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Abstract  
Special finite element formulations were developed to accurately predict the structural response of 

straight and curved pipes. Although the ELBOW elements implemented in the ABAQUS library 

have been verified under in-plane and out-of-plane loading, the effect of internal pressure loading 

had not been well addressed. Therefore, a detailed assessment for the structural response of the 

ELBOW elements under internal pressure is introduced showing their limitations. One of these 

limitations is the inability of the ELBOW elements to model initial geometric imperfections 

associated with the manufacturing processes of pipes. The influence of these imperfections is 

tangible and cannot be ignored, particularly the initial ovality of the pipe. Thus, new finite element 

formulations are developed to model thin-walled straight and curved pipes with generic cross-

sections to involve initial geometric imperfections.  

 

In order to develop these new formulations, the writer adopts the cumulative learning approach 

through developing three families of formulations: (1) a family for initially circular straight pipes, 

(2) a family for initially circular curved pipes, and (3) a family for straight and curved pipes with 

general cross-sections. 
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Starting with the principle of virtual work, generalized expressions for the force vectors and the 

stiffness matrix are obtained in terms of a generic displacement field vector. These expressions are 

specialized for initially circular straight pipes in Chapter 3 by employing a cylindrical coordinate 

system. The accuracy of the formulations developed in Chapter 3 encouraged the writer to employ 

a toroidal coordinate system in conjunction with these generalized expressions to model initially 

circular curved pipes as introduced in Chapter 4.  

 

An innovative idea is presented to capture initial geometric imperfections by introducing three 

configurations (e.g., un-deformed, deformed, reference) of the pipe under consideration. Strains 

and stresses induced due to the motion are formulated in the reference configuration.  Although 

the numerical examples are focused on ovalized pipes, the mathematical approach proposed in 

Chapter 5 is applicable to model straight and curved pipes with generic cross-sections.  

 

Comparisons with general shell models demonstrate the accuracy and versatility of the proposed 

formulations to predict the structural response of initially circular and ovalized straight and curved 

thin-walled pipes under various loading conditions. In addition, the effect of the follower pressure 

load (e.g., internal or external pressure) is properly included. 
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“Chess and life are action-based and irreversible games. While chess is a fair 

game with fixed rules, life is a biased game with contradicted rules” 
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1 

Chapter 1  
Introduction 

 

 

 

1.1 Introduction  

Pipeline transmission systems play a vital role in various engineering fields such as oil, gas, and 

petrochemical industry, in which the extracted resources and related materials are conveyed from 

centers of production to centers of consumption. Also, these systems form an integral part of water 

supply systems and bio-mechanical applications. Under general loading (e.g., mechanical loading 

and/or thermal loading), piping systems experience complex deformation patterns (e.g., 

ovalization, and warping) due to the flexibility of their hollow circular cross-sections. Efficient 

and accurate analysis tools are thus essential for pipe structural integrity, optimal performance, 

and economics.  

 

Pipe bends (i.e., curved pipes) are commonly used in piping systems in order to allow direction 

changes and provide flexible loops to guard against excessive axial stresses due to thermal 

expansions. The geometric characteristics of pipe bends, as a doubly curved surface, provide more 

flexibility than straight pipes. Therefore, ovalization and warping effects are highly pronounced in 

the deformation patterns of pipe bends.  

 

Beam theories based on the rigid cross-section hypothesis, are inadequate to predict the structural 

response of pipe bends under general loads. In contrast, shell or three-dimensional theories of 
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structures are well-suited for the analysis of pipe bends as these theories accurately capture the 

complex deformation patterns of pipe bends. However, the rather high computational cost and 

significant effort in building and post-processing such pipeline models make the use of these 

theories limited in practical design environments, particularly when modelling long lines of pipes. 

An efficient and computationally effective numerical tool is hence required to achieve a balance 

between the accuracy of the solution and the associated computational cost and modelling effort.  

 

Over the last few decades, many researchers developed accurate and computationally effective 

numerical tools for the structural analysis of initially circular pipe bends. In contract, the 

manufacturing process of pipe bends are associated with various types of initial geometric 

imperfections (e.g., initial ovality, wall thickness variability) which have a tangible influence on 

the structural response of pipe bends. Consequently, there is a need to develop a new numerical 

tool for the analysis of pipe bends that captures the effects of the initial geometric imperfections.  

 

In the present dissertation, novel and relatively simple finite element formulations are developed 

that are able to accurately model initial geometric imperfections of thin-walled straight and curved 

pipes and properly predict the realistic structural response of imperfect pipes under general loading 

conditions.  

 

1.2 Literature review 

1.2.1 Theoretical studies 

Due to the curvature of pipe bends, their structural response (e.g., flexibility and maximum 

stresses) cannot be accurately predicted based on traditional beam theories. Therefore, several 
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theoretical studies were conducted to properly determine the flexibility and maximum stresses of 

curved pipes. Different types of analysis approaches were adopted in these studies involving (1) 

the principle of minimum potential energy, (2) the mechanics of materials approach, and (3) thin 

shell theories. In the following, the writer briefly presents some studies for each analysis approach.  

 

1.2.1.1 Minimum potential energy 

Von Karman’s theory [1] was the first theoretical study to investigate the structural response of 

pipe bends under in-plane loading. In this theory, cross-sectional deformations induced by cross-

section ovalization are assumed to induce two strain components: circumferential and longitudinal 

in addition to the longitudinal strain based on the traditional curved beam. Von Karman 

characterized the radial displacement of the elbow under in-plane bending moment in terms of 

trigonometric series and adopted the following assumptions: 

1- Plane sections normal to the neutral axis of an elbow were assumed to remain plane and 

normal to the neutral axis after deformation (i.e., warping displacements were neglected); 

2- Longitudinal strains were assumed to be constant throughout the wall thickness; 

3- Circumferential strains were assumed to vanish at the mid-surface (i.e., the pipe was 

inextensible in the radial direction); 

4- The radius of the elbow was assumed to be much larger than the radius of the cross-section 

(i.e., long pipe bends); and 

5- The effect of Poisson’s ratio was ignored.  

 

The solution (e.g., coefficients of the trigonometric series) was obtained by using the minimum 

potential energy principle. Based on von Karman’s theory, Vigness [2] studied the structural 
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response of elbows subjected to out-of-plane loading while Kafka and Dunn [3] included the effect 

of internal pressure. Thus, von Karman’s limitations were involved in Refs. [2-3].  

 

1.2.1.2 Mechanics of Materials 

Tuner and Ford [4] relaxed Assumptions 3 and 4 adopted in von Karman’s study (Section 1.2.1.1) 

in order to capture the extensibility of pipe bends in the radial direction and extend the applicability 

of the theory to short pipe bends. The authors employed mechanics of materials principles to 

analyze a curved pipe under in-plane bending moment and compared their predictions against 

those obtained from von Karman’s analysis. The comparison demonstrated an agreement between 

both predictions with a difference about 5% to 10%. In addition, Smith [5] followed this analysis 

approach to study the effect of out-of-plane loading. 

 

1.2.1.3 Thin Shell theory 

Clark and Reissner [6] utilized thin shell theory to investigate the response of a curved pipe 

subjected to in-plane bending moment. The authors derived two coupled ordinary differential 

equations and employed von Karman’s assumptions to simply solve these governing equations. 

Additionally, Cheng and Thailer [7] solved the governing differential equations derived in Clark 

and Reissner [6] without adopting their assumptions and the solution was in the form of a series 

expansion.  

 

1.2.2 Numerical studies  

Various limitations (e.g., inability to capture nonlinear effects, model complex geometry of piping 

systems) are associated with theoretical studies; hence, numerical studies are required to 
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investigate the linear and nonlinear structural response of pipe bends under several 

boundary/loading conditions. The Finite Element (FE) method is a powerful numerical technique 

for solving partial differential equations, and is commonly used in solid mechanics to predict 

deformations and stresses of a body under external loads. Solid and shell FE formulations are well-

suited elements to accurately predict the structural response of pipe bends incorporating nonlinear 

effects. In the following, the writer will briefly introduce some relevant studies based on solid and 

shell FE formulations.   

 

Hong et al. [8] conducted three-dimensional elastic FE analyses using the C3D20R element in 

ABAQUS (Commercial FE Software) to generate approximate formulas for the stress fields in 

thin- and thick-walled bends subjected to internal pressure. These formulas can be applied for 

different shapes of pipe bends attached to straight portions (e.g. 90o, 45o and U bends) and various 

pipe bend geometries.  

 

Using solid elements in ANSYS (Commercial FE Software), WeiB et al. [9] carried out linear and 

nonlinear FE analyses to study the load carrying capacity and fatigue strength of pipe bends under 

internal pressure, in-plane, and out-of-plane bending moments. The authors developed design 

curves for fatigue strength and the load carrying capacity.  

 

Abdulhameed [10] performed shell FE analyses using the S4R element in ABAQUS to quantify 

the influence of the Bourdon effect on the structural response of a pipe bend under internal 

pressure. The effect of the in-plane bending moment direction (opening or closing) was 
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investigated.  Additionally, new stress intensification factors were developed for pipe bends under 

internal pressure and in-plane bending moment.  

 

In spite of the accuracy of solid and shell FE models in simulating the structural response of pipe 

bends, the modelling effort and computational cost associated with these models are prohibitive in 

design environments. Therefore, there is a need for special FE formulations for the analysis of 

pipes and elbows that are both accurate and simple to use.   

 

1.2.3 Finite element formulation for pipe/elbow element 

A special finite element formulation for the analysis of straight and/or curved pipes is required to 

strike a balance between the efficiency of the solution and the associated computational cost. In 

the following, the writer will provide various examples of linearly elastic FE formulations for pipes 

and elbows.  

 

Ohtsubo and Watanabe [11] developed a ring-shaped FE formulation to analyze pipe bends under 

in-plane loading and/or out-of-plane loading. The authors established the strain-displacement 

relationships based on the Love-Kirchhoff thin shell theory. Cubic Hermitian polynomials were 

used to interpolate the displacement fields (e.g., longitudinal, circumferential, and radial) along 

the longitudinal direction while Fourier series expansions were utilized to characterize these 

displacement fields along the circumferential direction. At least six Fourier terms had to be used 

to obtain convergence. The FE formulation captured the rigid body motion only in an approximate 

sense.   
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A simple FE formulation was proposed by Bathe and Almeida [12] for the analysis of pipe bends. 

The authors omitted some of the von Karman’s assumptions (e.g., Assumption 2, 4, and 5 in 

Section 1.2.1.1) in their formulation in order to express the longitudinal strains throughout the pipe 

wall thickness induced by bending, accurately capture the response of short pipe bends, and 

consider the effect of the Poisson’s ratio. The displacement fields were taken as a combination of 

beam deformation mode (centerline displacements) characterized by cubic polynomial 

displacement functions and cross-sectional deformation modes expressed by Fourier series. The 

element was enhanced to simulate pressure stiffening [13] and interaction effects between straight 

and curved pipes [14]. Since the FE formulation adopted Assumption 1 (Section 1.2.1.1) of von 

Karman’s assumptions, the element was unable to capture warping effects.  

 

Militello and Huespe [15] improved Bathe’s element [12] by omitting the plane section assumption 

(Assumption 1 in Section 1.2.1.1). In their formulation, the authors interpolated the longitudinal 

displacement field using third order Lagrangian polynomials along the longitudinal direction and 

Fourier series along the circumferential direction in order to simulate warping displacements.      

 

Abo-Elkhier [16] also developed a FE formulation for the analysis of pipe bends. Although his 

formulation was consistent with Bathe’s formulation [12] regarding the assumptions and the 

interpolation schemes, he adopted the kinematic constraints of the thin shell theory to obtain the 

strain-displacement relationships which enabled him to capture additional strain components not 

included in Ref [12].    
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Ref [12] omitted Assumptions 2, 4, and 5 of the von Karman’s theory (Section 1.2.1.1) to capture 

bending strains throughout the elbow wall thickness, properly model short pipe bends, and include 

the effect of the Poisson’s ratio. Additionally, Assumption 1 (Section 1.2.1.1) was relaxed in Ref 

[15] to simulate warping effects. However, Assumption 2 (e.g., inextensibility of the pipe in the 

radial direction) was employed in these Refs. Yan et al. [17] relaxed Assumption 2 to allow the 

pipe extensibility in the radial direction. The new formulation enabled the authors to capture the 

effect of internal pressure. Their formulation characterized the longitudinal, circumferential, and 

radial displacements in terms of Fourier series along the circumferential direction and polynomial 

functions along the longitudinal direction as adopted in Ref [15].  

 

Fonseca et al [18] introduced two FE formulations to model elbows attached to straight pipes. 

Higher-order polynomial or trigonometric functions along the longitudinal coordinate were 

employed to interpolate the beam displacement fields while the circumferential variations of the 

displacements were interpolated using Fourier series.  The formulations were limited to loading 

within the plane of the elbow with internal pressure.  

 

Weicker [19-20] adopted the strain-displacement relationships derived in Ref [11] and general 

Fourier series expansion within the frame work of the minimum potential energy principle to 

formulate the equilibrium equations for thin-walled initially circular straight pipes. The analytical 

solution of the coupled differential equations was developed and used to develop a FE formulation 

based on the interpolation functions that exactly satisfy the equilibrium equations.  
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1.2.4 Nonlinear treatment  

FE formulations introduced in Section 1.2.3 were limited to linearly elastic analysis. However, 

several applications require including geometric nonlinear effects. In this section, the writer will 

review different approaches for the treatment of geometric nonlinearity.   

 

Most FE formulations in solid mechanics adopt the principle of virtual work to construct 

geometrically nonlinear FE formulations in conjunction with the Lagrangian description approach 

[21]. Although the internal virtual work can be formulated in terms of various energetic conjugate 

pairs [22-23], the most commonly used energetic conjugate pair in the Lagrangian description is 

the second Piola-Kirchhoff stress and conjugate virtual Green-Lagrange strain tensors.  

 

Bathe [24] adopted the above energetic conjugate pair for constructing the nonlinear FE 

formulations based on an incremental approach. The author described the linearization process of 

the internal virtual work and showed nonlinear terms neglected in his incremental analysis in the 

context of total and updated Lagrangian approaches to simulate large deformation effects. His 

mathematical manipulations led to linear and nonlinear stiffness matrices to capture both types of 

analysis. The incremental approach in Ref [24] is applicable to various applications (e.g., beams, 

shells, solids, and pipes). Thus, Bathe and Almeida [25] employed this approach to add some 

nonlinear capabilities into their elbow element presented in Ref [12]. Their nonlinear element was 

formulated based on the total Lagrangian formulation and was able to capture large beam 

displacements. However, ovalization action was assumed to be small and warping displacements 

were omitted. The elbow element described in Ref [25] was implemented in the commercial FE 
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software ADINA [26]. Also, ANSYS [27] and ABAQUS [28] implemented different elbow 

elements for the analysis of pipe bends. 

 

For instance, the ELBOW elements implemented in ABAQUS are fundamentally equipped to 

simulate ovalization and warping, continually throughout the pipe length, through polynomial 

interpolations while circumferential continuity is enforced by the adoption of the Fourier series 

expansions. Zeng et al. [29] presented a detailed description of the formulation of ELBOW 

elements and compared the response of a pipe bend under in-plane loading using the S4R shell, 

the ELBOW elements in ABAQUS and analogous elements in ADINA. Although Bryan [30] 

investigated the static response of the ELBOW elements under out-of-plane bending, with/without 

internal pressure, no comparisons were provided against shell elements. Additionally, his results 

did not show the variation of stresses along the circumferential direction of the cross section. 

Hence, there still exists a need in the pipelines industry to evaluate the response of the ELBOW 

elements in ABAQUS under internal pressure. Also, there is a need to assess the ability of the 

ABAQUS elbow elements to simulate the response of pipeline systems. Consequently, the initial 

objective of the present dissertation is to carry out a numerical assessment of the ELBOW elements 

in ABAQUS under internal pressure as shown in Chapter 2.   

 

Within the framework of the Carrera Unified formulation (CUF) in conjunction with the total 

Lagrangian approach, Pagani and Carrera [31] proposed a unified formulation of geometrically 

nonlinear refined elastic beam theories. In their formulation, the internal virtual work was 

expressed in terms of the second Piola-Kirchhoff stress tensor and the virtual Green-Lagrange 

strain tensor. The linearization process retained the majority of nonlinear terms in contrast with 



11 
 

the approach presented in Ref [24] and the expressions of secant and tangent stiffness matrices 

were provided in a general form. This approach was later extended for shell formulation [32]. 

However, the effect of the follower pressure load, which is significant in pressurized piping 

systems, was not treated in Refs [31-32].  

 

In contrast to the above studies, the first Piola-Kirchhoff stress tensor and the gradient of virtual 

displacement fields can be used as alternative energetic conjugate pair when applying the principle 

of virtual work. To the writer’ knowledge, no FE formulations based on this particular choice of 

energetic conjugate pair were developed for straight or curved pipes, although it has been 

employed in other finite element applications involving beam [33] and shell [34-36]. The present 

dissertation thus adopts this energetic conjugate pair to develop geometrically nonlinear FE 

formulations for the analysis of straight (Chapter 3) and curved (Chapter 4) pipes by introducing 

a full description of linearization process and the associated mathematical manipulations1.  

 

1.2.5 Influence of initial geometric imperfections 

There exist various manufacturing techniques (e.g., the mandrel method, the extrusion method, 

and the UO method) to fabricate pipe elbows. The mandrel method, for example, is a type of hot 

forming technique that is commonly used for elbow manufacturing. The mandrel method is 

summarized into three steps: (1) Cutting a straight pipe into pieces, (2) Heating these pieces using 

an induction heating coil, (3) Pushing these straight pieces over a die called ‘mandrel’. This method 

leads to smaller wall thickness deviations and is suitable for shorter bending radii compared to the 

                                                 
1 This energetic conjugate pair enables the writer to easily eliminate the virtual degrees of freedom vector 

and obtain the equilibrium equations as shown in Chapter 3.  
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other manufacturing methods. The manufacturing processes of elbows are associated with various 

initial geometric imperfections (ovality, wall thickness variation, flattening, etc.) and mechanical 

changes (residual stresses and strains and changes to the yield stress and corresponding plastic 

deformations, etc.). In the present dissertation, the writer will consider only the initial geometric 

imperfections, in particular the initial ovality.  

 

The FE formulations introduced in Sections 1.2.3 and 1.2.4 assume that pipe cross-section to be 

initially circular. However, the manufacturing processes of pipes are associated with various initial 

geometric imperfections (e.g., initial ovality and wall thickness variability). Many FE solutions, 

based either on conventional shell or solid elements, studied the effect of initial geometric 

imperfections on the response of straight and curved pipes under various loading conditions. In 

this section, the writer reviews some of these studies.  

 

Fallqvist [37] studied the influence of several initial geometric imperfections on the collapse 

pressure of straight pipelines laid in ultra-deep water and subjected to high external pressure using 

the solid continuum CED8R element in ABAQUS. The study showed that initial ovality was the 

most influential geometric imperfection characteristic as it caused a dramatic reduction in the 

collapse pressure. For example, the collapse pressure for a pipe with a diameter to thickness ratio 

D/t=30 and a 5% initial ovality subjected only to external pressure decreased by more than 50% 

when compared to a pipe with a 0% initial ovality.  

 

Toscano [38] investigated the collapse and post-collapse behavior of straight pipes subjected to 

external pressure and/or bending moments. The author highlighted the significant effect of initial 
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ovality on collapse pressure under external pressure as reported in Ref [37]. However, the effect 

of initial ovality on the collapse pressure was found negligible in cases involving combinations of 

bending and external pressure since the ovality induced by bending action (Brazier effect) is 

typically higher than that induced by initial ovality.  

 

Veerappan and Shanmugam [39] examined the effect of ovality and thinning of the pipe bend 

cross-section subjected to internal pressure by developing 400 axisymmetric models using 

PLANE82 element in ANSYS for different pipe bend radii. Imperfect pipe bends were found to 

experience higher stresses than initially circular pipe bends under the same internal pressure. 

Subsequently, the authors introduced a mathematical formula to obtain the allowable pressure for 

imperfect pipe bends.  

 

Christo Michael et al. [40] carried out nonlinear FE analyses using the C3D20R element in 

ABAQUS to determine collapse loads of pipe bends with initial geometric imperfections under in-

plane bending closing moment. Based on these analyses, the authors concluded that initial ovality 

must be included in the analysis of pipe bends since collapse loads tangibly decrease when initial 

ovality is increased. In contrast, wall thickness variability was found to have a negligible influence 

on collapse loads. Hence, an equation was developed to determine the collapse moment of ovalized 

pipe bends.  In another study [41], the authors studied the response of imperfect pipe bends under 

a combination of in-plane bending closing moment and internal pressure and derived another 

expression to calculate collapse loads of pipe bends with ovality. Their study confirmed the 

necessity to simulate initial ovality in the modelling of pipe bends. 
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Buckshumiyan et al [42] followed the approach introduced in Ref [41] to investigate the influence 

of in-plane bending under opening moments and internal pressure on imperfect pipe bends. 

Nonlinear FE analyses were conducted to determine the collapse loads for various ovality and 

thinning percentages showing that initial ovality is the most significant aspect of geometric 

imperfections. Additionally, expressions based on FE analyses were developed to characterize the 

collapse loads of ovalized pipe bends under combined loads.  

 

Previous studies suggest that initial geometric imperfections, particularly initial ovality, need to 

be considered in the analysis of straight and curved pipes. Thus, Chapter 5 of the present 

dissertation proposes accurate and efficient geometrically nonlinear FE formulations to analyze 

imperfect thin-walled straight and curved pipes under various loading conditions.    

 

1.2.6 Historical developments of thin shell theory 

The FE formulations developed in the present dissertation adopt the kinematic assumptions of the 

Love-Kirchhoff thin shell theory. Therefore, the writer presents a brief account on the historical 

developments of the elastic thin shell theory in this section. 

 

The first successful thin shell theory was derived by Love [43] based on the theory of linear 

elasticity. In his theory, the author adopted kinematic assumptions to simplify the strain-

displacement relationships. These assumptions can be summarized in the following: 

1. Straight lines originally normal to the un-deformed mid-surface of the shell remain straight 

and normal to the mid-surface in the deformed configuration. 

2. The thickness of the shell remains constant throughout deformation.  
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3. Normal stresses through the thickness of the shell are ignored. 

4. The shell is assumed to be thin.   

5. Displacements are assumed to be small. 

Kirchhoff firstly adopted Assumptions 1-3 in his plate bending theory. Hence, these kinematic 

assumptions are called the Love-Kirchhoff assumptions while the shell theory that follows these 

assumptions is called the first-order approximation shell theory. Although the Love’s thin shell 

theory is commonly used, it involves some inconsistencies. For example, some small terms were 

omitted in certain parts of the formulation while other small terms of the same order were retained 

in other parts of the formulation. Within the framework of the virtual work principle, Sanders [44] 

proposed a new thin shell theory that followed the Love-Kirchhoff assumptions. However, it 

eliminates the inconsistencies introduced in the Love’s theory.  

 

When a shell theory relaxes Assumption 4 (i.e., thickness/radii of curvature is considered), it is 

referred to as a second-order approximation shell theory. Based on the three-dimensional theory 

of elasticity and Assumptions 1-3 and 5, Lur’ye [45] derived the governing equations of his 

second-order shell theory, which retains the thickness to radii ratios in the expressions for 

curvature. Although the work of Novozhilov [46] was aligned with Ref [45] with respect to strain-

displacement relationships, Novozhilov adopted a strain energy formulation to obtain stress 

resultants. Also, the author estimated the errors associated with the assumptions adopted in the 

theory.   

 

Flugge [47] examined membrane and bending stresses of various types of shells (e.g., cylindrical 

shells, shells of revolution) under multiple loading conditions. Equilibrium equations were derived 
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from equilibrium conditions of an infinitesimal element of shell under consideration involving 

stress resultants2. The author applied his theory to pressure vessel and pipe applications and 

provided complete solutions of special circular and elliptical cylindrical shells under pressure. The 

reader is referred to Ref [48] for a mathematical comparison between different thin shell theories.  

 

1.3 Problem statement 

Although the ELBOW elements implemented in ABAQUS were verified under in-plane loading 

and/or out-of-plane loading, the response of these elements under internal pressure is not well 

addressed as highlighted in Section 1.2.4. Thus, a numerical assessment of the response of the 

ELBOW elements under internal pressure is needed to provide a complete evaluation of these 

elements for the industrial community of pipelines.   

 

Special FE formulations were developed to predict the geometrically linear and nonlinear 

structural response of initially circular straight and curved pipes under several loading conditions 

(Sections 1.2.3 and 1.2.4). Although the manufacturing process of pipes produces various types of 

initial geometric imperfections, these formulations are not able to model these imperfections and 

predict the realistic structural response of imperfect pipes under general loading. The influence of 

these imperfections, particularly initial ovality, on the structural response is highly pronounced 

and cannot be ignored (Section 1.2.5). Therefore, new FE formulations (pipe/elbow elements) are 

                                                 
2 In the writer’s opinion, while the analysis of shells in terms of stress resultants (e.g., forces and couples) is 

more intuitive for structural and mechanical engineers, the analysis of shells solely in terms of the displacement fields 
and their derivatives is more rigorous and mathematically robust for complex problems. Hence, the latter approach 
has been adopted in the present dissertation.  
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required to accurately model imperfect straight and curved pipes and properly predict their 

structural response under general loads.    

 

1.4 Objectives 

The objectives of the present dissertation are summarized as follows: 

1- Initial objective: To numerically assess the response of the ELBOW elements implemented 

in ABAQUS under internal pressure to bridge this gap in the literature highlighted in 

Section 1.2.4. However, the inability of these elements to model initial geometric 

imperfection was the motivation to the main objective of the present dissertation.  

2- Main objective: To develop geometrically nonlinear FE formulations for the structural 

analysis of straight and curved pipes with a generic cross-section involving initial 

geometric imperfections. This objective can be divided into three sub-objectives: 

1.a. To develop a FE formulation for the analysis of initially circular straight pipes. 

1.b.To develop a FE formulation for the analysis of initially circular curved pipes. 

1.c. To develop FE formulations for the analysis of straight and curved pipes with 

general cross-sections. 

 

1.5 Outline of dissertation  

The present dissertation has six chapters summarized as follows: 

Chapter 1 presents an introduction of the problem, reviews the relevant literature, highlights the 

research gaps, and describes the problem statement, objectives, and the outline of dissertation.  
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Chapter 2 presents a numerical assessment of the response of the ELBOW elements implemented 

in ABAQUS under internal pressure. This chapter includes two case studies: (1) a standalone 90o 

pipe bend which is analyzed using both elastic and elasto-plastic material characterizations using 

shell and elbow elements; and (2) a geometrically nonlinear analysis with a materially elastic 

characterization of a piping system is conducting using shell, elbow, and pipe elements. 

Additionally, an assessment of the ASME B16.49 2017 elbow thickness equation and previously 

published stress estimate equations is carried out by comparisons with elbow and shell elements 

predictions. The content of this chapter has been published as a research paper in the Journal of 

Pressure Vessels and Technology [49].  

 

Chapter 3 focuses on developing generalized expressions of the internal and external force vectors 

and the stiffness matrix based on the principle of virtual work formulated in terms of the first Piola-

Kirchhoff stress tensor and the gradient of virtual displacement fields. These generalized 

expressions are specialized to initially circular thin-walled straight pipes (by employing the 

cylindrical coordinate system). The displacement fields are characterized using cubic Hermitian 

function along the longitudinal direction. Three different interpolation schemes are investigated 

along the circumferential direction (i.e., Fourier series, Spline interpolation, and Mixed 

Fourier/Spline interpolation). Numerical examples and comparisons against shell analysis in 

ABAQUS are presented to assess the accuracy of the formulations developed. This chapter is 

aligned with Sub-objective 2.a and its content has been submitted to an international journal (under 

review).    
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In Chapter 4, the generalized expressions derived in Chapter 3 are specialized to initially circular 

curved pipes by adopting a toroidal coordinate system. Fourier series expansions are adopted to 

characterize the displacement fields along the circumferential direction while three different 

interpolation schemes are proposed to characterize the displacement fields along the longitudinal 

direction. Eigenvalues analyses are carried out to assess the ability of each interpolation scheme 

for representing rigid body motion. Various examples are introduced to compare the predictions 

of the formulations developed with those obtained from the conventional general shell models. 

The content of this chapter has been submitted to an international Journal (under review) and 

achieves Sub-objective 2.b.    

 

Chapter 5 introduces an innovative methodology to capture initial geometric imperfections when 

modelling straight and curved pipes. The idea is to utilize an initially circular cross-sectional pipe 

configuration as a mediator configuration (e.g., reference configuration with no imperfections) 

between the un-deformed (e.g., imperfect pipes) and deformed configurations. This chapter 

presents the required mathematical manipulations to characterize the strains/stresses induced by 

the motion of the pipe from the un-deformed to the deformed configurations while referencing 

these strains to the mediator configuration. The first Piola-Kirchhoff stress tensor formulated in 

the reference configuration is obtained in terms of these strains. Since the initial ovality is the most 

significant geometric imperfection, the numerical examples in this chapter are focused on the 

response of initially ovalized straight and curved pipes under various loading conditions. The 

predictions of the proposed formulations are compared to those obtained from the conventional 

general shell models. The content of this chapter has been submitted to an International Journal 

(under review).   
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Chapter 6 presents a summary and conclusion of this research work and provides recommendations 

for further research work.  

 

This present dissertation is written in a paper-based format. Each main chapter (i.e., Chapters 2-5) 

takes the form of a stand-alone research paper. Thus, the introductory sections in each of these 

chapters may have included unavoidable repetitions.  
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Chapter 2  
Numerical Assessment of Elbow Element Response under 
Internal Pressure 

 

 

 

2.1 Abstract 

This chapter presents a detailed assessment for the response of the ELBOW elements in ABAQUS 

under internal pressure. Two main cases are considered: (1) a standalone 90o pipe bend which was 

analyzed using both elastic and elasto-plastic material characterizations using shell and elbow 

elements; and (2) a geometrically nonlinear analysis with a materially elastic characterization of a 

piping system was conducting using shell, elbow, and pipe elements. Although the results show 

the capabilities of elbow elements to simulate the response of pipe bends in the elastic regime, the 

elements do not provide reliable predictions beyond the elastic range. Additionally, an assessment 

of the ASME B16.49 2017 elbow thickness equation and previously published stress estimate 

equations was carried out by comparisons with elbow and shell elements predictions.   

 

2.2 Introduction  

Pipeline transmission systems play a vital role for various industries. Two main interests in the 

analysis and design of pipelines subjected to different loading conditions are structural integrity 

and computational cost. Pipe bends are typically required for introducing flexibility in the 

installation and routing of piping systems. In addition to the traditional deformation modes of a 

beam, the mechanical behavior of a pipe bend involves phenomena such as ovalization, warping, 
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and the Bourdon effect [1-10]. These phenomena need to be captured to properly analyze and 

design a pipeline system.   

 

Many theoretical and experimental studies paid great attention to simulating the complex physical 

behavior of pipe bends. Von Karman’s analysis [1] considered the ovalization of pipe bends under 

in-plane loading by adding two additional strain components to the traditional strain field in the 

curved beam theory. These additional components were circumferential and longitudinal strains 

due to the ovalization. Extending the work of Von Karman [1], out-of-plane loading effects were 

included by Vigness [2] and internal pressure effects by Kafka [3]. A simple linear analysis 

approach was presented by Dodge and Moore [4] in which the stresses of curved beam theory, 

used to simulate a pipe bend, were scaled using factors to account for ovalization and internal 

pressure effects. Further research works focused on the influence of internal pressure on the hoop 

and longitudinal stresses on the behavior of thin- and thick-walled bends [4-6]. Despite the benefits 

of theoretical studies, limitations still exist in predicting the actual behavior of pipe bends, 

especially for nonlinear effects; hence making it imperative for numerical modeling methods to be 

employed. 

 

The Finite Element (FE) method is well suited for capturing the complex structural response of 

pipe bends. Hong et al. [6] performed three-dimensional elastic FE analyses to generate 

approximate formulas for the stress fields in thin- and thick-walled bends subjected to internal 

pressure. These formulas can be applied for different shapes of pipe bends attached to straight 

portions (e.g. 90o, 45o and U bends) and various pipe bend geometries. The pressure inside a pipe 

bend generates an in-plane outward force causing straightening out of the pipe bend, a 
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phenomenon known as the Bourdon effect. Due to the Bourdon effect, pipe bends are subjected to 

additional stresses and strains. Hence, shell FE analyses were performed by Abdulhameed et al. 

[7] to investigate these additional stresses and deformations. However, these FE formulations are 

computationally cost-prohibitive in a design environment. Thus, FE formulations that capture 

ovalization, warping, and internal pressure effects in addition to beam-type deformations are 

needed. Based on von Karman’s analysis [1], Bathe and Almeida [8-10] introduced FE 

formulations for linear and nonlinear analyses including the internal pressure effect. However, 

their FE formulations neglected warping displacements in pipe bends. Therefore, Militello and 

Huespe [11] improved Bathe’s formulation to capture warping. The study achieved the required 

continuity by using the Hermitian interpolation instead of the penalty procedure followed in 

Bathe’s formulation. In recent decades, other formulations have also been proposed in a bid to 

improve the accuracy of the simulations of pipe bend behavior [12, 13].  

 

A series of elbow elements have been implemented in ABAQUS to provide efficient modelling 

for both linear and nonlinear analyses of piping systems [17]. The “ELBOW31” and “ELBOW32” 

elements in ABAQUS are fundamentally equipped to simulate ovalization and warping, 

continually, throughout the pipe length through polynomial interpolations while circumferential 

continuity is enforced by the adoption of the Fourier series approximation. While “ELBOW31” 

element is formulated using linear interpolation along the length of the elbow element, 

“ELBOW32” element uses quadratic interpolation. Zeng et al. [14] presented a detailed description 

of the formulation of these elbow elements and compared the behavior of a pipe bend under in-

plane loading using S4R shell, ELBOW31, and ELBOW32 elements in ABAQUS and analogous 

elements in ADINA. Although Bryan [15] demonstrated the behavior of ELBOW31 in static 
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analysis of a piping system under out-of-plane bending, with/without internal pressure, he did not 

compare this behavior with shell elements. Additionally, his results did not show the variation of 

stresses along the circumferential direction of the cross section. Hence, there still exists an essential 

need in the pipelines industry to evaluate the behavior of elbow elements under internal pressure 

only. Also, there is a need to assess the ability of the ABAQUS elbow elements to simulate the 

behavior of pipeline systems.  

 

Hoop stresses induced by internal pressure at the intrados of a pipe bend are typically greater than 

those at the extrados of the pipe bend. Hence, ASME B16.49-2017[16] proposed an equation for 

the minimum wall thickness required at the intrados of a pipe bend. As shown in Eq. (2.1), the 

wall thickness (𝑇𝑇𝐼𝐼) at the intrados of a pipe bend is to be increased by a factor (code factor) that 

depends on the bend radius (𝑅𝑅) and the outer diameter (Do) of the pipe bend, compared to nominal 

wall thickness of a straight pipe (𝑡𝑡).  

𝑇𝑇𝐼𝐼 ≥ �
4 � 𝑅𝑅Do� − 1

4 � 𝑅𝑅Do� − 2
� × 𝑡𝑡                                                                                                                             (2.1) 

Within the above context, the present study has four major objectives:  

1- To evaluate the behavior of ELBOW31 & ELBOW32 elements under internal pressure 

against shell element behavior (S4R). Towards this goal, a standalone 90o pipe bend, shown 

in Fig. 2. 1, is tested for two different pipe bend radii (R= 5 Do and R= 1.5 Do) under various 

boundary conditions (Case I). The von Mises, hoop, and longitudinal stresses as well as 

the deformed shape along the circumferential direction of the central cross section are 

investigated.  
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2- To assess the ability of ABAQUS elbow elements to model the whole piping systems and 

assess their compatibility with pipe elements whose formulation excludes ovalization and 

warping. Hence, the piping system shown in Fig. 2. 2 is considered. This system comprises 

two 90o pipe bends (R=1.5 Do) connected together by a small straight horizontal segment 

(Lh =1.5 Do), while the other ends are attached to straight vertical segments with length 

Lv=5 Do. The ends of the vertical segments are completely constrained. The stresses at the 

center of the pipe bend and at the interface between the elbow and horizontal segment are 

investigated (Case II).  

3- To check the conservativeness of the pipe bend thickness equation proposed in ASME 

B16.49-2017[16] against the analyses performed in the present study.  

4- To compare the stress fields predicted by the present study at the center and ends of a pipe 

bend attached to straight portions against the predictions of the equations proposed by 

Hong [6]. 

 

Fig. 2. 1 Geometry of the pipe bend in Case I 
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Fig. 2. 2 Geometry of the piping system in Case II 

 

The outer diameter (𝐷𝐷𝑜𝑜) and the wall thickness (𝑡𝑡) of the pipe bends and straights portions are 

1066.8 mm and 9.525 mm respectively (high diameter to thickness ratio) while Young modulus 

(𝐸𝐸) and poisson ratio (𝜈𝜈) are 210 GPa and 0.3 respectively. The chosen internal pressure level 𝑃𝑃 =

4 𝑀𝑀𝑃𝑃𝑀𝑀 would induce a hoop stress about 0.77 𝐹𝐹𝑦𝑦 in a straight pipe for a X42 pipe grade.  

 

Based on the manufacturing process, pipe bends can be classified to field bend, induction bend, 

and elbow fitting. Each one of these bends has specific requirements for the geometric 

characteristics and operating conditions. However, pipe bends used in the present study do not 

consider the manufacturing process. Additionally, the initial imperfections and combined effect of 

bending and internal pressure are not included. This study considered a relatively flexible pipe 

with the ratio of outer diameter (𝐷𝐷𝑜𝑜) to wall thickness (𝑡𝑡) of 112.  
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2.3 Methodology 

The performed FE models in the present study are shown in Table 2. 1. For the long pipe bend 

radius (R= 5Do) in Case I, elastic geometrically nonlinear analyses were carried out using three 

FE formulations (e.g. S4R, ELBOW31, and ELBOW32) within ABAQUS. Each model employed 

three different boundary conditions. The models were replicated for short pipe bend radius (R= 

1.5Do) in Case I. Additionally, four models were considered to verify the effect of the geometric 

nonlinearity (Model #S10) and assess the behavior of elbow elements under elasto-plastic material 

characterization shown in Fig. 2. 3 (Models # S11, S12, and S13). Additionally, elastic 

geometrically nonlinear analysis of the piping system in Case II was implemented three times. The 

first two models were using S4R shell and ELBOW31 elements, respectively, while the third 

model was using ELBOW31 for pipe bends and PIPE31 for straight portions. While the 

approximate mesh size was 30 mm for all the models, the number of Fourier modes was six for all 

elbow element models. While the bend ends were free to ovalize and warp, ovality and warping 

displacements were deactivated at the restrained ends in the elbow element models in order to 

emulate fixed end support conditions.  

 

Modelling the piping systems using shell elements can be performed using the ABAQUS graphical 

user interface (GUI), whereas using elbow elements requires editing the input file. Firstly, the cross 

section of a pipe bend is defined as a beam section with pipe profile through ABAQUS GUI. 

Secondly, the input file should be modified to assign the pipe bend radius, orientation point, 

number of integration points through the wall thickness and around the circumference, and number 

of Fourier modes (See Supplemental Material - Modelling of pipe bends).  
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Table 2. 1 Parametric runs for Case I and Case II 
C

as
e 

# Geometry Model # Analysis Type Element Boundary 

conditions3 Material Geometry 

C
as

e 
I 

90
o  b

en
d 

(R
/ D

o =
 5

) 

L1 Elastic Non-linear S4R FR 

L2 FF 

L3 HH 

L4 Elastic Non-linear ELBOW31 FR 

L5 FF 

L6 HH 

L7 Elastic Non-linear ELBOW32 FR 

L8 FF 

L9 HH 

90
o  b

en
d 

(R
/ D

o =
 1

.5
) 

S1 Elastic Non-linear S4R FR 

S2 FF 

S3 HH 

S4 Elastic Non-linear ELBOW31 FR 

S5 FF 

S6 HH 

S7 Elastic Non-linear ELBOW32 FR 

S8 FF 

S9 HH 

S10 Elastic Linear Elbow 31 FR 

S11 Elasto - Plastic Non-linear S4R FF 

S12 Elasto - Plastic Non-linear Elbow 31 FF 

 S134 Elasto - Plastic Non-linear Elbow 31 FF 

C
as

e 
II 

Pi
pi

ng
 

sy
ste

m
 P1 Elastic Non-linear S4R FF 

P2 Elastic Non-linear Elbow 31 FF 

P3 Elastic Non-linear Combined5 FF 

                                                 
3 FR: Fixed – Free 
  FF: Fixed – Fixed 
  HH: Hinged – Hinged (All nodal displacements were restrained at both ends ) 
4 Integration points were 18 and 3 along the circumferential direction and through the thickness respectively 

for all elbow models except model # S13. They are 50 and 11 respectively. 
5 Combined: ELBOW31 elements were used for pipe bends while PIPE31 elements were employed for 

straight portions 
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Fig. 2. 3 True stress-strain curve for the elasto-plastic models (R= 1.5Do - Case I)  

By default, both ends of the ABAQUS pipe and elbow elements are “closed”. Therefore, the 

internal pressure causes two outward forces (F1 and F2 in Fig. 2. 4) equal to the integration of the 

applied pressure over the deformed end cross section. The forces F1 and F2 are in equilibrium with 

the outward force generated by the Bourdon effect; hence the force reaction results are zero in 

closed-ended elbows. In order to capture and quantify the Bourdon effect’s force in ABAQUS, the 

ends of elbow elements should be modeled as open-ended elbow similar to shell element model. 

There is no option in ABAQUS to simulate the open-ended elbow. Consequently, additional end 

forces R1 and R2 should be applied externally along in the tangential direction of the elbow 

centerline as shown in Fig. 2. 5 to counter-balance the actions of F1 and F2. In this study, R1 and 

R2 were simply calculated by multiplying the applied pressure by the area of the un-deformed end 

cross section and underwent to the deformations of the end nodes to maintain their orthogonality 

on the end cross sections. While predicting the reactions requires including these forces in the 

modelling of any piping system (e.g. Case I & Case II) in order to quantify force due to the Bourdon 

effect, the stresses can be correctly determined without applying these forces at the restrained ends 

along the tangential direction of the element (e.g., fixed end & hinged end).  
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Fig. 2. 4 Default-closed end condition of a pipe bend 

 

 
Fig. 2. 5 Simulation of open-ended condition 

 

2.4 Results and Discussion 

2.4.1 Results for Case I (pipe bend without straight portions)  

The elbow element models effectively capture the in-plane outward force generated due to the 

Bourdon effect as shown in Table 2. 2. The percentage difference is calculated based on Eq. (2.2) 

and is less than 1 % in all cases except for the y-direction force in the fixed-free case (R=1.5Do), 
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which is 1.14 %. Also, the obtained reactions indicate close correspondence to the values 

calculated using Abdulhameed’s equations6 [7] which are shown in Eq. (2.3).  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (%) =
𝑆𝑆ℎ𝑃𝑃𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 𝑣𝑣𝑀𝑀𝑃𝑃𝑑𝑑𝑀𝑀𝑎𝑎𝑒𝑒𝑃𝑃 − 𝐸𝐸𝑒𝑒𝑎𝑎𝑜𝑜𝐸𝐸 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 𝑣𝑣𝑀𝑀𝑃𝑃𝑑𝑑𝑀𝑀𝑎𝑎𝑒𝑒𝑃𝑃

𝑆𝑆ℎ𝑃𝑃𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 𝑣𝑣𝑀𝑀𝑃𝑃𝑑𝑑𝑀𝑀𝑎𝑎𝑒𝑒𝑃𝑃 
× 100 

                                                                                                                                                                       (2.2) 

𝐹𝐹𝑥𝑥 = 𝑃𝑃𝑃𝑃2π sin𝛼𝛼                                                                                                                                      (2.3𝑀𝑀) 

𝐹𝐹𝑦𝑦 = 𝑃𝑃𝑃𝑃2π (1 − cos𝛼𝛼)                                                                                                                         (2.3𝑎𝑎) 

 

Table 2. 2 Force reaction components of the pipe bend obtained using shell and elbow 
formulations for Case I 

 S4R ELBOW 31 Percentage difference 

BCs R/Do Fx (KN) Fy (KN) Fx (KN) Fy (KN) Fx (%) Fy (%) 

Fixed-Free 

1.5 

-3455 -3390 -3447 -3352 0.22 1.14 

Fixed-Fixed -3453 -3453 -3449 -3449 0.14 0.14 

Hinged-Hinged -3453 -3453 -3449 -3449 0.11 0.11 

Fixed-Free 

5 

-3438 -3092 -3432 -3109 0.16 0.57 

Fixed-Fixed -3453 -3453 -3449 -3449 0.13 0.13 

Hinged-Hinged -3457 -3457 -3450 -3451 0.18 0.18 

Analytical Eq  -3512 -3512  

 

The results of von Mises 𝜎𝜎𝑣𝑣𝑣𝑣, hoop, and longitudinal stresses for the two pipe bend radii (R= 5 Do 

& R= 1.5 Do) at cross-section A-A of the fixed-free case are presented in Fig. 2. 6 and Fig. 2. 7 

respectively, while the other cases (e.g. Fixed-Fixed & Hinged-Hinged cases) are included in 

Appendix 2.A – Additional Results for Case I.  For the long pipe bend radius (R=5 Do), the FEA 

results show that the hoop stress distribution of the pipe bend subjected to internal pressure is 

                                                 
6 The equation provided in Ref [7] to calculate 𝐹𝐹𝑦𝑦 contains an error which is corrected in Eq.2.3b. In case of 

a straight pipe 𝛼𝛼 = 0, the outward force generated due to the Bourdon effect is zero (𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑦𝑦 = 0). 
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approximately sinusoidal due to the ovalization of the cross section as shown in Fig. 2. 6b. Also, 

the patterns of radial and circumferential displacements confirmed these results. While the outer 

surface was subjected to tensile circumferential stresses at the intrados and extrados, the inner 

surface had compressive circumferential stresses at the same positions. Additionally, the pipe bend 

experienced tensile longitudinal stresses below the neutral axis and compressive longitudinal 

stresses above the neutral axis because the internal pressure acted as in-plane distributed opening 

bending moment as shown in Fig. 2. 6c. Excellent agreement is obtained between shell element 

results and elbow element results in case of R=5Do where the percentage difference, based on Eq. 

(2.2), was less than 4 % as shown in Fig. 2. 6. 
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Fig. 2. 6 Stress fields versus circumferential angle θ at section A-A (R=5Do – Fixed-
Free). (a) Von Mises stress, (b) Hoop stress, and (c) Longitudinal stress 

 

For the short pipe bend radius (R=1.5 Do), the pattern of von Mises, hoop, and longitudinal stresses 

distributions are nearly similar to those in case of R=5 Do. However, there was a tangible difference 

for the stress magnitudes between shell element and elbow element results as shown in Fig. 2. 7. 

The percentage differences between shell and elbow results at the middle surface of the intrados, 

based on Eq. (2.2), are 26.26%, 17.26%, and 51 % for von Mises, hoop, and longitudinal stresses 

respectively. The difference between shell and elbow element results is attributed to the modelling 

of the restraints as we chose to employ the kinematic coupling constraints in the shell models at 

the ends to allow radial deformation (For more details, see Supplemental Material - Modelling of 

pipe bends). Applying the boundary conditions directly to the end surface of the shell elements is 

observed to lead to a closer agreement between the stresses obtained from shell and elbow models 

as shown in Fig. 2. 8. Although ABAQUS documentation indicates that elbow element is allowed 

to deform radially by default, our latter observation shows that the radial deformation is set to zero 

at the supports in the elbow element formulation. The deformation results, shown in Fig. 2. 9, 
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further illustrate the capability of the elbow element to capture the similar deformation distribution 

of the shell model.    

 

 

 

Fig. 2. 7 Stress fields versus circumferential angle θ at section A-A (R=1.5Do – Fixed-Free – 
Kinematic coupling). (a) Von Mises stress, (b) Hoop stress, and (c) Longitudinal stress 
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Fig. 2. 8 Stress fields versus circumferential angle θ at section A-A (R=1.5Do – Fixed-Free – 
Direct constraints). (a) Von Mises stress, (b) Hoop stress, and (c) Longitudinal stress 
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Fig. 2. 9 (a) Original and deformed configurations and (b) Displacements fields versus 
circumferential angle θ generated by the shell model (Section A-A–R=5Do – Fixed-Free) 

 

Activating the geometric nonlinearity option in the modelling of elbow model results into good 

agreement with the results of geometrically nonlinear shell model as shown in Fig. 2. 6 and Fig. 

2. 8. Deactivation the geometric nonlinearity option led to a significant difference compared to 

geometrically nonlinear analysis as shown in Fig. 2. 10. At the intrados, although the geometrically 

nonlinear analysis predicted stresses that differed from the inner to outer surfaces, the deactivation 

of geometric nonlinearity generated identical stresses for the inner and outer surfaces. Although 

the hoop stresses of the middle surface in both analyses are almost similar, there was a large 

difference in the stresses predicted at the inner and outer surfaces, which exceeded 50 % (Fig. 2. 
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10b). While deactivating geometric nonlinearity leads to conservative solutions, a correct 

simulation of pipe bend response necessitates the activation of geometric nonlinearity. 

 

 

 

Fig. 2. 10 Stress fields versus circumferential angle θ at section A-A (R=1.5Do – Fixed-Free).  
(a) Von Mises stress, (b) Hoop stress, and (c) Longitudinal stress 
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The results of elastic FE analysis for the fixed-fixed case (R=1.5Do) shown in (Appendix 2.A – 

Additional Results for Case I) illustrated that the maximum von Mises stress was around 225Mpa. 

In order to evaluate the elasto-plastic response (Fig. 2. 3) of the same problem, the internal pressure 

was increased to 6.5 MPa. The von Mises, hoop, and longitudinal stress distributions at the central 

section of the pipe bend (Sec A-A) as predicted by the elasto-plastic shell and elbow models are 

illustrated in Fig. 2. 11. In the plastic zone (θ =0o to θ =140o), both models predict no difference 

between the von Mises stress results for the three surfaces. However, the shell model was found 

to be more flexible in simulating large plastic strains at the intrados (Fig. 2. 12). Consequently, the 

von Mises and hoop stresses at the intrados were higher for the shell model and the percentage 

difference for the middle surface based on Eq. (2.2) were 10.5 % and 9.5 % respectively. On the 

other hand, the longitudinal stresses were nearly equal in both models as shown in Fig. 2. 11c. 

Although the elbow model exhibited plastification at the intrados, the maximum principal plastic 

strains predicted by the elbow model differed drastically from those predicted by the shell model 

after attaining an internal pressure of 5.2 MPa as shown in Fig. 2. 13a. Below a maximum principal 

plastic strain of 0.2 %, the difference between the shell and elbow models was negligible. 

Additionally, the total longitudinal strains depicted in Fig. 2. 13b showed an agreement between 

the shell and elbow model predictions when the longitudinal strains are below 0.05%. Although 

the previous elbow results were based on small number of integration points (Model# S12), an 

increase in the number of integration points in model# S13 did not tangibly change the stress 

results. It is concluded that the Elbow element is based on a small strain formulation. Further 

research studies are recommended to investigate the accuracy of ELBOW31 for predicting the 

longitudinal strains for geohazard applications.    
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Fig. 2. 11 Stress fields versus circumferential angle θ at section A-A (R=1.5Do – Fixed-Fixed – 
Plastic analysis). (a) Von Mises stress, (b) Hoop stress, and (c) Longitudinal stress 
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Fig. 2. 12 Total equivalent plastic strain (PEEQ) versus circumferential angle θ at  
section A-A (R=1.5Do – Fixed-Fixed – Middle surface– Plastic analysis) 

 

 

 
Fig. 2. 13 (a) Maximum principal plastic strain and (b) Total longitudinal strain versus applied 

internal pressure at the intrados of section A-A (R=1.5Do – Fixed-Fixed – Middle surface– 
Plastic analysis) 
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2.4.2 Results for Case II (Two pipe bends connected with straight portions)  

Pipe bends are typically subjected to stresses higher than a straight pipe under the same loading. 

These high stresses would be redistributed when pipe bends are connected to straight segments in 

reality. Hence the adjacent straight segments would be subjected to stresses higher than the 

expected stresses in a straight pipe under the same loading. Two cross sections were investigated: 

the first cross section at the center of the pipe bend and the second cross section at the beginning 

of the straight portion.  

 

The von Mises and hoop stresses at the centre of the pipe bend (Sec A-A) have similar stress 

distribution patterns; with the highest value at the intrados (θ=0o) and the lowest value at the 

extraods (θ=180o). Stresses at the inner surface are higher at the intrados, while those at the outer 

surface are higher at the crown position (θ=90o) as shown in Fig. 2. 14a and Fig. 2. 14b. The results 

obtained for shell elements, elbow elements, or combined (elbow&pipe) elements are almost 

identical. Elbow elements and combined elements can capture the von Mises and hoop stresses at 

the different surfaces of a pipe bend effectively. On the other hand, longitudinal stresses at the 

centre of the pipe bend (Sec A-A) have a different stress distribution. The difference between the 

stresses at the inner and outer surfaces is more pronounced at the intrados and crown, but relatively 

negligible at the extrados. Whereas the elbow model predicts longitudinal stresses similar to the 

shell model, a higher error is obtained for the combined model especially at the intrados and crown, 

as shown in Fig. 2. 14.c.  
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Fig. 2. 14 Stress fields versus circumferential angle θ at section A-A (a) Von Mises 
stress, (b) Hoop stress, and (c) Longitudinal stress 
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The stress distribution patterns of the von Mises, hoop, and longitudinal stresses evaluated at the 

starting node of the straight portions (Sec B-B) are similar to those at the centre of the pipe bend 

(Sec A-A). In addition, the results for the elbow model completely agree with those of the shell 

model at the different surfaces. The combined model shows only the stress values at the middle 

surface because the pipe element (PIPE31) was used to model the straight porttions. Hence, the 

results are almost constant along the circumference of the pipe as shown in Fig. 2. 15. The 

percentage difference between the elbow and combined models at the intrados are 8.85% and 

8.66% for the Von Mises and hoop stresses respectively. While the combined model presents a 

good approximation of the longitudinal stresses at the intrados and crown, there is a difference of 

5.27% at the extrados. Consequently, it is recommended to use ELBOW elements in the modelling 

of the straight portions adjacent to pipe bends, while PIPE elements can be utilized for the 

remaining straight segments in long pipeline transmission systems.  
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Fig. 2. 15 Stress fields versus circumferential angle θ at section B-B (a) Von Mises stress, 
(b) Hoop stress, and (c) Longitudinal stress 

 
 

2.4.3 Assessment of ASME B16.49 2017 [16] and previous stress estimates [6].   

2.4.3.1 ASME B16.49 2017 [16] 

Clause 2.2 of ASME B16.49 2017 provides the recommended ratio of the minimum wall thickness 

at the intrados of a pipe bend to that of a straight pipe as given in Eq. (2.1). In order to check the 

appropriateness of ASME equation, this factor was compared to the ratio between the value of the 

hoop stress at the intrados extracted from the analyses of Cases I and II using elbow elements to 

the hoop stress of a straight pipe as shown in Table 2. 3. In most cases, the code factor is greater 

than the defined stress ratio below in all elastic analyses in this study. An exception is observed in 
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the short pipe bend radius (R=1.5Do) analysis with a fixed-free boundary conditions in which stress 

ratio is 1.3. A parametric study is recommended in order to verify the ASME equation in the case 

of plastic analysis to investigate the effect of geometric parameters of the pipe bends (pipe bend 

radius, outer diameter, wall thickness, and pipe bend angle), different boundary conditions, and 

characteristics of stress-strain relationship. 

𝑆𝑆𝑡𝑡𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 𝑅𝑅𝑀𝑀𝑡𝑡𝑑𝑑𝑜𝑜 =
𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝑡𝑡𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆 𝑀𝑀𝑡𝑡 𝑑𝑑𝑃𝑃𝑡𝑡𝑃𝑃𝑀𝑀𝑑𝑑𝑜𝑜𝑆𝑆 𝑀𝑀𝑡𝑡 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑃𝑃 𝑆𝑆𝑜𝑜𝑃𝑃𝑑𝑑𝑀𝑀𝑃𝑃𝑃𝑃 

𝑃𝑃 × 𝐷𝐷𝑂𝑂
2 × 𝑡𝑡

 

 

Table 2. 3  Hoop stress values and stress ratios of Case I and Case II 

 
Case I 

Case II 
R=5Do R=1.5Do 

Analysis type Elastic Elastic Plastic Elastic 

Boundary Conditions FR FF HH FR FF HH FF FF 

Code Factor 1.06 1.25 

Hoop stresses (MPa) 237 230 231 292 239 239 450 271 

Stress ratio 1.06 1.03 1.03 1.30 1.07 1.07 1.23 1.21 

 

2.4.3.2 Approximate stress equations [6] 

Based on three-dimensional elastic FE analysis, Hong [6] proposed a series of approximate 

equations to calculate the elastic longitudinal, hoop and radial stresses at the center and the end of 

a thin or thick pipe bend attached to straight portions (Table 2. 4). These equations are applicable 

for 90o, 45o, and U elbows. The results of these equations were compared to results of this study. 

The comparison showed that the percentage difference of elbow models is generally lower 

compared to the approximate equations. Although these equations provide a good estimate of the 

stresses, the difference between the stresses obtained by elbow models and Hong’s equations is 
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sometimes between 5 % and 10 % at some locations. Table 2. 5 shows the comparison and 

percentage difference compared to shell results. The percentage difference is also calculated using 

Eq. (2.2).  

Table 2. 4 Approximate equations for the elastic stress fields of a pipe bend attached to straight 
portions 

Position 
Pipe bend 

type 

Approximate stress equations 

Centre of a 

pipe bend 
Thick-walled 

𝜎𝜎ℎ = 𝑃𝑃 � (𝑟𝑟0/𝑟𝑟)2+1
(𝑟𝑟0/𝑟𝑟𝑖𝑖)2−1

� � 2𝑅𝑅+𝑟𝑟𝑚𝑚 cos  𝛼𝛼
2𝑅𝑅+2𝑟𝑟𝑚𝑚 𝑐𝑐𝑜𝑜𝑐𝑐  𝛼𝛼

�  

𝜎𝜎𝑙𝑙 = 𝑃𝑃 � 1
(𝑟𝑟0/𝑟𝑟𝑖𝑖)2−1

� ��𝑅𝑅+𝑟𝑟𝑚𝑚 𝑐𝑐𝑜𝑜𝑐𝑐 𝛼𝛼
𝑅𝑅+𝑟𝑟 𝑐𝑐𝑜𝑜𝑐𝑐 𝛼𝛼

�
3
− 𝑃𝑃𝑜𝑜𝑆𝑆2𝛼𝛼 �1 + 𝛼𝛼

𝜋𝜋
� �𝑟𝑟0−𝑟𝑟𝑖𝑖

2𝑅𝑅
��  

End of a 

pipe bend 
Thin-walled 

𝜎𝜎ℎ = 𝑃𝑃 𝑟𝑟𝑖𝑖
𝑡𝑡

 �4𝑅𝑅+3𝑟𝑟𝑚𝑚 cos𝛼𝛼
4𝑅𝑅+4𝑟𝑟𝑚𝑚 cos𝛼𝛼

�  

𝜎𝜎𝑙𝑙 = 𝑃𝑃 𝑟𝑟𝑖𝑖
2𝑡𝑡

  

Where  

𝜎𝜎ℎ  &  𝜎𝜎𝑙𝑙 are hoop and longitudinal stress respectively 

 𝑃𝑃0, 𝑃𝑃𝑚𝑚, 𝑃𝑃𝑖𝑖 are outer, mean, inner radius of a pipe as shown in Fig. 2. 16 

𝑃𝑃,𝛼𝛼 are polar coordinate for a pipe bend as shown in Fig. 2. 16 

 

Fig. 2. 16 Geometric properties of the cross section of the pipe bend used by Hong [6] 
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Table 2. 5 Stress results of shell models, elbow models, and approximate formulas 

Section Position Stress Type Surface 
Stresses (MPa) Percentage difference (%) 

Shell Elbow Equations Elbow Equations 

C
en

te
r o

f a
 p

ip
e 

be
nd

 

Intrados 

Hoop 

Inner 275 276 277 0.10 0.51 

Outer 266 267 272 0.28 2.11 

Middle 271 271 274 0.19 1.29 

Longitudinal 

Inner 105 103 106 1.44 1.51 

Outer 99 96 109 3.50 10.05 

Middle 102 100 108 2.44 5.70 

Extrados 

Hoop 

Inner 195 195 194 0.18 0.16 

Outer 192 189 191 1.40 0.30 

Middle 193 192 193 0.60 0.24 

Longitudinal 

Inner 111 110 109 0.65 1.65 

Outer 110 109 108 0.69 2.45 

Middle 111 110 108 0.67 2.05 

En
d 

of
 a

 p
ip

e 

be
nd

 

Intrados 
Hoop Middle 241 241 247 0.15 2.44 

Longitudinal Middle 111 108 110 2.47 1.06 

Extrados 
Hoop Middle 210 210 206 0.19 1.86 

Longitudinal Middle 112 111 110 1.12 1.64 

 

2.5 Conclusion 

Pipe bends are primary components in piping systems which have a complex structural behavior 

to loading. Although solid or shell FE formulations are best-suited for simulating this complex 

behavior, they are computationally expensive. Elbow elements are special FE that provide a more 

computationally cost-effective option for simulating the mechanical behavior of pipe bends. 

Modelling of the elbow element and evaluation of its results under internal pressure, are vital 

requirements for appropriate design of piping systems. This chapter gives a detailed description of 
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the modelling and a complete evaluation of the elbow element for pipe bends under internal 

pressure. The results of this study can be summarized as follows: 

 Elbow elements can efficiently capture the sophisticated behavior of a pipe bend under 

internal pressure.  

 While end loads for adjoining elements are self-equilibrating, the end force acting on an 

element located at the end of a pipe requires the application of an externally applied 

concentrated longitudinal force to simulate the open-ended pipe condition.   

   There is no notable difference between the results of reactions and stresses in the 

circumferential direction between the responses of ELBOW31 and ELBOW32. 

 The modelling techniques for boundary conditions have a tangible effect on the stress 

results, especially in pipe elbows with a short bend radius (R=1.5Do). 

 The two proposed modelling techniques for piping systems (elbow model and combined 

model) have no significant effect on the predicted stresses at the middle of a pipe bend, 

except for the longitudinal stresses at the intrados and crown positions. 

 The adjacent straight portions attached to pipe bends are typically subjected to higher 

hoop stresses compared to the stresses expected in a straight pipe segment; hence, the 

thickness intended for a straight pipe would be insufficient in an elbow.  

 Activating geometric nonlinearity is necessary to capture the realistic response of pipe 

bends. 

 Based on the stress-strain curve adopted in the present paper, the predictions of the shell 

and elbow models for the maximum principal plastic strain and total longitudinal strain 

deviate starting from 0.2 % and 0.05 % respectively.  
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 The proposed ASME B16.49 2017 equation of the wall thickness of pipe bends is a 

conservative estimate for an elastic material characterization. 

 The equations developed by Hong [6] provide an excellent estimate of the elastic stress 

fields.   
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2.8 Nomenclature 
E Young’s modulus 

ν Poisson’s ratio 

Do Outer diameter of pipe bends and straight portions     

r Outer radius of pipe bends 

R Pipe bend radius 

t Wall Thickness of pipe bend and the straight portions 

Lh Length of horizontal straight portion 

Lv Length of vertical straight portions 

P Internal pressure     

𝐹𝐹𝑥𝑥 & 𝐹𝐹𝑦𝑦 Components of the in-plane outward force generated by the Bourdon effect in x and y                     

directions respectively 

𝛼𝛼 Total bend angle 
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𝜎𝜎𝑣𝑣𝑣𝑣 Von Mises stress that is a stress measure related to the second invariant of the 

deviatoric stress tensor  𝐽𝐽2, defined as 𝜎𝜎𝑣𝑣𝑣𝑣 = �3𝐽𝐽2 

 

2.9 Appendix 2.A – Additional Results for Case I 

For fixed-fixed case, Fig. 2. A. 1 and Fig. 2. A. 2 present von Mises, hoop, and longitudinal stress 

distributions along the circumferential direction at section A-A for R=5Do and R=1.5Do, 

respectively.  
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Fig. 2. A. 1 Stress fields versus circumferential angle θ at section A-A for R=5Do (a) Von Mises 
stress, (b) Hoop stress, and (c) Longitudinal stress 
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Fig. 2. A. 2 Stress fields versus circumferential angle θ at section A-A for R=1.5Do (a) Von 

Mises stress, (b) Hoop stress, and (c) Longitudinal stress 

 

For hinged-hinged case using kinematic coupling constraint, Fig. 2. A. 3 and Fig. 2. A. 4 present 

von Mises, hoop, and longitudinal stress distributions along the circumferential direction at section 

A-A for R=5Do and R=1.5Do, respectively.  
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Fig. 2. A. 3 Stress fields versus circumferential angle θ at section A-A for R=5Do (a) Von Mises 
stress, (b) Hoop stress, and (c) Longitudinal stress 

 

 



56 
 

 

Fig. 2. A. 4 Stress fields versus circumferential angle θ at section A-A for R=1.5Do (a) Von 
Mises stress, (b) Hoop stress, and (c) Longitudinal stress 

 

For hinged-hinged case using direct constraint, Fig. 2. A. 5 and Fig. 2. A. 6 present von Mises, 

hoop, and longitudinal stress distributions along the circumferential direction at section A-A for 

R=5Do and R=1.5Do, respectively.  
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Fig. 2. A. 5 Stress fields versus circumferential angle θ at section A-A for R=5Do (a) Von Mises 
stress, (b) Hoop stress, and (c) Longitudinal stress 
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Fig. 2. A. 6 Stress fields versus circumferential angle θ at section A-A for R=1.5Do (a) Von 

Mises stress, (b) Hoop stress, and (c) Longitudinal stress 
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2.10 Supplemental Material - Modelling of pipe bends 

Shell element (S4R) 

Due to the symmetry, only half of the pipe bend was considered as shown in Fig. 2. S. 1 (R=5Do). 

Three-dimensional deformable shell using the sweep option was employed to model the problem. 

Moreover, the inner surface of the pipe bend was drawn to apply internal pressure in the next steps. 

Shell elements were four noded doubly curved elements employing reduced integration (S4R). In 

addition, the approximate size of the element was 30mm. A homogenous shell section was defined 

with constant thickness knowing that shell offset was the bottom surface. In order to implement 

kinematic coupling, firstly, two reference points were selected at the ends of the pipe bend. 

Secondly, a cylindrical coordinate system was created at each end. Finally, a kinematic coupling 

constraint was defined and the first displacement (U1) at the created coordinate system was 

released to allow the radial deformation. 

 

Fig. 2. S. 1 Half of the pipe bend using shell element (R=5Do) 
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Elbow element (ELBOW31 & ELBOW32) 

Centerline of the pipe bend is drawn using three-dimensional deformable wire in plane X-Y as 

shown in Fig. 2. S. 2 (R=5Do). ELBOW 31 or ELBOW32 was chosen from the element library in 

ABAQUS with mesh size approximately equal to 30 mm as well.  The definition of the elbow 

cross section firstly required choosing pipe section. Secondly, assigning the pipe section to the 

problem. Finally, the section was modified by changing the input file as shown in Fig. 2. S. 3. The 

required changes in the input file were: 

1- Name of the section. 

2- Adding the bend radius in the same line of the radius and thickness of a pipe.  

3- Adding the orientation point [17]. 

4- Adding the integration points around the circumferential and through the thickness and 

Fourier modes respectively. 

5- Ovality and warping were prevented at the restrained ends (supports).  

 
Fig. 2. S. 2 Pipe bend using elbow element (R=5Do) 
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Fig. 2. S. 3 Required changes in the input file to define the elbow section 

 

2.11 References 

[1] Von Karman, T., 1911, “Ueber Die Formanderung Dumnwandiger Rohre, Innsbesondere 
Federnder Ausgleichrohre,” Z. Ver. Deut. Ing., 55(Part2), pp.1889–1895. 

[2] Vigness, I., 1943, “Elastic Properties of Curved Tubes,” J. Appl. Mech., 55, pp.102–120. 
[3] Kafka, P. G., and Dunn, M. B., 1953, Stiffness of Curved Circular Tubes with Internal 

Pressure, Boeing Airplane, Chicago, IL. 
[4] Flugge, W., 1973, Stress in Shells, Spring-Verlag, Berlin and New York. 
[5] Goodall, I. W., 1978, “Lower Bound Limit Analysis of Curved Tubes Loaded by Combined 

Internal Pressure and In-Plane Bending Moment,” Central Electricity Generating Board, 
London, UK, Research Division Report RD/B N4360. 

[6] Hong, S.-P., An, J.-H., Kim, Y.-J., Nikbin, K., and Budden, P. J., 2011, “Approximate Elastic 
Stress Estimates for Elbow Under Internal Pressure,” Int.J. Mech. Sci., 53(7), pp. 526–535. 

[7] Abdulhamed, D., Adeeb, S., Cheng, R., and Martens, M., 2016, “The Influence of the Bourdon 
Effect on Pipe Elbow,” ASME Paper No. IPC2016-64659. 

[8] Bathe, K. J., and Almeida, C. A., 1980, “A Simple and Effective Pipe Elbow Element, Linear 
Analysis,” J. Appl. Mech., 47(1), pp. 100–193. 

[9] Bathe, K. J., and Almeida, C. A., 1982, “A Simple and Effective Pipe Elbow Element, Some 
Nonlinear Capabilities,” J. Appl. Mech., 49(1), pp.165–173. 

[10] Bathe, K. J., and Almeida, C. A., 1982, “A Simple and Effective Pipe Elbow Element, Pressure 
Stiffening Effects,” J. Appl. Mech., 49(4), pp. 914–915. 

[11] Militello, C., and Huespe, A. E., 1988, “A Displacement- Based Pipe Elbow Element,” 
Comput. Struct., 29(2), pp. 339–343. 

[12] Ohtsubo, H., and Watanabe, O., 1978, “Stress Analysis of Pipe Bends by Ring Elements,” 
ASME J. Pressure Vessel Technol., 100(1), pp. 112–122. 

[13] Abo-Elkhier, M., 1990, “Analysis of Pipe Bends Using Pipe Elbow Element,” Comput. Struct., 
37(1), pp. 9–15. 



62 
 

[14] Zeng, L., Jansson, L. G., and Venev, Y., 2014, “On Pipe Elbow Elements in ABAQUS and 
Benchmark Test,” ASME Paper No. PVP2014-28920. 

[15] Bryan, B. J., 1994, Static Analysis of a Piping System with Elbows (WSRCMS-94-075), 
Minneapolis, MN. 

[16] ASME, 2017, “Factory-Made, Wrought Steel, Butt Welding Introduction Bends for 
Transportation and Distribution Systems,” ASME Standard No. ASMEB16.49-2017. 

[17] Simulia, 2017, “ABAQUS, User’s Manual Version 6.13 Documentation,” Simulia, Johnston, 
RI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



63 
 

Chapter 3  
Shell Finite Element Formulation for Geometrically 
Nonlinear Analysis of Straight Thin-Walled Pipes 
 

 

 

3.1 Abstract  

A family of new geometrically nonlinear finite elements is formulated for the simulation of the 

structural response in the elastic regime of straight pipes with circular cross-sections under various 

loading conditions. The first Piola-Kirchhoff stress tensor is employed within the principle of 

virtual work framework in conjunction with a total Lagrangian approach. The Green-Lagrange 

strain tensor is adopted to capture the finite deformation-small strain effects. The formulations are 

based on the kinematic assumptions of the thin shell theory and capture the follower effects due to 

pressure load. Three schemes are proposed to interpolate the displacement fields in the 

circumferential direction: (1) a Fourier series expansion, (2) a quartic spline interpolation, and (3) 

a mixed interpolation combining Fourier series and splines. The performance and prediction 

accuracy of the elements are assessed through comparisons with finite element models based on 

shell and elbow elements in ABAQUS under various loading conditions. The results demonstrate 

the ability of the elements to predict the displacement and stress fields. In particular, the element 

based on Fourier series interpolation is shown to provide accurate predictions.     

 

Keywords 

Shell Finite Element Formulation, Nonlinear Analysis, Circular Cylindrical Pipe, First Piola-

Kirchhoff Stress Tensor, Virtual Work Principle, Spline Interpolation.  
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3.2 Introduction  

Pipeline systems provide effective means of transporting oil and chemicals from centers of 

production to centers of consumption. Efficient and accurate analysis for pipeline systems is an 

essential requirement for their structural integrity. The flexibility of hollow circular cross-sections 

of pipes leads to phenomena such as ovalization and warping in addition to the traditional 

deformation modes of beams with rigid cross-sections. In order to properly analyze and design 

pipeline systems, pipe models have to capture ovalization and warping phenomena [1-9]. Although 

various theoretical and experimental studies [1-5] were carried out for pipeline systems, limitations 

still exist in predicting the realistic behavior especially in the nonlinear regime of deformation. 

Solid and shell finite elements (FE) [6-9] are suitable to simulate the structural response of pipeline 

systems. However, the high computational cost associated with these elements prohibits their use 

in a design environment. Consequently, special formulations are required to predict the mechanical 

behavior with a reasonable computational cost. While these special formulations were developed 

for analysis of pipe bends, they can be used for straight pipes by stetting the reciprocal of the pipe 

bend radius to be zero. 

 

Several FE formulations for the linear analysis of straight and curved pipes were introduced by 

previous researchers [10-16]. A ring-shaped finite element was developed based on the kinematic 

constraints of the thin Love-Kirchhoff shell theory [10]. Fourier series interpolation was employed 

to characterize the variation of the displacement fields in the circumferential direction while 

Hermitian functions were employed to interpolate the displacement fields along longitudinal 

direction. The formulation as presented did not satisfy the rigid body motion criterion for curved 

pipe segments.  A simple FE formulation was proposed based on the von Karman theory [1], in 



65 
 

which the displacement fields were taken as a combination of beam deformation mode (centerline 

displacements) characterized by cubic polynomial displacement functions and cross-sectional 

deformation modes expressed by Fourier series [11]. The element was further improved to 

simulate pressure stiffening [12] and interaction effects between the curved and straight pipes [13]. 

The proposed element ignored warping deformations, which may contribute tangibly to pipe bend 

deformations [14]. A treatment for warping deformation was proposed in Ref [14] by expressing 

the longitudinal displacement field as a Fourier series. For straight pipes, an accurate and 

computationally efficient FE formulation was developed based on thin shell theory [15-16]. While 

the exact shape functions were obtained for each Fourier mode by solving the equilibrium 

equations, the formulation is limited to linearly elastic analysis.  

 

Most formulations adopt the principle of virtual work to develop the geometrically nonlinear FE 

formulations in conjunction with the Lagrangian description approach [17]. There are two common 

forms of the internal virtual work expression within the Lagrangian description [18-19]: The first 

employs the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor, and the 

second adopts the first Piola-Kirchhoff stress tensor and the gradient of the virtual displacement. 

A detailed description for constructing classical nonlinear FE formulations using the first form was 

presented in Ref [20] while fully nonlinear FE formulations based on Carrera Unified Formulation 

(CUF) are provided in Ref [21] for beams and Ref [22] for shells without kinematic constraints. 

The Elbow elements within FE software packages (e.g. ABAQUS [23], ADINA [24], and ANSYS 

[25]) are all based on the first form of the internal virtual work. Also based on the first form, recent 

three-dimensional nonlinear FE formulations for straight and curved pipes with variable cross 

section were introduced in Refs. [26-28]. To the authors’ knowledge, no FE formulations based 
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on the second form have been reported, although it has been employed in other finite element 

applications involving beam [29] and shell [30-32]. 

 

The current study develops a family of geometrically nonlinear FE formulations for circular 

straight pipes based on the second form of the internal virtual work. The formulation differs in 

three aspects from the ones in Refs. [26-27]: (1) the form adopted for the internal virtual work, (2) 

the present formulation is based on a thin shell theory kinematics while that in Refs. [26-27] is a 

three-dimensional formulation, and (3) the present study formulates the pressure effect as a 

follower pressure using the first Piola-Kirchhoff stress tensor. Although the conceptual approach 

provided in Refs. [21-22] and the present study for linearization of nonlinear equilibrium equations 

is quite similar, the mathematical application is completely different due to using two different 

forms of the internal virtual work. In addition, the contribution of follower pressure loads (e.g., 

significant loading condition in piping systems) in the stiffness matrix was not be reported in Refs. 

[21-22] while that contribution is highlighted in the present study.  

 

3.3 Assumptions 

The FE formulation presented in this study is based on the following assumptions: 

1. Pipe material is linearly elastic isotropic and follows the Saint-Venant-Kirchhoff material 

constitutive model. 

2. Initially, the pipe has a perfectly circular thin-walled cross section. 

3. The formulation is based on the kinematics of the Love-Kirchhoff thin shell theory. 

4. The normal stress component in the radial direction is negligible. 

5. Pressure load acts as a follower force. 
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3.4 Formulation 

3.4.1 Principle of virtual work 

The principle of virtual work for static equilibrium expressed in the reference configuration is 

given by 7 

( ) ( ) ( )T
o o oV S Vo o o

dV dS dV⊗∇ = ⋅ + ⋅∫ ∫ ∫NP : u T u B u                                                               (3.1) 

in which all integrations are performed over the reference volume oV and reference surface oS that 

encloses volume oV . The left hand side denotes the internal virtual work U as the inner product 

(denoted by:) of the first Piola-Kirchhoff stress tensor P  and the gradient of the virtual 

displacement fields ( )T⊗∇u , in which u  is the virtual displacement fields, ∇ is the gradient 

operator with respect to the reference configuration, and ⊗ denotes the dyadic product. The right 

hand side of Eq. (3.1) refers to the external virtual work V , formulated in the reference 

configuration, due to the applied traction NT  on the reference area odS defined by the normal 

vector N  and the body force B  per unit reference volume. 

 

3.4.2 First Piola-Kirchhoff stress tensor in terms of the displacements  

The first Piola-Kirchhoff stress tensor P  is related to the second Piola-Kirchhoff stress tensor S

through P = FS  in which ( )T= ⊗∇ +F u I  is the deformation gradient tensor of the displacement 

vector u  and I  is the identity tensor. The second Piola-Kirchhoff stress tensor S  is related to the 

                                                 
7 The principle of virtual work can be mathematically derived based on the equilibrium equations (equations 

of motion) from the principle of conservation of linear momentum in the deformed (spatial) and the reference 
(material) configurations. The principle of conservation of angular momentum leads to an additional three constraint 
equations on the Cauchy stress tensor leading to its symmetry property. The equivalent three constraint equations in 
terms of the first Piola-Kirchhoff stress tensor are provided in Ref [35].  
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Green-Lagrange strain tensor E  through S = C : E  in which C  is the Saint-Venant-Kirchhoff 

material constitutive tensor (Assumption 1, Section 3.3), and the Green-Lagrange strain tensor is 

related to the displacement fields through ( ) ( ) ( )( )1
2

T T T T = ⊗∇ + ∇⊗ + ∇⊗ ⊗∇ E u u u u . The 

first Piola-Kirchhoff stress tensor is thus expressed in terms of the displacement fields though 

( ) ( ) ( ) ( ) ( )( )1
2

T T T T T    = ⊗∇ + ⊗∇ + ∇⊗ + ∇⊗ ⊗∇     
P = F C : E u I C : u u u u                   (3.2) 

 

3.4.3 Virtual displacement fields in terms of virtual nodal degrees of freedom 

The displacement fields u  are assumed to be nonlinear functions of the nodal degrees of freedom

d , i.e., 

( )=u u d                                                                      (3.3)

Without loss of generality, the arbitrarily virtual displacement field vector u is taken to be related 

to the virtual degrees of freedom vector d  through 

∂
=
∂
uu d
d

                                                                                                                                                 (3.4) 

From Eq.(3.4), one can express the gradient of the virtual displacement fields as

( )T T ⊗∇ = ∂ ∂ ⊗∇ u u d d , and recover the following relationship between the gradients of the 

displacements and virtual displacements  

( ) ( )T T
T

∂ ⊗∇ ∂ ⊗∇∂ = ⊗∇ = ∂ ∂ ∂ 

u uu
d d d

                                                                                                  (3.5) 

From Eq.(3.2) and(3.4), by substituting into Eq.(3.1), a generalized expression of the principle of 

virtual work can be obtained in terms of the displacement fields ( )=u u d  as       
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( ) ( ) ( ) ( )( )1
2

T T T T T T
oVo

o oS Vo o

dV

dS dV

 ∂        ⊗∇ + ⊗∇ + ∇⊗ + ∇⊗ ⊗∇ ⊗∇         ∂    
 ∂   ∂    = ⋅ + ⋅      ∂ ∂      

∫

∫ ∫N

uu I C : u u u u : d
d

u uT d B d
d d

 

(3.6) 

 

3.5 Force Vectors and Stiffness Matrix 

By taking the partial derivatives of Eq.(3.6) with respect to the virtual degrees of freedom vector

d , the equilibrium equations can be expressed  in terms of the displacement fields ( )=u u d  as 

( ) ( ) ( ) ( ) =I EF d - F d 0                                                                                                                                                (3.7) 

( ) ( ) ( ) ( ) ( )( ) ( )1
2

T
T T T T T

oVo
dV

 ∂ ⊗∇       = ⊗∇ + ⊗∇ + ∇⊗ + ∇⊗ ⊗∇        ∂ 
 

∫I u
F u I C : u u u u :

d
(3.8) 

( )
T T

o oS Vo o
dS dV

   ∂ ∂   = +      ∂ ∂         
∫ ∫E

N
u uF T B
d d

                                                                   (3.9)

in which ( ) ( )IF d is the internal force vector and ( ) ( )EF d  is the external force vector.   

 

3.5.1 Internal and External Force Vectors 

Eqs. (3.7)-(3.9) represent a nonlinear system of equations in the unknown nodal displacement 

vector d . The internal and external force vectors are approximated using Taylor series as 

( ) ( ) ( ) ( ) ( )g g
g=

≈ + −I I T
d d

F d F d K d d                                                                                                               (3.10) 

( ) ( ) ( ) ( ) ( )g g
g=

≈ + −E E F
d d

F d F d K d d            (3.11) 

where ( ) ( )g
IF d and ( ) ( )g

EF d are the internal and external force vectors at a given nodal 
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displacement vector gd , ( ) ( )( )= ∂ ∂ITK F d d is the tangent stiffness matrix, and 

( ) ( )( )= ∂ ∂EFK F d d is the contribution of the external force vector to the stiffness matrix. From 

Eqs.(3.10) and (3.11), by substituting into Eq.(3.7), one recovers the following linearized system 

of equations in the nodal displacement vector d   

( ) ( )g gg=+ − =d dR d K d d 0                                                                                       (3.12) 

where ( ) ( ) ( ) ( ) ( )g g g= −I ER d F d F d  is the residual force vector and 
g g g= = =
= −T F

d d d d d d
K K K

is the stiffness matrix at a given nodal displacement vector gd . The nodal displacement vector d

corresponding to a zero residual force vector is obtained by iteratively solving Eq.(3.12). 

 

3.5.2 Tangent stiffness matrix 

In subsections 3.5.2 to 3.5.4, indicial notation with respect to the nodal degrees of freedom id (or

jd ) where i , j 1,2,...., n= , n  being the total number of the nodal degrees of freedom, will be 

utilized to explicitly express the components of the tangent stiffness matrix T
ij

K and the 

contribution of the external force vector to the stiffness matrix F
ij

K .  In subsection 3.5.1, we recall 

that the tangent stiffness matrix has been defined as the derivative of the internal force vector with 

respect to the degrees of freedom vector. From Eq.(3.2) and by taking the partial derivative of 

Eq.(3.8) with respect to jd , the components of the exact tangential stiffness matrix T
ij

K are 

expressed as 



71 
 

( ) ( ) ( )T T T
T

o oV Vij o oj i j i j i
K dV dV

d d d d d d

    ∂ ⊗∇ ∂ ⊗∇ ∂ ⊗∇∂ ∂ ∂    = = +
    ∂ ∂ ∂ ∂ ∂ ∂

    
∫ ∫

u u uPP : : P :    (3.13) 

in which jd∂ ∂P  is obtained by differentiation of Eq.(3.2) as 

( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
2

T
T T T T

j j

T T T T
T T T

j j j j

d d

d d d d

 ∂ ⊗∇∂    ⊗∇ + ∇⊗ + ∇⊗ ⊗∇   ∂ ∂
 

  ∂ ⊗∇ ∂ ∇⊗ ∂ ∇⊗ ∂ ⊗∇    + ⊗∇ + + + ⊗∇ + ∇⊗    ∂ ∂ ∂ ∂
  

uP = C : u u u u

u u u u
u I C : u u

(3.14) 

3.5.3 Approximation of the tangent stiffness matrix 

The present formulation employs an approximation of the tangential stiffness matrix that neglects 

the second order derivative terms (e.g., ( )T
i jd d ∂ ∂ ⊗∇ ∂ ∂ u ) leading to Eq.(3.15)  

( )T
T
A oVoij j i

K dV
d d

 ∂ ⊗∇∂ ≈
 ∂ ∂
 

∫
uP :                                                                                                                (3.15) 

 

3.5.4 Contribution of the external force vector to the stiffness matrix 

The derivative of the external force vector with respect to jd is obtained by differentiating Eq. 

(3.9), yielding  

2 2
F

o oS Vij o oj i i j j i i j
K dS dV

d d d d d d d d
   ∂ ∂ ∂ ∂ ∂ ∂

= ⋅ + ⋅ + ⋅ + ⋅      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∫ ∫N

N
T u u B u uT B
 

                              (3.16)   

Again, the second order derivatives (e.g. 2
i jd d∂ ∂ ∂u ) are neglected so that the approximate 

contribution F
A ij

K of the external force vector to the stiffness matrix is given by  
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F
A o oS Vij o oj i j i

K dS dV
d d d d

   ∂ ∂ ∂ ∂
≈ ⋅ + ⋅      ∂ ∂ ∂ ∂   
∫ ∫NT u B u 

                                                                         (3.17) 

In cases where the applied traction NT is independent of the deformation, its derivative jd∂ ∂NT  

vanishes and the applied traction does not contribute to the stiffness matrix (e.g., 0F
A ij

K = ). 

Conversely, when the applied traction NT depends on the orientation of the deformed surface d (as 

may be the case in the case of follower pressure), jd∂ ∂NT  does not vanish and contributes to the 

stiffness matrix (e.g. 0F
A ij

K ≠ ). In the case of a follower pressure load P , the state of stress in the 

deformed configuration is given by the Cauchy stress tensor P=σ I , where I  is the identity tensor, 

and the equivalent first Piola-Kirchhoff stress tensor EP  in the un-deformed configuration is 

( )det T T= -
EP F σ F [33], where ( )det F is the determinant of the deformation gradient tensor. The 

corresponding traction NT  is thus expressed by  

( )det T T= = -
N ET P N F σ F N

 

                                                                                      (3.18)  

and N


is the unit vector normal to the area where tractions are applied in the un-deformed 

configuration. The partial derivative of Eq.(3.18), with respect nodal degrees of freedom jd is 

given by  

( )( ) ( ) ( )det
det det

T
T T T T T

j j j jd d d d
 ∂∂ ∂ ∂

= = +  ∂ ∂ ∂ ∂ 

-
- -N FT FF σ F N σ F F σ N



 

                                 (3.19) 

Using the following mathematical identities in [34] 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11det
det det

T
T T

j j j

TTT T T TT T T T

j j j

tr tr
d d d

d d d

−
−

− − −
− −

 ∂ ⊗∇ ∂ ∂     = = ⊗∇ + ⊗∇ +      ∂ ∂ ∂    

∂ ⊗∇∂ ∂    = − = − ⊗∇ + ⊗∇ +   ∂ ∂ ∂

uF FF F u I u I

uF FF F u I u I

             (3.20) 

Eq.(3.19) can be written as 

( ) ( ) ( )

( ) ( ) ( ) ( )

1
det

det

T
T T T T

j j

TT
T TT T T

j

tr
d d

d

−
−

− −

  ∂ ⊗∇∂      = ⊗∇ + ⊗∇ +     ∂ ∂
 

∂ ⊗∇    − ⊗∇ + ⊗∇ +    ∂


N
uT u I u I σ F

u
F σ u I u I N





                                         (3.21) 

The contribution F
A ij

K of the external force vector to the stiffness matrix  is then obtained from 

Eq.(3.21), by substituting into Eq.(3.17). 

 

3.6 Displacement fields in cylindrical coordinates 

The previous section focused on expressing the internal and external force vectors and the stiffness 

matrix expressions in terms of generic displacement fields u . The present section specializes the 

previous equations for the case of thin circular cylindrical shells.  

 

3.6.1 Geometric description 

Fig. 3. 1a depicts the un-deformed configuration of the middle surface of an initially circular thin-

walled straight pipe, with mid-surface radius mr  and wall thickness h . The coordinates of a 

material point within the pipe (Fig. 3. 1a) are defined by three coordinates expressed in the 

cylindrical coordinate system as ( ), ,z ϕ ζ  along the longitudinal, circumferential, and radial 
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directions { , , }z φ re e e  respectively, with ( ) mr rζ ζ= + . Under loading, Point A on the un-

deformed configuration of the middle surface moves to Point A* in the deformed configuration by 

undergoing a displacement vector ou (Fig. 3. 1b) given by 

( ) ( ) ( ), oz o orz u u uϕϕ ϕ ϕ= + +o z φ ru e e e                                                                                                              (3.22) 

in which  ( ),ok oku u z φ=  and , ,k z rϕ= . Based on Assumption 3 (Section 3.3), the displacement 

field vector ( ), ,z ϕ ζ=u u of a generic point that is offset by a radial distance ζ  from the middle 

surface, is expressed as 

( ) ( ) ( ) ( )( ), , , , ,z z z zϕ ζ ϕ ζ ϕ ϕ= + −ou u n N


                                                                                                   (3.23) 

in which n  is the unit vector normal to the deformed middle surface and N


 is the unit vector 

normal to the un-deformed middle surface.  

 

 
                          a               b 

Fig. 3. 1 (a) Pipe coordinates and vector bases and (b) Pipe displacements 

 

3.6.2 Normal unit vector 

While the normal unit vector to the un-deformed middle surface is given by N


= re , the unit vector 

normal to the deformed middle surface is given by kinematic considerations. The position vector 
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( ),z ϕ=o or r  for a point on the middle surface in the deformed configuration is related to the 

position vector oR in the un-deformed configuration as given by 

( ) ( ), mz z rϕ ϕ= +o z rR e e                                                                                                                                     (3.24) 

through the relation 

( ) ( ) ( ), , ,z z zϕ ϕ ϕ= +o o or R u                                                       (3.25) 

The normal vector n  in the deformed configuration is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3, , ,z n z n z n zϕ ϕ ϕ ϕ ϕ ϕ= ∂ ∂ × ∂ ∂ = + +o o z φ rn r r e e e                                 (3.26)

where 1n , 2n  and 3n are the components of the normal vector in the deformed configuration.  

From Eq.(3.22) and(3.24), by substituting into Eq.(3.25), the position vector of the middle surface 

in the deformed configuration and its derivatives are given by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
, , ,

, , ,

, , , ,

1 , , ,

, , , , ,

oz o m or

oz z o z or z

oz m o or or o

z z u z u z r u z

z u z u z u z

u z r u z u z u z u z

ϕ

ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= + + + +      
 ∂ ∂ = + + + 

   ∂ ∂ = + + + + −   

o z φ r

o z φ r

o z φ r

r e e e

r e e e

r e e e

(3.27) 

where subscripts with ( ), refer to the partial derivative of the argument function with respect to 

the quantity following the comma. From Eqs. (3.27), by substituting into Eq.(3.26), one recovers 

the normal vector n . The components of vector n are given by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 , , , ,

2 , , , ,

3 , , , ,

, , , , , ,

, , 1 , , ,

1 , , , , ,

o z or o or z m o or

or z oz oz z or o

oz z m o or o z oz

n u z u z u z u z r u z u z

n u z u z u z u z u z

n u z r u z u z u z u z

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

   = − − + +   
  = − + −   

  = + + + −   

                   (3.28) 

and the components of the normal unit vector n are given by 

2 2 2
1 2 3i in n n n n= + +            1, 2,3i =                                                                                                                 (3.29) 
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3.6.3 Displacement fields for a point offset from the middle surface 

The displacement field vector ( ) ( ), , , ,z rz u u uϕϕ ζ =u  for a generic point offset from the middle 

surface is related to the displacement fields ( ), ,oz o oru u uϕ=ou  at the pipe mid-surface from 

Eqs.(3.22),(3.28) and(3.29), by substituting into Eq.(3.23), yielding 

( ) ( ) ( ), , z rz u u uϕϕ ζ ϕ ϕ= + +z φ ru e e e                                                                                                         (3.30) 

in which 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

2

3

, , , ,

, , , ,

, , , ,

z oz

o

r or

u z u z n z

u z u z n z

u z u z n z
ϕ ϕ

ϕ ζ ϕ ζ ϕ

ϕ ζ ϕ ζ ϕ

ϕ ζ ϕ ζ ϕ ζ

= +

= +

= + −







                                               (3.31) 

 

3.7 Gradient of the displacement field vector and its derivative 

The gradient operator in cylindrical coordinates is given by ( )1/ Tz r rϕ∇ = ∂ ∂ ∂ ∂ ∂ ∂ in 

which coordinate r  is related to coordinate ζ through ( ) mr rζ ζ= + , and the gradient of the 

displacement field vector u  is given by  

( )
( ) ( )
( ) ( )

, , ,

, , ,

, , ,

1

1

1

z z m z z

T
z m r

r z m r r

u r u u

u r u u u

u r u u u

ϕ ζ

ϕ ϕ ϕ ϕ ζ

ϕ ϕ ζ

ζ

ζ

ζ

  +  
  ⊗∇ = + +  
  + −  

u                                                                                           (3.32) 

The derivatives of the displacement fields ( ), ,z ru u uϕ  with respected to z , ϕ and ζ  are given in 

Appendix 3.A: Derivatives of displacement fields with respect to coordinates . From Eqs.(3.28), 

(3.29), (3.31), and (3.A.1) to (3.A.16) (See Section 3.11), by substituting into Eq.(3.32), one can 

express the components of Eq.(3.32) in terms of the components ( ), ,oz o oru u uϕ  of the displacement 
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field vector ou  and their derivatives with respect to z and ϕ . Eqs.(3.8) and (3.15) involve the 

derivatives of the gradient T⊗∇u of the displacement field vector with respect to the nodal degrees 

of freedom jd that is given by 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , ,, , ,

, , ,, , ,,

, , ,, , ,

1

1

1

z z m z zd d dj j j

T
z m rd d dd j j jj

r z m r rd d dj j j

u r u u

u r u u u

u r u u u

ϕ ζ

ϕ ϕ ϕ ϕ ζ

ϕ ϕ ζ

ζ

ζ

ζ

  +  
 
  ⊗∇ = + +  
  + −   

u                                                         (3.33) 

The components of ( )
,

T
d j

⊗∇u involve the derivatives with respect to jd of the components of the 

displacement field vector ( ), ,z ru u uϕ  provided in Appendix 3.B: Derivatives of displacement 

fields with respect to nodal degrees of freedom (See Eqs.(3.B.5) to (3.B.16)). Knowing the 

components of the second order tensor appearing in Eq.(3.33), the internal force vector (Eq.(3.8)) 

and the tangent stiffness matrix (Eq.(3.15)) can be obtained. In addition, Eqs.(3.B.1) to (3.B.4) 

obtained in Section 3.12 provide the derivatives of the displacement field vector ( ), ,z ru u uϕ  with 

respect to jd involved in the mathematical expressions of the external force vector (Eq.(3.9)) and 

its contribution to the stiffness matrix (Eq.(3.17)). Consequently, the internal and external force 

vectors and the stiffness matrix can be determined in terms of the components ( ), ,oz o oru u uϕ  of 

the mid-surface displacement vector ou and their derivatives with respect to z , ϕ , and jd . 

 

3.8 Interpolation Schemes 

The displacement fields ( ), ,oz o oru u uϕ=ou  at the pipe mid-surface are interpolated along the 

longitudinal and circumferential directions. Regarding the circumferential direction, three 



78 
 

interpolation schemes are attempted: (1) A Fourier series expansion (2) a spline interpolation, and 

(3) a mixed interpolation adopting the first term of the Fourier expansion along with a spline 

interpolation. These are detailed in the following: 

 

3.8.1 First scheme – Fourier series interpolation 

Fourier series are employed to characterize the variation of the displacement fields along the 

circumferential direction while cubic Hermitian functions are used to characterize the variation of 

the displacement fields along the longitudinal direction. The longitudinal, circumferential, and 

radial displacement fields at the pipe mid-surface are expressed as 

( ) ( ) ( ) ( ) ( ) ( )0 1, cos sini m
ok k ik ikiu z g z f z i g z iϕ ϕ ϕ=

=
= + +  ∑        , ,k z rϕ=                    (3.34)

where ( )ikf z ( )1,2,..i m= and ( )ikg z ( )0,1, 2,..i m= are related to the degrees of freedom ,fk ijd and 

,gk ijd ( )1,2,3,4j = through  

( ) ( )

( ) ( )

( ) ( )

4
0 ,01

4
,1

4
,1

k j gk jj

ik j fk ijj

ik j gk ijj

g z H z d

f z H z d

g z H z d

=

=

=

=

=

=

∑
∑
∑

                                                                                                                            (3.35) 

From Eq.(3.35), by substituting into Eq.(3.34), one obtains 

( ) ( ) ( ) ( ) ( ) ( )4 4
,0 , ,1 1 1, cos sini m j

ok j gk j j fk ij j gk ijj i ju z H z d H z i d H z i dϕ ϕ ϕ= =
= = =

 = + + ∑ ∑ ∑     (3.36) 

Eq.(3.36) can be expressed in a vector form as 

( ) ( ) ( ) { } ( )4 2 1 11 4 2 1
, , T

ok mm k
u z zϕ ϕ + ×× +

= L d                                                                                                   (3.37)

in which ( ) ( )1 4 2 1
, T

m
z ϕ

× +
L  is the vector of shape functions defined as  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), cos sin cos 2 sin 2 cos sinT T T T T T T Tz z z z z z m z m zϕ ϕ ϕ ϕ ϕ ϕ ϕ=L H H H H H H H (3.38)

where  

( )

( ) ( )
( )

( ) ( )
( ) ( )

3 2

2

3 2

2

2 3 1

1

2 3

1

z L z L

z z L
z

z L z L

z L z L

 − +
 
 −   =  
− + 

 
−    

H                                                                                                                    (3.39)

and T
kd is the vector of degrees of freedom along direction k  and is defined as  

0 ,1 ,1 ,2 ,2 , ,
T T T T T T T T

g f g f g f m g mk k
=d d d d d d d d                                                (3.40)

where  

, 1

, 2
,

, 3

, 4

f i

f i
f i

f i

f i

d

d

d

d

 
 
 =  
 
 
 

d , 

, 1

, 2
,

, 3

, 4

g i

g i
g i

g i

g i

d

d

d

d

 
 
 =  
 
 
 

d  

and , 1f id , , 3f id , , 1g id ,and , 3g id are the nodal displacements while , 2f id , , 4f id , , 2g id , and , 4g id are 

the nodal rotations. The reader is referred to Appendix 3.C: Interpolation Schemes for more details. 

3.8.2 Second scheme – Spline interpolation8 

The cross section under consideration is divided into four segments pS , where 1,2,3,4p = , as 

shown in Fig. 3. 2. 

                                                 
8 The number of degrees of freedom for a single element using spline interpolation is lower than that using 

Fourier series interpolation. To the writer’s knowledge, the spline interpolation scheme was not attempted within pipe 
FE formulations in the literature. Therefore, it was of interest to assess the ability of spline interpolation to accurately 
characterize displacement fields along the circumferential direction.  
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Fig. 3. 2 Cross section discretization 

 

Quartic spline functions are introduced for each segment ( )1,2,3,4pS p =  (Fig. 3. 2) which satisfy 

inter-segment continuity up to the third derivatives at intersection points

( )1 2 3 4
3 5, , , , , ,

4 4 4 4o o o o
π π π πϕ ϕ ϕ ϕ  = − 

 
 in order to characterize the variation of the displacement 

fields along the circumferential direction, while the variation of the displacement fields along the 

longitudinal direction is characterized using two interpolation scenarios; linear Lagrangian 

interpolation, and Cubic Hermitian interpolation: 

a) Linear Lagrangian interpolation 
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

  + ≤ ≤ = 
  + ≤ ≤  



 + ≤ ≤  

∑

∑

∑

∑

, ,k z x y=        (3.41) 

Eq.(3.41) can be expressed in a vector form as  
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( )

( ) { }

( ) { }

( ) { }

( ) { }
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1 1 28 11 8
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T
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                                                                               (3.42)   

where ( )*
1 8

,
T

i z ϕ
×

L is the vector of shape functions defined as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * *
1 1 1 2 4 1 4 2, , , .. .. .. .. , ,

T
i oi oi oi oiz Q H z Q H z Q H z Q H zϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ=L (3.43) 

and 8 1
T
k ×d is the vector of degrees of freedom along direction k  and is defined as 

1 1 1 2 2 1 2 2 3 1 3 2 4 1 4 2
T

k k k k k k k kk u u u u u u u u=d                                                            (3.44) 

In Eq.(3.41), the spline interpolations in the circumferential direction are 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 11 1 12 1 13 1 14 1
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                                     (3.45)   

in which 
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      ( )2
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π
= −          1, 2,3, 4i =         (3.46) 
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Here, the displacement along the circumferential and radial directions are related to the 

displacements along the Cartesian coordinates ( ),ox oyu u (Fig. 3. 2) through 

cos sin

sin cos
o ox oy

or ox oy

u u u

u u u
ϕ ϕ ϕ

ϕ ϕ

= −

= +
                                                                                                                                    (3.47) 

b) Cubic Hermitian interpolation 
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  (3.48) 

in which , ,k z x y= . Eq.(3.48) can be expressed in a vector form as  
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                                                                               (3.49)   

where ( )**
1 16

,
T

i z ϕ
×

L is the vector of Hermitian shape functions and is defined as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )**
1 1 1 2 4 3 4 4, , , .. .. .. .. , ,

T
i oi oi oi oiz Q H z Q H z Q H z Q H zϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ=L  (3.50) 

and 16 1
T
k ×d is the vector of degrees of freedom along direction k  and is defined as 
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1 1 1 1 2 1 4 2 4 2.. .. ..T
k k k k kk u u uθ θ=d                                                                                          (3.51)   

in which  the linear Lagrangian interpolation along the longitudinal direction is

( ) ( )* *
1 2 1 /H z H z z L z L= −  while the cubic Hermitian interpolation is given in Eq.(3.39) 

( ) ( ) ( ) ( ) ( )1 2 3 4z H z H z H z H z=H . The reader is referred to Appendix 3.C: Interpolation 

Schemes for more details. 

 

3.8.3 Third scheme – Mixed interpolation 

This scheme adopts spline interpolation (described under section 3.8.2) in addition to the first 

Fourier term ( cos ,sinϕ ϕ ) along the circumferential direction with linear Lagrangian interpolation 

along the longitudinal direction. The longitudinal displacement at the pipe mid-surface is 

expressed as 
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while the circumferential and radial displacements are respectively expressed as 
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  (3.54) 

in which displacements oxu and oyu have been defined in spline interpolation (second scheme) ,

* * ** ** * * ** ** * * **
1 2 1 2 1 2 1 2 1 2 1, , , , , , , , , , ,z z z z r r ru u u u u u u u u u uϕ ϕ ϕ ϕ and **

2ru are additional degrees of freedom above 

those defined in in spline interpolation (second scheme). 

 

3.8.4 Iterative solution scheme 

The steps of the iterative solution scheme are 

1- Assume initial values of the degrees of freedom vector 1d  

 Loop on the iteration number 

2- Based on the interpolation scheme, calculate the components of the displacement field 

vector ou and their derivatives with respect to z ,ϕ , and jd  

3- From Eqs. (3.28), (3.A.11) to (3.A.16), and (3.B.17) to (3.B.25), calculate the components 

of the unit vector n and their derivatives with respect to z ,ϕ , and jd   

4- From Eqs.(3.32) and (3.A.1) to (3.A.9), calculate the gradient of the displacement fields  

5- From Eq.(3.33) and (3.B.5) to (3.B.13), calculate the derivative of the gradient of the 

displacement fields with respect to jd  
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6- From Eqs.(3.8), (3.9), (3.15), and(3.17), calculate the internal ( )IF and external ( )EF force 

vectors, the approximated stiffness matrix T
A ij

K , and the approximated contribution of the 

external force vector F
A ij

K ,respectively.  

7- Calculate an improved value of the degrees of freedom vector by setting 1g+d = d  

8- Check the convergence of the force and displacement. If satisfied exit the iteration loop. 

End loop on iterations 

 

3.9 Numerical Examples 

A 10m  long cantilever pipe with wall thickness 10h mm=  and mid-surface radius 505mr mm=

is used as shown in Fig. 3. 3. The pipe is analyzed under three loading cases: (1) Combined axial 

and vertical loading, (2) Uniform internal pressure, and (3) Combined axial, vertical, normal 

loading and internal pressure to demonstrate the capability of the newly developed elements. The 

pipe material is steel with Young’s modulus 200E GPa=  and Poisson’s ratio 0.3ν = . Both ends 

of the pipe are open. The pipe is modelled using the three elements developed in the present study, 

as well as the existing shell element S4R, and pipe element ELBOW31 within the ABAQUS 

library. All degrees of freedom at the cantilever root are restrained while all degrees of freedom 

at the cantilever tip are kept free. The detailed description of all FE models is given in Table 3. 1. 

 

Fig. 3. 3 The cantilever pipe  



86 
 

 
 

Table 3. 1 Detailed description of the FE models 

 

In
te

rp
ol

at
io

n 

Element Description 

# 
El

em
en

ts
 

# 
D

eg
re

es
 o

f 

fre
ed

om
 

Gauss 

Integration 

points 

z  ϕ  r  

Pr
es

en
t f

or
m

ul
at

io
n 

Fourier 
PIPE-F-3 Fourier terms 3m =  30 1302 5 18 3 

PIPE-F-6 Fourier terms 6m =  30 2418 5 30 3 

Spline 
PIPE-S-L Lagrangian interpolation 50 612 2 5 3 

PIPE-S-H Hermitian interpolation 25 624 3 5 3 

Mixed PIPE-M-L Lagrangian interpolation 50 918 2 10 3 

ABAQUS 
S4R General shell element 12800 77184 1 5 

ELBOW31 Fourier terms 6m =  50 2652 1 20 3 

 
 

3.9.1 Combined axial and vertical loading 

The pipe (Fig. 3. 3) is subjected at the free end to an axial compressive traction of 300 MPa 

(corresponding to 48% of the Euler buckling load) and a vertical downward traction of 15 MPa, 

i.e., the applied traction vector NT in cylindrical coordinates is { }300, 15cos , 15sin Tϕ ϕ= − − −NT

. In the S4R model, the traction is lumped as nodal forces at the free end and as two concentrated 

forces at the centroid of the free end in the ELBOW31 model. 

Displacement predictions 

The longitudinal, circumferential, and radial displacement distributions along the span of the pipe 

are shown in Fig. 3. 4. The comparison between the nonlinear responses as predicted by Abaqus 

using S4R and ELBOW31 models and those based on the present elements exhibits the ability of 

the present elements to capture the geometric nonlinear response. Overlaid for the comparison in 

Fig. 3. 4.b is the vertical displacement as predicted by a linear solution of the conventional Euler-
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Bernoulli beam theory and the second order beam-column 9 analysis that accounts for stiffness 

softening due to axial compression. All solutions significantly depart from the linearly elastic 

solution, suggesting that geometrically nonlinear effects are successfully captured by the models10. 

In particular, the predictions of the PIPE-F-6 element are in an excellent agreement with those of 

the ABAQUS models. In contrast, the PIPE-S-L and PIPE-S-H elements predict a slightly stiffer 

response relative to the longitudinal and circumferential displacements. The superior performance 

of PIPE-F-6 relative to the PIPE-S-L and PIPE-S-H elements is attributed to the fact that the former 

exactly captures the rigid body motion in the plane of the cross-section through the Fourier 

expansion, while in later elements, the spline interpolation simulates rigid body motion only in an 

approximate sense. By adding the first Fourier mode (which corresponds to the rigid body motion 

in the plane of the cross-section) to the Spline interpolation, the resulting mixed interpolation in 

PIPE-M-L is observed to tangibly improve the performance of the element as evidenced by the 

flexible response more than the analytical solution of the governing differential derived based on 

the rigid cross section assumption. However, these elements (PIPE-S-L, PIPE-S-H, and PIPE-M-

L) are unable to accurately capture the radial displacement distribution associated with cross 

sectional ovalization due to the coarse discretization of the displacement fields in the 

circumferential direction. Table 3. 2 provides the percentage differences between the free end 

displacement predictions of the present elements, and those based on ELBOW 31 model, relative 

to those of S4R model at various circumferential angles. The percentage differences of the 

ELBOW31 and PIPE-F-6 elements are less than 4 % for all cases except the longitudinal 

                                                 
9 Second order analysis of a beam with flexural rigidity EI subjected to an axial load aF  and a vertical load 

at the free end is '''' '' 0aEIv F v+ =  . The linear solution is obtained by setting 0aF = . 
10 The vertical displacement at the free end obtained from the nonlinear solution is about twice that obtained 

from the linear solution showcasing the importance of incorporating the geometric nonlinearity in the problem.  
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displacement at 90oϕ = where the percentage differences are 19.9 % for the ELBOW31 element 

and 11.3 % for the PIPE-F-6 element.   

 
a 

 
b 

 
c 

Fig. 3. 4 Displacement fields distributions along the cantilever pipe at 0oϕ =  (a) Longitudinal 
displacement, (b) Circumferential displacement, and (c) Radial displacement 
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Table 3. 2 Percentage differences of the longitudinal and vertical displacements at the free end11 

  Percentage difference % 

 ϕ  ELBOW31 PIPE-F-6 PIPE-S-L PIPE-S-H PIPE-M-L 
Second 
order 

analysis 

Longitudinal 
0o /180 o 3.8 3.1 10.7 11.6 3.9 - 

90 o 19.9 11.3 18.7 18.8 5.6 - 
270 o 1.1 1.8 15.6 16.3 7.6 - 

Vertical 
0o /180 o 3.0 2.9 16.2 17.2 6.8 8.8 

90 o 2.8 2.7 14.4 15.5 4.7 7.1 
270 o 2.6 2.6 17.3 18.3 7.9 9.9 

 

Stress predictions 

Fig. 3. 5 depicts the distributions of the longitudinal, circumferential, and shear stresses along the 

circumferential direction at pipe mid-span (Fig. 3. 3) for the inner and outer surfaces. All models 

exhibit (Fig. 3. 5a, b) a similar oscillatory response with a peak tensile stress at 90oϕ =  and a peak 

compressive stress at 270oϕ = , with compressive stresses at 0o , and180o that fall in between these 

peak values. Also, the circumferential stress distributions at the inner and outer surfaces exhibit 

oscillatory distributions with a higher frequency. At the inner surface, the pipe experiences tensile 

stresses at 90 and 270o oϕ = and compressive stresses at 0 and 180o oϕ = , while the behavior is 

reversed at the outer surface (Fig. 3. 5c, d). Shear stress distributions (Fig. 3. 5e, f) follow a 

distribution similar to that based on the mechanics of material solution where they peak at the 

neutral axis 0 ,180o oϕ =  , and vanish at the top and bottom generators 90 ,270o oϕ = . PIPE-F-6 

element predicts stress distributions at the inner and outer surfaces that are in close agreement to 

those based on the ABAQUS S4R and ELBOW31 models. Although the PIPE-S-L, PIPE-S-H, 

PIPE-M-L elements reasonably simulate the longitudinal stress distributions, they are unable to 

                                                 
11 The percentage difference of a model is calculated using the following equation 

S4R solution–model’s solutionPercentage difference % = 100
S4R solution

×  
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accurately predict the circumferential and shear stress distributions. This is attributed to the 

approximate representation of rigid body motion when adopting circumferential spline 

interpolation in the case of PIPE-S-L and PIPE-S-H elements and due to the coarse circumferential 

discretization of the displacement fields in PIPE-S-L, PIPE-S-H, PIPE-M-L elements. In addition, 

the strain field distributions for Example 1 are provided in Appendix 3.D: Strain Fields for 

Example 1. 

 
a 

 
b 
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e 
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Fig. 3. 5 Stress fields versus circumferential angle at the middle section 5z m=  (a) Longitudinal-
Inner, (b) Longitudinal-Outer, (c) Circumferential-Inner, (d) Circumferential-Outer, (e) Shear-

Inner, and (f) Shear-Outer 

3.9.2 Uniform internal pressure 

An internal pressure 30P MPa=  is applied uniformly normal to the internal surface of the pipe 

(Fig. 3. 3). The corresponding applied traction NT  is obtained from Eq.(3.18).  

Displacement predictions 

With the exception of the region near the end support, the pipe expands uniformly in the radial 

direction and contracts longitudinally. Table 3. 3 provides the longitudinal and radial 

displacements at the free end and the percentage differences as predicted by the ELBOW31, PIPE-

F-3, PIPE-S-L, PIPE-S-H, and PIPE-M-L models, in comparison to those predicted by the S4R 

model. The predictions of the developed elements are in an excellent agreement with the 

predictions of S4R model and the analytical solution based on the ring analysis. As expected, given 

the axisymmetric nature of the problem, the element developed based on Fourier series using a 

single mode (PIPE-F-1) predicts identical displacements to that based on three modes (PIPE-F-3) 

element for this loading case. Comparatively, the predictions of ELBOW31 show a larger 

difference from that predicted by the S4R element, especially for the radial displacement.  
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Table 3. 3 Longitudinal and radial displacements at the free end   

 Displacement (mm) and percentage difference % 
 S4R ELBOW31 PIPE-F-3 PIPE-S-L PIPE-S-H PIPE-M-L Analytical 

Longitudinal -22.7 -22.0 -22.3 -22.4 -22.4 -22.4 -22.5 
% - 3.0 1.7 1.3 1.3 1.3 0.9 

Radial 3.8 8.7 3.8 3.8 3.8 3.8 3.8 
% - -128.9 1.1 1.1 1.1 1.1 -0.8 

 

Stress predictions 

The longitudinal and circumferential stresses at the mid-span are provided in Table 3. 4.  

The circumferential stresses at the inner surface predicted by the present elements are in excellent 

agreement with the ABAQUS model prediction and the analytical solution. Given that developed 

elements are able to capture the variation of the circumferential stresses through the wall thickness, 

the stresses at the inner surface differ slightly from those at the outer surface. In contrast, the 

ABAQUS model and the analytical solution are unable to capture the through-thickness variation 

of the circumferential stresses. 

 
Table 3. 4 Longitudinal (L) and circumferential (C) stresses at the mid-span 

  Stresses (MPa) 
  S4R ELBOW31 PIPE-F-3 PIPE-S-L PIPE-S-H PIPE-M-L Analytical 

Inner 
surface 

L 0 11.2 4.97 -1.98 -1.98 -1.98 0 
C 1518 1500 1513 1489 1489 1489 1500 

Outer 
surface 

L 0 11.2 -4.84 -11.3 -11.3 -11.3 0 
C 1518 1500 1481 1459 1459 1459 1500 

 

3.9.3 Combined loading 

The pipe (Fig. 3. 3) is subjected at the free end to an axial compressive traction of 300MPa

(corresponding to 48% of the Euler buckling load), a vertical downward traction of 15MPa  (i.e., 

along the negative direction of the X-axis), and an additional traction of 15MPa  acting along the 
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positive direction of the  Y-axis. Additionally, uniform internal pressure 30P MPa=  is applied 

normal to the internal surface of the pipe. The corresponding applied traction NT  is 

1 2
= +N N NT T T   where ( ) ( ) ( ){ }1

300 , 15cos 15sin , 15sin 15cosϕ ϕ ϕ ϕ= − − − − +NT  and 
2NT is 

obtained from Eq. (3.18). 

 

Displacement predictions 

Given the symmetry of the problem, displacement predictions at 0oϕ = and 270oϕ = are identical 

while displacements predictions at 90oϕ = and 180oϕ = have the same trend. The longitudinal, 

circumferential, and radial displacement distributions along the span of the pipe at  0oϕ =  and 

90oϕ =  are given in Fig. 3. 6 and Fig. 3. 7. Under the defined loads, the ELBOW31 model was 

unable to achieve the convergence. The predictions of S4R are thus used for the comparison with 

the predictions of the elements developed in the present study. The elements developed are able to 

effectively predict the nonlinear response. The predictions of PIPE-F-3 and PIPE-M-L elements 

were found to be very close to those generated by S4R element while those of elements PIPE-S-L 

and PIPE-S-H exhibited a slightly stiffer response. Table 3. 5 provides the percentage differences 

between the displacements at the free end as determined by PIPE-F-3, PIPE-S-L, PIPE-S-H, and 

PIPE-M-L compared to those of the S4R model. The percentage differences of PIPE-F-3 and PIPE-

M-L elements are less than 3 % and 5 % respectively at various circumferential angles. 
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a 

 
b 

 
c 

Fig. 3. 6 Displacement fields along the length of the pipe at 0oϕ = (a) Longitudinal, (b) 
Circumferential, and (c) Radial 
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a 

 
b 

 
c 

Fig. 3. 7 Displacement fields along the length of the pipe at 90oϕ = (a) Longitudinal, (b) 
Circumferential, and (c) Radial 
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Table 3. 5 Percentage differences of the longitudinal, circumferential, and radial displacements at 
the free end  

ϕ   Percentage difference % 
 PIPE-F-3 PIPE-S-L PIPE-S-H PIPE-M-L 

 
0o or 270o  

longitudinal 0.8 4.2 4.5 1.5 
circumferential 2.2 8.8 9.1 3.5 

radial 1.6 8.5 8.7 3.2 

90o or180o  
longitudinal 2.8 0.5 1.2 1.8 

circumferential 2.2 8.9 9.1 3.6 
radial 3 10.1 10.3 4.7 

 
 

Stress predictions 

The longitudinal, circumferential, radial stress distributions along the circumferential direction at 

the mid-span for the inner and outer surfaces are given in Fig. 3. 8. The elements developed 

accurately capture the longitudinal stress distribution especially the PIPE-F-3 element (Fig. 3. 8a, 

b). Regarding the circumferential and shear stress distributions, PIPE-F-3 is the only element, 

within the elements developed, that closely predicts the stresses to S4R element’s predictions.  The 

difference between the circumferential stresses at the outer surface between S4R element and 

PIPE-F-3 element is attributed to the ability of PIPE-F-3 to predict the variation of the 

circumferential stresses through the wall thickness while the S4R element does not capture this 

variation. 

 
a 
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e 
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Fig. 3. 8 Stress fields versus circumferential angle at the middle section 5z m=  (a) Longitudinal-
Inner, (b) Longitudinal-Outer, (c) Circumferential-Inner, (d) Circumferential-Outer, (e) Shear-

Inner, and (f) Shear-Outer 

3.10 Summary 

A family of FE formulations for the analysis of straight pipes was formulated and implemented to 

simulate the elastic structural response. The underlying formulations are based on the Love-

Kirchhoff thin shell theory assumptions and capture finite deformation-small strain effects in 

conjunction with the Saint-Venant-Kirchhoff constitutive model. Within the principle of the virtual 

work framework, the formulations adopt the first Piola-Kirchhoff stress tensor and the gradient of 

the virtual displacement fields in order to capture the geometric nonlinearity. Additionally, the 

formulations accurately tackle the nonlinearity caused by follower pressure load.  The element 
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developed based on Fourier expansion series is superior for simulating the realistic mechanical 

behavior of straight pipes under various loading conditions. Although the elements developed 

based on spline interpolation and mixed interpolation cannot accurately predict the circumferential 

and shear stress distributions, PIPE-M-L element is able to accurately capture the longitudinal 

stresses and displacement fields while PIPE-S-L and PIPE-S-H elements can reasonably simulate 

them.   

3.11 Appendix 3.A: Derivatives of displacement fields with respect to 

coordinates  

This appendix presents the derivatives of the components ( ), ,z ru u uϕ of the displacement field 

vector u   with respect to coordinates , ,z ϕ andζ . By differentiation on Eq.(3.31) with respect to

z ,ϕ  and ζ , one obtains 

, , 1,z z oz z zu u nζ= +                                                                                                                                 (3.A.1) 

, , 2,z o z zu u nϕ ϕ ζ= +                                                                                                                             (3.A.2) 

, , 3,r z or z zu u nζ= +                                                                                                                             (3.A.3) 

, , 1,z ozu u nϕ ϕ ϕζ= +                                                                                                                                (3.A.4) 

, , 2,ou u nϕ ϕ ϕ ϕ ϕζ= +                                                                                                                              (3.A.5) 

, , 3,r oru u nϕ ϕ ϕζ= +                                                                                                                              (3.A.6) 

2 2 2
, 1 1 1 2 3zu n n n n nζ = = + +                                                                                                              (3.A.7) 

2 2 2
, 2 2 1 2 3u n n n n nϕ ζ = = + +                                                                                                                            (3.A.8) 

2 2 2
, 3 3 1 2 31 1ru n n n n nζ = − = + + −                                                                                                                  (3.A.9) 
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The partial derivative of a component in  (Eq.(3.29)) with respect to the coordinates ,zα ϕ=  is 

given by 

( )
, 1 1, 2 2, 3 3,

, 1.52 2 2 2 2 2
1 2 3 1 2 3

i
i i

n n n n n n n
n n

n n n n n n

α α α α
α

+ +
= −

+ + + +

      where 1,2,3i =  and   ,zα ϕ=                  (3.A.10) 

Eqs.(3.A.7)-(3.A.9) are mathematical expressions in terms of the components ( )1 2 3, ,n n n  of the 

vector n  normal to the shell mid-surface in the deformed configuration which can be obtained by 

Eq.(3.28). While Eqs.(3.A.1)-(3.A.6) depend upon the derivatives of these components ( )1 2 3, ,n n n

with respect to coordinates z and ϕ . These derivatives are recovered by differentiation on 

Eq.(3.28), yielding  

( ) ( ) ( ) ( )1, , , , , , , , , , ,z o zz or o o z or z o z or zz m o or or z o z or zn u u u u u u u r u u u u uϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ = − + − − + + − +   (3.A.11)      

( ) ( ) ( ) ( )1, , , , , , , , , , ,o z or o o z or o or z m o or or z o orn u u u u u u u r u u u u uϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ = − + − − + + − +    (3.A.12) 

( ) ( )( )2, , , , , , , , , ,1z or zz oz or z oz z oz zz or o oz z or z o zn u u u u u u u u u uϕ ϕ ϕ ϕ ϕ ϕ= + − − − + −                              (3.A.13) 

( ) ( )( )2, , , , , , , , , ,1or z oz or z oz oz z or o oz z or on u u u u u u u u u uϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕϕ ϕ ϕ= + − − − + −                          (3.A.14) 

( ) ( )( )3, , , , , , , , , ,1z oz zz m o or oz z o z or z o zz oz o z oz zn u r u u u u u u u u uϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= + + + + + − −                     (3.A.15) 

( ) ( )( )3, , , , , , , , , ,1oz z m o or oz z o or o z oz o z ozn u r u u u u u u u u uϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕ ϕ ϕϕ= + + + + + − −                  (3.A.16) 

Eqs. (3.A.1) to (3.A.16), (3.28), (3.29), and (3.31) provide the components of the gradient of the 

displacement fields appearing in Eq.(3.32) in terms of the components ( ), ,oz o oru u uϕ of the 

displacement field vector ou  at the middle surface and their derivatives with respect to coordinates 

z and ϕ . 
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3.12 Appendix 3.B: Derivatives of displacement fields with respect to 

nodal degrees of freedom  

The derivatives of the components ( ), ,z ru u uϕ  of the displacement field vector u  with respect to 

the nodal degrees of freedom jd  are obtained by differentiation of Eq.(3.31) with respect to jd , 

yielding 

( ) ( ) 1,, ,z oz dd d jj j
u u nζ= +                                                                                                                             (3.B.1) 

( ) ( ) 2,, ,o d jd dj j
u u nϕ ϕ ζ= +                                                                                                                                        (3.B.2) 

( ) ( ) 3,, ,r or dd d jj j
u u nζ= +                                                                                                                                       (3.B.3)

in which      

( )
, 1 1, 2 2, 3 3,

, 1.52 2 2 2 2 2
1 2 3 1 2 3

i d d d dj j j j
i d ij

n n n n n n n
n n

n n n n n n

+ +
= −

+ + + +

             where 1,2,3i =                                      (3.B.4) 

Eqs. (3.B.1) to (3.B.4) are used to determine the components of the external force vector  

(Eq.(3.9)) and its contribution to the stiffness matrix (Eq.(3.17)). In order to obtain the components 

of ( )
,

T
d j

⊗∇u appearing in Eq.(3.33),  the differentiation of Eqs. (3.A.1) to (3.A.9) with respect 

to jd is taken as  

( ) ( ) ( ), , 1,, , ,z z oz z zd d dj j j
u u nζ= +                                                                                                                    (3.B.5) 

( ) ( ) ( ), , 2, ,, ,z o z z dd d jj j
u u nϕ ϕ ζ= +                                                                                                                (3.B.6) 

( ) ( ) ( ), , 3,, , ,r z or z zd d dj j j
u u nζ= +                                                                                                                  (3.B.7) 

( ) ( ) ( ), , 1,, , ,z ozd d dj j j
u u nϕ ϕ ϕζ= +                                                                                                                (3.B.8) 
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( ) ( ) ( ), , 2,, , ,od d dj j j
u u nϕ ϕ ϕ ϕ ϕζ= +                                                                                                                 (3.B.9) 

( ) ( ) ( ), , 3,, , ,r ord d dj j j
u u nϕ ϕ ϕζ= +                                                                                                               (3.B.10) 

( ), 1,,z d jd j
u nζ =                                                                                                                                                            (3.B.11) 

( ), 2,, d jd j
u nϕ ζ =                                                                                                                                                         (3.B.12)

( ), 3,,r d jd j
u nζ =                                                                                                                                                       (3.B.13) 

in which ,i d jn is given in Eq.(3.B.4) and ( ), ,i d j
n α
 can be obtained by differentiation of Eq.(3.A.10) 

with respect to jd as , where 1,2,3i =  and ,zα ϕ= , 

( )
( )

, 1 1, 2 2, 3 3,
, 1 21.5, 2 2 2 2 2 2

1 2 3 1 2 3 ,

i
i id j

d j

n n n n n n n
n n T T

n n n n n n

α α α α
α

 
+ + = − = − + + + +  

                                                (3.B.14) 

( )

( )
, , 1 1, 2 2, 3 3,,

1 , 1.52 2 2 2 2 2 2 2 2
1 2 3 1 2 3 1 2 3,

i d d d dj j j ji
i

d j

n n n n n n nn
T n

n n n n n n n n n

α
α

α

+ +
= = −

+ + + + + +
                                      (3.B.15) 

( ) ( )

( )

( ) ( ) ( )

1 1, 2 2, 3 3, 1 1, 2 2, 3 3,
2 , 31.5 1.52 2 2 2 2 2

1 2 3 1 2 3,

1 1, 2 2, 3 3,
3 1.52 2 2

1 2 3 ,

2 2
1, 1, 1 1, 2, 2, 2 2, 3, 3, 3 3, 1 2, , ,

i i d ij

d j

d j

d d dj j jd d dj j j

n n n n n n n n n n n n
T n n n T

n n n n n n

n n n n n n
T

n n n

n n n n n n n n n n n n n n

α α α α α α

α α α

α α α α α α

+ + + +
= = +

+ + + +

+ +
=

+ +

 = + + + + + +  
( )

( )( ) ( )

1.52
3

2.52 2 2
1 1, 2 2, 3 3, 1 1, 2 2, 3 3, 1 2 33 d d dj j j

n

n n n n n n n n n n n n n n nα α α

+

− + + + + + +

 (3.B.16) 
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Eqs. (3.B.5) to (3.B.16) are used to determine the components of ( )
,

T
d j

⊗∇u appearing in 

Eq.(3.33). Knowing these components, the internal force vector (Eq.(3.8)) and the tangent stiffness 

matrix (Eq.(3.15)) can be obtained. The mathematical identities in this appendix (Eqs. (3.B.1) to 

(3.B.16)) involve the derivatives of the components ( )1 2 3, ,n n n of the vector n normal to the shell 

mid-surface in the deformed configuration with respect to jd . These derivatives are recovered by 

differentiation of Eq.(3.28) as  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1, , , , , , ,,, , ,

, , ,,

d o z or o o z or o or z m o orj dd d d jj j j

or z o or dd jj

n u u u u u u u r u u

u u u

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

 = − + − − + +  
 − +  

   (3.B.17) 

( ) ( ) ( ) ( ) ( ) ( )2, , , , , , , , ,, ,, , ,
1d or z oz or z oz oz z or o oz z or oj d dd d dj jj j j

n u u u u u u u u u uϕ ϕ ϕ ϕ ϕ ϕ
  = + − − − + −    

(3.B.18) 

( ) ( ) ( ) ( ) ( )

( ) ( )
3, , , , , ,, ,

, , , ,, ,

1d oz z m o or oz z o or dj d d jj j

o z oz o z ozd dj j

n u r u u u u u

u u u u

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 = + + + + +  

− −
                                      (3.B.19) 

By differentiation on Eqs. (3.A.11) to (3.A.16) with respect to jd , one obtains 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, , , , , , , ,, , , , ,

, , , , , , , ,,, , ,

, , , , , ,, ,

z o zz or o o zz or o o z or z o zd d d d dj j j j j

o z or z o z or zz m o or or zz o or ddd d d jjj j j

or z o z or z or z o z or zd dj j

n u u u u u u u u u

u u u u r u u u u u

u u u u u u

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

  = − + − + −   
   + − − + + − +      

− + − +
,d j

 
  

(3.B.20) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1, , , , , , , ,, , , , ,

, , , , ,, , ,

, , , , , , , ,, ,, ,

o z or o o z or o o z or od d d d dj j j j j

o z or o or z m o ord d dj j j

or z o or or z o or or z o ord dd dj jj j

n u u u u u u u u u

u u u u r u u

u u u u u u u u u

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ

ϕ ϕϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ

  = − + − + −   
 + − − + +  

 − + − + − +   ,d j

 
  

(3.B.21) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2, , , , , , , , ,, , ,, ,

, , , , , , ,, ,, ,

, , ,, ,
1

z or zz oz or zz oz or z oz z or z oz zd d dd dj j jj j

oz zz or o oz zz or o oz z or z o zd dd dj jj j

oz z or z o zd dj j

n u u u u u u u u

u u u u u u u u u

u u u

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

= + + +
 − − − − − −  

 − + −   

(3.B.22) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2, , , , , , , , ,,, , , ,

, , , , , , ,,, , ,

, , ,, ,
1

or z oz or z oz or z oz or z ozdd d d djj j j j

oz z or o oz z or o oz z or odd d d jj j j

oz z or od dj j

n u u u u u u u u

u u u u u u u u u

u u u

ϕ ϕ ϕ ϕ ϕ ϕϕ ϕϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ

ϕϕ ϕ ϕ

= + + +
 − − − − − −  

 − + −   

(3.B.23) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

3, , , , , , , ,,, , ,,

, , , , , , ,,, , ,

, , , ,, ,

1

z oz zz m o or oz zz o or oz z o z or zdd d dd jj j jj

oz z o z or z o zz oz o zz ozdd d djj j j

o z oz z o z oz zd dj j

n u r u u u u u u u u

u u u u u u u

u u u u

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

  = + + + + + +   
 + + + − −  

− − 

(3.B.24) 
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1

oz z m o or oz z o or dd d d jj j j

oz z o or oz z o ord d dj j j

o z oz o z oz o z oz o z ozd d d dj j j j

n u r u u u u u

u u u u u u

u u u u u u u u

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕϕ ϕ ϕ ϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ ϕϕ

  = + + + +   
 + + + + +  

− − − − 

                 (3.B.25) 
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Eqs. (3.B.17) to (3.B.25) are mathematical expressions required to determine the Eqs. (3.B.1) to 

(3.B.16) in terms of the components ( ), ,oz o oru u uϕ of the displacement field vector ou at the middle 

surface and their derivatives with respect to z , ϕ , and jd . Eqs. (3.B.1) to (3.B.16) are involved 

in the mathematical expressions of the internal (Eq.(3.8)) and external (Eq.(3.9)) force  vectors 

and the stiffness matrix (Eqs.(3.15) and (3.17)).  

  

3.13 Appendix 3.C: Interpolation Schemes 

This appendix presents illustrations of the degrees of freedom associated with each interpolation 

scheme proposed in Chapter 3. 

 

Fourier series interpolation 

The proposed cylindrical element has two nodes as shown in Fig. 3. C. 1. The total number of 

degrees of freedom (DOFs) in the proposed element is 12 24m+  (i.e., 6 12m+  DOFs at each node, 

where m  is the number of Fourier modes). These degrees of freedom are related to the 

longitudinal, circumferential, and radial displacements. For example, there are 2 4m+  DOFs at 

each node that are related to the longitudinal displacement. These DOFs consist of two physical 

DOFs representing longitudinal translation DOF and its derivative that are related to the 

axisymmetric response of the element (i.e., related to the zero Fourier mode) and four DOFs related 

to each Fourier mode that are related to the non-axisymmetric distribution of the displacements. 

The circumferential distributions corresponding to each Fourier mode up to the sixth mode are 

shown in Fig. 3. C. 2 in which the blue lines depict the un-deformed surface as a datum from which 

the longitudinal displacements based on Fourier mode distributions are depicted. The displacement 

pattern of the first Fourier mode corresponds to the longitudinal displacements associated with 
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planar bending (akin to conventional beam theories) while higher modes 2-6 provides means to 

capture the warping behavior of the cross section.  

 

Similarly, the DOFs related to the Fourier modes of the radial displacements are depicted in Fig. 

3. C. 3 up to the sixth mode. The first Fourier mode for the radial displacement characterizes the 

displacement of the pipe cross-section in its own plane, while the second mode characterizes its 

ovalization and higher modes characterize other cross-sectional distortional modes. 

 

Fig. 3. C. 1 Nodes of pipe element based on Fourier interpolation 
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Fig. 3. C. 2 Longitudinal displacements distributions corresponding to Fourier modes 1-6 
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Fig. 3. C. 3 Radial displacements distributions corresponding to Fourier modes 1-6 
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Spline interpolation 

The proposed pipe element also consists of two end cross-sections as shown in Fig. 3. C. 1. Each 

cross-section has four nodes as shown in Fig. 3. C. 4 with three nodal displacements per node. 

Each of the three displacement fields is interpolated along the circumferential direction by quartic 

splines as illustrated in Section 3.8.2. In the longitudinal direction, two options have been 

considered. Option 1: Using linear interpolation along the longitudinal direction, each end cross-

section would have 12 DOFs. Therefore, the total number of DOFs of the proposed element is 24. 

Option 2: Using Hermitian interpolation along the longitudinal direction, each of the two end 

cross-sections, would have four nodes, with six degrees of freedom per node (i.e., three nodal 

displacements and three nodal rotations). In this case, the element would have 2 cross-sections x 

4 nodes per cross-section x 6 DOFs per node totaling of the proposed element are 48 DOFs.  

 

 

Fig. 3. C. 4 Nodes for a Spline element based on linear interpolation along the longitudinal 
direction and quartic spline interpolation along the circumferential direction. 
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3.14 Appendix 3.D: Strain Fields for Example 1 

The longitudinal, circumferential, and shear strain distributions along the circumferential direction 

at the pipe mid-span for example 1 are shown in Fig. 3. D. 1. The discussion provided in Section 

3.9.1 about the agreement between the predictions of the developed elements in this chapter and 

the S4R element in ABQUS is applicable here for these strain field distributions.  

  
a b 

  
c d 

  
e f 

Fig. 3. D. 1 Strain fields versus circumferential angle at the middle section 5z m=  (a) 
Longitudinal-Inner Surface, (b) Longitudinal-Outer Surface, (c) Circumferential-Inner Surface, 

(d) Circumferential-Outer Surface, (e) Shear-Inner Surface, and (f) Shear-Outer Surface. 
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3.15 Nomenclature  
A A point on the middle surface of the un-deformed configuration 

A* The point on the middle surface of the deformed configuration 

B  Body force vector per unit reference volume 

C  Saint-Venant-Kirchhoff constitutive tensor 

d  Vector of degrees of freedom 

id  , jd  Components of degrees of freedom vector 

d  Vector of virtual degrees of freedom 

E  Green-Lagrange stress tensor 

E  Young’s Modulus 

re  Unit vector in the radial direction 

ze  Unit vector in the longitudinal direction 

φe  Unit vector in the circumferential direction 

F  Deformation gradient tensor 

( )IF  Internal force vector 

( )EF  External force vector 

1 2 3 4, , ,H H H H  Cubic Hermitian functions 

* *
1 2,H H  Linear Lagrangian functions 

h  Pipe wall thickness 

I  Identity tensor 

K  Stiffness matrix 
FK  Exact contribution of the external force vector in the stiffness matrix 
TK  Exact tangent stiffness matrix 

F
AK  

Approximated contribution of the external force vector in the stiffness 

matrix 
T
AK  Approximated tangent stiffness matrix 

F
ij

K  Components of the exact contribution of the external force vector in the 

stiffness matrix 
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T
ij

K  Components of the exact tangential stiffness matrix 

T
A ij

K  Components of the approximate contribution of the external force vector 

in the stiffness matrix 
F
A ij

K  Components of the approximate tangential stiffness matrix 

L  Vector of shape functions for Fourier series interpolation 
*L  Vector of Lagrangian shape functions for spline interpolation 
**L  Vector of Hermitian shape functions for spline interpolation 

L  Length of the element 

m  Total Fourier terms /modes 

N  Vector normal to the middle surface in the un-deformed configuration 

N


 
Unit vector normal to the middle surface in the un-deformed 

configuration 

n  Vector normal to the middle surface in the deformed configuration 

n  Unit vector normal to the middle surface in the deformed configuration 

n  Total number of the nodal degrees of freedom  

1n , 2n , 3n  Components of the normal vector n  

1n , 2n , 3n  Components of the normal unit vector n  

P  The first Piola-Kirchhoff stress tensor 

P  The follower pressure load 

EP  
The equivalent first Piola-Kirchhoff stress tensor to the Cauchy stress 

tensor induced due to the follower pressure load P  

Q  Spline interpolation functions in the circumferential direction 

R  Residual force vector 

oR  
The position vector of a point on the middle surface in the un-deformed 

configuration 

or  
The position vector of a point on the middle surface in the deformed 

configuration 

r  Radial coordinate as measured from the origin point 

mr  Mid-surface radius 
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S  Second Piola-Kirchhoff stress tensor 

oS  The original surface that encloses volume oV  

NT  
Applied traction vector per unit reference surface 0dS normal to the unit 

vector N


 

U  The internal virtual work 

u  Displacement vector for a generic point 

u  Virtual displacement vector for a generic point 

ou  Displacement vector for a point on the middle surface 

oru  Radial displacement of a point on the middle surface 

oxu  Displacement in x-direction a point on the middle surface 

oyu  Displacement in y-direction a point on the middle surface 

ozu  Longitudinal displacement of a point on the middle surface 

ou ϕ  Circumferential displacement of a point on the middle surface 

ru  Radial displacement 

zu  Longitudinal displacement 

uϕ  Circumferential displacement 

oV  The original volume 

V  The external virtual work 

z  Longitudinal coordinate 

∇  The gradient operator with respect to the un-deformed configuration 

ζ  Radial coordinate as measured from the middle surface 

ν  Poisson’s ratio 

σ  The Cauchy stress tensor 
ϕ  Circumferential coordinate 

 



115 
 

3.16 Acknowledgments  

The authors express their gratitude to TC Energy, and Enbridge Pipelines Inc. for their technical 

assistance and discussions.  

3.17 Funding 

Partial funding was provided by: NSERC, MITACS, Enbridge Pipelines Inc., and TC Energy. 

 

3.18 References 

[1] Von Karman, T., 1911, “Ueber Die Formanderung Dumnwandiger Rohre, Innsbesondere 
Federnder Ausgleichrohre,” Z. Ver. Deut. Ing., 55(Part2), pp.1889–1895. 

[2] Vigness, I., 1943, “Elastic Properties of Curved Tubes,” J. Appl. Mech., 55, pp.102–120. 
[3] Kafka, P. G., and Dunn, M. B., 1953, “Stiffness of Curved Circular Tubes with Internal 

Pressure,” Boeing Airplane, Chicago, IL.  
[4] Wood, J. D., 1958, “The flexure of a uniformly pressurized circular, cylindrical shell” J. 

Appl. Mech., 25, pp. 453-458. 
[5] Dodge, W. G., and Moore, S. E., 1972, “Stress Indices and Flexibility Factors for Moment 

Loadings on Elbows and Curved Pipes," Welding Research Council Bulletin 179. 
[6] Hong, S.-P., An, J.-H., Kim, Y.-J., Nikbin, K., and Budden, P. J., 2011, “Approximate 

Elastic Stress Estimates for Elbow Under Internal Pressure,” Int. J. Mech. Sci., 53(7), pp. 
526–535. 

[7] WeiB, E., Lietzmann, A., and Rudolph, J., 1996 “Linear and Nonlinear Finite-Element 
Analysis of Pipe Bends,” Int. J. Pres. Ves. & Piping., 67, pp. 211-217. 

[8] Abdulhamed, D., Adeeb, S., Cheng, R., and Martens, M., 2016, “The Influence of the 
Bourdon Effect on Pipe Elbow,” ASME Paper No. IPC2016-64659. 

[9] Abdulhamed, D., 2017 “The Behavior of Pipe Bends under Internal Pressure and In-Plane 
Bending Loading,” Doctoral dissertation, University of Alberta, Edmonton, Canada. 

[10] Ohtsubo, H., and Watanabe, O., 1978, “Stress Analysis of Pipe Bends by Ring Elements,” 
ASME J. Pressure Vessel Technol., 100(1), pp. 112–122. 

[11] Bathe, K. J., and Almeida, C. A., 1980, “A Simple and Effective Pipe Elbow Element, 
Linear Analysis,” J. Appl. Mech., 47(1), pp. 100–193. 

[12] Bathe, K. J., and Almeida, C. A., 1982, “A Simple and Effective Pipe Elbow Element, 
Pressure Stiffening Effects,” J. Appl. Mech., 49(4), pp. 914–915. 

[13] Bathe, K. J., and Almeida, C. A., 1982, “A Simple and Effective Pipe Elbow Element, 
Interaction Effects,” J. Appl. Mech., 49, pp. 165–171. 

[14] Militello, C., and Huespe, A. E., 1988, “A Displacement- Based Pipe Elbow Element,” 
Comput. Struct., 29(2), pp. 339–343. 

[15] Weicker, K., Salahifar, R., and Mohareb., M., 2010, “Shell Analysis of Thin-Walled Pipes. 
Part I-Field equations and solution,” Int. J. Pres. Ves. & Piping., 87, pp.402-413. 



116 
 

[16] Weicker, K., Salahifar, R., and Mohareb., M., 2010, “Shell Analysis of Thin-Walled Pipes. 
Part II-Finite Element Formulation,” Int. J. Pres. Ves. & Piping., 87, pp.414-423. 

[17] Basaran, S., 2008, “Lagrangian and Eulerian Descriptions in Solid Mechanics and Their 
Numerical Solutions in hpk Framework,” Doctoral dissertation, The University of Kansas, 
Kansas, United states.  

[18] Holzapfel, G. A., 2000, “Nonlinear Solid Mechanics: A Continuum Approach for 
Engineering,” Chichester: Wiley.  

[19] Bonet, J., and Wood, R., 2008, “Nonlinear Continuum Mechanics for Finite Element 
Analysis,” Cambridge: Cambridge University Press. doi:10.1017/CBO9780511755446 

[20] Bathe, K. J., 1996, “Finite Element Procedures in Engineering analysis,” Prentice Hall, 
New Jersey.  

[21] Pagani, A., and Carrera, E., 2018, “Unified formulation of geometrically nonlinear refined 
beam theories,” Mech. Adv. Mater. Struc., 25(1), pp. 15-31 

[22] Wu, B., Pagani, A., Chen, W. Q., and Carrera, E., 2019, “Geometrically nonlinear refined 
shell theories by Carrera Unified Formulation,” Mech. Adv. Mater. Struc., 
DOI: 10.1080/15376494.2019.1702237 

[23] Simulia ABAQUS. 2017.User’s Manual version 6.6 documentation  
[24] ADINA R& D, Inc.2012. Theory and Modeling Guide Volume I 
[25] ANSYS, Inc. ELBOW290, Retrieved from 

https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_ELBOW290.htm
l 

[26] Li, T., 2016, “On the formulation of a pipe element for a pipe structure with variable wall 
thickness,” Ocean Eng. 117, 398–410. 

[27] Li, T., 2017, “On the formulation of a pipe element II: An orthogonal polynomial pipe 
element,” Ocean Eng. 129, 279–290. 

[28] Li, T., 2017, “On the formulation of a 3D smooth curved pipe finite element with arbitrary 
variable cross-section,” Thin-Walled Structures. 117, 314–331. 

[29] Duan, L., Zhao, J., 2019, “A geometrically exact cross-section deformable thin-walled 
beam finite element based on generalized beam theory,” Comput. Struct., 218, pp.32-59. 

[30] Meroueh, K. A., 1986, “On a Formulation of a Nonlinear Theory of Plates and Shells with 
Applications,” Comput. Struct., 24(5), pp. 691-705. 

[31] Campello, E. M. B., Pimenta, P. M., Wriggers, P., 2003, “A triangular finite shell element 
based on a fully nonlinear shell formulation,”, Computational Mechanics, 31, pp. 505-518. 

[32] Ivannikov, V., Tiago, C., Pimenta, P. M., 2014, “On the boundary conditions of the 
geometrically nonlinear Kirchhoff-Love shell theory,”, Int. J. Solids Struct, 51, pp. 3101-
3112.   

   
[33] Adeeb, S. First and Second Piola Kirchhoff Stress Tensors. Retrieved from  

https://sameradeeb-new.srv.ualberta.ca/stress/first-and-second-piola-kirchhoff-stress-
tensors/ 

[34] Petersen, K., Pedetsen, M. The Matrix Cookbook. Retrieved from 
https://www.ics.uci.edu/~welling/teaching/KernelsICS273B/MatrixCookBook.pdf 

[35] http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/C
hapter_3_Stress_Mass_Momentum/Stress_Balance_Principles_Complete.pdf 

 
 

https://doi.org/10.1080/15376494.2019.1702237
https://www.mm.bme.hu/%7Egyebro/files/ans_help_v182/ans_elem/Hlp_E_ELBOW290.html
https://www.mm.bme.hu/%7Egyebro/files/ans_help_v182/ans_elem/Hlp_E_ELBOW290.html
https://sameradeeb-new.srv.ualberta.ca/stress/first-and-second-piola-kirchhoff-stress-tensors/
https://sameradeeb-new.srv.ualberta.ca/stress/first-and-second-piola-kirchhoff-stress-tensors/
https://www.ics.uci.edu/%7Ewelling/teaching/KernelsICS273B/MatrixCookBook.pdf


117 
 

Chapter 4  
Shell Finite Element Formulation for Geometrically 
Nonlinear Analysis of Curved Thin-Walled Pipes 
 

 

 

4.1 Abstract  

A family of shell finite elements is developed for the geometrically nonlinear analysis of pipe 

bends. The constitutive description follows the Saint-Venant-Kirchhoff model. The first Piola-

Kirchhoff stress and the conjugate gradient of the virtual displacement fields are adopted within 

the framework of the virtual work principle. Three C1 continuous schemes are used to interpolate 

the displacement fields in the longitudinal direction while Fourier series are used for 

circumferential interpolation. Eigenvalue analyses are conducted to assess the ability of the 

elements to represent rigid body motion.  Comparisons with other shell and elbow models 

demonstrate the accuracy and versatility of the formulation.  

Keywords 

Toroidal shells, Geometrically nonlinear finite element, First Piola-Kirchhoff stress tensor, Virtual 

work principle, Eigenvalue analyses, Elbows.  

 

4.2 Introduction  

The energy industry commonly utilizes pipeline transmission systems to convey the extracted oil 

and gas resources and related materials to centres of consumption. The structural integrity of these 

transmission systems is essential for their economics, safety, and optimal performance. The 
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complex deformation shape of pipes with the concomitant ovalization can lead to a markedly high 

computational cost associated with the analysis and design of these systems. Therefore, it is 

imperative to investigate and propose efficient solutions that balance the high computational cost 

with the accuracy of the structural/mechanical analysis techniques for the components of the piping 

system.   

 

Pipe bends are commonly used in piping systems in order to allow direction changes and provide 

flexible loops to guard against excessive axial stresses due to thermal expansions. Traditional beam 

deformation analysis is inadequate in accurately predicting the structural response of pipe bends 

associated with ovalization and warping of the pipe cross section. Theoretical studies [1-5] were 

the cornerstone for understating the mechanical behavior of pipe bends. However, various 

limitations (e.g., loading type and geometric properties) are associated with these studies 

particularly when incorporating nonlinear effects.  

 

Efficient numerical analysis tools are required to properly analyze structural systems with pipe 

bends. Although solid and shell finite elements (FE) formulations [6-9] can accurately predict the 

structural response of pipe bends, these elements are prohibitively expensive to use in a practical 

design environment due to their high computational and modelling cost, particularly when 

modelling long pipelines. Therefore, there is a need to develop computationally-effective FE 

formulations that are able to simulate the structural response of pipe bends accurately and 

efficiently.     
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Many researchers developed linear FE formulations to model pipe bends. Ohtsubo and Watanabe 

[10] proposed a ring-shaped FE formulation based on the kinematic constraints of the thin shell 

theory. Their proposed formulation utilized Fourier series and cubic Hermitian functions to 

interpolate the displacement fields along the circumferential and longitudinal directions, 

respectively. The FE formulation, however, does not capture all the rigid body modes. Bathe and 

Almeida [11] employed the von Karman theory [1] to develop a simple FE formulation where the 

beam displacement mode expressed by cubic polynomial function was integrated with cross-

sectional deformation modes characterized by Fourier series in the circumferential direction. 

Although additional enhancements were added to involve pressure stiffening [12] and interaction 

effects between the straight and curved pipes [13], the element did not capture warping 

displacements [14].  Militello and Huespe tackled warping deformation by adding Fourier series 

for the displacement field of the longitudinal direction. Fonseca et al [15] introduced two FE 

formulations to model elbows attached to straight pipes. Higher-order polynomial or trigonometric 

functions along the longitudinal coordinate were employed to interpolate the beam displacement 

fields while the circumferential variations of the displacements were interpolated using Fourier 

series.  The formulations were limited to loading within the plane of the elbow with internal 

pressure.  

 

Nonlinear FE formulations in solid mechanics are commonly based on the principle of virtual work 

expressed in the Lagrangian description [16]. The internal virtual work can be expressed using 

various stress tensors and their energy conjugate strains [17-18]. Bathe [19] provided the specifics 

of developing nonlinear FE formulations by adopting the second Piola-Kirchhoff stress tensor and 

the Green-Lagrange strain tensor. Based on this approach, most commercial FE software (e.g. 
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ABAQUS [20], ADINA [21], and ANSYS [22]) developed elbow elements to simulate the 

nonlinear response of pipe bends. Li [23-25] recently developed three-dimensional nonlinear FE 

formulations to predict the mechanical behavior of initially non-circular straight and curved pipes. 

On the other hand, nonlinear FE formulations for beams [26] and shells [27-29] adopted the first 

Piola-Kirchhoff stress tensor and the gradient of the virtual displacement fields within the internal 

virtual work expression as an alternative methodology. To the authors’ knowledge, such an 

approach has not been used to formulate/develop nonlinear FE formulations for curved pipes. 

    

Within this context, the present study formulates and implements toroidal thin shell FE 

formulations aimed at predicting the geometric nonlinear structural response of pipe bends in the 

elastic regime. Additionally, these formulations adopt the first Piola-Kirchhoff stress and the 

gradient of the virtual displacement fields within the internal virtual work framework. The 

formulations capture the follower effect due to hydrostatic pressure.    

 

4.3 Assumptions 

The following assumptions are adopted in the present formulation: 

1. The Saint-Venant-Kirchhoff constitutive model is employed in order to characterize the 

linearly elastic isotropic response of pipe material.  

2. The elbow cross-section is assumed to be initially circular.  

3. The kinematic constraints of the Love-Kirchhoff thin shell theory are adopted, i.e., 

I. Straight lines normal to the un-deformed mid-surface of the shell remain straight 

and normal to the mid-surface of the deformed configuration. 

II. The thickness of the shell remains constant throughout deformation. 
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4. The normal stress component along the radial direction is considered negligible.  

5. The pressure load is treated as a follower load.  

 

4.4 Overview on the formulation 

The writer introduced a detailed description of the formulation adopted in the present study in 

Chapter 3. In this section, an overview on the formulation is presented. For static equilibrium, the 

principle of virtual work referred to the reference configuration is expressed as 

( ) ( ) ( )T
o o oV S Vo o o

dV dS dV⊗∇ = ⋅ + ⋅∫ ∫ ∫NP : u T u B u                                                                                     (4.1) 

where the reference volume oV and its enclosing reference surface oS are utilized to implement all 

integrations. The inner product of the first Piola-Kirchhoff stress tensor P and the gradient of the 

virtual displacement fields ( )T⊗∇u , the left-hand-side of Eq.(4.1), represents the internal virtual 

work while the external virtual work is expressed in terms of the applied traction vector NT  and 

the body force vector B  on the right-hand-side of Eq.(4.1). The virtual displacement field vector

u is assumed to be a nonlinear function of the nodal degrees of freedom vectord and is related to 

the virtual nodal degrees of freedom vector d  through ( )= ∂ ∂u u d d , where u  is the displacement 

field vector. The partial derivative of Eq.(4.1) with respect to the virtual nodal degrees of freedom 

vector d  yields the general equilibrium equations in terms of the nodal degrees of freedom vector

d as given in Eq.(4.2)  

( ) ( ) ( ) ( ) =I EF d - F d 0                                                                                                                                        (4.2) 

in which the internal force vector is ( ) ( )T
oVo

dV = ∂ ⊗∇ ∂ ∫IF P : u d and the external force 
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vector is ( ) ( ) ( )T T
o oS Vo o

dS dV   = ∂ ∂ + ∂ ∂   ∫ ∫E
NF u d T u d B  . The system of nonlinear equations 

provided in Eq.(4.2) can be approximated using Taylor series and solved iteratively as expressed 

in Eq.(4.3) 

( ) ( )g gg=+ − =d dR d K d d 0                                                                                                      (4.3) 

where ( ) ( ) ( ) ( ) ( )g g g= −I ER d F d F d  and 
g g g= = =
= −T F

d d d d d d
K K K are the residual force 

vector and the stiffness matrix at given nodal degrees of freedom vector gd . The tangent stiffness 

matrix TK  is approximated by the expression [ ] ( )( )T
oVo

dV = ∂ ∂ ∂ ⊗∇ ∂ ∫T
AK P d : u d and the 

approximate contribution of the external force vector in the stiffness matrix is 

( ) ( ) ( ) ( )T T
o oS Vo o

dS dV   = ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂   ∫ ∫F
A NK u d T d u d B d  . The mathematical expressions 

of the internal and external force vectors and the stiffness matrix are in terms of a generic 

displacement field vector u . In the following section, the displacement field vector will be 

specialized for thin-walled toroidal shells.     

 

4.5 Displacement fields in toroidal coordinates 

4.5.1 Geometric description 

An initially circular thin-walled pipe bend (Fig. 4. 1) is considered with a mid-surface pipe bend 

radius R , a mid-surface cross section radius mr , and a wall thickness h . Two orthogonal 

curvilinear coordinates θ  and ϕ  are utilized to define material points located on the mid-surface 

of the pipe bend. A normal coordinate ζ  is adopted to express the offset distance of a point from 

the mid-surface (Fig. 4. 1). A material point located on the mid-surface of the pipe bend, under 
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loading (Fig. 4. 1), undergoes a displacement field vector { }, ,o o oru u uθ ϕ=ou along the 

longitudinal, circumferential, and radial directions { }, ,θ φ re e e respectively where ( ) mr rζ ζ= +

,i.e., 

( ) ( ) ( ) ( ), , ,o o oru u uθ ϕθ ϕ θ θ ϕ θ ϕ= + +o θ φ ru e e e                                                                                           (4.4) 

The displacement field vector ( ), ,θ ϕ ζ=u u of a generic material point offset from the mid-surface 

is obtained, from Assumption 3 (Section 4.3), as 

( ) ( ) ( ) ( )( ), , , , ,θ ϕ ζ θ ϕ ζ θ ϕ θ ϕ= + −ou u n N


                                                                                                     (4.5) 

where n  and N


 are the unit vectors normal to the deformed and un-deformed mid-surfaces 

respectively.  

 

Fig. 4. 1 Pipe bend coordinates, vector bases, and displacement vector 

 

4.5.2 Unit normal vector 

In the un-deformed configuration, the unit vector normal to the mid-surface is = rN e


. In contrast, 

kinematic considerations must be employed to obtain the unit vector n  normal to the deformed 
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mid-surface. The position vector ( ),θ ϕor  in the deformed configuration for a point on the mid-

surface is obtained by adding the position vector 

( ) [ ] ( ) [ ] ( ), cos , sin ,mR r Rθ ϕ ϕ θ ϕ ϕ θ ϕ= + −o r φR e e of the point on the un-deformed mid-surface 

to the displacement vector ( ),θ ϕou of the point (Eq.(4.4)) yielding 

( ) ( ) ( ) [ ] ( ), sin , cos ,o o m oru R u R r uθ ϕθ ϕ θ ϕ θ ϕ ϕ θ ϕ = + − + + + + o θ φ rr e e e                                (4.6)                                                                      

The vector n  normal to mid-surface in the deformed configuration is obtained from the cross 

product  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3, , , , ,n n nθ ϕ θ ϕ θ θ ϕ θ ϕ θ ϕ θ ϕ= ∂ ∂ × ∂ ∂ = + +o o θ φ rn r r e e e                           (4.7) 

where 1n , 2n  and 3n are the components of the normal vector in the deformed configuration.  

By differentiating Eq.(4.6) with respect to coordinates θ  and ϕ , one obtains 
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    (4.8)

in which ( ), indicates to the partial derivative of the preceding argument with respect to the 

coordinate following the comma. Components 1n , 2n , and 3n of vector n  are recovered by 

equating the coordinates of Eq.(4.7) and Eq.(4.8) yielding  
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(4.9) 

The components of the unit vector n  normal to the deformed mid-surface are expressed as 

Eq.(4.10) 

2 2 2
1 2 3i in n n n n= + +            1, 2,3i =                                                                                                                 (4.10) 

 

4.5.3 Displacement fields for a point offset from the mid-surface 

Eq.(4.5) relates the displacement field vector ( ) ( ), , , , ru u uθ ϕθ ϕ ζ =u of a generic point located at 

a distance ζ from the mid-surface to the displacement field vector ( ) ( ), , ,o o oru u uθ ϕθ ϕ =ou  of a 

point on the mid-surface. From Eqs.(4.4) and(4.10), by substituting into Eq.(4.5), one can recover 

( ), ,θ ϕ ζu as  

( ) ( ) ( ) ( ), , , ,ru u uθ ϕθ ϕ ζ θ θ ϕ θ ϕ= + +θ φ ru e e e                                                                                       (4.11) 

where 
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                                                                (4.12) 
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4.6 Gradient of the displacement field vector and its derivative  
In a toroidal coordinate system, the gradient operator is expressed by 

( ) ( )1/ 1/ Ts r rθ ϕ∇ = ∂ ∂ ∂ ∂ ∂ ∂ where parameter ( )cosms R r ζ ϕ= + +  and coordinate 

mr r ζ= +  have been defined. The gradient of the displacement field vector u  thus can be 

expressed as  

( ) ( )
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θ θ ϕ ϕ ζ
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  − +  
  ⊗∇ = + +  
  − −  

u                                           (4.13) 

The components of the second order tensor T⊗∇u  involve the components of the displacement 

field vector ( ), , ru u uθ ϕ  given in Eq.(4.12) and their derivatives with respect to coordinates θ ,ϕ , 

and ζ provided in Eqs.(4.A.1) to (4.A.9) in Appendix 4.A: Derivatives of displacement fields with 

respect to coordinates . From all mathematical identities expressed in Section 4.11 (Eqs.(4.A.1) to 

(4.A.16)) and Eqs.(4.9), (4.10), and (4.12) , by substituting into Eq.(4.13), the gradient of the 

displacement field vector shown in Eq.(4.13) can be obtained in terms of the components of the 

displacement field vector ( ), ,o o oru u uθ ϕ of the mid-surface and their derivatives with respect to 

coordinates θ  and ϕ .   The mathematical expressions for the internal force vector IF  and the 

tangent stiffness matrix T
AK  provided under Section 4.4 require the derivatives of the gradient of 

the displacement field vector T⊗∇u with respect to the nodal degrees of freedom jd which is given 

by  
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u          (4.14) 

By using Eqs.(4.B.1) and (4.B.6) to (4.B.14) (Section 4.12), the second order tensor in Eq.(4.14) 

can be expressed in terms of components ( ), ,o o oru u uθ ϕ  of the displacement field vector of a point 

on the mid-surface and their derivatives with respect to θ , ϕ , and jd . Also, the external force 

vector EF  and its contribution to the stiffness matrix F
AK  involve the derivatives of components 

of the displacement field vector ( ), , ru u uθ ϕ  with respect to jd  which are introduced in Eq. (4.B.1)

. The force vectors and the stiffness matrix are obtained in terms of components ( ), ,o o oru u uθ ϕ  of 

the displacement field vector of the mid-surface and their derivatives with respect to θ , ϕ , and jd

. These components are presented in the following section.     

 

4.7 Interpolation Schemes 

The present study introduces three C1 continuity interpolation schemes along the longitudinal 

direction and Fourier series expansion12 along the circumferential direction in order to describe 

the displacement fields ( ), ,o o oru u uθ ϕ=ou  at the pipe bend mid-surface. The displacement fields 

are assumed to take the form 

                                                 
12 The physical significance of the Fourier interpolation scheme is similar to that described in Appendix 3.C: 

Interpolation Schemes  
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( ) ( ) ( ) { } ( )4 2 1 11 4 2 1
, , T

ok mm k
u θ ϕ θ ϕ + ×× +

= L d                    , ,k rθ ϕ=                                          (4.15)

where { } ( )4 2 1 1mk + ×d  is the vector of degrees of freedom and ( ) ( )1 4 2 1
, T

m
θ ϕ

× +
L  is the vector of 

interpolation functions   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), cos sin cos2 sin 2 cos sinT T T T T T T Tm mθ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ=L H H H H H H H     (4.16)

in which ( )θH is the vector of shape functions along the longitudinal direction and m is the number 

of Fourier modes. Ohtsubo and Watanabe [10] employed the well-known Hermitian functions to 

interpolate the displacement fields along the longitudinal direction. Such Hermitian interpolation 

scheme will be referred to as H. In addition, the present study proposes two shape functions for 

interpolation along the longitudinal direction:  

a- Fully Trigonometric function (F) 

The displacement function is assumed to take the form 

( ) 1 2 3 4sin cos sin 2 cos 2f a a a aθ θ θ θ θ= + + + . By enforcing C1 continuity, corresponding shape 

functions are found to take the form: 
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(4.17)             

The element based on the interpolation scheme in Eq.(4.17) will be referred to as the F element.   

b- Mixed Polynomial Trigonometric function (M) 
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The displacement function is assumed to take the form ( ) 0 1 2 3sin cosf a a a aθ θ θ θ= + + + . By 

enforcing C1 continuity, corresponding shape functions are found to take the form: 
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             (4.18) 

The element based on the interpolation scheme in Eq.(4.18) will be referred to as the M element. 

In all cases, Gauss Quadrature is adopted to carry out the required integrations.  

 

4.8 Rigid Body Motion13 

In order to develop an accurate FE formulation, the proposed displacement fields must guarantee 

an adequate representation of rigid body motions (RBM). Although an exact representation of 

RBM is preferred, the majority of assumed displacement fields in curved thin shell FE 

accommodate RBM only in an approximate manner. The approximate representation of RBM is 

improved by reducing the element size (e.g., [30]). The Hermitian interpolation shape functions 

adopted in Ref [10] to characterize the distribution of displacement fields in the longitudinal 

direction were able to approximately capture RBM and reasonably predict the response of pipe 

                                                 
13 Monotonic convergence can be satisfied if the developed finite element is complete (i.e., it represents rigid 

body motion and constant strain state) and conforming (i.e., compatibility conditions are satisfied). Patch test, which 
assess the ability of an assemblage of elements to induce constant strain state, is recommended to ensure the 
convergence for the non-conforming elements. The reader is referred to Ref [19] for more details. 
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bends in the context of linear analysis. Ref [11] highlighted the approximate nature of the RBM 

representation in Ref [10] as a drawback and proposed an improved element that combines beam 

deformation modes capturing RBM with cross-sectional deformation modes. Several FE 

formulations for modeling of pipe bends [12-15] followed the approach presented in Ref [11]. 

 

The present study follows an approach akin to that in Ref [10] while significantly improves the 

approximate representation of RBM. Each RBM mode corresponds to a zero eigenvalue of the 

element stiffness matrix. Hence, in the context of a small deformation analysis, an element stiffness 

matrix with six zero eigenvalues implies its ability to exactly represent the six independent degrees 

of freedom characterizing RBM without inducing strains/stresses14. In large deformation analysis, 

the presence of six zero eigenvalues would be a necessary, though not sufficient, to represent RBM 

modes. A series of linear eigenvalue analyses are thus conducted on the unconstrained stiffness 

matrix of the elements developed in the present study to extract their lowest eight eigenvalues in 

order to investigate the effect of (a) the interpolation scheme adopted (H, F,  and M), (b) the number 

of Fourier modes (# Modes=2, 4, 6, 8, and 10), (c) the bend radius to outer diameter ratio ( / oR D =

1.5,  3.0, and 5.0), and (d) the element angle (10o, 30o, 60o, and 90o). The pipe element considered 

has an outer diameter 1066.8oD mm=  and a wall thickness 9.525h mm= . Pipe material is steel 

with a Young’s modulus 210E GPa=  and Poisson’s ratio 0.3ν = .  

 

                                                 
14 In general, all zero eigenvalues do not necessarily correspond to RBM modes since an element stiffness 

matrix may have spurious zero eigenvalues. In general, such spurious zero eigenvalues are attributed to an insufficient 
order of numerical integration. Eigenvalue analyses provided in this section are carried out using 5, 30, and 3 
integration points along the longitudinal, circumferential, and radial directions, respectively. When increasing the 
number of integration points to 10, 50, and 5, the eigenvalues provided in Tables 4.1-4.4 do not change which may 
imply true (non-spurious) zero energy modes. More details are provided in Appendix 4.C: Zero Energy Modes   
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Table 4. 1 provides a comparison of the lowest eight eigenvalues for element types H, F, and M 

using six Fourier modes for the case where the elements have a 90o angle and / 1.5oR D = . The M 

element is able to exactly capture three out of the six RBM modes and approximately captures the 

remaining three RBM modes as evidenced by fact that eigenvalues 4-6 are negligible compared to 

eigenvalue 7 (the first eigenmode associated with non-RBM, and hence inducing stresses/strains). 

Comparatively, Element F exactly captures two out of the six RBM modes, approximately captures 

two RBM modes, while the remaining two RBM modes are associated with a relatively high 

eigenvalue when compared to the seventh eigenmode, suggesting that the element may not be 

suitable to represent the 90-degree element investigated herein. Element H exactly captures one 

out of the six RBM modes and captures the remaining RBM modes approximately as shown by 

the fact that the eigenvalues 2-6 are significantly lower than eigenvalue 7.  Among the three 

elements investigated, Element M thus provides the most accurate RBM representation for the 

present problem.  

Table 4. 1 Effect of element interpolation type on RBM - Lowest eight eigenvalues ( 1.5 oR D= , 
member angle=90o, and six Fourier modes) 

Element Type H F M 
Eigenvalue 1 0 0 0 
Eigenvalue 2 3 0 0 
Eigenvalue 3 7 1 0 
Eigenvalue 4 20 5 1 
Eigenvalue 5 52 1390 3 
Eigenvalue 6 81 1438 8 
Eigenvalue 7 633 1693 703 
Eigenvalue 8 938 2289 949 

 

Table 4. 2 provides a comparison of the lowest eight eigenvalues for various number of Fourier 

modes using Element M with a 90o angle and / 1.5oR D = . The lowest six eigenvalues remain 

unchanged as the number of Fourier modes is increased from 2 to 8. Conversely, eigenvalues 7 
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and 8 tangibly decrease with increasing the number of Fourier modes. Nearly, no change in the 

eigenvalues is observed when the number of Fourier modes is increased from 8 to 10.  The ratio 

of the RBM eigenvalues (ranging 0 at mode 1 to 8 at mode 6) to the converged 7th eigenvalue of 

693 may be indicative of the error induced by the RBM approximation within the element for the 

present problem.  

Table 4. 2 Effect of number of Fourier modes on RBM - Lowest eight eigenvalues - (M-element 
with 90o angle, 1.5 oR D= )  

Fourier Modes 2 4 6 8 10 
Eigenvalue 1 0 0 0 0 0 
Eigenvalue 2 0 0 0 0 0 
Eigenvalue 3 0 0 0 0 0 
Eigenvalue 4 1 1 1 1 1 
Eigenvalue 5 3 3 3 3 3 
Eigenvalue 6 8 8 8 8 8 
Eigenvalue 7 6613 826 703 693 693 
Eigenvalue 8 7075 1065 949 938 937 

 

Table 4. 3 provides the lowest eight eigenvalues for various elbow angles for Element M with six 

Fourier modes when / 1.5oR D = . As the elbow angle decreases from 90o to 10o, the eigenvalues 

of the six RBM modes reduce in value, suggesting the importance of reducing the element angle 

for an accurate RBM representation.  

Table 4. 3 Effect of element angle on RBM - Lowest eight eigenvalues (M- element with six 
Fourier modes, 1.5 oR D= ) 

Elbow angle 10o 30o 60o 90o 
Eigenvalue 1 0 0 0 0 
Eigenvalue 2 0 0 0 0 
Eigenvalue 3 0 0 0 0 
Eigenvalue 4 0 0 0 1 
Eigenvalue 5 0 1 2 3 
Eigenvalue 6 6 12 11 8 
Eigenvalue 7 12 53 221 703 
Eigenvalue 8 12 54 255 949 
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Table 4. 4 provides the eigenvalues for Element M with six Fourier modes for an element angle of 

90o as the ratio / oR D  is varied.  As / oR D  increases, the element become more capable of 

capturing RBM as reflected by the decrease in the eigenvalues of RBM modes. For the larger 

/ oR D  value, the element has essentially negligibly small RBM eigenvalues in comparison to the 

seventh non-RBM eigenvalue of 398. 

Table 4. 4 Effect of / oR D  on RBM - Lowest eight eigenvalues (M-element with six Fourier 
modes, element angle=90o) 

/ oR D  1.5 3 5 
Eigenvalue 1 0 0 0 
Eigenvalue 2 0 0 0 
Eigenvalue 3 0 0 0 
Eigenvalue 4 1 0 0 
Eigenvalue 5 3 0 0 
Eigenvalue 6 8 1 0 
Eigenvalue 7 703 680 398 
Eigenvalue 8 949 865 562 

 

In conclusion, the linear eigenvalue analyses show that, in the context of small deformation 

analysis, Element M with six Fourier modes accurately represents RBM when the element angle 

is of the order 10o. In the following section, the performance of Element M, the number of Fourier 

modes specified, and elbow angle chosen will be investigated under finite deformations analysis 

for various loading cases.  

 

4.9 Examples 

A 90o pipe bend (Fig. 4. 2) with open ends has an outer diameter 1066.8oD mm=  and a wall 

thickness 9.525h = . Material is steel with a Young’s modulus 210E GPa=  and Poisson’s ratio 

0.3ν = . The pipe bend is analyzed under several loading conditions. The bottom end of the pipe 
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bend is completely fixed whereas the top end is taken as free in Example 1 and rigid15 in the 

following examples. The pipe bend is modelled using Element M, with six Fourier modes, as well 

as the S4R shell element, and the ELBOW31element within the ABAQUS library for comparison. 

Solutions based on Element M with six Fourier modes will be referred as “Present” subsequently. 

The number of Gauss integration points taken is five along the longitudinal direction, thirty along 

the circumferential direction, and three along the radial direction.  

 

 

Fig. 4. 2 Geometry of the pipe bend 

 

4.9.1 Example 1  

A follower uniform internal pressure 3.5P MPa=  is applied normal to the inner surface of the 

pipe bend (Fig. 4. 2). The ratio / oR D  is taken as 1.5. The pressure would induce a hoop stress 

                                                 
15 Rigid means that a cross section cannot ovalize and warp (i.e., no change is allowed in the cross section). 

In order to enforce the top cross section to rigidly deform,  
(a) a rigid constraint which constrains the motion of the top section to the motion of the centroid of the top 

section, is employed in S4R shell models.  
(b) a special boundary condition is utilized in ELBOW31 models by using the NODEFORM keyword in 

Abaqus.  
(c) Degrees of freedom of Fourier modes higher than the first mode were set to zero in Element M proposed 

in the present study.  
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of about 0.67 yF in a straight pipe with a X42 (yield strength 290yF MPa= ). Geometrically 

linear16 (L) and nonlinear (N) analyses are carried out within the present formulation, the S4R 

shell model and the ELBOW31 model in ABAQUS for comparison17. The longitudinal, hoop, 

and shear stress distributions along the circumferential direction of the mid-section (sec A-A in 

Fig. 4. 3) at the inner and outer surfaces are presented in Fig. 4. 4.  The stresses predicted by the 

present formulation are in an excellent agreement with those of the S4R shell and the ELBOW31 

models in ABAQUS both for linear and nonlinear solutions (Fig. 4. 4). The peak longitudinal 

stress predicted by linear analyses is nearly twice as much as those based on the nonlinear analyses 

at the inner and outer surfaces (Fig. 4. 4a-b). Additionally, Fig. 4. 4c and Fig. 4. 4d show a 

noticeable difference between the peak hoop stress values predicted by the linear and nonlinear 

analyses where the peak hoop stresses based on the linear analyses are more than twice those 

based on the nonlinear analyses. While the difference between the shear stress predicted by the 

linear and nonlinear analyses is highly pronounced at the inner surface (Fig. 4. 4e), both types of 

analyses predict closer values at the outer surface (Fig. 4. 4f). All stress fields exhibit an 

oscillatory response along the circumferential direction of sec A-A. In terms of magnitude, the 

hoop stresses are the dominated stresses. The example shows the ability of the present formulation 

to accurately predict the geometrically linear and nonlinear structural response of pipe bends 

under internal pressure.   

                                                 
16 The linear solution is extracted from the present nonlinear FE formulation by applying an internal pressure 

of 0.035 MPa (1 % of the peak internal pressure to be applied) and subsequently magnifying the results by scaling 
them by a factor 100 

17 While the present model and the ELBOW31 model adopt six Fourier modes, the number of elements is 10 
and 84 elements, respectively. Typical dimension of the elements in the shell model is 30 mm.  
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Fig. 4. 3 Pipe bend under internal pressure 

 

 
a 

 
b 
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Fig. 4. 4 Stress fields versus circumferential angle at section A-A (a) Longitudinal-Inner Surface, 
(b) Longitudinal-Outer Surface, (c) Circumferential-Inner Surface, (d) Circumferential-Outer 

Surface, (e) Shear-Inner Surface, and (f) Shear-Outer Surface 

 

4.9.2 Example 2 

The pipe bend in Fig. 4. 2 has / 5oR D =  and is subjected to a horizontal traction of 4H MPa=  

and a vertical traction of 4V MPa= , both acting at the top section (Fig. 4. 518). A nonlinear 

analysis is performed based on 10 M elements. The number of Fourier modes is varied and the 

displacements and stresses predicted are compared to those of the shell solution (S4R). Table 4. 5 

provides the radial and longitudinal displacements at the extrados and intrados of the top section (

90oθ = ) and the corresponding percentage differences19 between both types of solutions.  As the 

number of Fourier modes is increased, the percentage difference between the Abaqus SR shell 

model and the predictions of M element model is observed to decrease. The percentage difference 

is 10 % when taking six Fourier modes, and tends to stabilize at nine Fourier modes, at which the 

percentage difference is nearly 7 %.  

                                                 
18 In the S4R shell model, a set of equivalent nodal forces is applied at the top section to simulate the applied 

tractions.  
19 Percentage difference = (shell output – present formulation output) × 100 / shell output 
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Table 4. 6 shows the von-Mises stresses at 45oθ = , at the extrados, the crown, and the intrados of 

the inner and outer surfaces. The highest von-Mises stresses are observed to take place at the 

crown. By increasing the number of Fourier modes, the predictions of these stresses are found to 

improve significantly at the inner and outer surfaces when compared to the S4R shell model 

predictions. The percentage difference between both models at the inner and outer surfaces are 

12.5 % and 20.7 % respectively when using six Fourier modes whilst they reduce to 2.9 % and 5.7 

% when using ten Fourier modes, in a monotonical convergence pattern. Conversely, lower values 

of von-Mises stresses are obtained at the extrados and intrados. At these locations, convergence 

exhibits an oscillatory pattern as the number of Fourier modes is increased.    

 

Fig. 4. 5 Pipe bend under in-plane loading 

Table 4. 5 Radial and longitudinal displacements at the top section  

Position Displacement a  S4R Present formulation – Number of Fourier modes 
6 7 8 9 10 

DOFs 184152 858 990 1122 1254 1386 

Extrados 
Radial mm -142.0 -127.7 -131.9 -132.4 -132.8 -132.8 

%b - 10.1 7.1 6.7 6.5 6.5 

Longitudinal mm 94.5 85.0 87.4 87.8 88.0 88.0 
% b - 10.1 7.5 7.1 6.9 6.9 

Intrados 
Radial mm 141.4 127.5 131.6 132.2 132.5 132.5 

% b - 9.8 6.9 6.5 6.3 6.3 

Longitudinal mm 57.3 51.2 52.5 52.7 52.8 52.8 
% b - 10.7 8.3 8.0 7.8 7.8 

a Definitions and directions of displacement fields are presented in Section 4.5.1 (See Fig. 4. 1) 

b % = (shell output – present formulation output) × 100 / shell output 
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Table 4. 6 von-Mises stresses (MPa) at the inner and outer surfaces ( 45oθ = ) 

Position Surface S4R Present formulation – Number of Fourier modes 
6 7 8 9 10 

Extrados Inner 60 30 58 68 50 53 
Outer 47 50 39 41 43 42 

Crown Inner 447 391 418 421 434 434 
Outer 386 306 343 354 367 364 

Intrados Inner 188 231 156 171 195 200 
Outer 193 191 187 193 189 180 

 

4.9.3 Example 3 

An out-of-plane traction 50T MPa=  is applied to the top section of the pipe bend with / 1.5oR D =

(Fig. 4. 2) as depicted in Fig. 4. 620. A mesh study is conducted by varying the number of elements 

while adopting six Fourier modes under the present formulation to obtain the nonlinear response. 

Comparisons are provided against the S4R shell model predictions. Table 4. 7 shows the 

circumferential displacements at the extrados and intrados of the top section ( 90oθ = ) for various 

meshes along with the percentage differences from the Abaqus S4R shell model predictions. The 

percentage difference highly decreases when increasing the number of the elements. While the 

percentage differences are above 50 % when using a single element, they drop below 3.5 % when 

using fifteen elements.  

Table 4. 8 presents von-Mises stresses at 45oθ = for the inner and outer surfaces. The largest von-

Mises stresses are shown to take place at the intrados. The predictions of the present formulation 

using three elements are in a close agreement with the predictions of the S4R model and the 

percentage difference is less than 3 %. Increasing the number of the elements enhances the 

agreement between both solutions and the percentage difference is lower than 0.9 % when fifteen 

                                                 
20 In the S4R shell model, a set of equivalent nodal forces is applied at the top section to simulate the applied 

traction. 
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elements are used.  Stresses at the extrados and crown require more elements to achieve a 

comparable agreement.    

 

Fig. 4. 6 Pipe bend under out-of-plane loading 

 

Table 4. 7 Circumferential displacement a at the top section 

Position  S4R Present formulation – Number of the elements 
1 2 3 5 7 10 12 15 

DOFs 56100 156 234 312 468 624 858 1014 1248 

Extrados mm 24.9 8.4 17.5 20.1 22.1 23.0 23.6 23.9 24.1 
%b - 66.4 29.6 19.2 11.2 7.8 5.2 4.2 3.2 

Intrados mm 15.6 6.5 11.4 12.9 14.0 14.5 14.8 15.0 15.1 
% b - 58.4 26.5 17.3 10.1 7.0 4.7 3.8 2.9 

a Definitions and directions of displacement fields are presented in Section 4.5.1 (See Fig. 4. 1) 

b % = (shell output – present formulation output) × 100 / shell output 

Table 4. 8 von Mises stresses (MPa) at 45oθ = for the inner and outer surfaces   

Position Surface S4R Present formulation – Number of the elements 
1 2 3 5 7 10 12 15 

Extrados Inner 34 37 38 41 39 38 34 35 37 
Outer 35 33 43 38 37 36 35 35 35 

Crown Inner 238 247 258 212 224 230 233 234 234 
Outer 302 251 314 248 277 287 291 292 294 

Intrados 
 

Inner 379 362 333 368 372 374 377 377 377 
Outer 359 364 320 359 355 355 355 356 356 
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4.9.4 Example 4 

The pipe bend shown in Fig. 4. 2 is subjected at the top section to a circumferential traction Tϕ  

which is equivalent to twisting moment ( )3 3(2 / 3)T o iM T r rϕπ= −  where or  is the outer radius and 

ir  is the inner radius of the cross section (Fig. 4. 721). Two pipe bend radii are examined (

/ 1.5oR D =  and / 5oR D = ). The circumferential traction Tϕ  is taken as 150MPa  for / 1.5oR D =  

and 60MPa  for / 5oR D = . Fig. 4. 8 and Fig. 4. 9 show the corresponding shear stress distributions 

along the circumferential direction at 45oθ = . Both cases exhibit an oscillatory shear stress 

distribution with the circumferential angle. For the case / 1.5oR D = , the inner surface has a 

maximum shear stress of 150MPa  at 104oϕ = while the outer surface experiences a maximum 

shear stress of 130MPa  at 90oϕ = . For / 5oR D = , the maximum shear stress for the inner and 

outer surfaces are 62MPa  at 88oϕ = and 54MPa  at 167oϕ = respectively. The present 

formulation predicts shear stress distributions in close agreement to those predicted by the S4R 

shell and the ELBOW31 models at the shell mid-surface as well as the through-thickness 

variations.  

 

Fig. 4. 7 Pipe bend under torsional moment 

                                                 
21 The solution based on the present formulation is obtained by using ten elements and six Fourier modes 

while the element size of the ABAQUS models is 30 mm.  
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Fig. 4. 8 Shear stress distribution versus the circumferential angle for / 1.5oR D =  

 
Fig. 4. 9 Shear stress distribution versus the circumferential angle for / 5oR D =  

 

4.10 Summary and Conclusions  

The present study formulated and implemented a family of displacement-based geometrically 

nonlinear FE formulations to predict the elastic structural response of pipe bends. The formulation 

employs the Green-Lagrange strain tensor to characterize finite deformation-small strain effects 

and is based on the normality assumption of the Love-Kirchhoff thin shell theory and the Saint-

Venant-Kirchhoff constitutive model. The formulation adopts the first Piola-Kirchhoff stress 

tensor with the conjugate gradient of the virtual displacement fields within the framework of the 

principle of virtual work with a total Lagrangian approach. Three C1 continuous interpolation 
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schemes were examined to interpolate the displacement fields along the longitudinal direction. 

Circumferentially, the displacement field distributions were characterized by a number of user-

specified Fourier modes. The ability of elements to capture RBM within the context of small 

deformation analysis has been examined through a series of eigenvalue analyses. Comparisons 

against models using existing shell S4R and ELBOW31 elements in ABAQUS have shown the 

ability of the formulation to predict the elastic structural response of pipe bends under internal 

pressure, in-plane loading, out-of-plane loading, and torsion.   

The main findings of the work are summarized in the following: 

• A systematic set of linear eigenvalue analyses have shown that, in the context of small 

deformation analysis, the mixed interpolation scheme (Element M) provides a better RBM 

representation than conventional Hermitian polynomials (H) and trigonometric interpolation 

(T). Also, better RBM representation is obtained when using smaller element angles and large 

0R D values.   

• The present formulation is able to accurately predict the geometrically linear and nonlinear 

response of pipe bends under internal pressure, as well as the nonlinear response of pipe bends 

under in-plane loading, out-of-plane loading, and torsion.  

• The formulation accurately captures the effect of the follower loads (e.g., hydrostatic pressure)    

• The nonlinear solution of the present formulation is improved with increasing the number of 

Fourier modes for the in-plane loading (Example 2).  

• Three elements are sufficient to predict the highest von-Mises stresses at the intrados for the 

inner and outer surfaces with percentage difference less than 3 % against the S4R shell model 

for out-of-plane loading (Example 3)  
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• The formulation developed was shown to yield reliable results for a bend radius to outer 

diameter ratios ranging from 1.5 to 5.0. 

 

4.11 Appendix 4.A: Derivatives of displacement fields with respect to 

coordinates  
The derivatives with respect to the coordinatesθ ,ϕ , and ζ of the components of the displacement 

field vector ( ), , ru u uθ ϕ for a generic material point are given in this appendix. By differentiation 

of Eq.(4.12) with respect toθ ,ϕ , and ζ , one obtains 

, , 1,ou u nθ θ θ θ θζ= +                                                                                                                           (4.A.1) 

, , 2,ou u nϕ θ ϕ θ θζ= +                                                                                                                           (4.A.2) 

, , 3,r oru u nθ θ θζ= +                                                                                                                            (4.A.3) 

, , 1,ou u nθ ϕ θ ϕ ϕζ= +                                                                                                                             (4.A.4) 

, , 2,ou u nϕ ϕ ϕ ϕ ϕζ= +                                                                                                                           (4.A.5) 

, , 3,r oru u nϕ ϕ ϕζ= +                                                                                                                           (4.A.6) 

2 2 2
, 1 1 1 2 3u n n n n nθ ζ = = + +                                                                                                                                 (4.A.7) 

2 2 2
, 2 2 1 2 3u n n n n nϕ ζ = = + +                                                                                                                                 (4.A.8) 

2 2 2
, 3 3 1 2 31 1ru n n n n nζ = − = + + −                                                                                                                    (4.A.9) 

Eqs.(4.A.1) to (4.A.6) require the derivatives of the components in (Eq.(4.10)) of the normal unit 

vector n to the deformed mid-surface with respect to the coordinatesθ andϕ  which are given as 
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( )
, 1 1, 2 2, 3 3,

, 1.52 2 2 2 2 2
1 2 3 1 2 3

i
i i

n n n n n n n
n n

n n n n n n

α α α α
α

+ +
= −

+ + + +

   where 1,2,3i =    and   ,α θ ϕ=              (4.A.10)   

Eq.(4.A.10) involves the derivatives of the components ( )1 2 3, ,n n n of the normal vector n  to the 

deformed mid-surface with respect to the coordinates θ  and ϕ  which are expressed as  

1, , , , , , ,

, , , , , ,

sin sin

cos cos

o o or o o o or o

or o m o or or o o or

n u u u u u u u u

u u r u u u u u u

θ ϕ θθ θ θ ϕ ϕ ϕ θ θ ϕθ ϕ θ

θθ θ θ ϕ ϕ θ θ ϕ ϕθ θ

ϕ ϕ

ϕ ϕ

       = + − + + −       
      − − + + − − +      

                 (4.A.11) 

1, , , , , , ,

, , , , , ,

sin cos sin

cos sin cos

o o o or o o o or o

or o o m o or or o o or

n u u u u u u u u u

u u u r u u u u u u

ϕ ϕ θϕ θ ϕ θ ϕ ϕ ϕ θ θ ϕϕ ϕ ϕ

θϕ θ ϕ θ ϕ ϕ θ θ ϕ ϕϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

       = + + − + + −       
      − − + + + − − +      

(4.A.12) 

2, , , , , ,

, , , ,

, , ,

cos cos

sin cos

cos sin cos

or o o or o o

o o or or o

m o o or or o

n u u u u u u

u u u u u

R r u u u u u

θ θθ θ θ θ ϕ θ θ θ ϕθ

θ θθ ϕ θ θ ϕ ϕ

θ θ ϕ ϕθ ϕ θ

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

   = − + −   
   − − + −   
   − + + − + −   

                                           (4.A.13) 

2, , , , , ,

, , , ,

, , ,

cos sin cos

sin sin cos cos sin

cos sin cos

or o o o or o o

m o o o or or or o

m o o or or o

n u u u u u u u

r u u u u u u u

R r u u u u u

ϕ θϕ θ ϕ θ θ ϕ θ θ θ ϕϕ

θ θϕ ϕ ϕ ϕ ϕ ϕ ϕ

θ θ ϕ ϕϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

   = − + + −  
   − − + − − + − −   
   − + + − + −   

      (4.A.14) 

3, , , , , , , ,

, , , , ,

sin cos sin

cos sin cos sin

o o or m o or o o o

m o o or o or o o o

n u u u r u u u u u

R r u u u u u u u u

θ θ θθ ϕ θ θ ϕ ϕ ϕ θθ θ θ θ ϕ

θ θ ϕ ϕ ϕθ θ ϕ θ θ θ ϕθ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

     = − + + + − +     
     + + + − + + − +     

(4.A.15) 

3, , , , ,

, , ,

, , , , ,

sin sin cos cos sin

cos sin cos

sin cos sin

m o o o or or m o or

m o o or o or

o o o o o o o

n r u u u u u r u u

R r u u u u u

u u u u u u u

ϕ θ θϕ ϕ ϕ ϕ ϕ ϕ ϕ

θ θ ϕ ϕ ϕϕ ϕ

ϕ θϕ θ ϕ θ θ ϕ ϕ θ θ θ ϕϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

   = − + − − + − + +   
   + + + − + +   
   − + + − +   

(4.A.16) 

The gradient of the displacement field vector T⊗∇u (Eq.(4.13)) can be obtained using Eqs.(4.9)

,(4.12), and Eqs. (4.A.1) to (4.A.16) in terms of the components ( ), ,o o oru u uθ ϕ of the displacement 
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field vector of a point on the mid-surface and their derivatives with respect to the coordinates θ  

andϕ .  

 

4.12 Appendix 4.B: Derivatives of displacement fields with respect to 

nodal degrees of freedom  
The derivatives with respect to the nodal degrees of freedom vector jd of the components 

( ), , ru u uθ ϕ  of the displacement field vector u  are provided in this appendix. By differentiation 

on Eq.(4.12) with respect to jd , one obtains 

, , 1,

, , 2,

, , 3,

d o d dj j j

d o d dj j j

r d or d dj j j

u u n

u u n

u u n

θ θ

ϕ ϕ

ζ

ζ

ζ

= +

= +

= +







                                                                                                                                    (4.B.1) 

Eq.(4.B.1) involves the derivatives of the components in (Eq.(4.10)) of the normal unit vector n to 

the deformed mid-surface with respect to jd which are expressed as 

( )
, 1 1, 2 2, 3 3,

, 1.52 2 2 2 2 2
1 2 3 1 2 3

i d d d dj j j j
i d ij

n n n n n n n
n n

n n n n n n

+ +
= −

+ + + +

                  where 1,2,3i =                          (4.B.2) 

Eq.(4.B.2) requires the derivatives of the components ( )1 2 3, ,n n n of the normal vector n to the 

deformed mid-surface with respect to jd  which are given as 

( ) ( )

( ) ( )

1, , , , , , ,, ,

, , , , , ,, ,

sin sin

cos cos

d o o d or o o o or o dj j jd dj j

or o d m o or or o o or dj jd dj j

n u u u u u u u u

u u r u u u u u u

ϕ θ θ ϕ ϕ ϕ θ θ ϕ ϕ

θ θ ϕ ϕ θ θ ϕ ϕ

ϕ ϕ

ϕ ϕ

      = + − + + −          
      − − + + − − +        

(4.B.3) 
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( ) ( )

( )

( )

2, , , , , ,, ,

, , , ,,

, , ,,

cos cos

sin cos

cos sin cos

d or o d o or o oj jd dj j

o o d or d or oj jd j

m o o or or o d jd j

n u u u u u u

u u u u u

R r u u u u u

θ θ θ ϕ θ θ θ ϕ

θ θ ϕ ϕ ϕ

θ θ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

   = − + −   
   − − + −   

  − + + − + −    

                                        (4.B.4) 

( )

( )

( ) ( )

3, , , , ,,

, , ,,

, , , , ,, ,

sin cos

cos sin cos

sin sin

d o o d or d m o orj j jd j

m o o or o or d jd j

o o d o o o ojd dj j

n u u u r u u

R r u u u u u

u u u u u u

θ θ ϕ ϕ ϕ

θ θ ϕ ϕ ϕ

ϕ θ θ θ ϕ ϕ θ θ θ ϕ

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

   = − + + +   
  + + + − + +    

   − + − +    

                                       (4.B.5) 

From Eqs.(4.9) and (4.B.2) to (4.B.5), the derivatives of the components ( ), , ru u uθ ϕ  of the 

displacement field vector with respect to jd appearing in Eq.(4.B.1) can be obtained in terms of 

the components ( ), ,o o oru u uθ ϕ of the displacement field vector of a point on the mid-surface and 

their derivatives with respect to θ , ϕ , and jd . By differentiation of Eqs.(4.A.1) to (4.A.9) with 

respect to jd , one obtains  

( ) ( ) ( ), , 1,, , ,od d dj j j
u u nθ θ θ θ θζ= +                                                                                                                           (4.B.6) 

( ) ( ) ( ), , 2, ,, ,o dd d jj j
u u nϕ θ ϕ θ θζ= +                                                                                                                         (4.B.7)   

( ) ( ) ( ), , 3,, , ,r ord d dj j j
u u nθ θ θζ= +                                                                                                                          (4.B.8) 

( ) ( ) ( ), , 1,, , ,od d dj j j
u u nθ ϕ θ ϕ ϕζ= +                                                                                                                           (4.B.9) 

( ) ( ) ( ), , 2,, , ,od d dj j j
u u nϕ ϕ ϕ ϕ ϕζ= +                                                                                                         (4.B.10) 

( ) ( ) ( ), , 3,, , ,r ord d dj j j
u u nϕ ϕ ϕζ= +                                                                                                                        (4.B.11) 
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( ), 1,, d jd j
u nθ ζ =                                                                                                                                    (4.B.12) 

( ), 2,, d jd j
u nϕ ζ =                                                                                                                                      (4.B.13) 

( ), 3,,r d jd j
u nζ =                                                                                                                               (4.B.14) 

in which (See Eq.(4.A.10)) 

( )
( )

, 1 1, 2 2, 3 3,
, 1.5, 2 2 2 2 2 2

1 2 3 1 2 3, ,

i
i id j

d dj j

n n n n n n n
n n

n n n n n n

α α α α
α

+ +
= −

+ + + +

 where 1,2,3i =  and ,α θ ϕ=  (4.B.15) 

where  

( )

( )
, , 1 1, 2 2, 3 3,,

, 1.52 2 2 2 2 2 2 2 2
1 2 3 1 2 3 1 2 3,

i d d d dj j j ji
i

d j

n n n n n n nn
n

n n n n n n n n n

α
α

α

+ +
= −

+ + + + + +
                                               (4.B.16) 

( ) ( )
1 1, 2 2, 3 3, 1 1, 2 2, 3 3,

,1.5 1.52 2 2 2 2 2
1 2 3 1 2 3,

i i d ij

d j

n n n n n n n n n n n n
n n n T

n n n n n n

α α α α α α+ + + +
= +

+ + + +
                                                    (4.B.17) 

in which 

( ) ( ) ( )

( )
( )( )

( )

1, 1, 1 1, 2, 2, 2 2, 3, 3, 3 3,, , ,
1.52 2 2

1 2 3

1 1, 2 2, 3 3, 1 1, 2 2, 3 3,

2.52 2 2
1 2 3

3

d d dj j jd d dj j j

d d dj j j

n n n n n n n n n n n n
T

n n n

n n n n n n n n n n n n

n n n

α α α α α α

α α α

+ + + + +
=

+ +

+ + + +
−

+ +

                        (4.B.18) 

While the mathematical terms ,i d jn and ,i d jn can be obtained from Eqs.(4.B.2) to (4.B.5), the term 

( ), ,i d j
n α is obtained by differentiation of Eqs.(4.A.11) to (4.A.16) with respect to jd , yielding  
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1, , , , , , , ,, ,, ,

, , , , , , ,, , ,

, ,, ,

sin sin

sin sin

cos

o o or o o o or o d jd dd dj jj j

o o d or o o o or ojd d dj j j

or od dj j

n u u u u u u u u

u u u u u u u u

u u

θ ϕ θθ θ θ ϕ ϕ ϕ θθ θ θ ϕ ϕ

ϕ θ θ ϕθ ϕ θ ϕ θ θ ϕθ ϕ θ

θθ θ θ

ϕ ϕ

ϕ ϕ

ϕ

      = + − + + −          
      + + − + + −          
− −


( )

( ) ( ) ( )

, , , , ,,

, , , , , , ,, ,,

cos

cos cos

m o or or o o or d jd j

or o d o or or o o orjd ddj jj

r u u u u u u

u u u u u u u u

ϕ ϕ θθ θ θ ϕ ϕ

θ θ ϕ ϕθ θ θ θ ϕ ϕθ θ

ϕ

ϕ ϕ

     + + − − +       
      − − + − − +        

     

                                                                                                                                              (4.B.19) 

( ) ( ) ( )

( )

( ) ( ) ( )

1, , , , ,, , ,

, , , ,,

, , , , , , ,, , ,

,

sin cos

sin cos

sin sin

o o o d or ojd d dj j j

o o o or o d jd j

o o d or o o o or ojd d dj j j

or

n u u u u u

u u u u u

u u u u u u u u

u

ϕ ϕ θϕ θ ϕ θ ϕ ϕ

ϕ θϕ θ ϕ θ ϕ ϕ

ϕ θ θ ϕϕ ϕ ϕ ϕ θ θ ϕϕ ϕ ϕ

θ

ϕ ϕ

ϕ ϕ

ϕ ϕ

   = + + −    
  + + + −    

      + + − + + −          

− ( ) ( )

( )

( ) ( ) ( )

, , ,, ,

, , , ,,
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The mathematical expressions of the external force vector EF  and its contribution to the stiffness 

matrix F
AK  involve the derivatives of the displacement field vector u  with respect to jd which 

can be fully obtained using Eqs.(4.B.1) to (4.B.5). While Eqs. (4.B.6) to (4.B.14) are required to 

obtain the derivatives of the gradient of the displacement field vector T⊗∇u with respect to jd

appearing in Eq. (4.14) in terms of the components ( ), ,o o oru u uθ ϕ of the displacement field vector 
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of a point on the mid-surface and their derivatives with respect to θ , ϕ , and jd . Knowing 

Eq.(4.14) , the internal force vector IF  and the tangent stiffness matrix T
AK  can be obtained as 

well.  

 

4.13 Appendix 4.C: Zero Energy Modes 

This appendix presents a brief overview on zero energy modes, provides graphical representations 

of eigenvectors associated with the lowest eight eigenvalues of Finite Element M reported in Table 

4. 1, and shows the strain field distributions induced by these eigenvectors.   

 

Spurious zero energy modes 

When a displacement mode corresponds to a zero eigenvalue and is associated with rigid body 

motion, it will have zero strains/strain energy. Conversely, spurious zero eigenvalues are 

associated with displacement modes which represent non-zero states of deformation and zero 

strains at all the integration points. These spurious modes often result from a low order of the 

numerical integration (e.g., reduced integration). Thus, increasing the order of the numerical 

integration (e.g., adopting full integration) can eliminate these spurious zero energy modes. 

 

While rigid body motion modes uniformly generate zero strains over the element, spurious energy 

modes induce zero strains only at all the integration points but lead to non-zero strains elsewhere 

within the element. Therefore, rigid body modes can be distinguished from spurious energy modes 

by a graphical representation of eigenvectors associated with zero eigenvalues and examining the 

magnitudes of strain fields over the element domain. For more details, the reader is referred to Ref 

[31].  
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Illustrative example 

In the following, the writer of the present dissertation provides a simple and well-known 

eigenvalue analysis for a truss element to give an insight on the rigid body displacements, rotations, 

and combined modes in order to facilitate the understanding of subsequent sections.  

 

Fig. 4. C. 1a shows a 1D plane truss element with four degrees of freedom and its stiffness matrix 

is 4x4. Under the small deformation hypothesis, the linear eigenvalue analysis of the unconstrained 

(i.e., prior to enforcing restraining boundary conditions) stiffness matrix of the truss element 

possesses three zero eigenvalues which corresponds to two rigid body displacement modes and a 

single rigid body rotation mode as shown in Figures 4. C. 1 b-d, respectively. The normalized 

eigenvectors associated with these zero eigenvalues are { }1 0,1 2,0,1 2V = , 

{ }2 1 2,0,1 2 ,0V = , and { }3 1 2,0, 1 2 ,0V = − . It can also be verified that any linear 

combination of these three eigenvectors will also be an eigenvector with a zero mode as shown in 

Fig. 4. C. 1e. The graphical representations of the magnified rigid body displacement modes (e.g., 

15V  in Fig. 4. C. 1b and 25V  in Fig. 4. C. 1c) do not stretch while the graphical representations of 

the magnified rigid body rotation mode ( 35V  in Fig. 4. C. 1d) and the combined rigid body mode 

( 1 35 5V V+  in Fig. 4. C. 1e) seem to be stretched. Therefore, the graphical representations of the 

magnified rigid body rotation and combined modes may not provide an appropriate representation 

to distinguish between rigid body eigenvectors (corresponding to zero strain) and spurious zero 

energy modes under the small deformation hypothesis. Consequently, examining strain fields 

distributions over the element provides a better tool to distinguish between rigid body and spurious 

energy modes. 
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a b c 

  

d e 

Fig. 4. C. 1 1D  truss element and corresponding rigid body modes (i.e., eigenmodes) (a) Degrees 
of freedom of the truss element, (b) Vertical rigid body displacement mode, (c) Horizontal rigid 

body displacement mode, (d) Rigid body rotation mode, and (e) Combined rigid body mode. 

 

Graphical representation of eigenvectors and strain fields 

The lowest eight eigenvalues (e.g., 0, 0, 0, 1, 3, 8, 703, and 949) reported in Table 4. 1 based on 

Element M are associated with the normalized eigenvectors iV  where 1,2,...8i = . The graphical 

representation of these normalized eigenvectors and their magnified versions (100 iV  and 1000 iV ) 

are provided in Table 4. C. 1 (e.g., the second, third, and fourth columns, respectively) in an 

attempt to assess the physical nature of these eigenvectors; whether they represent rigid body 

modes or spurious energy modes. One can differentiate between the reference configuration and 

eigenmode of the pipe bend under consideration in the case of magnified eigenvector 1000 iV  while 

such a differentiation cannot be easily noticed by comparing the graphics for cases ( iV  and 100 iV

). Nevertheless, one cannot identify the physical nature of the eigenvectors from the graphical 
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representations provided in the fourth column since these representations seem to be stretched due 

to the magnification and/or the combination of eigenvectors associated with rigid body rotation as 

highlighted in the previous Illustrative example. Therefore, all strain field distributions (e.g., 

longitudinal, circumferential, and shear) corresponding to zero eigenvalues (i.e., Eigenvalues 1-3) 

are provided at the inner, middle, and outer pipe bend surfaces to identify the physical nature of 

the eigenvectors. Figures 4. C. 2-4 provide 2D contour plots for strain field distributions induced 

due to the magnified eigenvector 1000 iV  and any point on the pipe bend surface is defined by the 

tangential angle θ  on the vertical axis and the circumferential angle ϕ  on the horizontal axis. 

Since the magnitudes of all strain field distributions corresponding to zero eigenvalues are almost 

zero at the three different surfaces, the associated eigenvectors are rigid body modes. Also, strain 

field distributions corresponding to Eigenvalues 4-6 (e.g., non-zero eigenvalues) are found to be 

very small. Therefore, the above analysis suggests that Element M is able to exactly represent three 

rigid body motion modes and to accommodate the remaining rigid body modes in an approximate 

sense.   

Table 4. C. 1 Graphical representation of eigenmodes corresponds to the lowest eight 
eigenvalues obtained in Table 4. 1 using Element M 
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Fig. 4. C. 2 Strain field distributions over the element corresponding to the first zero eigenvalue 
induced by magnified eigenvector 1000 iV  (a) Longitudinal - Inner Surface, (b) Longitudinal -

Middle Surface, (c) Longitudinal -Outer Surface, (d) Circumferential - Inner Surface, (e) 
Circumferential -Middle Surface, (f) Circumferential -Outer Surface, (g) Shear - Inner Surface, 

(h) Shear -Middle Surface, and (i) Shear -Outer Surface 
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Fig. 4. C. 3 Strain field distributions over the element corresponding to the second zero 
eigenvalue induced by magnified eigenvector 1000 iV  (a) Longitudinal - Inner Surface, (b) 
Longitudinal -Middle Surface, (c) Longitudinal -Outer Surface, (d) Circumferential - Inner 

Surface, (e) Circumferential -Middle Surface, (f) Circumferential -Outer Surface, (g) Shear - 
Inner Surface, (h) Shear -Middle Surface, and (i) Shear -Outer Surface 
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Fig. 4. C. 4 Strain field distributions over the element corresponding to the third zero eigenvalue 
induced by magnified eigenvector 1000 iV  (a) Longitudinal - Inner Surface, (b) Longitudinal -

Middle Surface, (c) Longitudinal -Outer Surface, (d) Circumferential - Inner Surface, (e) 
Circumferential -Middle Surface, (f) Circumferential -Outer Surface, (g) Shear - Inner Surface, 

(h) Shear -Middle Surface, and (i) Shear -Outer Surface 
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4.14 Nomenclature  
B  Body force vector per unit reference volume 

d  Vector of degrees of freedom 

id  , jd  Components of degrees of freedom vector 

d  Vector of virtual degrees of freedom 

E  Young’s Modulus 

re  Unit vector in the radial direction 

θe  Unit vector in the tangential direction 

φe  Unit vector in the circumferential direction 

( )IF  Internal force vector 

( )EF  External force vector 

( )θH  Interpolation functions in the tangential direction  

h  Pipe wall thickness 

K  Stiffness matrix 
FK  Exact contribution of the external force vector in the stiffness matrix 
TK  Exact tangent stiffness matrix 

F
AK  

Approximated contribution of the external force vector in the stiffness 

matrix 
T
AK  Approximated tangent stiffness matrix 

L  Vector of shape functions for Fourier series interpolation 

L  Length of the element 

m  Total Fourier terms /modes 

N  Vector normal to the mid-surface in the un-deformed configuration 

N


 Unit vector normal to the mid-surface in the un-deformed configuration 

n  Vector normal to the mid-surface in the deformed configuration 

n  Unit vector normal to the mid-surface in the deformed configuration 

n  Total number of the nodal degrees of freedom  

1n , 2n , 3n  Components of the normal vector n  



162 
 

1n , 2n , 3n  Components of the normal unit vector n  

P  The first Piola-Kirchhoff stress tensor 

R  Residual force vector 

oR  
The position vector of a point on the mid-surface in the un-deformed 

configuration 

or  
The position vector of a point on the mid-surface in the deformed 

configuration 

r  Radial coordinate as measured from the origin point 

mr  Mid-surface radius 

oS  The original surface that encloses volume oV  

NT  
Applied traction vector per unit reference surface 0dS normal to the unit 

vector N


 

u  Displacement vector for a generic point 

u  Virtual displacement vector for a generic point 

ou  Displacement vector for a point on the mid-surface 

oru  Radial displacement of a point on the mid-surface 

ou θ  Tangential displacement of a point on the mid-surface 

ou ϕ  Circumferential displacement of a point on the mid-surface 

ru  Radial displacement 

uθ  Tangential displacement 

uϕ  Circumferential displacement 

oV  The original volume 

∇  The gradient operator with respect to the un-deformed configuration 

ζ  Radial coordinate as measured from the mid-surface 

ν  Poisson’s ratio 

θ  Tangential coordinate 
ϕ  Circumferential coordinate 
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Chapter 5  
Shell Finite Element Formulation of Ovalized Thin-Walled 
Pipes 
 

 

 

5.1 Abstract  

Non-traditional shell finite element formulations are developed to accurately predict the 

geometrically nonlinear structural response of ovalized straight and curved pipes. To consider 

initial geometric imperfections of an imperfect pipe, three configurations are considered within the 

proposed formulations. Kinematic assumptions of the Love-Kirchhoff thin shell theory are adopted 

and elastic material characterization follows the Saint-Venant-Kirchhoff constitutive model. To 

account for geometric nonlinearity, total Lagrangian approach is employed within the framework 

of the virtual work principle expressed in terms of the first Piola-Kirchhoff stress tensor. Several 

examples demonstrate the accuracy and superiority of the present formulations by comparisons 

against the general shell models under various loading conditions. 

Keywords 

Ovalized pipes, Geometrically nonlinear finite element, First Piola-Kirchhoff stress tensor, Virtual 

work principle, Initial ovality, Geometric imperfections.  

 

5.2 Introduction  

Several engineering fields (oil and gas, Petro-chemicals, water supply, bio-mechanical application, 

etc.) depend on pipeline transmission systems for conveying fluids to their required destinations. 
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The design of these systems essentially requires efficient structural analyses to achieve an optimal 

level of integrity and performance. Although beam theories with rigid cross sections are 

intensively used to analyze 1D structures, the complex deformation patterns of piping systems 

cannot be accurately captured by these theories due to ovalization and warping effects associated 

with the flexibility of hollow cross-sections. The review of the literature focuses on three relevant 

aspects in the following subsections: (1) pipe finite element solutions, (2) principle of virtual work 

for nonlinear solutions, and (3) influence of initial ovality on pipe response.   

 

5.2.1 Pipe finite element solutions 

Analytical studies [1-5] were developed to predict the structural response of piping systems. 

However, such methods are not amenable to modelling complex geometries in piping systems and 

considering nonlinear effects. Therefore, numerical solutions (e.g., Finite Element Analysis) have 

become imperative in such applications. Solid [6-7] and conventional shell [8-9] finite element 

(FE) formulations can accurately predict the linear and nonlinear structural response of piping 

systems under general loading/boundary conditions. However, the rather high computational cost 

and significant effort in building and post-processing the pipeline models make their usage limited 

in practical design environments, particularly when modelling long lines of pipes. An efficient and 

computationally effective FE formulation is hence required to achieve a balance between the 

accuracy of the solution and the associated computational cost and modelling effort [10-17].  

 

Over the last few decades, FE formulations especially tailored for pipes were developed for the 

structural analysis of piping systems in the linearly elastic regime. This includes the work of 

Weicker et al [10-11] who developed a FE formulation for straight pipes based on the thin shell 
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theory and shape functions were obtained by solving the equilibrium equations. Ohtsubo and 

Watanabe [12] developed a toroidal shell FE formulation for curved pipes (e.g., pipe bends) based 

on the thin shell theory assumptions by characterizing the displacement fields using Fourier series 

along the circumferential direction and cubic Hermitian function along the longitudinal direction. 

The approximate representation of rigid body motion was reported as drawback in [13]. Bathe and 

Almeida [13] proposed a simple FE formulation, which combined traditional beam deformation 

modes described by cubic polynomial functions with cross-sectional deformation modes 

characterized by Fourier series expansions in the circumferential coordinate. Pressure stiffening 

[14] and interaction effects [15] were captured enhancing the element’s capabilities while the 

warping displacements were ignored. Militello and Huespe [16] characterized the longitudinal 

displacement fields by using Fourier series to capture warping displacements omitted in [13]. 

Fonseca at el [17] utilized higher polynomial or trigonometric functions to characterize the 

distribution of displacement fields along the longitudinal direction and Fourier series to 

characterize the distribution of displacement fields in the circumferential direction. This 

formulation was limited to the in-plane loading and internal pressure. 

 

5.2.2 Principle of virtual work for nonlinear solutions 

The principle of virtual work within the Lagrangian description is intensively adopted in solid 

mechanics to construct nonlinear FE formulations [18]. The internal virtual work can be 

formulated in terms of various energetic conjugate pairs [19-20]. The most common energetic 

conjugate pair used in the Lagrangian description is the second Piola-Kirchhoff stress tensor and 

the Green-Lagrange strain tensor. Based on this energetic conjugate pair, Ref [21] introduced an 

incremental approach to develop nonlinear FE formulations. In addition, fully geometric nonlinear 
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FE formulations were developed for beams (e.g., [22]) and shells (e.g., [23]) within the framework 

of the Carrera Unified Formulation (CUF). However, the treatment of follower effect of pressure 

was not captured in [22-23]. Most commercial FE software packages (e.g., ANSYS [24], 

ABAQUS [25], ADINA [26]) adopt the same energetic conjugate pair to construct nonlinear FE 

formulations (e.g., ELBOW elements) for the analysis of straight and curved pipes. On other hand, 

the first Piola-Kirchhoff stress tensor and the gradient of virtual displacement fields can be used 

as alternative energetic conjugate pair of the internal virtual work. Attia et al. [27-28] adopted this 

energetic conjugate pair and proposed a family of geometrically nonlinear FE formulations for the 

structural analysis of circular straight and curved pipes. The developed elements for modelling 

pipes assume the cross section to be initially circular, which implies that no initial geometric 

imperfections produced due to the manufacturing process can be modelled. This limitation will be 

further addressed in this paper. 

 

5.2.3 Influence of initial ovality on the pipe response 

Many FE solutions, based either on conventional shell or solid elements, studied the effect of initial 

geometric imperfections on the response of straight and curved pipes under various loading 

conditions. Initial ovality, as one type of initial geometric imperfections, is known to have a 

significant influence on the collapse pressure of straight pipelines laid in ultra-deep water and 

subjected to high external pressure [29-30]. A dramatic reduction in the collapse pressure was 

reported when increasing the initial ovality and outer diameter-thickness ratio (D/t). For example, 

the collapse pressure decreased by more than 50% for a pipe with D/t=30 and a 5% initial ovality 

subjected only to external pressure [29]. However, the effect of initial ovality on the collapse 

pressure is negligible in cases involving a combination of bending and external pressure since the 
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ovality induced by bending action (Brazier effect) is typically higher than the initial ovality [30]. 

Research on the effect of initial geometric imperfections on pipe bends subjected to in-plane 

bending, pressure (internal or external), and temperature [31-37] showed that initial ovality is the 

most significant type of geometric imperfections in the analysis of pipe bends. Under external 

pressure [37], small ovality percentages (e.g., 1% and 2 %) were reported to tangibly decrease the 

collapse pressure while collapse loads for the other loading cases [31-36] were notably affected by 

higher levels of initial ovality.  

 

Li [38-40] recently adopted the incremental approach in [21] to develop three-dimensional FE 

formulations for the analysis of straight and curved pipes with generic cross section. The current 

study proposes novel and simple shell FE formulations for the geometrically nonlinear analysis of 

straight and curved pipes with cross sections involving initial cross-sectional imperfection 

patterns. Treatment of nonlinear equilibrium equations follows the approach introduced in [27-

28]. Four different aspects can be noticed between the current formulations and those developed 

in [38-40]: 

1- Energetic conjugate pair of the internal virtual work and the linearization technique of the 

nonlinear equations; 

2- Type of formulations (e.g., shell vs three dimensional); 

3- The approach adopted to model the general geometry of the cross-section; and 

4- Mathematical treatment of follower pressure loads. 

Although a general cross section is assumed in the present study, Section 5.8 Numerical Examples 

are focused on the analysis of initially ovalized straight and curved pipes since the literature review 

demonstrates that initial ovality is the most significant geometric imperfection. 
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5.3 Assumptions 

The following assumptions are made within the present FE formulation: 

1. Pipe material is characterized by the Saint-Venant-Kirchhoff constitutive model; 

2. The pipe cross section is assumed to be generic; 

3. The thin shell theory kinematic assumptions are employed, i.e., 

I. Straight lines normal to the un-deformed mid-surface of the shell remain straight 

and normal to the mid-surface of the deformed configuration. 

II. The thickness of the shell remains constant throughout deformation. 

4. In the radial direction, the normal stress component is assumed to be zero;  

5. The formulation captures the follower effects of the pressure; and 

6. The initial configuration is assumed to be stress-free configuration (i.e., no residual stresses 

are considered 22) 

 

5.4 Preliminaries 

5.4.1 Geometry  

Fig. 5. 1 depicts the cross section of a pipe (either straight or curved) in three configurations: an 

initial (un-deformed) iΩ , and deformed dΩ . Since the initial configuration iΩ  of the cross section 

is considered to have a general geometry that accounts for initial geometric imperfections, a third 

configuration (reference) rΩ  is introduced that has perfectly circular cross-section with uniform 

                                                 
22 The influence of residual stresses can be included by deriving constitutive equations which characterize 

the mechanical behavior of elastic residually stressed pipes. A virtual stress-free configuration needs to be assumed 
to derive these constitutive equations given the residual stresses and material properties of the assumed stress-free 
configuration. For more details, the reader is referred to Ref [41].  
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wall thickness. A point P (Fig. 5. 1) can be described by position vectors rX , iX , and dX  in the 

reference, initial, and deformed configurations, respectively.   

 

5.4.2 Notation 

The following notation will be used: 

1) Symbols of the form ( ),a bA  denote two-point second order tensors (e.g.,  deformation gradient 

tensor) that transforms a quantity (e.g., tangential vector or area vector) from configuration a  

to configuration b . 

2) Symbols of the form ( )aB  denote second order tensors (e.g., Green-Lagrange strain tensor) 

defined in the configuration a .  

3) Symbols of the form ( ),a bu  denote the displacement vector describing the motion of a point 

from configuration a  to configuration b .   

 

Fig. 5. 1 Cross section of a pipe in three configurations 
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5.5 Formulation 

5.5.1 Deformation gradient tensors 

The deformation gradient tensor ( ),r dF  relates a tangential vector d rX  in the reference 

configuration to the vector d dX  in the deformed configuration, i.e., 

( ),r dd d=d rX F X                                                                                                                               (5.1) 

Similarly, one obtains 

( ),r id d=i rX F X                                                                                                                                (5.2) 

( ),i dd d=d iX F X                                                                                                                                        (5.3) 

From Eqs.(5.1) and (5.2), by substituting into Eq.(5.3), one obtains the relationship between the 

deformation gradient tensors 

( ) ( ) ( )
1

, , ,i d r d r i
−=F F F                                                                                                                            (5.4) 

The determinants of the above tensors satisfy the equality  

 ( ) ( ) ( ) ( ) ( )
1

, , , , ,det det det det deti d r d r i r d r i
−= =F F F F F                                                                      (5.5) 

 

5.5.2 Strain and stress tensors expressed in the initial configuration 

In the present formulation, the “geometrically imperfect” pipe under consideration is assumed to 

occupy the initial (un-deformed) configuration. The deformed configuration, on the other hand, 

represents the “geometrically imperfect” pipe under external loading. The Green-Lagrange strain 

tensor ( )iE  induced by loading referenced to the initial configuration is 



173 
 

( ) ( ) ( ), ,0.5 T
i i d i d

 = − E F F I                                                                                                                              (5.6) 

where ( ),
T

i dF denotes the transpose of the deformation gradient tensor ( ),i dF , and I is the identity 

tensor. The present formulation adopts the Saint-Venant-Kirchhoff constitutive tensor C  

(Assumption 1, see Section 5.3) to relate the second Piola-Kirchhoff stress tensor ( )iS  to the Green-

Lagrange strain tensor given in Eq.(5.6), i.e., 

( ) ( ) ( ) ( )( ), ,0.5 T
i i i d i d

 = = −
 

S C : E C : F F I                                                                                   (5.7)

The corresponding first Piola-Kirchhoff stress tensor ( ),i dP  can be obtained from 

( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,0.5 T
i d i d i i d i d i d

 = = −
 

P F S F C : F F I                                                                               (5.8) 

From Eq.(5.4), by substituting into Eq.(5.8), one obtains  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1
, , , , , , ,0.5 T T

i d r d r i r i r d r d r i
− − − = −
 

P F F C : F F F F I                                                                 (5.9) 

 

5.5.3 First Piola-Kirchhoff stress tensor in terms of deformation gradient 

tensors 

The first Piola-Kirchhoff stress tensors ( ),r dP  and ( ),i dP  can be expressed in terms of the Cauchy 

stress tensor σ  by 

( ) ( ) ( ), , ,det T T
r d r d r d

−=P F σ F                                                                                                            (5.10) 

( ) ( ) ( ), , ,det T T
i d i d i d

−=P F σ F                                                                                                              (5.11) 

From Eqs. (5.10) and (5.11), one obtains 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,det det T T
r d r d i d i d i d r d

− =  P F F P F F                                                                            (5.12) 
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From Eqs.(5.4), (5.5), and (5.9), by substituting into Eq.(5.12), one obtains the first Piola-

Kirchhoff stress tensor ( ),r dP  in terms of the deformation gradient tensors ( ),r dF  and ( ),r iF  as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1 1

, , , , , , , , ,0.5det T T T
r d r i r d r i r i r d r d r i r i

− − − − = −
 

P F F F C : F F F F I F                                     (5.13) 

 

5.5.4 Principle of virtual work 
Owing to the simplicity of the chosen reference configuration, it is expedient to express the 

principle of virtual work in the reference configuration as opposed to the more complex initial 

configuration, i.e., 

( ) ( ) ( ) ( )
* * *

, , , ,
r r r

r r rr d r d r d r dV S V
dV dS dV   = ⋅ + ⋅   ∫ ∫ ∫NP : G T u B u                                              (5.14) 

in which rS  is the reference surface area that encloses the reference volume rV  and  the left-hand 

side of Eq.(5.14) represents the internal virtual work obtained by the inner product of the first 

Piola-Kirchhoff stress tensor ( ),r dP  provided in Eq.(5.13) and the gradient of the virtual 

displacement vector ( )
*

,r dG . The right-hand side of Eq.(5.14) represents the external virtual work 

due to the applied traction vector NT  and the body force vector B , both defined in the reference 

configuration. The virtual displacement vector ( )
*

,r du  is taken as a linear function of the virtual 

nodal degrees of freedom *d , i.e., ( ) ( ), ,r d r d
 = ∂ ∂ 

* *u u d d , and one recalls that ( ),r du  is the 

displacement vector between reference and deformed configurations, and d  is the nodal degrees 

of freedom vector.  
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5.6 Force vectors and stiffness matrix 

This section briefly discusses the force vectors and the stiffness matrix obtained from the principle 

of virtual work. More details can be found under Sections 3.4 and 3.5 in Chapter 3. By 

differentiating Eq.(5.14) with respect to the virtual nodal degrees of freedom vector *d , one 

recovers the equilibrium equations 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

* *
, , , ,

, ,

r r
r rr d r d r d r dV V

T Tr r
r rr d r dS V

dV dV

dS dV

=

   = ∂ ∂ = ∂ ∂   
   = ∂ ∂ + ∂ ∂      

∫ ∫

∫ ∫

I E

I

E
N

F d - F d 0

F d P : G d P : G d

F d u d T u d B 

                         (5.15)a-c 

in which ( ) ( )IF d  is the internal force vector and ( ) ( )EF d  is the external force vector. The 

equilibrium equations (Eq.(5.15)) are linearized through a Taylor series expansion and solved 

iteratively for the nodal displacement vector d  yielding 

 ( ) ( ) ( )g
gg ==

   − + − − =  
I E T F

d dd d
F F K K d d 0                                                                        (5.16)

in which TK  is the tangent stiffness matrix and FK  represents the contribution of the external 

force vector to the stiffness matrix at a given nodal degrees of freedom vector gd  and are 

respectively obtained by differentiating the internal and external force vectors with respect to d

.The formulation adopts the following approximations for the stiffness matrix, i.e., 

( ) ( )

( )( ) ( )( )
, ,

, ,

r
r r d r dV

T Tr r
r rr d r dS V

dV

dS dV

   ≈ = ∂ ∂ ∂ ∂   

   ≈ = ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂   

∫

∫ ∫

T T
A

F F
A N

K K P d : G d

K K u d T d u d B d 

                (5.17)a-b 

The derivative of the first Piola-Kirchhoff stress tensor ( ),r dP  with respect to d  appearing in 

Eq.(5.17) is obtained by taking the derivative of Eq.(5.13) yielding  
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( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ } ( )

,

1 1
, , , , , , , ,

1 1 1
, , , , , , , , , , , ,

0.5det

0.5det

jr d

T T T
jr i r d r i r i r d r d r i r i

T T T T T
j jr i r d r i r i r d r d r i r i r d r d r i r i

d

d

d d

− − − −

− − − − − −

∂ ∂ =

 ∂ ∂ −
 

 + ∂ ∂ + ∂ ∂
 

P

F F F C : F F F F I F

F F F C : F F F F F F F F F

     

                                                                                                                                                  (5.18) 

where jd ( 1, 2,...j n= ) is the thj  component of the nodal degrees of freedom vector. The 

deformation gradient tensors ( ).,.F  are related to the corresponding gradients of the displacement 

vectors ( ).,.G  through  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , ,

, , , ,

           ,     

             ,     
j jr d r d r d r d

j jr i r i r i r i

d d

d d

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

F = G + I F = G

F = G + I F = G
                                                     (5.19)a-b                                                        

From Eqs.(5.15), (5.17), (5.18), and (5.19),  the internal force vector (Eq.(5.15)) and the 

approximated tangent stiffness matrix (Eq.(5.17)) are obtained in terms of the gradients of the 

displacement vectors ( ( ),r dG  and ( , )r iG ) and their derivatives with respect to jd . The external 

force vector (Eq.(5.15)) and its contribution in the stiffness matrix (Eq.(5.17)) involve the 

displacement vector ( ),r du  and its derivative with respect to jd .  

5.7 Displacement fields 

5.7.1 Straight Pipes 

5.7.1.1 Reference configuration r  / Configuration b  (e.g., deformed or initial configuration) 

The position vector of a point on the pipe (Fig. 5. 2) in the reference configuration is characterized 

by three coordinate lines z , ϕ , and r  along the longitudinal, circumferential, and radial directions 

{ z φ re ,e ,e }. The pipe has a mid-surface radius mr  with ( ) mr rζ ζ= +  where ζ  is a radial 
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coordinate defined from the mid-surface pointing outward and bounded by [ ]2, 2h hζ ∈ −  in 

which h  is the wall thickness in the reference configuration . The displacement vector ( ),r bu  that 

relates a point in the reference configuration to a point in Configuration b  is obtained by adopting 

the kinematic constraint of Love-Kirchhoff thin shell theory (Assumption 3, see Section 5.3) as  

( ) ( ) ( ), ,r b r b ζ= + −ou u n N


                                                                                                        (5.20) 

where ( ),r bou  is the mid-surface displacement vector and N


 and n  are unit vectors normal to the 

mid-surface in the reference configuration and in Configuration b , respectively. While N


 is the 

unit vector in the radial direction re , the direction of n  is obtained by dividing the vector  

( ) ( )z ϕ= ∂ ∂ × ∂ ∂b b
o on X X  by its norm, where b

oX  is the position vector of a point on the mid-

surface of the pipe in Configuration b . The gradient of the displacement vector ( ),r bu  is defined 

as ( ) ( ), ,
T

r b r b= ⊗∇G u  where ⊗  represents the dyadic product and ∇  is the gradient operator with 

respect to the reference configuration given in cylindrical coordinates as  

( )1/ Tz r rϕ∇ = ∂ ∂ ∂ ∂ ∂ ∂                                                                                                            (5.21)

Given the mid-surface displacement vector ( ),r bou , one can obtain the displacement vector ( ),r bu  

using Eq.(5.20) and its gradient ( ),r bG  using Eq.(5.21).   

  
Fig. 5. 2 Pipe coordinate and vector bases in the reference configuration of a straight pipe 
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5.7.1.2 Characterizing the initial configuration relative to the reference configuration  

The cross section of the “imperfect” pipe, which occupies the initial configuration, has a general 

geometry that represents the initial geometric imperfections. This cross section is characterized by 

a mid-surface displacement vector ( ),r iou  relative to the reference configuration. For example, the 

initial ovality can be characterized by the displacement vector 

( ) ( ), cos 2r i f z ϕ=   o ru e                                                                                                              (5.22) 

where ( )f z  represents the variation of the initial ovality along the longitudinal direction. This 

variation can be characterized, for instance, by two initial ovality parameters 1O  and 2O , i.e., 

( ) ( ) ( )1 1 2 2f z H z O H z O= +    such that the displacement vector ( ),r iou  is 

( ) ( ) ( )1 1 2 2, cos 2r i H z O H z O ϕ= +  o ru e                                                                                 (5.23) 

where ( )1H z  and ( )2H z  are functions that characterize the distribution of initial ovality along 

coordinate z  and 1O  and 2O  characterize the initial ovality values at the ends of the element. 

Functions ( )1H z  and ( )2H z  can be considered to have a Linear distribution (i.e., the initial 

ovality is assumed to be Co continuous) or to follow a Hermitian distribution (C1 continuous 

ovality) i.e.,  

( )1 21                   ,          /H z L H z L= − =                                                                                                 (5.24) 

( ) ( ) ( ) ( )3 2 3 2
1 22 3 1  ,   2 3H z L z L H z L z L= − + = − +                                                        (5.25) 

where L  is the length of the element. Uniform initial ovality can be characterized by equating the 

values of 1O  and 2O . By following the procedure described in Section 5.7.1.1 (Eqs.(5.20) and 

(5.21)), one can obtain the displacement vector ( ),r iu  and its gradient ( ),r iG .  
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5.7.1.3 Characterizing the deformed configuration relative to the reference configuration  

The mid-surface displacement vector ( ),r dou  is assumed to take the form ( ), okr d u=o ku e , i.e.,  

( ) ( ) { } ( )4 2 1 11 4 2 1
, T

ok mm k
u z ϕ + ×× +

= L d                 , ,k z rϕ=                                                            (5.26)

in which { } ( )4 2 1 1mk + ×d  is degrees of freedom vector, ( ) ( )1 4 2 1
, T

m
z ϕ

× +
L  is the vector of 

interpolation functions. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), cos sin cos 2 sin 2 cos sinT T T T T T T Tz z z z z z m z m zϕ ϕ ϕ ϕ ϕ ϕ ϕ=L H H H H H H H             (5.27) 

where m  is the number of Fourier modes taken, and ( )zH  is shape functions vector along the 

longitudinal direction taken as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )23 2 3 2 22 3 1 1 2 3 1
T

z z L z L z z L z L z L z L z L= − + − − + −      H (5.28) 

By following the procedure described in Section 5.7.1.1 (Eqs.(5.20) and (5.21)), one can obtain 

the displacement vector ( ),r du  and its gradient ( ),r dG . For the explicit mathematical expressions 

of ( ),r dG  and its derivative with respect to the nodal degrees of freedom vector d , the reader is 

refereed to Chapter 3 or Ref [27].  

 

5.7.2 Treatment of pipe bends 

The reference geometry of a curved pipe (Fig. 5. 3) can be characterized by replacing the rectilinear 

longitudinal coordinate z  introduced in Section 5.7.1.1 with the curvilinear longitudinal 

coordinate θ . The procedure discussed in Section 5.7.1 for obtaining the displacement vector 

( ),r bu  and its gradient ( ),r bG  for a straight pipe remains valid for a curved pipe with two exceptions 
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: (1) Vector n  must be determined by ( ) ( )θ ϕ= ∂ ∂ × ∂ ∂b b
o on X X ,  and (2) Gradient operator ∇  

with respect to the reference configuration must be expressed in toroidal coordinates, i.e.,  

( ) ( )1/ 1/ Ts r rθ ϕ∇ = ∂ ∂ ∂ ∂ ∂ ∂                                                                                            (5.29) 

in which ( )cosms R r ζ ϕ= + +  and R  is the elbow radius of the curved pipe (Fig. 5. 3).  

Additionally, characterizing the initial and deformed configurations relative to the reference 

configuration introduced in Sections 5.7.1.2 and 5.7.1.3 of a straight pipe remains valid for a 

curved pipe with two adjustments:  

1- Linear and Hermitian interpolation functions of the initial ovality (See Eq.(5.24) and (5.25) for 

straight pipes) become dependent on the longitudinal curvilinear coordinate θ  instead of z  as 

given in Eqs.(5.30) and (5.31) 

( )1 21                   ,          f fH Hθ θ θ θ= − =                                                                                      (5.30) 

( ) ( ) ( ) ( )3 2 3 2
1 22 3 1  ,   2 3f f f fH Hθ θ θ θ θ θ θ θ= − + = − +                                                         (5.31) 

where fθ  is the angle of the element bend (Fig. 5. 3).  

2-  The interpolation function vector ( ),θ ϕL  (Eq.(5.27) for straight pipes) also becomes 

dependent on the longitudinal curvilinear coordinate θ  instead of z , i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), cos sin cos 2 sin 2 cos sinT T T T T T T Tm mθ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ=L H H H H H H H     (5.32) 

where ( )θH  is the shape functions vector along the longitudinal direction, i.e.,  
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( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( )

( )

2

2

cos 0.5 sin 0.5 sin 0.5

cos 0.5 2sin 0.5

csc 0.5 cos cos sin sin sin

4 2 cot 0.5

cos 0.5 sin 0.5 sin 0.5

cos 0.5 2sin 0.5

csc 0.5 cos cos

f f f f

f f f

f f f f f f f

f f

f f f

f f f

f f f

θ θ θ θ θ θ

θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ

θ θ θ θ θ

θ θ θ

θ θ θ θ θ θ

θ

− + + − −

−

 − + − + − − + − + 
− +

− + − +
−

−

− + −

=H

( )( )
( )

sin sin sin

4 2 cot 0.5
f f f

f f

θ θ θ θ θ

θ θ

 
 
 
 
 
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             (5.33) 

Hence, displacement vectors ( ( ),r iu  and ( ),r du ) and their gradient ( ( ),r iG  and ( ),r dG ) for a curved 

pipe can be obtained. Again, the explicit mathematical expressions of ( ),r dG  and its derivative 

with respect to the nodal degrees of freedom vector d are provided in Chapter 4 or Ref [28]. 

                                                                                                        

  
Fig. 5. 3 Pipe coordinate and vector bases in the reference configuration of a curved pipe 

 

5.8 Numerical Examples 

5.8.1 Straight Pipes 

The straight pipe in Fig. 5. 4 has a mid-surface radius 500mr mm=  and a uniform wall thickness 

20h mm= . Pipe material is steel with a Young’s modulus 210E GPa=  and a Poisson’s ratio 

0.3ν = . Both ends are assumed to be completely fixed. Two initial imperfection scenarios are 
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modeled (Example 1 and Example 2) using the present formulation and the S4R shell element 

within the ABAQUS library23 for comparisons. Table 5. 1 provides details of initial imperfection 

scenarios, initial ovality characterizations, and loading conditions.  

 

Fig. 5. 4 Geometry of straight pipe 

 

Table 5. 1 Inputs of Example 1 and Example 2   

 Example 1 (Section 5.8.1.1) Example 2 (Section 5.8.1.2) 

( )L m  6 10 

Imperfection 

Scenario 

Non-uniform initial ovality24 along the 

entire length (Fig. 5. 5) 

a) Uniform initial ovality 

b) Non-uniform initial ovality 

c) zero initial ovality (Fig. 5. 6) 

Initial ovality 

characterization 

a) Linear distributed (Eq.(5.24)) 

b) Hermitian distributed (Eq.(5.25)) 

Hermitian interpolation 

(Eq.(5.25)) 

Loading case 
a) Internal Pressure (Section 5.8.1.1.1) 

b) External Pressure (Section 5.8.1.1.2) 
Internal Pressure 

  

 

 

                                                 
23 The S4R model of the imperfect pipe is obtained by assuming initially circular cross-section. Then, initial 

imperfections are simulated by editing the coordinates of nodes in the input file.     
24 Initial ovality value = Initial ovality percentage × mid-surface radius/100 
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Fig. 5. 5 Geometry of the imperfect pipe in Example 1 

 

 
Fig. 5. 6 Geometry of the imperfect pipe in Example 2 

 

5.8.1.1 Example 1 

5.8.1.1.1 Internal Pressure Loading 

An imperfect pipe (Fig. 5. 5) is subjected to internal pressure of 5MPa  at the inner surface. The 

present formulation adopts six Fourier modes and twelve elements along the length (i.e., the length 

of a single element is 500 mm). The mesh size of the S4R model is 50 mm25. Two distributions of 

the initial ovality along the elements are investigated: Linear (L) and Hermitian (H) distributions. 

Both models predict an oscillatory distribution of the displacements along the circumferential 

direction at mid-span (Fig. 5. 7). In a similar manner, Fig. 5. 8 depicts an oscillatory distribution 

for the hoop stresses at the same cross-section. The modelling of initial ovality in the S4R model 

using the linear imperfection scheme (Eq.(5.24)) generates displacements and stresses that are 

                                                 
25 The number of degrees of freedom is 1,014 and 43,560 for the present formulation and the S4R model, 

respectively.  
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nearly identical to those obtained using the Hermitian imperfection scheme (Eq.(5.25)) (Fig. 5. 7 

and Fig. 5. 8) since the S4R model is based on numerous facet elements with small kinks in 

between them. In contrast, stress predictions of the present formulation are highly affected by the 

type of the initial ovality (Fig. 5. 8) where the linear characterization of the initial ovality induces 

a kink at mid-span while the Hermitian characterization provides a smooth transition of pipe 

ovality at mid-span. Hoop stress predictions induced by the Hermitian ovalization characterization 

are thus in excellent agreement with those of the S4R model whereas the linear ovalization 

characterization induces inaccurate hoop stress predictions. However, displacement predictions in 

both ovalization patterns are very close and in a close agreement with S4R predictions.  If the pipe 

is assumed to be perfectly circular, the hoop stress distribution would be constant and equal to 

121.8 MPa 26 which is about half of the maximum hoop stress in this example. Therefore, the 

proper modelling of initial ovality is essential to accurately predict the structural response and the 

concomitant stress distribution.   

 
a 

                                                 
26 This value is obtained from a S4R model adopting initially circular cross section. 
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b 

Fig. 5. 7 Displacement field distributions along the circumferential direction at 3z m= . 
 (a) Radial and (b) Circumferential 

 

 
a 

 
b 

Fig. 5. 8 Hoop stress distributions under internal pressure at 3z m=  for the 
 (a) Inner Surface and (b) Outer Surface 
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5.8.1.1.2 External Pressure Loading 

A uniform external pressure of 5MPa  is applied to the outer surface of the imperfect pipe (Fig. 5. 

5). A Hermitian distribution of the initial ovality is taken along the elements. Three runs are 

conducted under the present formulation based on (M) Fourier modes and (E) elements (M=6, 

E=12), (M=8, E=12), and (M=6, E=20). The mesh size of the S4R shell model was kept constant 

at 50 mm. Hoop stress distributions along the circumferential direction at the mid-span of the pipe 

are presented in Fig. 5. 9 for the inner and outer surfaces. The predictions of the oval cross section 

exhibit an oscillatory response with a maximum tensile hoop stress of 428 MPa (Fig. 5. 9a) and a 

maximum compressive hoop stress of 700 MPa (Fig. 5. 9b). This compares to a compressive hoop 

stress of 127 MPa for perfectly circular cross section with no ovality. An excellent agreement is 

obtained between the predictions generated by the present formulation and those based on the S4R 

model27. The comparison shows that the formulation is able to accurately capture the response of 

the pipe under external pressure with and without an ovality. 

 

 Table 5. 2 presents the hoop stress values at 0ϕ =  and  90oϕ =  at the inner and outer surface 

using three sets of Fourier modes and elements. Hoop stress predictions do not change when the 

number of Fourier modes is increased from six to eight while increasing the number of the elements 

from 12 to 20 tangibly decreases the percentage differences. Under the same value of pressure 

(e.g., 5MPa ), the external pressure loading on the ovalized pipe generates much higher hoop 

stresses than the internal pressure loading (as evidenced by comparing Fig. 5. 8 and Fig. 5. 9). It 

is also observed that the present formulation requires more elements under external pressure than 

under internal pressure to accurately predict the structural response.  

                                                 
27 Predictions of the present formulation shown in Fig.9 are based on six Fourier modes and twenty elements.  



187 
 

 
a 

 
b 

Fig. 5. 9 Hoop stress distributions under external pressure at 3z m=  for the 
 (a) Inner Surface and (b) Outer Surface 

 

Table 5. 2 Hoop stress values (MPa) at the inner and outer surfaces 

Surface Circumferential 
angle  S4R Present (P) 

(M=6, E=12) (M=8, E=12) (M=6, E=20) 

Inner 
0o Value -621 -585 -585 -602 

%a - 5.8 5.8 3.1 

90o Value 428 402 402 427 
% a - 6.1 6.1 0.2 

Outer 
0o Value 380 334 334 352 

% a - 12.1 12.1 7.4 

90o Value -701 -667 -667 -689 
% a - 4.9 4.9 1.7 

a % = (shell output – present formulation output) × 100 / shell output  
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5.8.1.2 Example 2 

The present example examines the response of a pipe with the initial imperfection scenario 

illustrated in Fig. 5. 6 where the pipe is divided into three zones: (a) a zone of circular cross-section 

with no ovality, (b) a zone of varying ovality ranging from circular cross-section at one end to a 

fully ovalized section at the other end following a Hermitian characterization between ends, and 

(c) a zone of uniform ovality. The imperfect pipe is subjected to internal pressure of 5MPa  applied 

to the inner surface of the pipe. The present formulation employs six Fourier modes and twenty 

elements while mesh size of the S4R model is 50 mm28. Stress distributions at three cross sections 

are examined at (a) Section A at mid-span 5z m= , (b) Section B at the end of the transition zone 

2z m= , and (c) Section C at the middle of the transition zone 1.5z m= . Fig. 5. 10 depicts the von 

Mises stress distributions along the circumferential direction at Sections A, B, and C for the inner 

and outer surfaces. The von Mises stresses exhibit an oscillatory response at all three cross-

sections. However, the maximum von Mises stress at Section A is 261 MPa (Fig. 5. 10a), that at 

Sections B is 198 MPa and that at Section C is 167 MPa (Fig. 5. 10b). The proximity of the 

predictions of the present model to those of the shell S4R model at the three cross-sections 

considered is indicative of the ability of the present formulation to accurately predict the stress 

distributions including the through-wall thickness variations. 

 

 Table 5. 3 provides the maximum hoop stress values at the different cross-sections. The constant 

hoop stress value in a circular cross-section is provided for comparison. At Section A, it is of 

interest to note that the ovalized cross-section has a maximum hoop stress value that exceeds twice 

that of a circular cross section.  

                                                 
28 The number of degrees of freedom for the present formulation is 1,638 and 72,372 for the S4R model. 
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a 

 
b 

Fig. 5. 10 Von Mises stress distribution along the circumferential direction at the 
 (a) Inner Surface and (b) Outer Surface 

 

Table 5. 3 Maximum hoop stress values (MPa) 

 Circular Sec A Sec B Sec C 

Max. Hoop Stress  122 291 225 186 

Ratio a - 2.4 1.8 1.5 
a Ratio = oval hoop stress / circular hoop stress  

 

5.8.2 Curved Pipes  

The outer diameter oD  of the perfect 90o pipe bend shown in Fig. 5. 11 is 1066.8mm  and its wall 

thickness h  is 9.525mm . Young’s modulus for the pipe steel is 210E GPa=  and the Poisson’s 

ratio 0.3ν = . A Hermitian characterization of the ovalization along the elements is considered 
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(Table 5. 4) with maximum ovality percentage of 4 % at mid-section ( 45oθ = ) and zero ovality 

at both ends ( 0 ,90o oθ = ). The bottom end is assumed to be completely fixed while the top end’s 

boundary conditions depend on the loading condition as shown in Table 5. 5. Three loading 

conditions are examined (Table 5. 5): (1) Internal pressure (Example 3), (2) In-plane loading 

(Example 4), and (3) Out-of-plane loading (Example 5).  The present formulation adopts eight 

Fourier modes and ten elements. The mesh size is 30 mm in the Abaqus shell S4R model29.   

 

Fig. 5. 11 Geometry of the pipe bend 

 

Table 5. 4 Initial ovality profile of the pipe bend (symmetric at 45oθ =  ) 

Longitudinal coordinate θ  (deg) 0 9 18 27 36 45 

Initial Ovality percentage % 0 0.8 1.6 2.4 3.2 4 

Initial Ovality value (mm)a 0 4.23 8.46 12.69 16.92 21.15 
a Initial ovality value = Initial ovality percentage × mid-surface radius/100 

 

 

 

 

                                                 
29 The number of degrees of freedom in the present formulation is 1,122 that in the S4R shell model is 56,100. 
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Table 5. 5 Loading cases of the curved pipe 

 Example 3 (Sec 5.8.2.1) Example 4 (Sec 5.8.2.2) Example 5 (Sec 5.8.2.3) 

 

   

Traction P=3.5MPa H=V=40MPa T=50MPa 

Top End Free Rigid30 Rigid 

Cross 

section 

 
 

 

 

5.8.2.1 Example 3 

The inner surface of the imperfect pipe bend shown in Fig. 5. 11 is subjected to an internal pressure 

of 3.5MPa. Fig. 5. 12 depicts an oscillatory response for the displacement fields along the 

circumferential direction at mid-section ( 45oθ = ). Table 5. 6 provides the maximum values of the 

longitudinal and radial displacements obtained from the present formulation and the S4R shell 

model assuming oval and circular cross sections. The predictions of the present model for the 

ovalized bend are in close agreement with those based on the S4R shell model and the percentage 

                                                 
30 Rigid means that the cross section deforms as a single node. No ovality or warping is allowed.  
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difference are below 5%. The close proximity of the displacement predictions of the present 

formulation to those based on the S4R shell model showcases the ability of the present model to 

capture the response of the ovalized bend. The bend with the perfectly circular cross-section is 

associated with a stiffer radial and longitudinal responses than that with an ovalized cross-section. 

 

Fig. 5. 12 Displacement field distributions along the circumferential angle at 45oθ = . 

 

Table 5. 6  Values of maximum longitudinal and radial displacements (mm) 

 
S4R shell model Present formulation 

Oval Circular Oval Circular 

Max. Longitudinal displacement -11.86 -10.19 -11.35 -9.72 

%a - 14.1 4.3 18 

Max. Radial displacement 22.77 17.62 21.94 16.87 

% a - 22.6 3.6 25.9 

a % = (shell oval displacement – other displacement) × 100 / shell oval displacement 
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5.8.2.2 Example 4 

Horizonal 40H MPa=  and vertical 40V MPa=  tractions are applied at the top end of the pipe 

bend as illustrated in Table 5. 531. Oval (O) and circular (C) cross-sections are assumed to verify 

the effect of the initial ovality under in-plane loading. The oscillatory responses of the longitudinal 

and hoop stress distributions at mid-section ( 45oθ = ) are shown in Fig. 5. 13 for the inner and 

outer surfaces. The difference between the solutions of oval and circular cross-sections 

assumptions is highly pronounced around 180oϕ = . The circular bend experiences maximum 

compressive longitudinal (Fig. 5. 13a) and hoop (Fig. 5. 13c) stresses higher than the ovalized pipe 

at the inner surface. In contrast, these maximum stresses at the outer surface are higher in case of 

the ovalized pipe (Fig. 5. 13b and Fig. 5. 13d). The predictions of the present model with and 

without ovality are in close agreement with those based on the S4R shell model and the percentage 

differences at the outer surface are below 10 % for maximum compressive longitudinal stress and 

5 % for maximum compressive hoop stress. The close proximity of the stress predictions of the 

present formulation to those based on the S4R shell model demonstrates the ability of the present 

formulation to capture the response of the ovalized pipe under in-plane loading.  

 
a 

                                                 
31 A set of equivalent nodal forces are applied in the S4R shell model to simulate the applied tractions.  
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b 

 
c 

 
d 

Fig. 5. 13 Stress fields along the circumferential angle at 45oθ =  for the 
 (a) Longitudinal - Inner Surface, (b) Longitudinal -Outer Surface, (c) Hoop - Inner Surface, and 

(d) Hoop -Outer Surface 
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5.8.2.3 Example 5 

The bend pipe shown in Fig. 5. 11 is subjected to a traction32 50T MPa=  at the top end of the 

pipe bend in the positive Z-direction as demonstrated in Table 5. 5.  Fig. 5. 14 depicts the 

longitudinal and hoop stress distributions along the circumferential direction at the mid-section (

45oθ = ) for the inner and outer surfaces. The solution based on oval cross-section assumption is 

associated with higher longitudinal stresses at the outer surface (Fig. 5. 14b) and larger hoop 

stresses at both surfaces (Fig. 5. 14c and Fig. 5. 14.d) when compared to those of a pipe bend with 

a perfectly circular cross section. The predictions of the present formulations are in excellent 

agreement with those generated by the S4R shell model. The proximity of the stress predictions of 

the present formulation to those based on the S4R shell model shows the high accuracy of the 

present formulation to properly capture the structural response of a pipe bend under out-of-plane 

loading with and without ovality.  

 
a 

                                                 
32 A set of equivalent nodal forces are applied in the S4R shell model to simulate the applied tractions. 
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b 

 
c 

 
d 

Fig. 5. 14 Stress fields along the circumferential angle at 45oθ =  for the 
 (a) Longitudinal - Inner Surface, (b) Longitudinal -Outer Surface, (c) Hoop - Inner Surface, and 

(d) Hoop -Outer Surface 
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5.9 Summary 

A simple and novel FE formulation is developed for simulating the geometrically nonlinear 

structural response in the elastic regime for initially ovalized straight and curved pipes. An initially 

circular cross-sectional pipe configuration is utilized as a mediator configuration between the 

initial (e.g., ovalized pipes) and deformed configurations. The framework of the principle of virtual 

work is adopted in conjunction with the total Lagrangian approach. The Saint Venant Kirchhoff 

constitutive model is adopted to relate the second Piola-Kirchhoff stress tensor to the Green-

Lagrange strain tensor. The kinematic constraints of Love-Kirchhoff thin shell theory are enforced 

within the assumed displacement fields. Several numerical examples are provided to assess the 

displacement and stress predictions of the present formulation against those generated by the S4R 

shell model within the ABAQUS library. The present formulation is able to accurately predict the 

structural response of initially ovalized straight and curved pipes under various loading conditions. 

The main findings of the present study can be summarized as follow: 

1. While the type of initial ovality distribution along the length of the element has no effect on 

the S4R shell model, it is highly influential in the present formulation.  

2. The type of pressure applied (i.e., internal versus external) has a significant influence on the 

response of initially ovalized straight pipes. 

3. The number of elements needed of the ovalized straight pipes under external pressure is higher 

than that needed under internal pressure to accurately capture the structural response. 

4. For a pipe having a uniform initial ovality zone under internal pressure, the section located at 

mid-zone experiences higher von Mises stresses than that located at the beginning of the 

ovality zone. 
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5. An initially ovalized pipe bend under internal pressure exhibits a more flexible radial and 

longitudinal responses than that of a similar pipe bend with a perfectly circular cross-section. 

6. Eight Fourier modes are required to accurately predict the structural response of initially 

ovalized pipe bends under in-plane and out-of-plane loading. 

7. In general, the modelling of initial ovality provides a significantly different response from 

similar pipes with no ovality. Thus, the modelling of initial ovality is imperative for the 

accurate prediction of the pipe structural response. 

 

5.10 Nomenclature  
B  Body force vector per unit reference volume 
C  The Saint-Venant-Kirchhoff constitutive tensor 

jd  The jth component of the nodal degrees of freedom vector 
d  Nodal degrees of freedom vector 

*d  Virtual nodal degrees of freedom vector 
d dX  A tangential vector in the deformed configuration 
d iX  A tangential vector in the initial configuration 
d rX  A tangential vector in the reference configuration 
E  Young’s Modulus 

( )iE  The Green-Lagrange strain tensor defined in the initial configuration 

re  Unit vector in the radial direction 

ze  Unit vector in the longitudinal direction of a straight pipe 

θe  Unit vector in the longitudinal direction of a curved pipe 

φe  Unit vector in the circumferential direction 
I  Identity tensor 
( )IF  Internal force vector 
( )EF  External force vector 

( ),i dF  The deformation gradient tensor that transform a tangential vector from the 
initial configuration to the deformed configuration 

( ),r dF  The deformation gradient tensor that transform a tangential vector from the 
reference configuration to the deformed configuration 

( ),r iF  The deformation gradient tensor that transform a tangential vector from the 
reference configuration to the initial configuration 
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( ),r dG  The gradient of the displacement field vector between the reference and 
deformed configurations 

( ),r iG  The gradient of the virtual displacement field vector between the reference 
and initial configurations 

( )
*

,r dG  The gradient of the virtual displacement field vector between the reference 
and deformed configurations 

h  Pipe wall thickness in the reference configuration 
( )zH  Shape functions in the longitudinal direction of a straight pipe 
( )θH  Shape functions in the longitudinal direction of a curved pipe 

K  Stiffness matrix 
FK  Exact contribution of the external force vector to the stiffness matrix 
TK  Exact tangent stiffness matrix 
F
AK  Approximated contribution of the external force vector to the stiffness 

matrix 
T
AK  Approximated tangent stiffness matrix 

L  Length of the element 
L  Interpolation functions vector 
m  Total Fourier terms /modes 
N  Vector normal to the mid-surface in the reference configuration 
N


 Unit vector normal to the mid-surface in the reference configuration 
n  Vector normal to the mid-surface in the deformed configuration 
n  Unit vector normal to the mid-surface in the deformed configuration 

1O , 2O  Values of the initial ovality at the ends of the element 

( ),i dP  The first Piola-Kirchhoff stress tensor that transform an area vector from the 
initial configuration to the deformed configuration 

( ),r dP  The first Piola-Kirchhoff stress tensor that transform an area vector from the 
reference configuration to the deformed configuration 

R  Elbow radius of a curved pipe 
r  Radial coordinate as measured from the origin point 
mr  Mid-surface radius 

rS  The reference surface that encloses volume rV  
( )iS  The second Piola-Kirchhoff stress tensor defined in the initial configuration 

NT  Applied traction vector per unit reference surface rdS normal to the unit 
vector N



 

( ),r du  Displacement vector for a generic point between the reference and deformed 
configurations 

( ),r iu  Displacement vector for a generic point between the reference and initial 
configurations 

( )
*

,r du  Virtual displacement vector for a generic point between the reference and 
deformed configurations 

( )
*

,r iu  Virtual displacement vector for a generic point between the reference and 
initial configurations 
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( ),r dou  Displacement vector for a point on the mid-surface between the reference 
and deformed configurations 

( ),r iou  Displacement vector for a point on the mid-surface between the reference 
and initial configurations 

oru  Radial displacement of a point on the mid-surface 

ozu  Longitudinal displacement of a point on the mid-surface of a straight pipe 

ou θ  Longitudinal displacement of a point on the mid-surface of a curved pipe 

ou ϕ  Circumferential displacement of a point on the mid-surface 
rV  The reference volume 
dX  Position vector of a point in the deformed configuration 
iX  Position vector of a point in the initial configuration 
rX  Position vector of a point in the reference configuration 
b
oX  Position vector of a point on the mid-surface of the pipe in Configuration b  

z  Longitudinal coordinate of a straight pipe 
∇  The gradient operator with respect to the reference configuration 
ζ  Radial coordinate as measured from the mid-surface 
θ  Longitudinal coordinate of a curved pipe 

fθ  Angle of the curved pipe 
ν  Poisson’s ratio 
σ  The Cauchy stress tensor 
ϕ  Circumferential coordinate 

dΩ  Deformed configuration 
iΩ  Initial configuration 
rΩ  Reference configuration 
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Chapter 6 Summary & Conclusion 

 

 

 

6.1 Summary and conclusion  

The present dissertation, in Chapter 2, investigates the structural response of ELBOW elements 

implemented in ABAQUS under internal pressure. A standalone 90o pipe bend is studied to 

demonstrate the effect of pipe bend radius, boundary conditions, and material characterization on 

the different stress fields. Although ELBOW elements are able to accurately capture the 

sophisticated response of a pipe bend under internal pressure, the modelling techniques for 

boundary conditions have a tangible effect on the stress results. Moreover, the present study 

recommends using ELBOW elements in the modelling of the straight portions adjacent to pipe 

bends, while PIPE elements can be utilized for the remaining straight segments in long pipeline 

transmission systems. In addition, ASME B16.49-2017 equation for the pipe bend thickness and 

previously published stress estimate equations are assessed in comparison to elbow and shell 

model predictions in ABAQUS.  

 

Starting with the principle of virtual work for static equilibrium expressed in the reference 

configuration and formulated in terms of the first Piola-Kirchhoff stress tensor, generalized 

expressions of force vectors and stiffness matrix are derived in terms of generic displacement 

fields. These expressions are thus applicable for various applications (e.g., beams, shells). 

Additionally, contribution of follower pressure load into the external force vector and the stiffness 

matrix is recovered in the developed formulations.  
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For initially circular thin-walled straight pipes, the kinematic assumptions of the Love-Kirchhoff 

thin shell theory are adopted to characterize displacement fields in a cylindrical coordinate system. 

The unit vector normal to the deformed configuration is obtained while avoiding introducing any 

approximations. Mid-surface displacement fields are interpolated using cubic Hermitian 

polynomials along the longitudinal direction while the variation of the displacement fields along 

the circumferential direction is described using: (1) Fourier series expansion, (2) Spline 

interpolation, and (3) Mixed Fourier-Spline interpolation. The performance and predicting 

accuracy of the elements are assessed through comparisons with finite element models based on 

shell and elbow elements in ABAQUS under various loading conditions. The results demonstrate 

the ability of the elements to predict the displacement and stress fields. In particular, the element 

based on Fourier series interpolation is shown to provide accurate predictions.  

 

For initially circular thin-walled curved pipes, the displacement fields are described in a toroidal 

coordinate system based on the kinematic constraints of the thin shell theory. Fourier series are 

adopted to characterize the displacement fields along the circumferential direction while three C1 

continuous schemes (e.g., Hermitian, Trigonometric, and Mixed) are used to interpolate the 

displacement fields along the longitudinal direction. Eigenvalue analyses are performed to assess 

the ability of the elements to represent rigid body motion. The element based on mixed 

interpolation scheme demonstrates its efficiency to capture rigid body motion modes. Comparisons 

with other shell and elbow models highlight the accuracy and versatility of the proposed 

formulation. 
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In Chapters 3 and 4, the reference configuration is assumed to coincide with the un-deformed 

configuration. In contrast, Chapter 5 introduces three configurations for the pipe under 

consideration to consider initial geometric imperfections. These configurations are: (1) un-

deformed configuration that represents the imperfect pipe, (2) deformed configuration, and (3) 

reference configuration which is assumed to have a perfectly circular cross-section with uniform 

wall thickness. The first Piola-Kirchhoff stress tensor expressed in the reference configuration is 

formulated in terms of the strains induced by the deformation of the pipe from the un-deformed to 

the deformed configurations. This idea allowed the writer to re-use computer codes developed in 

Chapters 3 and 4 to add the contribution of initial geometric imperfections with relatively simple 

modification to these codes. Several examples are solved on ovalized straight and curved pipes to 

assess the accuracy of the present formulations by comparisons against the general shell models 

under various loading conditions. In general, the predictions (e.g., displacements and stresses) of 

the proposed formulations are very close to those obtained from general shell models.  

 

6.2 Limitations of the developed formulations 

FE formulations proposed in the present dissertation are developed to predict the geometrically 

nonlinear structural response of linearly elastic isotropic thin-walled straight and curved pipes 

subjected to general static loading. Although these FE formulations are able to capture finite 

deformations (e.g., finite rotations), they are formulated based on small strain theory. Currently, 

these formulations are implemented under the Wolfram Mathematica platform.  
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6.3 Proposed future work 

Since the generalized force vectors and stiffness matrix in the present study are expressed in terms 

of generic displacement fields, the present formulation can be seamlessly applied to other shell 

geometries (e.g., spherical and parabolic domes). The formulation can be modified for thick shells 

capturing the through thickness shear strains by adopting appropriate kinematic constraints. In 

addition, the formulation can be extended to account for material constitutive models (e.g., 

hyperelastic, hypo-elastic, elasto-plastic), to capture finite strains, and for dynamic analysis. Also, 

the current formulations can be incorporated within a general-purpose FE software (e.g., 

ABAQUS) for practicality purposes.  
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