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Abstract

Arithmetic rings in commutative algebra are Ivrull and Priifer rings and therefore 

include principal ideal rings, Dedekind, valuation and unique factorization rings. The 

main tool in the study of arithm etic rings is an appropriate valuation theory. For 

commutative domains, it is the theory of valuations on fields initiated by Krull in 

1932. The most successful valuation theory for commutative rings with zero divisors is 

the theory introduced by M. E. Manis in 1967. In the non-commutativecase, Schilling 

valuations were used to determine the Brauer group over local fields and Dubrovin 

valuation rings, introduced in 1984, do not only have a rich extension theory, but are 

very useful in the investigation of Bezout orders in simple artinian rings. This thesis 

concentrates on the study of the ideal structure of non-commutative valuation rings 

and commutative Krull rings with zero divisors.

We first consider the structure of prime ideals of a Dubrovin valuation ring. A 

prime ideal P of a Dubrovin valuation ring R  in a simple artinian ring Q is called 

Goldie prime if R /P  is a prime Goldie ring. We show that in the special case when 

R is a total valuation ring, Goldie prime ideals are exactly completely prime ideals. 

Then we proceed to show tha t any intersection and union of Goldie prime ideals is 

again Goldie prime, any idempotent proper ideal is Goldie prime and the intersection 

of all powers of any proper ideal is Goldie prime. Using these results we show that 

in the case of a rank one Dubrovin valuation ring R , the set D(R) of all divisorial 

ideals of R  is a group, order isomorphic to a subgroup of (R ,+ ).
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Next, we show that there exists a  complete analogy between the struc tu re  of ideals 

of a cone in a right-ordered group and the structure of ideals of a  Dubrovin valuation 

ring. In the rank one case, this structure is described completely. Also, vve show that 

for a discrete Dubrovin valuation ring R, the Jacobson radical S (R )  is principal as 

a right Jl-ideal, D (R ) =  {J{R ))  and C \J {R )n =  (0).

Finally, we consider an application of the valuation theory in the s tu d y  of com­

mutative and non-commutative arithm etic rings. If R  is a commutative K rull domain 

with the quotient field K, R  ^  K ,  then for any finite set {u'p,, u«p2, - - -, ^q3n} of es­

sential valuations of the ring R  and any set {mi, m2, . . . ,  mn} of integers, there  exists 

an element x  E K  such that u<pt(:r) =  m t- for all i E {1, 2 , . . .  , 71} and u<p£:r) >  0 for 

all other essential valuations u<p of R. We prove an analogous approxim ation theo­

rem for Krull rings with zero divisors. This result allows us to characterize divisorial 

fractional ideals of an additively regular Krull ring.
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Introduction

A successful partial proof of the famous Fermat Conjecture (before 

A.Wiles proved the Conjecture), i.e., the impossibility of the equation xp + yp = z p 

for p an odd prime number and x ,y , z  integers ^  0, did depend on the uniqueness 

of the factorization in the ring Z[C] (£ ^  1 is a p-th root of unity). A mistake in his 

first attem pt to prove the Conjecture led Kummer to his study of the arithmetic of 

cyclotomic fields which occupied him for almost 25 years. Using the theory o f ideals 

and ideal classes in algebraic number fields, Kummer proved the Fermat Conjecture 

for every regular odd prime number p , i.e., p \ h, where h is the class number in Q(C)- 

His "ideal prime numbers”, that is, "the exponent” with which a factor appears in 

the decomposition of a number x  € Z[£], is in the modern language the value of a 

valuation on the field Q(£) at x. This development of the theory of algebraic num­

bers between 1S30 and I860 was one of the two central motivations for the creation of 

modern commutative algebra and the study of commutative integral domains, prin­

cipal ideal domains (PID), Priifer, Krull, Dedekind and unique factorization domains 

(UFD). The second source was Algebraic Geometry.

Even though a strict definition of the notion of an arithmetic ring does not exist, 

many arguments suggest that by arithmetic rings in commutative algebra we mean 

Krull and Priifer rings which include principal ideal rings (PIR), Dedekind, valuation 

and unique factorization rings (UFR).

The main object of study in this thesis are commutative and non-commutative

1
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arithmetic rings. We contribute some results concerning the ideal structure of non- 

commutative valuation rings and some results about essential valuations of commu­

tative Krull rings with zero divisors.

In Chapter 1, vve present background m aterial necessary for the subject. We 

discuss the basic results and present the classical theorems from the general theory 

of non-commutative rings, the general theory of orders with an emphasis on Bezout 

orders in an artinian ring and the theory of com m utative and non-commutative valu­

ation rings. For some of these results modified, proofs are given. To a certain extent, 

this chapter makes the thesis independent of th e  other sources.

In 19S4, N. Dubrovin introduced a new class of non-commutative valuation rings 

in a simple artinian ring, now called Dubrovin valuation rings. In Chapter 2, we 

examine the ideal theory of Dubrovin valuation rings. We start with presenting 

recent results by J. G rater about Bezout orders in an artinian ring and proceed to 

give a modified proof of a characterization theorem  for Dubrovin valuation rings 

which shows that this class of rings consists exactly  of local Bezout orders in simple 

artinian rings. In particular, we consider prim e ideals P of a Dubrovin valuation ring 

R with the property that R /P  is a prime Goldie ring. Such ideals are called Goldie 

prime ideals. We first show that in the special case when R  is a total valuation ring, 

then a prime ideal P  of R  is a Goldie prime if and only if P is completely prime, 

see Proposition 2.3.16. Then we show that Goldie prime ideals have many "nice” 

properties.

If P{, i G A, are Goldie primes in R, then (""l-P; and [J P,- are Goldie prime ideals, 

see Proposition 2.3.19 and Corollary 2.3.22. Also, if I 2 = I  ^  R  is an idempotent 

ideal of R, then /  is a Goldie prime, Lemma 2.3.20. The essential result for further 

exploration of the ideal structure of Dubrovin valuation rings is the result in The­

orem 2.3.24. This theorem shows that the intersection of all powers of any proper 

ideal of R  is a Goldie prime.

o
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The end of Chapter 2 looks at dlvisorial ideals of a Dubrovin valuation ring R. A 

right /2-ideal A is called divisorial if A  = A" =  P| cS, where c runs over all elements 

in Q with cS  3  A  and S  =  0 r (A). On the set D (R ) of all divisorial ideals we define 

the partial operation “ o "  by A  o B  = (AB)~ if A, B  E  D (R ) with 0 r(A ) =  0[(B ). 

With respect to the operation “o", D(R) becomes an algebraic structure known as 

Brandt groupoid . We show that in the case when R  is a Dubrovin valuation ring of 

rank one, (D (R ), o ) is a group, order isomorphic to a subgroup of (K., +  ), the additive 

group of real numbers, Theorem 2.3.15 and Lemma 2.3.25.

Chapter 3 explores the ideal structure in a Dubrovin valuation ring. In particular, 

our interest lies in pairs Pi D P2 of two distinct Goldie prime ideals Pi and P2 such 

that no further Goldie prime ideal exists between Pi and P2. Such a pair is called 

a prime segment. We show that in a Dubrovin valuation ring there are exactly 

three types of prime segments: archimedean, simple and exceptional. Applying this 

result to a Dubrovin valuation ring R of rank one, we describe all possibilities for 

the group D(R)  and the subgroup H(R) of D(R)  of all non-zero ideals which are 

principal as right /2-ideals. Since, in this case, for any non-zero /2-ideal A in Q 

either A =  A” € D(R) or A C A“ and then A* =  c/2, A =  cj7’(/2) for some 

c E U(Q), knowing the groups D(R)  and H(R) we are able to describe completely 

the structure of all ideals in a Dubrovin valuation ring of rank one. This result shows 

that rank one Dubrovin valuation rings have an ideal structure completely analogous 

to that of cones of right ordered groups and, equivalently, of chain domains, which 

has been described earlier in papers by H.H. Brungs and G. Torner, [BT76], H.H. 

Brungs and N. Dubrovin, [BD], T.V. Dubrovina and N. Dubrovin, [DD96] and H.H. 

Brungs and M. Schroder, [BS95]. Also, we show that a rank one Dubrovin valuation 

ring R in a simple artinian ring Q with finite dimension over its center has only an 

archimedean prime segment. We conclude Chapter 3 by applying these results to a 

discrete Dubrovin valuation ring. We show that every discrete Dubrovin valuation

3
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ring R  has an archimedean prime segment J (R )  D (0), with J { R )  7̂  J~(R)2, the 

Jacobson radical J { R ) is principal as a right /2-ideal and f | i 7 ( ^ ) n =  (0).

The final Chapter 4 is devoted to an application of valuation theory to commuta­

tive and non-commutative arithm etic rings. In particular, we consider commutative 

and non-commutative Krull rings. The class of commutative Krull rings with zero 

divisors was introduced by R. Kennedy, [Ken73] and later explored by R. Matsuda, 

[Mat8'2] and [MatSS], and J. Alajbegovic and E. Osmanagic, [AO90b] and [AO90a]. 

We prove an approximation theorem for essential valuations of Krull rings with zero 

divisors: Let R be a Krull ring with total quotient ring K , such that R ^  K , and 

{u.p | Sp £ P(R) }  is the family of essential valuations of R. If {u<pn u*p2, . . . ,  u<pn} 

is a finite set of essential valuations of the ring R and (mi,  m 2, . . . ,  m n) £ Z n, then 

there exists an element x E K  such that =  m,- for all i £ { l , 2 , . . . , n }  and

u«p(x) >  0 for all other essential valuations u<p of R. This results mirrors the analo­

gous approximation theorem for essential valuations of Krull domains. The element x  

constructed in the proof of the above result is not necessarily regular. We show that 

for the class of additively regular rings the element x can be chosen to be regular. In 

this case, we give a characterization of divisorial fractional ideals in terms of principal 

divisorial ideals. Also, we briefly discuss the notions of non-commutative Priifer rings 

and non-commutative Krull rings.

4
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Chapter 1

Preliminaries

In this chapter we give the definitions and results from the general theory of as­

sociative rings which are basic for this subject. The main results are taken from 

[RMS7], [MMU97], [LM71], [Sch45] and [DubS4]. Throughout this chapter, a ring is 

always an associative ring with identity 1 . A subring of a ring R  always contains the 

identity element of R. For a ring R, we denote by U(R) the set of all units of R and 

by Cfi(0), or sometimes by Reg(R), the set of all regular elements of R. A right (left) 

ideal .4 of R  is regular if it contains a regular element. The set of all zero divisors of 

R is denoted by Z{R).

1.1 Elementary properties of orders

A ring R is called simple if R does not contain nonzero proper two sided ideals. If M  

is any ideal of /?, R /M  is a simple ring if and only if M  is a maximal ideal. Clearly, 

every division ring is simple. By Wedderburn's Theorem, if R  is a simple artinian 

ring then R  =  M n(D ) for some division ring D.

Let C be a multiplicatively closed subset of a ring R. Then we say that R satisfies 

the right Ore condition with respect to C or that C is a right Ore set of R if for all

5
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a E R  and c g C ,  there exist 6 E R  and d EC  such that ad =  cb. If C C Cr(0), then it 

is called a regular right Ore set of R. A (regular) left Ore set of R  is defined similarly. 

If C is a (regular) right and left Ore set of R , then it is simply called a (regular) Ore 

set o f R.

T h eorem  1.1.1 ( [Her68]) I fC  is a regular right Ore set of R, then there exists 

an overring T  = RC~l = Rc o f R, called the right quotient ring o f R with respect to 

C such that

i) a n y  c E C is  a unit o f T ;

ii) for any q E T , there exist a E R  and c EC such that q = ac~l .

For arbitrary elements <71,(72, - • • , <7n G T there exists a common denominator, i.e., a 

regular element c EC such that qi =  r tc-1 , i =  1 ,2 , . . .  , n fo r some r t- E R.

Let R  be a subring of a ring Q. If Q = RCr {0)-1 , then R  is called a right order 

in Q. Sometimes, the ring Q is denoted by Q =  Q(R). Hence, a subring R  of a ring 

Q is a right order in Q if and only if R  satisfies the right Ore condition with respect 

to Cr (0). A left order in Q is defined similarly, and a ring R  which is both a right 

and a left order in Q is called an order in Q.

For a subset .4 of a ring R  we define r^(A) =  {x  E R  | Ax  =  0} and call it 

the r ight an n ih i la to r  of A .  The left  ann ih ila tor  Ir ( A )  is defined similarly. A right 

annihilator of R  is a right ideal of R  and a left annihilator is a left ideal of R.

In an artinian ring all one-sided regular elements are units. More precisely the 

following result holds:

L em m a 1.1.2 ( [Rob67a]) Let Q be a right artinian ring and c E Q. Then the 

following conditions are equivalent:

i) rQ(c) = 0;

6
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ii) c is regular;

iii) c is a unit.

P ro o f. The only implication we need to prove is (z) =>■ (iii). Assume that rg(c) =  0 

and consider the chain

cQ D c2Q D c3Q D • • -

of right ideals of Q. Then there exits n such that cnQ =  cn+lQ. Hence, cn(l —cx) =  0 

for some x  E Q. By (i), 1 =  cx. But, car —1 =  0, implies cxc—c =  0, i.e., c(a:c—1) =  0, 

and again by (i), xc = 1, i.e., c is a unit.

□
The next two results are often used in this work; they describe very useful prop­

erties of orders in an artinian ring.

L em m a 1.1.3 ( [Rob67a]) Let R be a right order in a right artinian ring Q 

and c E R. Then, the following are equivalent:

i) rR(c) =  0,-

ii) rQ(c) = 0;

iii) c is regular in R;

iv) c is regular in Q;

v) c is a unit in Q.

P ro o f. By Lemma 1.1.2, it is enough to prove (i) => (ii). Assume that rR(c) =  0 and 

let cq = 0 for some q 6 Q. Since q =  ab~l , where a. b E R  and 6 is regular, then 

ca =  0. By the assumption, a =  0. Hence, q =  0.

□

7
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C o ro lla ry  1 .1 .4  ( [Rob67a]) Let R  be a right order in a right artinian ring Q 

and a,b  £ R. Then ab is regular i f  and only i f  a and b are regular.

P roof. If ab is regular, then, rpfjb) =  0. By Lemma 1.1.3, 6 is unit in Q. Then 

a =  (ab)b~l is regular in Q , and again by Lemma 1.1.3, a is regular in R.

□
Note that if a ring R  has a right quotient ring Q and Q satisfies ACC  for right 

or left annihilators, then the property in Corollary 1.1.4 holds. Rings do exits which 

do not satisfy this property.

Let R  be a ring and M  be a right R-module. An R-submodule L of M  is said to 

be an essential submodule if L (") N  ^  0 for any nonzero R-submodule N  of M . If L 

is an R-submodule of M, then there exists an R-submodule L' such that L P| L' =  0 

and L © L' is an essential submodule in M . If a right ideal /  of R  is an essential 

R-submodule of /?, then /  is called an essential right ideal.

A right R-module U is said to be a uniform module if every nonzero R-submodule 

of U is essential. A right R-module M  is said to have finite Goldie dimension if it 

contains no infinite direct sum of nonzero R  submodules.

A ring R  is called a right Goldie ring if R  satisfies the ascending chain condition 

(ACC) for right annihilators and R  does not contain an infinite direct sum of nonzero 

right ideals. A left Goldie ring is defined similarly, and if R  is a right and left Goldie 

ring, then R  is called Goldie. By Goldie’s Theorem, a ring R  is a (semiprime) prime 

right Goldie ring if and only if R  is a  right order in a (semisimple) simple artinian 

ring Q. Some basic properties of Goldie’s rings are summarized in the following two 

results:

T h eo rem  1.1 .5  ( [RM 87]) Suppose that R  is a semiprime right Goldie ring 

and let I  be a right ideal of R. Then:

i) I  is essential i f  and only if I  contains a regular element;

S
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ii) I f  I  is essential, then I  is generated by regular elements.

T heorem  1.1.6 ( [RM 87]) I f  a right R-module M  has finite Goldie dimension, 

then there exist uniform R-submodules Ui, U2 , • - • - Un o f M  such that U iQ ^ Q -  ■ -@Un 

is an essential R-submodule o f M . In this case n is independent o f the choice o f the 

U{. We call n the Goldie dimension of M  and denote it by da(M)  or d(M) .

D efinition 1.1.7 Let R  be an order in a ring Q. Then a right R-submodule I  o f 

Q is called a right /2-ideal of Q if

i) U { Q ) { \ I ^ 0 ;

ii) there exists an element c £  U(Q) such that c l  C R.

A right R-ideal I  o f Q is called integral if I  C R . A left //-ideal is defined similarly. 

A right and left R-ideal o f Q is called an //-ideal.

Let R  be a semiprime Goldie ring and Q be the semisimple artin ian  ring of quo­

tients of R. If /  is a right ideal of //, then I  is a right R-ideal if and  only if /  is

essential. In particular, any nonzero two sided ideal /  of a prime Goldie ring R is an 

//-ideal since for any nonzero right ideal X  of R  we have 0 X I  C X  P| I, i.e., I  is 

essential and by Theorem 1.1.5, I  contains a regular element.

Let R  be an order in a ring Q. For any two subsets A  and B  of Q, we define:

( A : B ) r = { q £ Q  \ B q C A }

(.4 : B)t  =  {q € Q | q B  C A}

A~l = { q e Q \  A qA  C .4}.

For a right //-ideal I  of Q we set

0 .(1 )  = ( I  : ! ) r = {q € Q | I q C I }

9
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Oi(I)  =  ( /  : /)/  =  { q e Q  \ q l Q I } .

Then the following holds:

L em m a  1.1.8 ( [M M U 97]) Let R  be an order in a ring Q and I  be a right 

R-ideal o f Q. Then:

i) Or (I) and Oi(I) are orders in Q;

ii) I  is a left Oi(I)-ideal and a right Or(I)-ideal;

iii) (R  : I)i is a left R-ideal and a right Oi{I)-ideal.

D efin itio n  1.1.9 .4 ring R is called a right (left) chain ring i f  right (left) ideals

o f R  are linearly ordered by inclusion. A right and left chain ring is called a chain 

ring.

We can extend this concept in the following way:

D efin itio n  1.1.10 Let R  be a subring o f a ring Q. Then R  is called a right

n-chain ring in Q if fo r  any elements ao,cti, . . .  ,a„ in Q there exists an element 

ai , i €  {0,1, . . .  ,n}, such that a t- belongs to the right R-submodule generated by the 

remaining elements aj, j  7̂  i , that is, a,- 6 ajR- A right n-chain ring in itself

is called a right n-chain ring. .4 left n-chain ring is defined similarly. A ring which 

is both right and left n-chain ring is called n-chain ring.

R e m a rk  1.1.11 a) Let S  be an overring of a ring R in a ring Q. I f  R  is a right

n-chain ring in Q , then R  is a right n-chain ring in S  and S  is a right n-chain 

ring in Q. Furthermore, i f  I  C R is an ideal o f Q and R  is a right n-chain ring 

in Q, then R [I  is a right n-chain ring in Q / I .

b) The class of 1-chain rings coincides with the class o f chain rings.

10
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c) In every chain ring R, the Jacobson radical f f (R)  is a maximal right and left ideal.

By the Remark 1 . 1.11  c), if R  is a  semi-simple chain ring, then R  is a division ring. 

The analogous result for n-chain rings is:

L em m a 1.1 .12  ( [M M U97]) Let R  be a semi-simple ring, i.e, f f (R)  = 0 .Then 

R is artinian i f  and only i f  R  is a right n-chain ring fo r  some n.

Let R  be a commutative ring with identity and K  its total quotient ring, and S  

a multiplicative closed system of R. Then the large quotient ring o f R  with respect 

to S  is defined to be the set R[S] = {x  £ K  | (3s £ S') x s  £  R}. If A is an ideal of R, 

then the extension o f A  is [A]f2[s] =  {x £ K  | (3s £  S) xs  £ A}. A ring R  is called 

r-noetherian if it satisfies the ascending chain condition (ACC)  for regular ideals.

P roposition  1.1.13 ( [Gri69]) For a commutative ring R the following condi­

tions are equivalent:

i) R is r-noetherian;

ii) Every nonempty set o f regular ideals of R has a maximal element:

iii) Every regular ideal o f R  is finitely generated;

iv) Evei~y regular prime ideal o f R  is finitely generated.

An r-noetherian ring need not be noetherian ( [MatSl]).

Let R  be a subring of a ring R' and let a £ R '. If a is a root of a monic polynomial 

with coefficients from R , then a is called integral over R. If there exists a finitely 

generated R —submodule M  of R ', such that an £ M  for all n , then a is called almost 

integral over R. The subset R q of all elements in R' which are almost integral over 

R  is called a complete integral closure of R in R'. If R q = R , we say that R  is 

completely integrally closed in R'. In the case that R' is total quotient ring of R , Ro

11
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is called a complete integral closure of R  and, in the case Rq =  R, we say th a t R 

is comletely integrally closed . Notions of integrally closed and integral closure are 

defined similarly. If a is an integral element over R  then a is almost integral over R. 

The converse does not hold. For example, T  =  Z(2j +  XQ[[.Y]] is a valuation domain 

with value group Z x Z, and hence, T  is integrally closed but T  is not completely 

integrally closed.

For the class of r-noetherian rings the notions of completely integrally closed and 

integrally closed coincide.

Proposition 1 .1 .14  ( [AO90a]) I f  a ring R is r-noetherian and integrally closed, 

then R is completely integrally closed.

A ring R  has few zero divisors if Z(R)  is a finite union of prime ideals; and R  is 

additively regular if for each z in its total quotient ring K , there exists u E R  such 

that z + u £ Cat(O). A ring R  is called a Marot ring or a ring with the property (P ) if 

every regular ideal is generated by regular elements. The relationships between these 

classes of rings are summarized in the next theorem:

Theorem  1.1.15 ( [Huc88]) Consider the following four conditions on a com­

mutative ring R

1) R is a noetherian ring;

2) R has few zero divisors;

3) R is an additively regular ring;

4) R is a Marot ring.

Then 1) => 2) =>• 3) => 4).

None of the implications of the Theorem are reversible ( [HucSS], Examples).

12
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1.2 Valuation rings

Valuation Theory is an im portant and powerful tool in many areas of m athem at­

ics: Number Theory, Theory of Local and Global Fields, Algebraic Geometry and 

Model Theory. The first axiom atic definition of a valuation has been stated by Josef 

Kiirschak in 1913 and the further development, a t the beginning of the 20—th  cen­

tury, is associated with works of Kurt Hensel, Alexander Ostrowski and Helmut Hasse. 

W hile this stage of the development of the valuation theory is mainly concerned with 

valuations of rank one, the notion of a general valuation was introduced by Wolfgang 

Krull in 1932, [Kru32]:

D efin ition  1.2.1 Let I\ be a field and let V be a map o f I\ onto a totally ordered 

abelian group Gv with an added element oo, such that oo +  oo =  <7 +  oo =  oo, 00 > g 

for all g E G. The map v : K  —> G„lJ{oo} is called a (Krull) valuation on K  and 

Gv is called the value group of v i f  the following conditions are satisfied

V I) (Vx E K) v(x)  =  00 i f  and only if x =  0

V 2) (Vi, j/ E A') v(xy)  =  v(x)  +  v(y)

V 3) (V x ,y E /\)  v(x + y) > mi n{v(x) , v(y)}

If Gv =  0 then v is called a trivial valuation. If the group Gv is the group of 

integers, then v is called the discrete valuation o f rank one. For example, for every 

x E  Q* =  Q \  {0} and a prime number p there exist integers a , r, s such that 

x  =  where r  and s are not divisible by p; then the map vp : <Q>“ —>■ Z defined

by vp( x ) =  a  and up(0) =  00 is a discrete valuation of rank one of Q. The ring 

Rv =  {x E  K  | v(x) > 0} is called the ring of the valuation v and the prime ideal 

Pv = {x E K  [ v(x) > 0} is called the positive ideal o f v. The ring Ry satisfies 

the following condition: for each x E  AT, x E  R y  or x ~ l E  R y .  Conversely, if R  is a
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subring of K  such that x  E  K \ R  implies x~ l E  R , then there exists a valuation v of 

K  such that R =  R'v . Many authors contributed to this theory, among them O.F.G. 

Schilling, E. Artin, 0 .  Zariski, P.J. Jaffard, P. Ribenboim, O. Endler and M. Fukava. 

Ivrull valuations are greatly used by Zariski and his school of Algebraic Geometry. 

For example, power series rings are used in the study of the algebraic varieties in 

projective spaces; abstract Riemann surfaces are developed.

Among competing attem pts to develop a theory of valuations for commutative 

rings which may have nontrivial zero divisors, the most successful was the definition 

of the valuation ring by M.E. Manis in [Man67].

D efinition 1 .2 .2  ( [Man67]) .4 map v from  a commutative ring T  onto a totally

ordered abelian group Gv with oo adjoined, is called a valuation o f T  if the follo wing 

conditions hold:

(i) v{xy) = v(x)  +  v{y);

(ii) v(x + y) > mi n{v(x) , v(y) } .

The ring Rv = {x  £ T  \ v(x) >  0} is called the ring o f the valuation v. The set 

Pv =  {x E  T  | v(x)  > 0} is a prime ideal o f Fly and is called the positive ideal o f v.

The ring Fly and the ideal Pv satisfy the following condition:

(iii) For each x  E  T  \  Fly there exists y  E  Pv such that xy  E  R v \  Pv-

Conversely, if R is a subring of a ring T  and P is a prime ideal of R such that for each 

x  E  T \  R there exists y E  P with xy  E  R \  P, then there exists a Manis valuation 

v on T such tha t Fly = R and Pv = P. A pair (R, P) satisfying (iii) is called a 

Manis valuation pair of T. For example, the pair (R, P) =  (Z[X],  XZ[X])  is a Manis 

valuation pair of the ring T = Z[X,  A'--1]. If the group Gv is equal to (0), then v is

14
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called a trivial valuation. If the group Gv is the group of integers, then v is called 

the discrete valuation o f rank one.

For the theory of Manis valuations refer to [LM71], [HucSS] and [AM92]. In 

the last three decades an extension of the theory of commutative integral domains 

to commutative rings with zero divisors was developed, see R. Gilmer [Gil72], M. 

Larsen, P. McCarthy [LM71], J. Huckaba [HucSS], R. Matsuda [MatSS] and J. 

Alajbegovic, J. Mockor [AM92].

In the non-commutative case, a natural question is: Which class of rings plays the 

same role for the study of non-commutative arithmetic rings as the classes of valuation 

domains and Manis valuation rings do for commutative arithmetic rings? First, 

note tha t a successful ^candidate” should share many properties with commutative 

valuation rings, in particular, the properties of extension of valuations. For example, 

we would like to know a non-commutative analogue of the following result due to 

Chevalley: If V  is a valuation ring of a field F  and K  is an extension of F  , then 

there exists a valuation ring W  of K  with W  f] F  =  V . In this case we say that W  is 

an extension of V  in I \ . In order to consider these questions one must decide what 

it means to have a valuation on a division ring. It seemed natural to suggest that 

this role is played by Schilling’s valuations on a skew field, see [Sch45]:

D efin itio n  1.2.3 A  valuation v on a division ring D is a function v from D~ =  

D \  {0} onto an ordered group Gv, such that for all a,b £  Dm, v(ab) =  v(a) +  u(6) 

and v(a + b) > m in{y{a ), u(6)}.

For convenience we extend v to D by u(0) =  oo where oo >  7 and 00+7 =  7+00 =  00 

for all 7 £ Gv. Such valuations v on D correspond to subrings R  of D (called total 

invariant valuation rings of D) with the following two properties:

(T ) If x £ Dm then x £  R  or x -1 €  R ; we say that R  is a  total valuation ring of D.

(I) dRd~l =  R, for all d ^  0 in D\ we say that R  is invariant.

15
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Note that valuations on the finite dimensional central simple division algebras are 

used to show tha t the Brauer groups B r( F ) over a local field F  are isomorphic to 

Q /Z . Using valuations, the central simple algebras over global fields, i.e., algebraic 

number fields or algebraic function fields, are classified. This work is associated with 

the famous names of H. Hasse, R. Brauer, E. Noether and A. Albert, see [PieS2]. 

However, the valuation of the center F  of a division ring D  such th a t [D : F] < oo, in 

general, cannot be extended to the whole algebra. For example, for p an odd prime 

number, the valuation ring Z(p) in the center Q =  Z(H(Q)) of the 4-dimensional 

algebra of quaternions over the rationals cannot be extended by a total invariant 

valuation ring in H(Q), see Example 1.4.2. This difficulty has been overcome by the 

introduction of Dubrovin valuation rings in a simple artinian ring, see [DubS4]. A 

very well developed ideal theory and extension theory in the finite dimensional case 

justify the name valuation rings.

D efin ition  1 .2 .4  Let R be a subring in a simple artinian ring Q and assume that 

M is an ideal o f R such that R /M  is a simple artinian ring, and fo r each q £ Q \  R 

there are elements r .r ' E R with qr, r'q 6 R \  M . Then R is called a Dubrovin 

valuation ring o f Q.

Examples of Dubrovin valuation rings are given in Section 1.4.

Note, that in the case Q = I\ is a commutative field the classes of Schilling val­

uation rings, i.e., total invariant rings in Q , total valuation rings in Q and Dubrovin 

valuation rings of Q all agree and are in fact equal to the class of the classical com­

mutative valuation domains in Q = K . More precisely:

T h eo rem  1.2.5 Let R  be a Bezout order in a simple artinian ring Q. Then:

1. R is a Dubrovin valuation ring of Q i f  and only if  R/LT(R) is a simple artinian 

ring.
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2. R  is a total valuation ring of Q i f  and only i f  R f  f f  (R) and Q are skew fields.

3. R  is a Krull valuation ring in Q if  and only i f  R /  f f ( R)  and Q are fields.

For the general theory of Dubrovin valuation rings see [DubS4], [Dub85], [Dub91a], 

[Gra92b] and [MMU97].

We mention here the following extension theorem for Dubrovin valuation rings.

T h e o re m  1.2.6 ( [Dub85] a n d  [BG90]) For every valuation ring V  in the 

center F  of a finite dimensional central simple algebra D, there exists a Dubrovin 

valuation ring R  o f D such that R (^\F  = V.

A very rich extension theory using Dubrovin valuation rings has been developed 

in the last decade, see for example papers by N. Dubrovin [DubS5], H.H. Brungs, J. 

Grater [BG90], J. Grater [Gra92a], P. Morandi [MorS9], P. Morandi, A. Wadsworth 

[MWS9] and A. Wadsworth [WadS9]. This suggests that among three competing 

concepts of noncommutative valuation rings, i.e., Schilling’s total invariant valuation 

rings, total valuation rings in a skew field (equivalently, chain domains) and Dubrovin 

valuation rings in a simple artinian ring, the last one is the most effective for the study 

of noncommutative arithmetic rings.

1.3 Cones in groups and chain domains

Let G be a group. A cone of a group G is a subset P  of G such that P P  C P  and 

P  (J P ~ l — G. It follows that the identity element e of G belongs to P. If in addition 

P f )  P _1 =  {e}, then P is called a basic cone of G. In this case, we say tha t (G, P) 

is a right ordered group with a <r b if and only if ba~l E  P  for a, 6 E  G. The right 

order < r will also be a left order if and only if a P a -1 =  P  for all a E  G. The group 

(G, P) is then a linearly ordered group.

17
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Let P be a cone of G. A non-empty subset I  of G  is called a right P-ideal if 

/ P C /  and /  C aP  for some a E G. Left P-ideals and P-ideals are defined similarly. 

If /  C P then vve omit the prefix “P —r and call /  a right (left) ideal of P . Moreover, 

if /  P, then we say tha t (right or left) ideal /  is proper. A proper ideal I  of the 

cone P  is said to be prime (completely prime) if for a, b E P  we have a E /  or b E /  

whenever a P 6 C /  (respectively, a6 £ /)-

The proofs of the following results are similar to those of the corresponding as­

sertions about chain rings:

Cl) The set of right (left) P-ideals is totally ordered with respect to inclusion.

C2) The set of elements invertible in the cone P  is the intersection P  P| P -1 and it 

is a subgroup of G.

C3) The subset J (P )  of elements non-invertible in P  is a maximal right (left) 

ideal. This ideal is a completely prime ideal and P  =  J ( P ) [ j U( P )  and 

U( P ) p| J ( P)  = 0 ,  where U(P)  is the set of all units of P .

We note that a subring R  of a skew field D is a total valuation ring if  and only if 

(P “,-) is a cone in (/}“,-). Any total valuation subring R o f a skew field D is a 

Bezout order in D with R / J ( R)  a skew field.

Let G be a group with a cone P . We say that a total valuation ring R  of a skew 

field D is associated with P  if the following conditions hold:

a) <?£(£>-,-);

b) Every element d E D “ can be written as d =  giUi =  u,2g2 with gx. g2 E G and

ui, u2 6 U(R)  and PgiP = Pg2P\

c) P p |G  =  P.

IS
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The existence of total valuation rings with prescribed associated cones has been 

studied recently, see papers by H.H. Brungs and G. Torner, [BT98], T.V. Dubrovina 

and N.I. Dubrovin, [DD96], and H.H. Brungs and N.I. Dubrovin, [BD]. Many 

examples are constructed by the authors mentioned above.

The following result describes the correspondence between the chain of right P- 

ideals in a group G with a cone P  and the chain of right /2-ideals in the total valuation 

ring R  of a skew field D associated with a cone P.

T h eo rem  1.3.1 Let a total valuation ring R of a skew field D be associated with a 

cone P of a group G. Then ^p{I) =  IR,  for a right P-ideal I , defines an isomorphism 

between the chain o f right P-ideals in G and the chain of right R-ideals in D. The 

inverse mapping xb assigns to each right R-ideal A the right P-ideal xb(A) =  A f |G . 

This correspondence preserves the properties of being an ideal, a completely prime 

ideal and a prime ideal, and R-ideals correspond to P-ideals.

Since the cone R ' of Dm is associated with the total valuation ring R  in the skew 

field D , an immediate consequence of Theorem 1.3.1 is the following result:

C o ro lla ry  1.3.2 Let R be a total valuation subring of a skew field D with right 

(left) R-ideal A. Then A \  {0} is a right (left) R”-ideal in D~. Conversely, if  I  

is a right (left) R~-ideal in D“, then /  LJ{0} is a right (left) R-ideal in D. This 

correspondence preserves the properties o f being an ideal, a prime ideal, a completely 

prime ideal and o f being proper.

We conclude this section with the result by N.Dubrovin, which will allow the 

construction of total valuation rings with prescribed associated cones.

T heo rem  1.3.3 ( [Dub93]) Let P be a cone in a group G and F a skew field 

such that the following conditions hold:

a) P does not contain a minimal ideal;
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b) For every right P-ideal I , the group ring FU{Of I ) )  is an Ore domain.

Then there exists a skew field D and a total valuation ring S  o f D associated with P.

1.4 Examples

We have seen in Theorem 1.2.5 that if R  is a Dubrovin valuation ring in a simple 

artinian ring Q with R/J~(R)  a skew field, then Q is a skew field and R is a chain 

domain. Hence, chain domains axe special Dubrovin valuation rings. Also, matrix 

rings over chain domains are Dubrovin valuation rings.

A particular example of a  Dubrovin valuation ring is the following:

E xam ple 1.4.1

The ring R  =  H(Z(p)) o f quaternions over the valuation ring 2qp), where p is an 

odd prime number, is a Dubrovin valuation ring in the ring Q =  H(Q) o f quaternions 

over the rationals.

P ro o f. M  = pR  is a two sided ideal of R , R /M  = Fp ®  Fp* (J) Fpj  (J) Fpk , where Fp 

is a field of p elements. Since R /M  contains nontrivial zero divisors, we have R /M  = 

M2(Fp). To check the second condition of Definition 1.2.4 we take an arbitrary 

element q = q0 + q^ + q2j  q$k E  Q \  R- Then at least one of qi does not belong 

to Z(p). Among these, we choose one, say qs, with smallest p-adic valuation. Then 

Qs =  poJY i where qs > 0 and p  \  r s, p \ ts. Let r  =  pQ*ts E R. Then qr E R \  M.

The next example was announced in Section 1.2.

E xam ple 1.4.2 A valuation domain V o f the center F  o f a central simple division 

algebra D with [D : F] < oo, cannot be extended to a total valuation ring in D.

Proof. Let p be an odd prim e number, D =  H(Q) be the 4-dimensional algebra of 

quaternions over the rationals, F  — Q  is the center of D and V  =  Z(p) the valuation
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ring of the p-adic valuation on F  =  Q. Assume that there exists a total valuation ring 

R in D which extends V, i.e., /ZPlQ =  V- Since R  is a chain domain, the Jacobson 

radical M  = J (R)  is a maximal right (left) ideal of R.  Hence, R / M  is a division ring. 

Also [R/ M  : Z(p)/pZ(p)] <  [D : Q] =  4 <  oo. Therefore, R / M  is a finite division ring 

and by Wedderburn Theorem, R / M  is commutative. So i j  =  j i  ,i.e., 2j i  £ M.  But, 

i j  are units in D. Hence, 2 € M, a contradiction which shows that V  =  Z(p) cannot 

be extended to a to tal valuation ring in D.

□

Exam ple 1.4.3

The valuation ring V  =  Z(2) o/<Q> has a total invariant extension in D =  H(Q).

P ro o f. For an element a  =  ao -f a \i + a2j  +  a^k €  D , where a,- 6 Q, we define 

a ” =  ao — aii — a2j  — a^k and N(a)  =  a a “ =  a$ +  a\ +  a\ +  a |.  It can be shown that:

1. (a  +  0)m = a “ + f3", (a/3)m = P'oT, for all a , (3 G D\

2. N{a(3) = N(a) N{0) ,  for all a,  (3 € D:

3. N ( a ~ l ) = Ar( a ) " 1, for all a  €  D;

4. B  =  {a € D | N(a)  6 Z(2)} is a  subring of D ;

5. B  P |Q  =  ^ (2)-

Now, fo ra  £ D \ B ,  N(a)  £ Q \Z (2). Hence, N ( a ~ L) = N( a)~l £ Z (2). So, a -1 £ B,  

i.e., B  is a total valuation ring in D.  Also, a B  =  B a  for all a £ D,  i.e., B  is invariant. 

Hence, B  is a total invariant extension of V  in D.

□
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Chapter 2
*

Bezout Orders in a Simple 

Artinian Ring

A ring R  is said to be local if R  = R f J ( R )  is a simple artinian ring. In this chapter 

we consider Bezout rings, and, in particular, local Bezout orders in a simple artinian 

ring. These orders are exactly Dubrovin valuation rings (see Theorem 2.2.S). In 

Section 2.3., the prime spectrum of a Dubrovin valuation ring is investigated.

2.1 Bezout rings

A commutative integral domain is called a Bezout domain if each finitely generated 

ideal of R is principal. Hence, every principal ideal domain (PID) is a Bezout domain 

and every noetherian Bezout domain is a PID.

E xam ple  2 .1.1 There exists a Bezout domain which is not a PID.

P roof. Let (G, P) be a commutative ordered group with the positive cone P , i.e., 

PP  C P , P  (J P -1 =  G and P P ) P _l =  {e}. Let F  be any field and consider 

the group ring FG  and the subring T  =  F P  =  {£3 app | ap € P, p G P}. Then
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S  =  {^3 apP I ae 7̂  0} C T  is a multiplicatively closed system, in T . Since F  is a field 

and G is a commutative ordered group, FG  does not have nontrivial zero divisors 

and it is a commutative domain. Consider the localization V  =  T S ~ l of T  at S' in 

the quotient field K  =  Q(FG)  of the domain FG.

The set of all nonzero principal ideals of V  is exactly the set {gV  \ g G P} and 

giV  =  g2V  if and only if gi =  g2.

For, let 0 ^  t =  agog0 +  a9lgi  f-a9ngn G T =  F P  where gi G P, a9t G F \ {0},

be any element and assume that e <  go < gi < g2 < ■ ■ • < gn. Then t =  <7o-Si, where 

5i =  +  ' ’ '+ agn9ol9n € S. Since V  = T S -1, each element 0 ^  v G V  has

the form v =  t s~l for some t G T  and s G S.Hence, vV  — g oS iS^V  = gaV .Assume 

g{V = g2V  but gi < g2. Then V  =  g ^ g i ^  — pV  f°r some p G P.This implies 

1 =  pts~l , i.e., s =  pt G S, a contradiction.

Hence, the lattice of principal ideals of V  is a chain, and if I  =  (tq, v2, ■ ■ ■ , un)V  

is a finitely generated ideal of V, then I  is principal, i.e., V  is a Bezout domain. 

Note that V  is a valuation domain and the valuation associated to V  on K  has G as 

the value group. Choosing the group G to be (R ,+ ), the valuation domain V  is not 

discrete and hence, V  is not a PID.

□
Every Bezout domain is a Priifer domain, i.e., every finitely generated ideal of R  

is invertible. Therefore, for each commutative Bezout domain R  and a prime ideal 

P of /?, the localization Rp is a valuation ring and R = P| R p , where P runs over all 

maximal ideals of R.

Noncommutative Bezout rings have been studied by many authors, see P. Cohn 

[Coh63], [CohSS], J. Robson [Rob67b], H.H. Brungs [BruS6], R. Beauregard [Bea73]. 

Following [Rob67b], a ring R  is called a right Bezout ring if the following conditions 

are satisfied:

i) ab is regular in R  if and only if a and b are regular;

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ii) aR  P| bR contains a regular element for every pair of regular elements a, 6 of R;

iii) For every pair of regular elements a,b  £  R  the right ideals a R f \ b R  and a R +  bR

are principal.

A left Bezout ring is defined similarly and a Bezout ring is a ring which is right and 

left Bezout. A right Bezout ring is not necessarily a left Bezout ring but if a ring R  

has a left and right quotient ring Q which is artinian, then R  is right Bezout if and 

only if R  is left Bezout. Also, i f  R  is semiprime Goldie, then R is a Bezout ring if  

and only i f  every finitely generated right ideal o f R  is principal, see [Rob67b], Th.2.4. 

and Th.3.5.

E xam ple 2 .1 .2  There exists a ring R that is a right Bezout ring but it is not a 

left Bezout ring.

Proof. Consider the field K  =  Q(t) and define the map a  : K  —*• K  with cr(q) — q , 

for all q £ Q  and cr(t) =  t2. Then a is a monomorphism from K  into K. Define 

R := { ^ ^ .q  x la{ | a,- £ K }  where ax =  xcr(a), for all a £  K . Then R  is a ring. 

An element 0 ^  r  =  a0 +  x a v +  x 2a2 +  • • • £ R  is a unit if and only if ao ^  0. Let 

/  =  x nan +  xn+Ian+i + ■•• £ R  where n > 1 and an ^  0. Then f R  = x nuR, where 

u =  an +  xan+1 +  • • • £ U{R ), i.e., f R  = x nR. Hence, all principal right ideals of R  

are of the form x nR, n = 1 ,2 , . . . ,  i.e., R  is a right Bezout ring.

On the other hand, for the left ideals Rx  and R x t , the intersection R x  p) R xt =  0, 

i.e., R  is not a left Bezout ring.

□
In [Bea73] it is shown that any ring T  between a Bezout domain R  and its 

quotient field K  is a quotient ring of R  and T  is also a Bezout domain. The following 

theorem generalizes this result.
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T heorem  2.1.3 ( [Gra92b]) Let R  be a (right) Bezout ring having a right and 

left quotient ring Q which is right artinian and let T  be an overring o f R in Q. 

Furthermore, let S  — U (T ) p| R. Then the following hold:

i) S  is a left Ore set o f R;

ii) T  = S R ;

iii) T  is a Bezout ring

2.2 The basic properties of Dubrovin valuation rings

Throughout this section, Q is a simple artinian ring, R is a  Dubrovin valuation ring of 

Q and M  is the ideal satisfying conditions of Definition 1.2.4. The following results 

are the main steps to prove that M  is the Jacobson radical of R  and that it is a 

unique maximal ideal of R. The results are important by themselves and very often 

used in this work.

L em m a 2.2.1 ( [Dub84]) For any right (left) R-submodule /  o f Q the following

holds:

I  R C M  =>■ I  C M

Proof. Let L be a right /E-submodule of Q so that I P) R  C  M . Let x  £ I- If 

x e Q \ R ,  then there exists an element r E R  such that xr  £  R  \  M . But, xr £ / ,  

i.e., xr  £ I  P| R  C  M, a contradiction. So, x  £  R, i.e., I  C  R. Hence, I  = I  f ) R C  M.

□

Lem m a 2.2.2 ( [Dub84]) M  does not contain nonzero right (left) ideals of the

ring Q.
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P roo f. Let a E Q, a ^  0 and aQ C  M . If 1 +  aQ Q U{Q),  then aQ  C  3~{Q) =  0, 

i.e., a =  0. So, 1 +  aQ % U(Q).  Therefore, there exists an element q E Q such that

1 +  aq U(Q).  But, Q is an artinian ring and by Lemma 1.1.2, every one sided

regular element of Q is invertible. So, L :=  /q (1 +aq)  0. Also, L f ] R C .  M.  Hence, 

by Lemma 2.2.1, L C  M.  Since Laq ^  0, LaQ is a nonzero 2-sided ideal of the ring 

Q.  Hence, LaQ =  Q.  Then 1 E LaQ C  M,  a contradiction.

□

L em m a 2 .2 .3  ( [Dub84]) 1 +  M  C  U(R)

Proof. Let m  E M  and L Iq( 1 +  m).  Then L P| R  C M.  By Lemma 2.2.1 and

Lemma 2.2.2, L = 0. Since Q is an artinian ring, 1 + m  E U(Q).  So, for any m  E M, 

(1 +  m) ~ 1 exists. If (1 +  m) ~l E Q \  R,  then (1 +  m )-1 — 1 £ R and there exists an 

element s E R  such that r  :=  [(1 +  m) ~l — l]s E R \  M.  Then (1 +  m ) r  = —m s, so 

that r  =  —m (r +  s) E M, a contradiction.

□

T h eo re m  2 .2 .4  ( [Dub84]) Let R be a Dubrovin valuation ring o f Q. Then M  

is the Jacobson radical o f R. In particular. M  is the unique maximal ideal o f R.

P roo f. Since R /M  is a simple artinian ring , fJ{R) C  M.  By Lemma 2.2.3, M  C

J ( R ) .

□

C o ro lla ry  2.2.5 Let S  be an overring of R  in Q and let I  be a proper ideal of

S . Then I  C  f f (R) .  In particular, f f {S)  C  J~(R)

P roo f. Let I  ^  S  be any two-sided ideal of S. Then I  (") R  ^  R , i.e., /  Q R  is a 

proper ideal of R. Hence, by Theorem 2.2.4, /P)^? C f l (R)  and by Lemma 2.2.1,

I Q J ( R ) .

□
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To characterize Dubrovin valuation rings in terms of Bezout orders and n-chain 

rings, we need the next two results.

L em m a 2.2.6 ( [D ub84]) Let R be a Dubrovin valuation ring o f Q and I  be a 

right R-submodule o f Q .  Then 

d-n ( I / I J ( R ) )  < dn(R) 

where R =  R / J ( R ) .

P ro o f. First note that / / I J ’(R) is a right f?-module. Let n = d-^(R) be the Goldie di­

mension of the f?-module R  and assume that the  opposite holds, i.e., d n ( I / r j ( R ) )  > 

n.  Then, since R  is a simple artinian ring there exist a, 6 £  / ,  6 0  I J ’(R) such that

(aR + bR + I J ( R ) ) / I J ( R )  =  (aR  +  I J ( R ) ) / I J ( R )  ® (bR +  I J ( R ) ) / I J ( R )  (*) 

and

(aR + I J ( R ) ) / I J ( R )  = R  =  R / J ( R ) .  (**)

Since ( a R + I J ( R ) ) / L J ( R )  ^  a R / a R f ]  I J ( R )  and a J ( R )  C a R C \ I J ( R ) ,  it follows 

from aR/ aR  P) I J ’(R) = R / J ' ( R ) that a R f ' | I fT(R)  = a J ’(R) and hence, a R / a J ’(R) = 

R [ J ( R ) .  So, rn{a) C J ( R ) .  On the other hand, rn(a)  =  rQ (a)P |f? . Hence, by 

Lemma 2.2.1, rg (a) C J ’(R). Then, by Lemma 2.2.2 and Lemma 1.1.2, a is a unit 

in Q. So, we can rewrite a R f ) I J ’(R) = a J ( R )  in the form R  P| a~l I J ( R )  =  J ( R ) .  

Again, by Lemma 2.2.1, a~l I J ( R )  C J~(R),  i.e., I J ’(R) = a f f (R) .  Now,

a J ( R )  = I J { R )  =  (aR +  I J ( R ) )  f | ( 6tf +  I J ( R ) )  

=  (aR +  a J ( R ) )  P | ( 6£  +  aJ(R) )  =  a R ^ \(b R  +  a J ( R) )  = ( a R f ] b R )  + aJ ( R) .

Hence. aR  P| bR C af f (R) .  i.e., R Q a~lbR C J~(R).  Bv Lemma 2.2.1, a~lbR C f f (R) .  

This implies 6 £  I J ( R ), a contradiction.

□
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Lem m a 2.2 .7  ( [Dub84]) Let R be a Dubrovin valuation ring o f Q. Then any 

finitely generated right (left) R-submodule o f Q is principal.

Proof. Let /  be a right finitely generated /2-submodule of Q. By Lemma 2.2.6, 

dn( I / 1 J (/2)) <  dft(R),  where R  =  R/ fT(R)  is a simple artinian ring. Hence, R  =  

1 / I J ( R )  © N  for some right /2-submodule N  of R.  Since R  is a cyclic /2-module, 

1 / I J { R )  is a cyclic /2-module and hence I [ I f f ( R )  is a cyclic /2-module, i.e., aR  -j- 

IJf (R)  = / ,  for some a £  / .  But, /  is a finitely generated /2-module. By Nakayama’s 

lemma, this implies that /  =  a/2, i.e., /  is a cyclic /2-module. Similarly for left 

/2-submodules.

□
The next result is the main characterization theorem for Dubrovin valuation rings.

Theorem  2.2.8 ( [Dub84] and [M M U97]) Let R  be a subring o f a simple 

artinian ring Q. Then the following conditions are equivalent:

(1) R is a Dubrovin valuation ring o f Q .

(2) R is a local Bezout order in Q.

(3) R is a local n-chain ring in Q for some n with d(R)  >  n, where R  =  R/J~(R).

Proof.

( 1) =►  (2 )

If we assume that (1) holds, then by Lemma 2.2.7, R  is a local Bezout ring.

Let q E Q be any element. Consider the finitely generated right /2-submodule 

R  -I- qR  of Q. Then R  +  qR  is principal, i.e., R  + qR  =  s/2 for some s £ Q. Hence,

1 =  sr for r £ R.  This implies that the right annihilator rg (r) of r  in Q is equal to

r c?(r ) =  0- Hence, by Lemma 1.1.2, r is a unit in Q. On the other hand, q = sx  

for some x £ R.  So, q =  r~lx.
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We axe left to prove that every regular element in R  is invertible in Q. Let c E R  

be a regular element and consider q E rg(c). Then, cq =  0. If q E Q \  /?, then by (1), 

there exists an element r E R  so that qr E R\J~(R) .  Then cqr =  0 and qr E R imply 

that qr =  0, since c is regular in R.  Hence, qr E J' (R),  a contradiction which proves 

that q E R,  and hence, q =  0. So, tq(c) =  0, and by Lemma 1.1.2, c is a unit in Q.

This proves that R is a left order in Q.  Similarly, R  is a right order in Q.

(2) =► (3)

Assume that (2) holds and let n =  d(R).  Let ,<?n € Q.  Then qoR +

qiR-\ b qnR  is a finitely generated right /2-submodule of Q. By (2), we can write

qi — where r,-, s,- E R  with s,- regular elements. For elements s ,-1 E Q , there

exist a common denominator, i.e., a regular element t E R  such that s f 1 = t~ lr i, 

for some rf E R. Then q0R + qiR  + • • ■ + qnR  =  t~ l (ror0R  +  rJriR  • • • + r^rnR). 

Since R  is a Bezout order in a simple artinian ring Q, the finitely generated right

ideal For0/2 - f - r f r^ - i  \-r\rnR  of R  is principal. So, there exists an element s E Q

so that q0R + qxR  +  -••-(- qnR  =  sR . Since d{sR/ sJ ( R) )  < n — d(R),  there exists 

i , say i — 0, such that qiR +  -••-{- qnR  +  sJ~{R) =  sR. By Nakayama’s lemma, 

qiR  +  • • • +  qnR  = sR. So, qo E s R  = qiR  +  • ■ • +  qnR, i.e., R  is a right n-chain ring 

in Q. Similarly, R  is a left n-chain ring in Q.

(3) =► (1)

Suppose that (3) holds and let m  = d (R ), i.e., m  is the length of “the longest” direct 

sum of uniform right (left) ideals of R  which is essential. We only need to prove tha t 

for all q E Q \  R  there exist r, r' E R such that qr, r'q E R\ ^T{R) -

Let q E Q \  R.  Since R  is a  simple artinian ring, right ideals of R  are generated 

by idempotents. Hence, there exist a set {ef,e2, ••• ,e^f} of primitive orthogonal
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idempotents of R.  Let e i,e 2,-*- , em be the inverse images of ef, e7, • • • , under 

the map R  — y R = Rf J ' ( R)  respectively. By R em ark 1.1.11 a), R  is an n-chain 

ring. Since m > n, R  is an m-chain ring. Consider th_e elements q, e7, e2, • • • , 

There are two possibilities, qR + J ' ( R ) C YliLi e{R + J ’( R)  or there exists i such that 

e,-R C qR  +  ^ e j R  4- f f{R)-  The first case is impossible, since then q £ R.  Hence, 

d  =  qr +  X^ei rj+ x ,  where x £ J { R )  and rj , r £  R.  T hen  qr G R \  J { R ) .  Otherwise, 

e,- — Y l ej rj £ fT{R),  he., ef =  Y lej rJ'- he., the idem potents {e^, ej, ■ • • , are not 

primitive.

Similarly, there exists r' £  R  such that r'q £ R \  J ’(R ).

□
Note that every condition in Theorem 2.2.8 is equivalent to the condition that R  

is a local semi-hereditary order in Q. Since the notion of semi-hereditary order is not 

essential for this work we omit the details of this characterization. For details see 

[MMU97].

2.3 The Ideal Theory of Dubrovin valuation rings

Throughout this section, R  is a Dubrovin valuation ring In a simple artinian ring Q. 

In this section we study the properties of R-ideals, divisorial ideals and overrings of 

R. In particular, we consider prime ideals of R. The following result is crucial for 

the study of the ideal theory of Dubrovin valuation rings. The detailed proof can be 

found in [Dub84] and [MMU97].

Lem m a 2.3.1 ( [Dub84] and [M M U97]) Let R  be Dubrovin valuation ring 

of Q and let T2 C Ti be right R-submodules o f Q such tha t

(1) Ti is regular and
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(2) there exists a subring S  o f Oi(T2) such that for any regular elements t i , t 2 E T\ 

there is a regular element t E Ti with S t i +  S t2 C S t.

Then either Ti = T2 or there is a regular element t0 E Ti such that T2 C toJ' (R).

The next result shows that Dubrovin valuation rings share a very important prop­

erty with other types of valuation rings.

P rop osition  2.3.2 ( [Dub84]) Let R  be a Dubrovin valuation ring of Q and 

let S  be a Bezout order in Q. Then the set of regular S  — R-sub-bimodules o f Q is 

linearly ordered by inclusion. In particular, the set o f all R-ideals o f Q and hence, 

the set o f all two-sided ideals of R, are linearly ordered by inclusion.

P roo f. Let T i , T2 be regular S  — /2-sub-bimodules of Q.  Set To =  Ti f \ T 2. If To =  T\, 

then T\ C T2. Let To C T\. Then, by Lemma 2.3.1 there exists a regular element t0 E 

Ti such th a t T0 C t0J { R)  c  t0R  C T\.  Hence, T2f ] t 0R  C T2 f \ T i  =  T0 C toJ' (R),  

that is, t o 1 T2 f i  R  C J ( R) .  By Lemma 2.2.1, tQlT2 C J ( R ) ,  i.e. T2 C t0J { R )  C T\.

□
Let P  be a prime ideal of a ring R. If C r ( P )  := {r E R  | r  +  P is regular in R / P } 

is a regular Ore set of R, then the quotient ring R C r ( P )~1 =  C r{ P ) ~ 1R  of R  with 

respect to C r ( P ) is denoted by Rp =p R  and is called the localization of R. The 

overrings T  of a Dubrovin valuation ring R  in Q are again Dubrovin valuation rings 

of Q th a t are in one-to-one correspondence with the prime ideals P  of R  for which 

R /P  is prim e Goldie. More generally, the following results hold:

Theorem  2 .3 .3  ( [Dub84], [G ra92b]) Let R  be a Bezout order in a simple 

artinian ring Q, let B  be a Dubrovin valuation ring of Q containing R and let P  =  

H(B)  f] R . Then P is a prime ideal o f R  such that R /P  is Goldie, c R{P) = { r e  

R  | r  +  P is  regular in R / P }  is a regular left and right Ore set and B = Rp = pR .
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Conversely, i f  R  is a Bezout order in a simple artinian ring Q and P is a prime 

ideal o f R  such that R /P  is Goldie, then Cr (P)  is a regular left and right Ore set and 

Rp = pR  is a Dubrovin valuation ring o f Q such that f f {Rp)  f] R  = P .

T h e o re m  2.3 .4  ( [D ub84]) Let R  be a Dubrovin valuation ring of a simple 

artinian ring Q and let S  be an overring o f R  in Q. Then R  =  R /\7 {S ) is a Dubrovin 

valuation ring o f S  =  S/ f f { S ) ,  S  is a Dubrovin valuation ring o f Q and S  =  Rj-(s)-

Proof. By Corollary 2.2.5, f f { S )  C R  and by Theorem 2.2.S, R  is an n-chain ring 

in Q with d { R )  =  d { R /  f f { R ) )  > n. Hence, by Remark 1.1.11, S  is an n-chain ring 

in Q and S  is an n-chain ring in S .  Since 5  is a semi-simple ring, by Lemma 1.1.12, 

S  is an artinian ring. If I  C S  is any ideal of S ,  then by Corollary 2.2.5, I  C J ' ( R )  

and hence, 1 +  / C 1  +  J ( R )  C  U { R )  C  U ( S ) ,  i.e., I  C  J ( S ) .  So, S  = S / J ( S ) is 

a simple artinian ring . By Theorem 2.1.3, S  is a Bezout order in Q.  Hence, S  is 

a Dubrovin valuation ring of Q.  Since R / f f { R )  =  R [ J ~ ( R )  is a simple artinian ring 

and d ( R / J (R)) >  n, by Theorem 2.2.S, R  is a  Dubrovin valuation ring in S .  Hence, 

R / J { S )  is a prime Goldie ring and by Theorem 2.3.3, S  =  Rj(S)-

□
It follows, tha t prime ideals P of a Dubrovin valuation ring R  such that R / P  is a 

prime Goldie ring, are very important. Therefore, the following definition is natural:

D efin ition  2.3.5 The prime ideal P o f a Dubrovin valuation ring R  is called a 

Goldie prime ideal i f  R /P  is a prime Goldie ring.

Note that J(R)  and (0) are Goldie primes of a  Dubrovin valuation ring R.

R e m a rk  2.3.6 In the special cases, when R  is a total valuation ring in a skew 

field Q, i.e., R  is a Bezout order in Q with R / f f { R )  being a skew field, or when R is 

a Bezout order in a central simple algebra Q, the bijection given in Theorem 2.3.3, 

is described by the following results:
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a ) I f  R  is a Bezout order in a skew field Q such that RfJ ' (R)  is a skew field, i.e.,

R  is a total valuation ring in Q , then there exists a one-to-one correspondence 

between overrings B o f R in Q and the set o f completely prime ideals o f R  given 

by B f f ( B )  Pi R and P —y R S -1 =  Rp, where S  =  R \  P .

b) ( [Gra92b]) I f  R  is a Bezout order in a central simple algebra Q, B is the set of

all Dubrovin valuation rings o f Q containing R, and V  is the set o f all prime 

ideals o f R  , then the map f  : B —»■ V  given by B  h* f f {B)  p) R  is a well defined 

anti-order isomorphism where f ~ l ( P ) =  Rp.  Moreover, R  =  P  Rp where the 

intersection runs over all maximal ideals o f R, i.e., R is an intersection o f 

Dubrovin valuation rings.

Rem ark 2 .3 .7  From the result in Remark 2.3.6 b), it follows that i f  R  is a 

Dubrovin valuation ring in a simple artinian ring Q with finite dimension over its 

center K , then every prime ideal P o f R  is Goldie prime and there is a bijection

between specR and the set of all overrings o f R in Q given by P  --- > Rp (Rp is the

localization with respect to the set Cr ( P ) o f elements r E R regular modulo P ). This 

result was obtained by Dubrovin, [DubS5], Theorem 1.

In the following part of this section we discus a theory of divisors of a Dubrovin 

valuation ring. The following results are needed.

Lem m a 2.3.8 ( [M M U97]) Let R  be a Dubrovin valuation ring o f Q. Then 

Or{J(R) )  = 0[ ( J ( R) )  = R.

P roo f. Assume R  C Or(J(R) ) .  Then by Lemma 2.3.1, there exists a regular element 

to E Or( J{R) )  such that R  C t0J ( R )  and hence, tg 1 G J{R) .  But then, 1 E J { R) ,  

a contradiction. Thus, R  =  Or(J{R)) .  Similarly, R  =  Oi{J{R)).

□
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L em m a 2.3.9 Let R  be a Dubrovin valuation ring o f Q and P be a prime ideal of 

R. Then Or(P)  =  Oi{P).

P ro o f. Since the set of all overrings of R  in Q is linearly ordered by inclusion, we may 

assume 0 ,(P ) C  0 r (P).Then, J ( O r(P))  C  J ( 0 , ( P ) ) .  Hence,J ( O r(P)) (Or(P)P)  = 

( J ( O r(P))Or{P))P C  J ( O r{P))P C  J ( O t ( P ) ) P  C  Ot{P)P C  P.  But J ( O r(P))  

and Or(P)P  are 2-sided ideals of R. Thus, since P is a prime ideal of R , we have 

J ( O r(P))  C  P  or Or (P )P  C  P, i.e, P  =  J ’(Or(P )) or 0 r (P) =  0 ,(P ) .  Thus, 

0 /(P )  =  0 /( ,7 (0 r(P )) =  Or ( J ( Or(P)) = Or(P)  by Lemma 2.3.S, or 0 r(P) = 0 t{P).  

So, in both cases Or (P ) =  Oi(P).

□

Lem m a 2.3.10 ( [M M U97]) Let R  be a Dubrovin valuation ring o f Q , A  be an 

R-ideal o f Q and let S  = Or(A). Then the following are equivalent:

( 1) A is principal as a right S-ideal.

(2) A~lA  =  S.

(3) A D A J ( S )

P ro o f.

(1) =>• (2): Let A =  aS  for some a £ A . Then A ~ l = Sa~l and (2) follows.

(2) =* (3): Let A" 1 A =  5. If A =  A J ( S ) ,  then A "LA =  A ~ lA J ( S ), i.e., 5  =  J ( S ) ,

a contradiction.

(3) (1): Let A D Aj f ( S) .  Then by Lemma 2.3.1, there exists a regular element

t G A such that A f f ( S )  C  t J ’(S) C  Af f ( S ) ,  that is, t f f ( S)  =  Af f {S) .  Hence,

t~lA f f ( S )  =  J ( S ) .  Therefore, t~lA  C  Oi{f f{S))  =  S.  Thus, A C  t S , that is, 

A =  tS.

□
On the set of right (left) P-ideals we introduce the following operation:
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D efin itio n  2.3.11 Let I  be a right R-ideal and S  = Or(I).  We define I* =  f") cS, 

where c runs over all elements in Q with cS D I .  Similarly, fo r any left R-ideal L 

with T  = Oi(L) we define mL =  f i \Tc,  where c runs over all elements in Q with 

T c D  L.

T hat I* =mI  for an /2-ideal I  follows from Proposition 2.3.13. In the next result, 

the basic properties of the operation are given. Note that in Chapter 4, we

briefly discuss an analogous operation for commutative rings.

P ro p o s it io n  2.3.12 ( [M M U 97]) Let R  be a Dubrovin valuation ring o fQ  and 

let I  be a right R-ideal o f Q. Then:

( 1) I  C /*

(2 ) ( ! * ) *  =  ! *

(3) (cl)* =  c lm, for any c G U( Q)

(4) (cl )~l =  f or  any c G U(Q)

P ro o f . (1) : This is trivial.

(2) : By (1), / “ C (I*)*. Assume I* C ( / “)*• Then, there exists an element 

x  G ( / “)“ such that x £ I". Therefore, there exists an element bQ E Q with b0S  D I  

but x  £  bQS. Also, x  G c S , for all c G Q with cS D But, b0S  D I  implies I~ C b0S  

and thus, x  G boS, a contradiction.

(3) : Let c G U{Q)  and x  G /" be an arbitrary element. Consider any 6 G Q such 

that bS c l. Then I  C c~lbS and since x G by the Definition 2.3.11, x  G c~lbS 

so th a t cx G bS. Thus, cx G (c l )“. Since x was an arbitrary element, cl* C  (cl)*. 

Conversely, let x G (cl)*. Let 6 G Q be any element with bS D I. Then c l  C cbS.
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Hence, (c /)“ C cbS , that is, x £  c65. But, 6 was an arbitrary element. Therefore, 

x  £ P)c65, with 65 D / ,  that is, x  £ c(p|65) =  c l“ and (c /)“ C c l“ follows.

(4) : Let c £ U(Q)  and x £ I~l . Then c lx c~ lc l  = c l x l  C c l  implies xc~l £

(c/)-1. Thus, / - 1c-1 C (c /) " 1. Conversely, x £  (c /)_I, implies c lx c l  C c l. Hence,

Ix c l  C / ,  th a t is, xc £  / -1. Thus, x £ I~ lc~l and (c/ ) -1 C I ~ l c~l follows.

□
The proof of the following result can be found in [MMU97].

P roposition  2 .3 .13  Let R  be a Dubrovin valuation ring o f Q and let A  be an 

R-ideal o f Q. Set S  =  Or (A) and T  =  Oi(A). Then:

(1) A* :=  (S  : (5  : A),)r =  A ’ = 'A  = (T : (T  : A ) r)i =:VA and A m = (A "1)" 1.

(2) A** =  A* and (A-1)* =  A~l

(3) I f  A  is not principal as a right S-ideal then A l A = Sf{S) and f f {S)  is not a

principal right S-ideal.

(4) / / A c  A“, then A* =  cS and A  =  cf f (S)  fo r  some regular element c £ A“. In

particular, A  = A“f f {S) .

An 5-ideal A of Q is called divisorial if A =  A~. With D{R)  we denote the set 

of all divisorial 5-ideals of Q.  On the set D{ R ) we define the partial operation “o” 

by A o B  =  ( A B ) m if A, B  £  D(R)  with 0 r(A) =  Oi(B).  The next result shows that 

(Z)(5),o) is an algebraic structure known as Brandt groupoid without connectivity 

property.

T h eo rem  2 .3 .14  ( [D ub84]) Let R be a Dubrovin valuation ring o f Q. Then 

(D(R),o)  has the following properties:
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(1) For every A  £ D(R), there exist unique elements E r{A ) and Ei(A) in D (R ) such

that

A o Er(A) = A = Ei(A) o A.

(2) For A, B £ D (R ), the product A o  B is defined i f  and only if  Er(A) =  Ei(B).

(3) I f  for A, B, C £ D (R ) the products Ao B and B o C  are defined, then (Ao B ) o C

and A  o (B  o O) are defined and they are equal.

(4) For every element A £ D(R) there exists a unique element A  6 D (R ) such that

A o A  = Et(A), A o  A  = E r(A).

P ro o f. (1J_: Let A  £ D(R)  and set Er(A) :=  Or (A), Et(A)  :=  0,(A).  Then:

• Er(A) £ D (R ) : First, we prove that S  :=  Or(Er( A )) =  Or(A). For q £  S, we 

have q £  Or(A)q C Or(A). Conversely, q £ Or(A) implies Or(A)q C Or( A ), i.e., 

q £ S. Hence,

Er(A) C Er(A)' =f  p |  c 5 C 1 - 5  =  Or(A) = Er(A ),
cS 2 E t ( a )

that is, Er(A) =  Er(A)~ £ D(R).

• A o E r(A) is defined  since Or(A) =  Oi(Or(A)) =  0[(Er(A )).

• A  o Er(A) =  A : A o Er(A) = (AEr(A))m = (AOr(A )Y  =  A '  =  A.

Similarly, Ei(A) £ D (R ), Ei(A) o A is defined and E i(A ) o A =  A. The uniqueness 

of the right and the left units follows by a familiar argument.

(2) : This follows immediately from the definition.
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(3) : Let A, B, C G D(R)  and let A o B  and B o C  are defined, i.e., Or{A ) =  Oi(B) 

and Or(B)  =  Oi(C). It is enough to prove that

((A B ) ’C ) ’ = (A B C )’ = ( A ( B C ) ’ )~

If A B  = ( A B ) ’ , then the first equality holds. Let A B  C (A B )’ and let S  =  Or(AB).  

Then S  D 0 r( B ) and since 0 [ ( B ) =  0 r(A) D A_ lA, we have A~lA B  C B.  If 

A~lA B  =  B , then 0 r(B) D Or(A B )  = S, i.e., S  = Or( B ). If A~lA B  C B,  then 

A-1 A C Oi(B) = 0 r(A ). By Lemma 2.3.10, this implies that A is not principal 

as a right Or(A)-ideal. Hence, by Proposition 2.3.13 (3), A-1A =  J ( O r(A )) =  

J ( O i ( B )). Hence, B  D J"(Oi(B))B  and by the left version of Lemma 2.3.10, B  is 

principal as a left 0/(i?)-ideal. So, B  = Oi(B)b , for some 6 G B.  Therefore, S  =  

Or(AB) = Or(AOi(B)b) =  Or(AOr(A)b) = Or(Ab) = b~lOr(A)b = b~lOi(B)b = 

Or(Oi(B)b) =  Or(B ) . Hence, S  =  Or(AB)  =  Or(B).  Now, since A B  is not divisorial, 

by Proposition 2.3.13 (3) and (4), ( A B ) ’ = cS and A B  =  cJ'(S),  for some c G U(Q). 

and J ( S )  is not principal right S'-ideal. Then J ’(S )~ i J '(S )  C Or( J ( S ) )  =  S  by 

Lemma 2.3.10. Hence, S' C  J ( S ) ~ l implies J ( S )  = S J ( S )  C  J ( S ) ~ 1J ( S )  C  J ( S ) ,  

i.e., J ( S ) ~ l J ( S )  =  J ( S ) .  This implies J ( S ) ~ l C  0/(jT (S)) =  S ,  i.e., J ( S ) ~ l =  S. 

Finally, by Propositions 2.3.12 and 2.3.13, since Oi(C) = Or(B)  =  S  and J ’(S) =  

J ( O t(C)) = C  we have ( A B C ) ’ = ( c J ( S ) C ) ’ = c ( J ( S ) C ) ’ = c(C)’ = (cC)’ = 

(cOi(C)C)’ = (c S C )’ = ( (A B )’C ) ’ . Similarly, ( A B C ) ’ = (A ( B C )’)’ .

(4) : Let A G D(R)  and denote S  =  Or(A), T  =  Oi(A~l ). Then S  = T. To 

prove this, first note that R  and S  are overrings of R. Since by Theorem 2.3.3 and 

Proposition 2.3.2, overrings of R  are linearly ordered by inclusion, we can assume 

that R  C  S  C  T.

If A -1 A =  S’, then by Lemma 2.3.10, A =  aS  for some regular element a G A  and 

also A-1 =  S a~ l . Hence, q G T  implies qSa~l C  S a - 1 , i.e., q G S. So, T  C  S.
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If A" 1 A C  S,  then A" 1 A C  J { S ) .  Hence, 1 +  A-1A C  1 +  C  17(5) C  17(T), 

i.e., A~lA  C  f f {T ) .  Assume that S' C  T. Then A  C  AT,  since otherwise A  =  A T  

and T  C  0 r(A) =  S. By Lemma 2.3.1, there exists a regular element c £ AT such 

that A C  cff(S)  C. cS  C  AT5 C  ATT =  AT. Multiplying by T  on the right, we have 

AT =  cT. Furthermore, A C  cS implies c-1 £  A-1 . Thus, T  =  c-1 AT C  A-1 AT C  

J7(T)T =  J { T ) ,  a contradiction that shows tha t S’ =  T, i.e., Or (A) =  0 /(A _1). 

Similarly, Or(A-1 ) =  0;(A).

This implies th a t the products A-1o A and AoA-1 are defined and by the definition 

A" 1 o A =  (A" 1 A )“ C 5- =  Or(A Y  =  Or(A) =  5. Hence, A" 1 o A C 0 r(A). 

Let c £ U(Q) be any element such that A ~ l A  C  cS. Then c~1A ~ lA  C  S , i.e., 

c- l A_l C  A-1 . Hence, c-1 £ Oi(A~l) =  Or{A ), i.e., 1 £ c S . This implies S  C  

n  cS — (A-1 A ) ' =  A-1 o A, i.e., A-1 o A =  Or (A). Similarly, A o A~l =  0;(A).
cS D .4 -l A

□
Now, we consider a Dubrovin valuation ring R  of rank one, that is, and (0)

are the only Goldie prime ideals. In this case, the only proper overring of R  is Q, and 

the operation "o” is defined on the whole of D(R).  The following result shows that for 

a rank one Dubrovin valuation ring R, the structure (D(R), o) from Theorem 2.3.14 

becomes a group.

T h eo rem  2.3.15 Let R be a Dubrovin valuation ring of  Q of  rank one. Then 

(D(R) , o) is a group.

P roof. By Theorem 2.3.3 there are no proper overrings of R  in Q. Hence, for every 

A £ D(R), Or (A.) =  0/(A) =  R. Thus, for any two elements A, B  £ D (R ), 

Or (A) =  O f B )  =  R, that is, A o B  is defined. So, “o” is defined on the whole of 

D(R).
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Furthermore, there exists a unique element E  =  R  E D(R)  such that for every 

A 6 D (R ), A o E  = E o A  = A, that is, there is an identity element in D(R).

Finally, for every A  E D{R ), there is a unique element A-1 E D(R)  (see the proof 

of Theorem 2.3.14) such that A o A-1 =  Oi{A) =  0 r(A) = A-1 o A = R = E. Since 

“o” is associative, (D(R),  o) is a group.

□
Now, we consider Goldie prime ideals of a Dubrovin valuation ring. We first show 

that in the special case of the total valuation ring, the classes of Goldie prime ideals 

and completely prime ideals coincide.

Proposition  2.3 .16  Let R  be a total valuation ring in a skew field Q, and let 

P be a prime ideal o f  R. Then, P is a Goldie prime i f  and only if  P  is completely 

prime.

P roof. Assume that P is a Goldie prime. Then, by Theorem 2.3.3, S  =  Rp =pR  

is a Dubrovin valuation ring of Q and =  f -  But, by Corollary 2.2.5,

J ( S )  C f f{R)  C R, so that P =  J ( S ) .  On the other hand, S  as an overring of 

R  in Q , is a total valuation ring in Q. Hence, S  =  S f J { S ) is a skew field. Thus, 

R  =  R jP  =  R / f f ( S )  is a subring of a skew field S , that is, R f P  is an integral 

domain. So, P  is a completely prime ideal.

Conversely, if P  is completely prime ideal, then R / P  is an integral domain. Also, 

R  is a Dubrovin valuation ring in Q with R  =  R / f f ( R )  is a skew field. Hence, d(R) =  

d ( R /J ( R ) )  = 1. By Theorem 2.2.S, R  is a 1-chain domain; so by Remark 1.1.11, 

R  =  R /P  is also 1-chain domain such that R / f f { R )  =  R / P / J ’( R ) /P  = R fJ ' (R )  is 

a skew field. Again, by Theorem 2.2.8, R j P  is a Dubrovin valuation ring in R , i.e., 

R f  P is a prime Goldie ring. Thus, P  is a Goldie prime.

□
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The natural question is: Does there exist a Dubrovin valuation ring with a prime 

ideal that is not Goldie prime? This question was raised by H.H.Brungs and G.Tomer 

in [BT76], in the form: Does there exist a prime chain ring with zero divisors, i.e., a 

chain ring with a prime ideal that is not completely prime? N.Dubrovin, [Dub93], 

gave the positive answer to this question.

E x a m p le  2.3.17 ( [D ub93]) There exists a Dubrovin valuation ring with a 

prime ideal that is not Goldie prime.

P ro o f . Consider the group 5T (2 ,R ) of 2 x 2 matrices with real entries and determi­

nant 1. Then

6, 0 <  a £ R},U =  {u =

. cos t — sin t .S = { r ( t ) =  [ I I * €
sin t cos t

are subgroups of SL{2, R) and every element s £ S L ( 2, R) can be w ritten  in a unique 

way as s =  r(p)u  for r(p)  £  S, 0 <  p < 2tt , u £  U.

Consider now first the universal covering group T of S where T =  {x* | t £ R} with 

x tlx tl2 =  x tl+t2 as operation, and x tl < x*2 if and only if t x <  t2. As a linearly ordered 

group, T is isomorphic to (R , + , < ). The covering map r  from R to S  with r ( x ‘) =  r(f) 

is a homomorphism with K e r  r  =  ( x 2 k ) ,  the cyclic subgroup of R  generated by x 27r.

N"ext we define the covering group G of S L (2, R) as the set G =  {x lu | x l £  T, u £ 

U} with the operation given by:

x tlu i x t2u2 =  x t]-uix2lzk+vu2 =  x tl+2nk+^

where (p £  [0, 2tt] and uir(<p) =  r(^ )u ,1 for 0  £ [0,2tt). The m apping r  above is 

extended to a map from G  to SL{2, R) by defining r(xh i) =  r{t)u.
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Finally, we consider the subsemigroup P =  {xru | 0 <  r  £  R, u £ U }of the group 

G. Then P  [J P~l =  G  and P  P) P ~ l =  U. The element x 77 is contained in P  and is 

central in P. So, Q = x 77 P is an ideal of P, properly contained in the maximal ideal 

J(P)  and, in addition, P| Qm =  p | x 77771 P = 0 . Since x ^ ^ x 77!2 £ Q but x 77!2 £ Q , Q  is 

a prime ideal in P  that is not completely prime. It can be shown that P satisfies the 

conditions of Theorem 1.3.3. hence, there exists a skew field D and a total valuation 

ring S  in D  associated to the  cone P. By Theorem 1.3.1, the corresponding ideal 

<p(Q) =  Q S  =  x 77P S  is a prime ideal of the ring S  that is not completely prime. Now, 

applying Theorem 1.2.5 and Proposition 2.3.16, S  is a Dubrovin valuation ring with 

a prime ideal tp(Q) that is not Goldie prime.

□
The following results show tha t Goldie prime ideals of a Dubrovin valuation ring 

R  in Q have nice properties. These results are im portant steps for describing the 

structure of ideals in Dubrovin valuation rings. But first, we prove the following 

basic fact which we will use frequently.

L em m a 2 .3 .18  Let R be a Dubrovin valuation ring of a simple artinian ring Q 

and let S  be an overring o f  R  in Q. I f  I  ^  R is a non-zero ideal of R such that 

I  D J { S ) ,  then I S  =  S.

Proof. The ideal I f J ' ( S )  is a nonzero ideal in R = R / I f ( S )  which is a Dubrovin 

valuation ring in S  =  S / f f { S ) by Theorem 2.3.4. Since R  is a prime Goldie ring, the 

ideal I f f f ( S )  is essential and by Theorem 1.1.5, it is a regular ideal. So, there exists 

an element r  £  I  so that r +  f f {S )  is a regular element in R  =  R / f f { S ) .  Hence, 

t  +  <J(S) is a  unit in S' =  S/J7"(S), that is, r  £ U{S). Thus I S  = S.

□

P rop osition  2.3.19 Let Pi be Goldie primes in R , i £  A. Then P  =  f )P j  is a 

Goldie prime.
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P ro o f. Since P,- is Goldie, the localization Rpt exists for every i and we set S  =  (J Rpt. 

The overrings Rpi of R  in Q are totally ordered by inclusion. Hence, S  is a ring in Q 

containing R. By Theorem 2.3.4, S  is a Dubrovin valuation ring of Q and H{S)  C Pt- 

since Rpt C S. It follows that J~(S) is a Goldie prime contained in P  (Theorem 2.3.3).

Assume that P  D IT{S). Then by Lemma 2.3.18 we have P S  =  S. Hence, 

1 =  £ p ,-s t- for elements pi in P  and s t- in S = (J Rpt . But, the rings Rpt are totally 

ordered by inclusion. So, there exists an index jo € A with s,- E RpJ0 for all i and 

P i  e  P  C Pjo.

Therefore, 1 =  P*s ' ^  PJ0 RpJ0 — Pj0, a contradiction that shows P  =  J ( S ) ,  

which is a Goldie prime.

□

L em m a 2.3.20 Let I  R  be a non-zero ideal in R with I  = I 2. Then I  is 

neither a principal right Or{I)-ideal nor a principal left Oi(I)-ideal.

Proof. Both S  =  Or(I)  and T  =  Oi(I) are overrings of R  and hence either T  C  S 

or S  C  T, since the overrings of R  are linearly ordered by inclusion. It is enough 

to consider the case T  C  S. We show first that I  C  J { S ) .  Otherwise, I  D <J{S) 

and by Lemma 2.3.18, it follows that S  =  I S  =  / ,  a contradiction that proves 

I  Q <?($)■ Assume th a t I  is principal as a right P-ideal, i.e., I  =  aS. Then, by 

Corollary 1.1.4, a is regular element. Then, aS  =  /  =  I 2 = aSaS  implies S  = SaS  

and 1 =  JZiLi -s,-, t ,r E S, follows. Since S  =  Rj(s)  =  j(S)R-, there exist elements 

c, d in C r{J ’(S)) with cst- E P, Ud E R  for all i. Hence cd =  Yhcsiatid & I  Q J ’(S), 

a contradiction which proves that I  is not a principal right 5-ideal. Since T  C  S 

implies /  C  J ( S )  C  J7"(T), a similar argument shows that I  is not a principal left 

T-ideal.

□
The next result shows that idempotent ideals ^  R  are Goldie primes.
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Proposition  2.3.21 Let I 2 = I  ^  R  be an idem-potent ideal. Then the following 

hold:

a) Or(I) =  S =  Oi(I);

b) I  = J ( S )  is a Goldie prime with S  =  Rj(S)-

P r o o f .  Let S  =  Or{I) and T  =  Oi(I). It is enough to consider the case S  C  T. From 

Lemma 2.3.20, it follows that /  is neither a principal right ^-ideal nor a principal left 

T-ideal. Hence, I~ l I  =  JT(5) and I I ~ l =  J { T )  by Proposition 2.3.13(3). Further, 

l ~ l =  { x  E Q | x l  C  S} =  (S : I)i D T. Conversely, if x  €  (S ' : /)/, then x l  C  S  

and x l  =  x l 2 C  S I  C  / ,  and i g T  follows; we have proved that I ~ l =  T. However, 

I I ~ l = J { T )  C  J ( S )  C  J ( R )  C  R  implies I~ l C  (/? : I ) r. Further, if q G (R : / ) r , 

then Iq C  R  C  Or(I), i.e., /g  =  //<j C  I. Hence, q E Or(I)  =  i.e., (f? : I ) r ^  S.

Thus T  = I ~ l C. S  and T  =  S  follows which proves a).

Now, J { S )  =  I~ l I  = T I  = I  which proves that I  is Goldie prime, since f f{S)  is 

a Goldie prime. In addition, S  = Rj(S)  follows and both parts of b) are proven.

□
The next result shows that the union of Goldie primes is again a Goldie prime.

Corollary 2.3.22 Let R be a Dubrovin valuation ring and let R  D Pi, i 6 .'V, be 

Goldie primes in R. Then:

a) P =  (J Pi is Goldie prime;

b) Rp  =  P) Rpr,

c) O fP )  = R P — Or(P).

Proof. If there exists a Pj with Pj D P{ for all f, then P  = Pj is a Goldie prime, 

R P = R Pj — P) R PiJ and P  =  J { R p )  implies Oi(P) =  Or(P)  =  Rp-, by Lemma 2.3 .S.
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We can therefore assume that for every P,- there exists a Pj with Pj D Pi. Hence, 

P  D Pi for all i, and P  D P 2 D P,- for all i, since otherwise P 2 C Pt, which would

imply P  C  since P,- is prime. It follows from Proposition 2.3.21 tha t P  =  P 2

is a Goldie prime w ith Rp = Oi(P) =  0 r( P )• It remains to prove tha t S  =  Oi(P) 

where S' :=  p |P p {. Let x E  0 /(P ), hence x P  C  P. Since P  D Pt- is an ideal in R  

and R/Pi  is Goldie, P  contains an element in Cr (P ,) and PPp, =  Pp.. Therefore, 

x P p  =  xP R p i C  P P p , =  Pp.; s o i  G P p  for all f; hence i £ S  follows. Conversely, if 

x E  P and a E  P, then  there exists P,- with a E Pj, and xa E  PP, C Rp}Pj =  Pj C P  

proves x  E  0[(P): so 5  =  Oi(P) follows.

□
Now, let /  7̂  P  be an ideal of P  that is not Goldie prime. Then, the families:

P. =  {P | P  is a Goldie prime, /  C P}

P  =  {P | P  is a Goldie prime, P  C /}

are not empty since ^T(R) E P  and (0) E P . By Proposition 2.3.19 and Corol­

lary 2.3.22, Pi =  CliP  I ^  P }  and P j =  I ^  £ <5} are Goldie primes,

Pi D I  D P2 and and no further Goldie prime ideal exists between Pi and P-2 .

D efin ition  2.3.23 Let R be a Dubrovin valuation ring of Q . A prime segment 

of R (and of Q) is a pair of  two distinct Goldie primes P: D P2 D (0) in R so that 

no further Goldie prime exists between Pi and Po.

The next result is the most im portant for the study of prime segments of a 

Dubrovin valuation ring.

T heorem  2.3.24 Let I  ^  R  be an ideal in the Dubrovin valuation ring P. Then 

Pi I n = P is Goldie prime.
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Proof. The result follows if P) I n =  I m for a certain m, since then (P 71)2 =  I m is

idempotent and we can apply Proposition 2.3.21. We can therefore assume that

/  d i 2 d  • -• d  r  d  r +l d  ■■■ d  p  =  f ] r

and show that the assuming P  not to be Goldie prime leads to a contradiction.

First, let A  and B  be ideals of R  such that P  C A  and P C B.  Then there exists 

an n such that I n C .4 and I n C B. Otherwise, for all n, A  C I n c  /  or B  C  I n C I, 

i.e., A C p) [ n =  P or B  C p | I n = P, a contradiction. Thus, A B  D I nI n =  I 2n D P ; 

so, P is a prime ideal.

If I  itself is not Goldie prime, then by the rem ark above, there exists a prime

segment Pi D P2 in R  with Pi D /  D P2.

If I  itself is a Goldie prime that does not have a lower neighbor among Goldie 

primes, then I  =  (J P,- for Goldie primes /  D P,-. In this case, /  D I 2 D P,- for all 

i and hence I  =  I 2. So, P  = f \ I n = I  is a Goldie prime, which is a contradiction, 

since P  is assumed not to be Goldie prime.

Therefore, we can assume that there exists a prime segment Pi D P2 in R  with 

Pi 3  I  D P2. We define N  Pi I  Pi C. I. Then I 3 = I I I  C Pi I  Pi =  N  and therefore 

P| I n = n w *  =  P  follows; in addition, iV and P  are -ideals. After localizing at 

Pi we obtain Rpt D Pi 2  N  3  f l  = P D P2 and P  is not Goldie prime in Rpt . 

We therefore can consider PpL/  P 2 and can assume from now on that R  has rank one 

with R  D J { R )  = Pv D N  D f ] N n = P D (0).

We consider the following set W  of ideals in R  :

W  = {L \ Pi D L D P, L an ideal of P};

note that W  contains N n for n > 2. Two cases m ay happen.

C ase 1. : W  contains an ideal L which is not divisorial

Then L C L'  where L~ =  P) cR  with cR D L  (by Definition 2.3.11 and the fact

that R  is of rank one and hence Or{L) =  R).
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It follows from Proposition 2.3.13 (1) and (4), that L~ — (L-1)-1 , L m = aR  and 

L =  aJ'(R)  =  aPi for some unit a in Q. Note that a is regular but not a  unit in R  

since otherwise L = a J (R )  = a R J ’(R) =  R J ( R )  =  J~(R) = Pt . Also, L~ =  aR  C Pl . 

Since Oi(L~) = aRa~l — R  we have L~ = aR  =  Ra and (L")n = anR  = Ran for 

n > 1.

It follows that the set C = {an \ n =  1, 2, . . . }  is an Ore system in P , and since 

a~l £ R , we have R  C RC~l C Q. i.e., PC-1 is a proper overring of R. Hence, 

RC~l =  Q. Since P is a non-zero ideal in P , it contains a regular element c and 

c-1 =  ra~n for some r  in R  and some n >  1. Hence, on =  cr 6 R  which implies 

(Lm)n = anR  C P; so Lm C P  C L C L", which is a contradiction.

C ase  2. : L =  Lm fo r  all L E W

Let L E W  and consider the P-ideal L~l ; it is divisorial since (L- I )“ =  ((L -1)-1)-1 

(Z”)_1 =  L~l . We claim that L~l D R . Otherwise, L~l =  R  and (L~1L)“ =  L“ =  L. 

On the other hand, by Theorem 2.3.15, {L~l L)~ =  L~l o L =  0 r{L) =  P , a contra­

diction.

We consider .40 =  (J L~l , L E W, and want to prove that A0 is an overring of P, 

hence equal to Q. Let x , y  be elements in .40 and x  E Lx l , y G LJ 1 for L x, L2 G W  

follows. Either L x C P2 or L2 C L x and we can assume C

Since

L~l = {x  G Q | LxL  C L} = {x E Q | xL  C Or (L) =  P} =  (P  : P),

for any non-zero ideal L of R , it follows that P p  C L f 1 and i ± | / 6  L x l .

Further, L ^ 1 L ^ 1 L2Li C L~[l R L x C L x C P  shows that L x l L ^ 1 Q 

(R : P2P1)/ = (L2Li)-1 , and xy  E ( .p P i) -1- In order to see that x y  E A.0, note 

that Ri D L  D R and Px D L 2 D P  imply D L2L X D P since P  =  p) N n and 

N n+l C Ar” for all n.
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To reach the final contradiction we choose a regular element c in P  ^  (0). Since 

Q =  A0 =  [J L~l , L E W, there exists L in W  with c-1 E L -1 . Therefore, c~l L C 

L~l L C R and L C cR  C P. but P C L. It follows tha t P  =  f)  I n is Goldie prime.

□

L em m a 2.3.25 Let R be a rank one Dubrovin valuation ring. Then the group 

(D(R),  o) is order isomorphic to a subgroup of  (R, + ) , the additive group of real 

numbers.

P ro o f. We define a binary relation ” >2 " on D(R)  by A B  if and only if A C B , 

for all A, B  E D(R). Clearly, the relation ” X ” is reflexive, antisymmetric and 

transitive, i.e., it is a partial order on D(R).  Since the elements in D(R)  are totally 

ordered by inclusion, the relation ” >z ” is a total order. Furthermore, A  C  B  

implies A C  C  B C  and C A  C  C B  for all A, 5 ,  C E D(R).  Hence, A C  B  implies 

A o C  =  (AC)* C { B C Y  = B  o C  and C o  A =  (CA)* C (C 5 )*  =  C o B  for all 

A, B ,  C  E D(R). Therefore, ” >: ” is compatible with ” o ” and (D(R), o, >;) is a 

totally ordered group.

We prove that D{R) is an archimedean group, i.e., for all / ,  B  E D(R)  with 

I  C R, there exists an integer n such that ( /" )“ C B.

Clearly, it is enough to prove that for every I  E D(R),  I  C R  , the intersection

tf = n(n- = (o).
Let I  E D(R), I  C R. Then /  C J  — f f(R) .  If /  C J ,  then by Theorem 2.3.24, 

f) I n =  (0), since J  D (0) is a prime segment. If /  =  J  D J 2, then by the same 

argument, again f) I n =  (0). We are left with the case /  =  J  =  J 2. In this case, by 

Lemma 2.3.10, J  is not principal as a right /2-ideal, since Cr («/) =  R. This implies 

that J* =  R. In fact, if J  C cR  for some c E U(Q), then c-1 J  C R  and, hence, 

Rc~l R J  C R. If Rc~l R J  =  /2, then (R  : J ) i J  =  /?, i.e. J -1 =  (R  : J ) i . This implies
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J ~ lJ  =  R = Or( J ) and by Lemma 2.3.10, J  is principal as a right /2-ideal, a con­

tradiction. So, Rc~l R J  C  R, i.e. Rc~l R J  C  J  which implies Rc~l R  C  Oi{J) =  R, 

i.e. R  C  cR. This means that / “ =  J~ — R  D J  — / ,  that is, I  is not divisorial, a 

contradiction. Therefore, the case I  = J  = J 2 cannot arise; so P) I n =  (0) holds for 

any /  £ D{R ), /  C  R.

Now, assume th a t K  =  ^  (0)- First note that K  is divisorial, since

K  C ( / n)“ for all n implies K m C ( ( /" )“)“ =  ( / n)“ for all n, i.e., I\~ C n ( ^ n)* =  K  

and K  — K M follows. Hence, there exists an integer k , such that K  D t k- Otherwise, 

I< C Q i-e- (0) =  K.  Now, K~ = K  D ( / fc)“ D ( / fc+1)‘ , since if

( / fc)“ =  ( / fc+1)", then I  = R ,  because (D(f2),o) is a group. Hence, K  D ( I k+l)~ D 

= K,  a contradiction which shows th a t K  =  PK-F1)” =  (0), i.e. ( D ( R ) ,  o) is 

an archimedean group. By Holders Theorem, (see for example, [Sch50], Theorem 1, 

Chapter 1), D ( R )  is order isomorphic to a subgroup of (R ,+).

□

In the case of a Dubrovin valuation ring R  of rank one, the group (D(R), o,>)  

contains a subgroup we denote by H(R) := { /  E D(R) \ I  =  aR,  0 ^ a £  $}; i-e- 

the set of all those non-zero ideals /  which are principal as right /2-ideals. For, 

if /  =  aR £  //( /? ) , then a is a regular element, i.e. a is a unit in Q. Hence, 

Oi(aR) =  aRa~l and since R  is of rank one, aRa~l =  /?, i.e. aR  =  Ra.  Therefore, 

for a/2, 6/2 £ H (R )  we have a/2 o 6/2 =  (aRbR)m =  (a6/2)“ =  abR £ H(R) and 

/ - 1 =  /2a" 1 =  a~l R  £ H(R).

Let I  be any non-zero /2-ideal in Q. Then I  is either divisorial and then /  =  / ” £ 

D{R) or /  C / “ and then by Proposition 2.3.13 (4), /* =  a/2 =  Ra £ D(R) and 

/  =  aJ(R ){R )  for some a £ U(Q). Therefore, the lattice of all ideals of rank one 

Dubrovin valuation ring R  is known completely if D (R ) and H(R)  are known.
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The next result describes two possibilities for an arbitrary prime ideal in a Dubrovin 

valuation ring R.

Proposition  2.3.26 Let R  be a Dubrovin valuation ring of Q , let P be a prime 

ideal of  R, and S  =  Or( P ) =  Oi{P). Then P is either a Goldie prime and P  =  

f f  (S ) j  or P is not Goldie prime and f f  (S) is the minimal Goldie prime containing 

P. Moreover, in the second case, there is no ideal of  R  properly between P and JT(S).

Proof. Since 1 +  P  C U{R) C U(S), clearly P  C J ( S ) .

If P = J ( S ) ,  then P is a Goldie prime, by Theorem 2.3.3.

If P  C J { S ) ,  then P  is not a Goldie prime, since otherwise R p P  =  P, i.e., 

Rp  C Oi(P) =  S , which contradicts S  C Rp.

Let I  be an ideal of R  such that P C I  C JT(S'). Then by Theorem 2.3.24,

P' :=  pj I n is a Goldie prime. Also, P C P' , since P  C / n, for all n. Otherwise, 

there exists an n such that / ” C P  and then I  C P, a contradiction. Furthermore, 

POr(P') ■ P' =  POi{P')P'  C P P ’ C P. Since POr(P') C P ' c B ,  clearly POr(P') is 

a two sided ideal of R. Hence, POr(P') C P since P  is a prime ideal and P' P. 

So, Or (P ') C Or(P) =  S.

Hence, by Lemma 2.3.S,

P C P ’ C J ( S )  C 5 =  Or(J(S))  = Or{P) c Or(P') C Or(P)  =  5

Thus, 5  =  0 r{P') =  Or(P) = Or(J(S)) ,  i.e., P' = J ( S ) .  Therefore, P  C P'  = 

f l / n C / C J ( S ) .  So, I  = J { S ) .

□

Corollary 2.3.27 I f  P is a prime ideal of  a Dubrovin valuation ring R  that is 

not Goldie prime and S  =  Or{P) =  Oi(P), then ^f(S) D P D P) P n is the “highest” 

prime segment in ring S.
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Chapter 3 

Prime Segments

The existence of a Dubrovin valuation ring R  in a simple artinian ring Q with a prime 

ideal I  that is not Goldie prime implies the existence of a prime segment Pi D I  D P2, 

consisting of a pair of two distinct Goldie primes Pi and P2 in R  such that no further 

Goldie prime exists between Pi and P2 (see Example 2.3.17 and the remark after 

Corollary 2.3.22).

In the last decade, prime segments were defined and studied in different situations. 

In [BD], H.H. Brungs and N.I. Dubrovin considered prime segments in total valuation 

rings . They classified prime segments and in the rank one case described the structure 

of all ideals. Also, examples for all cases were constructed. In [BS95], H.H. Brungs 

and M. Schroder defined prime segments in valued skew fields and gave methods for 

constructing valued skew fields with prescribed types of prime segments. In [DD96], 

the structure of ideals and prime ideals in a cone P  of a right ordered group G is 

studied. The rank one case is described completely and corresponding examples are 

constructed. In [BT9S], H.H. Brungs and G. Torner defined right cones and classified 

their prime segments.

Note that prime segments correspond to jumps in ordered and right ordered 

groups. Let (G , P) be a right ordered group with the positive cone P , i.e., P P  C P,
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•PH P ~ l =  {e} and P  [J P ~ l = G. A subset H  C  G is called convex if x, y E H  

g €  G, x < g < y  implies g €  H. The set S of all convex subgroups of G is a 

chain containing {e} and G. If C\  (A £ A ) is in S , then f] C\  and (J C\  are again 

in E. Hence, every element g ^  e in G defines two subgroups D, C  £ S  so that 

C D D, g G C \  D, and E contains no convex subgroups strictly between C  and D. 

Such a pair C D D is called a. jump  in E (see [Kop9S] and [Fuc63]). In this situation 

there exists a I — 1 correspondence between E and the set of all completely prime 

ideals of the cone P. More precisely:

T h eorem  3.0.28 Let (G, P ) be a right ordered group.

I f  A  €  E, A G, is a convex subgroup of G then /  =  P \ ( P f )  A) is a completely 

prime ideal of the cone P.

Conversely, if  I  ^  P  is a completely prime ideal of the cone P , then A  = (P \  

/ )  \  ^)-1 25 a convex subgroup of G.

By this correspondence, jum ps in S correspond to  the prime segments in the cone

P.

In this chapter, prime segments in a Dubrovin valuation ring R  are classified and 

the structure of the lattice of all ideals in the rank one case is completely described. 

The results obtained show that there exists a complete analogy between the ideal 

structure of a cone in a right-ordered group and the structure of ideals of a Dubrovin 

valuation ring in a simple artinian ring.

3.1 Prime segments in Dubrovin valuation rings

In this section, R  denotes a Dubrovin valuation ring in a simple artinian ring Q. 

D efin ition  3.1.1 Let Pi D Pi be a prime segment of  R.
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The prime segment Pi D P2 is called archimedean i f  for all a £  Pi \  P2 there exists 

an ideal /  C Pt such that a £  I  and f ] I n = P2.

The prime segment Pi D P2 is called simple i f  there are no ideals between Pi and

P2 .

The is called exceptional i f  there exists a prime ideal I  in R  that is not Goldie 

prime such that Pi D I  D P2.

L em m a 3.1.2 Let Pi D P2 be a prime segment in R.

i) I f  Pi D P2 is exceptional and I  is a prime ideal that is not Goldie prime such

that Pi D I  D P2 , then there are no ideals between Pi and I,  Pi =  P 2 and

r\r = p2;
ii) I f  Pi D Pi or Pi = [J I, I  C Pi, i-e., Pi is the union of ideals I  properly contained

in Pi, then the prime segment Pi D P2 is archimedean.

P ro o f, i) Let L be an ideal of R  such that Pi D L D I.  Then by Theorem 2.3.24, 

P  =  P) Ln is a Goldie prime ideal of R  and Pi D £  2  P  2  1 D P21 a contradiction. 

Furthermore, P 2 D I  since otherwise P 2 C / ,  which implies Pt C I.  Hence, Pi =  P 2. 

Also, f ] I n = P2.

ii) First, assume that Pi Z> P 2 and let a E Pi \  P2. Set I  :=  PL. Then a E I  and 

Pi I n — P| P ” C Pi  c  Pi Hence, p| I n =  P2 since P  I n is a Goldie prime.

Next, assume that Pi =  (J / ,  the union of all ideals I  properly contained in Pi 

and let a £ Pi \  P2. Then there exists an ideal I  G Pi such tha t a £ I. Then 

Pi D I  2  Pi I n 2  P21 i-e P| I n =  P 2, by the same argument as in the first case.

□
The next result shows that there are exactly three types of prime segments in a 

Dubrovin valuation ring R.
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T heorem  3.1.3 For a prime segment Pi D P2 o f  a Dubrovin valuation ring R 

exactly one of the following possibilities occurs:

a) Pi D P 2 is  archim edean;

b) Pi D P2 is simple;

c) Pi D P2 is  exceptional.

P ro o f. Let L := (J /  be the union of all ideals /  of R  properly contained in Pi. If 

L =  P2, then there are no ideals between Pi and P2, i.e., the prime segment Pi D P2 

is simple.

Next, we prove that the prime segment Pi D P2 is exceptional if and only if 

P iD  L D  P2 and Pi =  P 2.

Let these conditions be satisfied. Then L is a prime ideal of R. For, if B  and C 

are ideals of R  such that B  D L and C D L then B  D Pi and C D Pi since otherwise 

B  C Pi or C C Pi, i.e., B  C L or C C L. Hence, B C  D P 2 =  Px 3  L. So, L is a 

prime ideal that is not Goldie, i.e., the prime segment Pi 3  P2 is exceptional. The 

converse was proved in Lemma 3.1.2.

We are left with the case that Pi 3  P 2 or Pi =  [J /  for ideals I  of R  with 

Pi D I  D P2. In both of these cases the prime segment Pi 3  P2 is archimedean, as 

we have shown in Lemma 3.1.2.

□
Consider the set K(Pi)  := {a € Pi | Pi a Pi C Pi}. Then, for any r  E R  and 

a € A '(Pi), PiraPi C PiaPi C Pi and PiarPi C PiaPx C Pi, i.e., ra , ar £  I\(Pi). 

Also, for a, 6 E A~(Pi) we have PiaPt C Pi&Pi or PibPi C PiaPi. In the first case, 

Pi(a +  &)Pi C P1&P1 C Pi. Hence, a +  6 E A '(Pi). Similarly, in the second case, 

a + b E A'(Pi). Therefore, K{Pi)  is an ideal of R. Using the ideal A '(Pi), we can 

prove the following result:
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C oro lla ry  3 .1 .4  The prime segment P\ D P2 of R is archimedean if  and only i f  

I \ (Pi) =  Pl , it is simple i f  and only i f  K (P i ) =  P2 and it is exceptional if  and only 

i f  Pi D K(Pi) D P2. In the last case, I \ ( P i ) is a prime ideal that is not Goldie.

Proof. First, let Pi D P2 be archimedean. For any a E P2 , Pi a Pi Q P2 C Pi, i.e., 

a € /v(Pi). If a E Pi \  P2 then there exists an ideal I  C. Pi, such that a E I. Hence, 

Pi a Pi Q I C  Pi, i.e., a E AT(Pi). So, Pt C AT(Pi) C Pu  i.e., AT(Pt ) =  Pt .

Conversely, let K (P X) =  Px and assume that Pi D P2 is not archimedean. If 

Pi D P2 is simple and a E Pi \  P2 then Pi D P iaP i D P2, a contradiction. If Pi D P2 

is exceptional, then for a prime ideal /  that is not Goldie such tha t Pi D I  D P2 and 

a E Pi \  I, we have Pi a Pi =  PiRaRPi  C I  C Pi, since there are no ideals between 

Pi and I  by Lemma 3.1.2 i). But /  is a prime ideal of R. Hence, Pi C I  or RaR  C / ,  

a contradiction which shows that Pi D P2 is archimedean.

Next, let Pi D P2 be simple and assume that there exists an  element a E K(Pi)  \  

P2. Then Pi D Pi a Pi D P2, since P iaP i =  PiRaRPi  C P2 implies Pi C P2 or a E P2. 

But this is impossible. So, I\(Pi)  =  P2.

Conversely, let /v(Pi) =  P2 and assume that Pi D P2 is not simple. If Pi Z) P2 

is archimedean, then for a E Pi \  P2 there exists an ideal /  C  Pi with a E / . Then 

PiaPi C /  C Pi, i.e., a E Iv(Pi) =  P2, a contradiction. If P i D P2 is exceptional 

than for a prime ideal I  of R  that is not Goldie with Pi D I  D P2 and a E /  \  P2, we 

have PiaPi Q I C .  Pi, i.e., a E K(P\)  = P2 , a contradiction.

Finally, let Pi D P2 be exceptional and let I  be a prime ideal of R that is not 

Goldie such tha t Pi D I  D P2. If a E K(P i)  \  I  then PiaPi C I  C Pi . Hence, Pi Q I  

or a E I, a contradiction which shows that /  =  A'(Pi).

Conversely, let Pi D K(Pi) D P2. First, there are no ideals of R  between Pi and 

K(Pi).  For, if I  was an ideal of R  such that Pi D I  D K(Pi) ,  then  for a E / \  K(Pi)  

we would have PiaPi C /  c  Pi, i.e., a E I \(Pi).  Secondly, I \ (P i )  is a prime ideal of
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R. For, if B  and C are ideals of R  such that B  3 K{Pi)  and C  3  K (P i ), then, as 

noted first, B  3  Pl and C D Pi. But Pi =  P 2, since P 2 C Pi implies Pj5 C Pi, i.e., 

Pi C K (P i ), a contradiction. Hence, B C  ^  P 2 =  Pi 3  K(Pi) .  So, A'(Pi) is a prime 

ideal of R  that is not Goldie, and the prime segment Px 3  P2 is exceptional.

□
It follows from this result that the type of the prime segment Pi 3  P2 is the same 

for any Dubrovin valuation ring R  of Q that contains this prime segment.

3.2 Rank one and discrete Dubrovin valuation rings

Let R  be a rank one Dubrovin valuation ring of Q. Then Q is the only proper overring 

of R  and we have shown, see Theorem 2.3.15 and Lemma 2.3.25, that (P (P ), o, >;) is 

a group, order isomorphic to a subgroup of (R, +). Also D(R)  contains the subgroup 

H(R)  of all nonzero ideals which are principal as right ideals. Using these facts and 

Theorem 3.1.3, we now proceed to give a complete description of the lattice of two 

sided ideals for rank one Dubrovin valuation rings.

T h eo re m  3.2.1 Let R  be a rank one Dubrovin valuation ring o f  the simple ar­

tinian ring Q with maximal ideal J  =  ff{R).

Then exactly one o f  the following possibilities occurs:

a) The segment J  3  (0) is archimedean and either

i) J  3  J 2 and then D(R)  =  (J)  =  P (P )  is an infinite cyclic group; or

ii) J  = J 2 and then D (R ) =  (R ,+ ) and H (R ) is a dense subgroup of D(R).

b) The segment J  3  (0) is simple and then D(R)  = H ( R ) =  {P} is the trivial group.

c) The segment J  3  (0) is exceptional. In this case i f  I  is a non Goldie prime of

R with J  3  /  3  (0), then D(R) = (I) is the infinite cyclic group generated by
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1 = 1 m and an integer k  >  0 exists with H (R ) =  ((/*)“) (the segment is said to 

be exceptional o f  type k).

P ro o f. We saw in Lemma 2.3.25 that D(R)  is an archimedean group.

CLAIM: Assume that R contains a maximal divisorial ideal I  C i2, a.nd let C C R 

be any divisorial ideal. Then there exists an integer n > 1 such that C  =

Since (D ( R ), o) is archimedean with the identity element R, there exists a minimal 

n with n >  1 and C 3  P 1- Hence p 1-1 D C 'D (P 1)" and (P 1-1)” D C. Therefore, 

since ” o " is compatible with we have

r  =  ( p 1- 1) -  o  ( [ r i n~l)y  d c  o d  ( r y  o ( / - ( n - l > y  =  /

and, by the maximality of / ,  since C  o =  (C '(/- n̂-1^)“)“ is divisorial, we

have I  = C o Therefore, C =  (dn)m and the claim is proved,

a) Let J  D (0) be archimedean. Two cases occur, J  D J 2 and J  =  J 2.

By Lemma 2.3.10, we have J  D J 2 if and only if J  is principal as a right /2-ideal, 

since S  =  Or( J)  =  R, i.e., J  = aR. Then, as noted after the proof of Lemma 2.3.25, 

Ot(J)  =  aRa~l = R. Hence, J  = aR  = Ra C R  is a maximal divisorial ideal of R. 

By the claim, J  is a generator of the group D(R); so this proves the case a) i).

Next we consider the case a) ii) where J  = J 2 and J  D (0) is an archimedean 

segment. For every non-zero element a in J  there exists therefore an ideal A C  J  

such that a 6 A and f) / ” = 0. Then RaR  C A C J, since A =  J  would imply 

J  = pj J n = Pi /"  =  0, which is a contradiction. We want to show that the ideal 

I  = R a R  is a principal right P-ideal for any 0 ^  a in J  and hence that /  £ H(R).

If I  is not right principal, then I J  = I  (Lemma 2.3.10) and a = Y17=.iriasi wHh 

r t- £ R, Si £  J, for all i. Since R  is a left Bezout order there exists s in R  with 

Rs\ +  —  +  R sn = R s ; hence 0 7̂  s £ J, T2 =  R sR  C J  and I  = I T 2 follows.

Since Ti = J  and Or (A2) = R  is right Bezout, we can apply the left-right sym­

metric version of Lemma 2.3.1 to obtain a regular element t0 in =  J  such that
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T<i =  R sR  C J t 0. Hence, I  =  IT 2 C I J t Q C I J  =  I  and I  =  /«/£o =  /£0 follows. Since 

f0 is regular, fg1 exists in Q. Now, Hq1 = I; so /g 1 E Or(I) = R, a contradiction 

since f0 E J.

This proves tha t I  =  /2a/2 is in for any 0 7̂  a E J- Finally, for every

RaR  C J  there exist b E J  \  RaR  and RaR  C RbR  C /  follows: H {R ) and are

therefore isomorphic to dense subgroups of (R., +)• Since the intersection K  =  P| of 

divisorial ideals of R  is divisorial if K  ^  (0), D(R)  is also complete and D(R) =  (R., +) 

follows.

The assertion in case b) is trivial.

It remains to consider the case c) where J  D /  D (0) is an exceptional prime 

segment. In this case, J  =  J 2 is not principal as a right /2-ideal, and as in the 

proof of Lemma 2.3.25, J* =  /2, i.e J  is not divisorial. But / “ =  / ,  since otherwise 

/ “ D / , J  D / ,  yet I  = I ' J  by Proposition 2.3.13 (4), which is a contradiction for 

the prime ideal / .  Hence, /  is a maximal divisorial ideal (there are no ideals of R  

between J  and I). Therefore, D(R) =  (I) by the claim and H(R)  is then equal to 

( ( / fc)“) for some k > 0.

□
The exceptional case is the most interesting. It splits into countably many sub­

cases, depending on the integer k > 0. We give chains of all ideals in every case.

If k =  0, then H(R)  =  {/2}, i.e., there are no principal right ideals. If L is any 

ideal of /2, then either L = L~ E D{R) =  (I) or L C Lm and then L~ is a principal 

right ideal of /2, i.e., E H(R). Hence, L" = R  and L = J.  Therefore, the proper 

ideals of R  are J ,  (0) and powers of / ,  i.e,

R D J  D I  D I 2 D - • • D (0)

is the chain of all ideals of R.
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If k =  1, then H ( R ) = (/) =  D(R).  Hence, I~ =  I  =  a R  =  Ra is principal,

( / n)“ =  aR  o a R  o • • • o aR  =  (aRaR  • • • a/2)“ =  an/2 =  /2an and

R D  J  D a R D  a J  D a2 R  3  a2 J  3  ■ ■ ■ 3  (0)

is the chain of all ideals of R.

If k > 1, then  H(R)  =  ( ( /fc)“). Hence, ( I k)“ =  aR  =  Ra and I k = aJ. This follows, 

since I k C (/* )“• Otherwise, I k =  ( /* )“ =  a/2 and then =  a /2 J  =  a J  C a/2 =  / fc. 

Hence, I J  C /-  By Lemma 2.3.10, I  is a principal right /2-ideal and the contradiction 

A: =  1 follows. In the case k > 1, the chain of all ideals of R  is therefore:

R D  J  D [ D I 2 D ■■■ D I k~l D a R D  a J  = l k

3  I k+l 3  • • • 3  l 2k~l 3  a2/2 3  a2J  =  l 2k 3  • • • 3  (0).

To analyze the prime segment of a rank one Dubrovin valuation ring R  in a simple 

artinian ring Q with finite dimension over its center K , the following result is needed:

L em m a 3 .2 .2  ( [M M U97], L e m m a  7.9 C h a p te r  II)  Let R  be a Dubrovin 

valuation ring in a simple artinian ring Q with finite dimension over its center I\ . 

I f  J~(R) is finitely generated as an ideal, then f f (R )  ^  J ' (R )2.

The next result shows that in the finite dimensional case the prime segment of a 

rank one Dubrovin valuation ring R  is archimedean.

L em m a 3.2 .3  I f  R is a rank one Dubrovin valuation ring in a simple artinian

ring Q with finite dimension over its center K ,  then the prime segment f f{R)  3  (0) 

must be archimedean.

P ro o f. By Remark 2.3.7, every prime ideal of R  is Goldie. Hence, f f (R )  3  (0) is not 

exceptional.

Assume th a t the prime segment f f {R )  3  (0) is simple.
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C ase  1. : f f{R) is f in i t e ly  generated as an ideal

Then, by Lemma 3.2.2, J { R )  D J { R ) 2 2  (0)- But, by Lemma 2.3.10, J { R )  =  

aR  = Ra , since Oi(aR) =  aRa~l = R. Hence, if J ' (R )2 =  (0), then a2R  =  (0), i.e., 

R  =  (0). This shows that f f (R )  D f f{R )2 D (0), a contradiction.

C ase  2. : >J(R) is not f in i te ly  generated as an ideal

Let 0 /  i  6 J { R ) .  Then, R x R  (0) and f f {R )  D R x R  D (0), since otherwise 

R x R  =  J^(R) is finitely generated as an ideal.

□
To conclude this section we briefly discuss discrete Dubrovin valuation rings.

D e fin itio n  3.2.4 A Dubrovin valuation ring R  in a simple artinian ring Q is 

called discrete if  R  is o f  rank one and J  ^  J 2.

Let R  be a discrete Dubrovin valuation ring of Q. By Theorem 3.2.1, the prime 

segment J  D (0) is archimedean with J  J 2, D(R)  =  (J) = H ( R ), and P| J n = (0).

For, by Lemma 2.3.10, J  is a principal as a right f?-ideal, i.e., J  = aR  =  Ra 

for some regular element a £ J.  The prime segment J  D (0) is not simple, since 

otherwise J 2 =  a2R  =  (0), i.e., R  =  (0). Also, J  D (0) is not exceptional; for 

otherwise J  = J 2 by Lemma 3.1.2.

Hence, when Q is a commutative field, then Definition 3.2.4 coincides with the def­

inition of discrete valuation domains in a field, see for example, [Bou72], Chapter VI. 

Note that a discrete Dubrovin valuation ring R  is a  non-artinian ring, since otherwise, 

by Lemma 1.1.2, every regular element r  E R  is a unit in R , i.e., R = Qz and the 

contradiction J  = J 2 =  (0) follows.
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3.3 Examples

In this section, we discus some examples which show that all cases in Theorem 3.2.1 

can be realized.

E xam ple 3.3.1 There exists a Dubrovin valuation ring o f rank one with an 

archimedean prime segment J  D (0) of the type described in Theorem 3.2.1, case 

a) t) .

P roo f. It follows from the remark after Definition 3.2.4, that any discrete Dubrovin 

valuation ring R  provides an example to illustrate the case a) i). In particular, the 

ring R = M 2(h(p)), where p is a prime, is an example of a discrete Dubrovin valuation 

ring in the simple artinian ring Q =  M 2(Q). Also, any discrete rank one commutative 

valuation domain R , like Z(p) or the power series ring /T[[AT]] over a field K , is an 

example for the case a) i).

□

E xam ple 3.3.2 ( [BS95]) There exists a valuation domain V  o f rank one with 

quotient field F  whose associated valuation has the value group H , a dense subgroup 

in (R, + ), illustrating the case a) ii) in Theorem 3.2.1.

P roof. Ivrull's construction from 1932 of a commutative valuation domain with given 

commutative ordered group as the value group of the associated valuation, can be 

used to illustrate the case a) ii). We take (H ,H +) to be any dense subgroup of 

(R, + ), where H +, is the positive cone of H  and as in Example 2.1.1, we construct 

a commutative valuation domain V  as the localization of the subring K H + of the 

group ring K H  over a field I\ at the multiplicatively closed set S  =  € K H + |

a0 0}, i.e., V =  (K H +)S ~ 1. The set of all principal ideals of V  is exactly the set 

{hV  | h e  H +}, and h iV  =  h2V  if and only if hi =  h2. Then V  is a valuation domain 

of rank one in the quotient field F  =  Q (K H ), and the associated valuation on F  has
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H  as its value group. Since H  is dense in R, V  is an example th a t illustrates the case

a) ii) in Theorem 3.2.1.

□

Exam ple 3 .3 .3  ( [BS95]) There exists a Dubrovin valuation ring R of rank one 

with a simple prime segment.

Proof. In order to construct a total valuation ring R  of rank one with a simple prime 

segment, we consider the dense subgroup H = Q of (R, + )  and the commutative 

valuation domain V  =  (F  H'i')S ~ l constructed in Example 3.3.2, where F  is a field. 

We denote by K  =  Q (F H ) the field of quotients of the group ring FH . Then 

<7 : K  — ¥ K , defined by a{h) =  2h for h £  H, is an autom orphism  of K  compatible 

with the valued field (K ,V ). Hence, a  induces an autom orphism  a  : V  — > V  with

a(h) = 2 h, h e  H.

Now, consider the skew-polynomial rings T  :=  V[x,cr] C K \x ,a \ .  Then, A'[x,cr] is 

a domain with a left and right division algorithm. This implies tha t K[x,a] is a left 

and right PID and hence a noetherian domain. Therefore, I \ [ x , <x] is a left and right 

Ore domain. So, there exist the classical ring of quotients D  :=  Q(/v[x,cr]).

Consider the set S  =  | a,- € V, at least one a,- is a  unit in V}. Then, S

is multiplicatively closed and S  satisfies the Ore conditions. Therefore, R  =  T S ~ l = 

{ts~l | t €  T, s E 5} is a subring of D = Q (Af[x, <x]). Furtherm ore, R  =  V[x,cr]S~l 

is a rank one total valuation ring in a division ring D. Its nonzero principal right ideals 

have the form hR, h € H + =  Q+ . However, xh  =  xcr(j) = ^x , i.e., x h R  = | R  D hR. 

This shows that J (R ) D (0) is a simple prime segment.

□

Exam ple 3 .3 .4  ( [Dub93], [BD]) For every nonnegative integer k there exits 

a rank one total valuation ring whose prime segment is exceptional of type k.
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P ro o f. The skew field of quotients of the group ring F G  of the covering group G over 

a skew field F  of the group SL(2,R) contains to tal valuation rings with exceptional 

prime segments of type k , for each integer k  >  0. For k =  1, the construction is 

described, with more details, in Example 2.3.17. In fact, for all k  =  0 ,1 ,2 ,..., the 

group G contains certain subgroups Hk with the exceptional positive cone Pk of type 

corresponding to k. The cone Pk satisfies the conditions in Theorem 1.3.3 and hence, 

there exists a total valuation ring Sk associated with Pk- Now, applying Theorem 1.3.1 

to the ring Sk , it follows that Sk is a rank one to ta l valuation ring with the  exceptional 

prime segment of type k. Note, that for this construction, Dubrovin’s results from 

[Dub93] are needed. No easy construction is known.

□
Some results of Chapters 2 and 3 will appear in [BMO].
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Chapter 4 

Krull Rings

For a commutative Krull ring, the role that the group of divisorial ideals of a rank 

one Dubrovin valuation ring plays in the previous chapters, is played by the group 

of divisors of regular fractional ideals. In this chapter, we discuss commutative and 

non-commutative Krull rings. We use the group of divisors of a commutative Krull 

ring R  with the total quotient ring I\, R ^  K , to prove an approximation theorem. 

A version of this chapter has been published, [Osm99].

4.1 Krull rings

Commutative Priifer domains play a central role in the study of classical commuta­

tive integral domains. A commutative domain R  is called Priifer domain if every 

non-zero finitely generated ideal of R  is invertible. Clearly, commutative PIDs and 

commutative Bezout domains are Priifer domains. The classical ideal theory of com­

mutative domains has been extended to commutative rings with zero divisors. M. 

Griffin [Gri69] introduced the notion of commutative Priifer rings with zero divisors 

and gave many characterizations of that class of rings.
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D efinition 4.1.1 A commutative ring R  is called Priifer ring i f  every regular 

finitely generated ideal of R  is invertible.

Theorem  4.1.2 ( [Gri69], [LM71]) Let R  be a commutative ring, and let K  

be the total quotient ring of R. Then the following statements are equivalent:

1. R is a Priifer ring.

2. For every regular prime ideal P o f R, the pair (R[p], [P]/?[pj) is a Manis valu­

ation pair o f K .

3. For every regular maximal ideal M  o f R, the pair (R[m ]> [A/]R[M]) 2S a Manis 

valuation pair o f K .

4- R is integrally closed and and for all a , 6 E R, where at least one o f a and b is 

regular, (a,b)n C (an,bn).

In the non-commutative case, Priifer rings are defined and studied in [AD90] and 

[MMU97].

D efinition 4.1.3 ( [AD90]) A prime Goldie ring R  is called a right Priifer ring 

i f  every finitely generated right R —ideal I  o f R  satisfies the equalities

r l r = r , r r l = o<(/).

A prime Goldie ring R is called a left Priifer ring i f  every finitely generated left 

R —ideal J  of R satisfies the equalities

J ~ l J  =  O r { J ),  J J ~ l =  R.

It has been shown in [AD90] that a prime Goldie ring R  is left Priifer if and only 

if it is right Priifer. Also, every Dubrovin valuation ring R  in a simple artinian ring
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Q is Prufer ring. For the theory of non-commutative Priifer rings we refer to [AD90] 

and [MMU97],

The notion of commutative Dedekind domains also has been extended to commu­

tative rings with zero divisors.

D e fin itio n  4 .1 .4  .4 commutative ring R  is called Dedekind ring i f  it is Prufer

and r-noetherian.

The complete proof of the following characterization can be found in [AO90a].

T h e o re m  4.1.5 ( [A O 90a]) For a commutative ring R the following conditions 

are equivalent:

1. All regular prime ideals o f R  are invertible.

2. R  is a Dedekind ring.

3. The semigroup of regular fractional ideals o f R  is a group.

4- Every regular ideal o f R  is a product o f prime ideals.

5. Every regular element o f R  is contained only in a finite number o f prime ideals 

o f R, and the semigroup o f regular ideals can be embedded in a direct product 

o f ordered cyclic groups

Recall that an R-ideal /  of a Dubrovin valuation ring R  in a simple artinian ring 

Q is called divisorial if L =  / “, where /* =  Q cS, S  =  Or(I) and c runs over all 

elements in Q with cS D I  (Definition 2.3.11). In the case of a rank one Dubrovin 

valuation ring R  we have the following result:

P ro p o s it io n  4.1.6 Let R be a rank one Dubrovin valuation ring o f Q and let I  

be an R-ideal. Then

I m — (R : (R  : / ) , ) r .
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P ro o f . Since the only proper overring of 72 is Q , we have S  =  Or( I ) =  R. So, 

7“ =  P| c72, where cR D 7.

Let s G (72 : (72 : [){)r and c G U(Q ) be such that cR D 7. Then, c~l I  C  72, i.e., 

c~l G (72 : /)/. Hence, c-1s G 72, i.e., s G c72. Therefore, s G 7“ and (72 : (72 : I)i)r Q 

7“ follows.

Assume that s G / '  and s (72 : (72 : 7)/)r . Then (72 : 7)/s ^  72, and hence there 

exists a regular element c G (72 : I)i such that cs ^  R.

Otherwise, for all regular elements c £ (R : /) ;, we have cs G Z2- But, by 

Lemma 1.1.S, (/2 : /); is a left ideal. Then, by Definition 1.1.7, there exists 

c G £7(£?) with (R : /);c C  i? . Since ( R : I ) i f )U(Q)  7̂  0  (also by Definition 1.1.7), 

(R  : I)ic contains a regular element of R and is therefore an essential left ideal of 

R. Thus, by Theorem 1.1.5, (R : /)/c  is generated by a set {c,-} of regular elements; 

so, as a left 72-submodule of Q , (R : /); is generated by the set {c,-c-1} of regular 

elements. So, (R : I)is C  72, a contradiction.

Then, s  ^  c~l R. On the other hand, c G (72 : I)i implies c7 C  72 and 7 C  c_172. 

Since s  G 7”, this implies s  G c- l 72.

□

R e m a rk  4 .1 .7  Proposition ^.1 .6  holds in the more general situation when 72 is 

an order in a simple artinian ring Q and for an R-ideal I , the *-operation is defined 

by 7“ =  Pj cR, where cR D I .

In the commutative case, an analogous operation is defined in the following way. 

Let 72 be a commutative ring; we denote by K  the to tal quotient ring of 72 and by 

F(72) the set of ail regular fractional ideals of 72. If A, B  G F(72), then (A : B) =  

{a: G I\ | x B  C  .4 }  is also in F(72). On the set F(72) we define an equivalence relation 

~  by: A ~ B < ^ « ( 7 2 : A )  =  ( 72 :F ) .  The set of all equivalence classes is denoted by 

D(R),  and the class containing A G  F(72) is denoted by div(A), the divisor of A. If
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A  E F(R)  we define A  to be the set (R : (R : A)) €  F(R).  A regular fractional ideal 

A  of R is divisorial if A =  A.

R e m a rk  4.1.8 I f  R  is a commutative integral domain, then A  is equal to the inter­

section o f all nonzero principal fractional ideals containing A . This is no longer true 

i f  R  is a commutative ring with zero divisors, see [AMS5].

However, we still have a satisfactory theory of divisors which is similar to the the­

ory of divisors for integral domains. For A, B  £ F(R)  we define div(A) +  div(5) =  

div(Af?). Under this operation, D(R)  is a commutative semigroup with identity ele­

ment div(/?). We also define a relation <  on D{R) by setting div(A) <  div(B) if and only if B  C 

A. Then D(R)  is a partially ordered semigroup. D(R)  is a group if and only if R  is 

completely integrally closed, see [HucSS], Th.S.4.

R.Kennedy [Ken73] introduced the class of commutative Krull rings with zero 

divisors and developed their theory of divisors.

D efin ition  4.1.9 ( [Ken73]) Let R be a commutative ring with the total quotient 

ring K  such that R  7̂  K . Then R  is called a Krull ring i f  there exists a family 

{(VQ, Pq) I a £ /}  o f discrete rank one valuation pairs o f I\ with associated valuations 

{u0 | a  €  /}  such that

(K l)  R = n  Va;

(K 2) uQ(a) =  0 alm ost everywhere on I  for each regular element a 6 K  and each 

PQ is a regular ideal of Va .

The following theorem provides the main characterization for commutative Krull 

rings with zero divisors.

T h eo rem  4.1.10 ( [Ken73], C on jee . 3.26 and [M at82], T h  5.) Let R be

a commutative ring which is not equal to its total quotient ring. Then R is a Krull
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ring if  and only if R  is completely integrally closed and each nonempty collection of 

divisorial ideals of R  has a nnaximal element.

Note that if R  is an integral cHomain different from its quotient field, then R  is a Krull 

domain if and only if R  is a EKrull ring.

C oro lla ry  4.1.11 Every* commutative Dedekind ring is a Krull ring.

P roo f. If R  is a Dedekind rin;g, then R is r-noetherian and Prufer. By Theorem 4.1.2, 

R  is integrally closed, and h-ence, by Proposition 1.1.14, R  is completely integrally 

closed. So, by Theorem 4.1.1 0, R  is a Krull ring.

□
We mention now some res^ults which show that commutative Krull rings with zero 

divisors not only share many comm on properties with Krull integral domains but also 

show that there are differencees. The following result is an immediate consequence of 

Proposition 1.1.14 and Theorrem 4.1.10.

P ro p o s itio n  4.1.12 ( [A O 9 0 b ], P ro p .2.3.) Let R  be an r-noetherian ring that 

is distinct from its total quotient ring. Then R  is a Krull ring i f  and only i f  R is 

integrally closed.

P ro p o s itio n  4.1.13 ( [B ou'72], P ro p l3 , p . 488) Let R  be a Krull domain 

and xi, X2 , . . .  , x n be indeterrminates. Then the ring R[x\, X2 , . . .  , x n\ is a Krull ring.

Note, that in the case of rings with zero divisors this is not true. For example, the 

ring R = Z 0 Z / Z p n, where -gp is a prime and n > 2, is a Krull ring, but is not

a Krull ring since it is not com pletely integrally closed.

Recall that a com m utative ring R  is called a Marot ring or a ring with the  property 

(P) if every regular ideal is generated by regular elements.
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E x am p le  4 .1 .14  A Krull ring R which is not Marot.

P roof. Let D =  Z[-\/—■5]. Then D is a Dedekind domain with a maximal ideal 

M  =  (1 +  y /—o)Z  +  2Z which is not principal but M 2 =  2D  is principal. Let A  be 

the D-module @ { D / Q  | Q a maximal ideal of D ,Q ^  Af}, and let R  be the ring 

D(+)  A, the idealization of the £>-module A, i.e., (d, a) +  (d7, a') =  (d + d',a + a') and 

(d, a)(d7,a 7) =  (dd7,ad7 +  a'd) for all a, a' E A, d, d7 €  D. For more details see, for 

example, [HucSS]. Then:

1. The ideal P = M (+)  A  of is not principal.

2. P  is the unique regular prime ideal of R.

3. The set of all regular ideals of R  is the set of the form {P n}^L0.

4. The ideal P  is invertible.

5. The set of all regularly generated ideals of R  is {tnP } ^ l0, for some t E R.

Hence, by Theorem 4.1.5 and Corollary 4.1.11, R  is a Krull ring. But, the ideal P  is 

a regular ideal which is not generated by regular elements since P  is not a principal 

ideal and the set of all regularly generated ideals of R  contains only principal ideals. 

Hence, R  is not a Marot ring.

Finally, at the end of this section we briefly discuss how discrete Dubrovin valu­

ation rings are used in studying non-commutative Krull rings.

Non-commutative Krull rings have been defined and studied by H. Marubayashi, 

[Mar75], [Mar76], [Mar7S], M. Chamarie, [ChaSl] and N. Dubrovin, [Dub91b]. In 

[Dub91b], Dubrovin uses discrete Dubrovin valuation rings in a simple artinian ring 

to define non-commutative Krull rings.
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D efin ition  4.1.15 ( [D ub91b]) A subring R  in a simple artinian ring Q is 

called a non-commutative Krull ring i f  there exists a family {R i \ i £ A} of discrete 

Dubrovin valuation rings o f Q such that

(K l)  R = n  Ri;

(K 2) for each regular element q £ Q, the equation qRi =  Ri holds for almost all i in

A;

(K 3) for any finite set { t o , A n }  in A, there exits an element q £  Q such that

q = 1 (mod f f iRio)),  <7 =  0 (mod ^ ( R i ^ f o r  1 < t < n, and q £ R j  for all

other j  £ A.

It follows from the results in [Dub91b] tha t the class of non-commutative Krull 

rings defined in Definition 4.1.15 coincides with the class of non-commutative Krull 

rings defined in [Mar75], where valuation rings are not used.

4.2 Essential valuations of Krull rings

We denote by R  a commutative Krull ring with total quotient ring I \ .  Then D ( R )  

is a group. Let M(R)  be the set of all maximal divisorial integral ideals of R.  If 

P £ M ( R ) then div(P) is a minimal positive element of the group D(R).  We denote 

the set (div(P) | P £ M (R )}  by P(R).  Each divisor div(A) £ D ( R ) can be written 

uniquely as:

| ^3 £  P(R)} ,  77<p £ Z, 77<p =  0 for almost all ^3 in P ( R ).

If div(A) =  77»p̂ 3 and div(£?) =  777>p̂ )3, then div(A) <  div(Z?) if and only if

77*p <  777*p for all ^3 £  P ( R ).

For each divisor ^  £  P(R)  we define a map from F(R)  to the set of integers Z 

by u<p(A) =  77*p, where div(A) =  tiq - 0 .  The map up has the following properties:
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a )  vcp(AB) =  up(A) +  up(£?) for ail A, Z? E  F(R)-

b) up(A -t- B) — min{up(A),up(Z?)} for all A, B  E  F(R);

c )  A C  B  is equivalent to up(A) >  up(Z?) for a l l ^ i n  P(R),  where A, B  E F(Z?)

and B — B.

The family of the valuations {up : ^3 E P(R)}  defined by:

(V i E /if) up(x) =  sup {up(/2x +  A) | A  E F(R)}

is said to be the family of essential valuations of a Krull ring R. The ring of the 

valuation up is denoted by Vp and the positive ideal by P p . The essential valuations 

of a Krull ring R  are discrete of rank one and they define the ring R , i.e., R  =  f){^P I 

^3 € P(R)}  and up(a) =  0 for almost all in P{R),  for all a E Ck (0), see [MatS2|. 

Essential valuations of a Krull ring have the following properties:

P ro p o s itio n  4.2.1 ( [AO90b], P ro p .2 .5) I f  x  E  Ck{0) and ^3 E  P(R),  then 

up(x) =  up(/?x).

P ro p o s itio n  4.2.2 ( [AO90b], P ro p .2.6 ) Let A be a divisorial ideal o f R, and 

div(A) =  ^){np^3 | ^3 E  P(R)}.  Then a E  A if  and only if up(a) >  np.

P ro p o s itio n  4.2.3 ( [AO90b], P ro p .2.7) Let np E Z with almost all np =  0

for  ^3 E  P{R),  and set A  =  {x E  I\ ( up(x) >  np (VS}3 E  P(R))} .  Then A is a

regular divisorial ideal, and div(A) =  J^{np^3 | *)3 E  P{R)} .

P ro p o s itio n  4.2.4 ( [AO90b], P ro p .2 .8) Let =  div(P) E P{R), where P  

is a maximal divisorial ideal o f R. Then P is a minimal regular prime (r-prime) 

ideal of R. The valuation ring of up is equal to R[p], and the positive ideal of up is

[p\Ripi- 
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C o ro lla ry  4 .2 .5  ( [AO90b], C o r.2 .9 ) The family { P  | div(P) E P (P )}  o f all 

maximal divisorial ideals o f R  is precisely the family o f all minimal regular prime 

ideals o f R .

4.3 An approximation theorem for Krull rings

Approximation theorems are very common in many areas of mathematics, for exam­

ple, in the valuation theory of fields and commutative rings, in multiplicative ideal 

theory and in the theory of partially ordered abelian groups. They are used as a 

tool in studying topological structures and play an important role in the description 

of the division class group. The Chinese Remainder Theorem is the oldest form of 

an approximation theorem for congruences. In this section we prove an approxima­

tion theorem  for essential valuations of commutative Krull rings with zero divisors. 

Throughout, rings are assumed to be commutative with identity 1.

T h e o re m  4 .3 .1  Let R be a commutative Krull ring with total quotient ring K  

such that R  ^  K  and {u<p | E  P (P )}  is the family o f essential valuations o f 

R. I f  v<p2, . . . ,  u<pn} is a finite set o f essential valuations of the ring R  and

(mi ,m2, . . . , m „ )  E  Zn, then there exists an element x  E  K  such that u<pt(x) =  m,- 

for all i E  {1, 2 , . . . ,  n} and Uvp(x) >  0 fo r all other E  P(P)-

P roo f. It suffices to prove the theorem in the case where at most one of the m,- is 

not equal to 0.

Let m 2 =  m3 =  • • • =  mn =  0. If m i = 0 then x = 1.

Case 1. Let > 0 and 3̂,- =  div P,-, i =  1,2, . . . , n  be minimal positive elements 

of the group D(R),  where the Pt- are maximal divisorial integral ideals of R.  By 

Proposition 4.2.4, P,- is a minimal regular prime ideal of R, i E { l , 2 , . . . , n } .  Then 

P™1 and p ™l+1 are divisorial integral ideals of R. Also:

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pr gpr+'unuHU-UPn.
Otherwise, by [Bou72, Proposition 2, Ch.II, §1], P™l C P™1+1 or P C P,-, for some 

i G {2, 3 , . . . ,  n}. But then div(Pi) <  0 or Pi =  P,-, which is impossible.

Let x G P p  \  (Pimi+1 U  p2 U  ' • • U  ^n). Then Rx  +  P™1+1 C P ^ .  Hence, by the 

property c) of the map u<p :

( V ? G P ( f l ) )  vv (R x  +  P1mi+1) >  ^ ( P f 7).

In particular:

u<Pi(x ) =  SUP { ^ ( P a r  + L) j L G F(R)}  > vVl(Rx +  P1mi+1) >  ^ ( P ™ 1) =  m i .

Assume that u«pt (x) >  mi +  1. Then, there exists an element L G F{R)  such that 

v y ^ R x  + L) > mi  + 1. We can assume that L C R. For, there exists a regular element 

d G R  such that dL C R. Then u<p(Px + L) > u<p(P177ll+1) for all ^3 G P (P ), since 

Rx  +  L C R  implies t;vp(Px +  L) >  0 =  vtp(P™l+l) for all ^  ^  ^3i. By the property

c) of the map we have Rx  +  L C P 1T7ll+1, i.e., x G P™1+1, a contradiction. 

Therefore, u<pt (x) <  mi +  1, i.e., u<pt (x) =  mi.

It remains to prove that u<p. (x) =  0 =  m,- for all i G {2,3, . . . , n } .  Since x G 

Pi7711 for all ^3 G P ( R ), f';p(x) >  0 for all ^3 G P(R)-  Assume that

v¥, ix ) > 0 f°r some i € {2, 3 , . . . ,  n}.  Then x belongs to [P,]P[pt], by Proposition 4.2.4. 

Hence, x G P,-, which is a contradiction.

Case 2. Let m x <  0 and let r G R eg(P1-7711). By Proposition 4.2.1, v y ^ r )  =

vyp^Rr) >  —m i >  0. Then usp^r-1 ) <  0. We prove that the set {^3 G P ( R ) |

u<p(r-1) < 0} is finite. If not, then the divisor of P r -1 G F(R)  in its decomposition

div(Pr-1 ) =  ('y4j(Pr - l ))^P has infinitely many coefficients different from 0.
'PeP(K)

This is impossible since D(R)  is a free Z-module with a free bases P(R)-

Let {^3i, ^3q,,  . . . ,  ^3ot} be the set of all elements ^3 in P(R)  such that u<p(r-1) <  0. 

Then u<p(r-1) =  0 for all ^3 G P(R)  \  {^3i, • • • ? since r  G Pi-7”1 C R  implies

^ ( r - 1) < 0 for all G P (P ).
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Consider the family {u«pn *><pQ2,.  - . ,  u<pat} of essential valuations of the ring R  and 

( ^ ( r )  +mi,u<pa2(r), . . . ,u<pat(r)) €  Z ‘. Since ^ ( r )  + m l > 0 and u<pQ.(r) >  0 for 

all i G { 2 , . . . , t} we can apply Case 1. Hence, there exists an element xi  G R  such 

that lA p^ i) =  u<p,(r) + m 1,u<ptt.(x1) =  v>pQi(r) for all i G {2, . . . , *}  and > 0

for all other ^3 G P(R)-  Then x = r~l • x x G K  is an element satisfying the required 

condition.

□
The element x constructed in the proof of the Theorem 4.3.1 is not necessarily 

regular. For the class of additively regular rings it follows from the next result that 

the element x can be chosen to be regular. This result is also an easy consequence 

of Theorem 4.3.1. But first, we recall the definition of an additively regular ring. A 

ring R  is additively regular if for each z in the total quotient ring K  of R , there exists 

u G R  such that z +  u G Ck (0).

T h eo rem  4.3.2 Let R  be an additively regular Krull ring such that R  ^  K , and 

let {u<p : ‘P G P ( R ) }  be the fam ily o f essential valuations o f R.  I f  , u<p2i • • • •> u'hn} 

is a finite set o f essential valuations and if  (mi,  m 2 , ■ ■ ■ , m n) G Z n, then there exists a 

regular element x  G I\ such that uvp^x) =  m,- for all i G {1 ,2 , . . . ,  n} and U(p(x) >  0 

for all other ^3 G P ( R ) -

Proof. In the proof of Theorem 4.3.1, Case 1, if x G P™1 \  (P™1+1 (J P2 U  -̂ 3 U  ' "  U  Pn)i

then, by the additive regularity of R, for b G Reg (PImi+I p| P2 f l  -̂ 3 H ' ' '  D

there exists an element u G R  such that t =  x +  bu is regular and t G P \

(pmL+i |J  p2 (J . . .  (J pn). Xhe element t satisfies the required conditions.

□
This allows us to characterize divisorial fractional ideals of an additively regular 

Krull ring in terms of principal fractional ideals in the same way as in the case of 

domains, see [Bou72], Ch. VII, §5, Corollary 2.
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C o ro lla ry  4.3 .3  Let R  be an additively regular Krull ring and let A , B , C  be 

divisorial fractional ideals o f R  such that A  C B. Then there exists an element x E K  

such that

A = B f ] R x C .

P roo f. Let {u«p [ ^3 E P(R) }  be the family of essential valuations of a Krull ring R 

and let

div(A) =  52 m v  - ^3; div(B) = Y , nV '  ^  div(C) =  £ pqj - <£.

Then A  C B  implies div(A) >  div(S) and hence m<p >  n.p for all ^3 E P ( R ) -  Let 

Ji =  {^3 E P { R )  | rn<p > rc<p}. Also, there exists a finite subset J2 of P ( R )  such 

that = m.p =  0 for all ^3 E P ( R )  \  Ji- Let J  =  J i (J J2. Then {u<p | ^3 E J}  is a 

finite family of essential valuations of the ring R  and {p>p — m<p | ^3 E J }  is a finite 

family of integers. By Theorem 4.3.2, there exists a regular element x E K  such that 

v<p(a;-1) =  — m°p for all ^3 E J  and u*p(x-1 ) >  0 =  — m.p for all Sp E P ( R )  \  J-

Hence:

( V ^ €  P(R))  sup {nv ,vv (Rx)  +  /*p} =  m<p

since uq3(r) =  u«p(Rx).

Suppose that a E A.  By Proposition 4.2.2, u<p(a) >  m<p =  

sup {n<p, u.p(/2r) +  p.p} for all E P{R)- Therefore, u>p(a) >  n»p and u<p(a) >  

vtp(Rx) +  p<p for all ^3 E P{R)-  On the other hand, R x  E F(R)  and

div(i?rC) = div(Hx) + div(C) = Y 2  { v v i R x )  +

Furthermore, since the fractional ideal R x  is invertible, Rx-C  is a divisorial ideal of the 

ring R. Applying Proposition 4.2.2 again, we get a E B f ] R x C , i.e., A C B f ] R x C .
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Conversely, for a G B  p| R x C , u<p(a) >  mp and u«p(a) >  vtp(Rx) +  P<p for all

G P(R)-  Hence, u<p(a) >  sup {n<p, v^(Rx)  +  p<p} =  m<p for all ̂ 3 G R(R)  i-e., a G A

by the same argument.

□

C o ro lla ry  4 .3 .4  Let R be an additively regular Krull ring such that R I\ and 

let .4 be a fractional regular ideal o f R. Then A is a divisorial ideal of R i f  and only 

i f  A  is the intersection o f two fractional principal ideals o f R.

Proof. If A is a divisorial ideal, then .4 =  A C  f K ^ a I a ^  ^A'(O), A  C Ra}. Let

B  = Ra, a G Ck{0) be any regular principal fractional ideal of R  such that A  C B

and let C  =  Rb, b G Cr-(0). Then, by Corollary 4.3.3, there exists a regular element

x G K  such th a t A  =  B  P) R xC  =  Ra p| Rxb.

Conversely, if A  =  R a f \ R b  where a, b G Ck {0), then Ra P| Rb =  A C A C

| V €  CA-(0), A C Ry} C. R a f ] R b  = A,  i.e., A =  A.

□
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