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ABSTRACT ~

The shear behaviour of large diameter fabricated steel
cylinders is investigated analytically. The analysis is
based on a nonlinear geometric finite element formulation
coupled with a von Mises elastic-perfectly-plastic material
response. The effects of initial imperfectioqs as well as
the boundary conditions on the shear behaviour of the
cylindrical shells are examined. The development of a
tension field in certain cases is also investigated.

The study relies on program NISA "Nonlinear Incremental
Structural Analysis", a description of which is included.
The analytical stage consists of two parts. The first part
involves ‘a numerical analysis of several cylinders with
different edge conditions. The second part includes a
numerical analysis of the actual problem with radius to
thickness ratio (R/t) equal to 250. A series of numerical
analyses has been carried out under different edge
conditions and magnitudes of initial imperfections.

The objective was to identify the behaviour parameters
in shear and the tension field contribution after buckling
of the shell had occurred.

An analytical theory which recognizes the tension field
contribution to the overall shear strength has been
developed. The conclusions drawn from the analytiéal study
are then compared with the existing experimental results of

transversely loaded cylindrical shells (R/t = 250).
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1. INTRODUCTION

l.l.Large Diameter Fabricated Steel Cylinders

Large diameter fabricated steel cylinders are widely
used in many civil engineering structures such as columns,
stacks, storage tanks and conveyor gélleries. Although most
of these structures are susceptible to buckling, structural .
specifications do not give complete design information on
the buckling of these members.

A research program into the behaviour of large diameter
fabricated steel cylinders was initiated at the University
of Alberta in 1982. Tests on the behaviour of tubular
members subjected to axial compression and bending were
carried out by Pinkney et al. (1982, 1983), Stephens et al.
(1982), and Bailey and Kulak (1984). The shear behaviour of
large diameter steel cylinders under transverse loading was
also examined (Bailey and Kulak, 1984). This report is a
continuation of that work.

In this study, the behaviour of large diameter steel
cylinders loaded primarily in shear is investigated. The
analytical phase of the study focuses on the effects of
initial imperfections, edge conditions, and shell geometry

on the critical loads and the load response of the shells.

1.2 Statement of Problem

The ‘'shear behaviour of thin cylindrical shells has not

been studied until recent years. There are limited sources



of literature on this topic, and the data base is very small
at the present time.

For thin cylindrical shells loaded in shear, the
problem can be very complicated. Although theories exist
for obtaining the shear strength of curved panels and
cylinders in pure shear, thé additional stresses due to
bending are ignored, and the post-buckling strength -remains
unknown.

Recent tests on the shear loading of large diameter
fabricated steel cylinders héve been performed by Bailey and
Kulak (1984), and the test data for the experiment are
available. The purpose of this study is to investigate the
shear behaviour of thin cylindrical shells, using in
particular the geometry of the shell employed in the

experimental work conducted by Bailey and Kulak (1984).

1.3 Objectives

The objectives of this study are:

1. To analyse, in transverse shear, large diameter
fabricated steel cylinders with radius-to-thickness
ratio of 250.

2. To compare the results of a finite element analysis
with previously obtaihed experimental test results
on similar specimens and, where applicable, with
classically based theoretical predictions.

3. To investigate the buckling behaviour of

transversely loaded cylindrical shells and to



confirm the existence of a tension field after
buckling occurs.

4. To develop an ultimate shear strength equation for
cylindrical shells loaded in shear.

5. To make recommendations for further testing.



2, LITERATURE REVIEW

2.1 Introduction

This chapter presents a review of previous work done on
the buckling of cylindrical shells. First the general
instability phenomena of cylindrical shells are discusséd,
followed by a review of shell buckling under axial
compression and bending. Next, previous work done on
transversely loaded cylinders is discussed, including a
review of the classical solution based on the small-
deflection theory, and a review of related experimental
studies. The effects of geometric and material
imperfections, and boundary conditions on the buckling
capacity of the shells are also discussed. This review
draws among other sources on the reviews prepared by

Stephens et al. (1982).

2.2 Instability Phenomena of Cylindrical Shells

Cylinders are common shell configurations in structural
applications. The stability of cylindrical shells can be a
very complex problem. However, stability equations for
cylindrical shells have been available in the literature
since the late 1800s. Earliest solutions for cylinders
subjected to axial compression were presented by Lorenz
(1911). Solutions for buckling under uniform lateral
pressures were given by Southwell (1913, 1914) and by von

Mises (1914). In 1932, Flugge presented a comprehensive



5
treatment of cylindrical shell stability, including combined
loading and cylinders subjected to bending. Results for
cylinders subjected to torsional loading were given by
Schwerin (1925) and Donnell (1933).

Regardless of the mode of failure, elastic shell
structures may suffer two classes of instability phenomena
(Kratzig et al. 1982, 1983). The first class is the
classical or bifurcation buckling (Fig. 2.la). This type of
buckling is characterized by the fact that, as the load
passes through its critical stage, a perfect structure
passes from its unbuckled equilibrium configuration to an
infinitesimally close buckled equilibrium configuration.

The point at which this happens is known as the bifurcation
point, beyond -which there exists more than one physically

. admissible equilibrium state. The primary,péth continues
beyond the bifurcation point, but equilibrium is unstable in
this region. The secondary path, which branches from the
primary path, represents the stable_buckled equilibrium
configuration. Curve A in Fig. 2.la is the classical
eigenvalue problem of shell stability, in which all
prebuckling deformations are neglected. 1If the prébuckling
deformations are influential, extended eigenvalue problems
have to be solved. This influence may be linear (curve B)
or non-linear (curve C). Once the bifurcation points have
been found the behaviour of the shell in the postbuckling
region has to be investigated (Kratzig et al. 1982, 1983).

The second type of instability phenomena is known as



~ snap-through buckling (Fig. 2.1lb). This phenomenon is
characterized by a visible and sudden jump at a constant
load from one equilibrium configuration to another
equilibrium configuration for which displacements are larger
than in the first. This phenomenon is typical for perfect
shells under certain load conditions and for shells with
imperfection patterns. However, a correct tracing of the
non-linear load-displacement path may be insufficient if the
shell suffers bifurcation buckling before having_reached its
limit point (curve Dl in Fig. 2.l1b). 1In this case, a
simultaneous eigenvalue analysis has to be carried out
(Kratzig et al. 1982, 1983).

Buckling may be further classified as either elastic or
inelastic. In the case of elastic buckling, local or
overall instability occurs before the material has reached
its yield point. In inelastic buckling, some parts of the
cross-section may yield before buckling occurs, and the load
response of the structure must, therefore, include the yield
point of the material.

The early theories developed for stability problems of
thin cylindrical shells were restricted to geometrically
perfect members, elastic material behaviour, and linear
relationships between displacements, strains, and
curvatures. Since these classical stability approaches are
based on the assumption of infinitesimal displacements,
consideration of initial geometric imperfection is thus

precluded. This approach has been pursued mainly by



Southwell (1914), Flugge (1932), Donnell (1934), and
Timoshenko (1961) on axially loaded cylindrical shells, and
by Brasier (1927), Flugge (1932), and Seide and Weingarten

(1961) on flexurally loaded cylindrical shells.

2.3 Effect of Geometric Imperfections

Structural systems can never be built precisely as
planned and inevitably contain small imperfections
associated with geometrical errors and material defects.
These imperfections can drastically change the response of
the system (Fig. 2.2).

Buckling loads for fabricated steel cylindrical shells
are far more difficult to predict than for members
manufactured in mills because of the relatively large
magnitudes of imperfection and residual stress levels which
result from the production process. Moreover, tests have
shown that the buckling strength of thin cylindrical steel
shél;évis very sensitive to geometric boundary conditions of
the test specimens. The lack of agreement between the
predicted values and the tested values have been generally
attributed to specimen imperfections (geometric and
material) and poorly modelled boundary conditions.

Koiter (1945, 1963) incorporated finite initial
imperfections into his general nonlinear stability theory.
It is shown that, in general, the larger the initial
imperfection, the smaller the buckling load. 1In his

derivation, Koiter initially assumed that the imperfections



were axisymmetric in shape. Tests showed good correlation
between theory and experimént. Further investigation by
Koiter shows that interaction between axisymmetric and
asymmetric imperfections may result in a more pronounced
reduction in strength (Fig. 2.3).

Recent studies of the effects of imperfections on the
buckling strength, as performed by Arbocz (1974) and Babcock
(1974),>have shown that it is possible to predict reasonably
well the buckling load using numerical techniques applied to
single and multiple mode imperfection shapes and to
statistically random imperfection amplitudes. Further
investigation by Arbocz and Babcock (1976) has progressed to
the point where the buckling load can be predicted with
considerable accuracy provided that the actual imperfection
profiles are mapped and used in the calculation;

Recently, Pinkney et al. (1982, 1983) were able.to
predict the buckling load of axially loaded cylindrical
shells with a good degree of accuracy using the finite
element program NISA80 developed by Ramm (1980). In the
analysis, a bilinear elastic-perfectly-plastic material
response was used, initial imperfections, measured by
Stephens et al. (1982), were incorporated and the
equilibrium path was traced up to and beyond the limit
point. The predictions obtained using this analysis
compared closely with the experimental results. It was
concluded that the first mode of buckling of the

corresponding perfect cylinder, appropriately scaled,



provides a suitable initial configuration for the
determination of the limit point. The appropriate scale
factor for first mode amplitude corresponds to the largest

measured imperfections on any generator of the surface.

2.4 Effect of Boundary Conditions

In recent years, the emphasis in boéh theoretical and
experimental studies on the buckling of thin cylindrical
shells has been directed at the effect of geometric
imperfections, and has overshadowed the equally important
problem of the influence of boundary conditions. Singer and
Rosen (1976) report that for stiffened shells, and in
particular for closely stiffened shells, the effect of
geomeéric imperfections is less pronounced. Hence the
" reduction in predicted buckling loads and scatter of test
results is less severe, provided the boundary conditions are
adequately accounted for. The effect of experimental
boundary conditions has also been extensively discussed by
Almroth (1965), Hoff and Soong (1964), and Weller et al.
(1974). The effects can be separated into two major
items. These are the effect of nonlinear prebuckling
deformation caused by the end constraint of the test shell,
and the effect of end fixity on the buckling load and its
associated buckling mode.

The realization of this fact has motivated recent
theoretical and experimental studies aimed at better

understanding of the influence of boundary conditions and
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their more precise assessment.

2.5 Cylinders Under Axial Compression and Bending

As mentioned in section 2.2, earliest attempts on the
- problems of axially compressed cylindrical shells were
mainly done by Southwell (1914), Flugge (1932), Donnell
(1934), and Timoshenko (1961). As a result of this work, it
was shown that the elastic buckling of axially loaded thin
unstiffened cylindrical shells depends on a number of
parameters. These include dimensional parameters such as
length (L), radius (R), and thickness (t), and material
properties such as the modulus of elasticity (E) and
Poisson's ratio (v). Depending on the geometry of the
shells, they can be classified as

1. Short cylinders (L/R < 1.72 (t/R)l/z). These buckle
in a manner similar to that of axially compressed
flat plates and stub columns.

2. Long cylinders (L/R > 2.85 (R/t)l/z). These fail as
long columns due td overall instability prior to
local buckling.

3. Intermediate cylinders (l.72(t/R)1/2 < L/R & 2.85
(R/t)l/z). These buckle locally in either an
axisymmetric mode or an asymmetric mode.

For intermediate cylinders, buckling is independent of

length and mode of buckling (Flugge 1932, Timoshenko
1961). For a cylinder with simply supported edges, the

classical elastic buckling stress is given as (Timoshenko
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and Gere 1961)

c = CE % (2.1)

_ 1
where C = 173 . (2.2)

[3(2 - v3)]

In the intermediate to long cylinder transition region,
buckling mode interaction may lead to a reduction of the
critical buckling stress. Prior to the transition from
local to overall buckling which occurs at L/R =
2.85 (R/t)l/z, it is possible that the asymmetric local
buckling mode will couple with the overall buckling mode
resulting in a critical stress as low as 60% of the
classical value.

 The assﬁmption of elastic material behaviour is valid
as long as the buckiing stress is below the proportional
limit of the material. The modulus of the material,
however, becomes a function of the stress level if the
stresses are-above the proportional limit. 1In the inelastic
range, the decrease in the material modulus causes a
decrease in the stiffness of the member and, hence, a
corresponding reduction in the buckling strength.

The NASA shell stability design guide (1968) recommends
that for inelastic local buckling, the elastic modulus, E,
be mulitplied by a plasticity reduction factor, n, to
reflect the variation in material stiffness with the stress

level. The recommended plasticity reduction factor is given
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as

1/2
(ELE.)

E
where Eg and E; are the secant and tangent modulii,
respectively.

Experiments performed to verify the predicted values of
the classical shell stability theory have shown that the
actual buckling strength of thin-walled cylinders is quite
different from the buckling strength predicted by the linear
theory. For axially loaded cylinders, test results often
average 1/2 to 1/3 of the classical value. 1In addition to
lack of agreement with predictions, the test results show
large scatter.

.Initially the discrepancy between theory and experiment
was attributed to test specimen end effects. However
refinement of the linear shell buckling theories to account
for these effects has shown that boundary conditions have
little effect on the buckling strength of intermediate.
cylinders.

In 1941 von Karman and Tsien showed, using approximate
numerical analysis based on the elastic nonlinear finite-
displacement theory by Donnell (1934), that equilibrium
states involving large displacements can be maintained at
loads far less than the critical bifurcation load obtained
from the classical approach.

Initial imperfection of shell geometry was first
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introduced into non-linear stability analysis by Koiter
(1945). 1In his work, he was able to predict the maximum
load that can be maintained before buckling occurs and
relate this load to the size of the imperfection which
causes the buckling. The inclusion of initial imperfections
not only provides an explanation for buckling at loads less
than the classical Qalue, but also helps to account for the
large amount of scatter of test results.

In an attempt to reduce the data scatter, Miller (1977)
considered a modified form of the nondimensional buckling

parameter proposed by Plantema (1946). Miller's parameter

is
Et ‘ .
A = am s C 5 R » (2.4)
h - UR '
where ap = -0.041 - 0.473 log (i) (2.5)

The classical elastic buckling stress as indicated by Eq.

2.1 is modified by a capacity reduction factor, based on

%y
the approximate imperfection theory of Donnell and Wan
(1950). In Eq. 2.5, U is the unevenness factor which
reflects the initial level of cylinder wall imperfection
(geometric and material), and is considered to depend on the
method of construction. Based on the available test data,
Miller suggested that the unevenness factor U be 0.0005 for

fabricated cylinders. With imperfection accounted for in

this manner, a lower bound curve through the data points
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represents an empirical equation for the plasticity
reduction factor, n, applicable to nonhomogenous, sharp-

yielding mild steels. Miller's buckling strength formula is

ul E t (2.6)

o] = am C g R
Y Y
=nA
where n = 1.0 . for A < 0.55 (2.7a)
n = 0A45 + 0.18 for 0.55 < A < 1.6 (2.7b)
_ 1.31 1
N =TT ¥ 1.153) < 3 for A » 1.6 (2.7¢)

Recently, the American Society of Mechanical Engineers
(ASME) adopted a modified form of Miller's formula for their
specification on "Metal Containment Shell Buckling Design
Method" (1980) which forms an appendix to the ASME Boiler

and Pressure Vessel Code. Egqg. 2.5 was modified such that

R

ay = 0.207 for 600 < © < 1000  (2.8a)

ay = 1.52 - 0.473 log (%) (2.8b)
° lesser .. R 400

ap = 300 X - 0.033 value t (2.8¢)

The changes were made strictly to improve the
correlation between predicted and test results. In
addition, the ASME code restricts the application of their
formula, defined by Egs. 2.6 and 2.8, to cylinders with wall
thicknesses not less than 6.35 mm.

Stephens et al. (1982) developed a semi-empirical
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design formula, based on their tests and a review of tests

by others, for axially compressed structural quality

fabricated steel cylindrical shells. It is shown that the

observed effect of geometric imperfections on the buckling

strength can
Koiter. The
subjected to
considerably

stress. The

be approximated by the imperfection theory of
lécal buckling of fabricated steel tubes
uniform compression occurs at a stress

less than the classical elastic buckling

semi-empirical formula developed is based on a

buckling paramefer Ygr where

Y

s (E/dys

)1/2(1:/R)3/2 (2.9)

Using this parameter, a series of best fit curves to

available test data yields the following equations:

[e)
ul _

5 = 119.3
ys

(o]
ul

T = 1.625
ys

[}

gHﬂ = 1.0
YsS

Ve Yg ¢ 0.0036 (2.10)
+ 0.489 log v, 0.0036 < yq < 0.0527 (2.11)
Yg > 0.0527 (2.12)

More recent studies by Pinkney et al. (1982, 1983) have

shown that, using the finite element technique, the

equilibrium path 6f axially loaded cylinders can be traced

up to and beyond the limit point. The predicted ultimate

stresses are

in excellent agreement with those found
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experimentally provided initial imperfections are
incorporated in the shell geometry.

Extensive work has been done on the bending of
cylindrical shells. The classical solution for local
buckling of flexurally loaded shells is usually attributed
to Flﬁgge (1932). In his analysis, it is shown that the
critical stress induced by bending is 30% larger than the
classical axial stress given by Eg. 2.1.

Seide and Weingarten (1961) performed a numerical
small-displacement analysis of the flexural case which
indicated that the flexural buckling stress is approximately
equal to the compressive buckling stress. This
approximation is also cited by other researchers. Stephens
et al. (1982) suggest that a lower bound on the flexural
buckling capacity of fabricated steel cylinders can be
approximated on the basis of the test results for uniformly
compressed cylinders. This can be explained by the fact
that the strain gradient present in a flexurally loaded
member permits a higher maximum compressive stress than
would be the case for a uniformly compressed member. Bailey
and Kulak (1984) also performed tests on both unstiffened
and longitudinally stiffened cylindrical.shells loaded in
bending. These tests were designed to add to the data base

started by Stephens et al. (1982).

2.6 Cylinders Under Shear Loading

Shear stresses in cylindrical shells can be induced by
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torsional or transverse loading. 1In this study, only shear
stresses due to transverse loading are investigated.

The ultimate shear strength of fabricated steel
cylinders loaded in transverse shear is governed by many
factors. These can be divided into three groups, the
specimen geometry, the material properties, and the support
and loading conditions. Failure can occur as local
instability of subsequent to yielding of material.

Two types of local instability are possible; namely
compression buckling and shear buckling, as shown in Fig.
2.4. Compression buckling may occur at regions where the
compressive normal stress due to bending exceeds the
critical buckling stress. This mode of failure is sensitive
to the boundary conditions. Shear buckling may occur in
regions where the critical shear stress is exceeded. The
critical shear stress depends on the geometric and material
properties of the shell and can be dependent on the boundary
conditions as well.

When the shell geometry does not lead to local
instability, transversely loaded cylinders may fail by
yielding of material, which can be shear yielding or tensile
yielding. Shear yielding may initiate when the shear stress
in the cross-section due to the applied load exceeds the
shear yield stress. This type of yielding is common in
relatively "thick" cylinders in which local intability is
not likely to occur. Tensile yielding can occur in a

transversely loaded shell when the tensile stresses
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developed in the tension field, if it exists, exceeds the
tensile yield stress. This type of material failure is most
likely to occur in thin shells with considerable fixity at
the supporting edges in order that tension field action may
develop (Fig. 2.5).

Little experimental or theoretical work that deals with
the shear lbading of cylindrical shells can be found in the
litefature. Theoretical solutions for the critical shear
~stress of curved rectangular panels have been developed by
Batdorf et al. (May, 1947). The solution is based on small-
deflection theory for curved panels with simply supported

and clamped edges. The critical shear stress is given as
T = K, —— (2.13)

where K is the critical shear stress coefficient
established by the geometry of the panel and the type of the
edge supports, D is the flexural stiffness of panel per unit
length, b is the smaller of" the axial or the circumferential
dimension, t is the thickness. K is obtained by solving
the equation of equilibrium using the Galerkin Method for
the case of simbly supported conditions. Estimated results
are also given for curved rectangular panels having clamped

edges. Values of Kg are plotted against a curvature

parameter Z given as

7 = 22 a1 - V2 (2.14)
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The curved rectangular panels tested in Batdorf's study have
a range of 1 € 2 < 1000, In the present study, the shells
under investigation have a value of Z = 949,

Lundquist (1932, 1933, 1935) examined the behaviour of
thin cylindrical shells under pure torsion, pure bending,
and combined transverse shear and bending. In his study on
combined transverse shear and bending, if is assumed that
ordinary beam theory applies. Hence the compressive stress
on the extreme fibre and the shear stress at the neutral

axis are, respectively, given by

£ = » ' (2.15)
b nth
v ’ -

Eq. 2.15 is divided by Eg. 2.16 to obtain

o

M
RV (2.17)

™|

The nondimensional term-in Eg. 2.17 is descriptive of
the loading condition since it is clear, from purely
physical considerations, that the shear V and the moment M
relative to the size of the cylinder should be considered iﬁ
the analysis of the test results.

Lundquist has shown that for large values of
M

= (3 <

RV < 12), failure occurs in bending by a sudden

n_
RV
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collapse of the outermost compression fibers in the same
manner as in the pure-bending tests. The stress on the
extreme fiber, calculated by the ordinary beam theory, and
the size of the buckles are both equal to their respective
values for a cylinder of the same dimensions in pure
bending. It is, therefore, reasonable to suppose that at
these M/RV values the bending strength'of a thin-walled
cylinder should approach the strength of a cylinder of the
same dimensions in pure bending.

For small values of %V , (0 < %V < 2) , failure occurs
in shear by the formation of diagonal buckles on the sides
of the cylinder. The size and form of the buckles at
failure are the same as those that occur at failure for a
cylinder of the same dimensions in torsion. As M/RV
approaches zero, the shearing stfess on the neutral axis at
failure, calculated by the ordinary beam theory, is
approximately 1.25 times the allowable shearing stress in
torsion. This is logical since there is a stress gradient
effect in transverse shear which is absent in torsional
shear.

At intermediate values of M/RV, there is a transition
from failure by bending to failure by shear.that is
accompanied by a reduction in strength. A chart is
developed (Lundquist, 1935), to allow for the reduction in
strength for use in calculating the strength of thin-walled

cylinders in combined transverse shear and bending.

Wilson and Olsen (1941) performed an extensive study on



21
cylindrical shells subjected to a variety of loading
conditions, including axial compression, transverse shear,
bending, and combined loading. Schilling (1965) has also
conducted a considerable number of local buckling tests on
tubes under combined loading conditions. He suggested that
for elastic buckling, the critical shear stress in
transverse shear be taken as 1.25 times the critical shear
stress in torsion. 1In the inelastic case, it is
conservative to assume that the critical shear stresses are
the same for transverse shear and torsion.

Recently, Bailey and Kulak (1984) performed some tests
on cylindrical shells loaded in transverse shear. 1In the
experiment, two cylindrical shells were tested. The shear
specimens consisted of a cylinder with fixed ends, loaded in
the centre, with two thinner portions in the regions of
minimum moment. The thinner sections were intended to fail
in shear, and measurements of imperfections were
concentrated in these areas. It was observed that the first
shear specimen, with an R/t ratio of 251, failed as a
consequence of a series of inclined buckles forming in the
shear spans followed by compression buckles in the extreﬁe
fibres. The shear buckles were all athabout the same angle,
25°, relative to the longitudinal axis, and approximately
symmetric about both the longitudinal axis and the centre of
the specimen. Buckles due to coﬁpressive longitudinal
stresses were also observed in the compression region of the

thinner section. Fig. 2.6 shows the buckled specimen.
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It is suggested by Bailey and Kulak that tension field
action develops after the shell buckles, and that the total
shear capacity consists of two portions, namely the 'beam
action' shear and the 'tension field action' shear. They

suggest that a form of the relationship might be

vy = Ktl Vi : (high R/t ratio) (2.18)
Vy = Ky1 Vy + Kt2 Vi (intermediate R/t ratio) (2.19)
Vu = Ky2 Vy (low R/t ratio) (2.20)

, K and K are dimensionless parameters
2 Y1 Y2

which depend on R/t, E, v and Sy-

where Ktl' Kt

In conclusion, Bailey and Kulak noted that the R/t
ratio is an important factor in determining the failure mode
of a shell loaded in transverse shear. For a given yield
strength, shells with a low R/t ratio are expected to fail
as a consequence of yielding, while those with a high R/t
value may buckle long before yielding occurs. Also, the
contribution of the tension field to the shear strength of a

cylinder increases as the R/t of the shell increases.

2.7 Post-Buckling Behaviour

As discussed in the previous section, tension field
action may exist after buckling occurs in a transversely
loaded cylindrical shelll One type of structural member
that is often loaded primarily in shear is the plate

girder. In North American Practice the shear strength of
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plate girders is usually obtained using a tension field
theory in the form developed by Basler (1961). This theory
recognizes the fact that after a plate loaded in shear
buckles, the load-carrying mechanism changes, showing
significant post-buckling strength. The theory suggests
that the shear strength consists of both buckling and post-
buckling contributibns. Prior to buckling, shear capacity
is due to beam action, while after buckling shear resistance
results from the formation of a tension field in the web.

In stiffened plate girders, this field forms diagonally
_ between vertical stiffeners. The analogous part of the
cylindrical shell would be a ring stiffener or support which
acts as reaction points for the field. Adaptation of this
theory to other structural systems loaded mainly in shear
has been attempted withvconsiderable success. Thornburn et
al. (1983) and Timler and Kulak (1983) investigated the
behaviour of steel plate shear walls under lateral loads
which might result from the action of wind or seismic
forces. Goodbcorrelation between predicted values based on
a tension field assumption and actual values was obtained.
Although no such theory for transversely loaded
cylinders has been found in the literature, it may be
possible to adapt the tension field theory to the analysis

in this study.
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(a) East Face

Figure 2.6

(b) West Face

Buckled Shape of Bailey's First Shear Specimen
(After Bailey and Kulak)



3., PRELIMINARY INVESTIGATION -

3.1 Introduction

As mentioned in section 2.6, Bailey and Kulak (1984)
performed two tests on the transverse loading of thin
cylindrical shells. Both shells showed an inclined buckling
pattern. However, only the first specimen (R/t = 251) is
dealt with in this study. The second specimen (R/t = 78)
~falls outside the scope of this work. It was found that the
first shear specimen (R/t = 251) buckled in an inclined
pattern at an angle of 24° to the horizontal (see Figure
2.6). It was suggested that the buckling pattern obtained
may depend on the experimental set-up and the boundary
conditions.

The objective of this preliminary study is twofold.
First, it is necessary to find out the effect of the
experimental set-up and support conditions on the buckling
pattern of the shell. Second, it is desirable to carry out
the linear buckling analysis for a series of shells in order
that the modal shapes obtained from these analyses can be
used as the basis for the initial geometric imperfections

for the shells in the next stage of the analysis.

3.2 Basis of Analysis

The main thrust of this study is to theoretically
investigate the shear buckling behaviour of thin-walled

fabricated steel cylinders. Two approaches may be

30
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adopted. An attempt may be made to obtain a closed form
solution, or the problem may be investigated numerically.
However, the complexity of the problem may render the first
approach untenable. On the other hand, the finite element
method (Zienkiewicz 1977; Cook 1981; Bathe 1982) has been
developed to a great degree of sophistication as a numerical
analysis tool. Such variables as geometric nonlinearities,
material models and geometric imperfections are readily
accommodated in a finite element analysis. Therefore, the
finite element technique is adopted as the basis of this
study. In particular, Program NISA80 (Ramm, 1980), which
emphasizes stability problems, has been chosen as a

numerical analysis tool.

3.3 General Description of Program NISA80

The nonlinear incremental structural analysis program
NISA80 (Ramm, 1980) is a finite element code encompassing
small displacement formulation as well as large
displacement, large strain, total Lagrangian formulation and
large displacement, small strain, updated Lagréngian
formulation., The program accommodates elastic and elastic-
pléstic strain hardening material models. The range of
elements represented includes truss, beam, two-dimensional
plane stress, plane strain axisymmetric, three-dimensional
solid and doubly curved shell elements. In addition, the.
program performs eigenvalue analysis on nonlinear element

groups. The program employs a skyline type equation-solver
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(Everstine, 1979). A variety of incremental solution
strategies are made available. These include the standard
and modified Newton-Raphson strategies (Zienkiewicz and
Irons 1970; Webster 1980; Cook 1981) as well as the so-
called Riks-Wempner Or constant-arc-length technique
(Wempner 1971; Riks 1979; Crisfield 1980; Ramm 1980). The
Newton-Raphson iteration methods often fail in the
neighborhood of critical points. The stiffness matrix
approaches singularity, requiring an increasing number of
iterations and even smaller load steps, and the solution
finally diverges. The Riks-Wempner method is a relatively
recent solution strategy designed to overcome these problems
and to trace the load response beyond the critical points.

Several investigators (Brendel et al. 1981; Ramm 13980)
have used the NISA80 code in association with stability
oriented problems. In particular Pinkney et al. (1982,
1983) used the program to theoretically investigate the
behaviour of axially compressed cylinders. In addition the
Pinkney group at the University of Manitoba, has recently
concluded a theoretical investigation of buckling under pure

bending using the same program.

3.4 Preliminary Analysis

3.4.1 Series A
The objective of series A is to investigate the effects
of the experimental set-up and support conditions on the

buckling pattern of the shell.
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Series A consists of three identical geometrically
perfect cylindrical shells (R/t = 250) of 808.5 mm length.
The shells have a mid-surface radiﬁs of 190 mm and a
constant thickness of 0.76 mm throughout. These dimensions
are similar in outline to the Bailey and Kulak (1984) first
shear specimen. The configuration of the models is shown in
Fig. 3.1.

Model Al is designed to simulate a "fixed-end" problem
loaded in shear with unrestrained vertical and horizontal
translations at the loading edge (Fig. 3.2a). In order to
prevent premature local failure, the loading edge is
stiffened by coupling the vertical translations (Z-
displacements) of all the nodes on this face. Model A2 is a
"free-cantilever" problem loaded in bending (Fig. 3;2b).

'~ The y-rotations of all nodes on ‘the loading edge are coupled
so that the loading edge remains perpendicular to the
longitudinal axis of the deflected shell. Model A3 is also
designed as a 'free-cantilever" problem but loaded in shear
(Fig. 3.2C). The loading edge is stiffened by nine vertical
truss elements. The y-rotations of all the nodes on the
loading edge are coupled as well. Details of the boundary
conditions for the three models are listed in Table 3.1.

The material and geometric properties are given in Table
3.2.

In the present analysis, a 6 x 6 uniform mesh with 36
bicubic 16-node Lagrangian 3-D degenerated plate-shell

elements is employed for each of the three models. A 3 x 3



34
Gaussian integration scheme is adopted in the plane of each
element. Integration in the thickness direction is based on
a 3-point gauss rule. An elastic isotropic material model
is used. Eigenvalue analysis is carried out using the
subspace iteration technique (Bathe 1982) on each model.

In models Al and A3, transverse load is applied in the
vertical direction (Z-direction) at all the nodal points on
the loading edge in order to produce similar loading effects
as in the case of uniform transverse shear. In model A2,
horizontal coupled forces are applied at all nodes above and
below the neutral axis of the loading edge to simulate an
external moment. The loading conditions and the finite
element meshes used for the three models are shown in Fig.
3.3.

The analysis of series A shows that the linear buckling
load for model Al is 16.76 kN. Based on Batdorf's small
displacement theory for curved rectangular panels, the
critical loads for the simply-support and clamped-edge cases
are 17.77 kN and 18.21 kN respeétively. Good agreement
'exists between the results from the finite element analysis
and Batdorf's theory. For model A2, the linear buckling
load is equivalent to a single external moment of 131 N.m.
The linear buckling load for model A3 is 19.87 kN. No
comparison is made to the predicted values based on
Batdorf's equation since it does not apply to a "free-
cantilever" problem.

The first buckling modes of the three models are shown



in Fig. 3.4. Diagonal buckles are found in model Al,
similar to those obtained in Bailey and Kulak's first shear
specimen. Model Al, however, has a constant thickness
throughout the longitudinal direction, compared to the
varying thicknesses in the three spans of Bailey and Kulak's
test specimen. Hence, it is concluded that the diagonal
shear buckles obtained in Bailey and Kulak's experiment are
not a result of the experimental set-up. In model A2 no
diagonal buckles are found. Instead, a compression buckling
mode appears to take place.

In model A3, a combination of the diagonal shear
buckling mode and the compression buckling mode is predicted
instead of a pﬁre shear buckling pattern. It is concluded,
from the above observations, that the diagonal shear
buckling mode depends>on the loading conditions as well as

the boundary conditions.

3.4.2 Series B

The objective of series B is to generate, from the
linear buckling analyses, the first’buckling modes for a
series of shells_in order that the modal shapes obtained can
be used in the preparation of initial geometric
imperfections for the shells in the next stage of the
analysis. In this series the models closely approximate the
geometry ana the thicknesses of the Bailey and Kulak (1984)
first specimen. |

Series B consists of four geometrically perfect

35
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cylindrical shells with varying thicknesses in the
longitudinal direction. The shells are 808.5 mm long and
have a mid-surface radius of 190 mm. Each‘model is made up
of two end spans and a test span. The term "span" refers to
a length of the cylinder with a constant thickness. The
test spans are the cylinder sections with smaller
thicknesses. The test span, which is the "thinner" section
with a thickness of 0.76 mm, has a radius to thickness ratio
of 250 and is intended to fail first. The two end spans are
twice as thick as the test span. Models Bl and B2 have the
same configuration while models B3 and B4 are identical in
geometry. The configurations of the models are shown in
Fig. 3.5.

Model Bl is designed to simulate a "fixed-end" problem
with unrestrained vertical translations but restrained
horizontal movement at the loading edge (Fig. 3.6a). The
loading edge is stiffened by coupling the vertical
translations of all the nodes on this face in order to
prevent premature local failure.

Model B2 provides a "free-cantilever"” condition (Fig.
3.6b). The loading edge is.stiffened by coupling the y-
rotation”of all the nodes on the loading edge. Model B3 and
model B4 simulate "fixed-end" conditions with restrained and
unrestrained horizontal translations respectively (Fig. 3.6c¢C
and~3.6d). For these two models, the loading edge is 72.5
mm from the far end and is stiffened by coupling the

vertical translations of the nodes on the loading edge.
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Table 3.3 shows the details of the boundary conditions for
the four models. The material and geometric properties are
listed in Table 3.4.

In the present analysis, a 6 x 6 uniform mesh is
employed for models Bl and B2 while a nonuniform 6 x 6 mesh
is adopted for models B3 and B4. 1In both cases, thirty-six
bicubic 16-node Lagrangian 3-D degenerated plate-shell
elements are used for each model. A 3 x 3 Gaussian
integration scheme is employed in the plane of each
element. Integration in the thickness direction is based on
a 3-point Gauss rule. An elastic isotfopic material model
is used. Eigenvalue analysis is carried out using the
subspace iteration technique (Bathe 1982) on each model.

For all models except B2, transverse load is applied in
the vertical direction at all nodes on the loading edge.
Model B2 is intended to generate the bending buckling
mode. For this model, horizontal coupled forces are applied
above and below the neutral axis on the. loading edge in -
order to produce the similar loading effect as in the case
for pure bending. The loading conditions and the finite
element meshes used are shown in Fig. 3.7 for models Bl and
B2 and in Fig. 3.8 for models B3 and B4. .

The analysis shows that the linear buckling loads are
33.4 kN, 34.4 kN and 34.3 kN for models Bl, B3 and B4
respectively. Model B2 is not included since it is loaded
in a different manner. Using Batdorf's classical equation

for curved rectangular panels, the critical loads for the
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simply-supported and clamped-edge cases for models Bl, B3
and B4 are calculated. They are 30.4 kN and 32.4 kN for
model Bl, 32.1 kN and 33.1 kN for models B3 and B4
respectively. Table 3.5 shows £hese values and indicates
that there is good agreement between the results from the
finite element analysis and Batdorf's equation.

The first buckling modes obtained from the linear
buckling analyses for models Bl, B3 and B4 are shown in Fig.
3.9. All three modes exhibit the chracteristic diagonal
buckling pattern similar to that obtained in Bailey and
Kulak's first specimen. The angle of inclination of the
buckles with respect to the horizontal falls in the range of
15° to 20°.

Fig. 3.10 shows the first buckling mode for model B2
which was loaded differently and was intended to generate
the bending buckling mode. This buckling mode, along with
the shear buckling modes obtained in models Bl, B3 and B4,
are subsequently used in preparing the initial geomeﬁfic

imperfections for the shells.

3.5 Initial Geometric Imperfections

As mentioned in Chapter 2, it is possibie to predict,
reasonably well, the buckling load using single and multiple
mode imperfection shapes scaled to statistically random
imperfection amplitudes. Even better results can be
obtained if the actual imperfection profiles are mapped and

used in the calculation.



In the experimental work carried out by Bailey and
Kulak (1984), extensive geometric imperfection measurements
were taken for the first shear specimen. The actual
imperfection profiles at different sections of the shell are
shown in Fig. 3.11. The initial imperfections were
measured, relative to an arbitrary datum, along each of the
32 circumferential genérators, at 41 longitudinal locations
for a total of 1312 measurements.

In order to correlate the prediction of ultimate
strength with that obtained experimentally it is necessary
to incorporate the actual (measured) imperfections into the
analysis. Arbocz (1982) presents a good discussion on how
initial imperfection measurements on full scale structures
can be used effectively to develop improved design
criteria. 1In the present study, a rational technique for
using measured imperfections to obtain effective initial
imperfections for use in the analysis is adapted from the
work by Pinkney et al. (1982, 1983).

In the present analysis, only the initial geometric
imperfections in the test spans are considered since the
effects on the buckling load are more pronounced in these
"thinner" regions. Based on the measurements by Bailey and
Kulak, a straight line was fitted to each of the 32
circumferential sets of observations in each of the two test
spans by the method of least squares. The straight line
obtained was assuﬁed to be a generator of the corresponding

perfect shell for the test span. The deviation of each



measured value from the line was assumed to be the initial
deflection at the observation point. The magnitudes of the
initial imperfections are as given in Tables 3.6 and 3.7.
Fig. 3.12 defines v and Av. Tables 3.6 and 3.7 show the
mean absolute and root-mean-square initial imperfections

defined as follows.

1 n
|v] == 3 |v] (3.1)
mean n ,
i=1
and
n 1/2
- ri 2 '
VRMS [ iil vy ] (3.2)

It is necessary to estimate the magnitude of the first
mode of buckling that would result in the same ultimate ioad
as the true initial shell imperfections. For this, the
initial imperfections may be described in terms of the modal

shapes as
n
{vli = I a {¢i} (3.3)
Using the orthogonality rule (Clough and Penzien 1975), the

contribution of the first mode is given as

{6}, (v}
T (3.4)
0,37 Log)

Noting that only radial translations are measured, the
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vector {¢i}’of Eq. 3.3 is adapted as
(o, = (0,2 + 0 % +02) 1}, (3.5)

Although this vector is not strictly radial, it is
approximately so.

The second problem (the initial geometric imperfections
are measured at locations different from the nodal points of
the finite element model) makes it necessary to interpolate
between observations in the longitudinal direction in order
to obtain an initial displacement vector {v} of the same
order as the eigenvectors {¢}i. No interpolation is made in
the circumferential direction since the observation points
are very close, although not exactly, to the nodal points in
this direction. It is assumed that the effect due to this
approximation is negligible.

The third problem is solved by searching all available
sets of measurements against Eq. 3.4 for a maximum value to
be used as a scaling factor for the eigenvectors.

For test span 1 of Bailey and Kulak's specimens, twelve
longitudinal measurements are available at each of the
thirty-two circumferential generators. Each generator is
fitted to a polynomial of degree twelve. For test span 2, a
polynomial of degree fourteen is used since fourteen
longitudinal measurements are available at each generator.
After the polynomials are established, coordinates of the

nodal points are fed in, and the initial displacement
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42
vedtors {v} at the nodal points are thus obtained. The
vectors {v} are now of the same order as the restricted
eigenvectors {¢}i.

Using Eq. 3.4, the first-mode component aj is extracted
from the interpolated initial displacement at all generators
in each test span for each model. Setting n equal to 1 in
Eg. 3.3 and using the values of ayy the sets of eigenvectors
{v}, appropriately scaled by a,, are generated. These
eigenvectors {v} are then quantified as before. Tables 3.8
and 3.9 compare the experimental imperfection measurements
with those resulting from the above analysis for test span 1
and test span 2 respectively.

It can be seen that there is little agreement between
the scaled mode-1 imperfection measures and the experimental
measures. It is interesting to note that the location of
the maximum scaled mode-1 imperfection does not necessarily
correspond to the location for the maximum experimental
measurement. Also, the scaled mode-1 imperfection values
obtained from test span 1 are relatively higher than those .
obtained from test span 2. Hence, it is suggested that the
values from test span 1 be used to determine the effective
initial imperfections.

From Table 3.8, the maximum scaled mode-l1 imperfection
values are 1.400 mm, 1.890 mm, 1.390 mm and 1.910 mm, and
the average values are found to be 1.080 mm, 1.393 mm, 1.136
mm and 1.450 mm for models Bl, B2, B3 and B4 respectively.

These values lie between one and a half to three times the



thickness in the test spans. Hence, it is recommended that
the maximum scaled mode-1 imperfection valde be twice the
thickness in the test spans.

In order to study the effect of initial imperfection on
the buckling strength of the shells, different scaled mode-l
imperfection values are used for the models in later
analysis. These imperfections are superimposed onto the

perfect shell geometry.
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Table 3.5 Shear Buckling Loads Predicted by NISA80 and
Batdorf's Equation
Series B Buckling Load (kN)
NISA80 Batdorf's Equation
Simple Supports Clamped Edges
Model Bl 33.4 30.4 32.4
Model B2 NA NA NA
Model B3 34.4 32.0 33.1
Model B4 34.3 32.0 33.1

NA - Not Applicable
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Table 3.6 Initial Imperfection Characteristic of Test
Span 1 of Bailey and Kulak's First Shear Specimen

Generator |V nax 189 | nax |V nean VRMS
(mm) (mm) (mm ) (mm)

1 0.484 0.730 0.156 0.200
2 0.049 0.083 0.017 0.022
3 0.127 0.175 0.027 0.042
4 0.231 0.319 0.056 0.080
5 0.147 0.257 0.058 0.076
6 0.098 0.184 0.041 0.051
7 0.206 0.314 0.055 0.080
8 0.136 0.232 0.055 0.066
9 0.117 0.215 0.065 0.073
10 0.116 0.217 0.047 0.059
11 0.092 0.165 0.033 0.044
12 0.099 0.149 0.036 0.042
13 0.087 0.155 0.031 0.040
14 0.086 0.157 0.040 0.046
15 0.088 0.146 0.033 0.040
16 0.102 0.170 0.043 0.049
17 0.092 0.183 0.045 0.053
18 0.062 0.111 0.033 0.039
19 0.101 0.178 0.040 0.052
20 0.079 "0.124 0.025 0.033
21 0.099 0.189 0.058 0.066
22 0.259 0.461 0.074 0.107
23 0.228 0.394 0.063 0.092
24 0.231 0.390 0.090 0.109
25 0.129 0.195 0.042 0.053
26 0.139 0.246 0.041 0.058
27 0.199 0.368 0.062 0.088
28 0.188 0.371 0.101 0.118
29 0.222 0.345 0.060 0.084
30 0.144 0.244 0.062 0.074
31 0.165 0.327 0.097 0.110
32 0.662 1.079 0.355 0.401
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Table 3.7 Initial Imperfection Characteristics of Test
Span 2 of Bailey and Kulak's First Shear Specimen

Generator |vImax |4V | nax |V mean YRMS
(mm) (mm) (mm) (mm)

1 0.331 0.572 0.174 0.195
2 0.347 0.615 0.131 0.159
3 0.294 0.587 0.190 0.205
4 0.125 0.233 0.059 0.072
5 0.197 0.357 0.068 0.090
6 0.061 0.107 0.026 0.030
7 0.568 0.736" 0.107 0.173
8 0.130 0.250 0.075 0.084
9 0.069 0.129 0.032 0.038
10 0.086 0.156 0.046 0.051
11 0.088 0.157 0.040 0.045
12 0.089 0.174 0.042 0.051
13 0.088 0.168 0.032 0.040
14 0.124 0.204 0.059 0.005
15 0.126 0.245 0.060 0.073
16 0.111 0.182 0.040 0.049
17 0.178 0.299 0.061 0.075
18 0.168 0.314 0.075 0.087
19 0.093 0.182 0.040 0.053
20 0.127 0.225 0.067 0.076
21 0.133 0.255 0.069 0.079
22 0.093 0.175 0.042 0.052
23 0.136 0.258 0.053 0.071
24 0.105 0.194 0.049 0.056
25 0.137 0.255 0.078 0.088
26 0.119 0.225 0.058 0.066
27 0.148 0.257 0.059 0.074
28 0.173 0.294 0.072 0.095
29 0.094 - 0.179 0.046 0.055
30 0.207 0.384 0.082 0.098
31 0.291 0.509 0.128 0.162
32 0.240 0.386 0.084 0.108
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4. ANALYTICAL PREDICTION OF SHELL BEHAVIOR

4.1 Introduction

As indicated in Chapter 1, the purpose of the
analytical program is to investigate the shear behaviour of
large diameter steel cylinders loaded in transversé shear,
The cylinders treated herein have a radius to thickness
ratio (R/t) of 250. Four cylinders are analysed with
various boundary conditions and different levels of initial
geometric imperfections. All cylinders considered have the
same or approximately the same configuration as the first
shear specimen (R/t = 251) experimentally tested by Bailey
and Kulak (1984). The loading set up in this analytical
program is ‘similar to that in Bailey and Kulak's experiment
(1984).

In this chaptér the numerical results from the finite
element technique are compared to the existing experimental
data. 1In addition the effects of initial geometric
imperfections (the magnitude of, and the method of
introducing the geometric imperfections) on the buckling
load and the load-response path of a cylindrical shell are

examined.

4.2 Preliminary Considerations

It is shown in Chapter 3 that the variation in cylinder
thickness which formed a part of the experimental set dp has

little influence on the buckling pattern of transversely
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loaded thin cylindrical shells, and that the diagonal
buckling pattern is a characteristic mode of buckling for
thin cylindrical shells loaded in double curvature.

However, the theoretical and experimental work
discussed in Chapter 2 indicates that initial geometric
imperfections have an effect on the load at which first
buckling occurs in thin-walled cylinders. Hence, it is
important to include initial geometric imperfections in the
analysis. Because of the small thickness of the shells
under consideration, the effect of geometric imperfections
can be pronounced and the problem can become imperfection
sensitive.

In Chapter 2, it is mentioned that the buckling load
may depend on the boundary conditions of the shells. 1In
order to determine the variation of the buckling load due to
the types éf edge supports, notwithstanding the Bailey and
Kulak test conditions, several sets of boundary conditions

are imposed on the models in this analysis.

4.3 Description of Models

A series of four geometrically imperfect cylinders
(Series S) are analysed using the finite element program
NISA80. The analyses are based on a bilinear elastic-
perfectly-plastic (von Mises) material response in the
context of a total Lagrangian formulation. The geometry of
the four models are the same as those in Serieé B of the

preliminary study except that initial imperfections based on
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buckling modes are superimposed onto the shell geometry.
Each model consists of three spans representing one half of
the Bailey and Kulak test set-up. The middle span is the
test span having a smaller thickness than the two end
spans. The test span has a thickness of 0.76 mm and is
intended to fail first. The two end spans have a thickness
of 1.52 mm. Configurations of the models are shown in Fig.
4.1,

Since the problem is symmetric about the longitudinal
axis, only one longitudinal half of a cylinder is
modelled. A uniform 6 x 6 finite element mesh is used for
models S1 and S2. The lengths of the three spans are thus
134.75 mm for the end span closer to the fixed edge, 404.28
-mm for the test span and 269.50 mm for the other end span.
For models S3 and S4, a nonuniform 6 x 6 mesh is used in
order to exactly fit the geometry of the shellé. Hence, the
lengths of the three spans are 165 mm, 381 mm and 262.5 mm
respectively. 1In both cases, 36 bicubic l16-node Lagrangian
3-D degenera£ed plate-shell elements (Ramm 1977) are
employed.

Integratiop of the finite elements is based on a 3 x 3
Gaussian scheme in the plane of each element, and on a
Simpson's rule with 7 layers in the thickness direction.
Eigenvalue analyses are carried out at different load levels
using the subspace iteration technique (Bathe 1982).
Equilibrium iterations are carried out employing the

modified or standard Newton-Raphson iterative method up to a
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certain load level and the Riks-Wempner iterative algorithm
thereafter (Wempner 1971; Riks 1979; Crisfield 1980; Ramm
1980).

Models S1, S2 and S3 are designed to simulate "fixed-
end" conditions with unrestrained vertical translations but
restrained horizontal movemeﬁts at the loading edge (Figs.
4.2a and 4.2b). Model S4 is also designed to provide a
"fixed-end" condition but with unrestrained vertical and
horizontal translations (Fig. 4.2c). In all cases, the
vertical translations of all the nodes on the loading edge
are coupled in order to prevent local failure. Note that
the loading edge in models S3 and S4 is 72.5 mm from the far
edge. Table 4.1 shows the details of the boundary
conditions for the'four models. The material and geometric
propertiesrare listed in Table 4.2.

In order to study the effect of iﬁitial geometric
imperfections on the buckling loads of the models, different
scaled mode-1 imperfection values and different combinations
of Buckling modes are used in the models. Model S1 contains
a set of initial imperfections which is comprised of only
the shear buckling mode obtained from model Bl in the
preliminary analysis. The scaled mode-1 imperfection value
used for model S1 is 1/100 times the shell thickness, or
0.0076 mm. In model S2, a combination of the shear buckling
mode from model Bl and the compression buckling mode from
model B2 is used. The contributions from each buckling mode

are proportioned according to the maximum bending moment in
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the top compression region of the test span in each case.
The scaled mode-1 imperfection value used in model S2 is
half the shell thickness and one and a half times the
thickness for the shear mode and the bending mode
respectively. The shear buckling mode from model B3 is used
in model S3 while the shear buckling mode from model B4 is
used in model S4. In both models, the scaled mode-1
imperfection value is one times the shell thickness, or 0.76
mm. The scaled mode-1 imperfection values for the four

models are listed in Table 4.3.

4.4 Loading Procedure

Loads are applied transversely to the models through
all the nodes at the loading edge as shown in Figure 4.3. A
linear eigenvalue analysis is done at an eérly stage of
loading for each model in order to obtain an estimate of the
ultimate loads. Subsequent loading is then applied stepwise
and the size of the loading is adjusted as the load-response
behaviour becomes nonlinear. Different equilibrium
iteration methods are used, accordingly, to achieve
convergence. Subsequent eigenvalue analyses are then
carried out at different load levels as the effects of

prebuckling deformation become pronounced.

4.5 Results
4.5.1 General

In the following, the loading behaviour for each model
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is described. The deformed shapes and the buckling_modes
for each model at different stages of loading are
presented. The presentation of the results consists of two
groups since there are two basic sets of shell geometry and
loading conditions. The first group includes models sl and

S2 while the second group is related to models S3 and S4.

4.5.2 Behaviour During Loading

The behaviour during loading for models S1 and S2 and
models S3 and S4 is shown in Figs. 4.4 and 4.5 respectively,
where plots of load versus the vertical deflection at the
top node of the loading edge of the models are presented.

In all cases the finite element models were about four times
as stiff as Bailey and Kulak's first shear specimen.

In model S1, which incorporated an infinitesimal
initial imperfection and suppressed rotations and
longitudinal translations at the loading edge, the behaviour
is practically linear up to a maximum load of 32.42 kN (Fig.
4.4a). The buckling loads obtained from eigenvalue analyses
at different load levels showed little variation, mostly
falling between 33.4 kN and 33.7 kN. At about 30 kN, no
nonlinearity can be seen from that load-response curve.
However, the size of the incremental.load had to be adjusted
in order to achieve convergence. At 32,92 kN, the model
showed very little stiffness and the solution diverged even
though very small load size and different iteration schemes

such as the standard Newton-Raphson method and the Riks-
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Wempner algorithm were tried. At this stage, it is believed
that a limit point is reached or within proximity. The
deformed mesh of model S1 at this load level is plotted
(Fig. 4.6a). It is noted that inclined buckles are formed
in the test span of the model in a manner similar to that
obtained in Baily and Kulak's first shear specimen.

The load¥response behaviour for model S2, which
incorpofated large initial imperfections based on a
combination of shear and bending buckling modes, is
practically linear up to a maximum load of 24.16 kN (Fig.
4.4b). Thereafter, no further load could be applied to the
model. This occurred rather abruptly since no sign of
nonlinearity was found in the load-deflection curve and
little indication of failure was detected in the previous
. load stéps. At this point, the size of the incremental load
was adjusted and other iteration schemes were used; however,
no further results could be obtained. The buckling loads
obtained from eigenvalue analyses at two different load
stages show little variation, "both of them are approximately
equal to 33.9 kN. The deformed shape of the model at the
maximum load level is plotted (Fig. 4.6b). A combination of
deformation modes is found to exist in the model. 1Inclined
buckles are obtained in the test span. Compression buckles
are also found along the top region of the test span. This
mode of failure, a combination of shear buckling and
compression buckling, is similar to the failure mode of

Bailey and Kulak's first shear specimen. However, this



conclusion is not firm because no nonlinearity is apparent
in the load-deflection curves. These buckles may be
magnifications of the superimposed prebuckling
deformations. In addition, it should be noted that the
analysis of model S2 has been carried out on a new version
of the program NISA80. Tests of this version are not
compléte. Hence, no inferences can be made from this
model's results.

Fig. 4.5a shows the load-response behaviour of model
S3. This model incorporates initial imperfections based on
a shear buckling mode of the order of the shell thickness,
and boundary conditions consisting of suppressed rotations
and longitudinal translations at the far edge. It can be

seen that the behaviour is practically linear up to a load
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' of about 15 kN. An eigenvalue analysis was done at an early.

stage of loading. The buckling load obtained from the
eigenvalue analysis was 15.74 kN. Loading was then
resumed. A second eigenvalue analysis with 6 subspace
iteration vectors was attempted at a load level of 13.59
kKN. No positive eigenevalues were obtained. Another trial
was made with 10 subspace iteration vectors but again no
positive éigenvalues were found. The eigenvalue analysis
was then abandoned and loading was resumed. At this load
level, it was necessary to change the iteration scheme from
the modified Newton-Raphson technigue to the standard
Newton-Raphson technique in order to achieve equilibrium

convergence although no nonlinearity was observed in the
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load-response curve. However, the model was able to take
load up to and beyond the ultimate logd of 14.7 kN achieved
by Bailey and Kulak in the experiment as well as the
buckling load of 15.74 kN obtained in the early eigenvalue
analysis. Thus, it was suspected that a critical point may
have been missed due to large incremental load steps and an
alternative primary path was followed. Hence, the loading
was backed up to 13.59 kN and was restarted with a smaller
incremental load size using the Riks-Wempner iteration
scheme in hope of tracing the secondary path. The solution,
however, continued along the previously established curve
and no branching occurred. At a load of about 13.6 kN, the
loéd—response behaviour started to become nonlinear, but the
model was able to take load above the predicted buckling
load of 15.74 kN. At 18.12 kN, it was necessary to adjust
the size of the incremental load in order to achieve
equilibrium convergence. An eigenvalue analysis was
attempted at a load level of 18.88 kN with 10 subspace
iteration vectors; however, no positive eigenvalues were
found. Loading was then resumed. At a load of 19.63 kN,
although the model may be able to take more loading,
application of load was stopped.

The load-response behaviour of model S4 is shown in
Fig. 4.5b. This model incorporated initial imperfections
'based on a shear buckling mode of the order of the shell
thickness and the boundary conditions consisted of

suppressed rotations and coupled longitudinal translations
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at the far edge. The behaviour is similar to that obtained
for model S3. It is practica}ly linear up to a load of
about 13.6 kN. An eigenvalue analysis was carried out with
6 subspace iteration vectors at an early stage of loading.
The buckling load obtained from the eigenvaue analysis was
17.19 kN. All subsequent eigenevalue analyses were done
using 12 subspace iteration vectors to generate the first
and the second buckling modes. The next three eigenvalue
analyses were carried out at load levels of 10.57 kN, 12.84
kN and 14.35 kN. The buckling loads corresponding to the
first mode were 17.96 kN, 18.49 kN and 18.95 kN while those
corresponding to the second mode were 21.84 kN, 21.88 kN and
22.07 kN respectively. It can be seen that at this stage
there is a substantial increase in the predicted first
buckling load. This suggests that the model stiffens as it
is being loaded and that the effect of prebuckling
deformations on the buckling load should not be neglected.
At a load level of 12.08 kN, it is necessary to adjust the
incremental load size and to change the iteration scheme
from the modified Newton-Raphson technique to the standard
Newton—Raphson‘technique in order to achieve equilibrium
convergence although the load-response curve is still
linear. As in the case of model S3, model S4 was able to
absorb loads up to 15.86 kN. Loading was then backed up to
a level of 12.84 kN and restarted using a smaller
incremental load size along with the Riks-Wempner iteration

scheme. The load-response behaviour, however, continued on
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the previous curve. At about 15 kN, the load~-response curve
began to stiffen although the effect of nonlinearity is not
severe. An eigenvalue analysis was carried out at load
level of 15.86 kN. The first and the second buckling loads
were found to be 19.50 kN and 22.30 kN respectively.

Loading was then resumed. Two subsequent eigenvalue
analyses were attempted at load levels of 17.36 kN and 18.88
kKN but no positive eigenvalues were obtained. At a load of
19:63 kN, although the model may continue to take more

loading, the application of load was stopped.

4.5.3 Specific Load-Deflection Curves

In the previous section, the load-response curves are
plotted with respect to the vertical deflection at the far
edge of the models. It is mentioned that "at some stages of
the loading, the size of the incremental load and the
iteration scheme had to be adjusted in order to achieve
equilibrium convergence", which indicates that some
nonlinear behaviour may have been encountered. The load-
response curves, however, remain linear under most Qf these
circumstances. This leads to the suggestion that the
vertical deflection at the far edge is a necessary, but not
sufficient, deflection parameter to describe the load-~-
response behaviour of the models under consideration. In
order to have a better undefstanding of the load-response
behaviour of the problem, it is necessary to examine, in

more detail, the deflections at other critical locations
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such as the regions in which inclined buckles and
compression buckles were found.

Four nodal points were selected as the representative
locations to describe the formation and behaviour of the
inclined buckles which exist in the test span. The four
nodal points are nodes 194, 198, 215 and 238.  Nodes 286 and
287 were chosen to represent the behaviour at the top
compression region of the test span. 1In all models,
however, deflections of nodes 286 and 287 are almost the
same. Hence, only node 286 is used. The locations of these
nodes on the finite element mesh are shown in Fig. 4.7.

To examine the effects of the prebuckling deformation
on the behaviour of the models, plots of the applied load
versus the lateral translations (y-translations) of nodes
194, 198, 215 and 238 are presented in Figs. 4.8 and 4.9 for
models S1 and S2 and models S3 and S4, respectively.

For model S1 (Fig. 4.8a), the load-deflection curves
begin to show nonlinearity at a load of about 30 kN. At
this point, the lateral deflections of the buckles start to
increase substantially in a nonlinear manner. It is
concluded that buckling has occurred in a shear mode in
model S1 at this load leQel. For model $S2 (Fig. 4.8b), the
load-deflection curves are linear up to the maximum load.

No nonlinearity is observed. It is concluded that the
effect of the prebuékling deformation is linear in model S2.

Very similar results are obtained for model S3 and

model S4 (Fig. 4.9). In both models, the load-deflection
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curves show nonlinearity at a rather early load stage, 10
kKN. Thereafter, the nonlinear effects due to the
prebuckling deformations become quite substantial.

Another area of interest is the top compression region
in the test span at which compression buckling may occur.
Again, plots of the applied load versus the vertical
translations (z-translations) of node 286 are presented in
Fig. 4.10 for models S1 and 52, and in Fig. 4.11 for models
S3 and s4 respectively.

For model Sl (Fig. 4.10a), the curve is practically
linear up to 30 kN. Beyond this point, the slope of the
curve increases, which may indicate that a compressioﬁ
buckle is in the process of formation in the opposite
direction to the overall deflection pattern. The curve
corresponding to model S2 (Fig. 4.10b) does not show any
nonlinear behaviour although compression buckles can be seen
at the top compression region of the test span in the
deformed shape shown in Fig. 4.6b. 1In Fig. 4.11, models S3
and S4 show similar load-response behaviour. 1In both cases,
nonlinearity becomes obvious at about 13.6 kN. Beyond this
point, the slope decreases. This indicates that the models,
in so far as this deflection parameter is concerned, are

softening under the application of load.

4.5.4 Deformed Shapes
The deformed shapes and the buckling shapes from the

eigenvalue analyses are presented in this section. For each



78

model, a series of deformed shapes at different load levels
is shown in order to describe the behaviour of the model
during the loading process.

In Fig. 4.12, the deformed shapes of model S1 at five
different load levels are shown, along with the buckling
shapes at two load levels. The deformed mesh at failure (at
32.9 kN) shows inclined buckles in the test span similar to
those predicted from the buckling analyses. No compression
buckles are found. This suggests that model Sl is
exhibiting a shear buckling failure mode.

The deformed shapes for model S2 are shown in Fig. 4.13
at four different load steps along with two buckling
shapes. The buckling shapes show only inclined buckles in
the test span. At the maximum load (24.16 kN), inclined
buckles and compression buckles in the top compression
region are both found in the test span. However, these
buckles may be magnifications of the superimpoéed
prebuckling deformations.

In Fig. 4.14, five deformed shapes of model S3 and one
buckling shape are shown. 1Inclined buckles are found at
about 15 kN but no compression buckles are evident. A
similar situation is found in model S4. Five deformed
shapes and three buckling shapes are shown in Fig. 4.15. At
about 15 kN, inclined buckles are found in the test span.
However, no cbmpresion buckles are obtained in the top

compression region.
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4.6 Further Investigation

A model S5 is analysed in this section. This model has
the same geometry, boundary and loading conditions as in
model S3. The only difference is that in model S5, the
scaled mode-1l imperfection value is twice the shell
thickness while in model S3, it is only one times the shell
thickness. This model incorporates 1érge initial
imperfections based on the shear buckling mode obtained from
model B3 in the preliminary investigation. Model S5
simulates a "fixed-end" problem with restrained longitudinal
movements and suppressed rotations at the far edge. The
loading face is stiffened by coupling all vertical
translations at this face.

During the analysis of this model, numerical
difficulties were found. This model was able to take load
up to about 6 kN. The load-response behaviour is linear up
to this load. Thereafter, the solution diverges and no
further results can be obtained. Smaller incremental load
size was used along with the Riks-Wempner iteration

technique, however, no convergence is reached.

4.7 Comparison of FEM Results with Classical Theories and

Test Results

In Chapter 2, the classical solution developed by
Batdorf et al. (May, 1947) based on the small-displacement
theory was discussed. Solutions éxist for both simply-

supported and clamped-edge cylinders. For models S1 and s2,
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the critical buckling stress according to Batdorf et al. is
140 MPa for simply supported edges and 167 MPa if the edges
are clamped. These stress levels correspond to shear
buckling loads of 31.76 kN and 37.81 kN, respectively for
the two edge conditions.

The shear yield strength for cylinders can be
conveniently calculated by muitiplying the cross-sectional
area by the shear yield stress and dividing by the shape
factor. In this study, the shear yield stress, Ty is
assumed to be oy//§. For thin-walled cylinders, the shape
factor can be taken as 2.0. Hence, the resulting shear
yield strength for models Sl and S2 is 39.46 kN. Comparing
the shear yield strength with those predicted by Batdorf et
al. (1947); it is obvious that models S1 and S2 should reach
the shear buckling loads before shear yielding occurs.

Stephens et al. (1982) developed a semi-empirical
formula to predict the strength of axially loaded
cylinders. They suggest that the flexural buckling capacity
of fabricated steel cylinders can be approximated on the
basis of the test results for uniformly compressed
cylinders. Since the models considered in this study are
susceptible to compression buckling, it is necessary to
calculate the flexural capacity of the models. According to
Stephens et al., the critical flexural buckling stress for
models S1 and S2 is 168 MPa, which corresponds to an
ultimate transverse load bf 26.81 kN. This leads to the

suggestion that compression buckling will occur prior to
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shear buckling in models S1 and S2. It should be noted,
however, the solutions by Stephens et al., are semi-
empirical solutions based on testing of real structures.
Hence, the effects of initial imperfections (material and
geometric) have been accounted for. Batdorf's classical
solutions, on the other hand, are for perfect shells based
on the small-displacement theory and no initial
imperfections are considered. Since shear buékling is
detected prior to compression buckling in model Sl1, the
implications are that either Stephen's et al. (1982)
predictions are conservative or that Batdorf's classical
solution should be modified in the presence of initial
imperfections.

The actual maximum load -from the finite element
analysis is 32.92 kN for model S1, and 24.16 kN for model
S2. Comparing these results to Batdorf's shear buckling
values, models S1 and S2 reached 104% and 76% respectively
of the predicted values, if simply supported edges -are
assumed, and 87% and 64% for clamped edge condition. If
compared to the shear yield strength, model S1 reached 83%
of yield, while model S2 reached 61%. The actual results
can also be compared with the ultimate strengths predicted
by Stephens et al. (1982) based on pure bending. The
maximum load reached 123% of the predicted value for model
S1, and 90% for model S2. Table 4.4 shows the comparisons
clearly.

When the numerical analysis values are compared with
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the experimental Toad of 14.7 kN obtained by Bailey and
Kulak, little agreement exists. In both models, the actual
values exceed the experimental result by a considerable
factor. This lack of agreement can be attributed to the
following factors. First, the models in this analysis and
the test specimen have slight differences in the lengths of
the three spans and in the position of the transverse
load. The effects due to these differences may be small,
nevertheless, they should not be neglected. The second
factor may be attributed to the inadequate modelling of the
boundary conditions. It is known that different sets of
boundary conditions result in different failure loads.
Initial imperfections, both geometric and material, are also
important factors in-determining the ultimate load of a
structure. In model S1, the scaled mode-1 imperfection
magnitude is 1/100 times the shell thickness. This level of
imperfection is relatively small and hence model Sl remains
approximately close to a perfect shell. It can, thus, reach
a buckling load close to the critical buckling load
predicted by Batdorf's classical theory. In model S2, the
scaled mode-1 imperfection magnitude is relatively large. A
combination of shear buckling mode and compression buckling
mode was used in preparing the initial imperfections.

Having this level of imperfection, model S2 no longer
behaves like a perfect shell. 1In fact, it reaches a max imum
load close to the predicted value according to the semi-

empirical equations developed by Stephens et al. Finally,
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residual stresses and, hence, their effects leading to
premature failure have not been accounted for in this
study. In the actual experiment, it is conceivable that
residual stresses played an important role in determining
the ultimate capacity of the specimen.

For models S3 and S4, the critical buckling stress
according to Batdorf et al. is 105 MPa for simply supported
edge and 120 MPa for clamped edges. These stress levels
correspond to shear buckling loads of 23.82 kN and 27.22 kN
for the respective two edge conditions. The shear yield
strength for models S3 and S4 is 39.46 kN. Comparing the
shear yield strength with those predicted by Batdorf et al.,
it is apparent that models S3 and S4 should reach the shear
buckling loads before shear yielding occurs. According to
Stephens et al., the critical buckling stress for models S3
and S4 is 168 MPa which corresponds to an ultimate
transverse load of 30.22 kN, It is apparent that shear
buckling should occur before compression buckling.

In Bailey and Kulak's experiment, the failure load
obtained for the first shear test is 14.7 kN, which is below
all the predicted values above. 1In the analysis, however,
this is not the case. Models S3 and S4 are able to absorb
loads up to and above 14.7 kN although nonlinearity became
obvious. Simultaneous eigenvalue analyses indicate the
buckling loads of model S4 are increasing, which implies
that the model is stiffening under the application of load

(see Fig. 4.5). The same behaviour is assumed to exist in



model S3 although no verification can be drawn from the
eigenvalue analyses. This stiffening phenomenon may be
attributed to the existence of a tension field. However,
for a tension field to develop, shear buckling in the test
span has to occur first. This leads to the suggestion that
models S3 and S4 buckled in a shear mode at a load between
10 kN and 16 kN since most of the eigenvalue analyses are
carried out between these two load levels.

It is apparent that models S3 and S4 can absorb load
above the test load by a considerable amount. The lack of
agreement between the results and the test value can be
attributed to several factors. First, residual stresses
have not been accounted for in this analysis. In the test
specimen, residual stresses exist as a consequence of
fabrication ‘and subsequent welding. This may lead to a
substantial decrease in the ultimate load of the test
specimen. As before, the second factor is due to the
inaccuracy of the modelled boundary conditions. More
accurate representation of the test support conditions
should give a better agreement between the results from the

test and from the computer models.

4.8 Observations on Results of Numerical Investigation

From the analyses presented in this chapter, it is
apparent that the numerical results do not agree with the
test results obtained by Bailey and Kulak (1984). The

program NISA80 appears to be insufficiently developed at
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this time to predict reliably the behaviour of the test
specimen. The most obvious discrepancies between the
numerical results and the experimental results are: a) the
measured stiffness for the first experimental shear specimen
are approximately 1/4 times the predicted stiffness, as
shown in Figs. 4.4 and 4.5; and, b) the predicted 'failure'
loads range from 133% to 224% of the experimental failure
loads (Table 4.4).

It is reasonable to argue that the initial response of
the shells would be expected to be similar to that of a
fixed-end beam. Hence it is of interest to compare the
measured and predicted deflections with those from simple
beam theory. Table 4.5 shows the results for flexibilities
(A/P) where they ére compared with NISA80 and experimental
values. The beam theory computations indicate that
approximately 70% of the deflection is due to shear
deformation. The total beam theory agrees very well with
the NISA80 deflections. This indicates that the predicted
flexibility is approximately equal to that predicted by the
beam theory. However, the experimental results are
approximately 4 times as flexible as the NISAS80
_predictions. An upper bound on beam theory deflections can
be obtained by using simple support conditions. The results
are also shown in Table 4.5. The flexural deflections
predicted by beam theory increase by a factor of
approximately 4.5 and the total deflection is increased by a

factor of approximately 2. However, the effect of such a
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relaxation of boundary conditions on the NISAS80 solution is
difficuit to predict. If these deflections were also
increased by a factor of 2, the flexibility of the NISAS80
solution would still be only 1/2 of the experimental

results.
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Figure 4.12

(e) At 32.92 kN

Deformed Shapes and Buckling Shapes of Model S1
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Deformed Mesh First Buckling Mode
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Figure 4.13

(d) At 24.16 kN

Deformed Shapes and Buckling Shapes of Model S2
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Figure 4.14 Deformed Shapes and Buckling Shape of Model S3
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Deformed Mesh First Buckling Mode
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(a) At 0.03 kN
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(c) At 15.86 kN
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Figure 4.15 Deformed Shapes and Buckling Shapes of Model S4
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Table 4.3 Scaled Mode-1 Imperfection Values used in
Models of Series S

the

lscaled Mode-1

Imperfection Values

Model S1 2
100

2 1 3 ,
Model S2 5t (shear), Et (bending)
Model S3 t
Model S4 t

1l ¢ = thickness of test span i.e. 0.76 mm

2 por model. S2, effective initial imperfection consists of a

linear combination of the shear buckling mode and the

compression buckling mode in the ratio according to their
respective maximum bending moments in the top compression

region of -the test span.
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Table 4.5 Comparison of Flexibilities

106

Flexibilities (%), X 10—6mm/N E

Fixed End lag/p = 15.18
25, /P = 34.80 5
Simple Beam 3AT/P = 49,98
Theory
Simple Support Ag/P = 67.98 |
AV/P = 34.80 %
AT/P = 102.78 i
NISA80 A/P = 48.0 |
Fixed End !
Experiment A/P = 190

1. Deflections due to flexural deformation.
2. Deflections due to shear deformation.

3. Total deflections.



5. EXAMINATION OF THE TENSION FIELD THEORY

5.1 Introduction

It is suggested by Bailey and Kulak that a tension
field develops after buckling of the shell has occurred, it
is necessary, as a part of the analysis, to verify the
existence of the tension field and to find out the effect on
the shear strength of the shell due to such acﬁion.

Finally, the lack of information and guidelines on this
subject in many of the existing design specifications
warrants the development of an ultimate strength equation
for thin cylindrical shells loaded in shear. 1In this
chapter a stress analysis which indicates the existence of a
tension field is presented. Then a tension field analysis
~based on Basler's tension field theory is carried out, and
the contribution to the shear strength is examined. Finally
the determination of the total shear capacity of a thin

cylindrical shell is presented.

5.2 Stress Analysis

5.2.1 Tension to Compression Ratio Variation

For structures loaded pfimarily in shear, the effect of
a tension field which sets in after the shear portion of the
structure loses its rigidity due to buckling should be
considered since the influence due to such action could be
important. In plate girders, the ability to perform in a

manner similar to a truss was recognized as early as 1898
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(salmon, 1971). The tensile forces are carried by membrane
action of the web while the compressive forces are carried
by stiffeners. To determine the ultimate shear strength of
a plate girder, it is necessary to consider the classical
buckling theory until buckling has occurred, then the
tension field membrane stresses along with the compression
forces in stiffeners are used in the post-buckling
condition. It is required then, to determine the stress at
which first buckling takes place and tension field
initiates.

In Bailey and Kulak's experiment, it is suggested that
a teﬁsion field may have existed after shear buckling of the
test span occurred. Any additional loads carried are
assumed to be a consequence of the tension field action. 1In
order to find out the contribution of the tension field to
the ultimate shear strength of a transversely loaded
cylindfical shell, the stress or the load at which the shell
buckles has to be determined; From the finite element
analyses, complete stress fields are obtained. The stresses
are calculated at the Gaussian points in the global
coordinate system. Hence, it is required to transform these
global stresses to s£resses in the local coordinate
system. The transformation is done according to the

following

[6'] = [TI (o] [T] (5.1)
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where [o'] and [o] represent the stresses in the local and
global coordinate systems respectively, and [T] is the
transformation matrix which contains the directional cosines
between the two sets of coordinate axes. After [o'] has
been obtained, the principal stresses and their orientations
are calculated in the local system. These procedures are
repeated at each load .step for each model.

To determine the load level at which shear buckling
occurs in these models, the following assumptions are made:
1. An element subjected to pure shear in addition to an
inclined tension force is considered.
2. After the shell buckles, the compressive principal

stress, =T

cr remains constant at the buckling stress

level.

3. Any subsequent load carriedris due to the tension
field stress o, in addition to the compressive
principal stress T_..

The above assumptions imply that the maximum principal
stresses (tensile) increase while the minimum principal
stresses (compressive) remain at a constant value. Hence,
by examining the ratio of the tensile stress to compressive
stress, the buckling stress is tﬁe level of stress at which

-this ratio begins to increase. Figs. 5.1 and 5.2 show the

variations of the tension to compression ratio at several

representative Gaussian points (local system) in the test
spans.

In Fig. 5.la, the tension to compression ratio starts
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to increase at about 30 kN, which agrees with the previous
observations made in Chapter 4 when the load-response curves
were discussed. This implies that model S1 buckles in a
shear mode at this load level and tension field action
develops thereafter. Any subsequent load carrying capacity
is contributed from the tension field action. Iﬁ Fig. 5.1b,
however, the curve does not show any increase in the ratio
and this suggests that no tension field is developed in
model S2. This further indicates that the shear buckling
stress had not been reached and no shear buckling occurs in
the test span of model S2.

The curves for model S3 and model S4 are shown in Fig.
5.2. The tension to compression ratio gradually increases
after a load of about 10 kN in both»models. This level is
determined by a visual examination of the departure from an
initial straight line. Although there are some slight
increases in the ratio before this load level, it is assumed
that the models buckle at this load and any subsequent load

carried is the resulf of the tension field action.

5.2.2 Principal Stresses

In order to have a‘better understanding of the pattern
of the tension field, the principal stresses at the maximum
load level of the mid-surface in the local coordinate system
are plotted in Fig. 5.3 for models Sl and S2 and in Fig. 5.4
for models S3 and S4. The principal stresses are shown on

flat meshes instead of curved ones and are plotted at the
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four Gaussian points for each of the 36 elements in each
model. The scale for the stresses is 312 MPa/cm. Any
tensile stress above 90 MPa is shown with a large arrowhead.

In Fig. 5.3a, the principal stresses for model Sl are
shown. It is clear that a tension field is well developed
in this model. The tension field in the test span is
anchored along the two edges which are attached to the two
thicker end spans which in turn find anchorage from the
boundary supports at the two ends. 1In Fig. 5.3b, it is
obvious that a tension field does not exist in the test span
of model S2. This agrees with the observation made earlier
in the previous section that in model S2, the shear buckling
stress has not been reached.

Fig. 5.4 shows that the principal stress patterns
obtained for model S3 and model S4 are very similar. It can
be -seen that in both models some tension field action,
a;though not fully developed, exists in the test span.
Anéhorage for the tension field is provided by the two edges
attached to the two thicker spans as in model Sl.

Another point of interest is the orientation of these
principal stresses. According to Salmon (1971) the angle
between the tension field stress and the horizontal, ¢, is
always less than 45°. Hence, the angle of inclination of
the maximum principal stress, ¢', resulting from the
combined stress conditions is also less than 45°. For the
models in the present analysis, the central region of the

test span, at which flexural stresses are minimum, is



closest to the pure shear condition. In models S1 and S2,
¢' is found to fall in the neighborhood of 45° while in

models S3 and S4, ' is between 30° and 45°.

5.3 Tension Field Analysis

5.3.1 General

As indicated in the previous section, tension field
action exists in all models except model S2. The
contribution of the tension field action to the ultimate
shear strength, however, is still unknown. In the
literature, little theoretical work has been done in

determining the tension field strength of a transversely
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loaded cylindrical shell. The tension field theory in plate

girders developed by Basler (1961) and modified for

cylinders by Bailey and Kulak (1984) is adopted with some .

changes in this analysis and is used as the guideline to

develop the ultimate shear strength equation.

5.3.2 Angle of Inclination of Tension Field

The tension field develops only through a strip of the

test span, as shown in Fig. 5.5. The following assumptions

have been made:

1. The top and bottom longitudinal edges do not provide

any anchorage for the tension field action, because

of the small local bending stiffness of the shell

top and bottom edges.

2. The tension field stress Or is constant and uniform.
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Using the notation shown in Fig. 5.5, the arc covered by the

tension field is

a = cos 1 (1 - ) (5.2)
where yj; = 2R - yjp (5.3a)
y, = L tan ¢ (5.3b)
Substituting Egs. 5.3a and 5.3b into Eq. 5.2, the
following is obtained
(5.4)

cos a« = (5 tan ¢ - 1)

Since o4 is inclined at an angle of { to the

horizontal, the set of stresses obtained through a rotation

of - (clockwise direction) is given as

g A
o, = 55 + 55 cos (2C) (5.5a)
o [e)
o, = 55 - 55 cos (2C) (5.5b)
%t
ey = 3 Sin (20) (5.5¢)

Calculation of the vertical force component of the
tension field can be carried out by dividing the tension

field into narrow strips of width dW, where
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dw = Rd¢ (5.6)

The vertical force component dF in each strip, can be

described as
dr = 1 e sin ¢ ¢ t « 4w (5.7)
Xy

Substituting Egs. 5.5c and 5.6 into Eq. 5.7, the following

is obtained

dF = sin (2¢) sin ¢ ¢ t « R * dé¢ (5.8)

wlq
o

Integrating the vertical force component dF over the arc a«,

the total vertical force Vt for a full shell is given as
vV, =2 [4dF (5.9)
Substituting-Eq. 5.8 into Eg. 5.9, V. can be expressed as

Vt =0, t ¢« R sin (2¢) (1 - cos a) (5.10)

Substituting Eqg. 5.4 into Eq. 5.10, V¢ can be rewritten as

. L
Ve, =0, * t R sin (2¢) (2 - F tan z) (5.11)

It is reasonable to expect that the direction of the

tension field assumes the most efficient orientation
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(Basler, 1961). Differentiating Eg. 5.11 with respect to ¢
and setting the derivative equal to zero gives the angle of
inclination of the tension field, . as

1 R
(2-L-) (5.12)

g = % tan~
In this study, the radius to the mid-surface of the
shells is 190 mm and the length of the test span is 404.2 mm

for models S1 and S2, and 381 mm for models S3 and S4.
Substituting these values into Eq. 5.12, the angle of
inclination, §, of the tension field is obtained for each
model. ¢ is found to be 21.6° for models S1 and S2, and
- 22.5° for models S3 and S4.

These values are compared with the angle of inclination
measured from the deformed meshes of the models. By'
measurement, ¢ is 20° for model S1, 22° for model S3 and 23°
for model S4. 1In addition, the angle of inclination of the
buckles in the Bailey and Kulak test was 24°. Good
agreement exists between the measured values and the
predicted values based on Eg. 5.12. No comparison is made
for model S2 since it does not buckle inﬂthe shear mode. It
is concluded that Eq. 5.12 describes the angle of
inclination, ¢, of the tension field for a thin cylindrical

shell loaded in transverse shear.

5.3.3 Contribution of Tension Field Action

In order to determine the shear contribution due to the
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tension field action, it is required to determine the
additional tensile stress, O existing after the shell
buckles. A method to obtain Ot is presented here. Besides
the assumptions made earlier, the following assumptions are
necessary.

1. The shell behaves elastically and linearly before
the onset of buckling.

2. After the shell buckles, additional éhear is carried
by tension field action only. .Thus, the tension
field stress, o,, acts in addition to the critical
principal stresses, t.,, as shown in Fig. 5.6b.

In section 5.2.1, the load levels at which the shells
buckle in a shear manner are determined based on the
deviation of the tension qompression ratio of the principal
stresses in the zero bending region of the shell, from an
initial straight line portion. It is found that model Sl
buckles at 30 kN, model S2 does not show any evidence of
shear buckling, and models S3 and S4 both buckle in a shear
mode at 10 kN. The difference between these buckling loads
and the maximum loads achieved in the analyses are the
tension field contributions. The additional tensile stress,
oy is obtained as follows:

1. At an early stage of loading, the stresses [o] at
several Gaussian points in the regions of small
bending moments (central portion of the test span)
are obtained.

2. These stresses are then scaled linearly by a factor,
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0, equal to the ratio between the buckling load and
the early load in step 1 to obtain Qfo].

3. The difference between the set of stresses [UMAX] at
the maximum load and the set of scaled stresses Qo]
is the additional set of stresses, [Ac], arising
after the shell buckles.

4. The result from step 3 is then transformed from the
global coordinate system to the local coordinate
system, thus local stresses [Ac]LOCAL are obtained.

5. The principal stresses corresponding to these local
stresses are then calculated. Theoretically, only
the tensile (maximum) principal stress should exist
since the shell cannot take any compression in the
minor principal direction after buckling occurs.

The tensile principal stress obtained is the
additional tensile stress, o, existing in the
tension field.

Employing the above procedures, an average value of T

for the tension field region is obtained for each model. o
is found to be 35 MPa for model Sl, 55 MPa for model S3, and
60 MPa for model S4. Using these o values and the angle of
inclination, ¢, according to Eg. 5.12, the shear
contribution, Vg, due to the tension field action for each
model can be calculated from Eq. 5.11. V. is found to be
2.15 kN for model S1, 3.55 kN for model S3, and 3.88 kN for
model S4. These values are theﬁ compared with the actual

shear contributions which are obtained as the differences
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between the maximum loads and the buckling loads established
previously. The actual shear contribution is 2.92 kN for
model S1, and 9.63 kN for models S3 and S4. The percentage
" difference between the actual values and the predicted
values from Eq. 5.11 is found to be 26% for model S1, 63%
for model S3, and 60% for model S4.

It is appatrent that better agreement exists in model
S1. This may be explained by the fact that, in models S3
and S4, there is some nonlinearity existing before the
assumed buckling load is reached, while in model S1, the
behaviour is linear before the buckling load is reached,

which in fact is one of the assumptions required.

5.3.4 Determination of Total Shear Capacity

In this section, the shear strength of a full
cylindrical shell is examined. As mentioned previously, it
has been suggested by Bailey and Kulak that provided
reaction points exist for the development of tension field
action, the shear capacity of a thin shell, consists of two
components; namely, the "beam shear" component and the
"tension field" component. The relationship can be

described as follows:
vV =V_ + V (5.13)

where V,, is the ultimate strength of the cylindrical shell,

Vp is the beam shear strength, and Vi is the tension field
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strength.

The beam shear strength, V,, is simply that capacity
attained at the point of theoretical shear buckling, if no
shear yielding nor compression buckling occurs prior to
this. For thin cylindrical shells, shear buckling usually
occurs before the shear yield stress is reached. In pure
shear conditions or in situations where the bending stresses
are small, compression buckling is unlikely to occur. 1In

that case, Vb can be expressed as

v, = —<E (5.14)

where A is the cross-sectional area of the shell, 2 is the
shape factor for thin shells, and Tor is the theoretical
buckling stress for shells under transverse shear. In the

literature, a source for = is contained in the work by

cr
Batdorf et al. (1947). Batdorf's solution, however, is
obtained based on the small-displacement theory of perfect
shells. The effect of initial imperfection, hence, is
precluded. In order to account for this, a critical-shear-

stress reduction factor, F, is applied to = The

cr”®
determination of F, which requires more testing of thin
cylindrical shells with different magnitudes of initial
geometric imperfections, is not available at this time.
However, a sketch of the variation of the "reduction" factor

is shown in Fig. 5.7 in which F is expressed as Py/Po,r and

is plotted against the scaled mode~1 imperfection values
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used in the models of series S in this study. Py 1is the
actual buckling load and P,,. is the predicted buckling value
according to Batdorf et al.

Applying the "reduction" factor to the critical
buckling stress and realizing that the cross—-sectional area
A of a shell can be expressed as 2 Vys/w:y at shear yielding,

Eq. 5.14 can be rewritten as

v
v. = F 1 X2 (5.15)
b - cr t

where Ty is the shear yield stress, and Vys is the shear

yield strength. In general, Ty is taken as cy//§. Hence,

Vp, can be~expressed as

. v
V= /3 F 1 XS (5.16)
Cr o
y
or
v]D = Kys Vys (5.17)

where Kys is a dimensionless parameter defined as

T
K _ =4¢3 F =L (5.18)

The second component of the ultimate shear capacity is

the tension field contribution, Vg defined by Eg. 5.11. 1In

order to compute the tension field stress o, explicitly, the
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following assumptions are required:

1. No compression buckling occurs at the compression
regions after shear buckling has occurred. This
assumption implies that failure takes élace by
yielding of the diagonal element.

2. The superposition of the stresses resulting from the
tension field stress and the beam shear stress is
limited by the state of stress which fulfills the
yield conditions, as shown in Fig. 5.6b.

According to the second assumption, the tension field
stress o, is defined as the stress which can be added to the
state of shear stress at the point of shear buckling (where
Txy = Frcr) such that unrestricted yielding occurs in the
tension field. Note that the buckling stress is Ft_,,. since
this is the stress at which a real shell buckles. The
following derivation follows Basler's work on the tension
field analysis of plate girders (1961). Attention is given
to the subscripts used (Fig. 5.6b). The fixed coordinates
are x and y. The Cartesian coordinates u and v are
generated by rotating x and y in the counterclockwise
direction by the magnitude of {. When { equals 45°, these
are called axis 1 and 2. By means of Mohr's circle, the
state of shear stresses (Txy = FTcr) superimposed on the

diagonal tension stress o, under the inclination ¢ is:

oy = F Tor sin (2¢) + Op {5.19a)
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Gv = - F Tcr sin (2¢) (5.19b)

and

T = F 1 cos (2C) (5.19¢)
uv cr

Substituting this set of stresses into von Mises' yield

criterion,

o + C - cuc + 37 -0 =0 (5.20)

the following result for the tension field stress o, is

obtained:
o, = Kt dy (5.21)
where,
FTcr : 3 2 3 F1:cr
K, = Y1+ (—g—) {[5 sin (20)] - 3} - 3 5y sin (2C)

(5.22)

With this expression for o, the tension field strength V.

defined by Eg. 5.11 can be rewritten as

L L
vV, = R t sin 2C (2 - 3 tan £) K oy (5.23)

For thin cylindrical shells, the cross-sectional area A can
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be approximated as 2nRt, hence Eq. 5.23 becomes

Vv, = sin 2¢ (2 -

L A .
£ tan C) Kt—z;o‘y (5.24)

R

Noting that the tensile yield strength Vy, of a shell loaded

in tension is Acy, Eq. 5.24 can be rewritten as
V. = Ky, Vy, (5.25)

where Ky, is a dimensionless parameter and is given as

=

t . L
Ky, = 3, sin 2¢ (2 - § tan ¢) (5.26)

With this expression the ultimate shear strength
computation for a thin cylindrical shell is completed.
According to Egs. 5.13, 5.17 and 5.25 the ultimate shear

strength is given as

vV, = kys Vy, + Ry, Vy, (5.27)
where Vyg and Vy. are the shear yiéld strength and the
tensile yield strength respectively, Kyg and Ky, are
dimensionless parameters which depend on E, Syr Vi R, L, t
and F.

In summary, the main parameters that appear to govern
the shear strength of thin cylindrical shells are the R/t

ratio, L/t ratio, the yield stress, the level of initial
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geometric imperfections and the level of residual stress
which, however, is not considered in this study. The
ultimate shear strength VvV, as described in Eqg. 5.28,
obviously, needs further modifications and comparison with
experimental results before it can be used for design
purposes. In addition, a parallel development should be
carried out in which the limit of tension field action is
the buckling of the compression element. Further analysis
should include residual stresses and wider ranges of initial
geometric imperfection levels. Better assessment should
also be made in the preparation of geometric imperfections

and in the modelling of boundary conditions.



125

o
; } t } { } % - t }
<
e
o - 4
[12]
2 A T
T o
g +4
O w
'q -t
e
© T o= T T T T T T
0.0 0.5 .5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Tension/Compression
(a) Model S1
< 1 [l 1 I
. [l ] 1 i 1
Lg L4 T T T T T T
Q
o] T
[12]
—_ A Y 4
Z P +
X ,
. 1) T
g 9
T o - . +
S - N ) -EF
. , : 4
T T) |
o
= | laaund ’l‘-} o 1 T I T JT
3 2.0 2.5

3.0 3.5 4.0 4.5 5.0
Tension/Compression '
(b) Model s2

Figure 5.1 Variation of Tension to Compression Ratio for
Models S1 and S2



126

30

‘15

Load (kN)
10

T T 50 T T
0.0 0.5 1.0 1.§ 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Tension/Compression
(a) Model Ss3

25

Load (kN)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Tension/Compression
(b) Model S4

Figure 5.2 Variation of Tension to Compression Ratio
' for Models S3 and S4



127

MODEL S1-——PRINCIPAL STRESS PLOT AT 32.92 KN (AT MID—SURFACE)
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Figure 5.3 Principal Stress Plots for Models S1 and S2
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MODEL S3———PRINCIPAL. STRESS PLOT AT 19.63 KN (AT MID-SURFACE)
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MODEL S4-——PRINCIPAL STRESS PLOY AT 18.63 KN (AT MID-SURFACE)
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-Figure 5.4 Principal Stress Plots for Models S3 and S4
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

This study was undertaken to investigate the shear
behaviour of large diameter fabricated steel cylinders.
Specifically, stability failure caused by the transverse
shear loading at stress levels below the yield poinﬁ was
considered. The analytical phase of the study used the
finite element code NISA80 as a tool to numerically analyse
thin imperfect cylindrical shells. In particular, the
geometry and the initial imperfection level of previously
tested cylinders were used. Cylinders of this type are
usually found in conveyor support systems where transverse
shear is of primary concern.

The analysis of the results obtained in this study and
the comparison with the results obtained by others on large
diameter fabricated steel cylinders have led to the
foilowing conclusions:

1. The inclined buckling pattern of large diameter
fabricated steel cylinders is a characteristic mode
of initial buckling in shells loaded in double
curvature. Thus, the patterns obtained in the
Bailey and Kulak (1984) tests are not a special
feature of that test.

2. Program NISA80 predicts reasonably well the shear
buckling load of cylinders with small or no initial

geometric imperfection, compared to the classical
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theory for curved rectangular panels in pure shear
according to Batdorf et al.

This inital buckling load is sensitive to geometric
imperfections.

The stiffness of the shells is not sensitive to the
level of geometric imperfections.

Program NISA80 load deflection response, although in
agreement with beam theory results, exhibits far
more stiffness than that obtained in the Bailey and
Kulak test results.

In addition program NISA80, for levels of initial
imperfections half those of the test specimen,
failed to predict ultimate strength values anywhere
near to the ﬁest results.,

A definite tension field develops in the buckled
regions subsequent to shear buckling, provided
sufficient reaction (anchorage) elements exist.

The total shear capacity of large diameter
fabricated steel cylinders consists of two parts,
the "beam shear” component and the "tension field"
component.

The R/t ratio is an important factor in determining
the proportion of each shear component. As R/t
increases the "tension field" component is expected
to increase while the "beam shear" component

decreases.



134

6.2 Recommendations

Future investigations should take into account the

following aspects.

1.

Some means of decreasing the overall stiffness of
the models is needed, since in most cases of this
study, the models exhibit much higher stiffness than
the first shear specimen of Bailey and Kulak. It is
possible that residual stresses may play a greater
role than anticipated. Therefore, simulation of
residual stresses is recommended.

Continuous eigenvalue analysis requires increasing
the number of subspace iterations as the load level
increases.

shifting the solution strategy from Newton-Raphson
to Riks-Wempner proved to be difficult. Therefore,
it is recommended that Riks-Wempner strategy be used
throughout an analysis.

Better assessment of how to correlate the measured
imperfection values to the modal shapes is required

in order to predict realistic scaling factors.

5. A parallel development of the tension field

equations should be carried out in which the
buckling of the compression element is the limit of

the tension field action.



LIST OF REFERENCES

1. Almroth, B.0O., "Influence of Edge Conditions on the
Stability of Axially Compressed Cylindrical
Shells", NASA CR-161, February, 1965.

2. Arbocz, J., "The Effect of Initial Imperfections on Shell

Stability", Thin-Shell Structures, edited by Y.C.

Fung and E.E. Sechler, Prentice-Hall, Englewood
Cliffs, N.J., 1974.

3. Arbocz, J., and Babcock, C.D., "Prediction of Buckling
Loads Based on Experimentally Measured Initial

Imperfections", Buckling of Structures, edited by

B. Budiansky, Springer-Verlag, New York, N.Y.,
1976, pp. 295-296.
4. Arbocz, J., "The Imperfection Data Bank, A Mean to obtain

Realistic Buckling Loads", Buckling of Shells,

edited by E. Ramm, Proceedings of a State-of-the-
Art Colloquium, Universitat Stuttgart, Germany, May
6-7, 1982.

5. American Society of Mechanical Engineers, Metal

Containment Shell Buckling Design Methods, Case

N-284 of the ASME Boiler and Pressure Vessel Code,
1980.
6. Babcock, C.D., "Experiments in Shell Buckling", Thin-

Shell Structures, edited by Y.C. Fung and E.E.

Sechler, Prentice—-Hall, Englewood Cliffs, N.J.,

1974.

135



136

7. Bailey, R.W., and Kulak, G.L., "Flexural and Shear
Behaviour of Large Diameter Steel Tubes",
Structural Engineering Report No. 119, Dept. of
Civil Engineering, University of Alberta, November,
1984.

8. Basler, K., "Strength of Plate Girders in Shear", Journal
of the S£ructural Division, ASCE, Vol. 87, No. ST7,
October, 1961.

9. Batdorf, S.B., Schildcrout, M., and Stein, M., "Critical
Stress of Long Plates with Transverse Curvature",
NACA TN-1346, June, 1947.

10. Batdorf, S.B., Stein, M., and Schildcrout, M., "critical
Stress of Curved Rectangular Panels", NACA TN-3438,
May, 1947.

11. Bathe, K.J., Finite Element Procedures in Engineering

Analysis, Prentice-Hall, Englewood Cliffs, N.J.,
1982,

12. Brazier, L.G., "On the Flexure of Thin Cylindrical
Shells and Other Thin Sections", Proc. Roy. Soc.
Lond., Series A., Vol. 116, 1927.

13. Brendel, B., Ramm, E., Fisher, D.F., and Rammerstorfer,
F.G., "Stability Analysis of Thin Cylindrical
Shells under Wind Loads", Journal of Structural
Mechanics, Vol. 9, 1981, pp. 91-113.

14. Clough, R.W., and Penzien, J., Dynamics of Structures,

edited by B.J. Clark and M. Gardner, McGraw-Hill,

1975, pp. 191-199.



15.

16.

17.

18.

19.

20.

21.

22.

23.

137

Cook, R.D., Concepts and Applications of Finite Element

Analysis, Second Edition, John Wiley and Sons,
Inc., New York, 1981.

Crisfield, M.A., "Incremental/Iterative Solution
Procedures for Non-linear Structural Analysis",
Int. Conf. Num. Meth. for Nonlinear Problems,
Swansea, Sept., 1980.

Donnell, L.H., "Stability of Thin-Walled Tubes under
Torsion", NACA Rep. 479, 1933.

Donnell, L.H., "A New Theory for the Buckling of Thin
Cylinders under Axial Compression and Bending",
ASME Transactions, Vol. 56, 1934.

Donnell, L.H. and Wan, C.C., "Effect of Imperfections on
Buckling of Thin Cylinders and Columns under Axial
Compression", Journal of Applied Mechanics, Vol.
17, No. 1, 1950.

Everstine, G.C., "A Comparison of Three Resequencing
Algorithms for the Reduction of Matrix Profile and
Wavefront", IJNME, Vol. 14, No. 6, 1979, pp. 837-
853.

Flugge, W., "Die Stabilitat der Kreiszylinderschale",
Ing.-Arch., Vol. 3, pp. 463-506, 1932.

Fung, Y.C., and Sechler, E.E. (editors), Thin Shell-

Structures/Theory, Experiment and Design, Prentice-

Hall, Englewood Cliffs, 1974.
Harding, J.E., Dowling, P.J., and Agelidis, N.

(editors), Buckling of Shells in Offshore




138

Structures, Granada, 1982.

24 . Hoff, N.J., and Soong, T.E., "Buckling of Circular
Cylindrical Shells in Axial Compression", SUDAER
No. 204, Stanford, California, August, 1964.

25. Koiter, W.T., "On the Stability of Elastic Equilibrium",
Thesis, Technical University Delft, Amsterdam,
1945; English Translation: Air Force Flight
Dynamics Laboratory, Air Force Systems Command,
Wright-Patterson Air Force Base, Ohio, Technical
Report AFFDL-TR-70-25, 1970.

26. Koiter, W.T., "The Effect of Axisymmetric Imperfections
on the Buckling of Cylindrical Shells under Axial
Compression", Lockhead Missiles and Space Comp.,
Sunnyvale, Calif., U.S.A., Techn. Rep. 6-90-93-86,
August, 1963, III.

27. Kratzig, W.B., Basar, Y., and Wittek, U., "Nonlinear
Behaviour and Elastic Stability of Shells -
Theoretical Concepts - Numerical Computations -

Results", Buckling of Shells, edited by E. Ramm,

Proceedings of a State-of-the-Art Colloquium,

Universitat Stuttgart, Germany, May 6-7, 1982.
28. Kratzig, W.B., Wittek, U., and Basar, Y., "Buckling of

General Shells - Theory and Numerical Analysis",

Collapse: the buckling of structures in theory and

practice, edited by J.M.T. Thompson and G.W. Hunt,
Cambridge University Press, Cambridge, 1983.

29. Lorenz, R., "Die nichtachsensymmetrische Knickung



139
dunnwanger Hohlzylinder", Phys. Z., Vol. 13, 1911,
pp. 241-260.

30. Lundquist, E.E.,, "Strength Tests of Thin-Walled
Duralumin Cylinders in Torsion", Technical Note
427, National Advisory Committee for Aeronautics,
Washington, D.C., 1932.

31. Lundquist, E.E., "Strength Tests of Thin-Walled
Duralumin Cylinders in Pure Bending", Technical
Note 479, National Advisory Committee for
Aeronautics, Washington, D.C. 1933.

32. Lundquist, E.E., "Strength Tests of Thin—Walled
Duralumin Cylinders in Combined Transverse Shear
and Bending", Technical Note 523, National Advisory
Committee for Aeronautics, Washington, D.C., 1935.

33. Miller, C.D., "Buckling of Axially Compressed
Cylinders", Journal of Structural Division, ASCE,
Vol. 103, No. ST3, Proc. Paper 12823, 1977.

34. National Aeronautics and Space Administration, "Bucklihg
of Thin-Walled Circular Cylinders", NASA Space
Vehicle Design Criteria (Structures), NASA SP-8007,
1968.

35. Pinkney, R.B., Stephens, M.J., Murray, D.W. anﬁ Kulak,
G.L., "Inelastic Buckling of Axially Loaded

Cylindrical Shells", Proceedings, Annual

Conference, CSCE, May 27-28, 1982, Edmonton,

Alberta.

36. Pinkney, R.B., Stephens, M.J., Murray, D.W., and Kulak,



140
G.L., "Use of Measured Imperfections to Predict
Buckling of Axially Loaded Cylindrical Shells",
Canadian Journal of Civil Engineering, Vol. 10, No.
4, September, 1983.
37. Plantema, F.J., "Collapsing Stresses of Circular
Cylinders and Round Tubes", Nat.
Luchtvaartlaboratorium Rep. S.280, Amsterdam, 1946.
38. Ramm, E., "A Plate/Shell Element for Large Deflections

and Rotation", Formulations and Computational

Algorithms in Finite Element Analysis, edited by

Bathe, K.J., Oden, J.T., and Wunderlich, W., MIT
Press, 1977.
39, Ramm, E., "Strategies for Tracing the Nonlinear Response

near Limit Points", Nonlinear Finite Element

Analysis in Structural Mechanics, edited by W.

wWunderlich, E. Stein, and K.J. Bathe, Proceedings
of the Europe-U.S. Workshop, Ruhr-Universitiat
Bochum, Germany, July 28-31, 1980. ;“

40. Ramm, E., "Nichtlineare Struktur Analyse (NISA) Computer
Code", Institute fur Baustatik, University of
Stuttgart, Stuttgart, W. Germany, 1980.

41. Ramm, E., and Stegmiiller, H., "The Diéplacement Finite
Element Method in Nonlinear Buckling Analysis of

Shells", Buckling of Shells, edited by E. Ramm,

Proceedings of a State-of-the-Art Colloquium,
Universitat Stuttgart, Germany, May 6-7, 1982.

42. Riks, E., "An Incremental Approach to the Solution of



141

Snapping and Buckling Problems", Int. J. Solids and

Structures, Vol. 15, 1979, pp. 529-551.

43. Salmon, C.G., Steel Structures: Design and Behaviour,

edited by Brinker, R.C., Intext Educational, San
Francisco, 1971,

44, Schilling, G.G.; "Buckling Strength of Circular Tubes",
ASCE, Journal of Structural Division, Vol. 91, No.
STS5, Proc. Paper 4520, Oct., 1965,

45. Schwerin, E., "Die Torsions - Stabilitat des
dﬁnnwandigeﬁ Rohres", Z. Angew. Math. Mech., Vol.
5, 1925, pp. 235-243.

46. Seide, P., and Weingarten, V.I., "On the Buckling of
Circular Cylindrical Shells and Other Thin
Sections", J. Appl. Mech., Vol. 28, No. 1, 1961.

47, Singer, J., and Rosen, A., "The Influence of Boundary‘
Conditions on the Buckling of Stiffened Cylindrical

Shells", Buckling of Structures, edited by B.

Budiansky, Springer-Verlag, New York, N.Y., 1976,
pp. 227-250. ~

48. Southwell, R.V., "On the Collapse of Tubes by External
Pressures", Phil. Mag., Vol. 25, 1913, pp. 687-698.

49. Southwell, R.V., "On the General Theory of Elastic
Stability", Phil. Trans. Roy. Soc. Lond., Series A,
No. 213, 1914.

50. Stephens, M.J., Kulak, G.L. and Montgomery, C.J., "Local
Buckling of Thin-Walled Tubular Steel Members",

Structural Engineering Report No. 113, Dept. of



51.

52.

53.

54.

55.

56.

57.

58.

142
Civil Engineering, University of Alberta, February,
1982.

Thorburn, L.J., Kulak, G.L. and Montgomery, C.J.,
"Analysis of Steel Plate Shear Walls", Structural
Engineering Report No. 107, Dept. of Civil
Enéineering, University of Alberta, May, 1983.

Timler, P.A., and Kulak, G.L., "Experimental Study of
Steel Plate Shear Walls", Structural Engineering
Report No. 114, Dept. of Civil Engineering,
Uni&ersity of Alberta, Nov., 1983.

Timoshenko, S., and Gere, J., Theory of Elastic

Stability, McGraw-Hill, New York, N.Y., 1961.

von Kafmah, T., and Tsien, H.S., "The Buckling of Thin
Cylindrical Shells under Axial Compression", J. |
Aeron. Sci., Vol. 8, No. 8, 1941.

von Mises, R., "Der Krtische Ausendruck zylindrischer
Rohre", 2. Ver. Deutsch. Ing., Vol. 58, 1914, pp.
750-755.

Webster, R.L., "On the Static Analysis.of Structures
with Strong Geometric Nonlinearity", Comp. St.,
Vol. 11, Nos. 1/2, 1980, pp. 137-145.

Weller, T., Singer, J., and Batterman, S.é., "Influence
of BEccentricity of Loading on Buckling of Stringer-

Stiffened Cylindrical Shells", Proceedings of the

Thin Shell Structures Symposium, Prentice-Hall,

1974, pp. 305-324.

Wempner, G.A., "Discrete Approximations Related to



Nonlinear Theories of Solids", Int. J. Solids and
Structures, 7(1971), pp. 1581-1599.

59. Wilson, W.M. and Olson, E.D., "Tests of Cylindrical
Shells", U. of Illinois Engineering Experimental
Station Bulletin Series, No. 331, 1941.

60. Zienkiewicz, 0.C., and Irons, B.M., "Matrix Iteration
and Acceleration Processes in Finite Element

Problems of Structural Mechanics", Methods for

Nonlienar Algebraic Equations, edited by P.

Rabinowitz, Gordon and Breach, London, 1970, pp.

183-194.

6l1. Zienkiewicz, 0.C., The Finite Element Method, 3rd

edition, McGraw-Hill, London, 1977.

143





