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Abstract

Structure of the group generated by two parabolic linear fractional transfor

mations is studied. For the set of 2-free points, several classical results and 

the corresponding methods are reviewed and a new method is given. The set 

of nonfree points is described and analyzed. Farbman’s results about rational

1-nonfree set is presented. A  new set of torsion-free points is given.
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Chapter 1 

Introduction and background

1.1 Introduction

Define (A a, Bp) to  be the multiplicative group generated by two noncommuting 

parabolic linear fractional transformations:

where a  and (3 are complex numbers.

The topic of this thesis is the study of the structure of the group (A a, Bp). 

We are interested in whether i t  is free or not. As there is a direct relation 

between the freeness of {Aa, Bp) and the complex number r  =  a/3, people are 

try ing  to  find the domain of A =  r /2  for which the group {Aa, Bp) is free and 

call such a A 2-free. (We w ill also use the notation free for u =  \ f r  and the 

notation 1 -free for r . )  Most of the complex plane is then proved to  give 2-free 

points. However, there is s till an eye-shaped area unknown. We w ill review 

these results and give a new method to find 2-free points in  Chapter 2.

Another way to  solve this problem is to find all 2-nonfree points. We w ill 

discuss the density of 2-nonfree points and show some specific nonfree sets in 

the eye-shaped area in  Chapter 3. In  Section 3.3, we w ill review Farbman 

[11] ’s result about nonfree rational set and w ill give the complete proof of the 

nonfreeness of rational numbers w ith  numerators 1 to 12.

I t  is also a major question to determine the torsion-freeness of group 

{Aa, Bp). Charnow discuss the rational case in  [8]. We propose a more general 

result in Chapter 4. This is one of the most im portant original results of the

1
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thesis.

The remainder of this chapter consists of background material we w ill be 

needing later on.

1.2 Basics

We use mark “= ” to denote “represenf. For example, {a\x +  a2)x =  f ( x )  

means we use f ( x )  to represent the polynomial (a ix  +  a2)x. We also fix  the 

following notations.

D e fin it io n  1.1 The f l o o r  f u n c t i o n  \_x \ ,  gives the largest integer less than 

or equal to x.

D e fin it io n  1.2 The c e i l i n g  f u n c t i o n  \ x \ ,  gives the smallest integer greater 

than or equal to x.

D e fin it io n  1.3 The i n t e g e r  p a r t  f u n c t i o n  [x ] gives the integer part of x.

D e fin it io n  1.4 The g r e a t e s t  c o m m o n  d i v i s o r  (a i,a 2,- - -  ,a n) of n inte

gers a i, 0 2 , , an, where at least one of them is nonzero, is the largest positive

divisor shared by all the nonzero integers of them. For example, (2 ,6 , —22) =  2 

and (1,0,15, —3) =  1.

D e f in it io n  1.5 I f  a and b ^  0 are integers, it can be proved that there exist 

unique integers q and r, such that a =  qb +  r  and —a /2  <  r  <  a /2 . The 

number r  is called the m o d i f ie d  r e m a in d e r .

Here we give some definitions about polynomials.

D e f in it io n  1.6 The ROOTS of a polynomial f ( x )  are the values o fx  fo r which 

the equation f ( x )  =  0 is satisfied.

D e fin it io n  1.7 The highest power in a univariate polynomial is known as its 

DEGREE, or sometimes ORDER. For example, the polynomial P(x)  =  anxn +  

... +  a2x2 +  a \x  +  a0, where an ^  0, is of degree n, denoted degP{x)  =  n.

2
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D e fin it io n  1.8 A polynomial is said to be i r r e d u c i b l e  i f  it  cannot be fac

tored into nontrivial polynomials over the same field.

D e fin it io n  1.9 The m in im a l  p o l y n o m ia l  of an algebraic number £ is the 

unique irreducible monic polynomial of smallest degree f ( x )  with rational co

efficients such that /(£ )  —  0 and whose leading coefficient is 1.

Note tha t for an algebraic number £, i t  can have lots of irreducible polyno

mials but i t  can have only one m inimal polynomial. Those polynomials have 

the same degree.

D e fin it io n  1.10 The characteristic polynomial of a square matrix A  is the 

polynomial left-hand side of the characteristic equation

det(A  -  £1) =  0

where I  is the identity matrix and £ is the variate of the polynomial.

We give some group theory basics here.

D e fin it io n  1.11 I f  G is a group, then the t o r s i o n  e le m e n t s  Tor(G) of G 

(also called the t o r s i o n  of G) are defined to be the set of elements g in G 

such that gn =  1 fo r some natural number n, where 1 is the identity element 

of the group G.

D e fin it io n  1.12 I f  Tor(G) consists only of the identity element, the group G 

is called t o r s i o n - f r e e .

D e fin it io n  1.13 A Q - a u to m o r p h is m  a  of a field Q(£) is a bijective map 

& '■ Q ( C )  —> Q ( C )  fixing Q that preserves all of Q(£) ’s algebraic properties, 

more precisely, it is a field isomorphism fixing <Q>.

D e fin it io n  1.14 A group G is called FREE i f  no relation exists between one 

of its group generators other than the relationship between an element and its 

inverse required as one of the defining properties of a group.

3
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D e fin it io n  1.15 Let G be a free group. Then a word W  in G is called r e 

d u c e d  i f  it contains no part ao r1 fo r any a € G.

D e fin it io n  1.16 The f r e e  p r o d u c t  G  * H  of groups G and H  is the set of

elements of the form gih1g2 h2 -..grhr , where gi E G and hj G H . Here G and 

H  have the same identity and no other relations exist between gi and h j.

1.3 Background

Our group (A a, Bp) contains two generators. To study its structure, we need 

to  discuss the value of a  and (3. To simplify this question, Chang et al. [7] 

proved the following lemma.

Lem m a 1.17 I f  a/3 =  j8  7  ̂0, then (Aa,Bp) and (A^,B$) are isomorphic. 

P ro o f. I t  suffices to prove tha t (A a, Bp) =  (Ay, B f). We have

G T)=p-i(i Gp and
where P  =  ( 0 $). Hence the mapping X  — > P ~ lX P  gives the required 

isomorphism.

□

By Lemma 1.17, two groups generated by such elements are conjugate to 

each other as long as they have the same value of r  =  Trace(AaBp) — 2 =  a/3. 

We can easily get the tr iv ia l case,

L em m a 1.18 r  =  Trace(A aBp) —2 =  0 i f  and only if  the group (Aa, Bp) is 

abelian.

P ro o f. I f  r  =  Trace(A aBp) — 2 =  a/3 =  0, we have either a  =  0 or (3 =  0. 

Now i f  a  =  0, then A a is the identity matrix, group (A a, Bp) is (Bp) w ith  only 

one generator. Hence, group (A a, Bp) is abelian. Similarly, if  (3 =  0, we can 

also obtain the same result.

I f  the group (Aa, Bp) is abelian, then the two words A aBp — ( 1+/y '9 “ ) and 

BpAa =  ( p i+ap) are equal. Therefore, r  =  Trace(A aBp) — 2 =  0.

4
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□

Putting  aside the tr iv ia l case, most of the work done to date on this problem 

has put the two generators in  one of the following forms

Let Gu =  (AU, B U), H \  =  (A \ , B 2) and 'Lr  =  (AT, B f), where people 

usually use Gu in the study of the non-free groups and H \  in  the study of the 

free groups. Now we can give the following definitions:

D e f in it io n  1.19 A complex number u is said to be f r e e  i f  the multiplicative 

group ( ( o 1 )) ( i  i )) is a free group, and n o n f r e e ,  otherwise.

D e fin it io n  1.20 A complex number A is said to be 2 - f r e e  i f  the multiplicative 

group ( ( 0 1 ) 5( 2 1 ))  a f ree group, and 2 - n o n f r e e ,  otherwise.

D e fin it io n  1.21 A complex number t  is said to be 1 - f r e e  i f  the multiplicative 

group ( ( 0 1 ) 5( 1 1 )) is a free group, and 1 - n o n f r e e ,  otherwise.

Since these parameters are connected by the relations t  =  u2 =  2A, we 

conclude that a  is free is equivalent to ^  is 2-free and a 2 is 1-free.

We can also obtain:

Lem m a  1.22 The set of u fo r which Gu is free is symmetric with respect to 

the real axis, the imaginary axis and the origin.

P ro o f. Given u € C, such tha t Gu is free. Now if  Gu is not free, we can 

obtain an element W 1 e Gu, such that

(1.1)

or

(1.2)

or

(1.3)

Wx = B™rA£r ■ ■ ■ B™1A"ff =  I  (1.4)

5
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where n i, m i, • • • , nr , mr e Z  and n i ^  0 , m i ^  0 , • • • ,n r ^  0 , mr ^  0 .

Since

B . - ( J  ? ) = *

then

W i  =  • A j p  ■ • • t f u L ■ A u 1 =  t S ™ r A % -  • • • t S ' u L A u

Erom (1.4), we have

B ? A Z - " B 2 ' A £ = W X =  I

which contradicts our assumption that u is free.

Similarly, we can prove tha t G -a is free given a free u.

Now if  G -u is not free, there is a word W% € G - u, such that

W 2 =  B ^ A n_ i - - - B ^ A n}u =  I  (1.5)

where n i,m i,  ■ ■ ■ ,nr , mr e Z  and n\ ^  0 ,m ! ^  0, • • • ,nr ^  0 ,m r ^  0.

Since

B - -  ("o ?) *  (  01 ?) “ d l ) A"(~0 l ) ’

I t  follows

^  =  '("o' ! ) * ( ~ o  ? ) ,' - ' ( o 1 ^ ( " o 1 ! ) r
=  I  ̂ ® 1 Rmr Anr . . . Run Ani ( ~^  0 \I 0 I  J D U ■DU A U I 0 ] )

By (1.5), we have

b? a? - b ? 'a? = ( - 1 ; )  ( j ; )  ( - ; ; )  = ( j  j )

which contradicts the freeness of u.

□

Lem m a 1.23 The set of A for which H \  is free is symmetric with respect to 

the real axis, the imaginary axis and the origin.

6

and A,-, =  ( * ^  ) =  Au,

r> m i  /1711 Dm. iln . JDTDl 4 711
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P ro o f. Given A G C, such tha t H \  is free. Suppose H \  is not free, then as 

in  the proof of Lemma 1.22, we can obtain an element W3 G H \,  such tha t

W3 -  ■ ■ ■ B '^ A f  =  I  (1.6)

where n i, m 1; • • • , n r , m r G Z and n\ ^  0, m \ ^  0, • • • , nr ^  0, m r ^  0.

Then

B ^ rA nr . . . B ^ A l 1 = W l =  I

contradicts our assumption of 2-free A.

Similarly, we can prove tha t H _ \  and H _ \  are free given a 2-free A.

□

The following lemmas are well known:

L em m a 1.24 I f u  is nonfree, then u /k  is also nonfree for any nonzero integer 

k.

P ro o f. Since u is nonfree, there must be a reduced word

W{u)  =  B ^ A ^ . . - B ^ A nu\

such that W(u)  =  I .  Then replace Au by A */k and replace B u by B ^ k, we 

could rewrite W( u)  to the form W(u)  =  A ^ B ^ l  ■ ■ ■ A ^ B 'f y .  Hence W( u)  

is a reduced word of Gu/k and W( u)  =  I .  Therefore, u / k  is also nonfree.

□

L em m a 1.25 For any non-trivial W (u ) G Gu, by conjugation, it has only 

one reduced form. We can write it as W( u)  =  A /1 B /1 • ■ • A/tnB /n, where n >  0 

and all ai,bj  ^  0. Also, the entries o f W ( u ) are polynomials in u with integer 

coefficients. □

7
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Chapter 2 

Free sets

The purpose of this chapter is to find when A is 2-free, i.e. V2X  is free.

Brenner [6] showed tha t H \  is free for |A| >  2.

Chang, Jennings and Ree [7] derived the freeness of H \  for A lying outside 

three open discs of radius 1 w ith  centers (—1, 0), (0 , 0) and (1, 0) respectively 

(See Figure 2.1, page 14). In  [7], i t  is proved tha t free algebraic numbers and

2-free algebraic numbers are dense in  the complex plane.

Lyndon and Ullman [27] extend the results by showing tha t H \  is free for 

A ^  K ,  where K  is the interior of the convex hull of the set consisting of the 

un it circle together w ith  the points z =  ± 2 (See Figure 2.2, page 17). They 

also showed the freeness of H \  for A satisfying |A ±  \ i | >  \  and jAdz 1| >  1 (See 

Figure 2.3, page 20) and the density of algebraic 2-free points in  the complex 

plane.

Ignatov showed in [20] the freeness of H \  for A lying above the arc of the 

circle \ z - l \  =  ± when 1 <  K(A) <  |  and A lying above a line passing through 

the point 1 +  i / 2  perpendicular to  a line segment joining 1 +  i / 2  to the origin 

when JRA) <  1 (See Figure 2.5, page 27). In  [16], he showed tha t H \  is free 

for |A| >  1 and 19(A)| >  \  (See Figure 2.6, page 27).

We w ill review all of these results in this chapter. Putting them together, 

we fina lly reach an eye-shaped non-decided area. W ith  the help of valuation 

theory we w ill give a new method to further explore the eye-shaped area.

We note that

Lem m a  2.1 Any transcendental number is 2-free.

8
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P ro o f. Suppose H \  is not free, so there must be a non-trivial word Cr of H \  

such that

where / 2 is the 2-by-2 identity m atrix and the integers n i , . . . , nr , m i , . . .  , m r 

are nonzero.

where Pi,r (A ),. . .  ,P4,r (A) are polynomials w ith  integral coefficients. W hile cal

culating we have p i,i(A ) =  1 +  2m in iA , the leading term  of i t  is

2m in !. The entries of m atrix only contain A w ith  the highest power

1. Therefore, for entries of C r , the highest possible power of A is r.

Now suppose tha t for some k  € 7LA, the leading term of P i,k (X ) is 

2km \ • • ■ m kni ■ ■ ■ n k \ k, then

Hence, p1;fc+i(A ) =  (1 +  2mk+1nk+lX) ■ pi,k( \ )  +  2mfc+ip2,fc(A). Since the 

highest power of A is k +  1 and the highest possible power of p2,fc(A) is k, the 

leading term  is

(2mA,+infc+iA) • (2rm i • • • 2km i • • • m kni ■ • • nkXk)

—2k+1m \ ■ ■ ■ m k+in i ■ ■ ■ nk+i \ k+1.

Now we can get the conclusion tha t the leading term  of Pi,r (A) is

Since the integers n \ , . . . ,  nr , m i , . . . ,  m r are nonzero, the leading coefficient 

of P i,r (X ) is not zero. As A is transcendental, nonzero polynomial of A can 

not equal zero. Therefore, Pi,fc+i(A) - 1 ^ 0 .  Thus, Cr ±  I .  Prom this 

contradiction, i t  follows that any transcendental number is 2-free.

Cr =  A ”1 B ™1 . . .  A ^ B r2r,r =  h

Set
Pl,r(A) P2,r(A) 
,P3,p(A) P4,r(A)

Ck+1 =  Ck ■ A nxk+1B™k+1 1 +  2m fe+in fe+iA  * 
2mk+i *

2rm i ■ • • m rni • • • nrXr .

□

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since A is transcendental is equivalent to \/2A being transcendental, we 

find tha t both free points and 2-free points are dense in  the complex plane, 

since transcendental numbers are dense in  the complex plane.

Hirsch in his review of [24] asked the question of which algebraic numbers 

u yield free groups Gu. In  1947, Sanov[36] first answered th is question by 

showing tha t Gu is free for u =  2 , and explicitly characterized the matrices 

representing elements of Gu. Although this answer is far from complete, Sanov 

provided a new way to study the free points.

In  proving his result, Sanov applied a classical method formalized by 

Macbeath[30] directly to the action of the matrices as linear fractional trans

formations. This method, which has been widely used by Sanov’s successors, is 

sometimes called “the method of combination” and is more commonly known 

as the “Ping-Pong” Lemma. I t  is stated as follows:

L em m a  2.2 (Macbeath[30]) Let A and B be subgroups of the permutation 

group on an infinite set f i,  such that at least one of them has order greater 

than 2. Let G be the group generated by A and B. Suppose that Q contains 

two disjoint non-empty sets T and A  such that 1 ^  A  € A  implies AT C A  

and 1 ^  B  E B implies B A  C T. Then G is a free product of the subgroups A  

and B.

P ro o f. Suppose tha t B has order greater than 2 . Assuming that G  is not a 

free product of A and B, then there must exist a W  € G, s.t.

W  =  A nBn . . .  A \B i =  1

where n  >  1, and 1 /  4 ,  € A  and 1 Bi E B for all i between 1 and n.

Then since 1 B  E M implies B A  C r ,  we have B iA  C P. Now we want 

to  prove B iA  c  P. Suppose B rA  =  P. Then

5 1r n r  =  s 1r n i5 1A =  5 1(r n A )  = 0. (2.1)

We also know tha t the order of B is greater than 2, which means tha t there 

exists a nontrivia l B[ €  B, such that B 1B[ ^  1. Then

0 ^  (£iB [)A  C r  

10
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and

(B iB 'JA  =  SiOBiA) CB^T

Therefore

S i r  n r  d  {B i B[)  a ^ 0

which contradicts (2.1). Hence

B i A c r

Then since 1 A  e A  implies AT C A, we have A i(.B iA ) C A. By 

a continuation of this argument, we finally obtain W A  C A , which implies 

IT  /  1. Therefore, G is a free product of its subgroups A  and B.

basis fo r a free group.

P ro o f. The group G2 =  (A2, B 2) is a subgroup of H  =  (A2,J) ,  where

yi2* r »2 ‘ • ^ 2r B f'1 ^  I  provided that r  >  1 and all n*, to* ^  0. This comes to

showing that A ^ J A ^  • ■ ■ JAfjf ^  1 provided tha t n >  1 and a ll pt ^  0. Let 

H  act as a group of linear fractional transformations on the Riemann sphere 

C =  C U { 00}  w ith  A 2z  =  z +  2 and Jz =  1 jz .  Let T =  {z  : \z\ <  1} and 

A  =  : |^| >  1}. Then A^T C A  for p ^  0, and J A  C T. By Lemma 2.2, H

is the free product of the infinite cyclic group (A 2) and (J). The conclusion 

follows.

Beginning w ith  the result of Sanov, arguments of this sort were refined 

successively by many people to  show that the same conclusion holds for u in

Brenner [6], using the same argument as Sanov’s, showed tha t Gu is free 

provided tha t |u| >  2. However, when studying the free group, i t  is easier to

□

Now we can use this lemma to derive Sanov’s theorem.

T h eo re m  2.3 The matrices A over Z  are a

and B -2 =  JA 2J. To show th a t  G 2 is free, we m ust show th a t

□

larger regions in C.

11
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work w ith  the group H \  than Gu in  most of the cases. Several other people, 

like Chang, Jennings and Ree [7], Lyndon and Ullman [27], and Ignatov [20], 

using the group H \ ,  gave approaches to  the region of 2-free points.

In  this chapter we w ill use the group H \ .  By using this notation, we can

T h eo re m  2.4 H \  is free i f  |A| >  2. □

We w ill now review the works of Chang, Jennings and Ree [7], Lyndon and 

Ullman [27], and Ignatov [20] [21], A t the end, the author w ill give a new 

method for finding free and 2-free points.

2.1 Chang, Jennings and R ee

We adopt the following notation: For a complex number 2 and a m atrix

fractional transformation. As is well known, given another such m atrix  Q , we 

have (Q P ) ( z ) =  Q(P(z) ) .  I f  we regard a line to be a circle passing through 

infin ity, then it  can be shown that:

We denote by D \  and D 2 the following subsets of the complex planes:

restate Sanov and Brenner’s results in  the following form

where ad — be =  1

w ith  complex entries, we denote by P(z)  the number which is a linear

L em m a 2.5 A linear fractional transformation maps circles to circles. □

A  =  { * | |3?(A <  1}, D 2 =  { z I |» (*)| >  1} 

We have the following well known lemma:

Lem m a 2.6  For any z 6 A ,  we have either

If, on the other hand,

1 , 1
*  +  ~ >  X

then z 1 € D \.  □

12
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Then we have,

L em m a  2.7 I f  a complex number A satisfies

|A |> 1 ,  |A —1| >  1, |A + 1| >  1, (2.2)

then z e D i implies that { A \ ) n(z) € D \ for all non-zero n € Z.

P ro o f. Let z' =  z~x +  n \ .  From

we have

(ATxT ( z )  =  =  ( j r 1 +  nA)~1 =  (Z ) - 1

By Lemma 2.6, z 6  t )2 implies tha t

■ _ i  1 , 1 , _ i  1 . 1
z -  -  <  -  or z +  -  < - .
1 2 1 2 1 2 1 2

Since by (2.2), |nA| >  1 and |nA + 1| >  1, then from \z~x — | |  <  \  we have:

i / i - i  x ^  i m i - i  , 1 1

and

V  +  1̂ =  I*-1 +  "A  +  1̂ >  \ n \  +  1 | -  l^ - 1 -  =

Similarly, i f  \z~l +  \  \ <  | ,  then from |nA — 1| >  1, we obtain

■ , 1 . 1 , . , 1 . 1
2 2 “ d 'z + $ > 2

Therefore by Lemma 2.6, (Aff)n(z) =  (z' )~l € D\ .

□

W ith  these two lemmas, we can prove the following theorem:

T h eo re m  2.8 ( Chang, Jennings and Ree[7]) Let X be a complex number lying 

in none of the open discs of radius 1 with centres (-1,0), (0,0), (+1 ,0 ). (See 

Figure 2.1) Then the group H \  generated by

• V = ( J  ) )  m i  B2 = ( l  J

is a free group, freely generated by A \ and B2.

13
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Figure 2.1: Chang, Jennings and Ree

P ro o f. Assume tha t the group H \  w ith  A satisfying (2.2) is not free. Then 

there must be a non-trivial word C of H \  such that

C  =  B™lAnxl ... B™rAx' = I 2

where I 2  is 2-by-2 identity m atrix and n i , . . . ,  nr , m i , . . .  , m r are nonzero in

tegers. Hence,

C  =  CT = { A l f r ( B l ) mr... {ATx)ni(.Bl)mi =  h  (2.3)

Define the following sequences:

*, =  (B 2Tr ( 0) =  2m , z„ =  (B P ” *(4 - i )  , , , ,
2! =  ( A x T ' M  4  =  L ; 0 “ ‘ M

for any k <  r  — 1. Since Z\ =  2m 1, |3i(2i)| >  1, which means tha t z\ G D^.

Thus, by Lemma 2.7, we have

4  =  ( A l r ( z i )  G Di

By (2.4),

_ 2 ^ m  +  2m*Z2  — -----------------    — Zj +  ZTYI2

Hence,

| ^ 2)| >  |2m 2| -  |» (/x)| > 2 - 1  =  1 

which implies tha t 22 G D 2- Again by Lemma 2.7, we have

Z2 — (A\)n2(Z2) € D\.

14
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By repeatedly doing this, we finally obtain

G D \. (2.5)

Define

Then, by (2.3), we have

(2.6)

However, on the other hand, yr =  —2mr , then |3?(yr )| >  2. Thus yr € D 2, 

which contradicts (2.5) and (2.6). Therefore, we have proved the theorem.

□

W ith  the result of Theorem 2.8 and the following lemma from [25]:

L em m a 2.9 Let p be a prime and c a rational number. Then the polynomial 

xp — c is reducible over the rational field, i f  and only if, c is a pth power of a 

rational number. □

We can prove the following important theorem:

T h eo re m  2.10 Algebraic 2-free points are dense in the complex plane.

P ro o f. The theorem is equivalent to proving tha t for any w in the complex 

plane, there is a sequence of algebraic 2-free points having w as a lim it.

Because of Theorem 2.8, we may assume tha t w =  b +  ci (where b, c € R) 

lies in  the domain excluded by Theorem 2.8. Then |c| <  1. W ithout loss of 

generality, we assume b >  0. For any positive number e, there exist a prime 

number p >  16/e and an integer q such that

p 2 27r 167t
q 1 arcsin(c/4) ^  e

Therefore
2qn . e

7r -------------arcsm(c/4) <  -
p  S

Since the derivative of sin(s) is a most 1, we obtain

(2.7)

15
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Then
■ /2?7r\ 4sm ( ) — c

P

£

< 2
(2.8)

A t the same time, since the derivative of 2X in the domain [0,1] is less than 

1, from p >  16/s,  we have

|21/p -  1| <  |

Thus

(2 1 /p - l )  - 4 s i n ( ^ )
£

< 2‘
Combining (2.8) w ith  (2.9), we obtain

22+1/psin(—̂—) — c 
P

Define

< 4sm ( ) — c
P

+ (21//p — 1) • 4s in(—̂ -) 
p

(2.9)

< e (2.10)

A ! =  a +  22+1/pe2̂ / p.

Then

| A i - i v |  = b -  22+1/pc o s ( ^ )  +  22+1/pc o s ( ^ )  +  i 22+1/p si n ( ^ )  -  b ■ 

*22+1/ps in ( ^ )  - d  =  22+1/psin( * & )  -  c < s

a

Set a =  b -  22+1/PCo s (2 f) and A2

(2.11)

a +  22+1/p. Since the range of 

arcsin(x) is [—tt/2, vt/2], from (2.7) we obtain tha t 2qitfp €  [7t / 2 , 37t / 2], Hence 

cos(2<pr/p) <  0 and a =  b — 22+1//pcos(2<?7r/p ) >  b >  0. Therefore A2 >  4, 

which implies tha t A2 is 2-free.

Now assume Ai is not 2-free. Then there must be a non-triv ial word C  of 

group H \  which becomes the identity m atrix when A =  A i. Denote our C as:

C ( Pi (A) p2(A)A 
V p s (A )  p±{\) )

then, we have

Pi(Ai) -  1 =  p2(Ai) =  p3(Ai) =  p4(Ai) - 1  =  0

Since the polynomials P i(A i) — 1, p2(A4), p3(Ai) and p4(A4) — 1 have integral 

coefficients uniquely determined by C  and since Ai and A2 are roots of the

16
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polynomial (x -  a)p -  22p+1, which, by Lemma 2.9, is irreducible over the 

rational field, it  follows that

£>1(^2) — 1 =  £>2(^2) =  £̂3(^2) =  £>4(^2) — 1 =  0

and consequently tha t A2 >  4 is not 2-free. However, this is a contradiction by 

Theorem 2.8. Thus, Ax is shown to  be 2-free. Since Ax is algebraic and e is an 

a rb itrary positive numbers, w  is a lim it of 2-free algebraic numbers. Hence, 

algebraic 2-free points are dense in the complex plane.

□

2.2 Lyndon and Ullm an

W ith  the help of Lemma 2.2, Lyndon and Ullman improved Chang, Jennings 

and Ree’s results to

T h eo re m  2.11 Let K  be the convex hull of the set consisting of the unit circle 

together with the points z =  ± 2 . I f  the complex number A is not in the interior 

of K , then the group H \  is freely generated by A \ and B2. (See Figure 2.2)

- 2“

Figure 2.2: Lyndon and Ullman

P ro o f. Let T be the region bounded by the two circles C\ and C2 of radius 

|  w ith  centers ± | ,

Ci =  {z  : \z -  <  1 }  and C2 =  {z  : \z +  <  ^ } ,  (2 .12)

17
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and let A  be the set of all z € C such that

1 , - 1  , , , 1 , 1
\z -l — I >  — and \z 1 +  - I  >

2 ' -  2 

Let A satisfy

|A| >  1, |A — 1| >  1, |A +  1| >  1.

as in  (2.2). Then pick any z € T and any nonzero n € Z. As in the proof of 

Lemma 2.7, we obtain

| A nxz -  h  =  \z +  nA -  h  >  InAI - \ z - h >  1 -  J  =  £ i a  2 2 2 ' ~ 2 2

and

\Ar\ z +  -j\ =  \z +  n \  +  -  \ >  \n \  +  l  \ -  \z -  -  \ >  1 -  -  =  -  

Therefore, J A XF C A, where J  =  (5 o)> and

A ^ r n r  = 0 (2.13)

for a ll n 7̂  0. For arb itrary 0, define

0

and let

T* =  UF  and A \ =  U A xU ~l =
i   ( l  uX

0 1

I t  follows from (2.13) that

(A*x)nF* n  F* =  0 for all n ±  0. (2.14)

Now let A * be the interior of the complement of JF*.  As in the proof of

Lemma 2.2, we obtain

(AJ)’T *  c  JA*  (2.15)

Therefore A* is the region

l O A r 1 - \ \ >  \  and \ {z/u)~l +  ^ \ > ^  (2.16)

bounded by L , =  JU C \ and L 2 =  JU C i- By Lemma 2.5, we know that

L i and L-> are two lines. Let L  be the line 5R( )̂ =  1, so C\ =  JL. Hence,

18
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L \ =  J U J  ■ JC \ =  ( 1q“ ?) ’ JC i  is the line perpendicular to the line from the 

origin to  1 /u , and crosses that line at the point 1/it. Similarly, L 2 is the line 

perpendicular to the line from the origin to —1/u,  and crosses tha t line at the 

point —1/u.  I t  follows that the two lines L x and L 2 are parallel.

I f  now we have 9?(u) =  1, then u is on the line JC \. Then J U  J  • u =  1 is 

on the line L x. Similarly, —1 is on the line L 2. Then since L x and L 2 are the 

boundary of A *, for arbitrary z €  A *, we have (B '^Yz =  z +  2n £  A*.

Therefore

( 5 j ) " A *  n  A*  =  {z  +  2n\z e  A * }  n A *  =  0, (2.17)

so, as in (2.15), we obtain

B^JA* c  P . (2 .18)

We claim tha t (A*x, B 2) is a free group. This is because any nonzero word 

W  in  A*x and B 2 is of the form

W  =  B p (A *xY r ■ ■ • B ^ p l Y 1

where n x, m x, .. . nr , mr € Z and n x Y  0 ,m i Y  0, • • -nr Y  0, rnr Y  0. Prom 

(2.15) and (2.18), we have the following sequence:

( d ^ T * c J A
B ^ J A * c p*

(4*)n rr * c J A
B p  J  A* c p*

F ina lly we have W T* C P ,  which means W  is not identity. Hence, (A*X,B 2) 

is free.

This shows that i f  A satisfies (2.2), then G\> is free for all X' =  uX, where u 

satisfies 3J(tt) =  1. Geometrically, this means G y  is free for all A' lying on the 

line through A which is perpendicular to the line from the origin to A. Hence, 

we complete the proof of Theorem 2.11.

□

Before Theorem 2.14, we introduce the following lemmas.

19
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Lem m a  2.12 For h >  0, the circle \z -  a\ =  h\z -  b\ has diameter

d 2 h(a — b)
h2 - l

□

L em m a 2.13 Let W  =  ( J 2 - 1) and V be its fixed point. Let E  be a disc 

with p on its boundary. I f  fo r a disc D  with the same center of E  we have 

W D  f l  D  — 0 and p £ D , then W E  Pi E  =  0. □

Then comes Theorem 2.14, which is a further improvement of Theorem

2 .8 .

T heo re m  2.14 Let A e C satisfy |A ±  \ i \  >  \  and |A ±  1| >  1. (See Figure 

2.3)

-1

Figure 2.3: Lyndon and Ullman II

Then the group H \  is freely generated by A \ and B 2 •

P ro o f. In  proof of the theorem, we w ill use the following notation: we use 

A° to  denote the interior of complement of a set A  and A  to denote the closure 

of the set A.

By Lemma 1.22, the set of A for which H \  is free is symmetric w ith  respect 

to  reflection in both the real and imaginary axes. I f  H \  is free, then —A and 

the conjugate of A are also 2-free. Furthermore, the conjugate of —A is 2-free. 

Therefore we only need to  discuss the situation in the first quadrant. W hat 

is more, from Theorem 2.8, we know if  A is in the area outside the circles 

|A ±  1| =  1 and |A| =  1, then H \  is free. Therefore, we only need to discuss

20
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Figure 2.4: Lyndon and Ullman 11(2)

the situation when A lies inside the open curvilinear triangular region between 

the circle jA — 11 =  1, |A| =  1 and |A — =  1.

In  the proof we call the shaded open curvilinear triangular region in  Figure

2.4 the region F  and assume tha t A lies in  this region. From the graph, the 

m inimum |A| on F  is at the point 2JA*, which is the intersection of the circles 

|A| =  1 and |A — =  1.

Let A  be the set of 2 such tha t |3?(^)| < 1 .  As in  the proof of Theorem 

2 .11, we have

{ B l ) nA  n A  =  0. (2.19)

Therefore

B % JA  C T =  J A C. (2.20)

Here, T =  J A °  is the union of the open discs F i and r 2 of radius |  w ith  

centers at — \  and respectively.

Since the minimum |A| on F  is at the point ^±1* an(  ̂our regjon p  js inside 

the un it disc, we have

1 im 11 > W > —  > j

which means that i f  \k\ >  2, then the distance between the centers of the two 

open discs A^Ti and T* is | A*A| >  1. Thus

A kxYl n T i =  0 and A kxT2 n V2 =  0 (2.21)

for \k\ >  2 .
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Now A € F  implies tha t |A — 1| >  1. We also note tha t the imaginary 

part of A is greater than 4/5 and the real part of A is greater than 0. Hence, 

i f  \k\ >  2, then \k \  — 1| >  |9?(fcA)| >  8/5 > 1 .  I f  k =  —1, then \k \  — 1| =  

| - » ( A ) - i9 f ( A ) - l |  >  |»(A) +  *9 (A )-1 | =  |A -1 | >  1. Therefore, | fc A - l|  >  1 

for all k 0 , which means tha t for k 0 , the distance between the centers 

of the two open discs A XYX and T2 is |fcA — 1| >  1. Similarly, the distance 

between centers of the other two open discs A kxY2 and Pi is also \k \  — 1| >  1. 

Hence

4 * r 1n r 2 =  0 and ^ r 2n r !  =  0 (2.22)

for k 0.

Hence, from (2.21) and (2.22), i f  we delete the closures of T i f l A x l Y i and 

r 2 n  A \T 2 from T, the remaining set, say T', satisfies

for all ti /  0, which implies

(AA)nr / n r  =  0 (2 .23)

( ^ A)nr  C  J A . (2.24)

Define A ' =  J ( r ' ) c, so

A ' =  J (T ')C =  A U  J A ^ T t  U J A \Y 2 -

Since A G F ,  then A \Y 2 lies in  the first quadrant, hence J A \T 2 lies in  the 

fourth quadrant. Similarly, J A ^ Y i  lies in the second quadrant. Therefore, 

and J A \Y 2 are symmetric w ith  respect to  the origin and

JA ^ Y x  f l J A \Y 2 =  0.

We set v =  A +  so the boundary of the disc A XY2 is the circle C:

\z — v\ — A. Then the boundary of J A \Y 2 is JC , which is \z~l — v\ =  \ .  We

can simplify J C  to the form \z\ — 2\v\ • \z — / | .  Hence, by Lemma 2.12, th e

diameter of JC  is

(2-25)
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By assumption, 3ff(A) >  0, so from v =  A +  \ ,  we have \v\ >  Therefore, the 

denominator 

follows that

2'
denominator of (2.25) is positive. We know tha t |A| >  so |A|2 >  |  and it

I 2, IM2 1 4 1 21
\ v \ - \ X \  + K (A ) +  - >  5 +  4 - 20 -

Then from (2.25), the diameter of JC , i.e. the diameter of JA XY2, is less 

than | .  The real part of the center of JC , i.e. the real part of 1/v, is

K(±) =  cos(arg(i)) • |1 |

<  maxcos(arg(A +  i ) ) - y /f

<  cos(arg(l +  ^ i ) • 1
=  4  <  3

7  4 '

Therefore, the disc JA XY2 lies in  the region {z  : \z\ <  2}. Similarly, the disc 

JA ^ l T i also lies in  the region {z  : jz| <  2}. Therefore, for |A;| >  2,

{ B ^ f jA ^ Y ,  n JA-x l Y1 = 0

and

{ B l f  j a xy 2 n  j a xy 2 =  0 .

Since JWylr 1 and JA XY2 lie in  the second and the fourth quadrants respec

tively, we find that

{ B I ) \J A -X1Y1 U J A xY2) n U J A xT2) =  0.

Hence, it  follows that

{ B l f  A' n A' =  0

for |k | >  2. Define,

Pi =  A ' n (B j) -1 JA XY2 = A' n (E ft)-1 A'

and

P2 =  A' n B l  J A \XYX =  A' n B l A'.

Also let A" =  A ' — (Pi U P2) and Y" =  J(A")C. Thus it  is sufficient to  show 

tha t A" satisfies

{ B l ) nA" n A" =  0 
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and hence

B p  A" c  r".

Now we claim that T" satisfies condition

{Ax)nV" n r" =  0 for all n ±  0 (2.26)

then sim ilarly to  the proof of Theorem 2.11, we can prove Theorem 2.14.

We start from the definition of A ". Let D i =  J {B y )~ l J A xT2 and D 2 =  

J B p A ^ T u so

r" =  t ' u a u  d 2.

Define T" =  T j U D i and T2 =  T2 U D 2, then

r" =  r" u r".

We know already that

A y r  n  r  =  0

for k ^  0, so to prove (2.26), it  is sufficient to  show tha t D \ and D 2 are disjoint 

from A xV" for fc ^  0. By symmetry, it  is enough to show that D x is disjoint 

from AkxT" for k 0 . Since A XT" lies in  the lower half plane when k <  0 and 

D i  lies in  the upper half plane, then A p "  and D \  are disjoint in  this case. I t  

remains to  show D \  is disjoint from A p "  for k >  0 .

We have already proved tha t J A XT2 lies in the intersection of the fourth 

quadrant and the region {z  : \z\ <  2}. Therefore (£?J)-1 <MAr 2 is in  the 

th ird  quadrant. Finally, D \ — J ( B f  y 1 JA XT2 lies in  the second quadrant. By 

symmetry, D 2 lies in  the fourth quadrant. Since r'2, as a subset of T2, lies in  

the right half plane, so does T2 =  T2 U D 2. Therefore, it  is easily verified that 

A ^ 2  lies in  the right half plane for all k >  0. Thus

d x n =  0

for a ll k >  0. Then the last thing we need to  show is that

D x n =  0 
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for all k >  0. Since T" =  T i U D \ and T[ e  Id , we can split the question into 

showing tha t D 1 f l A kT\ =  0 and D x f l A kxD i =  0 for all k >  0. We begin by 

showing tha t

Dx n AxT! =  0. (2.27)

Setting

t / = ( J  J ) ,  w - j i r * j u =^2
We have B \  =  U 2, ^ Ar 2 =  U A XT U and D 1 =  JU ~2JUAxTx =  W A \T i.  Then 

the equation (2.27) turns out to be

W A xTi n A XT i =  0. (2.28)

I t  is easy to check tha t the linear fractional transformation W  has the two 

fixed points p =  and p' =  Then A € F  implies tha t |A — ~i\ >  A, 

so p  does not lie in A aT i because A aF i has center A — A and radius Let 

E  be the disc w ith  center A — the same center as A aT i and w ith  p on its 

boundary B. Then by Lemma 2.13, i t  is sufficient to  show tha t W E  f l  E  =  0.

Since W  is a non-Euclidean half tu rn  about p, B  and W B  are externally 

tangent at p, from E  fin ite region, i t  suffices to show tha t W E  is the fin ite 

region bounded by W B . Since 9f(A) >  | ,  the center A — \  of E lies above the 

horizontal line through p, and therefore is nearer to  p, on its boundary, than 

to  —A, Thus —A is not in E , and W (—| )  =  oo is not in W E .

Thus, i t  suffices to observe that A aT i lies above the common tangent fine 

H  separating E  from W E . Since 9(A) >  0, then A kxT\ lies above H  for all 

k >  1, while Dy c  W E  lies below H .  Therefore, we have

D x f l  A lW  =  0

for k >  1.

Therefore, to complete the proof, we only need to show tha t E in ^ - D i  =  0 

for k =  1, which is equivalent to  showing tha t D x has diameter d <  |A|. From 

the fact tha t D x =  J J A XT 2  and our knowledge of A xT 2 , we conclude 

tha t the boundary of D x has an equation of the form

\z +  - \  =  2|A| • |z +  -  +  -A |.
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Now (2.25) shows that d =  |4ti_ i [ , where r  =  |A|. Since r  >  | ,  we have 

d =  4r 1̂_1, and the condition d >  r  is equivalent to  1 <  4r 3 — r,  or tha t 

f ( r )  =  4 r3 — r  — 1 be positive. Since <  r  <  1, we can obtain this 

conclusion and so

D1 n =  0

for k =  1. Hence, we finally have proved that the two disjoint region A "  and 

JT"  satisfy

A \T "  C JA "  and f3 j\/A "  C T"

for any nonzero k and n and any A € F .

Therefore, by Lemma 2.2, H \  is free for all A in area F  .

□

2.3 Ignatov

Since our 2-free points are symmetric in  the complex plane, we only discuss 

the domain in the first quadrant. In  Y .A.Ignatov’s paper [15], he proves the 

following theorem:

T heo re m  2.15 Let X be a complex number lying (considering the symmetry) 

above the arc of the circumference \z — 1| =  \  when 1 <  4t(A) <  or lying 

above a line passing through the point 1 +  i /2  perpendicular to a line segment 

joining 1 +  i /2  to the origin when !ft(A) <  1. Then A is 2-free. (See Figure 

2.5) □
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Figure 2.5: Ignatov I

In  [16], he showed

T h eo re m  2.16 Let X be a complex number satisfying |A| >  1 and 111(A) | >  |  

Then A is 2-free. (See Figure 2.6) □

I_______________________________

0 . 6  

0 . 4  

0 . 2

0 . 2  0 . 4  0 . 6  0 . 8  1 1 . 2  1 . 4

Figure 2.6: Ignatov I I

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4 N ew  m ethod to  find free and 2-free points

By now, the shape of 2-nonfree area in the complex plane looks like an eye, so 

some author (Bamberg in [2], Ignatov in [29] and [19]) called this problem “the 

eye problem” . We know from Theorem 2.10 tha t algebraic 2-free points are 

dense in the complex plane and found a set of 2-free points in  the eye-shaped 

area of the form

A ! =  a +  22+1/pe2q7ri/p

where p is a prime number, q is an integer, a is a rational number such that 

A2 =  a +  22+1/p is greater than 4.

However, this may not be the only sets of 2-free points in  the eye-shaped 

area and may not be the only way to find such points. In  the rest of this 

chapter, we w ill provide another way to find 2-free points in  the eye-shaped 

area.

Before we start, we should introduce several definitions:

D e fin it io n  2.17 Let F  be afield. An a b s o l u t e  v a lu e  on F  is a real-valued 

function a —> |a| defined on F  which satisfies the following conditions:

i)  |a| >  0 for all a E F  and |a| =  0 iff' a =  0;

ii)  \ab\ =  |a||6| fo r all a,b  € F ;

Hi) \a +  b\ <  |a| +  |6| fo r all a,b  G F .

D e fin it io n  2.18 An absolute value |.| on F  is called n o n - A r c h im e d e a n  i f

\a +  b\ <  m ax{\a\, |6|}

fo r all a,b € F .

D e fin it io n  2.19 Let |.| be a non-Archimedean absolute value on F . We define 

an extended real-valued function V  on F  as follows: let c € M and c >  1 and 

set

V{a) =  - lo g c\a\

fo r all a € F . Then V  satisfies

i) 1/(0) =  00 and V (a ) =  0 0  only i f  a =  0;
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ii)  V(ab) =  V (a ) +  V{b) fo r all a, b e F ;

in ) V (a  +  b) >  m in {V (a ),V (b )} \ fo r all a,b  € F .

The function V  induces an isomorphism from F  onto a subgroup of the 

additive group of real numbers. I f  the subgroup is discrete, we say V  is a

DISCRETE VALUATION.

I t  follows tha t

L em m a  2.20 Let F  be a field. I f  V  is a discrete valuation on F  and i f  

V (a )  7̂  V(b) fo r a,b  € F , then

V (a  +  b) =  m in {V (a ),V (b )}

P ro o f. W ithout loss of generality, suppose

V (a ) <  V(b). (2.29)

Then V (a  +  b) >  V (a ), which implies that

V (a ) =  V (a  +  b - b ) >  m in {V (a  +  b ),V (b )}

I f  now we have V(b) <  V (a  +  b). then V (a) >  V(b), which contradicts (2.29). 

Therefore we must have V (a  +  b) <  V(b), so V (a ) >  m in {V (a  +  b), P (6) }  =  

V (a  +  b). W hile at the same time V (a  +  b) >  V (a ), we have V (a  +  b) =  

m in {V (a ),V (b )} .

□

To construct the method to find 2-free points in  the eye-shaped area, we 

also require a number of prelim inary lemmas. In  the book by Weiss, the author 

proved the following lemma:

L em m a 2.21 Let V  be a discrete valuation on a field F . Let a0, • • • ,a n € F ,  

where ac,an ^  0. Put f (x )  =  ao +  a\x  +  • • • +  anxn € F [x ]. Plot the points 

( i ,V (a i) )  fo r i =  0, • • • ,n  and V (a i) < 0 0  on the complex plane. Then i f  the 

line segment joining (i ,V (a i )) to (j ,V ( a j )) is an edge of G ( f )  and has slope 

—m, then f  has j  — i roots of valuation m.
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In  [37], an important lemma is given by

L em m a 2.22 Let F  be a field and let n >  2 be an integer. Fix a set e„■ of 

n2 matrix units in R  =  F nxn. Let v be a non-trivial discrete valuation on F .  

Consider the following subsets of R :

V  =  Vv =  {diag(rf) E G Ln(F ) : the set {t>(r,)} has a unique minimum value }  

and

r  =  r „  =  { 5 > % : the value {v (L j)}  is finite and independent of i and j  }.
i j

Then

(i) T V T  C T

(ii)  T V  and V T  are sub-semigroups of R, neither of which contains a scalar 

matrix.

P ro o f. For w =  diag(wi) e V , w rite v(w) =  m in{v(w i)}. For t =  

e write  =  v (%)- Similarly, for t' =  e  we

have v(tr) =  u ( ^ ) .  Then for any i , j ,  we have (tw t'fij =  £ ^nUmWmnt'nj =  

'E mtimwmt,mj. Now, as every m occurs in the sum for (tw t1)^ , we have

viftuit f j ) ] timwmntnj ) =  n(^  ] t{mwmtmj ).
m ,n  m

Now for a fixed m, we have v(timwmt'mj ) =  v(t) +  v(wm) +  v(t'). Then because 

the set {u (ru j)} for 1 <  i <  t has a unique minimum value, from Lemma 2.20 

i t  follows that

v ((tw t')ij) =  m in m{v(t) +  v(wm) +  v (t')}  =  v(t) +  rninm{u(u;TO)}  +  v{t')
— v(t) +  v(w) +  v(t').

By definition, this means tha t tw t' E T . So (i) is established. I t  follows that 

(T V ) (T V )  =  (T V T )V  C T V  and (V T ) (V T )  =  V (T V T )  C V T , which means 

T V  and V T  are sub-semigroups of R. Since we have (w t)tj  =  Y )m Wimtmj — 

WiLj V  0 f° r  any i , j ,  neither of T V  and V T  contains a scalar m atrix. Hence, 

(ii) is proved.

□
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By this lemma, i t  follows tha t V  * T  is a free product of sets. This allow 

us to  provide a way to  find 2-free points in the eye-shaped area.

T h eo re m  2.23 Given a set of generators {C \, C2} of the multiplicative group 

of linear transformation H \  =  (A \ ,B 2), construct matrices P i and P2 that 

diagonalize C\ and C2 respectively:

U  =  F f ,C1P, =  (  A0‘ ° ) ,  V5 =  P2- C 2P2 = ( A0» °

Let

T» = p " p ‘ = ( l !)
I f  now we have a discrete valuation v such that v(Trace(C i)) <  0, v(Trace(C 2)) 

0 and t>(£i) =  w(£2) =  ^(£3) =  ^(£4) =  0, then H \  is freely generated by A \  

and B 2.

P ro o f. Using the definition of V  and T  in Lemma 2.22, we have T0 6 T . I f  

we can show tha t Vi, V2 e V , then by Lemma 2.22, (V^T^V^To) is a free set 

generated by a subgroup of V  and T .

To show I f  e V , we need to prove the discrete valuation v separates Ai 

and A2. Since v(Trace(C i)) <  0, we have n(Ai +  A2) =  v{Trace{C \)) <  0. By 

definition of discrete valuation, we know 0 >  t>(Ai +  A2) >  m in {v (Ai), t>(A2)}. 

Therefore, a least one of the valuation of Ai and A2 has negative value. In  the 

same time H \  c  S L2(C) implies det(V l) =  1, which means u(A i) +  v(X2) =  

u(AiA2) =  t '( l )  =  0. Hence, one of t ’(A i) and v(X2) is negative and the other 

one is positive. I t  follows tha t v separates Ai and A2. Similarly, v separates 

A3 and A4. Then, Vl ,V 2 € V . Therefore, (I/i ,T 0_1V2T0) is a free set generated 

by the subgroup of V  and T . But (V i ,T q XV2T0) — (Vi, P f 1P2U2P2_1P i) is 

conjugate to {Pl V1P ^ 1, P ^ V ^ P ^ )  =  (P iV iP f1, P2V2P £ X) -  (CU C2), 

which is the basis of H \.  Therefore, H \  is free.

□

R e m a rk  2.24 When using the above method, we can use Lemma 2.21 to get 

the valuation of & fo r i =  1,2,3,4. We already know that v (Trace(G \)) <  0
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implies v (A i) ^  v(X2). However, the two statements are actually equivalent. I f  

u(A i) ^  v(X2) is true, since v{X i)+v{X 2) =  0, without loss of generality, we can 

suppose 'u(Ai) <  0. Then v (Trace(C i)) =  d(A2 +  Ai) =  m in{v(X 2) , v{X2)}  — 

v(A i) <  0.

R e m a rk  2.25 This method can also be used to find free points.

Although we have this method, to find a proper pair of C \ and C2 is s till 

a big problem. Firstly, the original two matrices A \  and B 2 are not suitable. 

Both matrices have trace 2, which makes the valuation greater than or equal 

to zero. Let us fix n G Z + and A \B 2 as C\ and A xB f+1 as C2. Clearly, these 

two matrices constitute a basis of H \.

Now, we have Trace(C \) =  2(1+nA) and Trace(C2) =  2 ( l +  (n + l)A ) .  Use 

Mathematica to compute the m atrix To, we obtain the m inimal polynomial of 

Ci) 6 ,  Cs and £4 in  Q(A):

-ttjt -.---------------- +  x — 1. (2.30)
2[2n +  n(n  +  1) A]

By Lemma 2.21, if  w(£i) =  v(£2) =  v (^ )  =  u(C4) =  0, the coefficient of (2.30) 

w ill have the same valuation, so the valuation of 2[2n +  n(n + 1)A] w ill be zero.

Now i f  v(T race(C i)) <  0, since v(2) >  0, we have v [2 (l+ n A )] =  m in {v (2), 

u(2nA)} =  v (2 n \) <  0, which means 'u(2)+'u(n) +  i>(A) <  0. I f  v(Trace(C 2)) <  

0, similarly, we can get v[2(l +  (n +  1)A)] =  v[2(n +  1)A] <  0, hence v{2) +  

v(n  +  1) +  v(X) <  0. Since (n ,n  +  1) =  1, i t  follows that either v(n) =  0 or 

v(n  +  1) =  0. W ithout loss of generality, we say v(n  +  1) =  0, then i t  follows 

that

v[2n(n +  1)A] =  v(n  +  1) +  v(2nX) =  v(2nX) <  0

However, we know t>(4n) >  0

u(2[2n +  n(n  +  1) A]) =  v(4n +  2n(n +  1)A)
>  m in{v(4n), v[2n(n +  1)A]}
=  v[2n(n +  1)A] <  0

Hence, we get the contradiction. Then the method does not work for the 

easiest form C\ =  A \B 2 and C2 — A \B 2+1.
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Chapter 3 

NonFree sets

Now we know the region of some 2-free points. I t  is natural to ask whether the 

rest of the complex plane is 2-nonfree or not? In  this chapter, we w ill discuss 

this question.

In  general, a group G =  (Aa , Bp) is free of rank 2 i f  and only i f  there is no 

nontriv ia l word A af  B 1̂  ■ ■ ■ A 'f1 B bf ‘ in the reduced form which gives the value 

1 in  G. Therefore we have

L em m a  3.1 For A ^  0, H \  is nonfree i f  and only i f  here is some sequence of 

nonzero integers b \,a i, • • • , bn, an, where n >  0, such that ■ ■ ■ A ffB ^ 1

is the identity matrix. □

We w ill discuss the density of nonfree and 2-nonfree points in  Section 3.1. 

Then we w ill give several nonfree sets in Section 3.2. Finally, we w ill review 

F a rbm an[ll]’s result about the 1-nonfreeness of rational numbers and show 

tha t \Hr is free for |r| =  \a/b\ <  4 where (a, b) =  1 and a =  1,2,3, ■ • • ,16.

3.1 D ensity

In  Chapter 2, we proved tha t any transcendental number is 2-free. Chang et 

al. [7] deduced tha t algebraic 2-free points are dense in the complex plane. 

Then comes the question of how 2-nonfree points are distributed? We are also 

interested in the distribution of nonfree points.
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3.1.1 Density of 2-nonfree points

Before we go further, we need the following well known lemma:

L em m a 3.2 The non-identity matrix M  =  ( “ *j) e S L (2,C) has finite order 

i f  and only i f  T race (M ) =  2cosO, where 9 ±7r and 9 is a rational multiple

of it. □

Here we introduce the notation F  to  represent the closure of the set of 

2-nonfree points in  C. Now look at the shape of the region F .  For example, 

we know that F  is contained in  the circle of radius 2, center at the origin 

(Theorem 2.4), tha t F  contains the circle of radius 1/2, center at the origin 

(Corollary 3.4), tha t F  is connected (Theorem 3.5), and F  contains various 

known line segment.

In  Ree’s paper [35], he proved the following theorem:

T h eo re m  3.3 Given any T  G H \ =  {A \, B2), then T  is of the form

( a ( A) 6(A )\
-  yc(A) d(X)J

where a(X),b(X),c(X),d(X) are polynomials in A. / / c(A) is not identically 

zero, then 2-nonfree points are densely distributed in the domain defined by 

|A • c(A)| <  1.

P ro o f. The proof consists in  showing that, for a dense set of values of A 

in  the described domain, a certain group commutator has fin ite  order. Let 

T ' — [A \,T ] — A \T A f ]T ~ l . Now we can calculate the entries of T .

Firstly,

A  A \ ( a ( A) 6(A) \  _  ( a ( A) +  A • c(A) 6(A) +  Xd(X)\
\0  l j \ c ( X )  d(X)J V  c(A) d(A) J

and

A—irri—i _  (1  - A \  (  d(A) -b (X ) \  _  (d (X ) +  A • c(A) —6(A) -  A • a (A )\
A V o  i A - c ( A )  a(X)J  V - c ( A )  O ( A )  ) '

Then, since a(X)d(X) — 6(A)c(A) =  det(T) =  1, we can simplify T ' to

T , =  f l  +  A • a(A)c(A) +  A2c2(A) * A
“  V Ac2(A) 1 -  A • a(A)c(A)J  ’
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where * is some complicated expression.

I f  we write

then

A • c'(A) =  A2c2(A), (3-1)

and the trace of T ' is

t' — 2 +  A2c2(A) =  2 +  A • c'(A). (3.2)

Define words T i, T2, ■ ■ • , Tn, ■ ■ • inductively by T0 =  T  and 

Tn+i =  A \T nA ^l T~ l . I t  follows from (3.1) and (3.2) that

i> J 2, • ■

tn =  Trace(Tn) =  2 +  (A ■ c(A))2" (3.3)

Now take 9 a rb itra rily  such tha t 0 <  9 <  2n and 9 =f= tt1 and let A be any 

complex number satisfying

for some fixed n.

Then since detTn =  1, the eigenvalues of Tn are eld and e~ld. Since 0 <  

9 <  2-7T and 9 ^  tt, we have elf> A £~%e■ Then Tn can be diagonalized. I f  9 is a 

rational multiple of n, then Tn has fin ite order and hence A is 2-nonfree.

Knowing tha t the rational multiples of tt are densely distributed in  the 

interval [0,2w], we can deduce from (3.4) tha t the value of (A-c(A))2" =  tn—2 =  

2 cos 9 —2 for which H \  is not free are densely distributed in the interval [—4,0], 

especially in [—1,0]. Since our n can be made arb itra rily  large, the value of 

A • c(A) are dense in the region {x  \ x E C ,  |x| <  1}. Therefore 2-nonfree points 

are dense in the domain satisfying |A • c(A)| <  1.

Now we obtain the following:

C o ro lla ry  3.4 2-nonfree points are densely distributed in the circle |A| <  | .

tn =  2 +  (A • c(A))2" =  el9 +  e %e =  2 cos 9 (3.4)

□
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P ro o f. Taking To =  £?2, we have A • c(A) =  2A. Substituting in  |A • c(A)| <  1, 

the result follows.

□

Lyubich and Suvorov [29] give us a nice result about the 2-nonfree points:

T h eo re m  3.5 The region F  (the closure of the set of 2-nonfree points in C )

is a connected subset of C. □

In  order to construct other regions where 2-nonfree points are densely dis

tribu ted , we need the following set of 2-nonfree points.

T h e o re m  3.6 ([7], Theorem 4) Let a, b, c, d, k and h be non-zero integers such 

that k >  2 and (k , h) — 1. Then

— (a +  c)(b +  d) +  [(a +  c)2(b +  d)2 — IGabcd sin2 (h n /k )]1̂ 2 . .
4abed ^ ’

is 2-nonfree.

P ro o f. Let M  =  A fB jA ^B 'j e H \.  then direct calculation shows that:

T race (M ) =  2 +  2(a +  c)(b +  d ) \  ±  AabcdX2 — 2 — 4sm2(hir/k)
=  2 cos(2 h n i/k )  =  e2h™!k +  e~2Mi/k.

Since det M  =  1, it  follows tha t the characteristic roots of M  are r \  =  e2hmA  

and r 2 =  e~2hmlk. Meanwhile, k >  2 and (k. h) — 1 im ply tha t r i  and r 2 are 

not equal, which implies M  can be diagnoalized w ith  diagonal elements r \  and 

r 2. Therefore M k =  J, so H \  is not free.

□

C o ro lla ry  3.7 The open segment joining —2 and 2 is contained in F .

P ro o f. Set a ~ b  =  c =  d =  l i n  (3.5), then A =  —1 ±  cos(hn/k). Set 

a =  c =  1 and b — d =  — 1 in (3.5), we obtain A =  1 ±  cos(hn/k). Since 

the numbers of the form cos(hir/k) are densely distributed in  the segment 

[—1,1], it  follows tha t 2-nonfree points are densely distributed in  the segment 

[-2 ,0 ] U [0,2] =  [-2 ,2 ],
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□

C o ro lla ry  3.8 The open segment joining —i and i is contained in F.

P ro o f. Set a — b =  1 and c =  d =  — 1 in  (3.5), so A =  ± is m (h ir /k ). Since 

the numbers of the form sin(/wr/k )  are densely distributed in  the segment 

[—1,1], then 2-nonfree points are densely distributed in the segment [—i,i) .

□

3.1.2 Density of nonfree points

Now let us look at nonfree points. Let T  e Gu =  (AU,B U) have the form

fa (u ) b (u )\

Vc(u ) d(u)J

where a(u ),b (u ),c (u ),d (u ) are polynomials of u. Set V  =  :=

[AU,T ] =  A uT A ~ l T ~ l . I f  c(u) is not identically zero, then using the same 

method as in  Theorem 3.3, we have:

u • c'(u) =  u2c2(u) (3-6)

and the trace of T  is

t' =  2 +  u2(?{u) =  2 +  u • c'(u) (3.7)

We can extend Corollary 3.7 and Corollary 3.8 as follows:

T h eo re m  3.9 ([27], Theorem 5) Given a positive integer n, let be a com

plex number such that u^1 =  —4. Then the values of u that are nonfree are 

dense on the segment joining the origin to uq.

P ro o f. Define words T1; T2, • • • ,Tn, ••• inductively by To =  ( i"o 1) and 

Tn+i -  [Au,T n] =  A uTnA-ulT ~ \  W rite Tn =  ( £ { “ ! £ $ ) .  I t  follows from 

(3.6) and (3.7) that

tn =  Trace(Tn) =  2+ucn(u) =  2 + u 2c^_1(u) =  2+ (u -c0(u ))2n =  2+ u 2n (3.8)
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Although To may not belong to Gu, our 7 \ =  A uToA~l T T l — A UBU e Gu, 

so Tn G Gu for all n >  1. Now let u =  ru 0, where 0 <  r  <  1. Since u2” =  —4, 

we have tn =  2 — 4r2" . I f  tn =  2 cos#, for # a non-zero rational multiple of 7r 

between —n and tt, then as we showed before, Tn has finite order and hence u 

is nonfree.

Now the map carrying r  into tn maps [0,1] continuously onto [—2,2]. Know

ing tha t rational multiple of 7r are dense in  the segment [—7r,7r], we deduce 

tha t the values of tn =  2 cos 0 are dense in the interval [—2,2]. I t  follows that 

the values of r  for which Gu is not free are densely distributed in  the interval 

[0,1], which completes the proof of the theorem.

□

R e m a rk  3.10 Gu is free fo r some extreme values of u satisfying u2U =  —4, 

like n =  1 or n =  2. I f n  =  1, then u2 =  —4, hence 2X =  u2 =  —4, so A =  —2. 

By Theorem 2.4, Gu is free. I f  n =  2, then uA =  —4, hence 2A =  u2 — ± 2 i, 

so X =  ± i .  By Theorem 2.8, Gu is free. However, fo r larger n, this might not 

be true. For example, when n =  3, none of the 8 extreme values are nonfree. 

We will show this later in Theorem 3.18.

Both Theorem 3.9 and Theorem 3.3 include Corollary 3.7 and Corollary 3.8 

as a special case. We can restate the two corollaries in the n-form as follows:

C o ro lla ry  3.11 Every number u on the segment [—2,2] and the segment [—1— 

*, 1 +  i] is a lim it of nonfree numbers.

C o ro lla ry  3.12 Let S be the set of u where Gu is not free. Then fo r any 

uq e S, there is an open neighborhood ofuo that lies in S.

P ro o f. Treat u as an indeterminate. F ix Uq e S. Then since Gu is not 

free, there exists a m atrix T  =  ( co*u) t )  e  Gu such tha t co(tt) is not identically 

equal to  zero and co(uo) =  0. Use this T  as To in  Theorem 3.9. Then the trace 

of Tn is tn =  2 +  (u ■ Co(u))2". Since Co(wo) =  0, i t  is clear tha t uq is contained 

in  the open set D  =  {u  | \u c q ( u ) \  <  1}.
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Now we are going to show tha t D C S. Pick any u' E D. Then from the 

density of rational multiples of ir, in every neighborhood of u1, there is some 

value, say u", and a value of n such tha t tn =  2 +  (u" • co(u"))2" =  2 cos 6 for 

0 a rational multiples of ir. Therefore, Tn(u") has fin ite order. Thus, u" E S  

and D C S. This completes the proof of the corollary.

□

R e m a rk  3.13 We note that F  is the closure of 2-nonfree points and S is the 

closure of nonfree points. Since x is nonfree is equivalent to x2/2  is 2-nonfree, 

we obtain S =  {x  : x2/2  E F } .

з .2  Nonfree Sets

We are more interested in  some specific nonfree sets in the eye-shaped area. 

For this, we again view u as an indeterminate. By Lemma 1.25, any element 

of Gu is conjugate to a unique cyclically reduced form. Consider W {u) =  

Ay1 B^1 ■ ■ ■ Af" B l f , where n >  0 and all au bj 0. The entries of W (u ) are 

polynomials in u w ith  integer coefficients. Write

Then A u — I  +  u E u , Bu =  I  +  uE21, and

A aiB bi ^  ( 1 +  ai bW 2 a m \
“  “  y b\u 1 J '

By induction, fn (u )  and fa in )  are polynomials containing only even powers

of u, while /12(u) and fz ilu )  are polynomials containg only odd powers of

и. I t  is clear tha t the coefficients of f,j(u )  (where i , j  =  1,2) depend on 

^i) j bn, an.

W rite fn (u )  =  c\u +  c^u3 H----b C2„_ iU 2” -1 , where each coefficient c2k+i

is a sum of ■ ■ ■ aikbjkaik+1 for all

1 <  h  <  j i  <  *2  <  32 <  ' '  ’ <  ik  <  jk  <  ik + i  <  2 n  -  1 .

We note tha t the degree of f i 2(u) is 2n — 1 and its leading coefficient is c2n- i  =  

a\b\ • • • an-ib n- ia n. Similarly, the leading coefficients of fn (u )  is a\b\ • • • anbn,
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the leading coefficients of /21 (w) is b ^ h  ■ ■ ■ anbn and the leading coefficients 

of / 22M  is b] O/2 b‘2  ■ ■ ■ These are proved as in Lemma 2.1.

T h eo re m  3.14 ([27], Proposition 2) Gu is nonfree if  and only i f  the complex 

number u is a root of some polynomial f (x )  in the following manner:

n —1

f (X) = H  °2k+lX2k+1
k= 0

where Ck-i =  Y  a*i bj 1 • • • a,ikbjka%k+1 an& the factors are all the subsequences 

of the sequence ai, b\ , . . . ,  an, bn.

P ro o f. Given any non-trivial reduced W  € Gu which is not a power of B u, 

i f  f n ( u )  =  0 for some non-trivial f n ( u ) ,  then we have

W ( u )  -  ( “  I
\  a

for some complex number a and c. Then since both W (u) and B u are lower 

triangular matrices, we can easily show by computation that

=  W(u)B„W-'(u)  =  ( «  J ) ( ‘  ; ) ( j c  t '  0

is also a lower triangular matrix. I t  follows tha t CUB U =  1 j  — BUCU,

whence [BU,C U] =  I .  Therefore, Gu is nonfree.

I f  conversely Gu is nonfree, then there is a non-trivial reduced W (u ) e Gu 

such tha t W (u ) =  I .  I t  follows tha t u is the root of f  1 2 (a) =  0.

We proved previously tha t f  1 2 (a )  is of the form f  1 2 (a) =  Y lZ a  c2 k+ iU 2k+1 

where Ck~\ =  Y anbji • • • dikbjh^ik+i and the factors are all the subsequences 

of the sequence ai, bi, . . . ,  an, bn. This complete the proof.

□

We note tha t a zero-trace m atrix S G Gu must be of the form S  =  

(_ “i G Gu, where a,b € C. Then S2 =  (  -«2+«2+i _a2°a2+1)  =  I-

Through this, applying the same method again, we can find the following set 

of nonfree points.
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C o ro lla ry  3.15 I fm  6  Z + andu is one of the following: ± ^ j2 /m , ± iy /2 /m ,  

± f /2 /m ,  ± i  f /2 /m , f j2 jm  or ± v^-n/5 ̂ 2 /m , then Gu is not free .

P ro o f. Let W  =  Afi B hf  • • • B ff n be a reduce non-trivial m atrix  as in 

Theorem 3.14. I f  n =  1, then T race iW ) =  2 +  a ^ u 2. Then the root of 

T race iW ) =  0 is

"=±v/=3i:
Since ai and b\ are arb itrary non-zero integers, Gu is nonfree i f  u =  ± y /2 /m  or 

u =  ± iy /2 /m .  Let n =  2, so Trace(W ) =  2 +  {ai +  a2)(bi +  b2)u2 +  a ia2bib2u4. 

Now if  ai +  a2 =  0, then the roots of T race iW ) =  0 are

U ^ \ j  G i& lV

Hence Gu is nonfree i f  u =  ± i f /2 /m  or u =  ± f / 2 /m  or u — f /2 /m

or u =  f /2 /m .

□

We can extend the first part of the above corollary to get a new result:

C o ro lla ry  3.16 I f  u is nonfree, then so is u' =  u - \ / l /n  fo r any non-zero 

integer n.

P ro o f. Let A =  u2/ 2. I f  Gu is not free, then H \  =  (Aa, B 2) =  (A ^ n, B2) is 

not free. Since H \  is a subgroup of H \ /n =  {A \ /n,B 2), then H \ /n is not free. 

Therefore, u' =  y/2  • (A /n) =  U y /l /n  is not free.

□

For W  =  A f' ByLA f1 B ffi B bf i , we have the following result.

C o ro lla ry  3.17 I f  u6 =  1 then the points where W  — A ~x B ~2 A f 1 BUA 2B U 

has finite order are dense on the line segment from u to the origin. I f u 6 =  —1, 

then the points where W  =  A u B ~2A uBuA~2Bu has finite order are dense on 

the line segment from w to the origin.
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P ro o f. For W  =  A ffB ^ A ^ B ^ A ^ B ^  w ith  a\ +  a2 +  +3 — 0, we have 

T race iW ) =  2 — +  a ^ h  +  afbib^fu4 +  a ^ a ^ b ^ b s U 8. To simplify

this, let a i, 02, 62> 63 =  1 and then 03 =  61 =  —2. Then, Trace(W ) =  2 +  4o6.

Now T race iW ) ranges from —2 to  2 as u6 ranges from —1 to  the origin. 

Similarly, changing the sign of a*’s, we have Trace (VF) =  2 — 4w6, implying 

the density of u6 from 1 to the origin.

The method indicated in Theorem 3.14 can be extended to  produce addi

tional groups Gu tha t are nonfree. For example, we already know (the remark 

after Theorem 3.9) tha t the values of u satisfying u2™ =  —4 are free when 

n =  1 and n — 2. We also mentioned tha t this may not be true for larger n 

but we did not give specific examples. Here, we use this method to  prove Gu 

is not free for the case n =  3.

T heo re m  3.18 I f u  =  ± \ / ± l  ±  u8 =  —4), then Gu is not free.

P ro o f. F irst we note tha t the eight cases of u satisfying u =  ± \ / ± l  ±  i 

are actually the eight roots of u8 =  —4, which is v2"' — —4 for n =  3. Since 

u8 +  4 =  (ti4 — 2u2 +  2)('«4 +  2u2 +  2), four of its eight roots satisfy the equation 

u4 +  2u2 +  2 =  0. We show that Gu is not free for u satisfying this equation.

As in the proof of Theorem 3.9, set T\ =  AUBU, T2 =  [Au,T i] and T3 =  

[Au,T 2 \. Note that

where —2u3 — 2u5 — u7 =  —u3(2 +  2u2 +  u4) =  0. I f  W  =  B™ for some n & Z + , 

then B ~nW  =  I  and Gu is nonfree. Otherwise, since both W  and Bu are

□

is conjugate to
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lower triangular, as before, we can show tha t Cu — W B uW ~ l  commutes w ith  

B u, whence [Bu, Cu\ =  I .  Therefore, Gu is not a free group for u satisfying 

u4 +  2u2 +  2 =  0.

Similarly, i f  u satisfies u4 — 2u2 +  2 =  0, then T3 is conjugate to

where - 2 u3 +  2u5 -  u7 =  - u 3(2 -  2u2 +  u4) =  0. Then C ’u =  W 'B uW '~ l 

commutes w ith  B u, whence Gu is not a free group for u satisfying u4- 2it2+ 2  =  

0. Therefore, none of the roots of u8 =  —4 is free.

Newman in [34] proved 

L em m a  3.19 Gu is not free ifu  is a q-th root of 1, fo r certain values ofq =  2P

After tha t Newman conjectured that G  is not free for arb itrary values of 

q where u is a q-th root of 1 (i.e., uq =  1), Evans in [10] proves Newman’s 

conjecture.

T heo re m  3.20 Let u be the primitive q-th root of 1. Then Gu is nonfree. 

P ro o f. We define the matrices Sm recursively in the following manner. Let

W ’ =  (.A lB uA f 4B - 4)U A lB u A -u1B f 4) =  [A~u4,B u][Au,B u\ 
_  f l  — u2 +  u4 — u3 1 +  u2 +  u4 —u3 \

I —u3 1 +  u2 u3 1 — u2 j
1 — u2 +  u4 —u3 

—u3 1 +  u2
* —2 u3 +  2 u5 — u7

1 — u2 +  u‘

□

fo r some p €  Z + . □

Si =  Bu, Sm+1 =  S m A ^ S j-  for m >  1.

I f  we set

then by computation

1 — u 
0 1X 1 +  / /. ( I;, 1 Cfji -ua^n 

1 uamcm
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hence, by induction

m
am =  ^ u 2m~2\  cm =  u2m- \  dm =  2 - a m (3.10)

*=1

Now, fix  m  and define matrices Trn;n recursively by:

Tm, 0 =  S r n ,  ^ m , n + l  =  Tm n̂A uT m n̂

I f  we write
rp  _ i ®m ,n bm ,n

m ,n  ~  I j
. ^ m ,n  u m ,n

then by computation, we obtain

— i _  — _  2® m ,n + 1 —  J- Udm n̂Cmtn, Cm !n 4- i  —  UCm n .

Since we know Trace(Tmn̂) =  Trace(A ) — 2, for n >  1, we have

=  ^ +" ( - E r = i « - 2 i+ E r = r +i « - 2i)
=  ti2-+" ( _  ^  ^  +  ^ =1 u- 2-+i) (3.11)

and

Cm,r» =  U. , d m>1j  =  2  Q>m,n- ( ^ ‘ ^ )

Now assume that u is a prim itive g-th root of 1, We prove the theorem 

case by case.

Case i.  q =  2P. Then by Lemma 3.19, Gu is not free.

Case 2. q is an odd number greater than 1. Pick a € C such tha t 2° =  1 

mod q. Then u2“ =  u and u2a+l =  u2‘ . Replace m  w ith  a and n w ith  a +  1, 

then by (3.11), we have

=  «’ ( - E t a  “ - 2‘ +  £ £ ? « - * '
=  U2(u  2<1+1)  =  u2(u  2 )  =  1 ,

and by (3.12),

c =  _ w22a+1- i  _  _  _  j  -  2 -  a -  1

From d e t(rTO)„)  =  am.ndmin- b mtncm.n =  1, i t  is easy to obtain &TOjn =  0, whence

r ” '” = ( - u
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which implies tha t Gu is not free.

Case 3. q =  2pr  for some odd number r  where r  > 1 and p >  1. Pick 

a € C such tha t 2“ =  1 mod r. Then, by (3.10), we have

ap =  u2P ^  u~2\ c p =  u2P~l ,dp =  2 — ap.
i =1

Therefore, by (3.11), we have

■ w  =  u2' t ” ( - £ ? r » - 2‘ + £ ? - , « - 2' +" ‘ )
=  «2’  ( -  E L .  » -2' -  E L .  » -2"*‘ +  E L .  « -2’ +‘ )
=  «2' ( ~ E L . “ -2')  =  - v

and by (3.12),

Cp+a,a a  U Cpdp 2  Up+a,a =  d p

whence

Then, as before, the m atrix

W - V ' A . V - §  ; )

commutes w ith  A u. Therefore, Gu is not free.

□

3.3 N onfree R ational sets

W hile seeking nonfree sets, many people have confined their attention to  spe

cific subsets of the complex or the real numbers. The most natural one of such 

subsets is the rational numbers. I t  is known tha t if  |«| > 2 ,  then u is free. By 

Corollary 3.7, we also know tha t nonfree points are dense on (—2,2).

U n til now, several rational numbers have been proved to be nonfree. No 

rational numbers are known to  be free. Hence it  is quite natural to  conjecture 

tha t all rational numbers w ith in  (—2,2) are nonfree.

People like Brenner et al.[5], Lyndon and Ullman[27] and Farbm anfll] have 

done some work to support this conjecture. They have either found some spe

cific nonfree rational sets, or given more general descriptions of nonfree rational
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sets. However, although we can not find a counterexample, the conjecture is 

s till far from proved.

We w ill present some evidence supporting this conjecture. For convenience, 

in  this section we w ill use the terms “ 1-free” and “ 1-nonfree” . For r  € C, we

note tha t r  is 1-nonfree is equivalent to  r /2  is 2-nonfree and y /r  is nonfree.

Then we can restate some previously proved results as follows:

L em m a 3.21 The set of r  for which \HT is free is symmetric with respect to 

the reflection in both the real and the imaginary axes. □

L e m m a  3.22 Any non-trivial W (t ) € <Fr is conjugate to a unique word 

in reduced form. We can write W (t ) =  A'fl1 B \n • • • A°fl B bf l , where n >  0 

and all ai,bj 0. The entries of W ( r )  are polynomials in r  with integer 

coefficients. □

L em m a 3.23 \&r is nonfree fo r some r  0 i f  and only i f  there is some 

sequence of nonzero integers b\, o i, • • • ,bn, an, where n >  0, such that

A aTnB \n ■■■A°fB\1 =  1. □

L em m a 3.24 T t  is free i f  |r| > 4 .  □

In  Section 3.3.1, we w ill give some im portant results w ith  which we can

show the existence of good numerators. In  Section 3.3.2, we w ill do some 

calculations to show such good numerators.

3.3.1 Good numerators

Now our conjecture turns out to be “A ll rational numbers in  the interval 

(—4,4) are 1-nonfree.” From now on, unless stated otherwise let r  =  a/6, 

where a and 6 are relatively prime nonzero integers and |r| <  4.

D e fin it io n  3.25 An integer a is called a g o o d  n u m e r a t o r  i f  a/b is 1- 

nonfree fo r every b with |a/6| <  4.

Before we start, we need to  show the following lemma,
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L em m a  3.26 I f  t  is 1-nonfree, then r im  is also 1-nonfree fo r any nonzero 

m.

P ro o f. Since r  is 1-nonfree, there must be a reduced word W ( r )  =  Afv-B^1 • • •

, such tha t W (t ) =  I .  Substituting A r for A™m, we can rewrite W (t ) 

in  the form W (t ) =  A rf ^ B \ n • ■ ■ A ^^B ^1. Hence W (r )  is a reduced word of 

T r /m and W (t ) =  I .  Therefore, r /m  is also 1-nonfree.

There is another lemma which is particularly useful in the search for se

quences as in Lemma 3.22.

Lem m a  3.27 r  is 1-nonfree i f  and only i f  there exists som eW (r) =  AaTn B^1 • • •

A alB bi in reduced form, where n >  0 and all ai,bj ^  0, such that W (t ) is a 

lower triangular matrix.

P ro o f. I f  r  is 1-nonfree, by Lemma 3.22, there is a non-identity word 

W (t ) € T r  which gives value / .  This W {t ) is clearly a lower triangular 

matrix.

I f  W  (t ) is a lower triangular m atrix, we can write it  in  the form of

for some complex number a and c. Then since both W {r)  and B\ are lower 

triangular matrices, we can easily show by computation that

whence [B i ,C t \ — I .  Hence, r  is 1-nonfree. This completes the proof.

Using this lemma, we can now deal exclusively w ith  one of the m atrix  

entries. This significantly simplifies the complexity of the process. In  the rest

□

is also a lower triangular matrix. I t  follows tha t CTB \ =  f i+ ^  i  j  =  B \C T,

□
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of this section, we w ill define an algorithm to find a sequence which w ill prove 

1-nonfreeness.

In  order to prove tha t \Ev is free, one of the natural methods is to  find 

a word w ith  fin ite order. However, this method only works for some specific 

situations. For most cases, it  does not work. The following theorem shows 

th is result and the only condition where this method can work.

T heo re m  3.28 Let r  be a rational number such that |r| <  4 and r  =  a/b, 

where a, b are relatively prime integers. Then 1I 'T has nontrivial elements of 

finite order i f  and only if  a =  1,2 or 3.

P ro o f. Since

(B^r2)4 = (Bî -1)4 = (J Zf)‘ = h
and

( iM ^ ) 3 = ( i  i f )  = ^

we obtain tha t 4>r has torsion i f  r  =  1,2 or 3. By Lemma 3.26, it  immediately 

follows tha t T t  has torsion i f  the numerator a =  1,2 or 3.

Conversely, i f  4rr  has torsion, then there is a non-identity element W (r )  € 

\kT such that

W ( t )p =  I2 (3.13)

for some prime number p. Then the minimum polynomial of W  ( r )  must divide 

xv — 1 and hence has no multiple roots. Thus we can diagnoalize W ( r )  over 

the complex field as

'vM ~ p (o l ) p 1

for some P. Since every element of T r has determinant 1, we must have 

A2 =  1 /A i.

By

A2 -  T ra c e (W (r))A +  det{W {r)) =  0,

we obtain

(o1 £)+*wt»(J 1) = (0  X)
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and hence

P
( o  a " ) p _ ' -  T r “^ w M ) p ( o  i ) p - 1 +  d< w W p (l> ? )

p -1

0 0 
0 0

and finally,

W 2 ( t ) -  Trace(W {T )) • W ( t ) +  det{W {r)) • J2 =  0. (3.14)

By (3.13), we have

p -  l

W (r)p =  h  =► (W (r)  - I 2) - £  W ( r ) ‘ =  0
i=0

for W (r)°  =  7-2, where no factor of IT ( r )p — J2 is itself factorable. 

Then by (3.14), we obtain either

W (t )p - h  =  W 2{t ) -  T race(W (T )) • W (r)  +  d e t(W (r)) ■ I 2

i=0
In  the former case, p =  2 and hence W (r)  =  —12. In  the la tter case, p =  3 

and then T r a c e ( W { T ) )  =  — 1.

We can write W (r)  in the reduced form

where n  >  0 and all a,, bj ^  0. Then the entries of W (r)  are polynomials in  r  

w ith  integer coefficients. As in (3.9), we can write

where the p ^ ’s are elements of Z [r] dependent on the exponents and bk■ 

Now if  W ( t ) =  —72, we have 1 +  rp n ( r )  =  —1. Then r  is a rational 

root of a polynomial w ith  integral coefficients whose constant term  is 2 , so 

t  has numerator 1 or 2. If, on the other hand, T ra c e (W (r)) =  —1, then 

2 +  t ( p i i ( t )  + P i 2 ( t ) )  =  —1. Hence, r  is a rational root of a polynomial w ith  

integral coefficients whose constant term  is 3, so r  has numerator 1 or 3.

or
p -  i

Y  W (t )* =  W 2(t ) -  T ra c e (W (r)) • W {t ) +  d e t(W (r)) • J2.

W ( t ) =  A aTnB \ n ■■■ A ? B ĥ

(3.15)
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In  particular, the above theorem shows tha t 1, 2 and 3 are good numerators. 

Now we know tha t finding an element of fin ite order does not help too much 

in  showing nonfreeness. We revert to  looking for sequences as in  Lemma 3.22.

Given a rational number r  =  a/b , where a, b € Z, and a sequence of 

nonzero integers b\, a i, b2, a2, • • • , bm, am, we can define the following sequence 

recursively:

From Lemma 3.27, to prove tha t r  is 1-nonfree we only need to show tha t 

there is a sequence &i, a i, b2, a2, ■ ■ • ,bm,a m to make xm =  0 for some m c Z .  

To simplify the problem, we define

y'n =  bnx'n_ 1 +  by 
x'n =  bxfn_x +  aany'n.

Since xn — 0 i f  and only i f  x'n =  0, we s till have the nonfreeness after 

converting the sequence. However, since x\ and y' are integers, i t  is sufficient 

to  concentrate on integers. The simplified sequence leads to

x0 =  0 
2/i =  1

(3.16)
V n  — bn X n —l  +  y n —1
Xn xn~ i  +  anry n.

Then it  follows that

and

(3.17)

(3.18)

x'n =  bnxn and y'n+1 =  bnyn+1. (3.19)

The sequence (3.16) turns out to  be:

x[ =  a\a
(3.20)
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T h eo re m  3.29 I f  the rational number r  =  where a ,r  € Z  and r  ^  0, 

then t  is 1-nonfree.

P ro o f. Let ai =  r  and 62 =  —1, then we have x[ =  ra  and y'2 =  a ^ a  +  b =  

—ra  +  ra  ±  1 =  ±1. Then let a2 =  =  T br =  T a r2 — r ,  we obtain:

x'2 =  bx[ +  aa2y '2 =  ra (ra  ±  1) +  a (T a r2 — r ) ( ± l )
=  r 2a2 ± r a  — r 2a2 q: ra  =  0.

Thus a:2 =  0 and </2 is a lower triangular matrix. By Lemma 3.27, r  is 

1-nonfree.

□

This theorem gives another way to  show the 1-nonfreeness of 1, 2 and 3. 

In  general, given a rational number r  =  a/b, how can we find a proper 

sequence of nonzero integers 61, a i, • ■ • ,bn,a n to  make x'n =  0? In  the sequence

(3.20), we have:

a\x'§ and a\x[.

Now if  for some k >  0, we have a\x'k_ l , then since a\aaky'k, it  follows that

a |& 4 - i +  aakVk => a\x'k.

By induction, we have a|.r'n for n >  0. Now, i f  a and b are relatively prime, as 

b\y'n, we have

M n )  =  1

for n >  0. Thus

Lem m a  3.30 We can obtain y'n =  0 only when a ^ ± l .

We can extend the result of Theorem 3.29 to a more general form:

L em m a 3.31 I f  a sequence yields y'n =  ±1 , then r  =  a/b is 1-nonfree.

P ro o f. Since a\x'n for n >  0, then bx'n_ J a  is an integer. Pick an =  T-bx'n_ l /a , 

i f  an 7̂  0, then x'n =  bx'n_i — bx\X_ x =  0. I f  an =  0, we have x'n_x =  0. Thus, 

by Lemma 3.27, r  =  a/b  is 1-nonfree.

□
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Since our purpose is to find some x- =  0, or by Lemma 3.31, to  find some 

y'j =  ± 1, one way to construct the satisfactory sequence bi, a \, ■ ■ ■ ,bn,a n is to 

choose nonzero numbers a* and bi tha t minimize the absolute values of y' and 

x ' at each step un til we get the desired number. In  the rest of this paper, we 

call this method the “pure greedy” algorithm and the corresponding sequence 

x 'q, y[, x[, • ■ • the pure sequence.

One advantage of this method is tha t i f  [by'^l >  |x(_ j|/2 , in  order to 

calculate smallest y' we are actually finding the modified remainder on division 

of by't_l by x '_ x, whose absolute value is less than [by'^ | and Even if

\by'i^i \ <  | ^ i - i l / 2 , since we can not pick zero and bi, the element we obtain 

has the absolute value |x '_ ,j — |hy'_j|. This value is greater than |x '„ 1|/2, 

whence greater than |6y4'_ i|, but i t  is s till less than Therefore, small

values of |x'_, | provide small values of jy'|. Similarly, small values of |y'| 

provide small values of |x'|, which is always less than |ay'|.

Thus, if  a =  1, the absolute values of elements keep decreaseing at each 

step. By Lemma 3.30, we have y( 0 for any i E Z +. Since x \ and y' are 

integers, we can finally reach some x ' =  0 and prove tha t rational number 

r  =  1/6 is 1-nonfree for nonzero integer b.

W hile using this algorithm, i f  for some i E Z, the adjacent elements y\ and 

x ' are not relatively prime, say (y', x ') =  di 1, we can improve the situation 

by substituting x ' for x " =  x ' / d f  By induction on the sequence (3.20), we 

obtain

Lem m a  3.32 (y ',x ') |x ' holds fo r j  > i and (x(,y(+1)|y'- holds fo r j  >  i +  1. 

□

Thus x " is s till a integer, but i t  is less than the original x '. I f  x '_ x and 

y ' are not relatively prime, say ( x '„ 1; y ') =  d2, then similarly, replacing y\ by 

Vi =  Vi/d2) we can obtain an integer y " which is less than the original y[.

Since our purpose is to find some x'k =  0, we can define x " =  x '/ (y ',  x ')  and 

y " =  y '/(x (_  j . y'). then use the new sequence Xq, y " , x'/, • • • , y", x " instead of 

the sequence (3.20). As xk — 0 i f  and only i f  x’k =  0, the final conclusion does 

not change. To make a slight change of the relation in (3.20), we can define
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D e fin it io n  3.33 We call the sequence x”, y". x", • • • , y", x " satisfying:

A  =  0 
v'[ =  1

y* =  hnx l_ x +  r3 2 i )
,// _  _

(K - l’Vn)
X n  =  b x n - 1 +  a a X
rfjf __  xn

n (v b O '

the m o d if i e d  p u r e  s e q u e n c e  and the corresponding algorithm the m o d if i e d

PURE GREEDY ALG O RITH M .

In  (3.21), the equation of y" w ill be the same as in (3.20) when (x "_1; y*) =  

1 and the equation of x " w ill be the same i f  (y", x* ) =  1.

In  the modified pure sequence x'g. y'{, x'(, • • • , y", x", any two adjacent ele

ments are prime to each other. By fixing the algorithm in this way, we make 

the elements smaller, whence closer to our target, which speeds up the old 

algorithm to make it  suitable for some larger a and b.

W hile building the new sequence, the bi we pick to minimize y* might not 

minimize x". This is because some larger value for y* might have the property 

tha t (y", x*) =  d‘2  >  1 and the new x " =  x* / d2 might be smaller than value 

from the modified pure greedy algorithm. Similarly, the smallest value of y"+1 

might not come from the modified pure greedy algorithm, either.

To fix  this problem, we further modify the modified pure greedy algorithm 

in the following way. Instead of using only bi to determine the value of y*, we 

use bi and hj ±  1. Now we have three different values of y*: (/y — l ) x ''_1 +  by',{_l , 

bix'l^ +  by”̂  and (bi +  ^ x ^  +  b y ^ .  Let y" =  y */(x "_ 1,y*). By (3.21), we can 

obtain three x * ’s and their three corresponding x'f's. For our new sequence, 

pick the y'( tha t makes the absolute value of x" smallest and y* byf_v  The 

reason why we can not have y* =  by"_x is tha t the sequence b1,a 1,- - -  , bn,a n 

is a nonzero sequence.

D e fin it io n  3.34 We call this new sequence r a n g e -1  m o d if i e d  s e q u e n c e  

and the corresponding algorithm R AN G E -1 GREEDY ALG O RITHM .
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As in the modified pure sequence, the elements of range-1 modified se

quence are all integers.

Similarly, i f  we use the 2n +  1 values 6* ±  1, • • • , bi ±  n to  determine our 

y*. we can extend the above “range-1 greedy” algorithm to “range-n greedy” 

algorithm. However, this extension is not unlim ited as i f  n is too big, the 

algorithm becomes slow.

For convenience, “modified pure greedy algorithm” and “range-n greedy 

algorithm” w ill be called “modified greedy algorithm” , “modified greedy algo

rith m ” and “pure greedy algorithm” w ill be called “greedy algorithm” . For 

the corresponding sequence, “modified pure sequence” and “range-n modified 

sequence” w ill be called amodified sequence", “pure sequence” and “modified 

sequence” w ill be called uentry sequence”

Then we can classify them in  the following way.

greedy al
gorithm

pure greedy algorithm

modified greedy algorithm modified pure greedy algorithm
range-n greedy algorithm

entry
sequence

pure sequence

modified sequence modified pure sequence
range-n modified sequence

In  some cases, the range-n modified sequence converges even i f  the modi

fied pure sequence does not. For example, for r  =  12/17, the modified pure 

sequence repeats after step 2 , but the range- 1 modified sequence converges to 

0 at step 4. There are also some cases in which the range-n modified sequence 

converges quicker than the modified one.

In  some cases, even when the greedy algorithm does not end (i.e. it  would 

never yield x" =  0), we can s till prove the 1-nonfreeness w ith  the help of the 

following theorem:

T heo re m  3.35 Given t  =  a/b  € Q, i f  there is some N  >  0 and an infinite 

sequence of nonzero integers - , bn, an such that in the corresponding

modified sequence, \x"\ <  N  holds fo r all i € Z + , then r  is 1-nonfree.
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P ro o f. By (3.21) we have \y'f+1\ <  \x"\. Since \x"\ <  N  for all i € Z + , all 

elements of the modified sequence x'fi y", x", • • • , y", x ", • • • are bounded by N . 

Note tha t the modified sequence can be w ritten in the form of x'0, y[, x [, • • • , 

E f e  • ( t f e l  . -  ■ Then another sequence x j , , , i ',

• • • is also bounded by N  since all of its elements are less and equal to  the 

corresponding elements in the modified sequence.

Since , , XJ‘,—- and , , are integers for all i  £ Z +, there must be a\xn̂ Vn+1/ \xn>yn+l)
repetition among pairs (— | ^ ,  Say there is a pair ( ^ J j ^ ,  j ^ )

and an integer j  >  0 such that ^  and ^  =  {â + i).

By Lemma 3.32, we have (^i ,^i+1)\(oc’i+ j,y'i+j+1), set d =  then it

follows

x'i+J =  dx't, and y'i+j+1 =  dy'i+1.

Pick hi =  B hf +lA°f ■ ■ ■ A ? B p  as in (3.18), and h! =  B bf +i+1 A “i+i • • • A ?+1, 

then by (3.19), we have:

*(!)-(£)

Hence

K 'h 'h i  =  db~i ■ h - \b - *  Q j j ) =  db~i ( J )  . (3.22)

I t  is clear tha t h f l h'hi is neither of the form B± nor the identity in  T t . 

Therefore, h f 1 h'h,, is a lower triangular matrix. By Lemma 3.27, r  is 1-nonfree.

L em m a 3.36 I f  there is an infinite sequence of nonzero integers b i,a i, ■ • • ,bn, 

an such that the corresponding pure sequence is bounded for all i € Z + , then r  

is 1-nonfree.

P ro o f. As the pure sequence is bounded, the corresponding modified pure 

sequence is also bounded. Then by Theorem 3.35, r  is 1-nonfree.
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□

Now we have two ways to prove the 1-nonfreeness of the rational r  =  a/b. 

One is to find some x( =  0, the other one is to  find the boundary of the entry 

sequence, then to  find a pair ( ^ ,y f+1) such that x'i+] =  dx\ and y'+J+1 =  dy'i+l 

for some integer d and j .  The next theorem shows us the relation between the 

two methods and some other new 1-nonfree points, which also shows a way to 

extend the 1-nonfree set based on the former results.

T h eo re m  3.37 Let r  =  a/b £  Q. Given a sequence o i, 62, • • • , bm, am, • • • and 

its corresponding entry sequence a?o, j/i, aq, • • • , ym, xm. • • • such that either

1) Xi =  0

or

2) dxi =  dxm and dyi+1 =  ym+i

holds fo r some integer d and some i <  m. Let M  be the integer such that 

lcm {yi,X i\i <  m } \M . I f  fo r r  £  Z , we have (M r  +  b) \  M , then a / ( M r  ± b )  is 

1-nonfree.

P ro o f. Set t =  a / ( M r  +  b) and a sequence of nonzero integers 61, 61, • • • , bm, 

am, bm+1. Define the following sequence:

x  0 =  0 
Vi =  1

y n  =  bnxn- 1 +  (M r  +  b)yn- i  
xn =  (M r  +  b)xn—i +  aanyn.

(3.23)

I f  we can prove tha t for some i and j ,  Xi =  0, or find a pair (Xi,yi+1) such 

tha t Xi+j =  dxi and yl+J+i =  d,yi+ l, then the 1-nonfreeness of t follows.

By definition £0 =  xo =  0 and y i =  y i =  1. Suppose for some n, we have

xn =  xn and yn+1 =  yn+1. Let

M r x i - i  1 M ry i
&i — cii  ̂ and bi-j_i — b^ i A

ayi Xi

Then
xn+1 =  (M r  +  b)xn +  aanyn+i

=  (M r  +  b)xn +  a(an+\ -  g ) j ^ i  
bxn T  aan+iynjr\ =  xn+i
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and
Vn+ 2  =  bn+2xn+1 +  (M r  +  b)yn+i

=  (bn + 2  -  +  (M r  +  b)yn+i
= bn+2Xn+i T  byn+1 =  yn+2- 

Then the two sequence x0, y i , x u ■ • • , ym, xm, ■ ■ ■ and x0, yh x u ■ ■ ■ , ym, xm,

• ■ • are exactly the same. Therefore t is 1-nonfree for the same reason tha t t  

is.

Here hi and hl+l are both nonzero integers. As we showed before tha t 

a |x j_ i for any i, so is a nonzero integer. By M ’s definition, we have y ,|M . 

Hence, a* =  a* — M̂ ?~1 is a integer. I f  at =  0 ,then Xi =  Xi =  (M r  +  b)x{-1 =  

(M r + b )x i - 1 . Assume that is nonzero, so from M  =  lcm {yi, xt \i <  m }, we 

have X i\M , and hence (M r+ b ) \M ,  which contradicts our hypothesis. Therefore 

a* is a nonzero integer. Similarly, bi+i =  6i+1 — Mnh js an integer and bi+ i ^  0.

Prom (M r  +  b) \  M ,  i t  follows ( M ( —r) +  b) \  M ,  then similarly, t ' =  

a / ( M ( —r)  +  b) is 1-nonfree. By Lemma 3.21, t" =  —t' =  a / ( M r  — b) is also 

1-nonfree. This completes the proof.

□

W ith  the help of this new method, we find a way to restrict the range of 

range-1 modified sequence. Thus, by applying Theorem 3.35, we find a new 

way to  show 1-nonfreeness.

T heo re m  3.38 Let r  =  a/b, where b ^  ±1 . Define a finite set of integers 

I  C  {x  € Z, x\(b +  1) or x\(b — 1)}. I f  fo r any positive integers k, we have 

bk =  i mod a fo r some i G I ,  then r  is 1-nonfree.

P ro o f. Let 1 G I ,  then yi =  1 £ I .  Choose ai =  1, we have X\ =  cqa =  a. 

Thus, for nonzero sequence a i, b2, a2, • ■ ■, we have

1) yi =  b° mod a,
2) y i e l ,
3) xx =  a.

Now suppose for a positive integer n, we have

1) yn =  bk mod a for some k,
2) yn e I ,  (3.24)
3) xn =  ±a.
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Then by (3.20), we have

Vn+i =  byn “b bn-\.\Xn — byn A  &bn-̂ -i.

Since yn =  bk mod a, so ynb =  bk+1 mod a and ynb =  in+1 mod a for 

some in+i G I .  Thus, we can choose bn+1 so tha t yn+i — i n+1 G I .  Here 

bn.|_i ^  0, otherwise we w ill obtain ynb =  in+\. Then because in+\ \(b — 1) or 

i n+i\(b  +  1), it  follows b\(b — 1) or b\(b +  1). Therefore b =  1 or b =  —1 which 

contradicts our assumption b ±1. Thus bn+[ ^  0.

Then,

%n+1 =  bxn +  (lllnjr\ynjl.i =  a (±b  +  cin+l ) •

As in+1 divides one of (b±  1), we can pick some an+\ ^  0 such tha t an+i in+i =  

=F(& ±  1) ^  0, then xn+\ =  ± a  and (3.24) holds for yn+1 and xn+\.

Now our sequence of .t.,: and y, is bounded by AT =  max{|a|, \i\(i G / ) } .  By 

Theorem 3.35, r  is 1-nonfree.

□

Furthermore, i f  we choose M  so tha t i \M  for all i  G I  and V =  a M  ±  b. I f  

b' \  M ,  then by Theorem 3.37, a/b' is also 1-nonfree.

3.3.2 Calculations

Now we can apply those methods to find new good numerators.

By Theorem 3.28, we have

C o ro lla ry  3.39 1, 2 and 3 are good numerators. □

By Theorem 3.29, we can show

C o ro lla ry  3.40 4 and 6 are good numerators.

P ro o f. By Theorem 3.29, we know tha t 4 / (4r ±  1) is 1-nonfree for any r  ^  0. 

By Theorem 3.28, we can obtain tha t 4 / (4r ±  2) =  2 / (2r ±  1) is 1-nonfree for 

any r  ^  0. Therefore, T t  is nonfree i f  a =  4, so 4 is a good numerator.

Similarly, by Theorem 3.29, we know the 1-nonfreeness of 6/ ( 6r  ±  1), and 

by Theorem 3.28, we know the 1-nonfreeness of 6/ ( 6r  ±  2) =  3 /(3 r ±  1) and 

6 / (6 r± 3 )2 /(2 r± l) .  Therefore, T r is nonfree i f  a =  6 , so 6 is a good numerator.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



□

By Theorem 3.29 and above results, we obtain 

L em m a  3.41 5 is a good numerator.

P ro o f. As joypf =  , by Theorem 3.29, the rationals of this form

are 1-nofree for r  ^  0. I f  r  — 0, then | | >  4, they are s till 1-nonfree.

Similarly, are 1-nonfree for r  /  0 . then t br~2 are l _nonfree for r  ^  0 

by Lemma 3.26. I f  r  =  0, the greedy algorithm yields the following sequence 

a,i =  1 , 62 =  - 1, o,2 =  1,63 =  — l , a 3 =  —2 and its corresponding sequence 

x0 =  1 ,y i =  l , x i  =  5 ,2/2 =  - 3 , x 2 =  - 5, 2/3 =  - l , x 3 =  0. Hence, 5/2 is 

1-nonfree.

Apply the greedy algorithm to  5/3, we obtain the sequence ai =  1 ,&2 =  

- 1 , 0 2  =  1,63 =  l , a 3 =  3 and x0 =  1,2/i =  M i  =  5,y2 =  - 2 , x 2 =  5 ,2/3 =  

—l , x 3 =  0. Then the lease common multiple M  =  fo m {l,5 ,2 } =  10. Since 

3 f  10, for 6 =  3, we have (M r  +  b) \  M  for any integer r. Hence all rationals 

of the form 0/±3 are 1-nonfree.

Since ToFPI =  5(2r+ i)—1 and T o^ i =  5(2r—i)+ i ’ they are both 1-nonfree. As 

io^t5 =  2SI> by Theorem 3.28, they are 1-nonfree. Therefore, 5 is a good 

numerator.

□

L em m a 3.42 7, 8, 9, 10, 11 are good numerators.

P ro o f. For |r| =  \a/b\ <  4, (a, b) — 1, assume that a >  0, b >  0. Firstly, 

we are going to  show tha t is 1-nonfree for any a € {7 ,8,9 ,10,11} and 

m e  Z. Let I  =  (± 1 , ±2 , ±3, ±4, ± 6}. Since both b =  6m  +  1 and b =  6m — 1 

are odd, one of b +  1 and b — 1 is divisible by 4 for either b. I t  is clear tha t 

±1 , ±2 , ± 3 ,± 6  divide 6m =  b^f 1. Therefore, for all i G I ,  we have either 

*|(6 +  1) or *|(6 — 1). Since (a, 6) =  1, it  is never the case tha t bk =  5 mod a 

when a — 10. Note tha t I  contains the complete set of residues modulo 10. 

Hence, for all positive integer k, we have bk =  i mod a for some i €  I .  Then, 

by Theorem 3.38, are 1-nonfree. Since I  also contains the complete set
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of residues modulo a for a =  7 ,8 ,9 and 11, sim ilarly by Theorem 3.38 ’ 6m± 1’
and J L ,  are all 1-nonfree.6 m ± l  ’ 6 m ± l  6 m ± l

Now suppose a is not a good numerator, and b is the lowest denominator 

w ith  \a/b\ <  4 and r  =  a/b  1-free. Then b must be in one of the forms 6m, 

6 m ± 2  or 6 m ± 3 . Thus either form of b is divisible by 2 or 3. By Lemma 3.26, 

to  show the 1-nonfreeness of a/b, we only need to discuss the 1-nonfreeness of 

a /2  and a/3. Since (a, 6) =  1, we do not need to discuss the 1-nonfreeness of 

8/ 2 , 10/2 and 9/3. Furthermore, i f  we can show tha t a/3 is free, then because 

3|6m and 3|(6m ±  3), we obtain the 1-freeness of a/b  for all b =  6m and 

b — 6m ±  3. That makes the discussion of l-nonfreeness of a /2  only useful for 

b =  6m ±  2 . As 4|(6m ±  2), in  this case, the 1-nonfreeness of a /4  is equivalent 

to  the 1-nonfreeness of a/2. Here, because both 9/2 and 11/2 are 1-free, we 

use 9 /4  and 11/4 instead.

Therefore the last thing to  show is the 1-nonfreeness of the following r ’s:

I  I  § 9 10 11 11
2 ’ 3 ’ 3 ’ 4 ’ 3 ’ 4 ’ 3 ' 1 j

For r  =  7/3, let I  =  {± 1 , ±2 , ± 4 }, the complete set of residues modulo 7. 

Then, for all i E I ,  i t  is clear that *|(3 — 1) or i |(3 +  1). Thus, by Theorem

3.38, 7/3 is 1-nonfree. The rest of (3.25) can be proved 1-nonfree by the pure 

and modified greedy algorithm as showed below:
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r corresponding sequence
7/2 Oi =  1, h  — - 1, a2 — 1, h  =  - 1, =  1, 64 =  - 1, a4 =  1,

65 =  - 1, a5 =  - 1, b6 =  - 1, a6 =  - 1, b7 =  1, a7 =  - 2 .
£1 =  7, y2 =  -5 ,  x2 =  -2 1 , ys =  11, £3 =  3 5 ,2/4 =  -1 3 , £4 =  -2 1 , 
Vn =  -5 ,  £5 =  - 7 , 2/6 =  -3 ,  £e =  7 ,2/7 =  1, £7 =  0.

7/3 ai =  1, 62 =  —1, &2 =  1, =  —2, a3 =  1, £>4 =  1, a4 =  —3.
£1 =  7, 1/2 =  - 4 , £2 =  -7 ,  2/3 =  2, £3 =  - 7 ,  2/4 =  -1 ,  x 4 =  0.

8 /3 a l  — 1, b2 =  —1, «2 =  1, &3 =  — 1, a3 ==: 6.
X i  =  8 , 2/2 =  - 5 , £2 =  - 1 6 , 2/3 =  1, £3 =  0 .

9 /4 a i  =  1, b2 — —1, a2 =  1, 63 =  —2, (*3 =  —2.
£1 =  9, 2/2 =  -5 ,  £2 =  -9 ,  2/3 =  - 2 ,  £3 =  0.

10/3 ai =  1, b2 =  - 1, a2 =  1, 63 =  - 1, «3 =  - 2. 0liC
O1IICO

0
~1IIo,H1IIO
"

r—HIIH

11/4 a i =  1, &2 — -1 ,  «2 =  1, 63 =  -1 ,  as =  2, 64 =  1, a4 =  -4 .
£1 =  1 1 ,2/2 =  - 7 ,  £2 =  - 3 3 , 2/3 =  5, £3 =  -2 2 , t/4 =  -2 ,  £4 =  0.

11/3 a1 =  1, &2 =  - 1, a2 =  1, 63 =  - 1, a3 =  1, 64 =  - 1, a4 =  1, 
65 =  —1, as =  1, &6 — —1, a$ =  —1, b7 =  —1, a7 =  1, b$ =  —3, 

=  —1, bg — 6 , ag =  1, &10 =  —2, aio =  1, &n =  —1, Un =  —3.
£1 =  11, 2/2 =  - 8, £2 =  -5 5 , 2/3 =  31, £3 =  176, 2/4 =  -8 3 , 
£4 =  —385, 2/5 =  136, £5 =  341, y6 =  67, xe =  286, y7 =  —85, 
£7 =  -7 7 , 2/8 =  -24 , £8 =  11, 2/9 =  - 6 , £9 =  -1 1 , 2/10 =  4, 
£10 =  11, 2/11 =  1, £11 =  0 .

Note here, we used the range-1 modified algorithm to  calculate r  =  11/3, 

otherwise the sequence w ill end at £12.

□

We can apply the same methods to show the following lemma:

L em m a  3.43 12 is a good numerator.

P ro o f. Since we already know tha t a is a good numerator for |a| <  11, we 

only need to consider the b satisfying (12, b) =  1. Then b =  ± 5  mod 12. For 

r  =  12/5, using the pure greedy algorithm, we have a% =  1, 62 =  —1, a2 =  1, 

63 =  -1 ,  ci3  — -1 ,  b\ — 5, 04 =  -1 ,  and hence aq =  12, y2 =  —7, x2 =  —24, 

2/3 — —11, £3 =  12, 2/4 =  5, x'4 =  0. Thus 12/5 is 1-nonfree and by Lemma 

3.26, b is 1-nonfree if  5|b. I f  b =  ±1  mod 5, taking I  =  {± 1 , ± 5 }, by Theorem

3.38, b is 1-nonfree.

For b =  ±2  mod 5, we discuss the following cases.
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Case 1. b =  ± 5 mod 24, say b — 24&±5 =  5p±2, choose ai =  2, &2 =  —fc, 

a2 =  ±2p — 1, 63 =  10/c ±  2, a3 =  ± 6, and hence £1 =  24, y2 =  ±5 , x 2 =  =pl2, 

y3 =  1, x3 =  0.

Case 2. b =  ±5  mod 36, say b =  36fc±5 =  5p±2, choose a i =  3, 62 =  —A;, 

a2 =  ±3p — 1, 63 =  —15/c=f2, a3 =  ±b, and hence x \ — 36, y2 =  ±5 , x2 =  ±12,

2/3 =  1, £3 =  0.

Case 5. b =  ± 7  mod 36, say b =  36k ± 7  =  5p ±  2, choose a* =  1, 

b2 =  —3A; =f 1, a2 =  ± p  +  1, 63 =  —5A; ±  1, a3 =  ±36, and hence x \ =  12, 

y2 =  ±5 , x 2 =  ±36, y3 =  1, x3 =  0.

In  the above three cases, all values of x* and we got divide 360. Now 

pick M  =  2520 =  7 x 360, then by Theorem 3.37, 12/(2520r ±  6) is 1-nonfree 

for a ll 6 <  1260 except for 17, 127, 377, 487, 737, 847, 1097 and 1207. We can 

show the 1-nonfreeness of these 8 integers by the following table.

T corresponding sequence
12/17 ai =  2, 62 =  —1, a2 =  5, 63 =  —10, a3 =  17.

x i =  24, y2 =  -7 ,  x 2 =  -1 2 , y3 =  1, x 3 =  0.
12/127 ai =  2, 62 =  -5 ,  a2 =  —36, 63 =  -3 7 , a3 =  -254.

x i =  24, y2 =  7, x2 =  24, y3 =  1, x3 =  0.
12/377 ai =  2, &2 =  -1 6 , a2 =  108, 63 =  -110, a3 =  754.

x i =  24, y2 =  -7 ,  x 2 =  -2 4 , y3 =  1, x3 =  0.
12/487 a\ =  2, b2 =  —20, a2 =  —139, 63 =  —284, a3 =  —487.

x x =  24, y2 =  7, x2 =  12, y3 =  1, x3 =  0.
12/737 01 =  2, 62 =  -3 1 , a2 =  212, 63 =  -4 3 , a3 =  7370.

X\ =  24, y2 =  -7 ,  x 2 =  -120, y3 =  1, x3 =  0.
12/847 ai =  2, 62 =  —35, a2 =  —242.

x i =  24, y2 =  7, x2 =  0.
12/1097 ai =  2, b2 =  -4 6 , a2 =  312, 63 =  64, a3 =  -10970.

xx =  24, y2 =  -7 ,  x2 =  120, y3 =  1, x3 =  0.
12/1207 ai =  2, 62 =  -5 0 , a2 =  -345, 63 =  704, a3 =  1207.

=  24, y2 =  7, x2 =  -1 2 , y3 =  1, x3 =  0.

Notice tha t the least common multiple of all the x,; and y* in the table is 

M  =  2520. Therefore, by Theorem 3.37, 12/(2520r ±  6) is 1-nonfree for all 

6 <  1260. Hence, 12 is a good numerator.

□

Farbman also mentioned in  his paper [11] w ithout proof.
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L em m a 3.44 13, 14, 15, 16 are good numerators. □
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Chapter 4 

Torsion-free groups

In  this chapter, we w ill deal w ith  torsion-free group. Charnow solved the 

rational case. In  [8], he showed tha t Gu has an element of fin ite order (other 

than the identity) i f  and only if  u is the reciprocal of an integer. We w ill 

extend his result w ith  the help of Watkins and Zeitlin ’s work [39]. Before doing 

that, some definitions and a few facts about the degree and the conjugates of 

2cos(27r/n) over the rational numbers Q are needed.

D e fin it io n  4.1 The u - t h  C h e b y s h e v  p o l y n o m ia l  is

\n /2 \ .

Tn(x) =  cos(ncos_1 x) =  ^  (  2m
m = 0 k

Then, the degree of n -th  Chebyshev polynomial is 2|_n/2_|.

Let ( n =  cos(27t/n )  +  % sin(27r/n) be prim itive n -th  root of unity. Since 

2 cos(2-7r /n ) =  ( n +  C"1, we have:

Q (C n )  2  Q(2cos(27r/n)) D Q.

Let 4>{n) be the degree of £ „’s m inimal polynomial, then [Q (C n )  : Q] =  4>(n )-

L em m a 4.2 <p(n) is also the number of integers between 1 and n that are 

relatively prime to n and ifn  =  prf  • • -prf , then (j>(n) =  (P i~  1)- d

Let ipn(x) be the m inimal polynomial of 2cos(27r/n ), then

L em m a  4.3 I f  n >  3, then the roots o f ifn{x) are 2 cos(2&7r/n ) , fo r  0 <  k <  

[ | ]  =  s and (k ,n ) =  1. The number of roots is <f>(n)/2.
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P ro o f. Given a Q-automorphism ok of <Q>(Cn) by crfe(Cn) =  C«• F°r n > 3  and 

(k ,n ) =  1,

ak (2 cos(27r/n)) =  afc(C„ +  C"1)

=  o -fe (C n ) +  ^ ( C 1)

Sn 1 Sn

=  2cos(2kn/n).

Hence,

if;n(2cos(2 k ir/n )) =  il)n(ak(2cos(2n/n))) =  <7fe(^ n(2cos(27r/n))) =  afc(0) =  0.

Therefore, 2 cos(2&7r /n )  are the roots of ipn(x) for 0 <  k <  [ | ]  =  s and 

(k ,n ) =  1. Another important thing is to show those 2 cos(2/c7r /n ) ’s are the 

only roots of ipn(x).

I f  (k, n) — g ^  1, say k =  k'g and n =  n'g, then wn(x) w ill be the m inimal 

polynomial of 2 cos(2k'n/n'). Thus

ipn{2 cos{2n /  n’)) =  ^ n(<7i / fc/(2 cos(2fc'7r /n ') ) )  =  a i/ fe/(^ n(2cos(2 k 'v /r i) ) )  =  0.

Hence, ipn'(x ) (the m inimal polynomial of 2 cos(27r/n')) is a factor of 'ipn(x). 

Note that ipn(x) =  'ipn'(x) ■ ^n̂ , then 2cos(27rjn )  is the root of either 

or • Compared to pn(x), both of the two factors have the lower de

gree. This contradicts our assumption tha t ipn(x) is the m inimal polynomial 

of 2cos(27r/n).

For k ^  [0, -s], the value of 2/c7r /«  is not in  the region [0, 27t], so the cor

responding 2 cos(2A;7r/« )  are not new roots. Therefore, 2cos(2kir/n) are the 

only roots of ^ n(x) for 0 <  k <  [ | ]  =  s and (k ,n ) =  1.

Let P (n ) be the set of integers between 1 and n tha t are relatively prime to 

n. Since (k , n) — 1, then (n — k ,n ) — 1. Hence for each k such tha t 0 <  k <  s 

and k e P (n ), there is an integer n — k such tha t s =  [§] <  n — k <  n 

and n — k € P («), and vice versa. Then we can divide P (n )  into two equal 

size subsets. We call them P (n )k and P (n )ra_fc. Note that <j>(n) is the size of 

P (n ), then the size of P (n )k is <p{n)/2. Then the number of the corresponding 

2cos(2kn/n ) is <f>(n)/2. Thus ipn(x) has 4>(n)/2 roots.
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□

4.1 W atkins and Zeitlin

We make a small change in Watkins and Zeitlin ’s theorem [39]:

T h eo re m  4.4 Let 0n(x) be the minimal polynomial of 2cos(27r/n) and let 

Ts(x ) denote the s-th Chebyshev polynomial,

a) I f  n = 2 s + l is odd, then

(4.1)
d\n

b) I f  n —2s is even, then

22 V w ( | )  ~  2 T . - i ( | )  =  n * < x )  “  V’(n). (4.2)

P ro o f. Since ( n is a root of the quadratic polynomial x2—2 cos(27r/n)x+ l, we 

have [ Q ( C n )  : Q(2cos(27r/n))] =  1 or 2 . I f  n =  1, we have 2cos(27r/n) =  2 . For 

n =  2 , we have 2 cos(27r/n) =  —2. I f  n >  3, is not real and therefore [ Q ( C n )  : 

Q (2 cos(2/r/n ))j =  2. Since </»(n) is the degree of ( n’s m inimal polynomial, we 

have:

To prove part a) of the theorem, i t  is sufficient to show that the roots and 

the leading coefficients of both sides of (4.1) are the same. Since n =  2s +  1 is 

odd, by Lemma 4.2, the degree of the right side of (4.1) is

(4.3)

^ d e g (^ d ( x ) )  =  deg(V>i(x)) +  ^  deg(^d(x))
d\n d\nyd^l

=  d e g (^ i(x ))+  Y I  d) / 2

=  l  +  ^ ( n -  1)

=  1 +  s.

which equals the degree of the left side of (4.1).
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Now we are going to  prove tha t the roots of the left side and the right side 

of (4.1) are exactly the same.

For 0 <  k <  s, let g =  (k ,n ), k' =  k /g , n' =  n /g , so tha t (k ',n ') =  1. 

Then 2 eos(2/;‘7r /n )  =  2cos(2k'n/n') is a root of ipni, which is a factor of the 

right side of (4.1). On the left side,

=  2C0S(/C7T H ) — 2C0S(/C7T-------- )
n n

=  0 .

Therefore 2cos(2kn/n) is also a root of the left side of (4.1). Hence, the

all the roots of both sides.

The last th ing is to  check the leading coefficients of both sides of (4.1). 

Since

=  2s~l coss 9 +  • • • .

So Ts+i(x /2 )  =  2s ■ (x /2 )s+1 +  • ■ • and the leading coefficient of the left 

side is 2 • 2s • ( | ) s+1 =  1, which equals the leading coefficient of the right side 

of (4.1). Hence, (4.1) is proved.

Similarly, we can prove part b) of the theorem. Since n =  2s is even, the 

degree of the right side of (4.2) is

2Ts+i ( i  • 2 cos(2A;7r/n )) — 2TS(^  • 2 cos(2A:7r /n ))

n n

roots of both sides are 2cos(2kn/n) for 0 <  k <  s, and these s +  1 roots are

Ts(cos0) =  cos (sd)

— 3?((cos 6 +  i sin Q)s)

• coss 2 0{1 — cos2 6) + ^  ^ ^  • coss 4 9( 1 — cos2 6) 2

. . .  +  (_ !)[§ ] •COS® 2 1̂ 0 ( 1  —  COS2 0)^1

=  (1 +
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]P d e g (^ d(a:)) =  degO i(z)) +  deg(^2(a:)) +  ^  deg(^d(a;))
d\n d\n,d>2

= deg(̂ i(x)) + deg(̂ 2( )̂)+ ^ 2  M l 2
d\n,d>2

=  2 +  - ( n  -  2)

=  1 +  s,

which equals the degree of the left side of (4.2).

Again the roots of both sides of (4.2) are the same. They are 2 cos(2A;7r/n ), 

where 0 <  k <  s and (k, n) =  1 and these s +  1 roots are all the roots of both 

sides.

Let g =  (k , n), k' =  k /g , n' =  n /g , so tha t (k!,n ') =  1. Then 2 cos(2A;7r /n ) =  

2 cos(2fc'7r /n ')  is a root of L y . which is a factor of the right side of (4.2). On 

the left side,

1 1
2Ts+1( -  ■ 2 cos(2A:7r /n )) — 2Ts_ i ( -  • 2 cos(2A;7r/n ))

Zi z
,2k-K(s +  1). „  ,2kTx(s — 1).

-  2 cos( -̂------ - )  -  2 cos( i-------
n n

,kir(n +  2). . .kir(n — 2).
=  2 cos(— i-------- L\ _ 2 cos(— i

n n
,, 2kn . „  2&7T.

= 2cos(K7r H--------) — 2cos{kiT------- )
n n

=  0.

Therefore 2 cos(2A’7r /n ) is also a root of the left side of (4.2). Since the 

leading coefficients of both sides of (4.2) are 1, thus (4.2) is proved.

□

4.2 Calculation of ip n (2)

Now we can use (4.1) and (4.2) to compute ipn(x) using the following Lemma:

Lem m a  4.5 F o rn  =  p i1 •••Pt*, where pi, - ■ ■ ,pt are different prime numbers.
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I f t  =  2 q + 1  is odd, then

, . i ’ (n ) • E[j=l rii1<i2<-«2 ,̂<l,»2,-,*2j=l  Pi2j ^  . .

~  T p + M f ifri ■" ..... - ) '  '11.7 = 1 l-lil<J2< — ,t2i-l=l ̂ '■Pij/Pijj P>2 3 _ 1

I f t  =  2q is even, then

. . V ^ )  r i j= l  r i i 1 < i2 < —< i2 j- , i i, i2 ,— ,<2^=1 ^(pii'Pis Pi2,-) , ,

~  T P  f f  ib( n ) ‘  ‘
l i ? = l  l l * i < i 2 < —« 2^ - l , * l ) * 2 .— I*2i - l = l  r ' 'P i1 -Pi2  P*23-l

□

For (4.4), the number of factors ( ip(rn) for some rn\n ) in its numerator is:

which is also the number of factors in  its denominator.

I t  is similar to get the number of factors in (4.5)’s numerator:

which equals the number of factors in its denominator. Then by Theorem 4.4, 

we can rewrite (4.4) and (4.5) in the form of:

a

t 2Tr2i± l l ( f ) - 2 T |ni r i |( f )
= T T  . ^ ! 2  L̂ J 2 (4.6)

2n T m ( i ) - r L ^ j ( l )
f={ r r^ i i ( f ) - T L̂ j ( | )

for some nAn and m,- In.
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I f  x =  2, for Chebyshev polynomials 71(f), we have Ts( l)  =  71(cos 0) 

lim ^ o  cos(s6). Then after substitution, using PHopital theorem, we have

V»n(2) =  limr/>n(x)
£ —>2

2* 1 T r r j i  + l-, (x) — T, W,;-l , (x)
=  iim  TT w  i l l :

* - l H  Trmj + l, (x) -  T, mj-1 , (x)2=1 I —2 I L—2—J
2‘-1 T rni+ii (cos 9) — T, n j - i , (cos 9)

=  lim  TT------------ -------  L~ ^ J --------
(cos 9) — T^mj- i j (cos 9)

y ,  c o s ( r ^ i » ) - « » ( L V j < i )
» “  cos( r ^ t l  1«) -  cos( L = ! f i j  9) (4.

t f  [ M ! ]  . s m (fs jU O ) -  IB ^ J  . s in ( [ ^ J 9 )
0L °  1 1  _  |m ^ l j  . sin( p ^ i j 0)

2n  ( P ^ 1) 2 - ( L W  
M ( ^ D 2 - ( L ^ J )2
2i - l

n Uj_
rriii=l

Combine (4.7) w ith  Lemma 4.5, i f  t =  2q +  1 is odd, then:

^n (2) =
r i . n 9 n 4 _2___

1 -*-.?=1 1 l l l < * 2 < ” -< *2 j,U ,*2 ,— , * 2 j= l  P i j / P i j  P i2j-

t t+1 ft4 n -
l l j = l  1 i l l  < * 2 <  —< *2 ^ -1 ,*1 , *2,■•■,*23—1 = 1  P i j / P i j  P i23_ l

n j = l  r i t 1 < i 2 < - < » 2 j - l , n , i 2 , - , » 2 3 - l = l T » l  ' P » 2  Pi2j - 1

I l j  = l r i i 1<i2<-<j2j,*l,*2,-,*2j=l^U ’ ^*2 ........ jP*2;

( n L iB ) E ;- ,<2' !i>

=  1 .

Similarly, i f  £ =  2q +  1 is even, then:

n ■ I T  TT4________________________-__, {   1 1 J =  1 A « X < * 2 < - < * 2 i , * l , * 2 , - , * 2 ^  =  l  P i1 -Pi2 ...... P j2^ 1
Vn{£) -  ™  jzp n =  1.

l l j  =  l  l l i l < » 2 <  — *2, — ,*23-1 =  1 P i j - P i j  P » 2 j_ l

Therefore, we have:
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L em m a 4.6 ^ n{2) — 1 fo r any n € Z + . □

4.3 N ew  result

Let Gu =  (Au, Bu), then by induction, every element of Gu is of the form:

where the }\ are polynomials w ith  integral coefficients.

T heo re m  4.7 Let u <E C be an algebraic number over Q with an irreducible

polynomial f ( x ) =  anxn + ----- 1- a ix  +  do of degree n, where an, an_x, • • • , a i €

Z, ao G Z + and (an, an_ i, • • • , do) =  1. I f  Gu has an element of finite order p 

(other than the identity), then,

1) I f  ai 7̂  0, then do =  1/

where p is a prime number.

Then the m inimal polynomial of C  must divide xp — 1 and C  is diagonal- 

izable over the complex field. Hence

for some invertible m atrix Q. Since every element of Gu has determinant 1, 

we must have £2 =

it  follows tha t — 1. Thus i f  p >  2, ^  =  1 has only one real root, which is 1. 

Since C  is not the identity and ^  1, we obtain tha t £i is a prim itive p-th root

l  +  n2/ i(« )  u f2(u) 
u fz{u) 1 +  u2fi(u )

2) (p — 1) |2n.

P ro o f. I f  Gu is not torsion free, then there 3C  € Gu, s.t.

From

of 1 and the degree of £i over the rationals is p — 1. Suppose =  c o s (^ l)  +  

i s i n ( ^ )  for 0 <  k <  [|] and (k ,p ) =  1, th e n £2 =  cos(^1) — i s in ( ^ [). On the
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other hand, £1 is a root of a quadratic polynomial w ith  coefficients in  Q (u), 

namely the characteristic polynomial of C. Hence (p — 1) |2n.

From
r  -  (  1 +  u2h ( u) uh {u )

\  uffau) 1 +  u2fi(u )

where the fa are polynomials w ith  integral coefficients, we have

2 A*7T
Trace(C ) =  &  +  &  =  2 cos(— ) ^

=  1 +  u2/ i ( t t )  +  1 +  u2ffau) =  2 +  u2fi(u )  +  u2ffau)

Suppose the m inimal polynomial of 2cos(^3:) is v p(x). Since the coef

ficients of the m inimal polynomial of cos(^zt) are all integers. Then fafax) 

is also an irreducible polynomial w ith  coprime integral coefficients. Then 

ipp( 2 +  u2(fa{u) +  ffau)) ) =  fap(2 c o s ( ^ ) )  =  0. By expansion, ipp( 2 +  

x2( f i (x )  +  ffax)) ) — x2ffax ) +  i>p(2), where fa(x) is a polynomial w ith  inte

gral coefficients. Thus, u2 ffau) =  —fap(2) =  po G Z. Therefore f (x )  — ao is a 

factor of x2 ffax).

I f  the coefficient a\ of the irreducible polynomial f (x )  of u is not zero, 

from u £  Q, there must be a factor g(x) of xffax) w ith  coprime integral 

coefficients, s.t. g{u) * u & Q. (We can pick g(x) =  Qn) , i t  is a

polynomial w ith  coprime integral coefficients. ) Since a4 fa 0 and ao fa 0, we 

have g(x)\x ffax) =$■ g (x)\ffax), i t  follows ffax) =  g(x) * d{x). As both f {x )  

and g(x) are polynomials w ith  coprime integral coefficients, g(u) * u actually 

equals the remainder of the division of xg{x) by f (x ) ,  which is ^  for some 

P i|(on, O n- i i ' ' '  ai)- Therefore

u2ffau) =  Po => ug(u) * ud(u) =  po => ud(u) =  (4 .9)
ao

For the same reason, since d(u) is a polynomial w ith  integral coefficient, 

ud(u) =  ^  for some P2 \(an,a n- i , - - - a i ) ,  hence f 2 =  ^  =» a20 =  P0 P1P2  =► 

«oboPiP2- However, (an, an_ i, • • • , a i, a0) =  1 =>• ((a „,a „_ i, • • • , afa, a0) =  

1 =$■ (pi, a fa =  1 and {j>2 ,afa) =  1, which means a2\p0. From Lemma 4.6, 

Po  =  —1, then because ao G Z +, ao =  1.

□
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Now we can use Theorem 4.7 to give a new proof of Charnow [8] ’s result.

C o ro lla ry  4.8 Let u be rational. Then Gu has an element of finite order 

(other than the identity) i f  and only i f  u is the reciprocal of an integer.

P ro o f. Suppose u =  — where 0,1 is an integer. Let

1 - 3 u \  f  1 0 \  /  - 2  - 3 u
C  =  A ~ Bai =  ' 0 1 ) * \ a \ u  l )  =  \  i  1

We have C 3 =  ^  J ^ ^  and hence C  G Gu has order 3.

Conversely, assume Gu has some element (other than the identity) of fin ite

order. Then, because u is rational, the irreducible polynomial of u is of the 

form f ( x )  =  a\X  +  ao, where aj 0. Therefore, ao =  1 and a\U  +  ao =  0 =>•

u =  —^  =  —T-is the reciprocal of an integer.

□

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] S. Bachmuth, H. Mochizuki Triples of 2 x 2  matrices which generate free 

groups , Proceedings of the American Math. Soc., 59 (1976), N o .l 25-28.

[2] J. Bamberg, No-free points fo r groups generated by a pair of 2x 2 matrices, 

J.London Math. Soc.(2), 62 (2000), 795-801.

[3] R. Beals, Algorithms fo r matrix groups and the Tits alternative, J. of 

Computer and System Sci., 58 (1999), 260-279.

[4] A. F. Beardon, Pell’s equation and two generator free Mobius groups, 

Bull. London Math. Soc., 25 (1993), no. 6, 527-532.

[5] J. L. Brenner, R. A. MacLeod and D. D. Olesky, Nonfree groups generated 

by two 2 x 2  matices, Canadian J. of Math., 27 (1975), 237-245.

[6] J. L. Brenner, Quelques groups libres de matrices, C. R. Acad. Sci. Paris, 

241 (1955), 1689-1691.

[7] B. Chang, S. A. Jennings and R. Ree, On certain pairs of matrices which 

generate free groups, Canadian J. of Math., 10 (1958), 279-283.

[8] A. Charnow, A note on torsion free groups generated by pairs of matrices, 

Canadian Mathematical Bulletin, 17 (1975), 747-748.

[9] M. Cohen, W. Metzler, and A. Zimmermann, What does a basis o fF (a , b) 

look like?, Math. Ann., 257 (1981), no. 4, 435-445.

[10] R. J. Evans, Nonfree groups generated by two parabolic matrices., J. Res. 

Nat. Bur. Standards, 84 (1979), no. 2, 179-180.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[11] S. P. Farbman, Non-free two-generator subgroups o fS L 2 (Q ), Publicacions

Matmatiques, 39 (1995), 379-391.

[12] J. Z. Gonsalves, M. Shirvani, Free Groups in Central Simple Algebras 

without T it ’s Theorem, Preprint.

[13] J. Z. Gonsalves, A. Mandel, M. Shirvani, Free products of units in algebras 

I. Quaternion algebras, J. of Algebra, 214 (1999), 301-316.

[14] M. Hall, The Theory of Groups, Macmillan, New York, 1959

[15] J. A. Ignatov, Free groups generated by two parabolic-fractional linear 

transformations., Modern algebra, 4 (1976), 87-90.

[16] J. A. Ignatov, Free and nonfree subgroups o /P S L ^C ) that are generated 

by two parabolic elements. , Mat. Sb.(N.S.), 106(148) (1978), no. 3, 372- 

379, 495.

[17] Y. A. Ignatov, Rational nonfree points of the complex plane, A lgorithm ic 

problems in the theory of groups and semigroups, 127 (1986), 72-80.

[18] Y. A. Ignatov, Rational nonfree points of the complex plane. I I . ,  Algo

rithm ic problems in the theory of groups and semigroups , 20 (1990), 

53-59.

[19] Y . A. Ignatov, T. N. Gruzdeva, I. A. Sviridova, Free groups of linear- 

fractional transformations, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform., 

5 (1999), no. 1, Matematika, 116-120.

[20] Y . A. Ignatov, A. V. Evtikhova, Free groups of linear-fractional transfor

mations, ChebyshevskiiSb., 3 (2002), no. 1(3), 78-81.

[21] Y. A. Ignatov, N. A. Kuzina, Boundary points of a free domain, Cheby

shevskiiSb., 4 (2003), no. 1(5), 82-84.

[22] J. A. Ignatov, Groups of linear fractional transformations generated by 

three elements., Mat. Zametki, 27 (1980), no. 4, 507-513, 668.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[23] J. A. Ignatov, Roots of unity as nonfree points of the complex plane, Mat. 

Zametki, 27 (1980), no. 5, 825-827, 831.

[24] A. W. Knapp, Doubly generated Fuchsian groups, Michigan Math. J., 15 

(1968), 289-304.

[25] S. Lang, Algebra, Springer, New York, 2002.

[26] R. C. Lyndon, D. E. Schupp, Combinatorial Group Theory, Springer, New 

York, 1977.

[27] R. C. Lyndon and J. L. Ullman, Groups generated by two parabolic linear 

fractional transformations, Canadian J. of Math., 21 (1969), 1388-1403.

[28] R. C. Lyndon and J. L. Ullman, Pairs of real 2-by-2 matrices that generate 

free products, Michigan Math. J., 15 (1968), 161-166.

[29] M. Y. Lyubich, V. V. Suvorov, Free subgroups of SL2(C) with two 

parabolic generators, J. Soviet Math., 41 (1988), no. 2, 976-979.

[30] A. M. Macbeath, Packings, free products and residually finite groups, 

Proc. Cambridge Philos. Soc., 59 (1963), 555-558.

[31] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory : presen

tations of groups in terms of generators and relations, Dover, New York, 

1976.

[32] P. J. McCarthy, Algebraic Extensions of Fields, Chelsea, New York, 1976.

[33] M. Nagata, T. Nakayama, T. Tuzuku, On an existence lemma in valuation 

theory, Nagoya Math. J., 6 (1953). 59-61.

[34] M. Newman, A conjecture on a matrix group with two generators, J.Res. 

Nat. Bur. Stand., B78 (1974), No.2 795-801.

[35] R. Ree, On certain pairs of matrices which do not generate a free group, 

Canadian Mathematical Bulletin, 4 (1961), 49-52.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[36] L. N. Sanov, A property of a representation of a free group, Dokl. Akad. 

Nauk SSSR, 57 (1947), 657-659.

[37] M. Shirvani, J. Z. Gonsalves, Free products arising from elements of f i

nite order in simple rings, Proceedings of the American Math. Soc., 133 

(2005), No.7 1917-1923.

[38] J. T its, Free subgroup in linear groups, J. of Algebra, 20 (1972), 250-270.

[39] W. Watkins and J. Zeitlin, The minimal polynomial of cos(27r/n), Am. 

Math. Mon., 100 (1993), No.5, 471-474.

[40] B. A. F. Wehrfritz, Infin ite  Linear Groups, Springer-Verlag, New York, 

1973.

[41] H. Whitney, Elementary structure of real algebraic varieties, Ann. of 

Math., 66  (1957), 545-556.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


