
Towards Developing Energy Efficient Mobile
Applications: Models, Tools, and Guidelines

by

Shaiful Alam Chowdhury

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Shaiful Alam Chowdhury, 2019

Abstract

Software energy efficiency has become a concern for the scale of operations

in data centers and for the availability of battery-driven mobile devices. De-

velopers now consider energy efficiency as one of the performance metrics.

Unfortunately, developers are not trained enough and do not know how to

produce energy efficient software. They demand guidelines and tools for de-

veloping energy efficient software. To help energy-aware developers (focusing

on Android application developers), we make the following contributions.

1) Energy-aware application (app) developers, first and foremost, need to

estimate their apps’ energy consumption. Without any estimation, they would

not know if their effort for energy optimization is effective. Considering An-

droid as an example, we first present a reproducible machine learning-based

energy consumption model. Results suggest that with more and more apps in

training, we can improve the estimation accuracy of machine learning-based

models. However, adding and running a new app requires writing a manual

test script for the app, which hinders building an ever improving energy model.

To alleviate this problem, we show that automatic random test generation with

test selection heuristics can be used. These automatically generated tests can

exercise the apps, so we can collect different resource usage (independent vari-

ables) and energy consumption of the apps (dependent variable).

2) We then argue that developers also need energy optimization guidelines:

what makes an app more energy efficient? Along this direction, we provide

ii

three different guidelines. First, we show that the new HTTP/2 protocol of-

fers reduced energy consumption when compared to the old HTTP/1.1. Also,

the handshaking mechanism for adding transport layer security causes extra

energy drain in mobile clients. Energy-aware web app developers should con-

sider deploying the HTTP/2 protocol for saving energy consumption. Second,

we show that developers, if prudent, do not need to worry about the energy

impact of software logging which is crucial for monitoring apps’ health. They

need to log less frequently by grouping small log messages together. Finally,

we present a new design pattern that developers can adopt for making view

updates more energy efficient. We also discuss the potential trade-offs (e.g.,

user experience, and software maintenance cost) that developers should be

aware of before adopting a design choice.

iii

Preface

This thesis is mainly based on five different publications, where I was the

main contributor with the supervision of Professor Abram Hindle. I designed

the methodology, conducted experiments, evaluated the results, and wrote the

papers. In some cases, my other collaborators helped me with data collection

and paper presentation.

Chapter 4 of this thesis has been published as:

� Shaiful Alam Chowdhury, Abram Hindle, “GreenOracle: Estimating

Software Energy Consumption with Energy Measurement Corpora”, In

13th International Conference on Mining Software Repositories (MSR

2016), pages 49-60. May 14-15, 2016. Austin, Texas.

Chapter 5 of this thesis has been published as:

� Shaiful Alam Chowdhury, Stephanie Borle, Stephen Romansky, Abram

Hindle, “GreenScaler : Training Software Energy Models With Auto-

matic Test Generation”, Empirical Software Engineering Journal, Springer,

2018. This paper has also been accepted as a journal first paper and was

presented at the 41st ACM/IEEE International Conference on Software

Engineering (ICSE 2019).

Chapter 6 of this thesis has been published as:

� Shaiful Alam Chowdhury, Varun Sapra, Abram Hindle, “Client-side En-

ergy Efficiency of HTTP/2 for Web and Mobile App Developers”, In

23rd IEEE International Conference on Software Analysis, Evolution,

iv

and Reengineering (SANER 2016), pages 529-540. March 14-18, 2016.

Osaka, Japan.

Chapter 7 of this thesis has been published as:

� Shaiful Alam Chowdhury, Silvia Di Nardo, Abram Hindle, Zhen Ming

(Jack) Jiang, “An Exploratory Study on Assessing the Energy Impact

of Logging on Android Applications”, Empirical Software Engineering

Journal, Springer, 2017.

Chapter 8 of this thesis has been published as:

� Shaiful Chowdhury, Abram Hindle, Rick Kazman, Takumi Shuto, Ken

Matsui, and Yasutaka Kamei, “GreenBundle: An Empirical Study on the

Energy Impact of Bundled Processing”, In 41st ACM/IEEE International

Conference on Software Engineering (ICSE 2019, technical track), pages

1107-1118. May 25-31, 2019. Montreal, Canada.

Below is the list of my other publications (including papers I co-authored)

that I published during my PhD degree, but are not included in this thesis.

� Alexander Wong, Amir Salimi, Shaiful Chowdhury, Abram Hindle, “Syn-

tax and Stack Overflow: A Methodology for Source Code Error and Fix

Extraction”, To appear in 35th IEEE International Conference on Soft-

ware Maintenance and Evolution (ICSME 2019, short paper), Cleveland,

USA.

� Abdul Ali Bangash, Hareem Sahar, Shaiful Chowdhury, Alexander William

Wong, Abram Hindle, Karim Ali, “What do developers know about ma-

chine learning: a study of ML discussions on StackOverflow”, In Pro-

ceedings of Mining Software Repositories (MSR 2019, Challenge track).

May 25-31, 2019. Montreal, Canada.

� Stephen Romansky, Neil Borle, Shaiful Alam Chowdhury, Abram Hin-

dle, Russ Greiner, “Deep Green: modelling time-series of software energy

v

consumption”, In 33rd IEEE International Conference on Software Main-

tenance and Evolution (ICSME 2017), pages 273-283. Sep 17-22, 2017.

Shangai, China.

� Shaiful Alam Chowdhury, Abram Hindle, “Characterizing Energy-Aware

Software Projects: Are They Different?”, In 13th International Confer-

ence on Mining Software Repositories (MSR 2016, Challenge track). May

14-15, 2016. Austin, Texas.

� Shaiful Alam Chowdhury, Luke Kumar, Toukir Imam, Mohomed Jab-

bar, Varun Sapra, Karan Aggarwal, Abram Hindle, Russell Greiner,

“A System-call based Model of Software Energy Consumption without

Hardware Instrumentation”, In Sixth International Conference on Green

and Sustainable Computing Conference, December, 2015, Las Vegas, US.

� Shaiful Alam Chowdhury, Abram Hindle, “Mining StackOverflow to Fil-

ter out Off-topic IRC Discussion”, In 12th Working Conference on Min-

ing Software Repositories (Challenge track), May 16-17, 2015. Florence,

Italy (Won the Best Mining Challenge Paper Award).

vi

To all the tax payers of Bangladesh

For financing the costs of undergraduate studies in Bangladeshi public

universities,

To my late father

For teaching me “simplicity”,

To my mother

For teaching me “honesty”.

vii

Acknowledgements

First and foremost, I thank the almighty God (Allah in Arabic) for helping

me throughout this journey.

I would like to thank my supervisor Professor Abram Hindle for his in-

strumental support. He was extremely helpful and kind. I sincerely thank

my committee members (Dr. Thomas Zimmermann, Professor Eleni Stroulia,

Professor Ken Wong, Professor Cor-Paul Bezemer, and my defence chair Pro-

fessor Denilson Barbosa) for their insightful feedback. My lab mates were also

very helpful, and they encouraged me during the difficult times. I am grateful

to my family members (my mother, my wife Syeda Shamria Hasan, and my

son Isham Ariz Chowdhury) for their continuous support.

I am grateful to the people of Bangladesh; thanks to their taxes which

enabled free education in public universities.

I am also grateful for the following recognitions.

� Media Coverage: University of Alberta research could prevent app up-
dates from draining smartphone batteries. Global News, https://globalnews.
ca/news/4643134/university-of-alberta-research-smartphone-apps-batteries/

� NSERC Postdoctoral Fellowship, University of British Columbia, Canada

� Graduate Student Outstanding Undergraduate Teaching Award, University of Al-
berta

� Alberta Queen Elizabeth II Graduate Scholarship (Doctoral-level), University of Al-
berta

� Alberta Innovates -Technology Futures Graduate Student Scholarship, University of
Alberta

� Winner: Computing Science Early Achievement Award (PhD), University of Alberta

� Devendra Jindal Graduate Scholarship, University of Alberta

viii

https://globalnews.ca/news/4643134/university-of-alberta-research-smartphone-apps-batteries/
https://globalnews.ca/news/4643134/university-of-alberta-research-smartphone-apps-batteries/

� Runner-up: Computing Science Early Achievement Award (PhD), University of Al-
berta

� MSR Mining Challenge Award 2015

� Doctoral Recruitment Scholarship, University of Alberta, Canada

ix

Contents

1 Introduction 1

1.1 Software energy consumption and efficiency 2

1.2 Motivation . 3

1.2.1 Estimating software energy consumption 3

1.2.2 Energy optimization guidelines 4

1.3 Contributions . 5

1.3.1 Models/Tools for estimating apps’ energy consumption 6

1.3.2 Enhancement in energy optimization guidelines 7

1.4 Thesis organization . 9

2 Background 12

2.1 Current, voltage, power, and energy 12

2.2 Power vs. energy . 13

2.3 Energy measurement: GreenMiner 14

2.4 Tail energy . 16

2.5 System calls for software energy modeling 18

3 Related Work 20

3.1 Developers’ knowledge of software energy efficiency 20

3.2 Modeling energy consumption 22

3.2.1 Instruction-based modeling 22

3.2.2 Utilization-based modeling 23

3.2.3 System call-based modeling 24

3.2.4 Other models . 25

3.3 Energy optimization and testing 26

3.3.1 Energy efficient color selection 26

3.3.2 Cloud computing for saving mobile energy 27

3.3.3 Mobile energy efficiency in video streaming 28

3.3.4 Does ad blocking help to reduce energy drain? 29

3.3.5 Impact of code obfuscation and refactoring on energy . 30

3.3.6 Energy efficiency of Java collections 30

x

3.3.7 Detecting energy bugs and hotspots 31

3.3.8 Guidelines for energy-aware developers 33

3.3.9 Design patterns and energy consumption 34

3.3.10 Batch processing for energy efficiency 35

3.3.11 Energy specific testing 36

I Energy Estimation with Models 39

4 GreenOracle: Producing Reproducible Energy Models 40

4.1 Introduction . 44

4.2 Background and related work 46

4.2.1 Power and energy . 46

4.2.2 System calls . 46

4.2.3 Modeling energy consumption 47

4.2.4 Energy optimization 49

4.3 Methodology . 49

4.3.1 Collecting versions of Android applications 50

4.3.2 GreenMiner . 51

4.3.3 Developing the test scripts 52

4.3.4 Collecting energy and resource usage of the applications 52

4.3.5 Grouping system calls 53

4.3.6 Feature scaling & feature selection 54

4.3.7 Algorithms to model energy consumption 55

4.3.8 Cross validation . 58

4.4 Experiment and result analysis 58

4.5 Are the models useful? . 62

4.5.1 Energy-rated mobile applications 62

4.5.2 Identifying energy sensitive code changes between sub-
sequent versions . 63

4.6 Developer’s workflow to estimate and improve energy consump-
tion . 66

4.7 Towards improving the accuracy of our models 67

4.8 Threats to validity . 68

4.9 Conclusion and future work 68

5 Leveraging Automatic Test Generation for Improving Energy
Models 70

5.1 Introduction . 75

5.1.1 Paper organization . 77

5.2 Background . 78

xi

5.2.1 Power vs. energy . 78

5.2.2 System calls and CPU time 78

5.2.3 Energy measurement: GreenMiner 79

5.2.4 Energy estimation: GreenOracle 81

5.2.5 Energy model building test generation 81

5.3 Code coverage heuristic . 84

5.3.1 Methodology . 85

5.3.2 Analysis of results . 88

5.4 GreenScaler methodology . 91

5.4.1 Collecting Android applications 92

5.4.2 Automatic test generation with resource-utilization heuris-
tics . 92

5.4.3 Collecting energy consumption and resource usage . . . 96

5.4.4 Algorithms for energy models 97

5.4.5 Feature engineering . 99

5.4.6 Testing and cross validation 100

5.5 Evaluating resource utilization heuristics 101

5.6 Monkey vs. GreenMonkey . 104

5.7 Evaluating GreenScaler . 106

5.7.1 Evaluation on randomly generated tests 106

5.7.2 Evaluation on manually written tests 107

5.7.3 Qualitative evaluation of GreenScaler model 108

5.7.4 Evaluation on detecting energy regressions 110

5.7.5 Accuracy vs. commit size 113

5.7.6 Evaluating GreenScaler tool from developers’ perspectives118

5.8 The importance of more apps in training 119

5.9 Research directions for the software energy research community 119

5.10 Dataset . 121

5.11 Threats to validity . 122

5.11.1 Conclusion validity . 122

5.11.2 Construct validity . 123

5.11.3 Internal validity . 124

5.11.4 External validity . 125

5.12 Related work . 126

5.12.1 Modeling energy consumption 126

5.12.2 Energy optimization 128

5.12.3 Energy testing . 129

5.13 Conclusion and future work 130

xii

II Guidelines 132

6 Energy Efficiency of HTTP/2 133

6.1 Introduction . 136

6.2 Background . 138

6.2.1 Hyper Text Transfer Protocol (HTTP) and its limitations138

6.2.2 SPDY and HTTP/2 139

6.2.3 Power and energy . 140

6.2.4 Tail energy . 140

6.3 Methodology . 140

6.3.1 GreenMiner . 140

6.3.2 Writing a test script 141

6.3.3 Collecting Mozilla Firefox nightly versions 142

6.3.4 Deploying a HTTP/2 server 142

6.3.5 Workload . 143

6.3.6 Validation . 145

6.4 Experiment and result analysis 148

6.4.1 World flags . 148

6.4.2 Gopher tiles . 149

6.4.3 Google and Twitter . 151

6.5 Discussion . 152

6.6 Threat to validity . 155

6.7 Related work . 155

6.7.1 Mitigation of energy bugs/hotspots in applications . . 155

6.7.2 Performance of web protocols 156

6.8 Conclusions and future work 158

7 Energy Consumption of Logging in Android 159

7.1 Introduction . 163

7.2 Background . 165

7.2.1 General approaches for software instrumentation 166

7.2.2 Android logging . 167

7.2.3 GreenMiner . 168

7.3 RQ1: What is the difference in energy consumption for Android
applications with and without logging? 171

7.3.1 Motivation . 171

7.3.2 Experiments . 171

7.3.3 Analysis . 174

7.3.4 Summary . 181

xiii

7.4 RQ2: What are the factors impacting the energy consumption
of logging on Android applications? 181

7.4.1 Motivation . 181

7.4.2 Experiments . 181

7.4.3 Analysis . 183

7.4.4 Summary . 187

7.5 RQ3: Is there any relationship between the logging events and
the energy consumption of mobile applications? 187

7.5.1 Motivation . 187

7.5.2 Experiments . 188

7.5.3 Analysis . 188

7.5.4 Summary . 196

7.6 Threats to validity . 196

7.6.1 Construct validity . 196

7.6.2 Internal validity . 197

7.6.3 External validity . 198

7.7 Related work . 199

7.7.1 Energy testing and modeling for mobile applications . . 199

7.7.2 Empirical studies on energy-efficient mobile development 200

7.7.3 Execution logs . 201

7.8 Conclusion . 203

8 GreenBundle: Addressing energy efficiency from design time205

8.1 Introduction . 209

8.2 Background . 211

8.2.1 Energy efficiency is difficult to achieve 211

8.2.2 Model-View-Presenter 212

8.2.3 Events, bundling and dropping presenters 213

8.3 Methodology . 214

8.3.1 The benchmark app 215

8.3.2 Energy measurements and test scripts 217

8.4 Results: benchmark app . 219

8.5 Real world apps . 224

8.5.1 Selection of applications 224

8.5.2 RQ 3: What are the energy impacts of bundling and
dropping on real-world applications? 226

8.5.3 RQ 4: Can bundling and dropping help address users’
feedback without harming apps’ energy consumption? . 227

8.6 Understanding resource utilization patterns with bundling and
dropping . 229

8.6.1 RQ 5: Why do bundling and dropping save energy? . . 230

xiv

8.7 Maintainability analysis . 231

8.8 Threats to validity . 233

8.9 Related work . 233

8.10 Conclusion & future work . 235

III The Future 237

9 Conclusions & Future Work 238

9.1 Summary of the contributions 238

9.1.1 A reproducible energy model 239

9.1.2 Accurate energy models with automated test generation 239

9.1.3 Energy consumption of the HTTP/2 protocol 240

9.1.4 Energy consumption of logging 240

9.1.5 Energy efficiency from the design time 241

9.2 Future work . 242

9.2.1 A generic energy estimation model 242

9.2.2 Automatic energy regression testing 243

9.2.3 Other potential research 246

9.3 Concluding remarks . 247

References 249

xv

List of Tables

2.1 Specs of the Samsung Galaxy Nexus phones used for the exper-
iments. 16

4.1 Description of the applications 51

4.2 Grouping similar system calls according to OS semantics . . . 54

4.3 Selected features from the traces of system calls and the CPU
related information . 56

4.4 Prediction accuracy of the proposed energy models: train on
all but the application under test. The ground truths are the
average of 10 runs and the predicted energy consumption is
based on the average of 10 system call traces and 10 CPU usage
traces. Error for a particular application is the average percent
of error across all of its versions. 59

4.5 Model description: after normalizing the features using the max
and min, a developer can directly use the coefficients of the
models to estimate the energy consumption of a new application. 61

5.1 Specs of the Samsung Galaxy Nexus phones used for the exper-
iments [46]. 80

5.2 A summary of the existing Android testing tools for model
building test generation. 83

5.3 Description of selected apps’ master test suite coverage. 86

5.4 Correlation between code coverage and power with uncontrolled
suite size. Suite size vs. power is also presented. 89

5.5 Correlation between code coverage and power with suite size
fixed to 2. 90

5.6 Correlation between code coverage and power with suite size
fixed to 13. 90

5.7 Categories of the 100 randomly selected AndroZoo apps. . . . 93

5.8 Grouping similar system calls according to OS semantics. . . . 99

xvi

5.9 Selected features (CPU and others, duration, colour, and sys-
tem calls) from feature selection process to model energy con-
sumption for Android apps. This table suggests that the ma-
jor sources of Android energy consumption are CPU, context
switches, test duration, screen color, file operations, and net-
work operations. The weight represents the energy consump-
tion for each unit (e.g., one CPU jiffy) of the features. The
weights of each feature are discussed in Section 5.7.3. 101

5.10 99% mean confidence interval (percent of error in joules) of
tests versus models. Results suggest that for mean confidence
interval both the models have similar accuracy. The difference
is negligible/small according to Cliff’s delta. 103

5.11 99% mean confidence interval (percent of error in joules) of mod-
els based on Monkey and GreenMonkey generated tests. Model
based on GreenMonkey tests is significantly more accurate than
the model based on Monkey generated tests. 105

5.12 Description of the GreenOracle applications [48]. The table
shows the 24 apps in the dataset with their types, numbers of
versions, and the execution scenarios of the manually written
test cases. 108

6.1 Description of the Workloads 143

6.2 P-Value for paired t-test among different settings for world flags
with fgallery . 149

7.1 Sample log events from the Calculator application 168

7.2 Specs of the Samsung Galaxy Nexus phones used for the exper-
iments. 170

7.3 The applications under test, selected from the GreenOracle [48]
dataset. 173

7.4 Test scenarios and test results for the selected Android applica-
tions. 175

7.5 Wilcoxon Rank Sum Tests (α = 0.05) comparing energy con-
sumption between logging enabled versus disabled per version.
p ≤ 0.05 means that there is a statistically significant difference
in the energy consumption between logging enabled and dis-
abled, whereas p > 0.05 means otherwise. Cliff’s δ magnitude
across applications versions is from [103]. 176

7.6 Controlled experiments with varying logging rates and message
sizes. 183

7.7 Percentage growth rates of energy consumption (joules) for the
log generating tests. All the calculations below used the energy
consumption of the idle tests as the baseline. 183

7.8 Summary of unique log events per application across all the
versions. 189

7.9 Spearman’s ρ correlation coefficient distribution between log
event types and joules per application. Each column shows how
many log events correlated with the correlation scale proposed
by Hopkins et al. [105] . 190

xvii

7.10 OS Level Log events shared by all the applications 193

7.11 Linear models of energy consumption based on log events across
numerous Android applications. Top three models are shown
only if they are significant (p ≤ 0.05). 195

8.1 Percent increase of energy consumption compared with the en-
ergy consumption of 1 emitter and 1 event/second. For read-
ability, nearest integer values are presented. 221

8.2 Energy savings (in percent) by different bundlers and droppers
when compared with no bundling or dropping. Results are pre-
sented for just one emitter. 223

8.3 Description of the selected four real-world Android apps from
F-droid. 224

8.4 DL values for before/after versions of each app (bundling only). 232

xviii

List of Figures

1.1 Thesis structure. 10

2.1 One of the four identical GreenMiner settings. Photo used with
permission from the GreenMiner paper [102]. 15

2.2 A program that suffers from many tail energy leaks. 17

2.3 A program that suffers from one tail energy leak. 17

2.4 System calls act as the bridge between an application and the
operating system. 18

4.1 Percent of error with ridge regression 60

4.2 Models accuracy in segregating applications with very different
energy requirements. Our proposed energy prediction approach
is promising to enable energy-rated applications. 63

4.3 Models’ efficiency in differentiating versions with different en-
ergy consumption . 64

4.4 Agram synchronized method example 66

4.5 Number of applications VS. performance 68

5.1 One of the four identical GreenMiner settings. Photo used with
permission from the Green Miner paper [102]. 80

5.2 The process of developing GreenScaler. The model learns con-
tinuously with new apps using test selection by GreenTestGen. 91

5.3 Comparing performance between Monkey and GreenMonkey for
building energy models. GreenMonkey outperforms Monkey in
generating tests that are more suitable for building energy models.105

5.4 GreenScaler (Lasso) outperforms GreenOracle with very large
margin on the 472 AndroZoo apps with randomly generated
tests. 106

5.5 GreenScaler (Lasso) outperforms GreenOracle even on GreenO-
racle dataset. Mean error was considered for apps with multiple
versions. 109

5.6 GreenScaler maintains similar error distribution among differ-
ent versions of an app. 111

xix

5.7 GreenScaler ’s efficiency in differentiating between versions with
different energy consumption. Versions are sorted based on their
committed times. Whenever there is significant energy differ-
ence between two versions of the same app, GreenScaler detects
the difference. Developers can use GreenScaler to check for en-
ergy regression before releasing a new version. 112

5.8 GreenScaler ’s sensitivity to commit size in detecting energy re-
gression. Apparently, there is no (or very weak) relation be-
tween accuracy and commit size. 114

5.9 Comparing Java collections’ energy consumption. Actual en-
ergy measurement from GreenMiner suggests that TreeList (ACC)
is the most energy expensive and LinkedList (JCF) is the least
energy expensive for inserting 50,000 integer elements. Green-
scaler suggests the same and comes up with the exact same
ranking. 116

5.10 Comparing Java download libraries: Jsoup and URLConnect.
For the executed test, GreenScaler suggests that version with
Jsoup consumes around 4 joules more than the version with
URLConnect. This is very similar to the actual measurements
from GreenMiner. 117

5.11 Model’s accuracy against the number of apps used in training.
The accuracy improves with more apps in training. This sug-
gests that we can continuously improve the model by adding
more apps with the random test generation process. 120

6.1 Comparing power usages for the same protocol with different
settings . 147

6.2 Power usage of different settings for world flags with fgallery . 149

6.3 Power usage for Gopher tiles with different RTTs 150

6.4 Power usage for Google and Twitter 151

6.5 Power usage over time . 153

7.1 GreenMiner consists of an Arduino, a breadboard with INA219
chip, a Raspberry Pi, a USB hub, and a Galaxy Nexus phone
connected to a Power Supply. Photo used with permission from
the GreenMiner paper [102]. 170

7.2 Process to Investigate the Energy Impact of Logging (RQ1) . . 172

7.3 Wilcoxon Rank Sum p-values per application of energy con-
sumed with logging and without logging. p-values less than
0.05 indicate that logging enabled and logging disabled con-
sumed different amounts of energy. p-values were corrected for
multiple hypotheses using Benjamini and Hochberg correction [35]177

7.4 FeedEx Energy consumption over time. Versions 32 to 35 ex-
hibit very different energy profiles compared to the previous
versions. 180

xx

7.5 Energy consumption against the number of log lines across dif-
ferent FeedEx versions. The graph depicts 2 measurements and
the lines connects between adjacent versions. The line depicts
how the FeedEx versions move through the space of log length
and energy consumption. Essentially consecutive FeedEx ver-
sions use more and more energy. 180

8.1 UML class diagram of the benchmark app. 214

8.2 Energy consumption of the benchmark app with different num-
bers of emitters and event generation rates. Bars indicate the
99% confidence interval. 219

8.3 Energy consumption of bundling and dropping compared with
the Nobundling versions for different number of emitters. Re-
sults for more than 32 emitters are not presented; due to re-
source limitations, the energy consumption is inconsistent for
very high numbers of emitters and rates. Bars indicate the 99%
confidence interval. 222

8.4 Energy consumption of bundling and dropping compared with
the original versions of four real-world apps. Bars indicate the
99% confidence interval. 225

8.5 Energy savings of bundling/dropping for the Sensor app with
higher sampling rates. Bundling/dropping time is fixed to 0.1
second. Bars indicate the 99% confidence interval. 228

8.6 Numbers of CPU jiffies and context switches for bundling and
dropping compared with the original AcrylicPaint app. Bars
indicate the 99% confidence interval. 230

9.1 eRED: Automatic test generation to detect energy regression
between two versions. 245

xxi

Chapter 1

Introduction

Let us start with Isham’s story. Isham is an independent Android app (ap-

plication or software) developer. He develops apps and uploads them to the

Google app store. Recently, Isham developed the second version of an on-line

multi-player gaming app, after achieving moderate success with the first ver-

sion. Within the first week of uploading, Isham’s gaming app exceeded 10,000

downloads. Then, out of nowhere, the number of downloads dropped signif-

icantly. Isham was dumbfounded and looked for an explanation. He started

reading the users’ reviews and found that this version drains phone’s battery

much faster than the previous version. Isham started looking into this very

foreign and ambiguous idea of energy efficient app development to save his

client’s battery life.

Isham found a survey revealing that a large fraction of the smart-phone

users desire longer battery life more than other non-functional requirements [253].

Even organizations like Microsoft suffer from users’ dissatisfaction when they

deliver energy expensive software [127]. Isham immediately realized that the

downfall of his app’s popularity was not coincidental.

Isham needs an energy measurement system. With such a system, he can

measure and compare the energy consumption of his updated app version with

the previous version. But building an actual hardware measurement system

demands money, time, and expertise [45], [101]—difficult for an individual

developer like Isham. Isham wishes there was a software that he can just

1

download and use for estimating his app’s energy consumption. But what if,

a software-based energy estimation tells Isham that his new app version con-

sumes more energy? Isham realizes that he needs energy specific optimization

guidelines, because traditional optimizations (e.g., reducing execution time)

often do not work for reducing energy consumption. (Li et al. [137], Sahin et

al. [211], and Hao et al. [92]).

This imaginative story of Isham’s represents the actual circumstances of

many real-world software and mobile app developers (Pang et al. [191], Mano-

tas et al. [159], and Pinto et al. [198]), and bases the motivation of this thesis.

My thesis is that machine learning-based energy models can be developed
to estimate software energy consumption with 90% accuracy. Develop-
ers can use these models to compare energy consumption of similar apps,
or versions of the same app. My thesis is also that software developers
can develop energy efficient software if they rely on guidelines developed
through empirical evaluation: guidelines that may range from technology
choice to design decisions. For example, just by selecting the HTTP/2
protocol rather than the old HTTP/1.1 developers can save ≈10% energy
consumption in their clients’ devices. Similarly, developers do not need to
worry much about the energy impact of conservative software logging. De-
velopers can reduce the logging frequency by bundling small log messages,
because writing less than 10 log messages per second increases the energy
consumption by only ≈1%. Finally, developers can (and should) address
energy efficiency from the design time. A design choice, such as the bun-
dled Model-View-Presenter, saves up to 40% energy without significantly
impacting user experience and software maintenance cost.

1.1 Software energy consumption and efficiency

What exactly is software energy consumption? This is a rational question be-

cause it is the hardware components that actually consume energy to operate.

These hardware components, however, are driven by software. Thus the en-

ergy consumed by a hardware component might vary based on the software

that accesses and utilizes it—efficiently or inefficiently. For example, we can

select the most energy efficient Java collection from a group of collections [95],

given that we know their energy profiles. Energy efficiency, as defined by the

2

World Energy Council, is the reduction of energy consumed by a given service

or activity [162]. Software energy efficiency research thus focuses on techniques

and tools for aiding developers to produce energy efficient software—software

that utilizes hardware components in energy efficient ways.

1.2 Motivation

Energy consumption is critical in the data-center and at the edge, on mobile

devices such as smartphones. According to a data center developer, “any

watt that we can save is either a watt we don’t have to pay for, or it’s a

watt that we can send to another server” [159]. Server-side energy efficiency

is crucial for organizations like Google for the scale of operations, as cooling

becomes a very important operational factor [31]. For mobile devices such as

smartphones, energy efficiency has direct impact on the devices’ availability.

It is unsurprising that smartphone users rate energy efficiency much higher

than other non-functional requirements [253]. App developers thus need to be

aware of their apps’ energy consumption.

Energy efficient software development, however, is a complex process and

requires support from different directions [159]. We categorize software energy

research into two broad categories: estimating energy consumption, and opti-

mization. The rationale is that to develop energy efficient software, developers

need to measure or estimate their software energy consumption, and need to

learn energy optimization techniques.

This thesis mainly focuses on mobile devices—Android smartphones to be

more specific.

1.2.1 Estimating software energy consumption

For developing an energy efficient software, the first requirement is to measure

the energy consumption of the software. For example, a developer needs to

know if the new version of a software consumes more energy (and how much

more) than the previous version before releasing the new version. Also, a devel-

3

oper might need to compare the energy consumption of her software with other

already (if there is any) available software with similar functionalities. Unfor-

tunately, energy measurement is difficult and expensive. Pinto et al. found

that among all the categories of energy related discussions, measurements re-

lated questions are mostly unsolved. In addition, an actual hardware-based

energy measurement system can be too expensive for an individual developer

to afford—it can even cost around 40,000 CAD [45].

The energy research community was not silent and produced techniques

and software-based tools for estimating software energy consumption [92],

[184], [194]—focusing mostly on mobile devices. Unfortunately, most of these

approaches are not generalizable—a tool developed for one specific mobile de-

vice is not usable or even reproducible on other devices [7]. This is because

these approaches rely on measurements not available from all other devices

(such as the PETrA by Nucci et al. [184]). Some of these tools [92] are also

too complicated for the developers to use or even reproduce [7]. Developers

need an energy estimation approach that is generalizable (can be reproduced

for a different device), and a tool that is not only publicly available, but also

easy to use.

1.2.2 Energy optimization guidelines

With the pressing need of energy efficient mobile apps, significant research

has been done on guiding developers to work with software energy efficiency.

Research includes fixing wake lock related problems [10], [28], [149], [192],

[195], [250], finding energy efficient Java collections [95], [196], and automatic

color transformation technique [142]. However, energy optimization research

is a continuous process and need a lot more study [159]. For example, should

developers switch to the newly introduced HTTP/2 server for their web apps?

Does it offer better energy efficiency compared to its predecessor HTTP/1.1 for

the mobile clients? This is an important question, as research suggests that

network communication is one of the major sources of energy consumption

for mobile devices [141]. Similar to writing features with network communica-

4

tions, developers frequently use software logging to keep track of unanticipated

bugs/errors [123], [256], [261], [263]. Although the performance impact of log-

ging has been studied [128] (e.g., execution time), the energy impact of software

logging is unknown, and there is no guidelines on how to use logging without

harming the energy consumption much. In this thesis, the energy efficiency

of the HTTP/2 protocol (on the client devices), and the energy consumption of

logging are studied.

While optimizations through little tweaks (e.g., being selective between

Java collections or screen colors for examples) are useful for developing energy

efficient software, such optimizations can be insignificant in some real-world

scenarios [211]—the energy consumption can be so high that a little energy

saving through clever tweaking will not be worth developers’ time. For such

software, we need to make high-level design decisions that can significantly

reduce energy consumption of the software. Also, these types of decisions

will help developers to work on energy efficiency from the design time, before

coding. This is important, because improving energy efficiency after receiving

negative feedback from the users might not help to recover a developer’s repu-

tation. Unfortunately, the investigation of design choices for achieving energy

efficiency is not explored widely. Energy efficient design choices deserve much

more attention from the community, and motivates a part of this thesis.

1.3 Contributions

The contributions of this thesis are based on the problems that developers

face towards developing energy efficient software—as presented in the previ-

ous section. This section summarizes the contributions in two different cate-

gories: modeling software energy models, and providing energy optimization

guidelines for energy-aware developers.

5

1.3.1 Models/Tools for estimating apps’ energy consump-
tion

We propose a machine learning-based energy estimation approach for Android

apps. It is a simple resource count-based energy consumption estimation model

and is trained on a corpus of different Android apps’ energy measurements.

The biggest advantage of this approach is that it relies on common OS statistics

that are available from any Linux system. Unlike most of the previous energy

estimation approaches [7], this approach is thus reproducible for any Android

device. Also, a publicly available, and easy-to-use open source tool is devel-

oped that the developers can download and use to estimate their apps’ energy

consumption. This contribution is an amalgamation of two sub-contributions:

1) evaluating the potential of a machine learning and resource count-based ap-

proach for producing a reproducible model (GreenOracle), and 2) Leveraging

automated test generation approaches to increase the training-set size, and

thus producing a more accurate energy estimation model (GreenScaler).

GreenOracle

GreenOracle is a machine learning-based Android energy model that trains

itself using common OS statistics (e.g., CPU-utilization, file and network op-

erations, and so on) from 984 versions of 24 third-party Android apps. GreenO-

racle is moderately accurate, and shows that the accuracy can be improved

with the addition of new apps in training, rather than adding new versions of

the apps already used in training.

GreenOracle was published in The 13th International Conference on Mining

Software Repositories (MSR 2016) [48].

GreenScaler

GreenOracle shows that we can successfully build reproducible machine-learning

based energy models. However, GreenOracle’s recommendation about adding

new apps in model training is difficult, because a manually written separate

6

test script is required to run a new app, so the OS statistics (independent

variable) and the energy consumption of the app (dependent variable) can be

captured. GreenScaler, motivated by GreenOracle’s recommendation, lever-

ages automated test generation approaches and test selection heuristics for

adding hundreds of apps in training without manually writing (infeasible) test

script for each of the app. GreenScaler is much more accurate in energy esti-

mation than GreenOracle, and publicly available as a tool [47].

GreenScaler was published in The Empirical Software Engineering Journal

(EMSE 2018) [45].

1.3.2 Enhancement in energy optimization guidelines

The second major contribution of this thesis is to enhance the existing en-

ergy optimization guidelines, which is also a blend of three different sub-

contributions: 1) helping energy-aware developers to understand the energy

consumption of the HTTP/2 and the HTTP/1.1 protocols, 2) revealing the en-

ergy impact of logging on Android apps so developers can decide how much

logging they can do without impacting energy much, and 3) providing a new

energy efficient architectural design pattern (GreenBundle) that developers

can follow from the design time, even before coding starts.

HTTP/2 Vs. HTTP/1.1

My study suggests that HTTP/2 never performs worse (in terms of energy con-

sumption) than HTTP/1.1. In fact, for networks with higher round-trip times

(RTTs), HTTP/2 has better energy consumption performance than HTTP/1.1.

This suggests that mobile app developers should consider switching to HTTP/2

server for reducing energy consumption of their mobile clients.

This study was published in the 23rd IEEE International Conference on

Software Analysis, Evolution, and Reengineering [50].

7

Logging vs. energy consumption

From a thorough empirical study, we found that developers need not worry

about impacting energy consumption of their mobile apps if they conserva-

tively employ logging. Small amounts of logging (≤ 10 log messages per sec-

ond) have little or no energy impact on the mobile apps. Under heavy logging,

logging large amounts of data infrequently consumes much less energy than

frequently logging smaller amounts of data.

This study was published in The Empirical Software Engineering Journal

(EMSE 2018) [46].

GreenBundle

We propose GreenBundle, an energy efficient architectural pattern that lever-

ages the existing Model-View-Presenter (MVP) pattern, and converts the pre-

senter into a bundling presenter. The idea is, instead of updating the views

immediately with each incoming event from the model, the presenter waits

for a period of time (varies based on the apps), and then passes all the stored

events in a batch to the views. The energy saving with GreenBundle even with

real-world apps is encouraging. Also, with the GreenBundle pattern, energy

saving can be a win-win situation; there are scenarios where GreenBundle can

save energy without impacting app’s maintenance cost and without negatively

affecting users’ perceived latency in view updates.

GreenBundle was published in The 41st ACM/IEEE International Confer-

ence on Software Engineering (ICSE 2019) [84].

Contribution summary

� We present a reproducible machine learning-based energy estimation

model for Android (GreenOracle), which relies on common OS statis-

tics and system call traces.

� We show that automatic random test generation with test selection

8

heuristics can be successfully used for generating useful test cases for

building more accurate energy estimation models (GreenScaler).

� We provide evidence that energy-aware app developers should switch to

the new HTTP/2 protocol for reducing their client devices’ energy con-

sumption.

� We suggest that developers should combine small log messages together

for energy efficient logging, and they do not need to worry about energy

efficiency if logging is less frequent.

� We propose a new energy efficient design pattern that developers can

follow from the app design time. We also discuss the potential trade-offs

that developers need to consider before making an energy efficient design

decision.

1.4 Thesis organization

This thesis is structured based on the thesis contributions, as presented in

Figure 1.1. After motivating the thesis objectives in Chapter 1, Chapter 2

explains the background concepts necessary to understand this thesis. Chap-

ter 3 discusses the previous works on software energy consumption and their

drawbacks.

We argue that energy-aware developers need to estimate the energy con-

sumption of their software and require guidelines for developing energy efficient

software. Along these directions, we grouped the rest of the chapters into three

different parts.

Part I: Models is dedicated for showing how to make reproducible machine

learning-based energy estimation models (Chapter 4), and how to leverage

automatic test generation for making energy estimation models more accurate

(Chapter 5).

Part II: Guidelines presents the contributions related to energy optimiza-

tion guidelines. We show in Chapter 6 that HTTP/2 is more energy efficient

9

Thesis

Chapter 4

GreenOracle

Chapter 1

Introduction

Chapter 2

Background

Chapter 3

Related Work

Part I

Models

Part II

Guidelines

Part III

The Future

Chapter 5

GreenScaler

Chapter 6

HTTP/2

Chapter 7

Logging

Chapter 8

Design

Chapter 9

Conclusion & Future

Figure 1.1: Thesis structure.

10

than HTTP/1.1. In Chapter 7, we discuss how developers can make software

logging energy efficient. A new energy efficient design pattern is presented in

Chapter 8.

Part III concludes this thesis along with a discussion of potential future

work.

11

Chapter 2

Background

Important concepts that are used throughout this thesis are discussed in this

chapter. First we describe how current and voltage are related to power,

and why we focus more on energy than power. Then we explain the energy

measurement system that was used for all the energy measurements used in

this thesis. Next we explain a well-known energy bug, tail energy leak, because

we refer to tail energy leak throughout this thesis. Finally, system calls are

explained which are directly related to our energy modeling approaches.

2.1 Current, voltage, power, and energy

Electric current (I) is the rate of electron flow (or charged particles). The

hardware components (in a mobile device, or in a desktop computer) operate

using electric current. Consider the CPU as an example. A CPU consists of

transistors, whereas a transistor is a semiconductor device that can amplify

or switch an electrical signal (On and Off). With different configurations they

form different logic gates that deal with boolean logic and can store binary

information (0s and 1s). Voltage (V), on the other hand, is the electric

potential difference between two points in a circuit [107]. For example, the

battery provides the electrical difference in a smartphone that induces electron

flow. A smartphone becomes unavailable when the voltage is less than the

required minimum voltage (low potential charge difference in the battery).

12

The one metric that captures both voltage and current is power (P =

V ×I). Power (P) is the rate of work and is expressed in watts. Mobile devices

run on batteries, and the availability of the devices depends on battery capacity

(the amount of charge stored in a battery). More work indicates more power

usage, which leads to reduced device availability. Also, more power usage (i.e.,

more electron flow) means more heat generation, which directly impacts the

scale of data centers because of the cooling issues.

The power usage, however, is often not enough to understand how long a

battery would last (for mobile devices) or how much heat (in a data center)

would be generated. For that, the widely used metric is the energy consump-

tion which not only includes the rate of work, but also considers the run-time

of a system. Energy (E) is thus defined as the product of power and execution

time (T) of a system (E = P × T) and is expressed in joules [5], [49], [50]

2.2 Power vs. energy

In order to fully appreciate the difficulty of achieving energy efficiency, we need

to understand the relation between power and energy (i.e., E = P ×T). As we

can see, energy consumption does not necessarily decrease with the reduction

in execution time. Reduction in the execution time T is beneficial only when

the power (P) is constant or reduces as well. A reduced execution time,

however, might put more workload on different hardware components (e.g.,

CPU). In order to cope with the workload, components like CPU might jump

to more power consuming states and thus might make the whole system even

less energy efficient. In fact, a previous study observed no correlation between

execution time and energy consumption in Android apps [92]. This implies

that software energy efficiency might not be achieved through conventional

techniques. We need energy optimization guidelines, as well as techniques for

measuring or estimating energy consumption so we know if a guideline indeed

works.

13

2.3 Energy measurement: GreenMiner

In order to build machine learning-based energy estimation models (Chapter

4, and Chapter 5), we need actual energy measurements as the ground truths

(dependent variable in supervised learning). Moreover, for developing energy

efficient techniques, evaluation by measuring the energy consumption of those

techniques are required. The GreenMiner energy measurement system was

used for all the energy measurements that are used in this thesis. GreenMiner

is fully described in Hindle et al. [102]. The following block quoted description

of GreenMiner is directly used from my GreenScaler publication [45].

GreenMiner provides accurate energy measurements for Android

apps and is widely accepted in the software energy research com-

munity [4], [5], [48], [95], [101], [204]. The main components of

this test-bed are a lab-bench power supply (a YiHua YH-305D),

a test-runner computer (a Raspberry Pi model B computer) for

controlling the experiments, an energy measurement IC (Adafruit

INA219 breakout board), a micro-controller (Arduino Uno) for col-

lecting energy measurements, and a system-under-test (a Galaxy

Nexus phone) (Table 2.1). The Arduino and Raspberry Pi are

powered by a USB hub. Each testbed costs approximately $250,

each phone originally cost approximately $500, and the Green-

Miner service is run on a seperate server ($1000). Development of

the GreenMiner hardware and software itself was more than $32000

in developer time. The GreenMiner software is freely available for

download [102].

A test-runner, a Raspberry Pi, is connected to a particular system-

under-test, a Galaxy Nexus. The test-runner pushes and runs tests

on the Galaxy Nexus, and collects measurements from the Arduino.

Afterwards the test-runner downloads statistics and other meta-

data from the system-under-test. The responsible test-runner, a

Raspberry Pi, then uploads the measurements to a central server

14

running the GreenMiner webservice. The current GreenMiner con-

sists of four such identical testbeds to speedup and parallelize the

data collection process. Figure 2.1 shows the innards of one of

the four identical settings of the GreenMiner. The GreenMiner

service is a continuous testing service whereby users may submit

tests to be run and measured. After submitting a batch of tests

to the GreenMiner, one of the phones is randomly selected for ex-

ecuting a test. As a result, four different tests can run in parallel

to reduce the measurement time. GreenMiner maintains the same

system state for each test by cleaning any installed apps that ran

previously.

Figure 2.1: One of the four identical GreenMiner settings. Photo used with
permission from the GreenMiner paper [102].

It is important to note that energy consumption varies (even if by a small

amount) across different test runs. Consequently, all the previous GreenMiner

based works reported the mean energy consumption of multiple test runs (when

reporting the energy consumption of a test case) [5], [48], [95]. Similarly, all

the reported energy measurements in this thesis are actually the mean energy

consumption of multiple different runs (10 runs unless otherwise specified).

15

Table 2.1: Specs of the Samsung Galaxy Nexus phones used for the experi-
ments.

Component Specs

OS Ice Cream Sandwich, 4.4.2
CPU Dual-core 1.2 GHz Cortex-A9
GPU PowerVR SGX540

Memory 16 GB, 1 GB RAM
Display AMOLED, 4.65 inches
WLAN Wi-Fi 802.11 a/b/g/n

2.4 Tail energy

Some components such as the NIC (Network Interface Card), and SD card

suffer from tail energy. Tail energy is the energy that a hardware component

consumes after finishing its task, because it stays in a high power state for

sometimes before becoming inactive [5], [192], [194]. This is inefficient as

the app consumes energy without doing any useful work in this period. One

common approach for dealing with tail energy leaks is to perform operations

in batches [154], [194]. The idea is that if multiple operations (related to a

hardware component) are performed together in a batch, then the hardware

component will have only one tail energy leak (at the end of completing all

the operations in the batch).

To make it clearer, let us consider an example, where an app downloads

1000 images and then processes the images. The energy expensive way is to

follow the download-process-download-process approach (download one image

and process it immediately, before downloading and processing the next one).

This is presented in Figure 2.2. In this approach, the network interface card

(NIC) will be activated for downloading the first image. The app then will

process the downloaded image, which can take few seconds. In the meantime,

the NIC will become inactive with a transition from the active to inactive

state. This transition causes a tail energy leak. This way, for 1000 images, the

app will experience 1000 tail energy leaks. However, with the efficient way,

16

presented in Figure 2.3, there will be only one tail energy leak. Because with

just one NIC activation, the app will download all the images first, and then

it will process all the images together in a batch. This simple solution was

found to be significantly more energy efficient in real-world apps [192].

for i = 1 : 1000 {
 img = download (image_url[i])
 # A tail leak
 process (img)
}

Figure 2.2: A program that suffers from many tail energy leaks.

for i = 1 : 1000 {
 img[i] = download (image_url[i])
}

A tail leak

for i = 1 : 1000 {
 process (img[i])
}

Figure 2.3: A program that suffers from one tail energy leak.

Tail energy complicates both energy measurements (if not careful) and

energy modeling. For example, consider a test case A that we need to measure

the energy consumption for. If the duration of the test case A is 20 seconds,

an unsurprising mistake would be to measure the energy consumption for 20

seconds. But what if test case A was using a hardware component till the

end, which has tail energy leaks? That tail energy leak will not be recorded

in that 20 second period. This is why all the energy measurements that are

used in this thesis had an extra 10 second period of waiting time so that the

17

tail energy leaks were also captured (if there was any).

Tail energy also complicates software energy modeling, specially for utilization-

based models (presented in Chapter 3) [194]. Utilization-based approaches

only care about the utilization time of hardware components, which does not

include the tail part.

2.5 System calls for software energy modeling

Figure 2.4: System calls act as the bridge between an application and the
operating system.

For modeling software energy consumption, we need to capture the utiliza-

tion patterns of different resources (a set of independent variables) that have

impact on the energy consumption (the dependent variable). In this thesis,

different system calls [230] (also known as monitor calls) are used as part of

the independent variables for energy modeling (Chapter 4, and Chapter 5).

In a Unix-like system such as Android, a software or app is restricted to its

own address space, and does not have direct access to hardware devices. It is

only the operating system (OS) which has access to those devices and services.

A system call is an interface (Figure 2.4) between the operating system (OS)

and an app [4], [48], [194]. When an app requires a specific service (e.g.,

18

accessing the disk, creating a subprocess etc.), it calls a corresponding system

call for that service. For example, in order to write to a file, an application

uses the write system call. Similarly, the recvfrom system call is used to read

messages from a socket. A system call causes an interrupt, which transfers the

control to the kernel of the OS. The kernel then collects the system call’s

number and parameters from a predefined set of registers, and then executes

the system call. After completing the execution of the invoked system call,

the control is transferred back to the user space again.

System calls are related to the energy modeling Chapters (Chapter 4 and

5). Our hypothesis is that, if we can capture all the different system calls (and

their counts) invoked by an application during a test run, we can estimate

the resource utilization by that application. Given that resource utilization

is directly related to energy consumption, the numbers of different system

calls invoked by an application would therefore be a good estimation of the

app’s energy consumption. The strace [239] program was used to count the

numbers of different system calls invoked by an app while executing a test

case.

19

Chapter 3

Related Work

This chapter is divided into three sections in accordance with the motivation

of this thesis: developers’ knowledge on software energy consumption (to ex-

plain why energy efficiency research is important), previous energy estimation

techniques and their drawbacks, and previous studies on energy optimization

guidelines.

3.1 Developers’ knowledge of software energy

efficiency

As we have already discussed, achieving software energy efficiency is difficult.

It is not just about reducing the run-time of a system. So it is important to

understand what developers know and think about software energy efficiency.

Pang et al. [191] conducted an online survey among developers with a set

of questions emphasizing on programmers’ knowledge about energy efficient

software development. The survey reveals that developers lack the knowledge

on developing energy efficient software. It is not clear to them how to measure

or estimate the energy consumption of their software—one of the motivations

of this thesis. Programmers are also not sure what techniques are good or

bad for software energy efficiency. The authors suggested that programmers,

especially mobile application developers, should undergo proper training on

developing energy efficient applications. Besides, automatic tools for suggest-

20

ing power efficient features can be developed to help the programmers during

software development.

A similar study by Manotas et al. [159] on a selected 464 practitioners from

Google, Microsoft, ABB, and IBM revealed similar information—developers

are uncertain about what improves software energy efficiency. This also implies

the importance of accurate energy measurement or estimation. Practitioners

are eager to learn different ways to improve energy efficiency (optimization

guidelines). The authors concluded that new design approaches that support

processing tasks in batches (to enable more idle time slots) would be helpful.

This would also help making energy efficient software from the beginning,

rather than struggling during the maintenance period. These observations

motivated us to develop a new design pattern for energy efficient software—

GreenBundle, as presented in Chapter 8.

Another similar study was conducted by Pinto et el. [198], but using energy

consumption related questions from StackOverflow1. The authors observed a

linear growth in energy related questions, revealing the growing interest in de-

veloping energy efficient systems. Compared to the other categories of Stack-

Overflow questions, energy related questions received less number of success-

ful answers—suggesting the inadequacy of energy experts in the community.

Energy related questions, not surprisingly, were found to be closely related

to mobile application development. Five different themes were identified by

analyzing all the energy questions. These themes are Measurements, Gen-

eral Knowledge, Code Design, Context Specific and Noise. The Measurements

related questions, for example, are questions asking how to measure energy

consumption of different applications in different platforms. Supporting the

earlier finding by Pang et al. [191] and Manotas et al. [159], Measurements

category contained the least fraction of accepted answers.

Code Design related questions deal with programmers’ decisions towards

producing energy efficient applications. According to the StackOverflow users,

the main causes for software energy consumption are unnecessary resource

1http://stackoverflow.com/

21

usage, faulty GPS behavior, background activities, excessive synchronization,

background wallpapers, and advertisement. Although some of the understand-

ings are true—at least in some contexts—the authors found some misconcep-

tions among StackOverflow users regarding code design to achieve energy effi-

ciency. For example, the idea of racing to idle is the assumption that a faster

program consumes less energy than a slower program. This assumption, how-

ever, is flawed as different hardware components can have different states of

operation. A CPU can operate in higher frequency (for heavier workload with

reduced run-time), thus can consume even more energy.

Evidently, the research community needs to produce easy (and accurate)

energy estimation approaches, and needs to provide guidelines for producing

energy efficient software.

3.2 Modeling energy consumption

Previous software energy models can be categorized into three broad cat-

egories: instruction-based, utilization-based, and system call-based energy

modeling.

3.2.1 Instruction-based modeling

Instruction-based modeling is estimating energy consumption using program

instruction cost along with program analysis techniques.

In order to estimate software energy consumption using program instruc-

tion cost, Shuai et al. proposed eLens [92]—a tool that can estimate energy

profiles at the instruction level, method level, and thus can estimate the en-

ergy consumption of the whole software system. eLens takes three types of

inputs: a software artifact, system profiles which uses per instruction energy

models, and the workload. eLens itself consists of three separate components:

a workload generator which is responsible to create a new instrumented ver-

sion of the software artifact and can generate sets of paths in the app from

the workload; an analyzer which estimates energy consumption using system

22

profiles and sets of paths; and the source code annotator to produce the anno-

tated version of the source code so that the developers know which line of code

or part of code is energy expensive. eLens, however, requires per-instruction

power profile, which is not always available.

In addition to the requirement of per-instruction power profile, another

major disadvantage of instruction-based modeling is its rigidness to one par-

ticular programming language. This approach also requires the availability

of source code of the app under test. In contrast, the GreenOracle and the

GreenScaler models do not require app source code or per-instruction power

profile, making the models not only easier to use, but also more generalizable.

3.2.2 Utilization-based modeling

Utilization-based power models take into consideration the utilization statistics

of individual components of a system like CPU, screen brightness, Wi-Fi etc.

Regression analysis is conducted, to model app’s energy consumption, by using

the utilization statistics and the corresponding energy consumption.

Carrol et al. [40] studied the energy consumption of the Openmoko Neo

Freerunner, an Android smartphone. They analyzed the energy usage patterns

of different hardware components: CPU, memory, screen, graphics hardware,

audio, storage, and different networking interfaces. After observing and cap-

turing energy usages in different scenarios, a simple energy model was devel-

oped. For example, Eaudio(t) = t× 0.32W is the model to calculate the energy

consumption for audio playback. The authors, unfortunately, do not offer any

tool for the developers.

Shye et al. [227] developed a regression-based energy model. A logger app

was employed that logs system performance metrics and user activities. The

basic idea is to model the relationship between the captured system statistics

and the energy consumption. The authors found that screen and CPU power

consumption contribute highly toward the total energy drain. A similar uti-

lization based energy model was proposed by Gurumurthi et al. [90]—using

23

components’ utilization statistics, their proposed model provided some useful

insights into the major sources of power drains: disk is the largest consumer

of energy (consuming approximately 34% of the system energy). This model,

however, was not tested for mobile devices. Utilization based energy models

were also studied by Flinn et al. [71], Zhang et al. [269], and Dong et al. [62].

Utilization based models, however, suffer from tail energy phenomenon [194]—

modeling energy based on the active utilization time of hardware components

does not consider the tail energy parts. The GreenOracle and GreenScaler

models, on the other hand, do not model energy directly based on the ac-

tive utilization times of hardware components, but based on simple OS-level

statistics (number of CPU jiffies, number of system calls and so on). “This

automatically alleviated the intricacy of separately modeling tail energy for

every hardware components” [45].

3.2.3 System call-based modeling

System call-based modeling, in contrast to the direct utilization-based mod-

eling, uses traces of system calls to understand the types and amounts of

accessed resources by an app. A system call based approach is able to over-

come the shortcomings of the utilization based approaches for several reasons

[194]. Firstly, systems calls are the only gateways to provide access to different

I/O components—capturing all the system calls invoked by an app thus pro-

vides the list of I/O components accessed by an app. Secondly, this approach

of energy modeling does not suffer from the tail energy phenomenon.

Pathak et al. [194] proposed a complex Finite State Machine (FSM) based

model using system call traces. Each state in the FSM represents a power

state of a specific component or a set of components. A transition represents

a significant change in the workload that causes the component to switch to a

new power state (e.g., active state to tail power state, tail power state to base

state and so on). A fully functional FSM for a specific smart phone can be

designed by capturing the timing information in different states (e.g., how long

a component stay in tail power state) and their corresponding energy measure-

24

ments for all the hardware components. Aggarwal et al. [4], [5] applied system

call counts to predict if energy consumption of different versions differ from

each other based on the number of changed system call counts. The authors,

with high accuracy, proposed a rule of thumb that can be used by developers

to predict if a new version is more energy efficient than the previous one: a

significant change in the numbers of system calls invoked by an application

implies a significant change in the energy consumption. This model, however,

does not offer the actual energy consumption, and thus the developers would

not know how bad the energy change is. None of these models consider screen

colour and may profile other components inaccurately. The number of apps

used for learning and validation was also very small compared to the proposed

dataset.

3.2.4 Other models

PETrA is a recent energy estimation tool (published after GreenOracle and

before GreenScaler). The following discussion about PETrA is used from our

GreenScaler paper [45].

Nucci et al. [184] proposed PETrA, an energy estimation tool that

leverages Android tools such as dmtracedump. As PETrA is the

state-of-the-art for estimating energy consumption of Android sys-

tems, we wanted to compare GreenScaler ’s accuracy with PETrA.

Unfortunately, PETrA relies on measurements that are not sup-

ported by all Android devices. For example, the batterystats

program to collect which components were active during an app

run, is not supported by the version of Android running on the

GreenMiner ’s Galaxy Nexus phones. In contrast to PETrA, Green-

Scaler is already open source and relies on information that is

available on any Linux-based system.

25

Previous energy models do not generalize across different platforms and
operating systems. Also, some of the models are hard to be actually used
by the developers. We need an energy estimation model with tool support
that is reproducible and easy to use.

3.3 Energy optimization and testing

Smartphone users value longer battery life than other non-functional features,

and the research community is trying to help the users by providing recom-

mendation systems while selecting an app from a group of similar apps [209].

With such recommendation systems being developed, developers are now more

compelled for producing energy efficient systems. Significant research has been

done on software energy efficiency and energy testing for finding or resolving

energy bugs. This section focuses on different areas of software energy effi-

ciency.

3.3.1 Energy efficient color selection

Display of a smartphone is one of the most energy consuming components [40].

Organic light-emitting diode (OLED), used by many modern smartphones, is

most energy efficient in dark color and expensive in light color mode. This

is a concern for energy efficiency as light colored background is adopted by

many popular web applications. An automated system to transform a web

application to an energy efficient version (by changing its color) would allow

the users to use the original or the energy optimized app.

Li et al. [142] proposed automatic color transformation (energy inefficient

to energy efficient) for web apps. The objective is to convert web apps’ colors

for making them energy efficient, but without impacting the readability. The

proposed approach is based on several graphs containing useful information

that help in converting the colors. For example, the adjacency relationship

graph is formed for showing siblings and child-parent relationship between

nodes. Then there are different types of color conflict graphs: the background

color conflict graph, text color conflict graph, and image color conflict graph.

26

These graphs help rank the importance of color difference between elements.

In the ranking system, the color difference between a child and the parent

element is more important than the color difference among the siblings (for

maintaining the readability of the web apps).

3.3.2 Cloud computing for saving mobile energy

A study by Othman et al. [188] claimed that up to 20% reduction in energy

consumption is achievable by offloading tasks from a local mobile device to

a fixed server. This approach, however, is not helpful when offloading a task

is more expensive than processing the task locally. Moreover, asymmetric

communication—more receives than sends—is needed to achieve such energy

efficiency, because transmitting is more energy expensive than receiving. The

main challenge is to know the energy profiles of a task for both local and

remote executions. Also, for some applications the response time might be too

crucial to take the advantage of a remote server (due to the communication

time between the client and the server). The authors used history data for

their simulation—previous energy usage by the task when ran locally. If the

estimated cost of communication is less than the history cost, the device would

go forward for data offloading. Results suggest that slower mobiles with more

bandwidth benefit more from such offloading.

A similar study by Miettinen et al. [169] found that most of the mobile

applications are unfortunately suitable for local processing. Mobile cloud com-

puting can help explore new computationally expensive but useful mobile ap-

plications, only if offloading the task to the cloud offers less energy drain than

processing the same task locally. Based on the authors recommendations, task

offloading should be based on workload characteristics, and on the underlying

communication technologies. Also, bulk data transfers (batch processing) are

helpful for saving energy consumption.

27

3.3.3 Mobile energy efficiency in video streaming

Video streaming in smartphones has become energy expensive [74]. For video

streaming, Trestian et al. [245] examined the impact of different network

related aspects on mobile device’s energy consumption. An Android device

was used under an IEEE 802.11g network for profiling energy consumption

under different scenarios. In general, the authors examined the impact of

several factors in video streaming on mobile energy efficiency: video quality,

selection of TCP or UDP as the transport layer protocol, link quality, and so

on. For the experimentation, local video playbacks were performed for a range

of video qualities (i.e., bad to excellent). Selecting the lowest quality video

makes battery life double than selecting the highest quality video. In fact,

34% energy consumption was saved just by switching from excellent quality

video to good quality video. This is encouraging as the surveyed users noticed

negligible difference between these two quality levels. Surprisingly, TCP based

streaming consumed less energy than UDP based streaming, in spite of the

extra features that TCP maintains for providing reliable data transfer. This

was due to the less network load with TCP (with congestion control) than the

UDP based systems.

A similar study by Gautam et al. [74] suggests that applying algorithmic

pre-fetching helps saving energy. This is, however, based on the assumption

that the algorithm is accurate in selecting appropriate videos based on a user’s

predilection. An inaccurate algorithm might backfire by downloading lots of

videos that the user might never watch.

Mohammad et al. [106] studied how intelligent video buffering techniques

can be employed to significantly improve energy usage of mobile devices. The

author reported four main sources of energy consumption in pre-fetching/buffering

video segments: 1) downloading segments at lower rate than the possible

maximum rate—the time intervals between subsequent packets causes energy

drains, 2) persistent TCP connections—because they keep client’s radio awake,

3) tail energy—time gap between downloading subsequent small sized segments

28

leads to more tail sections, and 4) buffering unneeded segments—segments that

users do not watch most often. The authors proposed a method for efficient

video streaming based on crowd sourced viewing statistics. The assumption is

that a video’s previous audience retention information provides useful insights

about the future users watching patterns of the same video. This approach,

based on the scenarios, offers up to 80% energy savings compared to the default

Android YouTube application.

3.3.4 Does ad blocking help to reduce energy drain?

Study reveals that 65%-75% of energy usage in mobile applications can only be

from the third-party advertisement functionalities [192]. Mohan et al. [174] ob-

served that advertising can significantly degrade energy efficiency—consuming

65% of the communication energy and 23% of the total application’s energy.

This is because of the regular refreshes that causes the network radio to be-

come active. These observations raise an interesting question: can we reduce

energy drains of mobile devices by adopting ad-blocking techniques? Or the

overhead for ad-blockers dwindles the benefit so much so that the device con-

sumes even more energy? In desktop settings with the Windows operating

system, Simons et al. [231] observed 3.4% energy savings with an ad-blocker.

A more detailed study was conducted by Rasmussen et al. [204], using dif-

ferent hosts files and AdBlock Plus. A hosts file contains (located at /etc/hosts

in many Linux systems) a list of IP addresses and aliases for each IP address so

that a request for a web server first go to this file instead of going to the DNS.

This way any unwanted web pages (i.e., advertisements) can be mapped to an

invalid address—thus preventing those pages from loading. Energy efficiency

of ad blocking was evaluated with different settings, with a set of 100 popular

websites. The observation was not conclusive: ad blockers saved energy for

some settings only. The authors suggested further optimization by removing

entries (i.e., IP addresses from host files) that are not usually accessed, and

by sorting entries based on the frequency of requests.

29

3.3.5 Impact of code obfuscation and refactoring on en-
ergy

Piracy has been reported as a crucial problem for Android apps [213]. Code

obfuscation is the process of making source code less human readable for in-

hibiting piracy, which is widely adopted by the developers (specially by the

mobile app developers). Code refactoring, on the other hand, has completely

different objective—making source code more readable and maintainable. De-

velopers apply code factoring to help their team members, while code obfusca-

tion is applied for the outside world. As both of these approaches are widely

adopted by the app developers, it is important to understand their energy im-

pact so the developers can make informed decisions. Sahin et al. studied the

impact of code obfuscation [213] and refactoring [212] on energy consumption

of several Android apps. They found that code obfuscation does impact energy

consumption, but the differences could be too small for the users to notice.

This suggests that developers do not need to worry much about applying code

obfuscation—thus can prevent piracy without significantly impacting apps’ en-

ergy consumption. For the refactoring study, the authors examined different

refactoring options: extracting methods, converting local variables to fields,

and so on. The impact of code refactoring is not consistent across different

applications (refactoring can increase or decrease the energy consumption).

3.3.6 Energy efficiency of Java collections

Some studies concentrated on writing energy efficient code during the develop-

ment phase. Along that direction, energy profiles of the frequently used Java

collection frameworks were studied [95], [196]. Hasan et al. [95] proposed a

recommendation system for selecting the most energy efficient Java collection

classes for different scenarios in Android (for example, is it an insert to a list?

if yes, does the insert take place at the beginning or in the middle of a list?

and how many elements are involved?). The authors profiled energy consump-

tion of different classes from three different types: List (e.g., ArrayList, and

LinkedList); Map (e.g., HashMap, and TreeMap); and Set (HashSet, TreeSet,

30

and LinkedHashSet). This recommendation system enables developers to se-

lect the most energy efficient Java collection for a given scenario. The authors

found that even up to 300% energy can be saved by replacing an energy ineffi-

cient collection by the most efficient one. In a similar vein, Pereira et al. [196]

measured the energy consumption for different Java collections, but they did

it for Linux server instead of Android phones. Manotas et al. [160] proposed

the SEEDS framework that can automatically select and replace an energy

inefficient Java collection by an energy efficient collection.

3.3.7 Detecting energy bugs and hotspots

An energy bug—in contrast to the traditional programming bugs that produce

incorrect/unwanted results—leads to reduced battery life [268]. The sources

of energy bugs can be of different types: no sleep or wake lock bug—e.g.,

waking up the CPU, but not putting it back to the sleep mode; loop bug—

waiting for an event to happen, periodically inspecting changes in a variable,

and thus unnecessarily using CPU cycles. An energy hotspot, however, points

to a segment of an application where the energy consumption is significantly

higher than other segments [28]. While an energy hotspot can be normal (and

unavoidable) because of an app’s functionality, detecting hotspot might enable

a developer to think about possible optimizations.

In order to detect energy bugs and hotspots in Android applications, a

test generation framework was offered by Banerjee et al. [28]. As I/O compo-

nents are accessed by invoking system calls, capturing those system calls can

help to find I/O related energy bugs or hotspots in a particular application.

The authors emphasized on the careful test case generations so that most of

the expensive system calls are traced. The framework is summarized in three

sequential steps: 1) for each application, an Event Flow Graph (EFG) [166]

is formed so that each EFG can capture the set of possible user interaction

sequences in a particular application; 2) by following the EFG, some event

traces are generated randomly, and the associated system calls are also cap-

tured; 3) the same process of event trace generation is repeated until most of

31

the important system calls are captured or the time budget expires. In order

to detect hotspots/bugs, energy consumption to Utilization ratio (E/U) was

calculated. A particular application is defined to have energy bugs if the E/U

after running a test case is higher than the E/U before running the test case.

Energy hotspots, however, are captured using anomaly detection in time series

data. The authors then manually evaluated the hotspots and bugs suggested

by their framework and found very few false positives.

Wake locks are frequently used in Android apps for critical operations (e.g.,

banking transactions) so that the involved hardware components (e.g., Wi-Fi)

do not go to the sleeping state due to the Android’s aggressive power saving

policy [149]. Pathak et al. [193] reported wake lock related bugs as the most

common energy bug. Liu et al. [149] found that around 60% of the Android

apps that use wake locks, suffer from wake lock related bugs. This is why

developers should be extra careful while using wake locks. Liu et al. [149]

provided three simple guidelines for using wake locks: 1) is it worth using a

wake lock (for a scenario) considering the loss in energy efficiency? 2) which

component actually need to be awake? and 3) what are the program points

that the wack locks are most suitable to be acquired and released? The authors

also discovered eight common pattern of wack lock bugs. Interestingly, the

most dominant pattern is the unnecessary wakeup pattern. This means that

developers are not sure at what points the program should acquire and release

a lock. They either acquire a lock too early or release a lock too late. The

same problem was observed by Alam et al. [10], who then proposed an energy

efficient data flow analysis based automatic approach for appropriately placing

wack lock acquire and release related code. To help developers with the wake

lock related problems, Wang et al. [249] proposed a tool called WLCleaner that

leverages the dumpsys tool to dump power consumption related information

at runtime. This information was then used for locating wake lock related

bugs.

32

3.3.8 Guidelines for energy-aware developers

Linares-Vásquez et al. [144] analyzed 55 Android apps to capture energy greedy

APIs in Android. While all the energy greedy APIs with their energy profiles

were listed (limited by the 55 apps), the authors found that almost 60% of

the energy hungry APIs belong to the GUI & Image manipulation, and the

database categories. The authors produced a set of actionable guidelines for

the energy-aware app developers. For example, the Model-View-Controller

pattern is discouraged for apps with many views. Also, information hiding

is found energy expensive; developers are recommended to have public fields,

instead of private, if the fields are accessed frequently. This will reduce the

number of calls to the getter and setter methods and will reduce app’s energy

consumption.

Banerjee et al., in an invited talk, discussed some interesting issues about

energy efficiency [29]. For small data transmission for example, GSM is more

energy efficient than Wi-Fi (due to the connection initialization cost). But for

larger transmissions Wi-Fi gets better than GSM. The authors also discussed

the trade-off between QoS and energy efficiency of mobile applications. For

instance, the users can be provided with the option to reduce the GPS update

frequency when the battery power becomes low. These types of design choices

depend on the application itself, and the developers must decide on such de-

sign issues before start developing the application. The main idea of such

application design is to maintain standard QoS while minimizing the energy

consumption as much as possible. The authors also gave special importance on

using asynchronous task provided by Android. By default, all the components

of Android applications run in a single thread (the UI thread). This leads

to performance degradation as well as energy inefficiencies. For example, if a

network operation is delayed, all the subsequent operations (if under the same

thread) are also delayed, which indirectly affects the energy efficiency of that

application.

A more detailed road-map for developing energy efficient mobile applica-

33

tions was given by Ding et al. [138]. Some of the selected guidelines are

presented as follows.

1. In approximately 50% of the applications, the actual application code

was responsible for less than 31.1% of the total application energy con-

sumption. This suggests that most applications spend most of the energy

in idle states. Efficient color scheme can be employed to improve the en-

ergy expenses in idle states [142].

2. Application developers should be more concerned on the optimization

of using APIs rather than their own code—system APIs consume sig-

nificantly much more energy than the user code. This complements the

findings of Linares-Vásquez et al. [144].

3. In case of using hardware components, the developers should concentrate

more on optimizing network operations (e.g., performing HTTP requests).

Network operations are extremely energy expensive, yet frequently found

in Android apps.

4. Instruction inside loops are not only frequent in all types of applications,

but also can be very expensive. Optimization techniques need to be

applied for such cases.

3.3.9 Design patterns and energy consumption

Are there any specific design patterns that can make mobile application energy

efficient? Like energy specific testing, this is another least explored area in

software energy research. Cruz et al. [57] leveraged mining software reposito-

ries (by analyzing commits, issues, and pull requests) to understand what com-

mon patterns are followed by energy-aware Android and iOS app developers.

They made a catalog of 22 common practices that the developers follow. Inter-

estingly, some of these revealed patterns complement earlier findings from the

research community. For example, making apps with dark backgrounds [45],

[142], and processing tasks in batches [84], [154], [192]. This type of catalog

34

is definitely helpful for the energy-aware developers. However, some patterns

practiced by the developers are controversial. For example, the race to idle

pattern. While racing to idle can help in some cases, it can also increase the

energy consumption if the corresponding hardware components need to wake

up frequently. It is best for the developers to actually measure or estimate the

energy consumption of their apps for such optimizations—optimizations that

can both improve or worsen the energy efficiency of an app.

Sahin et al. [210] studied the energy consumption of 15 existing design

patterns from the 3 broad categories: creational (e.g., buidler, singleton),

structural (e.g., composite, decorator), and behavioral (e.g., observer, visitor)

design patterns. The authors found that some of the design patterns improved

the energy efficiency whereas some others did the opposite. There was, how-

ever, no solid recommendation from the study (as it was a preliminary study

on design patterns). For example, the observations could be highly impacted

by the choice of the subject apps. As a result, developers do not have enough

guidelines about what kind of patterns are energy efficient for what kind of

scenarios.

3.3.10 Batch processing for energy efficiency

Tail energy leak (discussed in 2.4) is one of the most discussed topics in the

software energy research community [50], [57], [117], [192], [194]. The common

solution to alleviate tail energy leaks is to perform operations in batches (e.g.,

bundled I/O operations) [57], [192].

Pathak et al. [192] observed that a real-world photo uploading app was

consuming too much energy because of the tail energy consumption of the

network component. The app was uploading photos, but not in bundle. After

uploading a photo, the app computes the hash of the next photo and then up-

loads it. This means that after uploading each photo, the network component

goes to the tail state, and wait for the next photo to be ready. So if there

are 100 photos to upload, there will be 100 tail energy phases for the network

component. This serious tail energy leak can be prevented if the processing

35

(calculating hash) of all the photos are done first and then the app uploads all

of the photos in a batch.

Because of the overhead associated with each request, sending the same

data in a single bundled larger HTTP request is much more energy efficient than

sending the same data over many smaller HTTP requests. To take the advantage

from this observation, Li et al. [141] proposed an automated bundling approach

that can decide at runtime which HTTP requests are safe to bundle (using

program analysis). With this approach, the authors were able to reduce energy

consumption for real-world apps by around 15%.

Similar to network operations, bundling has been found helpful for other

I/O operations. Lyu et al. [154] has shown that grouping multiple database

auto-commit transactions into a single transaction improves energy efficiency.

In general, their proposed approach can automatically detect database write

operations that occur repeatedly (e.g., inside a loop) so that it can bundle them

into a single auto-commit. While evaluating on marketplace apps, significant

energy consumption was reduced with this approach.

3.3.11 Energy specific testing

In order to automatically test an app, a set of test scripts that run and test the

app are required. A test script represents a test case of an app. For example,

for a gaming app, a test case can be a script that opens the app, shows the

playing options, select the difficulty level, and starts the game. Developers

often manually write test scripts for testing their software or apps. However,

writing test scripts manually is expensive. This is why software testing com-

munity has been heavily working on automated test case generation [15], [156],

[157], [161], [172]. Energy specific testing, however, is different than traditional

testing [117]. For example, in spite of its wide acceptance for test generations

and test selections in traditional software testing [16], [17], [37], [82], [180], the

code coverage heuristic does not perform well in energy specific testing [45],

[117]. Covering more code does not mean covering energy expensive parts

of an app. Unfortunately, energy specific testing research has not seen much

36

progress, and this is one of the energy research areas that the community needs

to focus on.

Jabbarvand et al.[117] proposed an energy-aware test-suite minimization

approach. The idea is that running only the test cases that cover energy hungry

APIs are enough. Other test cases that do not execute energy expensive paths

are unnecessary for energy specific testing. The authors found that a simple

greedy algorithm performs really well in minimizing the test suites (around

80% test cases can be dropped). The list of energy greedy APIs reported by

Linares-Vásquez et al. [144] was considered for ranking the test cases. This is

a limitation, because the API list of Linares-Vásquez et al. [144] was formed

only using 55 Android apps, thus many other energy expensive APIs might be

ignored. Subsequently, test cases that are energy expensive but do not cover

APIs from that list will not be in the minimized test suite. This approach also

rely on an existing test suite. The quality of the minimized test suite totally

depends on the existing suite (i.e., master test suite).

In a separate work, Jabbarvand et al.[117] proposed a framework that can

evaluate the effectiveness of a test suite in revealing energy bugs. The general

idea is to apply mutation in source code (for introducing energy bugs), and

then evaluate a given test suite to see if the bugs are revealed. The authors

concluded that existing test generation techniques are not good enough for

finding most of the energy related bugs, so more attention should be given on

energy-specific test case generation. In that direction, the authors proposed

a search-based energy testing approach for Android [115], which utilizes an

evolutionary algorithm to generate a test suite emphasizing more on finding

energy bugs. The authors could not compare the effectiveness of their approach

with a tool that also specializes in energy testing. This implies the importance

of more energy testing research.

37

From previous works, we still do not know which Internet protocol is the
most energy efficient (presented in Chapter 6). We do not know, how de-
velopers’ logging practices impact software energy consumption (presented
in Chapter 7). Most importantly, there is no study that investigates how
developers should aim for energy efficiency from the design time, before
they start the implementation phase (presented in Chapter 8).

38

Part I

Energy Estimation with Models

39

Chapter 4

GreenOracle: Producing
Reproducible Energy Models

This chapter shows the initial step for achieving the first objective, discussed

in 1.3.1, of this thesis: building energy models that are reproducible for other

linux-based systems (specially for Android devices). The idea is that if we

can build accurate software energy models using a feature set that is avail-

able across different platforms and operating systems, we can follow the same

methodology for reproducing the models in other systems.

This chapter was published as:

� Shaiful Alam Chowdhury, Abram Hindle, “GreenOracle: Estimating

Software Energy Consumption with Energy Measurement Corpora”, In

13th International Conference on Mining Software Repositories (MSR

2016), pages 49-60. May 14-15, 2016. Austin, Texas [48].

GreenOracle is a count-based energy estimation model, which is built us-

ing the Samsung Galaxy Nexus Android phone. This model uses different

OS statistics (e.g., number of CPU jiffies, number of context switches), and

individual counts of different system calls (described in Section 2.5) as the

independent variables. Energy measurement from the GreenMiner (discussed

in Section 2.3) is used as the dependent variable. GreenOracle is trained on

24 Android apps. However, the training set was enlarged by adding a total of

984 versions from those 24 apps.

40

Why is GreenOracle reproducible? The independent variables of GreenO-

racle can be accessed from any Linux-based system. For example, for tracing

the OS statistics, the Linux /proc pseudo-file system (/proc/pid/stat [241],

and /proc/stat [1]) was used. For capturing the system calls invoked by an

application, the strace program was used. The strace program can be run

similarly in other Linux systems.

The takeaways from this chapter include:

� By leveraging techniques from mining software repositories, we can col-

lect a significant number of third party apps and their versions for build-

ing machine learning-based software energy estimation models.

� Machine learning-based software energy models, if built on a feature set

that is available across different platforms and operating systems, are

reproducible.

� The GreenOracle model shows that the estimation accuracy of machine

learning-based models improves with the addition of new apps in the

training set. The problem is, in order to add a new app we need to

manually write a new test script for the app (difficult). This encourages

new research ideas for adding new apps into energy estimation model

training without much manual effort (e.g., by leveraging automated test

generation).

My role in GreenOracle: I, with the help of my supervisor, made plans for

the methodologies, data collection, experimentation, and evaluations. I also

wrote the GreenOracle paper [48] with the guidance of my supervisor.

Impact : As of writing, GreenOracle has been cited 26 times according to

the Google Scholar. The citations include different contexts, such as success-

ful use of system calls for modeling energy [197], and applications of mining

software repositories in energy research [118]. This chapter provides energy

consumption of 984 versions from 24 Android apps with human written mean-

ingful test cases. This dataset was directly used by two different research [46],

41

[207].

42

Abstract

Software energy consumption is a relatively new concern for mobile applica-

tion developers. Poor energy performance can harm adoption and sales of

applications. Unfortunately for the developers, the measurement of software

energy consumption is expensive in terms of hardware and difficult in terms of

expertise. Many prior models of software energy consumption assume that de-

velopers can use hardware instrumentation and thus cannot evaluate software

running within emulators or virtual machines. Some prior models require ac-

tual energy measurements from the previous versions of applications in order

to model the energy consumption of later versions of the same application.

In this paper, we take a big-data approach to software energy consumption

and present a model that can estimate software energy consumption mostly

within 10% error (in joules) and does not require the developer to train on

energy measurements of their own applications. This model leverages a big-

data approach whereby a collection of prior applications’ energy measurements

allows us to train, transmit, and apply the model to estimate any foreign

application’s energy consumption for a test run. Our model is based on the

dynamic traces of system calls and CPU utilization.

43

4.1 Introduction

In recent years, the popularity of battery-driven devices, such as smart-phones

and tablets, has become overwhelming. People now roam around with small

computers—i.e., smart-phones and tablets—in their pockets [199]. Accord-

ing to eMarketer, the number of smart-phone users will exceed two billion by

2016 [63]. This enormous adoption led to a significant increase in mobile data

traffic, and is predicted to increase 10-fold between 2014 and 2019 [54]. Re-

cent developments have equipped these hand-held devices with different types

of peripherals and sensors including digital cameras, Wi-Fi, GPS, etc. These

advancements have elevated the expectation of the users. Consequently, ap-

plication developers are compelled to develop more sophisticated applications,

leading them to continually update and maintain their products. Such up-

dates, however, can be harmful in terms of applications’ energy efficiency [101];

most software developers are not aware of how their source code changes might

have drastic repercussions on their application’s energy consumption [191].

More energy consumption leads to shorter battery life, but mobile users

are reluctant to frequently charge their device battery. A recent survey reveals

that a large fraction of the smart-phone users desire longer battery life more

than other non-functional requirements [177]. Yet the improvement in battery

technology does not keep up with the advancements in computing capabili-

ties. This indirectly emphasizes the importance of energy efficient software

development.

The first impediment towards developing energy friendly applications is to

know the actual energy consumption. This requires tools that are not only

expensive and time consuming to develop, but demand expertise as well—

a far cry from what most of the software developers have even today [191].

Among different energy related topics such as energy optimization, software

developers mostly suffer from the measurement related issues [198]. Yet the

number of models and tools to estimate software energy consumption and to

locate energy bugs are noticeably low [4], [191]. Some of those models [92] are

44

also too complicated for the developers to use or reproduce.

In this paper, we propose an accurate and simple resource count-based

energy prediction model (GreenOracle) that is trained on a large corpus of

Android applications’ energy measurements that we evaluate on unseen An-

droid applications. Our contribution can be summarized as: inspired by the

power of system call traces [5], [49], [194] for estimating resource usage, we

incorporate techniques from Mining Software Repositories (Green Mining) to

build an energy model for Android applications. In addition to the counts of

different system calls, CPU utilization, and pertinent information were added

to our model. We collected 984 versions from 24 different Android appli-

cations, mostly from their open source repositories. We then profiled each

version of the applications with their associated energy consumption and re-

source usage statistics (i.e., traces of system calls and CPU utilization) using

GreenMiner [101].

This significantly large and varied collection of data enabled us to train our

energy model with high predictive ability. The proposed model does not need

any energy measurement of the application under test, thus can save developers

time by mitigating the complexity of measuring actual energy consumption

using perplexing hardware instrumentation. Software developers can download

the GreenOracle model which is trained on many other applications. After

capturing the resource usage of their applications, GreenOracle can be used

to estimate the energy consumption in joules. When a developer modifies the

source code, they can re-run the energy model for the new version to discover if

the energy consumption exceeds their predefined threshold. Appalled at such

a regression, the developer proceeds to optimize their source code so that the

energy regression is within an acceptable limit. A complete workflow to apply

GreenOracle is presented in Section 4.6.

45

4.2 Background and related work

In this section, we start with defining terms that are used in this paper. The

related work is discussed in two broad categories: 1) modeling software energy

consumption and 2) improving energy efficiency.

4.2.1 Power and energy

The rate of doing work is defined as power. Power is measured in watts.

Energy, on the other hand, is expressed as the total sum of power integrated

over time and is expressed in joules [5]. An operation that uses 4 watts of

power for a period of 30 seconds can be stated to consume 120 joules of

energy. Although energy is proportional to power, using less power does not

necessarily indicate consuming less energy. In energy optimization, a module

can have higher power usage than another module with the same functionality,

but can still consume much less energy if its runtime is sufficiently shorter [50].

4.2.2 System calls

A system call is the gateway to access process and hardware related services

and acts as the interface between a user application and the kernel [5], [194].

Different groups of system calls are responsible for different types of services:

process control related system calls are used to initiate and abort processes;

memory related system calls include remap memory addresses, synchronize

a file to a memory map etc.; some of the most frequently used system calls

related to file operations are file read, file write, file open.1 As system calls

are the only way to access such services, we hypothesize that counting the

numbers of different system calls invoked by an application should roughly

indicate the types and amount of resources required for an appointed task to

complete.

1http://man7.org/linux/man-pages/man2/syscalls.2.html last accessed: 05-Oct-2015

46

4.2.3 Modeling energy consumption

Energy modeling based on component’s utilization

Carrol et al. [40] studied the energy consumption of the Openmoko Neo

Freerunner, an Android smartphone. After observing and capturing energy

usage in different scenarios, a simple energy model was developed. For exam-

ple, Eaudio(t) = t×0.32W is the model to calculate the energy consumption for

audio playback. Shye et al. [227] employed a logger application to log system

performance metrics and user activities. The authors found that screen and

CPU power consumption contributes highly toward the total energy drain. In

a similar study by Gurumurthi et al. [90], disk was found to be the largest

consumer of energy. Utilization based energy models were also studied by

Flinn et al. [71], Zhang et al. [269], and Dong et al. [62].

The basic philosophy of utilization based approaches is to capture a com-

ponent’s utilization time to model its energy consumption. Such approaches,

however, suffer from the tail energy leaks [194]—some components (e.g., NICs,

GPS) stay in a high power state for a period of time even after completing

the appointed task. The utilization of a component does not include this

time period, thus tail energy can not be modeled with such energy modeling

approaches.

Instruction based modeling

In order to estimate software energy consumption using program instruction

cost, Shuai et al. proposed eLens [92]. eLens takes three types of inputs:

a software artifact; system profiles which uses per instruction energy models;

and the workload. eLens itself consists of three separate components: a work-

load generator which is responsible for creating a new instrumented version

of the software artifact and can generate sets of paths in the application from

the workload; an analyzer which estimates energy consumption using system

profiles and sets of paths; and the source code annotator to produce the anno-

tated version of the source code so that the developers know which line of code

47

or part of code is energy expensive. Seo et al. [219] modeled energy consump-

tion for Java based distributed systems. The proposed method considered

component level energy consumption along with communication cost.

Instruction based models are mostly language dependent. A model devel-

oped for Java-based systems are hard to reproduce for other systems—systems

developed with multiple programming languages, for example.

Energy modeling from system call traces

Pathak et al. [194] proposed a model with several finite state machines (FSM).

Each state in a FSM represents the power usage patterns for a specific compo-

nent. Unlike the traditional utilization-based models, this FSM-based model

was found to be more accurate when the tail energy leaks are severe. Yet such

a model requires re-calibration for a totally new platform, which becomes more

challenging when different FSMs have to be rebuilt for different energy sen-

sitive device components. Aggarwal et al. [5] proposed a system call count

based model which does not require complex FSMs. The author proposed

a simple rule of thumb: “a significant change in the number of system calls

indicates a significant change in the total energy consumption”. The authors

validated their model by evaluating the energy changes in different versions of

two Android applications. This model, however, was not evaluated for a new

application—an application that was never used in the training set. More-

over, it does not offer the actual energy consumed by an application except

predicting whether energy consumption has changed or not.

We developed an energy model, inspired by the promises shown by system

call traces, that can predict the total energy consumption for any Android

application. We also included CPU usage as system calls are unable to capture

this information [49]. Our proposed model enables Android developers to

know the actual energy consumption, in addition to giving them the ability to

compare different versions of the same application’s energy consumption.

48

4.2.4 Energy optimization

Research has been done to understand different methods of improving software

energy efficiency. I/O components are some of the dominant sources of smart-

phones’ energy drains [28]. This is partly because of the tail energy leaks that

are common to exist when energy bugs are not considered carefully [192], [194].

In order to reduce the tail energy leak, bundling I/O operations together has

been suggested [192].

For suitable jobs—when offloading data itself is not very expensive—transferring

task to fixed servers can be compelling towards saving energy [188]. Unfortu-

nately, a separate study revealed that for most of the mobile applications data

offloading is too expensive to offer any gain in energy saving [169].

Automatic color transformation was offered by Li et al. [142] as another

avenue to improve software energy efficiency. The objective is to have less

energy expensive interface colors (e.g., black background) while maintaining

the readability at the same time. Likewise, pre-fetching in video streaming has

been suggested by Gautam et al. [74]. Rasmussen et al. [204] observed that

ad-blockers, in spite of their own energy consumption, can help in reducing

energy drains.

4.3 Methodology

Our proposed energy model takes the counts of different system calls and CPU

utilization statistics of an Android application’s test case as the input and

produces the estimated joules of energy consumption of the test case as the

output. In order to develop such a big-data based energy model, we followed

the following steps. 1) We collected a large number of Android applications

with their committed versions (Section 4.3.1). 2) Energy measurements along

with the resource usage patterns were captured for all of the versions (Section

4.3.2, 4.3.3, and 4.3.4). 3) A grouping mechanism was used in order to deal

with some system calls that have different names but similar characteristics

(Section 4.3.5). 4) Feature selection was used for identifying only the important

49

features from the set of system calls and CPU related information that cause

energy drains (Section 4.3.6). Finally, models are developed using machine

learning algorithms for regression (Section 4.3.7) and validated using a separate

cross validation set (Section 4.3.8). Although our objective is to produce a

simple linear regression based model (i.e., ridge regression), performance of

some other algorithms are also presented. This is to evaluate if the prediction

accuracy can be improved with added complexities of learners, such as Support

Vector (SV) regression, and to understand the implication of adding more

applications’ data in our training corpus (e.g., bagging). This section describes

each of these phases.

4.3.1 Collecting versions of Android applications

In order to build a robust generalized energy model, we need a significant

number of measurements for training (i.e., applications’ resource usage against

actual energy consumption). The problem with having many different Android

applications is that separate test cases are required for each application that

are time consuming to develop and test. On the contrary, a single test case

is sufficient for many of the different versions of the same application. For

example, only one test script was sufficient to run and collect measurements

for all the 156 Firefox versions (Table 4.1).

F-Droid [68], a free and open source android repository, was used to select

applications from different domains—browser, game, utility, etc. F-Droid,

however, usually contains at most three different versions of an application.

This hinders the objective of having a sufficiently large training corpus with the

least possible effort. As a result, we collected the source code for a significant

number of commits of applications that are available on GitHub. We focused

on a group of applications that are not only different in nature, but also have

a large number of commits on GitHub—more commits offer more versions

of the same application. The APKs for the committed versions were then

generated using the Apache Ant tool. For a few applications, such as Firefox

and ChromeShell, we collected the APKs directly from their APK repositories.

50

For a few others, we collected the APKs directly from F-Droid or other similar

sources—when the source code was not on GitHub or the Apache Ant was not

successful. Some of the applications with only one version were selected to test

GreenOracle’s accuracy in predicting energy consumption for a wide range of

applications.

Table 4.1 describes all the collected applications and their types; the total

number of Android applications is 24 whereas the total number of versions is

984. A total of 106 unique system calls was observed in our dataset implying

the richness and diversity of our training data.

Table 4.1: Description of the applications

Applications Type No. of versions No. of unique system calls Time period of commits of versions Source

Firefox Browser 156 84 Jul, 2011 - Nov, 2011 APK repos [70]
Calculator Android Calculator 97 48 Jan, 2013 - Feb, 2013 GitHub

Bomber Bombing game 79 47 May, 2012 - Nov, 2012 GitHub
Blockinger Tetris game 74 56 Mar, 2013 - Aug, 2013 GitHub
Wikimedia Wikipedia mobile 58 67 Sep, 2015 - Aug, 2015 GitHub

Sensor Readout Read sensor data 37 51 Apr, 2012 - Apr, 2014 GitHub
Memopad Free-hand Drawing 52 47 Oct, 2011 - Feb, 2012 GitHub
Temaki To do list 66 50 Sep, 2013 - July, 2014 GitHub

2048 Puzzle game 44 60 Mar, 2014 - Aug, 2015 GitHub
ChromeShell Browser 50 76 Mar, 2015 - Mar, 2015 APK repos [51]

Vector Pinball Pinball game 54 48 Jun, 2011 - Mar, 2015 GitHub
Budget Manage income & expense 59 56 Aug, 2013 - Aug, 2014 GitHub

Acrylic Paint Finger painting 40 49 Apr, 2012 - Sep, 2015 GitHub
VLC Video/Audio player 46 61 Apr, 2014 - Jun, 2014 APK repos [248]

Eye in Sky Weather app 1 77 Sep, 2015 Google Play
AndQuote Reading quotes 21 51 Jul, 2012 - Jun, 2013 GitHub
Face Slim Connect to Facebook 1 65 Nov, 2015 Fdroid
24game Arithmetic game 1 50 Jan, 2015 Fdroid

GnuCash Money Management 16 56 May 2014 - Aug, 2015 GitHub
Exodus Browse 8chan image board 3 60 Jan, 2010 - Apr, 2015 GitHub
Agram single/multi word anagrams 3 46 Apr, 2015 - Oct, 2015 Fdroid

Paint Electric Sheep Drawing app 1 66 Sep, 2015 Google Play
Yelp Travel & Local app 12 78 Unknown APK4Fun

DalvikExplorer System information 13 54 Jun,2012 - Jan, 2014 code.google [59]

4.3.2 GreenMiner

GreenMiner [102], a hardware-based energy profiler, was used for energy and

resource profiling. GreenMiner includes a YiHua YH-305D power supply,

Raspberry Pi model B computer for controlling the experiments, Adafruit

INA219 breakout board and Arduino Uno for collecting energy drain, and a

Galaxy Nexus phone as the client. Four different setups with four Galaxy

Nexus phones were used to speedup the data collection process. The Rasp-

berry Pi pushes and executes tests on the phone and aggregates the measured

51

data to store into a centralized server. Wi-Fi was re-enabled after enabling

the airplane mode; this ensures the actual energy measurement is not contam-

inated by cellular radio and bluetooth. More details about GreenMiner are

available in prior work [102], [204].

4.3.3 Developing the test scripts

A separate test script was developed for each of the applications which em-

ulates a simple use case for a specific application. For example, in order to

create a to do list for the Temaki application, a test script is required that can

create a new list, enter some entries to the list and then delete the completed

entries. These test scripts were automatized by injecting various touch inputs

into the input systems using the rudimentary Unix shell available on Android

[102].

4.3.4 Collecting energy and resource usage of the ap-
plications

The final phase is to collect the resource usage, indirectly of course, of an ap-

plication test run and the corresponding energy consumption, which enables

the development of our proposed energy model. GreenMiner, using the Rasp-

berry Pi, pushes the test script with the input APK to run, collect, and store

the respective energy consumption for a specific test case of an application.

Each run was repeated 10 times in order to produce a stable average energy

consumption; this was to address the observed variation among different runs

of the same test case [5], [49]. System calls were traced using the simple Linux

strace command; the -c option was used to produce the summarized counts

of different system calls invoked by an application. In order to model the

CPU usage with the energy, we collected the total CPU jiffies (A Linux CPU

utilization measurement) used by our applications along with other relevant

information such as the number of context switches, total interrupts, and ma-

jor page faults. The Linux /proc pseudo-file system was used for capturing

CPU jiffies and other information about processes. Information local to a pro-

52

cess was collected by accessing /proc/pid/stat [241], and information global to

the system behavior was captured from /proc/stat [1]. The global informa-

tion is not associated with any specific process; so we measured the difference

of resource usage before and after the test case. In case of process specific

information, however, capturing information at the end of our test run was

sufficient.

The problem is that instrumented code such as running strace in parallel to

the actual application can contaminate the application’s energy measurement;

instrumentation is work, and work consumes energy. This led us to enforce

isolation in our measurements. For a single representational data point, we

collected the energy consumption 10 times separately from strace and stat

programs. Similarly, for the same test case strace was run 10 times followed

by another 10 runs which access the /proc file system. After taking the average

from all the measurements, we mapped the values to a single example in our

training dataset. In a word, a single data point in the training set required

30 different runs in GreenMiner, which is an indication of our effort and time

given to collect data for the 984 Android versions (a total of approximately

30,000 test runs). Our publicly shared dataset can be accessed and used for

future research [86].

4.3.5 Grouping system calls

We observed that in spite of their very similar characteristics, some system

calls come with different names [49]. For example, lseek and llseek are two

system calls with the same purpose. This is problematic for our energy model

when one of the applications calls lseek whereas another one calls llseek. A

generalized energy model would be hard to develop with such inconsistency in

the training data. A model that has never seen llseek in the training phase,

does not know the contribution of llseek towards the energy drains although

the model knows the role of lseek which can be directly used for llseek. We

resolved this issue by manually grouping similar system calls together based

on their semantics as described in Linux man page [147]. System calls that are

53

Table 4.2: Grouping similar system calls according to OS semantics

Groups System calls Semantics
Lseek lseek, llseek “Reposition read/write file offset”
Write write, pwrite “Write to a file descriptor”
Writev writev, pwritev “Write data into multiple buffer”
Read read, pread “Read from a file descriptor”
Readv readv, preadv “Read data from multiple buffer”
Open open, openat “Open a file”
Statfs fstatfs64, statfs64, statfs, fstatfs “Get filesystem statistics”
Stat lstat64, stat, fstat, lstat, fstat64, stat64 “Get file status”

FSync fsync, fdatasync “Synchronize a file’s in-core state with storage device”
Pipe pipe, pipe2 “Create pipe”
Clone clone, clone2 “Create a child process”
Utime utime, utimes “Change file last access and modification times”
Dup dup, dup2, dup3 “Duplicate a file descriptor”

unique in their functionality were not grouped with others. All the grouped

system calls are presented in Table 4.2. For example, an application with 10

write and 10 pwrite is represented with a new feature called Write with 20 as

its value in the training dataset.

4.3.6 Feature scaling & feature selection

Machine learning algorithms often suffer when the ranges of values are very

different among different features. As we observed such wide variety among

the features, we normalized our data in the range 0 to 1. Such normalization

not only speedups the learning time, but also improves the accuracy in pre-

diction very significantly; features with vary large values, regardless of their

importance, influence the model more than small valued features. Equation

4.1 was used for our feature normalization [11], where x is a feature vector.

x̂ =
x−min(x)

max(x)−min(x)
(4.1)

After applying grouping, the dataset has 98 features from system call traces

along with the 21 features that we got from the stat program (for CPU and

related information). Including duration of the test case, the total number

of features is 120. This large number of features overfit the training data—

although we have approximately 1000 Android APK versions, the number of

54

applications is 24. Moreover, we are also interested in identifying the influen-

tial features that contribute to the actual energy consumption. Some feature

selection algorithms like forward and backward selection suffer from the local

optimization problem—decisions can not be altered once a feature is selected

or dropped [130]. Algorithms like exhaustive search are very time consuming,

yet did not produce the best set of features that offer an accurate prediction

model.

We also observed high correlation among different features, which is prob-

lematic for coefficient based feature selection methods like Ridge regression

and Lasso. Elastic Net, however, works better with such scenarios and has

been selected as our feature selection algorithm [270]. We also applied recur-

sive elimination in order to have the least number of possible features with

high predictive power. The only drawback of Elastic Net was that it deleted

test duration from the set of important features after few rounds of the re-

cursive elimination. We, however, used our domain knowledge and added test

duration as one of the selected features; an application without doing anything

can still consume energy if it is open. In fact, we observed significant improve-

ment in prediction accuracy after including test duration in our feature set.

It is important to note that we used 70% of the applications for the feature

selection purpose. Table 4.3 shows the selected features for our prediction

models.2 Once the features are measured and normalized, we applied them to

the machine learners to model energy consumption.

4.3.7 Algorithms to model energy consumption

In order to build the proposed model of predicting energy consumption in

joules, we have used four different machine learning algorithms. This is to se-

lect the best prediction algorithm (i.e., GreenOracle) that is not only accurate

in estimating energy consumption, but also simple to use and interpret.

2 In the table, an actual system calls starts with lower case letter

55

Table 4.3: Selected features from the traces of system calls and the CPU
related information

Features Description
User Number of CPU jiffies for normal processes executing in user mode

CTXT Total number of context switches
Num threads Total number of threads created during execution

Intr Total number of interrupts serviced during the test
Vsize Virtual memory size

Duration Length of the test case
recvfrom System call to receive a message from a socket

Fsync System calls (fsync &fdatasync) to “ synchronize a file’s in-core state with storage device”
setsockopt System call for setting socket options

mkdir System call for making a new directory
futex System call for locking fast user-space
Write System calls (write and pwrite) for writing to a file descriptor
sendto System call to send a message to a socket
unlink System call to delete a name from the file system to make the space reusable
Open System calls (open and openat) to open a file

Ridge regression

Linear regression is perhaps the simplest learning algorithm to build a regres-

sion model. Ridge regression is just an extension of simple linear regression

with an added penalty expression which is used to restrict the size of the co-

efficients in order to avoid overfitting. The outline of the algorithm can be

described as follows. Given a set of labelled instances {[Xi, Y i]}, ridge re-

gression finds a coefficient vector θ = (θ0, θ1, . . . , θn), which can find the best

linear fit, Yp = θTX, where the predicted values Yp minimizes the sum of

the squared error. This can be formalized as in equation 4.2 [96]:

θ = arg min
θ

[
m∑
i=1

(Y i −
n∑

j=0

θjX
i
j)

2 + λ

n∑
j=1

θ2j] (4.2)

In our case, m is the number of versions, n is the number of selected features

from the traces of system calls and CPU related information, Xis are the

feature vectors, Y is are the observed energy consumption, and Yp is the vector

of predicted energy consumption. The parameter λ is used for penalization in

order to avoid overfitting the training data.

56

Lasso

One of the characteristics of ridge regression is that it does not eliminate

unnecessary features—no feature will have a coefficient of zero. Lasso, on the

other hand, drops features from a group of highly correlated features. The

only mathematical difference between ridge and lasso is the penalty term in

equation 4.2; lasso uses l1 (i.e.,
∑
|θj|) penalty instead of l2 (i.e.,

∑
θ2j) [96].

Support vector regression

Unlike the other algorithms that we implemented with Octave, we used the

SVM light [125] implementation with linear kernel for the SV regression. SVM light

is implemented based on ε-SV regression [247] where the main goal is to find a

predictor function f(x) that does not deviate more than ε from the true values.

Success using linear kernel—instead of more complicated radial basis function,

polynomial, and sigmoid kernels—is more beneficial, as linear features produce

more interpretable results [98].

Bagging

In unstable learning, high variance is observed with little change in the training

data [14]. As we test the accuracy of our models for different applications, and

the training sets are a little bit different each time (the application under test

is excluded), we need to verify how a little change in the training data affects

the model. Bagging with ridge regression is used for this verification. We run

ridge regression 100 times with replacement in the training set so that some

of the applications are not included in a particular run. If the models are very

different among different runs of bagging, our data collection is not adequate

yet. Both the mean and median of the bagging predictions from 100 different

runs are presented in our result analysis.

57

4.3.8 Cross validation

We evaluated the accuracy of our models using each application separately;

when an application was under test, all the versions of that application were

excluded from the training set. For parameter tuning, such as λ in equation

4.2, we separated out the versions of one of the applications from the training

set; this specific set was used as the cross validation set. When we observed

good accuracy in both training and cross set, the cross set was again combined

with the training set to produce a final model. This model was then used to

predict the energy of the versions of our application under test—application

that was neither used for training nor for cross validation. The same tuned

parameters (λ = 0.001 for ridge regression, for example) was then used for

testing other applications’ energy consumption. For example, when testing

the accuracy of the application Firefox, we formed the training set with all of

the versions from the other 23 applications. Now using λ = 0.001 for ridge

regression, we trained the model and evaluated the prediction accuracy for

156 Firefox versions. As the accuracy was very similar across all versions of

a particular application, we represented prediction accuracy of an application

as the average accuracy across all versions. A similar process was followed for

all other applications and algorithms.

4.4 Experiment and result analysis

Table 4.4 shows the percent of errors when predicting the energy consumption

in joules for all of the Android applications. A prediction of 95 joules against

the ground truth of 100 joules is a 5% prediction error. All the presented

results are for foreign applications; an application under test was never used

in training nor in cross validation. The accuracy level varies across applications

and algorithms. Although considering the average percent of error across all

the applications, SV regression (with only 5.96% error) outperforms all others,

simple ridge regression has shown the best performance when the worst case is

considered. Ridge regression exhibits the least prediction accuracy for Exodus,

58

Table 4.4: Prediction accuracy of the proposed energy models: train on all
but the application under test. The ground truths are the average of 10 runs
and the predicted energy consumption is based on the average of 10 system
call traces and 10 CPU usage traces. Error for a particular application is the
average percent of error across all of its versions.

% of prediction error (measured and predicted in joules)
Applications SVR Ridge Bagging (Mean) Bagging (Median) Lasso

Wikimedia 3.99 6.17 5.03 4.77 4.57
Sensor Readout 3.56 3.33 4.2 3.85 0.73

Bomber 7.94 7.12 8.20 7.01 7.21
Memopad 3.73 4.78 4.39 4.40 3.68
Calculator 11.36 11.34 11.92 11.87 14.61
Blockinger 3.61 4.09 0.52 1.76 4.00

Temaki 2.55 1.75 0.89 1.00 4.96
2048 4.05 5.11 3.15 3.08 4.02

ChromeShell 13.31 11.91 10.73 11.81 19.13
Pinball 2.32 3.93 6.31 6.07 1.44
Firefox 5.35 4.83 6.23 4.84 6.83
Budget 5.76 5.16 4.50 4.46 5.90

Acrylic Paint 2.33 4.44 5.26 5.26 2.84
VLC 7.54 5.86 2.80 3.20 7.18

Eye in Sky 4.45 6.96 9.34 10.78 7.99
AndQuote 14.83 6.07 11.04 10.11 12.10
Face Slim 6.58 4.33 7.87 8.56 6.02
24game 6.16 8.48 0.80 0.13 17.38

GnuCash 4.33 6.40 5.59 5.64 7.13
Exodus 13.96 13.44 12.35 12.53 12.97
Agram 6.39 6.69 5.43 5.41 5.82

Paint Electric Sheep 1.46 3.02 9.92 8.89 1.01
Yelp 4.79 11.95 17.46 17.03 9.49

Dalvik 2.77 0.95 3.65 3.08 5.03
Average 5.96 6.17 6.57 6.48 7.17

an Image Board Browser, with 13.44% error. On the other hand, the worst

performance of SV regression, bagging with mean, bagging with median, and

lasso are 14.83%, 17.46%, 17.03%, and 19.13% of prediction errors (in joules)

respectively.

Figure 4.1 illustrates the strength of the ridge regression based model more

elaborately. Besides showing the cumulative distribution function (CDF) of

the percent of errors for all of the 24 applications (percent of error for an

application is the average of the percent of errors across all the versions of

the application), it also depicts the error distribution for all the 984 versions

separately. It is not surprising that the CDF curve with all the versions is

different than the CDF curve only with the applications. There are lots of

versions for which the energy consumption was predicted with ≈0% error.

On the other hand, unlike the CDF curve of application where the worst

59

0 2 4 6 8 10 12 14 16
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

All versions
App average

Figure 4.1: Percent of error with ridge regression

percent of error is 13%, ridge regression has a worst case prediction error

of 16% when all the 984 versions are considered. This is not surprising as

our mapping mechanism—separate 10 runs for energy, system calls, and CPU

usage pattern—can be a bit inaccurate, and the accuracy can vary across

versions.

In spite of all the impediments with our data collection, this simple model

is still very accurate in estimating the energy consumption of the Android

applications under test. The CDF graph suggests that the energy consumption

of approximately 85% of the applications and versions were predicted within

10% error. This is very similar to the performance of previous complicated

but widely accepted tools and models—eLens [92] and Pathak’s FSM based

model [194] for examples. eLens and the FSM based models also have an upper

bound of 10% error for most of the cases. With the current state—training set

with 24 applications—we suggest the ridge regression based model as the best

of our energy models, thus referred as the GreenOracle. This is encouraging

as unlike SVR or bagging, models based on simple linear regression are easy

to interpret, use, and reproduce.

A software developer, after capturing the set of invoked system calls and

CPU usage patterns as described earlier, can directly apply our ridge regres-

60

Table 4.5: Model description: after normalizing the features using the max and
min, a developer can directly use the coefficients of the models to estimate the
energy consumption of a new application.

Weight
Features LR LASSO Minimum Maximum

Offset 41.96 46.06 - -
User 45.22 53.89 272.11 6686.20

CTXT 31.70 38.28 28497.93 370208.43
Num threads -20.89 -36.33 10.00 43.60

Intr 22.86 5.95 16837.67 193892.90
Vsize -15.99 -16.71 477690265.60 637551820.80

Duration 84.95 88.60 42.00 200.00
recvfrom -25.56 -24.99 94.79 6932.20

Fsync 47.99 45.49 0.00 234.20
setsockopt 15.45 16.69 0.00 195.80

mkdir 18.41 16.54 0.00 48.30
futex -6.80 -6.01 910.70 148252.70
Write -9.57 -7.08 43.80 12338.00
sendto 41.81 25.90 8.00 580.20
unlink 18.71 39.78 0.00 60.40
Open 18.80 17.02 8.00 1153.44

sion based energy model (GreenOracle) as presented in Table 4.5 to estimate

any Android application’s energy consumption. The model for lasso is also

presented to observe if the role of any particular feature varies towards energy

prediction. These final models are developed using all the 24 applications with

the tuned parameters after cross validation and exhaustive testing. Encour-

agingly, in both the models the role of a particular feature is the same (either

positive or negative) with little difference in scale.

It is important to mention that the negative coefficients in the models do

not necessarily indicate their role in saving energy. In spite of applying one of

the best feature selection techniques with highly correlated features, Elastic

Net, we observed some features with high correlation still exists in our selected

predictor set. For example, the system calls sendto and recvfrom (system calls

for socket communication) are highly correlated (with correlation coefficient ≈

0.7), but none of them were deleted from the set even after applying recursive

elimination. In fact, the accuracy dropped significantly if we drop one of these

61

features—to a greater extent for sendto and lesser extent for recvfrom. Models

with such correlations are expected to have negative coefficients. As the models

are developed with normalized feature values, maximum and minimum of all

the features are also presented to enable normalization for a new application.

4.5 Are the models useful?

Considering the ridge regression model for example—with mostly an upper-

bound of 10% error and 13% in the worst case—GreenOracle has two direct use

cases: 1) developing an automated system to enable energy-rated mobile ap-

plications; 2) finding energy bugs incurred by any code changes in subsequent

versions.

4.5.1 Energy-rated mobile applications

The concept of energy-rated mobile applications is yet to be adopted in spite

of its urgency among the users. This is mostly due to the lack of tools and

techniques required for such automated systems. Chenlei et al. [266] observed

that significant reduction in energy consumption is possible when the users

know how to select the most energy efficient application from a pool of ap-

plications with similar functionalities. The authors recommended the genesis

of Green Star : Software Application Energy Consumption Ratings (SAECR).

Johannes et al. [165] proposed an automated system where a new application

is grouped with an existing cluster based on their functionalities. The en-

ergy consumption of the new application is measured and compared against

other applications within the same cluster. The new application is then ranked

based on its energy consumption. This not only improves user experience in se-

lecting energy efficient applications, but also push the developers to consider

energy efficiency in order to be competitive in the market. Such a system,

however, requires a model which is able to estimate a new application’s en-

ergy drains—a model with the capability of identifying different applications’

energy consumption. In order to evaluate our models for such scenarios, we

62

selected four applications from our training set that have very different energy

requirement. And then we compared the actual energy consumption of these

four applications (by picking a representative version from each) with the pre-

dicted values from our models. Figure 4.2 confirms that all of our models, in

fact, are able to identify different applications’ energy consumption very accu-

rately; bagging with mean is omitted because of its very similar performance

to median. As the actual energy consumption is the average of 10 different

runs, the standard deviation of the measurements are also depicted.

AndQuote Pinball Sensor Yelp
Applications

0

50

100

150

200

250

300

En
er

gy
 (j

ou
le

s)

42

10
7

17
1

24
7

47

10
3

16
4

23
0

43

11
0

16
4

21
7

46

11
3

16
3

20
8

46

10
5

17
0

22
8

Actual
SVR
Ridge
Bagging (median)
Lasso

Figure 4.2: Models accuracy in segregating applications with very different
energy requirements. Our proposed energy prediction approach is promising
to enable energy-rated applications.

4.5.2 Identifying energy sensitive code changes between
subsequent versions

In continuous developments, the developers produce subsequent versions of the

same application. In terms of energy efficiency, a simple code change can be

colossal—both positively and negatively [101], [192]. The developers should

be able to know if the changes committed for the new versions are going to

cause more energy drains. This is where our energy models can be vital. The

developers can use our models to estimate the energy consumption of the two

versions of interest. If the new version consume more energy than the previous

63

Random 1 Random 2 Random 3 Random 4
2048 (Versions)

0

20

40

60

80

100

120

En
er

gy
 (j

ou
le

s)

65 64

52 54

60 61

52 52

58 59

51 51

61 62

53 53

60 61

52 54

Actual
SVR
Ridge
Bagging (median)
Lasso

(a) 2048 Android puzzle game

Random 1 Random 2 Random 3 Random 4
Pinball (Versions)

0

50

100

150

200

En
er

gy
 (j

ou
le

s)

10
7

10
6 12

1

12
2

10
3 10
6 12

0

11
6

11
0

11
3 12

5

12
2

11
3

11
6 12

7

12
4

10
5

10
8 12

0

11
8

Actual
SVR
Ridge
Bagging (median)
Lasso

(b) Pinball Android game

Version 1 Outlier 1 Outlier 2
Wikimedia (Versions)

0

50

100

150

200

En
er

gy
 (j

ou
le

s)

16
8

12
8

12
9

16
2

12
4

12
5

15
8

12
2

12
3

15
7

12
4

12
5

16
1

12
2

12
3

Actual
SVR
Ridge
Bagging (median)
Lasso

(c) Wikimedia (Wikipedia for mobile)

1 2 3
Agram (Versions)

0

20

40

60

80

100

120

En
er

gy
 (j

ou
le

s)

59

70 70

61

65 64

60

64 6462

67 67

61

65 65

Actual
SVR
Ridge
Bagging (median)
Lasso

(d) Agram (generates anagrams)

Figure 4.3: Models’ efficiency in differentiating versions with different energy
consumption

one, the developers can simply investigate the changes made in the new version

to find the possible energy bugs.

In order to be really useful for such scenarios, our models have to be able

to identify if the energy consumption of an application has changed. For this

evaluation, we selected four applications for which we found versions with to-

tally different energy requirements than other versions. Figure 4.3 portrays

the strength of our proposed approach in segregating versions with different

energy consumption of the same application. In the 2048 Android game, we

observed two different energy patterns among all the versions: versions tended

to consume either around 65 joules or around 52 joules. We selected two ver-

sions from each cluster randomly and compared with our models’ predictions.

Figure 4.3 (a) clearly shows the accuracy of the estimates produced by all of

our models. Similar observations can be made from Figure 4.3 (b) for versions

64

of Pinball. In case of Wikimedia, all the versions have an energy consumption

of around 166 joules, except two outliers with around 128 joules. Figure 4.3 (c)

shows the efficacy of our proposed approach in separating those two outliers

from other Wikimedia versions—the first Wikimedia versions in our dataset

is used to represent others. In case of Agram, an application to generate ana-

grams with only three versions in our dataset, the later two versions have very

similar energy drains, but are significantly different than the first one. This is

clearly reflected in our prediction models in Figure 4.3 (d). These observations

clearly indicate the accuracy of our proposed models in identifying significant

changes in energy consumption between subsequent versions of applications.

It is useful to understand why some of the versions are so different than

others, in spite of their same functionality. This, however, requires a thorough

understanding of different segments of the application’s source code to know

how different modules are connected. We selected Agram for this part of

analysis as the functionalities of this application are simple, and thus the

source code is easy to understand. Consequently, we ask what significant

changes were made from version one to two in Agram, and how our models

captured those changes?

Our models (ridge and lasso) suggest that the number of CPU jiffies, the

total number of context switches, and the total number of interrupts have

increased substantially for the next two versions of the Agram test case. Ta-

ble 4.5 confirms that these three features have positve coefficients and thus

any increase in these features contribute to more energy drains. Our first

impression, especially for the changes observed with the number of context

switches and interrupts, was that these changes should imply modification in

thread related code. In order to verify this, we used the git diff command

to capture the code changes between version one and two. We observed a

significant changes between these two versions, and the committed changes in

fact support our hypothesis about thread related code. All the Java methods

related to generating anagrams have been changed to synchronized methods.

Figure 4.4 depicts such a synchronized method that returns the list of ana-

65

public synchronized ArrayList<Str ing> generate (int n) {
. . .
return r e s u l t s ;

}

Figure 4.4: Agram synchronized method example

grams using an overloaded generate method. Interestingly, the efficiency of

Java’s synchronized methods have been castigated and reported as very re-

source expensive in different programming forum discussions [198], [236]. One

commenter stated that lock requires more system calls and context switches

that induce performance degradation [236]. This observation is encouraging

as it clearly illustrates the effectiveness of our models in detecting energy bugs

between subsequent versions.

We conclude that GreenOracle is not only able to foretell the changes in

energy efficiency incurred by code changes, but is also able to provide pointers

to the newly introduced energy buggy code.

4.6 Developer’s workflow to estimate and im-

prove energy consumption

A developer can simply follow the following five steps to estimate an Android

application’s energy consumption in joules without dealing with any hardware

instrumentation: 1) develop a test case using Android unit test for example;

2) run the test case in parallel to strace and capture counts of different sys-

tem calls; 3) run the test case to capture information from /proc/stat and

/proc/pid/stat file systems to collect the CPU utilization and relevant infor-

mation. In case of /proc/stat, take the difference of before and after the test

case; 4) normalize the selected features as presented in Table 4.5; and 5) use

the ridge regression coefficients (i.e., GreenOracle) from Table 4.5 to estimate

energy. After any modification in the source code, the developer can again use

GreenOracle to check for energy consumption regression. In case of a signifi-

cant change, feedback from GreenOracle can be used to locate possible energy

66

bugs as we did for the Agram application.

4.7 Towards improving the accuracy of our

models

Considering the average percent of error in predicting unseen application’s en-

ergy consumption, the performance of bagging with ridge regression is very

similar to the simple ridge regression (Table 4.4). For some applications, how-

ever, significant differences are observed. AndQuote and 24game are of such

examples. This implies that our energy model with ridge regression was not

yet completely stable; with little changes in the training set—exclusion or

inclusion of some applications as occur in bagging—the coefficients can vary

slightly. This articulates the importance of collecting more data to have an

adamant and more robust energy model. For further verification, we measured

the accuracy of ridge regression with an increasing number of applications in

the training set. Figure 4.5 shows the distribution of accuracy for all of our

Android applications with x number of applications in training. We observed

that the accuracy varies based on the selected applications used for training;

some of the applications cover more system calls than the others. As a result,

we ran each of the scenarios 10 times and calculated the average percent of

errors. In each run we select x number of applications randomly for training

and predict the energy consumption of our application under test with the

produced model. We increased the number of applications (i.e., x) from 1 to

23 and observed how the accuracy improved. With more applications in the

training, the error distribution dwindles consistently.

Does big-data matter? Yes, it does. Controlling for the number of

applications in training we can see that the error rates for energy prediction

drop almost monotonically. This implies that we need to band together and

collect measurements for more applications to produce a better energy model.

67

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Training size (# of apps)

0

10

20

30

40

50

60

70

80

Pe
rc

en
t o

f e
rr

or

Figure 4.5: Number of applications VS. performance

4.8 Threats to validity

Our application selection was manual and could introduce bias. The test cases

we developed only executed some of the selected functionalities offered by the

applications. With more test cases, more application features can be tested and

new system calls can be added to the training set. The mapping mechanism

(resource count to energy consumption) can be inaccurate although we ran

each test 10 times to map the averages (a total of 30 runs for a single data

point). External validity is harmed by the use of a single brand of smart-phone

with a single version of the operating system.

4.9 Conclusion and future work

In this work we have presented an approach to model energy consumption that

allows developers to estimate energy consumption without having to measure

the energy of their own applications directly. The proposed GreenOracle model

follows a MSR/big-data approach whereby CPU usage and system call counts

of many applications under test are combined in order to estimate the energy

consumption (joules) of an application under test. Through a thorough evalu-

ation we demonstrated that GreenOracle can estimate joules mostly with less

68

than 10% error, and the model can be distributed and run on unseen appli-

cations without hardware instrumentation. We also observed that the model

continues to benefit from a variety of measured applications and tests of these

applications.

We conclude that CPU usage statistics and system call counts are enough

information to estimate the energy use of a test-run of an application based

on a model tuned and trained on foreign applications.

Future work includes collecting more applications to create a public/crowd-

sourced repositories of applications, test-cases, and traces in order to enable

the creation of a truly big-data based energy model. Our long run goal is

to develop an on-line energy model where an energy expensive system call

can be directly mapped to the source code to enable bug fixing during the

development phase [4].

69

Chapter 5

Leveraging Automatic Test
Generation for Improving
Energy Models

With a significantly more accurate energy model, this chapter completes the

first objective of this thesis (i.e., reproducible and accurate energy estimation

models).

This chapter was published as:

� Shaiful Alam Chowdhury, Stephanie Borle, Stephen Romansky, Abram

Hindle, “GreenScaler : Training Software Energy Models With Auto-

matic Test Generation”, Empirical Software Engineering Journal, Springer,

2018. This paper has also been accepted as a journal first paper and was

presented at the 41st ACM/IEEE International Conference on Software

Engineering (ICSE 2019) [45].

This chapter shows how we can improve the accuracy of machine learning

based energy models with automatic test generation. In the previous chapter

(Chapter 4), there was a crucial observation that if we can add more apps

in training (Figure 4.5), we can improve models’ accuracy. However, adding

one app requires manually writing one separate test script for that app. This

is difficult and not scalable. This is where the usefulness of automated test

generation becomes conspicuous.

70

We show that we can use a random test generation technique (simple and

supports black-box testing) for generating test cases that can be used for run-

ning apps for collecting independent and dependent (i.e., energy consumption)

variables for building energy models. Random test generation, however, might

produces test cases that are weak—a test case that does not do anything to

consume a significant amount of energy. This led us to create multiple test

cases within a given time budget, and then to use different test selection heuris-

tics. This way only the strongest test, based on a given test selection heuristic,

is selected per app. We have evaluated three different test selection heuristics:

1) Code coverage, 2) CPU-utilization, and 3) GreenOracle-based heuristic.

The takeaways from this chapter include:

� With an appropriate test selection heuristic, we can employ random test

generation for producing tests towards building more accurate software

energy models.

� Code coverage, in spite of its wide adoption in traditional software test-

ing, does not perform well for energy model building test selection.

� CPU-utilization is easy to use and performs similar to the complex

GreenOracle-based heuristic in selecting tests for building energy models.

� The model we built with automated test generation (i.e., GreenScaler)

performs great in detecting energy regressions. GreenScaler is useful for

answering questions like: Does the new version of an app consume more

energy than the previous version?

The GreenScaler tool and data are publicly shared [47]. With the data,

researchers can further experiment with other machine learning algorithms for

improving energy estimation accuracy. Developers can download and use the

GreenScaler tool to estimate the energy consumption of their apps.

My role in GreenScaler : I, with the help of my supervisor, made plans

for the methodologies, data collection, experimentation, and evaluations. My

co-authors (Stephen Romansky and Stephanie Gil) helped me with the long

71

and tedious measurement process (for collecting the energy consumption and

resource usage for hundreds of apps). I also wrote the GreenScaler paper [45]

with the guidance of my supervisor.

Impact : GreenScaler enables developers to estimate their Android apps’

energy consumption without any cost. This contribution attracted different

media coverage, including the coverage by the Global News [133]. GreenScaler

was made available on-line on 20 July, 2018. According to the Google Scholar,

GreenScaler has been cited 6 times (including the preprint) already. The

most encouraging observation about GreenScaler is that it is actually used

by researchers for estimating Android apps’ energy consumption [24], [25].

According to Ayala et al., GreenScaler is not only accurate, but also easy to

use (verified by their independent study [25]), which compelled them to select

GreenScaler over other estimation tools.

72

Abstract

Software energy consumption is a performance related non-functional require-

ment that complicates building software on mobile devices today. Energy

hogging applications (apps) are a liability to both the end-user and software

developer. Measuring software energy consumption is non-trivial, requiring

both equipment and expertise, yet researchers have found that software en-

ergy consumption can be modelled. Prior works have hinted that with more

energy measurement data we can make more accurate energy models. This

data, however, was expensive to extract because it required energy measure-

ment of running test cases (rare) or time consuming manually written tests.

In this paper, we show that automatic random test generation with resource-

utilization heuristics can be used successfully to build accurate software energy

consumption models. Code coverage, although well-known as a heuristic for

generating and selecting tests in traditional software testing, performs poorly

at selecting energy hungry tests.

We propose an accurate software energy model GreenScaler, that is built

on random tests with CPU-utilization as the test selection heuristic. Green-

Scaler not only accurately estimates energy consumption for randomly gener-

ated tests, but also for meaningful developer written tests. Also, the produced

models are very accurate in detecting energy regressions between versions of

the same app. This is directly helpful for the app developers who want to

know if a change in the source code, for example, is harmful for the total en-

73

ergy consumption. We also show that developers can use GreenScaler to select

the most energy efficient API when multiple APIs are available for solving the

same problem. Researchers can also use our test generation methodology to

further study how to build more accurate software energy models.

74

5.1 Introduction

Does software energy consumption matter? The answer is yes. Mobile device

users prioritize longer battery life when investing in their next purchase [99],

[191], [253]. Mobile device users also complain about battery life: recently

Microsoft acknowledged that a software bug, unrelated to battery hardware,

induced short battery life on Surface Pro 3 tablets [127]. Accordingly, de-

velopers are trying to write more energy efficient code to meet the need of

consumers [44], [158], [198]. Research has shown that energy efficiency can

be improved significantly with small code optimization [48], [95], [137], [192],

[196]. To develop energy efficient software, developers need feedback about

the energy consumption of their software. Unfortunately, developers are not

sure how to measure and optimize the energy consumption of their apps [159],

[191].

We seek to help Android developers accurately estimate energy consump-

tion of their software without the need for hardware instrumentation and with-

out physically measuring their own software’s energy consumption. Instead,

developers can use an externally developed and robust model, built from phys-

ical measurements of third party apps, to accurately estimate their own soft-

ware’s energy consumption. Measurements of third party apps, however, are

hard to find as we need repeatable test cases and corresponding energy mea-

surements. These test cases are costly to build manually and are the main

limitation of empirically derived models [48]. We address this limitation by

demonstrating the effectiveness of automatic test generation to collect mea-

surements for energy models.

We propose GreenScaler , an easy to interpret energy model for Android

apps. GreenScaler leverages a continuous process of test generation to build an

ever more robust corpus of energy measurements. As of writing, GreenScaler

learns from a wide variety of 472 real world Android apps, which was made

possible through automatic test generation. GreenScaler is count based and

relies on counts of system calls, CPU time, and other OS-level statistics.

75

The contributions of this paper are summarized as follows.

1) We propose a process of continuously building an ever more accurate

software energy consumption model using automatic test generation and test

selection heuristics. The success of automatic test generation for building ac-

curate software energy models is significant. We can continuously improve

model’s performance by adding more apps in training. New research ideas

can be explored with this approach. Researchers can investigate further for

producing better energy models. For example, can we improve model’s accu-

racy by building domain specific models (building a separate model for gaming

apps for example)?

2) For using random tests, we need test selection heuristics. We evaluate

three test selection heuristics to understand which one is the most effective for

selecting energy tests. From empirical results we show the following. i) Code

coverage is not a good heuristic for selecting tests to produce energy models.

ii) A simple CPU-utilization heuristic performs similar to a complex energy-

estimating test heuristic. To the best of our knowledge, we are the first to

evaluate test selection heuristics for producing software energy models.

3) We propose the GreenScaler model that can accurately estimate software

energy consumption of apps without hardware instrumentation. GreenScaler is

trained and tested (with leave-one-out approach) on 472 apps with randomly

generated test scripts. The model shows an upper error bound of 10% when

compared with the ground truths, except for few extreme cases. As Green-

Scaler is built on randomly generated tests, it is also important to evaluate

its accuracy on human written meaningful tests. For such manually written

tests of 984 versions from 24 real world Android apps, the upper error bound

of GreenScaler is always less than 10%. To the best of our knowledge, no

previous software energy model was evaluated on such a large number of apps.

4)We show that GreenScaler is accurate in finding energy regressions be-

tween versions of the same app, regardless of the amount of change in the

source code. GreenScaler detects energy regression even for a single API

change, when such a change has significant impact on the app’s energy con-

76

sumption. This is directly helpful for the developers who want to examine if

a new version consumes more energy than the previous version. With Green-

Scaler , researchers can build API recommendation systems for energy-aware

developers.

5) We publicly release our dataset and tools to enable replication and ex-

tension [47]. The dataset contains measurements that took us nearly two years

to collect, including time for test generation and time for actual energy mea-

surements. Our automatic test generation and selection tool can be used to

add more apps for building better energy models. Developers can directly use

our energy prediction tool to estimate their apps’ energy consumption.

5.1.1 Paper organization

The main focus of this paper is to build an accurate software energy model

for Android systems—a model that learns from hundreds of apps. However,

it is laborious to write tests to drive those hundreds apps. So we need au-

tomatic test generation. We study the previous test generation techniques in

Section 5.2, with the description of other important concepts related to this

paper. We show that Android Monkey is the best available test generation

technique for building software energy models. However, Monkey has its own

drawbacks—generates too many redundant events and does not offer us an way

to control the distribution of individual events. So we made our own Monkey,

GreenMonkey. GreenMonkey is still a random test generation technique, and

might produce test cases that do not exercise energy consuming operations.

We generated several test cases for each app to select the best one. To select

the best test case, we need test selection heuristic. Which test should we se-

lect? Test that covers more code? We study the effectiveness of code coverage

heuristic in selecting test cases that exploit energy expensive resources, and

found that code coverage would not be a good heuristic for selecting energy

consuming test cases (Section 5.3). Instead, we focused on resource-utilization

heuristics. Section 5.4 describes the whole GreenScaler methodology of build-

ing software energy models with resource-utilization heuristics. The rest of the

77

paper is about evaluating our model from different perspectives (Section 5.5

to Section 5.8). In Section 5.9, we discuss the future research avenues with our

model building approach, followed by the description of our dataset (Section

5.10), Threats to Validity (Section 5.11), Related work (Section 5.12), and

Conclusion (Section 5.13).

5.2 Background

This section explains the important concepts that are frequently used in this

paper. It also describes the motivation for energy model building automated

test generation.

5.2.1 Power vs. energy

Power (P) is defined as the rate of work completion and measured in watts

whereas energy (E) is the total amount of work done for a given time T

(E = P · T) and expressed in joules [5], [49], [50]. Understanding the differ-

ence between power and energy is important to develop energy efficient system.

A misconception exists among developers: improving execution time automat-

ically improves energy efficiency [159], [191]. Improving execution time reduces

T in the equation. However, with the reduced execution time the CPU work-

load may also increase, which can switch the CPU to its highest frequency,

which is also its highest power using state, thus negatively affecting the overall

energy consumption. Furthermore T can be reduced by parallelizing a task

across multiple cores, which could induce even higher power use. This is also

confirmed by a previous study that shows that less execution time does not

necessarily indicate less energy consumption [92].

5.2.2 System calls and CPU time

System calls act as the bridge between an app and the OS. For example,

socket is a system call responsible for creating communication endpoints,

whereas read takes the responsibility to read from a file handle. Counting

78

system calls of different types can thus provide an estimation of the amount

of different resource usage by an app [4], [48], [194].

To represent the CPU time expended by a process, we used the number

of CPU jiffies provided by the Linux kernel. A CPU jiffy is a period of time

assigned for a process to run without any intervention [124]. A CPU can

operate in different power consuming states, which complicates software energy

modeling [159]. A CPU jiffy, however, can be of different time intervals based

on the CPU states. Thus considering CPU jiffies as CPU time would mitigate

some intricacy involved in software energy modeling.

5.2.3 Energy measurement: GreenMiner

For measuring energy consumption and resource usage, we used GreenMiner,

which is fully described in Hindle et al. [102]. GreenMiner provides accurate

energy measurements for Android apps and is widely accepted in the software

energy research community [4], [5], [48], [95], [101], [204]. The main compo-

nents of this test-bed are a lab-bench power supply (a YiHua YH-305D), a

test-runner computer (a Raspberry Pi model B computer) for controlling the

experiments, an energy measurement IC (Adafruit INA219 breakout board),

a micro-controller (Arduino Uno) for collecting energy measurements, and a

system-under-test (a Galaxy Nexus phone) (Table 5.1). The Arduino and

Raspberry Pi are powered by a USB hub. Each testbed costs approximately

$250, each phone originally cost approximately $500, and the green miner

service is run on a separate server ($1000). Development of the GreenMiner

hardware and software itself was more than $32000 in developer time. Green-

Miner software is freely available for download [102].

A test-runner, a Raspberry Pi, is connected to a particular system-under-

test, a Galaxy Nexus. The test-runner pushes and runs tests on the Galaxy

Nexus, and collects measurements from the Arduino. Afterwards the test-

runner downloads statistics and other meta-data from the system-under-test.

The responsible test-runner, a Raspberry Pi, then uploads the measurements

to a central server running the GreenMiner webservice. The current Green-

79

Table 5.1: Specs of the Samsung Galaxy Nexus phones used for the experi-
ments [46].

Component Specs

OS Ice Cream Sandwich, 4.4.2
CPU Dual-core 1.2 GHz Cortex-A9
GPU PowerVR SGX540

Memory 16 GB, 1 GB RAM
Display AMOLED, 4.65 inches
WLAN Wi-Fi 802.11 a/b/g/n

Miner consists of four such identical testbeds to speedup and parallelize the

data collection process. Figure 5.1 shows the innards of one of the four identi-

cal settings of the GreenMiner. The GreenMiner service is a continuous testing

service whereby users may submit tests to be run and measured. After sub-

mitting a batch of tests to the GreenMiner, one of the phones is randomly

selected for executing a test. As a result, four different tests can run in paral-

lel to reduce the measurement time. GreenMiner maintains the same system

state for each test by cleaning any installed apps that ran previously.

Figure 5.1: One of the four identical GreenMiner settings. Photo used with
permission from the Green Miner paper [102].

Variations in energy consumption and resource utilization are observed in

different measurements for the same test. Consequently, all the GreenMiner

80

based previous work repeated any specific measurement multiple times [5],

[48], [95]. Similarly, all of our tests for measuring energy and resource usage

were run 10 times and the mean value was used.

5.2.4 Energy estimation: GreenOracle

There exist different types of software energy models: instruction based mod-

els [92], [219], utilization based models [40], [90], [227], and others [4], [5], [48],

[194] (described in Section 5.12). We followed the philosophy of count based

energy modeling similar to our previous GreenOracle [48]. GreenOracle mod-

eled software energy consumption based on the counts of different resource

usages: number of CPU jiffies, number of different invoked system calls and

so on. GreenOracle, however, has some limitations. This model was built only

using 24 Android apps. Although the size of the training set was enlarged

by adding different versions from those apps, this did not improve the model

significantly. This is not surprising as only one manually written test case was

used for each app. As a result, different versions of the same app might have

executed the exact sequence in source code, offering very similar information

on resource usage and energy consumption for a given test. An accurate en-

ergy model, however, requires training from a wide variety of workloads. In

this paper, we show that a model based on such a small dataset is not accurate

in estimating energy consumption of apps from very different domains.

5.2.5 Energy model building test generation

To measure the energy consumption of an app we need to drive the app with

some kind of test or benchmark. To run an app on GreenMiner, we need a

test script to replay operations on the app. An example of a test case is: open

Firefox, load a Wikipedia page and scroll over the page for five minutes—as if

a user is reading the page.

In our previous GreenOracle [48] model, we demonstrated that adding new

apps in training improves the accuracy of software energy models. Unfortu-

81

nately, adding more apps requires manually writing test cases for each app,

which makes it infeasible to have an energy model trained on hundreds of apps.

Manual software testing is difficult and expensive [16], [132], which motivated

a significant number of research in automated software testing [94], [201], [221],

[258], [267]. Automatic test generation is when tests are created automatically

through algorithmic means to drive the software under test. There has been

a significant number of research dedicated for Android test generation [15],

[156], [157], [161], [172].

Test generation can be completely random [16] such as Android Mon-

key [175] where random events are injected to an app. Some random test

generation strategies, such as Dynodroid [156], extract the layout of the GUI

components from an app screen and generate events based on the extracted

components. Search heuristics are also employed to guide the test generation

process, known as Search Based Software Testing (SBST) [94]. For exam-

ple, code coverage is a search heuristic where the objective is to generate test

cases to maximize code coverage [82]. Techniques like Sapienz [161] use multi-

objective optimization (maximize fault detection and minimize test sequence

length) in order to guide the test generation. Genetic algorithms can be used

in SBST to find the optimal set of test cases: from a set of candidate solutions

(test cases), the test generation process applies mutation on individual candi-

dates, or cross over across two or more candidates, or a combination of both

to find better solutions [157], [161].

In order to produce the GreenScaler model, a model trained on hundreds

of AndroZoo apps (described later), a test generation tool is required that is

publicly available, and does not require app’s source code for test generation;

the AndroZoo database only contains the executables (i.e., APKs) without

any source code. Choudhary et al. [43] and Mao et al. [161] performed detail

surveys on the most well-known Android test generation tools. Table 5.2 shows

the summary of the surveyed tools to identify the ones that are suitable for

the GreenScaler model building. Only 7 out of the 19 surveyed tools are

potentially suitable for the model building test generations. It is important to

82

Table 5.2: A summary of the existing Android testing tools for model building
test generation.

Tool Available? Works without source code? Suitable for GreenScaler?

AndroidRipper [15] Yes Yes
DroidFuzzer [260] No Yes
NullIntentFuzzer Yes Yes
IntentFuzzer [215] Yes No

Monkey [175] Yes Yes
MonkeyLab [146] No Yes
Dynodroid [156] Yes Yes

ACTEve [18] Yes No
TrimDroid [172] Yes Yes N/A. Generates the whole test suite
A3E-DFS [26] Yes Yes

SwiftHand [42] Yes Yes
ORBIT [259] No No
PUMA [93] Yes Yes

EvoDroid [157] No No
SPAG-C [143] No Yes

Thor [3] Yes Yes N/A. Requires existing test suite
JPF-Android [167] Yes No
CrashScope [176] No Yes

Sapienz [161] Yes Yes N/A. Authors do not share source code

find the best performing tool among these 7 that can be used for the energy

model building test generation. Given the time cost of test generation and the

collection of energy and resource usage measurements, it is infeasible to use

all the available tools for the energy model building process.

Choudhary et al. [43] concluded that evaluation of existing test generation

tools can be biased by the apps selected for evaluation. So they did a thorough

study on most of the well-known Android test generation tools that are pub-

licly available. The authors found that some tools are hard to use, and might

demand continuous communication with the actual authors which is often not

feasible. Interestingly, after their rigorous evaluation, Choudhary et al. [43]

concluded that random test generation—Monkey and Dynodroid—outperform

all the existing Android test generation techniques by a large margin, including

all of the GreenScaler suitable tools mentioned in Table 5.2. AndroidRipper

exhibits the worst code coverage and requires major effort to use. PUMA,

although requires little effort to use, its code coverage and framework com-

patibility are very poor compared to others. Instead of the very similar per-

83

formance, Monkey is much simpler and 5x time faster in test generation than

Dynodroid [156]. Unlike Dynodroid, monkey does not have any framework

compatibility issue [43], making Monkey as the most suitable tool for gener-

ating tests for a wide variety of Android apps.

Monkey, however, is notorious for some of its limitations including app

irrelevant events [156], [161] like volume control, screen capture etc. Moreover,

although Monkey allows setting distributions of different groups of events [175],

it does not allow the user to define the distribution of events (e.g., generating

60% tap events). Inspired by the success and drawbacks of Monkey, we propose

a very similar random test generation tool, GreenMonkey. GreenMonkey is no

different than Monkey, except control over the distribution of events is allowed

and app irrelevant events such as volume control are discarded. In section 5.6,

we show that this little modification indeed improves model’s performance.

As a result, we continue our test generations with GreenMonkey instead of

Monkey.

With automated test generation, we can generate a test to drive a given

app so that we can collect resource usage (independent variables) and energy

consumption (dependant variable) to build energy models. However, the gen-

erated test case might not be exercising any energy expensive resources, and

thus will not provide any useful information for the models. As a result, we

aim to generate more than one tests for each app and select the one that has

the highest potential of exploiting energy hungry resources. So we need test

selection heuristics. In the next section, we evaluate the effectiveness of code

coverage heuristic in selecting test cases for energy model building.

5.3 Code coverage heuristic

In traditional software testing, code coverage is one of the most used met-

rics to evaluate the effectiveness of a test generation approach [16], [17], [37],

[82], [180]. In general, a test with higher coverage is expected to reveal more

faults in a system [82], [180]. However, Inozemtseva and Holmes [114] found

84

that coverage is not strongly correlated with test suite effectiveness for finding

faults. In contrast to traditional testing, the objective of our test heuristic is

to select test cases that exploit different energy consuming hardware compo-

nents. A model built on test cases that do not observe energy expensive work,

would not be accurate. Such a model would fail to estimate the energy con-

sumption of a foreign app that accesses different energy consuming hardware

components.

In this paper, we evaluate the potential of the code coverage heuristic to

select tests that can be used for producing energy models. Does covering

more code necessarily indicate exercising more energy expensive resources?

To answer this question, we investigate the correlation between coverage and

power usage. If test suites with high code coverage implies high power usage,

then code coverage would be a valid test generation heuristic. Otherwise,

different avenues of test generation heuristics would need to be explored. Our

methodology is a near replication of Inozemtseva and Holmes [114], but we

focus on power usage instead of fault detection ability.

5.3.1 Methodology

In order to determine the suitability of code coverage as a heuristic for selecting

energy consuming tests, we require: 1) a set of Android apps with available

test cases; 2) a process to generate test suites of different sizes; 3) coverage and

energy consumption of the generated test suites; and 4) a statistical method

to calculate the correlation between coverage and power usage.

Selected applications

The difficulty of finding open source Android apps with JUnit test suites lim-

ited the number of potential apps. To match the work of Inozemtseva and

Holmes, the apps need to have a coverage of nearly 50% or more for either

class, method, line, or block. This further narrowed down the available choices.

We finally selected three open source Android apps: Klaxon—a pager; Pass-

word Hash—generates passwords; and Storyhoard—a choose your own adven-

85

Table 5.3: Description of selected apps’ master test suite coverage.

Feature Klaxon Password Hash Storyhoard

Source Lines of Code 1601 541 3749
Executable Lines of Code 799 247 1959

Master Suite Size 16 17 75
Class Coverage 24/33 (73%) 11/12 (92%) 56/81 (69%)

Method Coverage 85/150 (57%) 54/60 (90%) 306/497 (62%)
Line Coverage 383/799 (48%) 217/247 (88%) 1252/1959 (64%)

Block Coverage 1937/4378 (44%) 2225/2345 (95%) 5345/8504 (63%)

ture app. Table 5.3 shows the characteristics of the selected apps. The varied

numbers of lines in source code, number of methods, classes and blocks help

better to understand the relationship between code coverage and power usage.

Generating test suites

A test suite is a collection of sampled test cases from the master suite. The

master suite contains all the test cases for an app written by the developers.

Following the similar approach of Inozemtseva and Holmes [114], we generated

test suites of different sizes by sampling the existing master suite (collection

of all JUnit test cases). For example, a test suite of size 3 means there are

3 test cases in the test suite. In the study of Inozemtseva and Holmes, the

selected sizes for generating random test suites were 3, 10, 30, 100, 300, 1000,

and 3000. In their subject Java projects, the largest and smallest number of

tests were 7,947 and 628 respectively. In our selected Android apps, however,

the largest master suite (from the Storyhoard app) has only 75 test cases. As

a result, we could not select sizes similar to Inozemtseva and Holmes.

In order to get reliable statistical results by generating a large number of

test suites, we selected more sizes within short intervals. We started with test

suite size 2 and then repeated the procedure with test suites of sizes 4, 7, 10,

13, 16, 27, 40, 64, and 73. Once the sizes were decided, a Python program was

written to randomly choose test cases from an app’s master suite and create

different sized test suites from them. For each test suite size, 100 test suites

86

were generated with random sampling from the master suite. This allowed us

to have a diverse collection of test suites of various sizes and coverage levels.

Algorithm 1 illustrates the whole process of generating test suites.

Algorithm 1: Generating 100 test suites. Each test suite will have a
given number (based on the suite size) of randomly sampled test cases.

input : master suite, suite size
/* The master suite of an app and a given suite

size. */

output: collection test suites
/* 100 test suites each with a fixed number (i.e.,

suite size) of randomly sampled test cases. */

1 collection test suites ← [];
2 for suite number ← 1 to 100 do
3 test suite ← [];
4 for test number ← 1 to suite size do
5 test case ← Random(master suite);

/* select a test case randomly from the

master suite. */

6 test suite.append(test case);

7 end
8 collection test suites.append(test suite);

9 end
10 return collection test suites;

Capturing coverage and energy consumption of each test suite

In order to capture the coverage of each test suite, we used a third-party tool

emma [65] on the source code of each app. Emma provides four types of code

coverage: line coverage, method coverage, class coverage, and block coverage.

We captured all the coverage reports for our analysis.

Energy was measured using the GreenMiner by averaging 10 runs of each

test suite. However, during the energy measurement process, “coverage true

flag” was disabled to avoid any overhead incurred from coverage calculation.

87

Kendall’s τ as a measure of effectiveness

We calculated the Kendall’s τ correlation coefficients between coverage and

power usage for the generated test suites. Kendall’s τ does not assume any

distributions of the data—unlike Pearson’s correlation coefficient it does not

assume that the two variables (i.e., coverage and energy consumption in our

case) have a linear relationship. Similar to Inozemtseva and Holmes, we cal-

culated the coefficients with both uncontrolled and controlled suite size.

Uncontrolled suite size: Combine the measurements of coverage and

power usage from all the generated test suites and calculate the Kendall’s τ

correlation coefficient between coverage and power usage.

Controlled suite size: Combine the measurements of coverage and power

usage from the generated test suites with a particular suite size (e.g., all suites

with size 2), and calculate the Kendall’s τ correlation coefficient.

5.3.2 Analysis of results

For uncontrolled suite size, Table 5.4 shows the Kendall’s τ correlation coeffi-

cients between code coverage and power usage (watts) for all the three apps.

Power usage against test suite size is also presented. Table 5.5 and 5.6 show

the correlations when the suite sizes are fixed to 2 and 13 respectively (i.e.,

controlled suite size). We did not include results for other suite sizes (e.g.,

correlations for suite size 4, 7, 10 and so on) as the observations are similar.

We observe good/strong correlation between energy and code coverage,

especially when we do not control for test suite size (Table 5.4). This is not

surprising; larger code coverage usually means larger execution time which

has direct impact on the total amount of energy consumption (i.e., E = P ·

T). For example, from our results the highest correlation is observed for the

Storyhoard app when suite size is not fixed (minimum 0.78 for class coverage

and maximum 0.83 for method coverage, Table 5.4). However, this is the same

setup when we observe the highest correlation between energy consumption

and test duration (correlation coefficient 0.95). The lowest correlation is found

88

for the same app when suite size is fixed to 13 (Table 5.6). Interestingly, for

the same setup, the correlation between energy and test duration is the lowest.

This implies that good correlation between coverage and energy consumption

does not necessarily indicate that the test cases are exercising energy hungry

resources—test duration might be the major factor for the observed good

correlation. In order to use coverage as the heuristic for energy model building

test generations, we need to observe good correlation between coverage and

power usage, instead of coverage and energy consumption.

The correlations between coverage and power usage are weak for Password

Hash and Storyhoard when suite size is not controlled (Table 5.4). In case of

Klaxon, we observe moderate correlation. However, for controlled suite sizes,

the correlation for Klaxon drops significantly (Table 5.5 and 5.6). Results from

our subject Android apps indicate that covering more code does not necessarily

indicate more exercise of power expensive source code portions. This supports

the intuition that all code is not equally heavy in power usage. For example,

code that makes an HTTP request might consume more energy than a larger

segment of code without high CPU usage or network operations [141].

Table 5.4: Correlation between code coverage and power with uncontrolled
suite size. Suite size vs. power is also presented.

Correlation with Coverage Correlation
Applications Method Class Line Block Suite size Duration

Klaxon
Power 0.57 0.58 0.58 0.58 0.59 N/A
Energy 0.67 0.67 0.69 0.69 0.67 0.91

Password Hash
Power 0.06 0.08 0.02 0.01 −0.05 N/A
Energy 0.56 0.53 0.60 0.61 0.68 0.94

Storyhoard
Power 0.22 0.23 0.20 0.19 0.20 N/A
Energy 0.83 0.78 0.82 0.81 0.85 0.95

In order to build GreenScaler—modeling software energy against the indi-

rect measurement of resource usage—we need test cases that are more likely

to exploit different resources and energy consuming portions of the code. This

short study led us to focus experimentation on resource-utilization heuristics

rather than investing time on code coverage based test generation. Build-

89

Table 5.5: Correlation between code coverage and power with suite size fixed
to 2.

Correlation with Coverage Correlation
Applications Method Class Line Block Duration

Klaxon
Power 0.13 0.40 0.31 0.34 N/A
Energy 0.12 0.41 0.31 0.35 0.79

Password Hash
Power 0.33 0.38 0.31 0.31 N/A
Energy 0.69 0.67 0.67 0.66 0.85

Storyhoard
Power 0.45 0.52 0.35 0.13 N/A
Energy 0.47 0.51 0.37 0.17 0.90

Table 5.6: Correlation between code coverage and power with suite size fixed
to 13.

Correlation with Coverage Correlation
Applications Method Class Line Block Duration

Klaxon
Power 0.26 0.27 0.26 0.27 N/A
Energy 0.52 0.51 0.52 0.53 0.81

Password Hash
Power 0.21 0.21 0.13 0.13 N/A
Energy 0.40 0.40 0.23 0.26 0.91

Storyhoard
Power 0.26 0.38 0.15 0.13 N/A
Energy 0.21 0.26 0.13 0.12 0.47

90

ing automatic test cases for hundreds of apps with a heuristic, running them

on GreenMiner for collecting energy consumption and resource usage counts,

and then applying/tuning/validating machine learning models demand several

months.

Findings: Code coverage relates more to test duration than to power
usage. With code coverage as the heuristic, test with longer execution
time might be selected for model building, in spite of its weakness in
exercising energy expensive portions of the source code. This implies that
coverage will not be a good heuristic if employed for selecting tests to
model software energy consumption. We need different heuristics that use
actual resource-utilization, and thus capture energy expensive portions of
source code.

5.4 GreenScaler methodology

In this section, we describe the complete GreenScaler methodology of using

resource-utilization heuristics for generating tests to build continuously refined

software energy models.

AndroZoo
APK Collection

Rejected Apks

Sampled APKs
APK-Test
pairs created

Green Miner
Energy+Feature

Training

App
Measurements

GreenTestGen

GreenScaler

GreenScaler

Figure 5.2: The process of developing GreenScaler. The model learns contin-
uously with new apps using test selection by GreenTestGen.

The process of producing an energy model from a large corpus of energy

measurements is to: 1) collect Android apps (Section 5.4.1); 2) generate tests

for the collected apps (Section 5.4.2); 3) collect energy consumption measure-

ments, system calls measurements, and other process counters while running

91

an app’s test (Section 5.4.3); 4) add measurements to the training corpus; 5)

and finally train our model. Figure 5.2 summarizes the process of developing

GreenScaler. We also need to evaluate the effectiveness of this process, so

model selection (Section 5.4.4), feature engineering (Section 5.4.5), and vali-

dation (Section 5.4.6) are also described.

5.4.1 Collecting Android applications

We sampled apps randomly using the database provided by AndroZoo [13], and

collected about 500 apps. AndroZoo provides millions of apps for Android re-

search that were collected from 3 different app stores: Google Play, Anzhi, and

AppChina. Some of the apps did not install or run properly. After removing

those, 472 apps were used to develop the proposed GreenScaler energy model.

AndroZoo does not provide app categories, but using the screencap program,

described in Section 5.4.2, we manually investigated a sample from the 472 col-

lected apps, and observed apps from different domains: media players, games,

utility, etc. Some sampled apps (radio, streaming, and online games) heavily

used the network. Table 5.7 shows the categories of 100 randomly selected

apps. The categories of these apps were defined based on two of the authors

consensus. The unknown category contains non-English apps that are difficult

to categorize. It is clear from Table 5.7 that our sampled apps are from very

different domains. This is important for building a robust energy model that

should work across different types of Android apps.

5.4.2 Automatic test generation with resource-utilization
heuristics

The futility of code coverage heuristic encouraged generating test cases based

on resource-utilization heuristics. We evaluate two such heuristics for building

software energy models: CPU-utilization and E-heuristic (estimated energy

utilization).

CPU-utilization heuristic: Select the test case with the highest CPU time,

92

Table 5.7: Categories of the 100 randomly selected AndroZoo apps.

Category Count Category Count

Game & Puzzles 23 Book 6
Utility 11 Entertainment 5

Unknown 11 Media 5
Business & Website 10 Finance 2

Education 9 Health 2
Communication 8 News 1

Tools 7 Total 100

as CPU is a major source of energy consumption. We can argue that the

CPU-utilization heuristic may select test cases that are biased to CPU uti-

lization only and may ignore the utilization of other resources like network,

file etc. Consequently, a model built on such test cases might fail to estimate

energy consumption of apps with high network or file operations. As a result,

we selected another heuristic, E-heuristic, that exploits other energy heavy

resources as well.

E-heuristic: Select the test case with the highest estimated energy con-

sumption based on an actual software energy model—GreenOracle [48]. In

this approach, a test case is selected that has the highest estimated energy

consumption based on all the different hardware components utilization. In a

nutshell, an existing energy model is used to generate tests towards producing

an even more accurate energy model.

For generating tests based on these two heuristics, we propose GreenTest-

Gen. For a given app, GreenTestGen creates a number of test cases with the

help of GreenMonkey. With GreenMonkey, each test case consists of different

randomly selected events. GreenTestGen runs all the test cases for the app,

and selects the one that maximizes a given heuristic function. It is important

to note that any test generator (e.g., Monkey, Dynodroid) can be used with

GreenTestGen just by replacing GreenMonkey. GreenMonkey and GreenTest-

Gen are fully depicted in Algorithm 2 and 3 respectively.

93

Algorithm 2: GreenMonkey

input : no of events
output: test script

1 EVENTS POOL={adb shell events};
2 test script ← SequenceOfEvents (no of events,

DISTRIBUTION OF EVENTS, EVENTS POOL);
3 return test script;

Algorithm 3: GreenTestGen

input : An AndroZoo app, a testGenerator
/* calls GreenMonkey as the default test generator

*/

output: Test case for the app

1 if CrashCheck (App)==True then
2 Exit();
3 end
4 no of events ← Random(10, 40);
5 play time ← 0;
6 max heuristic value ← 0;
7 while play time≤30 mins do
8 test script ← testGenerator(no of events);
9 heuristic value ← Execute(App, test script);

10 if heuristic value>max heuristic value then
11 max heuristic value ← heuristic value;
12 best test ← test script;

13 end
14 update play time ;

15 end
16 ScreenCap(App, best test);

94

GreenMonkey: A pool of adb events—such as tap x y, swipe x1 y1 x2

y2, text string or number, ENTER, DEL, tapmenu etc.—was created where

the values of pointer locations, strings and numbers are selected randomly (line

1 of Algorithm 2). The pointer locations were restricted to a specific range to

avoid clicking on the phones’ HOME and BACK buttons. Different events have

different impacts on generating useful test cases. We did manual observa-

tions on 30 randomly chosen apps. Not surprisingly, input tap was found as

the most contributing event toward generating useful test cases. Events like

swipe, input text, and keyevents were assigned similar priority, followed by

tapmenu. So instead of selecting events uniformly randomly, GreenMonkey is

biased so that a test script contains more tap events than any other events,

whereas the event tapmenu occurs the least (DISTRIBUTION OF EVENTS,

line 2). A test script is thus a set of different events—separated by a 2 second

sleep time—and the number of events in a test case might differ among the

apps.

GreenTestGen : When an app is selected, GreenTestGen first checks if

the app installs and runs properly (line 1, Algorithm 3). In case of a suc-

cess, the app is then run to find the best test case—the test that maximizes

a selected heuristic function. GreenTestGen selects the number of events

randomly—from 10 to 40 events so that a test is neither too short nor too

long (line 4). A test script that is too short (few events) might not do any-

thing useful, whereas having too many long test scripts would prolong our data

collection period. If all the test scripts are of similar duration (same number

of events), any machine learning model would ignore duration as an important

feature, which would be devastating for predicting an unknown app’s energy

with a very different test duration. Each app is then run for a fixed 30 minutes

before selecting the best test case (line 7).

GreenTestGen calls a test generator (GreenMonkey as the default, algo-

rithm 2) to create a test case with the selected number of events (line 8). After

running the test script and measuring the heuristic value (line 9), GreenTest-

95

Gen creates another test with the previously fixed number of events and run

it to evaluate if the heuristic value (e.g., CPU time) is increased, in which case

it updates the best test case as the most recent one. At the end, the best test

case is the one with the highest heuristic value (line 10− 12). Before running

the test on GreenMiner, we also added a 10 seconds idle time at the end of

the selected test case. This is to capture any associated tail energy leak [5],

[194] that can occur at the end of running the test (tail energy is explained in

Section 5.12.1).

After spending 30 minutes to generate the best performing test case, Green-

TestGen replays the best test case in order to capture the screenshots using

screencap program and save the images (line 16). This allows us to investi-

gate each app’s behaviour and type if needed—construction of Table 5.7 for

instance.

5.4.3 Collecting energy consumption and resource us-
age

For collecting the energy consumption and resource utilization statistics for

all the apps, we used GreenMiner (described in Section 5.2.3). All of our

measurements, for energy and resource usage, were separate from each other

so that the actual energy measurements are not affected by the programs

capturing resource usage. As mentioned earlier (Section 5.2.3), we repeated

each test 10 times and took the mean value of the measurements, for both

energy and resource usage.

We used the strace program for tracing all the different system calls in-

voked by an app. The -c option was enabled so that we only capture the

summary counts of each system call. We also enabled the -f option so that

system calls invoked by the child processes are captured as well. A script was

written that starts running just before the test case of the app under test

(AUT) starts its execution. The script then waits and checks for the availabil-

ity of the AUT in the current running process list. Once it finds the process

in the list, it immediately starts the strace program with the process id. The

96

strace program stops and writes the summary counts in a file, when the test

case of the app under test finishes.

To capture CPU usage, we used the GNU/Linux proc file system: /proc/stat

for capturing global information and /proc/pid/stat for capturing informa-

tion local to a particular process [48]. These two files provide the CPU time

in jiffies both locally and globally, in addition to other pertinent information

such as number of context switches, and number of page faults. For capturing

global information, we took the difference of counts between after and before

running a test. The local information is collected after a test run is completed.

One more important feature that was ignored in some other software mod-

els (e.g., GreenOracle [48], and PETrA [184]) is an app’s interface colour. In

case of OLED screen, up to 40% reduction in screen-based energy consump-

tion is achievable by switching interface with white background to dark back-

ground [142]. With such dependency on colour, an energy model would be in-

accurate if it does not consider screen colour information. We used screencap

program to capture screenshots while running a test case for an specific app.

The script is very similar to the script we used for system calls, except it runs

the screencap program instead of the strace program. Motivated by Dong

et al. [61], we calculated the average red, green, and blue values (RGB) for all

the pixels across all screenshots. Each of these three averages is then multi-

plied by the test duration—as we model energy consumption instead of power.

For example, if we capture three screens, and the average red pixel values are

100, 150, and 200 in those three screens, the calculated red value is 150—i.e.,

(100 + 150 + 200)/3. And the red value used by a model is 150 multiplied by

the test duration.

5.4.4 Algorithms for energy models

We have to train a model based on resource usage (independent variables)

and energy consumption (dependent variable). We compared three machine

learning algorithms and chose the best performing and most interpretable one

for our GreenScaler : Ridge regression, Lasso, and Support Vector Regression

97

(SVR). Ridge regression and Lasso are the simplest of the available regres-

sion algorithms and are very similar except their methods of regularization.

The biggest advantage with these algorithms are that they are very easy to

interpret.

Ridge: Given a set of labelled instances {[Xi, Y i]}, ridge regression finds

a coefficient vector θ = (θ0, θ1, . . . , θn), which can find the best linear fit,

Yp = θTX, where the predicted values Yp minimizes the sum of the squared

error. This can be formalized as in equation 5.1 [96]:

θ = arg min
θ

[
m∑
i=1

(Y i −
n∑

j=0

θjX
i
j)

2 + λ
n∑

j=1

θ2j] (5.1)

In our case, m is the number of apps, n is the number of selected features from

the traces of system calls and CPU related information, Xis are the feature

vectors, Y is are the observed energy consumption, and Yp is the vector of

predicted energy consumption. The parameter λ is used for regularization in

order to avoid overfitting the training data.

Lasso: One of the characteristics of ridge regression is that it does not elim-

inate unnecessary features—it retains features with tiny coefficients. Lasso,

on the other hand, drops features from a group of highly correlated features.

The only mathematical difference between ridge and lasso is the regularization

term in equation 5.1; lasso uses l1 (i.e.,
∑
|θj|) regularization instead of l2 (i.e.,∑

θ2j) [96].

Support vector regression: SVR, in contrast to Ridge and Lasso, is more

complex and in many cases can exhibit better performance than simple linear

regression [247]. Interpretation of such a model, however, is difficult and can

be complicated for the developers to find which features are contributing more

toward energy consumption. To mitigate this, we only used the linear kernel

instead of the more complicated sigmoid, radial basis function (RBF), and

polynomial kernels. SVMlight implementation was used for SVR that is based

98

on ε-SV regression [247] which finds a function f(x) that does not deviate

more than ε from the ground truth.

5.4.5 Feature engineering

Some system calls are similar in functionality. For example, both fsync and

fdatasync do the similar file synchronization work—“synchronize a file’s in-

core state with storage device”[147]. If we treat these system calls the same,

then apps that use either can benefit from training. As a result, similar system

calls are grouped together similar to our previous work on GreenOracle [48].

All the grouped system calls are presented in Table 5.8. In general, if an app

invokes 10 fsync and 10 fdatasync, a new feature Fsync (group name) was

used with 20 counts in our model.

Table 5.8: Grouping similar system calls according to OS semantics.

Groups System calls Semantics

Lseek lseek, llseek “Reposition read/write file offset”
Write write, pwrite “Write to a file descriptor”
Writev writev, pwritev “Write data into multiple buffer”
Read read, pread “Read from a file descriptor”
Readv readv, preadv “Read data from multiple buffer”
Open open, openat “Open a file”
Statfs fstatfs64, statfs64, statfs, fstatfs “Get filesystem statistics”
Stat lstat64, stat, fstat, lstat, fstat64, stat64 “Get file status”

Fsync fsync, fdatasync “Synchronize a file’s in-core state with storage device”
Pipe pipe, pipe2 “Create pipe”
Clone clone, clone2 “Create a child process”
Utime utime, utimes “Change file last access and modification times”
Dup dup, dup2, dup3 “Duplicate a file descriptor”

Compared to the number of apps, the number of features in our dataset

is quite large—22 from CPU and pertinent information, 4 for R, G, B, du-

ration, and 99 from grouped and individual system calls. This large number

of features leads to model overfitting. Among the three algorithms we used,

SVR is hard to interpret and does not help in feature selection. Lasso with

l1 regularization yields a more sparse coefficient vector (i.e., many features

with coefficient 0) than Ridge, thus more suitable for feature selection. How-

ever, with high correlation among features, Lasso selects many features with

99

negative coefficients, which made our previous GreenOracle model [48] less

interpretable and less accurate.

We addressed this issue with the recursive feature elimination method with

Lasso. After the first iteration, we manually removed the features with low

coefficients. We followed this procedure until we got a set of features with

reasonably high coefficients. This procedure subsequently deleted highly cor-

related features. Only 80% of the measurements from AndroZoo (i.e., 377

randomly selected apps out of 472) were used for feature selection. Table 5.9

describes the final set of selected features. We got this same set of features for

the both resource-utilization heuristics based test sets (CPU-utilization and

E-heuristic). This small number of features makes a model easy to interpret.

Learning algorithms perform slowly and suffer from low accuracy with high

variance in feature values [109]. In our case, we indeed observed such high

variance. This was solved by using 0-1 normalization, as in equation 5.2,

where x is the actual and x̂ is the normalized feature vector.

x̂ =
x−min(x)

max(x)−min(x)
(5.2)

5.4.6 Testing and cross validation

We applied 10-fold cross validation for all the three algorithms to tune the

regularization parameters, known as model validation phase before testing

with the test data. 10-fold cross validation is helpful when the data size is

small. Because it does not require dividing the data into three parts: training

data, validation data, and testing data. With 10-fold cross validation, we

divided the training data into 10 segments (each containing the same number

of apps). At phase i, segment i is used as the test data, whereas the other

9 segments are combined to make the training data. This way, 10 models

are evaluated with 10 different test data partitions. We observe the model’s

performance to see if we need to adjust the regularization parameters (i.e., the

penalty sizes). The process stops when no more improvement is possible and

100

Table 5.9: Selected features (CPU and others, duration, colour, and system
calls) from feature selection process to model energy consumption for Android
apps. This table suggests that the major sources of Android energy consump-
tion are CPU, context switches, test duration, screen color, file operations,
and network operations. The weight represents the energy consumption for
each unit (e.g., one CPU jiffy) of the features. The weights of each feature are
discussed in Section 5.7.3.

Features Description Weights

User Number of CPU jiffies for normal processes executing in user mode 1.034e-2
Nice Number of CPU jiffies for niced processes executing in user mode 8.660e-3

CTXT Total number of context switches 7.604e-5
Major Faults Number of major page faults for a process 1.117e-2

Duration Length of the test case in seconds 6.300e-1
Red Average level of red from screens · duration 5.000e-4

Green Average level of green from screens · duration 4.000e-4
Blue Average level of blue from screens · duration 5.200e-4

Fsync System calls (fsync & fdatasync) to synchronize a file’s state to disk 1.310e-3
bind System call to bind a name to a socket 6.033e-2

recvfrom System call to receive a message from a socket 5.260e-5
sendto System call to send a message to a socket 1.761e-2
Dup System calls (dup, dup2, dup3) to duplicate a file descriptor 5.406e-2
Poll System calls (poll and ppoll) to wait for some event on a file descriptor 2.920e-3

when the performance of the 10 different models are similar. The coefficients

of the regularization (e.g., λ for ridge and lasso) for all the three algorithms

were finalized during this cross validation phase. It is important to note that,

we only used 80% of the apps for the cross validation. Also, for evaluating a

model’s accuracy (starting from Section 5.5), an app under test was always

excluded from the training set.

5.5 Evaluating resource utilization heuristics

This section evaluates and compares the two resource-utilization based test

generation heuristics: CPU-utilization heuristic (CPU time) and E-heuristic

(energy estimation).

Using the 472 collected AndroZoo apps, we built two energy models.

� Model CPU−H : trained with all the selected features from Table 5.9,

but exclusively using measurements from tests generated by the CPU-

101

utilization heuristic.

� Model E−H : trained with the same feature set, but exclusively using

measurements from tests generated by the E-heuristic.

Both the models were trained with Lasso because of its superior performance

over the others (discussed later). Regularization parameters were used from

the cross validation phase (Section 5.4.6). Comparing the accuracy of these

two models would tell us which test generation heuristic produces better tests

for developing software energy models.

We evaluate the models’ accuracy (percent of error in joules) following the

leave-one-out approach [97]. This ensures that an app under test was never

seen in training. Each model was evaluated on two different sets: measure-

ments from the CPU-utilization heuristic based tests and from the E-heuristic

tests. This produces two error distributions for each model.

We applied the Anderson-Darling normality test [243] and found that none

of the error distributions are normally distributed. This led us to select a

non-parametric test to decide if the error distributions from Model CPU−H and

Model E−H are statistically different. We used the Kruskal-Wallis test [104],

which does not assume data is normally distributed, and found that these

two models (from two different heuristics) produce statistically different error

distributions (α = 0.05 and p = 0.01). In order to find which model offers

better accuracy, we used the pairwise Wilcoxon-rank-sum test [32] to calculate

the 99% confidence interval of mean percent error in joules. We also calculated

Cliff’s delta [55] to measure the effect size between the two error distributions

(presented in Table 5.10).

When applied to CPU-utilization heuristic based tests, Model CPU−H ’s

mean confidence interval is lower than Model E−H with negligible effect (Cliff’s

delta). Model E−H , however, similarly outperforms Model CPU−H , with slightly

better accuracy, when evaluated for the E-heuristic based tests. In other words,

each model slightly outperforms the other when evaluated on measurements

arising from its own test heuristic. We select Model CPU−H as GreenScaler for

102

Table 5.10: 99% mean confidence interval (percent of error in joules) of tests
versus models. Results suggest that for mean confidence interval both the
models have similar accuracy. The difference is negligible/small according to
Cliff’s delta.

Model CPU−H Model E−H

Test Heuristic confidence interval confidence interval Wilcoxon p Cliff’s delta

CPU-Heuristic 3.60 - 4.50 4.62 - 5.72 2.20e-16 negligible
E-Heuristic 5.36 - 6.26 3.02 - 4.03 2.21e-16 small

Combined Tests 4.63 - 5.24 3.90 - 4.68 2.20e-16 negligible

the following reasons:

1) For mean confidence interval both the models perform similarly. How-

ever, for upper error bound Model CPU−H is better. Model CPU−H and Model

E−H estimate 94% and 90% apps within 10% error respectively. Also the mean

error of the worst 5% estimations with Model CPU−H is 13%, in contrast to

16% for Model E−H .

2) Model CPU−H is built on test cases generated with a simple CPU-

utilization heuristic. This is much simpler and easier than a complex energy

model heuristic. CPU-utilization heuristic requires only capturing CPU time

for a test from the Linux file system. On the other hand, the model based

heuristic also requires tracing all the invoked system calls by an app by run-

ning a separate strace program.

3) We were concerned that CPU-utilization tests would ignore other re-

sources. Thus we compare calls to resources (i.e., system calls) with the

Kruskal-Wallis test on the number of recvfrom (network receive), sendto

(network send), and fsync (file operations) between CPU-utilization and E-

heuristic based generated tests. We found that the distributions of these sys-

tem call counts between the two test sets are not statistically different (p >> α

where α = 0.05). This suggests that CPU-utilization heuristic based tests ex-

ploit other resources similar to the E-heuristic tests. We further examined

a sample of the CPU-utilization heuristic based tests and found that access-

ing other resources can impact CPU utilization. For example, for an on-line

video player, CPU utilization is highest when a test starts playing a video

103

across the network. Thus CPU-utilization based tests do use other hardware

components.

Findings: Tests based on CPU-utilization heuristic exploit other resources
similar to those exercised by the complex E-heuristic based tests. Conse-
quently, energy models built on test cases from both heuristics perform
similarly. For simplicity, we recommend CPU-utilization heuristic for gen-
erating tests to build software energy models.

5.6 Monkey vs. GreenMonkey

In Section 5.2.5, we mentioned the drawbacks of Monkey and proposed Green-

Monkey to mitigate Monkey’s problems. Before generating tests and collecting

measurements for 472 AndroZoo apps, we conducted a short study to verify if

these little changes can indeed improve the performance of energy model build-

ing test generation. We selected 100 random apps for training, and 50 different

apps for testing models’ accuracy. These are two subsets of the 472 AndroZoo

apps. With CPU-utilization test generation heuristic, we used GreenTestGen

with Monkey and GreenMonkey to generate tests for these 150 apps. Two

energy models were built: one with Monkey generated tests and another with

GreenMonkey. Both the models were tested on the 50 selected apps. Fig-

ure 5.3 clearly shows that the energy model built on GreenMonkey generated

tests outperforms the energy model built on Monkey generated tests. In case

of GreenMonkey based model, 90% of the apps’ energy was estimated within

only 5% error. On the other hand, only 64% of the apps were estimated within

5% error by the model based on Monkey. Table 5.11 also confirms that this

difference is statistically significant.

These early findings led us to generate tests for all the 472 apps with

GreenMonkey instead of the Android Monkey.

104

0 2 4 6 8 10 12 14 16 18
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

GreenMonkey
Monkey

Figure 5.3: Comparing performance between Monkey and GreenMonkey for
building energy models. GreenMonkey outperforms Monkey in generating
tests that are more suitable for building energy models.

Table 5.11: 99% mean confidence interval (percent of error in joules) of models
based on Monkey and GreenMonkey generated tests. Model based on Green-
Monkey tests is significantly more accurate than the model based on Monkey
generated tests.

Models confidence interval Wilcoxon p

Monkey tests 3.60 - 7.00 7.80e-10
GreenMonkey tests 2.80 - 4.60 7.80e-10

105

5.7 Evaluating GreenScaler

In this section, we evaluate the performance of GreenScaler from different

aspects: accuracy of GreenScaler on randomly generated tests and manually

written tests, GreenScaler ’s ability to explain different sources of energy con-

sumption, and GreenScaler ’s ability to detect energy regressions. We also

observe GreenScaler ’s sensitivity to the size of changes in SLOC between ver-

sions of different apps. This is to check if GreenScaler detects energy regression

only for large commit sizes. Next, we evaluate GreenScaler from developers’

perspectives.

5.7.1 Evaluation on randomly generated tests

We compare the performance of GreenScaler (based on CPU-utilization heuris-

tic tests) with the previous GreenOracle model [48]. We applied all the three

machine learning algorithms from Section 5.4.4.

0 10 20 30 40 50 60 70
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Androzoo applications

GreenOracle
SVR
Lasso
Ridge

Figure 5.4: GreenScaler (Lasso) outperforms GreenOracle with very large mar-
gin on the 472 AndroZoo apps with randomly generated tests.

GreenScaler has significantly less estimation error than GreenOracle. Fig-

ure 5.4 shows the Cumulative Distribution Function (CDF) of estimation per-

106

centage error in joules of our three selected algorithms compared with the

previous GreenOracle for all the collected AndroZoo apps. The significantly

worse performance of GreenOracle is not surprising, as it was trained only on

24 apps, which led to the selection of inappropriate features with inaccurate

coefficients. With the new set of 472 apps and accurate feature set, all the

three models outperform GreenOracle by a large margin. Lasso and Ridge

perform very similarly and show better accuracy than SVR. In case of Lasso,

for example, almost 94% of the apps’ energy estimations had an upper bound

of 10% error. For outliers, the upper bound was only ≈15% error compared

to the 70% worst case error with GreenOracle. The indistinguishably similar

performance of Lasso and Ridge is because of the very small (close to zero)

regularization coefficient obtained from the cross validation phase. With no

regularization, there is no difference between Lasso and Ridge. With the very

small number of features, none of the models overfit the training set, which

led to a negligible regularization coefficient. However, during the feature se-

lection phase, Lasso was very different than Ridge and helped us to find a

good performing feature set. Therefore, we select Lasso for our GreenScaler.

In other words, the final GreenScaler model is built on CPU-heuristic based

test generations with Lasso.

5.7.2 Evaluation on manually written tests

The randomly generated tests with utilization heuristics, although good for

energy model building, might not observe any meaningful sequence of actions.

The GreenScaler model is built on such test cases. So far, we do not know

how a model built on random test cases performs on meaningful human written

test cases. As a result, it is important to evaluate GreenScaler ’s performance

on human written test cases. Our previous energy model GreenOracle [48] is

trained on 24 Android apps, with 984 versions in total, where the test cases

were written manually. These test cases represent how an average user might

interact with these 24 apps, and were written based on the consensus of several

computing science grad students from the Software Engineering Research Lab,

107

Table 5.12: Description of the GreenOracle applications [48]. The table shows
the 24 apps in the dataset with their types, numbers of versions, and the
execution scenarios of the manually written test cases.

Applications Type No. of versions Test Scenario

Firefox Browser 156 Loads a Wikipedia page and scrolls over the page.
Calculator Android Calculator 97 Does simple and complex calculations.

Bomber Bombing game 79 Starts the game and drops bombs at fixed intervals.
Blockinger Tetris game 74 Moves, rotates blocks randomly
Wikimedia Wikipedia mobile 58 Searches and loads the Bangladesh page, and scrolls.

Sensor Readout Read sensor data 37 Reads and draws graphs for different sensors’ data.
Memopad Free-hand Drawing 52 Opens a canvas, draws an object.
Temaki To do list 66 Creates, updates, searches, and deletes a to-do list.

2048 Puzzle game 44 Tries different moves to solve the problem.
ChromeShell Browser 50 Opens a web page and scrolls.

Vector Pinball Pinball game 54 Throws several balls, and plays with them.
Budget Manage income & expense 59 Calculates by depositing and withdrawing money.

Acrylic Paint Finger painting 40 Draws objects.
VLC Video/Audio player 46 Loads and plays a video for 2 mins.

Eye in Sky Weather app 1 Searches for Edmonton, and looks for temperature.
AndQuote Reading quotes 21 Reads some famous quotes.
Face Slim Connect to Facebook 1 Connects with Facebook, and browse the help page.
24game Arithmetic game 1 plays some random tries.

GnuCash Money Management 16 Opens an account and saves transactions.
Exodus Browse 8chan 3 Reads some selected threads.
Agram Word anagrams 3 Generates single and multiple anagrams.

Paint Electric Sheep Drawing app 1 Draws objects.
Yelp Travel & Local app 12 Finds a restaurant and reads users’ reviews.

DalvikExplorer System information 13 Reads system’s information.

University of Alberta, Canada. Table 5.12 shows the test scenarios for all the

GreenOracle apps. The complete and the subsets of GreenOracle dataset were

used in several published papers on software energy consumption [4], [5], [46],

[48], [49], [207].

Encouragingly, GreenOracle, even for its own dataset, is outperformed by

GreenScaler (Figure 5.5). The upper error bound for the new model is 10%

(i.e., with Lasso), in contrast to the 13% error with GreenOracle. This suggests

that GreenScaler, although built on measurements from randomly generated

test cases, can accurately estimate energy consumption of manually written

tests.

5.7.3 Qualitative evaluation of GreenScaler model

With the leave-one-out approach, described in Section 5.5, we have developed

472 different linear models with the CPU-utilization test generation heuris-

tic. These models, however, are almost identical, as excluding one app from

108

0 10 20 30 40 50 60 70
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GreenOracle applications

GreenOracle
SVR
Lasso
Ridge

Figure 5.5: GreenScaler (Lasso) outperforms GreenOracle even on GreenOra-
cle dataset. Mean error was considered for apps with multiple versions.

training does not affect a model. We chose one of these models randomly

to represent the GreenScaler. Table 5.9 shows the final GreenScaler energy

model (i.e., weights of the selected denormalized features). The accuracy of

the model stems from what the table shows. The model suggests that the

main sources of energy consumption in Android systems are CPU usage, test

duration, screen colour for OLED screen, file operations (fsync, dup, and

poll), and data communication (sendto, recvfrom, and bind). The very

high coefficients for CPU usage and test duration are similar to the findings of

Miranskyy et al. [171], who found that energy consumption was often highly

correlated with CPU and run-time on database systems. According to the

model, transmitting (sendto) is more expensive than receiving (recvfrom),

which is complemented by previous research [169]. Moreover, in terms of pixel

colour intensity, blue is the most expensive and green is the least expensive,

which is also observed by Dong et al. [61].

109

Findings: GreenScaler considers many of the known major sources of
energy consumption on an smart-phone. This includes CPU time, context
switches, page faults, test duration, and interfaces’ colors. GreenScaler
relies on system calls to estimate energy consumption by other components
like disk, networks.

5.7.4 Evaluation on detecting energy regressions

GreenScaler is a model, and similar to any previous energy estimation ap-

proaches [92], [184], [194], GreenScaler is not 100% accurate. Considering

the estimation error, we ask: will GreenScaler be useful to app developers?

We argue that usefulness is how GreenScaler model performs where a devel-

oper would actually use it: during the implementation and maintenance of

their own app, comparing version against version. In this section, we evaluate

GreenScaler ’s ability to detect energy regression between versions at different

levels—two versions separated by a single commit or two versions from two

subsequent releases. If GreenScaler is successful in detecting energy regres-

sion, developers can know if their changes have negative effect on the app’s

energy consumption.

The main strength of GreenScaler is that it maintains similar shape be-

tween estimations and ground truths for all the versions of any particular app.

We selected four apps from GreenOracle dataset that have lots of versions.

With multiple versions, we have a separate error distribution function for each

app. Figure 5.6 shows that although GreenScaler accuracy varies among the

apps, the error distribution is very similar among all the versions for the same

app.

This observation is significant: it indicates that GreenScaler should accu-

rately estimate the energy consumption difference between two versions of an

app. To further demonstrate the adeptness of GreenScaler for such cases, we

select six apps from GreenOracle dataset. Unlike other apps, these six apps

contain versions with very different energy profiles. Moreover, two of these

six apps (Yelp and Agram) contain versions that are actual releases, whereas

versions from other four apps are separated by a single commit.

110

0 10 20 30 40 50 60 70
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Firefox
Sensor
Bomber
Calculator

Figure 5.6: GreenScaler maintains similar error distribution among different
versions of an app.

Figure 5.7 shows that for all the six apps, GreenScaler successfully sepa-

rates out the energy inefficient versions. For Yelp, a travel & local information

app, only one version has a very different energy profile. GreenScaler distin-

guished that version accordingly. Memopad, a drawing app, exhibits three

interesting energy profiles throughout its life time—it became more and more

energy efficient over time in contrast to Agram and Pinball. Our proposed

model accurately distinguished those three phases.

We also investigate if GreenScaler can help developers to understand the

type of modification that impacted the energy consumption. GreenScaler does

not locate source code responsible for energy regression. However, the sim-

plistic philosophy of GreenScaler—simple counts of different features—helps

understanding the type of energy expensive modification. We provide two such

examples. For Agram, an app to generate anagrams, the GreenOracle dataset

contains only three versions. Figure 5.7(b) shows that version 2 and 3 con-

sume more energy than version 1. GreenScaler suggests that the number of

context switches has increased significantly from version 1 and stays similar to

2 and 3. Our first impression was that code for thread interaction could have

111

1 2 3 4 5 6 7 8 9 10 11 12
Versions

40

80

120

160

200

240

280

320
En

er
gy

 (j
ou

le
s)

Ground Truth
GreenScaler

(a) Yelp

1 2 3
Versions

40

50

60

70

80

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(b) Agram

1 11 21 31 41 51
Versions

40

60

80

100

120

140

160

180

200

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(c) Wikimedia

1 11 21 31 41 51
Versions

40

50

60

70

80

90

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(d) Memopad

1 11 21 31 41 51
Versions

40

60

80

100

120

140

160

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(e) Pinball

1 11 21 31 41
Versions

40

45

50

55

60

65

70

En
er

gy
 (j

ou
le

s)

Ground Truth
GreenScaler

(f) Game 2048

Figure 5.7: GreenScaler ’s efficiency in differentiating between versions with
different energy consumption. Versions are sorted based on their committed
times. Whenever there is significant energy difference between two versions of
the same app, GreenScaler detects the difference. Developers can use Green-
Scaler to check for energy regression before releasing a new version.

112

been modified. We used git diff and found that Java methods for gener-

ating anagrams were indeed synchronized. It is well-known that unoptimized

synchronized methods fight excessively for shared locks, which leads to more

context switches and CPU usage [198], [236]. Similarly, we investigated the

continuous improvements of Memopad in terms of energy consumption. The

only significant difference in our model among all the versions of Memopad

was their RGB counts, clearly suggesting the background colour was changed

over time. Indeed we found three distinct background colours. White back-

ground (the most expensive for OLED screen) was used for versions up to 33,

which was modified to more efficient yellow, followed by even more efficient

red. This articulates how significant a simple choice of background colour can

be for devices with OLED screens, as also observed by previous research [142].

Findings: GreenScaler accurately identifies energy inefficient versions for
a given app—for versions separated by a single commit and multiple com-
mits (i.e., subsequent releases). Developers can use our tool [47] to evaluate
if a new version of an app is more energy expensive than the previous one.
In case of energy regression, they can consult GreenScaler to understand
the type of modification that might have impacted the energy negatively.
For example, if a new version calls fsync more than before, a developer
can focus on file I/O related code.

5.7.5 Accuracy vs. commit size

For our subject apps, GreenScaler was successful in detecting energy regres-

sion. However, this does not tell us if GreenScaler is sensitive enough to detect

regression even when the code change is minimal—e.g., when two versions dif-

fer by a single line of source code. Does GreenScaler’s accuracy in detecting

regression depend on the commit size? To answer this question, we used five

apps (with all the versions) from Section 5.7.4, as these apps show energy re-

gression with source code modifications. We could not use Yelp as we do not

have access to its source code.

We calculated the commit sizes (the sum of the number of additions and

number of deletions in SLOC) between all the successive versions. We then

113

calculated the differences between mean energy consumption of the successive

versions (difference between mean of 10 energy measurements of version xi and

mean of 10 energy measurements of version xi+1, difference between mean of

10 energy measurements of version xi+1 and mean of 10 energy measurements

of version xi+2, and so on). Similarly, the differences between mean energy

estimations (with GreenScaler) of all the successive versions were calculated.

This way we calculated the absolute estimation error of GreenScaler for a

commit size in case of energy regression detection. For example, for a commit

size of 10, if the difference in mean energy consumption between two versions

of an app is 2 joules and the difference in mean estimated energy consumption

is 5 joules, this is a 3 joules of estimation error for a commit size 10. We

combined the data from all the five apps and show the result in Figure 5.8.

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

10.0

10 1000
Commit size

A
b

so
lu

te
 e

rr
o

r
(j

o
u

le
s)

1

2

3

4
count

Figure 5.8: GreenScaler ’s sensitivity to commit size in detecting energy re-
gression. Apparently, there is no (or very weak) relation between accuracy
and commit size.

Figure 5.8 suggests that there is no notable relationship between the com-

mit size and GreenScaler ’s accuracy in detecting energy regression. We also

calculated the Kendall’s τ correlation coefficient between commit size and

absolute error in joules. The coefficient is only 0.08. This implies that Green-

Scaler accuracy does not rely on the commit size. Thus, the model is expected

to identify energy regression regardless of the number of changes (small or

large) made in the source code. We provide more empirical evidence as fol-

114

lows.

GreenScaler ’s accuracy in detecting energy regressive API changes

Can GreenScaler detect energy regression for a single API change? We con-

sider two case studies with experiments for the evaluation: 1) changing a

Java collection data structure, and 2) changing the HTTP library for HTTP

requests.

Hasan et al. [95] showed that selecting the most energy efficient Java col-

lection can have enormous effect in reducing software energy consumption.

In order to evaluate GreenScaler ’s sensitivity on a single line of code change,

we selected four different Java collections: TreeList from Apache Commons

Collections (ACC); TreeMap, LinkedHashMap, and LinkedList from Java Col-

lections Framework (JCF). These four collections have different energy pro-

files [95] and are suitable for our study. We developed an Android app that

has only one activity. This activity does only one thing: insert 50,000 ele-

ments into a Java collection. This way, we created four different versions of

the app with the four collection APIs. For example, in one version the app

inserts 50,000 elements into a TreeMap, and in the next version the TreeMap

is replaced by the LinkedHashMap—a single line of source code modification.

We measured the actual energy consumption of these four different ver-

sions (10 times each) with the GreenMiner, and ranked them according to

their mean energy consumption. We then compared this ranking with the

ranking obtained from our GreenScaler model by taking the mean of 10 en-

ergy estimations for each collection. Figure 5.9 shows the energy consumption

ranking (ranking from actual measurements as well from model’s estimation)

of the four selected Java collections. In case of energy consumption estimation,

GreenScaler has the smallest percentage of error (2.63%) for TreeList (ACC)

and the largest percentage of error (10.75%) for LinkedHashMap. In spite of

these estimation errors, GreenScaler is very accurate while detecting energy

consumption differences between two successive versions ordered by their rank-

ing, even when the difference is very small. For example, the actual difference

115

between the versions with LinkedList and LinkedHashMap is only 0.5 joules,

whereas the difference is 0.56 joules with GreenScaler. As we mentioned ear-

lier, this is one of the main strengths of GreenScaler—it can identify energy

inefficient versions. It is also important to note that although there exists

variation in different energy measurements with GreenMiner (box-plot), the

variation is very small. This is also true for the estimations from GreenScaler.

GreenMiner GreenScaler
4

5

6

7

8

9

E
n
e
rg

y
 (

jo
u
le

s)

LinkedList(JCF)

LinkedHashMap (JCF)

TreeMap (JCF)

TreeList (ACC)

LinkedList(JCF)

LinkedHashMap (JCF)

TreeMap (JCF)

TreeList (ACC)

Figure 5.9: Comparing Java collections’ energy consumption. Actual energy
measurement from GreenMiner suggests that TreeList (ACC) is the most en-
ergy expensive and LinkedList (JCF) is the least energy expensive for inserting
50,000 integer elements. Greenscaler suggests the same and comes up with the
exact same ranking.

Collections are typically CPU and memory bound, thus we provide an-

other case study that employs the network. We compare the performance of

GreenScaler in identifying energy consumption difference between two Java

HTTP libraries. In this case, our single activity app downloads the homepage

of CNN.com 20 times at one second interval. One version of the app uses the

Jsoup library for the HTTP requests, which is replaced by the URLConnect

library to produce the second version of the app. Figure 5.10 shows the com-

parison with 10 energy measurements and 10 energy estimations for each ver-

sion. GreenScaler estimated the energy consumption within around 12% error

116

(by calculating the mean of energy measurements and estimations) in both

cases. However, the estimated difference (around 4 joules between the means)

is very similar to the ground truths. This difference can be significant for an

app that continuously communicates over a network.

GreenMiner GreenScaler

40

42

44

46

48

50

E
n
e
rg

y
 (

jo
u
le

s)

URLConnect

Jsoup

URLConnect

Jsoup

Figure 5.10: Comparing Java download libraries: Jsoup and URLConnect. For
the executed test, GreenScaler suggests that version with Jsoup consumes
around 4 joules more than the version with URLConnect. This is very similar
to the actual measurements from GreenMiner.

GreenScaler ’s ability to detect energy regressive API changes is significant

for energy-aware app developers. Previous studies [138], [144] have found

that energy-aware app developers should take extra care while selecting and

utilizing APIs that are energy hungry—e.g., APIs for making HTTP requests.

It is evident that GreenScaler can help developers for selecting energy efficient

APIs. However, to perform accurate comparison between two APIs, developers

should write concise test cases that exercise other irrelevant components the

least. A very recent work by Song et al. [232] discusses about writing such

test cases.

117

5.7.6 Evaluating GreenScaler tool from developers’ per-
spectives

One of the end products of this research is the GreenScaler tool [47], a model-

based tool support that Android developers should be able to use to estimate

their apps’ energy consumption. We apply a qualitative evaluation of Green-

Scaler as follows.

1) Accurate and reliable: Previous research [43] shows that Android tools’

evaluation are biased by the apps used for evaluation. As a result, very different

performance might be observed when those tools are evaluated on a different

set of apps. GreenScaler is trained and tested on 472 real-world Android apps.

In addition, 24 Android apps with 984 versions were tested with GreenScaler.

To the best of our knowledge, no previous energy model was tested on such a

wide variety of apps.

2) Easy to use: GreenScaler works without any need of expensive hardware

instrumentation. Developers do not even need to instrument their apps to

run with GreenScaler. The only required tools to run GreenScaler, Android

Debug Bridge (adb) and aapt, come with the Android development framework.

GreenScaler does not suffer from Android framework compatibility issues. As

GreenScaler works without the need of source code of an app, it works on

both native and non-native Android apps. Previous studies observed that

these issues make many of the Android tools unusable [23], [43].

3) Regression detection: GreenScaler is accurate on detecting energy re-

gression; a developer can immediately verify if an updated app’s version is

more energy expensive than the previous one. In case of energy regression,

developers can make a trade-off between energy efficiency and other function-

alities. Energy-aware developers are willing to sacrifice some other features

if that helps in reducing energy consumption [159]. In addition to evaluating

source code changes, developers can employ GreenScaler model with manually

created benchmarks to compare energy consumption of different third-party

libraries to select the most efficient one.

118

5.8 The importance of more apps in training

Will more apps help? Figure 5.11 shows the reduction in error as more apps are

used in training. From 472, 50 apps were sampled randomly as test instances.

Using the rest of the apps, accuracy of GreenScaler is tested using different

training sets with different number of training apps (50, 100, 150 and so on).

The accuracy can vary for the same training size based on the selected apps—

some apps capture more system calls than others. This is why for each training

size x, we repeated each test 100 times with 100 different combinations of x

number of apps. Figure 5.11 shows the combined error distribution for each

training size.

Apps with high estimation errors (outliers) exist for all the training sizes.

This high error, however, dwindles continuously as we add more apps in our

training. In fact, with 400 apps in training the upper error-bound becomes

very close to 10%. The dotted line shows the average of the 5 worst estima-

tions with each training size. Although the decay of error rate becomes slow

after adding 300 apps in training set, the least number of outliers with 400

apps suggest the possible improvement of GreenScaler with adding even more

number of apps. Evidently, adding more apps in training improves the upper-

error bound of GreenScaler. With a large number of apps, we can evaluate

the performance of more complex approaches like deep learning. This is why

automatic test generation is so useful. GreenTestGen enables a process that

allows GreenScaler to improve continuously.

5.9 Research directions for the software en-

ergy research community

We provided empirical evidence on the success of automatic test generation for

building software energy models. This observation encourages more research

avenues to explore. We provide two such examples.

119

50 100 150 200 250 300 350 400
Number of apps

100

101

102

103

Pe
rc

en
t o

f E
rr

or

Mean error of the worst 5 estimations

Figure 5.11: Model’s accuracy against the number of apps used in training.
The accuracy improves with more apps in training. This suggests that we can
continuously improve the model by adding more apps with the random test
generation process.

Domain specific energy models and deep learning

In this paper, we focused on building a generic single energy model that can be

used to estimate energy of Android apps from any category. With random test

generation process aided by test heuristics, we can collect measurements for

more apps and build domain specific models. Although the AndroZoo database

does not contain app categories, we can collect apps from repositories (e.g., F-

droid or Google App Store) where categories are available. Instead of building

a single model, a cluster of models (separate models for games, communication,

utility and other categories) can be built.

Do domain specific models offer better accuracy than a one-for-all model

like GreenScaler? We do not know the answer, and that is why it could be

an interesting future work. Similarly, how about models that are built on

resource usage similarity rather than similarity in app category? With more

and more apps in training, should we employ deep learning for building energy

models? Deep learning usually requires large training data. While techniques

120

like early stopping and dropout layers [79] can help alleviate the problem, the

GreenScalar methodology provides a method of continually generating and

adding more measurements of more apps to achieve an appropriate amount

of measurements for deep learning. This leads to a question about how many

apps we need to measure for building a deep learning based model?

Building API recommendation systems for energy-aware developers

Previous research [170], [246] focused on building API recommender systems

for developers. Developers can select an API based on their requirements when

multiple options are available. Different metrics can be used while ranking

different APIs: documentation, performance, usability, number of users, and

number of reported bugs. These recommender systems do not consider energy

efficiency of APIs, which might be crucial for the energy-aware developers.

Researcher can use GreenScaler to build an API recommender system that

includes energy efficiency as one of the performance metrics. Results from

Section 5.7.5 clearly show that GreenScaler is adept for such studies.

5.10 Dataset

For future researchers, we share our dataset publicly [47]. This dataset con-

tains all the selected tests for the 472 AndroZoo apps with the CPU-utilization

based heuristic and GreenOracle based heuristic—total 944 tests. These tests

can be run on GreenMiner in order to explore more research questions and to

reproduce our results.

The dataset also contains resource usage and energy consumption for all

the apps used for GreenScaler and GreenOracle models. As we mentioned

earlier, each test was run multiple times: 10 times for energy measurements,

10 times for capturing system calls, 10 times for CPU and related measure-

ments, and 5 times for capturing screen shots. The dataset, however, only

contains the mean values of each measurements. We have four types of data

for the Androzoo apps: 1) AndroZoo apps with resource usage and energy

121

consumption for tests selected with CPU-utilization heuristic that includes all

the captured system calls (472 data points), 2) AndroZoo apps with resource

usage and energy consumption for tests selected with CPU-utilization heuristic

that groups similar system calls together (472 data points). Similarly, there

are two more sets of measurements from tests with model-based heuristic (in

total, 472 · 2 = 944 data points from model-based heuristics). We also shared

the GreenOracle dataset with and without grouping system calls. This dataset

can be used not only to reproduce our results, but also to investigate other

machine learning and feature selection techniques for building better models.

Data points: A single data point (as used for model building) represents
resource usage and energy consumption of an APK (for an app or for a
version). So a single data point is:
Number of CPU jiffies, number of context switches,.., test duration, Red,
Green, Blue, number of sento syscalls,.., number of dup system calls,..,
Energy consumption.
Here, energy consumption is the dependent variable and all others are the
independent variables.

5.11 Threats to validity

This section describes the threats to validity of our experiments and results:

conclusion validity, construct validity, internal validity, and external validity.

5.11.1 Conclusion validity

Some of our conclusions might not be accurate due to the statistical tests

we used. Although the tests we used do not assume anything about the dis-

tribution of the data, some of them still have their own set of assumptions.

For example, the Kendall’s τ test assume that there exists no tied rank in

the data. Similarly, the Wilcoxon p assumes that the two distributions under

test observe similar variance. The results would be inaccurate in case these

assumptions are wrong. We mitigated this threat by comparing the actual er-

ror distributions with cumulative distribution functions (CDF). Like previous

122

studies [92], [194], [269], we also evaluated our model’s accuracy by calculating

the percentage of error relative to the ground truths. This method, however,

is asymmetric—the error limit in case of under-estimation is 100% whereas for

over-estimation it does not have a boundary [225]. This threat was mitigated

by showing the actual ground truths and estimated joules when we evaluated

GreenScaler ’s accuracy in detecting energy regression (section 5.7.4).

5.11.2 Construct validity

Modeling software energy consumption is difficult [159]. For example, a CPU

can operate at different frequencies and use different power in these states.

Consequently, two different apps in spite of utilizing the CPU for the same

duration, might consume different amount of energy based on the triggered

CPU frequency level. In our model building process, we relied on the number

of CPU jiffies (the time between two clock ticks that can vary) instead of the

CPU time directly. Our assumption is that a CPU in higher frequency state

would have a different number of CPU jiffies than a CPU in lower frequency

state. We do not have direct empirical evidence for the accuracy of such

assumption. Instead, we relied on the accuracy of the model built on such

assumption.

Similarly, our approach for capturing resource usage by tracing system calls

can be criticized. Although capturing different system calls usually indicate

the types and amount of resources accessed by an app during a test run, there

can be some exceptions—direct memory access (DMA) for example.

We also relied on the claim that system call based models do not suffer

from tail energy phenomenon [5], [48], [194]. Although the good accuracy of

GreenScaler across a large number of apps suggest that such a claim might

be true, we do not have direct empirical evidence for that. We do not know

if the tests we exercised (including GreenOracle dataset) were able to observe

any tail energy leaks. For that matter, we do not have evidence that any of

our subject apps has an execution path that can produce tail energy leaks.

Finding if an app actually has tail energy leak requires manually investigating

123

the app’s source code to see if it is not doing batch processing (e.g., not sending

a number of packets in a single batch) although batch processing option was

available.

5.11.3 Internal validity

The resource usage we collected are mostly related to a process, such as the

number of CPU jiffies used by an app, and system call traces. However, we

also used global resource usage, such as the number of context switches, the

number of global CPU jiffies. These global resources can be affected by other

background processes than the process we are interested in. We mitigated

this threat by uninstalling all other optional apps that can impact the global

resources. GreenMiner also uninstalls an app immediately after running it,

even when the next run is scheduled for the same app. This ensures that the

current run does not use any stored data from a previous run.

The mapping mechanism—average from system call traces, CPU jiffies,

and energy consumption—might not be 100% accurate as little variation be-

tween different measurements is observed. Modern mobile devices and their

software are not as deterministic as we would hope. There was no direct con-

trol over the laboratory temperature that might be harmful for measuring

accurate energy consumption. However, INA219’s specification [113] suggests

that measurements would not be significantly different over the expected lab-

oratory temperature range. We mitigated these two threats by running each

scenario 10 times.

The best feature set for modeling Android apps’ energy consumption is

obtained from a recursive elimination process. There are other feature selection

algorithms [130] that might produce a different set of features. However, the

selected features with the followed procedure complements earlier findings that

CPU, screen, test duration, file operations and network transmissions are the

main sources of energy consumption [95], [138], [141], [142], [194]. Similarly,

energy model from the CPU-utilization based test generation is compared

against the model built on tests based on the GreenOracle model. Other

124

energy models might produce better tests.

5.11.4 External validity

External validity can be criticized for using a single version of Android phone

and OS. Architecture independent energy models, however, still remain as

open research problem, but there is preliminary work on converting energy

models between platforms [265].

The three apps—Storyhoard, Klaxxon, and Password Hash—we used for

evaluating code coverage are comparatively older than the AndroZoo apps, and

might not cover the latest Android coding features and style. The GreenScaler

model is trained and tested on 472 AndroZoo apps, with the leave-one-out

approach. Although it is possible that this model might fail to estimate the

energy consumption of a new app, the chance is low. We also mitigated this

threat by testing GreenScaler model on the GreenOracle dataset. However,

from our subject apps, we do not know if any of them was using GPS. Even

if we had such an app, our phones were immobile, thus would not reflect the

actual usage scenario of apps with GPS usage. Also, we only experimented

with Wi-Fi, and do not know how a system call based model would perform

for other technologies like 3G, and 4G.

Our model building test generation tool created test cases with random

events. Such a tool would fail to exercise app’s components where human

intervention is required—such as providing correct id and password. Also, the

generated tests might not be meaningful—the tests might drive an app in a

very different way than a human user. Our objective, however, was not to

develop a tool that can exercise every functionalities of every Android apps.

We also did not target to produce meaningful tests. Rather, we investigated

if an energy model built on randomly generated test cases can accurately

estimate energy consumption of human written meaningful tests. By achieving

high accuracy on human written tests (i.e., GreenOracle dataset), we believe

that our objective is indeed achieved.

125

5.12 Related work

We divide the related previous studies into three areas: modeling software

energy consumption, techniques to optimize software energy consumption, and

studies related to software energy testing.

5.12.1 Modeling energy consumption

Instruction-based modeling is estimating energy consumption using program

instruction cost [92], [219]. The basic problem of these approaches is their

rigidness to one particular programming language. Energy estimation for apps

without source code is not possible with such approaches. GreenScaler applies

black-box testing and does not require source code. Instruction-based model-

ing might also require per-instruction power profile, which is not available for

all devices [7]. In contrast, GreenScaler relies on features that can be accessed

from any Linux-based systems.

The most commonly used approach for modeling software energy consump-

tion is the utilization-based approach [40], [62], [71], [90], [227], [269]. The

basic philosophy is that capturing the usage time of a component with its en-

ergy consumption allows modeling its energy profile. Such approaches, how-

ever, cannot model tail energy leaks [5], [48], [194]—energy consumed by a

component even after completing its task before becoming inactive (transi-

tion time energy consumption). In our models, however, we did not model

energy consumption using active usage period of hardware components. In-

stead, the cumulative counts of different system calls, CPU jiffy, and other

OS-level statistics were used. This automatically alleviated the intricacy of

separately modeling tail energy for every hardware components. As a result,

in contrast to up to 200% error in estimating joules with utilization-based

approach [192], our count-based model exhibits only ≈15% error in extreme

cases.

Pathak et al. [194] proposed a complex Finite State Machine (FSM) based

model using system call traces. Aggarwal et al. [4], [5] applied system call

126

counts to predict if energy consumption of different versions differ from each

other based on the number of changed system call counts. This model, how-

ever, does not offer the actual energy consumption, and thus the developers

would not be sure how bad the energy regression incurred from a change in

source code is. None of these models consider screen colour and may profile

other components inaccurately. The number of apps used for learning and

validation was also very small compared to our dataset.

Nucci et al. [184] proposed PETrA, an energy estimation tool that lever-

ages Android tools such as dmtracedump. As PETrA is the state-of-the-art

for estimating energy consumption of Android systems, we wanted to compare

GreenScaler ’s accuracy with PETrA. Unfortunately, PETrA relies on mea-

surements that are not supported by all Android devices. For example, the

batterystats program to collect which components were active during an app

run, is not supported by the version of Android running on the GreenMiner ’s

Galaxy Nexus phones. We found that the same file could be accessed by using

the batteryinfo program, but again the provided data was very different than

what PETrA expects. We had the same issue with Galaxy Nexus hardware

and OS while trying to run other components of PETrA—e.g., dmtracedump.

We also tried to run PETrA with LG Nexus 5, a close relative of LG Nexus

4 used by PETrA, but failed to produce any results. Again, it was because

of the different batterystats file. We contacted one of the PETrA authors,

and came to know that in order to run PETrA on a different device than LG

Nexus 4, we need to re-implement PETrA. The authors are also thinking to

make PETrA open source so that such implementation is possible. In contrast

to PETrA, GreenScaler is already open source and relies on information that

are available on any Linux-based systems. Moreover, PETrA heavily relies on

the built-in power profile.xml file for getting the current draw for components

like CPU, which is not the same as the current from the battery where the

voltage is measured. GreenScaler, on the other hand, is built on real energy

measurements that does not involve any battery information and does not

need a battery to run or estimate energy consumption. In worst cases, PE-

127

TrA’s estimation error is more than 50%, especially for apps with high network

usage, which is much higher than GreenScaler. PETrA also requires manual

app instrumentation, which makes it hard to work with hundreds of apps for

research purpose. App instrumentation also makes it hard to adopt a tool in

a continuous integration system. Also, in contrast to GreenScaler, PETrA’s

performance on detecting energy regression is unknown.

5.12.2 Energy optimization

A process of app recommendation based on energy usage is proposed by Sa-

borido et al. [209]. A user can select an energy efficient app when multiple apps

with the same functionalities are available. With the availability of such rec-

ommendation systems, developers would be forced to develop energy efficient

apps. In order to help developers optimize their apps’ energy consumption,

a significant number of research was dedicated on energy optimization tech-

niques and guidelines.

Wake locks are frequently used by Android developers to continue opera-

tions even when a device goes to sleep status [149]. Unfortunately, program-

mers may write code to acquire wake lock that never releases the lock [10].

Pathak et al. [193] observed that 70% of energy bugs are related to wake

locks. Much research [10], [28], [149], [192], [195], [250] has been conducted

to characterize, detect, and minimize wake lock bugs.

In a previous work [50], we observed that employing HTTP/2 server can

help significantly in reducing clients’ energy consumption. For energy efficient

logging, we showed in a separate study that developers can combine small log

messages and write them together to save energy [46].

As screen colour is very sensitive for OLED screen’s energy consumption,

tools for automatic colour transformation have been developed [142], [145]. In

case of video streaming, pre-fetching has been found helpful to save energy [74].

Job off-loading to a server to save energy was also studied [169], [188]. The

overhead associated to data off-loading can be so expensive that it might even

128

worsen energy consumption [169].

For reducing tail energy, bundling I/O operations can be effective [50],

[141], [194]. Ad-blockers help reducing energy consumption [204], as advertise-

ments are source of significant energy drains [89]. Some studies concentrated

on writing energy efficient code during the development phase [138]. For ex-

ample, energy profiles of the frequently used Java collection framework were

studied [95], [196]. Manotas et al. [160] developed a framework for automated

selection of energy efficient Java collections.

5.12.3 Energy testing

Research on software energy testing focused on reporting well-known energy-

hungry APIs, and locating energy bugs in a system.

Linares-Vásquez et al. [144] reported a list of energy-greedy APIs by study-

ing 55 Android apps. The authors concluded that careful selection and appli-

cation of these selected APIs can lead to more energy efficient apps. This list

of energy-greedy APIs are, however, obtained only from 55 apps and might

not be complete in listing all energy-hungry APIs. Moreover, energy efficiency

is not only effected by the energy greedy APIs. There are other factors (e.g.,

tail energy [194], code obfuscation [213], code refactoring [212]), that can im-

pact energy consumption. Our GreenScaler model does not estimate energy

consumption based on counting energy hungry APIs, and thus do not have

such limitations.

Jabbarvand et al. [117] proposed a test suite minimization approach for

energy testing. The authors hypothesized that tests that covers energy-greedy

APIs (using the API list from Linares-Vásquez et al.) should be enough to

locate energy bugs. In our case, however, we needed to generate test cases from

the scratch with no existing test suite. Moreover, our objective was to generate

test cases for building energy models, not to locate energy bugs. Finally, in

contrast to merely stating a hypothesis, we provided empirical evidence that

code coverage is not a good heuristic for generating energy model building

129

tests.

5.13 Conclusion and future work

In this paper, we proposed and showed the value of continuous software en-

ergy consumption model building through automatic test generation. This

process built GreenScaler, an ever improving software energy model. The

success of random test generation for building energy models is encouraging.

More software energy research can be conducted with our simplistic approach.

Our model building approach uses measurements of resource usages that are

accessible from any Android systems, and is reproducible for other Android

devices.

We demonstrated code coverage’s irrelevance to power usage. In fact, code

coverage correlates more with test run-time than with power usage. Instead

of code coverage, we built energy models using automatic test generation by

two resource-utilization heuristics: CPU-utilization and E-heuristic (software

energy model estimation). We found that simple CPU-utilization heuristic

exhibits similar performance to a more complex model based heuristic in gen-

erating tests to produce energy models.

There is a clear relationship between the number of apps measured and the

upper error-bound of count-based software energy consumption models. By

automating formerly manual-labour intensive testing work, we can continu-

ously produce ever more accurate models that can be used by developers with

no hardware-based instrumentation. We also demonstrated that these models

work well in the relative case whereby version to version the model successfully

predicts changes in energy consumption of an app undergoing modification.

We shared our GreenScaler tool so that developers can have direct feedback

on energy consumption without dealing with hardware instrumentation [47].

Future work includes scaling up this app measurement approach even fur-

ther, so that approaches like deep learning and domain specific energy mod-

elling can be studied. We hope that the idea of energy consumption test heuris-

130

tics excites other researchers as well, as there is a need for more investigation

into test generation heuristics that are good for energy modelling—perhaps

other energy models serve as better heuristics than CPU-time heuristics. We

used random search, other forms of search such as genetic algorithms might

prove fruitful. We do not yet know the bounds of this model, perhaps there is

a true saturation point. Questions left unanswered include: “what is the effect

of more tests per app on a model”, and “what are other features we should be

measuring?”

131

Part II

Guidelines

132

Chapter 6

Energy Efficiency of HTTP/2

This chapter starts the contributions related to the second objective of this

thesis (explained in 1.3.2)—enhancing energy optimization guidelines for the

energy-aware developers.

This chapter was published as:

� Shaiful Alam Chowdhury, Varun Sapra, Abram Hindle, “Client-side En-

ergy Efficiency of HTTP/2 for Web and Mobile App Developers”, In

23rd IEEE International Conference on Software Analysis, Evolution,

and Reengineering (SANER 2016), pages 529-540. March 14-18, 2016.

Osaka, Japan [50].

Many of the modern smartphone apps use the Internet for supporting so-

phisticated features demanded by the users (e.g., multiplayer on-line games).

Accessing the Internet (i.e., network operations) is extremely energy expensive

and can drain smartphones battery much faster than usual. HTTP/2 is now

the standard Internet protocol, replacing the older HTTP/1.1. Yet the energy

consumption of the new HTTP/2 protocol was unknown. Should the energy-

aware app developers be concerned about HTTP/2’s energy consumption? Is it

better to stay with the older HTTP/1.1 protocol for saving clients’ (e.g., smart-

phones) energy consumption? This chapter investigates these questions after

experimenting with synthetic and real-world websites.

The takeaways from this chapter include:

133

� Software energy measurement can be tricky and difficult. For some sce-

narios, injecting sleep time before the final energy measurement is cru-

cial. If this step is ignored, researchers can come up with a completely

wrong conclusion—stating something is more energy efficient when it is

not.

� The Transport Layer Security (TLS) makes HTTPS more energy expensive

than plain HTTP. This is because of the handshaking, encryption/decryp-

tion, and authentication phases involved with the TLS.

� HTTP/2 is a free lunch. It never consumes more energy than HTTP/1.1

with TLS. On the contrary, it always performs better than HTTP/1.1

when the round trip time is high.

� Energy-aware app developers should definitely switch to HTTP/2.

My role in the HTTP/2 study :

I, with the help of my supervisor, made plans for the methodologies,

data collection, experimentation, and evaluations. My co-author Varun Sapra

helped me with some of the data collection. I also wrote the HTTP/2 paper [50]

with the guidance of my supervisor.

Impact : According to the Google Scholar website, this paper was cited 35

times (including the preprint). Most of the papers used this paper for dis-

cussing the performance issues of HTTP/2, while HTTP/2’s energy consumption

was positively mentioned because of our findings (e.g., [121], [148]). In this

paper, one of our auxiliary contributions was to show how energy measure-

ment can go wrong, and how injecting sleep time before measuring energy can

alleviate this problem. Injecting sleep time for accurate energy measurement

was directly used by Santos et al. [108].

134

Abstract

Recent technological advancements have enabled mobile devices to provide

mobile users with substantial capability and accessibility. Energy is evidently

one of the most critical resources for such devices; in spite of the substantial

gain in popularity of mobile devices, such as smartphones, their utility is

severely constrained by the bounded battery capacity. Mobile users are very

interested in accessing the Internet although it is one of the most expensive

operations in terms of energy and cost.

HTTP/2 has been proposed and accepted as the new standard for support-

ing the World Wide Web. HTTP/2 is expected to offer better performance,

such as reduced page load time. Consequently, from the mobile users point of

view, the question arises: does HTTP/2 offer improved energy consumption

performance achieving longer battery life?

In this paper, we compare the energy consumption of HTTP/2 with its

predecessor (i.e., HTTP/1.1) using a variety of real world and synthetic test

scenarios. We also investigate how Transport Layer Security (TLS) impacts

the energy consumption of the mobile devices. Our study suggests that Round

Trip Time (RTT) is one of the biggest factors in deciding how advanta-

geous HTTP/2 is compared to HTTP/1.1. We conclude that for networks

with higher RTTs, HTTP/2 has better energy consumption performance than

HTTP/1.1.

135

6.1 Introduction

In recent years, the popularity of mobile devices (e.g., smartphones, and

tablets) has dramatically increased. As of 2014, more than 1.4 billion smart-

phones were used globally [28], which induced a 70% increase in worldwide

mobile data traffic [54]. With the recent technological advancements, there

has been an exponential improvement in memory capacity and processing ca-

pability of mobile devices. Moreover, these devices come with a wide range of

sensors and different I/O components, including digital camera, Wi-Fi, GPS,

etc.—thus inspiring the development of more sophisticated mobile applica-

tions. These new opportunities, however, come with new challenges: the

availability of these devices is severely constrained by their bounded battery

capacity. A survey [253] has indicated that a longer battery life is one of

the most desired features among smartphone users. Unfortunately, the ad-

vancement in battery technology is minimal compared to the improvement

in computing abilities, thus amplifying the increasing importance of energy

efficient application development [28].

The energy consumption of servers has also become a subject of concern for

large data centers—consuming at least one percent of the world’s energy [38].

Data centers must cater to the continually increasing demand for storage,

networking and computation capabilities. In 2010, 4.3 terawatt-years of energy

was consumed within the US by LAN switches and routers [187]. Energy

efficiency was reported as one of the pivotal issues even by Google, facing the

scale of operations, as cooling becomes a very important operational factor [31].

Another very important aspect of energy consumption is the environment:

energy consumption has a detrimental effect on climate change, as most of the

electricity is produced by burning fossil fuels [77]. Reportedly, 1000 tonnes of

CO2 is produced every year by the computer energy consumption of mid-sized

organizations [101].

With the increased penetration of the mobile devices, the Internet usage

on these smartphones is also mounting. According to eMarketer [64], it is

136

expected that Internet access from mobile devices will dominate substantially

by 2017. Accessing the Internet, however, is undoubtedly one of the most

energy expensive use cases for mobile users [137].

Loading Web pages has become more resource intensive than ever, and

this poses challenges to the inefficient HTTP/1.1 protocol which has served

the Web for more than 15 years. HTTP/1.1, with only one outstanding request

per TCP connection, has become unacceptable for today’s Web, as a single

page might require around 100 objects to be transferred [238]. HTTP/2—

mainly based on SPDY, a protocol proposed and developed by Google [250]—

is the second major version of HTTP/1.1 and is expected to overcome the

limitations of its predecessor in the contexts of end-user perceived latency,

and resource usage [87]. The Internet Engineering Steering Group (IESG) has

already approved the final specification of HTTP/2 as of February, 2015 [238].

It is no exaggeration to state that “the future of the Web is HTTP/2” [8].

While HTTP/2 is expected to reduce page load time, we ask if using

HTTP/2 improves energy consumption over using HTTP/1.1? In other words,

is HTTP/2 going to be more mobile-user-friendly by offering longer battery

life? Subsequently, should mobile application developers switch to this new

HTTP/2 protocol for developing applications with HTTP requests? A recent

study claimed the positive impact on energy consumption through efficient

HTTP requests [137]. HTTP/2 is based on the promise of making efficient

HTTP requests but the more complicated operations might require more CPU

usage, such as dealing with encryption—a requirement in HTTP/2. Will this

extra computation harm its energy consumption?

In this paper, we study and compare the energy efficiency of HTTP/1.1

and HTTP/2 on mobile devices using a real hardware based energy measure-

ment system: the GreenMiner [102]. Our observations/contributions can be

summarized as:

1. Using Transport Layer Security (TLS) incurs more energy consumption

than HTTP/1.1 alone.

137

2. HTTP/2 performs similarly to HTTP/1.1 for very low round trip time

(RTT).

3. For a significantly higher RTT, HTTP/2 is more energy efficient than

HTTP/1.1.

In addition, we show the perils related to software energy measurements. We

observed that energy measurement of software can be very tricky and mak-

ing an incorrect conclusion is very likely in the absence of enough domain

knowledge or controls. In such a case, an energy-aware software developer, in

spite of having all the required energy measurement equipment, might not be

measuring what they intend to measure.

6.2 Background

In this section, we review the evolution of the HTTP protocol and the motiva-

tion for HTTP/2. We also define some of the terms that are frequently used

in software energy consumption research.

6.2.1 Hyper Text Transfer Protocol (HTTP) and its
limitations

Hypertext Transfer Protocol (HTTP) was proposed in 1989 and documented

as HTTP v0.9 in 1991 by Tim Berners-Lee, laying out the foundation for mod-

ern World Wide Web [254]. In 1997, IETF published HTTP/1.1 [91] as the

new improved official standard and more features and fixes were added after-

wards: persistent connections, pipelining requests, improved caching mecha-

nisms, chunked transfer encoding, byte serving etc. Users were not only able

to request a hypertext resource from the servers but could also request images,

Javascript, CSS and other types of resources.

According to HTTP Archive [110], as of April 2015, most Web applica-

tions are composed of HTML, images, scripts, CSS, Flash and other elements,

making the size of an average page more than 1.9 MB. It can take more

138

than 90 requests over 35 TCP connections to 16 different hosts to fetch all

of the resources of a Web application [238]. Although new features were pro-

posed in HTTP/1.1 to handle such Web applications, some of these features

suffered from their own limitations. For example, pipelining was never ac-

cepted widely among browsers because of the FIFO request-response mecha-

nism, which can potentially lead to the head of line blocking problem resulting

in performance degradation [238]. To keep up the performance of Web appli-

cations, Web developers have come up with their own techniques like domain

sharding—splitting resources across different domains; spriting—e.g., combin-

ing a number of images into a single image; in-lining—avoiding sending each

image separately; and concatenation of resources—aggregating lots of smaller

files (Javascript for example) into a bigger one. These techniques, however,

come with their own inherent problems [238].

6.2.2 SPDY and HTTP/2

Google recognized the degrading performance of Web applications [80], and

in mid-2009 they announced a new experimental protocol called SPDY [33].

While still retaining the semantics of HTTP/1.1, SPDY introduced a framing

layer on top of TLS persistent TCP connections to achieve multiplexing and

request prioritization. It allowed SPDY to achieve one of its major design

goals to reduce page load time by up to 50% [233]. SPDY reduced the amount

of data exchanged through header compression, and features such as server

push also helped to reduce latency.

SPDY showed the need and possibility of a new protocol in place of HTTP/1.1

to improve Web performance. SPDY was the basis for the first draft of the

HTTP/2 protocol [34]. HTTP/2 is a binary protocol that incorporates the

benefits provided by SPDY and adds its own optimization techniques. It uses

a new header compression format HPACK to limit its vulnerability to known

attacks. HTTP/2 uses Application Layer Protocol Negotiation (ALPN) over

a TLS connection as compared to Next Protocol Negotiation (NPN) used

by SPDY. However, unlike SPDY, it does not make the use of TLS manda-

139

tory [238]. In early 2015, IESG allowed HTTP/2 to be published as the new

proposed standard [183].

6.2.3 Power and energy

In this paper we focus on power use and energy consumption induced by a

change in workload: switching from HTTP/1.1 to HTTP/2. Power is the rate

of doing work or the rate of using energy; energy is defined as the capacity of

doing work [5]. In our case, the amount of total energy used by a device within

a period is the energy consumption, and energy consumption per second is the

power usage. Power is measured in watts while energy is measured in joules. A

task that uses 4 watts of power for 60 seconds, consumes 240 joules of energy.

For tasks with the same length of time, mean-watt is often used to reduce

noise in the measurement. This difference between power (rate) and energy

(aggregate) is important to understand—improving one does not necessarily

imply improving the other.

6.2.4 Tail energy

Some components including NIC (Network Interface Card), sdcard, and GPS

on many smartphones suffer from tail energy—a component stays in a high

power state for sometimes even after finishing its task [5], [192], [194]. This is

inefficient as the application consumes energy without doing any useful work

in this period. In 3G for example, approximately 60% of the total energy can

be wasted only because of this tail energy phenomenon [27], which is a concern

for mobile application developers.

6.3 Methodology

6.3.1 GreenMiner

In order to run and capture the energy consumption profiles for HTTP/2 and

HTTP/1.1, the GreenMiner test bed [102] was used. GreenMiner—a continu-

140

ous testing framework similar to a continuous integration framework but with

a focus on energy consumption testing—consists of five basic components: a

power supply for the phones (YiHua YH-305D); 4 Raspberry Pi model B com-

puters for test monitoring; 4 Arduino Unos and 4 Adafruit INA219 breakout

boards for capturing energy consumption; and 4 Galaxy Nexus phones as the

systems under test.

A constant voltage of 4.1V, generated by the YiHua YH-305D power sup-

ply, is passed to the Adafruit INA219 breakout board and subsequently goes

to the Android phones. The INA219 reports voltage and amperage measure-

ments to the Arduino that aggregates and communicates it to the Raspberry

Pi. The Raspberry Pi sets up and monitors tests by initiating the test cases

on a phone through ADB shell, and it controls the USB communication power

(by using the Arduino Uno). Finally, the collected data (i.e., total energy

consumption for a test case) is uploaded to a centralized server.

In order to disable cellular radios and bluetooth, the airplane mode was

enabled in each phone and then Wi-Fi was re-enabled so that the phones can

access the Internet. The phones were connected to a WPA secured wireless

N network located in the same room, and thus ensuring very low variability

of Internet access in order to have reliable measurements for our test scripts.

The GreenMiner is fully described in the prior literature [102], [204].

6.3.2 Writing a test script

In order to emulate a use case for the Android clients, a test script is required.

For example, to emulate the use case where a user wants to load the Google

home page to search for an item, we need a test script that can load a browser,

write www.google.com in the address bar, and can press enter to load the

webpage. This test can be automated by injecting various touch inputs into

the input systems – these events can also be captured during actual use. A

sequence of such actions (a test script) represents a specific use case for a user.

The GreenMiner executes the test script on the actual devices to execute the

user actions (e.g., tap, swipe, enter etc.).

141

www.google.com

6.3.3 Collecting Mozilla Firefox nightly versions

We have selected 10 versions of Mozilla Firefox Nightly (mobile US versions) to

conduct our experiments [178]—using more than one Mozilla Firefox Nightly

version improves generality and ensures that our results/observations are not

contaminated by energy bugs that can be present in a specific version. Nightly

versions—also known as Central in contrast to Aurora, Beta, and Release—

are committed each day and are used to test the effectiveness of new features

before including them in the actual releases [242]. We opted for the Nightly

versions so that we could test a constantly changing codebase and avoid single

version bugs while improving generality. The versions used in this paper,

however, exhibit a stable energy consumption profile without any significant

differences in terms of energy consumption.

Of the 10 Firefox versions, 9 versions were from January, 2015 to March,

2015 (three versions from each month with equal time intervals) and one ver-

sion was from April, 2015. These versions had HTTP/2 support enabled by

default while HTTP/1.1 can be enabled by disabling HTTP/2. The test scripts

can enable or disable HTTP/2 within the Firefox browser: to test HTTP/1.1,

HTTP/2 was disabled. We could not use Chromium in our tests as one cannot

force newer Chromium versions to use HTTP/1.1 with TLS when HTTP/2 is

enabled, regardless of disabling HTTP/2 in Chromium. GreenMiner removes

and installs Mozilla Firefox Nightly for each separate test, thus ensuring no

caching advantages for any of the runs.

6.3.4 Deploying a HTTP/2 server

Among several implementations of HTTP/2 servers [111], we decided to deploy

and experiment with the H2O [185] webserver, located at University of Alberta,

Canada. H2O supports both HTTP/1.1 and HTTP/2 thus enabling a fair com-

parison between the two technologies. Besides, the performance of H2O was

found significantly better than other implementations like Nginx [185]. The

final version of HTTP/2 specification is also supported including NPN, ALPN,

142

Upgrade and direct negotiation methods; dependency and weight-based prior-

itization; and server push. For the Gopher Tiles tests (described later) and the

Twitter and Google tests, we relied on third-party webservers and webservices.

This helped us to measure real world performance; when the page load time

varies depending on different network scenarios.

6.3.5 Workload

Our objective is to observe the performance of HTTP/2 compared to HTTP/1.1

with benchmarks that can represent real world scenarios. Recent observa-

tions for popular websites suggest that on average 2 MB of data needs to be

downloaded in order to load a full page, and on average 100 objects must be

downloaded [238]. Previous studies have found that the number of objects can

play a key role in SPDY performance—the closest relative of HTTP/2 [250].

Although the evaluation criteria was different (page load time), this would be

practical to do the similar for our analysis. Consequently, we experimented

with the following benchmarks with varying number of objects and sizes. Table

6.1 shows the summary of our benchmarks.

Table 6.1: Description of the Workloads

Number of Resources Size (KB)
HTML Image CSS JS Other HTML Image CSS JS Other Total

World Flags 1 238 1 5 1 0.92 1261.87 4.61 117.73 27.47 1412.60
Gopher Tiles 1 180 0 0 1 17.14 165.80 0.00 0.00 0.76 183.70

Google 4 6 1 5 1 162.53 434.03 34.95 840.90 1.18 1473.62
Twitter 1 4 2 3 2 53.37 197.37 125.74 588.43 81.80 1046.73

World flags with fgallery

We installed fgallery [58], a static photo gallery generator, on our own H2O

server [185] that shows thumbnails of a set of images installed on the server.

For our experiments, images of the world flags were used; a similar benchmark

was used by Wang et al. [250]. The fgallery loads all the given images as

thumbnails along with the full view of the first flag. The users have the option

143

to view the subsequent flags one after another. Instead of using 50 world flags,

we used all the country flags to make the workload heavier. The H2O server

does not support HTTP/2 without TLS, leading us to experiment with three

different settings: 1) HTTP/1.1 without TLS,1 2) HTTP/1.1 with TLS2 and

3) HTTP/2 with TLS.3

Gopher tiles

We also used another HTTP/2 server, developed by using the open-source Go

programming language, which hosts a grid of 180 tiled images.4 This demo

server enables experiments with added artificial latencies. This is very im-

portant for our evaluation, as previous study observed significant performance

variations with differing RTTs [189]. We captured the energy consumption

of our Android devices for downloading the tiled images with different RTTs

for both HTTP/1.1 and HTTP/2. The server, however, does not have TLS

option for HTTP/1.1. On the contrary, its HTTP/2 implementation works

only with TLS. As a result, we were able to evaluate the performance for only

two settings: 1) HTTP/1.1 without TLS and 2) HTTP/2 with TLS.

Google and Twitter

In order to work with real websites, we have selected Google and Twitter for

our evaluation because of their adoption of HTTP/2. This type of workload

helps to investigate how HTTP/2 reacts for systems that are distributed; it is

expected that for such highly accessed servers, Google and Twitter distribute

different resources at different nodes, even if not totally at different domains.

In contrast to the previous workloads, these two sites do not have access with-

out TLS. This led us to experiment with two settings: 1) HTTP/1.1 with TLS

and 2) HTTP/2 with TLS. For both the websites, the data collection period

was from 2015-04-18 to 2015-04-19.

1http://pizza.cs.ualberta.ca:1800/
2https://pizza.cs.ualberta.ca:1801/
3Same as HTTPS but with different browser setting
4Gophertiles https://http2.golang.org/gophertiles (last accessed: 2015-APR-22)

144

http://pizza.cs.ualberta.ca:1800/
https://pizza.cs.ualberta.ca:1801/
https://http2.golang.org/gophertiles

For Google, all the requests from our Android devices were automatically

redirected to google.ca and the resource statistics as reported in Table 6.1 are

for HTTPS, as of writing Google does not support HTTP/1.1 without TLS.

Twitter requests, on the other hand, were redirected to mobile.twitter.com.

Interestingly for Twitter, we observed that different resources (e.g., images)

were downloaded for our mobile Mozilla Firefox Nightly versions than FireFox

or Chrome in our Desktop computers.

6.3.6 Validation

Problems with energy measurement

Aggarwal et al. [5], using the GreenMiner, observed that a single measurement

for a particular setting could be misleading, as there is variation in the mea-

surements because of several factors unrelated to the application of interest.

Consequently, taking the average from at least 10 runs produces more accu-

rate results. In this paper, we repeated each test 20 times for world flags and

15 times for others (after several tests we found that distributions of 15 were

indistinguishable from 20 repeats).

GreenMiner enables us to collect energy consumption measurements for

different tasks (partitions) in our tests so that we can attribute energy con-

sumption more accurately to a particular task. For example, in our world flags

experiment, our script for capturing energy consumption for HTTP/1.1 with

TLS has different tasks including app loading, disabling HTTP/2 (to enable

HTTP/1.1), and page loading. We are, however, only interested in page load

section so that we can compare it with the same section for HTTP/2. The

challenge is that tasks, such as configuration, before the page load section

for HTTP/1.1 with TLS is very different than HTTP/1.1 without TLS and

HTTP/2 with TLS. Mozilla Firefox Nightly versions used in our experiments

default to HTTP/2 support, hence forcing to HTTP/1.1 requires more config-

uration. As a result, for HTTP/2 with TLS experiments our tests do not have

to change the browser’s configuration: any encrypted request will automati-

145

cally be a HTTP/2 request. Configuring the browser to use HTTP/1.1 with

TLS requires many taps and clicks. These extra inputs can place the CPU

into a different power state than if no configuration was done.5 This is not

required for HTTP/1.1 without TLS, as none of the servers used in our study

support HTTP/2 without TLS. Consequently, any request without HTTPS

will automatically be HTTP/1.1 (without TLS).

This different sequence of operations before the same page load section is

a problem; modifying the about:config page might result in different power

states for different components including CPU, screen, and NIC [28], [192],

[194]. This could impact the subsequent operations’ energy either positively

(when components in high power states reduce the execution time significantly

and nullify the effect of operating in high power states) or negatively (the

reduction in execution time is not significant enough). In either case, our

measurements for HTTP/1.1 with TLS would be affected by the previous

task’s energy consumption leading to an unfair evaluation. In order to verify

this hypothesis—to measure how inaccurate the measurement is—we captured

the page load energy consumption for the same protocol (HTTP/1.1 without

TLS) twice:6 once without changing the Mozilla Firefox Nightly config file (as

we do not need to disable HTTP/2 for unencrypted HTTP/1.1) and another

time by changing the config file (disable HTTP/2). These two settings should

give us the same average measurement if the later one is not affected by either

the different power states of the components or the tail energy.

Test runs were averaged and compared against each other using 2-sided

paired t-tests paired by Mozilla Firefox Nightly version. Besides, we observed

the effect size by calculating Cohen’s d.7 Unfortunately, the small P-value

(<< 0.05) and the large Cohen’s d (7.02) suggest that these two settings

produce significantly different measurements, thus implying the CPU state

5In Mozilla Firefox Nightly about:config, we need to disable network.http.sdpy.enabled
and network-
.http.sdpy.enabled.http2draft

6one single value is actually the average value of 20 measurements
7In order to represent energy consumption by a Mozilla Firefox Nightly version to cal-

culate Cohen’s d, we took the average of 20 runs.

146

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
HT

TP
/1

.1
(M

od
ifie

d)

Versions

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Po
w

er
 (w

at
t)

HTTP/1.1
HTTP/1.1 with modified configuration

(a) Waiting time one minute

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
HT

TP
/1

.1
(M

od
ifie

d)

Versions

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Po
w

er
 (w

at
t)

HTTP/1.1
HTTP/1.1 with modified configuration

(b) Waiting time two minutes

Figure 6.1: Comparing power usages for the same protocol with different set-
tings

was not consistent.

A potential solution

The challenges we faced in measuring energy consumption led us to configure

our test scripts differently: what if we apply a sleep period before accessing

the main task, the page load? And how long is required to have accurate

measurements? Our hypothesis is that this inactive/idle time would help our

Android devices to come to the stable state, i.e., same CPU state.

We experimented with three different periods: 40 seconds, one minute and

2 minutes. The p-value for the 40 seconds period was still lower than 0.05,

and slightly higher than 0.05 with 60 seconds of idle time. This P-value,

however, becomes very high (0.86) for two minutes of waiting time with very

low Cohen’s d (0.08)—suggesting the very little difference between these two

settings comes from randomness and led us to conduct our experiments for

world flags with two minutes waiting time before loading the page.

The time-line graphs in Figure 6.1 show the average power usage over 20

runs for each Nightly version for both 1 minute and 2 minutes of waiting

time. On the contrary, a box-plot in the Figure represents the distribution of

power usages for a specific setting by all the versions across all the 20 runs.

Encouragingly, the median value (from the box-plot) is very similar to the

147

average values (from the time-line), implying the accuracy of GreenMiner in

measuring energy consumption.

Results suggest that with one minute of waiting time the difference is obvi-

ous (one setting always consumed less energy than the other), whereas there is

no such trend for two minutes of waiting time. Moreover, the variations over

different runs for two minutes stable time are significantly lower than for one

minute of stable time (box plot in Figure 6.1)—implying better accuracy can

be achieved with longer waiting time before executing the actual operations.

Interestingly for both settings, the power usage with 1 minute stable time is

also higher than 2 minutes stable time. This is not surprising as the CPU is

expected to operate in a low power state after having a significant amount of

idle time.

We, however, imposed only 1 minute of waiting time for experiments other

than world flags, as the previous operations before page load are exactly the

same for all the settings. This energy measurement validation approach is

crucial, revealing the need for controlling the states of components like the

CPU.

6.4 Experiment and result analysis

6.4.1 World flags

Figure 6.2 shows the performance of three different settings for world flags with

fgallery: HTTP/1.1 (without TLS), HTTP/1.1 with TLS and HTTP/2 with

TLS. Interestingly, HTTP/1.1 and HTTP/2 exhibit very similar performance

for our world flags workload when encryption is applied. The high P-value

(>> 0.05) in Table 6.2 and low Cohen’s d (< 0.3) between these two settings

confirm that the observed small difference comes from randomness in data

collection (i.e., the difference is not significant).

This observation is not surprising as previous studies [189] also found that

HTTP and SPDY perform very similarly when the RTT is low. And for this

148

experiment with world flags the RTT between our clients and the server was

very low (close to 0 ms).

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
HT

TP
/1

.1
(T

LS
)

HT
TP

/2
(T

LS
)1.0

1.2

1.4

1.6

1.8

2.0

Po
w

er
 (w

at
t)

HTTP/1.1
HTTP/1.1 with TLS
HTTP/2 with TLS

Figure 6.2: Power usage of different settings for world flags with fgallery

Table 6.2: P-Value for paired t-test among different settings for world flags
with fgallery

HTTP/1.1 HTTP/1.1 with TLS HTTP/2 with TLS
HTTP/1.1 1 5e-11 3e-09

HTTP/1.1 with TLS 5e-11 1 0.244
HTTP/2 with TLS 3e-09 0.244 1

The performance of HTTP/1.1 without encryption is, however, very in-

teresting as it clearly outperforms HTTP/1.1 with TLS although a previous

study [78] found improved response time with encrypted messages compared

to plain HTTP. Our observations, however, complement the assumptions made

by Naylor et al. [181]: 1) The required handshaking mechanism for HTTPS

consumes energy, which is not present in unencrypted communication; 2) As

the browser also takes the responsibility for encryption/decryption, this may

lead to more CPU usage and subsequently more energy consumption; 3) The

browser verifies if the server, with HTTPS support, is authenticated by exam-

ining the server’s certificate, which needs more work to be completed.

6.4.2 Gopher tiles

In order to compare the energy consumption of HTTP/2 with HTTP/1.1 for

different network scenarios, experiments with Gopher tiles were conducted

149

with different latencies: 0 ms, 30 ms, 200 ms and 1000 ms. The result is

shown in Figure 6.3.

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
HT

TP
/2

(T
LS

)1.0

1.2

1.4

1.6

1.8

2.0

Po
w

er
 (w

at
t)

0 ms latency

HTTP/1.1 Without TLS
HTTP/2 With TLS

(a) RTT 0 ms

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
HT

TP
/2

(T
LS

)1.0

1.2

1.4

1.6

1.8

2.0

Po
w

er
 (w

at
t)

30 ms latency

HTTP/1.1 Without TLS
HTTP/2 With TLS

(b) RTT 30 ms

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
HT

TP
/2

(T
LS

)1.0

1.2

1.4

1.6

1.8

2.0

Po
w

er
 (w

at
t)

200 ms latency

HTTP/1.1 Without TLS
HTTP/2 With TLS

(c) RTT 200 ms

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
HT

TP
/2

(T
LS

)1.0

1.2

1.4

1.6

1.8

2.0
Po

w
er

 (w
at

t)
1000 ms latency

HTTP/1.1 Without TLS
HTTP/2 With TLS

(d) RTT 1000 ms

Figure 6.3: Power usage for Gopher tiles with different RTTs

The better performance of HTTP/1.1 than HTTP/2 for low RTT corrobo-

rates our findings for world flags: with no latency, HTTP/2 does not offer any

improvement over HTTP/1.1, and secured encrypted transmission becomes

an overhead which leads to more energy consumption. HTTP/1.1 loses its

advantage over HTTP/2 once latency is 30 ms latency or larger. We suspect

that HTTP/2 would have outperformed HTTP/1.1 if implemented without

TLS. This overhead from TLS, however, becomes negligible for RTT 200 ms

and 1000 ms; HTTP/2 significantly outperforms HTTP/1.1 with high RTT.

For all the cases, the P-values were low (<< 0.05) and Cohen’s d values—the

effect size—were very high.

150

One interesting and useful observation is that although the total energy

consumption for both protocols with 1000 ms latency is much higher than

the energy consumption with 200 ms (the download time is much longer), the

power usage for 200 ms latency is higher than for 1000 ms latency.8 This

could be because of the higher power states of components like CPU and NIC

for 200 ms than for 1000 ms, as faster downloading/processing might push

the hardware components to more aggressive energy consuming states. This

complements previous findings that completion time is not necessarily pro-

portional to a device’s energy consumption—different hardware components

can have different states of operation; a CPU, for example, can operate at

different frequencies, and thus can have different energy profiles in different

scenarios [198].

6.4.3 Google and Twitter

We also experimented with Google Search and Twitter home pages—two of

the most accessed sites by the Internet users [12]. Instead of experimenting

with different types of user interactions in these sites, we only considered the

page load times similar to a previous study [250]. Figure 6.4 shows the per-

formance of both protocols with TLS; as mentioned earlier, these two sites

automatically redirect requests to HTTPS. Although the P-value (0.028) and

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
(T

LS
)

HT
TP

/2
(T

LS
)

Versions

1.0

1.2

1.4

1.6

1.8

2.0

Po
w

er
 (w

at
t)

Google
HTTP/1.1 with TLS
HTTP/2 with TLS

(a) Power usage for Google

Ve
rs

ion
 1

Ve
rs

ion
 2

Ve
rs

ion
 3

Ve
rs

ion
 4

Ve
rs

ion
 5

Ve
rs

ion
 6

Ve
rs

ion
 7

Ve
rs

ion
 8

Ve
rs

ion
 9

Ve
rs

ion
 1

0
HT

TP
/1

.1
(T

LS
)

HT
TP

/2
(T

LS
)

Versions

1.0

1.2

1.4

1.6

1.8

2.0

Po
w

er
 (w

at
t)

Twitter
HTTP/1.1 with TLS
HTTP/2 with TLS

(b) Power usage for Twitter

Figure 6.4: Power usage for Google and Twitter
8 We calculate power by dividing the total energy consumption by the duration.

151

Cohen’s d (0.88, large) suggest that the difference between the two settings

for Google is statistically significant, the improvement in power usage reduc-

tion for HTTP/2 is very little for Google. In case of Twitter, however, the

difference is not only statistically significant (P-value << 0.05 and large Co-

hen’s d of 2.1), but the improvement in energy efficiency for HTTP/2 is large.

We attribute this behaviour to the differing RTTs for these two sites from

our client; the RTT for Google was around 20 ms and was around 80 ms for

Twitter. This observation between Google and Twitter is very significant as

it reveals how HTTP/2 will affect the mobile users in their everyday lives—if

not better, HTTP/2 does not perform worse, at least for these two very top

sites.

6.5 Discussion

When the RTT is 30ms or more, the difference in energy consumption between

HTTP/1.1 and HTTP/2 is obvious. One might argue that the difference,

although significant statistically, is not convincing enough to become a deciding

factor. This statement is true when only considered for a single mobile device

and for a browsing period of one second (as we compared in watt). But when

the effect of this difference is considered globally for billions of mobile devices

and for average users’ browsing time, the energy saving would be colossal.

Moreover, in some of our experiments (e.g., Gopher Tiles), in contrast to

HTTP/2, HTTP/1.1 was experimented without TLS, otherwise the difference

could have been much more conspicuous.

It is encouraging that although HTTP/2 design goals are mainly oriented

towards faster page load time, in most cases it also offers better energy per-

formance than its predecessor.

Why is HTTP/2 more energy efficient for larger RTTs?

In HTTP/1.1, GET requests are processed in the exact order they are re-

ceived. Moreover, multiple TCP connections may be established to achieve

concurrency. In a high latency network, these factors result in longer waiting

152

periods and also use additional computational resources for establishing TCP

connections. The longer waiting times between subsequent network operations

produce more tail energy leaks. HTTP/2 solved these issues through the mul-

tiplexing of GET requests over a single TCP connection per domain. Also,

HTTP/2 eliminated the overhead of transferring redundant header fields and

compresses the header metadata through the HPACK algorithm [216]. These

factors reduce the network operation times between the client and the server

supporting HTTP/2 which is vital in reducing energy consumption. The pri-

oritization mechanism of HTTP/2 also helps in faster page loading, which can

be a significant factor in reducing energy consumption.

87.0 87.5 88.0 88.5 89.0 89.5 90.0 90.5 91.0
Time (S)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
w

er
 (w

at
t)

Gopher Tiles (0 ms)
HTTP/1.1
HTTP/2

(a) Gopher with 0 ms latency

84 86 88 90 92 94 96 98 100
Time (S)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
w

er
 (w

at
t)

Gopher Tiles (200 ms)
HTTP/1.1
HTTP/2

(b) Gopher with 200 ms latency

85 90 95 100 105 110 115 120
Time (S)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
w

er
 (w

at
t)

Gopher Tiles (1000 ms)
HTTP/1.1
HTTP/2

(c) Gopher with 1000 ms latency

58 60 62 64 66 68 70
Time (S)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
w

er
 (w

at
t)

Twitter

HTTP/1.1
HTTP/2

(d) Twitter

Figure 6.5: Power usage over time

In case of a very low RTT (or no RTT), these factors (e.g., head of line

blocking, and header overheads) do not play a significant role both in page

loading and power usage, as we observed previously (Figure 6.3). In order

153

to have more insight, we also captured power usage over-time for different

settings. Figure 6.5 illustrates the power usage over time for selected configu-

rations during the page load partitions. Figure 6.5 (a), using a single version

of Firefox, shows the more power usage by HTTP/2 than HTTP/1.1 at the

beginning (highlighted by the rectangle). We believe this is because of the en-

crypted transmission (HTTPS) employed by HTTP/2 but not by HTTP/1.1.

This overhead, however, becomes negligible with the increase in RTT. Al-

though the power usage of HTTP/2 for high latency networks are higher for

the very first few seconds, Figure 6.5 (b) and (c), it becomes almost flat after-

wards (with a few small spikes). It is easy to notice that (rectangles in b and

c) page load time for HTTP/2 is much shorter in high latency networks. On

the contrary, HTTP/1.1’s network operations stay active for a much longer

time and consume much more energy.

It is important to mention that GreenMiner does not know when a page

load is completed so that it can stop the test immediately. This led us to

experiment with fixed test durations for our different settings. For example,

for the 1000 ms latency test with Gopher, our predefined test duration for

the page load partition was 40 seconds. This is the tightest limit considering

the slow page load time of HTTP/1.1. If the actual page load time could

have been configured through GreenMiner, the difference would be even more

significant. This conclusion can also be made from the Twitter experiment.

Figure 6.5 (d) shows a very significant spike for HTTP/2 at the end (second

rectangle), although the page load was completed much earlier (rectangle 1).

During the time highlighted by the second rectangle, HTTP/2 was switching to

a different home page image after loading the first one long before, in contrast

to HTTP/1.1 which, at that time, was not completely done with loading the

first image. This is a clear illustration of the energy efficiency of HTTP/2 over

HTTP/1.1.

Web app developers should really consider adopting HTTP/2 as their

transport protocol. If RTT is 30ms or more there should be noticeable gains in

load time, usability, and energy consumption for their clients. Also, HTTP/2

154

mechanisms are great examples of making a trade-off between computation

and network operations toward producing energy smart systems.

6.6 Threat to validity

We did not experiment with HTTP/2 server push and left it as future work;

it would be interesting to see how this feature affects the overall performance.

The workload we experimented with also affects our observation; although we

backed our results, in most cases, with previous studies. The Mozilla Fire-

fox Nightly versions—although unlikely—can have their own inherent energy

bugs and can contaminate the results. The realism of our test-cases can be

argued for and against as a balance was to be made between synthetic tests

(gopher tiles), realistic tests (world flags) and real-world subjects (Twitter and

Google). More websites and more browsers and servers could be tested. Gen-

eralization was harmed by using only Mozilla’s HTTP/2 clients. Future work

should investigate the gain for app developers making HTTP requests from

smartphone apps using libraries like Apache HTTPLib.

6.7 Related work

We divide this section into two subsections: studies related to optimization in

mobile device energy consumption and performance evaluation of Web proto-

cols.

6.7.1 Mitigation of energy bugs/hotspots in applica-
tions

Banerjee et al. [28] observed that the main sources of energy consumption in

smartphones are the I/O components. As I/O components are accessed by

applications through system calls, capturing those system calls can help to

find energy bugs or hotspots in a particular application [5], [194]. Pathak et

al. [192] observed that I/O operations consume more energy partly because of

155

the tail energy phenomenon. According to the authors, this tail energy leak

can be mitigated by bundling I/O operations together. Li et al. [142] proposed

a Color Transformation Scheme for Web applications to find the most energy

efficient color scheme while maintaining the enticement and readability at the

same time.

Othman et al. [188] claimed that up to 20% energy savings is achievable

by uploading tasks from mobile devices to fixed servers. A similar study by

Miettinen et al. [169] suggests that most of the mobile applications were found

to be suitable for local processing. This could be the result of limited available

resources with such devices, resulting in deficient number of computationally

expensive mobile applications. Trestian et al. [245] examined the impact of

different network related aspects on mobile device’s energy consumption in

case of video streaming. The authors addressed the impact of several factors

on mobile energy efficiency: video quality, selection of TCP or UDP as the

transport layer protocol, link quality, and network. A similar study by Gautam

et al. [74] suggests that applying algorithmic prefetching can help in saving

substantial energy of mobile devices. Rasmussen et al. [204] found that a

system with Ad-blockers, in most cases, is more energy efficient than systems

without Ad-blockers.

6.7.2 Performance of web protocols

SPDY Studies: A study [234] on the page load times of the top 100 websites

suggests that SPDY can improve page load time by 27-60% over HTTP with-

out SSL and 39-55% with SSL. In a different study by Google [233], SPDY

over mobile networks on an Android device was found to improve the page

load time by 23%. Contradicting those observations, Erman et al. [66] found

that unlike wired connections, SPDY doesn’t outperform HTTP over cellular

networks. Latency in cellular networks can continuously vary due to radio

resource connection state machines, and TCP doesn’t account for such vari-

ability which results in unnecessary re-transmissions. This affects SPDY more

due to its use of a single connection.

156

Wang et al. [250] found that multiplexing and longer RTTs help SPDY to

achieve an improvement over HTTP. However, the improvement is significantly

reduced due to Web page dependencies, browser computations or under high

packet loss. Padhye et al. [189] compared SPDY and HTTP on a dummy

Webpage simulating different network conditions.

HTTP/2 Studies: In HttpWatch [112], the performance of HTTP/2,

SPDY and raw HTTPS (HTTP with TLS) protocols were compared using

different parameters. Compared to SPDY, request and response header size

were found to be smaller for HTTP/2—indicating compression achieved in

HTTP/2 using HPACK is more efficient than the DEFLATE algorithm used

by SPDY. However, SPDY’s response message sizes were smaller as they com-

pressed textual resources.

The compression used by HTTP/2 also allowed headers [228] and images to

be smaller. In terms of number of connections, due to multiplexing over a single

connection, HTTP/2 and SPDY performed better than raw HTTPS. For page

load time, HTTP/2 was consistently found to be better than SPDY (HTTPS

performed worst). Centminmod [67] community’s administrator benchmarked

HTTP/1.1, SPDY 3.1 and HTTP/2 performance on different servers—Nginx,

H2O and OpenLiteSpeed depending on the protocols supported by them. For

all three servers HTTP/2 and SPDY 3.1 performed better than HTTP/1.1.

Between HTTP/2 and SPDY, the performance of HTTP/2 on H2O server

was best followed by SPDY/3.1 on Nginx and HTTP/2 on OpenLiteSpeed.

Similar results were observed under 3G mobile network. Other studies [8],

[76] compared HTTP/2 performance with HTTP/1.1 under different latency

conditions and showed the performance benefits of HTTP/2 over HTTP/1.1.

Cherif et al.[41] used HTTP/2’s server push feature in a Dynamic Adaptive

Streaming (DASH) session to reduce the initial load time of a video. Loading

time under HTTP and HTTPS increased with the increase in RTT, and at an

RTT of 300 ms loading time with HTTP/2 outperformed HTTP and HTTPS

by 50%. This gain was attributed to the fast increase in TCP receiver window

size due to server push in HTTP/2.

157

6.8 Conclusions and future work

Does HTTP/2 save energy? Yes, when round trip times are above 30ms and

when TLS is being used, our tests indicate that HTTP/2 outperforms HTTP/-

1.1 with TLS in most scenarios. The Mozilla Firefox Nightly implementation

of HTTP/2 consumes less energy than the HTTP/1.1 implementation to do

the same work regardless of the webserver used in the tests.

The advantage of HTTP/2 highly depends on the round trip time between

the client and the server. HTTP/1.1 becomes expensive, for large number of

TCP connections, with large number of objects. This becomes even worse

when the RTT is higher, which is common in cellular data networks. HTTP/-

2, on the other hand, does not have this problem as it deals with one single

connection by incorporating a multiplexing technique. We also observed that

accessing the Internet has become more energy expensive for mobile clients

after adopting HTTPS as the standard to ensure a user’s privacy and security.

We conclude that the web served over HTTP/2 is going to be more mobile

user friendly especially on high-latency wireless and Wi-Fi networks, and that

energy-aware application developers should adopt HTTP/2.

In this paper, we did not consider the energy consumption of HTTP/2

servers; we only evaluated the energy usage of HTTP/2 from the context of

mobile clients. This would be an interesting avenue of research to investigate

how energy efficient HTTP/2 is from the server side perspective.

158

Chapter 7

Energy Consumption of Logging
in Android

This chapter is the second contribution related to the second objective of

this thesis (explained in 1.3.2)—helping energy-aware developers by providing

energy optimization guidelines.

This chapter was published as:

� Shaiful Alam Chowdhury, Silvia Di Nardo, Abram Hindle, Zhen Ming

(Jack) Jiang, “An Exploratory Study on Assessing the Energy Impact

of Logging on Android Applications”, Empirical Software Engineering

Journal, Springer, 2017 [46].

Developers frequently employ logging to observe the run-time behaviour of

their software. This helps in software maintenance when developers try to fix

the bugs they find from the log files. Unfortunately, the energy consumption of

logging was unknown. Developers do not know how much they can log without

significantly impacting a device’s energy consumption. This information is

more important for mobile app developers. If logging consumes significant

energy and makes battery life shorter, developers would need to know efficient

ways of logging. It is also important to know if logged data can be used

for understanding apps’ energy consumption and for building more accurate

energy models. This chapter investigates these issues using the GreenMiner

energy measurement system with four Samsung Galaxy Nexus phones.

159

The takeaways from this chapter include:

� Conservative logging, such as less than 10 log messages per second, does

not significantly impact an app’s energy consumption. Developers do

not need to worry about energy consumption for such logging.

� In case of heavy logging (frequent logging, or large log messages), devel-

opers can apply bundled logging—combining multiple log messages into

one—for reducing energy consumption.

� Some log events (e.g., events related to graphics) are correlated with

energy consumption. Developers can look for those events for under-

standing their apps’ energy consumption.

� Although logged events, on their own, are not sufficient to model software

energy consumption, they have potential to be used as added features

with other important features (e.g., CPU usage, context switches, and

system calls) for building accurate energy models.

My role in the logging study :

I, with the help of my supervisor and Dr. Zhen Ming (Jack), made plans

for the methodologies, data collection, experimentation, and evaluations. I

also wrote a significant part of this logging paper [46] with the guidance of my

supervisor and Dr. Zhen Ming (Jack). My co-author Silvia Nardo has been

instrumental in this project; she actually developed the benchmark app that

was used to answer research question 2 of this chapter.

Impact : As of writing, the published version of this chapter has been cited

10 times (with more than 500 downloads). Cruz et al. [57], by mining software

repositories and existing energy research, reported 22 common energy bugs

and their solutions. One of the reported problems was the logging impact

on energy, where they summarized our findings as the potential solution (i.e.,

striving for infrequent logging). A recent study by Zeng et al. [264] on the

characteristics of logging practices confirmed our findings: unnecessary and

frequent logging should be avoided to save energy consumption.

160

Abstract

BACKGROUND: Execution logs are debug statements that developers insert

into their code. Execution logs are used widely to monitor and diagnose the

health of software applications. However, logging comes with costs, as it uses

computing resources and can have an impact on an application’s performance.

Compared with desktop applications, one additional critical computing re-

source for mobile applications is battery power. Mobile application developers

want to deploy energy efficient applications to end users while still maintaining

the ability to monitor. Unfortunately, there is no previous work that study

the energy impact of logging within mobile applications.

OBJECTIVE: This exploratory study investigates the energy cost of log-

ging in Android applications using GreenMiner, an automated energy test-bed

for mobile applications.

METHOD: Around 1,000 versions from 24 Android applications (e.g., Cal-

culator, FeedEx, Firefox, and VLC) were tested with logging enabled

and disabled. To further investigate the energy impacting factors for logging,

controlled experiments on a synthetic application were performed. Each test

was conducted multiple times to ensure rigorous measurement.

RESULTS: Our study found that although there is little to no energy im-

pact when logging is enabled for most versions of the studied applications,

about 79% (19/24) of the studied applications have at least one version that

exhibit medium to large effect sizes in energy consumption when enabling and

161

disabling logging. To further assess the energy impact of logging, we have

conducted a controlled experiment with a synthetic application. We found

that the rate of logging and the number of disk flushes are significant factors

of energy consumption attributable to logging. Finally, we have examined

the relation between the generated OS level execution logs and mobile en-

ergy consumption. In addition to the common cross-application log events

relevant to garbage collection and graphics systems, some mobile applications

also have workload-specific log events that are highly correlated with energy

consumption. The regression models built with common log events show mixed

performance.

CONCLUSIONS: Mobile application developers do not need to worry about

conservative logging (e.g., logs generated at rates of ≤ 10 message per second),

as they are not likely to impact energy consumption. Logging has a negligi-

ble effect on energy consumption for most of the mobile applications tested.

Although logs have been used effectively to diagnose and debug functional

problems, it is still an open problem on how to leverage software instrumen-

tation to debug energy problems.

162

7.1 Introduction

Execution logs are generated by output statements (e.g., System.out.println

or printf) that developers insert into their source code. Execution logs record

the run-time behaviour of the application ranging from scenario executions

(e.g., “Browsing scenario purchase for user Tom”) to error messages (e.g.,

“Database deadlock encountered”) and resource utilization (e.g., “20 out 150

worker threads idle”). Software developers, testers and operators leverage logs

extensively to monitor the health of their applications [256], to verify the

correctness of their tests [123] and to debug execution failures [261], [263]. To

cope with these tasks, there are many open source and commercial log analysis

and monitoring frameworks available for large-scale server applications (e.g.,

Chukwa [52], Splunk [235], and logstash [151]).

Excessive logging could cause additional overhead inducing higher resource

utilization or worse run-time performance [83]. For example, Google has shown

that turning on the full logging would slow down their systems’ run-time by

16.7% [229]. Developers, testers, and system administrators are concerned

about the impact of logging on their applications [69]. This is also the case

for mobile application developers [119], [120], [126]. Compared with desk-

top applications, one of the additional critical computing resources for mobile

applications is battery power. Mobile application developers (short for app

developers) want to deploy energy efficient applications to end users while still

maintaining the ability to monitor and debug their applications using logs.

However, the energy impact of logging on mobile applications is not clear to

the developers. When one app developer asked whether logging would drain

the battery for Android phones, on the Stack Overflow forum [214], he re-

ceived three conflicting responses: “yes”, “no”, and “it depends”. This lack

of definitive response is similar to the disagreement between practitioners on

energy consumption questions observed by Pinto et al. [198].

In this paper, we have studied the energy impact of logging on Android

applications using the GreenMiner [102]. The GreenMiner is an automated

163

test-bed for studying the energy consumption of mobile applications. It auto-

matically tests the mobile applications while physically measuring the energy

consumption of mobile devices (Android phones). The measurements are auto-

matically reported back to developers and researchers. Using the GreenMiner

the following three research questions are studied to assess the energy impact

of logging on mobile applications:

� RQ1: What is the difference in energy consumption for Android

applications with and without logging?

This research question investigates whether the energy consumption of

an Android application would be different when enabling and disabling

logging. Around 1,000 versions from 24 real-world Android applications,

including Calculator, FeedEx, Firefox, and VLC, were studied.

� RQ2: What are the factors impacting the energy consumption

of logging on Android applications?

This research question aims to identify the important factors in logging

that impact software energy consumption. Controlled experiments were

conducted to investigate two factors of logging energy consumption: log

message rate and log message size. In addition, the relationship between

energy consumption and the number of disk flushes was analyzed.

� RQ3: Is there any relationship between the logging events and

the energy consumption of mobile applications?

This research question explores the relationship between log events and

software energy consumption to see if some log events are more correlated

with energy consumption than others. Data analyses, like correlation

and multiple linear regression, were carried out to study the relationship

between events recorded in logs and mobile energy consumption.

The contributions of this paper are summarized as follows.

164

1. To the best of our knowledge, this is the first work that proposes a

systematic approach to study the energy impact of logging on mobile

applications.

2. The findings of this paper were based on an extensive set of measure-

ments/experiments (approximately 70 days of testing time), which in-

cludes a wide variety of Android applications with logging enabled and

disabled, and a controlled experiment with varying logging rates and

message sizes. Each experiment was repeated multiple times to avoid

measurement bias and errors.

3. We provide evidence for developers that they need not worry about im-

pacting energy consumption of their mobile applications if they conser-

vatively employ logging.

4. To encourage replication and further study on this important topic, we

have disclosed our dataset and source code for our analysis in our repli-

cation package. We believe such data can be very useful for software

engineering researchers and app developers [205].

The rest of this paper is organized as follows: Section 7.2 provides some

background information on logging and the GreenMiner. Sections 7.3, 7.4,

and 7.5 discuss the research questions RQ1, RQ2, and RQ3, respectively. Sec-

tion 7.6 discusses the threats to validity. Section 7.7 explains the prior works

in the area of mobile energy analysis and execution logs. Section 7.8 concludes

this paper.

7.2 Background

This section provides the background information on software logging. It is

broken down into three parts. First, we discuss the general approaches for

software instrumentation. Then, we explain how logging is realized in Android

applications. Finally, a brief description of our automated energy test-bed for

mobile applications, GreenMiner, is provided.

165

7.2.1 General approaches for software instrumentation

Execution logs are generated by the instrumentation code that developers in-

sert into the source code. Execution logs are widely available for software

systems to support remote issue resolution and to cope with legal compli-

ance [240]. There are three types of instrumentation approaches [252]:

� Ad-hoc logging: Developers insert logging in an ad-hoc manner using

output methods such as print statements like System.err.println. Al-

though this is the easiest approach to instrument, unexpected side effects

might happen if one is not careful. For example, logs lines can be garbled

if there are multiple threads trying to output log lines to the same file

using I/O methods that are not thread-safe.

� Systematic logging: The general purpose instrumentation frameworks

(e.g., Log4j [20]) address the limitations of the ad-hoc logging approach,

as the frameworks support thread-safe logging. In addition, these frame-

works provide better control of the types of information outputted. For

example, the Log4J framework provides multiple verbosity levels: ER-

ROR, WARN, INFO, DEBUG, and VERBOSE. Each of these verbosity

levels can be used for different software development activities. For

example, implementation level details can be logged using DEBUG or

VERBOSE level, whereas critical errors should be logged under the ER-

ROR level. When deploying a particular application, a verbosity level

should be set. For example, if the verbosity level is set to be DEBUG, all

the logs instrumented with DEBUG and higher (a.k.a., ERROR, WARN,

INFO) are printed whereas lower level logs (a.k.a., VERBOSE) are dis-

carded.

� Specialized logging: There are also instrumentation frameworks available

to facilitate special purpose logging. For example, it is easier to instru-

ment the system using the ARM (Application Response Measurement)

framework [88] to gather performance information from the running ap-

plication, than to manually instrument the system.

166

7.2.2 Android logging

Android handles application logs similar to how UNIX handles syslog logs.

Calls to the Android logging API [20] write logs to a circular buffer in memory.

This buffer can be ignored or dumped to disk. Periodic writing of logs can lead

to log rotation where old logs are renamed and kept until too many logs are

allocated. While running the Android applications, the circular buffer could

be filled causing it to periodically dump the logging data to the disk, these

dumps or writes are referred to as disk flushes. Different mobile phones can

have different buffer sizes (e.g., 256 KB or 512 KB). To collect and filter logs for

Android applications, there is a utility called logcat [150]. Similar to Log4j,

the Android API for logging [20] provides multiple verbosity levels. Table 7.1

shows a set of sample log lines from the Android Calculator application.

At the beginning of each log line, there is a letter (e.g., “I/” or “D/”). These

letters correspond to different verbosity levels. “I/” corresponds to the INFO

level logs and “D/” to the DEBUG level logs. The words after the verbosity

level show the components where the logs are generated. For example, the first

log line is generated by the ActivityManager component from the calculator

application. The second log line is generated by the dalvikvm component,

which is the Java Virtual Machine used by the Android operating system.

When released, ERROR, WARN, and INFO level logs are printed for An-

droid applications. Logging for Android applications can also be completely

disabled. The following are mechanisms to enable and disable logging for

Android applications:

� Logging Enabled: First, the log buffer is cleared with the command

logcat -c [150]. Then, the following command is invoked to redirect

the log output of a particular application to a log file (logcat.txt) on

the SD card.

logcat -d | grep -e $PID -e \

net.fred.feedex > /sdcard/logcat.txt

167

Table 7.1: Sample log events from the Calculator application

Log lines

1 I/ActivityManager(387): START u0 flg=0x10000000
cmp=com.android2.calculator3/.Calculator from pid
21740

2 D/dalvikvm(21750): GC CONCURRENT freed 177K, 3%
free 8922K/9128K, paused 2ms+3ms, total 18ms

3 D/libEGL (21750): loaded /vendor/lib/egl/libEGL-
POWERVR-SGX540-120.so

4 D/OpenGLRenderer(21750): Enabling debug mode 0
5 I/ActivityManager(387): Displayed

com.android2.calculator3/.Calculator: +643ms
6 I/WindowState(387): WIN DEATH: Window(41e6d7c8

u0 com.android2.calculator3/.Calculator)
7 I/ActivityManager(387): Force stopping package

com.android2.calculator3 appid=10062 user=0

� Logging Disabled: The configuration shown below was added to the

build.prop file in the /system folder of the smartphones. The /dev/log

folder was removed, along with all its contents.

logcat.live = disable

7.2.3 GreenMiner

To measure the energy consumption of the selected Android applications, we

used the GreenMiner framework [102]. The GreenMiner has been widely used

and accepted in the software energy research community. There are many

published works on energy research that used the GreenMiner as their energy

measurement tool [4], [5], [48], [50], [95], [102], [208].

The GreenMiner is a hardware-based energy measurement system that

operates 4 Android Galaxy Nexus phones in parallel. Table 7.2 shows the

detailed hardware and software specifications for these phones. These phones

are used as the systems under test and are controlled by 4 different Raspberry

Pi model B computers. Each Pi acts as a test manager for one single phone. It

168

deploys and runs tests, collects energy measurements, and uploads the results

to a central server. When a batch of tests are submitted to the GreenMiner,

one of the four phones are selected randomly to execute a test. In this way

four tests can be executed in parallel, enabling the expedient evaluation of

experiments, reducing data collection time significantly. It is important to

note that after completing a test for an app, the GreenMiner uninstalls the

app and deletes app related data. This is to make sure that each test run is

independent and is not affected by any of the previous test runs.

A constant voltage of 4.1 V, from a YiHua YH-305D power supply, was first

passed through an Adafruit INA219 breakout board, and then to an attached

phone. The pins, where the phone’s battery is usually attached, were wired

to receive energy from the power supply. This voltage and amperage were

reported to an Arduino Uno by the INA219. The INA219 [113] relies on

a shunt resistor to measure changes in amperage. The Arduino Uno then

delivers the readings to a Pi through a serial USB connection. Figure 7.1

depicts the innards of the GreenMiner (one out of the four identical settings).

For a more detailed GreenMiner methodology and architecture, please refer

to [102], [204].

As energy measurements can vary slightly between different runs for the

same tests, it has been a common practice in software energy research to run

each test at least 10 times, to achieve acceptable statistical power, and to

report average measurements [5], [48], [50], [95].

We measure energy consumption by the integration of power (watts) over

time. This energy measurement is called joules (J). Joules are typically stored

within a mobile device battery when it charges, and are expended for com-

putation, communication, and peripherals while the device is in operation. 1

joule is 1 watt-second. The phones we use typically consume 0.7 J per second

while idle with the screen on, and 1.5 J to 3 J per second when very busy with

the screen on. Thus the difference of 10 J between 2 test runs could be due to

14 seconds of runtime or a few seconds of high CPU workload difference. All

the measurements of energy consumption in this paper are in joules.

169

Table 7.2: Specs of the Samsung Galaxy Nexus phones used for the experi-
ments.

Component Specs

OS Ice Cream Sandwich, 4.4.2
CPU Dual-core 1.2 GHz Cortex-A9
GPU PowerVR SGX540

Memory 16 GB, 1 GB RAM
Display AMOLED, 4.65 inches
WLAN Wi-Fi 802.11 a/b/g/n

Figure 7.1: GreenMiner consists of an Arduino, a breadboard with INA219
chip, a Raspberry Pi, a USB hub, and a Galaxy Nexus phone connected to a
Power Supply. Photo used with permission from the GreenMiner paper [102].

170

7.3 RQ1: What is the difference in energy

consumption for Android applications with

and without logging?

7.3.1 Motivation

On one hand, execution logs can bring insights about the run-time behaviour

of mobile applications. On the other hand, should app developers be con-

cerned about the potential energy overhead of logging on their applications?

The energy impact of execution logs on 24 real-world Android applications is

examined in this section.

7.3.2 Experiments

In order to draw a reliable conclusion on how logging impacts energy consump-

tion of existing apps, we experimented with 24 Android applications from

different domains (e.g., Games, Entertainment, Communication, News, and

Utility). To capture the general behaviour of each studied application, multi-

ple versions for each application are studied. One version in this paper refers

to one binary compiled from one distinct commit from a source code reposi-

tory, or one compiled binary released by the project. For example, we have

studied 46 code commit versions (a.k.a., 46 versions) for the VLC app. The

source code for the multiple versions of these 24 applications are part of the

GreenOracle dataset collected by Chowdhury et al. [48].

Software changes over time. The logging changes of some versions of an

app may consume much more energy than the other versions. Hence, it is

worthwhile to study a number of versions for the same application. Another

important aspect of studying the energy impact of logging is that writing

test cases manually is difficult. But if we use multiple versions of the same

app (versions with identical user interface) then writing a single test script is

enough for all the versions. This can enlarge the size of our measurements

and thus allows more reliable analysis. Out of the 24 Android applications

171

in GreenOracle dataset, we had to exclude Yelp from our analysis, as this

particular application disables logging internally. We included one more appli-

cation (FeedEx with 35 versions) in our dataset as a compensation. Table 7.3

shows the details of the studied Android applications.

Mobile

App

Execute

Scenario
Deploy

App

Calculate

Effect Sizes

Version

1

Execute

Scenario

Enable Logging

Disable Logging.

.

.

Mobile

App

Execute

Scenario

Report

Findings

Deploy

App

Calculate

Effect Sizes

Version

n

Execute

Scenario

Enable Logging

Disable Logging

Figure 7.2: Process to Investigate the Energy Impact of Logging (RQ1)

Figure 7.2 illustrates the process for this study. For each version of the se-

lected applications, we measured the energy consumption with logging enabled

and disabled with one realistic test case per app. A test scenario for an ap-

plication, which is automated by a test script written in Android adb shell,

simulates how an average user would use the application. For example, the

FeedEx first adds RSS feeds from Google News. Then it emulates a normal

user opening and reading the first two RSS feeds. The Calculator applica-

tion test converts miles to kilo-meters, calculates tax amounts, and solves an

equation using the quadratic formula.

Table 7.4 shows the list of test scenarios for all the applications. The

test scenarios and the test duration are the same across different versions of

the same application. For example, a single FeedEx test (with or without

logging), lasts for 100 seconds. Table 7.4 also shows the average number of log

lines per test run, the average test duration in seconds, the average logging

rate (events per second), and the joules consumed with logcat enabled (logging

enabled) and logcat disabled (logging disabled).

For both logging conditions (logging enabled and disabled), the experi-

172

Table 7.3: The applications under test, selected from the GreenOracle [48]
dataset.

Categories App App # of Versions and Repo
Names Descriptions Committed time

Games

2048 Puzzle game 44 GitHub
(03/2014 - 08/2015)

24game Arithmetic game 1 F-Droid
(01/2015 - 01/2015)

Agram Anagrams 3 F-Droid
(03/2015 - 10/2015)

Blockinger Tetris game 74 GitHub
(04/2013 - 08/2013)

Bomber Bombing game 79 GitHub
(05/2012 - 11/2012)

Vector Pinball Pinball game 54 GitHub
(06/2011 - 03/2015)

News

FeedEx Reading news feeds 35 GitHub
(05/2013 - 04/2014)

Exodus Browse 8chan 3 GitHub
(01/2010 - 04/2015)

Eye in the Sky Weather app 1 Google Play
(09/2015 - 09/2015)

Entertainment

Acrylic Paint Finger painting 40 GitHub
(03/2012 - 09/2015)

Memopad Free-hand Drawing 52 GitHub
(10/2011 - 02/2012)

Paint Electric Sheep Drawing app 1 Google Play
(09/2015 - 09/2015)

VLC Video player 46 GitHub
(04/2014 - 06/2014)

References

AndQuote Reading quotes 21 GitHub
(07/2012 - 06/2013)

Wikimedia Wikipedia mobile 58 GitHub
(08/2015 - 09/2015)

Communication

ChromeShell Web Browser 50 APK repository
(03/2015 - 03/2015)

Face Slim Connect to Facebook 1 F-Droid
(11/2015 - 11/2015)

Firefox Web browser 156 APK repository
(08/2011 - 08/2013)

Business

Budget Manage income/expenses 59 GitHub
(08/2013 - 08/2014)

Calculator Calculations 97 GitHub
(01/2013 - 05/2013)

GnuCash Money Management 16 GitHub
(05/2014 - 08/2015)

Temaki To do list 66 GitHub
(09/2013 - 07/2014)

System Utilities

DalvikExplorer System information 13 code.google
(06/2012 - 01/2014)

Sensor Readout Read sensor data 37 GitHub
(03/2012 - 03/2014)

173

ments were repeated 10 times (for each version) to address measurement error

and random noise [75], [129]. For an approximate average test duration of

five minutes (including uploading data to a server after each test), it took

around 70 days to run and collect all the measurements from GreenMiner. All

of these measurements were then used to compare the energy consumption

between logging enabled and disabled.

7.3.3 Analysis

For the logging enabled tests, the log files have on average 142 log lines, ranging

from 12 messages to 1080 messages per test run. The average test duration

can last from 52 seconds (AndQuote) to 210 seconds (FireFox). We will

perform a two-step analysis on the energy measurement data. First, we will

perform a hypothesis testing to examine whether the energy consumption with

and without logging for each version of the app is different. Then we will study

the magnitude of the differences (a.k.a., effect sizes) to help quantify the size

of the differences.

Comparing the Differences Between Two Groups: Some of the mea-

sured energy distributions are not always normally distributed, according to

the Shapiro-Wilk normality test. Hence, we will use non-parametric tests

throughout this paper. Different from parametric tests, non-parametric tests

do not have any underlying assumptions of the distribution of the data being

analyzed. For each version of the mobile applications, the Wilcoxon Rank

Sum test is performed to check whether the differences in energy consumption

between the cases of logging enabled and disabled are statistically significant.

Table 7.5 shows the results of these tests.

Given α = 0.05, p ≤ 0.05 means that there is a statistical difference in

the energy consumption between the logging enabled and logging disabled

tests, whereas p > 0.05 means otherwise. We also correct for multiple com-

parisons/hypotheses using the Benjamini and Hochberg method [35] which

attempts to control the false discovery rate. Most applications (e.g., 2048 and

AndQuote) do not have statistical differences in terms of energy consump-

174

Table 7.4: Test scenarios and test results for the selected Android applications.

App Test Avg # of Avg Test Avg Rate Avg Energy(J) with
Names Scenarios log lines Duration of Logging logcat logcat

Enabled Disabled

2048 Makes some 15.737 60.008 0.262 58.369 59.057
random moves

24game Randomly tries 110.000 80.014 1.375 85.816 84.407
different numbers

Acrylic Paint Draws a hexagon 24.621 95.011 0.259 82.838 83.998
with legs

Agram Generates anagrams 46.447 77.006 0.603 75.299 74.985
(single and multiple)

AndQuote Reads a series 24.265 52.003 0.467 44.671 44.473
of famous quotes

Blockinger Repositions/rotates 58.715 150.002 0.391 197.315 197.984
blocks randomly

Bomber Drops bombs 194.091 130.008 1.493 170.483 170.826
at fixed intervals

Budget Inserts and calculates 101.684 125.010 0.813 113.017 113.007
expenses

Calculator Converts units, calculates 24.413 125.008 0.195 107.781 107.062
taxes, and solves equations

ChromeShell Opens a webpage 153.224 100.010 1.532 106.621 107.049
and scrolls

DalvikExplorer Reads the system’s 20.799 80.004 0.260 65.750 65.591
information

Exodus Reads threads from 239.297 84.012 2.848 96.981 96.001
different topics

Eye in the Sky Looks for the current 182.583 130.008 1.404 116.768 119.310
temperature in Edmonton

Face Slim Connects to Facebook 24.500 60.009 0.408 65.935 66.571
homepage and access

the help page

FeedEx Adds and reads feeds 94.451 100.000 0.945 95.430 92.956
from Google News

Firefox Opens a webpage 75.325 210.004 0.359 213.679 211.544
and scrolls

GnuCash Creates an account 90.810 75.012 1.211 76.150 76.713
and saves transactions

Memopad Draws a hexagon 17.966 95.011 0.189 79.649 79.908
with legs

Paint Electric Draws a hexagon 30.000 60.007 0.500 56.296 57.601
Sheep with legs

Sensor Readout Shows graphs for 166.220 182.998 0.908 176.278 177.226
different sensor reads

Temaki Makes a TODO 12.244 75.010 0.163 72.373 72.189
list, updates and
deletes the list

Vector Pinball Throws the ball 17.340 120.009 0.144 116.359 116.700
several times and

tires to hit the
ball randomly

VLC Plays a fireworks 1, 079.676 110.010 9.814 116.464 117.460
.3gp video

Wikimedia Searches for the 169.783 120.011 1.415 160.015 160.171
Bangladesh page

and scrolls

175

Table 7.5: Wilcoxon Rank Sum Tests (α = 0.05) comparing energy consump-
tion between logging enabled versus disabled per version. p ≤ 0.05 means
that there is a statistically significant difference in the energy consumption
between logging enabled and disabled, whereas p > 0.05 means otherwise.
Cliff’s δ magnitude across applications versions is from [103].

App % versions Mean Effect Sizes
Names with p ≤ 0.05 Cliff’s δ % Negligible % Small % Medium % Large

2048 0.000 −0.165 40.909 31.818 20.455 6.818
24game 0.000 −0.077 100.000 0.000 0.000 0.000

Acrylic Paint 7.500 −0.439 5.000 17.500 35.000 42.500
Agram 0.000 0.038 33.333 66.667 0.000 0.000

AndQuote 0.000 0.127 47.619 23.810 19.048 9.524
Blockinger 0.000 −0.085 41.892 37.838 14.865 5.405
Bomber 0.000 −0.120 34.177 46.835 13.924 5.063
Budget 0.000 −0.080 40.678 44.068 8.475 6.780

Calculator 3.093 0.352 21.649 22.680 22.680 32.990
ChromeShell 0.000 −0.159 32.000 42.000 22.000 4.000

DalvikExplorer 0.000 −0.073 53.846 38.462 0.000 7.692
Exodus 0.000 0.340 33.333 0.000 33.333 33.333

Eye in the Sky 0.000 −0.375 0.000 0.000 100.000 0.000
Face Slim 0.000 −0.319 0.000 100.000 0.000 0.000
FeedEx 54.286 0.612 8.571 5.714 14.286 71.429
Firefox 0.000 0.152 34.615 37.179 19.872 8.333
GnuCash 0.000 −0.147 37.500 18.750 37.500 6.250
Memopad 0.000 −0.187 34.615 36.538 17.308 11.538

Paint Electric Sheep 0.000 −0.597 0.000 0.000 0.000 100.000
Sensor Readout 0.000 −0.085 43.243 37.838 16.216 2.703

Temaki 0.000 −0.028 43.939 39.394 12.121 4.545
Vector Pinball 0.000 −0.047 40.741 35.185 20.370 3.704

VLC 4.348 −0.294 15.217 45.652 13.043 26.087
Wikimedia 0.000 −0.123 43.103 36.207 12.069 8.621

Overall (paired) p = 0.3748 0.0139 (Negligible)

176

tion in any of their versions between the logging enabled and disabled tests.

However, for some other applications (e.g., FeedEx and Acrylic Paint),

many of their versions exhibit statistical differences between the logging en-

abled and disabled tests. Figure 7.3 depicts the p-values per application per

version comparing logging enabled (logcat enabled) and logging disabled tests.

Only 4 out of 24 applications exhibit cases where their energy consumption in

the logging enabled and disabled tests are statistically significantly different

after correction for multiple hypotheses.

2
0

4
8

2
4

g
a

m
e

A
c
ry

lic
 P

a
in

t

A
g

ra
m

A
n

d
Q

u
o

te

B
lo

c
k
in

g
e

r

B
o

m
b

e
r

B
u

d
g

e
t

C
a

lc
u

la
to

r

C
h

ro
m

e
S

h
e

ll

D
a

lv
ik

E
x
p

lo
re

r

E
x
o

d
u

s

E
y
e

 i
n

 t
h

e
 S

k
y

F
a

c
e

 S
lim

F
e

e
d

E
x

F
ir
e

fo
x

G
n
u

C
a

s
h

M
e

m
o

p
a

d

P
a

in
t

E
le

c
tr

ic
 S

h
e

e
p

S
e

n
s
o

r
R

e
a

d
o

u
t

T
e

m
a

k
i

V
e

c
to

r
P

in
b

a
ll

V
L

C

W
ik

im
e

d
ia

0.0

0.2

0.4

0.6

0.8

1.0

W
ilc

o
x
o

n
 p

−
va

lu
e

Figure 7.3: Wilcoxon Rank Sum p-values per application of energy consumed
with logging and without logging. p-values less than 0.05 indicate that logging
enabled and logging disabled consumed different amounts of energy. p-values
were corrected for multiple hypotheses using Benjamini and Hochberg correc-
tion [35]

Effect Sizes: Although the Wilcoxon rank sum test can examine whether

there is a statistical difference in terms of energy consumption between the

logging enabled and disabled tests, it cannot quantify the magnitude of the

differences. Hence, Cliff’s δ (Cliff’s delta) is used to calculate the differences

of energy consumption for logging enabled and disabled tests. Cliff’s δ is a

non-parametric effect size measure that quantifies the proportional difference

(or dominance) between two sets of data [206]. Cliff’s δ has four categories:

negligible effect, small effect, medium effect, and large effect. Effect sizes,

which can be applied regardless of significance of a T-test or a Wilcoxon rank

177

sum test, is used to characterized the observed differences of the effect in

the measurements [244]. Reporting effect size is recommended in cases where

there is not enough statistical power [182]. For instance given the number

of repeated tests and given the number of hypotheses—how many times we

repeated a statistical test—the critical value will be low. This means in order

to be conservative enough to reduce false positive rates the p-value correction

will make the multiple Wilcoxon rank sum tests quite conservative. This

effectively turns the Wilcoxon rank sum test into a measure of sample size,

but the effect still remains. Thus we report effect sizes to give the reader

an idea of the differences between logging and not logging within the data,

regardless of statistical significance.

Table 7.5 tabulates the effect size values, Cliff’s δ, for different versions of

the Android applications. For example, in Table 7.5, the values of Cliff’s δ

show that 21% of the versions of the Calculator application have negligible

effect, 23% of versions with small effect, another 23% versions with medium

effect, and the remaining 33% of versions with large effect. In addition to the

Calculator application, there are five other applications that have more

than half of their versions exhibit medium to large effect sizes.

Thus based on these observations, we want to statistically verify the effect

of logging on applications. Between applications, aggregated by averaging

joules across versions, we find that with the paired Wilcoxon signed rank test

there is no statistically significant difference between enabling and disabling

logcat across these applications (p = 0.3748 and p > α). The effect size,

over all applications, according to Cliff’s δ is negligible (0.0139). The paired

Wilcoxon signed rank test is used because the samples are related and paired

(e.g., mean joules of Firefox with logging, and mean joules of Firefox

without logging).

The results show that the differences in energy consumption are not statisti-

cally significant for most versions of the studied 24 applications. Furthermore,

within the same applications we find that the effect of enabling or disabling

logging is typically statistically insignificant and of negligible to small mag-

178

nitude. However, 79% (19/24) of the studied applications have at least one

version with medium to large effect sizes in terms of the differences of energy

consumption when enabling and disabling logs.

In order to have more insight into the impact of logging on energy consump-

tion, we select FeedEx, an application in our dataset, which shows not only

statistically different energy measurements between logging enabled and dis-

abled tests (in 54% versions), but also have 71% versions with large effect size.

For instance, there is a big difference (≈ 10 joules) in terms of energy consump-

tion between logging enabled and disabled tests for the version 1.6.0. Com-

pared to the previous versions, there were 178 more Dalvikvm WAIT FOR-

CONCURRENT GC log lines and 224 more Dalvikvm GC CONCURRENT

log lines. These logs are related to the memory management of the applica-

tions. This version of the FeedEx app, seemed to suffer from memory bloat

issues and produces a larger log file than its predecessor.

Figure 7.4 shows the energy consumption of FeedEx over time, for both

logging enabled and disabled tests. It is clear that the later versions are more

energy inefficient than their predecessors. Figure 7.5 shows the energy con-

sumption for the FeedEx versions against the number of log lines. With few

exceptions, we observe a monotonous increase in energy consumption with the

increase in logging. This suggests that with more information in log files, one

could investigate what types of log events can impact the energy consump-

tion, and thus motivated us for RQ3. However, the energy differences between

logging and no logging do not show any consistent pattern with the increase

in log messages. With randomly selected real-world applications, there can

be many factors that can significantly impact the energy consumption [48],

[194], [249] of Android applications. Such uncontrolled tests can indicate if

logging matters or not, but cannot offer an accurate estimation of the impact

of logging on energy consumption.

These results indicate the need for a more controlled experiment—to show

how much logging can be harmful in terms of energy consumption. We did

not have control over the development of these applications and their use of

179

0 5 10 15 20 25 30 35
Versions

80

100

120

140

160

En
er

gy
(J)

FeedEx

With Logging
Without Logging

Figure 7.4: FeedEx Energy consumption over time. Versions 32 to 35 exhibit
very different energy profiles compared to the previous versions.

100 200 300 400 500 600 700 800
Number of lines

80

100

120

140

160

180

En
er

gy
(J)

FeedEx

With Logging
Without Logging

Figure 7.5: Energy consumption against the number of log lines across different
FeedEx versions. The graph depicts 2 measurements and the lines connects
between adjacent versions. The line depicts how the FeedEx versions move
through the space of log length and energy consumption. Essentially consec-
utive FeedEx versions use more and more energy.

180

logging. Furthermore, high logging rates (a.k.a., consistent logging rates faster

than 20 msg/sec) were not observed from these applications and tests. Hence,

in the next RQ (Section 7.4), we will study the factors impacting the energy

consumption of logging on Android applications using controlled experiments

and with various logging rates.

7.3.4 Summary

Findings: The energy consumption between logging enabled and disabled
tests are not statistically significant for most versions of the studied mobile
applications. However, approximately 79% of the studied applications
have at least one versions with effect sizes larger than or equal to medium.
Internal factors such as memory management issues are the causes behind
the energy increases correlated with logging.
Implications: Logging usually does not have a noticeable impact on the
energy consumption of Android applications, although in some cases it
can. Developers should be careful when adding additional instrumenta-
tion code, yet still leveraging this valuable debugging tool. Characterizing
the best practices on making energy-efficient logging decisions in mobile
applications is still an open research problem.

7.4 RQ2: What are the factors impacting the

energy consumption of logging on Android

applications?

7.4.1 Motivation

Currently, there are few guidelines regarding logging on mobile devices and

logging’s energy impact for mobile developers to follow. It is not clear to

mobile developers how much they can log and how often. This section seeks

to provide some insights into this aspect of logging and energy consumption.

7.4.2 Experiments

There are three orthogonal factors that can potentially impact the energy

consumption of logging: (1) the rate of logging, (2) the size of log messages,

181

and (3) the number of disk flushes. The rate of logging and the size of log

messages can be controlled by the individual applications, but not the number

of disk flushes. Depending on the volume of the logs and the buffer size, the

number of disk flushes can vary. The volume of the logs (a.k.a., the size of

the log file) depends both on the rate of logging and the size of log messages.

Bigger log messages and more frequent logging lead to higher volumes of logs.

The buffer size varies depending on the mobile phones. Our test-bed uses

Android phones with 256 KB circular buffer sizes. The disk flush happens

when the buffer gets filled up.

It is not easy to investigate the energy impacting logging factors with real-

world applications. First, isolating the pure energy costs for logging is difficult;

these applications interact with other components that also consume energy

(e.g., radio and screen). Second, unstable logging rates and log size with real-

world applications hinder controlled experiments.

Hence, we have built a test Android application to assess the energy-

impacting factors for logging. Our test application, which consists of only

the MainActivity and a JUnit test case, performs only one task: generating

logs at different rates and with different message sizes. For each test, the

operations are the same: the MainActivity is launched. Then the applica-

tion starts to generate log messages of a specific size at a specific rate for 120

seconds and stops. The duration of 120 seconds is chosen to help stabilize

measurements against unexpected CPU frequency switches. By the first 60

seconds of the test, the CPU frequency should be appropriately set for the

logging workload. Table 7.6 lists the set of different message rates and mes-

sage sizes that were run. For each of the specified message rates and sizes, the

rationale is also included. For example, app developers might be interested in

printing and storing stack traces or packet dumps in a log file. A typical stack

trace is around 8,192 bytes (8 KB) and a typical Ethernet packet is 1,536 bytes

(1.5 KB). If one logged UI level events, the UI events are usually generated at

a rate of 1 to 5 events per second.

Much like RQ1, each experiment was repeated multiple times (40 times)

182

Table 7.6: Controlled experiments with varying logging rates and message
sizes.

Logging Rate Message Size
Rate (msg/sec) Rationale Size (bytes) Rationale

0.01 infrequent logging 64 a single line of text
0.10 browsing UI level logging 512 a medium sized line of text
1.00 UI event level logging 1024 a URL sized line of text

10.00 network traffic level logging 1536 maximum ethernet data frame size
100.00 printf debugging logging 2048 a large log message

1000.00 very frequent logging 8192 an exceptionally large log message

Table 7.7: Percentage growth rates of energy consumption (joules) for the log
generating tests. All the calculations below used the energy consumption of
the idle tests as the baseline.

msg/sec 64 bytes 512 bytes 1 KB 1.5 KB 2 KB 8 KB

0.01 0.20% 0.21% 0.18% 0.51% 0.28% 0.37%
0.10 0.27% 0.31% 0.38% 0.73% 0.30% 0.61%
1.00 0.65% 0.64% 0.70% 0.99% 0.64% 0.90%
10.00 1.38% 1.59% 1.71% 2.16% 1.91% 2.46%
100.00 8.26% 8.48% 9.23% 10.33% 10.55% 14.20%
1000.00 27.88% 30.66% 36.50% 45.14% 48.26% 75.47%

to avoid measurement errors and random noise [75], [129]. It took 70 hours in

total to run these tests. The testing results are gathered for further analysis.

7.4.3 Analysis

The average energy consumption of each test is calculated. The data is grouped

according to the rate of the logging (a.k.a, msg/sec). The average energy con-

sumed for the idle tests (a.k.a., generating zero msg/sec) is used as the baseline

in order to track the percentage increase in terms of energy consumption for

the log generating tests. Table 7.7 shows the results. For example, there is a

0.2% energy increase under 0.01 msg/sec with 64 bytes as the message size.

In fact, for 10 msg/sec there is a very small energy increase (≤ 2.46%),

with the largest message size. However, the impact is significant with larger

183

message rates. As the logging rate increases to 100 msg/sec, the increase in

the energy consumption ranges from 8.26% to 14.20% for different message

sizes. For 1000 msg/sec, the increase of the energy consumption can go up

to 75.47%. Another interesting observation is that the energy increase for 10

msg/sec and 8 KB message size is much smaller than 100 msg/sec and 64 byte

message size (2.46% vs. 8.26%), even though the unit volume of the generated

logs are much higher (80 KB/sec vs. 6.25 KB/sec). Evidently, logging rate is

a more dominant factor than message size for energy consumption

For further verification, we apply factor analysis to verify the importance

of message size and log rate. Kruskal-Wallis (Kruskal-Wallis X2) tests are per-

formed to check whether the factors of logging rates and the message sizes have

statistically significant impacts on the energy consumption. Kruskal-Wallis

test is a non-parametric statistical test for checking whether the measure-

ments of 3 or more groups, under different kinds of treatments, come from the

same distribution. We test 2 factors independently: logging rates and logging

message sizes. We correct for multiple/hypotheses with the Benjamini and

Hochberg method [35]. Logging rate was a significant factor (p < 2.2e − 16)

for energy consumption. Although the message size is also a statistically sig-

nificant factor, the p-value (p < 0.0471) is very close to our α (α = 0.05).

In fact, when we test with the pairwise Wilcoxon rank sum test between the

message sizes, corrected using Benjamini and Hochberg, we find no statis-

tically significant differences in energy consumption between distributions of

different message sizes (p > α). Yet a pairwise Wilcoxon rank rum test shows

there are statistically significant differences (p ≤ α) for all log rate compar-

isons except for 2 comparisons of log rates of 0.01 to 0.1 and log rates of 0.1

to 1.0. The similar distributions of energy consumption at low frequency log

rates also helps to explain the mild inconsistency in trend observed in energy

consumption with the message sizes.

In order to better understand the relationship between the message size

and the energy consumption, we calculate the Pearson correlation coefficient

between them—an indicator of a linear relationship between two random vari-

184

ables. The correlation coefficient is low (only 0.17 with p ≈ 0) when the

message rate is not fixed. However, with fixed and high message rate (e.g.,

100 msg/sec), the correlation is high (0.72 with p ≈ 0). This is also con-

sistent when the message rate is fixed at 1000 msg/sec. These observations

corroborate the results in RQ1 whereby most differences were not statistically

significant as the message sizes and logging rates in RQ1 were often low.

We observe that with the increase in logging rate energy consumption also

increases; but the same does not apply for message size. However, in case of

heavy logging both the rate and the size become significant factors towards

energy consumption. This also explains the observed inconsistencies in Table

7.7. One would expect that with the increase in message size, the energy

consumption would also increase. However, no such trend is observed from

Table 7.7 when the message rate is low. For instance, the energy increase

in joules for 10 msg/sec with 1.5 KB message size is 2.16%, which is higher

than 2 KB message size with the same rate (1.91% increase). This led us

to evaluate if the differences in energy consumption with this two settings

are really different, because Table 7.7 only shows the increase in percentage

considering the average of the 40 measurements for each scenario.

To investigate the difference across both factors at once, we run a handful

of tests to investigate trends depicted in Table 7.7. We apply the Wilcoxon

rank sum test (a non-parametric test), and found that the energy consump-

tion between the above mentioned two settings (10 msg/sec with 1.5 KB log

message size versus 10 msg/sec with 2 KB log message size) are not statisti-

cally different (p-value > 0.05). The difference is not statistically significant

either (p-value > 0.05) for 0.01 msg/sec with 1.5 KB log message size versus

0.01 msg/sec with 2 KB log message size. However, when the message rate

is high, the difference in energy consumption with different message sizes are

significant. For example, the energy consumption differences are statistically

significant (p-value < 0.05) for 1000 msg/sec with 1.5 KB log message size vs.

1000 msg/sec with 2 KB log message size. This is another confirmation that

message size only has a noticeable effect with high message rates.

185

We also build a linear regression model to estimate the energy consump-

tion using the message sizes, the logging rates, and the number of disk flushes.

This further clarifies the impact of these factors on energy consumption, as we

executed the same application that does nothing than writing log messages.

The logging rates and the message sizes are obtained from each test configu-

ration (Table 7.7). The number of disk flushes can be calculated by dividing

the estimated file size with the buffer size. For example, after 120 seconds

of testing, the size of the log file from the 1000 msg/sec and 1536 bytes test

would be 180,000 KB. Hence, with 256 KB buffer size, the estimated number

of disk flushes would be 703. The resulting regression model is shown below

as Equation 7.1 and has an adjusted R-squared value of 0.87.

joules =0.03370×message rate +

0.00006×message size +

0.01328× number of disk flushes +

112.10958

(7.1)

This model also confirms that message rate, and subsequently the num-

ber of disk flushes are more significant factors for energy consumption than

message size. The rationale is that, as we have already shown, with very low

message rate message size does not impact the number of disk flushes signifi-

cantly.

In summary, our results suggest that mobile application developers do not

need to prematurely optimize and trade-off energy consumption for logging.

Infrequent logging has limited impact on the overall energy consumption. How-

ever, if there is a need to generate large amount of logging content, to conserve

energy, it is preferable to log infrequently with larger message sizes rather

than logging frequently with smaller message sizes. This is similar to the ear-

lier findings [117], [141], [194] that bundling smaller packets together reduces

significant energy consumption in data communication.

186

7.4.4 Summary

Findings: Small amounts of logging (≤ 10 log messages per second) have
little or no energy impact on the mobile applications. In fact, message size
does not have any significant impact on energy when the logging rate is
very low. On the other hand, both the message rate and size are significant
factors towards draining energy under heavy logging. Under heavy logging,
logging large amounts of data infrequently consumes much less energy than
frequently logging smaller amounts of data.
Implications: To conserve energy, developers should strategically instru-
ment their code. The preferred logging points can contain more con-
textual information but are less frequently executed (e.g., avoid logging
within loops or commonly called library functions). When heavy logging
is needed, developers should group small log messages and write them
together to conserve energy.

7.5 RQ3: Is there any relationship between

the logging events and the energy con-

sumption of mobile applications?

7.5.1 Motivation

Are the causes of energy consumption, events correlated with energy con-

sumption, apparent in the log? Measuring energy consumption directly often

requires both hardware instrumentation and software instrumentation. It is

a time-consuming process as hardware test-beds instrumented with a power

monitor must run tests multiple times to get a statistically reliable estimate

of power use [100], [208]. Moreover, such a test-bed might be expensive for

many app developers.

The execution logs are debug statements that developers inserted into their

code. These instrumentation locations are strategically selected to debug and

monitor the functionalities of the applications. The key steps (e.g., displaying

the hand-drawn objects or performing email reconciliations) during the exe-

cutions are often logged and can provide us hints on the energy consumption

patterns of the applications. It would be cheaper and faster for developers

to diagnose their mobile application energy regression problems by analyzing

187

their log files.

This RQ investigates the feasibility in terms of using the readily available

execution logs to understand the energy consumption of mobile applications.

In particular, we want to check if there is any relationship between the logging

events and the energy consumption of the mobile applications. The question is

what events, that get recorded in the log, induce energy consumption. Thus,

we are not seeking to truly estimate energy but we seek to investigate the

relationship between common events that get recorded in logs, and energy

consumption.

7.5.2 Experiments

We do not perform additional performance testing in this RQ. Rather, we

reuse the log files and the energy measurements from RQ1. In particular, we

reuse the measurements of the log-enabled tests of the 24 Android applications,

including all of the versions used.

7.5.3 Analysis

There are three steps involved in this analysis. First, the free-form log mes-

sages are abstracted into log events. Second, correlations are calculated be-

tween individual log events and energy consumption. Third, we look into the

combination of variables using multiple regression—by exhaustive model build-

ing we hope to better understand what log events work together to consume

energy.

Step 1 - log abstraction

Execution logs typically do not follow a strict format. Each log line contains

a mixture of static and dynamic information. The static information is the

descriptions of the execution events, whereas the dynamic values indicate the

corresponding context of these events. For example, the last log line in Ta-

ble 7.1 contains static information like “I/ActivityManager”, “Force stopping

188

package com.android2.calculator3”, “appid” and “user”. The numbers “387”,

“10062” and “0” are likely generated during run-time.

Such free-formed log messages need to be abstracted into events so that

they can be used in automated statistical or data mining analysis. We apply

the log abstraction technique proposed by Jiang et al. [122] to automatically

map log messages to log events.

Since the same test scenario was executed for the same version of an ap-

plication, the generated log events should be similar or even identical. Hence,

test runs on the same version are combined into a single log file, by averaging

the count of each log event obtained during the repeated test.

Table 7.8 summarizes the number of unique log events and log length per

application across all of the different test runs of their multiple versions.

Table 7.8: Summary of unique log events per application across all the versions.

App Total # of Unique Events Standard
Names Versions total minimum median average maximum Deviations

2048 44 15 12 13.000 13.091 14 0.603
24game 1 53 53 53.000 53.000 53

Acrylic Paint 40 19 11 14.000 13.800 17 1.324
Agram 3 15 15 15.000 15.000 15 0.000

AndQuote 21 11 11 11.000 11.000 11 0.000
Blockinger 74 168 23 27.000 27.392 35 1.560
Bomber 79 24 17 20.000 20.152 22 1.292
Budget 59 74 13 37.000 31.525 41 9.482

Calculator 97 53 9 11.000 14.526 23 5.354
ChromeShell 50 105 92 101.000 100.680 104 2.860

DalvikExplorer 13 17 16 16.000 16.308 17 0.480
Exodus 3 88 52 54.000 54.000 56 2.000

Eye in the Sky 1 58 58 58.000 58.000 58
Face Slim 1 18 18 18.000 18.000 18
FeedEx 35 39 14 17.000 17.486 28 4.231
Firefox 156 138 29 44.000 52.340 80 22.350
GnuCash 16 399 39 54.500 54.688 62 5.449
Memopad 52 13 12 13.000 12.712 13 0.457

Paint Electric Sheep 1 21 21 21.000 21.000 21
Sensor Readout 37 12 11 11.000 11.189 12 0.397

Temaki 66 15 8 9.000 9.485 12 1.231
Vector Pinball 54 56 14 16.000 16.463 21 1.342

VLC 46 492 385 390.000 390.022 396 2.679
Wikimedia 58 214 71 96.000 94.000 116 8.840

Average 42 88 42 46.646 46.911 52 3.597

The number of unique log events for each application ranged from 11 unique

189

log events for AndQuote to 492 unique log events for VLC. The mean num-

ber of unique log events per application is 88, while the median was 46.646.

Now we look into how the prevalence of unique log events varies within log

files from different runs and versions. The total number of unique log events

can change across different versions of an application. The average standard

deviation of total unique log events per application across versions was 3.597

events with a minimum standard deviation of total log events was 0.000 unique

log events (no change) for AndQuote and Agram and a maximum standard

deviation of total unique log events 22.350 for Firefox. The statistics about

each application are described in Table 7.8.

Step 2 - correlation between log events and energy consumption

Table 7.9 depicts the Spearman correlation coefficients between each log event

and the energy measurements for all the 24 applications.

Table 7.9: Spearman’s ρ correlation coefficient distribution between log event
types and joules per application. Each column shows how many log events
correlated with the correlation scale proposed by Hopkins et al. [105]

App # of % Trivial % Small % Mod- % Large % Very % Near
Names Unique Log erate Large Perfect

Events [0.0, 0.1) [0.1, 0.3) [0.3, 0.5) [0.5, 0.7) [0.7, 0.9) [0.9, 1.0]

2048 15 80.000 13.333 6.667 0.000 0.000 0.000
24game 53 100.000 0.000 0.000 0.000 0.000 0.000

Acrylic Paint 19 36.842 15.789 26.316 21.053 0.000 0.000
Agram 15 80.000 0.000 0.000 6.667 0.000 13.333

AndQuote 11 72.727 27.273 0.000 0.000 0.000 0.000
Blockinger 168 62.500 36.905 0.595 0.000 0.000 0.000
Bomber 24 33.333 25.000 41.667 0.000 0.000 0.000
Budget 74 39.189 22.973 13.514 5.405 18.919 0.000

Calculator 53 18.868 47.170 24.528 9.434 0.000 0.000
ChromeShell 105 22.857 70.476 6.667 0.000 0.000 0.000

DalvikExplorer 17 94.118 0.000 0.000 5.882 0.000 0.000
Exodus 88 21.591 0.000 0.000 21.591 39.773 17.045

Eye in the Sky 58 100.000 0.000 0.000 0.000 0.000 0.000
Face Slim 18 100.000 0.000 0.000 0.000 0.000 0.000
FeedEx 39 38.462 17.949 0.000 35.897 7.692 0.000
Firefox 138 20.290 78.261 1.449 0.000 0.000 0.000
GnuCash 399 21.554 30.576 39.850 7.769 0.251 0.000
Memopad 13 69.231 0.000 0.000 7.692 23.077 0.000

Paint Electric Sheep 21 100.000 0.000 0.000 0.000 0.000 0.000
Sensor Readout 12 91.667 0.000 8.333 0.000 0.000 0.000

Temaki 15 46.667 26.667 26.667 0.000 0.000 0.000
Vector Pinball 56 16.071 23.214 26.786 3.571 30.357 0.000

VLC 492 41.260 13.415 2.236 1.423 41.667 0.000
Wikimedia 214 22.897 1.402 53.738 21.963 0.000 0.000

190

Spearman’s ρ correlation is a non-parametric test that assesses the rela-

tionship between two variables. The characterization of the strength of the

correlation (trivial, small, medium, large, very large and near perfect) is pro-

posed by Hopkins et al. [105]. For example, 205 out of the 492 unique events

in VLC exhibit very large correlations with the energy consumption; whereas

all the log events in Face Slim have little or no correlation. The correlation

values in the table show that 79% of the studied applications have at least one

log events which exhibit medium to near perfect correlation values with the

energy consumption of the mobile applications. If only large to near perfect

correlations are considered, there are still 50% of the studied applications that

have some log events strongly correlated with energy consumption.

Across most applications (e.g., Firefox, Agram, Acrylic Paint, and

Memopad), the log events with the highest correlation with energy con-

sumption are often related to the Dalvik Virtual Machine, DalvikVM. The

DalvikVM is the Java Virtual Machine used by the Android operating system

to run mobile applications. The lists of events that are highly correlated with

energy consumption are shown below. Some of them are related to identified

“energy greedy APIs” [144].

� Dalvikvm: GC CONCURRENT (X1): this event is triggered when the heap

starts to fill up;

� Dalvikvm: GC FOR ALLOC (X5): this event occurs when there is not

enough memory left on the heap to perform an allocation;

� Dalvikvm: GROW HEAP (X6): in order to save memory, Android does

not allocate maximum amount of requested memory to every application

automatically. Instead, the OS waits until the application requests more

memory. Then this event is triggered to give more heap space until the

maximum amount of memory is reached.

For these 3 events, the median magnitude of Spearman’s ρ correlation

(absolute value) over all applications with more than 1 version is 0.333 for

191

Dalvikvm: GC CONCURRENT, 0.308 for Dalvikvm: GC FOR ALLOC, and 0.219

for Dalvikvm: GROW HEAP. This shows a small to medium relationship be-

tween Dalvikvm memory management and energy consumption.

Not all log events that are correlated with energy consumption are common

across applications. Some of the highly correlated log events are workload spe-

cific for a particular application. For example, in GnuCash, workload-specific

log events regarding the onCreateView method for the DatePickerDialog class,

and a log event about replacing account entries in the database exhibited large

positive (ρ = 0.6873) and very large negative correlations with energy con-

sumption (ρ = −0.7515), respectively. For Vector Pinball, trying to load

the JNI library for Box2D, a 2D physics library, (DalvikVM trying to load

lib.data.app.lib.com.dozingcatsoftware.bouncy libgdx.box2d.so) has

a very large negative correlation (ρ = −0.7923) with joules. VLC has very

large positive correlation (ρ = 0.8377) with input controls (VLC core input

control stopping input).

Step 3 - building energy consumption models using logs

In this step, the relationship between these log events and energy consumption

is further studied through multiple regression analysis. If an independent vari-

able (i.e., a log event) reoccurs in numerous models, then we argue that that

variable demonstrates a strong relationship with software energy consumption

for different mobile applications. The intent of this section is not necessarily

to build reusable predictors, but to further study the relationship between en-

ergy consumption and common log events. We use multiple linear regression to

study the relationship between different log events (as independent variables)

and the energy consumption (as the dependent variable).

There were 122 log events that commonly occurred across 3 or more ap-

plications. When considering common log events shared by four or more ap-

plications, there are only a total of 17 log events. There are 10 log events

commonly shared by 6 or more applications. Hence, in this step, we pick the

common log events that are shared by at least four applications, as we want to

192

derive more general prediction models in order to study the effect of common

log events on software energy consumption. Table 7.10 shows the 17 selected

log events. For the sake of brevity, a short log event name is shown instead of

the fully abstracted log events.

Table 7.10: OS Level Log events shared by all the applications

applications Event Name

X1 25 dalvikvm GC CONCURRENT
X2 24 dalvikvm WAIT FOR CONCURRENT GC
X3 21 libEGL loaded vendor lib egl lib-

GLESv2 POWERVR SGX540 120
X4 20 OpenGLRenderer Enabling debug mode
X5 19 dalvikvm GC FOR ALLOC
X6 17 dalvikvm heap Grow
X7 14 dalvikvm Late enabling CheckJNI
X8 8 dalvikvm Turning on JNI app bug

workarounds for target SDK version
X9 6 TilesManager Starting TG
X10 6 Choreographer Skipped frames The applica-

tion may be doing too much work on its main
thread

X11 4 dalvikvm Jit resizing JitTable
X12 4 webviewglue nativeDestroy view
X13 4 GLWebViewState Reinit transferQueue
X14 4 dalvikvm null clazz in OP INSTANCE OF

single stepping
X15 4 InputMethodManagerService Focus gain on

non focused
X16 4 dalvikvm VFY replacing opcode
X17 4 GLWebViewState Reinit shader

Many log event counts are highly correlated with other event counts. We

have exhaustively tried all subsets of variables in the model and ignored models

that included co-linearity whereby any two independent variables had a Pear-

son correlation greater than 0.3 or less than −0.3. The models are kept if all

the independent variables are reported as statistically significant to the model

(p ≤ 0.05). Models that do not produce a significant F-statistic (p ≤ 0.05) are

not kept.

193

The final models are the ones with the largest number of significant events.

Several regression models with more than two log events are found. These

models are for both the individual applications and all the applications at

once. Table 7.11 shows the models extracted and their adjusted R-squared

values.

Some applications do not have enough versions, or their common log events

do not correlate well enough to produce a significant linear model (e.g., 24Game,

2048, and Blockinger). Each model has the following form:

joules v c0 + c1 × event1 + c2 × event2 + ...+ cn × eventn (7.2)

In general, different models from the same application share similar predic-

tion performance. The three models from FeedEx show that the top common

log events can predict the energy consumption of FeedEx very well (with Adj-

R2 ≥ 0.92) . However, the models from the Calculator and the Firefox

applications show moderate prediction performance with Adj-R2 ≥ 0.39 and

Adj-R2 ≥ 0.22, respectively. The Chromeshell app is not modeled well by

the common log events with an Adj-R2 ≥ 0.11, while the Vector Pinball

app performs the best for predictability with models with an Adj-R2 ≥ 0.94.

Across all the studied version of Android applications, typically events X1,

X5, and X6 are part of the successful models. These events are related to the

Dalvik Virtual Machine. The listed events are related to memory management

operations such as garbage collection and memory allocations. In the models

utilizing all applications and versions, X17 and X4 were also quite significant,

as well as X1 and X6. X4 and X17 are OpenGL and graphics relevant.

194

Table 7.11: Linear models of energy consumption based on log events across
numerous Android applications. Top three models are shown only if they are
significant (p ≤ 0.05).

Events# Adj-R2 p-value

All applications/Versions X4 + X6 + X17 0.4755 1.1222e-140
X1 + X4 + X6 0.4965 1.4197e-149
X1 + X4 + X6 + X9 0.5233 2.3270e-160
X1 + X4 + X6 + X13 0.5328 9.2390e-165
X1 + X4 + X6 + X17 0.5328 9.2390e-165

Acrylic Paint X3 + X5 0.4870 1.6392e-06
X4 + X5 0.4870 1.6392e-06
X2 + X5 0.5306 3.1700e-07

Bomber X6 + X14 0.2375 3.1351e-06
X4 + X6 0.2375 3.1351e-06
X6 + X13 0.2375 3.1351e-06

Calculator X3 + X5 0.3991 2.3918e-12
X5 + X16 0.3991 2.3918e-12
X5 + X17 0.3991 2.3918e-12

ChromeShell X1 + X15 + X16 0.1076 2.5888e-02
X1 + X13 + X16 0.1076 2.5888e-02
X1 + X2 + X16 0.1112 3.8161e-02

Firefox X2 + X3 + X11 0.2242 1.3689e-09
X2 + X3 + X13 0.2242 1.3689e-09
X2 + X3 + X10 0.2242 1.3689e-09

GnuCash X1 + X5 + X6 0.5914 3.0130e-04
X1 + X4 + X5 0.5914 3.0130e-04
X1 + X3 + X4 0.5914 3.0130e-04

Memopad X1 + X8 + X12 0.6377 5.9170e-12
X1 + X8 + X13 0.6377 5.9170e-12
X1 + X8 + X14 0.6377 5.9170e-12

Sensor Readout X1 + X2 0.4276 2.8786e-05
X1 0.4427 4.2210e-06

Budget X2 + X15 0.8176 7.6227e-22
X1 + X5 0.8262 1.9788e-22
X1 + X6 0.8330 6.4611e-23

Vector Pinball X1 + X5 + X7 + X8 0.9456 3.1336e-32
X1 + X5 + X8 + X16 0.9456 3.1336e-32
X1 + X8 0.9465 1.4174e-33

Temaki X1 + X7 + X15 0.4848 1.2541e-09
X1 + X3 + X7 + X15 0.4848 1.2541e-09
X1 + X7 + X15 + X17 0.4848 1.2541e-09

VLC X1 + X5 + X16 0.6134 5.0341e-10
X1 + X3 + X5 0.6134 5.0341e-10
X1 + X5 + X17 0.6134 5.0341e-10

Wikimedia X3 + X5 0.6396 3.1125e-14
X1 + X5 0.6666 2.8477e-14
X2 + X5 0.7289 9.6649e-17

FeedEx X17 0.9297 8.2694e-21
X16 0.9297 8.2694e-21
X13 0.9297 8.2694e-21

195

7.5.4 Summary

Findings: Around 80% of the applications have at least one log event
whose correlation with the energy consumption are medium or stronger.
Memory management and graphics-related (OpenGL) log events are the
most correlated log events related to mobile software energy consump-
tion. For some applications, there are also some workload-specific log
events which exhibit high correlation with the energy consumption. Mod-
els trained on top common log events demonstrate a clear relationship
between those log events and the energy consumption for some but not all
mobile applications.
Implications: App developers should watch out for log events related
to garbage collection and graphics if they are concerned with the energy
consumption of their applications — especially changes in the number of
these log events. Furthermore, although logs have been used effectively to
debug and troubleshoot functional problems, there is still no clear relation
between the logging contents and the energy consumption for some appli-
cations. Researchers should investigate into innovative logging approaches
which can help debug both energy and other performance-related prob-
lems.

7.6 Threats to validity

In this section, we discuss the threats to validity.

7.6.1 Construct validity

Reliability of the energy measurement

It is important to ensure reliable performance measurement, as performance

measurement is subject to measurement error and random noise [75], [129],

[179]. In this paper, we have used two strategies to mitigate this threat: (1)

around 1,000 versions from 24 Android applications were studied with both

logging enabled and disabled; and (2) each version of the same application was

repeatedly tested and measured to ensure measurement accuracy. We did not

have clear control over laboratory temperature, but according to the INA219’s

specification [113], measurements do not deviate much over the range of tem-

peratures expected while running the tests. Energy measures can suffer from

196

sampling, but the INA219 does sample at a high rate and output aggregated

measurements at a lower rate. This aggregation can induce error but given the

high rate of sampling by the INA219 it is unlikely to have meaningful effect

on test runs. Most importantly energy consumption is a physical process thus

one must measure multiple times as we do in this paper.

7.6.2 Internal validity

Controlling confounding factors while assessing the energy impact
of logging on real-world android applications

There are many Android applications that try to log data in a real-world

setting. Hence, while executing our performance tests on real-world Android

applications, we make sure all the applications under test are running in the

same Android running environment. In addition, we also make sure the ap-

plication under test is the only running user application during the tests. For

each application under test, we have executed two types of performance tests:

logging enabled and logging disabled. All the test configurations are the same

for these two types of tests, except for enabling and disabling logs. We ran the

experiments one after the other. Each experiment takes less than five minutes.

Hence, for some applications that access outside resources (e.g., Firefox re-

questing data from Wikipedia), the chances of a resource changing during a

test (e.g., content updates in the Wikipedia webpage) exists but would be very

low.

Controlling various logging factors while investigating the energy
consumption of logging on Android applications

There are many factors impacting the energy consumption of logging on An-

droid applications. Factors such as the logging rate and the log message sizes

cannot be easily controlled on real-world use cases and applications. In ad-

dition, real-world applications also perform other tasks (e.g., networking and

video playing), which makes it difficult to isolate the energy impact of logging.

Hence, to control the various confounding factors, we have developed a testing

197

Android application which is dedicated only to log messages at different rate

and size. The values of the logging rates and message sizes were derived based

on actual scenarios in practice (e.g., the size of a network packet and the size

of a typical stack trace). Since the logging rates and the message sizes com-

bined could have an impact on the size of the log files, an additional factor, the

number of disk flushes, is introduced to assess the combined impact of logging

rate and log message size. Yet the Android operating system is a complex

piece of software, thus state will slowly change while the operating system

running, for instance the file system state will change between runs. Future

tests could replace the file system each and every time in order to control the

non-determinism in the file system.

7.6.3 External validity

Generalizing the energy impact of logging on real-world Android
applications

To ensure our findings on the energy impact of logging on real-world Android

applications are generalizable, we have selected 24 Android applications from

different application domains. In addition, many of the applications in our

dataset have many versions. These versions correspond to a range of different

software development activities (e.g., new features and bug fixes). Increasing

both the number of applications and versions covered would provide better

generality. However, our findings might not be able to generalize to other

mobile application platforms (e.g., BlackBerry, iOS or Windows phones) and

other Android phones.

In addition, although we have designed our test cases to closely mimic the

realistic user usage of mobile applications, the resulting test cases may not

cover all the possible uses for the studied applications.

198

7.7 Related work

In this section, we will discuss three areas of prior research that are related

to this paper: (1) energy testing and modeling for mobile applications, (2)

empirical studies on energy-efficient mobile development, and (3) execution

logs.

7.7.1 Energy testing and modeling for mobile applica-
tions

Hindle et al. developed the GreenMiner, an automated test-bed to assess the

energy consumption for each revision of a given mobile application [100], [102].

Since running performance tests on each revision is time consuming, Roman-

sky et al. [208] proposed a search-based test approximation technique to reduce

the testing efforts in GreenMiner. Li et al. [140] proposed a test minimiza-

tion technique that prioritizes the test suites with higher energy consumption.

This paper leverages the GreenMiner [100], [102] to perform energy testing on

different versions of the mobile applications with and without logging enabled.

There have been many studies dedicated to modeling energy consumption

for mobile applications. In general, there are three approaches, which use

three different datasets, collected by different monitoring and profiling tools,

to model mobile energy consumption: (1) hardware-based counters [40], [62],

[71], [90], [227], [269]; (2) program instructions from the applications [92],

[139], [219]; and (3) system calls [5], [48], [194]. Different mobile monitoring

and profiling tools can bring different insights into the mobile applications’

dynamic behavior. However, they all have some runtime overhead. Different

from the above three approaches, this paper builds the energy consumption

models to explore factors of energy consumption prevalent in execution logs.

199

7.7.2 Empirical studies on energy-efficient mobile de-
velopment

We further divide the empirical studies on energy-efficient mobile development

into the following three sub-areas:

� App Developers: Pinto et al. [198] investigated questions on Stack-

Overflow that programmers had about energy. They found that pro-

grammers lacked the resources to answer questions about software energy

consumption. Similar findings were confirmed by other studies that sur-

veyed programmers about their understanding on software energy con-

sumptions [159], [191]. Chowdhury et al. [44] compared energy-aware

software projects with projects that did not consider energy-efficiency as

one of the non-functional requirements. They found that energy-aware

software projects are more popular in terms of number of forks, and

contributors.

� Code Obfuscation: Sahin et al. studied the impact of code ob-

fuscation [213] and refactoring [212] on energy consumption of several

Android applications. They found that code obfuscation does impact

energy consumption but the differences could be too small for users to

notice, whereas the impact of code refactoring could be mixed (a.k.a.,

either increases or decreases in energy consumption).

� Energy Greedy APIs, Frameworks, and Platforms: Li et al. [138]

leveraged their technique of estimating energy consumption for source

lines in [139] and studied the API level energy consumption patterns

of different mobile applications. They found that the networking com-

ponent consumes the most energy and more than half of the energy

consumption is spent on idle state. This observation indicates that re-

ducing the number of idle states can optimize energy consumption for

mobile applications. Linares et al. [144] identified energy greedy Android

APIs that can be helpful for the developers to write energy efficient code.

200

Chowdhury et al. [50] found that employing HTTP/2 server can save en-

ergy for the mobile clients. Pathak et al. suggested that around 70%

of mobile software energy bugs are the direct result of problems linked

to wake locks [193]. Hence, many studies have focused on understand-

ing and optimizing wake lock in mobile applications [10], [28], [149],

[192], [195], [249]. Tail energy leaks, the energy cost of powering up and

eventually powering down peripherals, have been studied as a source of

energy consumption in mobile applications [50], [141], [194]. Tail en-

ergy leaks can be optimized by bundling I/O operations together [50],

[141]. Hasan et al. [95] studied the energy profiles of frequently used

Java collection classes and suggested that using the most energy efficient

collection classes can save up to 300% software energy.

Logs are widely used in software development for various purposes like

debugging, monitoring and user behavior tracking. However, there are no

prior studies focused on the energy impact of logging for mobile applications.

Hence, in this paper, we performed an empirical study on another aspect

of energy-efficient mobile development: the energy consumption of software

logging.

7.7.3 Execution logs

We will discuss two areas of related research on execution logs:

� Empirical Studies on Execution Logs: There have been a few em-

pirical studies conducted to investigate the logging activities in practice.

Shang et al. [222] analyzed how log events evolve over time by execut-

ing the same scenarios across different versions of the same applications.

They found that logs related to domain level events (e.g., workload) are

less likely to change compared to logs related to feature implementa-

tions (e.g., opening a database connection). Yuan et al. [262] analyzed

the source code revision history for 4 C-based open source software sys-

tems. They found that log events are often added as “after-thoughts”

201

(a.k.a., after failure happens). They also developed a verbosity-level

checker to automatically detect anomalous log levels (e.g., DEBUG vs.

FATAL) using clone analysis. Fu et al. [73] performed a similar log char-

acteristic study but on the source code of two large industry systems

at Microsoft. Shang et al. [224] studied the release history of two open

source applications (Hadoop and JBoss) and found that files with many

logging statements have higher post-release defect densities than those

without. Unfortunately, all of the prior empirical studies on execution

logs focused on desktop and server-based applications. This paper is

the first research work focused on studying the execution logs on mobile

applications.

� Analyzing Execution Logs Execution logs have been used extensively

by developers, testers and system operators to monitor and diagnose

problems for large-scale software systems [186], [261]. Execution logs

have a loosely-defined structure and a large non-standardized vocabulary.

Due to its sheer volume of size (hundred megabytes or even terabytes of

data), it is usually not feasible to analyze the logs manually. Techniques

have been proposed to automatically abstract the loosely structured ex-

ecution log events into regularized log events [122], [257]. Then auto-

mated statistical and AI techniques can be applied on these regularized

log events to analyze the results of load tests [123], and to monitor, de-

tect and diagnose problems in big data applications [223], [256], [257]. In

addition to leveraging the existing logs, Yuan et al. proposed a technique

to automatically suggest logging points to aid the debugging activities

using program analysis [263]. Finally, Ding et al. [60] proposed a cost-

aware logging mechanism so that informative logs can be generated while

still ensuring the performance overhead is within the specified budget.

Their performance overhead is defined in terms of resource usage (e.g.,

CPU, memory and disk I/O) and their target applications are large-scale

server applications. In this paper, we used the log abstraction technique

proposed by Jiang et al. [122] to build our energy consumption model.

202

7.8 Conclusion

Software developers use execution logs to debug and monitor the health of mo-

bile applications. This paper investigates the energy impact of execution logs

on Android applications. Around 1,000 versions of 24 Android applications

were tested and measured under logging enabled and disabled. In addition, a

controlled experiment with varying rates of logging and sizes of the log mes-

sages was carried out.

Our experiments show that limited logging (e.g. ≤ 1 msg/sec) has little

to no impact on the energy consumption of mobile applications. Although

there is little to no impact on the energy consumption of logging for most of

the versions, there are still many versions with medium to large effect sizes

when comparing the energy consumption between when logging is enabled

and logging is disabled. The rate of logging, the size of log messages, and the

number of disk flushes are three statistically significant factors that impact the

energy consumption of logging. Log events can be used in energy consumption

debugging as some events common across applications, that are logged as

log events, are highly correlated with energy consumption—especially those

regarding garbage collection or graphics. Depending on the application, some

workload-specific log messages are also correlated with energy consumption.

However, building energy consumption models with log events yield mixed

performance. It would be an interesting future work to leverage event logs, as

a proxy to predict the energy consumption of applications.

In conclusion we have presented evidence that logging under relatively lib-

eral conditions of less than 1 log message per second does not have a significant

effect on energy performance. Furthermore we have shown with numerous ex-

isting Android applications that logging typically has a negligible effect on

energy consumption. Although there are some log events recorded in logs

which are highly correlated to the energy consumption of the mobile applica-

tions, it is still an open research question on how one can leverage software

logging to debug energy problems.

203

Replication package

To aide replicability, we freely disclose and share our dataset and source code

for our analysis in our replication package [205]. The GreenOracle tests that

were run on the GreenMiner are located at https://github.com/shaifulcse/-

GreenOracle-Data/tree/master/Tests.

204

https://github.com/shaifulcse/GreenOracle-Data/tree/master/Tests
https://github.com/shaifulcse/GreenOracle-Data/tree/master/Tests

Chapter 8

GreenBundle: Addressing
energy efficiency from design
time

This chapter presents the final contribution related to the second objective

of this thesis (explained in 1.3.2)—providing guidelines for achieving energy

efficiency. In particular, it shows how developers can address energy efficiency

from the design time, and the trade-offs that energy-aware developers need to

consider.

This chapter was published as:

� Shaiful Chowdhury, Abram Hindle, Rick Kazman, Takumi Shuto, Ken

Matsui, and Yasutaka Kamei, “GreenBundle: An Empirical Study on the

Energy Impact of Bundled Processing”, In 41st ACM/IEEE International

Conference on Software Engineering (ICSE 2019, technical track), pages

1107-1118. May 25-31, 2019. Montreal, Canada [84].

Research has been done for providing energy efficient guidelines. For exam-

ple, developers can select the most energy efficient Java collections based on the

recommendations by Hasan et al. [95]. Developers can follow energy efficient

database commit techniques as suggested by Lyu et al. [154]. However, these

energy efficient techniques (i.e., applying little tweaking in source code) often

do not have significant impact on real-world apps [211]. This implies that we

require higher level changes for efficiently accessing energy hungry hardware

205

components. Also, it is important that developers address energy efficiency

from the design time, before coding starts [159]. Developers, however, need to

consider different trade-offs before making a design decision. Would an energy

efficient design decision lead to worse user experience and higher maintenance

cost?

In this chapter, an energy efficient design pattern—a bundled Model-View-

Presenter—is proposed that developers can follow from the design time. With

this pattern, we show how we can make view updates significantly more energy

efficient by delaying the updates (adding latency in view updates). In contrast

to the traditional Model-View-Presenter (MVP) pattern, a bundled MVP does

not update a view immediately. Rather, the presenter stores all the incoming

view update requests (i.e., events) for a certain period of time (here comes the

latency and the trade-offs with user experience), and then processes them all

in a batch. This chapter also shows the impact on the software maintenance

cost for applying the bundled MVP pattern.

The takeaways from this chapter include:

� For Android systems, we show an energy efficient design pattern (bun-

dled MVP) that can reduce the energy consumption of view updates

even in real-world apps.

� Even with imperceptible latency in view updates (0.1 second delay), we

can save significant energy consumption with the proposed pattern.

� We show that the bundled MVP has insignificant impact on the app

maintenance cost.

My role in the GreenBundle study :

I, with the guidance from my supervisor Abram Hindle and my collabora-

tor professor Rick Kazman, made plans for the methodologies, data collection,

experimentation, and evaluations. Professor Yasutaka Kamei and two of his

students Takumi Shuto and Ken Matsui helped us collecting energy measure-

ments from a different phone. In addition, professor Yasutaka Kamei helped

206

me to improve some of the sections of the published paper.

Impact : This chapter was published just before writing this paragraph,

but because of its potential, it was accepted at the most prestigious software

engineering conference (ICSE 2019). We have already received emails from the

software energy research community mentioning the impact this paper would

have.

207

Abstract

Energy consumption is a concern in the data-center and at the edge, on mo-

bile devices such as smartphones. Software that consumes too much energy

threatens the utility of the end-user’s mobile device. Energy consumption

is fundamentally a systemic kind of performance and hence it should be ad-

dressed at design time via a software architecture that supports it, rather than

after release, via some form of refactoring. Unfortunately developers often

lack knowledge of what kinds of designs and architectures can help address

software energy consumption. In this paper we show that some simple de-

sign choices can have significant effects on energy consumption. In particular

we examine the Model-View-Controller architectural pattern and demonstrate

how converting to Model-View-Presenter with bundling can improve the en-

ergy performance of both benchmark systems and real world applications. We

show the relationship between energy consumption and bundled and delayed

view updates: bundling events in the presenter can often reduce energy con-

sumption by 30%.

208

8.1 Introduction

Energy consumption is an important quality requirement for mobile devices [253]

and for mobile software such as apps [131], [251] that affects availability, bat-

tery life, and sales. Unfortunately, and often, app developers are addressing

energy consumption when it becomes a problem [159], [251], rather than at

design time before coding starts. There is evidence that developers simply are

not trained enough in the topic of energy consumption at the application level

to be able to address energy consumption effectively [159], [191]. Also, avail-

able optimization tips do not impact energy consumption in real-world apps,

demanding higher-level changes for efficient accesses of energy hungry com-

ponents [211]. Unfortunately, developers have little idea about what design

choices are even available that will affect energy consumption, as well as the

consequence and tradeoffs of those design choices. Yet interest exists as Man-

otoas et al. [159] show: “experienced practitioners are often willing to sacrifice

other requirements for reduced energy usage”. This paper discusses the kinds

of design choices and tradeoffs that architects face, and seeks to illustrate how

we can improve energy consumption of mobile applications (and, indeed, of

any application) by relatively small changes in an architecture. Specifically,

we show how a change to Model-View-Presenter (MVP) with “bundling” or

“dropping” strategies can improve the energy performance of apps.

But why focus on mobile? By 2019, the number of global smart-phone users

is expected to reach 2.7 billion[237]. Smartphones are essentially portable net-

worked pocket computers powered by batteries [199]. Smartphone apps range

from email apps to games, to notifications, prompts, reminders, stock tickers,

etc. This wide variety of software and uses is ever present as the network

bandwidth demands on mobile networks starts to eclipse PC network band-

width [53]. This pressure on functionality and portable computing puts a huge

strain on a mobile device’s battery, which unfortunately has not seen much

technological improvement [28]. If the device’s battery energy is consumed,

the device is typically unusable. The importance of energy consumption on

mobile devices has immediate consequences: app developers quickly learn that

209

their apps that use lots of energy suffer in ratings [251] as consumers highly

value battery life for their mobile devices [253].

We seek to aid developers in addressing energy consumption at design time,

before runtime. Our concern is that developers do not have good guidelines or

evidence-based models of the costs and benefits of the design choices they make

in the design of energy efficient apps. Developers lack knowledge of architec-

tures, patterns, and tradeoffs that are potentially “green” (energy efficient), or

the parameters that can make an architecture “green” at runtime. So in this

work, we demonstrate how the Model-View-Presenter pattern (MVP) can be

modified to reduce the event processing overhead of model objects notifying

view objects. We discuss how to modify the presenter of MVP into a proxy

that bundles requests or drops redundant requests by delaying notifications—

thus avoiding frequent expensive intermediate notifications or context switches

that update views. Our research questions and contributions include:

RQ 1: What is the impact of the number of event sources and event

generation rates on software energy consumption?

RQ 2: Can bundling and dropping events help in saving energy while

varying the numbers of sources and rates?

Contribution 1: We developed a benchmark Android app that follows the

Model-View-Presenter (MVP) architecture to understand the impact of bundling

and dropping on Model-View-Presenter architecture. We implemented the

presenter in three different forms: no bundling, bundling, and dropping. The

number of event sources and the rate of event generation (i.e., number of

events/second) are determined at runtime with user input. Using the bench-

mark app, we answer RQ 1 and RQ 2.

RQ 3: What are the energy impacts of bundling and dropping on real-

world applications?

RQ 4: Can bundling and dropping help address users’ feedback without

harming apps’ energy consumption?

Contribution 2: We confirm the realism of the findings from the benchmarks

210

with four different real-world Android apps to answer RQ 3 and RQ 4. Be-

cause benchmark apps, although good for conducting controlled tests, do not

necessarily reflect real-world scenarios and performance [211].

RQ 5: Why do bundling and dropping save energy?

Contribution 3: We investigate the cause of performance changes by an-

alyzing resource access patterns (e.g., CPU use) of apps with bundling and

dropping to answer RQ 5.

RQ 6: What are the maintainability consequences of implementing bundling

and dropping on Android apps?

Contribution 4: We analyze the difficulty of incorporating bundling/drop-

ping in Android apps, and the consequences of these changes on maintainabil-

ity, to address RQ 6. Decoupling Level (DL) metric [173] is used for analyzing

the maintainability cost of bundling and dropping versions.

We show that a small change to an architecture like MVP allows for mak-

ing energy consumption tradeoffs, allowing for energy-aware decision mak-

ing during design and maintenance phases. In general, developers can save

significant amount of energy by adopting the proposed bundling and drop-

ping mechanisms—without harming user experience and without materially

affecting the maintenance cost. To support reproducibility and extension, our

energy measurements and the open-source benchmark app are shared pub-

licly [85].

8.2 Background

8.2.1 Energy efficiency is difficult to achieve

Power (P) is the rate of work expressed in watts. Energy (E), expressed in

joules, is the total amount of work in a given time (T): E = P × T . En-

ergy consumption is linearly proportional to the run-time of a component,

but only when P is constant. A reduced time T can save energy, but what

if the CPU switches to a higher power consuming state for a reduced time

211

T? Without actual energy measurements or estimates, this is hard to answer.

Moreover, CPU access patterns are just one of the many considerations that

affect energy consumption in modern devices [142], [269]. Studies have recom-

mended energy efficient Java collections [95], [196], energy-efficient communi-

cation protocols [50], [141], locating and finding energy bugs [10], [149], [195],

[249], and building models and tools for energy estimation [40], [45], [62], [71],

[90], [92], [184], [227], [269]. Despite the increasing amount of energy efficiency

research, it is often unclear how software design decisions impact energy con-

sumption [210], and what tradeoffs developers should be aware of [159], [191].

8.2.2 Model-View-Presenter

Model-View-Presenter (MVP) is a form of Model-View-Controller (MVC) [72],

[200]. MVC often uses a design pattern such as the observable pattern to

ensure synchronization between data in the model, and visual or concrete rep-

resentations in the views, while shielding the model from direct manipulation

from view objects via a controller. MVC has many variants. Some have differ-

ent purposes. One popular variant of MVC is called active MVC [152], that

is typically implemented with a single process whereby the observer pattern

is used to allow interactions between the model objects and the view objects.

In Active MVC, model objects are observables that notify observers (views)

when their representation or data is updated. This is done by keeping a list of

observers and then notifying each via a method call that the observable they

are watching has been updated. It is then up to the observer to query the

model objects for the information they need. This can be quite cumbersome

as every change can cause a cascade of observers to react and deal with each

change, regardless of the granularity or usefulness of the change. Another

problem with this pattern is that it puts the notification and listener logic into

model objects.

Active MVC is cumbersome and requires many model objects to keep track

of observers. Model-View-Presenter is a variant that uses the observer pattern,

but it provides a proxy (presenter) between the model and the views. The

212

model objects, when modified, updates the presenter. The presenter notifies

views and provides them with the information they need to update. The

views do not necessarily need the model objects as the presenter is in the

way, thus isolating the model objects further from views, while removing the

responsibility of model objects to notify views for updates. The controller part

of MVP is often folded into the presenter object itself. Using this presenter

as a proxy allows one to put delegation logic into the presenter and keep that

logic out of the model objects. This means that a presenter could, for example,

bundle updates or drop updates that were deemed irrelevant. Both of these

choices could improve the runtime behaviour of an application. Because of

its simplicity, the MVP pattern has been recommended in several developers’

blogs and discussions [21], [36], [203]. Our approach, however, can also be

adopted with other architectures besides MVP.

8.2.3 Events, bundling and dropping presenters

An event can be a database update request, a packet transmission request, a

view update request and so on. Bundling is the act of storing and queuing

incoming events such that they can be processed together, even periodically.

Dropping is the act of keeping only the last incoming event to be processed—

periodically, or on demand, it processes only the most recent event. A bundling

presenter stores incoming events and send them later in a single batch for

processing them together. On the other hand, a dropping presenter discards

previous events and processes only the most recent one. Bundling is applicable

when a delay in processing is acceptable, whereas dropping is relevant when,

along with the delay tolerance, the most recent event nullifies the importance

of previous events.

Bundling has been found energy efficient in earlier studies. Pathak et

al. [192] proposed I/O bundling for reducing tail energy leaks in mobile apps.

The authors found that some hardware components, such as the network in-

terface card or SDCard, suffer from the tail energy phenomenon. Tail energy

is the wasted energy by a component while transitioning from the active to

213

Figure 8.1: UML class diagram of the benchmark app.

the inactive state. Bundling operations that involve such hardware devices

reduces the tail energy phases significantly, and thus save software energy

consumption. For the same reason, Chowdhury et al. [46] found that writ-

ing log messages in batches can reduce energy consumption. Other research

found that HTTP/2 servers can reduce clients’ energy consumption by enabling

a form of bundling, compared to the HTTP/1.1 servers [50]. Lyu et al. [154]

has shown that energy efficiency can be significantly improved by grouping

multiple database auto-commit transactions into a single transaction.

In this paper, however, we focus on modifying an existing architectural

pattern (MVP) with dropping and bundling. We show that by adopting this

modified architecture one can gain the maintainability and architectural bene-

fits of MVP. Yet developers may still decide how to balance event-based energy

consumption against other qualities such as latency.

8.3 Methodology

This section describes the benchmark app we developed for our experimenta-

tion, along with our energy measurement process and test scripts for driving

the subject apps.

214

8.3.1 The benchmark app

This app has three major components including Model, View, and Presenter

in compliance with the MVP pattern. Figure 8.1 illustrates the benchmark

app with a class diagram.

The benchmark app, with an UI, allows a tester to choose a configuration of

parameters to test. For example, the number of emitters (i.e., event sources),

event generation rate, test run duration, and the version of the presenter—no

bundling, bundling, or dropping—can be selected at run time. For bundling

and dropping, a delay parameter is also provided, i.e., how long the app should

wait for collecting the incoming events before processing all the saved events in

a single batch? This UI, with a button click, can then spawn a new experiment

running on a thread separate from the UI thread [202]. The new experiment

will have emitters and views of emitters’ emissions instantiated.

Model

The model is a collection of emitters objects (i.e., event sources) based on

the user’s input. The model is responsible for dealing with the emitters and

forwarding their emissions to the presenter. The model has a registerObserver

method which can add any number of presenters that can be interested in an

update from this model. However, for simplicity, we used only one presenter

in our experiments. The model is an observable from the Observer pattern.

The model component uses four different sub-components: Emitter, Emission,

Distribution, and EmitterQueue.

Emitter An emitter is an event source that emits events at a given rate (i.e.,

number of events/second). Each emitter creates emission objects that contain

all the data of the next scheduled transmission from that emitter. The emitter

is also responsible to notify the model about emissions, so that the model can

notify the interested presenter. Emitters are meant to simulate event sources

like stock prices, weather information, or sensor output.

215

Emission An emission is an event that contains some data, usually a mes-

sage. These messages are randomly generated and timestamped.

Distribution Each emitter produces emissions following a probability dis-

tribution function (PDF) for scheduling the next emission. The benchmark

app is designed to accommodate any PDF at run-time. For simplicity and low

variability in our energy measurements, we used only the uniform distribution.

EmitterQueue The EmitterQueue uses a priority queue (Java’s PriorityQueue)

to schedule emitters for emitting and transmitting the next emissions. The

priority queue enacts an efficient algorithm for scheduling the emitter. The

EmitterQueue sorts all the emitters based on their next waiting time. The

model then removes the first emitter from the priority queue, finishes its trans-

mission, and then insert it again based on its next scheduled emission time.

This process continues until the test run duration expires.

Presenter

The presenter is an observer of the model component. It is notified whenever

one of the model’s emitters transmits. The presenter maintains a mapping

of emitters and views, which the presenter uses to notify the view of the

corresponding emitter with the emission. There are 3 kinds of presenter used in

both the benchmark App and the study: i) No bundling—forwards the update

immediately; ii) Bundling: waits for the given bundling time, saves all the

incoming updates, and forwards each of them all together; iii) Dropping: same

as the bundling except the presenter forwards only the most recent update and

discards all the previous updates.

The presenter runs in a separate thread than the UI thread. When the

presenter receives an update, it decides which view to notify and passes off

the necessary information to the view in the view’s thread—such as the UI

thread if the view has a UI. The bundling presenter, for example, sleeps inside

a timer thread and stores the incoming events in parallel. It then forward all

216

the stored events to the interested views once the sleeping time is over (i.e.,

the bundling time provided by the user). The dropping presenter is identical

except it discards previous events and only forwards the most recent one. To

help practitioners for implementing bundling/dropping presenters, we made

the benchmark app public and open-source [85].

View

Views are meant to receive updates from the presenter. What they do with

the update is up to them, but typically they only talk to the presenter and

updates them with the emission objects they receive. They are observers of the

presenter but might be associated with a particular object. For simplicity, the

benchmark app maintains a one-to-one relationship between the emitters and

view components—a single view, a textfield, is interested in a single emitter. A

view in the benchmark app is thus responsible to display the received emission

data from a emitter through the presenter.

8.3.2 Energy measurements and test scripts

We used two implementations, to verify the generalizability of our proposed

approach, of the GreenMiner [102] software energy measurement platform to

measure the energy consumption and resource usage of the apps used in this

paper. The GreenMiner’s tests and measurements can be accessed remotely,

and GreenMiner has been used extensively in a variety of software engineering

energy consumption research [4], [45], [48], [50], [95], [102], [164], [204], [207].

The system under test is typically an Android smartphone. Energy is

measured using current sensor INA219 and INA159 chipsets that report to

an Arduino Uno microcontroller. The microcontroller processes and aggre-

gates measurements, sending to the test computer—a Raspberry Pi model B

computer. The current sensors and the Pi are connected to the phones under

test. The first GreenMiner is connected to 4 Galaxy Nexus phones (system-

under-test) running Android 4.4.1 with an INA219, while the GreenMiner-2 is

connected to an ASUS ZenFone 2 running Android 5.0.2 with an INA159. For

217

a given app and test, the Pi acts as the test-runner which pushes, runs, and

collects measurements for a given test script. The first GreenMiner system

has four identical settings with four Galaxy Nexus phones. Running different

tests in parallel helps accelerate the measurement process. GreeMiner-2 has

only 1 ASUS Zenphone 2. GreenMiner test framework cleans any previously

installed apps before running a new test. This is to ensure the same system

state for each test; energy consumption of a particular test is therefore unaf-

fected by previous tests. We ran the real-world app tests on the GreenMiner

and GreenMiner-2 ; the benchmark app was tested solely on the GreenMiner

to simplify comparison of parameters and energy consumption.

Previous GreenMiner based works [4], [45], [48], [50], [95] recommended

running the same test multiple times, for the observed variability in energy

consumption. We ran all versions of our subject apps (benchmark and real

world apps) 10 times. To minimize outlier effects, we show the 99% confidence

interval of our measurement distribution. In addition, whenever necessary,

we used the Kruskal-Wallis test [104] to verify if two energy measurement

distributions are statistically different. The advantage of Kruskal-Wallis test

is that it does not assume any distribution of the data as it is non-parametric.

To measure the energy consumption of an app, we need to run the app

multiple times, which is infeasible with manual testing. We used the Android’s

adb shell [19] script for writing the test cases. For the benchmark app,

writing the test script was straightforward. The script selects the number

of emitters, the presenter type, the bundling time in case of bundling and

dropping, and provides the test duration and event generation rate before

clicking the start button. For the real-world apps, however, the tests were

written with two of the authors’ consensus that these tests represent an average

user’s interaction with these apps.

218

1 2 4 8 16 32 64 128
Event generation rate (events/second)

20

25

30

35

40

45

50

55

E
n
e
rg

y
 (

J)
Number of emitters

Benchmark App

1
2
4
8
16
32
64
128

Figure 8.2: Energy consumption of the benchmark app with different numbers
of emitters and event generation rates. Bars indicate the 99% confidence
interval.

8.4 Results: benchmark app

In this section, we show the energy consumption of the different versions of the

benchmark app with different settings. To select the number of emitters, and

event generation rate, we use powers of 2: 1, 2, 4, 8, 16, 32, 64, and 128. This

large range is able to show the big picture: the impact on energy consumption

with the increase in the number of emitters and event generation rate. All

versions (at all settings) of the benchmark app were run for a fixed period of

20 seconds, repeating 10 times each.

RQ 1: What is the impact of the number of event sources and

event generation rates on software energy consumption? Figure 8.2

shows the energy consumption of the benchmark app with different numbers

of emitters (i.e., event sources) and event generation rates. Clearly, the energy

consumption goes up when we increase the number of emitters and/or the

event rate. The Spearman [136] correlation coefficient is 0.66 (p ≈ 0) between

219

the number of emitters and energy consumption in joules. The coefficient is

0.69 (p ≈ 0) between the event rates and energy consumption. The coefficient

would have been higher if the phones were able to process high numbers of

events and emitters. The variations in energy measurements among multiple

runs for each setting are small; Figure 8.2 shows that the 99% confidence in-

tervals are not noticeable until the performance is saturated. This is because

we kept the benchmark app as simple and deterministic as possible, which

is harder to control in real-world apps. We also observe that for high num-

ber of emitters (i.e., ≥32 emitters) the energy consumption does not change

with the increase in the event rate after a threshold. This is because of the

limited capacities of the phones we used for our measurements; these phones

can process a certain number of events within the allotted 20 seconds test

duration. Producing more events than this threshold does not impact the en-

ergy consumption, for the phone can not process the extra events within the

allotted time. In fact, with the Kruskal-Wallis test, we found statistical dif-

ferences between the energy measurements until the numbers of emitters and

rates are high. For example, with 8 emitters, α = 0.05, p = 0.0001 between 32

events/sec and 64 events/sec. However, for α = 0.05, p is statistically insignif-

icant (0.6242) between 64 events/sec and 128 events/sec when the number of

emitters is fixed to 64.

Table 8.1 shows the percent increase in energy consumption in the number

of emitters and event generation rates compared against the energy consump-

tion of one emitter with one event per second. For example, even with a single

emitter, the energy consumption can go up 38% when the event generation

rate is high (128 events/second). And note that the percentage increase with

high numbers of emitters and rates would have been much higher than the

reported values if the phones were to able processing more events.

Findings: Many modern applications deal with large numbers of event
sources with high numbers of incoming events [9], [135], [226]. Our results
show that energy consumption is correlated with both the number of event
producers and the rate of event production.

220

Table 8.1: Percent increase of energy consumption compared with the energy
consumption of 1 emitter and 1 event/second. For readability, nearest integer
values are presented.

Rates
Emitters 1 2 4 8 16 32 64 128

1 0 2 4 6 12 22 32 38
2 2 4 7 12 22 33 39 43
4 5 8 13 22 33 40 44 49
8 8 13 22 33 40 46 51 55
16 14 23 33 41 47 53 55 56
32 22 33 41 47 53 55 56 56
64 26 36 45 53 54 54 55 54
128 30 42 51 54 54 54 54 54

RQ 2: Can bundling and dropping events help in saving energy

while varying the numbers of sources and rates? To answer this

question, we considered three different waiting times for both bundling and

dropping: 0.1 second—the corneal reflex time of human eyes; 0.5 second—half

of user-acceptable latency; and 1 second—the broadly used acceptable latency

target for interactive applications [168]. Unlike the real-world apps presented

later, a wider range of waiting times were not considered for the benchmark

app so the graphs are readable.

Figure 8.3 shows the energy savings of different bundling and dropping

rates compared with no bundling or dropping (presented as Nobundling in

the figures). Each graph shows the results for all the possible scenarios for a

fixed number of emitters. Except for very high numbers of emitters or rates,

the energy consumption goes up monotonically for the Nobundling version.

While this trend is true for the bundling versions as well, for the dropping

versions we do not see such clear trends. This is because the number of events

processed by a dropping version (transferring events from the presenter to the

views) is to some extent independent of the number of events generated. The

small energy increase for the dropping versions with increased rates is due

to the cost of producing more events by the model component in our bench-

mark app. Not surprisingly, dropping is more energy efficient than bundling;

221

1 2 4 8 16 32 64 128
Rate (events/second)

20

22

24

26

28

30

32

E
n
e
rg

y
 (

J)

Number of emitters = 1

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

22

24

26

28

30

32

34

36

E
n
e
rg

y
 (

J)

Number of emitters = 2

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

E
n
e
rg

y
 (

J)

Number of emitters = 4

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

E
n
e
rg

y
 (

J)

Number of emitters = 8

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

E
n
e
rg

y
 (

J)

Number of emitters = 16

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

50

55

60

E
n
e
rg

y
 (

J)

Number of emitters = 32

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

Figure 8.3: Energy consumption of bundling and dropping compared with
the Nobundling versions for different number of emitters. Results for more
than 32 emitters are not presented; due to resource limitations, the energy
consumption is inconsistent for very high numbers of emitters and rates. Bars
indicate the 99% confidence interval.

222

Table 8.2: Energy savings (in percent) by different bundlers and droppers
when compared with no bundling or dropping. Results are presented for just
one emitter.

Rates
Versions 1 2 4 8 16 32 64 128

Bundling-0.1s 0 0 0 0 3 13 22 25
Dropping-0.1s 0 0 0 0 4 14 25 30
Bundling-0.5s 0 0 2 3 8 18 27 30
Dropping-0.5s 0 0 2 3 9 19 29 34
Bundling-1s 0 1 4 5 10 19 29 31
Dropping-1s 0 1 4 5 11 20 31 36

the dropping versions process fewer events than the bundling versions. The

bundling versions, in spite of processing the same number of events as the no

bundling version, can save significant energy.

It is encouraging that, with bundling, we can process and deal with the

same amount of workload, and yet can make apps significantly more energy

efficient. Table 8.2 shows the energy savings by different bundlers and droppers

with fixed one emitter. This is to ensure that the energy consumption is

not affected by resource limitations, thus enabling accurate comparison. It

shows that with bundling (doing all the work without dropping anything)

and maintaining a latency such that a user does not notice any change (0.1

second), we can still save up to 25% of the energy (Bundling-0.1s). With user-

acceptable latency (Bundling-1s), bundling can save up to 31% in a simple

app like our benchmark, with just one event source. We verified with the

Kruskal-Wallis test that these differences are indeed statistically significant

(with α = 0.05, p ≤ 0.01).

Findings: Dropping is the most energy efficient approach compared to
bundling and no bundling. However, dropping might not be an acceptable
alternative when accuracy is important. Application developers can con-
sider bundling in such scenarios, which still saves significant energy over
no bundling.

223

Table 8.3: Description of the selected four real-world Android apps from F-
droid.

Test
App Type # Classes ULOC Test scenario duration (s)

Sensor Readout [218] “Real-time graphs of sensor data” 56 6009 Measure the Gyroscope sensor 70
ColorPicker [56] “Pick colors and display values” 12 908 Move the scroll bars for R,G,B 50

Angulo [22] “Angle and Distance Measuring” 4 497 Start the measurements and wait 55
AcrylicPaint [2] “Simple finger painting” 7 936 Draw a hexagon 27

8.5 Real world apps

Results from the benchmark app shows that bundling and dropping can save

significant energy in Android apps. And this saving is larger with increased

numbers of event sources or event generation rates. It is, however, not obvious

how such optimization approaches would perform in real-world apps [211]. In

this section, we evaluate bundling and dropping in four selected real-world

Android apps.

8.5.1 Selection of applications

The apps we selected had to be open source so that we can implement bundling

and dropping. We explored the F-Droid repository [68] to find suitable apps.

F-Droid contains source code for all the posted Android apps and was used in

earlier mining software repositories research [30], [134], [255]. Finding suitable

apps with reasonably small code size (so that we could easily identify where to

implement bundling and dropping) was challenging, which hindered us from

analyzing more apps. Table 8.3 shows the characteristics of the four selected

apps.

The different types and code sizes of these four apps enables reliable eval-

uation of bundling and dropping. The Sensor Readout app is also available

on Google Play [81] and has been downloaded more than 50,000 times (as of

writing). This app has received 540 reviews with an average rating of 4.3/5.

This allows evaluating energy optimization techniques for apps that are al-

ready popular. AcrylicPaint, a finger painting app, represents apps where

224

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

6

8

10

12

14

16

18

E
n
e
rg

y
 (

J)

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping
acrylicPaintOriginal-GM2
acrylicPaintBundling-GM2
acrylicPaintDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

40

50

60

70

80

90

100

110

E
n
e
rg

y
 (

J)

ColorPicker App

colorPickerOriginal
colorPickerBundling
colorPickerDropping
colorPickerOriginal-GM2
colorPickerBundling-GM2
colorPickerDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

15

20

25

30

35

40

45

50

55

E
n
e
rg

y
 (

J)

Angulo App

anguloOriginal
anguloBundling
anguloDropping
anguloOriginal-GM2
anguloBundling-GM2
anguloDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

40

60

80

100

120

E
n
e
rg

y
 (

J)

SensorReadout App

sensorOriginal
sensorBundling
sensorDropping
sensorOriginal-GM2
sensorBundling-GM2
sensorDropping-GM2

Figure 8.4: Energy consumption of bundling and dropping compared with the
original versions of four real-world apps. Bars indicate the 99% confidence
interval.

225

users might spend more continuous time, making energy optimization more

crucial.

We have implemented the bundling and dropping versions of these apps,

except for Sensor Readout, following the approach presented in section 8.3.1.

The original Sensor Readout app, uses a timer function, and processes only

10 measurements per second, although the app samples measurements con-

tinuously. As a result, we did not have to implement our own timer for the

bundling and dropping variants. The apps, however, did not follow a clear

MVP pattern. Instead, their designs were closer to the MVC pattern. We

have identified which classes contained the actual processing code, and refac-

tored those classes to accommodate our bundling/dropping presenters. Our

intention was to convert the existing design as close to the bundling MVP

pattern as possible. For ensuring correctness, two of the authors were involved

in refactoring and testing the apps afterwards.

8.5.2 RQ 3: What are the energy impacts of bundling
and dropping on real-world applications?

The energy savings from bundling and dropping are of course impacted by

the bundling/dropping time—the time these two variants wait before process-

ing a batch of events. We selected six different times: 0.01s—fastest human

time perception; 0.03s—animation speed; 0.1s—the corneal reflex time of hu-

man eyes; 0.2s—double the corneal reflex time; 0.5s—half of user-acceptable

latency; 1 second—acceptable user latency [168]; and 2 seconds—double user-

acceptable latency. Figure 8.4 shows the energy consumption of bundling and

dropping compared with the original versions of the four selected apps. Here,

we also show the results for the GreenMiner-2 (GM2) on the Asus Zenphone

2.

Except for the Sensor Readout app, we observe more energy consumption

for the bundling and dropping versions for very low bundling and dropping

times (e.g., 0.01s). This suggests that running a timer thread for bundling or

dropping incurs energy consumption overhead. As we mentioned before, Sen-

226

sor Readout did not require a separate timer thread and does not have this

overhead when bundling or dropping is used. For all the apps, however, the

energy consumption of bundling and dropping improve significantly when the

waiting time is reasonably higher. For example, even for 0.1s latency which is

difficult for users to perceive, the bundling and dropping versions of Acrylic-

Paint and Angulo can save 12% (12% with GM-2) and 9% (8% with GM-2)

energy consumption respectively, when compared with their original versions.

The energy savings become significant for larger latency. For example, we

can save 37% (24% with GM-2) energy consumption for the Sensor Readout

app with a 1s latency in drawing the measurements graphs, and that without

losing any measurements (i.e., with bundling).

GreenMiner-2 (with the ASUS ZenFone 2 phone) consumes less energy

than the GreenMiner (with the Galaxy Nexus phone) for all apps, and thus

the energy savings are generally lower. The trends in percent of energy con-

sumption reductions, however, are similar across the apps for both the Green-

Miners.

8.5.3 RQ 4: Can bundling and dropping help address
users’ feedback without harming apps’ energy con-
sumption?

Answering this question might require analysis from multiple perspectives.

However, with one case study, we show that there are scenarios where the

developers can adopt our bundling approach to address user feedback that

involves energy expensive modifications. For this study, we selected the Sen-

sor Readout app—the only app available on Google Play with a significant

number of reviews. For a selected sensor type, this app shows/updates 10

measurements per second.

In general, this app is praised by users. However, some reviews indicate

user dissatisfaction. For example, one user desires to see colour changes with

different measurements while updating graphs [218]. Another user is unsure

why the sampling rates from the sensors are low—10 samples per second.

227

5 10 20 30
of Measurements/second

50

60

70

80

90

100

E
n
e
rg

y
 (

J)

SensorReadout App

sensorOriginal
sensorBundling-0.1s
sensorDropping-0.1s

Figure 8.5: Energy savings of bundling/dropping for the Sensor app with
higher sampling rates. Bundling/dropping time is fixed to 0.1 second. Bars
indicate the 99% confidence interval.

Changing colors continuously and sampling at higher rates might increase

the energy consumption of the app significantly. And yet, developers need

to carefully address user feedback for their apps to stay popular [190]. In

fact, there are reviews on the Sensor Readout app suggesting similar apps are

supposedly better than Sensor Readout. We show that Sensor Readout can

benefit by applying bundling—by sampling measurements faster for timeline

graphs, but delaying graphical updates by only 0.1 second without harming

latency (more measuresments per second but constant UI update rate).

Figure 8.5 shows the energy consumption of the original version compared

with the bundling and dropping versions, with different sampling rates. The

bundling/dropping time (i.e., the latency in updating the graphs) is fixed

to 0.1s. The average energy consumption of the original version is high (≈94

joules) when the sampling rate is 20/second compared with the original 10/sec-

ond (≈69 joules); a 36% increase in energy consumption. The difference is

also statistically significant (Kruskal-Wallis test, α = 0.05, p < 0.01). How-

228

ever, bundling with 20 samples/second consumes similar energy to the original

version with just 10 samples/second. With sampling rate higher than 20, the

energy consumption of the phones does not increase as expected. The Galaxy

Nexus phones are unable to process more than a threshold number of samples.

Findings: Real-world Android apps can save significant energy with
bundling and dropping. Sacrifices in latency correlate with the energy
savings. Bundling with almost imperceptible latency (0.1s) can save en-
ergy without affecting user satisfaction. In some scenarios, bundling and
dropping can help developers address users’ concerns with no meaningful
sacrifice in usability.

8.6 Understanding resource utilization patterns

with bundling and dropping

It is unsurprising that dropping saves energy; in dropping the presenter only

sends the most recent event for processing. This requires less CPU slots for the

process (also known as CPU jiffies [45]). Bundling, however, does the exact

same amount of work as on-time processing. Thus the question arises: why

does bundling save energy in spite of processing all the events?

Assumption: A CPU jiffy is an assigned CPU time slot for a process in

Linux [45], [48]. More CPU jiffies for a process causes more CPU jiffies for

the kernel, because of more context switches between the user space and the

kernel space. In on-time event processing system, each event requires at least

one user CPU jiffy. This incurs at least one context switch and one kernel

CPU jiffy. This effect, however, can be minimized with bundled processing.

Batching of events minimizes the number of context switches and the number

of CPU jiffies. If our assumption is correct, the energy efficiency of bundling

is explainable. The number of CPU jiffies and context switches are almost

linearly correlated with software energy consumption [45].

229

8.6.1 RQ 5: Why do bundling and dropping save en-
ergy?

To verify the above assumption, we have analyzed the AcrylicPaint app. Simi-

lar to Chowdhury et al. [45], we used the Linux proc file system. To capture the

CPU jiffies used by an app, we used /proc/pid/stat. This also includes the

kernel CPU jiffies used for that app. However, app (process) specific context

switches can not be captured using such a file system. We captured the num-

ber of context switches from /proc/stat before and after running a test for

an app. The difference is thus approximately the number of context switches

for the app.

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

160

180

200

220

240

260

280

N
u
m

b
e
r

o
f

C
P
U

 J
if
fi
e
s

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

30000

35000

40000

45000

50000

55000
N

u
m

b
e
r

o
f

C
o
n
te

x
t

S
w

it
ch

e
s

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping

Figure 8.6: Numbers of CPU jiffies and context switches for bundling and
dropping compared with the original AcrylicPaint app. Bars indicate the 99%
confidence interval.

Figure 8.6 shows the result (10 measurements for each configuration).

The number of CPU jiffies and context switches follow a similar pattern to

the energy consumption of the AcrylicPaint’s versions (Figure 8.4). This ob-

servation suggests that our assumption is true: bundling indeed reduces the

number of CPU jiffies and context switches. This also indicates that bundling

and dropping enable efficient resource usage, and thus can potentially provide

similar energy savings for platforms other than Android. The mechanisms of

context switches between the kernel and user space are similar across different

platforms and architectures.

230

Findings: Bundling and dropping access resources in efficient ways—
reducing the need for many context switches, leading to energy efficient
software. This observation suggests that the energy efficiency of bundling
and dropping is not restricted to Android systems, but also is applicable
in other platforms.

8.7 Maintainability analysis

Developers and architects need to be concerned with the maintainability con-

sequences of changes made to enhance any single aspect of a system’s quality.

Thus it is important to understand the consequences of the changes made to

the apps to implement the bundling or dropping strategies. This motivates

our sixth and final research question.

RQ 6: What are the maintainability consequences of implement-

ing bundling and dropping on Android apps?

To assess these consequences we analyzed the before and after versions of

the four selected real-world apps. We first reverse-engineered each of the apps

using the Understand tool [217]. Using this tool we were able to collect code

metrics on all versions of the apps. (For the purposes of brevity we only report

on the original and bundling versions of the apps here. Results for the dropping

versions were very similar.) In each case the modifications to the apps were

slight in terms of effort, requiring fewer than 100 additional lines of code and at

most three new classes (including one Handler class and one Thread class that

runs the timer). But counting the lines of code and classes is just the measure

of the required effort for converting a typical app version to a bundled version.

Another important question is whether these changes affected the long-term

maintainability of the system. If, for example, we added few lines of code but

added many new dependencies between classes, this would increase coupling

in the system, negatively affect the maintainability of the app going forward.

To determine whether this was the case we analyzed the coupling of the

apps, in their before and after versions, using the Decoupling Level (DL) met-

ric [173], a system-wide measure of coupling. The DL metric has been em-

231

Table 8.4: DL values for before/after versions of each app (bundling only).

App DL Score DL Score DL ∆
Original Bundling

Angulo 68% 69% +1%
ColorPicker 17% 17% +0%
AcrylicPaint 88% 82% -6%

Sensor Readout 32% 30% -2%

pirically validated [173] and shown to be more reliable than other coupling

metrics such as Propagation-Cost [155] and Independence-Level [220] in pre-

dicting maintenance effort. DL scores range from 0 to 100, and the higher the

number the better, as this indicates that the system’s files are more highly de-

coupled and hence can be independently modified. The purpose of using this

metric is to determine if the changes made to address energy efficiency signif-

icantly lowered the value of the DL metric. If so, this would mean that the

maintainability of the system was negatively impacted by the energy-saving

modifications.

The DL values of the before and after versions of four apps are shown in

Table 8.4. While the values of the DL metric varied widely (indicating the

inherent maintainability of the apps prior to our intervention) the changes for

the apps due to the addition of bundling were small. The observed drops in

DL scores were due to new relationships between classes that the bundling

and dropping functionality required. But since the DL scores do not change

dramatically (decreasing about 6% for AcrylicPaint, increasing 1% for Angulo,

and staying the same for ColorPicker), this indicates that the tradeoffs made

for energy efficiency were generally good ones—improving the energy efficiency

of the apps while sacrificing little, if any, maintainability of the apps for the

long term. In fact, in [173], it was noted that small variations in DL (≤ 10%)

are typically not meaningful.

Findings: Energy efficiency is largely ignored during software mainte-
nance [159]. One reason could be the difficulty in fixing energy bugs [44].
Bundling and dropping, however, are easy to implement and maintain.

232

8.8 Threats to validity

External validity is hampered by the single version of the Android OS that we

used on four Galaxy Nexus phones. Also, we do not know how many real-world

apps can directly take advantage of the proposed bundling approach. The

first threat is mitigated somewhat by using the GreenMiner-2 with a different

phone (Zenphone 2). To mitigate the second threat, we tried to select apps

from different domains, and with the context-switching analysis we explained

why bundling is energy efficient. This might help predicting what other types

of apps can adopt GreenBundling.

Internal validity can be criticized for the way we calculated the number

of context switches. Unlike the CPU jiffies, process-specific context switches

are inaccessible using the procfs file system. The difference between after

and before when running a process can be affected by other processes (e.g.,

garbage collection).

The Kruskal-Wallis test, although it does not assume any normality dis-

tribution about the data, still assumes that data in each group has similar

skewness [163]. These threats are minimized by measuring each configuration

10 times and then showing the means, and confidence intervals. Construct and

conclusion validity may also be questioned based on the tests scripts that we

created for the real-world apps. It is not guaranteed that typical users of these

apps would interact similar to the way our test scripts do. However, our test

scripts exercise the main functionality of these apps: e.g., drawing measure-

ment graphs and objects with the Sensor Readout app and the AcrylicPaint

app respectively.

8.9 Related work

In recent years, developers have expressed more concerns about software en-

ergy consumption [158]. The software research community has been investi-

gating several areas of this issue. Hasan et al. [95], Pereira et al. [196], and

233

Manotas et al. [160] have presented recommendations for selecting energy ef-

ficient Java collections. Energy efficient color transformation in Android apps

was proposed by Li et al. [142] and Agolli et al. [6]. Off-loading jobs [169], pre-

fetching content [74], and enabling ad-blockers [204] have been found to save

energy in some cases. Chowdhury et al. [50] suggested that HTTP/2 servers are

more energy efficient, from the clients’ perspective, than HTTP/1.1 servers.

Energy efficient logging techniques for Android systems [46] have also been

studied.

Other research has shown correcting code smells helps to improve energy

efficiency [39]. In a similar vein, the impact of code obfuscation and refactoring

on software energy consumption was studied by Sahin et al. [212], [213]. The

energy change from code obfuscation is too small to notice, whereas refactoring

can impact both positively and negatively.

Developers need to measure or estimate their apps’ energy consumption.

Hao et al. [92] proposed an instruction-based energy estimation model. Ma-

chine learning based models were proposed by Aggarwal et al. (GreenAd-

visor [4]), Chowdhury et al. (GreenOracle [48] and GreenScaler [45]), and

Pathak et al. [194]. Nucci et al. proposed PETrA [184] to estimate Android

apps’ energy consumption leveraging various Android tools.

Locating software energy bugs and hotspots automatically is another im-

portant research area. Wakelock-related energy bugs have been frequently

reported by earlier studies [10], [149], [195], [249]. Developers need to exploit

tools and techniques to locate and solve such bugs [249]. Similar to the en-

ergy bugs, developers should also resolve energy hotspots [28]. Jabbarvand et

al. [117] proposed a test-suite minimization approach focusing only on locat-

ing energy bugs. In their later work, the authors proposed an energy-specific

mutation testing framework with high precision in detecting energy bugs [116].

This paper, however, focuses more on high-level design choices that can

help developers writing energy efficient systems. To the best of our knowledge,

this is the least explored area of software energy efficiency, and there is still

a need for more research on this avenue. The closest to our work is the short

234

study by Sahin et al. [210], where the authors investigated different existing

design patterns and their energy consumption. In contrast to our work, that

study lacks proper guidelines and cost analysis for making a design choice.

8.10 Conclusion & future work

In this work we showed that an architectural choice, such as choosing a bundled

MVP architecture, can improve the sustainability and energy consumption of a

system without negatively impacting system maintainability. The consequence

of this research means that architects and developers can (and should) make

design decisions to address energy consumption before they start coding.

We have demonstrated the value of a bundled presenter in MVP by first

benchmarking a generic MVP architecture and then by demonstrating that the

energy improvements demonstrated in the benchmark were in fact realized on

real-world apps that were refactored into bundled MVP architectures from

more classical MVC architectures. A significant reduction of energy consump-

tion can in fact be achieved. Furthermore we showed that these modified apps

did not seriously affect the user experience, nor did the refactored versions suf-

fer in terms of their eventual maintainability. Thus, the energy-savings that

we achieved were truly win-win.

Our final message is this: fundamental architectural choices, such as the

ones we have investigated in this paper, can have substantial effects on energy

consumption. Although we demonstrated our results on MVP-based architec-

tures, it is our hope and belief that developers and researchers can use this

study to motivate similar studies, allowing them to address questions of en-

ergy consumption, and their consequent tradeoffs, at design time. We do not

need to wait until the app is built to make these important design choices.

In our future work, we want to evaluate the proposed bundling architectures

on other smartphones than Android, and with real end-users for evaluating

actual usability. We also want to evaluate other architectural patterns and

architectural choices so that architects can predictably translate sustainability

235

requirements into designs and into working systems.

236

Part III

The Future

237

Chapter 9

Conclusions & Future Work

This chapter concludes this thesis by discussing the summary of the contribu-

tions, potential future works, and our concluding remarks.

9.1 Summary of the contributions

This thesis first categorizes the research areas in software energy efficiency into

two broad categorizes: 1) models for estimating software energy consumption,

and 2) enhancing energy optimization guidelines. The rationale for such cate-

gorization is that energy-aware developers, first and foremost, need to measure

their apps’ energy consumption. One obvious advantage of such measurements

is, developers will be informed if a new version (before releasing it) consumes

more energy than the previous versions. This would help them finding energy

bugs in the new version, or making trade-offs between energy efficiency and

other features. Actual energy measurement, however, is expensive and requires

expertise, which led us to develop software-based energy estimation systems

(machine learning based energy models) without any hardware-based instru-

mentations. Our energy modeling approach is reproducible because we have

used common OS statistics that are accessible directly from any Linux-based

systems. We also argue that, developers need recommendations for achiev-

ing energy efficiency. This thesis provided three different recommendations

by empirically evaluating the energy consumption of the HTTP/2 protocol, by

analyzing the logging impact on energy consumption, and by providing an

238

energy efficient design pattern.

9.1.1 A reproducible energy model

In order to build a reproducible energy model, we investigated if we can use

common OS statistics and traces of system calls (as the independent variables

in machine learning models) for building software energy models. The tech-

niques we used for collecting the independent variables are reusable in other

Linux-based systems other than Android. We have successfully developed a

moderately accurate software energy model—GreenOracle.

Findings: A reproducible energy consumption estimation model can be
built using common OS statistics and their counts. The accuracy of such
models improve with more and more number of apps in the training set.
However, adding more apps in training requires manually writing a test
script for each of the app, because we need to automatically run each app
for collecting the OS statistics and the energy consumption. This makes
it difficult for making such models scalable.

9.1.2 Accurate energy models with automated test gen-
eration

We have shown that random test generation with test selection heuristics can

help us build accurate software energy models. With such approaches we can

add more and more apps in training and can continuously improve a model’s

accuracy. For test selection, however, the traditional code coverage heuristic

does not perform well, rather we need heuristics that care more about exercis-

ing energy hungry source code. In the end, we have produced the GreenScaler

model as a tool, which is publicly available [47]. Developers can download the

GreenScaler tool for estimating their apps’ energy consumption without any

cost and without dealing with any hardware instrumentation.

239

Findings: Automatic random test generation with resource utilization-
based heuristic such as CPU-utilization can help us to build accurate
software energy models. With such automation, we can add more apps
in training without manually writing laborious and time consuming test
scripts. Code coverage does not perform well for selecting tests for building
accurate software energy models.

9.1.3 Energy consumption of the HTTP/2 protocol

The HTTP/2 is the new standard Internet protocol. And yet, the energy ef-

ficiency of this protocol was unknown. We have measured the energy con-

sumption of HTTP/2 and compared it with the previous HTTP/1.1. We have

provided recommendations for web app developers that they should employ

HTTP/2 without any concern for energy efficiency. In fact, HTTP/2 is more

energy efficient than the HTTP/1.1, especially for high round-trip times. We

also have shown that the HTTPS for its encryption is more energy expensive

than the plain HTTP.

Findings: HTTP/2 is a free lunch for energy-aware web app developers. It
never performs worse than the previous HTTP/1.1 when energy efficiency
is a concern. On the contrary, for high round-trip times (e.g., more than
30 ms) HTTP/2 is always more energy efficient than the HTTP/1.1. Web
app developers should switch to the HTTP/2 protocol for making their web
apps more energy efficient.

9.1.4 Energy consumption of logging

Logging is heavily used for tracking software bugs. Heavy logging, however,

can negatively impact the energy efficiency of mobile apps, which is a concern

for the devices’ availability. We have measured the energy cost of logging

on Android systems and found that logging can be energy efficient if done

carefully. For example, for heavy logging, developers can bundle small log

messages together so that logging becomes less frequent.

Findings: Small amount of logging (e.g., ≤ 10 messages per second) does
not significantly impact energy consumption. Infrequent logging of large
log messages is more energy efficient than frequent logging of small mes-
sages. Logging also has potential for understanding energy bugs.

240

9.1.5 Energy efficiency from the design time

Unlike benchmarking software, energy consumption of real-world software is

often too high to benefit from small source code tweaks and API selections.

Research should focus more on higher level changes (architectural and design

levels) for efficient accesses of energy hungry hardware components. Anec-

dotally, there is a common belief in the community that a design good for

energy efficiency is probably bad for software maintenance. In this thesis, we

conducted the first study on finding energy efficient design patterns so that

developers can consider energy efficiency from the design time. We also stud-

ied the possible trade-offs that developers need to be aware of while adopting

a particular design choice.

We have provided the example of a bundled Model-View-Presenter where

the presenter can bundle incoming view update requests from the Model and

then can forward all the requests together in a batch. This approach can save

significant energy consumption in real-world apps. In addition, we have shown

that the proposed approach does not significantly impact the maintenance cost

of the source code. It is, however, a trade-off between user experience and

energy efficiency. We show that with bundle MVP for efficient view updates,

developers can still save energy without significantly hurting user experience.

Findings: Energy efficiency can be addressed from the design time. For
example, a bundled Model-View-Presenter can save significant energy con-
sumption by delaying the view updates so that multiple view updates occur
in a batch. This approach does not negatively affect source code mainte-
nance, and offers ways to minimize the negative impact on user experience
(i.e., updating views at every 0.1 second).

241

Summary: This thesis successfully demonstrated that accurate energy es-
timation models can be built for helping developers estimating their apps’
energy consumption. Also, energy specific guidelines can be produced for
guiding developers so they can write and deploy energy efficient systems.
While studying the guidelines, we observed the following rules of thumb
that can be followed by energy-aware software developers. 1) Developers
should strive for I/O bundling. They need to bundle I/O operations so
that multiple operations are completed with one I/O activation (this re-
duces the tail energy leaks) 2) Developers should try to reduce the number
of packet transmissions. For example, compression reduces data size and
can reduce the number of transmissions or packets. 3) Developers should
also strive for reducing the number of context switches.

9.2 Future work

Software energy efficiency is a relatively new topic in the software research

community. Although we have observed significant attention on this topic,

especially in the last five years, there is still need for more research. In this

section, we discuss some potential future works that we believe would be use-

ful for the research community as well as for the energy-aware developers.

In particular, two of the proposed future works are described with potential

methodologies.

9.2.1 A generic energy estimation model

A common problem with software energy estimation is that the approaches are

often specific for one particular device (consider PETrA [184] as an example

which was described in chapter 5). Our proposed machine learning-based

approach (described in chapter 4 and 5) with common OS statistics alleviates

this problem, because this approach, with device specific measurements, is

reproducible for a different device. Reproducing an energy estimation model

for every new devices, however, might be difficult and time consuming. There

is still a need for a generic energy estimation approach that can work on any

devices.

While we believe developing a truly generic energy estimation approach is

242

an open research problem, we offer a potential workaround. We postulate that

an energy-aware developer should care about energy estimation for answering

two particular questions: 1) how energy efficient is my app when compared

with other similar apps, and 2) does the new version of my app consume more

energy than the previous version?

We can conduct a new study to evaluate if a machine learning-based en-

ergy model (e.g., GreenScaler) can be used to answer those questions, espe-

cially when a developer do not have the same device that the model is built

on. For answering question 1, we can collect different third party apps from

different categories (multiple apps from each category). For apps under the

same category, test cases will be written for exercising similar functionalities

(e.g., add and delete items for to-do list apps). We can then measure the en-

ergy consumption of all the apps across multiple devices. Are the differences

in energy consumption similar across different devices? If we run the Green-

Scaler model on those devices, does GreenScaler suggest similar results across

different devices? We do not expect GreenScaler to estimate the actual energy

consumption accurately for different devices, but if the differences in energy

consumption are similar, that should meet the developers’ needs.

Similarly, for answering question 2, we can collect energy consumption of

different versions (energy efficient and energy inefficient) for multiple apps from

a new device (other than the Galaxy Nexus phone that was used for building

the GreenScaler model). On this new device, can the GreenScaler model still

distinguish the energy inefficient versions from the efficient ones? If yes, then

we can argue that developers can use machine learning based energy models

(e.g., GreenScaler) on different devices to find out which of their app versions

are energy (in)efficient.

9.2.2 Automatic energy regression testing

Software undergoes changes. Although a new version might come with new fea-

ture(s), this is not always the case. Developers might modify source code, with

the same functionality, expecting better performance [153]. These changes,

243

however, can induce harmful energy regressions [267]. Hence, before publish-

ing an app with source code modification, a developer needs to test the mod-

ified code. This requires a test case that must execute the modified source

code. Writing test cases manually, however, demands excessive manual la-

bor [16]. Automatic test case generation relieves developers from writing

labor-intensive manual test case generation. There exists tools to generate

a whole test suite [172], or guided test cases to locate crashes/bugs [18], [156],

[161] for Android apps. Unfortunately, there is no research on generating test

cases to find energy regression between two versions of a given app. This mo-

tivates a more specialized automatic testing methodology that only executes

the code difference between two versions of an app for locating the source of

energy regression.

One of the possible ways to find energy regression is to generate a whole test

suite—manually or with a tool like TrimDroid [172]. The whole test suite is

then exercised with the two given versions. GreenScaler can be applied to find

test cases that exhibit energy difference between the two versions. Generating

a whole test suite and running it for two versions of an app, however, can be

very time consuming. A recent study shows that excessive time demanding

testing is not acceptable to the developers [132].

As a future work, we propose test generation only for modified source code.

The hypothesis is that if two versions of an app do not differ for test cases

that exercise only the modified source code, then their performance (energy

consumption) should be identical considering the whole test suite. This also

facilitates significantly less testing time compared to the whole test suite test-

ing approach. By leveraging the previous works on automatic testing, we

propose to develop eRED (Energy Regression Detector). Figure 9.1 depicts

the proposed mechanism of eRED. Given the source code of two versions of

an Android app, modified source code is identified (with git diff tool for

example). eRED then applies program analysis techniques to understand the

flow graph (e.g., how a modified method is called from other methods in the

program), and an Interface model (how different GUIs are connected to each

244

Figure 9.1: eRED: Automatic test generation to detect energy regression be-
tween two versions.

245

other and with the modified source code). eRED then generates different test

cases that can execute the modified code. With the GreenScaler, eRED then

runs each test cases on both the versions to check energy regression. It is,

however, possible that energy regression exists only for certain types of input.

For example, if code modification is performed inside a loop, the energy re-

gression might depend on the length of the loop. Similarly, energy regression

might depend on the type of input of a text field.

Genetic algorithms can be applied for modifying test input [157], [161].

In genetic algorithms, a set of candidate solutions are evaluated for a given

fitness function. In case of eRED, the fitness function would be the energy

consumption difference between two versions of an app after executing with a

test case. From the best candidate solutions, tests with high energy difference,

a new generation of candidates are formed: either by mutating over each

candidate separately, or by applying cross over across different candidates. The

newly formed generation is then evaluated for producing further generations

until a demanded number of generations is reached.

9.2.3 Other potential research

Developers often follow some common patterns for optimizing the energy con-

sumption of their software. For example, Cruz et al. [57] found 22 such com-

mon patterns by mining open source software repositories and by leveraging

existing energy researches. What we do not know is how generalizable are these

patterns are. Do they offer similar energy efficiency across different devices

and across different usage scenarios? One really useful future work would be to

empirically evaluate the energy efficiency of these common techniques across

multiple devices (different smart-phones for example) and across different us-

age scenarios of the apps. For example, we can make two versions of an app

based on an energy commit (a commit that indicates the intent of improved

energy efficiency). The first version is built on source code that does not have

the new code from the energy commit, but the second version does. Now after

writing manual test scripts for different usage scenarios, we can run these two

246

versions in different phones. Do we see similar energy consumption differences

across different devices and usage scenarios? Are there cases where an energy

efficient pattern does not help at all? Can we build better recommendation

systems (e.g., device type and usage scenario-based recommendation) for these

commonly used energy optimization techniques?

9.3 Concluding remarks

Software energy efficiency is difficult to achieve. There are just too many un-

certainties. For example, should we always strive for an idle CPU? We do not

know. The answer might depend on the subject app and usage scenario. An

idle CPU induces less CPU energy, but it might increase the execution time.

Likewise, reducing the run-time of a system does not necessarily reduce its

energy consumption—less run-time might put hardware components to higher

power consuming states. There are also multiple components that need to be

utilized efficiently (e.g., CPU, Wi-FI, disk, and memory). It is even possible

that just by optimizing the energy consumption of one component (e.g., CPU),

one might increase the energy consumption of another component (e.g., mem-

ory). This is why, measuring or estimating the actual energy consumption

is so important: until we know what is the actual energy consumption of a

software, we can not tell if the applied optimization techniques are helping or

hurting.

Developers are trying to understand this rather foreign topic of energy effi-

ciency [159], but often do not receive enough guidelines from their peers (e.g.,

inadequate answers from programming questions & answer sites like Stack-

Overflow [198]). We thus argue that academics should think about accommo-

dating software energy efficiency as a topic in computing science curriculum.

The research community can still do a lot for helping energy-aware developers:

by providing new guidelines, and by evaluating existing guidelines on different

scenarios.

We also believe that future software energy research should focus more

247

on generalizability: when we build a new energy estimation or optimization

technique, we need to evaluate its performance across multiple devices, because

energy consumption can be very different on different hardware configurations

and architectures.

248

References

[1] /proc/stat explained, http://www.linuxhowtos.org/System/procstat.
htm, (last accessed: 2014-May-22). 41, 53

[2] Acrylicpaint, https://f-droid.org/en/packages/anupam.acrylic/,
(last accessed: 2018-Jun-02). 224

[3] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution of
android test suites in adverse conditions,” in Proceedings of the ISSTA
2015, ser. ISSTA 2015, Baltimore, MD, USA, 2015, pp. 83–93. 83

[4] K. Aggarwal, A. Hindle, and E. Stroulia, “Greenadvisor: A tool for
analyzing the impact of software evolution on energy consumption,” in
2015 IEEE ICSME, Bremen, Germany, Sep. 2015, pp. 311–320. 14, 18, 25, 44, 69, 79, 81, 108, 126, 168, 217, 218, 234

[5] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia,
“The Power of System Call Traces: Predicting the Software Energy
Consumption Impact of Changes,” in CASCON ’14, Markham, On-
tario, Canada, 2014. 13–16, 25, 45, 46, 48, 52, 78, 79, 81, 96, 108, 123, 126, 140, 145, 155, 168, 169, 199

[6] T. Agolli, L. Pollock, and J. Clause, “Investigating decreasing energy
usage in mobile apps via indistinguishable color changes,” in 2017
IEEE/ACM 4th International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft), May 2017, pp. 30–34. 234

[7] R. W. Ahmad, A. Gani, S. H. A. Hamid, F. Xia, and M. Shiraz, “A re-
view on mobile application energy profiling: Taxonomy, state-of-the-art,
and open research issues,” Journal of Network and Computer Applica-
tions, vol. 58, pp. 42–59, 2015. 4, 6, 126

[8] Akamai, HTTP/2 is the future of the Web, and it is already here! http:
//http2.akamai.com/demo/, (last accessed: 2015-APR-22), Akamai. 137, 157

[9] T. Akidau, The world beyond batch: Streaming 101, https://www.

oreilly.com/people/09f01- tyler- akidau, (last accessed: 2018-
AUG-05). 220

[10] F. Alam, P. R. Panda, N. Tripathi, N. Sharma, and S. Narayan, “Energy
optimization in android applications through wakelock placement,” in
2014 Design, Automation Test in Europe Conference Exhibition (DATE),
Mar. 2014, pp. 1–4. 4, 32, 128, 201, 212, 234

249

http://www.linuxhowtos.org/System/procstat.htm
http://www.linuxhowtos.org/System/procstat.htm
https://f-droid.org/en/packages/anupam.acrylic/
http://http2.akamai.com/demo/
http://http2.akamai.com/demo/
https://www.oreilly.com/people/09f01-tyler-akidau
https://www.oreilly.com/people/09f01-tyler-akidau

[11] M. J. Alam, P. Ouellet, P. Kenny, and D. O’Shaughnessy, “Compara-
tive evaluation of feature normalization techniques for speaker verifica-
tion,” in Proceedings of the 5th International Conference on Advances
in Nonlinear Speech Processing, ser. NOLISP’11, Las Palmas de Gran
Canaria, Spain, 2011, pp. 246–253, isbn: 978-3-642-25019-4. 54

[12] Alexa, The top 500 sites on the web, http : / / www . alexa . com /

topsites, (last accessed: 2015-APR-22), Alexa. 151

[13] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16, Austin, Texas, 2016, pp. 468–471, isbn:
978-1-4503-4186-8. 92

[14] E. Alpaydin, “Combining multiple learners,” in Introduction to Machine
Learning (Second Edition), MIT Press. 57

[15] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android ap-
plications,” in Proceedings of the 27th IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE 2012, Essen, Ger-
many, 2012, pp. 258–261. 36, 82, 83

[16] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. Mcminn, “An orchestrated survey
of methodologies for automated software test case generation,” J. Syst.
Softw., vol. 86, no. 8, pp. 1978–2001, Aug. 2013. 36, 82, 84, 244

[17] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven composi-
tional symbolic execution,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Springer,
2008, pp. 367–381. 36, 84

[18] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12, Cary, North Carolina, 2012, 59:1–59:11. 83, 244

[19] Android, Android Debug Bridge, https://developer.android.com/
studio/command-line/adb, (last accessed: 2018-Jul-22). 218

[20] Android Open Source Project, Andriod API for Logging, http : / /

developer.android.com/reference/android/util/Log.html, Last
accessed 02/10/2015. 166, 167

[21] android-architecture, Android architecture blueprints, https://github.
com/googlesamples/android- architecture, (last accessed: 2018-
Aug-02). 213

[22] Angulo, https://f-droid.org/en/packages/eu.domob.angulo/,
(last accessed: 2018-Jun-02). 224

250

http://www.alexa.com/topsites
http://www.alexa.com/topsites
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/reference/android/util/Log.html
https://github.com/googlesamples/android-architecture
https://github.com/googlesamples/android-architecture
https://f-droid.org/en/packages/eu.domob.angulo/

[23] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y.
Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for an-
droid apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14, Ed-
inburgh, United Kingdom: ACM, 2014, pp. 259–269, isbn: 978-1-4503-
2784-8. doi: 10.1145/2594291.2594299. [Online]. Available: http:
//doi.acm.org/10.1145/2594291.2594299. 118

[24] I. Ayala, M. Amor, L. Fuentes, and D. Muñoz, “An empirical study of
power consumption of web-based communications in mobile phones,”
in 15th Intl Conf on Pervasive Intelligence and Computing, Nov. 2017,
pp. 861–866. 72

[25] I. Ayala, M. Amor, and L. Fuentes, “An energy efficiency study of
web-based communication in android phones,” Scientific Programming,
vol. 2019, Jul. 2019. 72

[26] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for sys-
tematic testing of android apps,” in Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Sys-
tems Languages & Applications, ser. OOPSLA ’13, Indianapolis,
Indiana, USA, 2013, pp. 641–660. 83

[27] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy Consumption in Mobile Phones: A Measurement Study and Im-
plications for Network Applications,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement Conference, ser. IMC
’09, Chicago, Illinois, USA, Nov. 2009, pp. 280–293, isbn: 978-1-60558-
771-4. 140

[28] Banerjee, Abhijeet and Chong, Lee Kee and Chattopadhyay, Sudipta
and Roychoudhury, Abhik, “Detecting Energy Bugs and Hotspots in
Mobile Apps,” in FSE 2014, Hong Kong, China, Nov. 2014, pp. 588–
598, isbn: 978-1-4503-3056-5. 4, 31, 49, 128, 136, 146, 155, 201, 209, 234

[29] A. Banerjee and A. Roychoudhury, “Energy-aware Design Patterns for
Mobile Application Development (Invited Talk),” in Proceedings of the
2nd International Workshop on Software Development Lifecycle for
Mobile, ser. DeMobile 2014, Hong Kong, China, Nov. 2014, pp. 15–
16, isbn: 978-1-4503-3225-5. 33

[30] L. Bao, D. Lo, X. Xia, X. Wang, and C. Tian, “How android app de-
velopers manage power consumption?: An empirical study by mining
power management commits,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16, Austin,
Texas, 2016, pp. 37–48, isbn: 978-1-4503-4186-8. 224

251

https://doi.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299

[31] L. A. Barroso, J. Dean, and U. Hölzle, “Web Search for a Planet: The
Google Cluster Architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28,
Mar. 2003, issn: 0272-1732. 3, 136

[32] D. F. Bauer, “Constructing confidence sets using rank statistics,” Jour-
nal of the American Statistical Association, vol. 67, no. 339, pp. 687–
690, 1972. 102

[33] M. Belshe, A 2x Faster Web, http://googleresearch.blogspot.ca/
2009/11/2x-faster-web.html, (last accessed: 2015-APR-22), Google. 139

[34] M. Belshe and R. Peon, SPDY Protocol, http://tools.ietf.org/
html/draft-ietf-httpbis-http2-00, (last accessed: 2015-APR-22),
HTTPbis Working Group. 139

[35] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 57, no. 1,
pp. 289–300, 1995. 174, 177, 184

[36] Bohdan Samusko, Model-view-presenter: Our choice of architecture for
your android app, https : / / steelkiwi . com / blog / model - view -

presenter-our-choice-of-android-app/, (last accessed: 2018-Aug-
02). 213

[37] P. Boonstoppel, C. Cadar, and D. Engler, “Rwset: Attacking path ex-
plosion in constraint-based test generation,” in International Confer-
ence on Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2008, pp. 351–366. 36, 84

[38] H. Brotherton, “Data center energy efficiency,” English, PhD thesis,
Purdue University, May 2014, isbn: 9781321439083. 136

[39] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, “In-
vestigating the energy impact of android smells,” in 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), Feb. 2017, pp. 115–126. 234

[40] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a
Smartphone,” in Proceedings of the USENIXATC’10, 2010. 23, 26, 47, 81, 126, 199, 212

[41] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and Y. Fujimori, “DASH
Fast Start Using HTTP/2,” in Proceedings of the 25th ACM Work-
shop on Network and Operating Systems Support for Digital Audio and
Video, ser. NOSSDAV ’15, Portland, Oregon, USA, Mar. 2015, pp. 25–
30, isbn: 978-1-4503-3352-8. 157

[42] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA ’13,
Indianapolis, Indiana, USA, 2013, pp. 623–640. 83

252

http://googleresearch.blogspot.ca/2009/11/2x-faster-web.html
http://googleresearch.blogspot.ca/2009/11/2x-faster-web.html
http://tools.ietf.org/html/draft-ietf-httpbis-http2-00
http://tools.ietf.org/html/draft-ietf-httpbis-http2-00
https://steelkiwi.com/blog/model-view-presenter-our-choice-of-android-app/
https://steelkiwi.com/blog/model-view-presenter-our-choice-of-android-app/

[43] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet?” In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), ser. ASE ’15, Washington, DC, USA, 2015, pp. 429–
440, isbn: 978-1-5090-0025-8. 82–84, 118

[44] S. A. Chowdhury and A. Hindle, “Characterizing energy-aware soft-
ware projects: Are they different?” In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories, ser. MSR ’16,
Austin, Texas, 2016, pp. 508–511. 75, 200, 232

[45] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:
Training software energy models with automatic test generation,” Em-
pirical Software Engineering, Jul. 2018. 1, 4, 7, 14, 24, 25, 34, 36, 70, 72, 212, 217, 218, 229, 230, 234

[46] S. Chowdhury, S. Di Nardo, A. Hindle, and Z. M. (Jiang, “An ex-
ploratory study on assessing the energy impact of logging on android
applications,” Empirical Software Engineering, vol. 23, no. 3, pp. 1422–
1456, Jun. 2018. 8, 41, 80, 108, 128, 159, 160, 214, 234

[47] S. Chowdhury, S. Gil, S. Romansky, and A. Hindle, Greenscaler-tools-
and-data, https://github.com/shaifulcse/GreenScaler-Tools-
and-Data, 2017. 7, 71, 77, 113, 118, 121, 130, 239

[48] S. Chowdhury and A. Hindle, “Greenoracle: Estimating software energy
consumption with energy measurement corpora,” in Proceedings of the
13th International Conference on Mining Software Repositories, Austin,
Texas, 2016, pp. 49–60. 6, 14, 15, 18, 40, 41, 75, 79, 81, 93, 97, 99, 100, 106–108, 123, 126, 168, 169, 171, 173, 179, 199, 217, 218, 229, 234

[49] S. Chowdhury, K. Luke, J. Toukir Imam Mohomed, S. Varun, K. Ag-
garwal, A. Hindle, and G. Russell, “A System-call based Model of
Software Energy Consumption without Hardware Instrumentation,” in
IGSC ’15, Las Vegas, US, Dec. 2015. 13, 45, 48, 52, 53, 78, 108

[50] S. Chowdhury, S. Varun, and A. Hindle, “Client-side Energy Efficiency
of HTTP/2 for Web and Mobile App Developers,” in SANER ’16, Os-
aka, Japan, Mar. 2016. 7, 13, 35, 46, 78, 128, 129, 133, 134, 168, 169, 201, 212, 214, 217, 218, 234

[51] Chromeshell apks, http://commondatastorage.googleapis.com/

chromium - browser - continuous / index . html ? prefix = Android/,
(last accessed: 2015-May-22). 51

[52] Chukwa - hadoop wiki, http://wiki.apache.org/hadoop/Chukwa,
Last accessed 04/18/2015. 163

[53] Cisco, Cisco visual networking index: Forecast and methodology, 2016-
2021, https://www.cisco.com/c/en/us/solutions/collateral/
service - provider / visual - networking - index - vni / complete -

white-paper-c11-481360.html, (last accessed: 201-Aug-06). 209

[54] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2014—2019,” Cisco, Technical Report, Feb. 2015. 44, 136

253

https://github.com/shaifulcse/GreenScaler-Tools-and-Data
https://github.com/shaifulcse/GreenScaler-Tools-and-Data
http://commondatastorage.googleapis.com/chromium-browser-continuous/index.html?prefix=Android/
http://commondatastorage.googleapis.com/chromium-browser-continuous/index.html?prefix=Android/
http://wiki.apache.org/hadoop/Chukwa
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

[55] N. Cliff, Ordinal methods for behavioral data analysis. Psychology Press,
2014. 102

[56] Colorpicker, https://f- droid.org/en/packages/com.enrico.

sample/, (last accessed: 2018-Jun-02). 224

[57] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applica-
tions,” Empirical Software Engineering, Mar. 2019. 34, 35, 160, 246

[58] Y. D’Elia, Fgallery: A modern, minimalist javascript photo gallery,
http://www.thregr.org/~wavexx/software/fgallery/, (last ac-
cessed: 2015-APR-22), Wavexx. 143

[59] Dalvikexplorer apks, https://code.google.com/archive/p/enh/
downloads, (last accessed: 2015-Aug-22). 51

[60] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu, D. Zhang,
and T. Xie, “Log2: A cost-aware logging mechanism for performance
diagnosis,” in 2015 USENIX Annual Technical Conference (USENIX
ATC), 2015. 202

[61] M. Dong, Y.-S. K. Choi, and L. Zhong, “Power modeling of graphical
user interfaces on oled displays,” in Proceedings of the 46th Annual De-
sign Automation Conference, ser. DAC ’09, San Francisco, California,
2009, pp. 652–657, isbn: 978-1-60558-497-3. 97, 109

[62] M. Dong and L. Zhong, “Self-constructive High-rate System Energy
Modeling for Battery-powered Mobile Systems,” in Proceedings of the
MobiSys ’11, Jun. 2011, pp. 335–348, isbn: 978-1-4503-0643-0. 24, 47, 126, 199, 212

[63] eMarketer, 2 billion consumers worldwide to get smart(phones) by 2016,
http : / / www . emarketer . com / Article / 2 - Billion - Consumers -

Worldwide-Smartphones-by-2016/1011694, (last accessed: 2016-Jan-
07), eMarketer. 44

[64] ——, Smartphone users worldwide will total 1.75 billion in 2014, http:
//www.emarketer.com/Article/Smartphone- Users- Worldwide-

Will-Total-175-Billion-2014/1010536, (last accessed: 2015-APR-
22). 136

[65] Emma, EMMA: a free Java code coverage tool, http://emma.sourceforge.
net/, (last accessed: 2016-JUL-22), 2006. 87

[66] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan,
“Towards a SPDY’Ier mobile web?” In Proceedings of the 9th ACM
Conference on Emerging Networking Experiments and Technologies,
ser. CoNEXT ’13, Santa Barbara, California, USA, Dec. 2013, pp. 303–
314, isbn: 978-1-4503-2101-3. 156

[67] eva2000, HTTP/2 - h2o vs OpenLiteSpeed vs Nginx SPDY/3.1, http:
//community.centminmod.com/threads/http-2-h2o-vs-openlitespeed-

vs-nginx-spdy-3-1.2564/, (last accessed: 2015-APR-22), Centmin
Mod. 157

254

https://f-droid.org/en/packages/com.enrico.sample/
https://f-droid.org/en/packages/com.enrico.sample/
http://www.thregr.org/~wavexx/software/fgallery/
https://code.google.com/archive/p/enh/downloads
https://code.google.com/archive/p/enh/downloads
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://emma.sourceforge.net/
http://emma.sourceforge.net/
http://community.centminmod.com/threads/http-2-h2o-vs-openlitespeed-vs-nginx-spdy-3-1.2564/
http://community.centminmod.com/threads/http-2-h2o-vs-openlitespeed-vs-nginx-spdy-3-1.2564/
http://community.centminmod.com/threads/http-2-h2o-vs-openlitespeed-vs-nginx-spdy-3-1.2564/

[68] F-droid: Free and open source android app repository, https://f-

droid.org/, (last accessed: 2018-May-22). 50, 224

[69] A. Fedotyev, The Real Cost of Logging, http://blog.appdynamics.
com/net/the-real-cost-of-logging/, Last accessed 04/18/2015,
Apr. 2014. 163

[70] Firefox apks, https://ftp.mozilla.org/pub/mobile/nightly/,
(last accessed: 2015-May-22). 51

[71] J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for Profiling the
Energy Usage of Mobile Applications,” in WMCSA ’99, New Orleans,
Louisiana, USA, Feb. 1999, pp. 2–10, isbn: 0-7695-0025-0. 24, 47, 126, 199, 212

[72] M. Fowler, “Gui architectures. 2006,” URL http://www. martinfowler.
com/eaaDev/uiArchs. html, 2007. 212

[73] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T.
Xie, “Where do developers log? an empirical study on logging prac-
tices in industry,” in Companion Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE Companion 2014, 2014. 202

[74] N. Gautam, H. Petander, and J. Noel, “A Comparison of the Cost and
Energy Efficiency of Prefetching and Streaming of Mobile Video,” in
Proceedings of the 5th Workshop on Mobile Video, ser. MoVid ’13, Oslo,
Norway, Feb. 2013, pp. 7–12, isbn: 978-1-4503-1893-8. 28, 49, 128, 156, 234

[75] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” in Proceedings of the 22nd annual ACM SIG-
PLAN conference on Object-oriented Programming Systems and Appli-
cations (OOPSLA), 2007. 174, 183, 196

[76] Go Language, Go + HTTP/2, http://http2.golang.org/gophertiles/,
(last accessed: 2015-APR-22), Golang. 157

[77] Í. Goiri, M. E. Haque, K. Le, R. Beauchea, T. D. Nguyen, J. Gui-
tart, J. Torres, and R. Bianchini, “Matching Renewable Energy Supply
and Demand in Green Datacenters,” Ad Hoc Networks, vol. 25, no. 0,
pp. 520–534, Feb. 2015. 136

[78] A. Goldberg, R. Buff, and A. Schmitt, A comparison of http and https
performance, http://www.cs.nyu.edu/artg/research/comparison/
comparison.html, (last accessed: 2015-APR-22), New York University. 149

[79] I. Goodfellow, Y. Bengio, and A. Courville, Regularization for Deep
Learning. MIT Press, 2016, http://www.deeplearningbook.org. 121

[80] Google, Make the Web Faster, https://developers.google.com/
speed/?csw=1, (last accessed: 2015-APR-22), Google. 139

[81] Google Play, Sensor readout, https://play.google.com/store/

apps/details?id=de.onyxbits.sensorreadout, (last accessed: 2018-
Jun-02). 224

255

https://f-droid.org/
https://f-droid.org/
http://blog.appdynamics.com/net/the-real-cost-of-logging/
http://blog.appdynamics.com/net/the-real-cost-of-logging/
https://ftp.mozilla.org/pub/mobile/nightly/
http://http2.golang.org/gophertiles/
http://www.cs.nyu.edu/artg/research/comparison/comparison.html
http://www.cs.nyu.edu/artg/research/comparison/comparison.html
http://www.deeplearningbook.org
https://developers.google.com/speed/?csw=1
https://developers.google.com/speed/?csw=1
https://play.google.com/store/apps/details?id=de.onyxbits.sensorreadout
https://play.google.com/store/apps/details?id=de.onyxbits.sensorreadout

[82] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evalu-
ation by developers,” in Proceedings of the 36th International Confer-
ence on Software Engineering, ser. ICSE 2014, Hyderabad, India, 2014,
pp. 72–82, isbn: 978-1-4503-2756-5. 36, 82, 84

[83] A. Grabner, Top Performance Mistakes when moving from Test to Pro-
duction: Excessive Logging, http://tinyurl.com/q9odfsm, Last ac-
cessed 04/18/2015, Aug. 2012. 163

[84] “Greenbundle: An empirical study on the energy impact of bundled
processing,” in Proc. of the International Conference on Software En-
gineering (ICSE-2019), 2019, p. 12. 8, 34, 205

[85] Greenbundle: Replication and extension, https://github.com/shaifulcse/
GreenBundle-Data-Code. 211, 217

[86] Greenoracle dataset, https://github.com/shaifulcse/GreenOracle-
Data, (created on: 2016-Jan-29). 53

[87] I. H. W. Group, Http/2, https://http2.github.io/, (last accessed:
2015-APR-22), IETF HTTP Working Group. 137

[88] T. O. Group, Application Response Measurement - ARM, https://
collaboration . opengroup . org / tech / management / arm/, visited
2014-11-24. 166

[89] J. Gui, D. Li, M. Wan, and W. G. J. Halfond, “Lightweight measure-
ment and estimation of mobile ad energy consumption,” in Proceedings
of the 5th International Workshop on Green and Sustainable Software,
ser. GREENS ’16, Austin, Texas, 2016, pp. 1–7. 129

[90] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan,
M. Kandemir, T. Li, and L. K. John, “Using Complete Machine Sim-
ulation for Software Power Estimation: The SoftWatt Approach,” in
Proceedings of the 8th International Symposium on High-Performance
Computer Architecture, ser. HPCA ’02, 2002, pp. 141–150. 23, 47, 81, 126, 199, 212

[91] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location
protocol, version 2,” RFC Editor, RFC 2608, Jun. 1999, http://www.
rfc-editor.org/rfc/rfc2608.txt. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc2608.txt. 138

[92] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating Mobile
Application Energy Consumption Using Program Analysis,” in ICSE
’13, 2013, pp. 92–101. 2, 4, 13, 22, 44, 47, 60, 78, 81, 110, 123, 126, 199, 212, 234

[93] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’14, Bretton
Woods, New Hampshire, USA, 2014, pp. 204–217. 83

256

http://tinyurl.com/q9odfsm
https://github.com/shaifulcse/GreenBundle-Data-Code
https://github.com/shaifulcse/GreenBundle-Data-Code
https://github.com/shaifulcse/GreenOracle-Data
https://github.com/shaifulcse/GreenOracle-Data
https://http2.github.io/
https://collaboration.opengroup.org/tech/management/arm/
https://collaboration.opengroup.org/tech/management/arm/
http://www.rfc-editor.org/rfc/rfc2608.txt
http://www.rfc-editor.org/rfc/rfc2608.txt
http://www.rfc-editor.org/rfc/rfc2608.txt
http://www.rfc-editor.org/rfc/rfc2608.txt

[94] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems and
challenges for search based software testing,” in 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification and Validation
(ICST), Apr. 2015, pp. 1–12. 82

[95] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle, “En-
ergy profiles of java collections classes,” in Proceedings of the 38th In-
ternational Conference on Software Engineering, ser. ICSE ’16, Austin,
Texas, 2016, pp. 225–236, isbn: 978-1-4503-3900-1. 2, 4, 14, 15, 30, 75, 79, 81, 115, 124, 129, 168, 169, 201, 205, 212, 217, 218, 233

[96] T. Hastie, R. Tibshirani, and J. Friedman, “Linear methods for regres-
sion,” in The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, Springer Series in Statistics. 56, 57, 98

[97] ——, “Model assessment and selection,” in The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer Series in
Statistics. 102

[98] ——, “Support vector machines and flexible discriminants,” in The El-
ements of Statistical Learning: Data Mining, Inference, and Prediction,
Springer Series in Statistics. 57

[99] Hern and a. Alex, Smartphone now most popular way to browse internet
– ofcom report, https://www.theguardian.com/technology/2015/
aug/06/smartphones-most-popular-way-to-browse-internet-

ofcom/, (last accessed: 2016-Jul-29), 2015. 75

[100] A. Hindle, “Green mining: A methodology of relating software change
and configuration to power consumption,” Empirical Software Engi-
neering, vol. 20, no. 2, pp. 374–409, Apr. 2015. 187, 199

[101] A. Hindle, “Green Mining: Investigating Power Consumption Across
Versions,” in ICSE ’12, Jun. 2012, pp. 1301–1304, isbn: 978-1-4673-
1067-3. 1, 14, 44, 45, 63, 79, 136

[102] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “GreenMiner: A Hardware Based Mining Software
Repositories Software Energy Consumption Framework,” in MSR 2014,
Hyderabad, India, May 2014, pp. 12–21, isbn: 978-1-4503-2863-0. 14, 15, 51, 52, 79, 80, 137, 140, 141, 163, 168–170, 199, 217

[103] M. Hlavac, Stargazer: Well-formatted regression and summary statistics
tables, R package version 5.2, Harvard University, Cambridge, USA,
2015. [Online]. Available: http://CRAN.R-project.org/package=
stargazer. 176

[104] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013. 102, 218

[105] W. G. Hopkins, A new view of statistics, [Online accessed 2017-01-15]
http://www.sportsci.org/resource/stats/index.html, 2016. 190, 191

257

https://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom/
https://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom/
https://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom/
http://CRAN.R-project.org/package=stargazer
http://CRAN.R-project.org/package=stargazer
http://www.sportsci.org/resource/stats/index.html

[106] M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Using Crowd-sourced
Viewing Statistics to Save Energy in Wireless Video Streaming,” in Pro-
ceedings of the 19th Annual International Conference on Mobile Com-
puting, ser. MobiCom ’13, Miami, Florida, USA, Oct. 2013, pp. 377–
388. 28

[107] D. Horn, “Electrons and electricity,” in Basic Electronics Theory (Fourth
Edition), McGraw-Hill. 12

[108] “How does docker affect energy consumption? evaluating workloads in
and out of docker containers,” Journal of Software Systems, pp. 1–14,
May 2018. 134

[109] C.-w. Hsu, C.-c. Chang, and C.-j. Lin, A practical guide to support
vector classification, 2010. 100

[110] HTTP Archive, HTTP Trends, http://httparchive.org/trends.
php?s=All&minlabel=Oct+22+2010&maxlabel=Apr+15+2015, (last
accessed: 2015-APR-22), HTTP Archive. 138

[111] HTTP/2 Implementations, https : / / github . com / http2 / http2 -

spec/wiki/Implementations, (last accessed: 2015-APR-22), Github. 142

[112] HttpWatch, A Simple Performance Comparison of HTTPS, SPDY and
HTTP/2, http://blog.httpwatch.com/2015/01/16/a-simple-
performance- comparison- of- https- spdy- and- http2/, (last ac-
cessed: 2015-APR-22), HttpWatch. 157

[113] Ina219 zerø-drift, bidirectional current/power monitor with i2c inter-
face, http://www.ti.com/lit/ds/symlink/ina219.pdf, Texas
Instruments, Dallas, USA, Dec. 2015. 124, 169, 196

[114] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014, Hyderabad, India,
2014, pp. 435–445, isbn: 978-1-4503-2756-5. 84–86

[115] R. Jabbarvand, J.-W. Lin, and S. Malek, “Search-based energy testing
of android,” in Proceedings of the 41st International Conference on
Software Engineering, Montreal, Quebec, Canada, 2019, pp. 1119–1130. 37

[116] R. Jabbarvand and S. Malek, “Mudroid: An energy-aware mutation
testing framework for android,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017,
Paderborn, Germany, 2017, pp. 208–219. 234

[117] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
2016, Saarbrücken, Germany, 2016, pp. 425–436. 35–37, 129, 186, 234

258

http://httparchive.org/trends.php?s=All&minlabel=Oct+22+2010&maxlabel=Apr+15+2015
http://httparchive.org/trends.php?s=All&minlabel=Oct+22+2010&maxlabel=Apr+15+2015
https://github.com/http2/http2-spec/wiki/Implementations
https://github.com/http2/http2-spec/wiki/Implementations
http://blog.httpwatch.com/2015/01/16/a-simple-performance-comparison-of-https-spdy-and-http2/
http://blog.httpwatch.com/2015/01/16/a-simple-performance-comparison-of-https-spdy-and-http2/
http://www.ti.com/lit/ds/symlink/ina219.pdf

[118] E. Jagroep, J. Broekman, J. M. E. M. van der Werf, S. Brinkkemper,
P. Lago, L. Blom, and R. van Vliet, “Awakening awareness on energy
consumption in software engineering,” in Proceedings of the 39th Inter-
national Conference on Software Engineering: Software Engineering in
Society Track, Buenos Aires, Argentina, 2017, pp. 76–85. 41

[119] A. Jay, Do unused logging statements affect performance in Android
apps? Stack Overflow http://tinyurl.com/ncf2nl9, Last accessed
04/18/2015. 163

[120] ——, Log.d and impact on performance, Stack Overflow http://stackoverflow.

com/questions/3773252/log-d-and-impact-on-performance, Last
accessed 04/18/2015. 163

[121] M. Jiang, X. Luo, T. Miu, S. Hu, and W. Rao, “Are http/2 servers
ready yet?” In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), Jun. 2017, pp. 1661–1671. 134

[122] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated
approach for abstracting execution logs to execution events,” Journal
Software Maintenance Evolution, vol. 20, pp. 249–267, 4 Jul. 2008. 189, 202

[123] Z. Jiang, A. Hassan, G. Hamann, and P. Flora, “Automatic Identi-
fication of Load Testing Problems,” in Proceedings of the 24th IEEE
International Conference on Software Maintenance (ICSM), 2008. 5, 163, 202

[124] Jiffy, Linux Man Page, http://man7.org/linux/man-pages/man7/
time.7.html, (last accessed: 2016-Jan-10), 2016. 79

[125] T. Joachims, “Making large-scale support vector machine learning prac-
tical,” in Advances in Kernel Methods, B. Schölkopf, C. J. C. Burges,
and A. J. Smola, Eds., 1999, pp. 169–184, isbn: 0-262-19416-3. 57

[126] JoJo, Does logging slow down a production Android app? Stack Over-
flow http://stackoverflow.com/questions/6445153/does-logging-

slow-down-a-production-android-app, Last accessed 04/18/2015. 163

[127] B. Jones, Microsoft has found the source of recent surface pro 3 battery
woes, http : / / www . digitaltrends . com / computing / microsoft -

surface-pro-3-battery-getting-patch/, (last accessed: 2016-Jul-
30), 2016. 1, 75

[128] S. Kabinna, C. Bezemer, W. Shang, and A. E. Hassan, “Logging li-
brary migrations: A case study for the apache software foundation
projects,” in 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), May 2016, pp. 154–164. 5

[129] T. Kalibera and R. Jones, “Rigorous Benchmarking in Reasonable Time,”
in Proceedings of the 2013 International Symposium on Memory Man-
agement (ISMM), 2013. 174, 183, 196

259

http://tinyurl.com/ncf2nl9
http://stackoverflow.com/questions/3773252/log-d-and-impact-on-performance
http://stackoverflow.com/questions/3773252/log-d-and-impact-on-performance
http://man7.org/linux/man-pages/man7/time.7.html
http://man7.org/linux/man-pages/man7/time.7.html
http://stackoverflow.com/questions/6445153/does-logging-slow-down-a-production-android-app
http://stackoverflow.com/questions/6445153/does-logging-slow-down-a-production-android-app
http://www.digitaltrends.com/computing/microsoft-surface-pro-3-battery-getting-patch/
http://www.digitaltrends.com/computing/microsoft-surface-pro-3-battery-getting-patch/

[130] M. Karagiannopoulos, D. Anyfantis, S. B. Kotsiantis, and P. E. Pin-
telas, Feature Selection for Regression Problems, http://www.math.
upatras.gr/~dany/Downloads/hercma07.pdf, (last accessed: 2015-
Oct-22). 55, 124

[131] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mo-
bile app users complain about?” IEEE Software, vol. 32, no. 3, pp. 70–
77, May 2015. 209

[132] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations
on automated fault localization,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA 2016,
Saarbrücken, Germany, 2016, pp. 165–176. 82, 244

[133] S. Kornik, University of alberta research could prevent app updates
from draining smartphone batteries, https://globalnews.ca/news/
4643134/, (last accessed: 2019-May-22). 72

[134] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson, A.
Filipski, and J. Smith, “A dataset of open-source android applications,”
in Proceedings of the 12th Working Conference on Mining Software
Repositories, ser. MSR ’15, Florence, Italy, 2015, pp. 522–525. 224

[135] J. Krystynak, How to serve billions of web requests per day – without
breaking a sweat, https://www.infoworld.com/article/2868513/
database/how-to-serve-billion-web-requests-per-day.html,
(last accessed: 2018-AUG-22). 220

[136] Laerd, Spearman’s Rank-Order Correlation, https : / / statistics .

laerd.com/statistical-guides/spearmans-rank-order-correlation-

statistical-guide.php, (last accessed: 2018-May-11). 219

[137] D. Li and W. G. J. Halfond, “Optimizing energy of http requests in
android applications,” in Proceedings of the 3rd International Work-
shop on Software Development Lifecycle for Mobile, ser. DeMobile 2015,
Bergamo, Italy, 2015, pp. 25–28, isbn: 978-1-4503-3815-8. 2, 75, 137

[138] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An Empirical Study of
the Energy Consumption of Android Applications,” in Proceedings of
the 2014 IEEE ICSME, Victoria, BC, Canada, Sep. 2014, pp. 121–130,
isbn: 978-1-4799-6146-7. 34, 117, 124, 129, 200

[139] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating Source
Line Level Energy Information for Android Applications,” in Proceed-
ings of the 2013 International Symposium on Software Testing and
Analysis (ISSTA), 2013. 199, 200

[140] D. Li, Y. Jin, C. Sahin, J. Clause, and W. G. J. Halfond, “Integrated
Energy-directed Test Suite Optimization,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis (ISSTA),
2014. 199

260

http://www.math.upatras.gr/~dany/Downloads/hercma07.pdf
http://www.math.upatras.gr/~dany/Downloads/hercma07.pdf
https://globalnews.ca/news/4643134/
https://globalnews.ca/news/4643134/
https://www.infoworld.com/article/2868513/database/how-to-serve-billion-web-requests-per-day.html
https://www.infoworld.com/article/2868513/database/how-to-serve-billion-web-requests-per-day.html
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php

[141] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy op-
timization of http requests for mobile applications,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16, Austin, Texas, 2016, pp. 249–260, isbn: 978-1-4503-3900-1. 4, 36, 89, 124, 129, 186, 201, 212

[142] D. Li, A. H. Tran, and W. G. J. Halfond, “Making Web Applications
More Energy Efficient for OLED Smartphones,” in ICSE 2014, Hyder-
abad, India, Jun. 2014, pp. 527–538, isbn: 978-1-4503-2756-5. 4, 26, 34, 49, 97, 113, 124, 128, 156, 212, 234

[143] Y. D. Lin, J. F. Rojas, E. T. H. Chu, and Y. C. Lai, “On the accuracy,
efficiency, and reusability of automated test oracles for android devices,”
IEEE Transactions on Software Engineering, vol. 40, no. 10, pp. 957–
970, Oct. 2014, issn: 0098-5589. 83

[144] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M.
Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage pat-
terns in android apps: An empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014,
Hyderabad, India, 2014, pp. 2–11. 33, 34, 37, 117, 129, 191, 200

[145] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto, M. Di
Penta, and D. Poshyvanyk, “Optimizing energy consumption of guis in
android apps: A multi-objective approach,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ser. ES-
EC/FSE 2015, Bergamo, Italy, 2015, pp. 143–154, isbn: 978-1-4503-
3675-8. 128

[146] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and
D. Poshyvanyk, “Mining android app usages for generating actionable
gui-based execution scenarios,” in Proceedings of the 12th Working Con-
ference on Mining Software Repositories, ser. MSR ’15, Florence, Italy,
2015, pp. 111–122. 83

[147] Linux man-pages project, Intro linux man page, http://linux.die.
net/man/2/intro, 2016. 53, 99

[148] Y. Liu, Y. Ma, X. Liu, and G. Huang, “Can http/2 really help web
performance on smartphones?” In 2016 IEEE International Conference
on Services Computing (SCC), Jun. 2016, pp. 219–226. 134

[149] Y. Liu, C. Xu, S. Cheung, and V. Terragni, “Understanding and detect-
ing wake lock misuses for android applications,” in FSE 2014, Seattle,
WA, USA, Nov. 2016. 4, 32, 128, 201, 212, 234

[150] Logcat, http://developer.android.com/tools/help/logcat.html,
Last accessed 02/10/2015. 167

[151] logstash - open source log management, http://logstash.net/, Last
accessed 04/18/2015. 163

[152] C. V. Lopes, Exercises in programming style. Chapman and Hall/CRC,
2016. 212

261

http://linux.die.net/man/2/intro
http://linux.die.net/man/2/intro
http://developer.android.com/tools/help/logcat.html
http://logstash.net/

[153] Q. Luo, D. Poshyvanyk, and M. Grechanik, “Mining performance re-
gression inducing code changes in evolving software,” in Proceedings
of the 13th International Conference on Mining Software Repositories,
Austin, Texas, 2016, pp. 25–36. 243

[154] Y. Lyu, D. Li, and W. G. J. Halfond, “Remove rats from your code: Au-
tomated optimization of resource inefficient database writes for mobile
applications,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2018, Ams-
terdam, Netherlands, 2018, pp. 310–321. 16, 34, 36, 205, 214

[155] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the struc-
ture of complex software designs: An empirical study of open source
and proprietary code,” Management Science, vol. 52, no. 7, pp. 1015–
1030, Jul. 2006. 232

[156] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input gen-
eration system for android apps,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013,
Saint Petersburg, Russia, 2013, pp. 224–234. 36, 82–84, 244

[157] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of android apps,” in Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, ser. FSE 2014, Hong Kong, China, 2014, pp. 599–609. 36, 82, 83, 246

[158] H. Malik, P. Zhao, and M. Godfrey, “Going green: An exploratory anal-
ysis of energy-related questions,” in Proceedings of the 12th Working
Conference on Mining Software Repositories, ser. MSR ’15, Florence,
Italy, 2015, pp. 418–421. 75, 233

[159] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ per-
spectives on green software engineering,” in Proceedings of the 38th In-
ternational Conference on Software Engineering, ser. ICSE ’16, Austin,
Texas, 2016, pp. 237–248, isbn: 978-1-4503-3900-1. 2–4, 21, 75, 78, 79, 118, 123, 200, 206, 209, 212, 232, 247

[160] I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014,
Hyderabad, India, 2014, pp. 503–514. 31, 129, 234

[161] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA 2016,
Saarbrücken, Germany: ACM, 2016, pp. 94–105, isbn: 978-1-
4503-4390-9. doi: 10 . 1145 / 2931037 . 2931054. [Online]. Available:
http://doi.acm.org/10.1145/2931037.2931054. 36, 82–84, 244, 246

262

https://doi.org/10.1145/2931037.2931054
http://doi.acm.org/10.1145/2931037.2931054

[162] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and
A. V. Vasilakos, “Cloud Computing: Survey on Energy Efficiency,”
ACM Comput. Surv., vol. 47, no. 2, 33:1–33:36, Dec. 2014, issn: 0360-
0300. 3

[163] J. McDonald, Kruskal–wallis test: Handbook of biological statistics, http:
//www.biostathandbook.com/kruskalwallis.html, (last accessed:
2018-AUG-07). 233

[164] A. McIntosh, S. Hassan, and A. Hindle, “What can android mobile app
developers do about the energy consumption of machine learning?”
Empirical Software Engineering, Jun. 2018. 217

[165] J. Meier, M.-c. Ostendorp, J. Jelschen, and A. Winter, “Certifying en-
ergy efficiency of android applications,” in 4th Workshop on Energy
Aware Software-Engineering and Development, 2014. 62

[166] A. Memon, I. Banerjee, and A. Nagarajan, “GUI Ripping: Reverse En-
gineering of Graphical User Interfaces for Testing,” in Proceedings of
the 10th Working Conference on Reverse Engineering, ser. WCRE ’03,
Victoria, B.C., Canada, Nov. 2003, pp. 260–269, isbn: 0-7695-2027-8. 31

[167] H. van der Merwe, B. van der Merwe, and W. Visser, “Verifying an-
droid applications using java pathfinder,” SIGSOFT Softw. Eng. Notes,
vol. 37, no. 6, pp. 1–5, Nov. 2012, issn: 0163-5948. 83

[168] Microsoft, https://docs.microsoft.com/en-us/windows/desktop/
uxguide/progress-bars, (last accessed: 2018-Jun-02). 221, 226

[169] A. P. Miettinen and J. K. Nurminen, “Energy Efficiency of Mobile
Clients in Cloud Computing,” in Proceedings of the 2nd USENIX Con-
ference on Hot Topics in Cloud Computing, ser. HotCloud’10, Boston,
MA, USA, Jun. 2010. 27, 49, 109, 128, 129, 156, 234

[170] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining api popularity,” in
Testing – Practice and Research Techniques, 2010, pp. 173–180. 121

[171] A. Miranskyy, Z. Al-zanbouri, D. Godwin, and B. Bener, “Database
engines: Evolution of greenness,” Journal of Software: Evolution and
Process, vol. 30, no. 4, 2018. 109

[172] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in gui testing of android applications,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16, Austin, Texas, 2016, pp. 559–570. 36, 82, 83, 244

[173] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level: A
new metric for architectural maintenance complexity,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16, Austin, Texas, 2016, pp. 499–510. 211, 231, 232

263

http://www.biostathandbook.com/kruskalwallis.html
http://www.biostathandbook.com/kruskalwallis.html
https://docs.microsoft.com/en-us/windows/desktop/uxguide/progress-bars
https://docs.microsoft.com/en-us/windows/desktop/uxguide/progress-bars

[174] P. Mohan, S. Nath, and O. Riva, “Prefetching Mobile Ads: Can Ad-
vertising Systems Afford It?” In EuroSys ’13, Prague, Czech Republic,
Apr. 2013, pp. 267–280, isbn: 978-1-4503-1994-2. 29

[175] Monkey, UI/Application Exerciser Monkey, https://developer.android.
com/studio/test/monkey.html, (last accessed: 2016-May-11). 82–84

[176] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
android application crashes,” in 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), Apr. 2016,
pp. 33–44. 83

[177] I. Moura, G. Pinto, F. Ebert, and F. Castor, “Mining Energy-Aware
Commits,” in MSR 2015, Florence, Italy, May 2015, isbn: 978-1-4503-
2863-0. 44

[178] Mozilla, Index of /pub/mozilla.org/mobile/nightly, http://ftp.mozilla.
org/pub/mozilla.org/mobile/nightly/, (last accessed: 2015-APR-
22), Mozilla. 142

[179] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong!” In Proceedings
of the 14th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2009. 196

[180] A. S. Namin and J. H. Andrews, “The influence of size and coverage
on test suite effectiveness,” in Proceedings of the ISSTA ’09, Chicago,
IL, USA, 2009, pp. 57–68, isbn: 978-1-60558-338-9. 36, 84

[181] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M.
Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the ”s” in
https,” in Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, ser. CoNEXT ’14,
Sydney, Australia: ACM, 2014, pp. 133–140, isbn: 978-1-4503-3279-8.
doi: 10.1145/2674005.2674991. [Online]. Available: http://doi.
acm.org/10.1145/2674005.2674991. 149

[182] J. Neill, Why use effect sizes instead of significance testing in program
evaluation, http://www.wilderdom.com/research/effectsizes.
html, 2008. 178

[183] M. Nottingham, HTTP/2 Approved, http://www.ietf.org/blog/
2015/02/http2-approved/, (last accessed: 2015-APR-22), HTTPbis
Working Group. 140

[184] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. D. Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Feb. 2017,
pp. 103–114. 4, 25, 97, 110, 127, 212, 234, 242

264

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http://ftp.mozilla.org/pub/mozilla.org/mobile/nightly/
http://ftp.mozilla.org/pub/mozilla.org/mobile/nightly/
https://doi.org/10.1145/2674005.2674991
http://doi.acm.org/10.1145/2674005.2674991
http://doi.acm.org/10.1145/2674005.2674991
http://www.wilderdom.com/research/effectsizes.html
http://www.wilderdom.com/research/effectsizes.html
http://www.ietf.org/blog/2015/02/http2-approved/
http://www.ietf.org/blog/2015/02/http2-approved/

[185] K. Oku, T. Kubo, D. Duarte, N. Desaulniers, M. Hörsken, M. Nagano,
J. Marrison, and D. Maki, H2o - an optimized http server with support
for http/1.x and http/2, https://github.com/h2o/h2o, (last accessed
2015-APR-22). 142, 143

[186] A. Oliner, A. Ganapathi, and W. Xu, “Advances and Challenges in Log
Analysis,” Commun. ACM, vol. 55, no. 2, pp. 55–61, Feb. 2012. 202

[187] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre, “A Survey on Tech-
niques for Improving the Energy Efficiency of Large-scale Distributed
Systems,” ACM Comput. Surv., vol. 46, no. 4, 47:1–47:31, Mar. 2014. 136

[188] M. Othman and S. Hailes, “Power Conservation Strategy for Mobile
Computers Using Load Sharing,” SIGMOBILE Mob. Comput. Com-
mun. Rev., vol. 2, no. 1, pp. 44–51, Jan. 1998. 27, 49, 128, 156

[189] J. Padhye and H. F. Nielsen, “A comparison of SPDY and HTTP per-
formance,” Tech. Rep. MSR-TR-2012-102, Jul. 2012. [Online]. Avail-
able: http://research.microsoft.com/apps/pubs/default.aspx?
id=170059. 144, 148, 157

[190] D. Pagano and W. Maalej, “User feedback in the appstore: An em-
pirical study,” in 21st IEEE International Requirements Engineering
Conference (RE), Jul. 2013, pp. 125–134. 228

[191] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?” IEEE Software,
vol. 33, no. 3, pp. 83–89, May 2016. 2, 20, 21, 44, 75, 78, 200, 209, 212

[192] A. Pathak, C. Hu, and M. Zhang, “Where is the Energy Spent Inside My
App?: Fine Grained Energy Accounting on Smartphones with Eprof,”
in EuroSys ’12, Bern, Switzerland, Apr. 2012, pp. 29–42, isbn: 978-1-
4503-1223-3. 4, 16, 17, 29, 34, 35, 49, 63, 75, 126, 128, 140, 146, 155, 201, 213

[193] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: A first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
ser. HotNets-X, Cambridge, Massachusetts, 2011, 5:1–5:6. 32, 128, 201

[194] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained Power Modeling for Smartphones Using System Call Tracing,”
in EuroSys ’11, Salzburg, Austria, Apr. 2011, pp. 153–168, isbn: 978-
1-4503-0634-8. 4, 16, 18, 24, 35, 45–49, 60, 79, 81, 96, 110, 123, 124, 126, 129, 140, 146, 155, 179, 186, 199, 201, 234

[195] P. S. Patil, J. Doshi, and D. Ambawade, “Reducing power consump-
tion of smart device by proper management of wakelocks,” in Advance
Computing Conference (IACC), 2015 IEEE International, Jun. 2015,
pp. 883–887. 4, 128, 201, 212, 234

265

https://github.com/h2o/h2o
http://research.microsoft.com/apps/pubs/default.aspx?id=170059
http://research.microsoft.com/apps/pubs/default.aspx?id=170059

[196] R. Pereira, M. Couto, J. Saraiva, J. Cunha, and J. P. Fernandes, “The
influence of the java collection framework on overall energy consump-
tion,” in Proceedings of the 5th International Workshop on Green and
Sustainable Software, ser. GREENS ’16, Austin, Texas, 2016, pp. 15–
21. 4, 30, 31, 75, 129, 212, 233

[197] G. Pinto and F. Castor, “Energy efficiency: A new concern for applica-
tion software developers,” Commun. ACM, vol. 60, no. 12, pp. 68–75,
Nov. 2017. 41

[198] G. Pinto, F. Castor, and Y. D. Liu, “Mining Questions About Software
Energy Consumption,” in MSR 2014, 2014, pp. 22–31, isbn: 978-1-
4503-2863-0. 2, 21, 44, 66, 75, 113, 151, 163, 200, 247

[199] P. Poole, Half of Us Have Computers in Our Pockets, Though You’d
Hardly Know it, http://www.huffingtonpost.com/pamela-poole/
smartphone-technology_b_2573671.html, (last accessed: 2014-Dec-
22). 44, 209

[200] M. Potel, “Mvp: Model-view-presenter the taligent programming model
for c++ and java,” Taligent Inc, p. 20, 1996. 212

[201] M. Pradel, M. Huggler, and T. R. Gross, “Performance regression test-
ing of concurrent classes,” in Proceedings of the 2014 International Sym-
posium on Software Testing and Analysis, ser. ISSTA 2014, San Jose,
CA, USA, 2014, pp. 13–25. 82

[202] Processes and threads overview, https://developer.android.com/
guide/components/processes-and-threads, (last accessed: 2018-
Jul-22). 215

[203] Pulkit Sethi, Xamarin application architecture, https://blog.kloud.
com.au/2018/01/17/xamarin-application-architecture/, (last
accessed: 2018-Aug-02). 213

[204] K. Rasmussen, A. Wilson, and A. Hindle, “Green Mining: Energy Con-
sumption of Advertisement Blocking Methods,” in GREENS 2014, Hy-
derabad, India, Jun. 2014, pp. 38–45, isbn: 978-1-4503-2844-9. 14, 29, 49, 52, 79, 129, 141, 156, 169, 217, 234

[205] Replication Package Android Logcat Energy Study, https://archive.
org/details/ReplicationPackageAndroidLogcatEnergyStudy, Last
accessed 05/24/2017. 165, 204

[206] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appro-
priate statistics for ordinal level data: Should we really be using t-test
and Cohen’s d for evaluating group differences on the NSSE and other
surveys?” In Annual Meeting of the Florida Association of Institutional
Research, Feb. 2006. 177

266

http://www.huffingtonpost.com/pamela-poole/smartphone-technology_b_2573671.html
http://www.huffingtonpost.com/pamela-poole/smartphone-technology_b_2573671.html
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/guide/components/processes-and-threads
https://blog.kloud.com.au/2018/01/17/xamarin-application-architecture/
https://blog.kloud.com.au/2018/01/17/xamarin-application-architecture/
https://archive.org/details/ReplicationPackageAndroidLogcatEnergyStudy
https://archive.org/details/ReplicationPackageAndroidLogcatEnergyStudy

[207] S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, and R. Greiner,
“Deep green: Modelling time-series of software energy consumption,”
in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Shanghai, China, Sep. 2017, pp. 273–283. 41, 108, 217

[208] S. Romansky and A. Hindle, “On Improving Green Mining For Energy-
Aware Software Analysis,” Proceedings of the 2014 Conference of the
Center for Advanced Studies on Collaborative Research (CASCON),
2014. 168, 187, 199

[209] R. Saborido, G. Beltrame, F. Khomh, E. Alba, and G. Antoniol, “Opti-
mizing user experience in choosing android applications,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, Mar. 2016, pp. 438–448. doi: 10.1109/
SANER.2016.64. 26, 128

[210] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pol-
lock, and K. Winbladh, “Initial explorations on design pattern energy
usage,” in 2012 First International Workshop on Green and Sustainable
Software (GREENS), Jun. 2012, pp. 55–61. 35, 212, 235

[211] C. Sahin, L. Pollock, and J. Clause, “From benchmarks to real apps:
Exploring the energy impacts of performance-directed changes,” Jour-
nal of Systems and Software, vol. 117, pp. 307–316, 2016. 2, 5, 205, 209, 211, 224

[212] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect en-
ergy usage?” In Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
2014. 30, 129, 200, 234

[213] C. Sahin, P. Tornquist, R. McKenna, Z. Pearson, and J. Clause, “How
Does Code Obfuscation Impact Energy Usage?” In Proceedings of the
30th IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), 2014. 30, 129, 200, 234

[214] sandalone, Android debugging -¿ battery drains, Stack Overflow http:

//stackoverflow.com/questions/4958543/android-debugging-

battery-drains, Last accessed 04/18/2015. 163

[215] R. Sasnauskas and J. Regehr, “Intent fuzzer: Crafting intents of death,”
in Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, De-
bugging, and Analytics (PERTEA), ser. WODA+PERTEA 2014, San
Jose, CA, USA, 2014, pp. 1–5. 83

[216] H. de Saxce, I. Oprescu, and Y. Chen, “Is http/2 really faster than
http/1.1?” In Computer Communications Workshops (INFOCOM WK-
SHPS), 2015 IEEE Conference on, Apr. 2015, pp. 293–299. 153

[217] Scitools.com, Understand, https://scitools.com/, (last accessed:
2018-Aug-18). 231

267

https://doi.org/10.1109/SANER.2016.64
https://doi.org/10.1109/SANER.2016.64
http://stackoverflow.com/questions/4958543/android-debugging-battery-drains
http://stackoverflow.com/questions/4958543/android-debugging-battery-drains
http://stackoverflow.com/questions/4958543/android-debugging-battery-drains
https://scitools.com/

[218] Sensor readout, https://f-droid.org/en/packages/de.onyxbits.
sensorreadout/, (last accessed: 2018-Jun-02). 224, 227

[219] C. Seo, S. Malek, and N. Medvidovic, “Component-level energy con-
sumption estimation for distributed java-based software systems,” in
Lecture Notes in Computer Science, ser. Lecture Notes in Computer
Science, vol. 5282, Springer Berlin Heidelberg, 2008, pp. 97–113, isbn:
978-3-540-87890-2. 48, 81, 126, 199

[220] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna, “From ret-
rospect to prospect: Assessing modularity and stability from software
architecture,” in 2009 Joint Working IEEE/IFIP Conference on Soft-
ware Architecture European Conference on Software Architecture, Sep.
2009, pp. 269–272. 232

[221] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Ar-
curi, “Do automatically generated unit tests find real faults? an empir-
ical study of effectiveness and challenges (t),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
Nov. 2015, pp. 201–211. 82

[222] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W. Godfrey,
M. Nasser, and P. Flora, “An Exploratory Study of the Evolution of
Communicated Information About the Execution of Large Software
Systems,” in Proceedings of the 18th Working Conference on Reverse
Engineering (WCRE), 2011. 201

[223] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and P.
Martin, “Assisting Developers of Big Data Analytics Applications when
Deploying on Hadoop Clouds,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE), 2013. 202

[224] W. Shang, M. Nagappan, and A. E. Hassan, “Studying the relationship
between logging characteristics and the code quality of platform soft-
ware,” Empirical Software Engineering, vol. 20, no. 1, pp. 1–27, Feb.
2015. 202

[225] M. Shepperd, M. Cartwright, and G. Kadoda, “On building prediction
systems for software engineers,” Empirical Software Engineering, vol. 5,
no. 3, pp. 175–182, Nov. 2000. 123

[226] J. Shore, How many data sources in your apps? let me count the apis.
https://searchcloudapplications.techtarget.com/blog/Head-

in-the-Clouds-SaaS-PaaS-and-Cloud-Strategy/How-many-data-

sources-Let-me-count-the-APIs, (last accessed: 2018-AUG-22). 220

[227] A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying Real
User Activity Patterns to Guide Power Optimizations for Mobile Archi-
tectures,” in IEEE/ACM MICRO 42, New York, NY, USA, Dec. 2009,
pp. 168–178, isbn: 978-1-60558-798-1. 23, 47, 81, 126, 199, 212

268

https://f-droid.org/en/packages/de.onyxbits.sensorreadout/
https://f-droid.org/en/packages/de.onyxbits.sensorreadout/
https://searchcloudapplications.techtarget.com/blog/Head-in-the-Clouds-SaaS-PaaS-and-Cloud-Strategy/How-many-data-sources-Let-me-count-the-APIs
https://searchcloudapplications.techtarget.com/blog/Head-in-the-Clouds-SaaS-PaaS-and-Cloud-Strategy/How-many-data-sources-Let-me-count-the-APIs
https://searchcloudapplications.techtarget.com/blog/Head-in-the-Clouds-SaaS-PaaS-and-Cloud-Strategy/How-many-data-sources-Let-me-count-the-APIs

[228] H. Si and A. Hada, Introduction of HTTP/2 and Performance Com-
parison of HTTP/1 and HTTP/2, http://www.ixiacom.com/about-
us / news - events / corporate - blog / introduction - http2 - and -

performance- comparison- http1- and- http, (last accessed: 2015-
APR-22), Ixia. 157

[229] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a Large-Scale Dis-
tributed Systems Tracing Infrastructure,” Google, Inc., Tech. Rep.,
2010. [Online]. Available: %5Curl%7Bhttp://research.google.com/
archive/papers/dapper-2010-1.pdf%7D. 163

[230] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Con-
cepts, 8th. Wiley Publishing, 2008. 18

[231] R. J. G. Simons and A. Pras, “The hidden energy cost of web adver-
tising,” Technical Report TR-CTIT-10-24, Jun. 2010. 29

[232] W. Song, X. Qian, and J. Huang, “Ehbdroid: Beyond gui testing for an-
droid applications,” in ASE 2017, Urbana-Champaign, IL, USA, 2017,
pp. 27–37. 117

[233] SPDY Performance on Mobile Networks, http://developers.google.
com/speed/articles/spdy-for-mobile, (last accessed: 2015-APR-
22), Google. 139, 156

[234] SPDY: An experimental protocol for a faster web, http://www.chromium.
org/spdy/spdy-whitepaper, (last accessed: 2015-APR-22), Google. 156

[235] Splunk, http://www.splunk.com/, Last accessed 04/18/2015. 163

[236] StackOverflow, Why are synchronize expensive in Java? http://stackoverflow.

com/questions/1671089/why-are-synchronize-expensive-in-

java, (last accessed: 2016-Jul-22), 2009. 66, 113

[237] Statista, Number of smartphone users worldwide from 2014 to 2020 (in
billions), https://www.statista.com/statistics/330695/number-
of-smartphone-users-worldwide/, (last accessed: 201-Aug-06). 209

[238] D. Stenberg, “HTTP/2 Explained,” SIGCOMM Comput. Commun.
Rev., vol. 44, no. 3, pp. 120–128, Jul. 2014, issn: 0146-4833. 137, 139, 140, 143

[239] strace, Linux Man Page, https://linux.die.net/man/1/strace. 19

[240] Summary of Sarbanes-Oxley Act of 2002, http://www.soxlaw.com/. 166

[241] THE /proc FILES YSTEM, https://www.kernel.org/doc/Documentation/
filesystems/proc.txt, (last accessed: 2014-May-22). 41, 53

[242] TheOldFox, What is FireFox Nightly ? https://support.mozilla.

org/en-US/questions/970739, (last accessed: 2015-APR-22), Mozilla. 142

[243] H. C. Thode, Testing for normality. CRC press, 2002, vol. 164. 102

269

http://www.ixiacom.com/about-us/news-events/corporate-blog/introduction-http2-and-performance-comparison-http1-and-http
http://www.ixiacom.com/about-us/news-events/corporate-blog/introduction-http2-and-performance-comparison-http1-and-http
http://www.ixiacom.com/about-us/news-events/corporate-blog/introduction-http2-and-performance-comparison-http1-and-http
%5Curl%7Bhttp://research.google.com/archive/papers/dapper-2010-1.pdf%7D
%5Curl%7Bhttp://research.google.com/archive/papers/dapper-2010-1.pdf%7D
http://developers.google.com/speed/articles/spdy-for-mobile
http://developers.google.com/speed/articles/spdy-for-mobile
http://www.chromium.org/spdy/spdy-whitepaper
http://www.chromium.org/spdy/spdy-whitepaper
http://www.splunk.com/
http://stackoverflow.com/questions/1671089/why-are-synchronize-expensive-in-java
http://stackoverflow.com/questions/1671089/why-are-synchronize-expensive-in-java
http://stackoverflow.com/questions/1671089/why-are-synchronize-expensive-in-java
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://www.soxlaw.com/
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://support.mozilla.org/en-US/questions/970739
https://support.mozilla.org/en-US/questions/970739

[244] B. Thompson, A suggested revision to the forthcoming 5th edition of the
apa publication manual, http://people.cehd.tamu.edu/~bthompson/
apaeffec.htm, 2000. 178

[245] R. Trestian, A.-N. Moldovan, O. Ormond, and G. Muntean, “Energy
consumption analysis of video streaming to Android mobile devices,”
in Proceedings of the 2012 IEEE Network Operations and Management
Symposium, ser. NOMS’12, Maui, HI, USA, Apr. 2012, pp. 444–452. 28, 156

[246] G. Uddin and F. Khomh, “Automatic summarization of api reviews,”
in ASE 2017, Urbana-Champaign, IL, USA, 2017, pp. 159–170. 121

[247] V. Vapnik, The nature of statistical learning theory. Springer, 2000. 57, 98, 99

[248] VLC apks, http : / / nightlies . videolan . org / build / android -

armv7/backup/, (last accessed: 2015-Aug-22). 51

[249] X. Wang, X. Li, and W. Wen, “Wlcleaner: Reducing energy waste
caused by wakelock bugs at runtime,” in Dependable, Autonomic and
Secure Computing (DASC), 2014 IEEE 12th International Conference
on, Aug. 2014, pp. 429–434. 32, 179, 201, 212, 234

[250] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“How speedy is SPDY?” In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation, ser. NSDI’14,
Seattle, WA, USA, Apr. 2014, pp. 387–399. 4, 128, 137, 143, 151, 157

[251] C. Wilke, S. Richly, S. Götz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in 2013 IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing, Aug. 2013, pp. 134–141. 209, 210

[252] M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” in Proceedings of the Future of Software En-
gineering (FOSE) track, International Conference on Software Engi-
neering (ICSE), 2007. 166

[253] V. Woollaston, Customers really want better battery life, http://www.
dailymail.co.uk/sciencetech/article-2715860/, (last accessed:
2018-Jul-22), 2014. 1, 3, 75, 136, 209, 210

[254] World Wide Web Consortium (W3C), The Original HTTP as defined
in 1991, http://www.w3.org/Protocols/HTTP/AsImplemented.html,
(last accessed: 2015-APR-22), World Wide Web Consortium (W3C). 138

[255] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting crashing
releases of mobile applications,” in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, 2016, 29:1–29:10. 224

270

http://people.cehd.tamu.edu/~bthompson/apaeffec.htm
http://people.cehd.tamu.edu/~bthompson/apaeffec.htm
http://nightlies.videolan.org/build/android-armv7/backup/
http://nightlies.videolan.org/build/android-armv7/backup/
http://www.dailymail.co.uk/sciencetech/article-2715860/
http://www.dailymail.co.uk/sciencetech/article-2715860/
http://www.w3.org/Protocols/HTTP/AsImplemented.html

[256] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online System
Problem Detection by Mining Patterns of Console Logs,” in Proceedings
of the Ninth IEEE International Conference on Data Mining (ICDM),
2009. 5, 163, 202

[257] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
Large-scale System Problems by Mining Console Logs,” in Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP), 2009. 202

[258] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra, “Robust
test automation using contextual clues,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, ser. ISSTA
2014, San Jose, CA, USA, 2014, pp. 304–314. 82

[259] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for au-
tomated gui-model generation of mobile applications,” in Proceedings
of the 16th International Conference on Fundamental Approaches to
Software Engineering, ser. FASE’13, Rome, Italy, 2013, pp. 250–265. 83

[260] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the an-
droid apps with intent-filter tag,” in Proceedings of International Con-
ference on Advances in Mobile Computing & Multimedia, ser. MoMM
’13, Vienna, Austria, 2013, 68:68–68:74. 83

[261] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “Sher-
Log: Error Diagnosis by Connecting Clues from Run-time Logs,” in
Proceedings of the Fifteenth Edition of ASPLOS on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
2010. 5, 163, 202

[262] D. Yuan, S. Park, and Y. Zhou, “Characterising Logging Practices in
Open-Source Software,” in Proceedings of the 34th International Con-
ference on Software Engineering (ICSE), 2012. 201

[263] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving Soft-
ware Diagnosability via Log Enhancement,” in Proceedings of the Six-
teenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2011. 5, 163, 202

[264] Y. Zeng, J. Chen, W. Shang, and T.-H. (Chen, “Studying the charac-
teristics of logging practices in mobile apps: A case study on f-droid,”
Empirical Software Engineering, Feb. 2019. 160

[265] C. Zhang, “The impact of user choice on energy consumption,” MSc.
thesis, University of Alberta, 2013. 125

[266] C. Zhang, A. Hindle, and D. German, “The impact of user choice on
energy consumption,” Software, IEEE, vol. 31, no. 3, pp. 69–75, May
2014. 62

271

[267] C. Zhang and A. Hindle, “A green miner’s dataset: Mining the impact
of software change on energy consumption,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, Hyderabad, In-
dia, 2014, pp. 400–403. 82, 244

[268] J. Zhang, A. Musa, and W. Le, “A Comparison of Energy Bugs for
Smartphone Platforms,” in MOBS’13, San Francisco, CA, USA, May
2013, pp. 25–30. 31

[269] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate Online Power Estimation and Automatic Bat-
tery Behavior Based Power Model Generation for Smartphones,” in
Proceedings of the 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, 2010, isbn: 978-1-
60558-905-3. 24, 47, 123, 126, 199, 212

[270] H. Zou and T. Hastie, Regularization and Variable Selection via the
Elastic Net, http://people.ee.duke.edu/~lcarin/Minhua11.7.08.
pdf, (last accessed: 2015-Oct-22). 55

272

http://people.ee.duke.edu/~lcarin/Minhua11.7.08.pdf
http://people.ee.duke.edu/~lcarin/Minhua11.7.08.pdf

	Introduction
	Software energy consumption and efficiency
	Motivation
	Estimating software energy consumption
	Energy optimization guidelines

	Contributions
	Models/Tools for estimating apps' energy consumption
	Enhancement in energy optimization guidelines

	Thesis organization

	Background
	Current, voltage, power, and energy
	Power vs. energy
	Energy measurement: GreenMiner
	Tail energy
	System calls for software energy modeling

	Related Work
	Developers' knowledge of software energy efficiency
	Modeling energy consumption
	Instruction-based modeling
	Utilization-based modeling
	System call-based modeling
	Other models

	Energy optimization and testing
	Energy efficient color selection
	Cloud computing for saving mobile energy
	Mobile energy efficiency in video streaming
	Does ad blocking help to reduce energy drain?
	Impact of code obfuscation and refactoring on energy
	Energy efficiency of Java collections
	Detecting energy bugs and hotspots
	Guidelines for energy-aware developers
	Design patterns and energy consumption
	Batch processing for energy efficiency
	Energy specific testing

	I Energy Estimation with Models
	GreenOracle: Producing Reproducible Energy Models
	Introduction
	Background and related work
	Power and energy
	System calls
	Modeling energy consumption
	Energy optimization

	Methodology
	Collecting versions of Android applications
	GreenMiner
	Developing the test scripts
	Collecting energy and resource usage of the applications
	Grouping system calls
	Feature scaling & feature selection
	Algorithms to model energy consumption
	Cross validation

	Experiment and result analysis
	Are the models useful?
	Energy-rated mobile applications
	Identifying energy sensitive code changes between subsequent versions

	Developer's workflow to estimate and improve energy consumption
	Towards improving the accuracy of our models
	Threats to validity
	Conclusion and future work

	Leveraging Automatic Test Generation for Improving Energy Models
	Introduction
	Paper organization

	Background
	Power vs. energy
	System calls and CPU time
	Energy measurement: GreenMiner
	Energy estimation: GreenOracle
	Energy model building test generation

	Code coverage heuristic
	Methodology
	Analysis of results

	GreenScaler methodology
	Collecting Android applications
	Automatic test generation with resource-utilization heuristics
	Collecting energy consumption and resource usage
	Algorithms for energy models
	Feature engineering
	Testing and cross validation

	Evaluating resource utilization heuristics
	Monkey vs. GreenMonkey
	Evaluating GreenScaler
	Evaluation on randomly generated tests
	Evaluation on manually written tests
	Qualitative evaluation of GreenScaler model
	Evaluation on detecting energy regressions
	Accuracy vs. commit size
	Evaluating GreenScaler tool from developers' perspectives

	The importance of more apps in training
	Research directions for the software energy research community
	Dataset
	Threats to validity
	Conclusion validity
	Construct validity
	Internal validity
	External validity

	Related work
	Modeling energy consumption
	Energy optimization
	Energy testing

	Conclusion and future work

	II Guidelines
	Energy Efficiency of HTTP/2
	Introduction
	Background
	Hyper Text Transfer Protocol (HTTP) and its limitations
	SPDY and HTTP/2
	Power and energy
	Tail energy

	Methodology
	GreenMiner
	Writing a test script
	Collecting Mozilla Firefox nightly versions
	Deploying a HTTP/2 server
	Workload
	Validation

	Experiment and result analysis
	World flags
	Gopher tiles
	Google and Twitter

	Discussion
	Threat to validity
	Related work
	Mitigation of energy bugs/hotspots in applications
	Performance of web protocols

	Conclusions and future work

	Energy Consumption of Logging in Android
	Introduction
	Background
	General approaches for software instrumentation
	Android logging
	GreenMiner

	RQ1: What is the difference in energy consumption for Android applications with and without logging?
	Motivation
	Experiments
	Analysis
	Summary

	RQ2: What are the factors impacting the energy consumption of logging on Android applications?
	Motivation
	Experiments
	Analysis
	Summary

	RQ3: Is there any relationship between the logging events and the energy consumption of mobile applications?
	Motivation
	Experiments
	Analysis
	Summary

	Threats to validity
	Construct validity
	Internal validity
	External validity

	Related work
	Energy testing and modeling for mobile applications
	Empirical studies on energy-efficient mobile development
	Execution logs

	Conclusion

	GreenBundle: Addressing energy efficiency from design time
	Introduction
	Background
	Energy efficiency is difficult to achieve
	Model-View-Presenter
	Events, bundling and dropping presenters

	Methodology
	The benchmark app
	Energy measurements and test scripts

	Results: benchmark app
	Real world apps
	Selection of applications
	RQ 3: What are the energy impacts of bundling and dropping on real-world applications?
	RQ 4: Can bundling and dropping help address users' feedback without harming apps' energy consumption?

	Understanding resource utilization patterns with bundling and dropping
	RQ 5: Why do bundling and dropping save energy?

	Maintainability analysis
	Threats to validity
	Related work
	Conclusion & future work

	III The Future
	Conclusions & Future Work
	Summary of the contributions
	A reproducible energy model
	Accurate energy models with automated test generation
	Energy consumption of the HTTP/2 protocol
	Energy consumption of logging
	Energy efficiency from the design time

	Future work
	A generic energy estimation model
	Automatic energy regression testing
	Other potential research

	Concluding remarks

	References

