated using a metal wire. We kept the metal wire in its 

position as per Figure 42(a) and captured an image with a phone camera. Figure 42(b) shows the 

location of the simulated crack on the knuckle. 

The on-duty remote CCI identified all the simulated defects on various railcar components using 

the B&W images. The results of part 1 confirmed the use of metal wire and magnets is good 

enough to create defects on railcars; therefore, we proceeded to the second part, which involved 

implanting fake defects on the moving railcar to identify defects on the TIPS camera environment. 

The images in part 1 were captured using a standard phone camera. Thus, some images had 

shadows of railcar parts. However, the TIPS technology uses IR image-capturing cameras, which 

nullifies the effect of shadows and sunlight. 

Results and discussion of part 2 (Defect simulation on railcar that passed through TIPS) 

Fake defect 6-cracked yoke 

A crack on the yoke was simulated using a metal wire. We wrapped the metal wire on the yoke, 

and Figure 43(a) is the obtained image from the CSCView camera system of the TIPS portal. 

Figure 43(b) shows the location of the simulated crack on the yoke.  

a)   

 

b) 
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Figure 42. (a) Yoke, (b) Cracked yoke with simulated defect. 

Fake defect 7-cracked coupler 

A crack on the coupler was simulated using a metal wire and magnet. We kept the metal wire in 

position and used a magnet to hold the metal wire in position. Figure 44(a) is the obtained image 

from the AHView camera system of the TIPS portal. Figure 44(b) shows the location of the 

simulated crack on the coupler. 

a)  

 

b)   
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Figure 43. (a) Coupler, (b) Cracked coupler with simulated defect 

Fake defect 8- broken truck spring 

A crack in the spring was simulated using a metal wire. We wrapped the metal wire around the 

coil of spring in the spring nest. Figure 45(a) is the obtained image from the TruckView camera 

system of the TIPS portal. Figure 45(b) shows the location of the simulated broken truck spring. 

a) 

 

b) 
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Figure 44. (a) Truck spring, (b) Broken truck spring with simulated defect 

Fake defect 9 -Cracked side sill – at 2 locations 

Cracks on the side sill were simulated using a metal wire, magnets, and silicon caulks. We placed 

the metal wire on the side sill and used magnets and silicon caulk to hold the metal wire in its 

position. Images in Figures 46(a) and 47(a) were obtained from the TIPS portal TrainView camera 

system. Images in Figures 46(b) and 47(b) show the location of the simulated side sill cracks. 

a) 

 

b) 
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Figure 45. (a) Side sill, (b) cracked side sill with simulated defect (Location-1) 

a) 

 

b) 
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Figure 46. (a) Side sill, (b) cracked side sill with simulated defect (Location-2) 

Fake defect 10-Broken step sill 

A crack on the step sill was simulated using a metal wire. We wrapped the metal wire around the 

step sill of the railcar. Figure 48(a) is the obtained image from the TruckView camera system of 

the TIPS portal. Figure 48(b) shows the location of the simulated broken step sill. 

a)  
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b)  

 

Figure 47. (a) Step sill, (b) cracked step sill with simulated defect 

The summary of the results of part 2 is shown in Table 20. These results were generated after the 

images of both railcars (DOWX20758 and CCBX71731) were inspected by remote CCI as per 

their inspection routine. 

Table 20. Summary of results for part 2 

No. Car ID Location Type of defect 
Visible in TIPS 

image (Y/N) 

Reported by 

remote CCI 

(Y/N) 

1 DOWX20758 B-end yoke Cracked yoke Yes Yes 

2 DOWX20758 B-end coupler Cracked coupler Yes Yes 

3 DOWX20758 

B-end right side 

friction casing Broken truck spring No No 

4 CCBX71731 

B-end right side 

casing Broke truck spring Yes No 
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5 CCBX71731 Beam no-4 Cracked brake beam No No 

6 CCBX71731 Right side of railcar Cracked side sill Yes No 

7 CCBX71731 Right side of railcar Cracked side sill Yes No 

8 CCBX71731 A-end right side Cracked sill step Yes No 

 

The data provided in Table 20 shows that the two defects, the broken truck spring on DOWX20758 

and cracked brake beam CCBX71731, were not visible in TIPS-obtained images. The possible 

reason for these two defects could be: 

1. Metal wire fell off the railcar part due to the train movement of more than 200 miles. 

2. Metal wire used to simulate a broken truck spring might have slipped over the spring coil 

and gone behind the first row of truck springs. 

One of the prior images taken for broke truck spring by the TIPS camera system is shown in Figure-

49. It is obvious that when a truck spring breaks, a slight deviation is seen in level, and this trigger 

the remote CCIs to flag the railcar as having a problem. We could, however, draw the conclusion 

from comparing the two images (Figures 45(b) and 49) that wrapping metal wire over the spring 

coil is ineffective in mimicking a broken truck spring problem. It could be the reason why remote 

CCI missed the broken truck spring defect on CCBX71731 railcar. 

The remote CCI successfully identified the two defects, the cracked yoke, and cracked coupler, 

simulated on DOWX20758. These two defects have a very low frequency of occurrence but 

impose high risk, thus remote CCIs put enough time and attention on these parts. However, the 

remaining four defects, cracked side sill (2 locations), cracked sill step, and broken truck spring, 

were not identified by remote CCI, but these defects were visible in the TIPS obtained images of 

CCBX71731.  
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Figure 48. Previously captured broken truck spring in TIPS image. 

Based on the inspection of images by remote CCI, it is evident that simulated defects on various 

components are clearly visible in the images of the TIPS camera system. However, on-duty remote 

CCI did not identify some of the simulated defects. The possible reasons for three missed defects 

could be: 

1. In case of a cracked side sill, remote CCI may not have seen this defect in the TIPS portal 

environment, as this defect has a rare frequency of appearance. 

2. In case of broken spring and cracked sill step, the simulated defects were not effective enough 

in replicating real defect and remote CCI considered them as a shadow or foreign material. 

3. Remote CCI missed defects due to human error indicate an influence of humans on the quality 

of remote safety inspection of railcars. 

The present results unveil that while all the simulated defects were visible in the images, their 

ability in imitating a real defect varied. The remote CCIs flagged a few of the simulated defects 

while inspecting images captured by TIPS. Among the missed cases, the rare frequency defect 

were not flagged by remote CCIs but frequent defects were rightly flagged. 

This study showed that it is feasible to simulate low-frequency defects on railcars. The visibility 

of these fake defects were examined through the limited number of images. Further simulation is 
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recommended to examine the repeatability of detecting these defects. For some defects, a modified 

simulation process would also be required.  

Recommendations for Improving Human Factor Influence 

The number of observations in this study is too small to make any definitive conclusion regarding 

the effectiveness of the POI, but from the limited observations, it can be concluded that human 

error in flagging defects affect the quality of the POI. Following are some recommendations to 

improve human errors in POI: 

1. Training: The development of training programs, timely reviewing of training programs, 

and implementation of a new training program based on employee review are good 

strategies for boosting the performance of human operators (Shappell & Wiegmann, 2009). 

All active employees must participate in periodic refresher training programs to keep them 

updated with safe working conditions and procedures (Kumar & Sinha, 2008). Also, 

mock/validation tests and simulation training for employees can improve skills and reduce 

human error in remote inspection technology (Ravindran et al., 2019). In-service training 

(training that takes place while a person is working and is used to enhance their abilities 

and skills (What Is In-Service Training, 2022)) is also very helpful in improving the skills 

of employees during their course of employment. The study conducted in Iran highlighted 

that in-service training improves the employee’s ability and skills and reduces the 

probability of errors (Saremi & Moein, 2014). 

Provide enough training to remote CCIs for defect identification, especially for defects with 

a low frequency of occurrence. The railcar inspection with POI technology is a relatively 

new technology which brings new challenges with it, necessitating employee retraining 

and more complex training (Kumar & Sinha, 2008). Regular in-service training for 

employees and continuous upgrading the training resources of POI technology helps in 

reducing errors and improving the performance of both remote CCI and POI technology. 

2. Procedure and checklist: The reliability of operations and error reduction in railway 

operations are both affected by well-written procedures and job aids (Andersen & 

Thommesen, 2012). The study of remote control locomotive (RCL) accidents reported poor 

procedures and practices as major contributors to human error (“Human Error in 

Railways,” 2007). A checklist is a highly valuable document as human memory is not very 
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reliable, particularly when dealing with stress, exhaustion, and difficult tasks (Winters et 

al., 2009). The study by Hales & Pronovost (2006) found that checklists are strongly 

advised tools for error reduction, particularly in industries where human error results are 

highly disastrous. 

For POI technology, well-documented procedures for the inspection of railcars are 

important for employees to identify defects correctly. One way to help employees 

distinguish between defects and non-defects is to utilize previously gathered TIPS 

photographs of various defects and incorporate those images in the procedure or checklist 

for the employee. (Janota et al., 2022). Also, clear instructions/ checklists about the 

taxonomy of different defects can help human operators and reduce human error in POI 

(Patterson & Shappell, 2010). 

3. Collaboration and communication: Collaborate with experienced personnel or industry 

leaders of POI technology and identify improved procedures and best practices. Interaction 

with supervisors and team members can help in identifying issues and help in reducing 

human error. Studies of real-world and several simulated emergencies have demonstrated 

that team communication can significantly detect incorrect plans and errors (Kontogiannis 

& Malakis, 2009).  The study found that briefing is a good way to improve collaboration 

among the organization's employees and reduces the risk of mistakes. A study in high-risk 

environments reported that the implementation of briefing as the procedure in their 

organization showed a drop in errors by 25% (Wahr et al., 2013).  

POI employees help each other in error circumstances by disclosing/communicating their 

faults and error-prone conditions of the system (Van Dyck et al., 2005). For instance, if an 

employee is aware of an erroneous condition in the system, then communicates it to the 

supervisor and other employees a so that they don’t use the erroneous system for decision-

making. The team needs to create and practice free and open communication since better 

communication reduces the likelihood of error (Helmreich & Foushee, 2019). The lesson-

learned register is one of the best practices for organizations to gather useful information 

and success or failure. Communicating lesson-learned to the team can reduce the chance 

of replication of similar mistakes in the future (Jakl et al., 2018). 
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4. Reduce distraction and workload: There are a few studies that reported that errors in the 

railway industry increase with the increase in workload, distraction at the workplace, 

unnecessary discussion, and time pressure of completing the task (Read et al., 2012) 

(Elsmore & Parasuraman, 2016). The features of work environments, such as noise and 

lighting, can distract the attention of human operators. Also, working on multiple things 

simultaneously affects the work efficiency of humans. Thus, minimizing distractions and 

assigning a manageable workload to employees can reduce the chance of errors (Wall, 

2017). 

The use of special types of training, such as sustained attention training (SAT) has shown 

a reduction in errors compared to others who didn’t receive any training. This training 

helped them maintain their attention for a longer period and reduce mistakes in task 

completion (Elsmore & Parasuraman, 2016).  Prioritization of tasks for the shift and the 

use of technology/software is one of the techniques used for managing the workload. Also, 

forecasting the work task before and providing the manpower resources can help in 

reducing the workload and chances of human error (Martins, 2020).  

5. Use of artificial intelligence (AI): There are a few industries where AI-based solutions have 

been used to detect defects and have proven high detection accuracy by replacing human 

interventions (Driving Impact at Scale from Automation and AI, 2019). Using 

supplementary AI-based technology can help increase POI performance by minimizing 

human errors. When humans are under great stress and fatigue, their performance suffers, 

which raises the likelihood of committing errors. However, AI is capable of performing 

high-intensity, repetitive tasks with almost the same accuracy every time, which is not the 

case for human inspectors (Edwards et al., 2007).  

In the railway industry, AI is used in many complex tasks such as defect/fault detection, 

maintenance planning, failure prediction, etc. AI is mostly used to make decisions and deal 

with uncertainty, which lowers the likelihood of human error (Tang et al., 2022). In the 

case of POI technology inspection, AI-based technology can be used in combination with 

a human inspection to detect defects/faults in different components of railcars. While AI-

based technology undoubtedly reduces human error, it also necessitates intensive training 
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of AI models in order to learn from photos of diverse flaws and defects and verify the 

precision of defect detection technology (Tang et al., 2022). 

Conclusion 

The collaboration between the CPR, NRC, TC, and the U of A has provided invaluable insights 

for simulating the defects on railcars. Keeping track of all the AMVIS defects during the AMVIS 

project's tenure was quite challenging. Hence, we performed simulated defects for assessing the 

POI technology for low frequency defects.  

We used metal wire, magnets, and silicon caulk for artificial defects on railcar components, and 

the results depicted that simulation of defects on the railcar components is a viable method for 

assessing visibility of low-frequency defects such as cracked wheel, cracked center sill and side 

sill. Although the simulated crack on wheel was not applied on railcar that passed through TIPS 

due to operational challenge, the statical test shows the potential of applying the simulation 

method to assess the detectability for this critical yet rarely happened defect. 

The experiment on railcar that passed through TIPS covered a few defects such as cracked truck 

springs, cracked side sill, cracked yoke, cracked couplers, and cracked step sill. All of these 

simulated defects were visible in the images obtained from the TIPS camera system, which shows 

the TIPS is effective at capturing these simulated defects. Remote CCI missed the simulated side 

sill cracks and brake beam crack that rarely happened for the potash train cars. The broken truck 

spring defect is not as effectively simulated as actual broken truck spring and it was missed by 

remote CCI. However, remote CCI flagged broken yoke and broken coupler successfully. These 

results demonstrates that simulated defect method can be used to evaluate the repeatability of RSI 

if the operation conditions allow the railcars with fake defects being kept in in-service train. For 

the low frequency and high-risk defects such as crack wheel and center sill, this provides a feasible 

method to assess their detectability by the technology. Further test using the developed method 

for such low frequency and high-risk defects is recommended.  

The analysis has highlighted that the performance of humans is one of the critical factors that can 

affect the performance of POI technology. The efforts to strengthen human performance and 

reduce human error are important for enhancing technical performance and flagging railcar 

defects. We recommend reducing human error by providing enough training on various defects, 
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training well-written documents, collaborating with industry experts, and reducing operators' 

workloads. Furthermore, the use of AI-based technology can potentially help human inspection 

and boost POI technology's performance. 

If a large set of data can be collected, the images of simulated defects can be vital in training the 

AI-based machine learning algorithms, especially for those rare frequency defects. 
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Chapter 6: Conclusion and Future Studies Suggestions 

6.1 Conclusion 

The operation of railway network of Canada is one of the important contributors to national 

economy and its safety is one of the challenges due to various changes associated with season, 

terrain etc. Over the years, traffic on the railway network is increasing which also contributed to 

increasing number of accidents such as derailments, HRGC accidents, trespassing etc. The 2018 

Railway Safety Act review have highlighted the two concerns: 1) accidents and fatalities at HRGCs 

have increased despite several implementations of safety measures, funding, and initiatives; 2) 

Incorporating technological solutions for improving safety in railways. 

The findings of the first study of this research have unveiled causal factors which affect the safety 

of HRGCs using ML algorithms. Also, the hotspot analysis and recommendations provided for 

causal factors are useful for the authorities to concentrate the efforts and budget. The next three 

studies were about the inspection of railcar component defects using cutting-edge technology 

which is called POI technology. Various assessment studies were conducted for POI technology 

in order to evaluate the technology for remote inspection purpose. The second study of the research 

has reported the high-risk failure causes that affect the reliable operation of TIPS by applying 

fuzzy-FMEA technique. This study has helped the organizations to locate the high-risk causes in 

early stage and implement countermeasures for reducing the failure risk. The third study of this 

research has revealed the underlying causes of human error in remote inspection task using 

HFACS framework. The findings of the study have shown that “Precondition of Unsafe Act” is 

most influencing theme for human error in POI technology. The suggested recommendations can 

help to minimize the frequency of human errors and improve human performance. The last study 

of artificial defects to find the response of CCI to rare defects. The study has also supported that 

human error affects the flagging of defects through POI technology. This study has shown 

promising results for the AI-ML based solution of remote inspection task. 

The entire thesis is concentrated on the prevailing concerns of the Canadian railway network and 

tried to provide the solutions using the machine learning techniques and fundamentals of risk 

assessment techniques. The findings of the research is helpful for the improving the safety of 

HRGCs and implementing the technologies for safer, faster and reliable operations of Canadian 

railways. 
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6.2 Future studies suggestions 

The current research studies of this thesis have identified some limitations. Rectifying these 

limitations in the future studied could help in better decision making for safety of HRGCs and POI 

technology. Following are the suggestions for the future studies: 

1. Reduce reporting bias and enhance data collection: The HRGC datasets used for analysis exhibit 

bias due to the reporting process, where accidents are reported by individuals within the railway 

organization, such as supervisors or conductors. This manual entry of details introduces various 

factors that contribute to the bias, including the experience of the reporting individual, the level 

of detail they possess about the accident, and the accuracy of the reported information. These 

discrepancies contribute to the inherent bias present in the dataset. 

The results of the conducted studies could have highlighted some important factors of the 

datasets have been reported with other features. Features such as crossing angle, gradient, 

sightline distance for vehicle at HRGC, distance to nearest intersection, condition of road at 

accident, visibility, temperature at condition, signs at crossings, number of occupants in 

vehicle, and train speed at vehicle hit can be very useful in analyzing the safety of HRGCs. 

Furthermore, the timing of activating the active protection devices at HRGC (Highway-Rail 

Grade Crossing) plays a crucial role in the analysis. This is because goods trains typically 

move at slower speeds compared to passenger trains, yet the activating sensor detects the 

presence of any train and triggers the HRGC system. This discrepancy in train speeds can 

result in delays for highway traffic, causing anxiety among vehicle drivers who may attempt 

to cross the HRGC in risky situations. Furthermore, human factors can also be assessed by 

incorporating features such as driver’s condition, driver’s experience into the dataset which 

can unveil the human factor contribution to HRGC accidents. 

Furthermore, a significant number of accidents were not reported with complete information, 

resulting in empty cells within the dataset. If the reporting process had been more consistent 

throughout the dataset, it would have facilitated a more comprehensive assessment of HRGC 

safety. 

2. Regular re-evaluation: To ensure accurate risk assessment of POI technology, regular re-

assessments should be conducted to identify any new risks arising from changing conditions in the 
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future. Furthermore, it is essential to establish new measures to address newly identified causes of 

risk. 

3. Innovative practices: In the context of artificial defect simulation, it is crucial to explore 

innovative approaches for simulating rare defects, such as cracked wheels and cracked axles. 

Identifying new practices specific to these defects will enhance the simulation process and help in 

utilizing them for training AI-ML model.  
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Appendices 

Appendix 1. Description of features used for the analysis of HRGC accidents 

No. Feature name Description 

1 Access 
Public (maintained by a road authority and designed for 

public use) or private crossing. 

2 Regulator 
Authority regulating the grade crossing, either federal or 

provincial. 

3 Protection 

Type of warning at crossing: passive (signs only), active – 

FLB (flashing lights and bells), or active – FLBG (flashing 

lights, bells, and gates). 

4 Accident 

The number of accidents over the last 5 years at this 

location. Data provided by the Transportation Safety Board 

(TSB). 

5 Trains_Daily 
Estimate of the number of freight and passenger train 

movements per day over given HRGC. 

6 Vehicles_Daily 
Estimate of the number of road vehicles per day over given 

HRGC. 

7 
Train_Max_Speed_ 

(mph) 

Estimate of the maximum train speed over given HRGC in 

miles per hour. 

8 
Road_Max_Speed_ 

(km/h) 

The road vehicle speed over given HRGC in kilometres per 

hour. 

9 Lanes Number of road vehicle lanes at this grade crossing. 

10 Tracks Number of train tracks at this grade crossing. 
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11 IsUrban 
Indication of if this grade crossing is located in an urban (Y) 

area or not (N). 

Appendix 2. Description of features used for analysis of the severity of casualties associated 

with HRGC accidents. 

No. Feature name Description 

1 Season The season in which the accident happened. 

2 OccTime The hour of occurrence for a given accident. 

3 NumberTrainsInvolved Number of trains involved in crossing accident. 

4 TotalRSInvolved Total number of rolling stocks involved in crossing accident. 

5 TrackTypeID 

Type of track on which crossing accident happened (a 

number is given by the system). 

6 TrackOwnerID 

The owner of a track on which a crossing accident happened 

(railway/private). 

7 NumTracksInvolved Number of tracks involved in HRGC accident. 

8 NumTracks Total number of tracks involved in HRGC accident. 

9 CrossingTypeID 

Type of HRGC at which HRGC accident happened. 

(private/farm/public automated/public passive). 

10 ImpactTypeID 

Type of impact between train and vehicle on highway 

(struck vehicle/struck by vehicle). 

11 CrossingLocationID 

Location of crossing on which HRGC accident happened 

(rural/urban/private/industrial). 
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12 NumTrainsDaily 

Number of freight and passenger train movements per day 

over given HRGC. 

13 NumVehiclesDaily Number of road vehicles per day over given HRGC. 

14 RoadSpeed_KPH Designated speed of highway on which HRGC is located. 

15 AWDTypeID Type of warning device installed at HRGC. 

16 NumVehiclesInvolved Total number of vehicles involved in HRGC accident. 

17 DriverActionID Number describing the driver's action in a HRGC accident. 

18 NumOfOccupants Number of occupants in the vehicle in a HRGC accident. 

19 VehicleTypeID 

Type of vehicle involved in HRGC accident, such as bicycle, 

motorcycle, van etc. 

20 Train_Max_Speed Designated speed of railroad on which HRGC is located. 

21 Final_Class Output variable that describes the severity of accident. 

Appendix 3. Fuzzy rules for a fuzzy-FMEA system of TIPS 

1  If Severity is Low, Occurrence is Low, and Detectability is Likely then RPN is Low  

2  If Severity is Low, Occurrence is Low, and Detectability is Medium then RPN is Low 

3  If Severity is Low, Occurrence is Low, and Detectability is Unlikely then RPN is Low 

4  If Severity is Low, Occurrence is Medium, and Detectability is Likely then RPN is Low 

5  If Severity is Low, Occurrence is Medium, and Detectability is Medium then RPN is Low 

6  If Severity is Low, Occurrence is Medium, and Detectability is Unlikely then RPN is Medium 



146 
 

7  If Severity is Low, Occurrence is High, and Detectability is Likely then RPN is Medium 

8  If Severity is Low, Occurrence is High, and Detectability is Medium then RPN is Medium 

9  If Severity is Low, Occurrence is High, and Detectability is Unlikely then RPN is Medium 

10  If Severity is Medium, Occurrence is Low, and Detectability is Likely then RPN is Medium 

11  If Severity is Medium, Occurrence is Low, and Detectability is Medium then RPN is Medium 

12  If Severity is Medium, Occurrence is Low, and Detectability is Unlikely then RPN is 

Medium 

13 If Severity is Medium, Occurrence is Medium, and Detectability is Likely then RPN is 

Medium 

14  If Severity is Medium, Occurrence is Medium, and Detectability is Medium then RPN is 

Medium 

15  If Severity is Medium, Occurrence is Medium, and Detectability is Unlikely then RPN is 

Medium 

16  If Severity is Medium, Occurrence is High, and Detectability is Likely then RPN is Medium 

17  If Severity is Medium, Occurrence is High, and Detectability is Medium then RPN is High 

18  If Severity is Medium, Occurrence is High, and Detectability is Unlikely then RPN is High 

19  If Severity is High, Occurrence is Low, and Detectability is Likely then RPN is Medium 

20  If Severity is High, Occurrence is Low, and Detectability is Medium then RPN is Medium 

21  If Severity is High, Occurrence is Low, and Detectability is Unlikely then RPN is High 

22  If Severity is High, Occurrence is Medium, and Detectability is Likely then RPN is Medium 
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23  If Severity is High, Occurrence is Medium, and Detectability is Medium then RPN is High 

24  If Severity is High, Occurrence is Medium, and Detectability is Unlikely then RPN is High 

25  If Severity is High, Occurrence is High, and Detectability is Likely then RPN is High 

26  If Severity is High, Occurrence is High, and Detectability is Medium then RPN is High 

27  If Severity is High, Occurrence is High, and Detectability is Unlikely then RPN is High 

Appendix 4. Fuzzy-FMEA analysis of TIPS  

No Item 

Potentia

l Failure 

mode 

Potential 

effect of 

failure 

Sev

erit

y 

Potential 

causes of 

failure 

Occ

urre

nce 

Current 

design control 

Detecta

bility 

Fuzzy-

RPN 

1 

AEI 

tag 

reader 

Loss of 

power 

supply to 

AEI 

reader 

Failure to 

sense the 

presence of 

train and 

failure to 

start the 

TIPS 

5 

Power 

supply 

failure 

3 

Auxiliary 

power using a 

battery is 

available for a 

few hours and 

after that no 

backup supply. 

2 84.5 

Malfunct

ion of 

tag 

reader 

Failure to 

read the RFI 

tag & failure 

to assign 

images to 

correct car 

ID 

1 

Failure of 

radio 

frequency 

transponder

s 

3 

Inspection 

frequency is 

once per year. 

Remote CCI 

can check the 

health of tag 

reader by 

logging into 

system. 

1 53 

Track 

circuit 

failure 

Failure to 

sense the 

presence of 

train and 

failure to 

start the 

TIPS 

5 

Track 

condition-

shunting 

3 

Inspection 

frequency is 

once per year. 

Railway 

organization 

can check the 

health of track 

circuit by 

2 84.5 
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logging into 

system. 

Failure 

of wheel 

sensor 

Failure to 

read the RFI 

tag & assign 

images to 

correct car 

ID 

1 

Damage due 

to hanging 

foreign 

objects 

1 

Additional 

wheel sensors 

are available 

on site; 

technician 

needs to go on 

site and 

replace it. 

Remote CCI 

can check the 

health of 

wheel sensor 

by logging into 

system. 

2 51.1 

2 
Came

ra 

No clear 

camera 

images 

Full view 

block in 

images 

5 

Banding/blu

rring/darken

ing/over-

exposure in 

cameras 

5 

Remote CCI 

performs 

visual check 

for checking 

full view 

blockage in 

images. 

2 104 

Partial view 

block in 

images 

3 

Banding/blu

rring/shado

wing/over-

exposure in 

cameras 

5 

By visual 

check remote 

CCI can detect 

the issue in 

images. 

2 84.5 

Blowing 

snow in 

Maple 

Creek 

5 

Fencing is 

provided on 

north side of 

TIPS portal to 

restrict 

incoming snow 

and is 

performing 

well. 

2 84.5 

Camera 

shutter 
3 Inspection 

frequency is 
2 63.8 
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actuator 

malfunction 

once every two 

months. 

Black 

images 

from a 

camera 

No image 

from 

cameras 

5 

Environmen

tal 

conditions, 

dirt, & 

waterloggin

g 

2 

To avoid 

waterlogging, 

the track is 

elevated above 

the ground. 

3 84.5 

Electric 

overloading 
2 

During the 

design phase, 

power 

requirement 

for camera 

system is 

calculated and 

sufficient 

power supply 

is allocated 

accordingly. 

3 84.5 

Lights 

failure 
1 

Inspection 

frequency is 

once per two 

months 

3 67.5 

3 Cable 

Damage 

to fibre 

cable for 

data 

transfer 

Storage of 

images on 

local servers 

but not able 

to see on 

server. 

5 

Insulation 

damage and 

continuity 

loss for 

cable 

2 

Inspection 

frequency is 

once per year. 

Images cannot 

be accessed; 

remote CCI 

can notice a 

failure to 

connect and 

dispatch the 

technician. 

2 84.5 

Damage 

to power 

cable 

No image 

capturing as 

TIPS is out 

of power 

5 

Insulation 

damage and 

continuity 

loss for 

cable 

3 

Images would 

not be 

captured. 

Failure can be 

noticed by 

remote CCI. 

2 84.5 
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4 

Power 

suppl

y 

Loss of 

power 

supply 

No power 

supply & no 

image of 

railcars 

5 

Power line 

damage due 

to animal 

attack 

1 

Power lines 

are 

underground, 

thus very 

unlikely. 

2 67.5 

Power 

outage in 

the region 

due to wind 

or blowing 

snow  

2 

The external 

hard wire 

connection is 

available on-

site to connect 

electric 

generator in 

case of power 

outage. 

2 84.5 

Lighting 

strike on 

TIPS 

equipment 

2 

Lightning 

protection is 

provided on 

TIPS 

equipment. 

2 84.5 

Power 

overloading 

from supply 

source 

1 

Two circuit 

breakers are 

available to 

protect the 

electronics 

from electric 

overloading 

condition. 

2 67.5 

Loss of 

partial 

power 

supply 

No images 

from certain 

camera view 

systems 

5 

Power 

distribution 

unit failure 

5 

A notification 

about any 

problem is sent 

to vendor and 

then vendor 

contacts 

remote CCI 

about problem. 

2 104 

5 

Heate

r/ 

blowe

r 

Malfunct

ion of 

heater/ 

blower 

Partial view 

block in 

images due 

to snow 

3 

Power 

failure to 

heater/blow

er 

4 

Inspection 

frequency once 

every two 

months, but no 

3 73.9 
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backup for 

power. 

Failure of 

thermostat 
2 

Inspection 

frequency is 

once per year. 

3 63.8 

Full view 

block in 

images due 

to snow 

5 

Power 

failure to 

heater/blow

er 

4 

Inspection 

frequency once 

every two 

months, but no 

backup for 

power. 

3 102 

Failure of 

thermostat 
2 

Inspection 

frequency is 

once per year. 

3 84.5 

6 

Bunga

low 

air 

condit

ioner 

Malfunct

ion of air 

condition

er 

Bungalow 

temperature 

increase - 

effects on 

bungalow 

internal & 

instruments. 

Some 

systems can 

also go 

down. 

5 

Power 

failure to 

AC 

2 

Inspection 

frequency is 

once every two 

months, but no 

power backup 

3 84.5 

Loss of 

refrigerant 

in AC 

1 

Two AC units 

in bungalow, 

with only one 

operating at a 

time. 

Inspection 

frequency is 

once every two 

months. 

3 67.5 

7 

Algori

thm/S

oftwar

e 

issue 

Improper 

image 

stitching 

Distortion in 

image 

(When a 

change in 

speed is 

large/small, 

distortion in 

images will 

be 

large/small) 

3 

Change of 

speed train 

while 

passing 

through 

TIPS 

4 

Instruction 

about 

maintaining 

same speed 

while passing 

through TIPS. 

2 73.9 
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Beena 

vision 

software 

breakdo

wn 

(TruckVi

ew, 

CSCVie

w, 

AHView

) 

Failure of 

some camera 

systems of 

TIPS and no 

image 

capturing 

using that 

camera 

system 

5 

Software 

update 

requirement 

5 

Necessary for 

system update. 

No design 

control. 

2 104 

8 

Car 

Repai

r 

Billin

g 

(CRB

) 

portal 

CRB 

portal 

not 

accessibl

e/ 

malfunct

ion 

Not 

generating 

BO for yard 

employee 

1 

Lost 

internet 

connectivity 

1 

All servers 

have backups, 

and many 

devices are 

dual threaded 

(using multiple 

providers). So 

whenever 

needed they 

can switch. 

1 51.1 

Software 

update 
2 

Prior 

intimation 

from SAP 

software about 

the software 

update and 

outage. 

1 51.1 

9 

Server

/cloud 

storag

e 

Server/cl

oud 

system 

breakdo

wn 

Inaccessibilit

y of images 

from WISE 

server for 

inspection 

1 

Loss of 

connectivity 

to 

server/cloud 

3 

The company 

has one 

internal server 

other than 

WISE server 

only for 

storing images. 

2 53 

 

Appendix-5 Addressed comments from committee members. 

Why are principal component analysis (PCA) and multilinear regression not used for feature 

selection? 
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Response: The PCA method is used to extract the smaller dataset from a large dataset. Also, PCA 

is a feature extraction technique which reduces the dataset by introducing new set of uncorrelated 

variables called principal components. It is true that the principal components themselves do not 

have a direct relationship with the original features. Therefore, the interpretation of the principal 

components in terms of the original features may not always be straightforward. In HRGC datasets, 

we are focusing on identifying the importance of features in classification problem. Hence, PCA 

is not used for feature selection. 

The multilinear regression is used when the input features are independent of each other and 

dependent only on output feature. In this technique, output feature is continuous variable is 

predicted by defining the weights of input features. The ML models’ output is classification classes 

which are categorical variables, not continuous variable. Thus, this method is not suitable for the 

feature selection from HRGC accident datasets. 

The ExtraTree classifier is embedded technique based on DTs.  It is efficient in handling irrelevant, 

redundant data, and intercorrelation of features in the dataset. For HRGC datasets, highway traffic 

and number of highway lanes, train traffic and number of tracks are interrelated features, which 

are well handled by ExtraTree classifier. Also, it is robust for with noisy data and provides a feature 

importance value for each feature which is helpful in selecting the relevant features for machine 

learning model development. Thus, ExtraTree classifier was selected to perform feature selection 

in HRGC datasets. 

Why did you not choose normalization of dataset for ML model development? 

Response: The normalization approach is used to scale the features of large dataset into a smaller 

range by incorporating various techniques such as mean-standard-deviation-based normalization, 

min-max based deviation-based normalization methods. In HRGC safety analysis, the focus was 

on identifying the importance of features toward HRGC accident and severity of casualty. If we 

normalized of the features then weightage of individual features will have diminished and correct 

correlation of input features to output features will have shown biased results. Also, HRGC 

datasets contained few categorical variables. When normalization is performed on these 

categorical variables, its meaningfulness will not be valuable for analysis purpose. Hence, we didn 

notnormalize thedataset prior toML model development. 
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What is daytime train movement and nighttime train movement variables mentioned on 

Page-no. 14? 

Response: In the study of HRGC safety which was performed by Zheng et al. (2016), daytime 

train movement means the number of trains through HRGC during daytime and nighttime train 

movement means the number of trains through HRGC during nighttime. The study used 

DAYTHRU and NGHTTHRU as two variables for daytime train movement and nighttime train 

movement, respectively. 

Why is triangular member function (MF) used for conducting fuzzy-FMEA analysis of TIPS 

system? 

Response: The comparison of various membership function was performed in a study by Princy 

& Dhenakaran (2016) reported that the triangular and trapezoidal MFs than Gaussian MF. 

However, when triangular and trapezoidal MFs were analyzed, it was observed that the triangular 

membership function consumed less memory usage. Also, the triangular MF exhibits the normal 

distribution characteristics like Gaussian membership function to some extent, such as highest 

membership function at one point and symmetry on both sides. Hence, to maintain the similar 

distribution, triangular membership function was selected for fuzzy-FMEA analysis of TIPS 

system. 

How did you choose 80:20 split ratio for train-test data split and how is K-fold cross 

validation is used for HRGC datasets? 

Response: The different train-test split ratio for splitting dataset on machine learning model may 

affect the accuracy value of ML model. Thus, K-fold cross validation is performed to evaluate the 

robustness of model on the entire dataset. The K-fold cross validation keeps Kth part of dataset for 

validation and uses K-1 part of dataset for training the ML model. This process is repeated for K 

times and model is trained on entire dataset. Finally, the model performance is aggregated for 

evaluation of ML model. Using K-fold cross-validation aids in achieving a more robust evaluation 

by mitigating the influence of the specific data partitioning on the performance metrics, thus 

enhancing the robustness of the assessment. Hence, started by selecting 80:20 split ratio followed 

by K-fold (10-fold) cross validation which helped in aggregating the ML model results. 

How can future analysis be done based on clustering results for improving safety of HRGC? 



155 
 

Response: Further analysis of HRGC safety can focus on identifying the safety critical HRGCs 

within the clusters that have been identified. This can be achieved by examining various features 

associated with HRGC locations, as well as factors related to both the highway and railroad and 

incorporating experts’ judgement. By assessing the criticality of each HRGC of cluster, 

recommendations and solutions can be developed. These recommendations should consider the 

feasibility of stakeholders’ concerns, budget constraints, and the potential positive impact on 

public safety, environmental considerations, and HRGC safety. 


