
U niversity of A lberta

Q u e s t P a t t e r n s i n C o m p u t e r R o l e - P l a y i n g G a m e s

by

Curtis Aaron Onuczko

' j

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment o f the
requirements for the degree of Master o f Science.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
A rch ives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33320-4
Our file Notre reference
ISBN: 978-0-494-33320-4

Direction du
Patrim oine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Som etim es m y p lo t lin es are so convolu ted, I g e t c a lls fro m fr ie n d s a t 3 am saying; you SOD, y o u ’ll
never pull this one off.

- Clive Cussler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Specifying the plot in Computer Role-Playing Games (CRPGs) requires a large number of scripts

that are difficult to program, track and maintain. This work introduces quest patterns, a high level

and intuitive way to structure the plot in CRPGs. Quest patterns are recurring themes (patterns) that

can be adapted to suit the game author’s needs. Quest patterns have been added to ScriptEase, a

generative design pattern tool that can automatically turn pattern specifications into scripts. CRPGs

often include simple plots, called side-quests, that are independent from the main plot. Side-quests

are important, as they add value to the open-world appeal of the game. This work introduces a tool

to aid in the rapid creation of side-quests. Using objects from the CRPG, the tool creates outlines of

side-quests that can be used in the game.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Authoring Computer G a m e s .. 3
1.2 Patterns in Narrative ... 7
1.3 Automatic Story G e n e ra tio n ... 8
1.4 Pattern A b s tra c tio n .. 8
1.5 C o n trib u tio n s .. 11
1.6 Outline .. 12

2 Literature Review 13
2.1 Tools For Plot Design in Linear N a r ra t iv e ... 13
2.2 Tools for Plot Design in Interactive Narrative .. 14
2.3 Generating N a r ra t iv e .. 18

3 Quest Patterns 21
3.1 Design P a t te r n s ... 21
3.2 Quest Pattern G o a ls .. 22
3.3 Quest Pattern C o m p o n e n ts .. 22
3.4 Quest Pattern G r a p h s .. 25
3.5 Quest Pattern Catalogue .. 26
3.6 Using Quest Patterns ... 29

4 Quest Patterns in ScriptEase 30
4.1 ScriptEase O v e rv ie w .. 30
4.2 From Quest Pattern Specifications to S crip tE ase ... 31
4.3 ScriptEase E x am p le .. 34
4.4 Scripting Mechanisms ... 35
4.5 Limitations ... 36

5 Case Study 38
5.1 Description of Q u e s ts .. 38
5.2 Case Study D esc rip tio n ... 41
5.3 Quest S ta t i s t ic s .. 44
5.4 Quest Particulars ... 45

5.4.1 A Missing B r o th e r .. 45
5.4.2 Find J e m a n ie ... 45
5.4.3 Find K resta l... 46
5.4.4 Missing G u a r d ... 46
5.4.5 Aldo and H e c t o r 47
5.4.6 A Strange C u l t ... 47
5.4.7 Sword Coast B o y s ... 48
5.4.8 A Lost S o u l .. 48
5.4.9 Undead In fe s ta tio n .. 49

5.5 D iscussion... 50

6 Quest Generation 51
6.1 Using SQ U E G E ... 51
6.2 Technical D e ta i l s ... 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 User Study 58
7.1 W hat to C o m p a re ... 58
7.2 Preparation ... 58
7.3 Side-Quest Descriptions ... 59

7.3.1 S h a d o w lo rd s ... 59
7.3.2 D ark tide... 60

7.4 User Study D esc rip tio n ... 61
7.5 R esu lts ... 62
7.6 Limitations ... 67

8 Future Work and Conclusions 70
8.1 S u m m a r y .. 70
8.2 Future W o rk ... 71
8.3 C onc lusions ... 73

Bibliography 74

A Quest Pattern Catalogue Specifications 76
A .l Retrieve/deliver an item q u est.. 76
A.2 Retrieve/deliver multiple items q u e s t ... 78
A.3 Retrieve/deliver one of multiple items q u e s t ... 80
A.4 Talk to q u e s t... 82
A.5 Kill a creature q u e s t ... 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 The options for a quest pattern in ScriptEase... 33
4.2 The options for a quest point in ScriptEase.. 33

5.1 Quest adaptations.. 43

7.1 The questions for the evaluation of a specific side-quest in the user study.................... 61
7.2 The questions for the evaluation of a specific story segment in the user study. . . . 62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Screenshot of U ltim a IV: Q u e st of t h e Avatar, by ORIGIN Systems, Inc. . . 1
1.2 Screenshot o f Jade E m p ir e , by Bioware Corp.. 2
1.3 Screenshot of the N ev er w in ter N ig h ts Aurora Toolset, by Bioware Corp. . . . 3
1.4 The set of scripts needed for a quest that involves the slaying of a dragon.................... 6
1.5 Screenshot of ScriptEase... 9
1.6 A hierarchy of abstractions used for creating the plot in CRPGs..................................... 10

2.1 Freytag’s Pyramid... 14
2.2 The Stages of a Monomyth... 15
2.3 Plot wizard for the NWN Aurora Toolset, being used to create plot nodes.................... 16
2.4 HTN Diagram (taken from [4]) to create a plan for a c h a ra c te r 19
2.5 Screenshot of Fajade........................ 20

3.1 The different components of a quest graph... 26
3.2 Graph of the example quest where the player kills a dragon... 26
3.3 Graph of the retrieve/deliver an item quest pattern... 27
3.4 Graph of the retrieve/deliver multiple items quest pattern... 27
3.5 Graph of the retrieve/deliver one o f multiple items quest pattern..................................... 28
3.6 Graph of the talk to quest pattern.. 28
3.7 Graph of the kill a creature quest pattern.. 29

4.1 An instance of the placeable use - (item not equipped) spawn creature encounter
pattern and the script that it generates... 32

4.2 ScriptEase instantiation of a kill a creature quest pattern and two encounter patterns. 35
4.3 The incorrect and correct usage of quest points leading up to an aggregate quest point. 37

5.1 Quest outline of the A Missing Brother quest... 45
5.2 Quest outline of the Find Jemanie quest.. 46
5.3 Quest outline of the Find Krestal quest... 46
5.4 Quest outline of the Missing Guard quest... 46
5.5 Quest outline of the Aldo and Hector quest.. 47
5.6 Quest outline of the A Strange Cult quest... 47
5.7 Quest outline of the Sword Coast Boys quest... 48
5.8 Quest outline of the A Lost Soul quest... 49
5.9 Quest outline of the Undead Infestation quest... 49

6.1 A side-quest outline generated by SQUEGE .. 52
6.2 An instance of a quest pattern in ScriptEase... 53
6.3 The process SQUEGE uses to generate quest outlines... 53
6.4 Four side-quests generated by SQUEGE ... 54

7.1 The weighted ranking of side-quests within each story segment..................................... 63
7.2 T h e w eigh ted ran k in g o f all o f the s id e -q u es ts .. 64
7.3 The average scores of each of the side-quests.. 65
7.4 The number o f users that preferred one story segment over another.............................. 66
7.5 The average score of each story segment.. 66
7.6 The correlation between humour and the overall score of each side-quest..................... 68
7.7 The average score of humour for each side-quest... 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Narrative story-telling is an art that has been around for thousands of years. While stories were

originally delivered orally, they have also been delivered through writing in literature and visually

and aurally in plays and movies. It is a craft which has become quite refined through the generations.

In narrative story-telling, the plot is a sequence of linear events. The listener or reader has no

influence as to how the story unfolds.

Interactive stories are a newer form of media that have been popularized through computer

games. Earlier forms of interactive stories exist, such as the Choose Your Own Adventure line

of novels [19] and pen and paper role playing games (e.g. D u n g e o n s a n d D r a g o n s [9]). In

interactive stories the reader, or player, becomes the central character and can take actions that influ

ence the story. This allows the player to have a direct influence upon the outcome of the story. Since

an interactive story author must take into consideration all possible choices that the player may take

at any time during the story, it makes the plot o f an interactive story much more complex than a plot

in a narrative story.

K '• -
iT~p !' E .V . r
Mrl p North
v t , a o i l t l i
J-rV :'!!est
J I' ties t
: > Ip ites t: , „■ i a s t

Figure 1.1: Screenshot of U l t i m a IV: Q u e s t o f t h e A v a t a r , by ORIGIN Systems, Inc.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: Screenshot o f Ja d e E m p ir e , by Bioware Corp.

Computer games have matured quickly in recent years. The Computer Role-Playing Game (CRPG)

U l t i m a IV: Q u e s t o f t h e A v a t a r by ORIGIN Systems, Inc., (1 9 8 5) has less than 20 people

credited to its development team [26]. Figure 1.1 shows a screen shot o f U l t i m a IV; the characters

are simple icons and the game is played in a two-dimensional world. The dialogue is text-based and

consists o f simple statements made by the non-player characters (NPCs) while the player character

(PC) only gets to respond yes or no to questions. The plot consists of a single story line. There are

no optional adventures for the PC to participate in; the PC can only take actions to advance the main

story line. Contrast this with the CRPG J a d e E m p i r e [10] by Bioware Corp. [1], (2005), which

has hundreds of people credited to its development team [11], Figure 1.2 shows a screen shot of

J a d e E m p i r e ; the characters look realistic and game-play takes place in a three-dimensional world.

Professional voice actors voice all of the NPC dialogue. Conversations consist of many levels of

exchanges between the PC and the NPC that can change depending on the PC’s current choices in

the conversation and previous interactions with the game environment. J a d e E m p i r e ’ s plot con

sists o f a branching story line and many unrelated optional side-quests to surround it. The branching

story line depends on the PC’s choices throughout the game; one branch leads towards a good char

acter ending while another branch leads towards an evil character ending. This branching story line

resulted in much of the content in J a d e E m p i r e having to be doubled.

In the not-so-distant past computer games were authored by a small team of programmers and

consisted of simple graphics, simple sounds, and a simple story. Just as the power of computers

is increasing exponentially, so is the quality that goes into producing computer games. Currently

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

team s o f h u n d red s o f peo p le co n sis tin g o f p ro g ram m ers , g am e desig n ers , a rtis ts , so und en g in eers ,

actors, quality assurance specialists, and others are authoring computer games. These games uti

lize advanced graphics and sound to give the player a more immersive experience. However this

improvement in technology increases consumer expectations for a more immersive and entertaining

story.

This presents a challenging problem for computer game authors since an immersive and en

tertaining interactive story is difficult to create. Not only must the game designers be technically

creative, they must be capable of drafting better characters, plots, dialogue, action, and interaction -

in short, better stories. Designers and programmers are constantly trying to stay one step ahead by

using cutting-edge technology to create engaging stories.

1.1 Authoring Computer Games

Computer games are often designed using a Computer-Aided Design (CAD) tool. A CAD tool

allows the designer to visualize and manipulate the game environment as the player will see it

instead of using a cryptic low-level textual representation of the player’s surroundings. Figure 1.3

shows a screen shot from the Aurora Toolset, a CAD tool used to design game adventures for the

game N e v e r w i n t e r N i g h t s [1 6] (N W N) by Bioware Corp..

1 . ♦ A . i . i i >_AJ A V I 9,9,1 cj.p | aj

Figure 1.3: Screenshot o f the N e v e r w i n t e r N i g h t s Aurora Toolset, by Bioware Corp.

With the Aurora Toolset a game designer may create a game environment as the player will

see it. By placing objects such as creatures, doors, and inanimate objects (called placeables) in the

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

various areas of the game, the game designer knows exactly how those objects will look in the game.

Manipulating effects such as lighting and sound allows the game designer to immediately see and

hear the changes they have make using the CAD tool.

Use o f CAD tools greatly increases productivity as the game designer instantly sees any changes

made to the environment. The designer does not have to work in one format to edit a map and

then switch to another format to see how their editing changes the game. The designer also edits

the environment in an intuitive way, such as painting the terrain or dragging, dropping, and rotating

objects using the CAD tool. This is considered the state o f the art in designing game settings.

A CAD tool only helps the designer create the setting (environment). A designer cannot use it

to design how a player will interact with a game environment - scripting is necessary. Scripting

can specify how the game environment will respond to events that happen in the game. Examples

of these events include: the death of a creature, reaching a specific point in a conversation, and

removing an item from a container. Each event may associate a script with it. A script is a set of

instructions telling the game environment how to change in response to the event. When removing an

item from a container such as a sarcophagus, a designer might attach a script to create, for example, a

mummy creature near the sarcophagus along with a visual effect to highlight the mummy’s entrance.

Usually scripts are written in a high-level programming language designed to abstract the process

o f writing code by avoiding the low-level details found in languages such as C/C++. However,

scripting is difficult because scripts require a precise specification; it is programming and many

game designers are not programmers. They specialize in designing games not writing code. A script

can also be written by a programmer after a designer specifies the intent o f the script. This is a

tedious task for the programmer whose resources could be spent on other tasks, such as creating

new and better tools, adding artificial intelligence to the game and improving the game engine. In

addition, information may also be lost while communicating the intent of the script, resulting in both

the designer and the programmer having to revisit the script.

Specifying plot in computer games uses scripts. As the plot advances scripts can record and

control the game state. Often the plot in CRPGs is divided up into short adventures called quests.

An example quest is when the PC is asked to perform a task that involves the killing of a dragon.

This quest has three components. First, an NPC asks the PC to kill a dragon. Second, the PC kills

the dragon. Third, after killing the dragon, the PC then reports back to the NPC again, who rewards

the PC with gold for completing the quest. The following needs to be specified by scripts:

• T h e N P C d ia lo g u e th a t in itiates th is m in i-p lo t, w here the N P C urges th e P C to k ill the d ragon

and updates the PC’s journal1 to remind the PC they are on a quest to kill the dragon.

• When the dragon dies, so as to change the game state and update the PC’s journal to remind

the PC they have killed the dragon.

*A C R P G w ill o ften have a jo u rn a l tha t reco rds the P C ’s ac tions to rem ind th em w hat they have done. T h e jo u rn a l m ay
a lso g ive h in ts as to w ha t th e PC has to d o next.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The NPC dialogue that shows after the PC defeats the dragon, where the NPC congratulates

the PC on defeating the dragon, gives the PC some gold, and updates the PC’s journal to

remind the PC they have finished the quest.

• The final NPC dialogue that shows if the PC returns to the NPC after the reward has been

given.

Figure 1.4 shows some of the NWN scripts required for this simple quest. A game designer

will create and maintain each of these scripts in different locations throughout the CAD tool. A

conversation in NWN consists o f alternating responses between the NPC and the PC. Scripts can be

assigned to these responses to determine when to display the response and what happens when the

response is displayed. Scripts 1.4(a), 1.4(c) and 1.4(d) all belong to different responses in the NPC’s

conversation. However a conversation can be rather large, having thousands of different responses

to place scripts. Script 1.4(b) is for the event when the dragon dies. As the number of quests in

a game increases it becomes more difficult to keep track o f which scripts belong to which quest,

making quests difficult to update and maintain. In commercial CRPGs, it is not uncommon to need

thousands of scripts to control the plot and provide interactions between the PC and environment.

For example, the official campaign story for NWN2 has 7,857 scripts resulting in 141,267 lines of

code.

The dragon quest uses the variables named DRAGON-DEAD and GOLD-GIVEN to maintain

game state; the former is a flag that maintains whether or not the PC has killed the dragon and the

latter is a flag that maintains whether or not the PC has been given gold by the NPC. Making scripting

calls to the journal interface updates the PC’s journal. A game designer uses a journal editor in the

Aurora Toolset to create all o f the journal entries for the quest. A user references the journal entries

using a unique identifier, or tag, o f the quest called Dragon-Quest. Each script communicates with

the other scripts in the quest through the game state variables they query and set. If any one of the

scripts misspell one of the variable names, that script will no longer communicate properly with

other scripts in the quest. These types of errors are common and difficult to identify, especially as

the quests become more complicated, using many variables to communicate the game state between

scripts.

Often similar plots will require similar scripts. One example is to repeat the killing-the-dragon

example plot with a different NPC who asks to kill an evil knight instead. This evil knight plot

can use the same set of scripts shown in Figure 1.4, with minor modifications to variable and tag

names as well as changing the locations of the scripts. Unfortunately, this process of copying and

replacing variable and tag strings is dangerous, since forgetting to make a change or misspelling a

string produces a semantic error in the quest.

2N W N is d es igned so tha t u sers ca n m ake th e ir ow n custom adven tu res to share and d istribu te . T h e gam e co m es w ith set
o f pre-bu ilt adven tu res tha t co m b in e to m ake an ep ic sto ry line. T h e se adven tu res a re ca lled the official c am p aig n fo r N W N .

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int StartingConditional()
{
object, player = GetPCSpeaker () ;
int dragonDead = GetLccallnt(player, "DRAGON_DEAD");

:.f (! dragonDead)
AddCTournalQuestEntry ("Dragon Quest", 1 , player) ;

return i dragonDead;

(a) S crip t to ch eck th a t th e d ragon has not been k illed .

void m a m O

object player =* GetL&stKiller(};

SetLccaiXnt (player, "DRAGON_DEAD", TFXJS) ;
AddJcurnalQuestEntry(MDragan_Quest", 2, player);

>

(b) S crip t tha t upda tes th e g am e sta te w hen the d ragon dies.

Int StartingCcr.ditior.al ()
{
object player - GetFCSpeaker();
m t dragonDead = GetLccallnt(player, "DRAGON_DEAD");
int goldGiven = GetLccallnt (player, "GOLD_GIVEN") ;

if(dragonDead &£ ! goldGiven)

AddJournalQuestEntry("Dragon Quest", 5 , player);
GiveGcldToCreature(player, 100);
SetLocallnt(player, "GOLD GIVEN", TRUE);

return dragonDead &£ ! goldGiven;

(c) S crip t to check tha t th e d ragon is k illed and the m oney has not
been given.

int StartingConditional()
{
object player = GetPCSpeaker();
int goldGiven = GetLocallnt(player, "GOLD_GIVEN") ;

return goldGiven;
>

(d) S crip t to check tha t th e m oney has been given.

Figure 1.4: The set of scripts needed for a quest that involves the slaying of a dragon.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Patterns in Narrative

The previous section shows two different plots that require similar sets of scripts. Both plots include

a pattern where an NPC requests the PC to kill another NPC. The idea of patterns in narrative is

quite common.

A good example o f patterns in fiction is the work of Vladimir Propp [20]. Propp identifies

several types of patterns that occur in Russian folk-tales. In these patterns different characters in the

folk tales are identified through roles such as the hero, the victim, the villain, etc. The roles then

interact with one another in several different types of patterns. An example of a pattern is a hero

returning home to discover that the victim has been kidnapped by the villain. These patterns also

apply to other forms of media, such as novels or movies, where patterns such as love-triangles and

closed-room mysteries abound.

Patterns also exist in computer role-playing games. Often the PC is asked to go on a quest to

advance the plot. While there are many different ways for an author to write a quest, specific quests

can be grouped together into a small number of patterns. The kill-the-dragon quest example can be

subsumed by a kill a creature quest pattern. Another common quest pattern is the retrieve/deliver

an item quest. In this type of quest, an NPC asks the PC to find an item and return it to the NPC or

to deliver it to another NPC. There are many different ways that the PC can acquire the item, such as

having to persuade another NPC to give up the item or perhaps having to kill a monster who has it

or is guarding it. The motivation for why the NPC wants the PC to retrieve the item can be whatever

the game author chooses. Despite these differences, the intent o f all of these quests is the same:

retrieve/deliver an item for an NPC.

In the official campaign story for NWN, an NPC named Aribeth asks the PC to find four in

gredients to create a cure for a plague. This quest is an adapted version of the retrieve/deliver an

item quest, where instead of retrieving one item the PC must retrieve four items. Section 1.1 shows

that each quest may need several different scripts in several different places. It is difficult for game

designers to write and keep track of these scripts. For the Aribeth quest there must be scripts for

when the PC acquires each of the four items, as well as scripts in Aribeth’s conversation to control

what she says depending on the state o f the quest. Because this quest has scripts in various locations

throughout the story, it is difficult to both track and maintain these scripts.

The complex story lines of modem CRPGs require hundreds or thousands of main plot quests

and optional quests (called side-quests). These optional side-quests greatly increase the player’s

sense o f freed o m w ith in the story. U n fo rtunate ly , qu ests in m o st com m erc ia l C R P G s are sim ple in

nature, since more complex quests require more complex scripts and thus more (costly) programmer

time. Game designers need an abstraction mechanism for creating quests. Just as a CAD tool is

necessary for game designers to create quality settings, an abstraction mechanism and associated

tool is needed for creating quality quests. Such a quest tool would free the game designer from the

difficulties associated with quest scripting. The time saved can be used to construct more intricate

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quests.

The bulk of game development cost is presently dominated by content creation. This requires

investing a huge amount o f resources to give games high-quality artwork, realistic characters, fully-

orchestrated soundtracks, and sweeping story lines. Anything that can be done to improve the con

tent creation process results in less cost to develop a game or better content being developed for

the same cost. Currently, scripting is the bottle-neck in creating a good story line, with patterns a

solution to making them easier to develop.

1.3 Automatic Story Generation

Rather than help the game designer to design quests, there have been attempts to automatically

generate stories for the game designer. For example, story directors are one attempt at automatic

story generation [21], A story director tries to maintain a specific story line while keeping track of all

the NPCs and the PC. If a PC or NPC acts in such a way that it is impossible to complete the current

story, then the story director dynamically alters the story to one that can be completed. Narrative

mediation is similar to story directors in that the mediator still tries to maintain a specific story line

[22]. With narrative mediation, the mediator has control o f everything in the story except the PC.

This allows the mediator to react to the PC’s actions. The methodology of narrative mediation is

similar to planning in that the mediator considers alternative story lines ahead of time, so that when

the PC takes an action that deviates from the current story line, the mediator immediately acts upon

a new story line that has been planned.

These forms of story generation are dynamic in that the story is created on the go, but they fail

to let the game designers maintain control. Just as good linear stories are written by human authors,

good interactive stories should remain primarily in the hands of game designers.

1.4 Pattern Abstraction

A quest pattern is a useful abstraction that an author can adapt so that the pattern meets specific story

needs. An example quest pattern is the retrieve/deliver an item pattern. The game designer need only

specify three things to adapt the pattern: a point in a conversation asking the PC to retrieve or deliver

the item, the item to retrieve or deliver, and the NPC that should receive the item. For example, in

the official campaign for NWN the PC has a conversation where an NPC named Jemanie asks the

PC to find his brother. This does not appear to be a retrieve/deliver an item quest pattern but it turns

out to be one as Jemanie’s brother is dead. To prove this, the PC must return a ring found on the

brother’s body to Jemanie.

By providing tools for game designers to help with plot, the game designers can make either

more plots, or more complex plots, or use the savings for other development activities. Quest pat

terns provide a good reuse mechanism to designers since they contain correct functionality while

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adaptation allows designers to quickly make m ore com plex plots.

| File Edit Build Tools Help

Elena's Pen (Trigger enter/exit- barrier)
True Cloak of Compassion (Award XP for acquired item)
Crypt Stone Door (Placeable use/death - toggle door)
5 Use placeable
e- I/' When The Placeable (Stone Door Lever) is used

D Define Door Locked as whether The Door (Stone Door) is locked
0 Define Unlock or Lock as the opposite of Door Locked
D Define Open or Close as the opposite of Unlock or Lock
A Animate The Placeable (Stone Door Lever)* to Activate
A Then, Animate The Placeable (Stone Door Lever)* to Deactivate
A Then, Unlock or Lock The Door (Stone Door)
A Then, The Door (Stone Door)* Open or Closes The Door (Stone Door)

o- 5 Dead placeable
9 E Door Container (Container open/dead)

<*- 5 Open container-add actions
<*- 5 Dead container-add actions

■ Elena’s Conversations (3)

Description ; Actoi Animation

Select an animation to play.

O S e le c t P laceab le Anim ations

(?) Constant D eactivate

Figure 1.5: Screenshot of ScriptEase.

A tool that applies patterns successfully to NWN is ScriptEase [13] (see Figure 1.5). ScriptEase

uses generative design patterns to provide the game designer with an alternative to scripting. A

designer creates a specific instance of the pattern and specifies the options that differ between pattern

instances. The container disturb - spawn creature pattern in ScriptEase has three options: a container

that will have its inventory disturbed, a creature that spawns when the container is disturbed, and

a visual effect to show on the creature that spawns. Once a designer instantiates a pattern and

specifies its options, then the designer adapts the pattern instance for a particular story. For example,

the designer can adapt the container disturb - spawn creature example by having the PC speak

something regarding their surprise at the creature that spawns.

The patterns are generative in that through instantiating a pattern and then adapting it, ScriptEase

can generate scripting code from the instantiation without the game designer having to write a line

of it. This allows the game designer to avoid the problems associated with writing scripts by having

them work at the abstract level o f patterns. Currently ScriptEase provides encounter patterns for the

simple interactions between the PC and inanimate objects in the game [13], as well as behaviour

patterns to control behaviours that characters in the game may exhibit [5].

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Quest Patterns

Encounter Patterns

Behaviour Patterns

Scripting

C/C++

Figure 1.6: A hierarchy of abstractions used for creating the plot in CRPGs.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Patterns are just one level in a hierarchy of abstractions. At the lowest level are programming

languages like C/C++. At this level, programmers are expected to deal with details that are not

specific to game design, such as reading input from the keyboard or sending graphical output to

the screen. Scripting is the next level o f abstraction, where all o f the details not related to game

design are abstracted from the scripter. The scripter now has access to a library of functions that

deal directly with controlling the game, but this level still requires the scripter to have knowledge

about programming. Game development at the level of patterns no longer requires programming

knowledge. Patterns conceptualize game control into a form that is intuitive and easy to use for

non-programmers (e.g., high-school students [3]).

The research that this dissertation describes introduces a new level of abstraction for plot devel

opment in CRPGs that is higher than encounter and behaviour patterns. The name for these new

patterns is quest patterns. Manually scripting the plot in CRPGs requires multiple scripts to work

together. By generating plot scripts from quest patterns, many sub-patterns must generate scripts

that work together to form a cohesive story. Therefore, quest patterns are meta-patterns that describe

how a set o f patterns should work together, by providing the user with a high-level quest construct.

This eliminates the need to look at each pattern being used in the quest. Figure 1.6 shows the hier

archy of these abstractions, with quest patterns being the highest level o f abstraction while C/C++ is

the lowest.

1.5 Contributions

This research makes several contributions that are intended to aid game designers in the generation

of quest content. This is an area where there is a current lack of deployed tools and active research

in game design.

First we introduce the idea of a quest pattern, showing how abstracting a quest at a high-level

can make it easier to envision and manipulate the stories in CRPGs. We give an implementation of

generative quest patterns in ScriptEase, allowing users to work with and adapt quest patterns to their

specific game needs. This research provides a basic catalogue of quest patterns, which can be used

in commercial CRPGs to aid game designers in the rapid development of plot.

To further help game designers, this work presents an implementation of a quest generator that

automatically generates quest outlines for game adventures using the patterns from the quest cata

logue. These quest outlines are specific enough that they can be quickly implemented in ScriptEase.

The quest generator is very helpful in the rapid creation of side-quests. Side-quests are simple

quests not relevant to the main plot o f a game. It is important for CRPGs to have a large number of

side-quests as they give the PC more choices by providing the feeling of an open and richer virtual

world.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.6 Outline

This dissertation is organized as follows. Chapter 2 describes related work to both structuring and

generating the plot in games and literature. Chapter 3 discusses quest patterns and how to use them

to structure the plot in games. Chapter 4 gives an implementation of quest patterns in ScriptEase to

allow the automatic generation of scripts. Chapter 5 evaluates the effectiveness of quest patterns by

using these patterns to generate the scripts for a sample of quests from the NWN official campaign.

Chapter 6 describes a tool that uses quest patterns to automatically generate quest outlines that help

a game designer in the rapid development of side-quests. Chapter 7 evaluates the quest generator

through a user study. Finally, Chapter 8 presents some conclusions and future work.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Literature Review

This dissertation develops ideas that game designers may use to rapidly develop plot in CRPGs.

This chapter surveys the related work. Since interactive narrative is an extension of linear narrative,

we examine work done in both linear and interactive narrative. The tools available for aiding in de

signing and creating plot are studied. While the use of most tools is in analyzing narrative structure,

they can also create narrative. Therefore, we give an overview of the field of narrative generation.

Narrative generators allow a new genre for computer games called emergent narrative.

2.1 Tools For Plot Design in Linear Narrative

There is a thorough analysis of linear narrative in the literature, especially its structure of plot. Many

patterns occur in plot structure, and creating a story around these structures provides an excellent

tool for plot design. We describe several of these structures.

Freytag’s dramatic structure is a general way of classifying a plot [7], Its most common use is

in the analysis o f Shakespearean plays. There are five stages to the dramatic structure, which often

correspond to the five acts in a tragedy or comedy. The stages are:

Exposition - begins the story and introduces characters and setting,

Rising Action - introduces tension and conflict to the story,

Climax - a turning point in the story; the conflict and tension reach their peak,

Falling Action - a resolution to the conflict and tension whether for good or ill, and

Denouement - story ending, things are better or worse than they were before.

These five stages are often represented in an image known as Freytag’s Pyramid, as shown in

Figure 2.1. This dramatic structure is general enough that it can be applied to many stories. It is also

a good structure for plot creation as it provides a simple form for adding tension and then removing

it to create a complete story.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Climax

Falling ActionRising ActionTension

Exposition Denouement

Time

Figure 2.1: Freytag’s Pyramid.

Rather than applying a general structure, Vladimir Propp’s work identifies a set of functions,

or patterns, common to many Russian folk-tales [20]. In these patterns, different characters in the

folk-tales are identified through roles such as the hero, the heroine, the villain, etc. We can represent

a folk-tale as a sequence o f these patterns, or as groups of patterns called moves. An example of a

move may be for the hero to return to town to discover that the villain has kidnapped the heroine.

These patterns are general enough that they can also apply to other forms of media, such as novels

or movies.

Joseph Campbell’s work shows a structure common to many myths, called the Monomyth [2],

The Monomyth consists of three parts: departure, initiation and return. Each part has several stages

that describe the journey that the hero of the story undertakes. Figure 2.2 shows the various stages in

the Monomyth. While Campbell applies the Monomyth structure to several myths, it has also been

used to design pieces of narrative, most notably the Star Wars movies by George Lucas [23, 24, 25].

All o f this work only helps to visualize the structure o f a plot. It does not aid an author in creating

an interesting plot, only a well structured one.

2.2 Tools for Plot Design in Interactive Narrative

While many structures have been discovered for linear narrative, the same does not hold for interac

tive narrative. The addition of player interactivity increases the complexity of the narrative making

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Departure

- The Call to Adventure - some event occurs that forces the hero to begin his journey (e.g.,
bandits attack the hero’s village).

- Refusal o f the Call - at first the hero may be hesitant to start the journey.

- Supernatural Aid - a supernatural force will appear and offer to help the hero in their
journey.

- The Crossing of the First Threshold - before the hero can adventure out into the world
he is first challenged in their local setting. This threshold symbolizes death.

- The Belly of the Whale - the hero is thrust into the outside world which is overwhelming
and alien to him.

• Initiation

- The Road of Trials - the hero faces a number o f trials to grow and mature.

- The Meeting with the Goddess - the hero meets a beautiful goddess-like woman, who
helps him become whole.

- Temptation From the True Path - the hero faces temptation from his goal and must prove
his worthiness.

- Atonement with the Father - the hero meets and reconciles with an authoritative figure.

- Apotheosis - a life changing event occurs, that often involves the hero acquiring much
greater powers.

- The Ultimate Boon - with the hero’s new-found powers and having atoned with his
father-like figure, the hero is able to perform a deed that benefits all.

• Return

- Refusal o f the Return - the hero often becomes reluctant to return home.

- The Magic Flight - the hero must make a quick but extraordinary journey to return home.

- Rescue From Without - external forces rescue the hero.

- Crossing of the Return Threshold - before returning home, the hero must overcome
another challenge. This threshold symbolizes rebirth.

- Master of Two Worlds - the hero becomes free to travel to and from his local and external
worlds.

- Freedom to Live - the hero completes his adventure allowing everyone to live their lives
free and happy.

F ig u re 2.2 : T h e S tages o f a M onom yth .

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it more difficult to analyze.

One way to handle interactive complexity is to limit the interactivity of the story. This is done

in many games. For example, the player may be presented with a short sequence of game play

(interactive). After completing the game play the story unfolds through a cut scene which the player

has no control over (linear). The process repeats through several sequences of game play, with cut

scenes between each sequence. This allows the author to design the story in the same way that they

design a linear narrative. The story is interspersed with interactive game play that does not affect the

linear story. The disadvantage of this design methodology is that the player has no choice as to how

the story unfolds, removing a sense of immersion from their experience. While this may work for

certain genres of games, it does not work for genres where the story is important, such as CRPGs.

With computer games, scripting controls the plot, as discussed in Chapter 1. Scripting is not

a tool that was designed to specifically control the plot, but it is powerful enough to handle plot.

Scripting does not aid plot design, but at least scripting supports the control o f more complicated

plots.

There is little research related specifically to the design of plot in interactive narrative. This

is probably due to the observation that computer games are one of the only mediums in which

interactive narrative is used, and computer games are relatively new. Most tools to aid in plot design

for computer games are made by game companies for internal use. Since game companies guard

their tools, there is little collaboration or communication about plot tools.

Plot W izard

^ S e t th e basic options
^ D efine the ca st

^ Plot Giver

^ Villain

^ Extras
D efine the piops

qjt Finish

Plot Nodes
Plot N odes

FindArnuletLocation
GetAmulet
GiveAmulet

New

M ove Down

Edit D elete

C reate or edit th e plot nodes. T h ese n o d es are s tep s in the plot that tell the story,
listed in chronological order. E ac h node is an interaction with o n e of the c a s t
m em bers .

< B ack Next > S av e Close

Figure 2.3: Plot wizard for the NWN Aurora Toolset, being used to create plot nodes.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One of the few exceptions to this policy is the plot wizard tool for the Aurora Toolset for

NWN [17]. It allows a user to create some plots without any scripting. It does this by asking

the user to answer several questions, such as which characters and objects are a part of the plot. The

plot wizard creates these characters and objects for the user. The wizard also relies on the creation of

several small steps in the plot called plot nodes. A plot node corresponds to some action or event that

the player may take in the game. Figure 2.3 shows the plot wizard being used to create plot nodes.

The plot wizard supports a limited number of events but they cover many of the common events

associated with plots. Specifically these events are talking to a creature, talking to a creature to ob

tain an item, talking to a creature to give an item, killing a creature, killing a creature and obtaining

an item, opening a container, obtaining an item from a container, giving an item to a container and

opening a door. Each plot node can depend on a previous plot node, allowing nodes to be chained

together. This allows a designer to impose an order on which actions the PC must take during the

plot. The plot wizard then generates the necessary scripts. If a designer wishes to do something else,

they must edit these scripts by hand.

While the NWN Plot Wizard sounds impressive, it has three major limitations. First, the number

of events supported for plot nodes is both limited and not extensible. If an author wants to use a

more complicated event, such as having the PC use an item at a specific game location, the plot

wizard cannot be used. Second, the plot wizard only orders plot nodes linearly. This restricts the

types of plots that are possible to create. For example, a plot where the PC finds two items and gives

them to an NPC is impossible to create using just the plot wizard. Third, the author cannot adapt the

events to make them more interesting. For example, the author could create a plot node where the

PC removes an amulet from a chest. Now the author would like to adapt the event so that when the

amulet is removed a visual effect that quickly brightens the entire room with a magical light. The

plot wizard does not provide the means for the author to make this adaptation. The author could

attempt to edit the script that the plot wizard created for the event. If the author then uses the plot

wizard again, the edited script may be changed by the plot wizard and the author may lose their

changes.

Kismet is a visual scripting language for the Unreal 3 game engine by Epic Games [27]. Scripts

are represented as graphs, where events are diamonds, specific scripting actions are rectangles, and

variables are circles. Each event and action has an in and an out. Drawing a line from the out of

an event to an in of an action means that the action will occur immediately after the event occurs.

Drawing a line from this action to another action means that the second action will occur after the

first action has occurred. At the bottom of each action are given the parameters and return values.

Variables can be attached to the parameters and return values.

While Kismet makes scripting more visual, it does not remove the complexity associated with

scripting and programming. One must still be a programmer to understand how Kismet works; the

code can simply be viewed in a graph rather than lexically in a window. Kismet provides general

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

support for scripting but has no special features to support plot.

2.3 Generating Narrative

Research into automatically generating linear narrative stories goes back to 1977 [14]. The focus

is on creating a complete narrative from beginning to end. This results in the difficult problem of

having to ensure that the narrative has good structure while also remaining interesting.

Interactive narrative generation has more liberties. The complete story does not have to be

created at once; it can be dynamic. This allows the generator to improvise the narrative. Most

research into interactive narrative generation is dynamic.

Fairclough and Cunningham have created an interactive narrative generator for multi-player

games using a Story Director (SD) [6]. An SD is an automated agent that works behind the scenes

to create a story by providing direction to the players and characters in the narrative. What makes

this work interesting is that the SD uses Propp’s Russian folk-tale patterns. With Propp’s patterns,

the authors create a number o f different moves to use in the narrative. Each move has a set of roles

associated with it. When the interactive narrative begins, the SD looks at the current state. It will

then pick a move which closely matches the state. For example, one criteria could be that there are

an appropriate number of characters together for the roles in the move, including a PC in the role

of the hero, an NPC to play the villain, and an NPC to play the victim. With the move picked, the

SD assigns the move’s roles to the appropriate characters and they behave by acting out each of the

patterns in the order that composes the move.

The SD system allows authors to create pieces of a narrative in a move. Using different sets

of moves can create different types of narrative. An interactive narrative created by Fairclough and

Cunningham’s SD uses a set of moves based on the first Star Wars movie [23].

The moves in this system are similar to quests. While the moves have good structure, they fail to

measure what is interesting about the move. There is no emphasis on identifying what motivates a

villain to perform an act o f villainy, nor is there much emphasis on generating meaningful dialogue.

Because the SD works on-line while the game is being played, there is no chance for a human author

to intervene and provide motivation or dialogue.

Cavazza, Charles and Mead have an interactive narrative generator that creates stories similar to

situational comedies found on television [4]. The player, in their system, does not have an entity in

the game. Instead, the player moves objects or suggests ideas to the characters in the game. While

the interaction is limited, it does allow the narrative to change depending on the player’s actions. The

generator assigns each character in the narrative a goal that they must complete. The system focuses

on creating plans for each character to achieve their goal. Because the player or the characters may

interact, a current plan may not be achievable, in which case the system must create another plan to

achieve that goal.

The generator derives plans through the use of a Hierarchical Task Network (HTN). An HTN is

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/A cq iu re
(infor-
\m a tio n .

f A s k h e r \ / Borrow \
\ friend J \ her diaryJ

G oto Send G o to P ickup
friend m essage diary diary

:Friend_Free :Friend_Listen :Diary_Free :Hnnds_Empty

G oto
phone

Dial phone
num ber

Send
nessaged ia ry

:Phone_Nearby :Ff»one# :Mom_Listen,
:Phone_Free /

Figure 2.4: HTN Diagram (taken from [4]) to create a plan for a character.

a way of decomposing a goal into a set o f tasks required to achieve the goal. These tasks can also

be decomposed into sets of sub-tasks. Sometimes completing one sub-task completes the parent

task. Other times, completing all of the sub-tasks in the specific order given, completes the parent

task. The result is a hierarchy of tasks. Figure 2.4 shows an HTN for a character in the narrative

generation system. The task at the top of the HTN represents the character’s goal. The tasks in

rectangles at the bottom of the HTN are the basic actions that the character can take in the game.

Each basic action in the HTN has conditions associated with it. Should one of the conditions fail

then the plan fails. Re-planning is done by moving up the HTN from the basic action that failed to

a sub-task that is in a list o f optional sub-tasks. The generator selects a new optional sub-task and

specifies basic actions for the new plan.

The advantage with this system is that it is easy for an author to specify HTNs for the various

characters in the narrative. Unfortunately the system does not allow characters to have multiple

goals. Once the characters finish their goals, the narrative is complete. This results in an interactive

narrative that is short in length, approximately three minutes.

Fagade, shown in Figure 2.5, is an immersive narrative that allows the player a large amount

o f interactivity [12]. A newly-wed couple invites the PC over to their apartment. Upon arriving

the player takes part in a drama where it becomes evident that the couple’s marriage is in trouble.

Because of the high interactivity, there are many resolutions to the drama, such as the player saving

or destroying the marriage depending on how they interact with the newly-weds.

Fagade uses beats, a collection of behaviours that the NPCs exhibit at different points in the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5: Screenshot o f Fagade.

game, to create the narrative. Different beats occur at different times. When a particular beat is

active the NPCs focus their behaviours to move the story in a particular narrative direction. The

player’s actions can interrupt beats, causing new beats to initiate instead. Each beat has a metric

value based on the dramatic tension associated with it. Beats are selected by the level of tension to

form a dramatic structure similar to Freytag’s Pyramid in Section 2.1. The end result is a sequence

of changing beats which creates a dynamic storyline that reacts to the player’s actions.

Each behaviour is written by hand, resulting in a time-consuming and story-dependent process.

Fagade is a game that takes about 20 minutes for one play-through, yet it took about 3 person-

years to produce. While Fagade successfully creates an interactive narrative, all o f the beats were

authored for the specific story of a marriage that is falling apart. Certain types o f narrative might not

be possible in this model, such as those where all o f the events are related and come together at the

end (e.g. a mystery).

These new forms of narrative generation have created a new genre called the emergent narrative.

Here, there is no pre-defined story. The player and the characters in the story all interact with

different goals and beliefs and, through interaction, a story emerges. This is interesting as it mimics

real life; human history is a long emergent narrative. Emergent narrative suffers from a lack of

direction. There is no way to insure that the emerging story will always be interesting for the player.

Sometimes an interesting story will emerge but, if human history is any indication, a large number

of stories will be rather mundane. In the computer games industry, even having ten percent of your

emerging stories being uninteresting can kill a product. A market for emergent games has emerged,

but they will not cause the need for games with a pre-defined storyline to disappear.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Quest Patterns

Game authors will often use quests to make the story modular. Quests segment the large branching

plot of a game into smaller independent episodes of story. This makes the game easier for a player

to handle, as they can focus on a few quests at a time. A device, such as a journal, is used to remind

the player of the status of their quests. Game authors benefit from quests for similar reasons - quests

are designed a few at a time. Quests also serve as a way to abstract the plot. For example, the entire

sequence of actions needed for the PC to acquire a powerful item can be abstracted as one quest.

Taking this further, composing a quest as a sequence of other quests results in a type of composite

quest. Main story lines in games are often created from these composite quests.

Many quests found in CRPGs are similar. While the conversations, characters and items used in

the quests may be different, the steps the PC must take can be alike. Classifying quests into familiar

patterns results in an abstraction that can be reused multiple times. Quest patterns in CRPGs are

analogous to design patterns used in software engineering.

3.1 Design Patterns

Software engineering uses design patterns [8] with great success. A design pattern is a general

solution to a set of similar software scenarios. To use a design pattern, the user first selects it and

then adapts it to fit a specific situation. With traditional (non-generative) design patterns, the user

must then write code that implements the design pattern solution. If a generative design pattern is

available the code can be generated automatically. If a new set o f common scenarios is identified, a

new design pattern can be created to address these new scenarios. Once a design pattern exists for a

set of problems, the design can be reused. This aids in the rapid implementation of software.

An example of a design pattern is the Observer Pattern. The Observer Pattern is used when

one object needs to monitor the state o f another object. The observer object registers itself with the

observed object whose state it desires to observe. When the observed object changes state, it notifies

all registered observers about this change. The Observer Pattern is a common scenario that occurs

in GUI programs, such as a spreadsheet editor. There may be several charts and graphs displaying

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data in regards to a single table. When any of the data in the table is updated, the charts and graphs

must update themselves as well.

3.2 Quest Pattern Goals

Quest patterns should provide a high-level mechanism for game authors to structure the plot in

CRPGs. They should also be specific enough so that the pattern contains all the details of the quest.

A structure for quest patterns is a sequence of actions, or encounters, that the PC may choose to

influence the quest. Examples of encounters are the PC reaching a specific point in a conversation,

acquiring an item, and killing a creature. Quest patterns must also provide a way for the author to

specify what happens in the game in response to changes in the quest state. For example, when a PC

kills an evil knight to complete a quest, nearby characters may emerge from their houses since they

are no longer threatened by the knight. Other common operations such as giving a journal entry, or

awarding experience points1 (XP) should be handled appropriately.

3.3 Quest Pattern Components

Each quest pattern consists of a set of quest points. Quest points correspond to important encounters

that the PC experiences during the quest. The dragon quest mentioned in Section 1.1 has three quest

points: first the PC is told about the dragon by the old man, then the PC kills the dragon, and finally

the PC reports that the dragon is dead.

At the beginning of the quest the PC can only be told about the dragon by the old man. This

quest point is said to be enabled while all the others are not. When the PC talks to the old man,

the quest point is reached and the point is no longer enabled. Reaching a quest point causes other

points to enable. In this case the quest point to kill the dragon is now enabled. When the PC kills

the dragon the same quest point becomes reached and the final quest point, to report that the dragon

is dead, is enabled. This is an example of a linear quest, but not all quests are linear.

Each quest point specifies a label, a type, a list o f enablers that enable the quest, and a list

o f encounters that make the point reached. When any of the enablers is reached, the quest point

becomes enabled. The enablers list may also specify that the point is initially enabled at the start of

the quest. To reach a quest point, it must be enabled and one of its encounters must occur. Each quest

point also specifies a journal entry to add to the PC’s journal and the amount o f experience to reward

the PC when the quest point is reached. Finally the quest point lists additional actions that occur

when the quest point is reached. In the dragon quest, when the PC kills the dragon, some additional

actions may make the old man continually jum p up and down in jubilation over the dragon’s death.

'C R P G s use expe rience p o in ts to rep resen t th e g row th (o r ex p e rien ce) o f a PC . A fter o b ta in ing a ce rta in n um ber o f
experience po in ts , the PC w ill gain a level w h ich in c reases the pow ers o f the PC . A fighter PC m ight becom e s tro n g er and
b e ab le to a ttack m ore frequen tly , w h ile a w iza rd ch a ra c te r w ou ld b eco m e m ore in te lligen t and b e ab le to cast m ore pow erfu l
spells.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are three different types of quest points. When a PC reaches a normal point, all points

in the quest become disabled except for those points that have this point in their enablers list. An

optional quest point is a point that does not need to be reached to complete the quest. Reaching an

optional point does not eliminate any previously enabled quest points. The final type of point is a

close point that completes the quest. When a closed point is reached, all points for the quest become

disabled and no new points can become enabled.

Optional quest points provide a way for the PC to take an action without preventing other pos

sible actions from occurring. For example, the quest in Section 1.1 sees the PC killing a dragon at

the request of an old man. The quest can be altered so that the PC is initially too weak to defeat the

dragon. To gain the strength needed to defeat the dragon, the PC must either acquire an enchanted

sword from a nearby sorcerer or drink a potion of strength from an alchemist. Doing either one of

these actions gives the PC just enough strength to defeat the dragon. However, if the PC does both

o f these actions then the dragon can be defeated with little effort. This quest requires the use of

optional quest points. After the PC begins the quest by talking to the old man, two quest points are

enabled: acquire the enchanted sword and drink the potion of strength. Both of these quest points

enable the quest point where the PC kills the dragon. If acquiring the sword and drinking the potion

are normal quest points, then it becomes impossible for the PC to reach both. This is because when

one of the quest points is reached, all quest points become disabled except for those that list the quest

point as an enabler. The two quest points do not enable each other, so reaching one point causes the

other to become disabled. If both are optional quest points, it becomes possible to acquire the sword

and drink the potion. This is because reaching an optional quest point does not disable any other

quest points.

This outline presents the specification for a quest pattern:

• Intent: The intent o f the quest.

• Options: Various elements specific to each quest. When a quest pattern is instantiated these
options must be set to elements in the game. It is these options that can make multiple instan
tiations o f a quest pattern different.

• Quest Points

- Label o f the quest point.

* Intent: The intent o f this quest point.
* Options:

■ Quest Point Type: Normal, Optional o r Close
• E n ab lers: The point becom es enabled when any o f these points is reached. A l

ternatively, the quest poin t may be initially enabled.
■ Journal Entry: The entry that is added to the P C ’s journal when this quest point

is reached.
■ Experience Awarded: The amount o f experience awarded to the PC when this

quest point is reached.
* Encounters:

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The encounters required to occur before the quest point is reached are added
here.

* When quest point reached:
• Additional conditions and actions can be added here fo r when the quest point

is reached.

- Additional quest points can be specified similar to the one above.

The example above where the PC must acquire a sword or drink a potion before killing the

dragon uses this outline:
Kill a Dragon Quest

• Intent: The PC is asked to kill a dragon. Before killing the dragon, the PC must either acquire
an enchanted sword or drink a potion to become more powerful. Should both actions occur,
the PC will be able to easily defeat the dragon.

• Options:

- Point in old m an’s conversation where quest is given

- Enchanted Sword

- Potion

- Dragon

- Point in old m an’s conversation where PC reports dragon is dead

• Quest Points

- Receive Quest From old man

* Intent: The PC talks to the old man to begin the quest.
* Options:

• Quest Point Type: Normal
• Enablers: {Initially Available)
■ Journal Entry: An old man has asked me to destroy a nearby dragon. Unfor

tunately I am not strong enough to defeat the dragon. I ’ll need to increase my
strength. Perhaps I can find a weapon or potion to aid me?

■ E x p erien ce A w arded : 10

* E n coun ters:

• Reaching the point in old m an’s conversation where quest is given
* When quest point reached:

• No additional actions required

- Acquire Enchanted Sword

* Intent: The PC acquires an enchanted sword to aid in defeating the dragon.
* Options:

• Quest Point Type: Optional
• Enablers: Receive Quest From old man
• Jo u rn a l E n try : A sorcerer has given me an enchanted sword. This weapon

should certainly help me defeat the dragon.
• Experience Awarded: 50

* Encounters:
• The Player acquires the Enchanted Sword

* When quest point reached:
• No additional actions required

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Drink Potion o f Strength

* Intent: The PC drinks a potion o f strength to aid in defeating the dragon.
* Options:

• Quest Point Type: Optional
■ Enablers: Receive Quest From old man
• Journal Entry: An alchemist has given me a potion o f strength. After drinking

the potion 1 fee l much stronger. This should help me kill that dragon.
• Experience Awarded: 50

* Encounters:
• The player drinks the Potion

* When quest point reached:
■ No additional actions required

- Kill the Dragon

* In ten t: The PC kills the dragon.
* Options:

• Quest Point Type: Normal
■ Enablers: Acquire Enchanted Sword, Drink Potion o f Strength
■ Journal Entry: The Dragon has been defeated. I should return to the old man

and tell him he has nothing left to fear.
■ Experience Awarded: 100

* Encounters:
• The Dragon dies

* When quest point reached:
• No additional actions required

- Report D ragon’s Death to old man

* Intent: The PC tells the old man o f the D ragon’s death and is rewarded.
* Options:

■ Quest Point Type: Close
■ Enablers: Kill the Dragon
• Journal Entry: The old man was happy to hear that the dragon is no more. He

has rewarded me well.
■ Experience Awarded: 500

* Encounters:
• Reaching the Point in old m an’s conversation where PC reports dragon is dead

* When quest point reached:
■ old man gives the PC 500 gold pieces

3.4 Quest Pattern Graphs

Quest patterns can also he represented as graphs, giving the author a visualization of the quest. Each

quest point has a corresponding graph node that is labeled with the quest point label. In a graph,

the starting point serves as a node that describes which quest points are initially enabled. There is

no starting point in a pattern specification, so one is created automatically in the graph. A starting

point is represented by a triangle node (Figure 3.1(a)). Normal points, are drawn with a solid line

(Figure 3.1(b)). Optional points, are drawn with a dashed-line (Figure 3.1(c)). Close points, are

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) S tarting po in t. (b) N orm al p o in t. (c) O p tiona l po in t. (d) C lo se po in t.

Reached Enabled

(e) T ransition .

Figure 3.1: The different components o f a quest graph.

D rink P o tion o f S trength

R eport D ragon 's D eath
u» Old M an

Kill the Dragon

A cquire E nchanted Sw oitl

Figure 3.2: Graph of the example quest where the player kills a dragon.

drawn with a bold-line (Figure 3.1(d)). Related points are connected by arrows where the node at

the head of the arrow is made enabled when the node at the tail is reached (Figure 3.1(e)).

Quest pattern graphs are a high-level visualization of the quest pattern. They do not display

the journal entries, XP awarded, and additional actions associated with each quest point. The quest

point labels are often enough information to remind the author what extra information occurs at each

point. Implementing these graphs in the proper Graphical User Interface (GUI) would allow a user to

point and click at a node in the graph to be presented with this additional information. Given a quest

pattern specification, the associated quest pattern graph can be easily and automatically constructed.

Figure 3.2 shows the graph for the example quest where the player is asked to kill a dragon.

3.5 Quest Pattern Catalogue

The current quest pattern catalogue consists o f five quests: retrieve/deliver an item quest, retrieve/deliver

multiple items quest, retrieve/deliver one o f multiple items quest, talk to quest and kill a creature

quest. This is not a complete catalogue, but it is sufficiently diverse for proof o f concept. We are

adding more patterns all the time. This section only provides a general description of each pattern,

including pattern graphs. A complete specification of each pattern is given in Appendix A.

In the retrieve/deliver an item quest, an NPC asks the PC to first acquire an item and then give

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3: Graph of the retrieve/deliver an item quest pattern.

the item to an NPC. The reason why the quest is a retrieve/deliver quest is that the PC may have to

give the item to the NPC who asked them to retrieve the item, or they may have to deliver the item to

a different NPC. Three options must be specified to use this pattern: the conversation point in which

the quest is given, the item being retrieved/delivered, and the receiver of the item. If the receiver of

the item is the same NPC that the PC conversed with, then the item is being retrieved. Otherwise, the

item is being delivered. Figure 3.3 shows a graph of the retrieve/deliver an item quest. In addition to

the obvious quest points (talk to quest giver, acquire item, and give item to NPC receiver), there are

other points (expose quest and find item location. The other quest points (expose quest and find item

location) are placeholders. The default encounter for these placeholder points is to become reached

as soon as they are enabled. The points are there to be adapted by the game author if desired. An

example of a retrieve/deliver an item quest is where the player finds a missing doll for a young girl.

The PC meets a girl who has lost her doll and the conversation includes the talk to quest giver point.

The PC finds the doll (acquire item point). Finally, the PC returns the doll to the girl (give item to

NPC receiver point). This quest can also be related to the quest where the PC kills a dragon. The

PC must help the old man in the dragon quest before his grand daughter (the girl) trusts the PC. The

expose quest point can be adapted by changing the encounter to be when the Kill a Dragon quest is

completed. The find item location point can be adapted by having the PC talk to the girl’s mother.

The mother tells the PC that she last saw her daughter playing with the doll in the market.

C (2) Acquire innliiple
Aiquiic

Figure 3.4: Graph of the retrieve/deliver multiple items quest pattern.

In the retrieve/deliver multiple items quest, an NPC asks the PC to acquire several items and then

give the items to an NPC. This pattern is an extension of the retrieve/deliver an item quest pattern.

The pattern only deals with retrieving/delivering two items but it can easily be modified to handle

more items. Four options must be specified to use the this pattern: the conversation point in which

the quest is given, the first item being retrieved/delivered, the second item being retrieved/delivered

and the receiver of the items. Figure 3.4 shows a graph of the retrieve/deliver multiple items quest.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This quest also has points to expose the quest and find the item locations; all quest patterns have

these placeholder points. An example o f a retrieve/deliver multiple items quest pattern is if a mentor

NPC tells the PC about four pieces of a broken sword. After obtaining the pieces, the PC gives them

to a blacksmith who welds them together to create a new weapon for the PC. The pattern would have

to be adapted to use four items instead of two and would also require the closing point to award the

PC with the newly created sword.

Retrieve/Deliver oi»e o f m ultiple items

. . . _____^
- f-\ Acquire item2 >-----

> Find item ! location • v _ _ _ —
ilem2 to NPC r e c e iw ^ ^

/ S tan ''X'v ------►■(^Exptise quest (t ------ ► \T a lk to quest giver

__ ^ ^ Acquire item) '-----

v Find item 1 location >

item 1 to NPC receiveT^)

Figure 3.5: Graph of the retrieve/deliver one o f multiple items quest pattern.

In the retrieve/deliver one o f multiple items quest, an NPC asks the PC to acquire one of several

items and then give that item to an NPC. This pattern is also an extension of the retrieve/deliver

an item quest pattern. The pattern only deals with retrieving/delivering one of two items but it

can easily be modified to handle one of many items. Five options must be specified to use this

pattern: the conversation point in which the quest is given, the first item being retrieved/delivered,

the second item being retrieved/delivered, the receiver of the first item and the receiver of the second

item. Figure 3.5 shows a graph of the retrieve/deliver one o f multiple items quest. For example, a

shop owner may want to buy some items that the PC could acquire, but the shop owner only has

enough money to purchase one item from the PC. The retrieve/deliver one o f multiple items quest

pattern can be used for this scenario, where the shop owner is the receiver for both of the items.

Talk to

Start -► (Expose quest ► (Talk to q uest g iver

C F ind targe t location

Figure 3.6: Graph of the talk to quest pattern.

In the talk to quest, an NPC asks the PC to talk to another NPC. However the second NPC could

die, which would result in an alternate ending to the quest. While this pattern only handles talking

to one other NPC, it can be easily extended to become a chain of talking to many other NPCs. Three

options must be specified to use this pattern: the conversation point in which the quest is given, the

conversation point in which the PC talks to the second NPC and the other NPC. Figure 3.6 shows

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a graph of the talk to quest. A PC who needs to talk to an NPC may need to talk to several other

NPCs to find the location of the necessary NPC. The first NPC they talk to directs them to another

NPC. That NPC directs them to another NPC who directs them to the NPC they are looking for. An

extended form of the talk to quest pattern can be used for this scenario.

Kill a C reature

/ c \Start V -— - —► ^ E x p o se quest) — — Tal k to q uest g iv e rO — ----------------— Ki l l c reature J—
(^ H n d creature ktcaiion J) ~

—► { ^ q x > rt creature d e a th ^)

Figure 3.7: Graph of the kill a creature quest pattern.

In the kill a creature quest, an NPC asks the PC to kill a creature, and then report to an NPC.

The report can either be given to the quest giver or another NPC. Three options must be specified

to use this pattern: the conversation point in which the quest is given, the creature that is killed, and

the second conversation point in which the PC reports that the creature has been killed. Figure 3.7

shows a graph of the kill a creature quest. The killing of a dragon example mentioned earlier could

use the kill a creature quest pattern.

3.6 Using Quest Patterns

Given a quest pattern specification, a programmer could manually write the scripts necessary to

implement the quest. The information is specific enough that nothing is lost communicating the

pattern instance to the programmer. While no mechanism is given on how to script quests, the rules

on how quest points become enabled and reached are detailed enough that a programmer should

have no difficulty creating the scripts necessary. A programmer who becomes practiced in scripting

quest patterns will be able to quickly create the scripts needed, possibly even reusing some scripts.

The scripting process is straightforward enough that the process can be automated. This is shown in

the next chapter.

Both the reuse provided by the quest patterns and the decreased scripting time can be used to

increase the game content in CRPGs. Not only are quest patterns a novel idea, they are one of the

first attempts at providing a formal system for creating plot in CRPGs.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Quest Patterns in ScriptEase

Quest patterns save time by by applying a formal structure to quest design. This allows the design to

be constructed rapidly. Translating a quest pattern specification to scripting code is straightforward

enough that it can be done automatically. This chapters describes how ScriptEase automatically

generates code for quest patterns.

4.1 ScriptEase Overview

ScriptEase is a tool that uses generative design patterns to create scripts for NWN without a user hav

ing to write a single line of code. Users instantiate and adapt design patterns, from which NWScript

is generated. All operations in ScriptEase are done at the level of design patterns; the user does not

have to write or view any of the scripts.

There are four types of patterns in ScriptEase. Encounter patterns handle interactions with inan

imate objects in the game. An example encounter pattern is container remove - spawn creature.

When a PC removes an item from a container, a monster appears and attacks the PC. Dialogue pat

terns deal with the conversations between NPCs and the PC. Deciding whether the PC can make a

smart or stupid conversation response based on the PC’s intelligence statistic is an example dialogue

pattern. Behaviour patterns determine how NPCs act in the game. A behaviour pattern may cause

an NPC to act as a bartender by taking drink orders, serving customers and fetching supplies from a

supply room. Quest patterns, the topic of this thesis, handle quests and how they control the story.

Encounter patterns were the first type of pattern supported by ScriptEase. An encounter pattern

has a number of options associated with it, and is composed of one or more scripting scenarios called

situations. For example, the container remove - spawn creature encounter has a single situation:

remove item - spawn creature. A more complex encounter, container disturb - spawn creature, has

two situations: remove item - spawn creature and add item - spawn creature. Each situation has an

event (e.g., remove an item) and one or more actions (e.g., spawn a creature). Each encounter also

has options. For example, the container remove - spawn creature encounter has two options: the

container and the kind of creature to spawn.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A situation also contains definitions and conditions. For example, the container remove - (spe

cific item) spawn creature encounter has a definition for the item being removed and a condition that

compares this item to a specific option item. The creature is spawned only when the condition is

true. Events, definitions, conditions and actions are collectively called atoms. An event atom deter

mines when a situation occurs and is always the first atom in a situation. Removing an item from the

inventory of a chest is an example of an event atom. A definition atom defines properties regarding

the current state of the game. An example definition atom would be to define whether a NPC has

a specific item in their possession. A condition atom tests the results of boolean definitions. An

example of a condition atom is a test as to whether an NPC has a specific item in their possession.

The action atoms in a situation are only allowed to execute if the test for the condition is positive.

Each action atom has a corresponding action in the game. Giving an item to a NPC, is an example

action atom.

After the patterns are instantiated a user asks ScriptEase to generate the NWScripts associated

with each pattern. The components o f each encounter generate appropriate NWN script code. These

code fragments are joined together to make a complete set of scripting code for the situation.

Figure 4.1 shows both an instance of the placeable use - (item not equipped) spawn creature

encounter pattern and the script it generates. When the PC uses an obelisk object and is not wearing

an amulet of fire resistance around their neck, then a boy NPC is spawned near the obelisk. Because

ScriptEase generates verbose scripts, the script in Figure 4.1 (b) has been edited for brevity. The

definition, condition, and action atoms in Figure 4.1 (a) are labeled i-iv. The code snippets associated

with each of these atoms are also respectively labeled i-iv in Figure 4.1 (b).

It is expected that most users will be able to build engaging stories using the patterns and atoms

already in ScriptEase. However, an advanced user of ScriptEase can also design their own atoms.

The user supplies the snippet of NWScript associated with the atom. This allows the library o f atoms

found in ScriptEase to be expanded to include new atoms that do not currently exist.

ScriptEase currently has a catalogue of 70 encounter patterns. A user may also design their own

encounter patterns within ScriptEase by either modifying a currently existing pattern or creating a

new one from scratch. These new encounter patterns, along with any new atoms, can be grouped

into files called codepaks which users may share.

4.2 From Quest Pattern Specifications to ScriptEase

The current prototype implementation of quest patterns in ScriptEase makes extensive use of en

counter patterns. Future versions o f ScriptEase will make quest patterns into first class patterns.

This will make quest patterns easier to understand and more efficient. Using encounter patterns to

implement quest patterns was a rapid prototyping technique.

The transformation from a quest pattern specification to a pattern in ScriptEase is a straightfor

ward process. A t the highest level, ScriptEase represents the quest specification as a new type of

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

? E Placeable use- (item not equipped) spawn creature
f 5 Use placeable

©- V When The Placeable (Obelisk) is used
V O Define Is Equipped

i . £> Define Is Equipped as whether User has The Item (Amulet of Fire Resistance) in The Slot (Neck)
ii ; C If Is Equipped is Negative (False, No, Off, etc.)

iii A Spawn Spawned Creature from Creature Blueprint (Boy) near The Placeable (Obelisk)
iv A Then, Show the Spawn Effect (Unsummon) impaetvisual effect on Spawned Creature

(a) A n in s tance o f a p la c e a b le use - (h em not equ ipped) spaw n creature en co u n te r pattern .

“I
iii

void maiD() {

// The following are all of the variables used in this situation

object SpawiiedCreature_5£4;
otoj ect AmuletofFireResistance_5E2;
int TsEquipped SE3;
object User_S£l;
object Obelisk 5E0;

// This script is attached to the following object’s Gn'Jsed script slot
Obelisk SEO = OBJECT SELF;

// Define User as the user of Obelisk
User_5El = GetLastUsedBy'(};

// Get the object with tag "nw_it_rmeci-;02S"
Arauletof FireResistance__SE2 = GetObjectByTag {"nv;_it sck02 5");

// Define Is Equipped a3 whether User has Amulet of .-ire Resistance in neck
l3Equipped SE3 -

GetltemlnSlot(INVENTORY_SLOr_NECK, User_SEl) == AmuletofFireResistance_SE2;

// If Is Equipped is Negative (False, No, Off, etc.)
if (IsEquipp-ed_5E3 = FALSE) {

// Spawn Spawned Creature from Boy near Obelisk
location loc = GetLocation (Obeli3k__5EO) ;
SpawnedCreature SE4 = CreateObject(OBJECT TYPE_CREATURE, "malekid003", loc)

/ / Show the Unsunm.cn impact visual effect cr. Spawned Creature
effect veffect = EffectVisualEffect(VFX_XMF_UN5UMMON);
AppiyEffectToObject(DURATION TYPE INSTANT, veffect, SpawnedCreature 5E4);

(b) T h e sc rip t g en e ra ted by the p la c ea b le u se - (item n o t equ ipped) spaw n creature in stance show n above.

Figure 4.1: An instance of the placeable use - (item not equipped) spawn creature encounter pattern
and the script that it generates.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Option Name Option Description

Quest The journal structure in NWN that represents the quest.

Quest Introduction

A text string that is a general introduction of the quest. This
introduction is shown above all of the journal entries for the
quest. If an empty text string is given then no introduction is
shown in the journal.

Intent
A text string to remind the author what the quest is being used
for. This option has no function within ScriptEase. It is used
only to help ScriptEase authors.

Additional Options
Quest patterns may have additional options based on what the
pattern is used for. E.g., a kill a creature quest will have the
type of creature as one of its additional options.

Table 4.1: The options for a quest pattern in ScriptEase.

Option Name Option Description
Quest The journal structure in NWN that represents the quest.
Quest Point Label A text string that is the label o f the quest point.

Quest Point Type
The type of quest point. This can be one of three values: Nor
mal, Optional, or Close.

Enablers
The points that when reached, enables this quest point. This is
a text string of the labels o f the enabling points, with each label
separated by a comma.

New Quest Entry
A text string that is the entry added to the journal when the quest
point is reached. If an empty text string is given then no journal
entry will be added when the quest point is reached.

XP Awarded
A integer value that is the amount of experience points that the
PC is rewarded when the quest point becomes reached.

Intent
A text string to remind the author what the quest point is being
used for. This option has no function within ScriptEase. It is
used only to help ScriptEase authors.

Additional Options
Quest points may have additional options based on what the
point is used for. E.g., a point where the PC acquires an item
will have the item as one of its additional options.

Table 4.2: The options for a quest point in ScriptEase.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pattern, the quest pattern. The ScriptEase pattern uses the same options as the quest specification,

with some additions. Table 4.1 describes these options. Each quest pattern consists of a list of quest

point components. Table 4.2 describes the options for a quest point in ScriptEase. Each quest point

contains encounter patterns. If any of the encounter patterns occur, the quest point is considered

reached. Each quest point also contains an action block that is executed when the point is reached.

An action block contains a list o f action atoms and definitions. Optional conditions can also be

added to the action block to control whether it is executed.

A user can adapt the quest pattern by adding or removing quest points. When adding a quest

point, its options must be set. This includes providing a unique name (label) for the quest point.

Other options include the set o f enabling points and the type of quest point (normal, optional or

close).

, The encounters and action block within a quest point can also be adapted. A user can remove

existing encounters, add new encounters, and change the components of the encounters. A common

adaption is to add conditions to an encounter to restrict it from occurring. For example, all of

the patterns in the quest catalogue have a placeholder quest point that exposes the quest. Without

adaptations this expose quest point is reached as soon as it is enabled. A user can add a condition

to the encounter to check, for example, if the PC is a ranger1 to ensure that the quest is restricted to

rangers. If the PC happens to be a different class, they never experience this quest.

4.3 ScriptEase Example

Section 1.1 shows the scripting code for a quest where the PC is asked to kill a dragon. Instead of

scripting this quest, ScriptEase can be used to generate the necessary scripts using a kill a creature

quest pattern. Before using the pattern the game author prepares the game adventure. This involves

creating the NPC quest giver, the dragon, the conversation that the PC has with the NPC, and the

journal quest structure being used.

The author then instantiates a kill a creature quest pattern in ScriptEase. The author sets options

for the journal quest structure being used, the introduction of the quest, the intent o f the quest, the

point in the NPC conversation where the quest is given to the PC, the dragon that is killed, and the

point in the NPC conversation when the PC reports that the dragon is dead. Further adaptations are

possible. For example, in the final quest point where the PC reports that the dragon is dead, the

author wants the PC to be rewarded with some gold. This is done by adding an action atom to give

gold to the PC in the action block of the final point reached. While not necessary, the author can

change the journal entries associated with each of the quest points from the generic entry to specific

text relevant to killing a dragon.

1 In C R P G s the PC w ill o ften have a p ro fess ion o r c lass. D iffe ren t c lasses w ill g ive the P C d iffe ren t se ts o f sk ills to use
in the adv en tu re . A ranger c lass sp ec ia lizes in tra ck in g and hun ting sk ills w h ile a ro g u e class sp ec ia lizes in sneak ing and
thievery.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

? Q Kill a craature quest
o- IT (Normal) ExposeQuest point enabled by: Start - when the quest point is enabled 1 time(s)
o- # (Normal) TaikToQuestGiver point enabled by: ExposeQuest-when Quest Giver Conversation (oldman.dlg:0:3) occurs
o- tf (Normal) FindCreatureLocation point enabled by: TaikToQuestGiver - when the quest point is enabled 1 time(s)
®- K (Normal) KillCreature point enabled by: TaikToQuestGiver, FindCreatureLocation - when Creature Killed (Dragon) dies
f tf (Close) ReportCreatureDead point enabled by: KillCreature - when Reporter Conversation (oldman.dlg:0:1) occurs

o- E Conversation what
t A When quest point reached

A Assign 1 00 GP to Quest PC
<f E Conversation when/what

? S When a conversation node is displayed
«- V Display text for Conversation Node (oldman.dlg:1:2) if the conditions are all positive
? D Define Quest Point Reached

0 Define Quest Point Reached as whether Quest1001 has KillCreature reached
C If Quest Point Reached is Negative (False, No, Off, etc.)

f E Conversation whenfwhat
f S When a conversation node is displayed

o- V Display text for Conversation Mode (oldman.dlg:1:1) If the conditions are all positive
? 0 Define Quest Point Enabled

0 Define Quest Point Enabled as whether Questl 001 has ReportCreatureDead enabled
C If Quest Point Enabled is Positive (True, Yes, On, etc.)

Figure 4.2: ScriptEase instantiation of a kill a creature quest pattern and two encounter patterns.

The instantiated quest pattern does not generate the scripts that control the NPC’s conversation.

While these scripts are necessary, they are not considered the responsibility o f quest patterns. The

control o f conversations is considered to be in the domain of dialogue patterns. However, quest

patterns provide an interface for querying the plot by asking whether or not a quest point is reached

or enabled. Since dialogue patterns are currently not implemented in ScriptEase, the author can

instead instantiate two encounter patterns to control the NPC’s conversation. Each pattern instance

determines whether or not to display a point in the NPC conversation by querying the state o f the

quest. Definitions and conditions for querying quest state have been constructed.

Figure 4.2 shows the instantiated kill a creature quest pattern and two encounter patterns, for the

example given in Section 1.1. To keep the figure small, only the ReportCreatureDead quest point

is expanded. This is the only quest point that is adapted, by adding an extra action atom to give

the PC 100 gold pieces. The two conversation when/what encounter patterns control the flow of

the quest giver’s conversation. They are not part of the quest pattern itself. The first conversation

when/what pattern instance checks if the PC has not reached the KillCreature quest point, while the

other conversation when/what pattern instance checks if the PC has the ReportCreatureDead quest

point enabled.

4.4 Scripting Mechanisms

Quests in NWN are represented as journal structures that are used to add entries to the PC’s journal.

Each journal structure has a list of journal entries. The journal displays these entries under the

heading of the journal structure. Journal structures also have tags to uniquely identify each quest;

these tags can be used in scripts.

To script a quest, certain variables must be stored and accessed to maintain the state o f the quest.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since each instance must have a unique journal structure associated with it, the tag of the journal

structure serves as an identifier for a quest pattern instance. Appending this tag to other identifiers

produces variable names that can be used to store data. For example, if the tag of the journal quest

is DragonQuest then a possible variable name is DragonQuest-QuestlsCompleted. This variable

contains a boolean value (true or false) that states if the quest is completed.

Some variables are initialized at the beginning o f the quest. This includes the quest points that are

initially enabled. The initializing scripting code is executed when the PC starts the game adventure.

Each quest point has a unique label associated with it. To obtain a scripting identifier for a quest

point, the label o f the point is appended to the journal structure tag. Appending additional identifiers

to this creates variable names that store information about the quest point. For example, a quest

with the journal tag DragonQuest has a point with the label KillDragon. A boolean variable named

DragonQuest JtillDragon-QuestPointlsReached stores if the quest point is reached.

With this naming scheme, any type of data about a quest can be stored in variables. Deciding

when to update the state of these variables is a different matter. There are two special events used in

ScriptEase quest patterns: an event for when a quest point becomes enabled N times and an event for

when a quest point becomes reached. NWN only has a specific number of events defined and there

is no support for these two special quest events. To solve this problem, the special quest events are

emulated by placing all o f the code for a quest into one script. Whenever a quest event is supposed

to occur, the quest script is executed instead. Each event is treated as a rule. If the conditions for a

rule are satisfied then the event occurs and the related code for that event is executed. This allows

all of the code needed for a quest to be centralized into one script. The only code for a quest that is

located outside of the quest script is found in the encounters associated with each quest point.

4.5 Limitations

Quest patterns in ScriptEase can be used to rapidly create quests in NWN. While this is useful, there

are currently three important limitations to ScriptEase quest patterns.

First, it is inappropriate to have loops in quests because a PC should not be able to repeat en

counters that occurred earlier. In ScriptEase, there is nothing to prevent a game author from adapting

a quest pattern instance to have a loop. A loop will not function properly in ScriptEase, because the

semantics of ScriptEase does not allow a quest point to become enabled after it has been reached.

Currently, when a loop is created, ScriptEase does provide a warning. It would be beneficial for

ScriptEase to warn the game author that they have created a loop in which previously reached quest

points cannot become enabled again.

Second, neither quest patterns nor their implementation in ScriptEase guarantee that the gener

ated quest is logically possible. An author must be aware that quest patterns do not prevent them

from creating a quest which cannot be completed. For example, consider a kill a creature quest that

asks the PC to kill a dragon. The author could inadvertently report the dragon’s death to the dragon

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instead of appropriate NPC. The PC cannot report that the dragon is dead until the dragon is actually

dead, at which point the PC can no longer have a conversation with the dragon. ScriptEase does not

detect such errors; it is the responsibility of the author.

Point C - l

W Pbint B-1 Fbint B -2 (3) A ggregate PointS tart

P o in t A -2

(a) Inco rrec t quest u sing an ag g reg a te q uest poin t.

F\>inr C - 2

+ * Point B-1 (3) A ggregate PointStart

Point A-1 ' Fbint A-2 '

(b) C o rrec t q uest u sing an agg rega te q uest poin t.

Figure 4.3: The incorrect and correct usage of quest points leading up to an aggregate quest point.

The third problem is subtle. Some quest points act as aggregates, by only becoming reached

after becoming enabled a certain number of times. Figure 4.3 illustrates the problem that may

occur. Points A2, B2 and C2 all enable the aggregate point. The aggregate point is only reached

if it becomes enabled three times. This requires points A2, B2 and C2 to all be reached. Because

these enablers are from different branches, all points along the branches must be made optional

(Figure 4.3(b)). Reaching a point on any one of the branches does not disable the points along the

other branches. When the nodes along the branches are not optional (Figure 4.3(a)) it is impossible

for the aggregate point to become enabled three times. This is because when a point along one

branch is reached, it will disable the points along all the other branches. This makes it impossible

for all o f points A 2 , B 2 and C 2 to be reached. I f a user is not careful, they may accidentally create

the invalid quest shown in Figure 4.3(a) when they attempt to create the correct quest shown in

Figure 4.3(b). Currently, ScriptEase does not detect situations like this.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Case Study

This chapter describes a case study that evaluates the use of quest patterns. A subset o f the quests

in the official campaign for NWN have been replaced with quest pattern instances. The adaptations

needed for each quest are recorded to determine the effort needed to use the quest patterns.

Chapter 3 and Chapter 4 describes how quest patterns can be used to design quests and with a

tool, such as ScriptEase, generate the scripts needed for these quests in CRPGs. The next step is

to determine how effective quest patterns are. The optimal case would be to instantiate a pattern

and only set the options. Sometimes adaptations are needed beyond that of setting options. Quest

patterns that often require a large number of adaptations are not effective as the user will spend

a large amount o f time adapting the pattern. The structure of the pattern might change, requiring

the addition or removal of quest points. The encounters of the quest points might change; some

encounters might have to be removed while others are added. Actions can also be added to both the

encounters and also to the list of additional actions that occurs when a quest point is reached. All

these operations are nontrivial, requiring the user to invest more effort into using the patterns.

5.1 Description of Quests

The Beggar’s Nest afea in the official campaign for NWN has a large number of quests. Some

o f these quests are side-quests that have no relation to the main story. Other quests are related

to the main story-line. This section describes all nine quests found within Beggar’s Nest. This is

approximately 7% of the 126 quests found within the official campaign for NWN.

Beggar’s Nest is a section of the city of Neverwinter that contains the city’s poorest inhabitants.

At the point in the game where the PC reaches Beggar’s Nest, Neverwinter has been struck by a

plague and Beggar’s Nest seems to have been hit the hardest. To make matters worse, the bodies of

several of the plague victims seem to be returning to life as undead creatures. In this environment

there are nine quests for the PC to resolve. The first eight quests listed are optional, while the last

quest listed relates to the main story line and must be completed by the PC:

A Missing Brother Jemanie is worried about his brother, Torin. Torin has been missing for several

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

days now, and Jemanie fears that something has happened to him. Apparently Torin was

involved with a strange cult that may have something to do with the undead infestation. The

cult has an estate in the northwest comer of the Beggar’s Nest. After exploring the area

beneath the cultist estate, the PC finds the body of a young man. A ring on the finger o f the

body identifies him as Torin. The quest ends when the PC gives the ring to Jemanie and tells

him of his brother’s death.

Find Jemanie Jemanie is a local who needs to be rescued from the undead infestation. The quest

ends when the PC either locates Jemanie or Jemanie is killed by the undead.

Find Krestal Krestal is a local who needs to be rescued from the undead infestation. The quest

ends when the PC either locates Krestal or Krestal is killed by the undead.

Missing Guard Ergus, a guard captain at the main gate in the Beggar’s Nest, has learned that one of

his guards, Walters, has gone missing. Ergus does not know whether Walters fell to the undead

or not and would like the PC to keep an eye out for him. The PC discovers that Walters is

being held captive by the Sword Coast Boys in their warehouse. After being freed by the PC,

Walters leaves to make his way back to the main district gate, ending the quest. An alternative

ending to the quest occurs if Walters dies before the PC can free him.

Aldo and Hector Aldo and his wife Mattily are guarding a broken-down wagon in the center of the

Beggar’s Nest. They will not leave until their companion Hector has returned. The PC finds

Hector, who is trying to find parts for his master Aldo’s wagon. It is doubtful there are any

parts left in the looted district. If the PC returns to tell Aldo about Hector, Aldo asks the PC

to lead Hector back to him. This quest has three endings. The first ending sees the PC leading

Hector back to Aldo and Mattily. All three travelers then abandon the wagon and leave the

Beggar’s Nest. The second ending results when Hector dies. After the PC reports Hector’s

death to Aldo and Mattily, both of them abandon the wagon and leave the Beggar’s Nest. The

final ending occurs if both Aldo and Mattily die. The PC- tells Hector about the deaths of

Hector’s companions. Hector then leaves the Beggar’s Nest.

A Strange Cult A local named Jemanie does not know what has caused the undead infestation in

the Beggar’s Nest, but he is suspicious of a snake cult inhabiting an estate in the northwest

comer of the district. Jemanie says that the undead seem to avoid the building, and do not

harm the people that come and go from it. Jemanie may just be worried for his brother Torin,

who may be involved with them, and has recently gone missing. Torin apparently let it slip that

some strange creature had come to power in the group, and shortly thereafter, the infestation

began. Jemanie asks the PC to investigate the snake cult. Jemanie also gives the PC a key that

Torin may have used to enter the estate. After investigating, the PC discovers that the estate is

home to a snake cult, worshipers of some reptilian creature. It is not clear yet what they might

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have to do with the undead infestation, and they do not seem willing to offer explanations.

They attack intruders on sight. The reptilian creature’s name is Gulnan, but where it found the

power to infiltrate the group is unknown. After the PC thoroughly explores the estate, a lair

is discovered beneath. Likely it is from there, in a place called the Warrens of the Damned,

that Gulnan is creating and guiding her army of undead. The infestation she has unleashed on

the Beggar’s Nest must be stopped. Inside the Warrens of the Damned, the PC can find books

which reveal information about the snake cult and how Gulnan came to power within it. It

seems that Gulnan is a Yuan-Ti, a magical creature with supernatural powers. The PC finishes

the quest by destroying Gulnan and acquiring her Yuan-Ti heart as proof of her death. The

snake cult will no longer worship her.

Sword Coast Boys A local named Krestal does not know what may have caused the undead in

festation, but he does know that something strange has happened to his old gang, the Sword

Coast Boys. The leader of the gang, a man named Drawl, has made a deal that has resulted in

the gang being turned into undead. Drawl himself is a powerful undead creature as well. The

gang uses a warehouse in the north central area of the Beggar’s Nest as a base of operations.

After investigating the warehouse, the PC finds Walters. Walters was captured and taunted by

Drawl because Walters used to be a member, but gave it up to became a guard. Walters tells

the PC that Drawl made a deal with a creature named Gulnan to become a powerful undead

creature, and had all the other Sword Coast Boys killed to act as his undead minions. How

Drawl got in contact with Gulnan, Walters doesn’t know. Drawl is destroyed by the PC, and

the link between Drawl and Gulnan is severed. With Drawl out of the way, it may now be

possible to find this Gulnan creature and put a stop to her plans. After exploring the Sword

Coast Boys’ warehouse the PC discovers a lair beneath. Likely it is from there, in the Warrens

of the Damned, that Gulnan is creating and guiding her army of undead. Inside the Warrens of

the Damned the PC can find books which reveal information about the Sword Coast Boys and

how Gulnan came to power within it. It seems that Gulnan is a Yuan-Ti, a magical creature

with supernatural powers. The PC finishes the quest by destroying Gulnan and acquiring her

Yuan-Ti heart as proof of her death. Gulnan will torment the Sword Coast Boys no longer.

A Lost Soul Bertrand is waiting at a shrine in the Beggar’s Nest. He hopes that his brother Marcus

arrives there soon. Marcus is a wizard that wears red and has certain family heirlooms. When

exploring the Beggar’s Nest, the PC may find a journal on a distinctive corpse. The corpse

was a man who looked to be a wizard that was overwhelmed by a large number of undead.

The journal identifies the corpse as Marcus Penhold, and mentions that he was to meet his

brother at a shrine in the the district if things got too dangerous during the undead infestation.

The PC also finds a staff on Marcus’ corpse. Bertrand must then be convinced that his brother

is dead. This can be done one of three ways: attempting to convince Bertrand with just words,

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

show Bertrand the journal or show Bertrand the staff. When the PC convinces Bertrand that

Marcus is dead, Bertrand asks the PC for M arcus’ journal and staff. The quest ends when the

PC gives both items to Bertrand.

Undead Infestation The Beggar’s Nest is struggling under an infestation of Undead. It is not

known if it is related to a plague that has been sweeping through the city or not. The man

who knows the most about the undead infestation is Harben Ashensmith. Harben is located

in the Shining Serpent Inn, in the south central area of the Beggar’s Nest district. Harben

asks the PC to explore the Beggar’s Nest and any information regarding who has caused the

undead infestation should be reported back to Harben Ashensmith or Drake, both found in

the Shining Serpent Inn. Both Harben and Drake suggest that the PC seek out Krestal and

Jemanie who may have information regarding some strange local events. Talking to either

Krestal or Jemanie leads the PC to the Warrens of the Damned. If neither is talked to, the

Warren’s of the Damned could be discovered by the PC. This area is the lair of Gulnan, the

creature that apparently infiltrated and manipulated Beggar’s Nest citizens to form an army of

the undead. The PC then destroys Gulnan. She was a Yuan-Ti, and one of several creatures

imported to be part of a magical attempt to cure the plague. Her heart will need to be brought

to Aribeth, a city official who is preparing the plague cure. Harben should also be told about

Gulnan’s death. The PC completes the quest when the heart is given to Aribeth and Harben

is told about Gulnan. This quest, the A Strange Cult quest and the Sword Coast Boys quest

all share events (e.g., acquiring the Yuan-Ti heart). It is possible for the PC to progress in all

three quests when these events occur.

5.2 Case Study Description

The hand written code, created by Bioware, for each quest was replaced with a ScriptEase pattern

instance. Each pattern instance was adapted so that the functionality of each quest functioned the

same as before. The number of adaptations as well as information regarding the scripts replaced was

recorded for each quest. These numbers indicate how much work was required by a game author to

use these patterns.

Quest points often have encounters that occur during conversations. There are two types of

events found in conversations. One event determines what happens when the conversation point is

reached and is called conversation what. For example, a PC begins a quest by reaching a specific

point in an NPC’s conversation. This conversation point will have a script associated with the con

versation what event. The script will update the game state so that the player begins the quest. The

other event is to decide when a point in a conversation is displayed. This event is called conversation

when. For example, an NPC may have a point in its conversation where the NPC congratulates the

PC on completing a quest. This conversation point should only be displayed if the PC has finished

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the quest. A script would be associated with the conversation point’s conversation when event. The

script would check if the PC has finished the quest.

For the conversations in the case study, conversation what scripts were replaced and conversation

when scripts were not replaced. The scripts associated with conversation what scripts all correspond

to encounters within quest points. These scripts were all automatically replaced by quest pattern

instances. The scripts associated with conversation when events always query the quest state, they

never change the quest state. These scripts are not automatically replaced by quest pattern instances.

Replacing these scripts falls into the domain of dialogue patterns. As mentioned in Section 4.1,

dialogue patterns aid in how a conversation flows. This is done by generating scripts that are placed

in the conversation when events of a conversation. Because conversation when scripts are outside

the domain of quest patterns, all of the scripts for these events were not replaced. Replacing these

scripts is not difficult, since they only query the state of a quest to determine if a conversation point

should be displayed. However, replacing all o f the conversation when scripts is tedious as there can

be many scripts in various locations throughout multiple conversations, all related to one quest. The

conversation when scripts were replaced in the A Missing Brother quest to show that replacement is

straightforward.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Quest Name Pattern
Actions
Added

Encounters Added Quest Points Scripts Replaced Lines of Code
ReplacedUnique Instances Added Removed Unique Instances

Find Jemanie Talk To 0 1 5 0 2 5 8 30

Find Krestal Talk To 0 1 4 0 2 3 4 1 0

A Missing Brother
Retrieve/deliver an

item 0 1 1 1 2 2 3 1 0

Missing Guard Talk To 0 1 5 2 2 1 1 13

Aldo and Hector Talk To 1 1 5 7 1 4 5 28

A Strange Cult
Retrieve/deliver an

item 3 2 4 5 3 9 9 6 8

Sword Coast Boys
Retrieve/deliver an

item 1 2 9 4 3 7 7 59

A Lost Soul
Retrieve/deliver one

of multiple items 0 1 4 2 2 3 4 7

Undead Infestation
Retrieve/deliver an

item 1 1 7 4 1 .3 4 30

Average 0.67 1 . 2 2 4.89 2.78 2 . 0 0 4.11 5.00 28.33

Total 6 2 44 25 18 37 45 255

Table 5.1: Quest adaptations.

5.3 Quest Statistics

Each of the nine quests listed in Section 5.1 can be represented as an instance of one of only three

quest patterns: talk to (four instances), retrieve/deliver an item (four instances) and retrieve/deliver

one o f multiple items (one instance). However, the number of adaptations needed to produce each

of the nine quests varies.

This section describes the quests and the number of adaptations needed. Table 5.1 lists the quest

patterns and other statistics. The first column in Table 5.1 gives the name of the quest. The second

column specifies which pattern the quest instances were adapted from. The next column gives the

number o f actions added to each quest. The fourth and fifth columns describe the number of unique

encounters and the number of encounter instances added to each quest pattern respectively. The

sixth and seventh columns specify the number of quest points added and removed from the quest

pattern respectively. The eighth and ninth columns indicate the number of unique scripts and the

number of script instances replaced by the quest pattern instance respectively. The final column

gives the number of lines of scripting code replaced by the quest pattern instances. The last two

rows in Table 5.1 describes the average and total statistics for the quests.

The types of adaptations listed deal with actions, encounters, and quest points. An action can be

added to an encounter or it can be added to the actions that occur when a quest point is reached. The

number of actions added to the quests is recorded in Table 5.1. A quest point can have more than one

encounter associated with it. Therefore, another type of adaptation is to add additional encounters to

a quest point. For example, multiple places in a conversation could cause the same quest point to be

reached. This scenario requires multiple encounters. For example, three instances of a when a point

in a conversation is reached encounter and two instances of a acquire an item encounter could be

used in the same quest pattern instance. Both the unique number o f encounters and the total number

o f encounter instances is given in Table 5.1. The final type of adaptation is to add or remove quest

points. This helps change the structure of the quest instance, since quest patterns do not always

provide the desired structure. For example, the A Missing Brother quest uses a retrieve/deliver an

item pattern. There were two ways for the PC to acquire the item, so an extra quest point was added.

Also, the expose quest point in the pattern was removed since the quest can be obtained at any time.

Table 5.1 lists both the number of quest points added and removed.

The script information in Table 5.1 includes the number of scripts replaced and the number of

lines o f code replaced. Sometimes the same script can be used in two different events. For example,

a q u est could requ ire th e p layer to kill o n e of three m onsters: an ore, a g o b lin o r a harpy. The sa m e

script can be used with multiple events for each of the creatures that is killed. The script would set a

variable to show that the player has killed one of the three creatures. In this example, there are three

instances of one unique script for killing the creatures. Table 5.1 lists both the number of unique

scripts and the number of script instances that the quest patterns replace. Each unique script also has

code associated with it. A simple script might be composed of a few lines of code, while a complex

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

script will have many more lines of code. The number o f lines of code replaced is the final piece of

information listed in Table 5.1.

5.4 Quest Particulars

This section describes how each quest was constructed from the appropriate quest pattern.

5.4.1 A Missing Brother

A M issing B rother (R etrieve/deliver an item)

Talk to Jeinanie

Acquire Signet Ring
before ta lk ing to Jem ailie Acquire Signet R ing

afte r talking to Jeinanie

Give Signet Ring
to Jeinanie

Figure 5.1: Quest outline of the A Missing Brother quest.

Figure 5.1 shows the quest outline for the A Missing Brother quest. This quest has two quest

points where the PC can acquire the same item (the Signet Ring found on Torin’s body). Normally

these two quest points could be combined into one, and this single quest point would be initially

available. This would allow the PC to skip the quest point where the PC talks to Jemanie at the

beginning of the quest. However in this quest, a different journal entry is given to the PC depending

on if the Signet Ring is acquired before or after talking to Jemanie. Since quest points only have one

journal entry associated with them, two quest points are needed. The only encounter added to the

quest points was an instance of the when a point in a conversation is reached encounter.

For this quest the scripts associated with conversation when scripts were also replaced. In total

six unique scripts were replaced. Each script had one instance found in the conversation when

events throughout the game. A total of 29 lines of code were replaced. Currently dialogue patterns

are not implemented in ScriptEase. To replace the scripts, a prototype encounter pattern which has a

situation that occurs during the conversation when event was used. Six encounter patterns were used

to replace the scripts. Each encounter pattern had to have some definitions and conditions added to

them to query and test the state of the quest. In total, eleven definitions and eleven conditions were

added to the encounter patterns. No other adaptations were needed. In the rest of the quest, the

conversation when scripts could have been replaced by encounter patterns, but were not.

5.4.2 Find Jeinanie

This quest is one of the simplest. Figure 5.2 shows the outline of the Find Jemanie quest instance.

No quest points were added and only two were removed from the original talk to pattern. A total of

five instances of the when a point in a conversation is reached were added to the quest points.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Find Jemanie (Talk to)

Talk to Jemanie

Talk to H arben
or Drake Jemanie dies

Figure 5.2: Quest outline of the Find Jemanie quest.

5.4.3 Find Krestal

Find Krestal (Talk to)

Talk to Krestal

Talk to H arben
or Drake

Figure 5.3: Quest outline of the Find Krestal quest.

Figure 5.3 shows the outline for the Find Krestal quest. This quest is nearly identical to the Find

Jemanie quest (see Figure 5.2), except that four instances of the when a point in a conversation is

reached encounter were added to the quest points.

5.4.4 Missing Guard

M iss in g G u a id (T alk to)

T ell W a lte rs to re tu rn

•►C T ell W a lte rs to w a it
W a lte rs d ie s

- T alk to E rg u s I
K e e p ta lk in g to E rg u s '

Figure 5.4: Quest outline of the Missing Guard quest.

Figure 5.4 shows the outline for the M issing Guard quest. This quest uses a talk to pattern and

uses two extra quest points to give the PC extra information through Ergus, a member of the local

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

militia, five instances of the when a point in a conversation is reached encounter were added to the

quest points.

5.4.5 Aldo and Hector

Akki and/or M atiily

Initially talk to Aklo

Initially talk to H ector (2) Both Aklo and
Mattily dies

Aklo. M atlih and
.Hector leave together

Figure 5.5: Quest outline of the Aldo and Hector quest.

Figure 5.5 shows the outline for the Aldo and Hector quest. This quest has the largest change in

structure from its original pattern (a talk to quest pattern). A total o f seven quest points were added

and one quest point was removed.

Seven instances of the when a point in a conversation is reached encounter were added to the

quest points. This quest also required the addition of a behaviour pattern to make Hector follow the

PC to Aldo and Mattily. No adaptations other than setting the options were needed for the behaviour

pattern instance. A single action was added to the quest point where Hector leaves without Aldo and

Mattily. This action enabled the behaviour to take place where Hector leaves.

5.4.6 A Strange Cult

'- .a cq u ire Pass Stone
*■ Acquire

Figure 5.6: Quest outline of the A Strange Cult quest.

Figure 5.6 shows the outline for the A Strange Cult quest. The quest instance is adapted from

a retrieve/deliver an item pattern. While this pattern only has the PC acquiring one item, this quest

instance sees the PC acquiring two items at two different times. The first item is a Pass Stone which

allows the PC to enter the cultist estate, and the second item is the Yuan-Ti heart which, when

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

acquired, finishes the quest. Two instances of the when an item is acquired encounter were added

to the quest points. Two actions were added to the quest points: one was needed for giving the Pass

Stone to the PC when talking to Jemanie and the other was needed for destroying the Pass Stone

when gaining access to the cult by talking to the Snake Cult Door.

5.4.7 Sword Coast Boys

Swoid C oast Boys (R e tr ie d /d e liv e r an item)

Acquire Yuan-Ti Heart

A cquire one o f three C o n t in u e ta lk in g w ith
Talk to W alters

Figure 5.7: Quest outline of the Sword Coast Boys quest.

Figure 5.7 shows the outline for the Sword Coast Boys quest. Starting with the quest point where

the PC enters the Warrens of the Damned, the rest of the quest is nearly identical to a portion of the

A Strange Cult quest. Even the journal entries are similar except that one set o f journal entries refers

to the cultists and the other refers to the Sword Coast Boys. Seven instances of the when a point in

a conversation is reached encounter and two instances of the when an item is acquired encounter

were added to the quest points.

When looking at the human-authored scripts and journal entries created by Bioware for this

quest, it became apparent that a large portion of this quest was removed during the creation of

NWN. Before the PC enters the Warrens of the Damned through the Sword Coast Boys’ warehouse,

the PC encounters the Sword Coast Boys’ leader, Drawl. Without any dialogue, the PC is attacked

by Drawl who has become a powerful undead creature. While this attack has nothing to do with

the current quest, the attack might have been related to earlier versions of the quest. The scripts

and journal entries seem to indicate that Drawl had a brother named Zelieph. Drawl supposedly

killed Zelieph, but the PC might have been able to kill Drawl by summoning Zelieph’s ghost to get

revenge. None of this side-story ever made it into the final version of NWN. Why it was removed is

unknown, but it may be due to the work required to add the extra content to the quest.

5.4.8 A Lost Soul

F igu re 5 .8 sh o w s the o u tlin e for the A L ost Soul quest. T h is q u est h as tw o in d ep en d en t paths. T h e

first path sees the PC acquiring the staff and journal and then returning them to Bertrand, which

finishes the quest. The second path sees the PC hearing about Bertrand’s brother and convincing

Bertrand that his brother is dead. Four instances of the when a point in a conversation is reached

encounter were added to the quest points.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Lost Soul (Retrieve/Deliver one o f multiple items)

' Acquire Marcus' j
\ Journal ^

s

,r Return Journal '■
•>. to Bertrand y

/ XC / Acquire Marcus' \ Return Staff to x - ——

f [2) Both Items a r e \
—'- * \ l Qiven to Bertrand J

---------- ' S t a f f , % Bertrand ^

1 Talk to Bertrand '— — »»z Hear Matens' Description \
N ^ from Bertrand ^

_ Convince Beitrand \

 ̂ Marcus is Dead ✓

Figure 5.8: Quest outline of the A Lost Soul quest.

This quest uses an instance of the retrieve/deliver one o f multiple items pattern. However, the

quest requires the PC to bring both the staff and the journal to Bertrand. It would seem that adapting

the quest instance from a retrieve/deliver multiple items pattern requires less adaptation, but that is

wrong. The quest calls for a journal entry to be given when each item is returned to Bertrand and

another journal entry for when both items have been given to Bertrand. Because only one journal

entry can be given for each quest point, this quest requires a total of three quest points for returning

the items. The retrieve/deliver multiple items pattern only has one quest point for when the both

items are returned. Two more quest points would need to be added to the quest instance, for when

each item is returned. The retrieve/deliver one o f multiple items has a quest point for each of the

items returned, but not a quest point for when both items are returned. For returning the items, this

pattern only required the addition of one quest point for when both items were returned to Bertrand.

This resulted in less adaptations, explaining why retrieve/deliver one o f multiple items was used.

5.4.9 Undead Infestation

Undead Infestation (Retrieve/deliver tin item)

E n te r th e W a rre n s
o f th e D a m n e d

C m e Y n an -T i h ea r t
to A rib e th

Acquire Yuan-Ti Heart

(2) Given heart and
reported death, Report Yuan-Ti deathHave a deeper conversation

' Talk to M anoor
n Ergus

Figure 5.9: Quest outline of the Undead Infestation quest.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.9 shows the outline for the Undead Infestation quest, the main quest in the area. The

PC is investigating why there are undead in the Beggar’s Nest. This investigation leads the PC to

the Yuan-Ti Gulnan, whose heart also happens to work as an ingredient in the cure to the plague of

Neverwinter. The most obvious way to advance in this quest is to see the player advance in at least

one of the A Strange Cult or Sword Coast Boys quests. Both of those quests see the PC entering

the Warrens of the Damned and acquiring the Yuan-Ti heart. The two associated quest points are

also points in the Undead Infestation quest. Seven instances of the when a point in a conversation is

reached encounter were added to the quest points. The only action added was to automatically save

the game when the PC enters the Warrens of the Damned.

5.5 Discussion

On average, less than a single action was added to each quest. All o f the quests required encounters

to be added to them. However only two unique types of encounters were used (when a point in a

conversation is reached and when an item is acquired). Whenever encounters were added to a quest

point, they were always the same type as the encounter already associated with the quest point. For

example, the quest point in the Undead Infestation quest (Figure 5.9) labeled initially talk to Herban

or Drake has several when a point in a conversation is reached encounters. Some of the encounters

correspond to points in Herban’s conversation while the other encounters correspond to points in

Drake’s conversation. On average, each quest instance has approximately three quest points added

and two quest points removed.

Comparing the number of adaptations (actions added, encounter instances added, quest points

added and quest points removed) to the number o f lines o f code replaced is a good way to determine

the complexity of using quest patterns versus writing scripts for the quests. Each line of code in a

script corresponds to a scripting action. The more scripting actions needed, the more difficult the

quest is to script by hand. Similarly, the more adaptations needed for a quest instance, the more

difficult it is to use quest patterns. In total, the nine quests required 93 adaptations compared to the

255 lines of scripting code needed to script the quests. Not only were there fewer adaptations than

lines o f code, but each adaption in ScriptEase generated scripting code that was free of programming

errors. Writing scripting code by hand always has the possibility of introducing programming errors.

This indicates that using quest patterns is more efficient than writing scripting code. Quest patterns

are also easier to keep track of and maintain than writing the scripts for the quests. Scripts, in NWN,

are found on various objects and throughout conversations. Finding all o f the human-authored scripts

for a quest can be frustrating as scripts are located within multiple conversations and objects. With

quest patterns, all the information for the quest is stored within the pattern instance. This makes

updating the quest easier, as there is no need to track down scripts that are located in several different

locations.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Quest Generation

In CRPGs, the primary purpose of a side-quest is to add breadth to the game by increasing the

player’s variety of experiences. Since these quests do not need depth, most can be unaltered instances

o f a quest pattern. Instead of having a game author create hundreds of side-quests for a commercial

CRPG, many of these side-quests can be rapidly created through instantiating quest patterns. The

options can be automatically picked by an intelligent system.

This chapter describes the Side-QUEst GEnerator (SQUECE), a tool that aids in the rapid devel

opment of side-quests in CRPGs by generating quest pattern outlines. SQUEGE does not automate

the entire process of creating side-quests. Choosing which encounters a PC must perform and cre

ating the scripts for the quests is automated; the former is tedious for game authors when they have

to create hundreds of side-quests, while the scripting process is not a focus of their profession. The

game authors still must create the conversations and the stories behind the quests. However, these

are creative tasks that they enjoy and perform well.

The goal o f this work is to generate correct side-quests quickly and conveniently. Given a scene

(setting, NPCs, items, containers, etc.), a game author can “push a button” and a side-quest is auto

matically generated. Quest generation options can be set to bias the generated quests towards simple

or complex quests. The author can generate hundreds of different side-quest outlines within min

utes, and quickly add the necessary conversations and stories. This guarantees variety and enhances

the game experience. In effect, SQUEGE can be used to facilitate the rapid generation of important

game content, reducing costs and improving the quality of the product.

6.1 Using SQUEGE

To show how SQUEGE works, we give an example of creating an NWN side-quest. While this

example only shows the generation of one simple quest, SQUEGE can be used to generate multiple

quests o f arbitrary complexity within the same CRPG adventure.

First, a game author creates a new game adventure using the NWN Aurora Toolset. The author

creates a city setting with several buildings that the PC can enter. The author then prepares the game

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adventure for quest generation by creating several NPCs, containers, and items that will populate

the game. These game objects all have unique names, appearances, and other details. The author

places the NPCs and containers throughout various locations inside and outside the buildings of the

city. The items’ locations will be determined later through the quest generation process.

Because SQUEGE is currently implemented as a prototype, making it external to the Aurora

Toolset. Hence, the game author must list all the NPCs, containers, and items as input to SQUEGE.

The author also lists one or more pairs o f NPCs located near each other. This allows SQUEGE to

generate quests in which an NPC pair can have a conversation that the PC may overhear to gain

quest clues.

Next, SQUEGE automatically generates a side-quest by first randomly selecting a quest pattern

from its catalogue of patterns. SQUEGE instantiates values for the various options of the quest

pattern and produces a graph that acts as an outline for the quest instance. This outline is a graph

containing all the information required to create the side-quest.

Retrieve o r deliver an item

Talk to Em m el (NPC)
lo j«ive the quest

Disturb Shop C rate (Conlaincr)
o acquire Enigmatic Prose (Item

Talk to F im nel (NPC)
jjnc Enigmatic Pi\>se tltciTalk u> Fistoon (NPC) \

to find the item location

Figure 6.1: A side-quest outline generated by SQUEGE.

Figure 6 .1 shows the graph that SQUEGE generates for the game author. This retrieve/deliver an

item side-quest instance requires the PC to perform four encounters: beginning the quest by talking

to Emmel, finding the location of the item by talking to Fistoon, acquiring the item in a shop crate

container, and giving the item to Emmel in a conversation. The pattern also allows the PC to skip the

second quest point (talk to Fistoon to find the item location); the PC can simply stumble upon the

item without being told its location. Emmel and Fistoon are NPCs currently in the game adventure.

SQUEGE does not populate the game adventure with NPCs and other objects, it only uses what the

author has placed in the adventure.

The author then decides whether or not to use the side-quest in the game adventure. A side-

quest may be rejected for many reasons. For example, the game author may not be able to think of a

good story-line for the side-quest outline. In the case of the outline in Figure 6 .1, a story-line where

the PC retrieves the Enigmatic Prose because it contains the names of several assassins is chosen.

S h o u ld the g am e au th o r ch oose to re je c t th e sid e -q u est, a new o u tlin e can be qu ick ly gen era ted by

SQUEGE.

The outline does not provide everything needed for the quest. One of the missing pieces is the

text o f the conversations for Emmel and Fistoon. The game author creates the side-quest conver

sations for Emmel and Fistoon in the Aurora Toolset. SQUEGE does not attempt to do this, as

writing dialogue is one of the game author’s specialties. The author may add humour and specific

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

story-related references to make the conversations interesting and unique.

f Q R e tr ie v e /D e liv e r a n item q u e s t
(N o r m a l) T a lk T o Q u e stG iv e r p o in t e n a b le d b y S ta r t- w h e n Q u e s t G iver C o n v e r sa t io n (_ e m m e l .d lg : 1 : 1 9) o c c u r s
JT (N o r m a l) F in d ltem L o c a tio n p o in t e n a b le d by: T a lk T o Q u e stG iv e r - w h e n J is to o n .d lg :1 :2 o c c u r s

(N o r m a l) A c q u ir e lte m p o in t e n a b le d by: T a lk T o Q u estG iv er , F in d ltem L o c a tio n - w h e n th e p layer a c q u ir e s Item (E n ig m a tic P r o s e)
» - (C lo s e) G iveltern p o in t e n a b le d by: A c q u ir e lte m - w h e n Item R e c e iv e r (E m m e l) a c q u ir e s Item (E n ig m a tic P r o s e)

Figure 6.2: An instance of a quest pattern in ScriptEase.

The author uses the outline to instantiate the corresponding quest patterns in ScriptEase. The

process is straightforward as the author only specifies the options for the pattern. Figure 6.2 shows

the pattern instance in ScriptEase. Currently, SQUEGE outlines cannot automatically instantiate

ScriptEase patterns. However, we are currently engaged in connecting these tools. This will also

involve ScriptEase creating placeholder conversations for the game author to alter.

Whether the author must translate side-quest outlines to pattern instances manually or whether

the tools are connected, the author still has the opportunity to adapt the side-quest instance in

ScriptEase to add a creative touch to the story. One of these adaptations could be to have a ban

dit NPC appear and attack the PC when the item is acquired. Such adaptations are quick and easy to

do in ScriptEase.

Q u e s t P a t te rn s

N p C s -------------- L ----------

C o n ta in e rs ~ A S Q U E G E

ite m s ^
T

Q u e s t D e s ig n e r A c c e p ts
o r R e je c ts O u tline

M an u a l
o r S c r ip tE a s e

D e s ig n e r A d a p ts
S c r ip tE a s e Q u e s t

In s ta n c e

G a m e
A utom atic* Q u e s t A d v e n tu re

In s ta n c e

"O n g o in g W ork
S Q U E G E O p tio n s

Figure 6.3: The process SQUEGE uses to generate quest outlines.

At this point, the game author has finished generating a side-quest and can now play the ad

venture in NWN. Figure 6.3 gives a summary of the entire process. First SQUEGE uses its pat

tern catalogue and the input o f NPCs, items, and containers to generate an outline of a side-quest

instance. Other options are also supplied as input to SQUEGE (e.g., the number of side-quests to

generate). After outline acceptance and translation, the game author adapts this outline in ScriptEase

and generates the required scripts for NWN. If the process is repeated, the author would end up with

a completely different side-quest possibly using different NPCs, containers, and items in the same

setting.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

T alk to

Talk to

B illow sm ith (c re a m re) d ies
to have N P C ta rg e t d i e ^ ,Ju s tin e (c rea tu re) d ie s

to h a \e N P C target d ie

R each u n iq u e d ia lo g
on O x o s (c re a tu re)

to g ive th e quest

Reach u n k ju c d ia lo g
on O x o s (c re a tu re)

to g ive th e q uest
R each u n iq u e d ia lo g

on B iU w s m ith (c rea tu re)
to ta lk to N P C target

R each u n ique d ia lo g
on Ju s tin e (c rea tu re)
to ta lk to N PC target

R each u n iq u e d ia lo g N
on T urnop (c re a tu re)

j o find the NPC' la rg e t lo ca tio n -

R etrieve o r d e liv e r o ne o f m ultiple item s

- 'D is tu rb K itch en B a rre l (p laceab le)
to acq u ire W ine (item)

x to acq u ire th e se c o n d item

R each u n ique d ia lo g
o n F io n a (c re a tu re)

to g ive th e second item
R each u tiique d ia lo g N

 ̂ o n G n o m e rs (c rea tu re)
r x lo find ;ui item lo ca tio n /

R each unique d ia lo g
on O xos (creature)

to give the q uest
R each un ique d ia lo j

R each u n ique d ia lo g
o n B illo w sm ith (c re a tu re)

to g ive th e firs t item
R each u n ique d ia lo g

on T u m o p (c re a tu re)
to find an item location

to acq u ire B a r o f l m n (item)
... to acq u ire th e first item

Retrieve o r d e liv e r an item

R each u n ique d ia lo g 'y
on Ju s tin e (c re a tu re) \

to acq u ire M eat (item) /
to acq u ire th e item /

R each unique d ia lo g
on O xos (creature)
to ex p o se the quest

R each u n ique d ia lo g
011 B illo w sm ith (c re a tu re)

to g ive the item

R each u n ique d ia lo g
o n B illo w sm ith (c rea tu re)

to g ive th e quest

Figure 6.4: Four side-quests generated by SQUEGE.

Figure 6.4 shows four side-quests that were generated by SQUEGE. The first side-quest contains

another side-quest within it. Completing the inner side-quest is required before beginning the outer.

SQUEGE has no difficulty in creating four or even 40 side-quests for the same game adventure.

6.2 Technical Details

The previous section illustrated SQUEGE's generation process. SQUEGE uses approximately 1,000

lines of Prolog code to generate side-quests in three stages. In the first stage, SQUEGE generates a

side-quest by selecting a quest pattern from its catalogue of patterns. Each pattern in the catalogue

has a weight associated with it. Patterns with a higher weight have a greater chance of being picked.

For example, SQUEGE can select the retrieve/deliver an item pattern. Each quest point in the

selected pattern contains a weighted list o f possible encounters. In the second stage, one is selected.

For example, the quest point where the PC acquires the item has two encounters in the list: the PC

acquires the item from a container such as a chest or the PC acquires the item by talking to another

NPC. In our example, SQUEGE has selected the former encounter. This encounter has two objects

associated with it: the container that holds the item and the item itself. In the third stage, SQUEGE

uses the lists provided by the game author to randomly select appropriate objects. This process

occurs for each quest point, so that every point is assigned an encounter and appropriate objects.

The retrieve/deliver an item pattern illustrates how a pattern is represented in SQUEGE'.

Quest: retrieve/deliver an item

• Quest Point - ExposeQuest

- Type - Normal

- Enablers - (Initially Available)

- Encounters - (2) NULL, (1) Overhear conversation between NPC-Pair, (1) Talk to NPC,

(1) Complete a quest

• Quest Point - TalkToQuestGiver

- Type - Normal

- Enablers - ExposeQuest

- Encounters - (1) Talk to NPC.QuestGiver

• Quest Point - FindltemLocation

- Type - Normal

- Enablers - TalkToQuestGiver

- Encounters - (2) NULL, (1) Talk to NPC

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Q u est P o in t - A cq u ire ltem

- Type - Normal

- Enablers - TalkToQuestGiver, FindltemLocation

- Encounters - (1) Disturb Container to acquire ltem.ItemFound, (1) Talk to NPC to ac

quire Item:Item Found

• Quest Point - Deliverltem

- Type - Close

- Enablers - Acquireltem

- Encounters - (2) Talk to NPC. QuestGiver to deliver Item:ItemFound, (1) Talk to NPC to

return Item:ItemFound

Each quest point gives a weighted list of possible encounters. The pattern creator sets the

weights. Before generating a quest the game author may change the weights if desired. The weights

(numbers preceding each encounter) determine the probability of an encounter being picked; higher

weights yield a higher probability. Some of the possible encounters are listed as NULL. Selecting

a NULL encounter simply eliminates the quest point. For example, this occurs with the side-quest

shown in Figure 6 .1. The NULL encounter was selected for its ExposeQuest point. The point ceased

to exist and its enabler (the starting point) and point it would enable (Talk to Fistoon) become con

nected points in the graph.

Each possible encounter requires some specific objects. There are four types of objects: NPCs,

containers, items, and NPC-pairs. Some of the objects have labels so that two or more quest points

can use the same object. In the retrieve/deliver an item pattern representation, the encounters for

the Acquireltem and Deliverltem quest points both have item objects with the label ItemFound. This

is to ensure that the PC delivers the same item that was acquired. Unless SQUEGE uses a label to

denote that the same object should be used, no object is reused (sampling without replacement).

A possible encounter for the ExposeQuest point is to complete a sub-quest. When SQUEGE

chooses this encounter it recursively generates this necessary sub-quest. The PC may only begin the

original quest after completing this sub-quest. It is possible for the sub-quest to generate its own

sub-quest as well; the result would be a sequence of quests. The game author can write a common

theme for this sequence, making the quests feel like integral components of one long quest rather

than m any in d ep en d en t short q u ests.

SQUEGE prevents illogical quests from occurring by applying constraints at the level o f en

counters. Each encounter has preconditions and postconditions. The encounter for killing an NPC

has a precondition that the NPC is alive and a postcondition that the NPC is dead. Selecting an

encounter for a quest point involves checking the preconditions against a list of proven conditions

that are given by previous quest points. If two conditions contradict each other then selecting that

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encounter fails and a new encounter is chosen. Two matching conditions leads to removing those

conditions from the list o f proven conditions. SQUEGE then adds the postconditions to the list of

proven conditions - the new list is used as the proven conditions for the points that the quest point

enables. This prevents the illogical quest described in Section 4.5, where the player tries to report

the dragon’s death to the dragon.

Currently SQUEGE supports the same five quest patterns found in ScriptEase: retrieve/deliver

an item, retrieve/deliver multiple items, retrieve/deliver one o f multiple items, kill an NPC, and talk

to. Once a quest is added to the ScriptEase pattern catalogue, adding the same quest to SQUEGE is

a straightforward process. Both the catalogue and SQUEGE have similar representations. The only

major difference is that SQUEGE requires multiple encounters to be supplied for each quest point to

produce a variety of quest instances. Therefore multiple ScriptEase quests with the same structure

but different encounters could be combined into a SQUEGE pattern.

SQUEGE only gives an outline of the generated side-quest. An instance of the side-quest is eas

ily created in ScriptEase. Before generating scripts, an author can adapt this instantiation by adding

or removing situations and adding, removing, or changing the actions, definitions and conditions

of the situations. Sometimes it is also useful to add or remove complete encounters. This flexibil

ity allows instances to adapt well beyond their original pattern, giving the user a large amount of

control.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

User Study

The previous chapter showed how SQUEGE can quickly and efficiently aid in the creation of side-

quests for NWN, to create a more entertaining and immersive experience for the player. SQUEGE

is only useful if it helps in producing high quality side-quests. This chapter describes a user study

that aims to evaluate the quality of side-quests produced using SQUEGE.

7.1 What to Compare

To analyze the quality of the side-quests SQUEGE produces, its stories must be compared to stories

that are known to be of high quality. The Aurora toolset is available to people who purchase NWN.

This led to the creation of a large community of amateur game authors. Several websites exist that

allow authors to distribute their NWN adventures to the public.

The Neverwinter Nights Vault website contains more than 5,064 stories. Some of the highest

rated NWN game adventures are found in the Neverwinter Nights Vault Hall of Fame [18]. One of

these adventures is titled Shadowlords [15]. Shadowlords has been downloaded from the Neverwin

ter Nights vault 27, 275 times and has an average score of 8.92 out o f 10.0. The initial section of

Shadowlords contains a town in which the PC may perform four side-quests.

The Shadowlords adventure and its side-quests are considered by the community to be high in

quality. Therefore, the quality of a set of side-quests can be evaluated by comparing the side-quests

with those found in Shadowlords.

7.2 Preparation

To compare SQUEGE side-quests with the side-quests in Shadowlords, a mini-game adventure with

side-quests similar to Shadowlords was prepared. This adventure was given the name Darktide.

Darktide was prepared by creating new side-quests for the initial section of Shadowlords with

the aid o f SQUEGE. This section o f Shadowlords has a large number of NPCs, but the containers and

items are limited to those only used in the side-quests and main story. Before generating the side-

quests for Darktide, five containers and 13 items were added to Darktide so that random selections

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

could be made during story generation. Therefore, SQUEGE had 41 NPCs, 24 containers, 17 items

and 14 NPC pairs to use in its generated side-quests.

Since Shadowlords contains four side-quests, SQUEGE was used to generate six sets o f side-

quests, where each set contained four side-quests. To prevent biasing in favour of the SQUEGE

side-quests, one of the six sets of side-quests was chosen at random. This set of side-quests was

used in Darktide.

The side-quests in Darktide required a human author to create the dialogue for all o f the con

versations. The quality of the dialogue can be a major factor in determining the quality of the

side-quests. To prevent this, the dialogue for Darktide was created by using phrases of dialogue

from Shadowlords and replacing the nouns and verbs in the phrases with appropriate game objects

and actions. The result is dialogue that is similar in structure to that found in Shadowlords.

Both adventures have the main story line removed from them. All that the PC can experience is

the side-quests found in the initial town setting.

7.3 Side-Quest Descriptions

Both the test Shadowlords and Darktide stories have four side-quests each. This section gives a

synopsis o f each side-quest.

7.3.1 Shadowlords

This section describes the four side-quests used in Shadowlords.

The Missing Boy

Sarah asks the PC to search for Fynch, her son, who is lost. The PC finds Fynch in a local pawn

shop owned by Angah Lalla. Fynch is trying to sell some goods that he stole. The PC finishes the

side-quest by reporting Fynch’s illegal activities to Sarah.

Love Potion No. 9

Preszmyr the herbalist’s assistant accidentally sold a love potion to a woman named Anna who works

at Ehaevaera’s Beauty Rooms. Preszmyr has promised the PC a reward if the potion is retrieved.

Anna has the potion, but refuses to return it. She is in love with Presephor, who works at the Thirsty

Thunder Beast. The PC confirms that Presephor has feelings for Anna as well. After telling Anna

o f Presephor’s feelings, Anna gives the PC the love potion. Finally the PC returns the potion to

Preszmyr, who gives a generous reward.

A Taste of Intrigue

Gom at the Thirsty Thunder Beast is raising Fire Beetles for Fistoon, the noodle vendor. Gorn asks

the PC to clear the Fire Beetles out, as they have been causing him trouble. After killing the Fire

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Beetles, the PC collects a reward from Gorn. However, there appears to be more to the story. The

PC decides to investigate why Fistoon asked Gorn to keep the Fire Beetles. A member of the local

militia, named Private Vilakon, suggests that proof of what Fistoon is using the Fire Beetles for may

be found in Fistoon’s apartment. A search of Fistoon’s apartment yields a recipe for the noodles

that Fistoon sells. The noodle recipe calls for Fire Beetle pancreatic juices. The PC reports this

information to Private Vilakon, who can now administer justice.

A Missing Locket

A girl named Reela has lost her locket and asks the PC to find it. The PC is able to purchase the

locket from Angah Lalla, a local pawnbroker. Finally the PC returns the locket to Reela, who is very

grateful.

7.3.2 Darktide

The four side-quests used in Darktide are described in this section. Although the same NPC names

and items are used in both Shadowlords and Darktide, they have no relationship from one story to

the other. Note, during generation the second, third and fourth side-quests in Darktide were linked

together. This linking resulted in the stories for all three side-quests being related.

Extra Help

The PC overhears that Fissten, a shopkeep, needs some extra help at the Steel Scabbard. After

talking to Fissten, the PC is asked to find some Swiftwater boots and a Locket. Both items should

be delivered to Ehaevaera at Ehaevaera’s Beauty Rooms. The Swiftwater boots are found in the

back room of Angah Lalla’s. The locket was stolen from Ehaevaera’s niece Reela. A local thief

named Presephor should know where the locket is. After talking to Presephor, the PC discovers

that the locket has been stashed in a nearby barrel. With both items found, the PC delivers them to

Ehaevaera, who rewards the PC well.

Uncovering Secrets

Emmel, an agent of lord Kelemvor, asks the PC to discover the name of a person who is poisoning

the local citizens. Finding the name involves the PC bribing Fistoon to reveal the poisoner’s name.

Fistoon directs the PC to a book which contains the names of several assassins. After acquiring the

book, the PC brings the book back to Emmel, and she finally uncovers the poisoner’s identity.

Confronting a Suspect

The name of the poisoner is Preszmyr the Herbalist. Since he is a member of the city council, Emmel

cannot act against him. The PC is asked to confront Preszmyr instead. The PC confronts Preszmyr.

Unfortunately, Preszmyr is not willing to turn himself in. Instead, Preszmyr attacks the PC. Before

Preszmyr dies, he tells the PC that a patron at the Thirsty Thunder Beast has been sold a poisoned

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

potion. The PC hurries to the Thirsty Thunder Beast to stop the patron from drinking the potion

before it is too late. Unfortunately the patron drinks the potion before the PC arrives.

C reating a C ure

A patron o f the Thirsty Thunder Beast has been poisoned and will die a slow and painful death. The

PC asks Emmel to help create a cure. While Emmel gathers the necessary ingredients for a cure, the

PC must find a flask to create the cure in. Pirchek, who is located near a house on the West side of

the city, might know where to find a flask. Talking to Pirchek reveals that a local glassware merchant

named Kessler might have some flasks. The PC purchases a Flask from Kessler and heads back to

Emmel. The side-quest is finished when the PC gives the flask to Emmel. She is able to create the

cure for the patron and the PC is rewarded for helping Emmel throughout the series of side-quests.

7.4 User Study Description

Question R ange of answ ers

This side-quest was humourous, funny, amus
ing

Strongly agree, disagree, neutral, agree, and
strongly agree.

This side-quest was plausible, believable,
self-consistent, coherent

Strongly agree, disagree, neutral, agree, and
strongly agree.

This side-quest was surprising, suspenseful,
eventful

Strongly agree, disagree, neutral, agree, and
strongly agree.

This side-quest was complex, intricate
Strongly agree, disagree, neutral, agree, and
strongly agree.

This side-quest was creative, novel
Strongly agree, disagree, neutral, agree, and
strongly agree.

This side-quest was immersive, engaging, ap
propriately detailed, well paced

Strongly agree, disagree, neutral, agree, and
strongly agree.

Overall I rate this side-quest as:
1, 2, 3, 4, 5; where 1 is poor and 5 is outstand
ing.

Table 7.1: The questions for the evaluation of a specific side-quest in the user study.

Between Shadowlords and Darktide there are eight side-quests. Four of the side-quests were

created by a human author (Adam Miller), while four were created with the help of SQUEGE.

To expedite the study, a class of university undergraduate students, most of whom had never played

NWN, observed a demonstrator play through each of the stories. The demonstrator read the dialogue

aloud to the students, used the same PC and showed no bias when demonstrating the game adven

tures. First the Darktide side-quests were demonstrated, then the Shadowlords side-quests were

demonstrated. After the demonstrator completed each side-quest, the users were asked to complete

a questionnaire. These questionnaires consisted of seven questions as well as space for comments.

Table 7.1 lists each question and the range of possible answers for the side-quest questionnaires.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Question Range of answers
Overall this story segment was consistent, co
herent, connected, flowing

Strongly agree, disagree, neutral, agree, and
strongly agree.

Overall this story segment was boring, repe
titious, monotonous

Strongly agree, disagree, neutral, agree, and
strongly agree.

Overall this story segment had conflict, ob
stacles, challenges, suspense

Strongly agree, disagree, neutral, agree, and
strongly agree.

Overall this story segment had resolution or a
purpose (point) or growth of protagonist

Strongly agree, disagree, neutral, agree, and
strongly agree.

Overall I rate this story as:
1,2 , 3, 4, 5; where 1 is poor and 5 is outstand
ing.

Table 7.2: The questions for the evaluation of a specific story segment in the user study.

After all o f the quests for Darktide had been demonstrated, an additional questionnaire about the

overall adventure was completed by the users. The procedure was repeated with Shadowlords. The

questionnaires ask the users to list the side-quests within the story segment from the best side-quest

to the weakest side-quest. These questionnaires also contain five questions, as well as space for

comments. Table 7.2 lists each question and the range of possible answers for the story segment

questionnaires.

Once both game adventures had been demonstrated and the users had completed both the side-

quest and story segment questionnaires, the users then completed a final questionnaire. This ques

tionnaire asked the users to list their four favourite side-quests from either of the story segments, in

order from first best to fourth best. The questionnaire also asked which story segment was preferred,

Darktide or Shadowlords. Finally there was space on the questionnaire for the users to provide

additional comments.

Due to time constraints o f the 25 minute class period, only three of the four side-quests were

shown with each game adventure. The three quests and the order they were demonstrated in Darktide

were Extra Help, Uncovering Secrets and Confronting a Suspect. The three quests and the order they

were demonstrated in Shadowlords were The Missing Boy, Love Potion No. 9 and A Taste o f Intrigue.

The user study took place in a second-year education class. Before the user study, the students were

told that the user study was voluntary, confidential and would have no impact on their grades. In

total 72 students participated in the user study; 16 males, 42 females and 14 who did not specify a

gender.

7.5 Results

Figure 7.1 shows how users ranked the side-quests within each story segment. In this Figure, the

Darktide side-quests (shown in dark blue) are ranked independently from the Shadowlords side-

quests (shown in light red). The theme of using blue for Darktide and red for Shadowlords will

remain consistent for the rest o f this chapter. Figure 7.1 gives a weighted ranking where the value

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Local Side-Quest Order By Ranking

C onfronting a U ncovering E x tra H elp Love P o tio n A T a s te of M iss ing B oy
S u s p e c t S e c re t s No. 9 Intrigue

S id e - Q u e s t s

Figure 7.1: The weighted ranking of side-quests within each story segment.

given to a side-quest is determined using the formula:

Ri = 2 .0Pi + I.OP2 + O.OP3

where, R i is the weighted rank value of the side-quest within its story segment, P] is the ratio of

users that ranked the side-quest as the first best, P 2 is the ratio of users that ranked the side-quest

as the second best and P3 is the ratio of users that ranked the side-quest as the worst. For example,

the maximum I f o f 2 . 0 means that 1 0 0 % of the users ranked the quest as being the best quest of all

three in the story segment.

Figure 7.1 shows that some side-quests were ranked higher than others. The Darktide side-quest

Confronting a Suspect has a weighted ranking of 1.90, indicating that almost all of the users chose

this side-quest as the best in Darktide. The rankings for the Shadowlords side-quests are different

from the Darktide side-quests. Instead of having one side-quest stand out as ranking considerably

higher than the others, a Shadowlords side-quest (Missing Boy) stands out as ranking considerably

lower than the others (weighted ranking o f 0.14). Almost all o f the users ranked this side-quest as the

worst o f the side-quests in Shadowlords. The other two side-quests, Love Potion No. 9 and A Taste

o f Intrigue, have weighted rankings significantly higher than Missing Boy. The reader should not

interpret the 1.90 weighted ranking of the Darktide side-quest Confronting a Suspect as indicating

that it ranks higher than any of the side-quest from Shadowlords. The 1.90 weighted ranking can

only be compared to the other Darktide side-quests.

The next part of the user study asked the users to rank the four side-quests that they enjoyed

the most. Figure 7.2 shows the weighted rank given to the side-quests. The formula for this global

ranking is similar to the Ri shown before:

R g = 4 .OP1 + 3.0P 2 + 2.0P 3 + I.OP4 + O.OP5

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Overall Side-Quest Order By Ranking

4.0

3.25

2.64
2 50

0.23

Love P o tio n Confronting a A T a s te of U ncovering E x tra Help M issing B oy
No. 9 S u s p e c t In trigue S e c re ts

S id e -Q u e s t s

Figure 7.2: The weighted ranking of all of the side-quests.

where, R g is the weighted rank value of the side-quest between all six side-quests, P\ is the ratio of

users that ranked the side-quest as the first best, P2 is the ratio of users that ranked the side-quest as

the second best, P3 is the ratio o f users that ranked the side-quest as the third best, P4 is the ratio of

users that ranked the side-quest as the fourth best and P$ is the ratio o f users that did not rank the

side-quest as one of the four best side-quests.

This question only asks what the four most preferred side-quests are. A side-quest that consis

tently ranks as one o f the three most preferred side-quests will have a large R gi between 4.0 and 2.0.

Conversely, a side-quest that consistently ranks as one of the three least preferred side-quests will

have a low R gy between 1.0 and 0.0, since the the formula gives little weight to side-quests ranked

fourth and no weight to side-quests not ranked.

Figure 7.2 shows a separation between the rankings o f the side-quests. Three of the side-quests

consistently rank as being preferred: Love Potion No. 9, Confronting a Suspect and A Taste o f

Intrigue. The weighted rankings of these side-quests are between 3.25 and 2.50. The Shadowlords

quest Love Potion No. 9 is the most preferred side-quest. The next two preferred side-quests have

similar weighted rankings; the Darktide side-quest Confronting a Suspect has a weighted ranking of

2.64 while the Shadowlords side-quest has a weighted ranking of 2.50.

The bottom three side-quests have weighted rankings between 0.84 and 0.28. The Darktide

side-quest Uncovering Secrets received the fourth best weighted ranking of 0.84. This side-quest

has a value close to 1 . 0 indicating that on average it was often ranked as the fourth most preferred

side-quest. The Darktide side-quest Extra Help received a weighted ranking of 0.49. Finally the

least preferred was the Shadowlords side-quest Missing Boy with a weighted ranking of 0.28.

These results indicate a type of layering between the quality o f side-quests. All of the Shad-

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

owlords side-quests are not preferred over all o f the Darktide side-quests, and vice versa. Shad

owlords contains side-quests that are both the most and least preferred among all of the side-quests

in the experiment.

O v e ra ll S id e - Q u e s t O r d e r By S c o re

5 .0 —------ — ---- ---

Love P o tion C onfronting a A T a s t e o f Uncovering E x tra Help M issing B oy
No. 9 S u s p e c t In trigue S e c re ts

S id e -Q u e s t s

Figure 7.3: The average scores o f each of the side-quests.

The same layering occurs when observing the average score of each side-quest. The users gave

a score, between 1.0 and 5.0, to each quest. Figure 7.3 shows the average score of each side-quest.

When examining the weighted rankings (Figure 7.2), there is a large difference between the two

most preferred side-quests (Love Potion No. 9 and Confronting a Suspect). The difference between

the average scores o f these two side-quests (Figure 7.3) is much smaller. Love Potion No. 9 received

an average score of 3.83 while Confronting a Suspect received an average score of 3.77.

A Taste o f Intrigue received the third highest average score of 3.51. The fourth highest average

score of 2.93 went to Uncovering Secrets. These two side-quests have a relatively large difference

in scores. This reinforces the previous statement that the top three side-quests were consistently

preferred over the bottom three side-quests.

There is also a relatively large difference between the average scores of the bottom two side-

quests. Extra Help received an average score of 2.81 while Missing Boy received an average score

of 2.39. This indicates that Missing Boy is the lowest quality side-quest, perhaps by a large margin.

The difference in quality between the two story segments appears to be that Shadowlords has two

higher-quality side-quests and one lower-quality side-quest, while Darktide has one higher-quality

side-quest and two lower-quality side-quests. However, the lower quality Darktide side-quests seem

considerably higher in quality than the lower-quality Shadowlords side-quest (The Missing Boy).

Figure 7.4 shows the number of users that preferred each story segment. 10 users preferred

Darktide while 55 users preferred Shadowlords and 12 users did not supply an answer. This indicates

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Story Segment Preffered

60 ■

60 •

40 ■

30 ■

2 0 ■

10 ■

65

10

D arktide S h ad o w lo rd s

Stories

Figure 7.4: The number of users that preferred one story segment over another.

that the human authored story segment (Shadowlords) is higher in quality than the SQUEGE story

segment (Darktide).

S to ry S e g m e n t S c o re s

D arktide S h ad o w lo rd s

Stories

Figure 7.5: The average score of each story segment.

Figure 7.5 shows the average score that each story segment received. On a scale from 1 to 5,

Darktide received an average score of 3.10 while Shadowlords received an average score of 3.49.

The small difference between the two scores indicates that the difference in quality between the

two story segments is relatively small. Most users preferred Shadowlords over Darktide. A Mest

indicates that the difference between the two averages is significant (t = 2.98, d f = 123, p <

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 .002).

7.6 Limitations

The user study indicates that the SQUEGE side-quests were lower in quality than the human au

thored side-quests. The lower quality may be due to factors that are outside the domain of SQUEGE.

This includes tasks that are the author’s responsibility rather than SQUEGE’s.

The questionnaires invited the students to write comments about the side-quests. A common

comment for the Darktide side-quests was that the dialogue was too linear. Normally dialogue

in CRPGs is written so that there are many different choices as to what the PC may speak in the

conversation. For example, in the Shadowlords side-quest Love Potion No. 9, the PC must have a

conversation with Anna who has the love potion that the PC must acquire. Anna will not give the

PC the love potion unless the PC can discover Presephor’s feelings towards Anna, a man she has

fallen in love with. At this point in the dialogue the PC has two choices to respond with. Agree to

talk to Presephor or threaten Anna to give over the love potion. Choosing the latter choice results in

Anna not believing the PC’s threat and the PC must still talk to Presephor. Even though the different

dialogue options did not change the outcome of the side-quest, they still add to the experience by

giving the PC a feeling of an open-world.

It was known in advance that the side-quests would be demonstrated to the subjects rather than

played by the subjects. Because of this, the conversations in the Darktide side-quests were designed

with very few dialogue options. Many users noticed the lack of dialogue choices, as evident by their

comments. The scores of the Darktide side-quests probably suffered because of this. If this user

study is repeated in the future, the conversations in Darktide will be updated so that the average

number o f dialogue options for the PC is similar to the conversations in Shadowlords.

Another reason for the Darktide quests being lower in quality may be due to a lack of humour.

The original Shadowlords adventures have some humour in the quests. For example, in Love Potion

No. 9, if the PC is male then the PC has problems entering a beauty parlor because the parlor

is restricted to women only. To enter the parlor the PC must fool the door guard into believing

that the PC is a rather masculine woman. With Darktide, it was difficult to add humour to the

dialogue while still having the phrases in the conversations remain similar in structure to the phrases

in Shadowlords. This resulted in four side-quests with little humour.

One of the qualities that the users specified about each side-quest was how much humour the

side-quest contained (Table 7.1). Figure 7.6 shows how humour correlates with the overall score

of each of the side-quests. The correlation between the humour scores and the overall side-quest

scores in Darktide is considerably smaller than the correlation between the humour scores and the

overall side-quest scores in Shadowlords. This shows that humour was not a factor for the scores

in the Darktide side-quests. Figure 7.7 gives the average score of perceived humour for each side-

quest. This shows that humour helped improve the perceived quality of two of the side-quests in

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Importance of Humour in Side-Quest Evaluation

1.00

0 .90

0 .80

0 .70

0 .60

0 5 0

0 .40

0 .30

0 20

0.10

0.00

0. 774), K--

0.61

U.42 U.42

'

:_______
__

__
__

_

J

E x tra Help Uncovering C onfronting a M issing B oy Love Potion A T a s te of
S e c re t s S u s p e c t No. 9 Intrigue

Side-Quests

Figure 7.6: The correlation between humour and the overall score of each side-quest.

A v e ra g e H u m o u r S c o re in S id e - Q u e s t E v a lu a tio n

5 .00

4 00

3 .0 0

to 2.00

i? 1 . 0 0

0.00

E x tra H elp U ncovering C o n fro n tin g a M iss in g B o y Love P o tio n A T a s te of
S e c r e t s S u s p e c t No 9 Intrigue

S id e -Q u es ts

Figure 7.7: The average score of humour for each side-quest.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Shadowlords (Love Potion No. 9 and A Taste o f Intrigue). If more humour had been present in the

Darktide side-quests then they may have received a better evaluation. Humour is a factor that is

normally outside the domain of SQUEGE. Although humour can occur by accident. It is ultimately

the author’s decision to add humour to the side-quests.

Because of time constraints, the last side-quest in both Darktide and Shadowlords was not

demonstrated. For Darktide, the Creating a Cure side-quest was not demonstrated. This is the

final side-quest in a sequence of three related side-quests. SQUEGE generated the side-quests to be

dependent upon each other. The first two side-quests Uncovering Secrets and Confronting a Suspect

see the PC discovering the identity of Preszmyr who had been poisoning local citizens and then con

fronting Preszmyr. Creating a Cure concludes the side-quests by having the PC help in creating a

cure for a victim who has been recently poisoned by Preszmyr. Because this final side-quest was not

demonstrated, the story that spans all three side-quests was not concluded. This could have reduced

the evaluations for the two preceding side-quests Uncovering Secrets and Confronting a Suspect, as

some users may have felt there was no proper conclusion.

For Shadowlords, the side-quest A Missing Locket was not demonstrated. This side-quest is

independent from all of the other side-quests in Shadowlords. Not demonstrating this quest did not

lower the evaluations of any of the other side-quests in Shadowlords. If the same user study were

to be repeated in the future, different side-quests would be excluded. Extra Help would be excluded

from Darktide and The Missing Boy would be excluded from Shadowlords. Both side-quests are

independent from the other side-quests in their respective stories, and both were the lowest ranked

and scored side-quests in their stories.

When using SQUEGE , if the author does not approve of the side-quests generated, the side-

quests can be adapted to the author’s specifications or new side-quests can be generated in their

place. For Darktide this was not the case. The design of the experiment was to use the side-

quest outlines given without alterations. Presumably, the Shadowlords side-quests were created

such that the author did approve of the side-quests created, otherwise the side-quests would not be

in Shadowlords. Any game author using SQUEGE would be able to alter and remove side-quests at

will, improving the quality of the final side-quests produced.

Despite all of these limitations, Darktide received a reasonably favourable evaluation. With a

good author, SQUEGE should help produce high-quality side-quests both efficiently and quickly for

use in a commercial CRPG.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Future Work and Conclusions

This chapter presents a summary of this work, discusses some future work and concludes with some

closing remarks.

8.1 Summary

The stories found in CRPGs can be quite complex due to the interactive nature of CRPGs. The PC in

a CRPG can simultaneously follow multiple story lines. These story lines (or quests) can also have

multiple resolutions. Not only must game authors have a way of organizing the quests in CRPGs,

but they must also be able to change and query the game state to have the quests function properly.

The current technology for controlling and querying game state is to use a scripting language. It

is difficult to track and maintain the scripts and global variables associated with a quest, as most

CRPGs locate scripts according to the event that the script is associated with. Quests involve the

collaboration of scripts located throughout various events in the game adventure. Scripting also

requires the game author to have knowledge of computer programming or to employ someone with

that knowledge. It is not uncommon for commercial CRPGs to have hundreds or thousands of

quests. Some of these quests are short, simple adventures, called side-quests, that are independent

from the main story line. While they are independent from the main story, side-quests are important

as they add a sense of freedom to the game, increasing the player’s entertainment. Creating the large

number of side-quests needed for a commercial CRPG can be a tedious task that consumes a large

amount of resources. Often game authors will take a short-cut and exclude or reduce the number of

side-quests in a game or simplify them, resulting in less game content.

This work focused on two applications. First, the concept o f quest patterns was introduced.

Quest patterns, which are similar to design patterns in software engineering [8], provide a way

to specify quests. The various encounters that the PC may have during the quest are structured

through using quest points. Each quest point specifies what action or actions the PC performs,

the preconditions for the point, and what happens in response to the PC’s actions. The result is

a complete and straightforward specification o f a quest. While each quest in a CRPG is unique,

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

many share common similarities. By modeling these similarities using patterns, a game author can

create specifications from these patterns with a small amount of adaptation. This work shows that

quest specifications are detailed enough that an automated scripting tool, such as ScriptEase [13], is

able to use quest patterns to generate the required scripts for those quests in the commercial CRPG

Neverwinter Nights (NWN) [16]. A case study was performed that replaced the scripts required for

all the quests in a set o f areas from the official campaign for NWN with quest patterns. The case

study showed that quest patterns require less effort to use than writing the scripts for the quests by

hand.

The second application of this work deals with aiding game authors in the rapid creation of

side-quests for CRPGs. Because side-quests are short and simple, they can be instantiations of a

quest pattern with a minimal number of adaptations. This work presented the Sub-QUEst GEnerator

{SQUEGE), a tool that generated outlines o f sub-quests for CRPGs. SQUEGE uses a modified

version of quest patterns. Each point in a SQUEGE quest pattern has a weighted list of encounters

that SQUEGE can select from. As input, SQUEGE takes a list of objects from the game adventure to

be used in the side-quests, and a list o f SQUEGE quest patterns. SQUEGE then generates a specified

number o f side-quest instances by using the patterns. For each point in a pattern, one of the point’s

multiple encounters is selected using the weights of each encounter to bias the selection. Objects

for each encounter are assigned by randomly selecting an object from the input. SQUEGE also

checks for logical inconsistencies, to prevent the generated side-quests from functioning improperly.

As output, SQUEGE gives the game author a graphical outline of the side-quests. The outline is

specific enough that the game author can quickly create the necessary conversations and scripts.

Alternatively, ScriptEase can also be used by the author to generate the scripts. If the game author

is not satisfied with the outlines created by SQUEGE, the process can be repeated and an entirely

different set o f side-quests will be generated. To evaluate the effectiveness of SQUEGE, a user study

was performed. The study had two sets o f side-quests being demonstrated to a class o f university

undergraduate students. Both sets of side-quests used the same setting, but one set was created with

SQUEGE while the other was extracted from a popular NWN game adventure created by a human

author. The students were asked to evaluate each set o f side-quests. The results indicated that the

SQUEGE side-quests were slightly lower in quality to the human-authored side-quests. Several

limitations outside the domain of SQUEGE (e.g., adding humour and complexity to conversations)

were identified. The quality of the side-quests created with the aid of SQUEGE should increase with

a good author.

8.2 Future Work

The current quest pattern catalogue in Appendix A is rather small. There are only five patterns in

the catalogue and three are variants of the retrieve/deliver an item pattern. The intent o f the current

catalogue is to show that quest patterns work. The catalogue needs to be expanded to include more

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coverage for other types o f quests commonly found in CRPGs. One quest that could be added to the

catalogue is where the PC must find a way to open a locked door. The quest could have multiple

resolutions: finding the key to the door, picking the lock on the door, bribing a nearby guard to

open the door or bashing the door open. Another type of quest pattern could see the PC finishing a

sequence of quests. The pattern would be responsible for determining when new quests are available

for the PC to begin. For example, the PC may have two quests to complete: one quest requires the

character to act lawfully by bringing a criminal to justice, and the other quest requires the PC to

perform unlawful actions by stealing from a king’s treasury. Finishing the lawful quest first has the

PC starting a line of quests working as a member of the king’s personal guard. Conversely, finishing

the unlawful quest starts a sequence of quests where the PC joins a group of bandits. Determining

when these sequences of quests begin can be done inside each quest. However, allowing the author

to manage the quests in a higher-level quest pattern allows the details of the quest sequences to be

independent from the quests themselves.

Currently SQUEGE only generates an outline of side-quests. The game author still has to create

the conversations and scripts. For NWN, the conversations are created in the Aurora Toolset while

the scripts can be easily created with ScriptEase. In the future, SQUEGE will be extended to not

only provide an outline but also instantiating each side-quest in ScriptEase. Each quest point in an

outline created by SQUEGE specifies an encounter with associated objects. Each point in the outline

also specifies what its enablers are. From this information the side-quests can be automatically

instantiated in ScriptEase. Placeholder conversations will also be added to the appropriate NPCs.

Points in the conversations will be labeled to indicate which quest points they enable. The game

author can then adapt the conversation and side-quest instances as needed.

Currently SQUEGE generates side-quests that are static; once the game adventure begins, the

side-quests cannot change. The PC may then perform an action that prevents certain side-quests

from being completed. For example, a SQUEGE generated side-quest sees the player starting the

side-quest by talking to an NPC named Dwight. However, the PC decides to kill Dwight before

talking to him. Since the side-quest is static, this action invalidates it as the PC can no longer begin

the side-quest. SQUEGE could be changed so that the generated side-quests are dynamic. If a side-

quest is invalidated, after the game has begun, the side-quest can dynamically change so the player

can still complete it. With the example where Dwight is killed, the side-quest can reassign Dwight’s

role to another NPC in the game. SQUEGE could be made dynamic by using techniques similar to

the Hierarchical Task Networks (HTN) [4] discussed in Section 2.3. In an HTN, when a task fails

the system is able to backtrack to another task. SQUEGE could generate selected quest points with

multiple encounters. Should the first encounter become impossible to complete, the next encounter

is what the PC must perform in order for the quest point to become reached.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3 Conclusions

This work provides two important contributions. First, it supplies a method for organizing and

maintaining plot in CRPGs. Most CRPGs do not have tools to aid in the design of quests. With quest

patterns, it is easier to design the story lines so that game authors can create more interesting and

complex stories. Second, is the creation of SQUEGE to help alleviate the time and resources needed

to create the optional side- quests found in CRPGs. This allows game authors and programmers to

focus their efforts on other tasks such as designing the main story line.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

f l] Bioware Corp. http://www. bioware, com/, 2007.
[2] J. Campbell. The Hero with a Thousand Faces. Princeton University Press, 1973.

[3] M. Carbonaro, M. Cutumisu, M. McNaughton, C. Onuczko, T. Roy, J. Schaeffer, D. Szafron,
S. Gillis, and S. Kratchmer. Interactive Story Writing in the Classroom: Using Computer
Games. In Proceedings o f the International DiGRA Conference 2005, pages 323-338, Van
couver, BC, 2005.

[4] M. Cavazza, F. Charles, and S. Mead. Character-Based Interactive Storytelling. IEEE Intelli
gent Systems, 17(4): 17-24, 2002,

[5] M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, C. Onuczko, and M. Car
bonaro. Generating Ambient Behaviors in Computer Role-Playing Games. IEEE Intelligent
Systems, 21(5):88-99, 2006.

[6] C. Fairclough and P. Cunningham. A Multiplayer Case Based Story Engine. In GAME-ON,
pages 41-46, London, UK, 2003.

[7] G. Freytag. Freytag’s Technique o f the Drama: An Exposition o f Dramatic Composition and
Art. Scott, Foresman, Chicago, 1900.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements o f Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley,
1995.

[9] G. Gygax and D. Ameson. Dungeons and Dragons. Tactical Studios Rules and Wizards of the
Coast, 1974-2003.

[10] Jade Empire, http://jade.bioware.com/.
[11] Jade Empire (Limited Edition), Game Credits, http: //www.mobygames . com/game/

c64/ultima-iv-quest-of- the-avatar/credits%.
[12] M. Mateas and A. Stem. Facade: An Experiment in Building a Fully-Realized Interactive

Drama. In Proceedings o f the Game Developers Conference: Game Design Track, San Jose,
2003. http:/ /w w w .interactivestory.net/papers/MateasSternGDC03.
pdf.

[13] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and D. Parker. ScriptEase:
Generative Design Patterns for Computer Role-Playing Games. In Proceedings o f the 19th
IEEE Conference on Automated Software Engineering (ASE 2004), pages 88-99, Linz, Aus
tria, September 2004.

[14] J. Meehan. TALE-SPIN - An Interactive Program that Writes Stories. In Proceedings o f the
5th In tern ation al Join t C onference on AI, pag es 91 —98, C am b rid g e , M A , 1977.

[15] A .M iller. Shadowlords, Dreamcatcher, and Demon Campaigns, http: //adamandjamie.
com/nwn/, 2007.

[16] Neverwinter Nights, http://nwn.bioware.com/.
[17] Neverwinter Nights: An Introduction to the Plot Wizard, http : / /nwn. bioware. com/

builders/plotwizard_intro.html.

74

with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://jade.bioware.com/
http://www.mobygames
http://www.interactivestory.net/papers/MateasSternGDC03
http://nwn.bioware.com/

[18] Neverwinter Nights-Vault - Hall of Fame. http://nwvault.ign.com/View.php?
view=Modules . HOF, 2007.

[19] E. Packard. Choose Your Own Adventure series. Bantam Books, New York, 1979-89.

[20] V. Propp. Morphology o f the Folktale. University of Texas Press, Austin, TX, 1968.

[21] M. Riedl, H. Lane, R. Hill, and W. Swartout. Automated Story Direction and Intelligent
Tutoring: Towards a Unifying Architecture. In Proceedings o f the 2005 AIED Workshop on
Narrative Learning Environments,. Amsterdam, 2005.

[22] M. Riedl and R. Young. From Linear Story Generation to Branching Story Graphs. IEEE
Journal o f Computer Graphics and Applications, pages 23-31, May-June 2006.

[23] Star Wars, h t t p : / / www. im d b . c o m / t i t l e / t t 0 0 7 6759 / , 1977.

[24] Star Wars: Episode V - The Empire Strikes Back, h t t p : / / w w w . i m d b . c o m / t i t l e /
t t 0 0 8 0 6 8 4 / , 1980.

[25] Star Wars: Episode VI - Return of the Jedi. http://www.imdb.com/title/
tt0086190/, 1983.

[26] Ultima IV: Quest of the Avatar, Game Credits, h t t p : / / w w w .m obygam es . c o m /g a m e /
c 6 4 / u l t i m a - i v - q u e s t - o f - t h e - a v a t a r / c r e d i t s % .

[27] Unreal Technology Overview. h t t p : / / w w w . u n r e a l t e c h n o l o g y . c o m / h t m l /
t e c h n o l o g y / u e 3 0 . s h tm l , 2007.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://nwvault.ign.com/View.php
http://www.imdb.com/title/
http://www.imdb.com/title/
http://www.mobygames
http://www.unrealtechnology.com/html/

Appendix A

Quest Pattern Catalogue
Specifications

This appendix gives specifications for each of the quest patterns created. Each quest point given

provides several preset options, such as a journal entry and experience awarded. The values given

are generalized for the pattern. When a pattern is used these options should be changed to the

specific needs of the user. Some quest points have no encounters associated with them. In these

cases, the quest point becomes reached as soon as the point becomes available the number of times

specified.

A .l Retrieve/deliver an item quest
• Intent: The player is asked to first acquire an item and then retrieve or deliver the item.

• Options:

- Quest Giver Conversation

- Item

- Item Receiver

• Quest Points

- ExposeQuest

* Intent: A placeholder to expose the quest. Currently does nothing but can be ex
panded by adding an encounter such as overhearing a conversation.

* Options:
• Quest Point Type: Normal
■ Enablers: {Initially Available)
- Journal Entry: {None)
■ Experience Awarded: 0

* Encounters:
• Having the quest point become available at least 1 time(s)

* When quest point reached:
• No additional actions required

- TalkToQuestCiver

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Intent: The player reaches a specific point in a conversation where they are asked
to acquire an item and then retrieve or deliver it.

* Options:
• Quest Point Type: Normal
• Enablers: ExposeQuest
■ Journal Entry: You have been asked to retrieve/deliver an item.
• Experience Awarded: 0

* Encounters:
• Reaching the Quest Giver Conversation

* When quest point reached:
• No additional actions required

— FindltemLocation

* Intent: A placeholder to discover the item location. Currently does nothing but
can be expanded by adding an encounter such as reaching a specific point in a .
conversation where the player is told the item location.

* Options:
• Quest Point Type: Normal
■ Enablers: TalkToQuestGiver
■ Journal Entry: {None)
• Experience Awarded: 0

* Encounters:
• Having the quest point become available at least 1 time(s)

* When quest point reached:
■ No additional actions required

— Acquireltem

* Intent: The player acquires the item to be retrieved/delivered.
* Options:

• Quest Point Type: Normal
■ Enablers: TalkToQuestGiver, FindltemLocation
■ Journal Entry: You have acquired the item that is to be retrieved/delivered.
■ Experience Awarded: 0

* Encounters:
• The player acquires Item

* When quest point reached:
• No additional actions required

— Give Item

* Intent: The player retrieves/delivers the item to its receiver.
* Options:

• Quest Point Type: Close
■ Enablers: Acquireltem
■ Journal Entry: The item has been retrieved/delivered.
■ Experience Awarded: 0

* Encounters:
• Item Receiver acquires Item

* When quest point reached:
• No additional actions required

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2 Retrieve/deliver multiple items quest
• Intent: The player is asked to first acquire multiple items and then retrieve or deliver the items.

• Options:

- Quest Giver Conversation

- Item 1

- Item 2

- Items Receiver

• Quest Points

- ExposeQuest

* Intent: A placeholder to expose the quest. Currently does nothing but can be ex
panded by adding an encounter such as overhearing a conversation.

* Options:
• Quest Point Type: Normal
■ Enablers: (Initially Available)
■ Journal Entry: (None)
■ Experience Awarded: 0

* Encounters:
■ Having the quest point become available at least 1 time(s)

* When quest point reached:
■ No additional actions required

- TalkToQuestGiver

* Intent: The player reaches a specific point in a conversation where they are asked
to acquire some items and then retrieve or deliver them.

* Options:
• Quest Point Type: Normal
• Enablers: ExposeQuest
• Journal Entry: You have been asked to retrieve/deliver some items.
■ Experience Awarded: 0

* Encounters:
• Reaching the Quest Giver Conversation

* When quest point reached:
■ No additional actions required

- FindltemLocation]

* Intent: A placeholder to discover the first item location. Currently does nothing
but can be expanded by adding an encounter such as reaching a specific point in a
conversation where the player is told the item location.

* Options:
• Q u est P o in t T ype: O ptional

• Enablers: TalkToQuestGiver
■ Journal Entry: (None)
■ Experience Awarded: 0

* Encounters:
• Having the quest point become available at least I time(s)

* When quest point reached:

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• No additional actions required

- Acquireltem]

* Intent: The player acquires the first item to be retrieved/delivered.
* Options:

• Quest Point Type: Optional
• Enablers: TalkToQuestGiver, FindltemLocation1
■ Journal Entry: You have acquired an item.
■ Experience Awarded: 0

* Encounters:
• The player acquires Item 1

* When quest point reached:
• No additional actions required

- FindItemLocation2

* Intent: A placeholder to discover the second item location. Currently does nothing
but can be expanded by adding an encounter such as reaching a specific point in a
conversation where the player is told the item location.

* Options:
• Quest Point Type: Optional
• Enablers: TalkToQuestGiver
■ Journal Entry: (None)
• Experience Awarded: 0

* Encounters:
• Having the quest point become available at least 1 time(s)

* When quest point reached:
• No additional actions required

- Acquireltem2

* Intent: The player acquires the second item to be retrieved/delivered.
* Options:

• Quest Point Type: Optional
■ Enablers: TalkToQuestGiver, FindItemLocation2
■ Journal Entry: You have acquired an item.
■ Experience Awarded: 0

* Encounters:
■ The player acquires Item 2

* When quest point reached:
• No additional actions required

- AcquireMultipleltems

* Intent: The player acquires all the items to be retrieved/delivered.
* Options:

• Q u est P o in t T ype: N orm al

• Enablers: Acquireltem!, Acquireltem2
■ Journal Entry: You have acquired all the items.
■ Experience Awarded: 0

* Encounters:
• Having the quest point become available at least 2 time(s)

* When quest point reached:

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• No additional actions required

- Give I terns

* Intent: The player retrieves/delivers the items to their receiver.
* Options:

• Quest Point Type: Close
■ Enablers: AcquireMultipleltems
• Journal Entry: The items have been retrieved/delivered.
■ Experience Awarded: 0

* Encounters:
• Items Receiver acquires both Item 1 and Item 2

* When quest point reached:
• No additional actions required

A.3 Retrieve/deliver one of multiple items quest

• Intent: The player is asked to acquire one o f several items and then retrieve or deliver that
item.

• Options:

- Quest Giver Conversation

- Item I

- Item 2

- Item I Receiver

- Item 2 Receiver

• Quest Points

- ExposeQuest

* Intent: A placeholder to expose the quest. Currently does nothing but can be ex
panded by adding an encounter such as overhearing a conversation.

* Options:
• Quest Point Type: Normal
■ Enablers: {Initially Available)
■ Journal Entry: {None)
■ Experience Awarded: 0

* Encounters:
• Having the quest point become available at least 1 time(s)

* When quest point reached:
■ No additional actions required

- TalkToQuestGiver
* Intent: The p la y e r reaches a spec ific p o in t in a conversation where they arc ask ed

to acquire one o f multiple items and then retrieve or deliver that item.
* Options:

• Quest Point Type: Normal
■ Enablers: ExposeQuest
■ Journal Entry: You have been asked to retrieve/deliver one o f multiple items.
■ Experience Awarded: 0

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* Encounters:
■ Reaching the Quest Giver Conversation

* When quest point reached:
• No additional actions required

- FindltemLocation 1

* Intent: A placeholder to discover the first item location. Currently does nothing
hut can he expanded by adding an encounter such as reaching a specific point in a
conversation where the player is told the item location.

* Options:
• Quest Point Type: Optional
• Enablers: TalkToQuestGiver
■ Journal Entry: (None)
■ Experience Awarded: 0

* Encounters:
• Having the quest point become available at least 1 time(s)

* When quest point reached:
• No additional actions required

- Acquireltem]

* Intent: The player acquires the first item to be retrieved/delivered.
* Options:

• Quest Point Type: Optional
■ Enablers: TalkToQuestGiver, FindltemLocationI
■ Journal Entry: You have acquired an item.
■ Experience Awarded: 0

* Encounters:
• The player acquires Item 1

* When quest point reached:
• No additional actions required

- FindItemLocation2

* Intent: A placeholder to discover the second item location. Currently does nothing
but can be expanded by adding an encounter such as reaching a specific point in a
conversation where the player is told the item location.

* Options:
• Quest Point Type: Optional
• Enablers: TalkToQuestGiver
• Journal Entry: (None)
■ Experience Awarded: 0

* Encounters:
■ Having the quest point become available at least 1 time(s)

* When quest point reached:
■ No additional actions required

- Acquireltem2

* Intent: The player acquires the second item to be retrieved/delivered.
* Options:

• Quest Point Type: Optional
■ Enablers: TalkToQuestGiver, FindItemLocation2

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Journal Entry: You have acquired an item.
■ Experience Awarded: 0

* Encounters:
• The player acquries Item 2

* When quest point reached:
• No additional actions required

- Givelteml

* Intent: The player retrieves/delivers the first item to its receiver.
* Options:

• Quest Point Type: Close
■ Enablers: Acquireltem]
■ Journal Entry: You have retrieve/deliverd an item.
• Experience Awarded: 0

* Encounters:
• Item 1 Receiver acquires Item 1

* When quest point reached:
• No additional actions required

- Giveltem2

* Intent: The player retrieves/delivers the second items to its receiver.
* Options:

• Quest Point Type: Close
■ Enablers: Acquireltem2
■ Journal Entry: You have retrieved/delivered an item.
■ Experience Awarded: 0

* Encounters:
• Item 2 Receiver acquires Item 2

* When quest point reached:
• No additional actions required

A.4 Talk to quest

• Intent: The player is asked to talk to another character.

• Options:

- Quest Giver Conversation

- NPC Target Conversation

- NPC Target

• Quest Points

- E xposeQ u est

* Intent: A placeholder to expose the quest. Currently does nothing hut can he ex
panded by adding an encounter such as overhearing a conversation.

* Options:
• Quest Point Type: Normal
■ Enablers: (Initially Available)
■ Journal Entry: (None)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Experience Awarded: 0
* Encounters:

• Having the quest point become available at least 1 time(s)
* When quest point reached:

• No additional actions required

- TalkToQuestGiver

* Intent: The player reaches a specific point in a conversation where they are asked
to talk to another NPC.

* Options:
• Quest Point Type: Normal
■ Enablers: ExposeQuest
■ Journal Entry: You have been asked to talk to an NPC.
■ Experience Awarded: 0

* Encounters:
• Reaching the Quest Giver Conversation

* When quest point reached:
• No additional actions required

- FindNPCLocation

* Intent: A placeholder to discover the NPC location. Currently does nothing but
can be expanded by adding an encounter such as reaching a specific point in a
conversation where the player is told the NPC location.

* Options:
■ Quest Point Type: Optional
■ Enablers: TalkToQuestGiver
■ Journal Entry: (None)
■ Experience Awarded: 0

* Encounters:
• Having the quest point become available at least 1 time(s)

* When quest point reached:
• No additional actions required

- TalkToNPCTarget

* Intent: The player talks to the NPC target.
* Options:

• Quest Point Type: Close
■ Enablers: TalkToQuestGiver, FindNPCLocation
■ Journal Entry: You have talked to the NPC.
■ Experience Awarded: 0

* Encounters:
• Reaching the NPC Target Conversation

* W h en q u est p o in t reached:

■ No additional actions required

- NPCTargetDies

* Intent: The death o f the NPC Target completes the quest.
* Options:

■ Quest Point Type: Close
■ Enablers: TalkToQuestGiver

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Journal Entry: The NPC has died, you can no longer talk to them.
■ Experience Awarded: 0

* Encounters:
• NPC Target dies

* When quest point reached:
• No additional actions required

A.5 Kill a creature quest
• Intent: The player is asked to kill a creature.

• Options:

- Quest Giver Conversation

- Creature Killed

- Reporter Conversation

• Quest Points

- ExposeQuest

* Intent: A placeholder to expose the quest. Currently does nothing but can be ex
panded by adding an encounter such as overhearing a conversation.

* Options:
■ Quest Point Type: Normal
■ Enablers: (Initially Available)
■ Journal Entry: (None)
■ Experience Awarded: 0

* Encounters:
• Having the quest point become available at least I time(s)

* When quest point reached:
■ No additional actions required

- TalkToQuestGiver

* Intent: The player reaches a specific point in a conversation where they are asked
to kill a creature.

* Options:
• Quest Point Type: Normal
■ Enablers: ExposeQuest
■ Journal Entry: You have been asked to kill a creature.
■ Experience Awarded: 0

* Encounters:
• Reaching the Quest Giver Conversation

* When quest point reached:
■ No additional actions required

- FindCreatureLocation

* Intent: A placeholder to discover the creature location. Currently does nothing but
can be expanded by adding an encounter such as reaching a specific point in a
conversation where the player is told the item location.

* Options:
• Quest Point Type: Normal

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Enablers: TalkToQuestGiver
■ Journal Entry: {None)
■ Experience Awarded: 0

* Encounters:
• {None)
■ Having the quest point become available at least 1 time(s)

* When quest point reached:
• No additional actions required

- KillCreature

* Intent: The player kills the creature.
* Options:

• Quest Point Type: Normal
■ Enablers: TalkToQuestGiver, FindCreatureLocation
■ Journal Entry: You have killed the creature.
■ Experience Awarded: 0

* Encounters:
• Creature Killed dies

* When quest point reached:
• No additional actions required

- ReportCreatureDead

* Intent: The player reports that the creature is dead.
* Options:

• Quest Point Type: Close
■ Enablers: KillCreature
■ Journal Entry: You have reported that the creature is dead.
■ Experience Awarded: 0

* Encounters:
■ Reaching the Reporter Conversation

* When quest point reached:
• No additional actions required

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

