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A bstract

Geomagnetic Field Line Resonances (FLRs), which are standing Shear Alfven wave (SAW) 

structures, have been linked to  the form ation of auroral arcs, bu t the exact mechanism 

for the acceleration of electrons to the necessary keV velocities is not well understood. 

M agnetohydrodynam ic (MHD) sim ulations have failed to reproduce the observed parallel 

electric fields needed to accelerate electrons and so a tten tion  has focused on including kinetic 

effects w ithin the standard  MHD formalism. In th is thesis, we present a hybrid MHD- 

kinetic model for standing SAWs to help study the potential for wave-particle interactions 

involving electrons to  lead to  enhanced parallel electric fields. The model incorporates 

the cold plasm a MHD equations and kinetic electrons. The guiding center equations are 

used for the  electron m otion and the system is closed via an expression for the parallel 

electric field. This expression incorporates electron inertial effects along w ith the  current 

and pressure moments of the electron d istribution function and a mechanism to enforce 

quasineutrality. The model has been developed in bo th  a box and dipolar geometry. The 

la tte r case incorporates the natu ra l topology of the FLR  system and allows for the inclusion 

of m agnetic m irror trapping  effects w ithin the model.

In the box model, we show th a t the hybrid model is consistent w ith cold plasm a MHD 

results for cold electron distributions and Landau dam ping effects are evident when the 

average electron therm al velocity is on the order of the local Alfven speed. The dam ping 

ra te  is shown to be in good agreement w ith analytical results illustrating the validity of the 

approach.

In the dipolar case, we validate the model by illustrating the consistency of the approach 

w ith MHD for cold electron tem peratures as well as the divergence in the therm al plasm a 

lim it. M irror force effects are shown to be negligible for ionospheres above 3 R e  a ltitude  

which is generally consistent w ith other approaches. It is found th a t the pressure and 

m agnetic moment effects increase w ith curvature and tem perature. Therefore, it is expected 

th a t including lower altitude ionospheres, these effects will further increase the  parallel 

electric field strength.
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Chapter 1

Introduction

1.1 Preamble

Space plasm a physics is generally defined as the study of plasm as in the  e a rth ’s near space 
environm ent. Such a simple statem ent belies a complex series of processes which commence 

w ith  the outflow of plasm a from the sun, called the solar wind, and end w ith  the deposition 

of energy in the e a rth ’s ionosphere and upper atm osphere which m anifests itself in the 

visible aurora. It is a prim e example of the transfer of energy to  smaller and sm aller scales. 

T he in itial transfer of energy between the solar wind and the e a rth ’s m agnetosphere can 

be accomplished through several mechanisms, one being the excitation of Alfven waves by 

the interaction of the solar wind with the m agnetospheric boundaries. These waves can 

propagate toward the E arth  and have been observed to form Standing Shear Alfven waves 
(SAW) structures along the e a rth ’s dipolar magnetic field called Field Line Resonances 
(FLR). Satellite observations have linked these structures with the form ation of the  small 
scale discrete auroral arcs. Simulations of the FLR  system using the m agnetohydrodynam ic 
equations (MHD) have reproduced the observed scale structures, bu t have consistently failed 

to  reproduce the electric field m agnitudes needed to  accelerate electrons to  sufficient velocity 

to  allow them  to reach the e a rth ’s atm osphere. This illustrates th a t the wave-particle 
interactions, which are not included in the MHD description, may be vital in understanding 

the FLR  system.

In this work, we concentrate on the development of a hybrid M HD-kinetic model which 

combines the use of the cold plasm a MHD equations w ith a kinetic description for the 

electrons to  study how wave-particle interactions can effect the evolution of a  SAW system  
as compared the to  MHD description alone. We will conduct th is study in cartesian and 
dipolar coordinate systems: the first to  facilitate code development and testing  and the 
la tte r to  more accurately model the physics of a FLR system.

1
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1.2 Basic structure of the magnetosphere

As already stated , the u ltim ate driving force of the E a rth ’s m agnetospheric s truc tu re  (as 

seen in Fig. (1.1)) is the solar wind. Its flow is bo th  supersonic and super Alfvenic and 

it generates a standing collisionless shock front called the Bow Shock where the e a rth ’s 

m agnetic field becomes an obstacle to the supersonic flow of the solar wind. It slows the 
solar wind to  subsonic speeds. It is analogous to shocks in a regular fluid except th a t this 

entire phenom enon is collisionless. The nose of the bow shock (the m ost sunward portion) 

is typically 12-15 R e  (1 A e=6371 km). Since the flow speeds outside of the  Bow Shock are 
supersonic, any waves incident on the Bow Shock from inside the m agnetosphere will be 

reflected back inwards. After the bow shock, the subsonic solar wind propagates on until 

another boundary (called the magnetopause) is reached, defined by the balance of forces 

between the  solar wind pressure and the magnetic pressure exerted by the e a rth ’s m agnetic 

field. The position of the m agnetopause is described m athem atically by the following (Parks, 
1991),

B 2
2mnUgWcos2 (j) =  —— (1 .1 )

ZjJ,0

where the right hand side is the magnetic energy density, Usw  is the solar wind velocity, 
m is the mass of solar wind particles and n is the particle num ber density. The angle 4> 
is the angle between the solar wind velocity vector and the norm al to  the  m agnetopause 
boundary. The region of lam inar flow in between the m agnetopause and bow shock is 

called the m agnetosheath. This is contrasted by a turbulent layer on the inner side of 

the m agnetopause boundary called the Low Level Boundary Layer (LLBL). In th is region, 

Kelvin-Helmoltz instabilities as well as other factors can produce fluctuations th a t lead to  

wave propagation into surrounding regions of the magnetosphere. The lobe is a region of 

reduced plasm a density adjacent to the higher density plasm a sheet which contains particles 
of bo th  solar wind and ionospheric origin. The plasm apause is a sharp boundary separating 

the colder plasm a regions of the near earth  environm ent (plasm asphere), where the plasm a 
dynamics are controlled by the e a rth ’s magnetic field, from the ho tter surrounding plasm a. 
The boundary is typically found at an altitude of 3-5 R e -

FLRs typically form along the dipolar magnetic field lines between abou t 8  and 10 R e 
in the equatorial plane. The average plasm a densities in this region are on the  order 0 .1 -1  

cm - 3  w ith  average particle therm al energies of 10s of eV for electrons. The typical m agnetic 
field strength  is on the order of a few nT. The tenuous natu re  of this plasm a means th a t it is 

essentially collisionless. However, the presence of the m agnetic field (even one this tenuous) 
means th a t particles can interact w ith each other via the electrom agnetic forces between 
them .

There are several current systems in the m agnetosphere and any current th a t moves 
along the m agnetic field lines is called a field aligned current (FAC). Typically th is current

2
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Figure 1.1: Three dimensional view of the E a rth ’s m agnetosphere from E astm an et al.
(1985).

is carried by electrons as they can move very rapidly along the field lines, while much of 

the perpendicular current is carried by ions since they are massive enough to  cross field 
lines. In field line resonances, the parallel electron current is the response of the  plasm a 
to  perpendicular ion polarization currents, in order to  m aintain the quasineutrality  of the 
plasma.

1.3 The Ionosphere

The ionosphere is the u ltim ate dum ping ground for all the m agnetospheric energy and is a 

very different plasm a region th an  the m agnetosphere. It commences about 60 km  in a ltitude  
from the surface of the earth  and it owes its ionized sta te  to incoming solar rad iation  and 
the precipitation of high energy particles along the e a rth ’s m agnetic field lines. A slow 
recom bination ra te  m aintains the plasm a state. There are three distinct regions in the 
ionosphere defined by their relative plasm a characteristics and density variations which go 
from approxim ately 103 cm ” 3 a t the lower edge to  106 cm - 3  a t the  upper edge (about 300 

km  in altitude). These high densities make the ionospheric plasm a collisional. Some field 

aligned current systems from the m agnetosphere are closed via perpendicular currents in 

the  ionosphere and the interaction of high energy electrons moving along the  field lines w ith 

the ionospheric plasm a lead to  the visible aurora. High energy protons also in teract w ith

3
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the ionospheric plasm a to  produce the proton aurora, bu t these are not generally visible to 

the naked eye.

1.4 Plasm as

Plasm as are differentiated from ionized gases by two fundam ental concepts: quasineutrality  

and the fact th a t a plasm a can exhibit collective behaviour. The idea of collective behavior 

arises from the  fact th a t if a sufficiently large num ber of particles are ionized in the plasm a, 

the a ttractive and repulsive forces between opposite and similarly charged particles respec­
tively can give rise to  regions of positive and negative charge. These relative regions of 
charge separation give rise to  electric fields and consequently current and the plasm a can 
be seen to  have a  ’’collective behavior” on the larger scale.

This idea also relates to the ability of a plasm a to  shield out external potentials applied 

to  it. If an external potential difference is applied across a region of the plasm a, the 

electrons will move to  the positive pole and the ions to  the negative pole. In a cold plasm a, 

the shielding will be perfect and no electric field will result. However if the plasm a has a 

finite tem perature, some of the electrons a t the edge of the shielding cloud will escape from 

the potential. Short range electric fields can then  exist beyond this point. This ’’edge” is 

where the  average kinetic energy of the electrons is approxim ately equal to  the  electrostatic 
potential and the radius of the shielding volume is given by

Ad =  ( e ^ * X )1/2 (1 2)

where is called the Debye Length and the shielding phenom ena is known as Debye 

Shielding. Therefore, for any charge concentration or external potentials in the plasm a, 

they will be shielded out for large scale lengths L, where L  >  A#. This implies th a t most 

of the plasm a is free of electric fields and potentials. Therefore, if we define electric and 
ion num ber densities of n e and rq , then the plasm a can be said to  be quasinuetral in th a t 

Tti n  where, n is the plasm a density. The term  ’’quasi” is introduced, since the plasm a
is predom inantly neutral on the larger scale, bu t smaller scale inconsistencies in densities 
can still introduce electrom agnetic forces. The condition L  >> A# and quasinuetrality  are 
the first two conditions to  define a plasma. The th ird  comes from the fact th a t the idea of 

Debye Shielding only has meaning if there are enough particles in the  charge cloud to  be 

statistically  valid. Therefore, defining the num ber of particles in a Debye Sphere as

N d =  ^7rAf,n (1.3)

it is necessary th a t Nj) 1 .

4
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1.5 K inetic and Fluid descriptions of plasmas

One of the  m ost basic equations to  describe a collisionless magnetized plasm a system  is the 
Vlasov equation, derived by the Russian physicist A.A. Vlasov in 1945

dJ l  + i % + «L(*  +  * x J ) . f i £  =  0 (1.4)
ot or m s dv

where f s is the particle velocity distribution function of species s, and r and v are the  position 

and velocity vectors respectively. Integrating the moments of the velocity d istribu tion  

function over velocity space, yields the bulk plasm a param eters. For example, the  0th
moment yields the particle num ber density for species s, n s

n s(r,t) = J  f s(f, v, t)d3v (1.5)

while the first moment, yields the average velocity of the plasm a species, u s

u.
=  ^ b ) / ”7 , ( r > ' t ) 'i V  (L6)

Now, it is possible to  work w ith the Vlasov equation directly, bu t also, it can be used as a 

starting  point to  derive a fluid description for the plasma. F irst of all, d irectly in tegrating 
(1.4), over velocity space, yields (see Parks, (1991) for details)

f)T)
+  V • (nus) = 0 (1.7)

This is an equation of continuity since it states th a t the num ber of particles m ust be 
conserved.

Now, m ultiplying (1.4) by v and again integrating over velocity space yields the m omen­
tum  equation for species s

dus
m sn s —  =  qsn s{E +  u x B)  — \ p s (1.8)

where it has also been assumed th a t the plasm a pressure is isotropic. This process can be 

continued to  produce an infinite set of equations, bu t for the purposes of th is work, it is 

necessary to  consider only the first two equations in the hierarchy.

For a  plasm a in therm al equilibrium, the d istribu tion  function is a  Maxwellian, given 
by the expression,

, m  . 0 /9  , - m ( v - < v >)2. . ^
/ ( r ’V) = " ( 2r t T 1 e lp (  2*T  ) (L9)

where <  v > — us is the average particle velocity.

5
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1.6 One Fluid M agnetohydrodynamic Equations

A plasm a generally contains electrons and at least one species of ions (most commonly 

H +) resulting in the need for a t least two sets of fluid equations to  describe the  dynamics. 
U nfortunately the solution of the the two-fluid system  can be quite involved, b u t it is 

possible to  reduce this two-fluid set into a single fluid description. A lthough th is system  is 
less complete, it captures much of the physics of the relevant wave m otions of interest in 

m agnetospheric physics and so is a convenient starting  point for the investigation of some 
phenomena.

The set of single fluid MHD equations begins w ith Maxwell’s equations which, in MKS 
units, are given by

^  1 dE (1 .1 0 )

V - B  = 0 (1 .1 1 )

(1 .1 2 )

V - E =  £ -
e0

(1.13)

where B  is the m agnetic field, E  is the electric field, j  is the current density, p* is the the

electric charge density, p 0  is the electric permeability, ea is the perm itiv ity  of free space and

c =  ^ = =  is the speed of light in a vacuum. Most processes in the m agnetosphere are of a 

low frequency and non-relativistic nature  and the displacement current portion is negligible, 
so tha t

V x B  =  poj. (1.14)

Next, the fluid equations for the electrons and ions are combined as follows. M ultiplying
equation (1.7) by the particle mass, m s, and w riting the continuity equations for bo th
electrons and ions

^  +  V - ( M ) =  0 (1.15)

^  +  V • ( P e V e ) = 0 (1.16)

where pi and pe are the ion and electron num ber densities respectively and vt and ve are 
their respective velocities. Adding these two equations then  yields

d
^ ( P i  Pe) 4" ^  ' {pi^i +  Pe^e) =  0. (1.17)

For a two component plasm a of electrons and ions, the to ta l mass density is

6
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p  =  p e +  pi =  riirrii +  n em e. (1-18)

and using the center of mass fluid velocity u defined by

_ niiriiUi + n em eu e
u = ----------- ■-------------, (1.19)

riimi + n em e

equation (1.17) becomes

Yt +  V • (pu) = 0. (1.20)

This is the single fluid continuity equation.

Now, w riting the m om entum  equation for the two species

dui -± _ -*
m ini — = qin i (E +  ui x  B ) - V p i  (1-21)

due . -♦ _ _  .
m ene— = qen e (E +  ue x B ) - \ 7 p e (1.22)

adding them  together assuming n* =  ne =  n, qi =  —qe and defining to ta l pressure, p  =

Pi+Pe, yields

n ~r{m $ i  +  f^eUe) =  qn(ui — ue) x B  — Vp. (1.23)
(Lb

Defining the current density j

j  = riiqiUi + neqeue =  qn(ui -  ue) (1-24)

and using the definition of u from equation (1.19), the single fluid m om entum  equation
becomes

du —♦ _*
p - = j x B - V p .  (1.25)

In order to  close the single fluid MHD system  of equations, an  equation of s ta te  is 

needed to  relate the pressure and density. For an isotherm al fluid and an adiabatic  fluid
respectively, the equation of states are given by

s<?> = °
and

I t e r 7* (1-27)

where 7  is the  ratio  of the specific heats Cp/ C v • For an isotropic M axwellian d istribu tion  

function, 7  =  1 .
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The final point in deriving the system of single fluid MHD equations is to  relate  the 

current density and the electric field via the O hm ’s law

J  = oE t  (1.28)

where E t  is the to ta l electric field and a  is the conductivity. Generally, the  O hm ’s law 
involves a  convolution integral where a  is given by a m atrix, bu t for the  m oment it is 

being assum ed th a t long range forces are minimal and the electric field and current are only 

related by the local conductivity. The idea of nonlocal conductivity will be retu rned  to  later 
in the chapter.

Now, in a plasm a there is the ambient electric field E,  bu t also th a t induced by the  fluid 

m otion across the  magnetic field lines u x B. Therefore, the O hm ’s law becomes

J  = cr(E + u x B ) .  (1-29)

In the e a rth ’s magnetosphere, the plasm a is essentially collisionless m aking the conduc­
tiv ity  very high and so it is common as a first approxim ation to assume a  =  oo. This is 

known as the ideal MHD approxim ation, and the only way to have a finite current in such 
a case is to  have, E  + u x B  = 0 and therefore

E  = —u x B  (1.30)

As a  more general form ulation, there is the Generalized O hm ’s law given by the  following 
(Nicholson, 1983),

^  ^  TTiime d J  m; -> -< J  m,- _  ,
E  +  u x B  =  — -̂--- — -| J  x  B  -1-------- --— Vp (1.31)

ezp at ep a  2  ep

which can be derived from the m om entum  equations for ions and electrons (including the

collision term s). It is called the Generalized Law in th a t if all term s on the right hand  side
can be neglected except the second last one, the equation reduces to  the basic O hm ’s Law

(1.29). Generally, for m agnetospheric plasmas, we can ignore the second term  on the right

(also known as the Hall term ), and assuming the ideal MHD approxim ation, the  Generalized
O hm ’s law becomes

O T
E  + u x B  = p 0  Ag—  (1.32)

where Ag =  is the electron inertial length squared and the assum ption of a cold plasm a 
has been used as well. Noting p «  n m t , then the electron inertial length can be rew ritten
as Ag =

Now, in order to  further justify  neglecting the displacement current, the following scaling 
argum ent (Voronkov, 1998) can be used. Com paring the m agnitude of the displacem ent
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current term  and the V x B  term  (using the ideal MHD approxim ation for the electric field) 
yields,

10E/d t\  _  En/ t n _  VnBn/tn _  v \  
C2|V x B\ ~  c2 B n/ L n ~  c2 B n/ L n ~  c*

where E n, B n and vn are characteristic values of E, B  and v respectively. Therefore as long 
as vn <C c, the displacem ent current can be neglected. It should be noted however, th a t 

in a dipolar m agnetic field V  x B 0  =  0 (where B 0  is the ambient m agnetic field) and ratio  
becomes

\aM/at\ v \
c2jV X B  | c,2

(R. Lysak, private communication). In this case, the Alfven velocity close to the  ionospheres 

can s ta rt to become a significant fraction of the speed of light and displacem ent current 

effects may need to  be considered.

1.6.1 C old P lasm a  A p p roxim ation

In  the lim it T  —> 0, therm al effects w ithin the plasm a can be ignored. This is known as the 

cold plasm a approxim ation. In this lim it the m om entum  equation becomes

= J x S  (1.34)

and the equation of sta te  is not needed to  relate density and pressure. Therefore, the  single 

fluid MHD system  of equations can be reduced to the following

V x B  =  Hoj (1.35)

(1.36)

!  +  v . ( , S) =  o (1.37)

du -> ->
pT t = J x B (1.38)

0 d J
E  + u x B  =  HoK-fo- (1.39)

As a further exam ination of the meaning of the cold plasm a approxim ation, the  J  x B  
term  in the m om entum  equation can be rew ritten using A m pere’s law and a  vector identity 
as

-j ( V x B ) x 5  B  ■ V B  V B 2
j x B =  --------- 1-------= ---------------- —  (1.40)

/i0 Ho 2  Ho

9
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where the first term  is due to m agnetic curvature and the second term  is due to  m agnetic 

pressure. N oting the ratio  of therm al pressure to m agnetic pressure

(1.41)

the cold plasm a approxim ation can be defined as the lim it where /3 —>• 0  and m agnetic 

pressure dom inates over therm al pressure. For a low b e ta  plasma, where m agnetic curvature 

is negligible, the only term  of im portance is m agnetic pressure.

1.6.2 L inearization

displacem ent. W ith  these assum ptions, the cold plasm a equations are reduced to  the fol­
lowing,

W ith  the definition of the ambient m agnetic field B 0, the term s field aligned direction 

(or parallel direction) and perpendicular direction are introduced w ith reference to  the 

directions parallel and perpendicular to B 0.
One consequence of the linearization is th a t there is no field aligned com ponent for the 

p lasm a velocity. This, along w ith the fact th a t the inertial term  has negligible contribution 
to the perpendicular components of the electric field, allows the equation for the electric 
field to be w ritten  as two equations, one each for the parallel and perpendicular components, 
as

For this present work we will only be considering linear theory w ith the assum ptions 

B(r , t )  = B 0 (r) +  b(r,t), p(r,t ) — p0 {r) +  p i ( r , t )  and u =  ^  where £ is the  plasm a

V x B  = poj (1.42)

E  + u x  B  -  //<>Ag (1.46)

(1.44)

(1.45)

(1.43)

(1.47)

E± = - u _l x B 0. (1.48)
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1.7 Alfven Waves

A lthough there are many different wave types which can exist in a plasm a, only three modes 

can exist in the  MHD limit, the shear Alfven wave (SAW), the fast m agnetoacoustic mode 
and the slow m agnetoacoustic mode. The first of these, the shear Alfven wave, is a  purely 

transverse wave in which the pertu rbed  part of the m agnetic field is perpendicular to  the

am bient m agnetic field and the wave propagates along the ambient m agnetic field line (see

figure 1.2 (a)). For an ideal homogeneous incompressible plasm a (a =  oo, V p =  0, V -u  =  0) 
the cold plasm a MHD equations can be simplified to

d -
— B  — V x ( u x B )  (1-49)

P ^  = — (V x B) x B.  (1.50)
at Ho

Assuming the linear approxim ation for the m agnetic field pertu rbation  and choosing the 

ambient m agnetic field direction so th a t B 0  =  B 0 z, it is possible to  show th a t these MHD 
equations can be reduced to  the following wave equations

<!■»)

W  = >40 <L52>
where Va  is the  Alfven speed given by

K 4 = (L53)

Assuming v and b vary as exp (i(k ■ r — iot)). it is straightforw ard to  derive the  dispersion 
relation for the shear Alfven wave

^ 2  =  VaCos2 (0) (1.54)

where 9 is the angle between the wave vector, k , and the ambient m agnetic field B 0. For 

the case of the linear cold plasm a equations, there is no velocity component parallel to  the 

m agnetic field and the dispersion relation reduces to

U) 2  o
F  =  V l  (1.55)

For the case of a compressible plasm a, a more involved derivation (see Parks, 1991), 
yields the  following dispersion relation

^  =  \ { V l  +  C 2S ±  [(F | +  C 2)2 -  W l C 2s cos2m 1' 2) (1-56)
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Figure 1.2: a) Schematic of Shear Alfven wave, b) Fast compressional mode.

where C] = ~~  is the speed of sound in the plasma. The positive and negative solutions 
correspond respectively to the fast and slow magnetosonic modes. The la tte r  is known 

as a  slow mode because the phase velocity is slower than  either Va or Cs. Both modes 

are driven by m agnetic tension and therm al pressure forces and have bo th  transverse and 

compressional components. The difference between the two modes is th a t in the  fast mode, 
the m agnetic field and plasm a oscillations are in phase and in the slow mode, they are out 
of phase. For 6  — 0, the slow mode vanishes and the dispersion relation for the fast mode 
reduces to

^  = V 2A + C 2S. (1.57)

In a cold plasm a Cs=0 and ^  =  V\.
The natu re  of these modes are further illustrated  in figure (1.2). In panel (a) the Shear 

Mode is illustrated  w ith v and b perpendicular to  the ambient m agnetic field and k is per­

pendicular to  v showing th a t the wave is incompressible. For the case of the compressional 

mode (b), it is evident th a t the wave is compressible since b has a component along B 0  and 
k ■ v ^  0 .

In figure (1.3), plots of phase and group velocity for all three wave modes are p lo tted  
as a function of 9 for the case of Cs < Va which is usually the case in m agnetospheric 
plasmas. From this it is evident th a t the m aximum  velocity for the fast m ode propagates 

perpendicular to the ambient m agnetic field while the slow mode and Shear Alfven wave 
modes have a m axim um  velocity parallel to  the ambient magnetic field.

1.7.1 D isp ersive  A lfven  waves

W ith  the  inclusion of the Generalized O hm ’s Law in the cold plasm a lim it (fi <  ^ ) ,

12
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Figure 1.3: a) The phase speed of the fast, slow and Alfven waves as a function of 9. b) 
The group velocity as a  function of 9

d J
E  + U  X B  =  /hA e-^-

in the ideal MHD equations, it can be shown th a t the Shear Alfven wave dispersion relation 

will change such th a t

2 k2zV l
“  = r n A i  (LS8)

where Ae is the electron inertial length as m entioned earlier and k± is the wavenumber 
perpendicular to  the  ambient m agnetic field.

On the  other hand, for the case of a warmer plasm a (/3 >  ^ ) ,  it can be shown (refer 

to  A ppendix A) th a t the dispersion relation becomes,

a ,2 =  k2zV l i l  +  ^ k l p 2s) (1.59)

where ps — \ evth/VA is the effective ion gyroradius. These two dispersion relations are the 
dispersion relations for inertial Shear Alfven wave and and kinetic Alfven wave respectively. 
They are dispersive because they lead to  a propagation in the perpendicular direction w ith 
short perpendicular wavelength. This is evident from the fact th a t the perpendicular group 
velocity, is non-zero. The inertial Alfven wave will propagate into regions of lower 
density and the kinetic Alfven wave will propagate into regions of higher density. More 
detail on these waves will be given later in this chapter with the discussion of FLRs and

13
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Field Line Resonance

Va (x)

X

Figure 1.4: Schematic of a Field Line Resonance

in the following C hapters (especially chapters 2 and 4). The existence of these dispersive 

waves in space plasm as was first noted by Hasegawa (1976).

1.8 Field Line Resonances

M agnetohydrodynam ics is a good starting  point for the study of FLRs because it incorpo­
rates all the necessary wave modes needed to understand the phenomenon. In  th is section, 

the basic physics behind the resonance will be discussed along w ith the linear theory devel­
oped by Chen and Hasegawa (1974) and Southwood (1974).

The basic mechanism is as follows (refer to  figure (1.4)). Com pressional waves are 
excited in the dayside m agnetospheric region by several possible sources including pulses 
from the solar wind, due to  such things as coronal mass ejections, interacting w ith  the 
m agnetopause boundary. As these waves propagate Earthw ard, they see an increasing 
Alfven wave gradient which causes the wave to  be reflected at some point known as the 
turn ing  point, Xt (this reflection is actually a gradual refraction, bu t for the simple model 

considered here, it is a  good approxim ation to  regard it as a reflection). However, not all 

the  energy of the compressional mode is reflected, part of the energy evanesces past the 

turn ing  point and when it encounters a dipole m agnetic field line w ith a na tu ra l eigenmode 

equal to  the frequency of the incident compressional wave a standing SAW is excited along 
this field line. It is this excitation of the shear Alfven wave along the dipole field line th a t
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Figure 1.5: Box Model of M agnetosphere

is called an FLR.
For the  basic linear theory of an FLR, it is possible to  simplify the geometry to  th a t of 

a box so th a t the field aligned direction becomes z and the radial direction is x (see Figure 

(1.5)). The am bient magnetic field is constant and the Alfven wave gradient is introduced 
via a radial gradient in the density. T hen assuming perturbations of th e  form

e i { u t - k v y - k z z )

the following wave equation can be derived from the linearized MHD equations 

d 2 E,„ kl
dx 2

d . o j 2  dEy 2 F 
[{oj/Va) 2  — k 2 ]n2 dx V \  dx K y

0

(1.60)

(1.61)

where

K2 =  Ul2 j v \  ~  /

This equation has two singular solutions, when

.2 _  k 2 
'X "'2*

VA
= kz and when k2 _

(1.62) 

0. The la tte r
corresponds to  the turn ing  point Xt where the compressional mode is reflected, bu t part 

of the energy evanesces in the direction of increasing Alfven wave gradient. The former 

corresponds to  the resonance position x r. At this point, the wave equation can be reduced 
to
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This equation has the form of the modified Bessel function of order zero w ith infinite 
solutions a t x  =  x r. However, from the work of Chen and Hasegawa (1974) and Southwood 
(1974), it is known th a t the singularity can be avoided if there is a  small am ount of dissi­

pation in the system. This is a realistic situation, because the ionosphere is not perfectly 
reflecting and  so energy of the FLR  is lost over tim e. This sink can be represented by a 

small im aginary component in kz, such th a t

Now in the cold plasm a limit w ith perfectly conducting ionospheric boundary conditions, 

the singularity a t the resonance position is not avoided, except w ith the inclusion of the 

dispersive wave effects. In the low ft lim it (ft <  ( ^ ) ,  the net result is th a t the resonance 

would narrow to approxim ately 27rAe and then an inertial SAW would begin to  propagate 

from the resonance layer in the direction of decreasing density (increasing Alfven wave 
gradient). This situation is applicable to the region close to  the ionosphere where the 

m agnetic field is sufficiently high th a t m agnetic pressure effects become dom inant. In the 

lim it ft >  the situation would be reversed w ith a kinetic Alfven wave propagating in 

the direction of increasing density (decreasing Alfven wave gradient).

The characteristic frequencies of high latitude FLRs are in the  1-4 mHz range and 

some seem to occur a t well established frequencies (1.3,1.9,2 .6  and 3.2 mHz) (Walker, 1992; 
Samson et al., 1991,1992a) Several theories have been proposed to  explain this (Samson et 

al., 1992b; W right, 1994) bu t there is as of yet no complete consensus as to  the explanation. 

This question however is beyond the scope of this thesis and in the sim ulations to  follow, 

we will pick param eters so th a t the FLR frequencies are in the mHz range.
Now, w ith reference to  the profile in E x (figure (1.6)), from the ideal MHD approxim a­

tion, this radial electric field accompanies a similar profile in azim uthal velocity, uy. For the 
sim ulations presented in the thesis, we will assume a narrow Gaussian in the place of the 
radial eigenmode for the initial SAW pulse as a close approxim ation. This neglect of a  com­
pressional mode driver is justified since this study is focused prim arily w ith wave-particle 

interactions in the context of the standing SAWs.

(1.64)

W ith  th is assum ption, the wave equation becomes

(1.65)

and the solution for the radial component of the electric field (see figure (1 .6 ) is given by

=  - i k y(dEy/dx)
x u,yv%  -  '

( 1 .66 )

16

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



1

0.9

0.8
0.7

0.6

0.5

0.4

0.3

0.2
0.1

0

2 -1 .5  -1 -0 .5  0 0.5 1 1.5 2
( x - x 0)

Figure 1.6: Exam ple of solution for E x near the resonance point.

1.9 D iscrete Auroral Arcs and Field Line Resonances

The most energetic auroral displays are associated w ith the  m agnetospheric substorm  which 
involves the stretching and dipolarization of the magnetosphere. These are generally most 

clearly visible during periods of high solar activity as this is when the  solar wind can 

stretch  the m agnetotail to its greatest extent. However, a subclass of the  aurora  called 

discrete auroral arcs are still visible a t much quieter times and it is w ith th is type of arc 

th a t the work in the thesis pertains.

Discrete auroral arcs are very narrow, typically only tens of kilom eters in latitud inal 

extent and can break up into even finer kilom eter scale bands and vortices (see figure 

1.7). They are usually associated w ith an ” inverted-V” potential s truc tu re  and satellite 
observations (Karlsson and M arklund, 1996; Carlson et al., 1998; Lotko et al.,1998) have 

m easured electric fields and current densities on the order of m V /m  and tens of /j ,A/m2  

respectively along w ith precipitating electron energies on the order of hundreds of eV to  
tens of keV. This potential structure  is often only on the order of ten  kilom etres wide, 

b u t extends from about 2 to 5 R e  above the E arth , along the dipolar m agnetic field lines. 
This is known as the auroral acceleration region. The source of this inverted-V potential 
s tructu re  which accelerates the electrons is the current topic of much debate and there are 

several com peting theories (see review paper by Borovsky, (1993)) which try  to  explain its 
formation.

As already noted, since the work of Hasegawa (1976) and Goertz and Boswell (1979), 
it has been known th a t dispersive Alfven waves have a component of the electric field 

parallel to the am bient m agnetic field. This means th a t these dispersive waves can accelerate
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electrons parallel to  the  electric field and may potentially account for some auroral arcs. 

T he short perpendicular wavelengths associated w ith these waves also are consistent w ith 
the  fine structu re  observed in many auroral arcs. The low j3 natu re  of the plasm a in this 
region implies inertial Shear Alfven waves and so much research has been done in this 

direction (Hui and Seyler, 1992; Kletzing, 1994; Thom pson and Lysak, 1996; Wei et al., 

1994; K nudsen et al., 1996) and generally electron accelerations of various m agnitudes have 

been found. However, in most cases, the source of the SAW is unclear. Hasegawa (1976) and 

Goertz (1984), considered the mode conversion of an MHD surface wave to  to  Shear Alfven 

wave as one possibility, while another candidate involves the m ode conversion between 

compressional modes and the SAW - the FLR  (Chen and Hasegawa, 1974; Southwood, 
1974; Inhester, 1987). The case for the la tte r has been enhanced over the last twenty years 

as many observations have made the FLR a well established phenom enon (Samson et al. 

1992a; Fenrich et al., 1995) as well as many observations th a t link the FLR  to discrete 

auroral arcs (Samson et al., 1991, 1996; Xu et al., 1993; Lotko et al., 1998).

Rankin et al. (1993a, 1993b), performed the first nonlinear resistive MHD sim ulations 

of the FLR  in the box geometry. It was noted th a t FLRs can narrow sufficiently to  reach 

inertial Aflven wave scale lengths. Wei et al. (1994), extended th is MHD m odel to  include 
electron inertial effects. The parallel electric field m agnitudes produced were however still 
several orders of m agnitude below the observed values. The im portance of the  dipolar 

m agnetic field and plasm a inhomogeneity in the parallel direction to the enhancem ent of the 

Shear Alfven wave parallel electric field was noted by Streltsov and Lotko (1997). Similarly, 

nonlinear sim ulations by Frycz et al. (1998) and Rankin et al. (1998) have shown th a t the 

ponderm otive force effects can lead to  density cavity form ation above the auroral ionospheres 

and enhanced parallel electric fields as the cavities tend to  enhance electron inertial effects.
However, even w ith the  inclusion of nonlinear effects, the MHD sim ulations are able 

to reproduce the observed scale structure  and current densities associated w ith auroral 
arc observations, bu t are unable to account for the observed parallel electric field. The 
conductivity of the MHD system  is too high. Steltsov and Lotko (1999), were able to 
reproduce observed electric fields by the inclusion of anomalous resistivity in a linear 2 -fluid 

MHD model. The anomalous resistive layer is caused by the interaction of the  SAW w ith 

a  m icroturbulent layer, bu t the source of the m icroturbulence is not addressed. Rankin et 

al. (1999) and Tikhonchuk et al. (2000), combined MHD with an electron kinetic equation 

using pertu rbation  theory and were able define an O hm ’s law w ith a conductivity m atrix  
such tha t

i n ( / ) =  j  (1.67)

where 1 is the length along the field line. The conductivity m atrix  is derived from the 
integration of the electron kinetic equation and thus incorporates wave-particle interactions 

including m irror force effects not evident in the Generalized O hm ’s Law. A lthough not a
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triv ial calculation, once the MHD current is specified, the necessary parallel electric field 

can be determ ined by the inversion of the convolution integral. W ith  th is form ulation, 
they were able to  show th a t wave-particle interactions reduced the nonlocal conductivity 

and led to  parallel electric fields in the ionospheric regions com parable to  those observed. 

This work highlighted the significance of m irror force trapping of current carrying electrons 
in the equatorial region as an im portant reason for the drop in conductivity. Therefore, 

the picture th a t emerges from these works is th a t the dispersive waves are not responsible 

in themselves for the m agnitudes of the parallel electric fields observed, b u t may play an 
im portan t role as the m odulating influence th a t explains the fine structu re  seen in the arcs.

The next logical step in the approach to this problem  is to  a ttem p t to  model the FLR  

system  w ith an actual system of electrons ra ther th an  the use of electron kinetic equation 

as the la tte r  makes it necessary to  a priori prescribe the form of the electron d istribu tion  

function. As well this approach makes it straightforw ard to study of the in teraction of the 

SAW system  w ith the electron d istribution function self consistently as a function of time.
The use of hybrid MHD-kinetic com puter models for the study of auroral arc phenom ena 

is very recent. Hui and Seyler (1992) used an approach similar in some ways to  the model 

th a t  will be presented here, b u t for the  study of electron acceleration due to  inertial Shear 

Alfven wave breaking in the auroral acceleration region. Thom pson and Lysak (1996) in 

studying electron acceleration due to inertial Alfven wave pulses, used an algorithm  to 

locally sub trac t energy used to  accelerate an electron from the inertial Alfven wave. Genot 

et al. (2 0 0 0 ) used fully kinetic simulations to  look at electron acceleration due to  wave- 

particle interactions in localized density cavities. However, the work presented in th is thesis 
is the first to  a ttem p t to  self consistently model a full FLR system  w ith a hybrid MHD- 

kinetic com putational approach. It is also the first to  do so in the na tu ra l dipolar coordinate 
system. This approach is used here to  address a FLR  system, bu t it is also applicable to 
o ther S tanding Shear Alfven wave systems in space plasm as such as solar coronal loops as 
well as transien t SAWs.

1.10 Outline of Thesis

In this study, we shall introduce a new hybrid MHD-kinetic model to  study  wave-particle 

interactions in a standing Shear Alfven wave system. Before progressing to  a full description 

of the hybrid model, we will outline the ID cold plasm a MHD model of a standing Shear 
A lfv en  w ave in c lu d in g  e lec tro n  in er tia l effects in  C h a p te r  2. T h is  w ill serve  to  in tr o d u c e  th e  

necessary physics along w ith technical details th a t are relevant to the rest of the thesis.
In C hapter 3, we outline the hybrid model for bo th  cartesian (box) geometry and gener­

alized curvilinear coordinates, w ith the la tte r part being broken down into cylindrical and 
dipolar coordinates.

C hapter 4 illustrates sim ulations for the box model with periodic and perfectly con­
ducting boundary conditions. An analytical dispersion relation for the  periodic Alfven

19

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.7: False colour image of an auroral arc. Photo by Dr. Trond Trondsen using the 
University of Calgary Portable Auroral Imager (P.A.I).
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wave system  is also presented and the predicted Landau dam ping rate  is com pared w ith 

th a t m easured from the numerical simulations. In  the fluid lim it, the 2D results are also 
contrasted w ith the ID  results illustrated  in C hapter 2.

C hapter 5 outlines the sim ulation results for the dipolar fluid and hybrid models w ith 

perfectly conducting ionospheric boundary conditions. The result of the  cold plasm a MHD 

fluid model are contrasted w ith the nonlinear MHD model developed by Voronkov (1998), 

while the  hybrid model results are illustrated  in the cold and warm plasm a lim its. C hapter 
6  concludes the thesis and offers suggestions for bo th  future research directions and model 
enhancem ents.
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Chapter 2

ID  M odel of FLR w ith electron  
inertial effects

2.1 Preamble

In  this chapter, a ID fluid model of a FLR is developed from the cold plasm a equations 

and the Generalized O hm ’s Law. Simulations are presented for bo th  the case Ae =  0 and 

Ae /  0. In  the first case, the phase mixing of the resonance is evident, while in the  latter, 

the  form ation of the inertial SAW is illustrated, propagating in the direction of increasing 

Alfven wave speed.

The topics presented here are well addressed in the papers by Wei et al. (1994) and 

Rickard and W right (1994). They are re-examined here to  introduce the m ain characteristics 
of the FLRs th a t will be revisited in subsequent chapters. Also, the num erical techniques 
used for th is code form the basis of the more advanced models to follow and a comparison 
will be m ade between the 1 and 2 D fluid sim ulations in C hapter 3.

2.2 ID  cold plasma equations

For this sim ulation, the radial direction is denoted by x, the azim uthal direction by y and 
the field aligned direction by z. Periodicity is assumed in the y direction and the plasm a 

velocities are chosen to  vary as

uxr(x, t)s in(kzz)e%kyy 'j 
iuyi(x, t )s in(kzz)e%kyV >0 J

where the sin(kzz) implies velocity nodes a t the ionospheres and the subscripts ’i’ and ’r ’ 

denote the real and imaginary parts respectively. W ith  these choices, the m agnetic field 
components in tu rn  vary as

{ bxr(x,t)cos(kzz)elkyy "j 
ibyi(x,t)cos{kzz)elkyy >. 
bzr(x, t)s in(kzz)ezkyV J
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The perpendicular electric field is determ ined from the ideal MHD assum ption E± = 
—u x B.  Linearizing, the components of the perpendicular electric field are given by

E x — —UyB0  = iuyi ( x , t )B 0 sin(kzz)elkvy = E x (x, t )s in(kzz)elkyy 

E y =  uxB 0  = uxr(x , t )B 0 sin(kzz)elkyy =  E y(x, t)s in(kzz)elkyy.

For the parallel electric field, the Generalized O hm ’s Law is used. W ith  the  variable choices 
quoted above this becomes

E z =  =  do)?J^{x. , t )cos(kzz)e%kyy = E z(x, t)cos(kzz)elkyV

where E z (x, t)  = p 0\ 2e djzg ^  • W ith  all these assum ptions, the cold plasm a equations take 

the form,

dux B o , ,  , . dbz
~xT =  ykzbx +at Hop ox

duy B,

^  =  ikyE z -  kzE y 

d b y _ k F  dEz

— (k z b y  +  i k y b z)
dt p 0p

dt ‘ ■“ dx

d- ^ - d- ^ - i k E  
dt ~  dx y x

where all the variables are now functions of x and t only.

2.3 Num erical M odel

The fluid equations are solved using a predictor-corrector type m ethod. The first order 
differential equation ^  =  F  is finite differenced in tim e as follows

ytp+At = y t- At + 2A tF(y t ) (2.1)
A t r 
2

y t + A t = y t + ^ L [ F { y t ) + F { y ^ t ) } ^

where the  subscript ’p ’ denotes the predicted value. W ith  this scheme, it is necessary to 
keep track of all values a t three points in tim e, bu t the algorithm  is very stable for long 
integration times. Since it is not possible to know, j lz+2At in order to  obtain  E lz+At from 
the Generalized O hm ’s Law, the approxim ation =  E ^ At +  2E'Z was used. This was
fine as long as the tim e step was sufficiently small.
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The first order derivatives are evaluated using the standard  two point formula.

d f _  =  f i +1 ~  / j - i  ( 9  ^
dx 2A x  { ’

where Arc, is the distance between adjacent points on the grid.

In order to  normalize the fluid equations, the following set of variables is introduced

-1 r , t B  y, V  p j  j  E
r  = 7 - ;*  =  J ~ B  =~5-^V  = T T \ P  = ~ \ 3  = — :E  = -et- (2-4)L x i n  ±>o Vn  Po Jn

where L x = 1 R E, pN = p(x  =  0), VN = y /B ^ / (p 0 pN), tN = j N =  B o/ ( p 0 L x) and

E n =  v n B 0. In  the set of nondimensional variables, the cold plasm a equations become

dv,x l , f , dbz
a, — [kzbx T o )  dt p dx

= ~ { k zby + ikybz)

— ikyE z — kzE y 

dbv _  k F _  dE z
dt z x dx

—'l -  — k - i k  E  
dt dx %Ky* x

where the prim es have been left out for simplicity of notation.

Although, the equations are solved in nondimensional form, all values for the initial

variables were chosen to  approxim ately correspond to  conditions in the dayside equatorial

m agnetosphere before being made nondimensional. The ambient m agnetic field B 0  and
density pn  were chosen to  be 10 nT  and 105 m pm ~ 3  respectively, where m p is the proton

mass in kg. This yields a value of vn  =  6.9 x 105 m /s .  The Alfven speed and density

profiles were normalized to bo th  have values of 1 a t x = 0  where the sim ulation grid goes

from a; =  0 to  £ =  1.2. The nondimensional Alfven velocity profile is then  specified w ith
the function

va =  tanh(ax + </>) + /3 (2.5)

where a  =  7, fd =  2 and (j) =  -0 .5  and because of the constant am bient m agnetic field, the 
nondimensional density is simply given by

(2 .6)
VA

B oth functions are displayed in figure (2.1). The corresponding electron inertial length 
profile is calculated via the definition given in C hapter 1
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Figure 2.1: Graphs of Va v s  x  (solid line) and p vs x (dashed line).

in MKS units and then  normalized by the characteristic length, L x. The profile is displayed 

in figure (2 .2 ).

In this work, the evolution of the standing SAW is the prim e point of interest, not 

the mode conversion process th a t results in its formation. Therefore for th is sim ulation, a 
toroidal Shear mode (ux = 0) w ith a Gaussian shape in x around the resonance position 
is assumed for an in itial condition (see Figure 2.3). The value ky =  0.2/R,e  is chosen so 
th a t most of the energy stays in the toriodal mode. For the parallel wave num ber, the 
value kz = was chosen because 18 R e is the approxim ate length of the  L= 8  d ipolar 

m agnetic field line.

2.3.1 B ound ary  C onditions

For the boundaries a t x  = 0, L x , perfectly reflecting boundary conditions in x are assumed. 

This implies ux =  0 a t x  =  0, L x . This assum ption is equivalent to  the m agnetic field going 

to  a very large value instantly  a t the boundaries. From this assum ption and the ideal MHD 
approxim ation, it is evident then  th a t E y = 0 as well.

Now assum ing periodicity in tim e (etul1), the Generalized O hm ’s Law for the parallel 
electric field becomes,

25

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



0.008

0.0075

0.007

0.0065

0.006

0.0055(1>
0.005

0.0045

0.004

0.0035

0.003

0.0025
0 0.2 0.4 0.6 0.8 1 1.2

x

Figure 2.2: G raph of electron inertial length (nondimensional), Ae, vs x.
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E z =  i u \ ej z (2.8)

and for the  boundaries far from the resonance, j z =  0 and so E z =  0. Similarly, the x 
com ponent of Faraday’s law becomes

iubx = ikyE z — kzE y (2.9)

and w ith E y =  E z = 0 a t x  =  0, L x, therefore bx = 0. From the x component of the 

m om entum  equation

B°  r. , dbz .
iwux =  [kzbx +  — ] (2 .1 0 )

pjJ>o

and since, ux = bx = 0, then  =  0. From the y component of the m om entum  equation

B ,
i u j u . = ----- - [ k z b y  +  i k y b z \ .  (2 .11 )

P P o

Taking the derivative w ith respect to  x,

. duv r, dbv , dbz ,
(2' 12)

where the  functional dependence of the Alfven velocity implies =  0 a t the  radial 
boundaries. From the y component of Faraday’s law, we also have

. d b y  _ d 2 E X d  d E X

IUJdx dx 2 dx^ d z  ̂ ^

Com parison of these two equations illustrates th a t bo th  are satisfied only if ^  =  ^  =  
0 and since E x  =  uyB 0, it is consistent th a t =  0.

In all cases, the boundary conditions are enforced across the first two and last two grid 
cells. For the  boundary conditions F (0) =  0, then  F\ = —F2 , while for §|-(0) =  0, F] = F-i 
where the subscripts 1 and 2  indicate the first and second grid points respectively.

2.4  E vo lu tion  o f F L R

For the following sim ulations 250 grid points were used for the Ae =  0 case while 200 grid 

points were used for Ae ^  0. The larger num ber in the former case is to  more accurately 
capture the phase mixing. For bo th  simulations, 100,000 tim e steps were used for 20 Alfven 
periods. Figure (2.4) illustrates the evolution of the shear velocity uy through 15 periods 
for bo th  Ae =  0 and Ae ^  0 on the left and right hand sides respectively. For the  Ae =  0 
case, the resonance narrows continually due to  phase mixing. This phase mixing is the 
result of the radial Alfven speed gradient which means th a t each field line has its own 
slightly different eigenfrequency. Over tim e each field line becomes more and more out of 

phase w ith its neighbour evolving into finer structure  evident. Since there are no dispersive
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Figure 2.4: Tim e slices of uy vs x for the case of Ae =  0 (left side) and for the case of Ae /  0.

waves in th is lim it, there is no radial propagation and packet retains the w idth of the  initial 
G aussian profile. M athem atically, the narrowing w ithin the packet would continue until a 
singular solution is reached, bu t for the numerical case, it narrows until the resonance is on 
the  order of the  grid scale and the model becomes unstable.

In the  Ae /  0 case, the resonance only narrows until the scale length of about 27rAe is 
reached at which point an inertial SAW begins to  propagate in the direction of increasing 
Alfven wave speed. For the present model param eters, 27rAe «  0.05.

The SAW dispersion relation in the lim it Ae =  0, ai = kzVa , yields a value for the 
frequency u  =  0.0755s-1 for the param eters considered here. This results in a period 

Ta — 83.2s. In order to confirm this, the value of uy a t x=0.5 is p lo tted  as a function of 
tim e in figure (2.5) and it is clearly evident th a t the predicted and actual period are in good
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agreement.

2.4.1 E nergy

The energy density of a cold plasm a system (without electron inertia) is given by (Rickard 
and W right, 1994)

e — ^ ( ul  + ul) + + bl + b2z). (2.14)

There is additional energy in the ambient magnetic field B 0, bu t in the linear approxim ation 

this is a constant value and is not considered in this calculation. The to ta l energy of the 
perturbations

E t  — f  e(x)dx (2.15)
Jo

should be conserved, and this is confirmed in figure (2 .6 ) illustrating the effectiveness of the 
predictor-corrector scheme.

2.4 .2  Sum m ary

The ID sim ulations illustrate  the phenomenon of phase mixing and the propagation of an 
inertial SAW in the direction of increasing Alfven wave speed. The eigenfrequency of the
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Figure 2.6: Total Energy vs tim e for Ae =  0.

resonance agrees well w ith th a t prediction from the SAW dispersion relation.

The predictor-corrector scheme is very stable for the  solution of the cold plasm a equa­

tions w ith the Generalized O hm ’s law for long integration times. The algorithm  conserves 

energy in the Ae =  0  lim it to  a high degree of accuracy.

J______I______I______I______I______I______I______L

t--------------- 1--------------- 1--------------- 1--------------- 1--------------- 1--------------- 1---- --- - - - - - - - - - r
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Chapter 3

Hybrid kinetic-M H D m odel

3.1 Preamble

In C hapter 1, the failure of the MHD approach to account for the observed electric fields 

in FLRs was sum m arized along w ith the lim itations of the hybrid kinetic-M HD approaches 

considered to  date. In  this chapter a new hybrid MHD-kinetic approach is introduced using 

the 2D cold plasm a equations and a  kinetic system of electrons, the dynam ics of which are 
solved using the guiding center equations. The closure between the two system s is achieved 
via the parallel electric field.

This chapter is divided into three m ain parts. The first part reviews the basic p a rti­

cle dynamics in electrom agnetic fields and introduces the guiding center equations. The 
second part introduces the hybrid box model, while the th ird  covers the hybrid m odel in 

general curvilinear coordinates and discusses the application to  dipolar coordinates. The 

sim ulations using the box model are summ arized in C hapter 4, while C hapters 5 presents 
the dipolar model results.

3.2 Charged Particle M otion in Electrom agnetic fields

T he m otion of a particle in an electrom agnetic field is governed by the Lorentz equation

dv qE q ,
dt m  m

and in the lim it of E  =  0 and constant magnetic field, the gyromotion of the  charged 
particle around the magnetic field line is well known (see figure (3.1)). The gyrofrequency 
or cyclotron frequency of the orbit is given by

while the gyroradius, r„ is

qB
U g  = —  3.2

y m

' • - K T W -
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b Q

Ion

Guiding Center

Figure 3.1: Top: Gyrom otion of electrons and ions in a constant m agnetic field. Bottom : 
M otion of an ion in a uniform  m agnetic field (Baum johann et al. 1996).

Ignoring the gyromotion, there are several drifts m otions of the guiding center. In general, 

a charged particle subject to  a general force F  will experience a drift m otion due to  th a t 
force, vp  given by

Vf  =
F  x B  

qB 2 '
(3.4)

3.2.1 E lectr ic  F ield  D rifts

If a static  electric field is introduced to  the constant magnetic field case, the well known 
E  x B  drift results (figure (3.2))

E  x B  , .
vE =  - g j - .  (3.5)

There is no current associated w ith the drift because bo th  ions and electrons drift in the
same direction. In  a tim e dependent electric field there is an additional drift to  consider in
the polarization drift

m dE
wp qB 2 dt  ‘

In  this case, electrons and ions drift in opposite directions and so there is a  net polarization 
current given by
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Figure 3.2: Particle drifts in crossed electric and m agnetic fields (Baum johann et al., 1996).
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Figure 3.3: G radient Drift of the guiding center (Baum johann et al., 1996).

Ion

x _ n e(mi + m e) d E 1_
J p  — n e e \ V p i  V p e )  —  ^  . (3.7)

As sta ted  in C hapter 1, the ion current perpendicular to  the dipolar field lines is associated 

w ith this drift. The more massive ions can move across the m agnetic field lines and the 
electrons are forced to move along the field line forming a  parallel current to  m aintain  the 
quasineutrality  of the plasma.

3.2 .2  M agn etic  F ield  D rifts

For m otion in a nonuniform m agnetic Field B,  there are two drift motions, one due to  the 
curvature in the field
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Mirror Point

Figure 3.4: M otion of a proton in a dipolar magnetic field (Baum johann et al., (1996)).

mvf, _
W c = ^ [ B x ( B - V ) B }  (3.8)

and one due to  the gradient (see figure (3.3))

=  V B ). (3.9)

In  a dipolar m agnetic field, bo th  gradient and curvature drifts result in m otion perpendicular 
to  the am bient m agnetic field lines. Both these drifts are in the same direction for the same 

charged particle, b u t electrons and ions gradient and curvature drift in opposite directions.

3.2 .3  M irroring

For the case where the guiding center is moving along an inhomogeneous m agnetic field,

there is a  force which acts in opposition to  the m otion of the particle when the m agnetic

field lines converge called the m irror force

dv ii
m -—-  =  —pV||J5 (3.10)

OjV
2

where p =  is the m agnetic moment. Figure (3.4) illustrates the reflection of an ion in a 
converging m agnetic field due to  the m irror force. It is im portan t to  note th a t the  m agnetic 
moment is an invariant of the motion.

The ratio  of the perpendicular and parallel velocities defines an angle known as the  pitch 

angle, a,  and is given by

a — tan-1 —  (3-11)
V ||
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Figure 3.5: M otion of a proton in a  constant dipolar m agnetic field.

where i>|| =  vcos(a) and v± =  vsin(a).  At the m irroring point «|| =  0 and a  = | .  In  a 

d ipolar m agnetic field, the pitch angle in the equatorial plane is denoted by a 0. The value 

of this angle is indicative of the m irroring position of the charged particle in the  dipolar 

field as will be seen in the sum m ary of the dipolar model. The smaller the equatorial pitch 

angle, the closer to  the earth  the particles m irroring position is located.

3 .2 .4  P a rtic le  m otion  in a d ipolar m agnetic  field

Figure (3.5) illustrates the m otion of a proton in a dipolar m agnetic field. Evident is the 

gyrom otion of the proton around the field line, the m irroring due to  the convergence of the 
m agnetic field line and the azim uthal m otion due to  gradient and curvature drifts.

For electrons, the  azim uthal drifts are very slow and so the changes in any azim uthal 

fields due to  change in particle position is of secondary im portance. Therefore, for the 
hybrid model developed here, the azim uthal drifts are neglected, and the only m otions th a t 

will be considered for the electrons is the field aligned motion and the E  x B  drift.
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3.3 Guiding Center Equations

T he gyroradius of the electrons is a lot smaller th an  any other scale lengths in the FLR 

system. Therefore, instead of using the full Lorentz equations of m otion for the  electrons, 

it is possible to  use another set of equations th a t follow only the m otion of the  electrons 

guiding center, rg. These are known simply as the guiding center equations (see Parks, 

(1991)) and including only the E  x B  drift and the m irroring force, they  are expressed as

dvw
— —eE\\ — /imV ||£  (3.12)

dt

dr,
dt

9 = fly +  v± (3.13)

where fiy =  ^y g  and

E  x B  ,
v l  = - w - .  (3.14)

For the straight m agnetic field configuration in the box model used in C hapter 2, the  m irror 

force vanishes and the linearized guiding center equation take the form

- ** iII
O) -M (3.15)

dr9* _  y
dt ~ V9Z

(3.16)

drgx
dt

vgzbx . ey 
B 0  B 0‘

(3.17)

3.4 Hybrid M HD-kinetic Box M odel

As already stated , the hybrid MHD-kinetic model couples the cold plasm a MHD equations 
w ith a kinetic system  of electrons, the dynamics of which are governed by the guiding 

center equations. It is a two dimensional model, including the field aligned and the  radial 
directions, denoted by z and x respectively in the box geometry, (figure (3.6)).

3.4.1 M od el equations

Instead of choosing periodicity in the azim uthal direction as in C hapter 2, ux is chosen to 
have an azim uthal dependence of sin(kyy). W ith  this assum ption, the rest of the fluid, 
m agnetic and electric field components vary as

ux (x ,z , t ) s in (kyy) 
uy(x , z, t)cos(kyy)

0
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Figure 3.6: Two dimensional box model.

bx (x ,z , t ) s in (kyy)
6  =  < by(x, z ,t )cos(kyy)

„ bz(x, z, t)sin{kyy) y

ex (x,z, t )cos(kyy) 
ey(x, z , t )s in(kyy) > 
ez (x,z , t)cos(kyy) j

and the two dimensional cold plasm a equations are denoted by

dux (x, z, t) =  B 0  dbx {x,z , t )  _  dbz ( x , z , t )
<9t y 0p dz dx

duy(x, z, t) B 0  dby(x ,z , t )
— ^ ------= ------ (— ^ ----------- kybz(x, z, t))at p 0p oz

dbx (x ,z , t )  _  dEy ( x , z , t ) d E z(x, z , t )
dt  dz dy

dby(x ,z , t )  _  d E z(x ,z , t )  dEx (x, z , t )
dt dx dz

dbz (x ,z , t )  dEx (x ,z , t )  dEy(x, z , t )
dt = dy dx

The perpendicular electric field values are determ ined again via the  ideal MHD approxi­

m ation, b u t for the parallel electric field, the use of the Generalized O hm ’s law is abandoned 
for an algorithm  to be introduced in a  subsequent section.

Similarly, the guiding center equations become
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where the m irror term  is neglected because of the straight magnetic field configuration.

3.4 .2  N u m erica l N o tes

The norm alizations, radial boundary conditions and m ethod of solutions used in this 

model are exactly the same as already outlined in C hapter 2. The one significant difference 

is the use of a higher order spatial finite differencing scheme for the first derivative, given 
by

d /  _  —f j — 2  +  8 / j - i  -  8 / j + i +  f j + 2  r q o n
dx 12Ax  1 j

in order to  reduce noise and make the coupling more stable. The model uses a rectangular 

grid w ith constant spacing in each direction, the size of which can be specified independently.
W ith  respect to  the field aligned boundary conditions, two models exist, one w ith  pe­

riodic boundary conditions and one w ith perfectly conducting boundary conditions. The 

application of each will be sum m arized in C hapter 4.

3.4 .3  P a rtic le  m om en t in terpolation

All the fluid fields are solved at the set grid points, b u t the electrons themselves are free to 
move anywhere in the plane. Therefore it is necessary to  have some scheme to in terpolate 

the particle moment inform ation onto the fluid grid. This is achieved via the use of the 
Particle Shape function S ( x , Xi ) .  Figure (3.7), illustrates bilinear weighting, where each of 

the areas defined by a given lower case letter is assigned to the grid point denoted by the 
same letter in upper case. Therefore, for the velocity for example, the fraction

 r ~  ;vi (3-22)a + b + c + d
is assigned to grid point A. In term s of the particle shape function, the first two m oments 
of the d istribu tion  function, electron num ber density, n e, and electron parallel current, j e, 
are denoted by,

n e  =  ' Y ^ S ( x , X i )

i

j e =  - e ^ 2 viS(x,Xi).  
i
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grid points

electron

Figure 3.7: Bilinear interpolation grid. Areas denoted by lower case letters apply to  the 
grid point denoted by the same letter in upper case.

In order to  interpolate the fields to  the particle position F ( r^ ) ,  the  same weighting is 
used, such th a t

H r g) =

es the

utilizes 9 adjacent points.

AF{rA) + B F (r B) +  C F ( f c ) +  D F (r D)
(3.23)

9  a + b + c +  d
The model itself uses the higher order biquadratic spline routine where the in terpolation

3 .4 .4  P a rtic le  loading and v e lo c ity  assignm ent.

For the sim ulations to  be considered in C hapter 3, the electron density will be allowed to 

vary in the x direction, bu t will be constant in the z direction. To accomplish the loading, 
there are a user specified num ber of assigned electron positions in each direction, nPx and 
nPz where np =  nPxnPz is the to ta l num ber of user specifed electrons. The positioning of the 

nPx electrons in the radial direction is assigned by a cumulative probability  approach (Gould 
et al., 1996) using a user specified density function. Once these positions are assigned nPz 
electrons are placed at each position equally spaced in z.

The velocities are assigned to  the electrons using the cumulative probability  approach, 
bu t w ith a maxwellian function given by

f ( v z) =  ™ e x p ( - ^ f - )
vfV ^ vth vth

as the probability d istribu tion  function where vth =  \ / 2 k BT / m e.

(3.24)
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3.4 .5  P aralle l E lectric  F ield  Form alism

Taking the partia l tim e derivative of Am pere’s Law and combining w ith Faraday’s law yields

- V  x (V x E(x))  = (3.25)

Using the vector identity V x (V x E)  =  V (V  • E)  -  V 2F  this becomes

V 2 E(x)  -  V (V  • E(x))  = ii0^  (3.26)

and taking only the z component yields

V 2 p  m  d(V  ■ E(x))  d j z (x)
V E ‘ { x )  & —  -  " " “ a T  • (3'27)

For the FLR  system, the parallel current is entirely due to  the electrons and so j z can be 

replaced by the  electron current, j e{x) =  — e J T  ViS(x , x t) (where v = vz). Substitu ting  this 
in for j z and expanding the tim e derivative yields

T-r2 r i / ^ \  dCV ■ E(x))  . d v i n .^ _ dS (x ,X i ).
V  E z ( x )  —------ =  - e p 0[— S{x,Xi) +Vi  —------ ]. (3.28)

The notation  j e has been introduced simply to  stress the fact th a t the parallel current is 

coming from the  kinetic electrons and not from the solution of A m pere’s law. The notation  

j z will be used from now on to  signify the solution of Am pere’s law. W hen the hybrid 

model is working properly, these two variables should have the same value w ith in  a  small 

num erical error. Now, w ith the use of the electron m om entum  equation 9 vq ^  =  —~ - E z (x), 
the last expression becomes

V 2 E z {x) -  d ( V / (x)) =  — eMo Y ^ [ — E z(xi)S(x,  x t) +  ^  Xi)]. (3.29)
oz  ' m e at%

and using the continuity equation

dn ^  dS(x,Xi) ^  dS(x ,x i)  dS(x,xi )
= + v ’~ g T - ^ 0  P -3°)

% I
the partial tim e derivative of the particle Shape function can be replaced w ith the advection 
term  resulting w ith

-■  <3-31)e i  i

Assuming E z(xi) ~  E z(x), and th a t «  0 (since the ambient d istribu tion  function is not 
dependent on z) we then  have
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V 2 E z (x) -  =  ^ E z (x)ne(x) + / i 0 e ^  ^ S ( x , £ i )  (3.32)

where ne(x) =  S(x.  x,). Rearranging, and using the definition for the electron inertial 
length, we have

V 2 B2 (x) -  W  =  +  M .e ^  2  »< s (* ’ *>• <3'33>

Now for the FLR  system, the parallel wavenumber is much smaller th an  the perpendicular 

values. The parallel electric field is also much smaller th an  E x and E y allowing the equation 
to  be further simplified

d 2 E z(x) 1 „  d ( V - E ± )  d ^
~ a.7*—  a | ( I )  £ ' ( I )  =  — g i ~  +  ^ T z  E  v‘s ^  *<>• ( 3 -3 4 >

This derivation is sim ilar to  the approach used by Busnardo-Neto et al. (1977) and O kuda 

et al., (1979) for their work on m agnetostatic particle codes. The expression is the same 

as used by Hui and Seyler (1992) for their hybrid model, although it was derived slightly 
differently there by utilizing the Generalized O hm ’s Law.

If the  second term  on the right is neglected, this equation along w ith the 2D cold plasm a 
equations are completely self consistent and the fields can be used as input for the guiding 
center equations for test particle simulations. However, although the second term  on the 
right incorporates the effects of electron pressure on electric field generation, the  equation

as is, is not sufficient for a self consistent hybrid code. There needs to  be a ’’correction

field” for the charge separation induced between the fluid ions and kinetic electrons. This 

expression is determ ined as follows. Adding the continuity equations for the electrons and 

ions

^  +  V • (n m )  = 0 (3.35)

f)<rt
+ V  • (n eve) = 0 (3.36)

yields

d{rii -  ne)

Using Poisson’s equation
dt

+  V • [(nm -  n eve)] = 0. (3.37)

and the definition of current

V • E  = — (n m  -  n eve) (3.38)

/  =  e ( n m  -  n eve) (3.39)
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yields the following relationship between the divergence of current and the divergence of 
electric field

e0 - ( V - £ )  =  - V - j .  (3.40)

As noted earlier, kz -C k± and E±_ >  E z, therefore it is possible to  simplify th is expression 
to

e0 | ( V - £ cJ  =  - V - j ,  (3.41)

where the notation  E c has been introduced to  distinguish this field from the field calculated 

via the ideal MHD approxim ation E± = —u x B 0. The coupling for the correction field 
comes via the use of the electron current density in the divergence of the current density, 
such th a t

v r j  = l t +kyjy  + 1 h  (3,42)

where j x and j y come from the fluid fields. In the MHD limit V  • J  =  0 by default since

V • (V x b) =  0 and so there is no correction field.

It should be noted th a t this closure is somewhat different th an  th a t used by Hui and
Seyler (1992) for their hybrid model used to examine electron acceleration due to  SAW 

breaking. They coupled in the electron current density moment via an expression derived 
from the definition of ion polarization current.

3.4 .6  Scaling o f E lectron  num ber density

Now, obviously, it is not possible to use the real num ber of electrons for a system  of mag- 
netospheric scale. Therefore each sim ulation electron is actually representative of a ” cloud” 

of electrons and the proper scaling is achieved via the ratio  of the am bient fluid density 

and the unpertu rbed  electron num ber density a t t= 0  (t0). For example, the  scaled electron 
current density is then

j e( x , y , z , t )  = j e(x,z)cos{kyy) = . V ^ A ( £ ,£ , ) .  (3.43)
D \ X ,  X i , t 0 )

Therefore, the electron current density th a t is input into the fluid model is given by

. / . 1 'ft* f  ( x  * Z*) x— /
3 e { x , z )  = -------------------------_ ^ 2 v i S ( x , X i ) .  (3.44)

cos(kyy) 2 2 iS {x ,X i , t0) ^

The second moment term  in the equation for the parallel electric field is scaled in the 
same way and using the phase choices discussed earlier, the final form of th is equation is
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d2 E z(x,z ,  t) 1 ^  ^  d(V  ■ Ej_(x,z,t ))
d x 2 a*

n t ( x , z ) 9  2r i ._
k ’O^ ' ,F-? C/ -» 7 . \ 77 7 q /  , d \ X ,  X j ) .2__li o p r ,  Xi, t 0)cos (kyy)  dz ^

3 .4 .7  Sum m ary o f B ox  M od el E quations

The complete set of the hybrid MHD-kinetic box model equations is then  given by the  five 
cold plasm a MHD equations

dux (x ,z , t )  _  B 0  dbx { x , z , t ) _  dbz(x, z , t )
dt Hop dz dx

duy(x ,z , t )  B 0  dby (x, z , t )
—   = ------(—^ ------------ kybz (x,z , t ))dt jj,0p dz

dbx (x ,z , t )  dEy(x ,z , t )  d E z (x ,z , t )
dt dz dy

dby (x , 2 , t) dEz (x, z, t) d E x (x, z, t)
dt dx dz

dbz (x, z , t ) dEx (x, z, t) dEy(x, z, t)
dt dy dx

the  three guiding center equations

= - e E z(x,z , t)cos(kvy) (3.45)

% "  =  ”« (3.46)
d v  1

=  — {vzbx (x, z, t ) +  ey(x, z, t ))sin(kyy) (3.47)

the ideal MHD approxim ation for the perpendicular electric fields, E±  =  —u x B 0  and the
equations for the parallel electric field

d2 E z{x, z , t )  1 <9(V • E±(x,  z, t))

— a * — > m  z(x ' z ' ] =  — & —

n f (x,z)  d ' T v 2 S ( x x ' )
S *  S { x , X i , t 0)cos (ky y)  dz ^  1

and correction field

^ ( V - 4 ± ) =  - V - j ,  (3.48)

As already stated , the model is designed to  be used as either a test particle code or 
as a coupled model. For the test particle model, the pressure term  in equation (3.48) is
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neglected and the correction field E c is not determ ined. For the  hybrid model, V  • E c is 
determ ined w ith a modified Euler scheme such th a t

V • E ^ 1 = V  • E%± -  d t ± - [ ( V  ■ j ) c +  (V • j ) p] (3.49)

where (V • j ) c and (V • j ) p are the divergences of current determ ined a t the predictor and 

corrector steps respectively. This divergence is then  used at the end of the predictor step 
to  determ ine E z for the next tim e step as follows

u  e  n f i x ->z ) d  ^ V2S ( S
2̂ iS (x ,  xi, t 0 )cos(kyy) dz ^  1 

This equation is solved quite readily for E z using a tridiagonal m atrix  solver.

3.5 Hybrid K inetic-M HD M odel in Generalized Curvilinear 
Coordinates

The dipolar model is designed exactly as the box model with the exception th a t  now the 

m irror force term  in the equation of m otion for the electrons m ust be taken into account 
and this in tu rn  introduces an ex tra  term  in the equation of the parallel electric field. Before 

introducing the model, a brief sum m ary of generalized curvilinear coordinates and dipolar 
coordinates are presented.

3.5.1 C old P lasm a  E quations in G eneralized  C urvilinear C oord in ates

Generalized Curvilinear Coordinates expresses in one form any orthogonal coordinate sys­
tem  (such as cartesian, spherical or dipolar) where the individual coordinate system  is 

identified through the form of the scale factors (sometimes denoted Lame coefficients). For 

example, the the curl of the vector x  is w ritten  in Generalized Curvilinear Coordinates as

1 d d
V X *  =  h J n h z  S  hl^ ^ hnX^  -  d ^ ( hmXm)] (3'50)

l , m , n

where l , m , n  = 1,2,3 or 2,3,1 or 3,1,2 and hi,  /t2 and /13 are the scale factors. This expression 
is coordinate system  independent, bu t for cartesian coordinates for example, h\ = h 2 = 
/13 =  1. In  general, the scale factors between the curvilinear coordinate system  x n and the 
cartesian coordinate system  X n are given by

hl  = Y . ^ r ) 2- <3-51)
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Defining the am bient magnetic field to  be in the x \  direction such th a t B  = B 0 x i, and 

using the  definition of the curl in curvilinear coordinates, the linear cold plasm a equations 
in generalized curvilinear coordinates can be w ritten  as

~ (3-52)

ft„.   D  f) ft

^  = <3-53>

t  - ~ (3-54)

w  = (3'55)

f  (3'56)

3.5 .2  G uid ing C enter E quations

In curvilinear coordinates coordinates, the velocity vector is given by

dv ■ - • - • -—  =  h \x ix i  +  h2 X2 X2 +  113X3 X3 (3.57)

where the dot denotes the tim e derivative. Using this and the definition of the gradient in
curvilinear coordinates

=  <3'58)ILjl Vdjfi
it is straight forward to show th a t the guiding center equations are given by,

=  (3-w )

h\X\ =  v\ (3.60)

bo E'x
h 2 X2 = v1- f  + -^-. (3.61)

■&0
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3.5 .3  P aralle l E lectric  F ield

For a toroidal SAW w ith kz =  0 the only components of velocity and m agnetic field are 

u-i and S 3 respectively. The fact th a t u 2 =  0 implies Ez =  0 as well. S tarting  w ith the 
expression for the field aligned current

™  = i k i r ^ B3) <3-62>
(where B 2  =  0 has been used) and taking the tim e derivative yields

dB  1 d tu d B *\ ^
dt ~  h2 h3 dx 2 { h 3  dt  (3'63)

Substitu ting  for from Faraday’s law

,io~dt =  ~ k ^ d x ^ h j i ^  d x l ^ 2^  + J ^ ^ h h ^ d ^ (KhlEl^ , 3̂ '64^

utilizing j \ (x )  = j e(x) =  - e  VjS{x, Xj) and following the procedure outlined for the  box 

model, yields the following expression for the parallel electric field E\

d h z d  1 1 d h z d
( n r a t - -^i)) -  2 ^ 2 ))h2hz dx 2 h \h 2  dx 2 h2hz dx 2 h ih 2 dx  1

e 1 d B 0 

* m e h\ dx  1 
iu0e d 
hi dx  1

, e 1 dB 0  Q/_, ^
h o  u  o  /  , h m d  ( X ,  X i )  m e hi dxi

Defining G =  and introducing the scaling factors as outlined for the  box model, this
expression can be w ritten  as

1 d hz ( dG G 1 d hz d
- ( r n n m ) )  -  m  -  n r ^ i r r T - W ) )  (3-65)h2hz dx 2 /11/12 &C2 h2hz dx 2 h ih 2  dx  1

+  „ e 1 dB ° n f ^ x  1 )
° m e hi dx i  S(x,Xi, to) ^  ™ 

m u0e d n f {x2 )xi)  ^  2  ( ,
hi d x i J 2 t S ( x :x M 2- '  i [ j

and G can be solved for using a tridiagonal solver routine and hence Ei  obtained. The 

correction field is obtained using the same form ulation as presented for the box model. In 
curvilinear coordinates, the divergence of the current is given by

v  / =  h ^ h - j + £ - 2 <h' h M + (3'66)

and w ith the assum ption k$ =  0, the expression for E c simplifies to
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z

Figure 3.8: Com parison of Spherical and Dipolar Coordinates, <f> is directed out of the  page.

€od t {h l h2 h3 dx2[hlh2E2c]) ~  v ’ j ' (3'67)

The m ethod of solution for this equation and the introduction of the corrector field into the 

corrector step is sim ilar to  the procedure outlined for the box model. The one difference is 

th a t in the box model, it was sufficient to know V • E c±, bu t here it is necessary to  spatially  

integrate to  get This is accomplished using a tridiagonal m atrix  solver.

3.6 Hybrid M odel in Dipolar Coordinates

D ipolar coordinates are most commonly denoted by the variables //,, v  and (p (see figure 
3.8). In the curvilinear cooridinates used thus far /i, u and </> are defined by aq, X2  and 

respectively and are given in term s of spherical coordinates as the following

cosO
aq =  n — — 2 ~ (3.68)

sin 2  9
X2 =  v — -------  (3.69)r

x 3  = 4> =  t a n ^ 1- ,  (3.70)x

W ith  these definitions, the dipolar metrics can be derived and are given in term s of spherical 
(and cartesian) coordinates by the following

h = h  Qr2 +  y2 +  , 2 ) 2

1 M (1 +  3cos2 6) 1 / 2  {x2  + y 2 +  4 z 2 )V 2

r 2 (x2  + y 2  +  z 2 ) 2

u sind(l + 3cos2 0) 1 / 2  (x 2 +  y2 )1/2 (x2 +  y 2 + Az2 ) 1 / 2
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h,/, =  rsinO =  y /x 2  +  y 2. (3.73)

Unfortunately, the definition of the metrics in dipolar coordinates themselves is unknown. 
References as far back as Radoski (1967), always give the metrics in spherical coordinates 

and a ttem pts by the author, among others, to  derive them  were unsuccessful. This in tro­

duced some unique problems in the im plem entation of the hybrid model in th is dipolar 

system. These problems and the m ethods used to  address them  are sum m arized in the  next 
two sections.

3.6.1 S ingle partic le  dynam ics in a d ipolar m agn etic  field

As noted above, the m etrics in dipolar coordinates are known in term s of spherical coordi­

nates ra ther th an  dipolar. This fact makes the solution of the guiding center equations in 

the dipolar coordinates very cumbersome because one m ust know the position sim ultane­

ously in bo th  coordinate systems in order to  bo th  advance the equations of motion. Taking 

the  definition for x \  and x>2 , it is straight forward to  derive the equation

the solution of which allows the conversion between the dipolar and spherical coordinates. 
The same m ethod was applied by Voronkov et al. (1998) for a nonlinear resistive MHD 

model in dipolar coordinates (I Voronkov, private communication). Unfortunately, the 

inversion process is impossible if aq, .rq are determ ined sim ultaneously in the guiding center 

equations. However, the process can be made tractab le  for this problem  by noting th a t 

the radial m otion of the electron is negligible when compared to  the field aligned m otion 

(and the azim uthal m otion is being neglected). This fact will be illustrated  w ith the box 

model in C hapter 4. Therefore, if X2 is specified and assumed not to  change, the roots of 

the expression can be solved for to determ ine r and hence 9.
As a test, the guiding center equations were solved numerically in the absence of an 

electric field and the resulting bounce times and m irroring angles were com pared w ith the 
analytical solution for the m otion of an electron in a dipolar m agnetic field (Parks, 1991). 
For a given equatorial pitch angle, a o the m irror angle is given by

x \ r 4  + rx  2  = 1 (3.74)

cos6 \ m — sin 2 a 0( 1 +  3sin 2  Am ) ^ 2 =  0 (3.75)

and the corresponding bounce tim e is given by the following

(3.76)

where
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Figure 3.9: L=10 dipolar m agnetic field line

f Xm c o s \ ( l +  3sin2 \ ) l / 2 d \  .
7  =  L = ------ : T  ( i+ W A )i/3 11/9  “  L 3  -  0 -5 6 « n (a 0). (3.77)

0 [1 -  sm *a0' ^  costi\  — J

The approxim ation is from Ham lin et al. (1961). Solutions for Am and J), are given in Table

(3.1) for 2 different equatorial pitch angles (a 0  = 7r / 3  and a 0  =  7r / 6 ) and two different 

kinetic energies, (Te=100 eV and Te= lkeV ). In all cases the electron is moving along the 

L=10 m agnetic field line (figure (3.9)).
The results of the corresponding numerical solution of the guiding center equations is 

shown in figure (3.10). In  all cases, the initial electron position is in the equatorial plane. As

case Oi0 Te ^ m Tb
(radians) (eV) (radians) (s)

a) 7t/3 100 0.255 35.1
b) 7t/3 1000 0.255 11.1
c) 7t/6 100 0.58 43.9
d) 7t/6 1000 0.58 13.8

Table 3.1: In itial equatorial electron pitch angles and energies and the corresponding cal­
culated bounce periods and m irror angles.
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Figure 3.10: G raphs of A vs tim e for an electron on the L=10 m agnetic field line. The cases 
of each letter correspond to the param eters given in Table 3.1
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Figure 3.11: Sample num erical grid for n \ =  16, r/,2 =  50 with superim posed m agnetic field 
lines for L=9,10 and 11.

is evident, the value of Am and T# agrees well w ith the computed values. For the sim ulations 

presented here, the predictor-corrector routine was used again and the  first order spatial 
derivatives were evaluated using the two point formula

O  = (3'78)
As far as it is known, th is is the first a ttem pt a t solving the guiding center equations in 

dipolar coordinates.

3.6 .2  N um erica l N otes

The tim e and spatial finite differencing of the fluid equations is the same as has already 

been mentioned. The prim ary difference between this test particle code and the version 
developed in C hapter 2, is th a t the grid is no longer rectangular. An example for the 
num erical grid utilized is illustrated  in figure (3.11), where n\ is the num ber of points in the 

direction along the ambient magnetic field and ri2 is the num ber of points perpendicular to 

it. For the purpose of clarity, the num ber of grid points shown in the  diagram  is significantly 
reduced from the num ber used in the simulations presented in C hapter 6 .

As m entioned previously, it is unknown how to  express the dipolar m etrics in the dipolar
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Figure 3.12: Exam ple of bilinear interpolation scheme using parallelogram  areas for weight­
ing.

coordinates themselves and this consequently introduces the problem  of how the  define a 
unit area in dipolar coordinates. Therefore, it is necessary to  use an approxim ation to 

in terpolate the particle moments on to the grid and vice versa for the  parallel electric field. 
For this, we again use the bilinear interpolation scheme and break up a grid cell into four 

subcells (refer to  fig (3.11)). The subcell region ”b” has a w idth and length of wb and L b 
respectively. If two points are closely spaced along an arc of constant x \  (for example), 

the length of the line between the points (along the arc) can be approxim ated by /i^ lA a ^ 2! 
where h ^ 2 is the average value of the m etric /t2 between the two points and (Axi,2! =  | m| — | - 

A similar expression can be made for two points along an arc of constant X2 - Therefore as 
long as the grid is fine enough, we can define L b and wi, respectively by

L h ^ \ ( h \  + h?) \{x?c - x \ ) \

wb ~  ~(h 2 +  hl)\x%A -  xQ\

where the  superscript ”e” indicates the electron position and :r;fc  is the value of x \  along 

the  arc between points D and C. The area of the subcell ”b” can then  be sim ply defined as 
L bwb.

In order to  ascertain w hether or not this first order approxim ation was sufficient, two
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Figure 3.13: Particle angle A as a function of tim e for exact calculation of the electric field 
a t the particle position (solid line) and the interpolation of the field a t the particle position 
(dashed line)

sim ulations were done of an electron in the dipolar magnetic field w ith a superim posed 
sta tic  electric field defined by

E 1 =  E 0 (sin(Q))u  (3.79)

where E 0  is the am plitude of the electric field a t the equator. In the first sim ulation, the 
electric field was calculated exactly a t the particle position and in the second, the  electric 
field was calculated at the grid points and interpolated to  the particle position using the 

scheme outlined above. The electron energy was 1 keV, with an equatorial pitch angle of 

|  and E 0  = 1 x 10- 2  (nondimensional units). This electric field is much higher th an  would 

be generated in the hybrid sim ulations and is ju st used here as a test. The electron was 

sta rted  in the  equatorial plane a t the L=10 shell. Figure (3.13) illustrates the results of the 
simulations. The particle is trapped  between the m aximum  electric field a t the equator and 

the m irror force a t the southern ionosphere. The sim ulation using the in terpolation m ethod 

(dashed line) is seen to  gradually drift a little away from the sim ulation where the  electric 
field was com puted directly from the formula. However, as this is an extrem e case, the  drift 

is negligible. The sim ulation was done w ith 64 grid points in the field aligned direction and 
a tim e step of 0.008 seconds was used.
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Chapter 4

Box M odel Simulations

4.1 Preamble

In  this chapter, sim ulations for the hybrid box model outlined in C hapter 3 are presented for 

b o th  periodic and perfectly conducting boundary conditions in the z direction. The radial 

density and Alfven profile are the same as outlined in C hapter 2. B oth are constant in the 

z direction. The electrons are loaded according to  this density profile and their velocities 

assigned via the Maxwellian profile as outlined in C hapter 3. All sim ulations are initialized 
using

uy(t =  0) =  Aexp( {X2 J r) )sin(kzz ) (4.1)

where A  — 0.05 corresponds to  a  maximum  shear velocity of 34.5 km /s and the position 
of the resonance is chosen to be x r = 0.5 This function has the same radial profile as th a t 

used in C hapter 2. The dimensions of the box are 0 <  x < 1.2R e  and 0 <  z  <  18R e  w ith 

n x and n z grid points in the x and z directions respectively. The azim uthal wave num ber 

is ky =  0 .42 /A/.;. Additional more specific points relating to  the m odel are given in section
(4.2)

The results for the periodic boundary conditions are presented in Section (4.3). The 

case of wave num ber kz = (Lz =  18 R e ) is considered in the lim its Vth “C  Vi ,  vth ~  Va 
and > Va - In the in itial and last cases, the form ation of inertial and kinetic Alfven 
waves are dem onstrated respectively. Landau dam ping of the Shear Alfven wave is shown 

when ~  V\  or greater and the numerical dam ping rate  is shown to be in good agreement 
w ith th a t predicted from the dispersion relation derived in A ppendix A.

In section (4.4), the case of perfectly conducting boundary conditions is presented in 

the lim it of Vth ~  Va  for kz — -f- and kz = In bo th  cases the SAW is again strongly 

Landau dam ped. The qualitative results for kz — jp- are very sim ilar to  those from the 
section (4.2) thus showing th a t perfectly conducting boundaries do not alter the solution 
significantly from the periodic case.

54

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Numerical Issues

As already indicated, most points relating to  this model have been indicated in C hapters 2 
and 3, b u t the more specific issues of filtering and boundary conditions are sum m arized in 
this section.

4.2 .1  F ilterin g

In  order to  reduce the statistical noise, a 2D digital filter was applied to  the current and 

pressure m oments of the electron distribution function as well as the parallel electric field 

a t bo th  predictor and corrector steps. In one dimension, the filtered value is given by

K  =  i f i - l  +  ^  +  \ f h -i - (4.2)

In  the model, th is was first applied in the x direction and then  in the  z direction. This is 

the lowest order digital filter (Birdsall and Langdon, 1991) and it has been used successfully 
in trad iational hybrid models w ith kinetic ions and fluid electrons (Winske et al., 1986). 
It has worked well in the context of this model except w ith regards to  the parallel electric 
field as will be commented on later in the chapter.

4.2 .2  B ound ary  C ond itions

The boundary conditions for the fluid variables in the x direction are identical and imple­

m ented in the same way as already outlined in C hapter 2. The electrons on the  o ther hand 

are loaded from x  — to  x = L x — ■ As will be shown, the radial m otion of the  electrons

is minimal, b u t should they pass either boundary they are simply reintroduced a t the  same 

boundaries. This does not introduce any difficulties as there is no electron current into the 
x boundaries.

The handling of the boundary in the z direction is dependent on the specific boundary 

conditions. Periodic boundary conditions simply imply th a t F\ — Fn. Therefore, in th is 
case, the grid in the z direction goes from 0 to  L z — A z  where A z is the grid spacing bu t 

the  electrons are free to  move from 0 to  L z. The density and current moment contributions 

th a t would be assigned to a grid point a t L z are ju st contributed to  the grid cell a t z  =  0 

to  enforce the periodic boundary conditions. Likewise for the fluid variables, th is grid point 

is used in the calculation of derivatives a t z = L z — A z (and vice-verse for z=0). Electrons 
th a t move past the z = 0 or 2  =  L z boundaries are reintroduced at the opposite boundary 
w ith the same velocity.

In the case of the perfectly conducting boundary conditions, the trea tm ent of the  elec­
trons a t the boundaries is more complicated th an  in the periodic model and the m ethod 
used will be sum m arized at the s ta rt of section (4.4).
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4.3 Simulations with Periodic Boundary Conditions

This section summarizes the sim ulations of the hybrid box model w ith field aligned periodic 

boundary conditions. Before proceeding to the hybrid simulations though, the  new electric 

field form ulation outlined in C hapter 3 will be contrasted w ith the Generalized O hm ’s Law, 

the  solution of the 2D fluid model will be contrasted w ith the ID  results from C hapter 2 
and the test particle and hybrid models will be compared for an initial electron ^-function 
distribution.

W hether in the fluid or hybrid lim its though, all the following sim ulations were done 
w ith n x = 200, n z = 25 and 70000 tim e steps for 10 Alfven wave periods. Since th is is 

the  2D analogue of the sim ulations presented in C hapter 2, the frequency and period of the 

resonance are again, 0.0755 s - 1  and 83.2 seconds respectively.

4.3 .1  C om parison o f E lectric  F ield  Form ulations

Using the same m ethod as for C hapter 2, a version of the 2D fluid m odel was w ritten  
incorporating the Generalized O hm ’s law form ulation for the parallel electric field. The 

ou tpu t of th is model was compared w ith the outpu t of the fluid model w ith the electric field 
form ulation derived in C hapter 3 given, w ithout the pressure moment, by

° ~ W l  -  = + (4'3)

For bo th  sim ulations, nx =  128, n z = 16 and 200,000 tim e steps were used for ten  Alfven 

periods. A slice of the parallel electric field taken in bo th  cases a t z=12.35 for t — 3 Ta 
is displayed in figure (4.1). The resulting electric fields are very close illustrating  the  basic 

equivalence of these two formulations. The advantage of the latter, even in the  fluid lim it, 

is th a t it is very stable for significantly larger tim e steps.

4.3 .2  C om parison o f ID  and 2D  m odels

A lthough the physical systems for the 1 and 2D models do share exactly the  same boundary 

conditions in z, it is interesting to  compare the two models. If kz = is used in the 
1 dimensional model, it corresponds to  the initial condition specified here. Figure (4.2) 

compares the am plitude of the first order mode for uy a t t = 5Ta  w ith  the  values from the 

ID  model for the same time. In bo th  sim ulations Ae =  0. As would be expected, in the 
cold plasm a limit and with a constant field aligned density, the 2D and ID  solutions are in 

good agreement.

4 .3 .3  S ingle P artic le  D ynam ics

Figure (4.3) illustrates the radial and field aligned m otion of the guiding center of an  electron 

s ta rted  a t (x, z)=(0.5, 9) w ith an initial velocity vgz — 0. As is evident, the  radial m otion 
of the electron is negligible relative to the field aligned m otion which is consistent w ith  the
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Figure 4.1: Com parison of E z from the Generalized O hm ’s Law (solid line) and from ex­
pression (4.3) (dashed line) a t t =  3 Ta - Slice a t z=12.35

current picture w ithin a FLR as outlined in C hapter 1. The shift of the  electron position 

at t & 85 is the electron passing through one boundary and re-entering at the  o ther (and 
vice-verse).

4.3 .4  C om parison o f Test P artic le  and H ybrid  M odel resu lts

This section presents calculations using bo th  the test particle model and coupled model 

for an in itial 5 function d istribution of electrons. The top panel of figure (4.4) displays 

the test particle results for the  current density while the  bottom  panel displays the hybrid 

model results a t t — 2 Ta - In both  cases, j z is the parallel current density calculated from 

A m pere’s law, while j e is the electron current density as interpolated to  the  grid. As is 
evident, j z and j e diverge very quickly in the test particle model, b u t stay very nicely in 

line in the hybrid model case. This trend  continues more dram atically as tim e goes on. 
Therefore w ith no feedback of the electrons on the fluid, the test particle approach is valid 
for only a very short time.

4.3 .5  C om parison o f H ybrid  m odel sim ulations for different in itia l d istr i­
bu tions.

For the system  under consideration here, the phase velocity of the standing SAW is vph = 
jr  = ±2. Therefore, it is expected th a t for a sufficiently wide d istribu tion  function, Landau
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Figure 4.2: A m plitude of the first order mode for uy from the 2D periodic fluid model (solid 
line) compared to  ou tpu t of the ID  model (dashed line) at t = 5Ta - B oth  cases are for 
Ae =  0.
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Figure 4.3: a) The radial m otion of an electron guiding center in the standing SAW system, 
b) The field aligned motion.
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Figure 4.4: Com parison of kinetic electron current j e and the A m pere’s law current j z from 
the  test particle model a t t  = 2  Ta (top) and the hybrid model a t t = 6  Ta . Slice a t 
x=0.597.
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dam ping effects should become evident. This would manifest itself as a flattening of the 

d istribu tion  around v z — ± 2  as electrons w ith velocity a little less th an  the phase velocity 
of the SAW are accelerated to  a  little beyond vph. The gradual loss of energy from the 
SAW to the electrons will be evident as a gradual decrease in am plitude of the SAW. To 

test this, sim ulations were conducted w ith 4 different initial d istribu tion  functions, a  5 
function distribu tion  ( ^ = 0 )  and three Maxwellian distributions ( ^ = 0 .7 1 ,  1.41, 4.24). All 

hybrid m odel sim ulations used one million particles (nPx = 1 0 0 0 ,n Zp = 1 0 0 0 ) except in 

the vth =  4.24 case where two million particles (nPx =  1000,n Zp =  2000) were used. The 

illustrated  d istribu tion  functions are average d istribution functions compiled using electrons 

close to  the  resonance, (0.5 <  x < 0.65) and anywhere in the z plane. One hundred velocity 
bins are used in the compilation.

For the  case of the cold plasm a limit, figure (4.5) illustrates the azim uthal velocity a t 
t =  4 Ta and t =  8  TA for fluid model and the hybrid model using the in itial 5-function 
d istribu tion  and vth = 0.71 distribution. As would be expected, the hybrid description and 
the  cold plasm a MHD fluid description diverge little. The form ation of an inertial SAW 

propagating to  the right (the direction of increasing Alfven wave speed) is evident.

The case of vth ~  Va is illustrated  in Figure (4.6) where the azim uthal velocity for the 

hybrid model using vth =  1-41 for t =  4 Ta and t = 7 Ta is displayed along w ith the  MHD 

results. The gradual Landau dam ping of the SAW as a function of tim e is clearly evident. 

The num erical dam ping rate  m easured from this calculation will be com pared w ith the 

theoretical value determ ined from the dispersion relation in a later subsection.

The final example of vth > Va  is illustrated  in figure (4.7) where the evolution of the 
azim uthal velocity a t t =  4 Ta  and t  = 8  Ta - The resonance in the hybrid model is seen to  

m aintain  its position while it propagates as an inertial wave pulse in the  cold plasm a MHD 
lim it. This increase in tem perature implies th a t the system is entering into the kinetic 

Alfven wave regime and close exam ination indicates a slight propagation in the direction of 
decreasing Alfven wave speed. The wave is strongly dam ped though and is nonexistent by 
t = 0 T A.

The evolution of the corresponding electron distribution functions are illustrated  in 
figure (4.8). The top panel illustrates the vth =  0.71 distribution case and it is evident th a t 
the  d istribu tion  function is heated a little during the length of the sim ulation, bu t only 

changes marginally. In the middle panel the =  1.41 case is presented. The Maxwellian 

is being modified a t the v z =  ± 2 , which as m entioned previously is the  classic plateauing 
due to Landau trapping  effects. The warmest case, — 4.24 is highlighted in the bo ttom  

panel. The distribu tion  function is not as strongly modified as in the vth =  1-41 case, bu t 
there is evidence of some trapping  around v z &  . The dam ping is actually  stronger, as is
evident from the figure (4.7), because the slope of the d istribution function a t the resonance 
position is steeper th an  for vth =  1.41. The lack of strong modification of the d istribu tion  
function is probably due to the larger num ber of electrons around the resonance position
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Figure 4.5: Top: Com parison of azim uthal velocity a t t=4T/t from the  fluid m odel (solid 
line) and the hybrid model for the for the initial 5-function electron d istribu tion  (dashed 
line) and vth = 0.71 initial electron distribution function (dotted line). Slice a t z=3.6. 
Bottom: same at t = 8  Ta -
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th an  in previous case.

In order to  show th a t the coupling holds properly in these higher tem pera tu re  cases, 

figure (4.9) illustrates the comparison of j e and j z for vth =  4.24. The two currents still 
agree w ith each other to  a high degree of accuracy in spite of the evident noise. This noise 

can be further reduced w ith increased particle number.

4 .3 .6  S ignificance o f  P ressure Term

As was indicated in C hapter 3, the form ulation for the parallel electric field includes 

a term  for the electron pressure. In order to ascertain how im portan t the contribution 

of this term  was for the plasm a param eters considered here, the Vth =  1-41 case was run  
again, b u t w ith the pressure moment term  tu rned  off in the expression for the parallel 

electric field. Figure (4.10) illustrates a comparison of the azim uthal velocity from the fluid 

code (solid line) and the hybrid code with (dashed line) and w ithout the pressure term  
(dotted line). The negligible difference between the two hybrid model runs illustrates, th a t 

for the param eters considered here, electric field contributions due to  electron pressure are 
negligible and most of the im portant physics comes via the electric field generated to  enforce 
quasineutrality.

4 .3 .7  E ffects o f  partic le  num ber

An im portan t consideration in any statistical model is how the num ber of sim ulation elec­

trons effects the results. It is necessary to have a sufficient num ber to  adequately represent 

the system  as well as keep noise issues to  a minimum. However, as indicated previously, 

the num ber of sim ulation electrons are scaled to  a realistic value and so after a point, the 

general results should be insensitive the sim ulation electron number. In order to  test this, 

the Vth =  1-41 sim ulation was redone w ith two million sim ulation electrons. The current 
moment results in bo th  cases (along w ith the MHD results) are illustrated  in figure (4.11). 

As is evident, there is little quantitatively significant difference until well into the run  and 
the  evolution of the system  is the same in bo th  cases. Therefore the hybrid code results are 
robust w ith respect to  particle number.

4 .3 .8  P aralle l E lectr ic  F ield

As alluded to  earlier, the parallel electric field is typically too noisy to  be visible, even w ith 

the sm oothing algorithm  used. However, the field can be seen w ith the application of a 
post-sim ulation spectral filter using the hyper-gaussian function to  filter out higher order 

spectral modes. The function has the form

where i is the spectral mode num ber and n is a param eter to  be specified. The filtering, 
in each direction, is accomplished by first doing the forward fourier transform , m ultiplying
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the transform  by the filtering function and then  doing the inverse transform . This is done 

first in the  x direction and then  in the z direction, bu t the order of the application is not 

significant. In the x direction, 200 grid points were used and so a value of n= 80 was chosen. 

This filters out only the highest of the 100 possible modes as these are the  m ain source of 
num erical grid scale noise.

In the z direction on the o ther hand, a value of n= 4  was used. For any higher value, there 

was still too much noise to clearly see the signal in the higher tem peratu re  cases. This is not 
a problem  though since the sim ulation is for the first order mode kz = ( i= 2 ) and most

of the in itial physical inform ation is contained here. Also, although the Landau dam ping 
seems to  result in some slightly higher mode structure, the application of th is filter to  the 

current does not significantly alter the profile. Therefore, it is safe to  assum e th a t applying 

th is filter to the parallel electric field is not leading to  a  loss of physical inform ation.
The unfiltered fluid parallel electric fields and filtered values for the hybrid code using 

vth =  0.71 and vth = 1-41 are displayed in Fig. (4.12). As expected, the parallel electric 
field in the vth =  0.71 case does not diverge significantly from the fluid model, bu t the 

dam ping in the vth =  1-41 case is clearly visible. Therefore, even though the field is not 

visible directly in the simulations, it is behaving as expected and consistent w ith the other 

model variables. The parallel electric field in the vth — 4.24 case is not visible even w ith 
the filtering, bu t this can be rectified by increasing the particle num ber.

The fact th a t the model works so well in spite of the fact th a t the parallel electric field 
signature is drowned in noise implies th a t the electrons are not strongly effected by the 
high frequency noise, bu t are m ainly responding to  the low frequency parallel electric field 
signature. It is believed th a t signal to noise ratio  is so much worse th an  for all o ther variables 

because the  determ ination of E z involves taking the divergence and then  in tegration of 
already somewhat noisy quantities (i.e. j e).

4 .3 .9  D en sity  F lu ctu ation s

As was m entioned earlier, the electron density d istribution has the same profile as the 

specified fluid density. This is evident in the top panel of figure (4.13) which illustrates the 

unsealed electron num ber density a t t  — 3 Ta for hybrid model using one million particles. 
Superim posed on the am bient density is the pertu rbation  due to the standing Shear Alfven 

wave. The bo ttom  panel of the same figure illustrates slices of N e along z — 3.6 a t the 
same tim e for b o th  the one million and two million particle simulations. The result for 
the  former case has been m ultiplied by two and lies very close to  the result for the la tte r 

case. This illustrates th a t the ratio  of the fluctuation relative to the am bient background 
is relatively independent of the num ber of sim ulation electrons. The m agnitude of the 

background density is evident from the slice a t t  =  0 .1  T a -
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Figure 4.12: Parallel electric field after the application of the post-sim ulation spectral filter 
a t t — 7 Ta - Slice a t z = 7.92. The fluid model result is unfiltered.

4 .3 .10  D am pin g  rate com parison

Using the  drift kinetic equation, the cold plasm a equations and defining a dependence 
of e*(kx x+ky y+kzz)- iuji ^  jg straight forward to  derive a dispersion relation for the periodic 

system (see A ppendix 1 ) as

ik].
- r 1- (4.5)

+ eZ{e)Y

where Z is the plasm a dispersion function. This can be solved numerically for the model 

param eters to  yield a dam ping rate  th a t can be compared to  the one m easured numerically.

In figure (4.14) is shown a plot of the log of average value of the current density j z 
between x=0.5 and x=0.6 (for a slice along z=7.92) as a function of tim e between 300 and 

800 seconds (0.36T.1 <  t < 0 .96T t) along w ith a best fit line. The initial 300 seconds were 
tr u n c a te d  as th e  average cu rren t d e n s ity  w as in crea sin g  w ith  t im e  for th is  p e r io d . T h e  

regression statistics of the line are then

y = (-0 .0042 ±  0.0005)f +  0.5 ±  0.3 (4.6)

of which the slope gives the dam ping rate  of the resonance 7  =  —0.0042 ±  0.0005s-1 . This 

result can be compared w ith the values obtained from the im aginary p a rt of the kinetic
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Figure 4.13: Top: Unsealed electron num ber density from the hybrid model w ith vth =  1-41 
and np — 1 x 106 a t t  =  3 Ta- Bottom : Slices of the unsealed electron num ber density at 
z=3.6 for t =  3 T,\  w ith n p =  1 x 106 (dashed line) and np =  2 x 106 (dotted  line). The 
ambient density profile is indicated by the solid line for t  = 0 .1  T a -
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dispersion relation. This is only a rough comparison as the Alfven velocity profile changes

from 2  to 2 . 6  in the range considered and the resonance narrows from about kx m ---- >•

0 g£Re as the  resonance evolves. Assuming the local Alven wave speed and electron inertial 
length a t x  =  x r dam ping rates for the vth =  1.41 distribution function are calculated to  be 
0.0016 s _ 1  and 0.0058 s _ 1  for kx = and kx =  Q respectively. Thus the  num erical 
dam ping rates and th a t obtained from the kinetic dispersion relation are in the same range.
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4.4 Simulations with Conducting Boundary Conditions

In this section, sim ulations using the hybrid model w ith perfectly conducting boundary 

conditions are presented for =  1.41 and compared with the MHD results. B oth  fun­

d a m e n ta l (kz =  j^ )  and first order (kz — j ^ )  modes were considered w ith the  la tte r case 

being contrasted w ith the periodic model results. F irst of all though, the m ethod used to 

handle the new boundary conditions is summarized.

4.4.1 B ound ary  C ond ition  Im plem en tation

The model w ith perfectly conducting boundary conditions differs from the periodic case 
w ith the addition of two guard cells a t each end z = 0 and z  = L z . These cells are used 

to  enforce the boundary conditions on each of the fluid variables corresponding to  perfectly 

conducting ionospheres. These are ux = uy = by = 0, and 7 5 7  =  yjy =  =  7 ^  =  0.
The boundaries for the electrons are handled by allowing the electrons to  freely propa­

gate into the guard cell regions as if no boundaries existed a t L — 0 and L  =  L z responding 

to  the forces imposed on the guard cells by the fluid boundary conditions. The particle 
m oments are then  collected at only the grid cells in the region 0 < z < L z . The boundary 

conditions for the current and pressure moments are then  imposed on the guard  cells as 

w ith the case of the fluid. W hen the electrons reach the last guard cell a t either end, they 
are then  reflected back into the box to conserve particle number. This reflection appears to 

introduce some relatively large density fluctuations in the guard cell regions, b u t as long as 
the  in itial Shear Alfven wave am plitude and distribu tion  function tem pera tu re  are m ain­

tained in the range considered here, these fluctuations do not significantly effect the  results. 

For the sim ulations presented in this chapter the num ber of radial grid points, nx =  128, 

and the num ber of field aligned grid points, n z — 2 0 , bu t comparison tests were m ade w ith 

n z = 14 and n z =  28. These two different resolutions change the size the guard cell regions 
by a factor of two, bu t the results were still found to be quantitatively consistent. For much 

higher tem peratu re  and Shear Alfven wave am plitudes a different scheme for handling the 

perfectly conducting boundary conditions should be developed.

4 .4 .2  Sim ulations for kz =  f -  and kz =  j 1 .
L ,z  L iZ

For the fundam ental mode, kz =  -f-, the resonance frequency and period are respectively 
half and twice the values for kz — For bo th  wavenumbers, ten  period runs were 
conducted and so the former case actually evolved for twice as long in physical tim e. For 
each sim ulation, 70,000 tim e steps were used and figures (4.15) and (4.16) illustrate  the 

evolution of the equatorial azim uthal velocity as a function of tim e for kz =  ■£- and kz = ‘j K 
respectively. In bo th  cases, the dam ping of the SAW is clearly evident bu t it is slightly 

stronger in the first order mode case. In addition, there is a slightly stronger shift to  the 

right between the hybrid and fluid cases in the fundam ental mode sim ulation relative to
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the latter. As m entioned previously, this shift is most likely due to  the  initial propagation 

of a kinetic SAW in the direction of decreasing Alfven wave speed. The shift may be more 

dram atic in the fundam ental mode case since the kinetic SAW would have twice as long to 
propagate relative to the first order mode case.

The evolution of the d istribution function in bo th  cases is illustrated  in figure (4.17). 

B oth  d istribu tion  functions are strongly modified due to  Landau trapp ing  effects which is 
consistent w ith the decrease in the am plitude of uy . I t should be noted th a t even though, 

the frequency has different values for the two different wavenumbers, the  ratio  jf- are the 

same in bo th  cases. Therefore it is consistent th a t the m odification of the  d istribu tion  
function should be taking place around vz =  ±2. The shape is slightly different in bo th  

cases, b u t th is may have something to  do w ith how the electrons interact w ith  the different 

SAW modes. Also, in the first order mode case, the evolution of the  d istribu tion  function 

shows more heating around vz =  0  th an  in the case w ith periodic boundary conditions and 

may be a  function of the different boundary conditions.

These results indicate a qualitative sim ilarity between the results for the  first order 
mode here and the sim ulations w ith periodic boundary conditions. A more quantita tive  

comparison can be m ade through a  comparison of the dam ping rate. The same procedure 

as used previously yields a value of —0.005 ±  0.001s- 1  which is the same order of m agnitude 

as the dam ping rate  m easured for the kz = case w ith the periodic model. Therefore, the 
different boundary conditions do not seem to strongly effect the evolution of the  system  for 
current param eters.
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4.5 Summary

In  this chapter, the 2D hybrid model was tested w ith bo th  periodic and perfectly conducting 

boundary conditions. In the former case, the following was illustrated.

• The new electric field algorithm  and the generalized ohm ’s law are identical in the 

fluid limit.

•  The hybrid and cold plasm a MHD models agree well in the lim it th a t vth “C  Va 
including the form ation of an inertial Alfven wave pulse.

•  W ith  ~  Va and greater SAW can be strongly Landau dam ped. D am ping rates are 
in good agreement w ith th a t determ ined from the analytical dispersion relation. The 

initial form ation of a kinetic Alfven wave is evident when vth > Va -

•  The parallel electric field is generally too noisy to see directly from the  sim ulation, 
bu t can be visualized w ith the post-sim ulation, frequency dom ain filtering. The noise 

does not effect the sim ulation results and the filtered electric field is consistent w ith 

other model variables.

For the  model w ith perfectly conducting boundary conditions, it was shown th a t  for 

vth ~  Va .

•  Landau dam ping was evident for bo th  the fundam ental mode (kz = ^ - )  and the first 

order mode (kz — j^-)

•  for the first order mode, the quantitative results are very sim ilar to  the  case w ith 

periodic boundary conditions indicating th a t the choice of boundaries in th is case 
does not significantly effect the evolution of the system.

Therefore, w ith the exclusion of electric field resolution, the hybrid box m odel has 
been dem onstrated to  effectively capture the m ain physics expected between electrons and 
standing SAWs in different tem perature regimes and w ith different boundary conditions. 

T he evolution of the system  can be followed accurately and stably  w ith relatively small 

num bers of sim ulations electrons and the code should prove useful for the  study  of electron- 

SAW interactions in general.
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Chapter 5

D ipole M odel Simulations

5.1 Preamble

This chapter is broken up into two m ain sections. In  the first, we will illustrate  the  cold 

plasm a MHD model in dipolar coordinates. Results are presented for bo th  the case Ae =  0 

and Ae > 0. The results in the Afi =  0 lim it are contrasted w ith the results of a  nonlinear 

resistive MHD model (Voronkov, 1998) run  in the cold plasm a limit. The resonance shift 

in frequency between the nonlinear and linear cases is illustrated, bu t it is shown th a t  from 

the point of view of the num ber of periods, the phase mixing evolution in bo th  cases is 
essentially identical.

In the second part, results of the hybrid model are presented for several equatorial 
densities and two ionospheric positions (at 3 and 5 R e )- W ithin  this, the hybrid and 
test-particle models are contrasted in the cold plasm a limit, the inertial SAW and therm al 

plasm a lim its are examined and the parallel electric field in the hybrid and MHD cases are 
compared in the cold plasm a limit. It is found th a t the model has very good agreement w ith 

the cold plasm a MHD results in the cold plasm a limit, including for the parallel electric 

field. As well, the divergence of the cold plasm a MHD and hybrid model in the  therm al 
p lasm a case illustrates the model is consistent in this regime as well.

5.1.1 B ound ary  C onditions

As w ith the hybrid model in cylindrical coordinates, open boundary conditions are again 

chosen for the radial direction. At the ionospheres, we use perfectly conducting boundary 
conditions so as outlined before, we have u? — =  E 2  =  = 0 and =  0. The
condition th a t the parallel current is continuous across the ionospheric boundary yields the 
m agnetic field boundary conditions as follows. The curl of the m agnetic field in curvilinear 
coordinates is given by,
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(5.4)

The boundary condition for the field aligned current is th a t ^  — 0, yields

(h2 B 2)) =  0
dx\dxz

(5.5)

Since the  shear Alfven wave mode can be either entirely poloidal or toroidal, bo th  term s 
m ust be equal to  zero. Therefore h 2 B 2  =constan t and /13.B3 =constan t.

5.2 Fluid M odel Simulations

The sim ulations presented in th is section were done w ith the cold plasm a MHD code. In 

all cases, the ionospheres were located at 1 R e  and the equatorial radial boundaries of the 

model are a t 9 and 11 R e - The resonance was initialized on the L=10 m agnetic field line. 
We used 64 grid points in the field aligned direction and 200 in the radial direction. Two 

density profiles are considered (thus having different Alfven periods, b u t in either case, the 

sim ulation was run  for 60 Ta w ith 1 0 0 , 0 0 0  tim e steps.

The ionospheric boundary conditions highlighted in the previous section were enforced 

across the first two and last two grid cells in the field aligned direction. The radial boundary 
conditions were again assumed to  be open.

5.2.1 P la sm a  param eters

For the sim ulations to  follow, the FLR  was initialized w ith a G aussian type profile for the 
Shear velocity u% to  correspond to  a  toroidal resonance system given by

the value of x 2  a t the resonance position. The am plitude of the Shear mode is chosen so

For the sim ulations to  follow, two density d istributions will be considered and they  are 
illustrated  in figure (5.1). Profiles (a) and (b) are derived from the formula

where un is the eigenmode solution at the resonance position (see next section) and x 2r is

th a t it has a peak velocity in the equator of 50 km /s and w=0.2 in nondim ensional units.

P  =  P o  =  P e q ( l  -  cosd2) 1 (5.7)
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Figure 5.1: P lasm a param eter profiles along the L=10 field line corresponding to  density 
profile (a) (solid line) and density profile (b) (dashed line) (see text). Here lz is the distance 
along the field line. The left hand side of the figure is the equatorial region and the  right 
hand side is the ionosphere.

where q = 4 in bo th  cases and peq = rnp cm ~ 3 for the former and peq =  0.1 rnp cm ~ 3 for 

the  latter. Density profile (a) corresponds to  the profile used by Voronkov (1998). Also 

included in the diagram  are Alfven and electron inertial length profiles. Figure (5.2) shows 
the  radial profile of the Alfven at the equator. It increases in the earthw ard direction.

5.2 .2  Linear Shear A lfven  waves in a D ipolar M agnetosphere

In  bo th  the  fluid and hybrid models in dipolar coordinates, the parallel Alfven velocity 

profile is not constant and so the dispersion relation for the Shear Alfven wave is not as 

triv ial to  solve as for the cases considered in the box and cylindrical coordinate models. 

A discussion of the solution of the dispersion relation in dipolar coordinates is given in 

detail in Voronkov (1998) and won’t be repeated here. The eigenmodes for uz and 63 were
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Figure 5.2: Equatorial radial Alfven velocity profile.

calculated for density profile (a) and the normalized profiles are illustrated  in figure (5.3). 

The period of this eigenmode is T =322 s.

5.2 .3  Linear and N onlinear E volu tion  in th e  C old P lasm a  M H D  L im it

In  this section the linear cold plasm a MHD model is contrasted w ith the nonlinear MHD 
dipolar model (Voronkov, 1998). The la tte r model has no parallel electric field and so this 

was tu rned  off in the cold plasm a code. Also, very small pressures had to  be used in the 
nonlinear code for stability  reasons.

Both program s were intialized with the same uz profile as already highlighted and the 

evolution of the  equatorial am plitude of the Shear velocity is illustrated  in figure (5.5). As 
is evident for the first two periods, there is little  difference between the two sim ulations, bu t 

a  growing phase difference is evident after tha t. In the nonlinear model, the  resonant period 
of the field line is increasing and consequently, the resonant frequency is decreasing. This 
makes sense as there should be a  decrease in resonant frequency due to  nonlinear effects 
(Voronkov, 1998) which would not be evident in the linear code. The nonlinear effects 
come in via the ponderm otive force which drives plasm a toward the equator increasing the 
equatorial plasm a density and consequently lowering the equatorial Alfven velocity. Since 
the resonant period of the field line is proportional to  the ratio  of the parallel wavelength 

and Va , the  period increases as Va  drops. The am plitude also decreases in the  nonlinear 

case which is also consistent w ith the figure.
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Figure 5.3: Profile of 113 (solid line) and ^ 3 6 3  (dashed line) for the fundam ental Shear Alfven 
wave mode along the L=10 m agnetic field line. 113 and /13&3 are normalized by the equatorial 
and boundary values respectively.
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If however, this shift is neglected and the radial current densities are com pared after 

an equal num ber of oscillations (see figure (5.5)), it is evident th a t the  radial s truc tu re  is 

very sim ilar in bo th  cases. Therefore, the shift in resonant frequency aside, the linear and 

nonlinear codes yield essentially the same results in the cold plasm a limit.

5.2 .4  E lectron  Inertia l E ffects in th e  C old P lasm a L im it

In  this section we present simulations using the cold plasm a MHD code including electron 

inertial effects. Results will be presented for bo th  the density d istributions (a) and (b) 

outlined previously and the same initial Shear Alfven velocity profile will be used as in the 

previous section. Figure (5.6) illustrates the sim ulation results for density d istribu tion  (a). 
Phase m ixing effects are clearly visible, bu t the electron inertial lengths are too small to 

have any influence. Figure (5.7) is the same plot, bu t now for density d istribu tion  (b) where 
due to the decreased density along the field line, the electron inertial effects are enhanced 
and some propagation of the inertial SAW pulse in the direction in increasing Alfven wave 

gradient is evident (NOTE: this increase in the gradient is to the right when viewed as a 

function of X2  and to the left when viewed as a function of r in the equatorial plane).

Figure (5.8) illustrates ionospheric slices of current density and electric field from bo th  

of the previous runs w ith Ae ^  0. As is consistent w ith other work (R ankin et al., 1999) 

in the MHD lim it, the current density is the same order of m agnitude as observed, b u t the 

m agnitude of the parallel electric field is well below the m V /m  scales observed.

5.3 Num erical Details for the Test Particle and Hybrid M od­
els

5.3.1 P a rtic le  P lacem en t

Unlike in the  box and cylindrical models, the particles are not placed according to  a specified 
fluid density function. The positions of the particles are used to  specify the fluid density 

function. In  the radial direction, we have chosen to place the electrons equally spaced in r0. 
This results in a constant radial density profile as a function of X2 ■ Along the field line, the 
electrons are placed equally spaced in x\  which yields an increasing density profile toward 

the ionospheres. The variables nPl and nP2 respectively indicate the num ber of electron 

positions assigned in the parallel and radial directions respectively. Once all the initial 
sim ulation electron positions are established, the entire profile is then  uniformly scaled so 
th a t it has an equatorial value of n eq.

5 .3 .2  F ilterin g

It was discussed in C hapter 4 how the 2 D digital filter was applied quite successfully in the 
box model. The same was tried w ith the dipolar model, bu t the program  becomes unstable 
a t the ionospheres when filtering is applied in the field aligned direction (even when the
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profile.

filtering is not applied across the ionospheric boundary). Therefore to  date  w ith the dipolar 

model, only radial filters have been applied (both  frequency and lag dom ain). These are 

not used in any of sim ulations presented here as their effect is minimal. The source of most 
of the noise is from the field aligned direction as is evident from the fact th a t increasing the 

field aligned particle num ber does the most to  clean up the simulations. The issue of proper 

filtering w ithin the dipolar code needs to be addressed more completely, b u t the problem  

has been fairly well com pensated for by increasing the particle num ber.

5.3 .3  In itia l Profile

Unlike the fluid model simulations, we did not choose a proper eigenmode for the density 

and m agnetic field profiles, bu t instead ju st specified a two dimensional G aussian of the 
form

u 3 (x2 , x 1 , t 0) = Aexp(—— — 0^ r ,X l^  )exp{ — ^ X 2 ^ 2r  ̂ ) (5.8)

where A is the Shear Alfven wave am plitude set to  34.5 km /s, d\ =  0.3, c?2 =  0 .05/L  and 
X2 r is the resonance position. The resulting profile is shown in figure (5.9) where the field 

aligned profile is taken along x 2r ■

5 .3 .4  M axw ellian  and P itch  A ngle  D istr ib u tion

T he Maxwellian d istribution function is chosen w ith the same algorithm  as outlined for 

the box model. However, the velocity in this case is the to ta l velocity v, ra the r th an  ju st 
the parallel component v\. In order to reduce boundary noise, the velocity values are 

m ultiplied by a radial shape function so th a t they are set to zero close to  the  boundaries. 
The hypergaussian function given by

8 8
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/ ( r oi ~~ r o r ) ^ S s
Vi  =  V i e x p (  t x lQ_u ) (5.9)

is used where rm is the r0 value of the field line the i th electron is a ttached  to.

Using a  random  num ber generator, pitch angles between 0 and 90 degrees are assigned 

to  each sim ulation electron in the distribution. This is a meant to  be a constant density 

d istribu tion  as a function of pitch angle, bu t the finite num ber of sim ulation electrons 

used yields some variation around the mean. The pitch angle d istribu tion  for the  case of 
Te = 1.0 w ith np — 2 x 106 is illustrated  in figure (5.10). The results of th is sim ulation will 

be presented in the next section.

Using its respective pitch angle, the parallel and perpendicular, v±, velocities are then  

calculated for each sim ulation electron. The la tte r values, along w ith the local m agnetic field 
a t the particles initial position are then  used in the determ ination of the m agnetic moment, 
fim. A distribu tion  function of the magnetic moment using the previously displayed pitch 

angle d istribu tion  is displayed in figure (5.11). Also shown is the result for an in itial Te = 10 

eV initial electron d istribution function using 5 x 106 sim ulation electrons.
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Figure 5.11: Left: In itial m agnetic moment d istribution for the case Te = 1.0 w ith np =  
2 x 106. Right: Same, bu t for Te =  10.0 and np = 5 x 106.

5.4 Comparison of Test Particle M odel and Hybrid M odel 
in the cold plasma limit

In  this section will be presented sim ulations w ith the hybrid model for n eq — 0.1 cm - 3  and 
two in itial Maxwellian d istribution functions w ith average energies Te =  1 eV and Te =  10 

eV where the therm al velocity is related to  Te by vth — \ j ‘̂ t  ■ The ionospheres are a t 5R e  
and the equatorial radial boundaries are a t 9.7 R e  and 10.3 R e - Profiles along the  L  =  10 
field line of the density, ambient m agnetic field, Alfven velocity and inertial length profiles 
are illustrated  in figure (5.12).

For b o th  of these sim ulations we used 128 grid points in the X2 direction and 32 in the x \ 
direction along w ith a tim e step of 0.0067 seconds. Figure (5.13) illustrates the equatorial 

am plitude of u% as a function of tim e for a fluid model run. The fact th a t a  m ode w ith a 

period of about 80 s dom inates indicates th a t the 2 D Gaussian profile used, is close enough 
to  the fundam ental eigenfunction so th a t this single mode dominates.

Figures (5.14) and (5.16) illustrate the comparison of the A m pere’s law current density 
and the electron current density for the test particle model and hybrid m odel respectively. 

The slices are taken along the southern ionospheric boundary inner grid cell. Unlike the 
box model and cylindrical model cases there is a significant divergence between the two 
current densities in the test particle case. This is due to  the presence of the  m agnetic 
m irror force. Initially, the influence of the electric field is minimal and the  m agnetic m irror 

force dom inates acting against the electron motion toward the ionospheres. This appears 
as a net positive displacem ent in current for the northern  ionosphere and a  net negative 
displacem ent a t the southern ionosphere (as seen in figure (5.14)). As the electric field has 

more tim e to  act on the electrons, the electron current density becomes more random  and 

centered around zero. Tim e slices of this parallel electric field for the test particle  model
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are displayed in figure (5.15). The m agnitude of the field stays the same order of m agnitude 
through the full length of the run.

The evolution of the d istribution function as a function of tim e for the  hybrid model 

case is illustrated  in figure (5.17). As is evident, the d istribution function undergoes an 
in itial quick adjustm ent as the hybrid system converges. However after th a t, there is little 

adjustm ent through 9 oscillation periods. The heating is less than  observed in the box model 
or cylindrical model cases and it is assumed th a t the balance between the electric field and 
m irror force restricts the heating th a t would otherwise occur if the m irror force were not 
present. The distribu tion  function for the hybrid and test particle runs are contrasted in 

figure (5.18) a t t=400 seconds. The w idth in bo th  cases is qualitatively equal w ith  the 
m ajor difference being th a t the test particle d istribu tion  has a  internal s truc tu re  associated 

w ith it. This is smoothed out in the case of the hybrid model d istribution.
In order to  investigate the effect of increasing the electron d istribu tion  tem perature, 

an additional sim ulation was done w ith Te =  10 eV using 5 million sim ulation electrons. 

In this case as well, the fluid fields stay very close to  the cold plasm a MHD results and 

so are not displayed here. The evolution of the d istribution function is shown in figure

(5.19). As is evident in th is case as well, there is little  effect of wave-particle interactions 
and the d istribu tion  function is not significantly modified. Higher tem peratures would no 
doubt somewhat enhance the effects of the pressure and m agnetic moment term s in the 
equation for the  parallel electric field. However no additional sim ulations were done for 

these model param eters and higher Te for two reasons. The first is the tim e required, as 

large increases in particle num ber would be needed to  m aintain resolution w ith tem peratu re  

increases. Secondly, the results of Rankin et al. (1999) suggest th a t significant increases in 

the parallel electric field will only be found at altitudes of 2-3 R e  and they used a Te = 100 

eV  initial Maxwellian. The focus of the research has therefore been to  test the m odel w ith 
lower a ltitude  ionospheres and initial results in this direction will be sum m arized in the 
next section.

5.4.1 S ingle P artic le  D ynam ics

The comparisons between the test particle simulations and hybrid sim ulations introduced 

in the last section can be further highlighted by looking a t single particle dynamics. Figure

(5.20) illustrates the trajectories of test electrons w ith 1, 5 and 10 eV energies released at 

the  equator a t r =  10 R e  w ith  and w ithout the resonance electric field. There is very 
little  divergence between the two cases except for the 5 eV case where the  electron is 
undergoing a resonant interaction w ith the electric field. The period of the electron motion 

is approxim ately twice th a t of the resonance. Therefore, in the test particle lim it for most 

electrons, there will not be large divergences in their orbits due to  the resonance electric 
field.

Figure (5.21) illustrates the trajectories of the two same electrons in the test particle
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Figure 5.13: Com parison of equatorial am plitude of 113 a t x^r as a function of tim e for the 
fluid model w ith neq =  0 .1  cm - 3 .

and hybrid models respectively. It is clear th a t in the test particle lim it, the electrons seem 
to be moving w ith p retty  much the same orbits as they would have under the  influence 
of the d ipolar magnetic field alone. In  the hybrid case however, the  orbits are drastically 

altered under the influence of the coupling. As in the box model sim ulations, these results 

were not significantly altered w ith the exclusion of bo th  the pressure and m agnetic moment 

components of the electric field and so the orbits of the m otion are m ost significantly affected 

by the local electric field imposed in the enforcement of quasineutrality. The peculiar m otion 

of the second electron is explained by the fact th a t it reaches the ionosphere and is re-injected 
a t the first guard cell w ith the same energy.

5.5 C om parison  o f  sim u lations w ith  Ion osp heres at 5 and 3
R e

Thus far, sim ulations w ith the hybrid code have been lim ited to having ionospheres a t 3 
R e  above the  earth  due to boundary issues th a t will be highlighted later. In th is section is 
presented a sim ulation using this boundary for an initial 1 eV  electron d istribu tion  function 

and the results will be contrasted w ith the 5R e  case summ arized previously. The in itial 
Shear Alfven wave pertu rbation  is the same in bo th  cases.

Figure (5.22) illustrates us a t the equator and the current, pressure and fim m oments of
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Figure 5.21: Com parison of trajectories for the hybrid m odel (solid line) and the  test particle 
model (dashed line) for two different initial sim ulation electrons.

the electron distribu tion  function at their respective ionospheres for bo th  cases. The slightly 

different frequency for the resonance introduced by moving the ionospheric boundaries to 
3 R e  is m ost clearly evident in the top frame for tt;i. As would be expected, the  increased 
curvature significantly enhances the current and pressure moments in th is case as well. 

The initial h m  moment of the electron distribution function is lower in this case because 

the increased m agnetic field strength  lowers the average magnetic moment value for the 

distribution, bu t the gradual increase of the value over tim e is suggestive of red istribu tion  

of electrons w ith larger m agnetic moments towards the ionospheric region over tim e. In 
addition, over tim e, the ionospheric value of the pressure moment is increasing in the 3 R e 
case.

Figure (5.23) illustrates the distribution function in the 3R e  case and there appears to 
have been some slight resonant heating of the electrons over tim e. This (along w ith the 
increase of the pressure and hm  moments) may or may not be physical. The m odel can 
experience num erical heating in certain cases as will be highlighted in section 5.7. Further 

verification sim ulations need to  be conducted to  elucidate the trends noted here.

In order to  pu t perspective on the length of these runs, it is w orth noting th a t the 

sim ulation w ith rigngp^ere =  3 R-e - using 6  million sim ulation electrons and a  tim e step of 

0.0025 seconds, took about 10 days using 24 processors on an SGI Origin 2000. The grid 
used had 128 points in the * 2  direction and 64 points in the x \  direction.

5.6 Inertial Alfven wave and thermal plasma lim its

Thus far, even though the sim ulations have been in the cold plasm a lim it, the  electron 

inertial scale lengths have been too small for the resonance to  narrow too in a reasonable 
am ount of tim e. A much enhanced inertial length can be achieved by relocating the reso-

99

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



0.05

CO3

- 0 .0 5
0 50 100 150 200  250  300  350  400  450  5 0 0  550  600

tim e  (s)

40  -  

20  -

- 2 0 -

- 4 0 -

- 6 0 -
0 50 100 150 200  250  300  350  400  4 5 0  500  550  600

tim e  (s)

- 3 0 0 -

- 4 0 0 -

-5 0 0
0 50 100 150 200  250  300  350  400  4 5 0  500  5 5 0  600

tim e  (s)

- 0 .3 5

- 0 . 4 -

-0 .4 5  -

- 0 . 5 -

- 0 .5 5 -
n /

0.6
0 50 100 150 200  250  300  350  400  450  500  5 5 0  600

tim e  (s)

Figure 5.22: Four param eters as a function of tim e for the Te = 1.0 eV  sim ulations w ith 
ionospheres a t 3 R e  (solid line) and 5 R e  (dashed line). Param eters p lo tted  (from top to 
bottom ) are the equatorial fluid velocity, and southern ionospheric values of the  parallel 
current, j i, pressure moment, K p v fS  and hm  moment, K p ^  /j>m S  of the electron 
d istribu tion  function. K p and K fl are the norm alization constants for each term  (see section 
5.8 equations).
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Figure 5.23: Evolution of d istribution function for the sim ulation w ith Te = 1.0 eV  and
f io n o s p h e r e = 3 R /■; •

nance closer to  the earth  as well as dropping the equatorial density. This has been done 

here to illustrate  the form ation of a inertial SAW in the cold plasm a lim it as well as the 

divergence between the MHD and the hybrid model for therm al plasm as (vth ~  Va )-
For the sim ulations to  follow, the resonance has been relocated at 6  R e  and the  equa­

torial num ber density has been dropped to 0.05 cm - 3 . The resulting radial Alfven speed 

and electron inertial length a t the equator are displayed in figure (5.24). Two sim ulations 

were then  conducted for initial Maxwellian distributions functions w ith Te =  10 eV and 
Te = 70 eV (see figure 5.25). Com parison of this figure with (5.24) illustrates th a t these 

d istribu tion  functions represent approxim ately <C Va  and vth ~  V a respectively in the 
equatorial plane. Significantly larger tem peratures can be considered here relative to  the 

last sections because the field line is much shorter and consequently fewer sim ulation elec­
trons are needed to  adequately cover the sim ulation region. The ionospheres are located at 

3 R e -
The equatorial Shear Alfven velocity profile a t t =  96 seconds for the 10 eV  case is 

illustrated  in figure (5.26) along w ith the cold plasm a MHD results. The form ation of an 

inertial SAW is clearly visible propagating in the direction of increasing Alfven wave speed 

and the hybrid and MHD models are in very good agreement. In the Te =  70 eV  case, on 

the other hand, (figure 5.27) there is an evident divergence from the cold plasm a MHD. 

No longer is there any propagation in the direction of increasing Alfven wave speed in the
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Figure 5.24: Radial Alfven velocity and electron inertial length profiles (in nondim ensional 
units) a t the equator for rT =  6  R e  and n eq = 0.05 cm - 3

hybrid case as would be expected for a therm al plasm a. Propagation in the o ther direction 

of a kinetic Alfven wave would be expected in the vth Va limit.

These results are consistent w ith the box model results w ith the exception th a t there is 
no m easurable dam ping as compared to  the MHD case and the d istribu tion  functions are 
unmodified due to  Landau trapping. This is because the d istribution functions are simply 

too cold. In the  case of the changing field aligned Alfven wave profile, the  phase velocity 

of the SAW is a  function of the integrated Alfven wave speed along the  field line, ra ther 

th an  the local value of Va ■ Taking the approxim ate frequency of th is resonance a t abou t 7 

seconds and the length of the field line (10.2 R e ), the ratio  ^  for a fundam ental mode FLR  
is 26.9 in nondimensional units. This is approxim ate since the initial G aussian profile is 

only close to  a fundam ental mode eigenfunction. However, it is close enough for comparison 

and exam ination of figure (5.25) illustrates th a t even the Te =  70 eV  d istribu tion  is too 
cold to experience Landau dam ping effects. The strength  of this potential dam ping has yet 
to  be examined.

5.7 Boundary Issues

As indicated earlier, the model can experience artificial numerical heating of the electron 

d istribu tion  function. This is clearly evident in a couple of sim ulations conducted for an 
initial electron distribu tion  function w ith Te =  4 eV  and an equatorial num ber density of 

n eq =  1.0 cm - 3  using first 2 x 106 and then 6  x 106 sim ulation electrons. There is fairly 
d ram atic heating in the former case (top panel) bu t very little in modification in the la tte r 

(bottom  panel). This is most probably related to fluctuations th a t develop a t the ionospheric 
boundaries when there are an insufficient num ber of particles to  adequately sm ooth out the 
particle d istribu tion  function moments. These fluctuations can then  introduce gradients
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Figure 5.25: D istribution functions a t t =  24 seconds (solid line) and t = 96 seconds (dashed 
line) for the inertial SAW example (left) and the kinetic Alfven wave example (right).
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the cold plasm a MHD model (solid line) and the hybrid model for Te = 10 e V .
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into the parallel electric field calculations and numerically enhance the results which in tu rn  

heats the  particles, creating more noise and a sort of feedback loop results. This artificial 

enhancem ent in the pressure moment in the np =  2  x 1 0 6 case relative to  the np =  6  x 1 0 6 

case is evident in figure (5.29). Given enough time, the result of the num erical enhancem ent 

of the parallel electric field is to  accelerate all the electrons into the ionospheric regions, 
evacuating the rest of the sim ulation grid and causing the sim ulation to  crash. Therefore, 
increasing particle num ber is a fundam ental test in interpreting any results from the model. 

The model seems most sensitive to  this when higher equatorial densities are used and thus 
the  n eq =  1.0 cm - 3  case was used to  highlight this issue. As well, the  effect is stronger w ith 

ionospheric boundaries closer to  the earth  and so this has been the m ain obstacle in try ing 

to  conduct sim ulations w ith ionospheres below 3R e - For example, in itial sim ulations w ith 
the  ionospheres a t 2R e  using 7 million sim ulation electrons illustrated  significant heating 
very early in the evolution of the system .

5.8 Parallel Electric Fields in the constant parallel density  
case

In  C hapter 4 for the box model results, it was illustrated  how difficult it is to  clearly see the 
parallel electric field. This is more so the case in the dipolar model which is intrinsically
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Figure 5.28: D istribution function evolution for the hybrid model w ith Te=4.0 eV and 
n e — 1 . 0  cm - 3  using 2  million particles (top) and 6  million particles (bottom ).
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noisier because of the approxim ation used in the particle interpolation as well as the  present 

lack of filtering in the model. In  addition, the spatial integration done to  obtain  E^c directly 

in the dipolar model, introduces a significant am ount of noise and may indeed be the  largest 
contributer.

As w ith the box model case though, the parallel electric field can be seen for very cold 
distributions. In this section the MHD result for E \ is contrasted to  the hybrid model 

results for several such distributions. As well, a comparison of the m agnitudes of the 
source term s in the expression for E \ is made. This will be done for a constant field aligned 
density d istribu tion  since the electric fields are significantly enhanced over the density profile 

considered thus far. The constant density case was not originally used, because along w ith 

the enhanced electric field, there are large density fluctuations in the ionospheric regions th a t 

get larger w ith tim e and lower altitude. The density depressions th a t form get large enough 

to  violate the  linear approxim ation th a t the code is based on. W ith  regards to  the electrons, 
th is linear approxim ation comes via the fact th a t the Alfven velocity and electron inertial 

length profiles are fixed at t  = 0  from the initial electron d istribu tion  and then  are not 

modified. W ith  large fluctuations in the electron density this approxim ation is unreasonable 
and therefore long term  sim ulations w ith a constant density profile are unrealistic w ith  the 

model in its present configuration. As is, the evolution of the sim ulations is to  create larger 

and larger density depressions a t the ionospheres which eventually causes the program  to 
crash when the electron num ber density drops to  zero.

Since the equation for the parallel electric field is being referenced in this section, it is 
useful to  rew rite it here. In nondimensional form, it is given by

_ 1  d . h3

^2^3 9X2 h\Il2

/i2^3 9x2 ^hifl2  9x\

+  a i f

I
where as indicated in C hapter 3, G =  h \E \ and f?2C is the field resulting to  enforce quasineu­
trality. The new variables, K p and K p are the norm alization constants for the m agnetic 

moment and pressure term s respectively. A lthough they are trea ted  separately in the  pro­
gram, these two variables are in fact numerically equal and are given by

K„ =  K r =  (5.10)
-DJS[ Tflp

where L is the norm alization length and the N subscript denotes the norm alization constant 
for the relevant variable. For simplicity of notation, the scaling factors evident in equation 
(3.65) have been om itted and the moments are assumed to already be scaled.
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Before looking at the individual components though, figure (5.30) illustrates the  radial 
profile of E \ close to the southern ionosphere for the cold plasm a MHD code and the  hybrid 
model runs w ith three different cold initial electron distribution functions (Te  =  0 .0 0 1 , 0 . 1  

and 1.0 eV) a t t =  13 seconds. In all cases, the resulting field is very close to  the MHD 

case w ithin the lim it of the numerical noise. The increase in this noise w ith tem pera tu re  

is also evident. Figure (5.31) illustrates the electron density profile a t the same position. 

Relatively large density fluctuations are already evident a t this early tim e in the  evolution 

of the system. For all the simulations, the param eters are the same as in the last section so 

the  equatorial position of the resonance is still a t 6  R e  and the ionopheres a t an  a ltitude  of 

3 R e - The constant electron num ber density is 0.05 cm - 3  and 4 million sim ulation electrons 
were used in each case. The period of this system is approxim ately 7 seconds.

Now, in order to  illustrate how the different term s contribute to  the  final value of E \, 
figure (5.32) presents the values of each of the four term s on the right hand side of equation 
(5.10) along the same radial slice a t t — 6  seconds. To avoid complexity of notation, the 

term s are identified simply by referencing the relevant principal com ponent (i.e. E 2  -E^c, 
Hm or pressure- i v \S ). Only the Te =  0.001 eV and Te =  0.1 eV  cases are illustrated  

in the top two panels because the Te =  1.0 eV case was too noisy for the and 

fields. In  all cases the results have been filtered (after the simulation) w ith the same digital 
filter as used in the box model. This is also true of the E \ and n e plots already presented. 
The results were presented at t = 6  seconds because the E-2 C term  becomes noisier and 

consequently more difficult to visualize a t later times.

As is evident, the largest component is from the E 2  term  and the correction field E^c is 
relatively small, bu t can be of similar order of m agnitude at times. It also seems to  have 

sim ilar dependence in the two tem perature cases, bu t the noise increases w ith tem pera tu re  
most significantly in this term  as compared to any other. The signal in the T e  =  1.0 eV 

case is completely drowned in noise and so it seems evident th a t most of the noise th a t 

gets transferred to  E \ is coming via the term  for E 2 C- The pressure term  is close behind 
in m agnitude b u t is not sufficiently large enough to  effect the  evolution. The shape of 

the profiles is sensitive to  tem perature, bu t it is not always the case th a t the T e  =  1 . 0  

eV result is smallest. Finally, the value of the (im term  is virtually  insignificant for the 

present param eters bu t it does increase relatively dram atically as the  tem pera tu re  of the 

d istribu tion  increases. Therefore as expected, the contribution from the  m irroring term  

grows w ith tem perature. The increased curvature a t lower altitudes will also add to  this 
since the term  incorporates the parallel gradient of the m agnetic field.

In the Te — 1.0 eV case, the sim ulation was continued and the result for the  parallel 
electric field is displayed in figure (5.33) along w ith the MHD result a t t  =  30 seconds where 
they  are still in good agreement in the inertial SAW limit. A dditional sim ulations w ith Te 
up to  3 eV have illustrated  no significant divergence from the MHD result.

In order to  further illustrate  th a t these results are self consistent, it is possible to  appeal
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Figure 5.30: Radial profile of E \ close to the southern ionosphere (x\ =  —0.0573) for the 
MHD model and the hybrid model w ith three different initial electron d istribu tion  functions 
a t t =  13 seconds. A constant field aligned density profile was used w ith n eq =  0.1 cm - 3 .
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Figure 5.31: R adial profile of n e close to  the southern ionosphere (x\ — —0.0573) for the 
MHD model and the  hybrid model w ith three different initial electron d istribu tion  functions 
a t t — 13 seconds. ir ,n
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Figure 5.32: R adial profiles of the components of the equation for E\ close to  the southern 
ionosphere {x\ =  -0 .0573) a t t = 6.0 seconds for Te = 0.001 eV  (solid line), Te =  0.1 eV  
(dashed line) and Te =  1.0 eV  (dotted line). This last case is not displayed in the top two 
panels as it was too noisy.
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Figure 5.33: R adial profile for E \ close to  the southern ionosphere (x-\ = —0.0573) for the 
MHD m odel and the hybrid w ith Te =  1.0 eV at t = 30 seconds.

to  a simple argum ent to  see w hat particle energies are needed to  carry th is current. As 

sta ted  in C hapter 3, the current density is given by |j i |  =  |neuf[|. Therefore by taking the 

parallel current density from the sim ulation and using the value of n  =  0.05cm -3 it is triv ial 
to  calculate the average electron energy needed to support the j \  as a  function of position 

along the field line. This is presented in figure (5.34) where the top  panel displays the 
current slice along the field line (southern ionosphere) and the bo ttom  panel illustrates the 

corresponding calculated average electron energy. As is clearly evident, very low electron 

energies on the order of 0.1 — 1 eV are needed to  support the ionospheric parallel current 

density and much less for higher altitudes. Therefore it is not surprising th a t significant 

electric fields are not observed to  accelerate the electrons to sufficient velocity. As well, 

it is worth noting th a t the m aximum  values of j \  noted in any of the hybrid sim ulations 
considered in this chapter are on the order of 10~ 2 fiA/rri2.

As a comparison, the same calculation was done for ionospheres a t an a ltitude  of 1 Re- 
The results are displayed in figure (5.35) and it is clearly evident th a t electron energies of 
hundreds of eV are needed to support parallel currents on the order of 10- 1  — 1 f iA /m 2. 
A lthough th is situation  is unrealistic as density increases along the field line, very low 
densities can be found in ionospheric density cavities and and consequently the calculation 
is relevant. Observations (and other simulations) tend  to  produce field aligned current 
densities on orders up to  a few tens of jiA /rn 2 which, in the presence of low enough densities,
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m ay need keV electrons to support the current. Extending the code to  work in the  f iA /m 2 

range will be the m ain focus of future research.
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Figure 5.34: Average electron energies needed to support the current density j i  in the top 
panel for a constant electron num ber density profile of 0.05 cm - 3 . Calculation based on the 
definition jji | =  \nev\. C urrent density profile is for the MHD sim ulation a t t — 1 s along 
x 2 =  0.165 field line w ith rionosphere = 3 Re-
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Figure 5.35: Average electron energies needed to  support the current density j \  in the top 
panel for a constant electron num ber density profile of 0.05 cm - 3 . Calculation based on the 
definition |_7i | =  \nev\. C urrent density profile is for the MHD sim ulation at t — 1 s along 
x 2 =  0.165 field line w ith rionosphere =  1 R E.
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5.9 Summary

In this chapter, the results of bo th  the 2D cold plasm a MHD model and hybrid model 

in dipolar coordinates were illustrated. In bo th  cases, the perfectly conducting boundary 

conditions were used at the ionospheres. In the case of the cold plasm a MHD model, the 

following was illustrated.

•  In the  Ae =  0 case, the model results were in good agreement w ith a nonlinear MHD 

sim ulation in the cold plasm a and low tem perature limit. The only significant differ­
ence was an expected frequency shift in the nonlinear case.

•  For the  case of Ae =  0 the form ation of an inertial SAW propagating in the direction 

of increasing Alfven wave speed was illustrated. The parallel electric field m agnitude 
was consistent w ith other sim ulation results in th a t it was several orders of m agnitude 
below the observed m V /m  range. This again confirms the failure of MHD theory to  

properly account for the observed parallel electric field.

For the  hybrid model simulations, the following results were obtained.

•  The hybrid model agreed very well w ith the cold plasm a MHD results in the  cold 
plasm a lim it including the form ation of an inertial SAW.

•  In the therm al plasm a case, the hybrid model diverged from the cold plasm a MHD 
case as would be expected. Landau trapping  effects were not noted as the d istribu tion  
function was still too narrow.

•  The parallel electric field agrees w ith MHD results for cold plasm as a t a ltitudes above 

3 R e  along the magnetic field line. For all density profiles considered, the  m axim um  

ionospheric current density is on the order of 10~ 2 fiV /m 2  and populations of cold 

electrons are sufficient to carry the needed current. This agrees w ith an order of 

m agnitude calculation based on the definition of |j||| =  ]neu[|| and is consistent w ith 
the work of Rankin et al. (1999).

Therefore, although there are significant problems to  be addressed in the d ipolar code 

in term s of resolving the parallel electric field and handling the boundaries in a  more robust 

way, the m ethod has been illustrated  to be sound. The results are consistent w ith the  cold 
plasm a MHD when vth <C Va and diverge as would be expected in the therm al plasm a lim it. 
Given tim e, the approach should prove a useful tool in helping to  study  how wave-particle 
interactions affect parallel electric field generation in FLRs.

5.10 Erratum

Subsequent to  the defence of th is thesis, it was noted by the au thor th a t the norm alization 
constants, K f) and K p. were given the incorrect sign stem ming from an  error incorporating
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the  negative sign w ithin the charge variable ”e” . Both quantities should in fact be positive. 

Due to the small m agnitude of the pressure and magnetic moment contributions to  the 
parallel electric field, it is not believed th a t this error significantly effects the results of t his 
chapter. As a  check, the sim ulations used w ithin figure (5.32) were redone w ith the corrected 

program  and the results are shown in figure (5.36). They are quantitatively sim ilar to  those 

in the original figure w ith the exception of the sign in the bottom  two panels. Also, the .E^c 

term  is smaller and less noisy. It is uncertain as to  why the m agnitude is reduced, b u t it 

may be partially  num erical and partially  a response to the change in sign of the o ther term s. 

The net effect on the resulting parallel electric field is negligible however as is evident in 

figure (5.37) where there is no sigficant divergence from the MHD field. Therefore the  final 

in terp reta tion  is the same. The reduced noise is due to  the fact th a t although the  same 

num ber of particles were used in th is simulation, the radial sim ulation range was somewhat 
reduced giving b e tte r  resolution.

Due to  the  tim e constraints for the submission of the thesis, it was not possible to 
redue all the sim ulations to their full extent, bu t initial trials show th a t the only m ajor 

effect is to  change the  sign on the pressure and magnetic moment term s. The sim ulations 
rem ained otherwise unmodified. Therefore, w ithin the chapter th is would m anifest itself 

most significantly as a change in sign in the bottom  two panels of figure (5.22) and the same 

for the bo th  panels of figure (5.29).
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Figure 5.36: R adial profiles of the components of the equation for E \ close to  the  southern 
ionosphere (x\ = —0.0573) a t t = 6.0 seconds for Te — 0.001 eV  (solid line), Te = 0.1 eV  
(dashed line) and Te = 1.0 eV  (dotted line). This last case is not displayed in the top  two 
panels as it was too noisy. Calculation done w ith corrected program.
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Figure 5.37: Radial profile of E\ close to  the southern ionosphere (x\ =  —0.0573) for the 
MHD m odel and the hybrid model w ith three different initial electron d istribu tion  functions 
a t t — 6  seconds. A constant field aligned density profile was used w ith n eq =  0.1 cm ~3. 
Calculated w ith the corrected program.
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Chapter 6

Conclusions

In this work we have developed a self consistent hybrid M HD-kinetic m odel for studying 

wave-particle interactions in FLRs, bu t the model is applicable to  any system  w ith Shear 

Alfven waves as long as the minimum  scale length is above the ion gyroradius. The model 

consists of the cold plasm a MHD equations and the guiding center equations for the  electron 

dynamics and it has been successfully developed and illustrated  to  work in bo th  cartesian 
and dipolar coordinate systems.

In the first p a rt of the thesis, the model was developed in a box geometry w ith a constant 

am bient m agnetic field for bo th  periodic and perfectly conducting boundary conditions. 
The plasm a density and Alfven velocity were constant in the field aligned direction w ith 

gradients in the radial direction. For cold initial electron d istribution functions, Vj/j Va , 
the hybrid model results were shown to be in good agreement w ith the cold plasm a fluid 

code. For warmer distributions, > V,\ there was significant Landau dam ping of the 

standing Shear Alfven wave system. The dam ping rate  was shown to  be in good agreement 

w ith th a t predicted by the analytical dispersion relation developed from the cold plasm a 

equations and electron drift kinetic equation.

As discussed in the opening chapter, the converging magnetic field inherent in the  dipolar 
geometry is fundam ental in the study of wave-particle interactions in FLRs and so the  last 

p a rt of the thesis was devoted to  developing the model in this geometry. Before presenting 

results for the hybrid model, comparisons were made in the cold plasm a fluid lim it w ith the 
nonlinear resistive MHD code (Voronkov et al., 1998) as a check th a t the code was working 

properly. It was further illustrated  th a t the nonlinear frequency shift does not introduce 

significant differences in the phase mixing evolution of the resonance when looked at from 
the point of view of the num ber of periods.

For the dipolar hybrid model case, simulations were restricted to  having the ionospheres 

a t an  a ltitude  of 3 R e  due to  noise issues a t these boundaries which introduce num erical 
heating of the electron d istribution function. W ithin  th is limit though and using cold initial 

electron distribu tion  functions, good agreement was again shown w ith the cold plasm a MHD 

results for bo th  constant and changing field aligned density profiles. This included the
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form ation of an inertial SAW. In the therm al plasm a case v th ~  Va , divergence between the 

hybrid and MHD systems was again illustrated. No Landau dam ping effects were noted in 
th is case however, because the d istribution functions considered are still too cold.

Due to  sta tistical noise issues, clear observations of the parallel electric field have thus 

far been lim ited to  the cold plasm a regime where they have been consistent w ith the MHD 

results. Large enhancem ents due to  wave-particle interactions would have been visible 

though, b u t none have been seen and neither has there been any significant changes to  the 

initial electron d istribu tion  functions. This result is not surprising since the sim ulations 

have been restricted  to  regions above 3 R e  and the current densities evident here are only 
on the order of 10- 2  jiA /rn 2 for most reasonable param eters. E lectrons w ith energies in the 
eV range or less are sufficient to  carry this current and so no significant m odification of the 
electron d istribu tion  function is required. On the other hand, the fluid calculations have 
illustrated  th a t field aligned current densities up to  1-10 ytlA /m 2 are evident a t altitudes 

around 1 - 2  R e  (both in sim ulations and observations) and depending on the densities, 

electron energies up to  the keV range may be needed to  support this current. This combined 

w ith the fact th a t m irror force and pressure effects increase w ith tem peratu re  and curvature 

implies th a t wave-particle interactions should become more evident when stable sim ulations 

a t lower altitudes are done. This suggestion is consistent w ith the results of Rankin et al. 

(1999) in th a t the significant jum ps in the parallel electric field usually occurred in the 

range 2-3 R e  above the ionosphere (even in the absence of ionospheric density cavities).

In conclusion, a  new m ethod for modeling of wave-particle interactions between elec­
trons and SAWs has been introduced and shown to work properly in b o th  box and dipolar 
geometries. Therefore the m ain goal of the thesis has been achieved. Thus far, no concrete 

comparisons can be m ade between this work and the nonlocal conductivity m odel (Rankin 

et al., 1999; Tikhonchuk et al., 2000) except th a t the lack of significant enhancem ents in 

E \| below 3 R e  is consistent w ith these results. The m ain focus of the research from this 

point then  is to  conduct sim ulations w ith ionospheres in the 1 - 2  R e  range. Stability  issues 

w ith the ionospheric boundaries below 3 R e  have been highlighted, bu t it is possible th a t 
these effects can be com pensated for by increasing particle num ber and reducing the tim e 
step. Further work in progress to  introduce a stable filtering algorithm  to the m odel will 

also go a  long way to  resolve this. Therefore, the model stands in a good position to  help 

elucidate the significance of wave-particle interactions to  enhancing the parallel electric field 
in the lim it of perfectly conducting ionospheres. In addition it may be possible to  adap t 
the model to  the fact th a t the ionospheres are not perfectly conducting by reintroducing 

boundary electrons in a way more self consistent w ith observed upward flowing electron 
d istribu tion  functions. This is desired as recent works have highlighted the significance of 
finite ionospheric conductivity in enhancing the parallel electric field (i.e. Samson et al., 
1996).
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A ppendix A

K inetic D ispersion Relation

Using the cold plasm a equations and defining a dependence of el(kxX+kvy+kzz) twt p- jg 
straight forward to  derive a dispersion relation for the periodic system  as

a, 2 =  k l v l { \  +  - ^ - T 1 (A .l)
U)H0 (JZ

where it has been assumed th a t ky — 0 and an Ohms Law E z — j z/a z has been used to  
relate the the field aligned electric field and current. In  order to  determ ine the  field aligned 
conductivity az, we s ta rt w ith the general drift kinetic equation (Baum johann et al., (1996))

§ + w v ( ^ ) + A (a w = 0  (A.2)

where

vuB F  x B  , .  ,
Vd  =  - g T  + V E +  b 2  (A.3)

E  x  B  , ^
VE =  B 2 (A.4)

A]| =  — pV||J3 +  qE\\ (A.5)

Fj_ = - f i V ± B (A.6 )

f g is the guiding center position, Vd is the guiding center velocity and F  is the force applied
to the particles. For electrons, the E  x B  and polarization drifts are negligible. This, along 
w ith the lack of curvature simplifies the full drift kinetic equation to

d fd d d qEz
H t  +  +  b^ {7 ^ u )  ~ 0  (A'7)

where we have replaced the ’||’ notation w ith z. Linearizing such th a t fd = fo + f i ,  where /„  
and f i  are the equilibrium  and pertu rbed  distributions respectively and keeping only first 
order term s, the kinetic dispersion relation becomes

dt z dz m e dvz ^A--8 )

where the fact th a t vz and z are independent variables has been used as well. This kinetic
equation is the same as th a t used for low frequency phenom ena (Tichkonchuk et. al, 2000;
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Antonsen and Lane, 1980). Assuming the dependence elkzZ Vjjt, the electron kinetic equation 
can be solved for the perturbed distribution

1 kzm (vz - % ) '

T he current is related to the pertu rbed  d istribution via

j z = - e  J  d3 vvzf i .

Perform ing the integration using a Maxwellian d istribution for f 0,

! ° =  n ( ^ ^ ) U2 e~m’i l 2 kBTsM s ^  <A -10>

yields the following expression relating the field aligned current and electric field

—ie2nuj .
J z=  k 2 kBT ^  ^  (A -n )

where e =  and Z is the plasm a dispersion function defined by

Z(e)  = - L  f° °  ^ £ L .  (A .12)V7T 7-oo x  -  e
Com paring (A. 11) w ith the O hm ’s law Jz =  azE z . the corresponding expression for the 
field aligned conductivity is given by

—ie2nui . . .
° z =  k 2 kBT   ̂+  ^  (A-13)

and substitu ting  this into expression (A .l) the complete kinetic dispersion relation is then

W2 = k 2zV%(l + --------r-5- ^ ------------- ) - l .  (A-14)
u H o ^ 0 ( l  +  e Z ( e ) Y

In  the cold plasm a case (when Va  Vth), the plasm a dispersion function can be expanded
as

=  ~ e  “  2 ^  ~~ 4 ? '  (A’15)
Using th is expression (w ith only the first two term s) in the kinetic dispersion relation allows 
the  simplification of the dispersion relation to  th a t of the familiar inertial SAW

^  =  l  + k * \ l  (A ' 16)

In the warm  plasm a lim it (Va  < C  w</, ) , the asym ptotic expansion of the plasm a dispersion 
function is given by

Z(e) = - 2 6 ( 1  -  | e 2) (A .17)

and the conductivity becomes

—ie2noj „ o 4 ^
° z =  'k fk g T  ~  + 3 6 (AA8)
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Since e2 <C 1, the conductivity can be simplified to

—ie2nuj
° z k2kBT  (A-19)

the dispersion relation becomes

J 1 = k2zV \{ \  +  ^ k2xp2) (A.20)

where ps = This warm electron dispersion relation generally appears w ith an ad­
ditional term  due to  ion gyroradius effects (see Lysak and Lotko, 1996). The absence of 
th is term  emphasizes th a t for this model to  be valid, the minimum  scale lengths should be 
larger th an  typical ion gyroradii. In addition, the factor of \  originates from the choice of

vth =  \ J 2m<T ra ther th an  vth — \J~~~  which makes this equation appear slightly different
th an  is typically w ritten.

As an aside, it is fairly straightforw ard to  illustrate  the derivation of the simplified 
generalized ohms law. S tarting w ith the simplified drift kinetic equation,

l —  _l_ -  e E z  d f °
dt Vz dz  1 m e dvz 

and assum ing vz is not a function of t  and z, integration over velocity yields

g - « fdt dz J ^  m e

where n e = dvzf 0 and j  =  - e  dvzvzj \ . As there is no bulk fluid flow in the z
direction, the electron pressure is given by

/OO

dvzv2f i
-OO

and therefore we have

91 _  = e2neE
dt m e dz e m e z

Rearranging and using the definition for electron inertial length Ae =  m e/ (p0n ee2) yields 
the fam iliar generalized ohm ’s law

F = „ \ 2^ k  _  1 dPe
z ° e d t nee dz
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