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ABSTRACT 

Crane lift path planning is time-consuming, prone to errors, and requires the 

practitioners to have exceptional visualization abilities, in particular, as the 

construction site is congested and dynamically changing. This research presents a 

methodology based on robotics motion planning to numerically solve the crane path 

planning problem. The proposed methodology integrates a database in order to 

automatically conduct 2D path planning for a crane lift operation, and accounts for 

the rotation of the lifted object during its movements. The proposed methodology 

has been implemented into a computer module, which provides a user-friendly 

interface to aid the practitioners to perform a collision-free path planning, and check 

the feasibility of the path at different stages of the project. Three examples are 

described in order to demonstrate the effectiveness of the proposed methodology 

and illustrate the essential features of the developed module.   
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CHAPTER 1: INTRODUCTION 

1.1 Research Motivation 

The efficiency of construction has been improved dramatically in recent decades due 

to the use of cranes. Efficient cranes utilization, prefabrication and on-site 

installation became possible, resulting in an improvement of the productivity and 

quality, and savings of costs and time.  Currently, cranes are widely used, and the 

mobile crane especially has dominated the North America construction sites (Shapira 

et al. 2007). Errors during heavy lift planning lead to extra costs and schedule delay. 

The heavy lift planning is carried out in the pre-construction phase with limited data 

available. The 2D CAD format (plot plans) are usually provided along with a list of 

equipment for their weights and dimensions. Based on these plot plans, a preliminary 

lift study is developed, which contains information such as the crane configuration, 

the capacity of the crane, load information, as well as a 2D elevation view where the 

clearances between the lifted object and the obstructions are checked. The lift study 

aims to answer whether and how the load can be lifted on site. 

One task of the lift study is heavy lift path planning, which tries to find a collision-

free trajectory for the lifted object among on-site obstacles from its pick location 

toward final location. Current methods for heavy lift path planning are manual and 

time-consuming (Shapiro et al. 1999) and lack reaction to the dynamic changes to the 

construction site, due to newly installed objects.  

Industrial construction projects in particular involve frequent heavy lift operations 

using mobile cranes (Figure 1.1). The need for developing a decision support system, 

to automate the crane path planning process, is quite eminent. This research presents 
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a robotic motion planning methodology to solve the crane path planning problem in 

computer environment. The designed system integrates a database and utilizes Visual 

Basic.Net programming environment in order to develop a prototype module, 

providing a user-friendly interface to aid the practitioners during the path planning 

and collision checking. Compared with existing tool CAD which is applied to check 

of the collision free path, the designed system achieves the automation of the path 

planning process, and determines the feasible solution in a more efficient way. 

1.2 Research Objectives 

This research aims to develop a decision support system to automate the process of 

heavy lift path planning. The main objectives of this research are summarized below: 

 To obtain understanding of robotic motion planning applications and crane 

heavy lift planning;   

 To explore robotic motion planning implementation in the construction field; 

 To build an algorithm and implement it as a computer program to automate 

the heavy lift path planning process; 

 To assist engineers and practitioners to avoid potential crane lifting accidents, 

and reduce the time and cost associated with path planning on construction 

sites. 
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Figure 1.1 Sample Heavy Lifts and Path Planning 

1.3 Thesis Organization 

Chapter 2 (Literature Review) provides a summary of construction crane heavy lift 

planning and robotic motion planning. In addition, the applications of both heavy 

lift planning and the applications of robotic motion planning in construction are 

introduced. 

Chapter 3 (Proposed Methodology) discusses the proposed methodology used in this 

research. First, the philosophy of motion planning in robotics is described. Then the 

detailed methods for motion planning are presented. 
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Chapter 4 (Implementation Process) discusses the development of the path planning 

system, which includes the detailed algorithms and processes used in this research. 

Three case studies are provided to represent the effectiveness of the proposed 

methodology. 

Chapter 5 (Conclusions) describes the general conclusions, main contributions, and 

some recommendations for practical applications and future research. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the applications in the following areas will be presented: 

 Heavy Lift Planning Applications for Construction Cranes; 

 4D CAD Applications in Construction 

 Automation in Construction; 

 Motion Planning in Construction. 

2.2 Heavy Lift Planning Applications for Construction Cranes  

Heavy lift planning maintains a central role in the success of crane operations, and 

errors in this process can result in extra cost and schedule delay. Eight criteria are 

identified as essential to judge the feasibility of a heavy lift planning (Varghese 1997): 

1) Availability of crane; 2) Access to site; 3) Access to lift area; 4) Location to execute 

lift; 5) Lift path clearances; 6) Capacity during lift; 7) Ground support during lift; 8) 

and removal from lift area. Although it is possible that other criteria could be present, 

these eight criteria cover the majority of issues related to heavy lift planning.  

Several efforts have been made to improve the heavy lift planning process. Many 

have focused on crane selection; for instance, Al-Hussein (1999) proposed a 

methodology for crane selection location and on-site utilization for construction 

projects, and also an optimization algorithm for selection and location of mobile 

cranes on construction sites (Al-Hussein et al. 2005). A fuzzy logic approach was 

applied to crane type selection by Hanna and Lotfallah (1999). Also, a crane selection 

tool, IntelliCranes, has been developed based on probabilistic neural networks by 

Sawhney and Mund (2002). Tam et al. (2001) and Tam and Tong (2003) applied a 
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genetic algorithm (GA) to analyze the operations of tower cranes. In addition, 

Manrique et al. (2007) described a methodology used to integrate crane selection 

algorithms and an optimization model with 3D modeling and animation for the 

selection, utilization, and location of cranes. An optimization model has also been 

developed by Zhang et al. (1999) to optimize the location of a group of tower cranes. 

A database management system was developed to assist practitioners to manage 

crane-related data by Al-Hussein et al. (2000) to house information related to cranes, 

their geometric lifting configuration specifications, and their lifting capacities based 

on the information provided by manufacturers in crane lifting capacity charts. Hasan 

et al. (2010) presented a newly automated system for preparing lift studies and 

designs for a mobile crane supporting system.  

2.3 4D CAD Applications in Construction 

4D CAD integrates the 3D graphical model with the construction schedule, which 

assists the practitioners to visualize the construction processes in a 3D environment. 

An evaluation by Mahalingam, A., et al. (2009) has shown that 4D CAD can deliver 

benefits in construction management. The concept of 4D CAD was first introduced 

by the Center for Integrated Facility Engineering (CIFE) at Stanford University. 

Compared with 3D CAD, 4D CAD imports time information into a static 3D model, 

which is able to display a construction schedule in a 3D environment. In Stanford, 

Collier and Fischer (1995) applied 4D CAD technology to a construction project. 

After that, a 4D CAD tool, CIFE 4D-CAD, was developed to generate the 4D 

model within one single environment (Mckinney et al. 1996). Wang, et al. (2004) 

developed a 4D Site Management Model+ (4DSMM+) for addressing the need for 
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linking scheduling data to a 3D computer graphics building model. Ma et al. (2005) 

proposed a 4D CAD Integrated Site Planning System (4D-ISPS) system, which 

integrates schedules, 3D models, resources and site spaces to provide 4D graphical 

visualization capability for construction site planning. 

2.4 Automation in Construction 

A survey pointed out that Japan has been a leading force in the implementation of 

automation in construction field, in terms of the number of systems under use or 

development, followed by US, Germany and UK (Warszawski and Navon 1998). In 

North America, the concept of applying robotic technology in construction emerged 

since the early 1900s (Kangari and Halpin 1989; Warszawski 1990a and 1998; Everett 

and Slocum 1994). Warszawski 1990b presented the classifications of robots for 

different uses in construction: 1) Exterior handling robots; 2) Horizontal finishers; 3) 

Vertical finishers; 4) Interior finishers. Kangari and Halpin (1989) pointed out the 

processes with best opportunities for robotic applications in construction: 1) Steel 

fabrication; 2) Painting; 3) Wall finishing; 4) Bush hammering; 5) Tunneling; 6) 

Sandblasting; 7) Concrete placement; and 8) Fireproof spraying. It was anticipated 

that automation application could result in approximately 10-15% increase in overall 

construction productivity rate (Skibniewski and Russell 1989). Robots for different 

use have been developed for the construction field (Warszawski et al. 1990). Besides 

that, some robotic methodologies are also applied into construction field, and 

robotic motion planning is one of those.  
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2.5 Robotics Motion Planning Applications in Construction 

The ultimate goal for robotics is to create autonomous robots, which can accept 

high-level descriptions of tasks and will execute these tasks without human 

intervention. (Latombe 1991). To achieve this, several problems should be 

addressed, one of which is motion planning. Motion planning aims to ensure 

collision avoidance for the moving robot(s). It also guarantees that the movements 

of the robot(s) are efficient, with respectively short moving distance and without 

unnecessary movements. There are many types of motion planning problem; for 

example, the robots may travel with obstacles moving at the same time. The problem 

faced in this research is a basic motion planning problem, which satisfies two 

assumptions: 1) Only one robot in the work space (see next paragraph for the 

definition of work space); 2) The locations of the obstacles are fixed.  

Terminologies which are widely used for motion planning problem are introduced 

(the stated terminologies are quoted from a survey by Hwang and Ahuja 1992). In 

robotics, the robots refer to the things that are moving, whether points, polytopes1, 

or manipulators2. When the robots move, they are constrained by their surroundings. 

The physical space in which robots and obstacles exist is called a work space. To 

represent the position of a robot of a given shape, a configuration is proposed. It 

contains a set of independent parameters that characterize the position of every 

point in the robot. These independent parameters are called degree of freedom 

(DOF). The set of all configurations is called configuration space. Configurations 

that result in collisions between the robot and obstacles are called configuration 

                                                           
1
 Polytopes are polygons in 2D or polyhedral in 3D. 

2
 A manipulator is a mechanical arm consisting of links and joints. 
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obstacle (C-Obstacle). The free space refers to parts of the configuration space for 

which the robot does not collide with any obstacle. In general, the motion planning 

problem is consists of two steps: 1) convert the work space to a configuration space; 

and 2) search for the collision-free path for the robot from its starting configuration 

to ending configuration through the configuration space. These two parts will be 

introduced in section 2.3.1 and 2.3.2 respectively.  

2.5.1 Configuration Space Approach 

To solve a motion planning problem, the first step is to convert a work space to a 

configuration space, the method of which is called configuration space approach. It 

has been applied to the field of kinematics, with many applications including robotics 

path planning, packing and nesting, automated assembly, etc. The configuration 

space approach was initially proposed by Lozano-Pérez (1983), as converting the 

world space into configuration space by shrinking the object into a representing 

point. The obstacles in work space are also converted into C-Obstacles (this method 

will be detailed in section 3.2.1).  

Lozano-Pérez’s (1983) proposed a method called obstacle growth to generate the 

configuration space by using Minkowski point-set operations, which is widely used in 

the motion planning problem. The core idea is to reduce the shape of the robot to a 

representing point, create the C-Obstacles, and search the path for this representing 

point. This method simplifies the path planning problem, avoiding checking all the 

possible collisions between the entire shape of the robot and the obstacles. This 

method was further developed by other researchers (Like Gouzènes 1984). The 

creation of C-Obstacles considers the degree of freedom (DOF) of the robot. It has 

been stated that the configuration space approach could become complicated 
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(Hwang and Ahuja 1992). For example, for a rigid robot in 3D environment, it needs 

six degree of freedom (DOF) to define the configuration of the robot, so 

consequently the C-space will be 6-dimensional. In this case, representing the C-

space with a grid requires 1012 points for a resolution of 100 points per dimension, 

which is challenging. 

2.5.2 Motion Planning Approaches 

Motion planning approaches are implemented in order to find the path for the robot 

from the initial configuration to the goal configuration. Latombe (1991) reviewed the 

classic work of motion planning approaches. The common methods are roadmap, 

cell decomposition, and potential field.  

The Roadmap method aims to capture the connectivity of the robot’s free space in a 

network of one-dimensional curves. Two typical types of roadmaps exist: Visibility 

graph (Asano 1985), and Voronoi diagram (Aurenhammer 1991). A visibility graph is 

composed of nodes, the initial and goal configurations of the robot, and all the C-

Obstacle vertices. The feasible path for the robot is searched through the 

connections among these nodes. A voronoi diagram creates a buffer around the C-

Obstacles, and yields the path for the robot outside of the buffers. This method 

increases the clearance between the robot and the obstacles.  

Cell decomposition decomposes the free space into small regions, called cells, then 

connects the adjacent cells, and at last the path planning can be conducted between 

adjacent cells rather than individual points. Cell decomposition can be categorized 

into the exact cell decomposition and approximate cell decomposition methods 

(Latombe 1991). 
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Potential field proposes that the goal configuration can generate an ―attractive force‖, 

which drags the moving robot toward it, while the C-Obstacles produce a repulsive 

force which forces the moving robot away from the C-Obstacles. Both ―attractive 

force‖ and the ―repulsive force‖ affect the moving robot at the same time and 

consequently determine its direction of motion. 

2.5.3 Motion Planning Applications in Construction Cranes 

One field of application for automation in construction is to apply robotic motion 

planning methodology to solve construction problems. Two examples of 

achievements of robotic motion planning applications in construction are the 

creation of a computer-aided construction system for a shotcreting3 robot (Cheng et 

al. 2001), and robot path-planning for earthwork operations in construction (Kim et 

al. 2003). Also, robotic motion planning has been implemented to handle crane lift 

path planning problem. Researchers like Ali et al. (2005) and Sivakumar et al. (2003) 

solved cooperative crane lifts path problem by using motion planning method. 

Different search path methods have been used (Ali et al. 2005 used a genetic 

algorithm (GA); Sivakumar et al. 2003 applied a heuristic search). Reddy et al. (2002) 

developed a system for automated path planning for single mobile crane lifts using 

the AutoCAD environment and AutoLisp. A virtual crane model has been built for 

visualization of erection processes and erection schedule by using robotic motion 

planning (Kang and Miranda 2006). To our knowledge, most of the previous works 

considered the crane and the lifted object as a manipulator. Based on its degree of 

freedom (DOF), the corresponding configuration space is generated. For each 

                                                           
3
 Shotcrete is a construction technique, which conveys the concrete through a host and 

projects it at high velocity onto a surface. 
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configuration of the manipulator, the interference detection is conducted to check 

whether the configuration collides with the obstacles. Eventually by implementing 

various search methods, the path is obtained. The algorithm introduced in this thesis 

views the lifted object as the manipulator, and generates the C-Obstacles. Instead of 

detecting the interference among all configurations, the path is searched through the 

free space. 
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CHAPTER 3: PROPOSED METHODOLOGY 

3.1 Overview 

This research is based on the approach as shown in Figure 3.1. A set of inputs (for 

example, capacity of the crane, coordinates of the obstacles, etc.) are considered. The 

main process combines robotic methodology with current construction practice and 

develops an algorithm, which is implemented in a computer environment. The 

outputs of this research are feasible path for crane operations, path sensitivity 

analysis, and modified path, which are subjects to the criteria (for example, the 

schedule of the crane lift, safety specifications, etc.). Also, two general assumptions 

are made for this research: 1) The minimum and maximum radius of the crane and 

boom clearance are represented as virtual obstacles in the moving space; and 2) Since 

most on-site obstacles of industrial construction projects are usually in rectangle 

shape, the system is designed to handle the obstacles which are convex shape. The 

concave obstacles can be divided into convex obstacles manually and input into the 

database as separate ones. 
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Figure 3.1 Overview of the Research Approach 

The main idea of the robotic methodology adopted in this research is to convert the 

lifted object to a representing point, and then corresponding C-Obstacles are 

generated. This method simplifies the path planning problem to searching the 

collision-free path for the representing point, meanwhile avoiding checking the 

clearance of the lifted object for its entire shape. This robotic methodology consists 

of three steps as stated below.  

In step one, the C-Obstacles are generated by the method called obstacle growth, 

which will be detailed in Section 3.2 (Lozano-Pérez 1983). C-Obstacles are generated 

based on the real obstacles and by the shape of lifted object, and the entire lifted 

object is represented as a representing point. No collision exists between the lifted 

object and the obstacles if the representing point travels outside or on the edges of 

C-Obstacles, otherwise, collision occurs. In this case, finding the path for the lifted 

object is equivalent to searching the path for the representing point through the C-

Obstacles.  
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The shapes of the C-Obstacles are changed if the lifted object is rotated during its 

movements. Therefore, C-Obstacles corresponding to different rotation angles of 

the lifted object should be created. The C-Obstacles corresponding to the same 

rotation angle of the lifted object are put on one layer. Then different layers are 

generated for different rotations. On each layer, the C-Obstacles are represented by 

the coordinates of their vertices, also called nodes. After all the layers are generated, 

the next step is to check the connections of the nodes on the same layer and 

between successive layers.  

Step two focuses on finding the connections between nodes on the same layer and 

between two successive layers. The method of checking the connections on the same 

layer is called a visibility graph (Asano 1985), which will be detailed in section 3.3. All 

connections, represented by their lengths, will be stored in an adjacency matrix. In 

step three, the Dijkstra’s algorithm is applied to search the shortest path based on the 

generated adjacency matrix.  

A central database is constructed to support all the calculations, which has the six 

entities (tables) (―Obstacles table‖, ―Pick table‖, ―Place point table‖, ―Convex hull 

table‖, ―Merged convex hull table‖, and ―Solution table‖). These entities (tables) 

interact, following the sequence illustrated in Figure 3.2, which includes four steps: 1) 

the user inputs the coordinates of obstacles, pick point and end point into the first 

three tables (―Obstacle tables‖, ―Pick point tables‖, and ―Place point tables‖); 2) the 

system automatically read the data and generate the C-Obstacles, and records the 

data of the C-Obstacles in the ―Convex hull table‖; 3) the program uses a library to 

modify the generated C-Obstacles, and the information in the merged ―Convex hull 
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database‖ is used to check the connectivity and consequently find the feasible path; 

and 4) the final solution is presented in a 2D graphical interface. 

Obstacle 

table

Pick point 

table

Place point 

table

Convex hull 

table

Merged 

convex hull 

table

Solution 

table

Data input
Database

C-Obstacle

Creation

C-Obstacle

Modification

Check Connectivity

Find Feasible Path

2D Graphics

Programming System

 

Figure 3.2 Database and Programming System 

3.2 Configuration Space Obstacle Creation 

3.2.1 Overview 

The basic idea of creating C-Obstacles is to reduce the lifted object into a 

representing point, and grow the obstacles by the shape of the lifting object. For 

example, as shown in Figure 3.3, there is a triangular lifted object A, and a 

rectangular obstacle B. To generate the C-Obstacle for B, the first step is to choose 

one vertice as the representing point (in this case, the top vertice of the lifted object 

is chosen as the representing point). The second step is to grow obstacle B by the 

shape of A. Consequently, the problem of finding a path for A relative to B is 

equivalent to finding a path for the representing point relative to C-Obstacle. When 
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the representing point moves outside the boundary of the C-Obstacles, no collision 

exists between the lifted object and the obstacle; if it is on the edge of the C-

Obstacle, the lifted object is just touching the obstacle. However, the movements of 

the representing point in the C-Obstacle results in a collision. 

Choose this point 

as the representing 

point.

Lifted Object A

Obstacle B

Grow Obstacle B by the shape of  lifted Object A.

Obstacle B

C-Obstacle

 

Figure 3.3 Obstacle Growth Approach 

In practice, the rotations of the lifted object should be considered. The lifted object 

can be rotated at certain locations on a construction site, and accordingly the shapes 

of the generated C-Obstacles vary as the change of the rotation of the lifted object. 

Ideally, the method described in Figure 3.3 needs to be carried out for every possible 

rotation of lifted object to create C-Obstacles. However, to simplify the problem, C-

Obstacles are created based on a discrete rotation step, which means the lifted object 

is rotated within a defined degree discretely every time. For example, as illustrated in 

Figure 3.4, a discrete rotation step is defined as 120° (In real practice, the rotation 

step should be smaller). Then instead of considering all possible rotations from 0° to 

360°, only 3 rotations (360°/120°=3) are handled and corresponding C-obstacles are 

obtained. Each set of C-obstacles are considered as one layer and totally three layers 
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are generated, namely 0°, 120°, and 240° (Figure 3.4). If the discrete rotation step is 

less than 120°, more layers are generated since the value of (360°/discrete rotation 

step) became smaller.  

A group of layers can be generated with the defined rotation step. On each layer, the 

generated C-Obstacles are represented by the coordinates of their vertices in either a 

clockwise or counter-clockwise order. As shown in Figure 3.5, different layers 

represent the C-Obstacles corresponding to different rotation angles (in addition to 

the ―X‖ and ―Y‖ dimensions, ―rotation‖ is the third dimension). Meanwhile, nodes 

that exist on one of these layers represent the shapes of the C-Obstacles for one 

specific rotation of the lifted object. After generating all layers, the next step is to 

check the connections of the nodes on each layer and from successive layers. Section 

3.3.2 will detail the algorithm mentioned in this section before proceeding to the 

algorithm of checking the connections. 
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Figure 3.4 One Example of Creating C-Obstacles for Different Rotations 
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Figure 3.5 Combinations of Layers 

3.2.2 The Algorithms for Creating C-Obstacles 

The algorithm for generating the C-Obstacles contains four main steps: (1) Create 

vectors of the lifted object; (2) Add vectors to the obstacles; (3) Generate convex 
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hull (C-Obstacles); and (4) Loop rotation. The flowchart of the algorithm is given in 

Figure 3.6. The four steps will be discussed in detail as follows (Step#1, Step#2, 

Step#3, and Step#4). 

 

Figure 3.6 Flowchart of creating C-Obstacles  

Step# 1 Create vectors of the lifted object: The first step is to create vectors based 

on the representing point of the lifted object. As shown in Figure 3.7, ―part 1‖ 

illustrates a lifted object with 4 nodes (numbered in a clockwise order). Node 1 is 

chosen as the representing point (The representing point can be any point on the 

lifted object), and three vectors are created from the other nodes of this lifted object 

towards node 1. Generally, for any shape of lifted object, it contains n vertices 

defined by   
   

   
   

                  . The representing point is chosen and 

defined as    
   

   
   

 . Then the vectors, which point from the nodes other than 

the representing point (  
   

              ,   
   

              ) toward the 

representing point, are obtained and stated as                          , calculated 

satisfying Equations (1) and (2) respectively:  

      
   

   
   

              (1) 

      
   

   
   

                        (2) 



21 
 

Part 1:

Create vectors of  

a lifting object

Part 2:

Add vectors to 

the obstacles
One Obstacle

1’

2’

3’

One moving object

1

2 3

4
Choose node 1

As the representing

point

2 3

1 4

2’

1’ 3’

1

1

A

B

Conflict

C1

Convex Hull (Red polygon) & Obstacle (Blue triangle )

 

Figure 3.7 Step# 1 (Create vectors) & Step# 2 (Add vectors) 

Step# 2 Add vectors to the obstacles: As shown in ―Part 2‖ of Figure 3.7, an 

triangular obstacle has three nodes, 1’, 2’, and 3’. The vectors generated from ―Part 

1‖, are added to each node of the obstacle. After adding, each node is extended into 

4 nodes (includes the original node itself), so that there are 12 nodes in total. Let us 

generally assume there is one obstacle, and it has m vertices. So the obstacle can be 

presented by its vertices, which are defined as (                      ). Also, it is 

assumed that there are n vectors generated from ―Step# 1‖, denoted by           

           . Therefore, new nodes for this obstacle after adding the vectors are 

calculated by Equations (3) and (4) respectively. 

  
 
                                  

 

(3) 

  
 
                                            (4) 
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Step# 3 Generate convex hull: The addition of vectors to the obstacles generates a 

group of nodes (as shown in Figure 3.7, ―Part 2‖). The next step is to generate the 

convex hull (C-Obstacle), which embraces all the nodes generated from ―Step# 2‖. 

as shown by the red polygon in Figure 3.7, the convex hull contains all the nodes 

from ―Part 1‖ within or on its edges. Meanwhile, the obstacle is shown as the light 

blue triangle. Since node 1 has been chosen as the representing point, so if it travels 

outside or on the edge of the convex hull, as the yellow nodes of cases ―A‖ and ―B‖ 

in Figure 3.7, there is no collision between the lifted object and the obstacle. On the 

other hand, if node 1 enters the convex hull, as the yellow node of case ―C‖ in 

Figure 3.7, collision occurs. The process of generating the convex hull is discussed as 

below. 

In Figure 3.8 ―Procedure 1‖, we assume that there are many generated nodes, and 

intend to find a boundary (convex hull) to embrace all these nodes. There are 4 sub-

steps to generate the convex hull. First, the leftmost node is detected among all the 

existed nodes with the minimum x coordinate (Node A in ―Procedure 1‖ in Figure 

3.8). Node A is denoted by (     ). Then a positive real number d is deducted from 

  , and node B is obtained by (       ), shown as the red node in ―Procedure 1‖ 

in Figure 3.8. A horizontal line segment is created by linking nodes A and B. Then 

Node A is connected to nodes on its right side sequentially, and for each connection, 

the connection line segment is denoted by AC. The different clockwise angles BACs 

are obtained, and smallest one can be found. The node which gives the smallest BAC 

angle is marked as one of the vertices of the convex hull. Also, node A in 

―Procedure 1‖ is noted as a node on the edge of the convex hull (C-Obstacle). 
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Figure 3.8 Creation of Convex Hull 

In ―Procedure 2‖, node A in ―Procedure 1‖ will be renamed as node B, and the node 

which gives the smallest BAC in ―Procedure 1‖ will be renamed as node A in 

―Procedure 2‖. Then the method described in ―Procedure 1‖ is repeated and a new 

node C can be detected and marked. By continuing this method, all the vertices of 

the convex hull, shown as the yellow nodes in ―Procedure 3‖, will be detected one by 

one until the starting node (node A in ―Procedure 1‖) is reached. Eliminating other 

nodes inside and connecting the outer nodes gives the shape of the convex hull, 

which is the C-Obstacle. The algorithm of calculating any clockwise BAC angle (Ө) 

through the process of finding convex hull is introduced in the following paragraph. 

It is assumed that the coordinates of node A are (     ), of node B are (     ), and 

of node C are (     ). Then two vectors are created,                      , by Equations (5) 
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and (6). The dot product and cross product of                       are calculated using 

Equations (7) and (8), and the norms are determined by Equations (9) and (10). 

Equations (11) and (12) give the values of      and     . 

                       
 

(5) 

                       
 

(6)       

                                                  
 

(7) 

                                                       

                                                                       
 

(8) 

                                 (9) 

 

                                 
 

        
(10) 

 

     
                 

                         
 

 

(11) 

     
                 

                         
 

 

(12) 

          (13) 

Equation (13) calculates the clockwise angle of                       , ranging from 0° to 

180°. If the clockwise angle is bigger than 180°, the clockwise angle equals to (360°-

α). sine α will be checked with sine Ө to determine clockwise BAC angle by the 

following check condition: if sine α does not equal to sine Ө, the clockwise angle 

equals to α, otherwise, the clockwise angle equals to (360°-α). 

Step#4 Loop Rotation: The key to generating C-Obstacles for different rotations is 

to find the shape of the lifted object with different rotations, depicted by the 

coordinates of its nodes, and then to repeat the algorithm described in ―Step#1‖, 
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―Step#2‖, and ―Step#3‖. The algorithm to find the shape of the rotated lifted object 

is implemented based on the rotation matrix. In 2D, the rotation matrix 

(counterclockwise rotation) has the form shown in Equation (14). If the lifted object 

is in the shape of a rectangle and depicted by its four nodes (     ) (i=1,2,3,4), and 

the first node (      ) is chosen as the representing point. Then the relevant 

coordinates of the vectors from the four nodes towards the representing point are 

calculated satisfying Equations (15) and (16). Also, if the rotation step (see section 

3.2.1 for rotation step) equals to α, then n possible rotations of the lifted object exist. 

n is calculated by Equation (17). So for each possible rotation (j×α), the new 

coordinates for the lifted object are (             ) (i=1,2,3,4), calculated from 

Equation (18). After calculating the new coordinates of the lifted object, ―Step#1‖, 

―Step#2‖, and ―Step#3‖ are repeated to generate the C-Obstacle.  So with j changes 

from 1 to n, n times of generations for C-Obstacles are looped though. After all the 

C-Obstacles are calculated, the checks of connections between nodes will be 

discussed in the following section. 

      
         
        

  

 

(14) 

                          
 

(15) 

                         
 

(16) 

  
   

 
 

(17) 

 
     

     
   

                 

                
    

      
      

                            (18) 
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3.3 Methodology of Connection Checking 

3.3.1 Connecting Nodes of the Same Layer 

The generated C-Obstacles are represented by nodes on various layers, and this 

section focuses on the method of finding the connections between the nodes on the 

same layer. The corresponding methodology is to generate a visibility graph (Asano, 

1985). The visibility graph should meet the following conditions: 1) Only the start 

point, end point, and the nodes of C-Obstacles can be connected; 2)Two nodes are 

connected if and only if the connecting line segment is an edge of a C-Obstacle or it 

does not intersect any C-Obstacle. 

Start Point

End Point

C-Obstacle

C-Obstacle

C-Obstacle

 

Figure 3.9 Visibility Graph 

Figure 3.9 shows an example of a visibility graph, in which only the start point, end 

point, and the nodes of the C-Obstacles are considered for possible connections. 

The feasible paths, from the start point to the end point consist of the dash lines as 
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well as the edges of the C-Obstacles. Among these paths, the one with the shortest 

distance is the shortest path. The basic problem when generating a visibility graph is 

to check whether two specific nodes (nodes of the generated C-Obstacle or start 

point or end point) can be connected or not. The situation that two nodes cannot be 

connected occurs when the connection collides with the C-Obstacle(s), which is 

checked by the following algorithm: Two nodes that are tested whether can be 

connected are first linked as a line. Then the line is checked with every edge of the C-

Obstacles (the edge is also a line segment). If any intersection between the line and 

one of the edges exists, it means these two points cannot be connected, otherwise 

the connection is linked. So the core algorithm for building a visibility graph is to 

check the relationship of two line segments. The following paragraph will detail the 

algorithm mathematically.  

It is assumed that two line segments are to be tested for intersection,    and   . 

Each has two end points,    and    for   , and    and    for   . All four end 

points are denoted by                           . Vectors                 are 

created by Equations (19) and (20).              , represent the directions of the two 

line segments, L1 and L2. Equations (21) and (22) gives any two lines which parallel 

with       and      respectively. Equation (23) is used to check the intersection of Line1 

and Line2, and it can be rewritten as Equation (24).     ,      ,    and   in Equation (24) 

are replaced by the values of their x and y coordinates, which gives Equations (25) 

and (26). These two equations can be written as Equation (27) by matrixes. At last, 

the values of α and β are calculated by Equation (28). If α and β are both between 0 

and 1, it means that L1 and L2 intersect somewhere in the middle of both line 
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segments; If any of them is bigger than 1 or less than 0, that means the two lines 

intersect somewhere on the extension of either L1 or L2, or both; If two lines are 

parallel, there will not be any result for α and β. (Table 4.1) 
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            A*= 
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  |A|= (     ) × (     )-(      ) × (     ) (|A|=0 if    and    are 
parallel) 

(28) 

 

Table 3.1 Intersection Checking Conditions 

Relationships of two line 
segments 

Conditions 

Intersection                   
Parrallel         

Non-Intersection and Non-
parallel 
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3.3.2 Connecting Nodes between Layers 

After finding connections among nodes on each layer, the next step is to connect the 

nodes between layers. The connection between two nodes on two different layers 

represents the rotation of the lifted object, and if these two nodes have different x 

and y coordinates, this connection also indicates a translation for the lifted object. 

However, the idea of layers converts the continuous rotating process of the lifted 

object to discrete rotations. One connection between any two layers represents a 

discrete motion of the lifted object. For each connection between two layers, the 

lifted object rotates from one angle to another, and meanwhile travels a distance (if 

there is horizontal movement), without considering the gradual rotating and 

horizontal traveling between the two layers. In other words, the initial and final 

orientations of the lifted object do not cause collision with obstacles. However, 

during the rotation, the collision may happen. Therefore, in order to minimize the 

risk of collision while performing the rotation step between two layers, it is assumed 

that only two nodes from successive layers can be connected, which guarantees the 

minimal rotation between layers. Also, the translation distance involved in any 

discrete motion between two layers is kept under a small unit. In addition, if two 

nodes from successive layers can be connected, a value is assigned to the connection 

as its length. Nonetheless, the value of the length has different unit since the motion 

between two successive layers involves a rotation.  

Figure 3.10 represents the ideas from the previous paragraph. There are two 

successive layers, with nodes on layer A being marked as blue and nodes on layer B 

being marked as red. We try to find whether node 1 and node 2 can be connected. 

Layer A is overlaid on layer B, and the planar distance k between node 1 and node 2 
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can be calculated. If k is less than an accuracy parameter a, we consider this 

translation is safe and therefore node 1 and node 2 can be connected, otherwise, the 

connection is rejected. A length parameter is assigned as the value of the length for 

the connection of node 1 and node 2. In section 4.3, the user-defined parameters will 

be introduced relating to the length of the connection as well the accuracy parameter. 

A

B

Overlay layer A on layer B

Node1

Node2

Node2

Node1

The horizontal distance 

between  node 1 and node 2 

is k.

The nodes on layer A are marked 

as blue; the nodes on layer B are 

marked as red.

If  k≤ accuracy 

parameter a, then node 1 

and node 2 can be 

connected

A

B

Node1

Node2

Node 1 and node 2 are linked 

and the link’s length equals to 

length parameter b.

 

Figure 3.10 Process of Finding the Link of Two Nodes from Successive 
Layers 
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Y

 

Figure 3.11 Connection Network 
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All the connections from same layer and between successive layers form a network 

as shown in Figure 3.11. In Figure 3.11, nodes with different colors represent nodes 

on different layers, and they are connected on the same layer or on successive layers 

(black dash lines). In addition, some red dash lines present the connections of the 

nodes between the bottom layer and the top layer. All the connections from each 

layer and between successive layers are stored in a m×m adjacency matrix M 

(Equation (28)), where Cij is used to present the length of the connection between 

two nodes from the connection network (Figure 3.11). If two nodes (For example 

node 1 and node 2) can be connected, then C12 and C21 have the same value. The 

entries of the matrix that represent the connections that do not exist (for example, 

two nodes that cannot be connected) as well as the entries on the main diagonal are 

assigned an infinite real number. 

                    

 

 
 
 
 
 
 
 
 

         
         
         

 

                 
                 
                 

   
                     

                     

         

 

                             

                             

                  
 
 
 
 
 
 
 

 

 

 
 
 
 
(28) 

3.4 The Methodology of Finding a Feasible Path 

Based on the adjacency matrix M (Equation (28)), the shortest path from the start 

node to the end node can be found by Dijkstra’s algorithm. Dijkstra’s algorithm has 

been proved efficient in many academic and practical fields. The basic idea of this 

method is to calculate the shortest distance from the start node to every other node 

(we name it as forward part), and then search the feasible path from the end point 
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backwards (we call it backward part). The process of implementing the Dijkstra’s 

algorithm forward part is described in Figure 3.12 and briefly reviewed here. After 

implementing the forward part, a distance array N (Equation (29)) is generated. In 

distance array N, L0j (j=0, 1, 2, 3, ..., n) represents the distance from node 0 (start 

node) to node j. 

                  

                                          

         
 (29) 

  
After the Dijkstra’s algorithm forward part, the shortest distance from the start node 

to every other node is found. By applying the Dijkstra’s algorithm backward part, the 

shortest path can be obtained. The flowchart of the backward part is pictured in 

Figure 3.13. The results will be stored in the path array P in sequence. Equation (30) 

is an example of path array P. According to Equation (30), the shortest path is: the 

lifted object starts from node 0 (start node), travel through nodes (travel from node 

4 to node 9 for example) following the sequence in which they are recorded, and 

finally reaches node 40 (end node). 

                                 (30) 
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Note:  
1. Current node: The node that is chosen to calculate the distance value of its neighbor 

nodes; 
2. Distance value: The value of distance from the current node to node i, denoted by 

Di ; Distance value of current node is denoted by Dcurrent ; 
3. Neighbor nodes: The nodes whose distances to current node are not infinity in each 

loop; 
4. Distance: Distance between current node and node i, denoted by di ;  
5. Visited nodes: The set of calculated current nodes, denoted by Nvisited ; 
6. Unvisited nodes: Assume that all the nodes are presented by set Nall, and the 

unvisited nodes are presented by set Nunvisited, which equals to (Nall − Nvisited) ; 
7. Start node: The position where the lifted object is picked in C-space; 
8. End node: The position where the lifted object is located in C-space. 

 

Figure 3.12 Flowchart of Forward Part of Dijkstra’s Algorithm 
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Note:  

1. L0j : The distance from node 0 (start node) to node j ; 
2. Distance value: The value of distance from the current node to node i, denoted by 

Di ; 
3. Neighbor nodes: The nodes whose distances to end node are not infinity in each 

loop;  
4. Distance: Distance between current node and node i, denoted by di ;  
5. Path array P: shortest path (the results) stored in sequence from start node to end 

node. 
 

Figure 3.13 Flowchart of Backward Part of Dijkstra’s Algorithm 

3.5 Summary and Conclusions 

In this Chapter, the methodology and algorithm for this research has been presented. 

The method implemented to solve the crane heavy lift path planning is robotic 

motion planning. Generally, the significance of this method is to convert the shape 

of lifted object into a single point (a representing point), and find the traveling path 

for it. This method avoids checking the clearance for the entire shape of the lifted 

object. The implementation of this method can be divided into three parts. First, as 
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discussed in section 3.2, the C-Obstacles are built based on the method obstacle 

growth. For one specific rotation of the lifted object, the corresponding C-Obstacles 

are generated and presented on one layer by the coordinates of their vertices, also 

known as nodes. Different layers are formed based on various rotations of the lifted 

object. Second, as described in section 3.3, the connections of the nodes from the 

same layer or from successive layers are detected. On each layer, two nodes can be 

connected if the connection does not collide with any C-Obstacle. For two nodes 

from successive layers, they can be connected only if the planar distance between 

them is small enough to meet the safety requirement. These found connections are 

stored in an adjacency matrix. Third, section 3.4 introduces the Dijkstra’s Algorithm 

to search the shortest path based on the adjacency matrix. It consists of two parts, 

forward part as well as backward part. In forward part, the minimum distance 

between each node and the start node is calculated; the backward part searches the 

path from the end node to start node based on the distance values obtained from 

forward part.  

Meanwhile, two assumptions are made for the connections between layers. First, 

when checking the connections of the nodes, only two nodes from successive layers 

can be connected. Second, two nodes from successive layers can be connected only 

if the planer distance between them meet the safety requirement. The rotations of 

the lifted object are considered as discrete steps between successive layers. So it 

raises a limitation that the rotating and moving process between two successive 

layers is unknown. However, these two assumptions simplify the continuous rotating 

processes, and reasonable considerations of these two assumptions are discussed in 
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section 3.3.2. The implementation of the method and algorithms will be presented in 

the following chapter. 
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CHAPTER 4: IMPLEMENTATION PROCESS 

This chapter presents the implementation process of the methodology stated in 

chapter 3. First, the structure of the developed system will be introduced. It is 

followed by three case studies to present the performance of the designed system.  

4.1 Overview 

As illustrated in Figure 4.1, the process starts with entering basic data and user-

defined parameters. Following that, through communications between the database 

and the programming environment, the shortest path is calculated and entered into 

database table ―tblSPNodes‖. Finally, the results are presented in a 2D graphical 

environment.  
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Figure 4.1 Implementation Process 
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4.2 Database Implementation 

The database used in this research project has been constructed in Microsoft Access 

2007. It consists of six tables, namely: (1) ―tblBoundaries‖; (2) ―tblconvexhull‖; (3) 

―tblconvexhullaftermerging‖; (4) ―tblENDobject‖; (5) ―tblObject‖; and (6) 

―tblSPNodes‖. These tables are further explained as the following: 

1. ―tblBoundaries‖ (Figure 4.2) contains the data of the obstacles. ―ProjRevID‖ 

is the project ID; ―BoundaryGroup‖ defines the names of obstacles, for 

example ―ISBL1001‖ is the first obstacle; ―BoundaryPointID‖ presents the 

serial number of the nodes of obstacles; and ―X‖ and ―Y‖ define the 

coordinate of each node. 

 

Figure 4.2 Structure of Database Table “tblBoundaries” 

2. ―tblconvexhull‖ (Figure 4.3) contains the data of C-Obstacles. ―HullId‖ is the 

data ID; ―ObjectID‖ defines which lifted object is chosen to create the C-

Obstacles; ―BoundaryGroup‖ presents the names of the C-Obstacles; 

―BoundaryPointID‖ presents the serial number of nodes for different C-

Obstacles; ―Rotation‖ determines the rotation angle of the lifted object that 

each layer represents; and ―X‖ and ―Y‖ define the coordinate of each node. 
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Figure 4.3 Structure of Database Table “tblconvexhull” 

3. ―tblconvexhullaftermerging‖ (Figure 4.4) contains the data of the merged C-

Obstacles. As discussed before, when creating C-Obstacles, C-Obstacles may 

overlap. After merging those which overlap, the data of the new C-Obstacles 

are entered into ―tblconvexhullaftermerging‖. The structure of this table is 

the same as table ―tblconvexhull‖. 

 

Figure 4.4 Structure of Database Table “tblconvexhullaftermerging” 

4. ―tblENDobject‖ and ―tblObject‖ (Figure 4.5 and 4.6) contain the data of the 

start point and end point of the lifted object. ―OBJECT‖ is an auto number 

generated by the database system, which is not used in the calculations; 
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―ObjectID‖ determines the lifted object ID; ―NODE‖ presents the vertices 

of the lifted object; ―X‖ and ―Y‖ state the coordinates of each node.  

 

Figure 4.5 Structure of Database Table “tblENDObject” 

 

Figure 4.6 Structure of Database Table “tblObject” 

5. ―tblSPNodes‖ (Figure 4.7) contains the results (shortest path). ―ID‖ is 

autonumber generated by the database system; ―BoundaryGoup‖ indicates 

the results. ―X‖ and ―Y‖ describe the coordinates of the different nodes. 

 

Figure 4.7 Structure of Database Table “tblSPNodes” 

4.3 The Implementation of the Program 

The developed algorithm has been constructed in Microsoft Visual Basic.Net 

(VB.Net), which communicates with Microsoft Access. The program contains two 
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interfaces, namely a control interface and a 2D graphical interface (Figure 4.8). In the 

control interface, the user can input parameters (―Rotation Step‖, ―Rotation-

Translation Limitation‖, ―Weight of Connection between Layers‖, and ―Relative 

Rotation‖). These four parameters are defined as following: 

 Rotation step: Defines the rotation interval of the lifted object. If the 

―Rotation step‖ is x, the number of layers equals to (360°/x). 

 Rotation-Translation Limitation: Defines an accuracy parameter (as 

mentioned in section 3.3.2). If the planar distance between two nodes from 

successive layers is less than this parameter, then these two nodes can be 

connected; 

 Weight of Connection between Layers: Determines the length of the 

corresponding connection if two nodes from successive layers can be 

connected.  

 Relative Rotation: Determines the relative angular position of the lifted 

object at the end point with respect to the start point. This angle is in degrees 

and is measured in the counter-clockwise direction. 

By clicking the ―Convex Hull‖ button, the C-Obstacles are generated and the 

overlapping C-Obstacles are handled. Then the ―Shortest Path‖ button carries out 

the function of searching for the shortest path by implementing Dijkstra’s algorithm. 

After the optimal solution is found, the ―Graphics‖ button activate interface 2, the 

graphical interface, which then presents the optimization results step by step through 

the clicking of ―Steps‖ button. 
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Figure 4.8 Control Interface and 2D Graphical Interface in VB.Net  

4.4 Case Studies 

In this section, three case studies are presented. Case one is a simple example to 

demonstrate the basic idea of how the designed system works. Case two and case 

three present more complex scenarios, in which complicated travelling paths are 

presented. 

4.4.1 Case One 

Case one contains two obstacles, ISBL1001 and ISBL1002, as shown in Figure 4.9 

(Coordinates are plotted in Excel). The coordinates of ISBL1001, ISBL1002, the 

lifted object’s start point and end point are given in Table 4.1. The coordinates in 

Table 4.1 are first input into the MS Access database ―Case1.accdb‖, and the 

calculations are conducted in the programming system. During the calculations, 

multiple communications occur between database and programming environment 

(Figure 4.10). 
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Figure 4.9 Case One Scenario 

Table 4.1 Coordinates Case One Inputs 

 Node 1 Node 2 Node 3 Node 4 

ISBL1001 (4,5) (3,8) (8,8) (9,5) 

ISBL1002 (14,10) (14,15) (16,15) (16,10) 

Lifted Object at Start 
Point 

(1,1) (1,2) (2,2) (2,1) 

Lifted Object at End 
Point 

(18,16) (18,17) (19,17) (19,16) 

 

Original Data

MS Access Database

Programming 

Environment

2D graphic

Optimization

Data Switching

 

 Figure 4.10 Implementation of Case One 
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After the shortest path is found, the results are written in database table 

―tblSPNodes‖ (Figure 4.11). Those polygons whose ―BoundaryGroup‖ numbers are 

less than 100 are obstacles, the start point, and end point, while those which are 

bigger than 100 represent the lifted object on the shortest path. These results as 

stated in Figure 4.11 can be plotted automatically in the 2D graphical interface 

(Figure 4.12). By clicking the button ―Steps‖, the system shows the path step by step. 

 

Figure 4.11 Results in Database 

 

Figure 4.12 2D Graphic Presentation of Case One Results 

Case one successfully presented a simple motion of a lifted object. However, the two 

obstacles are far from each other, and the traveling and rotation through the path are 
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quite simple. The second case will demonstrate a more complicated scenario in 

which obstacles are very close, and the travelling path is more complex. 

4.4.2 Case Two 

Case two brings out a more congested workspace. Table 4.2 shows the coordinates 

of the obstacles and lifted object at pick point and end point. The coordinates in 

Table 4.2 can be plotted in Excel which results in Figure 4.14. It can be easily seen 

that the shortest path is the red dashed line from the start point to the end point.   

Table 4.2 Coordinates Case Two Inputs 

 Node 1 Node 2 Node 3 Node 4 

ISBL1001 (1,1) (1,10) (5,10) (5,1) 

ISBL1002 (1,12) (1,16) (5,16) (5,12) 

ISBL1003 (6.2,7) (6.2,9) (11,9) (11,7) 

Lifted Object at Start 
Point 

(7,5) (7,6) (9,6) (9,5) 

Lifted Object at End 
Point 

(1,10) (1,11) (3,11) (3,10) 

 

Figure 4.13 Case Two Scenario 

 

The user-defined parameters are entered as inputs (See Figure 4.14 ―Case Two 

Scenario‖). After running the program, a detailed path is obtained (Figure 4.16). In 

order to show the path clearly, in Figure 4.16, eight steps are presented to show the 
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moving process. Also, if the user does not want too many occurrences of rotation of 

the lifted object during the path, he can reduce the value of ―Rotation-Translation 

Limitation‖ or increase the ―Weight of Connection between Layers‖. By reducing the 

value of ―Rotation-Translation Limitation‖, fewer nodes are connected between 

successive layers; by increasing the value of ―Weight of Connection between Layers‖, 

the length of the link of two nodes from successive layers extends and when the 

shortest path is searched, the algorithm will automatically eliminate the path which 

involves more rotations. Figure 4.15 shows the test when reducing the ―Rotation-

Translation Limitation‖ to 0.2 and Figure 4.16 shows the test when increasing the 

―Weight of Connection between Layers‖ to 5. The shortest path follows the 

direction of the red arrow line in both figures and it can be seen that by reducing 

―Rotation-Translation Limitation‖ and increasing ―Weight of Connection between 

Layers‖, the rotation of lifted object is avoided and the path is recreated.  
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The case two scenario Step 1 

  
Step 2 Step 3 

  
Step 4 Step 5 

  
Step 6 Step 7 

  
Step 8 Shortest Path 

Figure 4.14 2D Graphic Presentation of Case Two Results 
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Figure 4.15 Sensitivity Test One 

 

Figure 4.16 Sensitivity Test Two 
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4.4.3 Case Three 

In case three, the only possible path involves a much more sophisticated maneuver 

by the crane which elaborates on the capacity of the developed algorithm. The 

coordinates of the obstacles and lifted object at its pick point and place point are 

given in Table 4.3 and plotted in Figure 4.17. Then the coordinates are entered into 

the database, and after running the program, the results are plotted in 2D graphic 

interface (Figure 4.18). The difficulty for this moving is that the path between 

ISBL1001 and ISBL1003 is narrow, and the lifted object must be rotated and then 

moved through it (Step 1 to Step 5 in Figure 4.18). After the lifted object travels 

through the narrow path, it is rotated again and moved to its end point (Step 6 to 

Step 10 in Figure 4.18). The entire path is also shown in Figure 4.18.  

Table 4.3 Coordinates Case Three Inputs 

 Node 1 Node 2 Node 3 Node 4 

ISBL1001 (-4, 7) (-4, 10) (5, 10) (5, 7) 

ISBL1002 (1, 11.5) (1, 13) (5, 13) (5, 11.5) 

ISBL1003 (6.2, 7) (6.2, 10) (11.5, 10) (11.5, 7) 

ISBL1004 (-4, 3) (-4, 5.5) (5, 5.5) (5, 3) 

Lifted Object at Start 
Point 

(2, 5.5) (2, 6.5) (4, 6.5) (4, 5.5) 

Lifted Object at End 
Point 

(1, 10) (1, 11) (3,11) (3,10) 
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Figure 4.17 Case Three Scenario 

  
Case Three Scenario Step 1 

 
 

Step 2 Step 3 
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Step 4 Step 5 

 
 

Step 6 Step 7 

  
Step 8 Step 9 

  

Step 10 Entire Path 

Figure 4.18 2D Graphic Presentation of Case Three Results 
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4.5 Conclusions and Discussions 

This system successfully implements a robotic motion planning methodology to 

solve crane heavy lift path planning problem. In particular, it considers the lifted 

object as a planar mobile robot and builds the C-Space for it. It can automatically 

generate the shortest path for the lifted object and present the results in a 2D 

graphical environment. Path feasibility and sensitivity can be tested by controlling 

user-defined parameters. 

In addition, according to the visibility graph as discussed in section 3.3.1, only the 

start point, end point, and the vertices of C-Obstacles can be connected. So the lifted 

object either travels from one node to another in the C-Space, or from one node to 

another node on the edge of the same C-Obstacle. Between the two nodes, the 

connection is a straight line. Therefore, this method guarantees that from the start 

point to the end point, the found path is the shortest. Meanwhile, three cases 

presented in this chapter present the path without collisions and the generated paths 

are reasonable based on the layout situation and inputs. By varying the user-defined 

parameters, the feasibility of different paths is shown. To validate the results, we 

adopt the method that the lengths of different paths are calculated manually, and 

then the path with the shortest distance is compared with the results generated by 

the system. It has been proved that the generated paths match the results of manual 

calculations.  
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CHAPTER 5: CONCLUSIONS & RECOMMENDATIONS 

This chapter summarizes the contributions of the research work, along with the 

limitations of this proposed method, and gives the recommendations for future work. 

5.1 General Conclusions 

With the utilization of cranes, the efficiency of construction has been improved 

dramatically in recent decades, with increased productivity and quality, and savings of 

costs and time. Today’s construction sites are generally congested, so heavy lift 

planning before and during the construction process is very important for the 

success of crane heavy lifts. Heavy lift planning contains several subtasks, one of 

which is path planning. However, manual path planning is prone to errors. This 

research is motivated by the need to develop a decision support system for the user 

in order to automate heavy lift path planning. This thesis has described the 

development of an automated system for heavy lift path planning, and by 

implementing robotic motion planning methodology. The developed program is 

implemented using Microsoft Visual Basic.Net and Microsoft Access database.  

The user starts by inputting the coordinates of the obstacles and lifted object into the 

database, and through communications with the database, the shortest path is 

generated in the program and presented in a 2D graphical environment. The system 

has proven to be effective in circumventing potential collisions of the heavy lift path 

planning. 
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5.2 Research Contributions 

The developed system in this research can potentially benefit the current crane heavy 

lift planning in many aspects. The contributions are summarized below: 

 A new approach for motion planning of heavy lift cranes: The existing 

methods (Ali et al 2005; Sivakumar et al. 2003; Reddy et al. 2002) have 

chosen the crane as the manipulator, considered its degrees of freedom, and 

generated the configuration space for the crane. No research has been 

conducted with the lifted object viewed as the manipulator (mobile robot) in 

solving the construction crane path planning problem. The developed system 

generates the C-Obstacle for the obstacle based on the shape of the lifted 

object, automating the crane lift path planning process; 

 Automated generation of the shortest and obstacle free path for crane: The 

developed system can automate the process of heavy lift path planning. 

According to the layout information in the database, the system automatically 

finds the shortest path for the lifted object from its start configuration to end 

configuration.   

 Introduction of new user-defined parameters to control the aspects of the 

generated path: With user-defined parameters, the user can define the 

rotation step of the lifted object, and control the frequency of the 

occurrences of the rotation for the lifted object through its moving trajectory; 

 2D graphical path presentation interface: The 2D graphical path presentation 

interface can automatically plot the found shortest path and show its details. 
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5.3 Research Limitations 

The limitations of the proposed solution are discussed as follows. First, the 

developed system considers only the 2D planar layout of the construction site. 

Second, the found path is composed of separate nodes, and between two nodes is a 

straight line. Therefore, the entire path may not be a curve and is not applicable for 

crane swing operation. In this case, the user has to modify the path to a curve 

manually. Third, the developed solution is designed to take care of only convex 

obstacles. For concave obstacles, the user has to break them down to small convex 

obstacles and then use the program.  

5.4 Recommendations for Future Work 

This developed system can be a foundation for many path-finding problems, such as 

the followings: 

 The current 2D planar path planning system can be extended to a 3D path 

planning system. The elevations of the workspace may be taken into 

consideration; 

 Crawler crane can lift the lifted object and travel to its destination. The 

developed methodology can be extended to develop a system to study the 

feasibility of moving the crane on site while carrying the lifted object from 

pick point to set point;  

 The 2D crane path planning system can be expanded into a 3D environment 

by considering the elevation of the obstacle and lifted object;  

 A 3D animation model can be built by using 3D Studio Max, for the purpose 

of assessing and validating the proposed algorithm. 
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 Analysis to determine the optimal buffers for lifted object and obstacles: 

various factors should be considered in order to guarantee the safety of the 

moving path for the lifted object. For example, wind (weather factor) may 

cause the swing of the lifted object during its movements. One of solutions 

for the wind factor may be adding a buffer around the lifted object or 

obstacles so that the generated paths tend to be safer. Further research may 

aims to develop algorithms to determine the size of the buffers considering 

these safety factors. 

 4D implementations: Construction project is related to schedule, and the 

layout changes as the project proceeds, which may affect the generated path 

planning. Therefore, in order to consider the schedule while ensure the 

correctness of the generated path planning, 4D technology is proposed as a 

future research recommendation, which integrates the 3D graphical model 

with the construction schedule. 
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