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ABSTRACT 

This PhD thesis has two main objectives. The first objective is to develop, implement, and verify 

an integrated simulation and optimization framework to study surface mining operations to address 

important drawbacks of currently available surface mining simulation models. These drawbacks 

include 1) the treatment of stochastic variables as deterministic ones in material handling systems 

in surface mines; 2) the deficiency in linking mining systems to mineral processing systems; 3) 

the inability to integrate fleet management systems with material handling systems; and 4) the lack 

of flexibility in using different truck-dispatching algorithms in developed simulation systems. 

The second objective of this research is to develop, implement, and verify efficient truck-

dispatching decision-making models that can cover important drawbacks in truck-dispatching 

models used in currently available mining fleet management systems as well as models presented 

in the literature. These drawbacks include 1) neglecting important objectives like meeting the goal 

of the upper stage; 2) ignoring the importance of one side of a fleet (either shovels or trucks) when 

making optimal decisions; and 3) treating stochastic variables as deterministic ones. 

The integrated simulation and optimization framework was developed using three different types 

of software. Rockwell Arena was used as simulation modelling software to simulate mining and 

processing operations. IBM CPLEX was used as optimization modelling software to create a 

platform to implement the truck-dispatching models. These models include a benchmark model 

and three new models to solve the truck-dispatching problem in surface mines. The three 

developed models are multiple objective goal programming model, stochastic mixed integer linear 

programming model, and fuzzy linear programming model. Microsoft Excel was used as a datafile 

for the integrated framework to store all required operational data and the production schedule. 
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The integrated simulation and optimization framework was implemented in an iron ore case study 

for verification purposes. The framework mimics the mining operation of the case study and 

interaction of the mining operation with the mine’s processing plants and fleet management 

system. The backbone algorithm of Modular Mining DISPATCH was used as the benchmark fleet 

management system to evaluate the truck-dispatching models that were developed. A comparison 

of the implementation of three developed models with the benchmark model in 26 scenarios of 

single truck-type fleets and multiple truck-type fleets shows that the developed models need an 

average of 16.5% fewer trucks to meet production requirements.    
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1.1. Background 

Mine planning is carried out in three time different time horizons (Figure 1.1): 1 – Long-term (life 

of mine with a yearly resolution); 2 – Medium-term (1 – 5 years, provides more details about 

extraction of mining areas); 3 – Short-term (1 – 12 months, provides detailed information about 

mining faces and quality and quantity of processing plant feed [1].  

Short-term schedules are divided into operational plans. An operational plan is the shift-based 

stage of open pit mine production scheduling, which covers dynamic real-time decision-making 

that includes finding the shortest paths between loading and dumping points, finding the optimum 

productivity rate of each route, allocating trucks to each route in a way that meets the production 

target set by the upper stage, and dynamic truck-dispatching (which is the lower stage).   

 

 

 
Figure 1.1: Stages of Making Decisions in Mine Production Scheduling 

Many researchers believe that 50 percent of operating costs in open pit mines [2] and up to 60 

percent in large open pit mines should be spent on materials handling [2]–[8]. Thus, improving the 

haulage and subsequently decreasing the expenses for this part of the operation by even two or 

three percent will result in considerable savings.  

As Alarie and Gamache [2] found, there are two major approaches to the implementation of 

operations research techniques to improve materials handling systems in surface mines. A single 

stage approach, like the one presented by Hauck [9], implements a continuous algorithm to 

maximize the productivity of the operation and assign trucks to each destination to meet production 

targets. A multi-stage approach divides the problem into two sub-problems. In the first sub- 

problem, a static algorithm is implemented to determine the optimal loaders configuration over the 

mining faces, optimum production rate for the operation, and allocation of trucks to loaders to 

meet the production target. This stage is called the upper stage and runs at the beginning of the 

shift and when the mine status changes. The lower stage in a multi-stage approach is a dynamic 

algorithm, mostly based on an assignment problem analogy and rarely based on a transportation 
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problem analogy. The lower stage assigns the trucks to a proper destination by the time an 

assignment request is posted by the trucks for a destination to meet the defined targets for this 

stage.  

1.2. Statement of the problem 

A fleet management system (FMS) in a mining operation is a connector between strategic level 

plans and the real-time production operation. Generally, the short-term production target is 

intended to be met by the operation governed by the FMS. The FMS consists of different levels of 

dynamic decision-making algorithms that run over the life of the mine and make optimal or near 

optimal decisions for the materials handling operation. Figure 1.2 illustrates how a FMS is linked 

with a mining operation. It is worth noting that the FMS in Figure 1.2 is an ideal FMS. 

FMSs are used to make decisions primarily on: finding the shortest paths between the loaders and 

the destinations; determining optimal path flow rates to minimize deviation from the objectives of 

the strategic plans; and assigning available trucks to active shovels to meet the required path flow 

rates. 

The first problem with the current FMSs comes up in the first step, when a shovel has to be 

assigned to a new job. In most of the available FMSs, this request is responded to by manually 

assigning the available shovels to the faces. Current FMSs do not play any role in this step. This 

problem is usually managed by a mine planner. The result of the assignment varies depending on 

the level of the mine planner’s experience. 

Finding the closest distance on the road network for trucks to haul the material to the discharge 

points is the second problem. This problem is primarily handled by an optimization method such 

as Dijkstra’s algorithm [10]. This problem of finding the shortest path is completely dependent on 

the shovel’s current working face position. The algorithm finds the shortest path from a loader to 

a destination statically when the loader moves to the next working face. As long as the shovel is 

working on the same polygon, the shortest path does not change. The problem becomes 

complicated in large open pit mines with a complex road network. The difference in truck types 

and their age causes a difference in their velocity. Scheduled or sudden down times for shovels 

force available trucks to move to an active shovel that causes traffic on specific paths on the road 

network. The variation in the level of drivers’ driving skills and changes in weather conditions are 

other common factors that complicate the problem. 
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After determining the optimum combination of available trucks and shovels to meet the desired 

production in the so-called upper stage of the decision-making procedure, FMSs implement an 

optimization algorithm each time a truck asks for a new assignment. Most of the algorithms are 

trying to meet a single, specific predefined objective at this step of the decision-making procedure. 

These objectives mostly focus on maximizing the utilization of either the truck fleet or shovel fleet 

in the operation. However, the problem of concern in this step of the decision-making process is 

to simultaneously maximize the utilization of both trucks and shovels. Also, the models developed 

so far do not account for the deviation from the desired objectives of the upper stage. 

 

Figure 1.2: schematic illustration of an open pit mine operation. 
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Researchers have been implementing simulation as a tool to mimic real-world operations in mining 

engineering-related problems since the early 1960s. Evaluating the effects of what-if scenarios and 

new developments in mining operations is cheaper and more flexible with simulation. However, 

the models usually encounter two major problems. The first problem is that the simulations have 

no connection to the processing operations. Mining operations are directly affected by the failure 

of downstream assets, change in the throughput capacity, or any change in the processing plant, 

but, none of the published simulation models take into account an integrated mine and processing 

plant model. The other major problem with the available simulation models is that they mainly 

ignore FMSs working in mining operations. However, nowadays almost all open pit mining 

operations around the world use FMSs, which are core of most e decision-making procedures in 

any mining operation. The models are developed based on a specific mining operation and there 

is no possibility of generalizing them to other operations.  

A practical FMS is necessary for effective decision-making about available fleet assignments in 

mining operations. To test and evaluate any fleet management system in the field it is necessary to 

have a simulation model that integrates both the mining and processing operation in a single 

framework. 

1.3. Summary of literature review 

Chapter 2 presents a complete literature review. Herein, I summarize the literature review’s two 

main categories: optimization and simulation. Most of the models in the first category implement 

different operations research techniques to provide decision makers with choices closest to 

optimal. The studies in the second category usually implement simulation tools to examine 

different scenarios and their impacts on the production operation. 

1.3.1. Optimization 

Most of the literature is about multi-stage decision-making procedures for FMSs. After finding the 

shortest path, the multi-stage decision-making FMSs usually start with a static production 

optimization model for the upper stage and end up with a dynamic truck assignment to meet the 

demands of that stage. 

The main limitations of the existing FMSs are that they neglect: 

 Linkage to the strategic level production plans; 
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 The impacts of drilling and blasting operations on the fleet operation; 

 The effects of uncertainty and correlation of parameters governing the operation; 

 The lost tons caused by mobility and equipment access problems, particularly for shovels; 

 The effects of downstream active processes on the transportation operation; 

 The impacts of weather and traffic conditions on the shortest path between loaders and 

destinations; 

 The optimum assignment of the available shovels to the active faces; 

 Dynamic truck control; 

 The incorporation of mixed fleet systems (in most of the models). 

These limitations result in decisions that are not optimal. 

1.3.2. Simulation 

The surveyed literature shows that most of the simulation models were developed based on a 

specific mine's operation. In these simulation models, some key performance indicators (KPIs) 

were defined for a specific system based on the requirement. Then, the developed simulation 

models were run to examine effects of different changes on the defined KPIs. The major limitations 

of the surveyed simulation models are: 

 The models are case-specific, which limits their applicability to problems like the problem 

for which the model was built; 

 The models do not study the operation in a long-time horizon; however most mining 

companies need to foresee at least one season ahead; 

 The models do not incorporate components of processing plants and their up times and 

down times in the study;  

 Most of the models ignore the role that FMSs play in the mining operation. The models 

are not flexible; different truck-dispatching techniques cannot be implemented. 

1.4. Objective of the thesis 

This research has two main objectives. The first is to develop a valid simulation and optimization 

framework to simulate surface mining and processing plant operations. (Figure 1.3). The second 
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is to develop and integrate efficient truck-dispatching decision-making models into the simulation 

and optimization model developed in the first objective. These dispatching optimization models 

can be implemented in any multi-stage mining FMS. The simulation model incorporates both the 

mining operation and processing operation in a single integrated discrete event simulation model 

and at the same time it communicates to the FMS and asks for path flow rates and truck assignment 

decisions. The study has five main goals: 1- to develop an integrated simulation and optimization 

framework to evaluate surface mining operations; 2- to develop efficient truck-dispatching 

decision-making models to make decisions in the lower stage of any FMS; 3- to embed a currently 

available FMS in the developed framework to make decisions about the flow rates of paths as well 

as to dispatch the trucks to be implemented as the benchmark for the study; 4- to embed developed 

truck-dispatching models in the developed framework; 5- to implement the developed framework 

with the embedded benchmark and developed truck-dispatching models in a case study. 

 

Figure 1.3: Components of the research and their interaction 

The research question to address in this study can be divided into two parts and be stated as follows: 

Simulation research question: can a simulation and optimization framework be 

developed to mimic truck and shovel surface mining operations that have an installed 

fleet management system and is in communication with the processing operation? 

Optimization research question: can a decision-making model be developed to solve 

the truck-dispatching problem in surface mines in a way that minimizes shovel idle 

time, truck wait time, and the deviation of material path flow rates from the target? 

Another major objective of the study is to find a way to approach and consider uncertainties 

associated with truck and shovel operations in truck-dispatching decision-making models.  
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 To achieve the first objective, a simulation and optimization framework is developed to be 

implemented in surface mining operation evaluation. Then, the framework was implemented to 

determine the size of the truck fleet to meet the production requirement dictated by the strategic 

level planning. Afterwards, the developed framework was used in a mining operation that uses 

Modular Mining DISPATCH® [11] as its FMS. The framework with the embedded DISPATCH® 

[11] was used as a benchmark to evaluate the truck-dispatching models developed in this research. 

Later, the framework was used to evaluate the truck-dispatching models developed in this research 

as well as to analyze the behavior of the operation system when different scenarios applied. 

1.5. Context and scope of work 

The research deals with developing a simulation and optimization framework that is capable of 

mimicking surface mining truck and shovel material handling systems with an integrated FMS. 

The simulated model considers the effects of processing operations. It also addresses the 

development of truck-dispatching models that can consider most of the important objectives 

imposed by strategic level decision makers.  

In order to achieve the first objective, we created a system with three major components. The first 

component is an EXCEL data file. This data file consists of all information from the status of the 

mine including the production schedule (strategic level short-term schedule of the mine), the 

shovel fleet and the truck fleet information (obtained from the mining operation database), road 

network information, etc. The second major component of the integrated system is an Arena 

discrete event simulation model. The simulation model consists of two main sub-models: a mining 

operation sub-model, and a stockpile and processing operation conveyor sub-model. The 

simulation model reads required input data from the EXCEL file. It is also linked to exterior 

optimization software that contains FMS decision-making models. 

To accomplish the second objective, we developed one multiple objective mixed integer goal 

programming model, one stochastic linear programming decision-making model, and one fuzzy 

theory-based linear programming model. Each of the truck-dispatching decision-making models 

is encoded in the optimization software and linked to the simulation model. 

The proposed truck-dispatching models consider three major goals of the mining operation, 

including: 
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 Minimizing the shovel idle time or, in the other words, maximizing the shovel utilization 

and subsequently maximizing production; 

 Minimizing the truck waiting time or maximizing the total amount of material to be 

handled in the operation; 

 Minimizing the deviation from the target production assigned to each active path using the 

upper stage model. 

The simulation model developed for the study considers a full integration between the mining 

operation and the downstream processing operations. It is linked to an external optimization 

environment responsible for fleet management tasks and decision-making processes. Goals of this 

part of the research are: 

 Capturing uncertainty of all random input parameters of the mining operation; 

 Embedding an industrially proven mine fleet management system; 

 Linking the mining operation with the processing operation; 

 Accounting for the effects of the delays in the mining operation of the material handling 

procedure; 

 Accounting for the consequences of the delays in the downstream processes of the material 

handling procedure. 

Although we tried to make the FMS general for the truck and shovel material handling operation 

in open pit mines, there are always some topics, which fall outside the scope of a research project. 

Herein, these topics are: 

 Changes in product price and operational costs; 

 Equipment maintenance; 

 Change made by drilling and blasting; 

 Equipment failure; 

 Equipment matching. 
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1.6. Research methodology 

The study can be divided into five main parts: simulating mining operations with an embedded 

DISPATCH® [11] optimizer [12], developing mathematical models for truck-dispatching problem 

in the FMS, developing an integrated mining-processing simulation model, and integrating the 

FMS with the integrated simulation and optimization model. 

When developing each simulation, optimization, and integrated model, the following steps were 

taken: 

 Theoretical model development; 

 Encoding and debugging the developed model; 

 Verifying the developed model using a case study. 

The following lists of tasks were carried out to achieve the research goals. The tasks are 

categorized into three major areas: operation, simulation, and optimization: 

 Simulation 

1- Building the mining operation simulation model; 

2- Adding the processing plant connection to the mining operation simulation model; 

3- Preparing the input data file; 

4- Integrating with the optimization model; 

5- Implementing the model into the case study; 

6- Post-processing the integrated framework output for the case study; 

7- Data analysis.  

 Optimization 

1- Selecting the DISPATCH® [11] optimizer [12] as a benchmark FMS; 

2- Encoding the benchmark model in CPLEX; 

3- Integrating the benchmark optimization model with the simulation model; 

4- Verifying the integrated benchmark model; 
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5- Developing a multiple objective goal programming mathematical model to solve the 

truck-dispatching problem in the FMS; 

6- Encoding the developed multiple objective goal programming mathematical model to 

solve the truck-dispatching problem in the FMS in CPLEX; 

7- Running different scenarios with the developed multiple objective goal programming 

mathematical model and comparing the results against the benchmark mathematical model; 

8- Developing a stochastic programming mathematical model to solve the truck-

dispatching problem in the FMS; 

9- Encoding the developed stochastic programming mathematical model to solve the truck-

dispatching problem in the FMS in CPLEX; 

10- Running different scenarios with the developed stochastic programming mathematical 

model and comparing the results against the benchmark mathematical model; 

11- Developing a fuzzy programming mathematical model to solve the truck-dispatching 

problem in the FMS; 

12- Encoding the developed fuzzy programming mathematical model to solve the truck-

dispatching problem in the FMS in CPLEX; 

13- Running different scenarios with the developed fuzzy programming mathematical 

model and comparing the results against the benchmark mathematical model; 

14- developing a multiple objective fleet management system by combining the upper stage 

decision-making model developed by [13], [14] with the lower stage multiple objective 

goal programming model developed as part of this research; 

15- Running different scenarios with the developed multiple objective FMS and comparing 

the results to the benchmark FMS. 

 Operation 

1- Case study preparation; 

2- Preprocessing the required input data; 

3- Fleet size determination; 
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4- Framework implementation; 

5- Operation evaluation. 

1.7. Scientific contribution and industrial significance of the research 

This research has two main contributions. The problem addressed in the optimization part is the 

truck-dispatching problem in truck and shovel surface mining operations. Three different 

approaches have been taken to solve the truck-dispatching problem. The first model developed 

was a multiple objective mixed integer goal programming model. The model is the first truck-

dispatching decision-making model in the literature that applied a multiple objective goal 

programming approach to the truck-dispatching problem. The goal was to meet the production 

requirement in the mine’s schedule by simultaneously minimizing truck wait time, shovel idle 

time, and the deviation of the path flow rate from the target rate. Our second approach involved 

developing a new deterministic model for this study. After that, the uncertainties in the input 

parameters in the truck-dispatching decision-making procedure were taken care of for the first time 

with two different approaches: stochastic programming approach and fuzzy linear programming 

approach. Developing the stochastic programming model required a number of scenarios and the 

implementation of the recourse method [15], [16]. We captured the stochastic behavior of the 

empty travel time in the truck-dispatching decision-making procedure. We then implemented the 

fuzzy linear programming approach as the second approach to account for the uncertainty of the 

input parameters in the truck-dispatching model. 

The second main contribution of this research is the development of an integrated simulation and 

optimization framework for a surface mining operation. This framework consists of the mining 

FMS, materials handling operation, and processing plants that work in the uncertain mining 

environment. The framework simulates an open pit truck and shovel operation. The framework 

also provides a connection between all components of the operation with the FMS and maintains 

consistent active communication between the FMS and the shovels, roads, trucks, hoppers, and 

conveyors. 

The framework enables the mining industry to determine the minimum number of trucks to meet 

the production requirement for the operations that have processing plants as well as an FMS in 

place. Thus far, simulation methods to determine a truck fleet size are not able to consider the 

effects of processing plants as well as the FMS on the size of the required fleet. The framework 
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also makes it possible for mining companies to evaluate different operational scenarios in the 

mines that are using an FMS as their operational decision maker. Moreover, the framework helps 

the industry to examine different decision-making tools and their effects on the operation of the 

mining system.  

1.8. Organization of the thesis 

Chapter 1 is a general overview of the research. It discusses the background of the research topic. 

It then states the problem of concern and provides a brief summary of the literature review. It also 

explains the objectives of the thesis and introduces the research methodology and contributions. 

Chapter 2, the literature review, provides an overview of mining FMSs and simulation of mining 

systems. Categorizing the FMSs into two main categories, industrial and academic, the thesis 

extensively studies the developed algorithms for each specific level of publicly available decision-

making procedures. It also provides an overview of the simulation studies conducted in mining 

operations. The chapter ends with the rationale for this Ph.D. thesis. 

Chapter 3 contains the theoretical framework for the optimization models and for the simulation 

and optimization framework developed in this thesis. We divided the chapter into nine parts. After 

a brief introduction, the chapter explains the models used as the upper stage decision-making tools. 

Afterwards, introducing the lower stage truck-dispatching decision-making models, the chapter 

provides information about the simulation model. Then, the chapter discusses the integrated 

simulation and optimization framework, and the models’ assumptions and limitations. 

Chapter 4 discusses the implementation of all the developed truck-dispatching models and the 

developed simulation and optimization framework. The chapter introduces the case study, model 

verification, design of experiments, determination of optimum fleet size, and implementation of 

the developed framework with different truck-dispatching decision-making models. 

Chapter 5, the last chapter, provides a summary of the thesis and contains concluding statements. 

It also restates the contributions and limitations of this research and provides recommendations for 

future works in truck-dispatching in open pit mining operations as well as a simulation of mines’ 

material handling systems. 
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2.1. Introduction 

Mining projects and more especially surface mines are known as high cost expenditures that need 

millions of dollars or in the large mines billions of dollars to be expend on them in both capital 

and operating costs. Materials handling is the main component of the operating cost and plays a 

critical role in the mining projects’ decision-making procedure. A large portion of total mining 

costs in an open pit mine must be allocated to excavating and transporting the excavated materials 

from the mining faces to different destinations out of the pit rim. As it is believed by many 

researchers, 50% of operating costs in open pit mines [2] and even in some cases especially in 

large open pit mines up to 60% of the operation costs is to be spent on material handling [2]–[4], 

[17]–[19]. Thus, improving the transportation operation and subsequently decreasing expenses of 

this part of the operation even by 2 or 3 percent will save stockholders a huge amount of money. 

There are two important ways along with others to improve material transportation efficiency in 

open pit mines [2]. The first way is to implement large size trucks in the truck fleet with the 

capacity of transporting more material in each payload, the point current truck manufacturers have 

been reached to the maturity. The second principle way to reduce the cost of material transported 

is to implement operations research techniques to enhance productivity of the operation. Although 

as Alarie & Gamache [2] considers, there is a single stage approach like the one was presented by 

Hauck [9]. In this approach, Hauck [9] implements a continuous algorithm to maximize 

productivity of the operation and send trucks to the destination in a way that minimize deviation 

from the production target simultaneously. Based on Alarie & Gamache [2], there is also a multi 

stage approach of the open pit operation optimization that is of the most interest. In the multi stage 

approach, the problem is divided into two sub problems. In the first sub problem, a static 

scheduling algorithm is implemented to determine the optimal loaders configuration over the 

mining faces, optimum production rate for each route connecting loading points to discharge 

points, and allocation of truck resources to meet production target. This stage called upper stage 

and runs at the beginning of the shift and when the mine status changes. As the lower stage, an 

algorithm mostly based on assignment problem or rarely based on transportation problem assigns 

the trucks to a proper destination by the time the trucks ask for a destination.  

The systems containing decision-making models to do upper and lower stage decisions are called 

Fleet Management Systems (FMS). These decision-making tools make three major sets of 
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decisions: finding the shortest path, determining the optimum path flow rate, and dispatching 

trucks. In the next section we provide summary of published literature in FMS. 

Another area of concern is minimum size of the truck fleet to handle the material handling 

operation. This is a part of Equipment Selection and Sizing Problem (ESP) that should be solved 

prior to start of the mining operation. 

2.2. Truck fleet sizing problem 

Loader related sub problems including loader type and capacity selection and its fleet size 

determination and hauler type selection and its fleet size determination are two main sets of sub 

problems that are dealt with in the Equipment Selection and Sizing Problem (ESP) in surface mine 

planning [20]. To solve the ESP in surface mines different deterministic mathematical models and 

deterministic and stochastic simulation studies have been conducted thus far. 

2.2.1. Mathematical estimation methods 

Markeset & Kumar [21] implemented Life-cycle costing (LCC) technique to solve the ESP in 

surface mines. Later, Samanta et. al. [22] solved the ESP in surface mines using a combination of 

LCC technique and Analytical Hierarchy Process (AHP) method. Based on [20], [23] the LCC 

technique does not consider components of a mining operation other than cost in its estimation 

process. Thus, it is not a qualified and reliable method to be implemented in this area. 

Match factor is a value calculated based on the relation between trucks’ cycle time and shovels’ 

loading time. A detailed explanation of the procedure of computing the match factor for different 

types of truck and shovel mining operation can be tracked in [24]–[26]. Results of the match factor 

computation categorizes any mining operation into three different groups (Table 2.1). 

Table 2.1: Mining operation systems based on match factor 

No. Mining operation system Match Factor 

1 Under-truck system < 1 

2 Balanced system = 1 

3 Over truck system > 1 

Implementation of conventional estimation methods countinued by Edwards et. al. [27] using LP 

model, Krause and Musingwini [28] with implementing machine repair modelling, and Ercelebi 

and Bascetin [29] who used queuing theory to solve the ESP.  
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Beside the conventional estimation methods, mining experts have used a variety of methodologies 

developed based on recent developments in computer science and operational research [20]. These 

studies can be listed as expert system [30], [31], fuzzy set theory [32], genetic algorithm [33], and 

multiple criteria decision-making [31], [33], [34]. 

However, there are two major drawbacks in implementing conventional deterministic models to 

solve the ESP in surface mines. The first drawback is that the developed models do not consider 

uncertainties in the input parameters. Dindarloo et al. [35] explains that even if the deterministic 

modelling of the ESP in surface mine is possible, the modeller encounters serious difficulties due 

to presence of uncertainties in the input parameters. The second drawback is that the solution 

methodologies for ESP are not robust methodologies. This is because results of the deterministic 

model for surface mining material handling system which is stochastic in nature is not reliable and 

trustworthy [35], [36]. 

2.2.2. Simulation methods 

As most of the conventional methods to solve ESP in surface mines do not provide robust 

solutions, researchers started to use discrete event simulation (DES) to solve ESP problems that 

helps to capture impacts of uncertainty of the input parameters on ESP. 

Highlights of DES application in surface mining operation studies are the works by Kolonja & 

Mutmansky [37], Ataeepour & Baafi [38], Yuriy & Vayenas [39], Dindarloo et al. [35], Que et al. 

[40], Upadhyay & Askari-Nasab [7], Chaowasakoo et al. [41], Chaowasakoo et al. [42], and Zeng 

et al. [43]. To find out more about application of DES in mining operations, readers are encouraged 

to read Moradi Afrapoli & Askari-Nasab [44]. 

Although one of the main concerns about the ESP have been mitigated by implementing DES, the 

thus far developed DES models usually contain two major disadvantages that force the solutions 

to be far from optimality. These two major drawbacks are ignoring presence of 1) mining fleet 

management systems, and 2) downstream processing plants.  

2.3. Fleet Management Systems (FMS) 

2.3.1. Some of the available FMS in the market 

Some of the mining and software engineering companies, those provide decision-making services 

for mining operations, deliver fleet management system to surface mining operations. Although 

variety of locally established companies exist that install and support their own fleet management 
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systems for local small mines, there are some FMS providers that are in the business for a while 

and are world widely recognized. Some of the highlighted companies are: Modular Mining 

Systems with more than 236 installation [11], Jigsaw Software with more than 130 active 

installation [45], Wenco (Canadian company headquartered in Vancouver, BC) with about 70 

installation [46], TATA consultancy services that claims of 10% to 15% improvement in the 

production [47], Micromine [48], and CAT® MINESTAR™ FLEET [49]. Table 2.2 represents the 

FMS names, its provider company, number of mines it has been installed thus far, and some 

advantages that is claimed by the provider company. 

Table 2.2: Industrial mine fleet management systems, summary and stats ([44]) 

FMS Company Installed Advantages 

DISPATCH® 

Modular 

Mining 

Systems 

Over 200 

 Haulage Optimization 

 Qualifications Management 

 Fuel Service Management 

 Auxiliary Equipment Management 

 Remote Supervision 

 Payload Analysis 

 Ore Blending Control 

 Real-Time Web Reporting 

Jmineops 
Leica 

Geosystems 
130 

 OEM independence  

 Universal Software Platform 

 Ability to harnesses any industry standard IP-based 

wireless network 

 Identical on-board SQL databases & office server that   

replicate in real-time 

 Distributed database architecture 

 Instantaneous data relay 

 Real-time compliance control 

 Automated cycle logic 

Wencomine 

Wenco 

Mining 

Systems 

65 

 Real-time views of location and activity for all equipment at the 

mine 

 Assignments sent to operators based on current mine parameters 

 Roads and detours updated as equipment travels through site 

 Operators kept on task with onscreen work details 

 Status of all shovels, trucks, drills, dozers, and other equipment 

monitored 

 Ongoing events monitored with customizable, real-time alerts 

 Observe machine performance with data direct from OEM 

systems 

 Boost communication between operators and dispatchers with 

onscreen messaging 

 Maintain data integrity with on board store and forward 

 Follow trends in KPIs with real-time and historical data reporting 

 Connect over 3G or 802.11 Wi-Fi for data transfer 

 Operate in an open architecture environment based on Windows 
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CAT® 

MINESTAR™ 

FLEET 

Caterpillar 
Not 

available 

 Enhancing the management of all types of equipment operations, 

across one mine site or multiple sites. It also allows you to easily 

drill down for more detailed views and analysis, from reporting 

on selectable groups of assets down to individual machines. 

 With the capability to run scenarios that help determine the 

impact of operational changes prior to implementing them, Fleet 

makes it easy to keep your operation running safely and at peak 

performance, with real-time control. 

 It also can work with data from all types of assets and 

equipment—including off-highway trucks, wheel loaders, motor 

graders, wheel dozers, shovels, light duty vehicles and 

equipment from other manufacturers—helping you reduce costs 

per ton, enhance productivity and boost overall site profitability. 

Pitram Micromine 
Not 

available 

 Suitable for the underground operations engaging automated 

mining practices 

 The solution’s intuitive and sophisticated functionality also 

makes it ideal for open pit mines 

 Providing an overall view of the current mine status 

 Increasing clients’ control over their operations 

 Its greater control allows sites to increase production 

 Reduce costs 

 Improve safety and business intelligence capabilities 

Dynamine TATA 
Not 

available 

 Minimizing the cycle time for open pit mine operations and 

improving mine productivity 

 Efficient queue management and monitoring of mobile assets 

 Effective visualization throughout the operational boundaries 

within a mine 

 Monitoring of critical parameters of HEMMS and auxiliary 

equipment for CBM and safety 

 Ability to integrate with mine surveys, mine planning and 

enterprise applications  

 Ability to be configured with open standard hardware and 

software platforms such as Microsoft Windows or Linux 

 Monitoring of the performance of draglines with respect to the 

swing angle, overload, etc. to maximize operating efficiency 

As companies do not have willingness to disclose the algorithms and decision-making models they 

are using in their developed FMS, reviewing literature for the companies FMS is impossible. The 

only company that revealed the algorithms and decision-making models of its FMS is Modular 

Mining System that in two papers ([50], [51]) disclosed their decision-making algorithms working 

behind the scene in DISPATCH® [11] FMS. 

Based on disclosed information regarding the backbone algorithms of DISPATCH® [11] FMS, 

Figure 2.1 and Figure 2.2 show decision-making procedure in the DISPATCH® [11] FMS and the 

tasks it accomplishes to take every decision, respectively. In the first step, mine’s current status 

information is inputted to DISPATCH® [11] using some forms. Implementing the Dijkstra 
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algorithm, the FMS finds the shortest paths that trucks can deliver material from loaders to the 

dumps in the next step. A two segment LP determines the optimal material flow rate in each path. 

In the last step, using a Dynamic Programming (DP), the FMS dispatches trucks to the right 

destination and updates the status of the mine [44]. 

 

Figure 2.1: Schematic representation of DISPATCH® block diagram [51] 

 

Figure 2.2: Procedure through with DISPATCH® assigns trucks [51] 
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2.3.2. Finding the shortest path 

The shortest path problem is the problem of finding a path between two vertices (or nodes) in 

a graph such that the sum of the weights of its constituent edges is minimized [52].  Several 

algorithm have been developed in operational research for finding the best (shortest) path. Some 

of the most important ones are: Dijkstra [10], Bellman – Ford [53]–[55], A* search [56], Floyd – 

Warshall [57], [58], Johnson [59], an Viterbi [60]. Despite the variety of the algorithms available 

to solve the shortest path problem, as claimed by Jaoua et al. [61], the road network in surface 

mine is not that complex to implement any specific algorithm. Thus, in mining industry, most of 

the FMS use Dijkstra algorithm. 

For instance, DISPATCH® [11] uses Dijkstra’s algorithm. The FMS has objective of minimizing 

travel time for transporting material from a loading face to a dumping area or travelling from a 

dumping area to a loading face. After solving the shortest path problem, the FMS provides the 

total minimum distance and travel time for each specific transport and the nodes trucks must pass 

through to reach the destination for the upper stage decision-making model. 

Beside DISPATCH® [11], most of the FMS developed thus far, such as the one  presented by 

Temeng et al. [62] and Temeng et al. [63], also use Dijkstra’s algorithm. Hauck [9] defined the 

shortest path as the shortest travel-time route from loading to the tipping point. Then solved it as 

an LP sub problem using Dijkstra’s algorithm. 

However, some FMS in the literature implement a different algorithm to find the shortest path 

between shovels and dumps. In one of them, in their non-linear model of solving upper stage 

problems as a network problem, Elbrond and Soumis [64] and Soumis et al. [65] solved a non-

linear programming (NLP) network problem to find the shortest path between all loading and 

discharge points. 

2.3.3. Upper stage – production optimization 

After finding the shortest path between all the loading mining faces and the dumping points, next 

level of the decision-making in surface mining operation comes into effect. FMS implement a 

mathematical model to make the best decision regarding this operational problem. Solving all of 

the mathematical models in the literature result in either optimum tonnage of material to be 

transformed from each specific path or optimum number of truck travel to be made on each path. 

To solve upper stage problem, several researchers implemented different operational research 
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approaches. In following subsections, we present some highlighted contributions categorized 

based on their solution approaches. 

2.3.3.1. Queuing theory approach 

Gross et al. [66] defines a queueing system as system in which a customer arrives for a service, if 

the server is not available immediately, the costumer waits for it, and after taking the service from 

the server, it leaves. Erlang [67] developed queueing theory for the first time to predict the systems 

that attempt to provide services. The queueing theory that is defined as the mathematical study of 

the customers’ waiting lines in front of the servers [68].  

Koenigsberg [69] is known as the first researcher who used queueing theory concept in mining 

fields. In his research, Koenigsberg [69] modeled a room and pillar underground mine and a 

surface mine haulage system using queuing theory. By increasing the number of trucks in the fleet, 

solving model developed by Koenigsberg [69] will be computationally time consuming [70].  

With respect to the truck and shovel operation, some researches have been published in the 

literature that approach to different problems using queueing theory. Among the studies following 

queueing theory approach the works of Barnes et al. [54], Dallaire et al. [55], Carmichael [56], 

Kappas and Yegulalp [57], and Xi and Yegulalp [58] can be highlighted. 

Moradi Afrapoli and Askari-Nasab [44] summarized the implementation of queueing theory by 

Dallaire et al. [55]. Dallaire et al. [55] used an analogy of sestem of many networks for mining 

operation. they used mean value analysis method founded on recursive relation of the waiting 

times to compute the truck cycle time for each individual truck as well as capacity of truck fleet. 

The developed queueing theory based model has two major shortcomings [44]. The model fails to 

incorporate travel time as an infinite server queueing system that is similar to the drawback of the 

queueing theory model developed by Barnes et al. [71]. It also leaves the final dispatching decision 

to be made by the human dispatcher. The model developed by Barnes et al. [71] has another 

disadvantage that comes from its Erlang distribution characteristics. The distribution can only 

accept variation in the interval time coefficient to be less than one that is simply violated in mining 

operations.  

Implementing analogy of a production network for truck and shovel material handling operation 

in surface mine, Kappas and Yegulalp [72] considered trucks as customers and all the serving area 

in mine like roads, discharge points, loading points, and maintenance areas as servers in their 
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queueing theory model. Although they consider that, the developed model behaves stochastically, 

the assumption of a mining operation with Markovian nature is not acceptable based on [44]. 

Moradi Afrapoli and Askari-Nasab [44] notified that as totally different distributions can be fit on 

the service times in different area of the mining operation, such an operation is not Markovian.   

Stochastic truck behavior in queue at dump was considered in the queueing theory model 

introduced by Najor and Hagan [73]. Results of implementation of their model in a case study in 

Australia show that neglecting the queue at hoppers leads to misestimating of the total production. 

Based on the queueing theory model developed by Carmichael [74], a truck allocation model 

capable of approximating number of truck required, equipment idle time, and processing plants’ 

feed rate was developed by Ercelebi and Bacetin [29]. We present their developed model below 

from Eq. (1) to Eq. (12): 
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  (10) 

  (11) 

  (12) 

Where: 

 is the total number of trucks; 

 is the total number of service centers (herein: loaders, loaded haul roads, empty 

haul roads, dump sites); 

 is the number of trucks in  service center; 

 is the steady state probability Eq.(4); 

 is the service rate at  service center; 

 computes the probability that service center  is working – utilization – Eq.(6); 

 calculates the expected number of trucks in the queue at the  service center 

Eq.(7); 

 is the expected time a truck spends at service center (=  / ); 

 estimates the expected time that a truck spends in the  service center Eq.(8); 

 is the average total cycle time for a truck to complete service centers Eq.(9); 

 is the cost per unit of shovel (including capital and operating costs); 

 is the cost per unit time of truck (including capital and operating costs); 

 is the total cost for unit production. 

Average cycle time is the sum of load time, dump time, queuing time at the shovel, queuing time 

at the dump, loaded haul time, and empty haul time. Eq.(1), (2), (3), (4), and (5) show the procedure 

from which the probability of each phase utilization is  calculated. Eq.(10) or (11) are implemented 

to find production per unit of time and Eq.(12) computes total cost per ton of material extracted. 

The developed model has some drawbacks. The model assumes Markovian behavior for all the 

uncertain parameters. It also assumes homogeneity of the mining fleet in the operation, and it 

calculates transporter’s cycle time based on fixed truck allocation meaning that each truck can only 

travel from a single loader to an specific destination [44]. 
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2.3.3.2. Linear programming approach 

Most of the thus far developed FMS implement Linear Programming (LP) approach to solve upper 

stage problem. Modular Mining Systems FMS DISPATCH® [11] implements a two segment LP 

model to make optimal decisions on the production requirement (upper stage problem) in surface 

mining operations. LP model of the first segment results in optimal digging rate at each active 

loader or shovel. The optimal shovel production rate from the first segment LP is directly used in 

the second LP segment as an input set of parameters. Then in the second LP segment, DISPATCH® 

[11] determines minimum required transportation capacity to meet the shovel digging rate 

requirement [44]. 

Two main advantages of the model developed by White and Olson [50] and Olson et al. [51] which 

the FMS of DISPATCH® [11] uses are using information from current status of mining operation 

as input parameters and resulting in tonnage of capacity required to meet the production 

requirement rather than number of trucks to meet it [44]. However, as all the researches have their 

own drawbacks, two major drawback of their model are: 1- not considering required stripping ratio 

in the operation, and 2- allowing variation of the plants’ head grade in a range causing short-term 

impacts on product quality. 

Bonates and Lizotte [75] introduced an LP model for handling upper stage decision-making 

procedure that maximizes shovel productivity as its objective. The mathematical model developed 

by Bonates and Lizotte [75] is presented here as a base for all LP type upper stage decision-making 

models (Eq. (13)  to Eq. (21)). 
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   (18) 

   (19) 

   (20) 

   (21) 

Where: 

  is the index of shovels in ore 

 is the index of shovels in waste 

 is the total number of shovels in ore 

 is the total number of shovels in waste 

 is the general shovel index 

 is the crusher capacity 

 is the ore production per period of  shovel 

 is the waste production per period of  shovel 

 is the priority of  shovel for production 

 is the priority of  shovel for production 

 is the material quality upper limit 

 is the material quality lower limit 

 is the material grade at  shovel 

 is the maximum digging rate at  shovel 

 is the minimum production rate at  shovel 

 is the linear approximation for trucks working with  shovel between  

and  

 is the total number of available trucks over the time horizon 

 is the lower limit of SR 

 is the upper limit of SR 
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Constraint (14) makes sure that total production of shovels working in ore does not exceed the 

maximum capacity of the crusher. Eq.(15) and (16) guarantee that the ore quality is within the 

prescribed limits. Constraints (17) and (18) ensure that the total production of each shovel over the 

period will not deviate from the minimum and maximum digging rate of the shovel. Eq. (19) 

ensures that the total number of trucks   used over the solution time horizon does not exceed total 

number of available trucks. Constraints (20) and (21) ensure the stripping ratio requirement will 

be met. 

The model presented in Eq. (13)  to Eq. (21) can be used as a general LP model to handle upper 

stage decision-making in FMS. The model accounts for stripping ratio requirement as well as 

shovels’ priorities. Nonetheless, there exists a wrong assumption in developing the model 

regarding increase in shovel production by increasing the transporters’ fleet size. The assumption 

is that the production rate of shovel has a linear relation with the size of the transporter fleet that 

is not correct in terms of heterogeneous fleet of trucks. Adding stockpile and re-handling to the 

objective function is necessary in the model that Moradi Afrapoli and Askari-Nasab [44] refers it 

as the model’s second drawback. 

Despite all the efforts, there had been no linkage between the operational level decision-making 

and the strategic level decision-making in mining operations until the model presented by Gurgur 

et al. [76]. In their proposed model, Gurgur et al. [76] contribute in assigning shovels to the mining 

faces. The main objective of the model is to minimize deviation of the production from target set 

by the strategic level. Based on Moradi Afrapoli and Askari-Nasab [44] the model has two major 

pros. The model considers availability of trucks in each time span it makes decision for. The model 

considers mining operation as a multi-period operation and solves the upper stage problem for 

several periods at the same time. This results in accounting for the influences of the decisions made 

in current period in the next period decision-making procedure [44]. 

In a recent research that has its case study from oil sands mining, Ta et al.  [77] developed a mixed 

integer linear programming (MILP) model to solve the upper stage problem in FMS. The model 

has objective of minimizing total number of trucks required to meet the production schedule. The 

developed model is not capable of handling a heterogeneous fleet of trucks [44]. 
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Using a knapsack problem LP approach, Mena et al. [78]  developed a mathematical model to be 

implemented in upper stage problem solving procedure in FMS. The model maximizes cumulative 

truck fleet production for a specific period. The equipment mechanical availability is considered 

in the decision-making model presented by Mena et al. [78]. The mechanical availability is used 

as a multiplier for the productivity of the trucks on each specific route in the mine. A mining 

operation simulated for evaluating their model. Results of their implementation showed that their 

developed model represents more accurate decisions in comparison to the model where the fleet 

availability was not considered. The major drawback of the model as claimed by Moradi Afrapoli 

and Askari-Nasab [44] the problem turns into infeasibility in a certain time of the operation when 

more than a specific number of trucks are out of operation for the maintenance repair. Another 

disadvantage of the model is that only availability of the trucks is inputted in the optimization 

problem. However, the priority in the mining system is the use of bigger equipment and adding 

availability of all the equipment which plays a role in the production procedure is needed. Along 

with the above concerns, the blending requirement of the plant feed is not considered in the model 

as well. 

The most resent model based on the LP has been presented by Chang et al. [66]. The model 

schedules trucks over a shift by implementing MILP with the objective of maximizing 

transportation revenue. Then a heuristic rule is implemented to solve the model. They also take 

into account transport priority. The model is based on a homogenous truck fleet that is far from 

reality and causes non-optimality of the model results in a real system. The model does not 

consider the stripping ratio requirement, as well as ignores the stochastic nature of the grade 

distribution. Plant capacity and feed head grade are ignored as well. 

One of the major drawbacks of all models developed based on linear programming is that to 

consider the limitations of the operation, such as the stripping ratio and required feed grade, the 

models have to define an acceptable range. However, defining a range pushes the operation far 

behind optimality, especially if the plant feed grade requirement changes. To clarify, let us assume 

that the objective is to maximize the production. Then probability of truck assignment to the shovel 

closer to the crusher, resulting in a shorter truck cycle time, will be higher. If the average grade at 

these closer faces is fairly close to one of the allowed grade boundaries, then whatever the 

dispatching algorithm is the feed grade within the interval is difficult to control. As a result, the 

existing of stockpile and subsequently re-handling cost associated with it is undeniably increased. 



CHAPTER 2: LITERATURE REVIEW 29 

 

2.3.3.3. Non-linear programming approach 

Most of the models presented in fleet management systems are focusing on upper stage or shovel 

and truck allocation. The model developed by Soumis et al. [65] performs the upper stage in two 

steps. As the first step, it fixes the shovels’ location by implementing a combinatory mixed integer 

linear programming (MILP) model with respect to available trucks and the objective of 

maximizing the production subject to quality constraints. The MILP model solution lists preferred 

locations for shovels on the computer screen. Now the dispatcher makes decisions on the shovels’ 

allocation based on the list appearing on the screen. Subsequently, as the second step of the 

algorithm, Soumis et al. [65] represent the truck travel plan between shovels and dumping points 

by solving a non-linear programming (NLP) model. The model’s objective function consists of 

three components: 1) shovel production objective – computed shovel production; 2) available truck 

hours – computed truck hours – which includes truck waiting time as well; and 3) penalty for the 

deviation of the produced ore material from the blending objectives. Munirathinam and Yingling 

[79] claim that there is an advantage of using NLP versus LP where the solution points of the paths 

will not be on the extreme points of the solution space, since  solution methods for solving LP 

models always look for the optimum solution on the corner of the feasible regions, whereas NLP 

solution methods search for the optimum solution over the entire feasible region. As a result of 

implementing the NLP model, the flow rate will be split over paths, helping to achieve blending 

goals easier. Beside the advantage of the model, it is assumed that all trucks in the fleet have the 

same capacity, a homogenous truck fleet. However, generally the truck fleet in mines is 

heterogeneous with different types and capacity of trucks. The second drawback of the Soumis et 

al. [65] model is the assumption of fixed grade material in each mining face. However, the 

stochastic nature of the ore material quality even in a single block is not ignorable [1]. The third 

disadvantage of the Soumis et al. [65] model is that the model was not presented clearly in the 

paper.  

2.3.3.4. Transportation approach 

Although the transportation modelling approach solves the production optimization problem based 

on an LP model, because of providing a different definition for the problem this modelling 

approach is being considered as a separate subsection. Li [80] presents a model with the objective 

of minimization of total transportation work on a travel path, Eq.(22), subject to ensuring meeting 

a targeted stripping ratio, Eq.(23) and (24), meeting the head-grade requirement, Eq.(25), and 
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ensuring that the number of trucks entering into a loading or dumping node is equal to the number 

of trucks leaving that node, Eq.(26). Transportation work is defined as the distance that material 

is transported multiply by the amount of the material. The transportation model was presented by 

Li [28] for five shovels  as follows: 

  (22) 

Subject to: 

   (23) 

   (24) 

 (25) 

  (26) 

Where: 

 is the set of ore shovels 

 is the set of ore discharge points 

 is the set of stockpile points 

 is the set of waste shovels 

 is the set of waste disposing points 

 is the truck flow over path from  loading point to  discharge point 

 is the total number of segments on path  

 is the length of  segment on  route 

 is the road resistance factor of  segment of  path 

 is the net truck weight 
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 is the ore payload 

 is the waste payload 

 is the planning period over which number of loading and dumping points do not 

change 

 is the amount of material to be transported from  loading point in T time 

 is the total number of ore quality indicator 

 is the ore quality of indicator q at  loading point 

 is the required ore quality of indicator q at processing plant 

 is the set of all loading and discharging points that  have path to  discharge point 

. is the set of all loading and discharge points that constitute feasible paths from j 

The method implements the abovementioned LP model to allocate the optimal number of trucks 

to a route meeting its productivity rate. The model presented is based on a five shovel fleet, but 

the author claims that the model can be implemented in a mine with a higher number of loading 

points as well. The model considers the productivity of each shovel and also blending 

requirements. One major drawback of the model is that the total model operational plan, including 

upper and lower stages, is based on a homogenous fleet. However, this model will not guarantee 

optimality in real projects where the fleet is heterogeneous because it allocates trucks to each 

shovel based on the assumption of the same capacity. Another major drawback is that the model 

does not consider truck breakdowns as a major event that changes the mine status.  

2.3.3.5. Goal programming approach 

The Goal Programming (GP) was first introduced by Charnes and Cooper [81] and Charnes and 

Cooper [82]. In the simplest version of GP, the designer prepares some goals he or she wishes to 

achieve for each objective function. Then, the optimum solution is the set that minimizes 

deviations from the goals that have been set, meaning that this solution does not maximize or 

minimize a specific objective, but tries to find a specific goal value of those objectives [83]. In the 

mining operation optimization, there exists a variety of goals to be achieved, such as production 

maximization and maintenance of ore quality between the desired limits [63], optimization of the 

processing plant utilization, and minimization of the trucks’ and shovels’ movement costs [18]. 

Temeng et al. [63] formulated a model of open pit mine operation optimization based on GP that 

is presented below: 
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   (27) 

Subject to: 

  (28) 

  (29) 
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Where: 

Where: 

 is the priority factor for production 

 is the priority factor for grade control 

 is  shovel production negative deviation variable 

 are the positive and negative deviation from ore grade indicator k at  

crusher 

 is the number of shovels 

 is the number of quality identifiers 

 is the number of the crushers 

 is total number of destinations 

 is the number of shovels working at ore faces 

 is the production to be assigned to the  path connecting  shovel to  

discharge point in each shift 

 is capacity of truck that  is to be assigned from  dumping point to  shovel 

per shift 

 is the maximum production of  shovel per shift 

 is the minimum production of  shovel per shift 

 is the maximum available capacity of  discharge point per shift 

 is the average ore quality indicator k at  shovel 

 is the target ore quality indicator k at  crusher 

 is the prescribed lower limit of ore quality indicator k at  crusher 

 is the prescribed upper limit of ore quality indicator k at  crusher 

 are the prescribed lower and upper bounds of required stripping ratio 

 is the average travel time from  shovel to  discharge point 

 is the average dumping time at  destination including spot time 
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 is the average travel time from  discharge point to  shovel 

 is the average loading time at  shovel including spot time 

 is the number of trucks 

 is the weighted average truck payload 

The model maximizes shovel production and ensures the ore grade requirement achieved as much 

as possible by Eq. (27), Eq. (28) and Eq. (29) ensure that the total material transported from  

shovel cannot exceed the shovel’s digging rate and will not be less than its minimum digging rate. 

Eq. (30) makes sure that the total material dumped in each dumping point cannot surpass its 

maximum capacity. Eq.(31) and Eq. (32) ensure that the number of trucks entering a node is equal 

to the number of trucks leaving the node. Eq. (33), Eq. (34), and Eq. (35) guarantee the ore quality 

requirements at the plant. Eq. (36) conserves the production between the required stripping ratio. 

Eq. (37) ensures that total production cannot exceed total truck capacity available. The main 

advantage of the GP model developed by Temeng et al. [63] is that it optimizes two major goals 

of the open pit operation simultaneously without neglecting either  of them. Besides covering the 

objective function drawbacks of previous models, this model compensates for another 

disadvantage of the LP models, that is, defining the upper and lower limits for the target grade of 

material sent to the plant. However, the model has some disadvantages. It does not consider all the 

goals supposed to be met in an open pit mine operation, such as equipment movement costs and 

so on. 

2.3.3.6. Stochastic programming approach 

Ta et al. [84] implemented a chance-constrained stochastic optimization to allocate trucks in an 

open pit mine as a part of the upper-stage of a fleet management system. They also used an updater 

to renew the model and parameters by the time shift or status of the mine changes. The presented 

model considers truck-load and its cycle time as stochastic parameters. The decision variables in 

the model are number and types of trucks allocated to the shovels. The authors claim that their 

stochastic model can be solved by converting it to a quadratic deterministic model and 

implementing mixed integer nonlinear programming techniques and solvers. However, solving the 

model using NLP techniques is time consuming. Thus, the initial model was divided into two sub-

models. The sub-models were solved to allocate a discrete number of trucks to each loader. The 

main model is as follows: 
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  (39) 

Subject to: 

   (40) 

  (41) 

  (42) 

   (43) 

   (44) 

Eq. (40) ensures that the confidence level in the model is more than or equal to the predefined level 

.  Eq. (41) calculates the total volume of material that a truck can transport in a unit of time (hr). 

Eq. (42) aims to limit trucks at shovel based on the shovel capacity. Eq. (43) and Eq. (44) limit the 

number of trucks in use to the available trucks in the fleet. The first sub-model, which is a 

probabilistic chance-constrained model, is as follows: 
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The first sub problem is almost the same as the general chance-constrained problem, except for 

the constraint (49) that  maintains the solution from the assignment of zero trucks to shovels. Also, 

a minimum ore throughput from the shovels is maintained by using m. The model must be 

simplified as a non-linear deterministic model and be solved by use of nonlinear techniques. The 

model provides a continuous amount for the truck number, which must be a discrete number. To 

determine this number, a second sub problem was presented: 

  (52) 

Subject to: 

   (53) 
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   (55) 

   (56) 

  (57) 

   (58) 

Where: 

 is the shovel type; d is type of discharge point 

 is the truck type 

 is the cost coefficient of truck type g. For the truck type g with the 

smallest capacity K(g)=1 and for the rest it is calculated based on that. 

For example, in a fleet consisting of 240 ton and 320 ton capacity 

trucks, K(240)=1 and K(320)=1.33) 
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 is the number of truck type g assigned to shovel s and dump d (discrete) 

 is the truck type g capacity working on route connecting shovel s to 

dump d 

 is the ore truck cycle time (minute) 

 is the initial surge volume 

 are the ore production rates that go  in and out of surge per hour 

 is the capacity of shovel s (tonnes/hr) 

 is the amount of waste needed  to be handled per hour 

 is the available number of type g trucks 

 is the number of hours in each period of concern 

 is the used to specify the minimum amount of ore to be mined by the 

working shovels  

Constraint (53) defines the lower bound of the objective function. Eq. (54), Eq. (55), and Eq. (56) 

are the same as Eq. (48), Eq. (49), and Eq. (50) in the first sub-model with the exception of number 

of trucks being discrete. Eq. (57) helps to move to the next time period realistically. 

The objective function value of the first sub problem helps to define a lower limit for the objective 

function value of the second sub problem. To move to the next time horizon, constraint (57) is 

defined to ensure gradual transition of allocation from the current period. Although the model 

provides a good conceptual background for the stochastic optimization approach to solve the multi-

stage optimization problem, the model takes into account only the probabilistic nature of truck 

travel times. In addition, the model formulation is very much specific to a specific mining case 

and cannot be generalized to other mining systems. 

 

2.3.4. Lower stage – real-time dispatching  

Real-time decision-making on the destination of trucks in a mining operation was first used in the 

early 1960s with implementation of radio communication tools to link between dispatcher and 

trucks operators in a fixed truck allocation mine. However, based on the utilization of the modern 

computer, real-time fleet management in mining operation systems are divided into three major 

categories: locked-in or fixed allocation, semi-automated, and fully automated systems. In the 
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locked-in method, there is no effort for dispatching the transportation units. Semi-automated 

dispatching, which has been developing by increasing the computer usage in the mining sector, is 

divided into two different classes: passive and active. In the earlier class, the computer just displays 

the current mine operation information and does not have any role in the decision-making 

procedure. However, in the latter class, computers use current mine status information as inputs 

and process them based on predefined models and suggest a list of assignments for the dispatcher’s 

decision. In the automated dispatching, the data of the current mine status and condition and 

position of the equipment within the operation are collected into a main computer server, which 

then sends the assignment to trucks after solving some heuristics or mathematical programs. What 

we review here is the last class where computers receive data, process them and assign the trucks 

to their next destinations. 

There are two major approaches governing dispatching procedure: the assignment problem 

approach and transportation problem approach. The first approach itself is a subcategory of the 

transportation problem in the operations research. 

2.3.4.1. Assignment problem approach 

A general assignment problem is a balanced transportation problem in which all demands and 

sources have capacity of one unit. In each assignment problem, there is a cost matrix that consists 

of the costs associated with assigning each supply to each demand. The objective of each 

assignment model is to minimize the cost of allocating supplies to demands. In the mining context, 

the assignment problem has been used mostly to dispatch trucks as supply to shovels or dumping 

points as demand. The objective in mining truck-dispatching, based on the assignment model, is 

to minimize shovel idle time, truck waiting time, inter-truck time, and so on. In comparison with 

the other approach, almost all real-time truck-dispatching models in both industrial and academic 

research areas are based on the assignment problem. 

After solving the upper stage – operation optimization – LP problem by implementing the simplex  

method [85], resulting in the optimum material flow rate on routes, White and Olson [50] and 

Olson et al. [51] employ the dynamic programming (DP) [53] approach to send trucks to the proper 

destination. To do so, two lists and three parameters are defined. A list of needy shovels or LP-

selected paths and a list of trucks dumping material at discharge points or en-route from a loading 
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point to a destination are provided. In addition, need-time, which is defined as the expected time 

for each path’s next truck requirement, is calculated. 

Then, the neediest path, which is on the top of the neediest shovels list, will be the one with the 

shortest need-time. Then lost-ton is defined and formulated as a criterion to find the best truck for 

the neediest path from the truck list. 

Considering the lost-ton definition, the best truck is the truck covering lost-ton of neediest shovel 

the most. After the best truck is assigned to the neediest shovel, it is moved to the last position on 

the needy paths’ list and the procedure is repeated for the second neediest, which is now the 

neediest until all trucks on the list are assigned. 

Defining a rolling time horizon when a sequence of assignment is needed is a benefit of the model. 

The information of the mine status used in the model is always up to the minute. However, the 

model does not consider the effect of current truck assignment on the forthcoming truck matching, 

though all trucks previously sent to the shovels are considered. Another drawback of the model is 

that despite the authors’ claim, the solution method is not a DP. It is a heuristic rule solving each 

sub-problem based on the best solution of previous sub problems.  Based on Alarie and Gamache 

[2],  the solution method’s misnaming as a DP  is perhaps because of the authors’ misunderstanding 

of Bellman’s principal of optimality. However, the DISPATCH® [11] system has been  

implemented in about 200 mines all around the world and is to most dominant player in the FMS 

market. Table 2.3 summarizes the procedure with which DISPATCH® solves a mine production 

problem. 

Table 2.3: Summary of the models DISPATCH® uses in the fleet management systems 

Category Shortest Path Allocation Dispatching 

Objective Minimize travel time Minimize total trucks required 
Minimize lost-tons caused 

by the assignment 

Constraints 
Intermediate call points a 

truck should pass 

Shovels’ digging rate 

Dump area capacity 

Continuity at each loading and 

discharge point 

Total number of trucks available 

in the fleet 

Blending limits of grades 

Targets of material category 

blending 

Proximity of  truck that  

asks for an  assignment  to 

the destination 

Solution 

Method 
Dijkstra  Simplex Dynamic Programming 
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Advantages  

 Algorithm often does not 

have to investigate all edges 

Dijkstra's algorithm has an 

order of n2 so it is efficient 

enough to use for relatively 

large problems 

Model is up to the minute 

Flowrate of each route is based on 

the volume of the material rather 

than number of trucks 

Progressing time horizon 

when order of assignment 

is required 

Under-/Over-truck 

conditions considered 

Disadvantages  

Model is time consuming 

Failure in cases of negative 

edges 

Global information of the 

road network required  

Appropriate when a few variables 

are at play 

Non-negative constraints for all 

variables 

Definition of a progressing 

time horizon for an order 

of assignment  

Consideration of under-

/over-truck conditions 

Hauck [9] implemented a sequence of assignment problems to dispatch the trucks need destination. 

The objective function of his model is to minimize total idle time of shovels to minimize a lost ton 

of the operation. The sub problem solved in each assignment request is as follows: 

   (59) 

Subject to: 

  (60) 

   (61) 

   (62) 

Where: 

 

is a lost ton due to idle time caused by assigning  truck to  shovel at time ;  is 

representative of a situation that will be explained later on. 

The model tries to minimize a lost ton due to idle periods. Constraint (60) guarantees that each 

truck is assigned to at most one shovel, whereas constraint (61) ensures that each shovel is assigned 

exactly to one truck. Eq. (62) ensures that a truck to be assigned meets all requirements.  

Two main disadvantages of the dispatching part of Hauck’s model are first, the assignment is not 

as accurate as possible because the decisions made now will not be recomputed unless the number 

of available trucks changes. As a result, the assignment decision is not up to the minute. Secondly, 

the model is a sub-model of a larger model that uses the result of the last stage of the total model 
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for dispatching. The last stage above the dispatching decision-making model itself is an optimum 

result of its previous sub-model. Thus, the dispatching model is not able to use DP to solve the 

assignment problem because it does not have the possibility of using all possible solutions of the 

previous stages and only uses the optimum solution of those stages. 

Soumis et al. [86] developed an assignment model that considers 10-15 forthcoming trucks and 

their effects on the current assignment. The objective of the model is to minimize the sum of the 

squared deviation of the estimated waiting time of trucks from the planned waiting time. The model 

tracks 10-15 trucks based on average travel time, discharge time, and loading time and shovel 

inter-truck waiting time. After the assignment of the current truck, the data of all 10-15 trucks used 

for the assignment are erased. The procedure will repeat when the next assignment is requested. 

The main advantage of the method is that it considers the effects of forthcoming trucks on the 

current assignment. However, the assumption of a homogeneous fleet is a drawback of the model. 

Assuming a homogenous fleet of trucks in a multi-stage truck-dispatching model causes a 

considerable deviation from the reality. The reason behind such a deviation is that to use a 

homogenous fleet in the lower stage (real-time dispatching level), it is necessary to model the 

upper stage (operation optimization level) considering a homogenous truck fleet as well. 

Consequently, the optimized production rate resulting  from the upper stage is far from the one in 

reality because in reality trucks in the fleet range in  different sizes in most of the fleets [2]. 

However, , based on Lizotte et al. [87], to implement a multi-stage dispatching algorithm for an 

open pit mine operation, the production plan should represent the mine as close to reality as 

possible to have an optimal plan. The second major drawback of the model that happens in almost 

all of the dispatching models based on the assignment problem is that, although the models account 

for upcoming trucks for the current assignment request, the effects of the current assignment on 

forthcoming trucks are not accounted for.  

Li [80] proposed a dispatching rule based on the difference between the actual and optimal trucks’ 

interval times over a route  to a destination. The algorithm is run whenever a truck needs to be 

assigned to a destination and sends the truck to the loader/crusher where the deviation between the 

actual and the optimal truck interval times on that route are maximum. The author claimed that the 

proposed algorithm keeps truck flows as close to optimum as possible. However, there is an 

important drawback for the model, which is the ignoring of the queue of the trucks in the 
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destinations, especially in the loading points. The model, by ignoring the trucks’ queue at the 

destination, underestimates the lost tons caused by this truck waiting time. 

Ercelebi and Bascetin [29], after providing optimum truck allocation by using the  queuing theory, 

implemented the assignment problem approach based on the model  presented by White and Olson 

[50] and Olson et al. [51] to dispatch trucks requesting a new destination. Lizotte et al. [87] 

presented a  semi-automated model that first provided a simulation model of the case study where, 

by the time a truck needs assignment, three dispatching heuristic  assignment problems are solved.  

The results of the simulation are presented on the board in a table beside the result of fixed 

allocation method and leave the decision for the dispatcher. 

All dispatching heuristic rules in the literature are grounded on maximized truck utilization by 

which a truck is sent to the shovel where it is supposed to be loaded first follow assignment 

problem. Although such an objective improves production in comparison with a locked-in non-

dispatching operation, dispatching heuristic rules have some drawbacks, including how ore quality 

and stripping ratio are not taken into account. Another major drawback of these types of algorithms 

is that they  tries to send trucks to the shorter routes and as a result, the shovels sitting on the further 

mining faces will idle longer  [75], [88]. In all the dispatching rules in the literature based on 

maximum utilization of the shovels a truck is sent to the shovel that is supposed to idle longer by 

the time truck reaches the face.  These dispatching rules are following assignment problem as well. 

To sum up, although implementing an assignment problem provides a fast solution for real-time 

truck dispatching in mining operations, this strategy has two major drawbacks arising from the 

nature of the assignment problem: The main drawback of algorithms based on an assignment 

problem is that each time only one truck is assigned to each shovel, even if a shovel is far behind 

its production target and needs more than one truck.  The second drawback is that despite the 

claims of some authors, the model is not able to consider the effects of forthcoming trucks. 

2.3.4.2. Transportation problem approach 

A transportation problem in the optimization context is described as follows [89]: 

1) A set of supply points (m); 

2) A set of demand points (n);  
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3) Cost associated with transporting material from the supply point i to the demand point j. 

Let  represent the number of units shipped from the supply point i to the demand point j, then 

the general formulation of the transportation problem is as follows: 

   (63) 

Subject to: 

 (64) 

 (65) 

   (66) 

To have a feasible solution, each transportation model must be constrained as follows: 

   (67) 

The model tries to minimize total costs of the decision to be made, Eq. (63). Constraint (64) makes 

certain  that the total material sent to different sink points cannot exceed  source capacity. 

Constraint (65) ensures that sink will meet its demand. Constraint (66) limits the material to be 

handled to non-negativity. One of the reliable algorithms of the real-time truck dispatching in an 

open pit mine is the model developed by Temeng et al. [62] based on a transportation problem. 

The procedure of truck dispatching by using  the Temeng et al. [62] transportation algorithm is as 

follows: 

First, a needy shovel is defined as a shovel using a route that up until now has a cumulative 

production behind its production target. Alternatively, on the other hand, a non-needy shovel is a 

shovel that registers a cumulative production of all routes ending to it as above or equal to the 

target. 

To find the needy shovels, we first calculate the current mean of tonnage ratio by using of Eq. (68)
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   (68) 

Where:  

;  is the current cumulative tonnage on path ;  tonnage is  assigned to the path 

 that  links  shovel to  dump. 

Set current mean as the target ratio of each route. Then for each route define  (Eq. (69)) as a 

deviation of the route  from the target production: 

   (69) 

Now, a needy shovel is a shovel with  < 0 (negative deviation). 

Secondly, the number of trucks each needy shovel requires is determined. At first, Eq. (70) or Eq. 

(71) is  being implemented to calculate  as the tonnage behind the target of the route : 

   (70) 

  (71) 

Before, the demand of each route is found by using of Eq. (72) a basic truck capacity (small, large, 

or an average of them) is chosen based on some statistical analysis. 

  (72) 

Where: 

 is the demand of each route ;  is the larger truck capacity in the fleet consisting of two 

different truck sizes;  is the smallest integer ≥ . 

Finally, the demand for each shovel will be Eq. (73): 

   (73) 
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And if the demand of  shovel is , then Eq. (74) is being used to calculate the total demand 

of the operation at current status: 

   (74) 

In which  must be less than or equal to the number of trucks available for the assignment and if 

it is not, a cut-off value for required tonnage should be used that selects those shovels as needy 

ones with a relatively higher negative tonnage. 

Finally, Eq. (75) to Eq. (78) present the model to assign trucks that tries to minimize total 

cumulative waiting time associated with the assignment based on transportation algorithm: 

   (75) 

Subject to: 

  (76) 

   (77) 

   (78) 

Where: 

 is the waiting time associated with assigning truck k to shovel 

i;  is the decision on assigning truck k to  shovel;  is supply of truck ;  is the demand 

of  shovel; Li is the mean loading time of  shovel;  is the number of trucks at  shovel; 

 is the number of trucks en route to  shovel;  is the expected travel time of truck k to reach 

discharge point;  is the expected waiting time of a truck at the discharge point j;  is the 

average dumping time of a truck at the discharge point j;  is the average empty travel time from 

the discharge point j to  loader. 

Eq. (76) ensures that the total number of trucks assigned cannot exceed the number of available 

trucks. Eq. (77)  ensures that trucks sent to the  shovel will cover their lost ton as much as 

possible. In addition, Eq. (78) ensures that the number of type k trucks assigned to  shovel is 

thi
iD

1

n

i

i

D D




D

1 1

min
l n

ik ik

k i

W X
 



1

1,...,
n

ik k

i

X S for k l


 

1

1,...,
l

ik i

k

X D for i n


 

0ikX 

( ) ( )ik i i i k j j ijW L N E t d e r     

ikX
thi

kS k
iD

thi thi
iN

thi

iE
thi

kt

jd jc

ijr

thi

thi

thi



CHAPTER 2: LITERATURE REVIEW 46 

 

non-negative. The model assumes a heterogeneous truck fleet; as a result, this model will be as 

close to reality as the upper stage model is. The model also considers the situation that a shovel is 

far behind its target production and needs to be assigned more than one truck. In such a situation 

the model easily assigns more than a single truck to those needy shovels further behind the 

schedule without any limitation occurring by implementing the assignment model. 

However, there are two major drawbacks with the model. The first major drawback is that the 

mean of production rate for all routes is the basis for calculating the deviation of routes.  Based on 

the upper stage plan, however, sometimes it is required to extract much more of some specific 

materials to maximize the production rate of the transport routes of those materials. Then during 

the assignment, the transportation problem based dispatching model will send more trucks to those 

with higher negative deviation. The second major drawback is in the cost of any arising 

transportation problem when transporting costs of any unit of material is calculated as constant 

and independent of supplier centers. However, each truck waiting time at the shovel or crusher is 

depending on the trucks previously assigned, especially in over-truck systems. Also the waiting 

time accounting for in transportation method is based on trucks currently at their destination or en 

route to the destination, and there is no way to account for the waiting time  caused by trucks  

assigned in the future that may  reach the destination earlier [2]. 

2.3.4.3. Single stage approach 

One of the first algorithms introduced to solve truck allocation and dispatching problems in open 

pit mines is a single stage algorithm presented by Hauck [9]. The main feature of the presented 

algorithm is a combination of the operation plan and real-time scheduling in a single model. The 

model is based on solving a sequence of assignment problems by using DP. The model considers 

the stripping ratio, blending objectives, capacity of the plant, and stockpile. The objective of the 

model is to maximize the production by minimizing the lost ton caused by shovel idle time: 

  (79) 
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  (80) 
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  (81) 

  (82) 

  (83) 

Where: 

m is the number of available trucks; n is the number of shovels;  is the average haulage capacity 

of truck i;  is the set of shovels j working at waste;  is the set of shovels j working at ore 

mining faces;  is the set of shovels j working at stockpile; doubly subscribed J is the union of 

two sets;  is the time a shovel has just loaded a truck (assuming discrete points in time to keep 

track of the process);  is the total number of loads completed by shovel in T working cycle; 

 is  load of truck i; is  load of shovel j; is the earliest time  load of 

truck i which is load of shovel j is loaded by shovel j on truck i; 

 (84) 

Ej is the loading rate of shovel (ton/time); is the idle time incurred by shovel 

when it loads its load as the truck’s load into the truck.  are the lower and upper 

limits of SR; b is a suitable quantity of ore;  ;  are minimum and maximum 

processing plant rate;  are stockpile inventory at the beginning of the cycle and at time 

, respectively. For each  decision, an assignment problem is solved as a sub problem by 

implementing DP, which has been presented in Eq. (79) to Eq. (83). 

Eq. (80) ensures meeting the SR requirement; Eq. (81) and Eq. (82) guarantee that the processing 

plant is always being fed; Eq. (83) ensures that total material handling at the stockpile cannot 

exceed the amount of current stockpile inventory.  is the assignment domain satisfying 

Constraints (81) to Constraints (83). The algorithm presents an optimal combinatorial intractable 

assignment procedure. Although it is a complex algorithm containing all limitation satisfaction 
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criteria, it runs fast. However, assuming the problem as a completely deterministic procedure 

shows that the stochastic properties of truck waiting time is ignored. Meeting all the production 

requirements is not the goal of the operation for each assignment and if they can be satisfied in a 

longer period of the time, their short term violation is acceptable. As previously mentioned, DP 

tries to find the optimal solution from all of the feasible solutions of the previous sub problems 

rather than from the best solution among them. 

2.3.5. Some Other Efforts 

Krause and Musingwini [90] used a machine repair analogy to analyze and choose truck fleet size 

for an open pit mine. They chose Arena for the simulation part “because it can be programmed 

with any number of probability distribution fitted to an unlimited number of cycle variables and is 

therefore a very flexible model for use in analyzing several variables in shovel-truck analysis”. 

He et al. [91] implemented a genetic algorithm to optimize truck-dispatching problems in open pit 

mines. They tried to find a route and assign an upcoming truck to it based on minimized 

transportation and maintenance costs. In that model, it has been assumed that truck velocity in both 

loaded and empty conditions are the same, which is a drawback of their model. Although their 

major focus was on minimizing the costs, by assuming the same velocity for both loaded and 

unloaded trucks, they underestimated costs. Another major drawback, similar to almost all other 

models is the assignment of trucks to routes rather than to shovel-destinations. They claimed that 

truck maintenance cost becomes  higher with the age of the truck by a constant coefficient, whereas 

Topal and Ramazan [92] and Topal and Ramazan  [93] revealed that maintenance cost behaves in 

a fluctuated manner during its life and by each main repair the equipment’s maintenance cost will 

decrease considerably. 

Another model provided by Subtil et al. [94] is used in the commercial package SmartMine® 

marketed by Devex SA [95]. It uses LP in the upper stage to determine the maximum production 

capacity of the mine and the optimal size of the truck fleet required to meet the target production. 

The allocation planning stage does not provide any information for shovel assignments, which still 

completely remain the task of the planner. In addition, the model does not take into consideration 

other desired characteristics, such as grade blending, constant desired feed to plants, etc. The 

dynamic allocation or the truck-dispatching is achieved by adopting M trucks for N shovels 

strategy. Using M trucks, the best possible solutions based on undisclosed criteria are generated 
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and each solution is simulated 50 times to achieve a desired confidence interval. The best solution 

is found using a multi-criteria optimization, which maximizes productivity of the transport fleet 

and minimizes queue time at shovels and idle time of shovels. A fuzzy logic expert system is then 

used to evaluate the solution and, if passed, dispatch the truck to the allocated shovel. The major 

drawback of the approach can be the cumbersome time consuming methodology adopted at the 

dynamic allocation stage, which requires real- time decisions. The authors of this study mention 

some situations where fuzzy logic rejects the best solution, which demands re-running of the entire 

model to obtain another solution. The alternate solution generated after rejecting the first one will 

be the second best solution, which may again get rejected, leading the method into a time-

consuming loop. 

Ahangaran et al. [17] used a two stage model for truck dispatching the trucks, where the first stage 

uses a network analysis technique to determine the best routes between departure and destination 

points and second stage provides dynamic truck assignments. The second stage adopts a binary 

integer-programming model to minimize the function of the total cost of loading and 

transportation. This dispatching model is significantly different compared to previous models in 

terms of the objective function and the mixed fleet considerations in the modelling equations. One 

of the major drawbacks of this model is that it does not consider traffic over the routes during the 

procedure to find the shortest path. Another drawback is that, although their objective function is 

to minimize total truck cycle time, they do not take into account truck spot time and truck waiting 

time at both shovels and crusher. They did not show the practicality of their model in at least one 

open-pit mine. 

A brief summary of the models and algorithms developed for solving the problems in both 

production optimization and real-time dispatching are presented in Table 2.4 and Table 2.5, 

respectively. 

Table 2.4: Summary of the algorithms to solve production optimization problem 

Model Type Researcher Year Objective Advantages Disadvantages 

Queuing 

Theory 

Xi and 

Yegulalp 

 

Ercelebi and 

Bascetin 

1993 

 

 

2009 

Minimize total 

costs of the 

production 

Simplicity is the main advantage of 

the models based on queueing 

theory.  Waiting in queue is very 

common for trucks working in mine 

sites, so    queueing theory can be 

modelled as an elegantly simplistic 

mathematical equation 

Production rate underestimation 

Requiring a significant engineering 

judgment to implement the model in the 

operation 

Using Erlang queuing model 

Assuming homogeneous truck fleet 

Ignoring of equipment idling  
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Assuming mine as a system with 

Markovian nature 

Transportatio

n 
Li 1990 

Minimize total 

transportation 

work 

Taking into account the 

productivity of each shovel 

Considering ore quality requirement 

Assuming homogeneous truck fleet 

Ignoring of equipment idling 

Disregarding equipment breakdown as 

an event that change the mine’s status 

Linear 

Programming 

Hauck 1973 

Maximize the 

production by 

minimizing the 

lost ton caused by 

equipment idle 

time 

Considering stripping ratio 

requirement 

Accounting for plant and stockpile 

capacity 

Trying to meet blending objectives 

Although performing  all the 

procedure of allocation and real-

time assignment together,  it runs 

fast 

Not considering stochastic properties of 

truck waiting time in the objective 

function 

Restricting the flexibility of the 

operation by solving the upper stage 

model in each and every assignment 

request 

Implementing a DP approach to solve 

each sub-problem without considering 

all solutions of previous problems 

White and 

Olson 
1986 

Maximizes the 

fleet production 

by minimizing 

total required 

volume to be 

handled 

Being up to the minute 

Flowrate of each route is based on 

the volume of the material rather 

than number of trucks 

Disregarding required stripping ratio 

Defining a range for grade of material to 

be fed into the plant which consequently 

will cause either the final product or 

shovels utilization 

Ignoring modelling of the equipment idling 

Lizotte and 

Bonates 
1992 

Maximize shovel 

productivity 

Considering stripping ratio 

Relative priority of loading 

equipment, especially the ones 

working on mining faces, are taken 

into account in the model 

Necessity of adding stockpile or re-

handling to the objective function 

Assuming linear correlation between 

production at each face and number of 

available trucks in the fleet 

Gurgur, 

Dagdelen 

and 

Artittong 

2011 

Maximize total 

net value per ton 

of material 

handled 

Assigning the shovels to the proper 

faces as a link between short-term 

plan and operational level 

Accounting for available trucks in 

each time period 

Considering the mine as a multi 

period task 

Being a lifelong model 

Ignoring costs associated with shovel 

movement 

Disregarding lost tons caused by shovel 

movement 

Using continuous variables in the 

discrete operations in heterogeneous 

fleet allocation is not realistic 

Ta, 

Ingolfsson 

and 

Doucette 

2013 

Minimize number 

of trucks required 

to meet the target 

Capturing shovel idling in the 

objective function 

Performing Fast and being useable 

for large mining systems 

Not having the capability of providing a 

reliable allocation in an open-pit 

operation 

Defining upper and lower bounds for the 

head grade 

 Not being able to offer allocations based 

on a realistic or even near to realistic 

combination of different types of trucks 

available in the fleet 

Missing linkage with any of strategic 

level plans 
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Rodrigo, 

Enrico, 

Fredy and 

Adolfo 

2013 

Maximize the 

overall 

productivity of 

the fleet 

Considering availability of the 

trucks directly in the objective 

function 

 

Showing infeasibility by the time a 

certain number of trucks fail or go for 

maintenance repair 

Ignoring availability of loaders which 

results assumption of 100% availability 

of all shovels 

Disregarding blending requirement of 

the plant 

Chang, Ren 

and Wang 
2015 

Maximize total 

revenue obtained 

from transported 

material 

Accounting for the transportation 

priority 

Assuming homogeneous fleet 

Ignoring stripping ratio requirement 

Ignoring the plant capacity requirement  

Disregarding head grade of the material 

fed to the plant 

Non Linear 

Programming 

Soumis and 

Elbrond 
1989 

Minimize the sum 

of weighted 

pseudo-costs of 

deviation from 

maximum 

production due to 

equipment idling 

and grade 

deviations 

Allocating shovels to the faces 

Not having extreme flowrate on 

each route because of the results 

being provided by NLP method 

Assuming homogenous truck fleet 

Ignoring stochastic nature of ore grade 

extracted from each mining face 

Goal 

Programming 

Temeng, 

Otuonye and 

Frendewey 

1998 

Minimize 

deviation from 

two goals 

including 

production rate 

and material 

quality 

Optimizing two major goal in open-

pit operations simultaneously 

Covering the limitation of the grade 

requirements  of LP-based models 

Not providing optimal results because 

the model is trying to satisfy all the 

goals simultaneously 

Not considering shovel allocation 

Ignoring some of the objectives of an 

open-pit operation which should be met  

Not having any linkage to any of the 

strategic level plans 

Upadhyay 

and Askari-

Nasab 

2015 

Minimize 

deviation from 

four goals 

including 

maximum 

production of the 

whole operation, 

target production 

at processing 

plant, required 

head grade at 

plant and shovels 

and trucks 

operating costs 

 

Optimizing four major goals of the 

open-pit operation 

Providing a linkage between 

operational stage and short-term 

strategic plan by allocating the 

shovels to the available mining 

faces 

Not providing optimal results because 

the model is trying to satisfy all the 

goals simultaneously 

Ignoring the costs associated with 

processing plant and other mining costs 

except for shovels and trucks 

Stochastic 

Programming 

Ta, Kresta, 

Forbes and 

Marquez 

2005 
Minimize truck 

resources needed 

Considering trucks loading and 

cycle time as stochastic parameters 

Upgrading based on changes in 

mine’s status 

Ignoring the randomness of all other 

parameters coming from stochastic 

nature 

Being case specific and not having 

capability of being generalized into other 

mines 
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Table 2.5: Summary of the models have been presented to solve Real-time dispatching problem 

Model Type Researcher Year Objective Advantages Disadvantages 

Assignment 

Hauck 1973 

Minimizing the net 

loading time lost due 

to idle periods 

Internally assuring that the 

assignment will not violate 

operation requirements 

Limiting shovels’ capacity for truck 

assignment to one truck per 

assignment 

Not considering forthcoming trucks 

Ignoring the stochastic nature of 

some parameters such as truck cycle 

time 

Implementing DP approach 

Meeting all production requirement 

in each assignment 

White and 

Olson 
1986 

Minimize lost-tons 

caused by the 

assignment 

Considering forthcoming 

trucks in the assignment 

procedure 

Using heuristic enumeration to 

evaluate trucks and shovels 

combinations 

Lizotte and 

Bonates 
1989 

Arbitrary decision 

based on the results of 

simulation under for 

different dispatching 

rules  

Allowing the dispatcher to 

decide on the scenarios 

Not being fully automatic and needs 

someone to conduct it 

Not considering the forthcoming 

trucks during the assignment 

procedure 

Ignoring lost ton due to queue 

Soumis and 

Elbrond 
1989 

Minimize sum of 

squared deviation of 

estimated waiting time 

of trucks from the 

expected idling 

 

Considering the trucks 

need to be assigned in the 

near future 

Solving an optimization 

problem to find the best 

combination of trucks and 

shovels 

Restricting the capacity of shovels to 

one truck per assignment 

Li 1990 

Maximize inter-truck 

time deviation 

  

Being easily applicable in 

real mining operations 

Ignoring the production lost caused 

by queuing 

Disregarding effects of forthcoming 

trucks to the current assignment 

Restricting the capacity of shovels to 

one truck per assignment 

Transportation 

 

Temeng, 

Otuonye and 

Frendewey 

1997 

Minimizing the total 

waiting time of both 

shovels and trucks 

 

Maximizing the 

production 

Accounting the trucks 

heterogeneity 

Considering the time a 

shovel is far behind its 

scheduled target and needs 

more than one truck to 

cover its lost ton 

Assuming equal route flowrate for all 

routes in the network 

Assuming constant and independent 

costs associated with unit of material 

transported 

 

2.4. Simulation of mining systems 

Simulation is the imitation of the operation of a real-world process or system over time [96]. The 

power of simulation as a tool to evaluate operating systems has been accepted worldwide. In the 

literature of the simulation, it origins in a simple mathematical problem called the Buffon's needle 

dated to 1777. The application of simulation in the mining sector can be traced back to 1940s. However, 
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credit of the first use of discrete event simulation was given to Rist [97] who used Monte Carlo simulation 

technique to solve hauling problem in mining operations. 

Developments in the capabilities of computers in the 1980s helped researchers conduct vast studies on the 

models and observe deficiencies, through the use of computer programs and simulations [98]. After the first 

usage of the simulation in the mining operation, several studies have been done by different researches in 

the field. The studies including [75], [88], [99]–[109] are selected studies aiming different simulator tools 

to evaluate and analyze mining operations over the late second millennium. To evaluate various dispatching 

techniques and prove positive impacts of implementing dispatching techniques in mining operations Sturgul 

and Eharisson [106], Bonates and Lizotte [75], Forsman et al. [110], Kolonja and Mutmansky [37], and 

Ataeepour and Baafi [104] implemented simulation modeling. 

Awuah-Offei et al. [111] implemented simulation modeling for determination of fleet size in case of both 

truck and shovels a mine. To mimic dynamic expansion of an open pit mine, Askari-Nasab et al. [112] 

developed a simulator called open pit production simulator (OPPS).Their study shows that in the cases of 

modeling dynamicity of the processes and randomness of the input parameters, artificial intelligent 

simulators can be very efficient and helpful. Fioroni et al. [113] used discrete event simulation and linked 

it with an optimization model to deal with the short-term production plan. The goal of the study was to 

show how simulation and optimization are integrated in order to achieve a reasonable solution for 

this problem. To analyze and evaluate effects of equipment breakdown on utilization of the resources and 

production of the operation, Yuriy and Vayenas [114] combined discrete event simulation with genetic 

algorithm based reliability assessment model. 

from 2010 to 2015 all simulation studies in the field of truck and shovel mining system including 

Jaoua et al. [115], Jaoua et al. [116], Mena et al. [78] , Ta et al. [77], Hashemi and Sattarvand 

[117], Torkamani and Askari-Nasab [118], Upadhyay and Askari-Nasab [13], and Upadhyay and 

Askari-Nasab [119] are using the simulation as a tool to evaluate results of the developed 

optimization algorithm in their studies without incorporating a new component into their system. 

Dindarloo et al. [35] provides an step by step discrete event simulation guideline for truck-shovel 

mining system equipment selection. The claim in the study is that the framework helps to minimize 

errors caused by inaccurate assumptions as well as procedures. 

In one of the latest simulation study of a truck-shovel mining system Que et al. [120] investigated 

how ignoring correlation between the input parameters will impact on the results of the study. The 

research presents a new approach to detect and import correlated parameters into the truck-shovel 
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simulation study. Instead of the independent distributions the new approach generates a 

multivariate random vector representing input parameters into the simulation modeling. 

Beside all above-mentioned efforts, some review studies related to implementation of the simulation in the 

mining sector have been done since late 1990s. Sturgul [107] provides a historic review of discrete mine 

system simulation in United States. Vagenas [121] provide a review of application of simulations in Canada 

and Konyukh et al. [122] did a review study over the application of the simulation in Asia. Raj et al. [123] 

reviewed the application of simulation in production optimization in mines. Hodkiewicz et al. [124] 

reviewed the simulation studies in both fields of underground and surface mining and highlighted 

lack of an integrated mining simulation model which incorporate truck workshop as part of the 

mining system. 

2.5. Rationale for the PhD research 

Some of the operational level decisions to be made are decisions about the size of the haulage fleet, 

and semi-dynamic and dynamic decisions made by FMS including decisions about the paths’ flow 

rate and truck-dispatching. 

The literature review showed that there are several deterministic and stochastic methods for 

making decisions about the size of the fleet. In recent years, most mining operations have 

implemented FMSs and the mining sector has been interacting closely with the processing plants. 

However, in decision-making procedures none of the available methods takes into account the 

effects of processing plants and mining FMSs. In this research we present a stochastic simulation 

and optimization framework that is capable of making decisions about the size of material handling 

fleets in presence of the mine’s FMS and its processing plants. 

Our literature review showed that the mathematical models developed to make decisions about 

truck-dispatching have some drawbacks, including with required objectives. The objectives 

include minimizing the trucks’ wait time, shovel idle time, and deviation from the production 

targets. The required objectives do not have to be met at the same time in the mathematical models 

that we found. Another major drawback is that the models neglect the impacts of uncertainties on 

the input parameters. This research introduces two different decision-making models. The first is 

a multiple objective mathematical model that has all of the aforementioned objectives in a single 

model and solves the problem using a goal programming approach. The second set of the 

mathematical models developed to make truck-dispatching decisions considers uncertainties in 
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input parameters. The second set of the models solves the truck-dispatching problem by 

implementing two different approaches: a stochastic programming approach and a fuzzy linear 

programming approach. 

2.6. Summary and conclusions 

The literature recognizes eight main approaches for dealing with the operational level decision-

making procedure during a mining operation. Most of the models are based on the mathematical 

optimization techniques. The simulation models have been used to evaluate the strategies and 

validation of the developed models. A summary of the existing systems’ major shortcomings is 

presented in two main categories of optimization and simulation as follows: 

 Optimization 

 The real-time decisions in the operation are not linked to the strategic level short-term 

production schedule of the mine; 

 The published researches have not considered the impacts of drilling and blasting operations 

on the material handling fleet availability; 

 The models are usually solved based on information from the independent parameters and 

the effects of uncertainty and the correlation of parameters governing the operation are not 

accounted for; 

 With the exception of the works of Upadhyay and Askari-Nasab [13], [119], there is nothing 

in the literature about the tons lost due to mobility and equipment access problems, 

particularly in the case of shovels; 

 Although the downstream processes, including processing plants, play an important role in 

mining operations, the existing truck-dispatching models do not consider the effects of the 

downstream processes on the mining operation; 

 None of the models developed to date address the impact of weather and traffic conditions 

on travel time between loaders and destinations; 

 None of the models consider dynamic truck controls over the time trucks are travelling from 

the source to the destinations; 

 Most of the models do not incorporate different truck sizes in the mine’s transportation fleet. 
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 Simulation 

 The simulation models are case-specific based on the mine they are developed for, which 

limits their applicability; they are only useful in addressing problems identical to the one for 

which they were developed; 

 Most of the simulation models are not capable of accepting changes in the input distributions 

for the random parameters required to run the simulation for the system; 

 Although most of the companies working in the field of mining operations need to forecast 

a long time ahead, the simulation models do not study operations over a long-time horizon; 

 One of the major shortcomings of the existing models is that they do not incorporate the 

mineral processing sector in the simulation study, nor do they incorporate downstream 

processing plants and their up times and down times. However, the effect of a down plant on 

the operation is undeniable; 

 Most of the models ignore the role that a mine’s FMS plays in the simulation. However, 

nowadays almost all large open pit mines around the world use at least one FMS. 

 The simulation models are not flexible in terms of using different truck-dispatching 

strategies. They were built based on either non-dispatching or a single logic dispatching 

strategy and it is impossible to use them to test different dispatching strategies.  



CHAPTER 3: THEORETICAL FRAMEWORK 57 

 

CHAPTER 3: THEORETICAL FRAMEWORK 

  



CHAPTER 3: THEORETICAL FRAMEWORK 58 

 

3.1. Introduction 

This chapter focuses on the theoretical frameworks of simulation and optimization of truck and 

shovel surface mining operations as well as different decision-making models to solve the truck-

dispatching problem. The chapter introduces the conceptual theoretical frameworks, mathematical 

models, and connections between different models to achieve the objectives of the presented thesis 

are introduced. The research focuses on two main objectives. The first one is the development, 

analysis, and implementation of an integrated simulation and optimization framework for truck 

and shovel surface mining operations (presented in Figure 3.1). The second objective is the 

development, analysis, and implementation of mathematical models to deal with the truck-

dispatching decision-making problem in surface mining operations. 

 

Figure 3.1: Components of a surface mining operation material handling system 

Figure 1.3 in Chapter One illustrates the basic components of the integrated simulation and 

optimization framework developed, analyzed, and implemented in this thesis. In the framework, 

the mining operation, processing plants, and operational decision-making tools communicate with 

each other. The framework was implemented to solve equipment selection and sizing problem in 

a truck and shovel surface mining operation integrated with the fleet management systems and 

processing plant components. The framework was also used to evaluate the truck-dispatching 

models which were developed as part of this research. 

Alongside development of the integrated framework for the mining operation of surface mines, 

this chapter focuses on developing multiple objective mixed integer goal programming 
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(MOMIGP), stochastic mixed integer linear programming (SMILP), and fuzzy mixed integer 

linear programming (FMILP) models to solve the truck-dispatching problem. 

The MOMIGP model aims to maximize production by minimizing the idle time of equipment and 

minimizing deviations from the planned production requirement. The SMILP solves a truck-

dispatching decision-making model with uncertain input parameters. The FMILP model 

implements a fuzzy approach to solve the truck-dispatching problem by assuming that the input 

parameters behave fuzzy. 

3.2. Integrated simulation and optimization framework 

The integrated stochastic simulation and optimization framework developed here consists of four 

main components: two optimization and two simulation sub-models. The two optimization 

components are decision-making tools in fleet management systems that solve the paths’ flow rate 

and truck-dispatching problems [12], [125]. The simulation components in the framework are 

mining operation and material flow into downstream processes. Figure 3.2 shows how the 

developed framework integrates the four components. 

 

Figure 3.2: Integration of different components of a mining operation in the developed framework 

3.2.1.  Input data file 

The integrated framework requires input parameters and information such as the short-term 

production schedule, road network of the mine with the expected expansion by the end of the 

simulation time, shovel and truck types, capacities and performance parameters of the materials 
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handling equipment, information regarding the location and capacity of the dumping points, as 

well as the number of discharge points at each dumping point. Fitted distributions for the input 

parameters, and information regarding the processing plants such as capacity of hoppers and 

conveyor belts are required as well. It is worth noting that, most of the required input parameters 

such as loading time, dumping time, haul time, traveling empty, backing time, spot time, shovels’ 

bucket capacities, and trucks’ loading capacities are stochastic input parameters. Therefore, 

different probability density functions are fitted on the historical data of such random variables. 

Goodness-of-fit for the best fitted theoretical or empirical distributions were tested by Chi-Square 

or Kolmogorov Smirnov tests [126] using Arena Input Analyzer [127] software. 

3.2.2. Components of framework’s input data file 

The input data file into the framework is a Microsoft Excel that consists of several worksheets 

each of them storing a category of input data. Table 3.1 lists the required worksheets for the input 

data file. 

Table 3.1: Components of the input data file 

No. Worksheet Category Description 

1 Schedule Strategic planning Strategic level schedule for the mining operation 

2 Routes’ info Road network Information on routes, their origin and destinations, distances, 

etc. 

3 Nodes Road network x, y, and z coordinates of each node in the road network 

4 Dump locations Road network x, y, and z coordinates and nodes’ information for each 

dumping location on the road network 

5 Links Road network Information on links in each route, their origin and 

destinations, distances, etc. 

6 Transporters Fleet Information on number, type, capacity, etc. of transporters in 

the fleet 

7 Shovels Fleet Information on number, type, capacity, etc. of loaders in the 

fleet 

8 Dumps Strategic planning Information on hourly feed rate requirement and acceptable 

head grade ranges for each dumping point 

9 Spot time Fleet Fitted distributions on spot time historical data when a 

specific shovel type loads a specific truck type 

10 Bucket count Fleet Fitted distributions on number of passes historical data when 

a specific shovel type loads a specific truck type 

11 Bucket tonnage Fleet Fitted distributions on historical data of tonnage of material in 

each load of shovel bucket when a specific shovel type loads a 

specific truck type 

12 Loading cycle 

time 

Fleet Fitted distributions on loading cycle historical data for shovels 

when a specific shovel type loads a specific truck type 
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13 Backing time Fleet Fitted distributions on trucks’ backing time historical data for 

each specific truck type 

14 Empty velocity Fleet Fitted distributions on trucks’ empty velocity historical data 

for each specific truck type 

15 Loaded velocity Fleet Fitted distributions on trucks’ loaded velocity historical data 

for each specific truck type 

16 Dumping time Fleet Fitted distributions on trucks’ dumping time historical data for 

each specific truck type 

Each of the worksheets in the input data file contains its required columns. Giving the schedule 

worksheet as an example, it contains information regarding each polygon in the operation 

including coordinates of the center of the polygon, total tonnage of material, grade of different 

elements, period that it should be mined, digging locations nodes,  shovel assigned to the polygon, 

ID of the mine polygons, and precedent among mining polygons.  

 

3.2.3. Simulation model 

The simulation model is developed in Arena software [127] and consists of two main sub-models: 

mining and processing operation. The two simulation sub-models are linked to each other using 

the hoppers (Figure 3.3). 

 

Figure 3.3: Linkage between two simulation sub-models in the developed framework 

3.2.4. Optimization models 

As mentioned before, the developed framework consists of two optimization components, which 

imitates the decisions made by the fleet management system in the mining operation. These 
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optimization components are integrated with the simulation model using VBA and OPLrun [128]. 

Figure 3.4 shows how the simulation models and the optimization models communicate with each 

other in the developed framework. 

 

Figure 3.4: Integration of the simulation and optimization models in the developed framework 

One of the major advantages of the developed framework is that the number of decision-making 

models that can be integrated into the framework is not limited. However, in this research, the 

decisions to be made by the optimization tools are upper stage (production optimization or truck 

allocation) and lower stage (truck-dispatching) decisions in a multiple stage mining fleet 

management system [125]. The goal here is to incorporate the dispatching decisions that are made 

in the real mining operation into the simulation model and develop a more accurate simulation 

model of the surface mining operations that use fleet management systems. Readers are 

encouraged to read Alarie & Gamache (2002) and Moradi Afrapoli & Askari-Nasab (2017) for 

more detailed information regarding the mining fleet management systems. 

3.2.5. Upper stage decision-making model 

Over the last 50 years, several mathematical models have been developed to decide how much 

material must be transferred through a specific transportation path over a specific period. Various 

approaches of linear programming, mixed integer programming, nonlinear programming, and 

queueing theory are presented. However, in this thesis, we selected two models. The model 

developed by White and Olson [12] since it is the backbone of the upper stage decision-making 

model in Modular Mining DISPATCH [11], the most popular fleet management system in the 

market. The upper stage in this model is divided into two linear programming segments. In the 

first segment, the model maximizes shovels’ production by minimizing total costs. Solving the 



CHAPTER 3: THEORETICAL FRAMEWORK 63 

 

first segment LP model to minimize the total costs results in the shovel dig rate required to meet 

the plant’s capacity and its material quality requirement with respect to the maximum shovels’ dig 

rate. The second segment of the model minimizes total truck capacity required to transfer material 

from each path using the obtained shovel dig rate from the first segment.  

The second LP model obtains the amount of material required to be transported from each path. 

However, it is limited by the following two constraints: the equality of the flow rate at each node 

in the road network and the equality of the transporters capacity allocated to a shovel at a mining 

face with the shovel’s dig rate. The model also needs to meet the production demand at the 

stockpile, and equality of material transported from each shovel with the shovel dig rate. The upper 

stage model is called from the simulation at a specific time interval to determine the path flow rate 

(30 minutes in this case). We also implemented the model developed by Upadhyay and Askari-

Nasab [18] to make required decisions on the upper stage problem. The model is a mixed integer 

goal programming model that provides the operation with the required path flow rate based on 

objective functions and constraints presented in [13], [14], [129]. 

3.2.6. Lower stage decision-making models  

The lower stage of the fleet management system is activated whenever a truck asks for a new 

assignment. This research developed four different truck-dispatching decision-making models to 

be used in the integrated framework. The four different decision-making models are used in this 

research to make required lower stage decisions in FMSs of the simulation and optimization 

framework. The first decision-making model that is used in this research to make lower stage 

decisions is the dynamic programming model developed by White and Olson [12] and Olson et al. 

[51] since it is the backbone of the upper stage decision-making model in Modular Mining 

DISPATCH [11]. The model developed by White and Olson [12] and Olson et al. [51] is used as 

the benchmark model to evaluate three other models that we developed in this research. The three 

other models are mathematical models we developed to cover the existing shortcoming in the 

literature of lower stage decision-making models in mining FMSs. The first model we integrated 

in the framework for making the lower stage decisions is a deterministic multiple objective mixed 

integer goal programming decision-making model that we developed to cover all the required 

objectives of this level of decision-making. Two other models that we integrated with the 
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simulation model in the developed framework are stochastic mixed integer linear programming  

and a fuzzy linear programming approach.  

3.2.7. Input from simulation to optimization models 

In the developed simulation and optimization framework, the decision-making models in the FMSs 

responsible for making upper and lower stage decisions need information regarding status of the 

mining operation being simulated in the framework. These are used as input in the decision-making 

models to make required decisions for the operation. 

3.2.7.1. Current needy paths 

We first need to define current available paths to determine needy paths in a surface mining 

operation. We define any road from any pair of source and destination nodes in the mining network 

as a path. It is possible that there is more than one path from a loading point to a dumping point 

based on the complexity of the mining road network. Moreover, the paths’ length has to be updated 

based on the distance from the loader’s position to each individual dumping location whenever the 

loader relocates to a new mining face. Next, the shortest path from any loading point to all of the 

dumping points are determined based on time differences between them, implementing Dijkstra’s 

algorithm [130]. Every time the loaders or dumping points are relocated or if a blockage occurs in 

the current shortest path, the Dijkstra’s algorithm is recalled to recalculate the shortest path. An 

n×m zero – one matrix of available paths, as shown in Eq. (85), is created where n represents the 

number of loading and m represents the number of dumping points. Si stands for loader i in the 

fleet and Dj stands for dumping point j. 

Γ =  

𝑆 1
⋮
𝑆𝑖
⋮
𝑆𝑛

𝐷1 … 𝐷𝑗 … 𝐷𝑚

[
 
 
 
 
𝑒11 … 𝑒1𝑗 ⋯ 𝑒1𝑚
⋮ ⋱ ⋮ ⋱ ⋮
𝑒𝑖1 … 𝑒𝑖𝑗 ⋯ 𝑒𝑖𝑚
⋮ ⋱ ⋮ ⋱ ⋱
𝑒𝑛1 … 𝑒𝑛𝑗 … 𝑒𝑛𝑚]

 
 
 
 
; 𝑒𝑖𝑗 = {

0    𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑖 𝑎𝑛𝑑 𝐷𝑗
1    𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑖 𝑎𝑛𝑑 𝐷𝑗

 (85) 

The available paths matrix (Γ) is a zero and one matrix. If the element eij in the matrix is equal to 

one, it means that the path connecting loading point i (Si) to the dumping point j (Dj) is available. 

If the path between loading point i (Si) and the dumping point j (Dj) is not available, then eij is 

equal to zero. 
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The current needy paths are defined among the available paths. The required path flow rate (pfij) 

for each available path is calculated every 30 minutes by solving the upper stage or production 

optimization stage problem using the linear programming model developed by White and Olson 

[12]. Next, path met so far (pmsfij), the summation of the material handled from each available 

path from the start of the current 30-minute time span up to now, is calculated. Then, the list of 

current needy paths is a subset of the available paths where: 

 

 (86) 

In Eq. (86) tid stands for duration of a time span in hour; tNow is the current time on the clock; 

and tSci represents time on the clock when the current interval has started. The left-hand side of 

inequality represents the portion of the required material to be transferred in the remaining time of 

the time interval, whereas the right hand side of the inequality represents remaining time portion 

of the time interval. If the inequality condition in Eq. (86) is met, which means that the path from 

loader i to dump j is behind its planned required material transfer, then the path is called a needy 

path and will be considered in the current truck-dispatching model solving procedure. 

3.2.7.2. Current set of trucks to be dispatched 

Not all the trucks in the fleet are available to be dispatched at a time due to several reasons such 

as scheduled maintenance, break down, etc. The set of current trucks to be dispatched is generated 

by calling the truck-dispatching decision-making tool for an assignment using the following 

algorithm.  

Algorithm 1: generate current set of trucks to be dispatched 

Inputs: 
Truck fleet (id, type, capacity);  
status of trucks (available or not);  
current position of available trucks in the network (dump, loader, traveling empty, traveling loaded) 

Begin 

  Z = 0 

  for h ∊ H do                                          

     If s h = 1 then                                      

        Z ← Z + 1                                       

        id Z ← Truck ID h                                              

     endif; 

  t = 0 

  for z = 1 to Z do 

     If CP id z ∊ {ll || ttd || dad || rfdc}   then                

           t ← t +1 

          sdT t1 ← id z 

H = {1, …, Hauler} is set of trucks;  

sh is status of the truck h and  sh ∊ {0 (not available),1 (available)};  

idZ is id number of the truck Z in the set of available trucks; 

CP id z stands for current position of truck with id equal to id of z;  

ll is leaving the loader; ttd stand for travelling to the dump; dad is 

dumping at the dump and rfdc stands for returning from a down 

condition;  

sdT is the setofdispatchingTrucks; 

tti is the time it takes truck t to reach shovel i 

 

( )
: 1& {1,..., } & {1,..., }

ij ij

ij
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          sdT t2 ← tt z 

          sdT t3 ← tc z 

          for i ∊ S do  

                sdT  t (i+3) ← tti 

    endif; 

Algorithm 1 creates a matrix consisting of a list of trucks that are available to be assigned, their 

types, capacities, and the time it takes each specific truck to travel to a shovel from its current 

position (Eq. (87)). 

𝑇 = 

𝑖𝑑  𝑇𝑇 𝑇𝐶 𝑆1 …  𝑆𝑖 …  𝑆𝑛

[
 
 
 
 
𝑖𝑑1 𝑡𝑡1 𝑡𝑐1 𝑡11 … 𝑡1𝑖 … 𝑡1𝑛
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑖𝑑𝑡 𝑡𝑡𝑡 𝑡𝑐𝑖 𝑡𝑡1 … 𝑡𝑡𝑖 … 𝑡𝑡𝑛
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮
𝑖𝑑𝑇 𝑡𝑡𝑇 𝑡𝑐𝑇 𝑡𝑇1 … 𝑡𝑇𝑖 … 𝑡𝑇𝑛]

 
 
 
 
 (87) 

The first three columns in the matrix are truck related specifications for the trucks selected using 

Algorithm 1. idt is identification number truck t in the fleet; ttt stands for truck type for the truck t; 

and tct represents truck capacity of the truck t. Rest of the columns in the T matrix are the time it 

takes for truck t to travel to each of the paths’ starting points. tti is equal to the time it takes truck t 

to travel from its current position in the road network to the loader i by taking the shortest path 

possible and is calculated using: 

 (88) 

Where:  

  
time truck t arrives at shovel s 

  
current time on the clock that is equal to tNow in the simulation 

  
distance truck t must travel loaded from its current position to the designated dumping point 

  
average velocity of truck t when traveling loaded 

  
time truck t is expected to spend in queue at its dumping point 

  
time it takes for truck t to dump its material at dumping point 

 
distance truck t must travel empty to reach shovel s 

  
average empty velocity of truck t in the road network from to shovel s  

3.2.7.3. Current set of shovels that require trucks 

If a path is available, it means that the shovel working on the mining face to serve that specific 

path is active. The next time an active shovel will be ready to load a new truck is calculated using 

Eq. (89): 
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 (89) 

Where: 

  
next time shovel s will be available to load a new truck 

  
total number of trucks in queue at shovel s 

  spot time for truck number q in the queue at shovel s 

  loading time for truck number q in the queue at shovel s 

  
current time on the clock 

Algorithm 2 runs when a dispatching request is posted by a truck and generates the set of active 

shovels (S) matrix in Eq. (90).   

Algorithm 2: generate current set of active shovels requiring new truck-dispatching 

Inputs:  

Shovel fleet (id, type, capacity); status of shovels (available or not); info of current trucks in queue (id, type, capacity), 
info of trucks being loaded (id, type, capacity), info of trucks en route to the shovels (id, type, capacity, time distance) 

Begin 

     

   for s ∊ S do 

       if As = 1 

              

            

            

            

            ←   

       endif 

 

n is a counter; 

S is set of shovels working in the mine; 

saS is the setoffactiveShovel matrix; 

 

 

𝑆 =  

𝑖𝑑  𝑆𝑇 𝑆𝐶 𝑛𝑎 

[
 
 
 
 
𝑖𝑑1 𝑠𝑡1 𝑠𝑐1 𝑛𝑎1
⋮ ⋮ ⋮ ⋮
𝑖𝑑𝑠 𝑠𝑡𝑠 𝑠𝑐𝑠 𝑛𝑎𝑠
⋮ ⋮ ⋮ ⋮
𝑖𝑑𝑆 𝑠𝑡𝑆 𝑠𝑐𝑆 𝑛𝑎𝑆]

 
 
 
 
 (90) 

In the S matrix, id represents shovel identification number, ST (or st) comes as the shovel type, 

SC stands for shovel capacity, and na is the next availability of the shovel. The dispatching models 

are then built upon the T and S matrices. 
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3.2.8. Output from upper stage optimization models to simulation 

After solving the upper stage problem, the decision-making model that is integrated into the 

simulation model provides the operation’s simulation model with the optimal decisions. The output 

from the upper stage decision-making models are stored in a text file as a list of tonnage of material 

that must be handled in the next period from each loading point to each dumping point. Then, 

using VBA, the stored list is transferred into the simulation model to be stored in the path flow 

rate variable. Next, the simulation model uses the current optimum values for the flow rates 

whenever it needs to calculate anything based on that.    

3.2.9. Output from lower stage optimization models to simulation 

Each time a truck asks for a new assignment, the lower stage decision-making model uses 

information provided by the simulation model from the status of the operation and make a decision 

on the next destination of each available truck. Solving the lower stage decision-making model 

provides a two-column list. The first column in the list represents the truck ID of the truck to be 

assigned and the second column provides the path ID that the truck in the same row must travel 

to. The solution is then read into the simulation model using VBA and is stored in a variable. Next 

time the truck dumped its material, it uses the saved value and travel to the designated destination. 

3.3. Upper stage optimization models 

3.3.1. Benchmark model 

DISPATCH® [11] uses linear programming approach to optimize the production target within a 

specific time horizon by dividing it into two separate but weakly coupled models. The first one, 

Eq. (91), optimizes the total production of the operation, including mining, processing, and 

stockpiling, and the second part, Eq. (95), maximizes the fleet production by minimizing the total 

required volume to be handled. The second part generates a theoretical haulage master plan that 

considers production and operational constraints and is later used as a reference to generate real-

time truck assignments. White and Olson [12] and Olson et al. [51] describe the model as follows: 

 (91) 

Subject to: 

  (92) 

1 1 1 1 1

min ( ) ( ) ( ) ( )
qm m s s m s

NN N N N N N

m i p t i s i j q ij i

i i i i j

C C Q C P Q C Q L C X Q
 

    

              
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  (93) 

 (94) 

Where: 

, , and  are the number of shovels at mining faces, the number of shovels 

working at stockpile, and the number of quality constraints 

, , , and  are the material transportation pseudo cost (hr/m3), the stockpile 

material handling pseudo cost (hr/m3), the quality pseudo cost 

(hr/m3), and the pseudo cost of low feed to plant (hr/m3) 

 is the material being transported per hour (m3/hr) that should be 

determined in the procedure 

 is the quality director: 1 for low crit and -1 for high crit 

, , , and  
are the  quality factor at  shovel, the lower limit for quality 

factor j, the running average value of quality factor j, and the upper 

limit for quality factor j 

 is the target rate of plant feed 

 is the digging rate at  shovel 

 is the 1st in/1st out average control mass, kg 

 is the specific gravity 

 is the base control interval (hr) 

All pseudo costs are chosen arbitrarily with respect to ( < < < ). 
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As the second segment of the LP model, DISPATCH® [11] tries to minimize total haulage capacity 

needed to meet shovel production coverage: 

  (95) 

Subject to: 

  (96) 

 for mining shovels  (97) 

       for stockpiles  (98) 

  (99) 

  (100) 

Where: 

 is the total mine haulage (m3) 

 is the number of feasible haul routes 

 is the haulage on path i which should be determined (m3/hr) 

 is the path i travel time (hr) 

 is the number of dumps for mine haulage 

 is the net haulage input to dump j (m3/hr) 

 is the average dump time at dump j (hr) 

 is the number of operating shovels 
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 is the fleet average truck size (m3) 

 is the number of feasible input paths at node j 

 is the number of feasible output paths at node j 

 is the input path haulage (m3/hr) 

 is the output path haulage (m3/hr) 

 is the limiting rate at node j (m3/hr) 

The model, Eq. (91), introduces the first segment of the operation optimization as a pseudo cost-

based LP, which is established on the summation of costs in all four operational sectors of the 

mine. The solution of the first segment presents the shovels’ production rates with respect to the 

maximum digging rate for a shovel, Eq. (92), the maximum capacity of the plant, Eq. (93), and the 

lower and upper bounds of the blending grade, Eq. (94). The second segment’s LP maximizes the 

production of the operation by allocating a minimum number of trucks to each active route, Eq. 

(95) to meet the routes production rate. Eq. (96) makes sure that the input and output flow at each 

shovel and each dumping point are equal. Eq.(97) and (98) guarantee that the amount of material 

handled meets the grade requirements at the plant cannot exceed the amount produced by the mine 

and stockpile. Coupling segments of the operation plan is attained by constraining total production 

of all routes servicing a shovel to be greater or equal to the shovel production, Eq.(99). It should 

be mentioned here that both P and Q in Eq. (99) are vectors. Finally, Eq. (100) ensures that all haul 

rates in the mine are nonnegative. One benefit of the model is that it follows the status of the mine 

by using real-time data. Another advantage of the model is that the optimum production rate of 

each route is based on the volume of material, not based on the number of trucks. That helps the 

dispatching step to send the proper truck to cover the shortage. A major drawback of the model is 

that it does not consider stripping ratio limitation in the operation. By limiting the lower bound of 

digging rates at each shovel to zero, they allowed the model to ignore a shovel operating at waste 

mining face. Another disadvantage of the model is that the plant head-grade requirement is 

constrained to a range of grade between predefined upper and lower limits. It will cause an 
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undeniable short-term influence on both plant output (final product) quantity and its input 

(utilization of some specific shovels which must be met up to the minute) [63]. However, most of 

the drawbacks of DISPATCH® [11] will arise in the real-time dispatching model that will be 

explained in more detail in the next section. 

3.4. Lower stage optimization models 

3.4.1. Benchmark model 

After solving the upper stage – operation optimization – LP problem by implementing the Simplex  

method [85], resulting in the optimum material flow rate on routes, White and Olson [12] and 

Olson et al. [51]  employ the dynamic programming (DP) [53] approach to send trucks to the 

proper destination. To do so, two lists and three parameters are defined. A list of needy shovels or 

LP-selected paths and a list of trucks dumping material at discharge points or en-route from a 

loading point to a destination are provided. In addition, need-time, Eq. (101), which is defined as 

the expected time for each path’s next truck requirement, is formulated as follows: 

  (101) 

Where: 

Lj is the time the last truck was allocated to the shovel j 

Fij is flow rate of path i over the total flow rate into shovel j 

Aj is total haulage allocated by time Lj to shovel j 

Rj is haulage requirement of shovel j 

Pi is path flow rate (ton/hr or m3/hr) 

So, the neediest path, which is on the top of the neediest shovels list, will be the one with the 

shortest need-time. Then lost-ton is defined and formulated as a criterion to find the best truck for 

the neediest path from the truck list with Eq.(102): 

 (102) 

Where: 
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Truck size is the size of truck being assigned; Total rate is total digging rate of all shovels in the 

mine; Required trucks is total required trucks in the LP solution; Truck idle is expected truck idle 

time for this assignment; Excess travel is extra empty travel time to neediest shovel; Shovel rate 

is sum of all path rates into neediest shovel; And shovel idle is expected shovel idle time for this 

assignment. 

Considering the lost-ton definition, the truck covering lost-ton of neediest shovel the most is the 

best truck. After the best truck is assigned to the neediest shovel, it is moved to the last position 

on the needy paths’ list and the procedure is repeated for the second neediest until all trucks on the 

list are assigned. 

Defining a rolling time horizon when a sequence of assignment is needed is a benefit of the model. 

The information of the mine status used in the model is always up to the minute. However, the 

model does not consider the effect of current truck assignment on the forthcoming truck matching, 

though all trucks previously sent to the shovels are considered. Another drawback of the model is 

that despite the authors’ claim, the solution method is not a DP. It is a heuristic rule solving each 

sub-problem based on the best solution of previous sub problems. According to [2],  the solution 

method’s misnaming as a DP is perhaps because of the authors’ misunderstanding of Bellman’s 

principal of optimality. However, the DISPATCH® system has been  implemented in more than 

230 mines all around the world [11].  

3.4.2. Multiple objective model 

We have developed a multiple objective model to dispatch trucks to shovels in a multi-stage FMS. 

The model deals with decisions required in the lower stage of FMS by looking at the path 

production requirements (tonnage of material required to be moved from a specific path) set by 

the upper stage and other operational parameters such as stripping ratio requirements, available 

transporters’ capacity, required plants’ throughput, and loaders’ digging rate. The model is to be 

solved every time a truck requires a new assignment – that happens when a truck dumps its load, 

or any time a loader that the truck has already been assigned to breaks down before loading that 

truck (Figure 3.5).  
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Figure 3.5: Schematic view of the lower stage model call time in the framework 

The model is also solved when there is a change in the schedule for the next hour of the operation. 

We use the following notations to formulate the truck-dispatching model. Indices used in the model 

to address elements of different sets including set of trucks, set of shovels, set of dumping points, 

set of goals, and set of trucks waiting in queue at shovels are as follows: 

  Index for set of Trucks: i = {1,...,N}; 

  Index for set of Sources: j = {1,...,M}; 

  Index for set of Destinations: k = {1,...,D}; 

  Index for set of dumping points that trucks need to dump their load before traveling to 

the new shovel: k’ = {1,...,D}; 

  Index for set of weights for individual goals: t = {1, 2, 3}; 

  Index for trucks waiting in queue at shovel: q = {1, ..., NTinQS}; 

The decision variables used are as follows: 

  Incoming flow to source j by assigning truck i to the path of source j to destinations k; 

  Outgoing flow of source j by assigning truck i to the path of source j to destinations k; 

  Negative deviation of the met path flow rate for path between source j and destination 

k compared to desired path flow rate; 
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  Positive deviation of the met path flow rate for path between source j and destination k 

compared to desired path flow rate; 

The parameters used in the truck-dispatching model and the procedure of calculating objective 

functions’ coefficients of the model are explains as follows: 

  Idle time for shovel j if truck i is assigned to transport material from shovel j to the 

destination k; 

  Wait time for truck i if it is assigned to transport material from shovel j to the 

destination k; 

  Normalized weights of individual goals based on priority; 

  A factor balancing available trucks with the required capacity of plants; 

  Capacity of the plant k: k = {1, ..., O}: {1, ..., O}⊂ {1, ..., D};  

  Production capacity of shovel j; 

  Path flow rate for the path from source j to the destination k that the production 

operation has met so far; 

  Capacity of truck i (ton); 

  Nominal capacity of truck i (ton); 

  Path flow rate for the path from source j to the destination k; 

  Next time truck i reaches shovel j; 

  Next time shovel j is available to serve truck i; 

  Current time of the operation; 

  The distance truck i must travel to reach the dumping point k’ to dump its load; 

  The distance truck i must travel from the dumping point k’ to the next expected shovel 

j; 
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 Average loaded velocity of truck i traveling to destination k’ and will travel to shovel j 

after dumping its load; 

 
Average empty velocity of truck i traveling from dump k to the next expected shovel j; 

 Queue time for truck i in the queue of the dump k’; 

 Dump time for truck i to dump its material in dump k’; 

 Number of trucks in queue at shovel j; 

 Spotting time for the truck q in the queue; 

    Loading time for the truck q in the queue. 

Objective function coefficients for the multiple objective model are calculated as follows: 

Firstly, truck arrival time for each truck i to shovel j is calculated using Eq. (103).  

 (103) 

It is worth noting that index k’ in Eq. (103) is referring to the dumping point where the truck i 

needs to first dump its material there and then move to the shovel j.  

Secondly, the next time shovel j will be available to serve truck i is calculated using Eq. (104). 

  (104) 

Finally, using Eq. (105) and Eq. (106) objective function coefficients for two of the objectives are 

calculated. 

 (105) 

 (106) 

'ik j loadedV 

'ik j emptyV 

'@ ikQ D

'ikD

jNTinQS

qTSpotT

qTLoadT

'

'

'

' '

'

@
ik jik

ijk ik ik

ik loaded ik j emptyV

EDLD
TR TN

V
Q D D

 

    

 
1

jNTinQS

ijk q q

q

SA TN TSpotT TLoadT


  

{1,..., }& {1,..., }& {1,..., }ijk ij ijS TR S i N j M k DA       

{1,..., }& {1,..., }& {1,..., }ijk ij ijT SA T i N j M k DR       



CHAPTER 3: THEORETICAL FRAMEWORK 77 

 

3.4.2.1. Objective function 

The real-time multiple objective truck-dispatching model follows the m-trucks-for-n-shovels 

strategy introduced by Alarie and Gamache [2]. The multiple objective model consists of three 

different objectives. The first objective function minimizes the summation of the active shovels’ 

idle time (Eq. (107)). The second objective function minimizes summation of truck wait time in 

the operation (Eq. (108)). The third objective function is a goal programming objective that 

minimizes summation of deviation from paths’ flow rates (Eq. (109)).  These objectives are  of 

different scales and have different levels of influence on the system. Apart from that, the third 

objective is to minimize deviation from a target (or goal) value. The model is also an MILP model. 

Thus, to solve the model we chose a non-preemptive mixed integer linear weighted sum goal 

programming approach. The three objectives of the model are presented as follows: 

 (107) 

 (108) 

 (109) 

However, since all the objectives do not belong to the same dimensions, we normalize them to 

dimensionless objectives using Nadir and Utopia points explained by  Grodzevich and Romanko 

[131]. In this method, Utopia point sets a lower bound on individual objective. Nadir point sets an 

upper bound on the objectives. The results of determination of these points will provide us the 

lower bound and upper bound of the interval that the objective functions will vary in the Pareto 

optimal set. Optimizing the system (minimizing) considering only one objective will result in the 

Utopia point ( ) which provides the lower bound of values for individual objectives (Eq. (110)). 

The upper bounds are derived using the components of a Nadir point presented in Eq. (111): 
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Using Nadir and Utopia points objectives are normalized within a range between 0 and 1 using the 

Eq. (112). 

 (112) 

After normalization of the objectives they can only vary somewhere between 0 and 1 (Eq.(113) ): 

  (113) 

The priority weights to be multiplied by the objectives will be obtained using weighted sum method 

representing in Eq. (114): 

 (114) 

Finally, the multi-objective normalized objective function is as follows: 

   (115) 

Each component of the objective function in Eq. (115) is a weighted normalized version of an individual 

objective presented in Eq. (107) to Eq. (109).  

3.4.2.2. Constraints 

Constraints limiting the objective function of the truck-dispatching model are listed in Eq. (116)  

to Eq. (125). 

  (116) 

 (117) 

 (118) 

 (119) 

 (120)

  

 (121) 

 
 i i

i N

i i

f x z
f x i objectives

z z


  



U

U

 0 1if x 

1i

i

p i objectives 

1 1 2 2 3 3MinimizeZ p f p f p f  

 
1 1 1 1

1,. . .,
N D N D

ijk ijk

i k i k

x x j M
   

    

 
1 1 1 1

1,. . .,
N M N M

ijk ijk

i j i j

x x k D
   

   

 
1 1

1,. . .,
N D

i ijk i

i k

tc x T i N
 

  

 
1 1
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N M

i ijk k

i j

tc x AF PC k O
 

   

 
1 1

1,. . .,
N D

i ijk j

i k

tc x SC j M
 

  
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 (122) 

 (123) 

 (124) 

 (125) 

Constraint (116) ensures that the number of incoming trucks to each shovel is equal to the number 

of outgoing trucks from the same shovel, meaning that whatever truck capacity arrived into a 

shovel queue will leave that shovel. Constraint (117) makes sure that the total incoming haulage 

capacity into a dump area equals the empty capacity leaving that specific dump location. Constraint 

(118) limits the tonnage a truck can transport in one payload to its maximum nominal capacity. 

Constraint (119) ensures that material hauled to the processing plants using all the trucks meet a 

portion equal to AF times of the required processing target of each plant.  AF is the adjustment 

factor that adjusts the required amount of material at each processing plant. The adjustment factor 

is calculated using Eq. (126).  

  (126) 

This means that only AF portion of the requirement of the plants can be met. Constraint (120)  

limits the total haulage capacity sent to a shovel to the nominal digging rate at that shovel. 

Constraint (121) calculates the deviation of the path flow rate for each path connecting a source to 

a destination point from the desired path flow rate. Finally, constraints (122) and (123) make sure 

two first set of the decision variables are binary and constraints (124) and (125) ensure non-

negativity of the goal programming variables. After the model has been solved, it will dispatch 

trucks to shovels. 

3.4.3. Stochastic model 

3.4.3.1. Deterministic truck-dispatching model 

The goal in presenting this model is to develop a dispatching model that minimizes cumulative 

lost time for the entire active material handling fleet including both the loader fleet and the 

transporter fleet considering operational limitations such as truck capacity, shovel digging rate, 

and processing plants feed rate requirements while incorporating the truck travel time 

uncertainties. However, we first present the deterministic model with the objective function, 

       ,0,1 1,..., 1,..., 1,...,ijk i j and kx N M D      

       & &0,1 1,..., 1,..., 1,...,ijk i j kN M Dx       

   0 &1,..., 1,...,jk j kM Dc     

   0 &1,..., 1,...,jk j kM Dc     

AF capacityof availabletrucks required flowrateat paths 
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decision variables and the constraints and present the stochastic model in the next subsection. The 

model presented in this section is a deterministic model with all its input parameters taking 

deterministic values. It can also be categorized as a mixed integer linear programming model based 

on transportation problem. The objective function of the model, presented in Eq. (127), minimizes 

the cumulative absolute time difference between the times truck t will reach shovel s after dumping  

at dump d (tts) and the time shovel s will be available to load the next truck (nas). The second part 

of the objective function tries to maximize the adjustment factor (AF) encouraging the model to 

maximize a balanced material delivery to all destinations. AF will be explained later on. Finally, 

VBN stands for very big number.  

  (127) 

The objective function coefficient for each of the variables is calculated using Eq. (128):  

   (128) 

Where: 

  loaded travel time from current truck t position to dump d 

  time truck t must spend in queue at dump d to dump its material 

  time truck t spends at dump d to back up and dump its material 

  time truck t spends to travel empty from the dump location d to shovel s 

  time a truck of type  that is already in queue must spend in shovel s queue 

  time a truck of type must travel from its current position to reach shovel s 

  spot time for a truck of type at shovel s 

  loading time for a truck of type at shovel s 

     
1 1 1

min ( ) , ,1,..., 1,..., 1,...,
T D S

tds tds

t d s

Z C x VBN mf AF t d and sT D S
  

        
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   



 

  

       

     
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Moreover, the decisions need to meet operational constraints such as trucks’ and shovels’ supply 

(Eq. (129) and Eq.(120)), destination demand constraint (Eq. (119)), balancing truck distribution 

over the paths (Eq. (132)), and binary constraints (Eq. (133)). 

 (129) 

 (130) 

 (131) 

 (132) 

 (133) 

Where: 

  binary integer variable to assign truck t to the path connecting shovel s to dump d 

  capacity of truck t 

  capacity of shovel s 

  capacity of dump d (ton) 

  adjustment factor that forces model to evenly distribute extra available trucks among all the 

possible destinations  

  proportion of the cumulative available trucks’ capacity to the cumulative required path flow 

rate that can be met using the available trucks  

  required path flow rate for path from shovel s to dump d based on upper stage decisions 

  met so far path flow rate for path from shovel s to dump d  
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Constraint (129) makes sure that truck t cannot be assigned to more than one shovel. Constraint 

(120) ensures that summation of nominal capacity of all the trucks assigned to shovel s does not 

exceed the shovel’s nominal digging rate (capacity). AF in constraint (119) is defined as 

adjustment factor. The adjustment factor is a variable that is forcing the model to evenly distribute 

the truck fleet capacity between all the destinations and is constrained by mf  as in Eq. (132). mf is 

a matching factor that is calculated based on cumulative available truck capacity and cumulative 

path material handling requirement using Eq. (134). This factor is equal to 1 when the total truck 

fleet capacity is less than the required path flow rate and is equal to the proportion of the available 

truck capacity to the total path requirements when there is extra fleet capacity available. The 

adjustment factor is constrained by mf to uniformly distribute the extra truck fleet capacity among 

all the needy paths to balance ore and waste production. 

 (134)

Where: 

  
truck capacity for truck t in the fleet 

  
path flow rate for path linking shovel s to dump d 

  
Path flow rate for path linking shovel s to dump d that has been met so far 

 

3.4.3.2. Stochastic truck-dispatching model 

The presented model uses expected (deterministic) values for the input parameters. However, most 

of the parameters affecting the truck-dispatching decisions are associated with uncertainties. In 

this thesis, we formulated our model as a stochastic integer programming model with recourse [16] 

to capture uncertainty of one of the major parameters affecting the operation (trucks’ empty travel 

time). Reason to capture uncertainty in trucks’ empty travel time is that more than 90% of trucks’ 

cycle time in each cycle is spent in traveling. From that time, about 50% is spent in travel empty. 

As most of the time a truck needs to be dispatched has already passed some portion of its loaded 

travel or even completed its loaded travel, the most important parameter where the uncertainty 

associated with it needs to be captured is empty travel. Thus, the objective function of the 

stochastic model that captures empty travel time uncertainty is  (Eq. (135)): 

     1
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min𝑍 =  ∑ ∑ ∑ 𝐶𝑡𝑑𝑠𝑥𝑡𝑑𝑠
𝑆
𝑠=1

𝐷
𝑑=1

𝑇
𝑡=1
⏞                

1𝑠𝑡

+ 𝑉𝐵𝑁(1 − 𝐴𝐹)⏞        
2𝑛𝑑

  (135) 

+
1

𝑛𝑅
∑ ∑ ∑ ∑ |𝑙𝑡𝑡𝑡𝑑 + 𝑞𝑡𝑡𝑑 + 𝑑𝑡𝑡𝑑 + 𝑒𝑡𝑡𝑡𝑑𝑠

𝑟 − ∑ (𝑡𝑖𝑛𝑞𝑡′𝑠 + 𝑡𝑒𝑛𝑟𝑡′𝑠) × (𝑠𝑡𝑡′𝑠 + 𝑙𝑡𝑡′𝑠)
𝑇𝑇
𝑡𝑡=1 |𝑛𝑅

𝑟=1 𝑥𝑡𝑑𝑠
𝑆
𝑠=1

𝐷
𝑑=1

𝑇
𝑡=1

⏞                                                                  
3𝑟𝑑

  

Where: 

  time truck t spends to travel empty from the dump location d to shovel s in rth realization 

  is an index referring to a scenario in the stochastic integer model  

  number of realizations implemented to generate random variables for empty travel time 

from its distribution. 

In the developed model, the first two components of the objective function are the same as the 

deterministic model. The third component is the minimization of the truck or shovel idle time in 

material handling given the uncertainty in trucks empty travel time. The model is constrained with  

Eq. (129) to Eq. (133). For each of the realizations r in the stochastic model with nR number of 

realizations, a random value is being sampled from the fitted distribution of the historical data of 

the empty truck velocity. The sample is then imported into the model after preprocessing procedure 

that calculates required travel time and is used during the decision-making procedure. 

3.4.4. Fuzzy model 

Under the multi-stage truck-dispatching approach [70], [125], we developed a deterministic ILP 

mathematical model to make decisions on the trucks’ next destination. After solving the model 

using stochastic programming approach, we identified fuzzy parameters and based on those fuzzy 

parameters we improved the crisp model to a fuzzy model. Herein, we present the fuzzy model 

development and defuzzification procedure. 

Zimmermann [132] and Zimmermann [133] for the first time implemented fuzzy set theory in 

conventional LP models [134]. Then after, several FLP models have been developed to deal with 

different real-world problems and more specifically in mining industries. The most recent FLP 

model developed in a mining operation context can be credited to [135] where the authors 

developed a FLP model to solve surface mines short term planning problem. Even though all of 

the input parameters to solve the optimization models in the truck-dispatching problem might 

r

tdsett

r

nR
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behave in a fuzzy manner, none of the thus far developed models to solve the truck-dispatching 

problem have considered that fuzzy behavior. Thus, in this thesis, we developed the fuzzy version 

of our deterministic model as follows: 

min �̃� =  ∑ ∑ ∑ �̃�𝑡𝑑𝑠𝑥𝑡𝑑𝑠
𝑆
𝑠=1

𝐷
𝑑=1

𝑇
𝑡=1 + 𝑉𝐵𝑁(1 − 𝐴𝐹)  (136) 

Subject to: 

∑ ∑ 𝑡𝑐�̃�𝑥𝑡𝑑𝑠
𝑆
𝑠=1

𝐷
𝑑=1 ≤ 𝑇�̃�𝑡                              ∀𝑡 ∈ {1,… , 𝑇} (137) 

∑ ∑ 𝑡𝑐�̃�𝑥𝑡𝑑𝑠
𝐷
𝑑=1

𝑇
𝑡=1 ≤ 𝑠�̃�𝑡                               ∀𝑠 ∈ {1,… , 𝑆} (138) 

∑ ∑ 𝑡𝑐�̃�𝑥𝑡𝑑𝑠
𝑆
𝑠=1

𝑇
𝑡=1 ≥ 𝐴𝐹 × 𝑝�̃�𝑑                    ∀𝑑 ∈ {1,… , 𝐷} (139) 

And Eq. (132) and Eq. (133) where: 

�̃�𝑡𝑑𝑠 = |𝑙𝑡�̃�𝑡𝑑 + 𝑞�̃�𝑡𝑑 + 𝑑�̃�𝑡𝑑 + 𝑒𝑡�̃�𝑡𝑠 − ∑ (𝑡𝑖𝑛𝑞𝑡𝑡𝑠 + 𝑡𝑒𝑛𝑟𝑡𝑡𝑠) × (𝑠�̃�𝑡𝑡𝑠 + 𝑙�̃�𝑡𝑡𝑠)
𝑇𝑇
𝑡𝑡=1 | (140) 

It is worth noting that �̃� represents fuzzy parameter 𝑥 in the model. 

3.4.4.1. Defuzzification 

The uncertainties in the input parameters of any fuzzy programming problem force two main 

problems: the problem of extracting optimum objective function value for the objective function 

containing fuzzy parameters, and the problem of relationship between fuzzy sides of constraints. 

Solving these two problems is tied to the process of ranking fuzzy numbers [134]. Several 

approaches have been introduced in the literature of application of fuzzy set theory to rank fuzzy 

numbers. A detailed explanation of these approaches can be found in [136], [137]. In this research 

we implement method developed by Jiménez et al. [138] to rank fuzzy constraints and objectives. 

Despite some other methods, as claimed by authors, the method developed by Jiménez et al. [138] 

verifies all of the properties implemented in other approaches. The developed method uses concept 

of optimality to deal with the fuzzy objective functions and concept of feasibility to deal with the 

feasibility of constraints. Another advantage of the ranking fuzzy numbers developed by Jiménez 

et al. [138] is that by implementing this method, linearity of the LP model will be preserved which 

helps to have a computationally efficient model to solve. In addition to aforementioned advantages, 

it is capable of not increasing the number of constraints or the objective functions [139]. Thus, it 

can be implemented in solving large scale FLP models [134]. The method is based on two 
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mathematically strong concepts of expected value and expected interval of fuzzy numbers [140] 

that initially presented by [141] and [142] and was developed later on by [143] and [144]. 

To start with the Defuzzification process, we first define some required terms. A fuzzy number is 

defined as a fuzzy set on the real line R that has membership function presented in Eq. (141). 

𝑢 = 𝜇�̃� = 

{
 
 

 
 
0                  ∀𝑥 ∈ (−∞, 𝑎1]

𝑓𝑎(𝑥)           ∀𝑥 ∈ (𝑎1, 𝑎2], 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔
1                   ∀𝑥 ∈ [𝑎2, 𝑎3]

𝑔𝑎(𝑥)          ∀𝑥 ∈ [𝑎3, 𝑎4], 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔
0                   ∀𝑥 ∈ [𝑎4, +∞)

;      �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) (141) 

A cut through the fuzzy number produces a nonfuzzy set and is defined as presented in Eq. (142). 

𝑎𝛼 = {𝑥 ∈ 𝑅; 𝜇�̃�(𝑥) ≥  𝛼; 0 ≤  𝛼 ≤ 1 } 𝑜𝑟 𝑎𝛼 = [𝑓𝑎
−1(𝑢), 𝑔𝑎

−1(𝑢)]   (142) 

The membership function for cases where the  and  are linear functions, is trapezoidal and in 

cases where  and the  and  are linear functions, is triangular (in this paper all the 

parameters are assumed to follow the later membership function as due to its easy data acquisition 

and computational efficiency this type of possibilistic distribution is the most common tool that is 

used to model fuzzy parameters [145]) [134], [139], [140], [144]. The expected interval and the 

expected value of a fuzzy number which first been introduced by Heilpern [143] can be calculated 

using Eq. (143) and Eq. (144), respectively for a triangular fuzzy number. 

𝐸𝐼(�̃�) = [𝐸1
𝑎, 𝐸2

𝑎] =  [∫ 𝑓𝑎
−1(𝑢)𝑑𝑢

1

0
, ∫ 𝑔𝑎

−1(𝑢)𝑑𝑢
1

0
] =  [

𝑎1+ 𝑎2

2
,
𝑎2+ 𝑎3

2
] (143) 

𝐸𝑉(�̃�) = [
𝐸1
𝑎+𝐸2

𝑎

2
] =  

𝑎1+ 2𝑎2+𝑎3

4
 (144) 

According to the ranking method developed by Jimenez [146] �̃� is greater than or equal to �̃� in the 

degree defined by Eq. (145) [140]. 

𝜇𝑀(�̃�, �̃�) =  

{
 

 
0                                                          𝑖𝑓 𝐸2

𝑎 − 𝐸1
𝑏 < 0

𝐸2
𝑎− 𝐸1

𝑏

𝐸2
𝑎− 𝐸1

𝑏−(𝐸1
𝑎− 𝐸2

𝑏)
                𝑖𝑓 0 ∈ [𝐸1

𝑎 − 𝐸2
𝑏 , 𝐸2

𝑎 − 𝐸1
𝑏]

1                                                         𝑖𝑓 𝐸1
𝑎 − 𝐸2

𝑏 > 0

 (145) 

If 𝜇𝑀(�̃�, �̃�) ≥ 𝛼 then it is said that at least in degree of , �̃� is greater than or equal to �̃�. Based 

on Parra et al. [147] �̃� and �̃� are equal in degree of if: 

af ag

2 3a a af ag




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𝛼

2
≤ 𝜇𝑀(�̃�, �̃�) ≤ 1 −

𝛼

2
 (146) 

Implementing all aforementioned definitions, any generalized fuzzy linear programming model 

where the fuzzy parameters follow triangular or trapezoidal fuzzy numbers (presented in Eq. (147)

) can be converted to its equivalent crisp model (presented in Eq. (148)) using methods developed 

by Jimenez [146] for treating fuzzy objective function and Parra et al. [147] to treat fuzzy 

constraints. 

min 𝑧 = �̃�𝑥        (147) 

Subject to 

�̃�𝑖𝑥 ≤ �̃�𝑖, 𝑖 = 1,… , 𝑡 

�̃�𝑖𝑥 = �̃�𝑖, 𝑖 = 𝑡 + 1, … , 𝑙 

�̃�𝑖𝑥 ≥ �̃�𝑖, 𝑖 = 𝑙 + 1,… ,𝑚 

𝑥 ≥ 0   

min𝐸𝑉𝛾(�̃�) =  𝐸𝑉𝛾(�̃�)𝑥 

 (148) 

Where based on the generalized approach of Jimenez [146], with  degree of optimism the 

𝐸𝑉𝛾(�̃�) =  𝐸𝑉𝛾(�̃�)𝑥 with 𝑍 = (𝑍1, 𝑍2, 𝑍3, 𝑍4) is defined as presented in Eq. (149). 

𝐸𝑉𝛾(�̃�) =  𝛾𝐸2
𝑍 + (1 − 𝛾)𝐸1

𝑍 =  𝛾
𝑍3+𝑍4

2
+ (1 − 𝛾)

𝑍1+𝑍2

2
 (149) 

According to Eq. (141) to Eq. (148), the equivalent crisp model of the developed fuzzy model for 

the truck-dispatching problem in this paper can be formulated as follows: 

 (150) 
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 (151) 

 (152) 

min 𝐸𝑉𝛾(�̃�) + 𝑉𝐵𝑁(1 − 𝐴𝐹) =   𝛾
𝑍𝑚+𝑍𝑜

2
+ (1 − 𝛾)

𝑍𝑝+𝑍𝑚

2
 + 𝑉𝐵𝑁(1 − 𝐴𝐹) (153) 

Subject to 

  (154) 

  (155) 

 (156) 

 (157) 

 (158) 

 (159) 

 is degree of optimism of the decision maker and  is degree of the minimum acceptable 

feasibility of the decision vector. 

3.5. Simulation models 

Rockwell discrete event simulation software Arena [127] is used to develop simulation models of 

the mining operation. We extensively used VBA capability of Arena to build the simulation 

models. In Step 1 (Figure 3.6), using VBA macro written in Arena all the required input into Arena 

for the simulation are read into it. The VBA macro written in Arena as the first input reads readable 

input generated from the .dxf file of the road network by MATLAB. The same VBA macro also 

reads short-term production schedule, mine’s road network, distributions fitted on the historical 

data of the required parameters (such as velocity, load time, dump time, spot time, etc.), type of 
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equipment in the shovel and truck fleets, etc. from the data file and import them into the simulation 

model. By building the simulation model, rest of the framework do not require any human 

intervention to proceed the operation’s simulation study. The system general operational 

parameters such as fitted distributions, equipment types and capacities, size of fleet, etc. can be 

readily changed in the input file without any interruption of the linkage between the input data file 

and the simulation model. 

 

Figure 3.6: Building components of the simulation model using VBA macro (Step 1) 

In Step 2 (Figure 3.7), the integrated simulation and optimization framework runs for the 

designated time frame. During the run, each time a decision is needed to be made, required 

information from the simulation are exported to a text file. Then, using CPLEX [148] linker 

(OPLrun) the decision-making model that is stored in a .mod file is recalled into CPLEX [148] 

software at the same time as the stored text file. Then, CPLEX [148] runs the mathematical model 

and make the simulation model aware of the decisions made by using of VBA. Afterwards, the 

simulation model implements the decisions made by CPLEX [148] in the operation.  
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Figure 3.7: Schematic of the framework during the run (Step 2) 

In Step 3 (Figure 3.8), after the simulation run reaches to full completion, using a .xml file and a 

.csv file that contains all the output of the simulation run, VBA macro transfers all the recorded 

information into an SQL database for further analysis. Using MATLAB and OriginPro software, 

required graphs and statistical summaries of the data from the simulation study are exported. 

 

Figure 3.8: Exporting, storing, and analyzing results (Step 3) 

 

3.5.1. System 

The system includes one open pit mine operation, its haul network, the fleet management system 

that makes semi-dynamic and dynamic decisions, its two processing plants and one waste dump. 

At the beginning of the operation, signal is sent to the upper stage decision-making model to make 

decision on the required production. Then, based on the decisions made on the upper stage, the 

simulation sends signal to the second optimization model to make decisions on the trucks’ 
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destinations. By solving the lower stage (truck-dispatching) decision-making model, trucks are 

assigned and travel to shovels from the bay. This is the start of the operation.  

In the operation simulation, the loading process is done by the shovel. Afterwards, loaded material 

is transported to one of the destinations based on the short-term plan. As the next step in the system, 

the truck reaches the destination and backs up to the exact dumping location to dump the material. 

Here is the time lower stage decision-making part of fleet management system (FMS) finds the 

best trucks among those just dumped their material into a dump and the trucks en-route to a 

dumping point by calling CPLEX. At the same time, it finds the neediest shovels and matches the 

best trucks with the neediest shovels. After finding its best destination, the truck travels to the 

shovel where dispatching system assigned it to. Figure 3.9 illustrates the flow diagram of the 

operation in the simulation model. 

In the processing plants sub-models, a logical entity was defined for each of the plants. The logical 

entity enters to the simulation at the start of the simulation, seizes a regulator and after delivering 

plant’s flow requirement (which is set to continue for entire time of the simulation) leaves the 

system. Along with it, a tank is being used to simulate performance each hopper. 

3.5.2. Key Performance Indicators 

To evaluate the performance of the developed truck-dispatching models, we need to use some key 

performance indicators (KPIs). Any mining complex encompasses two major parts of operation: 

mining operation and processing operation. Any FMS has a major influence on the performance 

of mining and processing. The important KPIs, based on which we evaluate the performance of 

our FMSs in the results chapter of this thesis, are listed in Table 3.2. 

Table 3.2: Key Performance Indicators (KPI) to evaluate performance of the developed model in different scenarios 

No. Area of Concern KPI to evaluate 

1 Processing Plants total production 

2 Processing Plants Hourly feed rate 

3 Processing Plants Hourly head grade 

4 Shovels or Loaders Utilization of the equipment 

5 Trucks or Transporter Queue length at sources 

6 Trucks or Transporter Queue time at sources 
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Figure 3.9: A simple flow diagram of the mining operation simulation model 

3.5.3. Model inputs 

The simulation model input can be illustrated within three categories of short-term schedule, 

technical characteristics, and fleet management systems decisions. The required inputs from the 

first category are including: coordinates and node IDs for the digging locations, total tonnage of 

the blocks, material average grade for each block, ID of the destinations the materials are supposed 

to be sent to, Shovel number, sequence number for each shovel, precedence, and distances from 

the digging location to the dumping locations. The second category of inputs are decisions on 

optimal paths flow rates, imported from the solution of the upper stage mathematical model, and 

decisions on the optimal trucks assignments, imported from the solution to the lower stage 

decision-making model. The required technical inputs are: shovels' ID, bucket capacities, loading 
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cycle time, availability, trucks' ID, number of trucks of each type, capacities, dump time, spot time, 

availability, average speed of trucks when empty and when loaded, backing time, desired grade of 

each material type at processing plants, maximum rate of processing at processing plants, 

geographical information regarding dumping locations, all information regarding coordinates of 

the nodes connecting different parts of the road network, information regarding activity of any 

paths within sources and destinations, bucket count for each combination of shovel type-truck 

type, and seasonal loading cycle times for each and every shovel type-truck type combination. 

3.5.4. Simulation sub-models 

The simulation model consists of eight different sub-models. Table 3.3 lists the sub-models 

developed to perform the simulation of the mining complex operation. 

Table 3.3: List of sub-models used to develop simulation model 

No. Sub-model Task’s description 

1 Operation starting Recalls available trucks from the bay and assigns them to the available shovels 

2 Loading Imitates the operation from the time a truck reaches to a shovel up until that truck 

leaves the shovel 

3 Dumping Imitates the process of dumping truck payloads into the dumping areas  

4 Hopper and conveyor Simulates the stockpile, hopper, and the conveyor that feed processing plants 

5 Season change This sub-model simulates change of the season and thus corresponding changes 

in the parameter distributions affected by it. 

6 Shift change Simulates change of the operation shifts as well as days 

7 Path flow rate Prepares required input parameters to run the decision-making model making 

decisions on the optimum path flow rate 

8 Truck dispatching Prepares required input data to run the truck-dispatching decision-making model 

Each of the simulation sub-models listed in Table 3.3 plays a crucial role in the simulation of the 

mining complex. The procedure that developed simulation model to mimic the operation are listed 

below: 

Step one: at the start of the simulation sub-model 1 that handles the start of the operation process 

is responsible for the process of trucks travel from the bay to the available shovels.  

Step two: at each shovel station, trucks are loaded by a shovel already assigned to the polygon in 

that specific position, all the required information are transferred from the polygon to the material 

loaded onto the truck, truck leave the shovel and polygon (coming from the short-term schedule) 

remains there until it is fully depleted. 
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Step three: the loaded truck travel on the road network taking the shortest path from the shovel to 

the dump destination. 

Step four: if the destination is a waste dump, the truck backs up and dumps its material in the 

designated area, otherwise, a decision is made based on current line up in front of each hopper, 

then the truck is assigned to the hopper with the least number of trucks in its queue. Then, as soon 

as all the trucks in the line are done with the dumping process, the hopper capacity is tested, if it 

has enough room for the truck, truck is allowed to dump its material. Otherwise, the truck needs 

to wait for hopper to open enough room for its material. 

Step five: if the truck is already assigned to a shovel, it leaves the dumping area to start travel to 

the designated shovel. Otherwise, the simulation model prepares required input data for the truck-

dispatching decision-making model. Once the decision is made by solving the truck-dispatching 

model, the truck is assigned to a shovel. 

Step six: the truck travels to the shovel it is assigned. 

Step seven: go to step two. 

The procedure explained above consists of sub-models 1, 2, 3, and 8. Sub-model 4 controls 

stockpiles, hoppers, and conveyors. It accepts discrete truck loads in hopper and by simulating the 

conveyor that connects the hopper to the downstream processing operation, it continually feeds 

the plant based on the required hourly feed rate. Sub-model 5 runs using a logical entity to change 

all the required input parameters when the simulation runs over two different seasons. In sub-

model 6, a logical entity works toward changing shifts of the operation when the simulation time 

reaches to the end of each shift. The process of production optimization (upper stage) decisions 

that must be made within a time interval are handled using sub-model 7. This sub-model collects 

required data from the status of the mining operation and sends them to an external decision maker 

tool to make required decisions regarding optimum path flow rate. 

3.6. Models’ general assumptions 

Although we tried to make the fleet management system (FMS) general for the truck and shovel 

material handling operation in open pit mines, there are always some topics, which fall outside the 

scope of a research project. Herein, these topics are: 

 During the time of mining a polygon, grade of mineral stays constant without any change; 
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 Mining faces geographical position will not change during the time of mining that polygon to 

depletion; 

 Decisions made in upper stage will not change until a big event happens and there is not any 

possibility of human intervention into it;  

 Road network remains the same throughout the simulation time and re-construction or 

maintenance are not considered; 

 Mine operates 24 hours a day without any shift change or coffee break; 

 Equipment maintenance is not included in the simulation time or optimization model; 

 Change made by drilling and blasting are excluded from the research; 

 We excluded equipment failure for both truck fleet as well as shovel fleet; 

3.7. Scope and limitations of models 

The scope of the research is limited to application of multiple objective mixed integer goal 

programming, stochastic integer programming, and fuzzy integer programming models in 

conjunction with a stochastic discrete event simulation model for uncertainty-based truck fleet size 

determination and truck-dispatching in open pit mines.  Although the models developed here 

consider most critical objectives and constraints, so many factors in actual open pit mining 

operations exist that need to be accounted for such as changing dump location, equipment failure, 

drilling and blasting, road development, etc. decision-making 

3.8. Truck fleet size determination 

Haul fleet size determination is a critical task in any surface mining operation where material is 

handled using truck and shovel system. Although the problem of finding the optimum haulage 

fleet size has been widely studied, three important shortcomings are still in effect: neglecting 

uncertainties associated with the input parameters, disregarding downstream processes' effects on 

the operation, and ignoring effects of the fleet management system being used. 

Any mining operation needs loading and haulage equipment to meet the planned production 

requirement. Making decisions for selection and sizing of the loading and haulage equipment to 

handle both ore and waste material throughout the life of mine such that it minimizes the total 

material handling costs is called equipment selection and sizing problem (ESP) [36], [149], [150]. 
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Decision on the ESP [23], [151] and, more specifically, size of the haulage fleet that handle the 

material [125], [150] has a significant direct impact on the fleet efficiency and operation costs and 

any non-optimal decision will decrease performance in the mine. Thus, determining the optimum 

fleet size with which the production requirement is met is critical. There exist several approaches 

to find optimum haul fleet size in a truck-and-shovel surface mining operation. The common 

approaches are: Match Factor (MF) and discrete event simulation (DES). MF was developed by 

Douglas (1964) for homogenous haulage fleet and modified by Burt and Caccetta [26] for a 

heterogeneous haulage fleet. The DES approach is implemented by several researchers to deal with 

different operational problems in surface mines [70]. Although Darling [152] argues that the best 

effective way of determining the material handling system productivity and fleet size in surface 

mines is DES, there are some drawbacks in published literature of DES implementation in surface 

mining studies which may cause the fleet size to be far from optimal. Three of the main drawbacks 

of the current models are: 1- ignoring effects of downstream processes on the mining operation; 

2- underestimating the effects of fleet management systems on the performance of the truck fleet; 

and 3- disregarding uncertainties in input parameters.  

To address the abovementioned drawbacks, we implement the simulation and optimization 

framework for haulage fleet size determination. 

3.9. Summary and conclusions 

In this chapter we presented a hybrid simulation and optimization framework along with three 

different decision-making models to solve the truck-dispatching problem in surface mines. The 

hybrid simulation and optimization framework mimics material handling in the surface mining 

operation. The framework links the mining operation with the FMS and the processing plants in 

an integrated environment. The decision-making models to solve truck-dispatching problem are 

part of the FMS in the integrated framework. Each time a truck needs an assignment, the 

optimization dispatching model is called. 

We showed how these sub-systems work individually and how they are linked to each other in the 

integrated framework. We also presented the connection between the framework and the data file 

that provides all the required information. In addition, we introduced components of the 

framework. The simulation sub-model that mimics the materials handling operation and the 

simulation sub-model that mimics the processing plants’ input conveyor and hopper, the 
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components of FMSs including the upper stage decision-making optimization model as well as the 

lower stage decision-making models. 

For the upper stage decision-making, the benchmark model that we introduced is based on model 

developed by White and Olson [12]. For the lower stage decision-making in FMSs, we offered 

three mathematical models. The first one solves the lower stage problem using multiple objective 

goal programing. The second one implements a stochastic programming approach to solve the 

lower stage problem, and the third one uses a fuzzy linear programming approach to deal with the 

lower stage problem. We presented all of the above-mentioned decision-making models with their 

objective functions and constraints. We explained, in detail, the variables and parameters needed 

to develop the models. Our models maximize production using the available fleet while 

simultaneously satisfying the upper stage decisions and minimizing the shovels’ idle time and the 

trucks’ wait time. Operational constraints limit the decisions of the lower stage models, including, 

truck capacity, shovel dig rate, and processing plant capacity. 

Finally, this chapter presented the simulation model linked to the FMS. The simulation model 

consists of eight sub-models, two of which are main sub-models. One of those sub-models mimics 

the truck and shovel operation and one sub-model mimics the processing plants. We defined the 

systems in the simulation model, the inputs to the sub-models, and the required Key Performance 

Indicators (KPIs) to be captured sub-model.  
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4.1. Introduction 

In this chapter we focus on presenting results of the implementation of the hybrid simulation and 

optimization framework as well as the developed decision-making models to solve the lower stage 

(truck-dispatching) problem in an iron ore case study. We introduce the location of the iron ore 

mine, its production schedule, and its road network in the next sub-section. We present the 

verification of the framework with a detailed analysis and compare the individual process values.  

Because historical data from the case study is not available, a full validation study of the developed 

framework is not presented in this thesis. The chapter also presents the procedure of scenario 

development and determination of optimum fleet size for both homogeneous and heterogeneous 

fleets.  

The chapter also presents the implementation of the framework with five different dispatching 

algorithms in the case study. First, we present the results of implementing the benchmark 

dispatching system. Then, by replacing the lower stage decision-making model with the multiple 

objective model (MOGP), we present a comparative analysis of the MOGP and the benchmark 

model. In the next sections, we continue to assess the performance of the stochastic mixed integer 

linear programming model and the fuzzy linear programming model in comparison to the 

benchmark model. Table 4.1 shows a summary of the scenarios developed to evaluate the models. 

Table 4.1: Summary of the scenarios used to evaluate the developed models 

Scenario 

No. 
# of shovels # of trucks # of dumps Dispatch model 

 Type 1 Type 2 Type 1 Type 2 Ore Waste BM Multi Stochastic Fuzzy 

1 3 2 20 0 2 1     

2 3 2 22 0 2 1     

3 3 2 24 0 2 1     

4 3 2 26 0 2 1     

5 3 2 28 0 2 1     

6 3 2 30 0 2 1     

7 3 2 32 0 2 1     

8 3 2 34 0 2 1     

9 3 2 36 0 2 1     

10 3 2 0 15 2 1   × × 

11 3 2 0 16 2 1   × × 

12 3 2 0 17 2 1   × × 

13 3 2 0 18 2 1   × × 

14 3 2 0 19 2 1   × × 

15 3 2 0 20 2 1   × × 

16 3 2 0 21 2 1   × × 
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17 3 2 0 22 2 1   × × 

18 3 2 8 16 2 1   × × 

19 3 2 10 15 2 1   × × 

20 3 2 12 14 2 1   × × 

21 3 2 14 13 2 1   × × 

22 3 2 16 12 2 1   × × 

23 3 2 18 12 2 1   × × 

24 3 2 20 10 2 1   × × 

25 3 2 22 8 2 1   × × 

26 3 2 24 7 2 1   × × 

4.2. Case study 

To test the developed framework in a case study we need two types of data, the strategic schedule 

and the technical operational data. However, because of unavailability of required data from the 

operating mine,  the strategic production schedule was borrowed form Upadhyay [129] and the 

operating equipment are assumed. Using operational data of an existing mine, the required 

distributions for processes of truck and shovel operation were fitted. 

4.2.1. Mine location and its operational data 

Gol-E-Gohar iron ore mine is located in Kerman Province of Iran. The project lies in southwest of 

the province, approximately 50 km southeast of the city of Sirjan (Figure 4.1). Mining operation 

in Gol-E-Gohar is being handled by a truck and shovel material handling system. 

The equipment that we assessed consists of Hitachi EX2500 and Hitachi EX5500Ex excavators 

and rigid frame rear dump Cat 785C and 793C trucks (Table 4.2). There are three main dumping 

points for the loaded trucks including two processing plants and one waste dump, each of which 

has two hoppers (or dumping point in the case of waste dump). Figure 4.2 shows the location of 

loading and dumping points as well as the road network for the year 11 of the operation.  
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Figure 4.1: Location of the Gol-E-Gohar Project in Kerman Province of Iran 

Table 4.2: General specifications of the production fleet 

No. Loading Point Destination 
Starting 

Distance (m) 
Loader Hauler 

1 Shovel 1 
Plant 1 4129 

Hitachi EX2500 Cat 785C & Cat 793C 
Plant 2 3626 

2 Shovel 2 
Plant 1 4196 

Hitachi EX2500 Cat 785C & Cat 793C 
Plant 2 3693 

3 Shovel 3 Waste Dump 1930 Hitachi EX5500 Cat 785C & Cat 793C 

4 Shovel 4 Waste Dump 1850 Hitachi EX5500 Cat 785C & Cat 793C 

5 Shovel 5 Waste Dump 4295 Hitachi EX2500 Cat 785C & Cat 793C 
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Figure 4.2: Gol-E-Gohar Iron Ore Mine Year 11 Road Network and loading and dumping locations 

 

Five shovels are working in the case study to meet the production schedule requirement. 

characteristics of the shovels used in the case study are listed in Table 4.3. 

Table 4.3: Characteristics of shovels working in the mining operation of the case study 

Equipment Type Number in use Bucket capacity (t) Cycle time (s) 

S1, S2, and S5 Hit 2500 3 NORM(14, 1) NORM(17, 0.5) 

S3 and S4 Hit 5500Ex 2 NORM(21, 2) NORM(16, 1) 

To transport the mined material from the mining faces to the destinations, the mining operation 

employs two types of trucks as mentioned above. Table 4.4 provides information regarding the 

characteristics of these two truck types. 

Table 4.4: Characteristics of trucks working in the mining operation of the case study 

Equipment Type Capacity (t) Spot time (s) Dump time (s) 

   Hit 2500 Hit 5500Ex  

Truck Type 1 Cat 785C 140 LOGN(32, 26) LOGN(69, 94) NORM(60, 27) 

Truck Type 2 Cat 793C 240 LOGN(42, 41) LOGN(79, 114) NORM(52, 21) 

The mine operates with two processing plants. Each of the processing plants have one crusher that 

has a hopper to provide a continuous feed. The trucks haul the removed waste material into a waste 
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dump where two scrapers are working to make it possible to have two trucks dumping at the same 

time. Table 4.5 presents information regarding the processing active plants in the operation. 

Table 4.5: Operational characteristics of the active processing plants 

Dumping point Desired MWT grade Target feed rate (tph) Hopper Capacity (t) 

Plant 1 Crusher 65% 2300 500 

Plant 1 Crusher 75% 2300 500 

Failure of the equipment are not considered in this study. 

4.2.2. Strategic schedule 

The yearly schedule that was created based on drill hole data using GEOVIA GEMS [153] and 

GEOVIA Whittle [154] by Upadhyay [129] is given in Figure 4.3. With an average stripping ratio 

of 1.99, the yearly production schedule requires to mine 172.654 Mt of ore for which the material 

handling system needs to move 344.309 Mt of waste from the pit. The deposit consists of Iron 

(MWT), Sulfur (S), Phosphorous (P), and waste, where MWT is the material of interest with S and 

P as impurities [129]. 

10 days of operation from year 11 of the production schedule was selected to be used in our model 

implementation. This period selection leads to requirement of production of ore and waste material 

as listed in Table 4.6. 

Table 4.6: Scheduled tonnage and grade of material to be handled during the period of simulation 

Year 11 Total material (t) Ore (t) SR MWT Grade (%) 

10 days production 

requirement 
1269600 552000 1.3 68.58 

The pit, access roads, blocks to be mined in year 11 of the mine life, and location of discharge 

points are shown in Figure 4.4. 
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Figure 4.3: Yearly schedule of the case study created using GEOVIA Whittle [129] 

 

Figure 4.4: The pit designed to mine scheduled material in year 11 of mine life [129]  
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4.3. Models verification 

To verify the integrated framework, distributed time between different processes of the shovels 

fleet including loading, spotting, and hanging (idling) times are presented in Figure 4.5, Figure 

4.6, and Figure 4.7 for different size of small, large, and mixed trucks fleets listed in Table 4.1, 

respectively. Cumulative operation time for all the five shovels in the fleet for 10 days of operation 

with one 12-hour shift in each day is calculated as 5×10×12=600 hours. This 600 hours operation 

of truck fleet as shown in Figure 4.5, Figure 4.6, and Figure 4.7 are fulfilled using the integrated 

framework. Figure 4.5, Figure 4.6, and Figure 4.7 also show that by increasing the number of 

trucks in the material handling fleet, cumulative idle time of shovels fleet are transferred to 

cumulative spotting time and cumulative loading time in all three cases of small truck fleet, large 

truck fleet, and mixed truck fleet.  

 

Figure 4.5: Summation of shovel fleet operation time with different fleets of small trucks 
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Figure 4.6: Summation of shovel fleet operation time with different fleets of large trucks 

 

 

Figure 4.7: Summation of shovel fleet operation time with different mixed fleets of trucks 
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All other characteristics of the operation including individual shovel loading, spotting, and idling 

times, along with truck dumping, empty velocity, loaded velocity, loaded tonnage and other 

characteristics are also verified by comparing against data fed to the integrated framework. 

4.4. Scenario development  

To define operational scenarios, we deterministically calculated the required fleet size using a 

match factor definition introduced by Burt and Caccetta [26] and evaluated by Chaowasakoo et al. 

[155]. It is worth noting that the logic behind the match factor is dividing any mining operation 

into three different categories as listed in Table 4.7. 

Table 4.7: Mining operation systems based on match factor 

No. Mining operation system Match Factor 

1 Under-truck system < 1 

2 Balanced system = 1 

3 Over truck system > 1 

Match factor calculation for our case study shows that to have a balanced system (match factor 

equals 1) – we need to have a truck fleet of 37 trucks of Cat 785C with a nominal capacity of 140 

tons or a truck 28 trucks of Cat 793C with a nominal capacity of 240 tons to meet the production 

schedule. However, there are some limitations in finding truck fleet size using match factor. 

Firstly, the match factor does not account for any uncertainties in the input parameters. The second 

limitation is that it determines the size of the fleet based on locked-in dispatching approach (where 

the operation is not using any FMS), which is not the case in most of the currently active surface 

mines. In other words, the match factor does not consider effects of decision-making tools (fleet 

management systems) on the size of the fleet. To address (or overcome) these shortfalls, using the 

deterministic fleet size determination procedure, we defined different scenarios in the range of 

under-truck systems (readers are encouraged to refer to [26] for more details about mining fleet 

systems) for both fleet of small trucks and fleet of large trucks. Then, the simulation model of the 

case study was run for each of the scenarios. The rationale behind choosing under-truck systems 

is that the deterministic match factor does not account for effects of the FMSs on the fleet size and, 

consequently, it overestimates the required fleet size. 

The truck loading in all the scenarios is handled using five active shovels. The integrated 

simulation framework was set up for five replications to reach the required half widths for total 

material sent to each of the processing plants of within a confidence interval of 95%. We ran the 
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simulation model for 12 hours per shift and 10 shifts for each scenario. However, as any other 

simulation work, this work has some assumptions and limitations. We assumed that over the run 

time of the simulation model, the ore polygons have consistency in material quality and tonnage. 

Another assumption is that all the machineries are mechanically available for entire simulation 

time. This assumption was made to make sure that the productivities reported by different 

dispatching algorithms are comparable. The last assumption of the simulation model is that 

drivers’ errors do not have any effect on operation. 

To transport the materials from the shovels to the designated destinations to meet the production 

requirement, it is possible to choose a homogeneous fleet of small trucks, homogeneous fleet of 

large trucks, or a Heterogeneous fleet of small and large trucks combined as listed in  

Table 4.8,  

Table 4.9, and Table 4.10, respectively. For each of the defined scenarios we used the integrated 

simulation and optimization framework in the case study. 

Table 4.8: Homogeneous small truck scenarios with their associated fleet size. 

Scenario 1 2 3 4 5 6 7 8 9 

Fleet Size 20 22 24 26 28 30 32 34 36 

 

Table 4.9: Homogeneous large truck scenarios with their associated fleet size. 

Scenario 10 11 12 13 14 15 16 17 

Fleet Size 15 16 17 18 19 20 21 22 

In the fleet of heterogeneous trucks, we started with a scenario with eight small trucks in the fleet 

to meet a portion of the required production. After calculating the required number of large trucks 

to meet the rest of the production requirement deterministically, we used the simulation framework 

to find the minimum number of large trucks required to meet the production using the fleet 

management systems (either benchmark or multiple objective FMSs). We then added two more 

small trucks to the fleet and followed the same procedure until we had 24 small trucks in the fleet. 

Table 4.10 lists the optimum number of trucks when using the benchmark fleet management 

system and when substituting it with the multiple objective model. 

Table 4.10: Heterogeneous truck scenarios with their associated fleet size. 

 Scenario 18 19 20 21 22 23 24 25 26 

Fleet 

size 

Small 8 10 12 14 16 18 20 22 24 

Large-

BM 
16 15 14 13 12 12 10 8 7 
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Large-

Multi 
14 14 12 11 10 8 6 4 2 

4.5. Implementation of the developed framework 

After defining scenarios for the operation of the case study, the developed hybrid simulation and 

optimization framework was implemented with four different combinations of FMSs including:1) 

the benchmark FMS, 2) the FMS developed by combining upper stage model of the benchmark 

FMS and our lower stage MOGP, 3) the FMS developed by combining upper stage model of the 

benchmark FMS and our lower stage stochastic programming model, and 4) the FMS developed 

by combining upper stage model of the benchmark FMS and our lower stage fuzzy linear 

programming model. 

4.5.1. Benchmark FMS 

The benchmark (BM) FMS that we implemented in this thesis is the backbone algorithm of the 

Modular Mining DISPATCH® [11] FMS that was developed by White and Olson [12] and Olson 

et al. [51]. We coded both of the upper stage decision-making model and the lower stage decision-

making model in IBM CPLEX [128] and linked it to the simulation model of the mining operation 

in the developed framework. Since DISPATCH® [11] is a proprietary software, the details of 

heuristics behind it and the changes into the dispatch algorithms and upgrades since it is 

introduction in White and Olson [12] is not publicly available. We are using White and Olson [12] 

as the benchmark to have a fair measure for verification of our developments. We do not claim 

that the algorithms developed in this thesis will outperform Modular Mining DISPATCH® because 

we do not have any means to assess such comparison. Results of implementation of the developed 

integrated framework in different homogeneous and heterogeneous scenarios in the case study 

where the BM FMS makes required semi-dynamic and dynamic decisions are presented in 

following sections. 

4.5.1.1. Homogeneous fleet of small trucks 

The integrated framework with BM FMS as the decision maker was implemented first on the 

scenarios listed in  

Table 4.8 for the fleet of small trucks. By increasing the number of trucks in the fleet, each 

important KPI has been evaluated and comparisons are presented in Figure 4.8 to Figure 4.11. 

Figure 4.8 shows how cumulative plant feed requirement is met by increasing the number of trucks 

in the fleet. The blue dash lines in the graph stands for the required cumulative input for plant 1 
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and the total ore to be delivered. The graph shows that it is not possible for the fleet to meet the 

plants requirement in scenario 1 with 20 small trucks in the fleet to scenario 8 with 34 small trucks 

in the fleet. The only scenario that is capable of meeting the plants input requirement is scenario 9 

with 36 small trucks. Scenario 1 can only meet 64% of the required plants feed. By adding 2 trucks 

in each successive scenario, the fleet can meet an extra 5.5% of the plants requirement up to being 

able to meet 97.5% of the plant’s requirements in scenario 8. 

By increasing the number of trucks, the shovel fleet was utilized with an average increase of 3%. 

As depicted by Figure 4.9, by 25% increase in utilization of the shovel fleet, the operation can only 

meet the production requirement using 98% of the shovel fleet available time. Regarding the truck 

fleet, by increasing number of trucks in the fleet with fixed number of shovels, the trucks in the 

fleet spent more time in the queue at shovels waiting for loading to start (Figure 4.10). Each truck 

spent an average of 37 hours out of 120 available hours (31% of its available time) waiting in 

queue. Increase in the number of trucks also caused an increase in the percentage of the time a 

truck reaches to a shovel and faces a line-up of at least one truck (Figure 4.11). With a jump of 

55%, in scenario 9, 86% of the times a truck reached to a shovel, it faced lineup in front and needed 

to wait in queue to be loaded. 
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Figure 4.8: Total tonnage of ore delivered to the processing plants with increasing number of trucks – BM – small 

fleets 

 

 
Figure 4.9: Shovel utilization with increasing number of trucks – BM – small fleets 
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Figure 4.10: Cumulative average queue time for trucks in the operation – BM – small fleets 

 
Figure 4.11: Percentage of the times a truck faces line up in front of shovel – BM – small fleets 

4.5.1.2. Homogeneous fleet of large trucks 

In scenario 10 to scenario 17, instead of having small size trucks in the fleet, we replace them with 

large trucks. Tonnage of material sent to the processing plants using different fleet of large trucks 
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are presented in Figure 4.12. The production requirement of the operation was met using a fleet of 

21 large trucks. The fleet size that by increasing its size to 22 large trucks, the shovel fleet was 

utilized the same (Figure 4.13). due to a decrease in total number of active trucks in the operation, 

amount of time spent by a truck at queue decreased dramatically comparing to the scenarios where 

material was being handled by fleets of small trucks (Figure 4.14). however, by increasing number 

of trucks in the fleet, the percentage of time a truck encountered lineup in front of shovel increased 

by about 30% (Figure 4.15). 

 
Figure 4.12: Total tonnage of ore delivered to the processing plants with increasing number of trucks – BM – large 

fleets 
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Figure 4.13: Shovel utilization with increasing number of trucks – BM – large fleets 

 
Figure 4.14: Cumulative average queue time for trucks in the operation – BM – large fleets 
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Figure 4.15: Percentage of the times a truck faces line up in front of shovel – BM – large fleets 

4.5.1.3. Heterogeneous fleet 

In scenarios 18 to 26, starting from a fleet of small trucks that meets production requirement, by 

reducing number of small trucks in fleet and adding large trucks instead, we tried different mixed 

fleet scenarios. Herein, results of scenarios of mixed fleet that meet the production requirements. 

All the scenarios in the heterogenous fleet with the combination of trucks represented in Figure 

4.16 meet plants’ capacity requirements. Above 90% of the shovel fleet available time were 

utilized by the truck fleet in all the scenarios (Figure 4.17). However, the truck fleet spent 28% 

more time in queue at shovels in scenario 26 with 24 small trucks and 7 large trucks than the fleet 

spent in scenario 18 with 8 small trucks and 16 large trucks (Figure 4.18). The percentage of the 

time a truck faced lineup in front of a shovel increased by 13% from scenario 18 to scenario 23 

because of increase in number of trucks in the fleet and after that, as the fleet size did not change, 

the percentage of times trucks faces lineup at shovels did not experienced any big variation (Figure 

4.19).  
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Figure 4.16: Total tonnage of ore delivered to the processing plants with increasing number of trucks – BM – mix 

fleets 

 
Figure 4.17: Shovel utilization with increasing number of trucks – BM – mix fleets 
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Figure 4.18: Cumulative average queue time for trucks in the operation – BM – mix fleets 

 

 
Figure 4.19: Percentage of the times a truck faces line up in front of shovel – BM – mix fleets 
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4.5.2. Lower stage MOGP model 

After running the integrated simulation and optimization framework developed in this research for 

the case study with algorithm of modular mining DISPATCH® [11] as its FMS and analyzing the 

key performance indicators of the operation, we replaced the truck-dispatching part of the FMS 

with the MOGP mathematical model that was developed in this research. We ran the simulation 

for all the scenarios listed in  

Table 4.8,  

Table 4.9, and Table 4.10. Results of implementation of the integrated simulation and optimization 

framework with MOGP mathematical model as its truck-dispatching decision maker are presented 

in this section. 

4.5.2.1. Homogeneous fleet of small trucks 

In scenarios 1 to 9 where the material was handled by a fleet of small trucks, results of the 

evaluation show that the operation can meet the plants’ production requirements from scenario 6 

with fleet of 30 trucks to scenario 9 with a fleet of 36 small trucks (Figure 4.20). The shovel fleet 

utilization increases for 20% by increasing number of trucks from 20 in scenario 1 to 36 in scenario 

9 (Figure 4.21). Regarding the truck fleet, Figure 4.22 and Figure 4.23 show that, although 

percentages of the time a truck faces queue at shovels increased by 200% from scenario 1 to 

scenario 9, summation of the time a truck spent in queue had only increased by less than 50%. 
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Figure 4.20: Total tonnage of ore delivered to the processing plants with increasing number of trucks – MOGP – 

small fleets 

 
Figure 4.21: Shovel utilization with increasing number of trucks – MOGP – small fleets 
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Figure 4.22: Cumulative average queue time for trucks in the operation – MOGP – small fleets 

 

 
Figure 4.23: Percentage of the times a truck faces line up in front of shovel – MOGP – small fleets 
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4.5.2.2. Homogeneous fleet of large trucks 

In scenario 10 to scenario 17 where the material was handled by fleets of large trucks instead of 

fleet of small trucks in scenario 1 to scenario 9, operation showed to be able to meet the production 

requirement from scenario 12 with 17 large trucks in the fleet to scenario 17 with 22 trucks in the 

fleet (Figure 4.24). As the number of trucks in the fleet decreased in comparison to the scenarios 

of the small fleets, both shovel fleet utilization (Figure 4.25) and truck fleet queue time (Figure 

4.26) were reduced dramatically. Figure 4.27 shows that percentages of the time a truck faces 

lineup at shovels increases only 7% from scenario 10 with 15 trucks to scenario 17 with 22 trucks. 

 
Figure 4.24: Total tonnage of ore delivered to the processing plants with increasing number of trucks – MOGP – 

large fleets 
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Figure 4.25: Shovel utilization with increasing number of trucks – MOGP – large fleets 

 

 
Figure 4.26: Cumulative average queue time for trucks in the operation – MOGP – large fleets 
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Figure 4.27: Percentage of the times a truck faces line up in front of shovel – MOGP – large fleets 

4.5.2.3. Heterogeneous fleet 

As explained in section 4.5.1.3, although we evaluated different combination of the mixed fleet 

scenarios, herein we only present scenarios that met the production requirement with 8 small trucks 

and up to 24 small trucks in the fleet. Figure 4.28 shows how the production requirement of 

processing plants were met in scenario 18 to scenario 26. Figure 4.29, Figure 4.30, and Figure 4.31 

depict that as total number of trucks in the fleet did not change from scenario 22 to scenario 26, 

thus, utilization of shovels and wait time for trucks did not show any variation. 
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Figure 4.28: Total tonnage of ore delivered to the processing plants with increasing number of trucks – MOGP – 

mix fleets 

 

 
Figure 4.29: Shovel utilization with increasing number of trucks – MOGP – mix fleets 
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Figure 4.30: Cumulative average queue time for trucks in the operation – MOGP – mix fleets 

 

 
Figure 4.31: Percentage of the times a truck faces line up in front of shovel – MOGP – mix fleets 
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4.5.3. Comparing MOGP with the benchmark model 

Using the deterministic match factor calculation, the total number of the small size trucks and large 

size trucks required to meet the production demand of the case study’s operation were calculated 

to be 37 and 28, respectively. Then, 17 under-truck scenarios for small trucks and large trucks and 

9 balanced scenarios for mixed fleets were developed to implement the integrated framework with 

MOGP and BM fleet management systems. For each of the developed scenarios, the integrated 

framework applied to the operation of the case study using both truck-dispatching models 

(benchmark (BM) model and the multiple objective (multi) model), and after separately analyzing 

the results in previous sections, the results are compared against each other and are presented in 

this section. 

Implementing small truck fleets, Figure 4.32 shows that when the benchmark decision-making 

model handles truck dispatching, the operation can meet the production demands with fleets of at 

least 36 trucks (scenario 9) whereas, using the developed MOGP truck-dispatching model, the 

operation can meet the production demands with a fleet of 30 trucks (scenario 6).  This means that 

by replacing the benchmark truck-dispatching model with the MOGP truck-dispatching model 

developed in this study, the mine can operate with 6 trucks (17%) less than the number of small 

trucks required to meet the production using benchmark (BM) truck-dispatching model. Apart 

from that, by implementing the MOGP truck-dispatching model instead of BM truck-dispatching 

model, the fleet of shovels was utilized less for an average of 4% (Figure 4.33), trucks waited less 

in queues for an average of 22% (Figure 4.34), and they also encountered lineup for an average of 

20% less than the time BM truck-dispatching was making required decisions (Figure 4.35). 
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Figure 4.32: Total tonnage of ore delivered to processing plants – small trucks – comparison  

 

Figure 4.33: Shovel utilization with increasing number of trucks – small trucks – comparison 
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Figure 4.34: Cumulative average queue time for trucks in the operation – small trucks – comparison 

 

Figure 4.35: Percentage of the times a truck faces line up in front of shovel – small trucks – comparison 
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For scenarios 10 to 17 where the fleets of small trucks were replaced with the fleets of large trucks, 

as shown by Figure 4.36, the MOGP model can meet the required processing plants’ capacity with 

a fleet of 17 large trucks (scenario 12) whereas the BM truck-dispatching model can meet the 

processing plants’ requirement with fleet of at least 21 large trucks. The operation utilized shovels 

fleet for an average of 10% less (Figure 4.37), trucks spent an average of 25% less time in queue 

at shovels (Figure 4.38), and they encountered lineup at shovels in an average of 20% less times 

(Figure 4.39) when the BM model was replaced with the MOGP model. 

 

 

Figure 4.36: Total tonnage of ore delivered to processing plants – large trucks – comparison 
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Figure 4.37: Shovel utilization with increasing number of trucks – large trucks – comparison 

 

 

Figure 4.38: Cumulative average queue time for trucks in the operation – large trucks – comparison 
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Figure 4.39: Percentage of the times a truck faces line up in front of shovel – large trucks – comparison 

 

Figure 4.40 to Figure 4.43 compare KPIs for implementation of MOGP truck-dispatching model 

against BM truck-dispatching model using mixed fleet of trucks to handle the material in the case 

study. Results show that because the MOGP model required less number of trucks in different 

combinations to meet the production requirements (Figure 4.40), the shovels fleet was utilized 

10% less (Figure 4.41), the trucks spent 40% less time in queues (Figure 4.42) and faced lineups 

at shovels 33% less (Figure 4.43). 
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Figure 4.40: Total tonnage of ore delivered to processing plants – mix fleets – comparison 

 

 

Figure 4.41: Shovel utilization with increasing number of trucks – mix fleets – comparison 
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Figure 4.42: Cumulative average queue time for trucks in the operation – mix fleets – comparison 

  

 

Figure 4.43: Percentage of the times a truck faces line up in front of shovel – mix fleets – comparison 
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Studying KPIs for different small fleet, large fleet, and mixed fleet scenarios show that 

implementing the MOGP truck-dispatching model, the operation needs less number of trucks to 

meet the production targets. In the next section, we present higher resolution analysis of important 

scenarios.  

4.5.4. Higher resolution study on selected scenarios 

We implemented the developed integrated simulation and optimization framework in an open pit 

mine case study with BM truck-dispatching model and MOGP truck-dispatching model. 26 

scenarios (in three categories: 9 small truck fleet scenarios, 8 large truck fleet scenarios, and 9 

mixed fleet scenarios) were run for both BM and MOGP truck-dispatching models. For small 

trucks and large trucks fleets, results of implementing MOGP is compared against results of 

implementing BM in the best scenario when using BM model, the best scenario when using MOGP 

model, and comparison of best scenarios in a shift by shift resolution manner that are being 

presented in this section. It is worth noting that although the simulation study was run for 10 shifts 

and 12 hours per shifts, we did our shift by shift evaluations by considering the first shift as the 

warm up shift. Thus, the analysis being presented in the following sub sections are presented for 

9 shifts. 

4.5.4.1. Fleet of 28 small trucks 

In scenario 5 listed in  

Table 4.8 we implemented fleet of 28 small trucks to handle the material transportation. Results 

of implementation show that the fleet can meet the processing plants capacity requirement if it is 

being used with MOGP model as the truck-dispatching decision-making tool in the operation’s 

FMS. 

Figure 4.44 depicts that using the BM truck-dispatching model, although the fleet transported more 

tonnage that required in each shift, the capacity requirement for none of the processing plants were 

met. The BM model met 79% of plant 1 capacity (Figure 4.46) and 84% of plant 2 capacity in each 

shift (Figure 4.47). The reason that it can meet the plant 2 capacity more than plant 1 is that plant 

2 is located closer to the loaders than plant 1. In contrast, using MOGP truck-dispatching model, 

each of the processing plants were fed in their full capacity. However, the total production capacity 

was not met for 100% (Figure 4.45). the MOGP met the plants’ capacity requirements for 100%, 

though. Figure 4.48 and Figure 4.49 show that implementing the MOGP truck-dispatching model, 
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the material handling system was able to meet the hourly feed rate requirement for each processing 

plants whereas the BM model was not able to meet the hourly feed rates for any of the plants while 

using a fleet of 28 small trucks. Replacing the BM model with the MOGP model helped to improve 

queue length at shovels from an average of 2 trucks to an average of 1 truck (Figure 4.50) that 

consequently caused 25% improvement in the time a truck spent in queue at shovels (Figure 4.51 

and Figure 4.52). 

 
Figure 4.44: Shift by shift production – fleet of 28 small trucks – BM 
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Figure 4.45: Shift by shift production – fleet of 28 small trucks – MOGP 

 

 

 

Figure 4.46: Ore sent to plant 1 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 28 

small trucks 
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Figure 4.47: Ore sent to plant 2 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 28 

small trucks 

 

 

Figure 4.48: Hourly feed rate for plant 1 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 28 small trucks 
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Figure 4.49: Hourly feed rate for plant 2 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 28 small trucks 

 

Figure 4.50: Length of queue at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 28 small trucks 
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Figure 4.51: Queue time at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution – 

fleet of 28 small trucks 

 

Figure 4.52: Histogram for time a truck spent in queue at shovels – MOGP (green bars) versus BM (orange bars) – 

fleet of 28 small trucks 
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4.5.4.2. Fleet of 31 small trucks 

In scenario 5 with 28 small trucks in the fleet, although by using of MOGP model the processing 

plants requirements are met by 100%, the operation cannot meet the stripping ratio requirement. 

If we use the BM model in the same scenario, the plants’ ore delivery requirement will not be met 

even if the operation can meet the total ore + waste production requirement. Thus, we introduce a 

new scenario (fleet of 31 small trucks) where the processing plants’ requirement as well as ore + 

waste production requirement are met with minimum number of trucks in the fleet. 

Results of implementing the 31 small trucks to handle the material in the case study show that 

using BM truck-dispatching model, although total production requirement for the case study was 

met (Figure 4.53), it was not able to deliver required amount of material to meet the processing 

plants’ demands (Figure 4.55, Figure 4.56, Figure 4.57, and Figure 4.58). However, using MOGP 

truck-dispatching model both the total production schedule for shifts (Figure 4.54) and demand of 

each processing plant (Figure 4.55, Figure 4.56, Figure 4.57, and Figure 4.58) were met. 

Comparison of truck queue at shovels show that, with an average queue length of 1.4 in each shift 

of operation compared to 2.2 of BM (Figure 4.59), using the MOGP trucks spent an average of 2 

minutes less in queue in each shift of the operation (Figure 4.60 and Figure 4.61). 

 

Figure 4.53: Shift by shift production – fleet of 31 small trucks – BM 
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Figure 4.54: Shift by shift production – fleet of 31 small trucks – MOPG 

 

Figure 4.55: Ore sent to plant 1 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 31 

small trucks 
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Figure 4.56: Ore sent to plant 2 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 31 

small trucks 

 

Figure 4.57: Hourly feed rate for plant 1 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 31 small trucks 
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Figure 4.58: Hourly feed rate for plant 2 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 31 small trucks 

 

Figure 4.59: Length of queue at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 31 small trucks 
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Figure 4.60: Queue time at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution – 

fleet of 31 small trucks 

 

 

Figure 4.61: Histogram for time a truck spent in queue at shovels – MOGP (green bars) versus BM (orange bars) – 

fleet of 31 small trucks 
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4.5.4.3. Fleet of 36 small trucks 

Scenario 9 with 36 small trucks in the fleet is the scenario with the least number of trucks in the 

fleet where using BM truck-dispatching model the operation can meet the production requirement 

(Figure 4.62), and ore delivered to each processing plant per shift (Figure 4.64 and Figure 4.65) 

and per hour of operation (Figure 4.66 and Figure 4.67). Replacing the BM model with the 

developed MOGP model, Figure 4.63 shows how the operation met the production requirement 

on shift by shift base. Results presented in Figure 4.68, Figure 4.69, and Figure 4.70 compare 

queue length and queue time at shovels between BM model and MOGP model. The operation met 

all the production requirement using both of the decision-making models implemented to make 

decisions on truck-dispatching problem in the case study in this scenario. 

 

 
Figure 4.62: Shift by shift production – fleet of 36 small trucks – BM 
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Figure 4.63: Shift by shift production – fleet of 36 small trucks – MOGP 

 
Figure 4.64: Ore sent to plant 1 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 36 

small truck 
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Figure 4.65: Ore sent to plant 2 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 36 

small truck 

 
Figure 4.66: Hourly feed rate for plant 1 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 36 small trucks 
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Figure 4.67: Hourly feed rate for plant 2 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 36 small trucks 

 
Figure 4.68: Length of queue at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 36 small trucks 
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Figure 4.69: Queue time at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution – 

fleet of 36 small trucks 

 

 
Figure 4.70: Histogram for time a truck spent in queue at shovels – MOGP (green bars) versus BM (orange bars) – 

fleet of 36 small trucks 
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4.5.4.4. Fleet of 31 small trucks with MOGP and 36 small trucks with BM 

The least possible number of small trucks required to meet all the production requirement of the 

case study with the BM truck-dispatching model was scenario 9 with 36 small trucks. However, 

by replacing the BM truck-dispatching model with the MOGP truck-dispatching model, we were 

able to meet the production requirement of the operation with fleet of 31 small trucks (scenario 5). 

Although using both scenarios the production requirement of the operation was met, using MOGP 

truck-dispatching model resulted in using of a fleet with 17% less number of trucks than BM truck-

dispatching model. This consequently improved number of trucks in queue at shovels (Figure 4.73) 

and time each truck spent in queue at shovels (Figure 4.74 and Figure 4.75). Another advantage of 

implementing MOGP model instead of BM model was that the deviation from the hourly feed 

rated reduced for both processing plants (Figure 4.71 and Figure 4.72). 

 

 
Figure 4.71: Hourly feed rate for plant 1 – optimum fleet of small trucks for MOGP (green boxes) versus optimum 

fleet of small trucks for BM (orange boxes) 
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Figure 4.72: Hourly feed rate for plant 2 – optimum fleet of small trucks for MOGP (green boxes) versus optimum 

fleet of small trucks for BM (orange boxes) 

 
Figure 4.73: Length of queue at shovels – optimum fleet of small trucks for MOGP (green boxes) versus optimum 

fleet of small trucks for BM (orange boxes) 
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Figure 4.74: Queue time at shovels – optimum fleet of small trucks for MOGP (green boxes) versus optimum fleet 

of small trucks for BM (orange boxes) 

 
Figure 4.75: Histogram for time a truck spent in queue at shovels – optimum fleet of small trucks for MOGP (green 

bars) versus optimum fleet of small trucks for BM (orange bars) 
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4.5.4.5. Fleet of 17 large trucks 

The first scenario among all the evaluated scenarios with the large trucks that met the production 

requirement in the case study was scenario 12 with 17 large trucks in its fleet and MOGP 

mathematical model as its truck-dispatching decision maker tool. Using fleet of 17 large trucks, 

the BM model met the total production requirement for each shift of the operation (Figure 4.76). 

However, it was not able to meet the shift by shift (Figure 4.78) and hourly (Figure 4.80) feed 

requirement for processing plant 1 and shift by shift (Figure 4.79) and hourly (Figure 4.81) feed 

requirement for processing plant 2. In contrast, the operation met all the production requirements 

when the BM model was replaced by the MOGP model. It met the production requirement (Figure 

4.77), shift by shift (Figure 4.78) and hourly (Figure 4.80) feed requirement for processing plant 1 

and shift by shift (Figure 4.79) and hourly (Figure 4.81) feed requirement for processing plant 2. 

For both the models, if there is any lineup in front of a shovel when a truck reaches there, there is 

only one truck waiting in queue (Figure 4.82) and truck needs to spend around 1.5 minutes in the 

queue (Figure 4.83). However, most of the time a truck reaches to a shovel when using MOGP 

model, there is no lineup in front of it (Figure 4.84). 

 

 
Figure 4.76: Shift by shift production – fleet of 17 large trucks – BM 
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Figure 4.77: Shift by shift production – fleet of 17 large trucks – MOGP 

 
Figure 4.78: Ore sent to plant 1 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 17 

large trucks 
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Figure 4.79: Ore sent to plant 2 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 17 

large trucks 

 

 
Figure 4.80: Hourly feed rate for plant 1 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 17 large trucks 



CHAPTER 4: VERIFICATION, IMPLEMENTATION, AND DISSCUSSION OF RESULTS 155 

 

 
Figure 4.81: Hourly feed rate for plant 2 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 17 large trucks 

 
Figure 4.82: Length of queue at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 17 large trucks 
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Figure 4.83: Queue time at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution – 

fleet of 17 large trucks 

 
Figure 4.84: Histogram for time a truck spent in queue at shovels – MOGP (green bars) versus BM (orange bars) – 

shift by shift resolution – fleet of 17 large trucks 
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4.5.4.6. Fleet of 21 large trucks 

Fleet of 21 large trucks (scenario 16) is the smallest fleet of large trucks that the operation of the 

case study was able to meet all the production requirement using the BM truck-dispatching model 

including ore + waste (Figure 4.85), shift by shift ore required to be sent to plant 1 (Figure 4.87), 

hourly plant 1 feed rate requirement (Figure 4.88), shift by shift ore required to be sent to plant 2 

(Figure 4.89), and hourly plant 2 feed rate requirement (Figure 4.90). MOGP truck-dispatching 

models meets all the production requirement using a fleet of 21 large trucks (scenario 16) as well. 

As depicted by Figure 4.86, Figure 4.87, Figure 4.88, Figure 4.89, and Figure 4.90, it met total 

production requirement, shift by shift plants’ input requirement, and hourly plants’ feed rate 

requirement. when using MOGP model instead of BM model, queue lengths at shovels are shorter 

(Figure 4.91) that results in shorter queue time at shovels for trucks (Figure 4.92), and consequently 

less deviation in plants feed rates (Figure 4.89 and Figure 4.90). 

 
Figure 4.85: Shift by shift production – fleet of 21 large trucks – BM 
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Figure 4.86: Shift by shift production – fleet of 21 large trucks – MOGP 

 

 
Figure 4.87: Ore sent to plant 1 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 21 

large trucks 
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Figure 4.88: Ore sent to plant 2 – MOGP (blue bars) versus BM (orange bars) – shift by shift resolution – fleet of 21 

large trucks 

 
Figure 4.89: Hourly feed rate for plant 1 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 21 large trucks 
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Figure 4.90: Hourly feed rate for plant 2 – MOGP (green boxes) versus BM (orange boxes) – shift by shift 

resolution – fleet of 21 large trucks 

 
Figure 4.91: Length of queue at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 21 large trucks 
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Figure 4.92: Queue time at shovels – MOGP (green boxes) versus BM (orange boxes) – shift by shift resolution – 

fleet of 21 large trucks 

 
Figure 4.93: Histogram for time a truck spent in queue at shovels – MOGP (green bars) versus BM (orange bars) – 

fleet of 21 large trucks 
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4.5.4.7. Fleet of 17 large trucks with MOGP and 21 large trucks with BM 

The least possible number of large trucks required to meet all the production requirement of the 

case study with the BM truck-dispatching model was scenario 16 with 21 large trucks. However, 

by replacing the BM truck-dispatching model with the MOGP truck-dispatching model, we were 

able to meet the production requirement of the operation with fleet of 17 large trucks (scenario 

12). Although using both scenarios the production requirement of the operation was met, using 

MOGP truck-dispatching model resulted in using of a fleet with 19% less number of trucks than 

BM truck-dispatching model. This consequently improved number of trucks in queue at shovels 

(Figure 4.96) and time each truck spent in queue at shovels (Figure 4.97 and Figure 4.98). 

However, by implementing 17 large trucks instead of 21 large trucks, the deviation from the hourly 

feed rated increased for both processing plants (Figure 4.94 and Figure 4.95) due to having less 

number of trucks in the operation to consistently feed the plants. 

 

 
Figure 4.94: Hourly feed rate for plant 1 – optimum fleet of large trucks for MOGP (green boxes) versus optimum 

fleet of large trucks for BM (orange boxes) 
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Figure 4.95: Hourly feed rate for plant 2 – optimum fleet of large trucks for MOGP (green boxes) versus optimum 

fleet of large trucks for BM (orange boxes) 

 
Figure 4.96: Length of queue at shovels – optimum fleet of large trucks for MOGP (green boxes) versus optimum 

fleet of large trucks for BM (orange boxes) 
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Figure 4.97: Queue time at shovels – optimum fleet of large trucks for MOGP (green boxes) versus optimum fleet of 

large trucks for BM (orange boxes) 

 
Figure 4.98: Histogram for time a truck spent in queue at shovels – optimum fleet of large trucks for MOGP (green 

boxes) versus optimum fleet of large trucks for BM (orange boxes) 
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4.5.4.8. Mixed fleet of 8 small trucks 

In the category of heterogeneous scenarios, we evaluated three scenarios in higher resolution based 

on the flexibility of the scenarios: scenario 18 with mixed fleet of 8 small trucks as the least flexible 

scenario, scenario 21 with mixed fleet of 14 small trucks as a moderately flexible scenario, and 

scenario 26 with mixed fleet of 24 small trucks as the most flexible scenario (Table 4.10). 

It is worth noting that, as all the mixed fleet scenarios meet production requirements in weekly 

resolution, shift by shift resolution, and hourly resolution level, we only present truck related KPIs. 

In scenario 18, where the operation needs to meet the production target with 8 small trucks in the 

fleet, using BM model to make truck-dispatching decisions, the material handling system needs 

16 large trucks to meet the production requirement. Whereas, the operation can meet the 

production target by adding 14 trucks (87.5% of what BM model needs) by replacing the BM 

model with the developed MOGP model. This consequently resulted in reduction in length of truck 

queue at shovels (Figure 4.99) and the time a truck spent in queue (Figure 4.100 and Figure 4.101). 

 

 
Figure 4.99: Length of queue at shovels – mixed fleet of 8 small trucks – MOGP (green boxes) versus BM (orange 

boxes) 
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Figure 4.100: Queue time at shovels – mixed fleet of 8 small trucks – MOGP (green boxes) versus BM (orange 

boxes) 

 

 
Figure 4.101: Histogram for time a truck spent in queue at shovels – mixed fleet of 8 small trucks –MOGP (green 

bars) versus BM (orange bars) 
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4.5.4.9. Mixed fleet of 14 small trucks 

We evaluated a moderately flexible scenario (scenario 21) with 14 small trucks in its fleet. 

Although using both the truck-dispatching models the fleet met the production requirements, the 

MOGP model needed less trucks to do so. The MOGP model was able to meet the required 

production target with 11 large trucks. It is 15% less than 13 large trucks required by BM model 

to meet the production target. Meeting production target with less number of trucks in the fleet 

helped the truck fleet to face queue with an average length of one in front of shovels compared to 

facing a queue with an average length of two when using BM model (Figure 4.102). Figure 4.103 

and Figure 4.104 show that by replacing the BM model with the MOGP model, time a truck spent 

in queue at shovels reduced for around two minutes. 

 
Figure 4.102: Length of queue at shovels – mixed fleet of 14 small trucks – MOGP (green boxes) versus BM 

(orange boxes) 
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Figure 4.103: Queue time at shovels – mixed fleet of 14 small trucks – MOGP (green boxes) versus BM (orange 

boxes) 

 

 
Figure 4.104: Histogram for time a truck spent in queue at shovels – mixed fleet of 14 small trucks –MOGP (green 

bars) versus BM (orange bars) 
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4.5.4.10. Mixed fleet of 24 small trucks 

Data analysis on the most flexible mixed fleet scenario (scenario 26) showed that the MOGP model 

met the production requirement with a fleet of 24 small trucks and 2 large trucks (26 trucks in 

total). The same analysis also showed that the BM truck-dispatching model required a fleet of 24 

small trucks and 7 large trucks (31 trucks in total) to meet the production target. This 71.4% 

reduction in the required number of large trucks in fleet consequently results in decrease in queue 

length (Figure 4.105) and queue time at shovels (Figure 4.106 and Figure 4.107). 

 
Figure 4.105: Length of queue at shovels – mixed fleet of 24 small trucks – MOGP (green boxes) versus BM 

(orange boxes) 
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Figure 4.106: Queue time at shovels – mixed fleet of 24 small trucks – MOGP (green boxes) versus BM (orange 

boxes) 

 

 
Figure 4.107: Histogram for time a truck spent in queue at shovels – mixed fleet of 24 small trucks –MOGP (green 

bars) versus BM (orange bars) 

Statistical summary of all the scenarios are presented in Table 4.11 for the small trucks fleets, 

Table 4.12 for the large trucks fleets, and Table 4.13 for the mixed fleets. 
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Table 4.11: The results of implementing different small truck scenarios in the mining operation of the case 

study 

Scenario 
Fleet 

Size 

Meet the 

production? 
Average Q Length Sum Q time (hr) 

Truck Utilization 

(%) 

Shovel Utilization 

(%) 

  BM Multi BM Multi %Dif BM Multi %Dif BM Multi %Dif BM Multi %Dif 

1 20 NO NO 1.3 1.1 15 1207 1137 6 90 91 1 73 70 4 

2 22 NO NO 1.4 1.2 14 1625 1361 16 88 90 2 78 76 3 

3 24 NO NO 1.6 1.2 25 2129 1833 14 85 87 2 83 81 2 

4 26 NO NO 1.7 1.3 24 2783 2197 21 82 86 5 86 85 1 

5 28 NO NO 1.9 1.3 32 3475 2532 27 79 85 7 90 86 4 

6 30 NO NO 2.1 1.4 33 4259 2836 33 76 84 10 92 86 7 

7 32 NO YES 2.3 1.4 39 5102 3202 37 73 83 12 95 88 7 

8 34 NO YES 2.4 1.5 38 5924 3541 40 71 83 14 97 90 7 

9 36 YES YES 2.5 1.6 36 6574 3867 41 70 82 15 98 90 8 

As presented in Table 4.11, a fleet of 36 small trucks is capable of meeting production requirements 

using either of the two truck-dispatching models. However, a fleet of 32 small trucks is sufficient 

if the mine uses the MOGP model. Reducing the size of the fleet by 5 trucks can result in significant 

capital and operational costs. 

In the case study, there is a possibility to use a fleet of trucks with higher capacities. The 

deterministic calculations for the case study operation suggests 28 large trucks will serve the 

production purposes. To find the optimum number of large trucks to meet the production 

requirements using the developed framework, 8 under-truck scenarios (scenario 10 to scenario 17) 

were tested for the case study. The results of the implementation are summarized in Table 4.12. 

Table 4.12: Results of implementing different large truck scenarios in the mining operation of the case study 

Scenario 
Fleet 

Size 

Meet the 

production? 
Average Q Length Sum Q time (hr) 

Truck Utilization 

(%) 

Shovel Utilization 

(%) 

  BM Multi BM Multi %Dif BM Multi %Dif BM Multi %Dif BM Multi %Dif 

10 15 NO NO 1.1 1.1 0 843 851 -1 91 91 0 73 67 8 

11 16 NO NO 1.2 1.1 8 1040 964 7 89 90 1 77 71 8 

12 17 NO YES 1.2 1.1 8 1258 1070 15 88 90 2 80 73 9 

13 18 NO YES 1.2 1.1 8 1510 1143 24 86 89 3 83 72 13 

14 19 NO YES 1.3 1.1 15 1802 1218 32 84 89 6 86 74 14 

15 20 NO YES 1.4 1.2 14 2114 1276 40 82 89 8 88 74 16 

16 21 YES YES 1.4 1.2 14 2321 1309 44 82 90 9 89 75 16 

17 22 YES YES 1.5 1.2 20 2469 1448 41 81 89 9 89 76 15 

As presented in Table 4.12, a fleet of 21 large trucks can meet the production requirements using 

either of the two truck-dispatching models. However, a fleet of 17 large trucks is sufficient if the 

mine uses the MOGP model. The mining operation can meet the production target with 17 trucks 

if they are using the BM model, or with 17 trucks if they are using the MOGP model. 
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We also implemented the developed integrated framework on scenarios with different 

combinations of types of trucks to deal with the truck fleet size determination in the case study. 

Table 4.13 lists all the optimum fleets of trucks to meet the production demand when we used the 

heterogeneous fleet of trucks. 

Table 4.13: Results of implementing different optimum mixed fleets in the mining operation of the case study 

Scenario 
Fleet Size 

Meet the 

production? 
Average Q Length Sum Q time (hr) Truck Utilization (%) Shovel Utilization (%) 

Small Large      

  BM Multi BM Multi BM Multi %Dif BM Multi %Dif BM Multi %Dif BM Multi %Dif 

18 8 16 14 YES YES 1.6 1.2 25 3003 1784 41 79 86 8 91 92 1 

19 10 15 14 YES YES 1.7 1.3 24 3273 2034 38 78 86 9 92 92 0 

20 12 14 12 YES YES 1.8 1.3 28 3543 2027 43 77 86 10 91 92 1 

21 14 13 11 YES YES 1.9 1.3 32 3812 2165 43 76 86 12 91 92 1 

22 16 12 10 YES YES 2 1.3 35 4118 2299 44 76 85 11 91 92 1 

23 18 12 8 YES YES 2.1 1.3 38 4695 2394 49 74 85 13 91 92 1 

24 20 10 6 YES YES 2.1 1.3 38 4684 2338 50 74 85 13 91 92 1 

25 22 8 4 YES YES 2.1 1.3 38 4683 2298 51 74 85 13 91 92 1 

26 24 7 2 YES YES 2.2 1.3 41 4984 2262 55 73 86 15 91 92 1 

We started the heterogeneous fleet scenarios with scenario 18 including 8 small trucks. For each 

new scenario we first increased the number of small trucks by adding two extra trucks to the fleet 

up to 24 small trucks. Afterwards, fixing the number of the small trucks in the fleet, we calculated 

the required number of large trucks using the deterministic calculation method. For example, the 

deterministic calculation showed that the case study will meet the production demand with 37 

small trucks. However, in scenario 18 we have 8 small trucks available. We need to complete the 

rest of the required with large trucks. It means that we need to substitute 29 trucks of 140 tonne 

capacity with 240-ton capacity trucks. The result of the calculation ([(29*140/240)]+1 =17) shows 

that without any fleet management system, the operation needs 17 large trucks to meet the 

production demand when 8 small trucks are available. This number is the starting point for the 

number of large trucks to meet the production demand using 8 small trucks. However, herein, we 

developed an integrated simulation and optimization framework that can add fleet management 

system to the operation evaluation of any surface mine. Thus, adding the value of the decision 

maker tools, we tested different under-truck scenarios to find the minimum fleet size that can meet 

the production demand within the constraints of the fleet management systems. All the 

heterogeneous fleets listed in Table 4.13 meet the production demand. 

4.5.5. Stochastic lower stage model 

Despite all the deterministic models have been presented in the literature of truck-dispatching, we 

know that most of the input parameters into the truck-dispatching decision-making mathematical 



CHAPTER 4: VERIFICATION, IMPLEMENTATION, AND DISSCUSSION OF RESULTS 173 

 

models are associated with uncertainties. Based on our knowledge about uncertainties in the truck 

travel time, we developed a mixed integer linear programming model. The model is modified 

version of the MOGP model that we presented its deterministic implementation in previous 

sections. We implemented the stochastic model in scenario with 31 small trucks (optimum scenario 

for MOGP model) and results are presented here. 

Figure 4.108 depicts that using the stochastic truck-dispatching model, the operation met the 

production requirement. Comparing material sent to processing plants, the shift by shift and hourly 

resolution data analysis show that stochastic model met the plant input requirement for plant 1 

(Figure 4.109 and Figure 4.111) and plant 2 (Figure 4.110 and Figure 4.112) whereas the BM 

model were short for 13% in feeding plant 1 (Figure 4.109 and Figure 4.111) and 8% in feeding 

plant 2 (Figure 4.110 and Figure 4.112). because of the nature of the developed model, it sends 

trucks to the shovels with the shortest possible lineup. Thus, replacing the BM model with the 

developed model, the length of queue a truck faced when reached to a shovel reduced from an 

average of 2.2 to an average of 1.4 (Figure 4.113). This in consequence led to save trucks an 

average of 2.9 minutes wait time in each lineup (Figure 4.114 and Figure 4.115). 

 

Figure 4.108: Shift by shift production – fleet of 31 small trucks – Stochastic 
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Figure 4.109: Ore sent to plant 1 – Stochastic (blue bars) – MOGP (orange bars) – BM (yellow bars) – shift by shift 

resolution – fleet of 31 small trucks 

 

Figure 4.110: Ore sent to plant 2 – Stochastic (blue bars) – MOGP (orange bars) – BM (yellow bars) – shift by shift 

resolution – fleet of 31 small trucks 
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Figure 4.111: Hourly feed rate for plant 1 – Stochastic (blue boxes) – MOGP (green boxes) – BM (orange boxes) – 

shift by shift resolution – fleet of 31 small trucks 

 

 

Figure 4.112: Hourly feed rate for plant 2 – Stochastic (blue boxes) – MOGP (green boxes) – BM (orange boxes) – 

shift by shift resolution – fleet of 31 small trucks 
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Figure 4.113: Length of queue at shovels – Stochastic (blue boxes) – MOGP (green boxes) – BM (orange boxes) – 

shift by shift resolution – fleet of 31 small trucks 

 

Figure 4.114: Queue time at shovels – Stochastic (blue boxes) – MOGP (green boxes) – BM (orange boxes) – shift 

by shift resolution – fleet of 31 small trucks 
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Figure 4.115: Histogram for time a truck spent in queue at shovels – Stochastic (blue bars) – BM (red bars) – fleet of 

31 small trucks 

4.5.6. Fuzzy logic based lower stage model 

To evaluate our fuzzy approach towards the truck-dispatching problem we defined 13 scenarios 

with fleets of small trucks. This time instead of increasing number of trucks by two from each 

scenario to the next one, we added only one truck to the fleet to be used in the next scenario. The 

designed experiments are listed in Table 4.14. 

Table 4.14: Operation Scenarios of the case study ran for evaluation of the developed truck-dispatching model 

Scenario S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 

Fleet Size  25 26 27 28 29 30 31 32 33 34 35 36 37 

For the designed experiments, we ran the integrated simulation and optimization model of the case 

study for a designated operation time of 10 consecutive 12-hour shifts for two times. We replaced 

BM truck-dispatching model with the fuzzy based decision-making model. After running the 

developed integrated simulation and optimization models for the case study, we plotted the 

production for different scenarios in Figure 4.116 to compare results. 
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Figure 4.116: Total material removed from the pit over the simulation run time using different fleet where Fuzzy – 

O stands for optimistic fuzzy decisions (with degree of optimism equal to 75%) and Fuzzy – P stands for pessimistic 

fuzzy decisions (with degree of optimism equal to 25%). 

 

Figure 4.116 shows that from scenario Sc03 with 27 trucks on, both approaches to solve the truck-

dispatching problem result in meeting the total production (ore + waste) requirement. However, 

producing as much material as possible is not the only goal of a mining operation. Meeting plants’ 

requirements (tonnage of ore sent to the plants) is another critical objective of the mining operation. 

Thus, the best fleet is a fleet with the minimum number of truck in it that can meet both total 

production requirement and ore sent to plants’ requirement. Figure 4.117 represents how various 

scenarios with the two truck-dispatching models can meet the required ore delivery.  
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Figure 4.117: Cumulative tonnage of ore delivered to the processing plants during the simulation run time using 

each scenario 

Although using both benchmark model and the FLP model the production requirement is met in 

scenario Sc03 with 28 trucks, the plants are fed in their full capacity in scenario Sc04 with 29 

trucks when implementing FLP model and in scenario Sc12 with 36 trucks when using benchmark 

truck-dispatching model. Thus, the optimum fleet required to meet the schedule is a fleet of 36 

trucks when using benchmark truck-dispatching model and a fleet of 29 trucks when using FLP 

truck-dispatching model. Apart from the production, other important Key Performance Indicators 

(KPI) have critical role in mining operations. For the two fleets explained above, we compare KPI 

of the operation when using the FLP model versus the time using BM model. 

4.5.6.1. Fleet of 28 trucks – Sc04 

In Figure 4.118 and Figure 4.119 the graphs show hourly feed rate of the processing plants 1 and 

2 respectively, when a fleet of 28 trucks operates in the mine. Figure 4.118 shows that with the 

fleet of 28 trucks, the operation is not able to meet the hourly feed rate requirement for the plant 1 

by implementing benchmark truck-dispatching model. The graph in Figure 4.118 shows that using 

the BM truck-dispatching model with the fleet of 28 trucks, the operation can meet an average of 

1885.2±71 ton/hr (82%) of plant 1 required feed rate. However, the same graph reveals that by 

implementing the FLP truck-dispatching model with the same truck fleet, the material handling 

system is capable of meeting 2285.2± 94 (99.3%) of the required feed rate for plant 1. It means an 

improvement of 17.3% in the tonnage per hour of ore delivered to plant 1 during the simulated 
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operation time. The analysis shows a slightly different result when investigating plant 2 (Figure 

4.119). 

 
Figure 4.118: Hourly feed rate for plant 1 – FLP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 28 small trucks 

 
Figure 4.119: Hourly feed rate for plant 2 – FLP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 28 small trucks 
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Both truck-dispatching models feed plant 2 slightly more than plant 1. In the case of using 

benchmark truck-dispatching model, the graph shows a feed rate of 1990.4±70 ton/hr to the plant 

2, a 6% more feed rate in comparison to the feed rate of plant 1. However, it still fails to meet the 

2300 ton/hr feed rate requirement of the plant by 13.5%. By replacing the benchmark truck-

dispatching model with the FLP model, Figure 4.119 shows that the operation meets 99.8% of 

plant 2 hourly feed rate requirement by delivering 2295.8±77 ton/hr. 

The benchmark truck-dispatching model and the FLP truck-dispatching model meet head grade 

requirement for both processing plants as presented in Figure 4.120. The reason is that both are 

using the same upper stage model. The threshold of 60% head grade is met for both plants using 

the benchmark and the developed truck-dispatching models. 

 
Figure 4.120: Plants’ hourly head grade requirements and hourly head grade delivered by each of the truck-

dispatching models implementing fleet of 28 trucks 

Shovel 1 and Shovel 2 operate at ore mining faces. The rest of the shovel fleet dig waste mining 

faces. Table 4.15 represents shovel utilization for each active shovel in the operation and the 

utilization of combined shovel fleet for both benchmark and FLP truck-dispatching models.  

Table 4.15: Shovel fleet utilization (%) for a fleet of 28 trucks – comparison between benchmark model and the FLP 

model 

 Benchmark  Fuzzy - P Fuzzy - O 

Shovel Mean StD Mean StD Diff Mean StD Diff 

Shovel 1 82.7 1.1 95.8 1.9 13.1 95.3 2.1 15.2 

Shovel 2 78.9 1.2 95.2 2 16.3 95.5 1.4 21.0 

Shovel 3 93.6 1.4 80.6 1.3 -13.0 80.9 1.2 -13.6 

Shovel 4 92.5 1.4 82 1.6 -10.5 83 2 -10.3 

Shovel 5 99.8 5.9 94.4 1.8 -5.4 94.3 1.8 -5.5 

Entire fleet 89.5 2.2 89.6 1.72 0.1 89.8 1.7 0.3 
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Information represented by Table 4.15 shows that, although, both truck-dispatching models utilize 

the shovel fleet almost the same, the benchmark model utilizes the waste shovels more than the 

ore shovels. However, according to the same table, the developed FLP truck-dispatching model 

utilizes the ore shovels more than the waste shovels. Instead of producing more waste material 

than required to meet the production schedule, the developed FLP model makes truck-dispatching 

decisions in a way that meet the plants’ input requirement. Concurrent with keeping the shovels in 

the required utilization, the developed truck-dispatching model helps trucks to spend shorter time 

in the queue of shovels (Figure 4.122 and Figure 4.122). 

 

Figure 4.121: Length of queue at shovels – FLP (green boxes) versus BM (orange boxes) – shift by shift resolution – 

fleet of 28 small trucks 
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Figure 4.122: Histogram for time a truck spent in queue at shovels – 28 small trucks – FLP (green bars) versus BM 

(orange bars) 

Figure 4.122 and Figure 4.122 show that trucks in the fleet spent less time in queues in different 

loading points when the truck-dispatching decisions are made by the developed FLP model. This 

consequently helps the operation to be capable of meeting the processing plants feed rate 

requirements.  

To sum up, implementing the fleet of 28 trucks, the operation can meet the production requirement 

if the truck-dispatching decisions are made using the developed FLP model instead of benchmark 

model.  

4.5.6.2. Fleet of 36 trucks – Sc12 

Although the operation is capable of meeting production requirement with 28 trucks using the FLP 

model, the BM model is capable of meeting that using a fleet of 36 trucks. Thus, we evaluate the 

operation implementing 36 trucks and compare results of using FLP model versus BM model. 

With a fleet of 36 trucks, as presented in Figure 4.123, both the benchmark truck-dispatching 

model and the FLP truck-dispatching model meet the plant 1 (P1) feed requirement with a standard 

deviation of 85 ton/hr and 50 ton/hr, respectively. Similar results are obtained for plant 2 as shown 

in Figure 4.124. The benchmark model is meeting the hourly feed rate requirement of the plant 

with a deviation of 55 ton/hr, whereas, the developed FLP model can meet the feed rate 

requirement of plant 2 with a standard deviation of 64 ton/hr. Another noteworthy result is that, 
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both truck-dispatching models meet the head grade requirement of the active processing plants in 

the operation because both of them are using the same upper stage model (Figure 4.125). 

 
Figure 4.123: Hourly feed rate for plant 2 – FLP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 36 small trucks 

 

 
Figure 4.124: Hourly feed rate for plant 2 – FLP (green boxes) versus BM (orange boxes) – shift by shift resolution 

– fleet of 36 small trucks 
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Figure 4.125: Plants’ hourly head grade requirements and hourly head grade delivered by each of the truck-

dispatching models implementing fleet of 36 trucks 

Although using a fleet of 36 trucks both truck-dispatching models can meet the production 

requirement in the same way, they utilize trucks and shovels fleets in different way. Using 

benchmark truck-dispatching model, as presented by Table 4.16, the shovel fleet attains an average 

utilization of 98%, which is 4% more than the average utilization of shovel fleet when the 

benchmark truck-dispatching model is replaced by the FLP truck-dispatching model.  

Table 4.16: Shovel fleet utilization for fleet of 36 trucks – comparison between benchmark model and the FLP 

model 

 Benchmark  Fuzzy - P Fuzzy - O 

Shovel Mean StD Mean StD Diff Mean StD Diff 

Shovel 1 82.7 1.1 96.5 3.4 0.4 95.7 3.4 -0.4 

Shovel 2 78.9 1.2 95.4 3.4 -0.5 95.6 3.5 -0.3 

Shovel 3 93.6 1.4 89.1 2.5 -10 89.3 2.2 -9.9 

Shovel 4 92.5 1.4 89.6 2.7 -9.2 89.7 2.1 -9.2 

Shovel 5 99.8 5.9 99.7 2.1 -0.3 99.7 2.2 -0.3 

Entire fleet 89.5 2.2 96.5 3.4 0.4 94 2.68 -4.1 

 

Implementing FLP, the truck fleet wasted an average of 4% less time in queue at shovels than 

using BM truck-dispatching model (Figure 4.127). This means that the FLP model dispatches 

trucks to their destination in a way that they encounter shorter line ups at the next destinations 

(Figure 4.126). This advantage is a result of accounting for future queue time in the model 

formulation. 
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Figure 4.126: Length of queue at shovels – FLP (green boxes) versus BM (orange boxes) – shift by shift resolution – 

fleet of 36 small trucks 

 
Figure 4.127: Histogram for time a truck spent in queue at shovels – 36 small trucks – FLP (green bars) versus BM 

(orange bars) 

Although both truck-dispatching models serve the production purposes with the fleet of 36 trucks, 

using the FLP model material handling fleet (both shovel and truck fleets) are utilized in way that 
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is more efficient. Shovel fleet can serve larger fleet and the truck fleet is wasting less cumulative 

time in the queues. 

4.6. Summary and conclusions 

This chapter covered the verification of the integrated simulation and optimization framework. It 

also covered the verification of the MOGP truck-dispatching model, stochastic truck-dispatching 

model, and fuzzy linear programming truck-dispatching model through a comparison with the 

backbone algorithm of Modular Mining DISPATCH®[11] developed by White and Olson [12]. 

After the introduction, we presented the production schedule, designed pit, and active haulage road 

network of Year 11 from a case study of a surface ore mining operation. Because historical data 

was not available, we used a separate historical database from the surface mine operation to model 

the operation’s characteristics in the simulation model. 

To verify the integrated simulation and optimization framework, we studied the behavior of 

scenarios under a changing number of trucks in small truck, large truck, and mixed truck fleet 

systems. The results were as expected given the total available time and the integrated simulation 

and optimization framework. 

After verifying the integrated simulation and optimization framework, we used the concept of 

match factor to calculate the number of small and large trucks required to meet the production 

schedule. Based on the determined fleet size, we designed different scenarios within the range of 

under-truck systems for fleets of small trucks and fleets of large trucks. To design scenarios for 

the mixed fleets, we fixed the number of small trucks in the fleet and then by running a simulation 

with a different number of large trucks we defined the best possible combination of trucks for the 

operation. We defined 26 scenarios from small truck fleets, large truck fleets and mixed truck 

fleets. 

We ran the integrated simulation and optimization framework four times for each scenario: the 

first run was with the BM truck-dispatching model, the second with the MOGP truck-dispatching 

model, the third with the Stochastic truck-dispatching model, and the fourth with the FLP truck-

dispatching model. Results of implementing the last three truck-dispatching models were 

compared to results of implementing the BM model. The comparisons were presented in this 

chapter. 
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Among all the scenarios for small truck and large truck fleets, to evaluate the MOGP truck-

dispatching model, scenarios that met the plants’ capacity were investigated with higher resolution 

and considering more KPI. The results show that for all the scenarios listed in  

Table 4.8,  

Table 4.9, and Table 4.10, the MOGP truck-dispatching model required a smaller number of trucks 

to meet the production target compared to the BM truck-dispatching models in the same scenarios. 

After presenting the results of comparing the MOGP model with the BM model, the chapter 

covered the comparison between the results of implementing the stochastic model with the BM 

model in the scenario where the stochastic model met the production requirement. Then the chapter 

covered the comparison of implementing the FLP truck-dispatching model with the BM model for 

all the scenarios where the truck fleet contained small trucks. After that, we described the optimum 

scenarios in higher resolution. 
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5.1. Summary of the research 

The simulation of surface mining operations is increasingly seen as an important way to determine 

the viability of future, evaluate “what if” scenarios, and test new technologies in mining operations 

for current and future mining projects. In recent years, many researchers have published results of 

simulation models in surface mining operations. The proposed models have the following 

limitations: 1) they treat stochastic variables as deterministic ones in materials handling systems; 

2) they do not adequately link mining systems with mineral processing plants; 3) they are unable 

to integrate fleet management systems (FMSs) with materials handling systems; and 4) they lack 

flexibility to use different truck-dispatching algorithms in developed simulation systems. These 

limitations affect the evaluation of mining operation performance: they lead to either 

overestimations or underestimations. 

In addition to a simulation, the optimization of mining systems has always been considered an 

important part of surface mining operations. There are two main sub-problems in FMSs that 

researchers have focused on most: 1) production optimization and truck allocation, or the upper 

stage; and 2) truck-dispatching and truck assignment, or the lower stage. Although several models 

have been proposed for the first sub-problem over the last 50 years, a few studies have been 

published that cover the lower stage sub-problem. In summary, the proposed models in literature 

for the lower stage or truck-dispatching sub-problem decision-making have the following 

limitations: 1) they neglect important objectives such as meeting the goal of the upper stage; 2) 

they ignore the importance of one side of the fleet (either the shovels or trucks) when making 

optimal decisions; and 3) they treat stochastic variables as deterministic ones. These limitations in 

modeling result in decisions that are far from optimal.  

This research has two major objectives. The first is to develop an integrated simulation and 

optimization framework to simulate the surface mining operations that can overcome the above-

mentioned drawbacks of the available simulation models and can be used to evaluate truck-

dispatching models. The second is to develop an efficient truck-dispatching decision-making 

model that can be implemented in any mine FMS.  

An integrated simulation and optimization framework was presented in this research to fulfill the 

first objective. The integrated framework has three major components: 1) simulation model; 2) 

optimization models; and 3) data file. The simulation model consists of two sub-models of the 
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mining operation and processing plant. The mining operation’s simulation sub-model mimics 

loading, haulage, and dumping of mined material using trucks. Alongside the mining operation 

sub-model, the processing plants’ feeding sub-model simulates the operation of the hoppers and 

conveyors that deliver material to the processing plants. Although the integrated framework is 

capable of accepting several optimization models, in this research we focused on adding only FMS 

optimization models. Thus, two optimization models were integrated into the framework. The first 

makes decisions about the upper stage dispatching sub-problem and the second makes decisions 

about the lower stage sub-problem. As the optimization models were developed using external 

optimization software not in the simulation software, the integrated simulation and optimization 

framework is flexible in that it can accept different decision-making models for the upper stage or 

lower stage sub-problem in the FMS. Another important component of the integrated simulation 

and optimization framework is the datafile. The datafile is a Microsoft Excel workbook that 

contains different sheets, each of which contains a specific set of data required to run the integrated 

framework. The integrated model was used in a surface mine case study in this research. 

For the second part of this research, we developed, implemented, and verified three mathematical 

formulations to solve the lower stage, truck assignment, or truck-dispatching sub-problem in 

surface mining FMSs. The three models include: a) multiple objective goal programming (MOGP) 

model, b) a stochastic mixed integer programing model, and c) fuzzy linear programming. All the 

developed decision-making models consider minimizing shovel idle time, truck wait time, and the 

deviation of the production from the desired target with respect to truck capacity, the shovel dig 

rate, and plant feed rate requirements. 

To evaluate the performance of the developed truck-dispatching models we needed a benchmark 

model. Modular Mining DISPATCH®[11] is popular in most of the currently active mining 

operations. Its truck-dispatching algorithm, was publicly available at [12], so we decided to use it 

as the benchmark model to verify the truck-dispatching models developed in this study. The 

optimization models from the benchmark upper and lower stage models and the three models 

developed in this research were coded using IBM CPLEX [128] optimization software and 

integrated into the simulation model. 

A case study in an iron ore mine was carried out using the developed models. The size of the fleet 

required to meet the target production was determined using the match factor concept for two 
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possible types of trucks: small (140 ton) and large (240 ton). Based on the results of deterministic 

calculations, we defined nine scenarios for small trucks, eight for large trucks and nine for fleets 

of both types of trucks. We developed 26 scenarios to evaluate the performance of the truck-

dispatching models. The integrated simulation and optimization framework was run for each 

scenario and each truck-dispatching model. We compared the results to the results we obtained 

when implementing the benchmark model. Chapter 3 presented the detailed procedure of 

developing the integrated simulation and optimization framework and the truck-dispatching 

models. Chapter 4 presented the detailed results of the verification study, scenario development, 

and performance evaluations of the models in a case study. 

5.2. Conclusions 

The literature review conducted in this research identified limitations in the current body of 

knowledge in both the simulation of mining systems and truck-dispatching optimization. The 

literature showed that there has never been a previous attempt to integrate the simulation of mining 

operations, simulation of processing plants, and mining FMSs in one model. Regarding the truck-

dispatching decision-making models, the literature showed that although a few studies have been 

conducted to develop truck-dispatching models, there has never been a previous attempt to develop 

models that simultaneously consider uncertainties in the variables, the optimization of truck wait 

time, the optimization of shovel idle time, and the optimization of deviation from the desired 

production target. This research pioneers the efforts to employ discrete event simulation models 

and mathematical programming models in an integrated framework to mimic the surface mining 

operation in a way that more closely resembles reality. The research also pioneers the efforts to 

use mathematical programming models in the form of multiple objective goal programming, 

stochastic mixed integer linear programming, and fuzzy mixed integer linear programming to 

contribute to the body of knowledge and provide novel understanding in the field of truck-

dispatching in surface mines. The research objectives outlined in Chapter 1 have been achieved 

within the scope of the research. The following conclusions were drawn from the implementation 

of the developed integrated simulation and optimization framework and three truck-dispatching 

models: 

1. The integrated simulation and optimization framework mimics the operation of surface mines 

including processing plants’ feeding and FMS. 
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2. The integration of the mining operation with the processing plants’ feeding system is 

implemented by developing two simulation sub-models in a single model where output from 

one sub-model is inputted to the other sub-model. 

3. The simulation model of the mining operation and the processing operation feeding system is 

integrated into the mining FMS by separately being linked to the FMS’s upper stage decision-

making model and its lower stage decision-making model. 

4. Apart from the developed integrated simulation and optimization framework, the truck-

dispatching models we developed in this research can be used to help make decisions about 

the future destinations of the trucks in the material handling fleet. 

5. The MOGP truck-dispatching model simultaneously takes into account all three important 

objectives of any truck-dispatching problem (shovel fleet, truck fleet, and production 

schedule). 

The framework was implemented in an iron ore open pit mine case study. To do a comparative 

analysis on the goodness of the developed truck-dispatching models, we chose the backbone 

algorithm of Modular Mining DISPATCH® [11] to run as the case study’s fleet management 

system. By replacing the truck-dispatching model of the backbone algorithm of the Modular 

Mining DISPATCH® [11] FMS with the truck-dispatching models we developed in this study, we 

reached the following conclusions: 

1. Using a fleet of small trucks, the MOGP truck-dispatching model needs 14% fewer trucks to 

meet the production requirement. 

2. Using a fleet of large trucks, the MOGP truck-dispatching model needs 19% fewer trucks to 

meet the production requirement. 

3. Using a fleet of mixed trucks, the MOGP truck-dispatching model always needs fewer trucks 

to meet the production requirement. 

4. With the same fleet of trucks, the MOGP truck-dispatching model needs to utilize shovels less 

often than the BM model to meet the production schedule. This makes it possible to use the 

same fleet of shovels to serve a larger fleet of trucks in case production needs to be increased. 
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5. By including the length of the queue at the shovels in the MOGP truck-dispatching model’s 

decision-making procedure, with the same fleet of trucks the MOGP truck-dispatching model 

can dispatch trucks to destinations with a shorter queue length, thus reducing the none 

productive time for trucks.  

6. Comparing to the benchmark truck-dispatching model, the MOGP model meets the plants feed 

rate requirement with smaller fleet of trucks. 

7. Implementing stochastic programming and fuzzy linear programming techniques, the truck-

dispatching models developed in this study account for the uncertainty of the parameters. 

5.3. Contribution of the research 

This research has resulted in an integrated simulation and optimization framework that mimics 

surface mining operations and integrates mining operations with processing plant operations and 

the FMS. The research also led to three truck-dispatching decision-making models to be used in 

mining FMSs. The developed models use multiple objective goal programming, stochastic 

programming, and fuzzy linear programming techniques to make decisions about the next 

destination of trucks in surface mining operations. The major contributions of this research are: 

1. It applied simulation modeling as well as mathematical programming approaches to develop 

an integrated framework to mimic the surface mining operation.  

2. It implemented mathematical programming models in the form of multiple objective goal 

programming, stochastic mixed integer linear programming, and fuzzy mixed integer linear 

programming to contribute to the body of knowledge and provide novel understanding in the 

field of truck-dispatching in surface mines. 

3. It led to an integrated simulation and optimization framework to mimic surface mining 

operations where a simulation model of a processing plant’s feeding system is combined with 

the simulation model of the mine’s material handling system. This helps to account for how 

the processing plant’s feed rate capacity affects the mining operation. 

4. The developed integrated framework integrates the mining system’s simulation model with the 

mining FMS that makes semi-dynamic and dynamic operational decisions. 

5. The MOGP truck-dispatching model developed in this research simultaneously tries to 

minimize the shovel fleet’s idle time, the truck fleet’s wait time, and the deviation from the 
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target flow rate of each path. In this way, the research contributes by involving the two main 

goals of any truck-dispatching models (minimizing truck wait time and minimizing shovel idle 

time) in a single model and adds the objective of minimizing deviation from the target flow 

rate to the same model. 

6. This research has also contributed by capturing the uncertainties of parameters and accounting 

for their effects on the decisions with developing the stochastic truck-dispatching model and 

the FLP truck-dispatching model. 

5.4. Recommendations for future works 

Although this research has provided new ways to evaluate mining operations and solve the truck-

dispatching problem in surface mines, the author sees a need for ongoing investigations into the 

application of operations research techniques in mining operation evaluation and truck dispatching 

problem. The following recommendations could improve and add to the body of knowledge: 

 The integrated simulation and optimization framework assumes that trucks travel without any 

interaction. However, in real-world operations, it is possible that trucks will interact with either 

road intersections or trucks with different relative velocities. As these truck interactions are on 

the level of micro-simulation, the integrated framework can be expanded by adding a micro-

simulation sub-model that mimics these interactions in detail. 

 The integrated framework also assumes that trucks and shovels are working all the time 

without any breakdowns. However, in real-world mining operations, trucks and shovels break 

down and are not available all the time. For further research, a fleet break-down sub-model for 

each type of equipment can be added to the integrated simulation and optimization framework. 

 The integrated framework does not model drilling and blasting operations. To make more 

practical decisions we recommend adding one simulation sub-model to mimic a drilling and 

blasting operation. 

 The solution time for the MOGP truck-dispatching model needs improvement. We recommend 

implementing heuristic algorithms to reduce the solution time for the MOGP model in future 

research. 

 As the developed stochastic and fuzzy linear programming models in this research are the first 

of their kind in truck-dispatching decision-making models that account for uncertainty of 
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parameters, the author sees a lot of room for further improvement in developing the models as 

well as choosing the right methodologies to solve the models. 
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