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Abstract

Geomagnetic Field Line Resonances (FLRs), which are standing Shear Alfvén wave (SAW)
structures, have been linked to the formation of auroral arcs, but the exact mechanism
for the acceleration of electrons to the necessary keV velocities is not well understood.
Magnetohydrodynamic (MHD) simulations have failed to reproduce the observed parallel
electric fields needed to accelerate electrons and so attention has focused on including kinetic
effects within the standard MHD formalism. In this thesis, we present a hybrid MHD-
kinetic model for standing SAWSs to help study the potential for wave-particle interactions
involving electrons to lead to enhanced parallel electric fields. The model incorporates
the cold plasma MHD equations and kinetic electrons. The guiding center equations are
used for the electron motion and the system is closed via an expression for the parallel
electric field. This expression incorporates electron inertial effects along with the current
and pressure moments of the electron distribution function and a mechanism to enforce
quasineutrality. The model has been developed in both a box and dipolar geometry. The
latter case incorporates the natural topology of the FLR system and allows for the inclusion
of magnetic mirror trapping effects within the model.

In the box model, we show that the hybrid model is consistent with cold plasma MHD
results for cold electron distributions and Landau damping effects are evident when the
average electron thermal velocity is on the order of the local Alfvén speed. The damping
rate is shown to be in good agreement with analytical results illustrating the validity of the
approach.

In the dipolar case, we validate the model by illustrating the consistency of the approach
with MHD for cold electron temperatures as well as the divergence in the thermal plasma
limit. Mirror force effects are shown to be negligible for ionospheres above 3 Rp altitude
which is generally consistent with other approaches. It is found that the pressure and
magnetic moment effects increase with curvature and temperature. Therefore, it is expected
that including lower altitude ionospheres, these effects will further increase the parallel

electric field strength.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

First, I would like to thank my supervisors, Dr. Rick Sydora and Dr. John Samson, for their
support and encouragement during my tenure in the Ph.D. program. Dr. Samson gave me
the original idea for this challenging project and I am grateful for the many discussions and
instruction that sharpened my insight into the physics of Field Line Resonances and space
plasmas in general. Dr Sydora gave me the background in kinetic simulations of plasmas,
wave-particle interactions and computational physics without which this project would not
have been possible. I am grateful for his knowledge and patience during the many lengthy
discussions on the physics and detailed numerics of this thesis. It has been an interesting
ride and I walk away with a wealth of knowledge and experience.

I am also grateful to my other committee members, Dr. Clarence Capjack, Dr. Frank
Marsiglio, Dr Wojciech Rozmus and my external examiner Dr Robert Lysak for careful
examination of the thesis and many useful comments. Special thanks also goes to Lynn
Chandler, the graduate secretary, for all her help through the years. Her assistance has
been invaluable.

I extend my thanks to Dr Robert Rankin for many useful discussions on the MHD
modeling of Field Line Resonances and to Dr Vladimir Tikhonchuk for much analytical
advice (especially with regards the derivation in Appendix A) and discussions which greatly
aided my understanding of the underlying physics.

I am grateful to my fellow graduate students and post doctoral fellows in the Space
Physics lab for friendship and many useful discussions over the years. Many thanks go to
Sarah Derr, Peter Dobias, Frances Frenrich, Erena Friedrich, Barry Harrold, Konstantin
Kabin, Ian Mann, Jonathan Rae, James Wanliss, Igor Voronkov and Clare Watt. I would
like to give special thanks to Peter Dobias for help relating to the dipolar metrics and other
things analytical; to Erena Friedrich, for many discussions, amusing and otherwise over the
cubicle divider and for dragging me into a planetarium presentation that turned into a lot
of fun; to Barry Harold, who left this world too soon, for much help at the start and to Ian

Mann for many enlightening discussions on FLRs and cold plasma MHD theory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Very special thanks goes to the Igor Voronkov for many discussions and contributions
relevant to this thesis. Most notably, for the comparison material and use of some software
in Chapter 5 as well as discussions that led to the method to enforce quasineutrality. On
the less academic side, I am grateful to the many discussions on life, Pulp Fiction and the
Master and Margharita over coffee, beer or vodka!

Outside the Space Physics dungeon special thanks goes to Geoff, Wendy, Marek and
Katka for many good times and outings to the mountains and the others who have touched
my life in Edmonton; Ariadna, Brian, Juan Carlos, Maher and Suresh among others. It has
been an interesting stay.

Very special thanks goes to my family for their unfailing support throughout this journey
and to my mother, Maria, and grandmother, Carmela, who encouraged me down this path
that they could unfortunately not see me complete.

Finally, I am thankful for the financial support of the University of Alberta and the

National Sciences and Engineering Research Council of Canada.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction

1.1 Preamble . . . .. . . . . . e
1.2 DBasic structure of the magnetosphere . . . . . ... ... ... ........
1.3 Thelonosphere . . . . . . . . . . . . e
1.4 Plasmas . . . . . . . . o e e e e
1.5 Kinetic and Fluid descriptions of plasmas . . . . . ... ... ........
1.6 One Fluid Magnetohydrodynamic Equations. . . . . .. ... ... .. ...

1.6.1 Cold Plasma Approximation . . ... ... ... ...........

1.6.2 Linearization . . . . .. . . .. .. ... .. e
1.7 Alfvén Waves . . . . . . . . . e e e e

1.7.1 Dispersive Alfvén waves . . . . . . . ... .. .. ... ... ...
1.8 Field Line Resonances . . . . . . . . . .. . . . ..
1.9 Discrete Auroral Arcs and Field Line Resonances . . . . . .. ... .. ...
1.10 Outline of Thesis . . . . . . . . . . . . . e e

2 1D Model of FLR with electron inertial effects

21 Preamble . .. ... ... e
2.2 1D cold plasma equations . . . . . . . ... L L L e
2.3 Numerical Model . . . . . . .. .. . o
2.3.1 Boundary Conditions . . ... ... ... ... ... ... ..., .
24 Evolutionof FLR . . . . . . ... ... .. .. . . . .o
241 Emergy. . . . ..o e
242 Summary . . ... e e

3 Hybrid kinetic-MHD model

3.1 Preamble . . . . . . .. e
3.2 Charged Particle Motion in Electromagnetic fields . . .. ... ... . ...
3.2.1 Electric Field Drifts . . . . . .. .. ... . ... .. .. .
3.2.2 Magnetic Field Drifts . . . . . ... ... ... 0oL
3.23 Mirroring . . . . ... e
3.2.4 Particle motion in a dipolar magneticfield . . . . . . ... ... ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©C O U W N =

e e e T =
O kN~ O



3.3 Guiding Center Equations . . . . . . .. .. ... .. ... ... ...
3.4 Hybrid MHD-kinetic Box Model . . . . . .. ... ... ... ... ...
3.4.1 Model equations . . . . ... ...
3.42 Numerical Notes . . . .. ... ... .. . L,
3.4.3 Particle moment interpolation. . . . . .. ... .. ...
3.4.4 Particle loading and velocity assignment. . . ... ... ... ....
3.4.5 Parallel Electric Field Formalism . . . . . ... ... ... ......
3.4.6 Scaling of Electron number density . . . . .. ... ... ... ....
3.4.7 Summary of Box Model Equations . . .. .. ... ..........
3.5 Hybrid Kinetic-MHD Model in Generalized Curvilinear Coordinates
3.5.1 Cold Plasma Equations in Generalized Curvilinear Coordinates . . .
3.5.2 Guiding Center Equations . . . . . . ... .. ... ... ... ....
3.5.3 Parallel Electric Field . . . . . ... ... ... ... ... ...
3.6 Hybrid Model in Dipolar Coordinates . . . ... ... . ... ........
3.6.1 Single particle dynamics in a dipolar magnetic field . . . . . . .. ..
3.6.2 Numerical Notes . . . . . ... ... ... . ...

Box Model Simulations
4.1 Preamble . . . . . . . e e e

4.2 Numerical Issues . . . . . . . . e

4.2.1 Filtering . . . . . . . .
4.2.2 Boundary Conditions . . . ... ... ... ... ... ...
4.3 Simulations with Periodic Boundary Conditions . . . . . . .. ... .. ...

4.3.1 Comparison of Electric Field Formulations. . . . . . ... ... ...
4.3.2 Comparison of 1D and 2D models . . . . ... .. .. ... ...
4.3.3 Single Particle Dynamics . . . ... ... ... . . .0 00
4.3.4 Comparison of Test Particle and Hybrid Model results . . . . . . ..
4.3.5 Comparison of Hybrid model simulations for different initial distribu-
BIONS. . . . . e e e e e e e

4.3.6 Significance of Pressure Term . . . . . .. ... ... .. .......
4.3.7 FEffects of particle number . . . .. . ..o o oL
4.3.8 Parallel Electric Field . . . ... ... ... ... . 0.
4.3.9 Density Fluctuations . . . . . . .. .. ... ... 0000,
4.3.10 Damping rate comparison . . . . . . . . . .. 000

4.4 Simulations with Conducting Boundary Conditions . . . . . . ... .. ...
4.4.1 Boundary Condition Implementation . . . . . . .. ... ... ....
4.4.2 Simulations for k, = f; and k, = 1%—7: .................

4.5 SUMMATY . . . v v v o e e e e e e e e e e e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 Dipole Model Simulations 78

5.1 Preamble . .. .. . . ... e 78
5.1.1 Boundary Conditions . . . ... ... ... ... ... ... ..., 78

5.2 Fluid Model Simulations . . . . . .. ... ... . ... .. .. .. ..., 79
5.2.1 Plasma parameters . . . . . . . . .. ... e e 79

5.2.2 Linear Shear Alfvén waves in a Dipolar Magnetosphere . . . . . .. 80

5.2.3 Linear and Nonlinear Evolution in the Cold Plasma MHD Limit . . 81

5.2.4 Electron Inertial Effects in the Cold Plasma Limit . . . ... .. .. 84

5.3 Numerical Details for the Test Particle and Hybrid Models . . . . . . . .. 84
5.3.1 Particle Placement . . . . . . . ... .. .. ... .. .. .. ... 84

53.2 Filtering . . . ... . ... 84

5.3.3 Inmitial Profile . . . . .. . ... . . ... .. .. 88

5.3.4 Maxwellian and Pitch Angle Distribution . ... ... ... .. ... 88

5.4 Comparison of Test Particle Model and Hybrid Model in the cold plasma limit 90
5.4.1 Single Particle Dynamics . .. ... ... .. ... ... ... ... 92

5.5 Comparison of simulations with Ionospheres at 5and 3 Rg . . . . . .. .. 93
5.6 Inertial Alfvén wave and thermal plasma limits . . . . . . . ... ... ... 99
57 Boundary Issues . .. .. .. .. . .. ... 102
5.8 Parallel Electric Fields in the constant parallel density case . . .. .. ... 104
5.9 Summary . . . .. ..o e e e e e 115
510 Erratum . . . . . . . . e e e e e 115

6 Conclusions 119
Bibliography 121
A Kinetic Dispersion Relation 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

1.1

1.2
1.3

1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4

2.5
2.6

3.1

3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

Three dimensional view of the Earth’s magnetosphere from Eastman et al.

(1985). . . 3
a) Schematic of Shear Alfvén wave. b) Fast compressional mode. . . . . . . 12
a) The phase speed of the fast, slow and Alfvén waves as a function of 6. b)

The group velocity as a functionof 8 . . . . . ... . ... ... ... ..., 13
Schematic of a Field Line Resonance . . . . . .. ... ... .. ....... 14
Box Model of Magnetosphere . . . . . .. ... .. . ... 15
Example of solution for F, near the resonance point. . . . . . . . ... ... 17

False colour image of an auroral arc. Photo by Dr. Trond Trondsen using

the University of Calgary Portable Auroral Imager (P.AI). . .. ... ... 20
Graphs of V4 vs x (solid line) and p vs x (dashed line).. . . . ... ... .. 25
Graph of electron inertial length (nondimensional), Ae, vs x. . . . . . . . .. 26
Graph of initial Shear Alfvén velocity profile. . . . . . .. ... ... .. .. 26
Time slices of uy vs x for the case of A\, = 0 (left side) and for the case of

Ae Z 0. . o 28
Plot of uy at x=0.5 as a function of time. . . . .. .. ... ... ...... 29
Total Energy vs time for A =0. . . . .. .. ... ... ... . ... 30

Top: Gyromotion of electrons and ions in a constant magnetic field. Bottom:

Motion of an ion in a uniform magnetic field (Baumjohann et al. 1996). . . 32
Particle drifts in crossed electric and magnetic fields (Baumjohann et al., 1996). 33
Gradient Drift of the guiding center (Baumjohann et al., 1996). . . . . . . . 33
Motion of a proton in a dipolar magnetic field (Baumjohann et al., (1996)). 34
Motion of a proton in a constant dipolar magnetic field. . . . .. ... ... 35
Two dimensional box model. . . . .. .. ... ... .. 00 0. 37

Bilinear interpolation grid. Areas denoted by lower case letters apply to the

grid point denoted by the same letter in upper case. . . . ... .. ... .. 39
Comparison of Spherical and Dipolar Coordinates. ¢ is directed out of the

PABE. - o o e e e e e e e 47
L=10 dipolar magnetic field line . .. ... ... ... ... ... ...... 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.10

3.11

3.12

3.13

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Graphs of A vs time for an electron on the L=10 magnetic field line. The
cases of each letter correspond to the parameters given in Table 3.1 . . . . .
Sample numerical grid for ny = 16, ngy = 50 with superimposed magnetic
field lines for L=9,10 and 11. . . . . . . . . . . . . ... . . ... . ... ..

Example of bilinear interpolation scheme using parallelogram areas for weight-

Particle angle A as a function of time for exact calculation of the electric field
at the particle position (solid line) and the interpolation of the field at the

particle position (dashed line) . . . . . .. .. .. ... .. L.

Comparison of E, from the Generalized Ohm’s Law (solid line) and from
expression (4.3) (dashed line) at t =3 T4. Slice at z=1235 . . ... .. ..
Amplitude of the first order mode for u, from the 2D periodic fluid model
(solid line) compared to output of the 1D model (dashed line) at ¢t = 5T'4.
Bothcasesarefor A\ =0. . . . . . . . .. . . . ...
a) The radial motion of an electron guiding center in the standing SAW
system. b) The field aligned motion. . . . . ... ... .. ... .......
Comparison of kinetic electron current j. and the Ampere’s law current j,
from the test particle model at t = 2 T4 (top) and the hybrid model at ¢t = 6
T4 . Slice at x=0.597. . . . . . . . . . . e
Top: Comparison of azimuthal velocity at t=4T'4 from the fluid model (solid
line) and the hybrid model for the for the initial J-function electron distribu-
tion (dashed line) and vy, = 0.71 initial electron distribution function (dotted
line). Slice at z=3.6. Bottom: same at t =8 T4. . . ... ... .......
Comparison of azimuthal velocity from the fluid model (solid line) and the
hybrid model with vy, = 1.41 initial electron distribution function (dashed
line). Slice at z=3.6. . . . . . . . .. ..o
Comparison of azimuthal velocity from fluid model (solid line) and hybrid
model with vy, = 4.24 (dashed line). Slice at z=3.6. . . ... ... ... ..
Distribution function evolution. Top: Case of vy, = 0.71. Middle: Case of
vy, = 1.41. Bottom: Caseof vy, =4.24. . . . . . ... ... L.

Comparison of kinetic parallel electron current j. (dashed line) and the so-

lution of Ampere’s Law j, in the hybrid code for vy, = 4.24. Slice at z=7.92.

Comparison of azimuthal velocity from the fluid code (solid line) and hybrid
code with (dashed line) and without pressure term (dotted line) at t=8.0 T'4.
Slice at z=3.6. . . . . . . . e
Top: Comparison of the azimuthal velocity in the hybrid model using the
vy, = 1.41 initial electron distribution function with n, =1 x 10° (solid line)
and n, = 2 x 10° (dashed line) at ¢t = 3 T4. Bottom: Same at ¢ = 7 T4. Slice

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

51

52

53

57

58

58

59

61

62

62

64

65

66



4.12

4.13

4.14

4.15

4.16

4.17

5.1

5.2
5.3

5.4

5.5

5.6

Parallel electric field after the application of the post-simulation spectral filter
at t = 7 T4. Slice at z = 7.92. The fluid model result is unfiltered. . . . . .
Top: Unscaled electron number density from the hybrid model with v, =
1.41 and np, = 1 x 105 at ¢ = 3 T4. Bottom: Slices of the unscaled electron
number density at z=3.6 for t = 3 T4 with n, = 1 x 10° (dashed line) and
n, = 2 X 10% (dotted line). The ambient density profile is indicated by the
solidline for t = 0.1 T4. . . . . . o v i e e e s e e e
Log of the average value of the parallel current density between z = 0.5 and
x = 0.6 vs time for a slice along z = 7.92 (solid line) and best fit line (dashed
line). Data for ¢ < 300 seconds is truncated. . . . . ... ... ... ... ..
Comparison of the azimuthal velocity from the fluid model (solid line) and
the hybrid model with conducting boundary conditions (dashed line) using
the vy, = 1.41 initial electron distribution function for k, = {: Slice at

Comparison of azimuthal velocity for the fluid code (solid line) and the hybrid
code with conducting boundaries (dashed line) for vy, = 1.41 and k, = %—7:
Sliceat z=3.94. . . . . . . . ..
Top: Evolution of distribution function for the hybrid model with conducting
boundary conditions for k, = LLZ and v, = 1.41. Bottom: Evolution of dis-
tribution function for the hybrid model with conducting boundary conditions

for k, = —2L—7: and vy, =141, . . ..

Plasma parameter profiles along the L=10 field line corresponding to density
profile (a) (solid line) and density profile (b) (dashed line) (see text). Here
I, is the distance along the field line. The left hand side of the figure is the
equatorial region and the right hand side is the ionosphere. . . . .. .. ..
Equatorial radial Alfvén velocity profile. . . . . . ... ... ... ... ...
Profile of us (solid line) and hgbs (dashed line) for the fundamental Shear
Alfvén wave mode along the L=10 magnetic field line. w3 and h3bs are
normalized by the equatorial and boundary values respectively. . . . . . . .
Comparison of the equatorial amplitude of uz at 10 Rg as a function of time
for the cold plasma code (solid line) and the nonlinear code (dashed line). .
Comparison of the equatorial radial profile of uz for the cold plasma code
(solid line) and the nonlinear code (dashed line) after 5 oscillations (left) and
after 10 oscillations (right). . . . .. ... ... ... .. .. 0.
Comparison of the radial profile of ug for density profile (a) at t=1T4 solid
line and t=60 T4 (dashed line). Top: equatorial slice. Bottom: southern

ionospheric slice. . . . . . . . . . ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

70

71

74

74

76

80
81

82

83

83



5.7 Comparison of the radial profile of ug for density profile (b) at t=1 T4 (solid
line) and t=60 T4 (dashed line). Top: equatorial slice. Bottom: southern
ionosphericslice. . . . . .. ... ... 86
5.8 Comparison of ionospheric slice of the parallel current density (top) and
parallel electric field (bottom) at t=60 T4 for density profile (a) (solid line)

and density profile (b) (dashed line). . . . ... ... .. .. .. ...... 87
5.9 Initial Shear Alfvén wave profile. Left: Radial profile. Right: Field Aligned

profile. . . . . L. e e 88
5.10 Initial pitch angle distribution for the case T, = 1.0 with n, = 2 x 108, (N,

= number of simulation electrons). . . . . . ... ... ... ... ... ... 89
5.11 Left: Initial magnetic moment distribution for the case T, = 1.0 with n, =

2 x 108, Right: Same, but for T, = 10.0 and np =5x 106. . . . . ... ... 90
5.12 Plasma parameters in the hybrid model corresponding to n.q = 0.lem™3 . . 91

5.13 Comparison of equatorial amplitude of ug at z9, as a function of time for the
fluid model with n.q = 0.1 em 3. . 93
5.14 Comparison of the perpendicular profile of Ampere’s law current, j; (solid
line) and electron current j. (dashed line) for the test particle model with
T.=1 €V initial Maxwellian distribution function. Southern ionospheric slice. 94
5.15 Perpendicular profile of the parallel electric field for the test particle model.
Southern ionospheric slices. . . . . . . . ... ... ... . 95
5.16 Perpendicular profile of Ampere’s law current, j; (solid line) and electron
current j. (dashed line) for the hybrid model with T,=1 €V initial Maxwellian

distribution function. Top: t=20 s. Bottom: t=450s. . ... ... ... .. 96
5.17 Evolution of the distribution function for the case of T,=1.0eV. . ... .. 97
5.18 Contrast of distributions functions from the hybrid (solid line) and test par-

ticle models (dashed line) for T,=1.0 eV at t=400s. . . ... .. ... ... 97
5.19 Evolution of the distribution function for the case of T, = 10.0eV. . . . . . 98

5.20 Trajectories of electrons of indicated energies with (solid line) and without
resonance electric field (dashed line). All electrons are released at the equator
of the L=10 magnetic field line with equatorial pitch anglesof £. . . . . . 98
5.21 Comparison of trajectories for the hybrid model (solid line) and the test
particle model (dashed line) for two different initial simulation electrons. . . 99
5.22 Four parameters as a function of time for the T, = 1.0 eV simulations with
ionospheres at 3 Rg (solid line) and 5 Rp (dashed line). Parameters plotted
(from top to bottom) are the equatorial fluid velocity, usg and southern iono-
spheric values of the parallel current, j;, pressure moment, K, . U?S and
par moment, K, 37 puprS of the electron distribution function. K, and K,

are the normalization constants for each term (see section 5.8 equations). . 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

Evolution of distribution function for the simulation with 7, = 1.0 eV and
Tiomosphere =3 BE. « o o o i 101
Radial Alfvén velocity and electron inertial length profiles (in nondimensional
units) at the equator for r, =6 Rg and neg =0.05em™ . . . . ... .. .. 102
Distribution functions at ¢ = 24 seconds (solid line) and ¢ = 96 seconds
(dashed line) for the inertial SAW example (left) and the kinetic Alfvén
wave example (right). . . . . .. ... L 103
Comparison of the equatorial Shear velocity at ¢ = 96 seconds (check time)
for the cold plasma MHD model (solid line) and the hybrid model for T, = 10
eV . e e e 103
Comparison of the equatorial Shear velocity at ¢ = 100 seconds (check time)
for the cold plasma MHD model (solid line) and the hybrid model for T, = 70
eV e e e e e e 104
Distribution function evolution for the hybrid model with 7,=4.0 eV and

3 using 2 million particles (top) and 6 million particles (bottom).105

ne = 1.0 em™
Evolution of the pressure moment, K, 3. v?S as a function as a function of
x9 (at southern ionosphere) for the hybrid model with T, = 4 eV using 2
million particles (top) and 6 millions particles (bottom). . . . . . ... ... 106
Radial profile of E; close to the southern ionosphere (z; = —0.0573) for
the MHD model and the hybrid model with three different initial electron

distribution functions at ¢ = 13 seconds. A constant field aligned density

profile was used with ne, = 0.1 emT3 109
Radial profile of n, close to the southern ionosphere (z; = —0.0573) for
the MHD model and the hybrid model with three different initial electron
distribution functions at ¢ =13 seconds. . . . . . ... .. ... oL, 109

Radial profiles of the components of the equation for F; close to the southern
ionosphere (z; = —0.0573) at ¢t = 6.0 seconds for T, = 0.001 eV (solid line),
Te = 0.1 eV (dashed line) and T, = 1.0 eV (dotted line). This last case is
not displayed in the top two panels as it was too noisy. . . . . . . ... ... 110
Radial profile for F close to the southern ionosphere (z; = —0.0573) for the
MHD model and the hybrid with T, = 1.0 eV at ¢ = 30 seconds. . . .. .. 111
Average electron energies needed to support the current density j; in the top
panel for a constant electron number density profile of 0.05 cm~3. Calculation
based on the definition |j;| = |neT|. Current density profile is for the MHD
simulation at £ = 1 s along 3 = 0.165 field line with 7onosphere = 3 RE. . . 113
Average electron energies needed to support the current density j; in the top
panel for a constant electron number density profile of 0.05 em 3. Calculation
based on the definition |j;| = |nev|. Current density profile is for the MHD
simulation at ¢t =1 s along xo = 0.165 field line with 70p05phere =1 Rp. . . 114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.36 Radial profiles of the components of the equation for F; close to the southern
ionosphere (z; = —0.0573) at ¢ = 6.0 seconds for T, = 0.001 eV (solid line),
T, = 0.1 eV (dashed line) and T, = 1.0 eV (dotted line). This last case is
not displayed in the top two panels as it was too noisy. Calculation done
with corrected program. . . . . . .. ... L L L 117
5.37 Radial profile of E; close to the southern ionosphere (z; = —0.0573) for
the MHD model and the hybrid model with three different initial electron
distribution functions at ¢ = 6 seconds. A constant field aligned density
profile was used with ne, = 0.1 em™3. Calculated with the corrected program.118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

3.1 Initial equatorial electron pitch angles and energies and the corresponding
calculated bounce periods and mirror angles. . . ... ... ... ......

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Symbols

a - pitch angle

a, - equatorial pitch angle

B - total magnetic field

B, - ambient magnetic field

b - perturbed magnetic field

By - magnetic field normalization constant

¢ - speed of light

e - electron charge magnitude

E - electric field

€, - permittivity of free space

5 - plasma displacement

E, - correction field to enforce quasineutrality
Epn - electric field normalization constant

f = fo+ f1 - electron distribution function

fo - equilibrium distribution function

f1 - perturbed distribution function

h; - scale factor or Lamé coefficient where subscript denotes direction
] - current density

k - wavenumber

kp - Boltzman constant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



K, - normalization constant for magnetic moment term in the equation for the dipolar

parallel electric field

K, - normalization constant for the pressure term in the equation for the dipolar parallel
electric field

fp - polarization current density

A - angle subtended from the equator

Am - mirroring angle of an electron subtended from the equator
Ae - electron inertial length

Ap - Debye length

L - normalization constant for length

Lo - permeability of free space

s - electron magnetic moment

me - electron mass

myp - proton mass

ne - electron number density

n - single fluid number density

wge - €lectron cyclotron frequency

p - pressure

g - electric charge

p - fluid mass density

pn - fluid density normalization constant
Ty - gyroradius

Rpg - earth radius

o - electric conductivity

S(Z,7;) - particle shape function

T} - electron bounce time in a dipolar magnetic field

Tk - average energy of electron distribution function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f - angle subtended from the northern pole axis

- fluid velocity

S

<y

- electron velocity
3g - E x B drift velocity

vy, - thermal velocity of electron distribution function

vp - polarization drift velocity
z1 - curvilinear coordinate along ambient magnetic field (also denoted by u)

xg - curvilinear coordinate perpendicular (in the radial direction) to the ambient magnetic
field (also denoted by v)

x3 - curvilinear coordinate in azimuthal direction (also denoted by ¢)

Ty

resonance position in the box model

x¢ - turning point of the fast mode in the box model
Va4 - Alfvén speed

We - curvature drift

Wyp - gradient drift

Z - plasma dispersion function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 Preamble

Space plasma physics is generally defined as the study of plasmas in the earth’s near space
environment. Such a simple statement belies a complex series of processes which commence
with the outflow of plasma from the sun, called the solar wind, and end with the deposition
of energy in the earth’s ionosphere and upper atmosphere which manifests itself in the
visible aurora. It is a prime example of the transfer of energy to smaller and smaller scales.
The initial transfer of energy between the solar wind and the earth’s magnetosphere can
be accomplished through several mechanisms, one being the excitation of Alfvén waves by
the interaction of the solar wind with the magnetospheric boundaries. These waves can
propagate toward the Earth and have been observed to form Standing Shear Alfvén waves
(SAW) structures along the earth’s dipolar magnetic field called Field Line Resonances
(FLR). Satellite observations have linked these structures with the formation of the small
scale discrete auroral arcs. Simulations of the FLR system using the magnetohydrodynamic
equations (MHD) have reproduced the observed scale structures, but have consistently failed
to reproduce the electric field magnitudes needed to accelerate electrons to sufficient velocity
to allow them to reach the earth’s atmosphere. This illustrates that the wave-particle
interactions, which are not included in the MHD description, may be vital in understanding
the FLR system.

In this work, we concentrate on the development of a hybrid MHD-kinetic model which
combines the use of the cold plasma MHD equations with a kinetic description for the
electrons to study how wave-particle interactions can effect the evolution of a SAW system
as compared the to MHD description alone. We will conduct this study in cartesian and
dipolar coordinate systems: the first to facilitate code development and testing and the

latter to more accurately model the physics of a FLR system.
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1.2 Basic structure of the magnetosphere

As already stated, the ultimate driving force of the Earth’s magnetospheric structure (as
seen in Fig. (1.1)) is the solar wind. Its flow is both supersonic and super Alfvénic and
it generates a standing collisionless shock front called the Bow Shock where the earth’s
magnetic field becomes an obstacle to the supersonic flow of the solar wind. It slows the
solar wind to subsonic speeds. It is analogous to shocks in a regular fluid except that this
entire phenomenon is collisionless. The nose of the bow shock (the most sunward portion)
is typically 12-15 Rg (1 Rg=6371 km). Since the flow speeds outside of the Bow Shock are
supersonic, any waves incident on the Bow Shock from inside the magnetosphere will be
reflected back inwards. After the bow shock, the subsonic solar wind propagates on until
another boundary (called the magnetopause) is reached, defined by the balance of forces
between the solar wind pressure and the magnetic pressure exerted by the earth’s magnetic
field. The position of the magnetopause is described mathematically by the following (Parks,
1991),

B2
2mnU2y cos’p = —2- (1.1)
240

where the right hand side is the magnetic energy density, Ugw is the solar wind velocity,
m is the mass of solar wind particles and n is the particle number density. The angle ¢
is the angle between the solar wind velocity vector and the normal to the magnetopause
boundary. The region of laminar flow in between the magnetopause and bow shock is
called the magnetosheath. This is contrasted by a turbulent layer on the inner side of
the magnetopause boundary called the Low Level Boundary Layer (LLBL). In this region,
Kelvin-Helmoltz instabilities as well as other factors can produce fluctuations that lead to
wave propagation into surrounding regions of the magnetosphere. The lobe is a region of
reduced plasma density adjacent to the higher density plasma sheet which contains particles
of both solar wind and ionospheric origin. The plasmapause is a sharp boundary separating
the colder plasma regions of the near earth environment (plasmasphere), where the plasma
dynamics are controlled by the earth’s magnetic field, from the hotter surrounding plasma.
The boundary is typically found at an altitude of 3-5 Rg.

FLRs typically form along the dipolar magnetic field lines between about 8 and 10 R
in the equatorial plane. The average plasma densities in this region are on the order 0.1 -1
em~3 with average particle thermal energies of 10s of eV for electrons. The typical magnetic
field strength is on the order of a few nT. The tenuous nature of this plasma means that it is
essentially collisionless. However, the presence of the magnetic field (even one this tenuous)
means that particles can interact with each other via the electromagnetic forces between
them.

There are several current systems in the magnetosphere and any current that moves

along the magnetic field lines is called a field aligned current (FAC). Typically this current
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Figure 1.1: Three dimensional view of the Earth’s magnetosphere from Eastman et al.
(1985).

is carried by electrons as they can move very rapidly along the field lines, while much of
the perpendicular current is carried by ions since they are massive enough to cross field
lines. In field line resonances, the parallel electron current is the response of the plasma
to perpendicular ion polarization currents, in order to maintain the quasineutrality of the

plasma.

1.3 The Ionosphere

The ionosphere is the ultimate dumping ground for all the magnetospheric energy and is a
very different plasma region than the magnetosphere. It commences about 60 km in altitude
from the surface of the earth and it owes its ionized state to incoming solar radiation and
the precipitation of high energy particles along the earth’s magnetic field lines. A slow
recombination rate maintains the plasma state. There are three distinct regions in the
ionosphere defined by their relative plasma characteristics and density variations which go
from approximately 103 cm ™2 at the lower edge to 10% ¢m™2 at the upper edge (about 300
km in altitude). These high densities make the ionospheric plasma collisional. Some field
aligned current systems from the magnetosphere are closed via perpendicular currents in
the ionosphere and the interaction of high energy electrons moving along the field lines with

the ionospheric plasma lead to the visible aurora. High energy protons also interact with
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the ionospheric plasma to produce the proton aurora, but these are not generally visible to
the naked eye.

1.4 Plasmas

Plasmas are differentiated from ionized gases by two fundamental concepts: quasineutrality
and the fact that a plasma can exhibit collective behaviour. The idea of collective behavior
arises from the fact that if a sufficiently large number of particles are ionized in the plasma,
the attractive and repulsive forces between opposite and similarly charged particles respec-
tively can give rise to regions of positive and negative charge. These relative regions of
charge separation give rise to electric fields and consequently current and the plasma can
be seen to have a ”collective behavior” on the larger scale.

This idea also relates to the ability of a plasma to shield out external potentials applied
to it. If an external potential difference is applied across a region of the plasma, the
electrons will move to the positive pole and the ions to the negative pole. In a cold plasma,
the shielding will be perfect and no electric field will result. However if the plasma has a
finite temperature, some of the electrons at the edge of the shielding cloud will escape from
the potential. Short range electric fields can then exist beyond this point. This "edge” is
where the average kinetic energy of the electrons is approximately equal to the electrostatic
potential and the radius of the shielding volume is given by

cokgT
Ap = (—nf—g)m (1.2)

where Ap is called the Debye Length and the shielding phenomena is known as Debye
Shielding. Therefore, for any charge concentration or external potentials in the plasma,
they will be shielded out for large scale lengths L, where L > Ap. This implies that most
of the plasma is free of electric fields and potentials. Therefore, if we define electric and
ion number densities of n, and n;, then the plasma can be said to be quasinuetral in that
n; & ne & n where, n is the plasma density. The term ”quasi” is introduced, since the plasma
is predominantly neutral on the larger scale, but smaller scale inconsistencies in densities
can still introduce electromagnetic forces. The condition L > Ap and quasinuetrality are
the first two conditions to define a plasma. The third comes from the fact that the idea of
Debye Shielding only has meaning if there are enough particles in the charge cloud to be
statistically valid. Therefore, defining the number of particles in a Debye Sphere as

_4

ND3

L0 (1.3)

it is necessary that Np > 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.5 Kinetic and Fluid descriptions of plasmas

One of the most basic equations to describe a collisionless magnetized plasma system is the
Vlasov equation, derived by the Russian physicist A.A. Vlasov in 1945

Ofs Ofs ds . = = Ofs

v-—=—=+ —(E+97xB) ==

ot TV Gr T, EHUXB) 5o

where f is the particle velocity distribution function of species s, and 7 and ¥ are the position

=0 (1.4)

and velocity vectors respectively. Integrating the moments of the velocity distribution
function over velocity space, yields the bulk plasma parameters. For example, the 0%
moment yields the particle number density for species s, ng

n(7t) = [ £75, ) (15)
while the first moment, yields the average velocity of the plasma species, i,
1] ! /w (7,7, t)dv (1.6)
YUYy = ———— . .
8 ns(”—_;, t) S\ Y

Now, it is possible to work with the Vlasov equation directly, but also, it can be used as a
starting point to derive a fluid description for the plasma. First of all, directly integrating
(1.4), over velocity space, yields (see Parks, (1991) for details)

ong
ot

This is an equation of continuity since it states that the number of particles must be

+ V- (nu;) =0 (1.7)

conserved.
Now, multiplying (1.4) by ¥ and again integrating over velocity space yields the momen-
tum equation for species s
dﬁs — o —

Mstls—~ = gsns(E + @ x B) — Vps (1.8)
where it has also been assumed that the plasma pressure is isotropic. This process can be
continued to produce an infinite set of equations, but for the purposes of this work, it is
necessary to consider only the first two equations in the hierarchy.

For a plasma in thermal equilibrium, the distribution function is a Maxwellian, given
by the expression,
= 2\ Y \3/2

where < ¥ >= 1, is the average particle velocity.

exp( ) (1.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.6 One Fluid Magnetohydrodynamic Equations

A plasma generally contains electrons and at least one species of ions (most commonly
H™) resulting in the need for at least two sets of fluid equations to describe the dynamics.
Unfortunately the solution of the the two-fluid system can be quite involved, but it is
possible to reduce this two-fluid set into a single fluid description. Although this system is
less complete, it captures much of the physics of the relevant wave motions of interest in
magnetospheric physics and so is a convenient starting point for the investigation of some
phenomena.

The set of single fluid MHD equations begins with Maxwell’s equations which, in MKS

units, are given by

. . 10K
VXB——MO]-FC—Q-é‘t-‘ (110)
V-B=0 (1.11)
vxi=-28 (1.12)

o
V.-E= 56)— (1.13)

where B is the magnetic field, E is the electric field, j is the current density, p* is the the
electric charge density, p, is the electric permeability, ¢, is the permitivity of free space and
c= \/ﬁ is the speed of light in a vacuum. Most processes in the magnetosphere are of a
low frequency and non-relativistic nature and the displacement current portion is negligible,

so that

V x B = pio]. (1.14)

Next, the fluid equations for the electrons and ions are combined as follows. Multiplying
equation (1.7) by the particle mass, mg, and writing the continuity equations for both

electrons and ions

9p;

e + V- (p7) =0 (1.15)
Ope Ly
W‘f‘V' (peve) =0 (1.16)

where p; and p. are the ion and electron number densities respectively and v; and v, are

their respective velocities. Adding these two equations then yields

8 — -
a(pi + pe) + V- (pith; + petie) = 0. (1.17)

For a two component plasma of electrons and ions, the total mass density is
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P = Pe+ Pi = Ny + NeMe. (1.18)

and using the center of mass fluid velocity % defined by

e d p
N;MiU; + NeMele

4= (1.19)
31 + NeMe
equation (1.17) becomes
d
d—;’ +V - (o) = 0. (1.20)
This is the single fluid continuity equation.
Now, writing the momentum equation for the two species
dii; S o
mlnl% =gn;(E + i; x B) — Vp; (1.21)
Mefle— = gene(E + e x B) — Vp, (1.22)
adding them together assuming n; = n, = n, ¢; = —¢. and defining total pressure, p =
Pi + Pe, yields
d . . L =
n—cﬁ(mzuz + metle) = qn(t; — i,) X B — Vp. (1.23)
Defining the current density j
J = maigithi + neGetie = qn(u; — u,) (1.24)

and using the definition of @ from equation (1.19), the single fluid momentum equation
becomes

di -+ =

— =j x B—Vp. 1.2
poy =% B=Vp (1.25)
In order to close the single fluid MHD system of equations, an equation of state is

needed to relate the pressure and density. For an isothermal fluid and an adiabatic fluid

respectively, the equation of states are given by

d p
and
%(pp”) (1.27)

where v is the ratio of the specific heats C,/Cy. For an isotropic Maxwellian distribution

3

function, v = 3.
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The final point in deriving the system of single fluild MHD equations is to relate the
current density and the electric field via the Ohm’s law

J =oEr (1.28)

where Er is the total electric field and o is the conductivity. Generally, the Ohm’s law
involves a convolution integral where o is given by a matrix, but for the moment it is
being assumed that long range forces are minimal and the electric field and current are only
related by the local conductivity. The idea of nonlocal conductivity will be returned to later
in the chapter.

Now, in a plasma there is the ambient electric field E, but also that induced by the fluid
motion across the magnetic field lines @ x B. Therefore, the Ohm’s law becomes

J=o(E+ix B). (1.29)

In the earth’s magnetosphere, the plasma is essentially collisionless making the conduc-
tivity very high and so it is common as a first approximation to assume ¢ = oo. This is
known as the ideal MHD approximation, and the only way to have a finite current in such
a case is to have, F/ + i x B = 0 and therefore

E=-i@ixB (1.30)

As a more general formulation, there is the Generalized Ohm’s law given by the following
(Nicholson, 1983),

_Vp (1.31)

which can be derived from the momentum equations for ions and electrons (including the
collision terms). It is called the Generalized Law in that if all terms on the right hand side
can be neglected except the second last one, the equation reduces to the basic Ohm’s Law
(1.29). Generally, for magnetospheric plasmas, we can ignore the second term on the right
(also known as the Hall term), and assuming the ideal MHD approximation, the Generalized

Ohm’s law becomes

07
¢ ot
— MiMe

where \? = e is the electron inertial length squared and the assumption of a cold plasma

E+1@x B = poh (1.32)

has been used as well. Noting p ~ nm;, then the electron inertial length can be rewritten

as A2 = e,
Lione

Now, in order to further justify neglecting the displacement current, the following scaling
argument (Voronkov, 1998) can be used. Comparing the magnitude of the displacement
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current term and the V x B term (using the ideal MHD approximation for the electric field)
yields,
OE/0t] _ En/tn _ vaBaftn _ 2

2|V x B ~ &2Bn/L, = ?Bn/L, (1.33)

where E,,, B, and v, are characteristic values of E, B and @ respectively. Therefore as long
as v, < ¢, the displacement current can be neglected. It should be noted however, that
in a dipolar magnetic field V x B, = 0 (where B, is the ambient magnetic field) and ratio
becomes

|0E/ot| V3

2|V x B | T2
(R. Lysak, private communication). In this case, the Alfvén velocity close to the ionospheres
can start to become a significant fraction of the speed of light and displacement current

effects may need to be considered.

1.6.1 Cold Plasma Approximation

In the limit T — 0, thermal effects within the plasma can be ignored. This is known as the

cold plasma approximation. In this limit the momentum equation becomes

di - =
Py =J % B (1.34)

and the equation of state is not needed to relate density and pressure. Therefore, the single

fluid MHD system of equations can be reduced to the following

V x B =poj (1.35)
. 0B
E=--= 1.
V x 5 (1.36)
dp L
pr + V- (pd) = (1.37)
di -+ =

(1.39)

As a further examination of the meaning of the cold plasma approximation, the Jx B
term in the momentum equation can be rewritten using Ampere’s law and a vector identity
as

VxB)xB B-VB VB?

FxB=
Ho Ho 20

(1.40)
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where the first term is due to magnetic curvature and the second term is due to magnetic

pressure. Noting the ratio of thermal pressure to magnetic pressure

p
B= o 1.41
57/ 2p)’ (140
the cold plasma approximation can be defined as the limit where 8 — 0 and magnetic
pressure dominates over thermal pressure. For a low beta plasma, where magnetic curvature

is negligible, the only term of importance is magnetic pressure.

1.6.2 Linearization

For this present work we will only be considering linear theory with the assumptions
B(Ft) = Bo(F) + b(F,t), p(7,t) = po(F) + p1(7,t) and @ = % where ¢ is the plasma
displacement. With these assumptions, the cold plasma equations are reduced to the fol-

lowing,

V x B =poj (1.42)
. b
d
% + V- (poti) =0 (1.44)
di 1 o o
pEE = ITO“(V X b) X B (145)
E+axB=uo,\zg—‘Z (1.46)

With the definition of the ambient magnetic field B,, the terms field aligned direction
(or parallel direction) and perpendicular direction are introduced with reference to the
directions parallel and perpendicular to B,.

One consequence of the linearization is that there is no field aligned component for the
plasma velocity. This, along with the fact that the inertial term has negligible contribution
to the perpendicular components of the electric field, allows the equation for the electric

field to be written as two equations, one each for the parallel and perpendicular components,

as
aJy
B)| = pol (1.47)
E, =i, x B,. (1.48)

10
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1.7 Alfvén Waves

Although there are many different wave types which can exist in a plasma, only three modes
can exist in the MHD limit, the shear Alfvén wave (SAW), the fast magnetoacoustic mode
and the slow magnetoacoustic mode. The first of these, the shear Alfvén wave, is a purely
transverse wave in which the perturbed part of the magnetic field is perpendicular to the
ambient magnetic field and the wave propagates along the ambient magnetic field line (see
figure 1.2 (a)). For an ideal homogeneous incompressible plasma (o = oo, Vp = 0, V-@ = 0)

the cold plasma MHD equations can be simplified to

0 = L =
EB =V x (@ x B) (1.49)
ou 1 = =
pgi' = /];(v X B) x B. (150)

Assuming the linear approximation for the magnetic field perturbation and choosing the
ambient magnetic field direction so that ]§O = B,Z, it is possible to show that these MHD
equations can be reduced to the following wave equations

8%b 8%b
3 = Vj——azz (1.51)
0% 0%l
oz = Vigs (1.52)
where V4 is the Alfvén speed given by
B,
VA= apm T2 (1.53)

Assuming ¥ and b vary as exp(i(E -7 —wt)), it is straightforward to derive the dispersion

relation for the shear Alfvén wave

w?

2 = V3cos*(0) (1.54)
where @ is the angle between the wave vector, k, and the ambient magnetic field B,. For
the case of the linear cold plasma equations, there is no velocity component parallel to the

magnetic field and the dispersion relation reduces to

w?

i V3. (1.55)
For the case of a compressible plasma, a more involved derivation (see Parks, 1991),
yields the following dispersion relation
w2 1

Y = (VE+C2 £ ((VE + C2)? ~ 4VECheos(0)] ) (1.56)

11
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X

Figure 1.2: a) Schematic of Shear Alfvén wave. b) Fast compressional mode.

where C? = lp? is the speed of sound in the plasma. The positive and negative solutions
correspond respectively to the fast and slow magnetosonic modes. The latter is known
as a slow mode because the phase velocity is slower than either V4 or C;. Both modes
are driven by magnetic tension and thermal pressure forces and have both transverse and
compressional components. The difference between the two modes is that in the fast mode,
the magnetic field and plasma oscillations are in phase and in the slow mode, they are out
of phase. For 8 = 0, the slow mode vanishes and the dispersion relation for the fast mode

reduces to

w?

5= Vi+C2 (1.57)
In a cold plasma Cy=0 and %’; = V3.

The nature of these modes are further illustrated in figure (1.2). In panel (a) the Shear
Mode is illustrated with @ and & perpendicular to the ambient magnetic field and k is per-
pendicular to ¥ showing that the wave is incompressible. For the case of the compressional
mode (b), it is evident that the wave is compressible since b has a component along B, and
k-7 0.

In figure (1.3), plots of phase and group velocity for all three wave modes are plotted
as a function of 8 for the case of Cs < V4 which is usually the case in magnetospheric
plasmas. From this it is evident that the maximum velocity for the fast mode propagates
perpendicular to the ambient magnetic field while the slow mode and Shear Alfvén wave

modes have a maximum velocity parallel to the ambient magnetic field.

1.7.1 Dispersive Alfvén waves
With the inclusion of the Generalized Ohm’s Law in the cold plasma limit (8 < 2¢),

my

12
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a) Alfven b)

Figure 1.3: a) The phase speed of the fast, slow and Alfvén waves as a function of 6. b)
The group velocity as a function of 4

o aJ

E+idxB= ;LOA%Z

in the ideal MHD equations, it can be shown that the Shear Alfvén wave dispersion relation
will change such that

BV
1+ k2 X2

where A, is the electron inertial length as mentioned earlier and k; is the wavenumber

(1.58)

perpendicular to the ambient magnetic field.
On the other hand, for the case of a warmer plasma (8 > %), it can be shown (refer

to Appendix A) that the dispersion relation becomes,

1
w? = k2V3(1 + Ekgpg) (1.59)

where pg = Aovy,/Vy is the effective ion gyroradius. These two dispersion relations are the
dispersion relations for inertial Shear Alfvén wave and and kinetic Alfvén wave respectively.
They are dispersive because they lead to a propagation in the perpendicular direction with
short perpendicular wavelength. This is evident from the fact that the perpendicular group
velocity, ;%‘“I, is non-zero. The inertial Alfvén wave will propagate into regions of lower
density and the kinetic Alfvén wave will propagate into regions of higher density. More

detail on these waves will be given later in this chapter with the discussion of FLRs and

13
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Field Line Resonance
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Figure 1.4: Schematic of a Field Line Resonance

in the following Chapters (especially chapters 2 and 4). The existence of these dispersive

waves in space plasmas was first noted by Hasegawa, (1976).

1.8 Field Line Resonances

Magnetohydrodynamics is a good starting point for the study of FLRs because it incorpo-
rates all the necessary wave modes needed to understand the phenomenon. In this section,
the basic physics behind the resonance will be discussed along with the linear theory devel-
oped by Chen and Hasegawa (1974) and Southwood (1974).

The basic mechanism is as follows (refer to figure (1.4)). Compressional waves are
excited in the dayside magnetospheric region by several possible sources including pulses
from the solar wind, due to such things as coronal mass ejections, interacting with the
magnetopause boundary. As these waves propagate Earthward, they see an increasing
Alfvén wave gradient which causes the wave to be reflected at some point known as the
turning point, z; (this reflection is actually a gradual refraction, but for the simple model
considered here, it is a good approximation to regard it as a reflection). However, not all
the energy of the compressional mode is reflected, part of the energy evanesces past the
turning point and when it encounters a dipole magnetic field line with a natural eigenmode
equal to the frequency of the incident compressional wave a standing SAW is excited along
this field line. It is this excitation of the shear Alfvén wave along the dipole field line that
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Figure 1.5: Box Model of Magnetosphere

is called an FLR.

For the basic linear theory of an FLR, it is possible to simplify the geometry to that of
a box so that the field aligned direction becomes z and the radial direction is x (see Figure
(1.5)). The ambient magnetic field is constant and the Alfvén wave gradient is introduced
via a radial gradient in the density. Then assuming perturbations of the form

ei(wt—-kyy—kzz) (1.60)

the following wave equation can be derived from the linearized MHD equations

0°E, ky 9 w? OB, =
- — (=)= E,=0 1.61
0r?  [(w/Va)? — k2]K2 ('):L'(Vj) 5z TN (1.61)
where
K2 = w? v} — k2 - k2. (1.62)
This equation has two singular solutions, when —“—j—z- = k, and when k2 = 0. The latter
A

corresponds to the turning point z; where the compressional mode is reflected, but part
of the energy evanesces in the direction of increasing Alfvén wave gradient. The former
corresponds to the resonance position z,. At this point, the wave equation can be reduced

to
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I’E, 1 JE,
0z2  z -z, Oz

+K°E, =0, (1.63)

This equation has the form of the modified Bessel function of order zero with infinite
solutions at = z,. However, from the work of Chen and Hasegawa (1974) and Southwood
(1974), it is known that the singularity can be avoided if there is a small amount of dissi-
pation in the system. This is a realistic situation, because the ionosphere is not perfectly
reflecting and so energy of the FLR is lost over time. This sink can be represented by a

small imaginary component in k,, such that

With this assumption, the wave equation becomes

d’E, 1 OE,

2
= 1.65
0z? -1z, +i€c Oz T roBy =0 (1.65)

and the solution for the radial component of the electric field (see figure (1.6) is given by

—iky(OE, [0x)
P IVE = R2k2

Now in the cold plasma limit with perfectly conducting ionospheric boundary conditions,

E, = (1.66)

the singularity at the resonance position is not avoided, except with the inclusion of the
dispersive wave effects. In the low g limit (8 < %), the net result is that the resonance
would narrow to approximately 27, and then an inertial SAW would begin to propagate
from the resonance layer in the direction of decreasing density (increasing Alfvén wave
gradient). This situation is applicable to the region close to the ionosphere where the
magnetic field is sufficiently high that magnetic pressure effects become dominant. In the
limit 8 > %, the situation would be reversed with a kinetic Alfvén wave propagating in
the direction of increasing density (decreasing Alfvén wave gradient).

The characteristic frequencies of high latitude FLRs are in the 1-4 mHz range and
some seem to occur at well established frequencies (1.3,1.9,2.6 and 3.2 mHz) (Walker, 1992;
Samson et al., 1991,1992a) Several theories have been proposed to explain this (Samson et
al., 1992b; Wright, 1994) but there is as of yet no complete consensus as to the explanation.
This question however is beyond the scope of this thesis and in the simulations to follow,
we will pick parameters so that the FLR frequencies are in the mHz range.

Now, with reference to the profile in E; (figure (1.6)), from the ideal MHD approxima-
tion, this radial electric field accompanies a similar profile in azimuthal velocity, u,. For the
simulations presented in the thesis, we will assume a narrow Gaussian in the place of the
radial eigenmode for the initial SAW pulse as a close approximation. This neglect of a com-
pressional mode driver is justified since this study is focused primarily with wave-particle
interactions in the context of the standing SAWs.
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Figure 1.6: Example of solution for E, near the resonance point.

1.9 Discrete Auroral Arcs and Field Line Resonances

The most energetic auroral displays are associated with the magnetospheric substorm which
involves the stretching and dipolarization of the magnetosphere. These are generally most
clearly visible during periods of high solar activity as this is when the solar wind can
stretch the magnetotail to its greatest extent. However, a subclass of the aurora called
discrete auroral arcs are still visible at much quieter times and it is with this type of arc
that the work in the thesis pertains.

Discrete auroral arcs are very narrow, typically only tens of kilometers in latitudinal
extent and can break up into even finer kilometer scale bands and vortices (see figure
1.7). They are usually associated with an ”inverted-V” potential structure and satellite
observations (Karlsson and Marklund, 1996; Carlson et al., 1998; Lotko et al.,1998) have
measured electric fields and current densities on the order of mV/m and tens of pA/m?
respectively along with precipitating electron energies on the order of hundreds of eV to
tens of keV. This potential structure is often only on the order of ten kilometres wide,
but extends from about 2 to 5 Rr above the Earth, along the dipolar magnetic field lines.
This is known as the auroral acceleration region. The source of this inverted-V potential
structure which accelerates the electrons is the current topic of much debate and there are
several competing theories (see review paper by Borovsky, (1993)) which try to explain its
formation.

As already noted, since the work of Hasegawa (1976) and Goertz and Boswell (1979),
it has been known that dispersive Alfvén waves have a component of the electric field

parallel to the ambient magnetic field. This means that these dispersive waves can accelerate
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electrons parallel to the electric field and may potentially account for some auroral arcs.
The short perpendicular wavelengths associated with these waves also are consistent with
the fine structure observed in many auroral arcs. The low 3 nature of the plasma in this
region implies inertial Shear Alfvén waves and so much research has been done in this
direction (Hui and Seyler, 1992; Kletzing, 1994; Thompson and Lysak, 1996; Wei et al.,
1994; Knudsen et al., 1996) and generally electron accelerations of various magnitudes have
been found. However, in most cases, the source of the SAW is unclear. Hasegawa (1976) and
Goertz (1984), considered the mode conversion of an MHD surface wave to to Shear Alfvén
wave as one possibility, while another candidate involves the mode conversion between
compressional modes and the SAW - the FLR (Chen and Hasegawa, 1974; Southwood,
1974; Inhester, 1987). The case for the latter has been enhanced over the last twenty years
as many observations have made the FLR a well established phenomenon (Samson et al.
1992a; Fenrich et al., 1995) as well as many observations that link the FLR to discrete
auroral arcs (Samson et al., 1991, 1996; Xu et al., 1993; Lotko et al., 1998).

Rankin et al. (1993a, 1993b), performed the first nonlinear resistive MHD simulations
of the FLR in the box geometry. It was noted that FLRs can narrow sufficiently to reach
inertial Aflvén wave scale lengths. Wei et al. (1994), extended this MHD model to include
electron inertial effects. The parallel electric field magnitudes produced were however still
several orders of magnitude below the observed values. The importance of the dipolar
magnetic field and plasma inhomogeneity in the parallel direction to the enhancement of the
Shear Alfvén wave parallel electric field was noted by Streltsov and Lotko (1997). Similarly,
nonlinear simulations by Frycz et al. (1998) and Rankin et al. (1998) have shown that the
pondermotive force effects can lead to density cavity formation above the auroral ionospheres
and enhanced parallel electric fields as the cavities tend to enhance electron inertial effects.

However, even with the inclusion of nonlinear effects, the MHD simulations are able
to reproduce the observed scale structure and current densities associated with auroral
arc observations, but are unable to account for the observed parallel electric field. The
conductivity of the MHD system is too high. Steltsov and Lotko (1999), were able to
reproduce observed electric fields by the inclusion of anomalous resistivity in a linear 2-fluid
MHD model. The anomalous resistive layer is caused by the interaction of the SAW with
a microturbulent layer, but the source of the microturbulence is not addressed. Rankin et
al. (1999) and Tikhonchuk et al. (2000), combined MHD with an electron kinetic equation
using perturbation theory and were able define an Ohm’s law with a conductivity matrix

such that

1) = /a(l’,l)E”(l’)dl’ (1.67)

where 1 is the length along the field line. The conductivity matrix is derived from the
integration of the electron kinetic equation and thus incorporates wave-particle interactions

including mirror force effects not evident in the Generalized Ohm’s Law. Although not a
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trivial calculation, once the MHD current is specified, the necessary parallel electric field
can be determined by the inversion of the convolution integral. With this formulation,
they were able to show that wave-particle interactions reduced the nonlocal conductivity
and led to parallel electric fields in the ionospheric regions comparable to those observed.
This work highlighted the significance of mirror force trapping of current carrying electrons
in the equatorial region as an important reason for the drop in conductivity. Therefore,
the picture that emerges from these works is that the dispersive waves are not responsible
in themselves for the magnitudes of the parallel electric fields observed, but may play an
important role as the modulating influence that explains the fine structure seen in the arcs.

The next logical step in the approach to this problem is to attempt to model the FLR
system with an actual system of electrons rather than the use of electron kinetic equation
as the latter makes it necessary to a priori prescribe the form of the electron distribution
function. As well this approach makes it straightforward to study of the interaction of the
SAW system with the electron distribution function self consistently as a function of time.

The use of hybrid MHD-kinetic computer models for the study of auroral arc phenomena.
is very recent. Hui and Seyler (1992) used an approach similar in some ways to the model
that will be presented here, but for the study of electron acceleration due to inertial Shear
Alfvén wave breaking in the auroral acceleration region. Thompson and Lysak (1996) in
studying electron acceleration due to inertial Alfvén wave pulses, used an algorithm to
locally subtract energy used to accelerate an electron from the inertial Alfvén wave. Genot
et al. (2000) used fully kinetic simulations to look at electron acceleration due to wave-
particle interactions in localized density cavities. However, the work presented in this thesis
is the first to attempt to self consistently model a full FLR system with a hybrid MHD-
kinetic computational approach. It is also the first to do so in the natural dipolar coordinate
system. This approach is used here to address a FLR system, but it is also applicable to
other Standing Shear Alfvén wave systems in space plasmas such as solar coronal loops as

well as transient SAWs.

1.10 Outline of Thesis

In this study, we shall introduce a new hybrid MHD-kinetic model to study wave-particle
interactions in a standing Shear Alfvén wave system. Before progressing to a full description
of the hybrid model, we will outline the 1D cold plasma MHD model of a standing Shear
Alfvén wave including electron inertial effects in Chapter 2. This will serve to introduce the
necessary physics along with technical details that are relevant to the rest of the thesis.

In Chapter 3, we outline the hybrid model for both cartesian (box) geometry and gener-
alized curvilinear coordinates, with the latter part being broken down into cylindrical and
dipolar coordinates.

Chapter 4 illustrates simulations for the box model with periodic and perfectly con-
ducting boundary conditions. An analytical dispersion relation for the periodic Alfvén
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Figure 1.7: False colour image of an auroral arc. Photo by Dr. Trond Trondsen using the
University of Calgary Portable Auroral Imager (P.A.T).
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wave system is also presented and the predicted Landau damping rate is compared with
that measured from the numerical simulations. In the fluid limit, the 2D results are also
contrasted with the 1D results illustrated in Chapter 2.

Chapter 5 outlines the simulation results for the dipolar fluid and hybrid models with
perfectly conducting ionospheric boundary conditions. The result of the cold plasma MHD
fluid model are contrasted with the nonlinear MHD model developed by Voronkov (1998),
while the hybrid model results are illustrated in the cold and warm plasma limits. Chapter
6 concludes the thesis and offers suggestions for both future research directions and model

enhancements.
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Chapter 2

1D Model of FLR with electron
inertial effects

2.1 Preamble

In this chapter, a 1D fluid model of a FLR is developed from the cold plasma equations
and the Generalized Ohm’s Law. Simulations are presented for both the case A, = 0 and
Xe # 0. In the first case, the phase mixing of the resonance is evident, while in the latter,
the formation of the inertial SAW is illustrated, propagating in the direction of increasing
Alfvén wave speed.

The topics presented here are well addressed in the papers by Wei et al. (1994) and
Rickard and Wright (1994). They are re-examined here to introduce the main characteristics
of the FLRs that will be revisited in subsequent chapters. Also, the numerical techniques
used for this code form the basis of the more advanced models to follow and a comparison
will be made between the 1 and 2 D fluid simulations in Chapter 3.

2.2 1D cold plasma equations

For this simulation, the radial direction is denoted by x, the azimuthal direction by y and
the field aligned direction by z. Periodicity is assumed in the y direction and the plasma

velocities are chosen to vary as

Ugr (2, 1) 500 (k, 2)eFvY
@ =1 iuy(w,t)sin(k,z)esy
0
where the sin(k,z) implies velocity nodes at the ionospheres and the subscripts i’ and r’
denote the real and imaginary parts respectively. With these choices, the magnetic field

components in turn vary as

. ber(, t)cos(k,z)ethvy
b=21 iby(z,t)cos(k,z)ehvy
bor(x,t)sin(k,z)evy
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The perpendicular electric field is determined from the ideal MHD assumption E L=
~@ x B. Linearizing, the components of the perpendicular electric field are given by

Ey = —uyB, = iuyi(z, t)Bysin(k,2)e™¥ = By (x,t)sin(k,z)ev¥

Ey = uzBo = ug(z, t)Bosin(kzz)eikyy = Ey(z, t)sin(kzz)eik”y.

For the parallel electric field, the Generalized Ohm’s Law is used. With the variable choices
quoted above this becomes
0j a7 - :
E, = HoAQ‘J‘Z‘ = MoAzﬁ(x,t)cos(kzz)elkyy = E,(z,t)cos(k,z)eFv¥
where F,(z,t) = uo)\gw. With all these assumptions, the cold plasma equations take

the form,

8’(1,;3 _ Bo 6b2
5 —m(ksz + 8—:1:)
ou B, ,
T = g heby ikybe)
b, .
W = 'kaEz - szy
b, JE,
Bt = kel
ob OF .
FTir Pa

where all the variables are now functions of x and t only.

2.3 Numerical Model

The fluid equations are solved using a predictor-corrector type method. The first order
differential equation %% = F is finite differenced in time as follows

yp o =y A 4 208 F (1) (2.1)
At
y T =y + P + Flpt) (2-2)

where the subscript 'p’ denotes the predicted value. With this scheme, it is necessary to
keep track of all values at three points in time, but the algorithm is very stable for long
integration times. Since it is not possible to know, j§+2At
the Generalized Ohm’s Law, the approximation EftAt = Et-2f 4 2F was used. This was

fine as long as the time step was sufficiently small.

in order to obtain E'g"‘At from
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The first order derivatives are evaluated using the standard two point formula.

of _ fix1i—fin1
or 20z (2:3)
where Az, is the distance between adjacent points on the grid.

In order to normalize the fluid equations, the following set of variables is introduced

—
t
r =

7 , B ' E
—:t = —B = — =—p = —3) = = — 2.4
L, tn B, Vn p PO I JN Ey ( )

where Ly = 1 Rg, py = p(z = 0), Vv = /B2/(topn), tv = £=, jn = Bo/(toLs) and
E, =vnDB,. In the set of nondimensional variables, the cold plasma equations become

R _ —-;;(ksz + %)
%y - ——%(kzby 1 ikybs)
O = iy B, — kB,
% = kB, - O
2 % iy,

where the primes have been left out for simplicity of notation.

Although, the equations are solved in nondimensional form, all values for the initial
variables were chosen to approximately correspond to conditions in the dayside equatorial
magnetosphere before being made nondimensional. The ambient magnetic field B, and
density py were chosen to be 10 nT and 10° mpm_3 respectively, where m,, is the proton
mass in kg. This yields a value of vy = 6.9 x 10° m/s. The Alfvén speed and density
profiles were normalized to both have values of 1 at = 0 where the simulation grid goes
from z = 0 to x = 1.2. The nondimensional Alfvén velocity profile is then specified with

the function

va = tanh{az + ¢) + 8 (2.5)

where o =7, B =2 and ¢ = —0.5 and because of the constant ambient magnetic field, the
nondimensional density is simply given by

p= ;12— (2.6)
Both functions are displayed in figure (2.1). The corresponding electron inertial length
profile is calculated via the definition given in Chapter 1

MyMe

A = (2.7)

pe?
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Figure 2.1: Graphs of V4 vs x (solid line) and p vs x (dashed line).

in MKS units and then normalized by the characteristic length, L,. The profile is displayed
in figure (2.2).

In this work, the evolution of the standing SAW is the prime point of interest, not
the mode conversion process that results in its formation. Therefore for this simulation, a
toroidal Shear mode (u,; = 0) with a Gaussian shape in x around the resonance position
is assumed for an initial condition (see Figure 2.3). The value k, = 0.2/Rg is chosen so
that most of the energy stays in the toriodal mode. For the parallel wave number, the
value k, = 1—82%5 was chosen because 18 R is the approximate length of the L=8 dipolar

magnetic field line.

2.3.1 Boundary Conditions

For the boundaries at z = 0, L;, perfectly reflecting boundary conditions in x are assumed.
This implies u; = 0 at £ = 0, L;. This assumption is equivalent to the magnetic field going
to a very large value instantly at the boundaries. From this assumption and the ideal MHD
approximation, it is evident then that F, = 0 as well.

Now assuming periodicity in time (e*!), the Generalized Ohm’s Law for the parallel

electric field becomes,
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Figure 2.2: Graph of electron inertial length (nondimensional), A, vs x.

0.1 : : : t ; ' : ‘ ' '
0.09 ~
0.08
0.07
0.06 A

570.05 -
0.04 -
0.03 A
0.02

0.01 A

0 i 1 ! 1 T T ! i ' 1

0 0.2 0.4 0.6 0.8 1
X

Figure 2.3: Graph of initial Shear Alfvén velocity profile.
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E, =iw)?j, (2.8)

and for the boundaries far from the resonance, j, = 0 and so F, = 0. Similarly, the x

component of Faraday’s law becomes

iwhy = ikyE, — k, B, (2.9)

and with B, = E, = 0 at 2 = 0, L, therefore b, = 0. From the x component of the

momentum equation

B, 0b,
] = ——[k,by + — 2.1
Wy p,uo[ 2bo + - ] (2.10)
and since, u, = b, = 0, then %’; = 0. From the y component of the momentum equation
' B"[kb + ikyb,] (2.11)
Wy = — 2)- .
Y e YT
Taking the derivative with respect to x,
Ouy ob ab
WY = [k, =L — ky = 2.12
gy =g, ~ kg, (2.12)

where the functional dependence of the Alfvén velocity implies %—‘;A = 0 at the radial
boundaries. From the y component of Faraday’s law, we also have
. 8b, O*E, 0 0E,
w—= =

dr ~ Or? _E( Oz )
b,

Comparison of these two equations illustrates that both are satisfied only if %—% =gt =

(2.13)

0 and since E; = uyB,, it is consistent that —68%1 =0.
In all cases, the boundary conditions are enforced across the first two and last two grid
cells. For the boundary conditions F(0) = 0, then F} = —F5, while for %g—(O) =0, F|=F,

where the subscripts 1 and 2 indicate the first and second grid points respectively.

2.4 Evolution of FLR

For the following simulations 250 grid points were used for the A, = 0 case while 200 grid
points were used for A, # 0. The larger number in the former case is to more accurately
capture the phase mixing. For both simulations, 100,000 time steps were used for 20 Alfvén
periods. Figure (2.4) illustrates the evolution of the shear velocity u, through 15 periods
for both A\, = 0 and A¢ # 0 on the left and right hand sides respectively. For the A\, = 0
case, the resonance narrows continually due to phase mixing. This phase mixing is the
result of the radial Alfvén speed gradient which means that each field line has its own
slightly different eigenfrequency. Over time each field line becomes more and more out of

phase with its neighbour evolving into finer structure evident. Since there are no dispersive
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Figure 2.4: Time slices of uy vs x for the case of A\, = 0 (left side) and for the case of A¢ # 0.

waves in this limit, there is no radial propagation and packet retains the width of the initial
Gaussian profile. Mathematically, the narrowing within the packet would continue until a
singular solution is reached, but for the numerical case, it narrows until the resonance is on
the order of the grid scale and the model becomes unstable.

In the A, # 0 case, the resonance only narrows until the scale length of about 2w\, is
reached at which point an inertial SAW begins to propagate in the direction of increasing
Alfvén wave speed. For the present model parameters, 27, =~ 0.05.

The SAW dispersion relation in the limit A, = 0, w = k,V4, yields a value for the
frequency w = 0.0755s~! for the parameters considered here. This results in a period
Ty = 83.25. In order to confirm this, the value of u, at x=0.5 is plotted as a function of
time in figure (2.5) and it is clearly evident that the predicted and actual period are in good
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Figure 2.5: Plot of u, at x=0.5 as a function of time.
agreement.

2.4.1 Energy

The energy density of a cold plasma system (without electron inertia) is given by (Rickard
and Wright, 1994)

1
e= L +ud) + — (2 + b2+ D). (2.14)
2 240

There is additional energy in the ambient magnetic field B,, but in the linear approximation
this is a constant value and is not considered in this calculation. The total energy of the

perturbations

1
By = /0 e(z)dz (2.15)

should be conserved, and this is confirmed in figure (2.6) illustrating the effectiveness of the
predictor-corrector scheme.

2.4.2 Summary

The 1D simulations illustrate the phenomenon of phase mixing and the propagation of an
inertial SAW in the direction of increasing Alfvén wave speed. The eigenfrequency of the
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Figure 2.6: Total Energy vs time for A, = 0.
resonance agrees well with that prediction from the SAW dispersion relation.
The predictor-corrector scheme is very stable for the solution of the cold plasma equa-

tions with the Generalized Ohm’s law for long integration times. The algorithm conserves

energy in the A, = 0 limit to a high degree of accuracy.
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Chapter 3

Hybrid kinetic-MHD model

3.1 Preamble

In Chapter 1, the failure of the MHD approach to account for the observed electric fields
in FLRs was summarized along with the limitations of the hybrid kinetic-MHD approaches
considered to date. In this chapter a new hybrid MHD-kinetic approach is introduced using
the 2D cold plasma equations and a kinetic system of electrons, the dynamics of which are
solved using the guiding center equations. The closure between the two systems is achieved
via the paraliel electric field.

This chapter is divided into three main parts. The first part reviews the basic parti-
cle dynamics in electromagnetic fields and introduces the guiding center equations. The
second part introduces the hybrid box model, while the third covers the hybrid model in
general curvilinear coordinates and discusses the application to dipolar coordinates. The
simulations using the box model are summarized in Chapter 4, while Chapters 5 presents

the dipolar model results.

3.2 Charged Particle Motion in Electromagnetic fields

The motion of a particle in an electromagnetic field is governed by the Lorentz equation

W _4aE | 45, B (3.1)

and in the limit of £ = 0 and constant magnetic field, the gyromotion of the charged
particle around the magnetic field line is well known (see figure (3.1)). The gyrofrequency
or cyclotron frequency of the orbit is given by

Wy = — (3.2)

while the gyroradius, r, is

(3.3)
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Figure 3.1: Top: Gyromotion of electrons and ions in a constant magnetic field. Bottom:
Motion of an ion in a uniform magnetic field (Baumjohann et al. 1996).

Ignoring the gyromotion, there are several drifts motions of the guiding center. In general,
a charged particle subject to a general force F will experience a drift motion due to that

force, vF given by
(3.4)

3.2.1 Electric Field Drifts

If a static electric field is introduced to the constant magnetic field case, the well known
E x B drift results (figure (3.2))

—

Ex B
g = ———.

B2
There is no current associated with the drift because both ions and electrons drift in the

(3.5)

same direction. In a time dependent electric field there is an additional drift to consider in

the polarization drift

L _m OF
Tp = B (3.6)

In this case, electrons and ions drift in opposite directions and so there is a net polarization

current given by
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Figure 3.2: Particle drifts in crossed electric and magnetic fields (Baumjohann et al., 1996).
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Figure 3.3: Gradient Drift of the guiding center (Baumjohann et al., 1996).

- . . ne(m; +me) dE
Jp = nee('vpi - 'Upe) = el ZBQ e) dtJ_. (3.7

As stated in Chapter 1, the ion current perpendicular to the dipolar field lines is associated

with this drift. The more massive ions can move across the magnetic field lines and the
electrons are forced to move along the field line forming a parallel current to maintain the
quasineutrality of the plasma.

3.2.2 Magnetic Field Drifts

For motion in a nonuniform magnetic Field E, there are two drift motions, one due to the

curvature in the field
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Figure 3.4: Motion of a proton in a dipolar magnetic field (Baumjohann et al., (1996)).

. mvﬁ - L o
W, = q—BZ[B x (B -V)B] (3.8)

and one due to the gradient (see figure (3.3))

(B x VB). (3.9)

= mv?

VE = 94B3
In a dipolar magnetic field, both gradient and curvature drifts result in motion perpendicular
to the ambient magnetic field lines. Both these drifts are in the same direction for the same

charged particle, but electrons and ions gradient and curvature drift in opposite directions.

3.2.3 Mirroring

For the case where the guiding center is moving along an inhomogeneous magnetic field,
there is a force which acts in opposition to the motion of the particle when the magnetic

field lines converge called the mirror force

Pl _ w8 (3.10)
dt {l

2
where u = %L is the magnetic moment. Figure (3.4) illustrates the reflection of an ion in a

converging magnetic field due to the mirror force. It is important to note that the magnetic
moment is an invariant of the motion.
The ratio of the perpendicular and parallel velocities defines an angle known as the pitch

angle, o, and is given by

a=tan 12 (3.11)
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Figure 3.5: Motion of a proton in a constant dipolar magnetic field.

where v = vcos(a) and vy = wsin(a). At the mirroring point vy = 0 and « = §. In a
dipolar magnetic field, the pitch angle in the equatorial plane is denoted by «,. The value
of this angle is indicative of the mirroring position of the charged particle in the dipolar
field as will be seen in the summary of the dipolar model. The smaller the equatorial pitch

angle, the closer to the earth the particles mirroring position is located.

3.2.4 Particle motion in a dipolar magnetic field

Figure (3.5) illustrates the motion of a proton in a dipolar magnetic field. Evident is the
gyromotion of the proton around the field line, the mirroring due to the convergence of the
magnetic field line and the azimuthal motion due to gradient and curvature drifts.

For electrons, the azimuthal drifts are very slow and so the changes in any azimuthal
fields due to change in particle position is of secondary importance. Therefore, for the
hybrid model developed here, the azimuthal drifts are neglected, and the only motions that
will be considered for the electrons is the field aligned motion and the E x B drift.
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3.3 Guiding Center Equations

The gyroradius of the electrons is a lot smaller than any other scale lengths in the FLR
system. Therefore, instead of using the full Lorentz equations of motion for the electrons,
it is possible to use another set of equations that follow only the motion of the electrons
guiding center, ry. These are known simply as the guiding center equations (see Parks,

(1991)) and including only the E x B drift and the mirroring force, they are expressed as

a’U”
drg
————dtg =)+ UL (3.13)
where 'U'“ = v”g and
. ExB

For the straight magnetic field configuration in the box model used in Chapter 2, the mirror

force vanishes and the linearized guiding center equation take the form

Ovg,
S = e, (3.15)
a(;f = vy, (3.16)
8 T b
Ige _ Vg2l + EQ_. (3.17)

ot B, B,
3.4 Hybrid MHD-kinetic Box Model

As already stated, the hybrid MHD-kinetic model couples the cold plasma MHD equations
with a kinetic system of electrons, the dynamics of which are governed by the guiding
center equations. It is a two dimensional model, including the field aligned and the radial
directions, denoted by z and x respectively in the box geometry. (figure (3.6)).

3.4.1 Model equations

Instead of choosing periodicity in the azimuthal direction as in Chapter 2, u, is chosen to
have an azimuthal dependence of sin(kyy). With this assumption, the rest of the fluid,

magnetic and electric field components vary as
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and the two dimensional cold plasma equations are denoted by

Oug(z,2,t) _ Bo 0bg(z,2,t)  0Oby(z,2,1)

ot - ,uop( 0z 0z )
8uy(§;z,t) _ MB_(;)(Bby(;;z,t) E—
Obg(x,2,t)  0Ey(z,2,t) OF,(z,2,1)

o 8y
Oby(z,2,t)  OE,(z,2,t) 0F;(x,2,t)

ot N oz B 0z
0b,(z,2,1)  OFEy(z,2,t) OEy(z,z,1)
ot - oy - oz ’

The perpendicular electric field values are determined again via the ideal MHD approxi-
mation, but for the parallel electric field, the use of the Generalized Ohm’s law is abandoned
for an algorithm to be introduced in a subsequent section.

Similarly, the guiding center equations become
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0v, (2, y,2,1)

5t = —eE,(z, 2, t)cos(kyy) (3.18)
f%gif-:: v (3.19)

Org, 1 .
e B—(Uzbm(m,z,t) + ey (x, 2, 1)) sin(kyy) (3.20)

where the mirror term is neglected because of the straight magnetic field configuration.

3.4.2 Numerical Notes

The normalizations, radial boundary conditions and method of solutions used in this
model are exactly the same as already outlined in Chapter 2. The one significant difference
is the use of a higher order spatial finite differencing scheme for the first derivative, given
by

Of _ —fi—2a+8fi1—8fjp1+ firo
ox 12Ax
in order to reduce noise and make the coupling more stable. The model uses a rectangular

(3.21)

grid with constant spacing in each direction, the size of which can be specified independently.
With respect to the field aligned boundary conditions, two models exist, one with pe-
riodic boundary conditions and one with perfectly conducting boundary conditions. The

application of each will be summarized in Chapter 4.

3.4.3 Particle moment interpolation

All the fluid fields are solved at the set grid points, but the electrons themselves are free to
move anywhere in the plane. Therefore it is necessary to have some scheme to interpolate
the particle moment information onto the fluid grid. This is achieved via the use of the
Particle Shape function S(Z, #;). Figure (3.7), illustrates bilinear weighting, where each of
the areas defined by a given lower case letter is assigned to the grid point denoted by the
same letter in upper case. Therefore, for the velocity v;, for example, the fraction

a
atbtc+d
is assigned to grid point A. In terms of the particle shape function, the first two moments

(3.22)

of the distribution function, electron number density, ne, and electron parallel current, j.,
are denoted by,
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Figure 3.7: Bilinear interpolation grid. Areas denoted by lower case letters apply to the
grid point denoted by the same letter in upper case.

In order to interpolate the fields to the particle position F(ry;), the same weighting is
used, such that

AF(74) + BF(7g) + CF(7¢) + DF(7p)
at+b+c+d )
The model itself uses the higher order biquadratic spline routine where the interpolation

F(7,) = (3.23)

utilizes 9 adjacent points.

3.4.4 Particle loading and velocity assignment.

For the simulations to be considered in Chapter 3, the electron density will be allowed to
vary in the x direction, but will be constant in the z direction. To accomplish the loading,
there are a user specified number of assigned electron positions in each direction, n,, and
ny, where n, = ny n,_ is the total number of user specifed electrons. The positioning of the
Ny, electrons in the radial direction is assigned by a cumulative probability approach (Gould
et al., 1996) using a user specified density function. Once these positions are assigned n,,
electrons are placed at each position equally spaced in z.

The velocities are assigned to the electrons using the cumulative probability approach,
but with a maxwellian function given by

Fos) = " —eap(— 22) (3.24)
‘ Vg, U?h .

as the probability distribution function where vy, = \/Z—I@T/ﬁv,:.
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3.4.5 Parallel Electric Field Formalism

Taking the partial time derivative of Ampere’s Law and combining with Faraday’s law yields

—V x (V x E(Z)) = “”6]3(:)' (3.25)
Using the vector identity V x (V x E) = V(V - E) — V2E this becomes
o o 8j(%
VZE(Z) — V(V - E(2)) = po j(’)(t ) (3.26)
and taking only the z component yields

0z 1T bt
For the FLR system, the parallel current is entirely due to the electrons and so j, can be
replaced by the electron current, jo(Z) = —e >, v;S(&, £;) (where v = v,). Substituting this

in for j, and expanding the time derlvatlve yields

—»

o(V - E(T))
0z
The notation j. has been introduced simply to stress the fact that the parallel current is

V2B, (%) - = ~euo[%t‘S(:c ) + v (3.28)

coming from the kinetic electrons and not from the solution of Ampere’s law. The notation
J» will be used from now on to signify the solution of Ampere’s law. When the hybrid

model is working properly, these two variables should have the same value within a small

numerical error. Now, with the use of the electron momentum equation avé—gf) = - E,(2),
the last expression becomes
. A(V-E# —€ i 8S(Z, ;
VQEZ(.’E) - ——(——Ez(—)) = —el, Z[m—Ez(iI:z)S(l', i)+ U@————(%L)] (3.29)
€

and using the continuity equation

P Z as Z[as(at L 85(523?")] =0 (3.30)

i
the partial time derivative of the particle Shape function can be replaced with the advection

term resulting with

L OV(V-E(@)) uoe ) 95(z, i)
2 2 3 g
VAE,(Z) — E E.(Z;)S(Z, ;) + poe E Vi, (3.31)

%

2
Assuming F,(%;) =~ E,(Z), and that %%L ~ 0 (since the ambient distribution function is not

dependent on z) we then have
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8v<v : E(f)) — :u'062 = bd 8 2 7
P = E,(Z)ne(Z) + po€ s Z’ui S(Z, ;) (3.32)

where n.(Z) = ), S(&, ;). Rearranging, and using the definition for the electron inertial

V2E,(Z) —

length, we have

1 (V- E) 3
2 (= —— 20(7 =
V2E, (%) - %Ez(sc) = ="+ ot > vIS(E, ). (3.33)
Now for the FLR system, the parallel wavenumber is much smaller than the perpendicular
values. The parallel electric field is also much smaller than E, and E, allowing the equation

to be further simplified

OE, (%) 1 oV -E\)
- EAf) = 22X~/
o @@ 9z
This derivation is similar to the approach used by Busnardo-Neto et al. (1977) and Okuda

a 2 — -
+ po€ 5 Z v; S(Z, T7). (3.34)

et al., (1979) for their work on magnetostatic particle codes. The expression is the same
as used by Hui and Seyler (1992) for their hybrid model, although it was derived slightly
differently there by utilizing the Generalized Ohm’s Law.

If the second term on the right is neglected, this equation along with the 2D cold plasma,
equations are completely self consistent and the fields can be used as input for the guiding
center equations for test particle simulations. However, although the second term on the
right incorporates the effects of electron pressure on electric field generation, the equation
as is, is not sufficient for a self consistent hybrid code. There needs to be a ”correction
field” for the charge separation induced between the fluid ions and kinetic electrons. This
expression is determined as follows. Adding the continuity equations for the electrons and

ions
a .
TV (i) =0 (3.35)
ot
Me | G- (neits) = 0 (3.36)
ot
yields
A, —
%Ez + V- [(niv; — neve)] = 0. (3.37)
Using Poisson’s equation
V- E= f—(nm — nve) (3.38)
0
and the definition of current
j: e(niﬁi - ne"_;e) (3.39)
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yields the following relationship between the divergence of current and the divergence of
electric field

€ -(?—(
° ot
As noted earlier, k, € k| and E| > FE,, therefore it is possible to simplify this expression

V.-E)=-V-]J. (3.40)

to

€ _3_(
’ot
where the notation E, has been introduced to distinguish this field from the field calculated

V-E, )=-V-7, (3.41)

via the ideal MHD approximation £, = —i X B,. The coupling for the correction field
comes via the use of the electron current density in the divergence of the current density,
such that

a]z a]e
or 0z

where j; and j, come from the fluid fields. In the MHD limit V - J=0 by default since
V - (V x b) = 0 and so there is no correction field.

V.j= 22+ kyjy + (3.42)

It should be noted that this closure is somewhat different than that used by Hui and
Seyler (1992) for their hybrid model used to examine electron acceleration due to SAW
breaking. They coupled in the electron current density moment via an expression derived

from the definition of ion polarization current.

3.4.6 Scaling of Electron number density

Now, obviously, it is not possible to use the real number of electrons for a system of mag-
netospheric scale. Therefore each simulation electron is actually representative of a ” cloud”
of electrons and the proper scaling is achieved via the ratio of the ambient fluid density
and the unperturbed electron number density at t=0 (¢,). For example, the scaled electron

current density is then

. . nepr,z _, 7
Jel@y 1) = (@, 2)eos(kyy) = 5= Sf“ 7 2 tiS(@,%) (3.43)
(2] O i

Therefore, the electron current density that is input into the fluid model is given by

) 1 ng(x,z) o
Jelz,2) = coslhyy) 5. 57, 7urta) Zvl Z, ;) (3.44)

The second moment term in the equation for the parallel electric field is scaled in the

same way and using the phase choices discussed earlier, the final form of this equation is

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B (z 21 _ V- Ei(z,z1)
ny(@:2) 9 2a(a =
T uoezi S(fa@ato)COS(k}yy) Oz Zvi S(xvxz)'

3.4.7 Summary of Box Model Equations

The complete set of the hybrid MHD-kinetic box model equations is then given by the five
cold plasma MHD equations

Oug(z,z,t) B, 0by(z,z,t) 3 0b,(z, z,1)

ot B p,op( 0z oz )
S EUR VYT R
Oby(z,2,t)  OFEy(z,2,t) OE,(z,2,1)
ot N 0z - oy
Oby(z,2,t)  OFE,(x,2,t) OFE;(x,z1)
o~ 8z 0Oz
b, (z, 2, t) _ OEg(z,2,t) OEy(z,2,t)
ot 9y oz

the three guiding center equations

o t
_vig‘?.é_‘;/_’f’__) = —eE,(z, z,t)cos(kyy) (3.45)
‘9;? — v, (3.46)
Orz, 1 :
5 = B—(vzbz(m, z,t) + ey(x, 2,t)) sin(kyy) (3.47)

the ideal MHD approximation for the perpendicular electric fields, E| = —@ x B, and the
equations for the parallel electric field

L (z21) AV - EL(z,2,1))
Ox2 N2(Z) 2(2,2,1) =
n(@,7) 9 Qi =
" Meri S(fa :E;, to)COS(kyy) 0z Z 5 S({L’, xz)
and correction field
0 3 -
€ogp (V- Ee ) ==V, (3.48)

As already stated, the model is designed to be used as either a test particle code or
as a coupled model. For the test particle model, the pressure term in equation (3.48) is
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neglected and the correction field E. is not determined. For the hybrid model, V - E, is
determined with a modified Euler scheme such that

1

VBN =V B - dto
o

(V- F)e+ (V- 5)] (3.49)

where (V - 7). and (V - f)p are the divergences of current determined at the predictor and
corrector steps respectively. This divergence is then used at the end of the predictor step

to determine E, for the next time step as follows

1 AV -E" 4 v Er
‘EFTN) - () = 1 C1
ns(@:2) 0 Qaf= =
° i, T o, ZS y Ly
g ezz' S(Z, Ti, to)cos(kyy) 0z Z” (Z, %)

This equation is solved quite readily for E, using a tridiagonal matrix solver.

3.5 Hybrid Kinetic-MHD Model in Generalized Curvilinear
Coordinates

The dipolar model is designed exactly as the box model with the exception that now the
mirror force term in the equation of motion for the electrons must be taken into account
and this in turn introduces an extra term in the equation of the parallel electric field. Before
introducing the model, a brief summary of generalized curvilinear coordinates and dipolar

coordinates are presented.

3.5.1 Cold Plasma Equations in Generalized Curvilinear Coordinates

Generalized Curvilinear Coordinates expresses in one form any orthogonal coordinate sys-
tem (such as cartesian, spherical or dipolar) where the individual coordinate system is
identified through the form of the scale factors (sometimes denoted Lamé coefficients). For

example, the the curl of the vector x is written in Generalized Curvilinear Coordinates as

o 2 )
VXxyx= hriliahs lZ hlﬂ[%(hn){n) - E(thm)] (3.50)

m,n

wherel,m,n = 1,2,3 or 2,3,1 or 3,1,2 and hy, he and h3 are the scale factors. This expression
is coordinate system independent, but for cartesian coordinates for example, hy = hy =
hs = 1. In general, the scale factors between the curvilinear coordinate system z, and the

cartesian coordinate system X,, are given by

h2 = Z(giﬁ)?. (3.51)

i
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Defining the ambient magnetic field to be in the z; direction such that B = B,77, and
using the definition of the curl in curvilinear coordinates, the linear cold plasma equations

in generalized curvilinear coordinates can be written as

o T = o[ ) = oo ()] (3.52)
HoP 5y 881;3 hﬁg[ai (h1b1) = aa (habs)] (3:53)
%”tl - h;;g[ 822 (haEs) — ai(thz)] (3.54)
% h:23[833 (h1Ey) — 8—8—(h3E3)] (3.55)
aa(? h;iiz ail (haB2) = ai(hlEl)] (3:50)

3.5.2 Guiding Center Equations

In curvilinear coordinates coordinates, the velocity vector is given by

dv
dt
where the dot denotes the time derivative. Using this and the definition of the gradient in

= h1@1Z1 + hoZala + haz3is (357)

curvilinear coordinates

. 1y
Vip = T B (3.58)

it is straight forward to show that the guiding center equations are given by,

a’[}l 1 aBO

meE = —6E1 — Mmh—lg‘;; (359)
h1:151 =M (3.60)
by E
hoxo = le— + E—g- (3.61)
0 0
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3.5.3 Parallel Electric Field

For a toroidal SAW with k3 = O the only components of velocity and magnetic field are
uz and Bj respectively. The fact that ug = 0 implies E3 = 0 as well. Starting with the

expression for the field aligned current

. 1 0
HoJ1 = th 914

(where By = 0 has been used) and taking the time derivative yields

=—(h3Bs) (3.62)

8_71 1 0 h 8B3

Hor = %‘a};( 3w)~ (3.63)

Substituting for %, from Faraday’s law

8. 1 8  hs @ 1 9 hy B

h2h3 079 hihy Ozo 7—(hEn)), (3.64)

utilizing j1 (%) = je(Z¥) = —e >, v;S(%, ;) and following the procedure outlined for the box
model, yields the following expression for the parallel electric field E;

1 0,6 hy 0O 1 1 8 hg 0

9/ Mm 9 R _ ,
ks 0> ik By 1)~ 3B oy 823 iy 3y 12 P2))
e 108, .
+ Mo—m—eh—l B, Z,umS(:c,mz)

muee 0 9w

+ hy —a—;;zi:vis(xaxz)

Defining G = h; 1, and introducing the scaling factors as outlined for the box model, this

expression can be written as

1 0, hy 0G, G 1 9, hy 0

hahs 0z2  hihs %}))_ MA2  hohg amQ(hth o1 (h2B2)) (3.65)

e 10B, ng(zre,z1) S
S(Z, Z;
Ho mehl 8.’1)1 Z S .’IJ 1131, Z,Ufm (117 .CC

muse 0 ng(T2,21) 2q(= =
S(
T 9m1 3, 8(F, 7 b Z” (&%)

+

and G can be solved for using a tridiagonal solver routine and hence F; obtained. The
correction field is obtained using the same formulation as presented for the box model. In
curvilinear coordinates, the divergence of the current is given by

= 1

P 9
V- J= + = (h1haja) + m—(h1hajs)] (3.66)

0
h1h2h3 [8.'1,‘1 (h2h3'76) 8 8

and with the assumption kg = 0, the expression for F, simplifies to
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Figure 3.8: Comparison of Spherical and Dipolar Coordinates. ¢ is directed out of the page.

eog(ml%%[hlhzﬁbc]) =-V.j. (3.67)
The method of solution for this equation and the introduction of the corrector field into the
corrector step is similar to the procedure outlined for the box model. The one difference is
that in the box model, it was sufficient to know V- E; , but here it is necessary to spatially

integrate to get Fy.. This is accomplished using a tridiagonal matrix solver.

3.6 Hybrid Model in Dipolar Coordinates

Dipolar coordinates are most commonly denoted by the variables u, v and ¢ (see figure
3.8). In the curvilinear cooridinates used thus far u, v and ¢ are defined by z1, z9 and 3

respectively and are given in terms of spherical coordinates as the following

cosf

. 20
g =V = S”: (3.69)
w3 == tan"lg, (3.70)

With these definitions, the dipolar metrics can be derived and are given in terms of spherical

(and cartesian) coordinates by the following

hy = hy, = r _ B+ +2) (3.71)
1+ 3c0s20)1/2 (22 + 2 + 422)1/2 :
2 2 2 212
h =y = ; - &) (3.72)

Y sinf(1 + 3cos20)1/2 (22 4+ y2)1/2(22 + y2 + 422)1/2
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he = rsind = /22 + y2. (3.73)

Unfortunately, the definition of the metrics in dipolar coordinates themselves is unknown.
References as far back as Radoski (1967), always give the metrics in spherical coordinates
and attempts by the author, among others, to derive them were unsuccessful. This intro-
duced some unique problems in the implementation of the hybrid model in this dipolar
system. These problems and the methods used to address them are summarized in the next

two sections.

3.6.1 Single particle dynamics in a dipolar magnetic field

As noted above, the metrics in dipolar coordinates are known in terms of spherical coordi-
nates rather than dipolar. This fact makes the solution of the guiding center equations in
the dipolar coordinates very cumbersome because one must know the position simultane-
ously in both coordinate systems in order to both advance the equations of motion. Taking

the definition for z; and x5, it is straight forward to derive the equation

it froy =1 (3.74)

the solution of which allows the conversion between the dipolar and spherical coordinates.
The same method was applied by Voronkov et al. (1998) for a nonlinear resistive MHD
model in dipolar coordinates (I Voronkov, private communication). Unfortunately, the
inversion process is impossible if 1, x9 are determined simultaneously in the guiding center
equations. However, the process can be made tractable for this problem by noting that
the radial motion of the electron is negligible when compared to the field aligned motion
(and the azimuthal motion is being neglected). This fact will be illustrated with the box
model in Chapter 4. Therefore, if z5 is specified and assumed not to change, the roots of
the expression can be solved for to determine r and hence 8.

As a test, the guiding center equations were solved numerically in the absence of an
electric field and the resulting bounce times and mirroring angles were compared with the
analytical solution for the motion of an electron in a dipolar magnetic field (Parks, 1991).

For a given equatorial pitch angle, o the mirror angle is given by

058 A, — sin®a,(1 4 3sin?Xp) 2 = 0 (3.75)

and the corresponding bounce time is given by the following

Am L 2311/2
. 7oc0sA(1 + 3sin?X\)1/2d) 3 I
b _/ 9, (43sin2N)1/21q 9y 47’0; (3.76)
0 ofl - sinfop e —]
where
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Figure 3.9: L=10 dipolar magnetic field line

~ 1.3 — 0.56sin ().

Am 02 1/2
I :/ _ [ cosA(1 + 3sin®X)'/“dA (3.77)
0

1— sin2ao(1+3;;:2)’\\)l/2]1/2
The approximation is from Hamlin et al. (1961). Solutions for A, and T}, are given in Table
(3.1) for 2 different equatorial pitch angles (a, = #/3 and «, = 7/6) and two different
kinetic energies, (T,=100 eV and T,=1keV). In all cases the electron is moving along the
L=10 magnetic field line (figure (3.9)).

The results of the corresponding numerical solution of the guiding center equations is

shown in figure (3.10). In all cases, the initial electron position is in the equatorial plane. As

case | a, Te Am Ty
(radians) | (eV) | (radians) | (s)
a) | /3 100 | 0.255 35.1
b) | /3 1000 | 0.255 11.1
) |n/6 100 | 0.58 43.9
d) /6 1000 | 0.58 13.8

Table 3.1: Initial equatorial electron pitch angles and energies and the corresponding cal-

culated bounce periods and mirror angles.
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Figure 3.10: Graphs of A vs time for an electron on the L=10 magnetic field line. The cases
of each letter correspond to the parameters given in Table 3.1
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Figure 3.11: Sample numerical grid for n; = 16, ny = 50 with superimposed magnetic field
lines for L=9,10 and 11.

is evident, the value of A, and T’p agrees well with the computed values. For the simulations
presented here, the predictor-corrector routine was used again and the first order spatial

derivatives were evaluated using the two point formula

of . firn—fiz
(5); = Il (3.78)
T2 L2400 = T2

As far as it is known, this is the first attempt at solving the guiding center equations in

dipolar coordinates.

3.6.2 Numerical Notes

The time and spatial finite differencing of the fluid equations is the same as has already
been mentioned. The primary difference between this test particle code and the version
developed in Chapter 2, is that the grid is no longer rectangular. An example for the
numerical grid utilized is illustrated in figure (3.11), where n; is the number of points in the
direction along the ambient magnetic field and ns is the number of points perpendicular to
it. For the purpose of clarity, the number of grid points shown in the diagram is significantly
reduced from the number used in the simulations presented in Chapter 6.

As mentioned previously, it is unknown how to express the dipolar metrics in the dipolar
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—_— r electron

Figure 3.12: Example of bilinear interpolation scheme using parallelogram areas for weight-
ing.

coordinates themselves and this consequently introduces the problem of how the define a
unit area in dipolar coordinates. Therefore, it is necessary to use an approximation to
interpolate the particle moments on to the grid and vice versa for the parallel electric field.
For this, we again use the bilinear interpolation scheme and break up a grid cell into four
subcells (refer to fig (3.11)). The subcell region ”b” has a width and length of w, and L,
respectively. If two points are closely spaced along an arc of constant z; (for example),
the length of the line between the points (along the arc) can be approximated by h_%2|Am§2|
where 132 is the average value of the metric hy between the two points and [Az}?| = |22 —z]|.
A similar expression can be made for two points along an arc of constant z9. Therefore as

long as the grid is fine enough, we can define L, and wp respectively by

(hS + hD) (@7 — a9)|

SR

Lb ~
1
wy ~ 5(h + h5)|ef A — a5)|

where the superscript "e” indicates the electron position and zPC is the value of z; along
the arc between points D and C. The area of the subcell ”b” can then be simply defined as
Lywy,.

In order to ascertain whether or not this first order approximation was sufficient, two
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Figure 3.13: Particle angle A as a function of time for exact calculation of the electric field
at the particle position (solid line) and the interpolation of the field at the particle position
(dashed line)

simulations were done of an electron in the dipolar magnetic field with a superimposed
static electric field defined by

E, = E,(sin(6))* (3.79)

where FE, is the amplitude of the electric field at the equator. In the first simulation, the
electric field was calculated exactly at the particle position and in the second, the electric
field was calculated at the grid points and interpolated to the particle position using the
scheme outlined above. The electron energy was 1 keV, with an equatorial pitch angle of
% and E, = 1 x 1072 (nondimensional units). This electric field is much higher than would
be generated in the hybrid simulations and is just used here as a test. The electron was
started in the equatorial plane at the L=10 shell. Figure (3.13) illustrates the results of the
simulations. The particle is trapped between the maximum electric field at the equator and
the mirror force at the southern ionosphere. The simulation using the interpolation method
(dashed line) is seen to gradually drift a little away from the simulation where the electric
field was computed directly from the formula. However, as this is an extreme case, the drift
is negligible. The simulation was done with 64 grid points in the field aligned direction and
a time step of 0.008 seconds was used.
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Chapter 4

Box Model Simulations

4.1 Preamble

In this chapter, simulations for the hybrid box model outlined in Chapter 3 are presented for
both periodic and perfectly conducting boundary conditions in the z direction. The radial
density and Alfvén profile are the same as outlined in Chapter 2. Both are constant in the
z direction. The electrons are loaded according to this density profile and their velocities
assigned via the Maxwellian profile as outlined in Chapter 3. All simulations are initialized
using

2
—(z —z,
uy(t =0) = Aexp(—(—zaﬂ—)—

where A = 0.05 corresponds to a maximum shear velocity of 34.5 km/s and the position

)ysin(k,z) (4.1)

of the resonance is chosen to be z, = 0.5 This function has the same radial profile as that
used in Chapter 2. The dimensions of the box are 0 < z < 1.2Rg and 0 < 2z < 18 Rg with
ng and n, grid points in the x and z directions respectively. The azimuthal wave number
is k, = 0.42/Rg. Additional more specific points relating to the model are given in section
(4.2)

The results for the periodic boundary conditions are presented in Section (4.3). The
case of wave number k, = %’f (L, = 18 RE) is considered in the limits vy, < V4, vy, = Vy
and vy, > V4. In the initial and last cases, the formation of inertial and kinetic Alfvén
waves are demonstrated respectively. Landau damping of the Shear Alfvén wave is shown
when vy, = V4 or greater and the numerical damping rate is shown to be in good agreement
with that predicted from the dispersion relation derived in Appendix A.

In section (4.4), the case of perfectly conducting boundary conditions is presented in
the limit of vy, = V4 for &k, = le and &, = %—7: In both cases the SAW is again strongly
Landau damped. The qualitative results for &k, = %—’: are very similar to those from the
section (4.2) thus showing that perfectly conducting boundaries do not alter the solution

significantly from the periodic case.
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4.2 Numerical Issues

As already indicated, most points relating to this model have been indicated in Chapters 2
and 3, but the more specific issues of filtering and boundary conditions are summarized in

this section.

4.2.1 Filtering

In order to reduce the statistical noise, a 2D digital filter was applied to the current and
pressure moments of the electron distribution function as well as the parallel electric field
at both predictor and corrector steps. In one dimension, the filtered value is given by

F, = %Fi—l + %Fz + iFi—l—l- (4.2)
In the model, this was first applied in the x direction and then in the z direction. This is
the lowest order digital filter (Birdsall and Langdon, 1991) and it has been used successfully
in tradiational hybrid models with kinetic ions and fluid electrons (Winske et al., 1986).
It has worked well in the context of this model except with regards to the parallel electric
field as will be commented on later in the chapter.

4.2.2 Boundary Conditions

The boundary conditions for the fluid variables in the x direction are identical and imple-
mented in the same way as already outlined in Chapter 2. The electrons on the other hand
are loaded from z = % tox = L,— %. As will be shown, the radial motion of the electrons
is minimal, but should they pass either boundary they are simply reintroduced at the same
boundaries. This does not introduce any difficulties as there is no electron current into the
x boundaries.

The handling of the boundary in the z direction is dependent on the specific boundary
conditions. Periodic boundary conditions simply imply that F; = F,,. Therefore, in this
case, the grid in the z direction goes from 0 to L, — Az where Az is the grid spacing but
the electrons are free to move from 0 to L,. The density and current moment contributions
that would be assigned to a grid point at L, are just contributed to the grid cell at z = 0
to enforce the periodic boundary conditions. Likewise for the fluid variables, this grid point
is used in the calculation of derivatives at z = L, — A, (and vice-verse for z=0). Electrons
that move past the z = 0 or z = L, boundaries are reintroduced at the opposite boundary
with the same velocity.

In the case of the perfectly conducting boundary conditions, the treatment of the elec-
trons at the boundaries is more complicated than in the periodic model and the method
used will be summarized at the start of section (4.4).
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4.3 Simulations with Periodic Boundary Conditions

This section summarizes the simulations of the hybrid box model with field aligned periodic
boundary conditions. Before proceeding to the hybrid simulations though, the new electric
field formulation outlined in Chapter 3 will be contrasted with the Generalized Ohm’s Law,
the solution of the 2D fluid model will be contrasted with the 1D results from Chapter 2
and the test particle and hybrid models will be compared for an initial electron J-function
distribution.

Whether in the fluid or hybrid limits though, all the following simulations were done
with n, = 200, n, = 25 and 70000 time steps for 10 Alfvén wave periods. Since this is
the 2D analogue of the simulations presented in Chapter 2, the frequency and period of the
resonance are again, 0.0755 s~' and 83.2 seconds respectively.

4.3.1 Comparison of Electric Field Formulations

Using the same method as for Chapter 2, a version of the 2D fluid model was written
incorporating the Generalized Ohm’s law formulation for the parallel electric field. The
output of this model was compared with the output of the fluid model with the electric field
formulation derived in Chapter 3 given, without the pressure moment, by
O*E,(T) 1 (V- -E\) 0
- ED) = =Y 1) il
a2 @@ G HHoeg; 2

For both simulations, n, = 128, n, = 16 and 200,000 time steps were used for ten Alfvén

75(Z, ). (4.3)

periods. A slice of the parallel electric field taken in both cases at z=12.35 for t = 3 Ty
is displayed in figure (4.1). The resulting electric fields are very close illustrating the basic
equivalence of these two formulations. The advantage of the latter, even in the fluid limit,

is that it is very stable for significantly larger time steps.

4.3.2 Comparison of 1D and 2D models

Although the physical systems for the 1 and 2D models do share exactly the same boundary
conditions in z, it is interesting to compare the two models. If &, = %—g is used in the
1 dimensional model, it corresponds to the initial condition specified here. Figure (4.2)
compares the amplitude of the first order mode for u, at £ = 5T4 with the values from the
1D model for the same time. In both simulations A\, = 0. As would be expected, in the
cold plasma limit and with a constant field aligned density, the 2D and 1D solutions are in

good agreement.

4.3.3 Single Particle Dynamics

Figure (4.3) illustrates the radial and field aligned motion of the guiding center of an electron
started at (x, 2)=(0.5, 9) with an initial velocity v,, = 0. As is evident, the radial motion
of the electron is negligible relative to the field aligned motion which is consistent with the
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Figure 4.1: Comparison of E, from the Generalized Ohm’s Law (solid line) and from ex-
pression (4.3) (dashed line) at ¢ = 3 T'4. Slice at z=12.35

current picture within a FLR as outlined in Chapter 1. The shift of the electron position
at t =~ 85 is the electron passing through one boundary and re-entering at the other (and

vice-verse).

4.3.4 Comparison of Test Particle and Hybrid Model results

This section presents calculations using both the test particle model and coupled model
for an initial 6 function distribution of electrons. The top panel of figure (4.4) displays
the test particle results for the current density while the bottom panel displays the hybrid
model results at ¢ = 2 T4. In both cases, j, is the parallel current density calculated from
Ampere’s law, while j. is the electron current density as interpolated to the grid. As is
evident, j, and j. diverge very quickly in the test particle model, but stay very nicely in
line in the hybrid model case. This trend continues more dramatically as time goes on.
Therefore with no feedback of the electrons on the fluid, the test particle approach is valid

for only a very short time.

4.3.5 Comparison of Hybrid model simulations for different initial distri-
butions.

For the system under consideration here, the phase velocity of the standing SAW is v, =

,‘C—"; = £2. Therefore, it is expected that for a sufficiently wide distribution function, Landau
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damping effects should become evident. This would manifest itself as a flattening of the
distribution around v, = %2 as electrons with velocity a little less than the phase velocity
of the SAW are accelerated to a little beyond v,,. The gradual loss of energy from the
SAW to the electrons will be evident as a gradual decrease in amplitude of the SAW. To
test this, simulations were conducted with 4 different initial distribution functions, a ¢
function distribution (vy,=0) and three Maxwellian distributions (v =0.71, 1.41, 4.24). All
hybrid model simulations used one million particles (n,, = 1000,n,, = 1000) except in
the vy, = 4.24 case where two million particles (n,, = 1000,n,, = 2000) were used. The
illustrated distribution functions are average distribution functions compiled using electrons
close to the resonance, (0.5 < z < 0.65) and anywhere in the z plane. One hundred velocity
bins are used in the compilation.

For the case of the cold plasma limit, figure (4.5) illustrates the azimuthal velocity at
t =47T4 and { = 8 T4 for fluid model and the hybrid model using the initial é-function
distribution and vy, = 0.71 distribution. As would be expected, the hybrid description and
the cold plasma MHD fluid description diverge little. The formation of an inertial SAW
propagating to the right (the direction of increasing Alfvén wave speed) is evident.

The case of vy, = V4 is illustrated in Figure (4.6) where the azimuthal velocity for the
hybrid model using vy, = 1.41 for t =4 T4 and ¢ = 7 T4 is displayed along with the MHD
results. The gradual Landau damping of the SAW as a function of time is clearly evident.
The numerical damping rate measured from this calculation will be compared with the
theoretical value determined from the dispersion relation in a later subsection.

The final example of vy, > V4 is illustrated in figure (4.7) where the evolution of the
azimuthal velocity at t =4 T4 and ¢ = 8 T4. The resonance in the hybrid model is seen to
maintain its position while it propagates as an inertial wave pulse in the cold plasma MHD
limit. This increase in temperature implies that the system is entering into the kinetic
Alfvén wave regime and close examination indicates a slight propagation in the direction of
decreasing Alfvén wave speed. The wave is strongly damped though and is nonexistent by
t=06T4.

The evolution of the corresponding electron distribution functions are illustrated in
figure (4.8). The top panel illustrates the vy, = 0.71 distribution case and it is evident that
the distribution function is heated a little during the length of the simulation, but only
changes marginally. In the middle panel the v;;, = 1.41 case is presented. The Maxwellian
is being modified at the v, = %2, which as mentioned previously is the classic plateauing
due to Landau trapping effects. The warmest case, vy, = 4.24 is highlighted in the bottom
panel. The distribution function is not as strongly modified as in the vy, = 1.41 case, but
there is evidence of some trapping around v, = vp,. The damping is actually stronger, as is
evident from the figure (4.7), because the slope of the distribution function at the resonance
position is steeper than for v, = 1.41. The lack of strong modification of the distribution

function is probably due to the larger number of electrons around the resonance position
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Figure 4.5: Top: Comparison of azimuthal velocity at t=4T4 from the fluid model (solid
line) and the hybrid model for the for the initial d-function electron distribution (dashed
line) and vy, = 0.71 initial electron distribution function (dotted line). Slice at z=3.6.
Bottom: same at ¢t = 8 T'4.
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hybrid model with vy, = 1.41 initial electron distribution function (dashed line). Slice at
z=3.6.

i

T

02 04 06 038 02 04 06 08
x x

Figure 4.7: Comparison of azimuthal velocity from fluid model (solid line) and hybrid model
with vy, = 4.24 (dashed line). Slice at z=3.6.
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than in previous case.

In order to show that the coupling holds properly in these higher temperature cases,
figure (4.9) illustrates the comparison of j. and j, for vy, = 4.24. The two currents still
agree with each other to a high degree of accuracy in spite of the evident noise. This noise

can be further reduced with increased particle number.

4.3.6 Significance of Pressure Term

As was indicated in Chapter 3, the formulation for the parallel electric field includes
a term for the electron pressure. In order to ascertain how important the contribution
of this term was for the plasma parameters considered here, the vy, = 1.41 case was run
again, but with the pressure moment term turned off in the expression for the parallel
electric field. Figure (4.10) illustrates a comparison of the azimuthal velocity from the fluid
code (solid line) and the hybrid code with (dashed line) and without the pressure term
(dotted line). The negligible difference between the two hybrid model runs illustrates, that
for the parameters considered here, electric field contributions due to electron pressure are
negligible and most of the important physics comes via the electric field generated to enforce

quasineutrality.

4.3.7 Effects of particle number

An important consideration in any statistical model is how the number of simulation elec-
trons effects the results. It is necessary to have a sufficient number to adequately represent
the system as well as keep noise issues to a minimum. However, as indicated previously,
the number of simulation electrons are scaled to a realistic value and so after a point, the
general results should be insensitive the simulation electron number. In order to test this,
the vy, = 1.41 simulation was redone with two million simulation electrons. The current
moment results in both cases (along with the MHD results) are illustrated in figure (4.11).
As is evident, there is little quantitatively significant difference until well into the run and
the evolution of the system is the same in both cases. Therefore the hybrid code results are

robust with respect to particle number.

4.3.8 Parallel Electric Field

As alluded to earlier, the parallel electric field is typically too noisy to be visible, even with
the smoothing algorithm used. However, the field can be seen with the application of a
post-simulation spectral filter using the hyper-gaussian function to filter out higher order

spectral modes. The function has the form

e~ ()% (4.4)

where i is the spectral mode number and n is a parameter to be specified. The filtering,

in each direction, is accomplished by first doing the forward fourier transform, multiplying
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the transform by the filtering function and then doing the inverse transform. This is done
first in the x direction and then in the z direction, but the order of the application is not
significant. In the x direction, 200 grid points were used and so a value of n=80 was chosen.
This filters out only the highest of the 100 possible modes as these are the main source of
numerical grid scale noise.

In the z direction on the other hand, a value of n=4 was used. For any higher value, there
was still too much noise to clearly see the signal in the higher temperature cases. This is not
a problem though since the simulation is for the first order mode &k, = %711 (i=2) and most
of the initial physical information is contained here. Also, although the Landau damping
seems to result in some slightly higher mode structure, the application of this filter to the
current does not significantly alter the profile. Therefore, it is safe to assume that applying
this filter to the parallel electric field is not leading to a loss of physical information.

The unfiltered fluid parallel electric fields and filtered values for the hybrid code using
vep, = 0.71 and vy, = 1.41 are displayed in Fig. (4.12). As expected, the parallel electric
field in the vy, = 0.71 case does not diverge significantly from the fluid model, but the
damping in the vy, = 1.41 case is clearly visible. Therefore, even though the field is not
visible directly in the simulations, it is behaving as expected and consistent with the other
model variables. The parallel electric field in the vy, = 4.24 case is not visible even with
the filtering, but this can be rectified by increasing the particle number.

The fact that the model works so well in spite of the fact that the parallel electric field
signature is drowned in noise implies that the electrons are not strongly effected by the
high frequency noise, but are mainly responding to the low frequency parallel electric field
signature. It is believed that signal to noise ratio is so much worse than for all other variables
because the determination of E, involves taking the divergence and then integration of

already somewhat noisy quantities (i.e. j¢).

4.3.9 Density Fluctuations

As was mentioned earlier, the electron density distribution has the same profile as the
specified fluid density. This is evident in the top panel of figure (4.13) which illustrates the
unscaled electron number density at ¢ = 3 T4 for hybrid model using one million particles.
Superimposed on the ambient density is the perturbation due to the standing Shear Alfvén
wave. The bottom panel of the same figure illustrates slices of N, along z = 3.6 at the
same time for both the one million and two million particle simulations. The result for
the former case has been multiplied by two and lies very close to the result for the latter
case. This illustrates that the ratio of the fluctuation relative to the ambient background
is relatively independent of the number of simulation electrons. The magnitude of the

background density is evident from the slice at ¢ = 0.1 T'4.
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Figure 4.12: Parallel electric field after the application of the post-simulation spectral filter
at t =7 Ty4. Slice at z = 7.92. The fluid model result is unfiltered.

4.3.10 Damping rate comparison

Using the drift kinetic equation, the cold plasma equations and defining a dependence
of eiha@thyythz2)—ivt 3t is straight forward to derive a dispersion relation for the periodic

system (see Appendix 1) as

ik2

Wt ;éfB’lj“,’ (14 eZ(€))

w? = k2Vi(1+ )7L (4.5)

where Z is the plasma dispersion function. This can be solved numerically for the model
parameters to yield a damping rate that can be compared to the one measured numerically.

In figure (4.14) is shown a plot of the log of average value of the current density j,
between x=0.5 and x=0.6 (for a slice along z=7.92) as a function of time between 300 and
800 seconds (0.36T4 < t < 0.9674) along with a best fit line. The initial 300 seconds were
truncated as the average current density was increasing with time for this period. The

regression statistics of the line are then

y = (—0.0042 % 0.0005)¢ + 0.5 + 0.3 (4.6)

of which the slope gives the damping rate of the resonance y = —0.0042 4 0.0005s~! . This

result can be compared with the values obtained from the imaginary part of the kinetic
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Figure 4.14: Log of the average value of the parallel current density between z = 0.5 and
z = 0.6 vs time for a slice along z = 7.92 (solid line) and best fit line (dashed line). Data
for ¢ < 300 seconds is truncated.
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dispersion relation. This is only a rough comparison as the Alfvén velocity profile changes
from 2 to 2.6 in the range considered and the resonance narrows from about k, ~ ﬁ%; —
5%5”7{: as the resonance evolves. Assuming the local Alvén wave speed and electron inertial
length at £ = z, damping rates for the vy, = 1.41 distribution function are calculated to be
0.0016 s~ and 0.0058 s™! for k, = 0%—’{% and k; = 0.02T7FR,,, respectively. Thus the numerical
damping rates and that obtained from the kinetic dispersion relation are in the same range.
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4.4 Simulations with Conducting Boundary Conditions

In this section, simulations using the hybrid model with perfectly conducting boundary
conditions are presented for vy, = 1.41 and compared with the MHD results. Both fun-
damential (k, = {-) and first order (k, = %—7:) modes were considered with the latter case
being contrasted with the periodic model results. First of all though, the method used to

handle the new boundary conditions is summarized.

4.4.1 Boundary Condition Implementation

The model with perfectly conducting boundary conditions differs from the periodic case
with the addition of two guard cells at each end z = 0 and 2 = L,. These cells are used
to enforce the boundary conditions on each of the fluid variables corresponding to perfectly

conducting ionospheres. These are u, = u, = b, = 0, and %ﬁ = %b; = %Jf = %—% =0.

The boundaries for the electrons are handled by allowing the electrons to freely propa-
gate into the guard cell regions as if no boundaries existed at L = 0 and L = L, responding
to the forces imposed on the guard cells by the fluid boundary conditions. The particle
moments are then collected at only the grid cells in the region 0 < z < L,. The boundary
conditions for the current and pressure moments are then imposed on the guard cells as
with the case of the fluid. When the electrons reach the last guard cell at either end, they
are then reflected back into the box to conserve particle number. This reflection appears to
introduce some relatively large density fluctuations in the guard cell regions, but as long as
the initial Shear Alfvén wave amplitude and distribution function temperature are main-
tained in the range considered here, these fluctuations do not significantly effect the results.
For the simulations presented in this chapter the number of radial grid points, n, = 128,
and the number of field aligned grid points, n, = 20, but comparison tests were made with
n, = 14 and n, = 28. These two different resolutions change the size the guard cell regions
by a factor of two, but the results were still found to be quantitatively consistent. For much
higher temperature and Shear Alfvén wave amplitudes a different scheme for handling the

perfectly conducting boundary conditions should be developed.

4.4.2 Simulations for k, = = and k, = %’5

For the fundamental mode, k, = Liz, the resonance frequency and period are respectively
half and twice the values for k, = %—’f For both wavenumbers, ten period runs were
conducted and so the former case actually evolved for twice as long in physical time. For
each simulation, 70,000 time steps were used and figures (4.15) and (4.16) illustrate the
evolution of the equatorial azimuthal velocity as a function of time for &, = le and k, = %
respectively. In both cases, the damping of the SAW is clearly evident but it is slightly
stronger in the first order mode case. In addition, there is a slightly stronger shift to the

right between the hybrid and fluid cases in the fundamental mode simulation relative to
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Figure 4.15: Comparison of the azimuthal velocity from the fluid model (solid line) and
the hybrid model with conducting boundary conditions (dashed line) using the vy, = 1.41
initial electron distribution function for k, = LLZ Slice at z = 8.44.
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Figure 4.16: Comparison of azimuthal velocity for the fluid code (solid line) and the hybrid

code with conducting boundaries (dashed line) for vy, = 1.41 and k, = %—’: Slice at z=3.94.
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the latter. As mentioned previously, this shift is most likely due to the initial propagation
of a kinetic SAW in the direction of decreasing Alfvén wave speed. The shift may be more
dramatic in the fundamental mode case since the kinetic SAW would have twice as long to
propagate relative to the first order mode case.

The evolution of the distribution function in both cases is illustrated in figure (4.17).
Both distribution functions are strongly modified due to Landau trapping effects which is
consistent with the decrease in the amplitude of uy. It should be noted that even though,
the frequency has different values for the two different wavenumbers, the ratio k% are the
same in both cases. Therefore it is consistent that the modification of the distribution
function should be taking place around v, = +2. The shape is slightly different in both
cases, but this may have something to do with how the electrons interact with the different
SAW modes. Also, in the first order mode case, the evolution of the distribution function
shows more heating around v, = 0 than in the case with periodic boundary conditions and
may be a function of the different boundary conditions.

These results indicate a qualitative similarity between the results for the first order
mode here and the simulations with periodic boundary conditions. A more quantitative
comparison can be made through a comparison of the damping rate. The same procedure
as used previously yields a value of —0.00540.001s~! which is the same order of magnitude
as the damping rate measured for the k, = %—7: case with the periodic model. Therefore, the
different boundary conditions do not seem to strongly effect the evolution of the system for

current parameters.
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Figure 4.17: Top: Evolution of distribution function for the hybrid model with conducting
boundary conditions for k, = i—r; and vy, = 1.41. Bottom: Evolution of distribution function

for the hybrid model with conducting boundary conditions for k, = %1;— and vy, = 1.41.
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4.5 Summary

In this chapter, the 2D hybrid model was tested with both periodic and perfectly conducting

boundary conditions. In the former case, the following was illustrated.

e The new electric field algorithm and the generalized ohm’s law are identical in the
fluid limit.

e The hybrid and cold plasma MHD models agree well in the limit that vy, < Vy

including the formation of an inertial Alfvén wave pulse.

o With vy, = V4 and greater SAW can be strongly Landau damped. Damping rates are
in good agreement with that determined from the analytical dispersion relation. The

initial formation of a kinetic Alfvén wave is evident when vy, > Va.

e The parallel electric field is generally too noisy to see directly from the simulation,
but can be visualized with the post-simulation, frequency domain filtering. The noise
does not effect the simulation results and the filtered electric field is consistent with

other model variables.

For the model with perfectly conducting boundary conditions, it was shown that for
Vih ~ VA.

e Landau damping was evident for both the fundamental mode (k. = {-) and the first

order mode (k, = %—7:—)

e for the first order mode, the quantitative results are very similar to the case with
periodic boundary conditions indicating that the choice of boundaries in this case

does not significantly effect the evolution of the system.

Therefore, with the exclusion of electric field resolution, the hybrid box model has
been demonstrated to effectively capture the main physics expected between electrons and
standing SAWs in different temperature regimes and with different boundary conditions.
The evolution of the system can be followed accurately and stably with relatively small
numbers of simulations electrons and the code should prove useful for the study of electron-

SAW interactions in general.
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Chapter 5

Dipole Model Simulations

5.1 Preamble

This chapter is broken up into two main sections. In the first, we will illustrate the cold
plasma MHD model in dipolar coordinates. Results are presented for both the case A\, =0
and A, > 0. The results in the A, = 0 limit are contrasted with the results of a nonlinear
resistive MHD model (Voronkov, 1998) run in the cold plasma limit. The resonance shift
in frequency between the nonlinear and linear cases is illustrated, but it is shown that from
the point of view of the number of periods, the phase mixing evolution in both cases is
essentially identical.

In the second part, results of the hybrid model are presented for several equatorial
densities and two ionospheric positions (at 3 and 5 Rg). Within this, the hybrid and
test-particle models are contrasted in the cold plasma limit, the inertial SAW and thermal
plasma limits are examined and the parallel electric field in the hybrid and MHD cases are
compared in the cold plasma limit. It is found that the model has very good agreement with
the cold plasma MHD results in the cold plasma limit, including for the parallel electric
field. As well, the divergence of the cold plasma MHD and hybrid model in the thermal

plasma case illustrates the model is consistent in this regime as well.

5.1.1 Boundary Conditions

As with the hybrid model in cylindrical coordinates, open boundary conditions are again
chosen for the radial direction. At the ionospheres, we use perfectly conducting boundary
conditions so as outlined before, we have us = uz3 = E3 = E3 =0 and gm% = %% = 0. The
condition that the parallel current is continuous across the ionospheric boundary yields the
magnetic field boundary conditions as follows. The curl of the magnetic field in curvilinear

coordinates is given by,
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j1 = VxB (5.1)

= o i (e (b Bo) — 5 iz ) (5.2)
; hm(a%(hlBl) - (o) (5.3)
+ h3i3(£—1(h232) - aim(hlBl))]- (5.4)

The boundary condition for the field aligned current is that gm% = (), yields

0 0

———(h3B3) — ————(hsB3)) =0 .
8.771811)2( 3 3) 8.’1,‘18:L‘3( 2 2)) (5 5)
Since the shear Alfvén wave mode can be either entirely poloidal or toroidal, both terms

must be equal to zero. Therefore ho B, =constant and h3Bj3 =constant.

5.2 Fluid Model Simulations

The simulations presented in this section were done with the cold plasma MHD code. In
all cases, the ionospheres were located at 1 Rg and the equatorial radial boundaries of the
model are at 9 and 11 Rg. The resonance was initialized on the =10 magnetic field line.
We used 64 grid points in the field aligned direction and 200 in the radial direction. Two
density profiles are considered (thus having different Alfvén periods, but in either case, the
simulation was run for 60 T4 with 100,000 time steps.

The ionospheric boundary conditions highlighted in the previous section were enforced
across the first two and last two grid cells in the field aligned direction. The radial boundary

conditions were again assumed to be open.

5.2.1 Plasma parameters

For the simulations to follow, the FLR was initialized with a Gaussian type profile for the
Shear velocity ug to correspond to a toroidal resonance system given by
1 1 .,

usz(t = 0) = Aup(z1, Tor)exzp(—(— — —)°/

2
o) (5.6)

where uy, is the eigenmode solution at the resonance position (see next section) and o, is
the value of z2 at the resonance position. The amplitude of the Shear mode is chosen so
that it has a peak velocity in the equator of 50 km/s and w=0.2 in nondimensional units.

For the simulations to follow, two density distributions will be considered and they are
illustrated in figure (5.1). Profiles (a) and (b) are derived from the formula

P = Po = peg(l ~ cos®) ™! (5.7)
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Figure 5.1: Plasma parameter profiles along the L=10 field line corresponding to density
profile (a) (solid line) and density profile (b) (dashed line) (see text). Here [, is the distance
along the field line. The left hand side of the figure is the equatorial region and the right
hand side is the ionosphere.

where ¢ = 4 in both cases and peq = m, cm™3 for the former and p.q = 0.1 m, em™3 for
the latter. Density profile (a) corresponds to the profile used by Voronkov (1998). Also
included in the diagram are Alfvén and electron inertial length profiles. Figure (5.2) shows
the radial profile of the Alfvén at the equator. It increases in the earthward direction.

5.2.2 Linear Shear Alfvén waves in a Dipolar Magnetosphere

In both the fluid and hybrid models in dipolar coordinates, the parallel Alfvén velocity
profile is not constant and so the dispersion relation for the Shear Alfvén wave is not as
trivial to solve as for the cases considered in the box and cylindrical coordinate models.
A discussion of the solution of the dispersion relation in dipolar coordinates is given in

detail in Voronkov (1998) and won’t be repeated here. The eigenmodes for ug and b3 were
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Figure 5.2: Equatorial radial Alfvén velocity profile.

calculated for density profile (a) and the normalized profiles are illustrated in figure (5.3).

The period of this eigenmode is T=322 s.

5.2.3 Linear and Nonlinear Evolution in the Cold Plasma MHD Limit

In this section the linear cold plasma MHD model is contrasted with the nonlinear MHD
dipolar model (Voronkov, 1998). The latter model has no parallel electric field and so this
was turned off in the cold plasma code. Also, very small pressures had to be used in the
nonlinear code for stability reasons.

Both programs were intialized with the same ug profile as already highlighted and the
evolution of the equatorial amplitude of the Shear velocity is illustrated in figure (5.5). As
is evident for the first two periods, there is little difference between the two simulations, but
a growing phase difference is evident after that. In the nonlinear model, the resonant period
of the field line is increasing and consequently, the resonant frequency is decreasing. This
makes sense as there should be a decrease in resonant frequency due to nonlinear effects
(Voronkov, 1998) which would not be evident in the linear code. The nonlinear effects
come in via the pondermotive force which drives plasma toward the equator increasing the
equatorial plasma density and consequently lowering the equatorial Alfvén velocity. Since
the resonant period of the field line is proportional to the ratio of the parallel wavelength
and V4, the period increases as V4 drops. The amplitude also decreases in the nonlinear

case which is also consistent with the figure.
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Figure 5.3: Profile of u3 (solid line) and h3bs (dashed line) for the fundamental Shear Alfvén
wave mode along the L=10 magnetic field line. u3 and h3b3 are normalized by the equatorial
and boundary values respectively.
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Figure 5.4: Comparison of the equatorial amplitude of u3 at 10 Rg as a function of time
for the cold plasma code (solid line) and the nonlinear code (dashed line).
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Figure 5.5: Comparison of the equatorial radial profile of ug for the cold plasma code (solid
line) and the nonlinear code (dashed line) after 5 oscillations (left) and after 10 oscillations
(right).
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If however, this shift is neglected and the radial current densities are compared after
an equal number of oscillations (see figure (5.5)), it is evident that the radial structure is
very similar in both cases. Therefore, the shift in resonant frequency aside, the linear and

nonlinear codes yield essentially the same results in the cold plasma, limit.

5.2.4 Electron Inertial Effects in the Cold Plasma Limit

In this section we present simulations using the cold plasma MHD code including electron
inertial effects. Results will be presented for both the density distributions (a) and (b)
outlined previously and the same initial Shear Alfvén velocity profile will be used as in the
previous section. Figure (5.6) illustrates the simulation results for density distribution (a).
Phase mixing effects are clearly visible, but the electron inertial lengths are too small to
have any influence. Figure (5.7) is the same plot, but now for density distribution (b) where
due to the decreased density along the field line, the electron inertial effects are enhanced
and some propagation of the inertial SAW pulse in the direction in increasing Alfvén wave
gradient is evident (NOTE: this increase in the gradient is to the right when viewed as a
function of z2 and to the left when viewed as a function of r in the equatorial plane).

Figure (5.8) illustrates ionospheric slices of current density and electric field from both
of the previous runs with A, # 0. As is consistent with other work (Rankin et al., 1999)
in the MHD limit, the current density is the same order of magnitude as observed, but the
magnitude of the parallel electric field is well below the mV/m scales observed.

5.3 Numerical Details for the Test Particle and Hybrid Mod-
els

5.3.1 Particle Placement

Unlike in the box and cylindrical models, the particles are not placed according to a specified
fluid density function. The positions of the particles are used to specify the fluid density
function. In the radial direction, we have chosen to place the electrons equally spaced in r,.
This results in a constant radial density profile as a function of z5. Along the field line, the
electrons are placed equally spaced in z; which yields an increasing density profile toward
the ionospheres. The variables ny, and nyp, respectively indicate the number of electron
positions assigned in the parallel and radial directions respectively. Once all the initial
simulation electron positions are established, the entire profile is then uniformly scaled so

that it has an equatorial value of n.,.

5.3.2 Filtering

It was discussed in Chapter 4 how the 2 D digital filter was applied quite successfully in the
box model. The same was tried with the dipolar model, but the program becomes unstable

at the ionospheres when filtering is applied in the field aligned direction (even when the
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Figure 5.6: Comparison of the radial profile of ug for density profile (a) at t=1T4 solid line
and t=60 T4 (dashed line). Top: equatorial slice. Bottom: southern ionospheric slice.
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Figure 5.8: Comparison of ionospheric slice of the parallel current density (top) and parallel
electric field (bottom) at t=60 T4 for density profile (a) (solid line) and density profile (b)
(dashed line).
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Figure 5.9: Initial Shear Alfvén wave profile. Left: Radial profile. Right: Field Aligned
profile.

filtering is not applied across the ionospheric boundary). Therefore to date with the dipolar
model, only radial filters have been applied (both frequency and lag domain). These are
not used in any of simulations presented here as their effect is minimal. The source of most
of the noise is from the field aligned direction as is evident from the fact that increasing the
field aligned particle number does the most to clean up the simulations. The issue of proper
filtering within the dipolar code needs to be addressed more completely, but the problem

has been fairly well compensated for by increasing the particle number.

5.3.3 Initial Profile

Unlike the fluid model simulations, we did not choose a proper eigenmode for the density
and magnetic field profiles, but instead just specified a two dimensional Gaussian of the

form

(

S

— U\Zor, T 2 51— - ar:L 2
a0 g - 9)

where A is the Shear Alfvén wave amplitude set to 34.5 km/s, d; = 0.3, d2 = 0.05/L and
Zor is the resonance position. The resulting profile is shown in figure (5.9) where the field

ug(wa, T1,t,) = Aexp(—

aligned profile is taken along zo,.

5.3.4 Maxwellian and Pitch Angle Distribution

The Maxwellian distribution function is chosen with the same algorithm as outlined for
the box model. However, the velocity in this case is the total velocity v, rather than just
the parallel component v;. In order to reduce boundary noise, the velocity values are
multiplied by a radial shape function so that they are set to zero close to the boundaries.

The hypergaussian function given by
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Figure 5.10: Initial pitch angle distribution for the case T, = 1.0 with n, = 2 x 10%. (N, =
number of simulation electrons).

("'oi - 7'07')18

Txi0-1 (5.9)

is used where r,; is the r, value of the field line the i** electron is attached to.

v; = v;exp(

Using a random number generator, pitch angles between 0 and 90 degrees are assigned
to each simulation electron in the distribution. This is a meant to be a constant density
distribution as a function of pitch angle, but the finite number of simulation electrons
used yields some variation around the mean. The pitch angle distribution for the case of
T, = 1.0 with n, = 2 x 10° is illustrated in figure (5.10). The results of this simulation will
be presented in the next section.

Using its respective pitch angle, the parallel and perpendicular, v, , velocities are then
calculated for each simulation electron. The latter values, along with the local magnetic field
at the particles initial position are then used in the determination of the magnetic moment,
pm- A distribution function of the magnetic moment using the previously displayed pitch
angle distribution is displayed in figure (5.11). Also shown is the result for an initial T, = 10

eV initial electron distribution function using 5 x 10® simulation electrons.
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Figure 5.11: Left: Initial magnetic moment distribution for the case T, = 1.0 with n, =
2 x 10%. Right: Same, but for T, = 10.0 and n, = 5 x 10°.

5.4 Comparison of Test Particle Model and Hybrid Model
in the cold plasma limit

3

In this section will be presented simulations with the hybrid model for ney = 0.1 cm™ and

two initial Maxwellian distribution functions with average energies T, = 1 eV and T, = 10

2T

- The ionospheres are at 5Rp

eV where the thermal velocity is related to T, by vy, =
and the equatorial radial boundaries are at 9.7 Rg and 10.3 Rg. Profiles along the L = 10
field line of the density, ambient magnetic field, Alfvén velocity and inertial length profiles
are illustrated in figure (5.12).

For both of these simulations we used 128 grid points in the 5 direction and 32 in the
direction along with a time step of 0.0067 seconds. Figure (5.13) illustrates the equatorial
amplitude of u3 as a function of time for a fluid model run. The fact that a mode with a
period of about 80 s dominates indicates that the 2 D Gaussian profile used, is close enough
to the fundamental eigenfunction so that this single mode dominates.

Figures (5.14) and (5.16) illustrate the comparison of the Ampere’s law current density
and the electron current density for the test particle model and hybrid model respectively.
The slices are taken along the southern ionospheric boundary inner grid cell. Unlike the
box model and cylindrical model cases there is a significant divergence between the two
current densities in the test particle case. This is due to the presence of the magnetic
mirror force. Initially, the influence of the electric field is minimal and the magnetic mirror
force dominates acting against the electron motion toward the ionospheres. This appears
as a net positive displacement in current for the northern ionosphere and a net negative
displacement at the southern ionosphere (as seen in figure (5.14)). As the electric field has
more time to act on the electrons, the electron current density becomes more random and

centered around zero. Time slices of this parallel electric field for the test particle model
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Figure 5.12: Plasma parameters in the hybrid model corresponding to neq = 0.1cm™3
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are displayed in figure (5.15). The magnitude of the field stays the same order of magnitude
through the full length of the run.

The evolution of the distribution function as a function of time for the hybrid model
case is illustrated in figure (5.17). As is evident, the distribution function undergoes an
initial quick adjustment as the hybrid system converges. However after that, there is little
adjustment through 9 oscillation periods. The heating is less than observed in the box model
or cylindrical model cases and it is assumed that the balance between the electric field and
mirror force restricts the heating that would otherwise occur if the mirror force were not
present. The distribution function for the hybrid and test particle runs are contrasted in
figure (5.18) at t=400 seconds. The width in both cases is qualitatively equal with the
major difference being that the test particle distribution has a internal structure associated
with it. This is smoothed out in the case of the hybrid model distribution.

In order to investigate the effect of increasing the electron distribution temperature,
an additional simulation was done with T, = 10 eV using 5 million simulation electrons.
In this case as well, the fluid fields stay very close to the cold plasma MHD results and
so are not displayed here. The evolution of the distribution function is shown in figure
(5.19). As is evident in this case as well, there is little effect of wave-particle interactions
and the distribution function is not significantly modified. Higher temperatures would no
doubt somewhat enhance the effects of the pressure and magnetic moment terms in the
equation for the parallel electric field. However no additional simulations were done for
these model parameters and higher T, for two reasons. The first is the time required, as
large increases in particle number would be needed to maintain resolution with temperature
increases. Secondly, the results of Rankin et al. (1999) suggest that significant increases in
the parallel electric field will only be found at altitudes of 2-3 Rg and they used a T, = 100
eV initial Maxwellian. The focus of the research has therefore been to test the model with
lower altitude ionospheres and initial results in this direction will be summarized in the

next section.

5.4.1 Single Particle Dynamics

The comparisons between the test particle simulations and hybrid simulations introduced
in the last section can be further highlighted by looking at single particle dynamics. Figure
(5.20) illustrates the trajectories of test electrons with 1, 5 and 10 eV energies released at
the equator at » = 10 Rg with and without the resonance electric field. There is very
little divergence between the two cases except for the 5 eV case where the electron is
undergoing a resonant interaction with the electric field. The period of the electron motion
is approximately twice that of the resonance. Therefore, in the test particle limit for most
electrons, there will not be large divergences in their orbits due to the resonance electric
field.

Figure (5.21) illustrates the trajectories of the two same electrons in the test particle
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Figure 5.13: Comparison of equatorial amplitude of uz at x2, as a function of time for the
fluid model with ny = 0.1 em ™3,

and hybrid models respectively. It is clear that in the test particle limit, the electrons seem
to be moving with pretty much the same orbits as they would have under the influence
of the dipolar magnetic field alone. In the hybrid case however, the orbits are drastically
altered under the influence of the coupling. As in the box model simulations, these results
were not significantly altered with the exclusion of both the pressure and magnetic moment
components of the electric field and so the orbits of the motion are most significantly affected
by the local electric field imposed in the enforcement of quasineutrality. The peculiar motion
of the second electron is explained by the fact that it reaches the ionosphere and is re-injected

at the first guard cell with the same energy.

5.5 Comparison of simulations with Ionospheres at 5 and 3
Rg

Thus far, simulations with the hybrid code have been limited to having ionospheres at 3
RE above the earth due to boundary issues that will be highlighted later. In this section is
presented a simulation using this boundary for an initial 1 eV electron distribution function
and the results will be contrasted with the 5Rp case summarized previously. The initial
Shear Alfvén wave perturbation is the same in both cases.

Figure (5.22) illustrates ug at the equator and the current, pressure and u,, moments of
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line) and electron current j, (dashed line) for the test particle model with T,=1 eV initial
Maxwellian distribution function. Southern ionospheric slice.
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Figure 5.19: Evolution of the distribution function for the case of T, = 10.0 eV.
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Figure 5.20: Trajectories of electrons of indicated energies with (solid line) and without
resonance electric field (dashed line). All electrons are released at the equator of the L=10
magnetic field line with equatorial pitch angles of %.
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Figure 5.21: Comparison of trajectories for the hybrid model (solid line) and the test particle
model (dashed line) for two different initial simulation electrons.

the electron distribution function at their respective ionospheres for both cases. The slightly
different frequency for the resonance introduced by moving the ionospheric boundaries to
3 Rpg is most clearly evident in the top frame for u3. As would be expected, the increased
curvature significantly enhances the current and pressure moments in this case as well.
The initial ;s moment of the electron distribution function is lower in this case because
the increased magnetic field strength lowers the average magnetic moment value for the
distribution, but the gradual increase of the value over time is suggestive of redistribution
of electrons with larger magnetic moments towards the ionospheric region over time. In
addition, over time, the ionospheric value of the pressure moment is increasing in the 3 Ry
case.

Figure (5.23) illustrates the distribution function in the 3Rg case and there appears to
have been some slight resonant heating of the electrons over time. This (along with the
increase of the pressure and pjs moments) may or may not be physical. The model can
experience numerical heating in certain cases as will be highlighted in section 5.7. Further
verification simulations need to be conducted to elucidate the trends noted here.

In order to put perspective on the length of these runs, it is worth noting that the
simulation with ronophere = 3 RE, using 6 million simulation electrons and a time step of
0.0025 seconds, took about 10 days using 24 processors on an SGI Origin 2000. The grid

used had 128 points in the z9 direction and 64 points in the z; direction.

5.6 Inertial Alfvén wave and thermal plasma limits

Thus far, even though the simulations have been in the cold plasma limit, the electron
inertial scale lengths have been too small for the resonance to narrow too in a reasonable

amount of time. A much enhanced inertial length can be achieved by relocating the reso-

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.05

0 50 100 150 200 250 300 350 400 450 500 550 600
time (s)

0 50 100 150 200 250 300 350 400 450 500 550 600
time (s)

-500 T T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500 550 600
time (s)

0 50 100 150 200 250 300 350 400 450 500 550 600

time (s)

Figure 5.22: Four parameters as a function of time for the T, = 1.0 eV simulations with
ionospheres at 3 Rg (solid line) and 5 Rg (dashed line). Parameters plotted (from top to
bottom) are the equatorial fluid velocity, u3 and southern ionospheric values of the parallel
current, ji, pressure moment, K, . v?S and p) moment, K, >, umS of the electron
distribution function. K, and K|, are the normalization constants for each term (see section
5.8 equations).
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Figure 5.23: Evolution of distribution function for the simulation with 7, = 1.0 eV and
Tionosphere = 3 RE.

nance closer to the earth as well as dropping the equatorial density. This has been done
here to illustrate the formation of a inertial SAW in the cold plasma limit as well as the
divergence between the MHD and the hybrid model for thermal plasmas (vy, = V).

For the simulations to follow, the resonance has been relocated at 6 Ry and the equa-
torial number density has been dropped to 0.05 cm™3. The resulting radial Alfvén speed
and electron inertial length at the equator are displayed in figure (5.24). Two simulations
were then conducted for initial Maxwellian distributions functions with 7, = 10 eV and
T. = 70 eV (see figure 5.25). Comparison of this figure with (5.24) illustrates that these
distribution functions represent approximately v;, < V4 and vy, & Vy respectively in the
equatorial plane. Significantly larger temperatures can be considered here relative to the
last sections because the field line is much shorter and consequently fewer simulation elec-
trons are needed to adequately cover the simulation region. The ionospheres are located at
3 Rg.

The equatorial Shear Alfvén velocity profile at ¢ = 96 seconds for the 10 eV case is
illustrated in figure (5.26) along with the cold plasma MHD results. The formation of an
inertial SAW is clearly visible propagating in the direction of increasing Alfvén wave speed
and the hybrid and MHD models are in very good agreement. In the T, = 70 eV case, on
the other hand, (figure 5.27) there is an evident divergence from the cold plasma MHD.

No longer is there any propagation in the direction of increasing Alfvén wave speed in the
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Figure 5.24: Radial Alfvén velocity and electron inertial length profiles (in nondimensional
units) at the equator for r, = 6 Rg and n.q = 0.05 em™3

hybrid case as would be expected for a thermal plasma. Propagation in the other direction
of a kinetic Alfvén wave would be expected in the vy, > V4 limit.

These results are consistent with the box model results with the exception that there is
no measurable damping as compared to the MHD case and the distribution functions are
unmodified due to Landau trapping. This is because the distribution functions are simply
too cold. In the case of the changing field aligned Alfvén wave profile, the phase velocity
of the SAW is a function of the integrated Alfvén wave speed along the field line, rather
than the local value of V4. Taking the approximate frequency of this resonance at about 7
seconds and the length of the field line (10.2 Rg), the ratio ki” for a fundamental mode FLR
is 26.9 in nondimensional units. This is approximate since the initial Gaussian profile is
only close to a fundamental mode eigenfunction. However, it is close enough for comparison
and examination of figure (5.25) illustrates that even the T, = 70 eV distribution is too
cold to experience Landau damping effects. The strength of this potential damping has yet

to be examined.

5.7 Boundary Issues

As indicated earlier, the model can experience artificial numerical heating of the electron
distribution function. This is clearly evident in a couple of simulations conducted for an
initial electron distribution function with 7T, = 4 eV and an equatorial number density of

3 using first 2 x 10% and then 6 x 10® simulation electrons. There is fairly

Neg = 1.0 cm™
dramatic heating in the former case (top panel) but very little in modification in the latter
(bottom panel). This is most probably related to fluctuations that develop at the ionospheric
boundaries when there are an insufficient number of particles to adequately smooth out the

particle distribution function moments. These fluctuations can then introduce gradients
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line) for the inertial SAW example (left) and the kinetic Alfvén wave example (right).
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Figure 5.26: Comparison of the equatorial Shear velocity at ¢ = 96 seconds (check time) for

the cold plasma MHD model (solid line) and the hybrid model for T, = 10 eV'.
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Figure 5.27: Comparison of the equatorial Shear velocity at ¢ = 100 seconds (check time)
for the cold plasma MHD model (solid line) and the hybrid model for T, = 70 eV'.

into the parallel electric field calculations and numerically enhance the results which in turn
heats the particles, creating more noise and a sort of feedback loop results. This artificial
enhancement in the pressure moment in the n, = 2 x 10° case relative to the np = 6 X 108
case is evident in figure (5.29). Given enough time, the result of the numerical enhancement
of the parallel electric field is to accelerate all the electrons into the ionospheric regions,
evacuating the rest of the simulation grid and causing the simulation to crash. Therefore,
increasing particle number is a fundamental test in interpreting any results from the model.
The model seems most sensitive to this when higher equatorial densities are used and thus

3 case was used to highlight this issue. As well, the effect is stronger with

the neg = 1.0 em™
ionospheric boundaries closer to the earth and so this has been the main obstacle in trying
to conduct simulations with ionospheres below 3Rg. For example, initial simulations with
the ionospheres at 2Ry using 7 million simulation electrons illustrated significant heating

very early in the evolution of the system.

5.8 Parallel Electric Fields in the constant parallel density
case

In Chapter 4 for the box model results, it was illustrated how difficult it is to clearly see the
parallel electric field. This is more so the case in the dipolar model which is intrinsically
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noisier because of the approximation used in the particle interpolation as well as the present
lack of filtering in the model. In addition, the spatial integration done to obtain Es. directly
in the dipolar model, introduces a significant amount of noise and may indeed be the largest
contributer.

As with the box model case though, the parallel electric field can be seen for very cold
distributions. In this section the MHD result for E; is contrasted to the hybrid model
results for several such distributions. As well, a comparison of the magnitudes of the
source terms in the expression for F; is made. This will be done for a constant field aligned
density distribution since the electric fields are significantly enhanced over the density profile
considered thus far. The constant density case was not originally used, because along with
the enhanced electric field, there are large density fluctuations in the ionospheric regions that
get larger with time and lower altitude. The density depressions that form get large enough
to violate the linear approximation that the code is based on. With regards to the electrons,
this linear approximation comes via the fact that the Alfvén velocity and electron inertial
length profiles are fixed at ¢ = 0 from the initial electron distribution and then are not
modified. With large fluctuations in the electron density this approximation is unreasonable
and therefore long term simulations with a constant density profile are unrealistic with the
model in its present configuration. As is, the evolution of the simulations is to create larger
and larger density depressions at the ionospheres which eventually causes the program to
crash when the electron number density drops to zero.

Since the equation for the parallel electric field is being referenced in this section, it is

useful to rewrite it here. In nondimensional form, it is given by

1 0 , hy ,0G G 1 0 ,hy O
e (e () = e = ——— (- ——(hoE
h2h3 axg hlhg axg)) h1)\g h2h3 6:1,'2(h1h2 8:121( 2 2))

1 0 , hy 0O
+ h2h3 8$Q(h1h25—$—1(h2E26))
K, 8B, L
+ 77,-1—3.'131 Zlums(xamz)
K, 8

2 —-
+ — =) viS(Z,%;
hl a 1 ; [ ( ’ Z)
where as indicated in Chapter 3, G = h1 F; and Es, is the field resulting to enforce quasineu-
trality. The new variables, K, and K, are the normalization constants for the magnetic
moment and pressure terms respectively. Although they are treated separately in the pro-
gram, these two variables are in fact numerically equal and are given by
UN PN
K, =K, =epoL—— 5.10
@ P Ho By m, ( )
where L is the normalization length and the N subscript denotes the normalization constant
for the relevant variable. For simplicity of notation, the scaling factors evident in equation

(3.65) have been omitted and the moments are assumed to already be scaled.
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Before looking at the individual components though, figure (5.30) illustrates the radial
profile of E; close to the southern ionosphere for the cold plasma MHD code and the hybrid
model runs with three different cold initial electron distribution functions (T = 0.001, 0.1
and 1.0 eV') at ¢t = 13 seconds. In all cases, the resulting field is very close to the MHD
case within the limit of the numerical noise. The increase in this noise with temperature
is also evident. Figure (5.31) illustrates the electron density profile at the same position.
Relatively large density fluctuations are already evident at this early time in the evolution
of the system. For all the simulations, the parameters are the same as in the last section so
the equatorial position of the resonance is still at 6 Rg and the ionopheres at an altitude of
3 Rg. The constant electron number density is 0.05 cm ™3 and 4 million simulation electrons
were used in each case. The period of this system is approximately 7 seconds.

Now, in order to illustrate how the different terms contribute to the final value of Fq,
figure (5.32) presents the values of each of the four terms on the right hand side of equation
(5.10) along the same radial slice at ¢t = 6 seconds. To avoid complexity of notation, the
terms are identified simply by referencing the relevant principal component (i.e. Ey ,FEy,
JA) OT pressure-y . UES). Only the T, = 0.001 eV and T, = 0.1 eV cases are illustrated
in the top two panels because the T, = 1.0 eV case was too noisy for the Fy and Fo.
fields. In all cases the results have been filtered (after the simulation) with the same digital
filter as used in the box model. This is also true of the F; and n. plots already presented.
The results were presented at ¢ = 6 seconds because the FEy,. term becomes noisier and
consequently more difficult to visualize at later times.

As is evident, the largest component is from the Es term and the correction field Fo, is
relatively small, but can be of similar order of magnitude at times. It also seems to have
similar dependence in the two temperature cases, but the noise increases with temperature
most significantly in this term as compared to any other. The signal in the Ty = 1.0 eV
case is completely drowned in noise and so it seems evident that most of the noise that
gets transferred to E; is coming via the term for Fs.. The pressure term is close behind
in magnitude but is not sufficiently large enough to effect the evolution. The shape of
the profiles is sensitive to temperature, but it is not always the case that the Tp = 1.0
eV result is smallest. Finally, the value of the pjs term is virtually insignificant for the
present parameters but it does increase relatively dramatically as the temperature of the
distribution increases. Therefore as expected, the contribution from the mirroring term
grows with temperature. The increased curvature at lower altitudes will also add to this
since the terin incorporates the parallel gradient of the magnetic field.

In the T, = 1.0 eV case, the simulation was continued and the result for the parallel
electric field is displayed in figure (5.33) along with the MHD result at ¢ = 30 seconds where
they are still in good agreement in the inertial SAW limit. Additional simulations with T,
up to 3 eV have illustrated no significant divergence from the MHD result.

In order to further illustrate that these results are self consistent, it is possible to appeal
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Figure 5.30: Radial profile of E; close to the southern ionosphere (z1 = —0.0573) for the
MHD model and the hybrid model with three different initial electron distribution functions
at t = 13 seconds. A constant field aligned density profile was used with ne, = 0.1 cm ™3,
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Figure 5.32: Radial profiles of the components of the equation for F; close to the southern
ionosphere (r; = —0.0573) at ¢t = 6.0 seconds for T, = 0.001 eV (solid line), T, = 0.1 eV
(dashed line) and T, = 1.0 eV (dotted line). This last case is not displayed in the top two
panels as it was too noisy.
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Figure 5.33: Radial profile for E; close to the southern ionosphere (z; = —0.0573) for the
MHD model and the hybrid with T, = 1.0 eV at ¢ = 30 seconds.

to a simple argument to see what particle energies are needed to carry this current. As
stated in Chapter 3, the current density is given by |j1| = |ne?||. Therefore by taking the
parallel current density from the simulation and using the value of n = 0.05¢m ™3 it is trivial
to calculate the average electron energy needed to support the j; as a function of position
along the field line. This is presented in figure (5.34) where the top panel displays the
current slice along the field line (southern ionosphere) and the bottom panel illustrates the
corresponding calculated average electron energy. As is clearly evident, very low electron
energies on the order of 0.1 — 1 eV are needed to support the ionospheric parallel current
density and much less for higher altitudes. Therefore it is not surprising that significant
electric fields are not observed to accelerate the electrons to sufficient velocity. As well,
it is worth noting that the maximum values of j; noted in any of the hybrid simulations
considered in this chapter are on the order of 1072 uA/m?.

As a comparison, the same calculation was done for ionospheres at an altitude of 1 Rg.
The results are displayed in figure (5.35) and it is clearly evident that electron energies of
hundreds of eV are needed to support parallel currents on the order of 107! — 1 pA/m?.
Although this situation is unrealistic as density increases along the field line, very low
densities can be found in ionospheric density cavities and and consequently the calculation
is relevant. Observations (and other simulations) tend to produce field aligned current
densities on orders up to a few tens of uA/m? which, in the presence of low enough densities,
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may need keV electrons to support the current. Extending the code to work in the uA/m?
range will be the main focus of future research.
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Figure 5.34: Average electron energies needed to support the current density j; in the top
panel for a constant electron number density profile of 0.05 ¢m 3. Calculation based on the

definition |j;| = |nev|. Current density profile is for the MHD simulation at ¢ = 1 s along
z2 = 0.165 field line with risnosphere = 3 RE-.
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5.9 Summary

In this chapter, the results of both the 2D cold plasma MHD model and hybrid model
in dipolar coordinates were illustrated. In both cases, the perfectly conducting boundary
conditions were used at the ionospheres. In the case of the cold plasma MHD model, the

following was illustrated.

e In the A; = 0 case, the model results were in good agreement with a nonlinear MHD
simulation in the cold plasma and low temperature limit. The only significant differ-

ence was an expected frequency shift in the nonlinear case.

e For the case of A, = 0 the formation of an inertial SAW propagating in the direction
of increasing Alfvén wave speed was illustrated. The parallel electric field magnitude
was consistent with other simulation results in that it was several orders of magnitude
below the observed mV/m range. This again confirms the failure of MHD theory to
properly account for the observed parallel electric field.

For the hybrid model simulations, the following results were obtained.

e The hybrid model agreed very well with the cold plasma MHD results in the cold
plasma limit including the formation of an inertial SAW.

e In the thermal plasma case, the hybrid model diverged from the cold plasma MHD
case as would be expected. Landau trapping effects were not noted as the distribution

function was still too narrow.

e The parallel electric field agrees with MHD results for cold plasmas at altitudes above
3 Rp along the magnetic field line. For all density profiles considered, the maximum
ionospheric current density is on the order of 1072 uV/m? and populations of cold
electrons are sufficient to carry the needed current. This agrees with an order of
magnitude calculation based on the definition of |j| = |netjj| and is consistent with
the work of Rankin et al. (1999).

Therefore, although there are significant problems to be addressed in the dipolar code
in terms of resolving the parallel electric field and handling the boundaries in a more robust
way, the method has been illustrated to be sound. The results are consistent with the cold
plasma MHD when vy, €« V4 and diverge as would be expected in the thermal plasma limit.
Given time, the approach should prove a useful tool in helping to study how wave-particle
interactions affect parallel electric field generation in FLRs.

5.10 Erratum

Subsequent to the defence of this thesis, it was noted by the author that the normalization

constants, K, and K, were given the incorrect sign stemming from an error incorporating
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the negative sign within the charge variable ”e”. Both quantities should in fact be positive.
Due to the small magnitude of the pressure and magnetic moment contributions to the
parallel electric field, it is not believed that this error significantly effects the results of this
chapter. As a check, the simulations used within figure (5.32) were redone with the corrected
program and the results are shown in figure (5.36). They are quantitatively similar to those
in the original figure with the exception of the sign in the bottom two panels. Also, the F5,
term is smaller and less noisy. It is uncertain as to why the magnitude is reduced, but it
may be partially numerical and partially a response to the change in sign of the other terms.
The net effect on the resulting parallel electric field is negligible however as is evident in
figure (5.37) where there is no sigficant divergence from the MHD field. Therefore the final
interpretation is the same. The reduced noise is due to the fact that although the same
number of particles were used in this simulation, the radial simulation range was somewhat
reduced giving better resolution.

Due to the time constraints for the submission of the thesis, it was not possible to
redue all the simulations to their full extent, but initial trials show that the only major
effect is to change the sign on the pressure and magnetic moment terms. The simulations
remained otherwise unmodified. Therefore, within the chapter this would manifest itself
most significantly as a change in sign in the bottom two panels of figure (5.22) and the same
for the both panels of figure (5.29).
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Chapter 6

Conclusions

In this work we have developed a self consistent hybrid MHD-kinetic model for studying
wave-particle interactions in FLRs, but the model is applicable to any system with Shear
Alfvén waves as long as the minimum scale length is above the ion gyroradius. The model
consists of the cold plasma MHD equations and the guiding center equations for the electron
dynamics and it has been successfully developed and illustrated to work in both cartesian
and dipolar coordinate systems.

In the first part of the thesis, the model was developed in a box geometry with a constant
ambient magnetic field for both periodic and perfectly conducting boundary conditions.
The plasma density and Alfvén velocity were constant in the field aligned direction with
gradients in the radial direction. For cold initial electron distribution functions, vy, < Vg,
the hybrid model results were shown to be in good agreement with the cold plasma fluid
code. For warmer distributions, vy, > V4 there was significant Landau damping of the
standing Shear Alfvén wave system. The damping rate was shown to be in good agreement
with that predicted by the analytical dispersion relation developed from the cold plasma
equations and electron drift kinetic equation.

As discussed in the opening chapter, the converging magnetic field inherent in the dipolar
geometry is fundamental in the study of wave-particle interactions in FLRs and so the last
part of the thesis was devoted to developing the model in this geometry. Before presenting
results for the hybrid model, comparisons were made in the cold plasma fluid limit with the
nonlinear resistive MHD code (Voronkov et al., 1998) as a check that the code was working
properly. It was further illustrated that the nonlinear frequency shift does not introduce
significant differences in the phase mixing evolution of the resonance when looked at from
the point of view of the number of periods.

For the dipolar hybrid model case, simulations were restricted to having the ionospheres
at an altitude of 3 R due to noise issues at these boundaries which introduce numerical
heating of the electron distribution function. Within this limit though and using cold initial
electron distribution functions, good agreement was again shown with the cold plasma MHD
results for both constant and changing field aligned density profiles. This included the
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formation of an inertial SAW. In the thermal plasma case vy, ~ Vy, divergence between the
hybrid and MHD systems was again illustrated. No Landau damping effects were noted in
this case however, because the distribution functions considered are still too cold.

Due to statistical noise issues, clear observations of the parallel electric field have thus
far been limited to the cold plasma regime where they have been consistent with the MHD
results. Large enhancements due to wave-particle interactions would have been visible
though, but none have been seen and neither has there been any significant changes to the
initial electron distribution functions. This result is not surprising since the simulations
have been restricted to regions above 3 Rg and the current densities evident here are only
on the order of 1072 pA/m? for most reasonable parameters. Electrons with energies in the
eV range or less are sufficient to carry this current and so no significant modification of the
electron distribution function is required. On the other hand, the fluid calculations have
illustrated that field aligned current densities up to 1-10 uA/m? are evident at altitudes
around 1-2 Rg (both in simulations and observations) and depending on the densities,
electron energies up to the keV range may be needed to support this current. This combined
with the fact that mirror force and pressure effects increase with temperature and curvature
implies that wave-particle interactions should become more evident when stable simulations
at lower altitudes are done. This suggestion is consistent with the results of Rankin et al.
(1999) in that the significant jumps in the parallel electric field usually occurred in the
range 2-3 R above the ionosphere (even in the absence of ionospheric density cavities).

In conclusion, a new method for modeling of wave-particle interactions between elec-
trons and SAWSs has been introduced and shown to work properly in both box and dipolar
geometries. Therefore the main goal of the thesis has been achieved. Thus far, no concrete
comparisons can be made between this work and the nonlocal conductivity model (Rankin
et al., 1999; Tikhonchuk et al., 2000) except that the lack of significant enhancements in
Eil below 3 Rp is consistent with these results. The main focus of the research from this
point then is to conduct simulations with ionospheres in the 1-2 Rg range. Stability issues
with the ionospheric boundaries below 3 Rr have been highlighted, but it is possible that
these effects can be compensated for by increasing particle number and reducing the time
step. Further work in progress to introduce a stable filtering algorithm to the model will
also go a long way to resolve this. Therefore, the model stands in a good position to help
elucidate the significance of wave-particle interactions to enhancing the parallel electric field
in the limit of perfectly conducting ionospheres. In addition it may be possible to adapt
the model to the fact that the ionospheres are not perfectly conducting by reintroducing
boundary electrons in a way more self consistent with observed upward flowing electron
distribution functions. This is desired as recent works have highlighted the significance of
finite ionospheric conductivity in enhancing the parallel electric field (i.e. Samson et al.,
1996).
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Appendix A

Kinetic Dispersion Relation

Using the cold plasma equations and defining a dependence of e!(k=z+hyytk.2)~iwt i ig
straight forward to derive a dispersion relation for the periodic system as

:1.2
ik
WhoTy

where it has been assumed that k, = 0 and an Ohms Law E, = j,/0, has been used to
relate the the field aligned electric %eld and current. In order to determine the field aligned
conductivity o, we start with the general drift kinetic equation (Baumjohann et al., (1996))

0fa Rl

w? = E2Vi(1 + ) (A.1)

5 T Vi, (Wafa) + %H(Hfd) =0 (A.2)
where
o UHB ., FxB
. ExB
F|=—uV B +qE) (A.5)
F_L = —-/,I,VJ_B - mvﬁ Rc d’UE (A6)

R’ "a

Ty is the guiding center position, ¥ is the guiding center velocity and F is the force applied

to the particles. For electrons, the E x B and polarization drifts are negligible. This, along
with the lack of curvature simplifies the full drift kinetic equation to

ofg 0 0 qFE,

e 4 = - =0 A7

ot t Oz (v2fa) + Bfuz( Me fa) (A7)
where we have replaced the ’||’ notation with z. Linearizing such that fy = f,+ f1, where f,
and fy are the equilibrium and perturbed distributions respectively and keeping only first
order terms, the kinetic dispersion relation becomes

8f 1 af 1 eE, 0 f 0
el + :Uz_..__.. —
ot oz me OV,
where the fact that v, and z are independent variables has been used as well. This kinetic
equation is the same as that used for low frequency phenomena (Tichkonchuk et. al, 2000;

=0 (A.8)
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Antonsen and Lane, 1980). Assuming the dependence e**:#~%* the electron kinetic equation
can be solved for the perturbed distribution

—iekl, 9fo

v,
s} (A.9)

fi=

The current is related to the perturbed distribution via

Jz = “e/d?’m)zfl'

Performing the integration using a Maxwellian distribution for f,,

_ M \1/2_—mw?/2kpT
fo n(_27rkBT) e d(vz)0(vy) (A.10)
yields the following expression relating the field aligned current and electric field
, —ie?nw
b = T (1+ eZ(e))E, (A.11)

where € = {2 /5,57;7 and Z is the plasma dispersion function defined by

dze™®
. A12
) Y / T —e (A-12)
Comparing (A.11) with the Ohm’s law J, = 0,F,, the corresponding expression for the
field aligned conductivity is given by

—ie2nw
k2kgT
and substituting this into expression (A.1) the complete kinetic dispersion relation is then
ik?

who Tt (1 + €Z(e))

O-Z=

(1+ €Z(e)) (A.13)

w? = E2Vi(1 + )L (A.14)

In the cold plasma case (when V4 > Vjy), the plasma dispersion function can be expanded
as

Z(€) = —= — — — . (A.15)

Using this expression (with only the first two terms) in the kinetic dispersion relation allows
the simplification of the dispersion relation to that of the familiar inertial SAW

2 _ kZVa
14+ k222"

In the warm plasma limit (V4 < vy,), the asymptotic expansion of the plasma dispersion
function is given by

(A.16)

Z(e) = —2¢(1 262) (A.17)
and the conductivity becomes
—ienw g 4
= — 2% + =€%). :
o, R2hpT (1 —2¢*+ 3¢ ) (A.18)
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Since €2 < 1, the conductivity can be simplified to

—ie2nw

Oz
the dispersion relation becomes
1
W = V(L + 5202) (A.20)

where p; = ﬁ‘%lk. This warm electron dispersion relation generally appears with an ad-

ditional term due to ion gyroradius effects (see Lysak and Lotko, 1996). The absence of
this term emphasizes that for this model to be valid, the minimum scale lengths should be

larger than typical ion gyroradii. In addition, the factor of % originates from the choice of
Vgp = ,/% rather than vy, = —%’;‘C which makes this equation appear slightly different

than is typically written.
As an aside, it is fairly straightforward to illustrate the derivation of the simplified
generalized ohms law. Starting with the simplified drift kinetic equation,

0 9] ek, 0f,

( ot + vy 5z_)f 1=

and assuming v, is not a function of t and z, integration over velocity yields
03 o [ 9 e?n,
ot 02 J_o Me

where n, = [%_ dv,f, and j = —e [*_dv,v,f1. As there is no bulk fluid flow in the z
direction, the electron pressure is given by

me OV,

xX0
—00
and therefore we have

ot medz ¢ me

Rearranging and using the definition for electron inertial length Ae = me/(uonce?) yields
the familiar generalized ohm’s law

05, 1 0P,
B, = u 2z _ - e
Hote 5t nee 0z
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