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Abstract

An alarm system is an integral part of process monitoring and safety. A

poorly configured alarm system can sometimes cause more harm than good,

by introducing many false and nuisance alarms for the operators. Various

standards on alarm system management and rationalization suggest many

configuration methods to help in improving the overall performance of alarm

monitoring systems. In this thesis, the problem of analyzing and designing

alarm systems for both single- and multi-mode processes is considered.

A design procedure of a multivariate alarm system for multi-mode pro-

cesses is developed. A hidden Markov model based modeling approach is

adopted to capture the multi-modality of data and the mode-reachability con-

straints of a multi-mode process. A monitoring index utilizing the proposed

two-step Viterbi algorithm is developed, and for fault isolation, reconstruction

based contribution plots are used.

The utility of delay-timers in improving existing univariate alarm systems

for multi-mode processes is studied. A mathematical model is developed to cal-

culate analytical expressions for different performance indices (the false alarm

rate, missed alarm rate, and expected detection delay). A particle swarm

optimization based method is proposed for designing delay-timers, while sat-

isfying the constraints on the performance indices and delay-timer lengths for

various modes of the operation of a process.

The analysis and design of time-deadbands for univariate alarm systems

ii



is also considered in this thesis. In particular, a Markov chain process based

mathematical model is developed to capture the time-deadband configurations

for single mode processes. Analytical expressions for the performance indices

are calculated, and design procedures based on process data and alarm data

are developed.

Keywords: Alarm systems, Hidden Markov models, Markov processes, Delay-

timers, Time-deadbands
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Chapter 1

Motivation and Background

1.1 Industrial process control

Industrial process control is a complex interconnection of components like

sensors, actuators and logic controllers. Depending on the scale of a plant, the

number of components may vary from a few hundreds to a few thousands. The

International Society of Automation (ISA) has put together a standard (ISA-

95) that describes a hierarchical model of interconnection between different

devices in an industrial process control system. The standard also describes

terminologies and device models for each level of hierarchy, and provides a

way of comparing production levels of different manufacturing processes. The

hierarchical model consists of four main levels, namely, a device level, a control

level, a Manufacturing Execution System (MES), and an Enterprise Resource

Planning (ERP) level, as shown in Figure 1.1. Plant components such as

sensors, actuators, and machines reside on the device level. Feed and pro-

duction lines are also part of this level, which provide means to workers to

stock inputs and collect products from the process. Machine controllers, e.g.,

programmable logic controllers (PLC), are part of the control level devices,

which are connected to the lower level via a high bandwidth connection. Con-

trol level devices typically require very little maintenance, and thus are kept

in locked areas, accessible only to people responsible for programming them.

An operator monitoring and control room resides at the MES level of the

process control system, and it is generally equipped with human machine in-
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Figure 1.1: Industrial automation pyramid (ANSI/ISA-95) [20]

terface (HMI) and allows the operators to monitor the process through process

measurements and alarm signals. Enterprise resources and other repositories

belong to the ERP level. This level provides a restricted access to the en-

terprise documentation and other operating manuals. A Supervisory Control

and Data Acquisition system (SCADA) and/or a Distributed Control System

(DCS), which overlap between MES and ERP levels, provide interfaces for

supervisory and process monitoring services.

1.2 Alarm systems

Industrial processes suffer from faults due to their components malfunc-

tioning or failures, and depending on the criticality of the failures, these faults

can even lead to serious incidents. Recently, the likelihood of disrupting the

process normal operation has increased drastically due to growing complexity

of industrial processes. An alarm system, which is part of the MES level, plays

a critical role in alerting operators of the abnormality and enabling them in

performing remedial actions. The process of generating alarm signals from

2



Figure 1.2: Alarm signals generation process

the measurements is shown in Figure 1.2. The inputs of an alarm system

are the process measurements, and the alarm signals are generated from the

process measurements by checking the variables against the configured thresh-

olds. Based on the method used to configure thresholds, alarm systems can be

classified as univariate and multivariate alarm systems. For univariate alarm

systems, thresholds are configured on individual process variables, whereas

for multivariate alarm systems, thresholds are configured on signals, which

are generated based on the set of process measurements using some statistical

procedures [24].

Ideally, only one alarm should be raised against an abnormality; however,

in industries this is hardly the case. In fact, operators these days see a lot of

false and nuisance alarms on their monitoring screens, due to poorly configured

alarms, and this number is even higher for multi-mode processes that have

various setpoints to cater the production needs, operating requirements, and

the availability of input stock. The advent of modern DCS systems has made

the matters worse by introducing convenient ways of configuring alarms on

process variables [24]. Various surveys have shown that the current status of

alarm systems performance from different sectors of industries is far from the

benchmarks set by ISA-18.2 and EEMUA 191, which are considered as two

de-facto standards for assessing alarm systems performance [21]. Table 1.1

shows the status of different performance measures against the benchmarks.

The performance of alarm systems can be improved by either redesigning

3



Table 1.1: Alarm system performance survey

Performance measure Benchmark Oil & Gas Petrochemical Power

Average alarms per hour ≤ 6 36 54 48

Average standing alarms 9 50 100 65

Peak alarms per hour 60 1320 1080 2100

Priority distribution % (low/med/high) 80/15/5 25/40/35 25/40/35 25/40/35

the entire alarm system based on the available process measurements, or by

applying various alarm configurations (filters, deadbands, and delay-timers

etc.) on the existing alarm system. In ISA-18.2 many alarm configuration

methods have been proposed, which can be broadly classified into two main

types, namely, basic methods and advanced or enhanced methods [21]. Filters,

deadbands, and delay-timers can be categorized as basic alarm configuration

methods; whereas techniques like state-based alarming, predictive alarming,

and logic based alarming fall under the class of advanced methods. Figure 1.3

gives the taxonomy of alarm configuration methods. In this figure, vertical

dots in the last tier show that there is a wide range of filters, and advanced

methods available, while only a few are shown here as examples. It is worth

mentioning here that these configuration can be used for designing both uni-

variate and multivariate alarm systems.

1.3 Literature survey

In view of the current status of alarm systems, industry personnel have

started to put a lot of effort in alarm system management and rationalization.

Filters, deadbands and delay-timers are some of the commonly used techniques

to get rid of false and nuisance alarms. In addition, some advanced techniques

like state-based alarming, logic-based alarming, and predictive alarming are

also in practice [19, 26, 27]. For the last few years, researchers from academia

have also been engaged with industries to help them in improving their alarm

systems. This collaboration has also enriched the published literature on the

use and design of various alarm configuration methods [9, 2, 18, 50].

4



Figure 1.3: Taxonomy of alarm configuration methods

In the literature many papers can be found that deal with the analysis and

design of different alarm configuration methods, e.g., the problem of designing

optimal alarm filters was studied in [9, 10], and it was found out that the log-

likelihood ratio filters gave the optimal performance in terms of alarm system

accuracy. Numerical optimization procedures were also proposed for linear and

quadratic forms of optimal filters. In [2] the authors have computed the de-

tection delays for both on and off delay-timers, and measurement-deadbands.

A design procedure based on the Receiver Operating Curve (ROC) was also

proposed. Analytical expressions for run-length distribution based chattering

index were computed for delay-timers and measurement-deadbands in [41].

The concept of generalized delay-timers was studied in [1], and the perfor-

mance of the generalized delay-timers was also compared with the traditional

on and off delay-timers. In [54] performance indices, like the False Alarm Rate

(FAR), Missed Alarm Rate (MAR), and Expected Detection Delay (EDD)

were computed for rank order filters based on univariate alarm systems, and

5



the performance was compared with other filters. In [3] the authors studied

the application of delay-timers for multimode processes. The performance in-

dices (FAR, MAR, and EDD) were computed, and a design procedure based

on particle swarm optimization was proposed.

A few papers can also be found in the literature that deal with the en-

hanced configuration methods for alarm systems, e.g., in [40] authors have

developed a logic-based alarm system for power distribution unit, by taking

into account the information from the breaker operation and the sequence of

event recorders. Based on the testing results provided in the paper, the logic-

based alarm system showed superior performance. In [42] authors devised a

state-based alarm system for a nuclear power plant simulator, and through

tests it was observed that the state-based alarming system provided higher

usability ratings as compared to the traditional alarm system. The authors of

[61] have proposed a method of dynamic alarming based on online removal of

chattering and repeating alarms. In this method, alarm durations and time

difference between two alarms were considered in the detection of chattering

and repeating alarms. In [34] a pattern mining based predictive alarming

system was proposed for alarm floods. In this method, a multiple sequence

alignment algorithm was developed, and a similarity score was used to detect

the similarity of incoming alarm sequences with the mined database. Some

more efforts on the advanced alarm configuration methods can be found in

[16, 27, 33, 58].

Literature related to model based multivariate alarm system design meth-

ods can also be found. In these methods dynamic process models are developed

based on parity equations, parameter estimation, or state observers [45, 23].

Process measurements are compared with model and the residual signal is

tested against a threshold to check for abnormality detections. Alarm system

performance is highly dependent on the model developed for a process, which

has become a very challenging and time consuming task due to growing com-

plexity of industrial processes. On the other hand, due to the availability of
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vast amount of historical data, data drvien methods such as principal com-

ponent analysis, partial least squares, independent component analysis, and

Fisher discriminant analysis are becoming very popular [59, 65]. Extension

of data-based methods to multi-mode processes have also been reported in

[75, 64, 44].

1.4 Thesis contributions

This thesis focuses on data driven methods for designing univariate and

multivariate alarm systems for single mode and multi-mode processes. In the

field of alarm system analysis and design, the contributions of this thesis are as

follow. In Chapter 2 a multivariate alarm system design procedure for multi-

mode processes is proposed. A hidden Markov model approach is adopted, and

mode-reachability constraints between different modes of operation are also

considered. In particular, the chapter has the following major contributions:

• An efficient fault detection method is proposed, that can not only handle

the multi-mode data, but also capture the mode-reachability constraints.

• A reconstruction based method is proposed to develop contribution plots

for fault isolation. The fault isolation method combined with the pro-

posed two-step Viterbi algorithm provides satisfactory results for mode

detection in the presence of mode switching restrictions and persistent

faults.

In Chapter 3 the use of delay-timers for multi-mode processes is considered.

This chapter has the following major contributions:

• Analytical expressions for different performance indices (the false alarm

rate, missed alarm rate, and expected detection delay) are derived for

delay-timers when applied on multi-mode processes.

• A particle swarm optimization based algorithm is proposed for the design

of delay-timers for multi-mode processes, while satisfying constraints on

the performance indices.
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In Chapter 4 time-deadband configurations for univariate alarm systems are

studied and analyzed. This chapter has the following major contributions in

the field of univariate alarm systems analysis and design:

• A mathematical model is developed for time-deadband configurations

based on Markov processes.

• Analytical expressions for the performance indices (the false alarm rate,

missed alarm rate, and expected detection delay) are derived.

• Design procedures based on process data and alarm data are proposed.

1.5 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2 a hidden

Markov model based multivariate alarm system design method for multi-mode

processes is presented. Chapter 3 deals with the analysis and design of delay-

timers for multi-mode processes. Chapter 4 is on the use of time-deadbands

for univariate alarm system design. Finally concluding remarks and possible

future work are provided in Chapter 5. A detailed organization of each chapter

is provided in the overview section of each chapter.
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Chapter 2

Monitoring of Multi-mode
Processes with
Mode-reachability Constraints∗

F
or increased efficiency and profitability, many processes have mul-

tiple modes of operation. Switching between different operating

modes is performed according to the standard operating procedures.

These procedures are set by considering safety and operating limita-

tions of various subsystems and equipment, and thus put restrictions

on the switching of the process modes. In this chapter a hidden

Markov model based monitoring method is proposed to capture these

operating restrictions and multi-mode process data.

2.1 Overview

Monitoring of a multi-mode process requires that the monitoring system

be well equipped to deal with the multi-mode data coming from different oper-

ating conditions (modes), which occur due to, e.g., variations in the feedstock,

manufacturing requirements, product demand, and operating environment

[53]. In addition to multimodality of data, mode-reachability constraints are

∗A version of this chapter has been published as: Afzal, M.S., Tan, W., & Chen, T. (2017),
Process Monitoring for Multimodal Processes with Mode-Reachability Constraints, IEEE
Transactions on Industrial Electronics, vol. 64, pp. 4325-4335
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another important and challenging issue for the multi-mode process monitor-

ing. Due to operating and equipment constraints, not every mode is reachable

through other modes of operation. For example in a nuclear power plant [37],

six plant-wide modes are reported and these modes are highly constrained,

e.g., mode 6 (refuelling) can only be reached through mode 5 (cold shutdown),

and mode 4 (hot shutdown) is reachable only through mode 3 (zero power).

Despite the reachability constraints on multi-mode processes, it is still pos-

sible that under some faults or disturbances the process gets drawn towards

a constrained mode. For instance, in a Three Mile Island incident, faults in

the relief valve and the non-nuclear secondary system led the plant towards a

constrained mode, and the operators and the monitoring system mistakenly

detected this as a true mode change instead of faults. These faults eventu-

ally resulted in a partial meltdown of the uranium core; and the incident was

rated as five on a the International Nuclear Event Scale [57]. Thus for efficient

process monitoring of multi-mode processes, in addition to multimodality of

data, it is important for the monitoring system to capture the mode switching

restrictions. Any method insensitive of these constraints will result in many

false and missed alarms.

Despite a rich literature of data based monitoring methods, most existing

methods are either not capable of handling multi-mode data at all, or have

some limitations. Traditional Principal Component Analysis (PCA) based

methods work under the assumption that data belongs to uni-mode Gaussian

distributions [38, 28], which is not the case for multi-mode processes. Different

variants of PCA have been proposed in the literature to handle multimodality

of data. In [74], multiple PCA models were used to capture different operat-

ing modes of the process and test statistics were calculated corresponding to

each of the PCA model. An alarm was generated if a sample did not belong

to any of the operating modes. In [73], a probability mixture based PCA

model was proposed and a fault detection logic was used which was based on

Square Prediction Errors (SPE). The use of multi-mode PCA and dynamic
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PCA for multi-mode process monitoring was proposed in [69] and [63], respec-

tively. Some more efforts on PCA based multi-mode process monitoring can

be found in [67, 51]. Unfortunately, none of the above mentioned methods can

capture the mode-reachability constraints due to lack of modeling parameters.

Furthermore, the use of the Bayesian inference strategy for mode detection

for Dynamic PCA and multi-mode PCA based methods results in poor mode

detection when reachability of some modes in the process are constrained, as

shown later in Section 2.4.

Finite Gaussian Mixture Model (FGMM) based monitoring is another

method that has been used for multi-mode processes. The main advantage

of this method is that a user does not have to specify information about the

number of modes beforehand. In [68], a Bayesian Inference Probability based

index (BIP) was proposed for FGMM. The Mahalanobis distance was used

to calculate the contributions of different Gaussian clusters towards the mon-

itoring index. In [70], FGMM was combined with a hybrid unfolding of a

multi-way data matrix to capture the multi-mode data from batch processes.

A localized probability index was calculated to detect the fault for each sample

based on the operating modes of the process. Similar to PCA, FGMM does

not model the mode switching restrictions due to the fact that these methods

rely on Bayesian inference strategies for mode detection, which does not give

satisfactory results in the case of mode-reachability constraints.

Quite recently, efforts have been made to use the Hidden Markov Models

(HMM) for multi-mode process monitoring. An HMM can not only model

the multimodality of data but also capture the mode shifting probabilities.

In [43], the HMM based statistical pattern analysis method was proposed. In

this method, the mode of operation was detected using a traditional window

based Viterbi algorithm, and the concept of differential mode vector was in-

troduced, which indicates the mode shift for every sample with respect to the

past sample. The use of the standard window based Viterbi algorithm makes

the mode detection unsuitable for the case of persistent faults, where faulty
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samples are also part of the window. In [66], a Bayesian inference probability

index was proposed based on the HMM modeling. The posterior probabilities

associated to any of the operating modes are calculated using the Mahalanobis

distance, which is, insensitive to the mode-reachability constraints. In [48],

independent component analysis and the HMM modeling were combined for

multi-mode process monitoring. The standard Viterbi algorithm was used for

mode detection, and the HMM based I2 and SPE statistics were developed for

fault detection. More literature on the HMM based process monitoring meth-

ods can be found in [4, 52, 5]. While aforementioned methods can detect the

faults, in most cases fault isolation algorithms are not available; furthermore,

the use of the standard Viterbi algorithm for mode detection may result in

inaccurate detection when some of the mode transition probabilities are zero

[47].

This chapter proposes a new monitoring method based on hidden Markov

model. In this method the hidden Markov model is used to capture the multi-

mode behavior and mode switching probabilities of the process/subsystem.

For the root cause identification, a reconstruction based fault isolation algo-

rithm is developed. The rest of this chapter is organized as follows. Section 2.2

describes all preliminaries related to the proposed methodology. Section 2.3

provides details about the proposed method that includes a two-step Viterbi

algorithm, fault detection and fault isolation algorithms. In Section 2.4 vari-

ous case studies are considered and comparisons with some existing data based

methods are also provided.

2.2 Background

In this section, a brief description of a hidden Markov model is presented.

Mode-reachability constraints and different ways of representing these con-

straints are also explained.
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2.2.1 Hidden Markov models

A hidden Markov model was firstly introduced in [7] as an extension of

Markov chains. An HMM can be thought of as a doubly stochastic process,

where one process is used to describe the state transition probabilities, and the

other captures the probability of the observation produced during each state.

For a complete description of an HMM, the following elements are required

[47]:

• Number of states (Q): An HMM has a hidden chain of states and every

state is associated with an observation probability density function.

• State transition matrix (A): It describes the probability of jumping from

one HMM state to another state:

A = [ai,j], 1 ≤ i, j ≤ Q (2.1)

where ai,j = P [qt+1 = j|qt = i].

• Prior probability (π): It is the probability of starting the Markov chain

in a particular state:

πi = P [q1 = i], 1 ≤ i ≤ Q (2.2)

• Observation probability (B): It describes the probability of an observa-

tion yt at time t, for every state of an HMM:

B = [bi(yt)], 1 ≤ i ≤ Q (2.3)

where bi(yt) = Ξi[yt, ui], and Ξi is a probability density function (prob-

ability mass function for discrete observations) associated with state i,

with parameters ui.

Details about three main algorithms (Baum-Welch, forward-backward, and

Viterbi algorithm) associated with HMM models can be found in [47].
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Figure 2.1: Mode-reachability map

2.2.2 Mode-reachability constraints

For multi-mode processes, it is not possible to switch from one operating

mode to every other mode. In fact, there are some restrictions that an operator

has to obey while switching modes. These restrictions are termed as mode-

reachability constraints and can be shown using mode-reachability matrix or

mode-reachability map.

A mode-reachability matrix (Ψ) is a Q × Q matrix, where each element

ψi,j is either 1 or 0. The element ψi,j is 0 if mode j is not reachable directly

through mode i and is 1 otherwise. For example, in a three-mode process, if

mode 3 is not reachable through mode 1 and vice versa, the mode-reachability

matrix takes the following form:

Ψ =

⎡
⎣1 1 0
1 1 1
0 1 1

⎤
⎦ (2.4)

A mode-reachability map is a graphical way of displaying mode-reachability

constraints. The mode-reachability map for the above mentioned three-mode

system is shown in Figure 2.1.

2.3 Proposed methodology

In this section, the HMM based process monitoring with mode-reachability

constraints is proposed. The proposed method has two main steps: offline

training of an HMM model and online monitoring using the trained model.

Details about these two steps are presented here.
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2.3.1 Offline training of an HMM model

Among various types of HMM model (left-right, parallel path, and er-

godic), ergodic models for multi-mode process monitoring are selected. An

ergodic model has the property that it can reach every other state of the

model within finite steps [47], which is directly in line with the property of

multi-mode processes, that various modes of operation can be reached directly

or indirectly through the current mode of operation. For training purposes,

the Matlab toolbox for HMM was modified to incorporate continuous outputs

in the model. The selection of various model parameters is done as follows:

• States of the model are selected based on the Akaike information crite-

rion (AIC) [76]. For a complete training data-set, where measurements

from every possible mode of the process are available, the model with

the number of states equal to the number of modes provides the best

AIC value.

• The state transition matrix is initialized randomly but with the con-

straint that the sum of the elements along each row of the state transition

matrix is one.

• For the prior probability vector, the probability of the state correspond-

ing to the start-up mode is set to 1.

• Finally, the observation probability matrix is initialized with appropriate

probability density or mass functions, by taking into account the type

of process variables.

It is worth mentioning here that use of a mode reachability matrix (Ψ) is

dependent on the training data on hand. For the case of time-synchronous

training data, mode reachability constraints are always satisfied, and cap-

tured as zeros in the state transition matrix, whereas for the case of time-

asynchronous data, entries in the state transition matrix have to be manually

set to zeros corresponding to the constrained modes. Information about the

constrained modes can be collected from the process operation manuals.
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2.3.2 Online process monitoring

In this subsection, a detailed description of each step involved in online

monitoring is provided. An HMM model, obtained from offline training, is

used for this purpose. The proposed method consists of three main steps:

operating mode detection using a two-step Viterbi algorithm, fault detection

using an HMM based monitoring index, and root cause detection using con-

tribution plots. Interconnection of these stages is shown in Figure 2.2. A

two-step Viterbi algorithm is proposed for mode detection. The algorithm

uses the current measurement and previous one-step measurement to detect

the current mode of operation. The presence of the OR block in Figure 2.2

indicates that the one-step past measurement can be an actual measurement

or a reconstructed measurement (y∗t ) generated by the fault isolation block.

The use of one of the inputs for mode detection depends on the status of the

process at time t − 1. Once the operating mode has been detected, a mon-

itoring index is calculated to check for any abnormalities in the process. In

case of abnormality, potential root causes are identified using a reconstruction

based contribution plot.

Mode detection using a two-step Viterbi algorithm

In the context of process monitoring, the existing HMM based methods

use the standard Viterbi algorithm for mode detection. The algorithm itera-

tively finds the state sequence ({q1, q2, ...qT}) from the observation sequence

{y1y2...yT} using the following steps [47]:

• Maximization of the partial likelihood term (δt(i)), which represents the

best score along a single path at time t, given the model parameters (λ):

δt(i) = P [q1...qt = i, y1...yt|λ], 1 ≤ i ≤ Q, 1 ≤ t ≤ T

• Starting from the end time T , determination of the optimal state se-

quence through back tracking on δt(i).

Back tracking on δt(i) makes the algorithm unsuitable for online state detec-
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Figure 2.2: Online process monitoring

tion. Furthermore if some of the probabilities in state transition matrix are

zero, i.e., ai,j = 0 for some i and j, the detected state sequence may not be

valid in the event of fault, because of the presence of abnormality in the past

data. Consequently, a modified two-step Viterbi algorithm is proposed, which

in combination with the fault isolation block, can not only handle the restric-

tions on state transition probabilities but is also suitable for online implemen-

tation. The proposed algorithm follows the same structure, as the standard

Viterbi algorithm, however unlike the latter, the two-step Viterbi algorithm

uses samples only from current time t and t − 1. The sample from t − 1 can

be the actual measurement or the reconstructed input (y∗t ), generated by the

fault isolation algorithm in case of abnormality at time t − 1. The proposed

two-step Viterbi algorithm, instead of maximizing δt(i) based on complete ob-

servation set, maximizes the probability of the expected state pairs δt(j, i),

defined as the probability of being in state j at time t and in state i at time

t− 1, given the corresponding observations and the model parameters:
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δt(j, i) = P [qt = j qt−1 = i|ytyt−1, λ], ∀ i, j ∈ Q (2.5)

where yt is the current process measurement, yt−1 is the process measurement

(actual or reconstructed) at time t − 1, and Q is a set of all possible states.

The objective is to find the state at time t by maximizing the δt(j, i), i.e.,

qt = arg[max[δt(j, i)]], ∀ j ∈ Q (2.6)

By using the definition of conditional probabilities and the Bayes rule (2.5) is

written as:

δt(j, i) =
P [yt|qt=j qt−1=i,yt−1,λ]P [qt=j|qt−1=i,λ]P [yt−1|qt=j,qt−1=i,λ]P [qt−1=i,λ]

P [yt,yt−1,λ]
(2.7)

The Markov chain property of memoryless state transitions helps in reducing

(2.7) to the following:

δt(j, i) =
P [yt|qt=j,λ]P [qt=j|qt−1=i,λ]P [yt−1|qt−1=i,λ]P [qt−1=i,λ]

P [yt,yt−1,λ]
(2.8)

Notice that the terms in the numerator are nothing but the state transition

probabilities and observation probabilities, i.e., P [yt|qt = j, λ] = bj(yt), P [qt =

j|qt−1 = i, λ] = ai,j, P [yt−1|qt−1 = i, λ] = bi(yt), and P [qt−1 = i, λ] = πt−1.

Thus (2.8) takes the following form:

δt(j, i) =
bj(yt)ai,jbi(yt−1)πt−1

P [yt, yt−1, λ]
(2.9)

Since the denominator of (2.9) is independent of i and j for the given observed

data, therefore the maximization of δt(j, i) is only dependent on the numerator

of (2.9). Thus the optimization problem can be written as:

max[δt(j, i)] = max[bj(yt)ai,jϑt−1(i)], ∀ j ∈ Q (2.10)
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Algorithm 1 Online two-step Viterbi algorithm

1: procedure Vit two-step(yt−1, yt, qt−1, λ)
2: Set n = qt−1

Initialization
3: πt−1 = [0...0n−1 1 0n+1...0Q]
4: ϑt−1(i) = πt−1bi(yt−1), ∀i ∈ Q

Recursion
5: δt(j, i) = max1≤j≤Q[bj(yt)ai,j ]ϑt−1(i), ∀i ∈ Q

Termination
6: qt = argmax[δt(j, i)]
7: end procedure

where ϑt−1(i) = bi(yt−1)πt−1. A recursion based solution is adopted to maxi-

mize δt(j, i). Algorithm 1 outlines the complete procedure for mode detection

using the proposed two-step Viterbi algorithm.

For illustration purposes, a multi-mode system with the following mode-

reachability matrix is simulated:

Ψ =

⎡
⎣1 1 0
1 1 1
0 1 1

⎤
⎦ (2.11)

The system is initially in mode 1, and the objective is to shift the operating

mode to mode 3 at t = 700. Due to the mode-reachability constraints, the

system is first shifted to mode 2 at t = 500, and then to mode 3. Meanwhile,

a fault is introduced at t = 400 and cleared at t = 550. This fault draws the

system towards mode 3. Both traditional Viterbi algorithm and the proposed

two-step Viterbi algorithm are used to detect the operating mode, and the

results are shown in Figure 2.3. It is evident that during t = 400 to 550 the

two-step Viterbi algorithm is able to detect the true operating modes irrespec-

tive of the fault, due to the use of the reconstructed data during abnormality.

The traditional Viterbi algorithm, on the other hand, is not able to nullify the

effect of the fault during that time period.

Fault detection

A trained HMM model is used to calculate the likelihood of a new sample

belonging to the trained model. Using the information extracted from the
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Figure 2.3: Comparison of Viterbi algorithms

two-step Viterbi algorithm, a monitoring index based on the negative of the

log likelihood (NLLP) is proposed. For the case when observation probability

is multivariate Gaussian distribution, NLLP takes the following form:

ϕt = −log[P[yt|λ]] = M

2
log(2π) +

1

2
log|Ω|+ 1

2
(yt − η)TΩ−1(yt − η) (2.12)

where M is the number of the process variables to be monitored, and η and

Ω are the mean vector and covariance matrix of the current operating mode,

respectively. Mode information is collected using the two-step Viterbi algo-

rithm:

qt = V ittwo-step(yt−1, yt, qt−1, λ) (2.13)

Assuming μ∗ and Σ∗ are the mean vector and covariance matrix associated

with mode qt, (2.12) can be rewritten as:

ϕt = −log[P[yt|λ]] = M

2
log(2π) +

1

2
log|Σ∗|+ 1

2
(yt − μ∗)TΣ∗−1(yt − μ∗)(2.14)

A complete fault detection logic is provided in Algorithm 2. The offline step

of the detection algorithm is related to the HMM model training. Depend-

ing on the nature of the process, and the number of operating modes, HMM

parameters are selected based on the guidelines provided in Subsection 2.3.1.
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Algorithm 2 Fault detection algorithm

Offline: HMM modeling
1: Set the number of HMM states equal to the number of operating modes.
2: Randomly initialize HMM parameters.
3: Use Baum-Welch algorithm to find the HMM parameters.
4: Find the threshold (ϕthreshold) based on kernel density estimation.

Online: Fault detection
For every new sample yt

5: Find the current operating mode using the two-step Viterbi algorithm: qt =
V ittwo-step(yt−1, yt, qt−1, λ)

6: Calculate the test statistic (assuming that μ∗ and Σ∗ are the mean vector and covari-
ance matrix corresponding to mode qt):
ϕt =

M
2 log(2π) + 1

2 log|Σ∗|+ 1
2 (yt − μ∗)TΣ∗−1(yt − μ∗)

7: if ϕt > ϕthreshold then
8: Raise an alarm.
9: end if

Since the distribution of the monitoring index (ϕ(t)) is not known, a kernel

based density estimation (KDE) procedure is used for the selection of appro-

priate threshold. The KDE is a non-parametric density estimation procedure,

where finite data samples are used to estimate the distribution of the data

[39]. The monitoring index using the normal training data is calculated, and

distribution is estimated based on a Gaussian kernel function.

Fault isolation based on reconstruction

A complete process monitoring method should be able to detect the po-

tential root causes in the event of faults. In this work, contribution plots, a

popular unsupervised method for fault isolation, are used for the root cause

identification. Contribution plots help in identifying variables which are push-

ing the monitoring index out of its control limit [62]. In [46, 72, 25, 36], con-

tribution plots based on reconstruction were developed. The basic idea is to

minimize the monitoring index by reconstructing the faulty variables using

the non-faulty variables. In this chapter, a similar reconstruction approach

is used for the proposed fault detection method, and contribution plots are

developed.

The proposed monitoring index has the following mathematical form:

ϕ =
M

2
log(2π) +

1

2
log|Σ∗|+ 1

2
(y − μ∗)TΣ∗−1(y − μ∗) (2.15)
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For a given mode, the first two terms of (2.15) are independent of y, so the

minimization of ϕ depends only on the last term, namely, (y−μ∗)TΣ∗−1(y−μ∗).
Redefine this term as follows:

ω = zTGz = (y − μ∗)TΣ∗−1(y − μ∗) (2.16)

Now ω can be minimized by differentiating it with respect to the jth faulty

variable and then reconstructing it based on the non-faulty variables:

∂ω

∂zj
= 0 (2.17)

Equation (2.17) can be rewritten as follows:

τTj Gz = 0 (2.18)

where τj is a column vector of size M , in which only the jth element is one

and the rest are zero. For the case of multiple sensor faults (2.18) takes the

following form:

τTGz = 0 (2.19)

where τ = [τ1 τ2 · · · τk] is the collection of all the τj’s corresponding to k

number of the faulty variables. Decomposition of z into faulty and non-faulty

variables can be done as: z = Λz + (I − Λ)z, where Λ is a diagonal matrix

of size M , whose elements are 1 corresponding to faulty variables and are 0

otherwise. After decomposition, (2.19) can be written as:

τTGΛz = −τTG(I − Λ)z (2.20)

By letting zk to be the collection of all the k faulty variables, and observing

that Λz = τzk, the following reconstruction equation can be obtained:

z∗k = −(τTGτ)−1τTG(I− Λ)z (2.21)

The reconstruction equation in terms of y takes the following form:

y∗k = μ∗ − (τTGτ)−1τTG(I− Λ)(y − μ∗) (2.22)
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Algorithm 3 Fault isolation algorithm

1: if ϕ > ϕthreshold then
2: Find the current operating mode using the two-step Viterbi algorithm.
3: Set G = Σ∗−1, ϕ∗ = 0, yk = ∅ and k = 1
4: while ϕ∗ > ϕthreshold do
5: for j = 1 to k do
6: Find y∗j and ϕ∗ using (2.22) and (2.23), respectively.
7: Calculate �ϕ = ϕ− ϕ∗

8: end for
9: if ϕ∗ < ϕthreshold then
10: Exit while
11: else
12: Arrange the variables in decreasing order with respect to �ϕ.
13: Add the variable with maximum �ϕ in yk.
14: Set k = k + 1 and go back to step 4.
15: end if
16: end while
17: end if
18: Find contribution of each variable using (2.24).

Modified data after reconstruction can be found as: y∗ = τy∗k + (I −Λ)y, and

the minimized monitoring index ϕ∗ can be obtained as:

ϕ∗ =
M

2
log(2π) +

1

2
log|Σ∗|+ 1

2
(y∗ − μ∗)TΣ∗−1(y∗ − μ∗) (2.23)

Finally, the contribution of the k faulty variables in reducing monitoring index

can be found as:

c = [(τTϕ∗τ)0.5τ(y − y∗)]2 (2.24)

The complete fault isolation algorithm based on reconstruction is presented in

Algorithm 3. This algorithm reconstructs the faulty variables in such a way

that the monitoring index drops below the threshold after reconstruction,

and the corresponding contribution of faulty variables is visualized through

contribution plots.

2.4 Application examples

Two processes are considered to show the effectiveness of the proposed

method. For these processes, modes are defined based on the setpoints, and

it is assumed that these setpoints are reflective of the process operational
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requirements. For comparison purposes, fault scenarios are also tested using

Gaussian mixture models, dynamic PCA, and multi-mode PCA. A Bayesian

inference strategy is used for mode detection for the multi-mode PCA and

Gaussian mixture models [69] [63].

2.4.1 A numerical example

A two-input-two-output system described by the following equation is con-

sidered:

y =

[
1.0 0.2
0.3 1.0

] [
x1
x2

]
+

[
e1
e2

]
(2.25)

where e1 and e2 are independent Gaussian noises N (μ, σ), with mean μ = 0

and variance σ = 10−3, respectively. Depending on the inputs, the system can

have one of the following three operating modes:

[
x1
x2

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mode 1: N (
[
1 2

]
,

[
1.3 0

0 1.5

]
)

Mode 2: N (
[
5 15

]
,

[
1.3 0

0 1.5

]
)

Mode 3: N (
[
12 10

]
,

[
1.3 0

0 1.5

]
)

(2.26)

Mode-reachability constraints are considered by assuming that mode 1 is not

directly reachable through mode 3, and vice versa. Thus mode-reachability

matrix takes the following form:

Ψ =

⎡
⎣1 1 0
1 1 1
0 1 1

⎤
⎦ (2.27)

A three-state HMM model with multivariate Gaussian distributions is se-

lected based on AIC criterion, and the following faulty scenarios are considered

during mode 1:

i. A bias in y1 (magnitude of 10 units) is introduced during time 400 - 500.

ii. A bias in y2 (magnitude of 5 units) is introduced during time 400 - 500.
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Figure 2.4: Scatter plot of data and Gaussian contours

The scatter plot of the training data, Gaussian contours, and faults are shown

in Figure 2.4. It can be seen that under the first faulty scenario the system

is drawn towards the constrained mode 3; whereas under the second scenario

the system does not violate any of the mode-reachability constraints.

Mode detection results of the Bayesian inference strategy and the proposed

two-step Viterbi algorithm for fault 1 are shown in Figure 2.5. During time t

(from 400 to 500), the mode is wrongly detected as Mode 3 using the Bayesian

inference strategy; whereas the two-step Viterbi algorithm, being sensitive to

the mode-reachability constraints, detects the actual mode of operation.

Monitoring results are shown in Figure 2.6 and 2.7, respectively. It can be

seen that under the first faulty scenario, where mode-reachability constraints

are violated, only the proposed method is able to detect the fault because none

of the other methods is able to capture the mode-reachability constraints;

whereas for the second scenario the proposed method, FGMM, and multi-

mode PCA give comparable results, since in this case no mode-reachability

constraints are violated. Dynamic PCA based statistics are not able to capture

the multimodality of the data at all.

Results of the fault isolation algorithm for both scenarios are shown in
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Figure 2.5: Mode detection during faulty scenario 1 (Example 1)

Figure 2.8a and 2.8b, respectively. The contribution plot for fault 1 shows a

very high contribution from variable y1 during time 400 - 500, which has a

bias error in variable y1. Similarly Figure 2.8b shows that variable y2 has a

major contribution (∼100%) during time 400 - 500 in pushing the monitoring

index out of its threshold limit.

2.4.2 A continuous stirred tank heater

The continuous stirred tank heater (CSTH) is a common process model,

whose main purpose is to maintain the flow rate and the temperature of the

outlet at the required set point. To achieve this, hot and cold water streams

are mixed together, and if required, heated using steam through a heating

coil. Controllers are configured in the temperature, level, and flow loops of

the system. The overall schematics of the process is shown in Figure 2.9.

The laboratory setup of the process is present at the Department of Chemical

Engineering, University of Alberta. In this example, the laboratory constraints

and the Simulink model developed in [56] is used. Five operating modes are

used for testing purposes. These modes are defined in terms of set points

(Table 2.1) for level, temperature, and hot water valve opening [69]. These

modes are defined in terms of electronic signals (mA); whereas calibration
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Figure 2.6: Monitoring results for fault 1 for Example 1
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Figure 2.7: Monitoring results for fault 2 for Example 1
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Figure 2.8: Fault isolation results for Example 1

Figure 2.9: Continuous stirred tank heater [56]

information of the sensors can be found in [56], which was determined by

recording measurements at several operating points of the sensors.

Some of the modes in the CSTH are constrained due to limitations on the

change of the steam flow rate, and hot water valve opening. For example,

hot water is one of the shared resources for the setup, and a sudden increase

and decrease in hot water demand can cause disturbances for other users [56].

Thus, a direct switch from mode 5 to mode 1 (vice versa) is not recommended,

because change in the hot water valve opening from 4 to 5.5 mA requires a

sharp increase in the hot water flow rate (0 to 4.8 liters/min), which is not
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Table 2.1: Set points for modes of the CSTH [69]

Variable Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Level SP (mA) 12 16 9 12 12

Temperature SP (mA) 10.5 10.5 10.5 13.5 8

HW valve opening (mA) 5.5 5 4.5 6 4

recommended. Furthermore, since the level set point is fixed for both modes

(12mA ≈ 18 liters), increase in the hot water valve opening can cause an

overflow in the tank, as outlet flow of the tank is constant. Similarly, mode 2

is not reachable directly from mode 3, and vice versa, because of constraints

on the steam flow rate, and mode 4 is also not reachable directly from mode

5, and vice versa, due to constraints on the hot water flow rate. Under these

constraints, the mode-reachability matrix for the CSTH takes the following

form:

Ψ =

⎡
⎢⎢⎢⎢⎣
1 1 1 1 0
1 1 0 1 1
1 0 1 1 1
1 1 1 1 0
0 1 1 0 1

⎤
⎥⎥⎥⎥⎦ (2.28)

From simulations it is observed that the system may suffer from constrained

mode change in the event of two-variable faults; whereas for single variable

faults, such scenario is not possible. The following two faulty scenarios were

considered, while the system was operating in mode 5:

i. A bias error is introduced in the temperature sensor (magnitude of 3.5

mA) at time t = 400, and random variation (Gaussian noise) in the cold

water flow rate sensor is introduced at time t = 600.

ii. Starting from time t = 400, a bias error (magnitude of 4 mA) is introduced

in the level sensor.

HMM model with five states is selected based on AIC criterion. Mode

detection results for the first faulty scenario, using the Bayesian inference

strategy and the two-step Viterbi algorithm, are shown in Figure 2.10. From
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Figure 2.10: Mode detection during faulty scenario 1 (Example 2)

this figure, it can be seen that the Bayesian inference strategy is not able to

capture the mode-reachability constraints, and at time t = 600 the true mode

(mode 5) is not detected; whereas the detected mode using the proposed two-

step Viterbi algorithm is always mode 5, irrespective of the fault. Monitoring

results for the first faulty scenario are shown in Figure 2.11. Since in this case

there is a constrained mode change due to the two-variable fault after time

t = 600, as expected, only the proposed method is able to detect such a fault

efficiently. The FGMM, dynamic PCA and multi-mode PCA based statistics

show very poor results in detecting the two-variable fault. For faulty scenario

2, where only a single variable is involved and no constrained mode change

occurs, the proposed method, FGMM and multi-mode PCA give comparable

results, as shown in Figure 2.12. However, dynamic PCA based statistics

again are not able to handle multi-mode data very efficiently.

Results of the fault isolation algorithm for both faulty scenarios are shown

in Figure 2.13a and 2.13b, respectively. For the first case, initially there is

only one faulty variable (the temperature), but after time t = 600, a majority

of the contribution comes from the second variable (the flow sensor). For the

second case, a single faulty variable can be identified by the contribution plot

shown in Figure 2.13b.
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Figure 2.11: Monitoring results for fault 1 for CSTH
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Figure 2.12: Monitoring results for fault 2 for CSTH

2.4.3 Performance comparison

Table 2.2 lists the missed and false alarm rates for the considered faulty

scenarios in the above mentioned case studies. From this table it can be
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Figure 2.13: Fault isolation results for Example 2

Table 2.2: Missed and false alarm rates

Missed Alarm Rate (MAR)

Fault ID DPCA(T2) DPCA(SPE) mPCA(T2) mPCA(SPE) FGMM Proposed

Example 1
Fault 1 100% 100% 76% 52% 100% 0%

Fault 2 100% 100% 0% 0% 0% 0%

Example 2
Fault 1 95% 97.67% 51.83% 28.33% 56.50% 0%

Fault 2 98.30% 98.30% 0% 10% 0% 0%

False Alarm Rate (FAR)

Example 1 - 0% 0% 1.03% 0.53% 0% 0.3%

Example 2 - 0% 1.67% 1.23% 0.75% 0% 2%

seen that in terms of missed alarm rates the proposed method outperforms

FGMM, dynamic PCA and multi-mode PCA based monitoring methods for

the type of faults where mode-reachability constraints are violated. For other

faults, where mode-reachability constraints are not violated, performance of

the proposed method is comparable to the FGMM and multi-mode PCA. Low

values of false rates are obtained for both examples.

2.5 Summary

In this chapter, an HMM based multivariate alarm monitoring system was

designed for multi-mode processes with mode-reachability constraints. The

Viterbi algorithm was first modified to detect the operation modes in the

34



event of faults, and a contribution plot was built by reconstruction of the faulty

variables for fault isolation. Application examples showed that the proposed

monitoring method can not only handle the multimodality of process data but

also capture the mode switching restrictions. In the next chapter, the analysis

of delay-timer configurations for multi-mode processes is carried out.
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Chapter 3

Analysis and Design of
Multi-mode Delay-Timers∗

F
or acceptable performance of an alarm system for a multi-mode

process, it is inevitable to have appropriate alarm configurations

for every mode of the process. Delay-timers, being very effective in

reducing false and nuisance alarms, are analyzed and designed for

multi-mode processes. A hidden Markov model with Markov chain

observations is used to capture the configuration of delay-timers in

various modes of the process. Analytical expressions for different

performance indices are derived. For the design, a particle swarm

optimization based algorithm is proposed.

3.1 Overview

For multi-mode processes, acceptable alarm system performance requires

that alarm configurations are updated based on operating modes. These up-

dates may include changing the alarm limits, shelving of certain alarms, recon-

figuration of filters, deadbands, or delay-timers. However, DCS alarm capabil-

ities are generally limited to a single mode process, not well suited for processes

with multiple operating modes [15]. This has resulted in compromised and less

∗A version of this chapter has been published as: Afzal, M.S., & Chen, T. (2017), Analysis
and Design of Multimode Delay-Timers, Chemical Engineering and Research Design, vol.
120, pp. 179-193.
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efficient designs. For most of the cases, key performance indicators fall well

below the standards mentioned in EEMUA and ISA 18.2 [21, 13], thus appro-

priate design of alarm configurations (filters, deadbands and/or delay-timers)

for multi-mode processes is almost inevitable. Consequently, this chapter fo-

cuses on the design of delay-timers for multi-mode processes, because of their

wide usage in industries, and effectiveness in improving the key performance

indicators [30].

In this chapter multi-mode configuration of delay-timers is considered.

Hidden Markov models with Markov chain observations are used to capture

the process mode switching probabilities, and delay-timer configurations. The

proposed HMM based model is used to analyze and design multi-mode delay-

timers. The rest of this chapter is organized as follows. Section 3.2 provides

details about the types of alarm systems for multi-mode processes, and pre-

liminary information related to the alarm system performance measures, and

hidden Markov models. In Section 3.3, a model for multi-mode delay-timers

is developed. Derivation of performance indices, and design methodology is

detailed in Sections 3.4 and 3.5, respectively.

3.2 Background

In this section, the types of alarm systems for multi-mode processes are

described. Long term behavior of an HMM model is also discussed.

3.2.1 Types of alarm systems for multi-mode processes

For multi-mode processes, two types of alarm systems are used. In the first

type, different alarm limits are configured for different modes of the process

[17, 60], whereas in the second type, a single threshold setting is used for each

mode of the process [67, 75, 74]. In this chapter, these two types of alarm

systems are named as multi-threshold alarm systems and uni-threshold alarm

systems, respectively. Typical settings of alarm thresholds in multi-threshold

and uni-threshold alarm systems are shown in Figure 3.1.
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(a) Multi-threshold alarm system (b) Uni-threshold alarm system

Figure 3.1: Types of alarm systems for multi-mode processes

The problem of designing delay-timers for multi-threshold alarm system

can be solved by considering each mode as a single process, and designing

delay-timers for each mode separately. Graphical techniques proposed in [2,

30] for single-mode processes can be used for this purpose. For uni-threshold

alarm systems, however, it is not possible to separate the design procedure into

various modes due to the overlapped threshold, and to the best of authors’

knowledge there is no systematic way available to design uni-threshold alarm

systems.

3.2.2 Long term behavior of an HMM model

In this chapter hidden Markov models are used to model the delay-timer

configurations for multi-mode processes. Under the assumption that the

samples from the process measurements are independent and identically dis-

tributed, long term behavior of the model can be studied by considering the

stationary distribution of the model. For an HMM model with a Markov chain

of S number of states, and state transition matrix A = [ai,j], 1 ≤ i, j ≤ S,

the stationary distribution φ is a row vector of size 1 × S, and can be found

as [76]:

φ = 1(IS − A+US)
−1 (3.1)
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Figure 3.2: Two state HMM with discrete observations

where 1 is a row vector of ones of size S, IS is a S × S identity matrix,

and US is the square matrix of ones of size S. As as example, a two-state

HMM model with discrete observations, is shown in Figure 3.2. State 1 has n

number of discrete observations, whereas in state 2, the system has m possible

observations. For a two-state HMM model, the stationary distribution φ has

the following closed form [76]:

φ =

[
a21

a12 + a21

a12
a12 + a21

]
(3.2)

It is worth mentioning here that in HMM based modeling of multi-mode

delay-timers, states of the Markov chain correspond to the modes of the pro-

cess, and the state transition matrix is used to capture the mode switching

probabilities of the process.

3.3 Modeling of multi-mode delay-timers

Before developing the model of multi-mode delay-timers, first consider an

example of a single-mode process variable, configured with an on delay-timer

of length 3, and an off delay-timer of length 4. Let p1 be the probability of the

process variable to go above the threshold, and p2 be the probability to fall

below the threshold. For the case of uni-threshold alarm systems: p2 = 1−p1.
Under certain conditions, as described in [2, 30], this configuration can be

modeled using a Markov chain process, as shown in Figure 3.3. The resulting

model has three no-alarm states (NA, NA1, and NA2), and four alarm states
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Figure 3.3: Single mode process with on delay-timer (n = 3), and off delay-
timer (m = 4)

(A, A1, A2, A3) corresponding to the on and off delay-timers of lengths 3

and 4, respectively. An alarm is raised if three consecutive samples of the

process variable go above the threshold, and the process enters the alarm

state, whereas clearance of an alarm requires four consecutive samples to fall

below the threshold.

In this chapter, the idea of Markov chain based modeling of delay-timers

is extended to the case of multi-mode delay-timers. Hidden Markov models

with Markov chain observations are utilized for this purpose. The hidden

Markov chain, in the HMM model, captures the mode switching probabilities

of the process, and mode based delay-timer configurations are modeled using

Markov chain observations. Like standard hidden Markov models, HMM with

Markov chain observations is also a doubly stochastic process; however in the

latter case, observation at any time t depends on not only the present state,

but also the past observation at time t− 1, i.e.

bi(yt|yt−1) = P(observation = yt | qt = i, yt−1) (3.3)

This allows us to incorporate delay-timers in the HMM model. For illustra-

tion purposes, consider an example of a two-mode process (Q = 2), with the

following mode switching probability matrix:
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Figure 3.4: Two-mode process (Mode 1: n1 = m1 = 2, and Mode 2: n2 = 3
m2 = 4)

T =

[
t11 t12
t21 t22

]
(3.4)

where tij (1 ≤ i, j ≤ 2) represents the probability of the process to switch

from mode i to mode j. Let p1i be the probability of the process variable

to go above the threshold in mode i (1 ≤ i ≤ 2), and p2i is the probability

of the process variable to fall below the threshold in the ith mode. If mode

1 of the process is configured with on and off delay-timer of length 2 (n1 =

m1 = 2), and the mode 2 has an on delay-timer of length 3 (n2 = 3), and

an off delay-timer of length 4 (m2 = 4), then a two state HMM with Markov

chain observations based model can be developed for this configuration, which

is shown in Figure 3.4. For the first mode observation set is a Markov chain

with two no-alarm states (NA(1), NA1(1)), representing the on delay-timer, and

two alarm states (A(1), A1(1)), corresponding to the off delay-timer. Similarly,

observation set in mode 2 consists of three no-alarm states to model on delay-

timer of length 3, and four alarm states for an off delay-timer of length 4.

Like mode switching probability matrix, transition matrix for states of delay-

timers (NA’s and A’s) can also be defined. It captures the probabilities for
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switching states in observation sets. For the considered two mode process, it

can be written as:

TOn =

[
TOn(1) 0
0 TOn(2)

]
11×11

(3.5)

where

TOn(1) =

⎡
⎢⎢⎣
1− p11 p11 0 0
1− p11 0 p11 0

0 0 1− p21 p21
p21 0 1− p21 0

⎤
⎥⎥⎦ , TOn(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− p12 p12 0 0 0 0 0
1− p12 0 p12 0 0 0 0
1− p12 0 0 p12 0 0 0

0 0 0 1− p22 p22 0 0
0 0 0 1− p22 0 p22 0
0 0 0 1− p22 0 0 p22
p22 0 0 1− p22 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)

Steady state behavior of the model can be defined using two stationary dis-

tributions: one for the mode switching process, and the other for observation

sets. Let δ be the stationary distribution for the mode switching process, and

πn be the stationary distribution of the observation sets, then from (3.2) and

(3.1), δ and πn can be written as:

δ = P [Mode 1 Mode 2] =

[
t21

t12 + t21

t12
t12 + t21

]
(3.7)

πn = P
[
NA(1) NA1(1) A(1) A1(1) NA(2) NA1(2) NA2(2) A(2) A1(2) A2(2) A3(2)

]
(3.8)

πn = 1(I11 − TOn +U11)
−1 (3.9)

where I11 is an identity matrix of size 11, and U11 is the square matrix of ones

of size 11.

For the uni-threshold alarm system, in addition to normal operating modes,

there is one abnormal mode, as well, and the process can enter the abnormal

mode from any of the normal operating modes. For the considered process, if

q2 is the probability that the process variable remains above the threshold in

42



the abnormal mode, and q1 is the probability for the process to fall below the

threshold, then the transition matrix (TOab
) for the states in the observation

sets, during the abnormal mode, can be written as:

TOab
=

[
TOab(1) 0

0 TOab(2)

]
11×11

(3.10)

where

TOab(1) =

⎡
⎢⎢⎣
1− q2 q2 0 0
1− q2 0 q2 0

0 0 1− q1 q1
q1 0 1− q1 0

⎤
⎥⎥⎦ , TOab(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− q2 q2 0 0 0 0 0
1− q2 0 q2 0 0 0 0
1− q2 0 0 q2 0 0 0

0 0 0 1− q1 q1 0 0
0 0 0 1− q1 0 q1 0
0 0 0 1− q1 0 0 q1
q1 0 0 1− q1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.11)

Steady state behavior of the mode switching process is still defined using (3.7),

however for the observation sets, steady state distribution takes the following

form:

πab = 1(I11 − TOab
+U11)

−1 (3.12)

Eqs. (3.5), (3.7), (3.9), (3.10), and (3.12) completely defines the delay-timer

configurations for the considered two-mode process. Now consider a more

general process with Q number of modes, and the following mode switching

matrix:

T =

⎡
⎢⎢⎢⎣
t11 t12 . . . t1Q
t21 t22 . . . t2Q
...

...
. . .

...
tQ1 tQ2 . . . tQQ

⎤
⎥⎥⎥⎦ (3.13)

If the ith mode (1 ≤ i ≤ Q) is configured with an on delay-timer of length ni,

and an off delay-timer of length mi, then the resulting HMM based model is

shown in Figure 3.5. State transition matrix for the observation sets can be

written as:
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TOn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

TOn(1)

TOn(2)

. . . 0
0 TOn(i)

. . .

TOn(Q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.14)

where TOn has a dimension of (n1+ ...+nQ+m1+ ...+mQ)× (n1+ ...+nQ+

m1 + ...+mQ). TOn(i) is the transition matrix of the observation set in the ith

mode of the process, and is given by:

TOn(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− p1i p1i 0 . . . 0
1− p1i 0 p1i . . . 0

...
...

...
. . .

... 0ni×(mi−1)
1− p1i 0 0 . . . p1i

1− p2i p2i 0 . . . 0
1− p2i 0 p2i . . . 0

0(mi−1)×ni

...
...

...
. . .

...
1− p2i 0 0 . . . p2i

p2i 0 0 . . . 1− p2i 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(ni+mi)×(ni+mi)

(3.15)

Let δ be the stationary distribution of the hidden Markov chain, capturing

the mode switching probabilities of the process, and it can be written as:

δ = P [Mode 1 Mode 2 ... Mode Q] = 1(IQ − T +UQ)
−1 (3.16)

where IQ is the Q × Q identity matrix, and UQ is a square matrix of ones

of size Q. The stationary distribution of the observation sets (πn) in normal

modes takes the following form:

πn =
[
πn(1) πn(2) ... πn(i) ... πn(Q)

]
(3.17)

where πn is a collection of stationary distributions of observations for each

mode of operation, and the ith element of πn is defined as:

πn(i) = P
[
NA(i) NA1(i) ... NAni−1(i) A(i) A1(i) ... Ami−1(i)

]
= 1(I(ni+mi) − TOn(i) +Uni+mi

)−1 (3.18)
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where I(ni+mi) is a (ni +mi)× (ni +mi) identity matrix, and U(ni+mi) is the

square matrix of ones of size (ni+mi). After some simplifications πn(i) reduces

to the following row vector:

πn(i) =

[
pmi
2i p1ip

mi
2i ... p

ni−1
1i pmi

2i p
ni
1i p2ip

ni
1i ... p

mi−1
2i pni

1i

]
pmi
2i

∑ni−1
j=0 pj1i + pni

1i

∑mi−1
k=0 pk2i

, (1 ≤ i ≤ Q) (3.19)

So far it is assumed that the process is operating under normal modes. How-

ever, it is possible for the process to jump into the abnormal mode from any

of the normal modes. In this case, a model similar to the normal case can be

developed. Except that in this model, probability distributions of raising and

clearing of an alarm depends on the abnormal distribution of the process. If

it is assumed that q1 and q2 are the probabilities for the process variable to

fall below and above the threshold, respectively, and the process enters the

abnormal mode for the ith normal mode, then the state transition matrix of

the observation set can be written as:

TOab(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− q2 q2 0 . . . 0
1− q2 0 q2 . . . 0

...
...

...
. . .

... 0ni×(mi−1)
1− q2 0 0 . . . q2

1− q1 q1 0 . . . 0
1− q1 0 q1 . . . 0

0(mi−1)×ni

...
...

...
. . .

...
1− q1 0 0 . . . q1

q1 0 0 . . . 1− q1 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ni+mi)×(ni+mi)

(3.20)

The stationary distribution in this case takes the following form:

πab(i) = P[NA(i) NA1(i) ... NAni−1(v) A(i) A1(i) ... Ami−1(i)]

=

[
qmi
1 q2q

mi
1 ... qni−1

2 qmi
1 qni

2 q1q
ni
2 ... qmi−1

1 qni
2

]
qmi
1

∑ni−1
j=0 qj2 + qni

2

∑mi−1
k=0 qk1

(3.21)
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Figure 3.5: HMM model of the Q-mode process with multi-mode delay-timers

3.4 Performance assessment

For performance assessment of multi-mode delay-timers, formulas for three

indices, namely, the false alarm rate, missed alarm rate, and expected detec-

tion delay, are derived. The HMM based model, developed in the Section 3.3,

is utilized for this purpose.
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3.4.1 False alarm rate

Give a Q-mode process with τ the threshold and pin the probability density

function under the normal mode i, the false alarm rate is defined as the proba-

bility of raising an alarm under the normal operation, which can be calculated

as:

P(false alarm) =

Q∑
i=1

[
P(mode = i)

∫ ∞

τ

pin(x)dx

]
(3.22)

where P(mode = i) is the stationary distribution of the ith normal mode of the

process, and can be calculated using (3.16). Probability of false alarms in the

ith mode can be calculated by collecting all the probabilities corresponding to

the alarm states from (3.19):

P[false alarm | mode = i] = P[A(i)] + P[A1(i)] + ...+ P[Ami−1(i)]

=

∑mi−1
j=0 pj2ip

ni

1i

pmi

2i

∑ni−1
j=0 pj1i + pni

1i

∑mi−1
k=0 pk2i

(3.23)

Thus the overall false alarm rate for the Q−mode process is given by:

FAR =

Q∑
i=1

P(mode = i)P(false alarm | Mode = i) (3.24)

=

Q∑
i=1

[
δi

( ∑mi−1
j=0 pj2ip

ni
1i

pmi
2i

∑ni−1
j=0 pj1i + pni

1i

∑mi−1
k=0 pk2i

)]
(3.25)

where δi is the ith element of the stationary distribution vector, defined in

(3.16).

3.4.2 Missed alarm rate

For a uni-threshold alarm system, where there is only a single abnormal

mode, the process can enter the abnormal mode from any of the Q normal

modes; thus for calculating the missed alarm rate, the stationary distribution
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of normal modes (δi) needs to be considered, as well. Let pab be the probability

density function of the abnormal mode, then the missed alarm rate is the

probability of failure in raising an alarm in the abnormal mode, and it can be

calculated as follows:

P(missed alarm) =

Q∑
i=1

δi

∫ τ

−∞
pab(x)dx (3.26)

where τ is the configured threshold for the uni-threshold alarm system. The

expression
∫ τ

−∞ pab(x)dx can be calculated by collecting all the probabilities

corresponding to the no-alarm states from (3.21):

P[missed alarm | mode i → abnormal] = P[NA(i)] + P[NA1(i)] + ...+ P[NAni−1(i)]

=

∑mi−1
j=0 qj2q

ni
1

qmi
2

∑ni−1
j=0 qj1 + qni

1

∑mi−1
k=0 qk2

(3.27)

where the notation (mode i → abnormal) means that the process entered the

abnormal mode from the ith normal mode. The missed alarm rate of the

overall process can be calculated by considering the effect of all modes, and

can be written as:

MAR =

Q∑
i=1

P(mode = i)P(missed alarm | mode i → abnormal)(3.28)

=

Q∑
i=1

[( ∑mi−1
j=0 qj2q

ni
1

qmi
2

∑ni−1
j=0 qj1 + qni

1

∑mi−1
k=0 qk2

)
δi

]
(3.29)

3.4.3 Expected detection delay

The detection delay is defined as the number of time samples taken by

the alarm system to generate an alarm, after the process has entered the

abnormal mode. Mathematically, it is the time difference between abnormality

occurrence time (tab) and alarm generation time (ta):

Detection Delay (DD) = tab − ta (3.30)

48



The mean value of the detection delay is termed as expected detection delay.

Based on the proposed HMM model for multi-mode delay-timers, detection

delay can be defined as the time taken by the Markov chains in the observation

sets to switch from no-alarm states (NA’s) to alarm states (A’s).

If a Q-mode process enters the abnormal mode at time tab from the ith

normal mode, then the probability distribution of the observation states at

time tab can be written as [35]:

P
(
[NA(i) NA1(i) ... NAni−1(i) A(i) A1(i) ... Ami−1(i)]

)
= πn(i)TOab(i) (3.31)

where πn(i) is the stationary distribution of the ith mode of the process, given

by (3.19), and TOab(i), defined in (3.20), is the state transition matrix in the

abnormal mode of the process. If TNAab
is defined as the matrix containing the

switching probabilities of the states for no-alarm states only. Then, using the

Chapman-Kolmogorov equation [35], it can be shown that ts samples delay is

given by:

P(DD = ts) = ΔTOab
T ts
NAab

[
0 . . . 0n1 1 . . . 1m1 . . . 0 . . . 0nQ

1 . . . 1mQ

]T
(3.32)

where Δ is the stationary distribution of the overall model, and given by:

Δ = [δ1π1 δ2π2 ... δQπQ] (3.33)

TNAab
is a matrix that contains switching probabilities corresponding to the

no-alarm states only, and can be obtained from TOab
by setting the elements

corresponding to the alarm states to zero. It takes the following form:

TNAab
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

TNAab(1)

TNAab(2)

. . . 0
0 TNAab(i)

. . .

TNAab(Q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.34)
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where

TNAab(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− q2 q2 0 . . . 0
1− q2 0 q2 . . . 0

...
...

...
. . .

... 0ni×(mi−1)
1− q2 0 0 . . . q2

0 0 0 . . . 0
0 0 0 . . . 0

0mi×ni

...
...

...
. . .

...
0 0 0 . . . 0
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ni+mi)×(ni+mi)

(3.35)

The expected detection delay can be calculated by taking the average of the

detection delay over ts:

EDD =
∞∑

ts=0

ts P(DD = ts) (3.36)

This results in the following equation:

EDD = ΔTOab
TNAab

(I− TNAab
)−2

[
0 . . . 0n1 1 . . . 1m1 . . . 0 . . . 0nQ

1 . . . 1mQ

]T
(3.37)

Derivation for the closed form expression:

For the ith mode, TNAab(i) can be written as:

TNAab(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− q2 q2 0 . . . 0
1− q2 0 q2 . . . 0

...
...

...
. . .

... 0ni×(mi−1)
1− q2 0 0 . . . q2

0 0 0 . . . 0
0 0 0 . . . 0

0mi×ni

...
...

...
. . .

...
0 0 0 . . . 0
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(ni+mi)×(ni+mi)

(3.38)

(I− TNAab
)−1 is a diagonal matrix:
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(I− TNAab
)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

S2

. . . 0
0 Si

. . .

SQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.39)

where Si takes the following form:

Si =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
q
ni
2

1

q
ni−1
2

1

q
ni−2
2

. . . 1
q2

1 0 . . . 0

1−qni−1
2

q
ni
2

1

q
ni−1
2

1

q
ni−2
2

. . . 1
q2

1 0 . . . 0

1−qni−2
2

q
ni
2

1−qni−2
2

q
ni
2

1

q
ni−2
2

. . . 1
q2

1 0 . . . 0

...
...

... . . .
...

...
... . . .

...
1−q2
q
ni
2

1−q2
q
ni−1
2

1−q2
q
ni−2
2

. . . 1
q2

1 0 . . . 0

0 0 0 . . . 0 1 0 . . . 0
0 0 0 . . . 0 0 1 . . . 0
...

...
... . . .

...
...

. . .

0 0 0 . . . 0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.40)

Let t = (I − TNAab
)−2

[
0 . . . 0n1 1 . . . 1m1 . . . 0 . . . 0nQ

1 . . . 1mQ

]T
be an inter-

mediate term, then it can be shown that:

t = (I− TNAab
)−1

[
1 . . . 1n1 1 . . . 1m1 . . . 1 . . . 1nQ

1 . . . 1mQ

]T
(3.41)

After substituting TNAab
in (3.41), some simplifications results in the following:

t = [
∑n1−1

i=0 qi2+q
n1
2

q
n1
2

. . .
∑n1−n1

i=0 qi2+q
n1
2

q
n1
2

1 . . . 1m1 . . . . . .

∑nQ−1

i=0 qi2+q
nQ
2

q
nQ
2

. . .
∑nQ−nQ

i=0 qi2+q
nQ
2

q
nQ
2

1 . . . 1mQ
]T (3.42)

Multiplication of TNAab
with t results in the following:

TNAab
t = [

∑n1−1
i=0 qi2
q
n1
2

. . .
∑n1−n1

i=0 qi2
q
n1
2

0 . . . 0m1 . . .

∑nQ−1

i=0 qi2

q
nQ
2

. . .
∑nQ−nQ

i=0 qi2

q
nQ
2

0 . . . 0mQ
]T (3.43)
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Post multiplication of TNAab
t with TOab

results in the following vector:

TOab
TNAab

t = [
∑n1−1

i=0 qi2−q
n1
2

q
n1
2

. . .
∑n1−n1

i=0 qi2−q
n1
2

q
n1
2

0 . . . 0m1 . . .

∑nQ−1

i=0 qi2−q
nQ
2

q
nQ
2

. . .
∑nQ−nQ

i=0 qi2−q
nQ
2

q
nQ
2

0 . . . 0mQ
]T (3.44)

Finally post multiplication of Δ with TOab
TNAab

t results in the close form

expression for EDD:

EDD =
∑Q

i=1

δip
mi−1
2i (pni

1i q1
∑ni−1

r=0 qr2+p2i(
∑ni−1

j=0 pj1i
∑ni−j−1

k=0 qk2−q
ni
2

∑ni−1
r=0 pr1i))

q
ni
2 (pmi

2i

∑ni−1
r=0 pr1i+p

ni
1i

∑mi−1
r=0 pr2i)

(3.45)

This completes the derivation.

3.4.4 Simulation verification

Monte Carlo simulations are carried out to verify the expressions derived

for FAR, MAR, and EDD. Processes with different numbers of modes and

distributions are considered for the simulation purposes. Gaussian distribu-

tions with different means and standard deviations are considered for two and

three mode processes; whereas for four mode process, Gamma distributions

with different scaling and shaping parameter are considered. To simulate the

expected detection delay, the mode of the process is switched from any of the

normal modes to the abnormal mode at time tab, and the expected value of

the detection delay is calculated by performing 3000 simulations. Figure 3.6

shows the simulations results of the false alarm rate for different processes.

From this figure it can be seen that the false alarm rate curves generated

using (3.25), and Monte Carlo simulations are very close. Similarly, curves

obtained using analytical expressions for MAR and EDD are very close to

the ones generated using Monte Carlo simulations, as shown in Figures 3.7

and 3.8, respectively. This validates the proposed formulas for multi-mode

delay-timers, derived using HMM based models.
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(b) False alarm rate of a 3 mode process
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(c) False alarm rate of a 4 mode process
(n1 = m1 = 2, n2 = m2 = 3, n3 = m3 = 4, n4 =
m4 = 5)

Figure 3.6: False alarm rates of multi-mode delay-timers

3.5 Design of multi-mode delay-timers

The authors in [2] have proposed an ROC curve based method for single-

mode processes, while satisfying upper limits on FAR, MAR, and EDD. For the

case of multi-mode processes it is not possible to adopt a similar technique, due

to the increased number of design parameters. Consequently in this chapter, a

numerical optimization based technique is proposed for designing multi-mode

delay-timers.
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Figure 3.7: Missed alarm rates of multi-mode delay-timers

3.5.1 Problem formulation

The aim of the design problem is to set threshold (τ), and appropriate

lengths of delay-timers for various modes of the process, while upper limits on

the FAR, MAR, and EDD are satisfied. Let x = {τ, n1, ..., nQ,m1, ...,mQ} be

the collection of all design parameters, then the design problem can be written

as:
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Figure 3.8: Expected detection delays of multi-mode delay-timers

Design x

s.t.

⎧⎪⎨
⎪⎩

FAR ≤ a

MAR ≤ b

EDD ≤ c

(3.46)

where τ ∈ R, and ni and mi ∈ {0, 1, 2, 3, ...} (1 ≤ i ≤ Q), resulting in a mixed-

integer design problem. Expressions for FAR, MAR, and EDD are highly

non-linear, and it is not possible to solve this design problem analytically.

Consequently, it is converted into a minimax problem as follows:
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min f(x)

s.t. Ax ≤ κ (3.47)

where Ax ≤ κ are some reasonable linear constraints on the design variables,

and f(x) is defined as:

f(x) = max {0, g1(x), g2(x), g3(x)} (3.48)

g1(x) = FAR − a, g2(x) = MAR − b, and g3(x) = EDD − c. There are

some solutions available in the literature to solve this problem [8, 22]. In

this chapter, a particle swarm optimization (PSO) based method is adopted,

because of its ability to handle the mixed-integer design parameters [11].

3.5.2 Particle swarm optimization

A derivative-free optimization based solution of the problem (3.47) is pro-

posed, as the analytical expressions for the performance indices are complex,

and computing derivatives is not a trivial task. Among various derivative-

free optimization based algorithms (Nelder-Mead method, Pattern search,

Bayesian Optimization etc.) the Particle Swarm Optimization (PSO) provides

the faster convergence by combining the global scope of the swarm search with

the local convergence of the Nelder-Mead method [14]. PSO is a population

based search algorithm, that solves the optimization problem. The algorithm

is initialized with a random number of potential solutions, known as particles.

In order to achieve the best possible solution, particles traverse the multidi-

mensional search space by updating their positions and velocities based on

their neighbouring particles. Equations for the position and velocity updates

for the nth iteration are written here [12]:

vn = vn−1 + αnβn
1 (pbest − P n−1) + αnβn

2 (gbest − P n−1) (3.49)

P n = P n−1 + vn (3.50)
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where v, and P are the velocity and position of the particles, respectively, β1,

β2 are uniformly distributed random numbers between 0 and 1, pbest is the

best solution achieved so far by the particle, gbest is the global best achieved

among all the particles, and αn is the learning factor of the algorithm, and is

updated according to the following equation:

αn = αmax − αmax − αmin

nmax

n (3.51)

where αmax = 0.9, αmin = 0.4, and nmax is the maximum number of itera-

tions. For the case, where the particle domain is integers, the velocity update

equation takes the following form:

vn = round(vn−1 + αnβn
1 (pbest − P n−1) + αnβn

2 (gbest − P n−1)) (3.52)

where round(.) is a function that rounds the element to the nearest integer.

Detailed discussion on the algorithm can be found in [12, 29, 49].

3.5.3 Design based on particle swarm optimization

In order to design the threshold, and delay-timers for different modes of

the process, the PSO algorithm is utilized. The proposed algorithm consists

of three main parts: initialization, computation, and termination. In the

initialization section, a large number of particles, as potential solutions, are

randomly initialized, while maintaining the constraints on x, an upper limit for

the maximum number of iterations, and boundary conditions on the design

parameters are set. fbest and gbest are initialized with suitable values. In

the computation section, particles update their velocities and positions, while

remaining within the boundary conditions; fbest and gbest are also tracked in

the updating step. Finally in the termination section, design parameters are

reported, if the minimum of f(x) has been found. A complete description of

the procedure is given in Algorithm 4.
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Algorithm 4 Multi-mode delay-timers design

Initialization
1: Specify the upper limits on FAR, MAR, and EDD (a, b, and c), and set the objective

function to be f(x) = max{0,FAR− a,MAR− b,EDD− c}
2: Initialize the particles (τ, n1, ..., nQ,m1, ...,mQ) randomly, while satisfying the con-

straints, and boundary conditions.
3: Set imax (maximum number of iterations) to some appropriate large number, and

f(pbest) = f(gbest) = [200 200 30]
Computation

4: while i <= imax || f(x) > 0 do
5: Evaluate the objective function f(xi) for each particle in the swarm, and compare it

with the previous best value obtained by the particle.
6: if f(xi) < f(pbest) then
7: pbest = Pi

8: f(pbest) = f(xi)
9: end if
10: Compare the minimum value obtained in the ith iteration with the global best gbest

obtained, so far.
11: if min(f(xi)) < f(gbest) then
12: gbest = arg[min(f(xi))]
13: f(gbest) = min(f(xi))
14: end if
15: Use (3.49) and (3.50) to update the continuous variable in the particles (τ), and use

(3.52) and (3.50) to update the discrete variables in the particles (n′s and m′s).
16: If updated positions violate any of the boundary conditions, set the variables to their

boundary limits.
17: i = i+ 1
18: end while

Termination
19: if f(gbest) = 0 then
20: Requirements on FAR, MAR, and EDD have met.
21: xdesigned = gbest
22: else
23: Requirements on FAR, MAR, and EDD have not met.
24: end if
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3.5.4 Design examples

For illustration purposes, three design examples are considered. Each ex-

ample has different requirements on the FAR, MAR, and EDD.

Example 1: A two mode process with Gaussian distributions

In this example, design of multi-mode delay-timers for a two mode process is

considered. Description of the process is given below:

Normal modes

{
Mode 1: N (1, 2)

Mode 2: N (3, 2)
(3.53)

Abnormal: N (4, 2) (3.54)

Mode switching: T =

[
0.5 0.5
0.5 0.5

]
(3.55)

where N (μ, σ) is Gaussian distribution with mean μ and standard deviation

σ. The following design requirements are set on the process:

Design x = {τ, n1, n2,m1,m2}

s.t.

⎧⎪⎨
⎪⎩

FAR ≤ 3

MAR ≤ 5

EDD ≤ 8

(3.56)

Linear constraints and boundary conditions on the design parameters are as

follow:

[−1 1 0 0
0 0 −1 1

]⎡
⎢⎢⎣
n1

n2

m1

m2

⎤
⎥⎥⎦ ≤

[
0
0

]
(3.57)

4 ≤ τ ≤ 6 (3.58)

1 ≤ n1, n2 ≤ 10 (3.59)

1 ≤ m1, m2 ≤ 10 (3.60)
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Linear constraints, considered here, on the lengths of the delay-timers are

arbitrary. However, for actual processes, generally there are certain constraints

on the lengths of the delay-timers for various modes, and those constraints can

be put into the design requirements using the linear constraints. Algorithm 4

is used to design x. It is found out that the algorithm converges for the given

design requirements, and boundary conditions. The following parameters are

obtained:

x = {τ, n1, n2, m1,m2} = {4.0412, 4, 3, 3, 1} (3.61)

It is worth mentioning here that the design problem does not have a unique

solution, and the algorithm provides one of many possible solutions. It is

possible to fine-tune the solution, by specifying the process specific boundary

conditions, and constraints.

Example 2: A three mode process with Gamma distributions

In this design example a three mode process with gamma distributions is

considered. Process specifications are given below:

Normal modes

⎧⎪⎨
⎪⎩
Mode 1: gamma(2, 2)

Mode 2: gamma(5, 1)

Mode 3: gamma(6.5, 1)

(3.62)

Abnormal: gamma(7.5, 1) (3.63)

Mode switching: T =

⎡
⎣0.7 0.2 0.1
0.2 0.6 0.2
0 0.2 0.8

⎤
⎦ (3.64)

Design requirements on the multi-mode delay-timers are set to be the follow-

ing:

Design x = {τ, n1, n2, n3 m1, m2, m3}

s.t.

⎧⎪⎨
⎪⎩

FAR ≤ 5

MAR ≤ 5

EDD ≤ 5

(3.65)
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The following linear constraints and boundary conditions are set on x:

⎡
⎢⎢⎣
1 −1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 −1 0
0 0 0 0 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

n1

n2

n3

m1

m2

m3

⎤
⎥⎥⎥⎥⎥⎥⎦ ≤

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ (3.66)

8 ≤ τ ≤ 10 (3.67)

1 ≤ n1, n2, n3 ≤ 10 (3.68)

1 ≤ m1, m2, m3 ≤ 10 (3.69)

For the specified design requirements, and constraints, Algorithm 4 converges

to the following x:

x = {τ, n1, n2, n3, m1,m2, m3} = {7.46, 3, 4, 3, 8, , 9, 1} (3.70)

Example 3: The Continuous Stirred Tank Heater (CSTH)

The CSTH is part of a laboratory setup, that is present in the Department of

Chemical and Materials Engineering at the University of Alberta. It maintains

the temperature of the downstream flow by mixing and stirring the cold and

hot water mixture in the tank. Steam flow in the tank is controlled using

a steam flow control valve. Outlet flow control valve is used to control the

downstream flow rate. The schematic diagram of the process is shown in

Figure 2.9. Three process variables (the cold water flow rate, tank level, and

temperature) are constantly monitored, and in this chapter the alarm system

design for the flow rate is considered. Two operating modes are defined based

on the hot water valve opening, and it assumed that the process can switch

between these two modes with equal probability [55]. Thus the mode switching

matrix (T ) can be written as:

T =

[
0.5 0.5
0.5 0.5

]
(3.71)
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Figure 3.9: Flow rate of the CSTH process

Behavior of the cold water flow rate in the two operating modes is shown

in Figure 3.9. Historical data is used to fit the probability distributions for

both normal modes, and abnormal mode of the process.

Normal modes

{
Mode 1: N (7.32987, 0.0653087)

Mode 2: N (11.8971, 0.107156)
(3.72)

Abnormal: N (13.02152, 0.4507) (3.73)

The following design requirements are set on the design variables:

Design x = {τ, n1, n2,m1,m2}

s.t.

⎧⎪⎨
⎪⎩

FAR ≤ 2

MAR ≤ 2

EDD ≤ 2

(3.74)

In order to decrease the missed alarm count, a relatively larger length of

the off delay-timer is to be designed for the mode operating closer to the

abnormal mode, i.e., for mode 2, and thus m2 ≥ m1. For on delay-timers,

a smaller range is considered in order to decrease the detection delay of the

alarm system. This results in the following linear constraints and boundary

conditions:
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Table 3.1: A performance comparison of design examples

Example 1 Example 2 Example 3

Analytical Simulated Analytical Simulated Analytical Simulated

FAR (%) 1.37 1.40 1.95 1.98 0 0

MAR (%) 3.78 3.76 1.52 1.53 0.23 0.22

EDD 7.63 7.65 3.48 3.45 1.07 1.09

[−1 1 0 0
0 0 1 −1

]⎡
⎢⎢⎣
n1

n2

m1

m2

⎤
⎥⎥⎦ ≤

[
0
0

]
(3.75)

12.5 ≤ τ ≤ 13.5 (3.76)

1 ≤ n1, n2 ≤ 5 (3.77)

1 ≤ m1, m2 ≤ 10 (3.78)

Algorithm 4 is utilized for the design of x, and the following parameters are

obtained:

x = {τ, n1, n2, m1,m2} = {12.8979, 2, 2, 2, 7} (3.79)

All three considered examples are simulated with the designed parameters

(threshold and delay-timers), and 3000 Monte Carlo simulations are performed

to compare the analytical values of FAR, MAR, and EDD. The resulted num-

bers are listed in Table 3.1. From this table it can be seen that both analytical

and simulated values are very close to each other, and this validates the design

algorithm.

3.6 Summary

In this chapter HMM based models were developed for the multi-mode

delay-timer configurations. Analytical expressions for the false alarm rate,
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missed alarm rate, and expected detection delay were derived. A particle

swarm optimization based algorithm was proposed for designing multi-mode

delay-timers. Design examples were considered to show the utility of the pro-

posed method. In the next chapter, time-deadband configurations for single

mode processes are studied, while considering univariate alarm system set-

tings.
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Chapter 4

Time-deadbands for Univariate
Alarm Systems∗.

A
mong various alarm configuration methods, time-deadbands are

one of the techniques that is used in industry to get rid of false

and nuisance alarms. In this chapter, the utility of time-deadbands in

univariate alarm system setting is studied. Mathematical models are

developed based on Markov processes, and analytical expression for

the false alarm rate, missed alarm rate, and expected detection delay

are computed. Systematic procedures are also proposed for designing

time-deadbands for single mode processes.

4.1 Overview

Time-deadbands, also known as alarm latches, are one of the types of the

deadbands used in industry. A few papers on the quantitative analysis of

the measurement-deadbands can be found in the literature, which can help

in assessing and designing alarm systems based on measurement-deadbands

[2, 41]. While there is also some literature available that deal with time-

deadband configurations, e.g., in [30] the authors provided some practical

∗A version of this chapter has been submitted for publication as: Afzal, M.S., Chen, T.,
Bandehkhoda, A., & Izadi, I., Analysis and Design of Time-deadbands for Univariate Alarm
Systems, Control Engineering Practices. A preliminary version of this chapter was presented
in the American Control Conference (ACC), Seattle, WA, USA May 24-26, 2017
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implications on the use of alarm latches based on qualitative analysis, and in

[18] the author proposed a time-series prediction based approach to estimate

the lengths of time-deadbands, to the best of the authors’ knowledge there

is not any study available that provides quantitative analysis of the perfor-

mance of the time-deadband configurations, and proposes systematic design

procedures. Consequently, in this chapter we are analyzing time-deadband

configurations for univariate alarm systems.

The rest of the chapter is organized as follows. In Section 4.2, background

information on the types of deadbands is given. A run-length based encoding

scheme for alarm sequences is also introduced in this section. In Section 4.3,

a model of the time-deadband configuration is developed. In Section 4.4,

definitions of different performance indices are provided, and their expressions

for time-deadbands are derived. Section 4.5 provides the description of design

procedures for time-deadbands along with illustrative examples. Concluding

remarks are given in Section 4.6.

4.2 Background

In this section, different types of deadbands are discussed. A brief de-

scription of run-length based encoding of alarm sequences is also part of this

section.

4.2.1 Types of deadbands

Two types of deadband configurations can be found in alarm systems:

measurement-deadbands and time-deadbands, as shown in Figure 1.3. A

measurement-deadband can only be applied on a continuous process vari-

able, and it can be considered as a bi-threshold alarm system, where an alarm

is raised when the process variable goes above the upper threshold, and the

alarm is cleared when the process variable falls below the lower threshold. Fig-

ure 4.1 shows an example of a process variable configured with a measurement-

deadband. From this figure it can be seen that there are a few instances when
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Figure 4.1: Example of a measurement-deadband configuration

the process variable goes above the lower threshold; however alarms are de-

layed until it crossed the upper threshold. Similarly, clearance of alarms is

also delayed until the process variable goes below the lower threshold.

Time-deadbands constitute uni-threshold alarm systems, and can be ap-

plied to both continuous and discrete process variables, unlike measurement-

deadbands. In general, time-deadband represents two waiting times: (1) Min-

imum waiting-time before an alarm can be cleared; (2) Minimum waiting-time

before an alarm can be raised. In this chapter, these two waiting times are

denoted as TA and TNA, respectively. Whenever a process variable goes above

the threshold, an alarm is raised; however the alarm can be cleared only after

the minimum waiting-time (TA) in the alarm state has passed. Similarly, the

raise of an alarm is possible only if the minimum waiting-time (TNA) in the

no-alarm state has passed. In Figure 4.2 an example of a time-deadband con-

figuration on a continuous process variable is shown. In this example waiting

times are configured to be 5 sample-times for both alarm and no-alarm states.

From this figure it can be seen that the first alarm is raised at the time in-

stance marked as x1, and although the variable goes below the threshold (x2)

after a few samples, but the alarm is not cleared because of the configured

67



5 10 15 20

No−alarm

Alarm

Sample−time

Process variable
Threshold
Alarm signal

Wait time (no−alarm state)

Wait time (alarm state)

y
1

y
2x

1
x

2

Figure 4.2: Example of a time-deadband configuration

waiting-time in the alarm state. Similarly, at the time instance y1, the process

variable goes above the threshold again; however, raise of an alarm is delayed

until y2, because of the waiting-time in the no-alarm state.

Recommendations on the use of both measurement-deadbands and time-

deadbands can be found in ISA 18.2 and EEMUA 191 standards [21] [13].

For benefits of readers, recommendations for time-deadbands based on the

types of process variables are listed in Table 4.1. It is worth mentioning here

that these recommendations are only used as initial estimates for designing

time-deadbands. Actual values for the waiting times are typically decided by

considering the criticality of the process variable, and signal to noise ratio of

the measurements.

4.2.2 Run-length encoding of alarm sequences

An alarm sequence is a series of ones and zeros, which is generated after

comparing the measurements of a process variable against a configured thresh-

old. The design of different types of alarm configurations on a process vari-

able can make use of either actual process measurements or the corresponding

alarm sequence. In this chapter both design scenarios for time-deadbands are
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Table 4.1: Recommendations for time-deadbands

Variable type Time-deadband (sec.)

Flow 15

Pressure 15

Level 60

Temperature 60

Composition 120

considered, and for the case of alarm sequence based design, run-length based

encoding scheme is utilized.

Run-length encoding is a type of lossy or lossless data compression, in

which runs (specific sequence of elements occurring throughout dataset) of

the data are used to represent the entire dataset [32]. Run-length based en-

coding has its application in many fields, like image and signal processing,

statistical control, and finance. For the case of alarm signals, runs contain

sequences of 1’s (alarm state) and 0’s (no-alarm states), and depending on

the definitions of the run many types of run-length encoding schemes can be

defined. In the following, a few of these types are described, with the help

of an example of an alarm sequence, shown in Figure 4.3. For illustration

purposes, lengths of each alarm and no-alarm states are also indicated in the

figure.

RTN-RTN run-length based encoding

It is an example of a lossy run-length encoding scheme for alarm signals,

in which the length between one RTN point (time instance at which alarm

sequence returns to a no-alarm state from an alarm state) to next RTN point

is considered as a run. In other words, for RTN-RTN run-length encoding

scheme, sequences of 0’s for the no-alarm state and the following 1’s for the

alarm state form a run, and it is assumed that the alarm sequence is starting

in a no-alarm state. The cases where this assumption is not true, 1’s corre-
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sponding to the first alarm state are discarded, as is the case for the example

shown in Figure 4.3. For this alarm sequence, first RTN-RTN run is formed

by summing up the lengths of the first no-alarm state, and the second alarm

state, i.e., 1+ 2 = 3. Overall, RTN-RTN run-length encoding will be: RTN-

RTN= {3, 5, 3, 2, 6, 3}.

ALM-ALM run-length based encoding

It is also an example of a lossy run-length encoding scheme for alarm sig-

nals; however, unlike RTN-RTN encoding, in this case ALM points (time

instance at which alarm sequence jumps to an alarm state from a no-alarm

state) are considered to form a run. In particular, the sum of the lengths of

an alarm state and the following no-alarm state constitutes a run. For the ex-

ample shown in Figure 4.3, ALM-ALM encoding scheme will be: ALM-ALM

= {3, 4, 4, 3, 3, 5}.

Lossless run-length encoding (LRLE)

For a lossless run-length encoding scheme, lengths of the alarm states, the

no-alarm states are considered separately and synchronously. In this case,

instead of representing an alarm sequence with a series of 1’s (alarm states)

and 0’s (no-alarms), lengths of each alarm state and no-alarm state are listed

in a time synchronous manner. LRLE based representation of the considered

example will be: LRLE = {2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 4, 1, 2}.

4.3 Modeling of time-deadbands

Consider a process variable x following a distribution Pn(x) during normal

operation, and Pab(x) during abnormal operation of the process, as shown in

Figure 4.4. Without loss of generality, assume that only high alarm threshold

is configured on this variable. Let p2 = 1 − p1 be the probability of the

process variable to go above the threshold during normal operation (shaded
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Figure 4.3: Time trend of an alarm sequence

region under the normal distribution), and q1 = 1−q2 be the probability of the

process variable to fall below the threshold during abnormal operation (shaded

region under the abnormal distribution of the process variable). Further, let

TA sample-times be the minimum waiting-time before an alarm can be cleared,

and TNA be the minimum waiting-time in the no-alarm state before an alarm

can be raised. Then such an alarm configuration can be defined completely

using a semi-Markov process with two states, namely, the alarm state (A)

and no-alarm state (NA). Transition probabilities between the two states are

defined based on the probability distributions of the process variables, and the

resting time of each state is dependent on both the probability distributions,

and the time-deadband configuration. For the normal operation of the process

variable, the following set of equations completely describe the semi-Markov

based time-deadband configuration:
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Figure 4.4: Normal and abnormal distributions of a process variable

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
[
S[t = A | S[t−d:t−1] = A

]
=

{
p2, d > TA

1, d ≤ TA

P
[
S[t = NA | S[t−d:t−1] = A

]
=

{
p1, d > TA

0, d ≤ TA

P
[
S[t = A | S[t−d:t−1] = NA

]
=

{
p2, d > TNA

0, d ≤ TNA

P
[
S[t = NA | S[t−d:t−1] = NA

]
=

{
p1, d > TNA

1, d ≤ TNA

(4.1)

where P
[
S[t = i | S[t−d:t−1] = j

]
represents the probability of the model of

switching to state i ∈ {A, NA} at time t, given that the state of the model

was j ∈ {A, NA} during time interval t− d : t− 1. A similar set of equations

can be written for the case when the process is operating under abnormal con-

ditions, by replacing p1 and p2 with q1 and q2, respectively. Figure 4.5 shows

an example of the sample path of a semi-Markov process based model with

time-deadband configuration (TNA = 2, TA = 3). In this example the prob-

abilities of switching between alarm and no-alarm states are assumed to be

p1 = 0.8, and p2 = 0.2. Waiting times in both alarm and no-alarm states are

represented as horizontal lines of probabilities equal to 1, whereas the length

of the line corresponds to the amount of waiting-time in different states.
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Figure 4.5: A sample-path of a semi-Markov chain for a time-deadband con-
figuration

While a semi-Markov process can completely define the time-deadband

configuration, for analysis purposes and to derive performance indices it is

required to study the long term behavior of the model, which is not a triv-

ial task for semi-Markov process based models. Fortunately, for the case of

time-deadbands, it is possible to convert the semi-Markov model to a stan-

dard Markov model, by introducing non-self transitioning states corresponding

to the lengths of the waiting times for both the alarm and no-alarm states.

Figure 4.6 shows a resultant Markov chain based model of the semi-Markov

process shown in Figure 4.5. Three non-self transiting states (A1, A2, A3)

correspond to the waiting-time in alarm state (TA = 3), and two non-self

transiting states (NA1, NA2) represent the TNA = 2. A more generic standard

Markov model for time-deadband configuration (TA, TNA) under the normal

operation of the process is shown in Figure 4.7. A similar model can be

obtained for the abnormal situation by replacing p1 and p2 with q1 and q2,

respectively.

4.3.1 Long-term behavior of the model

Performance of the time-deadband configurations can be assessed by study-

ing the long-term behavior of the Markov chain model. Under the assumption
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Figure 4.6: The Markov chain model of a time-deadband configuration (TA =
3, TNA = 2)

that the samples from the process variable are independent and identically

distributed, long-term behavior of the model can be studied by finding the

stationary distribution of the model. For the proposed Markov model (Fig-

ure 4.7) the state transition matrix can be written as:

Pn =

[
P11 P12

P21 P22

]
(α+β)×(α+β)

(4.2)

where α = 1+TNA, β = 1+TA, and Pij (1 ≤ i, j ≤ 2) are sub-matrices, which

are given by:

P11 =

⎡
⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . p1

⎤
⎥⎥⎥⎥⎥⎦

α×α

P12 =

⎡
⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
p2 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

α×β

(4.3)

P21 =

⎡
⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
p1 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
β×α

P22 =

⎡
⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . p2

⎤
⎥⎥⎥⎥⎥⎦

β×β

(4.4)
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Figure 4.7: The Markov chain model of a time-deadband configuration (TA,
TNA)

A similar state transition matrix (Pab) can be obtained by replacing p1 and p2

with q1 and q2, respectively. The stationary distribution of the model can be

found using the following equation [76]:

πn = 1α+β(I− Pn +U)−1(α+β)×(α+β) (4.5)

where 1 represents a row vector of ones, I is an identity matrix, and U is a

square matrix of ones. This results in the following:

πn = [δ1 . . . δα−1 δα δα+1 . . . δα+β−1 δα+β] (4.6)

where δk (1 ≤ k ≤ α+β) represents the probability of the kth state in the long-

term run of the model. After some simplifications the stationary distribution

of the model reduces to the following vector:

πn =

[
1 . . . 1 1

p2
1 . . . 1 1

p1

]
TA + TNA + 1

p1
+ 1

p2

(4.7)

A similar distribution of the model can be written for the abnormal operation

of the process variable:
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πab =

[
1 . . . 1 1

q2
1 . . . 1 1

q1

]
TA + TNA + 1

q1
+ 1

q2

(4.8)

In the long-run of the process, the stationary distributions of the model can

be used to find the probability of the process variable to be present in one of

the alarm or no-alarm states.

4.3.2 Discussion on the assumptions

While developing the model a number of assumptions were made. In this

subsection the impact of these assumptions for practical cases is discussed.

Distributions of the process data

It is assumed that the distributions of the process data are known for both

the normal and abnormal operations. However, in many cases it is not possi-

ble to know the distributions of the process data beforehand. In such cases,

a Kernel Density Estimation (KDE) based approach can be used to find the

estimates of the distributions, given that sufficient historical data is available.

Another hurdle in finding the estimates for the normal and abnormal distribu-

tions is to distinguish between the normal and abnormal data in the historical

data. This problem can be overcome by either referring to the event logs of

the process operation or by using some data based methods to distinguish

the abnormal data from normal data, e.g., in [71] authors have proposed a

correlation directions based method for abnormal data detection.

Existence of the stationary distributions

To study the long-term behavior of the time-deadband configuration, it is

assumed that the distributions of the process variable during both the normal

and abnormal operation are independent and identically distributed. How-

ever, in practice this assumption does not hold true when considering the

entire historical data of the process variable, because such data includes a lot

of transitions due to mode changes and various other factors pertaining to the

76



process operation. However, if only part of the data is considered by eliminat-

ing the transitional changes, an identical distribution for the process variable

can be assumed [6]. Furthermore, for the case of univariate alarm systems,

the underlying assumption is that the process variable under consideration is

independent of the effects of the other variables in the process.

4.4 Performance assessment

For performance assessment of time-deadband configurations, three perfor-

mance indices, the false alarm rate, the missed alarm rate, and the expected

detection delay, are considered.

4.4.1 False alarm rate

The false alarm rate is the probability of raising an alarm while the process

is operating under normal conditions. For the case of univariate alarm system,

the false alarm rate can be calculated by finding the probability of the process

variable to go above the threshold under the normal distribution (Pn(x)):

FAR =

∫ ∞

ζ

Pn(x)dx (4.9)

where ζ represents the alarm threshold. For time-deadband configurations,

the false alarm rate can be calculated by considering the probabilities of all

the alarm states (A1, A2, ..., ATA
, A) in the Markov model, i.e.

FAR = P(A1) + P(A2) + . . . + P(ATA
) + P(A) (4.10)

The probabilities of all the alarm states can be found from the stationary

distribution (πn), given by (4.7), and after a few simplifications the following

expression for the false alarm rate can be obtained:
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FAR =

TA︷ ︸︸ ︷
1 + 1 + ...+ 1+ 1

p1

TA + TNA + 1
p1

+ 1
p2

(4.11)

=
TA + 1

p1

TA + TNA + 1
p1

+ 1
p2

(4.12)

4.4.2 Missed alarm rate

The missed alarm rate is the failure probability of an alarm system in

raising an alarm, while the process is in abnormal mode. Theoretically, the

probability for a univariate alarm system can be calculated as follows:

MAR =

∫ ζ

−∞
Pab(x)dx (4.13)

where Pab(x) is the distribution of the process variable under abnormal con-

ditions. The missed alarm probability for time-deadbands can be calcu-

lated by summing up the probabilities corresponding to the no-alarm states

(NA1, NA2, ..., NATNA
, NA), i.e.

MAR = P(NA1) + P(NA2) + . . . + P(NATNA
) + P(NA) (4.14)

After plugging in the probabilities of no-alarm states from (4.8), the following

analytical expression for the computation of the missed alarm rate is obtained:

MAR =

TNA︷ ︸︸ ︷
1 + 1 + ...+ 1+ 1

q2

TA + TNA + 1
q1
+ 1

q2

(4.15)

=
TNA + 1

q2

TA + TNA + 1
q1
+ 1

q2

(4.16)

4.4.3 Expected detection delay

The detection delay is defined as the time taken by the alarm system to

raise an alarm after the process has entered the abnormal region of operation.
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The mean value of the detection delay is termed as the expected detection

delay. Let tab be the time instance when process enters the abnormal region,

and let ta be the time at which an alarm is raised; then the detection delay in

terms of the number of time samples, can be defined as:

Detection delay = ta − tab (4.17)

For the case of Markov process based model, detection delay can be defined

as the time samples taken by the Markov chain in switching from no-alarm

states (NA1, NA2, ..., NATNA
, NA) to any of the alarm states (A1, A2, ..., ATA

, A),

which is known as hitting time of the Markov chain [35]. A hitting time of z

samples for the developed model can be found as:

P(detection delay = z) = πnPabP
z[

TNA+1︷ ︸︸ ︷
0 . . . 0 1 . . . 1︸ ︷︷ ︸

TA+1

]T (4.18)

where P is a square matrix of size α+β, and is obtained from Pab by replacing

all the transition probabilities corresponding to the alarm states with zeros.

The expected value of the detection delay can be found as:

EDD =
∞∑
z=0

zP(detection delay = z)

= πnPabP (I − P )−2[0 . . . 0 1 . . . 1]T (4.19)

Eq. (4.19) can be further simplified by letting δ = πnPab, and γ = P (I −
P )−2[0 . . . 0 1 . . . 1]T , and then the following expressions for δ and γ can be

obtained:

δ =

⎡
⎢⎣

TNA︷ ︸︸ ︷
q1
p1

1 . . . 1 (1 + q1
p2
)

TA︷ ︸︸ ︷
q2
p2

1 . . . 1 (1 + q2
p1
)

⎤
⎥⎦

TA + TNA + 1
p1

+ 1
p2

(4.20)
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γ =

⎡
⎢⎢⎣

TNA︷ ︸︸ ︷
q2TNA + 1

q2

q2(TNA − 1) + 1

q2
. . .

q2 + 1

q2
1 +

q1
q2

0 . . . 0︸ ︷︷ ︸
TA+1

⎤
⎥⎥⎦

T

(4.21)

Finally, the expression for the expected detection delay for time-deadbands

takes the following form:

EDD =

q1
p1
( q2TNA+1

q2
) +

∑TNA−1
i=1

q2(TNA−i)+1
q2

+ 1
q2
(1 + q1

p2
)

TA + TNA + 1
p1

+ 1
p2

(4.22)

4.4.4 Simulation verification

To verify the analytical expressions derived for the false alarm rate, the

missed alarm rate, and the expected detection delay, 10,000 Monte Carlo

simulations are performed, by considering Gaussian and Gamma distributions

of the process variables. Different setting of the time-deadband configurations

are also considered. Figure 4.8 shows the simulation results obtained for the

false alarm rate. From the figures, it can be seen that curves obtained using

the Markov process model, and the Monte Carlo simulations are very close

to each other, which validates the proposed analytical expression for the false

alarm rate for time-deadbands. Satisfactory results are also obtained while

testing the formulas for the missed alarm rate and the expected detection

delay, and are shown in Figures 4.9 and 4.10, respectively.

4.5 Design of time-deadbands

In this section two design methods are proposed for time-deadband config-

urations. The first method makes use of the process data and the performance

indices (FAR, MAR, and EDD) to design a threshold, and time-deadband con-

figuration on the process variable. The second method is based on the use of

alarm data, and the objective is to design a time-deadband configuration such
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Figure 4.8: Simulation verification of the FAR formula for time-deadbands

81



−5 0 5 10 15
0

20

40

60

80

100

120

Threshold

M
A

R
 (%

)
MAR using Monte Carlo simulations
MAR using the proposed model

(a) Gaussian distributed variable
(TNA = 3, TA = 5)

−5 0 5 10 15
0

20

40

60

80

100

120

Threshold

M
A

R
 (%

)

MAR based on Monte Carlo simulations
MAR based on the proposed Markov model

(b) Gaussian distributed variable
(TNA = 10, TA = 6)

0 5 10 15 20 25
0

20

40

60

80

100

120

Threshold

M
A

R
 (%

)

MAR using Monte Carlo simulations
MAR using the proposed model

(c) Gamma distributed variable
(TNA = 8 and TA = 8)

0 5 10 15 20 25
0

20

40

60

80

100

120

Threshold

M
A

R
 (%

)

MAR based on Monte Carlo simulations
MAR based on the proposed Markov model

(d) Gamma distributed variable
(TNA = 20 and TA = 12)

Figure 4.9: Simulation verification of the MAR formula for time-deadbands
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Figure 4.10: Simulation verification of the EDD formula for time-deadbands
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that alarm count and alarm chattering are reduced, while threshold setting is

not altered.

4.5.1 Design based on process data

Let y be the collection of all the design parameters, i.e., y = {threshold, TNA, TA},
then the design problem can be stated as:

Design y

s.t.

⎧⎪⎨
⎪⎩

FAR ≤ a

MAR ≤ b

EDD ≤ c

(4.23)

where a, b, c are the upper allowable limits on the false alarm rate, missed

alarm rate, and the expected detection delay, respectively. For this design

problem, a Receiver Operating Curve (ROC) based graphical method is uti-

lized. Furthermore, it is assumed that the distributions of the process variable

under normal and abnormal situations are known.

For illustration purposes, consider an example of a process variable, which

is Gaussian distributed with the mean value of 0 and the standard deviation

of 1 during normal operation, and for the abnormal operation the mean value

of the data is shifted to 2, while the standard deviation is kept the same.

Time-trends of the variable are shown in Figure 4.11, where the first 1000

samples are corresponding to the normal operation, and the last 1000 samples

are during the abnormal operation of the process. The objective is to design a

time-deadband configuration, and an alarm threshold such that the false and

missed alarm rates are less 10%, and the value of expected detection delay is

less than 5 samples. Various configurations of the time-deadbands are tested,

and the values of the performance indices are calculated using (4.12), (4.16),

and (4.22) for the range of threshold. Resulting ROC curves for some selected

time-deadband configurations are shown in Figure 4.12. The points nearest to

the origin are found by calculating the Euclidean distance for each point on
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Figure 4.11: Time trend of a process variable

the curve and the origin. These points are listed in Table 4.2 along with the

corresponding values of the expected detection delay and the threshold. From

this table, it can be seen that the time-deadband configuration of TA = 65

and TNA = 1 satisfies the desired performance requirements, and thus can be

used for the considered process variable.

4.5.2 Design based on alarm data

Many times operators are reluctant in changing the alarm limits once the

process has been commissioned, and is in running state. For such cases, design

procedure that involves a change in threshold for the process variable is not

suited. At the same time, the operators are interested in improving the alarm

system performance by removing chattering alarms, and reducing the alarm

count on their monitoring screens. The objective of this design procedure is

to reduce the chattering alarms, and thus the alarm count without altering

the threshold settings. For quantifying the alarm chattering we have used the

run-length distribution based chattering index, proposed in [31].
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Figure 4.12: ROC curves for the time-deadband configurations

Table 4.2: Performance comparison of the time-deadband configurations

Configuration (FAR, MAR) (%) EDD Threshold
TA = 0, TNA = 0 (15.87, 15.87) 0.35 1
TA = 15, TNA = 2 (11.43, 22.88) 1.73 2.40
TA = 25, TNA = 10 (10.38, 34.10) 2.63 2.60
TA = 35, TNA = 0 (8.42, 11.52) 3.43 2.80
TA = 65, TNA = 1 (8.17, 9.94) 4.87 3.0

Time-deadband only on no-alarm state

In this case time-deadband is configured only on no-alarm state, i.e., TNA 
=
0 and TA = 0. This configuration is useful for the cases where operators can

tolerate a waiting-time in the no-alarm state before an alarm can be raised.

For design purposes, a range of possible values for TNA are considered, and

an algorithm is proposed to compute the percentage alarm reduction after

applying a TNA of certain length on the historical alarm data. Algorithm 5

provides the pseudo code of the design procedure for TNA. The algorithm

makes use of the RTN-RTN run-length based encoded alarm data. While

traversing through the encoded alarm data, the alarm count is reduced by one

every time if the condition on line 6 of the nested while loop is satisfied.
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Algorithm 5 Applying time-deadband only on no-alarm state
(TNA 
= 0, TA = 0)

Inputs: RTN-RTN run-length encoded alarm sequence, TNA

Output: Alarm reduction
1: procedure Alarm Reduction(RTN-RTN, TNA)

Initialization
2: n = length(RTN-RTN ) � initial alarm count
3: temp = 0 � temporary buffer

Computation
4: while i ≤ length(RTN-RTN )
5: temp = RTN-RTN(i)
6: while TNA ≥ temp
7: n = n - 1 � decrease in alarm count
8: i = i + 1
9: temp = temp + RTN-RTN(i)
10: end while
11: i = i + 1
12: end while
13: end procedure

Time-deadband only on alarm state

In this case operators can tolerate a minimum waiting-time only on the

alarm state; however, an alarm should be raised without any delay, i.e., TA 
= 0,

and TNA = 0. This case is applicable for very critical process variables, where

no delay in raising the alarm can be afforded. A design procedure based

on ALM-ALM run-length encoded alarm data is proposed for designing a

recommended length of TA. The pseudo code of the procedure is shown in

Algorithm 6. Similar to Algorithm 5, the alarm count is reduced if condition

on line 6 of the nested loop is satisfied.

Time-deadband on both alarm and no-alarm states

This case applicable for the process variables, where operators can afford

to have waiting times on both alarm and no-alarm states. A design procedure

of a time-deadband configuration with TNA 
= 0, and TA 
= 0 is proposed

in Algorithm 7. In this case, lossless run-length encoding (LRLE) scheme of

the alarm data is considered. Two nested while loops are used to calculate

the alarm count reduction. In this algorithm Mod(.) represents the Modulo

operation.
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Algorithm 6 Applying time-deadband only on alarm state
(TA 
= 0, TNA = 0)

Inputs: ALM-ALM run-length encoded alarm sequence, TA

Output: Alarm reduction
1: procedure Alarm Reduction(ALM-ALM, TA)

Initialization
2: n = length(ALM-ALM ) � initial alarm count
3: temp = 0 � temporary buffer

Computation
4: while i ≤ length(ALM-ALM )
5: temp = ALM-ALM(i)
6: while TA ≥ temp
7: n = n - 1 � decrease in alarm count
8: i = i + 1
9: temp = temp + ALM-ALM(i)
10: end while
11: i = i + 1
12: end while
13: end procedure

For illustration purposes, two application examples are considered. In the

first example alarm data with 5000 samples is collected from a simulated pro-

cess variable following Gaussian distribution. Number of alarms were observed

to be over 600. Algorithms 5, 6, and 7 are used to find the percentage alarm re-

duction with application of various time-deadband configurations. Figure 4.13

shows the case where one of the time-deadband parameters is fixed to be zero,

and Figure 4.14 is obtained when both of the time-deadband parameters (TNA

and TA) are considered. Percentage alarm reduction along with the chattering

indices for various time-deadband configurations are listed in Table 4.3.

For the second example, an industrial alarm data for a period of 25 days

was collected. A snapshot of a few samples of the alarm sequence is shown in

Figure 4.15. For the considered alarm sequence, the alarm count was observed

to be 1387, and the chattering index was calculated to be 0.2538 alarms/sec,

which is above the cut off value of 0.05 alarms/sec, indicating the problem

of severe chattering. All three design scenarios are considered, and the plots

for percentage alarm reductions are obtained. Figure 4.16a shows the curve

of percentage alarm reduction when only TNA is applied on the alarm data,

while keeping the TA = 0. From this figure it can be seen that the alarm

87



Algorithm 7 Applying time-deadband on both alarm and no-alarm states
(TA 
= 0, TNA 
= 0)

Inputs: Lossless run-length encoded alarm sequence, TA, TNA, alarm count
Output: Alarm reduction

1: procedure Alarm Reduction(LRLE, TA, TNA)
Initialization

2: n = alarm count � initial alarm count
3: flag = 0 � flag for mode selector
4: temp = 0 � temporary buffer

Computation
5: while i ≤ length(LRLE )
6: temp = LRLE(i)
7: if flag == 0 � alarm data is in no-alarm state
8: while TNA ≥ temp
9: i = i + 1
10: temp = temp + LRLE(i)
11: if (Mod(i,2) == 1)
12: n = n - 1
13: i = i + 1
14: temp = temp + LRLE(i)
15: end if
16: flag = 1
17: end while
18: i = i + 1
19: temp = temp - TNA

20: else � alarm data is in alarm state
21: while TA ≥ temp
22: i = i + 1
23: temp = temp + LRLE(i)
24: if (Mod(i,2) == 0)
25: n = n - 1
26: i = i + 1
27: temp = temp + LRLE(i)
28: end if
29: flag = 0
30: end while
31: i = i + 1
32: temp = temp - TA

33: end if
34: end while
35: end procedure

88



0 20 40 60 80
0

20

40

60

80

100

T
NA

%
A

ge
 a

la
rm

 r
ed

uc
tio

n

(a) Alarm reduction based on TNA

0 20 40 60 80
0

20

40

60

80

100

T
A

%
A

ge
 a

la
rm

 r
ed

uc
to

n

(b) Alarm reduction based on TA

Figure 4.13: Percentage alarm count reduction (Example 1)

count reduces as the length of TNA is increased. In this figure a marked

point indicate that the alarm count reduction is observed to be 83.33% for

TNA = 22. Similarly, an alternative configuration is proposed by considering

only TA while keeping the TNA = 0. Figure 4.16b shows the percentage alarm

count reduction for the range of TA, e.g., TA of length 27 results in 85.79%

reduction in the alarm count. For both of these marked cases, the chattering

index is calculated to be 0.031 alarms/sec, which is acceptable according the

standards. Figure 4.17 shows the case where the design of both TA and TNA

is considered. The color bar indicates the percentage alarm reduction, when

waiting times of particular lengths are configured on both the alarm and no-

alarm states. Table 4.3 lists some configurations along with the resultant

chattering index, and percentage alarm reduction. From this table it can be

seen that the configurations (TA = 15, TNA = 20) and (TA = 24, TNA = 27)

show superior performance as compared to other listed configurations.

It is worth mentioning here that the proposed design procedures provide

a set of possible time-deadband configurations to consider. Depending on the

type of the process variable, its criticality, and the signal to noise ratio of the

process variable, one may choose the one that suits best for the conditions.
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Figure 4.14: Alarm reduction based on both TNA and TA (Example 1)

4.6 Summary

In this chapter time-deadband configurations for univariate alarm systems

have been studied. A Markov process based model was developed under the

assumption that the distributions of the process variable are known for both

the normal and abnormal operations. Performance indices, namely, the false

alarm rate, the missed alarm rate, and the expected detection delay have been

calculated by studying the long-term behavior of the Markov model. Design

procedures based on the process data, and the alarm data have been developed,

to help the operators in achieving acceptable alarm system performance.
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Figure 4.16: Percentage alarm count reduction (Example 2)

Table 4.3: Performance comparison of time-deadband configuration

Configuration Alarm count Chattering index Alarm reduction (%)

Example 1

TA = 0, TNA = 0 678 0.2202 –

TA = 0, TNA = 30 132 0.0268 80.53

TA = 40, TNA = 0 105 0.0213 84.51

TA = 10, TNA = 15 152 0.0312 77.58

Example 2

TA = 0, TNA = 0 1387 0.2538 –

TA = 15, TNA = 20 118 0.0253 91.49

TA = 6, TNA = 11 277 0.0481 83.63

TA = 5, TNA = 4 464 0.0812 66.55

TA = 24, TNA = 27 106 0.0179 92.36
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Figure 4.17: Alarm reduction based on both TNA and TA (Example 2)
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The outcomes of this thesis are summarized as follows:

1. A multivariate alarm system was designed for multi-mode processes.

A hidden Markov model approach was adopted to capture the multi-

modality of data and the mode-reachability constraints of a multi-mode

process. A two-step Viterbi algorithm was proposed to detect the op-

erating mode and a contribution plots based fault isolation scheme was

developed. Superior results were obtained for the faulty scenarios under

which mode-reachability constraints were violated.

2. The problem of designing delay-timers for multi-mode processes was

considered. A hidden Markov model with Markov chain observations was

used to model mode changes and delay-timer configurations for various

modes. Performance indices (the false alarm rate, missed alarm rate,

and the expected detection delay) were calculated, and a particle swarm

optimization based algorithm was proposed for designing delay-timers.

3. For univariate alarm systems, the problem of analyzing and designing

time-deadbands was considered. Design procedures based on process

data and alarm data were proposed. The process data design procedure

made use of developed analytical expressions of the performance indices,
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and ROC curves were used to make recommendations on the possible

lengths of time-deadbands. Run-length encoding schemes for alarm sig-

nals were used to develop algorithms for designing time-deadbands based

on alarm data.

5.2 Future work

The following are some of the possible future research problems, which are

worth investigating:

1. For the design of multivariate alarm systems for multi-mode processes,

only steady state behavior of the multi-mode processes was considered.

However, for processes that experience long transition periods while

switching between modes, the transitional changes should also be part

of the model. One possible solution is to use semi-hidden Markov pro-

cesses in the model, that can be used to capture the transitional changes

between different modes of operation, and the time taken by the process

in switching from one mode to another. Accurate mode detection along

with detection of transitional phase between different modes is another

challenging task for such processes.

2. Delay-timers and deadbands are among the most commonly used tech-

niques in industries to remove chattering alarms. In this thesis, both

delay-timers and deadbands configurations were studied; however, a per-

formance comparison between these two alarm configurations was not

conducted. A possible future work is to perform comparative analysis of

various alarm configuration methods including delay-timers and dead-

bands both qualitatively and quantitatively, to give better recommenda-

tions for alarm system performance improvement. Different operating

scenarios and modes (e.g., start-up, shutdown etc.) and types of process

variables (e.g., flow, temperature, pressure etc.) should also be taken

into account.
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3. Most of the literature related to alarm system design consider the appli-

cation of only one alarm configuration technique at a time. The usage of

ensemble methods by considering combinations of various alarm config-

uration techniques (e.g., filters and deadbands or filters and delay-timers

etc.) should be explored to achieve better trade-off between performance

indices.
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