
University of Alberta

Empirical studies on test data generation using optimization techniques

by

Man Xiao

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

of the requirements for the degree of Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta

Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95881-7
Our file Notre reference
ISBN: 0-612-95881-7

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgment

I have been supported by many people during my research, which led to this thesis. First

of all, I would like to express my deepest sense of gratitude to my supervisors Dr. Marek

Reformat and Dr. James Miller for their believing my potential, patient guidance,

encouragement and excellent advice throughout this study. Dr. Marek Reformat has

provided me unlimited amount of encouragement, expert guidance, stimulating

suggestions and proper directions that have enabled constant improvement and

refinement of this research. Dr. James Miller’s invaluable expertise in Software

Engineering along with his advice inspired me throughout this research. I would not have

finished my Master’s program without their help. I am deeply indebted to them for their

generous financial and intellectual support.

I am thankful to Sarah McEvoy and M.Sc. Paul J. Iglinski for their fruitful collaboration

in providing the programs under test in this research.

I would like to express my appreciation to Dr. Petr Musilek, Dr. Jozef Szymanski,

Dr. James Miller and Dr. Marek Reformat for spending their invaluable time on reading

and correcting this thesis, and for being the members of the examining committee.

I am also thankful to Kenneth Raiche for his encouragement and support

throughout this research.

Finally, I take this opportunity to express my profound gratitude to my beloved parents,

Xiuwen Ye and Zhanhua Xiao, for their unconditional love, infinite encouragement, and

support throughout my life. They have provided me the strength and courage to pursue

my dreams that finally lead to the completion of my research. Thank you.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction..

1.1 Problem of software testing...

1.2 Automation of test data generation...

1.3 Thesis contributions..

1.4 Thesis outline..

2 Software testing...

2.1 Functional testing and Structural testing...

2.2 Test Adequacy Criterion..

2.2.1 Statement coverage...

2.2.2 Branch coverage...

2.2.3 Condition coverage...

2.2.4 Condition-decision coverage...

2.2.5 Multiple condition coverage..

2.3 Generation of test-data..

3 Automated test data generation...

3.1 Static test-data generation..

3.2 Dynamic test-data generation..

3.2.1 Earlier Dynamic test-data generation..

3.2.2 Tracey’s work...

3.2.3 Michael’s w ork...

3.3 Other test data generation methods...

3.4 Conclusions...

4 Optimization search techniques..

4.1 Genetic Algorithms...

4.2 Simulated Annealing..

4.3 Simulated Annealing with Advanced Adaptive Neighborhood (SA/AAN)...

4.4 Genetic Simulated Annealing (GSA)..

. 1

. 1

.2

.2

.3

.5

.5

.6

.6

.7

,7

, 8

.9

10

11

11

12

12

14

15

16

16

18

18

22

25

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Description of experimental studies... 30

5.1 Description of strategy taken.. 30

5.1.1 Test adequacy criterion... 30

5.1.2 Coverage table... 30

5.1.3 Function minimization and objective function... 32

5.1.4 Generation of test cases - methodology... 35

5.2 Experimental setup... 39

5.2.1 Optimization algorithms... 39

5.2.2 Implementation of test data generation.. 40

5.2.3 Tested programs...40

5.2.4 Experiment procedure..41

5.2.5 Terms (vocabulary, glossary)..42

6 Empirical Results...43

6.1 Hex_dec conversion... 43

6.1.1 Analysis of the source code..43

6.1.2 A Comparison of Five Test Data Generations Approaches........................47

6.1.3 Coverage plots for Five Test Data Generators.. 50

6.1.4 GA and SA/AAN: Two methods that have best performance..................51

6.2 Timeshuttle...52

6.2.1 Analysis of the source code..52

6.2.2 A Comparison of Five Test Data Generations Approaches........................58

6.2.3 Coverage plots for Five Test Data Generators.. 61

6.2.4 GA and SA/AAN: Two methods that have best performance................... 64

6.3 Perfect number program..65

6.3.1 Analysis of the source code..65

6.3.2 A Comparison of Five Test Data Generations Approaches........................68

6.3.3 Coverage plots for Five Test Data Generators.. 70

6.3.4 GA and SA/AAN: Two methods that have best performance................... 71

6.4 Triangle classification program..74

6.4.1 Analysis of the source code..74

6.4.2 A Comparison of Five Test Data Generations Approaches....................... 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.3 Coverage plots for Five Test Data Generators..80

6.4.4 GA and SA/AAN: Two methods that have best performance.................. 82

6.5 Rescue program... 84

6.5.1 Analysis of the source code... 84

6.5.2 A Comparison of Five Test Data Generations Approaches...................... 88

6.5.3 Coverage plots for Five Test Data Generators... 91

6.5.4 GA and SA/AAN: Two methods that have best performance.................. 94

6.6 Conclusions...96

7 Conclusions and future works...100

Bibliography..103

Appendices...107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 5-1 An example of coverage table..31

Table 5-2 Example of objective function..33

Table 6-1 Result table of Random Generator...47

Table 6-2 Result table of Genetic Algorithm..48

Table 6-3 Result table of Simulated Annealing... 48

Table 6-4 Result table of Genetic Simulated Annealing...49

Table 6-5 Result table of Simulated Annealing with Advanced Adaptive

Neighborhood.. 49

Table 6-6 Result table of Random Generator...59

Table 6-7 Result table of Genetic Algorithm..59

Table 6-8 Result table of Simulated Annealing... 60

Table 6-9 Result table of Genetic Simulated Annealing.. 60

Table 6-10 Result table of Simulated Annealing with Advanced Adaptive

Neighborhood... 61

Table 6-11 Result of SA/AAN with different parameters...63

Table 6-12 Result table of Random Generator...68

Table 6-13 Result table of Genetic Algorithm..68

Table 6-14 Result table of Simulated Annealing... 69

Table 6-15 Result table of Genetic Simulated Annealing...69

Table 6-16 Result table of Simulated Annealing with Advanced Adaptive

Neighborhood.. 70

Table 6-17 Result table of Genetic Algorithm..73

Table 6-18 Result table of Simulated Annealing... 73

Table 6-19 Result table of Random Generator.. 77

Table 6-20 Result table of Genetic Algorithm..77

Table 6-21 Result table of Simulated Annealing... 78

Table 6-22 Result table of Genetic Simulated Annealing.. 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-23 Result table of Simulated Annealing with Advanced Adaptive

Neighborhood.. 79

Table 6-24 Result table of Random Generator.. 89

Table 6-25 Result table of Genetic Algorithm..89

Table 6-26 Result table of Simulated Annealing... 90

Table 6-27 Result table of Genetic Simulated Annealing.. 90

Table 6-28 Result table of Simulated Annealing with Advanced Adaptive

Neighborhood.. 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 4-1 GA algorithm.. 19

Figure 4-2 Single point crossover of GA.. 21

Figure 4-3 Multipoint crossover of G A ...21

Figure 4-4 Mutation of GA...22

Figure 4-5 SA algorithm...24

Figure 4-6 GSA algorithm..28

Figure 5-1 Working process of test data generation system.. 38

Figure 6-1 Coverage plots of five search methods on Hex_dec program.................... 51

Figure 6-2 Comparison of GA and SA/AAN on Hex_dec program.............................52

Figure 6-3 Coverage plots of five search methods on Timeshuttle program............... 62

Figure 6-4 Coverage plots of SA/AAN with different parameters...............................63

Figure 6-5 Comparison of GA and SA on Timeshuttle program.................................. 65

Figure 6-6 Coverage plots of five search methods on Perfect number program.........71

Figure 6-7 Comparison of GA and S A on Perfect number program with input space

[0,65535]...72

Figure 6-8 Comparison of GA and SA on Perfect number program with input space

[0,131071].. 72

Figure 6-9 Coverage plots of five search methods on Triangle classification program

with input space [-65536, 65535]...81

Figure 6-10 Coverage plots of five search methods on Triangle classification program

with input space [-2147483648, 2147483647]..82

Figure 6-11 Comparison of GA and SA on Triangle classification program with

input space [-65536,65535].. 83

Figure 6-12 Comparison of GA and SA on Triangle classification program with input

space [-2147483648,2147483647]... 83

Figure 6-13 Coverage plots of five search methods on Rescue program with input

space [0, 524287]...93

Figure 6-14 Coverage plots of five search methods on Rescue program with input

space [0,2147483647].. 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-15 Comparison of GA and SA on Rescue program with input space

[0,524287].. 94

Figure 6-16 Comparison of GA and SA on Rescue program with input space

[0,2147483647].. 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction

1.1 Problem of software testing

Software has become a significant part of computer system since 1970s and it plays a

more and more important role in our modem society. In a computerized embedded

world, the faults in the software can cause huge losses.

In order to reveal the faults in software and ensure software performs as intended,

software should be validated in its life cycle. Thus, validation of software is receiving

increasing notice. There are many methods to assess software—for example code

reviews, code inspection, formal specification. However, software testing is the most

common, widely accepted and practiced method of validating software. Software

testing is a process of exercising software in a controlled and systematic way in its

intended environment. Test is one of the most important techniques used in industry

to assess a software product and reduce the risk of failure [Gar99]. Testing can help

find the error earlier in the lift cycle of the software development, hence reduce the

cost of fixing error in the later stage and reduce the cost of whole development

process.

Unfortunately, software testing is a tricky job and it is a very expensive process—

the cost of testing exceeds the cost of design and coding, typically consuming at least

50% of the total costs of developing software [Bei90]. The generation of test data is

one of the most difficult and important problems in the testing process. Test data

generation is the process of identifying a set of test data that satisfies a selected

testing criterion. It plays a critical role in software testing process. However, it is a

labour-intensive and costly component in software testing. The effort involved in

selecting test data in industry typically represents at least 40% of the total testing

costs [Bei90]. While automation of the testing process—the maintenance and

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execution of test case—is becoming popular, most of the generation of test data is

still a manual activity.

1.2 Automation of test data generation

The automation of test data generation is a desirable way to drastically reduce the

time, effort, labour and cost in software testing. Moreover, the automation of test data

generation can increase the quality of software testing and help testers gain more

confidence of the whole testing process. Hence, automation of test data generation is

becoming a promising issue in software testing and attracting many researchers’

interest. A number of approaches on automated test data generation have been

presented in the literature. In this thesis, we focus on dynamic structural test data

generation.

Typically, the approaches on dynamic test data generation are based on a paradigm.

In this paradigm, the test data generation problem is reduced to a function

minimization problem, which can use heuristic optimization techniques to solve. A

number of optimization techniques have been applied to the dynamic test data

generation: Standard Genetic algorithm, Differential Genetic algorithm, Hill-

climbing, Simulated annealing.

1.3 Thesis contributions

The work presented in this thesis aims at investigating the performance of different

optimization techniques in test data generation. A series of experiments are

conducted. The ultimate goal is to identify the suitability of different optimization

techniques to the generation of test cases. Four optimization techniques Genetic

Algorithm, Simulated Annealing, Genetic Simulated Annealing and Simulated

Annealing with Advanced Adaptive Neighborhood are implemented and integrated

with test data generation system. The results of conducted experiments are thoroughly

analyzed and compared. To our knowledge, there is no report that Genetic Simulated

Annealing and Simulated Annealing with Advanced Adaptive Neighborhood have

been used in test-data generation. Condition-decision coverage is used as the test

adequacy criterion in our experiments. It is a more complicated and reliable test

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adequacy criterion than test adequacy criterion used in most previous approaches. For

example, statement coverage is used in [Kor96] and [PHP99], and branch coverage is

used in [CCCL96] and [PHP99]. The experiments are performed on five C/C++

programs. Empirical results are provided in this thesis, as well as the detailed analysis

of the performance of each optimization methods on each program. The results show

that generally, different optimization techniques have different suitability and

limitations. The results of the experiments have allowed for identification of

optimization techniques that are the most promising, as well as the ones that should

be avoided in the case of building systems for automatic generation of test cases.

The future research directions addressing the limitations of these optimization

methods are provided. This allows us to work in the future research area, which can

help the test data generation to be more successful and efficient.

1.4 Thesis outline

The remainder of this thesis is structured as follows.

Chapter 2 provides the introduction of software testing. Several key concepts are

discussed in this chapter, which include Functional testing, Structural testing and, test

adequacy criterion. This chapter also introduces several common test adequacy

criteria and provides an overview of test data generation problem.

Chapter 3 provides a survey of previous approaches in automated test data

generation.

Chapter 4 provides an overall description of four optimization algorithms used in

this thesis, which are Genetic Algorithm, Simulated Annealing, Genetic Simulated

Annealing and Simulated Annealing with Advanced Adaptive Neighborhood.

Chapter 5 presents the approach used in this thesis and introduces the overall

methodology presented in this thesis. These include the introduction of test adequacy

criterion, the strategy, the optimization algorithms, the programs under test and the

experiment procedure used in this work.

Chapter 6 presented the experimental result on five different programs. This

chapter gives a detailed analysis of each target program and the comparison of

performance of five test generation systems on each program.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7 concludes the thesis, discusses the result presented in this thesis and

provides an outlook on future research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 Software testing

In order to assess a software product, reduce the risk of failure and establish the

confidence of the software performing as intended, software should be validated in its

life cycle. Testing is the most common, widely accepted and practiced method of

validating software.

This chapter introduces the background of software testing by clarifying several

key concepts in software testing.

2.1 Functional testing and Structural testing

Basically, depending on the source of information used in the test plan, the

approaches in the software testing can be divided into two categories: functional

testing and structural testing.

Functional testing is also called black-box testing. Functional testing is

specification based. To conduct a functional testing, software testers derive the test

cases from the given specification of the target program; these test cases are used to

test if the target software product can meet the expected functional requirements. So

functional testing focuses on the target program’s expected functional requirements.

No implementation information of the source code but the specification of the

program is needed for a functional testing, so the target program should be seen as a

“black box”. As Pressman summarized in [PreOO, pp448], functional testing focus on

finding five different categories of errors: incorrect or missing functions, interface

errors, data structure error or external data access errors, behavior or performance

errors and initialization and termination errors.

Structural testing is also called white-box testing or glass-box testing. As the

name implies, structural testing addresses the examination of the control structure of

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the target program, i.e. testers need to treat the target program as a “white box”.

Structural testing is program based. Hence, the complete knowledge of construction

of the target program is needed to apply a structural testing. Using structural testing,

testers need to generate test cases to exercise the internal operations, such as loop,

conditional decisions, internal data structure, etc. The objective of structural testing is

to ensure that the internal operations of the target program perform as expected.

Obviously, this is what functional testing cannot reach.

As discussed above, functional testing and structural testing examine different

aspects of a software product, so the combination of these two testing methods is

necessary to ensure a software product has the desired features and quality. Moreover,

it is impossible to obtain a reliable software product without an appropriate structural

testing since structural testing is the cornerstone o f all testing [Bei96]. Hence,

structural testing is a very important issue in software testing.

The works presented in this thesis focus on structural testing.

2.2 Test Adequacy Criterion

In order to measure the quality of the source code, the first step is to choose an

appropriate test adequacy criterion. Test adequacy criterion is an important issue in

software testing. Previous researches [Hor94][Chi94][DM94] show that good test

adequacy criterion is essential at uncovering faults, which helps testers improve the

quality of software testing. Test adequacy criterion is used to define whether a test is

an adequate test or not, and thus determine if a software product under the test is

acceptable. As mentioned before, this thesis focuses on structural testing; hence the

following sections provide a description of several common test adequacy criteria

used in previous structural testing approaches. Most of them are based on the code

coverage of the target program. The basic coverage criteria are briefly described

below.

2.2.1 Statement coverage

Statement coverage is the simplest coverage criterion. As the name suggests, it

requires that every statement in the program must be executed at least once. However

when it comes to the compound conditions and control flow structure, a test set that

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fulfills 100% statement coverage may still not be enough since each statement only

requires to be executed once. Faults in the source code that may cause potential

failures may still not be found due to the limitation of this coverage criterion. This is

a very simple criterion.

2.2.2 Branch coverage

Branch coverage is also called decision coverage, which requires the test to take the

true and false outcomes of every decision in the program, even if there is no code

associated with these outcomes. For example, if we need to carry out the test to

satisfy the branch coverage of following code:

if tri=l && i+j>k then

t=2

else

t=l

end

We should generate a set of test data which cause both the true and false outcomes of

the condition tri=l && i+j>k, that means the test suite should execute both t=2 and

t=l.

Branch coverage is based on the control flow structure, so the test set that fulfills

the branch coverage increases the confidence of the control flow structure of the

program compared to the test set that only fulfills the statement coverage. However

when it comes to compound conditions, the weakness still exists. For example,

consider the following code:

if x>l or(x<0 && y>0 && z>y) then

end

In order to take the true branch of the decision, the only thing we need to do is to

make x larger than 1; the fault in the rest of the condition can easily be overlooked.

2.2.3 Condition coverage

As the name suggests, condition coverage reports the true or false outcome of each

Boolean sub-expression, separated by logical-and and logical-or if they occur.

Condition coverage measures each condition in a decision independently. Consider

the following decision:
7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if tri=l && i+j>k then

t=2

else

t=l

end

the test cases that fulfill the condition coverage should satisfy the following

conditions:

1. Cause tri=l to take on true and false at least one time

2. Cause i+j>k to takes on true and false at least one time.

2.2.4 Condition-decision coverage

Condition-decision coverage combines condition coverage and decision coverage. To

obtain the condition-decision coverage of a target program, the tester should generate

the test cases such that all conditions in all decision in the target program take on both

true and false outcomes at least once, and exercise the true and false outcomes of

every decision. For example, consider following situation:

if tri=l && i+j>k then

t=2

else

t=l

end

the test cases should satisfy following conditions:

1. Cause tri=lto take on true and false at least one time

2. Cause i+j>k to takes on true and false at least one time

3. Cause if tri=l && i+j>k to take on true and false at least one time and execute the

corresponding code at least one time.

Note that the test cases such that each condition in the target program take on both

true and false outcomes at least once, do not always cause each decision to take on

both true and false outcomes at least once. For example, let a and b be two

independent input, consider the following code fragment:

if a<0 and b>l

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The possible test cases such that each condition takes on both true and false outcomes

at least once are as follows:

a=-l, b=0;

a=0, b=0;

a=2, b=3;

a=3, b=-l.

All of four sets of test cases above cannot exercise the true branch of decision

if a<0 and b>l.

Obviously, condition-decision coverage is more complicate and reliable than the

statement coverage and branch coverage. Generation of the test cases fulfilling this

coverage can help developers gain more confidence in the quality of the source code.

Hence, the test criterion used in this thesis is condition-decision coverage.

2.2.5 Multiple condition coverage

Multiple condition coverage is a more expensive test criterion than condition

coverage. To achieve full multiple condition coverage, testers need to generate test

data to exercise every possible combination of true and false outcomes of conditions

in a decision. For example, consider the following code:

if tri=l && i+j>k then

t=2

else

t=l

end

multiple condition coverage requires 4 test cases, which are described as the

following:

tri=l && i+j>k,

tri^l && i+j>k,

tri=l && i+j<k,

tri^l && i+j<k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Generation of test-data

Once the test adequacy criterion has been chosen, the next step is to generate an

adequate test for the target program to satisfy the test adequacy criterion chosen, i.e.,

to find the appropriate test input to satisfy the given test adequacy criterion. This

process is called test-data generation. With appropriate test cases generated, the test

set will exercise the specific features of the target program that are required by the

test adequacy criterion. Therefore test data generation is a significant issue in

software testing, and there are numerous approaches addressing this issue.

Traditionally, test data have been generated by testers manually, but sometimes it can

be very difficult to find the test cases which satisfy the test criterion, so it is one of the

most labour-intensive parts in software testing.

The cost of testing exceeds the cost of design and coding, typically consuming at

least 50% of the total costs of developing software, and the effort involved in

selecting test data in industry typically represents at least 40% of the total testing

costs [Bei90].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

Chapter 3 Automated test data generation

As discussed in the previous chapters, software testing is a high-cost process in the

software development, and the most expensive problem of software testing is the

generation of test data. Automation is an important step to reduce the cost in software

testing. Compared to the traditional manual generation of software test data, the

automation of test data generation will reduce the time and labor consuming in the

software testing. This will lead to reduction of the cost of the whole software

development. Moreover, the automation of test data generation may increase the

quality of software testing and help testers gain more confidence of the whole testing

process. Automated test data generation can help software developers produce a

highly reliable software product at reasonable cost. All this means that automated test

data generation is a promising issue in software testing attracting many researchers’

interest. This chapter provides a survey of previous approaches in automated test data

generation.

There are a number of approaches for test-data generation presented in the

literature. Using the testing classification presented in the previous section, the

automated test data generation can be divided into two categories, which are

automated structural test data generation and automated functional test data

generation. There are two categories of automated structural test data generation:

static and dynamic.

3.1 Static test data generation

Instead of the actual value, the symbolic expression is used as input data in the static

test data generation approach. In static test data generation, the target program is

executed only symbolically. The static approach originated in 1970s, Clarke’s work

[Cla76] on symbolic execution is one of the earliest approaches. To generate a set of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constraints on test data, he designed a method to symbolically execute a given path of

ANSI Fortran program. Then he used different programming techniques to obtain the

test data, which executed the specified path under test. To improve the processing of

arrays, Ramamoorthy et al presented a approach called CASEGEN in [RHC76]. This

approach is built on Clarke’s work but it does not symbolically execute an array,

which is dependent on the input data until the constraint satisfaction stage. Coen-

Porisini et al [CPD93] attempted to solve the memory problem in CASGEN by using

an incremental approach. This approach binds each variable to a set of symbolic

values and to constraints of these symbolic values, which are incrementally updated.

This approach reduced the growth of computational space and time of algorithm, but

the testing of higher level software units may still need expensive symbolic

execution.

Static approaches are promising but all of them encounter common problems in the

loop analysis, array analysis and pointer analysis. Most of these problems come from

the limitation of the symbolic execution, and thus hinder the general acceptance of the

static method.

3.2 Dynamic test data generation

Different from the static approach, the dynamic approach in test data generation

actually executes the target program and attempts to solve the problems of the static

approach. This requires a test data generation system to generate the actual values of

input variables to actually execute the target program, and to collect the run-time

information. By collecting the run-time information during the execution, the test-

data generator evaluates the current test result and finds out how close it is to the

desired result. In the subsequent executions, the generator modifies the test data

gradually until it satisfies the given test objectives.

3.2.1 Earlier Dynamic test-data generation

Miller and Spooner [MS76] used the dynamic methods to automatically generate test

data in the 1970s. In this approach, parts of the program to be tested are seen as

numeric functions, which can be evaluated by executing the program, and whose

value is minimal for those inputs that satisfy the adequacy criterion. Therefore, the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

basic idea of this approach can be characterized as reducing the test data generation

problem to a numeric function minimization problem, which measures the quality of

a set of test data and represents the test requirements. Thus, it enables the application

of heuristic optimization techniques in test data generation approaches. Their

approach focuses on testing a particular path. In this approach, a path is selected in

the target program to be tested, all the conditions in this path are represented as a set

of constraints. A numerical function is generated so that the value of the function is

positive when all of the constraints are satisfied (i.e. this selected path is taken).

Now, the goal of the generation system is to find the test data so that this function has

a positive value.

The result of this approach encouraged other researchers to work on dynamic test

data generation. Building on Miller and Spooner’ s work, Korel presented a dynamic

approach of test data generation in [Kor90] [Kor96] [FK96]. In these approaches, the

execution of the test unit is under the control of a monitor; a function is devised in a

way that it will only be assigned a negative value when the desired branch is taken. A

simple function minimization technique is used to find the input data. Additionally,

dynamic data-flow information is used to improve the function minimization

technique. At the beginning of the search, a goal (a function) is established according

to the test requirements. If the code which is suppose to be tested cannot be reached, a

subgoal should be established in such a way that the desired code will be reached. So

the subsequent search works for attempting to satisfy this subgoal, and then another

new subgoal can be set up for this subgoal. More subgoals may be created in the same

way and this can be a recursive process. This approach is termed as chaining in

[Kor96] [FK96]. The approaches in [Kor90] use a gradient descent algorithm for the

function minimization, which modifies the values of variables slightly so that the

function value always improves. Although the experiments in [Kor96] used an

enhanced gradient descent algorithm, the search technique is still a local search

technique, thus the search process can still be trapped in the local minimum[MMS01].

Korel suggested the use of global optimization techniques to solve this problem.

Gallagher et al introduced another software test data generator ADTEST in

[GN97]. This approach specifies an entire path in advance, and then the goal is to

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

find an input that executes the desired path. Since it is known which branch must be

taken for each condition on the path, all of these conditions can be combined in a

single function whose minimization leads to an adequate test input. The ADTEST

system begins by trying to satisfy the first condition on the path, adding the second

condition only after the first condition has been satisfied. As more conditions are

reached, they are incorporated in the function that the algorithm seeks to minimize.

3.2.2 Tracey’s work

Tracey developed a general automatic test-data generation framework for the safety-

critical software to improve the quality of safety-critical software testing, which is

introduced in [TraOO]. As earlier approaches, this approach also sees the test-data

generation as a constraint-solving problem, and uses a search-based approach to

develop a flexible framework for test-data generation. Five search techniques are

implemented into the framework: Random search, Hill-climbing search, Simulated

annealing search, Genetic algorithm search, and Genetic algorithm with hill-climbing

search.

There are some important distinctions that set this approach apart from earlier

approaches. Firstly, this framework is targeted at generating negative test-data that

means it can illustrate a failure of the system. Secondly, this framework is flexible so

it can implement different search techniques and can be targeted at different testing

criteria.

Tracey’s work shows that, tuning parameter of each search-based technique has

limited effect on performance. However, the setting of parameter will have a greater

effect, when the search space of safety-critical software is simple and small, or when

the problem gets larger and more complex.

The result of Tracey’s work is encouraging. However, Tracey also points out that

it may be because his experiments were limited to safety-critical systems; the

software structure is not complex, so the system is easy to be decomposed into a

number of subsystems and each subsystem can be decomposed into a number of

software units. Furthermore, the data structure of the safety-critical system is only

limited to the numeric or enumeration types; this may also help this approach achieve

its success.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.3 Michael’s work

Michael et al [MMS01] presented a GADGET (the Genetic Algorithm Data

Generation Tool), which used dynamic test data generation. Their research is built on

previous work and attempts to apply the automatic test-data generation schemes to

complex and large programs. Three optimization techniques standard GA, differential

GA, gradient descent algorithms, as well as the random test data generation are

implemented in GADGET. This approach aims to examine the relation between the

program complexity and the difficulty of test data generation.

In GADGET, the target program was instrumented with additional code, which

was used to report the objective function information to an execution controller in

GADGET. Before starting the search process, a seed input is used to execute the

program, and after the first execution, a coverage table is initialized for the purpose of

tracking if a condition/decision is satisfied or not. After that, a series of test

requirements are subjected to the search in turn according to the coverage table

Whenever a test input satisfies a new test requirement, no matter whether it is the one

the test data generator currently working on or not, the new test input is recorded for

the future use and the coverage table is updated. Michael’s approach is different from

the previous approaches in the way that it doesn’t concentrate on one specific path to

the desired location. Instead, it only works on the condition that has been reached but

has not been covered yet. Since the goal is to obtain the complete coverage of the

target program, the search processes for every test requirements are not independent.

This is because when the test data generator works on a certain requirement, many

other requirements are often coincidentally satisfied.

The test adequacy criterion in GADGET is condition-decision coverage. GADGET

was applied to programs with various sizes and complexity, including a real-world

autopilot control program called b737 that has 2,046 source lines of code, which

Michael et al believed was the largest program reported in test data generation

literature. The target programs are written in C and C++, so compared to other

previous work which only focus on simple programs using simplified programming

languages, their experiments can be applied on more complex and more difficult

problems. Different from the previous approaches, GADGET greatly simplifies the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dynamic test data generation by skipping complicated control flow analysis for a

specific path. However, in GADGET, only those conditions that have been reached

are subjected to the optimization procedure, while other conditions/decisions are

given up.

The results in [MMS01] show that the Random test data generator was successful

in simple programs, but it didn’t perform so well when the complexity and the size of

the target program increases. The standard genetic search algorithm performed best

overall, while the differential genetic algorithm performed better in some programs.

3.3 Other test data generation methods

The dynamic domain reduction procedure (DDR) [OJP97] attempts to combine both

the static methods and dynamic methods in the structural test-data generation. This

approach is built on both the constraint-based [D091] goal-oriented [Kor90]

methods, and uses dynamic analysis and domain-based symbolic execution. The

result presented is pretty encouraging (the good results of DDR have between 93%

and 100% all-uses coverage), although it still has limitations in the array and loop

analysis.

3.4 Conclusions

A number of automated approaches have been presented in the test data generation

literature. Static approaches are based on the idea of using symbolic expressions to

represent the test input, and all of these static approaches have some common

limitations in arrays and pointer analysis, which hinder the general acceptance of

static methods in test-data generation.

Since Miller and Spooner proposed a test data generation in [MS76], all of the

approaches on dynamic test-data generation are based on this paradigm. The basic

idea of this paradigm is to formulate the test objectives as a series of numerical

functions. This means transforming the test data generation to a function

maximization (minimization) problem. In previous research, a number of heuristic

optimization techniques such as simulated annealing, gradient decent, and genetic

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithms have been implemented in test-data generation system to perform the

function minimization.

There are some successes in some particular problems. However, it is still difficult

to apply them to general problems. Most of them only work on simple programs

written in simplified programming languages and limit the test data to numeric types.

Obviously, for general problems, the program under test can have very complex

structure and is not limited to numeric types. Moreover, most of the dynamic test

data generation approaches encounter the local minima or the plateaus during their

search, so how to guide the search to escape from them is also another problem.

Clearly, all of the approaches discussed above have their own limitations, thus they

are limited by lack of generality. Moreover, many techniques still require manual

support such as manual path selection or manual refinement of the abstract tests into

executable concrete tests, which means the level of automation is not sufficient.

Simple search techniques and limitations on the software under test also restrict these

dynamic approaches to test data generation from applying to large scale industrial

software systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Chapter 4 Optimization search techniques

Many heuristic search techniques have been proven to be powerful and flexible for

solving complex optimization problems, and they have also been applied to software

testing problems. Among these optimization search techniques, there are two

techniques that are used most commonly in test data generation: Genetic Algorithms

and Simulated Annealing. This chapter provides a brief introduction of these two

search techniques and the approaches originated from them.

4.1 Genetic Algorithms

Genetic Algorithms (GAs) are based on an abstract model of the natural genetic

evolutionary process. They were developed by Holland et al. in the 1970s [Hol75].

Generally, the solutions of the optimization problem are represented as genotypes

[Hol75] or chromosomes [Sch87]. Genetic algorithms start by creating a population

of a fixed number of chromosomes randomly, and then each chromosome in the initial

population is evaluated according to a fitness function. Genetic algorithms then select

the parents in the population based on their values of the fitness function and

produces new offspring through the crossover and mutation, just like evolution in

biology. So, the basic procedure of genetic algorithms is as follows:

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1 Create initial population randomly (generate solutions of target

problem randomly and represent each solution as a chromosome)

Step 2 Evaluate every individual in the population according to the fitness

function that is problem dependent

Step 3 Select the parents based on the value of fitness function

Step 4 Combine the parents to produce the offspring (crossover)

Step 5 Mutate the offspring

Step 6 Evaluate the offspring according to the fitness function, if the stop

criterion is satisfied then stop, otherwise set the offspring as the new

population and go to Step 3

hgure 4-1 GA algorithm

Where the common stop criterion used is the global minima that is found or if genetic

algorithms stop making progress.

Basically, genetic algorithms include three phases: evaluating, selecting, and

applying genetic operators to chromosomes. Each phase corresponds to one phase in

natural evolution. In genetic algorithms, the evaluation is analogous to the

environmental determination of survability in biology, and the selection is analogous

to natural selection, and the crossover corresponds to the sexual reproduction in

nature. As in nature, if the solution of the given optimization problem is represented

as a chromosome in a proper way, the good genes (encoding of genetic information)

will be kept during the evolution and the offspring will have better and better fitness

function values (survivability) compared to the ancestors.

Traditionally, the parameters of a given optimization problem are represented as bit

strings. One method represents them as binary form [Hol75], which is based on an

analogy of the chromosomes in nature. The gray code representation, which has an

adjacency property, proven to be a better representation in some applications [CS88]

[JSE95]. At the same time, the non-binary representations have also been investigated

[Ant89][JM91][Mic96][FMJ98]. Thus, the encoding representation is problem

dependent.

Evaluation is based on the fitness function that is problem dependent, and it is

determined by the test adequacy criteria mentioned in chapter 2. The fitness function

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is discussed in detail later. After being evaluated, each individual in the population is

assigned a fitness value.

Once each individual in the population has been evaluated, selection can occur.

Selection is also called reproduction. It is used to decide which chromosomes will be

chosen to be parents and be contributed to successive generations. This is normally

based on the evaluated fitness function value of individuals in the current population

[Hol75]. Basically, in the selection phrase, there is a bias towards the well-fitted

individuals, i.e. the well-fitted individuals have more chances to be selected. There

are a number of selection methods [BH91]; the common selection methods include

roulette wheel sampling selection, tournament selection, and ranking selection

[Bar85].

Roulette wheel sampling selection selects individuals based on their fitness value;

each individual’s possibility of being chosen as parents is stochastic and proportional

to its fitness value [Hol75][Gol89a]. The selection possibility of each individual Psei

(/) is calculated as

P„,(0 = ^ - (4.1)
E/(o
i=1

Where n is the size of population, /=l...n, and f (i) is the fitness value of each

individual. Imagine a roulette wheel, where each individual in the population is

corresponds to a slice in the wheel, and the size of the slice is proportional to the

individual’s Psei(i)• Individuals are chosen to generate the new generation by spinning

the roulette wheel.

As the name suggests, tournament selection uses n tournaments to choose n

individuals. In each tournament, the individual with the best fitness in a group of k

elements is chosen; the others are eliminated in the population. The most widely used

tournament selection is the binary tournament, i.e. k=2.

Ranking Selection was first introduced by Baker [Bar85] to overcome the strong

bias in the Roulette wheel sampling selection. In ranking selection, the population is

ordered based on the fitness, and each individual in the population is assigned a rank r

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

according to its fitness. This method then selects parents in the population based on

their ranks rather than their actual fitness. This selection method still has a bias

towards fitter solutions but also allow all solutions in the population to have a chance

to be selected.

After the parents are chosen, the new population can be produced by applying

genetic operators to parents. Generally, genetic operators include crossover and

mutation.

Crossover is a random exchange of genetic information between two parent strings

to produce offspring strings. Single point crossover is a simple crossover; the name

means that there is only one crossover point. Once the crossover point is generated

randomly in a pair of parent strings, the substrings that are defined by that the

crossover point will be recombined together and produce two children. Firgure 4-2 is

an example of single point crossover.

Parent 1 Parent 2

o_L l
crossover point

Child 1

n i i 0 | 1 0 0 0 0 1 1 0
1 I

1 i 0 0 1 0 0 0 0 1 i 0

Child 2
crossover point

i i 0 0 Jo IK 0 ill -1rnmi111 0 0

Figure 4-2 Single point crossover of GA

Figure 4-2 shows how the encoding of the genetic information of the parents is

kept in the children.

Multipoint crossover requires more than one crossover points in a pair of selected

parent strings. The working principle is shown in Figure 4-3.

Parent 1 Parent 2

o'l 1 1 0 0 1 0 . . 1 0 0

Chile

s /

cros

1 1

T
soverpoint

0 J 0 0 111ill 0, t 0 1 1 0

1 1 0 0 1 0 0 0 0 1 1 0
T

crossoverpoint

Child 2

1 1 1 „ 1 0 0 0 1 1 1 I I I 0 0

Figure 4-3: Multipoint crossover of GA

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mutation is used to keep the diversity in the population and prevent GA from being

trapped in a local optimum. Typically, a simple mutation is implemented by flipping

one bit that is randomly selected in the string infrequently, i.e. changing 1 to 0 and

vice versa with a small probability.

Figure 4-4 shows an example of a simple mutation.

0 1 0 0 0 1 0 1 0 1 .0 0

4

0 1 0 0 0 1 0 1 0 1 1 0

Figure 4-4: Mutation of GA

As Darrell Whitley pointed out in [Dar93], Genetic Algorithms are often described as

a global search method that does not use gradient information. Thus it is a more

general working method than other global optimization methods.

4.2 Simulated Annealing

Simulated Annealing originates from the analogy between the annealing process of

solids and the problem of solving combinatorial optimization problems. In condensed

matter physics, annealing is a process that cools a solid in a heat bath to reach a

minimal energy state(ground state). At initial high temperatures, all molecules of the

solid randomly arrange themselves in a liquid state, and as the temperature descends

gradually, the crystal structure becomes more ordered and reaches a frozen state

when the temperature drops to zero. If the temperature drops too quickly the cristal

will not reach the thermal equilibrium at each temperature, hence, the defects will be

frozen into the crystal structure and the crystal will not reach a minimal energy state

but a meta-stable state (i.e. being trapped in a local minimum energy state). So a

proper initial temperature and a proper cooling schedule are important to an annealing

process. Metropolis designed a Monte Carlo method to simulate the annealing process

at a fixed temperature. An initial state of a thermodynamic system was chosen at

initial energy E and initial temperature T, the initial state is perturbed and the change

in energy AE is computed. If the change in energy is negative the new perturbed state

is accepted. If the change in energy is positive the new perturbed state is accepted

with a probability given by the Boltzmann factor exp -(AE/T). This processes is then

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

repeated sufficient times to give good sampling statistics for the current temperature,

and then the temperature is decremented and the entire process repeated until a frozen

state is achieved at T=0.

In the 1980s, Kirkpatrick, Gelatt and Vecchi and Cemy [KGV83], suggested that a

form of simulated annealing could be used to solve complex optimization problems.

In their research, the current state of the thermodynamic system is analogous to the

current solution to the combinatorial problem, the energy equation for the

thermodynamic system is analogous to the objective function, and the ground state is

analogous to the global minimum in the whole search space. At the beginning of the

SA search, an initial temperature is set up and a solution of the target optimization

problem is generated randomly in the search space. The new solution will be selected

randomly from the neighborhood of the current solution that is analogous to the state

perturbation of the Metropolis simulation. Solution transition will be accepted

according to the Metropolis acceptance criterion. At each temperature, this process is

continued until equilibrium is reached, and this process will repeat at each

temperature while the temperature gradually drops down until the temperature

reaches a very low value (obviously, at this temperature no solution transition will be

accepted).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Osman et al [OK96] summarized the SA algorithm as below:

Step 1: Generate an initial random or heuristic solution S.

Set an initial temperature T, and other cooling schedule parameters.

Step 2: Choose randomly S e N(s), and compute A = C (S")-C(S)

Step 3: If:

(i) ^ is better than S (A<0),or

(ii) ^ is worse than S but “accepted” by the randomization process at

(- 1the present temperature T, i.e. eyT J > 9 , (where 0 < 6 < 1 is a random

number).

Then replace S by S .

Else Retain the current solution S.

Step4: Update the temperature T depending on a set of rules, including:

(i) The cooling schedule used.

(ii) Whether an improvement was obtained in Step 3 above.

(iii) Whether the neighborhood N(S) has been completely searched.

Step 5: If a “stopping test” is successful stop, else go to Step 2.

Figure 4-5: SA algorithm

Though simulated annealing is a general purpose search strategy, a number of

decisions should be made during its implementation. In [Dow93], Dowsland

classified the implementation decisions into two categories: generic decisions, which

affect the search process itself and problem, and specific decisions, which depend on

the problem domain and representation.

The generic decisions are those involving the parameters of the cooling schedule,

which are the initial temperature, how the temperature is reduced and how many

neighborhood solutions should be examined at each temperature. Numerous

theoretical and practical cooling schedules have been presented in the literature.

Though there is no fixed rule for setting the cooling schedule, the desirable guides for

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the parameters of the cooling schedule are suggested. Firstly, the initial temperature

should be “high enough” to allow reasonably free exchange of solutions around the

search space. Secondly, the temperature should cool slowly enough to allow the

search to escape from the local optimal solutions. Finally, the iterations at each

temperature can be a constant number and also can change as the search progress, for

example, when the temperature is low, the iterations increase to allow the search to

fully examine the neighborhood space.

The specific decisions are concerned with how to represent the solution space,

define the neighborhood structure and quantify the cost function.

A solution’s neighborhood is defined as reachable solutions to it. In other

optimization problems, it can be very complicated and flexible. Since depending on

different specific features of the solution, we can define different neighborhood

structures. This thesis addresses the software testing problem, so the neighborhood

structure is relatively easy to define, but the neighborhood range still has effect on the

efficiency of S A, which will be shown in our results and will be discussed later.

While in the original SA, the neighborhood range is fixed, Corona [Cor87]

proposed an adaptive method of SA for continuous optimization problems. This

method tends to adjust the neighborhood range to keep the acceptance rate of 0.5.

This will be discussed in detail in the next section.

The cost function is used to evaluate the solution of the problem. An appropriate

cost function is essential to the implementation of Simulated annealing. It should

represent the problem, provide guidelines to desirable areas of the search space and

therefore lead the search to the global optimum. The cost function selected will be

calculated for every solution during the whole search process, so it should be

calculated efficiently, which is also important when we consider the cost function.

4.3 Simulated Annealing with Advanced Adaptive Neighborhood

(SA/AAN)

Different from the original Simulated Annealing, the neighborhood range of

Simulated Annealing with Advanced Adaptive Neighborhood (SA/AAN) is not fixed.

In [Cor87], the neighborhood range is adjusted to keep the acceptance rate of 0.5.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This method uses the following equations to control the neighborhood range g(p)in

continuous optimization problems.

1 + c ——— i f p > p \

g(p)= ■ (1 + c p l P)~l i f p < p2
p2
1 otherwise

(4.2)

p=n/N (4.3)

Where c is a scaling parameter, pl= 0.6, p2=0A. The acceptance rate p can be

calculated from the number of acceptance n within the period N where the

neighborhood range is constant.

The generation of the new candidate solution becomes very easy with the

application of the Corona’s method for continuous optimization problems solved by

SA. Let xi be the current solution, r is a uniform random number with the interval [-1,

1] and m is the neighborhood range. The next candidate solution xi' can be generated

by the following.

xi' = xi + rm (4.4)

According to Corona’s method, the neighborhood range is adjusted to keep the

acceptance rate of 0.5.

Mitsunori MIKI et al [MHO02] investigated the performance of Corona’s method

and found out that when the solution is at a local optimum and the neighborhood

range is smaller than the distance of local optimum area, the magnification factor of

Corona’s method is not big enough to allow the solution to escape from the local

optimum. Thus, the solution is trapped to the local optimum. So they proposed

another new adaptive method, named SA/AAN, for controlling the neighborhood

range in continuous optimization problems to obtain good solutions in shorter

annealing steps. This method introduces a parameter to control

HO(p') i f p > pl
g(p)=i 0.5 i f p < p 2 (4.5)

1 otherwise

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HO = HO x H I Initial value of H0=2.0

7/1=
2.0 / / > pl
0.5 i f p ' < p 2 (4.6)
1.0 otherwise

Where p is calculated by the same equation in Corona’s method and p ' is calculated

by the following,

p ' - l I L (4.7)

L is the neighborhood range’s parameter adjustment interval, which is set as 200 in

their experiments, while / is the number of acceptance within the period L. The

acceptance rate is set to 0.5 at the beginning, then it is decreased gradually in the

annealing process.

The acceptance rate in SA/AAN can be maintained to a low value, which is

different from Corona’s method. This allows the neighborhood range to decrease

gradually and sometimes increase on a large scale and this prevent the solution to be

stuck in the local optima. In their experiments, this method is found to be very

effective in continuous optimization problems.

4.4 Genetic Simulated Annealing (GSA)

As discussed before, SA and GA are powerful methods in optimization problems,

while both of them have their own limitations. In [KKD95], Seichi Koakutsu et al

discussed the characteristic of SA and GA. One of the essential features of SA is its

stochastic hill climbing. SA introduces small random changes in the neighborhood so

that it can search the solution space exhaustively but this also cause a weakness of

this method, which is too computation-intensive. On the other hand, the crossover

operation of GA and the population of GA allow it to search for the global optimum

in the large search solution space roughly and quickly, but it has no explicit way to

create the small moves in the solution space [KKD95]. In order to combine the good

features of these two methods, Seichi Koakutsu et al [KKD95] designed a new

method, named Genetic Simulated Annealing. Genetic simulated annealing combines

the hill-climbing feature of SA and the crossover operation of GA. The process of

GSA is presented in [KKD95] as follows.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GSA_algorithm(Np,Na,TO, a)

{ X={xi,...,xNp};

xl*= the best solution among X;

xg*= xl *; /initialize the global best-so-far/

while (stop criterion is not met)

{T=T0; /initial temperature/

/jump/

select the worst solution x; from X;

select two solutions, Xj, Xk from X such that f(xj)of(Xk)

Xi=Crossover(xj, Xk)

/SA based local search/

while not frozen or not meet the stopping criterion)

{for (loop=l; loop<=Na; loop++)

{x'=Mutate(xi);

Af=f(x')-f(xj);

r=rand()

if (Af<0 or r<exp(-Af/T))

x; =x';

if(f(xi)<f(xL*))

XL*= X;;}

T=Txa /lower temperature/}

if (f(xL*)<f(xG*))

xG*= xL*;

xi= xl*;

f(xL*)=unlimited; }

return xG* }

Figure 4-6 GSA algorithm

As Figure 4-6 shows, GSA starts with a population that the population size is Np.

There are three main operations in GSA: SA-based local search, GA-based crossover

operation and population update. SA-based local search creates the small change in

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the local search space and preserves the local best-so-far solution. GA-based

crossover operation creates big jumps in the search space when the search comes to

large flat areas or the system is frozen. Note that the parents selection in [KKD95] is

random selection, which is different from the GSA we used in our experiment. GSA

updates the population by replacing the worst solution, which is conducted in two

different ways. The worst solution in the population is replaced with the solution

produced by the crossover. Furthermore, at the end of the local SA-based search, the

worst solution is replaced with the local best-so-far solution in the local SA-based

search.

Genetic Simulated Annealing (GSA) is applied to the Non-slicing floor-plan design

problems, which is the one of the most difficult problems in layout, and is compared

with SA. The result in [KKD95] showed that GSA improved the average chip area by

12.4% and the average wire length by 2.95% over SA with the same computing

resource.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Chapter 5 Description of experimental studies

5.1 Description of strategy taken

The works presented in this thesis is based on the approach that transforms a problem

of automatic generation of test cases into a function minimization problem. The goal

of this section is to explain this approach. This approach has been adapted from a

system called GADGET [MMS01],

5.1.1 Test adequacy criterion

As it was discussed in chapter 3, condition-decision coverage is a test adequacy

criterion that combines condition coverage and decision coverage. To obtain the

condition-decision coverage, the tester should generate such a test data that all

conditions in a decision take on both true and false outcomes at least once, and

exercise the true and false outcomes of every decision. Condition-decision coverage

is more complicated but also more reliable than statement coverage and branch

coverage. It is also less expensive than the multiple condition coverage. These are the

most important reasons for selecting condition-decision coverage as the test criterion

in our work.

5.1.2 Coverage table

To generate the test cases that exercise all conditional branches in the source code, we

need to generate the test cases to reach those conditions first. The tester should find a

way to reach the desired code location. For example, consider the following fragment

of code:

if (tri= =0){
if((i+j<=k)||(i+k<=j)||(j+k<=i))

tri=4;
else tri=l;
return tri;
>

In order to execute the statement if ((i+j<=k)||(i+k<=j)||(j+k<=i)), the test case

need to satisfy the first condition if (tri= =0). In the past, researchers used different
30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

strategies to find a path leading the desired code location. This involves complicated

control flow analysis for a specific path. Instead of concentrating on a specific path,

another approach presented in [Chang96] is based on coverage table, which attempts

to cover all the conditional branches in the whole program. This approach is also

used in GADGET and our experiments. With this approach, a coverage table is

generated. The purpose of this table is to keep track of all conditional branches

already covered by existing test cases. Once a conditional branch is reached, that

means that one branch of this condition has been taken, the function minimization is

applied on that condition to find the test case which takes the other branch of this

condition. Consider the following code fragment:

1: if (t= =1) printf (“triangle is scalene\n”);
2: else if (t= =2) printf ("triangle is isosceles\n");
3: else if (t= =3) printf ("triangle is equilateral\n");
4: else if (t= =4) printf ("this is not a triangle\n");

Table 5-1 illustrates the coverage status of each condition or decision with test case

that cover the true branch of line 3.

Table 5-1: An example of coverage table

True False

Line 1 - X

Line 2 - X

Line 3 X -

Line 4 - -

Table 5-1 shows that the existing test case has already covered the false branch of

line 1, line 2 and the true branch of line 3. The existing test cases already reach the

first three conditions but haven’t reached the fourth yet. According to the coverage

table, the testers can apply optimization techniques to generate the test cases, which

exercise the true branch of linel, the true branch of line 2, or the false branch of line

3. With this strategy, the testers are able to skip complicated control analysis to find

the path to a specific code location.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.3 Function minimization and objective function

Dynamic test data generation, as described in Chapter 3, is based on a concept of

transformation of a problem of finding test cases into a problem of numerical

maximization (or minimization). A function is built as the result of this

transformation. This function is then maximized (or minimized) using different

optimization techniques.

The key idea of the approach is the creation of a function that guides the search for

a test set that satisfies the condition-decision coverage. Each branch of each condition

in the target program is represented by a function that will be called an objective

function. So the goal of the search process is to minimize the value of all objective

functions. The objective function is used to evaluate how good the test case is. The

value assigned to the function for a given test case indicates how close the test case

satisfies the test criterion. Basically, the objective function is devised as follows.

• If the target condition cannot be reached, the objective function will be given

a penalty which is a very large value.

• If the target condition can be reached, but the desired branch of the target

condition cannot be exercised, the objective function will have a value that is

between 0 and the large value, representing how good the current test case is.

• If the target branch of the target condition is exercised, the value of the

objective function is 0, which is the optimum of the objective function.

• If there are more than one condition which are connected with AND or OR

operators in the target decision, the + operator is used for AND operations,

and the minimum operator is used for OR operations. Consider the following

decision build using 3 conditions with AND operators:

IF condl AND cond2 AND cond3

In order to take the true branch of this decision, the overall objective function

that combines all the conditions is:

3=31+32+33

Where 3 is the objective function value for the whole decision, and 31,32,33

are the objective function values for the single conditions in this decision.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On the other hand, consider the following decision which is built using OR

operators:

IF condl OR cond2 OR cond3

In this case, to take the true branch of this decision, the objective function is:

3=m in(3l,32,33)

where 3 is the objective function value for the whole decision, and 31,32,33

are the objective function values for each condition in this decision.

The form of the objective function depends on a condition existing in a branch. Some

examples of conditions with their objective functions are presented in Table 5.2.

Table 5-2 Example of the objective function

Decision type Example Objective function

Equality
if (i= =j)
(true)

if program can reach this condition
3=abs(i-j)/SF

else 3=p

True/false
if (tri= =1)

(true)

if program can reach this condition
if tri= =1 3=0
else 3=p*m

else 3=p

True/false
i+j>=k

(true)

if program cannot reach the condition
“if (tri= =1)&& (i+j>=k)”

3=p
else if i+j>=k 3=0

else 3=l-abs(i+j-k)/SF

True/false

if (tri==l)&&

(i+j>=k)

(true)

if program cannot reach this condition
3=P

else
if tri/1

3 l=p*m
32=abs(i+j-k)/SF
3=31+32

else if i+j>k 3=0
else 3=abs(i+j-k)/SF

Where p is a significant value representing the penalty of not reaching a condition; it

is 2147483647 in our experiments, m is a constant value between 0 and 1. SF is a
33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constant value to make sure that abs(i+j-k) is always smaller than 2147483647, and it

is 3 in the Triangle classification program.

EXAMPLE: Let’s look at a fragment of program as an example illustrating the

construction of objective function that will be minimized. Let the code be like the

following:

if(i==j)

if (tri==l)&& (i+j>=k)

In order to seek test data to excise both the true and false outcomes of the condition

if(i==j), we need to seek test data to reach this condition. If the program’s execution

fails to reach this code, the objective function will be given a worst value, i.e. large

value p. If we need to take the true branch of this condition, and the program can

reach this condition, the objective function will be given a value abs(i-j)/SF to

measure how close i and j are to each other. So the objective function of true outcome

is shown below:

„ [p unreached
True 3 = i

[abs(i - j) / SF otherwise

For example, p =2147483647 and SF=3. If we need to take the false outcome of the

condition, if i is equal to j, the objective function will be given a poor value,

otherwise the objective function value will be 0. So the objective function of false

outcome is shown below:

False 3 :
0 i * j reached
p' i = j reached
p unreached

where p =2147483647, P'=0.7*P and SF=3. Note that in the above situation, the two

branches of the condition are also the two branches of the decision.

In the following line of the code, there are two conditions in the decision

if(tri==l)&& (i+j>=k); we need to evaluate two conditions separately and we also

need to evaluate the whole decision. The objective functions are shown below:

For condition 1 (tri==l),

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 tri = 1 reached
True 3 1= ■ /?x0.45 tri ^ 1 reached

P unreached

0 tri ^ 1 reached
False 3 1= px0.45 tri = 1 reached

P unreached

For condition 2 (i+j>=k),

0
True 3 2= < ahs(k — i - j) /SF

P

i+ j > k reached
i+ j <k reached

unreached

0 i + j < k reached
False % 2= U+ahs(i+ j — k)/SF i + j > k reached

P unreached

For the decision if(tri==l)&& (i+j>=k),

True 3=31+32

False 3=Minimum (31,32)

Using the generated objective functions, the test data generator can use

optimization techniques to search for the test cases that satisfy the given test

adequacy criterion.

5.1.4 Generation of test cases - methodology

The first step in generation of test cases is derivation of test requirements. These test

requirements are derived from condition-decision coverage of the target program.

Recalled from Section 2.2.4, this leads to two test requirements for each condition

and this means each condition should take both true and false branch at least once.

This also leads to two test requirements for each decision if the decision is built with

multiple conditions (in GADGET [MMS01], they believed that these two test

requirements are satisfied by any test set that meets the test requirements for each

condition). As discussed in the Section 2.2.4, this is not always the case. Each test

requirements is represented as the corresponding objective function.

The second step deals with establishing a coverage table. The purpose of the table

is to record the condition information of the target program, and keep track of

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

whether a test requirement is tested or not. Based on the test requirements derived

from the test adequacy criterion, the target program is instrumented with additional

code for each condition. This allows for reporting the value of parameters in the

target program. These values will be used to calculate the value of the objective

function during the search process.

Before the test data generation system starts the search process, a seed input is

generated randomly in the particular input space based on the specification. The seed

is used to execute the program under test for the first time. Typically, the first

execution covers some percentage of source code, which means that some test

requirements are satisfied. After the first execution, the seed input and the coverage

percentage are recorded and the coverage table is initialized. The initialized coverage

table provides the information of the reached test requirements.

According to the coverage table, the test data generator finds out which condition

that can be reached and have not yet been covered completely (see the Section 5.1.2).

The test data generation system then applies optimization techniques to optimize an

objective function built on each reached test requirement in turn. For each reached but

unsatisfied test requirement, the test data generation system attempts to use function

minimization techniques to satisfy them.

During the search process, the initial population is seeded with the test cases which

causes the current test requirement to be reachable. If the size of the population is

larger than the number of current test cases, which makes the test requirement

reachable, then the generation system will generate the additional test cases randomly

in the input space. Whenever there is a new test requirement being satisfied or being

reached in the search process the coverage table is updated, and the test cases, the

number of target program is executed and the coverage percentage are also recorded

for future use.

For each reached but unsatisfied test requirement, the search process is repeated

until the stopping criterion is met. The stopping criterion is either the finding of

successful test data that satisfies the current test requirement or the reaching of the

maximum number of iterations by the test data generator. The test data generator then

starts another search process for the next reachable test requirement.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After all of the reachable test requirements have been subjected to the search,

GADGET stops. While in our work, if there are still unreachable test requirements in

the coverage table, the test data generator applies function minimization on those

unreachable test requirements. In this process, the seed input are generated randomly.

At the end of the working process for each target program, the coverage percentage

and the corresponding target program execution times are kept for the later result

analysis.

Basically, the working process used in this work is illustrated in Figure 5-1:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Step 1 Preparation process

• Deriving test requirements according to the condition-decision

coverage.

• Prepare coverage table.

Step 2 Initialization process

• Random generation of test cases.

• Initial execution of the program under test with generated test cases;

• Monitoring the coverage status of all test requirements during the

execution.

• Coverage table initialization.

• Store seed and relevant information.

Step 3 Reached test requirements search process (using optimization

algorithms)

• Seeded with the test cases that reach the current test requirement;

additional test cases are generated randomly if it is necessary.

• Execute the target program with every test set; record the coverage, the

test cases and the relevant information; update the coverage table.

• Repeat the search process for current test requirement until the

stooping criterion is met.

Step 4 Repeat step 3 until all of the reached test requirements have been

subjected to the search

Step 5 Repeat step 3 for the unreachable test requirements; seeded with

random test input.

Figure 5-1 Working process of the test data generation system

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Experimental setup

This section introduces the methodology used to conduct the experiments presented

in this thesis. This includes the description of the optimization algorithms used, the

programs under test and the procedures used in this work.

5.2.1 Optimization algorithms

Four optimization algorithms are used in the experiments; they are Genetic Algorithm

(GA), Simulated Annealing (SA), Genetic Simulated Annealing (GSA) and

Simulated Annealing with Advanced Adaptive Neighborhood (SA/AAN). The overall

description of these optimization algorithms has been presented in Chapter 4.

Random test data generator is also used for the purpose of comparison.

The following describes the basic implementation decisions of these search

methods used in this thesis.

GA: Binary gray code Genetic Algorithm is used in our experiments. The

selection schema in GA is Roulette wheel sampling selection, which selects

individuals based on their fitness value. Single point crossover and the

uniform mutation are applied.

SA: In the experiments, the neighborhood is generated by incrementing and

decrementing the input data. For example, consider there are three input

parameter x, y, z, and the current test case is (xt, y-„ zd- Every element in the

neighborhood N is defined as (x, ±rimi, y, ±r2m2, n ±r3ni3), where mi, m2, m3

are three randomly generated values between 0 and 1 , and ri_ r2; r3 are the

neighborhood ranges for each input parameter respectively.

SA/AAN: The neighborhood is generated by incrementing and decrementing

the input data.

GSA: The selection schema in GSA is binary tournament selection, which

selects the individual with the better fitness in a tournament pair. Single point

crossover and the un-uniform mutation are applied.

Random: Random test data generator generates the test data pseudo-randomly

from the input space and use these test data to execute the programs under

test.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Implementation of test data generation

All of the target programs in our experiments are written in C/C++, and the test data

generator is written in Ruby. An I/O project is created as a channel for transferring

information between the test data generator and the target program. The basic

working process is as follows:

The test cases are generated by the test data generator; the test case is written

into a I/O object, which works as a channel between Ruby and C/C++. The

test case is then transferred to the target program as input data through the I/O

object and the target program is executed with this input. During the

execution, the instrumented code in the target program output some message

and write them into the I/O object. When program execution finishes, the test

data generator will read all of the messages from the I/O object as a string and

extract the useful information from this string. This information is used to

calculate the objective function and update the coverage table. In some cases,

the target program will also output some messages to the screen, such as

“Please enter the number”. Since skipping these messages does not change

the structure of the target program, in our experiments, these messages output

are disabled in order to simplify the I/O processing,

5.2.3 Tested programs

Five different c/c++ programs are tested in our experiments. Although they are not

large programs, all of them involve some amount of nested conditional structures, and

some of them have very complicated compound conditions, which increase the

complexity of the programs.

The programs tested in this work are as follows:

1 Hex_dec conversion

Hex_dec conversion is a program, which decides if the input string is a legal

hexadecimal number and converts the legal hexadecimal number to a decimal

number. The input string has a limited number of characters; in our case, the number

of characters varies in a range between 3 and 13. The possible characters include

almost all of the characters that can be entered from a keyboard.

2 Timeshuttle [IM]

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Timeshuttle is a program that requires the user to input a destination date of the time

travel, which includes month, day and year. It returns a corresponding message to the

user. In the experiments, the input data is limited to (0,64) for month, (0,128) for day

and (0,16192) for year.

This program has 40 decisions and 17 functions.

3 Perfect number

The perfect number program is used to decide if a number is a perfect number and if

it is a prime number. This program includes 16 decisions, 17 conditions.

4 Triangle classification

A triangle classification program, which includes some nested conditions and an

enumerated data type variable, is used in our experiments as well as in Michael’s

approach [MMS01]. The triangle classification requires a user to input three integers

as three sides of a triangle, and if then decides which type of triangle it is. The output

to user has four results, “ scalene”, “isosceles”, “equilateral” and “not a triangle”.

This program has 14 decisions.

5 Rescue [IM]

The rescue program requires the user to input a number, and decides if the input is a

legal secret code. The legal secret code should be a 5-digit number and satisfies some

other rules. If the input is legal secret code, the program decodes the legal secret code

and returns the corresponding secret message to the user. This program has 16

decisions.

The source code of these five programs is shown in the Appendices.

5.2.4 Experiment procedure

In order to make comparisons of the different optimization algorithms’ performances

on the target programs, the comparison is based on the number of the runs of the

program under test instead of the real computation time. This is because the execution

of the target program is the most time-consuming part in the test data generation,

especially for the real large programs. Moreover, compared to the real computation

time, this provides a uniform comparison platform without the affect of operation

systems and workstation performance.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For every program under test, ten complete test-generation runs with each test

generator were performed. For the Rescue program and the Triangle classification

program, we also conduct the experiments on two different input spaces, which allow

us to investigate the effect of input space on the performance of different optimization

methods. The result tables and coverage plots are provided for each program to

illustrate the results.

5.2.5 Terms (vocabulary, glossary)

The following describes the several phrases we use in this thesis.

Target program—In this thesis, the programs under test are referred as the target

program.

Test requirement—It is the test objective in the search process; in this work, a test

requirement means taking the true/false branch of a particular condition/decision.

Test data generation is a process to find the test cases to satisfy the test requirements

in turn.

Input space—It is the input range of the random generated test cases. It is based on

the specification of the program under test and it plays a considerable role in test data

generation.

Candidate test cases—In this work, the test cases that can successfully reach a

condition/decision are recorded. When the test data generator starts to work on this

condition/decision, the test data generator is seeded with these test cases. In this

thesis, these test cases are also referred as candidate test cases.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Empirical Results

Five test data generation approaches are applied to a set of programs to obtain

complete condition-decision coverage. A number of experiments on each program are

performed and results are reported.

This chapter gives a detailed analysis of each target program and the comparison

of performance of five test generation systems on each program.

6.1 Hex_dec conversion

6.1.1 Analysis of the source code

The code of Hex_dec conversion is provided in the Appendices. The decision

branches are shown below.

if(c>=’0’ &&c<=’9’||c>=’a,&&c<=,f’||c>=’A’&&c<=’F’) //I

else

if (i<=MAX) //2

else printf(“\nMaximum 7 digits of hex number”);

for (j=0;sO]!=,\n’; j++) //3

if (s[j]>=,0,&&s|j]<=’9’) //4

if (s[j]>=’a’&&s[j]<= T) //5

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are 6 decisions in Hex_dec that need to be evaluated. 36 test requirements

need to be satisfied to obtain complete condition-decision coverage. Thus, maximum

of 36 objective functions are generated to allow the test generators to calculate the

value of the objective function 3 (*). For example, consider the following fragment of

code:

>

The instrumented code is shown below (Italic character means the instrumented

code):

printf("%c" ,c);

if(c>=’0’ &&c<=,9, ||c>=V&&c<=T||c>=’A’&&c<=,F’)

{printf(“@”);

. . . }

During the execution, the instrumented code reports the value of c to the test data

generation system. This allows for calculating the objective function and measures

how close it is to the desired value.

There are 6 conditions and one decision need to be evaluated independently.

According to the requirement of condition-decision coverage, 14 test requirements

should be satisfied. Thus, 14 objective functions are generated as below.

To ensure the decision

lf(c>=’0’ &&c<=’9’||c>=,a,&&c<=’F||c>=,A’&&c<=’F’)

takes value ”true”, the following function is built:

if(c>=’0’ &&c<=,9,||c>=,a’&&c<=T||c>=’A,&&c<=’F’)

{ . . .

printf(“&”);

0
True: 3 (x)= ■ mim'raww(3l, 32,33)

P

otherwise reached
unreached

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where 3 1 (x)=
[c-'9' o ' 9'
I'O'-c c <'0'

\c - 'F ' c >'F'
3 2(x)=

I 'A '-c c <'A'

33(x)= ,
c - ' f o ' f '
a '-c c<'a'

To ensure the decision

If(c>= ’O’ &&c<= ’9’||c>= ’a’&&c<= T ||c>= ’ A’&&c<= ’F’)

takes value "false”, the following function is built:

0 unsatisfied^' > c >'0',' f'> c> 'a",'F '>c> 'A ')
3 (x)= -{31 + 32 + 33 otherwise

where 3 1 (x)= j

3 2(x)=

3 3(x)=

c-'9' c>'9'
'0'-c c <'0'

ic - 'F ' c> 'F '
['A '-c c<'A'

{ c - 'f ' O ' f '
I 'a '-c c<'a'

In the similar way, functions representing other 12 cases are built:

c>=0’

True: 3 (x)=

False: 3 (x)=

c<=’9’

True: 3 (x)=

0 c > 0 reached
'O'—c c < 0 reached

p unreached

0 c < 0 reached
c-'O'+l c > 0 reached

p unreached

0 c <'9' reached
c— 9' c >'9' reached

p unreached

reached
reached

unreached

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

False: 3 (x)=

c>=’a’

True: 3 (x)=

False: 3 (x)=

c<=T

True: 3 (x)=

False: 3 (x)=

c>=’A’

rrae: 3 (x)=

False: 3 (x)=

c<=’F’

7>we: 3 (jc)=

False: 3 00=

0 c >'9' reached
'9'-c + 1 c <'9' reached

p unreached

0 c>'fl' reached
'a '-c c<'a' reached

p unreached

0 c<'a' reached
c-'a'+l c>'a' reached

p unreached

0 c <'f ' reached
c - ' f ' c > ' f ' reached

p unreached

0 c > ' f ' reached
' f ' —c + l c <' / ' reached

p unreached

0 c>'A' reached
'A '-c c<'A' reached

p unreached

0 c<'A' reached
c - 'A '+1 c>'A' reached

p unreached

0 c<'F' reached
c -'F ' c>'F' reached

p unreached

0 c>'F' reached
'F' -c + \ c<'F' reached

p unreached

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where p is a significant value. In the experiments, p=2147483647.

6.1.2 A Comparison of Five Test Data Generations Approaches

Ten complete test-generation runs with each test generator were performed for the

Hex_dec program. The following tables show the test results of running GA, GSA,

SA, SA/AAN and Random test generator to the Hex_dec program. The input data is

limited to a string of characters, whose length is between 3 and 13. That means users

can enter from 3 to 13 characters as the input data. The minimum length is 3 to ensure

the complexity of the problem, otherwise, if there is no limitation of the minimum

length, the problem will become very easy to solve. For example, to generate a single

digit hexadecimal number is much easier than to generate a 3 digit one. The possible

characters include most characters that can be input from the keyboard. For each test

generator, the condition-decision coverage and the stopping criterion are showed in

each result table, as well as the average coverage percentage of ten runs.

Table 6-1 Result table of Random Generator

No. Covered
Test requirements
(Maximum: 36)

Percentage
coverage (%)

Stopping criterion

1 35 97.22 Random test data
generator stops after
10,000 target-
program execution.

2 35 97.22
3 35 97.22
4 34 94.44
5 35 97.22
6 34 94.44
7 34 94.44
8 35 97.22
9 33 91.67
10 35 97.22
Average
coverage

34.5 95.83

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-2 Result table of Genetic Algorithm
(Population size: 50, Generation: 30)

No. Covered
Test requirements
(Maximum: 36)

Percentage
Coverage (%)

Stopping criterion

1 35 97.22 For each test
requirement,
GA stops when it
finds the test case,
which satisfies the
test requirement, or
after 30 generations if
it still cannot satisfy
the test requirement.

2 35 97.22
3 35 97.22
4 35 97.22
5 35 97.22
6 35 97.22
7 35 97.22
8 35 97.22
9 35 97.22
10 35 97.22
Average
coverage

35 97.22

Table 6-3 Result table of Simulated Annealing
_____________ (Neighbor: 80)_____________

No. Covered
Test requirements
(Maximum: 36)

Percentage
coverage (%)

Stopping criterion

1 35 97.22 For each
requirement, SA
stops when it finds
the test case which
satisfies the test
requirement or stops
after 25 temperature
steps if it still cannot
satisfy the test
requirement.

2 35 97.22
3 35 97.22
4 35 97.22
5 35 97.22
6 35 97.22
7 35 97.22
8 35 97.22
9 35 97.22
10 35 97.22
Average
coverage

35 97.22

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-4 Result table of Genetic Simulated Annealing
(Population size: 50, Generation: 800, Neighbor: 10)

No. Covered
Test requirements
(Maximum: 36)

Percentage
coverage (%)

Stopping criterion

1 34 94.44 For each
requirement, GSA
stops when it finds
the test case which
satisfies the test
requirement or stops
after 800 generations
if it still cannot
satisfy the test
requirement.

2 28 77.78
3 35 97.22
4 32 88.89
5 32 88.89
6 32 88.89
7 16 44.44
8 34 94.44
9 34 94.44
10 34 94.44
Average
coverage

31.1 86.39

Table 6-5 Result table of Simulated Annealing with Advanced Adaptive
Neighborhood

___________ (Neighbor: 50)_________ ______________
No. Covered

Test requirements
(Maximum: 36)

Percentage
coverage (%)

Stopping criterion

1 35 97.22 For each requirement,
SA/AAN stops when
it finds the test case
which satisfies the
test requirement or
stops after 40
temperature steps if it
still cannot satisfy the
test requirement.

2 35 97.22
3 35 97.22
4 35 97.22
5 35 97.22
6 35 97.22
7 35 97.22
8 35 97.22
9 35 97.22
10 35 97.22
Average
coverage

35 97.22

The above result tables show the different performance of different test data

generations. GA, SA and SA/AAN exhibit the best performances, which are close to

100% coverage; Random generator also almost achieves the same coverage as well.

On the other hand, the average performances of GSA test generation are below 90%.

The result table of GSA shows that there is one run that only achieves 44.44%

coverage.
49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The most challenging test requirement in the Hex_dec program is to take the false

branch of the second decision

if (i<=MAX)

which requires that the test case is a valid Hexadecimal number, and the length of the

input string should be greater than 7. Note that in our experiments, the possible input

characters include most characters that can be entered from the keyboard. This makes

it tough to generate a valid 8 digit of Hex number. In our experiments, none of the

test data generator can generate a test case to satisfy this condition.

6.1.3 Coverage plots for Five Test Data Generators

Figure 6-1 shows the coverage plots of five test data generators, which summarize

graphically the results of the experiments. It represents obtained coverage as a

function of number of executions of program under test. Comparing to other

programs used in this work, the structure of Hex_dec program is much simpler and

has much less lines of code, thus, all of the five test data generators perform well on

it. The graph shows that GA, SA and SA/AAN have the best performance. Though

GA, SA and SA/AAN achieve almost full coverage after they execute the Hex_dec

program 4500 times, there is a slight difference between SA and other two test

generators. The coverage plot in Figure 6-1 shows this difference in the experiments.

To obtain 90% coverage, GA and SA/AAN only need to execute the program less

than 500 times, while SA needs 1500 times. GA and SA/AAN also hit their peaks

earlier than SA. By contrast, to obtain 90% coverage, Random generator needs to

execute the target program 5500 times and needs another 2000 times of target-

program execution to hit the peak. GSA performs poorly on the Hex_dec program

compared to the other four test data generators; the performance of GSA is even

worse than Random generator. The result of the experiments shows that the coverage

of GSA is still below 90% after 9500 times of target-program execution. GSA hit its

peak in about 5500 times of target-program execution, after that, it fails to improve.

Generally, GA and SA/AAN perform better than other three test data generators.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hex dec1 ■RS:

©o>m
©>Oo

20

0 1 2 3 4 5 6 7 8 9 10
execution times numxIO3

—♦ — y(Random) ® y(GA)
y SA) y (SA/AAN)

_________________________ m y(GSA)__

Figure 6-1 Coverage plots of five search methods on Hex_dec program

6.1.4 GA and SA/AAN: Two methods that have best performance

This section concentrates on discussing two test data generators that have the best

performance on the Hex_dec program. For SA/AAN and GA test data generator, the

maximum, the minimum and the average coverage of each method in 10 experiments

are plotted against the number of the execution of the Hex_dec program, and shown

in Figure 6-2.

Even if both the GA and SA/AAN achieve the same coverage in 3500 times of

target-program execution, there is still a difference between these two generators. GA

hits the peak in the very early stage of some experiments, which only take 100 times

of target-program execution, though some experiments need 2500 times. In contrast,

to achieve the highest coverage, SA/AAN needs to execute the target program 1500

times in its best run. While in its worst run, SA/AAN needs to execute the target

program 3500 times to hit the peak.

Generally, though GA and SA/AAN can achieve the same highest coverage,

SA/AAN needs more effort than GA to achieve the same coverage.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hex_dec (GA and SA/AAN)

100
90
80
70
60
50
40
30
20
10

0
2 3 4 5 6 7 8 9 100 1

execution tim es numxIO3
y(GAmin) ■ y(GAmax)

a- y(GAmean) X y(SA/AANmin)
* y(SA/AANmax) — • — y(SA/AANmean)

Figure 6-2 Comparison of GA and SA/AAN on Hex_dec program

6.2 Timeshuttle

6.2.1 Analysis of the source code

There are 40 decisions in the Timeshuttle program, which are identified as below.

int main(void)
{

if (validlnput) 111
{

>
else
{

>

>
void plannedTrip(Month mToday, int dToday, int yToday, Month m, int d, int y)
{

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

void randomTrip(Month mToday, int dToday, int yToday, Month m, int d, int y)

bool isLeapYear(int year)

int gregorianDay(Month m, int d, int y)

if (isValidDate(m, d, y)) 111
{

if (y == YEAR1) //3
{

>

else
{

for (int i = YEAR1+1; i < y; i++) //4
{

>

>

>

>
bool isValidDate(Month m, int d, int y)
{

if (m < JAN || m > DEC) 1/5

else if (d > days!nMonth(m, y) || d < 1) 116

else if (y < YEAR11| y > YEARMAX) //7

else if (y — YEARl)//8
{

if (m < OCT) 119

else if (m == OCT && d < 15) 1110

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else

}
else

}
int getYearDay(Month m, int d, int y)
{

for (Month mo=JAN; mocm; mo = static_cast<Month>(mo + 1)) / / l l
{

>

>

Weekday getWeekday(int gDay)
{

}
string dayName(Weekday w)
{

string name;
switch(w)
{

case SUN: //12
name = "Sunday"; break;

case MON: //13
name = "Monday"; break;

case TUE: //14
name = "Tuesday"; break;

case WED: //15
name = "Wednesday"; break;

case THU: //16
name = "Thursday"; break;

case FRI: //17
name = "Friday"; break;

case SAT: //18
name = "Saturday"; break;

>

>

string monthName(Month m)
{

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

switch(m)
{

case JAN: //19
name = "January"; break;

case FEB: //20
name = "February"; break;

case MAR: //21
name = "March"; break;

case APR: //22
name = "April"; break;

case MAY: //23
name = "May"; break;

case JUN: //24
name = "June"; break;

case JUL: //25
name = "July"; break;

case AUG: //26
name = "August"; break;

case SEP: //27
name = "September"; break;

case OCT: //28
name = "October"; break;

case NOV: //29
name = "November"; break;

case DEC: //30
name = "December"; break;

>

return name;
>

void getTodaysDate(Month& m, int& d, int& y)
{

>

void gDay2MDY(int gDay, Month& m, int& d, int& y)
{

if (gDay <= YEAR1DAYS) //31

{

if (gDay <= days!nMonth(OCT, y) -14) //32

else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

}
>
else
{

while (gDay > daysInYear(y)) //33

{

}
>

while (gDay > daysInMonth(m, y)) //34

{

>

>

int daysInMonth(Month m, int y)
{

switch(m)
{

case JAN: case MAR: case MAY: case JUL: case AUG: case OCT:
case DEC: //35

case APR: case JUN: case SEP: case NOV: //36

case FEB: //37

>

>

int daysInYear(int y)
{

>

int randlnt(int a, int b)
{

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>

void outputMessage(int days, Month mToday, int dToday, int yToday,
Weekday w, Month m, int d, int y)

{

if (days < 0) //38

else

if (days < 0) //39

else

>

bool getInputDate(Month&m, int& d, int& y)
{

if (! valid) //40

>

Compared to other programs used in this thesis, this program has more functions and

a more complicated relationship between the input parameters and the variables that

appear in the conditions that will be evaluated. Most of the decisions do not include

multiple conditions but unfortunately, there are some nested decisions. For example,

consider the following fragment:

if (m < JAN || m > DEC) //5

else if (d > daysInMonth(m, y) || d < 1) //6

else if (y < YEAR11| y > YEARMAX) //7

else if (y == YEAR1) //8
{

if (m < OCT) //9

else if (m == OCT && d < 15) //10

else
In order to obtain a test case to satisfy the decision if (m < OCT), the test case also

needs to satisfy the condition if (m < JAN || m > DEC) and (y == YEAR1) and take

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the false branches of (d > daysInMonth(m, y) || d < 1) and (y < YEAR1 || y >

YEARMAX). Since the test data generators discussed in this thesis does not involve

any static analysis of the source code, the test data generators only rely on the

instrumented code to guide the search. The code is instrumented as below:

printf (“a”);
printf (“%d” ,m);
printf (“b”);
if (m < OCT) 119
printf (“c”);
printf (“%d” ,d);

else if (m == OCT && d < 15) //10

else
The instrumented code reports the value of m and d allowing for calculating the

objective function.

So the generating of the objective function for the decision if (m < OCT) is still

straightforward.

To take the “true” outcome of the decision if (m < OCT), the objective function is

generated as below:

0 m <oct reached
3 (x,y,z)= <m —oct + 1 otherwise reached

p unreached

To take the “false" outcome of the decision if (m < OCT), the objective function is

generated as below:

0 m> oct reached
3 (x,y,z)= f oct—m otherwise reached

p unreached

where oct=10, and p is a significant value 2147483647.

There are totally 87 test requirements needed to be satisfied to obtain full condition-

decision coverage in the Timeshuttle program.

6.2.2 A Comparison of Five Test Data Generation Approaches

Ten complete test-generation runs with each test generator were performed for the

Timeshuttle program. The following tables 6-6, 6-7, 6-8, 6-9, 6-10 show the test

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

results of running GA, GSA, SA, SA/AAN and Random test generator on the

Timeshuttle program. For each test generator, the condition-decision coverage, the

stopping criterion and the number times the program is executed in every run are

shown in their respective result tables, as well as the mean coverage percentage of ten

runs.

Table 6-6 Result table of Random Generator

No. Covered
Test requirements
(Maximum: 87)

Percentage
coverage (%)

Stopping criterion

1 76 87.36 Random test data
2 76 87.36 generator stops after
3 76 87.36 30,000 target-
4 76 87.36 program execution.
5 76 87.36
6 76 87.36
7 76 87.36
8 76 87.36
9 76 87.36
10 76 87.36
Average
coverage

76 87.36

Table 6-7 Result table
(Population size: 21

of Genetic Algorithm
30, Generation: 20)

No. Covered
Test requirements
(Maximum: 87)

Percentage
coverage (%)

Stopping criterion

1 79 90.80 For each test
2 77 88.51 requirement,
3 79 90.80 GA stops when it
4 87 100 finds the test case,
5 79 90.80 which satisfies the
6 77 88.51 test requirement, or
7 79 90.80 after 20 generations
8 84 96.55 if it still cannot
9 84 96.55 satisfy the test
10 86 98.85 requirement.

Average
coverage

81.1 93.22

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-8 Result table of Simulated Annealing
(Neighbor: 50)

No. Covered
Test requirements
(Maximum: 87)

Percentage
coverage (%)

Stopping criterion

1 81 93.10 For each
requirement, SA
stops when it finds
the test case, which
satisfies the test
requirement, or
stops after 80
temperature steps if
it still cannot satisfy
the test
requirement.

2 81 93.10
3 77 88.51
4 77 88.51
5 76 87.36
6 81 93.10
7 82 94.25
8 84 96.55
9 82 94.25
10 76 87.36
Average
coverage

79.8 91.72

Table 6-9 Result table of Genetic Simulated Am
(Population size: 150, temperature step: 60, Generation: 2C

lealing
0, Neighbor: 20)

No. Covered
Test requirements
(Maximum: 87)

Percentage
coverage (%)

Stopping criterion

1 81 93.10 For each
requirement, GSA
stops when it finds
the test case, which
satisfies the test
requirement or
stops after 200
generations if it still
cannot satisfy the
test requirement.

2 82 94.25
3 77 88.51
4 77 88.51
5 75 86.21
6 75 86.21
7 82 94.25
8 75 86.21
9 75 86.21
10 77 88.51
Average
coverage

77.6 89.20

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-10 Result table of Simulated Annealing with Advanced Adaptive
Neighborhood
(Neighloor: 50)

No. Covered
Test requirements
(Maximum: 87)

Percentage
coverage (%)

Stopping criterion

1 76 87.36 For each
requirement,
SA/AAN stops
when it finds the
test case which
satisfies the test
requirement or
stops after 80
temperature steps if
it still cannot satisfy
the test
requirement.

2 72 82.76
3 79 90.80
4 77 88.51
5 81 93.10
6 79 90.80
7 72 82.76
8 79 90.80
9 77 88.51
10 79 90.80
Average
coverage

77.1 88.62

The most challenging condition in this program is decision 10

else if (m == OCT && d < 15)

in the code above. In order to take the true branch of this condition, the test case

should be (10, d, 1582), where d should be smaller than 15. In our experiments, only

two runs of GA generate test cases that satisfy this condition; one of them also

satisfies the other 86 test requirements successfully and obtains a complete coverage.

The other one, fails to find the test case that exercises the false branch of m == OCT,

so it only satisfies 86 test requirements.

6.2.3 Coverage plots for Five Test Data Generators

In order to make a further detailed comparison of different methods, the different test

generator’s performances on the Timeshuttle program are summarized graphically as

a coverage plot. The number of test requirements satisfied is shown as the coverage

percentage, which is plotted against the number of executions of the target program in

the Figure 6-3.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

timeshuttle100
90
80

^ 70
lr 60
2 50
> 40
« 30

20
10

0
0 1 2 3 4 5 6 7 8 9 10 11

execution tim es numxIO3
—♦-y(Random) -»-y(G A)

y(GSA) —x— y(SA)
-*-y(SA/AAN)

Figure 6-3 Coverage plots of five search methods on Timeshuttle program

As we see from the graph, GA still performs best on the Timeshuttle program since

the very early stage. SA obtains almost the same highest coverage as GA, although it

takes more effort to hit the peak. GSA also performs well on the Timeshuttle program

in 10,000 times of target-program executions, covering about 88% of the code, which

is slightly lower than GA and SA. But after that, as we can see from the result table 6-

9, in 10 runs, some of runs are stuck in the local optimum and seldom have

improvement, while 3 runs can keep on improving. Random generator hits its peak in

about 4,500 times of target-program execution, but the search is fruitless afterwards.

It is interesting that the plots show that SA/AAN performs so poorly on the

Timeshuttle program, even worse than Random generator. The coverage is still below

60% after SA/AAN executes the program 8,000 times. To make a further analysis,

several experiments are conducted. During these experiments, the neighborhood size

and the temperature step are adjusted, and the new result is surprising. The following

graph shows the comparison of performance of SA/AAN with different sets of

parameters.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

timeshuttle (SA/AAN)
100

o>

40

0 1 2 3 4 5 6 7 8 9 10 11
execution tim es numx103

y(SA/AAN 1) - m ~ y(SA/AAN2) -fr~y(SA/AAN3)

Figure 6-4 Coverage plots of SA/AAN with different parameters
SA/AAN 1: neighborhood size: 50 temperature step: 80
SA/AAN2: neighborhood size: 20 temperature step: 20
SA/AAN3: neighborhood size: 10 temperature step: 20

For each set of parameters, the highest coverage is shown as the result table below.

Table 6-11 Result of SA/AAN with different parameters

Run SA/AAN 1 (%) SA/AAN2 (%) SA/AAN3 (%)
1 87.36 88.51 88.51
2 82.76 82.76 88.51
3 90.80 88.51 75.86
4 88.51 87.36 86.21
5 93.10 88.51 87.36
6 90.80 88.51 80.46
7 82.76 88.51 88.51
8 90.80 85.06 87.36
9 88.51 88.51 73.56
10 90.80 87.36 87.36
Average coverage 88.62 87.36 83.91

While with the larger neighborhood size and more temperature step, SA/AAN can

obtain a higher coverage through its long search process. As we see from Figure 6-4,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with smaller neighborhood size and less temperature steps, SA/AAN can obtain some

coverage very quickly. This seems hard to explain, but after we look through the

working process of the SA/AAN generator, this can be explained easily. The working

process of the test data generator is a working process that attempts to satisfy all of

the test requirements. For each test requirements, SA/AAN will terminate either

because it finds the successful test case or it has worked for enough temperature

steps. Thus, when SA/AAN works on some test requirements that are hard to find the

successful test case, SA/AAN with smaller neighborhood size and less temperature

steps waste less effort on them. For example, consider the decision if (m < OCT) and

else if (m == OCT && d < 15), as we discussed in the previous sections, they are

most challenging test requirements in Timeshuttle program and they are intrinsically

hard to satisfy. SA/AAN spends a lot of effort to attempt to cover these conditions

before it gives up and starts to work for the next test requirement. Apparently, this

can happen to any other test data generator discussed in this thesis, but it is more

obvious in this situation, since SA/AAN can find the test case for some test

requirements very quickly but for some other test requirements, it does not have the

ability to handle them. Unfortunately, it seems an unavoidable problem for software

testing program using this strategy.

6.2.4 Two methods that have best performance

As we see from the result tables and the coverage plots, GA and SA have the best

performance on the Timeshuttle program. To make a further comparison of these two

generators’ performance, the maximum, the minimum and the average coverage of

each method in 10 experiments are plotted against the execution times of the

Timeshuttle program, shown as Figure 6-5.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

timeshuttle (GA and SA)

100

o>

55

2 3 4 5 6 7 8 9 10 110 1
execution times numxio3

- - - - - - y (G A m i n) ■ y (G A m a x) — {%— y (G A m e a n)

X y (S A m in) X y (S A m a x) — • — y (S A m e a n)

Figure 6-5 Comparison of GA and SA on Timeshuttle program

The graph shows that in 10,000 times of target-program execution, the performance

of GA and SA are similar to each other. However, SA seems to have some runs where

it performs very well and where it performs not so well. The performance of GA is

more stable. Note that, this graph only shows the performance of these two generators

in 10,000 target-program executions. We find out that both of these two generators

achieve their highest coverage after that. For example, GA achieves 100% coverage

after it executes the Timeshuttle program for 17,415 times.

6.3 Perfect number program

6.3.1 Analysis of the source code

To analyze the program, the decision points are shown below.

if ((num % 7) = = 0)//l

if ((num % 11)== 0)//2

if ((num % 13) == 0) //3

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else

switch(p)
{
case 1: //4

case 2: //5

case 3: //6

default: 111

>

void myint::sum()
{

if (check == 0) //8

else

>

void myint::prime()
{

for (i = 1; i < (0.5 * num); i++) 119
{

if (i != num && num != 1) //10
{

if ((num % i) = = 0) / / l l

>
else

>

if (p > 0) //12

else

>
void myint::perfect()

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{if (num % 2==0) //13

for (i = num/2; i >=2 ; i—)//14
{

if (num % i == 0) //15

>
if (perfectsum == num) //16

if num>100 //17
if num>1000 //18

else

>
int main()
{

>
There are 37 test requirements that should be satisfied to obtain complete condition-

decision coverage of the perfect number program.

The objective functions are generated in the similar way as in Hex_dec and

Timeshuttle program. For example, for the decision 18

if num>1000 //18
0 num> 1000 reached

True: 3 (x)= j 1000- num+ 1 otherwise reached
p unreached

False: 3 (x)=
0 num <1000 reached

num—1000 otherwise reached
p unreached

Where p is 2147483647. The instrumented code below is used to collect the

information for calculating the objective function.

printfi “p ”);

printf(“%d” ,num);

printfi “q”);

if num>1000 //18

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.2 A Comparison of Five Test-Data Generation Approaches

The tables from 6-12 to 6-16 show experimental results of 10 runs of each test data

generators on perfect number program.

Table 6-12 Result table of Random Generator
No. Covered test

requirements
(Maximum: 37)

Percentage
coverage (%)

Stopping criterion

1 31 83.78 Random test data
generator stops
after 10,000 target-
program execution.

2 31 83.78
3 31 83.78
4 31 83.78
5 31 83.78
6 31 83.78
7 31 83.78
8 31 83.78
9 31 83.78
10 31 83.78
Average
coverage

31 83.78

Table 6-13 Result table of Genetic Algorithm
(Population size: 50 Generation: 30)

No. Covered test
requirements
(Maximum: 37)

Percentage
coverage (%)

Stopping criterion

1 37 100 For each test
requirement,
GA stops when it
finds the test case,
which satisfies the
test requirement, or
after 30 generations
if it still cannot
satisfy the test
requirement.

2 37 100
3 36 97.30
4 37 100
5 36 97.30
6 35 94.60
7 35 94.60
8 36 97.30
9 35 94.60
10 36 97.30
Average
coverage

36 97.30

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-14 Result table of Simulated Annealing
____________ (Neighbor: 50)_________ >____

No. Covered test
requirements
(Maximum: 37)

Percentage
coverage (%)

Stopping criterion

1 36 97.30 For each
requirement, SA
stops when it finds
the test case which
satisfies the test
requirement or
stops after 30
temperature steps if
it still cannot satisfy
the test
requirement.

2 36 97.30
3 36 97.30
4 36 97.30
5 35 94.60
6 36 97.30
7 36 97.30
8 36 97.30
9 36 97.30
10 36 97.30
Average
coverage

35.9 97.03

Table 6-15 Result table of Genetic Simulated Annealing
(Population size: 50, temperature step: 20,Generation: 200 Neighbor: 10)

No. Covered test
requirements
(Maximum: 37)

Percentage
coverage (%)

Stopping criterion

1 31 83.78 For each
requirement, GSA
stops when it finds
the test case which
satisfies the test
requirement or stop
after 200
generations if it still
cannot satisfy the
test requirement.

2 31 83.78
3 31 83.78
4 31 83.78
5 35 94.60
6 31 83.78
7 31 83.78
8 34 91.89
9 32 86.49
10 32 86.49
Average
coverage

31.9 86.22

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-16 Result table of Simulated Annealing with Advanced Adaptive
Neighborhood
Neighloor: 50

No. Covered test
requirements
(Maximum: 37)

Percentage
coverage (%)

Stopping criterion

1 35 94.60 For each
requirement,
SA/AAN stops
when it finds the
test case which
satisfies the test
requirement or
stops after 30
temperature steps if
it still cannot satisfy
the test
requirement.

2 35 94.60
3 35 94.60
4 35 94.60
5 35 94.60
6 36 97.30
7 35 94.60
8 35 94.60
9 35 94.60
10 35 94.60
Average
coverage

35.1 94.86

The results show that GA and SA have the best performance. GA achieves complete

coverage in three runs.

The most challenging condition in Perfect number program is decision 18

if num>1000 //18

which requires that test case is a perfect number bigger than 1000. Although in ten

runs experiments, the average coverage of SA and GA are the same, in three runs, GA

obtains complete condition-decision coverage, while SA always fails to find the test

case to cover this condition.

6.33 Coverage plots for Five Test Data Generators

The coverage plots for five test data generators are shown below.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perfect number(input space=[0,65535])
100

oo>
SSa>>o
o

r

0 1 2 3 4 5 6 7 8 9 10
execution times numxio3

—♦ —yl (Random) y1 (GA) —A— y1 (GSA)

_ *_ y |(S A) — y1 (SA/AAN)

Figure 6-6 Coverage plots of five search methods on Perfect number program

The graph shows that each test data generator almost achieves their highest coverage

in the very early stage. Random generator fails to improve after that, only covering

about 83% of the code. The coverage of GSA is almost the same as Random test data

generator in the early stage, however, it still improves slowly. In the end, GSA

obtains higher coverage than Random generator. There is a big gap between the

performance of these two generators and the other three. For GA, SA and SA/AAN,

all of them achieve above 90% coverage in about 1,500 times of target-program

execution, SA/AAN almost has no improvement after that, while GA and SA still

improve slowly.

6.34 Two methods that have best performance

The graphs that show the maximum, the minimum and the average coverage of two

test data generators in 10 experiments working on two different input spaces are

provided to make a further comparison.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perfect number(GA and SA, input space=[0,65535])
100

90

80

60

50

40
8 9 106 70 2 3 4 5

execution times numxIO3
♦ y(GAmin) ■ y(GAmax)

— &— y(GAm ean) * y(SAm i n)
* y(SAmax) — • — y(SAmean)

Figure 6-7 Comparison of GA and SA on Perfect number program with input space

[0,65535]

Perfect number(GA and SA, input space=[0,131071])
100 m...

a>o>
re
©>O
O

50

2 3 4 5 6 7 8 9 100 1
execution times numxIO3

♦ y(GAmin) m y(GAmax)
y(GAmean) x y(SAmin)

X y(SAmax) — #— y(SAmean)

Figure 6-8 Comparison of GA and SA on Perfect number program with input space

[0,131071]

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The result tables for GA and SA working on the input space [0,131071] are shown

as Table 6-17 and Table 6-18.

Table 6-17 Result table of Genetic Algorithm
________________ (Population size: 50 Generation: 30)__________________
No. Covered test

requirements
(Maximum: 37)

Percentage
coverage (%)

Stopping criterion

1 36 97.30 For each test
requirement,
GA stops when it
finds the test case,
which satisfies the
test requirement, or
after 30 generations
if it still cannot
satisfy the test
requirement.

2 35 94.59
3 37 100
4 35 94.59
5 36 97.30
6 35 94.59
7 36 97.30
8 35 94.59
9 35 94.59
10 37 100
Average
coverage

35.7 96.49

Table 6-18 Result table of Simulated Annealing
____________ (Neighbor: 50)_________ _̂___

No. Covered test
requirements
(Maximum: 37)

Percentage
coverage (%)

Stopping criterion

1 36 97.30 For each
requirement, SA
stops when it finds
the test case which
satisfies the test
requirement or
stops after 30
temperature steps if
it still cannot satisfy
the test
requirement.

2 36 97.30
3 36 97.30
4 36 97.30
5 36 97.30
6 36 97.30
7 36 97.30
8 36 97.30
9 36 97.30
10 36 97.30
Average
coverage

36 97.30

The graph shows that after 4,000 times of execution of the target program, we still

can tell the maximum coverage curve of GA and the minimum coverage curve of SA

clearly, while the other four curves are so close to each other that we can hardly tell

the difference. Combining the result tables, we find out that for the input space

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[0,65535], GA performs much better in two runs than in other runs. On the other

hand, SA performs much worse in one single run than others. Although the average

coverage of GA and SA are almost the same, GA has the ability to achieve complete

coverage on both input spaces.

The Figure 6-7 and Figure 6-8 are so similar to each other, which suggests that for

the perfect number program, the difference between these two input spaces hardly has

influence on the result. Note that as shown in the result tables of GA and SA for the

input space, GA still achieves complete coverage in two runs.

6. 4 Triangle classification program

6.41 Analysis of the source code

The code for Triangle classification is shown in the appendices, and the decision

points are shown below:

int triangle (int i, int j, int k){

if((i<=0)||(j<=0)||(k<=0)) //I

if (i==j) //2

if (i— k) //3

if(j==k) //4

if (tri— 0) //5
{
if ((i+j<=k)||(i+k<=j)||(j+k<=i)) //6

else

>
if (tri>3) //7

else
if ((tri==l) &&(i+j>k)) //8

else if ((tri==2) &&(i+k>j)) 119

else if ((tri==3) &&(j+k>i)) //10

else

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>
int main(){int a,b,c,t;

if (t==l)
{

/ / l l

>
else if (t==2)
{

//12

>
else if (t==3){ //13

>

else if (t==4){ //14
>

>
To obtain complete condition-decision coverage, there are 51 test requirements to be

satisfied.

Consider the following code fragment:

else if ((tri==2) &&(i+k>j)) 119
In order to collect the information to calculate the objective function, the additional

code is instrumented in the following way:
printf(“a”);
printf(“%d”, tri);
printf(“%d”, i);
printf(“b”);
printf(“%d”, j);
printf(“c”);
printf(“%d”, k);
printf(“d”);
else if ((tri==2) &&(i+k>j)) 119
Printf(“b”);

To ensure the condition tri==2 take value ”true”, the following function is built:

Execution of the instrumented code provides information about values of tri, i, j and

k allowing for calculating the value of 3 (.x, y, z). Where p is a significant value and it

p unreached
True 31 = \ p Xt n reached tri ^ 2

0 reached tri == 2

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is the maximum range of input space 2147483647 in the triangle program, m is a

value between 0 and 1, which is 0.45 in our experiments.

To ensure the condition tri==2 take value ’’'false”, the following function is built:

tri==2
0 tri ^ 2 reached

3 1= <pY.m tri — 2 reached
p unreached

In the similar way, functions representing all of the other 4 cases are built:

0+k>j)

0 i + k > j reached
True 32= -j 1 + ahs(i + k - j)/3 i + k< j reached

p unreached

False 3 2=
0 i + k < j reached

abs(i + k — j) /3 i + k > j reached
p unreached

if(tri==2)&& (i+k>j)

„ f p unreached
True 3= t n

[31 + 32 reached

n \p unreached
False 3= t

[min imum(31,32) reached

6.42 A Comparison of Five Test-Data Generation Approaches

The tables below show the result of each test data generator working on the triangle

classification program.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-19 Result table of Random Generator
Input space 1 is [-65536,65535]; input space 2 is [-2147483648,2147483647]

No. Covered
Test
requirements
Input space1
(Maximum: 51)

Covered
Test
requirements
Input space2
(Maximum: 51)

Percentage
coverage (%)
Input space1

Percentage
coverage (%)
Input space2

Stopping
criterion

1 24 24 47.06 47.06 Random test
2 24 24 47.06 47.06 data
3 24 24 47.06 47.06 generator
4 24 24 47.06 47.06 stops after
5 24 24 47.06 47.06 30,000
6 24 24 47.06 47.06 target-
7 24 24 47.06 47.06 program
8 24 24 47.06 47.06 execution.
9 24 24 47.06 47.06
10 34 24 66.67 47.06
Average
coverage

25 24 49.02 47.06

Table 6-20 Result table of Genetic Algorithm
(Population size: 100 Generation: 50)

Input space 1 is [-65536,65535]; input space 2 is [-21474836^18,2147483647]
No. Covered

Test
requirements
Input space1
(Maximum: 51)

Covered
Test
requirements
Input space2
(Maximum: 51)

Percentage
coverage
(%)
Input space1

Percentage
coverage
(%)
Input space2

Stopping
criterion

1 47 47 92.16 92.16 For each test
requirement,
GA stops when
it finds the test
case that
satisfies the test
requirement, or
after 20
generations if it
still cannot
satisfy the test
requirement.

2 49 49 96.08 96.08
3 48 47 94.12 92.16
4 49 49 96.08 96.08
5 47 47 92.16 92.16
6 47 47 92.16 92.16
7 49 49 96.08 96.08
8 47 47 92.16 92.16
9 47 47 92.16 92.16
10 49 47 96.08 92.16
Average
coverage

47.9 47.6 93.92 93.33

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-21 Result table of Simulated Annealing
(Neighborhood size: 100 Temperature step: 50)

No. Covered
Test
requirements
Input space1
(Maximum: 51)

Covered
Test
requirements
Input space2
(Maximum: 51)

Percentage
coverage
(%)
Input space 1

Percentage
coverage
(%)
Input space2

Stopping
criterion

1 33 24 64.71 47.06 For each
requirement,
SA stops when
it finds the test
case, which
satisfies the test
requirement or
stops after 50
temperature
steps if it still
cannot satisfy
the test
requirement.

2 45 23 88.24 45.10
3 35 24 68.63 47.06
4 23 24 45.10 47.06
5 36 24 70.59 47.06
6 24 24 47.06 47.06
7 42 24 82.35 47.06
8 37 24 72.55 47.06
9 40 24 78.43 47.06
10 23 23 45.10 45.10
Average
coverage

33.8 23.8 66.27 46.67

Table 6-22 Result table of Genetic Simulated Annealing
(Population size: 100, Generation: 30, Neighbor: 20, Temperature step: 10)

No. Covered
Test
requirements
Input space1
(Maximum: 51)

Covered
Test
requirements
Input space2
(Maximum: 51)

Percentage
coverage
(%)
Input space 1

Percentage
coverage
(%)
Input space2

Stopping
criterion

1 43 21 84.31 41.18 For each
requirement,
GSA stops
when it finds
the test case
which satisfies
the test
requirement or
stops after 30
generations if it
still cannot
satisfy the test
requirement.

2 43 21 84.31 41.18
3 39 21 76.47 41.18
4 40 21 78.43 41.18
5 39 21 76.47 41.18
6 37 21 72.55 41.18
7 44 21 86.27 41.18
8 44 21 86.27 41.18
9 42 21 82.35 41.18
10 43 21 84.31 41.18
Average
coverage

41.4 21 81.18 41.18

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-23 Result table of Simulated Annealing with Advanced Adaptive
Neighborhood
Neighbor: 100

Input sioace 1 is [-65536,65535]; input space 2 is [-2147483648,2147483647]
No. Covered

Test
requirements
Input space1
(Maximum: 51)

Covered
Test
requirements
Input space2
(Maximum: 51)

Percentage
coverage
(%)
Input space1

Percentage
coverage
(%)
Input space2

Stopping
criterion

1 44 44 86.27 86.27 For each
requirement,
SA/AAN stops
when it finds
the test case
which satisfies
the test
requirement or
stops after 30
generations if it
still cannot
satisfy the test
requirement.

2 41 46 80.39 90.20
3 44 44 86.27 86.27
4 46 37 90.20 72.55
5 46 44 90.20 86.27
6 44 44 86.27 86.27
7 44 46 86.27 90.20
8 44 45 86.27 88.24
9 44 44 86.27 86.27
10 46 41 90.20 80.39
Average
coverage

44.3 43.5 86.86 85.29

From the result tables above, we can see none of the test data generators achieve a

complete coverage even on the small input space. GA, which performs best, still fails

to cover the true branch of condition/decision if (tri>3) and else if (t==3), which

require that 3 equal integers as input. It is interesting that in the best runs, SA/AAN

only satisfies 46 test requirements. After investigating the uncovered conditions, we

find out this is because SA/AAN finds the test cases that satisfy i==j but i+j<k. This

causes that the true branch of the decision 8 if tri==l&&i+j>k cannot be executed.

For example, the test case (43615,135876,43615) cannot exercise the true branch of

decision 8. This also happen to decision 9

if tri==2&& i+k>j

and decision 10

else if tri==3&&j+k>i.

On the other hand, this situation does not happen to GA. Through analyzing the

result, we find out that even if GA generate such a test case, it always has the ability

to generate another test case to make if tri==l&&i+j>k to take the true outcome. For

example, we find a test case (7271,7271,22811) in one run, and we also find another

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

test case (7271,7271,9956). This is because in our experiments, test data generators

keep the test data that can reach the condition (see Chapter 5), and when the test data

generator starts to work on satisfying this condition, the initial population is seeded

with these candidate test cases. GA is population based so it has the ability to keep

these good seeds or the good gene, and in this case, it is (7271,727l,z).

On the other hand, SA/AAN starts with the single candidate seed. So this candidate

seed should be selected from the test cases, which can reach the condition

if tri==l&&i+j>k, and it has little chance to keep the good seed for subsequent

neighborhood searches.

For example, there are 3 candidate test cases, which are (1783,567,567),

(4357,4357,10896), (1199,90234,90234). All of them can reach the condition

if tri==l&&i+j>k, however only (4357,4357,10896) has the good gene which may

cause the subsequent test cases to cover the condition if tri==l&&i+j>k. SA/AAN

selects a seed randomly from these three test cases, so there is only a 33% chance that

the valuable test case (4357,4357,10896) will be selected. Moreover, even if

SA/AAN selects the good seed, in subsequent neighborhood searches, SA/AAN has

little chance to keep this good gene due to its neighborhood structure design.

6.43 Coverage plots for Five Test Data Generators

The coverage plots comparing the performance of five test data generators on the

triangle program are shown as Figure 6-9 and Figure 6-10. In both of the two input

spaces, GA has the best performance overall.

For the small input space [-65536,65535], the Random generator hit the peak

early, but after that, it has little improvement. On the other hand, SA and GSA

improve slowly and eventually outperform Random test data generator. GA covers

about 90% of the code in 4,000 target program executions. SA/AAN only covers

about 82% of the code.

For the input space [-2147483648 , 2147483647], GA covers about 93% of the code

in about 9,500 target program executions. SA/AAN performs nearly as well as GA,

covering about 85% code. On the other hand, the other three generators perform

poorly on the triangle program. Random generator hits its peak in the early stage of

search process, but the search is fruitless after that. GSA has the similar situation but

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the performance is worse, only covering about 25% of the code. SA hits its peak later

than Random generator but still has no improvement after it executes the target

program 1,500 times. It is interesting that Random generator outperforms both SA

and GSA on the large input space. The reason why SA fails is that in this huge search

space, if the seed inputs are large negative integers, with the small neighborhood

range, SA will needs to spend too many program-executions to get the positive test

input, which is required by most of test requirements. On the other hand, with the

large neighborhood range, that is similar to Random generator, it is hard to find the

test input that can satisfy the test requirement like “if (i==k)’\ SA may find the test

input eventually but it needs to execute the program for a very long time, which is too

expensive. Since our experiments stop at about 30,000 times of target-program

execution, we cannot compare the performance of these generators after that.

T riangle(input space=[-65536,65535])

a>
TO(0
0>oo

100
90
80
70
60
50
40
30
20
10

0
0 2 3 5 6 7 8 9 104

execution tim es numxIO
— ♦ — y (R a n d o m) — B — y (G A) —is.— y (G S A)

- X - y (S A) — * - y (S A / A A N)

Figure 6-9 Coverage plots of five search methods on Triangle classification program

with input space [-65536, 65535]

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Triangle (input space=[-2147483648,2147483647])
100

_ 8 0 '
£ 70
& 6 0
% 50
> 40c
« 30

_ „ 5,

20
10

0
0 1 2 3 4 5 6 . 7 8 9 10

execution tim es ^
numxIO

— y(Random) ~w - y(GA)
—is — y(GSA) — y(SA)

y(SA/AAN)

Figure 6-10 Coverage plots of five search methods on Triangle classification

program with input space [-2147483648, 2147483647]

Comparing the performance of five test data generators on two input spaces, we

can see GA, SA and SA/AAN perform better on the small input space than on the

large input space. For both of the two input spaces, Random data generator has the

same performance. SA/AAN does not perform better working on the small input

space. This may be because that we use the same parameter set on both of the two

input spaces.

6.44 Two methods that have best performance

For the triangle program, GA and SA/AAN perform much better than the other three

test generators. To make a detailed comparison of two generators, for the two input

spaces, the maximum, the minimum and the average coverage of each generator in 10

experiments are plotted against the number of the execution of the triangle program,

shown in Figure 6-11 and Figure 6-12.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Triangle (GA and SA/AAN, input space=[-65536,65535])

100 !

O)
2©>Oo

20

0 *
0 1 2 3 4 5 6 7 8 9 10

execution times
♦ y(GAmin)

~ £ r — y(GAmean)
■-3K y(SA/AANmax)

numxIO
f l y(GAmax)
X y(SA/AANmin)
« — y(SA/AANm ean)

Figure 6-11 Comparison of GA and SA on Triangle classification program with

input space [-65536,65535]

Triangle(GA and ASA, input space=[-2147483648,2147483647])

X X- X

ro 50 X X X X

-i----------r

4 5 6 7 8 9 10 11
execution times numxIO3

— y(GAmin) ■ y(GAmax)
— 6— y(GAm ean) X y (SA/AANm i n)
— X y(SA/AANmax) — • — y(SA/AANmean)

Figure 6-12 Comparison of GA and SA on Triangle classification program with

input space [-2147483648,2147483647]

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The graphs above show the difference of two test data generation systems on the

triangle program. There is not much difference between the minimum coverage and

the maximum coverage of GA, but the difference between the minimum coverage and

the maximum coverage of SA/AAN is quite obvious.

Combining with the result table, for the input space [-2147483648,2147483547],

we can see the coverage of one run of SA/AAN is only 72.55%. This suggests that for

the triangle program, although the highest achieved coverage is the same for both

SA/AAN and GA, the overall performance of SA/AAN is not so stable as GA.

6.5 Rescue program

6.5.1 Analysis of the source code

The source code of the Rescue program is shown in the Appendices. The decision

points are shown below.

if(!(code > 9999 && code < 100000)) //1
{

>
else
{ . . .

if (!(sum%2 == 0)) 111
{

>
else
{

if(rescueDay < 1 1| rescueDay > 7) II3
{

>
else
{

if(digit4 == digit5) //4
{

>
else if(digit4 > digit5) IIS

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(rendezvousPt != 8)) //6

{

>

else
{

>

if((rendezvousPt != 2) && (rendezvousPt != 7) &&

{

>

else
{

switch(rescueDay)
{

case 1: //7

case 2: //8

case 3: //9

case 4: //10

case 5: / / l l

case 6: //12

case 7: //13

default:

} // end of switch

switch(rendezvousPt)
<

case 2: //14

case 7: //15

case 8: //16

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

default:

} // end of switch

>

>

>
>

return 0;
>

There are 16 decision branches (which are identified in bold) in Rescue. According

to the definition of condition-decision coverage, the test generators need to generate

the test set which satisfy 46 test requirements to obtain a complete coverage. Recall

from the function minimization technique discussed in the previous Section 5.1.3,

each test requirement is reduced to a function minimization problem. The program is

instrumented with additional code that reports the information needed to the test data

generator to calculate the value of the objective function 3 (x). For example, the first

branch in Rescue is

if(!(code > 9999 && code < 100000))
There are two conditions in it, code > 9999 and code < 100000. To obtain the

complete condition-decision coverage, test data must make each condition take the

true and false value, and exercise both the true and false branches of the decision.

Thus, 6 test requirements need to be satisfied to obtain complete condition-decision

coverage. These 6 test requirements and their corresponding objective functions are

shown below.

To ensure the decision

if(!(code > 9999 && code < 100000))

takes value "true”, the following function is built:

True: 3 (*)=

code> 100000
0 reached

code <9999
ramimunfcode-9999,100000- code) 9999< code<100000 reached

p unreached

Where p is a significant value 2147483647.

The instrumented code is shown as italic characters below:

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

printf(“a”);

printfi “%d” ,code);

printf(“b”);

if(!(code > 9999 && code < 100000))

printf(“c”);

Execution of the instrumented code provides information about the value of code.

This information allows us to calculate the value of 3 (x).

To ensure the decision

if(!(code > 9999 && code < 100000))

takes value 'false", the following function is built:

False: 3 (x)=

0 9999< code < 100000
9999- code+ I code <9999

code-100000+1 code >100000
p unreached

In the similar way, functions representing all of the other 5 cases are built:

if(code > 9999)

0 code > 9999 reached
True'. 3 (x)= < 9999 - code +1 code < 9999 reached

unreached

False: 3 (x)=

P

0 code < 9999 reached
code - 9999 code > 9999 reached

p unreached

if (code < 100000)

True: 3 (x)=

False: 3 (x)=

0 code < 100000 reached
code -100000 +1 code > 100000 reached

p unreached

0 code >100000 reached
100000 - code code < 100000 reached

p unreached

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the fourth branch if(digit4 == digit5), the way to construct the objective function

is slightly different from the first branch. Two test requirements must be satisfied;

the objective functions are shown below.

True: 3(A) =

False: 3(v)

0 digit A = digit5
abs(digitA - digitS) + p' digit A ^ digit5
p unreached

p' digit A ~ digit5
0 digit A -£■ digitS
p unreached

p and p ’ are two significant values, where p ’« p . In the experiments, p= 2147483647

andp'=0.7p.

In the experiment on the Rescue program, 46 objective functions are generated in

the similar way discussed above.

6.5.2 A Comparison of Five Test Data Generation Approaches

Ten complete test-generation runs with each test generator were performed for the

Rescue program. Experiments were conducted on two different input spaces. The

following tables 6-24—6-28 show the test results of running GA, GSA, SA, SA/AAN

and Random test generator on the rescue program in the input space of

[0,2147483647]. For each test generator, the condition-decision coverage of each run,

the average coverage in 10 runs and the stopping criterion are showed in each result

table.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6-24 Result table of Random Generator
Input space 1 is [0,524287]; input space 2 is [0,2147483647]

No. Covered
Test
requirements
Input space1
(Maximum: 46)

Covered
Test
requirements
Input space2
(Maximum: 46)

Percentage
coverage
(%)
Input
space 1

Percentage
coverage
(%)
Input
space2

Stopping
criterion

1 43 3 93.48 6.52 Random test
2 43 9 93.48 19.57 data
3 43 3 93.48 6.52 generator
4 43 6 93.48 13.04 stops after
5 43 16 93.48 34.78 40,000 target-
6 43 8 93.48 17.39 program
7 43 9 93.48 19.57 execution.
8 43 8 93.48 17.39
9 43 3 93.48 6.52
10 43 10 93.48 21.74
Average
coverage

43 7.5 93.48 16.30

Table 6- 25 Result table of Genetic Algorithm
(Population size: 100, Generation: 30)

Input space 1 is [0,524287]; input space 2 is [0,2147483647]
No. Covered

Test
requirements
Input space1
(Maximum: 46)

Covered
Test
requirements
Input space2
(Maximum: 46)

Percentage
coverage
(%)
Input
space1

Percentage
coverage
(%)
Input
space2

Stopping
criterion

1 46 46 100 100 For each test
requirement,
GA stops
when it finds
the test case,
which
satisfies the
test
requirement,
or after 30
generations if
it still cannot
satisfy the
test
requirement.

2 46 46 100 100
3 45 46 97.83 100
4 46 45 100 97.83
5 46 45 100 97.83
6 46 46 100 100
7 46 45 100 97.83
8 46 46 100 100
9 46 45 100 97.83
10 45 46 97.83 100
Average
coverage

45.8 45.6 99.57 99.13

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6- 26 Result table of Simulated Annealing
(Neighbor: 200)

Input space 1 is [0,524287]; input space 2 is [0,2147483647]
No. Covered

Test
requirements
Input space1
(Maximum: 46)

Covered
Test
requirements
Input space2
(Maximum: 46)

Percentage
coverage
(%)
Input
space1

Percentage
coverage
(%)
Input
space2

Stopping
criterion

1 45 3 97.83 6.52 For each
requirement,
SA stops when
it finds the test
case, which
satisfies the
test
requirement, or
stops after 20
temperature
steps if it still
cannot satisfy
the test
requirement..

2 45 3 97.83 6.52
3 45 3 97.83 6.52
4 45 3 97.83 6.52
5 45 3 97.83 6.52
6 45 3 97.83 6.52
7 45 3 97.83 6.52
8 45 3 97.83 6.52
9 45 3 97.83 6.52
10 45 3 97.83 6.52
Average
coverage

45 3 97.83 6.52

Table 6- 27 Result table of Genetic Simulated Annealing
(Population size: 50, temperature: 20, Generation: 800, Neighbor: 10

Input space 1 is [0, 524287 ; input space 2 is [0,21 \ l l 83647]
No. Covered

Test
requirements
Input space1
(Maximum: 46)

Covered
Test
requirements
Input space2
(Maximum: 46)

Percentage
coverage
(%)
Input
space1

Percentage
coverage
(%)
Input
space2

Stopping
criterion

1 45 40 97.83 86.96 For each
requirement,
GSA stops
when it finds
the test case
which satisfies
the test
requirement or
stops after 800
generations if
it still cannot
satisfy the test
requirement

2 46 3 100 6.52
3 46 10 100 21.74
4 46 3 100 6.52
5 46 3 100 6.52
6 46 42 100 91.30
7 46 5 100 10.87
8 46 43 100 93.48
9 46 32 100 69.57
10 46 9 100 19.57
Average
coverage

45.9 19.0 99.78 41.30

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6- 28 Result table of Simulated Annealing with Advanced Adaptive
Neighborhood

(Neighbor: 100)
Input space 1 is [0,524287]; input space 2 is [0,2147483647]_____

No. Covered
Test
requirements
Input space1
(Maximum: 46)

Covered
Test
requirements
Input space2
(Maximum: 46)

Percentage
coverage
(%)
Input
space 1

Percentage
coverage
(%)
Input
space2

Stopping
criterion

1 46 46 100 100 For each
requirement,
SA/AAN stops
when it finds
the test case
which satisfies
the test
requirement or
stops after 20
temperature
steps if it still
cannot satisfy
the test
requirement

2 46 45 100 97.83
3 46 46 100 100
4 46 46 100 100
5 46 46 100 100
6 46 46 100 100
7 46 46 100 100
8 46 46 100 100
9 46 46 100 100
10 46 46 100 100
Average
coverage

46 45.9 100 99.78

The result tables above show the different performances of different test data

generations. GA and SA/AAN exhibit the best performances, with the average

coverage close to 100% coverage, while the average performances of SA, GSA and

Random test generation are below 50%.

In the Rescue program, the most important decision is decision 1

if(!(code > 9999 && code < 100000)) //1

If the test case cannot take the false branch of this decision, it will fail to reach the

rest of the conditions and decisions. That is the reason why SA, Random test data

generator and GSA have poor performance on Rescue program.

In the Rescue program, the most challenging conditions are decision 7 to decision 13,

which are deeply nested inside four if-else statements. In order to cover these

conditions, the test data should satisfy other four else statements first.

6.5.3 Coverage plots for Five Test Data Generators

To make a further detailed comparison of different methods, the different test

generator’s performances are plotted as coverage plots. The numbers of test

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requirements satisfied are shown as the coverage percentage, which are plotted

against the number of executions of the target program in the graphs below.

From the graphs, we can see GA and SA/AAN have the best performance.

Figure 6-13 summarizes the results of five test data generators working on the

input space of [0, 524287], all of the test data generators perform very well on this

small input space. After executing the Rescue program 2,500 times, GA, SA/AAN

and GSA have already obtained almost 100% coverage. In the early stages of the

search process, SA performs worst, but after that, it has a big jump and outperforms

Random generator. Random generator performs worse than the other four test data

generators, and its coverage is about 94%.

For the input space [0,2147483647], though both GA and SA/AAN achieve almost

complete coverage after they execute the Rescue program 7000 times, there is a slight

difference between two test generators. The coverage plot in Figure 6-14 shows this

difference in the experiments. To obtain 90% coverage, GA only needs to execute the

program 2500 times, while SA/AAN needs to execute the program 3500 times. Note

after SA/AAN obtains 90% coverage, it improves very fast and hits its peak faster

than GA. Generally, SA/AAN needs to execute the program less times to obtain

complete coverage of the Rescue program than GA. There is a significant difference

between the performance of these two test data generators and the other three. For the

other three test data generators, their performances improve slowly throughout the

experiments. After executing the Rescue program 9500 times, the coverage of SA,

GSA and Random generator are still below 20%. GSA performs better than Random

generator and SA.

For the Rescue program, the small input space means a small search space, which

allows the test data generation to find the test set satisfying the test requirements more

easily as compared to a large input space. Therefore, all of five test data generators

perform better when they work on a small input space them they work on a large input

space. Figure 6-13 shows that when these five test data generators work on the small

input space, GA, SA/AAN and GSA achieve nearly 100% in about 2,500 target-

program executions. SA also achieves about 97% coverage, while Random test

generator achieves about 90% coverage. Comparing the Figure 6-13 and Figure 6-14,

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we can see those test generations which do not perform well on a large input space

have great improvement when they work on a small input space.

Rescue (input space=[0,524287])
100

a>o(0I—O>oo

0 1 2 3 4 5 6 7 8 9 10
execution times numxIO3

y(Random) — y(GA)
~ 6 r ~ y(SA/AAN) — X — y(SA)

y(GSA)

Figure 6-13 Coverage plots of five search methods on theRescue program with input

space [0, 524287]

rescue(input space=[0,2147483647])
100

o>

0 1 2 5 8 9 103 4 6 7
execution times numxIO3

— y(Random) y(GA)
y(GSA) * y(SA)

— y(SA/AAN)

Figure 6-14 Coverage plots of five search methods on the Rescue program with input

space [0, 2147483647]

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5.4 GA and SA/AAN: Two methods that have best performance

This section concentrates on discussing two test data generators that have the best

performance on the Rescue program. For SA/AAN and GA test data generators, the

maximum, minimum and average coverage in 10 experiments are plotted against the

number of the execution of the Rescue program.

Rescue(SA/AAN and GA) input space=[0,524287]
100 x

O)

1000 1500 2000 2500 30005000
execution times

♦ y(GAmin) ■ y(GAmax) — a y(GAmean)

X y(SA/AANmin) X y(SA/AANmax) — • — y(SA/AANmean)

Figure 6-15 Comparison of GA and SA on Rescue program with input space

[0,524287]

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rescue(SA/AAN and GA) input space=[0,2147483647]
100
90
80

- 70
0s

0 6 0
« 50
1 40 o
° 30

20
10
0

108 95 6 70 2 3 41
execution times numxIO

♦ y(GAmin) y(GAmax)
— A — y(GAmean) X y(SA/AANmin)

X y(SA/AANmax) — • — y(SA/AANmean)

Figure 6-16 Comparison of GA and SA on Rescue program with input space

[0,2147483647]

Figure 6-15 is a coverage plot comparing the performance of SA/AAN and GA on

the Rescue program when the input space is [0, 524287]. When SA/AAN and GA

work on this small input space, both of these two test data generators hit their peak in

about 2,500 target-program executions. Actually, in 10 runs, SA/AAN obtains the

complete coverage in 1,000 target program executions. While in one single run,

SA/AAN performs poorly. Figure 6-15 shows the difference of these two test data

generators. Although the maximum coverage curves of these two test data generators

are close to each other, generally, GA still performs much better than SA/AAN in the

first 500 executions.

Figure 6-16 shows the difference in performances of the two methods on the

Rescue program when the input space is [0,2147483647]. In the first 3,000 target-

program executions, GA performs much better than SA/AAN, even if the maximum

coverage of SA/AAN is still lower than the minimum coverage of GA. After that, the

curves of two methods start to close to each other. SA/AAN hits its peak in about

4,500 target-program executions, while GA still improves slowly. As shown in the

95

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

result table, SA/AAN achieves complete coverage in 9 runs while GA only achieves

complete coverage in 5 runs.

Comparing the performance of these two teat data generators on the Rescue

program, SA/AAN improves slowly in the very early stage of test generation, while

GA improves its coverage stably and relative slowly throughout the whole search

process.

The performance of SA/AAN on the Rescue program may be explained by the

working theory of the SA/AAN and the feature of the Rescue program. Through

analyzing the Rescue program, we can see that all of the test cases needed to satisfy

all of the test requirements exist in a small range [10000, 99999]. In the early stage of

search process, SA/AAN works on the first conditional branch if(!(code > 9999 &&

code < 100000)), and the objective function guides the search to the desired small

range [10000, 99999]. After SA/AAN finds the test case in this small range, the false

branch of this conditional branch is satisfied, and the next test requirement is reached,

thus this test case is stored for future use. When SA/AAN works on the next test

requirement, this test case is used as a seed. As the neighborhood is very large at the

beginning, the test data generator searches around the whole neighborhood. If the new

candidate solution is not in the range [10000, 99999], it will be given a penalty and

will not be accepted. Thus the neighborhood range starts to decrease until the

neighborhood range decrease as a small value, i.e. the new candidate solution is also

in the small range [10000, 99999]. Then SA/AAN only searches the solution around

the small neighborhood. Hence, SA/AAN works very efficiently and the coverage

improves very fast. So once SA/AAN finds the range [10000, 99999], it is very likely

to obtain high coverage.

6.6 conclusions
In this chapter, we have reported experimental results from five different C/C++

programs using dynamic test data generation. Four optimization algorithms are

implemented in the test data generation system. In our knowledge, two of them,

Genetic Simulated Annealing and Simulated Annealing with Advanced Adaptive

Neighborhood have not been reported in the test data generation literature.

96

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Generally, in the experiments for five target programs, Genetic Algorithm has the

best overall performance. It achieves complete condition-decision coverage on the

Timeshuttle, Rescue, and Perfect number program. For the Triangle and Hex_dec

programs, GA achieves 93.33% and 97.22% respectively. In our experiments, the test

requirements in these two programs that GA cannot satisfy cannot be satisfied by the

other optimization techniques either. As discussed in the previous sections in this

chapter, GA makes good use of the coverage table approach that is applied in the

experiments. This approach keeps track of the test cases if they can reach some

conditions but cannot cover those conditions. These test cases will become candidate

test cases when the test data generator starts to work on these conditions. GA has the

ability to keep the good gene inherited from ancestors and contribute it to successive

generations. This means GA keeps the good features of the candidates. Such a

mechanism helps it find the test cases quickly. This is shown and discussed in detail

in the Section 6.42. However other optimization methods used in the experiments do

not make good use of the candidates. In the Hex_dec program, GA fails to satisfy one

test requirement, which is taking the false branch of decision 3

if (i<=MAX)

which requires that the test case is a valid 8 or more than 8 digit Hexadecimal

number. In our experiments, none of the test data generator can generate a test case to

satisfy this condition.

In the experiments, GA is tuned by adjusting four parameters: the mutation

probability, the crossover probability, the population size and the number of

generation. The results show that the 50 parameters do not have a big effect on

performance. So GA is easy to implement and has few problem specific decision need

to be made. It is a very efficient tool on test data generation.

On three programs under test (Rescue, Triangle and Hex_dec), Simulated Annealing

with Advanced Adaptive Neighborhood has very good performance, while on other

two programs it does not. For example, SA/AAN performs very well on the Rescue

program, even better than GA on the input space [0,2147483647]. In this case, the
97

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

search space is huge [0,2147483647], while the desired test cases of rescue program

only exist in a small range [10000,99999]. As discussed in the Section 6.5.2, the most

important decision is decision 1

if(!(code > 9999 && code < 100000)) //1
Once the test data generator fails to find the test case, which takes the false branch of

this decision, it will fail to reach the other decisions. Although the search space is

huge, SA/AAN finds such test case that exists in this small range [10000,99999] very

quickly and thus find the test cases that satisfy other test requirements quickly. A

possible explanation is that its neighborhood range is not fixed. SA/AAN can make

the big jump in the search space and also can make the small change in the

neighborhood. The big jump in the huge search space helps it find the desired test

cases in the small range [10000,99999] efficiently. Through examination of the

result, it has been found that SA/AAN is good at handling the condition like

if a>b

In this situation, it can find a solution quickly relying on the information that the

instrumented code provides.

Compared to SA, the adaptive neighborhood helps SA/AAN search the search

space roughly and quickly, while this also cause some limitations. In the experiments,

on the Timeshuttle program, SA/AAN does not have good performance. The reason

is that in some cases, SA/AAN cannot adjust the step size (neighborhood range)

flexibly. For example, in the big plateaus, the neighborhood range may decrease too

fast, which causes the neighborhood range to decrease as a value smaller than one,

and thus the SA/AAN is stuck at one point. While in some other cases, the

neighborhood range may increase too fast, so SA/AAN starts to search the space

beyond the input space, which is fruitless.

Generally, the results in the experiments show that SA/AAN has the ability to find

the solution to satisfy some test requirements very quickly. It works better than other

optimization techniques in large input spaces, especially for the program with simple

input and a large search space like the Rescue program.

98

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

The results of the experiments show that the performance of SA is consistent and

predicable while it is very time-consuming. It performs remarkably poorly in the

large search space problem, which is due to its limitations. Small changes in the

neighborhood make it move slowly to the desirable search space, especially for the

Rescue program. The performance of SA is worse than Random test data generator.

This is because SA only searches the neighborhood of the seed test case, thus, if the

seed test case is not in the small range [10000,99999], it needs a lot of effort to reach

this desired search space. In the experiments, SA gives up before it finds this area,

thus it fails to reach other test requirements. On the other hand, Random test data

generator generates each test case randomly, so it has a better chance to reach this

desired area [10000,99999]. However, in the small search space, the performance of

SA is stable and it is unlikely stuck in the plateaus since the neighborhood range in

SA is fixed and will not decrease to a value smaller than one, i.e. zero in our

experiments. However for a small input space [0,524287], SA still fails to obtain

complete coverage. The test requirements it fails to satisfy is either “ code<9999” or “

code>100000”, which are the lower bound and the upper bound of this small range

respectively. This means if the input test case of SA is close to upper bound 100000,

SA fails to satisfy “code<9999”, since it takes too much effort for SA to generate a

test case smaller than 9999, and vice versa. This is shown in the results of the

Timeshuttle and Perfect number program.

Generally, GSA does not perform well in our experiments, and its performance is

only slightly better than Random test data generator. However we have not yet tuned

GSA in our experiments; this may be the reason why GSA does not perform well.

Possible improvement can be achieved in a process of tuning the algorithm. Many

parameters can be adjusted in order to improve the performance of GSA.

Random test data generator has a good performance on the simple program with

small input space, for example, Hex_dec program. But it has poor performance on

those programs with complicated control structure or large input space. The result of

Random test data generator resembles those reported in [MMS01].

99

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Chapter 7 Conclusions and future works

Software testing is an essential part in the software development process. It is used to

reveal faults in software and ensure that the software performs as intended.

Unfortunately, it is an expensive process which typically consumes at least 50% of

the total costs of developing software [Bei90]. The most expensive part in software

testing is the construction of test data. It is tedious, difficult and labor consuming.

This process typically represents at least 40% of the total testing costs [Bei90].

Hence, automation of test data generation is a desirable way to reduce the cost and

improve the quality of software.

This thesis presents empirical results of dynamic test data generation based on a

function minimization technique. Four optimization methods are used in the

experiments, and the Random test data generator is used for the purpose of

comparison. A set of experiments is conducted on five different C/C++ programs.

The results show that GA has the best overall performance. It seems that GA is most

suitable to take advantage of the existence of a coverage table. Usage of test cases

that have reached the conditions/decisions for building an initial population gives GA

a better exploration of the search space. This is one of the reasons why it outperforms

all of the other four methods on most of the target programs. GA obtains complete

coverage on the Perfect number, Timeshuttle and Rescue program, and obtains 97%

and 93% coverage on the Hex_dec and Triangle classification program respectively.

Besides the fact that GA achieves high coverage, results of our experiments ALSO

show that the parameters of GA do not have a big effect on performance, which

makes it easy to implement.

100

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

In the case of ranking optimization techniques, the second spot is assigned to

Simulated Annealing with Advanced Adaptive Neighborhood. In some cases, for

programs with simple input and a large input space, SA/AAN performs very well.

While in other cases, the performance of SA/AAN is not so good. The possible reason

is that the adaptive neighborhood adjustment in this algorithm has limitation in

handling big plateaus. For example, in a big plateau, the neighborhood range may

decrease too fast, which will cause the neighborhood range to decrease to a value

smaller than one, and thus SA/AAN is stuck at one point. On the other hand, in some

other cases, the neighborhood range may increase too fast, which can be bigger than

the input space, thus the search is fruitless.

In our experiments, the performance of SA is consistent. SA delivers very similar

results for a given program across all 10 runs. It performs well on a small search input

space, but when it comes to the large input space, it needs to spend much more effort,

perform more executions of the program under test, to reach coverage levels similar

to the ones obtained by GA.

GSA does not perform well in our experiments like we expected. A possible reason

for this can be the large number of parameters that have to be set for this optimization

technique. Thus, it appears that the experiments performed have not found parameter

values that would lead to good results.

Some possible future research directions are presented below.

• More intelligent neighborhood adjustment can be implemented in SA/AAN.

For example, the neighborhood range can be adjusted when it is not bigger

than one or when it is bigger than the range of search space. This may prevent

the search to stall on the local optimum or plateau. It would also be possible

to investigate the effect of the cooling schedule on performance.

• As discussed before, the effect of tuning parameter for some of the

optimization methods used in this thesis have not been investigated yet. It

would be desirable to conduct the experiments with different parameter

setting, especially for SA/AAN and GSA.

101

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

• In this thesis, the experiments presented are limited to small programs. It is

essential to evaluate the performance of these optimization methods on the

test data generation using real, large-scale software.

• Plateaus in the search space are common problems in dynamic test data

generation. This is normally caused by the two-valued decision and the deeply

nested conditions. The results in our experiments show that these problems

hinder optimization methods form working efficiently. It would be desirable

to introduce an improved strategy, for example, a static strategy, to deal with

this problem.

• More complicated selection methods can be implemented in GSA to improve

its performance.

• It would be possible to build a framework that implements multiple

optimization methods to generate the test data for real, large-scale software.

So for different parts of software under test, the framework assigns the

problem of test data generation to different optimization techniques. For

example, for the program with simple input and large input space, SA/AAN

would be used to generate the test data.

102

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Bibliography

[Bak85] J. E. Baker, Adaptive selection methods for genetic algorithms. In

Proceedings o f an International Conference on Genetic Algorithms. Lawrence

Erlbaum Associates (Hillsdale), 1985.

[Bei90] B.Beizer. Software System Techniques. Thomson Computer Press, 2nd

edition, 1990.

[BH91] Thomas Back, Frank Hoffmeister, Extended Selection Mechanisms in

Genetic Algorithms, p. 92-99, Proc. of the Fourth Int. Conf. on Genetic

Algorithms (Conference paper) 1991

[Bur67] W. Burkhardt. Generating programs from syntax. Computing, 2(1): 83-94,

1967.

[Cla76] L. Clark. A system to generate test data and symbolically execute programs.

IEEE Transactions on Software Engineering, SE-2(3):215-222, September 1976.

[Coh90] J.Cohen. Constraint logic programming languages. Communications o f the

ACM, 33:52-68, July 1990

[Cor87] Corana, A., Marchesi, M., Martini, C. and Ridella, S.: Minimizing

Multimodal Functions of Continuous Variables with the ’’Simulated Annealing”

Algorithm, ACM Trans, on Mathematical Software, Vol. 13, No. 3, pp. 262-280,

1987.

[CPD93] A. Coen-Porisini and F. Depaoli. Array representation in symbolic

execution. Computer Language, 18(3): 197-216,1993.

[CS8 8] R. A. Caruana and J. D. Schaffer. Representation and hidden bias: Gray vs.

binary coding for genetic algorithms. In Proceedings o f the Fifth International

conference on Machine Learning. Morgan Kaufmann, 1988

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University

Press, 1963.

[D091] R. Demillo and A. Offutt. Constraint-based automatic test data generation.

IEEE transactions on software Engineering, 17(9):900-910,1991.

103

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[Dow93] Kathryn A, Dowsland. Modern Heuristic Techniques for Combinatorial

Problems, chapter 2 - Simulated Annealing, pages 20-69. McGraw Hill, 1993.

[FK96] R. Ferguson and B. Korel, The chaining approach for software test data

generation. ACM Transactions on Software Engineering and Methodology, 5(1):63-

86,1996.

[Gar99] Stewart Gardiner, editor. Testing Safety-related Software: A Practical Hand

book, Springer, 1999.

[GI0 8 6] F. Glover (1986) Future paths for integer programming and links to artificial

intelligence, Computers and Operations Research, 1, 533-549.

[Glo89] F. Glover, Tabu search, Part I, ORSA Journal on Computing. 1(1989)190-

206.

[Glo90] F. Glover, Tabu search, Part II, ORSA Journal on Computing. 2(1990)4-32.

[GN97] M. J. Gallagher and V. L. Narasimhan. Adtest: A Test Data Generation Suite

for Ada Software Systems. IEEE Transactions. Software Engineering, Vol. 23, No. 8 ,

pp. 473-484, Aug. 1997.

[Gol89] D. E Goldberg. Genetic Algorithms in search, optimization, and machine

learning, Addison Wesley, New York, 1989.

[Hol75] Holland, J.H., Adaptation in Natural and Artificial Systems. University of

Michigan press, 1975.

[IM] Paul J. Iglinski, Sarah McEvoy Solutions of the assignments of the course

ENCMP100 (Computer Programming for Engineers)

[Inc87] D. Ince. The automatic generation of test data. Computer Journal, 30(1): 63-

69, 1987.

[JSE95] B. Jones, H. Sthamer, and D. Eyres. The automatic generation of software

test data sets using adaptive search techniques. In Proceedings o f 3rd conference on

Software Quality Management, volume 2, pages 435-444, 1995.

[JM91] C. Z. Janikow, Z. Michalewiz. An experimental comparison of binary and

floating point representations in genetic algorithms. In R. K. Belew and L. B. Booker,

editors, Proceedings o f the Fourth International Conference on Genetic Algorithms,

pages 31-36. Morgan Kaufmann, 1991.

104

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[KGV83] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by

simulated annealing. Science, 220(4598):671-680, May 1983.

[KKD95] Seichi Koakutsu, Maggie Kang, Wanye Wei-Ming Dai, Genetic Simulated

Annealing and Applications to Non-slicing Floorplan Design. (UCSC-CRL-95-52).

1995.

[Kor90] B. Korel. Automated software test data generation. IEEE transactions on

software Engineering, 16(8):870-879, 1990.

[Kor96] B. Korel. Automated software test data generation for programs with

procedures. In International Symposium on Software Testing and Analysis, pages

209-215. ACM/SIGSOFT, 1996.

[Mar94] Marc Roper. Software testing. McGraw-Hill Book Company European, 1994

[MHO02] Mitsunori MIKI, Tomoyuki HIROYASU, Keiko ONO. Simulated

Annealing with Advanced Adaptive Neighborhood. In Computational Intelligence

and Applications (Proceedings o f the 2nd International Workshop on Intelligent

Systems Design and Applications : ISDA-02), pp. 113-118, (2002).

[MMS01] Christoph C. Michael, Gary McGraw, Michael A. Schatz Generating

Software Test Data by Evolution. IEEE transactions on software Engineering,

27(12): 1085-1110, 2001.

[MS76] W. Miller and D. Spooner. Automated generation of floating-point test data.

IEEE transactions on software Engineering, SE-2 (3): 223-226, September 1976.

[Off91] A. Jefferson Offutt. An integrated automatic test data generation system.

Journal o f Systems Integration, 1(3): 391-409, 1991.

[OK96] Abraham H. Osman and James P. Kelly. Meta-heuristics: An Overview

Meta-Heuristics: Theory & Applications. 1-22, 1996.

[OJP97] A. Jefferson Offutt, Zhenyi Jin, Jie Pan. The dynamic domain reduction

procedure for test data generation. Software Practice and Experience, 29(2): 167-193,

January, 1997.

[PHP99] Roy P. Pargas, Mary Jean Harrold, Robert R Peck. Test-data Generation

Using Genetic Algorithms. Journal o f Software Testing, Verifications, and

Reliability, vol. 9, pp.263-282, September 1999.

105

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

[PreOO] Roger S. Pressman, Software engineering-A practitioner’s approach.

McGraw-Hill publishing company. European adaptation 5th edition, 2000.

[RHC76] C. Ramamoorthy, F. Ho, and W. Chen. On the automated generation of

program test data. IEEE transactions on Software Engineering, SE-2(4):293-300,

1976

[Sch87] Schaffer, J.D. (1987) Some effects of selection procedures on Hyperplane

Sampling by Genetic Algorithms. In. Genetic Algorithms and Simulated Annealing.

L. Davis, ed. Pitman.

[TraOO] Nigel James Tracey. A Search-Bases Automated Test-data Generation

Framework For Safety-Critical Software, PhD Thesis, University of York, 2000.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

106

Appendices

Hex_dec conversion program
include <stdio.h>
define MAX 7
long int htoi (char[]);
int main ()
{

char t[MAX];
char c;

int i=0;
printf('\nlnput a hex number:");
while ((c=getchar())!=\n')
{

if(c>='0' &&c<='9'llc>='a,&&c<='fllc>=,A,&&c<=,P)
t[i++]=c;
else
{

printf("\nNot a valid hex number");
return 0;

>

>
if (i<=MAX)
{

t[i]=V;
printf("decimal number: %d\n",htoi(t));

>
else printf('\nMaximum 7 digits of hex number");
return 0;

>

long int htoi(char s[])
{ int j;

long int n;
n=0;
for (j=0;s[j] !=Nn';j++)

{ if (s[j]>='0'&&s[j]<='9')
n=n*16+s[j]-'0';

if (s[j]>='a,&&s[j]<=,f)
n=n* 16+s [j]-'a'+10;

if (s [j] >='A'&&s[j] <=,F')
n=n* 16+s[j] A'+10;

>
return (n);

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

>

Timeshuttle program
#include <iostream>
#include <string>
#include <cstdlib>
#include <ctime>
using namespace std; //introduces namespace std
enum Month {JAN-1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT,
NOV, DEC);
enum Weekday {SUN,MON,TUE,WED,THU,FRI,SAT>;
void randomTrip(Month mToday, int dToday, int yToday, Month m, int d, int y);
void plannedTrip(Month mToday, int dToday, int yToday, Month m, int d, int y);
bool isLeapYear(int year);
int gregorianDay(Month m, int d, int y);
bool isValidDate(Month m, int d, int y);
int getYearDay(Month m, int d, int y);
Weekday getWeekday(int gDay);
string dayName(Weekday w);
string monthName(Month m);
void getTodaysDate(Month& m, int& d, int& y);
void gDay2MDY(int gDay, Month& m, int& d, int& y);
int daysInMonth(Month m, int y);
int daysInYear(int y);
int randlnt(int a, int b);
void outputMessage(int days, Month mToday, int dToday, int yToday,
Weekday w, Month m, int d, int y);
bool getInputDate(Month&m, int& d, int& y);
const int YEAR1 = 1582;
const int YEARMAX = 4316;
const int YEARDAYS = 365;
const int YEAR 1 DAYS = daysInYear(YEARl) - getYearDay(OCT, 14, YEAR1);
int main(void)
{

srand(time(0));
bool validlnput;
Month mDest;
int dDest, yDest;
Month mToday;
int dToday, yToday;
getTodaysDate(mToday, dToday, yToday);
validlnput = getInputDate(mDest, dDest, yDest);
if (validlnput)
{

plannedTrip(mToday, dToday, yToday, mDest, dDest, yDest);

108

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

>
else
{

randomTrip(mToday, dToday, yToday, mDest, dDest, yDest);
}
return 0;

>
void plannedTrip(Month mToday, int dToday, int yToday, Month m, int d, int y)
{

Weekday w;
int destDay;
int daysTraveled;
int today;
today = gregorianDay(mToday, dToday, yToday);
destDay = gregorianDay(m, d, y);
daysTraveled = destDay - today;
w = getWeekday(destDay);

outputMessage(daysTraveled, mToday, dToday, yToday, w, m, d, y);
>
void randomTrip(Month mToday, int dToday, int yToday, Month m, int d, int y)
{

Weekday w;
int destDay;
int daysTraveled;
int today;
today = gregorianDay(mToday, dToday, yToday);
daysTraveled = randlnt(-10000, 10000);
destDay = today + daysTraveled;
w = getWeekday(destDay);
gDay2MDY(destDay, m, d, y);
outputMessage(daysTraveled, mToday, dToday, yToday, w, m, d, y);

>
bool isLeapYear(int year)
{

return (year % 4 ==0) && (year %100 != 0 II year % 400 == 0);
>
int gregorianDay(Month m, int d, int y)
{

int gregDay = 0;
int yearDay;
if (isValidDate(m, d, y))
{

yearDay = getYearDay(m, d, y);
if (y == YEAR1)
{

gregDay = yearDay - (YEARDAYS - YEAR1DAYS);

109

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

>
else
{

gregDay = YEAR1DAYS;
for (int i = YEAR1+1; i < y; i++)
{

gregDay += daysInYear(i);
}
gregDay += yearDay;

>

>
return gregDay;

>

bool isValidDate(Month m, int d, int y)
{

bool is Valid;
if (m < JAN II m > DEC)

is Valid = false;
else if (d > daysInMonth(m, y) II d < 1)

isValid = false;
else if (y < YEAR1 II y > YEARMAX)

isValid = false;
else if (y == YEAR1)
{

if (m < OCT)
isValid = false;

else if (m == OCT && d < 15)
isValid = false;

else
isValid = true;

>
else

isValid = true;
return isValid;

>
int getYearDay(Month m, int d, int y)
{

int yearDay = 0;
for (Month rno=JAN; mocm; mo = static_cast<Month>(mo + 1))
{

yearDay += daysInMonth(mo, y);
>
return yearDay + d;

110

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

Weekday getWeekday(int gDay)
{

Weekday w = static_cast<Weekday>((gDay+4) % 7);
return w;

>
string dayName(Weekday w)
{

string name;
switch(w)
<

case SUN:
name = "Sunday"; break;

case MON:
name = "Monday"; break;

case TUE:
name = "Tuesday"; break;

case WED:
name = "Wednesday"; break;

case THU:
name = "Thursday"; break;

case FRI:
name = "Friday"; break;

case SAT:
name = "Saturday"; break;

}
return name;

>

string monthName(Month m)
{

string name;
switch(m)
{

case JAN:
name = "January"; break;

case FEB:
name = "February"; break;

case MAR:
name = "March"; break;

case APR:
name = "April"; break;

case MAY:
name = "May"; break;

case JUN:
name = "June"; break;

case JUL:

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

name = "July"; break;
case AUG:

name = "August"; break;
case SEP:

name = "September"; break;
case OCT:

name = "October"; break;
case NOV:

name = "November"; break;
case DEC:

name = "December"; break;
>

return name;
>

void getTodaysDate(Month& m, int& d, int& y)
{

time_t currentTime;
time(¤tTime);
m = static_cast<Month>(localtime(¤tTime)->tm_mon +1);
d = localtime(¤tTime)->tm_mday;
y = localtime(¤tTime)->tm_year + 1900;

>

void gDay2MDY(int gDay, Month& m, int& d, int& y)
{

y = YEAR1;
d = 0;
m = JAN;
if (gDay <= YEAR1DAYS)
{

m = OCT;
if (gDay <= daysInMonth(OCT, y) -14)

d — 14;
else
{

gDay -= daysInMonth(OCT, y) - 14;
m = NOV;

>
>
else
{

gDay — YEAR1DAYS;
y++;
while (gDay > daysInYear(y))

112

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

{
gDay -= daysInYear(y);
y++;

>
>

while (gDay > daysInMonth(m, y))
{

gDay -= daysInMonth(m, y);
m = static_cast<Month>(m +1);

>
d += gDay;

int daysInMonth(Month m, int y)
{

int days = 0;
switch(m)
{

case JAN: case MAR: case MAY: case JUL: case AUG: case OCT:
case DEC:

days = 31;
break;

case APR: case JUN: case SEP: case NOV:
days = 30;
break;

case FEB:
days = 28 + isLeapYear(y);
break;

>

return days;
>

int daysInYear(int y)
{

return YEARDAYS + isLeapYear(y);
}

int randlnt(int a, int b)
{

return (a + rand() % (b - a + 1));
>

void outputMessage(int days, Month mToday, int dToday, int yToday,
Weekday w, Month m, int d, int y)

113

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

cout« "Traveling
if (days < 0)

cout« -days;
else

cout« days;
cout« " days into the ";
if (days < 0)

cout« "past";
else

cout« "future";
cout« " from today" « endl;
cout« monthName(mToday) « " " « dToday « ", " « yToday « endl;
cout« "will bring you to" « endl;

cout « dayName(w) « " " « monthName(m) « " " « d « ", " « y «
endl;
>

bool getInputDate(Month&m, int& d, int& y)
<

bool valid;
int mo;
cout « "Enter the destination date of your time travel (month day year):" «

endl;
cin » mo » d » y;
m = static_cast<Month>(mo);
valid = isValidDate(m, d, y);
if (! valid)

cout « "Your date is not valid. You will be given a random trip into
time.Xn";

cout« endl;
return valid;

Perfect number program
#include <iostream>
#include "perfectnum.h"
using namespace std;
perfectnum:: perfectnum ()
<

num = 0;
P = 0;
i = 0;

114

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

perfectsum = 1;
temp = 0;

>
perfectnum:: perfectnum(int number)

{
num = number;
P = 0;
i = 0;
perfectsum = 1;
check = 0;

>

void perfectnum: :multiple()
{

if ((num % 7) == 0)
p = i;

if ((num % 11) == 0)
P = 2;

if ((num % 13)== 0)
P = 3;

else

switch(p)
{
case 1:

cout« "It is multiple of 7" « endl;
break;

case 2:
cout« " It is multiple of 11" « endl;
break;

case 3:
cout« " It is multiple of 13" « endl;
break;

default:
cout« "It is not multiple of 7, 11, or 13" « endl;

>

>

void perfectnum: :sum()
{

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

check = num + 1;
check = num % 2;
if(check - 0)

cout« "The number is odd" « endl;
else

cout« "The number is even" « endl;
>

void perfectnum::prime()
{

for (i = 1; i < (0.5 * num); i++)
{

if (i != num && num != 1)
<

if ((num % i) == 0)
p++;

>
else
9

>

if (p > 0)
cout« "It is not a prime number" « endl;

else
cout« " It is a prime number" « endl;

}
void perfectnum::perfect()
{

if (num % 2 == 0)
{

for (i =num/2; i >=2 ; i—)
{

if (num % i == 0)
{

perfectsum += i;
>

>

if (perfectsum == num)
{ cout« "The number is a perfect number" « endl;

if (num>100)
c o u t« ”It is bigger than 100”« en d l;
if (num>1000)
c o u t« ”It is bigger than 1000”« en d l;

>
else

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

cout« "The number is not a perfect number" « endl;
>

else
5

>

int main()
{

int number;
cin » number;
perfectnum user(number);
cout« number « endl « endl;
user.multiple();
cout« endl « endl;
user.sum();
cout« endl « endl;
user.prime();
cout« endl « endl;
user.perfect();
cout« endl;

return 0;
>

Rescue program

File name: rescue.cpp
Description:
This program contains four rules, which can be used to crack
the secret code to save the co-op student
•3a *3a •Sa •Sa *3a %3a *3a *3a %3a %3a *1• *1* *1* «!•* •Ia *1* •Sa •Sa *1a •Ia d# vp •Ia •Ia •Sa ^1/ vp d* *p •Ia •Ia ^P ^ ^p *p *p •Sa *1* •Sa •Ja *1* *1* •Ia ^ ^ sP /*p *p rp ̂ Jp *p ?p ?p ̂ p *p *p *p #p ̂ *p *p *p ip ip rp ip ̂ ̂ ̂ ̂ ip *p *p *p *p ip ip ̂ ip ip <p «p ip rp *p *p ip ip ip «p ip ip ip ip ip ip ip ip ip ip ip /

#include <iostream>
#include <cstring>

using namespace std; //introduces namespace std
int main(void)
{

int base; // intermediate variable for extracting digits
int code; // the secret code
int digit 1, digit2, digit3, digit4, digit5; // digits in the code
int rescueDay; // code for rescue day
string day; // string with day of the week
int rendezvousPt; // code for rendezvous point
string point; // string for rendezvous point
int sum = 0; // sum of digits

117

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

const string FALSE_MSG = "False message: // constant part of false
message

// Get code
cout« "Please enter a code to break: ";
cin » code;

// Check if the input is a five-digit number
if(!(code > 9999 && code < 100000)) {

cout« FALSE_MSG « "Not a five-digit number." « endl;
>
else
{

// Obtain the individual digits first
base = code;

digit5 = base % 10;
base /= 10;
digit4 = base % 10;
base /= 10;
digit3 = base % 10;
base /= 10;
digit2 = base % 10;
base /= 10;
digit 1 = base % 10;

sum = digitl + digit2 + digit3 + digit4 + digit5;

// Check if sum is even
if (!(sum%2 == 0))
{

cout« FALSE_MSG « "Sum is odd." « endl;
>
else
{

// Obtain the rescue day
rescueDay = (digitl * digit2) - digit3;
// Check if rescue day is valid
if(rescueDay < 1 II rescueDay > 7)
<

cout « FALSE_MSG « "Invalid rescue day." «
endl;

>
else
{

// Obtain the rendezvous point
if(digit4 == digit5)
{

118

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

rendezvousPt = 0; // Assign an invalid number
>
else if(digit4 > digit5)
{

rendezvousPt = digit5 + 1;
>

else
{

rendezvousPt = digit5 - 1;
>
// Check if rendezvous point is valid
if((rendezvousPt != 2) && (rendezvousPt != 7) &&

(rendezvousPt != 8))
{

cout « FALSE_MSG « "Invalid rendezvous
point." « endl;

>
else
{

// Get the rescue day
switch(rescueDay)
{

case 1:
day = "Monday";
break;

case 2:
day = "Tuesday";
break;

case 3:
day = "Wednesday";
break;

case 4:
day = "Thursday";
break;

case 5:
day = "Friday";
break;

case 6:
day = "Saturday";
break;

case 7
day = "Sunday";
break;

default:
cout« "Error in rescue day!!! ";
break;

119

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

point!!!

point« « endl;

>

>
>
return 0;

} // end of switch
// Get the rendezvous point
switch(rendezvousPt)
{

case 2:
point = "fountain";
break;

case 7:
point = "large tree";
break;

case 8:
point = "church";
break;

default:
cout « "Error in rendezvous

break;
} // end of switch

// Print message
cout « "Rescue on " « day « " at the " «

120

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

