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Abstract

Structure of the group generated by two parabolic linear fractional transfor-
mations is studied. For the set of 2-free points, several classical results and
the corresponding methods are reviewed and a new method is given. The set
of nonfree points is described and analyzed. Farbman’s results about rational

1-nonfree set is presented. A new set of torsion-free points is given.
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Chapter 1

Introduction and background

1.1 Introduction

Define (A4, Bjs) to be the multiplicative group generated by two noncommuting

parabolic linear fractional transformations:

Aaz((l) O{) andBﬁ=<[13 2)

where o and (5 are complex numbers.

The topic of this thesis is the study of the structure of the group (A4, Bgs).
We are interested in whether it is free or not. As there is a direct relation
between the freeness of (A4, Bg) and the complex number 7 = a3, people are
trying to find the domain of A = 7/2 for which the group (A,, Bg) is free and
call such a A 2-free. (We will also use the notation free for u = /7 and the
notation I-free for 7.) Most of the complex plane is then proved to give 2-free
points. However, there is still an eye-shaped area unknown. We will review
these results and give a new method to find 2-free points in Chapter 2.

Another way to solve this problem is to find all 2-nonfree points. We will
discuss the density of 2-nonfree points and show some specific nonfree sets in
the eye-shaped area in Chapter 3. In Section 3.3, we will review Farbman
[11)’s result about nonfree rational set and will give the complete proof of the
nonfreeness of rational numbers with numerators 1 to 12.

It is also a major question to determine the torsion-freeness of group
(Aq, Bg). Charnow discuss the rational case in [8]. We propose a more general

result in Chapter 4. This is one of the most important original results of the

1
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thesis.
The remainder of this chapter consists of background material we will be

needing later on.

1.2 Basics

We use mark “=” to denote “represent’. For example, (a;z + ap)z = f(2)
means we use f(z) to represent the polynomial (a1z + as)xz. We also fix the

following notations.

Definition 1.1 The FLOOR FUNCTION |z |, gives the largest integer less than

or equal to z.

Definition 1.2 The CEILING FUNCTION [z], gives the smallest integer greater

than or equal to z.
Definition 1.3 The INTEGER PART FUNCTION [z] gives the integer part of .

Definition 1.4 The GREATEST COMMON DIVISOR (ay, G2, - ,Gy) Of N inte-
gers ay, Ge, -+ -, Gp, where at least one of them is nonzero, is the largest positive

divisor shared by all the nonzero integers of them. For ezample, (2,6, —22) =2
and (1,0,15,-3) = 1.

Definition 1.5 If a and b 5% Q are integers, it can be proved that there exist
unique integers q¢ and r, such that ¢ = ¢b+1r and —a/2 < r < a/2. The

number 1 is called the MODIFIED REMAINDER.
Here we give some definitions about polynomials.

Definition 1.6 The ROOTS of a polynomial f(z) are the values of x for which
the equation f(x) = 0 is satisfied.

Definition 1.7 The highest power in a univariate polynomial is known as its
DEGREE, or sometimes ORDER. For example, the polynomial P(z) = a,z" +

oo F a22% + 012 + ag, where a, # 0, is of degree n, denoted deg P(x) = n.
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Definition 1.8 A polynomial is said to be IRREDUCIBLE if it cannot be fac-

tored into nontrivial polynomials over the same field.

Definition 1.9 The MINIMAL POLYNOMIAL of an algebraic number { is the
unique wrreducible monic polynomial of smallest degree f(x) with rational co-

efficients such that f(¢) = 0 and whose leading coefficient is 1.

Note that for an algebraic number (, it can have lots of irreducible polyno-
mials but it can have only one minimal polynomial. Those polynomials have

the same degree.

Definition 1.10 The characteristic polynomial of a square matriz A is the

polynomial left-hand side of the characteristic equation
det(A—-&I)=0
where I is the identity matriz and £ is the variate of the polynomial.

We give some group theory basics here.

Definition 1.11 If G is a group, then the TORSION ELEMENTS Tor(G) of G
(also called the TORSION of G) are defined to be the set of elements g in G
such that g" = 1 for some natural number n, where 1 is the identity element

of the group G.

Definition 1.12 If Tor(G) consists only of the identity element, the group G
18 called TORSION-FREE.

Definition 1.13 A Q-AUTOMORPHISM o of a field Q(¢) is a bijective map
o : Q) — Q) fizing Q that preserves all of Q(¢)’s algebraic properties,

more precisely, it is a field isomorphism fizing Q.

Definition 1.14 A group G is called FREE if no relation exists between one
of its group generators other than the relationship between an element and its

wnverse required as one of the defining properties of a group.
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Definition 1.15 Let G be a free group. Then a word W in G is called RE-

DUCED if it contains no part aa™! for any a € G.

Definition 1.16 The FREE PRODUCT G * H of groups G and H is the set of
elements of the form gihigohs...g-hy, where ¢; € G and h; € H. Here G and

H have the same identity and no other relations exist between g; and h;.

1.3 Background

Our group (A,, Bg) contains two generators. To study its structure, we need
to discuss the value of o and . To simplify this question, Chang et al. [7]

proved the following lemma.
Lemma 1.17 If o8 =6 # 0, then (Aq, Bg) and (A, Bs) are isomorphic.

Proof. It suffices to prove that (44, Bg) = (A,, Bs). We have

1 aof a1 10 4 (10
b %)= ) = (-G

where P = ({3). Hence the mapping X — P~!XP gives the required

isomorphism.
O

By Lemma 1.17, two groups generated by such elements are conjugate to
each other as long as they have the same value of 7 = Trace(A,Bg) —2 = af.

We can easily get the trivial case,

Lemma 1.18 7 = Trace(AqBg) — 2 = 0 if and only if the group (A,, Bg) is

abelian.

Proof. If 7 = Trace(A,Bg) — 2 = af = 0, we have either @ = 0 or 8 = 0.
Now if a = 0, then A, is the identity matrix, group (Aq, Bg) is (Bg) with only
one generator. Hence, group (A,, Bg) is abelian. Similarly, if 8 = 0, we can
also obtain the same result.

If the group (A, Bg) is abelian, then the two words A,Bg = (H;;o‘ﬂ ‘f) and
BgAq = (}155) are equal. Therefore, 7 = Trace(A,Bs) — 2 = 0.

4
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O

Putting aside the trivial case, most of the work done to date on this problem

has put the two generators in one of the following forms

Ay = ((1) 11‘) ,B, = (i (1)) (1.1)

Ay = ((1) i) By = @ (1)) (1.2)
A, = (é I) By = G (1)) (1.3)

Let G, = (A4, By), Hy = (A),By) and ¥, = (A, B;), where people
usually use G, in the study of the non-free groups and H) in the study of the

or

or

free groups. Now we can give the following definitions:

Definition 1.19 A complex number u is said to be FREE if the multiplicative

group {((3%),(19)) is a free group, and NONFREE, otherwise.

Definition 1.20 A complex number X is said to be 2-FREE if the multiplicative

group {(31),(39)) is a free group, and 2-NONFREE, otherwise.

Definition 1.21 A complex number T is said to be 1-FREE if the multiplicative

group ((§7),(19)) is a free group, and 1-NONFREE, otherwise.

Since these parameters are connected by the relations 7 = u? = 2\, we
conclude that « is free is equivalent to %2- is 2-free and a? is 1-free.

We can also obtain:

Lemma 1.22 The set of u for which G, is free is symmetric with respect to

the real azis, the imaginary azis and the origin.

Proof. Given u € C, such that G, is free. Now if G is not free, we can

obtain an element W, € Gy, such that

Wy = B A ... BpAm
Wy = By Aer - By A,

U U

I
i (1.4)

2
U
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where ny,my1, -+ ,0p,my € Zand ny #0,my #£0,--+ ,np # 0,my # 0.

1 u —_ 1 % —_
Bf,,:(O 1>=Bu and Aﬂz(o 1>—Au,

Wy =Bpr - Ay - Bit - Ay = Bpr Al - Bl A

Since

then

From (1.4), we have
Bl Al ... BMAM =W, =1

which contradicts our assumption that u is free.
Similarly, we can prove that G_g is free given a free u.

Now if G, is not free, there is a word W, € G_,, such that

Wy = B™ A™ ... B™MA™M =] (1.5)

—Uu*T—-u

where ny,my, -+ ,np,my € Zand ny #£0,m; #0,--- ,n, # 0,m, #0.

Since

-1 0 10 -1 0 10
B‘““(O 1)3“(0 1) and A‘“‘(o 1)A“(0 1)’

It follows
-1 0 -1 0Y\,,
100 ) (5 )

W= 1 9)e (3

) QN -1 0
= (0 1>BurAur---B;mA31(0 1)

By (1.5), we have

e e g (=1 O) (1 0 (=1 0\ _(1 0
B Ay BfAf‘(o 1)\o 1) o 1) 7 \o 1

which contradicts the freeness of u.
O

Lemma 1.23 The set of A for which H)y is free is symmetric with respect to

the real azis, the imaginary axis and the origin.

6
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Proof. Given ) € C, such that H) is free. Suppose Hj is not free, then as

in the proof of Lemma 1.22, we can obtain an element W3 € Hj, such that

Wy = Bym A3 - ByW AT = 1 (1.6)
where ny,my, -+ ,ny,my € Z and ny # 0,my £0,--- ,n, #0,m, #0.
Then
B;nr ’;\lr gn ;\“:—W;=I

contradicts our assumption of 2-free .

Similarly, we can prove that H_x and H_), are free given a 2-free ).

The following lemmas are well known:

Lemma 1.24 Ifu is nonfree, then u/k is also nonfree for any nonzero integer
k.

Proof. Since u is nonfree, there must be a reduced word
W(u) = By Ay -« B AR,

such that W(u) = I. Then replace A, by A* s, and replace B, by B¥ Ik W
could rewrite W (u) to the form W(u) = Aﬁ‘};;Bﬁ’/’z . Aﬁ’}}cBﬁl/’}c Hence W (u)

is a reduced word of G, and W(u) = I. Therefore, u/k is also nonfree.

O

Lemma 1.25 For any non-trivial W(u) € G, by conjugation, it has only
one reduced form. We can write it as W(u) = A% Bb ... A% Bt where n > 0
and all a;,b; # 0. Also, the entries of W (u) are polynomials in u with integer

coefficients. |
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Chapter 2

Free sets

The purpose of this chapter is to find when )\ is 2-free, i.e. V2] is free.

Brenner [6] showed that H) is free for |A\| > 2.

Chang, Jennings and Ree [7] derived the freeness of H, for ) lying outside
three open discs of radius 1 with centers (—1,0), (0,0) and (1,0) respectively
(See Figure 2.1, page 14). In [7], it is proved that free algebraic numbers and
2-free algebraic numbers are dense in the complex plane.

Lyndon and Ullman [27] extend the results by showing that H) is free for
A ¢ K, where K is the interior of the convex hull of the set consisting of the
unit circle together with the points z = 12 (See Figure 2.2, page 17). They
also showed the freeness of H), for A satisfying [A£1i| > 1 and |[A+1] > 1 (See
Figure 2.3, page 20) and the density of algebraic 2-free points in the complex
plane. |

Ignatov showed in [20] the freeness of Hy for A lying above the arc of the
circle |z —1] = § when 1 <R()) < 2 and  lying above a line passing through
the point 1+ 7/2 perpendicular to a line segment joining 1+ i/2 to the origin
when R(A) < 1 (See Figure 2.5, page 27). In [16], he showed that H) is free
for |A| > 1 and |S(N)| > § (See Figure 2.6, page 27).

We will review all of these results in this chapter. Putting them together,
we finally reach an eye-shaped non-decided area. With the help of valuation
theory we will give a new method to further explore the eye-shaped area.

We note that

Lemma 2.1 Any transcendental number is 2-free.
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Proof. Suppose H) is not free, so there must be a non-trivial word C, of H)
such that
C.=AMBM .. AWBPr = I,

where [ is the 2-by-2 identity matrix and the integers ny,...,ny, my,..., My
are Nonzero.

Set

_ (p1r(N) p2r(N)
Cr= <p3,r(>\) p4,r(>\)>

where p1 (), ..., psr(N) are polynomials with integral coefficients. While cal-
culating AY'By™, we have p;1(A) = 1+ 2myni ], the leading term of it is
2min;. The entries of matrix A} Bj" only contain A with the highest power
1. Therefore, for entries of C.., the highest possible power of X is 7.

Now suppose that for some k& € Z*, the leading term of p; x(X) is
2%my - mgng - - npA®, then

Ck+1 =C - A;\Lk+1 B;n’““ _ (Pl,l;()‘) pz,i()\)) . (1 + Q;Tbmk;?kﬂk :)

Hence, pix1+1(A) = (1 + 2mppanp1A) - pre(A) + 2me1p2x(X). Since the
highest power of X is k¥ 4+ 1 and the highest possible power of ps ()) is k, the

leading term is

(ka+1nk+1>\) . (2’"m1 s kal ceeMpny - ’nk)\k)

=2"my - ompgang g AP
Now we can get the conclusion that the leading term of p; ,(}) is
my-myng - ng N

Since the integers ny, ..., n,, My, ..., m, are nonzero, the leading coefficient
of p1,-(X) is not zero. As ) is transcendental, nonzero polynomial of A can
not equal zero. Therefore, py g+1(A) — 1 % 0. Thus, C, # I. From this

contradiction, it follows that any transcendental number is 2-free.
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Since \ is transcendental is equivalent to v/2) being transcendental, we
find that both free points and 2-free points are dense in the complex plane,
since transcendental numbers are dense in the complex plane.

Hirsch in his review of [24] asked the question of which algebraic numbers
u yield free groups G,. In 1947, Sanov|36] first answered this question by
showing that G, is free for u = 2, and explicitly characterized the matrices
representing elements of G,. Although this answer is far from complete, Sanov
provided a new way to study the free points.

In proving his result, Sanov applied a classical method formalized by
Macbeath|[30] directly to the action of the matrices as linear fractional trans-
formations. This method, which has been widely used by Sanov’s successors, is
sometimes called “the method of combination” and is more commonly known

as the “Ping-Pong” Lemma. It is stated as follows:

Lemma 2.2 (Macbeath[30]) Let A and B be subgroups of the permutation
group on an infinite set (), such that at least one of them has order greater
than 2. Let G be the group generated by A and B. Suppose that Q0 contains
two disjoint non-empty sets I' and A such that 1 # A € A implies AT’ C A
and 1 # B € B implies BA CT. Then G is a free product of the subgroups A
and B.

Proof. Suppose that B has order greater than 2. Assuming that G is not a
free product of A and B, then there must exist a W € G, s.t.

where n > 1, and 1 # A; € A and 1 # B; € B for all ¢ between 1 and n.
Then since 1 # B € B implies BA CT', we have B;A CT. Now we want
to prove BjA C I'. Suppose B;A =TI". Then

BI'NT =BT NBA=B/('NA)=0. (2.1)

We also know that the order of B is greater than 2, which means that there

exists a nontrivial B} € B, such that B;Bj # 1. Then
0# (BLB)ACT

10
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and
(B1By)A = By(B;A) C BT’

Therefore
B.I'NT 2 (B;B))A#{

which contradicts (2.1). Hence
BiAcCT

Then since 1 # A € A implies AT' C A, we have A;(B;A) C A. By
a continuation of this argument, we finally obtain WA < A, which implies

W # 1. Therefore, G is a free product of its subgroups A and B.

Now we can use this lemma to derive Sanov’s theorem.

Theorem 2.3 The matrices Ay = <(1) 3) and By = (; (1)) over Z are a

basis for a free group.

Proof.  The group Gy = (A,, By) is a subgroup of H = (A,,J), where
J = g(l) (l)) and By = JAyJ. To show that G is free, we must show that
AR B .. AZT By # I provided that r > 1 and all n;, m; # 0. This comes to
showing that A JAL?... JAP® # 1 provided that n > 1 and all p; # 0. Let
H act as a group of linear fractional transformations on the Riemann sphere
C = CU{oo} with Asz = 2+2and Jz = 1/z. Let T' = {2 : |2| < 1} and
A ={z:]z] > 1}. Then AT C A for p # 0, and JA CT. By Lemma 2.2, H
is the free product of the infinite cyclic group (As) and (J). The conclusion

follows.
Od

Beginning with the result of Sanov, arguments of this sort were refined
successively by many people to show that the same conclusion holds for % in
larger regions in C.

Brenner [6], using the same argument as Sanov’s, showed that G, is free

provided that |u| > 2. However, when studying the free group, it is easier to

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



work with the group H) than G, in most of the cases. Several other people,
like Chang, Jennings and Ree [7], Lyndon and Ullman [27], and Ignatov [20],
using the group H), gave approaches to the region of 2-free points.

In this chapter we will use the group H,. By using this notation, we can

restate Sanov and Brenner’s results in the following form
Theorem 2.4 H, is free if |\| > 2. O

We will now review the works of Chang, Jennings and Ree [7], Lyndon and
Ullman [27], and Ignatov [20] [21]. At the end, the author will give a new

method for finding free and 2-free points.

2.1 Chang, Jennings and Ree

We adopt the following notation: For a complex number z and a matrix

a b
P= (b d),wheread~bc—-1

with complex entries, we denote by P(z) the number gjig, which is a linear

fractional transformation. As is well known, given another such matrix @, we

have (QP)(z) = Q(P(2)). If we regard a line to be a circle passing through

infinity, then it can be shown that:
Lemma 2.5 A linear fractional transformation maps circles to circles. O

We denote by D; and D, the following subsets of the complex planes:
Dy ={z| |R()| <1}, Dy={z |R(z)| > 1}
We have the following well known lemma:

Lemma 2.6 For any z € Dy, we have either
1 1 1 1
-1 _ 4 1 .
E 2|<2 or |z +2|<2.
If, on the other hand,
1

1 1
|z—§|>— and |z+=

> 1
2 2

27
then z~1 € Dy. 0

12
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Then we have,
Lemma 2.7 If a complex number )\ satisfies
|A] > 1, IA=1]>1, A+1]>1, (2.2)
then z € Dy implies that (AT)"(2) € Dy for all non-zero n € Z.

Proof. Let 2/ = 27! + n)\. From

== (3 = (4 °)

we have
T\nf. N z -1 -1 _ /.n-1
(AD"e) = 2 = (7 4N = ()
By Lemma 2.6, z € D, implies that
1 1 1, 1
-1_ 41 S
|z 51 <3 or |z +2| <3
Since by (2.2), [nA| > 1 and |nA + 1] > 1, then from |27 — 1| < £ we have:
1 1 1 1 1
/__: -1 — 2> — —-l___ 1___2__
|z 2| 275 +nA 2]_|n)\| |z 2[> 5=3
and
1 1 1 1 1
/ 2 = —1 - > - —1__ - =,
|z +2| |2 +n/\+2[_|n)\+1| |z 2|>1 5=35

Similarly, if [z™! + %] < %, then from |nA — 1| > 1, we obtain

1 1 1 1
,——-— — , — —_—
|2 2|>2 and |z+2|>2

Therefore by Lemma 2.6, (AT)*(2) = (¢/)~! € D,.

With these two lemmas, we can prove the following theorem:

Theorem 2.8 (Chang, Jennings and Ree[7]) Let X be a complex number lying
in none of the open discs of radius 1 with centres (-1,0), (0,0), (+1,0). (See
Figure 2.1) Then the group H) generated by

1 A 10

18 a free group, freely generated by Ax and Bs.

13
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Figure 2.1: Chang, Jennings and Ree

Proof. Assume that the group H, with A satisfying (2.2) is not free. Then

there must be a non-trivial word C of H, such that
C=B"AY .. .BjmAY =1,

where I, is 2-by-2 identity matrix and ng,...,n,, my,...,m, are nonzero in-

tegers. Hence,
C=Cl= (AN (B)™ ... (A)™(B)™ =1 (2.3)

Define the following sequences:

z = (B])™(0) =2my z = (B])™(z._,)

2 = (AL)m(z) o = (AT)™ (z) (2.4)

for any £ < r — 1. Since 21 = 2my, |R(21)| > 1, which means that 2; € Ds.
Thus, by Lemma 2.7, we have

2 = (A})™(21) € Dy

By (2.4),

2ma
2miniA+1 +2my

1 =zi+2m2

Zo =

Hence,
[R(22)| = [2ma| — |R(z1)| >2-1=1

which implies that 2, € Ds. Again by Lemma 2.7, we have
% = (AD)(25) € Dy.

14
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By repeatedly doing this, we finally obtain
z,:.__l € Dl. (2.5)
Define
Y = (B3) ™™ (43)7"(0)
Then, by (2.3), we have
21 =Yy (2.6)

However, on the other hand, y, = —2m,, then |R(y,)| > 2. Thus y, € Da,
which contradicts (2.5) and (2.6). Therefore, we have proved the theorem.

With the result of Theorem 2.8 and the following lemma from [25]:

Lemma 2.9 Let p be a prime and ¢ a rational number. Then the polynomial
2P — ¢ is reducible over the rational field, if and only if, ¢ is a pth power of a

rational number. O

We can prove the following important theorem:
Theorem 2.10 Algebraic 2-free points are dense in the complex plane.

Proof. The theorem is equivalent to proving that for any w in the complex
plane, there is a sequence of algebraic 2-free points having w as a limit.
Because of Theorem 2.8, we may assume that w = b+ ci (where b,c € R)
lies in the domain excluded by Theorem 2.8. Then |c| < 1. Without loss of
generality, we assume b > 0. For any positive number &, there exist a prime

number p > 16/ and an integer ¢ such that

g 1 + arcsin(c/4) < £
p 2 2m 167
Therefore
‘ N ‘
Therefore ? € 2.7)
2qm e/ e 8
T — > arcsin(c/4)| < Sin

Since the derivative of sin(z) is a most 1, we obtain .
'sin(—’—) — —| = ’sin(7r - =)=
p’- 4 p- 4

<&
8
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Then
4sin(2q7”) - ci <£ 2.8)

At the same time, since the derivative of 2% in the domain [0, 1] is less than

1, from p > 16 /¢, we have
olp | < S
2 1] < £

Thus

<< (2.9)

. 2qm
e _1). =2
(2 1) - 4sin( ’ 5

Combining (2.8) with (2.9), we obtain

2 2 2
22+1/”sin(—%7£)——c < 4sin(—%75)—c'+‘(21/1’—1)-4sin(%)’ <e (2.10)

Define
)\1 —a+ 22+1/p62qm'/p.
Then
M —w| = |b—221/Pcos(HE) 4 22+ /Pcos(HE) 4 22/ sin(2E) — b — ¢
= |i22/Psin(3) — cz" = ,22“/1’ sin(#) —¢| < ¢

(2.11)

Set a = b — 22+1/”cos(3;’;’—r) and )y = a + 2%+'/P. Since the range of

arcsin(z) is [—m/2,7/2], from (2.7) we obtain that 2¢7/p € [7/2,37/2]. Hence

cos(2qm/p) < 0 and @ = b — 22¥Y/Pcos(2qm/p) > b > 0. Therefore Xy > 4,
which implies that s is 2-free.

Now assume J\; is not 2-free. Then there must be a non-trivial word C of

group H) which becomes the identity matrix when A = X;. Denote our C as:

o= () )

then, we have

m(M) —1=p2(A1) = p3(M) = pas(M) =1 =0
Since the polynomials pi (A1) — 1, p2(A1), ps(A1) and ps(A1) — 1 have integral

coefficients uniquely determined by C and since A; and )y are roots of the
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polynomial (z — a)? — 2%*1 which, by Lemma 2.9, is irreducible over the
rational field, it follows that

P1(A2) =1 =pa(A2) = p3(A2) = pu(X2) —1=0

and consequently that Ay > 4 is not 2-free. However, this is a contradiction by
Theorem 2.8. Thus, A, is shown to be 2-free. Since A; is algebraic and € is an
arbitrary positive numbers, w is a limit of 2-free algebraic numbers. Hence,

algebraic 2-free points are dense in the complex plane.

2.2 Lyndon and Ullman

With the help of Lemma 2.2, Lyndon and Ullman improved Chang, Jennings

and Ree’s results to

Theorem 2.11 Let K be the convex hull of the set consisting of the unit circle
together with the points z = 2. If the complez number X is not in the interior

of K, then the group H) is freely generated by Ay and By. (See Figure 2.2)

[\S)

Figure 2.2: Lyndon and Ullman

Proof. Let I" be the region bounded by the two circles C; and Cs of radius

5 with centers %3,

1

Ci—{z:|z— %| <3 L (212)

and Cb={z:|z+%|§

N =

17
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and let A be the set of all 2 € C such that

27t — 2] > and |zt 42| >

N =
N =
N =
[T

Let A satisfy
Al > 1, A—=1]>1, A+1]>1.

as in (2.2). Then pick any z € T and any nonzero n € Z. As in the proof of

Lemma 2.7, we obtain

1 1 1 1 1
Ny Z|= — > —|z=Z>1—= ==
| A%z 2| |z 4+ nA 2] > nA|— |z 2| >1 5= 3
and
|A"z+1| = |z+n)\+l| > |n/\+1|—|z—1| >1—l——
Mol 2' = 2'=° 2
Therefore, JAT C A, where J = (9}), and
AMTNT =0 (2.13)
for all n # 0. For arbitrary u # 0, define
u 0
7= )
and let
[*=UT and Al =UAU™' = <(1) “ﬁ)
It follows from (2.13) that
(A" NT* =P for all n #£ 0. (2.14)

Now let A* be the interior of the complement of JI'™*. As in the proof of
Lemma 2.2, we obtain

(A)"T* C JA® (2.15)
Therefore A* is the region

O N N O ET (2.16)

N =

bounded by L; = JUC; and Ly = JUC;. By Lemma 2.5, we know that
L, and Ly are two lines. Let L be the line R(z) = 1, so C; = JL. Hence,

18
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Ly=JUJ-JCy = (Y*%) - JC; is the line perpendicular to the line from the
origin to 1/u, and crosses that line at the point 1/u. Similarly, Ls is the line
perpendicular to the line from the origin to —1/u, and crosses that line at the
point —1/u. It follows that the two lines L; and L, are parallel.

If now we have R(u) = 1, then v is on the line JC;. Then JUJ -u =1 is
on the line L. Similarly, —1 is on the line Ly. Then since L; and Ly are the
boundary of A*, for arbitrary z € A*, we have (B )"z = z + 2n ¢ A*.

Therefore
(BIY"A*NA* = {2+ 2n|]z € A*}NA* =0, (2.17)
$0, as in (2.15), we obtain
B JA* CT*. (2.18)
We claim that (A}, Bs) is a free group. This is because any nonzero word
W in A} and B; is of the form
W = B (A3 ... B (4™
where ny,my,...np,m, € Z and ny # 0,m; # 0,...7n, # 0,m, # 0. From

(2.15) and (2.18), we have the following sequence:

AHmr* ¢ JA*
BMJA* Cc I

Ay~ . JA*
ByJA* C I
Finally we have WI'* C I'"*, which means W is not identity. Hence, (A%, Bs)
is free.
This shows that if A satisfies (2.2), then Gy is free for all X = u), where u
satisfies R(u) = 1. Geometrically, this means G is free for all X' lying on the
line through A which is perpendicular to the line from the origin to A. Hence,

we complete the proof of Theorem 2.11.

Before Theorem 2.14, we introduce the following lemmas.

19
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Lemma 2.12 For h > 0, the circle |z — a| = h|z — b| has diameter

e

m]
h? -1

i

Lemma 2.13 Let W = (1Y) and p be its fized point. Let E be a disc
with p on its boundary. If for a disc D with the same center of E we have
WDND =0 andp ¢ D, then WENE = §. O

Then comes Theorem 2.14, which is a further improvement of Theorem
2.8.

Theorem 2.14 Let A € C satisfy |A + 3i| > % and [\ £ 1] > 1. (See Figure
2.3)

Figure 2.3: Lyndon and Ullman II

Then the group H) is freely generated by Ay and Bs.

Proof. In proof of the theorem, we will use the following notation: we use
A° to denote the interior of complement of a set A and A to denote the closure
of the set A.

By Lemma 1.22, the set of A for which H, is free is symmetric with respect
to reflection in both the real and imaginary axes. If Hy is free, then —A and
the conjugate of A are also 2-free. Furthermore, the conjugate of —\ is 2-free.
Therefore we only need to discuss the situation in the first quadrant. What
is more, from Theorem 2.8, we know if X\ is in the area outside the circles

[A£ 1] =1 and |A| = 1, then H, is free. Therefore, we only need to discuss

20
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0.1 0.2 0.3 0.4 0.5 0.6

Figure 2.4: Lyndon and Ullman II(2)

the situation when A lies inside the open curvilinear triangular region between
the circle [\ — 1] =1, |]\| =1 and |A — }i| = 1.

In the proof we call the shaded open curvilinear triangular region in Figure
2.4 the region F' and assume that )\ lies in this region. From the graph, the
minimum || on F is at the point 23;34—2', which is the intersection of the circles
[Al=1and |A—1i=1.

Let A be the set of z such that [R(z)| < 1. As in the proof of Theorem
2.11, we have

(BH"ANA =0. (2.19)

Therefore
By JA CT' = JA°". (2.20)

Here, I' = JA® is the union of the open discs I'; and I's of radius % with

centers at —% and —l—% respectively.

2440

Since the minimum || on F' is at the point 2%

and our region F' is inside
the unit disc, we have
2v5 _ 1

9
1> A >—>

which means that if |k| > 2, then the distance between the centers of the two

open discs AXT; and I is |kA| > 1. Thus
AT NTy=0 and  ATyNTy =0 (2.21)
for |k] > 2.

21
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Now A € F implies that |A — 1] > 1. We also note that the imaginary
part of X is greater than 4/5 and the real part of A is greater than 0. Hence,
if |k| > 2, then |kX — 1| > |S(kA)| > 8/5 > 1. If k = —1, then |kA — 1| =
| —RA)—iS(A) - 1| > |R(A)+iS(A\) —1| = |A—1| > 1. Therefore, [kA—-1| > 1
for all £ # 0, which means that for £ # 0, the distance between the centers
of the two open discs ATy and I'y is |[kX — 1| > 1. Similarly, the distance
between centers of the other two open discs AT, and Iy is also [kA — 1| > 1.
Hence

ASTiNTy=0  and  AfDynNTy =0 (2.22)

for k # 0.
Hence, from (2.21) and (2.22), if we delete the closures of 'y N 4;'T; and

Iy N AyI'; from T, the remaining set, say I, satisfies
(AN"T'NT =10 (2.23)
for all n # 0, which implies
(A))"T' C JA. (2.24)
Define A’ = J(I")¢, so
A= J(I')* = AUJA'T U JAyT,.

Since A € F', then A,I'; lies in the first quadrant, hence JA,I's lies in the
fourth quadrant. Similarly, JA;'T; lies in the second quadrant. Therefore,

J A;ll“l and JA,I'; are symmetric with respect to the origin and
JA;lfl NJA\Ts = 0.

We set v = A + %, so the boundary of the disc A,I'; is the circle C:
|z —v| = §. Then the boundary of JA,I'; is JC, which is |27 —v| = 3. We
can simplify JC' to the form |z| = 2|v| - |z — 1|. Hence, by Lemma 2.12, the
diameter of JC is

d= (2.25)

4
=1
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By assumption, ®(\) > 0, so from v = A + 3, we have [v| > 3. Therefore, the
denominator of (2.25) is positive. We know that |A| > QT‘/E, so |AI> > % and it

follows that
1. 4 1 21
2 _ ]2 T2 oA
|v°| = |Al +§R(A)+4> 5+4 50"
Then from (2.25), the diameter of JC, i.e. the diameter of JA,I', is less

than -Z—. The real part of the center of JC, i.e. the real part of 1/v, is

R(1) = cos(arg(d)-|3]
1y..,/20
< rl{leaxg(cos(arg()\%- 5)) \/;
< cos(arg(1+§i)'1

2 <3
Therefore, the disc JA)I'y lies in the region {z : |2| < 2}. Similarly, the disc
JAS'T also lies in the region {z : |2| < 2}. Therefore, for |k| > 2,
(BIY*JAJIT N JATIT, =0
and
(Bg)kJA)\FQ N JA)\FZ = 0

Since J A;lfl and JA,I'; lie in the second and the fourth quadrants respec-
tively, we find that

(B3)F(JAF'T1 U JAT9) N (JAS'T1 U JAT,) = 0.

Hence, it follows that
(BHFA'NA =0
for |k| > 2. Define,
P = AN (BH1JAT, = A'n(BDH A
and
P, =N NBIJAT'T, = A'nBYA.

Alsolet A” = A'— (PUPR,) and T” = J(A")°. Thus it is sufficient to show
that A” satisfies
(Bg’)nA// n A” — 0
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and hence
By JA" cT”.
Now we claim that I'” satisfies condition

(AT NI =0 for alln # 0 (2.26)

then similarly to the proof of Theorem 2.11, we can prove Theorem 2.14.
We start from the definition of A”. Let D; = J(B3 ) 'JA,I'; and D, =
JBTJA'Ty, so
I"=T"UD;UD,.

Define I'{ =T, U D; and ') =T', U Dy, then
T =T/UTY.

We know already that
ATT'NT =0
for k # 0, so to prove (2.26), it is sufficient to show that D; and D, are disjoint
from AXT” for k # 0. By symmetry, it is enough to show that D, is disjoint
from AKT” for k # 0. Since AXT” lies in the lower half plane when & < 0 and
Dy lies in the upper half plane, then AST” and D; are disjoint in this case. It
remains to show D is disjoint from AT for k > 0.

We have already proved that JA,I's lies in the intersection of the fourth
quadrant and the region {z : |2| < 2}. Therefore (BY) 1JA,I'y is in the
third quadrant. Finally, D; = J(Bf)"1JA,I's lies in the second quadrant. By
symmetry, Dy lies in the fourth quadrant. Since I'y, as a subset of T'y, lies in
the right half plane, so does I'j = I'), U Ds. Therefore, it is easily verified that
AETY lies in the right half plane for all k > 0. Thus

DN AT =)
for all k > 0. Then the last thing we need to show is that

DinAT =9
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for all k > 0. Since I'/ =T'7 U Dy and I'} € I'y, we can split the question into
showing that D; N AETy = @ and D; N AXD; = 0 for all k > 0. We begin by
showing that

DN ATy = 0. (2.27)

(11 e (101
Uﬁ(o 1), W = JU JU_(_2 _1),

We have Bf = U?, A\T'y = UA\I'y, and Dy = JU2JUAI'; = WAT';. Then
the equation (2.27) turns out to be

Setting

W ANT; N ATy = 0. (2.28)

It is easy to check that the linear fractional transformation W has the two
fixed points p = =5 and p’ = =1=t. Then X € F implies that [A — 14| > 1,
so p does not lie in A\I'y because A\I'y has center A — £ and radius . Let
FE be the disc with center X — %, the same center as A,I'; and with p on its
boundary B. Then by Lemma 2.13, it is sufficient to show that WENE = {.

Since W is a non-Euclidean half turn about p, B and W B are externally
tangent at p, from E finite region, it suffices to show that W E is the finite
region bounded by WB. Since S()) > 3, the center A — 1 of E lies above the
horizontal line through p, and therefore is nearer to p, on its boundary, than
to —3, Thus —3 is not in E, and W(—3) = oo is not in WE.

Thus, it suffices to observe that A,I'; lies above the common tangent line
H separating E from WE. Since $(A\) > 0, then AXT; lies above H for all
k > 1, while D; C WE lies below H. Therefore, we have

DiNAST =0

for k> 1.

Therefore, to complete the proof, we only need to show that D;NASD; =
for k = 1, which is equivalent to showing that D; has diameter d < |\|. From
the fact that D; = J(BY)~1JA,T; and our knowledge of A\I';, we conclude
that the boundary of D; has an equation of the form

1 1

1
|2+ 51 =2\ - |2+ 5 + .
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Now (2.25) shows that d = E—%_—ﬂ, where 7 = |A|. Since 7 > 1, we have
d = g7, and the condition d > r is equivalent to 1 < 4r® —r, or that
f(r) = 4r® —r — 1 be positive. Since 2% <r < ‘1, we can obtain this
conclusion and so

DN AT, =0

for k = 1. Hence, we finally have proved that the two disjoint region A” and
JT satisfy
AT C JA”  and  BJJA" CT”

for any nonzero k and n and any A € F.

Therefore, by Lemma 2.2, H, is free for all A in area F' .

2.3 Ignatov

Since our 2-free points are symmetric in the complex plane, we only discuss
the domain in the first quadrant. In Y.A.Ignatov’s paper [15], he proves the

following theorem:

Theorem 2.15 Let )\ be a complex number lying (considering the symmetry)

above the arc of the circumference |z — 1] = 3 when 1 < R(\) < 2, or lying
above a line passing through the point 1+ i/2 perpendicular to a line segment
joining 1 + /2 to the origin when R(N\) < 1. Then X is 2-free. (See Figure

2.5) O
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Figure 2.5: Ignatov I

In [16], he showed

Theorem 2.16 Let A be a complex number satisfying |A| > 1 and |S(\)| > 1
Then X is 2-free. (See Figure 2.6) O

Figure 2.6: Ignatov II
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2.4 New method to find free and 2-free points

By now, the shape of 2-nonfree area in the complex plane looks like an eye, so
some author (Bamberg in [2], Ignatov in [29] and [19]) called this problem “the
eye problem”. We know from Theorem 2.10 that algebraic 2-free points are
dense in the complex plane and found a set of 2-free points in the eye-shaped

area of the form
Al —a +22+1/p62q7ri/p

where p is a prime number, ¢ is an integer, a is a rational number such that
A = a + 22TU/P is greater than 4.

However, this may not be the only sets of 2-free points in the eye-shaped
area and may not be the only way to find such points. In the rest of this
chapter, we will provide another way to find 2-free points in the eye-shaped
area.

Before we start, we should introduce several definitions:

Definition 2.17 Let F' be a field. An ABSOLUTE VALUE on F' is a real-valued
function a — la| defined on F which satisfies the following conditions:

i) la| >0 for alla € F and |a] =0 iff a =0;

it) |ab| = |a||b| for all a,b € F;

iii) la + b| < |a| + |b] for all a,b € F.

Definition 2.18 An absolute value |.| on F is called NON- ARCHIMEDEAN if
la + 8] < maz{]al, b}
foralla,be F.

Definition 2.19 Let|.| be a non-Archimedean absolute value on F'. We define
an extended real-valued function V on F as follows: let c € R and ¢ > 1 and
set

V(a) = —loglal

foralla € F. Then V satisfies
i) V(0) = 00 and V(a) = oo only if a = 0;
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it) V(ab) =V (a) + V(b) for all a,b € F;
iii) V(a + b) > min{V(a), V(b)}| for all a,b € F.

The function V induces an isomorphism from F onto a subgroup of the
additive group of real numbers. If the subgroup is discrete, we say V is a

DISCRETE VALUATION.

It follows that

Lemma 2.20 Let F be a field. If V is a discrete valuation on F and if
V(a) # V(b) for a,b € F, then

V(a+b) =min{V(a),V(b)}
Proof. Without loss of generality, suppose
Via) < V(b). (2.29)
Then V(a + b) > V(a), which implies that
V(a) =V(a+b—-0b) >min{V(a+0b),V(b)}

If now we have V(b) < V(a +b), then V(a) > V(b), which contradicts (2.29).
Therefore we must have V(a + b) < V' (b), so V(a) > min{V(a +b),V(b)} =
V(a + b). While at the same time V(a + b) > V(a), we have V(a + b) =
min{V(a),V(b)}.

O

To construct the method to find 2-free points in the eye-shaped area, we
also require a number of preliminary lemmas. In the book by Weiss, the author

proved the following lemma:

Lemma 2.21 Let V be a discrete valuation on a field F. Let ag,--- ,a, € F,
where agan, # 0. Put f(z) = ap + a1z + -+ + a,2™ € Flz]. Plot the points
(4, V(ay)) fori=0,---,n and V(a;) < oo on the complez plane. Then if the
line segment joining (3,V (a;)) to (j,V(a;)) is an edge of G(f) and has slope

—m, then f has j — i roots of valuation m.
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In [37], an important lemma is given by

Lemma 2.22 Let F' be a field and let n > 2 be an integer. Fiz a set e of
n? matriz units in R = F™". Let v be a non-trivial discrete valuation on F.

Consider the following subsets of R:
V =V, = {diag(r;) € GL,(F) : the set {v(r;)} has a unique minimum value }
and

T=T,= {Ztijeij . the value {v(t;;)} is finite and independent of i and j }.
i

Then

(i) TVT C T

(i) TV and VT are sub-semigroups of R, neither of which contains a scalar

matriz.

Proof. For w = diag(w;) € V, write v(w) = min{v(w;)}. For t =
2ijtijei; € T, write v(t) = v(ty;). Similarly, for t' = 37, . ti.e; € T, we
have v(t') = v(t;;). Then for any i,j, we have (twt'); = )

-

Y m timWity,;. Now, as every m occurs in the sum for (twt')y;, we have

((twt')i5) thmwmn nj) =V Ztlmwm

Now for a fixed m, we have v(timWmty,;) = v(t) +v(wm) +v(t'). Then because
the set {v(w;)} for 1 <4 < ¢ has a unique minimum value, from Lemma 2.20
it follows that
v((twt)y;) = ming{v(t) + v(wy) +v(t')} = v(t) + ming,{v(wy,)} + v(E)
= v(t) +v(w) + v(t).

By definition, this means that twt’ € T. So (i) is established. It follows that
(TV)TV)=(TVT)V CTV and (VT)(VT) = V(TVT) C VT, which means
TV and VT are sub-semigroups of R. Since we have (wt);; = Y, Wintm;j =
wit;; # 0 for any 4, j, neither of TV and VT contains a scalar matrix. Hence,

(ii) is proved.
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By this lemma, it follows that V * T is a free product of sets. This allow

us to provide a way to find 2-free points in the eye-shaped area.

Theorem 2.23 Given a set of generators {Cy, Ca} of the multiplicative group
of linear transformation Hy = (Ay, Bs), construct matrices P, and Py that

diagonalize Cy and Cs respectively:

_ A O - A3 O
Vi=P 101P1:<01 A2>, V2=P2102P2=<03 M)

Let

& &4

If now we have a discrete valuation v such that v(Trace(C1)) < 0, v(Trace(Cs)) <
0 and v(&) = v(&) = v(&3) = v(€&) = 0, then Hy is freely generated by Aj
and Bg.

TO — })2—1131 — <£1 62)

Proof. Using the definition of V and T in Lemma. 2.22, we have To € T'. If
we can show that Vi, V, € V, then by Lemma 2.22, (V1, T, *VoTy) is a free set
generated by a subgroup of V and 7.

To show Vi € V, we need to prove the discrete valuation v separates A;
and Xg. Since v(Trace(Cy)) < 0, we have v(A; + Ag) = v(Trace(Cy)) < 0. By
definition of discrete valuation, we know 0 > v(A1 + A2) > min{v(A1),v(A2)}.
Therefore, a least one of the valuation of A; and ) has negative value. In the
same time Hy C SLy(C) implies det(V;) = 1, which means v()\;) + v(Ag) =
v(A1A2) = v(1) = 0. Hence, one of v(A;) and v(\2) is negative and the other
one is positive. It follows that v separates A\; and Xg. Similarly, v separates
As and Ag. Then, V1, V, € V. Therefore, (V1,15 1VQTO) is a free set generated
by the subgroup of V and T. But (V;,T;'VoTo) = (Vi, Py P VR Py Py is
conjugate to (PVIPT, PITTVeTo PTYY = (PIVIPTY, PRV Pyt = (O, Oy,

which is the basis of Hy. Therefore, H) is free.
]

Remark 2.24 When using the above method, we can use Lemma 2.21 to get
the valuation of & for i = 1,2,3,4. We already know that v(Trace(C1)) < 0
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implies v(A1) # v(A2). However, the two statements are actually equivalent. If
V(A1) # v(Ae) 1s true, since v(A;)+v(A2) = 0, without loss of generality, we can
suppose V(A1) < 0. Then v(Trace(Ch)) = v(he + A1) = min{v(Xa),v(A)} =
v(A1) < 0.

Remark 2.25 This method can also be used to find free points.

Although we have this method, to find a proper pair of C; and Cs is still
a big problem. Firstly, the original two matrices Ay and B; are not suitable.
Both matrices have trace 2, which makes the valuation greater than or equal
to zero. Let us fix n € Z* and A)BY} as C; and A)\Byt! as Cy. Clearly, these
two matrices constitute a basis of H).

Now, we have Trace(C;) = 2(1+nA) and Trace(Cs) = 2(14+(n+1)A). Use
Mathematica to compute the matrix Ty, we obtain the minimal polynomial of

&1, &2, &3 and &4 in Q(N):

1 2
PntnmrN. LT (2:30)

By Lemma 2.21, if v(&;) = v(&) = v(&s) = v(€4) = 0, the coefficient of (2.30)
will have the same valuation, so the valuation of 2[2n +n(n+ 1)A] will be zero.

Now if v(T'race(C1)) < 0, since v(2) > 0, we have v[2(1+n]A)] = min{v(2),
v(2nA\)} = v(2n)) < 0, which means v(2)+v(n)+v(A) < 0. If v(Trace(Cs)) <
0, similarly, we can get v[2(1 + (n + 1)A)] = v[2(n 4+ 1)A] < 0, hence v(2) +
v(n+ 1) +v(X) < 0. Since (n,n + 1) = 1, it follows that either v(n) = 0 or
v(n + 1) = 0. Without loss of generality, we say v(n + 1) = 0, then it follows
that

v[2n(n 4+ DA = v(n + 1) + v(2nA) = v(2nA) < 0

However, we know v(4n) > 0

v(2[2n 4+ n(n + 1)A]) v(dn + 2n(n + 1)A)
min{v(4n),v[2n(n + 1)A]}

v[2n(n +1)A] <0

v

Hence, we get the contradiction. Then the method does not work for the

easiest form C; = A\BY and Cy = A)\By+.
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Chapter 3

NonFree sets

Now we know the region of some 2-free points. It is natural to ask whether the
rest of the complex plane is 2-nonfree or not? In this chapter, we will discuss
this question.

In general, a group G = (A,, Bg) is free of rank 2 if and only if there is no
nontrivial word A% Bgl o .Agnt" in the reduced form which gives the value

1 in G. Therefore we have

Lemma 3.1 For X # 0, Hy is nonfree if and only if here is some sequence of
nonzero integers by, ay, -+ , by, an, where n > 0, such that A2 B ... ASBbr

is the identity matriz. m|

We will discuss the density of nonfree and 2-nonfree points in Section 3.1.
Then we will give several nonfree sets in Section 3.2. Finally, we will review
Farbman[11]’s result about the l-nonfreeness of rational numbers and show

that WU, is free for |7]| = |a/b| < 4 where (a,b) =1 and ¢ =1,2,3,--- ,16.

3.1 Density

In Chapter 2, we proved that any transcendental number is 2-free. Chang et
al. [7] deduced that algebraic 2-free points are dense in the complex plane.
Then comes the question of how 2-nonfree points are distributed? We are also

interested in the distribution of nonfree points.
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3.1.1 Density of 2-nonfree points
Before we go further, we need the following well known lemma:

Lemma 3.2 The non-identity matric M = (¢8) € SL(2,C) has finite order
if and only if Trace(M) = 2cos, where 6 # +n and 8 is a rational multiple
of m. o

Here we introduce the notation F' to represent the closure of the set of
2-nonfree points in C. Now look at the shape of the region F'. For example,
we know that F' is contained in the circle of radius 2, center at the origin
(Theorem 2.4), that F' contains the circle of radius 1/2, center at the origin
(Corollary 3.4), that F is connected (Theorem 3.5), and F contains various
known line segment.

In Ree’s paper [35], he proved the following theorem:

Theorem 3.3 Given any T € Hy = (Ay, By), then T is of the form

r- (4 3)
c(A) d(N)
where a{)),b(X),c(A),d(N\) are polynomials in X. If c¢()\) is not identically
zero, then 2-nonfree points are densely distributed in the domain defined by
|A-c(M)] < 1.

Proof. The proof consists in showing that, for a dense set of values of A
in the described domain, a certain group commutator has finite order. Let
T' = [A\,T] = A\TA'T~!. Now we can calculate the entries of T".

Firstly,
1 A a(A) b(A aA)+A-ce(A) b Ad(A
A= (0 1> | (ém) dEA))) B ( iy ))

and
= 2) (8 ) (9 )

Then, since a(A)d(X) — b(A)e(A) = det(T) = 1, we can simplify T to

T (1 +A- a()\)c2()\) + A2c2(\) * >
A (A) 1=X-a(Ne(N))’
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where * is some complicated expression.

If we write
o (d0) B
dA) d»)
then
() = N2 (), (3.1)
and the trace of 7" is
=24+ 223N\ =2+ X-d(N). (3.2)

Define words 11,73, -+ , Ty, -+ - inductively by Ty = T and
Toi1 = A\T,ATI T Tt follows from (3.1) and (3.2) that

t, = Trace(T,) =2 + (A - c(A)?" (3.3)

Now take # arbitrarily such that 0 < 6 < 27 and 4 # =, and let A be any

complex number satisfying
th =2+ (A -c(N) =€ + e =2cosh (3.4)

for some fixed n.

Then since det T, = 1, the eigenvalues of T}, are € and e~®. Since 0 <
6 < 27 and 6 # 7, we have e # e~ Then T, can be diagonalized. If 6 is a
rational multiple of 7, then T, has finite order and hence A is 2-nonfree.

Knowing that the rational multiples of 7 are densely distributed in the
interval [0, 27], we can deduce from (3.4) that the value of (A\-c(\))?" =t,—2 =
2 cos §—2 for which H), is not free are densely distributed in the interval [—4, 0],
especially in [—1,0]. Since our n can be made arbitrarily large, the value of
A-c(A) are dense in the region {z | z € C, |z| < 1}. Therefore 2-nonfree points

are dense in the domain satisfying |\ - ¢(A\)] < 1.

Now we obtain the following:

Corollary 3.4 2-nonfree points are densely distributed in the circle || < .
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Proof. Taking Ty = By, we have A-c¢(A) = 2. Substituting in |A-¢())| < 1,

the result follows.
|

Lyubich and Suvorov [29] give us a nice result about the 2-nonfree points:

Theorem 3.5 The region F' (the closure of the set of 2-nonfree points in C)

is a connected subset of C. |

In order to construct other regions where 2-nonfree points are densely dis-

tributed , we need the following set of 2-nonfree points.
Theorem 3.6 ([7], Theorem 4) Let a,b,c,d, k and h be non-zero integers such
that k > 2 and (k,h) = 1. Then

5= —(a+c)(b+d) + [(a+c)?(b+ d)? — 16abed sin®(hr /)] /2
- 4abcd

(3.5)
s 2-nonfree.

Proof. Let M = AYBSASBS € Hy. then direct calculation shows that:

Trace(M) = 2+2(a+c)(b+ d)X £ 4dabed)? = 2 — 4sin®(hr/k)
= 2cos(2hmi/k) = e¥rilk 4 g=2hmi/k,
Since det M = 1, it follows that the characteristic roots of M are ry = e2hm/k
and ry = e~k Meanwhile, k > 2 and (k,h) = 1 imply that r; and r; are
not equal, which implies M can be diagnoalized with diagonal elements r; and

ro. Therefore M* = I, so H) is not free.

Corollary 3.7 The open segment joining —2 and 2 is contained in F.

Proof. Seta =0b=c=4d=1in (3.5), then A = —1 =% cos(hr/k). Set
a=c=1and b=4d = —1in (3.5), we obtain A\ = 1 & cos(hw/k). Since
the numbers of the form cos(hm/k) are densely distributed in the segment
[—1,1], it follows that 2-nonfree points are densely distributed in the segment
[—2,0] U[0,2] = [-2,2].
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Corollary 3.8 The open segment joining —i and i is contained in F.

Proof. Seta=b=1and c=d = ~11in (3.5), so A = +isin(hn/k). Since
the numbers of the form sin(hn/k) are densely distributed in the segment

[—1, 1], then 2-nonfree points are densely distributed in the segment [—i, i].

3.1.2 Density of nonfree points

Now let us look at nonfree points. Let T' € G,, = (A4,, B,) have the form

- (13 1)

where a(u),b(u),c(u),d(u) are polynomials of u. Set T = (Zg:; Zﬁ%) =
[Ay, T] = ATAIT™L. If c(u) is not identically zero, then using the same

method as in Theorem 3.3, we have:

u-d(u) = vl (u) (3.6)
and the trace of T” is
t' =2+ u’ct(u) =2+u-d(u) (3.7)
We can extend Corollary 3.7 and Corollary 3.8 as follows:

Theorem 3.9 ([27], Theorem 5) Given a positive integer n, let ug be a com-
plex number such that u}" = —4. Then the values of u that are nonfree are

dense on the segment joining the origin to ug.

Proof.  Define words 7,75, ,Ty,--- inductively by To = (3 !) and
Ton1 = [Au, Tn] = AT AT, Write T, = (Z:((Z)) 2:%) It follows from
(3.6) and (3.7) that

tn = Trace(T,) = 2+ucy(u) = 2+u’c_, (u) = 2+ (u-co(w))?" = 2+u?" (3.8)
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Although T, may not belong to Gy, our Ty = ATpA; Ty = AyBy € G,
so T, € Gy, for all n > 1. Now let u = rug, where 0 < r < 1. Since u¢" = —4,

we have t, = 2 — 4r?"

. If t, = 2cos 8, for § a non-zero rational multiple of 7
between —m and 7, then as we showed before, T;, has finite order and hence u
is nonfree.

Now the map carrying r into ¢, maps [0, 1] continuously onto [—2, 2]. Know-
ing that rational multiple of 7 are dense in the segment [—m, 7], we deduce
that the values of t,, = 2cos @ are dense in the interval [—2,2]. It follows that
the values of r for which G, is not free are densely distributed in the interval

[0, 1], which completes the proof of the theorem.

O

Remark 3.10 G, is free for some extreme values of u satisfying u" = —4,
liken=1orn=2. Ifn=1, then u> = —4, hence 2A = u?> = —4, s0 A = —2.
By Theorem 2.4, G, is free. If n = 2, then u* = —4, hence 2\ = u? = +2i,
s0 A = +i. By Theorem 2.8, G, is free. However, for larger n, this might not
be true. For example, when n = 3, none of the 8 extreme values are nonfree.

We will show this later in Theorem 3.18.

Both Theorem 3.9 and Theorem 3.3 include Corollary 3.7 and Corollary 3.8

as a special case. We can restate the two corollaries in the u-form as follows:

Corollary 3.11 Every number u on the segment [—2,2] and the segment [—1—

i, 1+ ] is a limit of nonfree numbers.

Corollary 3.12 Let S be the set of u where G, is not free. Then for any

ug € S, there is an open neighborhood of gy that lies in S.

Proof. Treat u as an indeterminate. Fix ug € S. Then since G, is not
free, there exists a matrix T = ( oo(u) « ) € Gy such that co(u) is not identically
equal to zero and cy(ug) = 0. Use this T as T in Theorem 3.9. Then the trace
of T, is tp, = 2+ (u- co(u))?". Since co(ug) = 0, it is clear that ug is contained

in the open set D = {u | |uco(u)| < 1}.
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Now we are going to show that D C S. Pick any «' € D. Then from the
density of rational multiples of 7, in every neighborhood of u/, there is some
value, say u”, and a value of n such that t, = 2 + (u” - co(u”))?" = 2cos 6 for
6 a rational multiples of 7. Therefore, T,,(u") has finite order. Thus, u” € §

and D C S. This completes the proof of the corollary.

O

Remark 3.13 We note that F is the closure of 2-nonfree points and S is the
closure of nonfree points. Since T is nonfree is equivalent to x*/2 is 2-nonfree,
we obtain S = {z : 2%/2 € F}.

3.2 Nonfree Sets

We are more interested in some specific nonfree sets in the eye-shaped area.
For this, we again view u as an indeterminate. By Lemma 1.25, any element
of G, is conjugate to a unique cyclically reduced form. Consider W(u) =
Au Bl ... A% Bt where n > 0 and all a;,b; # 0. The entries of W (u) are

polynomials in u with integer coefficients. Write

1+ fir(u fi2(w)
W(w) =( f21(ug ) 1+fi2(u)) (3.9)

Then A, =1 +uFs, B, = I +uFy, and

1+ abiu? au
a1 b 1v1 1
A% B _—< o 1).

By induction, f11(u) and fe(u) are polynomials containing only even powers
of u, while fio(u) and fo;(u) are polynomials containg only odd powers of
u. It is clear that the coefficients of f;;(u) (where i,j = 1,2) depend on
by, a1, by, ay.

Write fio(u) = ciu + cau® + -+ + + con_1u?™ 1, where each coefficient copy1
for all

is a sum of a;,by, - - - ay by a4,

1< <ji<ialfo< < < Ji <idpy1 £ 2n—1.

We note that the degree of fio(u) is 2n —1 and its leading coefficient is cp,—; =

aiby -+ - ap_1bp_10,. Similarly, the leading coefficients of f11(u) is a1b; + - - anby,
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the leading coefficients of fa;(w) is byaghs - - - anb, and the leading coefficients

of foo(u) is bragby - - - ap-1b,_10,. These are proved as in Lemma, 2.1.

Theorem 3.14 (/27], Proposition 2) G, is nonfree if and only if the complex

number u s a root of some polynomial f(x) in the following manner:

n—1
f(x) _ Z C2k+1$2k+1
k=0

where cg—1 = Y aubj1 -+ - Qirbjraip1 and the factors are all the subsequences

of the sequence a1, by, ..., an,by.

Proof. Given any non-trivial reduced W € G, which is not a power of B,,

if fi2(u) = 0 for some non-trivial fio(u), then we have

vo-(c )

for some complex number @ and ¢. Then since both W(u) and B, are lower

triangular matrices, we can easily show by computation that

cc-momat- (¢ (9 (29 -( )

is also a lower triangular matrix. It follows that C,B, = <u+1;“z (1)) = B,C,y,
whence [B,, C,] = I. Therefore, G, is nonfree.

If conversely G, is nonfree, then there is a non-trivial reduced W(u) € G,
such that W(u) = I. It follows that u is the root of fis(u) = 0.

We proved previously that fio(u) is of the form fio(u) = Z’,:;é CopyruFtl
where cp—1 = D a;1bj1 -+ - @bjraip41 and the factors are all the subsequences

of the sequence a4, b1, ..., ay, b,. This complete the proof.

We note that a zero-trace matrix S € G, must be of the form S =
(_a% b(a_g;rl)) € Gy, where a,b € C. Then $? = (_az_Ba2+1 _aZ-Ba2+1) = I
Through this, applying the same method again, we can find the following set

of nonfree points.
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Corollary 3.15 Ifm € Z* and u is one of the following: £+/2/m, £i\/2/m,
£+/2/m, £iy/2/m, :I:‘/—LJE’;@{‘/Q/m or :}:M{‘/Z/m, then Gy, is not free .

Proof. Let W = A%Bk... A% Bk be a reduce non-trivial matrix as in
Theorem 3.14. If n = 1, then Trace(W) = 2 + a;b;u®. Then the root of
Trace(W)=10is

2

=2 o

Since a; and by are arbitrary non-zero integers, Gy, is nonfree if u = +4/2/m or
u = £iy/2/m. Let n =2, so Trace(W) = 2+ (a1 + az) (b1 + b2)u® + ayagb bou?.
Now if a; + ag = 0, then the roots of Trace(W) = 0 are

U=+, 2 .
a%ble

Hence G, is nonfree if u = £i{/2/m or u = £/2/m or u = £¥2£2 /57,
oru = :}:-‘[2_21—'\/5 /2/m.

We can extend the first part of the above corollary to get a new result:

Corollary 3.16 If u is nonfree, then so is v' = u+/1/n for any non-zero

integer n.

Proof. Let A = u?/2. If G, is not free, then Hy = (Ay, B) = (4}, By) is
not free. Since Hy is a subgroup of Hy/n = (Ax/n, B2), then Hyy, is not free.

Therefore, v’ = /2 (A/n) = uy/1/n is not free.

For W = A% B A% B% A% Bb%  we have the following result.

Corollary 3.17 If u® = 1 then the points where W = A;'B;2A;'B,A2B,
has finite order are dense on the line segment from u to the origin. Ifub = —1,
then the points where W = A,B;?A,B,A;?B, has finite order are dense on

the line segment from w to the origin.
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Proof. For W = A“BXA“BY%A%BY% with a; + as + a3 = 0, we have
Trace(W) = 2 — (a3b1by + a3bybs + a3bibo)u* + ayasa3b1bobsub. To simplify
this, let a;, ag,b2,b3 = 1 and then ag = by = —2. Then, Trace(W) = 2 + 4u®.

Now Trace(W) ranges from —2 to 2 as u8

ranges from —1 to the origin.
Similarly, changing the sign of a;’s, we have Trace(W) = 2 — 4u®, implying

the density of u® from 1 to the origin.
0

The method indicated in Theorem 3.14 can be extended to produce addi-
tional groups G, that are nonfree. For example, we already know (the remark
after Theorem 3.9) that the values of u satisfying u?* = —4 are free when
n =1 and n = 2. We also mentioned that this may not be true for larger n
but we did not give specific examples. Here, we use this method to prove G,

is not free for the case n = 3.
Theorem 3.18 [fu = +vE1+i (i.e. ub = —4), then G, is not free.

Proof. First we note that the eight cases of u satisfying v = £vE1 %4
are actually the eight roots of u® = —4, which is 42" = —4 for n = 3. Since
ud+4 = (u*—2u?+2)(u*+2u? +2), four of its eight roots satisfy the equation
u? + 2u? + 2 = 0. We show that G, is not free for u satisfying this equation.

As in the proof of Theorem 3.9, set T1 = A,B,, To = [Ay,T1] and T3 =
[A,, T3]. Note that

I3 = [Aua [Au,Tl]] = [Auy [Au,AuBu]]
A3B,A;'BYA'B, A, BT A2

is conjugate to

W = A*TyA, = AB A7 By A7 ByAUB! = Ay, BJ[ACY, By
(T +uP et = ) (1——u2+u4 —u? )
- ud 1—u? —y? 14 u?
x —2ud — 205 — u7)

k *

0

where —2u% — 2u5 —u” = —u3(2+2u? +u?) = 0. If W = B for some n € Z*,
then B;"W = I and G, is nonfree. Otherwise, since both W and B, are
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lower triangular, as before, we can show that C, = WB,W ™! commutes with
B,, whence [B,,C,] = I. Therefore, G, is not a free group for u satisfying
ul + 202 +2=0.

Similarly, if u satisfies u* — 2u? 4+ 2 = 0, then T3 is conjugate to

W' = (A3B,A;'B;Y)T3(A3B,A;'B;Y) = [A;Y, By][Au, B

o f1=w? 4wt = 1+t
N —} 1+u? u® 1—u?
o (x =203+ 205 -

A\ * )

where —2u3 + 2u® — v = —u*(2 — 2u? +u*) = 0. Then C!, = W'B,W'!
commutes with B, whence G, is not a free group for u satisfying u —2u?+2 =

0. Therefore, none of the roots of u8 = —4 is free.

Newman in [34] proved

Lemma 3.19 G, is not free if u is a q-th root of 1, for certain values of ¢ = 2P

for some p € Z*. O

After that Newman conjectured that G is not free for arbitrary values of
q where u is a g-th root of 1 (i.e., u? = 1), Evans in [10] proves Newman’s

conjecture.
Theorem 3.20 Let u be the primitive g-th root of 1. Then G, is nonfree.

Proof. We define the matrices S,, recursively in the following manner. Let
S1 = By, St = SpAZLSE for m > 1.

If we set

then by computation
g . (o b\ (1 —u dm  —bm\ _ [(1+uamen  —uad?,
mH T \em dm/ \O 1 —Cm O ) ucz, 1 — UGmCm
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hence, by induction

m
m __oi 7 __
am=E w7 e =" dp=2—ap

i=1

Now, fix m and define matrices T, , recursively by:

Tmo = Sm, Trnt1 = Tm,nAuTr;,ln

If we write
T - Am,n bm,n
myn —
Cmn dm,n ’

then by computation, we obtain

2
Ampt1 = 1 — UGmnCmmny;  Cmptl = —UCy .

Since we know Trace(T, ) = Trace(A) = 2, for n > 1, we have

+ _ot + _oi
Umn = u2:+:(— Z:il u 2: + Zﬁn’?{l ;umf:)
m n Z
= o (= u? + e U )
and
Cmn = _u2m+n_1’ dm,n =2~ Gmn-

(3.10)

(3.11)

(3.12)

Now assume that « is a primitive g-th root of 1, We prove the theorem

case by case.

Case 1. ¢ = 2P. Then by Lemma 3.19, G, is not free.

Case 2. q is an odd number greater than 1. Pick a € C such that 2* =1

mod ¢. Then 42 = u and 42" = u¥. Replace m with a and n with ¢ + 1,

then by (3.11), we have

(],m’n — u22a+1 (_ Zgzl u_Q'L‘ + Ef:f u_zd-}—i)
= @(-Tiu + 2w )
w?(u ) = wd(u2) = 1,

and by (3.12),

2a+1__ —
Con = —U2 1_ 21

U = —udmpy =2 — A = 1.

From det(Tn ) = @mnlmn—bmnCma = 1, it is easy to obtain by, , = 0, whence

(1 0\ _ o
Tm,n_(_u 1>—Bu,
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which implies that Gy is not free.
Case 8. q = 2Pr for some odd number » where r > 1 and p > 1. Pick

a € C such that 2° =1 mod 7. Then, by (3.10), we have

p
2P —2t o .2P—1 Y,
ap =u E U =1t dp =2 — ap.

i=1

Therefore, by (3.11), we have

a/p+a’a — u21?+2a (_ f:f 1f_2i + Z:J,:l u:’;le‘a-H) 5
= v (- 1 u—z. - i w > it u")
u? (— f:l u_Qi) = —Qyp,

and by (3.12),

2p+2a _ ar - . _
Cpta,e = —U = —Uu" = —Cplpyge =2~ Gpyaa = dp

ot o x x\ [—ap ¥\ [* x
V=25, Tpraa = (——cp a,,) (—cp *) - (0 *>

Then, as before, the matrix

W=V-14,V = <1 *)

whence

01

commutes with A,. Therefore, G, is not free.

3.3 Nonfree Rational sets

While seeking nonfree sets, many people have confined their attention to spe-
cific subsets of the complex or the real numbers. The most natural one of such
subsets is the rational numbers. It is known that if |u| > 2, then u is free. By
Corollary 3.7, we also know that nonfree points are dense on (—2,2).

Until now, several rational numbers have been proved to be nonfree. No
rational numbers are known to be free. Hence it is quite natural to conjecture
that all rational numbers within (—2,2) are nonfree.

People like Brenner et al.[5], Lyndon and Ullman[27] and Farbman[11] have
done some work to support this conjecture. They have either found some spe-

cific nonfree rational sets, or given more general descriptions of nonfree rational

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sets. However, although we can not find a counterexample, the conjecture is
still far from proved.

We will present some evidence supporting this conjecture. For convenience,
in this section we will use the terms “l-free” and “l-nonfree”. For 7 € C, we
note that 7 is 1-nonfree is equivalent to 7/2 is 2-nonfree and /7 is nonfree.

Then we can restate some previously proved results as follows:

Lemma 3.21 The set of T for which V., is free is symmetric with respect to

the reflection in both the real and the imaginary azes. a

Lemma 3.22 Any non-trivial W(r) € ¥, is conjugate to a unique word
in reduced form. We can write W(r) = A%B...A%B" where n > 0
and all a;,b; # 0. The entries of W(r) are polynomials in T with integer

coefficients. a

Lemma 3.23 U, is nonfree for some 7 # 0 if and only if there is some

sequence of nonzero integers by, a1, , by, a,, where n > 0, such that
AmBb.. AnpBh =1 O
Lemma 3.24 V. is free if |7| > 4. O

In Section 3.3.1, we will give some important results with which we can
show the existence of good numerators. In Section 3.3.2, we will do some

calculations to show such good numerators.

3.3.1 Good numerators

Now our conjecture turns out to be “All rational numbers in the interval
(—4,4) are l-nonfree.” From now on, unless stated otherwise let 7 = a/b,

where a and b are relatively prime nonzero integers and |7| < 4.

Definition 3.25 An integer a is called a GOOD NUMERATOR if a/b is I-
nonfree for every b with |a/b| < 4.

Before we start, we need to show the following lemma,
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Lemma 3.26 If 7 is I-nonfree, then 7/m is also 1-nonfree for any nonzero

m.

Proof. Since 7 is 1-nonfree, there must be a reduced word W(r) = A% Bb» ...
A% B™ such that W(r) = I. Substituting A, for A™, . we can rewrite W (r)

T/m?

in the form W(7) = A™aBbn ... A™* Bh  Hence W(r) is a reduced word of

T/m T/m

U, /m and W(7) = I. Therefore, 7/m is also 1-nonfree.

]

There is another lemma which is particularly useful in the search for se-

quences as in Lemma 3.22.

Lemma 3.27 7 is I-nonfree if and only if there exists some W (1) = A% B% . ..
A% B in reduced form, where n > 0 and all a;,b; # 0, such that W(r) is a

lower triangular matriz.

Proof. If 7 is l-nonfree, by Lemma 3.22, there is a non-identity word
W(r) € U, which gives value I. This W(r) is clearly a lower triangular
matrix.

If W() is a lower triangular matrix, we can write it in the form of

o=t )

for some complex number a and ¢. Then since both W(r) and B; are lower

triangular matrices, we can easily show by computation that

o= (¢ 939 )

is also a lower triangular matrix. It follows that C,B; = ( 1+1_12 (1)) = BC,,

whence [Bj, C;] = I. Hence, 7 is 1-nonfree. This completes the proof.
O

Using this lemma, we can now deal exclusively with one of the matrix

entries. This significantly simplifies the complexity of the process. In the rest
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of this section, we will define an algorithm to find a sequence which will prove
1-nonfreeness.

In order to prove that ¥, is free, one of the natural methods is to find
a word with finite order. However, this method only works for some specific
situations. For most cases, it does not work. The following theorem shows

this result and the only condition where this method can work.

Theorem 3.28 Let 7 be a rational number such that |7| < 4 and T = a/b,
where a, b are relatively prime integers. Then U, has nontrivial elements of

finite order if and only if a = 1,2 or 3.

Proof. Since

—2\4 —1\4 1 -2 !
(BAT) = (Bi4) = || _{) =D

and s
(Bi145")* = (} I§> = b,
we obtain that U, has torsion if 7 = 1,2 or 3. By Lemma 3.26, it immediately
follows that ¥, has torsion if the numerator ¢ = 1,2 or 3.
Conversely, if ¥, has torsion, then there is a non-identity element W(7) €
¥, such that
W(ry =1 (3.13)

for some prime number p. Then the minimum polynomial of W (7) must divide

7P — 1 and hence has no multiple roots. Thus we can diagnoalize W (7) over

W(r) = P (Al 0) p

the complex field as

0 A
for some P. Since every element of ¥, has determinant 1, we must have
Ao = 1/M;.
By

A2 — Trace(W(r))A + det(W (1)) = 0,

we obtain

(AO% A‘%) — Trace(W(r)) (Aol AOQ) + det(W (7)) ((1) ‘1)) _ (g 8)
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and hence

P (AO% %) P~ — Trace(W(r))P (Aol £2> P 4 det(W(r)) P (é ‘1)) p-!

-0 0)

W2(r) — Trace(W(r)) - W(7) + det(W(r)) - I = 0. (3.14)

and finally,

By (3.13), we have

Wy =05L=W()-5L)- i W(r) =0
=0

for W (r)° = I,, where no factor of W(7)P — I, is itself factorable.
Then by (3.14), we obtain either

W(r)P — I, = W*(7) — Trace(W (7)) - W(r) + det(W (7)) - I

or

pi W(r)' = W3(r) — Trace(W(r)) - W(7) + det(W (7)) - L.

In the former case, p = 2 and hence W(7) = —I,. In the latter case, p = 3
and then Trace(W(r)) = —1.

We can write W () in the reduced form
W(r) = ABin .. A B

where n > 0 and all a;,b; # 0. Then the entries of W(7) are polynomials in 7
with integer coefficients. As in (3.9), we can write
o= (" 1 Ptn) 619
where the p;;’s are elements of Z[7] dependent on the exponents ay and by.
Now if W(r) = —I,, we have 1 + 7p;1(7) = —1. Then 7 is a rational
root of a polynomial with integral coefficients whose constant term is 2, so
7 has numerator 1 or 2. If, on the other hand, Trace(W(r)) = —1, then
24 7(p11(7) + p12(7)) = —1. Hence, 7 is a rational root of a polynomial with

integral coeflicients whose constant term is 3, so 7 has numerator 1 or 3.
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a

In particular, the above theorem shows that 1, 2 and 3 are good numerators.
Now we know that finding an element of finite order does not help too much
in showing nonfreeness. We revert to looking for sequences as in Lemma 3.22.

Given a rational number 7 = a/b, where a,b € Z, and a sequence of

nonzero integers by, a1,bo, a2, -+ , by, @m, We can define the following sequence
recursively:

o = 0

h=1

... (3.16)

Yn = OnTp—1 + Yn-1
Tn = Tn—1+ QnTYn-

Then it follows that

oo (1 0 [x x
o=nt=(s, 1) = ( 3)

and
gn= A B ... AnBh = (* Tn (3.17)
T T * yn
hn = By A Bl - AZ B = (I - > ' (3.18)
Yn+1

From Lemma 3.27, to prove that 7 is 1-nonfree we only need to show that
there is a sequence by, aq,ba, a9, - , by, @, to make z,, = 0 for some m € Z.

To simplify the problem, we define
z,=b'z, and Y4 =b"Ynu1. (3.19)

The sequence (3.16) turns out to be:

zp =0
L
yp=1
i = a0

(3.20)

A / /
Yn = bnmn——l + byn—-l
x, = br;_; + aay,.

Since z, = 0 if and only if z;, = 0, we still have the nonfreeness after
converting the sequence. However, since z; and y} are integers, it is sufficient

to concentrate on integers. The simplified sequence leads to
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Theorem 3.29 If the rational number T = -4, where a,v € Z and 1 # 0,

then T is I-nonfree.
Proof. Let a; =r and by = —1, then we have 2] = ra and ¥, = a;bea + b =
—ra+ra+1=21. Then let ay = :Fb—g;{L = Fbr = Far? — r, we obtain:

Ty = bz} +aagyh =ra(ra+1)+ a(Far? —r)(£1)
= r2g2+ra—1r2a®Fra=0.

Thus zo = 0 and g, is a lower triangular matrix. By Lemma 3.27, 7 is

1-nonfree.

O

This theorem gives another way to show the l-nonfreeness of 1, 2 and 3.

In general, given a rational number 7 = a/b, how can we find a proper
sequence of nonzero integers by, a1, - -« , by, a,, to make z;, = 07 In the seqﬁence
(3.20), we have:

alzgg  and  alz}.
Now if for some k& > 0, we have a|z}_,, then since a|aa;y,, it follows that
albzy_; + aary), = alzy.

By induction, we have al|z, for n > 0. Now, if a and b are relatively prime, as

bly,,, we have
(@,9) =1

for n > 0. Thus
Lemma 3.30 We can obtain y;, = 0 only when a # %1.

We can extend the result of Theorem 3.29 to a more general form:
Lemma 3.31 If a sequence yields y,, = £1, then T = a/b is 1-nonfree.

Proof. Since alx], for n > 0, then bz),_,/a is an integer. Pick a,, = Fbz,,_,/a,
if a,, # 0, then x;, = bx,_; — bz;,_; = 0. If a, = 0, we have z;,_; = 0. Thus,

by Lemma 3.27, 7 = a/b is 1-nonfree.
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Since our purpose is to find some x; = 0, or by Lemma 3.31, to find some
y; = 1, one way to construct the satisfactory sequence by, ay,- -+ , by, ay is to
choose nonzero numbers a; and b; that minimize the absolute values of y; and
x} at each step until we get the desired number. In the rest of this paper, we
call this method the “pure greedy” algorithm and the corresponding sequence
xg, Y1, T}, -+ the pure sequence.

One advantage of this method is that if |by,_,| > |2}_4|/2, in order to
calculate smallest y; we are actually finding the modified remainder on division
of by,_, by z_,, whose absolute value is less than |by, | and |z]_;|. Even if
|byi_1| < |zi_1]/2, since we can not pick zero a; and b;, the element we obtain
has the absolute value |z;_;| — |by/_4|- This value is greater than |z}_,|/2,
whence greater than |by;_|, but it is still less than |z} ,|. Therefore, small
values of |zj_;| provide small values of |y;|. Similarly, small values of |y}
provide small values of |z}, which is always less than |ayj|.

Thus, if @ = 1, the absolute values of elements keep decreaseing at each
step. By Lemma 3.30, we have y; # 0 for any i € Z*. Since zj and y; are
integers, we can finally reach some z; = 0 and prove that rational number
7 = 1/b is 1-nonfree for nonzero integer b.

While using this algorithm, if for some ¢ € Z, the adjacent elements y; and
x; are not relatively prime, say (y;, z;) = dy # 1, we can improve the situation
by substituting z} for zf = z}/d;. By induction on the sequence (3.20), we

obtain

Lemma 3.32 (y;,z;)|z} holds for j > i and (x},y;,4)|y; holds for j > i+1.
O

Thus zj is still a integer, but it is less than the original z. If z{_, and
y; are not relatively prime, say (2}_, ;) = do, then similarly, replacing y; by
yi = yi/d2, we can obtain an integer y; which is less than the original y..

Since our purpose is to find some zj, = 0, we can define z} = z}/(y;, ;) and
vi = vy;/(xi_1,y;), then use the new sequence zj,yy, 21, -, v,z instead of
the sequence (3.20). As z} = 0 if and only if z}, = 0, the final conclusion does

not change. To make a slight change of the relation in (3.20), we can define
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Definition 3.33 We call the sequence xg,yy, 2y, -+ 4o, Zw satisfying:

25 =0
v =1
Yr = bnny +byn (3.21)
va
Yn = a0
z} = bxy_ + aayy,
g =
BRCEDN

the MODIFIED PURE SEQUENCE and the corresponding algorithm the MODIFIED

PURE GREEDY ALGORITHM.

In (3.21), the equation of y} will be the same as in (3.20) when (2//_,, %) =
1 and the equation of z, will be the same if (y);,z}) = 1.

In the modified pure sequence xy,y1, 21, - , Yo, », any two adjacent ele-
ments are prime to each other. By fixing the algorithm in this way, we make
the elements smaller, whence closer to our target, which speeds up the old
algorithm to make it suitable for some larger a and b.

While building the new sequence, the b; we pick to minimize y; might not
minimize z;. This is because some larger value for y} might have the property
that (y;,z) = dy > 1 and the new zi = z}/dy might be smaller than value
from the modified pure greedy algorithm. Similarly, the smallest value of y//,
might not come from the modified pure greedy algorithm, either.

To fix this problem, we further modify the modified pure greedy algorithm
in the following way. Instead of using only b; to determine the value of y}, we
use b; and b; == 1. Now we have three different values of y}: (b; — 1)z}, + by 4,
bizy_y+by;_, and (b;j+1)z] +by,. Let y! =y;/(z}_,,y7). By (3.21), we can
obtain three z}’s and their three corresponding z}’s. For our new sequence,
pick the ;' that makes the absolute value of z} smallest and y} # by} ;. The
reason why we can not have yf = by, , is that the sequence by, ay,--+ , by, ay

is a nonzero sequeltice.

Definition 3.34 We call this new sequence RANGE-1 MODIFIED SEQUENCE

and the corresponding algorithm RANGE-1 GREEDY ALGORITHM.
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As in the modified pure sequence, the elements of range-1 modified se-
quence are all integers.

Similarly, if we use the 2n + 1 values b;,b; +1,- -+ ,b; = n to determine our
yr, we can extend the above “range-1 greedy” algorithm to “range-n greedy”
algorithm. However, this extension is not unlimited as if n is too big, the
algorithm becomes slow.

For convenience, “modified pure greedy algorithm” and “range-n greedy
algorithm” will be called “modified greedy algorithm”, “modified greedy algo-
rithm” and “pure greedy algorithm” will be called “greedy algorithm”. For
the corresponding sequence, “modified pure sequence” and “range-n modified
sequence” will be called “modified sequence”, “pure sequence” and “modified
sequence” will be called “entry sequence”

Then we can clasgify them in the following way.

greedy al- pure greedy algorithm
gorithm

modified greedy algorithm | modified pure greedy algorithm
range-n greedy algorithm
entry pure sequence

sequence

modified sequence modified pure sequence
range-n modified sequence

In some cases, the range-n modified sequence converges even if the modi-
fied pure sequence does not. For example, for 7 = 12/17, the modified pure
sequence repeats after step 2, but the range-1 modified sequence converges to
0 at step 4. There are also some cases in which the range-n modified sequence
converges quicker than the modified one.

In some cases, even when the greedy algorithm does not end (i.e. it would
never yield z; = 0), we can still prove the 1-nonfreeness with the help of the

following theorem:

Theorem 3.35 Given 7 = a/b € Q, if there is some N > 0 and an infinite
sequence of nonzero integers by, a1, ,bn, 0y such that in the corresponding

modified sequence, |x}| < N holds for all i € Z*, then T is 1-nonfree.
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Proof. By (3.21) we have |y/,;| < |z}]. Since |z}| < N for all 4 € Z*, all
elements of the modified sequence zy, y{, ¥, -+ ,yn, 2, -+ are bounded by N.

Note that the modified sequence can be written in the form of zg, yf, z},- -,

! J

x Vi1 Zn, Yni1
(y’",(ﬂ ) (xnvyn+l)7 ’ (x;ny;;,_}.l)’ (xéuy;H_l)’

- is also bounded by N since all of its elements are less and equal to the

. Then another sequence zg, yi, 21, -

corresponding elements in the modified sequence.

Since and 221 are integers for all i € Z*, there must be a

s Yni1) (x5 Y1)
repetition among pairs ((x/ ’;’ — (wyjbyil)) Say there is a pair (74— (m, +1) (xlylyﬁ)
and an integer j > 0 such that (%ylﬂ) = (z;H”yZM) and j’; il) = (xzf;:;’l:m
By Lemma 3.32, we have (z, yi,1) (%1, Yitjr1), Set d = %ﬁ then it
follows
Tiyy = day, and i = dyi.

PiCk hz = Bi’H’IAgL . .Ang?l as in (318) and hl _ bz+]+1Aaz+] . .Agﬂ.l,
then by (3.19), we have:

(- (2) ()
1 Yit1 Yi+1
()= (22) - ()
1 Yitj+1 Yit1
A
h7W b, (g) =db™ b7 (b™ <y:,ii1)) =dp~ (?) . (3.22)

It is clear that h; U0k, is neither of the form B¥ nor the identity in ¥,.

Hence

Therefore, h; 'h'h; is a lower triangular matrix. By Lemma 3.27, 7 is 1-nonfree.
O

Lemma 3.36 If there is an infinite sequence of nonzero integers by, ay, -+ - , by,
an such that the corresponding pure sequence is bounded for all i € Z*, then T

is 1-nonfree.

Proof. As the pure sequence is bounded, the corresponding modified pure

sequence is also bounded. Then by Theorem 3.35, 7 is 1-nonfree.
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O

Now we have two ways to prove the 1-nonfreeness of the rational 7 = a/b.
One is to find some z; = 0, the other one is to find the boundary of the entry
sequence, then to find a pair (z7,y;,,) such that 2}, ; = dz} and y[ ,,; = dyj,,
for some integer d and j. The next theorem shows us the relation between the
two methods and some other new 1-nonfree points, which also shows a way to

extend the l-nonfree set based on the former results.

Theorem 3.37 LetT = a/b € Q. Given a sequence ay, by, , by, G, - and
its corresponding entry sequence Xo, Y1, %1, , YmsLTm-*+ Such that either
1)z;=0

or

2) dx; = dzy and dyiy1 = Yy
holds for some integer d and some i < m. Let M be the integer such that
lem{yi, z;li < m}|M. If forr € Z, we have (Mr+b) {1 M, then a/(Mr £b) is

I-nonfree.

Proof. Sett = a/(Mr+b) and a sequence of nonzero integers 131, G, ,Em,
&m, bmt1. Define the following sequence:
To=0
g1 =1
X (3.23)
Qn = bplp-1 + (M'f' + b)gn—l
Zn = (M1 + b)Zp—1 + alnJn.
If we can prove that for some ¢ and j, &; = 0, or find a pair (%, ;+1) such
that #;4; = d2; and §;4;41 = d¥i+1, then the 1-nonfreeness of ¢ follows.
By definition 25 = o = 0 and §; = y; = 1. Suppose for some n, we have

Ty = Tp a0d Y41 = Yny1. Let

Mrz;_q A Mry;

A~ — ?

a; = a; — - and b4y = by — ——.
ay; T3

Then

Fnpr = (Mr+Db)2n + abnini
(M1 4+ b)2n + a(anss — 222 Yot
= bry + lny1Ynt1 = Tnr

i
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and

~

gn+2 = bn+25%n+1M+ (MT + b)gn—i—l
= (basz — )21 + (M1 + b)ynia
= buyoTnir + WYni1 = Unto-
Then the two sequence Zg, 1, £1,** * » Ums Tm, * -+ a0d Zo, Y1, L1, * » Ym, L,
- are exactly the same. Therefore t is 1-nonfree for the same reason that 7
is.

Here @; and 3i+1 are both nonzero integers. As we showed before that
a|z;_ for any i, so = is a nonzero integer. By M’s definition, we have y;| M.
Mri;_1

agi
(Mr+b)z;_1. Assume that 2;_; is nonzero, so from M = lem{y;, z;|i < m}, we

have z;|M, and hence (Mr+b)| M, which contradicts our hypothesis. Therefore

Hence, a; = a; — is a integer. If @; = 0 ,then z; = & = (Mr +b)Z;_1 =

~

@; is a nonzero integer. Similarly, b;11 = b1 — Mx’; Y% js an integer and 5i+1 # 0.
From (Mr +b) { M, it follows (M(—r) 4+ b) ¥+ M, then similarly, ¢’ =
a/(M(—r)+0b) is 1-nonfree. By Lemma 3.21, t" = —t' = a/(Mr — b) is also

1-nonfree. This completes the proof.
O

With the help of this new method, we find a way to restrict the range of
range-1 modified sequence. Thus, by applying Theorem 3.35, we find a new

way to show 1l-nonfreeness.

Theorem 3.38 Let 7 = a/b, where b # £1. Define a finite set of integers
Ic{ze€Z z|(b+1) or z|(b—1)}. If for any positive integers k, we have

b* =i mod a for some i € I, then T is 1-nonfree.

Proof. Let 1 €I, theny, =1 € I. Choose a; = 1, we have 2, = a;a = a.

Thus, for nonzero sequence ay, bo, g, - - -, We have

1) =0 mod a,
2) Y1 € I7
3) z1=a.

Now suppose for a positive integer n, we have

1) y, =" mod a for some k,
2) el (3.24)
3) zp,==a.
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Then by (3.20), we have
UYn+1 = byn + bn+11'n - byn + abn+1-

Since y, = b* mod a, so y,b = v**' mod @ and y,b = i,,1 mod a for
some ip.; € I. Thus, we can choose b, so that y,+1 = 4,41 € I. Here
bnt1 # 0, otherwise we will obtain y,b = i,41. Then because i,4+1|(b — 1) or
int1|(b+ 1), it follows b|(b — 1) or b|(b+ 1). Therefore b =1 or b= —1 which
contradicts our assumption b # +1. Thus b, # 0.

Then,

Tnp1 = bTp + QAnt1Yns1 = a(ED + Gniaint).

As 4,41 divides one of (b£1), we can pick some a,.1 # 0 such that a1 =
F(bx1) #0, then z,41 = +a and (3.24) holds for Yn+1 and Z,4q.
Now our sequence of z; and y; is bounded by N = max{|a|, |¢|({ € I)}. By

Theorem 3.35, 7 is 1-nonfree.
O

Furthermore, if we choose M so that i|M for all i € I and ¥’ = aM £ b. If
b’ 1 M, then by Theorem 3.37, a/V is also 1-nonfree.

3.3.2 Calculations

Now we can apply those methods to find new good numerators.

By Theorem 3.28, we have

Corollary 3.39 1, 2 and 3 are good numerators. O
By Theorem 3.29, we can show

Corollary 3.40 4 and 6 are good numerators.

Proof. By Theorem 3.29, we know that 4/(4r+1) is 1-nonfree for any r # 0.
By Theorem 3.28, we can obtain that 4/(4r +2) = 2/(2r 1) is 1-nonfree for
any r # 0. Therefore, ¥ is nonfree if a = 4, so 4 is a good numerator.
Similarly, by Theorem 3.29, we know the 1-nonfreeness of 6/(6r & 1), and
by Theorem 3.28, we know the 1-nonfreeness of 6/(6r +2) = 3/(3r + 1) and
6/(6r+3)2/(2r+1). Therefore, . is nonfree if a = 6, s0 6 is a good numerator.
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By Theorem 3.29 and above results, we obtain
Lemma 3.41 5 is a good numerator.

Proof. As WEE = WE)?’ by Theorem 3.29, the rationals of this form
are l-nofree for r =£ 0. If r = 0, then |'1?J‘7~§II| > 4, they are still 1-nonfree.
Similarly, =5 are l-nonfree for r # 0, then 7% are l-nonfree for r # 0
by Lemma 3.26. If » = 0, the greedy algorithm yields the following sequence
a; = 1,bp = —1,a9 = 1,b5 = —1,a3 = —2 and its corresponding sequence
2o = liyy = L,z = 5,92 = =3,29 = —5,y3 = —1,23 = 0. Hence, 5/2 is
1-nonfree.

Apply the greedy algorithm to 5/3, we obtain the sequence a; = 1,b; =
—l,ag =1,bg =1l,a3 =3 and g = 1,1 = 1,21 = 5,9 = —2,25 = B,y3 =
—1,z3 = 0. Then the lease common multiple M = lem{1,5,2} = 10. Since
3110, for b = 3, we have (Mr + b) t M for any integer r. Hence all rationals
of the form —2— are 1-nonfree.

10r+3
and

Since they are both 1-nonfree. As

5 _ 5 5 _ 5
Tor+4 — 5(2r+1)—1 0r—4 — 3(2r—1)+1°

5
10r-E5

numerator.

= ﬁ, by Theorem 3.28, they are 1-nonfree. Therefore, 5 is a good

Lemma 3.42 7, 8 9, 10, 11 are good numerators.

Proof. For |7| = |a/b| < 4, (a,b) = 1, assume that a > 0, b > 0. Firstly,
we are going to show that g%~ is l-nonfree for any a € {7,8,9,10,11} and
m € Z. Let I = {+£1,+2,+3,+4,+6}. Since bothb=6m+1 and b =6m —1
are odd, one of b+ 1 and b — 1 is divisible by 4 for either b. It is clear that
41,42 +£3, 46 divide 6m = b F 1. Therefore, for all ¢ € I, we have either
il(b+ 1) or i|(b— 1). Since (a,b) = 1, it is never the case that b* =5 mod a
when a = 10. Note that I contains the complete set of residues modulo 10.
Hence, for all positive integer k, we have b* =i mod a for some i € I. Then,

by Theorem 3.38, #‘jﬁ are 1-nonfree. Since I also contains the complete set
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of residues modulo a for ¢ = 7,8,9 and 11, similarly by Theorem 3.38, ﬁ,

8 9 11
eI gy and &7 are all 1-nonfree.

Now suppose a is not a good numerator, and b is the lowest denominator

with |a/b] < 4 and 7 = a/b 1-free. Then b must be in one of the forms 6m,
6m 2 or 6m £3. Thus either form of b is divisible by 2 or 3. By Lemma 3.26,
to show the 1-nonfreeness of a/b, we only need to discuss the 1-nonfreeness of
a/2 and a/3. Since (a,b) = 1, we do not need to discuss the 1-nonfreeness of
8/2, 10/2 and 9/3. Furthermore, if we can show that a/3 is free, then because
3|6m and 3|(6m =+ 3), we obtain the 1-freeness of a/b for all b = 6m and
b = 6m £ 3. That makes the discussion of 1-nonfreeness of a/2 only useful for
b=6m=2. As 4|(6m £2), in this case, the 1-nonfreeness of a/4 is equivalent
to the 1-nonfreeness of a/2. Here, because both 9/2 and 11/2 are 1-free, we
use 9/4 and 11/4 instead.
Therefore the last thing to show is the 1-nonfreeness of the following 7’s:

T 7T 8 9 10 11 11

57 ga §7 Za ?a _4—7 _§‘ (325)

For 7 =7/3, let I = {£1,+2,+4}, the complete set of residues modulo 7.
Then, for all ¢ € I, it is clear that ¢|(3 — 1) or ¢|/(3 + 1). Thus, by Theorem
3.38, 7/3 is 1-nonfree. The rest of (3.25) can be proved 1-nonfree by the pure

and modified greedy algorithm as showed below:
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\‘

corresponding sequence

772

a1:1,b2:~1,a2=1,b3=—1,a3=1,b4————1,a4:1,
by =—1,a5=~1,bg=—1,a6=—1,b;=1,a; = =2,

I = 7, Yo = —5, Lo = —21, Y3 = 11, Iy = 35, Yq = —13, Ty = —21,
y5:_57 m5:_‘773/6=_3a x6=71y7:1a 27 = 0.

773

a1:1,b2=——1,a2=1,63:—2,a3:1,b4=1,a4=—3.

Ty=T,Yp=—4,2o=—-T,y3=2,23=—7,y4=~1, 24 = 0.

8/3

al:1,b2:—1,a2:1,b3=——1,a3=6.

1 =8, Yp=—-H, 29 =-16,y3 =1, 23 =0.

674

a1:1,bgz-l,a2=1,b3=—2,a3=—2.

:c1:9,y2=—5,x2=—9,y3=—2,x3=0.

10/3

a1:1,b2=—1,a2=1,b3=—1,a3=—2.

I = 10, Yo = —6, Ig = —20, Ys = '—4, I3 = 0.

11/4

alzl,bgz—l,a2=1,b3:—1,a3=2,b4=1,a4=—4.

Ty = 11, Yo = —7, To = —33, Ys — 5, T3 = —22, Yqg = —2, Ty = 0.

11/3

a1:1,bg=-—1,a2=1,b3=—1,a3:1,b4=—1,a4=1,
b5:—1,a5:1,b6=—1,a6:—1,b7:——1,a7=1,b8=—3,
(lgz—l, bg:6, a9=1,b10:—2, a10=1,b11=—1, a11:—3.

zy = 11, Yo = '_87 g = —59, Ys = 31; I3 = 1767 Y4 = _837
©4 = —385, ys — 136, 25 — 341, ye = 67, x5 — 286, y; — —85,
Ty = =77, yg = =24, rg = 11, yg = —6, 19 = —11, Y0 = 4,
z10 =11, yn =1, 2,3 = 0.

Note here, we used the range-1 modified algorithm to calculate 7 = 11/3,

otherwise the sequence will end at 5.

We can apply the same methods to show the following lemma:

Lemma 3.43 12 is a good numerator.

Proof.

T = 12/5, using the pure greedy algorithm, we have a; = 1, by = —1, ay = 1,

Since we already know that a is a good numerator for |a| < 11, we

only need to consider the b satisfying (12,0) = 1. Then b = £5 mod 12. For

b3 =—1,a3=—1,by =5, a4 = —1, and hence z; = 12, yp = =7, 2o = =24

ys = —11, 23 = 12, y4 = 5, 24 = 0. Thus 12/5 is 1-nonfree and by Lemma
3.26, b is 1-nonfree if 5|b. If b= +1 mod 5, taking I = {%1,+5}, by Theorem

3.38, b is 1-nonfree.

For b = 2 mod 5, we discuss the following cases.
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Case 1. b= %5 mod 24, say b = 24k+5 = 5p=%2, choose a1 = 2, by = —k,
ag = F2p — 1, b3 = 10k £ 2, a3 = &b, and hence z; = 24, y, = £5, 25 = F12,
ys=1,23=0.

Case 2. b= +£5 mod 36, say b = 36k=+5 = 5p=+2, choose a; = 3, by = —k,
ag = F3p—1, by = —15kF2, ag = +b, and hence z; = 36, yp = 15, x5 = £12,
ys=1,23=0.

Case 3. b = +7 mod 36, say b = 36k £ 7 = 5p + 2, choose a; = 1,
by = -3k¥1,a, =Ep+1, by = —5kF1, a3 = +3b, and hence z; = 12,
Yo =TFH, 2 =F36,y3 =1, 23 =0.

In the above three cases, all values of x; and y; we got divide 360. Now
pick M = 2520 = 7 x 360, then by Theorem 3.37, 12/(2520r £ b) is 1-nonfree
for all b < 1260 except for 17, 127, 377, 487, 737, 847, 1097 and 1207. We can

show the 1-nonfreeness of these 8 integers by the following table.

[ T corresponding sequence

12/17 ap = 2, b2 = —1, a9 = 5, b3 = —10, az = 17.

21 =24,y =—T,x9=—-12,y35=1, 23 =0.
12/127 a) = 27 b2 = —5, g = —36, b3 = —37, ag = —254.
1.1:24’ y2=7; 1132:2473/3:171'3:0-

12/377 | a1 =2, by = —16, a3 = 108, by — —110, a3 = 754,
T1=24, o= —T,20=-24,y3 =1, 23 =0.
12/487 a1 = 2, bg = —20, a9 = —139, b3 = “284, ag = —487.
[[,'1:24, y2:7, $2=12,y3=1,$3:0.

12/737 a) = 2, b2 = —31, a9 = 212, b3 = —43, ag = 7370.
Ty =24,y =—T7,20=—120, y3 =1, 23 = 0.
12/847 | a1 =2, by = =35, ag = —242.

1 =24,y="7, 22 =0.

12/1007 | a; = 2, by = —46, a3 = 312, by = 64, a3 = —10970.
=24, o =~T7, 29 = 120, y3 =1, 23 =0.
1271307 | @y = 2, by = —50, az — —345, by = 704, a3 = 1207.
$1:24; y2=77 332:—12,193:1, z3=0.

Notice that the least common multiple of all the z; and y; in the table is
M = 2520. Therefore, by Theorem 3.37, 12/(2520r £ b) is 1-nonfree for all
b < 1260. Hence, 12 is a good numerator.

Farbman also mentioned in his paper [11] without proof.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lemma 3.44 13, 14, 15, 16 are good numerators. O
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Chapter 4

Torsion-free groups

In this chapter, we will deal with torsion-free group. Charnow solved the
rational case. In [8], he showed that G, has an element of finite order (other
than the identity) if and only if v is the reciprocal of an integer. We will
extend his result with the help of Watkins and Zeitlin’s work [39]. Before doing
that, some definitions and a few facts about the degree and the conjugates of

2 cos(2m/n) over the rational numbers Q are needed.

Definition 4.1 The n-TH CHEBYSHEV POLYNOMIAL 3

— -1 — & n n—-2m¢..2 _ 1\m
To(zx) = cos(ncos™ ) Z VM xt = )™,

2m
m=0

Then, the degree of n-th Chebyshev polynomial is 2|n/2].
Let ¢, = cos(2m/n) + isin(2w/n) be primitive n-th root of unity. Since
2cos(27r/n) = ¢, + ¢!, we have:

Q(¢:) 2 Q(2cos(2m/n)) 2 Q.
Let ¢(n) be the degree of {,,’s minimal polynomial, then [Q({,) : Q] = ¢(n).

Lemma 4.2 ¢(n) is also the number of integers between 1 and n that are

relatively prime to n and ifn = p}* - - - pit, then ¢(n) = [[o, Pi " (i—1). O
Let vy, (z) be the minimal polynomial of 2 cos(27/n), then

Lemma 4.3 Ifn > 3, then the roots of Yn(z) are 2 cos(2km/n), for 0 < k <
(3] = s and (k,n) = 1. The number of roots is ¢(n)/2.
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Proof. Given a Q-automorphism o of Q((,) by 0x(¢,) = ¢*. For n > 3 and

(kvn) =1,
(2 cos(2r/n)) = ok (G + C7Y)
= ok(Ga) + or(¢)
=G+ 6"
= 2 cos(2km/n).
Hence,

Yn(2cos(2km/n)) = ¢n(0k(2cos(2r/n))) = ok (Vn(2 cos(2m/n))) = o1(0) = 0.

Therefore, 2 cos(2km/n) are the roots of ¥, (z) for 0 < k < [2] = s and
(k,n) = 1. Another important thing is to show those 2 cos(2km/n)’s are the
only roots of Y, (z).

If (k,n) =g # 1, say k = k'g and n = n'g, then 1, (z) will be the minimal
polynomial of 2 cos(2k'w/n’). Thus

Yn(2c08(27/n)) = (011 (2 c0s(2k'T /1)) = 11 (Y (2 cos(2k'm /n"))) = 0.

Hence, /() (the minimal polynomial of 2 cos(27/n')) is a factor of ¥, ().
Note that ¢, (z) = ¥y (z) - :f:,—((‘;)), then 2 cos(2m/n) is the root of either ¥, (z)
f:,—((‘?). Compared to ¥, (z), both of the two factors have the lower de-
gree. This contradicts our assumption that 1, (z) is the minimal polynomial
of 2cos(27/n).

For k ¢ [0, s, the value of 2k7/n is not in the region [0,2x], so the cor-

or

responding 2 cos(2km/n) are not new roots. Therefore, 2 cos(2km/n) are the
only roots of ¥, (z) for 0 < k < (2] = s and (k,n) = 1.

Let P(n) be the set of integers between 1 and n that are relatively prime to
n. Since (k,n) =1, then (n —k,n) = 1. Hence for each k such that 0 < k < s
and k € P(n), there is an integer n — k such that s = [3] < n -k < n
and n — k € P(n), and vice versa. Then we can divide P(n) into two equal
size subsets. We call them P(n), and P(n),—x. Note that ¢(n) is the size of
P(n), then the size of P(n); is ¢(n)/2. Then the number of the corresponding

2cos(2km/n) is ¢(n)/2. Thus 1,(z) has ¢(n)/2 roots.
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4.1 Watkins and Zeitlin

We make a small change in Watkins and Zeitlin’s theorem [39]:

Theorem 4.4 Let yn(x) be the minimal polynomial of 2 cos(2n/n) and let
T,(x) denote the s-th Chebyshev polynomial.
a) If n=2s+1 is odd, then

2Ts+1(2) — 2T3( )— [T %a(x) = v(n). (4.1)

din
b) If n=2s is even, then

2T 1( 2) 2T, _1( yz/;d(x (4.2)
Proof. Since ¢, is a root of the quadratic polynomial 2% —2 cos(27/n)z+1, we
have [Q((,) : Q(2cos(2n/n))] = 1 or 2. If n = 1, we have 2 cos(27/n) = 2. For
n = 2, we have 2 cos(27/n) = —2. If n > 3, {, is not real and therefore [Q({,) :
Q(2cos(2m/n))] = 2. Since ¢(n) is the degree of ¢,’s minimal polynomial, we

have: .
degn(@) ={ Sy, Hnss (43)

To prove part a) of the theorem, it is sufficient to show that the roots and
the leading coefficients of both sides of (4.1) are the same. Since n =2s+1 is
odd, by Lemma 4.2, the degree of the right side of (4.1) is

Zdeg(wd(x = deg(y1(z Z deg(va(z)

din d|n,d#1
= deg(tn(x)) + D> ¢(d)
d|n,d#1
1
=1 -+ §(n - 1)
=1+s.

which equals the degree of the left side of (4.1).
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Now we are going to prove that the roots of the left side and the right side
of (4.1) are exactly the same.

For 0 <k < s, let g = (k,n), ¥ = k/g, n’ = n/g, so that (k',n') = 1.
Then 2cos(2km/n) = 2cos(2k'n/n') is a root of ¥, which is a factor of the
right side of (4.1). On the left side,

2Ts+1(—;— -2cos(2km/n)) — 2T3(% -2cos(2km/n))

= 2008(—2]“1’(2+ 1)) - 2008(@)
= QCOS(M) - QCOS(M)

km km
= 2 — — — —
cos(km + - ) — 2cos(km - )

= 0.

Therefore 2 cos(2km/n) is also a root of the left side of (4.1). Hence, the
roots of both sides are 2cos(2km/n) for 0 < k < s, and these s + 1 roots are
all the roots of both sides.

The last thing is to check the leading coefficients of both sides of (4.1).

Since

Ts(cosf) = cos(st)
= R((cosd + isin§)®)

= cos® 6 — ( ; ) - cos* 2 9(1 — cos® ) + < Z ) -cos*™*f(1 — cos® §)?

g (-D)H ( ) ) - cos® 212 6(1 — cos? 6)14

S
5l
s (3o () (4 e

=2"leos® 4 .- .

So Tep1(z/2) = 25 - (x/2)*™1 4+ --- and the leading coefficient of the left
side is 2 - 2° - (3)**! = 1, which equals the leading coefficient of the right side
of (4.1). Hence, (4.1) is proved.

Similarly, we can prove part b) of the theorem. Since n = 2s is even, the

degree of the right side of (4.2) is
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> deg(ta(x)) = deg(v1(2)) + deg(¥o(2)) + D deg(va())

din dn,d>2

= deg(y1(z)) + deg(¥n(z)) + Y ¢(d)/2

din,d>2
1
=1+4s,

which equals the degree of the left side of (4.2).

Again the roots of both sides of (4.2) are the same. They are 2 cos(2kw/n),
where 0 < k < s and (k,n) = 1 and these s+ 1 roots are all the roots of both
sides.

Let g = (k,n), k' = k/g,n' = n/g,sothat (k',n') = 1. Then 2cos(2kn/n) =
2cos(2k'm/n') is a root of vy, which is a factor of the right side of (4.2). On
the left side,

2T8+1(% - 2cos(2k/n)) — 2T3_1(% -2 cos(2k /n))

2km(s+1) 2kn(s —1)
n n )

= 2 cos( ) — 2cos(

kn(n+2) kn(n—2)

) — 2 cos( )

= 2 cos(

2
= 2cos(km + ——k—7£) — 2 cos(km — g]ff)
n n
= 0.

Therefore 2 cos(2km/n) is also a root of the left side of (4.2). Since the
leading coefficients of both sides of (4.2) are 1, thus (4.2) is proved.

4.2 Calculation of ¥,(2)
Now we can use (4.1) and (4.2) to compute 1, (z) using the following Lemma:

Lemma 4.5 Forn = p{*---p;t, where py,--- ,p; are different prime numbers.
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Ift =2q+ 1 s odd, then

¢
P(n) - [T, Hi1<i2<._.<i2j,i1,i2,...,¢2j=1 ?/)(m) (4

IRV VAP S——
J=1 1 iy <ip <o <lgj—15as82, 825 -1=1 T APy Pig e Pig; 4

Yn(z

If t = 2q s even, then

q t n
V() - T i cinccingin o, ingm1 Y gy,

Vn(z) =

(4.5)

q t n
]‘:1 H’il <i2<"'<i2j—1,i1,i2,"‘ ,izj_1=1 1/)(,,1.1 'piz ""'piZj—l )

O

For (4.4), the number of factors ( 4)(m) for some m|n ) in its numerator is:

q q q
t . 2q+1 . 2q+1 _ 92¢ _ ot—1
()R (%) -5 (55 ) -2

3=0 3=0
which is also the number of factors in its denominator.

It is similar to get the number of factors in (4.5)’s numerator:

1+ i 2q — i 2q — 22(]——1 — 2t—1 — Xq: 2q
2\ 2 2 21 )

=0 j=1
which equals the number of factors in its denominator. Then by Theorem 4.4,

we can rewrite (4.4) and (4.5) in the form of:

P(ni)
Yn(z) =
t—1
2 2Tr2'2¢1](%) 2TLE'2L1 (%) (4.6)
ot 2Tz (3) = 2w ()
0 D) Tz (5)
it Trmgen (5) = Time (3)

for some n;|n and m;|n.
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If z = 2, for Chebyshev polynomials T,(§), we have Ts(1) = Ts(cos0) =

limy_, cos(sfl). Then after substitution, using 'Hépital theorem, we have

21 T[m1(cos 6) — TLﬁ--_lj(cos 6)

- (1911% L Trﬂ,g_l](cos 6) — TLLJ (cosf)

o T So5(™5216) — cos((57)6)

= i ];-! cos([26:116) — cos(| 2L |6) (4.7)
i T TR sin(m510) — |25 -sin(| 25 16)

=i 1] ey ) — (2] om0

= <(%ﬂ1> — (152 ))2
- H (T2 — (22

m.
i=1

Combine (4.7) with Lemma 4.5, if ¢ = 2¢ + 1 is odd, then:

n
w (2) n H‘—l Hi1<i2<--~<i2j,i1,i2,~~~,i2j=1 Diy ‘Pig+Pigj
n Hq+1H , . - n__
11 <@ < <825 —1,81,82, " yi25—1=1 Diy Pig*Pigj_4
g+1
H H11<Zz< <dgj—1,81,02, - 25— 1—1p21 Diy Dizjy
1=1 Hi1<i2<"-<izj,i1,i2,-~~,’igj:lpzl Dig » + 0t Piyy

(T ) =)

TR
=1.

Similarly, if ¢ = 2¢ + 1 is even, then:

n
2.““?12]' . 1

j=1 1<t < - <dgj—1,81,i2, iz 1=1 Dig Pig

. q
n Hj=1 Hi1<iz<~~~<i2j,i1,iz,~-,i2j=1 Piy Pi

%(2) =
Pigj1

Therefore, we have:
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Lemma 4.6 ¢,(2) =1 for anyn € Z*. O

4.3 New result

Let G, = (A4, By), then by induction, every element of G, is of the form:

< L+u?fi(u)  ufo(u) )
ufs(u) 1+ ulfy(u)

where the f; are polynomials with integral coeflicients.

Theorem 4.7 Let u € C be an algebraic number over Q with an irreducible
polynomial f(x) = apa™+ -+ + a1x + ag of degree n, where ap,ap—1, -+ ,a1 €
Zyag € Z* and (an,an-1,-+- ,a0) = L. If G, has an element of finite order p
(other than the identity), then,

1) Ifay # 0, then ag = 1;

2) (p—1)[2n.

Proof. If G, is not torsion free, then there 3C € G, s.t.

o= (30) e (31)

where p is a prime number.
Then the minimal polynomial of C' must divide z? — 1 and C' is diagonal-

izable over the complex field. Hence

a_(& 0

for some invertible matrix (. Since every element of G, has determinant 1,
we must have & =

From

P p
(4 8)-(5 ) -wr-eo= (1)

it follows that &/ = 1. Thus if p > 2, & = 1 has only one real root, which is 1.

1
&”

Since C is not the identity and &; # 1, we obtain that &; is a primitive p-th root
of 1 and the degree of £; over the rationals is p — 1. Suppose &; = cos(z’;—’i) +
z'sin(QkT’r) for 0 < k < [E] and (k,p) = 1, then & = cos(%T’r) —isin(%ﬁ). On the
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other hand, £ is a root of a quadratic polynomial with coefficients in Q(u),
namely the characteristic polynomial of C. Hence (p — 1)|2n.

From
_ [ 1+fiw)  ufe(u)
¢= ( ufg(u) 1+ u2f4(u) )

where the f; are polynomials with integral coeflicients, we have

Trace(C) =& + & = 2005(2_;?[) (4.8)

=1+ v fi(u) + 1+ 4 fa(u) = 2 + v fu(u) + v fa(u)

Suppose the minimal polynomial of 2003(%’5) is (). Since the coef-
2kn
P
is also an irreducible polynomial with coprime integral coefficients. Then
Pp( 2 + w?(fi(u) + fa(u)) ) = wp(Qcos(%)) = 0. By expansion, 9,( 2 +
22 (fi(x) + fa(z)) ) = 2% f5(x) + ¥p(2), where f5() is a polynomial with inte-
gral coefficients. Thus, u?f5(u) = —,(2) = py € Z. Therefore f(z) —ag is a

factor of z2 f5(x).

ficients of the minimal polynomial of cos(£Z) are all integers. Then ()

If the coefficient ay of the irreducible polynomial f(z) of u is not zero,

from u ¢ Q, there must be a factor g(z) of zfs5(x) with coprime integral
f(@)—ao

coefficients, s.t. g(u) *u € Q. (We can pick g(z) = Ty 1t s a
polynomial with coprime integral coefficients. ) Since a; # 0 and agy # 0, we
have g(z)|zfs(x) = g(x)|f5(x), it follows f5(z) = g(z) * d(z). As both f(z)
and g(z) are polynomials with coprime integral coefficients, g(u) * u actually
equals the remainder of the division of zg(z) by f(z), which is 2 for some

p1|(@n, @1, - - a1). Therefore

— DoP1

w? f5(u) = po = ug(u) * ud(w) = po = ud(u) .

(4.9)

For the same reason, since d(u) is a polynomial with integral coefficient,
ud(u) = 2 for some pa|(an, @p-1,*-a1), hence 2 = EPL = of = pop;py =
aglpopipe. However, (an,an-1,-+-,01,00) = 1 = ((an,ln-1,-*+ ,01),00) =
1 = (p1,a) = 1 and (p2,a9) = 1, which means a3|py. From Lemma 4.6,

po = —1, then because ag € Z™, ag = 1.
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Now we can use Theorem 4.7 to give a new proof of Charnow [8]’s result.

Corollary 4.8 Let u be rational. Then G, has an element of finite order

(other than the identity) if and only if u is the reciprocal of an integer.

Proof. Suppose u = —a_117 where a; is an integer. Let
48 paz [ 1 —3u 1 0\ (-2 —3u
=4 Bl“(o 1 >*(a‘;’u 1)=\0 L
We have C° = 01 and hence C € G, has order 3.

Conversely, assume G, has some element (other than the identity) of finite
order. Then, because u is rational, the irreducible polynomial of u is of the
form f(z) = ayz + ag, where a; # 0. Therefore, ag =1 and a1u+ay = 0 =

_ _@ o __1- . . .
u = —g2 = —= is the reciprocal of an integer.
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