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ABSTRACT

Motivated by the lack of knowledge on the nonstationarity of hydroclimatic 

processes and the nonlinearity o f the interation among hydroclimatic variables in 

Eastern Africa (EA), Central Southern Africa (CSA), Southern Africa (SA), and the 

Indian and Atlantic Oceans, this thesis has developed the methods of Wavelet and 

Hilbert empirical orthogonal functions (WEOF and HEOF) and the Wavelet and 

Hilbert independent component (WICA and HICA) analyses to identify the spatial, 

temporal and frequency variability regimes of the regional climate.

The nonlinear genetic algorithm neural network algorithm (ANN-GA) model is 

developed to predict the variability of hydroclimatic variables through teleconnection. 

The ANN-GA-disaggregation-soil moisture accounting (ANN-GA-DIS-SMA) model 

is developed to predict weekly streamflow from seasonal oceanic variability. The 

combination of ANN-GA and a statistical disaggregation model is developed to 

predict weekly streamflow directly from predicted seasonal rainfall.

The WEOF and HEOF have helped to extract information on nonstationary 

spatial, temporal and frequency patterns of the sea surface temperature (SST) of the 

Indian and Atlantic Oceans and the rainfall of EA, CSA and SA. This new 

information facilitates the accurate prediction of seasonal rainfall for the East and 

Southern Africa region and long term planning of agriculture and water resource 

management. For an 11-year validation period (1987-1997), ANN-GA accounted for 

49-81% of the variance of observed EA September-November and SA summer 

rainfalls and 67-81% of the observed EA March-May rainfall. Using the 1984-1995 

validation period for CSA rainfall, ANN-GA captured 64-81% of the rainfall
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variance. The ANN-GA-DIS-SMA has shown considerable skill in predicting weekly 

streamflow from weekly rainfall disaggregated from seasonal rainfall predicted from 

the seasonal SST data, and can explain 81-96% of the observed weekly streamflow 

variance. The ANN-GA-DIS model has shown relatively weaker skill with only 61- 

84% of variance explained.

The analysis of scale-based energy helped determine the effects of the El Nino 

southern oscillation (ENSO) on the rainfall of EA, CSA and SA. Knowledge of this 

effect will be useful to the countries of the region in preparing themselves for the 

impending droughts threat and mitigating the ENSO impact.
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CHAPTER 1

INTRODUCTION

1.1 Problem Identification

Existing records of the twentieth century hydroclimatic variables, such as 

rainfall and streamflow, over Eastern, Central South and Southern Africa show that 

the region’s climate exhibited significant variations at interannual (2-6 years) and 

interdecadal (11-22 years) time scales. For example, droughts dominated the late 

1920s, late 1940s, late 1960s, and 1980 in most areas of Southern Africa (Mason and 

Tyson, 2001), while in the 1990s, dry conditions lasted for almost the entire decade. 

Between 1947 and 1997, streamflow from major rivers in most parts of Southern 

Africa declined considerably (Fanta et al., 2001). Southern Africa experienced wet 

periods, such as in the 1950s and 1970s (Dlamini, 1995). Conversely, East Africa 

experienced the worst droughts of the century between 1965 and 1997 (Ntale, 2001), 

in addition to two other droughts in 1900 and 1949. East Africa also experienced 

serious floods, such as in 1961 and 1997 (Philippon et ah, 2002).

In Southern Africa, these events were simply taken as a normal part of climate 

variability and regarded to recur in regular fashion, often between 18 and 20 years, 

(Tyson, 1971; Currie, 1993). Studies by Abbot and Dyer (1976) and Alexander 

(1995) found these oscillations in tree ring, streamflow and temperature data and 

were attributed to the 18-year cycle in the lunar solar tide and the 11 and 22-year 

cycles in the sunspot variability. These oscillations were utilized in long-range 

seasonal forecasting models from the early 1970’s (e.g., Dyer and Tyson, 1977) until 

the late 1990’s (e.g., Alexander, 1995).

1
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Following the failure to predict the 1991/1992 droughts and below normal 

rainfall for much of the 1990-2000 decade, which was expected to be wet, 

considerable concern began to emerge that our prediction skill of summer rainfall 

variability of Southern Africa had actually been declining consistently since the 

1980’s (Mason, 1997). Conversely, despite numerous studies and progress in 

understanding the East Africa climate, prediction of the September-November (SON) 

and March-May (MAM) rainfall has not been satisfactory (Ntale et al., 2003).

The decreased prediction skill was not confined to Eastern and Southern Africa 

only, but was also detected elsewhere. For example, for over 100 years, the Indian 

Meteorological Department utilized models that exploited empirical relationships 

between Monsoon and worldwide climate predictors with good skill up to the 1970’s 

(Hastenrath 1995; Webster et al., 2002). However, after the 1980’s, performance of 

the statistical models drastically reduced. Equally, between 1984 and 1988, there 

were remarkable seasonal forecasts of the North Atlantic hurricane activity, but in 

1989 and the following years, prediction failed (Hastenrath, 1995).

The El Nino Southern Oscillation (ENSO) has been another popular climate 

phenomenon used to forecast climate variability in many parts of the world. Rainfall 

variability of several regions of Africa has been found to respond to ENSO events. In 

particular, Nicholson and Kim (1997) confirmed the relationship between ENSO and 

rainfall variability in some parts of Eastern and Southern Africa. During the 

occurrence of an El Nino episode, droughts were generally predicted in Eastern and 

Southern Africa. However, despite this ostensibly deterministic variability, a number 

of surprises were encountered during the 1990-2000 decade. As noted by Zebiak

?
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(2003), ENSO variabilities in the 1990’s and early 2000’s became much more 

unpredictable and considerable ambiguity was found in the forecast guidance from 

various forecast centers even though they utilized the same dataset.

This led Mason (1997) and us (Mwale et al., 2004; Mwale and Gan 2004) to 

believe that the disappointing performance of seasonal forecasts in Eastern and 

Southern Africa since the 1980’s is not an isolated case, but a reflection of the general 

decrease in the prediction skill observed elsewhere. The uncertainties and ambiguities 

in the character of El Nino and the decreased prediction skill observed especially 

within the tropics raised important questions for research. There is a general 

consensus that decreased skill in predictability of the climate and some limitations in 

effectively analyzing the climate variability can be attributed to four main problems, 

below:

(1) The non-stationarity o f the ocean-atmosphere system (Allan et al., 1995;

Landman et al 2001),

(2) The non-linearity of the ocean-atmosphere interaction (Bamston et al., 1994),

(3) The inadequacy of prediction models (Webster et al., 2002),

(4) Failure to identify robust climate predictors (Singh et al., 1995).

1.1.1 Nonstationarity and Identification of Robust Climate Predictors

In the past, the global-energy-ffequency distributions of climate data were 

normally decomposed and analyzed using Fourier basis functions (i.e., e,kx). These 

functions assume that climate processes are linear and stationary. This means that 

climate time series have one or more oscillations, which span the entire time series.

3
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These periods are assumed to have constant amplitudes. With this simplicity, Fourier 

analysis has been applied to all kinds of data. In some areas of science and 

engineering (e.g., electrical engineering), where time series signals are expected to 

occur at fixed amplitude and phase, Fourier decomposition has worked well. 

However, many natural phenomena such as climate processes demonstrate strong 

non-stationary and non-linear characteristics (Landman and Mason, 1999; Landman 

et al., 2001), and so the use of Fourier analysis and the adoption of the stationary and 

linear assumptions may give misleading results (Huang et al., 1998). For example, 

periodicities of between 2 and 7 years have been identified in Eastern and Southern 

African rainfall and the SSTs of the surrounding Atlantic and Indian Oceans (Mason, 

1995). However, even if  we may be aware of the general spectral characteristics of 

the rainfall and SST data, we still do not have information on the spatial distribution 

and temporal resolution of such frequencies. Therefore, it is not surprising that 

following the 18 to 20-year oscillations in the rainfall of Southern Africa, wet 

conditions were expected in the 1990-2000 period. However, the year 1991/92 was 

particularly dry and was followed by an entire decade of less than average rainfall. 

The abrupt and irregular changes observed in the 1990-2000 decade from what 

appeared to be a regular 18-20-year cycle is a good example of the nonstationarity of 

the rainfall process.

Because of the non-stationary characteristics exhibited by climate processes, 

the investigation of rainfall and SST variability should employ methodologies that 

make proper use of non-stationary approaches, so that in addition to the spatial and 

temporal regimes of the rainfall and SST processes, the frequency regimes contained

4
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in the rainfall and SST processes may also be resolved in space and time. This will 

automatically assist in the identification of robust climate predictors.

In addition, most of the analyses for Southern Africa rainfall have one major 

shortcoming: the lack of a regional approach to the analysis of rainfall. Hence the 

regional-scale variability of rainfall is ignored (e.g. Jury 1996; Nicholson et al., 2001; 

Reason and Mulenga, 1999; Mason, 1995; Juiy and Engert, 1999). The region-wide 

approach to rainfall analysis is important in the light of extreme nonstationary climate 

variability observed on region-scales in recent years (BBC, 2002a, b and c), issues 

related to climate change especially for developing countries where many systems 

and polices are not well adjusted even to today’s climate variability (IPPC, 1998), and 

the formation of regional groupings, such as the Southern Africa Development 

Community (SADC), which has shifted the region towards more integrated or holistic 

approaches to issues affecting the region.

1.1.2 Nonlinearity and Inadequacy of Prediction Models

The general consensus is that nonlinear interactions among climate elements in 

the spatial and temporal domains are responsible for the unpredictability of weather 

and climate. Thus, besides the understanding of the nonstationarity of rainfall and 

SST, we should also develop accurate nonlinear models to teleconnect relationships 

between climate processes and enhance our ability of climate prediction. The 

traditional approach for teleconnecting the climate elements in Eastern and Southern 

Africa has been based on linear statistical prediction models, dynamical models or 

hybrids of statistical and dynamical models. For example, Mutai et al., (1998) and

5
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Jury and Engert (1999) have used linear regressions to teleconnect the SON rainfall 

of Eastern Africa and the summer rainfall of Namibia using global SST and other 

atmospheric variables. The canonical correlation analysis (CCA) and its 

improvements such as the Nelder-Mead CCA (CCA-NMS) of Ntale et al., (2003) 

have been used to teleconnect the SON and MAM rainfalls of Eastern Africa. 

Landman et al., (2001) used the Center for Ocean and Land -Atmospheric general 

circulation model (COLA-GCM) and the COLA 30 to predict rainfall in South 

Africa.

Theoretically, GCMs should out perform linear statistical models in short-term 

forecasts, since they are physically based. However, for Southern Africa, forecasts 

with a GCM were only accurate prior to 1990. The accuracy of GCMs depends 

largely on the prescribed boundary conditions and a number of other factors, such as 

land processes. For example, as shown by Landman et al., (2001), after 1990, the 

predictability of global SST fields (used as boundary conditions for the GCM) 

weakened considerably, which caused unavoidable errors in the GCM output, leading 

to poor forecast skill of the rainfall. Further, because of coarse resolution, climate 

processes at smaller spatial scales that cannot be adequately accounted for by GCMs 

are parameterized, adding more uncertainty to the GCM output.

Despite the aforementioned weaknesses, we cannot totally discount the value of 

GCM forecasts. As the skill in producing large amounts of up-to-date initial and 

boundary conditions improves, GCMs will also improve in rainfall forecasts. In the 

meantime, however, teleconnection of SST and rainfall variability has to proceed 

with other models. Since the relationship between rainfall and SST variability is

6
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nonlinear, a nonlinear statistical teleconnection model is apparently needed. 

Therefore, this thesis proposes the development and application of such a model.

In addition to addressing the above four concerns, which are universal in 

nature, there are other concerns that are very specific to Eastern and Southern Africa. 

Numerous rivers and lakes in Eastern and Southern Africa form or cross international 

boundaries. This problem has called for an integrated approach to managing water 

resources. The political frameworks, such as formal agreements to share water 

resources have been made for most of these lakes and rivers, e.g., through the 

Southern Africa Development Community protocol on shared water resources for 

countries within Southern Africa. However, since national interests often override 

regional objectives, extreme variabilities in streamflow, such as significant reductions 

following sudden or extended periods of below normal rainfall or droughts could 

exceed the management capacity of these agreements, giving way to water related 

conflicts.

Hence, while accurate prediction of rainfall is very vital, a step further is to 

establish proper relationships between precipitation and hydrological processes. 

The capability to provide adequate information on the relationship between 

precipitation and streamflow, for the coming year(s) or decades, both for local water 

resource planning needs and for cross-border negotiations, is essential. There is a 

general consensus among local and international communities that as population 

grows, water demand increases while resources become scarcer, water will become a 

limiting factor for economic and social development across the world, and 

particularly in developing and relatively arid countries such as those of Eastern and

7
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Southern Africa. Therefore, this thesis advocated for and developed models to 

transform predicted seasonal precipitation from seasonal sea surface temperature 

variability to streamflow at weekly time steps, which we believe are adequate for 

regional and country specific planning purposes.

1.2 Research Objectives

Following the above problems, the objectives of this research are as

follows:

(1) To identify and analyze the dominant regimes of spatial, temporal and frequency 

variability of Eastern and Southern Africa rainfall and the SST fields of the Indian 

and South Atlantic Oceans.

(2) Explore associations between rainfall fields in Eastern and Southern Africa and 

the SST fields in the Indian and South Atlantic Oceans.

(3) Develop a non-linear statistical seasonal climate prediction model for 

teleconnecting the associations between SST fields of the oceans and rainfall of 

Eastern, Central South and Southern Africa.

(4) Develop statistical models to predict weekly streamflow from predicted seasonal 

precipitation by

4(a) Statistically disaggregating predicted seasonal rainfall to finer time scale rainfall, 

which will used to drive a hydrologic, rainfall-runoff model, and 

4(b) Statistically disaggregating predicted seasonal rainfall directly into streamflow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3 Research Contributions

The contributions of this research to climate and hydrology include the followings:

(1) Adoption and demonstration of the wavelet empirical orthogonal function 

analysis (WEOF), the wavelet independent component analysis (WICA) and 

the empirical mode decomposition (EMD)-Hilbert transformation EOF 

(HEOF) and HICA methodologies for multivariate nonstationary data 

analysis. The combination of these methods is a new direction in climate 

research and has helped to gain new understanding in the nonstationary 

variability of climate processes on regional and local scales.

(2) Development and demonstration of the non-linear statistical model for

climate and hydrologic prediction based on artificial neural networks (ANNs) 

trained by genetic algorithms (GAs). The combined model is known as the 

ANN-GA and, this combination of models (ANNs and GAs) appears to be 

new to climate research, and has contributed to an improved prediction of 

hydroclimatic variables.

(3) Development and demonstration of the ANN-GA-DIS-SMA model by

integrating ANN-GA, a disaggregation model, and an existing soil moisture 

accounting model, the Sacramento model (SAC-SMA) for predicting weekly 

streamflow from disaggregated seasonal precipitation. This system has 

accurately predicted weekly streamflow from seasonal oceanic variability;

(4) Development and demonstration of the integrated ANN-GA-DIS model for

predicting weekly streamflow for the coming year for a single site by 

integrating ANN-GA, and a statistical disaggregation, and evaporation
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models. The ANN-GA-DIS-SMA out-performed ANN-GA-DIS. This is not a 

surprise because SMA is designed for modeling basin-scale rainfall-runoff 

transformation, and specifically calibrated for the study site’s hydrologic 

characteristics. ANN-GA-DIS serves as a comparison and provides us some 

ideas about the statistical relationships that exist between climate elements at 

various levels of time scale.

1.4 Dissertation Organization

The dissertation is organized in seven chapters. Chapter 2 presents methods 

used for the analyses of climate data. Chapter 3 presents the analysis of spatial, 

temporal and frequency regimes of rainfall and SSTs. Chapter 4r establishes the 

associations between rainfall and SSTs at seasonal time scales. Chapter 5 presents the 

development and application of the genetic algorithm neural network (ANN-GA) 

model. Chapter 6 presents the development and application of the ANN-GA-DIS- 

SMA and ANN-GA-DIS models. Conclusions and suggestions for future work are 

presented in Chapter 7.

10
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CHAPTER 2

DATA AND ANALYSES TECHNIQUES

2.1 Data Sources

2.1.1 Rainfall Data

The monthly rainfall data (1900-1997) from 79 grid locations at a resolution of 

2.5°x3.75° latitude and longitude were extracted for Eastern Africa from 2°N-12°S, 

30°E-43°E, and Southern Africa (10°S-35°S, 15°E-43°E) (Figure 2.1). Monthly 

rainfall data (1950-1994) at 31 grid points were also extracted for Central Southern 

Africa (10°S-20°S, 12°E-42°E). All the rainfall data were part of a monthly 

precipitation dataset for global land areas from 1900 to 1998, provided by the UK 

meteorological office (UKMO). This data set was constructed by Hulme (1994) from 

station data and interpolated onto a 2.5° x 3.73° grid. Thiessen polygon weights were 

used to average the gauge data within each gridbox. The data for areas in Central 

Southern Africa (most of the areas north of 18°S) is not reliable for periods before 

1945. Hence the 1950-1994 data was used for this region, which consists of Zambia, 

Angola, Malawi, parts of northern Zimbabwe and northern Mozambique.

2.1.2 Sea Surface Temperature Data

The SST-anomaly grid data at 5° x 5° latitude and longitude resolution were 

extracted to cover the Indian Ocean (20°N-40°S, 40°E-105°E) and the Atlantic (15°N- 

30°S, 50°W-10°E) (Figure 2.1).
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The SST data sets were 48 years long (1950-1997) and were transformed into seasonal 

and annual data by computing seasonal averages (e.g., April-June) and annual 

averages, respectively. The SST dataset is part of UK Meteorological Office’s 

historical global dataset of mean monthly global SST anomalies with respect to the 

1961-1990 normals.

2.2 Analysis Methods

2.2.1 Introduction

The analysis of rainfall and SSTs was initially based on the wavelet analysis 

and the wavelet based empirical orthogonal functions (WEOF). The analysis was 

enhanced by the empirical mode decomposition (EMD) and the associated Hilbert 

transformation of Huang et al., (1998) and the independent component analysis (ICA) 

of Hyvarinen and Oja (2000). From the latter two methods, the EMD-Hilbert 

transformation based empirical orthogonal function analysis (HEOF), the EMD- 

Hilbert based independent component analysis (HICA) and the wavelet based 

independent component analysis (WICA) were developed for multivariate analysis of 

rainfall and SST fields.

The spatial and temporal patterns obtained from the WEOF, HEOF, WICA and 

HICA analyses are generally similar. Since the ICA has the disadvantage that it 

cannot identify the leading modes in order of importance, the WICA and HICA were 

rarely used in this thesis. Whenever WICA or HICA was used, it was only as an 

extension of the WEOF method, mainly to see if more details could be unearthed 

from the wavelet or Hilbert spectra.
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2.2.2 Wavelet Analysis

Wavelet analysis is a suitable mathematical tool for analyzing time series that 

contain nonstationary power over many different frequencies. As the name implies, 

wavelets are formulated from small waves. Because they are small waves, they are of 

limited duration compared to the big waves, such as the sine or cosine waves, which 

have infinity duration. Wavelets are also called daughter wavelets, because they are 

formed by dilations and translations of a single prototype wavelet function v|/(r), 

where t is real valued, called the basic or mother wavelet (Castleman, 1996). The 

mother wavelet is the basis function for wavelet based time series decomposition.

The mother wavelet is designed to oscillate as a wave and required to die out 

rapidly to zero as t tends to infinity in order to satisfy the requirements of it being a 

small wave or a wavelet. This requirement is popularly known as the “admissibility 

condition”.

Hence the mother wavelet is typically localized in space as well as in frequency. A set 

of wavelets can be generated by translating and scaling the basic wavelet as follows:

where the scale (width) of the wavelet and translated position along the r-axis (usually 

the x-axis in the x-y plane) are a and b respectively, i = 0,1,2,...and 8j is a small 

number (e.g. 0.125) that allow wavelet widths to be scaled in small fractional powers

(2 .1)

(2.2a)

a = T S] (2.2b)

14
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of two. Thus, the fundamental property of the wavelets is the self-similarity at 

different scales. When a is increased, the wavelet width increases and a convolution 

of a time series with the wavelet isolates the low frequency part of the time series. 

Conversely, if a is decreased, the wavelet width decreases and the high frequency 

components of the time series can be isolated. This means that if  the scale is 

continuously varied along the translation b, a picture can be constructed depicting 

how the frequency component of a time series varies with the time. Associated with 

the frequency are the numerical coefficients referred to as the energy of the wavelet at 

each of the scales. The size of these coefficients represents how well the wavelet at a 

particular scale matches with the time series. The parameters a and b in Eq (2.2) are 

real and a, always positive, may range over a continuous or a discrete set. The 

quantity a ~v2 in Eq (2) is an energy normalization term, which ensures that the 

energy of the mother and daughter wavelets remain the same over all scales, making 

it possible to directly compare wavelet transforms of one time series with another 

(Torrence and Compo 1998).

The wavelet transform of a real time series signal X(r) with respect to the mother 

wavelet is a convolution integral given as

spectrum, a matrix of energy coefficients of the decomposed time series X(t). At each 

scale, the wavelet spectrum coefficients also depict the amplitude of the time series. 

In a rainfall or SST time series, power at each scale will therefore be a good measure 

of the magnitude of the rainfall or SST events.

(2.3)

where \\i* is the complex conjugate of vj/. In this equation, W{b,a) is a wavelet
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In addition to energy or power at individual scales, power over a range of scales, the 

scale averaged wavelet power (SAWP), which represents the mean variance of 

wavelet coefficients over a range of scales, might also be used. The SAWP of the 

wavelet spectrum is computed as follows, (Torrence and Compo 1998):

where Cs is 0.776 for the Morlet wavelet (used in this thesis), 5j is a factor for scale 

averaging, and 5t is the sampling period. There are many different candidate functions 

to be used as mother wavelet and the Morlet wavelet is just one o f those, albeit one of 

the most commonly used wavelets. Since the SAWP is a time series of average 

variance in a certain band, SAWP can be used to examine the modulation of one time 

series by another or modulation of one frequency by another within the same time 

series (Torrence and Compo, 1998). Having obtained the SAWP and individual scale 

power, wavelet energy based EOF analysis was then used to extract the joint modes 

of spatial and temporal variability of the SAWP and individual scale power. The 

wavelet power was computed using the Morlet wavelet (Figure 2.2) as follows,

(2.4)

r
y/{t) = 7t4et6,e 2 (2.5)

1.0

•0 .5
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Figure 2.2 The Morlet Wavelet
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2.2.3 Empirical Mode Decomposition and Hilbert Spectral Analysis

The empirical mode decomposition (EMD) and the Hilbert transformation (also 

known as the EMD-Hilbert-Huang transformation (EMD-HHT), named after Huang 

et al., (1998) is a two-step procedure for the analysis o f non-stationary and nonlinear 

data. Unlike the wavelet analysis, which is directly applied to the data, the HHT first 

decomposes the data and isolates the intrinsic oscillations of the time series, the so- 

called intrinsic modes functions (IMFs). The IMFs form the basis functions of the 

data. The Hilbert transformation is then applied to these IMFs, to isolate the 

magnitudes and the instantaneous frequencies associated with each IMF. The 

coefficients of all the IMFs are then plotted at each of the localized frequencies 

associated with each IMF into what is called the Hilbert spectrum. The Hilbert 

spectrum provides a sharper representation of the energy-frequency-time distribution, 

compared to the wavelet analysis because the basis is defined by the data itself.

The formulation of the HHT is given below following Huang et al., (1998). For a 

time series, x(t), we have its Hilbert Transform, y(t) as

where P indicates the Cauchy principal value. With this definition, x(t) and y(t) can be 

used to define an analytic signal z(t), as

(2 .6)

z{t) = x{t)+iy{t) = a{t)e‘9̂ (2.7)

in which

arctan (2 .8)
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Eq (2.6) defines the Hilbert spectrum as the convolution of x(t) with 1/t, emphasizing 

the local properties of x(t). The polar coordinates shown in Eq (2.8) further clarifies 

the local nature of this representation, which is the best local fit of an amplitude and 

phase varying trigonometric function to x(t). The instantaneous frequency of x(t) is 

defined as

Huang et al., (1998) proposed a class of functions designated as IMF for the 

instantaneous frequency to make sense. An IMF is a function that satisfies two 

conditions:

(1) The number of extrema and the number of zero-crossings in the IMF must either 

equal or differ by 1 in the entire data set, and

(2) The mean value of the envelope defined by the local maxima and the envelope 

defined by the local minima at any point is zero.

Using these definitions, the IMFs are thus made up of individual oscillations allowing 

the traditional narrow band requirements to be met. To decompose a time series into 

IMFs, the following steps outlined in Huang et al., (1998) are followed:

(1) Identify the extrema of the data set x(t), and form the envelops defined by the 

local maxima and minima respectively.

(2) Form the mean values mj(t) by averaging the upper and the lower envelops and 

make the differences between the data and the mean values to get the first 

component, h](t)=x(t)-mi(t).

(3) If the first component is not an IMF, let hj(t) be the new data set, go to step 1

(4) The first IMF is called cj(t). Let rj(t)= x(t)-cj(t). Repeat steps 1 through 3 until all

18
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the IMFs have been found.

Because the time series are made up of several natural oscillations, usually 

more than one IMF is found that describes each of the oscillations. The Hilbert 

transform is applied to each IMF and the resulting energy and frequency are plotted to 

give the Hilbert spectrum. An example of a time series and its corresponding IMFs is 

given in Figure 2.3

Notice that the Hilbert transform is a Fourier transform performed on an IMF 

at each time step. The data can be recovered through an inverse Fourier transform as 

follows, Huang et al., (1998):

The time varying characteristics of Eq (2.10) enables us to accommodate the non­

stationary data and also represent amplitude and instantaneous frequency as functions 

of time. Equation 2.10 can be considered as a generalized Fourier transform.

From the Hilbert spectrum, one can extract energy at each frequency through 

computation of the instantaneous energy density (IE) defined by Huang et al., (1998) 

as

The IE is computed over a range of frequencies and the averaged instantaneous energy 

can be used in place of SAWP computed from wavelet analysis.

(2 .10)

(2.11)
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Figure 2.3 An example of the EMD-HHT decomposition showing, (a) 1900-97 rainfall 
time series of the East Africa September-November (SON) rainfall obtained 
from Lake Victoria region, and (b) the IMFs extracted from the same SON 
rainfall data for the 1900-97 period.
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2.2.4 Wavelet Empirical Orthogonal Function Analysis (WEOF)

Empirical orthogonal function (EOF) analysis, also known as principal 

component analysis (PCA), is the most popular method capable of describing 

coherent spatial and temporal variability of large data sets (e.g., Mason, 1995; 

Venegas et al., 1997). Its general objectives are data compression (or dimension 

reduction) and interpretation. Data compression is achieved through the projection 

of the original variables through the eigenvectors of the variance-covariance matrix 

of the original data to form principal components (PCs). An analysis of the PCs 

often reveals relationships that are not usually suspected in the data and thereby 

allows interpretations that would otherwise not be possible by examining the 

original data.

The major assumption of the EOF method is that the data or observations at 

the different stations are related to one another (i.e., are linear combinations of the 

original signals) and hence by the central limit theorem, they should be Gaussian 

distributed. Usually as is the case for hydroclimatic variables, one or more original 

signals may be responsible for the variations in the observed data. For an “n x K” 

data matrix X, where n and K represent the length of time series and the number of 

data stations, respectively. The EOF analysis transforms the “n x K” data matrix X 

into another “n x K” matrix of these original signals (also called time domain 

principal components PCs), U, which account for all the variability of the matrix X 

and some noise due to measurement errors present in X. If indeed the hydroclimatic 

observations are a linear combination of a few original signals, the matrix U will 

have very few PCs, which account for the majority of the joint variation of the
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matrix X. Let us designate these original signals as um. Then um is computed as 

follows (Wilks, 1995)

K

um = = ] £ eh«xk’m = ...................................M ,  {whereM «  K) (2.13)
k=1

where, ekm are the eigen vectors, xk are the anomalies of X, and M represents the

number of original signals (or PCs associated with the physics or variability of the 

data). The signals um are called temporal EOF patterns and can also be projected in 

space through temporal correlation with observed data.

To distinguish EOF of raw data from EOF performed on the wavelet-based 

energy, the latter is called wavelet empirical orthogonal function (WEOF) analysis 

or wavelet principal component analysis (WPCA) and their corresponding PCs are 

referred to as wavelet principal components (WPCs) (Mwale et al., 2004).

Physical interpretation of EOF patterns (or original signals) is dependent on the data 

being analyzed. The interpretation requires that signals be distinguished from the 

noise in the data. It should be emphasized that in this thesis, we consider noise to 

include not only measurement error but also any actual physical variability of the 

climate time series whose energy is statistically insignificant at the 95% level of a 

red noise process. This approach is different from the conventional one in that a 

large amount of noise is removed from the data before hand. Because the wavelet 

spectrum contains power that is not statistically significant everywhere, some noise 

is always present within the range of scales with power above the 95% level.

The WPCs obtained from SAWP are an average of wavelet scale power variance 

and are interpreted as frequency-compacted energy variability. When the period-
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time plane is examined, the convolution at every scale shows the variance (energy) 

of the time series at that scale. The energy is directly associated with the 

magnitudes of the event at that scale and time. The physical interpretation of these 

modes (in the temporal, spatial and frequency domains) is given in Chapter 3.

An important decision in EOF is to select an appropriate number o f PCs that most 

strongly capture the joint variability of the original data, without discarding 

important information contained in the original data. For an “n x K” matrix X, there 

are K eigenvectors. However, atmospheric data contains substantial co-variances 

among the original variables and this implies that the first few eigenvectors will 

locate directions in which the joint variability of the data is largely accounted for 

(Wilks, 1995).

There are several techniques that have been devised to determine the optimal 

number of PCs from an EOF analysis. However, no universal consensus exists for a 

single clear criterion, as all criteria are subjective. Because WEOF is used for the 

first time the number of WPCs to be retained for analysis was not based on any of 

the available criterion, but visual inspection of the spatial and temporal modes of 

variability. In this thesis we concentrated on the regional analysis of climate 

variation, hence only modes describing these processes were retained and analyzed 

in detail. The number of WPCs retained from scale based WEOF was done in the 

same way, as wavelet analysis does not affect the underlying relationship between 

the variables at any scale (Bakshi, 1998).

Finally, analyses of WPCs are more of a means to an end than an end in 

themselves. In this thesis, interpretation of WPCs serves as an intermediate step.
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The interpretation is further used to understand how climate processes are 

teleconnected over large areas (i.e., regional teleconnection). This information is 

further used to predict variability of one climate element from the other.

2.2.5 Wavelet Independent Component Analysis (WICA)

Independent component analysis (ICA) is a new field of research with a 

broad range of applications, such as telecommunications (Cardoso and Souloumiac, 

1993), image processing (Ding and Zhang, 2003) and biomedical signal analysis 

(Jung et al., 1998). When applied to wavelet energy, ICA is referred to herein as 

wavelet ICA, or WICA. Like EOF, ICA is used to identify signals in observations. 

The difference between WICA and WEOF is that WICA uses higher order 

statistics, such as Kurtosis (shape parameter of the distribution) to decompose 

SAWP into modes of variability, while EOF uses the lower order statistics of the 

distribution (variance and co-variance). ICA has been used in recent years in place 

of EOF, or as an extension of EOF because although the WPCs are uncorrelated, 

sometimes they are not completely separated (i.e. independent) from one another, 

while the WICs are as independent as possible. When the extracted modes are not 

well separated, mode mixing is said to have occurred, making physical 

interpretation of mixed modes difficult such as the March-May rainfall of east 

Africa (Chapter 3).

The eigenvector modes computed by WICA cannot be classified by order. 

As a result, the method is also referred to as blind source separation (BSS) (Ding 

and Zhang, 2003). Hence WICA was used in this thesis as a compliment to WEOF.
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Algebraically, ICs are linear combinations of observations and their computation is 

carried out as follows. Assuming we have a vector of n observed random variables,

where A is the n x n unknown mixing matrix. In this model, the matrix A and the 

random vector s are unknown and are estimated from the observed random 

variables, x. The first step is to estimate the matrix A and then compute its inverse, 

W. The independent components are then computed as

To estimate the matrix A, it is necessary to assume that the random variables in s 

are statistically independent and have non-Gaussian distributions. This assumption 

is valid because many of the original signals have distributions that are different 

from Gaussian, although their linear mixtures tend to have Gaussian distributions. 

Non-Gaussianity is quantified through fourth order moments, such as the Kurtosis 

(Hyvarinen and Oja, 2000). If s = wTx, is one of the independent components of x, 

the Kurtosis of s, y, is computed as,

y
x = (xi, X2 ... xn) and the vector is a linear mixture of n original signals, s = (si, 

S2 . .. sn)T then the linearly generated model is given by

x = As (2.14)

s = Wx (2.15)

N f  N  \

(2.16)
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where N is the length of the observations. The random variable, s, being an anomaly 

is constrained to have unit variance. If s has a Gaussian distribution, its y is zero. 

Distributions other than zero are super-Gaussian if  their y is positive and sub- 

Gaussian if y is negative. Therefore an original signal, s, can be recovered from the 

observation, x, by finding a vector, w, that either maximizes (minimizes) the y of s. 

Such a unit vector is usually unknown. Starting at an arbitrary unit vector w, an 

iterative procedure is used to improve w by maximizing (minimizing) y, through 

gradient methods. The procedure is stopped if  successive unit vectors w point in the 

same direction. Once the first vector has been found, the second vector is found by 

finding a vector constrained orthogonal to the first one. Subsequent vectors are also 

found similarly.

In this thesis, the FastICA algorithm of Hyvarinen and Oja (2000) was used 

to estimate w. In this algorithm, the update rule for \v is given as follows:

Convergence is reached when the old and new values of w point in the same 

direction. If convergence is not reached the process is repeated through Eq (2.17) 

and (2.18).

(2.17)

where The choice of G that has proven useful is

G ( u )  = -exp  ------ . The new, improved matrix, w, is computed as
V 2 )

— u~

w+
w = (2.18)

w
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CHAPTER 3

SPACE-TIME-FREQUENCY ANALYSIS OF RAINFALL AND SEA 

SURFACE TEMPEARTURE

3.1. Introduction

Regimes of spatial, temporal and frequency variability of rainfall in Eastern, 

Central South and Southern Africa have been of interest to climatologists and 

meteorologists for many years (e.g., Tyson et al., 1975; Basalirwa, 1995; Mason, 

1995) and have been used in long-range seasonal forecasting since the early 1970’s 

(e.g., Dyer and Tyson, 1977; Currie, 1993; Ntale et al., 2004). Following the 1965- 

1997 droughts in Eastern Africa and the 1991/92 and 1994 droughts and an entire 

decade of less than average summer rainfall in Southern Africa (see BBC, 2002a, b, 

c), there has been a resurgence of extensive research to analyze and predict the nature 

of this variability, and how it is associated or teleconnected to the variability of 

predictable atmospheric and oceanic forcing (Mason 1995; Jury 1996; Reason and 

Mulenga 1999; Jury and Engert 1999; Richard et al., 2000; Philippon et al., 2002; 

Ntale et al., 2003; Mwale et al., 2004; Mwale and Gan, 2004). However, except for 

Mwale et al., (2004) and Mwale and Gan 2004, the majority of these studies normally 

applied Fourier-based approaches, thereby ignoring the non-stationary characteristics 

of climate processes. In addition, except for Eastern Africa, the majority of the studies 

in Southern Africa were carried out on small geographical areas, hence ignoring the 

regional-scale variability of rainfall.
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The objectives of this chapter are to systematically identify the spatial, 

temporal and frequency regimes of rainfall variability of Eastern, Central South and 

Southern Africa and sea surface temperature (SST) of the Indian and Atlantic Oceans 

using a nonstationary approach. The wavelet empirical orthogonal function (WEOF) 

method (Chapter 2) is extensively used to identify the leading modes of rainfall and 

SST energy variability. Although the Hilbert-Huang transformation produces a 

comparatively sharper time-energy-ffequency distribution than the wavelet 

transformation, the HEOF and WEOF lead to similar results of the spatial and 

temporal variability. Hence the HEOF approach is demonstrated using only the 

September-November (SON) and March-May (MAM) rainfall of Eastern Africa. 

When the decomposition of the leading modes of rainfall variability was not optimal 

or complete (i.e. mode mixing occurred), such as for the MAM rainfall SAWP, the 

WICA was used to separate the modes as much as possible.

Since data quality is poor for most parts of Central Africa (Angola, Democratic 

Republic of Congo, northern Mozambique and parts of northern Zambia) before 

1950, the 1900-97 results are only presented for the SON and MAM rainfall and the 

summer rainfall of Southern Africa (south of 12°S). However, due to remarkable 

changes in the temporal variability of the leading modes of Southern Africa’s rainfall, 

the analysis for the region is also presented using the 1950-97 period. The variability 

of SST in both the south Atlantic and Indian Oceans is analyzed using the 1950-1995 

data.

Verification of the WEOF approach is made using SON rainfall data obtained 

from the SAFARI 2000 project (appendix A), gridded at 0.5° x 0.5°.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2. Climatology of Eastern, Central-South and Southern Africa

3.2.1 Central-South and Southern Africa

Except for the western cape of South Africa, which receives rainfall in the 

winter, rainfall in Central Southern Africa and most of Southern Africa (10°S-35°S, 

10°E-43°E), (see Figure 2.1) occurs during southern hemisphere summer, which 

commences in October/November and ends in March/April.

During the first half of the southern hemisphere summer, October-December 

(OND), following the southward migration of the sun in August, intense heating takes 

place over Southern Africa, causing atmospheric pressure south of the equator 

(especially the interior) to fall. As a result of the formation of these low-pressure 

centers, the southeast trade winds over the South Atlantic Ocean are deflected and 

drawn into the Congo basin and onto the northern-most regions of the Southern 

Africa region (Figure 3.1(a)) (i.e. Central Southern Africa). Simultaneously, the 

southeast trade winds from the south Indian Ocean are also drawn into the region (see 

Figure 3.1(a)). In the northern sections of Southern Africa, showers and 

thunderstorms accompany the convergence of these two systems.

For the rest of Southern Africa, the system is made up of the tropical- 

temperate trough, which links the low pressure centers that form in the tropical 

easterlies over the landmass with a mid-latitude disturbance to the south of Africa, 

generally forming a band of clouds and associated convective storms oriented 

northwest-southeast (Reason and Mulenga, 1999). These systems are responsible for 

much of the summer rainfall over large regions of Southern Africa (Mason and 

Tyson, 2001).
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Figure 3.1.Typical 850-hPa winds showing the prevailing atmospheric circulation and 
moisture transport in terms of wind speed (m/s) and direction throughout 
the year, (a) OND, (b) JFM, (c) AMJ and (d) JAS.
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During periods of abundant rainfall the northwest-southeast orientation of the troughs 

are located as far north as the northern Namibia/Angola region (Harrison, 1984; 

Tyson, 1986). This orientation promotes easterly low-level flow from the 

southwestern Indian Ocean to advect moisture to Southern Africa. Stronger westerlies 

than normal to the north of the low-pressure troughs also advect moisture from the 

tropical South Atlantic Ocean. The convergence from these two sources is favorable 

for uplift and widespread rains (Reason and Mulenga, 1999). On the other hand, when 

the trough shifts and is located over the Mozambique Channel/Madagascar region, 

low level convergence flow and associated rains tend to lie over the Madagascar 

region (Reason and Mulenga, 1999). Since the winds flow offshore, Southern Africa 

tends to be dry. This occurs when the easterlies weaken, such as during El Nino 

events. During such times warming of the SST in the Nino3 region (90°W-150°W, 

5°N-5°S) of equatorial pacific causes low pressure to develop in that region. The 

reversal in pressure gradient causes the easterlies to weaken and the troughs in the 

Southern Africa rainfall system to shift eastwards to the Mozambique 

Channel/Madagascar region.

During the second half of the rainfall season, moisture transport shifts from the 

southwest Indian Ocean to the northern Indian Ocean. Meanwhile, the Congo air 

mass continues to flow into the region (Figure 3.1 (b)). In March, the Congo air 

system withdraws northwards, as the sun starts its northward migration.

From April to September, Figures. 3.1(c) and (d)) shows that anticyclones are 

predominant over much of Southern Africa. These regions of higher pressure are seen 

at the 850 mb of the wind field. Since the winds in the high-pressure zone are always
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descending, dry, and flowing offshore, arid conditions persist during the April- 

September period, throughout much of Central South and Southern Africa. Hence 

April-September forms the dry season of the region.

3.2.2 Eastern Africa

Eastern Africa, consisting of Tanzania, Kenya and Uganda, located 

approximately 2°N-12°S and 30°E-43°E (see Figure 2.1), is known to experience two 

main rainfall seasons: SON, locally known as the ‘short rains’ and the MAM, locally 

known as the Tong rains’ or ‘Masika’ in Swahili (Camberlin et al., 2002; Ntale et al., 

2003). The SON rains are associated with the convergence into the Inter-tropical 

Convergence Zone (ITCZ) of the southeast monsoons controlled by the subtropical 

anticyclones over the Azores and the Arabian Peninsula, while the MAM coincide 

with the presence of the moist southeast monsoons from the Indian Ocean, which 

converge into the ITCZ (Ntale, 2001), also shown partly by Figures. 3.1 (a) and (c) 

which are plots for OND and AMJ seasons. These two rainfall seasons contribute 

70% of the total annual rainfall in East Africa (Ntale, 2001).

The SON and MAM rainfalls are known to exhibit great spatial and temporal 

variability (Ogallo, 1989, Ntale et al., 2003). In the last four decades, however, the 

SON rainfall has experienced more temporal variability than the MAM rainfall 

(Philippon et al., 2002). The MAM rainfall is known to have a weak internal structure 

(Philippon et al., 2002).

Rainfall variability over East Africa has been attributed to synchronous 

anomalies of large scale variability such as the El Nino Southern Oscillation (ENSO),
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the east-west circulation over the Indian Ocean, SST variability in the Indian and 

Atlantic oceans, effects of large inland lakes such as Lake Victoria and the seasonal 

migration of the ITCZ (Nicholson and Kim, 1997, Hastenrath, 2000; Ntale et al., 

2003; Goddard and Graham, 1999). Considering its equatorial position, East Africa 

does not receive much rainfall (Ntale, 2001). Humid conditions prevail in the 

highlands and near large water bodies, while dry areas include most of northern and 

northeastern Kenya, central Tanzania and northern Uganda (Ntale et al., 2003).

3.3. Dominant Modes of SST and Rainfall Variability

3.3.1 Dominant Periods

The local and global wavelet spectra and the corresponding Hilbert spectra were 

constructed using rainfall data for some locations in Eastern and Southern Africa and 

SST data of the Indian and South Atlantic Ocean SSTs (Figure 3.2). The region of the 

wavelet spectra enclosed by the dark line contains energy that is statistically 

significant at the 95% significance level of a red noise process. The 95% level of a 

red noise spectrum is modeled as the product of

autocorrelation of the red noise process, k  = 0...N/2 is the frequency index and N  is 

the total length of the time series (Torrence and Compo, 1998). Eq (3.1) implies that 

the 95% level of the red noise process increases with decreasing frequency. Hence,

P - 1 - a (3.1)

and the 95th percentile value of the distribution, where a is the lag-1
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lower frequencies require much higher power to reach the 95% confidence level 

(shown by same color-coding (i.e.
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Figure 3.2 Examples o f local and global wavelet spectra and corresponding 
Hilbert spectra constructed for, (a & b) Indian Ocean SST, (c & d) East 
Africa SON rainfall (e & f) Southern Africa summer, (g & h) East 
Africa MAM rainfall and (i & j) Atlantic Ocean SST. The dotted line in 
the wavelet spectra is the cone of influence, COI. In the global wavelet 
spectrum, the dotted curve represents the 95% confidence level, and 
peaks above the curve are considered statistically significant at the 95% 
level. Please note that wavelet and Hilbert plots are based on different 
colors to represent the energy levels.
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(g) East Africa MAM rainfall Global Wavelet
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brown) at lower frequencies as falling below the 95% confidence level in the wavelet 

spectra of Figure 3.2).

The line with dots through the wavelet spectra delineates the cone of influence 

(COI). Since the length of the data used is short, the ends of the time series were 

padded with zeros to bring the total length of the time series to the next-higher power 

of two, e.g., 512, 1024, etc. This facilitated the computation of wavelet energy at 

longer periods and also speeded up the computation of wavelet transformation. 

However, padding the ends of time series with zeros introduces discontinuities at the 

endpoints of the time series and as one goes towards larger scales, the amplitude near 

the edges decreases as more zeros enter the analysis. Therefore beyond the COI, the 

variation of power is suppressed.

Figure 3.2 shows that appreciable energy in the global wavelet spectra of both 

the rainfall and SST data exists between 2 and 8-year periods. The concentration of 

energy within these periods can be clearly seen from statistically significant peaks in 

the global spectra.

Figures 3.2(a) and (b) show the wavelet and Hilbert spectra of SST taken from 

the southwestern Indian Ocean, respectively. When these two figures are compared, it 

is seen that Figure 3.2(a) shows statistically significant power at the 2-year cycle in 

1960, 1970 and 1985 and statistically significant power in the 6-8 year period 

throughout the 1950-1997 period. It also shows intense (but not significant) power 

within the 8-16 year periods during the 1950-1970 period and during the 1990-1997 

period. Figure 3.2(b) shows that intense power exists at the 2-year cycle in 1960, 

1970 and 1985. At the time of this work, we did not have an algorithm to measure the
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significance of power in the Hilbert spectrum. Figure 3.2 (b) also shows power exists 

within the 4-8 year periods throughout the 1950-1997 period. However, when the 

power within periods greater than 8 years is examined, it is seen that between 1950 

and 1980, periodicity of the SST increased from 19 years to 6 years and between 

1980 and 1997 the periods decreased from 6 years to 12 years.

Although the Hilbert and wavelet spectra are computed using spatially coarse 

data (i.e., averaged over 5° x 5° or 525 km x 525 km for SST and 3.75° x 2.5°, 394 km 

x 263 km for rainfall), Section 3.3.2 (e.g. Figure 3.3) and Section 3.3.7 (e.g., Figure 

3.20) show that the frequency transitions between 1950 and 1997 are physically 

meaningful. Looking at Figure 3.2(a) we see that energy occurs extensively in the 

wavelet spectrum because of leakage problems (i.e., energy is computed even for 

periods that do not exist in the SST time series), while Figure 3.2(b) shows that hardly 

any energy leakage occurs in the Hilbert spectrum. Energy leakage is minimized in 

the Hilbert spectrum because actual data is used as the basis for decomposition 

(Chapter 2), while wavelet decomposition uses a mother wavelet that is dilated or 

compressed in fractional powers of two (i.e., 2,SJ), where i = 0, 1, 2 . . .  and Sj is the 

step size (e.g., 0.125). To include as many periods as possible in the wavelet 

spectrum, Sj is made as small as practical. Choosing a small Sj ensures that energy is 

computed at many periods that exist in the time series. However, this approach also 

makes it possible for energy to be computed for “ghost scales” (i.e., scales that do not 

exist in the time series). Energy associated with the ghost scales is sometimes 

statistically significant because these scales have almost the same periods as the 

scales that actually exist in the time series. Hence, Hilbert spectra have a much higher
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resolution of the frequency-time-energy distribution than wavelet spectra. Therefore, 

considering only the power spectra, the EMD and the associated Hilbert 

transformation methods are superior to the wavelet transformation.

3.3.2 Variability of East Africa September-November (SON) Rainfall

3.3.2.1 Spatial Regimes

WEOF analysis was applied to the SAWP of 21 grid points for the 1900-1997 

period. Out of a possible 21 WPCs, only the first three leading modes of variability 

(also referred herein as “wavelet principal components”, WPCs) were retained for 

further analysis. Together, these three WPCs explained a combined variance of 78%. 

WPC1 explained 53%, while WPC2 and WPCS explained 14% and 11%, 

respectively. The remaining 18 WPCs explained less than 10% each, of the total 

SAWP variance. Each of these modes also covered small areas and were discarded.

Instead of having to contend with 21 separate SAWP vectors, WEOF allowed 

us to express the significant SON rainfall energy variability by using only three 

vectors. The use of WEOF also helped to compress large SAWP datasets during the 

analyses of SST (i.e., 154 grids for each of the Indian and Atlantic Ocean basins) and 

58 grids for the southern Africa rainfall.

The WEOF analysis was based on the correlation matrix and the spatial 

distribution patterns of the WPCs are shown in form of the correlation coefficients 

between the time domain WPCs and each of the 21 gridded SAWP time series. The 

spatial patterns are shown in Figure 3.3. Although the correlation matrix as opposed 

to the covariance matrix is perceived as much more suitable for resolving spatial
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oscillations (Overland and Preisendorfer 1982), we did not notice any difference 

between the results obtained by either approach.

Spatially, WPC1 exhibits a monopole pattern extending over the entire East 

African region. Recalling that the square of correlation values represent the local 

variance explained (Houghton and Tourre, 1992), WPC1 accounts for 81% of the 

SAWP variance in the region of the largest loadings, namely at the center of Lake 

Victoria. In addition, 64% of the SAWP is accounted for in a large area encompassing 

much of Kenya and along the coastal regions. The explained variance suddenly 

decreases westwards from 34°E. Between 30°E and 34°E, an area that forms the Great 

Rift Valley (GRV), spatial correlations patterns show little local variance explained, 

generally varying between 4 and 36%. The fraction of local variance explained 

gradually decreases toward the south (Tanzania).

The 64-81% of local SAWP variance explained by WPC1 around Lake 

Victoria and eastern Kenya suggest that the lake and the northeastern Monsoons play 

a significant role in the variability of the SON rainfall. On the other hand, the low 

correlation values along the GRV suggest that either topography or a different climate 

forcing (e.g. the variations of the Congo air mass) regulates the SON rainfall 

variability.

WPC2 displays an out-of-phase relationship between the SAWP in Kenya and 

Uganda in the north and Tanzania in south. WPC2 is positively correlated to SAWP 

in Tanzania and negatively correlated to SAWP in both Uganda and Kenya. This 

mode explains between 1 and 25% of SAWP variance in Tanzania and 1 and 10% in 

Uganda and Kenya.
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Figure 3.3 Spatial displays at 0.1 intervals of the correlation between SAWP and (a) 
WPC1 (b) WPC2 (c) WPC3 of the SON rainfall. Percentage values above the figures 
represent proportions of total variance explained by each WPC. Dotted areas 
represent positive correlation, while hatched areas represent negative correlation. The 
areas without shading represent areas with zero correlation. The corresponding time 
domain WPCs are shown in (d) WPC1 (e) WPC2 and (f) WPCS.
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The explained variance of SAWP by the WPC2 is much higher in Tanzania than in 

Uganda and Kenya because it explains the remainder of the variance not accounted 

for by WPC1 in these areas.

WPC3 describes variability of SAWP along the western border of East Africa 

(GRV of Uganda and Tanzania) and around mount Kilimanjaro (5895 meters amsl) 

not accounted for by both WPC1 and WPC2. The percentages of local SAWP 

variances explained (1 to 25%) are generally low depicting the damping effect of 

topography has on the SON rainfall variability. WPCS is positively correlated to the 

area around Mount Kilimanjaro and southwestern Tanzania and negatively correlated 

to Uganda. This mode appears to describe the SAWP variations of areas associated 

with extreme altitude.

When WEOF was applied to the 1950-1997 East Africa SON rainfall SAWP, 

three leading WPCs explaining a combined variance of 90% were retained. 

Individually, the modes explained 63%, 17%, and 10% of the total SAWP variance. 

The spatial patterns of these modes were similar to the one computed for the 1900- 

1997 period and hence are not discussed further.

To check if  further information could be uncovered from the SON rainfall 

variability, the SON rainfall patterns for the 1900-1997 period were analyzed using 

the scale power extracted from Hilbert-Huang spectra. Three leading Hilbert PCs 

(HPCs) that explained a combined variance of 55% were retained. Individually, these 

modes explained 35%, 12% and 8% of the total scale averaged instantaneous Hilbert 

spectral power. Although the spatial and temporal patterns of the modes from the 

WEOF and HEOF appear the same, the explained variance is much lower for the
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HPCs than the WPCs. The apparent difference in the explained variance between 

WPCs and the HPCs is because of the higher lag-1 auto-correlation in SAWP (about 

0.95) compared to the scale average power of Hilbert spectra (about 0.85). The 

tendency for comparatively lower values of the lag-1 auto-correlation in the HPCs is 

due to the fact that averaging is performed over energy associated with periods that 

actually exist in the time series. In the wavelet spectra, energy leakage results in 

smoothed SAWP and WPCs and therefore higher lag-1 auto-correlation between the 

two.

The spatial correlation patterns computed from the Hilbert spectral energy are 

shown in Figure 3.4. The core of the spatial pattern of the SON rainfall variability is 

also located at the middle of Lake Victoria, and is also strong in eastern Kenya, re­

affirming that Lake Victoria and the Monsoon winds play a significant role in the 

variability of SON rainfall. Other than that, no new information on spatial variability 

was found in the SON rainfall variability using the Hilbert spectral energy.

Using the SON rainfall spatial patterns, East Africa may be delineated into 

two zones of rainfall variability, the GRV as one zone and the rest of the East Africa 

centered at Lake Victoria as another zone. This finding contrasts with those of Ntale 

(2001), Basalirwa (1995) and Ogallo (1989) who found between 6 and 26 zones of 

homogenous of rainfall variability in East Africa.
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Figure 3.4 Spatial displays of the correlation between Hilbert energy principal 
components and the scale averaged Hilbert energy, (a) HPC1 and SAHP (b) HPC2 
and SAHP (c) HPCS and SAHP of the SON rainfall. Percentage values above the 
figures represent proportions of total variance explained by each HPC. Dotted areas 
represent positive correlation, while hatched areas represent negative correlation. The 
areas without shading represent areas with zero correlation. The corresponding time 
domain WPCs are shown in (d) HPC1 (e) HPC2 and (f) HPCS.
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3.3.2.2 Temporal Regimes

The temporal variability of the time domain WPCs is shown in Figures 

3.3(d)-(f) and 3.4(d)-(f). The variance of WPC1 is seen to have increased gradually 

from 1900 to 1961 and decreased between 1962 and 1997. WPC1 is characterized by 

interdecadal fluctuations that appear fairly stationary with 18 to 20-year cycles. A 

closer examination, however, reveals that between 1900 and 1962, the 20-year period 

gradually increased towards 8 years and between 1962 and 1997 the periods gradually 

decreased towards 14 years. The change of periodicity in the SON rainfall of East 

Africa is a new finding that has implications for predictability of the SON rainfall at 

longer time scales.

Except at the ends o f the WPC1 time series, the variation of power between 

1900 and 1997 is consistent with the history of floods and droughts recorded during 

this period. The 1961-62 peak of WPC1 is associated with the rainfall event of 1961- 

62, which was unprecedented in intensity, duration and areal extent during the 20th 

century in East Africa. During the short period, between 300 and 500% of mean total 

rainfall fell causing the level of Lake Victoria to increase by 2.25 meters (Mistry and 

Conway, 2003). Slightly similar conditions occurred in 1997 when the Lake levels 

rose by 1.6 meters (Mistry and Conway, 2003), but that event is generally suppressed 

in WPC1 because of the end-point problem, inherent in wavelet analysis. Since 

WPC1 is also strongly correlated to Kenya, eastern Uganda and northern parts of 

Tanzania, floods were also experienced in these countries during the 1961-62 period.

On the other hand, of the fourteen droughts that occurred in East Africa between 

1900 and 1997, twelve occurred between 1965 and 1996, with one each in 1949 and
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1900. These droughts are also conspicuous in the time series of WPC1 as periods of 

decreasing power. Hence, for almost four decades (i.e., 1962-1997), East Africa 

generally experienced declining SON rainfall. The 1975-1982 increase in SON 

rainfall was largely small to offset the 1962-1974 decrease in the rainfall. Thus, the 

SAWP energy variability accurately represents the temporal variability of East 

African SON rainfall.

Compared to WPC1, the WPC2 time series is less variable between 1950 and 

1997. WPC2 shows that between 1982 and 1997, northern and western Uganda 

(being negatively correlated) experienced an increase in SON rainfall, while Mt. 

Kilimanjaro in NE Tanzania and the SW Tanzania region experienced decreased 

rainfall during the same period. Because the SAWP of southwestern Tanzania and 

much of western and northern Uganda are out-of-phase, the reduction was probably 

greater for the former than the latter.

3.3.2.3 Frequency Regimes

To determine which periods of the SON rainfall account for most of the 

variability of the SAWP and hence the rainfall, in space and time, WEOF was applied 

to the time series of wavelet energy extracted for individual wavelet scales. The 

periods chosen were from the 2-8 year range found in Section 3.3.1. These periods 

match those found by other researchers, such as Potts (1971), Rodhe and Virji (1976), 

Ogallo (1979), Ropelewski and Halpert (1987) and Nicholson (1996), some of which 

are shown in Tables 3.1 to 3.3. The variation of the SAWP explained by each of the 

leading modes of the individual wavelet scales was also computed as a square of the 

correlation. Table 3.1 shows that most of the variance in the SON SAWP was
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explained by the periods around 2 years. The explained variance gradually decreased 

with increasing periods up to 3.5 years, but increased again with decreasing periods.

The spatial patterns, selected for some periods in the 2-8-year band are shown 

in Figure 3.5. At the center of Lake Victoria, between 64 and 81% of the variance of 

SAWP is accounted for by the 2-year period. This spatial pattern stretched eastwards 

to Kenya’s east coast. The variance decreased gradually to the north and south and 

rapidly to the west. The dominance of the periods around 2 years in the spatial pattern 

of the SON rainfall throughout the 1900-1997 and 1950-1997 periods suggests that 

strong interannual variability is the chief characteristic of the SON rainfall. This was 

confirmed from the Hilbert spectrum of a SON rainfall time series of Figure 3.6. 

However, strong cycles in the longer periods (3-7 years) of the SON rainfall are also 

conspicuous especially for areas in western Uganda and eastern Kenya. As noted 

earlier, the SON rainfall variability in the GRV might be influenced from the west 

(i.e. Congo air mass from Atlantic Ocean), which has been shown to have El Nino 

like variations, with periods of between 3 and 7 years (Mason, 1995). On the other 

hand, rainfall in Eastern Kenya and coastal areas is influenced by the Monsoons from 

the Indian Ocean. Since ENSO has been shown to strongly interact with climate 

dynamics of the Indian Ocean, both in the monsoons seasons and in the northern Fall 

transition months (Camberlin et al., 2002), it is not surprising that SON rainfall in 

Kenyan and the coastal areas exhibits periods of between 3 and 7 years.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1 Explained variances of scale-based WPCs computed for the 1950-1997, 
SON rainfall SAWP of East Africa.

No Cycle(Period) WPC1 
% Variance

WPC2 
% Variance

Total % 
Variance

1 2 63 19 82
2 2.4 63 19 82
o3 3.5 39 18 57
4 4.8 30 20 50
5 5.6 51 21 72
6 8 58 20 78

Table 3.2 Explained variances of scale-based WPCs computed for the 1950-1997, 
MAM rainfall SAWP of East Africa.

No Cycle(Period) WPC1 
% Variance

WPC2 
% Variance

Total % 
Variance

1 2 31 24 55
2 2.4 25 21 46
3 3.5 26 19 45
4 4.8 32 22 54
5 5.6 31 24 55
6 8 32 23 55

Table 3.3 Explained variances of scale-based WPCs computed for the 1950-1997, 
summer rainfall SAWP of southern Africa.

No Cycle(Period) WPC1 
% Variance

WPC2 
% Variance

Total
Variance

1 2 29 22 51
2 2.4 30 21 51
J 3.5 25 15 40
4 4.8 33 17 50
5 5.6 33 20 53
6 8 34 24 58
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Figure 3.5 Contours plotted at 0.1 intervals showing the spatial patterns of the variance of 
the SON rainfall SAWP explained by energy at (a) the 2-year, and (b) the 2.4-year 
period, (c) 2.8-year period, (d) 3.5-year period, (e) 6.7-year, and (f) 8-year period for 
the 1900-1997 period. The corresponding time domain WPCs of the 2 to 6.7-year 
cycles are shown in (g) to (1), respectively. The percentage values in (g) to (1) 
represents the variance of the total individual scale energy explained by the leading 
WPC at that scale. More variance of SAWP is explained by the higher frequencies 
throughout East Africa. As one goes to lower scales, less variance of the SAWP is 
explained for the SON rainfall.
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Figure 3.6 The Hilbert spectrum showing variation of energy between 1900 and 1997 
for periods between 2 and 8 years for the SON rainfall time series of, (a) 
southern Tanzania (b) Central Tanzania (c) southern half of Lake Victoria 
and (d) Northern half of Lake Victoria. All power is in mm2.
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We suggest that the strong periods around 2-years in the SON rainfall SAWP 

variability might be associated with the quasi-biennial oscillation (QBO) with a 

period of about 2.2-23 years. The fact that much less variance in the center of Eastern 

Africa (i.e. Lake Victoria and the surrounding regions) is explained by energy at 

periods greater than 3 year shows that SON rainfall SAWP variability of this region is 

dominated by the inter-annual variabilities and is only weakly associated with El 

Nino or El Nino-like events.

3.3.3 Variability of East Africa March-May (MAM) Rainfall

3.3.3.1 Spatial Regimes

Application of the WEOF analysis technique to the MAM rainfall SAWP for 

the 1900-1997 and 1950-1997 periods both revealed two leading WPCs that 

accounted for a combined variance of 44% and 50% respectively. WPCs 1 and 2 

obtained using the 1900-1997 SAWP explained 27% and 17%, respectively, while 

those for the 1950-1997 period accounted for 26% and 24% of the total SAWP 

energy variance.

The spatial patterns of the 1900-1997 WPCs are shown in Figure 3.7. Spatially, 

WPC1 is negatively correlated to the rainfall SAWP of most of East Africa and is 

weakly correlated to the SAWP of eastern Tanzania. The largest negative correlations 

are found at two locations, the northwestern and southwestern East Africa (49%).

The variance of SAWP explained by WPC1 at these centers is 64% in the 

northwest and 49% in the southwest. From these centers, the explained variance 

decreases eastwards until in eastern Tanzania, where very little of the SAWP variance 

is explained by this mode.
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Figure 3.7 Spatial displays at 0.1 intervals of the correlation between (a) WPC1 and 
SAWP, and (b) WPC2 and SAWP of the MAM rainfall. Percentage values above the 
figures represent proportions of total variance explained by each WPC. Dotted areas 
represent positive correlation, while hatched areas represent negative correlation. The 
areas without shading represent areas with zero correlation. The corresponding time 
domain WPCs are shown in (d) WPC1, and (e) WPC2.
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Figure 3.8 The spatial patterns plotted at 0.1 intervals showing the correlation between (a) 
HPC1 and SAHP, and (b) HPC2 and SAHP of the MAM rainfall. Percentage values 
above the figures represent proportions of total variance explained by each HPC. 
Dotted areas represent positive correlation, while hatched areas represent negative 
correlation. The areas without shading represent areas with zero correlation. The 
corresponding time domain HPCs are shown for, (c) HPC1, and for (d) HPC2.
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Figure 3.9. Spatial variability patterns of the MAM rainfall WPC and WICs computed for 
the 1950-1997 period: (a) WPC1 (b) WPC2, (c) WIC1 and (d) WIC2. The
independent component values associated with the 21 patterns are shown in the scree 
plot, (e).
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The second mode, WPC2, is negatively correlated to the SAWP of eastern 

Tanzania, parts of southern Uganda and southern Kenya and is positively correlated 

to the SAWP of northern Kenya, southwestern Tanzania and western Uganda. Large 

negative correlations (up to 49% of SAWP variance) are predominant in eastern 

Tanzania and clearly explain the variance of SAWP not accounted for by WPC1.

As opposed to the spatial pattern of the SON rainfall WPCl, which explains 

more variance of SAWP in eastern parts of East Africa and at Lake Victoria, and then 

weakens westwards and southwards, the MAM WPCl spatial pattern is strongest in 

the western parts of East Africa and weakens eastwards (see Figure 3.7). This pattern 

is found for both the 1900-1997 and 1950-1997 periods. This finding suggests that 

while Lake Victoria and the northeast monsoons play significant roles in the variation 

of the SON rainfall for most of East Africa, the Congo basin or the Atlantic Ocean 

SST variability are possible regulators of the MAM rainfall variability.

Application of the HEOF analysis produced spatial and temporal patterns as 

shown in Figure 3.8. Generally, the spatial and temporal patterns are similar to those 

of the WPCs. Since no new information is found using this method, the results are not 

discussed further.

With 26% and 24% of the SAWP variance explained by WPCl and WPC2, it 

was suspected that the decomposition was not stable and the two modes were mixed. 

The 1950-1997 MAM SAWP was re-analyzed using WICA. Application of the 

WICA technique revealed two leading wavelet independent component (WIC) 

modes, explaining 63% of the total variance (i.e. 37 and 26% for each of the leading 

modes). Their spatial patterns together with the WICs are shown in Figure 3.9(c) and
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3.9d. Generally, these figures show that eastern Tanzania and the rest of the region 

are out of phase. Figure 3.9(c) reiterates the existence of a strong MAM rainfall 

signal (36% of SAWP variance) from the western boundary of Eastern Africa, which 

decreases eastwards.

In Chapter 2, we noted that the optimization algorithm of ICA (FastICA 

algorithm) uses higher order statistical properties to look for the eigenvector spaces in 

data that are completely independent from one another. These eigenvectors (called 

independent component vectors) describe SAWP variations that are not only 

uncorrelated but independent from one another. The eigenvalues associated with the 

leading independent component vectors are shown in a scree plot (see Figure 3.9 (e)) 

and it is clear that they are well separated. The total sum of the 21 independent 

component values is 3.21. The two leading component (eigenvalues) are 1.18 and 

0.83, accounting for 37% and 26% of the total SAWP variation, respectively. This 

explains the apparent increase in explained variance from 26 and 24% to 37 and 26%, 

respectively. Assuming the scree plot (Figure 3.9(e)) were used to choose the leading 

modes, only the first two eigenvector (components) (associated with eigenvalues to 

the left of the elbow), considered to be the signals in the MAM SAWP would be 

chosen, while the rest of the modes would be discarded as they are associated with 

“noise” in the SAWP. This agrees with results from visual inspection of the spatial 

modes.

3.3.3.2 Temporal Regimes

The temporal variabilities of the leading modes of the MAM rainfall SAWP 

are shown in Figures 3.7 and 3.8. Bearing in mind the negative correlation between
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WPCl and the SAWP, it is clear that the leading mode (WPCl and HPC1) sharply 

increased in energy (variance) between 1900 and 1924. However, the energy in this 

WPC gradually decreased from 1925 to 1997. Areas strongly associated with this 

mode include most areas of East Africa, but not eastern Tanzania. The second mode 

also shows a general increase in energy between 1900 and 1980, followed by a 

sudden decrease of energy between 1980 and 1997.

The temporal variability shown by MAM rainfall is completely different from 

that of SON rainfall, showing that although these rainfall seasons are located in the 

same geographical zone, different climate forcings are responsible for their 

variability. Unlike the SON rainfall, which experienced a sudden decrease of energy 

between 1950 and 1997, with background variance modulated by periods decreasing 

from around 8 to 14 years, the MAM rainfall decreased gradually and was modulated 

by periods between 5 and 10 cycles. From the HPC1, it appears that a sudden increase 

of energy in the MAM rainfall occurred for about 25 years and is then followed by a 

gradual decrease of energy for about 72 years. From HPC2, the gradual increase in 

energy appears for about 82 years and is followed by a sudden decrease of energy for 

about 15 years. As seen in WPC2, the sudden decrease in energy between 1982 and 

1997 and the continued decrease of energy in WPCl resulted in the complete failure 

of the MAM rainfall in 1984. The 25/82-year increase in energy for Kenya, Uganda 

and western Tanzania/eastern Tanzania, followed by the 72/15-year decrease in 

energy is a new finding.

This finding basically shows that the MAM rainfall undergoes a gradual 

increase for 82 years in eastern Tanzania area, and is then followed by a sudden and
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sharp decrease for about 15 years. The exact timing of decrease is not known due to 

the short period of the data. For the rest of East Africa, rainfall suddenly increases for 

about 25 years and is followed by a gradual decrease of about 72 years. Due to the 

short data periods, the actual period over which energy decreases occur is also not 

known. These findings are important and could be integral components of long-term 

planning of water resources utilization and development.

3.3.3.3 Frequency regimes

The spatial patterns of some periods within the 2-8-year band are shown in 

Figures 3.10a. Figures 3.10a shows that the 2-year cycle is more variable in 

southwestern Tanzania and northern Kenya, where correlations between scale WPCs 

and scale energy ranged between 0.1 and 0.5, while in eastern Tanzania, the 

variations were generally low. The 3.5-year cycle appears strong in Uganda and 

western Kenya, while in Tanzania; variations of rainfall due to this cycle are almost 

non-existent. The largest variations of the MAM scale energy were associated with 

the 5.6-year cycle. Correlation of between 0.1 and 0.5 were found in Uganda, Kenya 

and southwestern Tanzania in a spatial pattern similar to that of WPCl.

The temporal patterns of the periods shown in Figures 3.10(a)-(f) are shown in 

Figures3.10 (g)-(l). From these figures, periods around 2 years appear to be 

modulated by a background period of about 45 years. Associated with this period, 

energy in the 2-2.4 year cycles increased between 1900 and 1930 and 1950 to 1975 

and decreased between 1930 and 1950 and 1975 to 1997. The energy associated with 

longer periods within the 2-8 year band, i.e. 5.6 and the 6.7-years generally show
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increased energy between 1900 and 1935 and decreased energy between 1940 and 

1997. From Figure 3.10(k) and (i), it appears that the 5.6 and 6.7-year periods are 

modulated by background periods that are longer than 60 years.

The interaction of energy within the 2-8-year periods provides a new insight 

in the variability and predictability of the MAM rainfall. For example, power at the 2 

and 5.6-year cycles, show that when there is a synchronous decrease of energy 

between the two periods, droughts resulted, such as in 1984 and 2000, while when 

power at both periods or in the 2-year is increasing, normal or above normal rainfall 

occurs. This finding demonstrates that with longer datasets, the effect of events 

associated with the 5.6-year period (e.g. El Nino) may be predicted. More details are 

given in Section 3.4, where a scale-by-scale analysis of wavelet power is investigated 

against the evolution of ENSO events. The Hilbert spectra for the MAM rainfall, for 

the 1900-1997 period are shown in Figure 3.11 for some selected grid stations of 

Eastern Africa. High concentration of energy is observed between the 2 to 3-year and 

5 to 7-year periods, reaffirming the dominance of the periods around 2 and those 

between 5.7 and 7 years in the SAWP. Very little energy is found between 3 and 4 

years. This explains the little variance of the SAWP accounted for by power 

associated with these periods.
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Figure 3.11 The Hilbert spectra showing variations o f energy between 2 and 8- 
year cycles for the .1900-1997, SON rainfall time series of, (a) 
eastern Tanzania (b) Central Tanzania (c) southern half o f Lake 
Victoria (d) Northern Lake Victoria, (e) Northern Uganda, and (f) 
Northern Kenya. Power is in mm2.
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3.3.4 Variability of Central Southern Africa (CSA) Summer Rainfall

3.3.4.1 Spatial Regimes

WEOF analysis was applied to the summer rainfall SAWP of 31 rainfall grid 

stations representing CSA. Two leading WPCs, which explained a combined variance 

of 52%, (i.e., 30% and 22% each, respectively) were retained for further analysis. 

Their spatial patterns are shown in Figure 3.12. The discarded WPCs mainly 

described SAWP variations of local features (e.g. the Zambezi River basin and the 

Lake Malawi basin). Since we were interested in the regional variation of SAWP and 

how it is related to oceanic climate predictors, the third and higher WPCs are not 

discussed.

WPCl displays an out of phase relationship between the central CSA and the 

coastal regions along the east and west coasts. The correlation between WPCl and 

SAWP in CSA is strongest in the north (36% of explained SAWP variance) and 

decreases southwards. Large negative correlations (64% of explained SAWP 

variance) between WPCl and SAWP occur along the coastal regions of Angola. 

Large positive correlations are also evident over all of Zambia, Malawi, northern 

Zimbabwe and parts of Mozambique.

WPC2 displays an out of phase relationship that extends diagonally from the 

northwest to the southeast of CSA. WPC2 is positively correlated to large sections of 

northeastern CSA and parts of southwestern CSA and negatively correlated to SAWP 

of the rest of CSA. Maximum local variances explained by this mode are 64% in 

Zimbabwe and parts of central Mozambique and 25% in northeastern CSA.
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3.3A.2 Temporal Regimes

The temporal variability of the WPCs is shown in Figure 3.12(c) and (d). The 

variance of WPCl increased between 1950 and 1970, but decreased significantly 

between 1971 and 1994. Since WPCl is positively correlated to the central CSA 

rainfall SAWP (Zambia, Malawi, Zimbabwe and northern Mozambique), rainfall in 

these regions has been on the decline for over three decades (i.e. 1970-94). Since 

there is no snow all year round in this part of Africa, all rivers are dependent on the 

rainfall. Hence our results are consistent with Fanta et al., (2001), who found that 

streamflow generally declined between 1970 and 1997 in most rivers in eastern 

Angola, Zambia, and Zimbabwe. The time-domain WPCs therefore accurately 

represents the temporal variability of CSA rainfall.

3.3.4.3 Frequency Regimes

Figures 3.13 (a)-(d) shows the spatial patterns of the variance of CSA summer 

rainfall SAWP for periods of 2, 2.4, 3.4 and 5.6 years, respectively. These figures 

shows that the variation of power with periods around 2 years and at 5.6 years 

generally explain most of the variance over CSA. The 3.4-year period is dominant 

over the northern Namibia/southern Angola region. Figures 3.13(e) and (f) shows the 

corresponding time domain WPCs of the spatial patterns. Generally the periods 

around 2 years experienced an increase in energy between 1950 and early seventies 

and briefly between the mid eighties and early nineties, while the period at 5.6 years 

and 6.7 years experienced a general decrease of energy between 1960 and 1994 

(Mwale et al., 2004).
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Correlations o f 0.5 and 0.8 were found between WPCl of CSA SAWP (Figure 3.12) 

and WPCs of the 2-2.4 and 5.6-6.7 year periods, respectively. This suggests that more 

variation in SAWP is explained by the 5.6-6.7 year periods (64%), followed by those 

between 2-2.4 years (25%). This shows that the 5.6-6.7 year periods provide the 

background variation to the 2-2.4 year periods in the rainfall of CSA

3.3.5 Variability of Southern African Summer Rainfall

3.3.5.1 Spatial Regimes

The WEOF technique was initially applied to the Southern Africa summer 

rainfall SAWP for the 1900-1997 period. Three leading WPCs that accounted for 

44% of the total energy variance were retained for analysis. All the three modes 

showed a consistent spatial distribution, but with generally low locally explained 

variances. Individually the modes accounted for 17%, 15%, and 12% of the SAWP 

energy variance. Their spatial patterns are shown in Figure 3.14(a)-(c) and the 

temporal patterns are shown in Figs. 3.14(d)-(f). Since the WEOF decomposition 

appears sub-optimal (i.e., explained variances at 17%, 15%, and 12% are too close), 

and the temporal evolution of the modes appears to have changed between 1940 and 

1997 for much of the region, (see Figs. 3.14(e) in conjunction with Fig 3.14(b)), the 

analysis was also done separately for the 1950-1997 period.

WPCl shows positive correlation with SAWP in northern South Africa and to 

the northwest of the region (southern Angola/northern Namibia) and negative 

correlation over much of Southern Africa. This mode accounts for only 16% in the 

region of largest loadings, namely, in the southern part of South Africa and elsewhere
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over Southern Africa, it accounts for about 1% of SAWP variance. Despite the 

consistent spatial distribution, the weak negative correlation between WPCl and 

SAWP over much of region makes it difficult to define a concrete spatial variability 

of this WPC.

Except for the Cape region (32°S-35°S and 15°E-20°E), which also has winter 

rainfall, eastern coastal areas of South Africa and southern Malawi, Figure 3.14(b) 

shows that WPC2 is negatively correlated to the SAWP over the rest of the region. 

The strongest correlations occur in Zimbabwe, Mozambique, Botswana, Zambia and 

northern South Africa, where WPC2 explains between 9 and 36% of SAWP variance, 

with 36% of the variance explained in southern Zimbabwe.

WPC3 has a broad spatial distribution, indicated by an out of phase relationship 

formed by a region stretching diagonally from western half of Zambia through 

Zimbabwe to southern Mozambique and the coastal areas of Namibia, and South 

Africa. This WPC shows strong correlation with the SAWP of Zimbabwe and 

southern Mozambique, where 25% of the SAWP variance is explained by this WPC.

Using the 1950-1997 SAWP, two distinct leading WPCs accounting for 44% of 

the total energy variance were retained for analysis. The decomposition appeared 

stable and each of the two modes explained 27% and 17% of the total SAWP 

variation. Their spatial patterns are shown in Figure 3.15, and show a completely 

different spatial pattern from those found using the SAWP of the 1900-1997 period. 

The decomposition performed using the WICA method gave similar results and is not 

presented here.
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The leading spatial mode, WPCl, shows that the variation of rainfall between 

countries in northern interior of Southern Africa is out of phase to the regions located 

south of 25°S and areas in southern Malawi/northern Mozambique.

(a) WPC1 (b) WPC2

lillffivmwA. _|
15E 20E 25E 30E 3SE 40E 4SE

(c) WPC3

Figure 3.14: The spatial patterns of the WPCs for the 1900-1997-summer rainfall, 
(a) WPCl (b) WPC2 and (c) WPCS and the corresponding temporal 
variabilities in (d), (e), and (f).
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The WPC is negatively correlated to areas south of 25°S and most areas along the east 

coast (southwest Indian Ocean) and Malawi but positively correlated to most of the 

areas north of 25°S. Strong correlations (up to 64% of explained SAWP variance) 

generally occur in the north, south and southeast of the region, but correlations with 

SAWP are weak in the interior. The 64% of explained SAWP variance in the northern 

part of the region is associated with variability of the Congo air mass (linked to 

Atlantic Ocean SST variability) and the variability of the northern Indian Ocean SST, 

while that in the south is associated with southern Indian Ocean SST variability or the 

Agulhas region (Chapter 4).

WPC2 explains part of the variation in SAWP not accounted for by WPC1. It is 

negatively correlated to Namibia, Angola, Zambia, Zimbabwe and Mozambique and 

positively correlated to northern South Africa and western Cape region, northeastern 

Mozambique, eastern Botswana and western Angola. This mode accounts for 

between 4 and 64% of the SAWP variance, with maximum loadings (64%) in 

southwest desert regions of Namibia.

3.3.5.2 Temporal Regimes

Figures 3.14(d)-(f) show the temporal variability of WPCs 1, 2 and 3 for the 

1900-1997 period. WPC1 shows that the 1900-1997 SAWP variance was strongly 

regulated by quasi-20-year periods. In addition, the energy of WPC1 began to 

decrease after 1946 and continued until about 1985, after which the energy rose 

sharply until 1997. WPC2 was also regulated by quasi 20-year cycles between 1900 

and 1940. After 1940, the quasi-20 year cycles vanished, changing the temporal

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



variability of rainfall in much of Southern Africa. After 1940, WPC2 appeared with a 

variance of about 7-10 years and its energy generally decreased until about 1997. 

WPCS displays a variation of SAWP that is largely interdecadal (about 10 to 15 

years).

In South Africa, the five major drought periods occurred in 1925-33, 1944-53, 

1963-1972, 1982-83 (Mason and Tyson, 2001) and 1991-1992. Since WPC1 is out of 

phase with the SAWP over most of the region, the drought periods appear as peaks in 

Figure 3.14(d). From the temporal variation of WPC2, the northern sections of 

Southern Africa experienced decreasing rainfall between 1934 and 1997. After 1970, 

Figure 3.14(e) shows that an accelerated decrease in the summer rainfall occurred in 

areas where the SAWP and WPC2 are positively correlated.

Fanta et al., (2001) found that some annual river flows of Southern Africa 

decreased between 1947 and the 1970’s and others decreased further from the 1970’s 

till about the mid-1980’s, especially in Zambia, Angola, Mozambique and the High 

Veld (north regions) of South Africa. Although the spatial patterns of the 1900-1997 

SAWP modes do not appear well organized, their temporal variations correctly 

represent the temporal evolution of rainfall events. Fanta et al., (2001) proposed that 

the most likely explanation of the reduction in streamflow was due to increased local 

abstractions for industrial or agricultural purposes. However, it is clear that rainfall 

reduction explains much of the variance in the decreasing streamflow.

Figure 3.15(c) and (d) shows the temporal variability of WPC1 and WPC2 for 

the 1950-1997 period. WPC1 shows an increase in power of the Southern African 

rainfall between 1950 and 1967 and between 1985 and 1993. The decrease in the
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energy of WPC1 was observed between 1968 and 1984 and after the early 1990’s. 

WPC2 shows a general increase of energy between 1950 and 1974 and a steady 

decrease of energy between 1975 and 1997. Since WPC1 is positively correlated to 

northern areas of southern Africa, these areas experienced a relative increase of 

rainfall between 1950 and 1967, but a reduction in rainfall between 1968 and 1984 

and after the early 1990’s.

As shown in Figs. 3.15(b) and (d), WPC2 further emphasizes the localized 

nature of the variability of rainfall SAWP between 1950 and 1997 by suggesting that 

Namibia, Angola, Zambia, Zimbabwe and Mozambique all experienced an increase 

of rainfall between 1950 and 1973, which was followed by a consistent decrease 

between 1974 and 1997.

3.3.5.3 Frequency Regimes

The spatial distribution patterns of the leading inodes of power extracted for the 

periods of 2, 5.6 and 6.7-years are shown in Figure 3.16. Inspection of Figure 3.16 

and Table 3 shows that spatial variations of power at the 5.6 and 6.7-year cycles are 

highest, followed by those at the 2-year cycle. A comparison of Figure 3.16 and 3.15 

shows that the power with a period of 5.6-year has similar spatial distribution patterns 

as the WPC1 of the SAWP, while the period around 2-year have spatial patterns 

similar to WPC2 of the SAWP. This relationship was also found between all periods 

between 5.6 and 8-year and the SAWP.

Figures 3.17(a) and (b) show the explained variance of SAWP by the energy at 

the 2 and 5.6-year periods. It is clear from these figures that the 5.6-year period
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explains more variance of SAWP than the power at the 2-year period. The finding 

shows that on a regional scale, the main mode of variation of rainfall within Southern 

Africa occurred following the 5.6 to 8-year periods, similar to the variability of 

summer and MAM rainfall of Central South and Eastern Africa, respectively. Besides 

the 5.6-year background power variations, the periods around 2-years were also active 

over the region, (i.e. areas where the WPC2 showed strong correlation with SAWP).

The temporal variations of power at 2 and 5.6-year periods are shown in Figs. 

5.17(c) and (d). This figure shows that power variations peaked for the 2-year period 

in 1974 and declined between 1974 and 1997, while power at the 5.6-year period 

peaked around 1965 and declined till 1997. From these figures, it is clear that rainfall 

in areas north of 25°S generally declined after the mid 1960’s, and the decline 

accelerated after 1974, while the reverse occurred for areas south of 25°S and 

southern Malawi.

Figure 3.16 The spatial distribution pattern of power for the leading modes at (a) the 
2-year and (b) 5.6-year periods for southern Africa.
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Figure 3.17 The contours plotted at 0.1 intervals showing the spatial patterns of the 
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3.3.6 Variability of the Atlantic Ocean Sea Surface Temperature

3.3.6.1 Spatial Regimes

At the annual time scale, the first two WPCs accounting for 28% and 22% of 

the total SAWP variance were retained for analysis, while at the seasonal time scale, 

only the leading WPC was retained for analysis. WPC1 explained 27% for JFM, 28% 

for AMJ, 27% for JAS, and 28% for OND. The spatial variability patterns of the 

annual WPCs are shown in Figure 3.18 and those of the seasonal WPCs are shown in 

Figure 3.19.

At the annual time scale, the largest WPC variations are associated with the 

warming and cooling of the Benguela Ocean SSTs, while the second largest 

variations are associated with the Brazil and the Guinea SST Ocean currents (WPC2). 

The annual WPC1 SST spatial variability patterns are similar to the patterns found by 

Venegas et al., (1997) and Houghton and Troure (1992) using observed monthly SST 

data.

At the seasonal time scale, the spatial variations patterns were discovered to be 

nonstationary throughout the year. In the OND season, the largest SAWP variations 

(with explained variance of up to 64%) are located along Africa’s west coast. The 

Benguela Ocean Current SST and parts of Brazil Ocean SST form the dominant 

features of spatial variability for this season. During JFM season, the spatial 

variability patterns shifts westwards and intensify along the Equator and at about 

20°S, 10°W. During this period, the Benguela Ocean Current SST appears as the only 

dominant feature of spatial variability. By the AMJ season, the variations cover the 

entire east coast of South America from 10°N to about 40°S, with maximum loadings
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of up to 64% along the northern Brazil coast. During this period, all the three ocean 

currents SST form the dominant spatial feature of variability. However, the variability 

of the Guinea Ocean current SST is out of phase with the rest of the Atlantic Ocean 

SST. In the JAS season, the spatial variability patterns begin to shift eastwards 

towards the Africa coastal areas, with the Benguela as the sole pattern of spatial 

variability.

The migration of the SAWP spatial variation patterns between South America 

and Africa is a new finding that has important implications for lagged and 

simultaneous relationships between SST in the South Atlantic Ocean and rainfall on 

the African and South American subcontinents.

3.3.6.2 Temporal Regimes

The WPCs for the annual and seasonal SAWP shows large variation between 

1950 and 1980 followed by a relatively quiet period between 1980 and 1995, similar 

to the WPC1 of Central Southern Africa (see Figs. 3.4 and 3.6). SST power increased 

(temperatures increased) between 1950 and 1972 and was followed by a decrease 

(temperature decrease) between 1972 and 1980. WPC2 is less variable than WPC1 

and shows increasing power from 1969 to 1984 with a decrease that begun in 1985 

until 1995.
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Figure 3.18 Contour plots of the spatial correlation patterns between, (a) WPC1, 
and (b) WPC2, of annual Atlantic Ocean SST and SAWP of 
individual grids at 0.1 contour intervals. The numbers shown above 
represent the percentage (%) of the total variance explained by each 

WPC. The dark areas correspond to correlations significant at the 95% 
confidence level. The temporal variations of the two WPCs of 

Atlantic Ocean SST are shown in (c) and (d).
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Figure 3.19 Contour plots of the spatial correlation patterns between WPC1 of 
seasonal Atlantic Ocean SST and SAWP of individual grids at 0.1 contour 
intervals for the, (a) October-December (OND), (b) January-March 
(JFM), (c) April-June (AMJ), and (d) July-September (JAS) seasons. The 
seasonal migration of spatial variability patterns of SST can be seen from 
(a) to (d). The corresponding temporal variabilities are shown in (e), (f),
(g) and (h). The numbers shown above represent the percentage (%) of the 
total variance explained by each WPC1.
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Figure 3.19 Continued
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3.3.6.3 Frequency Regimes

The spatial patterns of WPC1 extracted for the periods of 2 and 5.6 (generally 

representing 2-2.4 and 5-6.7 year periods respectively) are shown in Figure 3.20. 

Inspection of this figure shows that spatial variation of power at both periods occurs 

almost everywhere in the Ocean. Generally power at the 5.6-year period shows much 

higher spatial variability than the power at the 2.0-year period.

The 2-year period explains more variation (64%) to an area covering the 

Atlantic Ocean, situated northeast of Brazil. Elsewhere, explained variance ranges 

from 4 to 36%. The Atlantic Ocean portion, located northeast of Brazil, is made up of 

Mason’s (1995) PCI (17%) and PCS (11%), which were also found to have periods 

around 2-years, in addition to other periods (3.6, 9.6, 12.5, 14.4 and 21.9-years). In 

this region the warming and cooling of the Benguela Ocean SST extends far 

westwards along the Equator (Mason 1995).

The spatial pattern shown by the 5.6-year period encompasses the entire 

region o f the Atlantic Ocean described by Mason’s (1995) PC 1(17%), PCS (11%), 

PCS (7%) and PC6 (7%), which were found to have dominant periods of between 2 

and 8 years. Local variance of up to 64% is explained over a wide area of the Atlantic 

Ocean by the leading mode of the 5.6-year period in a fashion similar to WPC1 of the 

SST SAWP (dotted area in Figure 3.20). The presence of variance associated with the 

5.6-year period points to the occurrence of Atlantic Ocean events similar to El Nino 

and clearly shows that the periods around 5.6-year provide the background oscillation 

of all periods in the 2 to 8-year range.
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Figure 3.20. The spatial and temporal patterns of energy at the 2 and 5.6-year periods 
of the Atlantic Ocean: (a) 2-year period, (b) 5.6-year periods, and (c) the 
temporal models.
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Warming events in the Benguela and Peru currents have been noted to occur 

concurrently, although the Benguela Ocean currents occur less frequently (Walker 

1987). This clearly points to the occurrence of what has been termed as “El Nino- 

like” events in the Atlantic Ocean. The temporal variations of power at 2 and 5.6-year 

periods shown in Figs. 5.20 show that power variations peaked for both periods 

around 1974 and declined between 1974 and 1997.

3.3.7 Variability of Indian Ocean Sea Surface Temperatures

3.3.7.1 Spatial Regimes

WEOF analysis of the annual SAWP of the Indian Ocean SST revealed two 

leading WPCs, which explained 28% and 20% of the total SAWP variance, which 

were not much different from the leading modes of the South Atlantic Ocean SST. 

Their spatial variability patterns are shown in Figure 3.21. At the seasonal time scale, 

WPC1 explained 26% for the OND season, 35% for the JFM season, 23% for the 

AMJ season and 29% for the JAS season. The JFM season is clearly the most variable 

of all the four seasons and the AMJ season is the least variable. Unlike the Atlantic 

Ocean, the Indian Ocean seasonal spatial variability patterns appear stationary in 

space for the study period. As for the Atlantic Ocean SST, the WPC2 for each season 

was not spatially extensive and its spatial correlation patterns explained very little 

variance. Thus the WPC2 at the seasonal time scale is not discussed.

WPC1 mainly describes variation of SAWP of the northern Indian Ocean SST. 

It is positively correlated to SST SAWP of the northern Indian Ocean and negatively 

but weakly correlated to the southern Indian Ocean SST SAWP. Maximum variations
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of between 50%-64% are accounted for by this WPC in the central and western 

Indian Ocean SST. WPC2 describes the remainder of the variance in the south Indian 

Ocean SST SAWP not accounted for by WPC1. It is positively correlated to south 

Indian Ocean SST SAWP (extending from 40°E to 105°E) and negatively correlated 

but weakly to the northern Indian Ocean SST SAWP. This WPC appears as a part of 

Mason’s (1995) PC2 (13%), which Mason attributed to warming and cooling of the 

Mozambique Channel current and Agulhas system.

At seasonal time scales, the northern Indian Ocean appeared as the main mode 

of spatial variability for OND, JFM and JAS seasons (see Figure 3.22). The southern 

Indian Ocean SST appears as a dominant spatial regime only during the AMJ season. 

This means that the largest contribution to WPC1 of Indian Ocean SST is from the 

three seasons (OND, JFM, and JAS). The AMJ season contributes more to the 

variation of WPC2.

3.3.7.2 Temporal Regimes

The WPCs for the annual SAWP (Figure 3.21(c)) shows that SST in the 

northern Indian Ocean increased from 1960 to 1990 and decreased after that, while 

that of the southern Indian Ocean increased from 1950 to 1968 and decreased 

between 1970 and 1997. The seasonal WPC time series are shown in Figs. 3.22 (e)-

(h). The WPCs (Figs. 3.22(a) and (b)) show that SST peaked for OND and JFM 

season in about 1971/2 but similar changes were observed in the AMJ season in 1975 

and for the JAS season in 1987.
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Figure 3.21 Contour plots of the spatial correlation patterns between, (a) WPC1, and 
(b) WPC2, of annual Indian Ocean SST and SAWP of individual grids at 
0.1 contour intervals. The numbers shown above represent the percentage 
(%) of the total variance explained by each WPC. The temporal variations 
of the two WPCs of the Indian Ocean SST are shown in (c) and (d), 
respectively.
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Figure 3.22 Contour plots of the spatial correlation patterns between WPC1 of 
seasonal Indian Ocean SST and SAWP of individual grids at 0.1 
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3.3.7.3 Frequency Regimes

The spatial patterns corresponding to the periods of 2 and 5.6-years, which are 

also representative of the periods 2 to 2.4-years and 5 to 6.7-years, are shown in 

Figure 3.23. As was the case with the Atlantic Ocean, the variance of energy 

associated with the 5.6-year period is higher than that of the 2-year period. Although 

both periods cover the entire Indian Ocean, the spatial patterns associated with the 

5.6-year period are much more coherent over wide areas of the ocean than the 2-year 

period.

The 2-year spatial pattern appears out of phase between the western 

(specifically northwest and southwest) portion of the Indian Ocean and the central 

portion of the Indian Ocean. Weak positive correlations are also observed to the east 

of the Indian Ocean. The variance of the 2-year is strongest in the northwest and 

southwest comers of the Indian Ocean, with up to 36% of the local variance 

accounted for by the leading mode. This region was also seen to have strong 850 hPa 

winds associated with the Monsoon (see Figure 3.1). This region is also made up of 

part of Mason’s (1995) PC2 (13%) and PC4 (7.5%), which he found to have periods 

of 2.7 and 5.2 years, respectively.

The spatial pattern associated with the 5.6-year period appears almost 

everywhere in the Indian Ocean. The leading mode is positively correlated to the 

north and east, and negatively but weakly correlated to the south. The highest 

variance accounted for by the leading mode explains between 16 and 64% of variance 

in the northern sections as well as the eastern portion of the Indian Ocean. In the 

south, local variance of between 16 and 36% is explained by this period. The
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presence of the 5.6-year period corresponds to the 5-6 year period found by 

Nicholson and Entekhabi (1987), along the east coast of southern Africa and is 

associated with the Southern Oscillation.
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Figure 3.23. The spatial and temporal patterns of energy at the 2 and 5.6-year periods 
of the Indian Ocean, (a) 2-year period, (b) 5.6-year period, and (c) the 
temporal models.
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3.4 ENSO impacts on Rainfall Variability via Space-Time analysis of Scale 

Energy.

3.4.1 Introduction

The objective of this section is to examine how the spatial and temporal 

variability of rainfall of Eastern, Central South and Southern Africa responded to El 

Nino-Southern Oscillation (ENSO) signals during the 1900-1997 and 1950-1997 

periods by examining the interaction of energy variations at various scales within the 

2-8-year spectral band. The return period of El Nino ranges from 3 to 7 years. Since 

this is the same range of periods over which the spatial, temporal and frequency 

variability of the rainfall and SST has been analyzed, it will be of interest to see how 

the occurrence of these events affected the temporal and spatial variability of the 

rainfall in these regions.

El Nino often begins early in the year and peaks between November and 

January. Hence all the rainfall seasons in Eastern, Central South and Southern Africa 

should be affected during times of ENSO events. It is widely known that ENSO 

events cause widespread droughts in eastern and southern Africa (Lindesay 1988; 

Nicholson and Entekhabi, 1987; Nicholson et al., 2001). This is because the persistent 

low-pressure belts in the Western Pacific and equally persistent high-pressure belts 

over the Eastern Pacific, weakens the trade wind belt that is responsible for rainfall 

over Eastern and Southern Africa. Hence during early summer the low pressure 

troughs that form diagonally (Northwest-Southeast orientation) over Southern Africa 

are displaced eastwards towards the Mozambique Channel, moisture advection due to
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SE trade winds over the Indian Ocean is curtailed, the ITCZ is displaced further north 

and the wind and moisture transport is offshore.

Between 1900 and 1997, ENSO episodes occurred 22 times (see Table 3.1). Of 

these events ten occurred between 1900 and 1950 and twelve occurred between 1950 

and 1997. From Table 3.2, it is clear that droughts occurred in East Africa during 

non-ENSO years (e.g. 1900, 1949, 1979 and 1984) and above average rainfall 

occurred during ENSO years (e.g., all thirteen ENSO years between 1902 and 1957). 

For Central South and Southern Africa, all the ENSO events prior to 1970 had little or 

no effect on rainfall compared to the events in the post 1970 period (Richard et al., 

2000). In the next few sections, we examine the interaction of energy among the 2 to 

8-year scales of rainfall and see the response of rainfall to ENSO events.

3.4.2 East Africa SON Rainfall.

All the power within the 2 to 8-year periods experienced a general increase in 

the energy between 1900 and 1960, followed by a decrease of energy between 1962 

and 1997 (see Figs 3.5 of Section 3.3.2.3). Since the periods around 2-years were 

dominant in the SON rainfall SAWP, consistent increase of energy in the 2-year cycle 

offset all the ENSO events between 1900 and 1950. However, ENSO events of 1965, 

1977 1987 and 1997 could not be suppressed because the energy associated with all 

scales was on the decrease during this time. Hence droughts due to ENSO were 

severe during 1955-1997.
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3.4.3 East Africa MAM rainfall

Figure 3.10 of Section S.3.3.3 showed that the MAM rainfall of East Africa was 

dominated by the periods around 5.6 years, which have a spatial variability that is 

similar to the WPC1 of the MAM rainfall SAWP, followed by periods around 2-year. 

Table 3.1 ENSO years between 1900 and 1997.

1902 1905 1911 1914 1918 1923 1925 1930 1932 1939

1951 1953 1957 1963 1965 1969 1972 1977 1982 1987

1991 1994

Table 3.2 Major drought episodes in East Africa in the 20th century1.

1899 1900 1949“ 1965 1967 1971 1977 1979 1984b 19S7

1988° 1990“ 1991“ 1992* 1996s 1997"

1 Ntale (2001)

a 1.5 million cattle died or where hastily slaughtered out of 2.5 million. 

b 600,000 people where affected. 

c 600,000 people affected, poor seasonal rainfall. 

d 1.2 million people affected, worst crop in 10 years. 

e 2.7 million people affected, worst drought in 50 years.

Continuing drought. 

s,h Worst drought in Tanzania, cities face major water shortages.
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Between 1900 and 1920 and 1960 and 1970, the 2-year period experienced an 

increase in energy, while decreasing energy was dominant during the periods 1930-50 

and 1970-97. On the other hand, the 5.6-year cycle experienced increasing energy 

between 1920 and 1955 and decreasing energy between 1955 and 1997. Since the 5.6- 

year cycle is associated with ENSO events, the decrease in energy in the period 1955- 

97 should theoretically have been associated with droughts. However, energy 

associated with the 2-year period increased between 1960 and 1970. This increase 

apparently offset any effects ENSO would have had on the rainfall. The synchronous 

decrease of energy in the 2 and 5.6-year period, between 1980 and 1997 explains the 

complete failure of the MAM rainfall in 1984 and the increased severity of the 

droughts during this period.

Between 1980 and 1997 energy at all periods in the 2-8-year band declined for 

both the SON and MAM rainfall. This 1984 failure of the MAM rainfall caused the 

worst drought in Kenya in 40 years (Ntale 2001). The 1990 droughts affected 1.2 

million people, while the 1992 drought affected 2.7 million people (Ntale 2001). In 

1996 the worst drought in 50 years was recorded in Eastern Africa and major cities 

begun to face water shortages (Ntale 2001; Ntale and Gan 2004). The above findings 

show that not all ENSO events have the same effect on the rainfall of East Africa. 

During periods when rainfall energy at the 2-year cycle is on the increase, ENSO 

events probably have very little or no effect on the East Africa rainfall, while when 

there is synchronous decrease of rainfall energy in the periods around 2-years and 

others around 5.6 years, droughts are more prevalent and pronounced.
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3.4.4 Central South and Southern Africa Summer Rainfall

The spatial and temporal variability of summer rainfall at 2 and 5.6 years is 

shown Fig 3.17. These figures revealed that the dominant periods in rainfall of 

Central South and Southern Africa summer rainfall were periods between 5.6 and 8- 

years, followed by the 2-year cycle, similar to the MAM rainfall of East Africa. 

Figure 3.17 shows a consistent increase in the energy of the 2.0-year period, between 

1950 and the early 1970’s, followed by a consistent decrease of energy between the 

early 1970’s and the late 1990’s. Energy at the 5.6-year and other longer periods also 

increased between 1950 and 1965 and decreased between 1965 and 1997.

Similar to the MAM season of East Africa, the WPCs appear to show that when 

the 2-year energy is increasing, while the 5.6-8 year energy is decreasing ENSO has 

little effect on the Central South and Southern Africa rainfall. However, when the 

energy at the lower and higher scales is decreasing at the same time, ENSO causes 

droughts to occur in the region.

Richard et al., (2000) also found that pre-1970 ENSO events had little effect on 

the Southern Africa climate conditions and atmospheric circulation, while the ENSO 

events after 1970 were characterized by reduced rainfall. Our results confirm their 

findings.

3.5 Summary of Findings

Wavelet analysis, EMD-Hilbert transformations, Wavelet empirical orthogonal 

function (WEOF) and EMD-Hilbert empirical orthogonal function (HEOF), and 

Wavelet Independent Correlation analysis (WICA) were applied to rainfall and sea
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surface temperature energy within the 2 to 8 year periods to identify and analyze the 

dominant spatial, temporal and frequency regimes of rainfall o f East Africa, Central 

South and greater Southern Africa and sea surface temperature variability of the 

South Atlantic and Indian Oceans.

WEOF of SAWP found that excluding areas of extreme altitude such as the 

Great Rift Valley and Mt Kilimanjaro, the spatial variability of East Africa SON 

rainfall was homogenous over the region. WEOF of individual scale power found that 

the variability of the SON rainfall was dominated by energy associated with periods 

around 2 years. The variability explained by periods higher than 3 years gradually 

decreased, as the periods got longer. The WPCs and the Hilbert spectrum for SON 

rainfall found that strong period modulation of between 8 and 25 years occurred 

throughout the 1900-1997 period. The intense 2 to 8 year periods and the 8 to 25 year 

periods are all equally modulated by an even longer period of about 50 to 60 years. 

The leading mode of variability (WPC1) was found to accurately represent the 

temporal variability of SON rainfall, identifying years of normal rainfall, floods and 

droughts. Consistent with a 50 to 60 year cycle, power in the rainfall increased 

between 1900 and 1960 and consistently decreased between 1962 and 1997, 

contributing to abundant rainfall in the period prior to 1962 and numerous drought 

during the post 1962 period.

ENSO was found to affect the SON rainfall when the energy in the SON 

rainfall at periods around 2 year was decreasing.

For the MAM rainfall of East Africa, WEOF and WICA of SAWP identified 

the rainfall of eastern Tanzania as being out of phase with the rainfall of the rest of
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the region. Compared to the SON rainfall, the spatial variability pattern of the MAM 

rainfall was weaker. WEOF of individual scale power found that the variability of the 

MAM rainfall was dominated by energy associated with periods of 5.6 years, 

followed by periods around 2 years. Both leading WPCs showed an 70-80-year cycle 

modulating interdecadal periods. The power in WPC1 was found to have decreased 

from 1920 until the end of the data period in 1997, while that of WPC2 was found to 

have experienced an increase between 1900 and 1980 and decrease between 1980 and 

1997. The leading modes of variability were also found to accurately represent the 

temporal variability of MAM rainfall.

ENSO was found to affect the MAM rainfall when energy at the 2 and 5.6- 

years in the rainfall synchronously decreased.

WEOF of the Central South and greater Southern Africa rainfall summer 

rainfall SAWP revealed that the interior of the region was out of phase with the 

coastal areas and lakes Malawi region. WEOF of individual scale power found that 

the variability of the summer rainfall was dominated by energy associated with 

periods around between 5.6 and 8 years, followed by energy of the periods around 2 

years. The WPCs and the Hilbert spectrum for the summer rainfall also found strong 

period modulation of between 8 and 25 years during the 1950-1995 period. The 

rainfall decrease especially between 1974 and 1997 was found to be consistent with 

the corresponding decrease in streamflow of rivers and dams in Namibia, Angola, 

Zimbabwe, Zambia, parts of Mozambique and the Veld belt o f northern South Africa.
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ENSO was found to be more effective during the post 1970 period. However, 

ENSO only caused droughts when a synchronized energy decrease of the Southern 

Africa rainfall energy occurred at all scales between 2 and 8 years.

WEOF of the South Atlantic Ocean sea surface temperature (SST) at the 

seasonal time scales found spatial variabilities that were nonstationary. The spatial 

patterns were found to migrate seasonally between Africa’s west coast and South 

America east coast. Throughout the dominant spatial pattern of variability was found 

to be the Benguela, Brazil and the Guinea Ocean currents. The Brazil and Benguela 

Ocean current SSTs were found to be out of phase with the Guinea Ocean current 

SSTs. Each of the leading modes of spatial variability was found to explain about 

27% of total seasonal power variability, suggesting that for this ocean basin, each 

season contributed equally to the annual variation. The time domain WPCs showed 

that an increase in temperature occurred between 1950 and the mid 1960’s to early 

1970’s and the energy declined after the 1970’s.

At the annual scale the Benguela Ocean current was found to form the main 

mode of variability and the Brazil and Guinea Ocean current SST form the second 

leading spatial patterns of variability of the Atlantic Ocean. Time domain WPC1 and 

WPC2 show that Benguela and Brazil Ocean current SST experienced an increase 

between 1950 and late 1960’s and a decrease between 1972 and 1997.

WEOF of the Indian Ocean SST showed that, except for the AMJ season, both 

the annual and the rest of the seasons, the northern Indian Ocean SST formed the 

dominant spatial variability pattern. The south Indian Ocean SST was found to form 

the dominant spatial variability pattern during the AMJ season.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

ASSOCIATION BETWEEN RAINFALL WPCs AND THE SST SAWP

4.1 Introduction

Several previous studies have examined and found relationships between 

rainfall in Eastern Africa (EA) and Southern Africa (SA) and sea surface 

temperatures (SST) of the Indian, Atlantic and Pacific Oceans (e.g., Mutai et al., 

1998; Ntale et al., 2003; Mason, 1995; Jury, 1996). As alluded-to in Chapter 1, for 

SA, the majority of these studies found rainfall-SST relationships for small 

geographical areas, while some relationships were found using regionalized rainfall 

indices, thereby ignoring the spatial variability inherent in the complex spatial 

patterns of rainfall. Chapter 1 also suggested that one of the biggest problems 

encountered in climate prediction is that most of the predictor datasets have very 

small signal to noise (S/N) ratios. The noise found in the predictor data compromises 

the prediction skill of most of these models. For example, only 40% of the variance in 

the observed data was accounted for in Ntale et al., (2003). Hence, identification of 

robust relationships between climate elements is a prerequisite to the maximization of 

the S/N ratio and improved prediction skill of the models.

The objective of this chapter is to establish relationships between the leading 

modes of rainfall WPCs of East Africa (EA), Central South Africa (CSA) and 

Southern Africa and the gridded scale-average wavelet power (SAWP) of sea surface 

temperature (SST) of the Indian and Atlantic Oceans. The associations between 

SAWP of SST and rainfall WPCs are considered statistically significant if  the co­

variability is significant above the 95% level. With most of the noise (measurement
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errors and energy of climate variability below the 95% level) removed, it is expected 

that the identified predictor SST fields contain signals that explain the majority of the 

variance found in the spatial and temporal regimes of rainfall variability. We assume 

that the SST variability derived from the large inertia of the oceans contributes 

enough memory to the variability o f the seasonal rainfall of SA and EA that it is 

possible to predict the latter at 2 to 8 months lead-time. In this case, we assume that 

the inertia of the oceans slows down the high-frequency moisture transport 

components of the atmospheric circulation, dumping it out in time scales of seasons 

(Ntale 2001). The Pearson correlation, p, is extensively used to establish the 

associations between rainfall WPCs and the SST SAWP time series.

Of the four seasons, (January-March, (JFM), April-June (AMJ), July- 

September (JAS) and October-December (OND)), the preceding AMJ season 

provided lead-times of 2, 3 and 8 months for predicting the SON, the summer (OND- 

JFM) and the MAM rainfalls, respectively. In addition, the JAS and OND also 

provided 5 and 2 months of lead-time, for predicting the MAM rainfall. The 

associations between AMJ SST SAWP and the SON (summer) and the MAM rainfall 

WPCs were investigated. The association between MAM’s WPCs and JAS and 

OND’s SAWP were similarly examined. In Chapter 3, we saw that at regional scales, 

most of the spatial variability of the rainfall could be described mainly by WPC1 and 

WPC2. These WPCs were also used in this chapter to establish associations between 

rainfall and SST SAWP.

Due to strong persistency in the SAWP and WPC time series, the effective 

length of the SAWP and WPCs, Nej ,  calculated as,
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was used to determined the significant level of the correlation between WPCs and the 

SAWP (Wilks 1995). In Eq (4.1), pi is the lag-1 autocorrelation and N is the length of 

the observed rainfall or SST time series. The effective length, was much shorter 

than the observed length of the time series, N. All associations were determined using 

the 1950-1997 period, because data quality for this period is higher than for the period 

prior to 1950, especially for CSA. Using this period, Nejw a s  found to be only around 

3 or 4 years and the correlation above the 95% level was 0.997. In most of the spatial 

correlation patterns between WPCs and SAWP, correlations rarely exceeded the 

0.997 level. Since regional rainfall WPC-SAWP correlations generally ranged 

between 0.4 and 1.0, regions of the oceans correlated with rainfall at values between 

0.4 and 1.0 were taken to be areas of the oceans that influence rainfall variability.

Examination of associations between rainfall in EA, CSA, SA and SST in the 

Indian and Atlantic Oceans is expounded in Sections 4.2 to 4.4. A summary of all 

results is presented in Section 4.5

4.2 Association Between SON rainfall WPCs and SAWP of Atlantic and Indian 

Ocean SSTs

The spatial correlation patterns between WPC1 and WPC2 of the SON rainfall 

of EA and individual 5°x5° SST SAWP time series of the Indian and Atlantic Oceans 

are shown in Figure 4.1. Rainfall WPC1 is positively correlated to the SST SAWP of 

SW Indian Ocean, but negatively correlated to the NW portion of the Indian Ocean,
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Figure 4.1(a). The relationship between SON WPCl and the SAWP of the Indian 

Ocean SST is similar to that of the spatial pattern of WPCl of the Indian Ocean SST 

SAWP (Figure 3.20 of Chapter 3). Since SON rainfall WPCl is out of phase with the 

northern Indian Ocean SAWP and in-phase with the southern Indian Ocean SAWP, 

increasing power (or wanning of SST) of the northern Indian Ocean SST SAWP in 

AMJ is associated with decreasing power (decreasing SON rainfall) of the SON 

rainfall of EA and vice-versa. Wanning of the southern Indian Ocean results in 

increased SON rainfall, and vice-versa. The temporal variability of AMJ WPCl of the 

Indian Ocean SST (Figure 3.21(g) of Chapter 3) and the SON WPCl (Figure 3.3(d)) 

confirm the above relationship. These two figures show that when the AMJ SST of 

the southern Indian Ocean warmed up during the periods 1950-1960 and 1975-1985 

the SON rainfall increased, while when SST cooled during the periods 1960-1975 and 

1985-1994, rainfall decreased.

Figure 4.1(b) shows the correlations between SON rainfall WPCl and 

individual 5°x5° SST SAWP of the South Atlantic Ocean. Rainfall WPCl is 

positively correlated to the Brazil current and negatively (and weakly) correlated to 

the Guinea and the South Atlantic Ocean between 30°S and 40°S. The positive 

relationship between rainfall WPCl and the Brazil Ocean SST show that variabilities 

in these ocean currents have important climatological implications for SON rainfall 

variability. Since the SON rainfall variability is positively correlated to the SST of the 

Brazil Ocean current SSTs, warming in these ocean basins during AMJ is associated 

with increased SON rainfall, while the association is out of phase with the Guinea 

Ocean current SST.
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Figure 4.1(c) shows that SON rainfall WPC2 is strongly correlated to the 

Guinea Ocean current SST SAWP of the Atlantic Ocean, while Figure 4.1(d) shows 

the weak correlation between SON rainfall WPC2 and the Indian Ocean SST SAWP. 

In Chapter 3, Section 3.3.2.1, it was pointed out that the spatial pattern of the SON 

rainfall variability was strongest in the east and decreased rapidly westwards, 

(especially along the Great Rift Valley, GRV). In the GRV region, the SON rainfall 

variability was best explained by WPC2. The strength of the WPC2 spatial patterns 

suggested possible sources of the variability more likely from the west (either 

influences from Congo basin or the Atlantic Ocean) than the east (Indian Ocean SST). 

Figure 4.1(c) suggests that the variability of the Guinea Ocean current SST modulates 

atmospheric circulation that affects the rainfall variability of the western areas of EA, 

which includes the GRV region.

Figure 4.1 The spatial display of the correlation pattern plotted at 0.2 contour intervals 
between WPCs of the SON rainfall of EA and individual 5°x5° SST SAWP 
time series of the Indian and Atlantic Oceans, for both annual ((a) and (c)), 
and AMJ ((b) and (d)) SST data. The darker shadings in (b) and (d) indicate 
ocean regions where the predictor SST was selected as input data.
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Figure 4.1 continued

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30 N
(d)

20S

20  N

30S

ION

10S

EQ

2 0 E 30E 4 0 E 50E 60E 70E 80E 90E 1 0 0 E 110E 1 2 0 E

Figure 4.1 continued

4.3 Association Between MAM rainfall WPCs and SAWP of Atlantic and 

Indian Ocean SSTs

The MAM rainfall WPCs and WICs were correlated with individual 5°x5° SST 

SAWP of the Indian and Atlantic Oceans. The SST SAWP of the Indian and Atlantic 

Ocean associated with MAM WPC2 has a much broader and comparatively well- 

defined spatial distribution pattern (i.e., follows spatial variability pattern of the SST 

SAWP of the oceans themselves). Figure 4.3 shows correlation patterns between 

MAM rainfall WPC2 and the SST SAWP of AMJ, JAS and OND seasons. Following 

Figure 3.19 of Chapter 3, we see that the correlation patterns generally follow the 

spatial variabilities of the Atlantic Ocean SST SAWP. In AMJ, the SST SAWP 

variabilities are well developed off the South America coast (shown by strong 

correlation patterns between rainfall WPCs and Benguela and Brazil SST SAWP).
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In JAS, the spatial correlations with the Benguela Ocean SST SAWP begin to move 

towards the African coast and are well developed by the OND season (see Figs. 

4.2(b) and (c)). Conspicuous in Fig 4.2(c) is an area close to the African coast, with 

correlations above 0.4 that forms a similar spatial pattern similar to WPCl of the 

OND season. The MAM WPC2 is in phase with the Brazil and Benguela ocean 

current SST SAWP and out of phase with Guinea and the areas between 30°S-40°S. 

Increased SST in the Gulf of Guinea and Brazil currents results in increased 

(decreased) rainfall in MAM for eastern (western) Tanzania and southern (northern) 

Uganda and Kenya, and vice versa. Low SSTs in the Gulf o f Guinea have been found 

to affect the strength and moisture content of the Congo air mass that converges in 

EA by forcing westerly incursions to weaken. The weakened westerly incursions 

result in particularly dry years for East Africa (Ntale et al., 2003).

Figure 4.3 shows the correlation patterns formed between MAM WPC2 and 

the Indian ocean SAWP. During the AMJ season, MAM WPC2 is correlated to the 

southwest Indian Ocean. The extensive spatial correlation pattern between MAM 

WPC2 and SST SAWP during JAS is positive to the northwest, northeast and 

southern portions of the Indian Ocean and negatively but weakly correlated to the 

western Indian Ocean. Although not well organized (not exactly similar to the JAS 

SST WTC1 spatial pattern), this spatial pattern shows that MAM is associated with 

the north and southern Indian Ocean. However, the positive association between 

MAM WPC2 and the south Indian Ocean does not appear similar to the WPCl of the 

SST for the JAS season. The same applied to the OND season.
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It was shown in Chapter 3 (Figures 3.7 and 3.8 o f Section 3.3.3.1) that the 

MAM rainfall WPCl was strongest in the western region of EA and decreased 

eastwards. This showed that the Atlantic Ocean SST accounts for much of the 

variation of the MAM rainfall.
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Figure 4.2 Associations between MAM rainfall and SST of the Atlantic Ocean for the 
periods (a) April-June (AMJ), (b) July-September (JAS), and (c) October- 
December (OND) from the Atlantic Ocean
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Figure 4.3 Associations between MAM rainfall and SST of the Indian Ocean for the 
periods (a) April-June (AMJ), (b) July-September (JAS), and (c) October- 
December (OND).
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4.4. Association Between Central Southern Africa rainfall WPCs and SAWP of 

Atlantic and Indian Ocean SSTs

Figure 4.4 shows the correlations between CSA rainfall WPCl and individual 

5°x5° SST SAWP of the AMJ season in the south Atlantic and Indian Oceans. Strong 

positive correlations were found between the rainfall WPCl and the Benguela and the 

Brazil Ocean SST SAWP, while negative correlations were found between the 

rainfall WPCl and the Guinea Ocean current SST and the South Atlantic Ocean SST 

SAWP located between 30°S and 40°S. This correlation spatial pattern is similar to 

WPCl of the Atlantic Ocean during the AMJ season (Figure 3.19(c) of Chapter 3)

Weak spatial correlation patterns were found between rainfall WPCl and the 

AMJ Indian Ocean SST SAWP (see Figure 4.4(b)). Rainfall WPCl is negatively 

correlated to the northern Indian Ocean and positively correlated to the southern 

Indian Ocean, similar to the spatial pattern of WPCl, which shows an out of phase 

relationship between the northern and southern Indian Ocean. The spatial patterns are, 

however, not very extensive as compared to those found between the Atlantic Ocean 

SST SAWP and the rainfall WPCl.
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Figure 4.4 Plots showing the spatial correlation patterns between WPCl of CSA 
rainfall and individual 5°x5° AMJ SST SAWP time series of the (a) 
Atlantic, and (b) Indian oceans. The areas inside the dotted line 
correspond to ocean zones with correlations greater than 0.5. Data from 
these delineated zones were later used to predict the CSA rainfall.
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The associations between rainfall WPCl and the SST variations in the Brazil, 

Benguela and Guinea Ocean currents shows that variabilities in these ocean current 

SSTs also have important climatological implications for CSA rainfall. Since the 

rainfall variability in central parts of CSA is positively associated with SST in the 

Brazil and Benguela Ocean currents, warming in these ocean basins results in 

increased rainfall in this region and vice versa for the coastal areas.

4.4 Association between Southern Africa summer rainfall WPCs and Atlantic 

and Indian Ocean SSTs SAWP

Figure 4.5 shows the correlations between the SA summer rainfall WPCs and 

individual 5°x5° SST SAWP time series of the South Atlantic Ocean. Rainfall WPCl 

is positively correlated to the Brazil and the Guinea currents and negatively correlated 

to the South Atlantic Ocean between 30°S and 40°S. The positive relationship 

between rainfall WPCl, the Brazil and the Guinea current shows that variabilities in 

these ocean currents also have important climatological implications for SA as well. 

Rainfall WPC2, which is strongly associated with rainfall along the coastal areas, is 

positively linked to the Benguela ocean current SST.

The correlation pattern between WPCs of the summer rainfall of SA and 

individual 5°x5° SST SAWP time series of the Indian Ocean are shown in Figure 

4.5(b). Rainfall WPCl is positively correlated to the SST SAWP of the southern 

Indian Ocean and negatively correlated to the northern Indian Ocean, similar to the 

spatial pattern o f WPCl of the Indian Ocean SST SAWP.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30 N 

20N- 

ION- 

EQ- 

10S- 

20S- 

30S-

4 0 §0W  50W 40W  30W 20W  10W OW 10E 20E

30N- 

20N- 

ION- 

EQ-

ios-

20S- 

30S-

20E 30E 40E 50E 60E 70E 80E 90E 100E 110E 120E

Figure 4.5 Associations between southern Africa summer rainfall and SST SAWP (a) 
rainfall WPCl and Indian ocean SST SAWP (b) rainfall WPCl and 
Atlantic ocean SST SAWP (c) rainfall WPC2 and Atlantic ocean SST. It is 
clear that the main mode of variability of summer rainfall is associated 
with the Brazil ocean current, Sierra Leon basin and the Guinea ocean 
current SST, while rainfall along the coastal areas is associated with the 
variations of the Benguela ocean current SST.
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Since summer rainfall for the northern parts of SA is out of phase with the northern 

Indian Ocean and in-phase with the southern Indian Ocean SST SAWP, warming of 

the northern Indian Ocean resulted in decreased summer rainfall for Zambia, northern 

Namibia, Zimbabwe, parts of central Mozambique, Botswana, and northern South 

Africa. Conversely cooling (warming) of the southern Indian Ocean resulted in 

decreased (increased) rainfall in the northern parts of SA and vice versa for the 

southern regions. Figure 3.20 of Chapter 3 of the Indian Ocean WPCs shows that the 

northern Indian ocean began warming in 1960 and the south Indian ocean SST began 

cooling around 1970. SA summer rainfall WPCl (Figure 3.15 of Chapter 3) shows 

that SA responded about the same time to SST changes in the southern Indian Ocean 

SST variations. The southern Indian Ocean (especially the SW Indian Ocean) has also 

been found to influence rainfall variability of South Africa (e.g., Mason 1995; Jury 

1996; Landman et al., 2001).

When the relationship between the Atlantic Ocean and Indian Ocean SST 

SAWP, and WPCs from CSA and the whole of SA are compared, it is seen that the 

relationship between CSA rainfall WPCs and Atlantic Ocean SAWP is stronger and 

spatially extensive in the Atlantic Ocean than that of CSA and the Indian Ocean SST 

SAWP, while the relationship between the whole of SA rainfall WPCs is better 

defined in the Indian Ocean than the Atlantic Ocean. This demonstrates that CSA is 

influenced more by the variability of the Atlantic Ocean SST than that of the Indian 

Ocean SST. However, when the region is considered together, the influence from the 

Indian Ocean SST SAWP becomes important. This shows that most of southern 

Africa rainfall variability is affected by variations in the Indian Ocean SST. However,
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variations in the Brazil and Guinea current also have effects on the regions rainfall. 

This demonstrates that at regional scales, both the Atlantic and Indian Oceans 

influence rainfall variability in CSA and SA. This finding agrees with Figures 3.1(a) 

and (b) of Chapter 3, which show convergence of moisture transport winds at the 850- 

hPa height into the region. Generally, in the southern most part of the continent the 

Indian Ocean has more influence, while as you move northwards, the SST variations 

of the Atlantic Ocean explain more of the variance in the rainfall than the Indian 

Ocean SST.

The spatial patterns of the associations were used to extract the SST data used 

for prediction of the seasonal rainfall of EA, CSA and SA discussed in Chapter 5.

4.5 Summary of Findings

Associations between rainfall WPCs of EA (SON and MAM seasons), CSA 

and SA (summer season) and the Atlantic and Indian Ocean SST SAWP for the 

seasons April-June (AMJ), July-September (JAS) and October-December (OND) 

seasons were established in this Chapter.

It was found that all the seasonal rainfall WPCs of EA, CSA and SA have links 

with the South Atlantic Ocean SST SAWP through the Brazil, Guinea and Benguela 

Ocean current SST. The SON and the summer WPCs were also found to be 

associated with the Indian Ocean SST SAWP. The MAM rainfall WPC2 was found to 

be associated with the Atlantic Ocean SST only.

The rainfall WPCs were found to be in phase with the Brazil and Benguela ocean 

currents but out of phase with the Guinea Ocean SST SAWP and the SST SAWP
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between 30°S-40°S of the Atlantic Ocean. The SON and summer rainfall WPCs of 

East and Southern Africa, respectively, were positively correlated to the South Indian 

Ocean SST SAWP and negatively correlated to the northern Indian Ocean SST 

SAWP. The decrease in SST of the southern Indian Ocean between 1970 and 1997 is 

found to be associated with a similar decrease of SON of East Africa and the summer 

rainfall of some countries within SA.
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CHAPTER 5

DEVELOPMENT AND APPLICATION OF THE ANN-GA MODEL 

FOR SEASONAL CLIMATE PREDICTION

5.1 Introduction

Provision of accurate precipitation forecasts, both in the short and long term 

has great economic benefits (Shen et aL, 2001). For example, in the United States, 

potential savings over ten years to the agricultural sector from seasonal precipitation 

forecasts with only 60% accuracy are estimated to be between USS0.5 and USS1.1 

billion, (O’Brien, 1992). The predominance of rain-fed agriculture and livestock 

production across Eastern and Southern Africa serves to ensure that food security is 

inextricably linked to the accuracy of seasonal precipitation forecast of each 

precipitation season (Mason, 1997). In other words, an ability to provide accurate 

seasonal precipitation forecast could contribute substantially to the food security and 

natural resource management of Eastern, Central South and Southern Africa.

The techniques for predicting the future weather or climate are determined to a 

large extent by the required lead-time of the forecast, which ranges from a few hours 

for highly skilled numerical weather prediction, to months or decades in the case of 

climate prediction (Namias, 1985). On monthly or longer time-scales, a number of 

models, e.g., linear statistical models, dynamical models, and hybrids of statistical- 

dynamic models, have been used to make climate prediction by capitalizing on the 

slow moving boundary conditions, such as sea surface temperature and land surface 

characteristics (e.g., Mutai et al., 1998, Landman et al., 2001). Although in some parts
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of the world, dynamical models have performed as well as their linear counterparts 

(Shen et al., 2001), in Eastern and Southern Africa, these models have performed 

poorly, in forecasting the climate with lead-times of beyond two weeks, especially in 

recent years. As such, the continued need for further development and application of 

statistical models for climate prediction has been suggested (e.g. Mason, 1997).

Since linear statistical models have an obvious limitation of the inability to 

adequately take into account the non-linear behavior of the ocean-atmosphere system, 

nonlinear statistical models are advocated. As noted by Landman et al., (2001), many 

important climate processes demonstrate strong non-linearities and the forecast skill 

of most linear statistical models is restricted because of the exclusion of these 

processes. To take into account the nonlinear characteristic of the ocean-atmosphere 

interaction, this chapter developed a nonlinear statistical climate model for predicting 

seasonal precipitation. The prediction model uses the nonlinear features of an 

artificial neural network, (ANNs) and training capability of the genetic algorithm 

(GA). The inspiration to combine GAs and ANNs comes from the fact that both 

computation techniques emulate biologically inspired mechanisms (Gallant, 2001).

For example, ANNs are motivated by the way the human brain learns from 

experiences and the way it processes vast amounts of information in parallel. The 

brain contains, an estimated 10 billion neurons linked by 60 trillion synapses, which 

make it possible to efficiently process vast amounts of information related to 

processes such as motor control (Haykin, 1994). The brain also has memory for 

pattern recognition. Each time we react to the world around us, or think about 

something, pulses of signals move through the vast network of neurons mapping
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routes through cells. Familiarity with the scenes or thoughts is associated with signals 

following familiar patterns of paths through the brain neurons. This is what is called 

memory or learning. Memory is thus not stored in any of the physical cells found in 

the brain. It is a pattern of signals moving through the vast network of neurons. 

Neural networks try to replicate this massive interconnection of neurons and the 

memory aspect of the brain by creating massively parallel structures containing 

weights (neurons) interconnected by links. The weights are modified such that the 

signals passing through the ANN resemble the pattern of interest at the output. Hence, 

the memory of the ANNs for a particular pattern is associated with the 

interconnections and the associated weights. ANNs are obviously limited. Once 

trained, they must maintain the same number of neurons and associated weights. By 

looking back over the years and recalling our countless experiences, the incredible 

power, capability and efficiency of the brain is self-evident.

On the other hand, GAs try to harness the power o f natural biological 

evolution, which nature has demonstrated through millions of years. By repeated 

processes of recombination (crossover and mutation) and natural selection, original 

populations of primitive organisms (single atoms) evolved into complex ones that 

today are adapted to their environments. The power of natural biological evolution 

can be seen in the tremendous variety and robustness observed in nature.

By combining GAs and ANNs, this chapter hopes to develop an artificial 

system capable of achieving what nature has achieved for millions of years, albeit in a 

short period of time (e.g. minutes or hours): i.e., evolving a primitive random 

population of neural networks to one that is highly adapted to predict the complex,
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ocean-atmosphere nonlinear interaction. The development of algorithms combining 

GAs and ANNs to evolve ANN networks structures and to train ANN weights have 

been promoted since the 1980’s (e.g., Whitley 1988; Munro 1993). Since then there 

has been extensive research and development of ANN-GAs (e.g., Westheider, 1997; 

Gallant, 2001; Fayad, 2001; Phattanasri, 2002) and applications (e.g., Shin and Han, 

2000; Mwale et al., 2004).

Inspite of the advanced development and applications of ANN-GAs in other 

fields, as far as we know, climate and hydrology are just beginning to benefit from 

the development and application of such models.

5.2 Origins of Genetic Algorithms

GAs were initially developed by Holland in 1975. Further developments of 

GAs were made in the late 1980’s, and early 1990’s (e.g. David Goldberg, 1989; 

Michalewicz, 1992). However, Holland is regarded as the father of GAs. There are 

many forms of GAs today, however, whatever forms GAs take, the basic and 

underlying idea behind their development is to design computer software that models 

natural biological evolution. From our standpoint, this means creation of primitive 

populations that evolve through processes similar to natural reproduction and 

selection. With recent developments in cloning, biological evolution might 

encompass both natural and artificial reproduction of life and probably both natural 

and artificial selection. In this thesis natural biological evolution is perused in the 

development of the algorithm.

Therefore, GAs employ analogies to the mechanisms of adaptation observed in 

natural evolution to provide solutions to a wide variety of search problems (Brindle
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1981). As observed by Goldberg (1994), these algorithms are truly mind boggling in 

the way they demonstrate power and flexibility in applications to business, 

engineering, and science. In many practical applications, GAs have found good 

practical solutions to complex problems in reasonable amounts of time (e.g. Simpson 

et al., 1994, Savik and Walters, 1997; Wang and Zheng, 1998; Mwale and Mulenga, 

1999).

5.2.1 Biological Roots of the Genetic Algorithms

GAs fall under a field of nature inspired computation algorithms broadly 

classified as evolution programs (i.e., evolution strategies, genetic programming, and 

classifier systems) (Michalewicz, 1992). The variations among these algorithms are 

mainly in the genetic operators used, but they are essentially similar in that they all 

are modeled after evolution. For example, classical genetic algorithms operate on 

fixed-length binary strings and binary crossover and mutation, while other evolution 

programs operate on variable length strings and use other genetic operators.

The Darwinian theory of evolution, also called the theory of survival of the 

fittest is used to expound the biological roots of GAs. By this theory, all complex 

organisms seen today originated from simple organic atoms. As the complexity of 

these organisms grew so did the competition for survival (i.e. food, water, air, and the 

environment). Organisms that outlast the combination of these factors are those that 

have a high level o f fitness. These organisms survive and propagate their genetic 

characteristics to subsequent generations through sexual reproduction. The ability to 

outlast the struggle for existence is known as natural selection.
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Rare and slight random modifications, commonly called variations or 

mutations occur in some organisms. These variations introduce new characteristics in 

the population. Mutations are beneficial to some individuals, but deleterious to others. 

The reproductive process and natural selection are repeated many times over. After 

several millions epochs, the pressures of natural selection and reproduction improve 

the average fitness of the population.

5.2.2 The Genetic Algorithm in Function Optimization

In designing software that models natural biological evolution, the following 

features of the GA are usually adopted. A large number of possible solutions to a 

problem called a population are created at random. Each solution (or individual) in a 

population is represented by a set of parameter values that completely describe each 

solution to the problem. These solutions are encoded in strings that resemble 

chromosomes found in our Deoxyribonucleic acid, (DNA). For GAs operating using 

the binary alphabet, the characters used are either zeros or ones to form the 

chromosomes. As discussed in section 5.2.2.1, not all genetic algorithms restrict 

representation of solutions to the binary alphabet, which makes these genetic 

algorithms more flexible and applicable to a variety of decision-making problems 

(Michalewicz, 1992)

The initial population is allowed to evolve over several generations or epochs. 

At each generation a measure of fitness of how good each solution is with respect to 

an objective function is calculated. For GAs using the binary alphabet, this is 

achieved by decoding binary strings into parameter values, substituting them into the 

problem and computing a function fitness value for each of the solutions. For GAs
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using alphabets other than binary (e.g., decimals), the chromosomes are directly 

substituted into the problem and the objective function values are computed.

To compute the fitness of the population, the solutions are assessed in terms of 

some fitness criteria. In all evolution programs, the selection function is designed 

with a bias towards high fitness solutions, such that high fitness solutions have a 

higher chance of being selected than weaker ones to be offspring of future 

generations.

As part of the reproduction process, the newly selected population is 

subjected to the crossover and mutation operations. Crossover is modeled after the 

crossover operations observed during Meiosis. Crossover occurs when chromosomes 

attached to each other break off at the point of attachment. The chromosomes 

exchange pieces. Mutation, a procedure of randomly altering genes in the population 

is also applied to a few randomly selected chromosomes. In genetic algorithms based 

on binary representation, this means randomly altering (or flipping) some of the few 

bits with a small probability equal to a mutation rate. In other forms of genetic 

algorithm, mutation is achieved by randomly replacing parameters with new ones 

from within the range of possible parameters. Other complex processes such as 

deletion and disjunction occurs during Meiosis, but these cannot be modeled because 

artificial solutions are of fixed length.

5.2.2.1 Representation of Solutions in the Genetic Algorithm

As observed by Michalewicz, (1992), representation is a key issue in GAs 

because the representation scheme can severely limit or open the window by which 

the system observes its world. The most widespread mechanism for representing
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chromosomes in GA is the bit string, which uses the binary alphabet. Using this 

scheme, the solutions of the problem being solved are presented in form of ones and 

zeros and the problem itself is translated into a form that is suitable for binary 

representation.

Binary representation has been in use since the development of genetic 

algorithms. Infact, the theoretical basis of genetic algorithms is based on binary 

coding. In recent years, binary-coded genetic algorithms have failed to handle some 

real life problems, because many of these problems need other forms of 

representation such as real coding (or real parameter coding) schemes (e.g., 103.7), 

lettered alphabets (e.g., A, b, C), or combination coding schemes (e.g., lfbOC). This 

has facilitated the direct use of decision variables in evaluating candidate solutions. A 

good example would be the selection of pipe diameter sizes for the design of water 

distribution systems. There exist a number of real-parameter GA implementations, 

(e.g. Mwale et al., 2004). Since real parameters are used directly, without any string 

coding, solving real-parameter optimization problems is a step easier when compared 

to binary-coded genetic algorithms, which require separate algorithms for coding and 

decoding of solutions.

5.2.2.2 Creation and Evaluation of Solutions in the Genetic Algorithm

Most optimization methods start off a search at a single point and gradually 

move to the optimum point by following a change in the function slope. Single point 

search can easily be trapped in a local optimum in the presence of billions of possible 

solutions. To circumvent this problem, GAs create a large number of solutions at the 

same time, so that the search occurs in parallel. Goldberg (1989) called this implicit
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parallelism, which is where the power of the GA lies. Since evolution, the basis of the 

GA, requires diversity in order to work, a large amount of diversity is introduced 

during this period by randomly creating large initial populations, which enables the 

search to commence over a vast solution space, minimizing the possibility of the 

search getting trapped in a local optimum point.

Each chromosome represents a possible solution to the problem being solved. 

The quality o f the solution is assessed in terms of its fitness value, which is concerned 

with the performance of the solution or parameters against the problem being solved.

5.2.2.3 Selection of Solutions in the Genetic Algorithm

GAs work with the evolvement of a population over many successive generations 

with the aim of finding better and better offspring as the search moves from one 

generation to the next. Survival of the fittest means that only the best performing 

members of the population will survive in the long run. In the short run, the selection 

process is designed to favor the better solutions, without eliminating all the poor 

solutions (Bauer 1994). Generally the best solutions of each generation are selected to 

represent new populations of subsequent generations, with a probability pi that is 

dependent on the fitness of each solution (Michalewicz, 1992): i.e.,

Pi  . .

Y.eval{X i)
;=1

In performing selection, a balance between speed of convergence and the quality of 

the solutions has to be maintained. If the selection pressure is too high, rapid 

convergence may result in poor quality of solutions. This is because the population 

loses diversity as the search emphasizes on the population with the best solutions
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only. Conversely, low selection pressure slows down the search, and forces too many 

poor performing solutions to join the search. This causes the search procedure to 

behave like a random search process. When using real coded GAs, the number of 

solutions to be selected in each generation is determined empirically, and usually 

85% of the best solutions have been retained in the selection process. The selection 

scheme is also very critical in determining the quality of solutions. Some selection 

schemes are very efficient at the beginning of the search, but as the distance between 

solutions narrow down, they become ineffective. Fine-tuning the GA through 

appropriate selection schemes is an important part of the design of genetic algorithms.

Evolutionary programs use numerous selection schemes to re-create 

populations for subsequent generations. These schemes can largely be classified into 

two main groups: fitness proportionate and the rank based selection. The most famous 

fitness proportionate based selection schemes is the roulette wheel proportionate 

selection (Goldberg, 1989, Michalewicz, 1992), while that for rank based selection 

schemes is the linear ranking scheme (Michalewicz, 1992; Bauer, 1994; Savik and 

Walters, 1997).

In the roulette wheel proportionate selection, the chance of an individual 

being selected is based on it relative fitness in the population, (see Eq (5.1)). To select 

an individual, the roulette wheel selection uses a simulated roulette wheel with slots 

that are sized according to the fitness of each individual. Hence according to Eq (5.1), 

solutions with higher fitness values have a higher chance of being selected. The 

roulette wheel proportionate selection is very effective at the beginning of the genetic 

algorithm run, because the solution objective function fitness values are spread
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further apart. However, when the solutions begin to converge, the objective function 

fitness values cluster close together and relative fitness vary only slightly. The 

clustering together of fitness values is known as the scaling problem.

Scaling problems are easily overcome by rank based selection, which is 

mainly used in this thesis. Using rank selection, the objective function fitness values 

are ranked with the best solutions at the top and the worst solutions at the bottom. A 

proportion of the ranked population, say 85% (Mwale 1998, Mwale et al., 2004), is 

selected with replacement, to create the new population. Since selection is made from 

the best portion of the ranked population, the average fitness of the new population is 

higher than the population from which it is created. Hence, selection shifts the 

exploration direction of the GA from poor search spaces to near-optimal ones.

Other selection schemes exist, but they are variants of the above selection 

schemes. For example the genitor selection (variant of rank selection where the best 

individuals replace the worst individuals) and the ranking selection with roulette 

wheel (where a rank assignment function is used to build the slots of a roulette wheel) 

are some of the other selection schemes that may be used (Bauer 1994).

5.2.2.4 Crossover Procedures in the Genetic Algorithm

Crossover is defined as a process in which the newly selected individuals are 

mated in pairs, either in the same order in which they were selected from the previous 

population or at random to produce one or more offspring. The offspring produced 

may inherit the characteristics of the parents or not, depending on the mechanism of 

crossover used. Each pair of individuals exchanges part of the genetic makeup using a 

randomly chosen crossover site. There are a number of crossover operators in the
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genetic algorithm literature. These include one-point, two-point, /7-point and uniform 

crossover. However, in almost all crossover operators, two strings are picked from the 

mating pool in some fashion, and a portion of the strings is exchanged to create two 

or more new strings. Using more crossover points result in a more exploratory search, 

as a large variety of information exchange takes place between solutions. However, 

more crossover points also increase the chance of destroying the good solutions, 

because good solutions tend to lie together, distinguishable only via small variations.

In a few cases, crossover may also be performed in such a way that it does 

not follow the biological metaphor. This is achieved by combining material from 

three or more parents to produce the offspring. Offspring from such combinations 

usually do not genetically resemble their original parents but attain characteristics that 

are a combination of more than three parents.

In a single point crossover operation (see Figure 5.1), a crossing site is 

randomly chosen and portions of the chromosome on either side of the location are 

exchanged. In a two-point crossover operation, the middle sub-string between the 

crossover sites is exchanged. In uniform crossover, all the genes in the chromosomes 

are used. Crossover is a powerful process that extends the search in many directions 

by cutting through the search space in a highly efficient manner. Not every crossover 

between any two solutions results in solutions in the new generations better than the 

original individuals.
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Parents

Offspring

Crossover site

P1 = C1 C2 C3 C4 C5

P2 = D1 D2 D3 D4 D5

C6 C l  C8 C9

D6 D7 D8 D9

01  = Cl C2 C3 C4 C5 D6 D7 D8 D9

0 2  = D1 D2 D3 D4 D5 C6 C7 CS C9

Figure 5.1 An example of one-point crossover.

01  =1  0 0 1  1 0 1  0 0 1  1 0 0 0 0 0 1

0 1  =  1 0 0 1  1 0 1  0 0 1  1 0 0 1 0 0 1

\Mutation

Figure 5.2 An example of mutation using binary notation.

However, since the strings being crossed over are high fitness individuals (i.e. 

they survived selection), they are expected to have good bit combinations in their 

string representations and they are expected to create offspring that are also likely to 

be good strings. If poor solutions are created due to crossover, they are eliminated in 

the next selection and hence have a short life. However, if  good performing solutions 

are created by the crossover operator, these solutions are likely to get more copies in 

the next selection and improve their chances to crossover with equally good solutions 

in subsequent generations. In order to preserve good strings in the selected during
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reproduction operator, only a proportion of the population is allowed to undergo cross 

over.

The frequency with which the crossover operator is applied to the individuals in 

a new generation is governed by the crossover rate. A low crossover rate will cause 

fewer individuals to be introduced into the population and may lead to search 

stagnation as the reproduction operator tends to dominate. Higher crossover rates 

explore the search space more quickly. The author of this thesis has experimented 

with crossover rates ranging from 50 % to 100% and for applications in water 

distribution network design and climate prediction, a 100% crossover rate works out 

fine, (e.g. Mwale et al, 2004; Mwale and Mulenga, 1999)

5.2.2.5 Mutation Operators in the Genetic Algorithm

Mutation is another important genetic operation that is usually performed on 

chromosomes. Again this is a biologically inspired operation. Mutation randomly 

alters a gene or small number of genes of the chromosome and moves the search in a 

slightly different direction than crossover.

Mutation is sometimes used to produce diversity in the population (e.g., 

genetic engineering). However, there is no universal consensus on the role played by 

mutation in GAs. Some researchers have used mutation simply to replace some of the 

original diversity lost during the exchange and selection procedures, while others 

have used mutation to create variety and new solutions for the GA search. In our 

experience, we have found that after the GA initially converges, mutation, being
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undirected and deleterious, fails to introduce better new genetic information in the 

GA population.

The frequency of mutation must also be controlled in order to produce an 

effective GA. Mutation governs the introduction of new areas in the search. A high 

mutation rate will introduce excessive randomness in the search, making it too 

diverse and preventing convergence. Conversely, too low a mutation rate will reduce 

diversity and may lead to a sub-optimal solution. From experience, optimal mutation 

rates seem to vary between 0.001 and 1% (Simpson et al., 1994, Savik and Walters, 

1997; Wang and Zheng, 1998; Mwale, 1998; Mwale et al, 2004).

5.2.2.6 Convergence of the Genetic Algorithm

The whole processes of fitness evaluation, selection, crossover and mutation are 

repeated over and over again on a finite population. At each generation, the selection 

pressure reduces the diversity of the population towards high fitness solutions. The 

best surviving solution(s) gradually replaces the poor solutions and eventually only 

the best surviving solution(s) reproduce. Since mutation is always active, 

convergence is reached when at least 99% of the population is similar in composition. 

In other words at the end of the genetic algorithm run, there is only one optimal 

solution represented by at least 99% of the population.

5.3 Overview of Artificial Neural Networks

ANNs are also a form of biologically inspired computing systems configured 

from a number of parallel operating processors, termed neurons. Hence, as in GAs,
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parallel processing of information is the main attribute o f ANNs. Individually, the 

neurons perform trivial tasks, but collectively, in the form of a neural network, they 

are capable of solving complex problems. Neural networks have their roots in 

psychology and physiology that date back to the 1940’s, with the works of 

McCullough and Pitts in 1943, (ASCE task committee 2000). In the 1970’s neural 

network development stalled because of disappointments stemming from criticisms of 

some of the earlier research. Significant work in neural networks was revived in the 

early 1980’s when Hopfield mathematically tied together many ideas from the 

previous investigations (Bauer, 1994). However, the hiatus in neural network 

development truly ended in the second half of 1980’s, after the development of the 

back propagation algorithm by Rumelhart et al., in 1986 (Hsieh, 1998). Since then, 

interest in ANNs and algorithms for training them mushroomed in many different 

fields (ASCE Task committee, 2000).

5.3.1 The Neuron

The fundamental building block of biological neural networks is based on a 

nerve cell called the neuron. The neuron has input connectors attached to it called 

dendrites, which carry signals into the neuron and the axons, which carries signals out 

of the neuron. The neurons ‘sum up’ each incoming signal, and if  a signal’s sum 

exceeds a preset threshold value, then the neuron fires it across the synapse to another 

neuron; if not, nothing happens (Haykin, 1994).

In all ANNs, the neuron is also called a node (see Figure 5.3), with one or 

more input signals, which correspond to dendrites, and one output signal, which 

correspond to an axon. In all neural networks, the signals arriving at the node are
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assigned weights and summed to produce an output. This output is forced through an 

activation function, (usually nonlinear). Biases (bk) or threshold, (-bk) are added to the 

output, which increases (or decreases) the output of the activation function. The net 

output coming out of the node is designated as, O k.

Weights
Activation Function

Min Max<Z>

Threshold

Figure 5.3a The neuron

5.3.2 The Neural Network

In designing neural networks, the important step involves the determination of 

the neural network architecture and selection of a training algorithm. An optimal 

architecture may be considered as the one yielding the best performance in terms of 

objective function optimization, while retaining a simple and compact structure. No 

unified theory exists for determination of such optimal neural network architectures.
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Weights |

b u tp u t3
Q.

T h resh o ld s

Figure 5.3b Configuration of the artificial neural network

The most commonly used architectures are the multiple layer feedforward 

networks and the recurrent neural networks. The feedforward network that is used in 

this thesis, is shown Figure 5.4. Recurrent neural networks have feedback loops and 

are designed to process recursive functions. This network is not used in this thesis and 

hence is not discussed further.

In all neural network architectures, the number of neurons in the input and 

output layers depends on the number of input and output signals to be modeled. The 

only flexibility lies in selecting the number of hidden layers in the network and the 

number of nodes of the hidden layers. The number of hidden nodes is selected by 

trial-and-error, but mainly depends on the complexity of the problem.

5.3.2.2 Training of Neural Networks.

Training the network involves the calibration of weights and neuron thresholds 

(or biases) so that the difference between the output and the target values is 

minimized. This difference between the observed and predicted values can be
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measured by many of the available statistical measures (e.g. correlations, coefficient 

of determination, root-mean-square-error, bias and others).

The input data is generally divided into three portions for training, cross 

training, and validation. The data used for training should contain sufficient patterns 

for the network to adequately leam the patterns. The weights and thresholds are 

assigned values between ±1.0, which are adjusted during training based on the 

difference between observed and outputs. The adjustment of the weights and 

threshold can be continued until a set of weights is found, which results in the 

smallest difference between outputs and observed. Over-training, which results if the 

weights and thresholds are fine-tuned so that the network also learns the noise in the 

data, can be avoided in one of the many ways (e.g., stopped training). Over-training 

results in poor predictive capability of neural networks, when they are supplied with 

new input data, other than the training patterns.

In order to train the weights and threshold, various methods are applicable, 

such as error back propagation, gradient descent, simulated annealing, evolutionary 

programming (e.g., genetic programming, genetic algorithms, classifier systems and 

evolution strategies). Since the weight and threshold spaces are spread all throughout 

the -1.0 to 1.0 range, global optimization algorithms are preferred to local search 

algorithms.

5.4 The Integrated Genetic Algorithm Neural Network Model (ANN-GA)

From Sections 5.2 and 5.3, it is clear that developing an integrated genetic 

algorithm neural network (ANN-GA) system has to be formulated as a combination 

of primitive set of weights and thresholds (or biases) evolving to parameters that can
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adaptively generalize the performance of the neural networks for predicting seasonal 

precipitation. The neural network weights (-1.0 to 1.0) and thresholds or biases (- 

0.05 to 0.05) were encoded using real parameters. The feedforward neural network 

with three layers: the input, hidden and output layers were trained by the GA. The 

flow diagram of the combined ANN-GA model is shown in Figure 5.4. Details of the 

functional operation of the ANN-GA are outlined in the steps below.

Step 1. Initial Population Generation and Evaluation

In random fashion, the ANN-GA creates an initial set of weights, W1 and W2 

and biases (or thresholds), B1, for a large number of neural networks, (capital bold 

letters and the superscripts, respectively indicate a population and the layer numbers). 

Because of hardware limitations, a maximum of 2300 neural networks were created 

and maintained at each generation.

To evaluate each neural network, the predictand, O, is obtained as a nonlinear 

translation of a number of predictors, x, which are usually normalized as,

,  =  4zZ ( 5 . 2 )

a x

where X  and cr v are the mean and standard deviation of X. The procedure begins by 

assigning weights to the predictors in the input layer and the weighted inputs are 

directed to the hidden layer

hidunitpj = £  Wj> x Pi + Bjo (5-3)
i - \

where hidunitpj is the weighted input to the jth  hidden unit, N  the total number of 

input nodes Wji, are the weights from input unit i to the hidden unit j, Bj0 are the
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biases for hidden neuron j  and xpi is the ith input of pattern p. The hidden layer 

undergoes a nonlinear translation,

/ ,  (hidunitpj )
■ hidun it.

where fi(hidnunitPJ) is the j th neuron nonlinear activation function. The contents of

the hidden layer are further assigned weights and directed to the output layer

The output, Opk is computed as a weighted average o f the hidden units, where M  is 

the number of hidden units, Wkj represents the weight connecting the hidden node j  to 

the output k, Bko is the bias for output neuron k.

Each neural network output in the population is evaluated against a known 

predictand through an objective function (fitness) based on either the Pearson 

correlation or the root mean square error (RMSE). The ANN-GA model searchers for 

the weight space (-1 to 1) and bias space (-0.05 to 0.05) to maximize the correlation 

or minimized the RMSE between the predictor and predictand.

Step 2: Ranking and Selection of Neural Networks.

The linear ranking selection scheme was used in this thesis. The correlation 

values were ranked, with the best at the top and the worst at the bottom. Next, 

random selection of solutions was done with replacement. Here a random number 

was created between 1 and 1955 (i.e. 85% of 2300) and the neural network 

corresponding to that number was copied from the ranked population and placed in 

the offspring population. This procedure was repeated 2300 times. Selection from

(5.5)
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85% meant that at each step, 354 neural networks were discarded from the 

population.

Step 3: Crossover of the Neural Networks

The selected neural networks were mated in pairs from the offspring pool at 

random. To perform mating or crossover, a random number was generated between 1 

and 3 to identify the location of the crossover point. The weights of the neural 

network on either side o f the location were swapped between the two networks. The 

crossed-over networks were then thrown back into the mating pool as part of the new 

population. The procedure was continued until another 2300 neural networks were 

created. Only one-point crossover was performed in this thesis.
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Initial weights & biases
Initial population

Weights

■OutputInputs■OutputInputs
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CrossoverNetwork evaluation
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Rank networks

Keep best 
network ■OutputInputs

Select best networks
Biases

Crossover Location

WeightsCrossover all networks

■OutputInputs
Mutate some networks

Yes BiasesNo
End?

Mutation
Frozen Weights

Weights
■OutputInputs

Inputs

Frozen Biases
Biases

Weights

•OutputInputs

Biases

Figure 5.4 The ANN-GA model.
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Step 4: Mutation of the Neural Networks

Some (1% of 2300 (i.e., 23 neural networks)) were randomly selected and a 

handful of their weights and biases (about 10%) were randomly replaced (see dark 

lines in insert of Figure 5.4).

After crossover and mutation, the neural networks were put back into the 

mating pool for further reproduction and selection. The above procedures were 

repeated through several epochs (or generations in genetic algorithm terminology). 

The genetic algorithm neural network developed in this thesis is an elitist model. That 

means that at each generation, the ANN-GA model kept the best network in a 

separate location until a better solution was found in successive generations. At the 

end of the calibration the weights and biases of the best surviving neural network 

were kept for use with new input data, (i.e. during the validation stage).

5.4.1 Generalization in Neural Network Training

Due to a large number of parameters and the flexibility of neural networks, 

training of the neural networks usually results in model outputs that fit the data very 

well during training but perform poorly during the validation or test period. Two 

reasons were identified during the applications of the ANN-GA model. These are as 

follows:

(1) The nature of the objective function used.

(2) The information contained in the predictor field is too closely mapped on to the 

weights and biases during training, which could result in the neural network
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memorizing information from both the signal and the noise, instead of just 

learning the general relationships found in the training data.

The other reason not directly related to this research might be that the training data 

and the validation data differ from each other so much that the general relationships 

found from the training data may not be quite applicable to the validation data, which 

is not common with climate.

It was observed that when the RMSE was used as the objective function, GA 

tended to over fit ANN to the training data, resulting in very low errors between the 

observed and predicted data. However, during validation the errors could turn out to 

be too large. When correlation was used as the objective function, better 

generalization was achieved.

5.4.1.1 Bootstrap Split-Sampling Training

Bootstrap split-sampling training is a procedure where the training data is 

randomly split into two portions. One portion of the data is used to train the model 

and the other portion of the data is used to test the model. This procedure is repeated 

for each network at each generation. The idea is that weights and biases should be 

selected based on training that provides a maximum number of patterns of the 

training data. The portions of training and testing datasets are created by randomly 

choosing the sections of data used for training and testing. Bootstrap split-sampling 

training was experimented on in the ANN-GA, along with training that involves only 

one sample. Although a theoretically sound approach, no obvious advantage was
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found in using the split sample training in the ANN-GA prediction model. Hence, the 

one split-sample training and testing was extensively used in this thesis.

5.5. Application of the ANN-GA model

5.5.1 Introduction

This section describes the application of the ANN-GA model. The aim is to 

assess the performance of the model and to demonstrate its robustness and viability. 

The performance of the ANN-GA model is examined by using the statistical 

measures of Hanssen Kuipers (HK) categorical skill scores, the Pearson correlation 

coefficients (generally called the correlation coefficient) and the root-mean-square- 

error (RMSE).

5.5.2 Evaluation of the Prediction Skill

The Hanssen Kuipers (HK) skill score, which is also known as the Kuipers’ 

performance index (KPI) or the true skill score (TSS) is based on categorical 

forecasts of discrete predictands, where the prediction consists of a flat statement that 

one and only one of a set of possible events will occur (Wilks, 1995). For rainfall, the 

categories of “Dry”, “Near Normal” and “Wet”, with tercile percentages of below 

33%, 33% -  66% and above 66%, respectively have been used (e.g., Ntale et al., 

2003, Mwale et al., 2004, Mwale and Gan, 2004). In this thesis, the HK score was 

applied to the rainfall grid boxes, each 2.75° x 3.75° (or 290 km x 394 km). The 

reference point of the HK skill score is the number of correct observation hits 

expected by chance. With this reference point, the HK skill score is computed as 

follows (Ntale et al., 2003):
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In Eqn 5.6, C is the total number of correct forecasts, P is the total number of 

forecasts obtainable with a perfect forecast model, Cc is the number of correct hits 

expected by chance and Coc is the reference point. HK skill score can also be 

expressed using probabilities. For example, for the “Dry”, “Near Normal” and “Wet”, 

categorical forecasts, the HK score is computed as follows (Wilks, 1995, Ntale et al., 

2003):

table. To take into account the “Dry”, “Near Normal” and “Wet”, categories, a 3 x 3 

contingency table is used. The maximum and minimum values of HK score are 

between -1 and +1. HK scores of +1 represent perfect forecast, while HK scores of 

zero represents random forecasts and HK of less that zero represent forecasts that are 

inferior to random forecasts. Hence all forecasts greater than zero represent forecasts 

better than random.

The Pearson correlation coefficient, p, is a single-valued measure of the linear 

association between two variables, p is computed as

(5.7)

where O j  and P j  are the ilh observed and ith predicted values in a square contingency

p  = (5.9)
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where Ok and Pk are the observed and predicted values, Oand P their respective 

means and n the sample size. The correlation coefficient ranges between 1 and -1. 

The extreme positive and negative values indicate perfect positive and negative linear 

associations, respectively.

the proportion of variability of the observed rainfall, locally, accounted for by the 

predicted rainfall. It it ranges from 0 (for zero explained variance) and 1 (for complete 

explained variance).

The root mean square error (RMSE) is computed as

The RMSE for a perfect prediction is zero and increasing RMSE indicates decreasing 

accuracy of the prediction.

5.5.3 Predictor Data Selection

The existence of statistically significant oscillations of around 2 years in both the 

SST of the Indian and Atlantic Oceans, and the SON and MAM rainfall of East 

Africa and the summer rainfall of Central South and Southern Africa (Chapter 3) and 

the strong relationships found between the SST SAWP of the south Atlantic and 

Indian Oceans and the rainfall WPCs (Chapter 4) suggests that:

(1) The seasonal rainfall of SON, MAM and the summer are predictable using some 

selected Atlantic and Indian Ocean sea surface temperature fields, and

(2) The preceding April-May-June seasonal sea surface temperature variability of the 

Atlantic and Indian Oceans are suggested predictors of the rainfall.

The square of the correlation coefficient, p2 presented as a percentage specifies

RMSE (5.10)
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Since the lag-1 autocorrelation of the SAWP and WPCs was high (around 0.9), from 

Eqn. 4.1 of Chapter 4, the effective lengths of the SAWP and the WPCs decreased to 

about 3-4 years and the significant correlation between rainfall WPCs and SST 

SAWP at 95% level was above 0.997. The ocean areas covered by this level of 

correlation were small and very few data could be collected. Since the spatial 

correlation patterns between rainfall WPC1 and rainfall SAWP of Chapter 3, covering 

most of the region generally varied between some threshold correlation value (e.g., 

0.3), it was decided that SST data be collected from areas of the oceans where the 

correlation between rainfall WPC1 and SST SAWP exceeded the threshold 

correlation. In Central South Africa correlations exceeding 0.4 were used (Mwale et 

al., 2004), while for the SON rainfall of East Africa, correlations exceeding 0.5 were 

used (Mwale and Gan, 2004). For the rainfall of southern Africa and MAM season of 

East Africa, correlations of between 0.3 and 1 were used. Generally the stronger the 

signal the higher was the threshold value. During each prediction experiment, the 

observed raw SST data was standardized and averaged over the three months for each 

grid station to give one seasonal data set.

SST data from all the seasons (i.e., OND, JFM, AMJ and JAS) could be used 

for predicting the rainfall. However, the AMJ season was chosen to take advantage of 

time lag common to all rainfall seasons. The AMJ provides a 2-month lead-time for 

SON rainfall, 4-month lead for the summer rainfall (which begins in October) and 8- 

month lead time for the MAM rainfall.’

To speed up the computations, EOF was applied to the AMJ SST dataset and 

6 PCs accounting for 87% of the SST data for central south, 5 predictor PCs
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accounting for 77% for SON rainfall and 6 PCS 87% of predictor data for the summer 

rainfall was used. The 77% variance accounted for by the SST data for predicting the 

SON rainfall appeared low, probably indicating there was some noise associated with 

SST data correlated with rainfall at the 0.5 level. Higher values of the correlation 

threshold such as 0.6 might have resulted in less PC modes explaining more of the 

variance. Standardized rainfall data from the 21,31 and 58-grid stations from Eastern, 

Central and Southern Africa, respectively, were used.

The correlation coefficients, the HK scores and the RMSE of the predicted 

rainfall were computed using a 11-year validation period, 1987-1997 for eastern and 

southern Africa and for 10 years for central south Africa (1985-1994). For an 11-year 

period, statistically significant correlation at the 5% level is 0.602 while that for 10 

years is 0.632.

5.5.4 Prediction of the SON Rainfall of East Africa

The spatial display of the correlation coefficients, HK scores and RMSEs 

between the predicted and observed SON rainfall is shown in Figure 5.5. Correlation 

coefficients of between 0.7 and 0.9, RMSEs of 0.4 and 0.75 and HK scores of 

between 0.2 and 0.8 were achieved.

High skill was achieved in central and eastern Tanzania, Kenya and almost 

all of Uganda with correlations greater than 0.8, RMSE less than 0.65 and HK scores 

greater than 0.4. These regions were also found to have the largest positive 

correlation between SON WPC1 and the SAWP (Chapter 3) (i.e. they had the 

strongest SON rainfall signal). The prediction skill decreased westwards from about 

33°E to 30°E following the strength of the SON rainfall signal. In Figure 3.3(a) of
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Chapter 3, this area was identified as the Great Rift Valley (GRV), where SON 

rainfall is probably modulated by the equatorial Congo basin or by the sudden change 

in altitude when entering into the GRV. The prediction skill o f this region was low 

compared to the rest of the region.
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Figure 5.5 Contour plots at 0.05 or 0.1 intervals (to avoid crowding) showing the (a) 
correlation coefficient, (b) RMSE, and (c) HK scores between predicted and 
observed SON standardized rainfall of East Africa using the ANN-GA model, 
driven by SST predictor fields from the Indian and Atlantic Oceans.
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The above results show that the SON rainfall variability is influenced by SST 

variations in the SW and NW Indian Ocean and the South Atlantic Ocean. Overall, 

using sectors of predictor fields identified in these ocean basins, the non-linear ANN- 

GA system could predict between 42% and 80% of the SON rainfall variability at 2- 

month lead-time.

5.5.5 Prediction of the MAM Rainfall of East Africa

The skill scores between the predicted and observed MAM rainfall is shown in 

Figure 5.6. As can be seen in these figures, the regions with the best prediction skill 

are the eastern Tanzania and southern Uganda, SW Tanzania and Kenya. These 

regions also showed strong MAM signals. Correlations coefficients of between 0.82 

and 0.9, RMSEs of 0.5 and 0.6 and HK scores of between 0.5 and 0.8 were achieved.

Camberlin and Philippon (2002) indicated that MAM rains as a whole do not 

exhibit very strong relationships with any large-scale climate anomalies due to a weak 

internal coherence. Our results seem to suggest that although the MAM signal is 

weak, it does have associations with SST variabilities, and these associations are 

strong enough to be exploited for predicting the MAM rainfall. Overall, the non­

linear ANN-GA system could predict between 67% and 81% of the precipitation 

variability at 8-month lead-time.

5.5.6 Prediction of Central Southern Africa Summer Rainfall

The spatial display of the correlation, HK scores and RMSEs between predicted 

and observed central southern Africa (CSA) rainfall is shown in Figure 5.7. 

Correlations of between 0.8 and 0.9, RMSEs of 0.4 and 0.9 and HK scores of between
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0.4 and 0.8 were achieved for most of the Central Southern Africa region. The skill 

slightly decreased towards the coastal areas following the strength of the rainfall 

WPC1.

(a) Correlation (b) R M SE
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Figure 5.6 Contour plots at 0.1 intervals showing the (a) correlation coefficient, (b) 
RMSE, and (c) HK scores between predicted and observed standardized 
MAM rainfall of East Africa using the ANN-GA model driven by the SST 
predictor fields from the Indian and Atlantic Oceans.

The high correlations show that the linear correlation between the predicted and 

observed rainfall was captured almost everywhere in tire region. The higher HK score

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



also showed that most forecasts fell in their correct categories. The results also show 

that the rainfall variability of the region is influenced by SST variations in the 

Atlantic and parts of the southern Indian Ocean. Overall, using sectors of predictor 

fields identified in the oceans, the non-linear ANN-GA system could predict between 

64% and 81% of the (CSA) rainfall variability at 3-month lead-time.
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Figure 5.7 Contour plots at 0.1 intervals showing the (a) correlation coefficient, (b) 
RMSE, and (c) HK scores between predicted and observed standardized 
summer rainfall o f Central Southern Africa using the ANN-GA model driven 
by the SST predictor fields from the Indian and Atlantic Oceans.

5.5.7 Prediction of Southern African Summer Rainfall

The correlation coefficients, the categorical HK scores and the RMSE of the 

Southern Africa summer rainfall are shown in Figure 5.8. The ANN-GA performed 

well in the regions where the summer rainfall signals were strong. In most of southern
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Africa, the correlations generally ranged between 0.75 and 0.9 (56-81% of explained 

variance). The RMSE ranged between 0.4 and 0.8 and these were generally higher in 

areas where correlation between predicted and observed rainfall was low. Elsewhere, 

RMSE ranged between 0.4 and 0.8. The HK scores ranged between 0.5 and 0.9.

Given that the prediction skill of ANN-GA was consistently high for rainfalls 

of eastern and southern Africa, it shows that the nonlinear relationships between 

rainfall in these areas and SST variations of the Indian and Atlantic Oceans are well 

captured by the ANN-GA model. These results also demonstrate that selection of 

relevant predictor data constitutes an important step in seasonal climate prediction.
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Figure 5.8 Contour plots at 0.1 intervals showing the (a) correlation coefficient, (b) 
RMSE, and (c) HK scores between predicted and observed standardized 
summer rainfall of greater southern Africa using the ANN-GA model 
driven by SST predictor fields from the Indian and Atlantic oceans shown 
in shaded dark areas of Figs. 4.5(a) and (b).
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5.6 Recent developments in Genetic Algorithms

5.6.1 Competent Genetic Algorithms

The GA algorithm presentation in this Chapter is based on what is called a 

simple GA. As we saw, this algorithm operates on fixed length chromosomes and mix 

building blocks of chromosomes by crossover and mutation operators. The trouble 

with using fixed length strings, crossover and mutation operators in the GA is that the 

GA sometimes gets trapped in local optimum neighborhoods, because it fails to 

adequately reproduce high fitness populations when the complexity of the problem 

being solved increases (Goldberg, 2002; Wu and Simpson, 2001). Because of the 

above problem, other structures of GAs have been sought since the late 1980’s (e.g. 

Goldberg et al., 1989). Improved hybrid GAs (also called Competent GAs), such as 

messy GAs have been developed and shown to perform better than simple GAs (e.g., 

Wu and Simpson 2001). These algorithms are called messy because they have 

variable length representation of chromosomes. The lengths of the chromosomes are 

different within a single population and the lengths of the chromosomes also change 

at each generation

In the messy GA, the crossover operator is replaced by “cut” and “splice” 

operations. The cut operator cuts the chromosome into two and the splice operator 

joins the head of one chromosome to the tail of the other. The idea behind the use of 

variable string chromosomes comes from the theory of biological evolution, which 

assumes that the original individual chromosomes were created from single atoms, 

which became joined and developed into complex organisms.
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Different forms of messy GA exist. In the structured messy GA of Goldberg et al., 

(1989), the GA start with short strings, but were concatenated over generations. As 

concatenated stings increase in length, they are “cut” and “spliced” at a rate that 

depends on the length of the chromosome (i.e.)

Pe = P M - 1) (5.11)

where Pk is the specified cutting probability, and X is the length of the chromosome. 

Cutting is done when Pc exceeds a prescribed threshold, otherwise splicing is 

performed on the short strings. Hence in the beginning, when the strings are short, the 

chromosomes have a higher chance of being spliced than cut. In successive 

generations the splicing will result in strings that that grow longer until Pc is 

exceeded.

In other forms of messy GA such as the “fast” messy GA (Wu and Simpson, 

2001), an original population of fixed length chromosomes is initially created. Then a 

building block filter is applied to the fixed length chromosomes to extract a number 

of high fitness short-length strings to comprise the initial set o f short-strings. These 

short-strings are then juxtaposed to produce the initial population of full-length 

strings, which undergo reproduction as in the simple GA.

The GA developed in this thesis is a simple GA. It will therefore be a 

benchmark against which the performance of all future competent GAs that will be 

tested for predicting climatological variables
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CHAPTER 6

PREDICTION OF WEEKLY STREAMFLOW FROM SEASONAL 

OCEANIC VARIABILITY

6.1 Introduction

Chapter 3 demonstrated that the nonstationary variability of the rainfall has 

been a consistent feature of the climate of Eastern and Southern Africa. The decrease 

in energy of the SON and summer rainfall SAWP after 1965 for both Eastern and 

Southern Africa rainfall was found to be consistent with the decrease in the 

streamflow of most major rivers of the subcontinent, (Fanta et al., 2001; Mwale et 

al., 2004). Associated with these rainfall variations have been significant economic 

losses and widespread famine (BBC, 2002a, b and c; Ntale, 2001). Effects of 

droughts extend beyond agriculture and affect other sectors, such as water supply and 

hydroelectric power generation. For example between 1992 and 1996, dams in 

Namibia were less than 20% full, prompting the government to express grave 

concerns about the ability of the country to provide water to its people (Jury and 

Engert, 1999). Since many of the rivers and lakes in Eastern and Southern Africa 

form or cross international boundaries and some rivers within individual countries 

serve conflicting interests (e.g., agriculture, power generation, industry, game 

reserves, tourism and urban water supply, and ecosystems), it has become necessary 

to integrate seasonal climate prediction of rainfall to the prediction of streamflow, at 

smaller time steps adequate for aiding water resource distribution for the approaching 

year.
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Despite the apparent evidence that rainfall in Eastern and Southern Africa is 

influenced by nonstationary SST variability, efforts to predict annual streamflow of 

the rivers from seasonally averaged variability of SST and other oceanic variables 

have been very limited. To our knowledge only Landman et al., (2001) has made such 

as an attempt. In their work, Landman et al., (2001) downscaled GCM output to 

predict seasonal (December-February) streamflow to twelve dams in South Africa. 

Although the need for forecast guidance at seasonal time scales is becoming 

necessary, the time steps involved are too coarse to meet most water resource 

management needs.

In the last two decades, hydrologists have managed to model the dynamics of 

the interaction between historical rainfall, runoff and evaporation at the land surface- 

atmosphere interface, using distributed physics-based hydrologic models (e.g. Beven 

and Kirkby 1979; Gan and Biftu, 2000) and lumped parameter moisture accounting 

hydrologic models (e.g., Gan and Biftu, 1996; Nijssen and Lettenmaier, 1997). 

Depending on basin scale, however, the time steps involved have been mostly hours 

or days. Using these time steps, accurately calibrated hydrological models have been 

used to simulate or even extend runoff records, necessary for sizing of reservoir yield 

and storage, from long records of historical rainfall. With climate variability and 

climate change issues being increasingly blamed to affect basin streamflow (Kahya 

and Dracup, 1993; Lall and Mann, 1995; Coulibaly et al., 2000, Mwale et al., 2004), 

there are more and more demands to assess such climatic effects on basin hydrology 

using physics-based and/or lumped parameter hydrologic models. These demands 

include (1) assessment of streamflow arising from climate and land use changes, (2)
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evaluation of the seasonal and geographical patterns of water supply and, (3) 

determination and maintenance of ecological in-stream flow requirements at smaller 

time steps. While all of the above issues are equally important, the increasing 

imbalance between water supply and demand in Eastern and Southern Africa, 

resulting from decades of declining rainfall and streamflow, (Mwale et al., 2004, 

Fanta et al., 2001) and a recent shift towards more integrated management of limited 

water resources requires that efforts in accurate long-term prediction of rainfall and 

streamflow at smaller time steps be accelerated.

Many approaches are available to forecast streamflow from atmospheric and 

oceanic variability. A majority of these approaches have focused on employing 

general circulation model (GCM) or regional climate model outputs to model the 

rainfall-runoff process (e.g., Bindlish and Barros, 2000; Yu, 2000; Canon and 

Whitefield, 2002). In Yu (2000) a hydrologic model is forced using outputs from a 

mesoscale meteorological model, MM5, to forecast the streamflow of the 

Susquehanna River Basin in Pennsylvania (USA). Bindlish and Barros (2000) used 

spatial patterns of terrain and wind fields to disaggregate precipitation fields of MM5 

to force a hydrological model to predict streamflow of the west branch of the 

Susquehanna River Basin. Using GCM fields, Canon and Whitefield (2002) 

downscaled five-day averages of streamflow of British Columbia Rivers of Canada 

by forcing an ensemble of artificial neural networks (ANNs). The linked 

meteorological-hydrological systems of Yu (2000) and Bindlish and Barros (1999) 

were forced with individual storm data, at hourly time steps. While at basin-scale it 

generally makes sense to use shorter modeling time steps, it is difficult to forecast
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individual storm events one season ahead of time at hourly or even daily time steps. 

Hence, these models may not be directly applicable to predicting both the seasonal 

rainfall and the streamflow at hourly or daily time steps for the approaching year.

Fully coupled meteorological-hydrologic models capable of accounting for 

feedback mechanisms in the energy and moisture fluxes at the land-atmosphere 

interface may be used to simulate seasonal precipitation fields at hourly or daily time 

steps by forcing them with predicted or observed monthly SSTs. However, problems 

associated with scale incompatibility make it difficult to integrate GCM outputs to 

hydrological fields. In addition, the failure of these models to properly account for 

local sub-grid variability is another cause for concern. The length scale of rainfall 

ranges between a few kilometers to about 60 km (Shen et al., 2001), and it is highly 

variable spatially, especially for convective storms. Precipitation is a major 

governing factor in the temporal and spatial distributions of runoff production and 

soil moisture dynamics. However, sub-grid parameterization schemes proposed to 

account for local synoptic-scale processes had resulted in erroneous precipitation 

fields (e.g., Jenkins and Barron, 1997; Xu, 1999). As more and more powerful 

computers are being built, coupled meteorological-hydrological modeling systems 

may eventually become promising for predicting streamflow at seasonal lead time, 

but that may not happen in the foreseeable future. As of now, the growth of numerical 

round-off errors, and more climate-based parameterizations still need to be improved, 

prevent these models from being directly applicable for rainfall-runoff prediction at 

relatively long lead time. We believe the successful development of such models are 

still many years away (Yamal et al., 2000).
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Although climate processes do not repeat themselves exactly, given a historical 

record of the rainfall and streamflow data, one would obviously like the prediction 

model to have the ability to reproduce the statistics of the historical data. More 

importantly, however, one would also like the model to produce the statistical 

properties of the future rainfall and streamflow. If the statistical properties of the past 

and future rainfall and streamflow can somehow be conserved, it may be argued that 

the model used for the reconstruction of past and prediction of the future is adequate. 

Such important properties would include the mean, variance, co-variances between 

different levels of aggregation of the rainfall and streamflow and the probability 

distributions. The projected climatic fields of GCM usually cannot replicate the 

historical properties of basin-scale hydrologic data.

The literature seems to suggest that only the disaggregation and the analog 

approaches are known to conserve historical statistical properties of the data (e.g., 

Salas et al., 1980; Zorita and von Storch, 1999; Kumar et al., 2000). The analog 

method has been applied to weather forecasting (e.g., Lorenz, 1969) and short-term 

climate prediction (e.g., using analogues of GCM output) (e.g. van den Dool, 1994). 

Since the climate does not repeat itself exactly, paleoclimatic data of several 

thousands years are required for analogs to be useful. With longer data sets, there is a 

higher chance of finding close matches of large-scale circulations that are similar to 

the ones being downscaled. Since data recording in Eastern and Southern Africa, like 

most parts of Africa did not begin until after World War IT in 1945, the analog 

method is not applicable, unless paleoclimate data is available. Therefore the
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disaggregation method, which can model seasonally varying historical hydrologic 

processes, was used in this thesis.

Disaggregation modeling is a process by which one or several time series at a 

coarse time scale are broken down to a finer time scale. If more than one level is 

involved the disaggregation is usually performed in stages, such as from annual time 

scales to monthly time scales and from monthly to weekly time scales and so on. The 

basic idea of disaggregation began in the 1940s (Hsieh et al., 1986). However, 

Valencia and Schaake (1973) were the first to present a well-accepted disaggregation 

model and the latter laid the groundwork for the majority of subsequent 

disaggregation approaches. Temporal or spatial disaggregation is usually based on the 

co-variance structures of the streamflow at different levels of aggregation. However 

other approaches, such as the nonparametric approach of Lall et al., (1996) based on 

the kernel density estimation, the random cascade process of Schertzer and Lovejoy

(1987) and the nonparametric approach using the k  nearest neighbors of Kumar et al., 

(2000) have also been proposed. The Valencia and Schaake (1973) model is used in 

this thesis.

To predict streamflow at weekly time steps from predicted seasonal rainfall, 

this thesis proposed the integration of ANN-GA, disaggregation, evapotranspiration 

and the Sacramento moisture accounting (SAC-SMA) models. In this approach, we 

applied the disaggregation model to downscale seasonal rainfall of CSA temporally to 

weekly time steps. We then forced the SAC-SMA model to predict streamflow at 

weekly time steps. This combined approach is referred to as ANN-GA-DIS-SMA. 

The other approach we tried was to integrate the ANN-GA, a disaggregation model
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and an evapotranspiration model, so that we directly downscale predicted seasonal 

precipitation, less evapotranspiration into weekly streamflow. The combined 

approach is referred to as ANN-GA-DIS. The above approaches are shown in Figures

6.1 and 6.2, respectively. The components making up Figures 6.1 and 6.2 are 

described in detail in sections 6.2 to 6.4 and the summary and conclusions are 

presented in section 6.5.

6.2 Valencia and Schaake Model

The derivation of the model after Valencia and Schaake (1973) and Tao and 

Delleur (1976) is given below. The general disaggregation model takes the form: 

Y(f)=AX({)+BV({) (6.1)

In Eq (6.1), Y(t) maybe an n x 1 vector of seasonal values of the tth year, n, the 

number of seasons in a year (for examples, 12 if monthly values are generated), X(t) 

being the value of the annual series for the tth year, V(t) is an n x 1 vector of 

independently distributed standard normal deviates (with a mean zero and variance of 

one), A is an n x 1 vector of coefficients, and B is an n x n matrix of coefficients. The 

vector A and matrix B are obtained by analysis of N years of the historic data that 

may relate, say, seasonal to annual values. The second moments needed to estimate A 

and B are the covariance matrices

s „  = £[*1*7 . s.„=£[*][y]r, s„=£[y][*f, ^=£[y][y]r («)
where S y y  and S x x  are the variance matrices over N years of n seasonal values Y, 

and that of observed annual values X respectively, S y x  is the n x 1 covariance matrix
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between the n seasonal observations, Y, and the annual values X, over N years. 

Valencia and Schaake (1973) showed that:

E[y }[x }t = A $ x \ x J  (6.3)

so that

A = S yxS£  (6.4)

and that

E{Y][Yj = AE[X][X]T A t  + E[W][WJ (6.5)

or

S w ^ B S y y B 7 =BBr (6.6)

so that

BBT= S y y -  SyX S„  (6.7)

If A and B are chosen according to Eqs (6.4) and (6.7) the first and the second- 

moments resemblance criterion is satisfied regardless of the underlying multivariate 

distribution of Y, X and V (Valencia and Schaake, 1973). Eq (6.7) shows that only 

the matrix BBT and not B is given. Matrices of the form BBT = C are called Gramian 

matrices, C being the Gramian of B. Given C there is no unique solution to the matrix 

B, since any matrix of the form B.E, where E is orthogonal will satisfy the above 

relation. The necessary and sufficient condition for the estimation of matrix B is that 

the covariance structure of BB (or C) be positive semi-definite. Grammian matrices 

are known to be positive semi-definite (Valencia and Schaake, 1973) since they 

contain the co-variances of the observed variables. There are two ways to estimate 

the matrix B.
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Figure 6.1: Flowchart of the ANN-GA-DIS-SMA approach
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The first method is through the empirical orthogonal function (EOF) analysis 

approach. The second method uses sequential algebraic equations to solve for B, from 

the matrix C. In this thesis the EOF method was used as described below.

By letting

to obtain the eigen values, h,  and the corresponding matrix of eigenvectors, E j,  

(i=l , . . The eigenvectors have the property of orthogonality, i.e.,

The matrix B and vector A are used in Eq (6.1) to generate Y, the disaggregated time 

series from X, which is the aggregate of Y.

According to Tao and Delleur (1976), regardless of the underlying distribution 

of Vectors X and Y and the one resulting from matrix B and vector V, the mean and 

variance properties o f historical events will be preserved in vector A and matrix B. 

Hence, when annual and monthly data are used, vector A will retain the

(6 .8)

we can solve the eigenvector problem

CE = EX, (6.9)

e te  = i

Multiplying either side of En (6.9) by the inverse of E, i.e., E’1, we obtain

C = EAE~1 = B B t (6 .10)

which reduces to

B = EA2 (6.11)

AT
Where ;.

- K
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disaggregation proportions of monthly data related to the annual data and the vector 

resulting from the product of matrix B and vector V will have the disaggregation 

proportions of variances relating annual and monthly data. Thus the mean and 

variances resemblance criteria for the monthly scale series generated by Eq (6.1) will 

be satisfied. Valencia and Schaake (1973) have shown that the parameters A and B 

preserve continuity between seasonal (or monthly) and annual values, i.e.,

The vector A and matrix B are used in Eq (6.1) along with a random number 

generator to create random numbers for vector V. In this thesis the A and B were 

computed by the SAMS version 2000 or SAMS 2000 (in short) computer package of 

Salas et al., (2000), available on-line at http://www.engr.colostate.edu/Sams-CSU- 

USBR. This package has been developed for the stochastic analysis, modeling, and 

simulation of streamflows. SAMS 2000 has the capability to generate many years of 

synthetic single site and multi-site streamflows based on the model parameters 

described by the vectors A and matrices B and some random number generator 

defined by vector V.

Instead of computing A and B directly from the observed data, SAMS 2000 

initially fits the observed data to one of the several available stochastic models. In this 

thesis, the univariate autoregressive moving average [ARMA (K, M)j, model, where 

K and M are the autoregressive (<Dk) and moving average (0m) terms of the model was 

extensively used. This model maybe expressed as follows:

rt

(6.12)

K  M

* /+ !  -  A  =  - v )  + e,^ - ^ 0 me_m+x (6.13)
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where the anomaly for the next time process is a weighted average of the

previous K terms, a random component s,+j and the M moving average terms that 

constitute the weighted average of the M previous s values. The ARMA (2,1) model 

was adequate to fit the weekly and monthly streamflow and rainfall data. In the above 

equation, the weights are the autoregressive coefficients Ok and 9m. These weights 

were found by the least squares approach, in which the weights are estimated by 

minimizing the sum of squares between the observed (Obs) and modeled (Mod) 

values,

N

e = <&k (Obs, -  Mod, )2 (6.14)
/=]

where N is the length of the data.

6.3 The Sacramento Soil Moisture Accounting (SAC-SMA) Model

The SAC-SMA model (Burnish et al., 1973), illustrated in Figure 6.4, is a 

lumped-parameter conceptual model, which consists of a series of sub-models each 

representing a particular hydrologic process such as Horton overland flow, 

infiltration, subsurface flow and moisture storage. Most of the hydrological process 

and storages are represented in the model as millimeter depths of moisture.

The soil moisture storages of the SAC-SMA model are conceptually made up of 

the upper and lower zones (Figure 6.4). The upper zone represents the topsoils and 

the basin interception layers, while the lower zone represents the groundwater storage 

or the hydrogeology of the basin. The upper zone is represented by two conceptual 

storages, called “tension moisture, UZTWM” and “free moisture, UZFMW”
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storages, while the lower zone is represented by three conceptual storage zones 

(tension, primary and secondary storage zones, respectively LZTWM, LZPW, 

LZSM). The upper storages are used to model the rising limp of the runoff 

hydrograph, while the lower zone is used to model the falling limb of the hydrograph. 

More than two storage zones are required for the lower zone in order to describe the 

various recession rates of the lower limb of the runoff hydrograph.

Figure 6.4 describes the following process. Following precipitation (Px), initial 

moisture either contributes to direct runoff from the impervious areas of catchment 

(PCTIM, % and ADIMP,%) or goes to fill up the tension water requirements of the 

soil (UZTW). After satisfying the tension water requirements, the rest of the moisture 

fills up the free spaces between the soil particles (UZFW). Evapotranspiration (ET) is 

allowed from the impervious, tension and free water storages. The rest of the 

moisture is allowed to percolate to the lower zone, at maximum rates of ZPERC, 

where some of it becomes lateral flow, while the rest either evaporates, or becomes 

part of the lower zone storage. Contribution to the lateral flow occurs through a daily 

upper zone free water withdrawal rate, UZK. Some of the moisture from the lower 

zone is also allowed to evaporate, while some moisture becomes part of permanent 

lower zone tension and free water storages, LZTW and LZFW respectively, which 

can also be divided into primary (P) and secondary (S) zones. The lower zone storage 

contributes to the base flow through the primary and secondary supplementary base 

flow withdrawal rates, LZPK and LZSK respectively.

The SAC-SMA model, like any other conceptual model requires the 

parameters representing the storage and flow processes to be carefully calibrated for it
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to reproduce good fit between observed and modeled runoff for that catchment. 

Calibration is therefore an important part of conceptual modeling. For the SAC-SMA 

model, a successful and meaningful calibration means that the model results should as 

closely as possible match the observations, both during the calibration and validation 

periods. Successful calibration also means that the model parameters successfully 

represent the catchment characteristics. This requirement is, however, practically not 

plausible due to the lumped nature of the parameters.

To calibrate the parameters, manual as well as automatic calibration 

procedures are available in the SAC-SMA model. In automatic calibration, the 

parameter values are initialized, and optimized by an optimization algorithm, such as 

Newton-Raphson, genetic algorithm or the Nelder-Mead Simplex algorithm. The 

Nelder-Mead Simplex algorithm is available as the optimization algorithm in the 

SAC-SMA model and was used in this thesis. Depending upon the nature of the 

rainfall-runoff process, initial parameter values such as those suggested by Gan

(1988) may be used. Most parameter values vary over a wide range, e.g., the tension 

storages, (0 - 250 mm), and the lower zone free water storages (0 - 900 mm), 

suggesting the difficulties associated with finding an optimal set of parameter values 

for a catchment

Once the initial parameters have been set, they are adjusted based on the 

difference between the observed and simulated runoff. Since the streamflow has 

various recession rates, this part of the streamflow hydrograph, represented by the 

lower zone parameters is calibrated first. This is followed by the percolation 

parameters and the upper free and tension moisture parameter values.
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6.3.1 Evapotranspiration in SAC-SMA

Estimates of upper constraints on actual ET are required as input in the SAC- 

SMA model. There are numerous methods for estimating the upper limits of ET. 

These include physics-based methods such as energy balance and aerodynamics, and 

the empirical methods such as pan ET. For large areas that are free of discontinuity, 

the Fred Morton complementary relationship areal ET (CRAE) model has been 

recommended (e.g. Chiew and McMahon, 1991; Hobbins et al., 2003) to compute the 

upper limit of ET. Fred Morton (1978) developed the CRAE model. The model has 

been calibrated on a monthly basis and applied to diverse environments in Africa, 

Australia, the United States, Canada, Ireland, and New Zealand. Figure 6.3 illustrates 

the complementary relationship between ETP and ETa. It shows that under dry 

conditions, ETP is maximum, while ETa is zero. As moisture becomes available, the 

actual ET increases, while the ETP decreases because of the cooling effect of ET. As 

the supply of moisture is increased, ETa increases while ETP decreases until a time 

when ETP and ETa become equal to each other. Under such conditions, the ET is 

called wet environment ET, ETW and is computed as follows:

ETa +ETp =2ETw (6.15)

Morton’s (1983) model is derived from Penman’s combination equations. According 

to Penman (1948), ETP occurs due to a combination of the energy and aerodynamic 

forces,

(6-16)A + r  A + r
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where A (mbar °C'!) is the slope of the saturation vapor pressure/temperature curve at air 

temperature, T, and is equal to

ET,

ET,

ET,

Figure 6.4 An illustration of the complementary relationship between potential and 
actual ET.

A __ 4098e* (6.16a)
(237.3+ T f

yp (mbar °C'1) is the psychometric constant equal to 66.8 Pa/°C, Rn(Wm'2) is the net 

radiation at air temperature, f(u) (Wm-2 mbar-1) is wind function, ea(mbar or Pa) is 

the saturation vapor pressure at T,

ea =611 exp Y1.21T
(6.16b)

,237.3 + T,

and ea(mbar) is the saturation vapor pressure at dew point temperature or actual vapor 

pressure of air. In Eq (6.16), ETP has the units of Wm'2 and can be converted to depth 

of water by dividing ETP by latent heat of vaporization of water (J kg'1) and the 

density of water (Kg m'3) over the appropriate time period. The quantities

A , rPand of Eqn. 6.16 are weighting factors that sum to one. The wind
A + y p A +yp

function varies from place to place and also with the prevailing climatic conditions. 

For Penman’s equation, f(u) is given as
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where p is the density of air , ua is the wind velocity at Za, the height where the 

measurements are taken and Zo is the roughness height of vegetation. Since the wind 

varies with location data and are difficult to obtain, Morton (1983) replaced the wind 

function with a vapor transfer coefficient, which is constant for a given atmospheric 

pressure and independent of wind.

where p0 is atmospheric pressure at sea level(mbar), and p is the atmospheric pressure

temperature. For below freezing temperatures this value is increased by a factor of 

1.15, the ratio of latent heat of sublimation to the latent heat of vaporization. The 

exponent 0.5 represents the effects of atmospheric pressure on ET process and vapor 

transfer coefficient, and £ represents a dimensionless stability factor with values 

greater than or equal to 1.0. Hence, the advantage of this model is that it does not 

require wind data.

To calculate ETP, Morton (1983) applied Penman’s equation written in terms of the 

energy balance and the vapor transfer process. ETP is then derived by solving for an 

equilibrium temperature, Tp iteratively such that at Tp Morton’s (1983) energy budget 

and mass transfer methods for a moist surface yield the same result for ETP (Chiew 

and McMahon, 1991) i.e.,

KP )
(6.17)

(mbar), f .  is a coefficient whose value is 28.0 Wm^mbar'1 for above freezini
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ETt  = R , - i r J .  + 4 a r f c  + 2 7 3 ^ r ,  - r )  =  ET,  = / „ ( « , - e d) ( 6 . 1 8 )

where f a (Wm^mbar"1) is the vapor transfer coefficient (given by an empirical

equation), s is the surface emissivity, a  ( 5.87 x 10's Wm'2 °K~4) is Stephan Boltzmann 

constant, T(°C) is air temperature, and ep(mbar) is the saturation vapor pressure at Tp, 

which is the equilibrium temperature Tp computed iteratively. Having obtained Tp, 

ETW maybe obtained as follows.

where Rn* is the net radiation adjusted to Tp, b]=14WnT2 (to account for large scale 

advection during seasons of low or negative radiation and represents the minimum 

energy available for ETW) and b2 = 1.2 is an empirical constant that Morton (1983) 

obtained through calibration. ETa may be obtained by substituting results from 

Equations 6.18 and 6.19 into Equation 6.15.

6.4 Hydrologic Modeling of the Kafue and Lunga River Catchments

6.4.1 Introduction

The Kafue River basin is located on the central African plateau, approximately 

between 11-17°S and 25-29°E. The basin lies completely within central Zambia (see 

Figure 6.5) and covers an area of 157,000 km2, (i.e., 21% of the total land area of 

Zambia, 753,313 km2) (UNDP/FAO, 1968). The Kafue basin can be divided into

or (6.19)
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three zones: the upper basin, which extends from the head waters to the Iteshi-Teshi 

dam, the middle basin, which extends from Iteshi-Teshi dam to the Kafue gorge dam 

and the lower basin, which extends from the Kafue Gorge to the Zambezi River 

confluence. Two large rivers with naturalized streamflow (i.e., the Kafue and Lunga) 

and their tributaries drain the upper basin. The eastern part o f the upper Kafue river 

basin contains the Lukanga swamps. Most rivers to the east o f the basin drain into 

these swamps. When the Kafue River breaks its banks, part o f its streamflow drains 

into the swamps. Daily streamflow and rainfall records of 27 and 21 years 

respectively are available for the Kafue (34, 162 km2) and Lunga River catchments 

(24, 268 km2).

The land surface data for the basin, (i.e., soils, vegetation types, topography, and 

elevation), were obtained from the ECOCLIMAP land use classification, developed at 

Meteofrance. This data is gridded at 0.5° x 0.5° resolution. The mean monthly air 

temperature data, 1950-1998 and gridded at 0.5° x 0.5° was obtained from New et al., 

(2002) (SAFARI 2000 project), available on-line at http://www.daac.oml.gov. Data 

on the number of sunshine hours was obtained from the UNDP/FAO (1968) 

climatology and hydrology, Volume I report. The rainfall station data for the 

catchment was obtained from the Southern African FRIEND Project data achieve.

6.4.2 Land Surface Characteristics

The antecedent moisture condition (AMC) and the surface conditions of a 

catchment play an important role in determining what part of the rainfall appears as 

surface runoff. Streamflow may result from rainfall intensity exceeding infiltration 

rate into soil layers (Hortonian overland flow), precipitation over saturated ground
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(saturation overland flow), or from base flow. Factors that influence the proportions 

of runoff mechanisms include vegetation cover, geology, topography, soil properties, 

AMC, and the climate.

Figure 6.6 shows the soil and the vegetation distribution, in percentage of area 

covered in each 0.5° x 0.5° grid. This figure shows that clays, sands and mixture of 

clays and sands (or sandveldt) form the dominant features of soil types of the Kafue 

basin. The sandy soils are predominant in the southwestern comer of the basin, where 

they account for between 80 and 100% of the soil types. In the middle and eastern 

sections of the basin, sandy soils account for 40-80% o f the soil types, while in the 

northern sections of the basin, sandy soils account for 30-40% of the soils types.

Clay is predominant in the northern reaches of the basin, where it accounts for 

between 30-40% of soil types (Figure 6.6b). In the middle and eastern sections, clay 

soils account for 20-30% of the soil types. The mixture of sands and clays (or 

“sandveldt”), which are the dominant soil type covering the middle and entire eastern 

section of the basin have more sandy soil than clay soils.

In addition to the clay soils, there are innumerable “dambos” in the upper 

reaches of the basin (UNDP/FAO 1968). These saucepan-shaped, low laying areas 

are seasonally water logged by seepage from surrounding high ground and in times of 

wet years, most dambos do not drain off quickly after the rains. As a result 

considerable runoff results from rainfall from these areas, contribution to the Horton 

overland flow created by the clay soils. During dry years or droughts, the detention 

storage of the dambos increase considerably and little rainfall becomes runoff.
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Figure 6.5 The location of the Kafue and Lunga river basins, and the stream gauging 
(SG) and rainfall stations.

180

Legend

Catchment 

~ \  Streamflow

SN

HQ

Kafue
basin5S -

10S

1SS

20S -

2 S S  -

3 0 S  -

10E 1SE 20 E 25E 30E 35E ■WE 45 E

Kafue Basin

Solwezi Kafue
River

±. ± ± fc £ if Sc ■nrmTTST

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



us-
(a) Sand

n c l  / x j  _ _  u  ~  i  i-
^  \ j

- J. 1 /„11 *»X!? ~î ££UV&Z*
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Tropical grasslands and broadleaved trees (Figures 6.6(c) and (d)) are dominant 

features of the basin. In the northern section of the basin grasslands account for 

between 50 and 100% of each grid cell, while in the middle and eastern swampy and 

flood plains, grasslands account for 0-50% of the grids. Tropical trees are also 

dominant in the northern sections but are sparse in the eastern and southern flood 

sections of the basin, where they account for between 40 and 50% of each 0.5° x 0.5° 

grid.

Much of the basin ranges in altitude between 1300 m above mean sea level 

(amsl) in the upper reaches o f the basin and 1100 m amsl in the southern limits of the 

upper basin (Figure 6.7). The slopes in large portions of the upper reaches are about 

1% while in the middle and lower reaches; they drop to about 0.1%. Since the 

gradients are not uniform, the velocity of the rivers changes throughout the course of 

the basin. Because of low slopes in the middle portion of the basin, swamps and flood 

plains form main features o f the middle and the lower reaches of the upper basin.

Topography (m amsl)
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Figure 6.7 Topographic features of the Kafue basin.
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6.4.3 Climate of the Basin

The rainfall regime in the entire basin is characterized by the annual migration 

pattern of the sun between the northern and southern Hemisphere (Section 3.2.1 of 

Chapter 3). The rainfall lasts for about six months, beginning at the end of October 

and ending in April. Following the southward movement of the sun between March 

and September 22, the interior of the CSA and the Kafue basin in particular warms up 

and atmospheric pressure decreases. The decreased pressure draws into the basin the 

moist Congo air mass. After December 22nd the sun begins its journey to the northern 

Hemisphere. By this time, the Congo air mass has reached the southward-most 

portion of the basin. Cool air from the south following the northward movement of 

the sun reaches the Kafue basin in March and displaces the moist Congo air from the 

southern border of the basin. However, rainfall continues in the northern sections of 

the basin until about April. The length of the rainy season is determined by the period 

the Congo air mass is present in any part of the basin. Between 1000 and 1500 mm of 

rainfall falls in the northern sections of the basin, while between 750-1300 mm falls 

in the southernmost portions of the Kafue river basin.

According to the UNDP/FAO 1968 report, each year rainfall begins between 

October 20 and November 15 and ends between March 31 and April 25 in the 

northern part of the basin. Because the revolution of the earth around the sun and its 

apparent upward and downward movement are deterministic, we believe the rainfall 

bearing system of northern CSA and the Kafue basin in particular is caused by a 

fairly deterministic atmospheric system. That system is the intrusion of the Congo air 

mass into the Kafue basin when atmospheric pressures drop in the interior of CSA,
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following the migration of the sun to the southern Hemisphere and the extrusion of 

Congo air system when the sun makes its northward migration. Although earth’s 

orbital parameters change with time, they can be considered almost stable for about 

lOO years (e.g., see http://aom.giss.nasa.gov/srorbpar.html). Although the rainfall 

quantities differ from day to day in space and time, we believe that the average 

weekly rainfall over the middle and upper basins is generally quantifiable (i.e., the 

weekly mean and variance for the rainy season). This observation motivated us to 

exploit the statistical relationships that exist between the weekly, monthly and annual 

rainfalls in order to model the rainfall and runoff processes over the basin.

The basin experiences a dry winter between June and July. This is the coldest 

jpaJt o f the year with average temperatures of about 15°C. August to October is the 

Hottest part of the year with maximum temperatures about 30°C.

6.4.4- Application of ANN-GA-DIS-SMA and ANN-GA-DIS

This section describes the application of the ANN-GA-DIS-SMA and ANN- 

(3A-DIS models. The aim is to assess and compare the performance of the models 

with respect to observed runoff data to determine their robustness and viability. 

Ideally we wish to minimize the differences between the simulated runoff of a model 

atvd the observed runoff. The performance of a model is assessed through statistics 

such as the correlation coefficient, bias and the RMSE, and visual comparisons of 

hydrograph plots.
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6.4.4.1 Travel Time

For the Kafue river catchment, the total length of river from the source to the 

gauging station is about 410 km and has a slope between the source (1494 m) and the 

gauging station (1112 m) of about 0.09% (UNDP/FAO, 1968). For natural channels 

of slopes ranging between 0 and 3%, the approximate average velocity of streamflow 

is between 0 and 0.61 m/s (Chow et al., 1988). Assuming the streamflow occurs at an 

velocity of 0.61 m/s (upper bound), the travel time of streamflow from the source to 

the gauge is about 7.8 or 8 days. Therefore the travel time (time of concentration) at 

which the entire watershed begins to contribute to streamflow at the gauging station 

was taken to be 8 days. For months ending with 31 days, the streamflows for the first 

three weeks were averaged over 8 days, while the streamflows over the last week 

were averaged over 7 days. For months ending with 30 days, the first two weeks were 

averaged over 8 days and the last two weeks over 7 days. For months ending with 28 

days, the streamflow was averaged over 7 days. Hence instead of 52 weeks in a year, 

only 48 weeks were considered. This approach also simplified the disaggregation 

scheme between monthly and weekly time steps. For the Lunga Catchment, the entire 

catchment begins to contribute to the measured discharge after about 7 days.

The S AC-SMA model was initially designed to operate at hourly or daily time 

steps. To accommodate the 7 or 8 days of moisture using hourly time steps, the 

moisture accounting process was performed by updating the sum of the runoff and 

infiltrated flows over a period 168 or 192 hours, respectively.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.4.4.2 Water Balance and Dynamics of Rainfall-Runoff

Water balance components and streamflow generation of the two basins are 

largely influenced by rainfall, ET and Changes in storage, (see Figure 6.8). ET 

accounts for between 70 and 100% of the total rainfall that falls in the basin each 

year. Rainfall was less than potential ET in 1967, 1972, 1981 and 1986. These years 

also recorded reduced streamflow. The years of high rainfall, such between 1973 and 

1976 and 1981 and 1984, which were preceded by periods of decreasing rainfall such 

as 1970-1972 and 1978-1980, generally did not result in dramatic increases in the 

streamflow, especially for the first two years (Figure 6.8). This shows that the 

catchments need at least a year to be fully recharged following a few dry years.

(a) Kafue River Basin
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Figure 6.8 The water balance of the (a) Kafue, and (b) Lunga River catchments.
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(b) Lunga River Basin2000
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Figure 6.8 Continued.

As was noted in Section 6.4.2.1, the upper reaches o f the Kafue basin are dominated 

by clay soils and dambos. During periods of low rainfall, the detention capacity of the 

upper reaches increases dramatically causing low streamflow to dominate the years 

following consistently less than average rainfall. This shows that the hydrologic 

response of Kafue basin is heavily dependent on its AMC. The SAC-SMA model is 

designed to simulate each year’s rainfall-runoff process with specified initial moisture 

content of UZTW, UZFW, LTZW, LZPW, and LZSW. At the end of each year, the 

state variables of the above conceptual storages determine its AMC for the next 

year’s run for the catchment. Hence the non-linear response of the catchment to the 

rainfall did not present challenges to the SAM-SMA in modeling the rainfall-runoff 

process of the basins.
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6.4A.3 Disaggregation of Seasonal to Weekly Rainfall

The weekly rainfall and discharge data for the two catchments are shown in 

Figure 6.9. The disaggregation vectors A and matrices B were computed from 

aggregated weekly and monthly series using the SAMS computer package (Salas et 

al., 2000). Since rainfall is a nonstationary process (Chapter 3), long enough datasets 

that contained as much information as possible were utilized to compute realistic A 

and B matrices.

The ANN-GA model (Chapter 4) was used to predict the seasonal rainfalls of 

both basins from SSTs of the Indian and Atlantic Ocean identified in the previous 

April-May-June (AMJ) season (see Figure 6.10). This seasonal rainfall was 

disaggregated, first into monthly rainfall and then into weekly rainfall (Figure 6.10). 

To generate monthly or weekly rainfall from the predicted seasonal rainfall, 2000 

statistically generated samples were created through Eq (6.1).
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Figure 6.9 The data used in the study, (a) Kafue basin rainfall, (b) Kafue basin runoff, (c) 

Lunga river basin rainfall and (d) Lunga river rainfall.
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Figure 6.9 continued
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Figure 6.10. Plots of: (a) the predicted and observed seasonal rainfall of the Kafue basin,
(b) the observed and statistically predicted weekly rainfall of the Kafue basin,
(c) the predicted and observed seasonal rainfall of the Lunga river basin, and
(d) the observed and statistically predicted weekly rainfall for the Lunga 
River basin.
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These rainfall samples were then averaged to form one monthly or weekly dataset. 

The weekly rainfall realizations (see Figure 6.10) were used as input to SAC-SMA 

model calibrated to the hydrologic condition of say, Kafue and Lunga basins.

Figures 6.11 show the time series plots for the validation periods of the weekly 

streamflow for the Kafue basin. Figure 6.12 shows the corresponding scatter plots for 

the validation periods. The statistics summary corresponding to Figures 6.11 and 6.12 

are presented in Tables 6.1 and 6.2. From Table 6.1, it is clear that 81-96% of the 

variance in the observed streamflow was accounted for by the predicted weekly 

streamflow using both the observed as well as the statistically predicted rainfall. With 

biases of between -4.8 and 9.3% for 1984, 1986, 1987, and 1988 meant that four 

of the five years of predicted streamflow values were very close to the observed 

values. The model performed poorly for the year 1985, with a bias of -28.1% using 

the observed rainfall and -18.4%, using statistically predicted rainfall. We suspect 

that SAC-SMA grossly under-simulated the streamflow simply because observed 

runoff data for 1985 may be erroneous. Using the observed rainfall data, the RMSE 

averaged 37%, while using statistically generated rainfall the RMSEs average 38%. 

The modeling efficiency of the streamflow using the observed and statistically 

predicted rainfall was thus within small percentage errors (Table 6.1).

Figure 6.9 shows the scatter plots of observed and predicted streamflow using 

both the observed and statically predicted rainfall. Except for 1985, Figure 6.9 and the 

statistics of Tables 6.1 and 6.2 clearly shows that statistically generated rainfall 

performed as well as observed rainfall. Hence statistically generated rainfall can be
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used in the SAC-SMA model for the prediction of weekly streamflow for the next 

water year.

(a) Machiya (using observed rainfall)
600

 O b se rv ed

—  Pred ic ted500

400

300

200

100

0 50 100 200 250150

W eek s  (W eeks start from O ctober 1980)

(b) Machiya (using disaggregated rainfall)
600

 O bserved

—  P red icted500

400

300

200

100

0 50 100 150 200 250

Time (W e e k s  (W eeks start from O ctober 1980)

Figure 6.11 Plots showing observed and predicted weekly streamflow (m7s) from the 
SAC-SMA model using (a) Observed rainfall and, (b) from the ANN-GA- 
DIS-SMA model using statistically predicted rainfall.
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Table 6.1 Summary statistics of SAC-SMA’s predicted versus observed streamflow 
under the observed rainfall of the Kafue River basin.

Year 1984 1985 1986 1987 1988

R^
(%)

96.0 81.1 88.4 90.2 88.4

RMSE
(%)

21.8 50.7 33.1 37.4 41.2

BIAS
(%)

2.1 -28.1 -4.8 6.3 9.3

Table 6.2 Summary statistics of ANN-GA-DIS-SMA’s predicted versus observed 
streamflow for the Kafue River basin.

Year 1984 1985 1986 1987 1988

R-
(%)

90.8 78.1 88.4 88.5 89.1

RMSE
(%)

30.1 48.2 31.5 40.5 37.2

BIAS
(%)

-1.7 -18.4 -7.4 11.4 13.1
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Figure 6.12. Scatter plots of observed versus predicted Kafue river weekly streamflow 
(m3/s) based on observed input rainfall, (a),(c) (e), (g) and (i); and that 
based on statistically predicted rainfall, (b), (d), (f), (h) and (j) for the 
period 1984 to 1988.
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Figure 6.12 Continued.

Figures 6.13 show the time series plots for the validation periods of the 

weekly streamflow for the Lunga River basin. Figure 6.14 shows the corresponding 

scatter plots for the validation periods. The statistics summary corresponding to 

Figures 6.13 and 6.14 are presented in Tables 6.3 and 6.4. The correlations between 

the predicted and observed weekly streamflow show that between 69 and 90% of the 

variance of observed streamflow was accounted for by the predicted streamflow of 

SAC-SMA forced by observed rainfall, and 61 to 84% of the variance of the observed 

streamflow was accounted for when SAC-SMA was forced by the statistically 

predicted rainfall. Generally both the low and high streamflows were difficult to 

predict as shown by the Figure 6.13 and the statistics in Tables 6.3 and 6.4. Using
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both the observed and statistically generated rainfall, the streamflow in 1980 and 

1981 was under-predicted. From Figure 6.8 between 1977 and 1981, rainfall 

consistently decreased, which directly affected the streamflow. The increased rainfall 

in 1982 was largely small to offset the effects of five years of decreasing rainfall. 

During the 1977-1981 period, the detention capacity of the upper reaches increased, 

causing the 1982 rainfall to start recharging the catchment. Hence the response of the 

catchment to the 1982 rainfall was suppressed, even though slightly high rainfall was 

recorded in 1982. Results indicate that ANN-GA model was able to capture the SST- 

rainfall dynamics.

It is clear from the two examples that AMC plays an important role in 

modeling the Kafue and Lunga basins. Although the performance of the SAC-SMA 

model was not as encouraging for the Lunga River than the Kafue, the SAC-SMA 

could still predict the weekly streamflow of the Lunga River reasonably well.
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Figure 6.13 Plots showing observed and predicted weekly streamflow (m3/s) by 
SAC-SMA forced by (a) Observed rainfall and, (b) statistically predicted 
rainfall.
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Table 6.3 Summary statistics of SAC-SMA’s predicted versus observed streamflow using 
the observed rainfall in the Lunga River basin.

1980 1981 1982

R ' 81.0 95.0 83.3
(%)

RMSE 57.3 25.6 67.0
(%)

BIAS -14.1 3.2 43.6
(%)

Table 6.4 Summary statistics of ANN-GA-DIS-SMA predicted versus observed 
streamflow for the Lunga River basin.

Year 1980 1981 1982

R" 90.7 84.1 61.5
(%)

RMSE 48.8 30.4 41.2
(%)

BIAS 0.1 -6.1 -0.3
(%)
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Figure 6.14. Scatter plots between the Lunga River’s observed and predicted weekly 
streamflow of SAC-SMA forced by observed data (a),(c),(e), and that of 
ANN-GA-DIS-SMA forced by statistically generated rainfall data (b), (d), 
and (f).

6.4.4.4 Model Parameters

Tables 6.5 shows the optimized parameters calibrated through a combination of 

manual effort and the global optimization algorithm called SCE-UA of Duan et al., 

(1992) for the Kafue and Lunga River basins. The upper zone tension moisture
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capacity and the free water storages of these two basins were found to be 382 and 299 

mm respectively, which were above the upper limits suggested by Gan (1988) (i.e.5- 

250 and 3-30 mm respectively). These values were found by automatic calibration, by 

starting off with parameter values of 29 and 15 mm, respectively. Considering the 

types of soil prevailing in this region, these relatively high conceptual upper storage 

parameters are possible. Besides, the bounds recommended by Gan (1988) were 

mainly based on North American experience. These figures probably reflect the high 

storage capacity associated with the dominance of the innumerable dambos found in 

the upper reaches of the basin, and the sandy and veldt soils in the middle and lower 

basins. To effectively simulate decreasing runoff (Fanta et al., 2001) under years of 

decreasing rainfall, it will be necessary for SAC-SMA to be represented with high 

upper conceptual tension and free water storages. This might partly reflect that under 

the presence of tropical grasslands and trees, the soil is well penetrated with roots, 

leading to the presence of many bore holes and hence more storage capacity. The 

lower zone parameters are within the parameter bounds suggested by Gan (1988) but 

equally high suggesting that the basin might have a big lower zone reservoir. The 

lower zone parameters of the Lunga basin are however slightly lower than those of 

the Kafue river.

The parameters presented in Tables 6.5 represent the optimal solutions derived 

from the multi-dimension, parameter search space with infinite number of solutions. 

In order that SAC-SMA can accurately predict the streamflow of Kafue and Lunga 

river basins, these parameters must be realistic and representative of the hydrologic 

characteristics of these basins.
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Table 6.5 Optimal parameters for the Kafue and Lunga River basins.

1 2 nJ 4
Parameter Kafue

Optimized
Paramet

ers

Lunga
Optimized
Parameters

Parameter Definition

UZTWM 382 388 Upper zone tension water
UZFWM 299 299 Upper zone free water 

capacity
UZK 0.06 0.06 Upper zone withdrawal rate
ZPERC 28 24 Maximum percolation rate
REXP 1.001 1.026 Exponent for the percolation 

Equation
LZTWM 300 253 Lower zone tension water
LZFSM 345 328 Lower zone free water 

capacity
LZFPM 893 869 Lower zone primary free 

water capacity
LZSK 0.21 0.28 Lower zone secondary 

withdrawal rate
LZPK 0.18 0.021 Lower zone primary 

withdrawal rate
PEADJ 0.604 0.401 ET-demand adjustment factor

Even though model parameters were optimized through good calibration effort, SAC- 

SMA is still a lumped-parameter, conceptual hydrologic model that ignores the 

spatial variabilities of basin characteristics (e.g., soil properties, terrain, vegetation) 

and climate data, that conceptualizes the essential basin-scale hydrologic processes 

with a model structure that is a simplified version of nature that is highly 

heterogeneous and complex.

6.4.5 Direct Disaggregation of Seasonal Rainfall to Weekly Streamflow

Instead of using a hydrologic model to predict weekly streamflow, we also 

experimented with the disaggregation of predicted seasonal rainfall directly to weekly
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streamflow. This experiment was based on the assumption that in the absence of 

significant storage changes in the basin, streamflow runoff is the difference between 

evapotranspiration and rainfall falling on the basin. By removing the annual 

evapotranspiration from the predicted seasonal rainfall, the net should be 

approximately equal to the seasonal streamflow, which can then be directly 

disaggregated into the weekly streamflow. In this case the vector A and matrix B of 

Eqn 6.1 are determined directly from the observed historical weekly and monthly 

streamflow data.

Figures 6.15 (a) and (b) show the weekly streamflow time series plots of the 

Kafue and Lunga river basins for the validation period. Figure 6.16 shows the 

corresponding scatter plots for the validation periods. The statistics summary 

corresponding to Figures 6.15 and 6.16 are presented in Table 6.6 and 6.7. Table 6.6 

and 6.7 show that between 68.1 and 84.6% and between 31.1 and 63.2% of the 

variance in the observed streamflow were accounted for by the predicted weekly 

streamflow for the Kafue and Lunga rivers, respectively. Although the bias was 

small, the RMSE errors were large, 46.8-56.2%, which also indicates that the 

performance of direct disaggregation of net seasonal rainfall to annual weekly 

streamflow was poor.
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Figure 6.15 Plots showing observed and predicted weekly streamflow (m3/s) from the 

direct disaggregation of statistically predicted net rainfall for (a), Kafue 

River basin and (b) Lunga River basin.
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Table 6.6 Summary statistics between, observed and simulated weekly Kafue River 
streamflow, where the latter was directly disaggregated from the difference between 
seasonally predicted rainfall and evapotranspiration.

Year 1984 1985 1986 1987 1988

R^
(%)

84.6 81.5 81.5 68.1 78.5

RMSE
(%)

46.8 42.6 38.1 48.1 56.2

BIAS
(%)

8.3 8.0 1.7 2.7 14.4

Table 6.7 Summary statistics between observed and simulated weekly Lunga River 
streamflow, where the latter was directly disaggregated from the difference between 
seasonally predicted rainfall and evapotranspiration

Year 1978 1979 1980

R^ 31.1 46.4 63.2
(%)

RMSE 92.4 58.5 34.4
(%)

BIAS 8.1 2.7 4.4
(%)
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Figure 6.16 Scatter plots between the observed and predicted weekly streamflow of the 
Kafue river, (a),(b),(c) (d), and that of Lunga River, (e), (f) (g).
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Figure 6.15(a) shows that only the upper limb was correctly generated. The modeling 

performance was generally low compared to the ANN-GA-DIS-SMA that used SAC- 

SMA to model transform rainfall to streamflow, which is a more plausible and 

realistic approach than a direct disaggregation of net rainfall (rainfall minus 

evapotranspiration) into streamflow. This is not a surprise because a purely statistical 

approach is not expected to effectively mimic the complex nature of basin scale 

hydrologic processes governed by a number of interconnected storages (e.g., 

thresholds) and soil layers, and several runoff mechanisms. We would expect a 

hydrologic model such as SAC-SMA specifically designed to simulate such 

hydrologic processes to do a better job than a disaggregation model governed by 

matrices A and B derived from the co-variances of observed runoff only. Besides, 

SAC-SMA must also be carefully calibrated for the observed hydrologic conditions 

of any watershed before it can be applied to simulate its rainfall-runoff transformation 

process.

6.5 Summary of Findings

To predict streamflow at weekly time steps from predicted seasonal rainfall, this 

thesis proposed the integration of ANN-GA, disaggregation, evapotranspiration and 

the Sacramento moisture accounting (SAC-SMA) models. We also tried to integrate 

the ANN-GA, a disaggregation model and an evapotranspiration model, so that we 

could directly downscale predicted seasonal precipitation, less evapotranspiration into 

weekly streamflow. The combined approaches were referred to as ANN-GA-DIS- 

SMA and ANN-GA-DIS, respectively.
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The modeling performance was generally higher for the ANN-GA-DIS-SMA 

model than the ANN-GA-DIS model. This is not a surprise because a purely 

statistical approach is not expected to effectively mimic the complex nature of basin 

scale hydrologic processes governed by a number of interconnected storages and soil 

layers, and several runoff mechanisms.

Overall this Chapter demonstrated that an integration of ANN-GA, 

disaggregation, ET and SAC-SMA models results in a more robust model than direct 

disaggregation of net rainfall to streamflow without consideration of the complex 

rainfall-runoff generation process.

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7

CONCLUSIONS AND SUGGESTED FUTURE WORK

7.1 Summary and Conclusions

Fascinated by the desire to understand the nonstationary variability of climate 

processes on regional and global scales and the desire to develop capability to predict 

non-linear interactions between hydroclimatic variables, this thesis conceptualized the 

novel and integrated approaches of wavelet empirical orthogonal function analysis 

(WEOF), Hilbert transformation empirical orthogonal function analysis (HEOF), 

wavelet independent component analysis (WICA) and Hilbert transformation 

independent component analysis (HICA) and artificial neural network genetic 

algorithm (ANN-GA) model. This thesis also integrated ANN-GA, disaggregation 

techniques and the Sacramento soil moisture accounting model to predict annual 

streamflow at weekly time steps from seasonal oceanic variability through two 

approaches referred to as the ANN-GA-DIS-SMA and ANN-GA-DIS.

The various nonstationary methods of analysis are detailed in Chapter two. 

Chapter three identified and analyzed the space-time and frequency variation of the 

rainfall over Eastern Africa, Central South and greater Southern Africa and the sea 

surface temperature (SST) of the Indian and South Atlantic Oceans. The new findings 

of Chapter three are summarized below:

(1) Changes in the frequency regimes of the Indian Ocean SST, the SON rainfall and 

Southern Africa rainfall that have implications for long term planning had been 

identified. For example, the oscillation period of the September-November (SON)
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rainfall of Eastern Africa shifted from about 20-years to about 10-years between 

1900 and 1950 and about 10 to 14 years between 1950 and 1997. Since the data 

was short we could not precisely determine the background periodicity of these 

frequency variations. Between 1900 and 1960 rainfall increased consistently and 

between 1960 and 1997 rainfall decreased consistently resulting in numerous 

droughts between 1965 and 1997. Due to a short data length, it is not clear 

whether or not the SON droughts continued after 1997. Similar changes were 

noted in Southern Africa that helped explain the declining levels in the 

streamflows and dam levels especially after 1970. The current dataset seems to 

suggest that longer background periods exist in the rainfall and incorporating 

them in the development of long term plans in water resources and agriculture 

will help countries within Eastern and Southern Africa.

(2) The nonstationary spatial variability of the South Atlantic Ocean seasonal SSTs 

that have important implications for the weather and climate in Eastern, Central 

South and greater Southern Africa and probably most of sub-Saharan Africa and 

parts of South America. However, we have to be selective in choosing the SST 

predictor field from the South Atlantic or Indian Ocean because some sectors of 

SST fields are not significantly correlated to the predictands. Including 

“redundant” predictor fields basically adds data noise to the predictor data that 

compromises the prediction skill of most prediction models.

(3) Within the 2 to 8 year band, the dominant periods of the SON rainfall of East 

Africa were around 2-years, while for the MAM rainfall of east Africa and the 

summer rainfall of Central South and Southern Africa, dominant periods were
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around 5.6 years, followed by the periods around 2 years. Therefore, besides 

identifying the sectors of relevant SST fields, identifying the dominant scale- 

bands also help to exploit the interannual oceanic variability to predict rainfall.

(4) ENSO affects the rainfall of Eastern, Central South and Southern Africa when 

the energy within the 2-year period was decreasing. When there was a 

synchronous decrease of energy at all periods within the 2-8 year band, droughts 

result. Hence by following the energy levels within 2-8 year band, it is possible to 

predict when ENSO will cause drought or below normal rainfall and when it will 

not. Knowledge of this effect of ENSO on Eastern, Central South and Southern 

Africa will be useful to these countries in preparing themselves for the impending 

threat of droughts to mitigate the potential impact of ENSO.

Chapter 4 outlined how Eastern, Central South and Southern Africa responded 

to changes in SSTs in the Indian and Atlantic Oceans. It was discovered that seasonal 

variabilities of SST in both oceans affect rainfall in this African sub-continent. The 

northern Indian Ocean and the Guinea Ocean current SST were found to have 

negative associations, while the Brazil, Benguela and the southern Indian Ocean 

current SST were found to be positively associated with the rainfall of these African 

regions.

Chapter 5 developed the non-linear, artificial neural network, prediction model 

calibrated by the genetic algorithm (ANN-GA). The model was shown to be robust 

and a more powerful alternative to linear models such as canonical correlation 

analysis (CCA). The performance of the model was evaluated against the SON and 

MAM rainfall o f East Africa and summer rainfall of Central South and Southern
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Africa. The skill was as follows: For the SON rainfall, correlation coefficient (p) was 

between 0.70 and 0.9, HK score between 0.2 and 0.8, and RMSE between 0.4 and 

0.75; while for the MAM rainfall, p ranged from 0.82 to 0.9, RMSEs from 0.5 to 0.6 

and HK scores ranged from 0.5 to 0.8. In Central South Africa, p was between 0.8 

and 0.9, RMSEs of 0.4 and 0.9, and HK scores of between 0.4 and 0.8; while in most 

Southern Africa, the p generally ranged between 0.70 and 0.9, RMSE ranged between

0.4 and 0.8, and HK scores ranged between 0.5 and 0.9.

The ANN-GA-DIS-SMA developed in Chapter Six showed considerable skill 

in predicting weekly streamflow from seasonal rainfall predicted from seasonal SST 

variability. Predicted streamflow using the ANN-GA-DIS-SMA model explained 

between 81 and 96% of the variance in the observed streamflow. Except for one year, 

the biases ranged between -4.8 and 9.3% and the errors averaged 37%. However, a 

direct disaggregation of net rainfall to streamflow (the ANN-GA-DIS model) did not 

perform well. The variance accounted for by this model ranged between 61 and 84%. 

The errors were large, ranging from 30 to 67%. The ANN-GA-SMA approach 

appeared as the only approach for predicting the annual streamflow at weekly time 

steps. Given the complex nature of basin-scale, hydrologic processes which involve 

threshold controls and highly nonlinear behavior, we can only expect a hydrologic 

model carefully designed for modeling such hydrologic processes, and specifically 

calibrated for the specific basin characteristics and climatic features of each particular 

basin, instead of a simple linear disaggregation model, to handle such complex 

rainfall-runoff transformations effectively. As a cautionary note, ANN-GA-DIS- 

SMA could accurately predict weekly streamflow out of predicted seasonal rainfall
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for this part of Africa partly because its intra-annual climate regime is relatively 

stable. We cannot expect a system such as ANN-GA-DIS-SMA to work well in 

climate systems that does not exhibit stable intra-annual climate structure similar to 

that of Southern Africa.

Although the above applications were confined to Africa and the surrounding 

oceans, the techniques developed in this thesis, after some degree of modifications, 

should be applicable to other continents.

7.2 Suggested Future Work

As with all techniques, there is always room for improvement. The following 

are some of the suggestions for future work

7.2.1 The End Point Problem

The biggest problem for both wavelet and Hilbert transformations is what is 

called the end point problem. Since time series are finite, lots of zeros are added to 

the end and beginning of the time series to bring the length of the time series to the 

next high power or two (e.g. 512 or 1024) to facilitate the use of the Fourier analysis. 

The addition of zeros suppresses power computed at the ends of the time series as one 

goes towards longer scales. This makes it difficult to interpret the energy variability at 

the ends and beginning of the time series. This difficulty might be solved by 

including six or more cosine or sine waves at the ends of the time series. This 

suggestion was made by Norden Huang, the inventor of the EMD-Hilbert 

transformation method during the May 16-May 25 2004 visit to NASA’s Goddard 

Space Flight Center in Greenbelt, Maryland, USA. Although he suggested that this
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method has worked well in his applications, this method has not being tried out in this 

thesis.

7.2.2 Experimentation with Wavelet or Hilbert Spectral Images

The multivariate WEOF, HEOF, WICA, HICA techniques use scale averaged power 

(e.g., such SAWP) to analyze the nonstationarity of the climate processes. We suggest 

using Wavelet and Hilbert spectral images to minimize the amount of information lost 

through scale averaging.

7.2.3 Application of WEOF, HEOF, WICA and HICA to Global Scales and 

Other Atmospheric Variables

Since rainfall variability is affected by local and remote SST variability, it will 

be interesting to analyze the global SST variability via the above approaches and see 

linkages with local climate, especially across scales. Since large datasets overwhelm 

prediction models, EOF could be used to compress the global-scale datasets to 

increase the effectiveness of the ANN-GA or other prediction models. Besides, SST 

was the only data used in this thesis. Other atmospheric variables, such as Sea Level 

Pressure (SLP) are suggested. Important influences such El Nino (by using gridded 

SST data from the ENSO region) would be interesting. Since this region is adjacent to 

the Atlantic Ocean, it will also be interesting to see linkages if  any between the ENSO 

region and the Atlantic Ocean.
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7. 2.4 Improvements in the ANN-GA prediction Model

As noted in Chapter five, new and improved GAs such as the messy GAs have 

been developed in recent years. It will be interesting to incorporate the improved 

messy GA as the weight search algorithm. Other emerging optimization algorithms 

such as Particle Swam optimization (PSO) algorithms (e.g., Eberhart and Shi 1998) 

may also be used.
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APPENDIX A

VERIFICATION OF WEOF METHODOLOGY USING DIFFERENT 

DATA FROM DIFFERENT SOURCES

1. Introduction

All the analysis in this thesis was presented using data obtained from the 

UK meteorological office. During the candidacy exam Dr Samuel Shen proposed 

that some of the results be repeated with data from different sources to see the 

consistency of the WEOF methodology.

Since rainfall is the most variable of all climatic elements analyzed in this 

thesis, an effort was made to collect new rainfall data for the re-analysis. The new 

rainfall data was obtained on-line from the SAFARI 2000 project 

('http://www.daac.oml.gov). The data set is gridded at 0.5° x 0.5 latitude/longitude 

resolution. According to the documentation available on this website, New et al., 

(2000) used an anomaly approach which attempts to maximize station data in space 

and time. Station measurement data for the years 1961-1990, extracted from the 

monthly data holdings of the Climatic Research Unit and the Global Historic 

Climatology Network (GHCN), served as the normal period (New et al., 1999). The 

anomaly grids were then combined with high-resolution mean monthly climatology 

to arrive at fields of estimated historical monthly surface climate.

We found that data for the 1916-1926 period had gross outlier errors and 

hence only data from 1927 to 1998 was used for the analysis. In this appendix we 

present results of WEOF analysis for the SON rainfall of East Africa, which as was
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alluded to in Chapter three was the most variable of the two East African rainfall 

seasons.

2. Results (1927-1998)

2.1 Spatial Patterns of SON rainfall (East Africa)

WPCl (41.4%) (b) WPC2 (11.0%)
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Figure 1 The spatial patterns of the SON rainfall of Eastern Africa using the SAFARI 
2000 data (a) W PCl, (b) WPC2 and (c) WPC3.
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Since the length scale of rainfall storms is 60 km (see Chapter six), the 0.5° x 0.5 

(~50km x 50 km) resolution provides us a chance to examine the spatial resolution 

using greater detail. It is seen in Figure 1 and 2

2.2 Temporal Patterns of SON rainfall (East Africa)
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Figure 2 The temporal patterns of the SON rainfall of Eastern Africa using the SAFARI 
2000 data at 0.5° x 0.5° resolution (a) WPCl, (b) WPC2 and (c) WPC3.
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Figures 1 and 2 shows the spatial and temporal patterns found by using the SAFARI 2000 

project data. It is seen that the patterns are consistent with the ones found in Chapter 

three, using the UK met data.
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