

University of Alberta

A Robotic Approach to the Analysis of Obstacle Avoidance in Crane Lift
Path Planning

by

Zhen Lei

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

©Zhen Lei

Spring 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to

lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted
to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis

of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

EXAMINING COMMITTEE

Committee Chair:

Dr. Ming Lu, Department of Civil and Environmental Engineering, University of

Alberta

Co-Supervisors:

Dr. Mohamed Al-Hussein, Department of Civil and Environmental Engineering,

University of Alberta

Dr. Saeed Behzadipour, Department of Mechanical Engineering, University of

Alberta

Other Examining Committee:

Dr. Michael Lipsett, Department of Mechanical Engineering, University of Alberta

ABSTRACT

Crane lift path planning is time-consuming, prone to errors, and requires the

practitioners to have exceptional visualization abilities, in particular, as the

construction site is congested and dynamically changing. This research presents a

methodology based on robotics motion planning to numerically solve the crane path

planning problem. The proposed methodology integrates a database in order to

automatically conduct 2D path planning for a crane lift operation, and accounts for

the rotation of the lifted object during its movements. The proposed methodology

has been implemented into a computer module, which provides a user-friendly

interface to aid the practitioners to perform a collision-free path planning, and check

the feasibility of the path at different stages of the project. Three examples are

described in order to demonstrate the effectiveness of the proposed methodology

and illustrate the essential features of the developed module.

ACKNOWLEDGEMENT

I would like to express my gratitude to my co-supervisors, Dr. Mohamed Al-Hussein

and Dr. Saeed Behzadipour, for their patient guidance and continuous support

during this research. I would like to extend my gratitude to my thesis committee, Dr.

Ming Lu and Dr. Michael Lipsett, for their suggestions and recommendations.

The support from industrial partner, PCL Industrial Constructors Inc., is gratefully

acknowledged. I would like to acknowledge Mr. U. H. Hermann, Mr. Ali Hendi, Mr.

Jacek Olearczyk, and Mr. Dony Alex, who has encouraged and supported me in all

stages of this research. I am also grateful to Ms. Joanna Klimowicz who patiently

improved my writing.

Finally, I wish to give my deepest gratitude to my family, who has supported me all

the time.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

1.1 Research Motivation .. 1

1.2 Research Objectives .. 2

1.3 Thesis Organization .. 3

CHAPTER 2: LITERATURE REVIEW .. 5

2.1 Introduction .. 5

2.2 Heavy Lift Planning Applications for Construction Cranes 5

2.3 4D CAD Applications in Construction .. 6

2.4 Automation in Construction .. 7

2.5 Robotics Motion Planning Applications in Construction 8

2.5.1 Configuration Space Approach .. 9

2.5.2 Motion Planning Approaches ... 10

2.5.3 Motion Planning Applications in Construction Cranes 11

CHAPTER 3: PROPOSED METHODOLOGY ... 13

3.1 Overview ... 13

3.2 Configuration Space Obstacle Creation ... 16

3.2.1 Overview .. 16

3.2.2 The Algorithms for Creating C-Obstacles .. 19

3.3 Methodology of Connection Checking .. 26

3.3.1 Connecting Nodes of the Same Layer ... 26

3.3.2 Connecting Nodes between Layers ... 29

3.4 The Methodology of Finding a Feasible Path ... 31

3.5 Summary and Conclusions ... 34

CHAPTER 4: IMPLEMENTATION PROCESS ... 37

4.1 Overview ... 37

4.2 Database Implementation .. 38

4.3 The Implementation of the Program .. 40

4.4 Case Studies .. 42

4.4.1 Case One .. 42

4.4.2 Case Two ... 45

4.4.3 Case Three ... 49

4.5 Conclusions and Discussions ... 52

CHAPTER 5: CONCLUSIONS & RECOMMENDATIONS 53

5.1 General Conclusions ... 53

5.2 Research Contributions .. 54

5.3 Research Limitations ... 55

5.4 Recommendations for Future Work ... 55

Bibliography .. 57

LIST OF FIGURES

Figure 1.1 Sample Heavy Lifts and Path Planning .. 3

Figure 3.1 Overview of the Research Approach ... 14

Figure 3.2 Database and Programming System ... 16

Figure 3.3 Obstacle Growth Approach .. 17

Figure 3.4 One Example of Creating C-Obstacles for Different Rotations................ 19

Figure 3.5 Combinations of Layers ... 19

Figure 3.6 Flowchart of creating C-Obstacles ... 20

Figure 3.7 Step# 1 (Create vectors) & Step# 2 (Add vectors) 21

Figure 3.8 Creation of Convex Hull .. 23

Figure 3.9 Visibility Graph .. 26

Figure 3.10 Process of Finding the Link of Two Nodes from Successive Layers 30

Figure 3.11 Connection Network .. 30

Figure 3.12 Flowchart of Forward Part of Dijkstra’s Algorithm 33

Figure 3.13 Flowchart of Backward Part of Dijkstra’s Algorithm 34

Figure 4.1 Implementation Process ... 37

Figure 4.2 Structure of Database Table ―tblBoundaries‖ ... 38

Figure 4.3 Structure of Database Table ―tblconvexhull‖ ... 39

Figure 4.4 Structure of Database Table ―tblconvexhullaftermerging‖ 39

Figure 4.5 Structure of Database Table ―tblENDObject‖ .. 40

Figure 4.6 Structure of Database Table ―tblObject‖ .. 40

Figure 4.7 Structure of Database Table ―tblSPNodes‖ .. 40

Figure 4.8 Control Interface and 2D Graphical Interface in VB.Net 42

Figure 4.9 Case One Scenario .. 43

Figure 4.10 Implementation of Case One .. 43

Figure 4.11 Results in Database ... 44

Figure 4.12 2D Graphic Presentation of Case One Results .. 44

Figure 4.13 Case Two Scenario .. 45

Figure 4.14 2D Graphic Presentation of Case Two Results .. 47

Figure 4.15 Sensitivity Test One .. 48

Figure 4.16 Sensitivity Test Two .. 48

Figure 4.17 Case Three Scenario .. 50

Figure 4.18 2D Graphic Presentation of Case Three Results .. 51

LIST OF TABLES

Table 3.1 Intersection Checking Conditions .. 28

Table 4.1 Coordinates Case One Inputs ... 43

Table 4.2 Coordinates Case Two Inputs .. 45

Table 4.3 Coordinates Case Three Inputs .. 49

1

CHAPTER 1: INTRODUCTION

1.1 Research Motivation

The efficiency of construction has been improved dramatically in recent decades due

to the use of cranes. Efficient cranes utilization, prefabrication and on-site

installation became possible, resulting in an improvement of the productivity and

quality, and savings of costs and time. Currently, cranes are widely used, and the

mobile crane especially has dominated the North America construction sites (Shapira

et al. 2007). Errors during heavy lift planning lead to extra costs and schedule delay.

The heavy lift planning is carried out in the pre-construction phase with limited data

available. The 2D CAD format (plot plans) are usually provided along with a list of

equipment for their weights and dimensions. Based on these plot plans, a preliminary

lift study is developed, which contains information such as the crane configuration,

the capacity of the crane, load information, as well as a 2D elevation view where the

clearances between the lifted object and the obstructions are checked. The lift study

aims to answer whether and how the load can be lifted on site.

One task of the lift study is heavy lift path planning, which tries to find a collision-

free trajectory for the lifted object among on-site obstacles from its pick location

toward final location. Current methods for heavy lift path planning are manual and

time-consuming (Shapiro et al. 1999) and lack reaction to the dynamic changes to the

construction site, due to newly installed objects.

Industrial construction projects in particular involve frequent heavy lift operations

using mobile cranes (Figure 1.1). The need for developing a decision support system,

to automate the crane path planning process, is quite eminent. This research presents

2

a robotic motion planning methodology to solve the crane path planning problem in

computer environment. The designed system integrates a database and utilizes Visual

Basic.Net programming environment in order to develop a prototype module,

providing a user-friendly interface to aid the practitioners during the path planning

and collision checking. Compared with existing tool CAD which is applied to check

of the collision free path, the designed system achieves the automation of the path

planning process, and determines the feasible solution in a more efficient way.

1.2 Research Objectives

This research aims to develop a decision support system to automate the process of

heavy lift path planning. The main objectives of this research are summarized below:

 To obtain understanding of robotic motion planning applications and crane

heavy lift planning;

 To explore robotic motion planning implementation in the construction field;

 To build an algorithm and implement it as a computer program to automate

the heavy lift path planning process;

 To assist engineers and practitioners to avoid potential crane lifting accidents,

and reduce the time and cost associated with path planning on construction

sites.

3

Figure 1.1 Sample Heavy Lifts and Path Planning

1.3 Thesis Organization

Chapter 2 (Literature Review) provides a summary of construction crane heavy lift

planning and robotic motion planning. In addition, the applications of both heavy

lift planning and the applications of robotic motion planning in construction are

introduced.

Chapter 3 (Proposed Methodology) discusses the proposed methodology used in this

research. First, the philosophy of motion planning in robotics is described. Then the

detailed methods for motion planning are presented.

4

Chapter 4 (Implementation Process) discusses the development of the path planning

system, which includes the detailed algorithms and processes used in this research.

Three case studies are provided to represent the effectiveness of the proposed

methodology.

Chapter 5 (Conclusions) describes the general conclusions, main contributions, and

some recommendations for practical applications and future research.

5

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter, the applications in the following areas will be presented:

 Heavy Lift Planning Applications for Construction Cranes;

 4D CAD Applications in Construction

 Automation in Construction;

 Motion Planning in Construction.

2.2 Heavy Lift Planning Applications for Construction Cranes

Heavy lift planning maintains a central role in the success of crane operations, and

errors in this process can result in extra cost and schedule delay. Eight criteria are

identified as essential to judge the feasibility of a heavy lift planning (Varghese 1997):

1) Availability of crane; 2) Access to site; 3) Access to lift area; 4) Location to execute

lift; 5) Lift path clearances; 6) Capacity during lift; 7) Ground support during lift; 8)

and removal from lift area. Although it is possible that other criteria could be present,

these eight criteria cover the majority of issues related to heavy lift planning.

Several efforts have been made to improve the heavy lift planning process. Many

have focused on crane selection; for instance, Al-Hussein (1999) proposed a

methodology for crane selection location and on-site utilization for construction

projects, and also an optimization algorithm for selection and location of mobile

cranes on construction sites (Al-Hussein et al. 2005). A fuzzy logic approach was

applied to crane type selection by Hanna and Lotfallah (1999). Also, a crane selection

tool, IntelliCranes, has been developed based on probabilistic neural networks by

Sawhney and Mund (2002). Tam et al. (2001) and Tam and Tong (2003) applied a

6

genetic algorithm (GA) to analyze the operations of tower cranes. In addition,

Manrique et al. (2007) described a methodology used to integrate crane selection

algorithms and an optimization model with 3D modeling and animation for the

selection, utilization, and location of cranes. An optimization model has also been

developed by Zhang et al. (1999) to optimize the location of a group of tower cranes.

A database management system was developed to assist practitioners to manage

crane-related data by Al-Hussein et al. (2000) to house information related to cranes,

their geometric lifting configuration specifications, and their lifting capacities based

on the information provided by manufacturers in crane lifting capacity charts. Hasan

et al. (2010) presented a newly automated system for preparing lift studies and

designs for a mobile crane supporting system.

2.3 4D CAD Applications in Construction

4D CAD integrates the 3D graphical model with the construction schedule, which

assists the practitioners to visualize the construction processes in a 3D environment.

An evaluation by Mahalingam, A., et al. (2009) has shown that 4D CAD can deliver

benefits in construction management. The concept of 4D CAD was first introduced

by the Center for Integrated Facility Engineering (CIFE) at Stanford University.

Compared with 3D CAD, 4D CAD imports time information into a static 3D model,

which is able to display a construction schedule in a 3D environment. In Stanford,

Collier and Fischer (1995) applied 4D CAD technology to a construction project.

After that, a 4D CAD tool, CIFE 4D-CAD, was developed to generate the 4D

model within one single environment (Mckinney et al. 1996). Wang, et al. (2004)

developed a 4D Site Management Model+ (4DSMM+) for addressing the need for

7

linking scheduling data to a 3D computer graphics building model. Ma et al. (2005)

proposed a 4D CAD Integrated Site Planning System (4D-ISPS) system, which

integrates schedules, 3D models, resources and site spaces to provide 4D graphical

visualization capability for construction site planning.

2.4 Automation in Construction

A survey pointed out that Japan has been a leading force in the implementation of

automation in construction field, in terms of the number of systems under use or

development, followed by US, Germany and UK (Warszawski and Navon 1998). In

North America, the concept of applying robotic technology in construction emerged

since the early 1900s (Kangari and Halpin 1989; Warszawski 1990a and 1998; Everett

and Slocum 1994). Warszawski 1990b presented the classifications of robots for

different uses in construction: 1) Exterior handling robots; 2) Horizontal finishers; 3)

Vertical finishers; 4) Interior finishers. Kangari and Halpin (1989) pointed out the

processes with best opportunities for robotic applications in construction: 1) Steel

fabrication; 2) Painting; 3) Wall finishing; 4) Bush hammering; 5) Tunneling; 6)

Sandblasting; 7) Concrete placement; and 8) Fireproof spraying. It was anticipated

that automation application could result in approximately 10-15% increase in overall

construction productivity rate (Skibniewski and Russell 1989). Robots for different

use have been developed for the construction field (Warszawski et al. 1990). Besides

that, some robotic methodologies are also applied into construction field, and

robotic motion planning is one of those.

8

2.5 Robotics Motion Planning Applications in Construction

The ultimate goal for robotics is to create autonomous robots, which can accept

high-level descriptions of tasks and will execute these tasks without human

intervention. (Latombe 1991). To achieve this, several problems should be

addressed, one of which is motion planning. Motion planning aims to ensure

collision avoidance for the moving robot(s). It also guarantees that the movements

of the robot(s) are efficient, with respectively short moving distance and without

unnecessary movements. There are many types of motion planning problem; for

example, the robots may travel with obstacles moving at the same time. The problem

faced in this research is a basic motion planning problem, which satisfies two

assumptions: 1) Only one robot in the work space (see next paragraph for the

definition of work space); 2) The locations of the obstacles are fixed.

Terminologies which are widely used for motion planning problem are introduced

(the stated terminologies are quoted from a survey by Hwang and Ahuja 1992). In

robotics, the robots refer to the things that are moving, whether points, polytopes1,

or manipulators2. When the robots move, they are constrained by their surroundings.

The physical space in which robots and obstacles exist is called a work space. To

represent the position of a robot of a given shape, a configuration is proposed. It

contains a set of independent parameters that characterize the position of every

point in the robot. These independent parameters are called degree of freedom

(DOF). The set of all configurations is called configuration space. Configurations

that result in collisions between the robot and obstacles are called configuration

1
 Polytopes are polygons in 2D or polyhedral in 3D.

2
 A manipulator is a mechanical arm consisting of links and joints.

9

obstacle (C-Obstacle). The free space refers to parts of the configuration space for

which the robot does not collide with any obstacle. In general, the motion planning

problem is consists of two steps: 1) convert the work space to a configuration space;

and 2) search for the collision-free path for the robot from its starting configuration

to ending configuration through the configuration space. These two parts will be

introduced in section 2.3.1 and 2.3.2 respectively.

2.5.1 Configuration Space Approach

To solve a motion planning problem, the first step is to convert a work space to a

configuration space, the method of which is called configuration space approach. It

has been applied to the field of kinematics, with many applications including robotics

path planning, packing and nesting, automated assembly, etc. The configuration

space approach was initially proposed by Lozano-Pérez (1983), as converting the

world space into configuration space by shrinking the object into a representing

point. The obstacles in work space are also converted into C-Obstacles (this method

will be detailed in section 3.2.1).

Lozano-Pérez’s (1983) proposed a method called obstacle growth to generate the

configuration space by using Minkowski point-set operations, which is widely used in

the motion planning problem. The core idea is to reduce the shape of the robot to a

representing point, create the C-Obstacles, and search the path for this representing

point. This method simplifies the path planning problem, avoiding checking all the

possible collisions between the entire shape of the robot and the obstacles. This

method was further developed by other researchers (Like Gouzènes 1984). The

creation of C-Obstacles considers the degree of freedom (DOF) of the robot. It has

been stated that the configuration space approach could become complicated

10

(Hwang and Ahuja 1992). For example, for a rigid robot in 3D environment, it needs

six degree of freedom (DOF) to define the configuration of the robot, so

consequently the C-space will be 6-dimensional. In this case, representing the C-

space with a grid requires 1012 points for a resolution of 100 points per dimension,

which is challenging.

2.5.2 Motion Planning Approaches

Motion planning approaches are implemented in order to find the path for the robot

from the initial configuration to the goal configuration. Latombe (1991) reviewed the

classic work of motion planning approaches. The common methods are roadmap,

cell decomposition, and potential field.

The Roadmap method aims to capture the connectivity of the robot’s free space in a

network of one-dimensional curves. Two typical types of roadmaps exist: Visibility

graph (Asano 1985), and Voronoi diagram (Aurenhammer 1991). A visibility graph is

composed of nodes, the initial and goal configurations of the robot, and all the C-

Obstacle vertices. The feasible path for the robot is searched through the

connections among these nodes. A voronoi diagram creates a buffer around the C-

Obstacles, and yields the path for the robot outside of the buffers. This method

increases the clearance between the robot and the obstacles.

Cell decomposition decomposes the free space into small regions, called cells, then

connects the adjacent cells, and at last the path planning can be conducted between

adjacent cells rather than individual points. Cell decomposition can be categorized

into the exact cell decomposition and approximate cell decomposition methods

(Latombe 1991).

11

Potential field proposes that the goal configuration can generate an ―attractive force‖,

which drags the moving robot toward it, while the C-Obstacles produce a repulsive

force which forces the moving robot away from the C-Obstacles. Both ―attractive

force‖ and the ―repulsive force‖ affect the moving robot at the same time and

consequently determine its direction of motion.

2.5.3 Motion Planning Applications in Construction Cranes

One field of application for automation in construction is to apply robotic motion

planning methodology to solve construction problems. Two examples of

achievements of robotic motion planning applications in construction are the

creation of a computer-aided construction system for a shotcreting3 robot (Cheng et

al. 2001), and robot path-planning for earthwork operations in construction (Kim et

al. 2003). Also, robotic motion planning has been implemented to handle crane lift

path planning problem. Researchers like Ali et al. (2005) and Sivakumar et al. (2003)

solved cooperative crane lifts path problem by using motion planning method.

Different search path methods have been used (Ali et al. 2005 used a genetic

algorithm (GA); Sivakumar et al. 2003 applied a heuristic search). Reddy et al. (2002)

developed a system for automated path planning for single mobile crane lifts using

the AutoCAD environment and AutoLisp. A virtual crane model has been built for

visualization of erection processes and erection schedule by using robotic motion

planning (Kang and Miranda 2006). To our knowledge, most of the previous works

considered the crane and the lifted object as a manipulator. Based on its degree of

freedom (DOF), the corresponding configuration space is generated. For each

3
 Shotcrete is a construction technique, which conveys the concrete through a host and

projects it at high velocity onto a surface.

12

configuration of the manipulator, the interference detection is conducted to check

whether the configuration collides with the obstacles. Eventually by implementing

various search methods, the path is obtained. The algorithm introduced in this thesis

views the lifted object as the manipulator, and generates the C-Obstacles. Instead of

detecting the interference among all configurations, the path is searched through the

free space.

13

CHAPTER 3: PROPOSED METHODOLOGY

3.1 Overview

This research is based on the approach as shown in Figure 3.1. A set of inputs (for

example, capacity of the crane, coordinates of the obstacles, etc.) are considered. The

main process combines robotic methodology with current construction practice and

develops an algorithm, which is implemented in a computer environment. The

outputs of this research are feasible path for crane operations, path sensitivity

analysis, and modified path, which are subjects to the criteria (for example, the

schedule of the crane lift, safety specifications, etc.). Also, two general assumptions

are made for this research: 1) The minimum and maximum radius of the crane and

boom clearance are represented as virtual obstacles in the moving space; and 2) Since

most on-site obstacles of industrial construction projects are usually in rectangle

shape, the system is designed to handle the obstacles which are convex shape. The

concave obstacles can be divided into convex obstacles manually and input into the

database as separate ones.

14

INPUTS

Geometry

Size of the crane

Obstacles

Coordinates

MAIN PROCESS

C-Obstacle Creation

Check Connectivity

Find Feasible Path

Schedule

CRITERIA

OUTPUTS

Feasible path planning for crane lift

operations (2D planning)

Capacity of the

crane

Availability of the

crane

Min. & Max. crane

radius

Safety specifications

Rigging

Pick & Set point

Path Sensitivity Analysis Modified Path for crane operation

Clients’

requirements

Object Data
Standards

Weather

Robotics

Methodology

MS Database

Programming

Computing

Technology

PCL practice

Industrial

construction

technology

Construction

Technology

Figure 3.1 Overview of the Research Approach

The main idea of the robotic methodology adopted in this research is to convert the

lifted object to a representing point, and then corresponding C-Obstacles are

generated. This method simplifies the path planning problem to searching the

collision-free path for the representing point, meanwhile avoiding checking the

clearance of the lifted object for its entire shape. This robotic methodology consists

of three steps as stated below.

In step one, the C-Obstacles are generated by the method called obstacle growth,

which will be detailed in Section 3.2 (Lozano-Pérez 1983). C-Obstacles are generated

based on the real obstacles and by the shape of lifted object, and the entire lifted

object is represented as a representing point. No collision exists between the lifted

object and the obstacles if the representing point travels outside or on the edges of

C-Obstacles, otherwise, collision occurs. In this case, finding the path for the lifted

object is equivalent to searching the path for the representing point through the C-

Obstacles.

15

The shapes of the C-Obstacles are changed if the lifted object is rotated during its

movements. Therefore, C-Obstacles corresponding to different rotation angles of

the lifted object should be created. The C-Obstacles corresponding to the same

rotation angle of the lifted object are put on one layer. Then different layers are

generated for different rotations. On each layer, the C-Obstacles are represented by

the coordinates of their vertices, also called nodes. After all the layers are generated,

the next step is to check the connections of the nodes on the same layer and

between successive layers.

Step two focuses on finding the connections between nodes on the same layer and

between two successive layers. The method of checking the connections on the same

layer is called a visibility graph (Asano 1985), which will be detailed in section 3.3. All

connections, represented by their lengths, will be stored in an adjacency matrix. In

step three, the Dijkstra’s algorithm is applied to search the shortest path based on the

generated adjacency matrix.

A central database is constructed to support all the calculations, which has the six

entities (tables) (―Obstacles table‖, ―Pick table‖, ―Place point table‖, ―Convex hull

table‖, ―Merged convex hull table‖, and ―Solution table‖). These entities (tables)

interact, following the sequence illustrated in Figure 3.2, which includes four steps: 1)

the user inputs the coordinates of obstacles, pick point and end point into the first

three tables (―Obstacle tables‖, ―Pick point tables‖, and ―Place point tables‖); 2) the

system automatically read the data and generate the C-Obstacles, and records the

data of the C-Obstacles in the ―Convex hull table‖; 3) the program uses a library to

modify the generated C-Obstacles, and the information in the merged ―Convex hull

16

database‖ is used to check the connectivity and consequently find the feasible path;

and 4) the final solution is presented in a 2D graphical interface.

Obstacle

table

Pick point

table

Place point

table

Convex hull

table

Merged

convex hull

table

Solution

table

Data input
Database

C-Obstacle

Creation

C-Obstacle

Modification

Check Connectivity

Find Feasible Path

2D Graphics

Programming System

Figure 3.2 Database and Programming System

3.2 Configuration Space Obstacle Creation

3.2.1 Overview

The basic idea of creating C-Obstacles is to reduce the lifted object into a

representing point, and grow the obstacles by the shape of the lifting object. For

example, as shown in Figure 3.3, there is a triangular lifted object A, and a

rectangular obstacle B. To generate the C-Obstacle for B, the first step is to choose

one vertice as the representing point (in this case, the top vertice of the lifted object

is chosen as the representing point). The second step is to grow obstacle B by the

shape of A. Consequently, the problem of finding a path for A relative to B is

equivalent to finding a path for the representing point relative to C-Obstacle. When

17

the representing point moves outside the boundary of the C-Obstacles, no collision

exists between the lifted object and the obstacle; if it is on the edge of the C-

Obstacle, the lifted object is just touching the obstacle. However, the movements of

the representing point in the C-Obstacle results in a collision.

Choose this point

as the representing

point.

Lifted Object A

Obstacle B

Grow Obstacle B by the shape of lifted Object A.

Obstacle B

C-Obstacle

Figure 3.3 Obstacle Growth Approach

In practice, the rotations of the lifted object should be considered. The lifted object

can be rotated at certain locations on a construction site, and accordingly the shapes

of the generated C-Obstacles vary as the change of the rotation of the lifted object.

Ideally, the method described in Figure 3.3 needs to be carried out for every possible

rotation of lifted object to create C-Obstacles. However, to simplify the problem, C-

Obstacles are created based on a discrete rotation step, which means the lifted object

is rotated within a defined degree discretely every time. For example, as illustrated in

Figure 3.4, a discrete rotation step is defined as 120° (In real practice, the rotation

step should be smaller). Then instead of considering all possible rotations from 0° to

360°, only 3 rotations (360°/120°=3) are handled and corresponding C-obstacles are

obtained. Each set of C-obstacles are considered as one layer and totally three layers

18

are generated, namely 0°, 120°, and 240° (Figure 3.4). If the discrete rotation step is

less than 120°, more layers are generated since the value of (360°/discrete rotation

step) became smaller.

A group of layers can be generated with the defined rotation step. On each layer, the

generated C-Obstacles are represented by the coordinates of their vertices in either a

clockwise or counter-clockwise order. As shown in Figure 3.5, different layers

represent the C-Obstacles corresponding to different rotation angles (in addition to

the ―X‖ and ―Y‖ dimensions, ―rotation‖ is the third dimension). Meanwhile, nodes

that exist on one of these layers represent the shapes of the C-Obstacles for one

specific rotation of the lifted object. After generating all layers, the next step is to

check the connections of the nodes on each layer and from successive layers. Section

3.3.2 will detail the algorithm mentioned in this section before proceeding to the

algorithm of checking the connections.

19

Obstacle

Lifting Object

Rotation=0°

Representing

Point

Rotation=120°

Rotation=240°

C-Obstacles are defined by the blue lines.

Figure 3.4 One Example of Creating C-Obstacles for Different Rotations

Rotation

Degree

X

Y

For one specific

layer

C-Obstacle 1 C-Obstacle 2

Different layers here

represent the C-

Obstacles for different

rotation degrees

On each specific layer,

the C-Obstacles are

defined by the

coordinates of their

vertices

Figure 3.5 Combinations of Layers

3.2.2 The Algorithms for Creating C-Obstacles

The algorithm for generating the C-Obstacles contains four main steps: (1) Create

vectors of the lifted object; (2) Add vectors to the obstacles; (3) Generate convex

20

hull (C-Obstacles); and (4) Loop rotation. The flowchart of the algorithm is given in

Figure 3.6. The four steps will be discussed in detail as follows (Step#1, Step#2,

Step#3, and Step#4).

Figure 3.6 Flowchart of creating C-Obstacles

Step# 1 Create vectors of the lifted object: The first step is to create vectors based

on the representing point of the lifted object. As shown in Figure 3.7, ―part 1‖

illustrates a lifted object with 4 nodes (numbered in a clockwise order). Node 1 is

chosen as the representing point (The representing point can be any point on the

lifted object), and three vectors are created from the other nodes of this lifted object

towards node 1. Generally, for any shape of lifted object, it contains n vertices

defined by

 . The representing point is chosen and

defined as

 . Then the vectors, which point from the nodes other than

the representing point (

 ,

) toward the

representing point, are obtained and stated as , calculated

satisfying Equations (1) and (2) respectively:

 (1)

 (2)

21

Part 1:

Create vectors of

a lifting object

Part 2:

Add vectors to

the obstacles
One Obstacle

1’

2’

3’

One moving object

1

2 3

4
Choose node 1

As the representing

point

2 3

1 4

2’

1’ 3’

1

1

A

B

Conflict

C1

Convex Hull (Red polygon) & Obstacle (Blue triangle)

Figure 3.7 Step# 1 (Create vectors) & Step# 2 (Add vectors)

Step# 2 Add vectors to the obstacles: As shown in ―Part 2‖ of Figure 3.7, an

triangular obstacle has three nodes, 1’, 2’, and 3’. The vectors generated from ―Part

1‖, are added to each node of the obstacle. After adding, each node is extended into

4 nodes (includes the original node itself), so that there are 12 nodes in total. Let us

generally assume there is one obstacle, and it has m vertices. So the obstacle can be

presented by its vertices, which are defined as (). Also, it is

assumed that there are n vectors generated from ―Step# 1‖, denoted by

 . Therefore, new nodes for this obstacle after adding the vectors are

calculated by Equations (3) and (4) respectively.

(3)

 (4)

22

Step# 3 Generate convex hull: The addition of vectors to the obstacles generates a

group of nodes (as shown in Figure 3.7, ―Part 2‖). The next step is to generate the

convex hull (C-Obstacle), which embraces all the nodes generated from ―Step# 2‖.

as shown by the red polygon in Figure 3.7, the convex hull contains all the nodes

from ―Part 1‖ within or on its edges. Meanwhile, the obstacle is shown as the light

blue triangle. Since node 1 has been chosen as the representing point, so if it travels

outside or on the edge of the convex hull, as the yellow nodes of cases ―A‖ and ―B‖

in Figure 3.7, there is no collision between the lifted object and the obstacle. On the

other hand, if node 1 enters the convex hull, as the yellow node of case ―C‖ in

Figure 3.7, collision occurs. The process of generating the convex hull is discussed as

below.

In Figure 3.8 ―Procedure 1‖, we assume that there are many generated nodes, and

intend to find a boundary (convex hull) to embrace all these nodes. There are 4 sub-

steps to generate the convex hull. First, the leftmost node is detected among all the

existed nodes with the minimum x coordinate (Node A in ―Procedure 1‖ in Figure

3.8). Node A is denoted by (). Then a positive real number d is deducted from

 , and node B is obtained by (), shown as the red node in ―Procedure 1‖

in Figure 3.8. A horizontal line segment is created by linking nodes A and B. Then

Node A is connected to nodes on its right side sequentially, and for each connection,

the connection line segment is denoted by AC. The different clockwise angles BACs

are obtained, and smallest one can be found. The node which gives the smallest BAC

angle is marked as one of the vertices of the convex hull. Also, node A in

―Procedure 1‖ is noted as a node on the edge of the convex hull (C-Obstacle).

23

Figure 3.8 Creation of Convex Hull

In ―Procedure 2‖, node A in ―Procedure 1‖ will be renamed as node B, and the node

which gives the smallest BAC in ―Procedure 1‖ will be renamed as node A in

―Procedure 2‖. Then the method described in ―Procedure 1‖ is repeated and a new

node C can be detected and marked. By continuing this method, all the vertices of

the convex hull, shown as the yellow nodes in ―Procedure 3‖, will be detected one by

one until the starting node (node A in ―Procedure 1‖) is reached. Eliminating other

nodes inside and connecting the outer nodes gives the shape of the convex hull,

which is the C-Obstacle. The algorithm of calculating any clockwise BAC angle (Ө)

through the process of finding convex hull is introduced in the following paragraph.

It is assumed that the coordinates of node A are (), of node B are (), and

of node C are (). Then two vectors are created, , by Equations (5)

24

and (6). The dot product and cross product of are calculated using

Equations (7) and (8), and the norms are determined by Equations (9) and (10).

Equations (11) and (12) give the values of and .

(5)

(6)

(7)

(8)

 (9)

(10)

(11)

(12)

 (13)

Equation (13) calculates the clockwise angle of , ranging from 0° to

180°. If the clockwise angle is bigger than 180°, the clockwise angle equals to (360°-

α). sine α will be checked with sine Ө to determine clockwise BAC angle by the

following check condition: if sine α does not equal to sine Ө, the clockwise angle

equals to α, otherwise, the clockwise angle equals to (360°-α).

Step#4 Loop Rotation: The key to generating C-Obstacles for different rotations is

to find the shape of the lifted object with different rotations, depicted by the

coordinates of its nodes, and then to repeat the algorithm described in ―Step#1‖,

25

―Step#2‖, and ―Step#3‖. The algorithm to find the shape of the rotated lifted object

is implemented based on the rotation matrix. In 2D, the rotation matrix

(counterclockwise rotation) has the form shown in Equation (14). If the lifted object

is in the shape of a rectangle and depicted by its four nodes () (i=1,2,3,4), and

the first node () is chosen as the representing point. Then the relevant

coordinates of the vectors from the four nodes towards the representing point are

calculated satisfying Equations (15) and (16). Also, if the rotation step (see section

3.2.1 for rotation step) equals to α, then n possible rotations of the lifted object exist.

n is calculated by Equation (17). So for each possible rotation (j×α), the new

coordinates for the lifted object are () (i=1,2,3,4), calculated from

Equation (18). After calculating the new coordinates of the lifted object, ―Step#1‖,

―Step#2‖, and ―Step#3‖ are repeated to generate the C-Obstacle. So with j changes

from 1 to n, n times of generations for C-Obstacles are looped though. After all the

C-Obstacles are calculated, the checks of connections between nodes will be

discussed in the following section.

(14)

(15)

(16)

(17)

 (18)

26

3.3 Methodology of Connection Checking

3.3.1 Connecting Nodes of the Same Layer

The generated C-Obstacles are represented by nodes on various layers, and this

section focuses on the method of finding the connections between the nodes on the

same layer. The corresponding methodology is to generate a visibility graph (Asano,

1985). The visibility graph should meet the following conditions: 1) Only the start

point, end point, and the nodes of C-Obstacles can be connected; 2)Two nodes are

connected if and only if the connecting line segment is an edge of a C-Obstacle or it

does not intersect any C-Obstacle.

Start Point

End Point

C-Obstacle

C-Obstacle

C-Obstacle

Figure 3.9 Visibility Graph

Figure 3.9 shows an example of a visibility graph, in which only the start point, end

point, and the nodes of the C-Obstacles are considered for possible connections.

The feasible paths, from the start point to the end point consist of the dash lines as

27

well as the edges of the C-Obstacles. Among these paths, the one with the shortest

distance is the shortest path. The basic problem when generating a visibility graph is

to check whether two specific nodes (nodes of the generated C-Obstacle or start

point or end point) can be connected or not. The situation that two nodes cannot be

connected occurs when the connection collides with the C-Obstacle(s), which is

checked by the following algorithm: Two nodes that are tested whether can be

connected are first linked as a line. Then the line is checked with every edge of the C-

Obstacles (the edge is also a line segment). If any intersection between the line and

one of the edges exists, it means these two points cannot be connected, otherwise

the connection is linked. So the core algorithm for building a visibility graph is to

check the relationship of two line segments. The following paragraph will detail the

algorithm mathematically.

It is assumed that two line segments are to be tested for intersection, and .

Each has two end points, and for , and and for . All four end

points are denoted by . Vectors are

created by Equations (19) and (20). , represent the directions of the two

line segments, L1 and L2. Equations (21) and (22) gives any two lines which parallel

with and respectively. Equation (23) is used to check the intersection of Line1

and Line2, and it can be rewritten as Equation (24). , , and in Equation (24)

are replaced by the values of their x and y coordinates, which gives Equations (25)

and (26). These two equations can be written as Equation (27) by matrixes. At last,

the values of α and β are calculated by Equation (28). If α and β are both between 0

and 1, it means that L1 and L2 intersect somewhere in the middle of both line

28

segments; If any of them is bigger than 1 or less than 0, that means the two lines

intersect somewhere on the extension of either L1 or L2, or both; If two lines are

parallel, there will not be any result for α and β. (Table 4.1)

(19)

(20)

(21)

(22)

 α = +β

(23)

α -β = -

(24)

α()-β()=

(25)

α()-β()=

(26)

 =

(27)

 =

 ×

A*

Where A=

 ;

 A*=

 ;

 |A|= () × ()-() × () (|A|=0 if and are
parallel)

(28)

Table 3.1 Intersection Checking Conditions

Relationships of two line
segments

Conditions

Intersection
Parrallel

Non-Intersection and Non-
parallel

29

3.3.2 Connecting Nodes between Layers

After finding connections among nodes on each layer, the next step is to connect the

nodes between layers. The connection between two nodes on two different layers

represents the rotation of the lifted object, and if these two nodes have different x

and y coordinates, this connection also indicates a translation for the lifted object.

However, the idea of layers converts the continuous rotating process of the lifted

object to discrete rotations. One connection between any two layers represents a

discrete motion of the lifted object. For each connection between two layers, the

lifted object rotates from one angle to another, and meanwhile travels a distance (if

there is horizontal movement), without considering the gradual rotating and

horizontal traveling between the two layers. In other words, the initial and final

orientations of the lifted object do not cause collision with obstacles. However,

during the rotation, the collision may happen. Therefore, in order to minimize the

risk of collision while performing the rotation step between two layers, it is assumed

that only two nodes from successive layers can be connected, which guarantees the

minimal rotation between layers. Also, the translation distance involved in any

discrete motion between two layers is kept under a small unit. In addition, if two

nodes from successive layers can be connected, a value is assigned to the connection

as its length. Nonetheless, the value of the length has different unit since the motion

between two successive layers involves a rotation.

Figure 3.10 represents the ideas from the previous paragraph. There are two

successive layers, with nodes on layer A being marked as blue and nodes on layer B

being marked as red. We try to find whether node 1 and node 2 can be connected.

Layer A is overlaid on layer B, and the planar distance k between node 1 and node 2

30

can be calculated. If k is less than an accuracy parameter a, we consider this

translation is safe and therefore node 1 and node 2 can be connected, otherwise, the

connection is rejected. A length parameter is assigned as the value of the length for

the connection of node 1 and node 2. In section 4.3, the user-defined parameters will

be introduced relating to the length of the connection as well the accuracy parameter.

A

B

Overlay layer A on layer B

Node1

Node2

Node2

Node1

The horizontal distance

between node 1 and node 2

is k.

The nodes on layer A are marked

as blue; the nodes on layer B are

marked as red.

If k≤ accuracy

parameter a, then node 1

and node 2 can be

connected

A

B

Node1

Node2

Node 1 and node 2 are linked

and the link’s length equals to

length parameter b.

Figure 3.10 Process of Finding the Link of Two Nodes from Successive
Layers

Rotation Degree

X

Y

Figure 3.11 Connection Network

31

All the connections from same layer and between successive layers form a network

as shown in Figure 3.11. In Figure 3.11, nodes with different colors represent nodes

on different layers, and they are connected on the same layer or on successive layers

(black dash lines). In addition, some red dash lines present the connections of the

nodes between the bottom layer and the top layer. All the connections from each

layer and between successive layers are stored in a m×m adjacency matrix M

(Equation (28)), where Cij is used to present the length of the connection between

two nodes from the connection network (Figure 3.11). If two nodes (For example

node 1 and node 2) can be connected, then C12 and C21 have the same value. The

entries of the matrix that represent the connections that do not exist (for example,

two nodes that cannot be connected) as well as the entries on the main diagonal are

assigned an infinite real number.

(28)

3.4 The Methodology of Finding a Feasible Path

Based on the adjacency matrix M (Equation (28)), the shortest path from the start

node to the end node can be found by Dijkstra’s algorithm. Dijkstra’s algorithm has

been proved efficient in many academic and practical fields. The basic idea of this

method is to calculate the shortest distance from the start node to every other node

(we name it as forward part), and then search the feasible path from the end point

32

backwards (we call it backward part). The process of implementing the Dijkstra’s

algorithm forward part is described in Figure 3.12 and briefly reviewed here. After

implementing the forward part, a distance array N (Equation (29)) is generated. In

distance array N, L0j (j=0, 1, 2, 3, ..., n) represents the distance from node 0 (start

node) to node j.

 (29)

After the Dijkstra’s algorithm forward part, the shortest distance from the start node

to every other node is found. By applying the Dijkstra’s algorithm backward part, the

shortest path can be obtained. The flowchart of the backward part is pictured in

Figure 3.13. The results will be stored in the path array P in sequence. Equation (30)

is an example of path array P. According to Equation (30), the shortest path is: the

lifted object starts from node 0 (start node), travel through nodes (travel from node

4 to node 9 for example) following the sequence in which they are recorded, and

finally reaches node 40 (end node).

 (30)

33

Note:
1. Current node: The node that is chosen to calculate the distance value of its neighbor

nodes;
2. Distance value: The value of distance from the current node to node i, denoted by

Di ; Distance value of current node is denoted by Dcurrent ;
3. Neighbor nodes: The nodes whose distances to current node are not infinity in each

loop;
4. Distance: Distance between current node and node i, denoted by di ;
5. Visited nodes: The set of calculated current nodes, denoted by Nvisited ;
6. Unvisited nodes: Assume that all the nodes are presented by set Nall, and the

unvisited nodes are presented by set Nunvisited, which equals to (Nall − Nvisited) ;
7. Start node: The position where the lifted object is picked in C-space;
8. End node: The position where the lifted object is located in C-space.

Figure 3.12 Flowchart of Forward Part of Dijkstra’s Algorithm

34

Note:

1. L0j : The distance from node 0 (start node) to node j ;
2. Distance value: The value of distance from the current node to node i, denoted by

Di ;
3. Neighbor nodes: The nodes whose distances to end node are not infinity in each

loop;
4. Distance: Distance between current node and node i, denoted by di ;
5. Path array P: shortest path (the results) stored in sequence from start node to end

node.

Figure 3.13 Flowchart of Backward Part of Dijkstra’s Algorithm

3.5 Summary and Conclusions

In this Chapter, the methodology and algorithm for this research has been presented.

The method implemented to solve the crane heavy lift path planning is robotic

motion planning. Generally, the significance of this method is to convert the shape

of lifted object into a single point (a representing point), and find the traveling path

for it. This method avoids checking the clearance for the entire shape of the lifted

object. The implementation of this method can be divided into three parts. First, as

35

discussed in section 3.2, the C-Obstacles are built based on the method obstacle

growth. For one specific rotation of the lifted object, the corresponding C-Obstacles

are generated and presented on one layer by the coordinates of their vertices, also

known as nodes. Different layers are formed based on various rotations of the lifted

object. Second, as described in section 3.3, the connections of the nodes from the

same layer or from successive layers are detected. On each layer, two nodes can be

connected if the connection does not collide with any C-Obstacle. For two nodes

from successive layers, they can be connected only if the planar distance between

them is small enough to meet the safety requirement. These found connections are

stored in an adjacency matrix. Third, section 3.4 introduces the Dijkstra’s Algorithm

to search the shortest path based on the adjacency matrix. It consists of two parts,

forward part as well as backward part. In forward part, the minimum distance

between each node and the start node is calculated; the backward part searches the

path from the end node to start node based on the distance values obtained from

forward part.

Meanwhile, two assumptions are made for the connections between layers. First,

when checking the connections of the nodes, only two nodes from successive layers

can be connected. Second, two nodes from successive layers can be connected only

if the planer distance between them meet the safety requirement. The rotations of

the lifted object are considered as discrete steps between successive layers. So it

raises a limitation that the rotating and moving process between two successive

layers is unknown. However, these two assumptions simplify the continuous rotating

processes, and reasonable considerations of these two assumptions are discussed in

36

section 3.3.2. The implementation of the method and algorithms will be presented in

the following chapter.

37

CHAPTER 4: IMPLEMENTATION PROCESS

This chapter presents the implementation process of the methodology stated in

chapter 3. First, the structure of the developed system will be introduced. It is

followed by three case studies to present the performance of the designed system.

4.1 Overview

As illustrated in Figure 4.1, the process starts with entering basic data and user-

defined parameters. Following that, through communications between the database

and the programming environment, the shortest path is calculated and entered into

database table ―tblSPNodes‖. Finally, the results are presented in a 2D graphical

environment.

User-defined

Parameters

Read data

P
ro

g
ra

m
m

in
g

 E
n

vi
ro

n
m

e
n

t

Obstacles
Size of Lifted

Object
Start & End Point

D
a
ta

b
a
se

Table: “tblObject”,

“tblENDobject”, &

“tblBoundaries”

Table: “tblconvexhull”

Create CB

areas

Merge

overlapping CB

areas Table:

“tblconvexhullaftermerging”

Finding the

shortest path
Table: “tblSPNodes”

2D graphic

checking

Figure 4.1 Implementation Process

38

4.2 Database Implementation

The database used in this research project has been constructed in Microsoft Access

2007. It consists of six tables, namely: (1) ―tblBoundaries‖; (2) ―tblconvexhull‖; (3)

―tblconvexhullaftermerging‖; (4) ―tblENDobject‖; (5) ―tblObject‖; and (6)

―tblSPNodes‖. These tables are further explained as the following:

1. ―tblBoundaries‖ (Figure 4.2) contains the data of the obstacles. ―ProjRevID‖

is the project ID; ―BoundaryGroup‖ defines the names of obstacles, for

example ―ISBL1001‖ is the first obstacle; ―BoundaryPointID‖ presents the

serial number of the nodes of obstacles; and ―X‖ and ―Y‖ define the

coordinate of each node.

Figure 4.2 Structure of Database Table “tblBoundaries”

2. ―tblconvexhull‖ (Figure 4.3) contains the data of C-Obstacles. ―HullId‖ is the

data ID; ―ObjectID‖ defines which lifted object is chosen to create the C-

Obstacles; ―BoundaryGroup‖ presents the names of the C-Obstacles;

―BoundaryPointID‖ presents the serial number of nodes for different C-

Obstacles; ―Rotation‖ determines the rotation angle of the lifted object that

each layer represents; and ―X‖ and ―Y‖ define the coordinate of each node.

39

Figure 4.3 Structure of Database Table “tblconvexhull”

3. ―tblconvexhullaftermerging‖ (Figure 4.4) contains the data of the merged C-

Obstacles. As discussed before, when creating C-Obstacles, C-Obstacles may

overlap. After merging those which overlap, the data of the new C-Obstacles

are entered into ―tblconvexhullaftermerging‖. The structure of this table is

the same as table ―tblconvexhull‖.

Figure 4.4 Structure of Database Table “tblconvexhullaftermerging”

4. ―tblENDobject‖ and ―tblObject‖ (Figure 4.5 and 4.6) contain the data of the

start point and end point of the lifted object. ―OBJECT‖ is an auto number

generated by the database system, which is not used in the calculations;

40

―ObjectID‖ determines the lifted object ID; ―NODE‖ presents the vertices

of the lifted object; ―X‖ and ―Y‖ state the coordinates of each node.

Figure 4.5 Structure of Database Table “tblENDObject”

Figure 4.6 Structure of Database Table “tblObject”

5. ―tblSPNodes‖ (Figure 4.7) contains the results (shortest path). ―ID‖ is

autonumber generated by the database system; ―BoundaryGoup‖ indicates

the results. ―X‖ and ―Y‖ describe the coordinates of the different nodes.

Figure 4.7 Structure of Database Table “tblSPNodes”

4.3 The Implementation of the Program

The developed algorithm has been constructed in Microsoft Visual Basic.Net

(VB.Net), which communicates with Microsoft Access. The program contains two

41

interfaces, namely a control interface and a 2D graphical interface (Figure 4.8). In the

control interface, the user can input parameters (―Rotation Step‖, ―Rotation-

Translation Limitation‖, ―Weight of Connection between Layers‖, and ―Relative

Rotation‖). These four parameters are defined as following:

 Rotation step: Defines the rotation interval of the lifted object. If the

―Rotation step‖ is x, the number of layers equals to (360°/x).

 Rotation-Translation Limitation: Defines an accuracy parameter (as

mentioned in section 3.3.2). If the planar distance between two nodes from

successive layers is less than this parameter, then these two nodes can be

connected;

 Weight of Connection between Layers: Determines the length of the

corresponding connection if two nodes from successive layers can be

connected.

 Relative Rotation: Determines the relative angular position of the lifted

object at the end point with respect to the start point. This angle is in degrees

and is measured in the counter-clockwise direction.

By clicking the ―Convex Hull‖ button, the C-Obstacles are generated and the

overlapping C-Obstacles are handled. Then the ―Shortest Path‖ button carries out

the function of searching for the shortest path by implementing Dijkstra’s algorithm.

After the optimal solution is found, the ―Graphics‖ button activate interface 2, the

graphical interface, which then presents the optimization results step by step through

the clicking of ―Steps‖ button.

42

Figure 4.8 Control Interface and 2D Graphical Interface in VB.Net

4.4 Case Studies

In this section, three case studies are presented. Case one is a simple example to

demonstrate the basic idea of how the designed system works. Case two and case

three present more complex scenarios, in which complicated travelling paths are

presented.

4.4.1 Case One

Case one contains two obstacles, ISBL1001 and ISBL1002, as shown in Figure 4.9

(Coordinates are plotted in Excel). The coordinates of ISBL1001, ISBL1002, the

lifted object’s start point and end point are given in Table 4.1. The coordinates in

Table 4.1 are first input into the MS Access database ―Case1.accdb‖, and the

calculations are conducted in the programming system. During the calculations,

multiple communications occur between database and programming environment

(Figure 4.10).

43

Figure 4.9 Case One Scenario

Table 4.1 Coordinates Case One Inputs

 Node 1 Node 2 Node 3 Node 4

ISBL1001 (4,5) (3,8) (8,8) (9,5)

ISBL1002 (14,10) (14,15) (16,15) (16,10)

Lifted Object at Start
Point

(1,1) (1,2) (2,2) (2,1)

Lifted Object at End
Point

(18,16) (18,17) (19,17) (19,16)

Original Data

MS Access Database

Programming

Environment

2D graphic

Optimization

Data Switching

 Figure 4.10 Implementation of Case One

44

After the shortest path is found, the results are written in database table

―tblSPNodes‖ (Figure 4.11). Those polygons whose ―BoundaryGroup‖ numbers are

less than 100 are obstacles, the start point, and end point, while those which are

bigger than 100 represent the lifted object on the shortest path. These results as

stated in Figure 4.11 can be plotted automatically in the 2D graphical interface

(Figure 4.12). By clicking the button ―Steps‖, the system shows the path step by step.

Figure 4.11 Results in Database

Figure 4.12 2D Graphic Presentation of Case One Results

Case one successfully presented a simple motion of a lifted object. However, the two

obstacles are far from each other, and the traveling and rotation through the path are

45

quite simple. The second case will demonstrate a more complicated scenario in

which obstacles are very close, and the travelling path is more complex.

4.4.2 Case Two

Case two brings out a more congested workspace. Table 4.2 shows the coordinates

of the obstacles and lifted object at pick point and end point. The coordinates in

Table 4.2 can be plotted in Excel which results in Figure 4.14. It can be easily seen

that the shortest path is the red dashed line from the start point to the end point.

Table 4.2 Coordinates Case Two Inputs

 Node 1 Node 2 Node 3 Node 4

ISBL1001 (1,1) (1,10) (5,10) (5,1)

ISBL1002 (1,12) (1,16) (5,16) (5,12)

ISBL1003 (6.2,7) (6.2,9) (11,9) (11,7)

Lifted Object at Start
Point

(7,5) (7,6) (9,6) (9,5)

Lifted Object at End
Point

(1,10) (1,11) (3,11) (3,10)

Figure 4.13 Case Two Scenario

The user-defined parameters are entered as inputs (See Figure 4.14 ―Case Two

Scenario‖). After running the program, a detailed path is obtained (Figure 4.16). In

order to show the path clearly, in Figure 4.16, eight steps are presented to show the

46

moving process. Also, if the user does not want too many occurrences of rotation of

the lifted object during the path, he can reduce the value of ―Rotation-Translation

Limitation‖ or increase the ―Weight of Connection between Layers‖. By reducing the

value of ―Rotation-Translation Limitation‖, fewer nodes are connected between

successive layers; by increasing the value of ―Weight of Connection between Layers‖,

the length of the link of two nodes from successive layers extends and when the

shortest path is searched, the algorithm will automatically eliminate the path which

involves more rotations. Figure 4.15 shows the test when reducing the ―Rotation-

Translation Limitation‖ to 0.2 and Figure 4.16 shows the test when increasing the

―Weight of Connection between Layers‖ to 5. The shortest path follows the

direction of the red arrow line in both figures and it can be seen that by reducing

―Rotation-Translation Limitation‖ and increasing ―Weight of Connection between

Layers‖, the rotation of lifted object is avoided and the path is recreated.

47

The case two scenario Step 1

Step 2 Step 3

Step 4 Step 5

Step 6 Step 7

Step 8 Shortest Path

Figure 4.14 2D Graphic Presentation of Case Two Results

48

Figure 4.15 Sensitivity Test One

Figure 4.16 Sensitivity Test Two

49

4.4.3 Case Three

In case three, the only possible path involves a much more sophisticated maneuver

by the crane which elaborates on the capacity of the developed algorithm. The

coordinates of the obstacles and lifted object at its pick point and place point are

given in Table 4.3 and plotted in Figure 4.17. Then the coordinates are entered into

the database, and after running the program, the results are plotted in 2D graphic

interface (Figure 4.18). The difficulty for this moving is that the path between

ISBL1001 and ISBL1003 is narrow, and the lifted object must be rotated and then

moved through it (Step 1 to Step 5 in Figure 4.18). After the lifted object travels

through the narrow path, it is rotated again and moved to its end point (Step 6 to

Step 10 in Figure 4.18). The entire path is also shown in Figure 4.18.

Table 4.3 Coordinates Case Three Inputs

 Node 1 Node 2 Node 3 Node 4

ISBL1001 (-4, 7) (-4, 10) (5, 10) (5, 7)

ISBL1002 (1, 11.5) (1, 13) (5, 13) (5, 11.5)

ISBL1003 (6.2, 7) (6.2, 10) (11.5, 10) (11.5, 7)

ISBL1004 (-4, 3) (-4, 5.5) (5, 5.5) (5, 3)

Lifted Object at Start
Point

(2, 5.5) (2, 6.5) (4, 6.5) (4, 5.5)

Lifted Object at End
Point

(1, 10) (1, 11) (3,11) (3,10)

50

Figure 4.17 Case Three Scenario

Case Three Scenario Step 1

Step 2 Step 3

51

Step 4 Step 5

Step 6 Step 7

Step 8 Step 9

Step 10 Entire Path

Figure 4.18 2D Graphic Presentation of Case Three Results

52

4.5 Conclusions and Discussions

This system successfully implements a robotic motion planning methodology to

solve crane heavy lift path planning problem. In particular, it considers the lifted

object as a planar mobile robot and builds the C-Space for it. It can automatically

generate the shortest path for the lifted object and present the results in a 2D

graphical environment. Path feasibility and sensitivity can be tested by controlling

user-defined parameters.

In addition, according to the visibility graph as discussed in section 3.3.1, only the

start point, end point, and the vertices of C-Obstacles can be connected. So the lifted

object either travels from one node to another in the C-Space, or from one node to

another node on the edge of the same C-Obstacle. Between the two nodes, the

connection is a straight line. Therefore, this method guarantees that from the start

point to the end point, the found path is the shortest. Meanwhile, three cases

presented in this chapter present the path without collisions and the generated paths

are reasonable based on the layout situation and inputs. By varying the user-defined

parameters, the feasibility of different paths is shown. To validate the results, we

adopt the method that the lengths of different paths are calculated manually, and

then the path with the shortest distance is compared with the results generated by

the system. It has been proved that the generated paths match the results of manual

calculations.

53

CHAPTER 5: CONCLUSIONS & RECOMMENDATIONS

This chapter summarizes the contributions of the research work, along with the

limitations of this proposed method, and gives the recommendations for future work.

5.1 General Conclusions

With the utilization of cranes, the efficiency of construction has been improved

dramatically in recent decades, with increased productivity and quality, and savings of

costs and time. Today’s construction sites are generally congested, so heavy lift

planning before and during the construction process is very important for the

success of crane heavy lifts. Heavy lift planning contains several subtasks, one of

which is path planning. However, manual path planning is prone to errors. This

research is motivated by the need to develop a decision support system for the user

in order to automate heavy lift path planning. This thesis has described the

development of an automated system for heavy lift path planning, and by

implementing robotic motion planning methodology. The developed program is

implemented using Microsoft Visual Basic.Net and Microsoft Access database.

The user starts by inputting the coordinates of the obstacles and lifted object into the

database, and through communications with the database, the shortest path is

generated in the program and presented in a 2D graphical environment. The system

has proven to be effective in circumventing potential collisions of the heavy lift path

planning.

54

5.2 Research Contributions

The developed system in this research can potentially benefit the current crane heavy

lift planning in many aspects. The contributions are summarized below:

 A new approach for motion planning of heavy lift cranes: The existing

methods (Ali et al 2005; Sivakumar et al. 2003; Reddy et al. 2002) have

chosen the crane as the manipulator, considered its degrees of freedom, and

generated the configuration space for the crane. No research has been

conducted with the lifted object viewed as the manipulator (mobile robot) in

solving the construction crane path planning problem. The developed system

generates the C-Obstacle for the obstacle based on the shape of the lifted

object, automating the crane lift path planning process;

 Automated generation of the shortest and obstacle free path for crane: The

developed system can automate the process of heavy lift path planning.

According to the layout information in the database, the system automatically

finds the shortest path for the lifted object from its start configuration to end

configuration.

 Introduction of new user-defined parameters to control the aspects of the

generated path: With user-defined parameters, the user can define the

rotation step of the lifted object, and control the frequency of the

occurrences of the rotation for the lifted object through its moving trajectory;

 2D graphical path presentation interface: The 2D graphical path presentation

interface can automatically plot the found shortest path and show its details.

55

5.3 Research Limitations

The limitations of the proposed solution are discussed as follows. First, the

developed system considers only the 2D planar layout of the construction site.

Second, the found path is composed of separate nodes, and between two nodes is a

straight line. Therefore, the entire path may not be a curve and is not applicable for

crane swing operation. In this case, the user has to modify the path to a curve

manually. Third, the developed solution is designed to take care of only convex

obstacles. For concave obstacles, the user has to break them down to small convex

obstacles and then use the program.

5.4 Recommendations for Future Work

This developed system can be a foundation for many path-finding problems, such as

the followings:

 The current 2D planar path planning system can be extended to a 3D path

planning system. The elevations of the workspace may be taken into

consideration;

 Crawler crane can lift the lifted object and travel to its destination. The

developed methodology can be extended to develop a system to study the

feasibility of moving the crane on site while carrying the lifted object from

pick point to set point;

 The 2D crane path planning system can be expanded into a 3D environment

by considering the elevation of the obstacle and lifted object;

 A 3D animation model can be built by using 3D Studio Max, for the purpose

of assessing and validating the proposed algorithm.

56

 Analysis to determine the optimal buffers for lifted object and obstacles:

various factors should be considered in order to guarantee the safety of the

moving path for the lifted object. For example, wind (weather factor) may

cause the swing of the lifted object during its movements. One of solutions

for the wind factor may be adding a buffer around the lifted object or

obstacles so that the generated paths tend to be safer. Further research may

aims to develop algorithms to determine the size of the buffers considering

these safety factors.

 4D implementations: Construction project is related to schedule, and the

layout changes as the project proceeds, which may affect the generated path

planning. Therefore, in order to consider the schedule while ensure the

correctness of the generated path planning, 4D technology is proposed as a

future research recommendation, which integrates the 3D graphical model

with the construction schedule.

57

Bibliography

 Al-Hussein, M. (1999). ―An integrated system for crane selection and utilization.‖

Ph.D. thesis, Department of Building Civil & Environmental Engineering,

Concordia University, Montreal, Canada.

 Al-Hussein, M., Alkass, S., and Moselhi, O. (2000). ―D-CRANE: Database

system for utilization of cranes.‖ Canadian Journal of Civil Engineering, 27, 1130-

1138.

 Al-Hussein, M., Alkass, S., and Moselhi, O. (2005). ―Optimization algorithm for

selection and on-site location of mobile cranes.‖ Journal of Construction Engineering

and Management, ASCE, 131(5), 579-590.

 Ali, M. S., Babu, N. R., and Varghese, K., (2005). ―Collision free path planning of

cooperative crane manipulators using genetic algorithm.‖ Journal of Computing in

Civil Engineering, 19 (2), 182–193.

 Asano, T., Guibas, L., Hershberger, J., and Imai, H. (1985). ―Visibility-polygon

search and Euclidean shortest path.‖ The 26th Symposium on Foundations of Computer

Science, Portland, Oreg., October 21-23, 155-164.

 Aurenhammer, F. (1991). ―Voronoi diagrams—A survey of fundamental

geometric data structure.‖ ACM Computer Survey, 23, 3 (Sept.), 345-405.

 Bajaj, C., and Kim, M.S. (1990). ―Generation of configuration space obstacles:

Moving algebraic surfaces.‖International Journal of Robotics Research, 9(1), 92-112.

 Boles, W.W., Maxwell, D.A., Scott, W.D., Heermann, P.D., Yarborough, T., and

Underwood, J. (1995). ―Construction automation and robotics. Pathway to

implementation.‖ Journal of Construction Engineering and Management, 121(1), 143-152.

58

 Brost, R.C. (1989). ―Computing metric and topological properties of

configuration-space obstacles‖, International Conference Robotics Automation 1989, 1,

170-176.

 Cheng, M.-Y., Liang, Y., Wey, C.-M., and Chen, J.-C. (2001). ―Technological

enhancement and creation of a computer-aided construction system for the

shotcreting robot.‖ Automation in Construction, 10, 517–526.

 Collier, E. and Fischer, M., (1995) ―Four-dimensional modeling in design and

construction‖, CIFE Technical Report, No. 101, Stanford University, Stanford, CA.

 Everett, J.G., and Slocum, A.H. (1994). ―Automation and robotics opportunities:

Construction versus manufacturing.‖ Journal of Construction Engineering and

Management, 120(2), 443-452.

 Faltings, B. (1987). ―Qualitative kinematics in mechanisms‖, Proceedings of IJCAI-

87, Milan, Italy, 436-442.

 Gouzènes, L. (1984). ―Strategies for solving collision-free trajectories problems

for mobile and manipulator robots‖, International Journal of Robotics Research, 3(4),

51.

 Hanna, A. S. and Lotfallah, W. B. (1999). ―A fuzzy logic approach to the

selection of cranes.‖ Automation in Construction, 8(5), 597-608.

 Hasan, S., Al-Hussein, M., Hermann, U. H., and Safouhi, H. (2010) ―Interactive

and dynamic integrated module for mobile cranes supporting system design.‖

Journal of Construction Engineering and Management, ASCE, 136(2), 179-186.

 Hwang, Y.K., and Ahuja, N. (1992). ―Gross motion planning- A survey‖, ACM

Computing Surveys, 24(3), 219-291

59

 Kamat, V. and Martines, J. (2001). ―Visualization simulated construction

operations in 3D.‖ Journal of Computing in Civil Engineering, 15(4), 329-337.

 Kang, S. C., and Miranda, E., (2006). ―Planning and visualization for auto-mated

robotic crane erection processes in construction‖. Automation in Construction, 15

(4), 398–414.

 Kangari, R., and Halpin, D.W. (1989). ―Potential robotics utilization in

construction.‖ Journal of Construction Engineering and Management, ASCE, 115(1),

126-143.

 Kim, S.-K., Russel, J. S., and Koo, K.-J. (2003). ―Construction robot path-

planning for earthwork operations.‖ Journal of Computing in Civil Engineering, 17(2),

97–104.

 Latombe, J.C. (1991). ―Robot motion planning.‖ Kluwer Academic Publishers,

Norwell, MA.

 Lozano-Pérez, T. (1983). ―Spatial planning: A configuration space approach.‖

IEEE Transactions on Computers, 32(2), 108-119.

 Ma, Z., Shen Q., and Zhang, J. (2005). ―Application of 4D for dynamic site

layout and management of construction projects.‖ Automation in Construction, 14

(2005), 369-381.

 Mahalingam, A., Kashyap, R., and Mahajan, C. (2009). ―An evaluation of the

applicability of 4D CAD on construction projects.‖ Automation in Construction,

19(2010), 148-159.

 Manrique, J.D., Al-Hussein, M., Telyas, A., and Funston, G. (2007).

―Constructing a complex precast tilt-up-panel structure utilizing an optimization

60

model, 3D CAD and animation.‖ Journal of Construction Engineering and Management,

ASCE, 133(3), 199-207.

 Reddy, H. R., Varghese, K., (2002). ―Automated path planning for mobile crane

lifts.‖ Computer-Aided Civil and Infrastructure Engineering, 17 (6), 439–448.

 Sandor, G.N., Erdman, A.G. (1984). ―Advanced mechanism design‖, Prentice-

Hall Inc.. Vol. I and II.

 Skibniewski, M.J., and Russell, J.S. (1989). ―Robotic applications to construction.‖

Cost Engineering, 31(6), 10-18.

 Tam, C.M., Tong, K.L., and Chan, K.W. (2001) ―Genetic algorithm for

optimizing supply location around tower crane.‖ Journal of Construction Engineering

and Management, 127 (4), 315– 321.

 Tam, C.M. and Tong, T.K.L. (2003). ―GA-ANN Model for Optimizing the

Location of Tower Crane and Supply Points for High-Rise Public Housing

Construction.‖ Construction Management and Economics, 21, 257-266.

 Sawhney, A. and Mund, A. (2002). ―Adaptive Probabilistic Neural Network-

based Crane Type Selection System.‖ Journal of Construction Engineering and

Management, ASCE, 128(3), 265-273.

 Shapira, A., Lucko, G., and Schexnayder, C. J. (2007). ―Cranes for building

construction projects.‖ Journal of Construction Engineering and Management, ASCE.,

1339, 690–700.

 Shapiro, H., Shapiro, J., and Shapiro, L. (1999). ―Cranes and Derricks.‖ 3rd

Edition, McGraw-Hill, ISBN 0-07-057889-3.

61

 Sivakumar, PL., Varghese, K., and Babu, N.R. (2003). ―Automated path planning

of cooperative crane lifts using heuristic search.‖ Journal of Computing in Civil

Engineering, ASCE, 17(3), 197-207.

 Varghese, K., Dharwadkar, P., Wolfhope, J., and O’Connor, J.T. (1997). ―A

heavy lift planning system for crane lifts.‖ Microcomputers in Civil Engineering, 12

(1997), 31-42.

 Warszawski, A. (1990a). ―Expert system for crane selection construction.‖ Journal

of Construction Management and Economics, 8, 179-190.

 Warszawski, A. (1990b). ―Industrialization and robotics in building.‖ Harper &

Row, New York, N.Y.

 Warszawski, A., and Navon, R. (1998). ―Implementation of robotics in buildings:

Current status and future prospects.‖ Journal of Construction Engineering and

Management, ASCE, 124(1), 31-41.

 Zhang, P., Harris, F. C., Olomolaiye, P. O., and Holt, G. D. (1999). ―Location

optimization for a group of tower cranes.‖ Journal of Construction Engineering and

Management, ASCE, 125(2), 115-112.

