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Abstract 

Plakoglobin (γ-catenin) is an Armadillo protein family member and a paralog of β-

catenin with similar dual cell-cell adhesion and signaling activities. These proteins 

interact with cadherins at the membrane and mediate cell-cell adhesion. In the 

cytoplasm, they interact with an array of cellular protein partners to regulate 

signaling pathways involved in tumorigenesis and metastasis. Recently, our 

laboratory identified p53 as one of the interacting partners of plakoglobin. p53 is a 

tumor suppressor and transcription factor that in response to various stress signals 

activates physiological pathways that regulate cell cycle arrest, DNA repair and 

apoptosis. More than half of all cancers harbor a mutant form of p53. In addition to 

the loss of tumor suppressor activity, a number of most frequent mutant p53 

proteins acquire oncogenic properties and are known as gain of function mutants. 

Here, we first assessed the in vitro tumor and metastasis suppressive functions of 

plakoglobin in high-grade ovarian serous carcinoma cell lines expressing wild type 

or mutant p53 proteins with different adhesion profiles. We showed that 

plakoglobin-deficient ovarian cancer cells that express N-cadherin and mutant p53 

were highly migratory and invasive, whereas those that express mutant p53 and 

plakoglobin were not. Exogenously expressed plakoglobin colocalized with 

cadherins in adhesion complexes, interacted with wild type and mutant p53 proteins 

and significantly reduced growth, migration and invasion of ovarian cancer cells 

expressing N-cadherin and mutant p53 in vitro.  

Next, we mapped the interacting domain of p53 and plakoglobin and showed that 

p53/plakoglobin interaction was mediated by the DNA binding domain of p53 and 
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the C-terminal transactivation domain of plakoglobin. We showed that wild type 

plakoglobin and wild type p53 acted synergistically to significantly reduce in vitro 

growth, migration and invasion of transfectants relative to parental cells. 

Additionally, the C-terminal of plakoglobin was necessary for its invasion 

suppressor activity. 

We examined the effects of one of the most frequently expressed p53 mutations 

p53R175H (Arginine 175 to Histidine) on β-catenin accumulation and transcriptional 

activation and their modifications by plakoglobin co-expression. p53R175H 

expression in plakoglobin null cells increased total and nuclear levels of β-catenin 

and its transcriptional activity. Co-expression of plakoglobin in these cells 

promoted β-catenin’s proteasomal degradation, and decreased its nuclear levels and 

transactivation. Wnt/β-catenin targets, c-MYC and S100A4 were upregulated in 

p53R175H cells and were downregulated when plakoglobin was co-expressed. The 

plakoglobin-p53R175H cells also showed significant reduction in their migration and 

invasion in vitro.  

Taken together, the experimental evidence from this PhD project strongly suggest 

that underlying mechanisms for tumor and metastasis suppressor effects of 

plakoglobin may be its interaction with mutant p53 proteins and down-modulation 

of -catenin-TCF axis. 
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1.1.Cancer 

An estimated 206,200 new cases of cancer will be diagnosed in Canada in 2017 and 

80,800 patients will die from the disease [1]. Cancer is not only a life-threatening 

illness but it imposes a huge financial burden on the health care system. Tumor 

development is a complex process resulting from an uncontrolled proliferation of 

cells [2]. Further complication occurs when cancer cells acquire the ability to 

dissociate from the primary site and spread to the other locations in the body, which 

is a fatal process called metastasis [3]. Defective cell-cell adhesion is one of the key 

contributing factors to both initiation and metastatic progression of different types 

of cancer [4-6]. 

Carcinomas are the most common type of cancer that originate from epithelial cells. 

Epithelial tissues cover the surface of the body and line the internal cavities [7]. 

The structural integrity and normal functions of these tissues is dependent on proper 

cell-cell adhesion and interactions mediated by adhesive complexes including 

adherens junctions and desmosomes [8]. Adherens junctions are ubiquitously 

formed in both epithelial and non-epithelial tissues [9], whereas desmosomes are 

intercellular adhesive complexes that hold epithelial cells together and impart 

tensile strength and resilience to non-epithelial cells that endure mechanical stress 

such as cardiac muscle and meninges [10]. Regardless of their differences, both 

adherens junctions and desmosomes are cadherin-based adhesion complexes.  

Although originally identified as structural proteins with a “glue-like” function, 

cadherin-based cell adhesion complexes have subsequently been shown to regulate 
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signaling pathways through their interactions with an array of functionally diverse 

proteins, including receptor tyrosine kinases and phosphatases, tumor suppressors 

and transcription factors [11,12]. Consequently, elements of adhesive complexes 

play important roles in regulating tumor development and metastasis progression. 

1.2. Cadherin mediated cell-cell adhesion 

Both adherens junctions and desmosomes are cadherin-based junctional 

complexes. Adherens junctions are formed when the extracellular domain of E-

cadherin dimers in one cell interacts with the extracellular domain of cadherin 

proteins on the neighboring cell [13,14]. E-cadherin interacts with p120-catenin via 

its juxtamembrane domain, which stabilizes the cadherin dimer at the membrane 

[13,14]. The extreme cytoplasmic tail of the E-cadherin interacts with β-catenin or 

plakoglobin in a mutually exclusive manner, which in turn interact with α-catenin, 

an actin-binding protein [15,16] (Figure 1.1). Recruitment of actin microfilaments 

by α-catenin stabilizes cadherin-catenin complex at the membrane [13,14]. 

Similarly, desmosomes are formed when two desmosomal cadherins, desmoglein 

and desmocollin, form heterodimers that participate in homotypic interactions with 

desmosomal cadherin dimers on adjacent cells [17]. The cytoplasmic tail of 

desmosomal cadherins interacts with plakoglobin and plakophilin, which in turn 

associate with desmoplakin that recruits intermediate filaments to stabilize 

desmosomes at the membrane [17] (Figure 1.1).  
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Figure 1.1. Cell junctional complexes in epithelial tissues. Adherens junction 

and desmosomes are the two main cell-cell adhesion complexes in epithelial cells. 

At the adherens junction, the extracellular domain of the E-cadherin dimer interacts 

with E-cadherin proteins on the adjacent cells. E-cadherin interacts with p120-

catenin via its juxtamembrane domain whereas it interacts with β-catenin and 

plakoglobin in a mutually exclusive manner via its extreme cytoplasmic tail. In turn 

β-catenin and plakoglobin interact with α-catenin that binds to actin 

microfilaments. At the desmosomes, desmosomal cadherins, desmoglein and 

desmocollin form a heterodimer. The cytoplasmic tails of the heterodimers interact 

with plakoglobin and plakophilin, which in turn bind to desmoplakin that recruits 

the cytokeratin intermediate filaments. α-cat, α-catenin; β-cat, β-catenin; Cad, E-

cadherin; CK, cytokeratin; Dsc, desmocollins; Dsg, desmoglein; DP, desmoplakin; 

p120, p120-catenin; PG, plakoglobin; PKP, plakophilin 

Modified from Pasdar, M.  
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1.3. Plakoglobin (gamma-, γ-catenin) 

Plakoglobin is an 83 kDa protein that is encoded by the JUP gene located on 

chromosome 17q21 [18].  Plakoglobin is an Armadillo protein family member and 

a paralogue of β-catenin with dual adhesive and signaling functions [19,20]. As a 

cell adhesion protein plakoglobin participates in the formation of adherens 

junctions and desmosomes [21,22]. Both cytoplasmic and membrane-associated 

pools of plakoglobin interact with different protein partners to regulate their levels 

and localization [21,22]. Furthermore, the soluble pool of plakoglobin can interact 

with other cellular proteins and regulate pathways involved in tumorigenesis and 

metastasis [21,22]. Plakoglobin also translocates to the nucleus and regulates gene 

expression [21,22].  

1.3.1. Initial discovery of plakoglobin  

Plakoglobin was first identified in the membrane-associated desmosomal plaques 

[23]. Further investigations showed that this protein was a cytoplasmic component 

of both desmosomes and adherens junctions [18,23]. Subsequent co-

immunoprecipitation studies validated its role as an adhesion protein that associated 

with the desmosomal cadherin desmoglein [24]. Further studies demonstrated that 

plakoglobin had a cytoskeleton associated pool that interacted with desmoglein and 

E-cadherin, as well as a cadherin-independent cytoplasmic pool. While the 

insoluble pool of plakoglobin is serine phosphorylated and is distributed along the 

lateral membrane, the soluble pool is serine, threonine and tyrosine phosphorylated 

and remains in the cytoplasm [25].  
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1.3.2. Plakoglobin and regulation of cell-cell adhesion 

The most extensively studies function of plakoglobin is the regulation of cell-cell 

adhesion. Plakoglobin has an indispensable role in the proper assembly and stability 

of desmosomal plaques. Plakoglobin double knockout mice have been used to 

investigate whether plakoglobin deficiency affects embryonic development. Loss 

of plakoglobin in embryos resulted in lethality due to severe heart defects at 

embryonic day 10.5 to 12.5 (E10.5 to E12.5). Heart failure occurred as the 

consequence of the disruption of desmosome assembly in the intercalated discs of 

cardiac muscle [26,27]. Plakoglobin is required for the efficient binding of 

desmoplakins to the intermediate filaments to stabilize desmosomes at the 

membrane [28]. Furthermore, plakoglobin interacts with plakophilin-3 and recruits 

it to membrane to form desmosomes [29].  

In spite of its well-validated role in the formation of desmosomes, the significance 

of plakoglobin in the assembly of adherens junctions remained controversial. Initial 

studies showed that plakoglobin only loosely interacted with E-cadherin suggesting 

that the E-cadherin/β-catenin/α-catenin complex was the primary complex involved 

in the formation of adherens junctions [15,30]. However, participation of 

plakoglobin in adherens junctions could not be dismissed since the co-

immunoprecipitation studies also confirmed the association of plakoglobin with E-

cadherin and α-catenin as an independent complex [29]. A subsequent study 

suggested that plakoglobin interaction with E-cadherin and formation of adherens 

junctions was an essential prerequisite for the assembly of desmosomes [31].  
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1.3.3. Plakoglobin and regulation of epithelial to mesenchymal transition 

Previous studies have demonstrated that loss of E-cadherin leads to epithelial to 

mesenchymal transition (EMT) and acquisition of an invasive phenotype [32,33]. 

Furthermore, re-expression of E-cadherin and formation of adhesive complexes 

reverses the transformed phenotype and induces mesenchymal to epithelial 

transition (MET) [34,35]. These studies clearly suggested that malignant 

transformation of cells were regulated by the components of junctional complexes. 

However, the essential role of plakoglobin in triggering MET was long neglected 

until it was shown that exogenous expression of E- or P-cadherin in cadherin-null 

carcinoma cells with very low levels of plakoglobin failed to induce transition to 

an epithelial phenotype [36]. Although E-cadherin/β-catenin/α-catenin complexes 

were formed, plakoglobin was not detected at the adherens junctions and 

desmosomes were not assembled suggesting an essential role for plakoglobin in the 

regulation of cell-cell adhesion and MET [36]. Following this study, another group 

showed that the down-regulation of E-cadherin and plakoglobin led to the loss of 

adherens junctions and desmosomes and induction of EMT [31]. Expression of E-

cadherin alone rescued the assembly of adherens junctions but not the epithelial 

phenotype [31]. Interestingly, expression of E-cadherin/plakoglobin chimeric 

protein not only led to the formation of stable adherens junctions and desmosomes 

but also induced MET [31].  

To further investigate the importance of plakoglobin in the regulation of cell-cell 

adhesion and inhibition of a transformed phenotype, our laboratory used E-cadherin 

and plakoglobin deficient and N-cadherin expressing SCC9 cells, a human tongue 
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squamous cell carcinoma cell line. Ectopic expression of either E-cadherin or 

plakoglobin triggered MET concurrent with increased cell adhesion and decreased 

cell proliferation [37,38]. Furthermore, only plakoglobin expressing SCC9 cells 

formed desmosomes. More importantly, expression of plakoglobin also increased 

the stability of the mesenchymal marker N-cadherin and inhibited its oncogenic 

functions [37,38].  

1.4. Catenin-mediated signal transduction 

The importance of cadherin-catenin complexes is not limited to their role in 

maintaining cell-cell contact. Components of adherens junctions and desmosomes 

have been shown to participate in signaling pathways to regulate cell growth, 

differentiation and cell death [39,40]. In this context the cytoplasmic pool of catenin 

proteins have been shown to interact with various intracellular proteins from tumor 

suppressors to transcription factors in order to modulate signaling cascades [39].  

With respect to the signaling functions of catenin proteins, β-catenin and p120-

catenin have been studied extensively in the context of tumorigenesis and 

metastasis [41,42]. On the contrary, fewer studies have addressed the signaling 

functions of α-catenin and plakoglobin in the process of tumor development and 

cancer progression. Having said that, recent studies have suggested that both α-

catenin and plakoglobin generally act as tumor and metastasis suppressor proteins 

through mechanisms that are beginning to be deciphered [22,43].  
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1.5. Plakoglobin and regulation of cell signaling  

Plakoglobin and β-catenin have similar structural features and interacting protein 

partners [19,22] (Figure 1.2). However, they differ in their signaling functions in 

the context of tumorigenesis and metastasis. Unlike β-catenin, which has well-

documented oncogenic functions via activating the Wnt pathway [41], plakoglobin 

mainly acts as a tumor and metastasis suppressor protein [21,22]. Not only does 

plakoglobin participate in the Wnt pathway but also it has been linked to other 

signaling cascades that are going to be discussed in detail.  
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1.5.1. Plakoglobin and the Wnt signaling pathway 

The Wnt pathway is one of the key regulators of normal development, cell 

proliferation and differentiation [44]. Disruption of the Wnt pathway has been 

linked to various diseases including cancer development and metastasis [45]. In the 

absence of Wnt signal, the destruction complex, axin/adenomatous polyposis coli 

(APC)/Glycogen Synthase Kinase 3 Beta (GSK3β)/casein kinase I (CKI), 

phosphorylates the excessive cytoplasmic pool of β-catenin, which is subsequently 

ubiquitinated and degraded via the proteasomal pathway [44] (Figure 1.3). When 

the Wnt ligand is present, it binds to the receptor Frizzled and the co-receptor low-

density lipoprotein receptor-related protein (LRP) 5/6, and in turn they interact with 

Dishevelled via their intracellular domain [44]. Dishevelled recruits Axin and 

displaces GSK3β and CKI from tumor suppressor APC [44]. Upon disruption of 

the destruction complex function, β-catenin accumulates, translocates to the 

nucleus and binds to TCF/LEF transcription factors and activates the expression of 

Wnt targets that promotes proliferation, survival, migration, invasion and 

angiogenesis [44] (Figure 1.3).  
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Figure 1.3. Regulation of β-catenin via the Wnt signaling pathway. (A) In the 

absence of Wnt signal, the destruction complex (Axin, APC, GSK3β, CKI) recruits 

and phosphorylates β-catenin. Phosphorylated β-catenin gets ubiquitinated and 

subsequently degraded by proteasomes. Consequently, TCF/LEF transcription 

factors in the nucleus are bound to the repressor and their respective target genes 

remain inactive. (B) In the presence of Wnt signal, Dishevelled recruits Axin and 

destruction complex dissociates. Thus β-catenin cannot get phosphorylated and 

degraded. Excessive cytoplasmic β-catenin translocates to the nucleus and binds to 

TCF/LEF that leads to the transactivation of their target genes involved in EMT, 

uncontrolled cell proliferation, migration and invasion. LRP, low-density 

lipoprotein receptor-related protein; CKI, casein kinase I; APC, adenomatous 

polyposis coli; GSK3β, Glycogen Synthase Kinase 3 β; Dsh, Dishevelled; 

TCF/LEF, T-cell factor/Lymphoid enhancer factor; R, repressor; β-cat, β-catenin 

Modified from Pasdar M.  
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Early studies using PC12 pheochromocytoma cells showed that the exogenous 

expression of Wnt-1 increased plakoglobin levels and resulted in its membrane 

redistribution [46]. This was the first evidence suggesting that the Wnt pathway 

regulates the levels and localization of both β-catenin and plakoglobin [46]. Later 

on, Karnovsky et al., injected fertilized Xenopus embryos with mRNAs encoding 

plakoglobin and detected dorsalized gastrulation and anterior axis duplication, 

which was similar to Wnt/β-catenin induced segment polarization. In these 

embryos, plakoglobin localized in the cytoplasm, nucleus and membrane [47]. 

However, when mRNAs encoding plakoglobin and the cytoplasmic tail of 

desmoglein were co-injected into the embryos, plakoglobin primarily localized at 

the membrane and was excluded from the nucleus. In these embryos dorsalized 

gastrulation and anterior axis duplication did not occur, suggesting that the nuclear 

pool of plakoglobin participated in specification of dorsal mesoderm and had 

signaling functions similar to β-catenin [47].  

While these initial studies suggested that both plakoglobin and β-catenin exerted 

similar signaling activities, many other studies provided contrary evidence. First 

evidence came from a study that showed both wild type and junction-dependent 

plakoglobin induced axis duplication, suggesting that presence or absence of 

nuclear plakoglobin had no effect on regulating the Wnt signaling [48]. To further 

investigate the signaling function of plakoglobin via the Wnt pathway, either β-

catenin or plakoglobin were expressed in Drosophila embryos lacking functional 

Armadillo homologues [49]. This study showed that while expression of either β-

catenin or plakoglobin resulted in the formation of cadherin-based cell adhesive 
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complexes, only the expression of β-catenin slightly induced the expression of the 

Wnt target, engrailed [49].  

Several other lines of evidence have also suggested that plakoglobin has limited 

signaling activity in the context of the Wnt pathway. In MDCK cells, only β-catenin 

but not plakoglobin translocated to the nucleus in response to the over-expression 

of LEF-1 [50]. Moreover, HEK293T cells exhibited a significantly higher 

TOPFLASH reporter activity when β-catenin was expressed as compared to cells 

expressing plakoglobin [50]. The impact of plakoglobin on activating the Wnt 

pathway was also shown when HEK293T cells were transfected with the 

transcriptional active forms of β-catenin and plakoglobin, S37A and S28A mutants, 

respectively, and the expression of β-catenin mutant resulted in a much higher 

TOPFLASH reporter activity [51,52]. Subsequently, in vitro electrophoretic 

mobility shift assays using β-catenin, plakoglobin, TCF-4, LEF-1 proteins and 

radioactively labeled TCF/LEF DNA binding sequences showed that β-catenin 

formed a complex with TCF-4/LEF-1 and DNA, whereas, plakoglobin was unable 

to form similar complexes [53].  

1.5.2. Plakoglobin and Src signaling  

The proto-oncogene Src is a non-receptor tyrosine kinase that participates in 

various signaling pathways by phosphorylating specific tyrosine residues in other 

proteins [54]. Increased levels and activity of Src kinase has been shown to promote 

tumorigenesis and metastasis in different types of cancer [54]. A number of studies 

have demonstrated that signaling activities of plakoglobin and Src are inversely 
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correlated [55-58]. Based on the experimental findings, Src enhances migration by 

suppressing the expression and/or altering the phosphorylation of plakoglobin that 

leads to the inhibition of tumor and metastasis suppressor effects of plakoglobin 

[56-58]. Furthermore, treating MCF-7 breast carcinoma cells with human growth 

hormone reduced plakoglobin levels and promoted migration and invasion in a Src-

dependent manner [59]. Interestingly, treatment with Src inhibitors increased the 

expression of plakoglobin and decreased the migratory and invasive potential of 

these cells [59]. A subsequent study confirmed that human growth hormone 

repressed plakoglobin expression and promoted cell migration via activating Src 

and JAK2 tyrosine kinases [58]. Upon activation of these kinases, they induced the 

expression of DNA methyltransferase-1, -3A and -3B, which resulted in the 

hypermethylation of plakoglobin promoter and the inhibition of its transcription 

[58].  

Findings from the in vitro research were further validated by in vivo studies in 

breast tumors showing that growth hormone receptors were over-expressed in both 

epithelial and stromal components of axillary lymph node metastasis, which was 

concurrent with decreased expression of plakoglobin in nodal metastasis [60]. Also, 

in non-small cell lung cancer (NSCLC) cell lines, and mouse xenograft models 

combined inhibition of Src and MAPK upregulated the expression of E-cadherin 

and plakoglobin and downregulated the expression of Snail1, FAK and PAX, which 

led to the induction of MET [61].  

Plakoglobin also inhibited cell motility and migration via regulating the extra-

cellular matrix (ECM) dependent activation of Src. Increased levels of ECM 
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proteins including fibronectin and vitronectin leads to the activation of Src kinase. 

Plakoglobin modulates the deposition of ECM proteins, and therefore, reduces Src 

signaling activity and the migration of single keratinocyte cells [55,62,63]. 

1.5.3. Plakoglobin and Ras signaling  

Ras proteins are a family of small GTPases that regulate different signaling 

pathways involved in cell growth, survival, differentiation, migration, and invasion 

[64]. They become active in response to an extracellular signal and in turn transmit 

the signal to intracellular effector proteins in order to modulate downstream 

signaling cascades [64]. Ras is a proto-oncogene and its mutations and/or aberrant 

activation have been reported in various types of cancers [64]. The first observation 

connecting plakoglobin and Ras was reported when the expression of dominant 

negative form of Ras (N17Ras) reduced the expression of plakoglobin and 

prevented the formation of 3-dimensional vascular structures in confluent cultures 

of endothelial cells [65]. Later studies validated this early observation by showing 

that inhibition of Ras farnesylation and disruption of the MAPK pathway increased 

the expression of catenin proteins including α-, β- and γ-catenin in breast, colon 

and liver cancer cells concurrent with decreased metastatic potential of these cells 

[66]. To further investigate the relationship between plakoglobin and Ras, Yim et 

al., expressed a mutant form of Ras (K-Ras12V) in Rat2 cells and showed that the 

mutant Ras decreased plakoglobin and histone deacetylase 4 (HDAC4), which 

subsequently led to increased metastatic potential of these cells [67].  Surprisingly, 

only the exogenous expression of plakoglobin but not β-catenin in these cells 

increased HDAC4 levels in a LEF-1 dependent manner [67]. However, whether 
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plakoglobin is directly involved in regulating the expression of HDAC4 and the 

possible mechanism(s) of this modulation have not yet been understood.  

1.5.4. Plakoglobin and the Hippo signaling pathway 

Imbalance between cell proliferation, apoptosis and differentiation is a critical step 

during tumor formation and cancer progression. Tissue homeostasis is regulated by 

multiple signaling cues coordinated by different molecules and signaling pathways.  

The Hippo signaling pathway and its downstream effectors, YAP and TAZ, have 

been identified as essential regulators of cell proliferation, organ size and cell-fate 

determination [68]. When the Hippo signaling pathway is active, the 

serine/threonine kinases MST1/2 activate LATS1/2 kinases, which in turn 

phosphorylate YAP at serine 127 which prevents its nuclear localization and 

transcriptional activities [69]. LATS1/2 also phosphorylate YAP at serine 397, 

which serves as a mark for ubiquitination and proteasomal degradation [70]. 

However, when the Hippo kinase cascade is off, YAP is active and translocates to 

the nucleus, binds to the transcription factors of the TEA domain (TEAD) family 

and activates transcription of downstream pro-proliferative and anti-apoptotic 

genes [70].  

Although the core Hippo signaling pathway has been extensively studied, the 

upstream regulators of the kinase cascade are yet to be fully deciphered. 

Interestingly, cell-cell contact and adhesion complexes have been identified as 

essential regulators of the canonical Hippo signaling pathway [70]. Loss of cell 

adhesion proteins such as α–catenin and E-cadherin has been shown to enhance the 
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oncogenic potential of YAP in different carcinomas [71,72]. Plakoglobin has also 

been shown to interact with YAP, and this interaction sequesters YAP in the 

cytoplasm and inhibits its nuclear translocation [73]. Silencing the expression of 

YAP or preventing its nuclear localization has been shown to significantly reduce 

the growth and metastatic potential of cancer cells [74]. 

1.6. Tumor and metastasis suppressor activities of plakoglobin 

Several lines of evidence suggest that plakoglobin interacts with an array of cellular 

proteins involved in regulating tumor cell growth and metastasis [21,22]. Our 

laboratory has proposed a model that suggests plakoglobin may act as a tumor and 

metastasis suppressor protein by at least three mechanisms. First, plakoglobin may 

sequester oncogenic functions of β-catenin via promoting proteasomal degradation 

of β-catenin and inhibiting its interaction with TCF, and therefore, repressing the 

expression of Wnt target genes. Second, by changing the levels, localization and/or 

function of growth and metastasis regulating molecules. Last but not least, by 

interacting with transcription factors and (in)directly regulating gene expression 

independent of the Wnt signaling pathway [20,21]. 

1.6.1. Plakoglobin and inhibition of the oncogenic signaling of β-catenin  

One mechanism by which plakoglobin may act as a tumor and metastasis 

suppressor protein is the inhibition of β-catenin oncogenic activity. A previous 

study revealed that the expression of plakoglobin in β-catenin expressing and 

plakoglobin null cell lines resulted in the liberation of β-catenin from the adherens 

junctions and its subsequent proteasomal degradation [75]. Experimental evidence 
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from our laboratory further confirmed that in plakoglobin null SCC9 cells β-catenin 

protein levels decreased and cells underwent mesenchymal to epithelioid 

phenotypic transition upon the exogenous expression of plakoglobin [38].   

A previous in vivo study using Xenopus embryos demonstrated that plakoglobin 

inhibited nuclear accumulation of exogenously expressed TCF by sequestering it 

in the cytoplasm and in turn repressing its transcriptional activity [52]. In addition, 

it was shown that plakoglobin and -catenin interacted with two sequential and 

non-overlapping domains in the N-terminus of the TCF protein [56]. Comparison 

of the binding sites showed that β-catenin bound to amino acids 1-50 in the N-

terminal domain of TCF and plakoglobin interacted with the region situated 

between amino acids 51-80. Furthermore, plakoglobin interacted with the β-

catenin/TCF-4 complex and inhibited the binding of the complex to DNA [56].  

Previous studies from our laboratory also showed that nuclear exclusive expression 

of plakoglobin in SCC9 cells decreased β-catenin/TCF interaction and β-catenin’s 

oncogenic activity [76]. Additionally, it was recently shown that knockdown of 

desmoglein increased nuclear levels of plakoglobin, which in turn enhanced 

plakoglobin/TCF-4 interaction and decreased TOPFLASH reporter activity 

concurrent with reduced transactivation of Wnt/β-catenin target genes [77]. 

Another mechanism by which plakoglobin inhibits the oncogenic functions of β-

catenin is through its interaction with SOX4, a transcription factor and an 

interacting partner of β-catenin that enhances β-catenin’s transcriptional activity 

downstream of the Wnt signaling pathway [78]. SOX4 directly interacts with and 
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stabilizes β-catenin and enhances the expression of Wnt target genes via unknown 

mechanism(s). In this study, nuclear accumulation of plakoglobin in response to 

Wnt treatment led to the formation of plakoglobin/SOX4 complexes that facilitated 

the nuclear export of SOX4 and reduced transactivation of Wnt-responsive target 

genes [78].  

Recent studies have also proposed another mechanism to explain how plakoglobin 

may inhibit the transcriptional activity of β-catenin/TCF-4. Cellular prion protein 

PrP(c) was shown to interact with both β-catenin and plakoglobin in the cytoplasm 

and nucleus [79,80]. Previously, it was shown that while in polarized epithelial 

cells, PrP(c) was primarily at the membrane, in rapidly proliferating cells it 

localized in the nucleus suggesting that it may participate in signaling pathways. 

Interestingly, further studies validated a signaling role for PrP(c) via Hippo and 

Wnt signaling pathways. PrP(c)’s interaction with β-catenin/TCF-4 complex 

induced transcriptional activation of Wnt target genes, whereas, its interaction with 

plakoglobin/TCF-4 repressed the Wnt-responsive transactivation [79,80].  

1.6.2. Plakoglobin and modulation of intracellular growth and metastasis 

regulating molecules 

As mentioned above, one mechanism by which plakoglobin may suppress tumor 

development and metastasis is via its interaction with various cellular partners and 

affecting their levels, localization, and/or activities. In agreement with this role of 

plakoglobin, work from our laboratory has shown that plakoglobin interacts with 

the nucleolar phosphoprotein, nucleophosmin (NPM) [81]. It is noteworthy that 
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NPM’s functions during tumorigenesis is greatly dependent on its subcellular 

distribution [82,83]. Specifically, NPM is primarily localized in the nucleolus of 

untransformed cells, whereas, in cancer cells, NPM is distributed in the cytoplasm 

and nucleoplasm [84]. Our laboratory showed that in plakoglobin deficient breast 

carcinoma cell line, MDA-MB-231, exogenously expressed plakoglobin interacted 

with NPM and increased its protein levels and induced its redistribution from 

cytoplasm and nucleoplasm to the nucleolus concurrent with a significant decrease 

in in vitro growth, migration and invasion [81].  

To further study the tumor and metastasis suppressor functions of plakoglobin via 

its interaction with cellular protein partners, our laboratory looked at the effect of 

plakoglobin expression on the protein levels of non-metastatic protein 23 (Nm23), 

the first metastasis suppressor protein to be discovered [85]. Expression of 

plakoglobin in SCC9 and MDA-MB-231 cells enhanced Nm23-H1 and Nm23-H2 

protein levels [86] and resulted in the redistribution of Nm23 from cytoplasm to the 

membrane [86]. Work by other groups showed that Nm23 knockdown increased 

migration due to the loss of cell-cell adhesion [87]. In the absence of Nm23, 

adherens junction dissociated and nuclear localization of β-catenin increased, 

which in turn led to the transactivation of matrix metalloproteinases (MMPs) that 

are known to be β-catenin/TCF target genes [87]. Another study demonstrated that 

formation and stability of the endothelial junctions were dependent on the 

interaction between Nm23, plakoglobin and EMMPRIN (the extracellular matrix 

metalloproteinase inducer, also known as basigin or CD147) [88]. These findings 
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further supported the importance of the plakoglobin and Nm23 interaction in the 

inhibition of migration and metastasis of cancer cells. 

1.6.3. Plakoglobin and regulation of gene expression 

Several lines of experimental evidence have suggested that plakoglobin regulates 

gene expression independent of β-catenin and the Wnt signaling pathway. It was 

shown that in mouse keratinocytes, plakoglobin interacted with LEF-1 and they 

both associated with the promoter region of the MYC gene [89]. Plakoglobin/LEF-

1 complex repressed the expression of MYC gene and suppressed cell growth 

independent of β-catenin [89]. In support of this observation, Tokonzaba et al., 

recently showed that plakoglobin induced the expression of desmocollins-2 (DSC2) 

gene in a LEF-1 dependent manner [90].  

To assess the possible contribution of plakoglobin to gene regulation, our 

laboratory used plakoglobin deficient carcinoma cell lines and transfected them 

with wild type plakoglobin construct, as well as, plakoglobin cDNAs fused to 

nuclear localization sequence or nuclear export signal to generate plakoglobin-

expressing transfectants with different subcellular localization of the protein in 

order to investigate its role at the membrane, in the cytoplasm and in the nucleus 

[76,86,91]. The results of microarray analyses using plakoglobin-expressing 

transfectants identified several p53 target genes that were differentially regulated 

upon plakoglobin expression [92,93]. These findings suggested that one way by 

which plakoglobin acts as a tumor suppressor may be via its interaction with p53 

and regulation of p53 target gene expression [92,93]. Further characterization 
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validated the microarray results and confirmed that the expression of p53 targets 

including 14-3-3σ, SATB1 and Nm23-H1 were co-regulated by plakoglobin and 

p53 [92,93]. Chromatin immunoprecipitation (ChIP) experiments showed that both 

plakoglobin and wild type p53 associated with the 53 response element within the 

promoter region of SFN (14-3-3σ), SATB1, and NME1 (Nm23-H1) genes and only 

in the presence of plakoglobin, mutant p53 interacted with the promoter of these 

genes [92,93]. Additionally, the luciferase reporter assays revealed that the 

transcriptional activity of both wild type and mutant p53 was enhanced upon 

plakoglobin expression [92,93]. Interestingly, based on our studies plakoglobin and 

p53 are co-regulating gene expression through both activating (SFN and NME1) 

and repressing (SATB1) mechanisms [92,93]. In agreement with these findings, 

another group showed that plakoglobin induced the expression of PML, a p53 target 

with tumor suppressor function [94]. Finally, it was recently shown that in non-

small cell lung carcinoma cells plakoglobin reduced migration by regulating the 

expression of HAI-1, an upstream inhibitor of c-met, in a p53 dependent manner 

[95].  

1.7. Plakoglobin and restoration of mutant p53 tumor suppressor function 

As mentioned above, one of the interacting protein partners of plakoglobin that has 

been identified by our lab is the tumor suppressor protein p53 [92,93]. Plakoglobin 

interacts with both wild type and a number of mutant p53 proteins and they both 

associate with the promoter of several p53 target genes involved in the regulation 

of tumorigenesis and metastasis [92,93].  
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1.7.1. Tumor suppressor protein p53 

p53 is a sequence specific DNA-binding transcription factor with tumor and 

metastasis suppressor activities [96]. Dubbed as the “guardian of the genome” [97], 

p53 maintains the integrity of the genome and normal functioning of cells in 

response to various stress signals including DNA damage, oxidative injury, 

hypoxia, improper cell adhesion, mitotic stress, oncogene activation and metabolic 

stress [98].  

In the absence of stress signal, p53 levels are tightly regulated and are kept at low 

steady levels in order to prevent unnecessary cell death [99]. The primary regulator 

of p53 is Hdm-2, an E3 ubiquitin ligase and a p53 target gene, which interacts with 

and mono-ubiquitinates p53 in the nucleus [100,101]. Upon mono-ubiquitination, 

p53 translocates to the cytoplasm and gets poly-ubiquitinated by other E3 ubiquitin 

ligases including Pirh2, COP1, Arf-BP1, which leads to its subsequent degradation 

by the proteasomal pathway [101]. Upon exposure to cellular stress, p53 levels 

significantly increase and it becomes active in order to regulate the expression of 

genes involved in cell cycle arrest, apoptosis, senescence, DNA repair and 

metabolism [98].  

Various functions of p53 are mediated via its structural domains comprising of two 

N-terminal transactivation domains (TAD-1 and TAD-2), a proline rich domain, 

the core DNA binding domain and a carboxyl terminal domain [102] (Figure 1.4). 

TAD-1 and -2 interact with general transcription factors, chromatin modifiers and 

transcription cofactors to activate or repress p53 target genes [103]. Furthermore, 
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TAD-1 is essential for p53 stability via its interaction with Hdm-2 [104]. The 

proline rich domain plays a pivotal role in the regulation of p53-mediated apoptosis 

via its interaction with pro- and anti-apoptotic proteins in the cytoplasm [105]. 

Flanking between the N- and C-terminal domains, there is a DNA binding domain 

that interacts with the p53 response element in the promoter region of its target 

genes to regulate their transcription [102]. The carboxyl terminal of p53 contains 

three nuclear localization signals, an oligomerization domain and a non-specific 

DNA binding domain [102]. Oligomerization domain is essential for homo-

dimerization and subsequent tetramerization of p53 protein, which is required for 

its transcriptional activities. While earlier in vitro studies suggested that the C-

terminal DNA binding region negatively regulated binding to DNA [106], more 

recent studies demonstrated that this domain interacted with DNA in order to 

facilitate the binding of the core domain to the p53 response element [107,108].  

As a transcription factor, wild type p53 activates or represses the expression of 

components of the cell cycle check points, DNA repair machinery and apoptotic 

pathway to inhibit propagation of damaged cells [99]. Depending on the cellular 

context and type of the damage a cell sustains, p53 either triggers cell cycle arrest 

to provide sufficient time for the injured cell(s) to undergo DNA repair or it induces 

senescence or apoptosis in case of irreparable damage [109].  

Transient and/or permanent cell cycle arrest are two of the major anti-proliferative 

functions of p53. In response to DNA damage, p53 becomes active and in turn 

upregulates the expression of its target genes p21, 14-3-3σ and GADD45 (growth 

arrest and DNA damage-inducible). While p21 regulates both G1 and G2 arrest, 



 

26 

 

14-3-3σ and Gadd45 only induce G2 arrest and inhibit mitosis entry [110]. In 

addition to its ability to inhibit cell cycle progression, p53 also induces apoptosis 

by up-regulating the expression of pro-apoptotic genes including death receptor 

proteins (e.g. Fas, DR4, DR5 and PERP), NOXA, PUMA, BAX and BID [110] and 

down-regulating anti-apoptotic genes such as Bcl-XL and Bcl-2 [110].  

p53 also exerts its tumor suppressor functions independent of its transcriptional 

activity. p53 localizes to the mitochondria and directly binds to pro- and anti-

apoptotic members of Bcl-2 family of proteins and promotes apoptosis by 

enhancing the mitochondrial outer membrane permeabilization (MOMP) 

[110,111].  
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1.7.2. Mutant p53 proteins 

TP53 is the most commonly mutated tumor suppressor gene in cancers [113]. While 

the majority of tumor suppressor genes sustain deletions and truncations leading to 

their permanent inactivation and/or loss of expression [114], TP53 gene mainly 

harbors missense mutations within the central DNA binding domain that interferes 

with its interaction with DNA and alters its transcriptional activity [115,116]. Six 

amino acid residues (175, 245, 248, 249, 273 and 282) within the DNA binding 

domain have been considered as mutation hotspots with the highest frequency of 

mutation [115,116] (Figure 1.4).  In addition to the loss/partial loss of their tumor 

suppressor activities, many mutant p53 proteins exhibit dominant negative 

activities through their interaction with and inhibition of the functions of wild type 

p53 [117]. More importantly, some p53 mutants can gain oncogenic functions 

(GOF) that contribute to tumor cell growth, aggressiveness, metastasis and drug 

resistance [118]. GOF p53 mutations fall into two categories; structural mutations 

that alter the conformation of p53 and contact mutations that inhibit the direct 

interaction between p53 and DNA [118]. 

GOF p53 mutants exert their tumor promoting activities via four different 

mechanisms; 1- by interacting with transcription factors Sp1, ETS family, E2F1, 

and NF-1 and co-regulating the expression of target genes involved in cancer 

progression and metastasis [119-121], 2- by binding to different cellular protein 

partners including p53 family members, p63 and p73 and disrupting the recruitment 

of p63/p73 to the promoter region of their target genes  [122-124], 3- by modulating 
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the expression of micro RNAs involved in tumorigenesis and metastasis [124], and, 

4- by regulating epigenetic modifying enzymes [126,127] (Figure 1.5).  

Experimental evidence from our laboratory suggested that in plakoglobin deficient 

carcinoma cell lines expressing mutant p53 proteins, exogenous expression of 

plakoglobin restored tumor suppressor activities of mutant p53s in vitro. These 

earlier studies are the basis for this thesis and will be discussed further.    
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1.8. Earlier studies and research hypothesis 

Previous studies from our laboratory revealed that exogenous expression of 

physiological levels of plakoglobin in plakoglobin-deficient SCC9 carcinoma cell 

line decreased growth and induced apoptosis [37] whereas its overexpression in 

SCC9 cells increased growth by inducing the expression of the anti-apoptotic 

protein Bcl-2 [91]. To further investigate the exact role of plakoglobin in regulating 

Bcl-2 expression, SCC9 cells were transfected with plakoglobin cDNAs fused to 

nuclear localization sequence or nuclear export signal. It was shown that 

plakoglobin induced Bcl-2 levels independent of its subcellular localization. 

Interestingly, expression of plakoglobin resulted in decreased interaction of β-

catenin with N-cadherin and α-catenin leading to nuclear accumulation of β-catenin 

and its interaction with TCF [76]. Together these studies suggested that plakoglobin 

may regulate gene expression indirectly via regulation of β-catenin oncogenic 

activity. 

Comparison of the mRNA profiles of plakoglobin-deficient human squamous and 

breast carcinoma cell lines and their plakoglobin-expressing transfectants showed 

increased expression of growth and metastasis suppressor genes and decreased 

expression of tumor promoting genes in plakoglobin expressing transfectants 

relative to parental cells. These studies identified a number of p53 targets among 

the differentially expressed genes, which are involved in tumor suppression, 

apoptosis and angiogenesis including NME1, SFN (14-3-3σ), THBS1, SATB1, 

CDK1, CDC20, BCL2 and BID [92,93]. These observations raised the intriguing 

possibility of interaction between plakoglobin and p53.  
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To identify potential interaction between plakoglobin and p53 we performed co-

immunoprecipitation experiments using a number of carcinoma cell lines with 

different plakoglobin and p53 expression profiles. Subsequent co-

immunoprecipitation experiments showed that plakoglobin interacted with wild 

type as well as a number of mutant p53 proteins in both the cytoplasm and nucleus 

[92,93]. Additionally, ChIP assays showed that plakoglobin directly associated 

with the promoter regions of p53 target genes such as tumor and metastasis 

suppressors NME1 and SFN [92,93] and the oncogenic genome organizer SATB1 

[93]. 

Based on the above studies, we hypothesize that one mechanism underlying the 

tumor and metastasis suppressor functions of plakoglobin might be its 

interaction with mutant p53 proteins and restoration of their tumor 

suppressor function. 

The main focus of my PhD project was to gather experimental evidence for the 

following three specific aims: 

1) To investigate the role of plakoglobin in high grade serous ovarian carcinoma 

cell lines and its functional interactions with wild type and mutant p53 

2) To identify the interacting domains of plakoglobin and p53 and to assess the 

functional significance of their interaction 

3) To determine the role of plakoglobin in down-modulation of the oncogenic 

activity of β-catenin induced by mutant p53 expression 
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Chapter two 
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Plakoglobin reduces the in vitro growth, migration and invasion of 

ovarian cancer cells expressing N-cadherin and mutant p53 
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2.1. Introduction 

Ovarian cancer (OVCA), the fifth most prevalent cancer in women is the leading 

cause of all female reproductive cancer deaths worldwide, with an overall five-year 

survival rate of ~ 45% [1]. The major form of OVCA is the epithelial ovarian cancer 

(EOC), which accounts for ~80% of all ovarian neoplasms [2]. EOCs are classified 

into type I and type II [3]. Type I tumors are genetically stable, slow-growing, and 

have relatively good clinical outcome. However, the majority of OVCA are type II. 

Over 90% of these tumors harbor p53 mutations, are genetically unstable, highly 

aggressive and have poor clinical outcome [4-6]. TP53 mutations are believed to 

be an early event during the development of type II tumors and contribute to both 

metastatic progression and chemoresistance [7-12]. p53 is a transcription factor and 

tumor suppressor that plays essential roles in regulating cell proliferation, survival, 

senescence, apoptosis and metabolism [13]. In response to stress, p53 activates 

DNA damage response, cell cycle arrest and cell death [14,15]. Different 

posttranslational modifications and protein-protein interactions regulate p53 

stability and functions [16]. We have identified plakoglobin as a novel interacting 

partner of both wild type and mutant p53 (mp53) [17,18]. 

Plakoglobin is a member of the Armadilo family of proteins and a paralog of -

catenin [19,20]. Unlike, -catenin, which only associates with adherens junctions 

and possesses well-known oncogenic functions, plakoglobin is a tumor/metastasis 

suppressor protein and participates in the formation of both adherens junctions and 

desmosomes [19,21]. Plakoglobin can confer growth/metastasis inhibitory effects 

via its interactions with cadherins and induction of contact inhibition of growth 
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[19]. In addition, it can interact with a number of intracellular partners including 

transcription factors [17-19,22-27]. We have shown that plakoglobin interacts with 

p53 and its tumor/metastasis suppressor function may, at least partially, be 

mediated by this interaction [17,18]. 

A number of studies have suggested that the loss of cadherin-catenin complex and 

activation of -catenin oncogenic function play pivotal roles in the local invasion 

of ovarian tumor cells and subsequent metastasis [28-31]. Furthermore, the loss of 

heterozygosity of the plakoglobin gene (JUP) has been reported in sporadic 

OVCAs [32]. However, very little is known about the role of plakoglobin in 

OVCAs. In this study, we assessed the potential tumor/metastasis suppressor 

functions of plakoglobin in OVCAs, using the normal ovarian cell line IOSE-364 

and OVCA cell lines OV-90 (plakoglobin and E-cadherin positive, mp53 

expressing), ES-2 (plakoglobin and E-cadherin negative, N-cadherin positive and 

mp53 expressing), ES-2-PG (ES-2 tansfectants expressing plakoglobin), ES-2-E-

cad (ES-2 tansfectants expressing E-cadherin) and ES-2-shN-cad (ES-2 cells in 

which N-cadherin has been knocked down). We examined plakoglobin levels, 

localization and interactions with E- and N-cadherin and p53 and assessed the 

growth, migratory and invasive properties of various cell lines. The results showed 

that plakoglobin interacted with both cadherins and p53. Exogenous expression of 

E-cadherin or plakoglobin or knockdown of N-cadherin significantly reduced the 

migration and invasion of ES-2 cells. Furthermore, plakoglobin expression and N-

cadherin knockdown but not E-cadherin expression significantly reduced ES-2 

cells growth. 
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2.2. Materials and methods 

2.2.1. Cell lines and culture conditions 

IOSE-364 (hereafter IOSE) were grown in a 1:1 M199 and MCDB M105 media 

plus 5% FBS and 1% PSK (Penicillin, Streptomycin, Kanamycin). OV90 cells were 

maintained in the same M199 and MCDB M105 media plus 15% FBS and 1% PSK. 

ES-2 cells were grown in McCoy’s 5a media completed with 10% FBS and 1% 

PSK. ES-2-E-cad and ES-2-PG cells were grown in ES-2 media containing 400 

g/ml (selection) or 200 g/ml (maintenance) G418. ES-2-shNcad transfectants 

were cultured in ES-2 media with 1g/ml (selection) or 0.5 g/ml (maintenance) 

puromycin. 

2.2.2. Transfection 

Plasmids encoding E-cadherin and plakoglobin have been described [33, 34]. 

Cultures of ES-2 cells in 60 mm or 100 mm dishes were transfected at 50-75% 

confluency with 10-25 g of DNA using calcium phosphate. Twenty hours after 

transfection, cells were rinsed with PBS and allowed to recover for 24 hours in 

complete growth media. To select stable transfectants, 72 h after transfection, 

media containing 400 g/ml G418 (ES-2- PG and ES-2- E-cad transfectants) were 

added to cells and resistant colonies selected for 3-4 weeks. Resistant clones were 

maintained in 200 g/ml G418 and screened for plakoglobin and E-cadherin 

expression by immunofluorescence and immunoblotting assays. 

2.2.3. N-cadherin knockdown 

Human N-cadherin lentiviral shRNA plasmid [35] was used to transfect Phoenix-

AMPHO cells using calcium phosphate. Lentiviral particles collected at 48 and 72 
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hours post transfection were combined and filtered using a 0.45m low-protein 

binding filter. Lentiviral particles were used to transduce ES-2 cells in the presence 

of 8g/ml polyberene (Santa Cruz). Puromycin-resistant stable cell lines expressing 

the N-cadherin shRNAs (ES-2-shN-cad) were isolated and the N-cadherin levels 

assessed by immunoblot and immunofluorescence. 

2.2.4. Immunoblot Analysis 

Confluent 100 mm culture plates were rinsed with cold PBS and solubilized in SDS 

sample buffer (10 mM Tris–HCl pH 6.8, 2% (w/v) SDS, 50 mM dithiothreitol, 2 

mM EDTA, 0.5 mM PMSF, 1 mM NaF, 1 mM Na3VO4). Equal amounts of total 

cellular proteins were separated by SDS-PAGE and transferred onto nitrocellulose 

membranes (Biorad). The membranes were incubated in specific primary 

antibodies overnight at 4°C followed by the appropriate secondary antibodies at 

room temperature (Table 2.1). Membranes were scanned using an Odyssey CLx 

infrared imaging system. 
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Table 2.1. Antibodies and their respective dilutions in specific assays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Assay  

Source Primary antibodies Species WB IP IF 

p53 Mouse 1:1000 1:100 - Santa Cruz, sc-126 

Plakoglobin Mouse 1:1000 1:100 1:100 Translab, 610254 

E-cadherin Mouse 1:1000 - 1:100 Translab, 610404 

N-cadherin  Mouse 1:1000 - - Santa Cruz, sc-59987 

Cytokeratin (pan-keratin) Mouse 1:1000 - - Sigma, C-2931 

Vimentin Mouse 1:1000 - - Sigma, V-6630 

-actin Mouse 1:1000 - - Santa Cruz, sc-47778 

Secondary antibodies  

Anti-mouse IgG, light 

chain  

Goat 1:15000 - - Jackson Immuno Research, 

115-625-174 

Anti-rabbit IgG, light 

chain  

Goat 1:15000 - - Jackson Immuno Research, 

211-652-171 

Alexa fluor 488 Mouse - - 1:2000 Molecular Probes, A11029 

Alexa fluor 546 Rabbit - - 1:3000 Molecular Probes, A11035 

Rhodamine Rabbit  - - 1:400 Boehringer Mannheim, 605107 

Rhodamine Rat - - 1:400 Sigma, T4280 
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2.2.5. Immunofluorescence 

Confluent cell cultures were established on glass coverslips and rinsed with cold 

PBS containing 1 mM each of NaF, Na3VO4 and CaCl2.  Cells were fixed with 

3.7% formaldehyde for 20 minutes and extracted with CSK buffer (50 mM NaCl, 

300 mM Sucrose, 10 mM PIPES pH 6.8, 3 mM MgCl2, 0.5% Triton X-100, 1.2 

mM PMSF, and 1 mg/ml DNase and RNase; [17]) for 10 minutes. Coverslips were 

blocked with 4.0% goat serum and 50 mM NH4Cl4 in PBS containing 0.2% BSA 

for 1 hour. Coverslips were then incubated in the specific primary antibodies for 1 

hour followed by the secondary antibodies for 30 minutes at concentrations 

indicated in Table 2.1. Nuclei were counterstained with DAPI (1:2000). Coverslips 

were mounted in elvanol containing 0.2% (w/v) paraphenylene diamine (PPD) and 

viewed using a 63x objective lens of a Zeiss confocal microscope. 

2.2.6. Immunoprecipitation 

Cultures were grown to confluency in 100 mm dishes and rinsed with cold PBS 

containing 1 mM NaF, Na3VO4 and CaCl2. Cells were extracted in 1ml of lysis 

buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 0.7 g/ml Pepstatin, 1 mM Na3VO4, 1 mM NaF, and protease 

inhibitor cocktail) for 20 minutes on a rocker at 4oC. Cells were scraped and 

centrifuged at 48000 xg for 10 minutes. Supernatants were processed for 

immunoprecipitation with p53, plakoglobin, E- and N-cadherin antibodies (Table 

2.1) and 40 l protein G agarose (Thermo Fisher Scientific) beads overnight on a 

rocker-rotator at 4°C. Samples were then centrifuged at 14000 xg for 2 min, the 

beads were removed and the supernatants processed for a second 
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immunoprecipation for 3 hours. Beads from the two immunoprecipitations were 

combined and washed three times with the lysis buffer. Immune complexes were 

solubilized in 60 l SDS sample buffer, separated by SDS-PAGE and processed for 

immunoblot as described above. 

2.2.7. Growth, migration and invasion assay 

For in vitro growth assay, 3x104 cells from ES-2, ES-2-E-cad, ES-2-PG and ES-2-

shN-cad cells were plated in a 24-well plate. At 1, 3, 5 and 7 days after plating, 

cultures were trypsinized and cells were counted. Each time point represents the 

average of three independent experiments. 

For cell migration assays, 2×105 cells were resuspended in 0.5 ml serum-free media 

and plated in the upper chamber of transwell inserts (3μm pore, 6.5 mm diameter; 

BD Biosciences). Normal media containing 10% FBS was added to the lower 

chamber and cultures were incubated for 16 hours at 37°C. Inserts were then 

transferred into new dishes and rinsed with PBS to remove un-attached cells. Inserts 

were fixed with 3.7% formaldehyde (in PBS) for 2 minutes, permeabilized with 

100% methanol for 20 minutes and stained with Giemsa stain for 15 minutes at 

room temperature. Following staining, membranes were viewed under an inverted 

microscope using a 20x objective lens and photographed. 

For Matrigel invasion assays, cells were starved in serum-free media for 24 hours 

prior to the assay. For each cell line, 5×104 cells in 0.2 ml serum-free media were 

plated in the top compartment of Matrigel-coated invasion chambers (8 m pore 

PETE membrane; BD Biosciences). Fibroblast conditioned media (0.8 ml) was 

added to the bottom chambers and plates were incubated overnight at 37°C. After 
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16 hours, membranes were recovered and processed as described for the migration 

assay. Mounted membranes were viewed under a 20x objective lens of an inverted 

microscope and photographed. 

The migrated/invaded cells were counted in 5 random fields for each membrane 

using ImageJ Cell Counter program. Numbers for each cell line were averaged and 

normalized to those of the normal cell line or parental untransfected cells and 

histograms constructed. Histograms represent the average of at least 3 independent 

assays for each cell line. 

2.2.8. Statistical analysis 

Values are presented as means± SD. Statistical differences between groups were 

assessed by Student’s t-tests. P-value <0.05 was considered significant. 

2.3. Results 

2.3.1. Protein expression of epithelial and mesenchymal markers and p53 in 

various OVCA cell lines 

Protein expression of E-cadherin, N-cadherin, plakoglobin, cytokeratins, vimentin 

and p53 in IOSE, ES-2 and OV-90 cells were detected using immunoblot analysis 

(Figure 2.1). IOSE cells had very little, if any, E-cadherin and expressed N-cadherin 

and plakoglobin. These cells also expressed cytokeratins, vimentin and p53. These 

observations were consistent with previous findings indicating that normal OSE 

cells displayed both epithelial and mesenchymal markers [36]. In contrast, OV-90 

cells that express mp53 [37] had no detectable N-cadherin, low levels of vimentin 

and high levels of epithelial markers including E-cadherin, plakoglobin and 

cytokeratins. ES-2 cells, which also express mp53 [38, 39], displayed a more 
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mesenchymal phenotype, lacked E-cadherin and plakoglobin and expressed N-

cadherin, vimentin and very low levels of cytokeratins. 

 

 

 

Figure 2.1. Protein expression of epithelial and mesenchymal markers and p53 

in ovarian cancer cell lines. Total cell lysates from IOSE-364, ES-2 and OV-90 

cells were processed for immunoblot analysis using N-cadherin, E-cadherin, 

plakoglobin, vimentin, cytokeratins and p53 antibodies. Equal loadings were 

confirmed by processing the same lysates with actin antibodies.  
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2.3.2. Levels, localization and interaction of E-cadherin, N-cadherin and 

plakoglobin in normal and carcinoma ovarian cell lines 

Subcellular distribution and potential co-localization of E-/N-cadherin with 

plakoglobin were examined by double immunofluorescence staining (Figure 2.2A). 

In IOSE cells, consistent with the immunoblot results, E-cadherin levels were 

undetectable whereas N-cadherin and plakoglobin were expressed at high levels 

and were co-distributed at the membrane (Figure 2.2A, IOSE). In OV-90 cells, high 

levels of E-cadherin and plakoglobin were present and were colocalized at the 

membrane. We also detected scarcely distributed small patches of N-cadherin 

positive cells in OV-90 cultures. In these patches, N-cadherin was colocalized with 

plakoglobin (Figure 2.2A, OV-90). In ES-2 cells, there was no detectable E-

cadherin or plakoglobin, whereas they expressed high levels of N-cadherin, which 

was distributed throughout the cytoplasm (Figure 2.2A, ES-2). Consistent with the 

absence of plakoglobin and adhesive junctions, ES-2 cells exhibited significantly 

less cell-to-cell contact and their morphology was distinctly different than IOSE 

and OV-90 cells. Co-immunoprecipitation studies showed that plakoglobin 

interacted with N-cadherin in IOSE cells and with E-cadherin in OV-90 cells 

(Figure 2.2B).   
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2.3.3. The absence of E-cadherin and plakoglobin expression and the presence 

of N-cadherin contribute to the migratory and invasive properties of ES-2 

cells. 

Previously, we have shown that the expression of plakoglobin in plakoglobin -

deficient carcinoma cells that lack E-cadherin and express N-cadherin decreases 

their in vitro growth, migration and invasion [33, 34]. To examine whether 

plakoglobin had similar effects in OVCA cells, we first examined the migration and 

invasion properties of IOSE, OV-90 and ES-2 cells. Then, we exogenously 

expressed E-cadherin or plakoglobin or knocked down N-cadherin in these cells 

and assessed changes in their growth, migration and invasion. As depicted in Figure 

(Figure 2.3A), OV-90 cells showed significantly lower migration and invasion 

relative to IOSE cells (8.4% and 0.4 %, respectively). In contrast ES-2 cells were 

significantly more migratory and invasive compare to IOSE cells (138% and 

196.4%, respectively). 

Exogenous expression of E-cadherin and plakoglobin and stable knockdown of N-

cadherin in ES-2 transfectants was confirmed using immunoblot (Figure 2.3B) and 

immunofluorescence analyses (Figure 2.3C). In ES-2-E-cad cells (Figure 2.3B, C, 

ES-2-Ecad), E-cadherin was expressed and mainly localized at the membrane 

although it was also detected in the cytoplasm of the transfectants. Interestingly, 

plakoglobin expression in ES-2-PG cells (Figure 2.3B, C, ES2-PG) led to the 

upregulation of endogenous E-cadherin. In these cells, the exogenously expressed 

plakoglobin colocalized with both N-cadherin and E-cadherin (Figure 3B, C, ES2-

PG). N-cadherin knockdown reduced the levels of the endogenous N-cadherin 
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(>90%). Staining of these cultures with N-cadherin antibodies detected occasional 

cells that were barely stained (Figure 2.3B, C, ES2-shN-cad). Furthermore, co-

immunoprecipitation studies showed that in ES-2-PG cells, N-cadherin interacted 

with exogenously expressed plakoglobin (Figure 2.3D). 

Assessment of the migration and invasion of ES-2 transfectants showed a 

significant reduction in both migration and invasion of ES-2-Ecad and ES-2-PG 

cells relative to parental ES-2 cells (Figure 2.4A, B and D). E-cadherin expression 

in ES-2 cells reduced migration and invasion of these cells by 39% and 42%, 

respectively. Plakoglobin expression in ES-2 cells decreased migration and 

invasion by 58% and 44%, respectively. The effect of N-cadherin knockdown on 

migration was similar to that of plakoglobin expression, i.e. a reduction of 65% 

whereas the invasion of ES-2-shN-cad cells was significantly less than that of ES-

2-E-cad and ES-2-PG cells (68% reduction) (Figure 2.4A, B and D). We also 

compared the growth of ES-2 cells with those of ES-2-E-cad, ES-2-PG and ES-2-

shN-cad transfectants (Figure 2.4C, D). At day 7, ES-2-E-cad cells showed similar 

growth rate to ES-2 cells while ES-2-PG and ES-2-shN-cad cells showed 

significantly lower growth than ES-2 cells (21% and 25% reduction, respectively, 

(Figure 2.4C, D). However, while ES-2-shN-cad cells showed decreased growth 

throughout the 7 days, ES-2-PG cultures showed decreased cell number after day 

5, likely due to the induction of contact inhibition upon culture confluency (Figure 

2.4C). 

Taken together, these results suggested that expression of E-cadherin or 

plakoglobin or knockdown of N-cadherin effectively reduced migration and 
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invasion of ES-2 cells. However, only plakoglobin expression or N-cadherin 

knockdown significantly decreased the growth of these cells. 
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Figure 2.4. Migration, invasion and growth properties of normal and carcinoma 

ovarian cell lines. IOSE-364, OV-90, ES-2 and ES-2 transfectants (ES-2-E-cad, ES-2-PG, 

ES-2-shN-cad) were processed for migration (A) and invasion (B) assays as described in 

Materials and Methods. The number of migrated/invaded cells were normalized to those 

of the IOSE-364 cells. (C) Replicate cultures of ES-2 cells and ES-2 transfectants (E-cad, 

PG and shN-cad) were plated at single cell (3x104) density. Cultures were counted at day 

1, 3, 5 and 7. Each time point is the average of three independent experiments. (D) 

Summary of changes in growth, migration and invasion of ES-2 transfectants. 

Transfectants values were normalized to ES-2 cells.  p values, * <0.05, ** < 0.001. 
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2.3.4. Interaction of plakoglobin and p53 in normal and ovarian carcinoma 

cell lines 

We have shown that plakoglobin interacted with both wild type and mp53 in 

various carcinoma cell lines and they both associated with promoters of a number 

of p53 target genes [17, 18, 40]. Plakoglobin’s interactions with mp53 expressing 

carcinoma cells led to decreased growth, migration and invasion of these cells. To 

this end, we examined whether plakoglobin associated with p53 in OVCA cells. 

Total cell extract of IOSE, ES-2 and ES-2-PG cells were processed for reciprocal 

co-immunoprecipitation (co-IP) and immunoblotting with plakoglobin and p53 

antibodies (Table 2.1). In IOSE cells plakoglobin antibodies co-precipitated p53 

and plakoglobin (Figure 2.5). The reciprocal co-IP using p53 antibodies co-

precipitated plakoglobin, further validating the interaction between plakoglobin 

and p53 in these cells. In ES-2 cells expressing exogenous plakoglobin and 

endogenous mp53, plakoglobin antibodies co-precipitated p53 and plakoglobin. In 

the reciprocal co-IP of ES-2-PG cells, p53 antibodies brought down both 

plakoglobin and p53 (Figure 2.5). In contrast, in ES-2 cells with no plakoglobin 

expression, p53 antibodies precipitated p53 only (Figure 2.5). Control 

immunoprecipitations with p53 and plakoglobin pre-immune antibodies did not 

detect either protein in the total cell lysates (Figure 2.5B). 
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Figure 2.5. Interaction of plakoglobin and p53 in normal and ovarian carcinoma cell 

lines. Equal amounts of total cell extracts (TCE) from IOSE-364, ES-2 and ES-2-PG cells 

were processed for receiprocal and sequential immunoprecipitation (IP) and 

immunoblotting (IB) using p53 and plakoglobin antibodies (A) or preimmune antibodies 

(B) as described in Materials and Methods. The same lysates were processed with actin 

antibodies to confirm equal loadings. PG, plakoglobin; Pi, pre-immune.  
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2.4. Discussion 

In the current study, for the first time, we investigated the in vitro tumor/metastasis 

suppressor effects of plakoglobin in EOC cell lines with mp53 expression and 

different cadherin profiles. We showed that ES-2 cells that express N-cadherin and 

are deficient in E-cadherin and plakoglobin were highly migratory and invasive. In 

contrast, OV-90 cells that express both E-cadherin and plakoglobin and very little 

N-cadherin were not migratory or invasive. The exogenous expression of 

plakoglobin or E-cadherin or knockdown of N-cadherin in ES-2 cells significantly 

reduced their migration and invasion. Our data showed that plakoglobin colocalized 

with both E-cadherin and N-cadherin in adhesion complexes. Consistent with these 

observations, we detected significant reduction in ES-2-PG and ES-2-shN-cad 

growth relative to ES-2 and ES-2-E-cad cells. Furthermore, plakoglobin interacted 

with wild type p53 in IOSE cells and mp53 in ES-2-PG transfectants. 

Cadherin switching from E- to N-cadherin is a critical step in the epithelial to 

mesenchymal transition (EMT)-mediated malignancies [41, 42]. EMT leads to the 

cell-cell junction disassembly, loss of cell polarity and gain of migratory and 

invasive properties [30, 44, 44]. While E-cadherin is an epithelial marker and a 

known tumor suppressor, N-cadherin is a mesenchymal marker and its expression 

is associated with a more migratory and invasive phenotype [44, 45]. Normal 

ovarian surface epithelial (OSE) cells express a combination of epithelial and 

mesenchymal markers. These cells do not have E-cadherin but express N-cadherin, 

catenins, vimentin and cytokeratins [36, 46-50]. In agreement with these reports, 

IOSE cells expressed N-cadherin and vimentin as well as catenins including 
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plakoglobin, and cytokeratins. The exact role of E-/N-cadherin switch in the 

initiation and progression of ovarian carcinomas is not very clear since both 

cadherins can be expressed in ovarian tumors of different origins and at different 

stages [51, 52]. However, while a few studies suggest that E-cadherin is upregulated 

in OVCA effusions [52, 53], the great majority suggest that the loss or reduced 

levels of E-cadherin contribute to the transition from benign to borderline ovarian 

lesions, to poorly differentiated ovarian tumors, and to the local invasion and 

metastasis [28, 47, 55-58]. Consistent with the tumor suppressor activities of E-

cadherin, downregulation/lack of E-cadherin expression due to the high levels of 

its transcriptional repressors Snail, Twist and ZEB-2 has been associated with the 

migratory and invasive properties of ES-2 and other OVCA cells [59-71]. In 

addition, E-cadherin suppresses growth and metastasis via inhibiting receptor 

tyrosine kinase signaling and PI3k/Akt pathways [72, 73]. In agreement with these 

studies, we showed that ES-2-E-cad cells had significantly lower migration and 

invasion (39% and 42%, respectively) compared to ES-2 cells. 

Although N-cadherin is expressed in normal OSE, its expression is generally 

associated with increased migration and invasion of OVCA [74-76]. N-cadherin 

levels have been shown to be elevated in cell lines expressing Snail and ZEB-1, as 

well as, in patients with higher FIGO tumor grade and metastasis [51, 64, 77]. 

Exogenous expression of MUC4 in SKOV3 cells led to the downregulation of E-

cadherin, upregulation of N-cadherin and increased motility. N-cadherin 

knockdown in these cells reduced MUC4 induced motility, concurrent with 

decreased activity of ERK1/2, AKT and MMP9 [78]. Supporting these studies, a 
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selective anti-N-cadherin antibody (Exherin, ADH-1) was recently shown to be 

effective in stabilizing disease progression in two OVCA patients in a small phase 

I clinical study, which assessed patients with various solid tumors [79]. Here, we 

showed that relative to ES-2 cells, the migration and invasion of ES-2-shN-cad 

transfectants were reduced by 65% and 68%, respectively. Furthermore, knocking 

down N-cadherin was much more effective in reducing migration and invasion than 

expressing E-cadherin in ES-2 cells. Similarly, while E-cadherin expression had 

very little effect (5%) in decreasing growth, plakoglobin expression or N-cadherin 

knockdown significantly reduced ES-2 cells growth (20%, 25%, respectively). 

Unlike cadherins, very little is known about the role of plakoglobin in OVCA. 

Plakoglobin has been shown to have growth/metastasis inhibitory function, both in 

vitro and in vivo [19]. This function of plakoglobin can be mediated by stabilizing 

/sequestering N-cadherin and induction of contact inhibition of growth and/or 

interacting with different cellular proteins including transcription factors [17-19, 

27,34,40,80-82]. Here, the exogenous expression of plakoglobin significantly 

reduced migration and invasion of ES-2 cells (58% and 44% respectively). The 

effect of plakoglobin on inhibiting migration was significantly higher than that of 

E-cadherin. Since plakoglobin expression is necessary for the formation of both 

adherens junctions and desmosomes [19,33], this may suggest that plakoglobin 

reduced migration via association with N-cadherin and formation of junctions as 

well as interaction with transcription factors and regulation of gene expression. 

Interaction of plakoglobin with several transcription factors such as TCF/LEF, 

CBP, SOX4 and p53 has been reported previously [17, 22-26, 81]. We have shown 
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that plakoglobin interacted with mp53 in several carcinoma cell lines and they both 

associated with promoters of a number of p53 target genes including tumor 

suppressors SFN (14-3-3s) and NME1and the oncogenic genome organizer SATB1. 

Furthermore, these associations were concurrent with reduced growth, migration 

and invasion [17,18]. Plakoglobin also regulated the expression of HAI-1 and 

reduced migration in a p53 dependent manner in NSCLC cells [27]. Here, we 

showed that plakoglobin interacted with wild type p53 in IOSE cells and with mp53 

in ES-2-PG cells. p53 regulates the expression of EMT markers such as Twist, Snail 

and Slug [82-85]. We detected low levels of E-cadherin in ES-2-PG cells upon 

plakoglobin expression. Whether this E-cadherin expression is due to the 

downregulation of E-cadherin transcriptional repressors via plakoglobin/p53 

interaction or stabilization of E-cadherin protein via its interaction with plakoglobin 

warrants further studies. 

In summary, this is the first demonstration of the role of plakoglobin in OVCA 

cells. Our data showed that exogenous expression of plakoglobin or knockdown of 

N-cadherin were more effective than expression of E-cadherin in inhibiting the 

growth, migratory and invasive properties of ES-2 cells. These results suggest that 

Plakoglobin expression sequestered tumor/metastasis promoting activities of N-

cadherin. Induction of E-cadherin expression in ES-2 cells expressing exogenous 

plakoglobin, which interacted with the endogenous mp53 raises the possibility that 

plakoglobin may also be involved in the regulation of p53 target genes involved in 

migration and invasion. Collectively, the results suggest that plakoglobin may act 

as a tumor/metastasis suppressor in OVCA, as has been shown for other cancers. 
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The larger implication of our studies is the potential of plakoglobin as a therapeutic 

target for the majority of OVCAs with mp53 and N-cadherin expression.  
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3.1. Introduction   

The p53 transcription factor is a tumor suppressor that is absent or mutated in over 

half of all tumors [1-3]. p53 can be activated by various stress signals, including 

DNA damage, oncogenic insults, hypoxia, loss of cell-cell contact and changes in 

metabolic behavior. In response to stress, p53 activates physiological pathways that 

regulate cell cycle arrest, DNA repair, apoptosis, autophagy and metabolism [2, 3]. 

In addition to being a transcriptional regulator, p53 interacts with various 

cytoplasmic proteins, which mediate its growth regulating activity [4, 5].  

The three structural domains [N-terminus (NT), DNA binding (DBD) and C-

terminus (CT)] of p53 regulate its cellular functions. The NT contains two 

transactivation domains (TAD1 and 2). In addition to binding to coactivators, the 

NT is also the binding site for Hdm-2, which is an E3-ubiquitin ligase mediating 

p53 degradation, thus serving as the primary regulator of p53 levels [6, 7]. The CT 

contains an oligomerization domain, which allows p53 tetramerization, and a short 

regulatory domain, which may function as a non-specific DNA binding domain 

necessary for growth arrest and apoptosis [8, 9]. Flanked by the NT and CT, the 

DBD confers transcriptional activity on p53 and harbors the majority of p53 

mutations [1, 10, 11]. p53 functions are regulated by posttranslational 

modifications and protein-protein interactions [5, 12, 13]. We have identified 

plakoglobin as an endogenous interacting partner of both wild type and a number 

of mutant p53s, and have shown that plakoglobin’s interaction with these mutants 

can restore their wild type functions [14, 15].   
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Plakoglobin is an Armadillo protein family member and a paralog of β-catenin 

with dual adhesive and signalling functions [16, 17, 18]. Structurally, these proteins 

consist of a N-terminal -catenin binding domain, a core of Armadillo (Arm) 

repeats, which bind adhesive and signalling partners, and a TA domain [18]. In 

adherens junctions, both β-catenin and plakoglobin mediate cell-cell adhesion by 

interacting with classic cadherins and -catenin, which link the complex to the 

cytoskeleton [18]. Plakoglobin is also an essential desmosomal junction component 

and as such plays an integral role in cell-cell adhesion [18, 19]. Both β-catenin 

and plakoglobin affect cell signalling through interactions with intracellular 

partners involved in cell proliferation, differentiation, survival and apoptosis [18, 

19]. Although β-catenin has a well-documented oncogenic function [18], 

plakoglobin is known to generally act as a tumor/metastasis suppressor by 

mechanisms that are beginning to be deciphered [19-22].  Our laboratory has shown 

that the tumor supressor activity of plakoglobin, is, at least in part, mediated by its 

interaction with p53. We have shown that plakoglobin interacted with p53, and both 

were associated with the promoters of p53 target genes [e.g. NME1, SFN (14-3-3σ), 

SATB1, THBS1] [14, 15, 20]. Together, these results suggest that the 

tumor/metastasis suppressor activity of plakoglobin may be mediated by its 

interaction with p53 and regulation of p53 target genes.  

In this study, we assessed the roles of p53 and plakoglobin, individually and 

together, in cell growth, migration and invasion, and identified the domains of p53 

and plakoglobin that mediated their interaction. H1299 and SCC9 cells were co-

transfected with expression constructs encoding HA-p53- (wild type, NT, DBD and 
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CT) and FLAG-plakoglobin- (wild type, N, Arm and C). Transfectants were 

characterized for their growth, migration and invasion. p53/plakoglobin interaction 

and localization were determined by co-immunoprecipitation and confocal 

immunofluorescence microscopy. Our results suggested that 1) p53 and 

plakoglobin cooperated to decrease growth whereas they acted synergistically to 

significantly reduce migration and invasion of H1299 cells, 2) p53/ plakoglobin 

interaction was mediated by the DBD of p53 and the C-terminus of plakoglobin, 

and 3) the C-terminal domain of plakoglobin was necessary for its maximum 

invasion inhibitory function via interaction with p53. 

3.2. Material and methods 

3.2.1. Reagents, cells and culture conditions  

Chemical reagents were purchased from Sigma-Aldrich and tissue culture reagents 

from Invitrogen, unless stated otherwise. Dr. Roger Leng, University of Alberta, 

provided the p53 and plakoglobin null non-small cell lung carcinoma cell line 

H1299 [21]. The p53 mutant and plakoglobin deficient human tongue squamous 

cell carcinoma cell line SCC9 has been described [24, 25]. All cells were 

maintained in Minimum Essential Medium (MEM) supplemented with 10% fetal 

bovine serum (FBS), and 1% penicillin-streptomycin-kanamycin (PSK) antibiotics.  

3.2.2. Plasmid construction and transfection 

The FLAG-tagged-plakoglobin (PG) (-wild type (WT), -ΔN, -ΔArm, -ΔC) 

constructs and their SCC9 transfectants have been described [24]. A plasmid 

encoding WT-p53 (PGEX2TK-WT-p53, gift from Dr. Roger Leng) served as the 



 

78 

 

template for constructing HA-tagged p53 WT, and p53 fragments, NT, DBD, and 

CT.  

Various primers (Table 3.1) were used to generate the four p53 inserts by PCR. For 

all PCR reactions, pre-denaturation was done at 95°C for 2 minutes followed by 32 

cycles of denaturation at 95°C for 30 seconds, annealing at 50°C (first 7 cycles) 

and 55°C (last 25 cycles) for 30 seconds, and extension at 72°C for 90 seconds. The 

PCR products were then subcloned into pcDNA 3.1 containing an HA tag at the C-

terminus. The pcDNA 3.1 vector was modified with the HA epitope tag sequence 

(TAC CCA TAC GAT GTT CCA GAT TAC GCT), which contained restriction 

sites to facilitate the subcloning of the p53 inserts and a stop codon. The constructs 

encoding HA-tagged p53-WT, NT, DBD, or CT were verified by sequencing.  

H1299 or SCC9 cells cultured in 60 mm dishes or on glass coverslips were 

transfected at 60-80% confluency with 2-10 g of DNA. Twenty hours later, cells 

were rinsed and allowed to recover for 24 hour in complete MEM. For transient 

transfections, transfected cells were processed for different assays 48 hour after 

transfection. For stable transfectants, 48 hours after transfection, media were 

replaced with media containing 500 g/ml hygromycin B (p53) or 400 g/ml G418 

(plakoglobin) and the resistant colonies selected for 2-3 weeks and verified for HA-

p53 and FLAG-plakoglobin expression. Positive clones were subcultured by 

limiting dilution and maintained in media containing 350 g/ml hygromycin B and 

200 g/ml G418.  
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Table 3.1. Oligos/primers sequences used to create p53 constructs 

 

3.2.3. Preparation of total cell extracts and immunoblotting 

Confluent 100 mm culture dishes were rinsed with cold PBS, solubilized in hot 

SDS sample buffer (10 mM Tris-HCl pH 6.8, 2% (w/v) SDS, 50 mM dithiothreitol 

(DTT), 2 mM EDTA, 0.5 mM PMSF) and boiled for 10 minutes. Twenty-five - 50 

g of total cellular protein was resolved by SDS-PAGE, transferred to 

nitrocellulose membranes and processed for immunoblotting using HA, FLAG and 

actin primary antibodies followed by the appropriate secondary antibodies (Table 

3.2). Membranes were developed by either ECL (Perkin Elmer LAS) or LI-COR 

IR fluorescence dyes. 

 

Construct Primers 

Size 

(nucleotide) 

p53-WT 

Forward 5’ ttt taa gct tat gga gga gcc gca gtc ag 3’ 29 

Reverse 5’ ttt tgc ggc cgc gtc tga gtc agg ccc ttc tgt c 3’ 34 

P53-NT 

Forward 5’ ttt taa gct tat gga gga gcc gca gtc ag 3’ 29 

Reverse 5’ ttt tgc ggc cgc agg agc tgc tgg tgc agg 3’ 30 

P53-DBD 

Forward 5’ ttt taa gct tat gtc cca agc aat gga tga ttt g 3’ 34 

Reverse 5’ ttt tgc ggc cgc ccc ttt ctt gcg gag att ctc 3’ 33 

P53-CT 

Forward 5’ ttt taa gct tat gac cag ctc ctc tcc cca gc 3’ 32 

Reverse 5’ ttt tgc ggc cgc gtc tga  gtc agg ccc ttc tgt c 3’ 34 

HA tag 

Forward 5’ ttt gct agc atg gcg gcc gca tac cca tac gat gtt cca gat 3’ 42 

Reverse 5’ aaa tct aga cta aag ctt agc gta atc tgg aac atc gta 3’ 39 
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Table 3.2. Antibodies and their respective dilutions in specific assays 

 

3.2.4. Immunoprecipitation  

Confluent cultures in 100 mm plates were rinsed with cold PBS containing 1mM 

NaF, Na3VO4 and CaCl2  and extracted in 2 ml of lysis buffer (50 mM Tris-HCl pH 

7.5, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.7 ug/ml Pepstatin, 1 

mM Na3VO4, 1 mM NaF, and protease inhibitor cocktail) for 30 minutes at 4oC on 

a rocker. Cells were scraped and centrifuged at 48000 xg for 10 minutes. 

Supernatants were divided into equal aliquots and processed for 

immunoprecipitation with FLAG and HA antibodies (Table 3.2) and 40 l protein 

G agarose (for monoclonal antibodies) or protein A sepharose beads (Pierce 

Biotechnology) for polyclonal antibodies) beads (Pierce Biotechnology) overnight 

at 4C on a rocker-rotator. Samples were then centrifuges at 14000xg for 2 minutes 

Primary antibodies Species 
Assay Company/Catalog 

number WB IP IF 

Anti-HA Rat 1:500 1:150 1:100 Roche/11867423001 

Anti--Actin Mouse 1:2000 -- -- Santa Cruz/sc-47778 

Anti-FLAG Mouse 1:500 1:150 1:100 Sigma/F-3165 

Secondary antibodies      

HRP anti-mouse, IgG light chain Goat 1:2000 -- -- Jackson/115-005-174 

HRP anti-rat, IgG light chain Goat 1:2000 -- -- Jackson/112-005-175 

Alexa Fluor anti-mouse IgG, light chain  Goat 1:25000 -- -- Jackson/112-625-175 

Alexa Fluor anti-rat IgG, light chain  Goat 1:25000 -- -- Jackson/115-625-174 

Alexa 488 anti-mouse IgG Goat -- -- 1:1000 Molecular probes/ 

A11029 

Rhodamine/TRITC anti-Rat IgG  Rabbit -- -- 1:1000 Sigma/T4280 
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to separate the beads from the supernatants and the supernatants were processed for 

a second immunoprecipitation for 2-3 hours. Beads from the two 

immunoprecipitations were combined and washed three times with the lysis buffer. 

Immune complexes were solubilized in 40 l SDS sample buffer, separated by 

PAGE and processed for immunoblot using HA, FLAG and actin primary 

antibodies followed by the appropriate secondary antibodies (Table 3.2) as 

described above.  

3.2.5. Immunofluorescence 

Cells were grown to confluency on glass coverslips and rinsed twice with cold PBS 

containing 1 mM NaF, Na3VO4 and CaCl2.  Cells were then fixed with 3.7% 

formaldehyde for 20 minutes and extracted with CSK buffer (50 mM NaCl, 300 

mM Sucrose, 10 mM PIPES pH 6.8, 3 mM MgCl2, 0.5% Triton X-100, 1.2 mM 

PMSF, and 1 mg/ml DNase and RNase) for 7 minutes. Coverslips were blocked 

with 4.0% goat serum and 50 mM NH4Cl4 in PBS containing 0.2% BSA (PBS–

BSA) for 1 hour and processed for indirect immunofluorescence. Coverslips were 

incubated in the primary antibodies followed by the species-specific secondary 

antibodies at concentrations indicated in Table 3.2 for 1 hour and 20 minutes, 

respectively. All antibodies were diluted in PBS–BSA. Nuclei were counterstained 

with DAPI (1:2,000) in PBS. Coverslips were mounted in elvanol containing 0.2% 

(w/v) paraphenylene diamine (PPD) and viewed using a Zeiss confocal microscope.  

3.2.6. In vitro growth, migration and invasion assays  
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For growth assays, triplicate cultures of various cell lines were plated in 24-well 

plates at single cell density (2.5 x 104/cm2). At 1, 3, 5 and 7 days after plating, 

cultures were trypsinized and cells counted. Each time point represents the average 

of three independent experiments.  

For cell migration assays, 2×105 cells were resuspended in 500 l serum-free media 

and plated in the upper chamber of transwell inserts (3 μm pore, 6.5 mm diameter; 

BD Biosciences). Normal media containing 10% FBS was added to the lower 

chamber. Cultures were incubated at 37°C in 5% CO2 for 24 hours to allow cell 

migration. Inserts were transferred into new dishes and rinsed with PBS to remove 

un-attached cells. Inserts were fixed with 3.7% formaldehyde (in PBS) for 2 

minutes, permeabilized with 100% methanol for 20 minutes and stained with 

Giemsa stain for 15 minutes at room temperature. Following staining, membranes 

were cut, mounted using permount (Fisher Scientific), viewed under an inverted 

microscope using a 20x objective lens and photographed. The migrated cells on the 

underside of the membranes were counted in 5 random fields from the photographs.  

Matrigel invasion assays were performed according to the manufacturer's protocol 

(BD Biosciences). Cells were starved in serum free media 24 hour prior to plating. 

For each cell line, 5×104 cells in 0.2 ml serum-free media were plated in the top 

compartment of Matrigel-coated invasion chambers (8 m pore PETE membrane). 

Fibroblast conditioned media (0.8 ml) was added to the bottom chambers and plates 

were incubated overnight at 37°C in 5% CO2. After 24 hours, membranes were 

recovered and processed as described for the migration assay. Mounted membranes 

were viewed under a 20x objective lens of an inverted microscope and 
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photographed. The invaded cells were counted in 5 random fields for each 

membrane. 

ImageJ Cell Counter program was used to calculate the numbers of 

migrated/invaded cells. Counted cell numbers were averaged and histograms were 

constructed after normalizing the average numbers of migrated/invaded cells in 

each transfected cell line to those of their parental untransfected cells. Each assay 

was repeated 2-5 independent times. 

3.2.7. Statistical analysis 

Values are presented as means ± SD. Statistical differences between groups were 

assessed by Student’s t-tests. All experiments were performed at least three times. 

P-values <0.05 were considered significant.   

3.3. Results  

3.3.1. Reduced growth, migration and invasion of transfectants expressing 

p53, plakoglobin or p53 and plakoglobin 

The expression of HA-p53-WT, FLAG-PG-WT and HA-p53-WT/FLAG-PG-WT 

in single and double transfectants was validated by western blot using anti-HA and 

anti-FLAG antibodies (Figure 3.1A) or p53 and plakoglobin antibodies (Figure 

3.2). Figure 3.1B is a phase micrograph of confluent cultures of H1299 cells and its 

transfectants expressing HA-p53-WT, FLAG-PG-WT and HA-p53-WT/FLAG-

PG-WT. Relative to H1299 cells, HA-p53-WT expressing transfectants were 

slightly larger and flatter. There were also some rounded, detached and presumably 

apoptotic cells in these cultures (H1299- HA-p53-WT). In contrast, FLAG-PG-WT 
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cells appeared to form a tighter monolayer, consistent with the formation of 

adhesive junctions upon plakoglobin expression in these cells (H1299- FLAG-PG-

WT). Interestingly, the double transfectants formed monolayers that were tighter 

than HA-p53-WT cells but not as tight as FLAG-PG-WT cells and furthermore 

showed some apoptotic cells (H1299- HA-p53-WT /FLAG-PG-WT) (Figure 3.1B). 

The functional consequence of WT p53 and plakoglobin expression were assessed 

by examining the in vitro growth, migration and invasion of H1299 and H1299 

transfectants (Figure 3.1C, D, E). Although the H1299-HA-p53 cells showed 

consistently and significantly less growth than H1299 cells (Figure 3.1C, H1299-

HA-p53), the growth of H1299-FLAG-PG and H1299-HA-p53/FLAG-PG 

transfectants was similar to that of H1299 cells until day 5, when cultures became 

confluent and cell numbers sharply declined (Figure 3.1C, H1299-FLAG-PG, 

H1299-HA-p53/FLAG-PG). At day 7, H1299-HA-p53/FLAG-PG cells showed 

~40% less growth than H1299 cells, whereas cells expressing either p53 or 

plakoglobin showed ~30% less growth (Figure 3.1C, Table 3.3).  

Individual expression of either p53 or plakoglobin decreased migration by 40% and 

21% relative to H1299 cells, respectively, whereas the co-expression of p53 and 

plakoglobin reduced migration by 73%. (Figure 3.1D, Table 3.3). Similarly, the 

invasiveness of H1299-HA-p53 and H1299-FLAG-PG cells was decreased by 35% 

and 21%, respectively, while the invasiveness of H1299-HA-p53/FLAG-PG cells 

was decreased by ~75% relative to H1299 cells (Figure 3.1D, Table 3.3). These 

results indicated that co-expression of p53 and plakoglobin synergistically and 

significantly decreased the migration and invasion of H1299 cells, and were also 
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consistent with the reduced growth, migration and invasion of SCC9 cells upon the 

exogenous expression of plakoglobin [15, 24]. 
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3.3.2. Generation and characterization of cell lines expressing wild-type p53 

and plakoglobin, various p53 fragments and plakoglobin deletion mutants  

To identify the domains of p53 and plakoglobin mediating their interactions, we 

created constructs encoding various deletions of FLAG-tagged PG, and constructs 

encoding different fragments of HA-tagged p53 (Figure 3.3). The plakoglobin 

constructs have been described previously [24,25] and include PG-WT (a.a. 1-745), 

-N (a.a. 123-745; lacking the -catenin binding domain), -Arm [a.a. 1-216 and 

464-745; lacking Armadillo domains 3-7, involved in binding to classic cadherins 

and adenomatous polyposis coli)] and -C (a.a. 687-745; lacking the TA). All 

plakoglobin constructs contained a C-terminal FLAG tag (Figure 3.3A, left), and 

were previously characterized in SCC9 cells [25]. These constructs were 

transfected into H1299 cells and their expression was verified by immunoblotting 

with FLAG antibodies (Figure 3.3A, right). 

Constructs encoding C-terminally HA-tagged WT and fragments of p53 were 

generated, including p53-WT (a.a. 1-393), -NT [a.a. 1- 96; containing both TAs 

(a.a. 1-42; 43-92), the nuclear export signal (a.a. 11-27) and the proline-rich domain 

(a.a. 64-92)], -DBD [a.a. 51-309; including the second TAD, proline-rich domain, 

and entire DBD (a.a. 101-300)], and -CT [a.a. 312-393; containing the 3 nuclear 

localization sequences (a.a. 305-322; 369-375; 379-384), tetramerization domain 

(a.a. 326-356), and regulatory domain (a.a. 364-393)] (Figure 3.3B, left). The HA-

p53 constructs were transfected into H1299 cells and protein expression was 

confirmed by immunoblotting with HA antibodies (Figure 3.3B, right).  



 

89 

 

 

  



 

90 

 

3.3.4. Expression of HA-p53 and FLAG-plakoglobin proteins in H1299 

double transfectants  

To study p53 and plakoglobin interaction, we generated H1299 double transfectants 

coexpressing HA-p53-WT with FLAG-PG-WT, -ΔN, -ΔArm or -ΔC or -FLAG-

PG-WT with HA-p53-WT, -NT, -DBD or -CT. Protein expression in H1299 

(Figure 3.4 A, B) double transfectants was confirmed by immunoblotting with HA 

and FLAG antibodies (Figure 3.4 A, B).   

 

 

Figure 3.4. Protein expression of WT and fragments of p53 and plakoglobin in double 

transfectants. Equal amounts of total cellular proteins from stable H1299-HA-p53-WT 

transfectants co-expressing FLAG-PG-WT, - or N, -Arm or -C (A) or H1299-FLAG-

PG-WT co-expressing HA-p53 WT, -NT, -DBD or -CT (B) were processed for 

immunoblots with HA or FLAG antibodies as described in Materials and Methods. PG, 

plakoglobin; WT, wild type; N, N-terminus; C, C-terminus; Arm, armadillo; DBD, DNA 

binding domain. 

 

 



 

91 

 

3.3.5. DNA binding domain of p53 and the C-terminal domain of plakoglobin 

mediate p53/plakoglobin interactions  

H1299 double transfectants co-expressing various pairs of HA-p53 and FLAG-PG 

proteins/fragments were processed for reciprocal co-immunoprecipitation and 

immunoblotting with HA and FLAG antibodies. Figure 3.5A shows the co-

immunoprecipitation results with H1299 cells expressing HA-p53-WT together 

with FLAG-PG-WT, -ΔN, -ΔArm or -ΔC. In lysates from these transfectants, 

FLAG antibodies co-precipitated HA-p53-WT with FLAG-PG-WT, -ΔN and -

ΔArm, but not with FLAG-PG-ΔC. The reciprocal co-immunoprecipitation using 

HA antibodies confirmed these findings, as FLAG-PG-ΔC was the only FLAG-PG 

fragment that was not co-precipitated with HA-p53-WT. These results suggested 

that the C-terminus domain of plakoglobin is necessary for p53/plakoglobin 

interactions (Figure 3.5A). When H1299 cells expressing FLAG-PG-WT with HA-

p53-WT, -NT, -DBD or -CT were subjected to reciprocal co-immunoprecipitation, 

FLAG antibodies co-precipitated HA-p53-WT and -DBD, but not HA-p53-NT or -

CT (Figure 3.5B). These results were confirmed when HA antibodies co-

precipitated FLAG-PG-WT with HA-p53-DBD, but not HA-p53-NT or -CT 

(Figure 3.5B). Taken together, these results suggest that the C-terminus of 

plakoglobin, and the DBD of p53 mediate p53/plakoglobin interaction.  
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3.3.6. Subcellular location of p53 and plakoglobin in H1299-HA-p53 and 

H1299-FLAG-PG transfectants   

We previously demonstrated that p53 and plakoglobin interacted in both the 

cytoplasm and nucleus [14]. Here, HA-p53 and FLAG-PG transfectants were 

processed for immunofluorescence using HA and FLAG antibodies. Figure 3.6A 

shows the subcellular localization of HA-p53 in various H1299-HA-p53 

transfectants. In HA-p53-WT transfectants, p53 was primarily nuclear, with a faint 

cytoplasmic distribution (Figure 3.6A, H1299-HA-p53-WT). In contrast, p53 was 

distributed mainly in the cytoplasm of H1299-HA-p53-DBD transfectants with 

very little nuclear staining (Figure 3.6A, H1299-HA-p53-DBD). In H1299-HA-

p53-NT transfectants, p53 was mainly cytoplasmic, with a distinct peri-nuclear 

distribution (Figure 3.6A, H1299-HA-p53-NT). Finally, in HA-p53-CT 

transfectants, p53 was detected exclusively in the nucleus, resembling the HA-p53-

WT transfectants (Figure 3.6A, H1299-HA-p53-CT). Collectively, these results are 

consistent with the presence of the nuclear localization sequence in p53-WT and -

CT, and its absence in p53-DBD and -NT.  

H1299 cells expressing FLAG-PG-WT or its three deletions showed different PG 

staining and cell morphology (Figure 3.6B). H1299-FLAG-PG-WT transfectants 

exhibited typical epithelial morphology and extensive cell-cell contact, with 

plakoglobin localized primarily to the areas of cell-cell contact (Figure 3.6B, 

H1299-FLAG-PG-WT). H1299-FLAG-PG-ΔN and H1299-FLAG-PG-ΔArm 

transfectants had numerous processes and little cell-cell contact, consistent with 

these fragments lacking the ability to interact with -catenin and cadherins and 
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localize to adhesive junctions. In these transfectants, FLAG-PG-ΔN and FLAG-

PG-ΔArm were mainly detected throughout the cytoplasm, without any distinct 

membrane staining (Figure 3.6B, H1299-FLAG-PG-ΔN, -FLAG-PG-ΔArm). In 

contrast, FLAG-PG-ΔC transfectants showed epithelial morphology, but were 

flatter than H1299-FLAG-PG-WT cells. In these cells, PG-ΔC was localized to the 

areas of cell-cell contact and cytoplasm, but was clearly excluded from the nucleus 

(Figure 3.6B, H1299-FLAG-PG-ΔC). Together, these results suggest that the C-

terminus of plakoglobin may be necessary for its nuclear localization.  



 

95 

 

 

Figure 3.6. Subcellular localization of HA-tagged p53 (A) and FLAG-tagged 

plakoglobin (B) proteins in H1299 cells. H1299 cells expressing various FLAG-PG and 

HA-p53 proteins were grown to confluency on coverslips, fixed with formaldehyde and 

permeabilized with CSK buffer. Coverslips were processed for confocal 

immunofluorescence microscopy using FLAG (green) and HA (red) antibodies. Nuclei 

were counterstained with DAPI (blue) and coverslips mounted and viewed using a Zeiss 

confocal microscope. PG, plakoglobin; WT, wild type; N, N-terminus; C, C-terminus; 

Arm, Armadillo; DBD, DNA binding domain. Bar, 40 m. 
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3.3.7. Subcellular distribution of plakoglobin and p53 in H1299 double 

transfectants expressing FLAG-PG-WT and HA-p53-WT, -NT, -DBD or -CT 

In HA-p53-WT and FLAG-PG-WT co-transfectants, p53-WT was primarily 

nuclear with faint cytoplasmic staining, whereas plakoglobin was localized to the 

areas of cell-cell contact as well as in the cytoplasm and nucleus. There was an 

overlap between the nuclear p53 and the nuclear plakoglobin staining in these cells 

(Figure 3.7, H1299-FLAG-PG-WT/HA-p53-WT). Membrane and cytoplasmic 

distribution of plakoglobin was also detected in H1299-FLAG-PG-WT/HA-p53-

NT transfectants, in which p53-NT distribution was almost exclusively 

cytoplasmic/perinuclear, overlapping with the cytoplasmic plakoglobin staining. 

Nuclear plakoglobin was not detected in these cells (Figure 3.7, H1299-FLAG-PG-

WT/HA-p53-NT). In H1299-FLAG-PG-WT/HA-p53-DBD cells, plakoglobin was 

primarily membrane localized, whereas p53-DBD was primarily cytoplasmic and 

overlapped with a pool of cytoplasmic plakoglobin (Figure 3.7, H1299-FLAG-PG-

WT/HA-p53-DBD). FLAG-PG-WT/HA-p53-CT transfectants showed membrane 

localization of plakoglobin with some homogeneous cytoplasmic staining, whereas 

p53-CT was almost exclusively nuclear. No overlap was detectable in the 

distribution of the two proteins (Figure 3.7, H1299-FLAG-PG-WT/HA-p53-CT). 

These observations are consistent with the presence of nuclear localization signals 

in p53-CT and suggest that plakoglobin was co-distributed only with the p53-WT 

and p53-DBD, albeit in the cytoplasm. 
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Figure 3.7. Subcellular localization of plakoglobin and p53 in H1299 double 

transfectants co-expressing FLAG-PG-WT and HA-p53-WT, -NT, -DBD or -CT. 

Cultures were processed for double immunofluorescence with FLAG and HA antibodies. 

Cells were grown to confluency on coverslips, fixed with formaldehyde and permeabilized 

with CSK buffer. Coverslips were processed for confocal immunofluorescence microscopy 

using FLAG (green) and HA (red) antibodies. Nuclei were counterstained with DAPI 

(blue) and coverslips mounted and viewed using a Zeiss confocal microscope. WT, wild 

type; PG, plakoglobin; NT, N-terminus; CT, C-terminus; DBD, DNA binding domain. Bar, 

25 m.  
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3.3.8. Subcellular distribution of plakoglobin and p53 in SCC9 double 

transfectants expressing HA-p53-WT and FLAG-PG-WT, -ΔN, -ΔArm or -ΔC 

In SCC9 cells expressing HA-p53-WT and FLAG-PG-WT, the distribution of p53 

and plakoglobin was similar to that of H1299-FLAG-PG-WT/HA-p53-WT cells. 

plakoglobin was detected at the membrane, and in the cytoplasm and nucleus. 

Nuclear plakoglobin was co-distributed with p53, which was almost exclusively 

nuclear (Figure 3.8A, SCC9-HA-p53-WT/FLAG-PG-WT). In the HA-p53-

WT/FLAG-PG-N transfectants, PG-N was detected throughout the cells, 

overlapping in distribution with p53, which was detected in both the cytoplasm and 

nucleus (Figure 3.8A, SCC9-HA-p53-WT/FLAG-PG-ΔN). In HA-p53-

WT/FLAG-PG-ΔArm transfectants, PG-ΔArm was detected throughout the cell, 

while p53 was primarily nuclear with some cytoplasmic distribution. In these cells, 

p53 was co-distributed with PG-ΔArm in both the cytoplasm and nucleus (Figure 

3.8A, SCC9-HA-p53-WT/FLAG-PG-ΔArm). In contrast to the FLAG-PG-WT, -

ΔN or -ΔArm transfectants in which plakoglobin was detected in the nucleus, 

FLAG-PG-ΔC transfectants had no detectable nuclear PG-ΔC. Due to the 

exclusively nuclear distribution of p53 in these cells, no overlap of p53 and PG-ΔC 

was detected (Figure 3.8A, SCC9-HA-p53-WT/FLAG-PG-ΔC). Collectively, these 

results suggested that the C-terminus of plakoglobin is necessary for its localization 

to the nucleus and its colocalization with p53.  

Protein expression in SCC9 (Figure 3.8B) double transfectants was confirmed by 

immunoblotting with HA and FLAG antibodies (Figure 3.8B).   
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Figure 3.8. Subcellular localization of plakoglobin and p53 in SCC9 double 

transfectants co-expressing HA-p53-WT and FLAG-PG-WT, -N, -Arm or -C. (A) 

Cultures were processed for double immunofluorescence with FLAG (green) and HA (red) 

antibodies. Nuclei were counterstained with DAPI (blue).  WT, wild type; PG, plakoglobin; 

N, N-terminus; C, C-terminus; Arm, Armadillo. Bar, 25 m (HA-p53-WT and FLAG-PG-

WT, -N, -Arm) and 15 m (HA-p53-WT and FLAG-PG -C). (B) Total cell lysates 

from SCC9 cells expressing HA-p53-WT and FLAG-PG-WT, -N, Arm or -C were 

processed for immunoblots with FLAG and HA antibodies. 
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3.3.9. Cooperation of p53 and plakoglobin in regulating growth, migration 

and invasion of H1299 cells 

We also investigated the role of various structural domains of p53 and plakoglobin 

in their combined inhibition of the growth, migration and invasion of H1299 cells. 

In vitro growth assays showed a small reduction (~10%) in the growth of 

transfectants expressing FLAG-PG-WT and p53-NT, -DBD or -CT compared to 

H1299 cells. In comparison, the growth of H1299-HA-p53-WT/FLAG-PG-WT 

cells was reduced by ~40% (Figure 3.9; Table 3.3). In contrast, the growth of H1299 

cells expressing HA-p53-WT and FLAG-PG-ΔN, -ΔArm or -ΔC was the same or 

slightly less than H1299-HA-p53-WT/FLAG-PG-WT cells (Figure 3.9; Table 3.3).  

Figure 3.10A shows the effect of various p53 domains on cell migration in a FLAG-

PG-WT background. The co-expression of HA-p53-WT and FLAG-PG-WT 

reduced the migration of H1299 cells by >70% compared to parental H1299 cells 

(Figures 3.1B, 3.10A, Table 3.3). Cells co-expressing FLAG-PG-WT and various 

HA-p53 fragments (H1299-FLAG-PG-WT/p53-NT, -DBD, -CT) were more 

migratory than H1299-FLAG-PG-WT/p53-WT cells, but significantly less than 

H1299 cells (Figure 3.10A, Table 3.3). Among the fragments, HA-p53-DBD 

transfectants were less migratory than HA-p53-NT or CT transfectants, which had 

similar migration levels (Figure 3.10A, Table 3.3).  

In a HA-p53-WT background, while cells expressing FLAG-PG deletions were less 

migratory than H1299 cells, they were significantly more migratory than FLAG-

PG-WT transfectants. When compared, H1299-HA-p53-WT/-FLAG-PG-WT 

double transfectants were >70% less migratory than H1299 cells. H1299-HA-p53-
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WT/-FLAG-PG-ΔN, -ΔArm, -ΔC double transfectants showed reduced migration 

by 18%, 25% and 29%, respectively (Figure 3.1B, 3.10B, Table 3.3). 

Invasion assays showed that H1299-HA-p53-WT/FLAG-PG-WT double 

transfectants, were 75% less invasive than H1299 cells (Figure 3.1C, 3.10C, Table 

3.3). The expression of any of the HA-p53 fragments in a FLAG-PG-WT 

background (H1299-FLAG-PG-WT/p53-NT, -DBD, -CT) showed increased 

invasiveness (Figure 3.10C, Table 3.3), although these transfectants were still less 

invasive than the H1299 cells (Figure 3.10C, Table 3.3).   

Finally, HA-p53-WT/FLAG-PG-ΔN and -ΔArm double transfectants showed a 

decrease in invasiveness that was comparable to the FLAG-PG-WT transfectants 

(67% and 70% vs. 73%), whereas HA-p53-WT/FLAG-PG-ΔC transfectants were 

significantly more invasive (27% vs. 74%) (Figure 3.10D, Table 3.3).  

Together, the results in Figures 3.1, 3.9 and 3.10, and Table 3.3 suggested that: 1) 

individual expression of either p53 or PG reduced the growth, migration and 

invasion of H1299, 2) p53 alone was more effective than PG alone, 3) the greatest 

reduction was attained when both proteins were expressed, 4) the PG C-terminus 

domain was necessary for the inhibition of invasion. 
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Table 3.3. Summary of changes in the growth, migration and invasion of 

H1299 transfectants expressing various combinations of p53 and PG 

constructs. p values, * <0.05, ** < 0.001.  

 

 

 

 

 

Cell line 

% Decreased 

growth (day 7) 

Relative to 

H1299 

% Decreased 

migration 

Relative to 

H1299 

% Decreased 

invasion 

Relative to 

H1299 

H1299-HA-p53-WT 32** 40** 34** 

H1299-FLAG-PG-WT 28** 21** 18** 

H1299-HA-p53-

WT/FLAG-PG-WT 

40** 73** 75** 

H1299-FLAG-PG-

WT/HA-p53-NT 

9** 45** 12* 

H1299-FLAG-PG-

WT/HA-p53-DBD 

10** 60** 12* 

H1299-FLAG-PG-

WT/HA-p53-CT 

9** 45** 11* 

H1299-HA-p53-

WT/FLAG-PG-N 

35** 18** 67** 

H1299-HA-p53-

WT/FLAG-PG-Arm 

31** 25** 70** 

H1299-HA-p53-

WT/FLAG-PG-C 

28** 29** 27** 
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3.4. Discussion  

We showed that p53 and plakoglobin cooperatively reduced growth and acted 

synergistically to decrease cellular migration and invasion. The two proteins 

interacted with each other via the DNA-binding domain of p53 and the 

transactivation domain of plakoglobin.  

p53 prevents cancer development and progression by transcriptionally regulating 

genes involved in cell cycle arrest, senescence and cell death/apoptosis [26,27]. p53 

also has transcription/nuclear-independent growth inhibitory functions, the most 

well-characterized of which is the induction of apoptosis [4, 28-32].  

H1299-HA-p53-WT transfectants showed significantly less growth, migration and 

invasion. These effects are mediated by the p53 regulation of expression of various 

tumor suppressors, signaling molecules and oncogenic and tumor suppressor 

miRNAs [33-41]. p53 also promotes stable junction formation and cadherin-

mediated contact inhibition by downregulating transcriptional repressors of E-

cadherin and regulating cytoskeleton remodeling [42-45].  

H1299-FLAG-PG-WT cells also showed significant reductions in growth, 

migration and invasion. Unlike H1299-HA-p53 transfectants in which growth was 

decreased from day 1, the H1299-FLAG-PG cells showed similar growth kinetics 

to that of H1299 cells until day 5, when cell numbers declined due to the induction 

of contact inhibition of growth. Plakoglobin can also suppress tumor growth by 

inducing apoptosis [46-49]. These findings are consistent with the role of 

plakoglobin as an essential regulator of cell-cell adhesion and growth [19, 46-49].  
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Numerous in vitro and in vivo studies have shown that plakoglobin has 

tumor/metastasis suppressor activities. The loss of heterozygosity and low 

frequency mutations in the plakoglobin gene was shown to predispose patients to 

familial breast and ovarian cancers [50]. Plakoglobin knockdown in human 

umbilical vein endothelial cells promoted migration, tubular formation and 

angiogenesis [51]. Since these early studies, plakoglobin’s role in the inhibition of 

migration and invasion has been demonstrated in many carcinoma cell lines [15, 

19,22,52-56]. Consistent with these in vitro observations, loss/changes in 

plakoglobin levels and localization are associated with increased metastasis and 

poor prognosis in vivo [19].  

Plakoglobin also acts as a tumor/metastasis suppressor independent of its role in 

cell-cell adhesion. Plakoglobin null keratinocytes expressing exogenous PG-WT, -

N or -C showed similar adhesiveness but different migratory properties. 

Although PG-WT and -N transfectants were not migratory, PG-C transfectants 

became migratory via activation of Src signaling [54], suggesting that the TA is 

essential for the tumor/metastasis suppressor activity of plakoglobin. Plakoglobin 

may regulate gene expression independent of its role in cell-cell adhesion via 

interaction with transcription factors including TCF/LEF, CBP, SOX4 and p53 [14, 

21, 57-62]. We previously showed that plakoglobin interacted with both WT and 

several mutant p53s in various carcinoma cell lines, leading to the induction of a 

non-transformed phenotype. This phenotypic transition coincided with changes in 

the expression of several p53 target genes, the promoters of which interacted with 

both p53 and plakoglobin [14, 15]. Recently, Sechler et al. (2015) reported that 
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plakoglobin overexpression in NSCLC cells reduced cell migration via HAI-1 

induction, in a p53-dependent manner [22]. These observations are consistent with 

the dramatic decreases in the migration and invasion of H1299-HA-p53-WT/ 

FLAG-PG-WT co-transfectants vs. cells expressing either HA-p53 or FLAG-PG 

alone [15, 24, 56].  

Co-immunoprecipitation experiments revealed that p53 interacted with the TA 

domain of plakoglobin via its DBD. Immunofluorescence staining showed 

colocalization of FLAG-PG-WT and HA-p53-DBD within the cytoplasm, 

consistent with the absence of nuclear localization signal in p53-DBD. Similar 

experiments with cells expressing p53-WT and various plakoglobin deletions 

showed a lack of interaction between p53 and PG-C. In HA-p53-WT-FLAG-PG-

C cells, plakoglobin distribution was primarily at the membrane, whereas p53 was 

exclusively nuclear, further confirming that plakoglobin interacted with p53 via its 

C-terminal domain.  

We also examined the changes in growth, migration and invasion of H1299 cells 

co-expressing various HA-p53 fragments with FLAG-PG-WT or various FLAG-

PG deletions with HA-p53-WT. These results showed that only cells co-expressing 

p53-WT and PG-WT exhibited maximum inhibition of cell growth, migration and 

invasion. This finding is novel and has not been previously reported. In contrast, 

the co-expression of HA-p53-NT, -DBD and -CT with FLAG-PG-WT reduced cell 

growth and invasiveness by only ~10-12%. Interestingly, however, all p53 

fragments were effective in reducing the migration of H1299 double transfectants 

noticeably, albeit not to the level of p53-WT.  
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The NT domain regulates the p53-mediated transcription via interaction with the 

basal transcription machinery, but also has transcription-independent functions. 

The NT also regulates the stability of p53 by binding to Hdm-2, and its regulation 

of growth by interactions with apoptotic proteins and FAK [30, 63-66]. However, 

both the DBD and the CT are necessary for proper functioning of the NT domain 

[67-75], consistent with the limited capacity of NT to reduce the growth and 

invasiveness of H1299 transfectants observed in our study. 

The DBD construct used in this study also includes the TAD2 domain. The DBD 

has a tightly regulated, sequence-specific DNA binding activity and plays a critical 

role in p53 transcriptional activity and also mediates the cytosolic function of p53 

in regulating apoptosis [5, 72, 76]. Here, we showed that DBD plus TAD2, which 

is involved in senescence induction [65], is not sufficient to significantly reduce the 

growth and invasiveness of H1299 transfectants.    

H1299-HA-p53-CT cells expressed a peptide comprising the oligomerization and 

transcriptional regulatory domains [71, 77-80]. The CT domain contains many 

phosphorylation and acetylation sites which confer the proper conformation, 

localization, stability, DNA binding and transcriptional activity on p53 [5, 75, 81-

84]. Our data showed almost exclusive nuclear localization of p53-CT, while p53-

NT and -DBD proteins were localized entirely within the cytoplasm. However, 

while properly localized, the CT domain alone was not sufficient to reduce the 

growth and invasiveness of H1299 cells to the same extent as WT-p53.  

Surprisingly, the co-expression of p53-NT, -DBD or -CT with PG-WT decreased 

the migratory properties of the respective H1299 transfectants, albeit to a lesser 
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extent than p53-WT. A number of studies have shown interactions between NT, 

DBD and CT with various kinases involved in migration including FAK, JNK, 

PLK1 and GSK3β [39, 52, 85- 91]. Our results clearly suggest that the NT, DBD 

and CT fragments of p53 retain some ability to inhibit cell migration. Whether the 

expressed fragments could act as dominant negative peptides to sequester these 

kinases is not clear and warrants further investigation. 

In a p53-WT background, various plakoglobin deletions exhibited reduced growth 

similar to H1299-HA-p53 cells, suggesting that the inhibition of growth by 

plakoglobin was primarily mediated by its role in the induction of contact 

inhibition. Moreover, p53 may have a larger contribution to the significantly 

reduced growth of H1299 cells coexpressing p53 and plakoglobin.  

When plakoglobin deletions were coexpressed with p53-WT, these transfectants 

were less migratory than H1299 cells (~25% reduction). However, their migration 

was significantly higher than H1299-HA-p53-WT/FLAG-PG-WT cells (~75% 

reduction). This is consistent with the inability of PG-N and Arm to interact with 

-catenin and cadherins, respectively, mediate stable junction formation and inhibit 

migration. However, while PG-C expressing cells exhibited extensive cell-cell 

contact, they also showed increased migration. This observation is also in keeping 

with previous studies demonstrating the involvement of the C-terminal domain of 

plakoglobin in inhibition of migration independent of its adhesive properties [54]. 

Consistent with this observation, PG-C expressing cells exhibited extensive cell-

cell contact, but increased migration. The invasiveness of H1299-HA-p53-

WT/FLAG-PG-N and -Arm (with intact TA domain) was similar to that of 
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H1299-HA-p53-WT/FLAG-PG-WT cells (~70%), whereas invasiveness was 

reduced by only ~27% in H1299-HA-p53-WT/FLAG-PG-C. These results may 

be explained by the loss of interaction between plakoglobin and p53 due to the 

absence of TA domain of plakoglobin. 

 In conclusion, our data indicated that 1) p53 and plakoglobin cooperated to reduce 

the growth and acted synergistically to decrease migration and invasiveness of 

H1299 cells and 2) the C-terminal domain of plakoglobin interacted with the DBD 

of p53, and this interaction was necessary for the maximum inhibition of invasion 

by p53 and plakoglobin. The data presented also raises the possibilities that the NT, 

CT and DBD fragments of p53 may act in a dominant negative manner to inhibit 

signaling pathways involved in migration. Furthermore, the differences in the 

migratory properties of the transfectants expressing various p53 fragments relative 

to the WT-p53 cells may suggest that the genes/pathways involved in inhibition of 

migration by p53 may be different than those involved in its inhibition of growth 

and invasion. Future studies will be focused on determining the exact amino acids 

involved in p53/plakoglobin interactions and examining the interactions between 

p53 fragments and various signaling molecules that regulate cell migration. Since 

more than 50% of all tumors and 80% of metastatic tumors have mutations in p53 

[1], our observations provide the exciting possibility that plakoglobin may be a 

potential therapeutic target for cancers with non-functional mutant p53s.   
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4.1. Introduction  

p53 is a sequence-specific transcription factor with tumor and metastasis suppressor 

activities [1, 2]. It plays pivotal roles in the regulation of cell cycle, DNA repair, 

senescence, apoptosis, and metabolism by responding to various cellular stress 

signals such as DNA damage, hypoxia, mitotic stress, oncogenic signaling etc. [3-

5]. As a transcription factor, p53 down-regulates the expression of genes involved 

in tumor development and cancer progression [6-8]. p53 is mutated or lost in over 

half of all cancers and more than 80% of metastatic tumors [3,4]. Furthermore, 

many tumors that express wild type p53 frequently display aberrations in their p53 

pathway [3,4]. In addition to the loss/partial loss of the tumor suppressor activities, 

some p53 mutants also gain oncogenic functions (GOF) that contribute to tumor 

cell growth, aggressiveness, metastasis and drug resistance [9]. p53 inactivation can 

result from genetic alterations, decreased stability, defective post-translational 

modifications and interaction with intracellular partners [10].  

There are over 30,000 somatic mutations in TP53, including missense, nonsense, 

deletions, frameshifts and temperature sensitive [11]. Most of these changes occur 

within the DNA-binding domain with more than 75% single missense mutations, 

40% of which are represented by six hot spot mutations (Arg175, Gly245, Arg248, 

Arg249, Arg273 and Arg282) that are highly frequent in tumors of different origins 

[11]. The hot spot mutations are further classified into two groups: contact 

mutations (Arg248, Arg273) that inhibit the direct interaction between p53 and 

DNA leading to a loss of sequence-specific transactivation and structural mutations 

(Arg175, Gly245, Arg249, and Arg282) that alter the local or global conformation 
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of p53 causing indirect loss of DNA binding [12]. Among the hot spot structural 

mutations, Arg175His (R175H), is the most frequent GOF p53 mutant [13,14] that 

increases cancer cell proliferation, migration and invasion by deregulating different 

signaling pathways involved in tumorigenesis and metastasis. 

p53 functions are regulated by posttranslational modifications and protein-protein 

interactions [15]. We have identified plakoglobin (γ-catenin) as an endogenous 

interacting partner of wild type as well as a number of most frequent mutant p53s 

(mp53) in various carcinoma cell lines of different origins and, have shown that its 

interaction with mp53s restores their tumor suppressor activities in vitro [16-19]. 

Plakoglobin is an Armadillo protein family member and a paralog of β-catenin with 

similar dual cell-cell adhesion and signaling activities [20,21]. However, unlike β-

catenin that acts as an oncogene via its interaction with the transcription factors 

TCF/LEF, and activation of Wnt signaling pathway [22,23], plakoglobin generally 

acts as a tumor and metastasis suppressor [20,21,24-27]. We have shown that 

plakoglobin can act as a tumor and metastasis suppressor by at least three 

mechanisms: regulation of stability and subcellular localization of growth 

regulating molecules [19,25,28], interaction with transcription factors involved in 

the regulation of cell growth and metastasis [16-19,25] and sequestration of β-

catenin oncogenic activities [29, also see 30-34].  

p53 GOF mutations can induce aberrant accumulation and increased transcriptional 

activation of -catenin in cancer cells [35-37]. In the absence of Wnt, the excess 

cytoplasmic -catenin is degraded via phosphorylation by the destruction complex 

and subsequent ubiquitination and proteasomal degradation [38-40]. Upon Wnt 
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activation, the destruction complex is dissociated and -catenin translocates into 

the nucleus, binds to TCF/LEF transcription factors and activates the expression of 

Wnt targets including cyclin D1, c-Myc, MMPs, S100A4, and survivin, etc. [38-

43]. Activation of these genes triggers an epithelial to mesenchymal phenotypic 

transition, cell proliferation, cell migration and invasion and metastasis [41,43]. β-

catenin is also degraded via its ubiquitination by Siah-1, an E3 ubiquitin ligase that 

enhances β-catenin’s proteasomal degradation independent of the canonical Wnt 

signaling pathway [44,45].   

In the present work, our goal was to assess the effects of GOF p53R175H mutant 

(herein referred to as p53R175H) alone or together with plakoglobin on -catenin 

accumulation in the nucleus and its transcriptional activation. To this end, 

plakoglobin deficient and p53 null H1299 cells were transfected with wild type p53 

(herein referred to as p53) or p53R175H with or without plakoglobin. p53R175H 

expressing H1299 cells showed significantly higher levels of total and nuclear -

catenin relative to the p53 expressing transfectants. H1299 cells expressing 

plakoglobin or co-expressing plakoglobin and p53 or p53R175H had significantly 

lower levels of total and nuclear -catenin. Plakoglobin and β-catenin interacted 

with TCF-4 and expression of plakoglobin decreased the β-catenin/TCF interaction. 

p53R175H cells showed significant increase in -catenin/TCF luciferase reporter 

activity, whereas co-expression of plakoglobin in these cells significantly decreased 

the luciferase activity. β-catenin target genes, c-MYC and S100A4 were upregulated 

in p53R175H cells and were significantly downregulated when plakoglobin was co-

expressed. p53R175H expression also increased the in vitro migration and invasion 
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of H1299 cells, which were significantly reduced when plakoglobin was co-

expressed.  

4.2. Material and methods 

4.2.1. Cell lines and culture conditions  

The non-small cell lung carcinoma (NSCLC) cell line H1299 have been described 

[18] and were grown in Minimum Essential medium (MEM) supplemented with 

10% fetal bovine serum (FBS), and 1% penicillin-streptomycin-kanamycin (PSK) 

antibiotics. SW620 colon carcinoma cells were grown in Leibovitz's L-15 medium 

supplemented with 2 mM L-glutamine, 10% FBS and 1% PSK. 

4.2.2. Plasmid construction and transfection 

HA-tagged p53 has been described previously [18,46]. The pcDNA3.1/hygro-

plakoglobin construct was generated using the previously described FLAG-tagged-

plakoglobin as a template [29]. The p53R175H expression construct was a gift from 

Dr. Giovanni Blandino [47].  

Cultures of H1299 cells were established in 60 mm petri dishes and transfected at 

60% confluency with 9 g of DNA using calcium phosphate. Twenty hours after 

transfection, cells were rinsed with media and allowed to recover for 24 hours in 

complete MEM. Forty-eight hours post transfection, stable transfectants were 

selected by placing cultures in selection media containing 500 g/ml Hygromycin 

B (plakoglobin transfectants) or 400 g/ml G418 (p53R175H transfectants) or both 

(double transfectants) for 2-3 weeks. Resistant clones were screened for p53 and 

plakoglobin expression by immunofluorescence and immunoblot assays and 
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maintained in maintenance selection media containing 350 µg/ml Hygromycin B 

or 200 g/ml G418 or both. Positive clones were subcultured by limiting dilution. 

Both parental and multiple single cell isolated clones were tested for plakoglobin 

and p53 expression using various assays and the results are presented for one 

representative clone.   

4.2.3. Cell fractionation, preparation of cell extracts and immunoblot analysis 

To extract total cellular proteins, confluent 100 mm culture plates were rinsed with 

cold PBS and solubilized in SDS sample buffer (10 mM Tris-HCl pH 6.8, 2% (w/v) 

SDS, 50 mM DTT, 2 mM EDTA, 0.5 mM PMSF, 1 mM NaF, 1 mM Na3VO4). 

Equal amounts of total cellular proteins were separated by SDS-polyacrylamide gel 

electrophoresis (PAGE) and transferred onto nitrocellulose membranes (Biorad). 

Membranes were incubated in specific primary antibodies overnight at 4°C 

followed by the appropriate secondary antibodies at room temperature (Table 4.1). 

Membranes were scanned using an Odyssey CLx infrared imaging system.  

Nuclear fractions were prepared with Thermo Fisher Scientific NE-PER Nuclear 

and Cytoplasmic Extraction Reagents according to the manufacturer's protocol. The 

purity of nuclear fractions was verified by immunoblotting with nuclear lamins 

antibodies (Table 4.1). 
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Table 4.1. Antibodies and their respective dilutions in specific assays 

 

 

  

  
Assay 

 

Source/ catalog number 
Primary antibodies Species WB IP IF 

p53- DO-1 Mouse 1:1000 1:100 - Santa Cruz Biotechnology/ 

sc-126 

Plakoglobin (-catenin) Mouse 1:1000 1:100 1:100 BD Transduction 

Laboratories/ 610254 

-catenin Mouse 1:1000 1:100 1:100 Sigma Aldrich/ C-7207 

-catenin (nuclear) Mouse 1:1000 - - Abcam/ ab 19451-50 

TCF-4 Mouse 1:500 1:100 - Upstate Biotechnology/ 05-

511 

-actin Mouse 1:1000 - - Santa Cruz Biotechnology/ 

sc-47778 

Lamin B1 Rabbit 1:1000 - - Abcam/ ab 16048 

Secondary antibodies  

Anti-mouse, light chain IgG Goat 1:20000 - - Jackson Immuno Research/ 

115-625-174 

Anti-rabbit, light chain IgG Goat 1:20000 - - Jackson Immuno Research/ 

211-652-171 

Alexa fluor 488 Mouse - - 1:2000 Molecular Probes 

Biotechnology/ A11029 

Alexa fluor 546 Rabbit - - 1:3000 Molecular Probes 

Biotechnology / A11035 

http://www.bdbiosciences.com/ptProduct.jsp?ccn=610254
http://www.bdbiosciences.com/ptProduct.jsp?ccn=610254
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4.2.4. Immunoprecipitation 

Cultures (100 mm) were washed with cold PBS containing 1 mM NaF, Na3VO4 

and CaCl2 and extracted in 1 ml of lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 1% NP-40, 0.1% sodium deoxycholate, 100 mM NaF [48], and protease 

inhibitor cocktail (1 tablet/10 ml; Roche Diagnostics) for 30 minutes at 4oC on a 

rocker. Cells were then scraped and centrifuged at 48000 xg for 10 minutes. 

Supernatants were divided into equal aliquots and processed for 

immunoprecipitation with p53, plakoglobin and β-catenin antibodies (Table 4.1) 

and 40 l protein G agarose beads (Pierce Biotechnology) overnight at 4C on a 

rocker rotator. To ensure complete depletion, immunoprecipitates were centrifuged 

at 14000 xg for 2 min and supernatants were separated processed for a second 

immunoprecipitation for 3 hours. Beads from the two immunoprecipitations were 

combined and washed three times with the lysis buffer. Immune complexes were 

solubilized in 60 l SDS sample buffer, separated by SDS-PAGE and processed for 

western blot as described above.  

4.2.5. Immunofluorescence and confocal microscopy  

Confluent cell cultures were established on glass coverslips and rinsed with cold 

PBS containing 1 mM each of NaF, Na3VO4 and CaCl2. Cells were fixed with 

3.7% formaldehyde in PBS for 20 minutes and extracted with cytoskeleton (CSK) 

extraction buffer ([48]; 50 mM NaCl, 300 mM Sucrose, 10 mM PIPES pH 6.8, 3 

mM MgCl2, 0.5% Triton X-100, 1.2 mM PMSF, and 1 mg/ml DNase and RNase) 

for 10 minutes. Coverslips were blocked with 4.0% goat serum and 50 mM NH4Cl 
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in PBS containing 0.2% BSA for 1 hour. Coverslips were then incubated in the 

specific primary antibodies for 1 hour followed by the secondary antibodies for 30 

minutes at concentrations indicated in Table 4.1. Following nuclei staining with 

DAPI (1:2000), coverslips were mounted in elvanol containing paraphenylene 

diamine [PPD, 0.2% (w/v)] and viewed using a 63X objective lens of a Zeiss 

confocal microscope. 

4.2.6. RNA Isolation, RT-PCR and real-time PCR 

Total RNA was isolated from cells in 100 mm culture dishes with Trizol reagent 

(Invitrogen-Thermo Fisher Scientific), treated with DNase I and reverse-

transcribed with RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo 

Fisher Scientific) according to the manufacturer's instructions.  

For real-time PCR, Syber green mastermix (Thermo Fisher Scientific) and specific 

forward and reverse primers for MYC, S100A4 and ACTB (-actin) (Table 4.2) were 

used as per manufacturer's instructions. 

Table 4.2. Oligos/primer sequences used for RT-qPCR 

Construct Primers 
Size 

(nucleotide) 

c-MYC 
Forward 5’-CAGCTGCTTAGACGCTGGATT-3’ 21 

Reverse 5’-GTAGAAATACGGCTGCACCGA-3’ 21 

S100A4 
Forward 5’-GATGAGCAACTTGGACAGCAA-3’ 21 

Reverse 5’-CTGGGCTGCTTATCTGGGAAG-3’ 21 

ACTB PrimePCR SYBR Green Assay ACTB Human, Cat No. 10025636 

 

 



 

128 

 

4.2.7. Proteasome inhibition assay 

Replicate cultures remained untreated or were treated with 1µM of proteasome 

inhibitor MG132 (Sigma) for 16 hours. Untreated and treated cells were then lysed 

and total cell lysates were used for western blot with β-catenin antibodies as 

described above.  

4.2.8. Luciferase reporter assay 

To measure β-catenin-driven transactivation, parental H1299 cells and H1299 

transfectants in confluent 35 mm cultures were co-transfected with 5 µg of 

pTOPFLASH plasmid [49] and 3 µg of Renilla luciferase plasmid (pRL-TK) 

serving as a control for transfection efficiency [50]. Forty-eight-hour post-

transfection, luciferase activities were measured and normalized to Renilla 

activities. Each experiment was repeated 4 times and the mean and standard errors 

were calculated. 

4.2.9. In vitro migration and invasion assays 

For cell migration assays, 2×105 cells were resuspended in 0.5 ml serum-free media 

and plated in the upper chamber of transwell inserts (3 μm pore, 6.5 mm diameter; 

BD Biosciences). Normal media containing 10% FBS was added to the lower 

chamber and cultures were incubated for 24 hours at 37°C. Inserts were then 

transferred into new dishes, rinsed with PBS to remove unattached cells, fixed with 

3.7% formaldehyde for 2 minutes, permeabilized with 100% methanol for 20 

minutes and stained with Giemsa stain for 15 minutes at room temperature. 
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Following staining, membranes were viewed under an inverted microscope using a 

20X objective lens and photographed. 

For Matrigel invasion assays, cells were starved in serum-free media for 24 hours 

prior to the assay. For each cell line, 5×104 cells in 0.2 ml serum-free media were 

plated in the top compartment of Matrigel-coated invasion chambers (8 μm pore 

PETE membrane; BD Biosciences). Fibroblast conditioned media (0.8 ml) was 

added to the bottom chambers and plates were incubated overnight at 37°C. After 

24 hours, membranes were recovered and processed as described for the migration 

assay.  

The migrated/invaded cells were counted in 5 random fields for each membrane 

using the NIH ImageJ Cell Counter program. Numbers for each cell line were 

averaged and normalized to those of the parental untransfected cells and histograms 

constructed. Histograms represent the average ± standard deviation of 3-6 

independent assays for each cell line. 

4.2.10. Statistical analysis  

Values are presented as means ± standard deviation. Statistical differences between 

groups were assessed by Student’s t-tests. P-value <0.05 was considered 

significant. 

4.3. Results 

4.3.1. Plakoglobin interacted with p53R175H and decreased β-catenin protein 

levels 
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We first validated the expression of plakoglobin, p53 and p53R175H in single and 

double H1299 transfectants by processing total cell extracts from all transfectants 

for western blots with plakoglobin and p53 antibodies (Figure 4.1A).  

Previously, we have shown that plakoglobin interacted with p53 and several mp53 

proteins using different carcinoma cell lines [16-19]. To verify plakoglobin 

interaction with p53R175H, we processed H1299 transfectants co-expressing 

plakoglobin and p53R175H for reciprocal co-immunoprecipitation and 

immunoblotting with plakoglobin and p53 antibodies (Figure 4.1B). 

Immunoprecipitation of the double transfectants total cell extracts with p53 

antibodies precipitated p53 (Figure 4.1B, lane 2; IP: p53, IB: p53) and co-

precipitated PG (Figure 4.1B, lane 6, IP: p53, IB: PG). The reciprocal co-

immunoprecipitation using PG antibodies confirmed this finding, as PG antibodies 

co-precipitated p53 (Figure 4.1B, lane 3, IP: PG, IB: p53) and pulled down PG lane 

6, IP: PG, IB: PG) from cells co-expressing both proteins.  

Figure 4.1C shows plakoglobin and β-catenin protein expression in H1299 

transfectants expressing p53 or p53R175H with or without plakoglobin. Relative to 

H1299 cells, β-catenin levels were decreased in p53 expressing H1299 cells (Figure 

4.1C, β-catenin, lane 2), whereas it was increased when p53R175H was expressed 

(Figure 4.1C, β-catenin, lane 3). Plakoglobin expression significantly reduced β-

catenin levels in parental as well as p53 or p53R175H expressing H1299 transfectants 

(Figure 4.1C, β-catenin, lanes 4-6).   
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4.3.2. Expression of plakoglobin decreased β-catenin protein levels by 

promoting its proteasomal degradation  

Western blot analysis of the nuclear extracts from parental H1299 cells and H1299 

transfectants was used to examine the cytoplasmic and nuclear levels of 

plakoglobin and β-catenin (Figure 4.2A, B). The highest level of nuclear and 

cytoplasmic β-catenin was detected in H1299-p53R175H transfectants (Figure 4.2A, 

B, β-catenin (N, C) lane 3). In contrast, significantly lower amounts of β-catenin 

were detected in parental as well as in p53 or p53R175H cells when plakoglobin was 

co-expressed (Figure 4.2A, B, β-catenin (N) and (C) lanes 4-6).  

Examination of β-catenin’s mRNA levels in various transfects showed no 

difference (Figure 4.2C) suggesting that changes in β-catenin levels in plakoglobin 

expressing cells occurs post-transcriptionally. This led us to assess whether 

downregulation of β-catenin is due to the increased proteasomal degradation upon 

plakoglobin expression. To address this possibility, we used MG132, which 

inhibits 20S proteasome activity and degradation of ubiquitinated proteins [29]. 

Replicate cultures of H1299 cells and H1299 transfectants remained untreated or 

were treated with 1 M MG132 for 16 hours and processed for western blot using 

β-catenin antibodies. As shown in Figure 4.2D, β-catenin was detected as multiple 

bands in MG132 treated cultures, which was consistent with the inhibition of 

degradation of the ubiquitinated protein. The quantitation of the β-catenin protein 

levels in untreated and treated cell lines showed that in untreated cultures, 

plakoglobin expression increased β-catenin degradation by ~ 5.5-, 3- and 4.6-

fold in H1299, H1299-p53 and H1299-p53R175H cells, respectively (Figure 4.2E). 
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MG132 treatment decreased β-catenin degradation by >2- fold in the absence of 

plakoglobin, whereas this reduction was significantly higher (up to 7-fold) in 

plakoglobin expressing transfectants (Figure 4.2E). These results suggested that 

plakoglobin decreased β-catenin levels by promoting its proteasomal 

degradation.  

We also examined the subcellular distribution of β-catenin in H1299 cells and 

H1299 transfectants by confocal double immunofluorescence microscopy (Figure 

4.3). Confluent cultures of various cell lines were fixed with formaldehyde, 

extracted with CSK buffer and processed for double immunofluorescence staining 

with plakoglobin and β-catenin antibodies [48]. There was no detectable 

plakoglobin staining in H1299, H1299-p53 and H1299-p53R175H cells whereas it 

was distributed throughout the cytoplasm and at the membrane in H1299-PG, -PG-

p53 and -PG-p53R175H transfectants. β-catenin was expressed in all cell lines, 

although with different intensity. Relative to H1299 cells, β-catenin staining was 

significantly reduced in H1299-p53 transfectants, whereas it was significantly 

increased in H1299-p53R175H cells. Plakoglobin co/expression dramatically reduced 

β-catenin’s staining (nuclear and cytoplasmic) in all transfectants, particularly in 

H1299-p53R175H cells (Figure 4.3, H1299-PG-p53R175H). These results were 

consistent with the western blot studies and further confirmed that plakoglobin 

expression reduced β-catenin levels in both cytoplasmic and nuclear pools.  
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4.3.3. Plakoglobin expression decreased β-catenin interaction with TCF-4, 

reduced β-catenin/TCF-4 reporter activity and down-regulated target gene 

expression 

So far, the results showed that plakoglobin expression decreased the nuclear pool 

of β-catenin, which may influence the interaction between β-catenin and its cognate 

transcription factor TCF. Therefore, we used co-immunoprecipitation experiments 

to examine the interactions between plakoglobin and β-catenin with TCF in 

parental H1299 cells and H1299 transfectants. In Figure 4.4A, equal amounts of 

total cellular protein from parental H1299 cells and H1299 transfectants were 

processed for sequential co-immunoprecipitation and immunoblotting with β-

catenin, plakoglobin and TCF antibodies. TCF was co-precipitated with β-catenin 

in H1299, H1299-p53 and H1299-p53R175H cells and its level was significantly 

lower in H1299-p53 transfectants (Figure 4.4A, IP: β-cat, IB: TCF). Interestingly, 

very little/no TCF was detected in β-catenin precipitates from the plakoglobin 

expressing transfectants. In these cells, TCF was only detected in association with 

plakoglobin (Figure 4.4A, H1299-PG, -p53, -p53R175H; IP: PG, IB: TCF). 

Consistent with the earlier results, β-catenin levels were decreased in p53 and in all 

plakoglobin expressing transfectants (H1299-p53, -PG, -PG-p53, -PG-p53R175H) 

relative to parental H1299 cells (Figure 4.4A; TCE, β-catenin). In contrast, TCF 

level was not notably different among various cell lines (Figure 4.4A; TCE, IB: 

TCF). These results indicated that plakoglobin co-expression significantly reduced 

the interactions between β-catenin and TCF in H1299, H1299-p53 and H1299-

p53R175H transfectants.  
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We next assessed if decreased β-catenin/TCF association was reflected in β-

catenin-dependent TCF reporter activity (Figure 4.4B). Parental H1299 cells and 

H1299 transfectants were transiently transfected with pTOPFLASH and pRL-TK 

Renilla reporter constructs and luciferase activities were measured in all cell lines. 

As a positive control, SW620, a colon carcinoma cell line expressing mutant APC 

and signaling-competent β-catenin [51] was included in these studies (Figure 4.4B). 

The luciferase activities of all cell lines were normalized to that of parental H1299 

cells. The results showed no significant differences in the luciferase activity among 

H1299, H1299-p53 and H1299-PG cells (Figure 4.4B). In contrast, relative to 

parental H1299 cells, H1299-p53R175H transfectants showed over 60% higher 

luciferase activity (Figure 4.4B), which was significantly reduced when 

plakoglobin was co-expressed in these cells (Figure 4.4B, H1299-PG-p53R175H). 

Based on these observations, we reasoned that decreased β-catenin/TCF 

transactivation should result in decreased expression of their target genes. 

Specifically, we focused on c-MYC and S100A4, two β-catenin/TCF target genes 

that are known to participate in tumorigenesis and metastasis [41-43, 52-54]. RT-

qPCR experiments showed that the levels of c-MYC and S100A4 mRNA were 

significantly increased in H1299-p53R175H transfectants compared to H1299 cells 

(Figure 4.4C). Co-expression of plakoglobin in these cells (H1299-PG-p53R175H) 

led to over 3- and 5-fold decrease in the c-MYC and S100A4 mRNA levels, 

respectively (Figure 4.4C). Together, the results of the experiments in Figure 4.4 

suggested that plakoglobin expression in p53R175H cell reduced β-catenin/TCF 
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association and the activation of at least two of their target genes involved in 

tumorigenesis and metastasis.  
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4.3.4. Plakoglobin expression decreased migratory and invasive properties of 

p53R175H expressing H1299 cells   

To assess the biological significance of decreased β-catenin/TCF transactivation, 

we examined the in vitro migration and invasion of parental H1299 cells and H1299 

transfectants. 

As demonstrated in Figure 4.5, p53 and plakoglobin expression decreased 

migration by 45% and 34% relative to H1299 cells, respectively, whereas co-

expression of both proteins reduced migration by 73% (Figure 4.5, migration; 

H1299-p53, H1299-PG and H1299-PG-p53; also see [18]). In contrast, expression 

of p53R175H increased the migration of H1299 cells by ~ 20% (Figure 4.5, migration, 

H1299- p53R175H), which was reduced by >40% when plakoglobin was co-

expressed (Figure 4.5, H1299-PG-p53R175H).  

Similarly, the invasiveness of H1299-p53 and H1299-PG cells was decreased by 

60% and 33% respectively, whereas the invasiveness of H1299-PG-p53 cells was 

decreased by 68% relative to parental H1299 cells (Figure 4.5, invasion; H1299-

p53, H1299-PG and H1299-PG-p53, also see [18]). In contrast, p53R175H expression 

in H1299 cells increased their invasiveness by 30%, and the co-expression of 

plakoglobin in these cells reduced their invasiveness by >60% (Figure 4.5, 

invasion, H1299-p53R175H and H1299-PG-p53R175H). These results indicated that 

plakoglobin acted synergistically with p53 to decrease migration and invasion and 

significantly reduced the migration and invasion promoting effects of p53R175H. 
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4.4. Discussion 

p53R175H is one of the most common hot spot mutations that are frequently 

expressed in many cancers [13,14]. p53R175H expression has been shown to increase 

genomic instability [55], induce the expression of oncogenic miRNAs [56,57] and 

promote the expansion of cancer stem cell population [58], epithelial to 

mesenchymal transition [59-61] and drug resistance [62-64]. Furthermore, p53R175H 

mice models exhibit tumor formation and metastasis characteristics of the inherited 

Li-Fraumeni syndrome, the disease that is associated with the germline mutations 

in the TP53 gene [65,66].  

In the present study, we used the invasive and metastatic H1299 cells with activated 

Wnt/β-catenin pathway [67]. This cell line is plakoglobin deficient and p53 null 

and has been extensively used to assess the function of p53 and p53 mutants. We 

showed that the expression of p53R175H increased β-catenin levels, its interaction 

with TCF and activation of c-MYC and S100A4, two known β-catenin/TCF target 

genes [41-43, 52-54]. Increased β-catenin levels and activation were concurrent 

with increased migration and invasion of p53R175H expressing cells. We further 

demonstrated that the oncogenic effects of p53R175H were counteracted by the co-

expression of plakoglobin in these cells. Plakoglobin interacted with p53R175H and 

reduced β-catenin level, its interaction with TCF and the expression c-MYC and 

S100A4. These changes were concurrent with decreased migration and invasion of 

these transfectants and are consistent with the previously reported activated Wnt/β-

catenin pathway in these cells [67].  
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β-catenin is the main downstream effector of the canonical Wnt signaling pathway 

[38-45]. In the absence of Wnt signal, Axin/APC/GSK3/CKI form the destruction 

complex that recruits and phosphorylates the excessive cytoplasmic β-catenin, 

which is subsequently ubiquitinated and degraded by the proteasome pathway [38-

40]. In the presence of Wnt, the destruction complex becomes dissociated and the 

stabilized -catenin translocates into the nucleus, binds to TCF/LEF transcription 

factors and induces the expression of Wnt target genes involved in tumorigenesis 

and metastasis [38,39]. β-catenin can also be activated independent of the Wnt 

signal. Mutations that interfere with β-catenin’s interaction with the components of 

the destruction complex or with the phosphorylation of its N-terminal 

serine/threonine residues (S33, S37, S45, T41] that are required for degradation 

also activate β-catenin in the absence of the Wnt signal [68,69].  

In agreement with previous reports, we showed that wild type p53 expression in 

H1299 cells reduced the total and nuclear β-catenin levels and its transcriptional 

activity. There are several mechanisms by which p53 reduces β-catenin protein 

levels and activation. p53 interacts with and activates GSK3β and/or accelerates the 

movement of the scaffolding protein, Axin, into the destruction complex both of 

which lead to increased phosphorylation of β-catenin and its subsequent 

degradation [70,71]. p53 also inhibits the activity of CK2, which phosphorylates 

and protects β-catenin from proteasomal degradation [72]. Furthermore, p53 can 

inhibit Wnt pathway by inducing the expression of the Wnt antagonizer, Dickkopf-

1 [73] and the E3 ubiquitin ligase Siah-1 that mediates the degradation of β-catenin 

independent of the GSK3β [74-76]. In contrast GOF mutant p53s have been shown 
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to inhibit β-catenin degradation and promote its oncogenic activities in various 

tumor cell lines and tissues [35-37,77]. Here, we showed that p53R175H expression 

significantly reduced β-catenin degradation via the proteasome pathway. p53R175H 

expressing cells had increased total and nuclear β-catenin and β-catenin/TCF 

reporter activity and showed upregulation of the Wnt target genes [41-43, 52-54, 

78-80].   

Previously, we have shown that plakoglobin interacted with both wild type and a 

number of mutant p53 proteins and this interaction was direct (data not shown) and 

mediated by the DNA binding domain of p53 and the C-terminal transactivation 

domain of plakoglobin [16-19]. We showed that plakoglobin and p53 associated 

with promoters of a number of p53 target genes including tumor suppressors SFN 

(14-3-3δ) and NME1 and the oncogenic genome organizer SATB1 [16-19]. 

Furthermore, plakoglobin expression in plakoglobin deficient and mp53 expressing 

cells reduced the in vitro growth, migration and invasion of these cells [16,17,19]. 

Plakoglobin has also been shown to regulate the expression of HAI-1 and to reduce 

migration in a p53 dependent manner in NSCLC cells [27]. Co-

immunoprecipitation experiments revealed that plakoglobin interacted with 

p53R175H. Furthermore, expression of plakoglobin in p53R175H cells promoted β-

catenin’s proteasomal degradation and significantly reduced its total and nuclear 

levels, as had been reported previously [81].  Plakoglobin expression also reduced 

β-catenin/TCF-4 interaction, and the expression of c-MYC and S100A4. These 

observations are supported by our previous microarray studies, which identified 

p44 and p65 subunits of the 26S proteasome and S100A4 as transcripts that were 
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upregulated and downregulated, respectively, in plakoglobin expressing cells 

relative to their plakoglobin deficient and mutant p53 expressing parental cells [29]. 

S100A4, a recently identified target of β-catenin/TCF [82] was shown to be an early 

factor in EMT and its elevated level in various carcinoma cells and cancers was 

correlated with poor prognosis [83,84].  

Apart from increasing -catenin’s proteasomal degradation, plakoglobin may 

inhibit -catenin’s transcriptional activity. -catenin and plakoglobin interact with 

two sequential and non-overlapping domains in the N-terminus of TCF [32]. 

However, whereas binding of the -catenin/TCF complex to DNA is highly 

efficient; plakoglobin/TCF binding to DNA is inefficient with significantly weaker 

transcriptional activities [85-87]. Our co-immunoprecipitation studies showed 

significant reduction in -catenin-TCF association in plakoglobin expressing cells. 

These results further support the decreased c-Myc and S100A4 expression in 

H1299-PG- p53R175H transfectants and are consistent with our previous 

observations in another mutant p53 expressing carcinoma cell line [29]. Studies 

from other groups have also demonstrated that transcriptional activity of -catenin 

downstream of the Wnt signaling was significantly reduced upon increased 

accumulation of plakoglobin in the nucleus [32,33]. Plakoglobin also repressed the 

Wnt/β-catenin signaling and target genes expression (DICER and AXIN2) via its 

assocoation with the transcription factor SOX4 and inhibition of β-catenin-SOX4 

interaction [26].  

In addition to upregulating the Wnt pathway, p53R175H has been shown to activate 

other signaling pathways including EGFR/PI3K/AKT, TGF-β and c-Met leading to 
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enhanced migratory and invasiveness of cancer cells [88-92]. Our results also 

showed increased migration and invasion of H1299 cells expressing p53R175H and 

their significant decrease when plakoglobin was co-expressed in these cells. While 

the effects of mp53s on enhancing migratory and invasive properties of cancer cells 

has been studied extensively, the effects of plakoglobin on hindering the in vitro 

metastatic features of p53R175H is novel and has not been previously reported.  

In conclusion, our data suggest plakoglobin promoted β-catenin’s proteasomal 

degradation and reduced its transcriptional activation independent of p53 status. 

Furthermore, its co-expression with p53R175H clearly counteracted the gain of 

function activities of this mutant, which is mediated, at least in part, by activating 

the oncogenic function of β-catenin. These observations together with our previous 

studies suggest that plakoglobin may counteract oncogenic functions of mutant p53 

by at least two different mechanisms: plakoglobin augments β-catenin proteasomal 

degradation and reduces Wnt pathway activation and, it associates with mutant 

p53s and may either interfere with the expression of mutant p53 target genes and/or 

enable them to interact with and regulate wild type p53 target genes (Figure 4.6).  

The latter possibility is supported by our previous studies that have shown 

activation of p53 target genes in plakoglobin deficient and mutant p53expressing 

cell lines upon plakoglobin expression as well as our microarray experiments that 

have identified a number of growth/metastasis inhibiting and oncogenic promoting 

targets that are up- and down regulated, respectively, in mutant p53 expressing cells 

when plakoglobin is expressed [16,17]. Overall, these results suggest that 

plakoglobin may act as a tumor and metastasis suppressor protein in mutant p53 
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expressing cells by down-regulating Wnt/β-catenin axis and oncogenic activation 

of mutant p53s, two pathways that are known to be frequently dysregulated in many 

cancers. These findings provide insight into the possibility of developing 

therapeutic drugs that can mimic plakoglobin to concurrently inhibit the oncogenic 

effects of β-catenin and restore wild type tumor suppressor activities of mutant p53s 

in cancer.  
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5.1. Thesis overview 

Plakoglobin was initially discovered as a junctional protein with essential roles in 

regulating cell-cell adhesion [1-3]. Further studies suggested that plakoglobin may 

participate in various signaling pathways [4,5]. While many studies focused on 

deciphering the role of other catenin proteins in tumor development and cancer 

progression, little was known on how plakoglobin regulated malignant 

transformation of cells.  

The earliest clue as to the tumor suppressor activity of plakoglobin came from a 

study that demonstrated its loss of heterozygosity and low frequency mutations in 

sporadic breast and ovarian cancers [6]. Following this initial study, it was shown 

that combinatory loss of plakoglobin and other junctional proteins promoted tumor 

development, cancer metastasis, and resulted in poor clinical outcome [7-14]. 

Further investigations have demonstrated that the sole loss of plakoglobin also 

triggers tumor formation and cancer progression [15-20]. In esophageal cancer, 

concurrent decrease in the expression of E-cadherin and plakoglobin led to poor 

differentiation and decreased survival rate, whereas reduced plakoglobin 

expression promoted lymph node metastasis [21]. Decreased expression levels of 

plakoglobin has also been correlated with poor survival rate and metastasis in renal 

carcinomas [15], lymph node metastasis in oral squamous carcinomas [20] and 

bladder cancer [22], pulmonary metastasis in Wilms’ tumor [19] and soft tissue 

sarcomas [18] as well as myometrial metastasis in endometrial cancer [23]. 

Furthermore, in prostate tumors plakoglobin expression was lost due to the 

hypermethylation of its gene [24]. Reduced expression of plakoglobin and its 
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altered cellular distribution were detected in thyroid tumors [25] and oropharynx 

squamous cell carcinomas [17].  

Taken together, while loss or decreased expression of plakoglobin and/or altered 

cellular distribution of this protein have been identified as one of the contributing 

factors to tumor development and metastatic progression of different cancers.  

However, very little was known about the mechanisms underlying these effects of 

plakoglobin. Work from our lab has provided experimental evidence that suggest 

three mechanisms by which plakoglobin may exert its tumor and metastasis 

suppressor functions: sequestration of -catenin oncogenic function, regulation of 

levels and localization of growth regulating molecules and interaction with 

transcription factors involved in regulation of cell growth and metastasis. Our 

laboratory has shown that tumor and metastasis suppressor effects of plakoglobin 

may, at least partially, be mediated by its interaction with mutant p53 proteins. In 

this thesis, I have examined plakoglobin interaction with wild type and several 

mutant p53s and investigated the molecular and functional significance of this 

interaction.  

5.1.1. Tumor and metastasis suppressor functions of plakoglobin in ovarian 

cancer cell lines 

The ovarian high grade serous carcinoma is the most common and aggressive form 

of ovarian tumors with epithelial origin [26,27]. Unlike the low grade serous 

carcinoma, more than 80% of ovarian high grade serous tumors harbor mutations 

in TP53 [26,27]. In general, inactivation of TP53 occurs at later stages in tumor 
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progression, however in these tumors TP53 mutations occur at early stages of 

cancer development and contribute to both initiation and metastatic progression of 

this cancer [28-30].  

Like any other carcinoma, loss of cell-cell adhesion and aberrant expression of 

cadherins and catenins are critical steps during the development of ovarian tumors 

[31-35]. Disruption of cadherin-catenin complexes leads not only to the loss of cell-

cell adhesion but also the liberation of catenins and their subsequent interaction 

with other cellular proteins and activation of signaling pathways involved in 

tumorigenesis and metastasis [36,37]. In this context, β-catenin has oncogenic 

function, whereas plakoglobin acts as a tumor and metastasis suppressor protein 

[36,37]. The oncogenic activation of β-catenin is well documented in ovarian 

cancer [38]. In contrast, very little is known about the functional significance 

plakoglobin in this cancer. However, the loss of heterozygosity of the plakoglobin 

gene has been reported in sporadic ovarian cancer, whereas its nuclear 

accumulation was correlated with better survival rate in ovarian cancer patients [6, 

39]. In the second chapter, we have investigated the tumor and metastasis 

suppressor functions of plakoglobin in epithelial ovarian cancer cell lines with 

mutant p53 expression and different adhesion profiles.  

We showed that plakoglobin-deficient ovarian cancer cells that express N-cadherin 

and mutant p53 were highly migratory and invasive, whereas those that express 

mutant p53 and plakoglobin were not. The exogenous expression of plakoglobin or 

knockdown of N-cadherin significantly reduced migration and invasion. 

Plakoglobin interacted with wild type and mutant p53 proteins and associated with 
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E- or N-cadherins in adhesion complexes. N-cadherin is a mesenchymal marker 

that promotes tumorigenesis and metastasis. Our laboratory has shown that 

plakoglobin was able to induce a mesenchymal to epithelial phenotypic transition 

by sequestering and stabilizing N-cadherin at the membrane (40). Consistent with 

these studies, we detected a significant reduction in growth, migration and invasion 

of plakoglobin expressing and N-cadherin knockdown cells (41). Our data 

suggested that plakoglobin induced growth and metastasis inhibitory effects in 

ovarian cancer cells expressing N-cadherin and mutant p53.  

5.1.2. Functional significance of plakoglobin and p53 interaction 

Previous work form our laboratory has demonstrated that plakoglobin interacted 

with wild type and a number of mutant p53s in both the cytoplasm and nucleus and 

this interaction enhanced wild type p53’s transcriptional activity and restored 

mutant p53s tumor suppressor function. These experimental evidence suggested 

that plakoglobin mediated its tumor and metastasis suppressor functions, at least 

partially, by interacting with mutant p53 proteins and changing their target genes 

[42,43]. In Chapter 4, we showed that the individual expression of wild type p53 

and plakoglobin in p53 null and plakoglobin deficient H1299 cells significantly 

decreased their growth, migration and invasion in vitro. Furthermore, this 

inhibitory effect was significantly augmented when the two proteins were co-

expressed. These observations strongly suggested that p53 and plakoglobin 

cooperated to promote a non-transformed and non-invasive phenotype in vitro.  
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In this Chapter, we mapped the interacting domain of p53 and plakoglobin. H1299 

cells were co-transfected with a combination of constructs encoding wild type 

plakoglobin with wild type or various fragments of p53. Reciprocal co-

transfectants, were generated expressing wild type p53 with wild type or different 

deletions of plakoglobin. Characterization of transfectants using confocal 

immunofluorescence microscopy and co-immunoprecipitation showed that: 1) p53 

and plakoglobin interaction was mediated by the DNA binding domain of p53 and 

the C-terminal transactivation domain of plakoglobin, and 2) p53 and plakoglobin 

cooperatively decreased growth whereas they acted synergistically to significantly 

reduce in vitro migration and invasion and 3) the C-terminal domain of PG was 

important for its invasion inhibitory function via its interaction with p53. 

5.1.3. Plakoglobin counteracts mutant p53 tumor promoting activity by 

suppressing β-catenin’s oncogenic potential 

Work from our laboratory and other researchers have shown that one way that 

plakoglobin may act as a tumor and metastasis suppressor protein is by changing 

β-catenin levels/subcellular localization and/or its oncogenic potential [44-47]. p53 

GOF mutants have been shown to activate β-catenin oncogenic function [48-50].  

In Chapter 4, we examined the effects of p53R175H, one of the most frequently 

expressed p53 mutations [51], on β-catenin accumulation and transcriptional 

activation and their modification by plakoglobin expression. Our results showed 

that p53R175H expression in H1299 cells increased total and nuclear levels of β-

catenin and its transcriptional activity concurrent with increased in vitro migration 



 

162 

 

and invasion of the transfectants. Co-expression of plakoglobin in p53R175H cells 

promoted β-catenin’s proteasomal degradation, decreased its total and nuclear 

levels and its transactivation activity. β-catenin target genes, Myc and S100A4 were 

upregulated in p53R175H expressing cells suggesting that the oncogenic function of 

this mutant is, at least in part, mediated by β-catenin activation. Co-expression of 

plakoglobin in p53R175H transfectants significantly decreased the expression of 

MYC and S100A4 concurrent with a significant reduction in their migration and 

invasion in vitro. Together, these results suggest that plakoglobin may act as a 

tumor and metastasis suppressor protein by down-regulating the oncogenic effects 

of p53R175H and Wnt/β-catenin axis, two pathways that are known to be frequently 

dysregulated in many cancers. 

5.2. Potential model for the tumor and metastasis suppressor functions of 

plakoglobin 

Experimental findings from this thesis and the previous work in our laboratory and 

other research groups suggest that plakoglobin may act as a tumor and metastasis 

suppressor protein by several mechanisms (Figure 5-1). First, plakoglobin 

participates in the formation of adhesive junctions that are necessary for the 

maintenance of tissue integrity and induction of contact inhibition of growth and 

motility [52,53]. Second, plakoglobin interacts with various cellular protein 

partners and regulates their levels, subcellular localization and functions [54,55]. 

Our laboratory has shown that plakoglobin expression in plakoglobin deficient 

carcinoma cells increased the metastasis suppressor protein Nm23 protein levels 

[54]. Plakoglobin interacted with Nm23 and increased its stability by sequestering 
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it at the membrane [54]. Plakoglobin interacted with the dual tumor suppressor and 

oncogene NPM, promoting its tumor suppressor function [55]. Third, plakoglobin 

may regulate gene expression via its interaction with transcription factor p53 [56]. 

The focus of our laboratory is to study the functional significance of plakoglobin 

and p53 interaction. We showed that plakoglobin interacted with wild type and a 

number of mutant p53 proteins, which led to the induction of a less proliferative, 

migratory and invasive phenotype [41-43,56]. This phenotypic transition may be 

partially mediated by regulation of wild type p53 target genes by mutant p53s 

and/or transcriptional repression of mutant p53 targets when plakoglobin is 

expressed. Lastly, plakoglobin may sequester oncogenic functions of β-catenin by 

increasing its proteasomal degradation and decreasing its transcriptional activity 

[44,57,58 and Chapter 4] (Figure 5-1). 
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5.3. Future directions 

5.3.1. Identifying the exact amino acids involved in plakoglobin/p53 

interaction 

Previously, we performed in vitro pull down assays and confirmed that plakoglobin 

directly interacted with wild type p53.  We successfully mapped the interacting 

domains of plakoglobin and p53. Subsequently, our collaborators in Dr. Jack 

Tuszynski group (Department of Oncology, University of Alberta), performed 3D 

modeling of PG and p53 interaction interface and tentatively identified the amino 

acids involved in this interaction. To verify the results of computational modeling, 

site-directed mutagenesis should be used to mutate each identified amino acid in 

wild type plakoglobin and p53. To verify the results of computational modeling, 

site-directed mutagenesis should be used to mutate each identified amino acid in 

wild type plakoglobin and p53 and subsequently in vitro pull down assay will need 

to be carried out to examine plakoglobin/p53 interaction.   

Furthermore, similar 3-dimensional modeling experiments followed by site-

directed mutagenesis and in vitro pull down assays should be used to identify the 

amino acid sequences involved in plakoglobin and mutant p53 proteins interaction.  

The results from the in vitro pull down assays should be further validated by 

expressing the mutant plakoglobin and p53 constructs in human cell lines and 

confirming their interaction by co-immunoprecipitation studies.  
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5.3.2. Identifying mutant p53 target genes regulated by Plakoglobin 

In this study, we have shown that plakoglobin down-modulates the oncogenic 

function of p53R175H by inhibiting tumorigenic effects of β-catenin. However, 

plakoglobin may also regulate the expression of mutant p53 target genes 

independent of the Wnt pathway. As a starting point to identify mutant p53 target 

genes that are regulated by plakoglobin, microarray analyses should be performed 

using H1299 cells expressing p53R175H with or without plakoglobin. The results of 

microarray studies should be further validated by performing biochemical assays 

including quantitative RT-PCR and western blot.  

ChIP experiments should be carried out to assess the association of p53R175H with 

the promoter of the identified target genes in the presence or absence of plakoglobin 

expression. Luciferase reporter assays can be performed to further validate the 

effects of plakoglobin on the transcriptional activity of p53R175H.  

5.3.3. Investigating the role of plakoglobin in modulating the oncogenic effects 

of p53 contact mutations 

Here, we have looked at the effects of structural mutant p53R175H on modulating the 

oncogenic potential of β-catenin in the presence and absence of plakoglobin 

expression. Future studies can focus on determining whether contact p53 mutants 

(R273H, R248Q and R248W) may induce oncogenic functions of β-catenin and if 

plakoglobin may inhibit their tumor growth and metastasis by inhibiting β-catenin’s 

oncogenic activity. These studies can be performed as described in Chapter 5 and 

section 5.3.2. of this chapter. 
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5.3.4. Assessing the role of plakoglobin in regulating mutant p53 interaction 

with p63 and p73 

As described in Chapter 1 (section 1.7.2), one mechanism by which GOF mutant 

p53 proteins act as oncogenes is by interacting with and inhibiting tumor suppressor 

activities of p63 and p73 [59-61]. As a future direction, the effects of plakoglobin 

expression on the mutant p53 proteins interaction with p63 or p73 can be assessed. 

Co-immunoprecipitation studies should be performed to assess the association of 

mutant p53 with p63 or p73 in the presence or absence of plakoglobin. ChIP 

experiments can be performed to examine the association of p63 with the promoter 

of its target genes in cells expressing mutant p53 proteins and plakoglobin 

individually or in pair. Transcriptional activity of p63 and p73 can be assessed using 

luciferase reporter in cells expressing mutant p53 proteins with or without 

plakoglobin.  

5.3.5. Assessing the effects of plakoglobin/p53 interaction on in vivo 

tumorigenesis and metastasis  

The studies presented in this thesis and previous work from our laboratory have 

shown plakoglobin expression significantly reduced in vitro tumorigenesis and 

metastasis in breast, ovarian, squamous cell, and non-small cell lung carcinoma cell 

lines expressing mutant p53 proteins. To validate the functional significance of 

these observations in vivo, potential tumor and metastasis suppressor effects of 

plakoglobin should be further assessed using xenograft animal models. Plakoglobin 

and p53 deficient cancer cell lines expressing plakoglobin, wild type and mutant 
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p53s individually or in pair can be used to inject immunodeficient mice models to 

assess in vivo tumor growth and metastasis.  

5.4. Concluding remarks 

In summary, my thesis further supports the earlier findings that have shown 

plakoglobin interacts with wild type and mutant p53 proteins to regulate 

tumorigenesis and metastasis. Here, for the first time we identified the interacting 

domains of plakoglobin and p53 and showed their cooperation in reducing in vitro 

growth, migration and invasion of cancer cells. Furthermore, we showed that 

plakoglobin down-regulated the oncogenic functions of p53R175H structural mutant 

at least partially by sequestering the oncogenic effects of β-catenin.  

Experimental evidence from this work elucidated some of the underlying 

mechanisms involved in tumor and metastasis suppressor effects of plakoglobin via 

its interaction with wild type and mutant p53s and modulation of Wnt/β-catenin 

axis, two pathways that are known to be frequently dysregulated in many cancers. 

The larger implication of these studies is the potential for the development of 

therapeutic drugs that can mimic plakoglobin in order to simultaneously target the 

Wnt/β-catenin pathway and restoring wild type activities of mutant p53 proteins. 

Designing drugs based on the plakoglobin/p53 interaction has the advantage of 

mimicking the interaction of an endogenous cellular protein that normally interacts 

with p53 and therefore, may have less toxicity and side effects. 
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