

BIM-based Automated Planning for Panelized Construction in the Light-Frame

Building Industry

by

Hexu Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

University of Alberta

© Hexu Liu, 2016

ii

ABSTRACT

Building information modelling (BIM) has been recognized as an information technology with

the potential to profoundly change the Architecture, Engineering, and Construction (AEC)

industry, and has drawn attention from numerous scholars within the construction domain.

Despite the reported advancements pertaining to BIM in previous studies, the use of BIM in

planning panelized construction (e.g., construction-centric design detailing, construction-oriented

quantity take-off, and detailed construction scheduling) has not yet reached its full potential.

Discipline-specific BIM design models from architects and structural engineers are insufficient

to serve the needs of the construction field. This research thus explores the extended use of BIM

to facilitate automated planning for panelized construction.

In terms of construction-centric design detailing, this research exploits a BIM-rule-based

automated approach to designing and modelling drywall and sheathing layouts with minimized

material waste in order to promote building panel production. In the proposed approach, object-

based computer-processable layout design rules are comprehensively formalized based on trade

know-how and construction best practice, and integrated with mathematical algorithms in order

to generate the optimized boarding layout design with minimized material waste. For

construction-oriented quantity take-off, this research proposes an ontology-based semantic

approach to extracting construction-oriented quantity take-off information from a BIM design

model. This approach allows users to semantically query the BIM design model using domain

vocabularies, capitalizing on building product ontology formalized from construction

perspectives. As such, quantity take-off information relevant to construction practitioners can be

readily extracted and visualized in 3D in order to serve application needs in the construction field.

Lastly, this research presents a BIM-based integrated scheduling approach that facilitates the

iii

automatic generation of optimized component-centric activity-level construction schedules for

panelized building projects under spatial and resource constraints, by achieving an in-depth

integration of BIM product models with work package information, process simulations, and

optimization algorithms. This research prototypes an automated planning system for panelized

building construction as add-on tools of Autodesk Revit. Three case studies are presented to

demonstrate the proposed methodology. Building on the existing body of knowledge in this field,

the key contribution of the present research is that it defines three practical problems in a

scientific manner and introduces three novel approaches in order to adapt BIM design models for

construction practitioners and to advance the current planning practice in panelized construction

by integrating construction-oriented intelligence into BIM.

iv

PREFACE

This thesis is the original work by Hexu Liu. Three journal papers and three conference papers

related to this thesis have been submitted or published and are listed as below. This thesis is

organized in paper format by following the paper-based thesis guideline.

1. Liu, H., Singh, G., Lu, M., Bouferguene, A., Al-Hussein, M. “BIM-based Automated

Design and Planning for Boarding of Light-Frame Residential Buildings.” Automation in

Construction.(under review)

2. Liu, H., Lu, M., Al-Hussein, M. (2016). “Ontology-based semantic approach for

construction- oriented quantity take-off from BIM models in the light-frame building

industry.” Advanced Engineering Informatics, 30(2), 190-207.

3. Liu, H., Al-Hussein, M., Lu, M. (2015). “BIM-based Integrated Approach for Detailed

Construction Scheduling under Resource Constraints.” Automation in Construction, 53,

29-43.

4. Liu, H., Singh, G., Lu, M., and Al-Hussein, M. (2015). “BIM-enabled Boarding Design

Optimization for Residential Buildings.” Proceedings, 2015 International Conference on

Construction Applications of Virtual Reality (CONVR), Banff, AB, Canada, Oct. 5-7.

5. Liu, H., Lu, M., and Al-Hussein, M. (2014). “BIM-based integrated framework for

detailed cost estimation and schedule planning of construction projects.” Proceedings, 31st

International Symposium on Automation and Robotics in Construction and Mining

(ISARC), Sydney, Australia, Jul. 9-11.

v

6. Liu, H., Lei, Z., Li, H., and Al-Hussein, M. (2014). “An automatic scheduling approach:

building information modeling-based on-site scheduling for panelized construction.”

Proceedings, Construction Research Congress, Atlanta, GA, USA, May 19-21.

vi

ACKNOWLEDGEMENT

This PhD study is a long journey. I could not come to this stage without the help of many

individuals. First and foremost, I would like to thank my supervisors, Dr. Mohamed Al-Hussein

and Dr. Ming Lu for their immense support, inspiration, visionary guidance, and great patience

throughout the course of my study.

I would also like to express my thanks to Jonathan, Gurjeet, Claire, Hamida, Dr. Ahmed

Bouferguene, and other faculty members and staff in the Construction Engineering and

Management research group. I would also like to thank Ronald, Sang, Sadiq, Lei, Lily, Xinming,

Hongru, Rita, Celia, Hamid, and Beda for their help and moral support.

Especially, my deepest gratitude is given to my family, who have been a great support behind me

over the years. They have always encouraged me during this journey and provided valuable

guidance. My wife, Ningyu, is also very much appreciated for her kind and continuous company

through this phase of my life.

vii

TABLE OF CONTENTS

ABSTRACT .. ii

PREFACE .. iv

ACKNOWLEDGEMENT ... vi

LIST OF FIGURES ... xi

LIST OF TABLES ... xiii

List OF ABBREVIATIONS .. xiv

Chaper 1: INTRODUCTION .. 1

1.1 Background and Motivation ... 1

1.1.1 Manufacturing-centric BIM .. 2

1.1.2 Quantity take-off ... 4

1.1.3 Panelized construction scheduling .. 5

1.2 Research Objectives ... 6

1.3 Thesis Organization.. 7

Chaper 2: MANUFACTURING-CENTRIC BIM .. 9

2.1 Introduction .. 9

2.2 Literature Review ... 11

2.2.1 BIM-based design and design checking ... 11

2.2.2 Level of Detail in Building Information Modelling ... 13

2.2.3 Parametric modelling technology ... 14

2.2.4 Material usage minimization... 15

2.3 Methodology .. 17

2.4 Boarding Design Principles .. 19

2.5 Implementation... 22

viii

2.5.1 Object-based building information extraction .. 23

2.5.2 Rule-based boarding design .. 30

2.5.3 Design optimization .. 33

2.5.4 Boarding layout design modelling .. 36

2.6 Case Study .. 37

2.7 Discussion .. 41

2.8 Conclusion .. 42

Chaper 3: SEMANTIC QUANTITY TAKE-OFF .. 44

3.1 Introduction .. 44

3.2 Literature Review ... 47

3.3 Background and Scope ... 51

3.3.1 Ontology and semantic query ... 51

3.3.2 Construction-oriented QTO .. 55

3.4 Ontology-based semantic QTO approach .. 61

3.5 Prototype application.. 63

3.5.1 Overview ... 63

3.5.2 Construction-oriented product ontology ... 64

3.5.3 Ontology-enhanced BIM model generation.. 66

3.5.4 Semantic query.. 79

3.6 Validation ... 82

3.7 Discussion .. 87

3.8 Conclusion .. 89

Chaper 4: PANELIZED CONSTRUCTION SCHEDULING .. 92

4.1 Introduction .. 92

ix

4.2 Literature Review ... 94

4.2.1 Construction planning using 4D CAD .. 94

4.2.2 BIM-based scheduling .. 95

4.2.3 Simulation-based scheduling .. 96

4.3 Integrated Methodology ... 99

4.3.1 Building Information Model ... 101

4.3.2 Work breakdown structure (WBS) ... 102

4.3.3 Construction process simulation ... 103

4.3.4 Optimization of construction schedule ... 104

4.4 Background of light gauge steel (LGS) construction ... 107

4.5 Implementation... 110

4.5.1 System architecture ... 110

4.5.2 Spatial and structural supporting relationship analyzer (SSRAnalyzer)............... 111

4.5.3 Development of WBS ... 115

4.5.4 Development of process simulation model ... 116

4.5.5 PSO algorithm ... 120

4.5.6 Information exchanges .. 122

4.6 Demonstration .. 125

4.7 Discussion .. 129

4.8 Conclusion .. 131

Chaper 5: CONCLUSIONS .. 133

5.1 Summary .. 133

5.2 Research Contributions .. 135

5.3 Limitations and Future Research.. 136

x

References ... 138

Appendix A ... 153

Appendix B ... 154

Appendix C ... 175

Appendix D ... 188

xi

LIST OF FIGURES

Figure 1.1 Drywall waste .. 3

Figure 2.1 Methodology Overview ... 18

Figure 2.2 Examples of standard sheathing and drywall sheets and material waste 19

Figure 2.3 Staggered drywall sheet layout and drywall edges .. 20

Figure 2.4 System architecture ... 22

Figure 2.5 Extended parametric objects.. 23

Figure 2.6 Excerpt of information model for boarding layout design using UML 26

Figure 2.7 Schematic diagram of wall layers.. 27

Figure 2.8 Schematic diagram of floor layers (drywall ceiling and OSB sheathing) 27

Figure 2.9 Flowchart of building information extraction ... 28

Figure 2.10 Geometrical information of a solid component ... 29

Figure 2.11 Flowchart of wall boarding design algorithm ... 31

Figure 2.12 Flowchart of floor boarding design algorithm... 33

Figure 2.13 Flowchart of optimizing boarding design.. 36

Figure 2.14 Interface of automated boarding designer ... 38

Figure 2.15 Outputs of automated boarding designer ... 39

Figure 3.1 Corner bead for T-connection and L-connection .. 58

Figure 3.2 Stud-framed wall panel.. 59

Figure 3.3 Overview of proposed methodology ... 62

Figure 3.4 System architecture ... 64

Figure 3.5 Construction-oriented product ontology.. 66

Figure 3.6 Autodesk Revit building elements in UML (Autodesk Ltd., 2014) 69

Figure 3.7 Host relationship and its inverse relationship .. 71

Figure 3.8 Defining term interrelationship and ontology reasoning within Protégé 4.3 71

Figure 3.9 Geometric information of building component ... 74

Figure 3.10 Various wall connections .. 75

Figure 3.11 Properties and interrelationships of connection .. 76

Figure 3.12 Measured performance result of “Connection” algorithm .. 76

Figure 3.13 Measured performance result of “GetStudSpacing” algorithm 78

Figure 3.14 SPARQL query .. 80

xii

Figure 3.15 Semantic query through prototyped GUI of Revit add-on .. 82

Figure 3.16 The two-storey residential building of the case study ... 83

Figure 3.17 Examples of semantic query .. 86

Figure 4.1 Overview of integrated methodology for detailed schedule planning....................... 101

Figure 4.2 E-R diagram of entity with enriched information ... 104

Figure 4.3 Interaction between PSO optimization algorithm and simulation model 107

Figure 4.4 Installing sequence of wall panels in a structure ... 109

Figure 4.5 Architecture of automated scheduling system ... 110

Figure 4.6 Interface of automated scheduling system .. 111

Figure 4.7 Topological relationships among walls ... 112

Figure 4.8 Sketch for different floor systems and their structural analytical model 114

Figure 4.9 Table-based work package information .. 115

Figure 4.10 Process pattern for cast-in-place building elements .. 117

Figure 4.11 Flowchart of “Controller for Wall Lifting” ... 118

Figure 4.12 Simulation model for on-site construction of panelized building projects.............. 120

Figure 4.13 Classes for building components and work packages ... 123

Figure 4.14 Sample data extracted from 3D BIM model.. 125

Figure 4.15 a two-storey residential building ... 126

Figure 4.16 Part of generated schedule from scheduling system.. 129

Figure 4.17 Project duration evolution process during optimization .. 129

xiii

LIST OF TABLES

Table 2.1 Cost (in CAD) and material waste information of optimized boarding layout design . 38

Table 2.2 OSB board sheet cutting plan for floors in Excel ... 40

Table 3.1 Unit price and production rate items from RSMeans Online (Gordian Group, 2015) . 60

Table 3.2 SPARQL query results.. 87

Table 4.1 Durations, productivity, and resources ... 127

Table 4.2 Available resources ... 127

xiv

LIST OF ABBREVIATIONS

AEC Architectural, Engineering, and Construction

API Application Programming Interface

BIM Building Information Modelling

CAD Computer-aided Design

DES Discrete-event Simulation

GUI Graphic User Interface

IDEF0 Icam Definition for Function Modelling

IFC Industry Foundation Class

LGS Light Gauge Steel

LINQ Language-Integrated Query

LoD Level of Detail

OSB Oriented strand board

PSO Particle Swarm Optimization

QTO Quantity Take-off

RCPSP Resource-constrained Project Scheduling Problem

RDF Resource Description Framework

SPARQL Simple Protocol and RDF Query Language

SQL Structured Query Language

SWRL Semantic Web Rule Language

UML Unified Modelling Language

WBS Work Breakdown Structure

XML Extensible Markup Language

1

CHAPER 1: INTRODUCTION

1.1 Background and Motivation

Panelized construction provides a cost-effective building solution for light-frame residential

buildings, and is taking the place of conventional “stick frame” construction in the residential

building industry. Generally, panelized construction moves the framing of building components

from the field into the efficient manufacturing environment. Compared with conventional

construction systems or methods whereby the majority of construction tasks take place on site,

the on-site work involved in panelized construction is limited to the assembly of factory-built

building components such as wall and floor panels. Most building components, such as wall

panels, are prefabricated in the factory and then delivered to the site for on-site assembly. In the

factory, all panelized building components are framed on flat, square framing tables, and other

operations, such as sheathing panelized building components, are also performed in the

controlled manufacturing environment, resulting in higher quality and greater precision. This sort

of construction thus has the potential to enhance construction efficiency and to minimize the

waste involved in the construction process (National Association of Home Builders, 2009).

However, it has not yet been leveraged to its full capability partially due to the ineffective use of

automated and innovative technologies, such as building information modelling (BIM), in the

design and planning phases. Current manual building design and planning without the provision

of innovative technologies is inefficient and cannot meet the requirements of panelized

construction such as a higher level of accuracy. Any errors in building design and planning could

increase the cost of panelized construction compared to traditional stick-built construction.

2

1.1.1 Manufacturing-centric BIM

The effectiveness of discipline-specific BIM models utilized to communicate information among

project stakeholders plays an important role in determining the construction efficiency (Alwisy

& Al-Hussein, 2010). In practice, architects focus primarily on the architecture-centric design

(e.g., architectural BIM model), while construction practitioners rely solely on their experience

and tacit knowledge to interpret these discipline-specific models (e.g., architectural and structural

BIM models) in order to develop mental pictures of construction/manufacturing-centric building

design (i.e., manufacturing-centric BIM model). Nevertheless, the information gap between

various discipline-specific models, along with the subjectivity of mental construction-specific

information models, contribute largely to misinterpretation of construction-centric building

design, thus resulting in construction re-work, material waste, and increase of construction costs.

Meanwhile, increasing industrialization in building construction presents higher requirements

along with new challenges for building designers in terms of building information modelling and

design documentation (i.e., design drafting) (Alwisy et al., 2012). Building objects in a given

BIM model can be developed at different levels of detail (LoDs), ranging from LoD 100 to LoD

500 (ASBO, 2013). With the increase in LoD, building information and design details are

increasingly leveraged into BIM models to represent the size, shape, location, quantity,

orientation, and non-graphic information of the building (Ramaji & Memari, 2016). Increasing

the LoD from one level to another increases by a margin in the range of two to eleven times the

modelling time (Leite et al., 2011). Provided that building objects in the given BIM model have

been roughly designed by architects and engineers (i.e., to LoD 300 or less), they cannot satisfy

the requirements of contractors and fabricators. Manufacturing-centric BIM in this study refers

to a BIM model at an LoD of 350 or higher, which can represent detailed subcomponents (e.g.,

3

blocking, studs, plates, wall bracing, sheathing and drywall sheets, and so on) of building

components (Webster, 2014). However, without construction intelligence in existing design and

drafting software, designers must devote a significant amount of time to modelling the building

design at the appropriate level of detail (e.g., manufacturing-centric BIM) and ensuring the

accuracy of the shop drawings to support the manufacturing needs. Improper building design and

modelling contributes markedly to primary material waste during construction. Material waste

has been identified as a major problem in the construction industry. In particular, the North

American construction industry produces up to 24% of all municipal solid waste (Laquatra &

Pierce, 2004). According to National Association of Home Builders (1999), the construction of a

typical 2,000 ft2 residential house can even lead to 8,000 lb of solid waste, to which drywall

waste alone contributes approximately 2,000 lb (see Figure 1.1). Annually, there are 61,100 tons

of gypsum drywall waste directed to landfills in Alberta, Canada (Yu, 2010). Moreover, a home

builder must spend over $500 on construction material waste disposal on each new house

construction (Home Innovation Research Labs, 2001). Automating manufacturing-centric

building design and modelling eliminates the need for designers to spend a significant amount of

time to ensure the accuracy of the drawings, and it also provides an effective approach to reduce

material waste and to reduce construction costs in the building manufacturing industry.

Figure 1.1 Drywall waste

4

1.1.2 Quantity take-off

Quantity take-off is “a detailed measurement of the materials and labour needed to complete a

construction project” (Holm et al., 2005). It serves as the foundation for other downstream tasks

in construction, such as cost estimation and schedule planning, and its accuracy can directly

affect downstream analyses and decision making. The quantity take-off (QTO) process is an

information extraction process during which quantities of building objects or design features are

measured based on the 2D design drawings or the 3D model. However, the QTO process, at

present, involves substantial manual interventions and remains labour-intensive and error-prone.

To generate accurate QTO from 3D product models in an automatic manner, BIM may offer the

best approach (Sattineni & Bradford, 2011). In fact, BIM-based QTO is currently the most

widely used BIM-based application in the architectural, engineering, and construction (AEC)

industry. Nevertheless, a BIM model itself is a purpose-built, product-centric information

database, and it lacks domain semantics in connection with specific building trades such that

extracting construction-oriented QTO information for the purpose of construction workface

planning still remains a challenge. Note that construction-oriented QTO produces quantities in

proper units of measure which are taken off for construction activities based on activity

definition and detailed specifications of construction methods and materials. Moreover, some

information crucial to construction practitioners, such as the topological relationships among

building objects, remains implicit in the BIM design model. This restricts QTO information

extraction from the BIM model for downstream analyses in construction and building

manufacturing. Currently, retrieving QTO information relevant to construction practitioners from

a BIM design model is still far from efficient.

5

1.1.3 Panelized construction scheduling

Regarding construction process planning and productivity improvement, panelized construction,

with in-plant fabrication and on-site assembly being the two main processes, presents a

distinctive problem: for in-plant fabrication, manufacturing process management is the main

focus, while, for on-site assembly, scheduling and management of assembly operations are of

particular interest. Nevertheless, prefabricated panels are unique and vary in product design

features (e.g., length, having windows or doors, having various connections). Panel fabrication is

recognized as a low-volume and high-variety product mix production process. Each pre-

fabricated component needs to be installed at its own designed location and be scheduled

individually in order to manage and coordinate factory production and on-site construction

processes. The success of such projects relies on the reasonable planning for the production,

shipping, and installation of the building panels, where improper planning in panelized

construction can result in project delays and elevated inventory costs. Consequently, the

harmony between on-site construction and in-factory production is significantly important to

panelized building construction. In current practice, schedules are planned manually based on

practitioners’ experience and intuition. These manual methods are not suitable for planning

detailed panel schedules (e.g., on-site assembly sequence and schedule) for panelized

construction projects due to the large number of elements (panels) involved, and are also prone

to errors. In addition, panelized construction poses some challenges to construction practitioners

with respect to detailed project planning and management, such as determining the on-site

assembly schedule for individual panels under both technical and resource constraints. To date,

the efficiency and effectiveness of detailed project scheduling using BIM in panelized

construction is insufficient.

6

1.2 Research Objectives

This research is built upon the following hypothesis:

“Integrating construction knowledge and trades know-how with the BIM model will improve the

efficiency and relevance of construction planning and management in panelized construction.”

This research explores the extended use of BIM in panelized construction planning and

supplements current BIM models with trades’ know-how in order to achieve automated

construction planning. Specifically, this study focuses on developing automated design and

planning methods and tools with respect to construction-centric design detailing, construction-

oriented QTO, and detailed on-site construction scheduling for panelized building projects.

In the process of attaining this goal, the following objectives are pursued:

1) Development of a BIM-rule-based generative approach to manufacturing-centric BIM with a

focus on boarding design (i.e., optimizing and modelling sheathing and drywall layout design

for light-frame building) in order to adapt BIM design models for construction practitioners

and to advance the current boarding practice.

2) Development of an ontology-based semantic approach to extracting construction-oriented

quantity take-off (QTO) information from a BIM design model, which allows users to

semantically query the BIM model using domain vocabularies, capitalizing on building

product ontology formalized from a construction perspective. The proposed ontology

addresses the limitation of BIM design models in terms of lacking domain semantics and

aligns BIM design models with construction-oriented QTO. As a result, QTO information

relevant to construction practitioners can be readily extracted and visualized in 3D in order to

serve practical needs in the construction field.

7

3) Development of a BIM-based integrated planning methodology which achieves an in-depth

integration of BIM, evolutionary optimization algorithm, and discrete-event simulation (DES)

in order to automate the generation of optimized component-centric activity-level on-site

construction plans.

1.3 Thesis Organization

This thesis consists of five chapters. Chapter 1 presents current practices in panelized

construction planning and elaborates on the limitations in existing approaches. The goal and

objectives of this research are also outlined in this chapter. In Chapter 2, the literature pertaining

to BIM-enabled design, level of detail in BIM, parametric modelling, and material waste

minimization is critically reviewed. Then, a BIM-rule-based automated approach to designing

and modelling drywall and sheathing layouts with minimized material waste is presented.

Subsequently, the implementation of the proposed boarding design methodology is illustrated in

detail, and a case study of a wood-framed residential building is also presented to demonstrate

the effectiveness of the methodology and the prototyped boarding design system. The proposed

approach is able to incorporate manufacturing-centric design information into the given BIM

model according to trades’ know-how such that construction practitioners can make use of such a

BIM design model in the construction field. Chapter 3 highlights the limitation of BIM design

models in terms of lacking domain semantics in construction-oriented QTO, and it then presents

an ontology-based semantic approach to extracting construction-oriented QTO information from

a BIM design model. Afterward, the development of a semantic QTO prototype system is

presented. A case study is also shown to validate and demonstrate the effectiveness of the

prototype QTO system. The proposed approach allows users to semantically query the BIM

model using domain vocabularies in order to retrieve construction-oriented QTO information in a

8

flexible, straightforward manner. Chapter 4 explains the challenges of the existing practice with

respect to detailed construction scheduling under spatial and resource constraints. It then presents

a BIM-based integrated scheduling approach that automatically generates optimal component-

centric activity-level schedules for panelized construction projects by achieving an in-depth

integration of BIM, evolutionary optimization algorithm, and discrete-event simulation (DES).

Specifically, in the proposed BIM-based scheduling approach, rich product information from

BIM models and work package information from a Microsoft (MS) Access Database, are

automatically extracted and fed as inputs to the process simulation model that mimics

construction logic and performs simulation-based scheduling analysis. This chapter also present

a case study of a light-frame residential building and demonstrates the effectiveness of the

scheduling methodology and the prototyped scheduling system. Finally, conclusions are

summarized and the research contributions are recapitulated in Chapter 5.

9

CHAPER 2: MANUFACTURING-CENTRIC BIM1

2.1 Introduction

In North America, light-frame structures, such as light wood framing and light gauge steel

framing systems, are widely used in residential buildings. Wall studs and floor joists in light-

frame walls and floors need to be sheathed using sheathing and drywall boarding sheets in order

to form the exterior and interior sides. Boarding design herein refers to the layout design of

sheathing and drywall sheets on walls and floors according to design principles and construction

best practice. In general, sheets of drywall and sheathing are available in rectangular shapes with

different dimensions (e.g., 4'×8', 4'×10', and 4'×12') and varying thicknesses (e.g., 1/2″ and 5/8″).

Boarding practice requires cutting nominal boarding sheets into designed dimensions followed

by fastening (screwing or gluing) them to the wood (or metal) studs and joists. Boarding design

is conducted either at the late design stage after all architectural and structural designs are

finalized or made on an ad-hoc basis by trades during the construction phase. Design can be

improved if construction practitioners are engaged earlier in the design stage to consider

boarding layout and design constructability. However, in current practice, boarding design is

largely overlooked by designers and construction practitioners due mainly to the fact that it

entails construction-centric design knowledge and substantial effort to represent relevant

information into BIM design models. For this reason, existing discipline-specific BIM models

from architects and structural engineers are insufficient to serve the needs of contractors and sub-

contractors during construction. In some cases, construction practitioners base decisions

regarding the boarding layout design and the cutting plan of material sheets solely on their

experience and rules of thumb. Such a manual process is laborious and often results in

1 A version of this chapter has been submitted to the journal of Automation in Construction.

10

considerable material waste. According to the National Association of Home Builders (1999), for

instance, the construction of a typical 2,000 ft2 residential house can lead to as much as 8,000 lb

of solid waste, of which approximately 2,000 lb is drywall.

Building information modelling (BIM) is a parametric modelling technology developed based on

the object-oriented concept. Domain knowledge and design principles can be interpreted as

object behaviours (e.g., geometric rules or constraints) of parametric objects. Such parametric

objects are able to retain their design content in response to external and internal stimuli,

resulting in intelligent building design (Lee et al., 2006). It offers numerous advantages with

respect to alternative design generation, modelling productivity, and elimination of

communication errors (Sacks et al., 2004). BIM thus has the potential to provide project

designers and construction practitioners with an effective approach to addressing the challenges

associated with boarding design for light-frame buildings. Nevertheless, parametric modelling

has been limited in its applicability in this area due to ambiguity (i.e., one object’s behaviour can

be implemented in diverse ways) and complexity (i.e., one building object can be defined by a

vast number of parameters and constraints that may crash a BIM model when it is modified

improperly) (Lee et al., 2006). In addition, parametric building objects (e.g., a wall and its sub-

components) must be designed in a hierarchical manner in order to avoid manual placements of

certain parametric objects, and to minimize the amount of effort in design detailing. For example,

sheathing and drywall sheets, as sub-components of wall elements, should be defined as

constituent objects for wall objects with walls as the main controlling objects. Such hierarchical

design requires a well thought-out plan prior to implementation.

This chapter explores a BIM-based generative approach to boarding design (i.e., optimizing and

modelling sheathing and drywall layout design) in order to adapt BIM design models for

11

construction practitioners and to advance the current practice. In the presented approach,

enriched building information, including both geometric information and functional information

of building components, are extracted in order to facilitate automated generative rule-based

boarding design. Comprehensive generative rules are formalized based on industry know-how

and construction best practice, and are integrated with mathematical algorithms in order to

generate optimized design alternatives with minimized material waste. The generated layout

design not only minimizes material waste, but also enhances design constructability.

In this chapter, the literature pertaining to BIM-enabled design, level of detail in BIM,

parametric modelling, and material waste minimization is critically reviewed. Subsequently, the

BIM-based methodology for optimized boarding design is described. Along with this, boarding

design principles are presented. Afterward, extraction of building information relevant to

boarding design and optimization of rule-based boarding design is presented. A case study of a

wood-framed residential building is also presented to demonstrate the effectiveness of the

methodology and the prototype system. Finally, conclusions are summarized and limitations of

the present research are discussed.

2.2 Literature Review

2.2.1 BIM-based design and design checking

BIM has been increasingly utilized to facilitate various project activities in the AEC industry

during the project life cycle, such as building design (Kaner et al., 2008), design checking or

evaluation (Jeong & Ban, 2011), quantity take-off (Liu et al., 2016), cost estimation (Ma et al.,

2015; Lee et al., 2014), and project scheduling (Liu et al., 2014; 2015a; 2015b). With respect to

building design, BIM is usually regarded as an extension of and enhancement to conventional

CAD by building designers, and is expected to improve the productivity of building design

12

through enhanced functionalities in terms of visualization, navigation, and parametric modelling

(Oh et al., 2015). Given this reality, Hu et al. (2010) exploited a 4D construction information

model-based safety analysis approach to automatically designing and modelling scaffold systems

based upon the structural analysis of temporary building structures. Notably, the scaffold system

in their study is used to support temporary building structures during construction. Alternatively,

Kim & Terzer (2014) developed a rule-based design and planning system using BIM for

temporary scaffolding that is intended to provide construction workers with sufficient work

space. Their planning system automated the processes of detecting the need for scaffolding as

well as generating scaffolding design by leveraging enriched information in BIM models. Gane

& Haymaker (2012) illustrated a novel methodology, namely Design Scenarios, in order to

design and manage requirements-driven design spaces within CAD tools, which is intended for

use in conceptual design. Alwisy et al. (2012) proposed a BIM approach to automating the

design and drafting process for residential building prefabrication, with a focus on wood-framing

design. Another important BIM application with respect to building design is design checking.

Eastman et al. (2009) surveyed several rule-checking systems in the industry that utilize the IFC-

based BIM model as input, and pointed out that “rule-based applications of building model

checking for the purpose of architectural design, detailing, and building renovation are just

beginning to emerge”. Given this trend, Hyunjoo & Francois (2009) utilized BIM along with

ontological consistency checking to identify and resolve conflicts and inconsistencies in building

design during the design process. Zhang et al. (2013) developed an automated BIM platform for

safety checking which assists construction practitioners in preventing fall-related accidents prior

to construction.

13

In addition, BIM provides project stakeholders with an integrated collaboration environment. As

a result, building designers in different disciplines can coordinate and communicate with one

another through a unified BIM model, aiming to deliver the project within the targeted time,

resources, and budget. However, effective collaborative design has not materialized in current

practice due to data loss and interoperability issues in BIM-based design applications.

Addressing this limitation, Oh et al. (2015) proposed an integrated design system encompassing

a BIM modeller, a BIM checker, and a BIM server in an attempt to improve BIM-based

collaborative design. Their system provides functions that assist building designers in storing,

managing, and sharing the information generated during the collaborative design in an integrated

manner.

2.2.2 Level of Detail in Building Information Modelling

Despite the fact that BIM has been increasingly employed in the AEC industry to support

building design, BIM currently still lacks construction-oriented sophistication. The reason

partially lies in that extensive manual efforts are required for generating construction-centric

BIM. In general, building objects can be modeled in a given BIM model at different level of

detail (LoDs), such as LoD 100, LoD 200, LoD 300, LoD 400 and LoD 500 (ASBO, 2013). With

the increase in LoD, building information and design details are increasingly leveraged into BIM

models to represent the size, shape, location, quantity, orientation, and non-graphic information

of the building (Ramaji & Memari, 2016). Provided that building objects in the given BIM

model have been roughly designed by architects and engineers (i.e., to LoD 300 or less), they

cannot satisfy the requirements of contractors and fabricators. Building objects must be

developed at LoD 350 or higher in order to represent detailed sub-components (e.g., blocking,

studs, plates, wall bracing, and so forth) of building components (Webster, 2014). Construction-

14

centric BIM in this study refers to a BIM model at a LoD of 350 or higher. However, increasing

the LoD from one level to another increases by a significant margin in the range of two to eleven

times the modelling time (Leite et al., 2011). Monteiro et al. (2013) reported that the modelling

time for building structural elements approximately doubles if their formwork is modelled within

BIM models. Similar to formwork, precise sheathing and drywall layout information is not

represented explicitly in BIM models developed by architects and structural engineers;

significant effort and input are required from construction practitioners in order to enrich BIM

models with this information according to practical know-how and design principles.

Nevertheless, such detailed BIM models are of vital importance in project coordination and

decision making in relation to construction material takeoff and usage during the design and

construction stages (Liu et al., 2015).

2.2.3 Parametric modelling technology

Parametric modelling provides an effective means to improve modelling productivity and to

generate design alternatives. Attempts pertaining to parametric modelling technology have been

carried out in the past few decades. For example, Sacks et al. (2004) examined the requirements,

features, and performance of specifications of a new 3D parametric CAD platform with a precast

concrete construction example. Subsequently, Sacks et al. (2005) summarized direct and indirect

benefits of parametric modelling and provided a benchmark of the impact of parametric

modelling in precast construction. Lee et al. (2006) specified parametric building object

behaviour (BOB) and its description notation and method for BIM design systems. Sacks et al.

(2008) concluded that 3D parametric modelling improves the productivity in drawing production

by up to 41%. Cavieres et al. (2011) explored knowledge-based parametric tools for concrete

masonry walls. They interpreted construction and structural design knowledge into generative

15

rules and feedback rule-checking functions within parametric tools in order to improve design

efficiency. Manrique et al. (2015) proposed a methodology for automating the generation of shop

drawings for wood framing design by using a parametric model within a CAD environment. In

spite of the reported advancements in the specific building domain with respect to parametric

modelling, however, a fully automated design of board layouts in the light-frame building

industry has not yet been achieved. In current practice, practitioners are involved to manually

design the location and dimensions of sheathing and drywall sheets based on their tacit

knowledge, a process which is labour-intensive, time-consuming, and error-prone. In the present

research, trades’ know-how and construction best practice with regard to boarding layout design

are comprehensively formalized and further integrated with BIM models in order to generate

design alternatives in an automated manner.

2.2.4 Material usage minimization

Material waste in the building industry is unavoidable, partially due to the fact that some

building elements are generated from raw material of nominal sizes. However, waste can be

minimized by implementing effective material management (e.g., mathematical algorithms for

material cutting) and information technology (e.g., BIM). Previous research mainly studied

material waste minimization from the managerial perspective. For instance, Formoso et al. (2002)

investigated primary causes of building material waste, and proposed a number of managerial

strategies to reduce it. Li et al. (2003) implemented an incentive reward program to minimize the

avoidable material waste during construction. In their study, the bar-coding technique was

applied to facilitate the material management program. In addition, material waste minimization

was also formulated as the typical cutting-stock optimization problem, and various optimization

algorithms, such as linear programming (Gilmore & Gomory, 1961) and combinatorial

16

algorithms (Manrique et al., 2009), were adopted to solve this problem. Recently, Costa & Sassi

(2012) integrated genetic algorithms and ant colony optimization to solve the 2D cutting-stock

problem for the glass industry. Aryanezhad et al. (2012) presented heuristic methods for the

same problem, and demonstrated that their method is superior to other methods in terms of

computational efficiency. More recently, Zheng & Lu (2016) formulated a mixed integer

programming (MIP) model for the rebar cutting-stock problem with the objective of minimizing

rebar cutting losses and associated total installation cost. With the advance of BIM technology,

attempts have also been undertaken to minimize construction material waste with the support of

CAD or BIM models. For instance, Manrique et al. (2009) integrated a combinatorial algorithm

with a 3D CAD model to optimize the cutting of lumber and sheathing materials for residential

buildings. Their work formalized material waste minimization as the cutting-stock optimization

problem, rather than the boarding layout design optimization, and utilized only geometric

information from the 3D CAD model, rather than enriched building information. In their

research, design rules were limited to aligning seams on studs, such that the resulting layout

design could be practically infeasible and potentially lead to considerable material waste. Porwal

et al. (2012) proposed a BIM-based rebar optimization analysis approach (i.e., one-dimensional

cutting waste optimization) to facilitate cost-effective decision making during the design stage.

Alternatively, Cheng et al. (2013) developed a BIM-based system for estimation and planning of

demolition and renovation waste. Liu et al. (2015) conceived a design decision-making

framework for improving construction waste minimization performance based on BIM

technology. Won et al. (2016) investigated the amount of design error-induced construction

waste that could be prevented by a BIM-based design validation process, and reported that BIM-

17

based design validation could eliminate 4.3% to 15.2% of design error-induced construction

waste.

In short, existing BIM design models are insufficient to serve the needs of specific building

trades such as carpenters in the construction field. The literature review reveals that although

numerous research efforts with respect to BIM-based design and material usage minimization

had been attempted in certain building domains, automated design of board layouts considering

comprehensive industry know-how in the light-frame building industry has not yet been realized.

In addition, BIM-based parametric modelling is not capable to provide project stakeholders with

optimized design solutions with minimized material waste. This study thus exploits a BIM- and

rule-based automated design and modelling approach for optimized sheathing and drywall layout

design which takes advantage of enriched information available in BIM models in order to

automate the boarding design process. Mathematical algorithms are employed in this study in

search for the optimized layout design with minimized material waste and enhanced

constructability.

2.3 Methodology

Figure 2.1 provides an overview of the methodology. As illustrated, domain knowledge,

including construction-centric design principles, and construction best practice, are

comprehensively interpreted as object-based computer-implementable generative rules (i.e.,

machine-readable codes) and applied to expanded building objects within the parametric

modelling system. These rules are able to take related rich building information (i.e., geometric

and semantic information) from BIM models in order to formulate various boarding design

scenarios with minimized joint length under construction constraints. Each design alternative is

analyzed in order to generate a thorough cutting list of building elements (i.e., quantities of

18

sheathing/drywall sheets). Next, the cutting list and the nominal sizes of raw material (i.e., board

sheets) available in the market are fed into the cutting-stock optimizer so as to generate the

optimized cutting plan with minimal material waste. Finally, the design alternative with minimal

material waste among all feasible design alternatives is identified as the optimized layout design.

Along with optimized layout design, the material cutting plan and purchase plan are generated by

the cutting-stock optimizer in order to assist construction practitioners in planning and managing

the field operation. The optimized layout design is also modelled in the given BIM model in

order to visualize the construction-oriented design in a straightforward manner. By doing so,

construction-centric design information is incorporated into the given BIM model such that

construction practitioners can make use of such a BIM model in the construction field.

Figure 2.1 Methodology Overview

19

2.4 Boarding Design Principles

As described above, sheathing and drywall boarding refers to the process of cutting boarding

sheets into designed sizes and then fastening (by screwing or gluing) them to the wood (or metal)

studs and joists. It is important to follow certain design principles and industry know-how when

laying sheathing and drywall sheets on building components in order to improve structural

integrity, to reduce material waste, and to boost operational efficiency during construction.

Figure 2.2 shows examples of standard boarding sheets and material waste, as well as boarding

layout design of drywall and sheathing on walls. This section explains in detail the design

principles and industry know-how that pertain to layout design of drywall on walls.

 a. Standard drywall sheet

and waste

b. Standard sheathing sheet

and waste

c. Drywall layout d. Sheathing layout

Figure 2.2 Examples of standard sheathing and drywall sheets and material waste

The design principles aim to minimize butt joints (between butt edges) and reduce cracks at

seams. These requirements cause the pattern of laying the sheets of drywall and sheathing on the

studs to be crucial. Generally, beveled factory edges (see Figure 2.3.b) should adjoin other

factory edges, and butt edges of a drywall sheet (also shown in Figure 2.3.b) should adjoin other

butt edges. When two factory edges meet, a recess for filling mud into the joints is created,

Waste

Standard Drywall sheet

Waste

Standard Sheathing sheet

20

which makes taping and feathering the seams much easier. On the contrary, a drywall butt edge

adjoining a factory edge could create an uneven surface, resulting in difficulty in the taping and

finishing of seams. Accordingly, butt joints should be minimized whenever possible, as the area

around the joint does not become flush with other areas of the drywall sheet after finishing. For

this reason, boarding sheets are usually cut along the short butt edges, and board cutting is

formulated as a one-dimensional cutting-stock problem in this study.

11

22

33

44 55

BB

AA

a. Staggered drywall sheet layout

b. Beveled edges and butt edges - plan view

Figure 2.3 Staggered drywall sheet layout and drywall edges

Sheets of drywall are always laid out perpendicular to the direction of wood studs where the

sheets splice on the stud. When laid perpendicular to the studs, the resulting drywall structure is

stronger and has greater resistance to cracking at the seams due to an increase in holding power

across the wall as more studs are connected together. Also, in such a layout the seams are in the

middle of the wall, making it easier to complete the tasks of taping and finishing. Placing

21

sheathing and drywall sheets horizontally on walls is thus a common practice in the light-frame

building industry. Provided that the wall length is shorter than the height of a standard drywall

sheet and the wall height is shorter than the length of a standard drywall sheet, the drywall sheet

could be placed vertically parallel to the studs in order to eliminate the drywall seam on the wall.

In addition, drywall butt joints should always splice on the stud and be staggered. The staggered

joints lead to increased overall strength of the wall, as the staggered layout limits butt joints,

which are prone to cracking, to no more than the height of a standard drywall sheet. Drywall can

be hung either from left-to-right or from right-to-left along a wall. The sheets on a second wall

will overlap the sheets on the first wall, creating a tight corner between the first and second wall.

It is noted that the areas around the corners of openings (e.g., doors and windows) are of high

stress, such that seams around these locations are prone to cracking. In addition, bulges resulting

from the finishing of drywall sheets will interfere with the installation of door or window trim.

As a result, in order to avoid cracks and to improve structural integrity, joints should be 10″

away from such locations. Additionally, drywall should be placed at the end of any interior wall

that is not merging or connecting to any other wall. Finally, a gap of 1/8″ should always be set as

the seam allowance to avoid forcing the drywall into place. Figure 2.3a shows one feasible

design of drywall layout. As illustrated in the figure, staggered butt joints (i.e., drywall seams)

are located at position 1 and position 2, respectively. The butt joint at position 2 is located in the

middle of an opening, instead of at the opening corners such as position 3 and position 4, thus

avoiding cracking, while butt joint at position 3 is resting on the edge of the door opening. In

order to formulate various design alternatives, butt joints at position 1 and position 2 can be

moved left or right under constraints of design rules. Therefore, the layout design can be

optimized in order to minimize the material waste.

22

2.5 Implementation

The automated design and modelling approach is implemented as an add-on of the Autodesk

Revit platform using API in C# language. The reasons for selecting Autodesk Revit as the BIM

platform in this study are as follows: (1) Revit is a powerful modelling tool, which gives end-

users modelling flexibility by means of its built-in functions such as Family Editor; (2) Revit

supports API at the programming level; and (3) Revit supports Industry Foundation Classes

(IFC), which addresses issues of interoperability. Figure 2.4 presents the architecture of the

prototyped Revit-based automated design and modelling system. The inputs for the system

include: (1) building design for the project, such as a BIM model containing architectural and

structural frame information; (2) material sizes and prices, which indicate the nominal sizes and

prices of drywall and sheathing boards on the market; and (3) boarding design patterns (i.e.,

horizontal stagger and vertical continuous for walls), which allow users to select boarding design

patterns for walls in order to cater for the need of a vertical design pattern of boarding sheet

layout. The output of this system comprises a construction-centric BIM model allowing

construction practitioners to visualize the optimized boarding design in 3D, shop drawings and

cutting plan of the resulting boarding design, as well as the boarding sheet purchase plan.

Figure 2.4 System architecture

23

The core of this prototype system, as shown in the centre of Figure 2.4, consists of four

components: (1) object-based BIM model parser, which extracts relevant geometric and semantic

information for the downstream design analysis; (2) rule-based boarding design algorithm (i.e.,

object-based design functions), which is used to design the drywall and sheathing layout in

accordance with design principles and industry know-how; (3) cutting-stock optimizer, which is

employed to optimize the boarding sheet cutting with the objective of minimizing material waste;

and (4) drywall and sheathing layout modeller (i.e., object-based modelling functions), which

takes the optimized design parameter as input and models the layout design in the BIM model.

The four components are encoded into Autodesk Revit as add-ons through API in C#. Essentially,

this study makes use of object-oriented programming principles in order to achieve automated

construction design. Objects representing building elements in Revit, as shown in Figure 2.5, are

extended to explicitly include properties (i.e., geometric and semantic information) and functions

(i.e., object-based design functions and object-based modelling functions in a computer-

interpretable form) which work together to generate feasible layout designs. Detailed

implementations of the automated approach are discussed below.

 Extended Building Object

 + extended properties

 + functions (arg list)

 Extended Building Object

 + extended properties

 + functions (arg list)

 Building Object in BIM models

 + properties

 Building Object in BIM models

 + properties

Mapping

via BIM

Model Parser

Figure 2.5 Extended parametric objects

2.5.1 Object-based building information extraction

Enriched information in BIM models is utilized to automate the boarding design process. In

general, building product information in the BIM models includes geometry, topology, and

functional information. Geometric information refers to vertices, edges, and faces of building

24

components, while topological information elaborates on their location and spatial relationships.

Functional information consists of additional properties, such as host information, describing

building components. The first two types of information can be held by and derived from

traditional 3D CAD models, whereas functional information is only available in the BIM model

and it is carried by building objects as properties. Theoretically, sheathing and drywall modelling

requires geometric and topological information of relevant building elements. As such, one

attempt using 3D CAD models for drywall layout design was successfully made by Manrique et

al. (2009). In fact, BIM models are object-based information models in which building objects

have types and enriched properties; thus, it is straightforward to recognize building components

by their object type and to retrieve the associated properties. BIM technology therefore provides

an effective approach to storing and managing enriched building information throughout the

project life cycle. The semantic information and its object-oriented representation in BIM models

are conducive to boosting the efficiency of information extraction by eliminating certain

geometric analyses, thus advancing the traditional 3D CAD-based modelling approach. For

example, “Host by” between openings/studs and walls can be readily recognized by the semantic

host property of building elements, rather than through complex geometric analysis. Additionally,

wall and floor elements usually consist of several layers, depending on the architectural design.

Individual boarding sheets are designated within particular sheathing and drywall layers. As a

result, semantic material information of wall layers is beneficial to identifying and extracting

geometric information for specific wall and floor layers.

Some information, such as wall connections, is implicit in the traditional 3D CAD models. Such

information is crucial to the boarding design in that drywall sheets, for example, need be placed

at the end of interior walls that are not merging or connecting to any other walls. To do this, the

25

developed BIM model parser must retrieve such implicit information. In this respect, BIM

models conforming to either the open BIM IFC schema or Revit data schema enable an effective

means of storing and retrieving this information. For instance, IFC schema defines objectified

relationships such as IfcRelConnectsPathElements to describe the connectivity between building

elements, whereas Revit API provides functions, such as

wall.get_ElementsAtJoin(indexofWallEnd), to detect walls adjoined end-to-end. In addition,

Revit always forces the elements to automatically adjoin their neighbours where appropriate;

therefore, this Revit API function can be used to detect the connections. In short, BIM with

enriched building information improves the efficiency of information extraction compared with

the traditional 3D CAD model. On the other hand, BIM models are large datasets in which only a

portion is needed in automating the boarding design. This study identifies the information model

for the boarding design. The excerpt of this information model (i.e., specific model view) is

shown in Figure 2.6. Essentially, a small number of classes (e.g., Geometry, LightFrameWall,

and LightFrameFloor as shown in Figure 2.6) are defined within Visual Studio to enhance the

Revit objects by explicitly representing relevant geometric and semantic information. Modelling

elements in Autodesk Revit are mapped to those classes, while BIM data, including explicit and

implicit data, is extracted by the BIM model parser to instantiate these objects, thereby

facilitating boarding design and modelling. As shown in Figure 2.6, “BuildingComponent” is the

base class that carries all general information about building components, and “Wall”, “Floor”,

“Plate”, and “Stud” are inherited from “BuildingComponent”. Basically, these sub-classes

extend “BuildingComponent” with specific properties and functions. For instance, “Plate” and

“Stud” have the property of “Host” indicating their hosting element. “WallLayer” and

“FloorLayer” are inherited from “Geometry” and are associated with “Wall” and “Floor”,

26

respectively. The function of “GetDesignLayout()” is attached to “FloorLayer” and “WallLayer”,

which utilizes the relevant building information to generate feasible layout designs. The design

rules executed within this function are explained in the following section.

Figure 2.6 Excerpt of information model for boarding layout design using UML

Figure 2.7 presents a sample sketch of a wall panel and its associated sheathing and drywall

layers and openings, while a sample sketch of a floor and its associated sheathing and drywall

layers is shown in Figure 2.8. Geometric information (e.g., vertices of drywall and sheathing

layers) extracted by the BIM model parser is highlighted by the red dots in Figure 2.7 and Figure

2.8.

27

a. Plan view of L-Connection

a.

 b. Plan view of T-Connection

 c. Interior elevation of wall d. Exterior elevation of wall

Figure 2.7 Schematic diagram of wall layers

Gypsum
wall board

Gypsum
wall board JoistsJoists

OSB
Sheathing

OSB
Sheathing

Open
Web Joist

Open
Web Joist MEPMEP HangerHanger

a. Floor elevation view

Ceiling drywall
layer boundary

Sheathing layer
boundary

b. Floor plan view

Figure 2.8 Schematic diagram of floor layers (drywall ceiling and OSB sheathing)

Finish

Vapour barrier

Insulation

28

Retrieve building geometric

information

Retrieve building geometric

information

Recognize object

relationship by semantic

properties (e.g., host)

Recognize object

relationship by semantic

properties (e.g., host)

 Revit Modelling Element

- Wall, floor

- Window & door

- Structural framing (Stud)

- Structural column (Plate)

 Revit Modelling Element

- Wall, floor

- Window & door

- Structural framing (Stud)

- Structural column (Plate)

Identify building elements by

object type

Identify building elements by

object type

Retrieve building semantic

information

Retrieve building semantic

information

11

 Semantic Information

- Element Name

- Host

- Subcomponent (wall layer)

- Funtional Information

- Material, etc.

 Semantic Information

- Element Name

- Host

- Subcomponent (wall layer)

- Funtional Information

- Material, etc.

 Geometric Information

- Location Curve or Point

- Orientation

- Dimension (length, etc)

- Vertice, edges and faces,. etc

 Geometric Information

- Location Curve or Point

- Orientation

- Dimension (length, etc)

- Vertice, edges and faces,. etc

StartStart

EndEnd

Retrieve topological

information

Retrieve topological

information

 Implicit Information

- Wall Connections, etc.

 Implicit Information

- Wall Connections, etc.

Figure 2.9 Flowchart of building information extraction

The flowchart of building information extraction by the developed BIM model parser is

illustrated in Figure 2.9. To begin, the BIM model parser identifies all building elements relevant

to sheathing and drywall design and modelling by their types, such as walls, floors, windows,

doors, studs, plates, and joists. Subsequently, their enriched functional information, such as host

information (e.g., panel name) and wall/floor layer (e.g., material), is retrieved through the Revit

API functions of “element.get_Parameter(paraName)” and “elementType.get_Parameter

(paraName)”, which is used to detect relationships between walls/floors and their sub-

components (e.g., studs and joists). On this basis, geometric information, such as location of

studs and windows, is then extracted using the Revit API functions of element. get_Geometry(),

solid.Faces, face.EdgeLoops, and curve.GetEndPoint(). Geometric information for individual

sheathing and drywall layers is retrieved using the same geometric functions based upon

29

semantic material information in the given BIM model. Notably, the boundary representation is

used within Autodesk Revit to represent a solid with vertices, edges, and faces as shown in

Figure 2.10.a. The developed BIM model parser includes a set of algorithms which interpret the

geometrical information (i.e., vertices, edges, and faces) of each solid component. For instance,

the normal vector of each face is checked against the vector (0, 0, 1) to determine whether or not

they face the same direction (i.e., 𝑉1 ∙ 𝑉2 = 0 × 0 + 0 × 0 + 1 × 1 = 1) in order to identify top

faces as shown Figure 2.10.b. All this geometrical information is then stored in the class

Geometry (see Figure 2.6). This information, along with formalized design principles, is used to

design boarding in the following section.

a. Boundary representation of a solid

b. Interpreted geometrical information of a solid

Figure 2.10 Geometrical information of a solid component

30

2.5.2 Rule-based boarding design

Boarding design principles, including industry know-how and construction best practice, are

interpreted as object-based rules. Examples of design rules include Lay sheet edge on stud, Stop

sheet edge at opening, Stagger sheet edge, and Avoid edge around opening corner. These rules

are utilized in the design process to generate feasible design alternatives. Basically, once

enriched functional and geometric information has been retrieved from the BIM design model, a

rule-based boarding design algorithm is launched. The methodological flowchart of the wall

boarding design algorithm is presented in Figure 2.11. It begins with identification of the

boarding layers of one wall. Then, the sheet orientation is determined based upon the user’s

configuration of the design pattern for walls, wall dimensions, and board nominal sizes.

Following this, board sheet rows are determined by comparing wall height and board height. For

each sheet row, the algorithm begins by identifying its start-point; then, one sheet of the board of

nominal size is placed accordingly (i.e., vertically or horizontally) at the identified start-point.

Subsequently, the end-point of the sheathing/drywall board is calculated. Next, this end-point is

checked against the object-based rules in order to ensure that formalized design principles, such

as Lay sheet edge on stud, Stop sheet edge at opening, Stagger sheet edge, and Avoid edge

around opening corner, are satisfied. In the case of any non-compliance, the sheathing/drywall

board is cut shorter to adjust its end-point, and a new end-point satisfying all design rules is re-

31

Figure 2.11 Flowchart of wall boarding design algorithm

calculated by the algorithm. This end-point then serves as a new start-point at which to place the

next sheathing/drywall board. The processes for one wall do not terminate until all boarding

sheet rows have been placed. Finally, connection information of this wall is checked. One

boarding sheet will be placed vertically at the end when this end is not connected with other

walls. The same process will be applied to all other walls in the BIM model, and the design

algorithm does not terminate until boarding sheets have been placed on all walls in the BIM

32

model. The partial detailed implementation of the wall boarding design algorithm in C# is

provided in Appendix B.

A similar procedure is followed for floor boarding layout (see Figure 2.12). It also begins by

identifying boarding layers. Then, the joist direction is identified in order to determine the

boarding sheet orientation, because the boarding sheet orientation is always perpendicular to the

joist direction. Once the boarding sheet orientation is determined, rows of boarding sheets on the

floor are calculated. Subsequently, the start-point of one row of sheets is retrieved, and one sheet

of the board of nominal size is placed at the identified start-point; then, the end-point of the

board is calculated. The board is then checked to confirm whether it covers one opening as

shown in Case 1. If so, the board edge will be adjusted to the nearest opening edge. Similar to the

wall design algorithm, this end-point is also checked against the object-based rules in order to

ensure that formalized design principles are satisfied. In case of any non-compliance, the

sheathing/drywall board is cut shorter to adjust its end-point, and a new end-point satisfying all

design rules is re-calculated by the algorithm. This end-point then serves as a new start-point at

which to place the next sheathing/drywall board. The processes for one row do not terminate

until all boarding sheet layers have been placed, and, in turn, the design algorithm does not

terminate until boarding sheets have been placed on all floors.

33

Figure 2.12 Flowchart of floor boarding design algorithm

2.5.3 Design optimization

This research studies the material usage optimization from the design point of view. The

objective of this research is to generate the near-optimal boarding layout design with minimized

material waste for light-frame buildings under construction constraints. The objective function is

expressed in Equation (1):

34

𝑂. 𝐹. = 𝑚𝑖𝑛 {W1, W2, ⋯ , W𝑑}, d = 1,2, … , N (1)

Wd = 𝑚𝑖𝑛 (∑ 𝐿𝑖,𝑑
𝑥
𝑖=1 − ∑ 𝑦𝑗,𝑑)𝑡

𝑗=1 (2)

𝑞𝑑 = {𝑦1,𝑑, 𝑦2,𝑑, ⋯ , 𝑦𝑡,𝑑} = 𝑓(𝑛𝑢𝑚. 𝑜𝑓 𝑠𝑒𝑎𝑚𝑠, 𝑙𝑜𝑐. 𝑜𝑓 𝑠𝑒𝑎𝑚𝑠) (3)

St.
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔 𝑟𝑜𝑤

𝑀𝑎𝑥.(𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑏𝑜𝑎𝑟𝑑 𝑠𝑖𝑧𝑒𝑠)
≤ 𝑛𝑢𝑚. 𝑜𝑓 𝑠𝑒𝑎𝑚𝑠 ≤

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔 𝑟𝑜𝑤

𝑀𝑖𝑛.(𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑏𝑜𝑎𝑟𝑑 𝑠𝑖𝑧𝑒𝑠)
 (4)

Where, 𝑂. 𝐹. represents the objective function; W𝑑 denotes the minimized material waste

associated with the design alternative 𝑑; 𝑑 is the index of one design alternative in a list of N

design alternatives; 𝐿𝑖,𝑑 denotes the length of board stock i; 𝑥 is the number of stocks; 𝑦𝑗,𝑑 is the

length of jth boarding sheet; and 𝑡 is the number of boarding sheets generated according to design

rules; 𝑞𝑑 is the quantity take-off (i.e., cutting list) for the design alternative 𝑑 , and it is

determined based on boarding design (i.e., number of seams and location of seams), as expressed

in Equation (3) and Figure 2.3.a; 𝑛𝑢𝑚. 𝑜𝑓 𝑠𝑒𝑎𝑚𝑠 and 𝑙𝑜𝑐. 𝑜𝑓 𝑠𝑒𝑎𝑚𝑠 are the decision variables

of the mathematical model; “loc. of seams” should always be subject to all the boarding design

rules, and “num. of seams” in each boarding sheet row should be subject to Equation (4).

Notably, altering the design in terms of number of seams and location of seams will lead to the

generation of different 𝑞𝑑 value, resulting in different material usage and material waste. The

minimized material waste of one design alternative, Wd, is expressed as in Equation (2) and is

calculated by the cutting-stock solver in this study.

In general, the sheathing and drywall design optimization is an iterative process, as shown in

Figure 2.13. For each iteration, one design alternative is formulated by using boarding design

algorithms described in the previous section. The optimization algorithm randomly selects one

nominal boarding size (e.g., 4′ × 8′, 4′ × 10′, or 4′ × 12′) when placing individual boarding sheets

(see Figure 2.11 and Figure 2.12). Upon completion of the boarding design configuration for all

35

panels (i.e., walls or floors), the design alternative is analyzed to obtain a thorough cutting list of

sheathing/drywall sheets (i.e., quantities of cutting items). The cutting-stock solver is then

triggered and takes the combination of available material stock sizes and the generated thorough

cutting list as inputs to formulate an optimized cutting plan, which minimizes material cutting

waste for this design scenario. Three algorithms, Greedy First Fit, Greedy Best Fit, and Greedy

Next Fit, are executed sequentially in the cutting-stock solver (Montibelli, 2014). Greedy

algorithms are selected in this study due to the fact that they can provide optimized solutions in a

reasonable timeframe (Esparza, 2003). For a given design scenario, the optimized cutting waste

and material cost can be obtained from the cutting-stock solver. After saving this design scenario,

the next iteration is then triggered and another combination of nominal boarding stock sizes (i.e.,

number of seams and location of seams) is used by the algorithm to formulate a new design. The

algorithm does not terminate until it reaches certain termination criteria, such as completing the

specified number of iterations (e.g., 100). Finally, the design with the minimized amount of

material waste is identified by the prototype system, and the successful design is used to

formulate the Microsoft Excel-based boarding sheet purchase plan and cutting plan, which are

automatically generated by the prototype system.

36

22

StartStart

Get initial/new locations of
seams by using design rules
Get initial/new locations of
seams by using design rules No

Generate cutting plan and
boards purchase plan

Generate cutting plan and
boards purchase plan

Obtain cutting waste/costObtain cutting waste/cost

33

Optimize cutting planOptimize cutting plan

Receive quantity/cutting list
of one dsign scenario

Receive quantity/cutting list
of one dsign scenario

EndEnd

 Cutting Stock Solver

- Greedy First Fit

- Greedy Best Fit

- Greedy Next Fit

 Cutting Stock Solver

- Greedy First Fit

- Greedy Best Fit

- Greedy Next Fit

Stop criteria?Stop criteria?

Sheathing and
drywall layout

modelling in BIM

Sheathing and
drywall layout

modelling in BIM

44

Get the layout designGet the layout design

Identify optimized boarding
layout design

Identify optimized boarding
layout design

YesYes

Figure 2.13 Flowchart of optimizing boarding design

2.5.4 Boarding layout design modelling

Ultimately, the optimized layout design is modelled automatically in the BIM model by the

sheathing and drywall layout modeller, as shown in Figure 2.4 and Figure 2.13, in order to obtain

a construction-centric BIM model and to generate shop drawings. Since this study is

implemented as an add-on for Autodesk Revit, the boarding layout design is modelled by using

the construction modelling functions of Autodesk Revit such as “Divide Parts”. It should be

noted that “Part” is a modelling element allowing construction modellers to plan the installation

of pieces of building components and their sub-components. Part elements can be generated from

layer-structured modelling elements such as Wall and Floor in order to represent their layers

(Autodesk Revit, 2015). Furthermore, by using the Revit API function, “PartUtils.DivideParts

(doc, partsToBeCutted, id, cutting Curves, sketchPlane)”, these parts can be divided into smaller

discrete parts, which can be independently scheduled for the purpose of construction planning.

As a result, part elements are used to model individual boarding sheets. The sheathing and

37

drywall layout modeller transforms the optimized layout design into an array of curves that cut

the layers of sheathing and drywall within Revit API. These curves represent the boarding seams

and are the inputs of the above mentioned Revit API function. By doing this, the design

modelling is materialized in an automated manner.

2.6 Case Study

The developed prototype system is tested in a wood-framed single-family house. The building

shown in Figure 2.14 consists of three storeys and 75 wall panels, including 68 light-framed

walls and seven precast basement walls. Oriented strand board (OSB) sheathing boards are

placed on exterior sides of exterior light-framed wall panels and top sides of floor panels, while

gypsum drywall boards are used for interior sides of exterior light-framed wall panels and

bottom sides (i.e., ceiling) of floor panels, as well as for both sides of interior light-framed wall

panels. The building model is first built in Autodesk Revit 2015; then, a suite of commercial

Revit add-ons, Metal Wood Framer (MWF) (StrucSoft Solutions, 2015), is employed to frame

building components such as wall panels and floor panels. Following this, the developed

prototype system is launched in Autodesk Revit to design the boarding layout. Construction

practitioners must provide available nominal board size and corresponding unit cost information

through the graphic user interface (GUI), as shown in Figure 2.14, to this prototype system,

thereby enabling design optimization.

38

Figure 2.14 Interface of automated boarding designer

Table 2.1 Cost (in CAD) and material waste information of optimized boarding layout design

Material

 Size

 (ft)
Unit Price

Number of

Sheets
Material Cost Material Waste Ratio

Wall
Gypsum Board

4 × 8 $9.85 86

$1,535.14 6.85% 4 × 10 $11.68 23

4 × 12 $13.98 30

Oriented Strand Board 4 × 8 $7.49 68 $509.32 7.3%

Floor
Gypsum Board

4 × 8 $9.85 31

$552.39 6.53% 4 × 10 $11.68 2

4 × 12 $13.98 8

Oriented Strand Board 4 × 8 $7.49 60 $449.4 5.84%

Table 2.1 tabulates the nominal board information as inputs for the case study. Total material

cost of optimized boarding layout designs and their material waste information are also

summarized in this table. As shown in Table 2.1, the material cost of gypsum drywall for walls is

CAD 1,535.14 with a material waste of 6.85%, while its sheathing material cost is CAD 509.32

with a material waste of 7.3%. As for floors, the material cost of gypsum boards is CAD 552.39

with a material waste of 6.53%, while its sheathing material cost is CAD 449.4 with a material

waste of 5.84%. Additionally, the GUI allows for users to set up shop drawing configurations in

39

order to generate shop drawings for drywall and sheathing layout on walls. The system outputs,

including construction-centric BIM (box 1 in Figure 2.15), shop drawings with quantity take-off

(box 2 in Figure 2.15), as well as the Excel-based cutting list and boarding sheet purchase plan

(shown in Table 2.2), are generated automatically by clicking corresponding buttons on the GUI.

Part of the generated Excel-based cutting plan (see Table 2.2) shows how many sheets are cut

from standard material boards and where each sheet is installed. In addition, all standard material

boards are listed in “Size”. Based on this information, construction practitioners can plan and

manage the prefabrication. It is worth noting that the material waste of drywall sheets averages

12% according to the California Integrated Waste Management Board (2007). In comparison

with the generated results from the prototyped system, material waste for drywall sheets is

reduced below the industry benchmark. In the future, other optimization technologies will be

investigated to further optimize the boarding design.

Figure 2.15 Outputs of automated boarding designer

1
Gypsum drywall

 layout 2

40

Table 2.2 OSB board sheet cutting plan for floors in Excel

Count Size
Used

(SF)
Waste

Cutting Plan

Cutting List Location

1 4′ 0″ × 8′ 0″ 18.33 43%

4′ 0″ × 8′ 0″ Floor Panel 2

9 4′ 0″ × 8′ 0″ 32 0% 4′ 0″ × 8′ 0″ Floor Panel 2

9 4′ 0″ × 8′ 0″ 32 0%

4′ 0″ × 8′ 0″ Floor Panel 1

9 4′ 0″ × 8′ 0″ 32 0%

4′ 0″ × 8′ 0″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 31.26 2 %

4′ 0″ × 8′ 0″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 31.2 2 %

4′ 0″ × 8′ 0″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 31.9 0 %

4′ 0″ × 8′ 0″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 30.88 4 %

4′ 0″ × 8′ 0″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 28.49 11 %

4′ 0″ × 8′ 0″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 31.64 1 %

4′ 0″ × 8′ 0″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 25.19 21 %

3′ 11 1/4″ × 8′ 0″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 30.42 5 %

3′ 9 5/8″ × 8′ 0″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 24.30 24 %

3′ 9 5/8″ × 8′ 0″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 23.17 28 %

3′ 11 1/4″ × 8′ 0″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 25.19 21 %

3′ 11 1/4″ × 8′ 0″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 30.80 4 %

0′ 2 1/2″ × 4′ 9 67/256″ Floor Panel 2

0′ 5 1/2″ × 8′ 0″ Floor Panel 3

1′ 0″ × 0′ 8 1/4″ Floor Panel 3

0′ 5 1/2″ × 8′ 0″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 29.94 6 %

3′ 11 1/4″ × 7′ 7 1/4″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 29.94 6 %

3′ 11 1/4″ × 7′ 7 1/4″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 29.94 6 %

3′ 11 1/4″ × 7′ 7 1/4″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 31.92 0 %

4′ 0″ × 6′ 8″ Floor Panel 3

3′ 11 1/4″ × 1′ 4″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 31.92 0 %

4′ 0″ × 6′ 8″ Floor Panel 1

3′ 11 1/4″ × 1′ 4″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 31.92 0 %

4′ 0″ × 6′ 8″ Floor Panel 2

3′ 11 1/4″ × 1′ 4″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 25.08 22 %

4′ 0″ × 6′ 3 1/4″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 25.08 22 %

4′ 0″ × 6′ 3 1/4″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 25.08 22 %

4′ 0″ × 6′ 3 1/4″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 24.24 24 %

3′ 11 1/4″ × 6′ 1 111/128″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 31.28 2 %

3′ 11 1/4″ × 5′ 7 83/128″ Floor Panel 1

4′ 0″ × 2′ 3 1/4″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 32 0%

4′ 0″ × 5′ 4″ Floor Panel 2

4′ 0″ × 2′ 8″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 32 0%

4′ 0″ × 5′ 4″ Floor Panel 3

4′ 0″ × 2′ 8″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 32 0%

4′ 0″ × 5′ 4″ Floor Panel 1

4′ 0″ × 2′ 8″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 28.83 10 %

4′ 0″ × 4′ 11 1/4″ Floor Panel 1

4′ 0″ × 2′ 3 1/4″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 28.83 10 %

4′ 0″ × 4′ 11 1/4″ Floor Panel 3

4′ 0″ × 2′ 3 1/4″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 19.75 38 %

4′ 0″ × 4′ 11 1/4″ Floor Panel 2

1 4′ 0″ × 8′ 0″ 32 0%

4′ 0″ × 4′ 0″ Floor Panel 2

4′ 0″ × 4′ 0″ Floor Panel 3

1 4′ 0″ × 8′ 0″ 30.42 5 %

4′ 0″ × 4′ 0″ Floor Panel 1

4′ 0″ × 3′ 7 1/4″ Floor Panel 1

1 4′ 0″ × 8′ 0″ 28.83 10 %

4′ 0″ × 3′ 7 1/4″ Floor Panel 3

 4′ 0″ × 3′ 7 1/4″ Floor Panel 2

41

2.7 Discussion

Construction-oriented design detailing such as boarding design is a labour-intensive, time-

consuming, and error-prone task in the AEC industry, which partially presents one major barrier

that impedes the adoption of BIM in the construction field. Furthermore, trades’ know-how in the

construction industry remains mainly in the minds of those experienced trades people and is

generally missing from existing design and drafting software. As such, existing design and

drafting software cannot provide the functionalities to facilitate the automated construction and

manufacturing-centric design. Moreover, the construction and manufacturing-centric designs

generated from existing design and drafting software usually are not subject to practical

constructability analysis, resulting in massive material waste and re-work in construction. This

study thus successfully integrates trades’ know-how, which is formalized based on the boarding

practice of light-frame buildings and mathematical algorithms with BIM models. The generated

layout design not only minimizes material waste, but also enhances design constructability and

cost-efficiency in construction. Notably, the generated boarding layout design and board cutting

plan are optimized by the prototype system, but may not represent the global optimal solution

due to their non-deterministic polynomial-time hard characteristics and the heuristic feature of

the proposed algorithm. In fact, the layout design optimization is an optimization problem where

the board cutting optimization is nested. In this study, the optimized design is determined by

selecting the best scenario among all the generated feasible design alternatives. For each design

alternative, the board cutting plan optimization is solved by formulating a one-dimensional

cutting-stock problem. Greedy algorithms are used to solve this cutting-stock problem due to

short computing time to converge on solutions, while it is noted the generated cutting plan is

practically feasible but may not be the global optimal solution. Within a limited time frame, the

42

prototyped system is able to generate an optimized layout design and detailed cutting plan taking

into consideration of constructability. In the future, the following extensions can be pursued in

order to improve the performance of the prototyped system: (1) cutting-stock optimization can be

extended from one dimension into two dimensions in order to further reduce material waste; and

(2) other combinatorial algorithms can be incorporated into this prototype in order to optimize

boarding design more efficiently. In addition, the layout design optimization is conducted for

floors and walls separately. It is anticipated that optimizing boarding layout for walls and floors

simultaneously could further reduce boarding material waste.

2.8 Conclusion

This study seeks an automated approach to boarding layout design for light-frame residential

buildings by utilizing BIM. An Autodesk Revit-based automated design and modelling prototype

system is developed through Revit API. This prototype system incorporates common boarding

design principles and cutting-stock optimization in order to provide optimized boarding design to

construction practitioners. Furthermore, a BIM model parser is developed as the basis of this

study to retrieve enriched building information in BIM models, thereby enabling BIM-based

automated design. The prototype system is tested using a wood-framed residential building

project. The generated boarding design from the prototyped system is found to minimize seam

length and material waste while ensuring design constructability. It demonstrates that the

prototyped system is capable of assisting stakeholders in planning and managing the

prefabrication process.

The main contribution of the present research is the problem definition and automation of the

solution in designing board layouts and planning board cutting, by taking advantage of enriched

building information in BIM models, and comprehensively formalizing industry know-how in

43

terms of current boarding practice. In comparison with traditional 3D CAD technology, BIM

contains enriched product information of building components in the form of object-oriented

data schema, thus enabling more effective information extraction and facilitating automated rule-

based design. Comprehensive industry know-how is successfully represented in a computer-

interpretable form as object-oriented rules in order to formulate boarding layout design with

enhanced constructability at the workface level. BIM models are integrated with formalized

object-oriented design rules and mathematical algorithms in order to optimize design solutions

and to reduce material waste. Additionally, this study supplements current BIM models with

construction-oriented intelligence (i.e., trades know-how) and generates construction-centric

BIM that is instrumental to carpenter trades in performing their work at the workface.

44

CHAPER 3: SEMANTIC QUANTITY TAKE-OFF2

3.1 Introduction

A building information model (BIM) is a digital representation of physical and functional

characteristics of a facility (National BIM Standard, 2013). It is a product-centric and object-

oriented information model whereby enriched building information is hosted by parametric

building objects (e.g., walls and floors) as properties. This information can be retrieved from a

BIM design model for building design analyses, such as energy analysis and structural analysis.

Hence, the BIM model has the ability to support decision making in various aspects of the AEC

industry, and boosts work efficiency by minimizing the rework of modelling or collecting

building information for different purposes. As such, a large body of research has been focused

on leveraging BIM models with discipline-specific information and information exchange

between a BIM authoring program and discipline design tools. Nevertheless, it remains a

challenge to tailor BIM to suit construction management tasks such as quantity take-off (QTO) in

connection with workface planning, which is “the process of organizing and delivering all the

elements necessary, before work is started, to enable craft persons to perform quality work in a

safe, effective and efficient manner” (COAA 2014). This is due to the fact that the BIM product

model and the construction process model rely on different schemas to organize product and

process data. A BIM model, including the Industry Foundation Classes (IFC) based open BIM

model, is product-centric and represents an assembly of parametric building objects with

properties, whereas a process model is a collection of processes usually organized by a material

and method classification system (e.g., the MasterFormat developed by Construction

Specifications Institute and Construction Specifications Canada) on the basis of material

2 A version of this chapter has been published in the journal of Advanced Engineering Informatics, 30, pp. 190-207.

45

information, construction method, product design feature, and so forth. For this reason, one

activity with a particular construction method (unique production rate and unit cost) in the

process model might be only applicable to a specific group of building elements or for a portion

of one building element or for a group of non-explicitly modelled building design features in a

BIM product model. It is challenging for construction practitioners to obtain quantities in

connection with construction activities from a BIM design model. Considerable human

intervention must thus be involved to interpret the process model and to manually quantify the

BIM product model in accordance with the process description.

Indeed, BIM-based QTO is currently the most widely used BIM-based application in the AEC

industry. However, the quantities extracted from a BIM design model usually consist of tabular

data of explicitly modelled building element dimensions and are product-oriented. This quantity

information needs to be further manipulated by means of formulas or filter/aggregation functions

in order to obtain construction-oriented QTO information for use by construction planners and

trades personnel. Such a cumbersome manual process poses a challenge from the perspective of

construction practitioners who take off work packages for detailed construction planning.

Furthermore, some information that is relevant to construction practitioners is only implicitly

represented in the BIM model, such as the topological relationships and various intersections

among the building elements. It is challenging for construction practitioners to extract such

specific building information from a BIM design model when it has not been modelled explicitly.

For instance, although the open BIM IFC schema defines objectified relationships such as

“IfcRelConnectsPathElements” in order to describe the connectivity between building elements,

various connections (e.g., L-connection or T-connection), as well as their detailed properties (e.g.,

connection angle), are not explicitly defined in either IFC or the Autodesk Revit schema. Hence,

46

instances of “T-connection” or “L-connection” representing the connection of walls are not

explicitly present in the BIM design model. For this reason, information pertaining to

connections (e.g., L-connection) cannot be readily extracted. Such implicitly modelled

information restricts space-related information extraction (e.g., quantities of specific types of

intersections); hence, the BIM design models are insufficient to account for the details necessary

to serve the intended purpose. Additionally, existing BIM design models lack standardized

industrial BIM object definitions in specific building domains. For example, studs and plates in

light-frame walls are usually represented as “Structural Column/Framing” in the Autodesk Revit

BIM design model and as “IFCMember” in the IFC-based BIM design model. These

representations are not sufficient for construction practitioners (e.g., trades personnel) in taking

off their work packages. As such, BIM design models lack domain semantics in terms of specific

building trades. Construction practitioners need to understand the various complex BIM schemas

or BIM object definitions in terms of their specific decomposition structure in order to obtain the

desired QTO. This would considerably increase the workload and difficulty in their daily

planning work. Given this reality, the varying object definitions at present make the BIM models

less useful to construction practitioners in performing their specific tasks, while retrieving QTO

information relevant to construction practitioners from a BIM design model without domain

semantics is still far from efficient.

This chapter presents an ontology-based semantic approach to extracting construction-oriented

QTO information from a BIM design model. It allows users to semantically query the BIM

model using domain vocabularies, capitalizing on building product ontology formalized from a

construction perspective. The proposed ontology addresses the limitation of BIM design models

in terms of lacking domain semantics and aligns BIM design models with construction-oriented

47

QTO. As such, quantity take-off information relevant to construction practitioners can be easily

extracted and visualized in 3D in order to serve practical needs in the construction field. A

prototype application is implemented in Autodesk Revit to demonstrate the effectiveness of the

proposed approach in the domain of light-frame building construction.

3.2 Literature Review

To date, various approaches have been explored by which to retrieve QTO information from 2D

design drawings or 3D CAD/BIM models in an automated manner, such as generating quantities

using Open BIM-based QTO systems (Choi et al., 2015). Among these, BIM has emerged as the

best automated approach to generating accurate QTO from 3D product models (Sattineni &

Bradford, 2011). Most BIM applications are able to provide the QTO feature and allow the

nearly seamless quantity information exchange for downstream analyses such as cost estimation.

Nevertheless, BIM-based QTO may not provide all the necessary quantity data about the product

in the event that the BIM model is not designed with sufficient construction detail. To realize

automatic QTO at a sufficient level of construction detail, the BIM model has to be “redesigned”,

which demands even more effort than performing manual QTO process. As such, some studies

have sought to explore an automatic approach to designing the BIM model in performing a QTO.

Kim et al. (2009) explored an automated modelling method by which to model a building’s

interior. Liu et al. (2015c) studied an automatic approach to construction-centric BIM with the

main focus on the sheathing and drywall modelling for a residential house. Noting that once the

detailed information is represented in the BIM model, the thorough QTO in the form of tabular

data could be generated by use of the routines in BIM tools. All these efforts pertaining to

automatic modelling can improve the efficiency of QTO. Nevertheless, leveraging the BIM

model may also result in a redundant information database and further pose challenges to

48

retrieving specific quantity take-off information. In this context, Monteiro & Poças Martins

(2013) reported that modelling guidelines enable users to extract a thorough QTO in accordance

with existing specifications. Those modelling guidelines could filter the relevant information at

the modelling phase, rather than at the quantity extraction phase, thus boosting the QTO

efficiency.

One important factor impeding BIM-based QTO applications in the construction field is that

some information, such as the spatial or topological relationships among building objects, is

implicit in the BIM model. To tackle this problem, Borrmann et al. (2009b) developed a spatial

query language for BIM models which enabled the spatial analysis of building and partial

building information extraction. The newly developed query language covered spatial operators

such as mindist, maxdist, isCloser and isFarther, which was proven to be a promising approach

for partial model extraction that satisfies certain spatial constraints. Subsequently, this spatial

query language was extended by adding other topological operators, including within, contain,

touch, overlap, disjoint and equal in the 3D space using the 9-intersection model (Borrmann &

Rank, 2009a; Daum & Borrmann, 2014). Nepal et al. (2012) described a methodology for

querying the BIM model for construction-specific spatial information. Custom spatial XQuery

predicates such as Overlaps, Touches, Disjoint, Intersect, Proximate, and On-grid were created

to support spatial queries over the BIM model. Similarly, Kim & Cho (2015) proposed a

geometric reasoning system, namely, Construction Spatial Information Reasoner (CSIR) that

derives construction-specific spatial information of a BIM model in order to support automated

construction planning. Indeed, the use of ontology technology can help reduce manual

involvement in recognizing design conditions that considerably affects construction costs. Staub-

French et al. (2002; 2003) formalized a feature ontology to represent the cost-driving features of

49

building product models such that practitioners can generate cost estimates more expeditiously.

Nepal et al. (2013) described a new approach using ontology-based feature modelling for

construction information extraction from a given BIM model. In their approach, a feature

ontology including feature type and feature property is formalized and a feature-based model is

generated by the developed feature extractor in order to facilitate construction-specific

information extraction. The information extraction is realized through formalized form-based

query specification templates. Semantic query is not supported, and queried results cannot be

visualized in the BIM model. Additionally, detailed information about component intersections

cannot be identified in the proposed method. Lee et al. (2014) illustrated an ontology-BIM-based

approach for building cost estimation with the limitation of only focusing on tiling work. In their

study, ontological inference was utilized to search for work items that are pertinent to particular

building elements and materials on the basis of BIM data.

Another main challenge associated with QTO is the classification system used to organize the

quantity measurements (Monteiro & Poças Martins, 2013). Today, there are a few classification

systems, such as MasterFormat, UniFormat, and internal formats in companies that are

commonly adopted by construction practitioners and scholars. For example, Zhao et al. (2015)

explored an automatic approach of QTO for modular construction which pre-loaded the industry

company’s classification system—called “part number”—into the BIM model during the

modelling phase. Thus, quantities can be automatically extracted from the BIM model into the

unit price database in Excel according to the pre-loaded classification system via the Autodesk

Revit application programming interface (API). Similarly, Choi et al. (2015) leveraged a BIM

model with a 10-digit construction classification code in order to facilitate the QTO process in

their prototype system. The lack of a standard classification system challenges construction

50

practitioners in regard to compatibility among various documents and quantity information

exchanges during a project life cycle (e.g., from design to construction). Additionally, quantities

extracted from a BIM design model are usually in the form of tabular data of explicitly modelled

building elements with product-oriented dimension values. Human intervention is still required

to manipulate (e.g., filter and group) this tabular data in order to obtain the quantity compliant

with the work package description and the work breakdown structure (WBS). In contrast to rule-

based QTO, Lawrence et al. (2014) introduced a flexible mapping strategy which augments a

BIM-based design model with cost information in order to create and maintain the cost

estimation. The developed flexible mapping approach described relationships between explicit

BIM objects and cost items through queries (in the XQuery language or structured query

language) on the building design; it was conducive to estimating in terms of updating the cost

estimation. The proposed approach was intended for the early design stage of projects even when

the design is still incomplete and evolving. Substantial effort and XQuery knowledge were

required to formulate complex queries, presenting a hurdle which impeded its adoption in the

AEC industry.

On the other hand, BIM-based QTO is an information extraction process during which quantities

of building elements or design features are determined based on the 3D product model. A large

number of studies emphasized on extracting specific information from the BIM model. In

general, building information was extracted either from a BIM model in commercial software

(e.g., Autodesk Revit and Tekla) or from an IFC-based open BIM model as inputs for

downstream analyses such as construction scheduling and cost estimation. For instance, Liu et al.

(2014; 2015a; 2015b) investigated a BIM-based automatic scheduling approach whereby

enriched building information, including QTO, was extracted from a Revit BIM model via

51

Autodesk Revit API. Kim et al. (2013) established a prototype for automating the generation of

construction schedules by automating quantity data extraction from an IFC-based BIM model,

and parsing building information as the inputs for scheduling. Zhang & Issa (2013) reported

ontology-based partial building information extraction from an IFC-compliant BIM model by

means of semantic search, instead of pure syntactic analysis. However, their research

encompassed only the geometry portion of IFC specifications. Ma et al. (2011) identified an

information requirement model in accordance with construction estimating practices for

tendering in China, and extended existing IFC schemas to account for specific information

requirements respectively. Subsequently, Ma et al. (2013) introduced a semi-automatic method

to conduct cost estimation for tendering building projects based on the use of a design model

through the open IFC standard. Further attempts to enhance information exchanges among BIM

applications have been carried out in recent years. For instance, Yang & Zhang (2006) presented

a new approach to the development of building design objects with the objective of enabling

semantic interoperability in building designs. Venugopal et al. (2012) proposed an object-

oriented and modular mechanism for embedding semantic meaning in model views in order to

improve information exchanges among BIM applications.

In short, an ontology-based semantic QTO approach, which enables construction practitioners to

semantically query BIM design models using domain vocabularies in order to retrieve building

quantity information from a construction perspective, has yet to be formalized.

3.3 Background and Scope

3.3.1 Ontology and semantic query

In the context of computer science, ontology is defined as “explicit formal specifications of the

terms in the domain and relations among them” (Gruber, 1993). In other words, an ontology is a

52

formal definition of types, properties, and relationships of domain entities, which provides the

vocabularies to describe the domain knowledge. Ontology is thus a promising solution to share

common understanding of domain knowledge (e.g., the structure of information) (Noy &

McGuinness, 2001). Within the ontology, classes (types) with properties describing themselves

represent the terms or concepts in the domain, whereas relations describe interrelationships

among classes (terms). Although ontological modelling is similar to object-oriented modelling in

the view of syntax (e.g., class and property), ontology allows for explicitly representing domain

terms and their relations in the form of class, property, and relationship in an intuitive and

structured manner. Specifically, classes, properties and relationships are stand-alone entities in

ontology such that properties and relationships can exist without classes. Ontology allows for

multiple inheritances among classes, properties, and relationships, respectively (e.g., sub-class,

sub-property, and sub-relationship can be explicitly defined). Ontology allows for arbitrary user-

defined relationships among classes, whereas the class relationship in object-oriented modelling

is limited to the subclass-superclass hierarchical relationship (Siricharoen, 2007). It is

noteworthy that objects in object-oriented modelling are related through attributes (i.e.,

properties) and objectified relations (i.e., classes), rather than through explicit relationship

entities as in ontological modelling. Ontology allows users to explicitly specify

characteristics/properties (e.g., symmetry, transitivity, and inversion) to relationships and the

nature of the relationships (e.g., Equivalent To) between classes, properties, and relationships.

More importantly, ontology, founded on logic, represents domain knowledge in an intuitive and

structured manner such that ontology allows for automated reasoning that enables the user to

check for conflicts of ontologies and infer new facts. For this reason, information extraction from

a given BIM repository can be minimized, and the remainder can be inferred on the basis of

53

extracted information within ontology. In addition, ontology is easier to be extended and merged

due to the fact that the substantial work needed for mapping and converting data in different

applications can be reduced (Ma et al., 2015). Ontology allows for semantic queries capitalizing

on formalized classes as well as properties and relationships. An ontology-based query can

“understand” the semantic definition of these ontology entities; hence, it can retrieve the defining

triples from the schema resources (Beetz et al., 2009). Due to the fact that ontology mixes the

schema specification with individual specific data, ontology-enabled semantic query using

domain vocabularies can be executed not only on specific ontology data, but also on the ontology

terms (Martinez-Cruz et al., 2011). In comparison, Language-Integrated Query (LINQ) enabled

by object-oriented modelling can only be executed on specific data sets, rather than data set

schema. All these features, which are generally not provided by object-oriented modelling, make

ontology superior in the representation of domain knowledge. Ontology has thus been

successfully applied in various industries to facilitate domain knowledge management. In the

construction industry, some ontology applications have also been successfully carried out in

order to assist project stakeholders in cost estimation (Lee et al., 2014), code compliance

checking (Zhong et al., 2012; 2015), construction planning (Benevolenskiy et al., 2012), and so

forth. With BIM being an important focus in both industry and academia, research has been

undertaken to maximize the benefit from integrating BIM and ontology for the AEC industry.

For instance, Beetz et al. (2009) lifted the IFC specification onto a logically rigid and

semantically enhanced ontological level by strictly transforming EXPRESS schemas into

ontologies, and developed IfcOWL. Zhang & Issa (2013) explored an ontology-based algorithm

in the extraction of a partial BIM model from the original model in order to reduce the difficulty

of manipulating the complete model, which was typically large and complex. More recently,

54

Venugopal et al. (2015) proposed IFC reforms using ontology in order to address the limitation

of IFC in terms of lacking semantic clarity and ambiguous nature and to make the data

exchanges more semantically robust. Ontology is utilized in this study to facilitate construction-

oriented QTO.

There are many representation languages used to construct ontologies, such as Knowledge

Interchange Format (KIF), Resource Description Framework (RDF), and Web Ontology

Language (OWL). The semantics of the information in an ontology depend on the representation

languages, as each language raises its own semantic restrictions (Martinez-Cruz et al., 2011).

Semantics herein refers to the meaning or context of the information. In the early 2000s,

ontology was implemented by object-oriented property-value representation that could declare

classes and their properties (Ma et al., 2015). In this sense, ontology with object-oriented

property-value representation is similar to object-oriented modelling. In contrast, RDF/OWL-

based ontology, as described above, provides stronger expressive power. It allows users to

explicitly specify far more information about classes and properties and to define a set of

constraints and axioms held among concepts, relationships and individuals. These constraints

and axioms facilitate machine understanding of the information (Venugopal et al., 2012). The

RDF model represents a metadata data model with its schema, namely: “RDFS”, which is

defined by a set of terms with specifiable meanings. Unlike markup languages such as Extensible

Markup Language (XML), where semantics are implicitly expressed, RDF makes the semantics

of information explicit (Zhong et al., 2015). As such, RDF-based ontology with its explicit

formality increases semantic awareness of computer applications. Semantic awareness herein is

defined as the ability of computer applications to interpret and represent the meaning of the

information. Additionally, the RDF model is a graph-based data model that represents

55

information in a directed and labelled graph data format (Powers, 2003); it allows structured and

semi-structured data to be merged and exposed, as well as for data to be shared across different

applications (W3C Semantic Web, 2015). Compared with object-oriented property-value

representations, RDF-based ontology is more flexible and more easily extended, and thus is more

suitable for representation of domain knowledge. In this research, RDF/OWL is employed to

implement ontology and provide domain semantics in reference to domain terms, including their

properties and interrelationships, as well as ontology reasoning. Simple Protocol and RDF Query

Language (SPARQL) is a semantic graph query language designed to query RDF (DuCharme,

2011). Due to that semantic query on large ontologies by means of graph query languages (e.g.,

SPARQL) is less complex than the use of complete reasoning rules and ontology reasoning

engines (Beetz et al., 2009), it is more straightforward for construction practitioners to formulate

SPARQL queries on BIM models in comparison with ontology reasoning rule formulations. In

this sense, an RDF-based ontology in conjunction with SPARQL would boost the information

extraction efficiency.

3.3.2 Construction-oriented QTO

Construction-oriented QTO produces quantities in proper units of measure which are taken off

for construction activities based on activity definition and detailed specifications of construction

methods and materials. As described previously, extracting building information implicitly

represented in a BIM model is difficult, while retrieving building information without semantic

domain terms and their interrelationships is inefficient. Owing to this reality, a challenge

confronting construction practitioners is how to retrieve construction-oriented QTO information

from a BIM design model. In this respect, an ontology can be utilized to enhance the BIM model

by defining distinguishable domain terms or classes to represent features of this type. On the

56

premise of some analysis such as topological analysis and ontology reasoning on a given BIM

model, those implicit design features can be detected and then explicitly stored into an ontology-

enhanced BIM model. As the building product ontology is formalized from the specific building

domain and the construction practice, it enables construction practitioners to semantically query

the ontology-enhanced BIM model using their domain vocabularies in order to retrieve the

construction-oriented QTO information efficiently without the need to understand the technical

structure of the underlying complex BIM schema. This section uses specific examples to

illustrate these problems associated with construction-oriented QTO in the domain of light-

frame building construction and how to address those problems using the proposed ontology-

based approach.

Construction projects are completed by various builders/sub-contractors/trades-people. Builders

and sub-contractors are coordinated to work together on different work packages based on their

expertise. Builders and sub-contractors thus only need to retrieve quantity information

concerning their specific work packages, rather than retrieving all the building information

embedded in the BIM design model. For instance, framing subcontractors or carpenters are to

frame walls and install blocking in wall frames; finishing carpenters are to install the interior

trim, interior doors, windows/door casing, railing, and other interior elements; stucco

subcontractors are to paint the building exterior; and drywallers are to install and finish drywall

sheeting for residential building projects. In order to take off the quantity of the drywallers’

work, for example, determining the surface area of interior walls is important. This information

can be easily extracted from the BIM model; however, the drywallers also need to tape and

finish drywall sheets and wall corners, which takes time and incurs cost in construction.

Consequently, drywallers need to have a clear understanding of how the walls intersect.

57

Moreover, interior corners are usually taped using paper corner bead, whereas metal corner bead

is used for exterior corners (see Figure 3.1). Drywallers thus must know not only the number of

general wall connections but also detailed wall connection information (e.g., L-connection, T-

connection, Ext/Int-connection and Ext/Ext-connection) in order to obtain the correct quantity of

metal corner bead. Similarly, estimators require this information in order to take off work

packages based on detailed construction specifications during the detailed estimating process.

For example, as shown in Table 1, cost item “092915100411” described as “Accessories,

gypsum board, corner bead, galvanized steel, 32 mm × 23 mm × 2,450 mm” is used for pricing

metal corner bead. Given these complexities and due to the fact that detailed building

component intersections are not represented explicitly, it is not possible to retrieve intersection

quantities by merely applying existing BIM-based quantity routines and methods as proposed in

previous research such as Nepal et al. (2012; 2013).

58

a. T-connection (Exterior Wall & Interior Wall)

b. L-connection (Exterior Wall & Exterior Wall)

c. L-connection (Interior Wall & Interior Wall)

Figure 3.1 Corner bead for T-connection and L-connection

With regard to wall framing, as summarized in Table 1, work packages for bearing walls are

taken off by length of studs for line number “061110405167”, length of plates for line number

“061110405106”, and number of window/door bucks for line number “061110400340” or

“061110400170”. In order to obtain quantities for each aforementioned item, each type of wall

frame subcomponent (see Figure 3.2) needs to be explicitly modelled with distinguishable

entities. For example, common studs associated with structural walls need to be distinguished

Interior corner
Interior corner

Interior corner

59

from opening studs such as window buck, king studs, jack studs, rough sill, cripples, and header

(see Figure 3.2) so as to derive the total length of studs for item “061110405167” and number of

window/door bucks for item “061110400340” and item “061110400170”. However, wall frame

subcomponents in a BIM design model are generally represented by the same kind of model

entity. As described earlier, all studs are usually modelled with the modelling element, called

“Structural Column”, and all plates are represented as “Structural Framing” in Autodesk Revit.

Within the open BIM schema, IFC, all studs and plates are represented as “IFCMember”.

Without domain semantic awareness, all the model elements for wall frame subcomponents are

identified as the identical entity (e.g., IFCMember); hence, without understanding of the complex

BIM schema and human intervention from BIM experts, it is not possible to filter the studs in

non-structural walls and the opening studs including cripple studs, king studs and jack studs in

structural walls so as to obtain the required QTO for common studs in structural walls (line

number “061110405167”) from a BIM design model.

Figure 3.2 Stud-framed wall panel

60

Table 3.1 Unit price and production rate items from RSMeans Online (Gordian Group, 2015)

Line Number Description Crew Daily Output Unit

 Wall Connection
092915100411 Accessories, gypsum board, corner bead,

galvanized steel, 32 mm ×

32 mm × 2,450 mm

1 Carp. 35 Ea.

 Bearing Wall Framing

061110405167 Wall framing, studs, 50 mm × 152 mm,

2,450 mm high wall, pneumatic nailed

2 Carp. 365.76 m

061110405106 Wall framing, plates, treated, 50 mm × 152

mm, pneumatic nailed

2 Carp. 274.32 m

061110405162 Wall framing, walls, for second story and

above, add extra labour

- - m

061110400340 Wall framing, window buck, king studs, jack

studs, rough sill, cripples, header and

accessories, 50 mm × 152 mm wall, 914 mm

wide, 2,450 mm high

1 Carp. 24 Ea.

061110400170 Wall framing, door buck, king studs, jack

studs, header and accessories, 50 mm × 152

mm wall, 1,828 mm wide, 2,450 mm high

1 Carp. 32 Ea.

 Non-bearing Wall Framing

061110260180 Wood framing, partitions, standard & better

lumber, 50 mm × 102 mm studs, 305 mm

O.C., 2450 mm high, includes single bottom

plate and double top plate, excludes waste

2 Carp. 24.38 m

061110261500 Wood framing, partitions, for horizontal

blocking, 50 mm × 152 mm, add

2 Carp. 182.88 m

061110261702 Wood framing, partitions, for headers for

openings, material only, add

- - m3

061110261600 Wood framing, partitions, for openings, add

extra labour

2 Carp. 76.20 m

Non-bearing wall framing is taken off by length of wall as for line number “061110260180”

characterized by detailed framing features such as “50 mm × 102 mm studs, 305 mm On Centre,

2,450 mm high, includes single bottom plate and double top plate”. For this item, framing

features, such as wall structural usage, wall height, its stud size, stud spacing, and having double

top plate or single top plate, need to be detected by the take-off system in order to obtain the non-

bearing wall length having this kind of framing feature. By explicitly modelling stud, plate and

their interrelationship with walls as required by exterior wall framing, stud size can be identified.

Stud spacing and having double top plate or single top plate are other features which need to be

modelled explicitly as wall properties in order to take off the work package for line number

“061110260180”. Hence, the domain terms in light-frame building industry, such as king stud,

61

jack stud, and cripple stud, need to be formalized into the proposed ontology in order to address

the lack of domain semantics in wall frame modelling and to align BIM design models with

construction-oriented QTO.

3.4 Ontology-based semantic QTO approach

This study proposes an ontology-based semantic approach to construction-oriented QTO from a

BIM design model. Ontology is employed in the study in order to enhance BIM models in terms

of domain semantics, including: (1) domain terms, (2) properties, and (3) interrelationships.

Domain terms such as Stud and Plate in the light-frame building industry and various wall

connections are generalized into the product ontology. Their interrelationships and properties are

defined explicitly in the ontology, providing the semantic foundation to the building quantity

information retrieval application, as well as rich domain vocabularies, with which construction

practitioners are familiar. This allows for construction practitioners to semantically query a BIM

design model for explicit and implicit BIM data using their domain vocabularies without the

need of understanding the technical structure of the underlying complex BIM schema. It

addresses the challenges described previously with respect to construction-oriented QTO, and

enables estimators or field contractor/sub-contractors to obtain QTO for construction work

packages in a more efficient manner.

Figure 3.3 shows as overview of the proposed methodology. As depicted in the figure, a

construction-oriented product ontology is developed by formalizing domain terms, their

interrelationships, and properties in the light-frame building industry. With the exception that

building terms in the existing BIM model, such as IfcWall, and IfcSlab, some other terms

including stud, plate, L-connection, T-connection and the forth are added into the product

ontology. It is noteworthy that construction-oriented product ontology not only contains

62

formalized terms from domain knowledge, but also includes specific BIM data. In order to

populate this product ontology (i.e., ontology terms) with specific building information (i.e.,

ontology individuals), the terms in the formalized product ontology are first mapped with the

BIM modelling elements within a building modelling tool (e.g., Revit, Tekla) or vendor-

independent platform (e.g., IFC). Then, the BIM design model is analyzed against ontology

terms using “BIM data parser” in order to extract specific BIM data, whereas “ontology

individual generator” transforms extracted BIM data into the product ontology. Ontology

reasoning enabled by “ontology reasoner” can be further applied in order to infer new

information or facts on the basis of explicit BIM data. Finally, an ontology-enhanced BIM model

is generated for applications in construction planning. Semantic query can be formulated against

“semantic query processor” in order to semantically query the ontology-augmented BIM model,

thereby obtaining the required construction-oriented QTO information.

Figure 3.3 Overview of proposed methodology

63

3.5 Prototype application

3.5.1 Overview

The system architecture for implementing the proposed semantic QTO approach is presented in

Figure 3.4. Generally, it includes a BIM design model, a BIM data parsing tool/library, an

ontology editor, an ontology reasoner, and an RDF tool. The BIM design model is developed

using the BIM authoring tool, Autodesk Revit, which gives end-users modelling flexibility (e.g.,

its built-in functions such as Family Editor) and supports API to enable third-party add-on

programming. The ontology in this research is established using Protégé 4.3, a free, open-source

ontology editor (Protégé, 2014). BIM data is parsed from an Autodesk Revit BIM model using

Revit API, and dotNetRDF, an open source .Net Library for RDF (Vesse et al., 2014), is

employed to build the ontology-augmented BIM model by populating the formalized ontology

with extracted BIM information. A default ontology reasoner in Protégé 4.3 is employed to infer

new facts (i.e., implicit design features) in the ontology-augmented BIM model based upon

explicit BIM data. SPARQL (which is supported by dotNetRDF) is used to query the ontology-

augmented BIM model in order to obtain construction-oriented QTO information. All the system

components are integrated through Autodesk Revit API in C# language, and the prototyped

system is programmed as an add-on for Autodesk Revit. A detailed explanation of the

methodology is presented in the following sections.

64

Figure 3.4 System architecture

3.5.2 Construction-oriented product ontology

Construction-oriented product ontology in this research is intended to allow construction

practitioners (particularly, trades personnel) and QTO professionals to take off quantities for

construction work packages and to enable effective workface planning. This ontology is

established in order to align a BIM design model with construction process oriented QTO and to

enable semantic querying in the domain of light-frame building industry. As described above,

this ontology augments the BIM model by adding light-frame building terms, including their

properties and interrelationships, and implicit design feature terms such as “L-connection”,

which are relevant to construction practitioners. Figure 3.5 presents part of the construction-

oriented product ontology formalized within Protégé 4.3. It is worth mentioning that term,

property, and interrelationship are represented by Class, Data Property, and Object Property,

65

respectively, in Protégé 4.3. As shown in Figure 3.5, “Product” is the root term in the ontology,

and “BuildingElement”, “ElementPart”, and “ElementIntersection” are inherited from “Product”.

Basically, inheriting indicates an Is-a relationship which means that each term

(“BuildingElement”, “ElementPart”, and “ElementIntersection”) is a “Product”. Furthermore,

some building terms such as “Wall”, “Door”, and “Window”, which are contained in the existing

BIM schema, are defined under “BuildingElement”. “Plate”, “Stud”, “Drywall”, etc. are defined

under “ElementPart”. An intersection among building elements is described by

“ElementIntersection”. A few object properties (interrelationships) are defined in order to

describe relationships among those concepts. For example, “hasSubComponent” is an object

property to describe the relationship between “BuildingElement” and “ElementPart”, whereas

“hasOpening” has to do with the interrelationships among “Wall”, “Window” and “Door”.

Besides this, “hasIntersection” describes the relationship between “BuildingElement” and

“ElementIntersection”. Various connection types are further detailed by using “LConnection”,

and “TConnection”, and these terms inherit “ElementIntersection”. It is notable that sub-terms in

the ontology inherit both properties and interrelationships of their base terms. This entails, for

example, that “hasIntersection” also describes the relationship between “TConnection” and

“Wall” due to the fact that “TConnection” and “Wall” are inherited from “ElementIntersection”

and “BuildingElement”, respectively.

As shown in Table 1, construction-oriented QTO is taken off on the basis of product design

features. All features need to be distinguishable in the QTO system. In addition to terms and their

interrelationships, some term properties that characterize the building terms are defined in the

proposed product ontology as depicted in Figure 3.5. For instance, Stud has a type property

describing its stud size (i.e., “50×102” or “50×152”), while stud spacing and wall function (e.g.,

66

bearing/non-bearing, IsAcoustic, IsExterior, IsFireRated, IsPartition, and so forth) are also

described explicitly as Wall properties in order to quantify the work packages such as framing

partition wall. “Level” is another property defined for “BuildingElement”, since building

elements, such as walls on the second level of a building and above, demand extra labour time

and cost in comparison with first-level walls, as illustrated in Table 1, and QTO for wall framing

must be taken off according to the floor level. It is noteworthy that “WorkZone” is defined as a

property of “BuildingElement” so as to provide construction practitioners with the flexibility of

taking off quantities of work packages based on the horizontal construction zone when

performing location-based QTO on large construction projects.

Figure 3.5 Construction-oriented product ontology

3.5.3 Ontology-enhanced BIM model generation

To enable semantic QTO search, a BIM design model is augmented by the proposed

construction-oriented ontology. Building information needs to be extracted from the BIM design

Term

Interrelations

hip

Graphic View
Propert

y

67

model and inputted to the ontology in order to obtain the ontology-augmented BIM model. The

ontology in this research is established using Protégé 4.3 (a free, open-source ontology editor

supporting RDF/XML files) and saved into an RDF file. BIM data in this study is extracted from

a BIM design model using Revit API and inputted into the RDF file using DotNetRDF, resulting

in the ontology-augmented BIM model.

3.5.3.1 Parsing Revit BIM data

Due to the fact that ontology augments the BIM model with domain terms and their properties

and interrelationships, which are not defined explicitly in a given BIM model, there are two

kinds of ontology terms: (1) basic building terms already defined in the BIM design model, and

(2) extended domain terms which are missing in the BIM design model. Modelling elements in

Autodesk Revit are mapped with those terms in the construction-oriented product ontology,

while BIM data, including explicit and implicit data, is extracted from existing design-oriented

BIM models to populate the construction-oriented ontology. It is noteworthy that the majority of

implicit construction-oriented BIM data (e.g., topological information) are derived on the basis

of the explicit design-oriented BIM data by using algorithms, whereas the other complementary

portion of implicit BIM data is inferred from ontology reasoning. Explicit BIM data is directly

extracted from existing design-oriented BIM models. In the following sub-section, two types of

BIM data extraction, explicit and implicit, are described in detail.

3.5.3.1.1 Extracting Explicit BIM data

Generally, building product information in the BIM model can be categorized into three groups:

geometric, spatial/topological, and enriched functional. Geometric information refers to vertices,

edges, and faces of building components, while spatial/topological information elaborates on

their location and spatial relationships. Enriched functional information refers to additional

68

attributes or properties describing building components such as host information. Spatial

information in Autodesk Revit is described by “Location” as shown in Figure 3.6. The exact

location information of building elements can be extracted according to the class diagram in

Figure 3.6. Its geometric information such as vertices, edges, and faces is described by

“GeometryElement” and can be retrieved using the “Element.get_Geometry()” function.

However, topological information is not represented explicitly in the Revit BIM model, and

therefore must be derived by conducting topological analysis based on related spatial and

geometric information. Enriched functional information is embedded into the BIM model as

properties of parametric building objects. Since Autodesk Revit is a family-based BIM solution,

where all building elements are grouped into “families” (Autodesk Revit, 2015), properties are

categorized into two groups: type property and instance property. Type property is defined at the

family type level and shared by a group of building elements with the same type. In contrast,

instance property pertains to individual building elements. It is worth noting that Autodesk Revit

has two kinds of family: system family and loadable family. Basic building elements such as

Wall (see Figure 3.6) are system families that are predefined in Revit, whereas other building

elements such as doors and windows are loadable families represented as “FamilyInstance” (see

Figure 3.6). As shown in Figure 3.6, type property is defined as FamilySymbol and WallType

classes for FamilyInstance (e.g., windows and doors) and Wall respectively, and all type

properties are then attached to individual elements as one common property. In contrast, each

individual instance property is attached as one property to individual elements. To retrieve

enriched functional information, two functions, “element.get_Parameter(string)” and

“elementType.get_Parameter (string)”, can be utilized with the property name as input

parameters, respectively. Material information is described by “Materials” and can be retrieved

69

using “element.GetMaterialIds()”, “element.GetMaterialArea()”, and

“element.GetMaterialVolumn()”.

APIObject

 Element

+Name:string

+Id: ElementId

+Category:Category

+Level:Level

+Location:Location

+Materials:MaterialSet

+Parameters:ParameterSet

+get_Parameter(string):Parameter

+get_Geometry(Options):GeometryElement

+GetMaterialIds(bool):List<ElementId>

+GetMaterialArea(Material):double

+GetMaterialVolume(Material):double

+GetTypeId():ElementId

ElementType (Symbol)

Instance

 FamiliyInstance

+Host:Element

+StructuralUsage:StructuralInstanceUsage

+Symbol: FamilySymbol

+GetOriginalGeometry(Options):Geometr

yElement

FamiliySymbol

InsertableObject

HostObject

 Wall

+Orientation: XYZ

+Width: double

+StructuralUsage: StructuralWallUsage

+WallType: WallType

 Category

+Name

HostObjAttributes

+GetCompoundStructur

e():CompoundStructure

WallType

GeometryObject

 Solid

+Edges:EdgeArray

+Faces:FaceArray

 FaceArray

+Size:Int

+get_Item(int):Face

 EdgeArray

+Size:Int

+get_Item(int):Edge

WallKind (enum)

Unknown = -1,

Basic = 0,

Curtain = 1,

Stacked = 2,

 Edge

+ApproximateLength: double

+Tessellate(): IList<XYZ>

 Face

+Area: double

+Triangulate():Mesh

 Location

+Move(XYZ): bool

+Rotate(Line, double):bool

 LocationPoint

+Point: XYZ

+Rotation: double

 LocationCurve

+Curve: Curve

 Curve

+Length: double

+get_EndPoint(int): XYZ

Figure 3.6 Autodesk Revit building elements in UML (Autodesk Ltd., 2014)

Taking a wood-framed wall (see Figure 3.7) as an example, wall, stud, plate, and opening

information is vital for construction-oriented QTO. In Revit, walls are instances of “Wall” class,

whereas windows, studs, and plates are instances of “FamilyInstance” class. It is “Category” that

further identifies a building object’s type (e.g., Window, Structural Column, and Structural

Framing). As denoted in Figure 3.6, Wall is defined explicitly as a subclass of “Element” in the

Revit class diagram. Some information such as “Id”, “Name”, “Level”, “Material”, and

geometric information is defined as instance properties, while wall layer information is given as

its WallType property. Nevertheless, there is no modelling element named “Stud” or “Plate” in

Revit. Structural Column and Structural Framing, each of which is a type of “FamilyInstance”,

are alternative elements that can be used to model “Stud” and “Plate”. Similarly, its geometric

and spatial information is described using “Location” and “GeometryObject”. Its type property is

70

defined in “FamilySymbol”. All this information can be extracted by referring to the class

diagram shown in Figure 3.6. Herein, it needs to be noted that the host information for doors and

windows is retrieved in a different manner from studs. The host relationship between walls and

windows/doors is stored in the “Host” property of FamilyInstance due to the fact that walls are

the valid host elements for windows/doors, and Revit saves this intelligent relationship to the

BIM model during the modelling process. On the contrary, structural columns/frames used to

model studs and plates do not have host information in the Revit internal data schema because

they are stand-alone building elements that may not be hosted by other building elements. In this

case, a property should be defined by the user in order to save this hosting relationship between

walls and studs. Note that a suite of commercial Revit add-ons, Metal Wood Framer (MWF)

(StrucSoft Solutions, 2015), is employed to frame wall panels in this research. Hosting

information of studs is saved into its “BIMSF_Container” property by this commercial program.

In addition, this commercial program defines a property “BIMSF_Description” for Structural

Column and Structural Framing to store its function information such as King Stud and Jack

Stud. Stud hosting information and function information can be retrieved using

“Element.get_Parameter (BIMSF_Container/BIMSF_Description)” (see Figure 3.7). It should be

noted that while the hosting information can be retrieved from “Host” and “BIMSF_Container”

properties, the implicit inverse relationship (e.g., Wall.HasDoor and Wall.HasSubComponent as

shown in Figure 3.7) does not exist in Autodesk Revit BIM. In this regard, the proposed

ontology enhances the interrelationships among terms by explicitly defining them and specifying

the nature of the relationships (e.g., Inverse Of, Equivalent To, and Sub Property Of) among the

domain term interrelationships. Ontology in turn can create new information by

reasoning/inferring about the explicit information. More specifically, ontology reasoning can not

71

only confirm and check “known knowns”, but also shed light on some “known unknowns”. For

example, “hasDoor” as depicted in Figure 3.8 is declared as a sub-property of “hasOpening”,

whereas “hasOpening” is the inverse of “hostedBy” in the proposed ontology in Protégé 4.3.

When the explicit hosting information of Door A (e.g., hostedBy) is extracted from the BIM

design model and added to the ontology, ontology reasoning infers its implicit inverse

relationship and deduces the fact that Wall A is hosting Door A as shown in Figure 3.7. The

inferred fact is then saved explicitly in the ontology, which boosts the efficiency of information

extraction.

Figure 3.7 Host relationship and its inverse relationship

Figure 3.8 Defining term interrelationship and ontology reasoning within Protégé 4.3

72

3.5.3.1.2 Extracting derived BIM data

A BIM model is an assembly of building objects, but some building element intersections are

not explicitly modelled in the BIM design model. Construction practitioners, however,

specifically need to obtain detailed intersection information. In terms of domain terms such as

element intersections defined implicitly in the existing BIM schema, further analysis is required

in order to derive this information, after which the analysis results can be stored explicitly in an

ontology-augmented BIM model in order to facilitate the building information extraction. This

section takes wall connection and stud spacing as examples to illustrate in detail the extraction

of implicit BIM data.

Wall connection, one type of intersection, is crucial to construction practitioners in determining

the quantity of intersection corner bead, as described above. Commonly seen wall connections in

building projects such as T-connection, L-connection and Double-T-connection, as shown in

Figure 3.10, are identified in this study. An algorithm is developed by which to detect those wall-

to-wall connections based on geometric information of faces, edges, and points (as depicted in

Figure 3.9). Basically, the algorithm first takes every combination of two walls in order to check

whether they are connected by sharing one face. More specifically, a connection relationship

between two walls is derived by checking whether two faces (each from one building component)

overlap on one contact area denoted by Eq. (1) and whether their normal vectors defined as

pointing outward from the solid object are in opposite direction as Eq. (2). The location and

geometric information are extracted by referring to “Location” and “GeometryElement” in the

class diagram shown in Figure 3.6. The algorithm then takes one vertical face (e.g., start face,

end face, left face and right face in Figure 3.9) from each component; given that 𝐹1 is from

component 1 and 𝐹2 is from component 2, normal vectors of 𝐹1 and 𝐹2 are checked to determine

73

whether or not they are in opposite directions using Eq. (2). This is done in order to exclude the

containment relationship. If the vectors are opposite (𝑒. 𝑔. 𝑉1 ∙ 𝑉2 = 1 × −1 + 0 × 0 + 0 × 0 = −1),

then all points (including vertices of building components and middle points of edges) of 𝐹1 are

checked to determine whether or not they lie in 𝐹2. If there are more than 3 points that do not lie

in a straight line (see Figure 3.10), the two elements are considered to be connected. All points of

𝐹2 are also checked against 𝐹1 in order to consider the case in which 𝐹2 is inside of 𝐹1 .

Subsequently, the connection type (e.g., T-connection, L-connection) of the detected connection

is identified by checking whether the end faces (e.g., start face and end face) of these two walls

overlap by sharing one contact area or one edge as denoted by Eq. (3). Also, more detailed

connection information such as connection angle and wall joining end, as shown in Figure 3.10

and Figure 3.11, is analyzed. Connection angle is crucial information in determining quantity of

corner beads for drywallers. As shown in Figure 3.10a, when two walls adjoin at 180º, an L-

connection is made with a primary angle of 180º; however, no corner bead needs to be placed at

this connection. The angles in Figure 3.10 are thus derived from the direction vector of walls and

are stored explicitly in the ontology-enhanced BIM model. Afterward, all the detected

connections between each two walls are checked to determine whether or not they share the

same joining wall and its joining end in order to derive wall connections with multiple walls

joining together as shown in Figure 3.10c and Figure 3.10d. The T-connection Figure 3.10c

consists of two L-connections that share the same joining wall, whereas the T-connection in

Figure 3.10d is made of three L-connections. Once all wall-to-wall connections are detected, new

connection entities are then created in the ontology-augmented BIM model, and detailed

properties, such as connection angle and wall joining end, are populated based on the analysis

results. Also, “hasIntersection” relationships are established between wall entities and those

74

connection entities in the ontology-augmented BIM model. It is worth mentioning that as

described above, wall connections with multiple walls consist of several wall connections, each

between a pair of two walls, as shown in Figure 3.10c and Figure 3.10d. This containment

relationship between connections is detected and stored in the “hasSubIntersection” object

property as shown in Figure 3.11. In summary, the governing equations for deriving wall

connections are given as Eq. (1) to Eq. (3).

 𝐹1° ∩ 𝐹2° ≠ ∅ Eq. (1)

 V1 · V2 = −1 Eq. (2)

𝐹𝑒𝑛𝑑,1 ∩ 𝐹𝑒𝑛𝑑,2 ≠ ∅ Eq. (3)

where 𝐹1 and 𝐹2 represent faces from two solid geometries, V1 and V2 denote their respective

normal vectors, and 𝐹𝑒𝑛𝑑,1 and 𝐹𝑒𝑛𝑑,2 represent the start face or end face from two solid

geometries.

Top Face

Bottom Face

Start

Face
End Face

(F1)

Left Face

Right Face

Vertex
Top Face

Bottom Face

Start Face

(F2) End

Face

Left Face

Right Face

Vertex

V1 =(1,0,0) V2 = (-1,0,0)

Figure 3.9 Geometric information of building component

75

F1

F2

PrimaryAngle

= 90º

PrimaryAngle

= 180º

a. L-connection between two walls

F1

F2

Primary

Angle

b. T-connection between two walls

c. T-connection among three walls (two L-connection)

d. Double-T-connection among four walls (three L-connection)

Figure 3.10 Various wall connections

76

Figure 3.11 Properties and interrelationships of connection

The proposed algorithm runs through every possible combination of two walls in order to check

whether they are connected or not. Each wall is checked against other walls, and the algorithm is

implemented through one iteration loop with one nested iteration loop. As a result, its time

complexity is O (N^2), where N represents the number of walls. Figure 3.12 presents the

measured performance result of the proposed geometric algorithm, with the horizontal axis

representing the number of walls and the vertical axis showing the elapsed milliseconds of

executing the proposed algorithm in the prototype system, respectively. As shown in Figure 3.12,

the elapsed milliseconds increase in a square power relation to the number of walls, which in

turn demonstrates that the algorithm is coded in a reliable manner in the prototyped system.

Figure 3.12 Measured performance result of “Connection” algorithm

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30

M
il

li
S

ec
o
n

d
s

Number of Walls

77

Stud spacing denotes the maximum centre-to-centre distance between adjacent studs in a light-

frame wall. To obtain stud spacing information, opening studs, such as king studs and jack studs,

need to be filtered out so that only location information pertaining to common and cripple studs

is retrieved. Then, all distances between adjacent studs are calculated in Revit API. The

maximum of all the calculated Euclidean distances defines the stud spacing denoted as Eq. (4).

Generally, three steps are executed in the proposed algorithm. To begin, the common and

cripple studs are sorted in the ascending order of their distances to the wall origin; then,

distances between adjacent studs are calculated through an iteration loop; finally, the stud

spacing is determined as the maximum value of all calculated distances. The time complexities

in these steps can be expressed as O (N * log (N)), O (N), and O (N), respectively. Here, N

denotes the number of studs. Accordingly, the worst-case time complexity for calculating stud

spacing is O (N * log (N)). Figure 3.13 presents the measured performance result of the

proposed geometric algorithm. The horizontal axis represents the number of studs, whereas the

vertical axis shows the elapsed milliseconds of executing the proposed algorithm in the

prototype system. As shown in Figure 3.13, the elapsed milliseconds increase in relation to the

number of studs.

Stud Spacing = max
1≤j≤m−1

(√∑ (𝑝𝑖,𝑗 − 𝑝𝑖,𝑗+1)
22

𝑖=1
) Eq. (4)

where {𝑝𝑖,𝑗} 𝑖=1,2 are the coordinates of location point of the 𝑗𝑡ℎ stud, and m is the number of

studs, including common and cripple studs, in the wall.

78

Figure 3.13 Measured performance result of “GetStudSpacing” algorithm

3.5.3.2 Populating established ontology with Revit BIM data

Once BIM data (including explicit data and derived data) have been analyzed and extracted using

Revit API, dotNetRDF is integrated with the Revit API in order to populate the established

ontology with the extracted BIM data and generate an ontology-augmented BIM model in RDF.

Basically, the construction-oriented product ontology (referring to ontology terms) is established

in Protégé 4.3 and saved into a RDF file with an extension of owl. DotNetRDF provides

functions such as RDFGraph.Assert(new Triple (subject, predicate, object)) to write extracted

BIM data into this file in order to generate ontology individuals. The partial detailed

implementation for generating ontology individuals in C# is provided in Appendix C. It should

be noted that the ontology-augmented BIM model keeps references of building objects in the

Revit BIM model by recording identification numbers of corresponding building elements into

ontology entities. In this way, the query results can be visualized in 3D in the original Revit BIM

model, which enables construction practitioners to more clearly envisage the search results. With

respect to implicit design features such as intersections, their host building elements in turn can

be highlighted to enable feature visualization.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30

M
il

li
S

ec
o
n

d
s

Number of Studs

79

3.5.4 Semantic query

The purpose of construction-oriented QTO is to take off work packages on the basis of product

design features and construction methods, construction-oriented QTO is thus product design

feature-based QTO. In other words, construction practitioners obtain the QTO by (1) filtering the

product design features based on descriptions of work packages and (2) performing take-off on

applicable building elements or product design features. For instance, the work package

“061110405167” for wall framing, as shown in Table 3.1 and Figure 3.14, is to take off the total

length of studs hosted by walls that are resting on the 1st level of the building, made of 50 mm ×

152 mm studs, with a height of 2,540 mm, and functions as structural walls. This work package

only applies to studs with these particular design features, which are associated with unique unit

price and production rate; various work packages can be defined in order to factor in the effect of

design feature details on production rate and unit price in detailed construction planning.

Nevertheless, it is a challenge for construction practitioners to manually look for applicable

building elements and product design features, thereby obtaining the required QTO. A query-

based approach allows construction practitioners to search through BIM design models for the

desired information in a flexible, straightforward manner. This approach reduces the laborious

manual work and human errors associated with looking for and performing take-off on relevant

building elements and product design features. It thus provides a promising solution to retrieve

construction-oriented QTO information. SPARQL, released by the W3C RDF Data Access

Working Group (DuCharme, 2011), enables a semantic query using formalized domain

vocabularies. In this study, it is employed to query the ontology-augmented BIM model in RDF

in order to materialize construction-oriented QTO. Figure 3.14 presents one example of a

SPARQL query for taking off the aforementioned wall framing work package. As shown in the

80

figure, a query using SPARQL is expressed as a collection of conditions in a “subject-predicate-

object” triple structure, allowing construction practitioners to obtain its quantity information. A

triple structure, as illustrated in Figure 3.14, includes three parts: the first is always the subject,

while the predicate and the object are the second and third, respectively. Variables are indicated

by a “?” prefix, and the prefix, “proOnto”, herein refers to the established construction-oriented

product ontology. It should be noted that users can formulate query statements by using richer

vocabularies generalized in the construction-oriented ontology. Richer vocabularies are used in

“predicate” and “object” in order to filter the design feature. For example, “proOnto:isPartOf” is

a vocabulary to describe the relationship between “BuildingElement” and “BuildingPart”, while

“proOnto:Height” is a property of Wall in the ontology. Each triple represents one filtering

condition for each design feature. For instance, “stud proOnto:StudSize "L2X6"^^xsd:string”

defines that framing studs are “50 mm × 152 mm” (2″ × 6″) type stud, whereas “hostWall

proOnto:IsStructural true.” requires that the walls hosting studs should be structural walls. As a

result, construction practitioners can obtain the construction-oriented QTO information by

formulating the SPARQL query in a flexible, straightforward manner.

Figure 3.14 SPARQL query

81

This research implements the proposed approach as a Revit add-on. The dotNetRDF is adopted

and integrated in the Revit API in order to allow construction practitioners to formulate queries

on the QTO system user interface. Figure 3.15 presents the prototyped Graphic User Interface

(GUI) where the SPARQL query can be inputted. The SPARQL query is executed through the

dotNetRDF.Net library, from which query results can be retrieved. More importantly, query

results can not only be shown in the developed GUI literally, but can also be transferred to Revit

API in order to visualize query results within Autodesk Revit by highlighting corresponding

building elements (see Figure 3.15). Each query statement, along with its item name that has

been inputted within the GUI, can be saved and updated into a query database via corresponding

buttons (e.g., Update and Delete) on the GUI. These query statements can be reused across

different projects in order to expedite query formulations. In the case of new projects,

construction practitioners are able to browse through the query database via a drop-down list

and reuse the existing query statements. In future work, query statements in the database can be

integrated with unit price and production rate databases in order to effectively support

construction planners in cost estimation and scheduling.

82

Figure 3.15 Semantic query through prototyped GUI of Revit add-on

3.6 Validation

To validate the proposed methodology and the prototyped system, a wood-framed residential

building, as shown in Figure 3.16, was chosen for case study. The building consists of two

storeys and 34 wall panels, including 12 exterior walls and 22 interior walls. The building model

was built in Autodesk Revit 2015. Due to the fact that Autodesk Revit, as a general BIM

modelling tool, does not provide efficient functionalities for detailed construction framing, a

suite of commercial Revit add-ons, Metal Wood Framer (MWF) (StrucSoft Solutions, 2015),

was employed to frame the building components such as wall panels. The developed prototype

system was then launched in Autodesk Revit to conduct construction-oriented QTO. It is

noteworthy that the ontology-enhanced BIM model was first generated or updated by

“GeneAugBIM” on the GUI as shown in Figure 3.15. It took only a few seconds for the

prototype system to populate ontology individuals in the case project, since the DotNetRDF

SPARQL Query
Query Result

All triples

Query
Visualization

83

library, an open source .Net Library for RDF, was integrated with Autodesk Revit API through

programming. The substantial manual work involved in the generation of ontology individuals

was thus eliminated. An ontology reasoner in Protégé 4.3 called “FaCT++” was then invoked to

infer implicit design features (e.g., inverse relationships between ontology entities), as shown in

Figure 3.8. Afterward, SPARQL queries were formulated in the GUI to take off work packages

and visualize query results based on the ontology-enhanced BIM model.

a. 3D view

b. Plan view

Figure 3.16 The two-storey residential building of the case study

Four examples were utilized to test and validate the prototyped system with respect to new

domain terms, new term interrelationships and new term properties. SPARQL queries for these

84

four examples are shown in Figure 3.17. New domain terms were tested by taking off exterior

corners of L-connections for work package “092915100411”, listed in Table 1. Since wall

connections were modelled explicitly in the ontology-enhanced BIM model, semantic query

could be formulated to query this feature (see Figure 3.17b). Note that only exterior corners of L-

connections with two interior walls are taped with metal bead. Hence, a triple “?hostWall

pronto:IsExteior false” as shown in Figure 3.17a was added into the query statement in order to

filter L-connections hosted by exterior walls. New term interrelationships were tested by taking

off studs for structural wall framing “061110405167”, since taking off stud framing of structural

wall requires explicit modelling of the hosting relationship between walls and studs. Wall

framing “061110405167” is defined only for “50 mm × 152 mm” studs hosted by bearing walls,

and this item is taken off by summarizing stud lengths. The SPARQL query language provides

aggregate functions, such as SUM, MAX, ORDER BY, and GROUP BY, and these aggregate

functions (e.g., sum as shown in Figure 3.17c) can be used in the query statement in order to take

off applicable design features in the BIM model. Non-bearing wall framing for “061110260180”

was taken off in order to test the new term property “StudSpacing” and “HasDoubleTopPlate”.

As shown in Figure 3.17e, “?hostWall proOnto:StudSpacing "12"^^xsd:string” defines that the

stud spacing of the walls is 305 mm (12″), whereas “?hostWall proOnto:HasDoubleTopPlate

true” requires that the walls are framed with double top plates. The query results are tabulated in

Table 3.2. A manual QTO was conducted to verify and validate the semantic QTO. The

prototyped system provided the same QTO results as manual QTO, while significantly

improving QTO efficiency in comparison with manual QTO. In addition, as demonstrated in

Figure 3.15, the prototyped system is able to visualize the query results highlighted on the GUI,

which can enhance communication among construction practitioners. Moreover, this

85

visualization feature allows the user to check quickly whether the required QTO has been done

for all relevant building design features. Figure 3.17 shows the resulting design features in green

for the four corresponding SPARQL queries. For instance, Figure 3.17b highlights all the walls

hosting the required L-connections. As depicted in Figure 3.17d, studs for structural walls with

2,743 mm of height are not highlighted in green due to the fact that this height does not fall into

the range specified in the corresponding query statement. Studs around the opening, such as king

studs and jack studs, are also not coloured in the figure since they are filtered out by the query

statement as expected. In terms of partition framing for “061110260180”, only walls with the

exact design feature of "50 mm × 102 mm studs, 305 mm O.C., 2,450 mm high, single bottom-

plate and double top-plate” are highlighted in Figure 3.17f, whereas other partition walls that

may only embrace one of the specified features are not highlighted after executing the

corresponding query statement. As another example, door buck for structural wall framing

“061110400170” is taken off in order to evaluate the interrelationship between door bucks and

walls, “hasSubComponent”, that is inferred through ontology reasoning. As “hasSubComponent”

is the inverse of “isPartOf” in ontology modelling, and only “isPartOf” is extracted from Revit-

based BIM design models, “hasSubComponent” is inferred through executing ontology

reasoning and can be utilized in the SPARQL query, as demonstrated in Figure 3.17g. All the

queries are found to generate the expected results, a finding which demonstrates the reliability of

the prototype system.

86

a. Query statement for metal corner bead b. Visualization for metal corner bead

c. Query statement for structural wall stud

framing

d. Visualization for structural wall stud framing

e. Query statement for partition wall framing f. Visualization for partition wall framing

g. Query statement for door buck h. Visualization for door buck

Figure 3.17 Examples of semantic query

SELECT Distinct (str(?lConnection) as ?intersection)

 WHERE {

 ?lConnection rdf:type proOnto:LConnection .

 ?lConnection proOnto:Primary ?angle .

 ?hostWall proOnto:hasIntersection ?lConnection .

 ?hostWall proOnto:Height ?height .

 ?hostWall proOnto:IsExterior false .

 ?hostWall proOnto:Level "First Floor Plan"^^xsd:string .

 ?hostWall rdf:type proOnto:StudFramedWall .

 FILTER (?angle != 3.14) .

 FILTER (?height < 8.15) .

 FILTER (?height > 7.85)

 }

SELECT Distinct (str(sum(?value)) as ?totalLength)

WHERE {

 ?stud proOnto:Length ?value .

 ?stud rdf:type proOnto:Common .

 ?stud proOnto:Size "L2X6"^^xsd:string .

 ?stud proOnto:isPartOf ?hostWall

 ?hostWall proOnto:Height ?height.

 ?hostWall proOnto:IsStructural true .

 ?hostWall proOnto:Level "First Floor Plan"^^xsd:string .

 ?hostWall rdf:type proOnto:StudFramedWall .

 FILTER (?height < 8.15) .

 FILTER (?height > 7.95)

 }

SELECT Distinct (str(sum(?value)) as ?totalLength)

WHERE {

 ?hostWall rdf:type proOnto:StudFramedWall .

 ?hostWall proOnto:IsExterior false.

 ?hostWall proOnto:IsStructural false.

 ?hostWall proOnto:Level "First Floor Plan"^^xsd:string.

 ?hostWall proOnto:Height ?height .

 FILTER (?height < 8.15) .

 FILTER (?height > 7.95) .

 ?hostWall proOnto:Length ?value.

 ?hostWall proOnto:StudSize "L2X4"^^xsd:string .

 ?hostWall proOnto:StudSpacing "12"^^xsd:string .

 ?hostWall proOnto:HasDoubleTopPlate true.

 }

SELECT (str(?doorDuck) as ?doorBuck)

WHERE {

 ?hostWall rdf:type proOnto:StudFramedWall .

 ?hostWall proOnto:StudSize "L2X6"^^xsd:string .

 ?hostWall proOnto:hasSubComponent ?doorDuck.

 ?doorDuck rdf:type proOnto:DoorDuck .

 ?doorDuck proOnto:Length ?length.

 FILTER (?length < 6.1) .

 FILTER (?length > 5.9) .

 }

5

1

4

3

2

6

2,743 mm (9′)

height

87

Table 3.2 SPARQL query results

Line Number Description Quantity Unit

061110405167 Wall framing, studs, 50 mm × 152 mm, 2,540 mm high wall,

pneumatic nailed

120.47 m

092915100411 Accessories, gypsum board, corner bead, galvanized steel, 32 mm

× 32 mm × 2,450 mm

6 Each

061110260180 Wood framing, partitions, standard & better lumber, 50 mm × 102

mm studs, 305 mm O.C., 2,540 mm high, includes single bottom

plate and double top plate, excludes waste

14.42 m

061110400170 Wall framing, door buck, king studs, jack studs, header and

accessories, 50 mm × 152 mm wall, 1.828 mm wide, 2.540 mm

high

1 Each

3.7 Discussion

Ontology, as a formal approach to naming domain entities and describing their interrelationships

and properties, provides a promising solution to organizing information for construction

management applications. Ontology technologies such as RDF are the basis for the semantic web

as it allows structured and semi-structured data to be shared and integrated across different

applications. Moreover, a data model using ontology technology such as RDF is saved in a graph

structure which represents and stores data with nodes, edges, and properties. This graph data

model enables semantic queries and provides the semantic foundation for knowledge-based

computer applications. As such, the developed RDF/OWL-based ontology in this study is

utilized to enhance current BIM design models by adding domain terms and their

interrelationships and properties. Existing BIM data in a given BIM model is extracted and

further analyzed to derive the building information (e.g., wall connections) that is not modelled

explicitly in the BIM. By deriving the implicit BIM data, instead of explicitly modelling it, a

large amount of human efforts during the modelling phase can be saved; meanwhile, no

additional efforts are required to obtain construction-oriented QTO information during the

quantity take-off process. On the other hand, deriving the implicit BIM data enables QTO

professionals to take off the implicit BIM features on the basis of existing design-oriented BIM

88

models, which improves the QTO efficiency. All explicit and derived BIM data are used to

populate the construction-oriented product ontology, and ontology reasoning is further applied to

infer new information on the basis of extracted BIM data in order to generate the ontology-

enhanced BIM model in an RDF/OWL file. The resulting RDF model conceptually functions as

a domain-specific “model view” of the given BIM model while enabling semantic queries to

facilitate construction-oriented QTO. As a result, construction practitioners can semantically

query a BIM design model in order to generate QTO for construction activities by using their

domain vocabularies, without the need to understand the technical structure of the underlying

complex BIM schema.

Due to the fact that BIM design models lack domain semantics and standardized BIM object

definitions in specific building domains, construction practitioners may take off their work

packages based on BIM models designed using various BIM authoring tools. In this case, they

need to understand various BIM object representations for the same building objects or design

features (e.g., Structural Column and IFCMember for studs in light-frame walls), which

increases their workload and complicates the daily planning work. Formalizing the domain terms

into ontology allows users to apply a unique domain vocabulary they are conversant with in

order to semantically query the BIM design model, thus addressing this problem to a certain

degree and improving QTO efficiency. Domain terms and their various relationships are

explicitly represented within RDF-based ontology in a “subject-predicate-object” triple structure,

while the SPARQL query statement is formulated in the same triple structure using domain

vocabularies. Moreover, each triple in a SPARQL query statement defines one filtering condition

in connection with each design feature for the desired QTO. SPARQL queries are well aligned

with users’ mental models of the targeted domain. Hence, it is straightforward to formulate

89

SPARQL queries on BIM models in order to retrieve construction-oriented QTO information.

SPARQL query statements in the present research are formulated by the authors based on the

description of work packages. Once users are acquainted with SPARQL, it would generally take

less than one minute to formulate one query statement. Of course, this means that some learning

effort would be necessary in order for construction practitioners or QTO professionals to master

SPARQL. Moreover, construction practitioners may find it difficult to design SPARQL queries

using rich vocabularies. Therefore, in future work, GUI utility functions will be investigated to

empower construction practitioners to take full advantage of rich vocabularies in formulating

their own SPARQL query statements in a user-friendly fashion. Such user-friendly utility

functions will maximize the benefit of the proposed semantic QTO approach.

3.8 Conclusion

This research proposes an ontology-based semantic approach for construction-oriented quantity

take-off (QTO) and develops a prototype QTO system as an Autodesk Revit add-on in the

particular context of light-framing building construction. The established construction-oriented

product ontology enhances the current BIM design models by extending domain terms and their

properties and interrelationships and aligns the BIM models with construction-oriented QTO,

such that construction practitioners can take off the quantities for work packages under certain

design features that may not be modelled explicitly in BIM. This ontology is established in

Protégé 4.3 in the format of RDF/XML; dotNetRDF (an open source .Net Library for RDF) is

integrated into the prototyped system. Hence, Simple Protocol and RDF Query Language

(SPARQL) can be utilized to query the ontology-augmented BIM model, which allows

construction practitioners to formulate semantic queries using richer vocabularies they are

conversant with. The main contributions of this research are summarized as follows:

90

1) Establishing a construction-oriented product ontology, which extends current design BIM

models by adding domain terms and their properties and interrelationships without

changing the original BIM schema. Detailed wall connection information is derived

based on existing BIM spatial and geometrical data and modelled explicitly in the

ontology-enhanced BIM model, all intended to support construction process oriented

QTO.

2) Prototyping a semantic QTO system as an Autodesk Revit add-on. This system includes:

(i) a Revit BIM model parser that converts the Revit BIM model into an ontology-

augmented BIM model in an RDF file; and (ii) a semantic search graphic user interface

(GUI) that enables semantic queries on the ontology-augmented BIM model, capitalizing

on the semantic awareness provided by RDF-based ontology and SPARQL query. In

addition, the prototyped system is capable of visualizing the query results in order to

facilitate communication among project stakeholders.

However, this prototyped system currently has some limitations. For instance, although ontology

reasoning by using the default reasoners in Protégé 4.3 can infer some implicit information such

as relationships between ontological entities in the prototyped system, the rule-based ontology

reasoning by Semantic Web Rule Language (SWRL) is not yet supported due to the fact that the

present research does not encompass SWRL. It is anticipated that SWRL-based ontology

reasoning will further provide semantics to the QTO system and will be addressed in the future.

Additionally, the construction-oriented product ontology is formalized in the particular context

of light-frame building construction. Algorithms for detecting implicit design features such as

StudSpacing and HasDoubleTopPlate are specific to light-frame building, whereas the

geometrical algorithms designated to detect various implicit connections are generic for all kinds

91

of building projects. For other types of building projects, construction practitioners can still rely

on the geometrical algorithms to detect such intersection information in planning day-to-day

work, but other algorithms and specific domain ontologies need to be further developed or

customized so as to adapt the proposed semantic QTO approach to applications on other types of

building projects. Additionally, zone-based wall intersection detection, instead of checking

detections on every combination of two walls, will be instrumental in simplifying the

geometrical algorithms and improving computing efficiency. Ontology development is a

continuous process and the established ontology should be continuously updated in order to

satisfy new requirements of construction-oriented QTO. Another potential extension in future

research is to shift the prototype system from a vendor related Revit-based application to a fully

standardized IFC-based BIM application.

92

CHAPER 4: PANELIZED CONSTRUCTION SCHEDULING3

4.1 Introduction

Building information modelling (BIM), described as “digital representation of physical and

functional characteristics of a facility” (National BIM Standard, 2013), has been regarded as a

potential solution to challenges within the Architecture, Engineering, and Construction (AEC)

industry due to the following capabilities (1) BIM is able to store all the information pertaining

to a facility, which lays the foundation by which the BIM tools perform a variety of analyses,

such as structural analysis and schedule planning analysis (Weygant, 2011); and (2) BIM can

facilitate information exchanges and interoperability between software applications during the

project life cycle (Howard & Björk, 2008), which boosts work efficiency and enhances

communication and collaboration among project participants. Applications of BIM have thus

garnered much attention within the construction industry in recent years. In particular,

researchers and construction practitioners have explored different ways to perform schedule

planning with the support of BIM. However, BIM in most cases functions as a database of 3D

building components and provides only limited information of each component (e.g., quantity

take-offs) for the downstream scheduling analysis. Rich building information embedded in BIM

is not being fully utilized in order to facilitate the automatic generation of project schedules,

entailing substantial manual work, especially in construction sequencing and information

exchanges between BIM modelling tools and scheduling tools. In this case, BIM in current

practice offers only limited advantages over traditional 3D-CAD models.

Construction schedules and plans should be formulated at the appropriate level of abstraction and

detail (Fischer & Aalami, 1995), and construction activities need to be manageable from the

3 A version of this chapter has been published in the journal of Automation in Construction, 53, pp. 29-43.

93

construction perspective. As such, construction activities can be formulated by three rules: 1)

type of work (distinct activities requesting different resources); 2) operationally significant

function (distinct activities carried out on components with different functions); 3) operationally

significant location (distinct activities carried out in different zones) (Gray, 1986). Nonetheless,

these three general rules are not sufficient to cater for the needs of some projects such as

panelized building projects. Defining activities/processes in panelized construction should

distinguish each individual building component, instead of distinguishing each construction zone,

in that each pre-fabricated component is unique and needs to be installed at its own designed

location and be scheduled individually in order to manage and coordinate factory production and

on-site construction processes. In the current practice most construction schedules generated

from BIM are formulated at the project level where constructing one building component is

usually assumed to be one construction activity, or at the construction zone level where activities

are defined for particular construction zones. These activity-level schedules do not delve into

different construction operations which request different resources in accordance with specific

construction methods in order to build individual building components. Moreover, when

construction scheduling involves details at the activity level, both technology precedence

constraints and resource constraints must be taken into account in order to create a meaningful

detailed schedule. In current practice, resource constraints are overlooked in BIM-based

scheduling; optimization technology is not yet integrated with BIM and process simulation

model to address resource-constrained scheduling problems.

The research presented in this chapter explores a BIM-based integrated scheduling approach that

automatically generates optimal component-centric activity-level schedules for construction

projects by performing simulation-based scheduling from the BIM model. More specifically, in

94

the proposed BIM-based scheduling approach, rich product information from BIM models and

work package information from a Microsoft (MS) Access Database, are automatically extracted

and fed as inputs to the process simulation model that mimics the construction logic and

performs simulation-based scheduling analysis. The in-depth integration of 3D BIM product

model and process simulation model yields an activity-level construction schedule. An

evolutionary optimization algorithm is also incorporated into the proposed approach to evaluate

various construction sequences under technical and resource constraints and ultimately obtain the

optimized activity-level schedule.

4.2 Literature Review

Traditionally, construction scheduling is formulated manually in the form of 2D bar charts by

means of critical path method (CPM). This is a laborious and highly error-prone process that

challenges construction practitioners. Recently, with the advances in 3D computer aided design

(CAD) and information technology, researchers and construction practitioners have been seeking

to develop computer-assisted scheduling tools in order to boost scheduling efficiency and

relevance.

4.2.1 Construction planning using 4D CAD

Among these efforts, one well-known concept in the construction domain is 4D CAD, also

known as 4D visualization. 4D CAD models, the BIM prototypes that leverage 3D models for

schedule information, are able to assist project participants in visualizing the construction plan

(CPM plan) in 3D and identifying conflicts prior to construction commencing. 4D technology

has proven to be more effective than traditional CPM or Gantt chart for construction planning

(Staub-French et al., 1999). Based on the concept of 4D CAD, Chau et al. (2005) has further

developed an information system, called 4D graphics for construction planning and site

95

utilization, that extends 4D technology into the field of resource management and site space

utilization. Subsequently, Lu et al. (2009) proposed a methodology for integrating 4D CAD with

3D animation of operation simulation in order to visualize construction operations involving

dynamic interaction of various construction resources. Incorporating a scheduling feature can

further enhance 4D visualization; the current technology requires additional effort to link the

external schedule with the 3D objects for the purpose of visualization (Tulke & Hanff, 2007). It

should be noted that “scheduling feature” here refers to the direct generation of schedules,

including the schedule logic and activity times from BIM or 3D models.

4.2.2 BIM-based scheduling

Since BIM hosts enriched project information, which is required for schedule analysis, it is

capable of supporting the generation of construction schedules. In this respect, attempts to

automate the process of project scheduling based on BIM or 3D-CAD models have been carried

out in recent years. For instance, De Vries & Harink (2007) developed an algorithm that

generates component-level construction schedules from a 3D-CAD model. This algorithm

determines construction orders of building components based on their spatial relationship (i.e.,

which component is adjacent to or on top of another component). Similarly, Kataoka (2008)

introduced an automated scheduling approach that formulates construction schedules based on

pre-defined construction method templates and 3D building geometries. The developed system is

intended for use prior to the building structural system being specified. Tauscher et al. (2009)

proposed a novel IFC-based method to semi-automatically generate construction schedules. In

their study, construction schedules are generated by means of case-based reasoning based on data

extracted from an IFC-based BIM model. More recently, Moon et al. (2013) developed a BIM-

based construction scheduling approach which employs BIM (to visualize construction activities)

96

as well as optimization theory (to reduce activity overlaps). Their method did not encompass the

concept of BIM-based scheduling (i.e., direct schedule generation) defined in this chapter.

Meanwhile, Kim et al. (2013) automated the generation of construction schedules by extracting

building information from IFC-based BIM models as the inputs for scheduling analysis. The

precedence relationships among construction-zone level activities are determined by using

formalized sequencing rules in their prototyped system. Another recent effort has been a BIM-

based framework proposed by Chen et al. (2013) to yield the near-optimum schedule. Their

framework involved a manual process for explicitly establishing a complete activity network and

assigning quantity take-offs from 3D CAD to activities. In their study, 3D CAD only provided

quantity take-offs for the process simulation model. Due to the fact that the framework was not

integrated with an optimization algorithm for the purpose of efficiently exploring the search

space for optimum solutions, the near-optimum schedule was obtained by simply picking the

best solution in multiple runs.

4.2.3 Simulation-based scheduling

Simulation-based scheduling approach has been suggested by previous scholars for detailed

scheduling at the construction operation level, capitalizing on the capability of discrete-event

simulation (DES) to mimic the construction operation logic and investigate the resource

allocation among activities. A number of simulation-based scheduling models/tools have been

developed to date, including an activity-based simulation model for project scheduling (Zhang et

al., 2002) and the simplified discrete-event simulation approach (SDESA) (Lu, 2003). Lu et al.

(2008) further developed a Simplified Simulation-based Scheduling system (S3) to perform

resource-constrained critical path analysis by integrating SDESA with particle swarm

optimization (PSO). Taghaddos et al. (2009 & 2012) developed a simulation-based scheduling

97

system for module assembly in industrial projects. Hu & Mohamed (2010) introduced a state-

based simulation mechanism for facilitating project schedule updating, and Hong et al. (2011)

proposed an estimation model for core wall construction of high-rise buildings. The

aforementioned efforts in simulation-based scheduling sought to address the schedule problem

by leveraging the advantages of DES, but have not yet explored the seamless integration of

process simulation with BIM to facilitate the automated generation of construction schedules.

Integrating BIM with process simulation can assist practitioners in scheduling construction

project due to the fact that BIM can provide quantity take-off information for the process

simulation model, as validated in a study by Wang et al. (2014). In their study, a stand-alone

module (Visual Basic application) was developed to read quantity take-off information in MS

Access and feed it as inputs to the predefined simulation model in order to generate the

construction schedule. The quantity take-off in the study was generated and saved into MS

Access database manually through the “Schedule” function in Revit. The generated schedule

served as a project-level schedule for each type of building element, since BIM only provided

quantity take-offs, instead of rich product information to the roughly pre-defined process

simulation model. To address the need for detailed activity-level scheduling, an in-depth

integration (rich building information exchanges) between BIM and process simulation model

must be achieved.

Konig et al. (2012) have conceived of an intelligent concept by which to store interdependencies

among activities to be reused in future project scheduling based on BIM and DES. Two kinds of

templates were defined in their research: (1) a process pattern for individual building

components, and (2) complex interdependencies among building elements. These templates were

98

developed based on construction knowledge and experience, and were assigned to building

elements manually, entailing a large amount of manual effort to generate the schedule.

The literature review reveals that BIM-based scheduling has been addressed in the previously

related research, either by applying construction sequencing rules to BIM or by performing

simulation-based scheduling with BIM feeding quantity take-offs to the process simulation

model. The former approach usually summarizes spatial relationships (e.g., supported by,

embedded in) as construction sequencing rules in order to infer the precedence relationship

between construction activities. Then, the derived precedence constraints are taken into account

in construction scheduling, whereas resource constraints are generally ignored or implicitly dealt

with. On the other hand, the simulation-based approach at present has yet to take full advantage

of the rich product information in BIM models so as to automate schedule generation. This

necessitates a large amount of human judgment and intervention involved in construction

sequencing and simulation model development (building simulation network), especially when

construction projects are scheduled at the component-centric activity level. In fact, establishing a

complete activity network manually is a challenge at times due to the practical need to adjust

construction technology under physical and spatial constraints in the field and the dynamic

precedence constraints between activities caused by resource allocation strategies, which is

further elaborated in the “Background of Light Gauge Steel Construction” section of this chapter,

and the simulation model cannot even mimic construction processes without the provision of

enriched information from the 3D BIM model. For instance, wall panels for structural usage and

non-structural usage will go through different processes and capture different resources in the

simulation model, respectively. The research presented in this chapter thus seeks a new BIM-

based integrated scheduling approach which can address the difficulty of manually building a

99

complete activity network and overcomes the limitation of defining a fixed activity network in

project planning through exchanging enriched information between BIM and DES model with an

incomplete simulation network. Notably, the DES model at best represents an essential but

incomplete simulation network of the complicated building processes being modeled.

4.3 Integrated Methodology

Unlike previous research, in which BIM only provides quantity take-offs for project-level or

construction zone level scheduling, this approach achieves in-depth integration among BIM

product models, process simulation, and optimization models, thereby facilitating automatic

generation of optimized component-centric activity-level schedules for construction projects.

Within the integrated system, a BIM product model is supplemented with work breakdown

structure (WBS) information, while the process simulation model can gain rich product

information (including quantity take-offs) from BIM and work package information (e.g.,

operation productivity) from WBS in order to generate component-centric activity-level

construction schedules. Moreover, this research requires the planner to build part of the activity

network manually as per constraints that need to be observed and remain constant during

construction, instead of a complete activity network as in previous research, in order to address

the difficulty of manually building a complete activity network and overcomes the limitation of

defining a fixed activity network in project planning. The dynamic precedence constraints on

activities will be derived at run time of DES through BIM-simulation integration, whereas

resource-induced precedence constraints are addressed by using priority dispatching rules to

allocate limited resources in the simulation model. In addition, an evolutionary algorithm,

namely, particle swarm optimization, is selected for computational efficiency and effectiveness

in arriving at optimum solutions for large, complex systems, and hence is incorporated into the

100

methodology in order to optimize the construction sequences with the objective of minimizing

project duration under resource constraints. The integration is realized through the enriched

information entity, as shown in Figure 4.1 and Figure 4.2. Figure 4.2 also shows all types of

information extracted from the BIM product model and from the MS Access database as

attributes of enriched information entities. The generated schedule of each activity is recorded by

simulation entities following execution of the process simulation model. Afterward, all the

information carried by entities is exported into an XML file, and the schedule in the XML file

can be presented in the form of a bar chart or a network diagram in order to facilitate

communication among construction participants. Autodesk Revit, MS Access, Simphony.NET

4.0 simulation engine (Mohamed & AbouRizk, 2000), and MS Project are all employed in this

research in order to achieve the objective. The methodology is shown in Figure 4.1, and a

detailed explanation of the methodology and interactions among different components are

presented in the following sections.

101

Figure 4.1 Overview of integrated methodology for detailed schedule planning

4.3.1 Building Information Model

Due to the fact that BIM embraces all the product information about the building product, such

as material information and functional information, in this research BIM serves as the central

database that supplies the process simulation model with the enriched product information. In

other words, BIM not only provides quantity take-offs, but more importantly includes other rich

product information (see Figure 4.2) such as topology/connections, supports, and functionalities

(e.g., structural usage) to support the process simulation with respect to technical construction

logic. For instance, the process simulation model can control the construction sequence of

structural floors and their supporting elements (e.g., structural walls) based on the functional and

supporting information of floors that is automatically extracted from the BIM model, and should

102

always proceed with the construction of structural floors after all their supporting elements are

completed. In this respect, rich building product information from BIM provides the necessary

input for automating the process of detailed construction scheduling.

Notably, the information with regard to “Connections” and “Supports” of building components is

not presented in the BIM model explicitly. Further analysis, such as topological analysis and

structural supporting relationship analysis based on geometrical and functional information, is

thus required. A detailed explanation of this analysis is given in the “Implementation” section of

this chapter.

4.3.2 Work breakdown structure (WBS)

Currently, BIM is largely associated with product design model, while work breakdown structure

(WBS), or work package information, is not represented in the BIM system. This potential

deficiency poses a challenge to BIM-based activity-level construction scheduling. In order to

address this issue, this chapter proposes an approach to supplement BIM with work package

information by storing WBS in a MS Access database. Additionally, work package items are

organized into “Tables” in MS Access in accordance with the “Type” of building component

being constructed, thereby facilitating the integration of BIM with WBS information.

Subsequently, the process simulation model, discussed in the following section, will receive

enriched inputs from both the BIM model and MS Access database by relating each Access table

with a corresponding building element in Revit. In addition, information about all available

resources for the project is stored in another MS Access table, and this information is extracted

as inputs for the process simulation model in order to identify the effect of resource availability

on project duration and to assist construction practitioners in resource management at the project

level.

103

4.3.3 Construction process simulation

Although a BIM model in Revit can be integrated with WBS information to obtain information

on the productivity and resource requirements of each work package in MS Access through the

aforementioned approach, the construction schedule still cannot be generated from the BIM

model due to the fact that BIM in general does not contain any knowledge with regards to the

construction logic. To address this issue, construction process simulation is incorporated into this

research. The process simulation model must be developed to mimic the construction processes

in detail, and to process construction tasks in consideration of the specified construction method,

based on rich product information from BIM.

4.3.3.1 Integration of BIM product model and process simulation model

A BIM model usually is an assembly of pre-defined 3D building objects, also known as

parametric objects, where rich building information is embedded into building components as

their attributes or parameters. Some simulation modelling systems, such as Simphony, a

simulation environment developed by researchers at the University of Alberta (Mohamed &

AbouRizk, 2000), provides a similar concept called “entities”, which makes the simulation

capable of handling complex and interactive problems. Entities are allowed to carry attributes

with them as they move through the process simulation model. Consequently, parametric objects

in a BIM model can be fully or partially represented by entities in a process simulation model,

given that simulation entities are designed to represent building components. Hence, the

integration of a BIM product model and a process simulation model can be realized by enriched

information entities, which extract rich building product information of building components

from BIM and WBS information from MS Access. These entities move through the process

simulation model as guided by this enriched information.

104

Figure 4.2 shows the entity relation diagram of the enriched information entity representing

building components. As depicted in the figure, the attribute of “Priority for Resource” is

generated from the optimization model, while “Schedule Information”, such as durations and

predecessors, is provided by the process simulation model. All the information denoted by solid

circles in Figure 4.2, with the exception of the work package IDs, is extracted from the BIM

product model. The attributes in the dashed-circles are sourced from WBS stored in MS Access.

(It should be noted that ID of work packages is a composite attribute which combines “Project”,

“Level”, “Unit”, “Element Type” and “Element ID” of building elements and “Name” of work

packages in order to identify each work package under each building element.)

Figure 4.2 E-R diagram of entity with enriched information

4.3.4 Optimization of construction schedule

Resource limitations lead to a resource-constrained project scheduling problem (RCPSP)

whereby limited resources are allocated among tasks with pre-defined resource requirements.

The objective of this research is to produce the optimal activity-level schedule with the

minimum project duration for a competent-centric construction project under resource

constraints. Note only construction sequences that are practical to adjust on site are optimized,

instead of adjusting quantities of required resources for each activity. This is consistent with a

typical RCPSP problem as defined in the literature. Optimization of construction schedules by

adjusting resource requirements is out of scope of this research and can be studied in future. The

105

targeted scheduling problem can be solved by using evolutionary algorithms, such as genetic

algorithm (GA) and the particle swarm optimization (PSO) algorithm introduced by Eberhart et

al. (1995). Zhang et al. (2006) successfully applied PSO in the construction domain, and they

demonstrated two PSO-based solutions—priority-based particle representation and permutation-

based representation—in solving the RCPSP problem. Lu et al. (2006) further demonstrated that

PSO is superior to GA in converging.

In addition, DES systems such as Simphony in general allow the specification of priority

dispatching rules, which can also be utilized to schedule activities under resource constraints. In

this approach, resource conflicts among activities can be addressed due to the fact that

construction activities are served by limited resources in descending order of their priority

number in simulation models. Meanwhile, this approach has the potential of being integrated

with evolutionary algorithms to optimize construction schedule. This research thus integrates

PSO with the process simulation model in order to solve the RCPSP problem. The integration

between process simulation and evolutionary optimization based on PSO algorithms is

demonstrated in the later section. It should be noted that other evolutionary algorithms can also

be incorporated into the methodology in the similar manner.

4.3.4.1 Integration of process simulation and optimization

The priority-based particle representation of PSO is employed in the present research to optimize

construction sequences, since it can be seamlessly integrated with the priority dispatching rule in

DES. In general, the PSO algorithm by means of priority-based particle representation searches

for the optimum solution by identifying a combination of priority key values assigned to each

activity (work package). As depicted in Figure 4.1, the optimization model feeds the process

simulation model with work package priority information. The process simulation model,

106

serving as the “objective function calculator”, in turn calculates the fitness value (project

duration) for the optimization model. More detailed interaction is shown in Figure 4.3. To begin

with, the PSO initializes the particles’ positions (priorities of all work packages) through random

sampling; for a given particle, the priority information of construction work packages is

published to the process simulation model by attaching it with simulation entities as attributes.

Simulation entities assigned with priorities are then served by the required limited resources in

descending order of priority number in the process simulation model. Following execution of the

simulation model, the fitness value (project duration) of each particle is obtained from the

process simulation model, and then sent back to the PSO. The PSO further identifies the global

best position of all particles and the local best position for each particle in the current iteration.

Afterward, each particle in the PSO updates its current state, including velocity and position,

based on the global and local best positions of particles. The next iteration is then started and

new positions of particles are evaluated in the process simulation model. The iteration processes

do not stop until the PSO reaches its termination criteria, such as completing the specified

number of iterations. During each iteration, the schedule information resulting from the process

simulation model is constantly updated into simulation entities.

107

Figure 4.3 Interaction between PSO optimization algorithm and simulation model

4.4 Background of light gauge steel (LGS) construction

The methodology is implemented for panelized construction projects which uses the light gauge

steel (LGS) system. In this section, the on-site construction method for an LGS system is

described. Presently, in LGS construction practice, structural bearing walls are pre-assembled in

the factory and installed on site as wall panels. In the case of non-bearing walls, the steel

building materials are delivered to the construction site and the walls are installed in place in a

conventional manner. More specifically, each structural wall panel is assembled in four steps:

Lift wall panel, Connect wall panel, Install insulation, and Install drywall. Non-bearing wall

panels, alternatively, are constructed through the following sequence: Lift wall panel studs,

Frame wall panel in place, Install insulation, and Install drywall. Wall panels, regardless of

whether they are structural or non-structural elements, at the first level require another activity,

Survey panel location, to be completed before they can be lifted. The floor, made up of steel

joists, is constructed in the same fashion as the non-bearing walls. It is assembled on site from

pieces of steel joists. The main steps to construct the floor system include Lift floor joists and

108

Frame floor joist. It is of interest here to mention that the washrooms are pre-fabricated as

module in the factory and are then shipped to the site for on-site installation. A washroom

module usually consists of four wall panels, a floor, and a ceiling (which serves as the floor for

the level above). All other components in the washroom, such as the tub, are pre- installed prior

to shipment to the site.

Additionally, since the washroom is a stand-alone module which does not require an additional

temporary bracing system, on-site assembly work for wall panels at the same level as the

washroom always begins with the installation of the washroom module. The next components to

be lifted are the wall panels, which have connections with the wash-room module. Note that

“Connection” here refers to building components sharing at least one contact area which is

greater than zero. Following the connections among the walls, other wall panels are lifted and

framed sequentially. Figure 4.4 illustrates one feasible lifting and framing sequence of an

apartment unit in a panelized building. In this figure, “CS” refers to the construction sequence

and “Bearing”/“Non-Bearing” indicates the wall panel structural function. In this case, some

wall panels have identical construction sequence numbers since technically they can be

assembled concurrently, provided that there are sufficient construction resources (e.g.,

equipment and labour) to allow concurrent activity execution on the construction site.

Construction of the steel joists for the floor is divided into zones corresponding to the different

apartment units in the residential building, i.e., assembly of floor joists is performed zone -by-

zone.

One challenge of detailed scheduling in construction projects, including LGS systems, is that

construction activities have dynamic precedence constraints depending on the resource allocation

strategy employed. For instance, wall panel #369815 (in the solid rectangle in Figure 4.4) is

109

connected with wall panels # 515298, #419019, and # 369814 (denoted by the dashed lines in the

figure). In accordance with the construction method described earlier, “Lift wall panel” for wall

panel #369815 hence has “Lift wall panel” for any one of the other three wall panels (#515298,

#419019, and #369814) as its precedence constraint. For the case in which “Lift wall panel” for

wall panel #515298 is completed in advance, its precedence constraint could be “Lift wall panel”

for wall panel #515298, and lifting wall panel #369815 can then be started once the resource

constraints are satisfied. This poses a challenge for scheduling in the form of a fixed activity

network diagram, such as CPM or traditional simulation model, which needs an explicit network

to perform schedule analysis. The existing scheduling tools, including Primavera P6 and S3 (Lu

et al., 2008), cannot handle such flexible precedence constraints in carrying out detailed

construction scheduling under resource constraints. The integrated approach described in this

chapter, on the other hand, can address this problem and yield the schedule automatically by

integrating the process simulation with BIM and optimization technology.

ID: 521569
Washroom

CS: 1

ID: 521613
Washroom

CS: 1

ID: 476373
Bearing
CS: 2

ID: 419010
Bearing
CS: 3

ID: 419011
Bearing

CS: 4

ID: 369813
Bearing
CS: 3

ID: 369814
Bearing
CS: 4

ID: 575599
Non-Bearing

CS: 2

ID: 419019
Bearing

CS: 4

ID: 369815
Bearing
CS: 5

ID: 419018
Bearing

CS: 3

ID: 515298
Bearing

CS: 2

ID: 538654
Bearing
CS: 2

ID: 419014
Bearing

CS: 2

ID: 575621
Non-Bearing

CS: 2

ID: 575600
Non-Bearing
CS: 2

ID: 575628
Non-Bearing
CS: 3

ID: 575622
Non-Bearing

CS: 2

ID: 575627
Non-Bearing

CS: 3

ID: 516056
Bearing

CS: 2

Figure 4.4 Installing sequence of wall panels in a structure

110

4.5 Implementation

4.5.1 System architecture

An automated scheduling system for panelized construction using LGS has been developed to

implement the methodology. The automated system as shown in Figure 4.5 comprises three main

components: (1) MS Access, where project resource information and work package information

(WBS) are stored; (2) Autodesk Revit, which is used to design the building project; and (3) MS

Project, which is employed to display the generated schedule. (Autodesk Revit, it should be

noted, includes a Revit add-on which encompasses a structural supporting relationship and

spatial relationship analyzer (SSRAnalyzer), a process simulation model in Simphony, and a

PSO optimization model to perform the schedule analysis.) The three components are connected

through an Autodesk Revit application programming interface (API) in C# language. Figure 4.6

shows the user interface of the developed add-on for Revit. It allows for users to view and edit

the WBS information and the process simulation model by clicking corresponding buttons in

order to consider different construction methods. Meanwhile, it also shows a portion of the

extracted information from the BIM model.

Figure 4.5 Architecture of automated scheduling system

111

Figure 4.6 Interface of automated scheduling system

4.5.2 Spatial and structural supporting relationship analyzer (SSRAnalyzer)

4.5.2.1 Connection relationships among wall panels

Connection relationships of building components are essential to construction scheduling, since

they determine the construction logics described in the previous section. A “connection” here

refers to the case in which building components share one contact area which is greater than zero,

and for which normal vectors of contact faces defined as pointing outward of the solid object are

opposite to one another, as shown in Figure 4.7d. Hence, a connection relationship is derived by

checking whether two faces (each from one building component) overlap and whether their

normal vectors are opposite.

This chapter describes an algorithm by means of which to infer the connection relationships

among walls based on geometric information of faces, edges, and points (as depicted in Figure

4.7a). This information is extracted using the Revit API functions of element.get_Geometry(),

solid.Faces(), face.EdgeLoops(), Curve.GetEndPoint(), respectively, in the algorithm. The

algorithm then takes one face from each component; given that F1 is from component 1 and F2

is from component 2, normal vectors of F1 and F2 are checked to determine whether or not they

Click

Extracted Enriched Information

112

a. Geometric information of building component

F1

F2

F1 ∩ F2 = F2

b. Containment

(F1 ∩ F2 ≠ ∅) ∧ (F1ο ∩ F2ο = ∅)

c. Intersection

F1ο ∩ F2ο ≠ ∅

d. Scenario 1 of connection

F1ο ∩ F2ο ≠ ∅

e. Scenario 2 of Connection

Figure 4.7 Topological relationships among walls

are in opposite directions. This is done in order to exclude the containment relationship as shown

in Figure 4.7b. If the vectors are opposite, then all points (including vertices of building

components and middle points of edges) of F1 are checked to determine whether or not they lie

113

in F2. If there are more than 3 points that do not lie in a straight line, the two elements are

considered to be connected. The element ID is mutually stored into the connection information

of each entity. All points of F2 are also checked against F1 in order to consider the case in which

F2 is inside of F1, as shown in Figure 4.7e.

4.5.2.2 Supporting relationship of structural elements

Structural supporting relationships of building components are also important since the

construction sequence is subject to the structural behaviour of the building structure under

construction. Focusing on spatial relationships (e.g., connection relationship) is not an adequate

method to derive supporting relationships and construction sequences. Furthermore, the

connection relationships cannot be used to infer the construction sequence between floors and

walls in LGS systems. In LGS construction, two different floor systems are commonly adopted

in current practice, platform and balloon structure systems, as shown in Figure 4.8. The floor

joists are resting on top of the wall panels in Figure 4.8a, whereas the floor system in Figure 4.8b

is connected to the interior side of the wall panel. Despite this, both the lower wall panel and

floor support the above wall panel, and in the interest of safety in both cases the work of

assembling the wall panels on the above floor cannot begin until the floor is assembled.

114

 a. Platform structure system b. Balloon structure system

c. Structural analytical model for both floor systems

Figure 4.8 Sketch for different floor systems and their structural analytical model

To address these challenges, we propose a new approach in which the structural supporting

information of building components is obtained from the simplified structural analytical model,

rather than from a 3D geometrical model. As suggested by its name, a structural analytical model

is a simplified 3D representation of the structural information model consisting of geometry and

material properties of structural components and applied loads, and is used to perform structural

analysis. In the simplified structural analytical model, 3D walls and floors are normally

represented by 2D shell elements. Figure 4.8 also presents the structural analytical model for

walls and floors. Moreover, the analytical model encompasses the supporting information of

building elements and is created automatically in Revit when a 3D physical/geometrical model is

 Analytical wall

 Analytical floor

Floor Joist is resting on the

top face of wall panel
Floor Joist is attached to the
interior side of wall panel

115

developed. Although the supporting information is not accessible to users through the Revit user

interface, it can be extracted by means of the Revit API function,

“element.GetAnalyticalModelSupport()”. With respect to the floor system described above, both

the structural wall and floor are recognized by Revit API as supporting elements for the above

wall panel. Additionally, supporting information among other structural elements, such as walls

and wall foundations, can be extracted in the same manner.

4.5.3 Development of WBS

A LGS building project consists of wall panels, floor system, slabs, stairs, and foundations.

Although it also comprises architectural building elements such as windows and doors, these

architectural components do not affect the on-site schedule due to the fact that they are

preassembled in the factory prior to shipment to the site. Consequently, the work package

information stored in MS Access is for wall panels, floor system, slabs, stairs, and foundations.

Each type of building component has its own table to store its WBS information. For example,

the following are the on-site work packages for “Wall Panel” at the first level: (1) “Survey Panel

Location”; (2) “Lift Wall Panel”; (3) “Connect Wall Panel”; (4) “Install Insulation”; and (5)

“Install Drywall”. All these items, together with the corresponding required resource information

and productivity information, are stored in the MS Access table, “Wall Panel”, shown in Figure

4.9.

Figure 4.9 Table-based work package information

116

4.5.4 Development of process simulation model

The research presented in this chapter employs Simphony.NET (Mohamed & AbouRizk, 2000)

to develop the simulation model since this simulation environment offers several important

features, such as entities; calendars; the ability to carry attributes with entities; the capability for

the user to write their own code for the purpose of enhancing modelling flexibility; and a

simulation engine library (open source library) (AbouRizk, 2010; 2011). These features enable it

to handle complex and interactive problems, as well as for it to be easily integrated with other

systems in order to generate construction schedules.

During the development of the simulation model, the concept of “Process Pattern” is adopted.

Construction knowledge encapsulating construction logic can be generalized as process patterns,

which are reusable for similar building elements and building projects (Benevolenskiy et al.,

2012; Konig et al., 2012). Process patterns of construction processes for each type of building

component in panelized LGS projects are formalized to develop the simulation model in this

research. Figure 4.10 presents the typical process pattern for a regular cast-in-place concrete

building element, such as a building’s foundation. The simulation model for on-site construction

of a panelized building project (see Figure 4.12) is further developed based on formalized

process patterns. As shown in the figure, a wall panel is usually constructed through four

sequential activities: (1) “Lift Wall Panel”; (2) “Connect Wall Panel”; (3) “Install Insulation”;

and (4) “Install Drywall”. Each activity is represented by a Composite element in the simulation

model. It is noteworthy that a Composite element of Simphony is a “container” housing other

simulation elements and has no specific simulation behaviour. Inside the Composite element of

“Lift Wall Panel”, as shown in Figure 4.12.4, simulation entities representing building

components capture its required resource (e.g., Crane Crew) based on its resource priority from

117

the optimization model (see Figure 4.12.3) in order to conduct the work package of “Lift Wall

Panel”.

Figure 4.10 Process pattern for cast-in-place building elements

Nevertheless, process pattern can only take into account the local predecessor relationships

between activities for one component; the construction logic among different building

components discussed in Section 4 cannot be handled by formalized process patterns. For

instance, the completion of “Lift Wall Panel” for wall panel # might trigger the activity “Lift

Wall Panel” of wall panel #2, and “Erect Formwork Foundation” of foundation #1 might be

followed by “Erect Formwork Foundation” of foundation #2. This construction logic is not

represented in the above process pattern. In light of such limitation, we develop construction

sequence controllers, such as “Controller for Wall Lifting” and “Controller for Floor Assembly”,

by writing user codes in the “Execute” element. These controllers are in turn placed inside the

“Construction Sequencing (Routing Entities)” Composite element shown in Figure 4.12. It

performs construction sequence reasoning by factoring in the enriched product information such

as topological/connection from BIM. Figure 4.11 presents the flowchart of “Controller for Wall

Lifting”. In general, the controller can manage the construction sequence and route the entities

representing building components in accordance with the enriched information it contains. For

example, once an activity which would be the potential predecessor of “Lift Wall Panel” for wall

panel #N, is completed, such as the “Lift Wall Panel” of its connected wall panel #N-1,

“Controller for Wall Lifting” is triggered by the completed activity in order to check all work

118

package state information and launch subsequent activities, which satisfies the construction

conditions. This would include “Lift Wall Panel” for #N wall panel.

Figure 4.11 Flowchart of “Controller for Wall Lifting”

It should be noted that, for a given activity, construction conditions mainly refer to the

completion of corresponding activities of all of its support elements and one of its connected

wall panels. The simulation entity standing for #N wall panel is looped into “Enter Point for

119

Wall Panel”, as shown in Figure 4.12, thereby constructing the panel through a series of

activities. In this way, the limitation of the fixed activity network diagram explained above and

dynamic precedence constraints (e.g., physical constraints) of activities is addressed by the fact

that the controller routes entities and triggers construction activities in a manner satisfying

precedence constraints without an explicit direction arrow, as indicated by the incomplete

network in the simulation model.

120

Figure 4.12 Simulation model for on-site construction of panelized building projects

4.5.5 PSO algorithm

The PSO algorithm is employed in this research to optimize the construction schedule by taking

advantage of the process simulation in calculating fitness value. Generally speaking, each

particle in PSO is represented by a D-dimensional vector, X𝑖 = (𝑥i1, 𝑥i2, … , 𝑥id)𝑇(where D is

identical to the dimension of the search space and i represents the index of particles), and its

1 2 3

121

position is the potential solution to the problem being optimized. PSO is an iteration process,

during which particles update their states (velocity and position) to approach the optimum

solution. At the outset PSO uses a random population (referred to as a swarm of particles) of

potential solutions to the problem in order to explore optimal solutions in the search space. Each

particle keeps a record of the best position P𝑖 = (𝑝i1, 𝑝i2, … , 𝑝id)𝑇 it has reached (referred to as

the local best solution), the best position P𝑔 = (𝑝g1, 𝑝g2, … , 𝑝gd)𝑇(where g denotes the index of

the particle in the swarm) of the best particle (referred to as the global best solution), and its

velocity, represented by another n-dimensional vector V𝑖 = (𝑣i1, 𝑣i2, … , 𝑣in)𝑇 . Once the local

best P𝑖 and global best P𝑔 are obtained by calculating the fitness measure of the objective

function being studied, each particle in the PSO updates its velocity and position based on its

own/local best position, the swarm’s best solution, and its previous velocity vector, in

accordance with Equation (1) and Equation (2) (Eberhart & Kennedy 1995). Each particle then

initiates another iteration process to approach the optimum position gradually.

𝑣𝑖𝑑
𝑛+1 = 𝑤𝑣𝑖𝑑

𝑛 + 𝑐1𝑟1(𝑝𝑖𝑑
𝑛 − 𝑥𝑖𝑑

𝑛) + 𝑐2𝑟2(𝑝𝑔𝑑
𝑛 − 𝑥𝑖𝑑

𝑛) Eq. (1)

𝑥𝑖𝑑
𝑛+1 = 𝑥𝑖𝑑

𝑛 + 𝑣𝑖𝑑
𝑛+1 Eq. (2)

where v and x are the particle’s velocity and position, respectively, n denotes the nth iteration; 𝑐1

and 𝑐2 are positive constants, called acceleration constants; 𝑟1 and 𝑟2 are random numbers,

uniformly distributed in [0,1]; and 𝑝𝑖𝑑 and 𝑝𝑔𝑑 are, respectively, the local best solution and

global best solution mentioned above.

The PSO algorithm is programmed and embedded into Revit as an add-on tool. The detailed

implementation of the PSO algorithm in C# is provided in Appendix D. PSO parameters are set

as follows, in consideration of the existing research (Eberhart & Kennedy, 1995; Eberhart, 2013;

122

Lu et al., 2006; Lu et al., 2008; Zhang et al., 2006; Zhang et al., 2006): (1) c1 = 1; (2) c2 = 2; (3)

the value of w is 0.9 initially, and then it linearly decreases to 0.4 at the maximum number of

iterations; and (4) swarm size = 40. It is anticipated that these parameter settings could reduce

the optimizing time and ensure the convergence of the PSO algorithm. Notably, solely applying

this algorithm is not the main focus and novelty of the present research, the detailed explanations

of PSO parameters would draw attention away from BIM–Simulation integration. Accordingly,

detailed explanations of the PSO algorithm parameters are not given in this chapter; instead the

reader is directed to previous PSO-related studies.

4.5.6 Information exchanges

An enriched information entity is an object or instance of a class in the object-oriented

programming domain. To achieve the proposed integration, two classes, as shown in Figure 4.13,

are used as the templates for building components and work packages. These templates are

defined in Visual Studio C# and are used as the basis for data exchange among different

components of this research. Figure 4.14 presents sample data of one building component

extracted from the BIM model and presented in XML format. Revit API is used to extract the

rich building element information and feed it to SSRAnalyzer in order to obtain “Connections”

and “Supports” information of building components. All enriched product information is then

transferred to the process simulation model through an “Attach rich building information”

simulation element (see Figure 4.12.1) by means of C# codes embedded in the Revit add-on.

Afterward, resource requirements and productivity information of each activity is extracted from

MS Access and attached to the enriched information entities by C# codes embedded in the

“Attach workpackages” element (see Figure 4.12.2). Subsequently, priority information of work

packages from the PSO algorithm is also attached to the enriched information entities by means

123

of additional C# codes as shown in Figure 4.12.3 Finally, the enriched information entities

(objects of the building component and work package classes) will move through the process

simulation model in Simphony. The schedule is automatically generated and incorporated into

the entities by the process simulation model. At the end of the simulation model, all information

carried by the entities is written into an XML file. An add-on tool for MS Project is developed to

display the generated schedule by parsing the XML file.

Figure 4.13 Classes for building components and work packages

Quantity take-offs, as part of enriched information extracted from the BIM model, are organized

into the enriched information entities under “Materials” and “Dimensions” attributes as shown in

Figure 4.13 and Figure 4.14. This research allows for executing queries over defined schemas

(information exchanges template) in order to establish the mapping between quantities and

activities, using Language-Integrated Query (LINQ). As denoted in Figure 4.12.2, the quantity

for the “Install Rebar Foundation” work package is assigned to be the sum of the material

124

quantities of “Rebar Bar #6” and “Rebar Bar #8” in one building component. The measurement

unit of quantities can be selected in order to match the productivity information. Formulating

queries for retrieving activity quantity, instead of assigning individual quantity data, can improve

accuracy and reduce the workload to update data in the case of design changes. Compared with

relational database based quantity take-off assignment in previous research, it avoids the

redundant manipulation (e.g., read and write) of external relational database through Structured

Query Language (SQL). Meanwhile, LINQ is a common querying syntax that applies across

different data storage types such as Objects and SQL Database Tables, thus allowing the

execution of queries without the knowledge of specific database languages (e.g., MS Access

SQL Language and MS SQL Server Language). Also, querying data in computer memory is

superior to querying data in external relational system in terms of the computing performance of

developed scheduling system.

125

<BuildingComponent>

<ID>511250</ID>

<Type>Structural Foundations</Type>

<Unit>NaN</Unit >

<Level>NaN</Level >

 <Description> Structural Foundation 511250</Description>

 <StructuralUsageOrNot>true</StructuralUsageOrNot>

 <Location>

 <X>-520.710953961512</X>

 <Y>90.286826646650525</Y>

 <Z>2.5</Z>

 </Location>

<StructuralMaterial>Concrete,

<Dimensions> Cast-in-Place gray</StructuralMaterial>

 <string>Volume</string>

 <double>33.16977984762061</double>

 <string>Width</string>

 <double>2.9527559055118111</double>

 <string>Length</string>

 <double>14.822316864990711</double>

 <string>Lateral area</string>

 <double>11.233498775060847</double>

 </Dimensions>

 <Materials>

 <NameandQuantityofMaterial>

 <Name>Concrete, Cast-in-Place gray</Name>

 <Volume>33.16977984762061</Volume>

 <Area>134.30612553700078</Area>

 <Length>NaN</Length>

 <Number>1</Number>

 </NameandQuantityofMaterial>

 <NameandQuantityofMaterial>

 <Name>Structural Rebar #6 : Shape M_00</Name>

 <Volume>0.10362825329567779</Volume>

 <Area>NaN</Area>

 <Length>75.9995078675841</Length>

 <Number>3</Number>

 </NameandQuantityofMaterial>

 <NameandQuantityofMaterial>

 <Name>Structural Rebar #4 : Shape M_00</Name>

 <Volume>0.03802518721792679</Volume>

 <Area>NaN</Area>

 <Length>27.887139107609755</Length>

 <Number>10</Number>

 </NameandQuantityofMaterial>

 </Materials>

 <Connections>

 <int>511528</int>

 <int>536245</int>

 </Connections>

<Supports />

<Workpackages />

<SubComponents />

 </BuildingComponent>

Figure 4.14 Sample data extracted from 3D BIM model

4.6 Demonstration

Part of a residential building is selected in order to test the scheduling system embedded in Revit.

The building consists of two storeys, each with four apartment units and one staircase. Each

apartment unit has two washrooms where the assembly work commences. Additionally, there are

182 panels, including sixty non-bearing walls and 122 bearing walls. The building rests on

twenty-nine concrete wall footings. The BIM model for the building is developed in Autodesk

126

Revit, as shown in Figure 4.15. It is noteworthy that the washroom module, as described above,

is a composite of several wall panels and floors, such that the “Group” function in Revit is

utilized to model washrooms by grouping the necessary components as one single washroom

component. Later, washroom elements can be recognized by the system in order to commence

the construction work on each floor. Work package information, such as the resource

requirements and productivity of each building component, is listed in Table 4.1, while Table 4.2

tabulates the available resources for the project. All the data has been provided by the

construction manager and is used as the inputs (stored in MS Access) to the system. The start

date of the project is set as November 6, 2013, and a standard workweek which runs Monday to

Friday is assumed in the project, with each day starting at 8 a.m. and ending at 5 p.m.

a. 3D view b. Plan view

Figure 4.15 a two-storey residential building

127

Table 4.1 Durations, productivity, and resources

Component Activities
Required

Resources
Productivity

Duration

(min)
Wall Panel Survey Panel Location 1 Survey Crew 1panel/T(8, 12, 10) min -

Lift Wall Panel 1 Crane Crew 1panel/T(9, 15, 12)min -

Connect Wall Panel 1 Frame Crew 0.25 connections /min
-

1 Crane Crew

Place Insulation 1 Insulation Crew 0.5 ea/min -

Install Drywall 1 Drywall Crew 10 s.f./min

 Frame Wall Panel 1 Frame Crew 4 studs/min -

 Slab Install Rebar Slab 1 Reinforcement Crew 29 C.S.F/day -

Pour Concrete Slab 1 Concrete Crew 55 cy3/day -

Cure Concrete Slab

 U(50, 56)*60

 Foundation Erect Formwork
Foundation

1 Formwork Crew 300 s.f./day -

Install Rebar Foundation 1 Reinforcement Crew 2.1 ton/day -

Pour Concrete Foundation 1 Concrete Crew 11 cy3/day -

 Cure Concrete

Foundation
- U(50, 56)*60

 Retract Formwork

Foundation
1 Formwork Crew 300 s.f./day -

Floor Lift Joists 1 Crane Crew 8 joists/T(12, 18, 15) min

 Assembly Joist 1 Frame Crew 1 joist/T(16, 20, 18) min

Stairs Lift Landing Pieces 1 Crane Crew 1 landing/T(12, 18, 15) min

 Frame Landing 1 Frame Crew 1 landing/T(50, 70, 60) min

 Lift Stairs Panel 1 Crane Crew 1 panel/T(9, 15, 12) min

 Assemble Stairs Panel 1 Frame Crew 1 panel/T(40, 60, 50) min

 1 Crane Crew

Note: For T(N1,N2,N3), T = Triangular, N1 = lower limit, N2 = upper limit, and N3 = mode value; and for U(N1,

N2), U = Uniform, N1 = lower limit, N2 = upper limit.

Table 4.2 Available resources

Resource Quantity Resource Quantity

Frame Crew 1 Drywall Crew 1

Formwork Crew 1 Reinforcement Crew 1

Survey Crew 1 Concrete Crew 1

Crane Crew 1 Insulation Crew 1

It should be pointed out that the prototype system encompassing the WBS database in Access

and the DES model in Simphony is developed in accordance with the construction method

commonly adopted in panelized construction (using LGS system). In order to apply it to a new

project, work package information shown in Table 4.1 and Table 4.2 along with a process

128

simulation model should be modified through the add-on user interface as inputs of the proposed

system (see Figure 4.6) in the case that a different construction method is applied in the new

project.

The optimized project duration for the case example is 30.67 calendar days, starting November

06, 2013 and ending December 06, 2013. Figure 4.16 shows part of the generated schedule from

the scheduling system, which is automatically exported into MS Project. As illustrated in the

figure, the completion of “Level 1 Floor 456163 Curing Slab” (marked as “1” in the figure) is

followed by the start of “Level 1 Bathroom 521569 Survey Panel Location” (shown as “2” in the

figure). The completion of “Level 1 Bathroom 521569 Survey Panel Location” triggers the start

of “Level 1 Bathroom 521569 Lift Wall Panel (Bathroom)”, “Level 1 Unit B 538654 Survey

Panel Location”, and “Level 1 Unit B 476373 Survey Panel Location” (marked as “3’ in the

figure), and so on. All these replicate the construction logic described in Section 4. For example,

the on-site work for wall panels at the same level as the washroom always begins with the

installation of the washroom module, and the next components to be constructed are the wall

panels, which have a connection with the wash-room module. Hence, the generated schedule

demonstrates the feasibility of the prototype system.

Additionally, Figure 4.17 shows the evolutionary process of one particle and the entire swarm in

one experiment. As noted in the figures, the maximum project duration for the project in the

experiment is 35.37 days (50,933.89 min), and it gradually approaches 30.67 days (44,162.89

min) over 100 optimization iterations, meaning that the project duration is shortened by 4.70

days (15.33%). The selection of parameters discussed in Section 5 ensures the convergence of

the PSO algorithm but at the same time may lead the solution toward a local optimum. Therefore,

the optimized solution of 30.67 days may not be the global optimum. There are sharp changes in

129

project duration in the evolutionary process, caused by imposing working calendars. This is due

to the fact that the duration is shortened by more than just the two working days in the span from

Tuesday to the previous Friday, since this span includes two calendar days of non-working time.

Figure 4.16 Part of generated schedule from scheduling system

Figure 4.17 Project duration evolution process during optimization

4.7 Discussion

Activities/processes in panelized construction should distinguish each individual building

component, instead of distinguishing each construction zone, in that each pre-fabricated

component is unique and needs to be installed at its own designed location and be scheduled

43000

44000

45000

46000

47000

48000

49000

50000

51000

52000

0 10 20 30 40 50 60 70 80 90 100

T
o

ta
l

P
r
o

je
c
t

D
u

r
a

ti
o

n
 (

m
in

)

Iterations

Evolution process

Project duration of swarm
Project duration of one particle

1

3

3

4

4

4

2

3

4

130

individually in order to manage and coordinate factory production and on-site construction

processes. This detailed scheduling is defined as component-centric activity level scheduling

which is the focus of this research. Establishing a complete activity network manually in

component-centric activity level scheduling, is a challenge for current construction planning

methodologies (such as critical path method and Primavera P6), due largely to the practical

needs of adjusting construction technology under physical and spatial constraints in the field and

dynamic precedence constraints between activities caused by resource allocation strategies. This

research demonstrates a methodology for the planner to build part of the activity network

manually as per constraints that must be accommodated during construction, instead of a

complete activity network as in previous research. Those dynamic precedence constraints on

activities are derived at run time of DES, whereas resource-induced precedence constraints are

addressed by using priority dispatching rules to allocate limited resources. As a result, the

simulation model in this research does not have a complete network; in other word, there are no

explicit direction arrows navigating simulation entities through simulation modelling blocks. As

such, the flexible and dynamic precedence constraints caused by different resource allocation

strategies are considered in construction planning.

In short, the proposed methodology addresses the difficulty in manually building a complete

activity network through in-depth BIM-Simulation integration and overcomes the limitation of

defining a fixed activity network in construction project planning. This work also demonstrates

that (1) enriched information exchange between the BIM model and the process simulation

model is feasible via the development of an information exchange template; (2) enriched product

information from the 3D BIM model is indispensable for the simulation model to mimic

construction processes in the real world of panelized building construction.”

131

4.8 Conclusion

Since BIM is increasingly utilized within the construction industry, this research has proposed a

BIM-based integrated approach for detailed construction scheduling under resource constraints.

This capitalizes on the benefits of rich building information in BIM and the capability of DES to

mimic the construction operation logic and investigate the allocation of available resources

among activities. In-depth integration among a BIM/project model in Revit, WBS information in

MS Access, process simulation model in Simphony, and an evolutionary optimization algorithm

has been achieved in the proposed methodology in order to automatically generate an optimized

construction schedule. Furthermore, a prototype scheduling system for panelized LGS

construction has been developed as an Autodesk Revit add-on which is able to produce MS

Project-based schedules in order to facilitate communication among project stakeholders and

support project management on site. The scheduling system is generally able to produce

expected schedules for panelized construction, and assists project managers in effectively

planning on-site assembly work by reducing the human error in scheduling for panelized

construction, which also validates the integrated methodology. However, the current prototype

system has limitations in the following respects: (1) duration and productivity estimates for work

packages are made based on project managers’ experience; (2) other factors affecting

construction schedule, such as weather and work space limitations, are not taken into

consideration; and (3) part of the simulation network still needs to be established manually. In

order to improve the performance of the current system and achieve fully automated schedule

generation, the following directions can be pursued in the future:

132

1) Time studies on construction processes can be conducted, and data mining technology

such as Artificial Neuron Network (ANN) can be integrated into the proposed system to

predict method productivity based on historical data.

2) Ontology-based construction knowledge modelling can be studied in order to fully

automate simulation model generation with the support of enriched building information

from a BIM model.

3) Optimization of construction schedules with respect to time, cost, resource use and

material logistics based on a sufficient BIM-simulation integrated project model can be

explored.

133

CHAPER 5: CONCLUSIONS

5.1 Summary

Panelization has emerged as a popular, more efficient approach to constructing residential

projects with the rise of Building Information Modelling (BIM). In order to advance the current

planning practice of panelized construction, this research incorporates construction-oriented

intelligence (i.e., trades know-how) into current BIM design models in order to facilitate

automated panelized construction planning.

First, this research automates the building design and modelling in terms of boarding design in

order to achieve manufacturing-centric BIM and to adapt discipline-specific BIM design models

(e.g., architectural model) for use by construction trades. The prototyped design application

eliminates the guesswork and saves a large amount of time in boarding design, building

information modelling and raw material cutting planning for construction engineers. The

automated approach can generate optimized boarding layout design, which reduces construction

material waste in that mathematical algorithms and design-rules (e.g., trades know-how) are

integrated with BIM design models. Along with the optimized layout design, the prototyped

application can also formulate the material cutting plan that is instrumental in guiding field

engineers to perform their work.

Also, this research investigates semantic technologies to extract domain-specific data from a

common BIM repository, thereby expediting the QTO process. In the proposed approach, the

implicit BIM data crucial to construction practitioners is derived and extracted such that it

enables QTO professionals to take off the implicit BIM features on the basis of existing design-

oriented BIM models, which improves the QTO efficiency. All relevant BIM data are

transformed into the ontology-enhanced BIM model in an RDF file. The resulting RDF model

134

conceptually functions as a domain-specific “model view” of the given BIM model while

enabling semantic queries to facilitate construction-oriented QTO. Hence, construction

practitioners can semantically query a BIM design model in order to generate QTO for

construction activities by using their domain vocabularies, without the need to understand the

technical structure of the underlying complex BIM schema. In addition, the proposed semantic

QTO approach sheds light on other research endeavors in terms of semantic enrichment for BIM

to support domain-specific tasks and semantic interoperability among BIM applications.

Lastly, this research develops an automated on-site scheduling application for panelized

construction by achieving an in-depth integration between BIM, DES, and evolutionary

optimization. It demonstrates a methodology for the planner to build part of the activity network

manually as per constraints that must be accommodated during construction, instead of a

complete activity network as in previous research. Those dynamic precedence constraints on

activities are derived at run time of DES, whereas resource-induced precedence constraints are

addressed by using priority dispatching rules to allocate limited resources. The proposed

scheduling approach is able to schedule each building panel individually. Consequently, it not

only serves as the base for project managers to arrange the on-site construction, but also provides

the guides for them to plan the factory production in order to deliver individual building panels

as expected.

This research enriches the application of BIM technology in light-frame building construction in

terms of three aspects. Three long-standing, ill-structured problems in the construction

industry—boarding layout design, quantity take-off, and panelized scheduling—are formulated

into structured ones. Three novel approaches are then proposed to solve three practical problems

in a scientific manner. Although these three practical problems are addressed individually,

135

proposed methodologies and prototyped computer systems are used together to create an

approach that is more robust than the applying the component systems individually. For instance,

other domain terms can be further formalized into the proposed product ontology in order to

store the construction process and process pattern information as part of the ontology-enhanced

BIM model. As a result, construction practitioners can retrieve this process and process pattern

information using their vocabularies in a straightforward manner, resulting in better

communication among project stakeholders and fully automated construction scheduling.

5.2 Research Contributions

The primary contributions of this research are summarized as follows:

1) Automation of the process in optimizing board layout design and planning board cutting by

taking advantage of rich building information in BIM models and integrating

comprehensively formalized industry know-how in terms of boarding practice and

mathematical algorithms with BIM models.

2) Introduction of an ontology-based semantic framework for construction-oriented QTO that

enables construction practitioners to retrieve the QTO information in a flexible manner.

3) Establishment of a construction-oriented product ontology, which extends current design

BIM models by adding domain terms and their properties and interrelationships without

changing the original BIM schema (i.e., supplementing domain semantic into BIM design

models), and aligns design BIM models with construction process oriented QTO.

4) Development of in-depth integration between BIM, DES, and evolutionary optimization for

panelized construction on-site scheduling. The methodology addresses the existing

challenges with respect to automatic detailed construction planning under resource

136

constraints. Rich building information extracted from the BIM model supports not only the

activity duration calculation, but more importantly the simulation logic.

5) Addressing dynamic precedence constraints due to physical and spatial constraints in the

field and resource allocation strategies through an in-depth BIM-simulation integration for

on-site scheduling in panelized construction.

6) Development of three add-ons of Autodesk Revit to automate the processes of

manufacturing-centric BIM (e.g., boarding layout design), construction-oriented QTO, and

panelized construction scheduling, respectively.

5.3 Limitations and Future Research

In order to improve the performance of the proposed method and prototyped system, the

following directions can be pursued in the future:

1) Other combinatorial algorithms, instead of greedy algorithms, can be investigated and

incorporated into the boarding design prototype system in order to optimize boarding

design more efficiently.

2) SWRL-based ontology reasoning can be investigated to further provide semantics to the

QTO prototype application in the future.

3) Time studies on construction processes can be conducted, and data mining technology

such as Artificial Neuron Network (ANN) can be integrated into the proposed scheduling

system to predict method productivity based on historical data.

4) Ontology-based construction knowledge modelling can be studied in order to automate

simulation model generation for the purpose of fully automated construction scheduling

with the support of rich building information from a BIM model.

137

5) On-site oriented building panel production line planning and management system can be

explored to facilitate the production line planning and management in panelized

construction. This system is expected to assist the practitioners to match the productivity

of the factory production to the on-site construction productivity, which leads to an entire

Just-in-Time management structure for the industry company.

138

REFERENCES

AbouRizk, S. (2010). Role of simulation in construction engineering and management. Journal

of Construction Engineering and Management, 136(10), 1140-1153.

AbouRizk, S., Halpin, D., Mohamed, Y., and Hermann, U. (2011). Research in modeling and

simulation for improving construction engineering operations. Journal of Construction

Engineering and Management, 137, SPECIAL ISSUE: Construction Engineering:

Opportunity and Vision for Education, Practice, and Research, 843-852.

Alwisy, A., and Al-Hussein, M. (2010). Automation in drafting and design for modular

construction manufacturing utilizing 2D CAD and parametric modeling. In Proc.,

Computing in Civil and Building Engineering, Proc., Int. Conf.

Alwisy, A., Al-Hussein, M., and Al-Jibouri, S. H. (2012). BIM approach for automated drafting

and design for modular construction manufacturing. Computing in civil engineering

(2012), 221-228.

Aryanezhad, M. B., Hashemi, N. F., Makui, A., and Javanshir, H. (2012). A simple approach to

the two-dimensional guillotine cutting stock problem. Journal of Industrial Engineering

International, 8(1), 1-10.

Association of School Business Officials (2013). BIM Resource Guide: A Guide for

Implementing Building Information Modeling in State of Maryland and Washington DC

Public School Construction Projects.

Autodesk Ltd. (2015). Autodesk Revit solution. Available at: http://www.autodesk.com/

products/revit-family/overview. (Aug. 21, 2015)

http://www.autodesk.com/

139

Autodesk Ltd. (2015). Autodesk Revit help. Available at: http://help.autodesk.

com/view/RVT/2015/ENU/?guid=GUID-22D24055-61A2-40BB-A2F7-A37990300B2B.

(Aug. 21, 2015)

Autodesk Ltd. (2014). Autodesk Revit API help. Available at: http://help.autodesk.com

/view/RVT/2014/ENU/?guid=GUID-B5E019A8-02F1-49A2-9EB8-449FB99D1E7C. (Aug. 21,

2015)

Beetz, J., Van Leeuwen, J., and De Vries, B. (2009). IfcOWL: A case of transforming EXPRESS

schemas into ontologies. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, 23(01), 89-101.

Benevolenskiy, A., Roos, K., Katranuschkov, P., and Scherer, R. J. (2012). Construction

processes configuration using process patterns. Advanced Engineering Informatics,

26(4), 727-736.

Borrmann, A., and Rank, E. (2009a). Topological analysis of 3D building models using a spatial

query language. Advanced Engineering Informatics, 23(4), 370-385.

Borrmann, A., Schraufstetter, S., and Rank, E. (2009b). Implementing metric operators of a

spatial query language for 3D building models: octree and B-rep approaches. Journal of

Computing in Civil Engineering, 23(1), 34-46.

California Integrated Waste Management Board (2007). Wallboard (drywall) recycling.

<www.ciwmb.ca.gov> (March 17, 2009).

Cavieres, A., Gentry, R., and Al-Haddad, T. (2011). Knowledge-based parametric tools for

concrete masonry walls: Conceptual design and preliminary structural analysis.

Automation in Construction, 20, 716-728.

140

Chau, K.W., Anson, M., and Zhang, J.P. (2005). 4D dynamic construction management and

visualization software: 1. Development. Automation in Construction, 14, 512-524.

Chen, S.M., Griffis, F.H., and Chen, P.H., and Chang, L.M. (2013). A framework for an

automated and integrated project scheduling and management system. Automation in

Construction, 35, 89-110.

Cheng, J. C., and Ma, L. Y. (2013). A BIM-based system for demolition and renovation waste

estimation and planning. Waste management, 33(6), 1539-1551.

Choi, J., Kim, H., and Kim, I. (2015). Open BIM-based quantity take-off system for schematic

estimation of building frame in early design stage. Journal of Computational Design and

Engineering, 2(1), 16-25.

COAA. (2014). About Advanced Work Packaging (AWP). Available at:

http://www.coaa.ab.ca/construction/AWPWFP/AWPWFPOverviewandDefinitions.aspx.

(Aug. 16, 2016)

Da Costa, F. M., and Sassi, R. J. (2012). Application of a hybrid bio-inspired meta-heuristic in

the optimization of two-dimensional guillotine cutting in a glass industry. In Intelligent

Data Engineering and Automated Learning-IDEAL 2012 (pp. 802-809). Springer Berlin

Heidelberg.

Daum, S., and Borrmann, A. (2014). Processing of Topological BIM Queries using Boundary

Representation Based Methods. Advanced Engineering Informatics, 28(4), 272-286.

De Vries, B. and Harink, J. (2007). Generation of a construction planning from a 3D CAD

model. Automation in Construction, 16(1), 13-18.

DuCharme, B. (2011). Learning SPARQL. Sebastopol, CA 95472, USA, 2011.

141

Eastman, C., Lee, J. M., Jeong, Y. S., and Lee, J. K. (2009). Automatic rule-based checking of

building designs. Automation in Construction, 18(8), 1011-1033.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings,

Sixth International Symposium on Micro Machine and Human Science (MHS’95).

Nagoya, Japan, 39-43.

Elbeltagi, E. (2013). 20-swarm intelligence for large-scale optimization in construction

management. Metaheuristic Applications in Structures and Infrastructures, 479-495.

Esparza, J. (2003). Greedy algorithms. Available at http://www.dcs.ed.ac.uk/teaching/

cs1/CS1/Bh/Notes/Greedy.pdf. (Apr. 30, 2016)

Fischer, M., and Aalami, F. (1995). Scheduling with computer-interpretable construction method

models. Journal of Construction Engineering and Management, 122(4), 337-347.

Formoso, C. T., Soibelman, L., De Cesare, C., and Isatto, E. L. (2002). Material waste in

building industry: main causes and prevention. Journal of construction engineering and

management, 128(4), 316-325.

Gane, V., and Haymaker, J. (2012). Design Scenarios: Enabling transparent parametric design

spaces. Advanced Engineering Informatics, 26(3), 618-640.

Gilmore, P. C., and Gomory, R. E. (1961). A linear programming approach to the cutting-stock

problem. Operations research, 9(6), 849-859.

Gordian Group (2015), RS Means online, Available at: https://www.rsmeansonline.com/. (Aug.

17, 2015)

Gray, C. (1986). “Intelligent” construction time and cost analysis. Construction Management and

Economics, 4(2), 135-150.

https://www.rsmeansonline.com/

142

Gruber, T. R. (1993). A translation approach to portable ontology specifications, Knowledge

acquisition 5.2: 199-220. Available at: http://

www.dbis.informatik.huberlin.de/dbisold/lehre/WS0203/SemWeb/lit/KSL-92-17.pdf.

(Apr. 22, 2015)

Holm, L., Schaufelberger, J., Griffin, D., and Cole, T. (2005). Construction Cost Estimating

Process and Practices. Prentice Hall.

Home Innovation Research Labs (2001). Residential Construction Waste: From Disposal to

Management. Available at: http://www.toolbase.org/Best-Practices/Construction -

Waste/residential-construction-waste. (Jan. 26, 2015)

Hong, T., Cho, K., Hyun, C., and Han, S. (2011). Simulation-based schedule estimation model

for ACS-based core wall construction of high-rise building. Journal of Construction

Engineering and Management, 137(6), 393-402.

Howard, R. and Björk B.C. (2008). Building information modelling: Experts’ views on

standardisation and industry deployment. Advanced Engineering Informatics, 28(2), 271-

280.

Hu, D. and Mohamed, Y. (2010). State-based simulation mechanism for facilitating project

schedule updating. Proceedings, Construction Research Congress, ASCE, Banff, AB,

Canada, May 8-10, 369-378.

Hu, Z., Zhang, J., and Zhang, X. (2010). 4D construction safety information model-based safety

analysis approach for scaffold system during construction. Engineering Mechanics.

27(12), 192-200 (in Chinese).

Jeong, S. K., and Ban, Y. U. (2011). Computational algorithms to evaluate design solutions using

Space Syntax. Computer-Aided Design, 43(6), 664-676.

http://www.dbis.informatik.huberlin.de/dbisold/lehre/WS0203/SemWeb/lit/KSL-92-17.pdf

143

Kaner, I., Sacks, R., Kassian, W., and Quitt, T. (2008). Case studies of BIM adoption for precast

concrete design by mid-sized structural engineering firms.

Kataoka, M. (2008). Automated generation of construction plans from primitive geometries.

Journal of Construction Engineering and Management, 134(8), 592-600.

Kim H., Anderson, K., Lee, S., and Hildreth, J. (2013). Generating construction schedules

through automatic data extraction using open BIM (building information modeling)

technology. Automation in Construction, 35, 285-295.

Kim, S.A., Chin S., Yoon S.W., Shin T.H., Kim Y.H., and Choi C. (2009). Automated building

information modeling system for building interior to improve productivity of BIM-based

quantity take-off. In Proceedings of the 26th International Symposium on Automation

and Robotics in Construction, Austin, TX, USA., pp. 492-496.

Kim, K., and Cho, Y. K. (2015). Construction-specific spatial information reasoning in Building

Information Models. Advanced Engineering Informatics, 29(4), 1012-1027.

Kim, H., and Grobler, F. (2009). Design coordination in building information modeling (BIM)

using ontological consistency checking. Computing in Engineering, 410-420.

Kim, K., and Teizer, J. (2014). Automatic design and planning of scaffolding systems using

building information modeling. Advanced Engineering Informatics, 28(1), 66-80.

Konig, M., Habenicht, I., Koch, C., and Spieckermann, S. (2012). Intelligent BIM-based

construction scheduling using discrete event simulation. Proceedings, Winter Simulation

Conference, Berlin, Germany, Dec. 9-12, 662-673.

Laquatra, J., and Pierce, M. (2004). Managing waste at the residential construction site. Journal

of the solid waste technology and management, 30 (2), 67-74.

144

Lawrence, M., Pottinger, R., Staub-French, S., and Nepal, M. P. (2014). Creating flexible

mappings between Building Information Models and cost information. Automation in

Construction, 45, 107-118.

Lee, S.-K., Kim, K.-R., and Yu, J.-H. (2014). BIM and ontology-based approach for building

cost estimation. Automation in Construction, 41, 96-105.

Lee, G., Sacks, R., and Eastman, C.M. (2006), Specifying parametric building object behavior

(BOB) for a building information modeling system. Automation in Construction 15, 758-

776.

Leite, F., Akcamete, A., Akinci, B., Atasoy, G., and Kiziltas, S. (2011). Analysis of modeling

effort and impact of different levels of detail in building information models. Automation

in Construction, 20(5), 601-609.

Li, H., Chen, Z., and Wong, C. T. (2003). Barcode technology for an incentive reward program

to reduce construction wastes. Computer‐Aided Civil and Infrastructure Engineering,

18(4), 313-324.

Liu, H., Al-Hussein M., and Lu M. (2015a), BIM-based integrated approach for detailed

construction scheduling under resource constraints, Automation in Construction, 53, 29-

43.

Liu, H., Altaf, M. S., Lei, Z., Lu, M., and Al-Hussein, M. (2015b). Automated production

planning in panelized construction enabled by integrating discrete-event simulation and

BIM. Proceedings, International Construction Specialty Conference, pp. 8-10.

Liu, H., Lei, Z., Li, H.X., and Al-Hussein, M. (2014). An automatic scheduling approach:

Building information modeling-based on-site scheduling for panelized construction. In

Proceedings of the Construction Research Congress, pp. 1666-1675.

145

Liu, H., Singh, G., Lu, M., and Al-Hussein, M. (2015c). BIM-enabled boarding design

optimization for residential buildings. Proceedings, International Conference on

Construction Applications of Virtual Reality (CONVR), Banff, AB, Canada, Oct. 5-7.

Liu, H., Lu, M., and Al-Hussein, M. (2016). Ontology-based semantic approach for construction-

oriented quantity take-off from BIM models in the light-frame building industry.

Advanced Engineering Informatics, 30(2), 190-207.

Liu, Z., Osmani, M., Demian, P., and Baldwin, A. (2015). A BIM-aided construction waste

minimisation framework. Automation in Construction, 59, 1-23.

Lu, M. (2003). Simplified discrete-event simulation approach for construction simulation.

Journal of Construction Engineering and Management, ASCE, 129(5), 537-546.

Lu, M., Lam, H., and Dai, F. (2008). Resource-constrained critical path analysis based on

discrete event simulation and particle swarm optimization. Automation in Construction,

17(6), 670-681.

Lu, M., Wu, D., and Zhang, J. (2006). A particle swarm optimization-based approach to tackling

simulation optimization of stochastic, large-scale and complex systems. Advances in

Machine Learning and Cybernetics Lecture Notes in Computer Science, 3930, 528-537.

Lu, M., Zhang, Y., Zhang, J., Hu, Z., and Li, J. (2009). Integration of four-dimensional

computer-aided design modeling and three-dimensional animation of operations

simulation for visualizing construction of the main stadium for the Beijing 2008 Olympic

games. Canadian Journal of Civil Engineering, 36(3), 473-479.

Ma, Z., Liu, Z., and Wei, Z. (2015). Formalized Representation of Specifications for

Construction Cost Estimation by Using Ontology. Computer-Aided Civil and

Infrastructure Engineering, 31(1), 4-17.

146

Ma, Z., Wei, Z., and Zhang, X. (2013). Semi-automatic and specification-compliant cost

estimation for tendering of building projects based on IFC data of design model.

Automation in Construction, 30, 126-135.

Ma, Z., Wei, Z., Song, W., and Lou, Z. (2011). Automation in construction application and

extension of the IFC standard in construction cost estimating for tendering in China.

Automation in Construction, 20(2), 196-204.

Manrique, J. D., Al-Hussein, M., Bouferguene, A., and Nasseri, R. (2015). Automated

generation of shop drawings in residential construction. Automation in Construction, 55,

15-24.

Manrique, J. D., Al-Hussein, M., Bouferguene, A., Safouhi, H., and Nasseri, R. (2009).

Combinatorial Algorithm for Optimizing Wood Waste in Framing Designs. Journal of

Construction Engineering and Management, 137(3), 188-197.

Martinez-Cruz, C., Blanco, I. J., and Vila, M. A. (2011). Ontologies versus relational databases:

are they so different? A comparison. Artificial Intelligence Review, 38(4), 271-290.

Mohamed, Y. and AbouRizk, S. (2000). Simphony: An integrated environment for construction

simulation. Proceedings, Winter Simulation Conference, Orlando, FL, USA, Dec. 10-13,

1907-1914.

Monteiro, A., and Martins, J. P. (2013) A survey on modeling guidelines for quantity takeoff-

oriented BIM-based design. Automation in Construction, 35, 238-253.

Montibelli, A. (2014). Application for solving Bin Packing and Cutting Stock problem.

Available at http://www.codeproject.com/Articles/706136/Csharp-Bin-Packing-Cutting-

Stock-Solver. (Aug. 09, 2016)

http://www.codeproject.com/Articles/706136/Csharp-Bin-Packing-Cutting-Stock-Solver
http://www.codeproject.com/Articles/706136/Csharp-Bin-Packing-Cutting-Stock-Solver

147

Moon, H., Kim, H., Kamat, V., and Kang, L. (2013). BIM-based construction scheduling method

using optimization theory for reducing activity overlaps. Journal of Computing in Civil

Engineer-ing, 10.1061/(ASCE) CP.1943-5487.0000342 (Jul. 10, 2013).

National Association of Home Builders. (2009). “Fast facts for panelized homes.” Available at:

http://www.nahb.org/generic.aspx?genericContentID=10310 (Oct. 24, 2013).

National BIM Standard, United States. National Building Information Model Standard Project

Committee. Available at: http://www.national-bimstandard.org/faq.php#faq1. (Nov. 20,

2013).

National Association of Home Builders (1999), Construction Waste Estimate of a Typical 2000-

Sq-Ft House. Available at http://www.calrecycle.ca.gov/Publications/

Documents/GreenBuilding/43199009D.doc. (Jun. 15, 2016)

Nepal, M. P., Staub-French, S., Pottinger, R., and Webster, A. (2012). Querying a building

information model for construction-specific spatial information. Advanced Engineering

Informatics, 26(4), 904-923.

Nepal, M. P., Staub-French, S., Pottinger, R., and Zhang, J. (2013). Ontology-based feature

modeling for construction information extraction from a Building Information Model.

Journal of Computing in Civil Engineering, 27(5), 555-569.

Noy, N. F., and McGuinness, D. L. (2000). Ontology development 101: a guide to creating your

first ontology, 1-25.

Oh, M., Lee, J., Hong, S. W., and Jeong, Y. (2015). Integrated system for BIM-based

collaborative design. Automation in Construction, 58, 196-206.

http://www.calrecycle.ca.gov/Publications/%20Documents/GreenBuilding/43199009D.doc
http://www.calrecycle.ca.gov/Publications/%20Documents/GreenBuilding/43199009D.doc

148

Porwal, A., and Hewage, K. N. (2011). Building Information Modeling-Based Analysis to

Minimize Waste Rate of Structural Reinforcement. Journal of construction engineering

and management, 138(8), 943-954.

Powers, S. (2003). Practical rdf. "O'Reilly Media, Inc."

Protégé (2014). A free, open-source ontology editor and framework for building intelligent

systems. Available at: http://protege.stanford.edu/. (Nov. 23, 2015)

Ramaji, I. J., and Memari, A. M. (2016). Product Architecture Model for Multistory Modular

Buildings. Journal of Construction Engineering and Management, 04016047.

Sacks, R., and Barak, R. (2008). Impact of three-dimensional parametric modeling of buildings

on productivity in structural engineering practice. Automation in Construction, 17(4),

439-449.

Sacks, R., Eastman, C.M., and Lee, G. (2004). Parametric 3D modeling in building construction

with examples from precast concrete, Automation in Construction 13, 291-312.

Sacks, R., Eastman, C. M., Lee, G., and Orndorff, D. (2005). A target benchmark of the impact

of three-dimensional parametric modeling in precast construction. PCI journal, 50(4),

126.

Salman, A., Ahmad, I., and Al-Madani, S. (2002). Particle swarm optimization for task

assignment problem. Microprocessors and Microsystems, 26(8), 363-371.

Sattineni, A., and Bradford II, R. H. (2011). Estimating with BIM: a survey of US construction

companies, Proceedings of the 28th International Symposium on Automation and

Robotics in Construction and Mining, 564-569.

Siricharoen, W. V. (2007). Ontologies and object models in object oriented software

engineering. IAENG International Journal of Computer Science, 33(1), 19-24.

http://protege.stanford.edu/

149

Staub-French S., Fischer M., and Spradlin M. (1999). Into the fourth dimension. Civil

Engineering, 69(5), 44-47.

Staub-French, S., Fischer, M., and Kunz, J. (2002). An ontology for relating features of building

product models with construction activities to support cost estimating, Center for

Integrated Facility Engineering Working Paper No. 70.

Staub-French, S., Fischer, M., Kunz, J., Ishii, K., and Paulson, B. (2003). A feature ontology to

support construction cost estimating. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 17(02), 133-154.

StrucSoft Solutions Ltd. (2014). Metal wood framer (MWF) add-on. Available at:

http://www.strucsoftsolutions.com/. (Aug. 31, 2015)

StrucSoft Solutions Ltd. (2015). Metal Wood Framer (MWF) add-on. Available at:

http://www.strucsoftsolutions.com/. (Apr. 25, 2016)

Taghaddos, H., AbouRizk, S., Mohamed, Y., and Hermann, R. (2009). Integrating simulation-

based scheduling for module assembly yard. Proceedings, Construction Research

Congress, Seattle, WA, USA, Apr. 5-7, 1270-1279.

Taghaddos, H., Hermann, U., AbouRizk, S., and Mohamed, Y. (2012). A simulation-based

multi-agent approach for scheduling modular construction. Journal of Computing in Civil

Engineering, 28(2), 263-274.

Tauscher, E., Mikulakova, E., Beucke, K., and König, M. (2009). Automated generation of

construction schedules based on the IFC object model. In International workshop on

computing in civil engineering. ASCE, Austin (pp. 666-675).

Tulke, J. and Hanff, J. (2007). 4D Construction sequence planning: New process and data model.

Available at: http://www.inpro-project.eu/media/4d_jantulke.pdf. (Mar., 2014).

http://www.strucsoftsolutions.com/
http://www.strucsoftsolutions.com/

150

Venugopal, M., Eastman, C. M., Sacks, R., and Teizer, J. (2012). Semantics of model views for

information exchanges using the industry foundation class schema. Advanced

Engineering Informatics, 26(2), 411-428.

Venugopal, M., Eastman, C. M., and Teizer, J. (2015). An ontology-based analysis of the

industry foundation class schema for building information model exchanges. Advanced

Engineering Informatics, 29(4), 940-957.

Vesse R., Zettlemoyer R.M., Ahmed K., Moore G., Pluskiewicz T. (2014). dotNetRDF, an open

source .Net library for RDF. Available at: http://www.dotnetrdf.org/default.asp. (Sep. 11,

2015)

W3C Semantic Web (2015). RDF. Available at http://www.w3.org/RDF. (Dec. 12, 2015)

Wang W.C., Weng S.W., Wang S.H., and Chen C.Y. (2014). Integrating building information

models with construction process simulations for project scheduling support. Automation

in Construction, 37, 68-80.

Webster, D. (2014). What BIM can be: LOD 300: Optimizing your model for construction

documentation. Available at http://www.mastergraphics.com/ wordpress/2013/what-bim-

can-be-lod-300-optimizing-your-model-for-construction-documentation/. (Mar. 23, 2015)

Weygant, R. S. (2011). BIM content development: standards, strategies, and best practices.

Wiley, Hoboken, NJ, USA.

Won, J., Cheng, J. C., and Lee, G. (2016). Quantification of construction waste prevented by

BIM-based design validation: Case studies in South Korea. Waste Management.

Yang, Q. Z., and Zhang, Y. (2006). Semantic interoperability in building design: Methods and

tools. Computer-Aided Design, 38(10), 1099-1112.

http://www.dotnetrdf.org/default.asp
http://www.w3.org/RDF
http://www.mastergraphics.com/%20wordpress/2013/what-bim-can-be-lod-300-optimizing-your%20-model-for-construction-documentation/
http://www.mastergraphics.com/%20wordpress/2013/what-bim-can-be-lod-300-optimizing-your%20-model-for-construction-documentation/

151

Yu, S. (2010). The prevention and recycling of clean drywall waste. Available at

http://www.recyclingproductnews.com/article/14816/the-prevention-and-recycling-of-

clean-drywall-waste. (Aug. 18, 2016)

Zhang, H., Li, X., Li, H., and Huang, F. (2006). Particle swarm optimization-based schemes for

resource-constrained project scheduling. Automation in Construction, 14(3), 393-404.

Zhang, H., Tam, C. M., and Shi, J. J. (2002). Simulation-based methodology for project

scheduling. Construction Management and Economics, 20, 667-678.

Zhang, L., and Issa, R. R. (2013). Ontology-based partial Building Information Model extraction.

Journal of Computing in Civil Engineering, 27(6), 576-584.

Zhang, S., Teizer, J., Lee, J. K., Eastman, C. M., and Venugopal, M. (2013). Building

information modeling (BIM) and safety: Automatic safety checking of construction

models and schedules. Automation in Construction, 29, 183-195.

Zhao, H., Liu, H., and Al-Hussein, M. (2015). Automation of quantity takeoff for modular

construction. Proceedings, 2015 Modular and Offsite Construction (MOC) Summit and

1st International Conference on the Industrialization of Construction (ICIC), Edmonton,

AB, Canada, May 19-21, 458-465.

Zheng, C., and Lu, M. (2016). Optimized Reinforcement Detailing Design for Sustainable

Construction: Slab Case Study. Procedia Engineering, 145, 1478-1485.

Zhong, B. T., Ding, L. Y., Luo, H. B., Zhou, Y., Hu, Y. Z., and Hu, H. M. (2012). Ontology-

based semantic modeling of regulation constraint for automated construction quality

compliance checking. Automation in Construction, 28, 58-70.

http://www.recyclingproductnews.com/article/14816/the-prevention-and-recycling-of-clean-drywall-waste
http://www.recyclingproductnews.com/article/14816/the-prevention-and-recycling-of-clean-drywall-waste

152

Zhong, B. T., Ding, L. Y., Love, P. E., and Luo, H. B. (2015). An ontological approach for

technical plan definition and verification in construction. Automation in Construction, 55,

47-57.

153

APPENDIX A

Glossary

Boarding design: Boarding design refers to the layout design of sheathing and drywall sheets on

walls and floors according to design principles and construction best practice.

Semantic QTO: Semantic QTO is an ontology-based semantic approach for construction-

oriented quantity take-off (QTO) that allows users to semantically query the BIM model using

domain vocabularies in order to retrieve the quantity take-off information for construction

processes.

Panelized construction scheduling: Panelized construction scheduling is defined as detailed

scheduling where activities should distinguish each individual building component, instead of

distinguishing each construction zone, and request different resources in accordance with

specific construction methods in order to build individual building components.

154

APPENDIX B

Excerpt from the C#.NET codes for the wall boarding layout design algorithm:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Serialization;
using Autodesk.Revit.DB;

namespace HexuLibrary.Revit
{
 public class WallLayer : Geometry
 {
 private const double LengthDrywallSheet;
 private const double HeightDrywallSheet;
 private const double StudThickness = 1.5 / 12;
 private const double TopGap = 0.5 / 12;
 private const double BottomGap = 5 / 8.0 / 12.0;

 private readonly Wall wall;
 private readonly Part currentPart;

 public WallLayer(Element partElement, Element wallElement, XYZ startP, XYZ
endP)
 : base(partElement, wallElement)
 {
 this.wall = this.HostElement as Wall;
 this.currentPart = partElement as Part;
 this.ExteriorFaceNormalVector = this.wall != null? this.wall.Orientation :
new XYZ(0,0,0);
 this.Direction = startP.GetVector(endP).Normalize();
 this.SetGeometryReference(startP, endP);
 }

 [XmlIgnore]
 public XYZ Direction { get; private set;}

 private Face InteriorFace { get; set; }

 private void GetInteriorFace()
 {
 try
 {
 var facesEnumerator = this.Faces.GetEnumerator();
 while (facesEnumerator.MoveNext())
 {
 var face = facesEnumerator.Current as Face;
 if (face == null) continue;
 if (!face.IsVertical()) continue;
 var interiorDirection = -this.ExteriorFaceNormalVector;
 //(this.wall).GetExteriorFaceNormalVector();

155

 if (face.ComputeNormal(new UV(0,
0)).IsAlmostEqualTo(interiorDirection))
 {
 this.InteriorFace = face;
 break;
 }
 }
 }
 catch (Exception ex)
 {
 throw new UofAException("Drywall.GetInteriorFace",
this.HostElement.Id.ToString(), ex);
 }
 }

 public void OffsetDrywall()
 {
 if (this.currentPart.CanOffsetFace(this.TopFace))
 this.currentPart.SetFaceOffset(this.TopFace, -0.5);
 }

 public IEnumerable<Drywall> DividePart(IList<Curve> curveArray)
 {
 try
 {
 if (curveArray.Any())
 {
 this.GetInteriorFace();
 using (SketchPlane sketchPlane = SketchPlane.Create(this.mDoc,
this.InteriorFace.Reference))
 {
 ICollection<ElementId> partsToBeCutted = new List<ElementId>
{ this.GeometryElement.Id };
 if (PartUtils.ArePartsValidForDivide(this.mDoc,
partsToBeCutted))
 {
 PartMaker partMaker = PartUtils.DivideParts(this.mDoc,
partsToBeCutted, new List<ElementId>(), curveArray, sketchPlane.Id);
 this.mDoc.Regenerate();
 var division =
partMaker.get_Parameter(BuiltInParameter.PARTMAKER_PARAM_DIVISION_GAP);
 division.Set(0 / 12.0);
 }
 }
 this.mDoc.ActiveView.PartsVisibility =
PartsVisibility.ShowPartsOnly;
 IEnumerable<Element> itself = new List<Element>();
 return
this.GeometryElement.GetAssociatePartsforElement(true).Except(itself.Add(this.Geometr
yElement)).
 Select(dry => new Drywall(this.HostElement, dry)).ToList();
 }
 }
 catch (Exception ex)
 {

156

 throw new UofAException("Drywall Error",
this.HostElement.Id.ToString(), ex);
 }
 return null;
 }

 public List<Curve> GetDesignLayout(Wall_Hexu hostedWall, double length,
double HeightDrywallSheet)//GetCuttingPattern
 {
 this.LengthDrywallSheet = length;
 this.HeightDrywallSheet = height;

 var curves = new List<Curve>();
 if (!hostedWall.SubComponents.Openings.Any())
 {
 curves.AddRange(GetCurveArrayforSingleArea(this.StartPoint,
this.EndPoint, this.Height, true, true));
 }
 else
 {
 var openings = hostedWall.SubComponents.Openings.ToList();
 openings.Sort();
 var firstOpening = openings.FirstOrDefault();
 var lastOpening = openings.LastOrDefault();
 if (firstOpening != null)
 {
 curves.AddRange(GetCurveArrayforSingleArea(this.StartPoint,
firstOpening.StartPointXY.Add(XYZ.BasisZ.Multiply(this.StartPoint.Z)),//- diff
 this.Height, true, false));

curves.AddRange(hostedWall.SubComponents.Openings.SelectMany(opening =>
opening.GetDrywallEdges()));

 if (openings.Count > 1)
 {
 for (int i = 0; i < openings.Count - 1; i++)
 {

curves.AddRange(GetCurveArrayforSingleArea(openings[i].EndPointXY.Add(XYZ.BasisZ.Mult
iply(this.StartPoint.Z)),
 openings[i +
1].StartPointXY.Add(XYZ.BasisZ.Multiply(this.StartPoint.Z)),
 this.Height, false, false));
 }
 }

 if (lastOpening != null)

curves.AddRange(GetCurveArrayforSingleArea(lastOpening.EndPointXY.Add(XYZ.BasisZ.Mult
iply(this.StartPoint.Z)), this.EndPoint,
 this.Height, false, true));
 }
 }
 return curves;
 }

157

 private static IEnumerable<Curve> GetCurveArrayforSingleArea(XYZ areaOrigin,
XYZ areaEnd,
 double areaHeight, bool isLeft, bool isRight)
 {
 List<Curve> curveArray = new List<Curve>();
 XYZ areaXAxis = areaEnd.Subtract(areaOrigin).Normalize();
 double areaLength = areaOrigin.DistanceTo(areaEnd);
 Transform honrizontalTran =
 Transform.CreateTranslation(areaXAxis.Multiply(LengthDrywall));
 Curve verticalCut = Line.CreateBound(areaOrigin.Add(XYZ.BasisZ.Multiply(-
1)),
 areaOrigin.Add(XYZ.BasisZ.Multiply(areaHeight + 1)));
 if (areaLength >= 6.0)
 {
 for (int i = 1; i < areaLength / LengthDrywall; ++i)
 {
 verticalCut = verticalCut.CreateTransformed(honrizontalTran);
 curveArray.Add(verticalCut);
 }
 }

 Transform verticalTran = Transform.CreateTranslation(
 XYZ.BasisZ.Multiply(HeightDrywall));
 // areaLength < 6.0 && areaLength > 4.0 ? LengthDrywall : HeightDrywall
 var start = isLeft ? areaOrigin.Add(areaXAxis.Multiply(-5)) : areaOrigin;
 var end = isRight
 ? areaOrigin.Add(areaXAxis.Multiply(areaLength + 5))
 : areaOrigin.Add(areaXAxis.Multiply(areaLength));
 Curve honrizontalCut = Line.CreateBound(start, end);
 for (int i = 1; i < areaHeight / (areaLength < 6.0 && areaLength > 4.0 ?
LengthDrywall : HeightDrywall); ++i)
 {
 honrizontalCut = honrizontalCut.CreateTransformed(verticalTran);
 curveArray.Add(honrizontalCut);
 }
 return curveArray;
 }

 public List<Curve> GetStaggerCuttingPattern(StudFramedWall hostedWall)
 {
 this.CheckSharedParameter(hostedWall);
 List<Curve> curveArray = new List<Curve>();
 var horizontalCurves = this.GetHorizontalCuttingCurves().ToList();
 curveArray.AddRange(horizontalCurves);
 var verticalCurves = this.GetVerticalCuttingCurves(horizontalCurves,
hostedWall);
 curveArray.AddRange(verticalCurves);
 foreach (var opening in hostedWall.SubComponents.Openings)
 {
 curveArray.AddRange(opening.GetWindowRoughEdges(this.StartPoint,
this.EndPoint));
 }
 return curveArray;
 }

158

 private IEnumerable<Curve> GetVerticalCuttingCurves(IList<Curve>
horizontalCurves, StudFramedWall hostedWall)
 {
 List<Curve> curveArray = new List<Curve>();
 XYZ areaXAxis = EndPoint.Subtract(StartPoint).Normalize();
 Dictionary<int, List<XYZ>> edges = new Dictionary<int, List<XYZ>>();
 for (int rowindex = 1; rowindex <= horizontalCurves.Count; rowindex++)
 {
 XYZ startPoint_Up, startPoint_Bot, endPoint_Up, endPoint_Bot;
 this.CalculateEndPoints(horizontalCurves, rowindex, out startPoint_Up,
 out startPoint_Bot, out endPoint_Up, out endPoint_Bot);

 Curve verticalCut = !rowindex.IsOdd() ?
Line.CreateBound(startPoint_Up, startPoint_Bot) :
 Line.CreateBound(endPoint_Up, endPoint_Bot);
 var edgesPerRow = new List<XYZ>();
 do
 {
 var startPoint = verticalCut.GetEndPoint(0);
 var endPoint =
startPoint.Add(areaXAxis.Multiply(!rowindex.IsOdd() ? 1 : -
1).Normalize().Multiply(LengthDrywall));
 var farthestStudLocation =
hostedWall.GetCoveredFarthestStud(startPoint, endPoint);

 farthestStudLocation =
this.StaggerToNearestStudLocation(startPoint, farthestStudLocation, hostedWall,
rowindex, edges);
 farthestStudLocation =
MoveVerticalCutAwayfromOpeningEdges(startPoint, farthestStudLocation, hostedWall);

 verticalCut = verticalCut.CreateTransformed(
 Transform.CreateTranslation(
 areaXAxis.Multiply((!rowindex.IsOdd() ? 1 : -1) *
verticalCut.GetEndPoint(0).DistanceTo(farthestStudLocation))));
 //verticalCut = this.MoveVerticalCutAwayfromOpening(verticalCut,
rowindex, areaXAxis, hostedWall);
 if (!IsNearWallEdge(verticalCut.GetEndPoint(0)))
 {
 if ((rowindex != 2 || rowindex == 2
&& !IsBetweenDoors(verticalCut.GetEndPoint(0), hostedWall)))
 {

edgesPerRow.Add(verticalCut.GetEndPoint(0).SetZValue(this.StartPoint.Z));
 curveArray.Add(verticalCut);
 }
 }
 }
 while
(verticalCut.GetEndPoint(0).DistanceTo(!rowindex.IsOdd() ?endPoint_Up:startPoint_Up) >
LengthDrywall);
 edges.Add(rowindex, edgesPerRow);
 }
 return curveArray;

159

 }

 private bool IsNearWallEdge(XYZ cuttingPoint)
 {
 return
(cuttingPoint.SetZValue(this.StartPoint.Z).DistanceTo(this.StartPoint) < 1 / 12.0) ||
 (cuttingPoint.SetZValue(this.EndPoint.Z).DistanceTo(this.EndPoint)
< 1 / 12.0)|| this.Length < 8;
 }

 private bool IsBetweenDoors(XYZ cuttingPoint, StudFramedWall hostedWall)
 {
 var doors = hostedWall.SubComponents.Doors.ToList();
 var leftDoors =
 doors.Where(
 door =>

cuttingPoint.Subtract(door.LocationXYZ.SetZValue(cuttingPoint.Z))
 .Normalize()
 .DotProduct(hostedWall.Core.Direction) > 0).ToList();

 var rightDoors =
 doors.Where(
 door =>

cuttingPoint.Subtract(door.LocationXYZ.SetZValue(cuttingPoint.Z))
 .Normalize()
 .DotProduct(hostedWall.Core.Direction) < 0).ToList();

 leftDoors.Sort((door1, door2) =>
 {
 if (null == door1 || null == door2)
 {
 return -1;
 }
 return
 door1.LocationXYZ.DistanceTo(cuttingPoint)
 .CompareTo(door2.LocationXYZ.DistanceTo(cuttingPoint));
 });

 rightDoors.Sort((door1, door2) =>
 {
 if (null == door1 || null == door2)
 {
 return -1;
 }
 return
 door1.LocationXYZ.DistanceTo(cuttingPoint)
 .CompareTo(door2.LocationXYZ.DistanceTo(cuttingPoint));
 });
 var leftDoor = leftDoors.FirstOrDefault();
 var rightDoor = rightDoors.FirstOrDefault();

 if (leftDoor != null && rightDoor != null)
 {

160

 if
(cuttingPoint.DistanceTo(leftDoor.EndPoint.SetZValue(cuttingPoint.Z)) +

cuttingPoint.DistanceTo(rightDoor.StartPoint.SetZValue(cuttingPoint.Z)) <
LengthDrywall)
 {
 return true;
 }
 }

 if (leftDoor != null)
 {
 if
(cuttingPoint.DistanceTo(leftDoor.EndPoint.SetZValue(cuttingPoint.Z)) +
 cuttingPoint.DistanceTo(this.EndPoint.SetZValue(cuttingPoint.Z))
< LengthDrywall)
 {
 return true;
 }
 }

 if (rightDoor != null)
 {
 if (cuttingPoint.DistanceTo(this.StartPoint.SetZValue(cuttingPoint.Z))
+

cuttingPoint.DistanceTo(rightDoor.StartPoint.SetZValue(cuttingPoint.Z)) <
LengthDrywall)
 {
 return true;
 }
 }
 return false;
 }

 private XYZ StaggerToNearestStudLocation(XYZ startPoint, XYZ
farthestStudLocation, StudFramedWall hostedWall,
 int rowindex, IDictionary<int, List<XYZ>> takenEdges)
 {
 if (rowindex == 1) return farthestStudLocation;
 XYZ location = farthestStudLocation;
 if (takenEdges[rowindex - 1].Select(edge =>
edge.DistanceTo(location.SetZValue(this.StartPoint.Z))).
 Any(distance => Math.Round(distance, 2) <= 2 * StudThickness))
 {
 farthestStudLocation = hostedWall.GetCoveredFarthestStud(startPoint,
farthestStudLocation);
 }
 return farthestStudLocation;
 }

 private static XYZ MoveVerticalCutAwayfromOpeningEdges(XYZ startPoint, XYZ
farthestStudLocation, StudFramedWall hostedWall)
 {
 XYZ previousNearest;

161

 do
 {
 previousNearest = new XYZ(farthestStudLocation.X,
farthestStudLocation.Y, farthestStudLocation.Z);
 if (
 hostedWall.SubComponents.Openings.Any(
 openning =>

openning.StartPoint.SetZValue(farthestStudLocation.Z).DistanceTo(farthestStudLocation)
<
 2 * StudThickness ||

openning.EndPoint.SetZValue(farthestStudLocation.Z).DistanceTo(farthestStudLocation)
<
 2 * StudThickness))
 {
 farthestStudLocation =
hostedWall.GetCoveredFarthestStud(startPoint, farthestStudLocation);
 }
 } while (!farthestStudLocation.IsEqual(previousNearest));

 return farthestStudLocation;
 }

 private Curve MoveVerticalCutAwayfromOpening(Curve verticalCut, int i, XYZ
areaXAxis, StudFramedWall hostedWall)
 {
 foreach (var openning in hostedWall.SubComponents.Openings)
 {
 if (
 openning.GetWindowEdges(this.StartPoint, this.EndPoint)
 .Any(windowEdge => { return verticalCut.Intersect(windowEdge)
== SetComparisonResult.Overlap; }))
 {
 verticalCut = verticalCut.CreateTransformed(!i.IsOdd()
 ? Transform.CreateTranslation(areaXAxis.Multiply(-
LengthDrywall / 3.0))
 :
Transform.CreateTranslation(areaXAxis.Multiply(LengthDrywall / 3.0)));
 }
 }
 return verticalCut;
 }

 private void CalculateEndPoints(IList<Curve> horizontalCurves, int i, out XYZ
startPoint_Up, out XYZ startPoint_Bot,
 out XYZ endPoint_Up, out XYZ endPoint_Bot)
 {
 if (i == 1)
 {
 startPoint_Up = StartPoint.Add(XYZ.BasisZ.Multiply(BottomGap));
 startPoint_Bot = StartPoint.Add(XYZ.BasisZ.Multiply(-1));
 endPoint_Up = EndPoint.Add(XYZ.BasisZ.Multiply(BottomGap));
 endPoint_Bot = EndPoint.Add(XYZ.BasisZ.Multiply(-1));

162

 }
 else if (i == horizontalCurves.Count + 1)
 {
 startPoint_Up = StartPoint.Add(XYZ.BasisZ.Multiply(Height + 1));
 startPoint_Bot = StartPoint.SetZValue(horizontalCurves[i -
2].GetEndPoint(0).Z);
 endPoint_Up = EndPoint.Add(XYZ.BasisZ.Multiply(Height + 1));
 endPoint_Bot = EndPoint.SetZValue(horizontalCurves[i -
2].GetEndPoint(0).Z);
 }
 else
 {
 startPoint_Up = StartPoint.SetZValue(horizontalCurves[i -
1].GetEndPoint(0).Z);
 startPoint_Bot = StartPoint.SetZValue(horizontalCurves[i -
2].GetEndPoint(0).Z);
 endPoint_Up = EndPoint.SetZValue(horizontalCurves[i -
1].GetEndPoint(0).Z);
 endPoint_Bot = EndPoint.SetZValue(horizontalCurves[i -
2].GetEndPoint(0).Z);
 }
 }

 private IEnumerable<Curve> GetHorizontalCuttingCurves(bool fromBot, bool
isLeft = true, bool isRight = true)
 {
 try
 {
 List<Curve> curveArray = new List<Curve>();
 XYZ areaXAxis = EndPoint.Subtract(StartPoint).Normalize();
 double areaLength = StartPoint.DistanceTo(EndPoint);

 var start = isLeft ? StartPoint.Add(areaXAxis.Multiply(-5)) :
StartPoint;
 var end = isRight
 ? StartPoint.Add(areaXAxis.Multiply(areaLength + 5))
 : StartPoint.Add(areaXAxis.Multiply(areaLength));

 Curve honrizontalCut = Line.CreateBound(start, end);

 Transform verticalTran =
Transform.CreateTranslation(XYZ.BasisZ.Multiply(HeightDrywall));
 double remaining = Height;
 for (int i = 1; i < Height / HeightDrywall; ++i)
 {
 if (remaining > 1.33 * HeightDrywall)
 {
 honrizontalCut =
honrizontalCut.CreateTransformed(verticalTran);
 curveArray.Add(honrizontalCut);
 remaining = remaining - HeightDrywall;
 }
 }
 double lastTansform =

163

honrizontalCut.GetEndPoint(0).DistanceTo(start.Add(XYZ.BasisZ.Multiply(this.Height -
TopGap)));
 honrizontalCut =
honrizontalCut.CreateTransformed(Transform.CreateTranslation(XYZ.BasisZ.Multiply(last
Tansform)));
 curveArray.Add(honrizontalCut);
 return curveArray;
 }
 catch (Exception ex)
 {
 throw new UofAException("Cannot get horizontal cutting curves",
this.HostElement.Id.IntegerValue.ToString(), ex);
 }
 }

 private IEnumerable<Curve> GetHorizontalCuttingCurves(bool isLeft = true,
bool isRight = true)
 {
 try
 {
 List<Curve> curveArray = new List<Curve>();
 XYZ areaXAxis = EndPoint.Subtract(StartPoint).Normalize();
 double areaLength = StartPoint.DistanceTo(EndPoint);

 var start = isLeft ? StartPoint.Add(areaXAxis.Multiply(-5)) :
StartPoint;
 var end = isRight
 ? StartPoint.Add(areaXAxis.Multiply(areaLength + 5))
 : StartPoint.Add(areaXAxis.Multiply(areaLength));

 Curve honrizontalCut_BGap =
Line.CreateBound(start.Add(XYZ.BasisZ.Multiply(BottomGap)),
 end.Add(XYZ.BasisZ.Multiply(BottomGap)));
 curveArray.Add(honrizontalCut_BGap);

 if (this.Length > 4.5)
 {
 Curve honrizontalCut_B =
Line.CreateBound(start.Add(XYZ.BasisZ.Multiply(BottomGap + 4.5)),
 end.Add(XYZ.BasisZ.Multiply(BottomGap + 4.5)));
 curveArray.Add(honrizontalCut_B);

 }

 Curve honrizontalCut =
Line.CreateBound(start.Add(XYZ.BasisZ.Multiply(this.Height - TopGap)),
 end.Add(XYZ.BasisZ.Multiply(this.Height - TopGap)));
 curveArray.Add(honrizontalCut);
 return curveArray;
 }
 catch (Exception ex)
 {
 throw new UofAException("Cannot get horizontal cutting curves",
this.HostElement.Id.IntegerValue.ToString(), ex);

164

 }

 }

 private void CheckSharedParameter(StudFramedWall hostedWall)
 {
 Parameter hostParameter =
this.GeometryElement.FindParameterByName("PartHost");
 Parameter isExteriorParameter =
this.GeometryElement.FindParameterByName("IsExterior");
 Parameter isNotWaste =
this.GeometryElement.FindParameterByName("IsNotWaste");
 Parameter nameParameter =
this.GeometryElement.FindParameterByName("Name");

 if (hostParameter != null && isExteriorParameter != null &&
nameParameter != null && isNotWaste != null)
 {
 hostParameter.Set(hostedWall.NameofWallPanel);

isExteriorParameter.Set(this.StartPoint.SetZValue(hostedWall.Core.StartPoint.Z)
 .IsOnBottomSide(hostedWall.Core.StartPoint,
 hostedWall.Core.EndPoint) ? 0 : 1);
 }
 else
 {
 this.CreateSharedParameterforPart();
 Parameter newHostParameter =
this.GeometryElement.FindParameterByName("PartHost");
 Parameter newIsExteriorParameter =
this.GeometryElement.FindParameterByName("IsExterior");
 newHostParameter.Set(hostedWall.NameofWallPanel);

newIsExteriorParameter.Set(this.StartPoint.SetZValue(hostedWall.Core.StartPoint.Z)
 .IsOnBottomSide(hostedWall.Core.StartPoint,
 hostedWall.Core.EndPoint) ? 0 : 1);
 }
 }

 private void CreateSharedParameterforPart()
 {
 var partHost =
ParameterUtil.GetOrCreateSharedParameter(this.mDoc.Application, "PartHost", "Star",
ParameterType.Text,
 true);
 var isExterior =
ParameterUtil.GetOrCreateSharedParameter(this.mDoc.Application, "IsExterior", "Star",
ParameterType.YesNo,
 true);
 var isNotWaste =
ParameterUtil.GetOrCreateSharedParameter(this.mDoc.Application, "IsNotWaste", "Star",
ParameterType.YesNo,
 true);
 var name = ParameterUtil.GetOrCreateSharedParameter(this.mDoc.Application,
"Name", "Star", ParameterType.Text,

165

 true);

 CategorySet categorySetPart =
this.mDoc.Application.Create.NewCategorySet();

categorySetPart.Insert(this.mDoc.Settings.Categories.get_Item(BuiltInCategory.OST_Par
ts));

 ParameterUtil.AttachSharedParameter(this.mDoc.Application, partHost,
categorySetPart,
 BuiltInParameterGroup.PG_IDENTITY_DATA, true);
 ParameterUtil.AttachSharedParameter(this.mDoc.Application, isExterior,
categorySetPart,
 BuiltInParameterGroup.PG_IDENTITY_DATA, true);
 ParameterUtil.AttachSharedParameter(this.mDoc.Application, isNotWaste,
categorySetPart,
 BuiltInParameterGroup.PG_IDENTITY_DATA, true);
 ParameterUtil.AttachSharedParameter(this.mDoc.Application, name,
categorySetPart,
 BuiltInParameterGroup.PG_IDENTITY_DATA, true);
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Xml.Serialization;
using Autodesk.Revit.DB;
using HexuLibrary.Revit.Analyzor;

namespace HexuLibrary.Revit
{
 [Serializable]
 public class Geometry
 {
 protected Document mDoc { get; private set; }
 private XYZ refStart;
 private XYZ refEnd;

 private List<XYZ> fourVerticesBottom;

 internal Geometry()
 {
 this.ExteriorFaceNormalVector = new XYZ();
 }

 public Geometry(Element partGeoElement, Element hostElement)
 {
 this.GeometryElement = partGeoElement;
 this.mDoc = partGeoElement.Document;
 this.HostElement = hostElement;
 this.ExteriorFaceNormalVector = new XYZ();

166

 }

 public readonly Element GeometryElement;
 protected Element HostElement { get; private set; }

 public virtual double Length
 {
 get { return this.StartPoint.DistanceTo(this.EndPoint); }
 }

 private double width;
 public double Width
 {
 get
 {
 if (Math.Abs(this.width) < Utility.Tolerance)
 {
 if (this.GeometryElement is Wall)
 {
 var wall = this.GeometryElement as Wall;
 this.width = wall.Width;
 }
 else
 {
 this.width =
this.GeometryElement.FindParameterByName("Thickness").AsDouble();
 }
 }
 return this.width;
 }
 }

 private double height;
 public double Height
 {
 get
 {
 if (Math.Abs(this.height) < Utility.Tolerance)
 {
 if (this.GeometryElement is Wall)
 {
 var wall = this.GeometryElement as Wall;
 this.height =
wall.get_Parameter(BuiltInParameter.WALL_USER_HEIGHT_PARAM).AsDouble();
 }
 else
 {
 this.height =
this.GeometryElement.FindParameterByName("Height").AsDouble();
 }
 }
 return this.height;
 }
 }

167

 private double area;
 public double Area
 {
 get
 {
 if (Math.Abs(this.area) < Utility.Tolerance)
 {
 this.area =
this.GeometryElement.FindParameterByName("Area").AsDouble();
 }
 return this.area;
 }
 }

 [XmlIgnore]
 public XYZ ExteriorFaceNormalVector { get; protected set; }
 //this.exteriorFaceNormalVector = this.exteriorFaceNormalVector ??
this.GetExteriorFaceNormalVector();

 private FaceArray faces;
 [XmlIgnore]
 public FaceArray Faces
 {
 get
 {
 this.faces = this.faces ?? this.GeometryElement.GetFacesforElement();
 return this.faces;
 }
 }

 private List<Face> verticalFaces;
 public IEnumerable<Face> VerticalFaces
 {
 get
 {
 this.verticalFaces = this.verticalFaces ??
this.Faces.Cast<Face>().Where(e => e.IsVertical()).ToList();
 return this.verticalFaces;
 }
 }

 private List<Face> horizontalFaces;
 public IEnumerable<Face> HorizontalFaces
 {
 get
 {
 this.horizontalFaces = this.horizontalFaces ??
this.Faces.Cast<Face>().Where(e => e.IsHorizontal()).ToList();
 return this.horizontalFaces;
 }
 }

 private Face topFace;
 [XmlIgnore]
 public Face TopFace

168

 {
 get
 {
 this.topFace = this.topFace ??
this.Faces.GetFaceByComparing_ZElevation((ideal, each) => ideal < each); //Bottom:
(ideal, each) => ideal > each
 return this.topFace;
 }
 }

 private IEnumerable<Face> bottomFaces;
 public IEnumerable<Face> BottomFaces
 {
 get
 {
 if (this.bottomFaces != null) return this.bottomFaces;
 IGrouping<double, Face> bottomGroup = this.HorizontalFaces
 .GroupBy(face =>
face.GetElevationOfFaceinAxisDirection(XYZ.BasisZ))
 .OrderBy(g => g.Key).FirstOrDefault();
 if (bottomGroup != null)
 this.bottomFaces = this.bottomFaces ?? bottomGroup.ToList();
 return this.bottomFaces;
 }
 }

 private IEnumerable<Face> topFaces;
 public IEnumerable<Face> TopFaces
 {
 get
 {
 if (this.topFaces != null) return this.topFaces;
 if (this.HorizontalFaces != null)
 {
 this.topFaces = this.HorizontalFaces
 .GroupBy(face =>
face.GetElevationOfFaceinAxisDirection(XYZ.BasisZ))
 .OrderByDescending(g => g.Key)
 .FirstOrDefault();
 }
 return this.topFaces;
 }
 }

 /// <summary>
 /// Vertical face of at the right of the core layer for the wall
 /// </summary>
 [XmlIgnore]
 public Face RightFace
 {
 get
 {
 return
 this.VerticalFaces

169

 .GetFacesBySpecifiedNormalVector(this.ExteriorFaceNormalVecto
r.Multiply(-1)).FirstOrDefault();
 }
 }

 /// <summary>
 /// Vertical face of at the left of the core layer for the wall
 /// </summary>
 [XmlIgnore]
 public Face LeftFace
 {
 get
 {
 return
 this.VerticalFaces
 .GetFacesBySpecifiedNormalVector(this.ExteriorFaceNormalVecto
r).FirstOrDefault();
 }
 }

 private Face startFace;
 /// <summary>
 /// Vertical face of at the start point of the core layer for the wall
 /// </summary>
 [XmlIgnore]
 public Face StartFace
 {
 get
 {
 try
 {
 this.startFace = this.startFace ??
this.Faces.GetVerticalFace_HostingPoint(StartPoint);
 }
 catch (Exception exception)
 {
 throw new UofAException(exception.Message,
this.GeometryElement.Id.IntegerValue.ToString(), exception);
 }
 return this.startFace;
 }
 }

 private Face endFace;
 /// <summary>
 /// Vertical face of at the end point of the core layer for the wall
 /// </summary>
 [XmlIgnore]
 public Face EndFace
 {
 get
 {
 try
 {

170

 this.endFace = this.endFace ??
this.Faces.GetVerticalFace_HostingPoint(EndPoint);
 }
 catch (Exception exception)
 {
 throw new UofAException(exception.Message,
this.GeometryElement.Id.IntegerValue.ToString(), exception);
 }
 return this.endFace;
 }
 }

 public XYZ StartPoint_Top
 {
 get
 {
 this.coreGeometyStartEndPoints = this.coreGeometyStartEndPoints ??
 this.GetPartGeometyEndPoints(new
List<Face> {this.TopFace}); //this.GetPartGeometyEndPoints_Top();
 return this.coreGeometyStartEndPoints.Any() ?
this.coreGeometyStartEndPoints[0]
 : new XYZ(0, 0, 0);
 }
 }

 public XYZ EndPoint_Top
 {
 get
 {
 this.coreGeometyStartEndPoints = this.coreGeometyStartEndPoints ??
 this.GetPartGeometyEndPoints(new
List<Face>{this.TopFace}); //this.GetPartGeometyEndPoints_Top();
 return this.coreGeometyStartEndPoints.Any() ?
this.coreGeometyStartEndPoints[1]
 : new XYZ(0, 0, 0);
 }
 }

 /// <summary>
 /// Start point of the core geometry of the wall, no matter that the wall is
flipped or not
 /// Note: it is the middle point of core layer at wall elevation
 /// </summary>
 private List<XYZ> coreGeometyStartEndPoints;
 [XmlIgnore]
 public XYZ StartPoint
 {
 get
 {
 this.coreGeometyStartEndPoints = this.coreGeometyStartEndPoints ??
this.GetPartGeometyEndPoints(this.BottomFaces);//GetPartGeometyEndPoints_Top();
 return this.coreGeometyStartEndPoints.Any() ?
this.coreGeometyStartEndPoints[0]
 : new XYZ(0, 0, 0);
 }

171

 }

 /// <summary>
 /// End point of the core geometry of this wall, no matter that the wall is
flipped or not
 /// Note: it is the middle point of core layer at wall elevation
 /// </summary>
 [XmlIgnore]
 public XYZ EndPoint
 {
 get
 {
 this.coreGeometyStartEndPoints = this.coreGeometyStartEndPoints ??
this.GetPartGeometyEndPoints(this.BottomFaces);//.GetPartGeometyEndPoints_Top();
 return this.coreGeometyStartEndPoints.Any() ?
this.coreGeometyStartEndPoints[1]//.Add(XYZ.BasisZ.Multiply(-this.Height))
 : new XYZ(0, 0, 0);
 }
 }

 [XmlIgnore]
 public XYZ StartPointExterior
 {
 get
 {
 this.fourVerticesBottom = this.fourVerticesBottom ??
 this.GetFourVerticesforBottomFaces();
 return
 this.fourVerticesBottom.GetNearByPoints(this.StartPoint, 2)
 .FirstOrDefault(e => !e.IsOnBottomSide(this.StartPoint,
this.EndPoint));
 }
 }

 [XmlIgnore]
 public XYZ EndPointExterior
 {
 get
 {
 this.fourVerticesBottom = this.fourVerticesBottom ??
 this.GetFourVerticesforBottomFaces();
 return
 this.fourVerticesBottom.GetNearByPoints(this.EndPoint, 2)
 .FirstOrDefault(e => !e.IsOnBottomSide(this.StartPoint,
this.EndPoint));
 }
 }

 [XmlIgnore]
 public XYZ StartPointInterior
 {
 get
 {
 this.fourVerticesBottom = this.fourVerticesBottom ??

172

 this.GetFourVerticesforBottomFaces();
//Utility.GetFourVerticesforFace(this.BottomFace, this.startRef, this.endRef);
 return
 this.fourVerticesBottom.GetNearByPoints(this.StartPoint, 2)
 .FirstOrDefault(e => e.IsOnBottomSide(this.StartPoint,
this.EndPoint));
 }
 }

 [XmlIgnore]
 public XYZ EndPointInterior
 {
 get
 {
 this.fourVerticesBottom = this.fourVerticesBottom ??
 this.GetFourVerticesforBottomFaces();
//Utility.GetFourVerticesforFace(this.BottomFace, this.startRef, this.endRef);
 return
 this.fourVerticesBottom.GetNearByPoints(this.EndPoint, 2)
 .FirstOrDefault(e => e.IsOnBottomSide(this.StartPoint,
this.EndPoint));
 }
 }

 protected void SetGeometryReference(XYZ start, XYZ end)
 {
 this.refStart = start;
 this.refEnd = end;
 }

 private XYZ GetExteriorFaceNormalVector()
 {
 Transform rotate90 = Transform.CreateRotationAtPoint(new XYZ(0, 0, 1),
Math.PI / 2, refStart);
 Line directionLine = Line.CreateBound(this.refStart, this.refEnd);
 var rotatedCurve = directionLine.CreateTransformed(rotate90);
 return
rotatedCurve.GetEndPoint(1).Subtract(rotatedCurve.GetEndPoint(0)).Normalize();
 }

 private List<XYZ> GetFourVerticesforBottomFaces()
 {
 return this.BottomFaces.SelectMany(face =>
face.GetFourVerticesforFace(this.refStart, this.refEnd)).ToList();
 }

 private List<XYZ> GetPartGeometyEndPoints(IEnumerable<Face>
facesToGetGeometyEndPoints)
 {
 try
 {
 var interactionLine =
this.GetPartCenterLine(facesToGetGeometyEndPoints);

 List<Curve> bottomEdges = new List<Curve>();

173

 foreach (var bottomFace in facesToGetGeometyEndPoints)
 {
 bottomEdges.AddRange(bottomFace.GetEncloseEdges());
 }
 //this.currentElement.GetEncloseEdgesforFaceWithNormalVector(-
XYZ.BasisZ);
 List<XYZ> twoInteractPoints = (from bottomEdge in bottomEdges
 let edgeLine = bottomEdge as Line
 let result =
interactionLine.Intersect(bottomEdge)
 where result ==
SetComparisonResult.Overlap
 select
interactionLine.GetIntersectionPointBetweenTwoCurves(edgeLine)).ToList();
 return twoInteractPoints.Distinct(new DistinctXYZComparer()).ToList()
 .GetTwoPointsNearSpecifiedPoints(interactionLine.GetEndPoint(
0), interactionLine.GetEndPoint(1)); //this.refStart, this.refEnd;
 }
 catch (Exception ex)
 {
 throw new Exception("Cannot get geometrical ends for the wall core
part ("+ this.GeometryElement.Id.IntegerValue+") due to "+ ex.Message, ex);
 }
 }

 private Line GetPartCenterLine(IEnumerable<Face> facesToGetCenterLine)
 {
 try
 {
 List<XYZ> faceBoundingPoints = new List<XYZ>();
 foreach (var bottomFace in facesToGetCenterLine)
 {

faceBoundingPoints.AddRange(bottomFace.GetEdgeMiddlePointsforFaceOnBoundingBox());
 }

 // when walls have door, the wall will have two parts.
 List<XYZ> twoBottomEndPoints =
faceBoundingPoints.GetPointsParallelToDirection(this.refStart, this.refEnd);
 var pointElevation = twoBottomEndPoints.FirstOrDefault();
 if (pointElevation == null) return null;
 if (twoBottomEndPoints.Count() == 2)
 {
 var dir =
twoBottomEndPoints.FirstOrDefault().GetVector(twoBottomEndPoints.LastOrDefault());
 if (dir.IsSameDirection(this.refStart.GetVector(this.refEnd)))
 {
 return Line.CreateBound(twoBottomEndPoints.FirstOrDefault(),
twoBottomEndPoints.LastOrDefault());
 }
 return Line.CreateBound(twoBottomEndPoints.LastOrDefault(),
twoBottomEndPoints.FirstOrDefault());
 }
 var elevation = pointElevation.Z;

174

 var leftPoints =
 twoBottomEndPoints.Where(
 point =>
 point.IsOnLeftSide(this.refStart.SetZValue(elevation),
this.refEnd.SetZValue(elevation))).ToList();
 var rightPoints =
 twoBottomEndPoints.Where(
 point =>
 point.IsOnRightSide(this.refStart.SetZValue(elevation),
this.refEnd.SetZValue(elevation))).ToList();

 var startP =
leftPoints.Any()?leftPoints.GetFarthestByPoints(this.refStart.SetZValue(elevation),
1).FirstOrDefault():

twoBottomEndPoints.GetNearByPoints(this.refStart.SetZValue(elevation),
1).FirstOrDefault();
 var endP = rightPoints.Any() ?
rightPoints.GetFarthestByPoints(this.refEnd.SetZValue(elevation),
1).FirstOrDefault() :

twoBottomEndPoints.GetNearByPoints(this.refEnd.SetZValue(elevation),
1).FirstOrDefault();

 if (startP.IsEqual(endP)) throw new ArgumentException("Cannot get two
distinct end points for geometry");
 Line interactionLine = Line.CreateBound(startP, endP);
 return interactionLine; // the line going through all the wall
 }
 catch (Exception ex)
 {
 throw new Exception("Cannot get bottom center line for Part", ex);
 }
 }
 }
}

175

APPENDIX C

Excerpt from the C#.NET codes for generating ontology-enhanced BIM models:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using HexuLibrary;
using HexuLibrary.Revit;
using VDS.RDF;
using VDS.RDF.Nodes;
using VDS.RDF.Parsing;
using VDS.RDF.Writing;
using BuildingComponent = HexuLibrary.Revit.BuildingComponent;
using Stud = GeneralTemplateExtension.Stud;

namespace Addin_Fortis.RDF
{
 internal class KnowledgeBaseGenerator
 {
 private IUriNode primary;
 private IUriNode second;
 private IUriNode third;
 private IUriNode height;
 private IUriNode length;
 private IUriNode thickness;
 private IUriNode volume;
 private IUriNode hostID;
 private IUriNode iD;
 private IUriNode isAcoustic;
 private IUriNode isBalloonSystem;
 private IUriNode isExterior;
 private IUriNode isFireRated;
 private IUriNode isHonrizontal;
 private IUriNode isMechanical;
 private IUriNode isPartition;
 private IUriNode isStraight;
 private IUriNode isStructural;
 private IUriNode isWashroomPanel;
 private IUriNode isSubIntersection;
 private IUriNode hasDoubleTopPlate;
 private IUriNode level;
 private IUriNode material;
 private IUriNode name;
 private IUriNode stud_Spacing;
 private IUriNode stud_Size;
 private IUriNode size;
 private IUriNode hostWall;
 private IUriNode weight;
 private IUriNode workZone;

 private IUriNode typeOf;
 private IUriNode studFramedWall;

176

 private IUriNode concreteWall;
 private IUriNode window;
 private IUriNode door;
 private IUriNode cripple;
 private IUriNode jack;
 private IUriNode joint;
 private IUriNode king;
 private IUriNode normal;
 private IUriNode blocking;
 private IUriNode bottomPlate;
 private IUriNode header;
 private IUriNode sill;
 private IUriNode topPlate;
 private IUriNode lConnection;
 private IUriNode doubleTConnection;
 private IUriNode tConnection;

 private IUriNode connectedWith;
 private IUriNode hasIntersection;
 private IUriNode hasSubIntersection;
 private IUriNode hasDoor;
 private IUriNode hasWindow;
 private IUriNode hasSubComponent;
 private IUriNode hostedBy;
 private IUriNode isInstanceOf;
 private IUriNode isMadeOf;
 private IUriNode isPartOf;
 private IUriNode hasPattern;
 private IUriNode supportedBy;

 private readonly ILiteralNode booleanFalse;
 private readonly ILiteralNode booleanTrue;

 public readonly Graph Graph = new Graph();

 public KnowledgeBaseGenerator(string nameOfKnowledgeBase)
 {
 this.NameOfKnowledgeBase = nameOfKnowledgeBase;
 this.Graph.BaseUri = new
Uri("http://www.semanticweb.org/hexu/ontologies/2014/6/BuildingProcessOntology");
 this.Graph.LoadFromFile(nameOfKnowledgeBase);
 this.AddNamespace();
 this.SetUriNodesforTerm();
 this.SetUriNodesforProperty();
 this.SetUriNodesforInterrelationship();
 this.booleanTrue = Graph.CreateLiteralNode("true",
 UriFactory.Create(XmlSpecsHelper.XmlSchemaDataTypeBoolean));
 this.booleanFalse = Graph.CreateLiteralNode("false",
 UriFactory.Create(XmlSpecsHelper.XmlSchemaDataTypeBoolean));
 }

 private void SetUriNodesforTerm()
 {
 this.typeOf = Graph.CreateUriNode("rdf:type");
 this.studFramedWall = Graph.CreateUriNode("proOnto:StudFramedWall");

177

 this.concreteWall = Graph.CreateUriNode("proOnto:Wall");
 this.window = Graph.CreateUriNode("proOnto:Window");
 this.door = Graph.CreateUriNode("proOnto:Door");
 this.cripple = Graph.CreateUriNode("proOnto:Cripple");
 this.jack = Graph.CreateUriNode("proOnto:Jack");
 this.joint = Graph.CreateUriNode("proOnto:Joint");
 this.king = Graph.CreateUriNode("proOnto:King");
 this.normal = Graph.CreateUriNode("proOnto:Normal");
 this.blocking = Graph.CreateUriNode("proOnto:Blocking");
 this.bottomPlate = Graph.CreateUriNode("proOnto:BottomPlate");
 this.header = Graph.CreateUriNode("proOnto:Header");
 this.sill = Graph.CreateUriNode("proOnto:Sill");
 this.topPlate = Graph.CreateUriNode("proOnto:TopPlate");
 Graph.CreateUriNode("proOnto:IConnection");
 this.lConnection = Graph.CreateUriNode("proOnto:LConnection");
 this.doubleTConnection = Graph.CreateUriNode("proOnto:DoubleTConnection");
 this.tConnection = Graph.CreateUriNode("proOnto:TConnection");
 }

 private void SetUriNodesforProperty()
 {
 this.primary = Graph.CreateUriNode("proOnto:Primary");
 this.second = Graph.CreateUriNode("proOnto:Second");
 this.third = Graph.CreateUriNode("proOnto:Third");
 this.height = Graph.CreateUriNode("proOnto:Height");
 this.length = Graph.CreateUriNode("proOnto:Length");
 this.thickness = Graph.CreateUriNode("proOnto:Thickness");
 this.volume = Graph.CreateUriNode("proOnto:Volume");
 this.hostID = Graph.CreateUriNode("proOnto:HostID");
 this.iD = Graph.CreateUriNode("proOnto:ID");
 this.isAcoustic = Graph.CreateUriNode("proOnto:IsAcoustic");
 this.isBalloonSystem = Graph.CreateUriNode("proOnto:IsBalloonSystem");
 this.isExterior = Graph.CreateUriNode("proOnto:IsExterior");
 this.isFireRated = Graph.CreateUriNode("proOnto:IsFireRated");
 this.isHonrizontal = Graph.CreateUriNode("proOnto:IsHonrizontal");
 this.isMechanical = Graph.CreateUriNode("proOnto:IsMechanical");
 this.isPartition = Graph.CreateUriNode("proOnto:IsPartition");
 this.isStraight = Graph.CreateUriNode("proOnto:IsStraight");
 this.isStructural = Graph.CreateUriNode("proOnto:IsStructural");
 this.isWashroomPanel = Graph.CreateUriNode("proOnto:IsWashroomPanel");
 this.isSubIntersection = Graph.CreateUriNode("proOnto:IsSubIntersection");
 this.hasDoubleTopPlate = Graph.CreateUriNode("proOnto:HasDoubleTopPlate");
 this.level = Graph.CreateUriNode("proOnto:Level");
 this.material = Graph.CreateUriNode("proOnto:Material");
 this.name = Graph.CreateUriNode("proOnto:Name");
 this.stud_Spacing = Graph.CreateUriNode("proOnto:StudSpacing");
 this.stud_Size = Graph.CreateUriNode("proOnto:StudSize");
 this.size = Graph.CreateUriNode("proOnto:Size");
 this.hostWall = Graph.CreateUriNode("proOnto:HostWall");
 this.weight = Graph.CreateUriNode("proOnto:Weight");
 this.workZone = Graph.CreateUriNode("proOnto:ID");
 }

 private void SetUriNodesforInterrelationship()
 {

178

 this.connectedWith = Graph.CreateUriNode("proOnto:connectedWith");
 this.hasIntersection = Graph.CreateUriNode("proOnto:hasIntersection");
 this.hasSubIntersection =
Graph.CreateUriNode("proOnto:hasSubIntersection");
 this.hasDoor = Graph.CreateUriNode("proOnto:hasDoor");
 this.hasWindow = Graph.CreateUriNode("proOnto:hasWindow");
 this.hasSubComponent = Graph.CreateUriNode("proOnto:hasSubComponent");
 this.hostedBy = Graph.CreateUriNode("proOnto:hostedBy");
 this.isInstanceOf = Graph.CreateUriNode("proOnto:isInstanceOf");
 this.isMadeOf = Graph.CreateUriNode("proOnto:isMadeOf");
 this.isPartOf = Graph.CreateUriNode("proOnto:isPartOf");
 this.hasPattern = Graph.CreateUriNode("proOnto:hasPattern");
 this.supportedBy = Graph.CreateUriNode("proOnto:supportedBy");
 }

 private string NameOfKnowledgeBase { get; set; }

 private void AddNamespace()
 {
 Graph.NamespaceMap.AddNamespace("proOnto",

UriFactory.Create("http://www.semanticweb.org/hexu/ontologies/2014/6/BuildingProcessO
ntology#"));
 Graph.NamespaceMap.AddNamespace("rdf",
UriFactory.Create("http://www.w3.org/1999/02/22-rdf-syntax-ns#"));
 Graph.NamespaceMap.AddNamespace("rdfs",
UriFactory.Create("http://www.w3.org/2000/01/rdf-schema#"));
 Graph.NamespaceMap.AddNamespace("xsd",
UriFactory.Create("http://www.w3.org/2001/XMLSchema#"));
 Graph.NamespaceMap.AddNamespace("owl",
UriFactory.Create("http://www.w3.org/2002/07/owl#"));
 }

 public void AddNewEntitiesintoRDF<T>(IEnumerable<T> entities)
 where T : BuildingComponent
 {
 foreach (var wall in entities.OfType<Wall_Hexu>()) //SteelFramingWall
 {
 try
 {
 SteelFramingWall wall1 = wall as SteelFramingWall;
 var wallNode = AssertWallEntitiesToRDF<T>(wall);
 AssertWindowEntitiesToRDF<T>(wall.SubComponents.Windows,
wallNode);
 AssertWindowEntitiesToRDF<T>(wall.SubComponents.Doors, wallNode);
 if (wall1 != null) AssertStudEntitiesToRDF<T>(wall1.Studs,
wallNode);
 if (wall1 != null) AssertPlateEntitiesToRDF<T>(wall1.Plates,
wallNode);
 }
 catch (Exception ex)
 {
 throw new UofAException("Triple cannot be created.",
wall.ElementID.ToString("F0"), ex);
 }

179

 }
 RdfXmlWriter rdfxmlWriter = new RdfXmlWriter();
 rdfxmlWriter.Save(Graph, NameOfKnowledgeBase);
 }

 public void AddNewSingleIntersectionsintoRDF(IEnumerable<Intersection>
intersections)
 {
 foreach (var intersection in intersections)
 {
 try
 {
 IUriNode intersectionSubject =this.Graph.CreateUriNode
 ("proOnto:Intersections" + ("_"+intersection.Name));
 switch (intersection.Type)
 {
 case (IntersectionType.T):
 this.Graph.Assert(new Triple(intersectionSubject, typeOf,
this.doubleTConnection));
 break;
 case (IntersectionType.L):
 this.Graph.Assert(new Triple(intersectionSubject, typeOf,
this.lConnection));

this.AssertLiteralNode<BuildingComponent>(intersectionSubject, this.isSubIntersection,
 intersection.IsSubIntersection ? this.booleanTrue :
this.booleanFalse);
 break;
 default:
 this.Graph.Assert(new Triple(intersectionSubject, typeOf,
this.lConnection));
 break;
 }

this.AssertLiteralNodeWithDataType<BuildingComponent>(intersectionSubject, this.iD,
 intersection.ID,
 XmlSpecsHelper.XmlSchemaDataTypeString);

this.AssertLiteralNodeWithDataType<BuildingComponent>(intersectionSubject,
this.hostWall,
 intersection.Host.ToString(),
 XmlSpecsHelper.XmlSchemaDataTypeString);

this.AssertLiteralNodeWithDataType<BuildingComponent>(intersectionSubject,
this.primary,
 intersection.GetPrimaryAngle().ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 foreach (var wallLocationPair in intersection.ContainedElements)
 {
 var wallHostNode = this.Graph.GetUriNode("proOnto:" +

180

(wallLocationPair.Key.Family.Add(wallLocationPair.Key.ElementID.ToString("F0"))));
 //var hostWall_1 = this.Graph.GetTriplesWithSubjectPredicate
 //(wallHostNode, this.hasIntersection).FirstOrDefault();
 //if (hostWall_1 != null) this.Graph.Retract(hostWall_1);
 this.Graph.Assert(new Triple(wallHostNode,
this.hasIntersection, intersectionSubject));
 //this.Graph.Assert(new Triple(intersectionSubject,
this.hostedBy, wallHostNode));
 }
 }
 catch (Exception ex)
 {
 throw new UofAException("Triple cannot be created.",
intersection.ID, ex);
 }
 }
 RdfXmlWriter rdfxmlWriter = new RdfXmlWriter();
 rdfxmlWriter.Save(Graph, NameOfKnowledgeBase);
 }

 public void AddNewMultipleIntersectionsintoRDF(IEnumerable<Intersection>
multiIntersections)
 {
 foreach (var multiIntersection in multiIntersections)
 {
 try
 {
 var first = multiIntersection.SubIntersections.FirstOrDefault();
 if (first == null) return;

 IUriNode mIntersectionSubject = this.Graph.CreateUriNode
 ("proOnto:MIntersections" + ("_" + first.Name));

 this.Graph.Assert(new Triple(mIntersectionSubject, typeOf,
this.doubleTConnection));

this.AssertLiteralNodeWithDataType<BuildingComponent>(mIntersectionSubject, this.iD,
 first.ID,
 XmlSpecsHelper.XmlSchemaDataTypeString);

this.AssertLiteralNodeWithDataType<BuildingComponent>(mIntersectionSubject,
this.second,
 multiIntersection.SecondaryAngle.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

this.AssertLiteralNodeWithDataType<BuildingComponent>(mIntersectionSubject,
this.third,
 multiIntersection.ThirdAngle.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

181

 foreach (Intersection subIntersection in
multiIntersection.SubIntersections)
 {
 var subIntersectionObject =
this.Graph.GetUriNode("proOnto:Intersections" + ("_" + subIntersection.Name));

 this.Graph.Assert(new Triple(mIntersectionSubject,
this.hasSubIntersection, subIntersectionObject));
 }

 }
 catch (Exception ex)
 {
 throw new UofAException("Triple cannot be created.",
multiIntersection.ID, ex);
 }
 }
 RdfXmlWriter rdfxmlWriter = new RdfXmlWriter();
 rdfxmlWriter.Save(Graph, NameOfKnowledgeBase);
 }

 private void AssertStudEntitiesToRDF<T>(IEnumerable<HexuLibrary.Revit.Stud>
studs, IUriNode hostNode) where T : BuildingComponent
 {
 foreach (var stud in studs)
 {
 IUriNode studSubject =
 this.Graph.CreateUriNode("proOnto:Studs" +
(stud.ElementID.ToString("F0")));//stud.Family.Add()

 switch (stud.StudFunction)
 {
 case (Stud.StudFunction.Blocking):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.blocking));
 break;
 case (Stud.StudFunction.BottomPlate):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.bottomPlate));
 break;
 case (Stud.StudFunction.TopPlate):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.topPlate));
 break;
 case (Stud.StudFunction.Cripple):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.cripple));
 break;
 case (Stud.StudFunction.Header):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.header));
 break;
 case (Stud.StudFunction.Jack):
 this.Graph.Assert(new Triple(studSubject, typeOf, this.jack));
 break;

182

 case (Stud.StudFunction.King):
 this.Graph.Assert(new Triple(studSubject, typeOf, this.king));
 break;
 case (Stud.StudFunction.OC):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.normal));
 break;
 case (Stud.StudFunction.RoughSill):
 this.Graph.Assert(new Triple(studSubject, typeOf, this.sill));
 break;
 case (Stud.StudFunction.SJoin):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.joint));
 break;
 default:
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.normal));
 break;
 }

 this.Graph.Assert(new Triple(hostNode, this.hasSubComponent,
studSubject));

 this.Graph.Assert(new Triple(studSubject, this.isPartOf, hostNode));

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.iD,
 stud.ElementID.ToString("F0"),
 XmlSpecsHelper.XmlSchemaDataTypeString);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.hostID,
 stud.HostElement.ElementID.ToString("F0"),
 XmlSpecsHelper.XmlSchemaDataTypeInteger);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.height,
 stud.Height.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.length,
 stud.b.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.thickness,
 stud.h.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.size,
 stud.Type.ToString(),
 XmlSpecsHelper.XmlSchemaDataTypeString);
 }
 }

 private void AssertPlateEntitiesToRDF<T>(IEnumerable<Plate> plates, IUriNode
hostNode) where T : BuildingComponent
 {
 foreach (var stud in plates)

183

 {
 IUriNode studSubject =
 this.Graph.CreateUriNode("proOnto:Plates" +
(stud.ElementID.ToString("F0")));//stud.Family.Add()

 switch (stud.PlateFunction)
 {
 case (Stud.StudFunction.Blocking):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.blocking));
 break;
 case (Stud.StudFunction.BottomPlate):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.bottomPlate));
 break;
 case (Stud.StudFunction.TopPlate):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.topPlate));
 break;
 case (Stud.StudFunction.Cripple):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.cripple));
 break;
 case (Stud.StudFunction.Header):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.header));
 break;
 case (Stud.StudFunction.Jack):
 this.Graph.Assert(new Triple(studSubject, typeOf, this.jack));
 break;
 case (Stud.StudFunction.King):
 this.Graph.Assert(new Triple(studSubject, typeOf, this.king));
 break;
 case (Stud.StudFunction.OC):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.normal));
 break;
 case (Stud.StudFunction.RoughSill):
 this.Graph.Assert(new Triple(studSubject, typeOf, this.sill));
 break;
 case (Stud.StudFunction.SJoin):
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.joint));
 break;
 default:
 this.Graph.Assert(new Triple(studSubject, typeOf,
this.normal));
 break;
 }

 this.Graph.Assert(new Triple(hostNode, this.hasSubComponent,
studSubject));

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.iD,
 stud.ElementID.ToString("F0"),

184

 XmlSpecsHelper.XmlSchemaDataTypeString);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.hostID,
 stud.HostElement.ElementID.ToString("F0"),
 XmlSpecsHelper.XmlSchemaDataTypeInteger);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.height,
 stud.Height.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.length,
 stud.Length.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(studSubject, this.thickness,
 stud.Width.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);
 }
 }

 private void AssertWindowEntitiesToRDF<T>(IEnumerable<Openning> opennings,
IUriNode hostNode)
 where T : BuildingComponent
 {
 foreach (var openning in opennings)
 {
 IUriNode openingSubject =
 this.Graph.CreateUriNode("proOnto:" +
(openning.Family.Add(openning.ElementID.ToString("F0"))));

 this.Graph.Assert(openning is Window_Hexu ? new Triple(openingSubject,
typeOf, this.window):
 new Triple(openingSubject, typeOf, this.door));

 //this.Graph.Assert(new Triple(openingSubject, this.hostedBy,
hostNode));
 this.Graph.Assert(openning is Window_Hexu ? new Triple(hostNode,
this.hasWindow, openingSubject) :
 new Triple(hostNode, this.hasDoor, openingSubject));

 this.AssertLiteralNodeWithDataType<T>(openingSubject, this.iD,
 openning.ElementID.ToString("F0"),
 XmlSpecsHelper.XmlSchemaDataTypeString);

 this.AssertLiteralNodeWithDataType<T>(openingSubject, this.hostID,
 openning.HostID.ToString("F0"),
 XmlSpecsHelper.XmlSchemaDataTypeInteger);

 this.AssertLiteralNodeWithDataType<T>(openingSubject, this.height,
 openning.Height.ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(openingSubject, this.length,
 openning.Length.ToString("F2"),

185

 XmlSpecsHelper.XmlSchemaDataTypeDouble);
 }
 }

 private IUriNode AssertWallEntitiesToRDF<T>(Wall_Hexu wall) where T :
BuildingComponent
 {
 SteelFramingWall wall1 = wall as SteelFramingWall;
 IUriNode buildingEntitySubject =
 this.Graph.CreateUriNode("proOnto:" +
(wall.Family.Add(wall.ElementID.ToString("F0"))));

 this.Graph.Assert(new Triple(buildingEntitySubject, typeOf, wall1 !=
null ? this.studFramedWall : this.concreteWall));//this.studFramedWall

 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject, this.height,
 wall.Dimensions["Height"].ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject, this.length,
 wall.Dimensions["Length"].ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject,
this.thickness,
 wall.Dimensions["Width"].ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject, this.volume,
 wall.Dimensions["Volume"].ToString("F2"),
 XmlSpecsHelper.XmlSchemaDataTypeDouble);

 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject, this.iD,
 wall.ElementID.ToString("F0"),
 XmlSpecsHelper.XmlSchemaDataTypeString);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.isAcoustic,
 wall.IsAcoustic ? this.booleanTrue : this.booleanFalse);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.isExterior,
 wall.IsExterior ? this.booleanTrue : this.booleanFalse);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.isFireRated,
 wall.IsFireRated ? this.booleanTrue : this.booleanFalse);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.isMechanical,
 wall.IsMechanical ? this.booleanTrue : this.booleanFalse);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.isPartition,
 wall.IsPartition ? this.booleanTrue : this.booleanFalse);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.isStraight,
 wall.IsStraight ? this.booleanTrue : this.booleanFalse);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.isStructural,

186

 wall.IsStructuralUsage ? this.booleanTrue : this.booleanFalse);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.isWashroomPanel,
 wall1 != null && wall1.IsBathroomWall ? this.booleanTrue :
this.booleanFalse);

 this.AssertLiteralNode<T>(buildingEntitySubject, this.hasDoubleTopPlate,
 wall1 != null && wall1.HasDoubleTopPlate ? this.booleanTrue :
this.booleanFalse);

 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject, this.level,
 wall.Level,
 XmlSpecsHelper.XmlSchemaDataTypeString);

 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject,
this.material,
 wall.StructuralMaterial,
 XmlSpecsHelper.XmlSchemaDataTypeString);

 if (wall1 != null)
 {
 double studSpacing = wall1.GetStudSpacing();
 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject,
this.stud_Spacing,
 studSpacing.ToString("F0"),
 XmlSpecsHelper.XmlSchemaDataTypeString);

 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject,
this.name,
 wall1.NameofWallPanel,
 XmlSpecsHelper.XmlSchemaDataTypeString);
 }

 if (wall1 != null)
 {
 string objectValue = wall1.GetStudSize();
 this.AssertLiteralNodeWithDataType<T>(buildingEntitySubject,
this.stud_Size,
 objectValue,
 XmlSpecsHelper.XmlSchemaDataTypeString);
 }

 return buildingEntitySubject;
 }

 private void AssertLiteralNodeWithDataType<T>(IUriNode subject, IUriNode
predict,
 string objectValue, string dataType)where T : BuildingComponent
 {
 var id = Graph.CreateLiteralNode(objectValue,
UriFactory.Create(dataType));
 this.AssertLiteralNode<T>(subject, predict, id);
 }

 private void AssertLiteralNode<T>(IUriNode subject, IUriNode predict,

187

 ILiteralNode objectValue) where T : BuildingComponent
 {
 var isExteriorTriple =
 this.Graph.GetTriplesWithSubjectPredicate(subject,
predict).FirstOrDefault();
 if (isExteriorTriple != null)
 this.Graph.Retract(isExteriorTriple);
 this.Graph.Assert(new Triple(subject, predict, objectValue));
 }
 }
}

188

APPENDIX D

C#.NET code of the PSO algorithm for schedule optimization:

namespace Addin_Fortis
{
 using System;
 using System.Collections.Generic;
 using System.IO;
 using System.Linq;
 using System.Text;
 using System.Windows.Forms;
 using HexuLibrary;
 using Simphony;
 using Simphony.General;
 using Simphony.Modeling;

 using Simphony.Simulation;
 using Autodesk.Revit.UI;
 using File = Simphony.General.File;

 /// <summary>
 /// Initialized an instance of the class PSO_Optimizer_OnSite
 /// </summary>
 public class PSO_Optimizer_OnSite : IDisposable
 {
 /// <summary>
 /// inertia weight 0.729
 /// </summary>
 private const double InertiaWeight = 0.9;

 /// <summary>
 /// cognitive/local weight 1.49445
 /// </summary>
 private const double LocalWeight1 = 1;

 /// <summary>
 /// social/global weight
 /// </summary>
 private const double LocalWeight2 = 2;

 /// <summary>
 /// Evolutionary process of best global fitness
 /// </summary>
 private readonly List<double> bestGlobalFitness_History = new List<double>();

 /// <summary>
 /// Evolutionary process of each particle, the key of dictionary is id of
each particle
 /// </summary>
 private readonly Dictionary<int, List<double>> bestLocalFitness_History = new
Dictionary<int, List<double>>();

189

 /// <summary>
 /// File address to store the evolutionary process of best global fitness
 /// </summary>
 private readonly string best_GlobalFitness =
@"C:\BIM_UofA\Temp\Best_GlobalFitness" +
 DateTime.Now.ToString()
 .Replace("/", "_")
 .Replace(":", "_")
 .Replace(" ", "_") + ".txt";

 /// <summary>
 /// Building components from Revit Model
 /// </summary>
 private readonly List<BuildingComponent> buildingEntities = new
List<BuildingComponent>();

 /// <summary>
 /// Dimension of the optimized problem or the number of variables or
activities
 /// </summary>
 private readonly int dimension;

 /// <summary>
 /// velocity boundary
 /// </summary>
 private readonly double maxV;

 /// <summary>
 /// variable upper bounder
 /// </summary>
 private readonly double maxX;

 /// <summary>
 /// velocity boundary
 /// </summary>
 private readonly double minV;

 /// <summary>
 /// variable lower bounder
 /// </summary>
 private readonly double minX;

 /// <summary>
 /// Simulation model (Object function calculator)
 /// </summary>
 private readonly Model modelforOptimization = new Model();

 private readonly int numberIterations;
 private readonly int numberParticles;

 /// <summary>
 /// File address to store information of each particle in each iteration
 /// </summary>
 private readonly string optimizationResults =
@"C:\BIM_UofA\Temp\Optimization_Result" +

190

 DateTime.Now.ToString()
 .Replace("/", "_")
 .Replace(":", "_")
 .Replace(" ", "_") + ".txt";

 /// <summary>
 /// a random number generator for updating particle velocity or position
 /// </summary>
 private readonly Random ran = new Random();

 /// <summary>
 /// The value of object function
 /// </summary>
 private readonly Counter termination = new Counter();

 /// <summary>
 /// XML file for Building components from Revit Model
 /// </summary>
 private readonly string xmlPath_Component = PSO_Interface.PathofXMLFile;

 private double bestGlobalFitness;

 /// <summary>
 /// Array to store the best global position (best position of swarm)
 /// </summary>
 private double[,] bestGlobalPosition;

 private Execute controller_For_Location_Surv_Wall = new Execute();
 private Execute controller_For_Assembly_Floor = new Execute();
 private Execute controller_For_Lifting_Wall = new Execute();
 private int currentIteration;

 /// <summary>
 /// Flag to indicating the dispose from outside of the class itself
 /// </summary>
 private bool disposed;

 /// <summary>
 /// Start date of the construction project
 /// </summary>
 private DateTime projectStartDate;

 /// <summary>
 /// cognitive and social randomizations
 /// </summary>
 private double socialRandomization_1, socialRandomization_2;

 private Particle[] swarm;

 /// <summary>
 /// Initializes a new instance of the PSO_Optimizer_OnSite class
 /// Initialize parameters such as number of particles, number of
iterations, dimension (number) of solution,
 /// deserialize the simulation model.
 /// </summary>

191

 /// <param name="numberParticles">Number of Particles</param>
 /// <param name="numberIterations">Number of iterations</param>
 /// <param name="dim">number of variables - "Number of activities"</param>
 /// <param name="minVariable">variable min boundary</param>
 /// <param name="maxVariable">variable max boundary</param>
 /// <param name="componentsfromRevit">building components from Revit</param>
 public PSO_Optimizer_OnSite(
 int numberParticles,
 int numberIterations,
 int dim,
 double minVariable,
 double maxVariable,
 List<BuildingComponent> componentsfromRevit)
 {
 buildingEntities = componentsfromRevit;
 this.numberParticles = numberParticles;
 this.numberIterations = numberIterations;
 dimension = dim; //// dimensions
 minX = minVariable; ////variable boundary -100.0;
 maxX = maxVariable; ////variable boundary
 minV = -1*maxX; ////velocity boundary
 maxV = maxX; ////velocity boundary this.Dim

 using (
 var stream =
 new FileStream(
@"C:\Users\hexu.MODULAR\Dropbox\VS_2010\Revit\trunk\WFA_PSO\WFA_PSO\bin\Debug\Resourc
es\On_Site_Scheduling_2013_11_09_ActivityPriority.sim",
 FileMode.Open))
 {
 modelforOptimization.Deserialize(stream);
 termination =
modelforOptimization.Scenarios[0].GetElement<Counter>("Terminate Simulation");
 projectStartDate = modelforOptimization.Scenarios[0].StartDate;

 }
 }

 /// <summary>
 /// Gets or sets Best global fitness
 /// </summary>
 public double BestGlobalFitness
 {
 get { return bestGlobalFitness; }

 set { bestGlobalFitness = value; }
 }

 /// <summary>
 /// Dispose the class instance
 /// </summary>
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);

192

 }

 /// <summary>
 /// Finalizes an instance of the PSO_Optimizer_OnSite class
 /// Destructor to release manageable and unmanageable resource
 /// </summary>
 ~PSO_Optimizer_OnSite()
 {
 Dispose(false);
 }

 /// <summary>
 /// The priority setter for each component
 /// </summary>
 /// <param name="particlePosition">Priority array (position of
particle)</param>
 public void SetPriority_Component_Level(double[,] particlePosition)
 {
 buildingEntities.Sort((x, y) => x.ID.CompareTo(y.ID));
 for (int i = 0; i < buildingEntities.Count; i++)
 {
 buildingEntities[i].PriorityforResource = particlePosition[i, 0];
 }
 ////Sort the components according to the construction priority
 buildingEntities.Sort((x, y) =>
x.PriorityforResource.CompareTo(y.PriorityforResource));
 buildingEntities.Reverse();
 XMLHelper.SerializeToXML(xmlPath_Component, buildingEntities);
 ////End the components according to the construction priority
 }

 /// <summary>
 /// The priority setter for each activity
 /// </summary>
 /// <param name="particlePosition">Priority array (position of
particle)</param>
 public void SetPriority_Workpackage_Level(double[,] particlePosition)
 {
 double[,] sortedIndex = new double[dimension, 2];
 particlePosition.CopyTo(sortedIndex);
 sortedIndex = sortedIndex.OrderBy(x => x[0]);
 buildingEntities.Sort((x, y) => x.ID.CompareTo(y.ID));
 List<Workpackage> workpackages =
 buildingEntities.SelectMany(
 buildingEntity =>
 buildingEntity.Workpackages.Where(package
=> !package.ID.Contains("Curing"))
 .OrderBy(package => package.ID)).ToList();
 ////(from component in this.components
 ////from workPackage in component.Workpackages
 ////where (!workPackage.ID.Contains("Curing"))
 ////select workPackage).OrderBy(package => package.ID).ToList();

 // workpackages[(int)sortedIndex[idworkpackage, 1]] ---- sort work
package

193

 for (int idworkpackage = 0; idworkpackage < workpackages.Count;
idworkpackage++)
 {
 workpackages[(int) sortedIndex[idworkpackage, 1]].PriorityforResource
= idworkpackage + 1;
 }

 ////Sort the components according to the construction priority
 buildingEntities.Sort(
 (x, y) =>
x.Workpackages[0].PriorityforResource.CompareTo(y.Workpackages[0].PriorityforResource
));
 buildingEntities.Reverse();
 XMLHelper.SerializeToXML(xmlPath_Component, buildingEntities);
 ////End the components according to the construction priority
 }

 /// <summary>
 /// Initialize each particle
 /// </summary>
 public void Initialize_Particles()
 {
 try
 {
 ////this.ran = new Random(); No seed
 currentIteration = 0;
 swarm = new Particle[numberParticles];
 bestGlobalPosition = new double[dimension, 2];
 // best solution found by any particle in the swarm. implicit
initialization to all 0.0

 ////double[,] sortedIndex = bestGlobalPosition.OrderBy(x => x[0]);
 ////Position is only one dimension of the above array
 bestGlobalFitness = double.MaxValue; ////smaller values better
 bestGlobalFitness_History.Add(bestGlobalFitness);
 //// initialize each Particle in the swarm
 for (int i = 0; i < swarm.Length; ++i)
 {
 double[,] randomPosition =
RandomNumberUti.RandomPriorityPositionGenerator(dimension, ran, minX, maxX);
 ////OrderBy(x => x[0]);
 this.SetPriority_Workpackage_Level(randomPosition);

 ////initializeSimulation.Expression.Function =
InitializeSimulationModel;
 modelforOptimization.Simulate();

 double fitness = termination.LastTime.Mean;

 double[] randomVelocity = new double[dimension];
 for (int j = 0; j < randomVelocity.Length; ++j)
 {
 double lo = -1.0*Math.Abs(maxX - minX);
 double hi = Math.Abs(maxX - minX);

194

 randomVelocity[j] = ((hi - lo)*ran.NextDouble()) + lo;
 ////randomVelocity[j] = ran.Next(-(maxX - 1), maxX);
 }

 swarm[i] = new Particle(i, randomPosition, fitness,
randomVelocity, randomPosition, fitness);
 swarm[i].BestLocalFitness_History.Add(fitness);
 //// does current Particle have global best position/solution?
 if (swarm[i].Fitness < bestGlobalFitness)
 {
 bestGlobalFitness = swarm[i].Fitness;
 ////bestGlobalPosition = swarm[i].position;
 swarm[i].Position.CopyTo(bestGlobalPosition);
 }

 TextHelper.Write(swarm[i].ToString(), optimizationResults);
 }
 //// initialization
 TextHelper.Write(
 bestGlobalFitness + ", " + projectStartDate.Add(new TimeSpan(0,
0, (int) bestGlobalFitness, 0)),
 best_GlobalFitness);
 bestGlobalFitness_History.Add(bestGlobalFitness);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, @"Fatal error in Initialization: ");
 //// each Particle
 for (int i = 0; i < swarm.Length; ++i)
 {
 bestLocalFitness_History.Add(i + 1,
swarm[i].BestLocalFitness_History);
 }
 bestLocalFitness_History.ExportToExcel();
 }
 }

 /// <summary>
 /// Initialize particles when continue the optimization
 /// </summary>
 public void Initialize_Particles_Continue()
 {
 try
 {
 currentIteration = 0;

 swarm = new Particle[numberParticles];
 bestGlobalPosition = new double[dimension, 2];
 //// best solution found by any particle in the swarm. implicit
initialization to all 0.0

 ////double[,] sortedIndex = bestGlobalPosition.OrderBy(x => x[0]);
 ////Position is only one dimension of the above array
 bestGlobalFitness = double.MaxValue; ////smaller values better
 bestGlobalFitness_History.Add(bestGlobalFitness);

195

 List<Particle> activities =
XMLHelper.DeserializeFromXML_Particle(@"C:\BIM_UofA\Temp\Particles.xml");
 //// initialize each Particle in the swarm
 for (int i = 0; i < swarm.Length; ++i)
 {
 var id = activities[i].ID;
 double[] temp_Position = new
double[activities[i].Position_Serializable.GetLength(0)];
 activities[i].Position_Serializable.CopyTo(temp_Position, 0);

 double fitness = activities[i].Fitness;
 double[] temp_Velocity = new
double[activities[i].Position_Serializable.GetLength(0)];
 activities[i].Velocity.CopyTo(temp_Velocity, 0);
 double[] temp_BestPosition = new
double[activities[i].Position_Serializable.GetLength(0)];
 activities[i].BestPosition_Serializable.CopyTo(temp_BestPosition,
0);
 double fitness_Best = activities[i].BestFitness;
 swarm[i] = new Particle(
 id,
 temp_Position.AddIndexasLastColunm(),
 fitness,
 temp_Velocity,
 temp_BestPosition.AddIndexasLastColunm(),
 fitness_Best);

 swarm[i].BestLocalFitness_History.Add(swarm[i].Fitness);
 //// does current Particle have global best position/solution?
 if (swarm[i].Fitness < bestGlobalFitness)
 {
 bestGlobalFitness = swarm[i].Fitness;
 ////bestGlobalPosition = swarm[i].position;
 swarm[i].Position.CopyTo(bestGlobalPosition);
 }

 TextHelper.Write(swarm[i].ToString(), optimizationResults);
 }
 //// initialization
 ////TextWritor.TxtWritor(bestGlobalFitness.ToString() + ", " +
fitness_DateTime+"\r\n+++",
OptResults);
 TextHelper.Write(
 bestGlobalFitness + ", " + projectStartDate.Add(new TimeSpan(0,
0, (int) bestGlobalFitness, 0)),
 best_GlobalFitness);
 bestGlobalFitness_History.Add(bestGlobalFitness);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "Fatal error in Initialization: ");
 //// each Particle
 for (int i = 0; i < swarm.Length; ++i)
 {

196

 bestLocalFitness_History.Add(i + 1,
swarm[i].BestLocalFitness_History);
 }

 bestLocalFitness_History.ExportToExcel();
 }
 }

 /// <summary>
 /// Iteration of PSO
 /// </summary>
 public void PSO_Iteration()
 {
 try
 {
 ////enter into the mail loop for optimization
 ////bool isNotImproving = false;
 ////this.ran = new Random();
 while (currentIteration < numberIterations)
 {
 ++currentIteration;

 double[] newVelocity = new double[dimension];
 double[,] newPosition = new double[dimension, 2];
 //// each Particle
 foreach (Particle currP in swarm)
 {
 currP.IterationID = currentIteration;
 //// each x value(dimension) of the velocity
 for (int j = 0; j < currP.Velocity.Length; ++j)
 {
 socialRandomization_1 = ran.NextDouble();
 socialRandomization_2 = ran.NextDouble();

 newVelocity[j] = ((InertiaWeight -
(0.2/numberIterations*currentIteration))*
 currP.Velocity[j]) +
 (LocalWeight1*socialRandomization_1*
 (currP.BestPosition[j, 0] -
currP.Position[j, 0])) +
 (LocalWeight2*socialRandomization_2*
 (bestGlobalPosition[j, 0] -
currP.Position[j, 0]));

 if (newVelocity[j] < minV)
 {
 newVelocity[j] = minV;
 }
 else if (newVelocity[j] > maxV)
 {
 newVelocity[j] = maxV;
 }
 }

 newVelocity.CopyTo(currP.Velocity, 0);

197

 for (int j = 0; j < currP.Position.GetLength(0); ++j)
 {
 newPosition[j, 0] = currP.Position[j, 0] + newVelocity[j];
 newPosition[j, 1] = j;
 if (newPosition[j, 0] < minX)
 {
 newPosition[j, 0] = minX;
 }
 else if (newPosition[j, 0] > maxX)
 {
 newPosition[j, 0] = maxX;
 }
 }

 newPosition.CopyTo(currP.Position);
 ////Set sequence in simulation and run simulation (OB)
 this.SetPriority_Workpackage_Level(newPosition);

 modelforOptimization.Simulate();
 double newFitness = termination.LastTime.Mean;
 ////end simulation

 ////fitness_DateTime = Termination.Engine.DateNow;
 currP.Fitness = newFitness;
 currP.BestLocalFitness_History.Add(newFitness);

 if (newFitness < currP.BestFitness)
 {
 ////currP.bestPosition = newPosition;
 newPosition.CopyTo(currP.BestPosition);
 currP.BestFitness = newFitness;
 }

 if (newFitness < bestGlobalFitness)
 {
 ////this.bestGlobalPosition = newPosition;
 newPosition.CopyTo(bestGlobalPosition);
 bestGlobalFitness = newFitness;
 }
 //currP.Position_Serialization();

////XMLWritor.SerializeToXML(@"C:\BIM_UofA\Temp\Best_Position.xml",
this.bestGlobalFitness);
 if (currentIteration < 5)
 {
 TextHelper.Write(currP.ToString(), optimizationResults);
 }
 }
 //// each Particle
 TextHelper.Write(
 bestGlobalFitness + ", " +
 projectStartDate.Add(new TimeSpan(0, 0, (int)
bestGlobalFitness, 0)), best_GlobalFitness);
 bestGlobalFitness_History.Add(bestGlobalFitness);
 ////if (this.iteration == 75)

198

 ////{
 //// this.Write_Best_LocalFitness_Excel();
 //// this.bestLocalFitness_History.Clear();
 ////}
 //// each iteration
 }
 //// while
 SetPriority_Workpackage_Level(bestGlobalPosition);
 XMLHelper.SerializeToXML(@"C:\BIM_UofA\Temp\Particles.xml",
swarm.ToList());
 Write_Best_LocalFitness_Excel();
 Write_Best_LocalFitness_TXT();
 }
 catch (ModelExecutionException ex)
 {
 if (bestLocalFitness_History.Count != 0)
 {
 Write_Best_LocalFitness_Excel();
 }

 Write_Best_LocalFitness_TXT();
 MessageBox.Show(ex.Message + "\r\n" + ex.Context, "Simulation Error
in Iteration: ");
 throw;
 }
 }

 /// <summary>
 /// Protected implementation of Dispose pattern.
 /// </summary>
 /// <param name="disposing">Flag for outside calling or inside calling</param>
 protected virtual void Dispose(bool disposing)
 {
 if (disposed)
 {
 return;
 }

 if (disposing)
 {
 //// Free any other managed objects here.
 termination.Dispose();
 ////this.initializeSimulation.Dispose();
 }
 //// Free any unmanaged objects here.

 disposed = true;
 }

 private void Write_Best_LocalFitness_Excel()
 {
 for (int i = 0; i < swarm.Length; ++i)
 {
 bestLocalFitness_History.Add(i + 1,
swarm[i].BestLocalFitness_History);

199

 }

 bestLocalFitness_History.ExportToExcel();
 }

 private void Write_Best_LocalFitness_TXT()
 {
 StringBuilder result = new StringBuilder();
 foreach (KeyValuePair<int, List<double>> item in bestLocalFitness_History)
 {
 foreach (double value in item.Value)
 {
 result.Append(value + ",");
 }

 result.Append("\r\n");
 }

 TextHelper.Write(result.ToString(),
 @"C:\BIM_UofA\Temp\Best_LocalFitness" +
 DateTime.Now.ToString().Replace("/", "_").Replace(":", "_").Replace("
", "_") + ".txt");
 }

 #region Execute code
 private bool Controller_for_Lifting_Wall_Formula(Execute context)
 {
 Counter counter_Lift_Wall =
context.Scenario.GetElement<Counter>("Counter_Lift_Wall");

 BuildingComponent currentEntity = context.CurrentEntity.Objects[0] as
BuildingComponent;
 List<BuildingComponent> components = context.Scenario.Objects[0] as
List<BuildingComponent>;

 List<BuildingComponent> bathRooms = components.Where(e => e.Type ==
"BathRoom").ToList();
 foreach (BuildingComponent bathRoom in bathRooms)
 {
 var survey_Predecessor =
 bathRoom.Workpackages.FirstOrDefault(e => e.Name == "Survey Panel
Location");
 bool survey_Predecessor_HasOrNot = survey_Predecessor != null ? true :
false;
 bool survey_Predecessor_Done = survey_Predecessor_HasOrNot &&
survey_Predecessor.CompletedOrNot;
 Workpackage toBeStartedActivity =
 bathRoom.Workpackages.FirstOrDefault(e => e.Name == "Lift Wall
Panel");
 //only applied the below codes to unfinished bathroom Unit
 if (toBeStartedActivity.LogicAddedOrNot != true)
 {
 //Check wheather all the supporting elements are done or not
 if (CheckAllSupportsisDone(components, bathRoom) &&
 (survey_Predecessor_Done || !survey_Predecessor_HasOrNot))

200

 {
 //Update the completed list
 toBeStartedActivity.LogicAddedOrNot = true;
 if (currentEntity.Type == "BathRoom")
 {

AddWallorBathRoomasPredecessorforLiftingWall(currentEntity, toBeStartedActivity,
 survey_Predecessor_HasOrNot);
 }

 if (currentEntity.Type == "Floor")
 {
 AddFloorasPredecessorforLiftingWall(currentEntity,
toBeStartedActivity);
 }

 //context.Scenario.Objects[0] = components;
 //End Update the completed list
 GeneralEntity newEntity = new GeneralEntity();
 newEntity.Objects[0] = bathRoom;
 counter_Lift_Wall.InputPoint.TransferIn(newEntity);
 }
 }
 }
 //End deal with bathroom

 //Deal with wall panel
 List<BuildingComponent> walls = components.Where(e => e.Type ==
"Wall").ToList();
 foreach (BuildingComponent wall in walls)
 {
 var survey_Predecessor =
 wall.Workpackages.FirstOrDefault(e => e.Name == "Survey Panel
Location");
 bool survey_Predecessor_HasOrNot = survey_Predecessor != null;
 bool survey_Predecessor_Done = survey_Predecessor_HasOrNot &&
survey_Predecessor.CompletedOrNot;

 Workpackage toBeStartedActivity =
 wall.Workpackages.FirstOrDefault(e => e.Name == "Lift Wall
Panel");
 //only applied the below codes to unfinished wall panel
 if (toBeStartedActivity.LogicAddedOrNot != true)
 {
 if (CheckAllSupportsisDone(components, wall) &&
 CheckOneConnectionisDone(components, wall, "Lift Wall Panel")
&&
 (survey_Predecessor_Done || !survey_Predecessor_HasOrNot))
 {
 //Update the completed list
 toBeStartedActivity.LogicAddedOrNot = true;
 if (currentEntity.Type == "Foundation")
 {
 toBeStartedActivity.Predecessors.Add(

201

 currentEntity.Workpackages.Where(e => e.Name ==
"Curing Foundation").FirstOrDefault().ID);
 }

 if (currentEntity.Type == "Floor")
 {
 AddFloorasPredecessorforLiftingWall(currentEntity,
toBeStartedActivity);
 }

 if (currentEntity.Type == "Wall" || currentEntity.Type ==
"BathRoom")
 {

AddWallorBathRoomasPredecessorforLiftingWall(currentEntity, toBeStartedActivity,
 survey_Predecessor_HasOrNot);
 }
 //context.Scenario.Objects[0] = components;
 //End Update the completed list
 GeneralEntity newEntity = new GeneralEntity();
 newEntity.Objects[0] = wall;
 counter_Lift_Wall.InputPoint.TransferIn(newEntity);
 }
 }
 }

 return true;
 }

 private static void
AddWallorBathRoomasPredecessorforLiftingWall(BuildingComponent currentEntity,
 Workpackage toBeStartedActivity, bool survey_Predecessor_HasOrNot)
 {
 if (currentEntity.Workpackages.FirstOrDefault(e => e.Name == "Lift Wall
Panel").CompletedOrNot)
 {
 toBeStartedActivity.Predecessors.Add(
 currentEntity.Workpackages.FirstOrDefault(e => e.Name == "Lift
Wall Panel").ID);
 }
 else
 {
 if (survey_Predecessor_HasOrNot)
 {
 toBeStartedActivity.Predecessors.Add(
 currentEntity.Workpackages.FirstOrDefault(e => e.Name ==
"Survey Panel Location").ID);
 }
 }
 }

 private static void AddFloorasPredecessorforLiftingWall(BuildingComponent
currentComponent,
 Workpackage toBeStartedActivity)
 {

202

 if (currentComponent.StructuralMaterial.Contains("Concrete"))
 {
 toBeStartedActivity.Predecessors.Add(
 currentComponent.Workpackages.Where(e => e.Name == "Curing
Slab").FirstOrDefault().ID);
 }
 else
 {
 toBeStartedActivity.Predecessors.Add(
 currentComponent.Workpackages.Where(e => e.Name == "Assembly
Joist").FirstOrDefault().ID);
 }
 }

 /// <summary>
 /// Add predecessors and trigger next activities
 /// </summary>
 /// <param name="context">The Controller Execute Element</param>
 /// <param name="currentComponent">The component triggered the
controller</param>
 /// <param name="components">All building components</param>
 /// <param name="toBeStartedComponent">To be launched component</param>
 /// <param name="tech_Condition">Technical condiction</param>
 private static void AddPredecessorsforSurveyandTiggerNextActivities(Execute
context, BuildingComponent currentComponent,
 IEnumerable<BuildingComponent> components, BuildingComponent
toBeStartedComponent, bool tech_Condition)
 {
 if (!tech_Condition) return;
 //Update the completed list
 Workpackage surveyActivity =
 components.FirstOrDefault(e => e.ID ==
toBeStartedComponent.ID).Workpackages.FirstOrDefault(e => e.Name == "Survey Panel
Location");
 surveyActivity.LogicAddedOrNot = true;
 if (currentComponent.Type == "Foundation")
 {
 surveyActivity.Predecessors.Add(
 currentComponent.Workpackages.FirstOrDefault(e => e.Name ==
"Curing Foundation").ID);
 }

 if (currentComponent.Type == "Floor")
 {
 if (currentComponent.StructuralMaterial.Contains("Concrete"))
 {
 surveyActivity.Predecessors.Add(
 currentComponent.Workpackages.FirstOrDefault(e => e.Name ==
"Curing Slab").ID);
 }
 else
 {
 surveyActivity.Predecessors.Add(
 currentComponent.Workpackages.FirstOrDefault(e => e.Name ==
"Assembly Joist").ID);

203

 }
 }

 //context.Scenario.Objects[0] = components;
 //End Update the completed list
 Counter wallCounter = context.Scenario.GetElement<Counter>("Wall");
 GeneralEntity newEntity = new GeneralEntity();
 newEntity.Objects[0] = toBeStartedComponent;
 wallCounter.InputPoint.TransferIn(newEntity);
 }

 private static bool CheckOneConnectionisDone(List<BuildingComponent>
components, BuildingComponent wall,
 string toBeChecedActivity)
 {
 bool oneConnectionisDone = false;
 foreach (int connection in wall.Connections)
 {
 BuildingComponent connectionComponent = components.FirstOrDefault(e =>
e.ID == connection);

 if (
 connectionComponent.Workpackages.FirstOrDefault(e => e.Name ==
toBeChecedActivity).CompletedOrNot)
 {
 oneConnectionisDone = true;
 }
 }

 return oneConnectionisDone;
 }

 private static bool CheckAllSupportsisDone(List<BuildingComponent> components,
BuildingComponent bathRoomOrWall)
 {
 //Check wheather all the supporting elements are done or not
 bool allSupportsisDone = true;
 foreach (int support in bathRoomOrWall.Supports)
 {
 BuildingComponent supportingComponent = components.FirstOrDefault(e =>
e.ID == support);
 if (supportingComponent.Type == "Floor")
 {
 //Second floor wash room
 if (!supportingComponent.StructuralMaterial.Contains("Concrete"))
 {
 var firstOrDefault =
supportingComponent.Workpackages.FirstOrDefault(e => e.Name == "Assembly Joist");
 if (firstOrDefault != null && firstOrDefault.CompletedOrNot
== false)
 {
 allSupportsisDone = false;
 }
 }
 else

204

 {
 var firstOrDefault =
supportingComponent.Workpackages.FirstOrDefault(e => e.Name == "Curing Slab");
 if (
 firstOrDefault != null && firstOrDefault.CompletedOrNot
== false)
 {
 allSupportsisDone = false;
 }
 }
 }

 if (supportingComponent.Type == "Foundation")
 {
 var firstOrDefault =
supportingComponent.Workpackages.FirstOrDefault(e => e.Name == "Curing Foundation");
 if (
 firstOrDefault != null && firstOrDefault.CompletedOrNot ==
false)
 {
 //MessageBox.Show(bathRoom.Description);
 allSupportsisDone = false;
 }
 }
 }

 return allSupportsisDone;
 }

 private bool Controller_for_Assembly_Floor_Formula(Execute context)
 {
 Counter counter_Floor = context.Scenario.GetElement<Counter>("Floor");

 BuildingComponent currentComponent = context.CurrentEntity.Objects[0] as
BuildingComponent;
 List<BuildingComponent> components = context.Scenario.Objects[0] as
List<BuildingComponent>;

 //First Level Floor
 foreach (BuildingComponent slab in components.Where(e => e.Type ==
"Floor" && e.StructuralMaterial.Contains("Concrete")))
 {
 Workpackage curingActivity = slab.Workpackages.Where(e => e.Name ==
"Curing Slab").FirstOrDefault();
 if (curingActivity.LogicAddedOrNot != true &&
 curingActivity.CompletedOrNot != true)
 {
 bool supportsisDone = true;
 foreach (int support in slab.Supports)
 {
 BuildingComponent supportingComponent = components.Where(e =>
e.ID == support).FirstOrDefault();
 if (supportingComponent == null)
 {

205

 throw new Exception("Cannot find supporting element for
the slab");
 }

 if (
 supportingComponent.Workpackages.Where(e => e.Name ==
"Frame Wall Panel")
 .FirstOrDefault().CompletedOrNot == false)
 {
 supportsisDone = false;
 }
 }

 if (supportsisDone)
 {
 //Update the completed list
 curingActivity.LogicAddedOrNot = true;
 //context.Scenario.Objects[0] = components;
 //End Update the completed list
 //Simphony.General.Counter wallCounter =
context.Scenario.GetElement<Simphony.General.Counter>("Counter_Lift_Wall");
 GeneralEntity newEntity = new GeneralEntity();
 newEntity.Objects[0] = slab;
 counter_Floor.InputPoint.TransferIn(newEntity);
 }
 }
 }
 //Deal with higher floors
 foreach (BuildingComponent floor in components.Where(e => e.Type ==
"Floor" && !e.StructuralMaterial.Contains("Concrete")))
 {
 Workpackage liftingActivity = floor.Workpackages.Where(e => e.Name ==
"Lift Joists").FirstOrDefault();

 if (liftingActivity.LogicAddedOrNot != true &&
 liftingActivity.CompletedOrNot != true)
 {
 bool supportsisDone = true;
 foreach (int support in floor.Supports)
 {
 BuildingComponent supportingComponent = components.Where(e =>
e.ID == support).FirstOrDefault();
 if (supportingComponent == null)
 {
 throw new Exception("Cannot find supporting element for
the floor");
 }

 if (
 supportingComponent.Workpackages.Where(e => e.Name ==
"Frame Wall Panel")
 .FirstOrDefault().CompletedOrNot == false)
 {
 supportsisDone = false;
 }

206

 }

 if (supportsisDone)
 {
 //MessageBox.Show("Start Floor Assembly");
 //Update the completed list
 liftingActivity.LogicAddedOrNot = true;
 liftingActivity.Predecessors.Add(
 currentComponent.Workpackages.Where(e => e.Name == "Frame
Wall Panel").FirstOrDefault().ID);
 //End Update the completed list
 //Simphony.General.Counter wallCounter =
context.Scenario.GetElement<Simphony.General.Counter>("Counter_Lift_Wall");
 GeneralEntity newEntity = new GeneralEntity();
 newEntity.Objects[0] = floor;
 counter_Floor.InputPoint.TransferIn(newEntity);
 }
 }
 }

 return true;
 }

 private bool Controller_for_Location_Surv_Wall_Formula(Execute context)
 {
 try
 {
 BuildingComponent currentComponent = context.CurrentEntity.Objects[0]
as BuildingComponent;
 List<BuildingComponent> components = context.Scenario.Objects[0] as
List<BuildingComponent>;

 //End deal with bathroom
 //List<Component> bathRooms = .ToList();
 foreach (BuildingComponent bathRoom in components.Where(e => e.Type
== "BathRoom"))
 {
 //only applied the below codes to unfinished bathroom Unit
 if (bathRoom.Workpackages.Where(e => e.Name == "Survey Panel
Location").FirstOrDefault() == null)
 {
 continue;
 }

 if (
 bathRoom.Workpackages.Where(e => e.Name == "Survey Panel
Location")
 .FirstOrDefault().LogicAddedOrNot != true)
 {
 bool allSupportsisDone = CheckAllSupportsisDone(components,
bathRoom);

 AddPredecessorsforSurveyandTiggerNextActivities(context,
currentComponent, components, bathRoom,
 allSupportsisDone);

207

 }
 }

 //Deal with wall panel
 //List<Component> walls = .ToList();
 foreach (BuildingComponent wall in components.Where(e => e.Type ==
"Wall"))
 {
 //only applied the below codes to unfinished wall panel
 if (wall.Workpackages.Where(e => e.Name == "Survey Panel
Location").FirstOrDefault() == null)
 {
 continue;
 }

 if (
 wall.Workpackages.Where(e => e.Name == "Survey Panel
Location").FirstOrDefault().LogicAddedOrNot !=
 true)
 {
 bool allSupportsisDone = CheckAllSupportsisDone(components,
wall);

 bool oneConnectionisDone =
CheckOneConnectionisDone(components, wall, "Survey Panel Location");

 AddPredecessorsforSurveyandTiggerNextActivities(context,
currentComponent, components, wall,
 allSupportsisDone && oneConnectionisDone);
 }
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "Simulation Error");
 throw;
 }

 return true;
 }
 #endregion
 }
}

