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Abstract

This dissertation explores the development of a system identification method

for Switching ARX (SARX) models for Off-line and Online applications. The

switching sequence in SARX models converts the model parameter’s estima-

tion into a mix-integer optimization problem. To cope with complexity of

the problem, an existing approach that provides an alternative formulation

for multi-mode switching models is adopted. The Algebraic Geometric ap-

proach addresses the aforementioned problem by executing the identification

procedure via two steps. The first step estimates the parameters of the linear

ARX model, which is constructed through embedding all the sub-models. The

second step retrieves parameters of sub-models from the estimated model ob-

tained in the first step. Although the AG method delivers exact estimation in

the deterministic situation, it suffers from a lack of accuracy in the presence

of noise.

This dissertation investigates the root cause of the mentioned drawback

in the AG method and provides a systematic approach to deal with the mea-

surement noise so the identification performance is improved. The proposed

Stochastic Algebraic Geometric (SAG) approach reformulates the SARX pa-

rameters estimation problem into a ”lifted” error-in-variable (EIV) model.

Moreover, the characteristics of the proposed EIV model along with the es-

timation of its parameters are closely investigated. The requirements of a

consistent estimation are derived through statistical analysis. In order to cal-

culate the parameters of the sub-models improved retrieving procedures are

proposed.



In order to extend the application of the SAG into the online parameter

estimation, a recursive version of the SAG approach is developed. To achieve

this goal, a recursive algorithm for a class of EIV models is derived. Also, a

parameter retrieving procedure independent of the data points is developed to

determine parameters of the sub-models.

To demonstrate a potential application of the proposed approach, a novel

fault detection method is developed for linear switching systems. This ap-

proach is independent of estimating the sub-model’s parameters. By using

a residual evaluation method, the incipient changes of the sub-models’ pa-

rameters can be detected and isolated. The applicability of this approach is

demonstrated via simulation examples.
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Chapter 1

Introduction

Nowadays, digital controllers and devices are widely adopted to control and

monitor the continuous dynamical systems. The modern process is highly

sophisticated, driven by the advanced digital technology. The combination

of discrete control signals and continuous process data has caused an in-

crease in the complexity of the problems facing the control community. A

hybrid system is defined as a system with an interaction of continuous-time

and discrete-valued dynamics. It is well-known that modeling is one of the

most important steps in controlling any system, and hybrid systems are no

exceptions. The modeling of hybrid systems has been studied in the last two

decades. Due to the combination of discrete and continuous dynamics, the

models representing these systems are much more complex than the models

for continuous dynamical systems. Even linear hybrid systems are mathemat-

ically more complicated than ordinary linear systems. This complexity makes

it more challenging to find a general model for all hybrid systems. Therefore

researchers have made efforts to simplify the modeling of hybrid systems by

imposing certain assumptions, which result in different sub-classes of hybrid

systems. Some well-known models defined for hybrid systems are linear com-

plementarity (LC) models, extended linear complementarity (ELC) models,

mixed logical dynamical (MLD) models, piecewise affine (PWA) models and

max-min-plus-scaling (MMPS) models, which will be reviewed in the next sec-

tion. These models have been adopted in real experiments and shown to be

useful. Among the aforementioned models, the PWA models are the most

common ones in the literature.
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CHAPTER 1. INTRODUCTION

1.1 Hybrid system identification and applica-

tions

Prior to research studies in the area of dynamical systems and control, hybrid

automata was developed by computer scientists [1,2]. Recently, in the control

field, research on hybrid dynamical systems has gained increased attention due

to the application of digital technologies. In [3], a framework based on hybrid

automata for modeling hybrid systems was introduced. Lygeroos et al. [4]

have used the principles of optimal control to extend the concepts developed

from automata theories. The technique developed determines a class of least

restrictive controllers that satisfy the most important objectives, and finds a

controller to optimize the system performance with respect to lower-priority

objectives. The resultant controller was tested on a hybrid steam boiler bench-

mark problem [5]. In the control community, the switching between different

dynamics is indicated by a finite set of numbers [6].

The modeling of hybrid systems depends on the adopted mathematical de-

scription. Several different approaches have been proposed. These models are

categorized in [7]. Since no proper tools have been developed to analyze general

cases in hybrid systems, the researchers focus more on the special subclasses of

hybrid systems for which analysis technique tools are more available. Some of

the examples for these subclasses are as follows: linear complementarity (LC)

models, extended linear complementarity (ELC) models, mixed logical dynam-

ical (MLD) models, piecewise affine (PWA) models and max-min-plus-scaling

(MMPS) models. A brief description for each of these models is provided

below:

• Linear complementarity (LC) models:

A linear complementarity model is a model for hybrid dynamical system

defined by a combination of the linear time-invariant ordinary differential

equation (ODE) and the linear complementarity problem. In the discrete

time case, LC models are given by the following equations [8, 9]:

x(k + 1) = Ax(k) +B1u(k) +B2w(k), (1.1a)

y(k) = Cx(k) +D1u(k) +D2w(k), (1.1b)

v(k) = E1x(k) + E2u(k) + E3w(k) + g4, (1.1c)

0 ≤ v(k)⊥w(k) ≥ 0 (1.1d)

2



CHAPTER 1. INTRODUCTION

where v(k), w(k) ∈ Rs, x(t) ∈ Rn, u(t) ∈ Rk, y(t) ∈ Rl,

A, B1,2, C, D1,2, E1,2,3 are matrices with appropriate dimensions, g4 is

a constant vector with appropriate size, and ⊥ shows the orthogonality

of two vectors (i.e. if a⊥b then aT b = 0). w(k) and v(k) are called

complementarity variables. Shen and Pang [10] investigated the Zeno

states in LC systems. When a hybrid system undergoes an unbounded

number of discrete transitions in a finite and bounded length of time, the

Zenoness phenomenon, which is unique to hybrid systems, occurs. For

example, a discrete controller that unsuccessfully attempts to satisfy an

invariance specification by switching the system faster and faster among

different configurations is called to be in the Zeno state [11].

• Extended linear complementarity (ELC) models:

The extended version of LC changes the equality condition in (1.1c) to an

inequality [12–14]. More hybrid system can be modeled by ELC models.

The following equations show the discrete ELC models.

x(k + 1) = Ax(k) +B1u(k) +B2d(k), (1.2a)

y(k) = Cx(k) +D1u(k) +D2d(k), (1.2b)

E1x(k) + E2u(k) + E3d(k) ≤ g4 (1.2c)
p∑

i=1

∏
j∈ϕi

(g4 − E1x(k)− E2u(k)− E3d(k))j = 0, (1.2d)

where d(k) ∈ Rr is an auxiliary variable. Condition (1.2d) is equivalent

to
∏

j∈ϕi
(g4 −E1x(k)−E2u(k)−E3d(k))j = 0 for each i ∈ {1, 2, · · · , p}

due to the inequality condition (1.2c). This means that (1.2c) and (1.2d)

can be considered as a system with p groups of linear inequalities (for

every index set ϕi) such that, in every group, at least one inequality

should coexist with equality.

• Mixed logical dynamical (MLD) models:

This model describes the systems by interdependent physical laws, logic

rules, and operating constraints. This model consist of linear dynamic

equations subject to linear inequalities involving real and integer vari-

ables. Bemporad and Morari [15] introduced the MLD models as follow:

3



CHAPTER 1. INTRODUCTION

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k), (1.3a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k), (1.3b)

E1x(k) + E2u(k) + E3δ(k) + E4x(k) ≤ g5, (1.3c)

where x(k) = [xTr (k) x
T
b (k)]

T with xr(k) ∈ Rnr and xb(k) ∈ {0, 1}nb ,

and x is the state of the system that is split into two parts containing

the continuous and logical components respectively. y(k) and u(k) have

similar structures; also, z(k) ∈ Rrr and δ(k) ∈ {0, 1}rb are auxiliary

variables. The inequality (1.3c) has to be interpreted componentwise,

and the logical facts involving continuous variables can be translated

to those componentwise inequalities. Recently, MLD models have been

used in different applications. Andres et al. [16] have applied MLD to

model Σ−∆ modulators along with stability analysis. In another article,

MLD is used to model a front-wheel-drive passenger vehicle with manual

transmission [17], and the model predictive controller (MPC) is adopted

for this hybrid system. Busch et al. [18] used this model to optimize the

predictive scheduling of operational strategies in the continuous process.

• Piecewise affine(PWA) models:

The discrete piecewise affine model [19] is described as follows:

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k) + fσ(k)

y(k) = Cσ(k)x(k) +Dσ(k)u(k) + gσ(k)
(1.4)

where σ(k) is the discrete state indicating affine dynamics of the system

at time k. For PWA models σ(k) is defined as σ(k) = i, if and only if

[x(k) u(k)]T ∈ Ωi, and Ωi are convex polyhedra constructed by a finite

number of linear inequalities in the input/state space. It is assumed

that the number of sub-models is finite, i.e. σ(k) ∈ {1, · · · , n}, where n
is a number of affine sub-models. The PWA model is one of the most

commonly used models among all hybrid system models, and has been

studied extensively by several researchers.

• Max-min-plus-scaling (MMPS) models:

Another class for hybrid system introduced by [13] is called the max-

4



CHAPTER 1. INTRODUCTION

min-plus-scaling model, and consists of operation maximization, mini-

mization, addition and scalar multiplication. Expressions using those

operations are called MMPS expressions. A MMPS expression f of vari-

ables x1, · · · , xn is defined by the following syntax:

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|βfk (1.5)

with i ∈ {1, 2, · · · , n}, α, β ∈ R, and where fk, fl are again MMPS ex-

pressions. Operator ”|” is ”or” operator. Using that definition, the

MMPS model can be described as follows:

x(k + 1) = Mx(x(k), u(k), d(k)), (1.6a)

y(k) = My(x(k), u(k), d(k)), (1.6b)

Mc(x(k), u(k), d(k)) ≤ c, (1.6c)

where Mx, My and Mc are also MMPS expressions, and d(k) is an

auxiliary variable.

Heemels et al. [20] carried out a comprehensive review of the above models

and attempted to establish equivalence relationship among them. Some of the

equivalences are established under mild additional assumptions. Establishing

these equivalences is useful in transferring theoretical properties and tools from

one model to another. Figure 1.1 illustrates the relationship among these five

models. Discussions are also available in [21] on the equivalency of PWA and

MLD models, and their observability and controllability.

1.2 Piecewise affine and Switch ARX models

In switched affine (SWA) models, the switching sequence is indicated by fi-

nite linear input-state-output relations. In contrast, piecewise affine (PWA)

models are switched affine models equipped with state-dependent switching

law [22]. The Switched autoregressive exogenous (SARX) model, also known

as Jumped autoregressive exogenous (JARX) model, is defined using the fol-

lowing regression vector [23]:

Xt = [yTt−1 · · · yTt−nα
uTt u

T
t−1 · · · uTt−nβ

]T , (1.7)
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CHAPTER 1. INTRODUCTION

Figure 1.1: Graphical representation of the relationships between PWA, LC,
ELC, MMPS and MLD models. Each arrow shows that each class is a subset
of another class and ∗ represents that through the relation some additional
assumption applies.

and by introducing yk as a function of λk, we have:

yk = bTλ(t)Xt (1.8)

where bλ(t) are parameter vectors for each sub-model, and λt is the switching

sequence. SARX models can be transformed into state space model by defining

the continuous state as

xt = [yTt−1 · · · yTt−nα
uTt u

T
t−1 · · · uTt−nβ

]T . (1.9)

Wieland et.al. [22] proved that switched affine models are equivalent to SARX

models. They have shown that an observable SWA model with s different sub-

models can be converted to an equivalent SARX model with sp modes, where

p ≥ n stands for the observability order of the original SWA model, and n is

the state dimension of the system. It is also possible to find an equivalent SWA

model with s modes from a SARX model with s sub-models. SWA models

have been applied in pick and place machines [24], current transformers [25],

tractional control [17] and motion segmentation in computer vision [26].

The identification of the SARX models has been studied extensively in

recent years. Several contributions and approaches are proposed in the liter-

ature, and are summarized in [23, 27, 28]. The discrete switching sequence in

the SARX models results in a mixed-integer minimization problem that makes

the identification procedure computationally impractical; therefore, two main

6



CHAPTER 1. INTRODUCTION

categories of approaches try to tackle this problem. The Optimization based

methods developed a relaxed version of the mix-integer optimization problem.

As in [29], a convex minimization problem is solved using sparse optimiza-

tion methods. The particle swarm optimization method is used to minimize

the relaxed cost function in [30]. A convex relaxation, based on the solution

of a constrained polynomial optimization problem, and using moments-based

techniques, is developed in [31]. All these methods result in an iterative op-

timization problem which can be time-consuming. The second approach tries

to prevent the mixed-integer optimization by reformulating the identification

problem. The algebraic geometric (AG) approach [32] introduces a “lifted”

one-mode ARX model from the multi-mode ARX model, called the hybrid

decoupling polynomial (HDP).

The PWARXmodel as a subset of the SARXmodel has also been studied in

the literature, with the following pioneering approaches: the clustering-based

approach [25], the Bayesian approach [33], and the bounded error approach

[24]. The clustering-based method has two major steps: first, the data are

clustered into s pre-defined groups using future vectors constructed from local

regressions. Second, the clustered data are used to estimate the parameters

of each sub-model. In this method, the order of each sub-model and the

number of sub-model(s) should be known. In the Bayesian approach, through

an iterative procedure, the probability density functions of system parameters

are derived by using the prior knowledge of the PDFs of the data. In this

approach, the model order and the number of sub-models are also fixed. In

the bounded error method, the number of sub-models is derived using an

iterative procedure regarding the absolute error between the actual output

and the estimated one, which should be less than tolerance parameter δ.

Other than the above major categories, a few other approaches have been

used in modeling SARX systems. Lauer and Bloch used kernel regression

and support vector machines (SVM) to model PWA and SARX systems [34].

However, their work has not been implemented in any experimental setup.

Mixed-integer programming (MIP) [35] is also another method to identify a

sub-class of PWA models called hinging hyperplane ARX (HHARX) mod-

els. The MIP method requires an extensive optimization procedure that can

become very complex if the number of data points is high.

7
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1.3 Problem formulation

The Switched ARX (SARX) model has the following representation:

yt = −αλt
1 yt−1 · · · − αλt

nα(λt)
yt−nα(λt) − βλt

1 ut−1 · · · − βλt

nβ(λt)
ut−nβ(λt) − cλt + εt

(1.10)

where ut ∈ R is the input, and yt ∈ R is the output of the system. λt

is the discrete event state, also known as the mode of operation. In this

chapter, λt is considered as an unknown arbitrary sequence from the integer

set λt ∈ Z : 1, 2, · · · , n , where n is the total number of modes. Equation

(1.10) describes a set of underlying sub-models for a SARX system when λt =

i, i = 1, 2, · · · , n. The εt is additive measurement noise, that has Gaussian

distributions with zero mean and variance assumed to be δ2.

Accordingly, bi = [1 αi
1 α

i
2 · · · αi

nα(i)
βi
1 β

i
nβ(i)

ci]T is the parameter-set for

each sub-model, and correspondingly,

Xt = [yt · · · yt−nα(i) ut−1 · · · ut−nβ(i) 1]
T ∈ RK is the regressor vector. The

integer i is the value of the discrete state, and K = maxnα(i)+maxnβ(i)+1.

The general identification problem for the above model is defined as follows:

General identification problem: Given the input/output data {ut, yt}Tt=0

from the SARX system in (1.10), identify the number of sub-models,

the maximum order of the ARX sub-models (maxi nα(i), maxi nβ(i)),

the model parameters {αi
j}

nα(i)
j=1 , {βi

j}
nβ(i)
j=1 , ci and the unknown discrete-

valued states {λt}.

As mentioned in Section 1.2, one of the methods that tackles this iden-

tification problem is the Algebraic Geometric (AG) approach [32]. The AG

approach shows several advantages over other approaches. In this approach,

the switching sequence does not play a role. Therefore, it is not necessary

to pre-cluster all the data. Linear algebra and matrix calculus are the main

mathematical tools for this approach. There is no need to know the order or

the number of sub-models beforehand. Only an upper bound for the maximum

order of sub-models is needed, and the rest can be estimated. In [36], these

estimations are formulated and improved. This thesis has not focused on es-

timating the number of sub-models, or on the maximum order of sub-models;

8
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hence they have been treated as known. Therefore, the following problem

definition is provided:

The SARX parameter estimation problem: Given the input/output data

{ut, yt}Tt=0 from the SARX system in (1.10), estimate the model param-

eters {αi
j}

nα(i)
j=1 , {βi

j}
nβ(i)
j=1 , ci and the unknown discrete-valued states {λt}.

The AG approach delivers a solution to the SARX parameter estimation

problem via two unique and appealing steps. In the first step, all sub-models

are embedded into one discrete-time model using geometric mapping methods.

This new model is called the hybrid decoupling polynomial (HDP). The HDP

is independent of the discrete switching sequence. The parameters of HDP

can be estimated using linear regression . In the second step, the parameters

of the original SARX model need to be retrieved from the identified HDP. In

this step, a data point needs to be selected and matched to each sub-model.

In the deterministic (noise-free) situation, the AG approach can deliver exact

estimates for the parameters of SARX models. However, when the data is cor-

rupted with noise, the errors caused by the noise in the parameter estimation

stage become significant, which is the main drawback of this approach.

1.4 Thesis scope and outline

The overall aim of this research is to develop a batch and recursive solution

to the SARX parameter estimation problem, using the advantages of the AG

approach when the data is corrupted with measurement noise.

To reach this goal, a new approach is introduced that considers the mea-

surement noise in the inputs/output data by reformulating the HDP into an

Error-In-Variable (EIV) representation . This new formulation is called the

stochastic HDP (SHDP), and the proposed approach is called the stochas-

tic algebraic geometric (SAG) approach. It is shown that the SAG method

results in major improvements in the estimation of SARX parameters under

noisy conditions, benefiting from the original AG method properties and the

extensive available literature in the EIV models parameter estimation [37].

The element-wise total least square (EW-TLS) method, which has been devel-

oped in the literature, is used for estimating the parameters of the SHDP. The

SAG not only estimates the parameters for the SARX models, but can also

be extended and applied to multi-mode EIV models when both inputs and

9
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output are corrupted with measurement noise (with zero mean and possibly

different variances).

The recursive SAG (RSAG) method is also proposed in this thesis. The

covariance matrix of the errors in the EIV model of the SHDP changes by each

data point. Therefore, a recursive parameter estimation method for the EIV

models, when the additive errors’ profile are changing, is developed. The de-

veloped method is the recursive version of the EW-TLS method. The proposed

REW-TLS solution is then used to estimate the parameters of the SHDP.

Improved procedures for retrieving the sub-models’ parameters in the SAG

and the RSAG approaches are developed. Discussions on the abilities, ad-

vantages and drawbacks of each proposed retrieving procedure are delivered

throughout the thesis.

The SAG method is then used practically in the fault detection and isola-

tion (FDI) application, to show its potential capabilities. A novel FDI method

for detecting and isolating small changes in the sub-models’ parameters in the

SARX models is proposed. The proposed method, detects abrupt changes in

the sub-models’ parameters without estimating the values of them.

Figure 1.2 illustrates the overall scope of the thesis and the relationship

between chapters.

In summary, this thesis is organized as follows:

• Some mathematical tools and concepts are reviewed in chapter 2. The

definition of the error-in-variable model and a related literature review

are also provided in this chapter. The lemmas that are used in this

thesis are also proved. Note that this chapter includes the preliminaries

required in chapters 4 - 6. Therefore, the mentioned chapters reference

the material discussed in chapter 2.

• Chapter 3 reviews the original AG approach and investigates the po-

tential solutions for improving the performance of the AG approach in

the presence of noisy data. Two improved retrieving procedures are also

developed in this chapter.

• In chapter 4, the proposed SAG method is developed. An algorithm

for estimating the parameters of the proposed SHDP is delivered, and

the requirements for consistent estimation are delivered using statistical

analysis. The performance comparisons between the proposed method

10



CHAPTER 1. INTRODUCTION

Figure 1.2: The overall outline of the thesis and contributions (The gray boxes
are the developed methods in this thesis and contributions).

and existing methods are illustrated with several different simulation

experiments.

• A recursive EW-TLS method is developed in chapter 5. The performance

of the recursive EW-TLS method is demonstrated by several simulations.

• In chapter 6, the recursive version of the SAG approach is presented.

Also, another retrieving procedure suitable for online applications is de-

veloped.

• Chapter 7 introduces the potential application of the proposed SAG

method in fault detection and isolation. A novel FDI method for SARX

models is presented in this chapter.

• Conclusions and a summary of the contributions are provided in chapter

9.
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Chapter 2

The Preliminaries

In this chapter the error-in-variable (EIV) model and some of the existing

approaches for estimating it’s parameters are reviewed. In addition, some

mathematical tools used in the rest of chapters are introduced. Also, some

lemmas used in the rest of this thesis are defined and proved.

2.1 The error-in-variable model

The main objective of the system identification is to generate an accurate

parametric model for a dynamic system, when controlling or predicting the

behavior of that system is needed. The more accurate the estimated model

parameters are, the more reliable the predicted output will be. The problem

of system identification is more difficult if both input and output measurement

of the system are corrupted with noises. In this case, the “Error-in-variables”

(EIV) models usually refer to the representations of systems when the outputs

and inputs are affected by noise [38]. This kind of representation is also useful

when there is not enough information to distinguish the output signals from

the input signals in the regressor.

The literature on EIV model based system identification is extensive. Sev-

eral different methods have been developed and published which can be cate-

gorized in three classes [38]: the methods using covariance matrix, the methods

using input-output spectrum and the methods using the original time series

data. The instrumental variables (IV), the total least square (TLS) and the

Frisch scheme belong to the first class. In [39] the so-called generalized instru-

mental variable estimator (GIVE) was presented. Furthermore, a thorough

survey on TLS methods can be found in [40]. The Frisch scheme method
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has first been used in identification of dynamic models in [41], and several im-

provements have been introduced since then. A good survey on EIV methods

can be found in [37] and [38].

Consider the following linear systems of equations:

X0T
1 = B0TX0T

2 , X0
1 ∈ RN×l, X0

2 ∈ RN×m (2.1)

where B0 is the solution and X0
1 , X

0
2 are true data. The noise free (nominal)

data is called the true data. N is the number of data points, m is the number

of the inputs and l is the number of the outputs. In this thesis the univariate

case is considered, therefore l = 1. Equation (2.1) can also be written as:

X0
1 = X0

2B
0. (2.2)

The matrixX0 is the true regressor matrix for all the data points and is defined

as:

X0 = [X0
1 X0

2 ] =



x011 x0211 x0221 · · · x02m1

x012 x0212 x0222 · · · x02m2
...

...
...

...

x01t x021t x022t · · · x02mt
...

...
...

...

x01N x021N x022N · · · x02mN


, (2.3)

where,

X0
1 =



x011

x012
...

x01t
...

x01N


, X0

2 =



x0211 x0221 · · · x02m1

x0212 x0222 · · · x02m2
...

...
...

x021t x022t · · · x02mt
...

...
...

x021N x022N · · · x02mN


, (2.4)

and x0jt, j ∈ {1 , 21 22 · · · 2m}, are true regressors at time t. Therefore,
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the true data point at time t is described by the following vector:

X0
t =



x01t

x021t
...

x0jt
...

x02mt


=

[
x01t

X0
2t

]
=

[
X0

1t

X0
2t

]
. (2.5)

Note that in the univariate case X0
1t = x01t. Equation (2.1) is also valid for

each data point, therefore the following equation is also used in this thesis:

X0
1t = B0TX0

2t ⇒ [1 −B0T ]X0
t = 0. (2.6)

The total least square (TLS) aims to approximate this solution when the

data measurements X1 = X0
1 + ∆X1 and X2 = X0

2 + ∆X2 are perturbed by

∆X = [∆X1 ∆X2]. The ∆X is the measurement noise matrix. Therefore,

the error-in-variable model for the (2.1) is:

X1
T ≈ BTX2

T (2.7)

Consequently, the EIV model for each data point is:

X1t ≈ BTX2t. (2.8)

The noise profile in the inputs and outputs and their correlations among each

other have an important impact on the estimation accuracy. The original

TLS solution is restricted to the parameter estimation in static models when

there is no correlation between inputs and output measurement noises [38] .

In the dynamic models the data matrix has the block-Hankel structure. This

is the motivation for developing a solution called Structured TLS (STLS) for

identifying dynamic models [42]. Several improvements have been developed

for STLS for decreasing its computation time and complexity [43] and to cover

data matrices with more variety of structural forms [44].
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2.1.1 The total least square solution

If the error in the ∆X matrix have uncorrelated Gaussian distribution with

mean zero and constant variance σ2, then the conventional TLS method pro-

vides a consistent estimation to the following minimization [45]:

BTLS = argmin
B

∥[∆X1 ∆X2]∥2F subject to (X1−∆X1) = (X2−∆X2)B,

(2.9)

where ||·||F is the Frobenius norm. The solution to this problem using singular

value decomposition (SVD) is given as follow: Let X = [X1 X2] = UΣW T

where Σ = diag(σ1, · · · , σm+1) is a singular value decomposition of X. Denote

the following partitioning: W = [W11 W12
W21 W22

] and Σ = [ Σ1 0
0 Σ2

], in which W22 and

Σ2 have the dimension of m×m. The TLS solution exists if and only if W22 is

non-singular and it is unique if and only if σi ̸= σi+1. With these conditions,

the solution will be BTLS = −W12 ×W−1
22 .

2.1.2 The element-wise total least square solution

Different approaches and algorithms have been developed in the literature to

provide a consistent parameter estimation B for B0 under different noise con-

ditions. One of the important indicators for choosing the appropriate TLS

method is the form of the covariance matrix of ∆X, V , which indicates the

correlation between the measurements noise and their variances. These differ-

ent methods are reviewed and categorized in [40] and [46].

The total least square (TLS) solution to the regression problem in Section

2.1.1 provides consistent estimation for B0 if V has a constant format of σ2I for

all the data points [45]. The structured total least square (STLS) method, es-

timates the parameters in (2.1) when the regressor matrix X has a structural

form (block-Hankel form in dynamic models) [42, 43]. When the measure-

ment noise matrix is row wise independent and column wise correlated with

equal row covariance matrix, the weighted total least square provides consis-

tent estimation [47,48]. The element wise weighted total least square method

is developed for a special case when the measurements noise row covariance

matrices are not equal and vary among the rows (changes among the data

points) [49].
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The EW-TLS minimization problem is defined as:

min
B,∆X

N∑
t=1

||V −1/2
t ∆Xt||

2

2 s.t.(X +∆X)

[
I

−B

]
= 0. (2.10)

where Vt is the covariance matrix for the ∆Xt for each data point t and N is the

number of the data points. This minimizations provides a consistent parameter

estimation forB0 [49] if the regressor error vector ∆X has zero mean. Equation

(2.10) can be reformed into the following unconstrained minimization problem:

min
B

N∑
t=1

ft(B),

ft(B) = rTt (B)Q−1
t rt(B)

(2.11)

where Qt(B) = [I − BT ] × Vt ×

[
I

−B

]
and rt(B) = X1t − BTX2t . Vt is

partitioned as

Vt =

[
var(X1t) cov(X1t , X2t)

cov(X2t , X1t) var(X2t)

]
=

[
Vit Vt12

Vt21 Vt2

]
. (2.12)

Standard local optimization methods are preferable choices for solving the

above non-convex minimization problem. In [50] the Levenberg-Marguardt

algorithm (Matlab’s lsqnonlin) is considered. Another algorithm based on

the classical optimization methods is developed in [51]. [49] introduced an

interactive algorithm in the univariate case (l = 1) using a procedure developed

in [52].

The EW-TLS method’s consistent estimation requires the covariance ma-

trices values to be known up to a scalar coefficient. Therefore any matrix cVt

can be used instead of Vt, where c is a constant. This relaxes the condition

of knowing the true variance values of the measurements noise. Handling the

measured data with combination of noisy and deterministic values is another

advantage of this method. The deterministic measurements result in the near

zero rows and columns in Vts, which makes them near singular. The EW-TLS

method is able to tolerate this singularity problem so that it does not have

adverse impact on the estimation results.
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2.2 The Kronecker product

The Kronecker product, also known as the direct product or the Tensor prod-

uct, is defined by a partitioned matrix whose (i, j)’s partition is AijB [53]:

A⊗B ≡




A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB


 = matrix [AijB] .

A ∈ Rm×n

B ∈ Rr×s

A⊗B ∈ Rmr×ns

(2.13)

Some of the properties of this product are as follows.

A⊗ (B + C) = A⊗B + A⊗ C Distributivity (2.14a)

(A⊗B)⊗ C = A⊗ (B ⊗ C) Associativity (2.14b)

(A⊗B)(C ⊗D) = AC ⊗BD Mixed product rule (2.14c)

(A⊗B)T = (AT ⊗BT ), (A⊗B)−1 = (A−1 ⊗B−1) (2.14d)

Also the following derivatives are defined:

∂A(M)B(M)

∂M r×s
=

∂A

∂M
(Is ⊗B) + (Ir ⊗ A)

∂A

∂M
(2.15a)

∂a(M)B(M)

∂M r×s
=

∂a

∂M
⊗B + a(M)

∂A

∂M
(2.15b)

∂An×m(M)⊗Bk×l(M)

∂M r×s
=

∂A

∂M
⊗B+(Ir⊗Unk)(

∂B

∂M
⊗A)(Is⊗Ulm) (2.15c)

∂A−1(M)

∂M r×s
= −(Ir ⊗ A−1)

∂A

∂M
(Is ⊗ A−1) (2.15d)

where A(M) and B(M) are matrix functions of matrixM and a(M) is a scalar

function of matrix M .

Also, let us prove the following Lemma which will be used later.

Lemma 2.1 : If Al is a square matrix, and B is a matrix with appropriate
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dimensions, the following equation holds :

n⨿
l=1

(BAlB
T ) =

(
n⨿

l=1

B

)
×

(
n⨿

l=1

Al

)
×

(
n⨿

l=1

BT

)
, (2.16)

where
⨿n

l=1Al = A1 ⊗ A2 ⊗ A3 ⊗ · · · ⊗ An.

Proof. According to associativity property and the mixed product rule

of the Kronecker product we have:

n⨿
l=1

BAlB
T = (BA1B

T )⊗ (BA2B
T )⊗ · · · ⊗ (BAnB

T )

=
(
(BA1B

T )⊗ (BA2B
T )
)
⊗ · · · ⊗ (BAnB

T )

=
(
(B ⊗B)× (A1B

T ⊗ A2B
T )
)
⊗ (BA3B

T )⊗ · · · ⊗ (BAT
nB

T )

=
(
(B ⊗B)× (A1 ⊗ A2)× (BT ⊗BT )

)
⊗ (BA3B

T )⊗ · · · ⊗ (BAT
nB

T )

=
((
(B ⊗B)× (A1 ⊗ A2)× (BT ⊗BT )

)
⊗ (BA3B

T )
)

⊗ (BA4B
T )⊗ · · · ⊗ (BAT

nB
T )

...

= (B ⊗B ⊗ · · · ⊗B)× (A1 ⊗ A2 ⊗ · · · ⊗ An)

× (BT ⊗BT ⊗ · · · ⊗BT )

=

(
n⨿

l=1

B

)
×

(
n⨿

l=1

Al

)
×

(
n⨿

l=1

BT

)

2.3 Moments of the normal distribution and

some of its properties

The moment generating function of a random variable ∆X with normal dis-

tribution N (µ, σ2) is defined as [54]:

M∆X(t) = E[et∆X ] = et∆X+
1
2
σ2t2 (2.17)
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Also the following property holds:

E[∆Xk] =M
(k)
∆X(0). (2.18)

By using the above, if the random variable ∆X has µ = 0 then its moments

of degree k(E[(∆X)k]) can be calculated as:

E[∆Xk] =

0 k = 2r − 1

(σ2/2)r(2r)!
(r)!

= (k − 1)!! σk k = 2r
(2.19)

where k!! is the factorial of the odd numbers for k. The following two lemma

will be used in the rest of the thesis:

Lemma 2.2 : Assume that X is a deterministic variable, therefore The

following equation holds:

E[(X −∆X)j] =


∑r−1

k=0(BkX
j−2kσ2k) j = 2r − 1∑r

k=0(BkX
j−2kσ2k) j = 2r

(2.20)

where Bk =

(
j

2k

)
(2k − 1)!!.

Proof. Using (2.19) the following proves the lemma:

E[(X −∆X)j] = E[

j∑
i=0

((−1)i

(
j

i

)
Xj−i(∆X)i)]

=

j∑
i=0

((−1)i

(
j

i

)
Bk∆X

j−iE[∆X i])

=


∑r−1

k=0(BkX
j−2kσ2k) j = 2r − 1∑r

k=0(BkX
j−2kσ2k) j = 2r

Lemma 2.3 : The additional deterministic values does not have any effect on

the covariance of random variables. Thus, for any two random variables

∆X1,∆X2 and deterministic variables X1, X2 the following holds:

Cov(X1 +∆X1, X2 +∆X2) = Cov(∆X1,∆X2) (2.21)
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Proof.

Cov(X1 +∆X1, X2 +∆X2)

= E[(X1 +∆X1 − E[X1 +∆X1])(X2 +∆X2 − E[X2 +∆X2])]

− E[(X1 +∆X1 − E[X1 +∆X1])]E[(X2 +∆X2 − E[X2 +∆X2])]

= E[(X1 +∆X1 −X1 − E[∆X1])(X2 +∆X2 −X2 − E[∆X2])]

− E[(X1 +∆X1 −X1 − E[∆X1])]E[(X2 +∆X2 −X2 − E[∆X2])]

= E[(∆X1 − E[∆X1])(∆X2 − E[∆X2])]

− E[(∆X1 − E[∆X1])]E[(∆X2 − E[∆X2])]

= Cov(∆X1,∆X2)
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Chapter 3

The AG Noise Problem and

New Retrieving Procedures

1 In this section, an overview on the Algebraic Geometric approach is pre-

sented, and the roots of noise handling problem in this approach are investi-

gated. As discussed, in the AG method all the ARX models are embedded in

one linear model called hybrid decoupling polynomial (HDP). The parameters

of HDP are then estimated using linear regression. In the second stage, the

parameters of SARX model need to be retrieved from the identified HDP. In

this section two new approaches are presented that improve the performance

of retrieving stage under noisy conditions significantly.

3.1 The AG approach

The Switched ARX (SARX) model has the following representation:

yt = −αλt
1 yt−1 · · · − αλt

nα(λt)
yt−nα(λt) − βλt

1 ut−1 · · · − βλt

nβ(λt)
ut−nβ(λt) − cλt + εt

(3.1)

1A version of this chapter has been published in following papers:
Nazari, Sohail, Qing Zhao, and Biao Huang. “An improved algebraic geometric solution

to the identification of switched ARX models with noise.” American Control Conference
(ACC), 2011. IEEE, 2011.
Nazari, Sohail, Qing Zhao, and Biao Huang. “Matrix-wise approach for identification of

multi-mode Switched ARX models with noise.” American Control Conference (ACC), 2012.
IEEE, 2012.
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where ut ∈ R is the input, and yt ∈ R is the output of the system. λt is the

discrete event state, also known as the mode of operation. In this chapter, λt

is considered as an unknown arbitrary sequence from the integer set λt ∈ Z :

1, 2, · · · , n , where n is the total number of modes. Equation (3.2) describes a

set of underlying sub-models for SARX system when λt = i, i = 1, 2, · · · , n.
The εt is additive measurement noise that has Gaussian distributions with

zero mean and variance assumed to be δ2.

Another representation of (3.1) is as follows:

bT1Xt = εt

bT2Xt = εt
...

bTnXt = εt

, (3.2)

where bi = [1 αi
1 α

i
2 · · · αi

nα(i)
βi
1 β

i
nβ(i)

ci]T is the parameter-set for each sub-

model and correspondingly, Xt = [yt · · · yt−nα(i) ut−1 · · · ut−nβ(i) 1]
T ∈ RK is

the regressor vector. The integer i is the value of the discrete state at time t,

and K = maxnα(i) + maxnβ(i) + 1. Note that only one of the sub-models in

(3.2) is valid at each data point. In other words, if Xt belongs to the sub-model

i at time t (λt = i) then the linear regression model bTi Xt = εt represents the

system at that time.

3.1.1 The HDP formulation

The main difference between the SARX model and the ARX model is the

discrete switching sequence (λt), which dramatically increases the complexity

of the identification procedure. Since each data point belongs to a different

mode, the linear regression cannot be used to estimate the parameters. To

circumvent this difficulty, a model that is independent from switching sequence

should be constructed. Notice that for any one data point, one of the sub-

models in (3.2) should hold. Taking the product of all equations of all sub-

models in (3.2) and embedding them into one higher order equation ensures

that all the data points satisfy the following polynomial equation:

Pn(Xt) =
n∏

i=1

bTi Xt = ϵt. (3.3)
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In this section, the original AG approach [32] is reviewed. This methods

is based on the assumption that the error (ϵt) in (3.3) is zero (when the sub-

models are noise free, εt = 0) or negligible. However we will show that this

error can be significant in the presence of the noise and is not simply the

multiplication of all white noises (ϵt ̸=
∏n

i=1 εt).

Pn is called the hybrid decoupling polynomial (HDP) [32]. Although taking

the product is not the only way to eliminate the switching sequence, the use

of the HDP leads to certain advantages in its algebraic structure. The HDP is

a multivariate polynomial of degree n with K variables, which can be written

linearly in terms of its coefficients as

Pn(Xt) =
n∏

i=1

bTi Xt =

Mn(K)∑
I=1

hIzIt = HT
n ϑn(Xt) = ϵt (3.4)

where, hI ∈ R is the coefficient of the monomial

zIt = yn1
t yn2

t−1 · · · ymax(nα(i))
t−nmax(nα(i))

u
max(nα(i))+1
t−1 · · · unK−1

t−max(nβ(i))
1nK ,

where 0 ≤ nj ≤ n, j = 1 · · · K, n1 + · · · + nK = n. ϑn : RK → RMn(K) is

a Veronese map of degree n [55] , which is defined as ϑn : [x1t · · · xKt]
T →

[· · · zIt · · · ]T with I chosen in the degree-lexicographic order, e.g.

ϑ2([x1t x2t x3t]
T ) =

[
x21t x1tx2t x1tx3t x

2
2t x2tx3t x

2
3t

]T
= [z1y z2t z3t z4t z5t z6t]

T ;
(3.5)

Mn(K) =
(
n+K−1

n

)
is the total number of independent monomials in (3.4), and

H = [h1 h2 · · · hMn(K)]
T is the parameters vector of the HDP. In order to

have unique parameter vector H, h1 is assumed to be equal to one.

Equations (3.3) and (3.4) should hold for all data points. Therefore, the

following equation represents a linear ARX model with the parameter vector

H:

Ln(nα, nβ)H =
[
ϑn

(
Xmax(nα,nβ)

)
· · · ϑn

(
Xmax(nα,nβ)+N−1

)]T
H = ϵN×1, (3.6)

where N is the number of data points, and Ln(max(nα(i), nβ(i))) ∈ RT×Mn(K)

is the matrix of the embedded and mapped input/output data via the Veronese

variety. Note that in this linear model, the switching sequence is eliminated
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completely. Estimation of the SARX parameters can now be achieved in two

steps. In the first step the HDP is constructed by (3.4) and its parameters are

estimated through (3.6). In the second step the SARX parameters for each

sub-model are recovered from the estimated HDP.

3.1.2 The HDP’s parameters estimation

As discussed above, equation (3.6) represents a linear ARX model. In this

ARX model the elements of ϑn(Xt) are regressors and Hn is the parameter

vector. Estimating the coefficients of HDP can be done through regression.

In [56] a least square solution is suggested for this regression problem, but due

to the multiplication nature of ϑn(Xt), the regressors in Pn carry measure-

ment errors. Therefore in this regression problem the regressors have errors in

themselves. As it is discussed in [45] the least square solution to the regression

problem with error in variable will result in a biased estimation. Therefore, a

better candidate for solving this regression problem is total least square (TLS)

method. The main goal in the identification of SARX models is to find the

parameters of each sub-model. Estimating these parameters can be done us-

ing the estimated HDP. Ma and Vidal [32] suggested a method for solving

this problem by using the derivatives of HDP in the deterministic (noise-free)

situation:

DPn(Xt) =
∂Pn(Xt)

∂Xt

=
∂(
∏n

i=1 b
T
i Xt)

∂Xt

=
n∑

i=1

bi

n∏
l ̸=i

bTl Xt. (3.7)

If Xt
λt belongs to the ithsub-model so that λt = i, then bTi Xt

λt = 0, and since

the first element of each bi is equal to 1, each parameter set can be found

uniquely through the following equation:

bi =
DPn(Xt

λt)

(eT1DPn(Xt
λt))

. (3.8)

where Xt
λt is the data point belonging to the ith sub-model. In this method,

at least one data-point is needed for identifying each sub-model’s parameter.

In order to have an unsupervised procedure for estimating the parameters,

one point belonging to each sub-model should be found. But when there is

noise, the data points in the space of the embedded mapped model do not lie

exactly on the hyperplanes constructed by (3.4). Therefore, the nearest point
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to each hyperplane should be found. This becomes the problem of calculating

the distance of each data point to its closest hyperplane without knowing the

normals of the hyperplanes. In [56], the first-order approximation to such

distance is derived. Using that approximation an algorithm is developed to

find the nearest point to each hyperplanes. By using those founded data

points, each bi can be recovered through (3.8). This algorithm works well for

data with small noise variances, but when the variance of the noise increases,

this algorithm does not provide accurate results and can end up into the local

minimum. The situation is worse when the system is more complex and has

higher orders. Even when the appropriate data point is found, equation (3.8)

holds only in the absence of the noise. Also in order to recover the parameter

vectors, one data point should be clustered for each sub-model. The above

issues are motivations for developing new methods to recover the parameter

vectors from HDP without clustering any data points and as a result having

more accuracy in presence of noise.

3.2 Improved retrieving procedures

3.2.1 The element-wise approach

In order to overcome the problems addressed in the previous section, we pro-

posed an approach that avoids finding the data point for each sub-model. In

fact, in this approach, all data points are utilized without being clustered.

This approach results in a closed-form solution for the two-mode models. We

name this as element-wise approach, in the sense that the parameters of the

original sub-models are solved one by one in an analytical form.

In this approach, after reconstructing (3.8) to make it suitable for a linear

regression solution, all the data points are used to build a system of equations.

The derivation is as follows. Consider the two-mode model as:bT1Xt = εt

bT2Xt = εt
, (3.9)

and its corresponding HDP as: Pn(Xt) = (bT1Xt) × (bT2Xt). The derivative
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with respect to Xt is:

DPn(Xt) =
∂Pn(Xt)

∂Xt

= b1(b
T
2Xt) + b2(b

T
1Xt) (3.10)

DPn(Xt) is a vector since Xt is a vector. Therefore, (3.10) is an equation in

the vector form. In order to fit the problem into a linear regression problem,

one can consider each element of the above equation:

DiPn(Xt) = b1i(b
T
2Xt) + b2i(b

T
1Xt), (3.11)

where the ith element of DPn(Xt) is DiPn(Xt), and the jth element of bi is bij.

Now, starting with the first element, we have

D1Pn(Xt) = b11(b
T
2Xt) + b21(b

T
1Xt),

As assumed previously, that b11 and b21 are equal to one. Therefore,

D1Pn(Xt) = (bT2Xt) + (bT1Xt) = (bT1 + bT2 )Xt = XT
t (b1 + b2).

Now, using all the data points in the above equation results in
D1Pn (X1)

...

D1Pn (XN)

 =


XT

1
...

XT
N

 (b1 + b2) = L (b1 + b2) , (3.12)

It is clear that above equation is a linear regression problem with regres-

sion vector (L), and the parameter vector to be estimated is (b1 + b2). Since

D1Pn(Xt) is noisy, and some elements of Xt also have in-variable noise, the

TLS method will be used to find the parameter estimation.

Again, as discussed in Section 2.1.1, the X matrix is equal to

XT

1
...

XT
N



D1Pn (X1)

...

D1Pn (XN)


; and with the SVD method, (b1 + b2) can be

estimated. Let us assume

(b1 + b2) = A1. (3.13)

A1 is a vector with K elements, containing the estimated parameters from the
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first element of the HDP derivative. Using (3.10) in (3.13), we have:

DPn(Xt) = b1
(
(A1 − b1)

T
)
+ (A1 − b1)(b

T
1Xt) (3.14)

This equation is a vector-wise equation. Using the second element of the above

equation, we obtain

D2Pn (Xt) = b12
(
(A1 − b1)

TXt

)
+ (A1

2 − b12)
(
bT1Xt

)
=
(
b12 (A

1 − b1)
T
+ (A1

2 − b12) b
T
1

)
Xt = XT

t (b12 (A
1 − b1) + (A1

2 − b12) b1) .

Similar to (3.12), all the data points should be used in the above equation,

resulting in the following equation:
D2Pn (X1)

...

D2Pn (XT )

 =


XT

1
...

XT
N

 (b12 (A
1 − b1) + (A1

2 − b12) b1)

= L (b12 (A
1 − b1) + (A1

2 − b12) b1) .

Again, using the SVD and TLS, we have

(
b12
(
A1 − b1

)
+
(
A1

2 − b12
)
b1
)
= A2, (3.15)

where A2 contains the parameters estimated from the second element of the

HDP derivative. The goal is to find b1. Based on the second element of each

vector in (3.15), we have

A2
2 =

(
b12
(
A1

2 − b12
)
+
(
A1

2 − b12
)
b12
)
= 2b12A

1
2 − 2b212.

This ends in b212 − A1
2b12 +

1
2
A2

2 = 0, which is a second-order equation with

respect to b12 . By using solution formula for the quadratic equations, we have

b12 =
A1

2 ±
√

(A1
2)

2 − 2A2
2

2
. (3.16)

Now that b12 is found, using the third element of each vector in (3.15), we will

have:

A2
3 =

(
b12
(
A1

3 − b13
)
+
(
A1

2 − b12
)
b13
)
.
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Then, by solving for b13, the above equation gives b13 =
A2

3−b12A1
3

A1
2−2b12

. Similarly

all the other parameters can be obtained.

Remark 3.1. From the above procedure, b1 is found, and b2 can be found

from (3.13). This indicates that for a two-mode model, the parameters can be

estimated without clustering any data point.

Remark 3.2. In the original AG method, for a two-mode model, two mini-

mization problems needed to be solved, similarly, in the proposed EW method,

two TLS regression problems should be solved.Therefore, the proposed method

does not increase the complexity with respect to the original AG method.

Remark 3.3. Equation (3.16) has two solutions. Selecting each of them

and continuing the procedure will lead to either one of the parameter sets.

Since only one quadratic equation needs to be solved, this method results

in a unique solution for the two-mode models. However, in the three-mode

models, using the same approach and with some straightforward mathematical

manipulations, one ends up solving K different polynomial equations with

order three. Since one cannot determine which solution belongs to which

parameter vector, the unique solution cannot be found. Therefore, further

studies are needed for generalizing this new method.

Remark 3.4. After estimating the parameters, the data points can be

clustered via the following minimization. Clustering the data points will re-

construct the switching sequence.

λt = arg min
i=1,...,n

(bTi Xt)
2 (3.17)

3.2.2 The matrix-wise approach

In this section a general solution for recovering SARX parameters from the

estimated SHDP is developed. The approach given in this section is called

matrix-wise (MW) approach, which show improved results compared to the

original AG algorithm (the SARX parameters recovering step). Since all the

data points are used in this approach, the need for matching one data point

to each sub-model prior to recovering parameters is eliminated. In the deriva-

tion of the matrix-wise approach, the Kronecker product (⊗) and some of its

properties as well as matrix differential calculus are used.

Consider a SARX model with n sub-models in (3.2), and its corresponding

SHDP as Pn(Xt) =
∏n

i=1(b
T
i Xt). The n − 1 derivatives with respect to Xt

28



CHAPTER 3. THE AG NOISE PROBLEM AND NEW RETRIEVING
PROCEDURES

should be taken from (3.4). Consider the first four derivatives:

D1Pn(Xt) =
∂Pn(Xt)

∂Xt

=
n∑

i1=1

(
bi1 ×

n∏
i2 ̸=i1

(bTi2Xt)

)

D2Pn(Xt) =
∂2Pn(Xt)

∂Xt∂xTt
=

∑
i1,i2∈M=nP2

(
bi1 × bTi2 ×

∏
i3∈Mc

(bTi3Xt)

)

D3Pn(Xt) =
∂3Pn(Xt)

∂Xt∂xTt ∂Xt

=
∑

i1,i2,i3∈M=nP3

(
(bi1 × bTi2)⊗ bi3 ×

∏
i4∈Mc

(bTi4Xt)

)

D4Pn(Xt) =
∂4Pn(Xt)

∂Xt∂xTt ∂Xt∂xTt

=
∑

i1,i2,i3,i4∈M=nP4

(
(bi1 × bTi2)⊗ (bi3 × bTi4)×

∏
i5∈Mc

(bTi5Xt)

)
(3.18)

where M = nPk is a set of all possible combinations in selecting k numbers

from n numbers where the order is important andM c is the complement set of

M . Since bij is a vector, bij ⊗bTik = bij ×bTik . Therefore, the (n− 1)th derivative

of Pn(Xt) when n is an odd number is as follows:

Dn−1Pn(Xt) =
∂n−1Pn(Xt)

∂Xt∂xTt ∂Xt∂xTt · · · ∂Xt∂xTt

=
∑

i1···in−1∈M=nPn−1

 ⨿
k∈{1, 3, ··· , n−2}

(bikb
T
ik+1

)× (bTin∈McXt)

 (3.19)

If n is an even number we have:

Dn−1Pn(Xt) =
∂n−1Pn(Xt)

∂Xt∂xTt ∂Xt∂xTt · · · ∂Xt

=
∑

i1···in−1∈M=nPn−1

 ⨿
k∈{1, 3, ··· , n−3}

(bikb
T
ik+1

)⊗ bin−1 × (bTin∈McXt)

 ,

(3.20)

where
⨿

is defined in Section 2.2. It can be seen that each term in (3.19)

and (3.20) is linear with respect to (Xt). Both derivatives are matrix-wise

equations. First, assume that the number of modes is odd. By considering

each element of (3.19), the following element-wise equations for the odd n is
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obtained:

Dn−1
lm Pn(Xt) =

∑
i1···in−1∈M=nPn−1

[⨿
k∈G

(bikb
T
ik+1

)× (bTin∈McXt)

]
lm

=
∑

i1···in−1∈M=nPn−1

[⨿
k∈G

(bikb
T
ik+1

)× (bTin∈McXt)−
⨿
k∈G

(bikb
T
ik+1

)

]
lm

=
∑

i1···in−1∈M=nPn−1

[⨿
k∈G

(bikb
T
ik+1

)× (bTin∈McXt)

]
lm

(3.21)

where [.]lm is the element of the matrix at row l and column m, and G ≡
{1, 3, · · · , n− 2}. The above scalar equation should hold for all data points.

Therefore, by taking the transpose of (3.21) and using all data points, we have:
Dn−1

lm Pn(X1)
...

Dn−1
lm Pn(XN)

 =


XT

1
...

XT
N

 ∑
i1···in−1∈M=nPn−1

[
bin∈Mc ×

⨿
k∈G

(bikb
T
ik+1

)

]
lm

.

(3.22)

The above is linear regression problem with the regressors matrix as

XT

1
...

XT
N



Dn−1

lm Pn(X1)
...

Dn−1
lm Pn(XN)


. Therefore by using TLS solution the following

parameter vector can be estimated:

∑
i1···in−1∈M=nPn−1

[
bin∈Mc ×

⨿
k∈G

(bikb
T
ik+1

)

]
lm

= Alm. (3.23)

The above equation is a vector-wise equation. Repeating the same proce-

dure for all the elements in (3.19) and combining all the resultant vector-wise

equations into one matrix-wise equation results in the following equation:

∑
i1···in−1∈M=nPn−1

(⨿
k∈G

(bikb
T
ik+1

)⊗ bTin∈Mc

)
=


AT

11 · · · AT
1n

AT
21 · · · AT

2n
...

. . .
...

AT
n1 · · · AT

nn

 = Λ. (3.24)
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Also consider the following equation:

∑
i1···in−1∈M=nPn−1

(⨿
k∈G

(bikb
T
ik+1

)⊗ bTin∈Mc

)

=
∑

i1···in−1∈M=nṔn−1

(⨿
k∈G

(bikb
T
ik+1

+ bik+1
bTik)⊗ bTin∈Mc

) (3.25)

where M = nṔk is the set of all possible combinations of selecting k numbers

from n numbers when the order is important between each pair of numbers

but not between two numbers in the pairs. Equation (3.24) can be rewritten

as:

∑
i1···in−1∈M=nṔn−1

(⨿
k∈G

(BCikik+1
BT )⊗ eTin∈McBT

)
= Λ (3.26)

where eij is a unit vector with length n and its ithj element is equal to one

and other elements equal to zero, B = [b1, · · · , bn], and
[
eik eik+1

]
×

[
0 1

1 0

]
×[

eTik
eTik+1

]
= Cikik+1

.

Using Lemma 2.1 with the above equation results in:

∑
i1···in−1∈M=nṔn−1

(

(n−1)/2⨿
l=1

B)× (
⨿
k∈G

Cikik+1
)× (

(n−1)/2⨿
l=1

BT )⊗ eTin∈McBT

 = Λ

(3.27)

By using the mixed product property of Kronecker product and equation

(3.27) the generalized matrix-wise equation is obtained (when n is odd).

(

(n−1)/2⨿
l=1

B)×

 ∑
i1···in−1∈M=nṔn−1

(
⨿
k∈G

Cikik+1
)⊗ eTin∈Mc

× (

(n+1)/2⨿
l=1

BT ) = Λ

S.T.: B1i = 1 i ∈ 1, · · · , n
(3.28)

Following the same approach when n is an even number, (3.20) will result
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in:

∑
i1···in−1∈M=nṔn−1

 ⨿
k∈{1, 3, ··· , n−3}

(BCikik+1
BT )⊗ (Bein−1 ⊗ eTin∈McBT )

 = Λ

(3.29)

Above equation can be rewritten as:

∑
i1···in∈M=nṔn

 ⨿
k∈{1, 3, ··· , n−1}

(BCikik+1
BT )

 = Λ (3.30)

Finally the generalized matrix-wise equation when n is even can be found

as:

(

n/2⨿
l=1

B)×

 ∑
i1···in∈M=nṔn

(
⨿

k∈{1, 3, ··· , n−1}

Cikik+1
)

× (

(n)/2⨿
l=1

BT ) = Λ

S.T.: B1i = 1 i ∈ 1, · · · , n

(3.31)

The solutions to equations (3.28) and (3.31) are the parameter vectors.

Remark 3.5 : For the two-mode models, (3.31) is simplified to:

B ×

[
0 1

1 0

]
×BT = Λ,

s.t.: B11 = B12 = 1

(3.32)

for which K TLS problems need to be solved.

Remark 3.6 : Analytical solutions for equations (3.28) and (3.31) are gen-

erally difficult to find if not impossible, due to the complexity created by the

product of the matrices. In this case, iterative numerical methods can be

used. In the simulation section, two numeric methods including the Newton

method and the particle swarm optimization (PSO) method are utilized. The

PSO method [57], which is an evolutionary optimization method, is used to

find an appropriate initial point. Then the Newton method is applied based

on this initial point. Combination of these two ensures faster convergence to

the solution. The PSO’s parameters are set by the guidelines discussed in
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[58]. A toolbox for MATLAB has been developed for the PSO algorithm [59].

This toolbox is used for solving the generalized Matrix-wise equations in our

simulations.

Remark 3.7 : In three-mode models, (3.28) can be simplified to:

B × [C23 C13 C12]×
(
BT ⊗BT

)
= Λ,

s.t.: B11 = B12 = B13 = 1
(3.33)

Remark 3.8 : The EW or MW approaches can be used independently in

the second step of the original AG algorithm. Hence, instead of recovering

the SARX parameters from SHDP, MW or EW approaches can be applied to

recover these parameters from HDP used in original AG algorithm.

3.2.3 Simulation results

In this section, some of the simulation results are discussed. Firstly, the iden-

tification results obtained by original AG approach, EW approach and MW

approach for two two-mode systems will be presented. The experimental re-

sults obtained from EW approach will also be shown.

Simulation results for a two-mode model

Two 2-mode systems are used in the simulations. The first system is from [56].

This system has been used in several references such as [60],

system 1:

yi = 2ui−1 + 10 + w(t) ui−1 < 0

yi = −1.5ui−1 + 10 + w(t) ui−1 ≥ 0

The second system, which is more complex is:

system 2:

yi = −0.5yi−1 + 0.3yi−2 + ui−1 + 5 + w(t) yi−1 ≥ 0

yi = 0.7yi−1 − 0.4yi−2 + 2ui−1 − 3 + w(t) yi−1 < 0

In both systems, u has uniform distribution in the range of [−10 10], and y(0)

is−10. ω(t) is Gaussian noise with zero mean and varying variances. The noise

variances used in the simulations are σ2 = [0.01 0.04 0.1 0.25] . Simulations

have been run 100 times for each noise variance. In each run, the generated

noise is initialized with a random number in order to prevent any replication
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in MATLAB. In the MW approach, the initialization of the PSO algorithm

is a random number in the range of [−20 20].Also, the number of particles

and the number of iterations are assumed to be 50 and 1000 respectively. As

mentioned before, the Newton method uses the value found by PSO as the

starting point. The error between the estimated parameter b̂ and the actual

parameters b is computed as:

error = max
i=1,··· ,n

min
j=1,··· ,n

||b̂i − bj||
||bj||

.

The accuracy of the clustering is computed by using (3.17). Simulation results

are presented in Fig. 3.1. This figure reveals that the overall performances

of the new approaches are better than the original method. The most im-

portant observation from Fig. 3.1 is that the original approach fails to have

satisfactory results when the system becomes more complex. In system 2, the

difference between the performances of the new approaches and the original

method is significant. Another important point is that the variance of the es-

timation error decreases dramatically for both systems 1 and 2 when applying

the proposed methods. This advantage is mainly due to the utilization of the

TLS regression. It is also noticeable that EW approach gives better results

than MW approach. This is due to optimization error using PSO and Newton

method.

Experimental results

In this section, an experimental setup introduced in [61] is used to show

the effectiveness of proposed method on real systems. The pilot plant is a

tank system with two different level controllers. Two controllers have different

transient responses in set-point tracking. One of them results in a fast response

with high overshoot and the other one provides slower responses with much

less overshoots. Switching between two controllers is performed following a

random sequence. In this experimental setup the goal is to identify the closed-

loop model for the two mode hybrid system.

The orders of the sub-models are selected as nα = 2, nβ = 2, which is

the same as the ones used in [61]. By applying the proposed EW approach

to the de-trended data collected from the plant, the following parameters are
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Figure 3.1: Simulation results for two systems with two modes. The left is
System 1 and the right is System 2. EW (Doted line), MW (Solid line) and
Original approach (Dashed Line) for both systems.
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estimated for the two mode system:yk = 1.3547yk−1 − 0.4304yk−2 + 0.0406uk−1 − 0.0344uk−2

yk = 2.4864yk−1 − 1.7158yk−2 + 0.1422uk−1 − 0.1552uk−2

(3.34)

The data set available from this experiment consists of 1000 data points. The

first 700 data points are used for training and estimating purposes and the

rest are used for model validation. The sampling time is 3 second. The self-

validation and cross-validation results of the model are shown in Fig. 3.2. As

it can be seen in this figure, the model estimated by the proposed method

shows a good performance in both self-validation and cross-validation tests.

The results obtained by this method are improved significantly over the results

reported in [61], which are obtained by using expectation maximization (EM)

algorithm. The MSE of the self-validation results is 9.8 × 10−6 and the MSE

for cross-validation results is 1.04 × 10−5. Unfortunately these MSEs for the

illustrated algorithm in [61] are not reported. However, for comparison the

cross validation and self validation of these two algorithms are reported in

figures 3.2 and 3.3. Overall this experiment shows the applicability of our

proposed methods.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

Self − validation of model

2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
Time

Cross−validation of model

Figure 3.2: Validation results: ‘–’ the actual output; ‘- -’ the estimated output
based on the estimated parameters
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Figure 3.3: Validation results: ‘–’ the actual output; ‘- -’ the estimated output
based on the estimated parameters from [61]

3.3 The AG approach’s noise problem

The results provided in the previous section are satisfactory. The mean error

in estimated parameters were less than the original AG method. The models

discussed in the simulation section were two-mode models. Estimating the

parameters for three-mode models leads to a larger error. Although the results

obtained from MW approach (EW approach cannot be implemented on three-

mode models) shows improvement from the original method, the mean error

is far from acceptable range. This was a motivation to have a further study

on (3.3) and the way the noise is embedded in that equation.

From (3.3), one can notice that the right hand side is the noise with un-

known variance and zero mean. In the previous section, this noise was consid-

ered to be small and additive. However, this assumption has been contradicted

by our simulations results. Table 3.1 shows the mean and variance of ϵ in (3.3)

for system 2, described in the previous section, and Table 3.2 shows results

for a three mode system with nα = 2, nβ = 1. As seen in these tables, the

variances are very high especially in the three-mode model (table 3.2).

For further investigations, consider the HDP for the three-mode model:

P3(Xt) = (bT1Xt)× (bT2Xt)× (bT3Xt)

For one data point (Xt), one of the brackets will have a small value equal

to εi and the other two will have a possibly large values (the distance of that
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Table 3.1: Mean and variance of the noise ϵ in the two-mode systems

δ2ε 0.01 0.05 0.1 0.5 1

Mean ϵ 0.004 0.046 0.17 0.54 1.22
Variance ϵ 3.093 15.83 32.15 158.29 312.91

Table 3.2: Mean and variance of the noise ϵ in the three-mode system

δ2ε 0.01 0.05 0.1 0.5

Mean ϵ .94 1.19 5.54 1.67
Variance ϵ 1.53× 104 7.79× 104 1.54× 105 7.93× 105

data point from the two other hyperplanes). This means that for all the data

points, the HDP will not equal to a small noise. Therefore, this problem is

addressed fundamentally in the next chapter with reformulating the HDP.
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Chapter 4

The Stochastic Algebraic

Geometric Approach

1 In this chapter, a new approach is introduced that considers the measure-

ment noise in the inputs/output data, by revisiting the formulation of the

hybrid decoupling polynomial (HDP). An error-in-variable (EIV) representa-

tion is adopted. This new formulation is called the stochastic HDP (SHDP)

and the proposed approach is called the stochastic algebraic geometric (SAG)

approach.

4.1 The problem formulation

Consider the following true switching linear dynamic model:

X0
1t = b01

T
X0

2t

X0
1t = b02

T
X0

2t

...

X0
1t = b0n

T
X0

2t

, X0
1t = x01t ∈ R1×1, X0

2t =


x021t

x022t
...

x02mt

 ∈ Rm×1 b0i ∈ Rm×1

(4.1)

where b0i s are the true parameter vectors for each sub-model at the mode i, n is

the number of the sub-models in this multi-mode model andm is the maximum

number of the parameters among all the parameter sets. Also X0
1t, X0

2t are

the output and inputs of a physical model before corrupting with measurement

1A version of this chapter is under preparation to be submitted to a journal.
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noise. X0
t =

[
X0

1t

X0
2t

]
, and X0 are the noise-free data matrix defined as:

X0 = [X0
1 X0

2 ] =



x011 x0211 x0221 · · · x02m1

x012 x0212 x0222 · · · x02m2
...

...
...

...

x01t x021t x022t · · · x02mt
...

...
...

...

x01N x021N x022N · · · x02mN


, (4.2)

where,

X0
1 =



x011

x012
...

x01t
...

x01N


, X0

2 =



x0211 x0221 · · · x02m1

x0212 x0222 · · · x02m2
...

...
...

x021t x022t · · · x02mt
...

...
...

x021N x022N · · · x02mN


, (4.3)

and x0jt, j ∈ {1 , 21 22 · · · 2m}, are noise-free regressors at time t. Due to

the fact that the system is switching among n modes, only one of the above

sub-models is the true representation of the system at the time t, or only one

of the equations above is satisfied at the time t. Alternative representation of

the above multi-model is as follows.

X0
1t = b0λt

T
X0

2t (4.4)

where λt = 1, 2, · · · , n is the indicator for the sub-model at time t that is active

in this multi-mode model. The λt is also called the discrete switching sequence

among the sub-models. The inputs, outputs or any arbitrary exogenous cause

from outside of the system(e.g. time, random sequence) can change the value

of λt at time t. Therefore the switching sequence is not necessarily dependent

on the regressors.

In a SISO dynamic system, the X0
1t contains the true output value of the

40



CHAPTER 4. THE STOCHASTIC ALGEBRAIC GEOMETRIC
APPROACH

system and X0
2t vector contains the true back-shifted outputs and inputs:

X0
1t = y0t , X0

2t =


x021t

x022t
...

x02mt

 =



y0t−1
...

y0t−nα(i)

u0t−1
...

u0t−nβ(i)

1


, (4.5)

where y0t−i and u
0
t−j are the true value regressors before being corrupted with

noise. The identification problem for (4.1) is defined as follow:

Identification Problem: Consider the available inputs and outputs mea-

surements X = [X1 X2] = [X0
1 + ∆X1 X0

2 + ∆X2]. Assuming that X is

persistent enough and the modes are visited frequently enough, the identifi-

cation problem is to find bi as an estimation to b0i . In addition, the switching

sequence λt needs to be identified.

The matrix ∆X = [∆X1 ∆X2] is the measurement noise matrix. The

following assumptions are used through the rest of the thesis:

i) The number of modes n is previously known.

ii) The univariate case is considered (l = 1) although the developed results

can be easily extended to multivariate case. Therefore X1t = x1t and

X2t = [x21t x22t · · · x2mt]
T respectively. Hence, Xt =

[
X1t

X2t

]
.

iii) The inputs and output are perturbed by independent additive measure-

ment gaussian noises with zero mean and constant variances. The vari-

ance of each noise source can be different. Therefore the covariance

matrix of

∆Xt = [∆x1t ∆x21t ∆x22t · · · ∆x2mt]
T is the following diagonal

matrix:

Cov(∆Xt) = Diag(σ2
x1
, σ2

x21
, · · · , σ2

x2m
) (4.6)
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Finally, the error-in-variable (EIV) representation of the model (4.1) is:

X1t ≈ b1
TX2t

X1t ≈ b2
TX2t

...

X1t ≈ bn
TX2t

(4.7)

All the sub-models in (4.7) are linear regression models and parameter

estimation for each of them individually is possible using the total least square

methods discussed in Section 2.1.2. However, the identification is dependent

on the switching sequence as there is no information about which data belongs

to which sub-model. The lack of this information increases the identification

complexity dramatically. Therefore, constructing a model that is independent

of switching sequence λt is a promising way to circumvent this complexity.

Assuming that λt = k, k ∈ {1, · · · , n} for X0
t at time t, therefore in (4.1)

X0
1t−b0k

T
X0

2t = 0. Taking the product of all the equations of all the sub-models

in (4.1) and embedding them into one higher order equation ensures that all

the data points satisfy the following polynomial equation [32]:

Pn(X
0
t ) =

n∏
i=1

(X0
1t − bTi X

0
2t) = 0. (4.8)

The right hand side of the above multiplication is zero, since one of the

brackets is equal to zero. Pn is called the hybrid decoupling polynomial (HDP).

As discussed in Section 3.1.1, the HDP is a multivariate polynomial of degree

n with K = m + 1 variables, which can be written linearly in terms of its

coefficients as:

Pn(X
0
t ) =

Mn(K)∑
I=1

h0Iz
0
It = H0Tϑn(X

0
t ) = 0. (4.9)

where, ϑn : RK → RMn(K) is a Veronese map of degree n [55] , which is

defined as ϑn : [x1t · · · xKt]
T → [· · · zIt · · · ]T with I chosen in the degree-

lexicographic order. Also, hI ∈ R is the coefficient of the monomial

z0It = (x01t)
n1I (x021t)

n21 I · · · (x02mt)
n2mI ,
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where 0 ≤ njI ≤ n, j ∈ {1, 21 · · · , 2m}, and n1I + n21I + · · ·+ n2mI = n, I =

1, · · · , Mn(K), and Mn(K) =
(
n+K−1

n

)
is the total number of independent

monomials in (4.9). e.g.

ϑ2([x
0
1t x

0
21t

x022t]
T ) =

[
x01t

2
x01tx

0
21t

x01tx
0
22t

x021t
2
x021tx

0
22t

x022t
2
]T

=[z01t z
0
2t z

0
3t z

0
4t z

0
5t z

0
6t]

T = Z0
t .

Equations (4.8) and (4.9) hold for all the data points, therefore the fol-

lowing equation represents a linear regression model with the true parameter

vector H0:

H0T
[
ϑn(X

0
1 ) · · · ϑn(X

0
t ) · · · ϑn(X

0
N)
]
= H0TZ0T = 01×N , (4.10)

where N is the number of data points, and Z0 ∈ RN×Mn(K) is the matrix of

the embedded and mapped true input/output data via the Veronese variety

Z0 = [Z0
1 Z0

2 · · · Z0
Mn(K)] =



z011 z012 · · · z0I1 · · · z0Mn(K)1

z012 z022 · · · z0I2 · · · z0Mn(K)2
...

...
...

...

z01t z02t · · · z0It · · · z0Mn(K)t
...

...
...

...

z01N z02N · · · z0IN · · · z0Mn(K)N


, (4.11)

where Z0
I =



z0I1
z0I2
...

z0It
...

z0IN


, and Z0

t =



z01t

z02t
...

z0It
...

z0Mn(K)t


.

In (4.10) the switching sequence is eliminated completely and the true pa-

rameter vectorH0 can be estimated using regression methods without knowing

the λt. In order to have a unique parameter vector, the first element of pa-

rameter vector H0T is always assumed to be one. By defining H̃0
T
so that
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H0T = [1 − H̃0
T
], (4.10) is changed to:

H0TZ0T = [1 − H̃0
T
]



Z0
1
T

Z0
2
T

...

Z0
I
T

...

Z0T
Mn(K)


= 0 (4.12)

Therefore, the true SARX model can be represented by the following sys-

tem of linear equations similar to (2.1):

Z0
1
T
= H̃0

T



Z0
2
T

...

Z0
I
T

...

Z0T
Mn(K)


(4.13)

Linear regression methods can be used for estimating the parameter vector

H̃0 in the above equation. Hence, the identification of the multi-mode model

(4.1) can be achieved in two consecutive steps. In the first step, the embedded

model (HDP) is constructed and its parameter vector H0 is estimated. In the

second step, the sub-model parameters (b0i ) are retrieved from the estimated

HDP.

Let us introduce an illustrative example that will be used through the rest

of this chapter.

Illustrative Example 4.1: Consider the following two-mode model:x01t = α0
1x

0
21t

+ β0
1x

0
22t

x01t = α0
2x

0
21t

+ β0
2x

0
22t

(4.14)
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The HDP for the above example will be:

(x01t − α0
1x

0
21t

− β0
1x

0
22t
)× (x01t − α0

2x
0
21t

− β0
2x

0
22t
)

= x01t
2
+ (−α0

1 − α0
2)x

0
1tx

0
21t

+ (−β0
1 − β0

2)x
0
1tx

0
22t

+ (α0
1α

0
2)x

0
21t

2

+ (α0
1β

0
2 + α0

2β
0
1)x

0
21t
x022t + (β0

1β
0
2)x

0
22t

2

= 0

(4.15)

Therefore

z0t = [z01t z
0
2t z

0
3t z

0
4t z

0
5t z

0
6t]

T = [x01t
2
x01tx

0
21t

x01tx
0
22t

x021t
2
x021tx

0
22t

x022t
2
]T

and correspondingly,

H0T = [1 (−α0
1 − α0

2) (−β0
1 − β0

2) (α0
1α

0
2) (α0

1β
0
2 + α0

2β
0
1) (β0

1β
0
2)].

Also note that H0(1) = 1.

In this chapter we focus on estimating the parameters for HDP when re-

gressors are corrupted with the measurements noise. The proposed approach

in this chapter complies with the parameter recovering procedures developed in

the Section 2.3. They can be readily applied to retrieve the SARX sub-models’

parameters.

4.2 The stochastic hybrid decoupling polyno-

mial

When the data is corrupted with measurement noise, the equation (4.8) is not

valid anymore. In order to make the right hand side of (4.8) equal to zero, the

influence of measurement noise has to be taken into account [31]. In this case,

the regressors containing noises are represented by X = X0 + ∆X. Denote

X0 = X −∆X, the equation (4.8) becomes:

Pn(X
0
t ) = Pn(Xt −∆Xt) =

n∏
i=1

((X1t −∆X1t)− bTi (X2t −∆X2t)) = 0. (4.16)
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Taking Xt as the main argument, the HDP is denoted by SPn(Xt), i.e.:

SPn(Xt) =
n∏

i=1

((X1t −∆X1t)− bTi (X2t −∆X2t))

=

Mn(K)∑
I=1

h0Iz
0
It = H0Tϑn(Xt −∆Xt) = 0.

(4.17)

Since SPn(Xt) accounts for the measurements noise inside the HDP, for

further referrals, it is called stochastic hybrid decoupling polynomial (SHDP).

The SHDP can also be written as a multivariate polynomial of degree n

and K = m+ 1 variables. The monomials in SHDP have the form:

z0It = (x1t −∆x1t)
n1I (x21t −∆x21t)

n21 I · · · (x2mt −∆x2mt)
n2mI , (4.18)

where n1I + n21I + · · · + n2mI = n, I = 1, · · · , Mn(K). The structure of

the coefficients of the monomials in the SHDP is as same as the monomials in

the HDP. Therefore the parameter vector for SHDP is also the true parameter

vector H0. Multiplying the brackets in (4.18) results in:

z0It = (x1t −∆x1t)
n1I (x21t −∆x21t)

n21 I · · · (x2mt −∆x2mt)
n2mI

= ((x1t)
n1I (x21t)

n21 I · · · (x2mt)
n2mI )− ψI(Xt,∆Xt)

= zIt − ψI(Xt,∆Xt) = zIt −∆zIt,

(4.19)

where ψI(Xt,∆Xt) is a multivariate polynomial of variables

x1t, x21t, · · · x2mt and ∆x1t, ∆x21t, · · · ∆x2mt. Hence, zIt = z0It + ∆zIt

and its vector representation is:

Zt = Z0
t +∆Zt. (4.20)

where, Zt = [z1t z2t · · · zIt · · · zMn(K)t]
T = ϑn(Xt). Using (4.20) in (4.10)
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results in:

H0TZ0T = H0T



Z1
T −∆Z1

T

Z2
T −∆Z2

T

...

ZI
T −∆ZI

T

...

ZT
Mn(K) −∆ZT

Mn(K)


= H0T (ZT −∆ZT ) = 01×N . (4.21)

By comparing (2.1) with (4.10), and by following the EIV model definition

(2.7) of (2.1), the EIV model of (4.10) is:

HTZT ≈ 0. (4.22)

Hence, by using HT = [1 − H̃T ], the EIV model of (4.13) becomes:

Z1
T ≈ H̃T



Z2
T

...

ZI
T

...

ZT
Mn(K)


(4.23)

where, H̃ is the estimated model parameter vector. It is best to illustrate

the derivation of SHDP by continuing the Illustrative example 4.1 from the

Section 4.1.

Illustrative example 4.2: The SHDP of the two-mode model (4.14) can be
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derived as follow:

SP2(Xt) =
(
(x1t −∆x1t)− α0

1(x21t −∆x21t)− β0
1(x22t −∆x22t)

)
×
(
(x1t −∆x1t)− α0

2(x21t −∆x21t)− β0
2(x22t −∆x22t)

)
= (x1t −∆x1t)

2 + (−α0
1 − α0

2)(x1t −∆x1t)(x21t −∆x21t)

+ (−β0
1 − β0

2)(x1t −∆x1t)(x22t −∆x22t) + (α0
1α

0
2)(x21t −∆x21t)

2

+ (α0
1β

0
2 + α0

2β
0
1)(x21t −∆x21t)(x22t −∆x22t) + (β0

1β
0
2)(x22t −∆x22t)

2

=
(
x21t − 2x1t∆x1t + (∆x1t)

2
)

+ (−α0
1 − α0

2)
(
x1tx21t − (x1t∆x21t +∆x1tx21t) + ∆x1t∆x21t

)
+ (−β0

1 − β0
2)
(
x1tx22t − (x1t∆x22t +∆x1tx22t) + ∆x1t∆x22t

)
+ (α0

1α
0
2)
(
x221t − 2x21t∆x21t + (∆x21t)

2
)

+ (α0
1β

0
2 + α0

2β
0
1)
(
x21tx22t − (x21t∆x22t +∆x21tx22t) + ∆x21t∆x22t

)
+ (β0

1β
0
2)
(
x222t − 2x22t∆x22t + (∆x22t)

2
)

(4.24)

Therefore, the EIV model of this SHDP is:

z1t ≈ H̃T [z2t · · · z6t]
T ,

Zt = [z1t z2t z3t z4t z5t z6t]
T = [x1t

2 x1tx21t x1tx22t x21t
2 x21tx22t x22t

2]T

H̃T = [(α1 + α2) (β1 + β2) − (α1α2) − (α1β2 + α2β1) − (β1β2)],

(4.25)

and the ∆Zt can be written as:

∆Zt = [(2x1t∆x1t − (∆x1t)
2) (x1t∆x21t +∆x1tx21t −∆x1t∆x21t)

(x1t∆x22t +∆x1tx22t −∆x1t∆x22t) (2x21t∆x21t − (∆x21t)
2)

(x21t∆x22t +∆x21tx22t −∆x21t∆x22t) (2x22t∆x22t − (∆x22t)
2)]T

(4.26)

It is understood from the definition of ∆Zt in (4.19) that the regressors

error vector of the EIV model (4.23) is under the influence of the regressors

Xt. This means that the covariance matrix of ∆Zt at time t depends on

the measured data points at that time. Hence, a suitable TLS method for a
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consistent estimation of parameter vector H̃ is applied that can handle this

varying regressors error covariance matrix. As discussed in the Section 2.1.2

the element-wise total least square (EW-TLS) method provides a consistent

estimation in such cases. This is true, when the regressor error vector at each

data point has zero mean.

Unfortunately, this is not the case for the ∆Zt in (4.23). To overcome this

problem, one can define Žt = Zt − E[∆Zt], where E[·] is the expected value.

This change of variable ensures that ∆Žt = Žt − Z0
t has zero mean:

Theorem 4.1 : Assuming that Zt is a random variable vector, then the

vector Žt = Zt − E[∆Zt] has zero mean and V∆Žt
= V∆Zt .

Proof.

Žt = Zt − E[∆Zt]

Žt = Z0
t +∆Zt − E[∆Zt] ⇒ ∆Žt = ∆Zt − E[∆Zt]

E[∆Žt] = E[∆Zt − E[∆Zt]] = E[∆Zt]− E[∆Zt] = 0.

(4.27)

V∆Žt
= E[(∆Žt − E[∆Žt])(∆Žt − E[∆Žt])

T ]

= E[(∆Žt)(∆Žt)
T ] = E[(∆Zt − E[∆Zt])(∆Zt − E[∆Zt])

T ]

= V∆Zt .

(4.28)

where, V∆Zt is partitioned as :

V∆Zt =

[
var(z1t) cov(z1t, Z

c
t )

cov(Zc
t , z1t) var(Zc

t )

]
=

[
V∆Zt1 V∆Zt12

V∆Zt21 V∆Zt2

]
, (4.29)

and Zc
t = [z2t · · · zMn(K)t]

T .

Therefore, the following theorem delivers a consistent estimation for H̃:

Theorem 4.2 : Consider the available regressors X corrupted with additive

measurement noise ∆X, and the mapped regressors Zt = ϑn(Xt) defined

in equations (4.18) - (4.21), where ϑ(·) is the Veronese map of degree n,

the following minimization problem can generate a consistent estimation
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of the parameters H̃ in the EIV model (4.23).

ft(H̃) = rTt (H̃)Q−1
t rt(H̃)

min
H̃

N∑
t=1

ft(H̃)
(4.30)

where

Qt(H̃) = [1 −H̃T ]×V∆Zt×

[
1

−H̃

]
, rt(H̃) = ž1t−H̃T [ž2t · · · žMn(K)t]

T .

Proof. It is shown in this section that in the EIV model (4.23) the addi-

tive errors are dependent on the regressors so that they have time-variant

covariance matrix. Also, It is proved in Theorem 4.1 that the E[Žt] is

zero. As discussed in Section 2.1.2, when the errors’ profile are variant

by time (the covariance matrix of error is changing at each data point),

the parameters of an EIV model (2.7) can be estimated consistently us-

ing (2.11) as the cost function [49]. This is true if the expected value

of error matrix is zero and the covariance matrix of error is known up

to a scalar at each data point. Therefore by using Theorem 4.1 and

also by calculating the covariance matrix of V∆Žt
in each data point the

parameters H̃ in EIV model (4.23) can be estimated consistently. It is

also important to note that V∆Žt
= V∆Zt as shown in Theorem 4.1

Thus, the calculation of expected value of the mapped (using Veronese va-

riety) regressors’ error E[∆Zt] and the covariance matrix of the mapped (using

Veronese variety) regressors’ error Cov(∆Zt) is essential for consistent estima-

tion. Next section is dedicated to finding a general formula for calculating the

mentioned expected and covariance values at each time t.

Remark 4.1: It is important to emphasize that the formulation of the SHDP

does not increase the complexity or order of the existing HDP. The length of

the parameter vectorH is not changed. The use of the EW-TLS for finding the

solution to the EIV problem (4.23) is very straightforward and is not iterative.

As it is illustrated in the simulation results, using the calculated covariance

matrix for the mapped regressors’ errors together with the EW-TLS solution

increases the accuracy of the estimated parameters significantly but without
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increasing complexity.

Remark 4.2: In the section 2.1.2 some optimization methods are discussed

for solving (2.11). The “fminunc” function in MATLAB can handle this op-

timization if the gradient of the cost function is supplied. The calculation of

such a gradient is included in the Section 5.2, which is:

f ′(H̃) =
∂f(H̃)

∂H̃
=

N∑
t=1

(2Ž1tr
T
t (H̃)Q−1

t (H̃)− rTt (H̃)Q−1
t (H̃) Gt Q

−1
t (H̃)rt(H̃))

(4.31)

where Gt = 2(V∆Zt1 − V∆Zt21H̃) and V∆Zt is partitioned as (2.12). The initial

point can be put either zero vector, or the estimated H parameter for HDP

using the basic total least square method.

For the summary, the Stochastic Algebraic Geometric method for multi-

mode EIV models is as follow.

Algorithm 1: Stochastic algebraic geometric (SAG) approach for estimating

SARX model parameters:

Initialization:

1. Construct the HDP.

2. Find an initial approximation for H using TLS and estimate the

parameters of the HDP.

Main Algorithm:

1. Calculate the E[∆Zt] using Theorem 4.3 in the Section 4.3.1 for

all the data points.

2. Calculate the V∆Zt using Theorem 4.4 in the Section 4.3.2 for all

the data points.

3. Calculate Žt = Zt − E[∆Zt].

4. Solve the minimization (4.30) using Ž and V∆Zt .

5. Recover the parameters of the sub-models using one of the recover-

ing algorithms discussed in the Section 3.2.
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4.3 Calculation of expected value and covari-

ance matrix of ∆Zt

From the definition of the ∆Zt in (4.19) we have:

∆zIt = zIt − (x1t −∆x1t)
n1I · · · (x2mt −∆x2mt)

n2mI , (4.32)

where [Z1t · · · ZMn(K)t]
T = ϑn(Xt). In the EIV model (4.23), the values

ZIt and xit are the available data and considered to be deterministic at time

t. These are a posterior data after the measurement happens, therefore at

time t they are known constants. The measurement error ∆xit describes the

error in the regression. Therefore at each data point at time t, ∆zrIt = (x1t −
∆x1t)

n1I (x21t −∆x21t)
n21 I · · · (x2mt −∆x2mt)

n2mI has a random distribution.

4.3.1 The expected value

Theorem 4.3 : The expected value of the ∆zIt having the available data

point Xt and Zt at time t is:

E[∆zIt] = zIt−
(
E[(x1t −∆x1t)

n1I ]

E[(x21t −∆x21t)
n21 I ]

· · ·E[(x2mt −∆x2mt)
n2mI ]

) (4.33)

where, n1I + n21I + · · ·+ n2mI = n, I = 1, · · · , Mn(K).

Proof. Using the definition of ∆Zt in (4.32) we have:

E[∆zIt] = E[zIt−(x1t−∆x1t)
n1I (x21t−∆x21t)

n21 I · · · (x2mt−∆x2mt)
n2mI ].

(4.34)

As discussed earlier E[zIt] = zIt, and from the assumption iii in the

Section 4.1 that ensures the independency of any ∆xit and ∆xjt the

proof follows:

E[ψi(xit,∆xit)ψj(xjt,∆xjt)] = E[ψi(xit,∆xit)]E[ψj(xjt,∆xjt)]. (4.35)
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It is important to note that calculating the E[(xit − ∆xit)
niI ] is a very

straightforward procedure and does not increase any complexity. They can be

calculated readily by using Lemma 2.2 in Section 2.3. This will be shown in

a illustrative example at the end of this section.

4.3.2 The covariance matrix

Theorem 4.4 : The ijth element of the covariance matrix ∆Zt with the

available data Xt and Zt at time t is calculated as:

Vij∆Zt

=
(
E[(x1t −∆x1t)

(n1i+n1j)]E[(x21t −∆x21t)
(n21 i

+n21 j
)]

· · ·E[(x2mt −∆x2mt)
(n2mi+n2mj)]

)
−

(
E[(x1t −∆x1t)

n1i ]E[(x21t −∆x21t)
n21 i ]

· · ·E[(x2mt −∆x2mt)
n2mi ]E[(x1t −∆x1t)

n1j ]

E[(x21t −∆x21t)
n21 j ] · · ·E[(x2mt −∆x2mt)

n2mj ]

)
(4.36)

where, n1I + n21I + · · ·+ n2mI = n, I = 1, · · · , Mn(K).

Proof. Let us first show the following for any X and Y random variable,

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY − E[X]Y − E[Y ]X + E[Y ]E[X]]

= E[XY ]− 2E[X]E[Y ] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ].

(4.37)

Since ZIt is deterministic at time t, using Lemma 2.3 in the Section

2.3, it does not have any effect on the covariance of ∆Zt.
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Therefore,

Vij∆Zt
= Cov(∆Zit,∆Zjt) = Cov(∆Zr

it,∆Z
r
jt)

= E[∆Zr
it∆Z

r
jt]− E[∆Zr

it]E[∆Z
r
jt]

= E[(x1t −∆x1t)
n1i(x21t −∆x21t)

n21 i · · · (x2mt −∆x2mt)
n2mi

(x1t −∆x1t)
n1j(x21t −∆x21t)

n21 j · · · (x2mt −∆x2mt)
n2mj ]

− E[(x1t −∆x1t)
n1i(x21t −∆x21t)

n21 i · · · (x2mt −∆x2mt)
n2mi ]

× E[(x1t −∆x1t)
n1j(x21t −∆x21t)

n21 j · · · (x2mt −∆x2mt)
n2mj ]

(4.38)

With the assumption (iii) in the Section 4.1 and using (4.35) the rest of

the proof is trivial.

Remark 4.3: The calculation of E[(xit −∆xit)
niI ] is very straight forward

with the formula provided in Lemma 2.2 in the Section 2.3. For a model

with n modes, general formulas for E[(Y −∆Y )i], i = 1 · · · 2n, where ∆Y is

a Gaussian random variable, need to be calculated using (2.20). Thereafter,

the computation of the the covariance and expected value of ∆Zt is only mul-

tiplication of polynomials with substitution of the values inside the calculated

general formulas. MATLAB and most other programming languages can han-

dle this multiplication very efficiently. By continuing our illustrative example

4.2 we show this simplicity.

Illustrative example 4.3: Since the model (4.14) has two modes, E[(Y −
∆Y )i], i = 1 · · · 2 × 2 = 4 has to be derived. These can be calculated using

(2.20):

E[(Y −∆Y )] = Y

E[(Y −∆Y )2] = Y 2 + σ2
∆Y

E[(Y −∆Y )3] = Y 3 + 3Y σ2
∆Y

E[(Y −∆Y )4] = Y 4 + 6Y 2σ2
∆Y + 3σ4

∆Y

(4.39)
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The ∆Zt vector for the two-mode model (4.14) and its corresponding ex-

pected value, using Theorem 4.3 and (4.39), will be:

∆Zt =



x21t − (x1t −∆x1t)
2

x1tx21t − (x1t −∆x1t)(x21t −∆x21t)

x1tx22t − (x1t −∆x1t)(x22t −∆x22t)

x221t − (x21t −∆x21t)
2

x21tx22t − (x21t −∆x21t)(x22t −∆x22t)

x222t − (x22t −∆x22t)
2



⇒ E[∆Zt] =



x21t − (x21t − σ2
∆x1

)

x1tx21t − (x1tx21t)

x1tx22t − (x1tx22t)

x221t − (x221t − σ2
∆x21

)

x21tx22t − (x21tx22t)

x222t − (x222t − σ2
∆x22

)


=



σ2
∆x1

0

0

σ2
∆x21

0

σ2
∆x22



(4.40)

Also calculation of some of the elements in the covariance matrix by using

Theorem 4.4 and (4.39) are as follow:

V11∆Zt
= E[(x1t −∆x1t)

4]− E[(x1t −∆x1t)
2]E[(x1t −∆x1t)

2]

= x41t + 6x21tσ
2
∆x1

+ 3σ4
∆x1

− (x21t + σ2
∆x1

)(x21t + σ4
∆x1t

)

= 4x21tσ
2
∆x1t

+ 2σ4
∆x1t

V12∆Zt
= E[(x1t −∆x1t)

3]E[(x21t −∆x21t)]

− E[(x1t −∆x1t)
2]E[(x1t −∆x1t)]E[(x21t −∆x21t)]

= (x31t + 3x1tσ
2
∆x1

)(x21t)− (x21t + σ2
∆x1

)(x1t)(x21t)

= 2x1tx21tσ
2
∆x1

V22∆Zt
= E[(x1t −∆x1t)

2E[(x21t −∆x21t)
2]− E[(x1t −∆x1t)]

2E[(x21t −∆x21t)]
2

= (x21t + σ2
∆x1

)(x221t + σ2
∆x21

)− (x21t)(x
2
21t)

= x21tσ
2
∆x21

+ x221tσ
2
∆x1

+ σ2
∆x1

σ2
∆x21

V14∆Zt
= E[(x1t −∆x1t)

2]E[(x21t −∆x21t)
2]− E[(x1t −∆x1t)

2]E[(x21t −∆x21t)
2]

= 0

(4.41)

As mentioned, the procedure of calculating the covariance matrix V∆Zt can

be implemented in MATLAB or any other programming languages efficiently.
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4.4 Simulation results

The simulation examples in this section are chosen to illustrate the scalabil-

ity and consistency (A three-mode model numerical example), practicality (A

two-mode blending process) and applicability (A component placement exper-

imental setup data) of the proposed method. The simulation results are also

compared to simulation results using Algebraic Geometric approach [32] that

intends to solve the same problem.

4.4.1 A three-mode model numerical example

Consider the following three-mode ARX model:

Simulation Example 1:


y0t = −0.9y0t−1 + u0t−1 + 0.3u0t−2

y0t = 0.7y0t−1 − u0t−1 + 0.6u0t−2

y0t = 0.5y0t−1 − 0.6u0t−1 − 0.5u0t−2

(4.42)

In this example the output is considered to have additive white gaussian

noise with normal distribution with zero mean and σ2 variance and the inputs

are noise free. Since each sub-model is an ARX model, not only the available

data yt at time t is noisy, but also yt−1 is having additive measurement noise.

Therefore the EIV model of the above example will be:

Xt = [X1t X2t] = [X0
1t X

0
2t] + [∆X1t ∆X2t]

= [yt yt−1 ut−1 ut−2] = [y0t y0t−1 u0t−1 u0t−2] + [νt νt−1 0 0]
(4.43)

The νt is considered to be a white gaussian noise, and νt and νt−1 are indepen-

dent from each other. Therefore the ∆X in this example complies with the as-

sumption iii in the Section 4.1. The input has a uniform distribution of [−1 1]

and the switching sequence is a discrete random number between 1, 2 and 3.

The simulation is performed under different noise conditions. In this simula-

tion, 100 independent executions are performed for σ = [0.01 0.1 0.2 0.3 0.4]

and the number of data points for each run is N = 200. The estimation error

for parameters vector H is computed as the following normalized error:

error H =
||H −H0||2

||H0||2
. (4.44)
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The mean values of estimation’s errors for each noise standard deviation

are illustrated in table 4.1, using the proposed Stochastic Algebraic Geometric

approach and the Algebraic Geometric approach [32].

Table 4.1: The mean estimation error in 100 independent execution for pa-
rameter vector (H) for example 1

σ 0.01 0.1 0.2 0.3 0.4

The SAG approach 0.0050 0.0773 0.1832 0.3360 0.5534
The AG approach 0.0176 0.2593 0.5188 0.7248 0.9095

Table 4.1 clearly shows the improvement of estimation for the H param-

eter vector. The estimation error is decreased by 50% for all different noise

variances scenarios. This improvement is achieved without increasing any com-

plexity with respect to the length of the HDP parameters. In implementation

of both the AG and the SAG approaches, the “fminunc” function is used in the

MATLAB. Also note that the length of the H vector is Mn(K) =M3(4) = 20.

Hence, this example clearly shows that the proposed method can provide sat-

isfactory estimation even in complicated scenarios.

The consistency of the proposed method is also evaluated with this simu-

lation example. For this purpose, 10 independent runs are executed for each

data point numbers:

N = [100 1000 2000 3000 4000 5000].

The standard deviation of the measurement noise for all these executions is

set to σ = 0.3. Figure 4.1 illustrates the simulation results for the mean of

parameter vector H estimation error with different number of data points.

4.4.2 The blender process

Consider a blending process as figure 4.2.

In the steady state, it is assumed that the volume of liquid in the tank is

constant since all the flow rates q1, q2, q3, q4, q5 are constant, subject to a

small variation. This is a revised example from [62]. The density of all streams

is constant at 90 lb/ft3. The recycling line is 68.8ft long and has an inside

diameter of 4in. The tank is 6ft in diameter and is perfectly mixed. The

normal steady state values are:
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Figure 4.1: The consistency of the estimation for H in 3-mode model

Figure 4.2: The blender process schematic

q̄1 = 50ft3/min q̄2 = 2ft3/min q̄3 = 82ft3/min V = 100ft3

The mass balance equation for this blender is:

1

(c− 1)
q1 +

1

(c− 1)
q2 = q3, (4.45)

where c is the recycling rate. In this simulation example, the recycling rate

is considered to switch between its nominal value C = 0.37 and C = 0.407 in

a periodic manner. The flow rates q1, q2, q3 are measured with independent

additive gaussian noise with zero mean and variances σ2
i . Therefore, in this

example both input and outputs are noisy. For this example: X1 = q3, X2 =
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[q1 q2] and ∆X = [ν1 ν2 ν3].

The switching happens every 30 samples and number of the data points in

each simulation run is N = 200. The inputs q1 and q2 are considered to have

uniform distribution [−1 1] and the simulation is executed under two different

noise scenarios:

Noise scenario 1: 100 independent executions for each standard deviation:

σ1 = σ2 = σ3 = [0.1 0.2 0.3 0.4]

Noise scenario 2: 100 independent executions for each standard deviation:

σ1 = σ2 = [0.1 0.2 0.3 0.4] and σ3 = 2σ2.

The mean estimation error for HDP parameters vector (H) and also mean

estimation error for the sub-model parameter vectors are measured. The later

error is calculated by using (4.44) and the former error is calculated by using

the following:

error b = max
i=1,··· ,n

min
j=1,··· ,n

||bi − b0j ||
||b0j ||

(4.46)

Figures 4.3 and 4.4 show the performance results for the SAG and the

AG approaches under two noise scenarios. It is illustrated that the proposed

method outperforms the AG approach and delivers estimations with signifi-

cantly lower (around 50%) estimation errors.
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Figure 4.3: The mean estimation error of parameter vector H (error H)for the

blender under both noise scenarios
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Figure 4.4: The mean estimation error of parameter vector b (error b)for the

blender under both noise scenarios

4.4.3 The component placement experimental setup

In this section the proposed SAG method is applied on four experimental

setup data sets. This setup is a component placement process in pick-and-

place machines [63] as shown in figure 4.5.

Figure 4.5: The component placement setup [63].

The data sets are down sampled to 50Hz so that the results can be compa-

rable to the results reported in [32]. The down-sampled data has 750 samples,

which is divided into two set of training and testing data sets with portion of

60



CHAPTER 4. THE STOCHASTIC ALGEBRAIC GEOMETRIC
APPROACH

Table 4.2: The comparison of SSR and SSE for SAG approach and AG ap-
proach in the component placement process

Dataset 1 Dataset 2 Dataset 3 Dataset 4

SSR
The SAG approach 0.0678 0.4220 0.6132 1.1070
The AG approach 0.0803 0.4765 0.6692 3.1004

SSE
The SAG approach 0.0816 0.3342 0.6621 1.1768
The AG approach 0.1195 0.4678 0.7368 3.8430

2 : 1. The model is considered to have two switching mode with the regressor

vectors: X1 = [yt], Xt = [yt−1 yt−2 ut−1 ut−2]. The u signal is the input to

the motor that is deriving the movement in the vertical axes, and the y out-

put is the hight. Table 4.2 reports the average square sum of one step ahead

prediction error (SSR) and average sum of squared one step ahead simulation

errors resulted by implementing the proposed method (SAG) on four sets of

the data. The variance of the noise is assumed to be σ = 0.1. The results

reported in [32] are also reported in table 4.2 for comparison.

The results in table 4.2 illustrates the improvements achieved by using the

proposed method in performing the parameter estimation. Also it shows that

the SAG approach is practical and can be implemented in real applications.

In order to better show the promising estimation results, the cross and self

validation plots in dataset 4 , which has the most SSR and SSE error, are

presented in figures 4.6 and 4.7.

Remark 4.4: As discussed in the Section 2.1.2, calculation of the covariance

matrix to a scalar value suffice. Therefore, although the actual value of the

standard deviation of the measurement noise in these experimental data is

not available but having a logical assumption delivers acceptable results. The

proposed method is not highly sensitive to the true value of the standard

deviation of the noise. In order to show this, the proposed method is used

for estimation of the parameters in the dataset 4 using different values for the

standard deviation of the measurement noise. The computed SSR and SSE

for different noise variance assumption are reported in table 4.3.

As it can be seen in the table 4.3, the SSR and SSE does not change

noticeably under different noise assumptions.
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Figure 4.6: The self validation of the estimation in dataset 4 using the proposed
SAG method.
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Figure 4.7: The cross validation of the estimation in dataset 4 using the pro-
posed SAG method.

Table 4.3: The SSR and SSE for dataset 4 using the proposed method with
different assumptions for standard deviation of the noise

σ 0.01 0.05 0.1 0.2

The SSR 1.1191 1.1010 1.1017 1.1996
The SSE 1.1655 1.1673 1.1768 1.2538
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Chapter 5

The Recursive Element-Wise

Total Least Square Method

1 Most of the system identification methods developed based on the EIV model

need to utilize all the data and are not normally suitable for on-line appli-

cations. Hence, the online recursive version for these methods are of great

interests and some have been developed in the literature. In [64] and [65] a re-

cursive solution for the EIV model based system identification was presented.

However, the proposed method has some restrictions on the correlation of in-

puts and the output noises. In this method, inputs and the output noises are

assumed to be uncorrelated, and the noise characteristics cannot change with

the time, meaning that the noise covariance matrix is constant for all the data

points.

This chapter introduces a new recursive solution to the EIV system iden-

tification problem that relieves most of the restrictions on the noise charac-

teristics. The input and output noises can be correlated among themselves

and to each other. The noise variance for each input or output signal can be

time varying. This allows us to apply this method of identification to systems

or processes where the measurement noise profile changes with time. As an

example, in a petrochemical plant, starting different motors can induce differ-

ent noise characteristics. Another example is that a car driving under different

road conditions may experience different noise characteristics. Finally the abil-

ity to deal with some noise-free inputs or outputs among the noisy ones is one

other advantage of our purposed method. In this case, the noise covariance

matrix has some zero rows or columns (i.e. ill conditioned) and the parameters

1A version of this chapter has been submitted to control system letters journal.
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can still be estimated.

5.1 Recursive prediction error method (PEM)

The proposed recursive version of the EW-TLS method for (2.10) is developed

in this chapter, by following the recursive PEM algorithm discussed in [66,67].

Consider all the data points available till the sample t, using the cost function

(2.11):

ft(B) =
t∑

i=1

rTi (B)Q−1
i (B)ri(B). (5.1)

where, rTi (B) and Q−1
i (B) are defined as in (2.11). The symbols and notations

in this chapter are described in the Section 2.1. Let the B(t − 1) be the

parameter estimate at the time t−1. The goal is to find theB(t) that minimizes

the ft(B). Using the Tailor expansion of the cost function around B(t− 1) we

have:

ft(B) = ft(B(t− 1)) + f ′
t(B(t− 1))[B −B(t− 1)]

+ 0.5[B −B(t− 1)]Tf ′′
t (B(t− 1))[B −B(t− 1)]

+ o(|B(t)−B(t− 1)|2).

(5.2)

Where the differentiation is made with respect to B. Minimization of the

above equation with respect to B results in

B(t) = B(t− 1)− [f ′′
t (B(t− 1))]−1f ′

t [B(t− 1))]T + o(|B(t)−B(t− 1)|).
(5.3)

Since ft(B) is a summation of similar functions up to sample t, it can be

expanded as follow:

ft(B) =
t−1∑
i=1

(
rTi (B)Q−1

i ri(B)
)
+ rTt (B)Q−1

t rt(B)

=ft−1(B) + rTt (B)Q−1
t rt(B)

(5.4)
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Therefore taking the derivative with respect to B leads to:

f ′
t(B) = f ′

t−1(B) +
(
rTt (B)Q−1

t rt(B)
)′

= f ′
t−1(B) + gt(B)

(5.5)

By taking the second derivative, the following can be obtained,

f ′′
t (B) = f ′′

t−1(B) + g′t(B). (5.6)

In order to find the recursive regression, these assumptions need to be

made:

• The difference of the next estimate B(t) and the previous one (B(t− 1))

is very small so that o(|B(t) − B(t − 1)|) is negligible and f ′′
t (B(t)) =

f ′′
t (B(t− 1).

• B(t−1) is indeed the optimal solution for ft−1, therefore f
′
t−1(B(t−1)) =

0.

With the above assumptions the equation (5.5) becomes

f ′
t(B(t− 1)) =f ′

t−1(B(t− 1)) + gt(B(t− 1))

=gt(B(t− 1))
(5.7)

and equation (5.6) will change in

f ′′
t (B(t)) = f ′′

t−1(B(t− 1)) + g′t(B(t− 1)). (5.8)

Now, by substituting (5.5) and (5.6) into (5.3) we have:

B(t) = B(t− 1)− [f ′′
t (B(t))]−1gTt (B(t− 1)). (5.9)

It is clear that in the recursive PEM method, the first and second derivatives of

the (5.1) are necessary. The cost function in (5.1) is not linear with respect to

B, therefore calculating these derivatives are not straightforward. the Section

5.2 is dedicated to calculation of these derivatives.
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5.2 The first and the second derivatives of the

cost function

Without loss of generality and in order to save space only the univariate case

is discussed here. The multivariate case can be readily obtained by following

the same procedure. Only the mathematical forms are more complex. In this

case, Qi(B) and ri(B) in (5.1) are scaler functions of vector B ∈ Rm×1, where

m is the number of parameters to be estimated. The first derivative of the

cost function with respect to B is:

r
∂ft(B)

∂B
=

t∑
i=1

∂fi(B)

∂B
(5.10)

For simplicity ∂fi(B)
∂B

is calculated in the following.

∂fi(B)

∂B
= 2X1ir

T
i (B)Q−1

i (B)−

rTi (B)Q−1
i (B)

(
2(Vi1B − Vi12) + (Im ⊗ [BT − 1])

dVi
dB

[
B

−1

])
Q−1

i (B)ri(B)

(5.11)

For the simplicity consider G = 2(Vi1B − Vi12) and

V ′
B = (Im ⊗ [BT − 1])dVi

dB

[
B

−1

]
. Therefore,

∂fi(B)

∂B
=2X1ir

T
i (B)Q−1

i (B)− rTi (B)Q−1
i (B)(G+ V ′

B)Q
−1
i (B)ri(B)

= f ′1 − f ′2

(5.12)

Also the following derivatives are important and will be used.

∂ri(B)

∂BT
=
∂rTi (B)

∂BT
= XT

1i (5.13)

and,

∂BT

∂BT
= U1m = row(Im)

∂B

∂BT
= Im

(5.14)
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where row() is a function that puts all the rows of a matrix in a single row

vector. Using above and (2.15a) we have,

∂Qi

∂BT
=
[BT − 1]

∂BT
(Im ⊗ Vi

[
B

−1

]
) + [BT − 1]

∂Vi

[
B

−1

]
∂BT

=[U1m 01×m](Im ⊗ Vi

[
B

−1

]
)

+ [BT − 1]

(
∂Vi
∂BT

(Im ⊗

[
B

−1

]
) + Vi

[
Im

0

])

=2(BTV1i − V T
i12) + [BT − 1]

∂Vi
∂BT

(In ⊗

[
B

−1

]
)

=GT + V ′
B
T

(5.15)

Using (2.15d) and the above equation results in:

∂Q−1
i

∂BT
= −Q−1

i

∂Qi

∂BT
(Im ⊗Q−1

i )

= −Q−1
i (GT + V ′

B
T
)Q−1

i

(5.16)

Also consider

∂G

∂BT
= 2

∂Vi1B − Vi12
∂BT

= 2

(
∂Vi1
∂BT

(Im ⊗B) + Vi1
∂B

∂BT
− ∂Vi12
∂BT

)
= 2

(
∂Vi1
∂BT

(Im ⊗B) + Vi1 −
∂Vi12
∂BT

)
,

(5.17)
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and by using (2.15c), we have:

∂V ′
B

∂BT
=

∂(Im ⊗ [BT − 1])dVi

dB

[
B

−1

]
∂BT

=
∂(Im ⊗ [BT − 1])

∂BT
(Im ⊗ dVi

dB

[
B

−1

]
) + (Im ⊗ [BT − 1])

∂(dVi

dB

[
B

−1

]
)

∂BT

= Um1([U1m 01×m]⊗ Im)(Im ⊗ U(m+1)m)(Im ⊗ dVi
dB

[
B

−1

]
)

+ (Im ⊗ [BT − 1])

(
∂Vi

∂B∂BT
(Im ⊗

[
B

−1

]
) +

∂Vi
∂B

[
Im

0

])

= ([U1m 01×m]⊗ Im)(Im ⊗ U(m+1)m)(Im ⊗ dVi
dB

[
B

−1

]
)

+ (Im ⊗ [BT − 1])

(
∂Vi

∂B∂BT
(Im ⊗

[
B

−1

]
) +

∂Vi
∂B

[
Im

0

])
(5.18)

since Um1 = Im. Now that all the necessary component for deriving the second

derivative of f is developed, the following can be considered: ∂f
∂B∂BT =

∂f ′1
∂BT −

∂f ′2
∂BT .

∂f ′1
∂BT

=
∂X1iQ

−1
i ri

∂BT
= X1i

∂Q−1
i

∂BT
(Im ⊗ ri) +X1iQ

−1
i

∂ri
∂BT

= −X1iQ
−1
i (GT + V ′

B
T
)Q−1

i ri +X1iQ
−1
i XT

1i

(5.19)
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and by using (2.15b)

∂f ′2
∂BT

=
∂rTi Q

−1
i (G+ V ′

B)Q
−1
i ri

∂BT

= XT
1i ⊗ (Q−1

i (G+ V ′
B)Q

−1
i ri)︸ ︷︷ ︸

f ′′
21

+rTi
∂Q−1

i (G+ V ′
B)Q

−1
i ri

∂BT

= f ′′
21
+ rTi

∂Q−1
i

∂BT
⊗ ((G+ V ′

B)Q
−1
i ri) + rTi Q

−1
i

∂((G+ V ′
B)Q

−1
i ri)

∂BT

= f ′′
21
−rTi Q−1

i (GT + V ′
B
T
)Q−1

i ⊗ ((G+ V ′
B)Q

−1
i ri)︸ ︷︷ ︸

f ′′
22

+ rTi Q
−1
i

∂((G+ V ′
B)Q

−1
i ri)

∂BT

= f ′′
21
+ f ′′

22
+ rTi Q

−1
i (

∂G

∂BT
+
∂V ′

B

∂BT
)(Im ⊗ (Q−1

i ri))︸ ︷︷ ︸
f ′′
23

+ rTi Q
−1
i (G+ V ′

B)
∂Q−1

i ri
∂BT

= f ′′
21
+ f ′′

22
+ f ′′

23
+ rTi Q

−1
i (G+ V ′

B)

(
∂Q−1

i

∂BT
ri +Q−1

i

∂ri
∂BT

)
= f ′′

21
+ f ′′

22
+ f ′′

23
−rTi Q−1

i (G+ V ′
B)Q

−1
i (GT + V ′

B
T
)Q−1

i ri︸ ︷︷ ︸
f ′′
24

+ rTi Q
−1
i (G+ V ′

B)Q
−1
i XT

1i︸ ︷︷ ︸
f ′′
25

(5.20)

At the end we have:

∂fi
∂B∂BT

= 2
(
X1iQ

−1
i XT

1i −X1iQ
−1
i (GT + V ′

B
T
)Q−1

i ri

)
− (f ′′

21
+ f ′′

22
+ f ′′

23
+ f ′′

24
+ f ′′

25
)

(5.21)

Remark 5.1: In the batch version of EW-TLS it is assumed that the co-

variance matrices Vis are independent from the parameter vectors B therefore
dVi

dB
= 0. However, in this thesis dVi

dB
is not considered zero but can possibly

have the second non-zero derivative. This shows that the covariance matrices

can be functions of parameter matrix as well. Such a case is possible when the

measurement noise is dependent on the characteristics of the system and the

system itself is time-varying.

Remark 5.2: Since all of the terms in (5.21) are matrices and the deriva-
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tives can be found by only multiplication and summation of matrices, the

computation complexity and time for this calculation is low.

5.3 The Levenberg - Marquardt (LM) algo-

rithm

The chance of falling into a wrong local minimum is always a critical issue in

on-line recursive approaches. The batch version of EW-TLS method has been

shown to have the local convergence property [49], while the convergency of

the recursive version proposed in this work can be improved by Levenberg -

Marquardt [68], [69] algorithm. This algorithm implies that in (5.9) instead

of [f ′′
t (B(t))]−1 one should use [f ′′

t (B(t)) + λ diag[f ′′
t (B(t))] ]−1.

The constant λ is called the damping parameter. The damping parameter

is selected by the following procedure: Select and initial value λ. After a

recursion, evaluate the prediction error by using the estimated parameters; if

the error is higher than the previous error then increase the damping parameter

by a factor (ν). If the error is lower, then decrease the damping parameter by

the same factor and continue to the next recursion.

5.4 Recursive EW-TLS algorithm

At the end, the following algorithm can be presented as the recursive element-

wise total least square solution to the general error-in-variable problem.

Algorithm 2: Recursive EW-TLS Algorithm

1. Choose a suitable initialization values for B(0), f ′′
0 (0), λ and ν > 1.

2. Calculate f ′
t(B(t− 1)) from equation (5.12).

3. Calculate f ′′
t (B(t)) from (5.21).

4. Update

B(t) = B(t−1)− [f ′′
t (B(t))+λ diag{f ′′

t (B(t))} ]−1gTt (B(t−1)).

5. If ft(B(t)) < ft(B(t− 1)) then (λ = λ/ ν) else (λ = λ× ν)
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6. repeat for the next point

Remark 5.3: Unlike the batch version of the EW-TLS algorithm, the re-

cursive version proposed in this chapter does not need to solve any nonlinear

equations. Therefore, it does not need to solve any nonconvex problems using

the linearization assumption. The main approximation only appears in the

Tailor expansion, in which the third and higher order terms are omitted.

Remark 5.4: The initialization step is always important for the recursive

approaches. One way to choose a proper initialization values is to use a limited

number of starting samples and estimate the model parameters using the TLS

solution ate the beginning. The initialization of f ′′ is also important. The

larger value of f0(0)
′′ can increase the time of convergence but if the initial

parameters are accurate enough it decreases the chance of the algorithm falling

into a wrong local minimum.

Clearly, this proposed online REW-TLS method can find useful applica-

tions in monitoring and tracking the system parameter changes.

5.5 Simulation results

5.5.1 The recursive EW-TLS performance analysis

In this section the performance and accuracy of the recursive EW-TLS in

different noise scenarios will be examined by using an example. In addition,

we compare the estimation results of the REW-TLS to the recursive PEM

method. The following system is used for the simulations:

y(t) = 0.3y(t− 1)− 0.5u(t− 1)− 0.3u(t− 2) + 0.8 (5.22)

In this system X1 = [y(t − 1) u(t − 1) u(t − 2) 1] and X2 = y(t),

consequently the n = 4, l = 1 and B0 = [0.3 − .5 − 0.3 0.8]. The input

(u) is a random Gaussian sequence with zero mean and variance equal to one.

For each noise scenario the standard deviation (σ)of the measurement noise

is changed as σ = [0.1 0.2 0.3 0.4 0.5]. Also, the number of samples is

changed as N = 500, 1000, 3000, 5000, 10000. In each combination of the

different cases 100 noise realizations are generated, therefore 100 simulations
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are performed. The estimation error for each noise level and each number of

data points is found as the mean of the following error in each simulation:

error(σ,m) =
||B(N)−B0||

||B0||
.

Four different noise scenarios are considered in this simulation study:

Scenario 1: The covariance matrices for each row of ∆D are random and the

measurement noise for the inputs/output are correlated. In this scenario

each element of Vis are uniform random numbers (µ = 1 and σ = .5).

Scenario 2: The covariance matrices for each row af ∆D are random but

the measurement noise for the inputs/output are uncorrelated. In this

scenario Vi are diagonal matrices with uniform random numbers (µ = 1

and σ = .5).

Scenario 3: The covariance matrices for each row of ∆D are an all equal to

an identical matrix. In this case Vi = diag([.1 .2 .15 .5 .3]). This is

consistent with the framework of the TLS method.

Scenario 4: There is no noise in inputs and the only noise is in the output

(X2) therefore the Vis are all the same and have all their elements equal

to zero except the element in the last row and the last column. This is

the LS problem.

The initial parameter set (B(0)) for both methods is considered as 10% higher

than the actual parameters(B0), also P (0) = I in the recursive PEM method

and f0(B(0))′′ = 10 × I in the recursive EW-TLS solution. The simulation

results are summarized in Tables 5.1-5.4.

Several observations are made from the tables 5.1 - 5.4, which are summa-

rized in the following remarks.

Remark 5.5 : In all the scenarios the REW-TLS shows significantly im-

proved results compared to the RPEM method, specially in more randomly

changing covariance matrices. The improvement in estimation error is more

significant when the noise level is higher. This suggests that, the REW-TLS

method is more useful in highly noisy data. It is important to mention that

in the last scenario (Table 5.4) the REW-TLS and RPEM method both have

almost the same performance. This scenario is the simple Least Square esti-

mation problem therefore the optimum solution is obtained by both methods.
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Table 5.1: The comparison of estimation error for recursive EW-TLS and
recursive PEM method in noise scenario 1

m = 500 m = 1000 m = 3000 m = 5000 m = 10000

σ = 0.1
REW-TLS 0.0358 0.0137 0.0099 0.0083 0.0065
RPEM 0.0286 0.0281 0.0278 0.0280 0.0285

σ = 0.2
REW-TLS 0.0785 0.0457 0.0277 0.0258 0.0316
RPEM 0.0956 0.1004 0.0987 0.0990 0.0982

σ = 0.3
REW-TLS 0.1293 0.0925 0.0695 0.0518 0.0506
RPEM 0.1800 0.1771 0.1792 0.1791 0.1799

σ = 0.4
REW-TLS 0.1638 0.1315 0.0929 0.0847 0.0864
RPEM 0.2558 0.2545 0.2532 0.2530 0.2538

σ = 0.5
REW-TLS 0.2696 0.1797 0.1525 0.1467 0.1224
RPEM 0.3159 0.3079 0.3127 0.3140 0.3135

Table 5.2: The comparison of estimation error for recursive EW-TLS and
recursive PEM method in noise scenario 2

m = 500 m = 1000 m = 3000 m = 5000 m = 10000

σ = 0.1
REW-TLS 0.0254 0.0187 0.0113 0.0094 0.0055
RPEM 0.0791 0.0779 0.0785 0.0792 0.0794

σ = 0.2
REW-TLS 0.0560 0.0433 0.0244 0.0205 0.0168
RPEM 0.2089 0.2187 0.2150 0.2160 0.2173

σ = 0.3
REW-TLS 0.0872 0.0770 0.0490 0.0373 0.0272
RPEM 0.3216 0.3228 0.3184 0.3233 0.3191

σ = 0.4
REW-TLS 0.1749 0.1365 0.0747 0.0457 0.0427
RPEM 0.3840 0.3902 0.3855 0.3935 0.3899

σ = 0.5
REW-TLS 0.2558 0.2152 0.0931 0.0832 0.0568
RPEM 0.4415 0.4402 0.4392 0.4412 0.4399

Table 5.3: The comparison of estimation error for recursive EW-TLS and
recursive PEM method in noise scenario 3

m = 500 m = 1000 m = 3000 m = 5000 m = 10000

σ = 0.1
REW-TLS 0.0097 0.0119 0.0025 0.0022 0.0026
RPEM 0.0083 0.0073 0.0079 0.0082 0.0082

σ = 0.2
REW-TLS 0.0171 0.0110 0.0121 0.0071 0.0074
RPEM 0.0308 0.0301 0.0321 0.0313 0.0318

σ = 0.3
REW-TLS 0.0186 0.0143 0.0145 0.0162 0.0161
RPEM 0.0647 0.0643 0.0662 0.0671 0.0678

σ = 0.4
REW-TLS 0.0310 0.0240 0.0284 0.0268 0.0272
RPEM 0.1095 0.1124 0.1122 0.1122 0.1119

σ = 0.5
REW-TLS 0.0407 0.0347 0.0398 0.0394 0.0399
RPEM 0.1569 0.1576 0.1604 0.1596 0.1612
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Table 5.4: The comparison of estimation error for recursive EW-TLS and
recursive PEM method in noise scenario 4

m = 500 m = 1000 m = 3000 m = 5000 m = 10000

σ = 0.1
REW-TLS 0.0142 0.0105 0.0058 0.0041 0.0030
RPEM 0.0124 0.0099 0.0058 0.0040 0.0030

σ = 0.2
REW-TLS 0.0325 0.0234 0.0123 0.0079 0.0055
RPEM 0.0311 0.0227 0.0123 0.0078 0.0055

σ = 0.3
REW-TLS 0.0439 0.0340 0.0154 0.0146 0.0098
RPEM 0.0436 0.0344 0.0154 0.0147 0.0098

σ = 0.4
REW-TLS 0.0623 0.0395 0.0239 0.0189 0.0149
RPEM 0.0620 0.0388 0.0239 0.0188 0.0148

σ = 0.5
REW-TLS 0.0754 0.0518 0.0324 0.0220 0.0138
RPEM 0.0677 0.0516 0.0305 0.0219 0.0139

Despite the significant improvement in decreasing the estimation error, the

results show that REW-TLS converges slower to its local minimum. RPEM

might converge to the wrong local minimum but its convergency speed is faster.

However, it is also found in some simulation trials for the REW-TLS, the

convergency to the right local minimum cannot be achieved. This is due to

the fact that the REW-TLS dependents on good initialization in parameters

and the second order derivatives (i.e. f ′′). In the next section , the possible

improvement of the REW-TLS is discussed.

5.5.2 The improved REW-TLS using LM algorithm

In this section, throughout the simulations the improvements made by the

use of LM algorithm is illustrated. To show the effectiveness of the proposed

method, a more complex system is used, and for the noise profile, scenario 1

is considered.

y(t) = 0.3y(t− 1)− 0.2y(t− 2)− 0.5y(y − 3)

− 0.5u(t− 1)− 0.3u(t− 2) + 0.7u(t− 3) + 0.5
(5.23)

For each noise variance, 100 simulations (N = 1000) have been run and the

convergence percentage is reported with and without the LM algorithm. The

advantages of using LM algorithm are shown by comparison in two different

cases below. In this simulation the initial point is taken as zero for all the

cases.
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Case 1: The f0(B(0))′′ = 10× I.

Case 2: The f0(B(0))′′ = 5× I.

The rates of successful convergence for each case are illustrated in 5.1.
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Case 2

Figure 5.1: The comparison of successful convergence for REW-TLS algorithm
with and without LM method. Solid line: REW-TLS with LM, dashed line:
REW-TLS without LM

The following observations can be made from fig. 5.1:

Remark 5.6 : Using the LM algorithm has increased the percentage of

successful convergence of the REW-TLS algorithm for all the cases. This

noticeable improvement is gained at a cost of a longer computation time.

However, the extra computation time does not have any significant impact on

the overall algorithm complexity.

Remark 5.7 : The initial value of f ′′(0) also has an important impact on

the rate of successful convergence in REW-TLS algorithm. Normally higher

values of f ′′(0) results in the better convergence rate. Since in the REW-TLS

algorithm the term f ′′ is inverted, the smaller values will result in a bigger

change in the estimated parameters that might force the solution to another

local minimum. On the other hand, higher f ′′(0) may result in the slower

convergence. Therefore a tradeoff exists between the faster convergency and

the correct convergency.
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This simulation case study shows that the adoption of the LM algorithm

has increased the robustness of the REW-TLS method to both the initial

values of f ′′(0) and the parameters . This is true because the LM method

algorithm has been used to prevent any sudden changes or ill conditions in

many parameter estimation approaches.

5.5.3 Computation time

As stated before, the complexity of the proposed method is very low and the

computation in each iteration is very straight forward and time efficient. In this

section a study proves our alligation. The execution time for several different

models with different number of parameters to be estimated is measured in

millie seconds for each iteration. Table 5.5 shows the average execution time

for 100 runs for each model under noise scenario 1. The execution platform is:

MATLAB 2008a with Intel core 2Duo @2.39 GHz .

Table 5.5: The average execution time for each iteration in different models
with different complexity

No. of parameters 3 4 5 6 7

Execution Time(ms) 0.2665 0.2929 0.3219 0.3328 0.3861

It can be seen that the execution time is suitable for online applications.

This execution time may increase but insignificantly as the complexity of the

model increases.

5.5.4 REW-TLS and STLS comparison

In this section the REW-TLS method and STLS method are compared by

their simulation results. In order to compare a recursive method (REW-TLS)

with a batch method (STLS), the last estimated parameters for the recursive

method are used. The model used is:

y(t) = 1.465y(t− 1)− 0.81y(t− 2)− 0.5u(t− 1) + 2u(t− 2) (5.24)

The input (u) is a random Gaussian sequence with zero mean and unity

variance. The simulation is performed for 1500 data points under two different

noise scenarios:
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Scenario 1: The input and output noise are not correlated and have constant

zero mean and variance equal to 1.

Scenario 2: The input and output noise are correlated, their profiles have

zero mean and varying variance following a uniform random numbers

with µ = 0 and σ = 1.

For STLS parameter estimation a MATLAB toolbox developed in [70] is used.

After identification, the step response for the estimated model using both

methods under the above noise scenarios are ploted. Figure 5.2 shows these

step responses.
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Figure 5.2: The comparison of parameter estimation of two methods: REW-
TLS and STLS

It is illustrated that under the noise scenario 1 both REW-TLS and STLS

provide similar and accurate parameter estimation. But, the estimation ob-

tained by the purposed REW-TLS is more accurate than STLS in the noise
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scenario 2. This shows the advantage of the developed method in parameter

estimation when the noise profile is changing over time.

It is important to compare the computation time for these two methods.

Using a same machine (MATLAB 2008a with Intel core 2Duo @2.39 GHz)

for both algorithms, the computation time for STLS method is near 2 hours

and for REW-TLS is near 1 second. This computation time makes the STLS

method near impractical for large data sets and the proposed method a good

candidate.
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Chapter 6

The Recursive Stochastic

Algebraic Geometric Approach

1 Most of the works on the identification of SARX models provide batch algo-

rithms, which are based on a large amount of numerical calculations making

them unsuitable for on-line applications. The recursive identification algo-

rithms for SARX models are scars and some of them are very recent. In [36], a

recursive version of the AG approach was provided. The author used standard

recursive identifier [66] in order to estimate the parameters of the mapped

embedded model. The same approach was applied to recover the SARX pa-

rameters from the embedded model as in [32]. However, this recursive ver-

sion is based on the same formulation of HDP which suffers from handling

the measurement noise as its batch version. Bako et al. [71] extended the

Baysian approach for SARX parameter estimation to the recursive identifica-

tion method. The requirement of having prior probability densities for the

parameters is the major drawback of this method. Lack of mathematical anal-

ysis is another issue in their work. Using artificial intelligence in developing

recursive identification method for PWA models was discussed in [72] and [73].

In the former the fuzzy techniques were applied and in the latter, am artificial

neural-network methodology was adopted.

In this section, a recursive version of the proposed SAG algorithm is intro-

duced. The proposed method can be used to handle the additive measurement

noise as discussed in the Section 4.2. The proposed recursive SAG (RSAG)

algorithm is summarized into two main steps, as of its batch version:

1A version of this chapter is under preparation to be submitted to a journal
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The SHDP parameter estimation: After constructing the SHDP for multi-

mode models, a recursive procedure is needed to estimate the parameters

of the SHDP using the current available data point.

Sub-models parameter retrieving: A retrieving procedure that only uti-

lizes the current data point is needed to retrieve the sub-models’ param-

eters from the SHDP parameters.

6.1 The recursive SHDP

As discussed in the Section 4.2, the formulation of the SHDP results in an

error-in-variable (EIV) model with regressors error vector ∆X. The covariance

matrix of those regressors error vector is dependent on the measured data

and change with time. Algorithm 1 presented in the Section 4.2, can be

used to estimate the parameters of the SHDP using the EW-TLS method. In

the Chapter 5, the recursive version of the EW-TLS (REW-TLS) method is

presented. Therefore, by using the developed REW-TLS method, the recursive

estimation of the SHDP can be developed.

Consider the EIV representation of the SHDP:

Z1
T ≈ H̃T



Z2
T

...

ZI
T

...

ZT
Mn(K)


(6.1)

where, H̃ is the estimated model parameter vector and ZI , I = 1 · · · MN(k)

are the mapped version of the data regressors using Veronese variety. ZI are

defined in (4.21) with more details. By following the Algorithm 2 in the

Section 5.4, the recursive updating equation for H̃(t) can be obtained:

H̃(t) = H̃(t−1)− [f ′′
t (H̃(t))+λ diag{f ′′

t (H̃(t−1))} ]−1gTt (H̃(t−1)), (6.2)

where the function gt(·) is calculated as follows.

gt(H̃(t− 1)) = (2ž1tr
T
t (H̃)Q−1

t (H̃)− rTt (H̃)Q−1
t (H̃) Gt Q

−1
t (H̃)rt(H̃)) (6.3)
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where Qt(H̃) = [1 −H̃T ]×V∆Zt×

[
1

−H̃

]
, rt(H̃) = ž1t−H̃T [ž2t · · · žMn(K)t]

T ,

Gt = 2(V∆Zt1 − V∆Zt21H̃), žIt = zIt − E[zIt], and V∆Zt is partitioned as :

V∆Zt =

[
var(z1t) cov(z1t, Z

c
t )

cov(Zc
t , z1t) var(Zc

t )

]
=

[
V∆Zt1 V∆Zt12

V∆Zt21 V∆Zt2

]
, (6.4)

where Zt = [z1t z2t · · · zMn(K)t]
T = [z1t ZcT

t ]. Also, the following equations

provide the double derivative term f ′′
t for the SHDP:

f ′′
t (H̃(t− 1)) =2

(
ž1tQ

−1
t žT1t − ž1tQ

−1
t GT

t Q
−1
t rt

)
− (f ′′

21 t
+ f ′′

22 t
+ f ′′

23 t
+ f ′′

24 t
+ f ′′

25 t
)

(6.5)

where,

f ′′
21 t

= Q−1
t (Gt)Q

−1
t rt

f ′′
22 t

= −rTt Q−1
i (GT

t )Q
−1
t ⊗ ((Gt)Q

−1
t rt)

f ′′
23 t

= rTt Q
−1
t (

∂Gt

∂H̃T
)(In ⊗ (Q−1

t rt))

f ′′
24 t

= −rTt Q−1
t (Gt)Q

−1
t (GT )Q−1

t rt

f ′′
25 t

= rTt Q
−1
t (Gt)Q

−1
t žT1t

(6.6)

where ∂Gt

∂H̃T = 2V∆Zt1. Note that, the centered mapped data points Žt =

Zt − E[∆Zt] is used in calculation of gt and f
′′
t .

6.2 Retrieving the sub-models’ parameters

In the Section 3.2 two methods have been developed for retrieving sub-models

parameters from the estimated parameters of the HDP. It is discussed in the

Section 4.2 that these method can also be applied on the SHDP. However,

these methods require all the available data points in the calculation. There-

fore they are mostly suitable for off-line applications. Since, all the data points

in the past time are available at the current time in the online applications,

these method can be applied by a moving window approach. On the other

hand, the calculation time is always an important factor in online applica-

tions. Therefore, developing a parameter retrieving method that can estimate
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sub-models’ parameters by using just the SHDP parameters at the current

time is motivating. Two methods are developed to achieve this goal and the

are presented in the following sub-sections. The derivations of EW and MW

methods developed in the Section 3.2 are followed. The first proposed method

in this chapter is only suitable for two-modes models and the second method

is applicable to general multi-mode models.

6.2.1 The two-mode models retrieving procedure

Consider the following two-mode switching ARX model:bT1Xt = εt

bT2Xt = εt
,

and its corresponding SHDP as: SP2(Xt) = (bT1Xt)× (bT2Xt). The first deriva-

tive of the SHDP with respect to Xt is:

D(1)SP2(Xt) =
∂SP2(Xt)

∂Xt

= b1(b
T
2Xt) + b2(b

T
1Xt). (6.7)

and consequently the second derivative is calculated as:

D(2)SP2(Xt) =
∂SP2(Xt)

∂Xt∂XT
t

= b1(b
T
2 ) + b2(b

T
1 ). (6.8)

It should be noted that a matrix-wise equation can be obtained from (6.8)

that does not depend on the data point Xt. From this matrix-wise equation

the SARX model parameters can be calculated. This is demonstrated in the

following illustrative example.

Illustrative example 6.1: Consider the following EIV representation of the

two-mode model:

x1t = α1x2t + β1x3t

x1t = α2x2t + β2x3t
=

bT1Xt = 0

bT2Xt = 0
(6.9)

where bTi = [bi1 bi2 bi3] = [1 − αi − βi], i = 1, 2. The SHDP for the above
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example is:

SP2(Xt) = (x1t − α1x2t − β1x3t)× (x1t − α2x2t − β2x3t)

= H1x1t
2 +H2x1tx2t +H3x1tx3t +H4x2t

2 +H5x2tx3t +H6x3t
2

(6.10)

Where H is the parameters vector of the SHDP. Therefore the correspond-

ing first and second derivative of the above SHDP with respect to Xt =

[x1t x2t x3t] are:

D(1)SP2(Xt) =

 2H1x1t +H2x2t +H3x3t

H2x1t + 2H4x2t +H5x3t

H3x1t +H5x2t + 2H6x3t

 , (6.11)

and

D(2)SP2(Xt) =

 2H1 H2 H3

H2 2H4 H5

H3 H5 2H6

 , (6.12)

Therefore the matrix-wise equation (6.8) for the illustrative example 6.1 is

found as:

A = D(2)SP2(Xt) =

 2H1 H2 H3

H2 2H4 H5

H3 H5 2H6



=

 2(b11b21) b11b22 + b21b12 b11b23 + b21b13

b12b21 + b22b11 2(b12b22) b12b23 + b22b13

b13b21 + b23b11 b13b22 + b23b12 2(b13b23)


(6.13)

considering b11 = b21 = 1 and defining Aij as the element of A at row i and

column j, the above equation is written as:

A12 = b12 + b22 → b12 = A12 − b22

A13 = b13 + b23 → b13 = A13 − b23,
(6.14)
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and,

A22 = 2b12b22 → A22 = 2(A12 − b22)b22 → 2b222 − 2A12b22 + A22 = 0

A33 = 2b13b23 → A33 = 2(A13 − b23)b23 → 2b223 − 2A13b23 + A33 = 0.
(6.15)

Therefore, the following solutions for b22 and b23 are obtained:

b22 =
A12 ±

√
A2

12 − 2A22

2

b23 =
A13 ±

√
A2

13 − 2A33

2

(6.16)

By choosing the plus sign for both of the equations above, the parameters

vector b2 is retrieved and consequently the vector b1. A general formula for

finding each element of sub-model vectors b1 and b2 is then summarized as

follows:

b21 = 1

b2i =
A1i +

√
A2

1i − 2Aii

2

b1i = A1i − b2i,

(6.17)

where i = 2, · · · , k and k is the number of the parameters in the sub-model.

Note that, matrix A in (6.13) only depends on the estimated parameters of

SHDP. Therefore, the retrieving procedure for the two-modes models in the

online application does not depend on any data point. The calculations are

easy and straightforward.

6.2.2 The Multi-mode model retrieving procedure

First, an illustrative example for a three-mode model is used to demonstrate

the retrieving procedure more clearly, then the general formula is represented.

Illustrative example 6.2: a three-mode model Consider the following three-

mode SARX model:
bT1Xt = εt

bT2Xt = εt

bT3Xt = εt

(6.18)
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where Xt = [x1t x2t x3t]. In this section for simplicity the subscript t is

omitted from xit, i.e. denote xi ≡ xit. The corresponding SHDP for the above

model is:

SP3(Xt) = (bT1Xt)× (bT2Xt)× (bT2Xt), (6.19)

and the first, second and third derivative of SP3(Xt) is calculated as follow:

D(1)SP3(Xt) =
∂SP3(Xt)

∂Xt

= b1(b
T
2Xt)(b

T
3Xt)+b2(b

T
1Xt)(b

T
3Xt)+b3(b

T
1Xt)(b

T
2Xt),

(6.20)

D(2)SP3(Xt) =
∂SP3(Xt)

∂Xt∂XT
t

= b1b
T
2 (b

T
3Xt) + b2b

T
1 (b

T
3Xt) + b1b

T
3 (b

T
2Xt) + b3b

T
1 (b

T
2Xt)

+ b2b
T
3 (b

T
1Xt) + b3b

T
2 (b

T
1Xt)

(6.21)

D(3)SP3(Xt) =
∂SP3(Xt)

∂Xt∂XT
t ∂Xt

= b1b
T
2 ⊗ b3 + b2b

T
1 ⊗ b3 + b1b

T
3 ⊗ b2 + b3b

T
1 ⊗ b2

+ b2b
T
3 ⊗ b1 + b3b

T
2 ⊗ b1

= (b1b
T
2 + b2b

T
1 )⊗ b3 + (b1b

T
3 + b3b

T
1 )⊗ b2 + (b2b

T
3 + b3b

T
2 )⊗ b1

(6.22)

By following similar procedure in the Section 3.2.2, and defining B =

[b1 b2 b3], ei, i = 1, 2, 3 as a unit vector with length 3 which is equal to zero

except its ith element, and bi = Bei the following is obtained from equation

(6.22):

(bib
T
j + bib

T
j ) = B [ei ej]×

[
0 1

1 0

]
×

[
eTi

eTj

]
BT = BCijB

T (6.23)

where i, j = 1, 2, 3. Using the above equation in (6.22) results in,

D(3)SP3(Xt) = BC12B
T ⊗Be3 +BC13B

T ⊗Be2 +BC23B
T ⊗Be1 (6.24)
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By using Kronecker property (2.14c) described in the Section 2.2 and the fact

that ei is a vector, the above equation is written as:

D(3)SP3(Xt)

= (B ⊗B)
(
C12B

T ⊗ e3
)
+(B ⊗B)

(
C13B

T ⊗ e2
)
+(B ⊗B)

(
C23B

T ⊗ e1
)

= (B ⊗B)

((
C12 ⊗ e3

)(
BT ⊗ 1

)
+
(
C13 ⊗ e2

)(
BT ⊗ 1

)
+
(
C23 ⊗ e1

)(
BT ⊗ 1

))
= (B ⊗B)

(
C12 ⊗ e3 + C13 ⊗ e2 + C23 ⊗ e1

)
BT

= (B ⊗B)

 C23

C13

C12

BT

(6.25)

The equation (6.25) is a matrix-wise equation independent from the data

points Xt. This can be illustrated by calculating the third order derivative

of its left hand side. The muli-monomial representation of the SHDP is as

follows:

SP3(Xt) = H1x
3
1 +H2x

2
1x2 +H3x

2
1x3 +H4x1x

2
2 +H5x1x2x3 +H6x1x

2
3

+H7x
3
2 +H8x

2
2x3 +H9x2x

2
3 +H10x

3
3.

(6.26)

The first derivative of the above with respect to Xt is calculated as:

D(1)SP3(Xt) =

 3H1x
2
1 + 2H2x1x2 + 2H3x1x3 +H4x

2
2 +H5x2x3 +H6x

2
3

H2x
2
1 + 2H4x1x2 +H5x1x3 + 3H7x

2
2 + 2H8x2x3 +H9x

2
3

H3x
2
1 +H5x1x2 + 2H6x1x3 +H8x

2
2 + 2H9x2x3 + 3H10x

2
3.

 ,

(6.27)

The second derivative is:

D(2)SP3(Xt) = 6H1x1 + 2H2x2 + 2H3x3 2H2x1 + 2H4x2 +H5x3 2H3x1 +H5x2 + 2H6x3

2H2x1 + 2H4x2 +H5x3 2H4x1 + 6H7x2 + 2H8x3 H5x1 + 2H8x2 + 2H9x3

2H3x1 +H5x2 + 2H6x3 H5x1 + 2H8x2 + 2H9x3 2H6x1 + 2H9x2 + 6H10x3

 ,

(6.28)
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and the third derivative is obtained as:

Λ = D(3)SP3(Xt) =



6H1

2H2

2H3


2H2

2H4

H5


2H3

H5

2H6


2H2

2H4

H5


2H4

6H7

2H8


 H5

2H8

2H9


2H3

H5

2H6


 H5

2H8

2H9


 2H6

2H9

6H10




. (6.29)

Therefore the following equation does not depend on the the data points

Xt and only depends on the parameters of the SHDP:

Λ9×3 = (B ⊗B)9×9

 C23

C13

C12


9×3

BT
3×3 (6.30)

The solution to the above matrix-wise equation for H̃(t) at each data point

is the retrieved SARX sub-models’ parameters at that point. This equation

can be solved by using “fminunc” MATLAB function using the following cost

function:

∥∥Λ− (B ⊗B)

 C23

C13

C12

BT
∥∥
2
= 0

S.T.: B1i = 1 i ∈ {1, 2, 3}

(6.31)

6.2.3 The General formula

In this section, by following the procedure demonstrated in illustrative example

6.2 and the derivation steps presented in the Section 3.2.2, a general retrieving

equation is derived.

Assume a multi-mode model to have n different modes. The nth derivative

of the SHDP for his model D(n)SPn(Xt) is calculated as follows: when n is an
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even number,

DnSPn(Xt) =
∂nSPn(Xt)

∂Xt∂xTt ∂Xt∂xTt · · · ∂Xt∂xTt

=
∑

(ik,ij)∈nPn

(⨿
(bikb

T
ij
)
) (6.32)

and when n is an odd number,

DnSPn(Xt) =
∂nSPn(Xt)

∂Xt∂xTt ∂Xt∂xTt · · · ∂Xt

=
∑

(ik,ij)∈nPn−1|il /∈nPn−1

(⨿
(bikb

T
ij
)⊗ bil

) (6.33)

where nPn is all permutation sets of n numbers from the set of {1, · · · , n},
and (ik, ij) ∈ nPn is defined as the pairs of numbers in each arrangement. Also

nPn−1 is all permutation sets of n−1 numbers from the set of {1, · · · , n}, and
in each arrangement the number that does not belong to that permutation is

equal to il. The following example clarifies this notation.

Illustrative example 6.3: Consider the set of {1, 2, 3, 4, 5}. The 5P4 is

all the different arrangement of four number from the set {1, 2, 3, 4, 5} (i.e.

{1, 2, 3, 4}, {2, 1, 3, 4}, {3, 1, 5, 2}). The pairs (ik, ij) are constructed by

selecting the numbers inside each arrangement as pairs (i.e. {(1, 2), (3, 4)},
{(2, 1), (3, 4)}, {(3, 1), (5, 2)}). Then, the il is the 5th number that is not

selected in each arrangement(i.g. {(1, 2), (3, 4)} il = 5, {(2, 1), (3, 4) il =
5}, {(3, 1), (5, 2)} il = 4).

Assuming that nṔn−1 and nṔn represents sets of permutations that the or-

der inside each pair of numbers is not important

(i.e. the set {(1, 2), (3, 4)} il = 5, {(2, 1), (3, 4)} il = 5, {(1, 2), (4, 3)} il =
5 and {(2, 1), (3, 2)} il = 5 are considered as the same), then the nth deriva-

tive of the SHDP is written as the following equations. When n is even,

DnSPn(Xt) =
∂nSPn(Xt)

∂Xt∂xTt ∂Xt∂xTt · · · ∂Xt∂xTt

=
∑

(ik,ij)∈nṔn

(⨿
(bikb

T
ij
+ bijb

T
ik
)
)
,

(6.34)
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and when n is odd,

DnSPn(Xt) =
∂nSPn(Xt)

∂Xt∂xTt ∂Xt∂xTt · · · ∂Xt

=
∑

(ik,ij)∈nṔn−1|il /∈nṔn−1

(⨿
(bikb

T
ij
+ bijb

T
ik
)⊗ bil

) (6.35)

The eij is defined as a unit vector with length n in which, the ithj ele-

ment is equal to one, and other elements equal to zero. Considering, B =

[b1 , · · · , bn], and
[
eik eij

]
×

[
0 1

1 0

]
×

[
eTik
eTij

]
= Cikij the above derivatives

are changed to the followings:

DnSPn(Xt) =
∑

(ik,ij)∈nṔn

(⨿
BCikijB

T
)

(6.36)

when n is even, and

DnSPn(Xt) =
∑

(ik,ij)∈nṔn−1|il /∈nṔn−1

(⨿
BCikijB

T ⊗Beil

)
(6.37)

when n is odd. By using the Kroneker product property (2.14c) and the

Lemma 2.1 in (2.2), the above equations are changed to:

Λ = DnSPn(Xt) = (

n/2⨿
l=1

B)×

 ∑
(ik,ij)∈nṔn

(
⨿

Cikij)

× (

(n)/2⨿
l=1

BT ) (6.38)

when n is even, and

Λ = DnSPn(Xt)

= (

(n−1)/2⨿
l=1

B)×

 ∑
(ik,ij)∈nṔn−1|il /∈nṔn−1

(
⨿

Cikij)⊗ eil

× (

(n+1)/2⨿
l=1

BT )
(6.39)

when n is odd. The solutions to the following minimizations are the retrieved

89



CHAPTER 6. THE RECURSIVE STOCHASTIC ALGEBRAIC
GEOMETRIC APPROACH

SARX parameters of the sub-models.

∥∥∥∥Λ− (

n/2⨿
l=1

B)×

 ∑
(ik,ij)∈nṔn

(
⨿

Cikik+1
)

× (

(n)/2⨿
l=1

BT )

∥∥∥∥
2

= 0

S.T.: B1i = 1 i ∈ {1, · · · , n}

(6.40)

when n is even, and

∥∥∥∥Λ− (

(n−1)/2⨿
l=1

B)×

 ∑
(ik,ij)∈nṔn−1|il /∈nṔn−1

(
⨿

Cikij)⊗ eil

× (

(n+1)/2⨿
l=1

BT )

∥∥∥∥
2

= 0

S.T.: B1i = 1 i ∈ {1, · · · , n}
(6.41)

when n is odd. The “fminunc” function in MATLAB can be used for solving

the above equations. Each column of B represents one of the parameters

vectors for the sub-models.

Remark 6.1: It is important to discuss he differences between the equa-

tions for retrieving sub-models’ parameter, provided in this chapter and in the

Section 3.2, despite their similarities. In the derivation of the equations in

the Section 3.2 all the available data points are used. This requires solving k

total least square optimization, using SVD approach, in the EW method and

k(k − 1)(k − 2) · · · (k − n) total least square optimization for MW method.

It is illustrated that using all the data points decreases the estimation error

variance. However, it requires more computation. Therefore it’s mostly suit-

able for off line methods. The equations provided in this chapter, does not

require solving any total least square optimization in prior. Thus, they are

more suitable for online applications. However, only using the current data

point might decrease the retrieving performance. Therefore, in the applica-

tions that sampling time is not fast, the methods delivered in the Section 3.2

are preferred.

6.3 The RSAG algorithm

In summary the following algorithm is provided:
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Algorithm 3: Recursive stochastic algebraic geometric (RSAG) algorithm

Initialization:

1. construct the SHDP.

2. Find an initial approximation for H̃ using the methods developed

in the Section 4.

3. Choose a suitable initialization values for f ′′
0 (0), λ and ν > 1.

Main Algorithm:

1. Calculate gt(H̃(t− 1)) from equation (6.3).

2. Calculate f ′′
t (H̃(t− 1)) from (6.5).

3. Update

H̃(t) = H̃(t−1)− [f ′′
t (H̃(t−1))+λ diag[f ′′

t (H̃(t−1))] ]−1gTt (H̃(t−1)).

4. If ft(H̃(t)) < ft(H̃(t− 1)) then (λ = λ/ ν) else (λ = λ× ν)

5. Recover the parameters of the sub-models using one of the recover-

ing algorithms discussed in the Section 6.2.

6. repeat for the next point

6.4 Simulation results

6.4.1 The performance comparison of the RSAG and

RAG

In this section the performance on the developed recursive method is evaluated

with respect to the method proposed in [36]. Consider the following model:

Simulation Example 1:

y0t = −0.9y0t−1 + u0t−1

y0t = 0.7y0t−1 − u0t−1

(6.42)

which is introduced in [36]. The input signal is N (0, 1) and the output mea-

surement noise have a Gaussian distribution N (0, σ2). The initial parameters
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Table 6.1: The mean of estimated parameters for two-mode model using SAG
and AG

α1 β1 α2 β2

σ = 0.1
The RSAG approach -0.9012 1.0040 0.6957 -0.9829
The RAG approach -0.8993 1.0099 0.6820 -0.9895

σ = 0.2
The RSAG approach -0.8961 0.9965 0.6901 -0.9812
The RAG approach -0.8886 0.9971 0.7138 -1.0204

σ = 0.3
The RSAG approach -0.8953 0.9732 0.6630 0.9801
The RAG approach -0.9061 0.9431 0.6475 -0.9992

for the developed RSAG approach are estimated using 100 data points for

training data. 100 independent executions are performed under different noise

conditions: σ = [0.1 0.2 0.3]. The mean of estimated SARX sub-models’ pa-

rameters after 1000 samples are reported in table 6.1. For comparing purpose,

the results reported in [36] are also mentioned.

Also the recursive updated SHDP parameters values (H̃) for the above

model under different noise conditions for one execution are reported in figures

6.1, 6.2 and 6.3. It is demonstrated that the parameters of the SHDP under all

three different noise conditions approach to the true estimated value, using the

proposed RSAG approach. The retrieved βi parameter values at each point is

also reported in figure 6.4 (σ = 0.1).

It is illustrated in the figure 6.4 that, the RSAG approach delivers more

robust recursive estimation with respect to the RAG approach.

6.4.2 The retrieving procedures comparison

In order to compare the performance of the retrieving procedures delivered

in this chapter and in the Section 3.2, another simulation study has been

performed.

In this study 100 independent executions are executed for the same model

with different noise scenarios: σ = [0.1 0.2 0.3]. For retrieving procedures,

both methods developed in this chapter (called as one-point EW (OEW) and

method developed in the Section 3.2 are used. The mean of estimated param-

eters for sub-models using both methods are presented in table 6.2, and the

variance of estimation error is reported in the table 6.3.

Although both method estimate the sub-models’ parameters accurately,
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Table 6.2: The mean of estimated sub-models’ parameters using OEW and
EW

α1 β1 α2 β2

σ = 0.1
The OEW approach -0.9012 1.0040 0.6957 -0.9829
The EW approach -0.9014 1.0032 0.7012 -0.9906

σ = 0.2
The OEW approach -0.8961 0.9965 0.6901 -0.9812
The EW approach -0.9051 1.0062 0.7085 -1.0151

σ = 0.3
The OEW approach -0.8953 0.9732 0.6630 0.9801
The EW approach -0.9053 0.9695 0.7312 -0.9815

Table 6.3: The variance of sub-models’ parameters estimation error using
OEW and EW

α1 β1 α2 β2

σ = 0.1
The OEW approach 0.0006 0.0008 0.0012 0.0003
The EW approach 0.0007 0.0006 0.0009 0.0004

σ = 0.2
The OEW approach 0.0035 0.0081 0.0421 0.0018
The EW approach 0.0012 0.0018 0.0434 0.0009

σ = 0.3
The OEW approach 0.0087 0.0146 0.0891 0.0024
The EW approach 0.0026 0.0037 0.0264 0.0013
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σ = 0.1

Figure 6.1: The recursive estimation of the SHDP paramters, σ = 0.1

100 200 300 400 500 600 700 800 900 1000
Samples

σ = 0.2

Figure 6.2: The recursive estimation of the SHDP paramters, σ = 0.2
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σ = 0.3

Figure 6.3: The recursive estimation of the SHDP paramters, σ = 0.3

but it can be seen in table 6.2 and table 6.3 that the variance of the sub-models’

parameters estimation error are lower using EW method. This shows the

advantage of using more data points in retrieving the sub-models’ parameters.

However, the EW method requires more computation time. Therefore, if the

sampling time is very fast the batch version cannot be used.
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σ =0.1 
 

Recursive − AG
Recursive − SAG

Figure 6.4: The recursive estimation of the βi parameter, σ = 0.1
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Chapter 7

Fault Detection Application

1 The International Federation of Automation Control (IFAC) SAFEPRO-

CESS technical committee defines a fault as an unpermitted deviation of at

least one of the parameters or properties of the system from its normal or

standard conditions [74]. This deviation can occur in sensor, actuator or any

system component. A fault detection algorithm is used to detect the occur-

rence of a malfunction. The isolating procedure tries to identify the location or

nature of the fault. A method which aims to detect and isolate a malfunction

is referred to as the fault detection and isolation (FDI) procedure.

There are vast amount of different FDI methods and algorithms in the

literature, and many different surveys have been published summarizing these

methods [74, 75]. The hybrid system field of research is no exception to this

rich literature. In [76], a model based methodology is introduced for online

tracking and diagnosis of hybrid systems. Another model-based method is

presented in [77] that detects and identifies the actuator faults in the switching

systems. Simani et al. developed a method to detect the fault in the pitch

sensors in the turbine blade system of the wind turbines [78]. Estimating sub-

models’ parameters for residual generation adds additional complexity to the

mentioned method. In general, the complex nature of hybrid systems dictates

complexity to the proposed FDI methods.

In this section a FDI method, which is independent of sub-models’ param-

eters estimation, is developed for switching multi-mode models. This allows

us to introduce a simpler yet more robust fault detection methodology. The

change in the parameters of each sub-model results in the change of the pa-

1A version of this chapter has been submitted to the IEEE transaction of control systems
technology journal.
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rameters of the “lifted” representation of the switching model (SHDP) which is

independent from the switching sequence. Therefore, by tracking the changes

in the parameters of the SHDP the occurrence of a fault can be detected.

The deviation of the parameters in the SHDP from their nominal values can

be detected and isolated via the local approach. The local approach has been

shown to have good performance for detecting small faults [74]. This approach

is first introduced in [79] and improved and completed in [80]. This approach

has been considered in different applications [81,82].

The fault defined in this section is any abrupt change in the parameters

of the sub-models in the multi-mode models. This change can be reflecting a

system fault, in most of the cases, or actuator failures in the plants. In the

proposed method, it is shown that without identifying the parameters in the

sub-models the change in these parameters can be detected and isolated. The

performance and robustness of the proposed FDI method are illustrated with

simulation results.

7.1 The local approach

A residual in a fault detection algorithm is a signal generated from input u(t)

and output y(t) [74]:

r(t) = g(u(t), y(t)) (7.1)

In the model based fault detection, a common practice is to define r(t) as

the difference between the output y(t) and the predicted output ŷ(t) from the

model,

r(t) = y(t)− ŷ(t) (7.2)

Hence, a vector-valued function K(B,Xt) with a finite-dimension can be

used as a valid residual for monitoring the changes in vector B, if it is differ-

entiable in B, and if there exists a neighborhood ω(B0) such that [80]:

EB0 [K(B,Xt)] = 0 ifB = B0

EB0 [K(B,Xt)] ̸= 0 ifB /∈ ω(B0)
(7.3)
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where EB0 is the expected value when the actual system parameter value is B0.

In the statistical evaluation of residuals, possess knowledge about K(B,Xt)

is required. However, due to the complexity of the residuals, the distribution

of K(B,Xk) is most likely unknown. Therefore, the following approximated

residual has been considered in the local approach [80]:

ζN(B) =
1√
N

N∑
t=1

K(B,Xt) (7.4)

And, the following hypothesis test is defined:

Normal Operation H0 : B = B0

Faulty Operation Ha : B = B0 +
Υ√
N

(7.5)

where Υ is an arbitrary fixed vector with a small value and the same dimension

as B. Also, for isolation purpose, the following mean deviation is defined:

M(B0) = − ∂

∂B

N∑
t=1

K(B,Xt)

∣∣∣∣
B=B0

(7.6)

Using the central limit theorem [83], the residual defined in (7.4), under

mild conditions [80], is asymptotically Gaussian distributed with zero mean

when the system is at no fault state, and with mean MΥ when the system is

at a faulty state. Also, the covariance matrix of (7.4) remains the same for

both normal and faulty modes.

If the function G(B,Xt) is used for estimating the model parameters B via

following minimization:

B̂ = argmin
B

N∑
t=1

G(B,Xt), (7.7)

then the gradient of the G(B,Xt) can be used as the the function K(B,Xt).

Hence,

∂

∂B
G(B,Xt) = K(B,Xt). (7.8)
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Therefore, the Hessian matrix of this cost function is used in constructing

M:

M(B) = − ∂2

∂B∂BT

N∑
t=1

G(B,Xt) (7.9)

Also, the covariance of this residual can be determined as:

Σ(B) = lim
N→∞

ΣN(B), ΣN(B) = EB0 [ζN(B)ζTN(B)]

≈ 1

N

N∑
k=1

N∑
j=1

EB0 [K(B,Xk)K
T (B,Xj)]

(7.10)

7.2 Residual construction for SARX models

7.2.1 A motivating discussion

The problem of fault detection and isolation for SARX models is more com-

plicated than single ARX models. A fault can occur in one of the sub-models

while other operating sub-models remain under normal conditions. One trivial

approach for detecting the fault for SARX models is to investigate the fault

occurrence in each of the sub-models individually. Consider the following EIV

representation of a SARX model:

X1t ≈ b1
TX2t

X1t ≈ b2
TX2t

...

X1t ≈ bn
TX2t

(7.11)

where bi, i = 1, · · · , n, are the parameter sets for each sub-model. X1t and

X2t are defined in the Section 2.1. Following the definition of the residual

(7.2), n residuals have to be constructed for the n sub-models in (7.11):

r1(t) = X1t − X̂1
1t = X1t − b̂T1X2t

r2(t) = X1t − X̂2
1t = X1t − b̂T2X2t

...

rn(t) = X1t − X̂n
1t = X1t − b̂TnX2t

(7.12)
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where b̂i, i = 1, · · · , n are the estimated parameter sets for each sub-model,

and X̂ i
1t, i = 1, · · · , n are the predicted outputs using each sub-model’s

estimated parameters. Only one of the above sub-models represents the SARX

model at time t; therefore only one of the residuals is near zero and the rest

are nonzero and can be possibly large numbers:
rλt(t) = ϵt

ri(t) = ei(t) i ̸= λt

(7.13)

where E[ϵt] = 0 and can be considered as the measurement noise. The ei is

the error caused by the estimated outputs from the sub-models that are not

effective at time t and E[ei] ̸= 0. A mathematical method should be used

to synthesize the above residuals. For instant, the minimum of the above

residuals can be used as follow:

r(t) = min
i
ri(t) (7.14)

Therefore r(t) is always a small value in normal condition and E[r] = 0.

When a fault happens, all the sub-models in (7.11) are no longer valid. Hence,

all the residuals ri(t), i = 1, , · · · , n, produce large values. The Deviation of

E[r] from small numbers can be interpreted as a fault.

The above approach is simple yet has several disadvantages:

• The parameters of the sub-models have to be estimated prior to the

residual construction. This is a complicated process for SARX models.

• n residuals have to be calculated and using the minimum residual is not

necessarily best option for combining these residuals.

• In occurrence of a fault, the first step to isolate the fault is to detect the

abnormal mode of operation. Since all the sub-models are generating de-

viated residuals, finding the faulty mode is not a straightforward process.

After detecting the faulty mode, the isolation has to be performed.

The switching sequence in the SARX models increases the complexity of

the parameter estimation problem and consequently the complexity of the FDI
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problem. Hence, developing a FDI method independent of switching sequence

is the objective of this chapter.

7.2.2 The SHDP based residual

As discussed in the Section 4.2, a promising methodology for eliminating the

switching sequence in the multi-mode switching models is to embed all the

sub-models into a “lifted” model. It is shown that if the inputs and output

are corrupted with measurement noise, the “lifted” model, called “SHDP”,

describes all the sub-models by eliminating the switching sequence:

SPn(Xt) =
n∏

i=1

((X1t −∆X1t)− bTi (X2t −∆X2t))

=

Mn(K)∑
I=1

h0IzIt = H0Tϑn(Xt −∆Xt) = 0.

(7.15)

where Xt =

[
X1t

X2t

]
is the available data point vector at time t and ∆Xt =[

∆X1t

∆X2t

]
is the additive measurement noise using the same assumptions in

the Section 4.2. Therefore, the following minimization delivers a consistent

estimation for H:

ft(H̃) = rTt (H̃)Q−1
t (H̃)rt(H̃)

min
H̃

N∑
t=1

ft(H̃)
(7.16)

where Qt(H̃) = [1 − H̃T ]×V∆Zt ×

[
1

−H̃

]
, rt(H̃) = ž1t− H̃T [ž2t · · · zMn(K)t]

T

and H = [1 − H̃]. V∆Zt is the covariance matrix of the mapped data points

and can be calculated following the steps in the Section 4.3.2.

In the normal condition, one of the multiplied brackets in (7.15) is equal

to zero. Consequently, the right hand side of the equation is always equal to

zero regardless of current active mode of operation. When the active mode is

faulty, none of the multiplied brackets is equal to zero resulting in a deviation
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of the right hand side from zero. Hence, the impact of the fault in one or more

of the sub-models can be observed in the SHDP. This deviation can be used

for the residual generation for application of the local approach. As discussed

in the Section 7.1, since (7.16) estimates the parameters for the SHDP, the

gradient of the cost function (7.16) can be used as the residual vector. This

gradient is calculated in the Section 5.2, and the local approach residual for

the SHDP is as follows:

ζN(H̃) =
1√
N

N∑
t=1

(2ž1tr
T
t (H̃)Q−1

t (H̃)− rTt (H̃)Q−1
t (H̃) Gt Q

−1
t (H̃)rt(H̃))

=
1√
N

N∑
t=1

f ′
t(H̃)

(7.17)

where Gt = 2(V∆Zt1 − V∆Zt21H̃) and V∆Zt is partitioned as

V∆Zt =

[
V∆Zt1 V∆Zt12

V∆Zt21 V∆Zt2

]
. (7.18)

Consequently, the mean deviant introduced in (7.6) can also be calculated

from the Hessian matrix of the cost function (7.16). Therefore, the mean

deviant is calculated as:

MN(H̃) =
1

N

∂2

∂H̃∂H̃T

N∑
t=1

ft(H̃) =
1

N

N∑
t=1

f ′′
t (H̃), (7.19)

where ∂2

∂X∂XT f(H̃) has been calculated in the Section 5.2.

Remark 7.1: By eliminating the necessity of knowing the switching se-

quence, the detection of the fault is simplified without the need to identify

each sub-model. In other word, the fault can be detected in early stage and

there is no need to have exact information about each sub-model individually.

Remark 7.2: The isolation of the fault is also possible without the need

to identify each sub-model. Each parameter of the individual sub-model has

influence on different SHDP parameters. By isolating the change in the SHDP

parameters, one can isolate which parameter in the sub-models has changed.
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Remark 7.3: Practically, the true parameters of the model (H̃0) are not

available. Therefore, an estimation of (H̃) from the training data is used.

This might result in a bias error in the residual (7.17) [84]. To by pass this

bias error, the expected value of the residual from the training data can be

subtracted from the residual (7.17) using:

k0 ≈
1

T

T∑
t=1

f ′
t(H̃) (7.20)

where T is the number of training samples [81].

Remark 7.4: The faulty mode has to be visited frequently enough so that

the detection and the isolation of the fault is possible. This is trivial since

occurring a fault in a mode that does not operate would have no impact on

the residual.

7.3 The fault detection and isolation

The FDI problem to be solved in this chapter is as follows:

The FDI Problem: By using available inputs and output corrupted with

the additive measurement noise for a multi-mode switching model, detect any

small change of the parameters in the SHDP representing the multi-mode

switching model, and also isolate the parameters of the SHDP that have been

changed.

7.3.1 The fault detection

Assume that the parameter vector H̃ is estimated by using a set of training

data for normal operation of the system. In addition, assume that H̃ + 1√
N
Υ

represents the parameters of the SHDP model when a small change is occured.

Υ is a non-zero vector with the same dimension as Ĥ. The following hypothesis

test formulates the change detection (fault detection) problem described above:

Normal Operation H0 : H̃c = H̃

Faulty Operation Ha : H̃c = H̃ +
Υ√
N

(7.21)
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where H̃c is the parameter set of the SHDP using the current data. As dis-

cussed in the Section 7.2.2, a good residual candidate for local approach is

(7.17), which has the following distribution:

ζN(H̃) v N (0,Σ(H̃)) under H0

ζN(H̃) v N (−M(H̃)Υ,Σ(H̃)) under Ha

(7.22)

where M(H̃) is calculated in (7.19) and Σ(H̃) is calculated as:

Σ(H̃) ≈ 1

N

N∑
k=1

N∑
j=1

EH̃ [f
′
k(H̃)f ′T

j (H̃))] (7.23)

which can be approximated by [85]:

Σ(H̃) ≈ 1

N

N∑
j=1

f ′
j(H̃)f ′T

j (H̃)

+
I∑

i=1

1

N − i

N−i∑
j=1

(
f ′
j(H̃)f ′T

j+i(H̃) + f ′
j+i(H̃)f ′T

j (H̃))

) (7.24)

where the value of I should be selected according to the correlation of the

signals. One can gradually increase the value of I until the result converges

[81].

Equation (7.22) suggests that the detection of small changes in the param-

eters H̃ is asymptotically equivalent to the detection of changes in the mean

of the Gaussian vector. It is shown in [80] that the generalized likelihood ratio

test of Ha against H0 can be written as the following X 2 test:

X 2
D =

(
ζTN(H̃)Σ−1(H̃)MN(H̃)

)(
MT

N(H̃)Σ−1(H̃)MN(H̃)

)−1

(
MT

N(H̃)Σ−1(H̃)ζN(H̃)
) (7.25)

where X 2
D is a central X 2 distribution under normal conditions (H0), and

noncentral X 2 distribution under faulty conditions (Ha). The length of the

vector ζN(H̃) (number of the parameters in SHDP) is the degree of freedom of

the X 2
D. The X 2

α is found from the X 2 table and can be used as the threshold
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value, where α is the false alarm rate. If the X 2
D value is greater than X 2

α the

change in the SHDP is detected which can be interpreted as a faulty condition.

7.3.2 The fault isolation

As indicated in the FDI problem definition, after a fault is detected it is im-

portant to find which parameters of the SHDP have changed. Define Υi as

a vector such that its ith value is nonzero and the rest elements are zero.

The dimension of Υi is same as Υ. Therefore, the isolation of the deviated

parameters can be described by the following statistical hypotheses:

No Change in the ith parameter H0 : Υi = 0

Change in the ith parameter Ha : Υi ̸= 0
(7.26)

where i = 1 , · · · , Mn(K) which is the length of the parameter vector H̃.

Define the Mi as the i
th column of the MN(H̃). Also, define Mc

i as a reduced

form of MN(H̃) when its ith column is deleted. The minmax test [80] is

performed by defining the following matrices:

Fii = MT
i Σ

−1(H̃)Mi, Fiic = MT
i Σ

−1(H̃)Mc
i

Fici = Mc
i
TΣ−1(H̃)Mi, Ficic = Mc

i
TΣ−1(H̃)Mc

i

ζ̃i = MT
i Σ

−1(H̃)ζN(H̃), ζ̃ci = Mc
i
TΣ−1(H̃)ζN(H̃)

(7.27)

Also define:

ζ̃∗i = ζ̃i − FiicF
−1
icic ζ̃

c
i

F ∗
i = Fii − FiicF

−1
icicFici

(7.28)

Then the minmax test is written as:

X 2∗
i = ζ̃∗Ti F ∗

i
−1ζ̃∗i (7.29)

where X 2∗
i has approximately X 2 distribution [85] with a degree of freedom

equal to the number of the parameters in SHDP.

Remark 7.5: Due to the approximative nature of X 2∗
i , if there are a gap

between the larger and smaller values, instead of defining a threshold, one can

select the most largest values of X 2∗
i as indication of the parameters deviation.
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In summary, the following FDI algorithm is presented for multi-mode

switching models:

Algorithm 4: The Fault detection and isolation algorithm for multi-mode

switching models:

Initialization:

1. Construct the SHDP using (7.15).

2. Estimate the parameters for SHDP (H̃) using the cost function

(7.16) and following the Algorithm 1.

Main Algorithm:

1. Calculate the residual ζN(H̃) using (7.17).

2. Calculate the mean deviation MN(H̃) using (7.19).

3. Calculate the covariance matrix Σ(H̃) using (7.24).

4. Calculate the X 2
D using (7.25).

5. Define the threshold X 2
α from the X 2 table with the degree of free-

dom equal to the number of SHDP parameters and specified false

alarm rate, α.

6. If X 2
D is grater than the threshold, generate an alarm indicating

a fault has occured and continue to the next step. Otherwise, no

change in parameter vector has been detected.

7. Calculate X 2∗
i for all of the parameters in the SHDP parameter

vector and select the ones that have largest values with a gap from

the lower values.

The assumptions in the local approach introduced in the Section 7.1 is valid

if the number of the data points N remains large enough. Therefore, a moving

window of sufficient size should be considered for the on-line applications.
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7.4 Simulation results

7.4.1 A numerical example

Consider the following three-mode model:

Simulation Example 1:


y0t = −0.9y0t−1 + u0t−1

y0t = 0.7y0t−1 − u0t−1

y0t = 0.5y0t−1 − 0.6u0t−1

(7.30)

where the output is considered to have additive white Gaussian noise with

normal distribution of zero mean and σ2 variance, while the inputs are noise

free. The input has a uniform distribution of [−1 1] and the switching se-

quence is a discrete random number between 1, 2 and 3. The simulation is

performed under different noise condition: σ = [0.1 0.2 0.3]. An actuator

fault is modeled as 10% increase in the sub-models parameters that are asso-

ciated with the inputs. There are 9 parameters in the H̃. Thus, the threshold

X 2
α is defined by X 2 value with 9 degree of freedom and false alarm rate of

α = 0.01 is 21.67.

In order to find the false alarm and the detection rates, 100 independent

executions are performed in a normal operation. Additionally, another 100

independent executions are performed under faulty condition. In each execu-

tion, the first 500 data points are used for estimating the H̃ nominal value

under normal condition. The second 500 data points are used to test the

method for calculating the false alarm rate (FAR) in normal operation, as well

as the detection rate (FDR) under faulty condition. Table 7.1 summarizes the

results:

Table 7.1: The percentage of the false alarm rate (FAR) in 100 independent
executions in normal operation and fault detection rate (FDR) in 100 inde-
pendent executions under faulty condition for the above numerical example

σ 0.1 0.2 0.3

FAR 0 2 2
FDR 100 97 82
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The parameters of the SHDP model for this example are:

H̃ = [− (α1 + α2 + α3) − (β1 + β2 + β3) (α1α2 + α1α3 + α2α3)

(α1β2 + α1β3 + α2β1 + α2β3 + α3β1 + α3β2) (β1β2 + β1β3 + β2β3)

− (α1α2α3) − (α1α2β3 + α1α3β2 + α2α3β1) − (β1β2β3)]

(7.31)

where the ith model is defined as y0t = αiy
0
t−1 + βiu

0
t−1. It can be seen that

the actuator failure does not have any impact on the first, third and sixth

parameters. Figure 7.1 shows the box plot of the X 2∗
i for the SHDP parameters

with σ = 0.1. As it can be seen from Figure 7.1, there is indeed no influence of

1 2 3 4 5 6 7 8 9

0

5

10

15

20

25

30

35

40

45

V
al

ue
s

Column Number

Figure 7.1: The boxplot representation of the X 2∗
i values in 100 execution for

each parameter

the actuator fault on the first, third and sixth parameters. This can be used

to isolate the fault. The boxplot figure represents the statistics of X 2∗
i values

in hundred executions. The low value of X 2∗
i is interpreted as no influence of

the fault on that parameter. Figure 7.1 shows that the first, third and sixth

parameters of SHDP have lowest values in hundred executions. This means

that the simulated fault has no effect on these parameters. By referring to the

(7.31), one can notice that the parameters βi have no effect on the first, third

and sixth parameters. Therefore, the result illustrated by Figure 7.1 exactly

fulfills the expectations.
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7.4.2 The blender process

The blending process defined in the Section 4.4.2 is used to illustrate the

practicality of our approach. In this simulation, the first sensor q1 is assumed to

have malfunction which is modeled as 10% additive change in the parameters

associated to the first input. It is assumed that all the measurements are

corrupted with additive noise as described in the Section 4.4.2.

The switching occures every 30 samples while the inputs q1 and q2 are

considered to have uniform distribution [−1 1] . The simulation is executed

with: σ1 = σ2 = σ3 = [0.1 0.2 0.3]. In each case, 100 independent executions

are performed in normal operation to calculate the false alarm rate (FAR) and

another 100 independent executions are performed under faulty condition to

calculate the fault detection rate (FDR). In each execution, 500 data points

are used to estimate the nominal H̃ value and additional 500 data point are

used for the FAR or FDR evaluation. The number of the parameters in H̃

is 5, therefore the corresponding threshold for 1% false alarm is X 2
α = 15.09.

Table 7.2 summarizes the results:

Table 7.2: The percentage of the false alarm rate (FAR) in 100 independent
executions in normal operation and fault detection rate (FDR) in 100 inde-
pendent executions under faulty condition for the blending system

σ 0.1 0.2 0.3

FAR 1 4 5
FDR 100 100 86

The SHDP parameters for the blending process is:

[(−α0
1 − α0

2) (−β0
1 − β0

2) (α0
1α

0
2) (α0

1β
0
2 + α0

2β
0
1) (β0

1β
0
2)]

where q03t = αiq
0
1t + βiq

0
2t. It can be seen that the first input does not have any

influence on the second and the fifth parameter. Therefore the fault occurrence

should not impact these two. As it is illustrated in figure 7.2, the X 2∗
i values

for the second and the fifth parameters are the lowest ones.

As discussed in 7.3.2, the proposed method can be used in online applica-

tions with moving window approach. This is shown in the figure 7.3. In this

simulation, a moving window with length of 200 data points is used for fault
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Figure 7.2: The boxplot representation of the X 2∗
i values in 100 execution for

each parameter

detection. The fault occures at 1000th sample and as it is shown in the figure

7.3 the fault is detected after a delay of 68 samples.
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Figure 7.3: The online implementation of fault detection for the blending
process
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Chapter 8

Conclusion and Future Work

8.1 Thesis conclusion and contributions

The complexity of the parameter estimation problem for Switching ARX

(SARX) models is inherited from the discrete switching sequence and corre-

sponding mix-integer optimization. The existing Algebraic Geometric (AG)

approach deals with this complexity by providing an alternative problem for-

mulation. The parameter estimation consists of two consecutive steps. The

first step estimates the parameters of a linear ARX model, which is constructed

through embedding all the sub-models. The second step retrieves the param-

eters of the sub-models from the estimated model in the first step. Although

the AG method delivers exact parameter estimation in the deterministic situ-

ations, it suffers from lack of accuracy in the presence of noise.

As discussed in this thesis, constructing a “lifted” model that describes all

the sub-models of a SARX model has several advantages. To preserve these

advantages when the data points are corrupted with measurement noise, the

Stochastic Algebraic Geometric (SAG) approach is developed. The contribu-

tions of this thesis can be summarized as follows:

• In order to develop a method to handle the noise properly, first the fun-

damental problems of the AG approach are investigated. It is illustrated

that when noise is involved, both steps of the AG method suffer from

inaccuracy:

– The constructed “lifted” model is mathematically correct under de-

terministic conditions. However, the noise induced-error inside the

“lifted” model grows dramatically. Hence, under noisy conditions,
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the parameter estimation of the embedded model suffers from bias

and inaccuracy.

– The existing retrieving step requires clustering one data point for

each sub-model. Clustering this data point under noisy conditions

is prone to error. Also, it is assumed that the prediction error of the

chosen data point is zero, which only holds true under deterministic

conditions.

• The proposed SAG approach provides an error-in-variable representation

of the “lifted” model by reformulating the problem. The developed EIV

model represents all the sub-models when the available inputs and output

data are corrupted with additive measurement noise. The characteristics

of the“lifted” EIV model are closely investigated. It is illustrated that

the covariance of the mapped data points error vector varies by the data

points. Therefore, to provide a consistent parameter estimation for the

proposed model, the element-wise total least square (EW-TLS) method

is utilized. The EW-TLS method requires the calculation of covariance

matrix of the error vector in each data point. In this thesis, statistical

analysis are used to derive general formula for these covariance matrices.

The complexity of the parameter estimation in this step is not increased

with respect to the number of estimated parameters. The proposed

estimation algorithm is non-iterative and efficient.

• In the sub-models’ parameters retrieving step, two methods are pro-

posed to improve the retrieving performance in the presence of noise.

By proposing these methods, the need to cluster one data point for each

sub-model is eliminated. The element-wise method (EW) provides an an-

alytical solution for the calculation of the sub-models’ parameters from

the “lifted” EIV model, yet is only applicable to two-mode models. The

Matrix-Wise approach is applicable to multi-mode models, and results

in a nonlinear matrix-wise equation. This equation can be solved by nu-

merical methods, or simply the “fminunc” MATLAB function. In both

methods, all the data points are used, which leads to promising robust

retrieving results.

• The scalability (by using multi-mode models), practicality (by using

practical examples and simulations) and applicability (by using experi-
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mental data) of the proposed SAG method are illustrated and evaluated

with various simulation experiments. It is demonstrated that the pro-

posed method delivers improved results with respect to performance in

comparison with the original AG approach. The improvements mea-

sured, can be as high as 50% in some cases. The proposed sub-models’

parameters retrieving procedures also show vast improvements, espe-

cially in reducing the variance of the estimation error. Due to the use of

all the data points in EW and MW approaches, the variance is decreased

dramatically.

• The recursive version of the element wise - total least square (EW-TLS)

algorithm is derived. This method can estimate the parameters for EIV

models with correlated noisy inputs and output, and when the noise

profile varies over time. Simulation under different noise scenarios has

demonstrated that the proposed REW-TLS method is able to deliver sat-

isfactory online parameters estimation. The convergence of this method

depends on the initialization step; however, the use of the Levenberg -

Marquardt algorithm has increased the convergency rate. It is shown

that the proposed approach is computationally suitable for online appli-

cations.

• The recursive version of the proposed SAG method is developed for on-

line applications. The parameters of the “lifted” EIV model are esti-

mated using the proposed recursive EW-TLS approach. The MW and

EW approaches are modified to adopt the online conditions. The on-

line versions of these two retrieving approaches does not use any data

point, and only use the current estimated parameters of the “lifted” EIV

model. The performance of the provided online algorithm is evaluated

by simulation results.

• A novel fault detection and isolation algorithm is developed for SARX

models. In the proposed algorithm, small changes in the parameters of

the sub-models are detected and isolated without the need of estimating

them. The developed method applies the local approach, which is a

robust residual evaluation method. The performance of the proposed

method is investigated via simulation results with practical application

potential.
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• In this thesis, the noise is defined as input/ouptut additive measurement

noise. The results can be generalized to the case when the disturbance

is present. However, this generalization needs extra statistical analysis.

The effect of disturbance has to be considered in the covariance calcu-

lation for SAG method. This calculation is more complex and requires

more mathematical calculations, since the disturbance has dynamics.

8.2 Recommendations for future work

• As discussed in this dissertation , a “lifted” EIV (SHDP) model has

been developed that captures the dynamics of the SARX sub-models in

one embedded model. The characteristics of each model have a direct

impact on the parameters of the developed EIV model. The changes in

the parameters result in a change of the “lifted” EIV model parameters.

Taking advantage of this EIV model, as a representative of the whole

SARX model, opens an interesting research topic in adaptive control,

fault detection and isolation, and soft sensor design.

For instance, an adaptive controller with a hierarchy structure can be de-

signed for SARX models. The higher-level controller, designed to control

the overall performance and stability, can use the “lifted” EIV model as

a representative of the whole SARX model. Then, the lower-level con-

trollers refine the inputs using the local sub-models, so that the desired

performance can be achieved. A schematic of this concept is shown in

figure 8.1

• A potential application for the EW-TLS method is the estimation of

model parameters when the regressors are corrupted with multiplica-

tive noise . The literature is sparse on parameter estimation with mul-

tiplicative noises. The use of the conventional least square (LS) and

the weighted least square (WLS) to find parameters in linear regression

problems in the case of multiplicative noise was investigated in [86–88].

Some researchers have extended the simulation extrapolations method

(SIMEX), which was originally used to correct the bias of additive mea-

surement error, to deal with the multiplicative errors [89, 90]. The
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Figure 8.1: The schematic of the hierarchial adaptive controller using “lifted”
EIV (SHDP) model

parameter estimation with multiplicative noise is defined as follow:

X0
1 ≈ B0X0

2 , X1 = X0
1 ⊙ ν1 X2 = X0

2 ⊙ ν2

X1 ≈ BX2

(8.1)

where ν1 and ν2 are vectors of measurement noise with mean equal to one

and constant variance, and ⊙ is an element-wise matrix multiplication.

Assume that εi = 1− νi. As shown in this thesis, the variances of εi and

νi are equal; therefore the following equalities hold:

X1 = X0
1 ⊙ ν1 → X1 = X0

1 ⊙ (1− ε1) = X0
1 −X0

1 ⊙ ε1 = X0
1 +∆X1

X2 = X0
2 ⊙ ν2 → X2 = X0

2 ⊙ (2− ε2) = X0
2 −X0

2 ⊙ ε2 = X0
2 +∆X2

X1 ≈ BX2
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(8.2)

The equation (8.2) is the definition of the EIV parameter estimation

with additive error ∆X = [∆X1 ∆X2]. The covariance of the error

matrix ∆X changes by the data points, and in this thesis, a systematic

approach has been presented to find this covariance. Therefore, using the

EW-TLS with the above approach is an interesting subject for further

research.

• The moving window concept has been applied to the proposed fault

detection approach for use in online applications. There is also an op-

portunity to investigate usage of the proposed recursive SAG algorithm

in detecting and isolating faults. In that situation, the algorithm may

only use the current data point to detect faults, as opposed to a batch

of past data.
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