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Abstract

Nowadays systems logs are crucial for ensuring the reliability and security of modern com-

puter systems. Effective log anomaly detection is essential for identifying potential threats

and maintaining system integrity. Many existing unsupervised methods depend on additional

abnormal data for hyperparameter selection or auxiliary datasets for discriminative model

optimization, limiting their practical application. Moreover, current log anomaly detection

methods are often static, offline, and struggle with the dynamic and evolving nature of real-

world environments. They require extensive preprocessing and frequent retraining, which is

resource-intensive and inefficient in handling non-stationary data distributions. This thesis

addresses the challenges of log anomaly detection with two novel approaches: FastLogAD

and LogREAD, which focus on offline and online anomaly detection, respectively.

FastLogAD is designed for offline log sequence anomaly detection, emphasizing both

speed and accuracy. By employing a Mask-Guided Anomaly Generator (MGAG) to produce

pseudo-anomalies and a Discriminative Abnormality Separation (DAS) network to distin-

guish these from normal logs, FastLogAD effectively mitigates the dependency on additional

training data. Experimental results on HDFS, BGL, and Thunderbird datasets demonstrate

that FastLogAD not only achieves superior F1-Scores but also significantly enhances detec-

tion speed compared to existing methods.

Conversely, LogREAD focuses on online continual log instance anomaly detection, adapt-

ing to evolving data distributions without extensive preprocessing. This parsing-free method

utilizes an adaptively reduced memory bank and a continuously evolved feature extractor to

manage dynamic log patterns. Evaluations reveal that LogREAD performs comparably to,
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or better than current offline methods and outperforms all online methods, showcasing its

robustness in both static and dynamic environments.

Together, FastLogAD and LogREAD offer comprehensive solutions for diverse log anomaly

detection scenarios. FastLogAD excels in high-throughput offline detection, while LogREAD

provides adaptive real-time monitoring. This thesis contributes to advancing the field of log

anomaly detection by addressing key challenges such as non-stationarity, data imbalance,

and the need for rapid anomaly identification. Future developments in creating a gener-

alized model adapting to a broad range of systems following our work would extend its

applicability in real-world scenarios.
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Preface

This thesis is an original work by Yifei Lin. No part of this thesis has been previously

published. The work presented in Chapter 3, titled “FastLogAD: Log Anomaly Detection

with Mask-Guided Pseudo Anomaly Generation and Discrimination,” authored by Y. Lin,

H. Deng, and X. Li, has been submitted to IEEE Transactions on Knowledge and Data

Engineering and is currently under review. The work discussed in Chapter 4, authored by Y.

Lin and X. Li, titled “LogREAD: Log-based Real-time Embedding for Anomaly Detection,”
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Chapter 1

Introduction

1.1 Overview and Motivation

Anomaly Detection is a crucial topic across various research areas and applications, targeting

discovering data instances that deviate from the expected behaviours [6, 7]. In the era of

big data, large-scale computer systems generate extensive logs that record system activities.

These logs serve as a vital source of information for identifying anomalies such as system

failures and performance issues. Failure to detect anomalies can lead to severe consequences,

including system downtime, data breaches, and significant financial losses [11]. Thus, quickly

and accurately identifying anomalies is paramount to ensure the smooth operation of com-

puter systems and respond proactively to potential threats. Moreover, human-based anomaly

methods require domain knowledge and extensive labour. As the sheer volume of log data is

continually produced in a large-scale system, at an example general rate of 30 to 50 gigabytes

per hour (approximately 100-120 million lines of logs) [46], data-driven approaches become

a necessity to be leveraged to automate the process of detecting log anomalies.

Despite its importance, log anomaly detection poses several key challenges. Logs are often

unstructured and highly heterogeneous text data [69], with different formats and structures

across various systems and applications. This diversity hinders the design of a universal

one-fits-all solution to log anomaly detection. In terms of data availability, the uneven

ratio of normal and anomaly data introduces data imbalance. Supervised approaches there-

fore are less favourable to be considered. Additionally, the streaming update of log data

demonstrates its dynamic nature where its normal behaviour can evolve over time. With

this layer of complexity, traditional methods relying on keyword searches struggle to adapt

to new normal logs due to keyword mismatches, leading to high false positive rates [36].

This non-stationarity is a significant challenge in real-world applications, as system logs can

exhibit diverse and evolving patterns due to software updates, configuration changes, and
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varying usage patterns. Continual learning is also required for the model to adapt new log

patterns without forgetting previously learnt patterns. This is known as catastrophic for-

getting [19, 44] and requires additional mechanisms to both retain historical knowledge and

integrate new information [13]. It should also be noted that in the realm of system main-

tenance and security, the speed of log anomaly detection plays a pivotal role. As systems

grow increasingly complex and voluminous, the ability to swiftly process and analyze logs

at high throughput becomes critical. Fast detection not only ensures timely identification

of potential issues, thereby reducing downtime and mitigating risks but also enhances the

overall resilience of systems against emerging threats.

Existing approaches are proposed to resolve several aforementioned challenges. Most

studies primarily focus on the unsupervised scenario where the training data consists only

of normal instances and can be categorized into those based on discriminative tasks [47, 52,

66, 67, 70, 75] and log language generative tasks [15, 21, 28, 35, 45, 51]. The former directly

optimizes a binary classifier for log anomaly detection and its fast inference speed is a

significant advantage. However, with only task-specific normal data available for model

training, previous methods often used extra data from other sources to act as abnormal logs

for discriminator training [47, 66, 70]. However, these extra data may not be representative

of the target domain, leading to degraded performance in model deployment. The latter

based on log language generative models does not rely on additional data and achieves

anomaly detection by modeling the sequential pattern of normal logs in model training.

Such solutions usually first train a generative model to predict the next or masked entries

in normal log sequences. Then, anomalies are detected by examining if the target log entry

is in the top-K list predicted by the generative model. Due to the gap in the objective

between the training and testing phases under the paradigm of log language generative

modelling [51], extensive abnormal data are usually required for the optimal hyperparameter

selection in down streaming anomaly detection strategies. In addition, these generative

models, while powerful, tend to be complex and computationally intensive due to their

inherent regression property, leading to slower inference speeds. On the other hand, to

respond to the challenges of non-stationarity, online continual learning (OCL) methods have

emerged as a promising solution [5,40,50,58] to continuously learn and adapt to real-time new

data, thereby enhancing their ability to handle evolving data distributions without the need

for manual intervention. In the domain of log anomaly detection, existing online approaches

often fall short due to their reliance on extensive preprocessing and fixed model architectures.

[13, 64]. The diversity of log formats poses challenges during parsing, potentially leading to

parsing errors that hinder model performance [33]. Furthermore, fixed model architectures

restrict the flexibility of online methods to adapt to new and unforeseen types of log data.
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To address the current limitations discussed above, this thesis proposes FastLogAD for

fast log anomaly detection and LogREAD for online continual learning scenarios. FastLo-

gAD incorporates a Mask-Guided Anomaly Generator (MGAG) and a discriminative net-

work for efficient anomaly detection. It introduces novel sampling strategies and employs

a transformer-based generative model to create tailored pseudo-anomalies, enhancing its

ability to separate anomalies from normal log sequences. The Discriminative Abnormality

Separation (DAS) then leverages these pseudo-anomalies to train a robust discriminator,

enabling efficient real-time detection without reliance on anomalous data during training.

Experiments on datasets HDFS [68], BGL [49], and Thunderbird [49] demonstrate FastLo-

gAD’s superior performance, achieving the highest F1-scores and a significant speed increase

in detection. LogREAD, on the other hand, is designed for online learning in dynamic en-

vironments. It starts with offline training on a small dataset using contrastive learning to

capture semantic embeddings and maintains an adaptive memory bank of representative

normal logs. During online operation, LogREAD compares incoming log embeddings with

those in the memory bank, updating its memory and feature extractor as needed. This

parsing-free approach reduces preprocessing overhead and adapts to evolving log patterns.

Evaluations on the BGL [49], Thunderbird [49] and Spirit [49] dataset show that LogREAD

outperforms existing methods in both offline and online scenarios, demonstrating robustness

and adaptability. By combining FastLogAD’s real-time capabilities with LogREAD’s online

learning approach, this thesis offers a comprehensive solution for the multifaceted challenges

of log anomaly detection in modern computer systems.

1.2 Contributions

The novelty of our research lies in developing an offline unsupervised log anomaly detection

model and an online continual log anomaly detection model. Specifically, our contributions

are:

• To address slow inference speed and the need for auxiliary data in offline unsupervised

log anomaly detection, we propose FastLogAD, featuring Mask-Guided Anomaly Gen-

eration (MGAG) and Discriminative Abnormality Separation (DAS). MGAG generates

pseudo-anomalies, eliminating the need for auxiliary data for training. DAS separates

normal and anomalous logs and is the only mechanism required for inference. We val-

idate our approach on three common log datasets and achieve the best F1-Scores and

inference speed.

• To reduce preprocessing overhead from log parsing and overcome the limitations of
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fixed model architectures in existing online continual log anomaly detection methods,

we introduce LogREAD. This parsing-free approach, featuring an adaptively reduced

memory bank and evolving feature extractor, dynamically captures log patterns and

adjusts to data distribution. Experimental results on three log datasets applicable to

online continual learning (OCL) demonstrate LogREAD’s superior performance over

existing online methods and comparable or better performance than existing offline

methods in offline settings.

1.3 Thesis Structure

This thesis is organized as follows:

Chapter 2 provides a general background in anomaly detection, followed by a specific

introduction to log anomaly detection. It covers various log preprocessing techniques, in-

cluding log parsing, and introduces several commonly used datasets. A review of current

unsupervised log anomaly detection methods and online log anomaly detection methods is

also discussed.

Chapter 3 details my paper, “FastLogAD: Log Anomaly Detection with Mask-Guided

Pseudo Anomaly Generation and Discrimination”. This chapter focuses on the methodolo-

gies, experiments, and contributions of FastLogAD to unsupervised log anomaly detection.

Chapter 4 delves into my paper, “LogREAD: Log-based Real-time Embedding for Anomaly

Detection”. This chapter focuses on online continual log anomaly detection, presenting the

LogREAD methodology and its contributions.

Chapter 5 concludes the thesis and outlines our insights for future work.

4



Chapter 2

Background and Literature Review

2.1 Anomaly Detection

2.1.1 Definition and Importance

Anomalies, also known as abnormalities, deviants or outliers in statistical analysis, are data

points that deviate significantly from the majority of observations [1]. Figure 2.1 illustrates

this concept, where N1 and N2 represent the majority of normal observations, while O1, O2,

and the small region O3 are anomalies. These anomalies can indicate critical incidents or

errors within a dataset. The process of identifying these anomalies is known as anomaly

detection [1, 6]. It has been widely applied in real-world applications, including:

• Identifying unusual patterns in network traffic to detect cyber-attacks or intrusions [3].

• Identifying irregularities in financial transactions, which can indicate fraudulent activ-

ities [2].

• Detecting abnormal patterns in medical records to identify potential health crises [16].

• Detecting anomalies in computer logs to identify system performance issues, potential

bottlenecks, or failures [32,34].

Failing to detect anomalies can have severe consequences. In healthcare, it can lead to

missed diagnoses, delayed treatment, and potentially life-threatening situations. In computer

systems, undetected anomalies can cause system failures, service disruptions, and financial

losses. Therefore, quick and accurate anomaly detection is essential for maintaining system

integrity and reliability.
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Figure 2.1: An example of anomalies presented in a two-dimensional dataset.

2.1.2 Types of Anomalies

Anomalies can be broadly classified into three categories [7]: point anomalies, contextual

anomalies and collective anomalies. Understanding the type of target anomaly is essential

for designing effective anomaly detection methods. In Section 2.2, we will associate log

anomaly detection tasks with their corresponding anomaly types in more detail.

• Point Anomalies. If an individual instance deviates from the rest of the data and

presents to be anomalous, then this instance is considered a point anomaly. The major

anomaly detection work focuses on detecting point anomalies, including log instance

anomaly detection.

• Contextual Anomalies. An instance is termed a contextual anomaly if it can be

considered anomalous under certain contexts, otherwise, it is normal. This type of

anomaly is also known as conditional anomaly [57] and a real-world example can be

found in time series data showing the monthly temperatures. A sudden low tempera-

ture reaching 35°F is normal in winter but is considered an anomaly in summer.

• Collective Anomalies. If a group of data instances appears to be anomalous with

respect to the entire dataset, then it is known as a collective anomaly. Each isolated
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point from this collection appears as a normal instance but exhibits unusual patterns

when viewed together. An example of a collective anomaly can be found in credit

card transactions. Suppose multiple transactions occur simultaneously from different

geographic locations using the same credit card. Individually, each transaction might

appear legitimate, but collectively, these transactions could indicate a compromised

card being used fraudulently in multiple locations at the same time.

2.1.3 Running Modes

• Supervised Anomaly Detection. When operating an anomaly detection method in

supervised mode, the training data has labelled instances for both normal and anomaly

classes.

• Fully Unsupervised Anomaly Detection. With the assumption that normal in-

stances appear more frequently than anomalies in the test data, fully unsupervised

anomaly detection methods do not require training data. Their capability of detecting

anomalies is solely based on the intrinsic properties of the data instances. Failing the

implicit assumption could result in high false positive rates.

• Semi-supervised or Unsupervised Anomaly Detection. Due to the scarcity of

abnormal instances for training, semi-supervised anomaly detection methods operate

with only normal instances as training data. Since they do not require instances for the

anomaly class, they are more widely applicable than supervised techniques. Nowadays

the terms semi-supervised and unsupervised are used interchangeably in the domain of

image [39] and log anomaly detection [32]. In this thesis, our approach is technically

semi-supervised but aligns closely with what is commonly described as unsupervised

in the literature [32,39].

Unsupervised anomaly detection methods are preferred in the literature [18] to obtain a

robust model. On the other hand, supervised models are generally limited by the known

anomalies from training. While acknowledging that our methods may also be referred to

as semi-supervised, we consistently use the term “unsupervised” throughout this work to

maintain clarity and consistency with the broader literature.

2.1.4 Evaluation Metrics

Evaluating the performance of anomaly detection models requires specific metrics. Accuracy

alone can be misleading in imbalanced datasets, as predicting all instances as normal can
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result in high accuracy. The following metrics are more informative, where TP, FP, and FN

denote True Positive, False Positive, and False Negative, respectively:

• Precision: The ratio of true anomaly predictions to the total predicted anomalies. It

mainly measures the accuracy of the positive predictions.

Precision =
TP

TP + FP

• Recall: The ratio of true anomaly predictions to the total actual anomalies. It mea-

sures the ability of a model to identify all the anomalies.

Recall =
TP

TP + FN

• F1-Score: The harmonic mean of precision and recall, a single metric that balances

both.

F1-Score = 2× Precision× Recall

Precision + Recall

• Area Under the Receiver Operating Characteristic Curve (AUROC): A sin-

gle scalar value that calculates the area under the curve of True Positive Rate (TPR)

against False Positive Rate (FPR) at various thresholds. It indicates the model’s abil-

ity to distinguish between classes when the costs of false positives and false negatives

are similar.

TPR =
TP

TP + FN

FPR =
FP

FP + TN

• Area Under the Precision-Recall Curve (AUPR): A similar single scalar value

to AUROC, except that the curve is by plotting Precision against Recall across var-

ious thresholds. This is useful for imbalanced datasets where the number of positive

instances is much smaller than the number of negative instances, such as anomaly

detection tasks.

2.2 Log Anomaly Detection

Log anomaly detection [26] is a crucial task of maintaining and ensuring the reliability and

performance of software systems. Logs, generated by various system components, capture

detailed information about system states, events, and activities. Anomalies in these logs
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can indicate potential issues, such as system failures, security breaches, or performance

bottlenecks. Given the volume and complexity of log data, automated methods for detecting

anomalies are essential for timely and accurate identification.

Log anomaly detection can be categorized into log sequence anomaly detection and log

instance anomaly detection. They are mainly different in the anomaly type and supported

datasets. Log sequence anomaly detection focuses on identifying anomalies within a sequence

of log entries. It examines the order and structure of log events to detect abnormal patterns or

sequences that deviate from the expected behavior. The anomaly type is considered collective

where a sequence of log entries collectively appears anomalous compared to the expected

pattern. Log instance anomaly detection in contrast treats each log entry independently,

making it well-suited for identifying isolated abnormal events. Thus, the anomaly type in

this task is point anomaly, where each log is evaluated on abnormality.

In the subsequent subsections, we will explore the main components of a log anomaly

detection framework, including log data processing techniques and several representative log

anomaly detection methods. We will also discuss advancements and challenges specific to

this field, providing a transition to the later chapters on our proposed methods.

2.2.1 Log Processing

Each log entry records a specific system activity, containing multiple fields such as timestamp,

severity level, logger name and the actual log event. These fields are often separated by

delimiters like white spaces and colons. To favour downstream anomaly detection tasks, it

is crucial to process raw log data by extracting the most relevant information and features

for model input.

Log Parsing

Log parsing aims to structure raw logs by extracting event templates. Specifically, each

log message can be parsed into an event template (constant part) and some parameter fields

(variable parts). Figure 2.2 shows an example of log messages from the HDFS dataset parsed

into log events and a list of extracted parameters for each message. Although this thesis

does not focus on log parsing, it is a vital component of log sequence anomaly detection.

Most approaches [15, 21, 45, 73] use indices to represent the unique log event that each log

entry corresponds to.

The current log parsing methods can be generally classified into four categories [74]:

• Clustering: By the name, the clustering approach mainly clusters the log messages

into a set of K clusters based on the string matching. For each cluster, a log template
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Log Messages

● 10.251.39.192:50010 Served block 
blk_-5341992729755584578 to 
/10.251.39.192 

● 10.250.5.237:50010 Served block 
blk_3166960787499091856 to 
/10.251.43.147 

● 10.251.30.85:50010: Got exception 
while serving 
blk_-2918118818249673980 to 
/10.251.90.64:

Log Events

● <*> Served block <*>  to <*> 
● <*> Served block <*> to <*>
● <*> Got exception while serving <*> 

to <*>

Log Parameters

● [10.251.39.192:50010, 
blk_-5341992729755584578, 
/10.251.39.192]

● [10.250.5.237:50010, 
blk_3166960787499091856, 
/10.251.43.147]

● [10.251.30.85:50010:, 
blk_-2918118818249673980, 
/10.251.90.64:]

Parsing

Figure 2.2: The process of transforming raw log messages from the HDFS dataset [68] into
structured log events and parameters. The log messages are initially parsed into log events,
where the constant parts are identified as event templates and the variable parts are extracted
as parameters.

represents the log pattern for all entries. LogMine [23] selects the first message in each

initial cluster as its common log pattern which forms the initial hierarchical level. It

then iteratively merges the patterns by relaxing the distances until the hierarchy is

fully established. In addition to hierarchical clustering, other clustering methods such

as K-Means and density-based clustering are also applied in log parsing [29,59].

• Frequent pattern mining: This method groups logs sharing the same patterns by

counting words from a frequent word set. SLCT [60] builds the foundation of this

category. It iterates the whole dataset with three passes, creating a frequent word set,

building clusters by matching the frequent words and extracting patterns for the logs

in the same cluster.

• Heuristics: This type of log parsing method provides the best overall parsing accu-

racy among all the categories. Spell [14] uses a longest common subsequence (LCS)

algorithm to parse log entries. It maintains a map of parsed log entries with their LCS

sequences. For each new log entry, Spell searches for the existing entry with the longest

matching LCS sequence. If the match is significant, it updates the sequence. Other-

wise, it creates a new entry. Drain [25] is the most widely employed parsing method

in log anomaly detection methods due to its high and robust parsing accuracy across

different datasets. It uses a fixed-depth parsing tree to cluster raw log messages. Each

leaf node represents a log group, and the tree structure limits the number of groups

a new log message must traverse. The top layer of nodes matches messages by length

and the subsequent layers match by the first few tokens. When a log message reaches

a leaf node, it is assigned to the group with the highest per-token similarity.
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• Program analysis: The parsing methods [68, 71] in this category usually rely on

regular expressions and need access to the source code, which might be unavailable

due to licensing issues. Therefore, they become less practical than the aforementioned

data-driven approaches.

As mentioned above, Drain is a solid option for log parsing in the domain of log anomaly

detection. In our first paper on FastLogAD, we adopt this parser following existing ap-

proaches. In the second paper on LogREAD, we remove the parsing step to reduce processing

overhead and prevent parsing errors for real-time online anomaly detection.

Log Sequence Grouping

Log sequence anomaly detection operates on sequences of log data, but datasets typically

consist of individual log entries. To address this, log sequence grouping techniques are used to

group log entries into meaningful sequences. There are three common methods for grouping

log sequences:

• Fixed window: This method groups logs within a fixed time interval or a fixed number

of logs. The logs in contiguous windows are non-overlapping, ensuring no contextual

dependency between them. It is suitable for datasets without a clear grouping mecha-

nism but may not accurately reflect real-world situations. For instance, datasets with

labels for each log might not be appropriate for grouping when log instance anomaly

detection is preferred.

• Sliding window: An extension of the fixed window approach, this method introduces

an overlap between contiguous windows, controlled by a step size in time or number of

logs. While it offers additional connections between log sequences, it shares the fixed

window method’s limitations and requires more computational resources due to the

increased number of windows.

• Session window: This method is applicable to log datasets with an identifier param-

eter in each log entry, representing the group ID or process thread. It provides the

most accurate grouping and reflects real-world scenarios where a sequence of log entries

indicates an activity’s progress. However, datasets suitable for this strategy are rare,

forcing the use of the fixed and sliding window methods on the rest of the datasets for

broader comparison.
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2.2.2 Log Datasets

To compare our methods to the existing approaches, we select four public datasets [76] in

total, namely HDFS [68], BGL [49], Thunderbird [49], and Spirit [49]. The details of each

dataset are as follows:

• HDFS (Hadoop Distributed File System) [68]: This dataset contains 11,175,629

log messages collected from the Amazon EC2 platform. Each log has an identifier

ID that records block operations such as allocation, writing, replication, and deletion.

This identifier makes the logs naturally appropriate for grouping into session windows

and log sequence anomaly detection. We evaluate our offline method, FastLogAD, on

this dataset.

• BGL (Blue Gene/L) [49]: This dataset contains system logs generated by the Blue

Gene/L supercomputer at Lawrence Livermore National Labs (LLNL), with 4,747,963

logs, including 348,460 manually labelled anomalies. Unlike HDFS, BGL logs do not

have identifiers for each block of activities, so we apply sliding window methods for

FastLogAD comparison. For the online log instance anomaly detection approach, Lo-

gREAD, no windowing method is used as BGL provides labels for each log.

• Thunderbird [49]: Collected from the Thunderbird supercomputer at Sandia National

Labs (SNL), this large dataset has over 200 million log lines, usually subsetted for

experimental evaluations. It has a format similar to BGL, so we use the sliding window

method for FastLogAD comparison and keep it intact for LogREAD comparison.

• Spirit [49]: This dataset was collected from a Spirit supercomputer at Sandia National

Labs (SNL). It consists of over 270 million logs that capture detailed operational be-

haviors. Only a subset is used for experimental comparison. Spirit is not included as a

benchmark in FastLogAD comparisons since we already use the above three datasets

but is experimented on in LogREAD since the HDFS dataset, with only group anomaly

labels, cannot support log instance anomaly detection.

2.2.3 Methods

Log anomaly detection methods can be classified into unsupervised and supervised ap-

proaches, similar to general anomaly detection techniques. This section focuses primar-

ily on unsupervised approaches, further categorized according to the backbone model each

approach is based on. Additionally, some online log anomaly detection methods will be

introduced.
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Traditional Machine Learning Methods

Figure 2.3 illustrates an overview flowchart of traditional log sequence anomaly detection

methods. These methods require a fixed-sized input feature vector, typically achieved by

converting the parsed log events within a sequence into a count vector that records the

frequency of each log event in the sequence. This approach is lightweight due to the small

model complexity. However, using a count vector loses the sequential dependencies between

the log events, as the order of events in the sequence is not captured. Additionally, it

suffers from the Out-Of-Vocabulary (OOV) issue [33]. During inference, if an unknown log

event appears in the sequence due to software updates, the count vector cannot include it,

potentially causing a potential decline in performance.

Log Msg. Seq. #1

Receiving block blk_…
Packet Responder for…
Receiving block blk_…
10.251.215.16:50010…
…

Log Msg. Seq. #1

Receiving block blk_…
Packet Responder for…
Receiving block blk_…
10.251.215.16:50010…
…

Log Msg. Seq. #1

Receiving block blk_…
Packet Responder for…
Receiving block blk_…
10.251.215.16:50010…
…

Log Event #1

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
…

Log Event #1

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
…

Log Event #1

Receiving block * s
Packet Responder *
Receiving block * s
* Served block * to
…

Count Vector #1

[0.2,0.4, …, 0.1]
Count Vector #1

[0.2,0.4, …, 0.1]
Count Vector #1

[0.2,0.4, …, 0.1]

Raw Log 
Messages

Parse

Log 
Sequences

Log Count 
Vectors

Count Train

IM

LR

PCA

SVM
…

Detection
Models

Figure 2.3: Overview of traditional log sequence anomaly detection methods [75]. The
process begins with raw log messages, which are parsed into log sequences to identify log
events. These sequences are then converted into log count vectors, which serve as features
for training various detection models.

• PCA [68]: Employing the property of dimensionality reduction of PCA, the first k

principal components of the training data are used to construct a normal subspace,

while the remaining (n−k) components create an abnormal subspace. A testing sample

is identified as an anomaly if the projection of its event count vector onto the abnormal

subspace has a large magnitude beyond a preset threshold. PCA is sensitive to outliers,

which can skew principal components.

• Invariant Mining [42]: This method detects anomalies by identifying and validating

invariant relationships between log events. Invariants are constant linear relationships

that always hold true in normal system executions. First, this approach applies Singu-

lar Value Decomposition (SVD) to the event count matrix, where each row represents

an event count vector of a log sequence. Invariants are then found using a brute-force

algorithm to search for relationships that contain k non-zero coefficients. If a new log
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message breaks a known invariant, it indicates an anomaly in the system. Though this

method provides meaningful interpretations of the specific variants that an anomaly

breaks, the process of invariant mining is time-consuming, and the computational cost

increases with the number of non-zero coefficients in the invariant vectors.

• LogCluster [36]: As the name suggests, LogCluster is a clustering-based method that

generates sets of clusters containing log event count vectors. The centroid of each

cluster is selected as the representative vector for that cluster. During inference, the

distance between the count vector of a new log sequence and each representative vector

is computed. The log sequence is identified as an anomaly if the distances from all the

clusters exceed a preset threshold. This method also adopts an online mechanism that

allows new count vectors to be added to the existing cluster with the shortest distance

or assigned to a new cluster. Nonetheless, we do not include this method in the

comparison with our LogREAD method for online log anomaly detection. Our focus

in LogREAD is online log instance anomaly detection whereas LogCluster focuses on

sequence anomaly detection and cannot be converted to an instance anomaly detection

version.

Deep Learning Methods

Deep learning methods have emerged to address the limitations of traditional log anomaly

detection approaches. Instead of modelling log sequences into fixed-sized vectors, deep learn-

ing methods offer flexible input lengths that more accurately describe the temporal patterns

of each sequence. Additionally, most deep learning-based methods use sequences of tokens,

where each token represents a unique log event parsed from each log entry within the se-

quence. This step is known as tokenization. Compared to using a log count vector, this

representation excels in capturing the order of log events within in a sequence. However, it

still faces the limitation of the Out-Of-Vocabulary (OOV) [33], where unknown log events

are assigned to the same index representing the unknown event, impeding the model’s ability

to leverage knowledge transfer.

Deep learning methods primarily rely on two backbones: Recurrent Neural Networks

(RNN) [27] and transformers [61]. RNN-based methods have the advantage of fast pro-

cessing speed than transformers for short sequences but struggle with long sequences, even

with enhancements Long Short-Term Memory [20] and Gated recurrent units (GRUs) [8].

In addition, they have to break down long sequences into several shorter ones to sustain

good performance. The model is biased towards the most recent tokens, and the tokens that

appear early would practically have no effect on the output for a long sequence. Transformer
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Figure 2.4: An overview of LogBERT, LMLKP and LV HM denote the loss functions of Masked
Log Key Prediction (MLKP) and Volume of Hypersphere Minimization (VHM).

based-models, on the other hand, leave no room for information loss due to the self-attention

mechanism [61]. They process a sequence in parallel to ensure no loss of past information,

reducing the performance drop when processing long sequential data. This parallel compu-

tation also ensures fast training and inference, even though transformer models naively have

a high computational complexity of O(T 2) compared to O(T ) for RNN-based models where

T stands for the input length. In recent years, Graph Neural Network (GNN) approaches

have gained attention in log anomaly detection. They treat each sequence as a separate

graph and leverage predictions on the whole graph. Despite being innovative, GNN-based

approaches rely on their graph design, where the connections between log events require

domain knowledge. This is not as effective as transformer-based approaches that learn de-

pendencies through training.

Current deep learning approaches can be classified into two categories based on their

training techniques: generative and discriminative models.

For Log language generative models, the model generates a log event token as the

prediction for the next token following the given sequence or a masked token.

DeepLog [15] is considered the pioneer model in deep learning approaches. It leverages

an LSTM [20] model to predict the next token following the given sequence. This method

regards each log sequence as tokens representing the log events. If the ground true next token

is not in the model’s top-k prediction, then the given sequence is identified as an anomaly.

LogAnomaly [45] further incorporates semantic and quantitative information from log

sequences as an RNN-based approach. Instead of encoding the log sequence into tokens,

it leverages a distributional lexical-contrast embedding model (dLCE) [48] to represent log

event templates with embedding vectors. Compared to tokenization, this embedding method

can generate new embeddings for unknown log events based on the preserved information.
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LogAnomaly also includes log event count vectors as additional information. Despite ex-

tracting a significant amount of information, LogAnomaly does not avoid the shortage of

RNN-based methods compared to transformer-based models as discussed above.

LogBERT [21] stands out as an iconic transformer-based model designed to capture

long sequence dependencies between tokens. It adopts Bidirectional Encoder Representa-

tions from Transformers (BERT) [12] as the backbone and optimizes the model with two

self-supervised tasks: Masked Log Key Prediction (MLKP) and Volume of Hypersphere

Minimization (VHM), as shown in the Figure 2.4. MLKP unleashes BERT’s potential by

randomly masking several input tokens with a pre-determined masking ratio and training

the model to predict the original tokens. VHM task as an auxiliary is inspired by Deep

SVDD [54]. Its objective operates on the embeddings of the log sequences, generated from

the prepended [CLS] token. This ensures a data-enclosing hypersphere to regulate the dis-

tribution of normal log sequences. During inference, LogBERT determines anomalous log

keys by leveraging top-k predictions on randomly masked tokens. The entire sequence is

considered an anomaly if the number of anomalous log keys exceeds a threshold. Though

LogBERT achieves better performance than RNN-based methods, it requires manual tuning

of two threshold hyperparameters with the presence of additional abnormal data.

Glad-PAW [62] is the first GNN-based approach in log anomaly detection. It creates a

single graph for each sequence. The vertices of the graph represent the log events and the

edges represent their sequential execution order. A top-k prediction on the next token is

applied to identify anomalies.

Despite the various designs in generative backbones and learning targets, during infer-

ence, these methods usually define a normal sequence based on the predicted output falling

within a specified range of possible k logs. Nonetheless, the limitation of these approaches

is prominent: The value of hyperparameter k cannot be easily selected unless abnormal

data is provided. In addition, these generative models, while powerful, tend to be complex

and computationally intensive due to their inherent regression property, leading to slower

inference speeds.

Discriminative models, on the other hand, directly optimize the target model with a

binary classification-style objective. Some of these models process an entire log sequence in

parallel, enabling faster inference than log generative models. This type of model also excels

in detection performance as training is often supervised, or unsupervised with extra data to

simulate the abnormal behaviours.

LogRobust [75] is a log sequence anomaly detection model based on Bidirectional LSTM

(Bi-LSTM). It leverages the off-the-shelf algorithm FastText [4] to represent each word with

a semantically meaningful vector. TF-IDF [56] is adopted to weight aggregate the word
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vectors of each log message to obtain one single vector representation. Each log sequence is

fed to the Bi-LSTM as a list of vectors representing each log event. This supervised approach

uses a binary classification head on the top of the Bi-LSTM to determine the normality of

the sequence based on the bidirectional hidden representations.

Logsy [47] works on log instance anomaly detection. This parsing-free method treats

each word in a log message as an input token to a transformer model, training unsupervised

with only normal log instances and using auxiliary data from non-target datasets as pseudo-

abnormal instances. Although the auxiliary data is easily accessible from the internet, it

may deviate from true abnormal data of the target dataset domain, such as the difference

in the token words. The transformer model is trained to separate the normal and abnormal

logs by the distance between the norm of the transformer’s [CLS] output embedding. This

method inspires our FastLogAD on log sequence anomaly detection by generating more

domain-related pseudo-abnormal data on its own during training.

LogGD [67] leverages Graph Transformer [72] to perform log sequence-level detection

through graph classification as a supervised method. In addition to the semantic embedding

of each log event, LogGD incorporates three structural attributes of the graph, the degree

matrix, the distance matrix, and the edge weight matrix, to generate structure-aware en-

coding to enhance the discrimination of graph representation. The embedding of the entire

graph representing each sequence is eventually read out from a concatenation of node repre-

sentations. Despite its sophisticated design, the performance does not seem to reflect this,

and it does not overcome the limitations of GNN-based methods.

PLELog [70] is a unique log sequence anomaly detection method trained on labelled

normal data and unlabelled data including anomalies. It utilizes clustering to group log

sequences by their semantic meanings, assigning probabilistic labels to unlabelled sequences

for supervised anomaly detection on a GRU network [8]. While this approach relaxes the

condition of using labelled anomaly to train a discriminative model, it assumes the presence of

anomalous instances in the unlabelled data, which may not always be realistic. Additionally,

using an RNN-based network still struggles with capturing dependencies in long sequences.

A2Log [66] is similar to Logsy [47] but focuses on log sequence anomaly detection instead.

It creates pseudo-abnormal sequences by randomly masking tokens, using these sequences for

validation to determine the decision boundary. However, it still requires non-target domain

data as abnormal data during training, facing the same limitation as Logsy.

From the existing discriminative approaches, the limitation is clear: they often require

auxiliary abnormal data from the target domain or use non-target domain data as anomalies.

The former as a supervised approach lowers the difficulty of training and the practicality of

collecting a proper number of abnormal instances. The latter is conducted as an unsuper-
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2005-06-03-15:42
instruction cache parity 
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… … …

Figure 2.5: The timeline illustrates the dynamic and varying formats and lengths of logs in
the BGL [49] dataset, highlighting the need for online log anomaly detection

vised method, their auxiliary data from the non-target dataset may not represent the target

domain, leading to degraded performance in model deployment. By comparing both gen-

erative and discriminative models, we are inspired to propose FastLogAD, which maintains

superior performance and fast inference speed as a discriminative model while alleviating

the need to collect auxiliary data.

Online Methods

One issue with offline models applying to the industry is that they suffer from non-stationary

data drift. This challenge is equally relevant to log anomaly detection methods. Offline

methods are less practical in industrial settings due to the need for frequent retraining from

scratch to maintain effectiveness with continuously incoming log data. As shown in Figure

2.5, logs can exhibit varying lengths and formats over time, regardless of their ground truth

labels. This variability underscores the need for online log anomaly detection methods, which

can adapt to these changes more effectively than offline methods. In addition, previously

learnt log information such as log events or semantic information needs to be retained by the

model. This contrasts with traditional time series models, which often do not incorporate

large amounts of historical information. Our primary goal for log anomaly detection is to

maintain and update knowledge from both past and new data while mitigating the issue

of catastrophic forgetting, where the model forgets previously learned information when

new data is introduced. This combined mechanism is known as online continual learning

(OCL), which enhances pure online learning with continual learning’s knowledge retention

capabilities.

Robust Online Evolving Anomaly Detection (ROEAD) [24] offers an online ver-

sion of SVM dealing with log sequence anomaly detection. Similar to traditional log anomaly

detection methods, it uses event count vectors from each sequence as input. These vectors are

multiplied with a feature weight vector to create a linear hyperplane that separates normal
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and abnormal log sequences. By applying the Karush–Kuhn–Tucker (KKT) condition [31],

the feature weight vector is adjusted according to the prediction result of each arriving log

sequence. While this method provides a lightweight solution for enabling the online mech-

anism, it shares the same limitation as other traditional machine learning methods for log

anomaly detection: the inability to record new log events. We omit ROEAD in compari-

son with our LogREAD because ROEAD is a log sequence anomaly detection method and

cannot be easily adapted for log instance anomaly detection.

UnLearn [13] offers an online approach for log sequence anomaly detection. Built based

on DeepLog [15], this approach transitions from top-k to probability prediction of the next

log event. A sequence is flagged as an anomaly if its predicted probability falls below a given

threshold. During online updates, an unlearning strategy is employed: the model is optimized

to increase the training loss on instances with false negative predictions and to increase this

loss for false positives. An L2 regularization is also applied to ensure the model’s weights

do not deviate significantly, thereby preventing performance degradation or catastrophic

forgetting [44]. Despite its promise, the fixed prediction head limits the model’s ability to

incorporate new log events as prediction targets, resulting in a performance decline similar

to offline RNN-based methods. By adapting UnLearn for log instance anomaly detection,

we compare it with our LogREAD.

LogOnline [64] improves LSTM-based methods for online log sequence anomaly detec-

tion by allowing the prediction head to expand and include newly arrived log events. This

approach adopts an auxiliary autoencoder to support online learning. The autoencoder is

trained offline with the normal log headers, and log sequences with a reconstruction error

below a predetermined threshold are classified as normal. During online learning, the identi-

fied normal log sequences by the frozen autoencoder are used for the incremental updating of

the main LSTM model. The advantage of LogOnline is it does not require manual feedback

or data labels for online updates, significantly reducing labour. However, LogOnline relies

on the strong performance of the autoencoder, which is not continually trained during the

online stage. Additionally, accurate log parsing is required to extract log headers, limiting

the applicability of this approach to datasets with such log headers.

Existing online methods for log anomaly detection are designed to successfully implement

incremental updates to the model with online log streams. However, several limitations still

exist. Parsing is a mandatory processing step that induces more computational overhead.

Fixed architectures, such as a fixed prediction head including a limited number of log events

in UnLearn [13] and a frozen autoencoder in LogOnline [64], hinder the model from adapting

to new log information. This is contrary to the idea of online continual learning. These cur-

rent limitations inspire us to propose LogREAD, a parsing-free online log instance anomaly
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detection method that incorporates a dynamic memory bank and a flexible feature extractor

tuning mechanism.
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Chapter 3

FastLogAD: Offline Log Sequence

Anomaly Detection

3.1 Introduction

In this chapter, we present our approach to offline log sequence anomaly detection, FastLo-

gAD. As modern computer systems become more complex and produce increasingly large

volumes of data, the necessity for rapid and efficient log processing has become paramount.

The timely detection of anomalies within these logs is critical to minimizing system down-

time, preventing security breaches, and maintaining overall system integrity. Therefore, op-

timizing log anomaly detection for speed is not merely a technical challenge but a strategic

imperative crucial to the reliability and security of contemporary computing environments.

Beyond achieving high accuracy, our approach, FastLogAD, specifically targets the need for

high-throughput log anomaly detection without sacrificing precision.

Current deep learning-based log anomaly detection methods can be categorized into dis-

criminative models [47,52,66,67,70,75] and log language generative models [15,21,28,35,45,

51]. Discriminative models, which directly train a binary classifier for anomaly detection,

offer the advantage of rapid inference. However, they typically rely on supplementary data

to simulate anomalous logs during training, which may not always accurately represent the

target environment, leading to potential performance issues. In contrast, log language gener-

ative models focus on learning the sequential patterns of normal logs to identify deviations.

While these models do not require additional data for training, they are often complex and

computationally intensive, resulting in slower inference speeds.

To address these limitations, we introduce FastLogAD for fast log anomaly detection. Our

model comprises two main components: the Mask-Guided Anomaly Generator (MGAG) and
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the Discriminative Abnormality Separation (DAS) network. MGAG, built on a transformer-

based architecture, captures the sequential patterns in normal logs and employs two novel

sampling strategies—random replacing and masked token replacing—to generate pseudo-

anomalies that deviate from these patterns. DAS is then trained to distinguish between nor-

mal and pseudo-anomalous sequences by leveraging the large discrepancy in output norms.

This method enables efficient anomaly detection by setting thresholds based on the output

norms of normal data, even without exposure to actual anomalies during training.

We validate FastLogAD on several benchmark datasets, including HDFS [68], BGL [49],

and Thunderbird [49], demonstrating that our approach not only achieves superior F1-scores

compared to existing methods but also significantly enhances detection speed by at least a

factor of ten.

The contribution of this study can be summarized in the following points:

• We propose FastLogAD, a novel approach for unsupervised log anomaly detection

characterized by Mask-Guided Anomaly Generation for generating anomalies and by

Discriminative Abnormality Separation for discriminating anomalies.

• We introduce and analyze two strategies for synthesizing pseudo-anomalies: Random

Generation and Masked Language Modeling generation.

• We propose Replaced Token Detection and Hyperspherical Separation Training to train

an anomaly discriminator and a compact hyperspherical boundary of normal features.

• We evaluate the proposed FastLogAD on three common, yet real anomaly detection

datasets. The experiments show that FastLogAD outperforms other methods and

achieves real-time log anomaly detection.

3.2 Methodology

Problem formulation. Let s = {s1, s2, . . . , sd} be a sequence of d log events parsed from

raw log messages, following the processing steps as shown in Figure 3.1. Our goal is to train

a model with training data Dtrain = {(s1, y1 = 0), (s2, y2 = 0), . . . , (sN , yN = 0)}, each yi = 0

represents training set consisting of only normal sequences under the unsupervised anomaly

detection setting. In the subsequent detection stage, the model is able to distinguish between

normal and abnormal sequences in the test set Dtest = {(sN+1, yN+1), . . . , (sN+M , yN+M)}
with a total of M samples.
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Figure 3.1: Illustration of the complete pipeline of the proposed log anomaly detection solu-
tion. Taking logs from the Hadoop Distributed File System (HDFS) dataset [68] as examples,
log templates are extracted through log parsing and grouped into sequences based on the
identifier block ids. A vocabulary is created to map the log events and special tokens (e.g.,
[cls], [mask]) to their corresponding unique indices during model training. Then the normal
log training data is passed to the log anomaly detection module for model optimization.
During inference, the vocabulary is static and used to construct query log sequences after
log parsing and grouping. The log anomaly detection model provides a yes/no answer.
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Figure 3.2: The training procedure of FastLogAD. For a given sequence of normal logs, we
randomly mask the log tokens in a certain ratio, and then generate the corresponding log
sequence through a generator. For the discriminator, we propose RTD and HST to learn to
distinguish normal logs from pseudo-anomaly logs.

Overview of FastLogAD model. Figure 3.2 and Figure 3.3 provide an overview

of FastLogAD’s training and inference stage, respectively. FastLogAD utilizes a generator-

discriminator architecture that features Masked-Guided Anomaly Generation and Discrim-

inative Abnormality Separation tasks. In this architecture, only the discriminator corre-

sponding to Discriminative Abnormality Separation task is employed during inference. The

generator’s role is to generate pseudo-abnormal samples for each normal sequence during

training. Two variants of the generator are introduced: the training-free random genera-

tor and the masked language model requiring training. The discriminator undergoes initial

adversarial training to distinguish between normal and abnormal tokens replaced by the

generator within a sequence, focusing on token-level recognition. Ultimately, it learns the

output embedding to make normal and anomalous log sequences separable from a sequence-

level recognition, following a similar approach presented in Logsy [47].
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Figure 3.3: The inference procedure of FastLogAD. In inference, we directly use the anomaly
discriminator for efficient diagnosis of logs.

3.2.1 Mask-Guided Anomaly Generation

The Mask-Guided Anomaly Generation (MGAG) task in FastLogAD’s framework serves to

craft pseudo-abnormal log sequences for the discriminator’s training. Given a normal log

event sequence s = {s1, s2, . . . , sd} from the training set, the tokens in the sequence undergo

a random masking process with a masking ratio r, indicating what percentage of tokens

gets replaced with [mask] token. The resulting masking pattern m holding binary values

indicates which tokens are replaced with the [mask] token, and ŝ = {ŝ1, ŝ2, . . . , ŝd} denotes

the masked sequence.

ŝi =

⎧⎨⎩si mi = 0

[mask] mi = 1
. (3.1)

By feeding the masked sequence to the generator, a pseudo-abnormal log sequence is con-

structed by replacing the masked tokens with random or unlikely tokens presented in a

normal sequence. With this procedure, each training sample comes with corresponding ab-

normal versions of itself. Two variants of the generator are introduced in the following and

using one of them can fulfill the MGAG task.

Random Generator

As we create a vocabulary of tokens that represent the log events from the training set, the

idea of the random generator is to replace the masked token with a randomly sampled token

from the vocabulary. While this simple approach does not undergo any training process

thereby reducing the computational overhead, it may fall short in accurately introducing

the anomalous property of the whole sequence. This limitation arises because the random

generator does not learn the dependencies among tokens within a sequence.

Specifically, Let V represent the vocabulary, then the sequence generated by the random
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generator is denoted as s̃rand = {s̃rand1 , s̃rand2 , . . . , s̃randd }, where

s̃randi =

⎧⎨⎩si mi = 0

S ∼ U(V \ {si}) mi = 1
. (3.2)

Each s̃randi of masked input is sampled from a uniform distribution over the vocabulary V

excluding si, the ground truth token from the original sequence.

MLM Generator

In contrast to the random generator, the Masked Language Model (MLM) generator tends

to replace masked tokens with those less likely to appear in the given sequence, crafting more

realistic abnormal sequences. This generator exhibits improved performance, especially on

datasets with a smaller vocabulary. However, this variant requires a training process and

its effectiveness may diminish as the vocabulary size increases as shown in the following

experimental results.

Mathematically, the Masked Language Model (MLM) generator uses a BERT with a

classification head, outputting a probability distribution PG over the vocabulary V. Unlike

the random generator outputting a uniform distribution, this generator is trained using MLM

loss:

LMLM = −E

⎡⎢⎣ d∑︂
i=1
mi=1

logPG(si | ŝ; θG)

⎤⎥⎦ . (3.3)

Although trained with this loss ensures the generator assigns higher probabilities to tokens

likely to appear in the original normal sequence, our strategy for its output is to sample the

tokens from the complement distribution P̄G such that for each si ∈ V,

P̄G(si | ŝ; θG) =
1− PG(si | ŝ; θG)∑︁|V|

j=1(1− PG(sj | ŝ; θG))
, (3.4)

where for each token the probability is normalized over the sum. Thus, the generated

sequence by the MLM generator can be denoted as s̃mlm = {s̃mlm
1 , s̃mlm

2 , . . . , s̃mlm
d }, where

s̃mlm,i =

⎧⎨⎩si mi = 0

S ∼ P̄G(s | ŝ; θG) mi = 1
. (3.5)
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3.2.2 Discriminative Abnormality Separation

The log sequence is prepended with a [CLS] token before being fed to the discriminator.

Such that, the input sequence is then s̃ = {s̃cls, s̃1, s̃2, . . . s̃d} with {s̃1, s̃2, . . . , s̃d} being the

given normal sequence with label y = 0 or the pseudo-abnormal version from the generator

with label y = 1. In this Discriminative Abnormality Separation (DAS) task, we adopt a

BERT [12] model as the discriminator for achieving anomaly detection through two separate

training tasks: Replaced Token Detection (RTD) and Hyperspherical Separation Training

(HST).

Replaced Token Detection (RTD)

Similar to the MLM generator, the discriminator follows a BERT model structure connected

to a binary classification for each token in the input sequence except for the added [CLS]

token. This classification head corresponds to the first training task, RTD being previ-

ously adopted effectively in ELECTRA’s naive training [9] and its application DATE [43]

of anomaly detection in NLP. In our approach, we apply this training as the warmup step

for our discriminator to classify the replaced and non-replaced tokens for understanding the

potential token-level anomalies before bringing them up to the overall anomaly detection

on the whole sequence. Therefore, the training objective of RTD is to minimize the Binary

Cross Entropy (BCE) loss across the training samples:

LRTD = −E

[︄
d∑︂

i=1

logPD(mi | s̃; θD)

]︄
(3.6)

Hyperspherical Separation Training (HST)

In one-class anomaly detection modelling, we want the normal features tightly clustered

within the latent space. To this end, we adopt a hyperspherical function in Logsy [47]

to separate normal and pseudo-abnormal sequences by controlling the norm of the feature

embedding corresponding to the prepended [CLS] token to the discriminator. Let fD(s̃)cls

denote this feature embedding, the loss of training this objective, namely Hyperspherical

Separation Training (HST), is

LHST =E

[︄
(1− y)∥fD(s̃)cls∥2

− λy log(1− exp(−∥fD(s̃)cls∥2))

]︄
, λ > 0. (3.7)
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The first term enables normal samples, with the feature embedding norm minimized to be

close to the origin. In contrast, the anomalous samples are enforced away from the origin

as presented in the second term, penalizing the small embedding norm. This also prevents

convergence to trivial solutions [55], where the parameters of the networks are zeros to

minimize the first term only. λ as a positive weight controls the emphasis between the two

terms.

Algorithm 1 Two-Step Training of FastLogAD

Require: Dtrain, Training epochs N and M , Discriminator fD, Generator fG
1: Step 1: Training MLM Generator and RTD
2: for epoch = 1 to N do
3: for s in Batch(Dtrain) do
4: ŝ← Mask(s) ▷ Mask input
5: s̃← fG(ŝ) ▷ Pseudo-abnormal samples
6: if using MLM generator then
7: Compute LMLM(s̃)
8: end if
9: Compute LRTD(fD(s̃))
10: if using MLM generator then
11: Optimize LMLM + LRTD

12: else
13: Optimize LRTD

14: end if
15: end for
16: end for
17: Step 2: HST Training
18: Freeze fG
19: for epoch = 1 to M do
20: for s in Batch(Dtrain) do
21: ŝ← Mask(s) ▷ Mask input
22: s̃← fG(ŝ) ▷ Pseudo-abnormal samples
23: Compute and optimize LHST (fD([s, s̃]))
24: end for
25: end for
26: return fD

3.2.3 Overall Training

Our goal is to eventually detect anomalies based on the feature embedding norm of the

[CLS] token, as presented in the following section. Thus, we decide to employ a two-step

training for our discriminator and generator (or training-free random generator), and this

whole training procedure is provided by Algorithm 1.
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• Training the MLM generator together with the discriminator’s RTD task for the first

N epochs to start up: LMLM + LRTD or LRTD for the random generator.

• M epochs for HST to promote accurate anomaly scores in the detection stage: LHST

This two-step training approach offers several advantages compared to joint training and

separate training of all tasks:

1. The joint training of RTD and MLM tasks for N epochs reduces training complexity,

recognizing both tasks as auxiliary and not directly used in the subsequent detection

stage. This streamlined approach avoids unnecessary computational overhead associ-

ated with separate training.

2. RTD task is trained before HST to give the discriminator attention to the crafted

abnormal tokens first for the subsequent learning of the sequence-level recognition.

If joint training of RTD and HST is employed, the discriminator might overfit the

crafted tokens instead of considering anomalies as entire sequences. Log anomalies

are typically determined by the sequences they are part of, rather than individual log

events. For instance, the HDFS dataset provides anomaly labels for entire grouped

sequences rather than assigning a label to each log. Thus, RTD is exclusively trained

before HST to guide the warm-up of training and later we show RTD training does

help with our anomaly detection task.

3.2.4 Detection

As the role of the generator is to craft the pseudo-anomalies for the training step, the anomaly

detection for the incoming log sequences then only requires the discriminator to be performed.

As shown in Algorithm 2, each log sequence s combined with a leading [CLS] token is directly

fed to the discriminator. The discriminator evaluates each log sequence s based on the feature

embedding norm ∥fD(s)cls∥2 as the anomaly score. Sequences are deemed abnormal if the

score exceeds a threshold ϵ, determined using a validation set comprising normal sequences.

3.3 Experiment

3.3.1 Experimental Settings

Datasets

We use HDFS [68], BGL [49] and Thunderbird [49] datasets for experimental comparisons.

For all datasets, a chronological order is maintained during the train-test split, ensuring that
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Algorithm 2 FastLogAD Detection Stage

Require: Dtest, threshold ϵ, Trained discriminator fD
1: ypred ← [ ] ▷ Initialize the prediction list
2: for s in Dtest do
3: ytemp ← ∥fD(s)cls∥2
4: if ytemp > ϵ then
5: Append 1 to ypred

6: else
7: Append 0 to ypred

8: end if
9: end for
10: return ypred

normal sequences are split without shuffling. Specifically, we follow the experiment setting in

LogBERT [21] and take around the first 5000 log sequences following the given timestamp as

training data to reflect practical scenarios. Subsequently, 10% of the split training data is set

aside for validation, and all abnormal sequences are included in the test set for evaluation.

Baselines

Due to the limited available public implementations [34] of unsupervised log anomaly de-

tection with deep learning, we compare our FastLogAD to log anomaly detection baseline

models including DeepLog [15], LogAnomaly [45] and LogBERT [21].

Evaluation Metrics

Following the existing works, we adopt Precision, Recall and F1-Score as evaluation metrics:

Precision =
TP

TP + FP
; Recall =

TP

TP + FN
; F1-Score = 2× Precision× Recall

Precision + Recall

TP: True Positive; FP: False Positive; FN: False Negative;

Experimental Setup

We conduct our experiments on a Linux Server with Intel i9-9940X @ 3.30GHz CPU and

64GB of RAM. One Nvidia RTX 2080Ti GPU is utilized for training under the Python 3.8.10

environment with Pytorch 2.1.0+cu118 installed.
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Implementation Details

For FastLogAD, we take r = 0.5 mask ratio, λ = 1 for HST loss. The detection threshold

ϵ is determined by taking the 99% quantile of embedding norms on the validation dataset

to exclude the outliers. We adopt the architecture of ELECTRA [9] to construct both

the MLM generator and discriminator for both variants. The single embedding layer is

configured with a dimension of 256, followed by 4 transformer layers. Each transformer layer

is equipped with 4 heads, and the feedforward layer has a dimension of 256. More detailed

parameters can be found in our public implementations. For the baselines, DeepLog [15] and

LogAnomaly [45] do not have their official implementations available to the public, therefore

we experimented with others’ replicated versions1 instead. All the involved hyperparameters

are selected according to the adopted implementations and the detection thresholds of these

three baselines: k presented in DeepLog [15] and LogAnomaly [45] and anomalous tokens

ratio r in LogBERT [21] are selected according to their best performance on the test set

since these thresholds need to be determined with abnormal sequences involved. While this

provides a natural advantage for these baselines in comparing performances to FastLogAD,

the impracticality of selecting thresholds should be considered.

3.3.2 Results

Table 3.1 shows the experimental results of the baselines and FastLogAD with both two

generator variants. The results are based on running with 3 random seeds and all metric

values are expressed as percentages (%). FastLogAD outperforms the compared baselines

in terms of F1-Score. Specifically, FastLogAD with the MLM generator achieves the best

F1-Score across three datasets, while the random generator variant achieves the second best,

with a slight lag behind the MLM generator approach on Thunderbird. This slight lag is

caused by the large vocabulary size (≈1000) of the training data in which training MLM

is nearly equivalent to training a random generator by eventually sampling from a large

number of candidates. In an overall comparison with the best-performing baselines on the

three datasets, FastLogAD exhibits a 6.54% and 4.29% advantage in F1-Scores over DeepLog

for HDFS and BGL, respectively. Concerning the Thunderbird dataset, FastLogAD achieves

a 1.98% higher F1-Score than LogBERT.

1https://github.com/donglee-afar/logdeep and https://github.com/LogIntelligence/

LogADEmpirical

31

https://github.com/donglee-afar/logdeep
https://github.com/LogIntelligence/LogADEmpirical
https://github.com/LogIntelligence/LogADEmpirical


HDFS

Methods Precision (%) Recall (%) F1 (%)

DeepLog [15] 79.37±4.24 92.06±0.28 85.23±3.67

LogAnomaly [45] 93.46±2.67 59.20±4.55 72.48±5.08

LogBERT [21] 85.20±0.58 75.39±1.29 80.00±0.68

FastLogAD-Random 83.56±0.75 99.51±0.12 90.84±0.40

FastLogAD-MLM 84.80±0.60 99.99±0.01 91.77±0.36

BGL

Methods Precision (%) Recall (%) F1 (%)

DeepLog [15] 86.89±1.89 90.91±4.13 88.85±2.51

LogAnomaly [45] 78.03±1.51 86.70 ±3.25 82.14±2.18

LogBERT [21] 74.79±0.96 91.68±1.45 82.38±0.78

FastLogAD-Random 82.72±3.14 98.02±0.95 89.72±1.49

FastLogAD-MLM 88.28±3.58 98.66±0.86 93.14±1.66

Thunderbird

Methods Precision (%) Recall (%) F1 (%)

DeepLog [15] 90.25±1.71 98.57±1.05 94.23±1.29

LogAnomaly [45] 79.48±0.00 99.55±0.00 88.39±0.00

LogBERT [21] 96.27±0.40 95.03±2.23 95.65±1.14

FastLogAD-Random 94.88±0.12 99.95±0.03 97.34±0.02

FastLogAD-MLM 95.45±0.14 99.91±0.08 97.63±0.03

Table 3.1: Experimental results (mean±std) on HDFS, BGL and Thunderbird datasets, the
best metric values are bolded and the runner up is highlighted with undeline. Note that
numerical results of the compared baselines are obtained with the best hyperparameters
selected manually.
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Method HDFS BGL Thunderbird

Total (s) Avg. (ms) Total (s) Avg. (ms) Total (s) Avg. (ms)

DeepLog [15] 46.85 0.08 177.91 6.89 1647.97 14.14

LogAnomaly [45] 83.42 0.15 320.28 12.42 2953.37 25.34

LogBERT [21] 791.12 1.39 132.05 5.11 936.40 8.04

FastLogAD-MLM 77.32 0.14 37.21 1.44 105.58 0.90

Table 3.2: Total inference time and the average inference time per log sequence.

Inference Time Analysis

As we discussed in the Introduction, the speed of log anomaly detection plays a pivotal

role in the realm of system maintenance and security. So in this experiment, we evaluate

the inference time of FastLogAD and other competitors to demonstrate the effectiveness

of our proposed method. As shown in Table 3.2, we present the total inference time and

average inference time per log sequence for the compared models across three datasets.

LogBERT [21] achieves slower inference on the HDFS dataset, which is composed of short

sequences. This is caused by the random masking step and multiple predictions performed

on each sequence. DeepLog [15] and LogAnomaly [45] have the best efficiency with HDFS

dataset, of which the log sequences are relatively shorter than the other two datasets. Their

inference speed noticeably deteriorates with long sequences where each sequence needs to be

further decomposed into multiple short sequences to maintain the performance. In contrast,

FastLogAD showcases satisfactory overall inference speed across datasets. Its practicality

for real-time inference is noteworthy, as it involves only the discriminator, requiring no

additional operations on the input sequence. This characteristic makes FastLogAD suitable

for both long and short-sequence datasets, presenting a distinct advantage over prior arts.

Distribution of Anomaly Score

Fig. 3.4 displays the distribution plot of anomaly scores for the three experimental datasets.

The anomaly scores of normal and abnormal data are depicted in distinct colours, showing

that almost exclusively normal data is concentrated near the origin. Moreover, a significant

portion of abnormal data has an anomaly score exceeding 10. This substantial separation en-

sures a distinct separation between normal and abnormal data, contributing to FastLogAD-

MLM’s competitive performance. Notably, this achievement is noteworthy as the anomaly

threshold is selected without prior exposure to abnormal data.
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Figure 3.4: Visualization of anomaly probability distributions on HDFS, BGL and Thun-
derbird datasets.

Backbone Random MLM

Setting w/o RTD w/ RTD w/o RTD w/ RTD

HDFS 90.01 90.55 (+0.54) 90.70 90.76 (+0.06)

BGL 88.34 89.58 (+1.24) 91.50 91.64 (+0.14)

Thunderbird 98.24 98.72 (+0.48) 98.42 98.61 (+0.19)

Table 3.3: Ablation studies in terms of F1-score. We denote w/ and w/o as with RTD and
without RTD, respectively.

3.3.3 Ablation Studies

RTD training

To assess the impact of RTD training, we report the performance of FastLogAD-MLM and

FastLogAD-Random without RTD training in Table 3.3. A comparison with the original

FastLogADs demonstrates that RTD training proves effective, resulting in slightly improved

performance across all three datasets. This enhancement can be attributed to RTD’s support

of the subsequent HST task.

Masking ratio

Additionally, we explore the influence of the masking ratio on FastLogAD’s performance.

Experimenting with a masking ratio ranging from 0 to 1, incremented by 0.1, we train

FastLogAD-MLM on each dataset. Fig. 3.5 with plotted three evaluation metrics reveals a

significant drop in performance at r = 0, as intact normal sequences are treated as pseudo-

anomalies, leading the model to inflate the embedding norm of normal data. However,

for r > 0, FastLogAD demonstrates effectiveness in creating pseudo-anomalies. A notable

observation is a performance drop at higher masking ratios, starting from 0.7 on the HDFS

dataset. This can be attributed to the fact that the HDFS dataset comprises relatively short

log sequences, making the distinction between normal and abnormal sequences less obvious

when considering all the tokens. This implies with a large masking ratio, the model may
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Figure 3.5: Performance comparison of FastLogAD-MLM across different masking ratios (0
to 1).

capture only the patterns of easy pseudo-anomalies, aligning with real anomalies in datasets

with long log sequences like BGL and Thunderbird. However, these easy pseudo-anomalies

may not align with the characteristics of the HDFS dataset, causing the model to misclassify

real hard anomalies as normal. This corresponds to the increasing number of false negatives

and a large drop in recall values as shown in the plot.

3.4 Conclusion

We introduced FastLogAD, a novel approach for fast and effective log anomaly detection.

Leveraging the Mask-Guided Anomaly Generation (MGAG) and Discriminative Abnormal-

ity Separation (DAS) models, FastLogAD demonstrates significant improvements in both

detection accuracy and speed compared to existing methods. The use of pseudo-abnormal

logs, generated by replacing masked tokens in normal sequences, allowed us to train a highly

discriminative model capable of distinguishing between normal and anomalous logs without

the need for additional abnormal data.

Extensive experiments on benchmark datasets, including HDFS, BGL, and Thunderbird,

confirmed the superiority of FastLogAD, achieving the highest F1-scores and at least a

tenfold increase in anomaly detection speed over prior work. This performance highlights

the effectiveness of our approach in real-world scenarios, where rapid and accurate detection

is crucial for maintaining system reliability and security.
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Chapter 4

LogREAD: Online Log Instance

Anomaly Detection

4.1 Introduction

In this chapter, we delve into our approach to online log instance anomaly detection, Lo-

gREAD. As computer systems generate vast and dynamic log data streams, the ability to

continuously learn and adapt to new log patterns in real-time becomes increasingly vital.

Offline methods fall short in handling evolving data distributions, necessitating an approach

that not only detects anomalies swiftly but also adapts to changing log patterns without re-

training. The dynamic nature of log data introduces several challenges for anomaly detection.

Logs are often unstructured and vary significantly across different systems, complicating the

creation of a one-size-fits-all solution. Additionally, the non-stationarity of log data—where

normal behavior evolves due to software updates, configuration changes, and varying usage

patterns—requires models to continually learn and adapt to new patterns.

Existing approaches to online log anomaly detection often rely on extensive preprocessing

and fixed model architectures, limiting their ability to adapt to new and unforeseen log

formats. These methods also struggle with parsing errors and are typically unable to handle

the evolving nature of log data effectively.

To address these challenges, we introduce LogREAD, a novel approach designed for online

continual learning in dynamic environments. LogREAD begins with offline training on a

small dataset using contrastive learning to capture semantic embeddings of log entries. It

maintains an adaptive memory bank of representative normal logs, which helps in recognizing

and adapting to new log patterns as they emerge. During online operation, LogREAD

dynamically updates its memory and feature extractor to handle evolving log patterns.
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We evaluate LogREAD on the BGL [49], Thunderbird [49], and Spirit [49] datasets

under both offline and online scenarios with existing counterparts. The experimental results

show that LogREAD performs on par with or even better than existing offline methods and

outperforms all the online methods.

The contributions of this study can be summarized as follows:

• We introduce LogREAD, an innovative approach for online continual log instance

anomaly detection that combines offline contrastive learning with a dynamic, parsing-

free online framework.

• We develop an adaptive memory bank and an evolving feature extractor that enable

LogREAD to continually learn and adapt to new log patterns.

• We demonstrate LogREAD’s effectiveness on multiple real-world datasets, showing its

superior performance in both offline and online settings.

4.2 Methodology

4.2.1 System Overview

Problem Formulation: Let Dtrain = {si | ∀yi = 0}Ni=1 represent the set of logs available

for offline training, where each yi = 0 indicates a normal log. The objective is to train a

model using Dtrain so that it can detect anomalies and adapt to new log data during the

online phase. This subsequent log data is denoted by Dtest = {si | ∀yi ∈ (0, 1)}N+M
i=N+1, which

includes both normal and abnormal logs. Note, different from the canonical offline scenario

which assumes Dtrain and Dtest follow the same distribution, the problem tackled in this

study allows data distribution drift during model deployment.

Schematic Scheme. The workflow of LogREAD designed for detecting anomalies in

continuously evolving log data is depicted by Fig. 4.1. LogREAD begins with offline training

on a small amount of log data collected during normal system operation. The feature extrac-

tor, BERT [12], employs contrastive learning to capture the semantic embeddings of normal

logs. Subsequently, a lightweight memory bank is created by selectively including the em-

beddings that represent the most typical normal data. During the online phase, LogREAD

makes predictions by measuring the distance between the embedding of each incoming log

and its k-nearest neighbours within the memory bank. In the event of incorrect predictions,

either memory bank update or BERT tuning will be performed.
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Figure 4.1: The LogREAD framework primarily consists of a BERT [12] feature extractor ϕ
and a coreset-reduced memory bankMC . During offline training, the feature extractor em-
ploys contrastive learning to derive semantic embeddings of normal logs, while the memory
bank selectively includes embeddings representing the most typical normal data. In the on-
line phase, LogREAD predicts anomalies by measuring the distance between the embedding
of each incoming log and its k-nearest neighbors in the memory bank. If incorrect predictions
occur, the system will either expand the memory bank or tune the feature extractor.
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4.2.2 Parsing-Free Offline Training

Logs often evolve as program development, system update, and dynamic configuration varia-

tion, leading to changes in log structures. To address such data drift, traditional log anomaly

detection methods relying on log parsing require constant updates to templates or rules in

the parsing step, which can be cumbersome and difficult to scale as log data grows in size

and complexity. Parsing-free methods, however, are inherently adaptable to these changes.

To achieve a parsing-free model scaling effectively with growing and evolving log data, our

LogREAD essentially consists of a BERT model for log embedding and a compact memory

bank for normal pattern distinction.

Contrastive log embedding learning:

Our LogREAD utilizes a pre-trained BERT [12] to convert a log into numerical semantic

embedding. Due to the lack of large annotated log data, unsupervised contrastive learn-

ing is applied to the normal logs, pulling semantically close neighbours together and push-

ing apart non-neighbours [22]. In the domain of contrastive learning for natural language

sentence embeddings, various data augmentation methods have been applied to construct

both positive and negative pairs, including word deletion and synonym/antonym replace-

ment [63,65]. However, these methods cannot be directly transferred to log data due to the

special acronyms and jargon in log messages. And there is often no corresponding synonym

or antonym to replace the original word. Therefore, we adopt the simple yet effective aug-

mentation method introduced in SimCSE [17] by utilizing the natural dropout mask from

the transformer model [61]. Let hi = ϕ(si) denote the output feature embedding corre-

sponding to the [CLS] token prepended to the beginning of each log, the stochastic dropout

mechanism allows us to feed the same log si to the feature extractor ϕ twice and create a

positive pair (hi,h
+
i ):

(hi,h
+
i ) = (ϕ(si), ϕ(si)). (4.1)

Then the BERT model is updated by minimizing the following contrastive loss

li = − log
esim(hi,h

+
i )/τ∑︁Nbatch

j=1 esim(hi,h
+
j )/τ

, (4.2)

where sim denotes the cosine similarity score, τ is a temperature hyperparameter, and Nbatch

is the training batch size.
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Coreset-reduced memory bank:

With the preceding step of log semantic embedding learning, it is reasonable assume that

normal logs are diversely, but compactly, distributed in the feature space. Anomalies can

then be identified if the embedding of an incoming log is far from these normal embeddings.

We create a memory bank M for storing the training log embeddings, essential for offline

inference and online continual learning since the past-seen data is unavailable upon detec-

tion. In the OCL setting, new representative samples may merge for improved performance.

Specifically, we adopt coreset sampling [53] on the memory bankM for efficient and scalable

anomaly detection:

MC = arg min
MC⊂M

max
h∈M

min
h′∈MC

∥h− h′∥2, (4.3)

whereMC is the coreset-reduced memory bank that covers an approximately similar region

as the originalM in the feature space. Unlike other methods that fill the memory bank with

local patch features [38,53], our approach directly utilizes the embedding of each log due to

its highly discrete nature, where a corresponding spatial structure does not exist. The whole

offline training process for LogREAD is detailed in Algorithm 3.

Algorithm 3 LogREAD offline training
Require: Training set Dtrain, training epochs Nepoch, pre-trained BERT ϕ, batch size Nbatch,

coreset sampling ratio q.
1: Step 1: Contrastive Log Embedding Learning
2: Set ϕ to training mode ▷ To apply dropout for contrastive learning
3: for epoch ∈ [1, . . . Nepoch] do
4: for si ∈ Dtrain do
5: (hi,h

+
i )← (ϕ(si), ϕ(si))

6: Compute li with (4.2)
7: Lbatch ←

∑︁Nbatch
i=1 li/Nbatch

8: Optimize Lbatch
9: end for
10: end for
11: Step 2: Memory Bank Filling and Reduction
12: Set ϕ to test mode
13: M← {}
14: for si ∈ Dtrain do
15: M←M∪ ϕ(si)
16: end for
17: MC ← {}
18: for j ∈ [1, 2, . . . , q × |M|] do ▷ Coreset Sampling
19: hj ← argmaxhm∈M−MC

minhn∈MC
∥hm − hn∥2

20: MC ←MC ∪ {hj}
21: end for
22: return ϕ,MC
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4.2.3 Anomaly Detection

With the ready memory bankMC , the anomaly score of each upcoming log can be computed

as the average L2-distance between its embedding and k-nearest neighbours [10] from MC :

score(si) =
1

k

∑︂
h∈Nk(hi)

∥hi − h∥2, (4.4)

where Nk(hi) is the set of k-nearest neighbours of hi fromMC . A threshold ϵ is chosen based

on a validation set such that an input log si is predicted to be anomalous if score(si) > ϵ,

and normal otherwise.

4.2.4 Online Continual Learning

Due to the diversity in both the format and semantics of log data, pure offline approaches

have limitations as new logs are easily missed. As suggested in [6], our approach offers a

great capability of adaptively adjusting the model according to the feedback from real-time

detection. The entire process is performed on Dtest and the model processes one log at a

time.

Memory Bank Expansion

During real-time detection, new log events may appear due to system updates or devel-

opment. Despite being normal, these new logs may deviate significantly from the existing

space described by the embeddings inMC . In this case, the false alarm is triggered and our

solution is to add hi to the existing memory bank MC . To better manage the growing size

of the memory bank, we track the most recent n feature samples added to MC and denote

this temporary set asMtemp. Once it reaches its full capacity of n samples, we apply coreset

sampling to this temporary set and replace the recently added n samples in MC with the

sampled feature embeddings. Mtemp is cleared after each sampling and the iteration repeats.

Feature Extractor Tuning

Similarly, new anomalous logs may impact detection performance when our feature extractor

fails to isolate them from the seen normal logs in their embedding space. This false-negative

prediction can be attributed to the similar word appearance in both normal and abnormal

logs which the feature extractor deems close together. To address this issue, we further

tune the feature extractor to force the embedding hi of such an abnormal log away from its
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k-nearest neighbours:

Lknn = max(0, B − 1

k

∑︂
h∈Nk(hi)

∥hi − h∥2), (4.5)

where B is an upper bound to determine how far the feature embedding needs to be pushed

away. Lknn alone ensures a larger distance from the compared normal samples, but it has no

control over the direction in which the log embedding gets pushed. The potential concerns

include:

• The log embedding may get pushed close to the other embeddings within the memory

bank MC other than the k neighbours, i.e. h ∈MC \ Nk(hi).

• Directions ensure the diversity and uniformity of the semantic embeddings in the fea-

ture space. Moving a log embedding toward a random direction could alter the existing

mapping of the normal logs, causing a mismatch between the new mapping of a pre-

viously seen normal log and its existing embedding in the memory bank. The stored

embeddings are no longer representative for comparison and this can lead to perfor-

mance collapse.

To address these concerns, we record the initial embedding hi as h∗
i and apply an L2-

regularization Ldir on the embedding to ensure directional alignment:

Ldir = ∥hi − h∗
i ∥2. (4.6)

We also apply an L2-regularization to the feature extractor’s parameters, denoted by θ, to

ensure minimal changes to the mapping of the rest of the logs:

Lθ = ∥θ − θ∗∥2 (4.7)

where θ∗ denotes the network parameters before online learning is applied to the current

sample. This regularization method has been proven effective in continual learning [30, 37]

and online log anomaly detection [13] approaches. To balance distance maximization and

regularization, we further add a weight term λ to the regularization terms such that the total

loss for false negative events can be represented as:

LFN = Lknn + λ(Ldir + Lθ) (4.8)

The complete online continual learning process is detailed in Algorithm 4.
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Algorithm 4 LogRead online continual learning
Require: Test set Dtest, online epochs Nonline, trained feature extractor ϕ, memory bank MC ,

threshold ϵ, number of samples n for re-scaling the memory bank, number of nearest neighbours
k, upper bound hyperparameter τ , regularization weight λ.

1: for (si, yi) ∈ Dtest do
2: Step 1: Perform Detection
3: Set ϕ to test mode
4: hi ← ϕ(si)
5: Compute score(si) with (4.4)
6: if score(si) > ϵ then
7: y′i ← 1
8: else
9: y′i ← 0
10: end if
11: Step 2: Online Learning
12: Set ϕ to training mode
13: counter ← 0
14: if yi = 0 and y′i = 1 then ▷ False Positive
15: MC ←MC ∪ {hi}
16: counter ← counter +1
17: if counter = n then
18: Mtemp ←MC [−n :]
19: MC ←MC [: −n]
20: MC ←MC ∪ CoresetSample(Mtemp)
21: counter ← 0
22: end if
23: else if yi = 1 and y′i = 0 then ▷ False Negative
24: θ∗ ← θ
25: h∗

i ← hi

26: for epoch ∈ [1, . . . , Nonline] do
27: Compute LFN with (4.8)
28: Optimize LFN

29: Compute score(si) with (4.4)
30: if score(si) > ϵ then
31: Early Stopping
32: end if
33: end for
34: end if
35: end for
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4.3 Experiment

4.3.1 Experimental Settings

Datasets

We validate LogREAD on BGL [49], Thunderbird [49] and Spirit [49] datasets. A chronolog-

ical order is maintained according to the timestamps to ensure the training dataset does not

expose any distribution drift in advance. For offline baseline comparison, we take the first

60% of normal logs of each dataset as the training data. Using a large training ratio would

help reduce the variation in results and these offline baselines are designed to be trained with

more data. On the contrary, we utilize only 30% of normal logs for offline training and the

rest of the data is for simulating the OCL scenario, as less training data can examine how

well the methods evolve under potential distribution drifts.

We compare our LogREAD to several offline and online log anomaly detection baselines.

Due to the limited availability of public implementations in log anomaly detection research

[34], we either replicate non-public baselines based on the provided implementation details

or adapt publicly available baselines to our experimental setting. The baselines are listed

below, with an asterisk (*) indicating our replicated version.

Offline methods: LogBERT [21], Logsy* [47]

Online methods: UnLearn* [13], LogOnline [64]

Evaluation Metrics

Following the existing works, we adopt Precision, Recall, F1-Score and the average inference

time per log as evaluation metrics:

Precision =
TP

TP + FP
; Recall =

TP

TP + FN
; F1-Score = 2× Precision× Recall

Precision + Recall

TP: True Positive; FP: False Positive; FN: False Negative;

We use a batch size of 1 to infer all the compared methods, ensuring that the offline and

online inference times are unaffected by the batch size. The average inference time is recorded

in milliseconds per log.
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Experimental Setup

We conduct our experiments on a Linux Server with Intel i9-9940X @ 3.30GHz CPU and

64GB of RAM. One Nvidia RTX 2080Ti GPU is used for training under the Python 3.8.10

environment with Pytorch 2.1.0+cu118 installed.

Implementation Details

For LogREAD, we use bert uncased L-4 H-256 A-4 as the feature extractor ϕ, with 10

epochs of training on the contrastive log embeddings. The coreset sampling ratio is set to

50%, and k = 2 is the number of nearest neighbors for comparison. λ is set to 0.5 and the

number of samples n for re-scaling the memory bank is 32 in the online continual learning

algorithm. AdamW [41] optimizer is employed for both offline and online learning. The

learning rate is set to 3e-5 for offline learning and 3e-6 for online continual learning to ensure

stability. During online updates, we perform 10 backpropagations for each instance update

to ensure robust continual learning.

4.3.2 Results

Offline

Table 4.1 shows the experimental results of the baselines compared to LogREAD in offline

mode. The results are based on running with 3 random seeds. Logsy achieves nearly per-

fect detection on the Thunderbird dataset but lacks consistency on the other two datasets,

particularly showing an average F1-Score of 67.61% on the Spirit dataset. This indicates

that Logsy’s performance heavily depends on the auxiliary datasets used to represent the

abnormal class during training. If the auxiliary dataset fails to represent the abnormal class

accurately, Logsy’s performance will collapse significantly. Similar to LogREAD, LogBERT

maintains consistent performance across all three datasets. However, its latency becomes

an issue since LogBERT was originally built for sequence-level detection, and converting it

to log-level detection slows it down substantially. Moreover, LogBERT requires both log

parsing and a fixed-sized embedding layer representing the training logs’ vocabulary, making

it unsuitable for online learning scenarios. The performance of the two online baselines in

offline modes lags LogREAD across all three datasets. Despite performing slightly behind

several baselines on the Thunderbird dataset, LogREAD achieves the best offline F1-Score

on the BGL and Spirit datasets. Regarding the inference speed, LogREAD is only about 0.3

milliseconds slower per log than Logsy and approximately 1.5 times faster than LogBERT.
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BGL

Methods Precision (%) Recall (%) F1 (%) Time (ms)

Logsy* [47] 75.78 ± 15.91 91.44 ± 4.70 81.08 ± 9.72 1.64 ± 0.02

LogBERT [21] 93.65 ± 0.04 80.80 ± 0.01 86.75 ± 0.01 3.80 ± 0.05

LogOnline [64] 30.26 ± 8.80 82.51 ± 9.57 42.61 ± 5.13 1.14 ± 0.01

UnLearn* [13] 82.67 ± 2.64 95.32 ± 0.23 88.53 ± 1.41 0.53 ± 0.05

LogREAD 91.44 ± 2.38 88.94 ± 5.38 89.86 ± 4.51 1.84 ± 0.00

Thunderbird

Methods Precision (%) Recall (%) F1 (%) Time (ms)

Logsy* [47] 100 ± 0.00 99.99 ± 0.00 99.99 ± 0.00 1.68 ± 0.37

LogBERT [21] 87.77 ± 0.89 99.99 ± 0.00 93.48 ± 0.50 3.44 ± 0.04

LogOnline [64] 84.56 ± 7.82 97.03 ± 0.83 90.24 ± 4.53 1.47 ± 0.05

UnLearn* [13] 10.16 ± 5.34 26.95 ± 2.51 14.75 ± 3.98 0.50 ± 0.03

LogREAD 84.81 ± 1.64 98.56 ± 2.36 91.16 ± 1.52 1.98 ± 0.01

Spirit

Methods Precision (%) Recall (%) F1 (%) Time (ms)

Logsy* [47] 56.23 ± 9.45 99.98 ± 0.01 67.61 ± 7.76 1.75 ± 0.11

LogBERT [21] 90.92 ± 0.29 99.99 ± 0.00 93.48 ± 0.51 3.27 ± 0.00

LogOnline [64] 24.19 ± 2.53 84.42 ± 10.63 37.36 ± 1.80 1.34 ± 0.01

UnLearn* [13] 45.43 ± 2.00 62.43 ± 10.22 52.31 ± 2.31 0.65 ± 0.05

LogREAD 99.64 ± 0.18 99.87 ± 0.14 99.72 ± 0.13 1.86 ± 0.00

Table 4.1: Offline results (mean ± std) on BGL, Thunderbird and Spirit datasets with a
0.6 training split ratio. The best metric values are bolded and the runner-up is highlighted
with undeline.
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Online

The comparison of online methods is shown in Table 4.2. We also include the offline base-

lines’ experimental results under this setting. LogBERT’s performance falls on the BGL and

Thunderbird datasets compared to its offline result due to a smaller training ratio and no

online learning mechanism. LogREAD outperforms the other baselines by a large margin

on all three datasets. This demonstrates the effectiveness of its online mechanism. While

requiring no manual feedback, LogOnline necessitates specific log headers in the datasets(e.g.

BGL) for online learning. Furthermore, its reliance on a frozen auxiliary autoencoder re-

sults in a low precision score because the autoencoder which is trained only on the offline

dataset, tends to predict all the unseen logs as abnormal. UnLearn, another online baseline,

shows better performance than LogOnline on the BGL dataset. It achieves a Precision of

77.53% and an F1-Score of 85.58%, with a significant advantage in inference time, being the

fastest among all methods with 0.39 milliseconds per log. However, UnLearn’s performance

is notably poor on the Thunderbird and Spirit datasets, with F1-Scores of 14.16% and

50.89%. This inconsistency highlights UnLearn’s difficulty in generalizing across different

datasets. LogREAD exhibits superior online detection accuracy. The increase in inference

time compared to its offline performance is within an acceptable range. More representative

log embeddings are stored in the memory bank to support strong online performance and

account for the additional inference time.

Figure 4.2 provides a comprehensive comparison of F1-scores for all evaluated methods,

presented through separate bar plots for offline and online modes. This visualization allows

for a clearer assessment of performance across different techniques.

4.3.3 Ablation Study

To further evaluate the effectiveness of LogREAD’s online mechanisms, we compare Lo-

gREAD to its two variants, each excluding one of the online mechanisms: memory expansion

or extractor tuning. Table 4.3 presents the results of this ablation study, with values averaged

over three runs. Overall, the results demonstrate the significant contribution of both mech-

anisms to LogREAD’s online detection performance. When either mechanism is excluded,

there is a noticeable drop in the overall F1-Score across the three datasets. For instance,

the F1-Score for the “w/o memory expansion” variant drops to 87.36% on the BGL dataset,

compared to 99.97% for LogREAD. Similarly, the “w/o extractor tuning” variant shows a

reduced F1-Score of 95.19% on the BGL dataset. Additionally, we observe specific decreases

in either Precision or Recall for each variant. For example, the Precision of the “w/o mem-

ory expansion” variant drops to 75.12% on the Thunderbird dataset, whereas LogREAD
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Figure 4.2: Bar plots illustrating the F1-scores of various methods in both offline and online
modes across the BGL, Thunderbird, and Spirit datasets.
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BGL

Methods Precision (%) Recall (%) F1 (%) Time (ms)

Logsy* [47] 27.78 ± 0.01 99.99 ± 0.00 43.48 ± 0.01 1.52 ± 0.07

LogBERT [21] 88.63 ± 0.62 80.81 ± 0.01 84.54 ± 0.28 3.27 ± 0.01

LogOnline [64] 63.10 ± 10.60 85.88 ± 9.65 72.86 ± 2.67 1.96 ± 0.11

UnLearn* [13] 77.53 ± 0.26 95.50 ± 0.25 85.58 ± 0.06 0.39 ± 0.00

LogREAD 99.97 ± 0.02 99.99 ± 0.00 99.97 ± 0.01 2.06 ± 0.03

Thunderbird

Methods Precision (%) Recall (%) F1 (%) Time (ms)

Logsy* [47] 20.28 ± 21.86 85.13 ± 25.74 30.35 ± 17.97 1.22 ± 0.08

LogBERT [21] 79.51 ± 6.33 99.99 ± 0.00 88.49 ± 3.96 3.89 ± 0.22

UnLearn* [13] 8.47 ± 0.57 43.22 ± 1.90 14.16 ± 0.90 0.53 ± 0.01

LogREAD 99.54 ± 0.21 99.99 ± 0.00 99.76 ± 0.10 1.91 ± 0.01

Spirit

Methods Precision (%) Recall (%) F1 (%) Time (ms)

Logsy* [47] 25.25 ± 4.08 99.96 ± 0.05 40.20 ± 5.30 1.28 ± 0.09

LogBERT [21] 88.90 ± 0.31 99.99 ± 0.00 94.12 ± 0.17 3.32 ± 0.02

UnLearn* [13] 43.20 ± 0.80 62.04 ± 4.21 50.89 ± 0.86 0.52 ± 0.00

LogREAD 99.71 ± 0.13 99.99 ± 0.00 99.85 ± 0.06 1.90 ± 0.02

Table 4.2: Online results on BGL, Thunderbird and Spirit datasets with a 0.3 training split
ratio. The best metric values are bolded and the runner-up is highlighted with undeline.

achieves 99.54%. The Recall for the “w/o extractor tuning” variant on the Spirit dataset

is 91.34%, compared to 99.99% for LogREAD. This outcome aligns with our design goals:

memory expansion aims to reduce the number of normal log data predicted as abnormal,

thereby lowering the false positive rate. Similarly, the feature extractor tuning is designed

to lower the false negative rate by improving the model’s ability to identify anomalous logs

correctly.

By combining these two mechanisms, LogREAD achieves a superior F1-Score, balancing

both Precision and Recall effectively.

Variant
BGL Thunderbird Spirit

P (%) R (%) F1 (%) P(%) R (%) F1 (%) P (%) R (%) F1 (%)

LogREAD 99.97 99.99 99.97 99.54 99.99 99.76 99.71 99.99 99.85

w/o memory expansion 77.94 99.99 87.36 75.12 98.45 85.26 80.56 97.88 88.50

w/o extractor tuning 99.98 90.84 95.19 99.45 89.56 94.22 98.72 91.34 94.89

Table 4.3: Ablation study results across three datasets in online scenarios. “w/o memory
expansion” denotes the variant without memory expansion for false positives, and “w/o
extractor tuning” corresponds to the variant without extractor tuning for false negatives.
“P” and “R” stand for Precision and Recall metrics. All the values are averaged over three
runs.
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Figure 4.3: Comparison of cumulative test scores of LogREAD in offline and online modes
across three datasets with training ratio set to 0.3.

4.3.4 Visualization

Figure 4.3 provides a visual comparison of cumulative test scores of LogREAD in offline

and online modes across the three datasets. The x-axis represents the percentage steps

during testing, starting from 1000 samples. The y-axis represents the performance metrics

as percentages. The curves represent the Precision, Recall, and F1-scores for both offline

and online learning scenarios. From the figure, we observe a rapid decline in test scores when

no online learning is applied. LogREAD’s online learning mechanism effectively maintains

superior performance, with no significant drop over time. The online learning curves for

Precision, Recall, and F1-Score remain relatively stable and high compared to their offline

counterparts, demonstrating the robustness and adaptability of LogREAD in an evolving

log data environment.

4.4 Conclusion

In this chapter, we introduced LogREAD, a robust and effective approach for log anomaly

detection that is particularly suited for online continual learning scenarios. Our method

addresses the limitations of existing online models, which often struggle with non-stationary

data and rely on extensive preprocessing. LogREAD is a parsing-free approach that employs

an adaptively reduced memory bank and a continuously evolved feature extractor, making

it highly adaptable to various log formats and more resilient to data distribution drifts.

Extensive experiments demonstrate LogREAD’s stable performance across all the datasets

in both online and offline environments.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we addressed the challenges of log anomaly detection in large-scale and dy-

namic computer systems by developing two approaches: FastLogAD for offline log sequence

anomaly detection and LogREAD for online log instance anomaly detection.

FastLogAD was designed to tackle the need for fast and accurate log anomaly detection

in offline settings. By incorporating Mask-Guided Anomaly Generation (MGAG) and Dis-

criminative Abnormality Separation (DAS), FastLogAD generates tailored pseudo-anomalies

and trains a robust discriminator to efficiently separate normal and anomalous log sequences.

Our experiments on the HDFS, BGL, and Thunderbird datasets demonstrated that FastLo-

gAD not only achieves the highest F1-scores among existing methods but also significantly

increases detection speed, making it a practical solution for real-time log analysis.

LogREAD addresses the challenges of online anomaly detection in dynamic log environ-

ments, with a focus on log instances. By leveraging contrastive learning for offline training

and maintaining an adaptive memory bank along with a continuously evolved feature ex-

tractor, LogREAD can dynamically adjust to new log patterns with minimal preprocessing

as a parsing-free approach. Our evaluations on the BGL, Thunderbird, and Spirit datasets

showed that LogREAD outperforms all existing online methods and performs on par with

or even better than existing offline methods in instance-based anomaly detection, demon-

strating its robustness and adaptability in real-world scenarios.

Together, these contributions advance the field of log anomaly detection by providing

effective solutions for both log sequence and log instance anomaly detection, ensuring timely

and accurate identification of anomalies while adapting to evolving log data.
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5.2 Future Work

While this thesis has made certain contributions to log anomaly detection, several challenges

remain open in this field:

• Solving the Out-Of-Vocabulary (OOV) issue: Despite FastLogAD’s high overall

F1-Score, it exhibits a comparatively lower precision score due to false positive predic-

tions, particularly with sequences that are out of the vocabulary (OOV) trained on the

training data. These sequences are encoded into [unk] tokens, increasing the likelihood

of being recognized as anomalies. To address this, future research should explore the

incorporation of additional features, such as semantic features, to enhance robustness

against Out-Of-Vocabulary (OOV) issues.

• Extending FastLogAD to pure unsupervised anomaly detection: FastLogAD

could be adapted to support pure unsupervised anomaly detection. This extension

would eliminate the need for fully normal training data, thereby reducing the cost

associated with manual labelling and broadening FastLogAD’s applicability.

• Optimizing LogREAD: Future work could focus on optimizing LogREAD’s design

to improve latency and eliminate the need for manual feedback while maintaining

performance. Enhancing its adaptability to log sequence anomaly detection and a

broad range of systems would extend its applicability in real-world scenarios.

• Scability to diverse systems: It is crucial to ensure the scalability and effectiveness

of FastLogAD and LogREAD across various log formats. Future research could involve

creating more complex log datasets relevant to contemporary computer systems and

developing generalized models adapting to diverse logging environments. Cross-domain

adaptability and universal log representation frameworks are promising areas for this

endeavor.
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