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Abstract

Plakoglobin (y-catenin) is an Armadillo protein family member and a paralog of -
catenin with similar dual cell-cell adhesion and signaling activities. These proteins
interact with cadherins at the membrane and mediate cell-cell adhesion. In the
cytoplasm, they interact with an array of cellular protein partners to regulate
signaling pathways involved in tumorigenesis and metastasis. Recently, our
laboratory identified p53 as one of the interacting partners of plakoglobin. p53 is a
tumor suppressor and transcription factor that in response to various stress signals
activates physiological pathways that regulate cell cycle arrest, DNA repair and
apoptosis. More than half of all cancers harbor a mutant form of p53. In addition to
the loss of tumor suppressor activity, a number of most frequent mutant p53
proteins acquire oncogenic properties and are known as gain of function mutants.
Here, we first assessed the in vitro tumor and metastasis suppressive functions of
plakoglobin in high-grade ovarian serous carcinoma cell lines expressing wild type
or mutant p53 proteins with different adhesion profiles. We showed that
plakoglobin-deficient ovarian cancer cells that express N-cadherin and mutant p53
were highly migratory and invasive, whereas those that express mutant p53 and
plakoglobin were not. Exogenously expressed plakoglobin colocalized with
cadherins in adhesion complexes, interacted with wild type and mutant p53 proteins
and significantly reduced growth, migration and invasion of ovarian cancer cells
expressing N-cadherin and mutant p53 in vitro.

Next, we mapped the interacting domain of p53 and plakoglobin and showed that

pS3/plakoglobin interaction was mediated by the DNA binding domain of p53 and
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the C-terminal transactivation domain of plakoglobin. We showed that wild type
plakoglobin and wild type p53 acted synergistically to significantly reduce in vitro
growth, migration and invasion of transfectants relative to parental cells.
Additionally, the C-terminal of plakoglobin was necessary for its invasion
suppressor activity.

We examined the effects of one of the most frequently expressed p53 mutations
p53R17H (Arginine 175 to Histidine) on B-catenin accumulation and transcriptional
activation and their modifications by plakoglobin co-expression. p53RI7H
expression in plakoglobin null cells increased total and nuclear levels of B-catenin
and its transcriptional activity. Co-expression of plakoglobin in these cells
promoted B-catenin’s proteasomal degradation, and decreased its nuclear levels and
transactivation. Wnt/B-catenin targets, c-MYC and S1004A4 were upregulated in
p53R173H cells and were downregulated when plakoglobin was co-expressed. The

3R175H

plakoglobin-p5 cells also showed significant reduction in their migration and
invasion in vitro.

Taken together, the experimental evidence from this PhD project strongly suggest
that underlying mechanisms for tumor and metastasis suppressor effects of

plakoglobin may be its interaction with mutant p53 proteins and down-modulation

of B-catenin-TCF axis.
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Chapter one

Introduction



1.1.Cancer

An estimated 206,200 new cases of cancer will be diagnosed in Canada in 2017 and
80,800 patients will die from the disease [1]. Cancer is not only a life-threatening
illness but it imposes a huge financial burden on the health care system. Tumor
development is a complex process resulting from an uncontrolled proliferation of
cells [2]. Further complication occurs when cancer cells acquire the ability to
dissociate from the primary site and spread to the other locations in the body, which
is a fatal process called metastasis [3]. Defective cell-cell adhesion is one of the key
contributing factors to both initiation and metastatic progression of different types

of cancer [4-6].

Carcinomas are the most common type of cancer that originate from epithelial cells.
Epithelial tissues cover the surface of the body and line the internal cavities [7].
The structural integrity and normal functions of these tissues is dependent on proper
cell-cell adhesion and interactions mediated by adhesive complexes including
adherens junctions and desmosomes [8]. Adherens junctions are ubiquitously
formed in both epithelial and non-epithelial tissues [9], whereas desmosomes are
intercellular adhesive complexes that hold epithelial cells together and impart
tensile strength and resilience to non-epithelial cells that endure mechanical stress
such as cardiac muscle and meninges [10]. Regardless of their differences, both

adherens junctions and desmosomes are cadherin-based adhesion complexes.

Although originally identified as structural proteins with a “glue-like” function,

cadherin-based cell adhesion complexes have subsequently been shown to regulate



signaling pathways through their interactions with an array of functionally diverse
proteins, including receptor tyrosine kinases and phosphatases, tumor suppressors
and transcription factors [11,12]. Consequently, elements of adhesive complexes

play important roles in regulating tumor development and metastasis progression.

1.2. Cadherin mediated cell-cell adhesion

Both adherens junctions and desmosomes are cadherin-based junctional
complexes. Adherens junctions are formed when the extracellular domain of E-
cadherin dimers in one cell interacts with the extracellular domain of cadherin
proteins on the neighboring cell [13,14]. E-cadherin interacts with p120-catenin via
its juxtamembrane domain, which stabilizes the cadherin dimer at the membrane
[13,14]. The extreme cytoplasmic tail of the E-cadherin interacts with B-catenin or
plakoglobin in a mutually exclusive manner, which in turn interact with a-catenin,
an actin-binding protein [15,16] (Figure 1.1). Recruitment of actin microfilaments
by a-catenin stabilizes cadherin-catenin complex at the membrane [13,14].
Similarly, desmosomes are formed when two desmosomal cadherins, desmoglein
and desmocollin, form heterodimers that participate in homotypic interactions with
desmosomal cadherin dimers on adjacent cells [17]. The cytoplasmic tail of
desmosomal cadherins interacts with plakoglobin and plakophilin, which in turn
associate with desmoplakin that recruits intermediate filaments to stabilize

desmosomes at the membrane [17] (Figure 1.1).
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Figure 1.1. Cell junctional complexes in epithelial tissues. Adherens junction
and desmosomes are the two main cell-cell adhesion complexes in epithelial cells.
At the adherens junction, the extracellular domain of the E-cadherin dimer interacts
with E-cadherin proteins on the adjacent cells. E-cadherin interacts with p120-
catenin via its juxtamembrane domain whereas it interacts with P-catenin and
plakoglobin in a mutually exclusive manner via its extreme cytoplasmic tail. In turn
B-catenin and plakoglobin interact with o-catenin that binds to actin
microfilaments. At the desmosomes, desmosomal cadherins, desmoglein and
desmocollin form a heterodimer. The cytoplasmic tails of the heterodimers interact
with plakoglobin and plakophilin, which in turn bind to desmoplakin that recruits
the cytokeratin intermediate filaments. a-cat, a-catenin; B-cat, B-catenin; Cad, E-
cadherin; CK, cytokeratin; Dsc, desmocollins; Dsg, desmoglein; DP, desmoplakin;
p120, p120-catenin; PG, plakoglobin; PKP, plakophilin

Modified from Pasdar, M.



1.3. Plakoglobin (gamma-, y-catenin)

Plakoglobin is an 83 kDa protein that is encoded by the JUP gene located on
chromosome 1721 [18]. Plakoglobin is an Armadillo protein family member and
a paralogue of B-catenin with dual adhesive and signaling functions [19,20]. As a
cell adhesion protein plakoglobin participates in the formation of adherens
junctions and desmosomes [21,22]. Both cytoplasmic and membrane-associated
pools of plakoglobin interact with different protein partners to regulate their levels
and localization [21,22]. Furthermore, the soluble pool of plakoglobin can interact
with other cellular proteins and regulate pathways involved in tumorigenesis and
metastasis [21,22]. Plakoglobin also translocates to the nucleus and regulates gene

expression [21,22].

1.3.1. Initial discovery of plakoglobin

Plakoglobin was first identified in the membrane-associated desmosomal plaques
[23]. Further investigations showed that this protein was a cytoplasmic component
of both desmosomes and adherens junctions [18,23]. Subsequent co-
immunoprecipitation studies validated its role as an adhesion protein that associated
with the desmosomal cadherin desmoglein [24]. Further studies demonstrated that
plakoglobin had a cytoskeleton associated pool that interacted with desmoglein and
E-cadherin, as well as a cadherin-independent cytoplasmic pool. While the
insoluble pool of plakoglobin is serine phosphorylated and is distributed along the
lateral membrane, the soluble pool is serine, threonine and tyrosine phosphorylated

and remains in the cytoplasm [25].



1.3.2. Plakoglobin and regulation of cell-cell adhesion

The most extensively studies function of plakoglobin is the regulation of cell-cell
adhesion. Plakoglobin has an indispensable role in the proper assembly and stability
of desmosomal plaques. Plakoglobin double knockout mice have been used to
investigate whether plakoglobin deficiency affects embryonic development. Loss
of plakoglobin in embryos resulted in lethality due to severe heart defects at
embryonic day 10.5 to 12.5 (E10.5 to E12.5). Heart failure occurred as the
consequence of the disruption of desmosome assembly in the intercalated discs of
cardiac muscle [26,27]. Plakoglobin is required for the efficient binding of
desmoplakins to the intermediate filaments to stabilize desmosomes at the
membrane [28]. Furthermore, plakoglobin interacts with plakophilin-3 and recruits

it to membrane to form desmosomes [29].

In spite of its well-validated role in the formation of desmosomes, the significance
of plakoglobin in the assembly of adherens junctions remained controversial. Initial
studies showed that plakoglobin only loosely interacted with E-cadherin suggesting
that the E-cadherin/B-catenin/a-catenin complex was the primary complex involved
in the formation of adherens junctions [15,30]. However, participation of
plakoglobin in adherens junctions could not be dismissed since the co-
immunoprecipitation studies also confirmed the association of plakoglobin with E-
cadherin and o-catenin as an independent complex [29]. A subsequent study
suggested that plakoglobin interaction with E-cadherin and formation of adherens

junctions was an essential prerequisite for the assembly of desmosomes [31].



1.3.3. Plakoglobin and regulation of epithelial to mesenchymal transition

Previous studies have demonstrated that loss of E-cadherin leads to epithelial to
mesenchymal transition (EMT) and acquisition of an invasive phenotype [32,33].
Furthermore, re-expression of E-cadherin and formation of adhesive complexes
reverses the transformed phenotype and induces mesenchymal to epithelial
transition (MET) [34,35]. These studies clearly suggested that malignant
transformation of cells were regulated by the components of junctional complexes.
However, the essential role of plakoglobin in triggering MET was long neglected
until it was shown that exogenous expression of E- or P-cadherin in cadherin-null
carcinoma cells with very low levels of plakoglobin failed to induce transition to
an epithelial phenotype [36]. Although E-cadherin/B-catenin/a-catenin complexes
were formed, plakoglobin was not detected at the adherens junctions and
desmosomes were not assembled suggesting an essential role for plakoglobin in the
regulation of cell-cell adhesion and MET [36]. Following this study, another group
showed that the down-regulation of E-cadherin and plakoglobin led to the loss of
adherens junctions and desmosomes and induction of EMT [31]. Expression of E-
cadherin alone rescued the assembly of adherens junctions but not the epithelial
phenotype [31]. Interestingly, expression of E-cadherin/plakoglobin chimeric
protein not only led to the formation of stable adherens junctions and desmosomes

but also induced MET [31].

To further investigate the importance of plakoglobin in the regulation of cell-cell
adhesion and inhibition of a transformed phenotype, our laboratory used E-cadherin

and plakoglobin deficient and N-cadherin expressing SCC9 cells, a human tongue
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squamous cell carcinoma cell line. Ectopic expression of either E-cadherin or
plakoglobin triggered MET concurrent with increased cell adhesion and decreased
cell proliferation [37,38]. Furthermore, only plakoglobin expressing SCC9 cells
formed desmosomes. More importantly, expression of plakoglobin also increased
the stability of the mesenchymal marker N-cadherin and inhibited its oncogenic

functions [37,38].

1.4. Catenin-mediated signal transduction

The importance of cadherin-catenin complexes is not limited to their role in
maintaining cell-cell contact. Components of adherens junctions and desmosomes
have been shown to participate in signaling pathways to regulate cell growth,
differentiation and cell death [39,40]. In this context the cytoplasmic pool of catenin
proteins have been shown to interact with various intracellular proteins from tumor

suppressors to transcription factors in order to modulate signaling cascades [39].

With respect to the signaling functions of catenin proteins, B-catenin and p120-
catenin have been studied extensively in the context of tumorigenesis and
metastasis [41,42]. On the contrary, fewer studies have addressed the signaling
functions of a-catenin and plakoglobin in the process of tumor development and
cancer progression. Having said that, recent studies have suggested that both a-
catenin and plakoglobin generally act as tumor and metastasis suppressor proteins

through mechanisms that are beginning to be deciphered [22,43].



1.5. Plakoglobin and regulation of cell signaling

Plakoglobin and B-catenin have similar structural features and interacting protein
partners [19,22] (Figure 1.2). However, they differ in their signaling functions in
the context of tumorigenesis and metastasis. Unlike B-catenin, which has well-
documented oncogenic functions via activating the Wnt pathway [41], plakoglobin
mainly acts as a tumor and metastasis suppressor protein [21,22]. Not only does
plakoglobin participate in the Wnt pathway but also it has been linked to other

signaling cascades that are going to be discussed in detail.
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1.5.1. Plakoglobin and the Wnt signaling pathway

The Wnt pathway is one of the key regulators of normal development, cell
proliferation and differentiation [44]. Disruption of the Wnt pathway has been
linked to various diseases including cancer development and metastasis [45]. In the
absence of Wnt signal, the destruction complex, axin/adenomatous polyposis coli
(APC)/Glycogen Synthase Kinase 3 Beta (GSK3p)/casein kinase I (CKI),
phosphorylates the excessive cytoplasmic pool of B-catenin, which is subsequently
ubiquitinated and degraded via the proteasomal pathway [44] (Figure 1.3). When
the Wnt ligand is present, it binds to the receptor Frizzled and the co-receptor low-
density lipoprotein receptor-related protein (LRP) 5/6, and in turn they interact with
Dishevelled via their intracellular domain [44]. Dishevelled recruits Axin and
displaces GSK3f and CKI from tumor suppressor APC [44]. Upon disruption of
the destruction complex function, B-catenin accumulates, translocates to the
nucleus and binds to TCF/LEF transcription factors and activates the expression of
Wnt targets that promotes proliferation, survival, migration, invasion and

angiogenesis [44] (Figure 1.3).
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Figure 1.3. Regulation of p-catenin via the Wnt signaling pathway. (A) In the
absence of Wnt signal, the destruction complex (Axin, APC, GSK38, CKI) recruits
and phosphorylates B-catenin. Phosphorylated B-catenin gets ubiquitinated and
subsequently degraded by proteasomes. Consequently, TCF/LEF transcription
factors in the nucleus are bound to the repressor and their respective target genes
remain inactive. (B) In the presence of Wnt signal, Dishevelled recruits Axin and
destruction complex dissociates. Thus B-catenin cannot get phosphorylated and
degraded. Excessive cytoplasmic -catenin translocates to the nucleus and binds to
TCF/LEF that leads to the transactivation of their target genes involved in EMT,
uncontrolled cell proliferation, migration and invasion. LRP, low-density
lipoprotein receptor-related protein; CKI, casein kinase I; APC, adenomatous
polyposis coli; GSK3B, Glycogen Synthase Kinase 3 [; Dsh, Dishevelled;
TCF/LEF, T-cell factor/Lymphoid enhancer factor; R, repressor; B-cat, f-catenin

Modified from Pasdar M.
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Early studies using PC12 pheochromocytoma cells showed that the exogenous
expression of Wnt-1 increased plakoglobin levels and resulted in its membrane
redistribution [46]. This was the first evidence suggesting that the Wnt pathway
regulates the levels and localization of both B-catenin and plakoglobin [46]. Later
on, Karnovsky et al., injected fertilized Xenopus embryos with mRNAs encoding
plakoglobin and detected dorsalized gastrulation and anterior axis duplication,
which was similar to Wnt/B-catenin induced segment polarization. In these
embryos, plakoglobin localized in the cytoplasm, nucleus and membrane [47].
However, when mRNAs encoding plakoglobin and the cytoplasmic tail of
desmoglein were co-injected into the embryos, plakoglobin primarily localized at
the membrane and was excluded from the nucleus. In these embryos dorsalized
gastrulation and anterior axis duplication did not occur, suggesting that the nuclear
pool of plakoglobin participated in specification of dorsal mesoderm and had

signaling functions similar to B-catenin [47].

While these initial studies suggested that both plakoglobin and B-catenin exerted
similar signaling activities, many other studies provided contrary evidence. First
evidence came from a study that showed both wild type and junction-dependent
plakoglobin induced axis duplication, suggesting that presence or absence of
nuclear plakoglobin had no effect on regulating the Wnt signaling [48]. To further
investigate the signaling function of plakoglobin via the Wnt pathway, either -
catenin or plakoglobin were expressed in Drosophila embryos lacking functional
Armadillo homologues [49]. This study showed that while expression of either -

catenin or plakoglobin resulted in the formation of cadherin-based cell adhesive
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complexes, only the expression of -catenin slightly induced the expression of the

Wnt target, engrailed [49].

Several other lines of evidence have also suggested that plakoglobin has limited
signaling activity in the context of the Wnt pathway. In MDCK cells, only B-catenin
but not plakoglobin translocated to the nucleus in response to the over-expression
of LEF-1 [50]. Moreover, HEK293T cells exhibited a significantly higher
TOPFLASH reporter activity when B-catenin was expressed as compared to cells
expressing plakoglobin [50]. The impact of plakoglobin on activating the Wnt
pathway was also shown when HEK293T cells were transfected with the
transcriptional active forms of B-catenin and plakoglobin, S37A and S28A mutants,
respectively, and the expression of B-catenin mutant resulted in a much higher
TOPFLASH reporter activity [51,52]. Subsequently, in vitro electrophoretic
mobility shift assays using B-catenin, plakoglobin, TCF-4, LEF-1 proteins and
radioactively labeled TCF/LEF DNA binding sequences showed that pB-catenin
formed a complex with TCF-4/LEF-1 and DNA, whereas, plakoglobin was unable

to form similar complexes [53].

1.5.2. Plakoglobin and Src signaling

The proto-oncogene Src is a non-receptor tyrosine kinase that participates in
various signaling pathways by phosphorylating specific tyrosine residues in other
proteins [54]. Increased levels and activity of Src kinase has been shown to promote
tumorigenesis and metastasis in different types of cancer [54]. A number of studies

have demonstrated that signaling activities of plakoglobin and Src are inversely
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correlated [55-58]. Based on the experimental findings, Src enhances migration by
suppressing the expression and/or altering the phosphorylation of plakoglobin that
leads to the inhibition of tumor and metastasis suppressor effects of plakoglobin
[56-58]. Furthermore, treating MCF-7 breast carcinoma cells with human growth
hormone reduced plakoglobin levels and promoted migration and invasion in a Src-
dependent manner [59]. Interestingly, treatment with Src inhibitors increased the
expression of plakoglobin and decreased the migratory and invasive potential of
these cells [59]. A subsequent study confirmed that human growth hormone
repressed plakoglobin expression and promoted cell migration via activating Src
and JAK2 tyrosine kinases [58]. Upon activation of these kinases, they induced the
expression of DNA methyltransferase-1, -3A and -3B, which resulted in the
hypermethylation of plakoglobin promoter and the inhibition of its transcription

[58].

Findings from the in vitro research were further validated by in vivo studies in
breast tumors showing that growth hormone receptors were over-expressed in both
epithelial and stromal components of axillary lymph node metastasis, which was
concurrent with decreased expression of plakoglobin in nodal metastasis [60]. Also,
in non-small cell lung cancer (NSCLC) cell lines, and mouse xenograft models
combined inhibition of Src and MAPK upregulated the expression of E-cadherin
and plakoglobin and downregulated the expression of Snaill, FAK and PAX, which

led to the induction of MET [61].

Plakoglobin also inhibited cell motility and migration via regulating the extra-

cellular matrix (ECM) dependent activation of Src. Increased levels of ECM
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proteins including fibronectin and vitronectin leads to the activation of Src kinase.
Plakoglobin modulates the deposition of ECM proteins, and therefore, reduces Src

signaling activity and the migration of single keratinocyte cells [55,62,63].

1.5.3. Plakoglobin and Ras signaling

Ras proteins are a family of small GTPases that regulate different signaling
pathways involved in cell growth, survival, differentiation, migration, and invasion
[64]. They become active in response to an extracellular signal and in turn transmit
the signal to intracellular effector proteins in order to modulate downstream
signaling cascades [64]. Ras is a proto-oncogene and its mutations and/or aberrant
activation have been reported in various types of cancers [64]. The first observation
connecting plakoglobin and Ras was reported when the expression of dominant
negative form of Ras (N17Ras) reduced the expression of plakoglobin and
prevented the formation of 3-dimensional vascular structures in confluent cultures
of endothelial cells [65]. Later studies validated this early observation by showing
that inhibition of Ras farnesylation and disruption of the MAPK pathway increased
the expression of catenin proteins including a-, f- and y-catenin in breast, colon
and liver cancer cells concurrent with decreased metastatic potential of these cells
[66]. To further investigate the relationship between plakoglobin and Ras, Yim et
al., expressed a mutant form of Ras (K-Ras12V) in Rat2 cells and showed that the
mutant Ras decreased plakoglobin and histone deacetylase 4 (HDAC4), which
subsequently led to increased metastatic potential of these cells [67]. Surprisingly,
only the exogenous expression of plakoglobin but not B-catenin in these cells

increased HDAC4 levels in a LEF-1 dependent manner [67]. However, whether
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plakoglobin is directly involved in regulating the expression of HDAC4 and the

possible mechanism(s) of this modulation have not yet been understood.

1.5.4. Plakoglobin and the Hippo signaling pathway

Imbalance between cell proliferation, apoptosis and differentiation is a critical step
during tumor formation and cancer progression. Tissue homeostasis is regulated by
multiple signaling cues coordinated by different molecules and signaling pathways.
The Hippo signaling pathway and its downstream effectors, YAP and TAZ, have
been identified as essential regulators of cell proliferation, organ size and cell-fate
determination [68]. When the Hippo signaling pathway is active, the
serine/threonine kinases MST1/2 activate LATS1/2 kinases, which in turn
phosphorylate YAP at serine 127 which prevents its nuclear localization and
transcriptional activities [69]. LATS1/2 also phosphorylate YAP at serine 397,
which serves as a mark for ubiquitination and proteasomal degradation [70].
However, when the Hippo kinase cascade is off, YAP is active and translocates to
the nucleus, binds to the transcription factors of the TEA domain (TEAD) family
and activates transcription of downstream pro-proliferative and anti-apoptotic

genes [70].

Although the core Hippo signaling pathway has been extensively studied, the
upstream regulators of the kinase cascade are yet to be fully deciphered.
Interestingly, cell-cell contact and adhesion complexes have been identified as
essential regulators of the canonical Hippo signaling pathway [70]. Loss of cell

adhesion proteins such as a—catenin and E-cadherin has been shown to enhance the
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oncogenic potential of YAP in different carcinomas [71,72]. Plakoglobin has also
been shown to interact with YAP, and this interaction sequesters YAP in the
cytoplasm and inhibits its nuclear translocation [73]. Silencing the expression of
YAP or preventing its nuclear localization has been shown to significantly reduce

the growth and metastatic potential of cancer cells [74].

1.6. Tumor and metastasis suppressor activities of plakoglobin

Several lines of evidence suggest that plakoglobin interacts with an array of cellular
proteins involved in regulating tumor cell growth and metastasis [21,22]. Our
laboratory has proposed a model that suggests plakoglobin may act as a tumor and
metastasis suppressor protein by at least three mechanisms. First, plakoglobin may
sequester oncogenic functions of B-catenin via promoting proteasomal degradation
of B-catenin and inhibiting its interaction with TCF, and therefore, repressing the
expression of Wnt target genes. Second, by changing the levels, localization and/or
function of growth and metastasis regulating molecules. Last but not least, by
interacting with transcription factors and (in)directly regulating gene expression

independent of the Wnt signaling pathway [20,21].

1.6.1. Plakoglobin and inhibition of the oncogenic signaling of B-catenin

One mechanism by which plakoglobin may act as a tumor and metastasis
suppressor protein is the inhibition of B-catenin oncogenic activity. A previous
study revealed that the expression of plakoglobin in B-catenin expressing and
plakoglobin null cell lines resulted in the liberation of B-catenin from the adherens
junctions and its subsequent proteasomal degradation [75]. Experimental evidence
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from our laboratory further confirmed that in plakoglobin null SCC9 cells B-catenin
protein levels decreased and cells underwent mesenchymal to epithelioid

phenotypic transition upon the exogenous expression of plakoglobin [38].

A previous in vivo study using Xenopus embryos demonstrated that plakoglobin
inhibited nuclear accumulation of exogenously expressed TCF by sequestering it
in the cytoplasm and in turn repressing its transcriptional activity [52]. In addition,
it was shown that plakoglobin and [-catenin interacted with two sequential and
non-overlapping domains in the N-terminus of the TCF protein [56]. Comparison
of the binding sites showed that f-catenin bound to amino acids 1-50 in the N-
terminal domain of TCF and plakoglobin interacted with the region situated
between amino acids 51-80. Furthermore, plakoglobin interacted with the -

catenin/TCF-4 complex and inhibited the binding of the complex to DNA [56].

Previous studies from our laboratory also showed that nuclear exclusive expression
of plakoglobin in SCC9 cells decreased p-catenin/TCF interaction and B-catenin’s
oncogenic activity [76]. Additionally, it was recently shown that knockdown of
desmoglein increased nuclear levels of plakoglobin, which in turn enhanced
plakoglobin/TCF-4 interaction and decreased TOPFLASH reporter activity

concurrent with reduced transactivation of Wnt/B-catenin target genes [77].

Another mechanism by which plakoglobin inhibits the oncogenic functions of -
catenin is through its interaction with SOX4, a transcription factor and an
interacting partner of B-catenin that enhances B-catenin’s transcriptional activity

downstream of the Wnt signaling pathway [78]. SOX4 directly interacts with and
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stabilizes B-catenin and enhances the expression of Wnt target genes via unknown
mechanism(s). In this study, nuclear accumulation of plakoglobin in response to
Whnt treatment led to the formation of plakoglobin/SOX4 complexes that facilitated
the nuclear export of SOX4 and reduced transactivation of Wnt-responsive target

genes [78].

Recent studies have also proposed another mechanism to explain how plakoglobin
may inhibit the transcriptional activity of B-catenin/TCF-4. Cellular prion protein
PrP(c) was shown to interact with both B-catenin and plakoglobin in the cytoplasm
and nucleus [79,80]. Previously, it was shown that while in polarized epithelial
cells, PrP(c) was primarily at the membrane, in rapidly proliferating cells it
localized in the nucleus suggesting that it may participate in signaling pathways.
Interestingly, further studies validated a signaling role for PrP(c) via Hippo and
Wnt signaling pathways. PrP(c)’s interaction with B-catenin/TCF-4 complex
induced transcriptional activation of Wnt target genes, whereas, its interaction with

plakoglobin/TCF-4 repressed the Wnt-responsive transactivation [79,80].

1.6.2. Plakoglobin and modulation of intracellular growth and metastasis

regulating molecules

As mentioned above, one mechanism by which plakoglobin may suppress tumor
development and metastasis is via its interaction with various cellular partners and
affecting their levels, localization, and/or activities. In agreement with this role of
plakoglobin, work from our laboratory has shown that plakoglobin interacts with

the nucleolar phosphoprotein, nucleophosmin (NPM) [81]. It is noteworthy that
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NPM’s functions during tumorigenesis is greatly dependent on its subcellular
distribution [82,83]. Specifically, NPM is primarily localized in the nucleolus of
untransformed cells, whereas, in cancer cells, NPM is distributed in the cytoplasm
and nucleoplasm [84]. Our laboratory showed that in plakoglobin deficient breast
carcinoma cell line, MDA-MB-231, exogenously expressed plakoglobin interacted
with NPM and increased its protein levels and induced its redistribution from
cytoplasm and nucleoplasm to the nucleolus concurrent with a significant decrease

in in vitro growth, migration and invasion [81].

To further study the tumor and metastasis suppressor functions of plakoglobin via
its interaction with cellular protein partners, our laboratory looked at the effect of
plakoglobin expression on the protein levels of non-metastatic protein 23 (Nm23),
the first metastasis suppressor protein to be discovered [85]. Expression of
plakoglobin in SCC9 and MDA-MB-231 cells enhanced Nm23-H1 and Nm23-H2
protein levels [86] and resulted in the redistribution of Nm23 from cytoplasm to the
membrane [86]. Work by other groups showed that Nm23 knockdown increased
migration due to the loss of cell-cell adhesion [87]. In the absence of Nm23,
adherens junction dissociated and nuclear localization of B-catenin increased,
which in turn led to the transactivation of matrix metalloproteinases (MMPs) that
are known to be B-catenin/TCF target genes [87]. Another study demonstrated that
formation and stability of the endothelial junctions were dependent on the
interaction between Nm23, plakoglobin and EMMPRIN (the extracellular matrix

metalloproteinase inducer, also known as basigin or CD147) [88]. These findings
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further supported the importance of the plakoglobin and Nm23 interaction in the

inhibition of migration and metastasis of cancer cells.

1.6.3. Plakoglobin and regulation of gene expression

Several lines of experimental evidence have suggested that plakoglobin regulates
gene expression independent of B-catenin and the Wnt signaling pathway. It was
shown that in mouse keratinocytes, plakoglobin interacted with LEF-1 and they
both associated with the promoter region of the MYC gene [89]. Plakoglobin/LEF-
1 complex repressed the expression of MYC gene and suppressed cell growth
independent of B-catenin [89]. In support of this observation, Tokonzaba et al.,
recently showed that plakoglobin induced the expression of desmocollins-2 (DSC?2)

gene in a LEF-1 dependent manner [90].

To assess the possible contribution of plakoglobin to gene regulation, our
laboratory used plakoglobin deficient carcinoma cell lines and transfected them
with wild type plakoglobin construct, as well as, plakoglobin cDNAs fused to
nuclear localization sequence or nuclear export signal to generate plakoglobin-
expressing transfectants with different subcellular localization of the protein in
order to investigate its role at the membrane, in the cytoplasm and in the nucleus
[76,86,91]. The results of microarray analyses using plakoglobin-expressing
transfectants identified several p53 target genes that were differentially regulated
upon plakoglobin expression [92,93]. These findings suggested that one way by
which plakoglobin acts as a tumor suppressor may be via its interaction with p53

and regulation of p53 target gene expression [92,93]. Further characterization

22



validated the microarray results and confirmed that the expression of p53 targets
including 14-3-30, SATBI and Nm23-H1 were co-regulated by plakoglobin and
p53[92,93]. Chromatin immunoprecipitation (ChIP) experiments showed that both
plakoglobin and wild type p53 associated with the 53 response element within the
promoter region of SFN (14-3-3c), SATBI1, and NMEI (Nm23-H1) genes and only
in the presence of plakoglobin, mutant p53 interacted with the promoter of these
genes [92,93]. Additionally, the luciferase reporter assays revealed that the
transcriptional activity of both wild type and mutant p53 was enhanced upon
plakoglobin expression [92,93]. Interestingly, based on our studies plakoglobin and
pS3 are co-regulating gene expression through both activating (SFN and NMEI)
and repressing (SATBI) mechanisms [92,93]. In agreement with these findings,
another group showed that plakoglobin induced the expression of PML, a p53 target
with tumor suppressor function [94]. Finally, it was recently shown that in non-
small cell lung carcinoma cells plakoglobin reduced migration by regulating the
expression of HAI-1, an upstream inhibitor of c-met, in a p53 dependent manner

[95].

1.7. Plakoglobin and restoration of mutant p53 tumor suppressor function

As mentioned above, one of the interacting protein partners of plakoglobin that has
been identified by our lab is the tumor suppressor protein p53 [92,93]. Plakoglobin
interacts with both wild type and a number of mutant p53 proteins and they both
associate with the promoter of several p53 target genes involved in the regulation

of tumorigenesis and metastasis [92,93].
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1.7.1. Tumor suppressor protein p53

p53 is a sequence specific DNA-binding transcription factor with tumor and
metastasis suppressor activities [96]. Dubbed as the “guardian of the genome” [97],
p53 maintains the integrity of the genome and normal functioning of cells in
response to various stress signals including DNA damage, oxidative injury,
hypoxia, improper cell adhesion, mitotic stress, oncogene activation and metabolic

stress [98].

In the absence of stress signal, p53 levels are tightly regulated and are kept at low
steady levels in order to prevent unnecessary cell death [99]. The primary regulator
of p53 is Hdm-2, an E3 ubiquitin ligase and a p53 target gene, which interacts with
and mono-ubiquitinates p53 in the nucleus [100,101]. Upon mono-ubiquitination,
p353 translocates to the cytoplasm and gets poly-ubiquitinated by other E3 ubiquitin
ligases including Pirh2, COP1, Arf-BP1, which leads to its subsequent degradation
by the proteasomal pathway [101]. Upon exposure to cellular stress, pS3 levels
significantly increase and it becomes active in order to regulate the expression of
genes involved in cell cycle arrest, apoptosis, senescence, DNA repair and

metabolism [98].

Various functions of p53 are mediated via its structural domains comprising of two
N-terminal transactivation domains (TAD-1 and TAD-2), a proline rich domain,
the core DNA binding domain and a carboxyl terminal domain [102] (Figure 1.4).
TAD-1 and -2 interact with general transcription factors, chromatin modifiers and

transcription cofactors to activate or repress p53 target genes [103]. Furthermore,

24



TAD-1 is essential for p53 stability via its interaction with Hdm-2 [104]. The
proline rich domain plays a pivotal role in the regulation of p53-mediated apoptosis
via its interaction with pro- and anti-apoptotic proteins in the cytoplasm [105].
Flanking between the N- and C-terminal domains, there is a DNA binding domain
that interacts with the p53 response element in the promoter region of its target
genes to regulate their transcription [102]. The carboxyl terminal of p53 contains
three nuclear localization signals, an oligomerization domain and a non-specific
DNA binding domain [102]. Oligomerization domain is essential for homo-
dimerization and subsequent tetramerization of p53 protein, which is required for
its transcriptional activities. While earlier in vitro studies suggested that the C-
terminal DNA binding region negatively regulated binding to DNA [106], more
recent studies demonstrated that this domain interacted with DNA in order to

facilitate the binding of the core domain to the p53 response element [107,108].

As a transcription factor, wild type p53 activates or represses the expression of
components of the cell cycle check points, DNA repair machinery and apoptotic
pathway to inhibit propagation of damaged cells [99]. Depending on the cellular
context and type of the damage a cell sustains, p53 either triggers cell cycle arrest
to provide sufficient time for the injured cell(s) to undergo DNA repair or it induces

senescence or apoptosis in case of irreparable damage [109].

Transient and/or permanent cell cycle arrest are two of the major anti-proliferative
functions of p53. In response to DNA damage, p53 becomes active and in turn
upregulates the expression of its target genes p21, 14-3-36 and GADD45 (growth

arrest and DNA damage-inducible). While p21 regulates both G1 and G2 arrest,
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14-3-3c and Gadd45 only induce G2 arrest and inhibit mitosis entry [110]. In
addition to its ability to inhibit cell cycle progression, p53 also induces apoptosis
by up-regulating the expression of pro-apoptotic genes including death receptor
proteins (e.g. Fas, DR4, DR5 and PERP), NOXA, PUMA, BAX and BID [110] and

down-regulating anti-apoptotic genes such as Bcl-Xt and Bel-2 [110].

pS3 also exerts its tumor suppressor functions independent of its transcriptional
activity. p53 localizes to the mitochondria and directly binds to pro- and anti-
apoptotic members of Bcl-2 family of proteins and promotes apoptosis by
enhancing the mitochondrial outer membrane permeabilization (MOMP)

[110,111].
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1.7.2. Mutant p53 proteins

TP53 is the most commonly mutated tumor suppressor gene in cancers [113]. While
the majority of tumor suppressor genes sustain deletions and truncations leading to
their permanent inactivation and/or loss of expression [114], TP53 gene mainly
harbors missense mutations within the central DNA binding domain that interferes
with its interaction with DNA and alters its transcriptional activity [115,116]. Six
amino acid residues (175, 245, 248, 249, 273 and 282) within the DNA binding
domain have been considered as mutation hotspots with the highest frequency of
mutation [115,116] (Figure 1.4). In addition to the loss/partial loss of their tumor
suppressor activities, many mutant p53 proteins exhibit dominant negative
activities through their interaction with and inhibition of the functions of wild type
p53 [117]. More importantly, some p53 mutants can gain oncogenic functions
(GOF) that contribute to tumor cell growth, aggressiveness, metastasis and drug
resistance [118]. GOF p53 mutations fall into two categories; structural mutations
that alter the conformation of p53 and contact mutations that inhibit the direct

interaction between p53 and DNA [118].

GOF p53 mutants exert their tumor promoting activities via four different
mechanisms; 1- by interacting with transcription factors Spl, ETS family, E2F1,
and NF-1 and co-regulating the expression of target genes involved in cancer
progression and metastasis [119-121], 2- by binding to different cellular protein
partners including p53 family members, p63 and p73 and disrupting the recruitment

of p63/p73 to the promoter region of their target genes [122-124], 3- by modulating
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the expression of micro RNAs involved in tumorigenesis and metastasis [124], and,

4- by regulating epigenetic modifying enzymes [126,127] (Figure 1.5).

Experimental evidence from our laboratory suggested that in plakoglobin deficient
carcinoma cell lines expressing mutant pS3 proteins, exogenous expression of
plakoglobin restored tumor suppressor activities of mutant p53s in vitro. These

earlier studies are the basis for this thesis and will be discussed further.
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1.8. Earlier studies and research hypothesis

Previous studies from our laboratory revealed that exogenous expression of
physiological levels of plakoglobin in plakoglobin-deficient SCC9 carcinoma cell
line decreased growth and induced apoptosis [37] whereas its overexpression in
SCC9 cells increased growth by inducing the expression of the anti-apoptotic
protein Bcl-2 [91]. To further investigate the exact role of plakoglobin in regulating
Bcl-2 expression, SCC9 cells were transfected with plakoglobin cDNAs fused to
nuclear localization sequence or nuclear export signal. It was shown that
plakoglobin induced Bcl-2 levels independent of its subcellular localization.
Interestingly, expression of plakoglobin resulted in decreased interaction of -
catenin with N-cadherin and a-catenin leading to nuclear accumulation of B-catenin
and its interaction with TCF [76]. Together these studies suggested that plakoglobin
may regulate gene expression indirectly via regulation of B-catenin oncogenic

activity.

Comparison of the mRNA profiles of plakoglobin-deficient human squamous and
breast carcinoma cell lines and their plakoglobin-expressing transfectants showed
increased expression of growth and metastasis suppressor genes and decreased
expression of tumor promoting genes in plakoglobin expressing transfectants
relative to parental cells. These studies identified a number of p53 targets among
the differentially expressed genes, which are involved in tumor suppression,
apoptosis and angiogenesis including NMEI, SFN (14-3-3c), THBSI, SATBI,
CDK1, CDC20, BCL2 and BID [92,93]. These observations raised the intriguing

possibility of interaction between plakoglobin and p53.
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To identify potential interaction between plakoglobin and p53 we performed co-
immunoprecipitation experiments using a number of carcinoma cell lines with
different plakoglobin and p53 expression profiles. Subsequent co-
immunoprecipitation experiments showed that plakoglobin interacted with wild
type as well as a number of mutant p53 proteins in both the cytoplasm and nucleus
[92,93]. Additionally, ChIP assays showed that plakoglobin directly associated
with the promoter regions of p53 target genes such as tumor and metastasis
suppressors NME] and SFN [92,93] and the oncogenic genome organizer SATBI

[93].

Based on the above studies, we hypothesize that one mechanism underlying the
tumor and metastasis suppressor functions of plakoglobin might be its
interaction with mutant pS53 proteins and restoration of their tumor

suppressor function.

The main focus of my PhD project was to gather experimental evidence for the

following three specific aims:

1) To investigate the role of plakoglobin in high grade serous ovarian carcinoma
cell lines and its functional interactions with wild type and mutant p53

2) To identify the interacting domains of plakoglobin and p53 and to assess the
functional significance of their interaction

3) To determine the role of plakoglobin in down-modulation of the oncogenic

activity of B-catenin induced by mutant p53 expression
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42



PREFACE

This chapter has been published as: Alace M, Danesh G, Pasdar M. Plakoglobin

Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells
Expressing N-Cadherin and Mutant p53. PLoS One. 2016;11(5):e0154323.

PLoS One is an open-access publisher that states: “PLOS applies the Creative
Commons Attribution (CC BY) license to works we publish. Under this license,
authors retain ownership of the copyright for their content, but they allow anyone
to download, reuse, reprint, modify, distribute and/or copy the content as long as

the original authors and source are cited.”

Contributions:

I participated in conceiving and designing the experiments, performed the
experiments and wrote the manuscript. GD performed replicates of experiment

shown in figure 2.2A and migration and invasion assays for OV-90 cells.

43



2.1. Introduction

Ovarian cancer (OVCA), the fifth most prevalent cancer in women is the leading
cause of all female reproductive cancer deaths worldwide, with an overall five-year
survival rate of ~45% [1]. The major form of OVCA is the epithelial ovarian cancer
(EOC), which accounts for ~80% of all ovarian neoplasms [2]. EOCs are classified
into type I and type II [3]. Type I tumors are genetically stable, slow-growing, and
have relatively good clinical outcome. However, the majority of OVCA are type II.
Over 90% of these tumors harbor p53 mutations, are genetically unstable, highly
aggressive and have poor clinical outcome [4-6]. TP53 mutations are believed to
be an early event during the development of type II tumors and contribute to both
metastatic progression and chemoresistance [7-12]. p53 is a transcription factor and
tumor suppressor that plays essential roles in regulating cell proliferation, survival,
senescence, apoptosis and metabolism [13]. In response to stress, p53 activates
DNA damage response, cell cycle arrest and cell death [14,15]. Different
posttranslational modifications and protein-protein interactions regulate p53
stability and functions [16]. We have identified plakoglobin as a novel interacting
partner of both wild type and mutant p53 (mp53) [17,18].

Plakoglobin is a member of the Armadilo family of proteins and a paralog of 3-
catenin [19,20]. Unlike, B-catenin, which only associates with adherens junctions
and possesses well-known oncogenic functions, plakoglobin is a tumor/metastasis
suppressor protein and participates in the formation of both adherens junctions and
desmosomes [19,21]. Plakoglobin can confer growth/metastasis inhibitory effects

via its interactions with cadherins and induction of contact inhibition of growth
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[19]. In addition, it can interact with a number of intracellular partners including
transcription factors [17-19,22-27]. We have shown that plakoglobin interacts with
p53 and its tumor/metastasis suppressor function may, at least partially, be
mediated by this interaction [17,18].

A number of studies have suggested that the loss of cadherin-catenin complex and
activation of B-catenin oncogenic function play pivotal roles in the local invasion
of ovarian tumor cells and subsequent metastasis [28-31]. Furthermore, the loss of
heterozygosity of the plakoglobin gene (JUP) has been reported in sporadic
OVCAs [32]. However, very little is known about the role of plakoglobin in
OVCAs. In this study, we assessed the potential tumor/metastasis suppressor
functions of plakoglobin in OVCAs, using the normal ovarian cell line IOSE-364
and OVCA cell lines OV-90 (plakoglobin and E-cadherin positive, mp53
expressing), ES-2 (plakoglobin and E-cadherin negative, N-cadherin positive and
mp53 expressing), ES-2-PG (ES-2 tansfectants expressing plakoglobin), ES-2-E-
cad (ES-2 tansfectants expressing E-cadherin) and ES-2-shN-cad (ES-2 cells in
which N-cadherin has been knocked down). We examined plakoglobin levels,
localization and interactions with E- and N-cadherin and p53 and assessed the
growth, migratory and invasive properties of various cell lines. The results showed
that plakoglobin interacted with both cadherins and p53. Exogenous expression of
E-cadherin or plakoglobin or knockdown of N-cadherin significantly reduced the
migration and invasion of ES-2 cells. Furthermore, plakoglobin expression and N-
cadherin knockdown but not E-cadherin expression significantly reduced ES-2

cells growth.
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2.2. Materials and methods

2.2.1. Cell lines and culture conditions

IOSE-364 (hereafter IOSE) were grown in a 1:1 M199 and MCDB M105 media
plus 5% FBS and 1% PSK (Penicillin, Streptomycin, Kanamycin). OV90 cells were
maintained in the same M199 and MCDB M105 media plus 15% FBS and 1% PSK.
ES-2 cells were grown in McCoy’s 5a media completed with 10% FBS and 1%
PSK. ES-2-E-cad and ES-2-PG cells were grown in ES-2 media containing 400
pg/ml (selection) or 200 pg/ml (maintenance) G418. ES-2-shNcad transfectants
were cultured in ES-2 media with 1ug/ml (selection) or 0.5 pg/ml (maintenance)
puromycin.

2.2.2. Transfection

Plasmids encoding E-cadherin and plakoglobin have been described [33, 34].
Cultures of ES-2 cells in 60 mm or 100 mm dishes were transfected at 50-75%
confluency with 10-25 pg of DNA using calcium phosphate. Twenty hours after
transfection, cells were rinsed with PBS and allowed to recover for 24 hours in
complete growth media. To select stable transfectants, 72 h after transfection,
media containing 400 pg/ml G418 (ES-2- PG and ES-2- E-cad transfectants) were
added to cells and resistant colonies selected for 3-4 weeks. Resistant clones were
maintained in 200 pg/ml G418 and screened for plakoglobin and E-cadherin
expression by immunofluorescence and immunoblotting assays.

2.2.3. N-cadherin knockdown

Human N-cadherin lentiviral sShARNA plasmid [35] was used to transfect Phoenix-

AMPHO cells using calcium phosphate. Lentiviral particles collected at 48 and 72
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hours post transfection were combined and filtered using a 0.45um low-protein
binding filter. Lentiviral particles were used to transduce ES-2 cells in the presence
of 8ug/ml polyberene (Santa Cruz). Puromycin-resistant stable cell lines expressing
the N-cadherin shRNAs (ES-2-shN-cad) were isolated and the N-cadherin levels
assessed by immunoblot and immunofluorescence.

2.2.4. Immunoblot Analysis

Confluent 100 mm culture plates were rinsed with cold PBS and solubilized in SDS
sample buffer (10 mM Tris—HCI pH 6.8, 2% (w/v) SDS, 50 mM dithiothreitol, 2
mM EDTA, 0.5 mM PMSF, 1 mM NaF, 1 mM Na3VOs). Equal amounts of total
cellular proteins were separated by SDS-PAGE and transferred onto nitrocellulose
membranes (Biorad). The membranes were incubated in specific primary
antibodies overnight at 4°¢ followed by the appropriate secondary antibodies at
room temperature (Table 2.1). Membranes were scanned using an Odyssey CLx

infrared imaging system.
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Table 2.1. Antibodies and their respective dilutions in specific assays.

Assay
Primary antibodies Species WB 1P IF Source
p53 Mouse 1:1000 1:100 - Santa Cruz, sc-126
Plakoglobin Mouse 1:1000 1:100 1:100 | Translab, 610254
E-cadherin Mouse 1:1000 - 1:100 | Translab, 610404
N-cadherin Mouse 1:1000 - - Santa Cruz, sc-59987
Cytokeratin (pan-keratin) Mouse 1:1000 - - Sigma, C-2931
Vimentin Mouse 1:1000 - - Sigma, V-6630
B-actin Mouse 1:1000 - - Santa Cruz, sc-47778
Secondary antibodies
Anti-mouse IgG, light Goat 1:15000 - - Jackson Immuno Research,
chain 115-625-174
Anti-rabbit IgG, light Goat 1:15000 - - Jackson Immuno Research,
chain 211-652-171
Alexa fluor 488 Mouse - - 1:2000 | Molecular Probes, A11029
Alexa fluor 546 Rabbit - - 1:3000 | Molecular Probes, A11035
Rhodamine Rabbit - - 1:400 | Boehringer Mannheim, 605107
Rhodamine Rat - - 1:400 | Sigma, T4280
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2.2.5. Immunofluorescence

Confluent cell cultures were established on glass coverslips and rinsed with cold
PBS containing 1 mM each of NaF, Na3VOs and CaCla. Cells were fixed with
3.7% formaldehyde for 20 minutes and extracted with CSK buffer (50 mM NaCl,
300 mM Sucrose, 10 mM PIPES pH 6.8, 3 mM MgClz, 0.5% Triton X-100, 1.2
mM PMSF, and 1 mg/ml DNase and RNase; [17]) for 10 minutes. Coverslips were
blocked with 4.0% goat serum and 50 mM NH4Cls4 in PBS containing 0.2% BSA
for 1 hour. Coverslips were then incubated in the specific primary antibodies for 1
hour followed by the secondary antibodies for 30 minutes at concentrations
indicated in Table 2.1. Nuclei were counterstained with DAPI (1:2000). Coverslips
were mounted in elvanol containing 0.2% (w/v) paraphenylene diamine (PPD) and
viewed using a 63x objective lens of a Zeiss confocal microscope.

2.2.6. Immunoprecipitation

Cultures were grown to confluency in 100 mm dishes and rinsed with cold PBS
containing 1 mM NaF, NazVO4 and CaClz. Cells were extracted in 1ml of lysis
buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% sodium
deoxycholate, 0.7 pg/ml Pepstatin, | mM Na3VOs4, 1 mM NaF, and protease
inhibitor cocktail) for 20 minutes on a rocker at 4°C. Cells were scraped and
centrifuged at 48000 xg for 10 minutes. Supernatants were processed for
immunoprecipitation with p53, plakoglobin, E- and N-cadherin antibodies (Table
2.1) and 40 pl protein G agarose (Thermo Fisher Scientific) beads overnight on a
rocker-rotator at 4°C. Samples were then centrifuged at 14000 xg for 2 min, the

beads were removed and the supernatants processed for a second
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immunoprecipation for 3 hours. Beads from the two immunoprecipitations were
combined and washed three times with the lysis buffer. Immune complexes were
solubilized in 60 ul SDS sample buffer, separated by SDS-PAGE and processed for
immunoblot as described above.

2.2.7. Growth, migration and invasion assay

For in vitro growth assay, 3x10* cells from ES-2, ES-2-E-cad, ES-2-PG and ES-2-
shN-cad cells were plated in a 24-well plate. At 1, 3, 5 and 7 days after plating,
cultures were trypsinized and cells were counted. Each time point represents the
average of three independent experiments.

For cell migration assays, 2x10° cells were resuspended in 0.5 ml serum-free media

and plated in the upper chamber of transwell inserts (3 © m pore, 6.5 mm diameter;

BD Biosciences). Normal media containing 10% FBS was added to the lower
chamber and cultures were incubated for 16 hours at 37°C. Inserts were then
transferred into new dishes and rinsed with PBS to remove un-attached cells. Inserts
were fixed with 3.7% formaldehyde (in PBS) for 2 minutes, permeabilized with
100% methanol for 20 minutes and stained with Giemsa stain for 15 minutes at
room temperature. Following staining, membranes were viewed under an inverted
microscope using a 20x objective lens and photographed.

For Matrigel invasion assays, cells were starved in serum-free media for 24 hours
prior to the assay. For each cell line, 5x10* cells in 0.2 ml serum-free media were
plated in the top compartment of Matrigel-coated invasion chambers (8 um pore
PETE membrane; BD Biosciences). Fibroblast conditioned media (0.8 ml) was

added to the bottom chambers and plates were incubated overnight at 37°C. After
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16 hours, membranes were recovered and processed as described for the migration
assay. Mounted membranes were viewed under a 20x objective lens of an inverted
microscope and photographed.

The migrated/invaded cells were counted in 5 random fields for each membrane
using ImageJ Cell Counter program. Numbers for each cell line were averaged and
normalized to those of the normal cell line or parental untransfected cells and
histograms constructed. Histograms represent the average of at least 3 independent
assays for each cell line.

2.2.8. Statistical analysis

Values are presented as means+ SD. Statistical differences between groups were
assessed by Student’s t-tests. P-value <0.05 was considered significant.

2.3. Results

2.3.1. Protein expression of epithelial and mesenchymal markers and p53 in
various OVCA cell lines

Protein expression of E-cadherin, N-cadherin, plakoglobin, cytokeratins, vimentin
and p53 in IOSE, ES-2 and OV-90 cells were detected using immunoblot analysis
(Figure 2.1). IOSE cells had very little, if any, E-cadherin and expressed N-cadherin
and plakoglobin. These cells also expressed cytokeratins, vimentin and p53. These
observations were consistent with previous findings indicating that normal OSE
cells displayed both epithelial and mesenchymal markers [36]. In contrast, OV-90
cells that express mp53 [37] had no detectable N-cadherin, low levels of vimentin
and high levels of epithelial markers including E-cadherin, plakoglobin and

cytokeratins. ES-2 cells, which also express mp53 [38, 39], displayed a more
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mesenchymal phenotype, lacked E-cadherin and plakoglobin and expressed N-

cadherin, vimentin and very low levels of cytokeratins.

IOSE OoV-90 ES-2
E-cadherin ;
N-cadherin X ——
R
p53 — —

Vimentin | ——e e

Cytokeratins . . ‘ ' ——

Actin TR —— —

Figure 2.1. Protein expression of epithelial and mesenchymal markers and p53
in ovarian cancer cell lines. Total cell lysates from IOSE-364, ES-2 and OV-90
cells were processed for immunoblot analysis using N-cadherin, E-cadherin,
plakoglobin, vimentin, cytokeratins and p53 antibodies. Equal loadings were
confirmed by processing the same lysates with actin antibodies.
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2.3.2. Levels, localization and interaction of E-cadherin, N-cadherin and
plakoglobin in normal and carcinoma ovarian cell lines

Subcellular distribution and potential co-localization of E-/N-cadherin with
plakoglobin were examined by double immunofluorescence staining (Figure 2.2A).
In IOSE cells, consistent with the immunoblot results, E-cadherin levels were
undetectable whereas N-cadherin and plakoglobin were expressed at high levels
and were co-distributed at the membrane (Figure 2.2A, IOSE). In OV-90 cells, high
levels of E-cadherin and plakoglobin were present and were colocalized at the
membrane. We also detected scarcely distributed small patches of N-cadherin
positive cells in OV-90 cultures. In these patches, N-cadherin was colocalized with
plakoglobin (Figure 2.2A, OV-90). In ES-2 cells, there was no detectable E-
cadherin or plakoglobin, whereas they expressed high levels of N-cadherin, which
was distributed throughout the cytoplasm (Figure 2.2A, ES-2). Consistent with the
absence of plakoglobin and adhesive junctions, ES-2 cells exhibited significantly
less cell-to-cell contact and their morphology was distinctly different than IOSE
and OV-90 cells. Co-immunoprecipitation studies showed that plakoglobin
interacted with N-cadherin in IOSE cells and with E-cadherin in OV-90 cells

(Figure 2.2B).
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2.3.3. The absence of E-cadherin and plakoglobin expression and the presence
of N-cadherin contribute to the migratory and invasive properties of ES-2
cells.

Previously, we have shown that the expression of plakoglobin in plakoglobin -
deficient carcinoma cells that lack E-cadherin and express N-cadherin decreases
their in vitro growth, migration and invasion [33, 34]. To examine whether
plakoglobin had similar effects in OVCA cells, we first examined the migration and
invasion properties of IOSE, OV-90 and ES-2 cells. Then, we exogenously
expressed E-cadherin or plakoglobin or knocked down N-cadherin in these cells
and assessed changes in their growth, migration and invasion. As depicted in Figure
(Figure 2.3A), OV-90 cells showed significantly lower migration and invasion
relative to IOSE cells (8.4% and 0.4 %, respectively). In contrast ES-2 cells were
significantly more migratory and invasive compare to IOSE cells (138% and
196.4%, respectively).

Exogenous expression of E-cadherin and plakoglobin and stable knockdown of N-
cadherin in ES-2 transfectants was confirmed using immunoblot (Figure 2.3B) and
immunofluorescence analyses (Figure 2.3C). In ES-2-E-cad cells (Figure 2.3B, C,
ES-2-Ecad), E-cadherin was expressed and mainly localized at the membrane
although it was also detected in the cytoplasm of the transfectants. Interestingly,
plakoglobin expression in ES-2-PG cells (Figure 2.3B, C, ES2-PQG) led to the
upregulation of endogenous E-cadherin. In these cells, the exogenously expressed
plakoglobin colocalized with both N-cadherin and E-cadherin (Figure 3B, C, ES2-

PG). N-cadherin knockdown reduced the levels of the endogenous N-cadherin
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(>90%). Staining of these cultures with N-cadherin antibodies detected occasional
cells that were barely stained (Figure 2.3B, C, ES2-shN-cad). Furthermore, co-
immunoprecipitation studies showed that in ES-2-PG cells, N-cadherin interacted
with exogenously expressed plakoglobin (Figure 2.3D).

Assessment of the migration and invasion of ES-2 transfectants showed a
significant reduction in both migration and invasion of ES-2-Ecad and ES-2-PG
cells relative to parental ES-2 cells (Figure 2.4A, B and D). E-cadherin expression
in ES-2 cells reduced migration and invasion of these cells by 39% and 42%,
respectively. Plakoglobin expression in ES-2 cells decreased migration and
invasion by 58% and 44%, respectively. The effect of N-cadherin knockdown on
migration was similar to that of plakoglobin expression, i.e. a reduction of 65%
whereas the invasion of ES-2-shN-cad cells was significantly less than that of ES-
2-E-cad and ES-2-PG cells (68% reduction) (Figure 2.4A, B and D). We also
compared the growth of ES-2 cells with those of ES-2-E-cad, ES-2-PG and ES-2-
shN-cad transfectants (Figure 2.4C, D). At day 7, ES-2-E-cad cells showed similar
growth rate to ES-2 cells while ES-2-PG and ES-2-shN-cad cells showed
significantly lower growth than ES-2 cells (21% and 25% reduction, respectively,
(Figure 2.4C, D). However, while ES-2-shN-cad cells showed decreased growth
throughout the 7 days, ES-2-PG cultures showed decreased cell number after day
5, likely due to the induction of contact inhibition upon culture confluency (Figure
2.4C).

Taken together, these results suggested that expression of E-cadherin or

plakoglobin or knockdown of N-cadherin effectively reduced migration and
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invasion of ES-2 cells. However, only plakoglobin expression or N-cadherin

knockdown significantly decreased the growth of these cells.
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Figure 2.4. Migration, invasion and growth properties of normal and carcinoma
ovarian cell lines. [OSE-364, OV-90, ES-2 and ES-2 transfectants (ES-2-E-cad, ES-2-PG,
ES-2-shN-cad) were processed for migration (A) and invasion (B) assays as described in
Materials and Methods. The number of migrated/invaded cells were normalized to those
of the IOSE-364 cells. (C) Replicate cultures of ES-2 cells and ES-2 transfectants (E-cad,
PG and shN-cad) were plated at single cell (3x10) density. Cultures were counted at day
1, 3, 5 and 7. Each time point is the average of three independent experiments. (D)
Summary of changes in growth, migration and invasion of ES-2 transfectants.
Transfectants values were normalized to ES-2 cells. p values, * <0.05, ** < 0.001.
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2.3.4. Interaction of plakoglobin and p53 in normal and ovarian carcinoma
cell lines

We have shown that plakoglobin interacted with both wild type and mp53 in
various carcinoma cell lines and they both associated with promoters of a number
of p53 target genes [17, 18, 40]. Plakoglobin’s interactions with mp53 expressing
carcinoma cells led to decreased growth, migration and invasion of these cells. To
this end, we examined whether plakoglobin associated with p53 in OVCA cells.
Total cell extract of IOSE, ES-2 and ES-2-PG cells were processed for reciprocal
co-immunoprecipitation (co-IP) and immunoblotting with plakoglobin and p53
antibodies (Table 2.1). In IOSE cells plakoglobin antibodies co-precipitated p53
and plakoglobin (Figure 2.5). The reciprocal co-IP using p53 antibodies co-
precipitated plakoglobin, further validating the interaction between plakoglobin
and p53 in these cells. In ES-2 cells expressing exogenous plakoglobin and
endogenous mp53, plakoglobin antibodies co-precipitated p53 and plakoglobin. In
the reciprocal co-IP of ES-2-PG cells, p53 antibodies brought down both
plakoglobin and p53 (Figure 2.5). In contrast, in ES-2 cells with no plakoglobin
expression, p53 antibodies precipitated p53 only (Figure 2.5). Control
immunoprecipitations with p53 and plakoglobin pre-immune antibodies did not

detect either protein in the total cell lysates (Figure 2.5B).
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Figure 2.5. Interaction of plakoglobin and p53 in normal and ovarian carcinoma cell
lines. Equal amounts of total cell extracts (TCE) from IOSE-364, ES-2 and ES-2-PG cells
sequential immunoprecipitation (IP) and
immunoblotting (IB) using p53 and plakoglobin antibodies (A) or preimmune antibodies
(B) as described in Materials and Methods. The same lysates were processed with actin
antibodies to confirm equal loadings. PG, plakoglobin; Pi, pre-immune.
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2.4. Discussion

In the current study, for the first time, we investigated the in vitro tumor/metastasis
suppressor effects of plakoglobin in EOC cell lines with mp53 expression and
different cadherin profiles. We showed that ES-2 cells that express N-cadherin and
are deficient in E-cadherin and plakoglobin were highly migratory and invasive. In
contrast, OV-90 cells that express both E-cadherin and plakoglobin and very little
N-cadherin were not migratory or invasive. The exogenous expression of
plakoglobin or E-cadherin or knockdown of N-cadherin in ES-2 cells significantly
reduced their migration and invasion. Our data showed that plakoglobin colocalized
with both E-cadherin and N-cadherin in adhesion complexes. Consistent with these
observations, we detected significant reduction in ES-2-PG and ES-2-shN-cad
growth relative to ES-2 and ES-2-E-cad cells. Furthermore, plakoglobin interacted
with wild type p53 in IOSE cells and mp53 in ES-2-PG transfectants.

Cadherin switching from E- to N-cadherin is a critical step in the epithelial to
mesenchymal transition (EMT)-mediated malignancies [41, 42]. EMT leads to the
cell-cell junction disassembly, loss of cell polarity and gain of migratory and
invasive properties [30, 44, 44]. While E-cadherin is an epithelial marker and a
known tumor suppressor, N-cadherin is a mesenchymal marker and its expression
is associated with a more migratory and invasive phenotype [44, 45]. Normal
ovarian surface epithelial (OSE) cells express a combination of epithelial and
mesenchymal markers. These cells do not have E-cadherin but express N-cadherin,
catenins, vimentin and cytokeratins [36, 46-50]. In agreement with these reports,

IOSE cells expressed N-cadherin and vimentin as well as catenins including
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plakoglobin, and cytokeratins. The exact role of E-/N-cadherin switch in the
initiation and progression of ovarian carcinomas is not very clear since both
cadherins can be expressed in ovarian tumors of different origins and at different
stages [51, 52]. However, while a few studies suggest that E-cadherin is upregulated
in OVCA effusions [52, 53], the great majority suggest that the loss or reduced
levels of E-cadherin contribute to the transition from benign to borderline ovarian
lesions, to poorly differentiated ovarian tumors, and to the local invasion and
metastasis [28, 47, 55-58]. Consistent with the tumor suppressor activities of E-
cadherin, downregulation/lack of E-cadherin expression due to the high levels of
its transcriptional repressors Snail, Twist and ZEB-2 has been associated with the
migratory and invasive properties of ES-2 and other OVCA cells [59-71]. In
addition, E-cadherin suppresses growth and metastasis via inhibiting receptor
tyrosine kinase signaling and PI3k/Akt pathways [72, 73]. In agreement with these
studies, we showed that ES-2-E-cad cells had significantly lower migration and
invasion (39% and 42%, respectively) compared to ES-2 cells.

Although N-cadherin is expressed in normal OSE, its expression is generally
associated with increased migration and invasion of OVCA [74-76]. N-cadherin
levels have been shown to be elevated in cell lines expressing Snail and ZEB-1, as
well as, in patients with higher FIGO tumor grade and metastasis [51, 64, 77].
Exogenous expression of MUC4 in SKOV3 cells led to the downregulation of E-
cadherin, upregulation of N-cadherin and increased motility. N-cadherin
knockdown in these cells reduced MUC4 induced motility, concurrent with

decreased activity of ERK1/2, AKT and MMP9 [78]. Supporting these studies, a
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selective anti-N-cadherin antibody (Exherin, ADH-1) was recently shown to be
effective in stabilizing disease progression in two OVCA patients in a small phase
I clinical study, which assessed patients with various solid tumors [79]. Here, we
showed that relative to ES-2 cells, the migration and invasion of ES-2-shN-cad
transfectants were reduced by 65% and 68%, respectively. Furthermore, knocking
down N-cadherin was much more effective in reducing migration and invasion than
expressing E-cadherin in ES-2 cells. Similarly, while E-cadherin expression had
very little effect (5%) in decreasing growth, plakoglobin expression or N-cadherin
knockdown significantly reduced ES-2 cells growth (20%, 25%, respectively).

Unlike cadherins, very little is known about the role of plakoglobin in OVCA.
Plakoglobin has been shown to have growth/metastasis inhibitory function, both in
vitro and in vivo [19]. This function of plakoglobin can be mediated by stabilizing
/sequestering N-cadherin and induction of contact inhibition of growth and/or
interacting with different cellular proteins including transcription factors [17-19,
27,34,40,80-82]. Here, the exogenous expression of plakoglobin significantly
reduced migration and invasion of ES-2 cells (58% and 44% respectively). The
effect of plakoglobin on inhibiting migration was significantly higher than that of
E-cadherin. Since plakoglobin expression is necessary for the formation of both
adherens junctions and desmosomes [19,33], this may suggest that plakoglobin
reduced migration via association with N-cadherin and formation of junctions as
well as interaction with transcription factors and regulation of gene expression.
Interaction of plakoglobin with several transcription factors such as TCF/LEF,

CBP, SOX4 and p53 has been reported previously [17, 22-26, 81]. We have shown
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that plakoglobin interacted with mp53 in several carcinoma cell lines and they both
associated with promoters of a number of p53 target genes including tumor
suppressors SFN (14-3-3s) and NMEand the oncogenic genome organizer SATBI.
Furthermore, these associations were concurrent with reduced growth, migration
and invasion [17,18]. Plakoglobin also regulated the expression of HAI-1 and
reduced migration in a p5S3 dependent manner in NSCLC cells [27]. Here, we
showed that plakoglobin interacted with wild type p53 in IOSE cells and with mp53
in ES-2-PG cells. p53 regulates the expression of EMT markers such as Twist, Snail
and Slug [82-85]. We detected low levels of E-cadherin in ES-2-PG cells upon
plakoglobin expression. Whether this E-cadherin expression is due to the
downregulation of E-cadherin transcriptional repressors via plakoglobin/p53
interaction or stabilization of E-cadherin protein via its interaction with plakoglobin
warrants further studies.

In summary, this is the first demonstration of the role of plakoglobin in OVCA
cells. Our data showed that exogenous expression of plakoglobin or knockdown of
N-cadherin were more effective than expression of E-cadherin in inhibiting the
growth, migratory and invasive properties of ES-2 cells. These results suggest that
Plakoglobin expression sequestered tumor/metastasis promoting activities of N-
cadherin. Induction of E-cadherin expression in ES-2 cells expressing exogenous
plakoglobin, which interacted with the endogenous mp53 raises the possibility that
plakoglobin may also be involved in the regulation of p53 target genes involved in
migration and invasion. Collectively, the results suggest that plakoglobin may act

as a tumor/metastasis suppressor in OVCA, as has been shown for other cancers.
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The larger implication of our studies is the potential of plakoglobin as a therapeutic

target for the majority of OVCAs with mp53 and N-cadherin expression.
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Their Synergistic Inhibition of Migration and Invasion

73



PREFACE
This chapter has been published as: Alace M*, Padda A*, Mehrabani V, Churchill
L, Pasdar M. The physical interaction of p53 and plakoglobin is necessary for their
synergistic inhibition of migration and invasion. Oncotarget. 2016;7(18):26898-
915.

* These authors have contributed equally to the work.

Oncotarget is an open-access License and no permission required publisher that
states: “Oncotarget applies the Creative Commons Attribution 3.0 License (CC BY
3.0) to all works we publish (read the human-readable summary or the full license
legal code). Under the CC BY, authors retain ownership of the copyright for their
article, but authors allow anyone to download, reuse, reprint, modify, distribute,
and/or copy articles in Oncotarget, so long as the original authors and source are

cited.”

Contributions:

I participated in designing and performing several of the experiments and wrote the
first draft of the discussion. I generated H1299 stable transfectants expressing
plakoglobin-AN, -AArm, and -AC as well as H1299 cells co-expressing plakoglobin
and different fragments of p53. I performed western blot and immunofluorescence
assays to assess the expression levels and localization of the proteins and co-
immunoprecipitation studies to identify the interacting domains. I also performed

many of the growth, migration and invasion assays.

74



3.1. Introduction

The p53 transcription factor is a tumor suppressor that is absent or mutated in over
half of all tumors [1-3]. p53 can be activated by various stress signals, including
DNA damage, oncogenic insults, hypoxia, loss of cell-cell contact and changes in
metabolic behavior. In response to stress, pS3 activates physiological pathways that
regulate cell cycle arrest, DNA repair, apoptosis, autophagy and metabolism [2, 3].
In addition to being a transcriptional regulator, p53 interacts with various

cytoplasmic proteins, which mediate its growth regulating activity [4, 5].

The three structural domains [N-terminus (NT), DNA binding (DBD) and C-
terminus (CT)] of p53 regulate its cellular functions. The NT contains two
transactivation domains (TADI1 and 2). In addition to binding to coactivators, the
NT is also the binding site for Hdm-2, which is an E3-ubiquitin ligase mediating
p53 degradation, thus serving as the primary regulator of p53 levels [6, 7]. The CT
contains an oligomerization domain, which allows p53 tetramerization, and a short
regulatory domain, which may function as a non-specific DNA binding domain
necessary for growth arrest and apoptosis [8, 9]. Flanked by the NT and CT, the
DBD confers transcriptional activity on p53 and harbors the majority of p53
mutations [1, 10, 11]. p53 functions are regulated by posttranslational
modifications and protein-protein interactions [5, 12, 13]. We have identified
plakoglobin as an endogenous interacting partner of both wild type and a number
of mutant p53s, and have shown that plakoglobin’s interaction with these mutants

can restore their wild type functions [14, 15].
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Plakoglobin is an Armadillo protein family member and a paralog of 3 -catenin
with dual adhesive and signalling functions [16, 17, 18]. Structurally, these proteins
consist of a N-terminal a-catenin binding domain, a core of Armadillo (Arm)
repeats, which bind adhesive and signalling partners, and a TA domain [18]. In

adherens junctions, both [3 -catenin and plakoglobin mediate cell-cell adhesion by

interacting with classic cadherins and o-catenin, which link the complex to the
cytoskeleton [18]. Plakoglobin is also an essential desmosomal junction component

and as such plays an integral role in cell-cell adhesion [18, 19]. Both [ -catenin

and plakoglobin affect cell signalling through interactions with intracellular
partners involved in cell proliferation, differentiation, survival and apoptosis [18,

19]. Although [ -catenin has a well-documented oncogenic function [18],

plakoglobin is known to generally act as a tumor/metastasis suppressor by
mechanisms that are beginning to be deciphered [19-22]. Our laboratory has shown
that the tumor supressor activity of plakoglobin, is, at least in part, mediated by its
interaction with p53. We have shown that plakoglobin interacted with p53, and both
were associated with the promoters of p53 target genes [e.g. NME, SFN (14-3-30),
SATBI, THBSI] [14, 15, 20]. Together, these results suggest that the
tumor/metastasis suppressor activity of plakoglobin may be mediated by its

interaction with p53 and regulation of p53 target genes.

In this study, we assessed the roles of p53 and plakoglobin, individually and
together, in cell growth, migration and invasion, and identified the domains of p53
and plakoglobin that mediated their interaction. HI1299 and SCC9 cells were co-

transfected with expression constructs encoding HA-p53- (wild type, NT, DBD and
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CT) and FLAG-plakoglobin- (wild type, AN, AArm and AC). Transfectants were
characterized for their growth, migration and invasion. p53/plakoglobin interaction
and localization were determined by co-immunoprecipitation and confocal
immunofluorescence microscopy. Our results suggested that 1) p53 and
plakoglobin cooperated to decrease growth whereas they acted synergistically to
significantly reduce migration and invasion of H1299 cells, 2) p53/ plakoglobin
interaction was mediated by the DBD of p53 and the C-terminus of plakoglobin,
and 3) the C-terminal domain of plakoglobin was necessary for its maximum

invasion inhibitory function via interaction with p53.

3.2. Material and methods

3.2.1. Reagents, cells and culture conditions

Chemical reagents were purchased from Sigma-Aldrich and tissue culture reagents
from Invitrogen, unless stated otherwise. Dr. Roger Leng, University of Alberta,
provided the p53 and plakoglobin null non-small cell lung carcinoma cell line
H1299 [21]. The p53 mutant and plakoglobin deficient human tongue squamous
cell carcinoma cell line SCC9 has been described [24, 25]. All cells were
maintained in Minimum Essential Medium (MEM) supplemented with 10% fetal

bovine serum (FBS), and 1% penicillin-streptomycin-kanamycin (PSK) antibiotics.

3.2.2. Plasmid construction and transfection

The FLAG-tagged-plakoglobin (PG) (-wild type (WT), -AN, -AArm, -AC)
constructs and their SCC9 transfectants have been described [24]. A plasmid

encoding WT-p53 (PGEX2TK-WT-p53, gift from Dr. Roger Leng) served as the
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template for constructing HA-tagged p53 WT, and p53 fragments, NT, DBD, and

CT.

Various primers (Table 3.1) were used to generate the four p53 inserts by PCR. For
all PCR reactions, pre-denaturation was done at 95°C for 2 minutes followed by 32
cycles of denaturation at 95°C for 30 seconds, annealing at 50°C (first 7 cycles)
and 55°C (last 25 cycles) for 30 seconds, and extension at 72°C for 90 seconds. The
PCR products were then subcloned into pcDNA 3.1 containing an HA tag at the C-
terminus. The pcDNA 3.1 vector was modified with the HA epitope tag sequence
(TAC CCA TAC GAT GTT CCA GAT TAC GCT), which contained restriction
sites to facilitate the subcloning of the p53 inserts and a stop codon. The constructs

encoding HA-tagged p53-WT, NT, DBD, or CT were verified by sequencing.

H1299 or SCC9 cells cultured in 60 mm dishes or on glass coverslips were
transfected at 60-80% confluency with 2-10 pg of DNA. Twenty hours later, cells
were rinsed and allowed to recover for 24 hour in complete MEM. For transient
transfections, transfected cells were processed for different assays 48 hour after
transfection. For stable transfectants, 48 hours after transfection, media were
replaced with media containing 500 pg/ml hygromycin B (p53) or 400 pg/ml G418
(plakoglobin) and the resistant colonies selected for 2-3 weeks and verified for HA-
p53 and FLAG-plakoglobin expression. Positive clones were subcultured by
limiting dilution and maintained in media containing 350 pg/ml hygromycin B and

200 pg/ml G418.
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Table 3.1. Oligos/primers sequences used to create pS3 constructs

Size
Construct Primers ]
(nucleotide)

Forward | 5’ ttt taa gct tat gga gga gcc gea gtc ag 3’ 29
pS3-WT

Reverse | 5’ ttt tgc gge cge gte tga gtc agg ccc tte tgt ¢ 3° 34

Forward | 5’ ttt taa gct tat gga gga gce gea gtc ag 3’ 29
P53-NT

Reverse | 5’ ttt tge gge cge agg age tge tgg tge agg 3° 30

Forward | 5’ ttt taa gct tat gtc cca agc aat gga tga ttt g 3° 34
P53-DBD

Reverse | 5’ ttt tgc gge cge ccec ttt ctt gcg gag att cte 3’ 33

Forward | 5’ ttt taa gct tat gac cag ctc ctc tce cca ge 3’ 32
P53-CT

Reverse | 5’ ttt tgc gge cge gtc tga gtc agg ccc tte tgt ¢ 3° 34

Forward | 5’ ttt gct age atg gcg gee gea tac cca tac gat gtt cca gat 3’ 42
HA tag

Reverse | 5 aaa tct aga cta aag ctt agc gta atc tgg aac atc gta 3’ 39

3.2.3. Preparation of total cell extracts and immunoblotting

Confluent 100 mm culture dishes were rinsed with cold PBS, solubilized in hot

SDS sample buffer (10 mM Tris-HCI pH 6.8, 2% (w/v) SDS, 50 mM dithiothreitol

(DTT), 2 mM EDTA, 0.5 mM PMSF) and boiled for 10 minutes. Twenty-five - 50

pg of total cellular protein was resolved by SDS-PAGE, transferred to

nitrocellulose membranes and processed for immunoblotting using HA, FLAG and

actin primary antibodies followed by the appropriate secondary antibodies (Table

3.2). Membranes were developed by either ECL (Perkin Elmer LAS) or LI-COR

IR fluorescence dyes.
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Table 3.2. Antibodies and their respective dilutions in specific assays

Primary antibodies Species Assay Company/Catalog
WB Ip IF number
Anti-HA Rat 1:500 1:150 | 1:100 Roche/11867423001
Anti-B-Actin Mouse 1:2000 -- -- Santa Cruz/sc-47778
Anti-FLAG Mouse 1:500 1:150 | 1:100 Sigma/F-3165
Secondary antibodies
HRP anti-mouse, IgG light chain Goat 1:2000 -- -- Jackson/115-005-174
HRP anti-rat, IgG light chain Goat 1:2000 -- -- Jackson/112-005-175
Alexa Fluor anti-mouse IgG, light chain | Goat 1:25000 | -- -- Jackson/112-625-175
Alexa Fluor anti-rat I1gG, light chain Goat 1:25000 | -- -- Jackson/115-625-174
Alexa 488 anti-mouse IgG Goat -- -- 1:1000 | Molecular probes/
A11029
Rhodamine/TRITC anti-Rat IgG Rabbit | -- -- 1:1000 | Sigma/T4280

3.2.4. Immunoprecipitation

Confluent cultures in 100 mm plates were rinsed with cold PBS containing ImM
NaF, Na3VO4 and CaClz and extracted in 2 ml of lysis buffer (50 mM Tris-HCI pH
7.5, 150 mM NacCl, 1% NP-40, 0.5% sodium deoxycholate, 0.7 ug/ml Pepstatin, 1
mM Na3VOs, 1 mM NaF, and protease inhibitor cocktail) for 30 minutes at 4°C on
a rocker. Cells were scraped and centrifuged at 48000 xg for 10 minutes.
Supernatants were divided into equal aliquots and processed for
immunoprecipitation with FLAG and HA antibodies (Table 3.2) and 40 ul protein
G agarose (for monoclonal antibodies) or protein A sepharose beads (Pierce
Biotechnology) for polyclonal antibodies) beads (Pierce Biotechnology) overnight

at 4°C on a rocker-rotator. Samples were then centrifuges at 14000xg for 2 minutes
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to separate the beads from the supernatants and the supernatants were processed for
a second immunoprecipitation for 2-3 hours. Beads from the two
immunoprecipitations were combined and washed three times with the lysis buffer.
Immune complexes were solubilized in 40 pl SDS sample buffer, separated by
PAGE and processed for immunoblot using HA, FLAG and actin primary
antibodies followed by the appropriate secondary antibodies (Table 3.2) as

described above.

3.2.5. Immunofluorescence

Cells were grown to confluency on glass coverslips and rinsed twice with cold PBS
containing 1 mM NaF, Na3VOs and CaCl.. Cells were then fixed with 3.7%
formaldehyde for 20 minutes and extracted with CSK buffer (50 mM NaCl, 300
mM Sucrose, 10 mM PIPES pH 6.8, 3 mM MgClz, 0.5% Triton X-100, 1.2 mM
PMSF, and 1 mg/ml DNase and RNase) for 7 minutes. Coverslips were blocked
with 4.0% goat serum and 50 mM NH4Cls in PBS containing 0.2% BSA (PBS—
BSA) for 1 hour and processed for indirect immunofluorescence. Coverslips were
incubated in the primary antibodies followed by the species-specific secondary
antibodies at concentrations indicated in Table 3.2 for 1 hour and 20 minutes,
respectively. All antibodies were diluted in PBS—BSA. Nuclei were counterstained
with DAPI (1:2,000) in PBS. Coverslips were mounted in elvanol containing 0.2%

(w/v) paraphenylene diamine (PPD) and viewed using a Zeiss confocal microscope.

3.2.6. In vitro growth, migration and invasion assays
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For growth assays, triplicate cultures of various cell lines were plated in 24-well
plates at single cell density (2.5 x 10%cm?). At 1, 3, 5 and 7 days after plating,
cultures were trypsinized and cells counted. Each time point represents the average

of three independent experiments.

For cell migration assays, 2x10° cells were resuspended in 500 ul serum-free media
and plated in the upper chamber of transwell inserts (3 pm pore, 6.5 mm diameter;
BD Biosciences). Normal media containing 10% FBS was added to the lower
chamber. Cultures were incubated at 37°C in 5% COz for 24 hours to allow cell
migration. Inserts were transferred into new dishes and rinsed with PBS to remove
un-attached cells. Inserts were fixed with 3.7% formaldehyde (in PBS) for 2
minutes, permeabilized with 100% methanol for 20 minutes and stained with
Giemsa stain for 15 minutes at room temperature. Following staining, membranes
were cut, mounted using permount (Fisher Scientific), viewed under an inverted
microscope using a 20x objective lens and photographed. The migrated cells on the

underside of the membranes were counted in 5 random fields from the photographs.

Matrigel invasion assays were performed according to the manufacturer's protocol
(BD Biosciences). Cells were starved in serum free media 24 hour prior to plating.
For each cell line, 5x10* cells in 0.2 ml serum-free media were plated in the top
compartment of Matrigel-coated invasion chambers (8 um pore PETE membrane).
Fibroblast conditioned media (0.8 ml) was added to the bottom chambers and plates
were incubated overnight at 37°C in 5% COz. After 24 hours, membranes were
recovered and processed as described for the migration assay. Mounted membranes

were viewed under a 20x objective lens of an inverted microscope and
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photographed. The invaded cells were counted in 5 random fields for each

membrane.

Image] Cell Counter program was used to calculate the numbers of
migrated/invaded cells. Counted cell numbers were averaged and histograms were
constructed after normalizing the average numbers of migrated/invaded cells in
each transfected cell line to those of their parental untransfected cells. Each assay

was repeated 2-5 independent times.

3.2.7. Statistical analysis

Values are presented as means + SD. Statistical differences between groups were
assessed by Student’s t-tests. All experiments were performed at least three times.
P-values <0.05 were considered significant.

3.3. Results

3.3.1. Reduced growth, migration and invasion of transfectants expressing

p53, plakoglobin or p53 and plakoglobin

The expression of HA-p53-WT, FLAG-PG-WT and HA-p53-WT/FLAG-PG-WT
in single and double transfectants was validated by western blot using anti-HA and
anti-FLAG antibodies (Figure 3.1A) or p53 and plakoglobin antibodies (Figure
3.2). Figure 3.1B is a phase micrograph of confluent cultures of H1299 cells and its
transfectants expressing HA-p53-WT, FLAG-PG-WT and HA-p53-WT/FLAG-
PG-WT. Relative to H1299 cells, HA-p53-WT expressing transfectants were
slightly larger and flatter. There were also some rounded, detached and presumably

apoptotic cells in these cultures (H1299- HA-p53-WT). In contrast, FLAG-PG-WT
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cells appeared to form a tighter monolayer, consistent with the formation of
adhesive junctions upon plakoglobin expression in these cells (H1299- FLAG-PG-
WT). Interestingly, the double transfectants formed monolayers that were tighter
than HA-p53-WT cells but not as tight as FLAG-PG-WT cells and furthermore

showed some apoptotic cells (H1299- HA-p53-WT /FLAG-PG-WT) (Figure 3.1B).

The functional consequence of WT p53 and plakoglobin expression were assessed
by examining the in vitro growth, migration and invasion of H1299 and H1299
transfectants (Figure 3.1C, D, E). Although the H1299-HA-p53 cells showed
consistently and significantly less growth than H1299 cells (Figure 3.1C, H1299-
HA-p53), the growth of HI1299-FLAG-PG and H1299-HA-p53/FLAG-PG
transfectants was similar to that of H1299 cells until day 5, when cultures became
confluent and cell numbers sharply declined (Figure 3.1C, H1299-FLAG-PG,
H1299-HA-pS3/FLAG-PG). At day 7, H1299-HA-p53/FLAG-PG cells showed
~40% less growth than H1299 cells, whereas cells expressing either p53 or

plakoglobin showed ~30% less growth (Figure 3.1C, Table 3.3).

Individual expression of either p53 or plakoglobin decreased migration by 40% and
21% relative to H1299 cells, respectively, whereas the co-expression of p53 and
plakoglobin reduced migration by 73%. (Figure 3.1D, Table 3.3). Similarly, the
invasiveness of H1299-HA-p53 and H1299-FLAG-PG cells was decreased by 35%
and 21%, respectively, while the invasiveness of H1299-HA-p53/FLAG-PG cells
was decreased by ~75% relative to H1299 cells (Figure 3.1D, Table 3.3). These
results indicated that co-expression of p53 and plakoglobin synergistically and

significantly decreased the migration and invasion of H1299 cells, and were also
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consistent with the reduced growth, migration and invasion of SCC9 cells upon the

exogenous expression of plakoglobin [15, 24].
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3.3.2. Generation and characterization of cell lines expressing wild-type p53

and plakoglobin, various p53 fragments and plakoglobin deletion mutants

To identify the domains of p53 and plakoglobin mediating their interactions, we
created constructs encoding various deletions of FLAG-tagged PG, and constructs
encoding different fragments of HA-tagged p53 (Figure 3.3). The plakoglobin
constructs have been described previously [24,25] and include PG-WT (a.a. 1-745),
-AN (a.a. 123-745; lacking the a-catenin binding domain), -AArm [a.a. 1-216 and
464-745; lacking Armadillo domains 3-7, involved in binding to classic cadherins
and adenomatous polyposis coli)] and -AC (a.a. 687-745; lacking the TA). All
plakoglobin constructs contained a C-terminal FLAG tag (Figure 3.3A, left), and
were previously characterized in SCC9 cells [25]. These constructs were
transfected into H1299 cells and their expression was verified by immunoblotting

with FLAG antibodies (Figure 3.3A, right).

Constructs encoding C-terminally HA-tagged WT and fragments of p53 were
generated, including p53-WT (a.a. 1-393), -NT [a.a. 1- 96; containing both TAs
(a.a. 1-42; 43-92), the nuclear export signal (a.a. 11-27) and the proline-rich domain
(a.a. 64-92)], -DBD [a.a. 51-309; including the second TAD, proline-rich domain,
and entire DBD (a.a. 101-300)], and -CT [a.a. 312-393; containing the 3 nuclear
localization sequences (a.a. 305-322; 369-375; 379-384), tetramerization domain
(a.a. 326-356), and regulatory domain (a.a. 364-393)] (Figure 3.3B, left). The HA-
p53 constructs were transfected into H1299 cells and protein expression was

confirmed by immunoblotting with HA antibodies (Figure 3.3B, right).
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3.3.4. Expression of HA-p53 and FLAG-plakoglobin proteins in H1299

double transfectants

To study p53 and plakoglobin interaction, we generated H1299 double transfectants
coexpressing HA-p53-WT with FLAG-PG-WT, -AN, -AArm or -AC or -FLAG-
PG-WT with HA-p53-WT, -NT, -DBD or -CT. Protein expression in H1299
(Figure 3.4 A, B) double transfectants was confirmed by immunoblotting with HA

and FLAG antibodies (Figure 3.4 A, B).

B H1299-FLAG-PG-WT/HA-p53-
A
B WT DBD NT CT
H1299-HA-p533-WT/FLAG-PG- _ — 58

B  HI29 WT AN AARM AC 2 —16

— —0 P~ )

e <0 R
¢ =] - =2
3 g —_— — ) L W - —17
= — —

~—
=g —— — —
=z

Actin | SEEEED SEE SR

Figure 3.4. Protein expression of WT and fragments of p53 and plakoglobin in double
transfectants. Equal amounts of total cellular proteins from stable H1299-HA-p53-WT
transfectants co-expressing FLAG-PG-WT, - or AN, -AArm or -AC (A) or H1299-FLAG-
PG-WT co-expressing HA-pS3 WT, -NT, -DBD or -CT (B) were processed for
immunoblots with HA or FLAG antibodies as described in Materials and Methods. PG,
plakoglobin; WT, wild type; N, N-terminus; C, C-terminus; Arm, armadillo; DBD, DNA
binding domain.
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3.3.5. DNA binding domain of p53 and the C-terminal domain of plakoglobin

mediate pS3/plakoglobin interactions

H1299 double transfectants co-expressing various pairs of HA-p53 and FLAG-PG
proteins/fragments were processed for reciprocal co-immunoprecipitation and
immunoblotting with HA and FLAG antibodies. Figure 3.5A shows the co-
immunoprecipitation results with H1299 cells expressing HA-p53-WT together
with FLAG-PG-WT, -AN, -AArm or -AC. In lysates from these transfectants,
FLAG antibodies co-precipitated HA-p53-WT with FLAG-PG-WT, -AN and -
AArm, but not with FLAG-PG-AC. The reciprocal co-immunoprecipitation using
HA antibodies confirmed these findings, as FLAG-PG-AC was the only FLAG-PG
fragment that was not co-precipitated with HA-p53-WT. These results suggested
that the C-terminus domain of plakoglobin is necessary for p53/plakoglobin
interactions (Figure 3.5A). When H1299 cells expressing FLAG-PG-WT with HA-
p53-WT, -NT, -DBD or -CT were subjected to reciprocal co-immunoprecipitation,
FLAG antibodies co-precipitated HA-p53-WT and -DBD, but not HA-p53-NT or -
CT (Figure 3.5B). These results were confirmed when HA antibodies co-
precipitated FLAG-PG-WT with HA-p53-DBD, but not HA-p53-NT or -CT
(Figure 3.5B). Taken together, these results suggest that the C-terminus of

plakoglobin, and the DBD of p53 mediate p53/plakoglobin interaction.
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3.3.6. Subcellular location of p53 and plakoglobin in H1299-HA-p53 and

H1299-FLAG-PG transfectants

We previously demonstrated that p53 and plakoglobin interacted in both the
cytoplasm and nucleus [14]. Here, HA-p53 and FLAG-PG transfectants were
processed for immunofluorescence using HA and FLAG antibodies. Figure 3.6A
shows the subcellular localization of HA-p53 in various H1299-HA-p53
transfectants. In HA-p53-WT transfectants, p53 was primarily nuclear, with a faint
cytoplasmic distribution (Figure 3.6A, H1299-HA-p53-WT). In contrast, p53 was
distributed mainly in the cytoplasm of H1299-HA-p53-DBD transfectants with
very little nuclear staining (Figure 3.6A, H1299-HA-p53-DBD). In H1299-HA-
p53-NT transfectants, p53 was mainly cytoplasmic, with a distinct peri-nuclear
distribution (Figure 3.6A, HI1299-HA-p53-NT). Finally, in HA-p53-CT
transfectants, p53 was detected exclusively in the nucleus, resembling the HA-p53-
WT transfectants (Figure 3.6A, H1299-HA-p53-CT). Collectively, these results are
consistent with the presence of the nuclear localization sequence in p53-WT and -

CT, and its absence in p53-DBD and -NT.

H1299 cells expressing FLAG-PG-WT or its three deletions showed different PG
staining and cell morphology (Figure 3.6B). H1299-FLAG-PG-WT transfectants
exhibited typical epithelial morphology and extensive cell-cell contact, with
plakoglobin localized primarily to the areas of cell-cell contact (Figure 3.6B,
H1299-FLAG-PG-WT). HI1299-FLAG-PG-AN and HI1299-FLAG-PG-AArm
transfectants had numerous processes and little cell-cell contact, consistent with

these fragments lacking the ability to interact with o-catenin and cadherins and
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localize to adhesive junctions. In these transfectants, FLAG-PG-AN and FLAG-
PG-AArm were mainly detected throughout the cytoplasm, without any distinct
membrane staining (Figure 3.6B, H1299-FLAG-PG-AN, -FLAG-PG-AArm). In
contrast, FLAG-PG-AC transfectants showed epithelial morphology, but were
flatter than H1299-FLAG-PG-WT cells. In these cells, PG-AC was localized to the
areas of cell-cell contact and cytoplasm, but was clearly excluded from the nucleus
(Figure 3.6B, H1299-FLAG-PG-AC). Together, these results suggest that the C-

terminus of plakoglobin may be necessary for its nuclear localization.
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A HA (p53) / DAPI B FLAG (PG)/DAPI

H1299-UT H1299-UT

H1299-p53-WT H1299-PG-WT

H1299-p53-DBD H1299-PG-AN

H1299-p33-NT H1299-PG-AArm

H1299-p53-CT H1299-PG-AC -

Figure 3.6. Subcellular localization of HA-tagged p53 (A) and FLAG-tagged
plakoglobin (B) proteins in H1299 cells. H1299 cells expressing various FLAG-PG and
HA-p53 proteins were grown to confluency on coverslips, fixed with formaldehyde and
permeabilized with CSK buffer. Coverslips were processed for confocal
immunofluorescence microscopy using FLAG (green) and HA (red) antibodies. Nuclei
were counterstained with DAPI (blue) and coverslips mounted and viewed using a Zeiss
confocal microscope. PG, plakoglobin; WT, wild type; N, N-terminus; C, C-terminus;
Arm, Armadillo; DBD, DNA binding domain. Bar, 40 pum.
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3.3.7. Subcellular distribution of plakoglobin and p53 in H1299 double

transfectants expressing FLAG-PG-WT and HA-pS3-WT, -NT, -DBD or -CT

In HA-p53-WT and FLAG-PG-WT co-transfectants, p53-WT was primarily
nuclear with faint cytoplasmic staining, whereas plakoglobin was localized to the
areas of cell-cell contact as well as in the cytoplasm and nucleus. There was an
overlap between the nuclear p53 and the nuclear plakoglobin staining in these cells
(Figure 3.7, H1299-FLAG-PG-WT/HA-p53-WT). Membrane and cytoplasmic
distribution of plakoglobin was also detected in H1299-FLAG-PG-WT/HA-p53-
NT transfectants, in which p53-NT distribution was almost exclusively
cytoplasmic/perinuclear, overlapping with the cytoplasmic plakoglobin staining.
Nuclear plakoglobin was not detected in these cells (Figure 3.7, H1299-FLAG-PG-
WT/HA-p53-NT). In H1299-FLAG-PG-WT/HA-p53-DBD cells, plakoglobin was
primarily membrane localized, whereas p53-DBD was primarily cytoplasmic and
overlapped with a pool of cytoplasmic plakoglobin (Figure 3.7, H1299-FLAG-PG-
WT/HA-p53-DBD). FLAG-PG-WT/HA-p53-CT transfectants showed membrane
localization of plakoglobin with some homogeneous cytoplasmic staining, whereas
p53-CT was almost exclusively nuclear. No overlap was detectable in the
distribution of the two proteins (Figure 3.7, H1299-FLAG-PG-WT/HA-p53-CT).
These observations are consistent with the presence of nuclear localization signals
in p53-CT and suggest that plakoglobin was co-distributed only with the pS3-WT

and p53-DBD, albeit in the cytoplasm.
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H1299-FLAG-PG-WT/HA-p53-

DAPI FLAG-PG

Merge

Figure 3.7. Subcellular localization of plakoglobin and p53 in H1299 double
transfectants co-expressing FLAG-PG-WT and HA-p53-WT, -NT, -DBD or -CT.
Cultures were processed for double immunofluorescence with FLAG and HA antibodies.
Cells were grown to confluency on coverslips, fixed with formaldehyde and permeabilized
with CSK buffer. Coverslips were processed for confocal immunofluorescence microscopy
using FLAG (green) and HA (red) antibodies. Nuclei were counterstained with DAPI
(blue) and coverslips mounted and viewed using a Zeiss confocal microscope. WT, wild
type; PG, plakoglobin; NT, N-terminus; CT, C-terminus; DBD, DNA binding domain. Bar,
25 pm.
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3.3.8. Subcellular distribution of plakoglobin and p53 in SCC9 double

transfectants expressing HA-p53-WT and FLAG-PG-WT, -AN, -AArm or -AC

In SCCO cells expressing HA-p53-WT and FLAG-PG-WT, the distribution of p53
and plakoglobin was similar to that of H1299-FLAG-PG-WT/HA-p53-WT cells.
plakoglobin was detected at the membrane, and in the cytoplasm and nucleus.
Nuclear plakoglobin was co-distributed with p53, which was almost exclusively
nuclear (Figure 3.8A, SCC9-HA-p53-WT/FLAG-PG-WT). In the HA-p53-
WT/FLAG-PG-AN transfectants, PG-AN was detected throughout the cells,
overlapping in distribution with p53, which was detected in both the cytoplasm and
nucleus (Figure 3.8A, SCC9-HA-p53-WT/FLAG-PG-AN). In HA-p53-
WT/FLAG-PG-AArm transfectants, PG-AArm was detected throughout the cell,
while p53 was primarily nuclear with some cytoplasmic distribution. In these cells,
p53 was co-distributed with PG-AArm in both the cytoplasm and nucleus (Figure
3.8A, SCC9-HA-p53-WT/FLAG-PG-AArm). In contrast to the FLAG-PG-WT, -
AN or -AArm transfectants in which plakoglobin was detected in the nucleus,
FLAG-PG-AC transfectants had no detectable nuclear PG-AC. Due to the
exclusively nuclear distribution of p53 in these cells, no overlap of p53 and PG-AC
was detected (Figure 3.8A, SCC9-HA-p53-WT/FLAG-PG-AC). Collectively, these
results suggested that the C-terminus of plakoglobin is necessary for its localization

to the nucleus and its colocalization with p53.

Protein expression in SCC9 (Figure 3.8B) double transfectants was confirmed by

immunoblotting with HA and FLAG antibodies (Figure 3.8B).
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Figure 3.8. Subcellular localization of plakoglobin and pS53 in SCC9 double
transfectants co-expressing HA-p53-WT and FLAG-PG-WT, -AN, -AArm or -AC. (A)
Cultures were processed for double immunofluorescence with FLAG (green) and HA (red)
antibodies. Nuclei were counterstained with DAPI (blue). WT, wild type; PG, plakoglobin;
N, N-terminus; C, C-terminus; Arm, Armadillo. Bar, 25 um (HA-p53-WT and FLAG-PG-
WT, -AN, -AArm) and 15 pum (HA-p53-WT and FLAG-PG -AC). (B) Total cell lysates
from SCC9 cells expressing HA-p53-WT and FLAG-PG-WT, -AN, AArm or -AC were
processed for immunoblots with FLAG and HA antibodies.
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3.3.9. Cooperation of p53 and plakoglobin in regulating growth, migration

and invasion of H1299 cells

We also investigated the role of various structural domains of p53 and plakoglobin
in their combined inhibition of the growth, migration and invasion of H1299 cells.
In vitro growth assays showed a small reduction (~10%) in the growth of
transfectants expressing FLAG-PG-WT and p53-NT, -DBD or -CT compared to
H1299 cells. In comparison, the growth of H1299-HA-p53-WT/FLAG-PG-WT
cells was reduced by ~40% (Figure 3.9; Table 3.3). In contrast, the growth of H1299
cells expressing HA-p53-WT and FLAG-PG-AN, -AArm or -AC was the same or

slightly less than H1299-HA-p53-WT/FLAG-PG-WT cells (Figure 3.9; Table 3.3).

Figure 3.10A shows the effect of various p53 domains on cell migration in a FLAG-
PG-WT background. The co-expression of HA-pS3-WT and FLAG-PG-WT
reduced the migration of H1299 cells by >70% compared to parental H1299 cells
(Figures 3.1B, 3.10A, Table 3.3). Cells co-expressing FLAG-PG-WT and various
HA-p53 fragments (H1299-FLAG-PG-WT/p53-NT, -DBD, -CT) were more
migratory than HI1299-FLAG-PG-WT/p53-WT cells, but significantly less than
H1299 cells (Figure 3.10A, Table 3.3). Among the fragments, HA-p53-DBD
transfectants were less migratory than HA-p53-NT or CT transfectants, which had

similar migration levels (Figure 3.10A, Table 3.3).

In a HA-p53-WT background, while cells expressing FLAG-PG deletions were less
migratory than H1299 cells, they were significantly more migratory than FLAG-
PG-WT transfectants. When compared, H1299-HA-p53-WT/-FLAG-PG-WT

double transfectants were >70% less migratory than H1299 cells. H1299-HA-p53-
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WT/-FLAG-PG-AN, -AArm, -AC double transfectants showed reduced migration

by 18%, 25% and 29%, respectively (Figure 3.1B, 3.10B, Table 3.3).

Invasion assays showed that HI1299-HA-p53-WT/FLAG-PG-WT double
transfectants, were 75% less invasive than H1299 cells (Figure 3.1C, 3.10C, Table
3.3). The expression of any of the HA-p53 fragments in a FLAG-PG-WT
background (H1299-FLAG-PG-WT/p53-NT, -DBD, -CT) showed increased
invasiveness (Figure 3.10C, Table 3.3), although these transfectants were still less

invasive than the H1299 cells (Figure 3.10C, Table 3.3).

Finally, HA-p53-WT/FLAG-PG-AN and -AArm double transfectants showed a
decrease in invasiveness that was comparable to the FLAG-PG-WT transfectants
(67% and 70% vs. 73%), whereas HA-p53-WT/FLAG-PG-AC transfectants were

significantly more invasive (27% vs. 74%) (Figure 3.10D, Table 3.3).

Together, the results in Figures 3.1, 3.9 and 3.10, and Table 3.3 suggested that: 1)
individual expression of either p53 or PG reduced the growth, migration and
invasion of H1299, 2) p53 alone was more effective than PG alone, 3) the greatest
reduction was attained when both proteins were expressed, 4) the PG C-terminus

domain was necessary for the inhibition of invasion.
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Table 3.3. Summary of changes in the growth, migration and invasion of
H1299 transfectants expressing various combinations of pS3 and PG
constructs. p values, * <0.05, ** < 0.001.

% Decreased

% Decreased

% Decreased

Coll line growth (day 7) migration invasion

Relative to Relative to Relative to
H1299 H1299 H1299

H1299-HA-p53-WT 32%* 40%* 34%*

H1299-FLAG-PG-WT 28%* 21%** 18%*

H1299-HA-p53- 40%* 73%* 75%*

WT/FLAG-PG-WT

H1299-FLAG-PG- Uk 45%%* 12*

WT/HA-p53-NT

H1299-FLAG-PG- 10%** 60** 12*

WT/HA-p53-DBD

H1299-FLAG-PG- gk 45%%* 11*

WT/HA-p53-CT

H1299-HA-p53- 35k 18** 67**

WT/FLAG-PG-AN

H1299-HA-p53- 31* 25%* 70%**

WT/FLAG-PG-AArm

H1299-HA-p53- 28%* 20%* 27%*

WT/FLAG-PG-AC
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3.4. Discussion

We showed that p53 and plakoglobin cooperatively reduced growth and acted
synergistically to decrease cellular migration and invasion. The two proteins
interacted with each other via the DNA-binding domain of p53 and the

transactivation domain of plakoglobin.

p53 prevents cancer development and progression by transcriptionally regulating
genes involved in cell cycle arrest, senescence and cell death/apoptosis [26,27]. p53
also has transcription/nuclear-independent growth inhibitory functions, the most

well-characterized of which is the induction of apoptosis [4, 28-32].

H1299-HA-p53-WT transfectants showed significantly less growth, migration and
invasion. These effects are mediated by the p53 regulation of expression of various
tumor suppressors, signaling molecules and oncogenic and tumor suppressor
miRNAs [33-41]. p53 also promotes stable junction formation and cadherin-
mediated contact inhibition by downregulating transcriptional repressors of E-

cadherin and regulating cytoskeleton remodeling [42-45].

H1299-FLAG-PG-WT cells also showed significant reductions in growth,
migration and invasion. Unlike H1299-HA-p53 transfectants in which growth was
decreased from day 1, the H1299-FLAG-PG cells showed similar growth kinetics
to that of H1299 cells until day 5, when cell numbers declined due to the induction
of contact inhibition of growth. Plakoglobin can also suppress tumor growth by
inducing apoptosis [46-49]. These findings are consistent with the role of

plakoglobin as an essential regulator of cell-cell adhesion and growth [19, 46-49].
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Numerous in vitro and in vivo studies have shown that plakoglobin has
tumor/metastasis suppressor activities. The loss of heterozygosity and low
frequency mutations in the plakoglobin gene was shown to predispose patients to
familial breast and ovarian cancers [50]. Plakoglobin knockdown in human
umbilical vein endothelial cells promoted migration, tubular formation and
angiogenesis [51]. Since these early studies, plakoglobin’s role in the inhibition of
migration and invasion has been demonstrated in many carcinoma cell lines [15,
19,22,52-56]. Consistent with these in vitro observations, loss/changes in
plakoglobin levels and localization are associated with increased metastasis and

poor prognosis in vivo [19].

Plakoglobin also acts as a tumor/metastasis suppressor independent of its role in
cell-cell adhesion. Plakoglobin null keratinocytes expressing exogenous PG-WT, -
AN or -AC showed similar adhesiveness but different migratory properties.
Although PG-WT and -AN transfectants were not migratory, PG-AC transfectants
became migratory via activation of Src signaling [54], suggesting that the TA is
essential for the tumor/metastasis suppressor activity of plakoglobin. Plakoglobin
may regulate gene expression independent of its role in cell-cell adhesion via
interaction with transcription factors including TCF/LEF, CBP, SOX4 and p53 [14,
21, 57-62]. We previously showed that plakoglobin interacted with both WT and
several mutant p53s in various carcinoma cell lines, leading to the induction of a
non-transformed phenotype. This phenotypic transition coincided with changes in
the expression of several p53 target genes, the promoters of which interacted with

both p53 and plakoglobin [14, 15]. Recently, Sechler et al. (2015) reported that
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plakoglobin overexpression in NSCLC cells reduced cell migration via HAI-1
induction, in a p53-dependent manner [22]. These observations are consistent with
the dramatic decreases in the migration and invasion of H1299-HA-p53-WT/
FLAG-PG-WT co-transfectants vs. cells expressing either HA-p53 or FLAG-PG

alone [15, 24, 56].

Co-immunoprecipitation experiments revealed that p53 interacted with the TA
domain of plakoglobin via its DBD. Immunofluorescence staining showed
colocalization of FLAG-PG-WT and HA-p53-DBD within the cytoplasm,
consistent with the absence of nuclear localization signal in p53-DBD. Similar
experiments with cells expressing p53-WT and various plakoglobin deletions
showed a lack of interaction between p53 and PG-AC. In HA-p53-WT-FLAG-PG-
AC cells, plakoglobin distribution was primarily at the membrane, whereas p53 was
exclusively nuclear, further confirming that plakoglobin interacted with p53 via its

C-terminal domain.

We also examined the changes in growth, migration and invasion of H1299 cells
co-expressing various HA-p53 fragments with FLAG-PG-WT or various FLAG-
PG deletions with HA-p53-WT. These results showed that only cells co-expressing
p53-WT and PG-WT exhibited maximum inhibition of cell growth, migration and
invasion. This finding is novel and has not been previously reported. In contrast,
the co-expression of HA-p53-NT, -DBD and -CT with FLAG-PG-WT reduced cell
growth and invasiveness by only ~10-12%. Interestingly, however, all p53
fragments were effective in reducing the migration of H1299 double transfectants

noticeably, albeit not to the level of p53-WT.
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The NT domain regulates the p53-mediated transcription via interaction with the
basal transcription machinery, but also has transcription-independent functions.
The NT also regulates the stability of p53 by binding to Hdm-2, and its regulation
of growth by interactions with apoptotic proteins and FAK [30, 63-66]. However,
both the DBD and the CT are necessary for proper functioning of the NT domain
[67-75], consistent with the limited capacity of NT to reduce the growth and

invasiveness of H1299 transfectants observed in our study.

The DBD construct used in this study also includes the TAD2 domain. The DBD
has a tightly regulated, sequence-specific DNA binding activity and plays a critical
role in p53 transcriptional activity and also mediates the cytosolic function of p53
in regulating apoptosis [5, 72, 76]. Here, we showed that DBD plus TAD2, which
is involved in senescence induction [65], is not sufficient to significantly reduce the

growth and invasiveness of H1299 transfectants.

H1299-HA-p53-CT cells expressed a peptide comprising the oligomerization and
transcriptional regulatory domains [71, 77-80]. The CT domain contains many
phosphorylation and acetylation sites which confer the proper conformation,
localization, stability, DNA binding and transcriptional activity on p53 [5, 75, 81-
84]. Our data showed almost exclusive nuclear localization of p53-CT, while p53-
NT and -DBD proteins were localized entirely within the cytoplasm. However,
while properly localized, the CT domain alone was not sufficient to reduce the

growth and invasiveness of H1299 cells to the same extent as WT-p53.

Surprisingly, the co-expression of p5S3-NT, -DBD or -CT with PG-WT decreased

the migratory properties of the respective H1299 transfectants, albeit to a lesser
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extent than p53-WT. A number of studies have shown interactions between NT,
DBD and CT with various kinases involved in migration including FAK, JNK,
PLK1 and GSK3p [39, 52, 85- 91]. Our results clearly suggest that the NT, DBD
and CT fragments of p53 retain some ability to inhibit cell migration. Whether the
expressed fragments could act as dominant negative peptides to sequester these

kinases is not clear and warrants further investigation.

In a p53-WT background, various plakoglobin deletions exhibited reduced growth
similar to H1299-HA-p53 cells, suggesting that the inhibition of growth by
plakoglobin was primarily mediated by its role in the induction of contact
inhibition. Moreover, p53 may have a larger contribution to the significantly

reduced growth of H1299 cells coexpressing p53 and plakoglobin.

When plakoglobin deletions were coexpressed with p53-WT, these transfectants
were less migratory than H1299 cells (~25% reduction). However, their migration
was significantly higher than H1299-HA-p53-WT/FLAG-PG-WT cells (~75%
reduction). This is consistent with the inability of PG-AN and AArm to interact with
a-catenin and cadherins, respectively, mediate stable junction formation and inhibit
migration. However, while PG-AC expressing cells exhibited extensive cell-cell
contact, they also showed increased migration. This observation is also in keeping
with previous studies demonstrating the involvement of the C-terminal domain of
plakoglobin in inhibition of migration independent of its adhesive properties [54].
Consistent with this observation, PG-AC expressing cells exhibited extensive cell-
cell contact, but increased migration. The invasiveness of H1299-HA-p53-

WT/FLAG-PG-AN and -AArm (with intact TA domain) was similar to that of
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H1299-HA-p53-WT/FLAG-PG-WT cells (~70%), whereas invasiveness was
reduced by only ~27% in H1299-HA-p53-WT/FLAG-PG-AC. These results may
be explained by the loss of interaction between plakoglobin and p53 due to the

absence of TA domain of plakoglobin.

In conclusion, our data indicated that 1) p53 and plakoglobin cooperated to reduce
the growth and acted synergistically to decrease migration and invasiveness of
H1299 cells and 2) the C-terminal domain of plakoglobin interacted with the DBD
of p53, and this interaction was necessary for the maximum inhibition of invasion
by p53 and plakoglobin. The data presented also raises the possibilities that the NT,
CT and DBD fragments of p53 may act in a dominant negative manner to inhibit
signaling pathways involved in migration. Furthermore, the differences in the
migratory properties of the transfectants expressing various p53 fragments relative
to the WT-p53 cells may suggest that the genes/pathways involved in inhibition of
migration by p53 may be different than those involved in its inhibition of growth
and invasion. Future studies will be focused on determining the exact amino acids
involved in p53/plakoglobin interactions and examining the interactions between
p53 fragments and various signaling molecules that regulate cell migration. Since
more than 50% of all tumors and 80% of metastatic tumors have mutations in p53
[1], our observations provide the exciting possibility that plakoglobin may be a

potential therapeutic target for cancers with non-functional mutant p53s.
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Chapter four

Plakoglobin Partially Restores in Vitro Tumor Suppressor
Activities of p5S3%'7°" Mutant by Sequestering

the Oncogenic Potential of B-catenin
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4.1. Introduction

pS3 is a sequence-specific transcription factor with tumor and metastasis suppressor
activities [1, 2]. It plays pivotal roles in the regulation of cell cycle, DNA repair,
senescence, apoptosis, and metabolism by responding to various cellular stress
signals such as DNA damage, hypoxia, mitotic stress, oncogenic signaling etc. [3-
5]. As a transcription factor, p5S3 down-regulates the expression of genes involved
in tumor development and cancer progression [6-8]. pS3 is mutated or lost in over
half of all cancers and more than 80% of metastatic tumors [3,4]. Furthermore,
many tumors that express wild type p53 frequently display aberrations in their p53
pathway [3,4]. In addition to the loss/partial loss of the tumor suppressor activities,
some p53 mutants also gain oncogenic functions (GOF) that contribute to tumor
cell growth, aggressiveness, metastasis and drug resistance [9]. p53 inactivation can
result from genetic alterations, decreased stability, defective post-translational

modifications and interaction with intracellular partners [10].

There are over 30,000 somatic mutations in 7P53, including missense, nonsense,
deletions, frameshifts and temperature sensitive [11]. Most of these changes occur
within the DNA-binding domain with more than 75% single missense mutations,
40% of which are represented by six hot spot mutations (Argl75, Gly245, Arg248,
Arg249, Arg273 and Arg282) that are highly frequent in tumors of different origins
[11]. The hot spot mutations are further classified into two groups: contact
mutations (Arg248, Arg273) that inhibit the direct interaction between p53 and
DNA leading to a loss of sequence-specific transactivation and structural mutations

(Argl75, Gly245, Arg249, and Arg282) that alter the local or global conformation
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of p53 causing indirect loss of DNA binding [12]. Among the hot spot structural
mutations, Argl75His (R175H), is the most frequent GOF p53 mutant [13,14] that
increases cancer cell proliferation, migration and invasion by deregulating different

signaling pathways involved in tumorigenesis and metastasis.

p53 functions are regulated by posttranslational modifications and protein-protein
interactions [15]. We have identified plakoglobin (y-catenin) as an endogenous
interacting partner of wild type as well as a number of most frequent mutant p53s
(mp53) in various carcinoma cell lines of different origins and, have shown that its
interaction with mp53s restores their tumor suppressor activities in vitro [16-19].
Plakoglobin is an Armadillo protein family member and a paralog of B-catenin with
similar dual cell-cell adhesion and signaling activities [20,21]. However, unlike 3-
catenin that acts as an oncogene via its interaction with the transcription factors
TCF/LEF, and activation of Wnt signaling pathway [22,23], plakoglobin generally
acts as a tumor and metastasis suppressor [20,21,24-27]. We have shown that
plakoglobin can act as a tumor and metastasis suppressor by at least three
mechanisms: regulation of stability and subcellular localization of growth
regulating molecules [19,25,28], interaction with transcription factors involved in
the regulation of cell growth and metastasis [16-19,25] and sequestration of [3-

catenin oncogenic activities [29, also see 30-34].

p53 GOF mutations can induce aberrant accumulation and increased transcriptional
activation of B-catenin in cancer cells [35-37]. In the absence of Wnt, the excess
cytoplasmic -catenin is degraded via phosphorylation by the destruction complex

and subsequent ubiquitination and proteasomal degradation [38-40]. Upon Wnt
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activation, the destruction complex is dissociated and B-catenin translocates into
the nucleus, binds to TCF/LEF transcription factors and activates the expression of
Whnt targets including cyclin D1, c-Myc, MMPs, S100A4, and survivin, etc. [38-
43]. Activation of these genes triggers an epithelial to mesenchymal phenotypic
transition, cell proliferation, cell migration and invasion and metastasis [41,43]. B-
catenin is also degraded via its ubiquitination by Siah-1, an E3 ubiquitin ligase that
enhances B-catenin’s proteasomal degradation independent of the canonical Wnt

signaling pathway [44,45].

In the present work, our goal was to assess the effects of GOF p53R!7>H mutant
(herein referred to as p53R!7>H) alone or together with plakoglobin on B-catenin
accumulation in the nucleus and its transcriptional activation. To this end,
plakoglobin deficient and p53 null H1299 cells were transfected with wild type p53
(herein referred to as p53) or p53R!7H with or without plakoglobin. p53R175H
expressing H1299 cells showed significantly higher levels of total and nuclear (3-
catenin relative to the p53 expressing transfectants. H1299 cells expressing
plakoglobin or co-expressing plakoglobin and p53 or p53®7°H had significantly
lower levels of total and nuclear B-catenin. Plakoglobin and B-catenin interacted
with TCF-4 and expression of plakoglobin decreased the f-catenin/TCF interaction.
p53RITH cells showed significant increase in B-catenin/TCF luciferase reporter
activity, whereas co-expression of plakoglobin in these cells significantly decreased
the luciferase activity. B-catenin target genes, c-MYC and S100A4 were upregulated
in p53R17H cells and were significantly downregulated when plakoglobin was co-

expressed. p53R17H expression also increased the in vitro migration and invasion
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of H1299 cells, which were significantly reduced when plakoglobin was co-

expressed.
4.2. Material and methods
4.2.1. Cell lines and culture conditions

The non-small cell lung carcinoma (NSCLC) cell line H1299 have been described
[18] and were grown in Minimum Essential medium (MEM) supplemented with
10% fetal bovine serum (FBS), and 1% penicillin-streptomycin-kanamycin (PSK)
antibiotics. SW620 colon carcinoma cells were grown in Leibovitz's L-15 medium

supplemented with 2 mM L-glutamine, 10% FBS and 1% PSK.
4.2.2. Plasmid construction and transfection

HA-tagged p53 has been described previously [18,46]. The pcDNA3.1/hygro-
plakoglobin construct was generated using the previously described FLAG-tagged-

3R175H

plakoglobin as a template [29]. The p5 expression construct was a gift from

Dr. Giovanni Blandino [47].

Cultures of H1299 cells were established in 60 mm petri dishes and transfected at
60% confluency with 9 pg of DNA using calcium phosphate. Twenty hours after
transfection, cells were rinsed with media and allowed to recover for 24 hours in
complete MEM. Forty-eight hours post transfection, stable transfectants were
selected by placing cultures in selection media containing 500 pg/ml Hygromycin
B (plakoglobin transfectants) or 400 pg/ml G418 (p53%!7°H transfectants) or both
(double transfectants) for 2-3 weeks. Resistant clones were screened for p53 and

plakoglobin expression by immunofluorescence and immunoblot assays and
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maintained in maintenance selection media containing 350 pg/ml Hygromycin B
or 200 pg/ml G418 or both. Positive clones were subcultured by limiting dilution.
Both parental and multiple single cell isolated clones were tested for plakoglobin
and p53 expression using various assays and the results are presented for one

representative clone.

4.2.3. Cell fractionation, preparation of cell extracts and immunoblot analysis

To extract total cellular proteins, confluent 100 mm culture plates were rinsed with
cold PBS and solubilized in SDS sample buffer (10 mM Tris-HCI pH 6.8, 2% (w/v)
SDS, 50 mM DTT, 2 mM EDTA, 0.5 mM PMSF, 1 mM NaF, 1 mM Na3VO4).
Equal amounts of total cellular proteins were separated by SDS-polyacrylamide gel
electrophoresis (PAGE) and transferred onto nitrocellulose membranes (Biorad).
Membranes were incubated in specific primary antibodies overnight at 4°C
followed by the appropriate secondary antibodies at room temperature (Table 4.1).

Membranes were scanned using an Odyssey CLx infrared imaging system.

Nuclear fractions were prepared with Thermo Fisher Scientific NE-PER Nuclear
and Cytoplasmic Extraction Reagents according to the manufacturer's protocol. The
purity of nuclear fractions was verified by immunoblotting with nuclear lamins

antibodies (Table 4.1).

124



Table 4.1. Antibodies and their respective dilutions in specific assays

Assay

Primary antibodies Species WB 1P IF Source/ catalog number

p53- DO-1 Mouse | 1:1000 1:100 - Santa Cruz Biotechnology/
sc-126

Plakoglobin (y-catenin) Mouse | 1:1000 1:100 1:100 | BD Transduction
Laboratories/ 610254

[-catenin Mouse | 1:1000 1:100 1:100 | Sigma Aldrich/ C-7207

B-catenin (nuclear) Mouse | 1:1000 - - Abcam/ ab 19451-50

TCF-4 Mouse 1:500 1:100 - Upstate Biotechnology/ 05-
511

B-actin Mouse | 1:1000 - - Santa Cruz Biotechnology/
sc-47778

Lamin B1 Rabbit | 1:1000 - - Abcam/ ab 16048

Secondary antibodies

Anti-mouse, light chain I[gG | Goat | 1:20000 - - Jackson Immuno Research/
115-625-174

Anti-rabbit, light chain IgG Goat | 1:20000 - - Jackson Immuno Research/
211-652-171

Alexa fluor 488 Mouse - - 1:2000 | Molecular Probes
Biotechnology/ A11029

Alexa fluor 546 Rabbit - - 1:3000 | Molecular Probes

Biotechnology / A11035
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4.2.4. Immunoprecipitation

Cultures (100 mm) were washed with cold PBS containing 1 mM NaF, Na3VO4
and CaCl2 and extracted in 1 ml of lysis buffer (20 mM Tris-HCI pH 7.5, 150 mM
NaCl, 1% NP-40, 0.1% sodium deoxycholate, 100 mM NaF [48], and protease
inhibitor cocktail (1 tablet/10 ml; Roche Diagnostics) for 30 minutes at 4°C on a
rocker. Cells were then scraped and centrifuged at 48000 xg for 10 minutes.
Supernatants were divided into equal aliquots and processed for
immunoprecipitation with p53, plakoglobin and B-catenin antibodies (Table 4.1)
and 40 ul protein G agarose beads (Pierce Biotechnology) overnight at 4°C on a
rocker rotator. To ensure complete depletion, immunoprecipitates were centrifuged
at 14000 xg for 2 min and supernatants were separated processed for a second
immunoprecipitation for 3 hours. Beads from the two immunoprecipitations were
combined and washed three times with the lysis buffer. Immune complexes were
solubilized in 60 ul SDS sample buffer, separated by SDS-PAGE and processed for

western blot as described above.

4.2.5. Immunofluorescence and confocal microscopy

Confluent cell cultures were established on glass coverslips and rinsed with cold
PBS containing 1 mM each of NaF, Na3VO4 and CaCl2. Cells were fixed with
3.7% formaldehyde in PBS for 20 minutes and extracted with cytoskeleton (CSK)
extraction buffer ([48]; 50 mM NaCl, 300 mM Sucrose, 10 mM PIPES pH 6.8, 3
mM MgClI2, 0.5% Triton X-100, 1.2 mM PMSF, and 1 mg/ml DNase and RNase)

for 10 minutes. Coverslips were blocked with 4.0% goat serum and 50 mM NH4Cl
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in PBS containing 0.2% BSA for 1 hour. Coverslips were then incubated in the
specific primary antibodies for 1 hour followed by the secondary antibodies for 30
minutes at concentrations indicated in Table 4.1. Following nuclei staining with
DAPI (1:2000), coverslips were mounted in elvanol containing paraphenylene
diamine [PPD, 0.2% (w/v)] and viewed using a 63X objective lens of a Zeiss

confocal microscope.

4.2.6. RNA Isolation, RT-PCR and real-time PCR

Total RNA was isolated from cells in 100 mm culture dishes with Trizol reagent
(Invitrogen-Thermo Fisher Scientific), treated with DNase [ and reverse-
transcribed with RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo

Fisher Scientific) according to the manufacturer's instructions.

For real-time PCR, Syber green mastermix (Thermo Fisher Scientific) and specific
forward and reverse primers for MYC, S10044 and ACTB (B-actin) (Table 4.2) were

used as per manufacturer's instructions.

Table 4.2. Oligos/primer sequences used for RT-qPCR

Size
Construct Primers )
(nucleotide)
vve Forward 5’-CAGCTGCTTAGACGCTGGATT-3’ 21
c-
Reverse 5’-GTAGAAATACGGCTGCACCGA-3’ 21
Forward 5’-GATGAGCAACTTGGACAGCAA-3’ 21
S10044
Reverse 5’-CTGGGCTGCTTATCTGGGAAG-3’ 21
ACTB PrimePCR SYBR Green Assay ACTB Human, Cat No. 10025636
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4.2.7. Proteasome inhibition assay

Replicate cultures remained untreated or were treated with 1uM of proteasome
inhibitor MG132 (Sigma) for 16 hours. Untreated and treated cells were then lysed
and total cell lysates were used for western blot with B-catenin antibodies as

described above.
4.2.8. Luciferase reporter assay

To measure B-catenin-driven transactivation, parental H1299 cells and H1299
transfectants in confluent 35 mm cultures were co-transfected with 5 pg of
pTOPFLASH plasmid [49] and 3 pg of Renilla luciferase plasmid (pRL-TK)
serving as a control for transfection efficiency [50]. Forty-eight-hour post-
transfection, luciferase activities were measured and normalized to Renilla
activities. Each experiment was repeated 4 times and the mean and standard errors

were calculated.
4.2.9. In vitro migration and invasion assays

For cell migration assays, 2x10° cells were resuspended in 0.5 ml serum-free media
and plated in the upper chamber of transwell inserts (3 um pore, 6.5 mm diameter;
BD Biosciences). Normal media containing 10% FBS was added to the lower
chamber and cultures were incubated for 24 hours at 37°C. Inserts were then
transferred into new dishes, rinsed with PBS to remove unattached cells, fixed with
3.7% formaldehyde for 2 minutes, permeabilized with 100% methanol for 20

minutes and stained with Giemsa stain for 15 minutes at room temperature.
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Following staining, membranes were viewed under an inverted microscope using a

20X objective lens and photographed.

For Matrigel invasion assays, cells were starved in serum-free media for 24 hours
prior to the assay. For each cell line, 5x10* cells in 0.2 ml serum-free media were
plated in the top compartment of Matrigel-coated invasion chambers (8 pm pore
PETE membrane; BD Biosciences). Fibroblast conditioned media (0.8 ml) was
added to the bottom chambers and plates were incubated overnight at 37°C. After
24 hours, membranes were recovered and processed as described for the migration

assay.

The migrated/invaded cells were counted in 5 random fields for each membrane
using the NIH ImageJ Cell Counter program. Numbers for each cell line were
averaged and normalized to those of the parental untransfected cells and histograms
constructed. Histograms represent the average + standard deviation of 3-6

independent assays for each cell line.
4.2.10. Statistical analysis

Values are presented as means + standard deviation. Statistical differences between
groups were assessed by Student’s t-tests. P-value <0.05 was considered

significant.
4.3. Results

4.3.1. Plakoglobin interacted with pS3R!7>H and decreased B-catenin protein

levels
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We first validated the expression of plakoglobin, p53 and p53%!"! in single and
double H1299 transfectants by processing total cell extracts from all transfectants

for western blots with plakoglobin and p53 antibodies (Figure 4.1A).

Previously, we have shown that plakoglobin interacted with p53 and several mp53
proteins using different carcinoma cell lines [16-19]. To verify plakoglobin

interaction with p53R!7H

, we processed H1299 transfectants co-expressing
plakoglobin and p53R'7*"  for reciprocal ~co-immunoprecipitation and
immunoblotting with plakoglobin and p53 antibodies (Figure 4.1B).
Immunoprecipitation of the double transfectants total cell extracts with p53
antibodies precipitated p53 (Figure 4.1B, lane 2; IP: p53, IB: p53) and co-
precipitated PG (Figure 4.1B, lane 6, IP: p53, IB: PG). The reciprocal co-
immunoprecipitation using PG antibodies confirmed this finding, as PG antibodies

co-precipitated p53 (Figure 4.1B, lane 3, IP: PG, IB: p53) and pulled down PG lane

6, IP: PG, IB: PG) from cells co-expressing both proteins.

Figure 4.1C shows plakoglobin and p-catenin protein expression in H1299

transfectants expressing p53 or p53R!7H

with or without plakoglobin. Relative to
H1299 cells, B-catenin levels were decreased in p53 expressing H1299 cells (Figure
4.1C, B-catenin, lane 2), whereas it was increased when p53%7*! was expressed
(Figure 4.1C, B-catenin, lane 3). Plakoglobin expression significantly reduced [-

3R175H

catenin levels in parental as well as p53 or p5 expressing H1299 transfectants

(Figure 4.1C, B-catenin, lanes 4-6).
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4.3.2. Expression of plakoglobin decreased p-catenin protein levels by

promoting its proteasomal degradation

Western blot analysis of the nuclear extracts from parental H1299 cells and H1299
transfectants was used to examine the cytoplasmic and nuclear levels of
plakoglobin and B-catenin (Figure 4.2A, B). The highest level of nuclear and
cytoplasmic B-catenin was detected in H1299-p53R!173H transfectants (Figure 4.2A,
B, B-catenin (N, C) lane 3). In contrast, significantly lower amounts of -catenin
were detected in parental as well as in p53 or p53R!7°H cells when plakoglobin was

co-expressed (Figure 4.2A, B, B-catenin (N) and (C) lanes 4-6).

Examination of B-catenin’s mRNA levels in various transfects showed no
difference (Figure 4.2C) suggesting that changes in B-catenin levels in plakoglobin
expressing cells occurs post-transcriptionally. This led us to assess whether
downregulation of B-catenin is due to the increased proteasomal degradation upon
plakoglobin expression. To address this possibility, we used MG132, which
inhibits 20S proteasome activity and degradation of ubiquitinated proteins [29].
Replicate cultures of H1299 cells and H1299 transfectants remained untreated or
were treated with 1 pM MG132 for 16 hours and processed for western blot using
B-catenin antibodies. As shown in Figure 4.2D, B-catenin was detected as multiple
bands in MG132 treated cultures, which was consistent with the inhibition of
degradation of the ubiquitinated protein. The quantitation of the -catenin protein
levels in untreated and treated cell lines showed that in untreated cultures,
plakoglobin expression increased B-catenin degradation by ~ 5.5-, 3- and 4.6-

fold in H1299, H1299-p53 and H1299-p53R17*H cells, respectively (Figure 4.2E).
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MG132 treatment decreased -catenin degradation by >2- fold in the absence of
plakoglobin, whereas this reduction was significantly higher (up to 7-fold) in
plakoglobin expressing transfectants (Figure 4.2E). These results suggested that
plakoglobin decreased [-catenin levels by promoting its proteasomal

degradation.

We also examined the subcellular distribution of B-catenin in H1299 cells and
H1299 transfectants by confocal double immunofluorescence microscopy (Figure
4.3). Confluent cultures of various cell lines were fixed with formaldehyde,
extracted with CSK buffer and processed for double immunofluorescence staining
with plakoglobin and p-catenin antibodies [48]. There was no detectable
plakoglobin staining in H1299, H1299-p53 and H1299-p53R!75H cells whereas it
was distributed throughout the cytoplasm and at the membrane in H1299-PG, -PG-
p53 and -PG-p53R!7SH transfectants. B-catenin was expressed in all cell lines,
although with different intensity. Relative to H1299 cells, B-catenin staining was
significantly reduced in H1299-p53 transfectants, whereas it was significantly
increased in H1299-p53R!173H cells. Plakoglobin co/expression dramatically reduced
B-catenin’s staining (nuclear and cytoplasmic) in all transfectants, particularly in
H1299-p53R17H cells (Figure 4.3, H1299-PG-p53R17H) These results were
consistent with the western blot studies and further confirmed that plakoglobin

expression reduced B-catenin levels in both cytoplasmic and nuclear pools.
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Figure 4.2. Plakoglobin expression decreases cytoplasmic and nuclear B-catenin levels by promoting its
proteasomal degradation in H1299-p53%17H cells. (A) Equal amounts of nuclear (N) and cytoplasmic (C) extracts
from parental H1299 cells and H1299 transfectants (p53, PG, pS3®7E, PG-p53, PG- p53R17*H) were processed for
immunoblot using plakoglobin and B-catenin antibodies. Lamin-B and actin levels were probed from the nuclear
and cytoplasmic extracts of different transfectants, respectively, to confirm equal loadings. (B) Nuclear -catenin
blots in A were quantitated by NIH ImageJ software. Histograms represent the average =+ standard deviation of four
experiments. All values were normalized to untransfected H1299 cells. PG, plakoglobin; N, nuclear; C, cytoplasmic;
B-cat, p-catenin. P values * <0.05. (C) Total RNA was extracted from parental H1299 cells and H1299
transfectants and subjected to reverse transcriptase polymerase chain reaction (RT-PCR) using specific
primers for CTNNBI (B-catenin). GAPDH expression levels were used as an internal control. (D) Replicate
cultures of H1299 cells and H1299 transfectants (p53, pS3®7°H, PG, PG-p53, PG- p53R17H) remained untreated
or were treated with 1pM MG132 for 16 hours. Total cell extracts from the untreated and treated cells were
processed for immunoblot using P-catenin antibodies. Blots were also probed with B-actin antibodies to confirm
equal protein loadings. UT, untransfected; PG, plakoglobin. (E) Blots in (C) were quantitated and histograms were
generated that represent the average + standard deviation of four separate experiments. All values are normalized

to the untreated cells for untransfected and transfected cells. PG, plakoglobin; UT, untrasfected. P values * <0.05
** <0.001.
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4.3.3. Plakoglobin expression decreased f-catenin interaction with TCF-4,
reduced p-catenin/TCF-4 reporter activity and down-regulated target gene

expression

So far, the results showed that plakoglobin expression decreased the nuclear pool
of B-catenin, which may influence the interaction between B-catenin and its cognate
transcription factor TCF. Therefore, we used co-immunoprecipitation experiments
to examine the interactions between plakoglobin and B-catenin with TCF in
parental H1299 cells and H1299 transfectants. In Figure 4.4A, equal amounts of
total cellular protein from parental H1299 cells and H1299 transfectants were
processed for sequential co-immunoprecipitation and immunoblotting with -
catenin, plakoglobin and TCF antibodies. TCF was co-precipitated with B-catenin
in H1299, H1299-p53 and H1299-p53R!17H cells and its level was significantly
lower in H1299-p53 transfectants (Figure 4.4A, IP: B-cat, IB: TCF). Interestingly,
very little/no TCF was detected in B-catenin precipitates from the plakoglobin
expressing transfectants. In these cells, TCF was only detected in association with
plakoglobin (Figure 4.4A, H1299-PG, -p53, -p53R7SH; [P: PG, IB: TCF).
Consistent with the earlier results, B-catenin levels were decreased in p53 and in all
plakoglobin expressing transfectants (H1299-p53, -PG, -PG-p53, -PG-p53RI7H)
relative to parental H1299 cells (Figure 4.4A; TCE, B-catenin). In contrast, TCF
level was not notably different among various cell lines (Figure 4.4A; TCE, IB:
TCF). These results indicated that plakoglobin co-expression significantly reduced
the interactions between B-catenin and TCF in H1299, H1299-p53 and H1299-

p53R17H transfectants.
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We next assessed if decreased B-catenin/TCF association was reflected in -
catenin-dependent TCF reporter activity (Figure 4.4B). Parental H1299 cells and
H1299 transfectants were transiently transfected with pTOPFLASH and pRL-TK
Renilla reporter constructs and luciferase activities were measured in all cell lines.
As a positive control, SW620, a colon carcinoma cell line expressing mutant APC
and signaling-competent B-catenin [51] was included in these studies (Figure 4.4B).
The luciferase activities of all cell lines were normalized to that of parental H1299
cells. The results showed no significant differences in the luciferase activity among
H1299, H1299-p53 and H1299-PG cells (Figure 4.4B). In contrast, relative to
parental H1299 cells, H1299-p53R%17! transfectants showed over 60% higher
luciferase activity (Figure 4.4B), which was significantly reduced when
plakoglobin was co-expressed in these cells (Figure 4.4B, H1299-PG-p53RI73H),
Based on these observations, we reasoned that decreased [-catenin/TCF
transactivation should result in decreased expression of their target genes.
Specifically, we focused on c-MYC and S10044, two B-catenin/TCF target genes
that are known to participate in tumorigenesis and metastasis [41-43, 52-54]. RT-
qPCR experiments showed that the levels of c-MYC and S10044 mRNA were
significantly increased in H1299-p53R17H transfectants compared to H1299 cells
(Figure 4.4C). Co-expression of plakoglobin in these cells (H1299-PG-p53R175H)
led to over 3- and 5-fold decrease in the c-MYC and SI10044 mRNA levels,
respectively (Figure 4.4C). Together, the results of the experiments in Figure 4.4

suggested that plakoglobin expression in p53R!7>H cell reduced B-catenin/TCF
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association and the activation of at least two of their target genes involved in

tumorigenesis and metastasis.
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4.3.4. Plakoglobin expression decreased migratory and invasive properties of
p53RITSH expressing H1299 cells

To assess the biological significance of decreased B-catenin/TCF transactivation,
we examined the in vitro migration and invasion of parental H1299 cells and H1299

transfectants.

As demonstrated in Figure 4.5, p53 and plakoglobin expression decreased
migration by 45% and 34% relative to H1299 cells, respectively, whereas co-
expression of both proteins reduced migration by 73% (Figure 4.5, migration;
H1299-p53, H1299-PG and H1299-PG-p53; also see [18]). In contrast, expression
of p53R!17H increased the migration of H1299 cells by ~ 20% (Figure 4.5, migration,
H1299- p53R17*H) " which was reduced by >40% when plakoglobin was co-

expressed (Figure 4.5, H1299-PG-p53R17H),

Similarly, the invasiveness of H1299-p53 and H1299-PG cells was decreased by
60% and 33% respectively, whereas the invasiveness of H1299-PG-p53 cells was
decreased by 68% relative to parental H1299 cells (Figure 4.5, invasion; H1299-
p53, H1299-PG and H1299-PG-p53, also see [18]). In contrast, p53R!7*H expression
in H1299 cells increased their invasiveness by 30%, and the co-expression of
plakoglobin in these cells reduced their invasiveness by >60% (Figure 4.5,
invasion, H1299-p53R175H and H1299-PG-p53R175H) These results indicated that
plakoglobin acted synergistically with p53 to decrease migration and invasion and

significantly reduced the migration and invasion promoting effects of p53R17°H,
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4.4. Discussion

p53R17HM is one of the most common hot spot mutations that are frequently

expressed in many cancers [13,14]. p53R!7H

expression has been shown to increase
genomic instability [55], induce the expression of oncogenic miRNAs [56,57] and
promote the expansion of cancer stem cell population [58], epithelial to
mesenchymal transition [59-61] and drug resistance [62-64]. Furthermore, p53R!17°H
mice models exhibit tumor formation and metastasis characteristics of the inherited

Li-Fraumeni syndrome, the disease that is associated with the germline mutations

in the TP53 gene [65,66].

In the present study, we used the invasive and metastatic H1299 cells with activated
Wnt/B-catenin pathway [67]. This cell line is plakoglobin deficient and p53 null
and has been extensively used to assess the function of p53 and p53 mutants. We

showed that the expression of p53R!173H

increased B-catenin levels, its interaction
with TCF and activation of ¢c-MYC and S100A44, two known B-catenin/TCF target
genes [41-43, 52-54]. Increased B-catenin levels and activation were concurrent
with increased migration and invasion of p53®17H expressing cells. We further
demonstrated that the oncogenic effects of p53R!7>H were counteracted by the co-

3R175H and

expression of plakoglobin in these cells. Plakoglobin interacted with p5
reduced B-catenin level, its interaction with TCF and the expression ¢-MYC and
S10044. These changes were concurrent with decreased migration and invasion of

these transfectants and are consistent with the previously reported activated Wnt/p-

catenin pathway in these cells [67].
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B-catenin is the main downstream effector of the canonical Wnt signaling pathway
[38-45]. In the absence of Wnt signal, Axin/APC/GSK3B/CKI form the destruction
complex that recruits and phosphorylates the excessive cytoplasmic B-catenin,
which is subsequently ubiquitinated and degraded by the proteasome pathway [38-
40]. In the presence of Wnt, the destruction complex becomes dissociated and the
stabilized B-catenin translocates into the nucleus, binds to TCF/LEF transcription
factors and induces the expression of Wnt target genes involved in tumorigenesis
and metastasis [38,39]. B-catenin can also be activated independent of the Wnt
signal. Mutations that interfere with B-catenin’s interaction with the components of
the destruction complex or with the phosphorylation of its N-terminal
serine/threonine residues (S33, S37, S45, T41] that are required for degradation

also activate B-catenin in the absence of the Wnt signal [68,69].

In agreement with previous reports, we showed that wild type p53 expression in
H1299 cells reduced the total and nuclear B-catenin levels and its transcriptional
activity. There are several mechanisms by which p53 reduces B-catenin protein
levels and activation. p53 interacts with and activates GSK3[3 and/or accelerates the
movement of the scaffolding protein, Axin, into the destruction complex both of
which lead to increased phosphorylation of p-catenin and its subsequent
degradation [70,71]. p53 also inhibits the activity of CK2, which phosphorylates
and protects B-catenin from proteasomal degradation [72]. Furthermore, p53 can
inhibit Wnt pathway by inducing the expression of the Wnt antagonizer, Dickkopt-
1 [73] and the E3 ubiquitin ligase Siah-1 that mediates the degradation of B-catenin

independent of the GSK3f [74-76]. In contrast GOF mutant p53s have been shown
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to inhibit B-catenin degradation and promote its oncogenic activities in various

3R175H

tumor cell lines and tissues [35-37,77]. Here, we showed that p5 expression

significantly reduced B-catenin degradation via the proteasome pathway. p53R175H
expressing cells had increased total and nuclear B-catenin and B-catenin/TCF

reporter activity and showed upregulation of the Wnt target genes [41-43, 52-54,

78-80].

Previously, we have shown that plakoglobin interacted with both wild type and a
number of mutant p53 proteins and this interaction was direct (data not shown) and
mediated by the DNA binding domain of p53 and the C-terminal transactivation
domain of plakoglobin [16-19]. We showed that plakoglobin and p53 associated
with promoters of a number of p53 target genes including tumor suppressors SFN
(14-3-36) and NME! and the oncogenic genome organizer SATBI [16-19].
Furthermore, plakoglobin expression in plakoglobin deficient and mp53 expressing
cells reduced the in vitro growth, migration and invasion of these cells [16,17,19].
Plakoglobin has also been shown to regulate the expression of HAI-1 and to reduce
migration in a p53 dependent manner in NSCLC cells [27]. Co-
immunoprecipitation experiments revealed that plakoglobin interacted with
p53RI7SH Furthermore, expression of plakoglobin in p53R'75H cells promoted B-
catenin’s proteasomal degradation and significantly reduced its total and nuclear
levels, as had been reported previously [81]. Plakoglobin expression also reduced
B-catenin/TCF-4 interaction, and the expression of c-MYC and S100A44. These
observations are supported by our previous microarray studies, which identified

p44 and p65 subunits of the 26S proteasome and S100A4 as transcripts that were
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upregulated and downregulated, respectively, in plakoglobin expressing cells
relative to their plakoglobin deficient and mutant p53 expressing parental cells [29].
S100A4, a recently identified target of B-catenin/TCF [82] was shown to be an early
factor in EMT and its elevated level in various carcinoma cells and cancers was

correlated with poor prognosis [83,84].

Apart from increasing [B-catenin’s proteasomal degradation, plakoglobin may
inhibit B-catenin’s transcriptional activity. -catenin and plakoglobin interact with
two sequential and non-overlapping domains in the N-terminus of TCF [32].
However, whereas binding of the B-catenin/TCF complex to DNA is highly
efficient; plakoglobin/TCF binding to DNA is inefficient with significantly weaker
transcriptional activities [85-87]. Our co-immunoprecipitation studies showed
significant reduction in B-catenin-TCF association in plakoglobin expressing cells.
These results further support the decreased c-Myc and S100A4 expression in
H1299-PG- p53R!7""  transfectants and are consistent with our previous
observations in another mutant p53 expressing carcinoma cell line [29]. Studies
from other groups have also demonstrated that transcriptional activity of B-catenin
downstream of the Wnt signaling was significantly reduced upon increased
accumulation of plakoglobin in the nucleus [32,33]. Plakoglobin also repressed the
Wnt/B-catenin signaling and target genes expression (DICER and AXIN2) via its
assocoation with the transcription factor SOX4 and inhibition of B-catenin-SOX4

interaction [26].

In addition to upregulating the Wnt pathway, p53R!7*H has been shown to activate

other signaling pathways including EGFR/PI3K/AKT, TGF- and c-Met leading to
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enhanced migratory and invasiveness of cancer cells [88-92]. Our results also

3R175H and

showed increased migration and invasion of H1299 cells expressing p5
their significant decrease when plakoglobin was co-expressed in these cells. While
the effects of mp53s on enhancing migratory and invasive properties of cancer cells
has been studied extensively, the effects of plakoglobin on hindering the in vitro

3R175H

metastatic features of p5 is novel and has not been previously reported.

In conclusion, our data suggest plakoglobin promoted B-catenin’s proteasomal
degradation and reduced its transcriptional activation independent of p53 status.

Furthermore, its co-expression with p53R!7H

clearly counteracted the gain of
function activities of this mutant, which is mediated, at least in part, by activating
the oncogenic function of B-catenin. These observations together with our previous
studies suggest that plakoglobin may counteract oncogenic functions of mutant p53
by at least two different mechanisms: plakoglobin augments -catenin proteasomal
degradation and reduces Wnt pathway activation and, it associates with mutant
p53s and may either interfere with the expression of mutant p53 target genes and/or
enable them to interact with and regulate wild type p53 target genes (Figure 4.6).
The latter possibility is supported by our previous studies that have shown
activation of p53 target genes in plakoglobin deficient and mutant p53expressing
cell lines upon plakoglobin expression as well as our microarray experiments that
have identified a number of growth/metastasis inhibiting and oncogenic promoting
targets that are up- and down regulated, respectively, in mutant p53 expressing cells

when plakoglobin is expressed [16,17]. Overall, these results suggest that

plakoglobin may act as a tumor and metastasis suppressor protein in mutant p53
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expressing cells by down-regulating Wnt/B-catenin axis and oncogenic activation
of mutant p53s, two pathways that are known to be frequently dysregulated in many
cancers. These findings provide insight into the possibility of developing
therapeutic drugs that can mimic plakoglobin to concurrently inhibit the oncogenic
effects of B-catenin and restore wild type tumor suppressor activities of mutant p53s

in cancer.
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5.1. Thesis overview

Plakoglobin was initially discovered as a junctional protein with essential roles in
regulating cell-cell adhesion [1-3]. Further studies suggested that plakoglobin may
participate in various signaling pathways [4,5]. While many studies focused on
deciphering the role of other catenin proteins in tumor development and cancer
progression, little was known on how plakoglobin regulated malignant

transformation of cells.

The earliest clue as to the tumor suppressor activity of plakoglobin came from a
study that demonstrated its loss of heterozygosity and low frequency mutations in
sporadic breast and ovarian cancers [6]. Following this initial study, it was shown
that combinatory loss of plakoglobin and other junctional proteins promoted tumor
development, cancer metastasis, and resulted in poor clinical outcome [7-14].
Further investigations have demonstrated that the sole loss of plakoglobin also
triggers tumor formation and cancer progression [15-20]. In esophageal cancer,
concurrent decrease in the expression of E-cadherin and plakoglobin led to poor
differentiation and decreased survival rate, whereas reduced plakoglobin
expression promoted lymph node metastasis [21]. Decreased expression levels of
plakoglobin has also been correlated with poor survival rate and metastasis in renal
carcinomas [15], lymph node metastasis in oral squamous carcinomas [20] and
bladder cancer [22], pulmonary metastasis in Wilms’ tumor [19] and soft tissue
sarcomas [18] as well as myometrial metastasis in endometrial cancer [23].
Furthermore, in prostate tumors plakoglobin expression was lost due to the

hypermethylation of its gene [24]. Reduced expression of plakoglobin and its
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altered cellular distribution were detected in thyroid tumors [25] and oropharynx

squamous cell carcinomas [17].

Taken together, while loss or decreased expression of plakoglobin and/or altered
cellular distribution of this protein have been identified as one of the contributing
factors to tumor development and metastatic progression of different cancers.
However, very little was known about the mechanisms underlying these effects of
plakoglobin. Work from our lab has provided experimental evidence that suggest
three mechanisms by which plakoglobin may exert its tumor and metastasis
suppressor functions: sequestration of 3-catenin oncogenic function, regulation of
levels and localization of growth regulating molecules and interaction with
transcription factors involved in regulation of cell growth and metastasis. Our
laboratory has shown that tumor and metastasis suppressor effects of plakoglobin
may, at least partially, be mediated by its interaction with mutant p53 proteins. In
this thesis, I have examined plakoglobin interaction with wild type and several
mutant p53s and investigated the molecular and functional significance of this

interaction.

5.1.1. Tumor and metastasis suppressor functions of plakoglobin in ovarian

cancer cell lines

The ovarian high grade serous carcinoma is the most common and aggressive form
of ovarian tumors with epithelial origin [26,27]. Unlike the low grade serous
carcinoma, more than 80% of ovarian high grade serous tumors harbor mutations

in TP53 [26,27]. In general, inactivation of TP53 occurs at later stages in tumor
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progression, however in these tumors 7P53 mutations occur at early stages of
cancer development and contribute to both initiation and metastatic progression of

this cancer [28-30].

Like any other carcinoma, loss of cell-cell adhesion and aberrant expression of
cadherins and catenins are critical steps during the development of ovarian tumors
[31-35]. Disruption of cadherin-catenin complexes leads not only to the loss of cell-
cell adhesion but also the liberation of catenins and their subsequent interaction
with other cellular proteins and activation of signaling pathways involved in
tumorigenesis and metastasis [36,37]. In this context, B-catenin has oncogenic
function, whereas plakoglobin acts as a tumor and metastasis suppressor protein
[36,37]. The oncogenic activation of B-catenin is well documented in ovarian
cancer [38]. In contrast, very little is known about the functional significance
plakoglobin in this cancer. However, the loss of heterozygosity of the plakoglobin
gene has been reported in sporadic ovarian cancer, whereas its nuclear
accumulation was correlated with better survival rate in ovarian cancer patients [6,
39]. In the second chapter, we have investigated the tumor and metastasis
suppressor functions of plakoglobin in epithelial ovarian cancer cell lines with

mutant p53 expression and different adhesion profiles.

We showed that plakoglobin-deficient ovarian cancer cells that express N-cadherin
and mutant p53 were highly migratory and invasive, whereas those that express
mutant p53 and plakoglobin were not. The exogenous expression of plakoglobin or
knockdown of N-cadherin significantly reduced migration and invasion.

Plakoglobin interacted with wild type and mutant p53 proteins and associated with
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E- or N-cadherins in adhesion complexes. N-cadherin is a mesenchymal marker
that promotes tumorigenesis and metastasis. Our laboratory has shown that
plakoglobin was able to induce a mesenchymal to epithelial phenotypic transition
by sequestering and stabilizing N-cadherin at the membrane (40). Consistent with
these studies, we detected a significant reduction in growth, migration and invasion
of plakoglobin expressing and N-cadherin knockdown cells (41). Our data
suggested that plakoglobin induced growth and metastasis inhibitory effects in

ovarian cancer cells expressing N-cadherin and mutant p53.

5.1.2. Functional significance of plakoglobin and p53 interaction

Previous work form our laboratory has demonstrated that plakoglobin interacted
with wild type and a number of mutant p53s in both the cytoplasm and nucleus and
this interaction enhanced wild type p53’s transcriptional activity and restored
mutant p53s tumor suppressor function. These experimental evidence suggested
that plakoglobin mediated its tumor and metastasis suppressor functions, at least
partially, by interacting with mutant p53 proteins and changing their target genes
[42,43]. In Chapter 4, we showed that the individual expression of wild type p53
and plakoglobin in p53 null and plakoglobin deficient H1299 cells significantly
decreased their growth, migration and invasion in vitro. Furthermore, this
inhibitory effect was significantly augmented when the two proteins were co-
expressed. These observations strongly suggested that p53 and plakoglobin

cooperated to promote a non-transformed and non-invasive phenotype in vitro.
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In this Chapter, we mapped the interacting domain of p53 and plakoglobin. H1299
cells were co-transfected with a combination of constructs encoding wild type
plakoglobin with wild type or various fragments of p53. Reciprocal co-
transfectants, were generated expressing wild type p53 with wild type or different
deletions of plakoglobin. Characterization of transfectants using confocal
immunofluorescence microscopy and co-immunoprecipitation showed that: 1) p53
and plakoglobin interaction was mediated by the DNA binding domain of p53 and
the C-terminal transactivation domain of plakoglobin, and 2) p53 and plakoglobin
cooperatively decreased growth whereas they acted synergistically to significantly
reduce in vitro migration and invasion and 3) the C-terminal domain of PG was

important for its invasion inhibitory function via its interaction with p53.

5.1.3. Plakoglobin counteracts mutant p53 tumor promoting activity by

suppressing pB-catenin’s oncogenic potential

Work from our laboratory and other researchers have shown that one way that
plakoglobin may act as a tumor and metastasis suppressor protein is by changing
B-catenin levels/subcellular localization and/or its oncogenic potential [44-47]. pS3

GOF mutants have been shown to activate B-catenin oncogenic function [48-50].

In Chapter 4, we examined the effects of p5S3R!7°H one of the most frequently
expressed p53 mutations [51], on B-catenin accumulation and transcriptional
activation and their modification by plakoglobin expression. Our results showed
that pS3R17H expression in H1299 cells increased total and nuclear levels of -

catenin and its transcriptional activity concurrent with increased in vitro migration
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3RITSH cells

and invasion of the transfectants. Co-expression of plakoglobin in p5
promoted B-catenin’s proteasomal degradation, decreased its total and nuclear
levels and its transactivation activity. B-catenin target genes, Myc and S10044 were
upregulated in p53R!7*H expressing cells suggesting that the oncogenic function of
this mutant is, at least in part, mediated by B-catenin activation. Co-expression of
plakoglobin in p53R!175H transfectants significantly decreased the expression of
MYC and S10044 concurrent with a significant reduction in their migration and
invasion in vitro. Together, these results suggest that plakoglobin may act as a
tumor and metastasis suppressor protein by down-regulating the oncogenic effects

of p53R173H and Wnt/B-catenin axis, two pathways that are known to be frequently

dysregulated in many cancers.

5.2. Potential model for the tumor and metastasis suppressor functions of

plakoglobin

Experimental findings from this thesis and the previous work in our laboratory and
other research groups suggest that plakoglobin may act as a tumor and metastasis
suppressor protein by several mechanisms (Figure 5-1). First, plakoglobin
participates in the formation of adhesive junctions that are necessary for the
maintenance of tissue integrity and induction of contact inhibition of growth and
motility [52,53]. Second, plakoglobin interacts with various cellular protein
partners and regulates their levels, subcellular localization and functions [54,55].
Our laboratory has shown that plakoglobin expression in plakoglobin deficient
carcinoma cells increased the metastasis suppressor protein Nm23 protein levels

[54]. Plakoglobin interacted with Nm23 and increased its stability by sequestering
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it at the membrane [54]. Plakoglobin interacted with the dual tumor suppressor and
oncogene NPM, promoting its tumor suppressor function [55]. Third, plakoglobin
may regulate gene expression via its interaction with transcription factor p53 [56].
The focus of our laboratory is to study the functional significance of plakoglobin
and p53 interaction. We showed that plakoglobin interacted with wild type and a
number of mutant p53 proteins, which led to the induction of a less proliferative,
migratory and invasive phenotype [41-43,56]. This phenotypic transition may be
partially mediated by regulation of wild type p53 target genes by mutant p53s
and/or transcriptional repression of mutant p53 targets when plakoglobin is
expressed. Lastly, plakoglobin may sequester oncogenic functions of -catenin by
increasing its proteasomal degradation and decreasing its transcriptional activity

[44,57,58 and Chapter 4] (Figure 5-1).
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5.3. Future directions

5.3.1. Identifying the exact amino acids involved in plakoglobin/p53

interaction

Previously, we performed in vitro pull down assays and confirmed that plakoglobin
directly interacted with wild type p53. We successfully mapped the interacting
domains of plakoglobin and p53. Subsequently, our collaborators in Dr. Jack
Tuszynski group (Department of Oncology, University of Alberta), performed 3D
modeling of PG and p53 interaction interface and tentatively identified the amino
acids involved in this interaction. To verify the results of computational modeling,
site-directed mutagenesis should be used to mutate each identified amino acid in
wild type plakoglobin and p53. To verify the results of computational modeling,
site-directed mutagenesis should be used to mutate each identified amino acid in
wild type plakoglobin and p53 and subsequently in vitro pull down assay will need

to be carried out to examine plakoglobin/p53 interaction.

Furthermore, similar 3-dimensional modeling experiments followed by site-
directed mutagenesis and in vitro pull down assays should be used to identify the

amino acid sequences involved in plakoglobin and mutant p53 proteins interaction.

The results from the in vitro pull down assays should be further validated by
expressing the mutant plakoglobin and p53 constructs in human cell lines and

confirming their interaction by co-immunoprecipitation studies.
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5.3.2. Identifying mutant p53 target genes regulated by Plakoglobin

In this study, we have shown that plakoglobin down-modulates the oncogenic
function of p53R*!17°" by inhibiting tumorigenic effects of B-catenin. However,
plakoglobin may also regulate the expression of mutant p53 target genes
independent of the Wnt pathway. As a starting point to identify mutant p53 target
genes that are regulated by plakoglobin, microarray analyses should be performed

using H1299 cells expressing p53R!17H

with or without plakoglobin. The results of
microarray studies should be further validated by performing biochemical assays

including quantitative RT-PCR and western blot.

ChIP experiments should be carried out to assess the association of p53*17°H with
the promoter of the identified target genes in the presence or absence of plakoglobin
expression. Luciferase reporter assays can be performed to further validate the

effects of plakoglobin on the transcriptional activity of pS3R!17°H,

5.3.3. Investigating the role of plakoglobin in modulating the oncogenic effects

of p53 contact mutations

Here, we have looked at the effects of structural mutant p53%!">" on modulating the
oncogenic potential of B-catenin in the presence and absence of plakoglobin
expression. Future studies can focus on determining whether contact p53 mutants
(R273H, R248Q and R248W) may induce oncogenic functions of f-catenin and if
plakoglobin may inhibit their tumor growth and metastasis by inhibiting B-catenin’s
oncogenic activity. These studies can be performed as described in Chapter 5 and
section 5.3.2. of this chapter.
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5.3.4. Assessing the role of plakoglobin in regulating mutant p53 interaction

with p63 and p73

As described in Chapter 1 (section 1.7.2), one mechanism by which GOF mutant
p53 proteins act as oncogenes is by interacting with and inhibiting tumor suppressor
activities of p63 and p73 [59-61]. As a future direction, the effects of plakoglobin
expression on the mutant p53 proteins interaction with p63 or p73 can be assessed.
Co-immunoprecipitation studies should be performed to assess the association of
mutant p53 with p63 or p73 in the presence or absence of plakoglobin. ChIP
experiments can be performed to examine the association of p63 with the promoter
of its target genes in cells expressing mutant p53 proteins and plakoglobin
individually or in pair. Transcriptional activity of p63 and p73 can be assessed using
luciferase reporter in cells expressing mutant p53 proteins with or without

plakoglobin.

5.3.5. Assessing the effects of plakoglobin/p53 interaction on in vivo

tumorigenesis and metastasis

The studies presented in this thesis and previous work from our laboratory have
shown plakoglobin expression significantly reduced in vitro tumorigenesis and
metastasis in breast, ovarian, squamous cell, and non-small cell lung carcinoma cell
lines expressing mutant p53 proteins. To validate the functional significance of
these observations in vivo, potential tumor and metastasis suppressor effects of
plakoglobin should be further assessed using xenograft animal models. Plakoglobin

and p53 deficient cancer cell lines expressing plakoglobin, wild type and mutant
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p53s individually or in pair can be used to inject immunodeficient mice models to

assess in vivo tumor growth and metastasis.

5.4. Concluding remarks

In summary, my thesis further supports the earlier findings that have shown
plakoglobin interacts with wild type and mutant p53 proteins to regulate
tumorigenesis and metastasis. Here, for the first time we identified the interacting
domains of plakoglobin and p53 and showed their cooperation in reducing in vitro
growth, migration and invasion of cancer cells. Furthermore, we showed that

3Rl75H

plakoglobin down-regulated the oncogenic functions of p5 structural mutant

at least partially by sequestering the oncogenic effects of -catenin.

Experimental evidence from this work elucidated some of the underlying
mechanisms involved in tumor and metastasis suppressor effects of plakoglobin via
its interaction with wild type and mutant p53s and modulation of Wnt/B-catenin
axis, two pathways that are known to be frequently dysregulated in many cancers.
The larger implication of these studies is the potential for the development of
therapeutic drugs that can mimic plakoglobin in order to simultaneously target the
Wnt/B-catenin pathway and restoring wild type activities of mutant p53 proteins.
Designing drugs based on the plakoglobin/p53 interaction has the advantage of
mimicking the interaction of an endogenous cellular protein that normally interacts

with p53 and therefore, may have less toxicity and side effects.
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