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Abstract 

The enzyme LL-diaminopimelate aminotransferase (DapL) catalyzes the 

transformation of L-THDP to LL-DAP during the biosynthesis of lysine in plants, 

alga, and in some pathogenic bacteria like Leptospira interrogans and 

Verrucomicrobium spinosum. Because the biosynthesis of lysine is absent in 

mammals, specific inhibitors of DapL enzyme could potentially function as 

antibiotics with low toxicity to humans or as herbicides or algaecides. An 

inhibition study of DapL enzyme from three orthologs (V. spinosum, L. 

interrogans, and C. reinhardtii) was completed. Five potential pharmacophores 

were selected (derivatives of rhodanine, barbiturate, and thiobarbiturate). The 

results showed a different inhibition pattern between each ortholog. In order to 

help to understand the differences we used structural modeling and protein 

alignment of DapL orthologs. 

  

Tabtoxin is a phytotoxic dipeptide from P. syringae that contains a non-

proteinogenic amino acid, tabtoxinine-β-lactam (TβL). Once the peptide bond in 

tabtoxin is hydrolysed by aminopeptidases in the host or in the periplasm of the 

pathogen, TβL is released. TβL is the actual toxin because it is responsible for 

irreversible inactivation of glutamine synthetase. For example, this inhibition 

results in accumulation of high levels of ammonia causing chlorosis on the 

leaves, in tobacco wildfire disease. To date, the intermediates involved in the 

biosynthesis of tabtoxin, have not been elucidated. In this work we proposed a 

complete biosynthesis of tabtoxin. In order to demonstrate this pathway, 
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synthesis of three proposed intermediates in the biosynthesis of tabtoxin were 

pursued. Synthetic methodologies were developed towards the synthesis of 

labeled and/or unlabeled intermediates. 

Lovastatin is a statin that reduces cholesterol levels through the inhibition 

of the enzyme HMG-CoA reductase. The biosynthesis of lovastatin is 

accomplished by a HR-PKS, LovB with involvement of LovC in Aspergillus 

terreus. LovB has a condensation (CON) domain of a non-ribosomal peptide 

synthetase (NRPS).  CON domain is believed to be a natural Diels-Alderase that 

catalyzes the formation of the decalin ring. In this project the synthesis of a  

N-acetyl cysteamine (SNAC) ester of a hexaketide was pursued. This hexaketide 

may be used as a standard for GC-MS to investigate the substrate specificity of 

LovB. The enzymatic study would demonstrate if the CON domain is responsible 

for catalyzing the Diels-Alder reaction during the biosynthesis of lovastatin. 
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Preface 

Most of chapter 1 has been published - McKinnie, S. M. K.; Rodriguez-

Lopez, E. M.; Vederas, J. C.; Crowther, J. M.; Suzuki, H.; Dobson, R. C. J.; 

Leustek, T.; Triassi, A. J.; Wheatley, M. S.; Hudson, A. O., Differential response 

of orthologous L,L-diaminopimelate aminotransferases (DapL) to enzyme 

inhibitory antibiotic lead compounds. Bioorganic & Medicinal Chemistry 2014, 22 

(1), 523-530. DOI: 10.1016/j.bmc.2013.10.055. 

Some of the work presented in section 2.2.2 has been published - 

Cochrane, S. A.; Findlay, B.; Bakhtiary, A.; Acedo, J. Z.; Rodriguez-Lopez, E. M.; 

Mercier, P.; Vederas, J. C., Antimicrobial lipopeptide tridecaptin A1 selectively 

binds to Gram-negative lipid II. Proceedings of the National Academy of 

Sciences 2016, 113 (41), 11561-11566. DOI: 10.1073/pnas.1608623113. 

The rest of the work presented in this thesis is unpublished at the time of 

writing. 
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Chapter 1. L,L-diaminopimelate aminotransferases 

 

1.1 Introduction 

Natural products (NPs) represent a large family of diverse chemical 

compounds with several applications in medicine and agriculture. NPs with 

industrial applications can be produced from primary or secondary metabolism of 

living organisms (plants, animals or microorganisms). Examples of primary 

metabolites are amino acids, vitamins and nucleotides, which are essential for 

growth, development, and reproduction of the organisms.1 The NPs produced by 

an organism that are not required for survival are defined as secondary 

metabolites. In general, the main role of secondary metabolites are as 

mechanism of defense, regulation and communication.2 

Since the discovery of penicillin more than 80 years ago, over 500,000 

NPs have been characterized; approximately 20% show biological activity, and 

∼7% have been isolated from microbes. Moreover, from ∼34,000 biologically 

active compounds that have been obtained from microorganisms, 35% are 

produced by actinomycetes, 44% by fungi and 21% by unicellular bacteria.3 

NPs have long been an abundant source of drugs, but structural 

modification is necessary to optimize potency, pharmacokinetics and other 

important parameters. Actually, close to half of drugs approved between 1981 

and 2014 are natural product derivatives, synthetic natural product mimics, or 

contain natural product pharmacophores.4 
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Lovastatin is a secondary metabolite produce by fungi (Monascus ruber 

and Aspergillus terreus). This compound belongs to the class of NPs known as 

statins, which are important for the treatment of hypercholesterolemia. Statins 

are among the world’s best-selling anticholesterolemic. A remarkable fact is that 

this secondary metabolite is biosynthesized by polyketide synthases (PKS).2 The 

study of the programming of this mega enzyme is currently under development 

and its reprogramming could lead to development of novel polyketides. The 

biosynthesis of lovastatin and the synthesis of a hexaketide substrate is 

discussed in Chapter 3. 

Another example of a secondary metabolite is tabtoxin. This phytotoxin is 

produced by bacteria (Pseudomonas syringae) and contains a β-lactam ring that 

could have antibiotic activity. Tabtoxin biosynthesis branches off from the lysine 

biosynthetic pathway.5 The biosynthesis of tabtoxin and the efforts to prepare 

proposed intermediates of its biosynthetic pathway are discussed in Chapter 2. 

The lysine biosynthesis is absent in mammals but is present in bacteria. A novel 

pathway of lysine biosynthesis in pathogenic bacteria is discussed in section 

1.1.2. The study of specific inhibitors of enzymes involved in lysine biosynthesis 

is an attractive target for antibiotic development (section 1.1.3 and 1.2). 

Nowadays, there is an urgent need for new antibiotics that are active 

against resistant bacteria. This resistance increasingly limits the effectiveness of 

current antimicrobial drugs. Today, NPs remain the main source for new 

therapeutic agents.6 
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In 2014, the UK government estimated that 700,000 people die every year 

from drug-resistant strains of bacteria, human immunodeficiency virus (HIV), 

tuberculosis (TB) and malaria.7 By 2050, 10 million people a year would be at 

risk if the problem is not confronted. The loss of effective therapies to treat 

bacterial infections has caught the attention of government agencies to propose 

solutions to slow down the potential threat. 

Antimicrobial drugs are medicines that are active against a range of 

infections, such as those caused by bacteria (antibiotics), viruses (antivirals), 

fungi (antifungals) and parasites (antiparasitics including antimalarials). 

Antibiotics are a special category of antimicrobial drugs that are medicines used 

to treat bacterial infections. Antibiotics are classified as bacteriostatic or 

bactericidal agents. A bacteriostatic agent stops bacteria from reproducing 

whereas a bactericidal agent kills the bacteria. Antibiotic resistance occurs when 

bacteria change in response to the use of these medicines. These bacteria may 

infect humans and animals, and the infections they cause are harder to treat than 

those caused by non-resistant bacteria. Antibiotic resistance leads to higher 

medical costs, prolonged hospital stays, and increased mortality. 

Examples of bacterial resistance mechanisms include: antibiotic efflux, 

antibiotic inactivation, biofilm formation, and target modification.8 Also, there are 

multidrug resistant (MDR) pathogens that are resistant to more than one class of 

antimicrobial agents. Some of the most problematic MDR organisms are 

Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and 

Klebsiella pneumonia, Vancomycin-resistant enterococci (VRE) and methicillin-
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resistant Staphylococcus aureus (MRSA).8 It is important to highlight that most of 

these examples are Gram-negative but Enterococcus and Staphylococcus 

aureus are Gram-positive. 

Since 2000, just 30 new antibiotics have been approved worldwide. Of the 

30 antibiotics, two are natural products (NP), twelve are natural product-derived 

(NP-derived), and 16 synthetic-derived.9 Most of them are effective against both 

Gram-positive and Gram-negative bacteria; eight are selective for Gram-positive 

bacteria, and only two target Gram-negative bacteria.9 This fact points to the 

urgent need of developing new classes of antibiotics with Gram-negative activity.  

The increasing number of multidrug resistant bacteria has prompted the 

development of new antibiotics that are effective against bacterial diseases. 

Currently many drugs used to treat bacterial infections target pathways such as 

DNA replication, protein synthesis and cell wall biosynthesis.10  

 

1.1.1 meso-Diaminopimelate in nature 

meso-Diaminopimelate (meso-DAP, 28) is a biosynthetic precursor of 

lysine in prokaryotes and plants.11 Both meso-DAP (28) and lysine (13) are 

important for the synthesis of peptidoglycan (PG), a chemical component of the 

cell wall in bacteria. meso-DAP is found in specific eubacterial and archaeal 

lineages, in several groups of pathogenic bacteria, as well as many algal 

lineages. 

Lysine (Lys), required for protein synthesis and growth, is one of the nine 

essential amino acids absent in mammals, and thus must be obtained from 
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In contrast, most bacteria and photosynthetic organisms use the 

diaminopimelate (DAP) pathway to synthesize lysine. Since the DAP pathway is 

absent in mammals, specific inhibitors of enzymes involved in lysine biosynthesis 

could be a new class of antibiotics with low-toxicity to humans. 

 

1.1.2 Lysine biosynthesis in bacteria and plants 

In plants and bacteria, the DAP pathway of lysine biosynthesis is 

subdivided into four variants: the acylase pathway, which utilizes succinylated or 

acetylated intermediates; the meso-diaminopimelate dehydrogenase (Ddh) 

pathway; and the L,L-diaminopimelate aminotransferase (DapL) pathway.14,15 The 

starting point of all four variants, is the synthesis of L-tetrahydrodipicolinate acid 

(L-THDP, 22) from L-aspartate (asp, 18). The reactions are accomplished by the 

enzymes aspartate kinase (LysC), aspartate semialdehyde dehydrogenase 

(asd), dihydrodipicolinate synthase (DapA) and dihydrodipicolinate reductase 

(DapB) (Figure 1.3). 

 

Figure 1.3. Synthesis of L-THDP from aspartate in DAP pathways. 
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The main difference between the DAP pathways is how they transform  

L-THDP to the common precursor meso-DAP. In the acyl pathways, this 

conversion is facilitated by four enzymes: tetrahydrodipicolinate acylase (DapD), 

N-acyl-2-amino-6-ketopimelate aminotransferase (DapC), N-acyl-L,L-2,6-

diaminopimelate deacylase (DapE) and diaminopimelate epimerase (DapF) (Fig. 

1.4). 

 

Figure 1.4. The acyl pathways towards the biosynthesis of L-Lysine from L-

THDP. 
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Figure 1.5. Dehydrogenase pathway 

Lastly, in the DapL pathway, the enzymes DapD, DapC and DapE are 

bypassed by one single enzyme: the L,L-diaminopimelate aminotransferase 

(DapL). Another common feature to all four variants is the last step, the 

decarboxylation of meso-DAP to afford lysine, catalyzed by the enzyme meso-

diaminopimelate decarboxylase (LysA) (Fig. 1.6).  

 

Figure 1.6. Biosynthesis of L-Lysine: the DapL pathway. 
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them. Another benefit of understanding the biogenesis of lysine is the potential to 

assist engineering plants with greater lysine content. 

Peptidoglycan (PG), a component in the cell wall of most bacteria, has an 

essential role to protect the cytoplasmic membrane from osmotic stress. meso-

DAP is the cross-linking amino acid in the cell wall of Gram-negative bacteria and 

lysine is the cross-linking amino acid in most Gram-positive bacteria.16 Therefore, 

inhibition of the enzymes involved in DAP/Lys pathway will lead to cell death via 

lysis as a result of osmotic pressure disruption from the improperly constructed 

PG.17 Also, the inhibition of these enzymes will interfere with the synthesis of 

lysine, which will cause bacterial cell death, as the bacteria will not be able to 

synthesize PG due to the scarcity of meso-DAP and lysine. Moreover, it has 

been demonstrated that compounds that are specific for enzymes involved in the 

synthesis of DAP/L-lysine pathway have antimicrobial activity,18-20 and are likely 

to be non-toxic, since these enzymes are absent in humans. 

 

1.1.3 Screening for DAP enzymes-inhibitors 

The emerging antibiotic resistance has prompted the urgent need to find 

new classes of antibiotics. Several research groups including our group have 

studied different inhibitors to target specific enzymes of the DAP pathway. Some 

examples of compounds that have been tested to inhibit the activity of DAP 

enzymes are shown in Table 1.1. 

  



	 11	

Table 1.1. Selected inhibitors of different enzymes belonging to DAP pathways 

Enzyme Inhibitor  

DapA16 

(29) 

IC50 = 14 mM 

DapB21 

(30) 

IC50 = 20 µM 

DapD22 
   

(31) 

Ki = 60 nM 

DapC23 

(32) 

Ki = 54 nM 

DapE20 
     

(33) 

IC50 = 43 µM 

DapF24 

(34) 

IC50 = 4 µM 

Ddh25 
 

(35) 

Ki = 5.3 µM 

LysA26 

(36) 

Ki = 0.1 mM 

 

The plant Arabidopsis thaliana is an important model for identification of 

new proteins. In 2000, the publication of the complete sequence of Arabidopsis 
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thaliana, allowed the study of its genes for further identification of their 

functions.27  Later, in 2005, Leustek and collaborators studied the genome of 

Arabidopsis thaliana to investigate the enzymes involved in the biosynthesis of 

lysine. Surprisingly, DapD, DapC, and DapE were not found in the A. thaliana 

genome.28 

Following the findings of Leustek and collaborators, in 2006, Hudson and 

collaborators,15 found a new variant of a DAP pathway for the synthesis of lysine 

in photosynthetic organisms. In this variant, a single enzyme, the L,L-

diaminopimelate aminotransferase (DapL) from Arabidopsis thaliana directly 

converts L-THDP to LL-DAP, circumventing the DapD, DapC, and DapE steps of 

the acyl pathways found in prokaryotes. 

The DapL pathway is also shared by Protochlamydia amoebophila and 

Chlamydia trachomatis, members of the Chlamydiae phylum. These bacteria are 

responsible for significant diseases worldwide in both humans and animals. For 

example, C. trachomatis causes sexually transmitted infections as well as 

neglected infectious blindness (trachoma). Moreover, coronary heart disease and 

atherosclerosis infections are caused by C. pneumonia. Poultry and livestock are 

also affected by a diverse number of Chlamydophila spp.14 Recent genetic 

analysis has shown that DapL occurs in Cyanobacteria, Desulfuromonadales, 

Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two 

archaeal groups, Methanobacteriaceae and Archaeoglobaceae.11  

The fact that the DapL pathway for meso-DAP/lysine synthesis is 

exclusive to plants and some bacteria, makes DapL an attractive target for the 
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development of new antimicrobials or herbicides. This motivated another study 

conducted by our group to look for new possible antibiotics against Chlamydia 

genus. In this study a library of 29,201 drug-like compounds were tested against 

the DapL ortholog from the model plant Arabidopsis thaliana by robotic 

screening.29 From this work, the top 46 compounds were manually retested, and 

IC50 values were measured, showing an inhibition of at least 13% of AtDapL. 

These inhibitors contain one of four main structural moieties: hydrazide, 

rhodanine, barbiturate or thiobarbiturate, which were identified as potential 

pharmacophores. From the initial screening o-sulfonamido-arylhydrazide, a 

reversible inhibitor, showed the best inhibition with an IC50 ∼ 5 µM. Further SAR 

studies of the hydrazide moiety led to the identification of an o-sulfonamido-p-

fluorophenylhydrazide, with an IC50 value of 2.5 µM.30 

 

1.1.4 Three dimensional studies of DapL 

The DAP pathway is a target for a new class of antibiotics or herbicides 

with low toxicity to mammals. This has prompted the study of structures of the 

enzymes involved in DAP biosynthesis, as well as the design of inhibitors for 

them. To date, the crystal structures of three DapL orthologs have been solved: 

A. thaliana (AtDapL),31 Chlamydia trachomatis (CtDapL),32 and Chlamydomonas 

reinhardtii (CrDapL).33,34 The X-ray crystallography analysis of these orthologs 

showed that the holoenzymes are homodimeric, and PLP-dependent with a V-

shaped active site. Although, AtDapL and CrDapL orthologs are highly specific 
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for LL-DAP, the CtDapL ortholog is able to use both diastereomers, LL-DAP and 

meso-DAP, as substrates.14 Watanabe et al. proposed that differences in 

substrate specificity could be due to flexibility of the loops in the active-site 

region.32 This structural study provides insights into their primary and tertiary 

structures. A better understanding of the active site of DapL aminotransferase 

may guide the design of inhibitors. 

It has been demonstrated, that DapL pathway is present in only 14.0 % of 

microbial genomes that have been sequenced.11  Therefore, the possibility to 

explore inhibition of DapL enzyme in organisms that employ the DAP pathway 

could provide the opportunity to develop specific antimicrobials.  

In the work present in this dissertation, a comparative study of DapL 

orthologs from a pathogenic bacterium Leptospira interrogans, Verrucomicrobium 

spinosum and from the alga C. reinhardtii is presented in order to help to 

understand the mode(s)/mechanism(s) of DapL inhibition and to facilitate the 

discovery or development of compounds that could be classified as antibiotics, 

algaecides or herbicides. 

 

1.2 Results and discussion 

1.2.1 DapL activity and kinetic studies 

Our collaborator, Dr. André Hudson at Rochester Institute of Technology, 

(Rochester, NY, USA), sent to our research lab three DapL enzymes from 

different organisms: Clamydomonas reinhardtii (CrDapL, green algae), 
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Leptospira interrogant (LiDapL, pathogenic bacterium) and Verrucomicrobium 

spinosum (VsDapL, soil-dwelling bacterium). All DapL genes (LL-DAP 

aminotransferase enzymes) were previously cloned into plasmids (pET30A/B 

vectors) and transformed into BL21-CodonPlus (DE3)-RIPL strains of 

Escherichia coli by our collaborator Dr. A. Hudson. pET30A/B vectors carry 

kanamycin resistance genes; BL21-Codon Plus (DE3)-RIPL strains carry 

chloramphenicol resistance genes to doubly select for successfully transformed 

bacteria. 

The expression of recombinant DapL enzymes with hexahistidine tags 

was induced using isopropylthiogalactoside (IPTG) and overexpressed in E. coli. 

Cells were lysed by sonication, enzymes were purified by nickel affinity 

chromatography, bound protein was eluted with increasing imidazole 

concentrations, and purity was assessed by SDS-PAGE.  

 

Figure 1.7. Coupled assay system used to determine activity of DapL enzymes. 
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measured using ortho-aminobenzaldehyde (OAB). This compound yields a 

dihydroquinazolium adduct that has an absorbance maximum at 440 nm.15  

The concentration of LL-DAP was varied from 0.0625 to 8.0 mM. The 

increase in absorbance at 440 nm was monitored in triplicate over a period of 

200 min. In order to obtain the data needed to calculate the kinetic parameters, 

absorptions at 440 nm (A440) were collected every 60 seconds. The absolute 

concentrations were calculated using the Beer-Lambert Law A440 = ɛ x 

[substrate]. The Michaelis constant (KM) and the catalytic turnover (kcat) for each 

enzyme were calculated by nonlinear regression analysis using GraphPad Prism 

version 4.0a (Table 1.2). 

Table 1.2. KM, kcat, KM/kcat kinetic parameters for DapL orthologs 

Enzyme VsDapL LiDapL CrDapL 

KM for L,L-DAP (mM) 4 ± 1 1.1 ± 0.2 2.7 ± 0.7 

kcat (s
-1) 1.6 5.7 16.4 

KM/kcat (s
-1 M-1) 0.4 x 103 5.2 x 103 6.1 x 103 

 

The results shown in Table 1.2 indicate that LiDapL ortholog has the 

higher affinity for the substrate (L,L-Dap) and VsDapL ortholog has the lowest 

affinity for the substrate. Moreover, CrDapL and LiDapL have similar catalytic 

efficiency (KM/kcat), which represents the ability of the enzyme to convert the 

substrate into product. 
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1.2.2 Inhibition assay of DapL orthologs 

 

IC50 is a measure of the inhibitory activity of a compound for a specific 

enzyme at the half maximal of inhibitory concentration. From the chemical library 

recently screened against DapL enzyme from Arabidopsis thaliana (AtDapL),29 

five inhibitors were selected. The selection was based on IC50 values (half 

maximal inhibitory concentration). The inhibitors that showed the lower values of 

IC50 were more effective to inhibit AtDapL ortholog. These compounds belong to 

one of the following categories: hydrazide, rhodanine, barbiturate, or 

thiobarbiturate (Table 1.3). Furthermore, these compounds were selected to 

evaluate if the inhibition activities of the three enzymes CrDapL, LiDapL and 

VsDapL were similar or comparable to those obtained for AtDapL from A. 

thaliana. 
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Table 1.3. Inhibitors selected for DapL inhibition study. 

Class of 
Inhibitor 

ChemBridge 
ID number 

Chemical 
Formula 

Structure 

Hydrazide 5925714 C17H15N3O3S 

 
 

Rhodanine 6523070 C19H16NO2S2Cl 

 
 

Barbiturate 6072466 C22H17N3O5 

 
 

Thiobarbiturate 6088649 C12H13N3O2S 

 
 

Thiobarbiturate 
(time-
dependent) 

6088649 C27H20N4O3S 
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Enzymatic inhibition was measured against each inhibitor compound 

selected in a 1.0 mL cell containing 100 mM HEPES-KOH (pH=7.6), 8.5 mM 2-

oxoglutarate, 7.0 mM ortho-aminobenzaldehyde, and 4.3 mg of enzyme for 

LiDapL and CrDapL, or 43 mg for VsDapL. The amount of enzyme was 

determined based on its level of activity. The orthologs VsDapL and CrDapL, 

showed a very different pattern compared with the model enzyme AtDapL, while 

the ortholog LiDapL shows a similar inhibition pattern to AtDapL. In contrast, 

CrDapL was insensitive to hydrazide 39 (IC50 > 200 µM) and VsDapL was 

insensitive to inhibitor 43 (no inhibition detected), but VsDapL was sensitive to 

barbiturate 41 and thiobarbiturate 42, IC50 ∼5 µM and ∼6 µM respectively. The 

results are summarized in Table 1.4. 

Table 1.4. Calculated IC50 values in µM for inhibitor against DapL 

Inhibitor VsDapL CrDapL LiDapL AtDapL 

Hydrazide (39) 47 a 6.8 5 

Rhodanine (40) 250 119 48 46 

Barbiturate (41) 4.7 56 48 37 

Thiobarbiturate 

(42) 

5.7 33 28 25 

Thiobarbiturate 

(43) 

No inhibition 62 25 33 

a) <10% inhibition at 200 µM. 
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1.2.3 Structural insights into DapL 

Structural modeling and protein alignment of DapL enzymes from V. 

spinosum, L. interrogans using the structural data from the A. thaliana, C. 

trachomatis, and C. reinhardtii orthologs showed that the amino acids that 

comprise the active site of DapL are conserved. Moreover, the comparison of the 

quaternary structure of each DapL enzyme showed that the five orthologs have a 

very similar active site (V-shape), but this cannot help to describe the differences 

in inhibition pattern obtained (Figure 1.8). 
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1.3 Conclusions and Future work 

From the three enzymes studied, VsDapL has the lowest catalytic turnover 

compared with the other orthologs. While both CrDapL and LiDapL have similar 

catalytic efficiency. The inhibition study showed that the selected compounds 

were effective inhibitors of the DAP orthologs and the IC50 values ranged from 

4.7 to 250 µM. One of the orthologs (LiDap) had a similar inhibition pattern with 

the model enzyme (AtDap), while the other orthologs showed a very different 

pattern. The inhibition studies of these key enzymes in the biosynthetic pathway 

of lysine and peptidoglycan could potentially be used for bactericides, algaecides 

or herbicides development. 
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Chapter 2. Tabtoxin 

2.1 Introduction 

2.1.1 Pseudomonas syringae 

Pseudomonas are Gram-negative bacteria that are found in different 

environments like water, soil, plants and mammals.35 To this genus belongs 

Pseudomonas aeruginosa, an opportunistic bacterium responsible for pneumonia 

in humans.35 Another species of particular interest in this genus is Pseudomonas 

syringae, which is responsible for several diseases in crops. Different strains or 

pathovars (pv) of this pathogenic bacteria can affect a diversity of vegetables, 

fruits, legumes, cereals and plants. Some examples of crops affected by this 

bacterium are: tomato (P. syringae pv. tomato), bean (P. syringae pv. 

phaseolicola), rice (P. syringae pv. oryzae), kiwi fruit (P. syringae pv. 

actinidiae),36 oat (P. syringae pv coronafaciens),37 A. thalina (P. syringae pv. 

tomato), Brassica species (P. syringae pv. tomato), etc. These pathogenic 

bacteria can cause a wide variety of symptoms on the leaf or fruit such as blasts, 

cankers, galls, necrosis, and chlorosis depending on the strain of Pseudomonas 

syringae.35 

The phytotoxins produced by P. syringae are diverse and some of them 

contain non-proteinogenic amino acids that are released after hydrolysis by 

peptidases in the infected host. For example, the hydrolysis of the tripeptide 

phaseolotoxin (44) releases diaminophosphinyl-sulfamoyl-L-ornithine (octicidine) 

that inhibits ornithine carbamoyltransferase.38 Syringolin A (45) contains two non-

proteinogenic amino acids (5-methyl-4-amino-2-hexenoic acid and 3,4-
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dehydrolysine), and causes irreversible inhibition of the eukaryotic proteasome.39 

Coronatine (46) contains coronafacic acid linked to coronamic acid by a peptide 

bond, mimics the plant hormone jasmonic acid isoleucine (47) and promotes the 

opening of stomata for bacterial infection (Figure 2.1).40  

 

Figure 2.1. Examples of phytotoxins produced by P. syringae 

2.1.2 Tabtoxin 

Tabtoxin (48) is another example of a phytotoxin from P. syringae that 

contains a non-proteinogenic amino acid, tabtoxinine-β-lactam (TβL) (49). A 

minor variant of tabtoxin (TβL-Thr) contains L-serine (50)41 instead of L-threonine 

(Figure 2.2). The Trojan Horse tabtoxin is produced by three different pathovars: 

P. tabaci, P. coronafaciens and P. garcae. Tobacco wildfire disease is caused by 
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P. syringae pv tabaci, and almost a century ago, it used to be a severe and 

devastating disease of tobacco causing whole fields to be eliminated.42 This 

phytotoxin was named wildfire toxin due to its rapid and destructive spread. 

 

 

Figure 2.2. Hydrolysis of amide bond in β-tabtoxin (48, 50) by an 

aminopeptidase to afford the active moiety tabtoxinine-β-lactam (49) 

 

Although tabtoxin was isolated by Wooley in 1952,43 its structure was not 

elucidated until 1971 by Stewart.44 This work also showed that tabtoxin can be 

isomerized as a result of translactamization from attack of the free amine on the 

β-lactam ring, yielding the six member ring δ-tabtoxin (51)44,41 (Figure 2.3). 

  
Figure 2.3. Isomerization of β-tabtoxin (TβL-Thr) to δ-Tabtoxin (TδL-Thr). 
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monocyclic β-lactams (55)45 (Figure 2.4). This means, that tabtoxinine-β-lactam 

could have the potential of being a natural product with antibiotic properties. 

 
Figure 2.4. Examples of antibiotic compounds that contain the β-lactam ring. 

 

2.1.3 Glutamine synthetase - Mode of action 

Early studies on growth inhibition in plants showed that methionine 

sulfoximine (56, Figure 2.5) induce chlorosis in leaves of higher plants.43,46 In 

mammals, the wildfire toxin produced by P. syringae pv tabaci was shown to 

cause seizures, similar to the symptoms that are produced by methionine 

sulfoximine (MSO).47 This observation led to the hypothesis that tabtoxine could 
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Sinden and Durbin demonstrated that tabtoxin causes irreversible inactivation of 

glutamine synthetase (GS).46 

 
Figure 2.5. Methionine sulfoximine (MSO) 
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In 1971, after demonstrating the structure of tabtoxin, Stewart suggested 

some possible mechanisms for inhibition of glutamine synthetase.44 These were 

based on the mode of action of MSO, which is phosphorylated during its 

interaction with the enzyme.48 He also suggested that the wildfire toxin could 

inhibit the enzyme through acylation in the active site analogous with the 

mechanism of action of penicillins (Figure 2.6). 

 
Figure 2.6. Proposed mechanisms of inactivation of GS by Steward (1971).44 

 

Later in 1984, Durbin and collaborators,49 demonstrated that tabtoxin is 

inactive. However, when the peptide bond in tabtoxin is hydrolysed by 

aminopeptidases in the host or in the periplasm of the pathogen, TβL is 

released.50,51 TβL is toxic because it is responsible for irreversible inactivation of 

glutamine synthetase (GS) (Figure 2.7). TβL competes for the active site with the 

natural substrate, glutamate.46,52  
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Figure 2.7. Synthesis of L-glutamine and enzyme targeted by TβL. 

 

This inhibition results in accumulation of high levels of ammonia causing 

chlorosis on the leaves.46 To date, the exact mechanism of inactivation of GS has 

not been demonstrated. 
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 Subsequent genetic studies by Barta et al.,57 led to the finding of the tblA 

gene and it was suggested that this gene may encode a biosynthetic enzyme or 

a regulatory factor. 

 In 1997, Liu and Shaw58 reported the characterization of the dapB gene 

found in P. syringae pv tabaci (BR2.024), which encodes L-2,3-

dihydrodipicolinate reductase (DapB), and they showed that this gene shares a 

high sequence homology (60-90%) with known DapB enzymes from Gram-

negative bacteria. Also, their results demonstrated that the DapB enzyme is 

required for both lysine and tabtoxin biosynthesis. Based on their results, the 

authors suggested that L-THDP is the branch point of lysine and tabtoxin 

biosynthesis. 

 In another genetic study, Liu and Shaw59 described the identification of the 

tabB gene and the enzyme encoded by this gene (TabB) was identified as an 

acetyltransferase that has a role similar to DapD in E. coli, suggesting that it can 

form an acetyl derivative that can be further transformed into TβL (Figure 2.8). 

Moreover, the authors mentioned that TabA has significant sequence homology 

with LysA, a decarboxylase from E. coli and P. aeruginosa, but it can’t 

complement E. coli LysA mutant.59 These findings, and the results of early 

studies led Liu and Shaw to suggest a preliminary biosynthetic pathway for TβL 

(Figure 2.8). 
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a high sequence homology with DapD from E. coli, and the tabB gene can 

replace a defective dapD in E. coli but is not required for DAP biosynthesis in P. 

syringae pv tabaci (BR2.024).59 

In a more recent publication, Kinscherf and Willis,60 reported a 

comparative analysis of the DNA sequence that contains the genes encoding the 

pathway for both tabtoxin production and host resistance using the GenBank 

database available on-line at the National Center for Biotechnology Information 

(NCBI). 

 

Table 2.1. Comparison of Tab genes with similar protein sequences of 

GenBank60 

Gene Name Protein homology or similarity 

tabP Metallopeptidase 

tabD Aat-like aminotransferase 

tabB DapD, tetrahydrodipicolinate N-succinyltransferase 

tabA LysA, diaminopimelate decarboxylase 

tblA No matches in database 

tabC No matches in database 

tblS β-Lactam synthetase  

tblC Clavaminic acid synthetase 

(TauD, taurine dioxygenase) 

tblD Apparent fusion: GMC oxidoreductase-GNAT 

acetyltransferase 

tblE Membrane protein 

tblF D-ala D-ala ligase 

tblR Sugar transporter (MFS transporter) 
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According to this table and previous studies, tabABD genes are similar to 

genes in lysine biosynthesis; tblSCDEF genes encode enzymes that may 

participate in the synthesis of β-lactam ring.60,61 Although some authors59,61 have 

pointed to the structural analogy of TβL with lysine, the origin of both, the 

hydroxyl at C-5 and the carbonyl at C-7 is not clear yet (Figure 2.9).  

 

 
Figure 2.9. Structural analogy of TβL with L-lysine. 
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afford L-α-keto-ε(N-acetylamino)pimelate (24), similar to DAP acyl pathway. 

Then, intermediate (24) may undergo methylation catalyzed by TblA and SAM to 

yield (65). In the second option, L-THDP is first methylated by TblA and SAM to 

give THDP derivative (63). Then, the enzyme TabB would convert this 

methylated L-THDP derivative (63) into an acetyl derivative, L-α-keto-β-methyl-

ε(N-acetylamino)pimelate (65) (Figure 2.10). These transformations are 

suggested based on the hypothesis proposed by Liu and Shaw (Figure 2.8).59 

The acetyl derivative (65) could undergo transamination catalyzed by TabD 

aminotransferase, to afford a methyl-diaminopimelate derivative (66). Then, 

TabA a pyridoxal phosphate (PLP) dependent enzyme, which is highly similar to 

diaminopimelate decarboxylase (LysA), could catalyze decarboxylation of (66) to 

yield a methyl-lysine derivative (67) in the presence of PLP. The inactivated 

methyl in the intermediate (67) would be oxidized to yield (68) by enzyme TblC, 

which has similarity to clavaminic acid synthase,60 an iron / α-ketoglutarate 

dependent dioxygenase.62,63 This oxidative reaction could be related to the 

reaction catalyzed by taurine dioxygenase (TauD),60,63 which uses the oxidative 

decarboxylation of α-ketoglutarate (αKg) to activate dioxygen and catalyze the 

hydroxylation reaction (Figure 2.11). 
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Figure 2.11. Catabolism of taurine by taurine dioxygenase (TauD). 
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intramolecular rearrangement to afford the stable six-membered ring, creating an 

inactive δ-lactam isotabtoxin (TδL). 

 

 The difficulty in obtaining intermediates could be due to rapid conversion 

of intermediates to the product, as well as the transfer of these intermediates to 

different domains within the enzyme before being released into the cytoplasm,64 

making the study of the biosynthetic pathway more challenging. Hence, the 

chemical synthesis of labeled intermediates could help to demonstrate the 

complete set of intermediates involved in the biosynthesis of tabtoxin, and at the 

same time, contribute to the understanding of the function of each enzyme 

involved. 

 

The study of the biosynthetic pathway of tabtoxin may help to isolate 

useful intermediates and understand the biogenesis of the β-lactam ring, which 

belongs to the family of natural antibiotic monobactams. The significance of the 

biosynthesis and resistant mechanisms is essential for practical applications in 

agriculture. 
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 To the best of our knowledge, there is no precedent for the asymmetric 

synthesis of the novel functionalized amino acids 67 and 69. A convenient 

methodology that has been successfully employed in our group for the synthesis 

of unusual amino acids is the photolysis of diacyl peroxides.66,67 In these studies, 

L-aspartic acid or L-glutamic acid were used to generate diacyl peroxide 

derivatives (Scheme 2.1). 

 

Scheme 2.1. Synthesis of functionalized amino acids by photolysis of diacyl 
peroxides. 
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and unsymmetrical amino acids in good yields (52-58%) without affecting the 

chiral centers.66,67  

 The retrosynthetic analysis of the three proposed biosynthetic 

intermediates of tabtoxin (22, 67, 69) shows that L-aspartic acid (18) is a common 

precursor in the synthesis of the three proposed substrates using a diacyl 

peroxide approach (Scheme 2.2).  

 

 

Scheme 2.2. Diacyl peroxide approach. 
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harsh conditions to remove the α-methylbenzyl moiety makes this approach not 

suitable (Scheme 2.5). 

 

 

Scheme 2.5. Synthesis of 84 from 2-methylene succinic acid 81. 
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Scheme 2.6. Synthetic methodology of (S)-2-(aminomethyl)butanedioic acid 89 

by Waytt. 
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Scheme 2.7. Synthesis of meso-DAP by diacyl peroxide approach. 
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the free acid 97 in 92% yield. Finally, hydrogenolysis with palladium/carbon in 

methanol removes the amine protecting groups to afford meso-DAP (28). This 

approach consisted of 6 steps with an overall yield of 12.5% (unlabeled material).  

Although this methodology can provide meso-DAP, we could not envision 

a way to introduce deuterium or 13C in a later stage of this synthesis. One 

alternative was to use labeled L-aspartic acid (2,3,3-3D), but this needs further 

orthogonal protection adding more steps at the beginning of this approach, which 

could be more time consuming and expensive. For that reason, I looked at the 

literature for an alternative that would allow me to prepare labeled material. 

 

2.2.2 Asymmetric synthesis of meso-DAP by cross metathesis 

The cross metathesis (CM) permits the coupling of two terminal alkenes 

with concomitant formation of a new alkene catalyzed by ruthenium carbene 

complexes (Scheme 2.8). The improvement in stability of the ruthenium catalysts 

has allowed a more extensive use of cross metathesis in organic synthesis as a 

key step to form C-C bonds in natural products,69 amino acid derivatives,70 as 

well as in the formation of heterocyclic rings and olefins with diverse functional 

groups that can be further transformed.71 

 

  

Scheme 2.8. Cross metathesis of two terminal olefins. 
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Recent publications have used this reaction to have access to 

diaminopimelic acid derivatives by preparation either in solution72,73 or solid 

phase.74 The advantage of this approach is that the starting materials allyl and 

vinyl glycine are easily accessible and in one-step, a diaminopimelic acid 

derivative containing a double bond is formed. Further reduction of the double 

bond would afford the diaminopimelic acid. Therefore, we considered the double 

bond as a potential route to introduce deuterium, leading to the preparation of 

labeled meso-diaminopimelic acid 98 (Scheme 2.9). 

 

 

Scheme 2.9. Retrosynthetic analysis of labeled meso-DAP. 
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Reduction of the double bond with deuterium gas with a catalytic amount of 

palladium on carbon allowed the introduction of deuterium into the alkene. 

Removal of the protecting groups in one step yielded the labeled meso-DAP (98) 

(Scheme 2.10). 

 

Scheme 2.10. Synthesis of labeled meso-DAP (95). 
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Brandon Findlay, Alireza Bakhtiary and Jeella Z. Acedo. My contribution to this 

project was the syntheses of an orthogonally protected meso-DAP by using the 

cross metathesis methodology (Scheme 2.11).  

 

Scheme 2.11. Synthesis of orthogonally protected meso-DAP 108. 
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both E and Z isomers (112). Later hydrogenation of compound 112 with 

palladium over carbon yields orthogonally protected (S,S)-2,7-diaminosuberic 

acid (113) (Scheme 2.12). 

 

Scheme 2.12. Synthesis of orthogonally protected (S,S)-2,7-diaminosuberic acid. 

 

The synthesis of the analogs of the natural neopetrosiamides A & B was 
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diastereoselective manner 3-substituted (alkyl or aryl) pyroglutamic acids after 

the introduction of a double bond by established procedures (Scheme 2.15).  

 

Scheme 2.15. Synthesis of 3-substituded pyroglutamic acid derivatives. 

 

The purpose of using the OBO-ester protecting group has two 
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the product 130 in a stereoselective manner with a moderate yield (65%) 

(Scheme 2.16). 

 

Scheme 2.16. Synthesis of 3-methyl-pyroglutamic acid derivative. 
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In order to afford the product, several conditions were tried. In the next 

attempt, we reduced the amount of TFA from 4 equivalents to 1.6 equivalents 

and reduced the amount of water to 11 equivalents, but this only extended the 

reaction time from 15 min to 60 min to afford dihydroxy ester 131. The second 

attempt was the addition of a 10% aqueous solution of cesium carbonate and we 

decided to extend the reaction time until hydrolysis of dihydroxy ester 131 was 

observed. After one day of stirring the reaction mixture with the mild base, no 

starting material 130 was observed and a mixture of products was found 

(Scheme 2.18). 

 

 

Scheme 2.18. Hydrolysis of OBO ester 130. 
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group on nitrogen, followed by the deprotection of the carboxylic acid moiety 

(Scheme 2.19). 

 

 

Scheme 2.19. Deprotection of nitrogen followed by removal of OBO ester. 

 

This modification afforded the product 135 in a better yield (49%) after 

three steps. However, the re-protection of the nitrogen with benzyl bromide under 

basic conditions following a literature procedure83 for benzylation of proline did 

not yield the protected product 136 (Scheme 2.20). 

 

 

Scheme 2.20. Attempt of benzylation of 135. 
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protecting group on the nitrogen does not need to be removed. Acevedo et al. 

reported a method to prepare (3S,4R)-3,4-dimethyl-L-pyroglutamic acid from L-

pyroglutamic acid.77 In order to prevent racemization of the α-proton, the authors 

reduced the L-pyroglutamic acid to (S)-5-hydroxymethyl-2-pyrrolidinone (137). 

Therefore, we decided to adapt this methodology to prepare a 3-methyl-

pyrrolidinone derivative that has the nitrogen protected either with Boc (143) or 

Cbz protecting group (144) (Scheme 2.21). 

 

 

Scheme 2.21. Synthesis of compounds 143 and 144. 
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benzyl chloroformate yielded product 140 in 71%. Formation of the double bond 

by α-selenation of either 139 or 140 followed by oxidation-elimination gave a 

better yield when nitrogen was protected with Boc (74%) than with the Cbz group 

(44%). The Gilman reagent (Me2CuLi) was formed in situ by treatment of copper 

iodide (1 eq) with methyllithium (2 eq) in THF at –78 ºC. A Michael addition of 

lithium dimethylcuprate to the α,β-unsaturated systems afforded the 

corresponding methyl derivatives 143 (49%) and 144 (73%), respectively 

(Scheme 2.21). The deprotection of the silyl ether moiety in 144 followed by 

oxidation was accomplished in one step using Jones reagent in 55%. Since the 

protecting group Boc is acid sensitive, it seemed that the yield would be lower for 

the deprotection/oxidation of compound 143 and this reaction was not attempted. 

After synthesizing the 3-methyl-pyroglutamic acid 145, attempts to remove the 

carboxylic acid moiety by Barton decarboxylation were made but without success 

(Scheme 2.22). 

 

Scheme 2.22. Efforts towards the synthesis of 75. 

 These results encouraged us to attempt a new approach to synthesize the 
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Scheme 2.23. Proposed retrosynthesis of 4-amino-3-methylbutyric acid 75 

There are examples in the literature of enantioselective conjugate 

additions of organozinc to cyclic enones catalyzed by copper complexed with 

chiral phosphorus amidite,86 or aryl diphosphite87 ligands derived from binol that 

proceeded with high enantiomeric excess (ee). Based on the results reported by 

Cook and coworkers,88 we decided to apply their methodology to accomplish 

copper catalyzed conjugate addition of dimethylzinc to the commercially available 

α,β-unsaturated-γ-lactam 147 (Scheme 2.24). 
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γ-lactam 148. 

 

HO
NH2

O
HN

O

BocN

O

(75) (77) (147)

BocN

O
Me2Zn (1.2 eq)

L* (4% mol), CuTC

toluene, 0 °C
BocN

O

(147) (148)

S
OCu

O

O
P

O
N

Ph

Ph

L*:

CuTC

copper(I)-thiophene-2carboxylate

(149) (150)



	 57	

Unfortunately, the reaction conditions were not able to produce the 1,4-

adduct. Thus, this reaction requires further optimization. Due to the extent of 

variables that needed to be optimized, such as changing solvent, copper salt or 

ligands, we decided to switch to a different approach. Since we have been 

successful in adding organocuprates to α,β-unsaturated γ-lactams bearing a 

chiral moiety (129, 141, 142), we thought that an acyclic α,β-unsaturated 

carbonyl compound attached to a chiral auxiliary could undergo an 

enantioselective Michael addition. This intermediate can be constructed by a 

Horner-Wadsworth-Emmons reaction between a phosphonate and an amino 

aldehyde (Scheme 2.25). 

 

Scheme 2.25. Alternative retrosynthetic analysis of 75. 
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HO
NHR

O
NHR

O
P

OEt

O O

OEt H

O

NHCbz+

(75)



	 58	

 

Scheme 2.26. Efforts towards the synthesis of 75. 

 

The Horner-Wadsworth-Emmons reaction between aldehyde 156 and the 

carbanion of phosphonate 153 did not lead to the desired α,β-unsaturated 
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2.2.4 Wittig approach 

In the new methodology, we envisioned product 67 could be formed from 

hydrogenolysis of an alkene derivative 159, which could also allow for the 

introduction of deuterium needed for further labeling studies. Moreover, the 

unsaturated compound 159 could be the product of a Wittig reaction between the 

commercially available Garner aldehyde 169 with the ylide derived from the 

amino alcohol 166 (Scheme 2.27). 

 

 

Scheme 2.27. Retrosynthetic analysis of compound 67. 
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Scheme 2.28. Synthesis of catalyst 164. 

 

Aminomethyl ether 165 was prepared in moderate yield (60%) by a 
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Scheme 2.29. Synthesis towards compound 67. 
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(93%). Subsequent reduction of the methyl ester in 177 could be accomplished 

with DIBAL to afford aldehyde 178 (Scheme 2.31). 

 

Scheme 2.31. Synthesis towards compound 175. 

 

The chiral auxiliary 182, required for the synthesis of compound 184, was 

prepared according to methodology reported by Bull et al.99 Boc-L-valine 179 was 
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bromide in THF to afford alcohol derivative 181 in moderate yield (64%). Finally, 
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desired oxazoline 182 in moderate yield (50%) (Scheme 2.32). 
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Scheme 2.32. Synthesis of compound 182. 

The chiral auxiliary 182 could be used to complete the synthesis of 

compound 184. Firstly, acylation of oxazoline 182 with acryloyl chloride would 

afford the corresponding N-acryloyl oxazoline 183, which could undergo 

conjugate addition of lithium dibenzylamide to yield compound 184 (Scheme 

2.33).  
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Compounds 178 and 184 could undergo an asymmetric aldol 

condensation, directed by the chiral auxiliary moiety in 184, to form alcohol 

derivative 185. Further elimination with DBU would afford either α,β-unsaturated 

compound 186 or unconjugated alkene derivative 187. Compound 187 could 

undergo hydrogenolysis in the presence of palladium over charcoal to yield 

intermediate 188. If product 186 were formed, then an asymmetric hydrogenation 

could be carried out with a proper catalyst like Burks’ catalyst, [Rh(I)(COD)-(S,S) 

or -(R,R)-Et-DuPHOS)+OTf–. Wang et al.100 have reported an efficient method to 

prepare orthogonally protected meso-DAP and LL-DAP derivatives from 

asymmetric hydrogenolysis of a dehydroamino acid (189) using Burks’ catalyst in 

high enantiomeric excess (ee). 

 

Scheme 2.34. Example of an asymmetric hydrogenolysis using Burks’ 

catalyst.100 

 

Finally, compound 188 could undergo removal of the chiral auxiliary in the 

presence of lithium hydroxide, follow by Boc deprotection with TFA to afford the 

desired compound 69 (Scheme 2.33).  
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2.3 Conclusions and future work 

 

Synthesis of meso-DAP (28) was completed by a diacyl peroxide 

approach in six steps with an overall yield of 12.5%. The labeled meso-DAP (98) 

was prepared by a CM methodology with an overall yield of 13%. Protected 173 

was successfully synthesized in unlabeled form through a Wittig approach. 

Synthesis of unlabeled 69 and labeled remains to be done. The synthesis of the 

proposed intermediates would allow studying the enzymes TblA, TabB, TabD, 

TblC, TblS and TblF in order to demonstrate the proposed biosynthesis of 

tabtoxin. 

 

The synthesis of diamino acids derivatives using cross metathesis (CM) 

gives the opportunity to synthesize selectively protected meso-DAP 108 or (S,S)-

2,7-diaminosuberic acid 113 for further incorporation into peptide chains to study 

natural products like tridecaptin A1 (TriA1)
76 or for the synthesis of carbon 

analogs to replace cysteine bridges in natural peptides like neopetrosiamides 

A&B. 
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Chapter 3: Chemical synthesis of a standard for LOV enzymes 

studies. 

3.1 Introduction 

3.1.1 Polyketides 

Polyketides (PK) are secondary metabolites made by different organisms that 

have shown a wide spectrum of pharmaceutical activities with annual sales over 

$20 billion USD.101 Some medical applications include antibiotics (erythromycin 

A), immunosuppressants (rapamycin), antiparasitics (plakortide P), cholesterol 

lowering (lovastatin), HIV inhibitor (equisetin) and antitumoral agents (mitomycin 

C) (Figure 3.1). 

 

 

Figure 3.1. Examples of pharmaceutically active polyketides. 
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These diverse structures are made by huge multidomain enzymes, which 

are known as polyketide synthases (PKS), and are able to build polyketide 

chains from acyl-CoA building blocks.102 Several studies are in progress in order 

to understand how these enzymes work.101,103 An interesting fact is that the 

biosynthesis of the polyketides highly resembles the biosynthesis of fatty acids 

(FA), and both use common precursors and enzymes for chain assembly.102 The 

similarities in chemical steps and intermediates shared with fatty acids, has 

helped to understand the biosynthetic process of polyketides synthesis. They are 

alike in the chemical mechanism involved in chain extension and also in the 

common pool of precursors employed. 

The central domain in fatty acid synthases (FASs) and polyketide 

synthases (PKSs) is the acyl carrier protein (ACP). The ACP is ~80-100 amino 

acids long that functions as a tether for the growing chain.104 All PKSs and FASs 

require posttranslational modification of their ACP domain to become catalytically 

active. The inactive apo form is converted to the active holo form by 

posttranslational transfer of the 4'-phosphopantetheinyl (PPant) moiety from 

coenzyme A (CoA) to the side chain hydroxyl of a conserved serine residue in 

the ACP domain. This transformation is assisted by a serine-specific 

phosphopantetheinyl transferases (PPTases) (Figure 3.2).104-106  
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Figure 3.2. Formation of the active holo ACP from the inactive apo form. 

 

The PPant moiety can be considered of as an “arm” of 20 Å that ACP 

uses to tether the growing acyl intermediates between the different domains in 

the megaenzymes. The –SH of the PPant moiety also acts as a nucleophile for 

acylation by a substrate, which may be acetyl-CoA or malonyl-CoA for FAS and 

PKS respectively. 

Usually, polyketides are assembled from C2 units by repeated head to tail 

linkage in the same fashion like fatty acids.107 In the FA biosynthesis the starter 

substrate is an acetyl unit and the chain extender is a malonyl unit.103 

Analogously, the PK biosynthesis the starter unit is usually either acetyl or 

propionyl, and the extender unit could be malonyl or methylmalonyl.103 First, a 

malonyl-CoA unit (extender) undergoes decarboxylation followed by a Claisen 

condensation with an acyl-CoA unit (starter) assisted by a β-ketoacylsynthase 

(KS). Then, the β-ketoacyl product is reduced by a ketoreductase (KR) to furnish 

a hydroxyl moiety, before elimination by a dehydratase (DH) to afford a double 

bond, which is reduced by an enoyl reductase (ER) to give a saturated carbon 

chain longer than the original by two methylene units, before the next round of 

condensation (Figure 3.3). 
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Among the enzymes that make these compounds are the highly reducing 

iterative polyketide synthases (HR-IPKSs) found in fungi.108 These enzymes use 

a set of different domains to produce diverse fungal metabolites. One example is 

lovastatin that is used as precursor to the semi-synthetic drug simvastatin: both 

are cholesterol-lowering drugs.111
 The key mode of action of these compounds is 

through the inhibition of (3S)-3-hydroxy-3-methylglutaryl-coenzyme A reductase 

(HMG-CoA reductase), which is the rate limiting enzyme in the biosynthesis of 

cholesterol.112
 The biosynthesis of lovastatin proceeds via the nonaketide 

dihydromonacolin L (DML). The proteins responsible for DML production are 

LovB and LovC.111,113
 The enzyme LovB is able to catalyze about 35 reactions to 

yield DML, and the most remarkable fact is that this enzyme catalyzes a Diels-

Alder reaction to form the decalin ring system. Some efforts have been made to 

incorporate early-hypothesized polyketide intermediates into LovB as SNAC 

esters, but still the rest of the intermediates need to be confirmed. 
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3.1.3 Lovastatin 

 Lovastatin is a statin that is also known as monacolin K, mevinolin, or 

mevacor. Originally, it was isolated from Aspergillus terreus by a Merck Sharp & 

Dohne research group,114
 but it was also found in Monascus ruber.115

 An 

interesting feature of this compound is its ability to reduce cholesterol levels, 

which has led to several studies in order to understand its molecular and 

biosynthesis origin.116,117
 Several unnatural analogs were also commercialized 

including simvastatin (Zocor), fluvastatin (Lescol), and atorvastatin (Lipitor) 

(Figure 3.7). 

 

Figure 3.7. Examples of statins. 
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The mode of action of the statins is through the inhibition of the enzyme 

(3S)-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase or 

HMGR), which controls the synthesis of cholesterol. The natural substrate of this 

enzyme is HMG-CoA, which is a key intermediate in the biosynthesis of 

cholesterol. Statins are attractive compounds because they mimic and block 

HMG-CoA but do not cause accumulation of toxic steroid intermediates.118,119 

 

Figure 3.8. Mode of inhibition of the enzyme HMG-CoA reductase. 

 

It has been demonstrated by labeling studies that lovastatin is generated 

via a polyketide biosynthetic pathway.120-122 

 

Figure 3.9. Labeling studies to demonstrate the polyketide nature of lovastatin. 
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When one (or several) of the expected transformations are blocked, the 

PKS LovB will follow a shunt pathway to form undesired products, typically as 

pyrones. Four substrates/cofactors are required for DML production: malonyl-

CoA, SAM, NADPH and LovC. Also, the methylation step plays a critical role in 

the function of the endogenous ER.108 

 

Figure 3.14. Reconstitution of LovB with different substrates or cofactors.108 
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and incubated with malonyl-CoA, NADPH, SAM, LovC, TE and no DML was 

formed (Figure 3.16).108
  

 

Figure 3.16. Effect of the CON domain in the biosynthesis of DML.108 
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When the fully reconstituted LovB-∆Con system was supplemented with 

heterologously expressed CON domain, functional activity was recovered (Figure 

3.16). This showed that the CON domain can work in trans with LovB and LovC. 

This result suggests that the CON domain may be responsible for the 

stabilization of the later stage steps of DML production, and could be involved in 

the Diels-Alder cyclization.  

In Figure 3.16 LovC was replaced by an exogenous ER (MlcG) to 

determine whether replacement of LovC would affect the interaction between 

LovC and MeT during tetraketide biosynthesis. MlcG is a trans-ER from the 

compactin (200) biosynthetic pathway in Penicillium citrinum. Since compactin 

does not contain the methyl group at C-6, the effect of this LovC analog was 

examined. Surprisingly, MlcG restored the activity of SAM-free LovB and a 6-

desmethyl analog of DML  was generated. Alternatively, when SAM was added to 

the mixture, DML was produced. These results imply that the exogenous ER 

(MlcG) is not affected by the presence of the methyl group. However, LovC will 

not produce DML in the absence of SAM and the methylation of the tetraketide is 

a key step for proper function of LovB and LovC. 

 

3.1.3.3. Diels Alderase 

 One interesting aspect of the biosynthetic pathway of lovastatin is the 

intramolecular Diel-Alder [4+2] cycloaddition reaction, which generates the 

dehydrodecalin core of DML. This reaction has been suggested to be an enzyme 

catalyzed process.121
 Other examples of Diels-Alder reactions that are present in 
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nature include solanapyrone B,126-127
 equisetin128-129

 and cytochalasin E130-131
 

(Figure 3.17). 

 

 

Figure 3.17. Examples of natural products presumably assembled by Diels-Alder 

reaction. 
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3.2 Results and discussion 

3.2.1 Synthesis of hexaketide: ethyl (1S,2S,4aR,6S,8aS)-2,6-dimethyl-

1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylate 

 

Iterative polyketide synthases (PKSs) have only a single copy of each 

domain (KS, DH, ER), which can be utilized repeatedly for chain elongation and 

tailoring of diverse functionalities. The limitation in understanding the 

programming of PKSs has prompted the use of intermediates that are part of the 

pathway as probes, in order to understand the mechanism that governs PKS 

enzymes. It has been demonstrated that N-acetylcysteamine (SNAC) thioesters 

of putative intermediates that can be used to probe the mechanism of modular 

bacterial PKS.132-133 Another advantage of this approach is that these putative 

intermediate SNAC thioesters can be studied in cell-free systems.134-135 

From early studies, it has been suggested that the decalin ring is formed 

by a [4+2] reaction catalized by a Diels-Alderase enzyme.109, 111 The SNAC 

thioester can be used as a probe to study LovB and the CON domain in order to 

understand the programming of the lovastatin biosynthetic pathway. The 

objective of this project is to synthesize the SNAC ester of an unlabeled (223) 

and labeled hexaketide with deuterium as standards for GC-MS. These 

standards will be part of a study conducted by a member of our group, Amy 

Norquay, in order to investigate the substrate specificity of LovB and to 

demonstrate if the CON domain of the partial NRPS at the C-terminus of LovB is 

responsible for catalyzing the Diels-Alder reaction during the biosynthesis of 
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The starting material is the commercial available L-glutamic acid 208, 

which in presence of sodium nitrite and hydrochloric acid affords γ-butyrolactone-

γ-carboxylic acid 209 in 85% (Scheme 3.1). Subsequent reduction of the 

carboxylic acid moiety with borane dimethyl sulfide yields the corresponding 

primary alcohol 210 in 70%, which is protected as tert-butyldiphenylsilyl ether 

211 in 83% yield. Treatment of this lactone 211 with sodium hexamethyldisilazide 

and 1-bromohexa-2,4-diene followed by lithium hexamethyldisilazide and t-butyl 

bromide gave the desired compound 212 in 22% yield. Compound 212 was 

deprotected with tetrabutylammonium fluoride to yield the primary alcohol 213 in 

66%. Swern oxidation of this alcohol 213 afforded the corresponding aldehyde 

followed by Witting reaction with ethyl (triphenylphophoranylidene)acetate in the 

same reaction vessel gave the triene 214 in 65% yield in two steps. Diels-Alder 

reaction of this product 214 produced the functionalized decalin ring 215 in 61% 

yield. 

 

Further functionalization of the decalin ring 215 is shown in Scheme 3.1. 

Firstly, the lactone ring of 215 is opened with Super-Hydride followed by sodium 

borohydride to produce the dialcohol 216, then the primary alcohol is protected 

as thiocarbonate 217. Selective oxidation of the secondary alcohol in 217 with 

pyridinium dichromate (PDC) afforded the corresponding ketone 218 in 65% yield 

over 2 steps. Treatment with tri-n-butyltin hydride afforded the keto-ester 219 by 

deoxygenation of the methyl xanthate 218 in 80% yield. Subsequent protection of 

keto-ester 219 as a dithioketal afforded compound 220 in 79% yield. 
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Chapter 4. Experimental Procedures 

4.1 General Information 

4.1.1 Reagents, solvents and purification 

All commercially available reagents were purchased from Sigma-Aldrich 

Canada Ltd., Fisher Scientific Ltd., Alfa Aesar Ltd., Chem-Impex International 

Inc., Caledon or VWR International and used without further purification unless 

otherwise stated. All solvents were of American Chemical Society (ACS) grade 

and were used without further purification unless otherwise stated. All anhydrous 

reactions were conducted under a positive pressure of argon using flame-dried 

glassware. Solvents for anhydrous reactions were distilled prior to use: 

dichloromethane and dichloroethane were distilled over calcium hydride, 

tetrahydrofuran and diethyl ether were distilled over sodium with benzophenone 

as an indicator, and methanol was distilled over magnesium. Triethylamine, 

DMSO, pyridine were dried over 4Å molecular sieves. HPLC grade acetonitrile, 

dimethylformamide, isopropyl alcohol, hexanes and methanol were used without 

further purification. Commercially available ACS grade solvents (>99.0% purity) 

were used for column chromatography without further purification. Deionized 

water was obtained from a Milli-Q reagent water system (Millipore Co., Milford, 

MA). Unless otherwise specified, solutions of NH4Cl, NaHCO3, HCL, NaOH, and 

Na2S2O3 refer to aqueous solutions. Brine refers to a saturated solution of NaCl. 

All reactions and fractions from column chromatography were monitored by thin 

layer chromatography (TLC) using glass plates with a UV fluorescent indicator 

(normal SiO2, Merck 60 F254). One or more of the following methods were 



	 93	

employed for visualization: UV absorption by fluorescence quenching, staining 

with phosphomolybdic acid in ethanol (10 g/100 mL), ninhydrin (ninhydrin : acetic 

acid : n-butanol, 0.6 g : 6 mL : 200 mL) potassium permanganate (KMnO4 : 

K2CO3 : NaOH : H2O, 1.5g : 10g : 0.12g : 200 mL). Flash chromatography was 

performed using Merck type 60, 230 - 400 mesh silica gel. Preparative thin layer 

chromatography (TLC) purification was performed using plates purchased from 

Analtech (1000 or 500 microns). The removal of solvents in vacuo was 

performed via evaporation under reduced pressure using a Büchi rotatory 

evaporator.  

 

4.1.2 Characterization 

Optical rotations were measured on a Perkin Elmer 241 polarimeter with a 

microcell (10 cm, 1 mL) at ambient temperature and are reported in units of 10-1 

deg cm2 g-1. All reported optical rotations were referenced against air and 

measured at the sodium D line (λ = 589.3 nm)  

Infrared spectra (IR) were recorded on either a Nicolet Magna 750 FT-IR 

or a 20SX FT-IR spectrometer. The term cast refers to the evaporation of a 

solution on a NaCl plate.  

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian 

Inova 600, Inova 500, Inova 400, Inova 300, DD2 MR 400, VNMRS 700 or Unity 

500 spectrometer at 27 ºC. For 1H (300, 400, 500, 600 or 700 MHz) spectra, δ 

values were referenced to CDCl3 (7.26 ppm), CD3OD (3.30 ppm), or D2O (4.79 
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ppm) and for 13C (75, 100, 125 or 150 MHz) spectra, δ values were referenced to 

CDCl3 (77.0 ppm), CD3OD (49.0 ppm). Reported splitting patterns are 

abbreviated as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.  

Mass spectra (MS) were recorded on a Kratos AEIMS-50 (high resolution, 

electron impact ionization (EI)), and an Agilent Technologies 6220 oaTOF (high 

resolution, electrospray (ESI)). LCMS Agilent Technologies 6130 LCMS. 

 

4.2 Biological procedures 

4.2.1 Expression of DapL orthologs 

 

The cloning of the three DapL orthologs was accomplished by the 

research group of our collaborator Dr. André Hudson at Rochester Institute of 

Technology (Rochester, NY, USA). The recombinant expression of each DapL 

ortholog was done as follow: 10 mL of LB broth containing 50 µg/mL kanamycin 

and 34 µg/mL chloramphenicol were inoculated and the bacteria was grown 

overnight at 37 ºC with constant shaking at 225 rpm. These starter cultures were 

added into 1 L of LB media containing 50 µg/mL kanamycin and 34 µg/mL 

chloramphenicol and grown at 37 ºC with constant shaking at 225 rpm until an 

OD600 of ~0.5 was achieved. DapL recombinant expression was initiated by the 

addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration 

of 0.5 mM at 25 ºC for 6 hours with constant shaking at 225 rpm.  The bacterial 

cells were pelleted by centrifugation at 7000 x g at 4 ºC for 20 minutes. 
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4.2.2 Purification of DapL orthologs 

For purification, bacterial cells were thawed and resuspended in 30 mL of 

sonication buffer containing 50 mM sodium phosphate, 300 mM sodium chloride 

at pH 8.0. This suspension was sonicated on ice at 4 ºC for 4 x 30 s. Cellular 

debris was pelleted by centrifugation at 11 000 x g at 4 ºC for 30 minutes. The 

decanted supernatant was incubated with 4 mL of Ni-NTA agarose resin 

(Qiagen, USA) and shaken at 4 ºC for 45 minutes. Upon addition to a biological 

column, the Ni-NTA agarose resin was packed at a rate of 1 mL/min, and then 

washed with 3 x 30 mL of wash buffer containing 50 mM sodium phosphate, 300 

mM sodium chloride, 10 mM imidazole at pH 8.0 at a rate of 2 mL/min. 

Recombinant DapL enzymes were eluted with 3 x 10 mL of elution buffer 

containing 50 mM sodium phosphate, 300 mM sodium chloride, 250 mM 

imidazole at pH 8.0 at 2 mL/min. Purification of the DapL orthologs was 

monitored by UV absorption at 220 nm (data not shown). All wash and elution 

fractions were monitored by SDS-PAGE analysis. Fractions containing His6-

tagged DapL enzymes were concentrated using Amicon Ultra 10,000 molecular 

weight cutoff (MWCO) filter units by spinning the samples at 7,000 x g for 15 

minutes at 4 ºC. Concentrated DapL enzymes were diluted to 0.043 mg/mL 

(LiDapL and CrDapL) or 0.430 mg/mL (VsDapL) and stored at 4 ºC in 100 mM 

HEPES-KOH pH 7.6 buffer containing 20 µM pyridoxal-5’-phosphate (PLP), 2 

mM ethylenediaminetetraacetic acid (EDTA pH 7.0), and 1 mM dithiothreitol 
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(DTT). Overall yields of purified proteins were: 6.2, 20.4, and 6.6 mg/L for 

LiDapL, VsDapL, and CrDapL respectively.   

 

4.2.3 Quantification of purified DapL enzymes 

A bicinchoninic acid assay (BCA)136,137 was used to determine the protein 

concentration of purified DapL preparation against a bovine serum albumin 

(BSA) standard curve138,139 after buffer exchange and concentration. 

 

4.2.4 Preparation of ortho-aminobenzaldehyde assay solution to test DapL 

activity 

To test DapL activity the ortho-aminobenzaldehyde (OAB) assay was 

used according to a literature procedure.15 A stock solution of 10 mM 2-

oxoglutarate and 2.3 mM L,L-DAP in 100 mM HEPES–KOH pH 7.6 was 

prepared. The stock solution was added to solid OAB, giving a final concentration 

of 8.3 mM. To prevent polymerization of the OAB, the solution was prepared 

immediately before each assay. 850 µL of this assay solution was added to a 

cuvette along with 100 µL of DapL enzyme (0.043 mg/ mL for LiDapL and 

CrDapL, 0.430 mg/mL for VsDapL) in 100 mM HEPES–KOH pH 7.6 containing 

20 µM PLP, 2 mM EDTA, and 1 mM DTT. 50 µL of HEPES–KOH pH 7.6 buffer 

was added to bring the cell volume up to 1 mL. The effective concentration of 

each component was: 8.5 mM 2-oxoglutarate, 2.0 mM L,L-DAP, 7.0 mM OAB, 

and either 4.3 µg/mL (LiDapL, CrDapL) or 43 µg/mL (VsDapL) DapL during the 

assay. Under the enzyme kinetics program in the Varian Cary 100 Bio UV–vis 
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spectrophotometer, the cells were multi-zeroed, and their absorbance at 440 nm 

was monitored over 200 min to assess L,L-DAP aminotransferase activity.  

 

4.2.5 Kinetic constants determination 

The kinetic constants KM and kcat for DapL orthologs were calculated using 

the previously described ortho-aminobenzaldehyde (OAB) assay to test L,L-DAP 

aminotransferase activity, using different concentrations of L,L-DAP. Enzymatic 

activity was measured in 1.0 mL cells containing 100 mM HEPES–KOH (pH 7.6), 

8.5 mM 2-oxoglutarate, 7.0 mM OAB, and DapL enzymes (2 µM of LiDapL and 

CrDapL; 20 µM for VsDapL) in 100 mM HEPES–KOH pH 7.6 containing 20 µM 

PLP, 2 mM EDTA, and 1 mM DTT. The concentration of L,L-DAP was varied 

between 0.0625 and 8.0 mM (0.0625, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 mM), 

monitoring the increase in absorbance at 440 nM every 60 s for 25 min. Runs 

were conducted in triplicate for each enzyme. Absorbances were converted to 

molarity using an approximated ε = 316 M-1 cm-1 for the dihydroquinazolium 

chromophore at 440 nm. The kinetic constants were calculated by nonlinear 

regression analysis using GraphPad Prism version 4.0a. 
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4.2.6. Procedure for inhibitors screening of DapL orthologs 

 

The ortho-aminobenzaldehyde assay was employed to test DapL 

inhibition.15 Eight separate reaction conditions were run simultaneously using a 

Varian Cary 100 Bio UV-VIS spectrophotometer. Cell 1 contained a positive 

control containing the DapL ortholog in the absence of inhibitor. Cells 2 to 7 had 

increasing concentrations (5, 10, 25, 50, 100, 200 µM respectively) of inhibitor in 

addition to enzyme and assay solution. Cell 8 served as the negative control, in 

which no enzyme or inhibitor is added to the assay solution. 

To each cell, 850 µL of assay solution containing 10 mM 2-oxoglutarate, 

8.3 mM ortho-aminobenzaldehyde, and 2.3 mM L,L-DAP were added. 50 µL of 

DMSO were added to cells 1 and 8. 50 µL of inhibitor solutions dissolved in 

DMSO were added to cells 2 to 7 in increasing concentrations.  100 µL of DapL 

enzyme solution (0.043 mg/mL for LiDapL and CrDapL, 0.430 mg/mL for 

VsDapL) in 100 mM HEPES-KOH pH 7.6 containing 20 µM pyridoxal-5’-

phosphate (PLP), 2 mM ethylenediaminetetraacetic acid (EDTA pH 7.0), and 1 

mM dithiothreitol (DTT) were added to cells 1-7, with 100 µL of 100 mM HEPES-

KOH pH 7.6 containing 2 mM EDTA and 1 mM DTT being added to cell 8. Under 

the enzyme kinetics program in the Varian Cary 100 Bio UV-VIS 

spectrophotometer, the cells were multi-zeroed and their absorbance at 440 nm 

was monitored over 200 minutes. After plotting the concentration of inhibitor 

against the maximal absorbance at 440 nm, IC50 values were determined for 

each of the inhibitors against the three DapL enzymes.   
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4.3 Tabtoxin: Synthesis and characterization of compounds 

 

(2R,6S)-2,6-diaminoheptanedioic acid (28) 

 

Protected diaminopimelic acid 97 (37 mg, 0.081 mmol) was dissolved in 

methanol (5 mL) and 10% palladium on charcoal (8.6 mg, 0.081 mmol) was 

added. The reaction mixture was degasified and stirred under a hydrogen 

atmosphere for 4 h followed by filtration through a thin layer of celite. The celite 

was washed with a solution 50 % methanol in water (20 mL), the filtrate was 

concentrated in vacuo and the resulting solid was purified using a DOWEX ion 

exchange resin to yield 28 as a white solid (15 mg, 99.9%). [α]D
25 = 0.0 (c = 0.3 

g/100mL, H2O); IR (cast film): 3198 – 2577 (broad), 3074, 2962, 1630, 1595, 

1316 cm-1; 1H NMR (D2O, 498 MHz): δ 3.71 (dd, J = 6.9, 5.6 Hz, 2H, Hα), 1.96 – 

1.78 (m, 4H, Hβ), 1.57 – 1.48 (m, 1H, Hγ), 1.48 – 1.36 (m, 1H, Hγ); 13C NMR 

(D2O, 126 MHz): δ 174.6, 54.5, 30.2, 20.8. HRMS (m/z) calcd for C7H13N2O4 [M-

H]- 189.0881, found 189.0881. 
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2-Methoxypropane-2-peroxide (91) 

 

The synthesis of this product was adapted from a published procedure.140 

A solution of 2,3-dimethyl-2-butene (0.63 mL, 5.3 mmol) and sodium bicarbonate 

(~0.2 mg) in a 15% MeOH in DCM solution (15.3 mL) was bubbled with ozone at 

-78 ºC until the solution turned bright blue indicating the presence of free ozone. 

The reaction vessel was bubbled with oxygen gas for 30 min to remove excess of 

ozone, BHT (1.2 mg, 5.3 µmol) was added and the reaction was warmed to room 

temperature. The reaction mixture was concentrated in vacuo and used 

immediately without further purification. 1H NMR (CDCl3, 400 MHz) δ 7.84 (s, 1H, 

-OOH), 3.31 (s, 1H, -OCH3), 1.41 (s, 6H, 2 x CH3). Spectral data were consisted 

with the previously reported compound.140 

 

Methyl (S)-2-[(benzyloxycarbonyl)amino]-4-[(2-methoxypropan-2-yl)peroxy]-

4-oxobutanoate (92) 

 

This compound was made by adapting a published procedure.66 To a 

solution of 2-methoxy-2-propyl hydroperoxide 91 (5.3 mmol) in DCM (15 mL) at -

20 ºC was added Z-L-aspartic acid-1-methyl ester 90 (1 g, 3.5 mmol), followed by 

OOHMeO
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addition of DCC (1.15 g, 5.6 mmol) and DMAP (43 mg, 0.35 mmol). The reaction 

mixture was stirred at -20 ºC for 75 min, then warmed to room temperature for 1 

h and concentrated in vacuo. The residue was purified by flash chromatography 

(silica, 7:3 hexanes:ethyl acetate) to give compound 92 as colorless oil (1.3 g, 

99.9%). 1H NMR (CDCl3, 500 MHz) δ 7.39 (m, 5H, ArH), 5.82 (d, J = 8.1 Hz, 1H, 

NH), 5.16 (s, 2H, CH2Ph), 4.73 (d, J = 8.2 Hz, 1H, Hα), 3.81 (s, 3H, -CO2CH3), 

3.34 (s, 3H, -OCH3), 3.09 (dd, J = 16.6, 4.4 Hz, 1H, Hβ), 2.95 (dd, J = 16.6, 4.7 

Hz, 1H, Hβ), 1.47 (s, 6H, 2 x CH3); 
13C NMR (CDCl3, 125 MHz) δ 171.1, 170.5, 

155.8, 136.1, 128.5, 128.1, 128.0, 107.4, 67.2, 53.0, 50.4, 49.9, 33.9, 22.4. 

 

(R)-5-(Benzyloxy)-4-(benzyloxycarbonyl)amino-5-oxopentanoic-(S)-3-

(benzyloxycarbonyl)amino-4-methoxy-4-oxobutanoic peroxyanhydride (95) 

 

This compound was made by adapting a published procedure.66 To a 

solution of the perester 92 in CHCl3 (46 mL) was added under vigorous stirring a 

solution 50% TFA in water over 20 min. The solution was cooled to 0 ºC and a 

saturated solution of NaHCO3 was added until pH 8 was achieved. The aqueous 

phase was extracted with Et2O (3 x 40 mL), and the organic phases were 

combined, washed sequentially with water (40 mL) and brine (40 mL), dried over 

anhydrous sodium sulfate, filtered and concentrated in vacuo to yield a yellow oil. 
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The peracid product was dissolved in DCM (46 mL), cooled to 0 ºC and Z-D-Glu-

OBn 94 (0.95 g, 2.6 mmol) and DCC (0.613 g, 2.6 mmol) were added. The 

reaction mixture was stirred for 1 h at 0 ºC and 1.5 h at room temperature. The 

solids were removed by filtration over a celite pad, and the reaction was 

concentrated in vacuo. The residue was purified by flash chromatography (silica, 

7:3 hexanes:ethyl acetate) to give the diacyl peroxide 95 (0.655 g, 34% over 2 

steps). 1H NMR (CDCl3, 300 MHz) δ 7.43 – 7.28 (m, 15H, HAr), 5.74 (s, 1H, NH), 

5.40 (s, 1H, NH), 5.2 – 5.11 (m, 6H, 3 x CH2Ph), 4.72 (s, 1H, Asp-CHα), 4.47 (s, 

1H, Glu-CHα), 3.77 (s, 3H, OCH3), 3.09 – 3.0 (m, 2H, Asp-CH2β), 2.55 - 2.41 (m, 

2H, Glu-CH2γ), 2.40 - 2.20 (m, 1H, Glu-CH2β) 2.09 – 2.0 (m, 1H, Glu-CH2β). 

 

1-Benzyl-7-methyl (2R,6S)-2,6-bis[(benzyloxycarbonyl)amino] 

heptanedioate (96) 

 

Orthogonally protected diacyl peroxide 95 (0.59 g, 0.91 mmol) was 

dissolved in DCM (~5 mL) and transferred to the reaction vessel (a 15 cm 

diameter recrystallization dish with a quartz lid and two adaptors to allow a flow 

of argon into the vessel). The solvent was evaporated using a stream of Ar gas, 

trying to deposit the sample onto the bottom surface of the vessel like a 

homogenous thin layer. A 2-propanol bath was cooled down to - 80 ºC and 

maintained at a constant temperature through the use of a Thermo Neslab 
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Cryotrol/CC-100 cryo-cooler system. The reaction vessel was cooled to -80 ºC 

under argon, and the diacyl peroxide residue was irradiated at 254 nm with a UV 

lamp for 5 days in the absence of external light. The product was collected by 

dissolution in DCM (5 mL), concentrated in vacuo and purified by flash 

chromatography (silica, 8:2 hexanes:ethyl acetate) to give 96 (0.188 g, 37%). 

[α]D
25 = 4.5 (c = 1.0 g/100mL, MeOH); IR (MeOH cast film): 3332, 3089, 2951, 

1719, 1586, 1525, 1213 cm-1; 1H NMR (CDCl3, 500 MHz) δ 7.38 (m, 1H, ArH), 

5.39 (m, 1H, NH), 5.30 (m, 1H, NH), 5.14 – 5.21 (m, 6H, -CH2Ph x 3), 4.43 (m, 

1H, Hα), 4.36 (m, 1H, Hε), 3.74 (s, 3H, -OCH3), 1.87 – 1.67 (m, 4H, Hβ + Hδ), 

1.43 – 1.32 (m, 2H, Hγ); 13C NMR (CDCl3, 125 MHz) δ 172.6, 172.0, 155.9, 

136.2, 135.2, 128.4, 128.3, 128.1, 128.0, 67.2, 67.1, 53.6, 52.4, 32.1, 20.8; 

HRMS (m/z) calcd for C31H34N2NaO8 [M+Na]+ 585.2207, found 585.2200. 

 

(2R,6S)-2,6-Bis[(benzyloxycarbonyl)amino]heptanedioic acid (97) 

 

To a solution of 96 (50 mg, 0.088 mmol) in 25 % MeOH in THF (200 µL) a 

solution of LiOH (7.5 mg, 0.18 mmol) in H2O (75 µL) was added and reaction 

mixture was stirred at room temperature. After 2 h, another equivalent of LiOH 

(3.8 mg 0.088 mmol) in H2O (40 µL) was added and the reaction mixture was 

stirred for a further 2 h. The reaction mixture was diluted with H2O (3 mL), 
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extracted with EtOAc (2 x 3 mL), then the aqueous phase was acidified with HCl 

(1 M) to pH 2 and extracted with EtOAc (3 x 3 mL), dried over anhydrous sodium 

sulfate and concentrated in vacuo to yield 97 as a white solid (37 mg, 92%). 1H 

NMR (CDCl3, 500 MHz): δ 7.40-7.26 (m, 10H, ArH), 5.70 (m, 2H, 2 x NH), 5.21 – 

5.05 (m, 4H, CH2Ph x 2), 1.92 – 1.68 (m, 4H, Hβ), 1.54 – 1.24 (m, 2H, Hγ). 

 

(2S,6R)-2,6-diaminoheptanedioic-3,4-d2 acid (98) 

 

 

Alkene 103 (50 mg, 0.079 mmol) and 10% palladium on carbon (8 mg) in 

dry CD3OD (5 mL) were stirred under a deuterium atmosphere for 2 h. The 

suspension was then filtered through celite, which was washed with 50% 

methanol in water. The filtrate was concentrated in vacuo and the resulting solid 

was purified using a DOWEX ion exchange resin to yield 98 as a white solid (10 

mg, 67%). 1H NMR (D2O, 500 MHz) δ 3.74 – 3.64 (m, 2H, Hα + Hε), 1.84 (m, 3H, 

Hβ + Hδ + Hδ), 1.52 – 1.36 (m, 1H, Hγ); 13C NMR (D2O, 126 MHz) δ 174.8, 54.5, 

30.2, 20.3. HRMS (m/z) calcd for C7H12D2N2O4Na [M+Na]+ 215.0971, found 

215.0967. 
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Benzyl (R)-2-[(benzyloxycarbonyl)amino]pent-4-enoate (100) 

 

This product was synthesized according to a modified literature 

procedure.141 To a suspension of D-allylglycine (99) (0.5 g, 4.35 mmol) in water 

(20 mL) was added NaHCO3 (1.1 g, 13.05 mmol), then benzyl chloroformate 

(0.93 mL, 6.52 mmol) was added dropwise and stirred under argon over 3 h. The 

resulting mixture was diluted with diethyl ether and the aqueous phase was 

acidified to pH 1-2 with HCl (12 N), then extracted with EtOAc, dried over 

anhydrous magnesium sulfate and concentrated in vacuo to yield the carbamate 

(Cbz-D-Agl-OH) as a yellow oil (0.84 g, 84%), which was used in the next step 

without further purification. [α]D
25 = -17.66 (c = 1.0 g/100mL, CHCl3); IR (CHCl3 

cast film): 3400-2800 (br.), 3319, 3069, 3033, 2983, 1722, 1587, 1524, 1219 cm-

1; 1H NMR (CDCl3, 500 MHz) δ 9.77 (br. s, 1H, -CO2H), 7.43 – 7.31 (m, 5H, HAr), 

5.82 – 5.68 (m, 1H, Hγ), 5.36 (d, J = 8.1 Hz, 1H, NH), 5.25 – 5.09 (m, 4H, CH2Ph 

+ 2Hδ), 4.58 – 4.47 (m, 1H, Hα), 2.63 (ddt, J = 28.1, 14.3, 7.2 Hz, 2H, Hβ); 13C 

NMR (CDCl3, 125 MHz) δ 176.4, 156.0, 136.1, 131.7, 128.6, 128.3, 128.2, 119.8, 

67.3, 53.1, 36.4. HRMS (m/z) calcd for C13H14NO4 [M-H]- 248.0928, found 

248.0931. To a stirring solution of carbamate (Cbz-D-Agl-OH) (0.8 g, 3.2 mmol) in 

dry benzene (32 mL) was added benzyl alcohol (3.3 mL, 32.1 mmol), p-

toluenesulfonic acid (0.31 g, 1.6 mmol), fitted with a dean-stark apparatus and 

heated under reflux overnight. The solution was allowed to cool to room 
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temperature, then concentrated in vacuo to afford a yellow-brown oil. The residue 

was purified by flash chromatography (silica, 9:1 hexanes:ethyl acetate) to give 

100 as colorless oil (0.963 g, 88%). 1H NMR (CDCl3, 500 MHz) δ 7.45 – 7.30 (m, 

10H, HAr), 5.68 (ddt, J = 17.3, 10.5, 7.2 Hz, 1H, Hγ), 5.34 (d, J = 9.0 Hz, 1H, 

CH2Ph), 5.27 – 5.22 (d, J = 12.2 Hz, 1H, CH2Ph), 5.22 – 5.17 (d, J = 12.2 Hz, 1H, 

CH2Ph), 5.17 – 5.10 (m, 3H, CH2Ph + 2Hδ), 4.55 (dt, J = 8.2, 5.8 Hz, 1H, Hα), 

2.67 – 2.50 (m, 2H, Hβ). 13C NMR (CDCl3, 126 MHz) δ 171.6, 155.7, 136.2, 

135.3, 131.9, 128.6, 128.4, 128.2, 128.1, 119.5, 67.2, 53.4, 36.7. Spectral data 

were consisted with the previously reported compound.141 

 

Benzyl (S)-2-[(benzyloxycarbonyl)amino]but-3-enoate (102) 

 

This product was synthesized according to a previously reported literature 

procedure.75 A solution of Z-L-glutamic acid-α-benzyl ester (101) (2.0 g, 5.4 

mmol) and cupric acetate monohydrate (0.27 g, 1.35 mmol) in dry benzene (65 

mL) was stirred for 1 h at room temperature under argon. Lead tetraacetate (4.8 

g, 10.8 mmol) was then added and the resulting suspension refluxed for 14 h, 

then cooled to room temperature. The mixture was filtered through celite, which 

was washed with EtOAc (3 x 100 mL). The filtrate was then washed with water (3 

x 80 mL) and brine (80 mL), dried over anhydrous Na2SO4 and concentrated in 
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vacuo to afford a yellow oil. The residue was purified by flash chromatography 

(silica, 9:1 hexane:EtOAc) to yield Z-Vgl-OBn (102) as colorless oil (0.74 g, 

42%). [α]D
25 = -12.0 (c = 1.0 g/100mL, MeOH); IR (MeOH cast film): 3400-2800 

(br.), 3306, 3090, 3035, 2957, 1743, 1690, 1587, 1540, 1499, 1262, 1083 cm-1; 

1H NMR (CDCl3, 500 MHz) δ 7.44 – 7.30 (m, 10H, HAr), 5.96 (ddd, J = 16.8, 

10.3, 5.5 Hz, 1H, Hβ), 5.49 (d, J = 8.2 Hz, 1H, NH), 5.40 (dd, J = 16.8, 1.8 Hz, 

1H, Hγ), 5.31 (dd, J = 10.3, 1.7 Hz, 1H, Hγ), 5.23 (s, 2H, CH2Ph), 5.16 (s, 2H, 

CH2Ph), 5.03 (m, 1H, Hα); 13C NMR (CDCl3, 126 MHz) δ 170.3, 155.5, 136.2, 

135.1, 132.3, 128.7, 128.6, 128.5, 128.2, 128.2, 117.9, 67.5, 67.2, 56.2. HRMS 

(m/z) calcd for C19H20NO4 [M+H]+ 326.1387, found 326.1388. 

 

Dibenzyl (2S,6R,E)-2,6-bis[(benzyloxycarbonyl)amino]hept-3-enedioate 

(103) 

 

This product was synthesized according to a previously reported literature 

procedure.72 A solution of Z-Vgl-OBn (102) (0.2 g 0.62 mmol) and Z-D-Agl-OBn 

(100) (0.116 g, 0.34 mmol) in dry CH2Cl2 (3 mL) was deoxygenated with argon 

bubbling for 5 min, followed by the addition of Hoyveda-Grubbs 2nd generation 

catalyst (0.058 g, 0.068 mmol). The reaction mixture was refluxed under argon 

for 21 h, then concentrated in vacuo to give a black oil, which was purified by 

flash column chromatography (silica, 8:2, hexanes:EtOAc) to yield alkene (103) 
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as a mixture of regioisomers (0.135 g, 62%). 1H NMR (CDCl3, 500 MHz) δ 7.43 – 

7.27 (m, 20H), 5.71 – 5.33 (m, 4H, 2NH + Hβ + Hγ), 5.26 – 5.06 (m, 8H, 4 x 

CH2Ph), 4.89 (m, 1H, Hε), 4.57 – 4.43 (m, 1H, Hα), 2.65 – 2.45 (m, 2H, Hδ). 

HRMS (m/z) calcd for C37H36N2O8Na [M+Na]+ 659.2364, found 659.2358. 

 

(S)-2-(trimethylsilyl)ethyl 2-{[2-(trimethylsilyl)ethoxy]carbonylamino}pent-4-

enoate (109) 

 

To a solution of H-allyl-L-gly-OH 99 (2g, 17.4 mmol) in water (17 mL) was 

added a solution of Et3N (3.6 mL, 26.1 mmol) in dioxane (17 mL) at room 

temperature, then Teoc-OSu (4.96 g, 19.1 mmol) was added and was stirred 

overnight. The reaction mixture was diluted with water (100 mL), acidified with 

KHSO4 to pH = 1-2, extracted with Et2O (3 x 100 mL), then organic layers were 

combined, washed with water (100 mL), dried over anhydrous magnesium 

sulfate, concentrated in vacuo. The crude product NTeoc-allyl-L-gly-OH was left 

under high vacuum for 1 h and used in the next step without further purification. 

[α]D
25 = +13.91 (c = 1.11 g/100mL, CHCl3); IR (CHCl3 cast film): 3400-2800 (br), 

3320, 3082, 2955, 2900, 1722, 1523, 1251 cm-1; 1H NMR (CDCl3, 500 MHz) δ 

5.76 (ddt, J = 18.3, 9.5, 7.2 Hz, 1H, Hγ), 5.24 – 5.18 (m, 2H, Hδ), 5.12 (d, J = 7.8 

Hz, 1H, NH), 4.47 (dd, J = 8.6, 4.5 Hz, 1H, Hα), 4.29 – 4.12 (m, 2H, OCH2-Teoc), 

2.61 (m, 2H, Hβ), 1.12 – 0.99 (m, 2H, SiCH2-Teoc), 0.06 (s, 9H, 3 x CH3); 
13C 
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NMR (CDCl3, 126 MHz) δ 175.2, 156.4, 131.9, 119.7, 63.8, 52.9, 36.3, 17.7, -1.5. 

HRMS (m/z) calcd for C11H20NO4Si [M-H]- 258.1167, found 258.1167. To a 

solution of crude NTeoc-allyl-L-gly-OH (17.4 mmol), DMAP (0.319 g, 2.61 mmol), 

in THF (73 mL) was added 2-(trimethylsilyl)ethanol (5 mL, 34.8 mmol) at 0 ºC, 

then DCC (4.67 g, 22.62 mmol) was added in one portion. The reaction mixture 

was allowed to reach room temperature and was stirred 24 h. The resulting 

suspension was filtered and concentrated in vacuo, the crude product was 

purified by flash chromatography (silica, 9:1 hexanes: EtOAc) to yield 109 as a 

clear oil (5.96 g, 90 % over two steps). [α]D
25 = +4.04 (c = 0.98 g/100mL, CHCl3); 

IR (CHCl3 cast film): 3350, 3320, 3080, 2954, 2900, 2856, 1724, 1642, 1509, 

1251 cm-1; 1H NMR (CDCl3, 700 MHz) δ 5.68 (ddt, J = 17.0, 9.7, 7.2 Hz, 1H, Hγ), 

5.19 – 5.08 (m, 3H, Hδ + NH), 4.38 (m, 1H, Hα), 4.26 – 4.14 (m, 4H, 2 x OCH2), 

2.52 (m, 2H, Hβ), 1.11 – 0.86 (m, 4H, 2 x SiCH2), 0.03 (s, 9H, 3 x CH3), 0.02 (s, 

9H, 3 x CH3); 
13C NMR (CDCl3, 176 MHz) δ 171.9, 156.0, 132.2, 119.1, 63.8, 

63.3, 53.2, 36.8, 17.7, 17.4, -1.5, -1.6. HRMS (m/z) calcd for C16H33NO4SiNa 

[M+Na]+ 382.1840, found 382.1838. 
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(S)-tert-butyl 2-methoxy-2,4-dimethylpentan-3-ylcarbamate (111) 

 

To a solution of Fmoc-L-allyl-gly-OH 110 (3.5 g, 10.4 mmol) in MeOH (52 

mL) was added a solution of Cs2CO3 (1.69 g, 5.2 mmol) in water (3 mL) at 0 ºC. 

After warming up to room temperature for 5 min with stirring, the reaction mixture 

was concentrated in vacuo, rinsed with MeOH (2 x 5 mL), and concentrated in 

vacuo again to remove residual water. The salt was dried under high vacuum 

over night, then, it was suspended in DMF (52 mL) and benzyl bromide (1.24 mL, 

10.4 mmol) was added at 0 ºC. The reaction mixture was stirred at room 

temperature overnight, concentrated in vacuo, and the residue was purified by 

flash chromatography (silica, 8:2 hexanes: EtOAc) to afford 111 as white solid 

(3.8 g, 85%). [α]D
25 = -4.27 (c = 1.04 g/100mL, CHCl3); IR (CHCl3 cast film): 

3344, 3065, 2950, 1725, 1642, 1515, 1193 cm-1; 1H NMR (CDCl3, 700 MHz) δ 

7.76 (d, J = 7.6 Hz, 2H, Fmoc), 7.58 (d, J = 7.4 Hz, 2H, HAr-Fmoc), 7.42 – 7.27 

(m, 9H, HAr-Fmoc + HAr-Ph), 5.65 (ddt, J = 17.2, 10.1, 7.2 Hz, 1H, Hγ), 5.33 (d, 

J = 8.2 Hz, 1H, NH), 5.21 (d, J = 12.2 Hz, 1H, 1 x CH2Ph), 5.16 (d, J = 12.2 Hz, 

1H, 1 x CH2Ph), 5.13 – 5.06 (m, 2H, Hδ), 4.52 (dt, J = 8.2, 5.7 Hz, 1H, Hα), 4.38 

(d, J = 7.2 Hz, 2H, CH2-Fmoc), 4.22 (t, J = 7.2 Hz, 1H, CH-Fmoc), 2.61 (m, 1H, 1 

x Hβ), 2.53 (m, 1H, 1 x Hβ); 13C NMR (CDCl3, 176 MHz) δ 171.6, 155.7, 143.9, 

141.3, 131.9, 128.6, 128.5, 128.4, 127.7, 127.0, 125.1, 120.0, 67.3, 67.0, 47.1, 

36.7. HRMS (m/z) calcd for C27H25NO4Na [M+Na]+ 450.1676, found 450.1669. 
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(2S,7S,E)-1-benzyl-8-[2-(trimethylsilyl)ethyl]-2-{[(9H-fluoren-9-yl) 

methoxy]carbonylamino}-7-{[2-(trimethylsilyl)ethoxy]carbonylamino}oct-4-

enedioate (112) 

 

A solution of Fmoc-Agl-OBn 111 (0.564 g 1.32 mmol) and Teoc-Agl-

OTMSE 109 (0.522 g, 1.45 mmol) in dry DCM (13 mL) was deoxygenated with 

argon bubbling for 15 min, followed by the addition of Hoyveda-Grubbs 2nd 

generation catalyst (0.112 g, 0.132 mmol). The reaction mixture was refluxed 

under argon for 19 h, then concentrated in vacuo to yield a black oil, which was 

purified by flash column chromatography (silica, 8:2, hexanes:ethyl acetate) to 

yield alkene 112 as a mixture of regioisomers (0.36 g, 36 %). 1H NMR (CDCl3, 

400 MHz) δ 7.78 (d, J = 7.6 Hz, 2H, HAr-Fmoc), 7.64 (d, J = 7.6 Hz, 2H, HAr-

Fmoc), 7.45 – 7.28 (m, 9H, HAr-Fmoc + HAr-Ph), 5.51 (m, 1H, Hγ), 5.38 (m, 2H, 

NH-Fmoc + Hγ), 5.21 (m, 3H, NH-Teoc + CH2Ph), 4.50 (m, 1H, Hα), 4.40 (m, 3H, 

Hζ + CH2-Fmoc), 4.30 – 4.12 (m, 5H, CH-Fmoc + 2 x OCH2), 2.58 – 2.36 (m, 4H, 

Hβ + Hε), 1.05 – 0.95 (m, 4H, SiCH2), 0.05 (s, 9H, 3 x CH3), 0.03 (s, 9H, 3 x 

CH3). HRMS (m/z) calcd for C41H54N2O8Si2Na [M+Na]+ 781.3311, found 

781.3313. 
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(2S,7S,E)-2-{[(9H-fluoren-9-yl)methoxy]carbonylamino}-8-oxo-8-[2-

(trimethylsilyl)ethoxy]-7-{[2-(trimethylsilyl)ethoxy]carbonylamino}oct-4-

enoic acid (113) 

 

Alkene 112 (0.32 g, 0.42 mmol) and 10 % palladium on carbon (45 mg) in 

dry MeOH (36 mL) were stirred under a hydrogen atmosphere for 60 min. The 

suspension was then filtered through celite, which was washed with methanol, 

and the filtrate concentrated in vacuo to afford orthogonally protected suberic 

acid 113 (0.28 g, 99.9 %). [α]D
25 = +14.97 (c = 1.07 g/100mL, CHCl3); IR (CHCl3 

cast film): 3350, 3321, 2954, 1782, 1522, 1250 cm-1; 1H NMR (CDCl3, 700 MHz) 

δ 7.73 (d, J = 7.4 Hz, 2H, HAr-Fmoc), 7.57 (d, J = 7.4 Hz, 2H, HAr-Fmoc), 7.37 

(t, J = 7.4 Hz, 2H, HAr-Fmoc), 7.28 (t, J = 7.4 Hz, 2H, HAr-Fmoc), 5.55 – 5.39 

(m, 1H, NH-Fmoc), 5.21 (m, 1H, NH-Teoc), 4.51 – 4.25 (m, 4H, Hα + Hζ + CH2-

Fmoc), 4.25 – 4.02 (m, 5H, CH-Fmoc + 2 x OCH2), 1.96 – 1.53 (m, 4H, Hβ + Hε), 

1.46 – 1.18 (m, 4H, Hγ + Hδ), 1.02 – 0.89 (m, 4H. SiCH2), 0.02 (s, 9H, 3 x CH3), 

0.01 (s, 9H, 3 x CH3); 
13C NMR (CDCl3, 176 MHz) δ 173.8, 173.4, 157.6, 156.0, 

143.8, 141.3, 127.7, 127.0, 125.1, 120.0, 67.0, 63.8, 53.6, 53.4, 47.2, 33.7, 25.5, 

17.7, 17.4, -1.5, -1.6. HRMS (m/z) calcd for C34H49N2O8Si2 [M-H]- 669.3033, 

found 669.3033. 
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(2S)-1-Benzyloxycarbonyl-5-oxo-pyrrolidine-2-carboxylic acid-2-(3-methyl-

oxetan-3-yl-methyl) ester (125a)  

 

Compound 125a was prepared by modification of a literature procedure.79 

To a suspension of Z-L-pyroglutamic acid (2 g, 7.6 mmol) in dichloromethane (15 

mL) was added 3-hydroxy-methyl-3-oxetane (0.75 mL, 0.78 g, 7.6 mmol) via 

syringe, then a solution of DMAP (0.046 g, 0.38 mmol) and DCC (1.57 g, 7.6 

mmol) in dichloromethane (8 mL) was added slowly over 30 min at room 

temperature and the reaction mixture was stirred overnight. The white solid was 

removed by vacuum filtration and washed with dichloromethane. The solution 

was then concentrated in vacuo and dissolved in EtOAc (50 mL), washed with 

water (30 mL), dried over anhydrous sodium sulfate and concentrated in vacuo to 

give a yellowish oil, which was purified by flash chromatography (silica, 7:3:1 

hexane:EtOAc:methanol) to yield 125a as a colorless oil (2.2 g, 83%). 1H NMR 

(CDCl3, 400 MHz) δ 7.44 – 7.30 (m, 5H, HAr), 5.36 – 5.22 (m, 2H, CH2Ph), 4.74 

(dd, J = 9.4, 2.7 Hz, 1H, H2), 4.40 (m, 2H, CH2OCH2), 4.33 (m, 2H, CH2OCH2), 

4.23 – 4.14 (m, 2H, CO2CH2), 2.67 (ddd, J = 17.5, 10.5, 9.4 Hz, 1H, H4a), 2.53 

(ddd, J = 17.5, 9.2, 3.2 Hz, 1H, H4b), 2.39 (ddt, J = 13.4, 10.5, 9.3 Hz, 1H, H3a), 

2.11 (dddd, J = 13.3, 9.4, 3.2, 2.7 Hz, 1H, H3b), 1.26 (s, 3H). HRMS (m/z) calcd 

for C18H21NO6Na [M+Na]+ 370.1261, found 370.1255. 
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 (2S)-2-(4-Methyl-2,6,7-trioxa-bicyclo[2.2.2]oct-1-yl)-5-oxo-pyrrolidine-1-

carboxylic acid benzyl ester (126) 

 

Compound 126 was prepared by modification of a literature procedure.79 

To a solution of 125a (2 g, 5.8 mmol) in dichloromethane (21 mL) was added 

BF3·OEt2 (0.72 mL, 0.81 g, 5.83 mmol) via syringe at 0 ºC under argon. The 

mixture was allowed to reach room temperature, and was quenched with 

triethylamine (7.4 mL, 5.4 g, 58 mmol). After 45 min the reaction mixture was 

concentrated in vacuo to give a colorless solid, which was purified by flash 

chromatography (silica, 7:3:1 hexane:EtOAc:methanol) to yield 126 as a 

colorless solid (1.8 g, 92%). 1H NMR (CDCl3, 400 MHz) δ 7.47 – 7.28 (m, 5H, 

ArH), 5.34 – 5.20 (m, 2H, -CH2Ph), 4.43 (d, J = 8.9, 1H, H2), 3.85 (s, 6H, 3 x 

OCH2), 2.79 (ddd, J = 17.5, 11.6, 9.3 Hz, 1H, H4b), 2.30 (ddd, J = 17.4, 9.8, 1.2 

Hz, 1H, H4a), 2.22 (ddt, J = 13.1, 9.3, 1.0 Hz, 1H, H3a), 2.01 (dddd, J = 13.2, 

11.6, 9.8, 8.9 Hz, 1H, H3b), 0.78 (s, 3H, CH3). HRMS (m/z) calcd for 

C18H21NO6Na [M+Na]+ 370.1261, found 370.1257. 
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(2S)-2-(4-Methyl-2,6,7-trioxa-bicyclo[2.2.2]oct-1-yl)-5-oxo-2,5-dihydro-

pyrrole-1-carboxylic acid benzyl ester (129)  

 

This product was synthesized according to a previously reported literature 

procedure.79 To a solution of lithium bis(trimethylsilyl)amide (7.3 mL, 7.3 mmol, 

1.0 M in THF) diluted in THF (24 mL) at -78 ºC was slowly added a solution of 

126 (1.15 g, 3.3 mmol) in THF (8 mL) under argon over a period of 10 min. The 

reaction was allowed to warm to 0 ºC, then, it was cooled to -78 ºC and a solution 

of phenylselenyl chloride (0.63 g, 3.3 mmol) in THF (22 mL) was added and the 

reaction mixture was stirred for a further 2 h. After that, the reaction mixture was 

allowed to reach room temperature and then quenched with saturated 

ammonium chloride solution (33 mL) and EtOAc (66 mL), washed with saturated 

ammonium chloride solution (33 mL) and the organic phase was concentrated in 

vacuo to give a yellow oil. The oily product was dissolved in THF (22 mL) and 

DABCO was added with vigorous stirring at -20 ºC. After 10 min a solution of 

mCPBA (1.71 g, 9.9 mmol) in DCM (38 mL) was added dropwise to the reaction 

mixture over 30 min then the reaction was allowed to warm to room temperature. 

The mixture was diluted with EtOAc (35 mL) and the organic phase was washed 

consecutively with saturated sodium bisulfite solution, saturated NaHCO3 

solution, and brine, concentrated in vacuo to give a yellow oil, which was purified 

by flash chromatography (silica, 1:1 hexane: EtOAc) to yield 129 as colorless 

solid (0.79 g, 64%). 1H NMR (CDCl3, 300 MHz): δ 7.51 – 7.27 (m, 5H, HAr), 7.13 
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(dd, J = 6.1, 2.4 Hz, 1H, H-3), 6.11 (dd, J = 6.1, 1.7 Hz, 1H, H-4), 5.35 (d, J = 

12.4 Hz, 1H, CHHPh), 5.27 (d, J = 12.4 Hz, 1H, CHHPh), 4.96 (dd, J = 2.3, 1.7 

Hz, 1H, H-2), 3.83 (s, 6H, 3 x OCH2), 0.78 (s, 3H, CH3). 
13C NMR (CDCl3, 100 

MHz): δ 168.9, 150.5, 146.4, 135.2, 128.0, 127.9, 127.7, 126.5, 107.0, 72.5, 

67.7, 64.2, 30.3, 13.8. Spectral data were consisted with the previously reported 

compound.79 

 

(2S, 3S)-2-(4-Methyl-2,6,7-trioxa-bicyclo[2.2.2]oct-1-yl)-5-oxo-3-methyl-

pyrrolidine-1-carboxylic acid benzyl ester (130)  

 

This product was synthesized according to a previously reported literature 

procedure.79 To a suspension of CuBr·S(CH3)2 (0.89 g, 4.34 mmol) in diethyl 

ether (3.5 mL) was added methyl lithium (5.4 mL, 8.7 mmol, 1.6 M in diethyl 

ether) at -20 ºC under argon and was stirred for 10 min, then the reaction mixture 

was cooled to -78 ºC and a solution of trimethylsilyl chloride (0.189 g, 1.74 mmol) 

and 129 (0.3 g, 0.87 mmol) in THF (4 mL) was added slowly and stirred for 1 h, 

then it was warmed to -20 ºC and, the suspension was quenched with saturated 

ammonium chloride solution, diluted with diethyl ether, washed with saturated 

ammonium chloride solution, brine and concentrated in vacuo to give a white 

solid, which was purified by flash chromatography (silica, 1:1 hexane: EtOAc) to 

yield 130 as white solid (0.201 g, 64%). [α]D
25 = 22.7 (c = 0.5 g/100 mL, DCM); IR 
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(DCM cast film): 3064, 2958, 1791, 1734, 1499, 1278 cm-1; 1H NMR (CDCl3, 500 

MHz): δ 7.55 – 7.32 (m, 5H, HAr), 5.35 (d, J = 12.5 Hz, 1H, CHHPh), 5.26 (d, J = 

12.5 Hz, 1H, CHHPh), 3.82 (s, 6H, 3 x OCH2) 4.06 (s, 1H, H-2), 3.02 (dd, J = 

17.4, 8.2 Hz, 1H, H-4a), 2.64 – 2.55 (m, 1H, H-3), 1.96 (d, J = 17.4 Hz, 1H, H-

4b), 1.12 (d, J = 7.2 Hz, 3H, CH3-3), 0.81 (s, 3H, CH3, ortho ester); 13C NMR 

(CDCl3, 126 MHz): δ 174.7, 151.9, 135.7, 128.6, 128.4, 128.2, 128.1, 128.1, 

108.8, 72.9, 68.0, 66.8, 40.1, 30.6, 27.3, 21.2, 14.3. HRMS (m/z) calcd for 

C19H23NO6Na [M+Na]+ 384.1418, found 384.1413. 

 

 (2S,3S)-3-methyl-5-oxopyrrolidine-2-carboxylic acid (135) 

 

This product was synthesized by modification of a reported literature 

procedure.79 Pyrrolidine 130 (194 mg, 0.54 mmol) was dissolved in methanol (30 

mL) and 10 % palladium on charcoal (57 mg, 0.54 mmol) was added. After 

degasification, the reaction mixture was stirred under a hydrogen atmosphere for 

3 h and filtered through a thin layer of celite. The celite was washed with 

methanol (60 mL), the filtrate concentrated in vacuo and DCM (7 mL), TFA (154 

µL), and H2O (100 µL) were added to the residue. After the solution was stirred 

for 1 h at room temperature, the solvent was removed under vacuum. The 

residue was dissolved in a solution of 10 % (wt/vol) Cs2CO3 (3.7 mL, 1.13 mmol) 

and stirred for 3 h at room temperature. Subsequently, the reaction mixture was 
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quenched with a solution of 1 M HCl until pH 2 was reached, and lyophilized. The 

white solid was recrystallized from EtOH/hexane to yield 135 (38 mg, 49% 2 

steps). 1H NMR (CD3OD, 500 MHz): δ 3.77 (d, J = 4.7 Hz, 1H, H-2), 2.60 – 2.49 

(m, 2H, H-3 & H-4a), 2.02 – 1.93 (m, 1H, H-4b), 1.27 (d, J = 6.6 Hz, 3H, CH3). 

HRMS (m/z) calcd for C6H8NO3 [M-H]- 142.051, found 142.051. 

 

(S)-5-Hydroxymethyl-2-pyrrolidinone (137) 

 

This product was synthesized according to a previously reported literature 

procedure.77 To a solution of L-pyroglutamic acid 118 (2.0 g, 15.5 mmol) in 

MeOH (50 mL) was added thionyl chloride (1.25 mL, 17.1 mmol) dropwise at -15 

ºC. After 30 min, the reaction mixture was allowed to warm to room temperature 

over 1 h, and was stirred for another hour. The solution was concentrated in 

vacuo, and the residue was dissolved in EtOH (50 mL), followed by slow addition 

of NaBH4 (1.18 g, 31.2 mmol) at 0 ºC. Afterwards, the reaction mixture was 

allowed to warm to room temperature overnight. The reaction mixture was 

quenched with a 5 % aqueous solution of citric acid (100 mL) and concentrated 

in vacuo. The residue was suspended in a solution 25 % MeOH in EtOAc (200 

mL), the solids were filtered off and solvent was removed in vacuo to afford and 

oil that was dissolved in MeOH and filtered. The solution was concentrated in 

vacuo to yield 137 as a white solid (1.6 g, 91%). 1H NMR (CD3OD, 500 MHz) δ 
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3.78 – 3.70 (m, 1H, H-5), 3.55 (dd, J = 11.3, 4.4 Hz, 1H, -CH2-OH), 3.46 (dd, J = 

11.3, 5.6 Hz, 1H, -CH2-OH), 2.41 – 2.24 (m, 2H, H-3), 2.19 (dddd, J = 12.9, 10.0, 

8.0, 6.5 Hz, 1H, H-4), 1.87 (dddd, J = 12.9, 10.0, 6.2, 4.9 Hz, 1H, H-4). HRMS 

(m/z) calcd for C5H10NO2 [M+H]+ 116.0706, found 116.0710. 

 

(5S)-5-{[(tert-Butyl)dimethylsilyloxy]methyl}-pyrrolidin-2-one (138) 

 

This product was synthesized according to a previously reported literature 

procedure.77 To a solution of (S)-5-hydroxymethyl-2-pyrrolidinone 137 (1.63 g, 

14.2 mmol) in dimethylformamide (100 mL) was added imidazole (2.41 g, 35.4 

mmol) and tert-butyldimethylsilyl chloride (2.57 g, 17.0 mmol) and stirred for 24 h 

at room temperature. Then, the solution was diluted with Et2O (300 mL), washed 

with water (3 x 100 mL), brine (3 x 100 mL) and dried over anhydrous sodium 

sulfate. The solvent was removed in vacuo to give 138 as a colorless oil (3.0 g, 

93%). [α]D
25 = 39.2 (c = 1.8 g/100mL, DCM); IR (DCM cast film): 3215, 2954, 

1703 cm-1; 1H NMR (CDCl3, 500 MHz): δ 6.03 (s, 1H, NH), 3.78 (m, 1H, H-2), 

3.65 (dd, J = 10.1, 4.0 Hz, 1H, CHHO), 3.48 (dd, J = 10.1, 7.5 Hz, 1H, CHHO), 

2.44 – 2.32 (m, 4H), 2.20 (m, 1H, H-3a), 1.77 (m, 1H, H-3b), 0.93 (s, 9H, -

C(CH3)3), 0.07 (s, 6H, 2 x CH3); 
13C NMR (CDCl3, 126 MHz) δ 178.0, 66.9, 55.8, 

29.8, 25.8, 25.7, 22.8, 18.2, -3.6, -5.4. HRMS (m/z) calcd for C11H23NO2Si [M+H]+ 

230.1571, found 230.1566. 
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tert-Butyl (S)-2-{[(tert-butyldimethylsilyl)oxy]methyl}-5-oxopyrrolidine-1-

carboxylate (139) 

 

This product was synthesized according to a previously reported literature 

procedure.77 To a solution of 138 (2.5 g, 10.9 mmol) in acetonitrile (80 mL) at 0 

ºC was added DMAP (0.133 g, 1.09 mmol), di-tert-butyl dicarbonate (4.76 g, 21.8 

mmol), and the reaction mixture was allowed to warm to room temperature 

overnight. The solvent was removed in vacuo to yield an orange oil, which was 

purified by flash chromatography (silica, 1:9 EtOAc:DCM) to yield 139 as yellow 

oil (3.44 g, 96%). [α]D
25 = -61.90 (c = 1.2 g/100mL, CHCl3); IR (CHCl3 cast film): 

2956, 1791, 1712, 1314 cm-1; 1H NMR (CDCl3, 500 MHz) δ 4.20 (dddd, J = 8.8, 

3.9, 2.3, 1.6 Hz, 1H, H-2), 3.94 (dd, J = 10.4, 4.0 Hz, 1H, -CH2OTMS), 3.72 (dd, J 

= 10.4, 2.3 Hz, 1H, CH2OTMS), 2.73 (ddd, J = 17.6, 11.0, 9.9 Hz, 1H, H-3), 2.40 

(ddd, J = 17.6, 9.9, 2.2 Hz, 1H, H-3), 2.21 – 2.00 (m, 2H, H-4), 1.56 (s, 9H, 

CO2C(CH3)3), 0.91 (s, 9H, -SiC(CH3)3), 0.07 (d, J = 6.6 Hz, 6H, 2 x CH3). 
13C 

NMR (CDCl3, 126 MHz) δ 174.9, 150.1, 82.7, 64.3, 58.9, 32.4, 28.1, 25.8, 21.1, 

18.2, -5.5, -5.6. HRMS (m/z) calcd for C16H31NO4SiNa [M+Na]+ 352.1915, found 

352.1909. 
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Benzyl (S)-2-{[(tert-butyldimethylsilyl)oxy]methyl}-5-oxopyrrolidine- 

1-carboxylate (140) 

 

 

This product was synthesized by modification of a literature procedure.77, 

142 To a solution of 138 (1.6 g, 7.0 mmol) in THF (80 mL) was added n-butyl 

lithium (3.1 mL, 7.7 mmol, 2.5 M in hexanes) at -78 ºC and was stirred for 15 min. 

Benzyl chloroformate (1.1 mL, 7.7 mmol) was added and the solution was 

allowed to warm to 0 ºC. After 30 min, Et3N (1 mL, 7.0 mmol) was added at 0 ºC. 

Then ice bath was removed and reaction mixture was diluted with Et2O (20 mL), 

washed sequentially with water, brine, dried over anhydrous sodium sulfate, 

concentrated and purified by flash chromatography (silica, 7:3 hexanes: EtOAc) 

to yield 140 (1.8 g, 71%). 1H NMR (CDCl3, 500 MHz) δ 7.48 – 7.27 (m, 5H, HAr), 

5.34 (d, J = 12.4 Hz, 1H, 1 x CH2Ph), 5.27 (d, J = 12.4 Hz, 1H, 1 x CH2Ph), 4.26 

(dddd, J = 8.9, 3.9, 2.3, 1.6 Hz, 1H, H-2), 3.91 (dd, J = 10.5, 3.9 Hz, 1H, 1 x 

CH2OTBS), 3.68 (dd, J = 10.5, 2.3 Hz, 1H, 1 x CH2OTBS), 2.75 (ddd, J = 17.7, 

11.0, 9.9 Hz, 1H, H-4), 2.42 (ddd, J = 17.7, 9.9, 2.2 Hz, 1H, H-4), 2.20 – 2.01 (m, 

2H, H-3), 0.87 (s, 9H, SiC(CH3)3), -0.01 (s, 3H, CH3), - 0.03 (s, 3H, CH3). 
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tert-Butyl (S)-2-{[(tert-butyldimethylsilyl)oxy]methyl}-5-oxo-2,5-dihydro-1H-

pyrrole-1-carboxylate (141) 

 

This product was synthesized according to a previously reported literature 

procedure.77 To a solution of 139 (4.0 g, 12.1 mmol) in THF (100 mL) at -78 ºC 

was slowly added LiHMDS (14 mL, 14 mmol, 1 M in hexanes) and stirred for 15 

min, then a solution of phenylselenyl bromide (2.3 g, 12.1 mmol) in THF (14 mL) 

was added via cannula to the reaction mixture and stirred for 1 h at -78 ºC. The 

reaction was quenched by addition of saturated ammonium chloride solution and 

diethyl ether, and allowed to warm to room temperature. The solution was 

washed with saturated ammonium chloride solution and brine, dried over 

anhydrous sodium sulphate, and concentrated in vacuo to yield a red oil, which 

was then dissolved in dichloromethane (25 mL) and cooled to -78 ºC followed by 

addition of pyridine (3 mL, 36.3 mmol). After 5 min, hydrogen peroxide  (30 %, 4 

mL) was added and the temperature was allowed to warm to 0 ºC over 1 h. The 

solution was diluted with diethyl ether, washed with water, brine, and dried over 

anhydrous sodium sulfate. The solvent was removed in vacuo to give a solid, 

which was purified by flash chromatography (silica, 9:1 hexanes:EtOAc) to yield 

141 as white solid (2.77 g, 70%). 1H NMR (CDCl3, 500 MHz) δ 7.29 (dd, J = 6.1, 

2.1 Hz, 1H, H-3), 6.15 (dd, J = 6.1, 1.6 Hz, 1H, H-4), 4.66 – 4.58 (m, 1H, H-2), 

4.18 (dd, J = 9.7, 3.7 Hz, 1H, CH2OTMS), 3.75 (dd, J = 9.7, 6.7 Hz, 1H, 

CH2OTMS), 4.23 – 4.13 (m, 1H), 3.94 (dd, J = 10.4, 4.0 Hz, 1H) 1.57 (m, 9H, 
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Boc), 0.90 (m, 9H, -SiC(CH3)3), 0.07 (m, 6H, CH3 x 2); 13C NMR (CDCl3, 126 

MHz) δ 169.4, 149.7, 127.1, 83.0, 63.6, 62.5, 28.2, 25.8, 18.2, -5.4, -5.5. Spectral 

data were consisted with the previously reported compound.77 

 

Benzyl (S)-2-{[(tert-butyldimethylsilyl)oxy]methyl}-5-oxo-2,5-dihydro- 

1H-pyrrole-1-carboxylate (142) 

 

This product was synthesized by modification of a previously reported 

literature procedure.77 To a solution of 140 (1.0 g, 2.75 mmol) in THF (25 mL) 

was slowly added LiHMDS (5.5 mL, 5.5 mmol, 2 M in THF) at -78 ºC and stirred 

for 15 min. Subsequently, a solution of phenylselenyl chloride (0.57 g, 3.0 mmol) 

in THF (4 mL) was added via cannula to the reaction mixture and stirred for 1 h 

at -78 ºC. The reaction was quenched by addition of saturated ammonium 

chloride solution (12 mL) and diethyl ether (15 mL), and allowed to warm to room 

temperature. The solution was washed with saturated ammonium chloride 

solution, brine, dried over anhydrous sodium sulphate, and concentrated in 

vacuo to yield an orange oil, which was then dissolved in DCM (23 mL) and 

cooled to -78 ºC followed by addition of pyridine (0.7 mL, 8.25 mmol). After 5 min, 

hydrogen peroxide (30%, 1 mL) was added slowly and the temperature was 

allowed to warm to 0 ºC over 1 h. The solution was diluted with diethyl ether, 

washed with water, brine, dried over anhydrous sodium sulfate, and concentrated 

in vacuo to give a solid, which was purified by flash chromatography (silica, 7:3 
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hexanes:EtOAc) to yield 142 as a white solid (0.44 g, 44%). [α]D
25 = -159.37 (c = 

1.0 g/100mL, DCM); IR (DCM cast film): 3080, 3037, 2948, 1763, 1687, 1600, 

1499, 1122 cm-1; 1H NMR (CDCl3, 500 MHz) δ 7.51 – 7.47 (m, 2H, HAr), 7.43 – 

7.34 (m, 3H, HAr), 7.33 (dd, J = 6.1, 2.1 Hz, 1H, H-4), 6.19 (dd, J = 6.1, 1.6 Hz, 

1H, H-3), 5.40 (d, J = 12.4 Hz, 1H, 1 x CH2Ph), 5.32 (d, J = 12.3 Hz, 1H, 1 x 

CH2Ph), 4.70 (dddd, J = 6.6, 3.6, 2.1, 1.7 Hz, 1H, H-2), 4.16 (dd, J = 9.8, 3.6 Hz, 

1H, 1 x CH2OTBS), 3.77 (dd, J = 9.8, 6.5 Hz, 1H, 1 x CH2OTBS), 0.87 (s, 9H, 

C(CH3)3), 0.02 (s, 3H, 1 x Si(CH3)2), 0.00 (s, 3H, 1 x Si(CH3)2); 
13C NMR (CDCl3, 

126 MHz) δ 169.0, 151.0, 150.3, 135.3, 128.7, 128.4, 128.3, 126.9, 68.0, 63.7, 

62.2, 25.7, 18.1, -5.6, -5.7. HRMS (m/z) calcd for C19H28NO4Si [M+H]+ 362.1782, 

found 362.1780. 

 

 

Benzyl (2S,3S)-2-{[(tert-butyldimethylsilyl)oxy]methyl}-3-methyl- 

5-oxopyrrolidine-1-carboxylate (144) 

 

This product was synthesized by modification of a previously reported 

literature procedure.77 To a solution of copper(I) iodide (1.48 g, 7.7 mmol) in 

diethyl ether (12 mL) was added methyllithium (9.6 mL, 15.4 mmol, 1.6 M in 

diethyl ether) at 0 ºC under argon and was stirred for 10 min. Afterwards, the 

reaction mixture was cooled at -78 ºC and a solution of 142 (0.4 g, 1.1 mmol) in 
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THF (6 mL) was added slowly. After 1 h, the suspension was warmed to 0 ºC and 

was quenched with saturated ammonium chloride solution, diluted with diethyl 

ether (20 mL), washed with brine, and concentrated in vacuo to give a light 

yellow oil, which was purified by flash chromatography (silica, 7:3 hexane: 

EtOAc) to yield 144 as a white solid (0.302 g, 73%). [α]D
25 = -55.29 (c = 1.0 

g/100mL, CHCl3); IR (CHCl3 cast film): 3066, 2956, 1793, 1717, 1600, 1499, 

1298 cm-1; 1H NMR (CDCl3, 500 MHz) δ 7.50 – 7.32 (m, 5H, HAr), 5.40 – 5.26 

(m, 2H, CH2Ph), 3.90 (dd, J = 10.5, 4.1 Hz, 1H, CH2OTBS), 3.83 (ddd, J = 4.0, 

2.2, 1.3 Hz, 1H, H-2), 3.73 (dd, J = 10.5, 2.2 Hz, 1H, -CH2OTBS), 2.96 (dd, J = 

17.6, 8.6 Hz, 1H, H-4a), 2.41 (dqt, J = 8.8, 7.2, 1.7 Hz, 1H, H-3), 2.08 (dd, J = 

17.6, 1.8 Hz, 1H, H-4b), 1.16 (d, J = 7.2 Hz, 3H, CH3-3), 0.88 (s, 9H, -C(CH3)3), -

0.01 (s, 3H, SiCH3), -0.02 (s, 3H, SiCH3); 
13C NMR (CDCl3, 126 MHz) δ 174.2, 

151.7, 135.4, 128.6, 128.4, 128.2, 68.0, 66.3, 63.6, 40.4, 28.5, 25.8, 21.4, 18.1, -

5.7, -5.7. HRMS (m/z) calcd for C20H31NO4SiNa [M+Na]+ 400.1915, found 

400.1905. 

 

(2S,3S)-1-[(benzyloxy)carbonyl]-3-methyl-5-oxopyrrolidine-2-carboxylic 

acid (145) 

 

This product was synthesized by modification of a previously reported 

literature procedure.77 To a solution of 144 (0.25 g, 0.7 mmol) in acetone (1.75 

mL) at 0 ºC was added dropwise a cooled solution of Jones reagent (0.44 mL, 

NO
OH

Cbz

Me

O



	 126	

1.4 mmol) and was stirred 30 min at 0 ºC and 1 h at room temperature. The 

reaction mixture was quenched by addition of IPA (15 mL) and slow addition of a 

saturated solution of NaHCO3 (6 mL) at 0 ºC. The solvent was removed in vacuo 

and the residue was dissolved with a mixture of H2O (9 mL) and EtOAc (15 mL), 

the solution was extracted with Et2O (3 x 12 mL). Then, the aqueous layer was 

separated and acidified with 0.1 N HCl to pH 1-2 at 0 ºC, extracted with EtOAc (3 

x 12 mL), and the organic layers were combined and dried over anhydrous 

sodium sulfate, concentrated in vacuo to yield 145 as a clear oil (0.101 g, 55%). 

[α]D
25 = -16.8 (c = 1.0 g/100mL, DCM); IR (DCM cast film): 3189 (br.), 3067, 

2972, 1792, 1753, 1725, 1587, 1499, 1301 cm-1; 1H NMR (CDCl3, 500 MHz) δ 

10.45 (s, 1H, CO2H), 7.45 – 7.28 (m, 5H, HAr), 5.39 – 5.21 (m, 2H, CH2Ph), 4.34 

(d, J = 3.3 Hz, 1H, H-2), 2.86 (dd, J = 17.6, 8.5 Hz, 1H, H-4), 2.59 – 2.48 (m, 1H, 

H-3), 2.23 (dd, J = 17.6, 3.9 Hz, 1H, H-4), 1.29 (d, J = 7.1 Hz, 3H, CH3); 
13C NMR 

(CDCl3, 126 MHz) δ 175.3, 172.9, 151.2, 134.8, 128.6, 128.5, 128.0, 68.6, 65.5, 

39.3, 30.0, 20.6. 

 

(S)-4-benzyl-3-(2-bromoacetyl)oxazolidin-2-one (152) 

   

This product was synthesized according to a previously reported literature 

procedure.89 To a solution of (S)-oxazolidinone 151 (0.48 g, 1.8 mmol) in THF 

(6.5 mL) n-butyl lithium (0.8 mL, 2.0 mmol, 2.5 M in hexanes) was added over 10 

min at -78 ºC, then bromoacetyl bromide (0.24 mL, 2.7 mmol) was added 

O
N

O

Bn

O
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dropwise. After 1h at -78 ºC the reaction mixture was quenched with an aqueous 

saturated solution of NH4Cl (1 mL) followed by addition of an aqueous saturated 

solution of NaHCO3 (2 mL), then it was allowed to warm to room temperature. 

The aqueous phase was extracted with Et2O (2 x 10 mL). The combined organic 

phases were washed with water, brine, dried over anhydrous sodium sulfate, 

concentrated in vacuo and purified by flash chromatography using a gradient of 

solvent (silica, from 100 % hexane to 7:3 hexanes:EtOAc) to yield 152 as a clear 

colorless oil (0.53 g, 99.9%). [α]D
25 = +71.57 (c = 2.2 g/100mL, DCM); IR (DCM 

cast film): 3062, 2971, 1781, 1700, 1604, 1498, 1207 cm-1; 1H NMR (CDCl3, 500 

MHz) δ 7.42 – 7.22 (m, 5H, HAr), 4.74 (dddd, J = 9.6, 7.8, 3.2, 3.2 Hz, 1H, H-4), 

4.60 (d, J = 12.8 Hz, 1H, 1 x CH2Br), 4.57 (d, J = 12.8 Hz, 1H, 1 x CH2Br), 4.32 

(dd, J = 9.2, 7.8 Hz, 1H, 1 x H-5a), 4.27 (dd, J = 9.2, 3.2 Hz, 1H, 1 x H-5b), 3.37 

(dd, J = 13.5, 3.2 Hz, 1H, 1 x CH2Ph), 2.85 (dd, J = 13.5, 9.6 Hz, 1H, 1 x CH2Ph); 

13C NMR (CDCl3, 126 MHz) δ 166.0, 153.0, 134.7, 129.4, 129.1, 127.6, 66.7, 

55.5, 37.6, 28.2. HRMS (m/z) calcd for C12H12BrNO3Na [M+Na]+ 319.9893, found 

319.9887. 

 

(S)-Diethyl 2-(4-benzyl-2-oxoxazolidin-3-yl)-2-oxoethylphosphonate (153) 

 

This product was synthesized according to a previously reported literature 

procedure.89 A mixture of oxazolidinone 152 (0.435 g, 1.46 mmol) and 
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triethylphosphite (1.3 mL, 7.32 mmol) was heated at 50 ºC overnight. The 

reaction flask was left for one day in vacuo to remove the excess of 

triethylphosphite to give a yellow oil. This residue was purified by flash 

chromatography (silica, EtOAc) to yield 153 as clear colorless oil (0.5 g, 97%). 

[α]D
25 = +48.94 (c = 2.73 g/100mL, DCM); IR (DCM cast film): 3063, 2984, 1782, 

1698, 1604, 1497, 1025 cm-1; 1H NMR (CDCl3, 500 MHz) δ 7.41 – 7.23 (m, 5H, 

HAr), 4.75 (dddd, J = 10.5, 7.4, 3.2, 3.2 Hz, 1H, H-4), 4.30 – 4.10 (m, 6H, H-5 + 2 

x OCH2CH3), 3.95 – 3.73 (m, 2H, CH2PO(OEt)2), 3.39 (dd, J = 13.4, 3.4 Hz, 1H, 

1 x CH2Ph), 2.79 (dd, J = 13.4, 9.9 Hz, 1H, 1 x CH2Ph), 1.39 (t, J = 7.1 Hz, 6H, 2 

x OCH2CH3); 
13C NMR (CDCl3, 126 MHz) δ 165.1, 153.4, 135.1, 129.4, 129.0, 

127.4, 66.0, 62.8, 55.5, 37.7, 34.9, 33.9, 16.4, 16.4. HRMS (m/z) calcd for 

C16H22NO6PNa [M+Na]+ 378.1077, found 378.1068. 

 

Benzyl 2-hydroxyethylcarbamate (155) 

 

This product was synthesized according to a previously reported literature 

procedure.90 To a solution of ethanolamine 154 (1 g, 16.4 mmol) in DCM (15 mL) 

a solution of benzyl chloroformate (1.84 mL, 13.1 mmol) in DCM (10 mL) was 

added dropwise over 5 min at 0 ºC. The reaction mixture was stirred for 2 h at 0 

ºC, then 18 h at room temperature. After that, the solution was washed with 

aqueous saturated solution of NaHCO3, and then the aqueous phase was 

extracted with DCM (3 x 25 mL). The organic phases were combined, dried over 

HO
NHCbz
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anhydrous sodium sulfate and concentrated in vacuo. The residue was purified 

by flash chromatography (silica, gradient of solvents from 7:3 hexanes:EtOAc to 

100 % EtOAc) to yield 155 (1.38 g, 64%). 1H NMR (CDCl3, 500 MHz) δ 7.59 – 

7.33 (m, 5H, HAr), 5.15 (s, 2H, CH2Ph), 3.77 (t, J = 5.0 Hz, 2H, -CH2OH), 3.41 

(m, 2H, -CH2NH-), 2.0 (br. s, 1H, OH); 13C NMR (CDCl3, 126 MHz) δ 157.6, 

136.4, 128.6, 128.2, 128.2, 67.0, 62.1, 43.8. HRMS (m/z) calcd for C10H13NO3Na 

[M+Na]+ 218.0788, found 218.0782. 

 

Benzyl (2-oxoethyl)carbamate (156) 

 

This product was synthesized by modification of a previously reported 

literature procedure.91 To a solution of ethanolamine 155 (0.3 g, 1.54 mmol) in 

DCM (4 mL) Dess-Martin periodinane (0.68 g, 1.6 mmol) was added in one 

portion at 0 ºC. After 90 min, another equivalent of DMP (0.71 g, 1.67 mmol) was 

added at 0 ºC. The reaction mixture was stirred for 80 min, then quenched with 

an aqueous saturated solution of NaHCO3:Na2S2O3 (1:1, 4 mL) and stirred for 5 

min. The aqueous phase was extracted with Et2O (2 x 10 mL). The combined 

organic phases were washed with water, brine and dried over anhydrous sodium 

sulfate and concentrated in vacuo. 1H NMR (CDCl3, 500 MHz) δ 9.66 (s, 1H, 

CHO), 7.45 – 7.30 (m, 5H, HAr), 5.53 (br s, 1H, NH), 5.15 (s, 2H, CH2Ph), 4.16 

(d, J = 5.1 Hz, 2H, -CH2NH-); 13C NMR (CDCl3, 126 MHz) δ 196.5, 156.3, 136.1, 

O
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128.6, 128.3, 128.2, 67.2, 51.7. HRMS (m/z) calcd for C10H11NO3Na [M+Na]+ 

216.0631, found 216.0628. 

 

Methyl N-(tert-butoxycarbonyl)-D-prolinate (161) 

 

This product was synthesized according to a previously reported literature 

procedure.92-93 To a flask charged with MeOH (34 mL), acetyl chloride (4.9 mL, 

69.3 mmol) was added at 0 ºC, then ice-bath was removed and D-proline 160 

(2.8 g, 24.3 mmol) was added in one portion. The reaction mixture was heated 

under reflux over 2 h, cooled down and concentrated in vacuo. The residue was 

dissolved in THF (70 mL), then a solution of Boc2O (5.4 g, 24 mmol) in THF (6 

mL) was added, followed by addition of Et3N (7.3 mL, 2.1 mmol) at 0 ºC and 

stirred at room temperature overnight. The reaction mixture was then 

concentrated in vacuo and dissolved in EtOAc (100 mL), washed with an 

aqueous saturated solution of NaHCO3 (100 mL), extracted with EtOAc (2 x 100 

mL), dried over anhydrous Na2SO4 and concentrated in vacuo to yield the 

product 161 as a clear colorless oil (5.07 g, 90% over two steps). [α]D
25 = +55.56 

(c = 1.02 g/100mL, CHCl3); IR (CHCl3 cast film): 2976, 2933, 2881, 1751, 1703, 

1162 cm-1; 1H NMR (CDCl3, 500 MHz) δ 4.25 (dd, J = 8.6, 4.2 Hz, 1H, H-2), 3.75 

(s, 3H, OCH3), 3.62 – 3.36 (m, 2H, H-5), 2.31 – 2.15 (m, 1H, 1 x H-3a), 2.04 – 

1.83 (m, 3H, 1 x H-3b + H-4), 1.52 – 1.39 (m, 9H, Boc); 13C NMR (CDCl3, 126 

N

OMe

Boc O



	 131	

MHz) δ 173.8, 153.8, 79.8, 59.1, 51.9, 46.3, 30.9, 28.4, 28.3, 23.7. HRMS (m/z) 

calcd for C11H19NO4Na [M+Na]+ 252.1206, found 252.1203. 

 

(R)-(+)-2-(Diphenylhydroxymethyl)-N-(tert-butoxycarbonyl)pyrrolidine (162) 

 

This product was synthesized according to a modified literature 

procedure.94 To a solution of phenylmagnesium bromide (8.5 mL, 1 M in THF) 

was added dropwise a solution of N-Boc-D-proline-methyl ester 161 (0.5 g, 2.18 

mmol) in THF (1.0 mL) at 0 ºC and was allowed to reach room temperature 

overnight. The reaction mixture was quenched with an aqueous saturated 

solution of NH4Cl (3 mL), the solvent was removed in vacuo and the residue was 

dissolved in DCM, washed with brine, dried over anhydrous sodium sulfate and 

concentrated in vacuo. The crude product was recrystallized from hexanes-

EtOAc to yield 162 as a white solid (0.48 g, 63%). [α]D
25 = 131.0 (c = 1.0 

g/100mL, DCM); IR (DCM cast film): 3313 (br.), 3087, 2977, 1661, 1600, 1492, 

1169 cm-1; 1H NMR (CDCl3, 500 MHz) δ 7.45 – 7.26 (m, 10H, HAr), 4.93 (dd, J = 

9.0, 3.7 Hz, 1H, H-2), 3.38 (m, 1H, H-5a), 2.90 (m, 1H, H-5b), 2.21 – 2.02 (m, 1H, 

H-3a), 2.00 – 1.88 (m, 1H, H-3b), 1.47 (m, 10H, Boc + H-4a), 082 (m, 1H, H-4b); 

13C NMR (CDCl3, 126 MHz) δ 155.4, 146.5, 143.8, 128.2, 127.9, 127.7, 127.3, 

127.1, 127.0, 81.7, 80.6, 65.8, 47.9, 29.8, 28.4, 22.9. HRMS (m/z) calcd for 

C22H27NO3Na [M+Na]+ 376.1883, found 376.1881. 
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 (R)-(+)-2-(Diphenylhydroxymethyl)pyrrolidine (163) 

 

This product was synthesized according to a previously reported literature 

procedure.95 To a solution of NaOH (4.5 g, 113 mmol) in EtOH (54 mL), N-Boc-

pyrrolidine 162 (3.7 g, 10.5 mmol) was added and the resulting light yellow 

suspension was heated under reflux for 2.5 h. After that, the suspension was 

cooled to room temperature and concentrated in vacuo. To the residue was 

added H2O (85 mL) and Et2O (200 mL) and the suspension was stirred until the 

solids were dissolved. The aqueous layer was extracted (2 x 90 mL), and the 

organic layers were combined, dried over K2CO3, filtered and concentrated in 

vacuo to yield 163 (2.41 g, 91%). [α]D
25 = +64.4 (c = 3.34 g/100mL, CHCl3); IR 

(CHCl3 cast film): 3351, 3085, 3058, 2970, 2871, 1597, 1492, 1174 cm-1; 1H NMR 

(CDCl3, 500 MHz) δ 7.62 – 7.57 (m, 2H, HAr), 7.57 – 7.48 (m, 2H, HAr), 7.40 – 

7.24 (m, 4H, HAr), 7.22 – 7.13 (m, 2H, HAr), 4.61 (s, 1H, NH), 4.27 (t, J = 7.8 Hz, 

1H, H-2), 3.06 (ddd, J = 9.3, 6.7, 4.9 Hz, 1H, 1 x H-5a), 2.97 (m, 1H, 1 x H-5b), 

1.84 – 1.54 (m, 4H, H-3 + H-4); 13C NMR (CDCl3, 126 MHz) δ 148.2, 145.4, 

128.2, 128.0, 126.5, 126.34, 125.9, 125.5, 77.1, 64.50, 46.78, 26.30, 25.53. 

HRMS (m/z) calcd for C17H20NO [M+H]+ 254.1539, found 254.1540. 
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(R)-2-{Diphenyl[(trimethylsilyl)oxy]methyl}pyrrolidine (164) 

 

To a solution of pyrrolidine 163 (2.4 g, 9.5 mmol) in DCM (63 mL) was 

added Et3N (1.7 mL, 12.3 mmol) followed by addition of TMSOTf (2.2 mL, 12.3 

mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and 

after 30 min was quenched with H2O, extracted with DCM, dried over anhydrous 

sodium sulfate, concentrated in vacuo and purified by flash chromatography 

(silica, 7:3 hexanes:EtOAc + 1% Et3N) to afford 164 (2.84 g, 92%). [α]D
25 = 

+75.52 (c = 1.0 g/100mL, DCM); IR (DCM cast film): 3085, 3059, 3024, 2954, 

2898, 1598, 1698, 1492, 1072 cm-1; 1H NMR (CDCl3, 500 MHz) δ 7.50 – 7.45 (m, 

2H, HAr), 7.40 – 7.35 (m, 2H, HAr), 7.33 – 7.19 (m, 6H, HAr), 4.05 (t, J = 7.4 Hz, 

1H, H-2), 2.94 – 2.73 (m, 2H, H-5), 1.66 – 1.50 (m, 3H, 1 x H-3a + H-4), 1.46 – 

1.33 (m, 1H, 1 x H-3b), -0.08 (s, 9H, 3 x CH3); 
13C NMR (CDCl3, 100 MHz) δ 

146.9, 145.8, 128.4, 127.6, 127.6, 127.5, 126.9, 126.7, 83.2, 65.4, 47.2, 27.5, 

25.1, 2.2. HRMS (m/z) calcd for C20H27NOSi [M+H]+ 326.1935, found 326.1934. 
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N,N-dibenzyl-1-methoxymethanamine (165) 

 

To a suspension of paraformaldehyde (0.94 g, 31.4 mmol) in MeOH (13 

mL) was added dibenzylamine (6 mL, 31.4 mmol) and the reaction mixture was 

stirred for 5 min at room temperature, then K2CO3 (4.3 g, 31.4 mmol) was added 

at 0 ºC and the ice bath was removed immediately. The reaction mixture was 

allowed to stand overnight. The solids were filtered off and the filtrate was 

fractionated. The fraction distilling at 139-140 ºC (∼ 8 Torr) was collected (3.36 g, 

45%). IR (DCM cast film): 3085, 3062, 3027, 2845, 1602, 1494, 1071 cm-1; 1H 

NMR (CDCl3, 500 MHz) δ 7.45 – 7.24 (m, 10H, HAr), 4.08 (s, 2H, CH2OMe), 3.88 

(s, 4H, 2 x CH2Ph), 3.29 (s, 3H, CH3); 
13C NMR (CDCl3, 126 MHz) δ 139.3, 

128.9, 128.2, 127.0, 85.4, 55.7, 55.4. HRMS (EI) calcd for C16H19ON 241.1467, 

found 241.1472 [M]+.  

 

(S)-3-(dibenzylamino)-2-methylpropan-1-ol (166) 

 

This product was synthesized by modification of a previously reported 

literature procedure.98 To a homogeneous solution of LiBr (0.72 g, 8.29 mmol) in 

DMF (6 mL) was added sequentially, a solution of catalyst 164 (0.54 g, 1.66 

mmol) in DMF (1 mL), AcOH (0.1 mL, 1.66 mmol), and propionaldehyde (0.62 

mL, 8.29 mmol) at room temperature. At –25 ºC, a solution of aminomethyl ether 

MeO

NBn2

OH NBn2
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165 (1.0 g, 4.14 mmol) in DMF (1 mL) was added to the bright yellow solution, 

and was stirred vigorously for 2 h. The reaction mixture was diluted with MeOH 

(16 mL) and excess of NaBH4 (3 g, 82.9 mmol) was added in small portions at –

25 ºC. After stirring for 5 min at 0 ºC, the solution was poured in a mixture of 

aqueous saturated solution of NHCl4 (32 mL) and Et2O (50 mL), extracted with 

Et2O (2 x 50 mL), dried over anhydrous sodium sulfate, concentrated in vacuo, 

and purified by flash chromatography (silica, 8:2 hexanes: EtOAc) to yield 166 as 

a clear oil (0.987 g, 88%). [α]D
25 = +81.64 (c = 1.0 g/100mL, CHCl3); IR (CHCl3 

cast film): 3415, 3086, 3062, 2954, 1602, 1495, 1029 cm-1; 1H NMR (CDCl3, 400 

MHz) δ 7.46 – 7.16 (m, 10H, HAr), 5.48 (s, 1H, OH), 4.03 (d, J = 13.2 Hz, 2H, 2 x 

CH2Ph), 3.62 (ddd, J = 10.5, 3.6, 2.3 Hz, 1H, Hα), 3.27 (dd, J = 10.5, 9.4 Hz, 1H, 

Hα), 3.17 (d, J = 13.2 Hz, 2H, 2 x CH2Ph), 2.56 (dd, J = 12.7, 11.2 Hz, 1H, Hγ), 

2.40 (ddd, J = 12.7, 3.5, 2.3 Hz, 1H, Hγ), 2.33 – 2.21 (m, 1H, Hβ), 0.73 (d, J = 6.8 

Hz, 3H, CH3); 
13C NMR (CDCl3, 101 MHz) δ 138.0, 129.3, 128.5, 127.4, 70.5, 

61.4, 59.1, 31.5, 15.0. HRMS (m/z) calcd for C18H24NO [M+H]+ 270.1852, found 

270.1851. 

 

(S)-N,N-dibenzyl-3-bromo-2-methylpropan-1-amine (167) 

 

This product was synthesized by modification of a previously reported 

literature procedure.143 To a solution of γ-amino alcohol 166 (0.6 g, 2.23 mmol) in 

DCM (7 mL), was added methanesulfonyl chloride (0.21 mL, 2.67 mmol) followed 

Br N
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by triethylamine (0.40 mL, 2.90 mmol) at room temperature. After stirring for 1 h 

was added LiBr (1.94 g, 22.3 mmol), acetone (7 mL), and the reaction mixture 

was stirred overnight. The solvent was removed and the residue was diluted with 

EtOAc (60 mL), washed with water (2 x 30 mL), saturated aqueous solution of 

NaHCO3 (30 mL), brine (30 mL), concentrated in vacuo, and purified by flash 

chromatography (silica, 9:1 to 8:2 hexanes: EtOAc) to yield 167 as clear oil (0.44 

g, 60%). IR (CHCl3 cast film): 3085, 3062, 2960, 1601, 1494 cm-1; 1H NMR 

(CDCl3, 500 MHz) δ 7.40 – 7.23 (m, 10H, HAr), 3.65 (d, J = 13.6 Hz, 2H, 2 x 

CHHPh), 3.57 (dd, J = 9.7, 4.2 Hz, 1H, Hα), 3.50 (d, J = 13.6 Hz, 2H, 2 x 

CHHPh), 3.30 (dd, J = 9.7, 6.6 Hz, 1H, Hα), 2.47 (dd, J = 12.9, 8.5 Hz, 1H, Hγ), 

2.29 (dd, J = 12.9, 6.0 Hz, 1H, Hγ), 2.06 (m, 1H, Hβ), 0.98 (d, J = 6.6 Hz, 3H); 13C 

NMR (CDCl3, 126 MHz) δ 139.4, 129.0, 128.3, 127.0, 59.1, 58.6, 39.8, 29.3, 

17.4. HRMS (m/z) calcd for C18H23BrN [M+H]+ 332.1008, found 332.1002. 

 

(S)-3-(dibenzylamino)-2-(methylpropyl)triphenylphosphonium bromide 

(168) 

 

This product was synthesized by adaptation of a literature procedure.143 A 

solution of 167 (0.3 g, 0.9 mmol) and triphenyl phosphine (0.24 g, 0.9 mmol) in 

acetonitrile (0.5 mL) was stirred at reflux for 15 h. The reaction mixture was 

concentrated and triturated with Et2O giving a beige solid (122 mg, 22%). 1H 

NMR (CDCl3, 500 MHz) δ 7.85 – 7.62 (m, 15H, HAr), 7.39 – 7.16 (m, 10H, HAr), 

3.72 (ddd, J = 16.0, 13.8, 2.4 Hz, 1H, CH2P
+Ph3), 3.60 (d, J = 13.7 Hz, 2H, 2 x 

Ph3P N
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CHHPh), 3.55 – 3.46 (d, J = 13.7 Hz, 2H, 2 x CHHPh), 3.37 (dd, J = 16.0, 9.6 Hz, 

1H, CH2P
+PH3), 2.76 (dd, J = 13.3, 8.2 Hz, 1H, CH2NBn2), 2.58 (ddd, J = 13.2, 

6.2, 4.5 Hz, 1H, CH2NBn2), 1.93 (m, 1H, CHCH3), 0.79 (d, J = 6.6 Hz, 3H, CH3); 

13C NMR (CDCl3, 126 MHz) δ 138.9, 135.0, 133.7, 133.6, 130.5, 130.4, 129.0, 

128.4, 127.1, 119.2, 118.5, 62.0, 59.2, 28.0, 19.1, 15.3. HRMS (m/z) calcd for 

C36H37NP [M+] 514.2658, found 514.2658. 

 

(S)-tert-Butyl 4-[(R,E)-4-(dibenzylamino)-3-methylbut-1-enyl]-2,2-

dimethyloxazolidine-3-carboxylate (170) 

 

To a solution of 168 (122 mg, 0.21 mmol) in THF (0.4 mL) at -78 ºC was 

added a solution of KHMDS (373 µL, 0.19 mmol, 0.5 M in Toluene). After 5 min 

of stirring, the solution was warmed to 0 ºC and was added a solution of garner 

aldehyde 169 (39 mg, 0.17 mmol) in THF (0.1 mL) and was stirred for 45 min. 

The reaction mixture was quenched by addition of water, extracted with EtOAc, 

dried over anhydrous sodium sulfate, concentrated in vacuo and purified by 

preparative TLC (silica, 9:1 hexanes: EtOAc) to yield 170 (40 mg, 51%). 1H NMR 

(CDCl3, 500 MHz) δ 7.41 – 7.29 (m, 8H, HAr), 7.23 (m, 2H, HAr), 5.70 – 5.30 (m, 

2H, CH=CH), 4.30 (m, 1H, CHNBoc), 4.00 (dd, J = 8.8, 6.1 Hz, 1H, CH2O), 3.68 

(dd, J = 8.8, 2.2 Hz, 1H, CH2O), 3.65 – 3.40 (m, 4H, 2 x CH2Ph), 2.5 (m, 1H, 

CHCH3), 2.37 – 2.24 (m, 2H, CH2NBn), 1.71 – 1.35 (m, 15H, C(CH3)2 + Boc), 

0.99 (d, J = 6.6 Hz, 3H, CHCH3); 
13C NMR (CDCl3, 126 MHz) δ 151.9, 139.4, 
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133.8, 133.7, 128.9, 128.3, 127.0, 126.5, 79.8, 68.5, 60.4, 60.1, 58.9, 33.8, 30.8, 

28.5, 17.4. 

 

tert-Butyl (2S,5R,E)-6-(dibenzylamino)-1-hydroxy-5-methylhex-3-en-2-

ylcarbamate (171) 

 

A solution of 170 (50 mg, 0.11 mmol) in 50 % TFA in DCM (1 mL) was 

stirred at room temperature. After 30 min, the solution was concentrated in 

vacuo, washed with Et2O and concentrated after every wash. To the residue was 

added a solution of Boc2O (24 mg, 0.11 mmol) in DCM:water (1:1, 1 mL), then 

was added NaHCO3 (26 mg, 0.31 mmol)  and the mixture was stirred for 1 h. The 

mixture was diluted with DCM, washed with water, extracted with DCM, dried 

over anhydrous sodium sulfate, concentrated in vacuo and purified by flash 

chromatography (silica, 9:1 to 7:3 hexanes: EtOAc) to yield 171 (17 mg, 37%). 1H 

NMR (CDCl3, 400 MHz) δ 7.39 – 7.20 (m, 10H, HAr), 5.42 – 5.18 (m, 2H, 

CH=CH), 4.74 (s, 1H, NH), 4.55 – 4.37 (m, 1H, Hβ), 3.83 – 3.38 (m, 6H, CH2OH, 

2 x CH2Ph), 2.94 – 2.78 (m, 1H, CH2NBn2), 2.38 – 2.21 (m, 2H, Hε + CH2NBn2), 

1.43 (m, 9H, Boc), 0.95 (d, J = 6.6 Hz, 3H, CH3); 
13C NMR (CDCl3, 101 MHz) δ 

156.6,139.7, 139.2, 133.2, 129.0, 128.2, 126.9, 79.8, 63.4, 59.5, 58.9, 58.7, 31.3, 

28.4, 19.0. 
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tert-Butyl (2R,5S)-6-hydroxy-2-methylhex-1,5-diyldicarbamate (172) 

 

Alkene 171 (41 mg, 0.097 mmol) and 10 % palladium on carbon in dry 

MeOH (1 mL) were stirred under a hydrogen atmosphere at 60 psi for 3 days. 

The suspension was then filtered through celite, which was washed with 

methanol, and the filtrate concentrated in vacuo. The residue was dissolved in 

water (0.4 mL), followed by addition of a solution of Boc2O (21 mg, 0.097 mmol) 

in DCM (0.4 mL), NaHCO3 (9 mg, 0.11 mmol), and the reaction mixture was 

stirred 3 h at room temperature. The mixture was diluted with DCM, washed with 

water, extracted with DCM, dried over anhydrous sodium sulfate, concentrated in 

vacuo and purified by flash chromatography (silica, 7:3 hexanes: EtOAc) to yield 

172 (3 mg, 22%). 1H NMR (CDCl3, 400 MHz) δ 4.88 (s, 1H, NH), 4.69 (s, 1H, 

NH), 3.80 – 3.46 (m, 3H, 2Hα + Hβ), 3.26 – 2.76 (m, 2H, Hζ), 1.85 – 1.40 (m, 20 

H, Hε + Hγ + Boc), 1.40 – 1.13 (m, 3H, Hγ + Hδ), 0.95 – 0.86 (d, J = 6.8 Hz, 3H, 

CH3); 
13C NMR (CDCl3, 101 MHz) δ 156.6, 156.5, 79.4, 65.0, 51.8, 45.3, 33.9, 

33.8, 29.7, 17.6. (EI) calcd C17H34N2O5 [M+H]+ 347.2540 found 347.2. 

 

(2R,5S)-2,6-bis(tert-butoxycarbonylamino)-5-methylhexanoic acid (173) 

 

To a solution of 172 (4.8 mg, 13 µmol) in acetone (130 µL) was added a 

solution of Jones reagent (13 µL, 26 µmol, 2M in H2O) at 0 ºC and was stirred for 

NHBoc
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HO
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1.5 h. The reaction mixture was quenched with IPA (50 µL) and pH was adjusted 

to 7 with a saturated solution of NaHCO3. The solids were filtered off and the 

solution was concentrated in vacuo. 1H NMR (CDCl3, 500 MHz) δ 5.30 (s, 1H, 

NH), 4.69 (s, 1H, NH), 4.26 (m, 1H, Hα), 3.02 (m, 2H, Hε), 2.0 – 1.53 (m, 3H, Hβ 

+ Hδ), 1.53 -1.39 (m, 18H, 2 x Boc), 1.39 – 1.10 (m, 2H, Hγ), 0.92 (d, J = 6.8 Hz, 

3H, CH3). (EI) calcd C17H32N2O5Na [M+Na]+ 383.2153 found 383.2. 

 

 

Boc-L-AspOMe-OtBu (176) 

 

This product was synthesized by modification of a literature procedure.144 

To a solution of Boc-L-Asp acid-α-tBuO ester 175 (3 g, 10.4 mmol) in DCM (52 

mL) was added Et3N (2.2 mL, 15.6 mmol) under argon. The reaction mixture was 

cooled to 0 ºC and DMAP (127 mg, 1.04 mmol) followed by methyl chloroformate 

(1 mL, 12.5 mmol) were added, and stirred over 1 h. After that, the solution was 

allowed to warm to room temperature and was stirred overnight. The reaction 

mixture was diluted with EtOAc, washed with a saturated solution of NaHCO3, 

brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and purified 

by flash chromatography (silica, 7:3 hexanes: EtOAc) to yield 176 as light yellow 

oil (2.53 g, 80%). [α]D
25 = 14.02 (c = 1.0 g/100mL, CHCl3); IR (CHCl3 cast film): 

3370, 2979, 2935, 1745, 1721, 1157 cm-1; 1H NMR (CDCl3, 400 MHz) δ 5.45 (d, 

J = 8.6 Hz, 1H, NH), 4.47 (m, 1H, Hα), 3.71 (s, 3H, CO2CH3), 2.96 (dd, J = 16.6, 

CO2CH3

NHBoc

O

O
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4.7 Hz, 1H, 1 x Hβ), 2.79 (dd, J = 16.6, 5.0 Hz, 1H, 1 x Hβ), 1.48 (s, 9H, 

C(CH3)3), 1.47 (s, 9H, C(CH3)3); 
13C NMR (CDCl3, 101 MHz) δ 171.4, 170.0, 

155.4, 82.3, 79.9, 51.8, 50.6, 37.0, 28.3, 27.9. HRMS (m/z) calcd for C14H26NO6 

[M+H]+ 304.1755, found 304.1751. 

 

Boc-L-AspOMe-tBuO (177) 

 

This product was synthesized by modification of a literature procedure.144 

To a solution of Boc-L-AspOMe-α-tBuO ester 176 (2.4 g, 7.8 mmol) in acetonitrile 

(30 mL) was added DMAP (191 mg, 1.56 mmol), and a solution of di-tert-

butyldicarbonate (3.4 g, 15.6 mmol) in acetonitrile (16 mL), and the mixture was 

stirred at room temperature overnight. The reaction mixture was concentrated in 

vacuo and purified by flash chromatography (silica, 9:1 hexanes: EtOAc) to give 

177 as a white solid (2.93 g, 93%). [α]D
25 = -44.11 (c = 1.0 g/100mL, CHCl3); IR 

(CHCl3 cast film): 2980, 2936, 1797, 1741, 1702, 1145 cm-1; 1H NMR (CDCl3, 

400 MHz) δ 5.35 (dd, J = 7.2, 6.5 Hz, 1H, Hα), 3.71 (s, 3H, CO2CH3), 3.24 (dd, J 

= 16.3, 7.2 Hz, 1H, 1 x Hβ), 2.70 (dd, J = 16.3, 6.5 Hz, 1H, 1 x Hβ), 1.53 (s, 18H, 

C(CH3)3), 1.46 (s, 9H, C(CH3)3); 
13C NMR (CDCl3, 101 MHz) δ 171.3, 168.6, 

152.0, 83.1, 81.9, 55.6, 51.8, 35.5, 28.0, 27.9. HRMS (m/z) calcd for 

C19H33NO8Na [M+Na]+ 426.2098, found 426.2097. 
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(S)-methyl 2-(tert-butoxycarbonylamino)-3-methylbutanoate (180) 

 

To a solution of Boc-L-Valine 179 (5.3 g, 24.4 mmol) in MeOH (100mL) 

and Et2O (100 mL) was added slowly trimethylsilyldiazomethane (35 mL, 69 

mmol, 2 M in hexanes) at 0 ºC and the solution became yellow. After stirring 15 

min AcOH (0.5 mL, 69 mmol) was added, and the reaction mixture was stirred 

until the solution became colorless. The solution was then concentrated in vacuo 

and dissolved in Et2O (150 mL), washed with an aqueous solution of 5 % 

NaHCO3 (100 mL) and brine (100 mL), dried over anhydrous sodium sulfate and 

concentrated in vacuo to yield the product 180 as a clear colorless oil (5.5 g, 

98%). [α]D
25 = +11.96 (c = 1.0 g/100mL, CHCl3); IR (CHCl3 cast film): 3374, 2969, 

2934, 2877, 1745, 1718, 1160 cm-1; 1H NMR (CDCl3, 500 MHz) δ 5.08 – 5.02 (m, 

1H, NH), 4.25 (m, 1H, Hα), 3.76 (s, 3H, OCH3), 2.14 (m, 1H, Hβ), 1.47 (s, 9H, 

Boc), 0.98 (d, J = 6.8 Hz, 3H, CH3), 0.92 (d, J = 6.9 Hz, 3H, CH3); 
13C NMR 

(CDCl3, 126 MHz) δ 172.9, 155.7, 79.8, 58.6, 52.0, 31.3, 28.3, 19.0, 17.6. HRMS 

(m/z) calcd for C11H21NO4Na [M+Na]+ 254.1363, found 254.1363. 
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(S)-N-(t-Butylcarboxy)-3-amino-2,4-dimethylpentan-2-ol (181) 

 

This product was synthesized according to a previously reported literature 

procedure.99 To a solution of Boc-L-valine methyl ester 180 (5.3 g, 22.9 mmol) in 

THF (135 mL) was added dropwise a solution of methyl magnesium bromide (31 

mL, 92 mmol, 3 M in diethyl ether) over 30 min at 0 ºC and stirred for 20 h at 

room temperature. The reaction mixture was quenched by slow addition of 

MeOH (66 mL) at 0 ºC forming a white precipitate. The solids were dissolved by 

addition of water (15 mL) and concentrated in vacuo. The residue was dissolved 

in Et2O, filtered through celite and washed with Et2O, concentrated in vacuo to 

yield 181 as a light yellow oil (3.4 g, 64.2%). [α]D
25 = -1.32 (c = 1.0 g/100mL, 

CHCl3); IR (CHCl3 cast film): 3448, 2976, 2933, 2875, 1694, 1175 cm-1; 1H NMR 

(CDCl3, 500 MHz) δ 4.86 (d, J = 10.2 Hz, 1H, NH), 3.42 (dd, J = 10.3, 2.7 Hz, 1H, 

Hα), 2.13 (m, 1H, Hβ), 1.48 (s, 9H, Boc), 1.34 (s, 3H, CH3), 1.26 (s, 3H, CH3), 

0.98 (d, J = 6.8 Hz, 3H, CH(CH3)2), 0.94 (d, J = 6.8 Hz, 3H, CH(CH3)2); 
13C NMR 

(CDCl3, 126 MHz) δ 157.0, 79.1, 73.8, 61.8, 29.1, 28.4, 28.2, 27.1, 22.3, 16.9. 

HRMS (m/z) calcd for C12H25NO3Na [M+Na]+ 254.1727, found 254.1725. 
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(S)-4-i-Propyl-5,5-dimethyloxazolidin-2-one (182) 

 

This product was synthesized according to a previously reported literature 

procedure.99 To a solution of 181 (3.4 g, 14.7 mmol) in THF (68 mL) at 0 ºC was 

added a solution of potassium t-butoxide (17.6 mL, 17.6 mmol, 1 M in THF) and 

stirred for 30 min. The reaction mixture was quenched by addition of a saturated 

solution of ammonium chloride (30 mL), extracted with EtOAc (2 x 30 mL), dried 

over anhydrous magnesium sulfate, concentrated in vacuo, and recrystallized 

from hexanes / EtOAc to yield 182 as a white solid (0.96 g, 43%). [α]D
25 = +16.22 

(c = 0.8 g/100mL, CHCl3); IR (CHCl3 cast film): 3242, 2977, 2938, 2874, 1743, 

1006 cm-1; 1H NMR (CDCl3, 400 MHz) δ 6.10 (s, 1H, NH), 3.20 (dd, J = 8.6, 0.9 

Hz, 1H, H-4), 1.92 – 1.78 (m, 1H, CH(CH3)2), 1.51 (s, 3H, CH3-5), 1.41 (s, 3H, 

CH3-5), 1.01 (d, J = 6.6 Hz, 3H CH(CH3)2), 0.94 (d, J = 6.6 Hz, 3H, CH(CH3)2); 

13C NMR (CDCl3, 100 MHz) δ 158.9, 83.9, 68.4, 28.6, 28.5, 21.3, 20.0, 19.9. 

HRMS (m/z) calcd for C8H16NO2 [M+H]+ 158.1176, found 158.1174. 
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4.4 Lovastatin: synthesis and characterization of compounds 

(+)-(2S)-5-Oxotetrahydrofuran-2-carboxylic acid (209). 

 

This product was synthesized according to a literature procedure.145,146 A 

solution of sodium nitrite (14 g, 200 mmol) in H2O (30 mL) was added dropwise 

to a mixture of (S)-(+)-glutamic acid sodium salt 208 (20 g, 118 mmol) in H2O (53 

mL) and conc. HCl (28 mL) at 0°C over 70 min and was stirred at room 

temperature overnight. After that, solvent was removed in vacuo to give a light 

yellow oil with white crystals. The residue was suspended in EtOAc (70 mL), the 

crystals filtered off and the filtered solution was dried over anhydrous sodium 

sulfate, and concentrated in vacuo to yield 209 as a viscous yellow oil (13.1g, 

85 %). [α]D
25 = 6.81 (c = 2.09 g/100mL, EtOH); IR (EtOH cast film): 3500-2700 

(br.), 2950, 1754, 1177 cm-1; 1H NMR (CDCl3, 500 MHz) δ 5.08 – 5.00 (m, 1H, H-

2), 2.77 – 2.55 (m, 3H, H-3 + 1 x H-4), 2.50 – 2.39 (m, 1H, 1 x H-4); 13C NMR 

(CDCl3, 126 MHz) δ 176.7, 174.7, 75.4, 26.8, 25.8. HRMS (m/z) calcd for C5H5O4 

[M-H]- 129.0193, found 129.0192. 

 

(+)-(5S)-5-(Hydroxymethyl)dihydrofuran-2(3H)-one (210). 

 

This product was synthesized according to a literature procedure.145,146 

BH3SMe2 (10 M, 9.8 mL, 97.8 mmol) was added dropwise via cannula to a 

OO
O
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cooled (0 ºC) stirred solution of crude 209 (12 g, 92.2 mol) in dry THF (38 mL) 

over 1 h. The reaction mixture was allowed to stir and warm to room temperature 

overnight. Dry MeOH (15 mL) was added dropwise and the solvent was removed 

in vacuo. The crude product was purified by flash chromatography (silica, 7:3 

hexanes: EtOAc) to yield 210 (7.5 g, 70%). [α]D
25 = +53.8 (c = 1.6 g/100mL, 

DCM); IR (DCM cast film): 3600-3100 (br.), 2940, 1765, 1186 cm-1; 1H NMR 

(CDCl3, 500 MHz) δ 4.65 (dddd, J = 7.6, 6.8, 4.6, 2.9 Hz, 1H, H-5), 3.90 (dd, J = 

12.5, 2.9 Hz, 1H, 1 x H-6), 3.66 (dd, J = 12.5, 4.6 Hz, 1H, 1 x H-6), 3.42 (br. s, 

1H, OH), 2.69 – 2.49 (m, 2H, H-3), 2.28 (dddd, J = 13.2, 9.9, 7.6, 5.8 Hz, 1H, 1 x 

H-4), 2.15 (dddd, J = 12.8, 10.0, 8.1, 6.8 Hz, 1H, 1 x H-4); 13C NMR (CDCl3, 126 

MHz) δ 177.9, 80.9, 64.1, 28.7, 23.2. HRMS (m/z) calcd for C5H8O3Na [M+Na]+ 

139.0366, found 139.0365. 

 

(+)-(5S)-5-[(tert-Butyldiphenylsilyloxy)methyl]dihydrofuran-2(3H)-one (211). 

 

This product was synthesized according to a literature procedure.147 To a 

solution of 210 (4.9 g, 42.2 mmol) in DCM (60 mL) was added neat TBDPS-Cl 

(11 mL, 42.2 mmol), followed by addition of pyridine (14 mL, 170 mmol) dropwise 

over 10 min at 0 ºC and was stirred at room temperature. After 24 h, the reaction 

mixture was quenched by addition of 2 N HCl (40 mL), washed with brine, dried 

over anhydrous magnesium sulfate, concentrated in vacuo and recrystallized 

from diethyl ether / pentane to yield 211 as a white solid (12.4 g, 83%). 1H NMR 

(CDCl3, 500 MHz) δ 7.70 – 7.66 (m, 4H, HAr), 7.48 – 7.39 (m, 6H, HAr), 4.62 

OO
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(dddd, J = 7.5, 5.9, 3.4, 3.4 Hz, 1H, H-5), 3.90 (dd, J = 11.4, 3.4 Hz, 1H, 1 x H-6), 

3.71 (dd, J = 11.4, 3.4 Hz, 1H, 1 x H-6), 2.69 (ddd, J = 17.8, 10.2, 7.5 Hz, 1H, 1 x 

H-3), 2.53 (ddd, J = 17.8, 10.2, 5.9 Hz, 1H, 1 x H-3), 2.36 – 2.18 (m, 2H, H-4), 

1.09 (s, 9H, C(CH3)3); 
13C NMR (CDCl3, 125 MHz) δ 177.4, 135.6, 135.5, 133.0, 

132.6, 129.9, 127.8, 80.0, 65.5, 28.6, 26.8, 23.7, 19.2. HRMS (m/z) calcd for 

C21H26O3NaSi [M+Na]+ 377.1543, found 377.1544. 

 

 

(+)-(3S,5S)-[(2E,4E)-Hexa-2,4-dien-1-yl]-5-[(tert-butyl-diphenylsilanyloxy)-

methyl]dihydrofuran-2(3H)-one (212). 

 

This product was synthesized according to a literature procedure.147 A 

cooled solution (-78 ºC) of NaHMDS (32 mL, 32 mmol, 1.0 M in THF) was added 

dropwise to a solution of 211 (11 g, 31 mmol) in dry THF (155 mL) at -78 ºC over 

15 min. After stirring for 15 min, a cooled (-78 ºC) crude solution of 2E,4E-

hexadienyl bromide (5 g, mmol) in dry THF (34 mL) was added quickly and the 

solution was left to stir for 30 min. The resulting mixture was added dropwise via 

cannula to a cooled (-78 ºC) stirred solution of LiHMDS (32 mL, 32 mmol, 1.0 M 

in THF) and left to stir for 30 min before a cooled (-78 ºC) solution of 2-bromo-2-

methylpropane (3.6 mL, 31 mmol) in dry THF (34 mL) was added and the 

solution was left to stir for 40 min. The reaction mixture was quenched with a 

saturated solution of ammonium chloride (85 mL) and allowed to warm to room 

OO
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temperature. The solids were dissolved with (85 mL) H2O and the mixture was 

extracted with Et2O (130 mL), washed with saturated solution of ammonium 

chloride (85 mL) and brine (85 mL). The aqueous layer were combined and 

extracted with Et2O (225 mL). The organic layers were combined, dried with 

anhydrous magnesium sulfate, concentrated in vacuo to give a brown oil. The 

crude mixture was purified by flash chromatography (silica, a gradient of solvents 

from hexanes to 5 % EtOAc in hexanes) to yield 212 as a clear colorless oil (3 g, 

22%). [α]D
25 = +40.14 (c = 1.2 g/100mL, CHCl3); IR (CHCl3 cast film): 3071, 3049, 

3018, 2957, 2931, 2858, 1774, 1126 cm-1; 1H NMR (CDCl3, 400 MHz) δ 7.72 – 

7.64 (m, 4H, HAr), 7.50 – 7.36 (m, 6H, HAr), 6.13 – 5.93 (m, 2H, H-3’ + H-4’), 

5.70 – 5.56 (m, 1H, H-5’), 5.49 (dt, J = 14.8, 7.1 Hz, 1H, H-2’), 4.48 (ddt, J = 9.9, 

6.4, 4.0 Hz, 1H, H-5), 3.87 (dd, J = 11.5, 3.6 Hz, 1H, 1 x H-6), 3.73 (dd, J = 11.5, 

4.3 Hz, 1H, 1 x H-6), 2.80 – 2.58 (m, 2H, H-3 + 1 x H-1’), 2.35 – 2.23 (m, 2H, 1 x 

H-1’+ 1 x H-4), 1.93 (ddd, J = 12.7, 11.5, 9.9 Hz, 1H, 1 x H-4), 1.72 (d, J = 6.5 

Hz, 3H, H-6’), 1.07 (s, 9H, C(CH3)3); 
13C NMR (CDCl3, 126 MHz) δ 178.1, 135.7, 

135.6, 133.3, 133.1, 132.8, 131.1, 129.9, 129.8, 128.5 127.8, 126.8, 64.6, 40.6, 

33.3, 29.3, 26.8, 19.3, 18.0. HRMS (m/z) calcd for C27H34O3SiNa [M+Na]+ 

457.2169, found 457.2169. 
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(+)-(3S,5S)-3-[(2E,4E)-Hexa-2,4-dien-1-yl]-5-(hydroxymethyl)dihydrofuran-

2(3H)-one (213). 

 

This product was synthesized according to a literature procedure.147 A 

solution of TBAF (7.6 mL, 7.6 mmol, 1.0 M in THF) was added dropwise to a 

stirred solution of 212 (3.0 g, 6.9 mmol) in dry THF (35 mL) at 0 ºC. The reaction 

mixture was allowed to warm to room temperature over 3 h before diluting with 

Et2O (30 mL). The reaction mixture was washed with a 3 M solution of citric acid 

(3 x 12mL), extracted with Et2O (15 mL), dried over anhydrous magnesium 

sulfate, concentrated in vacuo and purified by flash chromatography (silica, 95% 

Et2O in pentane) to yield 213 (0.89 g, 66%). [α]D
25 = +83.88 (c = 1.0 g/100mL, 

MeOH); IR (MeOH cast film): 3363, 3019, 2952, 1758, 1185 cm-1; 1H NMR 

(CDCl3, 500 MHz) δ 6.15 – 5.98 (m, 2H, H-3’ + H4’), 5.66 (dq, J = 13.6, 6.8 Hz, 

1H, H-5’), 5.50 (dt, J = 14.7, 7.3 Hz, 1H, H-2’), 4.57 – 4.48 (m, 1H, H-5), 3.92 (dd, 

J = 12.7, 3.0 Hz, 1H, 1 x H-6), 3.65 (dd, J = 12.7, 3.3 Hz, 1H, 1 x H-6), 2.78 (dtd, 

J = 11.5, 9.0, 4.4 Hz, 1H, H-3), 2.70 – 2.61 (m, 1H, 1 x H-1’), 2.37 – 2.25 (m, 2H, 

1 x H-1’ + 1 x H-4), 1.91 – 1.78 (m, 1H, 1 x H-4), 1.78 – 1.73 (d, J = 6.5 Hz, 3H, 

H-6’); 13C NMR (CDCl3, 126 MHz) δ 177.8, 133.4, 131.0, 128.8, 126.5, 78.7, 

64.0, 40.7, 33.2, 29.0, 18.0. HRMS (m/z) calcd for C11H17O3 [M+H]+ 197.1172, 

found 197.1172. 

 

OO
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Ethyl (2E)-3-{(2S,4S)-4-[(2E,4E)-hexa-2,4-dien-1-yl]-5-oxotetrahydrofuran-2-

yl}acrylate (214). 

 

This product was synthesized according to a literature procedure.147 To a 

solution of oxalyl chloride (0.54 mL, 6.3 mmol) in dry DCM (6.6 mL) was added 

DMSO at -78 ºC over 25 min. After 20 min, a solution of the alcohol 213 (0.88 g, 

4.48 mmol) in dry THF (11.5 mL) was added over 1 h and stirred for another 20 

min, then a solution of DIPEA (3.1 mL, 17.92 mmol) was added over 15 min and 

allowed to stir for 10 min before warning to -5 ºC. This reaction mixture was 

added via cannula to a stirred solution of (carbethoxymethylene)triphenyl-

phosphorane (3.12 g, 8.96 mmol) in dry THF (14 mL) at 0 ºC over 1 h and 

allowed to warm to room temperature for 20 h excluding the light. The solvent 

was removed in vacuo, the residue was dissolved in EtOAc, washed with 2N HCl 

(2x), extracted with EtOAc, washed with brine, dried with anhydrous magnesium 

sulphate, concentrated in vacuo and, purified by flash chromatography (silica, 1:9 

EtOAc:hexanes then switching to 1:3 EtOAc:hexanes) to give 214 (0.77 g, 65%). 

[α]D
25 = 102.86 (c = 1.8 g/100mL, CHCl3); IR (CHCl3 cast film): 3019, 2982, 2934 

1778, 1720, 1171 cm-1; 1H NMR (CDCl3, 500 MHz) δ 6.91 (dd, J = 15.7, 5.1 Hz, 

1H, CH=CHCO2Et), δ 6.12 (dd, J = 15.7, 1.5 Hz, 1H, CH=CHCO2Et), 6.10 – 5.98 

(m, 2H, H-3’ + H-4’), 5.66 (dq, J = 13.3, 6.7 Hz, 1H, H-5’), 5.46 (dt, J = 14.9, 7.3 

Hz, 1H, H-2’), 4.97 (dddd, J = 10.2, 6.4, 5.1, 1.6 Hz, 1H, H-2), 4.24 (q, J = 7.1 Hz, 

2H, OCH2CH3), 2.78 (dtd, J = 11.4, 8.6, 4.5 Hz, 1H, H-4), 2.71 – 2.60 (m, 1H, 1 x 
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H1’), 2.60 – 2.53 (m, 1H, 1 x H-1’), 2.30 (dt, J = 15.3, 8.1 Hz, 1H, 1 x H-3), 1.84 – 

1.77 (m, 1H, 1 x H-3), 1.76 (d, J = 6.7 Hz, 3H, H-6’), 1.32 (t, J = 7.1 Hz, 3H, 

OCH2CH3); 
13C NMR (CDCl3, 126 MHz) δ 177.1, 165.7, 143.4, 133.7, 130.9, 

129.0, 126.0, 122.3, 76.2, 60.8, 40.6, 34.2, 33.0, 18.0, 14.2. HRMS (m/z) calcd 

for C15H21O4 [M+H]+ 265.1434, found 265.1432. 

 

Ethyl (1S,2S,4aR,6S,8S,8aS)-1,2,4a,5,6,7,8,8a-octahydro-2-methyl-6,8-

naphthalenecarbolactone-1-carboxylate (215). 

 

This product was synthesized according to a literature procedure.147 Into a 

pre-washed round bottom flask with HMDS and dried overnight in the oven (120 

ºC), 214 (0.341 g, 1.29 mmol), mesitylene (43 mL) and butylated hydroxytoluene 

(28 mg) were added and the mixture was refluxed for 11 days under argon 

before cooling to room temperature and concentrated in vacuo. The residue was 

first partially purified by flash chromatography (silica, 1:1:8 MeCN:DCM:toluene), 

then purified again by flash chromatography (silica 3:7 Et2O:pentane) to yield 215 

(0.322 g,  61%). [α]D
25 = 226.28 (c = 0.97 g/100mL, CHCl3); IR (CHCl3 cast film): 

3028, 2972, 2931 1781, 1728, 1142 cm-1; 1H NMR (CDCl3, 400 MHz) δ 5.57 – 

5.45 (m, 2H, H-3 + H-4), 5.06 (d, J = 6.1 Hz, 1H, H-8eq), 4.18 (q, J = 7.1 Hz, 2H, 

OCH2CH3), 2.87 (dd, J = 11.9, 6.6 Hz, 2H, H-1), 2.77 – 2.67 (m, 2H, H-6eq + H-

2), 2.50 (dddd, J = 11.6, 6.1, 5.3, 2.1 Hz, 1H, H-7eq), 2.39 – 2.24 (m, 1H, H-4a), 
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2.05 (dtd, J = 12.3, 5.0, 2.1 Hz, 1H, H-5eq), 1.88 (d, J = 11.7 Hz, 1H, H-7ax), 

1.81 – 1.70 (m, 2H, H-8a), 1.48 – 1.35 (m, 1H, H-5ax), 1.23 (t, J = 7.1 Hz, 3H, 

OCH2CH3), 0.90 (d, J = 7.2 Hz, 3H, CH3-2); 13C NMR (CDCl3, 126 MHz) δ 178.8, 

173.0, 131.2, 128.0, 77.8, 60.3, 46.0, 39.3, 39.2, 38.7, 35.0, 32.6, 31.8, 17.2, 

14.2. HRMS (m/z) calcd for C15H21O4 [M+H]+ 265.1434, found 265.1434. 

 

Ethyl (1S,2S,4aR,6S,8S,8aS)-8-hydroxy-6-(hydroxymethyl)-2-methyl-

1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylate (216). 

 

This product was synthesized according to a literature procedure.147,148 A 

solution of LiBEt3H (1.2 mL, 1.2 mmol, 1.0 M in THF) was added slowly to a 

stirred solution of 215 (0.296 g, 1.12 mmol) in dry TFH (16 mL) over 10 min at  

0 ºC. After stirring for 30 min, water (0.32 mL), 2 N NaOH (0.62 mL) and 30 % 

H2O2 (0.62 mL) were added and the reaction mixture was stirred for 1 h. The 

reaction mixture was diluted with Et2O (16 mL), washed with brine, and the 

aqueous layer was extracted with Et2O (3 x 10 mL). The organic layers were 

combined, dried over anhydrous magnesium sulfate and concentrated in vacuo. 

The residue was dissolved in EtOAc (4 mL), NaBH4 (11 mg, 0.28 mmol) was 

added and the reaction mixture was stirred for 2 h. After that, the reaction mixture 

was diluted with EtOAc (15 mL), washed with 1 N HCl (10 mL) and aqueous 

layer was extracted with EtOAc (2 x 15 mL). The organic layers were combined, 

HHO

HO

H

O O
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dried over anhydrous magnesium sulfate, concentrated in vacuo and purified by 

flash chromatography (silica, 6 % pentane in Et2O) to give 216 (0.224 g, 75%). 

[α]D
25 = 172.80 (c = 0.53 g/100mL, CHCl3); IR (CHCl3 cast film): 3600-3200 (br.), 

3012, 2966, 2909 1730, 1140 cm-1; 1H NMR (CDCl3, 500 MHz) δ 5.57 (ddd, J = 

9.8, 4.6, 2.7 Hz, 1H, CH=CH), 5.44 (dd, J = 9.9, 1.7 Hz, 1H, CH=CH), 4.31 (ddd, 

J = 2.9 Hz, 1H, H-8eq), 4.25 – 4.12 (m, 2H, OCH2CH3), 3.81 (d, J = 5.0 Hz, 2H, 

CH2OH), 3.00 (br. s, 2H, 2 x OH), 2.86 (dd, J = 11.6, 5.9 Hz, 1H, H-1), 2.69 – 

2.60 (m, 1H, H-2), 2.61 – 2.48 (m, 1H, H-4a), 2.07 – 1.97 (m, 1H, H-6), 1.96 – 

1.90 (m, 2H, H-7), 1.85 (ddd, J = 13.4, 3.5, 1.8 Hz, 1H, H-5eq), 1.54 (dd, J = 

11.3, 11.3, 2.2 Hz, 1H, H-8a), 1.39 (ddd, J = 13.4, 13.4, 6.1 Hz, 1H, H-5ax), 1.30 

(t, J = 7.1 Hz, 3H, OCH2CH3), 0.96 (d, J = 7.1 Hz, 3H, CH3-2). 13C NMR (CDCl3, 

126 MHz) δ 173.8, 131.2, 130.6, 68.0, 66.0, 60.0, 45.1, 39.9, 35.7, 34.8, 34.1, 

32.5, 30.5, 17.6, 14.3. HRMS (m/z) calcd for C15H25O4 [M+H]+ 269.1747, found 

269.1745. 

 

Ethyl (1S,2S,4aR,6S,8S,8aS)-8-hydroxy-2-methyl-6-

({[(methylthio)carbonothioyl]oxy}methyl)-1,2,4a,5,6,7,8,8a-

octahydronaphthalene-1-carboxylate (217). 

 

This product was synthesized according to a literature procedure.148,149 To 

a solution of diol 216 (167 mg, 0.62 mmol) and tetrabutylammonium hydrogen 

H

OH

H
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O
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sulfate (232 mg, 0.62 mmol) in benzene (5 mL) was added a solution of 4 N 

NaOH (5 mL, 20 mmol), followed by addition of CS2 (75 µL, 1.24 mmol) and MeI 

(58 µL, 0.93 mmol). After 10 min, ice (10 g) and Et2O (10 mL) were added and 

the solution was stirred for another 5 min. The reaction mixture was diluted and 

extracted with Et2O (2 x 15 mL), organic layers were combined, washed with 

brine, dried over anhydrous magnesium sulfate and concentrated in vacuo to 

give 0.22 g of crude product 217, which was used in the next reaction without 

further purification. [α]D
25 = +115.05 (c = 0.56 g/100mL, CHCl3); IR (CHCl3 cast 

film): 3600-3400 (br.), 3012, 2966, 2922, 2855, 1729, 1712, 1179 cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 5.64 (ddd, J = 9.9, 4.6, 2.7 Hz, 1H, CH=CH), 5.46 (dd, J = 

9.9, 1.7 Hz, 1H, CH=CH), 4.98 (dd, J = 10.8, 9.2 Hz, 1H, 1 x CH2OC(S)S), 4.80 

(dd, J = 10.8, 6.1 Hz, 1H, CH2OC(S)S), 4.38 (m, 1H, H-8eq), 4.21 (m, 2H, 

OCH2CH3), 2.93 (dd, J = 11.6, 5.9 Hz, 1H, -1), 2.75 – 2.66 (m, 1H, H-2), 2.61 (s, 

3H, SCH3), 2.58 – 2.38 (m, 2H, H-4a + H-6), 1.98 – 1.81 (m, 3H, H-7 + H-5eq), 

1.59 (br. s, 1H, OH), 1.44 – 1.38 (m, 1H, H-8a), 1.36 (ddd, J = 13.6, 13.6, 5.2 Hz, 

3H, H-5ax), 1.27 (t, J = 7.0 Hz, 3H, OCH2CH3), 1.01 (d, J = 7.1 Hz, 3H, CH3-2). 

HRMS (m/z) calcd for C17H26O4S2Na [M+Na]+ 381.1165, found 381.60. 
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Ethyl (1S,2S,4aR,6S,8S,8aS)-2-methyl-6-

({[(methylthio)carbonothioyl]oxy}methyl)-8-oxo-1,2,4a,5,6,7,8,8a-

octahydronaphthalene-1-carboxylate (218). 

 

This product was synthesized according to a literature procedure.148,150 To 

a solution of 217 (0.22 g, 0.62 mmol) in DCM (5 mL) was added PDC (0.35 g, 

0.93 mmol) and the mixture was stirred for 44 h at room temperature before 

removing the solvent in vacuo and filtering the residue through a silica plug (1:1 

Et2O:pentane) to give a yellow oil, which was purified by flash chromatography 

(silica, 3:7 Et2O:pentane) to yield 218 as a white waxy solid (0.20 g, 65%). [α]D
25 

= 174.28 (c = 1.22 g/100mL, CHCl3); IR (CHCl3 cast film): 3016, 2967, 2928, 

1732, 1718, 1651, 1185 cm-1; 1H NMR (CDCl3, 500 MHz) δ 5.69 (ddd, J = 9.8, 

4.6, 2.7 Hz, 1H, CH=CH), 5.48 (ddd, J = 9.8, 1.7, 1.7 Hz, 1H, CH=CH), 4.56 (dd, 

J = 11.1, 7.9 Hz, 1H, 1 x CH2OC(S)S), 4.49 (dd, J = 11.1, 7.0 Hz, 1H, 1 x 

CH2OC(S)S), 4.27 – 4.10 (m, 2H, OCH2CH3), 2.95 – 2.62 (m, 5H, H-1 + H-2 + H-

4a + 1 x H-7 + H-8a), 2.58 (s, 3H, SCH3), 2.40 (ddd, J = 13.6, 2.0, 2.0 Hz, 1H, 1 x 

H-7), 2.31 (m, 1H, H-6), 2.00 (ddt, J = 14.0, 3.9, 2.0 Hz, 1H, H-5eq), 1.82 (ddd, J 

= 13.5, 13.5, 5.4 Hz, 1H, H-5ax), 1.29 (t, J = 7.1 Hz, 3H, OCH2CH3), 0.92 (d, J = 

7.1 Hz, 3H, CH3-2); 13C NMR (CDCl3, 126 MHz) δ 215.7, 209.0, 173.5, 132.5, 

128.0, 74.5, 60.3, 49.24, 43.0, 42.6, 38.0, 35.4, 32.9, 31.2, 19.2, 17.7, 14.3. 

HRMS (m/z) calcd for C17H24O4S2Na [M+Na]+ 376.1008, found 376.1006. 
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Ethyl (1S,2S,4aR,6S,8S,8aS)-2,6-dimethyl-8-oxo-1,2,4a,5,6,7,8,8a-

octahydronaphthalene-1-carboxylate (219). 

 

This product was synthesized according to a literature procedure.148,151 In 

a 3 neck flask fitted with a condenser, a solution of xanthate 218 (156 mg, 0.44 

mmol) in p-cymene (15 mL) was bubbled with argon for 15 min before heating to 

150 ºC, then a solution of Bu3SnH (0.93 mL, 3.5 mmol) in p-cymene (14 mL), 

previously bubbled with argon for 15 min, was added with a syringe pump over 

110 min at 150 ºC and was allowed to stir overnight at 150 ºC. After cooling, the 

reaction mixture was concentrated in vacuo and purified by flash chromatography 

(silica, 8:2 pentane:Et2O) to yield 219 (88 mg, 80%). [α]D
25 = 179.81 (c = 1.45 

g/100mL, CHCl3); IR (CHCl3 cast film): 3016, 2961, 2924, 2874, 1735, 1718, 

1650, 1186 cm-1; 1H NMR (CDCl3, 700 MHz) δ 5.62 (ddd, J = 9.8, 4.6, 2.8 Hz, 

1H, CH=CH), 5.43 (ddd, J = 9.9, 1.8, 1.8 Hz, 1H, CH=CH), 4.20 – 4.08 (m, 2H, 

OCH2CH3), 2.81 (dd, J = 11.5, 6.4, 1H, H-1), 2.73 (dd, J = 12.6, 6.9, 1H, H-8a), 

2.65 – 2.51 (m, 3H, H-2 + H-7), 2.34 – 2.27 (m, 1H, H-6), 2.14 (ddd, J = 12.7, 

2.0, 2.0 Hz, 1H, H-4a), 1.77 (ddd, J = 13.1, 13.1, 5.0 Hz, 1H, H-5ax), 1.70 – 1.66 

(m, 1H, H-5eq), 1.25 (t, J = 7.1 Hz, 3H, OCH2CH3), 0.96 (d, J = 7.3 Hz, 3H, CH3-

6), 0.87 (d, J = 7.2 Hz, 3H, CH3-2); 13C NMR (CDCl3, 176 MHz) δ 210.4, 173.7, 

132.1, 128.8, 60.1, 49.5, 48.0, 42.7, 37.9, 37.7, 31.3, 31.2, 19.3, 17.7, 14.2. 

HRMS (m/z) calcd for C15H23O3 [M+H]+ 251.1642, found 251.1640. 
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Ethyl (1S,2S,4aR,6S,8aS)-1,2,4a,5,6,7,8,8a-octahydro-8-(dimethylenedithio)-

2,6-dimethylnaphthalen-1-carboxylate (220). 

 

This product was synthesized according to a literature procedure.148,152 To 

a solution of 219 (33.4mg, 0.13 mmol), 1,2-ethanedithiol (23 µL, 0.27 mmol) in 

DCM (1.3 mL) was added freshly distilled BF3�OEt2 (16 µL, 0.13 mmol) at 0 ºC 

and was stirred overnight at room temperature. The reaction mixture was diluted 

with DCM and washed sequentially with 1 N NaOH, 1 N HCl, water, and brine, 

then concentrated in vacuo and purified by flash chromatography (silica, 5 % 

Et2O in pentane) to yield 220 (33 mg, 79%). [α]D
25 = 62.22 (c = 1.2 g/100mL, 

CHCl3); IR (CHCl3 cast film): 3027, 2970, 2926, 2877, 1730, 1718, 1637, 1156 

cm-1; 1H NMR (CDCl3, 700 MHz) δ 5.60 (s, 2H, CH=CH), 5.28 (s, 1H), 4.15 – 

4.05 (m, 2H, OCH2CH3), 3.40 – 3.17 (m, 4H, SCH2CH2S), 3.09 (dd, J = 7.9, 6.3 

Hz, 1H, H-1), 2.45 (dq, J = 7.6, 6.5 Hz, 1H, H-2), 2.29 – 2.21 (m, 2H, H-7), 2.19 

(dd, J = 10.8, 6.3 Hz, 1H, H-8a), 2.14 (ddtq, J = 10.5, 7.6, 5.3, 2.7 Hz, 1H, H-6), 

2.09 – 2.01 (m, 1H, H-4a), 1.74 (ddt, J = 13.0, 3.6, 2.0 Hz, 1H, H-5eq), 1.61 (ddd, 

J = 13.0, 13.0, 5.5 Hz, 1H, H-5ax), 1.23 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.20 (d, J 

= 7.6 Hz, 3H, CH3-6), 1.09 (d, J = 7.4 Hz, 3H, CH3-2); 13C NMR (CDCl3, 176 

MHz) δ 176.2, 134.1, 133.3, 72.6, 59.9, 54.2, 50.9, 49.7, 40.9, 38.5, 37.9, 33.7, 

31.9, 29.5, 20.4, 17.6, 14.3. HRMS (m/z) calcd for C17H27O2S2 [M+H]+ 327.1447, 

found 327.1449. 
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Ethyl (1S,2S,4aR,6S,8aS)-2,6-dimethyl-1,2,4a,5,6,7,8,8a-

octahydronaphthalene-1-carboxylate (221). 

 

This product was synthesized according to a literature procedure.148,153 

The dithioacetal 220 (16.5 mg, 0.051 mmol) was bubbled with argon for 30 min, 

then AIBN (~1 mg) was added and the mixture was bubbled with argon. After 10 

min, Bu3Sn-H (40 µL, 0.152 mmol) was added and the reaction mixture was 

stirred for 24 h at 120 ºC. The mixture was cooled and filtered through a plug 

(silica, 1:1 Et2O:pentane), concentrated in vacuo and purified by flash 

chromatography (silica 2% Et2O in pentane) to yield 221 (8.4 mg, 70%). [α]D
25 = 

101.31 (c = 0.36 g/100mL, CHCl3); IR (CHCl3 cast film): 3013, 2960, 2914, 2850, 

1737, 1650, 1139 cm-1; 1H NMR (CDCl3, 500 MHz) δ 5.57 (ddd, J = 9.9, 3.6, 3.6 

Hz, 1H, H-3), 5.35 (d, J = 9.9 Hz, 1H, H-4), 4.17 (q, J = 7.1 Hz, 2H, OCH2CH3), 

2.62 – 2.53 (m, 2H, H-1 + H-2), 2.12 – 2.03 (m, 1H, H-6), 1.96 (ddd, J = 15.3, 

7.6, 5.2 Hz, 1H, H-4a), 1.75 (dddd, J = 12.6, 3.6, 3.3, 3.3 Hz, 1H, H-8eq), 1.66 

(dddd, J = 13.4, 13.4, 4.6, 4.6 Hz, 1H, H-7ax), 1.57 – 1.48 (m, 2H, H-7eq + H-

5eq), 1.48 – 1.33 (m, 2H, H-8a + H-5ax), 1.29 (t, J = 7.1 Hz, 3H, OCH2CH3), 1.13 

(dddd, J = 12.7, 12.7, 12.7, 3.6 Hz, 1H, H-8ax), 1.02 (d, J = 7.2 Hz, 3H, CH3-6), 

0.95 (d, J = 6.7 Hz, 3H, CH3-2); 13C NMR (CDCl3, 126 MHz) δ 173.9, 131.2, 

131.2, 59.8, 49.6, 38.7, 37.2, 35.6, 32.3, 31.9, 27.6, 24.5, 18.4, 17.8, 14.4. 

HRMS (m/z) calcd for C15H24O2Na [M+Na]+ 259.1669, found 259.1663. 
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(1S,2S,4aR,6S,8aS)-2,6-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-

carboxylic acid (222). 

 

 

To a solution of 221 (7.7 mg, 0.029 mmol) in dioxane (200 µL) and water 

(200 µL) was added LiOH (2.5 mg, 0.058 mmol) and heated to 100 ºC. After six 

days at 100 ºC, the reaction mixture was cooled and diluted with Et2O (4 mL) and 

water (4 mL), extracted with Et2O (2 x 4 mL), and the layers were separated. The 

aqueous layer was acidified with 1 N HCl to pH = 1, and extracted with Et2O (2 x 

4 mL). The organic layers were combined, dried with magnesium sulfate and 

concentrated in vacuo to yield 222 (1 mg, 17%). [α]D
25 = 80.78 (c = 0.10 

g/100mL, CHCl3); IR (CHCl3 cast film): 3400 – 2800 (br), 3014, 2959, 2918, 

2852, 1708, 1146 cm-1; 1H NMR (CDCl3, 700 MHz) δ 5.56 (ddd, J = 9.9, 4.3, 2.7 

Hz, 1H, H-3), 5.33 (d, J = 9.9 Hz, 1H, H-4), 2.69 – 2.57 (m, 2H, H-1 + H-2), 2.09 

– 2.02 (m, 1H, H-6), 1.98 – 1.91 (m, 1H, H-4a), 1.79 (dddd, J = 12.8, 3.5, 3.5, 3.5 

Hz, 1H, H-8eq), 1.62 (dddd, J = 13.5, 9.2, 4.6, 4.6 Hz, 1H, H-7ax), 1.55 – 1.48 

(m, 2H, H-7eq + H-5eq), 1.39 – 1.31 (m, 2H, H-8a + H-5ax), 1.13 (dddd, J = 13.0, 

13.0, 13.0, 3.6 Hz, 1H, H-8ax), 0.99 (d, J = 7.2 Hz, 3H, CH3-6), 0.97 (d, J = 7.0 

Hz, 3H, CH3-2); 13C NMR (CDCl3, 176 MHz) δ 177.1, 131.2, 130.8, 48.9, 38.6, 

36.9, 35.5, 32.1, 31.8, 27.5, 24.4, 18.3, 17.7. HRMS (m/z) calcd for C13H19O2 [M-

H]- 207.1391, found 207.1390. 

H
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