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Abstract

Elastic metamaterials have received growing attention from the research community due

to their unique properties and attractive engineering applications. The unusual elastic wave

manipulation ability of the elastic metamaterials mainly comes from the delicately designed

structural configuration. This thesis aims to developing elastic metamaterial systems with en-

gineered representative cell featuring negative effective mass and/or modulus, and then conduct

a systematic investigation of their dynamic behaviour, as well as their interesting applications.

To investigate the underlying mechanism of generating negative effective parameters, a

two-dimensional elastic metamaterial model, consisting of a series of properly arranged rigid

bodies and linear springs, is developed to exhibit both negative effective mass and modulus un-

der specific frequencies. In this model, the translational resonance of the resonators can gener-

ate negative effective mass by inducing overall motion of the representative cells, whereas the

translational resonance can generate negative effective modulus through giving rise to the local

deformation of the representative cells without overall motion. By generating such controllable

translational and rotational resonances in the representative cell, negative effective mass and

modulus can be achieved independently. The effect of the generated negative effective mass

and/or modulus on wave propagation of the elastic metamaterial has been studied.

Then, from this design strategy, a new one-dimensional elastic metamaterial is designed to

possess negative effective mass and/or modulus through two types of local translational res-

onance introduced in the representative cell, to avoid the potential difficulties in fabrication

associated with rotational motion. The unique feature of the representative cell endows the
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elastic metamaterial model with great flexibility to generate these two negative effective pa-

rameters in different frequency ranges, the independent control of which is realized to some

extent. Numerical analysis has been conducted to show its strong wave mitigation ability with

single negative effective parameter and the phenomenon of negative phase velocity is observed

when simultaneously negative effective mass and modulus exist.

Based on the one-dimensional elastic metamaterial, a new two-dimensional elastic meta-

material model is developed with simultaneously negative effective mass density, bulk modulus

and shear modulus. Analytical study of the new metamaterial system is performed based on a

simplified model to study the effect of the main material and geometric parameters. Numerical

analysis is further conducted to simulate wave propagation in the current metamaterial. The

results shows that this new elastic metamaterial can behave like solid with negative phase ve-

locities for longitudinal and transverse waves and also can behave like fluid mainly supporting

longitudinal waves with negative phase velocities.

For the new two-dimensional metamaterial designed, numerical analysis is performed to

further study the wave propagation in the metamaterial system containing a large number of pe-

riodically distributed material cells. The phenomenon of negative refraction is observed at the

frequency with negative phase velocity, which can potentially be utilized for sub-wavelength

imaging. The numerical results clearly show the wave blocking ability of the anisotropic model

in broad frequency ranges, which can be applied in vibration isolation and noise reduction.

The elastic metamaterial models and the investigations presented in this thesis shed new

light on the design strategy of elastic metamaterials with negative effective parameters and

provide insights into developing such metamaterials with various special functionalities.
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Chapter 1: Introduction

This Chapter mainly aims to introducing the development of metamaterials and bring out the

objectives of this thesis. It is divided into four sections. The background and evolution of

metamaterial are given in Section 1.1 and the motivation of the thesis topics is presented in

Section 1.2. The detailed literature review of the development and challenges in the research

area of acoustic/elastic metamaterials are provided in Section 1.3. Section 1.4 lists the research

objectives and illustrates the main structure of the thesis.

1.1 Background

The properties of a conventional material are essentially determined by the chemical elements

in the material. People have always kept on trying to better understand and manipulate the

material properties with the accumulated knowledge of the nature. For instance, alloys were

synthesized to improve the mechanical properties of metals over 3000 years ago. The slight

doping can make the conductivity of silicone with orders of magnitude higher and this approach

has laid the foundation for the whole semiconductor industry. With the aid of the rapidly de-

veloped technology, people can investigate the material properties in various scales for special

functionalities. These efforts have strived to maximize the potential of existing materials and

significantly enlarged the range of materials’ functionalities available for human use (Liu and

Zhang, 2011).

In the past several decades, attempts have also been made to pursue the desired material

properties from the delicately designed subwavelength structures, rather than their composi-
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tions. Termed metamaterial, these materials with artificial structures can exhibit unique prop-

erties, which are not commonly seen or physically inconceivable in nature. The materials with

simultaneous negative permittivity and negative permeability under certain frequencies were

first theoretically demonstrated to possess a negative refractive index (Veselago, 1968), from

which the concept of metamaterial was proposed. Due to the limitation of technologies in syn-

thesis and fabrication, this novel idea remained to be an academic curiosity at that time. A

revolution started two decades ago with the experimental realization of the hypothetical ma-

terials with negative refractive index in the microwave frequency regime by mounting copper

split-ring resonators and wires on interlocking sheets of fiberglass circuit board (Shelby et al.,

2001; Smith et al., 2000). Ever since then, considerable interests have been sparked in the

field of electromagnetic metamaterial and various unprecedented applications of this type of

metamaterials have been proposed. The property of negative refraction was utilized to develop

superlense with spatial resolution beyond the diffraction limit (Pendry, 2000; Shalaev, 2007;

Zhang and Liu, 2008). The ability to adjust the permittivity and permeability independently

and arbitrarily through the metamaterials makes the electromagnetic cloaks possible (Landy

and Smith, 2012; Leonhardt, 2006; Pendry et al., 2006; Schurig et al., 2006). Many of these

concepts, techniques and applications are not exclusive to electromagnetic waves and their

counterparts exist in other areas of wave science.

Since the analogy between electromagnetic and acoustic waves was found to identify com-

pliance with electric permittivity and relate mass density with magnetic permeability (Auld,

1973; Carcione and Cavallini, 1995; Chan et al., 2006), considerable attention has been placed

on the research of acoustic metamaterials to explore the possible similar applications for acous-
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tic waves (Craster and Guenneau, 2013; Cummer et al., 2016; Wu et al., 2018). Typical acoustic

metamaterials have been developed to achieve negative effective mass and/or negative effective

bulk modulus (Fang et al., 2006; Lee et al., 2017, 2010; Liu et al., 2000; Lu et al., 2009; Ma

and Sheng, 2016). By making use of these unusual properties of the developed metamateri-

als, researchers are considering using acoustic metamaterials in advanced applications, such as

acoustic wave mitigation (Jiang et al., 2014; Mei et al., 2012), acoustic superlens (Moleron and

Daraio, 2015; Park et al., 2015), and acoustic cloaks (Bi et al., 2018; Zigoneanu et al., 2014).

Despite these fabulous achievements already obtained, there are still growing efforts placed on

the development of acoustic metamaterials to seek new functionalities.

Acoustic metamaterials have already been studied intensively. However, relatively less at-

tention has been paid to elastic metamaterials, which can show richer dynamic behavior and

offer more potential applications due to the coexisting and coupling of longitudinal and trans-

verse waves in the elastic medium (Zhou et al., 2012; Zhu et al., 2015). These two kinds of

metamaterials have developed along with each other by sharing two independent effective pa-

rameters, effective mass and bulk modulus, which are identified as the essential parameters in

controlling acoustic wave propagation (Cummer et al., 2016; Ma and Sheng, 2016). Some clas-

sic elastic metamaterials have already been designed to possess negative effective parameters

for elastic waves, such as negative effective mass, bulk modulus and shear modulus (Lai et al.,

2011; Liu and Hu, 2016; Wu et al., 2011; Zhou and Hu, 2009; Zhu et al., 2014a). However,

the potentials of elastic metamaterial have not been fully explored yet and the development of

elastic metamaterial is still in its early stage. Most of the current elastic metamaterial models

with negative effective parameters only provide theoretical guidance for further research of

3



elastic metamaterials and their potential applications.

1.2 Motivation

It is now well established that there are several ways to generate negative effective mass and

modulus. The first negative effective mass has been achieved with the unit cell as shown in

figure 1.1(a). The translational motion of the coated lead sphere will cause an overall motion

of the cell, resulting in frequency-dependent effective mass and its working mechanism can be

clearly illustrated with the spring-mass model in figure 1.1(b). This classic approach has been

intensively implemented to design acoustic/elastic metamaterials with negative effective mass.

(a) (b)

Figure 1.1: (a) The cross section of the continuum representative cell ((Liu et al., 2000), image
used with permission from The American Association for the Advancement of Science), (b) the
single spring-mass system ((Huang et al., 2009a), image used with permission from Elsevier).

For negative effective modulus, the Helmholtz resonator in figure 1.2(a) was firstly used to

induce resonance of the fluid in the neck section to generate negative effective bulk modulus

(Fang et al., 2006). This approach can be just applied to acoustic metamaterials. A mechanical

resonator, as shown in figure 1.2(b), was then introduced to generate negative effective modulus

4



(a) (b)

(c) (d)

Figure 1.2: (a) Schematic corss-sectional view of a Helmholtz resonator ((Fang et al., 2006),
image used with the permission from Springer Nature), (b) a unit of the mechanial model with
negative modulus ((Huang and Sun, 2011a), image used with permission from Elsevier), (c)
schematic view of the model ((Bigoni et al., 2013), image used with permission from The
American Phyical Society), (d) part 1 of the unit cell ((Wang, 2014), image used with permis-
sion from Elsevier).

through translational resonance in the transverse direction (Huang and Sun, 2011a). However,

this model cannot endure horizontal overall motions. Then, as depicted in figure 1.2(c), the

centre resonator was connected to the matrix through beam ligaments and the rotation of the

resonator can lead to compressive or tensile radial stress on the boundary of the void to cause

similar effect of monopolar resonance, which can generate negative effective bulk modulus

(Bigoni et al., 2013). This design is not easy to fabricate and use though. Most of the existing

elastic metamaterials combined these approaches mentioned to generate double negative effec-
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tive parameters, negative effective mass and bulk modulus. Then, a one-dimensional model, as

shown in figure 1.2(d), obtained negative effective mass and modulus through rotational and

translational motion of the resonators and the two effective parameters can be adjusted in a

controllable manner (Wang, 2014). This simple spring-mass model clearly illustrated that the

overall motion of the representative cell will generate effective mass and the local deformation

of the representative cell will result in effective modulus, shedding a light on the fundamental

understanding of manipulation of acoustic/elastic waves.

In light of the progress in elastic metamaterials, a spring-mass model has been developed

as part of the work in this thesis to further illustrate the mechanism of generating effective

parameters in two dimensions, as the extension of the one-dimensional model shown in figure

1.2(d). These two effective parameters in this two dimensional spring-mass model can be

controlled independently and this model can provide guidance in designing two-dimensional

elastic metamaterials (Li and Wang, 2016).

For the development of elastic metamaterials, the effective shear modulus plays an indis-

pensable role. As discussed, negative effective shear modulus has already been achieved in

several elastic metamaterial models. However, no triple negative elastic metamaterial exists,

i.e., simultaneously negative effective mass, bulk modulus and shear modulus. Triple negative

elastic metamaterial is of significant importance to the development of metamaterials due to the

negative refraction of both longitudinal and transverse waves. To this end, based on the same

approach that local deformation of the representative cell can induce effective modulus and

overall motion of the representative cell can generate effective mass, a one-dimensional realis-

tic metamaterial structure has been firstly developed with controllable negative effective mass
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and modulus through translational resonances. Directly from this one-dimensional model, a

two-dimensional elastic metamaterial is further developed with simultaneously negative effec-

tive mass, bulk modulus and shear modulus.

1.3 Literature review

This part provides a literature review of acoustic/elastic metamaterials featuring negative ef-

fective parameters including the development, the challenges and their attractive applications.

1.3.1 Metamaterials with negative effective mass

There has been significant attention paid to the development of acoustic/elastic metamaterials

with negative effective mass (Bonnet and Monchiet, 2017; Ge et al., 2018; Islam and Newaz,

2012; Lu et al., 2017). It is a common sense that the mass density of a composite should be

considered as the volume average of the constituent components with the implicit assumption

that all the constituent components move in unison (Mei et al., 2007; Sheng et al., 2007).

However, this theory does not hold when relative motion between the constituent components

exists due to the local resonant behavior (Mei et al., 2006; Mitchell et al., 2014), and then

the composite will display an exotic inertia response, different from that of a homogeneous

material (Banerjee, 2011). The effective mass can deviate significantly from its static value

and it will turn negative at frequencies where the sub-wavelength microstructure resonates and

moves out of phase with the excitation (Deymier, 2013; Gan, 2018). It can be concluded that

the negativity of the effective mass directly results from the attempt to use a single mass to

represent a composite structure with more than one component and it describes the out-of-

phase relation between the average acceleration and the external loading (Lee and Wright,
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2016; Wang et al., 2004).

The initial experimental realization of acoustic/elastic metamaterials with negative effec-

tive mass has been achieved by embedding heavy lead spheres coated with soft silicon rubber

in epoxy to activate the so-called dipolar resonance. This local resonance characterized by the

relative motions of the constituents internal to the elementary building block can be activated as

chosen frequencies with proper adjustment of the structural and material parameters, creating

band gaps two orders of magnitude lower than that obtained by the Bragg scattering (Liu et al.,

2000). In this pioneer work, the composite with randomly dispersed resonators still possessed

negative effective mass to attenuate sound wave and break the conventional mass-density law,

indicating the key role of the local resonance rather than the periodicity of the structure. In what

follows, the general concept of local resonance has motivated further studies of acoustic/elastic

metamaterials with negative effective mass and different local resonators have been fabricated

based on the variation of the shape and materials of the components, such as distributing par-

ticles in water (Larabi et al., 2007; Zhao et al., 2005) and penetrating angularly anisotropic

cylindrical scatters in rigid waveguide (Gracia-Salgado et al., 2013). For the metamaterials

mentioned above, the negative effective mass only exhibits over a pretty narrow frequency re-

gion. To overcome this problem, thin membrane-type resonator has been proposed to control

acoustic wave for broadband frequency range (Huang et al., 2016; Ma et al., 2013; Yang et al.,

2010), and negative effective mass density below a cut-off frequency was achieved in such

acoustic metamaterials consisting of an array of tubes with stretched rubber membranes fixed

(Lee et al., 2009a). Similar results can be obtained in a continuum metamaterial model with

clamped boundary conditions (Yao et al., 2010). Also, multilevel local resonators (An et al.,
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2015; Huang and Sun, 2010; Xiao et al., 2012) and resonators with graded stiffness and/or

masses (An et al., 2017; Banerjee et al., 2017; Baravelli and Ruzzene, 2013) have been consid-

ered to extend the widths of the frequency ranges with negative effective mass to some extent.

Lattice structure with local resonators also has been reported as broadband elastic metamaterial

since wave cannot propagate in lattice system above a certain frequency (Liu et al., 2015).

Thorough theoretical explorations with spring-mass systems consisting of mass-in-mass

resonating units have also been conducted to investigate the mechanism of generating neg-

ative effective mass in acoustic/elastic metamaterials (Huang et al., 2009a; Lee and Wright,

2016). A rigorous theoretical framework has been formed to describe the harmonic motion of

a spring-mass system with frequency-dependent effective mass developed from Newton’s law

(Milton and Willis, 2007). The relation between the negative effective mass, band gaps and

dispersion curves has been clearly illustrated (Huang and Sun, 2009b). Specifically, negative

effective mass will generate band gaps, in which only purely imaginary wave numbers exist.

This relation is experimentally and numerically verified through wave transmission analysis for

such a mass-in-mass system (Yao et al., 2008). Efforts have been made to describe the dynamic

behavior of this kind of spring-mass systems, in the sense of an effective medium (Liu et al.,

2012; Srivastava, 2015; Zhu et al., 2011).

It is now well established that properly designed local resonances in the representative cells

can generate negative effective mass. In general, the effective mass will be highly frequency-

dependent and become negative at certain frequencies (Liu et al., 2005; Ma and Sheng, 2016;

Zhu et al., 2016a).

9



1.3.2 Metamaterials with negative effective modulus

It is intuitive to expect that the resulting displacement of a deformed elastic object will be in

the same direction as the external force with implicit assumption of positive definite elasticity

tensor, which indicates positive bulk modulus and shear modulus (Ting, 1996; Zadpoor, 2016).

However, acoustic/elastic metamaterials with their inherent deep sub-wavelength nature have

triggered exciting investigations on the abnormal dynamic properties regarding the effective

modulus. It has been shown that negative effective bulk modulus is associated with the so-

called monopolar resonance, whereas negative effective shear modulus is associated with the

so-called quadrupolar resonance (Li and Chan, 2004; Wu et al., 2007; Zhou and Hu, 2009).

Here, negative bulk modulus describes the out-of-phase relation between the volume deforma-

tion and the external triaxial loadings and negative shear modulus illustrates the out-of-phase

relation between the antisymmetric deformation and loading (Zhou et al., 2012). Due to the

local resonances, the resulting effective moduli will be highly frequency-dependent and can

turn negative at certain frequencies.

Initially, a composite of soft rubber spheres suspended in water has been taken as a theoret-

ical example to show that the volume dilation of the rubber sphere could be out of phase with

pressure field applied near the monopolar resonance frequency, generating negative effective

bulk modulus (Li and Chan, 2004). The first negative effective bulk modulus was demonstrated

experimentally on ultrasound by a waveguide shunted with a chain of Helmholtz resonators

(Fang et al., 2006). The Helmholtz resonance was characterized by the oscillation of the fluid

in the narrow neck section, which can be considered to be incompressible due to the small

volume of the neck compared to that of the cavity. In this scenario, the fluid in the neck section
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played the role of mass whereas the cavity of the Helmholtz served as a spring. The resonant

frequency can be adjusted by altering the geometrical parameters of the resonators and when

the resulting bulk modulus turned negative, the sound waves were almost entirely reflected

back, generating a broad band gap (Cheng et al., 2008; Fey and Robertson, 2011). Similar

approaches have been applied in acoustic metamaterial systems consisting of an array of tubes

with side holes (Lee et al., 2009b) or periodically arraying split hollow spheres in the sponge

matrix (Ding and Zhao, 2011; Ding et al., 2010). Quasi-two-dimensional structure with drilled

cylindrical boreholes has been reported to exhibit negative bulk modulus due to the interaction

of the modes localized in the boreholes and the sound waves (Garcia-Chocano et al., 2012).

The so-called double-fishnet metamaterial featuring a pair of closely spaced, periodically per-

forated plates, can attenuate sound waves for a wide range of frequencies and angles due to the

negative bulk modulus generated (Bell et al., 2012; Christensen et al., 2010). These are typical

approaches for acoustic metamaterials to obtain negative bulk modulus.

Also, the phenomenon of negative bulk modulus has been observed in the elastic metama-

terials with bubble-contained-water spheres embedded in epoxy matrix (Ding et al., 2007), and

negative effective shear modulus has been obtained by introducing the quadrupolar resonance

(Lai et al., 2011). Chiral resonators featuring rotational resonance are implemented to induce

negative effective bulk modulus (Bigoni et al., 2013; Liu et al., 2011a; Wang et al., 2016). To

provide guidance for the design of elastic metamaterials with negative effective modulus, the

dynamic response of simplified spring-mass models have been intensively investigated and the

physical mechanism lies in that the translational resonance behaviour of the mass in the vertical

direction induces an expansion of the structure in the horizontal direction when loaded under a
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compressive force (Huang and Sun, 2011a; Zhou et al., 2012).

It should be noted that the negative effective modulus of acoustic/elastic metamaterials is

distinct from the static negative stiffness of inclusions observed in the composites with stored

energy from deformation (Drugan, 2007, 2017; Kochmann and Drugan, 2009; Lakes et al.,

2001). The former one is induced by the local resonance effects from the designed representa-

tive cell and can be stable without constraint. However, the latter one should have constraint to

be stable.

1.3.3 Metamaterials with simultaneously negative effective mass and modulus

It is now well established that realization of acoustic/elastic metamaterials with negative pa-

rameters needs local resonance within a certain frequency range. Then, it will be natural to

obtain double negative dynamic behavior by overlapping the negative frequency ranges with

negative mass or modulus from different types of local resonances (Ma and Sheng, 2016).

The possibility of acoustic metamaterials possessing simultaneously negative mass density

and bulk modulus has been mathematically demonstrated for the first time (Li and Chan, 2004).

The first successful experimental demonstration of acoustic double negativity was realized in

the composite structure consisting of elements of negative mass density (thin membranes) and

bulk modulus (side holes) (Lee et al., 2010). Similarly, a water based two-dimensional acoustic

metamaterial combined Helmholtz and rod-spring resonators to make simultaneously negative

mass density and bulk modulus occur (Fok and Zhang, 2011). A one-dimensional spring-mass

model also was developed to illustrate the underlying mechanism of generating negative mass

and negative modulus respectively (Huang and Sun, 2012). More recently, a three-dimensional
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double negative acoustic metamaterial has been experimentally realized by embedding soft

rubber microbeads in a water-based gel matrix to induce monopolar and dipolar resonances in

an overlapping frequency range (Brunet et al., 2014). Most of the efforts have been focused

on the acoustic metamaterials (Kaina et al., 2015) and the study of elastic metamaterials is

relatively few due to its coupled waves.

For elastic waves, the frequency overlapping of monopolar resonance for bubble-contained

water spheres and dipolar resonance for rubber-coated gold spheres in the epoxy matrix was

realized in a composite with epoxy matrix (Ding et al., 2007). A chiral structure has been

developed to gain double negative effective parameters at certain frequencies through trans-

lational and rotational motion of the resonators (Liu et al., 2011a), and the phenomenon of

negative refraction for longitudinal wave is experimentally observed in an elastic metamate-

rial featuring chiral resonators (Zhu et al., 2014b). The chiral resonators have shown great

potential in designing double elastic metamaterials. However, the translational and rotational

motion of the resonators is coupled. To clearly clarify the working mechanism of generat-

ing negative effective parameters, one-dimensional and two-dimensional elastic metamaterials

featuring springs and masses have been developed to generate independently controllable ef-

fective mass and modulus (Li and Wang, 2016; Wang, 2014). The theoretical possibility of

negative effective shear modulus has been investigated (Wu et al., 2007; Zhou and Hu, 2009)

and it was realized in a double negative elastic metamaterial comprising fluid-solid composite

inclusions (Wu et al., 2011). Almost at the same time, a hybrid elastic solid showed dynamic

behavior featuring simultaneously negative mass density and bulk modulus, or simultaneously

negative mass density and shear modulus (Lai et al., 2011). After that, continuing efforts have
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been paid to design elastic metamaterials with double negative effective parameters, such as

a hybrid elastic metamaterial with integration of negative capacitance shunted piezoelectric

patches to obtain negative effective mass density and tunable negative bending stiffness (Chen

et al., 2017). However, no elastic metamaterial with simultaneously negative effective mass,

bulk modulus and shear modulus exists yet.

1.3.4 Applications

The emerging of metamaterial has revolutionized the material design and strongly expedited the

research of advanced materials with unprecedented properties. The concept of acoustic/elastic

metamaterials extends far beyond negative effective mass and/or modulus, rather giving un-

precedented opportunities of designing devices for various attractive applications, which are

just beginning to be explored (Cummer et al., 2016; Ge et al., 2018). As the most popular ap-

plications, wave mitigation, wave negative refraction and wave cloaking have been illustrated

in the following.

Wave mitigation

The need of blocking unwanted vibration is a long-standing subject in engineering and one of

the prominent applications of acoustic/elastic metamaterials undoubtedly goes to their wave

mitigation ability (Chen et al., 2016; Tan et al., 2014). The early effort started from trying

to attenuate sound waves through periodic structures based on the underlying principle of

impedance variation. In this case, their lattice constants are of the same order of the characteris-

tic wavelengths (Hussein et al., 2014). Since the most common and devastating acoustic/elastic

waves in the industries are usually in the low frequency ranges, blocking low frequency waves
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is generally more desired than filtering those with high frequencies. In this scenario, peri-

odic structures were not practical solutions for low frequency wave mitigation due to the large

lattice constants needed. To address this limitation, localized resonance in acoustic/elastic

metamaterials was exploited to show great potential in wave attenuation due to the superior

performance in the low frequency frequency ranges. The local-resonance-induced band gap

can reach to very low frequency range where the wavelength is much larger than the size of the

microstructure and the band gap can be easily tuned through proper microstructure design in

the acoustic/elastic metamaterials.

A composite has been firstly demonstrated to attenuate sound waves with wave lengths two

orders larger than the lattice constant by introducing local resonance (Liu et al., 2000). After

that, local resonance became a classic approach to mitigate acoustic/elastic waves and various

acoustic/elastic models featuring negative effective mass or modulus have been developed to

mitigate low-frequency waves (Song et al., 2015). Elastic metamaterials with anisotropic mass

density also have been developed due to their various wave filtering ability along different

wave propagation directions (Liu et al., 2015; Zhu et al., 2016b). However, due to the resonant

nature of the metamaterial structures, the band gaps formed were usually of narrow bandwidths,

which greatly limited their practical engineering applications. As discussed previously, several

approaches have been made to extend the band gaps, such as membrane-type metamaterials

(Ma and Sheng, 2016; Yang et al., 2008), multiple and graded resonators (An et al., 2015;

Banerjee et al., 2017). Recently, the integration of active control technologies into the passive

metamaterial structures started to show great potential in wave mitigation with reconfigurability

and tunability (Cheer et al., 2017; Chen et al., 2017; Popa et al., 2015; Xiao et al., 2015).
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Here, the band gap formation of the elastic metamaterials in the sense of an isotropic

medium is explained as an example to illustrate the underlying mechanism of attenuating

waves with single negativity. For the two-dimensional case, the phase velocities of the lon-

gitudinal and transverse waves can be calculated in terms of the effective material parameters

as cp =
√
(κe +μe)/ρe and ct =

√
μe/ρe, respectively. When either the effective bulk mod-

ulus κe and the effective mass density ρe turns negative due to the local resonance, the phase

velocity of the longitudinal wave will be purely imaginary. It should be mentioned that in this

scenario, the effective bulk modulus κe from local resonance plays a dominating role in con-

trolling the wave phase velocities, rather than the effective shear modulus μe. Similarly, for

transverse waves, the phase velocities are purely imaginary when one of the effective shear

modulus μe and mass density ρe is negative. Imaginary phase velocity implies imaginary wave

number, indicating that the waves will decay exponentially. In other words, in the frequency

range for single negativity, wave cannot propagate through the effective medium, forming a

band gap (Huang et al., 2009a; Mitchell et al., 2014). The formation of band gap can also be

illustrated from the perspective of energy transfer mechanism. In a mass-in-mass lattice struc-

ture with negative effective mass, it has been shown that most of the work done by the external

force is temporarily stored in the resonators and then the kinetic energy will be taken out by

the external force in the form of negative work in a cyclic manner (Huang and Sun, 2009b).

Wave negative refraction

High-resolution acoustic/elastic imaging techniques are of significant importance for underwa-

ter sonar sensing, non-destructive evaluation and medical ultrasonic diagnostics (Craster and
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Guenneau, 2013). However, the scattered waves from an object contain not only propagat-

ing waves but also evanescent waves, which carry the sub-wavelength features of the object.

These evanescent waves decay exponentially and will be permanently lost before reaching

the imaging plane of the conventional lens, which greatly limits the resolution of imaging.

The first breakthrough was achieved in a flat slab with simultaneously negative permittivity

and permeability, and the so-called perfect lens can focus the propagating waves and recover

the evanescent waves through its negative refractive index to overcome the diffraction limit

(Pendry, 2000). Since then, negative refraction has opened the door for realization of imaging

and focusing with super spatial resolution (Zhang and Liu, 2008). Growing interests have been

stimulated to develop acoustic/elastic metamaterials with double negative parameters featur-

ing negative refraction (Brunet et al., 2014; Ge et al., 2018; Zhou et al., 2012). An acoustic

superlense featuring Helmholtz resonators was experimentally realized to achieve negative re-

fractive index with double negative effective parameters by breaking the structural symmetry

and it showed sub-wavelength imaging with resolution 3.5 times better than the diffraction limit

(Kaina et al., 2015). Besides negative refraction, similar effects for acoustic waves have been

obtained with negative effective mass (Ambati et al., 2007; Park et al., 2011), or anisotropic ef-

fective mass (Ao and Chan, 2008; Li et al., 2009; Shen et al., 2015), which also can amplify the

evanescent waves. A large amount of research work has been reported on negative refraction

of the acoustic wave in fluid-like media (Cummer et al., 2016; Ma and Sheng, 2016). However,

few attentions have been placed on the study of the negative refraction of elastic waves based

on local resonance in solid media where the coupled longitudinal and transverse waves bring

challenging but richer wave phenomena.
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Wave cloaking

Wave cloaking, as an almost magic concept in metamaterials, is to redirect the incident wave

around an object without scattering any of the wave energy through a spatially varying re-

fractive index, rendering the object invisible (Chen et al., 2010). Earliest progress has been

achieved in the field of electromagnetic metamaterials based on a coordinate transformation

method, which is rooted in the form-invariance of Maxwell’s equation (Cummer et al., 2006;

Fleury et al., 2015; Pendry et al., 2006). This approach was then extended to manipulate acous-

tic waves due to the form-invariance of the acoustic wave equations under coordinate transfor-

mation with the implicit requirement of homogeneous and anisotropic mass density (Chen and

Chan, 2007; Cummer and Schurig, 2007). Various models have been developed theoretically

and experimentally, such as the broadband two-dimensional underwater ultrasound cloaking

using a device with a network of acoustic circuit element (Zhang et al., 2011), the first om-

nidirectional ground cloak in air in three dimensions (Zigoneanu et al., 2014), and the recent

three-dimensional broadband underwater acoustic carpet cloak (Bi et al., 2018).

Naturally, the coordinate transformation technique has been considered for elastic waves.

However, there are two main barriers for this extensional work. For elastic waves, longitudinal

waves are coupled with in-plane and anti-plane shear waves. Also, the Naiver equations can-

not guarantee the form-invariance under generalized coordinate transformation (Colquitt et al.,

2014; Graeme et al., 2006). Despite these barriers, a cylindrical cloak for in-plane coupled

longitudinal and shear waves was developed through the material with heterogeneous isotropic

density and heterogeneous anisotropic elastic stiffness tensor, showing the major symmetry,

rather the minor symmetry (Brun et al., 2009). It was further demonstrated that transformation
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elastodynamics for elastic cloaking requires the materials with stiffness tensor lacking the mi-

nor symmetry, indicating asymmetry stress (Norris and Shuvalov, 2011), which was found in

hyperelastic solids under pre-deformation (Norris and Parnell, 2012). This special requirement

limited the elastic wave cloaking to some complicated structures with the minor symmetry

irrelevant (Sklan et al., 2018). There is still a long way for practical elastic wave cloaking.

However, the unremitting efforts in this field make this goal touchable (Diatta et al., 2016;

Parnell and Shearer, 2013; Zhang and Parnell, 2018).

1.4 Research objectives and outline

The objectives of this thesis are to develop realistic metamaterial structures with simultaneously

negative effective mass and effective modulus and conduct a systematic investigation of the

dynamic behavior of the elastic metamaterials under harmonic excitation.

In detail, this extensive investigation in this thesis is carried out by the following steps:

1. Mechanism investigation: modelling of a simplified two-dimensional elastic metama-

terial structure, which consists of a series of properly arranged local resonators based

on idealized massless linear springs and rigid masses. The underlying mechanism of

generating negative effective mass and negative effective modulus has been intensively

investigated. The key feature of the model lies in that the effective mass and modulus of

the model can be adjusted independently.

2. A new one-dimensional elastic metamaterial model: developing a one-dimensional

model and investigating its dispersion characteristics of wave propagation based on an-

alytical and numerical methods. The dynamic behavior of this model has been studied
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through its wave reduction functionality and the phenomenon of negative phase velocity

with negative effective parameters under certain frequencies. This elastic metamaterial

model can be directly used to design elastic metamaterial with controlled effective mass

and modulus only based on translational resonances.

3. A new two-dimensional elastic metamaterial model: developing a two-dimensional

elastic model with simultaneously negative effective mass, effective bulk modulus and

effective shear modulus. The association of negative effective mass and moduli with the

mode of local resonance, the eigenstate, is evaluated. This elastic metamaterial model

can behave like solids or fluid for elastic waves with negative phase velocities in different

wave propagating directions.

4. Wave propagation of the new two-dimensional elastic metamaterial model: studying

the unusual dynamic properties of the new elastic metamaterial and its anisotropic case

by conducting extensive numerical analysis. The attractive applications of the elastic

metamaterial featuring negative refraction and wave attenuation have been discussed.

This thesis is prepared in the paper-based format except for Chapter 1 and Chapter 6. Chap-

ter 1 provides an intensive introduction to the current research in the field of elastic metamate-

rials and illustrates the significance of the undertaking work with the objectives listed. Chapter

6 concludes the research of this thesis with highlights of its main contributions and propose

future work for subsequent research. Chapters 2-5 are written in the form of a paper based on

these four steps respectively.
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Chapter 2: On the dynamic behaviour of a two-dimensional

elastic metamaterial system

The current Chapter develops a two-dimensional mechanical system with local resonators to

investigate the general mechanism of elastic metamaterials to generate negative effective ma-

terial parameters. This system can exhibit simultaneously negative effective mass and modulus

at certain frequencies through the controllable translational and rotatioal resonance induced

in the representative cells. The dynamic behaviour of the developed system under different

frequencies is evaluated in consideration of the effective mass and modulus.

2.1 Introduction

Metamaterials are engineered materials exhibiting unique properties, which are not commonly

seen or physically inconceivable in nature. Early efforts in developing such unusual materials

had been mostly focussed on new electromagnetic materials to control electromagnetic waves.

It was demonstrated theoretically that materials with simultaneously negative permittivity and

negative permeability under certain frequencies will possess a negative refractive index (Vese-

lago, 1968), from which the concept of metamaterial was proposed. Due to the limitation of

technologies in synthesis and fabrication, this novel idea remained to be an academic curiosity

at that time. Only in recent years, the feasibility of designing this type of metamaterials, so-

called left-handed electromagnetic materials, was justified and the new materials were success-

fully devised to achieve effectively negative permittivity and negative permeability (Pendry,

2000; Shelby et al., 2001; Smith et al., 2000). By making use of the unusual properties of the
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developed materials, researchers are considering using metamaterials in advanced applications,

which could not be achieved before, such as invisible cloak (Pendry et al., 2006; Schurig et al.,

2006) and hyperlens (Liu et al., 2007) for electromagnetic waves.

As the counterpart of electromagnetic materials in mechanical engineering, in recent years,

acoustic or elastic metamaterials, which exhibit negative effective mass or negative modulus,

have also received significant attention. Many peculiar properties of these metamaterials have

been predicted based on different material models, which provide the mathematical analogy

between electromagnetic behaviour and mechanical behaviour. The main focus in the devel-

opment of these materials is the design of engineered microstructures, which can generate the

desired properties. The first design of such a material structure is by embedding heavy spheres

coated with soft silicon rubber in epoxy to acquire, experimentally, negative mass at certain

loading frequencies (Liu et al., 2000). The underlying mechanism of this material structure is

the local mechanical resonance. This mechanism has been used in the design of other metama-

terial systems, such as distributing local mechanical resonators in water (Larabi et al., 2007)

to develop acoustic metamaterials, or using distributed membranes to generate periodic res-

onators in acoustic media to achieve negative mass (Cselyuszka et al., 2015; Lee et al., 2009a;

Mei et al., 2012). It is now well-established that properly designed local resonance can gen-

erate negative effective mass for acoustic metamaterials. In general, the effective mass will

be frequency-dependent and become negative at certain frequencies (Huang et al., 2009a; Liu

et al., 2005; Milton and Willis, 2007; Movchan and Slepyan, 2007; Yao et al., 2008). Re-

cently, multilevel resonators have also been considered in the generation of negative mass in a

one-dimensional hierarchical metamaterial system (An et al., 2015).

22



Acoustic metamaterials with apparent negative modulus have also received increasing inter-

ests. A one-dimensional acoustic metamaterial system consisting of a chain of subwavelength

Helmholtz resonators experimentally yields negative group velocity as a result of the negative

bulk modulus (Fang et al., 2006). Similar results have also been achieved in a metamaterial

system consisting of an array of tubes with side holes (Lee et al., 2009b). To develop elastic

metamaterials, theoretical models have been developed based on spring-mass systems, mainly

in one dimension cases, exhibiting frequency-dependent effective modulus (Huang and Sun,

2011a; Zhou et al., 2012). Attempts have also been made to achieve both negative mass and

negative modulus (Bigoni et al., 2013; Liu et al., 2011a), using more general two-dimensional

spring-mass models. However, in these works, negative mass and negative modulus cannot be

adjusted independently in a controllable manner. It should be mentioned that one of the main

issue in the development of this type of metamaterials is to precisely manipulate the dynamic

behaviour and wave propagation in the metamaterials, and therefore, the desired negative mass

and negative modulus should be reliably controlled. Recently, a one-dimensional metamaterial

model formed with a special mass-spring system is proposed, with which the effective mass and

effective modulus, depending on the loading frequency and structural parameters, can be easily

tuned to desired positive or negative values by adjusting the geometry and material properties

of the system (Wang, 2014).

The current paper, as the extension of the corresponding study of the one-dimensional

model (Wang, 2014), presents a two-dimensional (2D) metamaterial system consisting of pe-

riodic cells formed by properly arranged mass-spring structures. The structure allows rather

independent local translation motion and rotation motion, making effective mass and effective
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modulus being easily controlled, with the translational motion directly dominating the effec-

tive mass and the rotational motion controlling the effective modulus. Numerical simulation

is conducted to show the resulting negative mass and negative modulus under specific loading

frequencies and geometries. The frequency response of the effective properties and the effects

of geometric parameters are also presented to illustrate the feasibility of designing the desired

effective properties by proper adjusting the metamaterial cell. The dynamic behaviour of such

a two-dimensional metamaterial system is also studied by considering the elastic wave prop-

agation in the effective medium under different conditions of the metamaterial cell. Some of

the basic features of the current 2D model are similar to that of the previous 1D model, but

significantly different dynamic behaviour in 2D cases is observed, such as Poisson’s ratio ef-

fect, the direction dependence of wave propagation, and the complexity of the 2D model. More

importantly, the 2D model will provide a guideline for designing realistic 2D metamaterials.

2.2 Formulation of a two-dimensional metamaterial model

Consider a two-dimensional metamaterial system formed by a periodic structure, as shown in

figure 2.1(a). The representative cell of the system consists of two separate units, as shown

schematically in figure 2.1(b and c). Each unit contains one circular rigid body, for linear

springs attached to the centre, and four side springs wrapping around the rigid body with a

radius R. These springs are attached to the boundary of the cell formed by four light rigid

bodies, as shown by the dashed rectangles. In a cell, the arrangement of the two units is that

one unit is in front of the other in the out-of-plane direction and the four boundary rigid bodies

are shared by the two units, such that the two units move independently but having the same

boundary displacements. It should be noted that because of the different wrapping directions
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of springs in these two units when same displacements are applied to the boundary of the cell,

the two rigid bodies of the two units will rotate in opposite directions.

The two units in the cell are geometrically similar, i.e. the second unit is formed by rotating

the first unit by 180o about the vertical axis (or horizontal axis). The two rigid bodies in the

two units can freely move and rotate around their mass centres (the centres) with the same

mass and moment of inertia, denoted as m and I, respectively. The only difference between

the two units is in the directions of rotation of the respective rigid bodies. The spring constants

of the springs are k and k′, respectively, as identified in figure 2.1(b and c). The size of the cell,

measured from left to the right, is assumed to be L, which is determined by the length of the

springs.

The attention is focussed on the harmonic mechanical response of the two-dimensional

metamaterial system. The effect of possible damping is not included in the formulation and

the free vibration of the system has been ignored. Therefore, all field variables, such as dis-

placement, acceleration and force, can be expressed in the general form of A = Ae−iωt with ω

being the circular frequency of the harmonic motion. For convenience, the time factor e−iωt

will be suppressed and only the amplitudes of the variables A are kept in the formulation of the

problem.

2.2.1 Effective modulus and effective mass

The dynamic response of the representative cell can be described in terms of forces and dis-

placements at its boundary. For the current two-dimensional metamaterial system, a cell can

be identified by its unit number (n,h) with n and h being the order of the cell in the horizontal

and vertical direction, respectively. To determine the effective mass and effective modulus,
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(a) (b)

(c)

Figure 2.1: The two-dimensional metamaterial system, (a) periodic cells, (b) cell unit 1, (c)
cell unit 2.

consider the case where the cell is deformed in both horizontal and vertical directions. For unit

one, as shown in figure 2.1(b), the boundary forces are denoted as Fx1(n,h), Fx1(n+1,h), Fy1(n,h),

Fy1(n,h+1), and the boundary displacements are uM
x1(n,h), uM

x1(n+1,h), uM
y1(n,h) and uM

y1(n,h+1). The

motion of the central rigid bodies are governed by its translational displacement um
x1(n,h) and

um
y1(n,h), and rotational displacement θm1.

It should be mentioned that the four boundary rigid bodies of the cell are actually allowed
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to rotate in the model. The possible rotation of these boundary rigid bodies has been analysed

and the results show that the rotation will affect both units in the cell but when the two units

are superimposed into the final cell, the effect of this rotation disappears when the effective

properties, as defined in the current paper, are evaluated. Therefore, in the formulation of the

problem, the rotation of the boundary rigid bodies has been omitted to avoid trivial discussion

associated with this rotation.

By considering the kinematic relation, in figure 2.1(b), the spring forces will be in the form

of

Fx1(n,h) =
(
k+ k′

)(
um

x1(n,h)−uM
x1(n,h)

)
− kRθm1, (2.1)

Fx1(n+1,h) =
(
k+ k′

)(
uM

x1(n+1,h)−um
x1(n,h)

)
− kRθm1, (2.2)

Fy1(n,h) =
(
k+ k′

)(
um

y1(n,h)−uM
y1(n,h)

)
− kRθm1, (2.3)

Fy1(n,h+1) =
(
k+ k′

)(
uM

y1(n,h+1)−um
y1(n,h)

)
− kRθm1. (2.4)

By conducting the kinetic analysis of the central rigid body, the displacements of the central

mass in unit one can be determined as

um
x(n,h) =

uM
x(n,h) +uM

x(n+1,h)

2
1

1−ω2/ω2
1
, (2.5)

um
y(n,h) =

uM
y(n,h) +uM

y(n,h+1)

2
1

1−ω2/ω2
1
, (2.6)

θm =
1

2R
1

1−ω2/ω2
0

uM
x(n+1,h)−uM

x(n,h) +uM
y(n,h+1)−uM

y(n,h)

2
, (2.7)
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where ω0 and ω1 are the natural frequencies of the cell for rotation and translation motions,

respectively, given by

ω2
0 =

4R2k
G2m

, (2.8)

ω2
1 =

2(k+ k′)
m

, (2.9)

with G being the radius of gyration of the central rigid body. Since the two units share the

common displacements at the boundaries, subscript ‘1’ has been omitted in equations (2.5)-

(2.7) and these equations are also applicable to unit two, shown in figure 2.1(c).

As discussed before, to ensure that the rotational motion of the cell is symmetric, a second

mass-spring system, unit two, is also added. For the second system, the direction of rotation of

the central mass will be opposite to that of the first one and the motion of the central mass can

be similarly represented by the displacements at the boundary of the cell, as shown in equations

(2.5)-(2.7). The boundary displacements are commonly shared by the two units. The boundary

forces acting at the cell are the superposition of that of the two units, which can be expressed as

Fx(n,h) = Fx1(n,h) +Fx2(n,h), (2.10)

Fx(n+1,h) = Fx1(n+1,h) +Fx2(n+1,h), (2.11)

Fy(n,h) = Fy1(n,h) +Fy2(n,h), (2.12)

Fy(n,h+1) = Fy1(n,h+1) +Fy2(n,h+1), (2.13)

where the forces with subscript ‘2’ are that for unit two, which are similar to the forces for unit

one given by equations (2.1)-(2.4). Accordingly, the relation between forces and displacements
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at the boundary of the cell can then be determined as

Fx(n+1,h)−Fx(n,h) =−ω2
(

2m
1−ω2/ω2

1

) (uM
x(n,h) +uM

x(n+1,h)

)
2

, (2.14)

1
2
(
Fx(n,h) +Fx(n+1,h)

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
k+ k′ − k

2
(
1−ω2/ω2

0
)
)(

uM
x(n+1,h)−uM

x(n,h)

)

− k
2
(
1−ω2/ω2

0
) (uM

y(n,h+1)−uM
y(n,h)

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (2.15)

Fy(n,h+1)−Fy(n,h) =−ω2
(

2m
1−ω2/ω2

1

) (uM
y(n,h) +uM

y(n,h+1)

)
2

, (2.16)

1
2
(
Fy(n,h) +Fy(n,h+1)

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− k
2
(
1−ω2/ω2

0
) (uM

x(n+1,h)−uM
x(n,h)

)
(

k+ k′ − k
2
(
1−ω2/ω2

0
)
)(

uM
y(n,h+1)−uM

y(n,h)

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (2.17)

In the horizontal direction, equation (2.14) establishes the relation between the net force applied

to the cell and the average acceleration of it. Equation (2.15) shows the relation between the

averaged force applied to the cell and its deformation. Equations (2.16) and (2.17) demonstrate

the same relations of the representative cell in the vertical direction.

Considering the relation between the net forces and average accelerations in both directions,

as described in equations (2.14) and (2.16), the effective mass of the representative cell under

a specific frequency can be identified as

me =
2m

1−ω2/ω2
1
. (2.18)

The effective strain εi j and stress σi j of the cell are defined, for a cell with a unit length in
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the thickness direction, by

ε11 =
uM

x(n+1,h)−uM
x(n,h)

L
, ε22 =

uM
y(n,h+1)−uM

y(n,h)

L
, (2.19)

and

σ11 =
Fx(n,h) +Fx(n+1,h)

2L
, σ22 =

Fy(n,h) +Fy(n,h+1)

2L
. (2.20)

The effective stress-strain relation can be expressed as

σ11 =C11ε11 +C12ε22, σ22 =C21ε11 +C22ε22, (2.21)

where the effective elastic moduli are

C11 =C22 = k+ k′ − k
2
(
1−ω2/ω2

0
) , (2.22)

C12 =C21 =− k
2
(
1−ω2/ω2

0
) . (2.23)

It should be mentioned that there are other possible ways to determine the effective mass

and modulus, such as using the mean motion or energy of the unit cell (Srivastava and Nemat-

Nasser, 2012; Wang and Gan, 2002). For periodic media, a high-frequency homogenization

method has been developed (Antonakakis et al., 2014) to capture the essential dynamic be-

haviour at high resonant frequencies for elastic lattices (Colquitt et al., 2015). In this study,

the main concern is the dynamic response of the system. The current definition of the effective

dynamic mass and modulus is used because it can provide an accurate description of the rela-

tion between forces and displacements at the end rigid bodies, and the wave propagation in the

metamaterial system.
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Compared with the corresponding 1D model (Wang, 2014), the main difference is the effect

of Poisson’s ratio. For the current 2D problem, the dynamic behaviour is naturally dominated

by two elastic constants C11 and C12, different from the 1D problem, which is controlled by the

Young’s modulus.

A comparison between the effective material properties from 1D (Wang, 2014) and 2D

models is given in table 2.1. It should be noted that k and k′ in the 1D problem correspond to k′

and k in the 2D model, respectively. The natural frequencies of translation, ω1 and the effective

mass me are the same in the two models. The natural frequency of rotation ω0 are different, due

to the Poisson’s effect. Two parameters C11 and C12, which are not applicable in the 1D model,

describe the stiffness property of the 2D model. The Poisson’s ratio is the unique feature of the

2D model. The modulus for uniaxial loading (Young’s modulus, Ee) can be determined from

the 2D model, which is different from the corresponding modulus from the 1D model (ke).

Table 2.1: Parameters comparison between 1D and 2D model

1D Model 2D Model

ω2
0 = 2R2k′

G2m ω2
0 = 4R2k

G2m

ω2
1 = 2(k′+k)

m ω2
1 = 2(k+k′)

m

me =
2m

1−ω2/ω2
1

me =
2m

1−ω2/ω2
1

N/A C11 = k+ k′ − k
2(1−ω2/ω2

0)

N/A C12 =− k
2(1−ω2/ω2

0)

ke = k− M
2 ω2 + k

′

1−ω2
0/ω2 Ee =

(k+k
′
)−k

′
(ω2

0/ω2)

1−(k+2k′)(ω2
0/ω2)/(2k+2k′)

N/A ν = 1
1−2(1−ω2/ω02)(1+k′/k)
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The results indicate that both effective mass and effective modulus are significantly af-

fected by the resonance behaviour of the cell in both translation and angular motions, which

is strongly frequency dependent. As clearly illustrated in equations (2.18), (2.22) and (2.23),

the effective mass and effective modulus become negative at certain frequencies due to the

resonance behaviour.

2.2.2 Negative mass and modulus

The effective mass is directly related to the translational resonance of the cell and it determined

by equation (2.18). It can be easily observed that negative mass is achieved when

1 <
ω2

ω2
1
. (2.24)

The effective moduli of the cell are mainly controlled by the rotational resonance as shown

in equations (2.22) and (2.23). For modulus component C11, its negative range is

1− 1
2(1+ k′/k)

<
ω2

ω2
0
< 1, (2.25)

and negative modulus component C12 is achieved when

ω < ω0. (2.26)

To better evaluate the behaviour of the representative cell, two parameters, a modulus ratio

λK and a length ratio λR, are introduced, which dominate the effective property and are defined

as

λK =
k′

k
, λR =

R
G
, (2.27)

where k′ and k, R and G are the elastic constants of the central spring and the side spring,
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the distance between the central and side springs, and the radius of gyration of the central

rigid bodies, as shown in figure 2.1(b and c). By using the relation between the translational

resonance frequency ω1 and the rotational resonance frequency ω0, the ranges for negative

mass and modulus can be rewritten as

Negative mass

1+λK

2λ 2
R

<
ω2

ω2
0
, (2.28)

Negative modulus C11

1− 1
2(1+λK)

<
ω2

ω2
0
< 1, (2.29)

Negative modulus C12

ω2

ω2
0
< 1. (2.30)

The negative range of C11 (C22) is completely covered by the negative range of C12 (C21), as

shown in equations (2.29) and (2.30).

Depending on the property of the cell, governed by λK and λR, either positive or negative

mass and/or modulus can be achieved. The system may show single negative (SN, negative

mass or modulus) or double negative (DN, both negative mass and modulus). Evaluating the

relation between the range of negative mass and that of negative modulus indicates that two

critical condition exist, as illustrated in figure 2.2. The frequency range shaded with horizontal

lines indicates that for negative effective mass, whereas the frequency range shaded with verti-

cal lines indicates that for negative effective modulus. Figure 2.2(a) shows the first critical case

where the lower bound of the negative mass range is ω/ω0 = ω/ω1 = 1, i.e. identical to the

33



upper bound of negative modulus range. The left rectangle in figure 2.2(a) shows the range of

negative C11 (and C22) and the range of negative mass is to the right without overlapping. The

condition is given by

λR =

√
1+λK

2
. (2.31)

In this case, the effective mass and effective modulus can not be negative simultaneously, i.e.

only single negative (SN) exists.

Figure 2.2: Critical positions for negative modulus and negative mass ranges, (a) the first
critical condition, (b) the second critical condition.

The second critical case is shown in figure 2.2(b), where the lower bound of the negative

mass range and that of the negative modulus range are identical. This condition is satisfied

when

λR =
1+λK√
1+2λK

. (2.32)

Obviously in this case, in the entire negative range of C11, the effective mass will also be

negative, showing double-negative property.

If λR is greater than the critical value provided by equation (2.31), the negative mass range
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will move to the left relative to negative modulus range. Then, overlapping of the two ranges

will be generated. The critical value given by equation (2.31) is shown as the first critical

boundary in figure 2.3. Below the first critical boundary, no double negative behaviour can

be observed. The other curve in figure 2.3 corresponds to the case where the lower bound of

the negative mass range is identical to that of the negative modulus range, given by equation

(2.32). Between the two critical curves, the double negative behaviour will exist from the low

bound of the negative mass range to the upper bound of the negative modulus range. For the

domain above the second critical boundary, the double negative range will be exactly the same

as the negative modulus range.

0 1 2 3 4 5

λ
Κ

0.6

0.8

1

1.2

1.4

1.6

1.8

2

λ
R

The first critical boundary
The second critical boundary

Figure 2.3: Domain for negative modulus and mass.

These results clearly indicate that the negative ranges of modulus and mass are governed

by two parameters, the modulus ratio λK and the length ratio λR. Single negative (modulus or
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mass) or double negative metamaterials can be generated with proper selection of the structural

parameters. By controlling λK and λR, different material properties can be achieved.
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λ
Κ
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ω
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0 lower: meff

lower: Ceff

upper: Ceff

Figure 2.4: Negative modulus and mass for λR = 0.6.

Figure 2.4 shows the variation of the upper and lower bounds of the loading frequency for

negative modulus and negative mass ranges with different λK for λR = 0.6. In this case, no

overlapping of the two negative ranges exists. Figure 2.5 shows the corresponding results for

λR = 0.9. Under this circumstance, only when λK < 0.62, the double negative behaviour can

be achieved between the lower bound of negative mass (lower meff) and the upper bound of

negative modulus (upper Ceff). Figure 2.6 shows the variation of the upper and lower bounds

of the negative modulus and negative mass ranges for λR = 1.5. In this case, complicated

behaviour of DN is observed, which is mostly dominated by the effective modulus. Two types

of DN can be observed. The first is achieved for the range of negative modulus when λK < 2.93.
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Figure 2.5: Negative modulus and mass for λR = 0.9.

The second is from lower meff to the upper Ceff for 0.293 < λK < 3.50. When λK is increased to

2.0, DN is completely governed by the negative modulus range, as shown in figure 2.7. From

these results, conclusion can be easily drawn that DN can be achieved in different ranges of

frequencies with the selection of the mass, modulus and geometry of the system.

2.2.3 Behaviour of negative Poisson’s ratio

Based on the generalized Hooke’s law, the Poisson’s ratio, defined as the ratio between C12 and

C11, is

ν =
1

1−2
(
1−ω2/ω2

0
)
(1+λK)

. (2.33)

37



0 1 2 3 4 5

λ
Κ

0.4

0.6

0.8

1

1.2

ω
/ω

0

lower: meff

lower: Ceff

upper: Ceff

Figure 2.6: Negative modulus and mass for λR = 1.5.

0 1 2 3 4 5

λ
Κ

0.4

0.6

0.8

1

λ
R

lower: meff

lower: Ceff

upper: Ceff

Figure 2.7: Negative modulus and mass for λR = 2.0.
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Although a natural material usually has a positive Poisson’s ratio, negative Poisson’s ratio

can be achieved in properly designed material system (Babaee et al., 2013). For the current

metamaterial system, the Poisson’s ratio can turn negative for certain structure parameters and

frequencies.

Positive Poisson’s ratio

1+2λK

2(1+λK)
<

ω2

ω2
0
, (2.34)

Negative Poisson’s ratio

ω2

ω2
0
<

1+2λK

2(1+λK)
. (2.35)
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Figure 2.8: Poisson’s ratio at different frequencies.

Figure 2.8 shows the variation of the Poisson’s ratio with frequency for different λK . When

λK = 1, the metamaterial obtains negative Poisson’s ratio in the normalized frequency range
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from 0 to 0.87. As λK increases, the upper bound of negative Poisson’s ratio approaches

1, which can be easily observed from equation (2.35). As a special case, when ω = 0, the

Poisson’s ratio will be

ν =− 1
1+2λK

, (2.36)

which is a function of λK and is negative, caused by the rotating motion in the representative

cell.

2.3 Elastic wave propagation in the metamaterial system

Obviously, the dependence of effective mass and effective modulus upon loading frequency

will affect the propagation of elastic waves in the material system. To study this effect, con-

sider the harmonic wave propagation in the two-dimensional metamaterial system formed by

repeated cells of length L, as shown in figure 2.1. By using equations (2.14) and (2.15), the

force Fx(n+1,h), acting on the right end of cell (n,h), can be expressed in terms of displacements

as

Fx(n+1,h) =

⎧⎪⎪⎨
⎪⎪⎩

1
4
(−4C11 −meω2)uM

x(n,h) +
1
4
(
4C11 −meω2)uM

x(n+1,h)

+C12

(
uM

y(n,h+1)−uM
y(n,h)

)
⎫⎪⎪⎬
⎪⎪⎭ . (2.37)

The force acting on the left side of cell (n+1,h) can also be obtained from equations (2.14)

and (2.15) as

Fx(n+1,h) =

⎧⎪⎪⎨
⎪⎪⎩

1
4
(−4C11 +meω2)uM

x(n+1,h) +
1
4
(
4C11 +meω2)uM

x(n+2,h)

+C12

(
uM

y(n+1,h+1)−uM
y(n+1,h)

)
⎫⎪⎪⎬
⎪⎪⎭ . (2.38)
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By combining equations (2.37) and (2.38), the following governing equation for the harmonic

wave propagation is obtained

⎧⎪⎪⎨
⎪⎪⎩

1
4
(−4C11 −meω2)(uM

x(n,h) +uM
x(n+2,h)

)
+

1
2
(
4C11 −meω2)uM

x(n+1,h)

+C12

(
uM

y(n,h+1)−uM
y(n,h) +uM

y(n+1,h)−uM
y(n+1,h+1)

)
⎫⎪⎪⎬
⎪⎪⎭= 0. (2.39)

Similarly, a second governing equation can be obtained based on the corresponding relations

of the cell in the vertical direction,

⎧⎪⎪⎨
⎪⎪⎩

1
4
(−4C11 −meω2)(uM

y(n,h) +uM
y(n,h+2)

)
+

1
2
(
4C11 −meω2)uM

y(n,h+1)

+C21

(
uM

x(n+1,h)−uM
x(n,h) +uM

x(n,h+1)−uM
x(n+1,h+1)

)
⎫⎪⎪⎬
⎪⎪⎭= 0. (2.40)

For a harmonic plane wave propagating in the two-dimensional metamaterial system, the

wave field will have the general form of

u = AdeiK(xp−ct), (2.41)

d = (dx,dy) , dx = cosφ , dy = sinφ , (2.42)

p = (px, py) , px = cosθ , py = sinθ , (2.43)

where A is the amplitude of the displacement field, and d and p are unit vectors representing the

directions of the displacement and the wave propagation, respectively, with the angles φ and θ

being measured from the x-axis. K is the wave number, which can be complex in general. The

x axis and y axis are selected such that the origin is at the intersection of the lower left corner of

the zeroth cell (n = 0,h = 0). The length of all the representative cells is identically L so that

the coordinates of the lower left corner of cell (n,h) will be x = nL and y = hL, for example.

Following this definition of coordinates, the governing equations for the wave propagation,
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equations (2.39) and (2.40) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
4
(−4C11 −meω2)cosφ

[
1+ ei(2KLcosθ)

]

+
1
2
(
4C11 −meω2)cosφei(KLcosθ)

+C12 sinφ
[
ei(KLsinθ) + ei(KLcosθ)− eiKL(cosθ+sinθ)−1

]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 0, (2.44)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
4
(−4C11 −meω2)sinφ

[
1+ ei(2KLsinθ)

]

+
1
2
(
4C11 −meω2)sinφei(KLsinθ)

+C12 cosφ
[
ei(KLsinθ) + ei(KLcosθ)− eiKL(cosθ+sinθ)−1

]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 0. (2.45)

Eliminating sinφ and cosφ from equations (2.44) and (2.45), the following dispersion relation

for the wave propagation can be determined,

−(C11 +meω2/4
)(

1+ ei2KLcosθ)+2
(
C11 −meω2/4

)
eiKLcosθ

C21
(
1− eiKLcosθ

)(
1− eiKLsinθ

)
=

C21
(
1− eiKLcosθ)(1− eiKLsinθ)

−(C11 +meω2/4)
(
1+ ei2KLsinθ

)
+2(C11 −meω2/4)eiKLsinθ .

(2.46)

The metamaterial structure presented has three axes of symmetry at 0, π/4, π/2 directions.

Therefore, the dynamic behaviour of the wave propagation will be the same for two comple-

mentary directions, such as in 0 and π/2 directions. In the following discussion, waves in

different directions will be considered.

The most interested issue here is the wave propagation in the metamaterial system so only

the real part of the wave number is provided. In general, positive KL indicates that the wave

propagates along the direction defined by θ for the cases where both effective mass and mod-

ulus are positive, and negative KL indicates waves in the opposite direction, corresponding to
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negative mass and modulus (DN). This phenomenon is generated by the condition that the ap-

plied power for a specific cell must be positive (Wang, 2014).

0 0.5 1 1.5 2 2.5 3
ω/ω
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λK = 2.0

λK = 5.0

Figure 2.9: Wave number at different frequencies for θ = 0.0,λR = 0.5.

Figure 2.9 shows the variation of the normalized wave number KL with frequency when

λR = 0.5 for different λK , for a horizontal wave with θ = 0o. In this case, the wave number is

either real or imaginary so the results shown in this figure represent all possible waves for the

frequency range considered. Positive KL is found in two different ranges of frequency but no

negative KL is observed, indicating that there is no overlapping between the negative mass and

negative modulus ranges. The positive KL is formed by the gaps between these ranges. Figure

2.10 shows the corresponding result for λR = 1.0. In this case, depending on the value of λK ,

different phenomena can be observed. For lower λK (0.1,0.5), negative KL exists for a specific

frequency range, which indicates backward wave propagation. For λK = 1.0, there is only one

positive KL range. While for λK = 2.0,5.0, positive KL appears in two separate ranges.
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Figure 2.10: Wave number at different frequencies for θ = 0.0,λR = 1.0.

The KL for λR = 2.0 is given in figure 2.11. In this case, there is always a negative KL range

following positive KL with increasing frequency. The wave number for a wave propagating at

θ = 45o for the case where λR = 1.0 is given in figure 2.12. The result is similar to that given

in figure 2.10, i.e. for lower λK values there are one positive KL range and one negative KL

range, but for higher λK , there are only two positive KL ranges. For the case of λR = 2.0, a

wave at θ = 45o shows a similar property to that of the horizontal wave presented in figure

2.13. These results show clearly how the metamaterial system can be adjusted to generate

different properties for wave propagation. It should also be mentioned that the current model

is based on the simple mass-spring system so it can provide a clear idea about the mechanism

of generating negative mass and modulus.
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Figure 2.11: Wave number at different frequencies for θ = 0.0,λR = 2.0.
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Figure 2.13: Wave number at different frequencies for θ = π/4,λR = 2.0.
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Figure 2.12: Wave number at different frequencies for θ = π/4,λR = 1.0.

2.4 Conclusion

The general mechanism of generating negative effective material parameters in elastic meta-

materials is revealed in this chapter. In the developed metamaterial system, the translational

resonance of the resonators can generate negative effective mass by inducing overall motion

of the representative cells, whereas the translational resonance can generate negative effective

modulus through giving rise to the local deformation of the representative cells without over-

all motion. Through controllable translational and rotational resonances in the representative

cell, negative effective mass and modulus can be achieved independently and simultaneously.

The current work will provide a guideline for designing more general elastic metamaterials by

incorporating both translational and rotational resonance in the material system.
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Chapter 3: Modelling of elastic metamaterials with negative

mass and modulus based on translational

resonance

This Chapter develops a new elastic metamaterial exhibiting simultaneously negative effective

mass and modulus through only translational motion of the resonators in the representative

cells, without using the rotational motion as one of the fundamental mechanism, to avoid po-

tential difficulties in fabrication. Based on the mechanism revealed in the previous work, this

model can induce overall motion of the representative cells to generate negative effective mass

and give rise to the local deformation of the representative cells to yield negative effective mod-

ulus. The effect of the structural parameters of the representative cell on the frequency ranges

with single negativity (negative mass or negative modulus) or double negativity (negative mass

and negative modulus) has been evaluated in detail. Typical examples are presented to illustrate

the dynamic property of this developed elastic metamaterial.

3.1 Introduction

Recently, significant progress has been achieved in the design of new materials engineered to

gain unique dynamic effective properties, which are physically inconceivable in nature. Termed

as metamaterials, these complex composites acquire their special features from the delicately

designed sub-wavelength structures, not from the chemical compositions. Earlier efforts have

been made to explore the theoretical possibility of electromagnetic materials with negative re-
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fractive index generated by negative electric permittivity and magnetic permeability (Veselago,

1968). By following this initial proposal, many practical concepts have been proposed and

realized, such as superlenses with sub-wavelength spatial resolution and invisible cloak based

on designed gradient-index (Kundtz and Smith, 2010; Pendry, 2000).

These features are based on the realization of the double negative properties of the elec-

tromagnetic metamaterials, which are bestowed by the special resonance of their unique unit

cells (Shelby et al., 2001; Smith et al., 2000). This idea of local resonance is equally valid for

acoustic/elastic metamaterials due to the analogy between acoustic and electromagnetic fields.

The successful manipulation of electromagnetic waves has stimulated substantial interests of

the research community in the acoustic/elastic metamaterials. One of the main objectives of

the study of acoustic/elastic metamaterials is to achieve negative effective mass and/or negative

effective modulus through the design of local unit cells. Negative effective mass and negative

effective modulus are realized as the results of the vibration of different kinds of resonators in

the local unit cells (Huang and Sun, 2011a; Huang et al., 2009a). The first design of such a

structure with negative effective mass was investigated and fabricated by embedding soft sili-

con rubber coated heavy spheres in epoxy acting as the local mechanical resonators (Liu et al.,

2000). The mechanism of local resonance has been used to generate negative effective mass for

acoustic/elastic metamaterials (Liu et al., 2005; Milton and Willis, 2007; Yao et al., 2008) and

different local resonators have been designed, such as periodically distributed membranes and

organized hollow plastic tubes in acoustic media (Chen et al., 2014; Lee et al., 2009a). There

are also considerable attention paid to the development of acoustic/elastic metamaterials with

negative effective modulus. The first experimental realization of negative bulk modulus has
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been achieved with a one-dimensional acoustic metamaterial system, which consists of a chain

of sub-wavelength Helmholtz resonators (Fang et al., 2006). Acoustic metamaterials formed by

a tube with an array of side holes have been devised to generate similar phenomenon (Lee et al.,

2009b). It is now well-established that the effective mass and modulus can be highly frequency-

dependent in acoustic/elastic metamaterials and can turn negative for certain frequency ranges.

The realization of negative mass and/or modulus in acoustic/elastic metamaterials have been

extensively studied based on various physical schemes (An et al., 2015; Ding et al., 2007; Lai

et al., 2011; Lee et al., 2010; Liang et al., 2012; Zhu et al., 2014a).

The unique properties of acoustic/elastic metamaterials make them very attractive for many

novel applications. The imaginary phase velocity due to single negativity has been effectively

implemented to vibration shielding and noise elimination (Chen et al., 2016; Liu et al., 2015;

Mitchell et al., 2014). Moreover, the property of negative refractive index obtained from double

negative metamaterials can be utilized for superlensing beyond the diffraction limit (Kaina

et al., 2015; Li et al., 2009; Wu et al., 2011).

One of the major issues in the development of elastic metamaterials is the proper design

of the local unit cells. Previous studies indicate that translational and rotational resonances

of resonators in the local unit cell will play their unique roles in achieving negative mass and

modulus (Bigoni et al., 2013; Liu et al., 2011a,b). The independent control of negative mass

and modulus has been realized by properly designing the translational and rotational resonance

properties of the mechanical resonators (Li and Wang, 2016; Wang, 2014). Based on a different

mechanism, a metamaterial model has been developed based on translational resonance of local

unit cells, which can generate simultaneously negative effective mass and modulus (Huang and
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Sun, 2012; Su and Sun, 2015). This model has later been modified by adding more resonators

to broaden the single negative frequency ranges (band gaps) (Pai and Huang, 2015). In the unit

cells of these models, multiple resonators move in different directions and the coupling of the

motion of these resonators significantly affect the properties of the unit cells.

In the current paper, a new metamaterial model based on only translational resonance is

proposed. In the new model, a simpler local structure is used for the representative cell and

two types of translational resonance are introduced. One resonance controls the negative effec-

tive modulus and the coupled effect of the two resonances can generate negative effective mass,

providing more flexibility for controlling the generation of negative mass and modulus. The

effect of the structural parameters of the representative cell on the distribution of the frequency

ranges with single negativity or double negativity is investigated and broad band gap can be

generated in this model. The harmonic dynamic behaviour of periodic elastic metamaterials

based on such representative cells is studied. The wave mitigating ability of the proposed ma-

terial model within the band gaps and the phenomenon of negative phase velocity in double

negative frequency ranges are demonstrated. Typical examples are presented to exhibit the

dynamic property of the current metamaterial. Finite Element Method analysis is also con-

ducted to study the property of the proposed metamaterial model and to evaluate the simplified

spring-mass model.

3.2 Formulation of the metamaterial model

The properties of metamaterials are governed by their representative cells and the design of

the structure of these cells is a very important issue in developing acoustic/elastic metamate-
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rials. In our previous works, spring-mass models for one-dimensional and two-dimensional

metamaterials have been proposed, which can achieve controlled negative mass and modulus

through localized mechanical vibrations (Li and Wang, 2016; Wang, 2014). In these models,

the localized translational motion of the resonators controls the overall motion of the represen-

tative cell, generating negative effective mass. The localized rotational motion of the resonators

dominates the deformation of the representative cell, giving rise to negative effective modulus.

The two effective parameters, mass and modulus, can be easily controlled in these models. In

the current study, a new metamaterial model is designed to achieve negative mass and modulus

through only translational motion of the resonators in the representative cells, without using

the rotational motion as one of the fundamental mechanism, to avoid potential difficulties in

fabrication.

3.2.1 The proposed representative cell

The proposed representative cell of the model is depicted in figure 3.1(a), in which three dif-

ferent materials are used. The current model aims to generate negative mass and/or modulus

along the horizontal direction. It should be mentioned that materials I and II, which can be

identical, are materials with higher mass densities and high moduli. Material III is designed to

possess lower mass density and lower modulus.

To better illustrate the underlying mechanism of the metamaterial model for generating the

single negative and double negative behaviour, the representative cell of the elastic model is

simplified as a structure built with springs and masses, as illustrated in figure 3.1(b). This sim-

plified representative cell consists of two end rigid bodies and four masses, internal resonators,

connected with six massless linear springs. The two end rigid bodies with the same mass M
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(a)

(b)

Figure 3.1: (a) The representative cell of the one-dimensional elastic metamaterial model, (b)
the nth representative cell of the simplified spring-mass model.

form the boundary of the cell. As shown in figure 3.1(b), for each end rigid body, a mass m1 is

attached through a spring with stiffness k1. Two masses, m2, are attached to the end rigid bod-

ies through springs with an elastic constant k2. In this model, the rigid bodies and the internal

masses represent materials I and II and the linear springs represent material III. It is of interest

to note that the springs and rigid bodies are assembled in such a manner to make the structure

symmetrical in the vertical direction. The length of the cell is assumed to be L and the area

of its transverse cross section is defined as A. The overall motion of the system considered is

limited to the horizontal direction.
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Based on the proposed model, a periodic elastic metamaterial can be formed by assembling

the representative cells in the horizontal direction. The harmonic response of such a one-

dimensional metamaterial is controlled by the property of the representative cell. When an

excitation with a circular frequency ω is applied, the resulting displacements, accelerations

and forces can be expressed in the general form of A = Ae−iωt in the following discussion. For

convenience, the common time factor e−iωt will be suppressed and only the amplitudes of the

variables are evaluated, unless otherwise specified. The effect of the possible damping of the

system is ignored.

3.2.2 Effective mass and effective modulus

The effective mass and effective modulus of the metamaterial system are determined by the dy-

namic response of the representative cell, which is governed by the relation between displace-

ments and forces at its boundaries. As shown in figure 3.1(b), the boundary displacements and

forces of the nth representative cell are denoted as un and un+1, Fn and Fn+1, respectively. The

motion of the rigid resonators inside the cell is dominated by their translational displacements

u1,n, u2,n and u3,n. Based on the kinematic relation illustrated in figure 3.1(b), the equations of

motion for the six rigid bodies, the left mass M, the right mass M, the left mass m1, the right

mass m1 and the masses m2, can be obtained in the form of, respectively,

−Mω2un = 2k2 (u3,n −un)+ k1 (u1,n −un)−Fn, (3.1)

−Mω2un+1 = 2k2 (u3,n −un+1)+ k1(u2,n −un+1)+Fn+1, (3.2)

−m1ω2u1,n = k1(un −u1,n), (3.3)
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−m1ω2u2,n = k1(un+1 −u2,n), (3.4)

−m2ω2u3,n = k2(un −u3,n)+ k2(un+1 −u3,n). (3.5)

Making use of equations, (3.3), (3.4) and (3.5), the displacements of the four resonators with

masses m1 and m2 can be represented in terms of the boundary displacements of the represen-

tative cell as

u1,n =
un

1−ω2/ω2
1
, (3.6)

u2,n =
un+1

1−ω2/ω2
1
, (3.7)

u3,n =
1
2

(
un +un+1

1−ω2/ω2
2

)
, (3.8)

where ω1 and ω2 are the natural frequencies of the rigid resonators m1 and m2, respectively,

given by

ω2
1 =

k1

m1
, ω2

2 =
2k2

m2
. (3.9)

Substitution of equations (3.6), (3.7) and (3.8) into equations (3.1) and (3.2) will yield

Fn+1 −Fn =−ω2me

(
un+1 +un

2

)
, (3.10)

1
2
(Fn+1 +Fn) =

EeA
L

(un+1 −un) . (3.11)

Equation (3.10) establishes the relation between the net force applied to the cell and the average

acceleration of it. Equation (3.11) represents the relation between the average force applied to

the cell and its deformation. Based on these relations, me and Ee are the effective mass and
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modulus of the representative cell with

me = 2M+
2m1

1−ω2/ω2
1
+

2m2

1−ω2/ω2
2
, (3.12)

Ee =

(
k2 − M

2
ω2 − k1

2
ω2/ω2

1
1−ω2/ω2

1

)
L
A
. (3.13)

It is clearly shown in equations (3.12) and (3.13) that effective modulus is dominated by ω1,

which is controlled by the vibration of the central masses m1, and both ω1 and ω2 affect the

effective mass. The effective mass and modulus of the representative cell are highly frequency-

dependent and will become negative under certain frequencies due to the local resonance be-

haviour.

3.2.3 Negative effective mass and modulus

The dynamic behaviour of the representative cell of the metamaterial structure is controlled by

three parameters, the modulus ratio η , and two mass ratios λ1 and λ2, defined as

η =
k1

k2
, λ1 =

m1

M
, λ2 =

m2

M
. (3.14)

Based on the results given in equations (3.12) and (3.13), frequency ranges, in which negative

effective mass or modulus is achieved, can be determined in terms of these three parameters.

Negative effective mass

From equation (3.12), the condition for negative effective mass is

Fm1

(
ω
ω1

)
•Fm2

(
ω
ω1

)
< 0, (3.15)
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where the functions, Fm1 (ω/ω1) and Fm2 (ω/ω1), are given by

Fm1

(
ω
ω1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ω
ω1

)4

−
(

1+
2λ1

η
+

2λ1

λ2η
+λ1

)(
ω
ω1

)2

+
2λ1

λ2η
(1+λ1 +λ2)

, (3.16)

Fm2

(
ω
ω1

)
=

(
2λ1

λ2η
−
(

ω
ω1

)2
)(

1−
(

ω
ω1

)2
)
. (3.17)

The property of negative effective mass is controlled by the positions of the roots of Fm1 (ω/ω1)=

0 and Fm2 (ω/ω1) = 0. Two positive roots of Fm1 (ω/ω1) = 0, ζ1 and ζ2 (ζ1 > ζ2), can

be determined from equation (3.16), as given in appendix A, and the two positive roots of

Fm2 (ω/ω1) = 0, ζ̄1 and ζ̄2, are

ζ̄1 = max(θ ,1) , ζ̄2 = min(θ ,1) , (3.18)

with

θ =
ω2

ω1
=

√
2λ1

λ2η
, (3.19)

being the resonance frequency ratio.

Detailed analysis indicates, as shown in Appendix A, that the four roots will satisfy

ζ1 > ζ̄1 ≥ ζ2 ≥ ζ̄2, (3.20)

and both Fm1 and Fm2 are positive when |ω/ω1| approaches infinity. The frequency ranges for

negative mass can then be determined to be

ζ1 >
ω
ω1

> ζ̄1, ζ2 >
ω
ω1

> ζ̄2. (3.21)

For the special case where ω2/ω1 = 1, ζ̄1 = ζ2 = ζ̄2 = 1 and ζ1 =
√

1+λ1 +λ2, the frequency
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range for negative mass is

ζ1 >
ω
ω1

> 1. (3.22)

Negative effective modulus

From equation (3.13), negative effective modulus can be achieved when

Fe

(
ω
ω1

)
< 0 and

ω
ω1

< 1, (3.23)

or

Fe

(
ω
ω1

)
> 0 and

ω
ω1

> 1, (3.24)

where the function Fe (ω/ω1) is

Fe

(
ω
ω1

)
=

(
ω
ω1

)4

−
(

1+λ1 +
2λ1

η

)(
ω
ω1

)2

+
2λ1

η
. (3.25)

Two positive roots of Fe (ω/ω1) = 0, as shown in Appendix A, satisfy ξ1 > 1 > ξ2. Following

the property that Fe is positive when |ω/ω1| approaches infinity, the condition for negative

effective modulus is

ω
ω1

> ξ1 or 1 >
ω
ω1

> ξ2. (3.26)

The variation of the three structural parameters, η , λ1 and λ2, provides rich possibilities of

frequency ranges with negative effective mass and/or modulus. The positions and sizes of the

frequency ranges for negative mass/modulus can be adjusted through these three parameters.

To further investigate the effect of these parameters on the dynamic behaviour of the proposed

metamaterial, the coupling of the frequency ranges between that for negative effective mass
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and modulus is evaluated in the following discussion.

Overlapping of negative mass and negative modulus

The ranges for negative mass and modulus are controlled by the six roots of Fm1, Fm2 and

Fe, ζ1, ζ2, ζ̄1, ζ̄2, ξ1 and ξ2. These ranges are illustrated in figure 3.2 for three different

cases, (a) θ = ω2/ω1 > 1, (b) θ = ω2/ω1 = 1, and (c) θ = ω2/ω1 < 1. The horizontal axis

represents the normalized loading frequency. The frequency ranges formed by black solid

lines indicate those of negative mass and the ranges formed by dashed lines illustrate those of

negative modulus. Shaded ranges indicate double negative behaviour, in which both mass and

(a)

(b)

(c)

Figure 3.2: Negative mass and negative modulus ranges for: (a) θ > 1,θ < ξ1, (b) θ = 1, (c)
θ < 1,θ > ξ2.

58



modulus are negative. Figure 3.2 will be explained with details in the following discussion and

these single or double negative ranges are investigated in terms of the structural parameters, η ,

λ1 and λ2.
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Figure 3.3: Frequency ranges for negative effective parameters for λ1 = 1.5 and λ2 = 1.0 with
θ > 1.

Case 1: θ = ω2/ω1 > 1

For θ = ω2/ω1 > 1, detailed evaluation shows that ζ1 > ξ1 > ζ2 > 1 > ξ2 and ζ1 > θ > ζ2 are

satisfied. Three frequency ranges for single negativity can be determined as

ω
ω1

> ζ1, max(θ ,ξ1)>
ω
ω1

> min(θ ,ξ1) , ζ2 >
ω
ω1

> ξ2, (3.27)
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and a frequency range of double negativity exists when

ζ1 >
ω
ω1

> max(θ ,ξ1) . (3.28)

Figure 3.2(a) shows the distribution of the frequency ranges for negative effective mass and/or

modulus for this case with θ < ξ1. The effect of the structural parameters, η , λ1 and λ2, has

been further analyzed. Figure 3.3 shows the frequency ranges of negative effective mass and

negative effective modulus for different η = k1/k2 with λ1 = m1/M = 1.5 and λ2 = m2/M =

1.0. In this figure, domains 1 and 2 (noted as 1 and 2) are used to represent the two frequency

ranges showing negative parameters. As shown in the figure, solid and dot-dashed lines indi-

cate the bounds (lower and upper) for negative mass for domains 1 and 2, respectively. The
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Figure 3.4: Frequency ranges for negative effective parameters for η = 1.0 and λ2 = 2.0 with
θ > 1.
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dotted and dashed lines form the bounds for negative effective modulus. Domain 1 for negative

effective modulus exists just below ω/ω1 = 1 and domain 2 for negative effective modulus is

that above the dotted line (up to infinity). For better demonstration, the areas with negative

mass effective or modulus have been shaded differently. It can be observed that, for a given ω ,

single or double negative behaviour can be achieved by adjusting ω1 and η . When η = 1.0 and

λ2 = 2.0, the effect of λ1 on the distribution of frequency ranges with negative parameters is

shown in figure 3.4 and the effect of λ2 on the frequency ranges when η = 1.0 and λ1 = 1.5 is

shown in figure 3.5. The existence of single or double negative domains can be easily observed.

In this case, λ2 has no effect on the effective modulus. As λ2 increases, the widths of domain
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Figure 3.5: Frequency ranges for negative effective parameters for η = 1.0 and λ1 = 1.5 with
θ > 1.
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1 and domain 2 for negative mass decreases and increases respectively.

Case 2: θ = ω2/ω1 = 1

For θ = 1, the frequency ranges for single negativity will be

ω
ω1

> ζ1, ξ1 >
ω
ω1

> ξ2, (3.29)

and the frequency range for double negativity is

ζ1 >
ω
ω1

> ξ1, (3.30)

which have been clearly demonstrated in figure 3.2(b). Figure 3.6 shows the variation of the

bounds for the frequency ranges of negative effective mass and negative effective modulus with
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Figure 3.6: Frequency ranges for negative effective parameters for η = 0.5 with θ = 1.
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λ2 = m2/M for η = k1/k2 = 0.5 (λ1 = λ2/4 in this case). The double negative frequency

range, which is from the dotted line to the upper solid line, increases slightly with λ2. A band

gap is formed by the single negative domain from the dashed line to the dotted line. The band

gaps formed, when η = k1/k2 is increased to 1.0 and 3.0, are shown in figures 3.7 and 3.8

between dashed and dotted lines . The frequency ranges for double negativity are relatively

smaller in these cases.
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Figure 3.7: Frequency ranges for negative effective parameters for η = 1.0 with θ = 1.

Case 3: θ = ω2/ω1 < 1

For the case where θ < 1, the relation ζ1 > ξ1 > 1 > ζ2 > max(θ ,ξ2) is satisfied. In this case,
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Figure 3.8: Frequency ranges for negative effective parameters for η = 3.0 with θ = 1.

the frequency ranges of single negativity are

ω
ω1

> ζ1, ξ1 >
ω
ω1

> ζ2, max(θ ,ξ2)>
ω
ω1

> min(θ ,ξ2) , (3.31)

and the frequency ranges of double negativity are

ζ1 >
ω
ω1

> ξ1, ζ2 >
ω
ω1

> max(θ ,ξ2) . (3.32)

These properties are illustrated in figure 3.2(c) for θ > ξ2 , showing two frequency ranges with

double negative effective parameters. The effect of the structural parameter η = k1/k2 is shown

in figure 3.9 for the case where λ1 = 0.5 and λ2 = 1.0(θ > ξ2). Two domains for both negative

mass and negative modulus are observed (domain 1 and domain 2). The negative effective mass
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Figure 3.9: Frequency ranges for negative parameters for λ1 = 0.5 and λ2 = 1.0 with θ < 1.

associated with domain 1 (lower frequency) will always generate double negativity. For domain

2 (higher frequency), small overlapping range of negative effective mass and modulus exists,

leading to a broadened band gap (single negative). Figures 3.10 and 3.11 show the effects

of λ1 and λ2 respectively on the frequency ranges of negativity. Similar to previous examples,

while domain 1 of the frequency range generates double negative behaviour, domain 2 provides

mainly a wide band gap.

The current results indicate that the three structural parameters, η , λ1 and λ2, have sig-

nificant effect on frequency ranges of negativity. Adjusting these parameters will provide the

flexibility to suit different working frequencies for potential applications.

65



���������	
���
�����������	�����

���������	
��

���� ���� ���� ���� ����

���

���

���

���

���

����
�����	
��

����
�����	�����

���������	
��

���������	
��

���������	�����

���������	�����

Figure 3.10: Frequency ranges for negative parameters for η = 1.0 and λ2 = 2.0 with θ < 1.

3.3 Dispersion characteristics of propagating waves

For the developed metamaterial system, the effective mass and modulus show strong depen-

dence on the loading frequency, as discussed in the previous section. To further evaluate the

frequency response of the system, lets consider the propagation of a harmonic longitudinal

elastic wave in a one-dimensional mechanical system consisting of infinite number of the de-

veloped representative unit cells, as illustrated in figure 3.1(b). The wave can be generally

expressed as

u(x, t) = u0ei(Kx−ωt), (3.33)
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Figure 3.11: Frequency ranges for negative parameters for η = 1.0 and λ1 = 0.5 with θ < 1.

where ω and K are the circular frequency and the wave number of the wave, x is the axis along

the longitudinal direction of the metamaterial and u0 is the displacement amplitude at x = 0.

The left end of the 0th cell (n = 0) is set as the origin of x axis (x = 0). x = nL indicates the

distance of the left end of the nth cell to the origin.

The dispersion relation for the wave propagation can be established by considering the

continuity condition between adjacent unit cells. The boundary forces acting on the left and

the right end of the nth unit cell, Fn and Fn+1, respectively, can be determined from equations

(3.10) and (3.11), as

Fn =
EeA

L
(un+1 −un)+

meω2

4
(un+1 +un) , (3.34)
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Fn+1 =
EeA

L
(un+1 −un)− meω2

4
(un+1 +un) . (3.35)

From equation (3.34), the force acting on the left end of the (n+ 1)th cell, can be similarly

determined as

Fn+1 =
EeA

L
(un+2 −un+1)+

meω2

4
(un+2 +un+1) . (3.36)

By combining equations (3.35) and (3.36), the governing equation for the wave propagation

can be expressed in terms of the boundary displacements of the unit cells as

EeA
L

(un+2 −2un+1 +un)+
meω2

4
(un+2 +2un+1 +un) = 0. (3.37)

Substitution of equation (3.33) into equation (3.37) will yield the dispersion relation between

between the wave number and the frequency of the wave as

eiKL −2+ e−iKL

eiKL +2+ e−iKL +
meω2L
4EeA

= 0. (3.38)

3.3.1 Double positivity or double negativity

When both me and Ee are positive or negative, me/Ee > 0, the wave number K can be deter-

mined from equation (3.38) as (Wang, 2014),

KL = cos−1
(

1−δ
1+δ

)
, (3.39)

with δ = |meω2L/(4EeA)|. Substituting the expressions for the effective mass and modulus

given in equations (3.12) and (3.13), this dispersion relation can be further expressed in terms
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of the three structural parameters, η , λ1 and λ2, as

λ2η2γ6 −η (2λ1 +λ2 (η +λ1 (2+η)))γ4

+2
(
λ 2

1 (1− cosψ)+λ1η (1+λ1 +λ2)
)

γ2 −2λ 2
1 (1− cosψ) = 0,

(3.40)

with ψ = KL being the normalized wave number and γ = ω/ω1 being the normalized fre-

quency. It has been shown that (Wang, 2014) for both double positive and negative cases,

KEe > 0 since the the power input at the left end of the metamaterial by the external excitation

must be positive to provide the energy to the system. Therefore, for double positivity, the sign

of K will be positive, KL = Re(KL) > 0, indicating a direction of wave propagation to the

right. For double negativity, K will be negative, KL = Re(KL) < 0, indicating a backward

wave propagation to the left.

3.3.2 Single negativity

When only negative me or Ee is negative, the dispersion relation in equation (3.38) becomes

eiKL =
1±

√
δ

1∓
√

δ
. (3.41)

The solution of KL is represented by an imaginary number, i.e., KL = iβ with β being a

positive real number given by β = ln
∣∣∣1+

√
δ

1−
√

δ

∣∣∣. The wave motion described in equation (3.33)

can be recast in the form of

u(x, t) = u0e−βx/Le−iωt , (3.42)

in which a positive β represents an exponentially decaying field along the x direction. There-

fore, β serves as the attenuation factor for the system. In this case, wave can not propagate in

the elastic metamaterials.
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Figure 3.12: Frequency response for case 1, (a) the real part of the wave number, (b) the
imaginary part of the wave number, (c) the effective mass and modulus.

3.3.3 Effective medium model

If the metamaterial structure is modelled as an equivalent one-dimensional homogeneous ma-

terial with effective mass and effective modulus, given in equations (3.12) and (3.13), the

equation of motion of the effective medium is

Ee
∂ 2u
∂x2 = ρe

∂ 2u
∂ t2 , (3.43)

where ρe = me/AL is the effective mass density. A harmonic wave propagating in such an

effective medium will have a wave number K̄, given by

K̄2 =
ρeω2

Ee
, (3.44)
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which provides the dispersion relation.

The dispersion relation and the effective mass and modulus for the new metamaterial struc-

ture are illustrated in figures 3.12, 3.13 and 3.14 for the following three cases, for λ1 = λ2 = 1.0,

• Case 1: η = 1.0, θ 2 = 2λ1/(ηλ2) = 2.0,

• Case 2: η = 2.0, θ 2 = 2λ1/(ηλ2) = 1.0,

• Case 3: η = 2.5, θ 2 = 2λ1/(ηλ2) = 0.8.

The dispersion relation for the effective homogeneous medium is also shown in figures 3.12(a),

3.13(a) and 3.14(a) for comparison. It can be observed that the dispersion curves of the two
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Figure 3.13: Frequency response for case 2, (a) the real part of the wave number, (b) the
imaginary part of the wave number, (c) the effective mass and modulus.
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models are very close to each other for low wave number, indicating that effective homoge-

neous medium can provide excellent approximation of the metamaterial structure for cases

involving long-wavelength.

For case 1 (θ > 1) and case 3 (θ < 1), three band gaps are generated. For case 2, there are

two band gaps. In the band gap, no real solution of wave number exists and the wave number

is purely imaginary with positive attenuation factor, β , as shown in figures 3.12(b), 3.13(b)

and 3.14(b). The normalized effective mass and modulus, me/mst and Ee/Est , are shown in

figures 3.12(c), 3.13(c) and 3.14(c), in which mst and Est are the static mass and modulus of

the representative unit cell given by mst = (2M+2m1 +2m2) and Est = k2L/A, respectively.
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Figure 3.14: Frequency response for case 3, (a) the real part of the wave number, (b) the
imaginary part of the wave number, (c) the effective mass and modulus.
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3.4 Numerical analysis of the metamaterial model

In the previous sections, the proposed representative unit cell, figure 3.1(a), has been simplified

as a cell consisting of a series of rigid bodies and massless linear springs, figure 3.1(b). This

section provides a numerical study of the developed metamaterial model using Finite Element

(FE) analysis to evaluate the suitability of the spring-mass unit cell used. A periodic metama-

terial is formed by repeating the original unit cell of length L, as shown in figure 3.15. For

the three materials used for the unit cell, labeled as materials I, II and III, materials I and II

should possess higher mass densities and higher moduli. Material III should be much lighter

and softer to generate local resonance. Materials I and II can be identical or different to realize

various mass ratio λ1. From a design perspective, more types of materials can be employed in

the unit cell to generate desired parameters η , λ1 and λ2 with wider variations.

Figure 3.15: The periodic elastic metamaterial model.

In the current FE analysis, a one-dimensional elastic metamaterial structure consisting of

100 unit cells is used, with geometrical configuration and material properties being given in

tables 3.1 and 3.2, respectively. The commercial software package COMSOL Multiphysics
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5.2a is utilized to conduct the dynamic elastic analysis of the metamaterial system. Free quad

element is used in the analysis with the element size being around 1.50×10−2L, as depicted in

figure 3.16(a). Because the one-dimensional model is mostly under simple tension, the model

is not sensitive to the number of meshing elements. Actually, the simulation results converge

when the number of meshing elements is larger than 100. Linear elastic material properties are

used in the simulations and damping is not considered.

Table 3.1: Geometrical parameters

LM HM LM1 HM1 LM2 HM2 LK1 HK1 LK2 HK2

Values (mm) 5.0 34.0 7.5 16.0 24.0 8.0 3.0 7.0 2.0 6.0

Table 3.2: Material parameters (Liu et al., 2015; Torrent et al., 2014)

Material Density (Kg/m3) Young’s Modulus (Pa) Poisson’s ratio

Material I Lead 11340 16E9 0.44

Material II Steel 7850 210E9 0.29

Material III Foam 115 8E6 0.33

As shown in table 3.2, lead is selected as the material of the resonators with mass m1 and

steel is used for the other four mass components in the representative unit cell. Foam, as a very

light and soft material, is selected as material III. By using the geometrical parameters and the

mass densities in tables 3.1 and 3.2, the exact values of m1, m2 and M can be determined. The

values of k1 and k2 are obtained by conducting a FE analysis of the unit cell under static loading,
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(a) (b)

(c)

Figure 3.16: Numerical calculation, (a) FEM mesh, (b) calculating stiffness k1, (c) calculating
stiffness k2.

where tensile forces are properly applied with the left boundary of the unit cell being fixed, as

shown in figures 3.16(b) and 3.16(c). The determined masses and spring constants from FE

anslysis are, m1 = 1.3608 Kg, m2 = 1.5072 Kg, M = 1.3345 Kg, k1 = 2.4409×107 N/m and

k2 = 3.2256× 107 N/m. In comparison, if uniform deformation in material III is assumed,

k1, k2 can be directly calculated as 1.8667×107 N/m and 2.4×107 N/m, which show 23.5%

and 25.6% difference with the FE results, respectively. In the following discussion, the k1

and k2 predicted by FE analysis will be used. According to these parameters, the two natural

frequencies are determined to be f1 = ω1/2π = 674.06 Hz, f2 = ω2/2π = 1041.25 Hz. The θ

value can then be calculated as θ = ω2/ω1 = 1.54 > 1. According to equation (3.28), for this

75



case, only one frequency range with double negative behaviour will exist.

3.4.1 Dispersion relation

The dispersion characteristics of the periodic simplified spring-mass model is first compared

with that from the FE analysis of the elastic model. For the spring-mass model, the dispersion

curve, i.e., relation between wave number and loading frequency, is obtained from equation

(3.38) for the current materials, as shown in figure 3.17(a). For the elastic model, FE modal

analysis is conducted to determine the longitudinal natural frequencies and the corresponding

mode shapes. The wave numbers are extracted by evaluating the model shapes using the least

square method. The dispersion relation is then obtained, which is plotted with black dots in

3.17(a). In this figure, the areas filled with light grey indicate band gaps and the dark grey area

represents the double negative range. It can be easily observed from figure 3.17(a) that the

dispersion relations from these two models agree well, indicating that the spring-mass model

can accurately predict the dispersion property of the proposed metamaterial system. Different

from the property of elastic waves in traditional materials, the negative wave number shows

negative phase velocity. The corresponding effective mass and modulus are shown in figure

3.17(b), which are determined from the metamaterial model by using the spring constants

from the FE analysis and the masses. The band gaps predicted by the metamaterial model in

3.17(b) correspond very well with the band gaps determined from FE results in 3.17(a).

3.4.2 FE simulation of wave propagation

The dynamic response and wave propagation in periodic metamaterials, as shown in figure

3.15, is studied numerically using FE. The left end of the metamaterial, at x = 0, is excited by
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Figure 3.17: Frequency response of the elastic model and the spring-mass model, (a) disper-
sion relation, (b) the normalized effective parameters.

a harmonic prescribed displacement

U (t) = u0 sin(2π f t), (3.45)

where f is the loading frequency in Hz and u0 is selected to be 1 mm. The right end is set

as traction free. Transient response of the material is calculated for a frequency f = 700 Hz,

which is in the band gap based on the metamaterial model, associated negative effective mass,

as shown in 3.17(b). Figure 3.18(a) shows the net force and average acceleration of the second

cell from the left to this excitation. It can be observed that the net force applied to the second

cell is exactly out of phase with its average acceleration, indicating negative mass. Also, in

figure 3.18(b), the phase of the averaged force applied to the second cell perfectly matches
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(b)

Figure 3.18: Normalized response of the second cell when f = 700 Hz, (a) net force and
average acceleration, (b) average force and deformation.

that of its deformation, showing positive effective modulus. The results for f = 650 Hz are

shown in figure 3.19, which generates positive effective mass and negative effective modulus,
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(b)

Figure 3.19: Normalized response of the second cell when f = 650 Hz, (a) net force and
average acceleration, (b) average force and deformation.

as indicated by 3.17(b). Figure 3.20 shows the dynamic response of the second cell for f =

1610 Hz. In this case, the corresponding effective mass and modulus are both negative, as
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(b)

Figure 3.20: Normalized response of the second cell when f = 1610 Hz, (a) net force and
average acceleration, (b) average force and deformation.

shown in figure 3.17(b). Both net force - average acceleration and average force - deformation

relations are out of phase, as predicted, caused by the double negativity.
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To further study the wave mitigation property of the metamaterial in the band gap, a fre-

quency domain simulation is conducted. Transmission coefficients at different frequencies,

which are defined as the amplitude ratios of the output displacement at the right end to that of

the input at the left end, are determined. The variation of the transmission coefficients with

frequency is shown in figure 3.21. Three passing bands in the low frequency range can be ob-

served, which correspond to frequency ranges of double positivity or double negativity. There

are also three frequency ranges with very low transmission coefficients, corresponding to band

gaps, which are approximately from 551.4Hz to 768.4Hz, from 1044.4Hz to 1357.2Hz, and

from 1627.1Hz to 39792.3Hz.
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Figure 3.21: The transmission coefficients of the structure.

To illustrate the negative phase velocity, the transient response of the metamaterial with
81



f = 1610Hz is evaluated, at which both effective mass and modulus are negative, as shown

in figure 3.17(b). To accurately capture the dynamic behaviour of the metamaterial, the time

increments between the curves is selected to be less than T/8 with T as the period of the

excitation in the following figures. Figure 3.22 shows the displacement distribution in the

metamaterial at the initial stage of the loading. The peaks of the displacement move to the

left, showing negative phase velocity. Figure 3.23 shows the displacement distribution at a

later stage when steady wave motion is established. Backward motion of the peaks is clearly

observed.
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Figure 3.22: Snapshots of wave propagation of the wavefront in the elastic metamaterial model
with an excitation frequency 1610 Hz.
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Figure 3.23: Snapshots of wave propagation in the elastic model around 130 ms with an
excitation frequency 1610 Hz.

3.5 Conclusion

An elastic metamaterial model is designed based on translational resonance to obtain simul-

taneously negative effective mass and modulus within specific frequency ranges. Two dif-

ferent translational resonances exist in the metamaterial representative cell. One resonance

contributes directly to the negative effective modulus and the coupled effect of the two reso-

nances can generate negative effective mass, which endows the elastic metamaterial with great

flexibility to generate negative effective parameters in different frequency ranges. Due to the

unique feature of the developed representative cells, the independent control of the effective

83



mass and modulus can be realized to some extent. Wave propagation in such metamaterials is

studied and the phenomenon of negative phase velocity is observed in the frequency range with

double negative parameters. This model can shed new light on designing elastic metamaterial

with negative effective material parameters.

Appendix A

In the discussion of the frequency ranges with negative effective mass, two positive roots of

Fm (ω/ω1) = 0, ζ1 and ζ2, are given by

ζ 2
1 =

1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1+

2λ1

η
+

2λ1

λ2η
+λ1

)

+

√(
1+

2λ1

η
+

2λ1

λ2η
+λ1

)2

− 8λ1

λ2η
(1+λ1 +λ2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (A.1)

ζ 2
2 =

1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1+

2λ1

η
+

2λ1

λ2η
+λ1

)

−
√(

1+
2λ1

η
+

2λ1

λ2η
+λ1

)2

− 8λ1

λ2η
(1+λ1 +λ2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (A.2)

For the root, ζ1, it can be recast in the form of

ζ 2
1 =

1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1+

2λ1

η
+

2λ1

λ2η
+λ1

)

+

√(
1− 2λ1

η
− 2λ1

λ2η
+λ1

)2

+
8λ 2

1
η

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (A.3)

which directly navigates to the relation that

ζ 2
1 >

1
2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1+

2λ1

η
+

2λ1

λ2η
+λ1

)

+

∣∣∣∣1− 2λ1

η
− 2λ1

λ2η
+λ1

∣∣∣∣

⎫⎪⎪⎪⎬
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> 1. (A.4)
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According to equation (A.2), the second positive root, ζ2, can be rearranged as

ζ 2
2 =

1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1+

2λ1

η
+

2λ1

λ2η
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)

−
√(

1− 2λ1

η
− 2λ1

λ2η
−λ1

)2

+4λ1

(
1− 2λ1

λ2η

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (A.5)

Equations (A.1) and (A.2) can also be further rewritten as

ζ 2
1 =

1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
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η
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η
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)2

+
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η

(
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)
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, (A.6)
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. (A.7)

When θ =
√

2λ1
λ2η > 1, the following relations can be readily obtained from equations (A.5),

(A.6) and (A.7), as
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1
2
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which directly leads to

ζ1 > ζ̄1 > ζ2 > ζ̄2. (A.11)

When θ =
√

2λ1
λ2η < 1, similar results can be obtained as
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1
2
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The relation in equation (A.11) can then be obtained for this case as well. When θ =
√

2λ1
λ2η = 1,

the following relation can be obtained as

ζ1 > ζ̄1 = ζ2 = ζ̄2. (A.14)

Equations (A.11) and (A.14) directly navigate to equation (3.20).

For determination of the frequency ranges for negative effective modulus, the two positive

roots of Fe (ω/ω1) = 0, ξ1 and ξ2, are given by

ξ 2
1 =

1
2
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For ξ1, it can have a new form of
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1
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resulting in
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By referring to equation (A.16), the second root, ξ2, can be rearranged as

ξ 2
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which can directly lead to

ξ 2
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1
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1+λ1 +

2λ1

η

)
−
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η
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Then, the following relation can be obtained,

ξ1 > 1 > ξ2. (A.21)
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Chapter 4: A new two-dimensional elastic metamaterial

system with multiple local resonances

As the extension of the developed one-dimensional model in Chapter 3, this chapter intro-

duces a new two-dimensional elastic metamaterial with multiple local resonances, which can

generate simultaneously negative effective mass, bulk modulus and shear modulus in certain

frequency ranges. Analytical study of the new metamaterial system is performed based on

a simplified model to investigate the effects of the main material and geometric parameters.

Numerical analysis is further conducted to simulate elastic wave propagation in the current

metamaterial. Typical examples of the current metamaterial under different loading conditions

are presented to show both the modal response and the property of elastic wave propagation in

the metamaterial.

4.1 Introduction

Metamaterials are artificially structured materials, which have peculiar effective properties not

commonly seen in nature. These unconventional properties are generated from the representa-

tive cell, the basic building blocks of the metamaterials (Cummer et al., 2016). Early studies of

metamaterial have been focussed mainly on electromagnetic metamaterials, which have nega-

tive permittivity and/or negative permeability under certain frequencies, and make the negative

refractive index achievable (Veselago, 1968). Many advanced applications of metamaterials for

electromagnetic wave manipulation have been proposed over the last two decades, such as the

invisible cloak based on the designed gradient-index (Pendry et al., 2006; Schurig et al., 2006)
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and superlenses with sub-wavelength resolution using the concept of negative index (Kundtz

and Smith, 2010; Shelby et al., 2001). In recent years, efforts have also been extended to

explore the possible unconventional properties of acoustic/elastic metamaterials, the mechan-

ical counterpart of the electromagnetic metamaterials. In the field of acoustic metamaterials,

many promising applications have also been proposed or realized, such as sound isolating

(Nateghi et al., 2017; Peng and Frank Pai, 2014; Sui et al., 2015; Tang et al., 2017), acous-

tic surface wave manipulation (Christensen et al., 2007), acoustic cloaking (Popa et al., 2011;

Zhang et al., 2011), and the sub-wavelength imaging associated with negative phase velocity

(Guenneau et al., 2007; Zhang et al., 2009).

Comparing with the intensive efforts in acoustic metamaterials, relatively less attention has

been paid to elastic metamaterials, which are characterized by the coexistence and coupling of

the longitudinal and transverse waves in the elastic mediums (Zhu et al., 2015). In the design of

elastic metamaterials, to achieve the desired unconventional functionalities, negative effective

material parameters are usually required (Zhou et al., 2012). Different metamaterial models

have been proposed to achieve negative effective mass density and/or moduli by designing

specific representative cells, mainly based on local resonances (Lee and Wright, 2016; Li and

Wang, 2016; Ma and Sheng, 2016; Wang, 2014). These representative cells are usually highly

frequency-dependent and the desired negative parameters can be obtained in certain frequency

ranges (Chen et al., 2017; Liu et al., 2015; Oh et al., 2016). Following the first experimental

design of elastic metamaterials, where the negative effective mass density is achieved by em-

bedding heavy spheres coated with soft silicon rubber in epoxy (Liu et al., 2000), it is now

well established that the negative effective mass density can be generated by the out-of-phase
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translation motion between the main structure and the resonator, under the so-called dipolar

resonance (Lu et al., 2017; Mitchell et al., 2014; Wang and Wang, 2016).

Negative effective bulk modulus was first experimentally illustrated in a one-dimensional

acoustic metamaterial composed of periodic cavities, which serve as Helmholtz resonators

(Fang et al., 2006). Similar phenomenon has also been observed for acoustic wave propagation

in a tube with a periodic array of interspaced membranes and side holes (Lee et al., 2010).

The similar mechanism, i.e. generating volumetric resonance, has been used to design elastic

metamaterials (Liu et al., 2011a; Wu et al., 2007). Theoretical models have been developed

based on spring-mass systems to illustrate the mechanisms of generating negative effective

mass and modulus (Li and Wang, 2016; Wang, 2014). The negative effective shear modulus,

exclusive to the elastic metamaterials can also be realized through local resonances in the

representative cells of the elastic metamaterials (Zhou and Hu, 2009).

Double negative behaviour of elastic metamaterials can be achieved if the local resonances

associated with negative effective mass and modulus can be excited simultaneously. Many

efforts have been made to develop various metamaterial structures with such properties. An

elastic metamaterial formed by arrays of rubber-coated-gold spheres or bubble-contained wa-

ter spheres embedded in epoxy matrix, is reported to possess simultaneously negative effective

mass density and bulk modulus due to the combined effect of the monopolar and dipolar reso-

nances (Ding et al., 2007). Similar results have been obtained in an elastic metamaterial made

of only solid materials, which implements the rotational motion of the resonators in its chiral

microstructures to realize negative effective bulk modulus (Liu et al., 2011a). In an elastic

metamaterial with its representative cells featuring fluid-solid inclusions, the negative shear
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modulus associated with quadrupolar resonance, as well as the negative effective mass density,

has been demonstrated (Wu et al., 2011). A hybrid elastic model has been reported to possess

negative effective mass density, and negative effective bulk modulus or negative effective shear

modulus in different frequency ranges (Lai et al., 2011). However, in the existing works dis-

cussed above, these three effective parameters, effective mass density, bulk modulus and shear

modulus, are not allowed to turn negative simultaneously.

In the current study, a new two-dimensional elastic metamaterial system has been designed

with its representative cells featuring only translational motions. The periodic structures of the

proposed metamaterial system can induce dipolar, monopolar and quadrupolar resonances in

overlapping frequencies, directly leading to simultaneous negative effective mass density, bulk

modulus and shear modulus. Due to anisotropic nature of the metamaterial structure, various

dynamic behaviour can be observed when elastic waves propagating in different directions.

This new elastic metamaterial can behave like a solid with negative phase velocities for longi-

tudinal and transverse waves and also can behave like a fluid mainly supporting longitudinal

waves with negative phase velocities.

4.2 The two-dimensional elastic metamaterial model

Unlike traditional periodic materials, the overall properties of metamaterials are dominated by

the dynamic behaviour of their representative cells. The structural design of the representative

cells plays a vital role in achieving the desired properties. In the current work, a new two-

dimensional elastic metamaterial is proposed to generate single negative (negative effective

mass or modulus) or double negative (negative effective mass and modulus) mechanical prop-
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erties. Negative effective mass and modulus are achieved through only translational motion of

two types of local resonators introduced. This two-dimensional metamaterial system can in-

duce strong wave mitigation and generate negative phase velocities in a controlled manner. The

current new metamaterial model provides a more realistic design with simpler structures and

more flexibility for controlling the desired dynamic behaviour represented by negative effective

parameters.

4.2.1 The proposed representative cell

The proposed two-dimensional elastic metamaterial is schematically depicted in figure 4.1(a),

in which the governing geometrical parameters have been labelled. It consists of periodic local

structures with its representative cell being shown in figure 4.1(b). The cell has been designed

to include multiple resonators to achieve negative effective mass and moduli. To generate the

local resonance, four different materials are used. Materials I and II have higher mass densities

and higher stiffnesses. Materials III and IV have lower mass densities and lower stiffnesses.

4.2.2 A simplified metamaterial model

When materials I and II are much heavier and stiffer than materials III and IV, I and II can

be treated as rigid bodies and III and IV can be regarded as massless linear springs. In this

simplified case, the representative cell can be modelled as a spring-mass system, as illustrated

in figure 4.1(b), with the effective mass and stiffness of the springs determined from the original

metamaterial model analytically or numerically (Liu et al., 2015).

In the representative cell of the simplified spring-mass model, four end rigid masses have

the same mass M. A centre resonator with mass m1 is attached to the rigid boundaries through
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(a)

(b)

Figure 4.1: The two-dimensional elastic metamaterial system, (a) periodic cells, (b) the repre-
sentative cell.

four identical springs with longitudinal and shear stiffnesses k1 and G1, along and perpendic-

ular to the spring direction, respectively, as identified in figure 4.1(b). Four identical masses

(resonators), m2, are also attached with each of them being connected to its two adjacent end
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rigid masses through springs with stiffness constants k2 and G2. The representative cells are

connected to each other through the rigid boundaries with a periodic length L.

Formulation of the simplified model

A representative cell of the simplified spring-mass model, as schematically shown in figure

4.1(b), is labelled with the unit number (n,h), in which n and h are the order of the cell in

horizontal and vertical directions, corresponding to x and y, respectively. The horizontal and

vertical displacements of the boundary mass on the left are denoted as uM
x1(n,h) and uM

y1(n,h),

and those of the lower boundary mass are denoted as uM
x2(n,h) and uM

y2(n,h). As a general nota-

tion used in the following discussion, subscripts ‘1’ and ‘2’ represent the boundary masses on

the left/right and top/down, respectively. As an example, the equations of motion of the left

boundary mass are

2M
∂ 2uM

x1(n,h)

∂ t2 =k1

(
um1

x(n,h) +um1
x(n−1,h)−2uM

x1(n,h)

)

+ k2

(
um2

x(n,h)−ul +um2
x(n−1,h)−ur −2uM

x1(n,h)

)

+ k2

(
um2

x(n,h)−ll +um2
x(n−1,h)−lr −2uM

x1(n,h)

)
,

(4.1)

2M
∂ 2uM

y1(n,h)

∂ t2 =G1

(
um1

y(n,h) +um1
y(n−1,h)−2uM

y1(n,h)

)

+G2

(
um2

y(n,h)−ul +um2
y(n−1,h)−ur −2uM

y1(n,h)

)

+G2

(
um2

y(n,h)−ll +um2
y(n−1,h)−lr −2uM

y1(n,h)

)
.

(4.2)

The displacements with superscripts ‘m1’ and ‘m2’ in equations (4.1) and (4.2) are associated

with the internal resonators m1 and m2, respectively. The equations of motion of other boundary

masses can be similarly determined. As shown in Appendix B, the displacements of the internal
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resonators m1 and m2 can be expressed in terms of the displacements of the boundary masses by

using the equations of motion of these internal resonators. Therefore, the equations of motion

of the representative cell are in terms of the displacements of the boundary masses only.

Dispersion Relation

The dynamic behaviour of the two-dimensional elastic metamaterial in response to wave prop-

agation can be described by the dispersion relation. For this metamaterial system, the disper-

sion relation is determined by evaluating the wave form of the propagating wave based on the

equations of motion of the boundary masses.

Here, consider a plane harmonic wave propagating in the two-dimensional elastic metama-

terial system, which can be generally expressed in the form of

u = Uei(K1x+K2y−ωt), (4.3)

where u =
{

uM
x1(n,h), uM

y1(n,h), uM
x2(n,h), uM

y2(n,h)

}T
is the displacement of the boundary masses

and vector U contains the corresponding amplitudes of the displacements. In this two-dimensional

system, the cell at the origin of (x,y) has the cell number (0,0). The distance of the left end

of the nth cell to the origin in the horizontal direction is denoted as x = nL, and the distance of

the lower end of the hth cell to the origin in the vertical direction is y = nL. ω is the circular

frequency of the wave. K1 and K2 are the wave numbers in x and y directions, respectively.

Substituting the wave form shown in equation (4.3) into equations of motion of all four

boundary masses and making using of the periodic boundary conditions (Brillouin, 1953), the
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following homogeneous equations of the boundary displacements for cell (n,h) are obtained,

p11uM
x1(n,h) + p13uM

x2(n,h) = 0, (4.4)

p22uM
y1(n,h) + p24uM

y2(n,h) = 0, (4.5)

p31uM
x1(n,h) + p33uM

x2(n,h) = 0, (4.6)

p42uM
y1(n,h) + p44uM

y2(n,h) = 0, (4.7)

where pi j are the nonzero components of a 4× 4 matrix P, which contains the frequency ω ,

the wave numbers K1 and K2, and five independent material parameters, as given in Appendix

C. The five material parameters are the stiffness ratios, η1, η2 and η3, and the mass ratios, λ1

and λ2, defined by

η1 =
G1

k1
, η2 =

G2

k2
, η3 =

k1

k2
, λ1 =

m1

M
, λ2 =

m2

M
. (4.8)

Equations (4.4)-(4.7) can be reorganized in a matrix form,

[P(K1L,K2L,γ)]U = 0, (4.9)

where γ = ω/ω1 is a normalized frequency with ω1 =
√

2k1/m1. The dispersion relation, i.e.

the relation between the frequency and the wave number, can then be determined by solving

the eigenvalue problem given by equation (4.9). Due to the periodicity of the metamaterial

formed by the square representative cell, the normalized wave numbers need to be determined

only in the first Brillouin zone, which has a shape of square in (K1L,K2L) space with −π ≤

(K1L,K2L) ≤ π (Brillouin, 1953). Two specific directions in the first Brillouin zone, ΓX and

ΓM shown in figure 4.2, are particularly interesting because of their high symmetry. Along
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Figure 4.2: The sketch of the first Brillouin zone.

ΓX (Γ → X) direction, K1L varies from 0 to π with K2L = 0, while along ΓM (Γ → M)

direction, K1L and K2L increase simultaneously from 0 to π .

To illustrate the single or double negative properties of the proposed metamaterial, the

dispersion relation for specific material combinations and geometric configurations is evalu-

ated. The dispersion relation along the ΓX and ΓM directions are shown in figures 4.3, 4.4

and 4.5 for η3 = k1/k2 = 2.0, 4.0 and 8.0, respectively, for cases where η1 = G1/k1 = 0.5,

η2 = G2/k2 = 0.3, λ1 = m1/M = 1.4, λ2 = m2/M = 0.8. For the case of η3 = 2.0, figure 4.3,

it is observed that along ΓX direction there are two frequency ranges with negative dispersion,

from γ = ω/ω1 = 0.631 to 0.754 (lower frequency range) and from 1.295 to 1.558 (upper

frequency range), respectively. Among the four branches shown in the figure, three of them

possess negative dispersion. Along ΓM direction, two similar frequency ranges with negative

dispersion exist. When η3 increases to 4.0, similar dispersion behaviour can be observed in

figure 4.4. The branches with negative dispersion in the upper frequency range are almost un-

changed. While, the width of the lower frequency range and the magnitude of the slopes of
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Figure 4.3: The dispersion relation of the simplified spring-mass model for case 1 (ΓX: wave
number K1L, ΓM: wave numbers K1L = K2L).

the curves (corresponding to group velocities) decrease substantially. As η3 reaches 8.0, the

slopes of the two branches in the lower frequency range are almost zero, as shown in figure

4.5, indicating no wave can propagate in the elastic metamaterial. The increase of η3 has very

limited influence on the two branches with negative dispersion in the upper frequency range.

4.3 Numerical analysis of the developed elastic metamaterial model

In this section, the original metamaterial system shown in figure 4.1(a) is analyzed using Finite

Element Method (FEM) with the commercial software package COMSOL Multiphysics 5.2a

to evaluate the dispersion relation and the property of wave propagation.
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Figure 4.4: The dispersion relation of the simplified spring-mass model for case 2 (ΓX: wave
number K1L, ΓM: wave numbers K1L = K2L).

4.3.1 FEM model

The representative cell of the original elastic metamaterial is illustrated in figure 4.1(b). The

geometrical parameters used are listed in table 4.1. Considering the requirements on the masses

and stiffnesses of the components, tungsten, steel, Al-SiC foam and Polyethylene foam are

chosen as material I, II, III and IV, respectively, as shown in table 4.2. In the FEM model,

quad elements are utilized with element size being around 1.0×10−2L, as illustrated in figure

4.6(a).
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Figure 4.5: The dispersion relation of the simplified spring-mass model for case 3 (ΓX: wave
number K1L, ΓM: wave numbers K1L = K2L).

Table 4.1: Geometrical parameters

L L1 H1 LM1 LM2 LK1 HK1 LK2 HK2 R

Values (mm) 50.0 40.0 4.0 10.0 7.6 16.0 5.5 4.7 3.0 12.5

4.3.2 Equivalent stiffness of the spring model

In the simplified spring-mass model, the masses and stiffnesses need to be determined from the

properties of the original representative cell. The values of the masses m1, m2 and M can be

readily obtained. The stiffness constants of the springs, k1, k2, G1 and G2, can be determined

100



by evaluating the static deformation of the cell in response to properly applied tensile or shear

loads, with the left boundary of the cell fixed in the FEM analysis, as shown in figures 4.6(b)

and 4.6(c). For the current configuration, the determined masses are, m1 = 1.780 Kg, m2 =

1.028 Kg and M = 0.432 Kg, and the effective stiffnesses are, k1 = 2.666× 107 N/m, k2 =

5.866×106 N/m, G1 = 7.190×105 N/m and G2 = 4.440×105 N/m. It should be noted that

the materials used are assumed to be linear elastic and damping effect will be not considered.

For all the local elements, unit thickness is assumed.

Table 4.2: Material parameters (Lai et al., 2011; Zhou et al., 2014)

Material Density (Kg/m3) Young’s Modulus (Pa) Poisson’s ratio

Material I Tungsten 17800 3.6E11 0.28

Material II Aluminum 2700 7.0E10 0.33

Material III Al-SiC foam 72 7.0E7 0.30

Material IV Polyethylene foam 115 8.0e6 0.33

4.3.3 Dispersion relation

The dispersion relation of the elastic metamaterial model was determined by conducting modal

analysis of the periodic metamaterial system using COMSOL. The dispersion relation for dif-

ferent wave numbers K1L and K2L are studied. The dispersion curves along the ΓX and ΓM

directions, as shown in figure 4.2, are plotted in figure 4.7(a). The results are also compared

with that from the simplified spring-mass model with the black dots representing the FEM re-

sults and the solid lines representing the analytical results from the simplified model. It can
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(a) (b)

(c)

Figure 4.6: Numerical calculation, (a) FEM mesh, (b) calculating stiffness k1 and k2, (b)
calculating stiffness G1 and G2.

be observed that the branches predicted by the spring-mass model agree well with the FEM

results, especially in the frequency ranges with negative dispersion. FEM study reveals more

branches of dispersion curves in other frequency ranges, as shown in 4.7(a). This might be

related to the effect of the rotational motion of the masses in the representative cell, ignored in

the spring-mass model. To evaluate in detail the dispersion relation of the current metamaterial,

three branches with negative dispersion, predicted from the FEM, have been plotted in figure

4.7(b), with branch A in circle, branch B in triangle and branch C in star, respectively. Branch
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(b)

Figure 4.7: (a) The dispersion relation of the elastic metamaterial model along the ΓM and the
ΓX directions, (b) the branches of the dispersion relation with negative dispersions (ΓX: wave
number K1L, ΓM: wave numbers K1L = K2L).
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A and branch B almost overlap with a negligible difference along the ΓM direction. Along

the ΓX direction, however, branches A and B differ significantly. For branch A, the frequency

varies from 1519.8 Hz to 1697.7 Hz, while branch B exists under a almost constant frequency,

as shown in figure 4.7(b), indicating that for branch B the energy transmission inside the meta-

material along the ΓX direction is very low. Branch C exhibits negative dispersion behaviour

within a very narrow frequency range. Therefore, the negative dispersion of the current elastic

metamaterial is mainly represented by branches A and B. It is interesting to mention that the

spring-mass model, agrees well with the FEM results for branches A and B, suggesting that it

can serve as an effective tool for predicting the desired negative dispersion behaviour of the

two-dimensional elastic metamaterial.

Eigenstates of the representative cell

To illustrate the dynamic response of the metamaterial, during wave propagation, as given by

the branches with negative dispersion, the eigenstates of the representative cell, i.e. the vibra-

tion modes, are investigated for specific frequency ranges. First, the displacement eigenstates

of branches A and B at the boundary points along the ΓM direction (points M and Γ in figure

4.7(b)) are plotted in figure 4.8, where blue colour indicates low displacement amplitude and

red colour represents high displacement amplitude with the arrow showing the direction of the

displacement vector. At point M for branches A and B, although the frequencies are almost

the same, the modes of motion (eigenstates) are very different. Figure 4.8(a) shows the dis-

placement field for point A1 (point M of branch A), where the four boundary masses moves in

an inwards-outwards manner (quadrupolar). At point B1 (point M of branch B), the eigenstate
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(a) (b)

(c) (d)

Figure 4.8: Displacement distribution of the eigenstates at, (a) point A1 ( f = 1519.8 Hz), (b)
point B1 ( f = 1519.8 Hz), (c) point A2 ( f = 1697.7 Hz), (d) point B2 ( f = 1697.7 Hz).

shown in 4.8(b) clearly demonstrates an inwards-inwards motion (monopolar). For points A2

and B2 (point Γ of branches A and B), the frequencies are almost the same while the eigen-

states are different, as shown in figures 4.8(c) and 4.8(d). For A2, figure 4.8(c) shows that the

boundary masses move mainly in the horizontal direction with the centre resonators moving in

opposite direction (dipolar). For B2, figure 4.8(d) shows, in contrast, mainly vertical motions

in a similar manner. For other points along ΓM between the boundary points of branches A and
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B, the hybridization of the monopolar, dipolar and quadrupolar resonances exists. For point A3

of branch A in the ΓX direction, the displacement eigenstate shows an almost monopolar reso-

nance without significant vertical motion, as illustrated in figure 4.9. Along the ΓX direction,

the combined effect of monopolar and dipolar resonances is expected.

Figure 4.9: Displacement distribution of the eigenstate at point A3 ( f = 1519.8Hz).

4.3.4 Effective mass and modulus of the metamaterial

Since the dynamic behaviour of the metamaterial can be represented by the response of the

boundary masses of the representative cell (Lai et al., 2011; Li and Wang, 2016; Wang, 2014),

the effective force, displacement and acceleration on the boundaries of the representative cell

are evaluated carefully using FEM to determine the overall effective mass and moduli at spe-

cific frequencies. In the following discussion, only the magnitudes of these effective parameters

are considered for the harmonic response of the metamaterial.
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Effective mass density

The effective mass density can be defined from the relation between the net force applied to the

representative cell and its average acceleration (Li and Wang, 2016; Wang, 2014). Considering

the motion of the cell in x direction leads to the following effective mass density ρe,

ρe =
Fe

x

(ae
x)

2 L2
, (4.10)

where Fx and ae
x are the net force and the average acceleration calculated along the boundaries

of the representative cell, given by

Fe
x =

ˆ
σxxdy|x=L −

ˆ
σxxdy|x=0 +

ˆ
σxydx|y=L −

ˆ
σxydx|y=0, (4.11)

ae
x =

1
2

(ˆ
āx|x=0 +

ˆ
āx|x=L

)
, (4.12)

where σ and a represent stress and acceleration, respectively.

Effective moduli

The effective moduli are defined from the relation between the average force applied to the

representative cell and the average deformation of it (Li and Wang, 2016; Wang, 2014). The

effective stresses of the cell can be calculated as

σ e
xx =

(ˆ
σxxdy|x=0 +

ˆ
σxxdy|x=L

)
/(2L) , (4.13)

σ e
yy =

(ˆ
σyydx|y=0 +

ˆ
σyydx|y=L

)
/(2L) , (4.14)

σ e
xy =

(ˆ
σxydx|y=0 +

ˆ
σxydx|y=L +

ˆ
σxydy|x=0 +

ˆ
σxydy|x=L

)
/(4L) . (4.15)
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The effective strains of the cell can be expressed in the form of

εe
xx =

(ˆ
uxdy|x=L −

ˆ
uxdy|x=0

)
/
(
L2) , (4.16)

εe
yy =

(ˆ
uydx|y=L −

ˆ
uydx|y=0

)
/
(
L2) , (4.17)

εe
xy =

(ˆ
uxdx|y=L −

ˆ
uxdx|y=0 +

ˆ
uydy|x=L −

ˆ
uydy|x=0

)
/
(
2L2) , (4.18)

where u is the displacement measured along the boundaries of the representative cell.

Due to the structural symmetry of the metamaterial system, the effective medium can be

modelled as a two-dimensional cubic material (Lai et al., 2011; Ting, 1996). The constitutive

relation with respect to the principle directions takes the following general form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ e
xx

σ e
yy

σ e
xy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ce
11 Ce

12 0

Ce
12 Ce

11 0

0 0 Ce
44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εe
xx

εe
yy

2εe
xy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (4.19)

where three independent effective moduli, Ce
11, Ce

12 and Ce
44, exist.

In x and y directions, for the two-dimensional elastic metamaterial, two effective moduli,

Ce
11 and Ce

12, describe the relation between the normal stresses and normal strains, and Ce
44

describes the shear deformation. In the following, three effective parameters, the effective bulk

modulus κe, the effective shear moduli μe and μe
44 are used, which are defined by

κe =
Ce

11 +Ce
12

2
, μe =

Ce
11 −Ce

12
2

, μe
44 =Ce

44. (4.20)

The two effective moduli μe and μe
44 play different roles in controlling wave propagation in the

metamaterial system, when the direction of wave propagation changes.
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Frequency dependency of the effective moduli and mass

By considering the case where K2L = 0, i.e. along ΓX direction, as shown in figure 4.2, the

eigenstates of branch A are used to calculate the effective mass and moduli of the metamaterial

for different frequencies. It is observed that for branch A along ΓX, the motion of the repre-

sentative cell is mainly in the horizontal direction
(
εe

yy = 0
)

for all frequencies considered, as

shown by the eigenstates at points A2 and A3 (points Γ and X in figure 4.7(b)), in figures 4.8(c)

and 4.9. Accordingly, the effective mass ρe can be obtained by using equation (4.10) and Ce
11

can be determined by using equation (4.19) based on the calculated σ e
xx and εe

xx.

To determine Ce
12, consider the eigenstates corresponding to K1L = K2L, i.e. along ΓM

direction (figure 4.2). For these eigenstates, the normal deformation are significant and the

effective stress and strain components, σ e
xx, σ e

yy, εe
xx and εe

yy, are calculated using equations

(4.13), (4.14), (4.16) and(4.17). Equation (4.19) is then used to determine the effective moduli

Ce
11 and Ce

12. It was found that the calculated Ce
11 is almost the same as that from the previous

calculation from ΓX direction.

Figure 4.10 shows the variation of the effective mass density with frequency within branches

A and B. Negative effective mass density can be observed due to the dipolar resonance of the

centre resonators. In figure 4.11, negative effective bulk modulus κe associated with monopo-

lar resonance is observed. Negative effective shear modulus μe associated with quadrupolar

resonance is also observed for branches A and B, which is illustrated in figure 4.12.

In the frequency ranges considered, higher order modes are involved for shear deformation

associated with μe
44. For the current configuration of the metamaterial system, the shear stiff-

ness of the spring components, G1 and G2, are small compared to the longitudinal stiffness,
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Figure 4.10: The effective mass density ρe of the representative cell.

k1 and k2, with η1 = G1/K1 = 0.027 and η2 = G2/K2 = 0.076, as given in section 3.2. This

is consistent with the FEM result that transverse wave can hardly propagate in the metamate-

rial along ΓX direction. For the current metamaterial, among the three effective moduli, the

effective bulk modulus κe and the effective shear modulus μe play dominating roles in control-

ling the dynamic behaviour of the metamaterial system in the frequency ranges with negative

dispersion.

4.3.5 Wave propagation in the metamaterial

Numerical simulations are conducted to study the detailed process of wave propagation in the

current metamaterial system. The two models are considered in FEM simulations, which are
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Figure 4.11: The effective bulk modulus κe of the representative cell.

illustrated in figure 4.13, corresponding to wave propagation in ΓX and ΓM directions, re-

spectively. For both cases, the models consist of 100 representative cells in the horizontal

direction. The selection of 100 representative cells has been shown sufficient to model in-

finitely long metamaterials with periodical structures. For case (a) shown in figure 4.13(a), the

representative cells are oriented in the horizontal direction while for case (b) shown in figure

4.13(b), the representative cells are oriented 45o from the horizontal direction. The periodic

boundary conditions are placed on the upper and lower boundaries of the metamaterial sys-

tem. Normal/tangent harmonic displacements are applied at the left boundary to generate wave

propagation in the system, as shown in figure 4.13.

Transmission analysis
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Figure 4.12: The effective shear modulus μe of the representative cell.

The output displacements of the metamaterial at the right end are used to evaluate the trans-

mission ratio of the waves, which is defined as the ratio between the output displacements to

the applied displacement at the left end.

Figure 4.14 illustrates the transmission ratio when only horizontal displacement is applied

to the left boundary of the metamaterial system, shown in figure 4.13(a). The results show

that longitudinal wave (denoted as P wave) can propagate in the metamaterial system along the

ΓX direction, when the frequency is in the frequency range of branch A (ΓX) between the two

vertical dashed lines. When a vertical displacement is applied at the left end, which corresponds

to a shear wave, the respond at the right end is very weak, indicating low transmission ratio for

a transverse wave (denoted as S wave).
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(a)

(b)

Figure 4.13: The numerical set-up for transmission, (a) along the ΓX direction, (b) along the
ΓM direction.
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Figure 4.14: Transmission along the ΓX direction for P wave input.
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(b)

Figure 4.15: Transmission along the ΓM direction for, (a) P wave input, (b) S wave input.
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For the case shown in figure 4.13(b), when only a horizontal (vertical) displacement is

applied at the left boundary, only the horizontal (vertical) displacement output can be observed,

as shown in figure 4.15. In this case, both longitudinal and transverse waves can propagate in

the metamaterial system, which is controlled by the effective mass density ρe, the effective

bulk modulus κe and the effective shear modulus μe.

Negative phase velocity

In the proposed elastic metamaterial, the simultaneous occurrence of negative effective mass

density ρe and negative effective moduli, indicates negative phase velocities. To show the

phenomena of negative phase velocity, transient wave propagation in the current elastic meta-

material is studied using FEM simulation. Normal/tangent displacements are applied to the

left boundaries of the metamaterial systems shown in figure 4.13. The excitation frequency ap-

plied is equal to 1690 Hz, which is within branches A and B. The normalized displacements of

the propagating waves are used to illustrate the wave propagation with properly selected time

increments to identify the propagating direction of the wave. Figure 4.16 shows the longitu-

dinal wave propagation in the metamaterial shown in figure 4.13(a) in response to the normal

input displacement. At the initial stage of the excitation, the wavefront moves forward, in-

dicating positive energy flow, but the peaks of the normalized displacement move to the left

showing negative phase velocity. When the wave propagation is stabilized, as illustrated in

figure 4.16(b), backward wave can be clearly observed. Figures 4.17 and 4.18 show the wave

propagation of longitudinal and transverse waves in the metamaterial shown in figure 4.13(b).

These results are in agreement with the prediction by the effective parameters analysis and the

transmission ratio analysis.
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(b)

Figure 4.16: Snapshots of the P wave propagating along the ΓX direction with P wave input,
(a) around 10 ms, (b) around 120 ms.
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Figure 4.17: Snapshots of the P wave propagating along the ΓM direction with P wave input
around 200 ms.

4.4 Conclusion

A new two-dimensional elastic metamaterial system has been developed showing the desired

negative properties, which can be well described by a simplified spring-mass model. In spe-

cific frequency ranges, the elastic metamaterial possesses simultaneous negative effective mass,

bulk modulus and shear modulus. The relations between the effective material parameters and

the different types of local resonances have also been investigated. The current metamate-

rial can induce dipolar resonances, monopolar resonances and quadrupolar resonances, cor-

responding to negative effective mass density, negative effective bulk modulus and negative
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Figure 4.18: Snapshots of the S wave propagating along the ΓM direction with S wave input
around 200 ms.

effective shear modulus, respectively. These three negative effective parameters are realized

through only the translational motion of the resonators in the proposed representative cell,

which makes the current metamaterial system easier to fabricate and provides more flexibility

in design.

The metamaterial is anisotropic. Along the ΓX direction, the absence of the dispersion

branch supporting transverse waves endows the elastic model with fluid-like material property

and makes it a good candidate for a wave polarization filter. Along ΓM direction, both lon-

gitudinal and transverse waves can propagate in the metamaterial system with negative phase

velocities. The current elastic metamaterial system can be used in the design of new elastic
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metamaterials featuring negative refractions. Compared with the one-dimensional elastic meta-

material model developed in Chapter 3, this two-dimensional elastic metamaterial model can

support elastic wave propagation in multiple directions and show richer dynamic behaviour.

For example, negative refraction caused by negative velocities of the longitudinal and trans-

verse waves can be observed, which does not exist in the one-dimensional model.

Appendix B

By considering the kinetic relation of the representative cell in figure 4.1(b), the equations of

motion of the centre resonator, m1, can be expressed as

m1
∂ 2um1

x(n,h)

∂ t2 =k1

(
uM

x1(n,h) +uM
x1(n+1,h)−2um1

x(n,h)

)

+G1

(
uM

x2(n,h) +uM
x2(n,h+1)−2um1

x(n,h)

)
,

(B1)

m1
∂ 2um1

y(n,h)

∂ t2 =k1

(
uM

y2(n,h) +uM
y2(n,h+1)−2um1

y(n,h)

)

+G1

(
uM

y1(n,h) +uM
y1(n+1,h)−2um1

y(n,h)

)
,

(B2)

where um1
x(n,h) and um1

y(n,h) represent the displacements of m1 in x and y directions, respectively.

Similarly, the following relations of the four identical resonators, m2, can be obtained as

m2
∂ 2um2

x(n,h)−ul

∂ t2 =k2

(
uM

x1(n,h) +Rθ M
1(n,h)−um2

x(n,h)−ul

)

+G2

(
uM

x2(n,h+1)−um2
x(n,h)−ul

)
,

(B3)

m2
∂ 2um2

y(n,h)−ul

∂ t2 =k2

(
uM

y2(n,h+1) +Rθ M
2(n,h+1)−um2

y(n,h)−ul

)

+G2

(
uM

y1(n,h)−um2
y(n,h)−ul

)
,

(B4)
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m2
∂ 2um2

x(n,h)−ur

∂ t2 =k2

(
uM

x1(n+1,h) +Rθ M
1(n+1,h)−um2

x(n,h)−ur

)

+G2

(
uM

x2(n,h+1)−um2
x(n,h)−ur

)
,

(B5)

m2
∂ 2um2

y(n,h)−ur

∂ t2 =k2

(
uM

y2(n,h+1)−Rθ M
2(n,h+1)−um2

y(n,h)−ur

)

+G2

(
uM

y1(n+1,h)−um2
y(n,h)−ur

)
,

(B6)

m2
∂ 2um2

x(n,h)−ll

∂ t2 =k2

(
uM

x1(n,h)−Rθ M
1(n,h)−um2

x(n,h)−ll

)

+G2

(
uM

x2(n,h)−um2
x(n,h)−ll

)
,

(B7)

m2
∂ 2um2

y(n,h)−ll

∂ t2 =k2

(
uM

y2(n,h) +Rθ M
2(n,h)−um2

y(n,h)−ll

)

+G2

(
uM

y1(n,h)−um2
y(n,h)−ll

)
,

(B8)

m2
∂ 2um2

x(n,h)−lr

∂ t2 =k2

(
uM

x1(n+1,h)−Rθ M
1(n+1,h)−um2

x(n,h)−lr

)

+G2

(
uM

x2(n,h)−um2
x(n,h)−lr

)
,

(B9)

m2
∂ 2um2

y(n,h)−lr

∂ t2 =k2

(
uM

y2(n,h)−Rθ M
2(n,h)−um2

y(n,h)−lr

)

+G2

(
uM

y1(n+1,h)−um2
y(n,h)−lr

)
,

(B10)

where the displacements with subscripts ‘ul’, ‘ur’, ‘ll’ and ‘lr’ are associated with distributed

resonators m2 in upper left, upper right, lower left and lower right sides of the representative

cell, respectively. It should be mentioned that the possible rotational motions of the resonators,

m1 and m2, are not considered in this study.
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Appendix C

The nonzero components of the 4×4 matrix P can be expressed as

p11 =−2
(

η3 +2− 2η3γ2

λ1

)
+

η3 (1+ cosK1L)
(1+η1)− γ2 +

4
(1+η2)−θ 2γ2 , (C1)

p13 =−p24 =

(
1+ e−iK1L)(1+ eiK2L)

2

{
η1η3

(1+η1)− γ2 +
2η2

(1+η2)−θ 2γ2

}
, (C2)

p22 = 2
(

η1η3 +2η2 − 2η3γ2

λ1

)
− η2

1 η3 (1+ cosK1L)
(1+η1)− γ2 − 4η2

2
(1+η2)−θ 2γ2 , (C3)

p31 = p42 =

(
1+ eiK1L)(1+ e−iK2L)

2

{
η1η3

(1+η1)− γ2 +
2η2

(1+η2)−θ 2γ2

}
, (C4)

p33 =−2
(

η1η3 +2η2 − 2η3γ2

λ1

)
+

η2
1 η3 (1+ cosK2L)
(1+η1)− γ2 +

4η2
2

(1+η2)−θ 2γ2 , (C5)

p44 =−2
(

η3 +2− 2η3γ2

λ1

)
+

η3 (1+ cosK2L)
(1+η1)− γ2 +

4
(1+η2)−θ 2γ2 , (C6)

where θ is given by

θ =

√
2λ2η3

λ1
. (C7)
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Chapter 5: Wave propagation in the two-dimensional elastic

metamaterial

A two-dimensional elastic metamaterial model with triple negative effective material param-

eters is previously designed in Chapter 4. In this chapter, numerical analysis of such elastic

metamaterials is performed to further study the wave propagation in the metamaterial systems

with large number of representative cells. The unusual dynamic property of the elastic meta-

material at frequency with negative dispersion is investigated and the wave attenuation ability

of an anisotropic case of the metamaterial model is studied in detail.

5.1 Introduction

One of the main features of elastic metamaterials is that they can be used to manipulate waves.

Different from acoustic metamaterials which can only support longitudinal waves, elastic meta-

materials with the coupling between the longitudinal and transvserse waves can show richer

dynamic behaviour and provide more advanced applications, such as elastic wave filter, vibra-

tion isolators, sub-wavelength imaging and cloaking (Mitchell et al., 2014; Zhang and Parnell,

2018; Zhu et al., 2014a). The origin of the unusual elastic metamaterials’ functionalities mostly

lies in the delicately engineered structures of their representative cells (Lee and Wright, 2016;

Li and Wang, 2016). Through the interacting between the elastic waves and the designed

structures, elastic metamaterials can possibly exhibit three effective material parameters, i.e.

effective mass density, effective bulk modulus and effective shear modulus, which can vary

with excitation frequency and even turn negative in certain frequency ranges. To realize the
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desired functionalities, various elastic metamaterial structures have been developed with neg-

ative effective parameters by introducing a large enough collection of identical resonators to

control wave propagation (Cummer et al., 2016; Ge et al., 2018; Zhou et al., 2012). From the

perspective of effective material parameters, elastic metamaterials will usually possess single

negative, or double negative, or triple negative effective parameters.

The extraodinary wave filtering phenonmenon of elastic metamaterial is firstly demon-

strated in a composite with rubber-coated lead spheres embedded in an expoxy matrix and

its nagative mass density can explain the band gaps resulting from the local resonance (Liu

et al., 2000). Various elastic metamaterial models have been developed to realize negative

mass density or negative modulus (Tan et al., 2014; Wu et al., 2007; Zhou et al., 2012). Among

these efforts, anisotropic elasic metamaterial can show unusual wave attenuation ability due to

their varying effective material property along different principle directions. The possibility

of anisotropic mass density is initially investigated with simplified spring-mass model (Milton

and Willis, 2007). In what follows, elliptic cylinders with circular silicone rubber coating in a

rigid matrix is shown to exhibit anisotropic mass density (Gu et al., 2009), and then similar re-

sults have been obtained in an elastic metamaterial made of lead cylinders coated with elliptical

rubbers in an expoxy matrix (Liu et al., 2012). Recently, a single-phase elastic metamaterial is

developed to show anisotropic mass density (Zhu et al., 2016b), and eccentric resonators have

been introduced into a composite to generate band gaps in the low frequency range (Li et al.,

2017). Basically, the anisotropicity of elastic metamaterials can be introduced by generating

different resonant frequencies along various directions of their representative cells (Huang and

Sun, 2011b; Liu et al., 2015).
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From the mechanisms of generating negative effective mass density or effective modulus,

various metamaterials with double negative effective parameters have been designed. These

metamaterials can show negative phase velocities in certain frequency ranges, resulting nega-

tive refraction, and this unique property can be utilized to design superlens with high spatial

resolution (Ma and Sheng, 2016). An elastic metamaterial with chiral resonators is developed

to possess simultaneously negative effective mass density and bulk modulus through the trans-

lational and rotational resonances of the resoators, and the phenomenon of negative refraction

of longitudinal waves is numerically observed due to the resulting double negative property

(Liu et al., 2011a). This unusual phenomenon is further experimentally demonstrated in a

single-phase elastic metamaterial with chiral microstructures (Zhu et al., 2014b). Water cylin-

ders with silicone rubber coating have been embedded in foam matrix to induce simultaneously

negative effective mass density and shear modulus, and negative refraction of transverse waves

is numerically realized (Wu et al., 2011). Plane elastic wave propagation along the interface

between the semi-infinite conventional material and semi-infinite elastic metamaterials with

double or triple negative material properties assigned is analytially and numerically studied to

show the general dynamic properties of these elastic metamaterials (Zhu et al., 2015). How-

ever, similar numerical analysis of elastic metamaterial with triple negative effective material

parameters is still lacking.

In the previous work, a two-dimensional elastic metamaterials is proposed to possess simul-

taneously negative effective mass density, bulk modulus and shear modulus. It can behave like

solid by supporting longitudinal and transverse waves with negative phase velocities along ΓM

direction (K1L and K2L increase simultaneously from 0 to π), whereas it also can behave like
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fluid by only supporting longitudinal waves with negative phase velocities along ΓX direction

(K1L varies from 0 to π with K2L = 0). In this study, the main focus is placed on the wave prop-

agation in the elastic metamaterial developed, especially the negative refraction phenonmenon

due to the negative phase velocities. Also, the elastic metamaterial model can show anisotropic

effective material property by changing the material assignment in some components of the

representative cell, resulting in unique wave filtering ability.

5.2 Negative wave refraction

A two-dimensional elastic metamaterial is previously developed with its representative cell

schematically shown in figure 5.1. The geometrical parameters of the representative cell are

provided in table 4.1. As illustrated in figure 5.1, four different materials have been assigned

to the components and the related material parameters are given in table 4.2. Under this spe-

cific configuration, the elastic metamaterial can show negative dispersion relation in the fre-

quency range, (1519.8 Hz,1697.7 Hz), along ΓX and ΓM directions. At these frequencies,

this metamaterial possesses simultaneously negative effective mass density, bulk modulus and

shear modulus, which are induced by the bipolar, monopolar and quadrupolar resonances in the

representative cell, respectively. The resulting triple negative effective material property can

generate backward propagating waves, i.e. propagating waves with negative phase velocities,

which can enable negative wave refraction under harmonic wave excitations. In this section,

the attention will be focused on the unusual dynamic behavior of the metamaterial model in

the frequency range with negative dispersion.

To numerically simulate the phenomonenon of negative refraction in COMSOL, a 45o
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Figure 5.1: The representative cell of the two-dimensional elastic metamaterial.

prism-shaped elastic metamaterial sample with 200 unit cells embedded in a matrix is de-

signed, as illustrated in figure 5.2, and the simulations are conducted through the commercial

software package COMSOL Multiphysica 5.2a. The material of the matrix possesses the same

phase velocity with the metamaterial model for longitudinal waves at frequency 1680 Hz. Per-

fect matched layers (PML) are artificial absorbing layers, which can strongly absorb outgoing

waves from the interior region without reflecting waves back. To simulate a system with open

boundaries, they have been added in the outside boundaries of the matrix. Displacement ex-

citations are applied to the central part of the left side of the prism to simulate incident plane

waves along ΓX direction, whereas displacement excitations are applied to the central part of

the upper right side of the prism to simulate incident plane waves along ΓM direction. The

displacement excitations have width of 9L and they are applied with a distance of 2L from the

incident interface, where L is the length of the representative cell of the elastic metamaterial

systems.
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Figure 5.2: The numerical set-up of a system for negative refraction.

Figure 5.3 shows the wave field of the elastic metamaterial sample for incident longitudinal

wave along ΓX direction at frequency 1680 Hz. In the wave field, red color indicates high

displacement amplitude and blue color represents very low displacement amplitude. The black

dashed line shows the direction vertical to the interface and the black arrow indicates the wave

propagating direction of the refracted waves. In figure 5.3, it can be clearly observed that the

incident wave passes through the wedge and generate negatively refracted longitudinal and

transverse waves. Along ΓX direction, the elastic metamaterial will behave like fluid and the

incident plane transverse wave cannot propagate through the elastic metamaterial sample. In

what follows, the displacement distribution of this case is not presented for brevity.

Figure 5.4 shows the wave field of the elastic metamaterial sample for incident longitudinal
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Figure 5.3: The displacement distribution of the elastic metamaterial sample for longitudinal
wave incidence at frequency 1680 Hz along ΓX direction.

wave along ΓM direction at frequency 1680 Hz. The corresponding wave field for the case of

incident transvese wave is illustrated in figure 5.5. Similar phenomena can be clearly observed

and elastic waves are negatively refracted.

As discussed in this section, negative refraction of elastic waves can be induced in the

developed elastic metamaterial system at frequency located in the negative dispersion range.

5.3 Wave filtering

Due to the unique structural feature of the two-dimensional elastic metamaterial system de-

veloped, it can be easily revised to describe the case of anisotropic material properties by

adjusting the masses and stiffnesses of the components in the two main directions, exhibiting
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Figure 5.4: The displacement distribution of the elastic metamaterial sample for longitudinal
wave incidence at frequency 1680 Hz along ΓM direction.

unique functionalities in wave filtering. The anisotropic representative cell with square shape

and spatial periodicity of L, as shown in figure 5.6, serves as a typical example to illustrate the

wave propagation in such a two-dimensional anisotropic metamaterial.

Compared with the original two-dimensional elastic metamaterial system illustrated in fig-

ure 5.1, this anisotropic model keeps the same geometrical parameters and material selections

with slight change of the material assignment in the components. These geometrical and mate-

rial parameters are illustrated in tables 4.1 and 4.2, respectively. It can be directly observed in

figure 5.6 that the effective material properties of the anisotropic representative cell will have
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Figure 5.5: The displacement distribution of the elastic metamaterial sample for transvese
wave incidence at frequency 1680 Hz along ΓM direction.

stronger dependency on the incident angles of the propagating elastic waves. In what follows,

the dispersion relation of this model should be illustrated in the first Brillouin zone (ΓXMY)

shown in figure 4.2, not just in the first irreducible Brillouin zone (ΓXM), due to the property

variation between the two main directions, i.e. x and y directions. In light of this point, the

corresponding dispersion relation is plotted in figure 5.7 with black dots through the modal

analysis of the periodic metamaterial system by using COMSOL. In figure 5.7, K1L and K2L

represent the normalized wave number of the elastic waves in x and y direction, respectively.

In this configuration, the developed metamaterial can generate two wide band gaps for elastic

waves, the areas of which have been filled with light grey color. These two band gaps are
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Figure 5.6: The representative cell of the anisotropic elastic metamaterial.

(1118.8 Hz,1519.9 Hz) and (1692.6 Hz,∞).

This anisotropic elastic metamaterial model shows different dispersion relation in x and y

directions, as shown in figure 5.7. To investigate its wave filtering ability, two numerical sys-

tems have been built for transmission simulations along the two main directions, as shown in

figure 5.8. In these models, one layer of ten representative cells are embedded in the matrix

and external horizontal/vertical harmonic displacements are placed in the left sides to provide

longitudinal/transverse wave inputs. Perfect matched layers (PML) have been added at the two

ends of the models to abosrb outgoing waves and periodic boundary conditions have been ap-

plied at the upper and lower edges. The output displacements at the data lines are collected to

calculate the corresponding transmission ratios. When only a horizontal/vertical displacement

is applied, the amplitude of the horizontal/vertical displacement at the dataline is much larger

than that of the vertical/horizontal displacement, and in this case only the horizontal/vertical

displacement at the dataline is regarded as the displacement output in the following analysis.
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Figure 5.7: The dispersion relation of the two-dimensional anisotropic elastic metamaterial
(ΓX: wave number K1L, XM: wave numbers K2L and K1L= π , ΓM: wave numbers K1L=K2L,
ΓY: wave number K2L, YM: wave numbers K1L and K2L = π).

It should be mentioned that unlike the transmission models with big sizes in figure 4.13, these

systems in figure 5.8 have much smaller size and also can well validate the transmission prop-

erty of the developed anisotropic model along the two main directions.

PMLPML Data LineInput

PMLPML Data LineInput

ΓX

ΓYMaterial I
Material II

Material III
Material IV

Figure 5.8: The numerical set-up for transmission simulation along ΓX and ΓY directions.
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The transmission ratio along ΓX direction has been plotted in figure 5.9 with the correpond-

ing diserpsion relation for better comparison. It can be observed that the transmission of the

model under vertical displacement input is very small, indicating that transverse waves cannot

propagate through the model along ΓX direction at any frequency. For horizontal displace-

ment input, the frequency ranges with very low transmission ratios are (102.0 Hz,139.1 Hz),

(314.9 Hz,384.2 Hz), (397.5 Hz,499.2 Hz), (517.6 Hz,525.4 Hz), (529.7 Hz,569.8 Hz),

(901.8 Hz,1519.9 Hz) and (1698.2 Hz,+∞), which well match the ranges of the band gaps

in the dispersion relation. The band gaps in interest are the last two with wide ranges. It is

worth to note that some modes cannot be excited by the horizontal displacement input and
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Figure 5.9: The dispersion relation and transmission along ΓX direction.

several dispersion curves with near zero slope indicate no wave propagation. To vividly illus-
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trate the wave propagation in the model, figure 5.10 shows the displacement distribution of

the metamaterial model with elastic waves propagating along ΓX direction based on the nu-

merical simulation set-up depicted in figure 5.8. Here, red color represents high displacement

amplitude and blue color indicates very low displacement amplitude. As shown in figure 5.10,

longitudinal wave at frequency 300 Hz can propagate through the system, whereas longitu-

dinal wave at frequency 1000 Hz is totally blocked. Also, the transverse waves at these two

frequencies cannot proapgate in the system. In this regard, the anisotropic metamaterial model

can behave like fluid along the ΓX direction at any frequency and this unusual property can be

implemented to efficiently filter transverse waves.

(a)

(b)

(c)

(d)

Figure 5.10: The displacement distribution along ΓX direction at, (a) 300 Hz for P wave input,
(b) 1000 Hz for P wave input, (c) 300 Hz for S wave input, and (d) 1000 Hz for S wave input.

The transmission ratio and the dispersion curves along ΓY direction have been plotted

in figure 5.11. It should be mentioned that there are several dispersive curves in high fre-

quencies with zero slopes, which have no effect on the band gaps. For horizontal displace-

ment input, the frequency ranges with very low transmission ratios are (156.7 Hz,255.2 Hz),

(275.3 Hz,377.1 Hz), (395.2 Hz,484.6 Hz), (555.3 Hz,629.1 Hz) and (643.5 Hz,+∞), as
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shown in figure 5.11. For vertical displacement input, the frequency ranges with very low

transmission ratios are (145.8 Hz,474.8 Hz), (492.0 Hz,499.1 Hz) and (525.7 Hz,+∞). These

frequency ranges fit the band gaps in the dispersion relation well.
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Figure 5.11: The dispersion relation and transmission along ΓY direction.

The displacement distribution of the system under longitudinal and transverse wave inputs

has been illustrated in figure 5.12 for excitation frequencies 100 Hz and 600 Hz, which are

located in the pass band and band gap, respectively. As expected, the phenomena of wave

propagation and wave filtering are clearly observed. To this end, this anisotropic metamaterial

model has broad band gaps for elastic waves progating along ΓY direction, which range from

low frequencies to infinity and they can be effciently used to attenuate elastic waves.

In the developed anisotropic metamaterial, it shows various transmission ratios along ΓX
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(a)

(b)

(c)

(d)

Figure 5.12: The displacement distribution along ΓY direction at, (a) 100 Hz for P wave input,
(b) 600 Hz for P wave input, (c) 100 Hz for S wave input, and (d) 600 Hz for S wave input.

and ΓY directions. This unique property can be utilized to separate elastic waves with different

frequencies. To show this phenonmenon, numerical simulations have been conducted based

on the system shown in figure 5.13. In this system, normal/tangential harmonic displacement

can be applied to generate longitudinal/transverse wave input and perfect matched layers are

added to absorb outgoing waves. As designed, elastic waves with frequencies located in the

pass bands along ΓX direction will propagate into the matrix in the right side, whereas elastic

waves with frequencies located in the pass bands along ΓY direction will propagate into the

matrix in the lower side.

The displacement distribution of the system under longitudinal wave input at several fre-

quencies has been plotted in figuer 5.14 as an example to show its special dynamic behavior.

In this figure, red color indicates large displacement amplitude and blue color represents very

small displacement amplitude. As shown in figure 5.14, displacement output can be observed

in the right and lower sides of the system for incident wave with excitation frequency 50 Hz.

When the excitation frequency is increased to 1250 Hz, the incident wave is totally blocked.
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Figure 5.13: The numerical set-up of a system controlling elastic wave propagating directions.

These two frequencies, 50 Hz and 1250 Hz are located in the pass bands and stop bands of the

model along any direction, respectively. When the excitation frequency is 110 Hz, the waves

only can propagate to the lower side and when the excitation frequency is 980 Hz, the waves

only can propagate to the right side. Then, this model can be utilized to separeate elastic waves

for certain frequencies.

As discussed, this anisotropic elastic metamaterial can extract longitudinal waves by filter-

ing transverse waves from the propagating mixed waves along ΓX direction. Also, it possesses

broad band gaps ranging from lower frequencies to infinity, which can efficiently attenuate
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elastic waves along ΓY direction. Due to the material property variation along the two main

directions, this metamaterial model can separate elastic waves for certain frequencies.

(a) (b)

(c) (d)

Figure 5.14: The displacement distribution of the system under longitudinal wave input at, (a)
50 Hz, (b) 110 Hz, (c) 980 Hz and (d) 1250 Hz.
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5.4 Conclusion

In this chapter, the wave propagation of the two-dimensional elastic metamaterial developed is

numerically studied. At the frequencies with negative dispersion, negative wave refraction for

longitudinal and transverse waves can be clearly observed due to the triple negative effective

material properties. The negative elastic wave refraction phenomenon can be potentially im-

plemented to design superlense with high spatial resolution. When the elastic metamaterial is

adjusted to obtain anisotropic material properties, it can show unique wave filtering abilities,

such as attenuating elasic waves in broad frequecy ranges, and filtering transverse waves by

behaving like fluid.
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Chapter 6: Contributions and future work

This chapter summarizes the main contributions of this thesis on the elastic metamaterial mod-

elling and describes several issues that remain to be addressed in the subsequent research.

6.1 Main contributions

This thesis aims to design elastic metamaterials with negative effective mass and/or modu-

lus, and investigate the unusual dynamic behaviour of these metamaterials. Throughout this

study, four major issues essential to the research of elastic metamaterials have been consid-

ered, (i) the underlying mechanism of generating independent negative effective parameters;

(ii) how to model the one-dimensional elastic metamaterials with double negative behavior;

(iii) how to model the two-dimensional elastic metamaterials with simultaneously negative ef-

fective mass, bulk modulus and shear modulus; (iv) how the elastic waves propagate in such a

two-dimensional elastic metamaterial.

The main contributions of this thesis are summarized as follows.

6.1.1 Underlying mechanism of generating negative effective parameters

The first two-dimensional elastic metamaterial structure based on spring-mass system has been

developed to illustrate the underlying mechanism of generating negative effective mass and/or

negative effective modulus. In the model, the translational resonance of the resonators induces

overall motion of the cells to obtain negative effective mass and the rotational resonance gives

rise to the local deformation of the cells without overall motion to generate negative effective
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modulus. Examples of harmonic elastic waves in this metamaterial system are studied to il-

lustrate the effect of the generated negative mass and/or modulus on wave propagation. This

model can provide a guideline for designing two-dimensional elastic metamaterials.

6.1.2 A new one-dimensional elastic metamaterial with double negative behavior

The new one-dimensional elastic metamaterial model has been developed to obtain negative

effective mass and/or modulus, and at most two frequency ranges double negative behavior

exists based on two types of translational resonances. One resonance contributes directly to

the negative effective modulus and the coupled effect of the two resonances dominates the

negative effective mass, which endows the elastic metamaterial with great flexibility to generate

negative effective parameters in different frequency ranges. Due to the unique feature of the

proposed representative cells, the independent control of the effective mass and modulus can

be realized to some extent. Typical examples are presented to illustrate the dynamic properties

of the developed metamaterisl, such as wave mitigating ability and negative phase velocity

of the propagating waves. This model mainly serves as a stepping stone to more interesting

properties in higher dimensions.

6.1.3 A new two-dimensional elastic metamaterial with triple negative behavior

This new two-dimensional elastic metamaterial has been developed, exhibiting multiple local

resonances. In certain frequency ranges, negative effective mass, bulk modulus and shear mod-

ulus can be achieved simultaneously only through the translational motion of the resonators in

the representative cell. Numerical analysis has been conducted to evaluate the association

between the negative effective parameters and the modes of local resonance. A simplified ana-
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lytical model is also formed to study the effects of the main material and geometric parameters

and it can be utilized as an effective tool for predicting the desired negative dispersion behavior

of the elastic metamaterial. Featuring simple design and easy fabrication, this new elastic meta-

material can behave like solids or fluid with negative phase velocities for longitudinal and/or

transverse waves in different wave propagating directions.

6.1.4 Wave propagation of the two-dimensional elastic metamaterial

This new two-dimensional elastic metamaterials can exhibit negative refraction for longitudi-

nal and transverse waves due to the negative phase velocities, which are associated with the

negative effective parameters. This model can be potentially implemented to design super-

lense that can beat the diffraction limit. The phenomenon of elastic wave attenuation in broad

frequency ranges also has been observed in the anisotropic metamaterial model.

6.2 Future work

Despite the tremendous growth of research during the last decade, the development of elastic

metamaterials is still in its early stage. Although the research of this thesis has tried to cover

some important challenges and limitations of the current models in elastic metamaterials with

negative effective parameters, there are still some issues that need to be further addressed.

Attentions will be paid on the following as the research directions in the future.

6.2.1 Experimental validation

This thesis is mainly based on the analytical modelling of the developed elastic metamaterials

and the corresponding numerical simulations have been conducted to support these analytical
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results. However, certain assumptions have been made in this study. For this reason, related

experiments are recommended to further validate the effectiveness of the elastic metamaterials

designed.

6.2.2 Consideration of material damping

Material damping, as an intrinsic feature of the material components in the representative cells,

is directly associated with energy loss of the metamaterial structures. It is of interest to under-

stand the combined effect of local resonance and material damping on the dynamic behaviour

of the elastic metamaterials. The utilization of material damping may lead to more useful

engineering applications.

6.2.3 Active control of elastic metamaterial

In this thesis, the elastic models developed can only provide passive control over the propa-

gating waves with fixed material properties, which cannot be timely tuned in response to the

possible variation of the external environment. This limits their practical applications due to the

absence of reconfigurability and tunability. To address this inherent limitation and get closer

to the real engineering designs, active elastic metamaterials with tunable effective material pa-

rameters are desired. As designed, these effective parameters can be timely adjusted through

the controllable external excitations applied, such as voltage and temperature. The introduction

of active control can endow the elastic metamaterials with more flexibility to generate negative

effective mass and/or modulus, and broad band gap in the low frequency range may be formed.
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