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Abstract

This dissertation establishes various structural and representation theoretic results

in super Yangian theory.

In its first part, this dissertation details the algebraic structure and representation

theory for the Yangians of orthosymplectic Lie superalgebras. Addressing these Yangians

via the RTT realization, we prove a Poincaré-Birkhoff-Witt-type theorem and provide a

thorough study of the algebraic structure of their extended Yangians. The main result of

this part, and of this dissertation, is the provision of many necessary conditions for the

irreducible representations of these orthosymplectic Yangians to be finite-dimensional;

furthermore, there is much progress made to address attaining sufficient conditions as

well. These representation theoretic results are accomplished via the development of

a highest weight theory, and such necessary conditions are given in terms of highest

weights and tuples of Drinfel’d polynomials.

The second part of this dissertation is devoted to the Yangians of periplectic Lie

superalgebras and the twisted Yangians associated to symmetric superpairs of type AIII.

Via the RTT formalism, we prove many structural results for the Yangians of type P

strange Lie superalgebras that have only so far been established for the Yangians of

type Q strange Lie superalgebras, including a proof of a Poincaré-Birkhoff-Witt-type

theorem.

The twisted super Yangians of type AIII are defined along with many structural

properties established. We lay the foundation for the classification of their finite-

dimensional irreducible representations by cultivating a highest weight theory and

proving that all finite-dimensional irreducible modules must be highest weight.
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Chapter 1

Introduction

Yangians comprise one of the two important families of affine quantum groups, alongside
the Drinfel’d-Jimbo quantum affine algebras. As formalized by Vladimir Drinfel’d in
his seminal paper [Dri85], the Yangian Yℏ(g) of a finite-dimensional complex simple Lie
algebra g is a certain Hopf algebra over C[ℏ] that quantizes a canonical Lie bialgebra
structure on the polynomial current Lie algebra g[z], which, among other requirements,
means:

Yℏ(g)/ℏYℏ(g) ∼= U(g[z]).

One often aims to study the Yangian when the parameter ℏ takes on a nonzero complex
number λ ∈ C∗, therefore working over the field C in lieu of C[ℏ]. In this case, the
Yangian is commonly denoted Y(g) since Yλ(g) is isomorphic to Y1(g) for all such
values λ. In particular, it is a foundational theorem of Drinfel’d in his aforementioned
paper that every finite-dimensional irreducible representation of the Yangian Y(g) yields
a rational solution to the quantum Yang-Baxter equation (QYBE):

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v).

As an essential consistency equation for integrable models in statistical mechanics
and quantum field theory (see [KS82b, Jim89], for instance), the search for non-trivial
rational solutions to the QYBE serves as the primary motivation for investigating
Yangians and exploring their representation theory. However, it is known that Yangians
originally arose prior to their formalization by Drinfel’d; namely, the Yangian of glN

1



2 Chapter 1. Introduction

emerged in work on the quantum inverse scattering method, which describes a systematic
approach for solving certain integrable systems (refer to [TF79, KS82a]).

The structure and representation theory of Yangians, as well as their extensions,
based on finite-dimensional complex simple Lie algebras has been extensively studied
in Drinfel’d’s papers [Dri85, Dri86b, Dri88] and the following: [CP95, MNO96, Mol07,
AMR06, Wen18, GNW18, GRW19a, GLW21]. In fact, the complete classification
of their finite-dimensional irreducible representations was established by Drinfel’d
in [Dri88], with a more detailed exposition available in [AMR06, Mol07].

Since their formulation, the theory of Yangians has expanded to include construc-
tions based on the general linear Lie superalgebras and the (non-exceptional) finite-
dimensional classical Lie superalgebras as described by Victor Kac [Kac77]. Hence,
the natural questions raised in this context are whether one can extend Drinfel’d’s
fundamental theorems for the Yangian to the supersymmetric setting and whether it is
possible to achieve a classification of the finite-dimensional irreducible representations
for such super Yangians. In fact, for Yangians based on the general linear Lie super-
algebras, a positive answer to the latter question was provided in the 1990’s by two
articles of Ruibin Zhang (see [Zha95, Zha96]).

The core property of the Yangian that is pivotal to Drinfel’d’s theorems is the
existence of universal R-matrix

R(u) = 1+
∞∑︂
k=1

Rku
−k ∈ (Y(g)⊗ Y(g))[[u−1]].

The question of whether such a universal R-matrix exists for super Yangians remains
open; however, for reasons explained in § 1.1, there may be good reason to believe
that progress on this problem is achievable at least when g is an orthosymplectic Lie
superalgebra.

In this dissertation, we address three different topics in super Yangian theory,
demarcated in two parts. The first part, comprising Chapters 2 and 3, focuses on
Yangians of orthosymplectic Lie superalgebras, while the second part, encompassing
Chapters 4 and 5, considers Yangians of the strange Lie superalgebras and twisted
super Yangians of type AIII, respectively.

In particular, Chapter 2 is dedicated to establishing many structural results for the
orthosymplectic Yangians, as originally defined in [AAC+03]. The primary results of
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this chapter consists of a detailed proof of a Poincaré-Birkhoff-Witt-type theorem for
these Yangians and a thorough study of their extended Yangians. Chapter 3 investigates
the representation theory of these Yangians and contains our approach to addressing
a classification of their finite-dimensional irreducible representations. A summary of
these results, and how they are achieved, is provided in §1.1 below.

Yangians of the strange Lie superalgebras were first defined by Maxim Nazarov
in [Naz92], with a more detailed exposition on the type Q case published later in [Naz99].
The purpose of Chapter 4 is to adapt and prove many of the structural results of
Nazarov’s latter paper in the type P case, including a proof of a Poincaré-Birkhoff-Witt-
type theorem. We refer the reader to §1.2 for our main results on this topic. Finally,
Chapter 5 introduces the notion of super twisted Yangians as a direct super-analogue of
those twisted Yangians defined in [MR02]. Among various structural results, we lay the
foundation for the classification of their finite-dimensional irreducible representations by
establishing a highest weight theory and proving that all finite-dimensional irreducible
modules must be highest weight: see §1.3 for a survey of these results.

1.1 Yangians of Orthosymplectic Lie Superalgebras

1.1.1 Background and motivation

Yangians of orthosymplectic Lie superalgebras were first defined in [AAC+03] utilizing
the RTT formalism, which we will deploy in this dissertation. However, we should
mention that traditionally, Yangians of finite-dimensional simple Lie algebras admit
at least three important presentations: Drinfel’d’s J-presentation, Drinfel’d’s current
presentation, and the RTT realization (see [Dri85, Dri88, RTF16], respectively).

Vladimir Drinfel’d’s consequential theorems regarding Yangians of finite-dimensional
simple Lie algebras were originally proven in terms of his original J-presentation,
including the existence of the universal R-matrix. Many of his results, including the
construction of the universal R-matrix, were later published in more detail in [GLW21],
but in terms of Drinfel’d’s current presentation. It is worth noting that only recently
has progress been made in establishing Drinfel’d’s current presentation for the Yangians
of orthosymplectic Lie superalgebras (refer to [Mol23a, MR23]). This development has
allowed for the possibility to address the construction of the universal R-matrix in the
supersymmetric case; however, undertaking this particular question will be outside the
scope of this dissertation.
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Returning to the RTT realization, it is natural to define the Yangian as a certain
quotient of its extended Yangian. Namely, suppose CM |N denotes the super vector
space CM+N whose first M standard basis vectors are even while the rest are odd.
Allowing R(u) ∈

(︁
EndCM |N)︁⊗2 (u) to denote the solution to the (super) QYBE given

by (2.2.3), one may define the extended Yangian X(ospM |N ) of the orthosymplectic Lie
superalgebra ospM |N as the Hopf superalgebra whose generators are collected into a
matrix

T (u) ∈ End(CM |N)⊗ X(ospM |N)[[u
−1]]

subject to defining relations as described by the RTT -relation:

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v).

As shown in [AAC+03], there exists a formal series Z(u) = 1+
∑︁∞

n=1 Znu
−n consisting

of even central elements in the extended Yangian X(ospM |N ), allowing for one to define
the quotient

Y(ospM |N) := X(ospM |N)/(Z(u)− 1),

where (Z(u) − 1) denotes the graded ideal generated by the set {Zn | n ∈ Z+}. In
particular, it can be shown that (Z(u)− 1) is a graded Hopf ideal, therefore endowing
the Yangian with an induced Hopf superstructure as well. The above definition proves to
be appropriate due to the fact that its Rees superalgebra Yℏ(ospM |N ) := Rℏ(Y(ospM |N ))

serves as a homogeneous quantization of a canonical Lie superbialgebra structure on the
polynomial current Lie superalgebra ospM |N [z] (refer to §2.3.3 for a detailed exposition
on this point).

There are, however, several questions concerning the algebraic structure of both the
Yangian and the extended Yangian of ospM |N that are yet to be proven in detail in the
literature:

(i) Describe explicit algebraic bases for Y(ospM |N) and X(ospM |N).

(ii) Determine the (super)centers of Y(ospM |N) and X(ospM |N).

(iii) Prove Y(ospM |N) is isomorphic to the subalgebra of X(ospM |N) fixed by a family
of automorphisms {µf}f ⊂ Aut(X(ospM |N )) indexed by f=f(u) ∈ 1+u−1C[[u−1]]:

Y(ospM |N) ∼=
{︁
Y ∈ X(ospM |N) | µf (Y ) = Y for all f = f(u) ∈ 1 + u−1C[[u−1]]

}︁
.
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Addressing such structural questions is the main purpose of Chapter 2. Of course,
the primary motivation for studying these Yangians is the investigation of their rep-
resentation theory, and in particular, the determination of the isomorphism classes of
their finite-dimensional irreducible representations, denoted

Repirr
fd (Y(ospM |N))/∼ and Repirr

fd (X(ospM |N))/∼.

These investigations comprises Chapter 3; however, we note that classifications of the
above sets has recently been accomplished in the cases M = 1 and M = 2 by virtue
of Alexander Molev’s recent papers (see [Mol21, Mol23b, Mol22b]). In due course, we
will present his theorems after introducing the necessary notation in the subsequent
subsection.

1.1.2 Main results

We shall now summarize the main findings from Chapters 2 and 3, starting with the
structural results that comprise Chapter 2. The primary realization of this first chapter
on orthosymplectic Yangians is the statement of a Poincaré-Birkhoff-Witt-type theorem
as described in §2.3. We present the PBW-type theorem given as part (a) of Theorem I
which asserts that the associated graded superalgebra grY(ospM |N) of the Yangian,
with respect to a certain filtration, must have a basis by the PBW Theorem for Lie
superalgebras; hence, a basis is provided for the Yangian as well. We also present
parts (b) and (c), which are immediate consequences of the first part of theorem:

Theorem I. The Yangian Y(ospM |N) has the following structural properties:

(a) There is an N-graded Hopf superalgebra isomorphism

U(ospM |N [z]) ∼= grY(ospM |N).

(b) The supercenter ZY(ospM |N) of Y(ospM |N) is trivial: C ·1.

(c) There is a Hopf superalgebra embedding

ι : U(ospM |N) ↪→ Y(ospM |N).

The conglomerated results in Theorem I can all be found in § 2.3 as stated in
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Theorem 2.3.3, Corollary 2.3.5, and Proposition 2.3.6, respectively.

The second set of structural results are for the extended Yangian X(ospM |N). Re-
calling there exists a formal series Z(u) = 1+

∑︁∞
n=1Znu

−n consisting of even central
elements in X(ospM |N), we have the following:

Theorem II. The extended Yangian X(ospM |N ) has the following structural properties:

(a) There is a Hopf superalgebra isomorphism

X(ospM |N) ∼= C[Zn | n ∈ Z+]⊗ Y(ospM |N).

(b) The supercenter ZX(ospM |N) of X(ospM |N) is C[Zn | n ∈ Z+].

(c) There is an N-graded Hopf superalgebra isomorphism

U(ospM |N [z]⊕ C[z]) ∼= grX(ospM |N).

(d) There is a Hopf superalgebra embedding

ι : U(ospM |N) ↪→ X(ospM |N).

(e) There is a family of automorphisms {µf}f ⊂ Aut(X(ospM |N)) indexed by the
collection f=f(u) ∈ 1 + u−1C[[u−1]] such that:

Y(ospM |N) ∼=
{︁
Y ∈ X(ospM |N) | µf (Y ) = Y for all f = f(u) ∈ 1 + u−1C[[u−1]]

}︁
.

All the results in Theorem II are described in §2.4. Respectively, these are given by
Theorem 2.4.2, Proposition 2.4.3, Theorem 2.4.4, Proposition 2.4.6, and Theorem 2.4.7.
We note that Part (c) in Theorem II provides a Poincaré-Birkhoff-Witt-type theorem
for the extended Yangian.

Chapter 3 starts by investigating a highest weight theory for X(ospM |N) based on
fixing a certain positive root system Φ+ for the orthosymplectic Lie superalgebra ospM |N .
The definitions that form the foundation of the theory are found in §3.1.2, which in
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summary describe that highest weights take the form of tuples of power series

λ(u) = (λk(u))
M+N
k=1 ∈

∏︂M+N

k=1

(︁
1 + u−1C[[u−1]]

)︁
.

To any such highest weight λ(u), one may define a Verma module M(λ(u)) and, provided
it is non-trivial, it will have an irreducible quotient L(λ(u)).

In particular, we will see that all such finite-dimensional irreducible quotients
L(λ(u)) will exhaust the set Repirr

fd (X(ospM |N))/∼ via their isomorphism classes, so the
characterization of the non-triviality of M(λ(u)) is one of the first important tasks of
Chapter 3. In fact, A. Molev in [Mol23b, Mol22b] has proven such characterization in
the cases M = 1 and M = 2, as determined by the following theorem:

Theorem M1. Set M = 1 or M = 2, N ≥ 2, and assign m = ⌊M
2
⌋, n = N

2
,

κ = (M−N−2)/2. The Verma module M(λ(u)) of X(ospM |N) is non-trivial if and
only if its highest weight λ(u) = (λk(u))

M+N
k=1 satisfies the consistency conditions

λM+j(u)

λM+j+1(u)
=

λM+N-j(u− κ− j +m)

λM+N+1-j(u− κ− j +m)
for j = 1, 2, . . . , n−1,

and
λ1(u)

λn+1(u)
=
λn+2(u− κ−n)
λ1(u− κ−n)

when M = 1,

or
λ1(u)

λ3(u)
=
λ2+N(u− κ+ 1)

λ2(u− κ+ 1)
when M = 2.

Moreover, for every finite-dimensional irreducible representation V of X(ospM |N), it
holds that

V ∼= L(λ(u))

for some unique tuple λ(u) = (λk(u))
M+N
k=1 satisfying the above relations. The highest

weight vector of V is unique up to scalar multiple.

Section §3.1.3 is devoted to a pivotal construction in the representation theory of
the extended Yangian X(ospM |N): the construction of non-trivial covariant functors

F+
M : Repirr

fd (X(ospM |N)) → Repirr
fd (X(osp(M-2)|N)) for M ≥ 2

and FN
+ : Repirr

fd (X(ospM |N)) → Repirr
fd (X(ospM |(N-2))) for N ≥ 2,
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which we refer to as restriction functors. In particular, via an inductive argument on
the rank of ospM |N that utilizes the above restriction functors and takes Theorem M1
as the induction base, we are able to classify the necessary and sufficient conditions for
the non-triviality of the Verma module M(λ(u)) in full generality:

Theorem III. Set N ≥ 2 and let m =
⌊︁
M
2

⌋︁
, ˆ︁m =

⌈︁
M
2

⌉︁
, n = N

2
, κ = (M−N−2)/2.

The Verma module M(λ(u)) of X(ospM |N ) is non-trivial if and only if its highest weight
λ(u) = (λk(u))

M+N
k=1 satisfies the consistency conditions

λi(u)

λi+1(u)
=

λM-i(u− κ+ i)

λM+1- i(u− κ+ i)
for i = 1, 2, . . . ,m−1,

λM+j(u)

λM+j+1(u)
=

λM+N-j(u− κ− j +m)

λM+N+1-j(u− κ− j +m)
for j = 1, 2, . . . , n−1,

and when M is odd:

λm(u)

λM+1(u)
=
λM+N(u− κ+m)

λˆ︁m+1(u− κ+m)
if M ≥ 3,

and
λˆ︁m(u)
λM+n(u)

=
λM+n+1(u− κ+m−n)
λˆ︁m(u− κ+m−n)

,

or when M is even:

λm(u)

λM+1(u)
=
λM+N(u− κ+m)

λm+1(u− κ+m)
if M ≥ 2.

Moreover, for every finite-dimensional irreducible representation V of X(ospM |N), it
holds that

V ∼= L(λ(u))

for some unique tuple λ(u) = (λk(u))
M+N
k=1 satisfying the above relations. The highest

weight vector of V is unique up to scalar multiple.

Theorem III is given as Theorem 3.2.2, where itself is a consequence of Theorem 3.1.3,
Proposition 3.1.14, and Proposition 3.2.1. The next important task of Chapter 3 is
to classify the conditions for when L(λ(u)) is finite-dimensional. As in A. Molev’s
aforementioned papers, this classification has been successfully completed in the cases
M = 1 and M = 2:
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Theorem M2. Set M = 1 or M = 2, N ≥ 2, n = N
2
, and let λ(u) = (λk(u))

M+N
k=1

satisfy the consistency conditions in Theorem M1. The X(ospM |N)-module L(λ(u)) is
finite-dimensional if and only if there exists a tuple of monic polynomials

(δM2
˜︁Q(u), δM2Q(u); (Pk(u))k∈I) ∈ C[u]n+2δM2 ,

with I = {M+1, . . . ,M+n}, such that

λk(u)

λk+1(u)
=
Pk(u− 1)

Pk(u)
for all k ∈ I \ {M+n},

and
λ1(u)

λn+1(u)
=
P1+n(u+ 1)

P1+n(u)
when M = 1,

or
λn+2(u)

λn+3(u)
=
P2+n(u− 2)

P2+n(u)
and

λ1(u)

λ3(u)
=
˜︁Q(u)
Q(u)

when M = 2,

where ˜︁Q(u) and Q(u) are coprime polynomials of the same polynomial degree.

Setting (−1)[k] = 1 for 1 ≤ k ≤ M and (−1)[k] = −1 for M+1 ≤ k ≤ M+N , we
now state one of the main results of Chapter 3:

Theorem IV. Set M,N ≥ 2, m =
⌊︁
M
2

⌋︁
, ˆ︁m =

⌈︁
M
2

⌉︁
, n = N

2
, and let λ(u) = (λk(u))

M+N
k=1

satisfy the consistency conditions in Theorem III. If the X(ospM |N)-module L(λ(u)) is
finite-dimensional, then there exists a tuple of monic polynomials

( ˜︁Q(u), Q(u); (Pk(u))k∈I) ∈ C[u]m+n+1,

with I = {1, . . . ,m−1;M+1, . . . ,M+n}, such that

λk(u)

λk+1(u)
=
Pk(u+ (−1)[k])

Pk(u)
for k ∈ I \ {M+n},

λˆ︁m(u)
λM+n(u)

=
PM+n(u+ 1)

PM+n(u)
if M is odd,

λM+n(u)

λM+n+1(u)
=
PM+n(u− 2)

PM+n(u)
if M is even,

and
λm(u)

λM+1(u)
=
˜︁Q(u)
Q(u)

,

where ˜︁Q(u) and Q(u) are coprime polynomials of the same polynomial degree.
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The polynomials ( ˜︁Q(u), Q(u); (Pk(u))k∈I) are called the Drinfel’d polynomials cor-
responding to L(λ(u)) and they are uniquely determined by the highest weight λ(u).
Given as Theorem 3.2.8, the proof of Theorem IV follows from the combination of
1) R. B. Zhang’s classification of Repirr

fd (Y(glm|n))/∼ (see [Zha96]) due to an embedding
Y(glm|n) ↪→ X(ospM |N), and 2) an inductive argument on the rank of ospM |N via the
use of restriction functors and taking Theorem M2 as the induction base.

Proving the converse of Theorem IV will be considerably more technical, which will
involve the construction of fundamental representations of X(ospM |N ) corresponding to
Drinfel’d polynomials of the form

(︁
u+ α, u+ β; (1)k∈I

)︁
or

(︁
1, 1; ((u+γ)δik)k∈I

)︁
for i ∈ I and α, β, γ ∈ C where α ̸= β. Those fundamental representations associated
to the first tuple will be denoted L(λ(u);α, β), whereas those corresponding to the
second tuple will be denoted L(λ(u); i : γ). We now consider the following theorem
which partially addresses the sufficiency of the conditions stated in Theorem IV.

Theorem V. Set M ≥ 2, let α, β, γ ∈ C such that α ̸= β, and let λ(u) satisfy the
consistency conditions in Theorem III.

(a) Set N ≥ 2. When M = 2, then dimL(λ(u);α, β) ≤ 2N . Otherwise when M ≥ 3,
then dimL(λ(u);α, β) <∞ if and only if α− β ∈ O, where O is a certain non-
trivial subset of 1

2
Z+. When M is even in this case, then dimL(λ(u);α, β) ≤ 2mN .

(b) When 1 ≤ i ≤ m−1, then dimL(λ(u); i : γ) <∞.

We refer the reader to the subsections §3.2.3 and §3.2.4 for the results described by
Theorem V. The notable omission in the above theorem is that there is no determination
on the finite-dimensionality of L(λ(u); i : γ) when M+1 ≤ i ≤M+n. Moreover, further
necessary conditions on the roots of the Drinfel’d polynomials ˜︁Q(u) and Q(u) that would
be inferred by Theorem V have not yet been established. Currently, these questions
remain open.

Refer to Conjectures 3.2.22 and 3.2.23 for our estimation on the classifications of
the sets Repirr

fd (X(ospM |N))/∼ and Repirr
fd (Y(ospM |N))/∼, respectively.
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1.2 Yangians of Strange Lie Superalgebras

1.2.1 Motivation and main results

In Kac’s classification of finite-dimensional simple Lie superalgebras [Kac77], there are
two families of finite-dimensional classical Lie superalgebras which are not basic: the
simple strange Lie superalgebras of types P and Q. Types P and Q each describe several
families of finite-dimensional “strange” Lie superalgebras, including the aforementioned
simple strange Lie superalgebras. In this work, we consider the most general families in
each type, which we denote pN and qN for N ∈ Z+, respectively. We note that in regards
to pN or qN , the simple strange Lie superalgebras are either Lie sub-superalgebras or
quotients of such.

In [Naz92], Nazarov defined Yangians for these strange Lie superalgebras pN and qN ,
which are regarded as the Yangians of types P and Q, respectively. Nazarov later studied
the Yangians of type Q more extensively in [Naz99], but there has been no comparable
article for the Yangians of type P released to date, prompting the motivation for this
work.

In contrast to the finite-dimensional simple Lie algebras and the orthosymplectic Lie
superalgebras, there is no canonical Lie superbialgebra structure on the polynomial cur-
rent Lie superalgebra sN [z] for sN = pN , qN . As a consequence of this, Nazarov proposed
the following construction: by regarding sN as a fixed-point Lie sub-superalgebra glϑN |N
of glN |N under a certain involution ϑ ∈ Aut(glN |N), one can extend ϑ in a non-trivial
way to an involutive automorphism of glN |N [z] via the assignment

ϑ(f(z)) = ϑ(f)(−z) for all f(z) ∈ glN |N [z].

In particular, one is able to define a natural Lie superbialgebra structure on the twisted
polynomial current Lie superalgebra glN |N [z]

ϑ, the fixed-point Lie sub-superalgebra of
glN |N [z] under the involution ϑ (refer to §4.3.3 for a detailed discussion on this point);
namely, the Yangian Yℏ(sN) will (homogeneously) quantize this Lie superbialgebra
structure:

Yℏ(sN)/ℏYℏ(sN) ∼= U(glN |N [z]
ϑ).

In Nazarov’s second paper, he proved several structural results for Yangians of strange
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Lie superalgebras of type Q, including:

(i) A description of an explicit algebraic basis for Y(qN).

(ii) A description of the supercenter of Y(qN).

In this dissertation, we extend to type P many of the structural results for the
type Q case as in [Naz99]. Unlike our investigation into the orthosymplectic Yangians
in Chapter 3, however, we will not study the representation theoretic aspects of Y(pN ).
In fact, even though the defining relations of the Yangian Y(qN) are relatively more
agreeable when compared to its strange counterpart Y(pN ), the study into the represen-
tation theory for the Yangians of type Q is still only at early development. Although
Nazarov constructed functors between the representation categories of Y(qN) and the
degenerate affine Sergeev algebras, thereby presenting a wide array of finite-dimensional
irreducible representations for the Yangian (see [Naz99, §5]), the classification of all
finite-dimensional irreducible representations of Y(qN ) has only recently been completed
when N = 1 (refer to [PS21]).

We now provide the main theorem of Chapter 4 and of this topic, which is the
statement of a Poincaré-Birkhoff-Witt-type theorem for Y(pN). We present the PBW-
type theorem given as part (a) of Theorem VI which asserts that the associated graded
superalgebra grY(pN) of the Yangian, with respect to a certain filtration, must be
isomorphic to the universal enveloping superalgebra U(glN |N [z]

ϑ):

Theorem VI. The Yangian Y(pN) has the following structural properties:

(a) There exists an involution ϑ ∈ Aut(glN |N) such that pN = glϑN |N and the non-
trivial extension of ϑ to glN |N [z] yields an N-graded Hopf superalgebra isomorphism

U(glN |N [z]
ϑ) ∼= grY(pN).

(b) The supercenter ZY(pN) of Y(pN) is trivial: C ·1.

(c) There is a Hopf superalgebra embedding

ι : U(pN) ↪→ Y(pN).

The conglomerated results in Theorem VI can all be found in §4.3 as stated in
Theorem 4.3.2, Corollary 4.3.4, and Proposition 4.3.5, respectively.
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1.3 Twisted Super Yangians of Type AIII

1.3.1 Motivation and main results

Twisted Yangians serve as one of the main examples of quantum symmetric pairs of
affine type, while at the same time form important instances of reflection algebras
with additional symmetry and/or unitarity conditions. Namely, when g is a finite-
dimensional simple Lie algebra (or glN) and gϑ is the fixed-point Lie subalgebra under
an involution ϑ ∈ Aut(g), one can associate to a symmetric pair (g, gϑ) a certain
left coideal subalgebra Y(g, gϑ)tw of Y(g) called the twisted Yangian corresponding to
the pair (g, gϑ). In particular, we refer to the tuple (Y(g),Y(g, gϑ)tw) as a quantum
symmetric pair. These twisted Yangians have been shown to be an integral part of
many models in mathematical physics, such as open spin chains, vertex models, and
integrable systems with boundaries, whilst also playing a meaningful part in quantum
field theory (see [Skl88, DMS01, Mac02, Mac05]).

There has been much work completed in regards to twisted Yangians associated to
symmetric pairs of types A, B, C, and D, including their representation theories. The
symmetric pairs most relevant to this work are those of type A which take the form

AI : (glN , soN), AII : (glN , spN), and AIII : (glN , glp ⊕ glN−p) for 0 ≤ p < N.

The twisted Yangians corresponding to the above symmetric pairs have been extensively
studied, including the classification of their finite-dimensional irreducible representations
(see [Mol92, Mol98, Mol07] for types AI & AII and [MR02] for type AIII). For the
treatment of twisted Yangians corresponding to symmetric pairs of types B, C, and D,
we refer the reader to the articles [GR16, GRW17, GRW19b].

This work concerns the development of twisted Yangians corresponding to the
super-analogue of symmetric pairs of type AIII: the symmetric superpairs

AIII : (glM |N , glp|q ⊕ gl(M−p)|(N−q)) for 0 ≤ p ≤M, 0 ≤ q < N.

Indeed, for such indices p, q, one can realize glp|q ⊕ gl(M−p)|(N−q) as a fixed-point Lie
sub-superalgebra glϑM |N for some involution ϑ ∈ Aut(glM |N). Similar to the previous
subsection, one can extend ϑ in a non-trivial way to an involutive automorphism of the
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polynomial current Lie superalgebra glM |N [z] via the assignment

ϑ(f(z)) = ϑ(f)(−z) for all f(z) ∈ glM |N [z].

The twisted Yangian Y(glM |N , gl
ϑ
M |N )

tw will be a particular left coideal sub-superalgebra
of the Yangian Y(glM |N ). Its relation to the symmetric superpair is realized by the fact
that its parametrized twisted Yangian Yℏ(glM |N , gl

ϑ
M |N )

tw ⊂ Yℏ(glM |N ) is a homogeneous
superalgebra deformation of U(glM |N [z]ϑ):

Yℏ(glM |N , gl
ϑ
M |N)

tw/ℏYℏ(glM |N , gl
ϑ
M |N)

tw ∼= U(glM |N [z]
ϑ).

We shall now provide the main findings of Chapter 5 concerning these twisted super
Yangians. The first main result comprises Theorem VII which acts as a Poincaré-
Birkhoff-Witt-type theorem for Y(glM |N , gl

ϑ
M |N)

tw, given as Corollary 5.1.12.

Theorem VII. The twisted Yangian Y(glM |N , gl
ϑ
M |N)

tw is a filtered deformation of
U(glM |N [z]

ϑ), i.e., there exists an N-graded superalgebra isomorphism

U(glM |N [z]
ϑ) ∼= grY(glM |N , gl

ϑ
M |N)

tw.

In § 5.2, we develop a highest weight theory for studying the representations of
Y(glM |N , gl

ϑ
M |N)

tw. In particular, the following theorem is an initial important result
for addressing the the classification of all finite-dimensional irreducible representations
of Y(glM |N , gl

ϑ
M |N)

tw:

Theorem VIII. Every finite-dimensional irreducible representation V of the twisted
Yangian Y(glM |N , gl

ϑ
M |N )

tw is a highest weight representation. The highest weight vector
of V is unique up to scalar multiple.

We refer the reader to Theorem 5.2.3 for proof of Theorem VIII.
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Chapter 2

Yangians of Orthosymplectic
Lie Superalgebras

In this chapter, we establish many structural properties for both the Yangians and
extended Yangians of the orthosymplectic Lie superalgebras. The results proven here will
be leveraged in Chapter 3, wherein we investigate their representation theories with the
ultimate goal to classify their respective finite-dimensional irreducible representations.

We outline the chapter as follows. The first section §2.1 will serve as the preliminary
component of both the chapter and the dissertation by recalling the definition of the
Yangian of a finite-dimensional simple Lie algebra and introducing notation that will
be standard across all chapters in this work. In §2.2, the definitions of the extended
Yangian X(ospM |N ) and Yangian Y(ospM |N ) are provided via the RTT realization. The
primary result of the chapter resides in §2.3, where the PBW-type theorem for the
Yangian is proven. The subsection §2.3.3 provides a comprehensive account of the
Lie superbialgebra structure on ospM |N [z] and introduces the Yangian Yℏ(ospM |N) via
the Rees superalgebra formalism. In particular, there is a detailed explanation of how
Yℏ(ospM |N) serves as a homogeneous quantization of ospM |N [z]. The final section §2.4
establishes many structural properties of the extended Yangian, including a tensor
product decomposition, a PBW-type theorem, and the realization of the Yangian as a
fixed-point subalgebra under a parametrized family of automorphisms of the extended
Yangian.

16
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2.1 Preliminaries

By convention, N = {0, 1, 2, 3, . . . } denotes the set of natural numbers, Z is the set of all
integers, Z+ denotes the set of positive integers, C is the field of complex numbers, Q is
the field of rational numbers, and Z2 := Z/2Z =

{︁
0̄, 1̄
}︁

denotes the field of two elements.
Let us fix our ground field to be C. Unless otherwise stated, all linear algebraic notions
are formulated with respect to this fixed ground field C, i.e., vector space = C-vector
space, algebra = C-algebra, linear map = C-linear map, ⊗ = ⊗C, etcetera.

2.1.1 The Yangian of a simple Lie algebra

Let g denote a finite-dimensional complex simple Lie algebra equipped with a non-
degenerate symmetric g-invariant bilinear form ( · , · ) and fix an orthonormal basis
{Xλ}λ∈Λ of g with respect to such form, where Λ is an index set of cardinality dim(g).
As defined in terms of its original J-presentation in [Dri85], the Yangian of g is the
following:

Definition 2.1.1. The Yangian Y(g) is the unital associative C-algebra generated by
the elements {X, J(X)}X∈g subject to the following relations:

[X, Y ]g = [X, Y ], J([X, Y ]) = [J(X), Y ],

J(aX + bY ) = aJ(X) + bJ(Y ),

[J(X), [J(Y ), Z]]− [X, [J(Y ), J(Z)]]

=
∑︂

λ,µ,υ∈Λ

(︁
[X,Xλ], [[Y,Xυ], [Z,Xυ]]

)︁
{Xλ, Xµ, Xυ},

[[J(X), J(Y )], [Z, J(W )]] + [[J(Z), J(W )], [X, J(Y )]]

=
∑︂

λ,µ,υ∈Λ

(︂(︁
[X,Xλ], [[Y,Xµ], [[Z,W ], Xυ]]

)︁
+
(︁
[Z,Xλ], [[W,Xµ], [[X, Y ], Xυ]]

)︁)︂
{Xλ, Xµ, J(Xυ)},

for all W,X, Y, Z ∈ g and for all a, b ∈ C, where

{Z1, Z2, Z3} :=
1

24

∑︂
π∈S3

Zπ(1)Zπ(2)Zπ(3) for all Z1, Z2, Z3 ∈ Y(g).

We observe that the Yangian is N-graded given by degX = 0 and deg J(X) = 1 for
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elements X ∈ g. The Yangian Y(g) admits at least three equivalent presentations, with
the J-presentation being the first given above. In [Dri88], Drinfel’d discovered a second
presentation of the Yangian, suitably called Drinfel’d’s second (or current) realization,
inspired by the Chevalley-Serre presentation of g. We will not focus on either the first
or second presentation of the Yangian in the remainder of this work and instead forward
to the third presentation which will dominate this dissertation: the RTT realization.

Let us assume M,N ∈ N such that N is even and M+N ≥ 1. Further, define
the sign θi = 1 for 1 ≤ i ≤ M+ N

2
and θi = −1 for M+ N

2
+1 ≤ i ≤ M+N . The

transposition is the C-linear map defined by

(−)t : EndCM+N → EndCM+N , Eij ↦→ E t
ij := θiθjE ȷ̄ ı̄,

where ı̄ = M+N+1−i for the indices 1 ≤ i ≤ M+N . The permutation operator in
the space

(︁
EndCM+N

)︁⊗2 is given by

P :=
M+N∑︂
i,j=1

Eij ⊗ Eji ∈
(︁
EndCM+N

)︁⊗2 (2.1.1)

and further define the Q operator

Q := (id⊗(−)t)P =
M+N∑︂
i,j=1

θiθjEij ⊗ E ı̄ ȷ̄ ∈
(︁
EndCM+N

)︁⊗2
.

The R-matrix R(u) is the rational function in the formal parameter u taking coefficients
in
(︁
EndCM+N

)︁⊗2 given by

R(u) := id⊗2−P

u
+

Q

u− k
∈
(︁
EndCM+N

)︁⊗2
(u), (2.1.2)

where k = kM,N := (M+N−2δ0N+2δ0M)/2 and δ0D is the Kronecker delta. When
M = 0 or N = 0, it is known that the R-matrix (2.1.2) is a solution to the quantum
Yang-Baxter equation (QYBE):

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u), (2.1.3)

c.f. [ZZ79, KS82b, AAC+03]. For a description of the notation used in (2.1.3) and
Definition 2.1.2 below, we refer the reader to subsection §2.1.3.
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Definition 2.1.2. Let XM |N be the unital associative C-algebra on the generators
{t(n)ij | 1 ≤ i, j ≤M+N, n ∈ Z+} subject to the defining RTT-relation

R(u− v)t1(u)t2(v) = t2(v)t1(u)R(u− v)

in
(︁
EndCM+N

)︁⊗2 ⊗ XM |N [[u
±1, v±1]],

where t(u) :=
∑︁M+N

i,j=1 Eij ⊗ tij(u) ∈ End(CM+N)⊗ XM |N [[u
−1]] is the matrix consisting

of the generating series tij(u) := δij1 +
∑︁∞

n=1 t
(n)
ij u

−n ∈ XM |N [[u
−1]], and R(u − v) is

identified with R(u− v)⊗ 1. Note that δij denotes the Kronecker delta.

When N = 0, the algebra XM |0 is called the extended Yangian X(soM) of the
orthogonal Lie algebra soM , whereas if M = 0, the algebra X0|N is called the extended
Yangian X(spN) of the symplectic Lie algebra spN .

Setting Tt(u+k) := ((−)t⊗id)T(u+k), we consider the matrix Z(u) := Tt(u+k)T(u)

and the series z(u) ∈ 1+u−1XM |N [[u
−1]] defined by id⊗ z(u) = Z(u). Allowing (z(u)−1)

to denote the two-sided ideal of XM |N generated by the coefficients of z(u) − 1, we
arrive at another definition of the Yangian for the Lie algebras soM and spN :

Definition 2.1.3. Let YM |N be the quotient of XM |N by the two-sided ideal (z(u)−1):

YM |N := XM |N /(Z(u)− 1). (2.1.4)

When N = 0, the quotient YM |0 is called the Yangian Y(soM) of soM . Accordingly, if
M = 0, the quotient Y0|N is called the Yangian Y(spN) of spN .

We refer the reader to [GRW19a] for a detailed exposition on the equivalence of the
three aforementioned presentations for the orthogonal and symplectic Yangians.

2.1.2 The gradation index and orthosymplectic Lie

superalgebra

If V denotes a vector space with an ordered basis {xi}Di=1, a natural way to equip V

with a Z2-grading is by specifying its first d many basis vectors, with d ≤ D, to be even
whilst setting the remaining basis vectors to be odd. We note the more general case
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when one may set any d many basis vectors to be even, which prompts the following
definition:

Definition 2.1.4. Fix two integers d ∈ N, D ∈ Z+ such that d ≤ D. For a subset
d ⊆ {1, 2, . . . , D} of cardinality d, we introduce the gradation index

[ · ]d : {1, 2, . . . , D} → Z2 (2.1.5)

given by [i]d = 0̄ for i ∈ d and [i]d = 1̄ for i ∈ d′ = {1, 2, . . . , D} \ d. When
d = {1, 2, . . . , d}, we set [ · ] = [ · ]d.

We will primarily be working with super vector spaces V = V0̄ ⊕ V1̄ that are graded
with respect to the gradation index (2.1.5), but we shall also denote the gradation
of homogeneous elements in V with the similar notation: [ · ] : V0̄ ⊔ V1̄ → Z2, v ↦→ [v],
where [v] = γ ∈ Z2 if v ∈ Vγ . For a super vector space V , elements in V0̄ are said to be
even and elements in V1̄ are said to be odd.

The prototypical vector space we will use that is graded with respect to the gradation
index (2.1.5) is the space CM+N , where M,N ∈ N such that M+N ≥ 1. We let the
standard basis be given by B = {ei}M+N

i=1 and denote CM |N
d to be such vector space

equipped with the Z2-grading given by [ei] := [i]d for 1 ≤ i ≤M+N , where d =M and
D =M+N as in Definition 2.1.4. When d = {1, 2, . . . ,M}, we set CM |N = CM |N

d .

Setting V = CM |N
d , the space of C-linear maps V → V , denoted EndV , carries a

natural Z2-grading via the assignment (EndV )γ = {φ ∈ EndV |φ(Vη) ⊆ Vη+γ, η ∈ Z2}.
In fact, such grading is provided by [Eij ] := [i]d+ [j]d, where {Eij}Di,j=1 is the collection
of the matrix units of EndV with respect to the basis B.

Again assume M,N ∈ N such that M+N ≥ 1, N is even, and set d = M ,
D = M+N as in Definition 2.1.4. Further, consider d and d′ as ordered sets with
respect to the canonical ordering on N, so that d[j] and d′[j] denotes the jth elements
in these sets and d′N/2 denotes the first N

2
integers in d′. For each 1 ≤ i ≤ M+N ,

define the sign

θdi :=

⎧⎨⎩1 if i ∈ d ∪ d′N/2,

−1 if i ∈ d′ \ d′N/2,
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and define the conjugate index ı̄d as

ı̄d :=

⎧⎨⎩d[M+1−j] if i = d[j] for some 1 ≤ j ≤M,

d′[N+1−j] if i = d′[j] for some 1 ≤ j ≤ N.

We shall see that the definitions of the Yangian depend on the selection of the set d,
which will be more relevant in Chapter 3. For the remainder of this chapter, however,
we shall assume d = {1, 2, . . . ,M} unless otherwise specified. Accordingly, we denote
θi := θdi and ı̄ := ı̄d in this case, which means such symbols are given by

θi =

⎧⎨⎩1 if 1 ≤ i ≤M+ N
2
,

−1 if M+ N
2
+1 ≤ i ≤M+N,

and

ı̄ =

⎧⎨⎩M+1−i if 1 ≤ i ≤M,

2M+N+1−i if M+1 ≤ i ≤M+N.

Generally, spaces in this work will be regarded as an object in the symmetric
monoidal category of super vector spaces over C, denoted sVectC, which is equipped
with the super-braiding σ. As such, given any two objects V and W in sVectC, there
is an isomorphism σV,W : V ⊗W → W ⊗ V , v ⊗ w ↦→ (−1)[v][w]w ⊗ v on homogeneous
elements v ∈ V and w ∈ W . We note that it will be common to drop the subscripts on
the super-braiding σV,W throughout this dissertation.

For homogeneous linear maps φ ∈ EndV and ψ ∈ EndW , their (super) tensor
product is the homogeneous linear map in End(V ⊗W ), denoted φ⊗ ψ, given by

φ⊗ ψ : V ⊗W → V ⊗W, v ⊗ w ↦→ (−1)[ψ][v]φ(v)⊗ ψ(w)

Note that when φ and ψ are even (or just ψ), then their (super) tensor product is simply
the traditional tensor product of linear maps. For instance, the operator Eij ⊗ Ekl in(︁
EndCM |N)︁⊗2 ∼= End(CM |N ⊗ CM |N) acts on basis elements ea ⊗ eb via the formula

(Eij ⊗ Ekl) (ea ⊗ eb) = δjaδlb(−1)([k]+[l])[a]ei ⊗ ek.

If we further suppose that V and W are algebras in sVectC with multiplication maps
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µV : V ⊗ V → V and µW : W ⊗W → W , then multiplication in V ⊗W is defined by
the composition (µV ⊗ µW ) ◦ (idV ⊗σ ⊗ idW ). Explicitly, this multiplication is given
by (v1 ⊗ w1)(v2 ⊗ w2) = (−1)[w1][v2]v1v2 ⊗ w1w2 on homogeneous elements. When V is
associative, we shall let Lie(V ) denote the Lie superalgebra structure on V given by the
super-commutator [v1, v2] = v1v2 − (−1)[v1][v2]v2v1 for homogeneous elements v1, v2 ∈ V .

Given a superalgebra A, we shall let MatM |N(A) denote the collection of superma-
trices over A with dimension M |N . As a set, MatM |N(A) coincides with MatM+N(A)

but each supermatrix A ∈ MatM |N(A) of Z2-degree [A] = γ is a 2× 2 block matrix(︄
A00 A01

A10 A11

)︄
(2.1.6)

such that A00 ∈ MatM(Aγ), A01 ∈ MatM×N(Aγ+1̄), A10 ∈ MatN×M(Aγ+1̄), and
A11 ∈ MatN(Aγ). Via traditional matrix multiplication, the collection MatM |N(A)

forms a superalgebra structure over A.

When A is not super, one can naturally identify the algebra End(CM+N)⊗A with
MatM+N (A) so that multiplication in End(CM+N )⊗A may be simply regarded as matrix
multiplication. However, when A is super, one invariably encounters signs occurring
with multiplication in End(CM |N )⊗A that does not occur with ordinary (super) matrix
multiplication in MatM |N(A). We therefore observe there is an algebra isomorphism

(︁
End(CM |N)⊗A

)︁
0̄

∼−→ MatM |N(A)0̄,
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ Aij ↦→ (Aij)
M+N
i,j=1 ,

where the elements Aij ∈ A are homogeneous of degree [Aij] = [Eij] = [i]+ [j].

For the remainder of this section, we shall only consider the case when A is the
base field C = C1|0 with the trivial Z2-grading by deeming all elements as even. The
super-transpose is the C-linear map defined by

(−)st : EndCM |N → EndCM |N , Eij ↦→ Est
ij := (−1)[i][j]+[i]Eji (2.1.7)

and is furthermore a superalgebra anti-automorphism: (A1A2)
st = (−1)[A1][A2]Ast2 A

st
1

for any homogeneous elements A1, A2 ∈ EndCM |N . If (−)′ denotes the conventional
matrix transpose, then via the superalgebra identification EndCM |N ∼= MatM |N(C), the
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super-transpose Ast of A = (Aij)
1
i,j=0 ∈ MatM |N(C) is provided by

(︄
A00 A01

A10 A11

)︄st
=

(︄
A′00 A′10

−A′01 A′11

)︄
.

The space EndCM |N is a unital associative superalgebra and therefore carries the
structure of a Lie superalgebra given by the super-commutator

[Eij, Ekl] := δjkEil − δil(−1)([i]+[j])([k]+[l])Ekj

for indices 1 ≤ i, j ≤ M+N , where δij is the Kronecker delta. When equipped
with the above Lie superalgebra structure, we shall denote the space EndCM |N as
glM |N = gl(CM |N) and call it the general Lie superalgebra.

Definition 2.1.5. Assume b : CM |N × CM |N → C is an even, super-symmetric, non-
degenerate C-bilinear form; hence, N is necessarily even. The orthosymplectic Lie
superalgebra ospM |N = ospM |N (CM |N , b) is defined as the Lie sub-superalgebra of glM |N
preserving such bilinear form b.

That is, ospM |N is the Lie sub-superalgebra generated by homogeneous elements
φ ∈ glM |N satisfying the relation b(φ(v), w)+(−1)[φ][v]b(v, φ(w)) = 0 for all homogeneous
vectors v, w ∈ CM |N . The associated matrix of b with respect to the standard basis
{ei}M+N

i=1 is given by B =
(︁
b(ei, ej)

)︁
M+N
i,j=1 , which necessarily has the form

B =

(︄
G 0

0 J

)︄

where G ∈ MatM(C) and J ∈ MatN(C) are invertible matrices satisfying G′ = G and
J ′ = −J . As the definition of ospM |N is independent of the selection of such a bilinear
form, we may assume

G =
(︁
δi ȷ̄
)︁
M
i,j=1 and J =

(︁
θjδi ȷ̄

)︁
N
i,j=1, so B =

(︁
θjδi ȷ̄

)︁
M+N
i,j=1 . (2.1.8)

Regarding A ∈ glM |N in its matrix form (2.1.6), one therefore has A ∈ ospM |N if and
only if AstB +BA = 0, i.e., if A00 ∈ soM , A11 ∈ spN , and A′10J +GA01 = 0.

Given the super-trace str : glM |N → C, A ↦→ tr(A00) − tr(A11), where A is of the
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form (2.1.6), the special linear Lie superalgebra slM |N is the Lie sub-superalgebra of
glM |N defined by the set {X ∈ glM |N | str(X) = 0}. Since soM ⊂ slM and spN ⊂ slN ,
it follows that ospM |N ⊂ slM |N .

We will now show that one may also regard ospM |N as a certain fixed-point Lie
sub-superalgebra of slM |N under some involution ϑ. It is this realization of the or-
thosymplectic Lie superalgebras that will be utilized more prominently in this chapter,
and subsequently, Chapter 3. To this end, we introduce the super-transposition as the
C-linear map defined by

(−)t : EndCM |N → EndCM |N , Eij ↦→ E t
ij := (−1)[i][j]+[i]θiθjE ȷ̄ ı̄. (2.1.9)

Similar to the super-transpose (2.1.7), the super-transposition is a superalgebra anti-
automorphism: (A1A2)

t = (−1)[A1][A2]At2A
t
1 for homogeneous maps A1, A2 ∈ EndCM |N .

However, we note that the super-transposition is in fact an involution, unlike the
super-transpose which is of order 4. Moreover, the super-transposition and the super-
transpose commute: (−)t ◦ (−)st = (−)st ◦ (−)t; and given any index 1 ≤ k ≤ m, it will
be convention throughout this work to let (−)tk denote the map

id⊗(k−1)⊗ (−)t ⊗ id⊗(m−k) ∈ End
(︁
EndCM |N)︁⊗m .

Via the super-transposition, there is an involutive automorphism ϑ ∈ Aut(slM |N)

defined by
ϑ := −(−)t : slM |N → slM |N , X ↦→ −X t,

and one can show that the orthosymplectic Lie superalgebra ospM |N coincides with the
fixed-point sub-superalgebra slϑM |N of slM |N under such involution ϑ. In particular, the
Lie superalgebra ospM |N is generated by the operators

Fij := Eij + ϑ(Eij) = Eij − (−1)[i][j]+[i]θiθjE ȷ̄ ı̄ ∈ slM |N (2.1.10)

with indices 1 ≤ i, j ≤M+N , subject only to the relations[︁
Fij, Fkl

]︁
= δjkFil − δil(−1)([i]+[j])([k]+[l])Fkj

− δ ı̄k(−1)[i][j]+[i]θiθjFȷ̄ l + δ ȷ̄ l(−1)([i]+[j])[k]θ ı̄θȷ̄Fk ı̄
(2.1.11)

and
Fij + (−1)[i][j]+[i]θiθjFȷ̄ ı̄ = 0. (2.1.12)
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2.1.3 Mapping notation

Let W be an arbitrary super vector space and let V be a finite-dimensional super vector
space of dimension d with a fixed basis {b1, . . . , bd}, where {Eij}di,j=1 denotes the matrix
units of EndV with respect to this basis. In this work, we will often represent objects in
(EndV )⊗W in the larger ambient space (EndV )⊗m ⊗W for some integer m ≥ 2. For
this purpose, any index 1 ≤ k ≤ m will determine a morphism of super vector spaces

φk : (EndV )⊗W → (EndV )⊗m ⊗W

ψ ⊗ w ↦→ id⊗(k−1)⊗ψ ⊗ id⊗(m−k) ⊗w,

and set Xk = φk(X) for X ∈ (EndV )⊗W . Explicitly, if X =
∑︁d

i,j=1Eij ⊗ wij, then

Xk =
d∑︂

i,j=1

id⊗(k−1)⊗Eij ⊗ id⊗(m−k)⊗wij ∈ (EndV )⊗m ⊗W.

If X = X(u) depends on some formal parameter u, we shall write Xk(u) instead
of X(u)k for the element φk(X(u)).

Generalizing of the above map when W = A is a superalgebra with unit 1, we will
also aim to represent objects in (EndV )⊗A in the larger space (EndV )⊗m ⊗A⊗n for
some integers m,n ∈ Z+. For this, any indices 1 ≤ k ≤ m and 1 ≤ l ≤ n determine a
morphism of superalgebras

φk[l] : (EndV )⊗A → (EndV )⊗m ⊗A⊗n

ψ ⊗ a ↦→ id⊗(k−1)⊗ψ ⊗ id⊗(m−k) ⊗1⊗(l−1) ⊗ a⊗ 1⊗(n−l),

and set Xk[l] = φk[l](X) for an element X ∈ (EndV )⊗A. Explicitly, if we express X
as the sum

∑︁d
i,j=1Eij ⊗ aij, then

Xk[l] =
d∑︂

i,j=1

id⊗(k−1)⊗Eij ⊗ id⊗(m−k) ⊗1⊗(l−1) ⊗ aij ⊗ 1⊗(n−l) ∈ (EndV )⊗m ⊗A⊗n.

If k = 1 we shall abbreviate X1[l] by X[l] and if l = 1 we shall abbreviate Xk[1] by Xk just
as above. When X = X(u) depends on some formal parameter u, we shall write Xk[l](u)

instead of X(u)k[l] for the element φk[l](X(u)).
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Analogously, we will like to express elements of A⊗A within A⊗m for some integer
m ≥ 3. Any pair of indices 1 ≤ k < l ≤ m will determine a morphism of superalgebras

φkl : A⊗A → A⊗m, a⊗ b ↦→ 1⊗(k−1) ⊗ a⊗ 1⊗(l−k−1) ⊗ b⊗ 1⊗(m−l),

and set Xkl = φkl(X) for an element X ∈ A⊗A. Explicitly, if X =
∑︁r

i=1 ai ⊗ bi, then

Xkl =
r∑︂
i=1

1⊗(k−1) ⊗ ai ⊗ 1⊗(l−k−1) ⊗ bi ⊗ 1⊗(m−l).

Again, when X = X(u) depends on some formal parameter u, then we write Xkl(u)

instead of X(u)kl for the element φkl(X(u)).

In Yangian theory, it is convention to use formal power series to define maps between
spaces since at least one of these spaces is usually (countably) infinite-dimensional
and such notation offers the advantage of brevity. In particular, if W1 and W2 are
super vector spaces or superalgebras with series A(u) =

∑︁∞
n=0Anu

−n ∈ W1[[u
−1]] and

B(u) =
∑︁∞

n=0Bnu
−n ∈ W2[[u

−1]], then we write

φ : A(u) ↦→ B(u)

to mean the map φ(An) = Bn for all n ∈ N. Typically, W1 will be a superalgebra
with generating set {An}∞n=0, so provided the coefficients of B(u) satisfy the necessary
conditions, then φ will define a morphism W1 → W2.

As we will see, the more relevant setup is the following. Supposing that V is a super
vector space of dimension D ∈ Z+ graded with respect to the gradation index (2.1.5),
we consider the matrices A(u) =

∑︁
D
i,j=1(−1)[i][j]+[j]Eij ⊗ Aij(u) ∈ End(V )⊗W1[[u

−1]]

and B(u) =
∑︁

D
i,j=1(−1)[i][j]+[j]Eij ⊗ Bij(u) ∈ End(V ) ⊗W2[[u

−1]] consisting of formal
power series Aij(u) = δij1 +

∑︁∞
n=1A

(n)
ij u

−n and Bij(u) = δij1 +
∑︁∞

n=1B
(n)
ij u

−n. One
then writes

φ : A(u) ↦→ B(u)

to mean the map φ(A
(n)
ij ) = B

(n)
ij for all 1 ≤ i, j ≤ D and n ∈ Z+. When W1 is

a superalgebra with the generating set {A(n)
ij | 1 ≤ i, j ≤ D, n ∈ Z+} and the

coefficients of Bij(u), 1 ≤ i, j ≤ D, satisfy the necessary conditions, then φ will define
a morphism W1 → W2.
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Lastly, assume A is a superalgebra generated by {A(n)
ij | 1 ≤ i, j ≤ D, n ∈ Z+}.

When describing the action of A on a vector ξ in a representation V , it will be common
to set Aij(u) = δij1+

∑︁∞
n=1A

(n)
ij u

−n ∈ A[[u−1]] and vij(u) =
∑︁∞

n=1 v
(n)
ij u

−n ∈ V [[u−1]], so
one can write

Aij(u)ξ = δij ξ + vij(u)

to mean the action of A on ξ ∈ V given by A(n)
ij ξ = v

(n)
ij for all 1 ≤ i, j ≤ D and n ∈ Z+.

2.2 Orthosymplectic Yangians

The first definition of the Yangian Y(ospM |N) for the orthosymplectic Lie superalge-
bra ospM |N was given in [AAC+03, §3] via the RTT realization. In this section, we
will recall such definition of the Yangian as a certain quotient of the extended Yangian
X(ospM |N), which appeared also in the same article.

The following constructions will yield isomorphic presentations of the Yangians, and
extended Yangians, of the orthogonal Lie algebra soM when N = 0, and the symplectic
Lie algebra spN when M = 0, whose RTT presentations were thoroughly examined in
the paper [AMR06].

2.2.1 Extended orthosymplectic Yangians

As one can infer from §2.1.1, the RTT realization for Yangians of the orthosymplectic
Lie superalgebras will rely on a solution to the super-analogue of the QYBE (2.1.3),
so we accordingly construct such an R-matrix here. To start, the super permutation
operator in

(︁
EndCM |N)︁⊗2 is given by

P :=
M+N∑︂
i,j=1

(−1)[j]Eij ⊗ Eji ∈
(︁
EndCM |N)︁⊗2 . (2.2.1)

Further, we define Q ∈
(︁
EndCM |N)︁⊗2 as the transposed operator

Q := P t1 = P t2 =
M+N∑︂
i,j=1

(−1)[i][j]θiθjEij ⊗ E ı̄ ȷ̄ ∈
(︁
EndCM |N)︁⊗2 , (2.2.2)

where (−)t is the involution (2.1.9). The R-matrix R(u) is the rational function in the
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formal parameter u taking coefficients in
(︁
EndCM |N)︁⊗2 given by

R(u) := id⊗2−P
u
+

Q

u− κ
∈
(︁
EndCM |N)︁⊗2 (u), κ = κM,N := M−N−2

2
. (2.2.3)

It is known that the R-matrix (2.2.3) is a solution to the super quantum Yang-Baxter
equation (SQYBE):

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u), (2.2.4)

c.f. [ZZ79, KS82b, AAC+03]. Moreover, the array of equalities

P 2 = id⊗2, PQ = QP = Q, and Q2 = (M−N)Q,

infer that the R-matrix R(u) satisfies the properties

Rt1(u+ κ) = Rt2(u+ κ) = R(−u), (2.2.5)

R(u)R(−u) =
(︃
1− 1

u2

)︃
id⊗2, (2.2.6)

known as crossing symmetry and unitarity, respectively.

A particular consequence of crossing symmetry is that the R-matrix is invariant
under the map (−)t ⊗ (−)t, which will be utilized later in the subsection. Using the
R-matrix (2.2.3), we can introduce the definition of the extended Yangian:

Definition 2.2.1. The extended Yangian X(ospM |N ) of ospM |N is the unital associative
C-superalgebra on generators {T (n)

ij | 1 ≤ i, j ≤ M+N, n ∈ Z+}, with Z2-grade[︁
T

(n)
ij

]︁
:= [i]+ [j] for all n ∈ Z+, subject to the defining RTT -relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v)

in
(︁
EndCM |N)︁⊗2 ⊗ X(ospM |N)[[u

±1, v±1]],
(2.2.7)

where T (u) :=
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ Tij(u) ∈ End(CM |N) ⊗ X(ospM |N)[[u
−1]] is the

matrix consisting of the series Tij(u) := δij1 +
∑︁∞

n=1 T
(n)
ij u−n ∈ X(ospM |N)[[u

−1]] for
indices 1 ≤ i, j ≤M+N , and R(u− v) is identified with R(u− v)⊗ 1.
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In terms of formal power series, the RTT -relation (2.2.7) equivalently takes the form

[︁
Tij(u), Tkl(v)

]︁
=

1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︂
Tkj(u)Til(v)− Tkj(v)Til(u)

)︂
− 1

u− v − κ

(︃
δ ı̄k

M+N∑︂
p=1

(−1)[i][j]+[i]+[j][p]θiθpTpj(u)Tp̄ l(v) (2.2.8)

− δ ȷ̄ l

M+N∑︂
p=1

(−1)[i][k]+[j][k]+[j]+[i][p]+[p]θjθpTkp̄(v)Tip(u)

)︃

for all 1 ≤ i, j, k, l ≤M+N , where the above equality may be regarded as one in the
extension X(ospM |N)[[u

±1, v±1]] and [ · , · ] is understood as the super-bracket

[︁
Tij(u), Tkl(v)

]︁
= Tij(u)Tkl(v)− (−1)([i]+[j])([k]+[l])Tkl(v)Tij(u).

Remark 2.2.2. Definition 2.2.1 of X(ospM |N) inherently relies on the selection of
the set d for the gradation index (2.1.5). Suppose that Xd1(ospM |N) and Xd2(ospM |N)

denote two definitions of the extended Yangian in terms of two different sets d1 and d2

as in Definition 2.1.4; accordingly, we denote the generating series for each of these
definitions as T d1

ij (u) and T d2
ij (u), respectively. if SM+N denotes the symmetric group

on the symbols {1, 2, . . . ,M+N} and the bijection σ ∈ SM+N satisfies [i]d1 = [σ(i)]d2 ,
θd1
i = θd2

σ(i), and σ(ı̄d1) = σ(i)
d2 , then

Xd1(ospM |N)
∼−→ Xd2(ospM |N), T d1

ij (u) ↦→ T d2

σ(i)σ(j)(u)

is an isomorphism of superalgebras.

Remark 2.2.3. When N = 0, the non-super permutation operator (2.1.1) and super
permutation operator (2.2.1) coincide: P = P . One can also readily verify in this case
that Q = Q and kM,0 = κM,0, so the matrices (2.1.2) and (2.2.3) are equal: R(u) = R(u).
Hence, the assignment t(u) ↦→ T (u) yields an algebra isomorphism X(soM )

∼−→ X(ospM |0).
Alternatively, when M = 0 we have P = −P , Q = −Q, and k0,N = −κ0,N ; hence,
R(u) = R(−u). Exchanging (u, v) ↦→ (−u,−v) in the RTT -relation (2.2.7) therefore
shows that t(u) ↦→ T (−u) induces an algebra isomorphism X(spN)

∼−→ X(osp0|N).

In practice, to prove that some graded map φ from X(ospM |N) to some superalge-
bra A is a superalgebra morphism, one sets A(n)

ij = φ(T
(n)
ij ) and collects these images into
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a matrix A(u) =
∑︁

M+N
i,j=1 (−1)[i][j]+[j]Eij ⊗ Aij(u) ∈ End(CM |N)⊗A[[u−1]], where Aij(u)

is the series δij1+
∑︁∞

n=1A
(n)
ij u

−n; thus, the map φ : T (u) ↦→ A(u) describes the assign-
ment φ : T (n)

ij ↦→ A
(n)
ij . To show that the defining relations of the extended Yangian are

satisfied when we replace the elements T (n)
ij with A(n)

ij , one observes that such relations
will be satisfied if and only if

R(u− v)A1(u)A2(v) = A2(v)A1(u)R(u− v).

Showing that A(u) satisfies this latter form will be how we prove many graded maps
are superalgebra morphisms from the extended Yangian X(ospM |N).

As such, for any formal series f = f(u) = 1 +
∑︁∞

n=1 fnu
−n ∈ 1 + u−1C[[u−1]] and

any a ∈ C, two important superalgebra automorphisms of X(ospM |N) are provided by
the assignments

µf : T (u) ↦→ f(u)T (u), (2.2.9)

τa : T (u) ↦→ T (u− a), (2.2.10)

where one can show the above maps take the more explicit forms

µf : T
(n)
ij ↦→

∑︂
a+b=n

faT
(b)
ij and τa : T

(n)
ij ↦→

n∑︂
k=1

(︃
n−1

n−k

)︃
an−kT

(k)
ij for n ∈ Z+.

There also exists several important anti-automorphisms for the extended Yangian
X(ospM |N). To introduce such morphisms, we first note that we may regard T (u) as
a formal power series in u−1 whose coefficients lie in End(CM |N)⊗ X(ospM |N). Since
the constant term of such power series is the unit object 1 = id⊗1, then T (u) must
have an inverse T (u)−1. Further, we shall understand T t(u) as ((−)t ⊗ id)T (u) and
T st(u) as ((−)st ⊗ id)T (u). Hence, by interpreting T (u) =

(︁
Tij(u)

)︁
M+N
i,j=1 as a matrix in

MatM+N

(︁
X(ospM |N)[[u

−1]]
)︁
, then

T t(u) =
(︁
(−1)[i][j]+[j]θiθjTȷ̄ ı̄(u)

)︁
M+N
i,j=1 and T st(u) =

(︁
(−1)[i][j]+[i]Tji(u)

)︁
M+N
i,j=1 ,

so we accordingly define the following for all 1 ≤ i, j ≤M+N :

T t
ij(u) := (−1)[i][j]+[j]θiθjTȷ̄ ı̄(u) and T stij (u) := (−1)[i][j]+[i]Tji(u). (2.2.11)
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In particular, the assignments

ς : T (u) ↦→ T (−u), (2.2.12)

t : T (u) ↦→ T t(u), (2.2.13)

st : T (u) ↦→ T st(u), (2.2.14)

S : T (u) ↦→ T (u)−1, (2.2.15)

define superalgebra anti-automorphisms of X(ospM |N), c.f. [Mol07, Proposition 1.3.3].
For instance, proving that a graded map (−)◦ : X(ospM |N) → X(ospM |N) is a superal-
gebra anti-morphism is equivalent to showing the relation

R(u− v)T ◦2 (v)T
◦
1 (u) = T ◦1 (u)T

◦
2 (v)R(u− v),

where T ◦(u) =
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ T ◦ij(u) and T ◦k (u), k = 1, 2, are defined in the
suitable ways. For the maps (2.2.12)–(2.2.15), one can obtain the above relation by
modifying the RTT -relation (2.2.7) in suitable ways and using the unitarity property
of the R-matrix R(u − v) along with the fact that R(u − v) is invariant under the
operators (−)t ⊗ (−)t and (−)st ⊗ (−)st.

2.2.2 The Hopf structure and central series Z(u) of X(ospM |N)

As was first stated in [AAC+03, §3] with proof similar to [Mol07, Theorem 1.5.1], the
extended Yangian X(ospM |N ) comes equipped with a Hopf superalgebra structure given
by the comultiplication

∆: X(ospM |N) → X(ospM |N)⊗ X(ospM |N), T (u) ↦→ T[1](u)T[2](u),

the counit
ε : X(ospM |N) → C, T (u) ↦→ 1,

and the antipode

S : X(ospM |N) → X(ospM |N), T (u) ↦→ T (u)−1,

which was previously introduced as the anti-automorphism (2.2.15). On the level of
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power series, the comultiplication ∆ and counit ε take the form

∆: Tij(u) ↦→
M+N∑︂
k=1

Tik(u)⊗ Tkj(u) and ε : Tij(u) ↦→ δij for 1 ≤ i, j ≤M+N.

Hence, these maps can be written explicitly as ∆(T
(n)
ij ) =

∑︁M+N
k=1

∑︁
a+b=n T

(a)
ik ⊗ T

(b)
kj

and ε(T
(n)
ij ) = 0 for 1 ≤ i, j ≤ M+N and n ∈ Z+. To compute how the antipode S

maps such generators, one can write

T (u)−1 =
∑︂M+N

i,j=1
(−1)[i][j]+[j]Eij ⊗ T •ij(u),

where T •ij(u) = 1+
∑︁∞

n=1 T
•
ij
(n)u−n are uniquely determined series in X(ospM |N)[[u

−1]].
In particular, S(T (n)

ij ) = T •ij
(n) and one can verify such images are of the form

T •ij
(n) = −T (n)

ij +
n∑︂
s=2

(−1)s
∑︂

∑︁s
j=1 kj=n

(︄
M+N∑︂

a1,a2,...,as−1=1

T
(k1)
ia1

T (k2)
a1a2

· · ·T (ks)
as−1j

)︄

with kj ∈ Z+ for each kj in the sum
∑︁s

j=1 kj = n.

Let us define the matrix

Z(u) := T t(u+ κ)T (u) (2.2.16)

and further consider the series Z(u) lying in X(ospM |N )[[u
−1]] such that id⊗Z(u) = Z(u).

Multiplying both sides of the RTT -relation by u−v−κ, setting u = v+κ and replacing v
by u yields the equation

QT1(u+ κ)T2(u) = T2(u)T1(u+ κ)Q.

Using the relations QT1(u) = QT t
2 (u) and T1(u)Q = T t

2 (u)Q, transposing the first
tensor factor of the above equation yields

P ⊗Z(u) = P T t
2 (u+ κ)T2(u) = T2(u)T

t
2 (u+ κ)P.

Multiplying the above equation on left by P gives id⊗2⊗Z(u) = T t
2 (u+κ)T2(u), whilst

instead multiplying on the right by P yields id⊗2⊗Z(u) = T2(u)T
t
2 (u+ κ). Thus,

Z(u) = T t(u+ κ)T (u) = T (u)T t(u+ κ), (2.2.17)
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or rather put,

δijZ(u) =
M+N∑︂
k=1

T t
ik(u+ κ)Tkj(u) =

M+N∑︂
k=1

Tik(u)T
t
kj(u+ κ), (2.2.18)

where we shall write Z(u) = 1+
∑︁∞

n=1 Znu
−n ∈ 1+ u−1X(ospM |N)[[u

−1]].

We note that the coefficients of Z(u) are homogeneous of even degree, so such
coefficients lie within the even subalgebra of X(ospM |N). We shall let ZX(ospM |N)

denote the subalgebra generated by the coefficients of Z(u) and let (Z(u)− 1) to mean
the two-sided graded ideal of X(ospM |N) generated by the coefficients of Z(u)− 1.

Proposition 2.2.4. The coefficients of the series Z(u) ∈ 1 + u−1X(ospM |N)[[u
−1]]

given by the equation T t(u+ κ)T (u) = T (u)T t(u+ κ) = id⊗Z(u) lie in the center of
X(ospM |N). Furthermore,

∆: Z(u) ↦→ Z(u)⊗Z(u) (2.2.19)

where ∆ is the comultiplication map. In particular, ZX(ospM |N) is a sub-Hopf superal-
gebra and (Z(u)− 1) is a graded Hopf ideal of X(ospM |N).

Proof. The proof was provided in [AAC+03, Theorem 3.1], but we will reproduce the
argument here. First, one observes

Z(u)T2(v) = T t
1 (u+ κ)T1(u)T2(v) = T t

1 (u+ κ)R(u− v)−1T2(v)T1(u)R(u− v)

using theRTT -relation. By transposing the first tensor factor of theRTT -relation (2.2.7)
and using properties (2.2.5) and (2.2.6), we also get the equation

T t
1 (u+ κ)R(u− v)−1T2(v) = T2(v)R(u− v)−1T t

1 (u+ κ).

Therefore,

Z(u)T2(v) = T2(v)R(u− v)−1T t
1 (u+ κ)T1(u)R(u− v)

= T2(v)R(u− v)−1Z(u)R(u− v) = T2(v)Z(u),

since Z(u) commutes with R(u− v). Furthermore, ∆: Z(u) ↦→ Z(u)⊗Z(u) is readily
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verified from the computation

∆(Z(u)) =
M+N∑︂
a,b,k=1

(−1)[i][k]+[k]θiθk
(︁
Tk̄a(u+ κ)⊗ Taı̄(u+ κ)

)︁(︁
Tkb(u)⊗ Tbi(u)

)︁
=

M+N∑︂
a,b,k=1

(−1)([a]+[i])([a]+[b])T t
āk(u+ κ)Tkb(u)⊗ T t

iā(u+ κ)Tbi(u)

=
M+N∑︂
a,b=1

(−1)([a]+[i])([a]+[b])δābZ(u)⊗ T t
iā(u+ κ)Tbi(u) = Z(u)⊗Z(u).

Denoting I = (Z(u)− 1), one may verify that ε : Z(u) ↦→ 1 and so ε(I) = 0. Moreover,
since ∆(Zn) =

∑︁
a+b=nZa ⊗ Zb (where Z0 = 1), then for any X ∈ X(ospM |N) one

has ∆(XZn),∆(ZnX) ∈ I ⊗ X(ospM |N) + X(ospM |N)⊗ I, showing that I is a coideal.
Lastly, the axioms of a Hopf superalgebra structure infer that the image of Z(u) under
the antipode is given by

S : Z(u) ↦→ Z(u)−1,

which proves the proposition.

By identifying Z(u) with Z(u), equation (2.2.17) shows that the inverse of T (u) is
given by

T (u)−1 = Z(u)−1T t(u+ κ),

so the antipode S is the mapping T (u) ↦→ Z(u)−1T t(u+ κ). In particular, the square
of the antipode is computed as

S 2 : T (u) ↦→ Z(u)Z(u+ κ)−1T (u+ 2κ), (2.2.20)

which will be relevant the later subsection §2.4.1.

2.2.3 The associated graded superalgebra grX(ospM |N)

We shall now consider two (ascending algebra) filtrations on X(ospM |N), denoted
E
(︁
X(ospM |N)

)︁
= E = {En}n∈N and E′

(︁
X(ospM |N)

)︁
= E′ = {E′n}n∈N, given via the

respective filtration degree assignments

degE T
(n)
ij = n−1 and degE′ T

(n)
ij = n (2.2.21)
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for all 1 ≤ i, j ≤M+N and n ∈ Z+. From the defining relations (2.2.8), the associated
graded superalgebra grE′ X(ospM |N) =

⨁︁
n∈N E

′
n/E

′
n−1 is supercommutative. Our

attention will primarily focus on the first filtration E which will induce a more interesting
associated graded superalgebra, denoted

grX(ospM |N) := grEX(ospM |N) =
⨁︂
n∈N

En/En−1.

We note that grX(ospM |N ) inherits a Z2-graded structure from X(ospM |N ) by assigning
Z2-grade [i]+ [j] to the image T (n)

ij of T (n)
ij in En−1/En−2. Furthermore, by endowing

X(ospM |N)
⊗2 with the tensor product filtration E2 = {E2

n}n∈N and assigning C with
the trivial filtration C = {Cn}n∈N, i.e.,

E2
n =

∑︂
i+j=n

Ei ⊗ Ej and Cn = C for all n ∈ N,

one can verify that each of the Hopf superalgebra structure maps on X(ospM |N) will
preserve their relative filtrations. In short, E is a Hopf filtration on X(ospM |N), so
grX(ospM |N) is equipped with an N-graded Hopf superalgebra structure given by the
comultiplication

gr∆: grX(ospM |N) → gr
(︁
X(ospM |N)

⊗2)︁ ∼= (︁grX(ospM |N))︁⊗2
T

(n)

ij ↦→ T
(n)
ij ⊗ 1+ 1⊗ T

(n)
ij ,

the counit
gr ε : grX(ospM |N) → C, T

(n)
ij ↦→ 0,

and antipode

grS : grX(ospM |N) → grX(ospM |N), T
(n)
ij ↦→ T

•(n)
ij = −T (n)

ij ,

where 1 ≤ i, j ≤M+N and n ∈ Z+.

Given a Lie superalgebra g, we recall that g[z] denotes the polynomial current Lie
superalgebra associated to g; that is, g[z] is equal to g⊗ C[z] as a super vector space
(where the indeterminate z is of Z2-grade 0̄), and is equipped with the Lie superbracket

[X ⊗ f(z), Y ⊗ g(z)] := [X, Y ]⊗ f(z)g(z) for X, Y ∈ g and f(z), g(z) ∈ C[z].
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Equivalently, g[z] may be regarded as the Lie superalgebra of polynomial maps f : C → g

with Lie superbracket given point-wise. We note that g[z] is an N-graded Lie superalge-
bra

⨁︁
n∈N g[z]n, where g[z]n = g⊗Czn, and we shall use the identification Xzn = X⊗zn

for elements in g[z].

Given any Lie superalgebra a, we let U(a) denote its universal enveloping superalge-
bra; that is, U(a) = T (a)/I(a), where T (a) is the tensor superalgebra of a and I(a) is
the two-sided ideal generated by elements of the form X⊗Y − (−1)[X][Y ]Y ⊗X− [X, Y ]

for homogeneous elements X, Y ∈ a. Furthermore, U(a) is endowed with a Hopf
superalgebra structure given by structure maps

∆: U(a) → U(a)⊗ U(a), ε : U(a) → C, S : U(a) → U(a),

X ↦→ X ⊗ 1 + 1⊗X X ↦→ 0 X ↦→ −X

for all X ∈ a. In the case when a = g[z] is a polynomial current Lie superalgebra, we
see that U(g[z]) is an N-graded superalgebra

⨁︁
n∈N U

n(g[z]), where

Un(g[z]) = spanC
{︁∏︁γ

a=1Xaz
ka | γ ∈ Z+, Xa ∈ g,

∑︁γ
a=1 ka = n

}︁
.

Consider a central extension ospM |N ⊕ zc of ospM |N by a purely even 1-dimensional
abelian Lie superalgebra zc := C ·c. As a Lie superalgebra, ospM |N [z]⊕zc[z] is generated
by the elements {Fijzm, czn | 1 ≤ i, j ≤M+N, m, n ∈ N} subject only to the relations

[Fijz
m, Fklz

n] = δjkFilz
m+n − δil(−1)([i]+[j])([k]+[l])Fkjz

m+n

− δ ı̄k(−1)[i][j]+[i]θiθjFȷ̄ lz
m+n + δ ȷ̄ l(−1)([i]+[j])[k]θı̄θȷ̄Fk ı̄z

m+n,

Fijz
n + (−1)[i][j]+[i]θiθjFȷ̄ ı̄z

n = 0, and
[︁
Fijz

m, czn
]︁
= 0.

We will now aim to construct a Hopf superalgebra epimorphism from the universal
enveloping superalgebra U(ospM |N [z] ⊕ zc[z]) to the associated graded superalgebra
grX(ospM |N). Before doing so, we note the defining equation (2.2.18) for the central
elements Zn infers

δijZn ≡ T
(n)
ij + (−1)[i][j]+[j]θiθjT

(n)
ȷ̄ ı̄ mod En−2. (2.2.22)

In particular, Zn has filtration degree n−1, so we shall let Zn denote the image of Zn

in the graded component En−1/En−2. We can now describe the desired map as in the
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following proposition.

Proposition 2.2.5. The map Ψ: U(ospM |N [z]⊕ zc[z]) → grX(ospM |N) defined by

Fijz
n−1 ↦→ (−1)[i]

(︁
T

(n)
ij − 1

2
δijZn

)︁
, czn−1 ↦→ 1

2
Zn

for all 1 ≤ i, j ≤M+N and n ∈ Z+, is an epimorphism of N-graded Hopf superalgebras.

Proof. To show Ψ: ospM |N [z] ⊕ zc[z] → Lie(grX(ospM |N)) is an N-graded Lie super-
algebra morphism, one passes the defining relations (2.2.8) to the associated graded
superalgebra to yield the relations

[︁
T

(m)
ij , T

(n)
kl

]︁
= δjk(−1)[k]T

(m+n−1)
il − δil(−1)([i]+[j])[k]+[j][l]T

(m+n−1)
kj

− δ ı̄k(−1)[i][j]+[i]+[j]θiθjT
(m+n−1)
ȷ̄ l + δ ȷ̄ l(−1)([i]+[j])[k]+[j]θiθjT

(m+n−1)
k ı̄ .

for 1 ≤ i, j, k, l ≤ M+N and m,n ∈ Z+. Hence, the desired relations follow from
multiplying the above equation by the scalar (−1)[i]+[k], using that the elements Zn,
n ∈ Z+, are central, and incorporating the equivalence (2.2.22).

Hence, Ψ extends to a superalgebra morphism U(ospM |N [z]⊕ zc[z]) → grX(ospM |N ),
which is also N-graded. Such morphism is surjective since grX(ospM |N ) is generated by
the elements T (n)

ij and the morphism Ψ sends (−1)[i]Fijz
n−1 to T (n)

ij for i ̸= j and maps
((−1)[k]Fkk + c)zn−1 to T (n)

kk .

Lastly, it can be seen that Ψ is a morphism of Hopf superalgebras from the de-
scriptions of those Hopf superstructures on U(ospM |N [z]⊕ zc[z]) and grX(ospM |N) as
before.

2.2.4 Orthosymplectic Yangians

We are now in position to define the Yangian Y(ospM |N):

Definition 2.2.6. The Yangian Y(ospM |N ) of ospM |N is the quotient of X(ospM |N ) by
the graded ideal (Z(u)− 1), i.e.,

Y(ospM |N) := X(ospM |N)/(Z(u)− 1). (2.2.23)
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Equivalently, Y(ospM |N) is the unital associative C-superalgebra on the generators
{T (n)

ij | 1 ≤ i, j ≤ M+N, n ∈ Z+}, with Z2-grade
[︁
T (n)
ij

]︁
:= [i]+ [j] for all n ∈ Z+,

subject to the RTT -relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v)

in
(︁
EndCM |N)︁⊗2 ⊗ Y(ospM |N)[[u

±1, v±1]],
(2.2.24)

where R(u− v) is identified with R(u− v)⊗ 1, and

T t(u+ κ)T (u) = 1 in End(CM |N)⊗ Y(ospM |N)[[u
−1]], (2.2.25)

where T (u) :=
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ Tij(u) ∈ End(CM |N) ⊗ Y(ospM |N)[[u
−1]] is the

matrix consisting of the series Tij(u) := δij1 +
∑︁∞

n=1 T
(n)
ij u−n ∈ Y(ospM |N)[[u

−1]] for
indices 1 ≤ i, j ≤M+N .

Remark 2.2.7. When N = 0, the non-super and super R-matrices (2.1.2) and (2.2.3)
coincide: R(u) = R(u). In particular, the assignment t(u) ↦→ T (u) yields an algebra
isomorphism Y(soM)

∼−→ Y(ospM |0). Alternatively, when M = 0 then there is an
equality R(u) = R(−u). Exchanging (u, v) ↦→ (−u,−v) in the RTT -relation (2.2.24)
therefore shows t(u) ↦→ T (−u) induces an algebra isomorphism Y(spN)

∼−→ Y(osp0|N).

The defining relations for the Yangian in terms of formal power series equivalently
take the form

[︁
Tij(u), Tkl(v)

]︁
=

1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︂
Tkj(u)Til(v)− Tkj(v)Til(u)

)︂
− 1

u− v − κ

(︃
δ ı̄k

M+N∑︂
p=1

(−1)[i][j]+[i]+[j][p]θiθpTpj(u)Tp̄ l(v) (2.2.26)

− δ ȷ̄ l

M+N∑︂
p=1

(−1)[i][k]+[j][k]+[j]+[i][p]+[p]θjθpTkp̄(v)Tip(u)
)︃
,

and
M+N∑︂
p=1

T t
ip(u+ κ)Tpj(u) = δij1, (2.2.27)

for all indices 1 ≤ i, j, k, l ≤M+N .
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Note that since (Z(u) − 1) is a graded Hopf ideal, the quotient of X(ospM |N) by
(Z(u)− 1) comes equipped with a unique Hopf superstructure such that the canonical
projection X(ospM |N) ↠ X(ospM |N)/(Z(u)− 1) is a morphism of Hopf superalgebras.
Hence, there is Hopf superalgebra structure on Y(ospM |N ) given by the comultiplication

∆: Y(ospM |N) → Y(ospM |N)⊗ Y(ospM |N), T (u) ↦→ T[1](u)T[2](u),

the counit
ε : Y(ospM |N) → C, T (u) ↦→ 1,

and the antipode

S : Y(ospM |N) → Y(ospM |N), T (u) ↦→ T (u)−1 = T t(u+ κ).

Furthermore, the filtrations E and E′ on X(ospM |N) will endow the respective
filtrations E = {En}n∈N and E′ = {E′n}n∈N on the quotient X(ospM |N )/(Z(u)−1) such
that

En = En/
(︁
En ∩ (Z(u)− 1)

)︁
and E′n = E′n/

(︁
E′n ∩ (Z(u)− 1)

)︁
.

For simplicity, we shall set F = {Fn}n∈N := E and F′ = {F′n}n∈N := E′. In particular,
these filtrations are given by the respective filtration degree assignments

degF T (n)
ij = n−1 and degF′ T (n)

ij = n (2.2.28)

for all 1 ≤ i, j ≤ M+N and n ∈ Z+. From the defining relations (2.2.26), one can
deduce that the associated graded superalgebra grF′ Y(ospM |N) =

⨁︁
n∈N F

′
n/F

′
n−1 is

supercommutative. Similar to the case of the extended Yangian, we will direct our
attention to the first filtration F which will induce a more interesting associated graded
superalgebra:

grY(ospM |N) := grFY(ospM |N) =
⨁︂
n∈N

Fn/Fn−1,

The associated graded superalgebra grY(ospM |N) inherits a Z2-graded structure from
Y(ospM |N) by assigning Z2-grade [i]+ [j] to the image T (n)

ij of T (n)
ij in Fn−1/Fn−2.

Again, similar to the subsection §2.2.3, one can verify that F is a Hopf filtration;
hence, grY(ospM |N) comes equipped with an N-graded Hopf superalgebra structure
gr∆, gr ε, grS analogous to the one on grX(ospM |N). We note, however, that the
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antipode on grY(ospM |N) takes on the form

grS(T (n)
ij ) = −T (n)

ij = (−1)[i][j]+[j]θiθjT (n)
ȷ̄ ı̄

for all 1 ≤ i, j ≤M+N and n ∈ Z+.

Recalling the polynomial current superalgebra ospM |N [z] whose defining relations
were described in the previous subsection, we obtain the following analogue of Proposi-
tion 2.2.5 for the Yangian Y(ospM |N):

Proposition 2.2.8. There is an N-graded Hopf superalgebra epimorphism

Φ: U(ospM |N [z]) → grY(ospM |N), Fijz
n−1 ↦→ (−1)[i]T (n)

ij

for all 1 ≤ i, j ≤M+N and n ∈ Z+.

Proof. To show Φ: ospM |N [z] → Lie(grY(ospM |N)) is an N-graded Lie superalgebra
morphism, one passes the relations (2.2.26) and (2.2.27) to the associated graded
superalgebra to yield the respective relations

[︁
T (m)
ij , T (n)

kl

]︁
= δjk(−1)[k]T (m+n−1)

il − δil(−1)([i]+[j])[k]+[j][l]T (m+n−1)
kj

− δ ı̄k(−1)[i][j]+[i]+[j]θiθjT (m+n−1)
ȷ̄ l + δ ȷ̄ l(−1)([i]+[j])[k]+[j]θiθjT (m+n−1)

k ı̄

and
T (n)
ij + (−1)[i][j]+[j]θiθjT (n)

ȷ̄ ı̄ = 0

for all 1 ≤ i, j, k, l ≤ M+N and m,n ∈ Z+. Hence, the desired relations follow from
multiplying the first equation above by (−1)[i]+[k] and the second by (−1)[i].

Thus, Φ extends to a morphism of superalgebras U(ospM |N [z]) → grY(ospM |N)

which is also N-graded. This morphism is surjective since grY(ospM |N ) is generated by
the elements T (n)

ij .

Moreover, it can be seen that Φ is a morphism of Hopf superalgebras from the
descriptions of the Hopf superstructures on U(ospM |N [z]) and grY(ospM |N).
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2.3 Poincaré-Birkhoff-Witt Theorem for the Yangian

In this section, we illustrate how to obtain an explicit algebraic basis for the Yangian
Y(ospM |N) which amounts to proving that the Yangian is a filtered deformation of
U(ospM |N [z]). Indeed, if such an isomorphism Φ: U(ospM |N [z])

∼−→ grY(ospM |N) exists,
then the Poincaré-Birkhoff-Witt Theorem for Lie superalgebras infers that one can
construct a basis B for U(ospM |N [z]), so any lift of Φ(B) will yield the desired basis for
the Yangian.

2.3.1 Evaluation and vector representations

Consider the vector representation of U(ospM |N) on the super vector space CM |N as
given by

ρ : U(ospM |N) → EndCM |N , Fij ↦→ Eij − (−1)[i][j]+[i]θiθjEȷ̄ ı̄. (2.3.1)

for all 1 ≤ i, j ≤M+N . Given any a ∈ C, one can pullback the vector representation by
the superalgebra morphism eva : U(ospM |N [z]) → U(ospM |N) induced by the assignment
z ↦→ a to yield the evaluation representation of U(ospM |N [z]) at a ∈ C given by

ρa := ev∗a ρ : U(ospM |N [z]) → EndCM |N , Fijz
n ↦→ anρ(Fij).

For any complex numbers a1, . . . , an ∈ C, we may therefore consider the tensor product
of such evaluation representations of U(ospM |N [z]):

ρa1⇁an := (
⨂︁n
i=1 ρai) ◦∆n−1, (2.3.2)

where ∆n−1 : U(ospM |N [z]) → U(ospM |N [z])
⊗n is the unique (n−1)-fold comultiplication

sending X ∈ U(ospM |N [z]) to the element
∑︁

(X)X(1) ⊗ X(2) ⊗ · · · ⊗ X(n) in Sweedler
notation.

The following lemma establishes that the intersection of all kernels of such represen-
tations ρa1⇁an , for all a1, . . . , an ∈ C, n ∈ Z+, is trivial. The core ideas for the proof
arise from the proofs of analogous statements in the papers [Naz99, Proposition 2.2]
and [AMR06, Lemma 3.5].
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Lemma 2.3.1.
⋂︁
n∈Z+

⋂︁
(a1,...,an)∈Cn ker(ρa1⇁an) = 0 in U(ospM |N [z]).

Proof. Let {Xi}di=1 be a homogeneous basis of ospM |N and write χi = ρ(Xi) for indices
i = 1, 2, . . . , d. Furthermore, we shall let {Un(ospM |N [z])}n∈N denote the canonical
ascending algebra filtration on U(ospM |N [z]) determined by monomial length.

Step 1. We start by endowing a total ordering ‘⪯’ on the collection of basis elements
{Xbz

m | 1 ≤ b ≤ d, m ∈ N} of ospM |N [z], so via the Poincaré-Birkhoff-Witt Theorem
for Lie superalgebras, the universal enveloping superalgebra U(ospM |N [z]) has a basis
consisting of ordered monomials of the form

∏︁r
j=1Xbjz

mj such that Xbjz
mj ⪯ Xbj+1

zmj+1

for indices j = 1, . . . , r−1, and Xbjz
mj ̸= Xbj+1

zmj+1 provided [Xbj ] = 1̄. Given
a nonzero element A in U(ospM |N [z]), we can therefore express such element as a
unique linear combination of PBW basis monomials in U(ospM |N [z]) and we denote
{Mi =

∏︁n
j=1Xbijz

mij}pi=1 as the collection of those basis elements with maximal filtration
degree n. For every such maximal length monomial, we consider their corresponding
supersymmetrized object

Mσ
i :=

∑︂
σ∈Sn

(−1)ϵ(σ,Mi)
n⨂︂
j=1

Xbiσ(j)
zmiσ(j) ∈ (ospM |N [z])

⊗n, (2.3.3)

where (−1)ϵ(σ,Mi) is the Koszul sign provided that Sn is the symmetric group on n

letters and ϵ : Sn × (ospM |N [z])
⊗n → Z2 is the map ϵ(σ, x) =

∑︁
(k,l)∈Inv(σ)[xσ(k)][xσ(l)]

on homogeneous tensors x = x1 ⊗ x2 ⊗ · · · ⊗ xn ∈ (ospM |N [z])
⊗n, where Inv(σ) is the

set of inversions {(k, l) | k < l, σ(k) > σ(l)}.

Step 2. We now show that the p supersymmetrized elements (2.3.3) are linearly
independent, which amounts to proving such is true for their images under the projection
T (ospM |N [z]) →→ U(ospM |N [z]). To start, we first express each monomial in the sum∑︁

σ∈Sn
(−1)ϵ(σ,Mi)

∏︁n
j=1Xbiσ(j)

zmiσ(j) in terms of the PBW basis for U(ospM |N [z]) with
respect to the total order ‘⪯’. By repeated use of the defining relations of the universal
enveloping algebra, one yields that

n∏︂
j=1

Xbiσ(j)
zmiσ(j) = (−1)ϵ(σ,Mi)

n∏︂
j=1

Xbijz
mij mod Un−1(ospM |N [z]).

Therefore, the linear independence of the supersymmetrized elements (2.3.3) amounts
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to whether or not there is a non-trivial solution to

p∑︂
i=1

λi

n∏︂
j=1

Xbijz
mij ≡ 0 mod Un−1(ospM |N [z]),

but this is not possible unless λi = 0 for all i = 1, 2, . . . , p.

Step 3. Since

ρa1⇁an(Xbz
m) =

n∑︂
k=1

amk χ
[k]
b , χ

[k]
b := id⊗(k−1)⊗χb ⊗ id⊗(n−k) ∈ End(CM |N)⊗n,

then the image of the any monomial
∏︁r
j=1Xbjz

mj under ρa1⇁an is given by

n∑︂
k1,...,kr=1

am1
k1

· · · amr
kr
χ
[k1]
b1

· · ·χ[kr]
br

∈ End(CM |N)⊗n. (2.3.4)

By completing the collection {χi}di=1 to a homogeneous basis {χi}(M
+N)2

i=1 of End(CM |N )

such that χj = id for some d+1 ≤ j ≤ (M+N)2, we consider the subspace of
End(CM |N)⊗n given by

Wn := spanC
{︁
χi1 ⊗ · · · ⊗ χin | χj = id occurs in at least one tensor factor

}︁
,

where 1 ≤ ik ≤ (M+N)2 for 1 ≤ k ≤ n. We observe that the image of any element
in Un−1(ospM |N [z]) under ρa1⇁an will be contained in the subspace Wn. Moreover,
by (2.3.4) the image of the monomial Mi under ρa1⇁an may be written as

∑︂
σ∈Sn

(−1)ϵ(σ,Mi)a
miσ(1)

1 · · · amiσ(n)
n

n⨂︂
j=1

χbiσ(j)
mod Wn. (2.3.5)

Under the identification ϕ : (ospM |N [z])⊗n
∼−→ (ospM |N)

⊗n [z1, . . . , zn], the images of the
supersymmetrized elements Mσ

i under ϕ are given by

∑︂
σ∈Sn

(︁
(−1)ϵ(σ,Mi)

n⨂︂
j=1

Xbiσ(j)

)︁
z
miσ(1)

1 · · · zmiσ(n)
n . (2.3.6)

Since ρ is a faithful representation, then so is ρ⊗n : U(ospM |N)⊗n → End(CM |N)⊗n

and its extension to U(ospM |N)
⊗n[z1, . . . , zn] → End(CM |N)⊗n[z1, . . . , zn], which we
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also denote ρ⊗n. Furthermore, since the elements ϕ(Mσ
i ), i = 1, . . . , p, are linearly

independent, then their images under ρ⊗n are so. Hence, a nonzero linear combination∑︁p
i=1 λiϕ(M

σ
i ) implies that the sum of polynomials

p∑︂
i=1

λi
∑︂
σ∈Sn

(︁
(−1)ϵ(σ,Mi)

n⨂︂
j=1

χbiσ(j)

)︁
z
miσ(1)

1 · · · zmiσ(n)
n

is nonzero. Thus, there exists complex numbers a1, . . . , an ∈ C such that

p∑︂
i=1

λi
∑︂
σ∈Sn

(−1)ϵ(σ,Mi)a
miσ(1)

1 · · · amiσ(n)
n

n⨂︂
j=1

χbiσ(j)

is nonzero. Comparing the above with (2.3.5), we conclude that that image of ρa1⇁an(A)

in the quotient End(CM |N)⊗n/Wn is nonzero and therefore ρa1⇁an(A) ̸= 0, proving the
lemma.

We will now direct our attention to an important representation of the extended
Yangian X(ospM |N) called the vector representation. The vector representation will
play an important role in study of the representation theory of X(ospM |N) in the
next chapter; however, it is relevant for this section since it will give rise to a vector
representation of the Yangian Y(ospM |N) which will be used to prove the isomorphism
U(ospM |N [z]) ∼= grY(ospM |N).

The vector representation is built from a canonical representation of the extended
Yangian which we will show here. By substituting u ↦→ u− v in the SQYBE (2.2.4),
one can readily verify that the assignment

R : X(ospM |N) → EndCM |N , T (u) ↦→ R(u) (2.3.7)

defines a representation of X(ospM |N ), which we call the R-matrix representation of the
extended Yangian. On the level of power series, the R-matrix representation takes the
form

R : Tij(u) ↦→ δij id−
(−1)[i][j]Eji

u
+

(−1)[j]θiθjE ı̄ ȷ̄

u− κ
.

for all 1 ≤ i, j ≤M+N . A variant of the R-matrix representation is achieved by first
twisting the action via the automorphism st ◦ ς described by (2.2.12) and (2.2.14),
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yielding the representation ϱ := R ◦ st ◦ ς given on the level of power series by

ϱ(Tij(u)) = (−1)[i][j]+[i]R(Tji(−u)) = δij id+
(−1)[i]Eij

u
− (−1)[i][j]θiθjE ȷ̄ ı̄

u+ κ

for all 1 ≤ i, j ≤M+N , or in matrix form

ϱ : X(ospM |N) → EndCM |N , T (u) ↦→ Rst(−u), (2.3.8)

where we identify Rst(u) with Rst1(u). We call ϱ the vector representation of X(ospM |N ).
The pullback of ϱ by the automorphism τa as in (2.2.10) will result in a representation
of X(ospM |N) given by

ϱa := τ ∗aϱ : X(ospM |N) → EndCM |N , T (u) ↦→ Rst(a− u) (2.3.9)

for any a ∈ C. On the level of power series, such representation takes the form

ϱa : Tij(u) ↦→ δij id+
(−1)[i]Eij
u− a

− (−1)[i][j]θiθjE ȷ̄ ı̄

u+ κ− a
,

and we call ϱa the vector representation of X(ospM |N ) at level a ∈ C. We will see that by
composing the vector representation ϱa with a suitable automorphism of X(ospM |N ), the
resulting representation will descend to one for Y(ospM |N ), thereby giving an analogue
of the vector representations for the Yangian.

Proposition 2.3.2. If A is a commutative unital associative C-algebra, then for any
formal series a(u) = 1+

∑︁∞
n=1 anu

−n ∈ 1+ u−1A[[u−1]] and any k ∈ C, there exists a
unique formal series y(u) = 1+

∑︁∞
n=1 ynu

−n ∈ 1+ u−1A[[u−1]] such that

a(u) = y(u)y(u+ k). (2.3.10)

Proof. The argument is the same as in [MNO96, §2.15], [AMR06, Theorem 3.1]. By
writing the equality (2.3.10) in terms of the coefficients of a(u), we yield the relations

an = 2yn +Bn(y1, ..., yn−1) for n ∈ Z+, (2.3.11)

where Bn is a quadratic polynomial in n−1 indeterminates over C. One may then
inductively solve for the coefficients of y(u) since the above relation implies that yn
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will be a quadratic polynomial in a1, . . . , an. By construction, such a series y(u) is
unique.

Given a ∈ C, Proposition 2.3.2 infers there exists a unique series fa(u) lying in
1 + u−1C[[u−1]] such that

fa(u)fa(u+ κ) =
(u+ κ− a)2

(u+ κ− a)2 − 1
. (2.3.12)

The pullback of the vector representation ϱa (2.3.9) at level a ∈ C by the shift auto-
morphism µfa (2.2.10) yields a new representation of X(ospM |N) given by

ϕa := µ∗faϱa : X(ospM |N) → EndCM |N , T (u) ↦→ fa(u)R
st(a− u),

where we are identifying (−)st with (−)st1 . Using equation (2.2.17) and the fact that
the super-transposition (−)t and super-transpose (−)st commute, we find ϕa(Z(u)) is
given by fa(u)fa(u+ κ)Rst(a− u)

(︁
Rt(a− u− κ)

)︁st, where we similarly identify (−)t

with (−)t1 . Using the relations

(P st)2 = (M−N)P st, P stQst = QstP st = P st, and (Qst)2 = id⊗2,

we find Rst(a − u)
(︁
Rt(a − u − κ)

)︁st
= (u+κ−a)2−1

(u+κ−a)2 id⊗2; hence, ϕa(Z(u)) = id, where
Z(u) is the series defined by (2.2.18), and so ϕa descends to the representation

φa : Y(ospM |N) → EndCM |N , T (u) ↦→ fa(u)R
st(a− u), (2.3.13)

called the vector representation of Y(ospM |N) at level a ∈ C. When a = 0, we set
φ0 = φ and simply refer to it as the vector representation of Y(ospM |N).

2.3.2 The PBW Theorem and supercenter of Y(ospM |N)

We are now in pole position to prove the main theorem of Chapter 2; namely, that the
Yangian Y(ospM |N ) is a filtered deformation of U(ospM |N [z]). The proof of the following
theorem is similar to [AMR06, Theorem 3.6] and leverages the lemma proven in the
previous subsection.
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Theorem 2.3.3. The epimorphism in Proposition 2.2.8 is an N-graded Hopf superal-
gebra isomorphism

Φ: U(ospM |N [z])
∼−→ grY(ospM |N), Fijz

n−1 ↦→ (−1)[i]T (n)
ij (2.3.14)

for all 1 ≤ i, j ≤M+N and n ∈ Z+.

Proof. By Proposition 2.2.8, all that is left to show is injectivity. To this end, we let
A ∈ U(ospM |N [z]) be a nonzero homogeneous element of gradation degree d; that is,

A =
∑︂

Ak1;...;kmi1j1;...;imjm
Fi1j1z

k1−1 · · ·Fimjmzkm−1 where Ak1;...;kmi1j1;...;imjm
∈ C,

and the summation indices ib, jb, kb, 1 ≤ b ≤ m, satisfy 1 ≤ ib, jb ≤ M+N and∑︁m
b=1 kb = d+m. Considering the element

˜︁A =
∑︂

(−1)
∑︁m

b=1[ib]Ak1;...;kmi1j1;...;imjm
T (k1)
i1j1

· · · T (km)
imjm

∈ Y(ospM |N)

whose summation indices ib, jb, kb, 1 ≤ b ≤ m, satisfy the same conditions as above,
then Φ(A) coincides with the image of ˜︁A in grY(ospM |N), so it suffices to prove that
the filtration degree of ˜︁A is d.

Step 1. Writing the series fa(u) in (2.3.12) as the sum
∑︁∞

n=0 f
(n)
a u−n, f (0)

a = 1, the co-
efficient of u−n in fa(u)fa(u+ κ) is given by 2f

(n)
a +

∑︁n−1
p=1

∑︁p
k=1

(︁
p−1
p−k

)︁
(−κ)p−kf (n−p)

a f
(p)
a .

Furthermore, using the expansion (u+κ−a)2
(u+κ−a)2−1 =

∑︁∞
p=0(u+ κ− a)−2p, where

1

(u+ κ− a)2p
= u−2p

(︃ ∞∑︂
n=0

(a− κ)nu−n
)︃2p

=
∞∑︂

n=2p

(︃
n− 1

n− 2p

)︃
(a− κ)n−2pu−n,

we see that the coefficient of u−n in (u+κ−a)2
(u+κ−a)2−1 is given by

∑︁⌊n
2
⌋

p=1

(︁
n−1
n−2p

)︁
(a − κ)n−2p.

Regarding a as a formal variable in C, the defining relation for fa(u) infers that its
coefficients are elements in C[a]. In particular, the polynomial degree of f (n)

a is given
by dega f

(1)
a = 0 and dega f

(n)
a = n−2 for n ≥ 2.

Via the expansions 1
u−a =

∑︁∞
n=0 a

nu−n−1 and 1
u+κ−a =

∑︁∞
n=0(a − κ)nu−n−1, the

image of T (n)
ij under the representation (2.3.13) is given by

φa(T (n)
ij ) = δijf

(n)
a id+

∑︂
r+s=n

f (r)
a (−1)[i]Eija

s−1 −
∑︂
r+s=n

f (r)
a (−1)[i][j]θiθjE ȷ̄ ı̄(a− κ)s−1,
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where r ∈ N and s, n ∈ Z+. In particular, φa(T (n)
ij ) ∈ End(CM |N)[a] with polynomial

degree n−1 where the coefficient of an−1 is precisely (−1)[i]ρ(Fij) as given by (2.3.1).

Step 2. Given complex numbers x1, . . . , xn ∈ C, we consider the tensor product
φx1⇁xn := (

⨂︁n
i=1 φxi)◦∆n−1. Equipping Y(ospM |N )

⊗n with the tensor product filtration
Fn = {Fn

h }h∈N induced by the one on Y(ospM |N ), i.e., Fn
h =

⨁︁∑︁n
i=1 ki=h

Fk1 ⊗ · · · ⊗Fkn ,

then writing the sum
∑︁m

b=1 kb = d+m allows one to express ∆n−1(T (k1)
i1j1

· · · T (km)
imjm

) as

n∑︂
q1,...,qm=1

(T (k1)
i1j1

)[q1] · · · (T
(km)
imjm

)[qm] mod Fn
d−1,

where (T (kb)
ibjb

)[qb] = 1⊗(qb−1) ⊗ T (kb)
ibjb

⊗ 1⊗(n−qb) for 1 ≤ b ≤ m.

Regarding x1, . . . , xn as formal variables taking values in C, the image of the mono-
mial T (k1)

i1j1
· · · T (km)

imjm
under the representation φx1⇁xn will lie in End(CM |N )⊗n[x1, . . . , xn]

with polynomial degree satisfying deg
(︁
φx1⇁xn(T

(k1)
i1j1

· · · T (km)
imjm

)
)︁
≤ d.

If End(CM |N)⊗n[x1, . . . , xn]d−1 denotes the subspace of polynomials in x1, . . . , xn

with degree at most d−1, the element φx1⇁xn(T
(k1)
i1j1

· · · T (km)
imjm

) is equivalent modulo
End(CM |N)⊗n[x1, . . . , xn]d−1 to the expression

n∑︂
q1,...,qm=1

(−1)
∑︁m

b=1[ib]ρ(Fi1j1)[q1] · · · ρ(Fimjm)[qm] x
k1−1
q1

· · ·xkm−1qm

where ρ(Fibjb)[qb] = id⊗(qb−1)⊗ ρ(Fibjb)⊗ id⊗(n−qb) for 1 ≤ b ≤ m. In particular, we have

φx1⇁xn( ˜︁A) ≡ ρx1⇁xn(A) mod End(CM |N)⊗n[x1, . . . , xn]d−1,

where ρx1⇁xn is the representation of U(ospM |N [z]) given by (2.3.2). By Lemma 2.3.1,
there exists a1, . . . , an ∈ C such that ρa1⇁an(A) ̸= 0; thus, φx1⇁xn( ˜︁A) has polynomial
degree d, so ˜︁A is of filtration degree d.

Given as Corollary 2.3.4, the explicit form of the Poincaré-Birkhoff-Witt-type
theorem for the Yangian is an immediate consequence of Theorem 2.3.3 and the
Poincaré-Birkhoff-Witt Theorem for Lie superalgebras.
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Corollary 2.3.4 (PBW Theorem for Y(ospM |N)). Let BM |N be an index set of pairs
(i, j) ∈ (Z+)2 such that {Fij | (i, j) ∈ BM |N} forms a basis for ospM |N . Given any total
ordering ‘⪯’ on the set Y =

{︁
T (n)
ij | (i, j, n) ∈ BM |N × Z+

}︁
, the collection of all ordered

monomials of the form
T (n1)
i1j1

T (n2)
i2j2

· · · T (nk)
ikjk

,

where T (na)
iaja

∈ Y, T (na)
iaja

⪯ T (na+1)
ia+1ja+1

, and T (na)
iaja

≠ T (na+1)
ia+1ja+1

if T (na)
iaja

is odd, constitutes a
basis for the Yangian Y(ospM |N).

To construct the index set BM |N , one may first find bases for soM ↪→ ospM |N and
spN ↪→ ospM |N and complement such with a basis for the odd subspace of ospM |N . For
instance, by setting

BM =
{︁
(i, j) ∈ (Z+)2 | 2 ≤ i+j ≤M

}︁
and BN =

{︁
(i, j) ∈ (Z+)2 | 2M+2 ≤ i+j ≤ 2M+N+1

}︁
,

the collections {Fij | (i, j) ∈ BM} and {Fij | (i, j) ∈ BN} form respective bases
for soM ↪→ ospM |N and spN ↪→ ospM |N . If we further define

C =
{︁
(i, j) ∈ (Z+)2 |M+1 ≤ i ≤M+N, 1 ≤ j ≤M

}︁
,

then the union
BM |N = BM ∪ BN ∪ C (2.3.15)

indexes a basis
{︁
Fij | (i, j) ∈ BM |N

}︁
for ospM |N .

Corollary 2.3.5. The supercenter ZY(ospM |N) of Y(ospM |N) is trivial: C ·1.

Proof. It is known by [Naz99, Proposition 3.6] that if a Lie superalgebra g has trivial
supercenter, then so does U(g[z]). As ospM |N is simple, Nazarov’s result implies that
the associated graded grY(ospM |N) has trivial supercenter by Theorem 2.3.3; hence,
the same is true for Y(ospM |N) as well.

Proposition 2.3.6. There is a Hopf superalgebra embedding

ι : U(ospM |N) ↪→ Y(ospM |N), Fij ↦→ (−1)[i]T (1)
ij . (2.3.16)

for all 1 ≤ i, j ≤M+N .
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Proof. Relations (2.2.26) give[︁
T (1)
ij , Tkl(v)

]︁
= δjk(−1)[j]Til(v)− δil(−1)[i]+([i]+[j])([k]+[l])Tkj(v)

− δ ı̄k(−1)[j]+[i][j]+[i]θiθjTȷ̄ l(v) + δ ȷ̄ l(−1)[j]+([i]+[j])[k]θiθjTkı̄(v),

for all 1 ≤ i, j, k, l ≤M+N , so one takes the coefficient of (−1)[i]+[k]v−1. Furthermore,
equation (2.2.27) gives the relation T (1)

ij + (−1)[i][j]+[j]θiθjT (1)
ȷ̄ ı̄ = 0 for all indices

1 ≤ i, j ≤ M+N , so we multiply such expression by (−1)[i]. Thus, the map is a
superalgebra morphism and we observe the Hopf superstructures are compatible, so all
that remains to show is injectivity, but this follows from Corollary 2.3.4.

2.3.3 Homogeneous quantization

As the orthosymplectic Lie superalgebra g = ospM |N is basic, it comes equipped with
an even, non-degenerate, super-symmetric, and g-invariant C-bilinear form which we
denote ψ = ( · , · ) : g× g → C. As any two such bilinear forms on g are proportional,
we may take ψ : (X, Y ) ↦→ 1

2
str(XY ), where str : g → C is the super-trace.

Recall that C = C1|0 is equipped with the trivial Z2-grading, so the dual space g∗ is
graded as a super vector space g∗0̄ ⊕ g∗1̄ via the assignment g∗γ = {φ ∈ g∗ | φ(g∗γ+ 1̄) = 0}
for γ ∈ Z2. Since the bilinear form ψ is even and non-degenerate, the C-linear maps
ψL, ψR : g → g∗ defined by ψL(v) = ψ(v, · ) and ψR(v) = ψ( · , v), respectively, are super
vector space isomorphisms.

Considering the bilinear map ˜︁κ : g× g∗ → End(g), (X,φ) ↦→ φX where φX is the
C-linear function Y ↦→ (−1)[φ][X]φ(Y )X on homogeneous elements X ∈ g, φ ∈ g∗, there
is consequently a super vector space isomorphism

κ : g⊗ g∗
∼−→ End(g), X ⊗ φ ↦→ (Y ↦→ (−1)[φ][X]φ(Y )X)

on homogeneous elementsX ∈ g, φ ∈ g∗. Indeed, one can confirm κ is a grade preserving
and if {x∗b}

dim(g)
b=1 ⊂ g∗ denotes the dual basis to a homogeneous basis B = {xb}dim(g)

b=1

for g, then the inverse of κ is given by κ−1 : f ↦→
∑︁dim(g)

b=1 (−1)[f ][xb]+[xb]f(xb)⊗ x∗b .

The Casimir 2-tensor Ω is the preimage of the identity element in End(g) under
the isomorphism

κ ◦ (id⊗ψR) : g⊗ g
∼−→ g⊗ g∗

∼−→ End(g).
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Letting B = {xb}dim(g)
b=1 be some homogeneous basis of g, with B∗ = {yb}dim(g)

b=1 to denote
its dual basis with respect to the bilinear form ψ (so ψ(xb, yc) = δbc and Λb := [xb] = [yb]

for all 1 ≤ b, c ≤ dim(g)), the Casimir 2-tensor has the form

Ω =

dim(g)∑︂
b=1

(−1)Λbxb ⊗ yb ∈ g⊗ g.

In terms of the generators (2.1.10), one can compute

1

2
str(FijFkl) = (−1)[i]δilδjk − (−1)[i][j]θı̄θȷ̄δ ı̄kδ ȷ̄ l

for all 1 ≤ i, j, k, l ≤M+N . Thus, given the basis {Fij | (i, j) ∈ BM |N} with BM |N as
in (2.3.15), its dual basis with respect to the form ψ is {2−δ ı̄j (−1)[i]Fji | (i, j) ∈ BM |N}.
The Casimir 2-tensor may therefore be written as

Ω =
∑︂

(i,j)∈BM|N

2−δ ı̄j(−1)[j]Fij ⊗ Fji ∈ ospM |N ⊗ ospM |N .

As the bilinear form ψ is super-symmetric and g-invariant, then the Casimir 2-tensor is
so, i.e., σ(Ω) = Ω where σ is the super-braiding and (adX ⊗ id+ id⊗ adX) (Ω) = 0 for
all X ∈ g where adX denotes the adjoint action. Furthermore, by identifying Ω with its
image in U(g), the Casimir 2-tensor lies in the supercenter of U(g).

To state the final important property of the Casimir 2-tensor we need, let us
first introduce some required notation. Given an element s ∈ g ⊗ g and indices
1 ≤ i < j ≤ 3, we identify elements under the canonical embedding g ↪→ U(g) to define
a new elements sij in U(g)⊗3 via

s12 := s⊗ 1, s23 := 1⊗ s, and s13 := (id⊗ τ)(s⊗ 1),

where τ : U(g)⊗2 → U(g)⊗2, v1 ⊗ v2 ↦→ v2 ⊗ v1 is the twist map. When s = s(u, v)

depends on some formal parameters u and v, we shall write sij(ui, uj) for s(u, v)ij. If
the element s ∈ g⊗g is even, it may be written as a sum of homogeneous decomposable
tensors s =

∑︁d
n=1 an ⊗ bn, where γn := [an] = [bn].

For indices 1 ≤ i < j ≤ 3 and 1 ≤ k < l ≤ 3, we may consider the commutator
[sij, skl] = sijskl − sklsij and use the defining relations of the universal enveloping
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superalgebra to yield

[s12, s13] =
d∑︂

m,n=1

(−1)γmγn [am, an]⊗ bm ⊗ bn, [s12, s23] =
d∑︂

m,n=1

am ⊗ [bm, an]⊗ bn,

and [s13, s23] =
d∑︂

m,n=1

(−1)γmγnam ⊗ an ⊗ [bm, bn].

In particular, we are able to interpret the above commutators as elements in g⊗ g⊗ g.

If r(u, v) is a function in formal parameters u and v with coefficients in (g⊗ g)0̄, we
say that r(u, v) is an r-matrix if it satisfies the super classical Yang-Baxter equation
(SCYBE), i.e., SCYB(r(u, v)) = 0, where

SCYB(r(u, v))

= [r12(u1, u2), r13(u1, u3)] + [r12(u1, u2), r23(u2, u3)] + [r13(u1, u3), r23(u2, u3)].

For instance, if r(u, v) ∈ (g⊗ g)0̄[[u
±1, v±1]], then SCYB(r(u, v)) may be regarded as an

element in the space (g⊗ g⊗ g)0̄[[u
±1
1 , u±12 , u±13 ]]. In fact, the g-invariance of the Casimir

2-tensor implies Ω/(u− v) is an r-matrix:

SCYB(Ω/(u− v)) = 0.

Using the aforementioned properties of the Casimir 2-tensor, one is able to equip
the polynomial current superalgebra g[z] with a Lie superbialgebra structure (g[z], δ)

determined by the Lie co-superbracket

δ : g[z] → (g⊗ g) [u, v] ∼= g[z]⊗ g[z]

f(z) ↦→
(︁
adf(u) ⊗ id+ id⊗ adf(v)

)︁ (︂ Ω

u− v

)︂
.

(2.3.17)

At face value, it is not clear that the above map is well-defied since the element Ω/(u−v)
can not be interpreted as an element in (g⊗ g) [u, v]. However, using the g-invariance
of Ω, one can prove the above map is equivalent to the assignment

δ(Xzn) =

dim(g)∑︂
b=1

n−1∑︂
a=0

(−1)Λb [X, xb]z
a ⊗ ybz

n−a−1
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on homogeneous X ∈ g and n ∈ Z+, where it is understood that δ(X) = 0. In particular,
the defining relations of ospM |N show that the Lie co-superbracket is given on generators
by the formula

δ(Fijz
n) =

M+N∑︂
k=0

(−1)[k]
∑︂

a+b=n−1

(︁
Fikz

a ⊗ Fkjz
b − (−1)([i]+[k])([k]+[j])Fkjz

a ⊗ Fikz
b
)︁
.

We now establish terminology relating to deformation and quantization theory of
superalgebras over C[ℏ], where ℏ is a formal element of Z2-degree 0̄. To this effect, given
any Hopf superalgebra A over C, a Hopf superalgebra deformation of A (over C[ℏ]) is a
Hopf superalgebra Aℏ over C[ℏ] such that:

(i) Aℏ is torsion-free as a C[ℏ]-module.

(ii) The quotient Aℏ/ℏAℏ is isomorphic to A as a Hopf superalgebra.

Regarding C[ℏ] =
⨁︁

k∈N Cℏk as an N-graded ring, such deformation is called homoge-
neous if both A and Aℏ are N-graded modules such that the isomorphism Aℏ/ℏAℏ ∼= A
preserves these gradations. A direct super-analogue of [CP95, Proposition 6.2.7] shows
that if Uℏ(b) = U(b)ℏ is any Hopf superalgebra deformation of A = U(b) for any Lie
superalgebra b, then b is endowed with a Lie superbialgebra structure (b, δb) defined by
the Lie co-superbracket

δb(X) :=
∆ℏ( ˜︁X)−∆cop

ℏ ( ˜︁X)

ℏ
mod ℏ (Uℏ(b)⊗ Uℏ(b)) for all X ∈ b, (2.3.18)

where ∆ℏ is the comultiplication map on Uℏ(b), ∆cop
ℏ = σ ◦ ∆ℏ is the co-opposite

comultiplication, and ˜︁X is any element in the fiber of X ∈ b ⊂ U(b) under the
composition Uℏ(b) ↠ Uℏ(b)/ℏUℏ(b)

∼−→ U(b). Accordingly, a quantization of a Lie
superbialgebra (b, δb) (over C[ℏ]) is a Hopf superalgebra Uℏ(b) over C[ℏ] such that:

(i) Uℏ(b) is a Hopf superalgebra deformation of U(b).

(ii) The Lie co-superbracket δb coincides with the form (2.3.18).

When the Lie superbialgebra (b, δb) is N-graded, it induces an N-grading on U(b);
hence, a quantization Uℏ(b) is called homogeneous if the deformation is so.

In the theory of quantum groups, deformations and quantizations are traditionally
defined instead as topological Hopf superalgebras over C[[ℏ]], where the topological
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tensor product is taken as the ℏ-adic completion of the algebraic one (refer to [Dri85],
[CP95, §6] for such definitions). However, as discussed in detail in [Wen22], if Uℏ(b) is
a homogeneous quantization (over C[ℏ]) of an N-graded Lie superbialgebra (b, δb), then
its ℏ-adic completion ˆ︁Uℏ(b) = lim

←−
Uℏ(b)/ℏnUℏ(b)

will be a homogeneous quantization of (b, δb) in the sense of [Dri85], taking into account
the super-analogues of the definitions therein. We shall now construct such a homoge-
neous quantization of (g[z] = ospM |N [z], δ), where δ is the Lie co-superbracket (2.3.17).

Definition 2.3.7. Given the tensor product C[ℏ]⊗Y(ospM |N ) = Y(ospM |N )[ℏ] where ℏ
is a formal element of Z2-degree 0̄, the Yangian Yℏ(ospM |N) is defined as the Rees
superalgebra of Y(ospM |N) with respect to the filtration F (2.2.28):

Yℏ(ospM |N) := Rℏ(Y(ospM |N)) =
⨁︂
n∈N

ℏnFn ⊂ Y(ospM |N)[ℏ].

By definition, the Yangian Yℏ(ospM |N) is N-graded and it further comes equipped
with a Hopf superstructure by extending the one on Y(ospM |N) by C[ℏ]-linearity. In
particular, by setting ˜︁T (n)

ij = ℏn−1T (n)
ij for all 1 ≤ i, j ≤M+N and n ∈ Z+, such Hopf

superstructure is given by the comultiplication

∆ℏ : Yℏ(ospM |N) → Yℏ(ospM |N)⊗C[ℏ] Yℏ(ospM |N)˜︁T (n)
ij ↦→ ˜︁T (n)

ij ⊗ 1+ 1⊗ ˜︁T (n)
ij + ℏ

∑︂M+N

k=1

∑︂n−1

a=1
˜︁T (a)
ik ⊗ ˜︁T (n−a)

kj ,

the counit
εℏ : Yℏ(ospM |N) → C[ℏ], ˜︁T (n)

ij ↦→ 0,

and the antipode

Sℏ : Yℏ(ospM |N) → Yℏ(ospM |N)˜︁T (n)
ij ↦→ (−1)[i][j]+[j]θiθj

∑︂n

p=1

(︃
n−1

n−p

)︃
(−κ)n−pℏn−p ˜︁T (p)

ȷ̄ ı̄ ,

for all 1 ≤ i, j ≤ M+N and n ∈ Z+. We now arrive at the main proposition of this
subsection:



2.3. Poincaré-Birkhoff-Witt Theorem for the Yangian 55

Proposition 2.3.8. The Yangian Yℏ(ospM |N) is a homogeneous quantization of the
Lie superbialgebra (ospM |N [z], δ). Furthermore, there is a superalgebra isomorphism

Yℏ(ospM |N)/(ℏ− λ)Yℏ(ospM |N) ∼= Y(ospM |N) for all λ ∈ C∗.

Proof. To show that Yℏ(ospM |N) is a homogeneous Hopf superalgebra deformation of
the universal enveloping superalgebra U(ospM |N [z]), we first observe that Yℏ(ospM |N ) is
torsion-free, as it is a C[ℏ]-subalgebra of Y(ospM |N)[ℏ]. Moreover, by composing the
Hopf superalgebra isomorphism

ϕ : Yℏ(ospM |N)/ℏYℏ(ospM |N)
∼−→ grY(ospM |N)

mapping
ℏn−1T (n)

ij mod ℏYℏ(ospM |N) ↦→ T (n)
ij

for 1 ≤ i, j ≤M+N and n ∈ Z+, with the inverse of the isomorphism Φ (2.3.14), one
yields the desired N-graded Hopf superalgebra isomorphism

Φ−1 ◦ ϕ : Yℏ(ospM |N)/ℏYℏ(ospM |N)
∼−→ U(ospM |N [z]).

By the prior discussion, it follows that Yℏ(ospM |N) homogeneously quantizes the Lie
superbialgebra structure on ospM |N [z] with Lie co-superbracket given by (2.3.18).

We shall show that such Lie co-superbracket coincides with the one given by (2.3.17).
Before doing so, we recall that as is the case in Lie bialgebra theory, all Lie superbialgebra
structures (b, δ) on a Lie superalgebra b are in one to one correspondence with coPoisson
Hopf superalgebra structures (U(b), δ) on U(b).

In particular, any Lie co-superbracket δ on b may be extended to a coPoisson
superbracket on U(b), also denoted δ, via the rule

δ(XY ) = δ(X)∆(Y ) + ∆(X)δ(Y ) for all X, Y ∈ b.

Defining evℏ as the morphism

evℏ : Yℏ(ospM |N) ↠ Yℏ(ospM |N)/ℏYℏ(ospM |N)
∼−→ U(ospM |N [z])

mapping ℏn−1T (n)
ij ↦→ (−1)[i]Fijz

n−1 for 1 ≤ i, j ≤ M+N and n ∈ Z+, we obtain the
commutative diagram



56 Chapter 2. Yangians of Orthosymplectic Lie Superalgebras

Yℏ(ospM |N) Yℏ(ospM |N)
⊗2

U(ospM |N [z]) U(ospM |N [z])
⊗2

ℏ−1(∆ℏ −∆cop
ℏ )

evℏ evℏ ⊗ evℏ

δ

where δ denotes the extension of (2.3.17) to a coPoisson superbracket on U(ospM |N [z]).

For the second claim, we consider the epimorphism evλ : Y(ospM |N )[ℏ] → Y(ospM |N )

induced by the assignment ℏ ↦→ λ. The restriction evRλ of evλ to Rℏ(Y(ospM |N)) will
still remain surjective and its kernel is given by

ker(evRλ ) = Rℏ(Y(ospM |N)) ∩ (ℏ− λ)Y(ospM |N)[ℏ] = (ℏ− λ)Rℏ(Y(ospM |N)),

proving the proposition.

As discussed earlier in this subsection, it therefore follows by the work in [Wen22]
that the ℏ-adic completion

ˆ︁Yℏ(ospM |N) = lim
←−

Yℏ(ospM |N)/ℏnYℏ(ospM |N)

serves as a homogeneous quantization of (ospM |N [z], δ) in the sense of [Dri85]. The
remainder of this subsection is devoted to expressing Yℏ(ospM |N ) in terms of generators
and relations. To do so, we define a new superalgebra ˜︁Yℏ(ospM |N ) and ultimately prove
there exists an isomorphism Yℏ(ospM |N) ∼= ˜︁Yℏ(ospM |N).

Definition 2.3.9. Define ˜︁Yℏ(ospM |N) as the unital associative C[ℏ]-superalgebra on
the generators {˜︁T (n)

ij | 1 ≤ i, j ≤ M+N, n ∈ Z+}, with Z2-grade
[︁ ˜︁T (n)

ij

]︁
= [i]+ [j] for

all n ∈ Z+, subject to the relations

[︁ ˜︁T (m)
ij , ˜︁T (n)

kl

]︁
= δjk(−1)[k] ˜︁T (m+n−1)

il − δil(−1)[i][k]+[j][k]+[j][l] ˜︁T (m+n−1)
kj

− δ ı̄k(−1)[i][j]+[i]+[j]θiθj ˜︁T (m+n−1)
ȷ̄ l + δ ȷ̄ l(−1)[i][k]+[j][k]+[j]θiθj ˜︁T (m+n−1)

k ı̄

+ (−1)[i][j]+[i][k]+[j][k] ℏ
min(m,n)∑︂
a=2

(︁˜︁T (a−1)
kj

˜︁T (m+n−a)
il − ˜︁T (m+n−a)

kj
˜︁T (a−1)
il

)︁
+ δ ȷ̄ lℏ

M+N∑︂
p=1

m∑︂
a=2

m−a∑︂
b=0

(︃
m−a
b

)︃
(κℏ)b(−1)[i][k]+[j][k]+[j]+[i][p]+[p]θjθp ˜︁T (m+n−a−b)

kp̄
˜︁T (a−1)
ip

− δ ı̄kℏ
M+N∑︂
p=1

m∑︂
a=2

m−a∑︂
b=0

(︃
m−a
b

)︃
(κℏ)b(−1)[i][j]+[i]+[p]θiθp ˜︁T (a−1)

pj
˜︁T (m+n−a−b)
p̄ l
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and

˜︁T (n)
ij + (−1)[i][j]+[j]θiθj ˜︁T (n)

ȷ̄ ı̄

= −ℏ
M+N∑︂
p=1

n∑︂
a=1

a∑︂
b=1

(︃
a−1

a−b

)︃
(−κℏ)a−b (−1)[i][p]+[p]θiθp ˜︁T (b)

p̄ ı̄
˜︁T (n−a)
pj ,

for all 1 ≤ i, j, k, l ≤M+N and m,n ∈ Z+.

The superalgebra ˜︁Yℏ(ospM |N) is N-graded via the gradation assignments

deg ℏ = 1 and deg ˜︁T (n)
ij = n−1 for 1 ≤ i, j ≤M+N, n ∈ Z+.

In Proposition 2.3.11 below, it is established that ˜︁Yℏ(ospM |N) ∼= Yℏ(ospM |N). We
note that the following arguments used are similar to those presented in the articles
[GRW19a, Proposition 2.2] and [GRW19c, Theorem 6.10].

By equipping U(ospM |N [z]) with a C[ℏ]-superalgebra structure via the action induced
by ℏ ↦→ 0, we get the following result:

Lemma 2.3.10. There is an N-graded superalgebra epimorphism

˜︁evℏ : ˜︁Yℏ(ospM |N) ↠ U(ospM |N [z]), ˜︁T (n)
ij ↦→ (−1)[i]Fijz

n−1

for all 1 ≤ i, j ≤ M+N , n ∈ Z+. In particular, ker( ˜︁evℏ) = ℏ˜︁Yℏ(ospM |N), so there is
an isomorphism ˜︁Yℏ(ospM |N)/ℏ˜︁Yℏ(ospM |N) ∼= U(ospM |N [z])

as N-graded superalgebras.

Proof. By the C[ℏ]-module structure on U(ospM |N [z]), it is routine to prove ˜︁evℏ is a
gradation preserving superalgebra epimorphism such that ℏ˜︁Yℏ(ospM |N) ⊆ ker( ˜︁evℏ);
hence, ˜︁evℏ descends to an epimorphism ˜︁Yℏ(ospM |N)/ℏ˜︁Yℏ(ospM |N) → U(ospM |N [z]) of
N-graded superalgebras mapping ˜︁T (n)

ij mod ℏ˜︁Yℏ(ospM |N) ↦→ (−1)[i]Fijz
n−1. Conversely,

there is a superalgebra morphism U(ospM |N [z]) → ˜︁Yℏ(ospM |N)/ℏ˜︁Yℏ(ospM |N) sending
Fijz

n−1 ↦→ (−1)[i] ˜︁T (n)
ij mod ℏ˜︁Yℏ(ospM |N), which establishes the isomorphism.
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Proposition 2.3.11. There is an isomorphism of C[ℏ]-superalgebras

φℏ : ˜︁Yℏ(ospM |N) → Yℏ(ospM |N), ˜︁T (n)
ij ↦→ ℏn−1T (n)

ij

for all 1 ≤ i, j ≤M+N , n ∈ Z+.

Proof. By the defining relations in the Yangian Y(ospM |N ) and the fact that the elements
ℏn−1T (n)

ij , 1 ≤ i, j ≤M+N , n ∈ Z+, generate Yℏ(ospM |N), it follows that the map φℏ

is a superalgebra epimorphism.

Recalling the C[ℏ]-superalgebra structure on U(ospM |N [z]) defined by ℏ ↦→ 0, there
is an epimorphism evℏ : Yℏ(ospM |N) ↠ U(ospM |N [z]) of C[ℏ]-superalgebras induced by
Yℏ(ospM |N)/ℏYℏ(ospM |N) ∼= U(ospM |N [z]). In fact, we have the commuting diagram:

˜︁Yℏ(ospM |N) Yℏ(ospM |N)

U(ospM |N [z]) U(ospM |N [z])

φℏ

˜︁evℏ evℏ

id

Suppose X ∈ ˜︁Yℏ(ospM |N) is nonzero such that X ∈ kerφℏ. As there exists a maximal
integer n ∈ N such that X ∈ ℏn˜︁Yℏ(ospM |N), one can write X = ℏnY for some element
Y ̸∈ ℏ˜︁Yℏ(ospM |N).

In particular, since 0 = φℏ(ℏnY ) = ℏnφℏ(Y ), it must be Y ∈ kerφℏ as well due to
Yℏ(ospM |N) being torsion-free. However, the above commutative diagram would imply
Y ∈ ker( ˜︁evℏ) = ℏ˜︁Yℏ(ospM |N), a contradiction.

2.4 Structure of the Extended Yangian

In this section, we prove many structural results about the extended Yangian X(ospM |N ),
including showing that it is isomorphic to the tensor product of the Yangian Y(ospM |N )

with a polynomial algebra in countably many Z2-grade 0̄ variables. We will also
determine its supercenter and establish a Poincaré-Birkhoff-Witt type theorem for the
superalgebra. Broadly, we follow much of the structure of [Wen18, §7], deploying similar
arguments to those provided there.
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2.4.1 The tensor product decomposition, supercenter, and

PBW Theorem of X(ospM |N)

Definition 2.4.1. Equipping the polynomial algebra C[ yn |n ∈ Z+] with the purely even
Z2-grading, the auxiliary superalgebra X(ospM |N ) is the tensor product of C[ yn |n ∈ Z+]

with the Yangian Y(ospM |N):

X(ospM |N) := C[ yn |n ∈ Z+]⊗ Y(ospM |N).

Defining Y(u) := 1 +
∑︁∞

n=1 ynu
−n ∈ (C[ yn |n ∈ Z+]) [[u−1]], we may consider the

following series for 1 ≤ i, j ≤M+N :

Tij(u) = δij1+
∞∑︂
n=1

T
(n)
ij u

−n := Y(u)⊗ Tij(u) ∈ X(ospM |N)[[u−1]], (2.4.1)

with the matrix T(u) :=
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij⊗Tij(u) ∈ End(CM |N )⊗X(ospM |N )[[u−1]].
Writing Y[1](u) for id⊗Y(u)⊗ 1 and T [2](u) for

∑︁M+N
i,j=1 (−1)[i][j]+[j]Eij ⊗ 1⊗ Tij(u), we

may then express T(u) = Y[1](u)T [2](u). We equip C[ yn |n ∈ Z+] with the Hopf algebra
structure determined by the comultiplication

∆Y : C[ yn |n ∈ Z+] → (C[ yn |n ∈ Z+])⊗2, Y(u) ↦→ Y(u)⊗ Y(u),

the counit
εY : C[ yn |n ∈ Z+] → C, Y(u) ↦→ 1,

and antipode

SY : C[ yn |n ∈ Z+] → C[ yn |n ∈ Z+], Y(u) ↦→ Y(u)−1.

Moreover, we note that since C[ yn | n ∈ Z+] is a commutative Hopf algebra, its
antipode is an involution: S 2

Y = id. Given the Hopf superstructure maps ∆Y, εY, SY

on Y(ospM |N), the auxiliary superalgebra X(ospM |N) can be equipped with the tensor
product Hopf superstructure given by

∆X = (id⊗σ ⊗ id) ◦ (∆Y ⊗∆Y), εX = εY ⊗ εY, SX = SY ⊗ SY,

where σ is the super-braiding. In particular, such structure maps are given by
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∆X : T(u) ↦→ T[1](u)T[2](u), εX : T(u) ↦→ 1, and SX : T(u) ↦→ T(u)−1, where we note that
T(u)−1 = Y[1](u)−1T [2](u)−1 = T [2](u)−1Y[1](u)−1.

By endowing a filtration H = {Hn}n∈N on the polynomial algebra C[ yn |n ∈ Z+]

via the filtration degree assignment degH yn = n−1, we can equip X(ospM |N) with the
tensor product filtration F

(︁
X(ospM |N)

)︁
= {Fn(X(ospM |N))}n∈N defined by

Fn
(︁
X(ospM |N)

)︁
=
∑︂
a+b=n

Ha ⊗ Fb
(︁
Y(ospM |N)

)︁
, (2.4.2)

where {Fb(Y(ospM |N))}b∈N is the filtration F = {Fb}b∈N on Y(ospM |N) as in (2.2.28).
Since C[ yn |n ∈ Z+] is isomorphic to its own associated graded algebra, the mapping
Fn
(︁
X(ospM |N)

)︁
→
⨁︁

a+b=nHa/Ha−1 ⊗ Fb/Fb−1 induces an isomorphism

grX(ospM |N) ∼= C[ yn |n ∈ Z+]⊗ grY(ospM |N).

In particular, by allowing T
(n)
ij and T (n)

ij to denote the respective images of T(n)
ij and T (n)

ij

in the (n−1)th graded components of grX(ospM |N) and grY(ospM |N), identifying the
above superalgebras provides

T
(n)
ij = yn ⊗ δij1+ 1⊗ T (n)

ij

since T
(n)
ij = yn⊗δij1+1⊗T (n)

ij +
∑︁

a+b=n ya⊗T (b)
ij for a, b ∈ Z+. Given a 1-dimensional

abelian Lie superalgebra zc = C · c with trivial Z2-grade, we may use the isomorphism
ψc : C[ yn |n ∈ Z+]⊗ U(ospM |N [z])

∼−→ U(ospM |N [z]⊕ zc[z]) alongside the inverse Φ−1 of
the isomorphism (2.3.14) to construct the isomorphism

ψc ◦ (id⊗Φ−1) : grX(ospM |N)
∼−→ U(ospM |N [z]⊕ zc[z]).

which sends T
(n)
ij ↦→ ((−1)[i]Fij + δij c)z

n−1 for all 1 ≤ i, j ≤M+N and n ∈ Z+.

Theorem 2.4.2. The assignment T (u) ↦→ T(u) defines a Hopf superalgebra isomor-
phism

χ : X(ospM |N)
∼−→ X(ospM |N) = C[ yn |n ∈ Z+]⊗ Y(ospM |N). (2.4.3)

Proof. Via the relations (2.2.26) in the Yangian, the map χ : T (u) ↦→ T(u) defines a
morphism of superalgebras; furthermore, we observe the relative Hopf superstructures
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are compatible. Since χ preserves the filtrations on X(ospM |N) and X(ospM |N) given
respectively by E in (2.2.21) and F(X(ospM |N )) via (2.4.2), we can consider the associ-
ated graded morphism grχ. Hence, to show χ is invertible, it suffices to prove such is
true for grχ.

Given the epimorphism Ψ: U(ospM |N [z] ⊕ zc[z]) → grX(ospM |N) as in Proposi-
tion 2.2.5, the composition grχ ◦Ψ: U(ospM |N [z]⊕ zc[z]) → grX(ospM |N) maps

Fijz
n−1 ↦→ 1

2
(−1)[i]

(︁
T

(n)
ij − (−1)[i][j]+[j]θiθjT

(n)
ȷ̄ ı̄

)︁
, czn−1 ↦→ 1

2

(︁
T

(n)
ii + T

(n)
ı̄ ı̄

)︁
,

for 1 ≤ i, j ≤M+N , n ∈ Z+. Using the relations (2.1.12), we find that the composition
(ψc ◦ (id⊗Φ−1)) ◦ (grχ ◦Ψ) is equal to the identity map on U(ospM |N [z]⊕ zc[z]); hence,
there is an equality grχ◦Ψ = (ψc ◦ (id⊗Φ−1))−1, which implies grχ is surjective and Ψ

is injective. The existence of Ψ−1 means we can write grχ = (ψc ◦ (id⊗Φ−1))−1 ◦Ψ−1,
which proves the invertibility of grχ.

Let us define Y(u) to be the preimage of the series Y(u)⊗1 under the isomorphism χ:

Y(u) = 1+
∞∑︂
n=1

Ynu−n := χ−1
(︁
Y(u)⊗ 1

)︁
∈ X(ospM |N)[[u

−1]]. (2.4.4)

Using (2.2.20) where SX denotes the antipode on X(ospM |N), we observe

χ(Z(u)Z(u+ κ)−1) = χ
(︁
S2
X(T (u))

)︁
χ
(︁
T (u+ 2κ)−1

)︁
= S2

X(T(u))T(u+ 2κ)−1

= Y(u)Y(u+ 2κ)−1 ⊗ 1

since S 2
Y = id. Thus, via equation (2.2.17) and the computation above, χ(Z(u)) is given

by χ(Z(u)Z(u+ κ)−1)χ(Z(u+ κ)) = Y(u)Y(u+ κ)⊗ 1 using that T (u)−1 = T (u+ κ).
Hence,

Z(u) = Y(u)Y(u+ κ). (2.4.5)

Proposition 2.4.3. The collection of elements {Yn}n∈Z+ are an algebraically inde-
pendent set over C that generates the supercenter of X(ospM |N). Consequently, the
supercenter of X(ospM |N) is

C[Yn | n ∈ Z+] ∼= ZX(ospM |N) = C[Zn | n ∈ Z+].
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Proof. By Corollary 2.3.5, the supercenter of X(ospM |N ) is C[ yn |n ∈ Z+]⊗C ·1; hence,
the collection {χ−1(yn ⊗ 1) = Yn}n∈Z+ must be an algebraically independent set over C
that generates the supercenter of X(ospM |N). Via the relation (2.4.5), it follows that
the same must be true for {Zn}n∈Z+ as well.

Through the course of the proof for Theorem 2.4.2, we proved that the epimorphism
in Proposition 2.2.5 is injective; thus, we can state the following Poincaré-Birkhoff-Witt-
type theorem for the extended Yangian:

Theorem 2.4.4. The epimorphism in Proposition 2.2.5 is an N-graded Hopf superal-
gebra isomorphism Ψ: U(ospM |N [z]⊕ zc[z]) → grX(ospM |N) given by

Fijz
n−1 ↦→ (−1)[i]

(︁
T

(n)
ij − 1

2
δijZn

)︁
, czn−1 ↦→ 1

2
Zn (2.4.6)

for indices 1 ≤ i, j ≤M+N , n ∈ Z+.

We now state the explicit form of the Poincaré-Birkhoff-Witt-type theorem for the
extended Yangian due to Theorem 2.4.4.

Corollary 2.4.5 (PBW Theorem for X(ospM |N)). Let BM |N be an index set of pairs
(i, j) ∈ (Z+)2 such that {Fij | (i, j) ∈ BM |N} forms a basis for ospM |N . Given any total
ordering ‘⪯’ on the set X =

{︁
T

(n)
ij ,Zr | (i, j, n) ∈ BM |N × Z+, r ∈ Z+

}︁
, the collection

of all ordered monomials of the form

Xn1Xn2 · · ·Xnk

where Xna ∈ X, Xna ⪯ Xna+1, and Xna ≠ Xna+1 if Xna is odd, constitutes a basis for
the extended Yangian X(ospM |N).

Proof. As {Fijzn−1, czr−1 | (i, j) ∈ BM |N , n, r ∈ Z+} forms a basis for ospM |N [z]⊕ zc[z],
then so does the set

{︁
(−1)[i]Fijz

n−1, ((−1)[k]Fkk + c)zn−1, czr−1 | (i, j), (k, k) ∈ BM |N : i ̸= j; n, r ∈ Z+
}︁
.
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Furthermore, one can embed U(ospM |N) within the extended Yangian as well:

Proposition 2.4.6. There is a Hopf superalgebra embedding

ι : U(ospM |N) ↪→ X(ospM |N), Fij ↦→
1

2
(−1)[i]

(︁
T

(1)
ij −(−1)[i][j]+[j]θiθjT

(1)
ȷ̄ ı̄

)︁
(2.4.7)

for all 1 ≤ i, j ≤M+N .

Proof. By Theorem 2.4.2, there is an embedding ιY : Y(ospM |N ) ↪→ X(ospM |N ) mapping
T (u) ↦→ Y(u)−1T (u); hence, T (1)

ij ↦→ T
(1)
ij − δijY1 under such inclusion for indices

1 ≤ i, j ≤M+N .

Using relation (2.4.5) and taking the coefficient of u−1 in equation (2.2.18) which
yields T (1)

ij + (−1)[i][j]+[j]θiθjT
(1)
ij = δijZ1, we therefore find ιY (T (1)

ij ) is equal to the
expression 1

2

(︁
T

(1)
ij − (−1)[i][j]+[j]θiθjT

(1)
ij

)︁
. Composing the Yangian inclusion ιY with the

embedding U(ospM |N) ↪→ Y(ospM |N) in (2.3.16) gives the result.

2.4.2 The Yangian as fixed-point subalgebra of its extended

Yangian

As was observed in the proof of Proposition 2.4.6, the Yangian Y(ospM |N) may be
regarded as a Hopf sub-superalgebra of X(ospM |N) via the embedding

ιY : Y(ospM |N) ↪→ X(ospM |N), T (u) ↦→ Y(u)−1T (u) (2.4.8)

which itself is obtained by composing the inverse of the map (2.4.3) with the Hopf
superalgebra inclusion Y(ospM |N) ↪→ C[ yn |n ∈ Z+]⊗ Y(ospM |N). This subsection is
dedicated to showing that the image ιY (Y(ospM |N)) of the Yangian can be realized as
fixed point subalgebra of X(ospM |N). In particular, we prove the following theorem:

Theorem 2.4.7. The Yangian ιY (Y(ospM |N)) is equal to the subalgebra of X(ospM |N)
fixed by all automorphisms of the form µf (2.2.9):

ιY (Y(ospM |N)) =
{︁
Y ∈ X(ospM |N) | µf (Y) = Y for all f(u) ∈ 1 + u−1C[[u−1]]

}︁
.

Proof. We let X(ospM |N)
µf denote the fixed point subalgebra described by the right

hand side of the equation in the theorem statement.
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To show the inclusion ιY (Y(ospM |N)) ⊆ X(ospM |N)
µf , we note that every series

f(u) ∈ 1 + u−1C[[u−1]] defines a superalgebra automorphism µY
f ∈ Aut(C[ yn |n ∈ Z+])

mapping Y(u) ↦→ f(u)Y(u), which itself extends to the superalgebra automorphism
µX
f := µY

f ⊗ id ∈ Aut(X(ospM |N)). Since µX
f (T(u)) = f(u)T(u), there is an equality

χ ◦ µf = µX
f ◦ χ, where χ is the isomorphism (2.4.3). Hence, µf(Y(u)) = f(u)Y(u),

which infers µf (Y(u)−1T (u)) = Y(u)−1T (u) for all f(u) ∈ 1 + u−1C[[u−1]].

For the reverse inclusion ιY (Y(ospM |N)) ⊇ X(ospM |N)
µf , one can argue similar

to [AMR06, Theorem 3.1] by supposing in contradiction that there exists an element
X ∈ X(ospM |N)

µf \ ιY (Y(ospM |N)). Since the collection of elements {Yn}n∈Z+ are
central in X(ospM |N), there is a decomposition T (u) = Y(u)−1T (u)Y(u) which infers
every element in X(ospM |N) may also be considered as one lying in the polynomial
superalgebra ιY (Y(ospM |N))[Yn | n ∈ Z+]. In particular, we may write

X = B(Y1, . . . ,Ym) for some B(x1, . . . , xm) ∈ ιY (Y(ospM |N))[xn | n ∈ Z+],

where xn, n ∈ Z+, are indeterminates and X is obtained by evaluating xr ↦→ Yr for
1 ≤ r ≤ m. Note that B(x1, . . . , xm) must be non-constant by hypothesis on X and we
may further assume m ∈ Z+ is minimal in how X may be written in the above form.
Expanding B(x1, . . . , xm) =

∑︁d
p=0Ba(x1, . . . , xm−1)x

p
m as a polynomial in xm, we write

P (xm) :=
∑︁d

p=1Ba(Y1, . . . ,Ym−1)xpm observing that the polynomial degree of P (xm)
must be positive.

For any scalar a ∈ C, the series fa(u) = 1 + au−m determines an automorphism µfa .
Since µfa(Y(u)) = fa(u)Y(u), we note µfa(Ym) = Ym + a1 and µfa(Yr) = 0 for all
indices r ̸= m. Using that ιY (Y(ospM |N)) ⊆ X(ospM |N)

µfa , it follows

X = µfa(X) = B0(Y1, . . . ,Ym−1) + P (Ym + a1) for all a ∈ C;

hence,
P (Ym) = P (Ym + a1) for all a ∈ C. (2.4.9)

For any a ∈ C, there is an algebra morphism evm,a : C[ yn |n ∈ Z+] → C[ yn |n ∈ Z+]

mapping ym ↦→ −a and yr ↦→ yr for all r ≠ m. Extending evm,a to the superalgebra
morphism evX

m,a := evm,a⊗ id : X(ospM |N) → X(ospM |N), we observe

ker(evX
m,a) = ker(evm,a)⊗ Y(ospM |N) = (ym + a)⊗ Y(ospM |N),
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where (ym+a) is the ideal in C[ yn |n ∈ Z+] generated by the linear polynomial ym+a. In
particular, ∩a∈C ker(evX

m,a) is trivial. Since relation (2.4.9) infers χ(P (Ym)) ∈ ker(evX
m,a)

for all a ∈ C where χ is the isomorphism (2.4.3), we deduce χ(P (Ym)) = 0; thus,
P (Ym) = 0. However, such implies X = B0(Y1, . . . ,Ym−1) contradicting the minimality
of m ∈ Z+.



Chapter 3

Representation Theory of
Orthosymplectic Yangians

After proving many structural results in Chapter 2 on the Yangian Y(ospM |N) and its
extension X(ospM |N ), we are now equipped with the necessary tools to investigate their
representation theories. We note that even if classifications of their finite-dimensional
irreducible representations are achieved, they will not canonically lift to ones for all
finite-dimensional representations since these latter representation categories are not
semisimple. As remarked in [CP95, §12.1], the failure of the categories Repfd(Y(ospM |N ))

and Repfd(X(ospM |N )) to be semisimple follows from the failure of Repfd(U(g[z])) to be
so for g = ospM |N and g = ospM |N ⊕ zc, c.f. Theorem 2.3.3 and Theorem 2.4.4. Indeed,
for k ∈ Z+ and a ∈ C, the representation of g[z] on the space of k-jets

Jk,a(g) = g[z]/(z − a)k+1g[z]

is indecomposable but not irreducible as (z − a)Jk,a(g) is a proper submodule. As
one will see, Chapter 3 will be heavily focused on the representation theory of the
extended Yangian. This is due to the fact a classification of finite-dimensional irreducible
representations for X(ospM |N ) will infer the corresponding classification for the Yangian
by virtue of the tensor product decomposition (c.f. Theorem 2.4.2):

X(ospM |N) ∼= C[Zn | n ∈ Z+]⊗ Y(ospM |N).

66
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The chapter is demarcated in two sizeable sections. The first section § 3.1 lays
the foundation for the classification by establishing a highest weight theory for the
extended Yangian X(ospM |N ) based on fixing certain root systems of ospM |N described in
§3.1.1. In particular, it is established in §3.1.2 that every finite-dimensional irreducible
representation of the extended Yangian is highest weight. Furthermore, the constructions
of restriction functors and Verma modules are actualized in subsections § 3.1.3 and
§3.1.4, respectively.

The principal theorems of this chapter lie in the second section §3.2. In §3.2.1, the
characterization for the non-triviality of Verma modules is supplied, which allows for
the statement of the Theorem 3.2.8 in the following subsection §3.2.2 which describes
necessary conditions for all finite-dimensional irreducible representations. To address
obtaining sufficient conditions, we follow the strategy of constructing fundamental
representations, which constitute the subsequent two subsections §3.2.3 and §3.2.4.

3.1 Highest Weight Theory of Extended Yangians

In this section, we develop the highest weight theory for the extended Yangian. In
fact, we address the construction of two inequivalent highest weight theories on
Rep(X(ospM |N)) associated to a selection of two inequivalent positive root systems Φ+

I

and Φ+
II of the orthosymplectic Lie superalgebra ospM |N . However, for the intents and

purposes of the classification of finite-dimensional irreducible representations, one only
needs to consider the first highest weight theory; indeed, the subsequent section §3.2
tacitly assumes as such.

Nonetheless, we maintain the more general scheme in this section since both theories
infer useful results in and of themselves. For instance, it shown in §3.1.3 that these two
highest weight theories respectively prove the non-triviality of covariant functors

F+ : Repirr
fd (X(ospM |N)) → Repirr

fd (X(osp(M-2)|N))

and F+ : Repirr
fd (X(ospM |N)) → Repirr

fd (X(ospM |(N-2))).

Furthermore, Proposition 3.1.14 shows that one can always construct non-trivial Verma
modules for either highest weight theory.
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3.1.1 Root systems of orthosymplectic Lie superalgebras

Taking the coefficient of u−1 in equation (2.2.18) yields the equality

T
(1)
ij + (−1)[i][j]+[j]θiθjT

(1)
ȷ̄ ı̄ = δijZ1. (3.1.1)

Thus, by identifying the generators Fij ∈ ospM |N with their images in X(ospM |N ) under
the embedding (2.4.7), equation (3.1.1) infers Fij = (−1)[i]T

(1)
ij − 1

2
δij(−1)[i]Z1. Under

such embedding, the extended Yangian becomes ospM |N -module and to determine the
action of the generators Fij on X(ospM |N ), we observe that the coefficient of u−1 in the
defining relations (2.2.8) give[︁
T

(1)
ij , Tkl(v)

]︁
= δjk(−1)[j]Til(v)− δil(−1)[i]+([i]+[j])([k]+[l])Tkj(v)

− δ ı̄k(−1)[j]+[i][j]+[i]θiθjTȷ̄ l(v) + δȷ̄ l(−1)[j]+([i]+[j])[k]θiθjTk ı̄(v).
(3.1.2)

Hence, since Z1 lies in the supercenter ZX(ospM |N ), the generators Fij act on X(ospM |N )

by the formula[︁
Fij, Tkl(u)

]︁
= δjk(−1)[i]+[j]Til(u)− δil(−1)([i]+[j])([k]+[l])Tkj(u)

− δ ı̄k(−1)[i][j]+[j]θiθjTȷ̄ l(u) + δȷ̄ l(−1)([i]+[j])([k]+1)θiθjTk ı̄(u).
(3.1.3)

Let us set m =
⌊︁
M
2

⌋︁
, ˆ︁m =

⌈︁
M
2

⌉︁
, and n = N

2
, where ⌊ · ⌋ : Q → N denotes the

floor function and ⌈ · ⌉ : Q → N denotes the ceiling function. Let h denote the Cartan
subalgebra of ospM |N given by

h =
⨁︂
h∈K

CFhh, where K = {1, . . . ,m;M+1, . . . ,M+n}.

Note that ospM |N is of rank m+n and the action of the Cartan subalgebra on X(ospM |N )

is given by [︁
Fhh, Tij(u)

]︁
= (δhi − δhj − δhı̄ + δhȷ̄)Tij(u). (3.1.4)

Further, let {εi, δj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} denote the dual basis for h, where εi and δj
are those C-linear functionals in h∗ given by

εi(Fhh) = δih and δj(Fhh) = δM+j,h for h ∈ K.



3.1. Highest Weight Theory of Extended Yangians 69

To introduce a notion of positivity for the root system of ospM |N , we declare the
nonzero even generators Fij of ospM |N with indices satisfying i < j to be positive even
root vectors; the collection of their corresponding roots will form a system of positive
even roots, which we will denote Φ+

even.

We will complete the set Φ+
even to positive root system of ospM |N in two ways by

selecting appropriate collections of odd roots to be positive, with the first collection of
odd positive roots denoted Φ+

odd[I], and the second by Φ+
odd[II]. The two resulting positive

root systems for ospM |N will be denoted respectively as

Φ+
I := Φ+

even ∪ Φ+
odd[I] and Φ+

II := Φ+
even ∪ Φ+

odd[II].

The orthosymplectic Lie superalgebras comprise three infinite families of basic Lie
superalgebras: B(m,n) = osp(2m+1)|2n for integers m ≥ 0 and n ≥ 1; C(n+1) = osp2|2n

for integers n ≥ 1; and D(m,n) = osp2m|2n for integers m ≥ 2 and n ≥ 1. As the
descriptions of the root systems of ospM |N vary depending on the family, we will describe
each of these instances separately. Further, we note that the Cartan subalgebra action
on ospM |N is described by

[︁
Fhh, Fij

]︁
= (δhi − δhj − δhı̄ + δhȷ̄)Fij.

Considering the case ospM |N = B(m,n) = osp(2m+1)|2n, the collection of its associ-
ated positive even roots is given by

Φ+
even = {±εi−εj, −εq, ±δk−δl, −2δp} ,

with 1 ≤ i < j ≤ m, 1 ≤ q ≤ m, 1 ≤ k < l ≤ n, and 1 ≤ p ≤ n. The first selection of
positive odd roots are

Φ+
odd[I] = {−εi ± δk, −δp} ,

where 1 ≤ i ≤ m and 1 ≤ k, p ≤ n, which gives a simple root system ∆I with
corresponding Dynkin diagram:

−δ1 δ1−δ2 δn−1−δn δn−ε1 ε1−ε2 εm−1−εm

Figure 3.1: Dynkin diagram corresponding to ∆I for B(m,n)
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The second selection of positive odds roots are

Φ+
odd[II] = {±εi−δk, −δp} ,

when 1 ≤ i ≤ m and 1 ≤ k, p ≤ n as well. The simple root system ∆II corresponding
to this second positive root system has the Dynkin diagram:

−ε1 ε1−ε2 εm−1−εm εm−δ1 δ1−δ2 δn−1−δn

Figure 3.2: Dynkin diagram corresponding to ∆II for B(m,n)

Here, we observe the black nodes correspond to simple odd roots of nonzero length
whereas the tensor nodes correspond to isotropic simple odd roots. Consequently, we
remark that the first simple root system is not a distinguished one, in so far as that
it has more than one simple odd root. Thus, for a detailed description on how these
Dynkin diagrams are constructed in general, we refer the reader to [Zha14].

In the case ospM |N = C(n+1) = osp2|2n, the collection of even positive roots is
given by

Φ+
even = {±δk−δl, −2δp} ,

where 1 ≤ k < l ≤ n and 1 ≤ p ≤ n. We complete such to a positive root system by
selecting the positive odd roots to be

Φ+
odd[I] = {−ε1 ± δk} ,

where 1 ≤ k ≤ n. In such case, the system of simple roots ∆I has the Dynkin diagram:

−2δ1 δ1−δ2 δn−1−δn δn−ε1

Figure 3.3: Dynkin diagram corresponding to ∆I for C(n+1)

The second selection of positive odd roots are

Φ+
odd[II] = {±ε1−δk} ,

with 1 ≤ k ≤ n. The simple root system ∆II corresponding with this second positive
root system has the Dynkin diagram:



3.1. Highest Weight Theory of Extended Yangians 71

ε1−δ1

−ε1−δ1

δ1−δ2 δ2−δ3 δn−1−δn

Figure 3.4: Dynkin diagram corresponding to ∆II for C(n+1)

Lastly, when ospM |N = D(m,n) = osp2m|2n, its collection of even positive roots are

Φ+
even = {±εi−εj, ±δk−δl, −2δp} ,

where 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n, and 1 ≤ p ≤ n. To complete such to a set of
positive roots, the first selection of positive odd roots will be

Φ+
odd[I] = {−εi ± δk} ,

where 1 ≤ i ≤ m and 1 ≤ k ≤ n. The Dynkin diagram corresponding to the simple
roots system ∆I of these positive roots is therefore given by:

−2δ1 δ1−δ2 δn−1−δn δn−ε1 ε1−ε2 εm−1−εm

Figure 3.5: Dynkin diagram corresponding to ∆I for D(m,n)

A second selection of positive odd roots is given as

Φ+
odd[II] = {±εi−δk} ,

with 1 ≤ i ≤ m and 1 ≤ k ≤ n. The simple root system ∆II corresponding with this
second positive root system has the Dynkin diagram:

ε1−ε2

−ε1−ε2

ε2−ε3 εm−1−εm εm−δ1 δ1−δ2 δn−1−δn

Figure 3.6: Dynkin diagram corresponding to ∆II for D(m,n)
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We will now provide a description of the pairs of indices (i, j) for which the genera-
tor Fij will be a positive root vector for either positive root system Φ+

I or Φ+
II. Setting

Z+
M+N := [1,M+N ] ∩ Z+, we consider the following subsets of (Z+

M+N)
2:

Γ0,0 = {(i, j) | 1 ≤ i < j ≤M} , Γ1,1 = {(i, j) |M+1 ≤ i < j ≤M+N} ,

ΓI
0,1a = {(i, j) | 1 ≤ i ≤ m, M+1 ≤ j ≤M+n} ,

ΓI
0,1b = {(i, j) | 1 ≤ i ≤ ˆ︁m, M+n+1 ≤ j ≤M+N} ,

ΓI
1,0a = {(i, j) |M+1 ≤ i ≤M+n, m+1 ≤ j ≤M} ,

ΓI
1,0b = {(i, j) |M+n+1 ≤ i ≤M+N, ˆ︁m+1 ≤ j ≤M} ,

ΓII
0,1 = {(i, j) | 1 ≤ i ≤M, M+n+1 ≤ j ≤M+N} ,

ΓII
1,0 = {(i, j) |M+1 ≤ i ≤M+n, 1 ≤ j ≤M} ,

and assign ΓI
0,1 = ΓI

0,1a ∪ ΓI
0,1b, ΓI

1,0 = ΓI
1,0a ∪ ΓI

1,0b to define

Γeven := Γ0,0 ∪ Γ1,1, Γodd[I] := ΓI
0,1 ∪ ΓI

1,0, Γodd[II] := ΓII
0,1 ∪ ΓII

1,0.

At last, we can finally define the following sets

Λ+
I := Γeven ∪ Γodd[I], Λ+

II := Γeven ∪ Γodd[II]. (3.1.5)

Visually, by regarding (Z+
M+N )

2 as an index set for the entries of an (M+N)× (M+N)

matrix, then those indices that correspond to the dark grey regions of the following
diagrams are exactly those that occur in Λ+

I and Λ+
II, respectively:

m

ˆ︁m

m+1 ˆ︁m+1

M+n+1

M+n

Γ0,0
ΓI
0,1

ΓI
1,0 Γ1,1

0 M M+N

M

M+N

M+n+1

M+n

Γ0,0 ΓII
0,1

ΓII
1,0 Γ1,1

0 M M+N

M

M+N

Figure 3.7: Visualizations of Λ+
I and Λ+

II
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Further, let us consider the sets

Λ◦ :=
{︁
(i, i) | i ∈ Z+

M+N

}︁
, (3.1.6)

Λ−I := (Z+
M+N)

2 \
(︁
Λ+

I ∪ Λ◦
)︁
, and Λ−II := (Z+

M+N)
2 \
(︁
Λ+

II ∪ Λ◦
)︁
. (3.1.7)

If we let Θ denote either I or II, then we will have the triangular decomposition
ospM |N = n−Θ ⊕ bΘ = n−Θ ⊕ h⊕ n+Θ, where h is the Cartan subalgebra, bΘ = h ⊕ n+Θ is
the Borel subalgebra, and

n−Θ = spanC
{︁
Fij
}︁
(i,j)∈Λ−

Θ
, n+Θ = spanC

{︁
Fij
}︁
(i,j)∈Λ+

Θ
.

Letting (ospM |N)α = {X ∈ ospM |N | [H,X] = α(H)X for all H ∈ h} denote the root
space corresponding to α ∈ h∗, then

n−Θ =
⨁︂
α∈Φ−

Θ

(ospM |N)α and n+Θ =
⨁︂
α∈Φ+

Θ

(ospM |N)α.

Furthermore, the action of the Cartan subalgebra on X(ospM |N) described by (3.1.4)
results in the following decomposition for the extended Yangian X(ospM |N ) in terms of
the root lattice ZΦΘ:

X(ospM |N) =
⨁︂
α∈ZΦΘ

X(ospM |N)α,

where X(ospM |N)α = {X ∈ X(ospM |N) | [H,X] = α(H)X for all H ∈ h} is the root
lattice space for α ∈ ZΦΘ.

3.1.2 Highest weight theory

Via the embedding (2.4.7), any representation of X(ospM |N) can be pulled back to one
for the Lie superalgebra ospM |N . Therefore, we have the familiar notions of weights and
weight vectors for representations V of X(ospM |N ): for any functional µ ∈ h∗, provided

Vµ := {v ∈ V | H · v = µ(H)v for all H ∈ h} ≠ 0,

then µ is called a weight, Vµ is called a weight space, and nonzero vectors in Vµ are called
weight vectors. Selecting a system of positive roots Φ+

I or Φ+
II, we can endow a partial

ordering ‘≼’ on the set of weights of V via the rule: ω ≼ µ ⇔ µ − ω is an N-linear
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combination of positive roots of ospM |N . Furthermore, since X(ospM |N)α
(︁
Vµ
)︁
⊆ Vµ+α,

then
X(ospM |N)α

(︂⨁︂
µ∈h∗

Vµ

)︂
⊆
⨁︂

µ∈h∗
Vµ. (3.1.8)

We now introduce the notion of highest weight:

Definition 3.1.1. Let Θ denote either I or II. A representation V of the extended
Yangian X(ospM |N) is an XΘ-highest weight representation if there exists a nonzero
vector ξ ∈ V such that X(ospM |N)ξ = V , and

Tij(u)ξ = 0 for all (i, j) ∈ Λ+
Θ

and Tkk(u)ξ = λk(u)ξ for all 1 ≤ k ≤M+N,
(3.1.9)

where λk(u) is some formal series

λk(u) = 1 +
∞∑︂
n=1

λ
(n)
k u−n ∈ 1 + u−1C[[u−1]]. (3.1.10)

We say that ξ is the XΘ-highest weight vector of V and call the tuple λ(u) = (λk(u))
M+N
k=1

of formal series as the XΘ-highest weight of V .

The first main result to prove in a highest weight theory is to show that every
finite-dimensional irreducible representation is highest weight. However, to do so in our
setting will require proving a rather computational lemma.

We note that many of the techniques used in the proof of the lemma below, and the
subsequent theorem, arise from those used in the proof of [AMR06, Theorem 5.1].

Lemma 3.1.2. Let Θ denote either I or II. If IΘ is the left graded ideal of X(ospM |N )
generated by the coefficients of Tij(u) for (i, j) ∈ Λ+

Θ, then

(i) for all (i, j) ∈ Λ+
Θ and 1 ≤ k ≤M+N :

Tij(u)Tkk(v) ≡ 0 mod IΘ, (3.1.11)

(ii) for all 1 ≤ k, l ≤M+N : [︁
Tkk(u), Tll(v)

]︁
≡ 0 mod IΘ. (3.1.12)
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Proof. For brevity, we shall only use ‘≡’ to denote equivalence of elements in X(ospM |N )

modulo IΘ.

(i) We shall provide a proof for Θ = I as the case Θ = II is similar; accordingly,
throughout the proof we shall suppose (i, j) ∈ Λ+

I and 1 ≤ k ≤ M+N . Throughout,
we shall suppose m =

⌊︁
M
2

⌋︁
, ˆ︁m =

⌈︁
M
2

⌉︁
, and n = N

2
.

To verify equation (3.1.11), we demarcate the problem into the two situations when
(i, k) ∈ Λ+

I and when (i, k) ̸∈ Λ+
I . If (i, k) ∈ Λ+

I such that k ̸= ı̄, k ̸= ȷ̄, then the
relation is immediate from Tij(u)Tkk(v) ≡

[︁
Tij(u), Tkk(v)

]︁
. However, if (i, k) ̸∈ Λ+

I ,
then (k, j) ∈ Λ+

I , so if we further assume k ̸= ı̄, k ̸= ȷ̄, then the relation follows from
Tij(u)Tkk(v) ≡ −

[︁
Tkk(v), Tij(u)

]︁
≡ 0. Therefore, the remainder of the proof will be

demarcated into four steps to show that equation (3.1.11) is true in the exceptional
cases when k = ı̄ or k = ȷ̄.

Step 1. Let us suppose (i, k) ∈ Λ+
I and k = ı̄. These conditions necessarily imply

that either 1 ≤ i ≤ m or M+1 ≤ i ≤M+n.

When 1 ≤ i ≤ m, we must have ˆ︁m+1 ≤ k ≤ M and (i, j) ∈ Γ0,0 ∪ ΓI
0,1. Because

j ̸= i = k̄ and (k̄, k) ∈ Γ0,0, the defining relations (2.2.8) imply

T k̄j(u)Tkk(v) ≡ − 1

u− v − κ

k̄∑︂
p=1

(−1)[k][j]+[k]+[j][p]θk̄θpTpj(u)Tp̄k(v).

Since k̄ < j, each index 1 ≤ p ≤ k̄ ≤ m satisfies (p, j) ∈ Γ0,0 ∪ ΓI
0,1; thus, because we

have (p, k) ∈ Γ0,0 and k ̸= ȷ̄, for such indices we can compute

Tpj(u)Tp̄k(v) ≡ − 1

u− v − κ

k̄∑︂
q=1

(−1)[p][j]+[p]+[j][q]θpθqTqj(u)Tq̄ k(v)

and therefore, (−1)[p][j]+[p]θpTpj(u)Tp̄k(v) ≡ (−1)[k][j]+[k]θk̄T k̄j(u)Tkk(v). The original
equation therefore implies T k̄j(u)Tkk(v) ≡ 0.

When M+1 ≤ i ≤M+n, we have M+n+1 ≤ k ≤M+N and (i, j) ∈ ΓI
1,0a ∪ Γ1,1.

Since j ̸= i = k̄ and (k̄, k) ∈ Γ1,1, the defining relations give

Tk̄j(u)Tkk(v) ≡ − 1

u− v − κ

∑︂
1≤p≤m,
M+1≤p≤k̄

(−1)[k][j]+[k]+[j][p]θk̄θpTpj(u)Tp̄k(v).
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Note that if 1 ≤ p ≤ m, then (p, j) ∈ Γ0,0 ∪ ΓI
0,1; whilst for M+1 ≤ p ≤ k̄, we have

(p, j) ∈ ΓI
1,0a if (i, j) ∈ ΓI

1,0a and (p, j) ∈ Γ1,1 if (i, j) ∈ Γ1,1 since p ≤ k̄ = i < j. For
these indices, we can then compute

Tpj(u)Tp̄k(v) ≡ − 1

u− v − κ

∑︂
1≤q≤m,
M+1≤q≤k̄

(−1)[p][j]+[p]+[j][q]θpθqTqj(u)Tq̄ k(v).

Therefore, by using a similar argument as before we can deduce T k̄j(u)Tkk(v) ≡ 0.

Step 2. Now suppose (i, k) ∈ Λ+
I and k = ȷ̄. Necessarily, these conditions impose

that either (i, j) ∈ ΓI
0,1a or (i, j) ∈ ΓI

0,1b, i ≤ m.

When (i, j) ∈ ΓI
0,1a, we have M+1 ≤ k ≤M+n. Since (k, k̄) ∈ Γ1,1 and k ̸= ı̄, the

relation Tik̄(u)Tkk(v) ≡ −
[︁
Tkk(v), Tik̄(u)

]︁
infers

Tik̄(u)Tkk(v) ≡ − 1

v − u− κ

∑︂
1≤p≤m,
M+1≤p≤k

(−1)[k]+[k][p]+[p]θkθpTip̄(u)Tkp(v). (3.1.13)

For 1 ≤ p ≤ m, we have (i, p̄) ∈ Γ0,0 and (k, p̄) ∈ ΓI
1,0a; whilst M+1 ≤ p ≤ k satisfy

(i, p̄) ∈ ΓI
0,1b and (k, p̄) ∈ Γ1,1. Hence, Tip̄(u)Tkp(v) ≡ −

[︁
Tkp(v), Tip̄(u)

]︁
gives

Tip̄(u)Tkp(v) ≡ − 1

v − u− κ

∑︂
1≤q≤m,
M+1≤q≤k

(−1)[k][i]+[p][i]+[p]+[k][q]+[q]θpθqTiq̄(u)Tkq(v), (3.1.14)

and therefore, (−1)[k][i]+[p][i]+[p]θpTip̄(u)Tkp(v) ≡ (−1)[k]θkTik̄(u)Tkk(v). Equation (3.1.13)
therefore implies Tik̄(u)Tkk(v) ≡ 0.

Otherwise, when (i, j) ∈ ΓI
0,1b and i ≤ m, we have M+n+1 ≤ k ≤ M+N . Since

(i, k) ∈ ΓI
0,1b and k ̸= ı̄, the defining relations imply

Tik̄(u)Tkk(v) ≡
1

u− v − κ

i∑︂
p=1

(−1)[i][k]+[i][p]+[p]θk̄θpTkp̄(v)Tip(u). (3.1.15)

Now, for each index 1 ≤ p ≤ i ≤ m we have (k, p̄) ∈ ΓI
1,0b and (i, p̄) ∈ Γ0,0. Since k ̸= ı̄,

we use Tkp̄(v)Tip(u) ≡ −
[︁
Tip(u), Tkp̄(v)

]︁
to deduce

Tkp̄(v)Tip(u) ≡ − 1

u− v − κ

i∑︂
q=1

(−1)[i][k]+[p][k]+[p]+[i][q]+[q]θpθqTkq̄(v)Tiq(u). (3.1.16)
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Hence, −θk̄Tik̄(u)Tkk(v) ≡ (−1)[p][k]+[p]θpTkp̄(v)Tip(u) and so equation (3.1.15) implies
Tik̄(u)Tkk(v) ≡ 0.

Step 3. Here, we assume (i, k) ̸∈ Λ+
I and k = ı̄. These conditions require that eitherˆ︁m ≤ i ≤M or M+n+1 ≤ i ≤M+N .

When ˆ︁m ≤ i ≤M , we must have either (i, j) ∈ Γ0,0 or (i, j) ∈ ΓI
0,1b when i = ˆ︁m and

M is odd. In the first case, we therefore have 1 ≤ k ≤ ˆ︁m, (k, j) ∈ Γ0,0, and k ̸= ȷ̄ since
k = ı̄. Hence, the defining relations (2.2.8) imply

T k̄j(u)Tkk(v) ≡ −
[︁
Tkk(v), T k̄j(u)

]︁
≡ 1

v − u− κ

ȷ̄∑︂
p=1

(−1)[k][p]θkθpTpk(v)Tp̄j(u). (3.1.17)

For each index 1 ≤ p ≤ ȷ̄, since ˆ︁m ≤ i < j ≤M and k = ı̄, then both (p, k) and (p, j)

lie in Γ0,0. Hence,

Tpk(v)Tp̄j(u) ≡ − 1

v − u− κ

ȷ̄∑︂
q=1

(−1)[p][k]+[p]+[k][q]θpθqTqk(v)Tq̄j(u), (3.1.18)

and therefore −θkTk̄j(u)Tkk(v) ≡ (−1)[p][k]+[p]θpTpk(v)Tp̄j(u), implying T k̄j(u)Tkk(v) ≡ 0.

In the second case, i = k̄ = k = ˆ︁m and (k, j) ∈ ΓI
1,0b, so we use the equivalence

T k̄j(u)Tkk(v) ≡ −
[︁
Tkk(v), T k̄j(u)

]︁
to obtain

T k̄j(u)Tkk(v) ≡
1

v − u− κ

∑︂
1≤p≤m,
M+1≤p≤ȷ̄

(−1)[k][p]θkθpTpk(v)Tp̄j(u). (3.1.19)

Each index 1 ≤ p ≤ m, satisfies (p, k) ∈ Γ0,0 (since M is odd) and (p, j) ∈ ΓI
0,1b; whilst

each index M+1 ≤ p ≤ ȷ̄ satisfies (p, k) ∈ ΓI
1,0a and (p, j) ∈ Γ1,1. For such indices,

Tpk(v)Tp̄j(u) ≡ − 1

v − u− κ

∑︂
1≤q≤m,
M+1≤q≤ȷ̄

(−1)[p][k]+[p]+[k][q]θpθqTqk(v)Tq̄j(u), (3.1.20)

and a similar argument to before shows T k̄j(u)Tkk(v) ≡ 0.

When M+n+1 ≤ i ≤ M+N , we have (i, j) ∈ ΓI
1,0b ∪ Γ1,1 and M+1 ≤ k ≤M+n.

If we first assume (i, j) ∈ ΓI
1,0b, then (k, j) ∈ ΓI

1,0a. Consequently, we yield the equiva-
lence (3.1.17). Since for each index 1 ≤ p ≤ ȷ̄, we find that (p, k) ∈ ΓI

0,1a and (p, j) ∈ Γ0,0,
we also get equation (3.1.18) and can therefore deduce T k̄j(u)Tkk(v) ≡ 0.
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If instead (i, j) ∈ Γ1,1, then (k, j) ∈ Γ1,1, so we can deduce (3.1.19). Each index
1 ≤ p ≤ m satisfies (p, k) ∈ ΓI

0,1a and (p, j) ∈ ΓI
0,1b; whilst for each index M+1 ≤ p ≤ ȷ̄,

both (p, k) and (p, j) lie in Γ1,1 since M+n+1 ≤ k̄ = i < j ≤ M+N . Therefore, we
get the equation (3.1.20) and hence T k̄j(u)Tkk(v) ≡ 0.

Step 4. Finally, we consider the case when (i, k) ̸∈ Λ+
I and k = ȷ̄. Necessarily,

these conditions imply that either ˆ︁m ≤ i ≤ M , (i, j) ∈ ΓI
1,0 where ˆ︁m+1 ≤ j, or

M+n+1 ≤ i < j ≤M+N .

When ˆ︁m ≤ i ≤ M , it must be that either (i, j) ∈ Γ0,0 or (i, j) ∈ ΓI
0,1b when i = ˆ︁m

and M is odd. In the first case, we therefore have 1 ≤ k ≤ m and (k, k̄) ∈ Γ0,0, so the
relation Tik̄(u)Tkk(v) ≡ −

[︁
Tkk(v), Tik̄(u)

]︁
yields

Tik̄(u)Tkk(v) ≡ − 1

v − u− κ

k∑︂
p=1

(−1)[k]+[k][p]+[p]θkθpTip̄(u)Tkp(v). (3.1.21)

Since for indices 1 ≤ p ≤ k, we have both (i, p̄) and (k, p̄) in Γ0,0, we can use the relation
Tip̄(u)Tkp(v) ≡ −

[︁
Tkp(v), Tip̄(u)

]︁
to compute

Tip̄(u)Tkp(v) ≡ − 1

v − u− κ

k∑︂
q=1

(−1)[k][i]+[p][i]+[p]+[k][q]+[q]θpθqTiq̄(u)Tkq(v), (3.1.22)

and therefore, (−1)[k][i]+[p][i]+[p]θpTip̄(u)Tkp(v) ≡ (−1)[k]θkTik̄(u)Tkk(v). Equation (3.1.21)
therefore implies Tik̄(u)Tkk(v) ≡ 0.

In the second case we have M+1 ≤ k ≤ M+n, so (k, k̄) ∈ Γ1,1 and k ̸= ı̄, which
yields the equivalence (3.1.13). For indices 1 ≤ p ≤ m, we have (i, p̄) ∈ Γ0,0 and
(k, p̄) ∈ ΓI

1,0a; whilst the indices M+1 ≤ p ≤ k satisfy (i, p̄) ∈ ΓI
0,1b and (k, p̄) ∈ Γ1,1.

Thus, we obtain equation (3.1.14) and ultimately deduce Tik̄(u)Tkk(v) ≡ 0.

When (i, j) ∈ ΓI
1,0 where ˆ︁m+1 ≤ j, we have 1 ≤ k ≤ m. Since (k, k̄) ∈ Γ0,0, the

get the equivalence (3.1.21). For indices 1 ≤ p ≤ k, we have both (i, p̄) ∈ ΓI
1,0 and

(k, p̄) ∈ Γ0,0, so we can deduce (3.1.22) and hence Tik̄(u)Tkk(v) ≡ 0.

Lastly, when M+n+1 ≤ i < j ≤ M+N , we have M+1 ≤ k ≤ M+n. Since
(k, k̄) ∈ Γ1,1 and i ̸= j = k̄, we also get the equivalence (3.1.13). For indices 1 ≤ p ≤ m,
we have (i, p̄) ∈ ΓI

1,0b and (k, p̄) ∈ ΓI
1,0a; whilst for the indices M+1 ≤ p ≤ k, both (i, p̄)

and (k, p̄) lie in Γ1,1. Thus, we obtain (3.1.14) which implies Tik̄(u)Tkk(v) ≡ 0.
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(ii) Again, we shall only provide a proof for Θ = I as the case Θ = II is similar;
accordingly, throughout the proof we shall suppose (i, j) ∈ Λ+

I and 1 ≤ k ≤M+N .

Step 1. Recall that we have the decomposition (Z+
M+N )

2 = Λ+
I ∪Λ◦ ∪Λ−I . Assuming

k ̸= ˆ︁m (i.e., k ̸= k̄) when M is odd, we observe

[︁
Tkk(u), Tkk(v)

]︁
=

1

u− v
(−1)[k]

(︂
Tkk(u)Tkk(v)− Tkk(v)Tkk(u)

)︂
and hence,

[︁
Tkk(u), Tkk(v)

]︁
= 0. Furthermore, if (k, l) ∈ Λ+

I such that k ̸= l̄, we have

[︁
Tkk(u), Tll(v)

]︁
=

1

u− v
(−1)[k]

(︂
Tlk(u)Tkl(v)− Tlk(v)Tkl(u)

)︂
≡ 0.

Since (k, l) ∈ Λ+
I if and only if (l, k) ∈ Λ−I , and

[︁
Tkk(u), Tll(v)

]︁
= −

[︁
Tll(v), Tkk(u)

]︁
, all

that remains to verify (3.1.12) is to examine when k = l̄. To this end, it suffices to show[︁
Tl l(u), T l̄ l̄ (v)

]︁
≡ 0 for 1 ≤ l ≤ ˆ︁m and M+1 ≤ l ≤M+n. Moreover, for the remaining

steps we shall define the element

Akl := Tkl(u)T k̄ l̄ (v)− (−1)[k]+[l]T l̄ k̄(v)Tlk(u). (3.1.23)

for any 1 ≤ k, l ≤M+N .

Step 2. First suppose 1 ≤ l ≤ m. Since All =
[︁
Tl l(u), T l̄ l̄ (v)

]︁
, the defining

relations (2.2.8) gives

All ≡ − 1

u− v − κ

l∑︂
p=1

(︂
Tpl(u)Tp̄ l̄ (v)− T l̄ p̄(v)Tlp(u)

)︂
≡ − 1

u− v − κ

l∑︂
k=1

Akl. (3.1.24)

Since for such indices, Akl ≡
[︁
Tkl(u), T k̄ l̄ (v)

]︁
+
[︁
Tlk(u), T l̄ k̄(v)

]︁
, we have

Akl ≡ − 1

u− v − κ

k∑︂
p=1

Apk −
1

u− v − κ

l∑︂
p=1

Apl. (3.1.25)

The equivalences (3.1.24) and (3.1.25) therefore imply the relation Akl ≡ Akk +All for
indices 1 ≤ k < l ≤ m. Using this resulting relation along with (3.1.24), we derive the
formula (︃

1 +
l

u− v − κ

)︃
All +

1

u− v − κ

l−1∑︂
k=1

Akk ≡ 0.
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Hence, an inductive argument will show All ≡ 0 for all 1 ≤ l ≤ m.

Step 3. Let us now suppose M+1 ≤ l ≤ M+n. Since All =
[︁
Tl l(u), T l̄ l̄ (v)

]︁
, the

defining relations (2.2.8) imply

All ≡ − 1

u− v − κ

∑︂
1≤k≤m,
M+1≤k≤l

(−1)[k][l]Akl. (3.1.26)

For indices M+1 ≤ k < l ≤M+n, Akl ≡
[︁
Tkl(u), T k̄ l̄ (v)

]︁
+
[︁
Tlk(u), T l̄ k̄(v)

]︁
, so

Akl ≡ − 1

u− v − κ

∑︂
1≤p≤m,
M+1≤p≤k

(−1)[p][k]Apk −
1

u− v − κ

∑︂
1≤p≤m,
M+1≤p≤l

(−1)[p][l]Apl. (3.1.27)

The equivalences (3.1.26) and (3.1.27) imply Akl ≡ Akk+All for M+1 ≤ k < l ≤M+n.
For indices 1 ≤ k ≤ m and M+1 ≤ l ≤M+n, Akl ≡

[︁
Tkl(u), T k̄ l̄ (v)

]︁
+
[︁
Tlk(u), T l̄ k̄(v)

]︁
,

so
Akl ≡

1

u− v − κ

∑︂
1≤p≤k

Apk −
1

u− v − κ

∑︂
1≤p≤m,
M+1≤p≤l

(−1)[p][l]Apl. (3.1.28)

The equivalences (3.1.24), (3.1.26), and (3.1.28) therefore imply Akl ≡ All −Akk for
indices 1 ≤ k ≤ m andM+1 ≤ l ≤M+n. By combining this new relation with (3.1.26),
we can deduce the formula(︃

1 +
m+M − l

u− v − κ

)︃
All −

1

u− v − κ

l−1∑︂
k=M+1

Akk ≡ 0

since Akk ≡ 0 for 1 ≤ k ≤ m by Step 2. Hence, an inductive argument will prove
All ≡ 0 for M+1 ≤ l ≤M+n.

Step 4. In the special case when l = ˆ︁m and M is odd, All =
[︁
Tll(u), Tll(v)

]︁
, so

All ≡
1

u− v
All −

1

u− v − κ

∑︂
1≤k≤l,

M+1≤k≤M+n

(−1)[k][l]Akl (3.1.29)

For indices 1 ≤ k < l = ˆ︁m, Akl ≡
[︁
Tkl(u), T k̄ l(v)

]︁
+
[︁
Tlk(u), Tlk̄(v)

]︁
, so we have

Akl ≡ − 1

u− v − κ

∑︂
1≤p≤k

Apk −
1

u− v − κ

∑︂
1≤p≤l,

M+1≤p≤M+n

(−1)[p][l]Apl. (3.1.30)



3.1. Highest Weight Theory of Extended Yangians 81

Hence, the equivalences (3.1.24), (3.1.29), and (3.1.30) imply Akl ≡ Akk +
u−v−1
u−v All for

1 ≤ k < l = ˆ︁m. Furthermore, since Akl ≡
[︁
Tkl(u), T k̄ l(v)

]︁
+
[︁
Tlk(u), Tlk̄(v)

]︁
for indices

M+1 ≤ k ≤M+n, we have

Akl ≡ − 1

u− v − κ

∑︂
1≤p≤m,
M+1≤p≤k

Apk +
1

u− v − κ

∑︂
1≤p≤l,

M+1≤p≤M+n

(−1)[p][l]Apl. (3.1.31)

Thus, the equivalences (3.1.26), (3.1.29), and (3.1.31) imply Akl ≡ Akk +
1−(u−v)
u−v All

for M+1 ≤ k ≤M+n. Combining these new relations with (3.1.29) will yield(︃
1− 1

u− v
+

1

u− v − κ
+

(l − 1− n) (u− v − 1)

(u− v)(u− v − κ)

)︃
All ≡ 0

since Akk ≡ 0 for 1 ≤ k ≤ m and M+1 ≤ k ≤M+n by Steps 2 and 3.

Leveraging the lemma we have just proved, we can now address the first theorem of
section §3.1.

Theorem 3.1.3. Let Θ denote either I or II. Every finite-dimensional irreducible repre-
sentation V of the extended Yangian X(ospM |N ) is an XΘ-highest weight representation.
The XΘ-highest weight vector of V is unique up to scalar multiple.

Proof. Let V denote a finite-dimensional irreducible representation of X(ospM |N) and
define the subspace

V 0 :=
{︁
v ∈ V | Tij(u)v = 0 for all (i, j) ∈ Λ+

Θ

}︁
. (3.1.32)

We claim V 0 is non-trivial. Regarding V as an ospM |N -module under the embed-
ding (2.4.7), there is a partial ordering ‘≼’ on its set of weights by stipulating that for
any weights α, β ∈ h∗, one has α ≼ β if and only if β − α is an N-linear combination of
positive roots in Φ+

Θ.

Since the set {Fhh | 1 ≤ h ≤ ⌊M
2
⌋, M+1 ≤ h ≤M+ N

2
} consists of pairwise com-

muting elements, their actions on V form a family of pairwise commuting operators,
implying that these operators must share a simultaneous eigenvector as dimV < ∞.
Hence, since the set of ospM |N -weights is non-empty and finite, then V must have a
maximal weight µ with respect to the partial ordering ‘≼’.
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Letting v be a weight vector corresponding to µ, the assertion follows if v ∈ V 0,
so we may assume v ̸∈ V 0 and therefore T (n)

ij v ≠ 0 for some (i, j) ∈ Λ+
Θ and n ∈ Z+.

However, since
FhhT

(n)
ij v = T

(n)
ij Fhhv +

[︁
Fhh, T

(n)
ij

]︁
v,

we conclude from equation (3.1.4) that the weight of T (n)
ij v is of the form µ+α for some

positive root α ∈ Φ+
Θ, contradicting the maximality of µ and proving the claim.

By Lemma 3.1.2, the actions of the generators {T (n)
kk | 1 ≤ k ≤M+N, n ∈ Z+} form

a family of pairwise commuting operators on V 0. As V 0 is a non-trivial subspace of V ,
there must exist a simultaneous eigenvector 0 ̸= ξ ∈ V 0 for such operators: T (n)

kk ξ = λ
(n)
k ξ

for complex eigenvalues λ(n)k , 1 ≤ k ≤ M+N , n ∈ Z+. Via the irreducibility of V ,
we conclude X(ospM |N)ξ = V , and by collecting these eigenvalues into power series
λk(u) = 1 +

∑︁∞
n=1 λ

(n)
k u−n we observe the vector ξ satisfies the conditions (3.1.9), so V

is a highest weight representation with highest weight vector ξ and highest weight
(λk(u))

M+N
k=1 .

It remains to show that ξ is unique up to scalar multiplication. Recalling the PBW
Theorem 2.4.5 for X(ospM |N), we fix a total order ‘⪯’ on the set X in such a way that
for any T (n1)

i1j1
, T

(n2)
i2j2

, T
(n3)
i3j3

∈ X satisfying (i1, j1) ∈ BM |N ∩ Λ−Θ, (i2, j2) ∈ BM |N ∩ Λ◦, and
(i3, j3) ∈ BM |N ∩ Λ+

Θ, then T
(n1)
i1j1

⪯ T
(n2)
i2j2

⪯ T
(n3)
i3j3

. Since V is irreducible and finite-
dimensional, Schur’s lemma infers that each generator Zr of the center ZX(ospM |N)

acts by a scalar. Therefore, by the total ordering on X, we conclude that V is spanned
by ordered elements of the form

T
(n1)
i1j1

· · ·T (nk)
ikjk

ξ, (3.1.33)

where k ∈ N, (ip, jp) ∈ BM |N ∩ Λ−Θ, and np ∈ Z+ for 1 ≤ p ≤ k. Furthermore,
since Fhh = (−1)[h]T

(1)
hh − 1

2
(−1)[h]Z1, then ξ is also a weight vector of some weight µ.

By (3.1.4), the elements (3.1.33) will therefore be weight vectors with corresponding
weights of the form µ+

∑︁k
p=1 αp, where αp ∈ Φ−Θ.

Hence, there is a weight space decomposition V =
⨁︁

ν∈h∗ Vν where each weight
ν ̸= µ is of the form µ−

∑︁k
p=1 αp for αp ∈ Φ+

Θ. As a result, the space Vµ has dimension 1

and is given by Vµ = spanC{ξ}. If ξ̃ is another highest weight vector of V of highest
weight (λk(u))

M+N
k=1 , the weight space decomposition ensures that its ospM |N -weight

must be equal to µ. Hence, ξ̃ ∈ Vµ, showing ξ̃ = c ξ for some c ∈ C∗.
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As we saw in the proof of Theorem 3.1.3, Schur’s lemma infers that central elements
in X(ospM |N) act on finite-dimensional irreducible representations by scalars. As we
show in the following proposition, we can determine these scalars explicitly.

Proposition 3.1.4. Let Θ denote either I or II and let V be an XΘ-highest weight
representation of X(ospM |N ) with highest weight λ(u) = (λk(u))

M+N
k=1 and highest weight

vector ξΘ. For Θ = I, Z(u) acts on ξΘ by λ1(u+ κ)λM(u) and for Θ = II, Z(u) acts
on ξΘ by λM+1(u+ κ)λM+N(u).

Proof. Let ξΘ be a highest weight vector of V so that V = X(ospM |N)ξΘ. If Θ = I,
setting i = j =M in equation (2.2.18) gives Z(u) =

∑︁
M+N
k=1 (−1)[k]T k̄1(u+ κ)TkM (u), so

Z(u)ξI = T11(u+ κ)TMM(u)ξI = λ1(u+ κ)λM(u)ξI.

Otherwise when Θ = II, we may designate i = j = M+N in equation (2.2.18) to
provide Z(u) = −

∑︁
M+N
k=1 T k̄,M+1(u+ κ)Tk,M+N(u), so

Z(u)ξII = TM+1,M+1(u+ κ)TM+N,M+N(u)ξII = λM+1(u+ κ)λM+N(u)ξII.

Furthermore, there are some immediate relations of the components of highest
weights:

Proposition 3.1.5. Let Θ denote either I or II and let V be an XΘ-highest weight
representation of X(ospM |N ) with highest weight λ(u) = (λk(u))

M+N
k=1 and highest weight

vector ξΘ. If Θ = I and M ≥ 4, then

λ1(u)

λ2(u)
=
λM-1(u− κ+ 1)

λM(u− κ+ 1)
, (3.1.34)

or if Θ = II and N ≥ 4, then

λM+1(u)

λM+2(u)
=
λM+N-1(u− κ− 1)

λM+N(u− κ− 1)
. (3.1.35)

Proof. By first assuming Θ = I and M ≥ 4, the defining relations (2.2.8) infer

T12(u)TM,M-1(v)ξI =
[︁
T12(u), TM,M-1(v)

]︁
ξI

= − 1

u− v − κ

(︂
T12(u)TM,M-1(v) + λ2(u)λM-1(v)− λ1(u)λM(v)

)︂
ξI,
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so (u− v − κ+ 1)T12(u)TM,M-1(v)ξI =
(︁
λ2(u)λM-1(v)− λ1(u)λM(v)

)︁
ξI. Evaluating at

v = u− κ+ 1 then yields the desired relation. Similarly, if instead Θ = II and N ≥ 4,
the defining relations (2.2.8) show

TM+1,M+2(u)TM+N,M+N-1(v)ξII =
[︁
TM+1,M+2(u), TM+N,M+N-1(v)

]︁
ξII

=
1

u− v − κ

(︂
TM+1,M+2(u)TM+N,M+N-1(v)+λM+2(u)λM+N-1(v)−λM+1(u)λM+N(v)

)︂
ξII,

so setting v = u− κ− 1 in the equation

(u− v − κ− 1)TM+1,M+2(u)TM+N,M+N-1(v)ξII

=
(︁
λM+2(u)λM+N-1(v)− λM+1(u)λM+N(v)

)︁
ξII

will yield the desired relation.

3.1.3 Restriction functors from RepX(ospM |N)

One can embed the lower rank Lie superalgebras osp(M-2)|N and ospM |(N-2) within the
ambient orthosymplectic Lie superalgebra ospM |N , thereby allowing one to pullback
representations of ospM |N to those of osp(M-2)|N and ospM |(N-2). On the level of
Yangians, the maps X(osp(M-2)|N ) → X(ospM |N ) and X(ospM |(N-2)) → X(ospM |N ) that
imitate these Lie superalgebra inclusions are, however, not superalgebra morphisms.
The purpose of this section is to find an alternate construction to solve this problem.

First, let us consider the following subsets of (Z+)2:

M0,0 =
{︁
(i, j) | 2 ≤ i, j ≤M−1}, M1,1 =

{︁
(i, j) |M+1 ≤ i, j ≤M+N

}︁
,

M0,1 =
{︁
(i, j) | 2 ≤ i ≤M−1, M+1 ≤ j ≤M+N

}︁
,

M1,0 =
{︁
(i, j) |M+1 ≤ i ≤M+N, 2 ≤ j ≤M−1

}︁
,

N0,0 =
{︁
(i, j) | 1 ≤ i, j ≤M}, N1,1 =

{︁
(i, j) |M+2 ≤ i, j ≤M+N−1

}︁
,

N0,1 =
{︁
(i, j) | 1 ≤ i ≤M, M+2 ≤ j ≤M+N−1

}︁
,

N1,0 =
{︁
(i, j) |M+2 ≤ i ≤M+N−1, 1 ≤ j ≤M

}︁
,

so we can define

M := M0,0 ∪M0,1 ∪M1,0 ∪M1,1 and N := N0,0 ∪ N0,1 ∪ N1,0 ∪ N1,1. (3.1.36)
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Setting
m = spanC

{︁
Fij
}︁
(i,j)∈M and n = spanC

{︁
Fij
}︁
(i,j)∈N,

these are Lie sub-superalgebras of ospM |N of ranks m+n−1 which represent the em-
beddings of osp(M-2)|N and ospM |(N-2) within ospM |N , respectively:

osp(M-2)|N
∼−→ m ↪→ ospM |N and ospM |(N-2)

∼−→ n ↪→ ospM |N .

We now consider the following proposition:

Proposition 3.1.6. (i) Let I+ be the left graded ideal of X(ospM |N) generated by
the coefficients of T1k(u) and TlM(u) for indices 2 ≤ k ≤M , 1 ≤ l ≤M−1, and
M+1 ≤ k, l ≤M+N . There is a superalgebra morphism

X(osp(M-2)|N) → X(ospM |N)/I+, T́ ij(u) ↦→ Tν(i)ν(j)(u) mod I+,

where T́ ij(u) denotes a generating series for X(osp(M-2)|N) and ν(i) = i+ 1 for
1 ≤ i ≤M−2, whereas ν(i) = i+ 2 for M−1 ≤ i ≤M+N−2.

(ii) Let I+ be the left graded ideal of X(ospM |N) generated by the coefficients of
TM+1,k(u) and Tl,M+N(u) for indices 1 ≤ k, l ≤ M , M+2 ≤ k ≤ M+N , and
M+1 ≤ l ≤M+N−1. There is a superalgebra morphism

X(ospM |(N-2)) → X(ospM |N)/I+, T̀ ij(u) ↦→ Tν′(i)ν′(j)(u) mod I+,

where T̀ ij(u) denotes a generating series for X(ospM |(N-2)) and ν ′(i) = i for
1 ≤ i ≤M , whereas ν ′(i) = i+1 for M+1 ≤ i ≤M+N−2.

We observe that the maps

X(osp(M-2)|N) → X(ospM |N), T́ ij(u) ↦→ Tν(i)ν(j)(u)

and X(ospM |(N-2)) → X(ospM |N), T̀ ij(u) ↦→ Tν′(i)ν′(j)(u)

will not be superalgebra morphisms, thereby instigating one to descend to a certain quo-
tient of X(ospM |N ) as in the above proposition. We note, however, that a true embedding
of X(ospM |(N-2)) in X(ospM |N) has recently been established in the paper [Mol23a, §3]
via the use of quasideterminants. Moreover, such embedding is compatible with Propo-
sition 3.1.6. For our purposes, the above morphisms are sufficient in regards to studying
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the representation theory of the extended Yangians in this work (c.f. Proposition 3.1.9),
so we continue with the proof of the above result.

Proof of Proposition 3.1.6. We shall provide a proof for part (i) as (ii) is similar. Ac-
cordingly, we shall suppose (i, j), (k, l) ∈ M for the duration of the proof and shall use
‘≡’ to denote equivalence of elements in X(ospM |N) modulo I+ for brevity. By the
defining relations (2.2.8), we have

[︁
Tij(u), Tkl(v)

]︁
≡ 1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︂
Tkj(u)Til(v)− Tkj(v)Til(u)

)︂
− 1

u− v − κ

(︃
δ ı̄k

∑︂
2≤p≤M-1,

M+1≤p≤M+N

(−1)[i][j]+[i]+[j][p]θiθpTpj(u)Tp̄ l(v)

− δȷ̄ l
∑︂

2≤p≤M-1,
M+1≤p≤M+N

(−1)[i][k]+[j][k]+[j]+[i][p]+[p]θjθpTkp̄(v)Tip(u)

)︃

− 1

u− v − κ

(︂
δ ı̄k(−1)[i][j]+[i]θiT1j(u)TMl(v)

− δȷ̄ l(−1)[i][k]+[j][k]+[j]θjTkM(v)Ti1(u)
)︂
.

Via the defining relations again along with T1j(u)TMl(v) ≡
[︁
T1j(u), TMl(v)

]︁
, we deduce

T1j(u)TMl(v) ≡ − 1

u− v − κ+ 1

∑︂
2≤p≤M-1,

M+1≤p≤M+N

(−1)[j][p]θpTpj(u)Tp̄ l(v)

+
1

u− v − κ+ 1
δȷ̄ l(−1)[j]θjTMM(v)T11(u).

Analogously, we compute

TkM(v)Ti1(u) ≡ −(−1)([i]+[1])([k]+[M ])
[︁
Ti1(u), TkM(v)

]︁
≡ 1

u− v − κ

(︂
δ ı̄kθiT11(u)TMM(v)− TkM(v)Ti1(u)

)︂
− 1

u− v − κ

∑︂
2≤p≤M-1,

M+1≤p≤M+N

(−1)[i][p]+[p]θpTkp̄(v)Tip(u)

and hence

TkM(v)Ti1(u) ≡
1

u− v − κ+ 1
δ ı̄kθiT11(u)TMM(v)

− 1

u− v − κ+ 1

∑︂
2≤p≤M-1,

M+1≤p≤M+N

(−1)[i][p]+[p]θpTkp̄(v)Tip(u).
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Combining everything, we obtain

[︁
Tij(u), Tkl(v)

]︁
≡ 1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︂
Tkj(u)Til(v)− Tkj(v)Til(u)

)︂
− 1

u− v − κ+ 1

(︃
δ ı̄k

∑︂
2≤p≤M-1,

M+1≤p≤M+N

(−1)[i][j]+[i]+[j][p]θiθpTpj(u)Tp̄ l(v)

− δȷ̄ l
∑︂

2≤p≤M-1,
M+1≤p≤M+N

(−1)[i][k]+[j][k]+[j]+[i][p]+[p]θjθpTkp̄(v)Tip(u)

)︃

+
1

(u− v − κ)(u− v − κ+ 1)
δ ı̄kδȷ̄ l(−1)[i][j]+[i]+[j]θiθj

[︁
T11(u), TMM(v)

]︁
.

Lastly, the relations (2.2.8) imply

[︁
T11(u), TMM(v)

]︁
≡ − 1

u− v − κ

[︁
T11(u), TMM(v)

]︁
,

meaning
[︁
T11(u), TMM(v)

]︁
≡ 0 and therefore the desired relations are satisfied for the

operators Tij(u), (i, j) ∈ M, on V +, since κM−2,N = κM,N−1 is the parameter associated
to the Lie superalgebra m ∼= osp(M-2)|N .

If ιM denotes the superalgebra morphism X(osp(M-2)|N) → X(ospM |N)/I+
M in the

above proposition, where we write I+
M for the left graded ideal I+, then there is an

induced superalgebra morphism

˜︂ιM : X(osp(M-2)|N)/I+
M-2 → X(ospM |N)/I

∑︁
2+,

where I
∑︁

2+ is the left graded ideal generated by the coefficients of Tik(u) and Tli(u) for
indices i = 1, 2; i+1 ≤ k ≤M , 1 ≤ l ≤M−i, and M+1 ≤ k, l ≤M+N . Consequently,
the composition ˜︂ιM ◦ ιM-2 describes a superalgebra morphism from X(osp(M-4)|N) to
X(ospM |N)/I

∑︁
2+.

Depending on the parity of M , we can therefore construct a superalgebra mor-
phism from either X(osp0|N ) or X(osp1|N ) to X(ospM |N )/I

∑︁
m+ for a certain left graded

ideal I
∑︁

m+. Accordingly, one can similarly construct a superalgebra morphism from
X(ospM |0) to X(ospM |N)/I∑︁

n+
for a particular left graded ideal I∑︁

n+
. We summarize

these observations in the following remark.
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Remark 3.1.7. (i) Let m = ⌊M
2
⌋ and define I

∑︁
m+ to be the left graded ideal of

X(ospM |N) generated by the coefficients of Tij(u) for indices 1 ≤ i < j ≤ M ;
1 ≤ i ≤ m, M+1 ≤ j ≤M+N ; and M+1 ≤ i ≤M+N , ˆ︁m+1 ≤ j ≤M . There
is a superalgebra morphism

X(osp(M-2m)|N) → X(ospM |N)/I
∑︁

m+, T́ ij(u) ↦→ Tν(i)ν(j)(u) mod I
∑︁

m+,

where T́ ij(u) denotes a generating series for X(osp(M-2m)|N ) and ν(i) = i+m for
1 ≤ i ≤M−2m, whereas ν(i) = 2m+ i for M−2m+1 ≤ i ≤M−2m+N .

(ii) Let n = N
2

and define I∑︁
n+

to be the left graded ideal of X(ospM |N) generated
by the coefficients of Tij(u) for indices 1 ≤ i ≤ M , M+n+1 ≤ j ≤ M+N ;
M+1 ≤ i ≤ M+n, 1 ≤ j ≤ M , and M+1 ≤ i < j ≤ M+N . There is a
superalgebra morphism

X(ospM |0) → X(ospM |N)/I∑︁
n+
, T̀ ij(u) ↦→ Tν′(i)ν′(j)(u) mod I∑︁

n+
,

where T̀ ij(u) denotes a generating series for X(ospM |0) and ν ′(i) = i for indices
1 ≤ i ≤M .

Before proving the main result of this section, we need to establish some relations
occurring in X(ospM |N) modulo the left graded ideals I+ or I+ as in Proposition 3.1.6.

Lemma 3.1.8. Let I+ and I+ be the left graded ideals of X(ospM |N) as defined in
Proposition 3.1.6.

(i) T1k(v)Tij(u) ≡ TlM(v)Tij(u) ≡ 0 mod I+ for indices (i, j) ∈ M, 2 ≤ k ≤ M ,
1 ≤ l ≤M−1, and M+1 ≤ k, l ≤M+N .

(ii) TM+1,k(v)Tij(u) ≡ Tl,M+N(v)Tij(u) ≡ 0 mod I+ for (i, j) ∈ N, 1 ≤ k, l ≤ M ,
M+2 ≤ k ≤M+N , and M+1 ≤ l ≤M+N−1.

Proof. We shall provide the proof for (i) as (ii) is similar. Accordingly, we shall suppose
(i, j), (k, l) ∈ M for the duration of the proof and shall use ‘≡’ to denote equivalence of
elements in X(ospM |N) modulo I+ for brevity.

First supposing 2 ≤ k ≤ M and (i, j) ∈ M0,1 ∪ M1,1, or M+1 ≤ k ≤ M+N

and (i, j) ∈ M0,0 ∪ M1,0, relations (2.2.8) imply T1k(u)Tij(v) ≡
[︁
T1k(u), Tij(v)

]︁
≡ 0.
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Alternatively, when 2 ≤ k ≤ M and (i, j) ∈ M0,0 ∪M1,0, or M+1 ≤ k ≤ M+N and
(i, j) ∈ M0,1 ∪M1,1, the same relations yield

T1k(u)Tij(v) ≡
[︁
T1k(u), Tij(v)

]︁
≡

δk̄j
u− v − κ

(−1)[i][k]+[k]θkTiM(v)T11(u).

Since TiM (v)T11(u) ≡ −
[︁
T11(u), TiM (v)

]︁
≡ −(u− v − κ)−1TiM (v)T11(u), it follows that

TiM(v)T11(u) ≡ 0 and hence T1k(u)Tij(v)η ≡ 0.

Lastly, when 1 ≤ l ≤ M−1 and (i, j) ∈ M1,0 ∪ M1,1, or M+1 ≤ l ≤ M+N and
(i, j) ∈ M0,0 ∪ M0,1, relations (2.2.8) provide TlM(v)Tij(u) ≡ −

[︁
Tij(u), TlM(v)

]︁
≡ 0.

Otherwise, if 1 ≤ l ≤ M−1 and (i, j) ∈ M0,0 ∪ M0,1, or M+1 ≤ l ≤ M+N and
(i, j) ∈ M1,0 ∪M1,1, the same relations give

TlM(v)Tij(u) ≡ −
[︁
Tij(u), TlM(v)

]︁
≡ δ ı̄k
u− v − κ

(−1)[i][j]θiT1j(u)TMM(v)η.

As T1j(u)TMM(v) ≡
[︁
T1j(u), TMM(v)

]︁
≡ −(u− v − κ)−1T1j(u)TMM(v), it follows that

T1j(u)TMM(v) ≡ 0 and hence TlM(v)Tij(u)η ≡ 0, proving the lemma.

Any representation V of X(ospM |N) will have two important subspaces denoted V +

and V+. To introduce these, we first consider the subspaces

V1 =
{︁
η ∈ V | T1k(u)η = 0 for 2 ≤ k ≤M and M+1 ≤ k ≤M+N

}︁
,

VM =
{︁
η ∈ V | TkM(u)η = 0 for 1 ≤ k ≤M−1 and M+1 ≤ k ≤M+N

}︁
,

VM+1 =
{︁
η ∈ V | TM+1,k(u)η = 0 for 1 ≤ k ≤M and M+2 ≤ k ≤M+N

}︁
,

VM+N =
{︁
η ∈ V | Tk,M+N(u)η = 0 for 1 ≤ k ≤M and M+1 ≤ k ≤M+N−1

}︁
,

so that we can accordingly define

V + := V1 ∩ VM and V+ := VM+1 ∩ VM+N . (3.1.37)

Note that these intersections may be trivial; however, if V is an XI-highest weight
representation, then V + contains the XI-highest weight vector and if V is an XII-highest
weight representation, then V+ contains the XII-highest weight vector. In particular,
if V is finite-dimensional and irreducible, then Theorem 3.1.3 ensures that V + and V+
will always be non-trivial.
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For a superalgebra A, we shall let Rep(A) denote its category of representations.
We now arrive at the main proposition for this subsection.

Proposition 3.1.9. There are covariant functors

F+ : Rep(X(ospM |N)) → Rep(X(osp(M-2)|N)), V ↦→ V +, ϕ ↦→ ϕ|V +

and F+ : Rep(X(ospM |N)) → Rep(X(ospM |(N-2))), V ↦→ V+, ϕ ↦→ ϕ|V+ ,

where F+(V ) = V + and F+(V ) = V+ are defined by (3.1.37) for any X(ospM |N )-module
V and F+(ϕ) = ϕ|V + and F+(ϕ) = ϕ|V+ for any X(ospM |N)-module morphism ϕ.

Proof. We shall only prove the existence of F+, as the proof for F+ is similar. Given a
representation φ : X(ospM |N) → EndV , we know by the definition of the left graded
ideal I+ that φ(I+)(V +) = 0; hence, there is a well-defined action φ of the quo-
tient X(ospM |N)/I+ on V + and composing such with the superalgebra morphism in
Proposition 3.1.6 gives

X(osp(M-2)|N)
ιM−→ X(ospM |N)/I+ φ−→ Hom(V +, V ).

We observe that it is not evident V + should be closed under the action of X(ospM |N )/I+.
However, Lemma 3.1.8 ensures that the image of φ ◦ ιM lies in V +, so we nonetheless
attain a representation φ ◦ ιM : X(osp(M-2)|N) → EndV +.

Given an X(ospM |N)-module morphism ϕ : V → W , the X(ospM |N)-linearity of ϕ
implies ϕ|V +(V +) ⊆ W+. A similar discussion to the above also shows that ϕ|V + is
X(osp(M-2)|N)-linear.

Remark 3.1.10. We observe that if V is an XI-highest weight representation with
XI-highest weight vector ξ and XI-highest weight

(︁
λk(u)

)︁
M+N
k=1 , then ξ ∈ V + and the

X(osp(M-2)|N)-submodule generated by ξ will be an XI-highest weight representation
with XI-highest weight vector ξ and XI-highest weight

(︁
λ2(u), . . . , λM-1(u), λM+1(u), . . . , λM+N(u)

)︁
.

Similarly, if V is an XII-highest weight representation with XII-highest weight vector ξ
and XII-highest weight

(︁
λk(u)

)︁
M+N
k=1 , then ξ ∈ V+ and the X(ospM |(N-2))-submodule
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generated by ξ will be an XII-highest weight representation with XII-highest weight
vector ξ and XII-highest weight

(︁
λ1(u), . . . , λM(u), λM+2(u), . . . , λM+N-1(u)

)︁
.

Allowing F+
M to denote the restriction functor F+ in Proposition 3.1.9, one can

consider the composition (F+
M-2 ◦ F

+
M )(V ) = (V +)+ for any X(ospM |N )-module V . Via

the embedding in Proposition 3.1.6, we observe (V +)+ is the subspace of V + consisting
of all vectors η ∈ V + satisfying Tk,M-1(u)η = T2l(u)η = 0 for indices 2 ≤ k ≤ M−2,
3 ≤ l ≤M−1, and M+1 ≤ k, l ≤M+N . In particular, we note the following remark.

Remark 3.1.11. Let m = ⌊M
2
⌋, ˆ︁m = ⌈M

2
⌉, n = N

2
and define the subspaces

V
∑︁

m+ :=
{︁
η ∈ V | Tij(u)η = 0 for (i, j) ∈ Λ+

I \
(︁
Γ1,1 ∪ {(k, ˆ︁m), (m+1, k̄)}M+n

k=M+1

)︁}︁
and V∑︁

n+
:=
{︁
η ∈ V | Tij(u)η = 0 for (i, j) ∈ Λ+

II \ Γ1,1
}︁
. (3.1.38)

If F+
M , FN

+ denotes the respective restriction functors F+, F+ in Proposition 3.1.9, one
computes

(F+
M-2m+2 ◦ · · · ◦ F

+
M-2 ◦ F

+
M)(V ) = V

∑︁
m+

and (F 2
+ ◦ · · · ◦ FN-2

+ ◦ FN
+ )(V ) = V∑︁

n+
.

In particular, V
∑︁

m+ becomes a representation of X(osp(M-2m)|N ), while V∑︁
n+

becomes
a representation of X(ospM |0) ∼= X(soM).

3.1.4 Verma modules

An essential component of our highest weight theory is the notion of a Verma module.
In contrast to traditional Lie theory, however, Verma modules here can be trivial.

Definition 3.1.12. Let Θ denote either I or II. Given a tuple λ(u) = (λk(u))
M+N
k=1 of

the form (3.1.10) we define the XΘ-Verma module MΘ(λ(u)) to be the quotient:

MΘ(λ(u)) := X(ospM |N)/IΘ(λ(u)), (3.1.39)

where IΘ(λ(u)) is the left graded ideal of X(ospM |N) generated by the coefficients of
the series Tij(u) for (i, j) ∈ Λ+

Θ and Tkk(u)− λk(u)1 for 1 ≤ k ≤M+N .
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WhenMΘ(λ(u)) is non-trivial, it is anXΘ-highest weight representation of X(ospM |N )
with XΘ-highest weight λ(u) and XΘ-highest weight vector 1λ(u), the image of 1 in
the canonical projection X(ospM |N) →MΘ(λ(u)). Furthermore, if L is an XΘ-highest
weight representation of X(ospM |N ) with highest weight λ(u) and highest weight vector ξ,
then, provided M(λ(u)) is non-trivial, there is a surjective X(ospM |N )-module morphism
φ : MΘ(λ(u)) → L induced by the assignment 1λ(u) ↦→ ξ; thus, L ∼= MΘ(λ(u))/ kerφ.

By (3.1.8) ,
⨁︁

µ∈h∗ MΘ(λ(u))µ is invariant under the action of X(ospM |N ). Therefore,
since 1λ(u) is contained in MΘ(λ(u))λ(1) ⊂

⨁︁
µ∈h∗ MΘ(λ(u))µ, where λ(1) ∈ h∗ is the

linear functional given by λ(1)(Fkk) = λ
(1)
k , we have the weight space decomposition

MΘ(λ(u)) =
⨁︂
µ∈h∗

MΘ(λ(u))µ (3.1.40)

and each weight µ is of the form λ(1) − ω, where ω is a Z+-linear combination of
positive roots in Φ+

Θ. Indeed, recalling the PBW Theorem 2.4.5 for X(ospM |N), we
fix a total order ‘⪯’ on the set X in such a way that for any T

(n1)
i1j1

, T
(n2)
i2j2

, T
(n3)
i3j3

∈ X

satisfying (i1, j1) ∈ BM |N ∩ Λ−Θ, (i2, j2) ∈ BM |N ∩ Λ◦, and (i3, j3) ∈ BM |N ∩ Λ+
Θ, then

T
(n1)
i1j1

⪯ T
(n2)
i2j2

⪯ T
(n3)
i3j3

. Therefore, by the total ordering on X and Proposition 3.1.4, we
conclude that MΘ(λ(u)) is spanned by ordered elements of the form

T
(n1)
i1j1

· · ·T (nk)
ikjk

1λ(u), (3.1.41)

where k ∈ N, (ip, jp) ∈ BM |N ∩ Λ−Θ, and np ∈ Z+ for 1 ≤ p ≤ k. In particular, we
conclude that MΘ(λ(u))λ(1) is 1-dimensional; i.e., MΘ(λ(u))λ(1) = spanC{1λ(u)}.

Any submodule P of MΘ(λ(u)) also has a weight space decomposition P =
⨁︁

µ∈h∗ Pµ,
where Pµ = P ∩MΘ(λ(u))µ. Since dimMΘ(λ(u))λ(1) = 1, it necessarily follows that
P ⊆

⨁︁
λ(1) ̸=µ∈h∗ MΘ(λ(u))µ and so the sum of all proper submodulesK =

∑︁
P<MΘ(λ(u)) P

is the unique maximal submodule of MΘ(λ(u)).

Definition 3.1.13. When the XΘ-Verma module MΘ(λ(u)) is non-trivial, we define the
irreducible XΘ-highest weight representation LΘ(λ(u)) of X(ospM |N) with XΘ-highest
weight λ(u) as the quotient of the XΘ-Verma module MΘ(λ(u)) by its unique maximal
proper submodule.

As noted prior, the caveat in the definition of Verma modules of X(ospM |N) is that
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they are not yet guaranteed to be non-trivial. In fact, we will see in the next section that
there are necessary and sufficient conditions on the highest weight λ(u) in order for the
Verma module MI(λ(u)) to be non-trivial. However, we conclude this section by proving
a proposition that describes how one can always modify a collection λ(u) = (λk(u))

M+N
k=1

of formal series of the form (3.1.10) to attain a non-trivial Verma module.

Proposition 3.1.14. Let Θ denote either I or II. From any tuple λ(u) = (λk(u))
M+N
k=1

of formal series of the form (3.1.10), one can construct a tuple ˜︁λ(u) of formal series of
the same type

˜︁λ(u) = (˜︁λk(u))M+N
k=1 such that ˜︁λb(u) = λb(u) for (b, b) ∈ BM |N as in (2.3.15)

which provides a non-trivial Verma module MΘ(˜︁λ(u)). Furthermore, if Θ = I then˜︁λM(u) = λM(u), and if Θ = II then ˜︁λM+N(u) = λM+N(u).

Proof. Let JΘ(λ(u)) denote the left graded ideal of X(ospM |N) generated by the coef-
ficients of the series Tij(u) for (i, j) ∈ Λ+

Θ ∩ BM |N , Tkk(u) − λk(u)1 for (k, k) ∈ BM |N ,
and Z(u)− λ1(u+ κ)λM(u)1 if Θ = I or Z(u)− λM+1(u+ κ)λM+N(u)1 if Θ = II. We
can therefore consider the quotient

˜︂MΘ(λ(u)) := X(ospM |N)/JΘ(λ(u))

By Corollary 2.4.5, choose a total ordering ‘⪯’ on the set X such that T (m)
ij ⪯ T

(b)
aa ⪯ T

(n)
kl

for indices (i, j) ∈ Λ−Θ ∩ BM |N , (a, a) ∈ BM |N , (k, l) ∈ Λ+
Θ ∩ BM |N and m,n ∈ Z+, b ∈ N.

By such, ˜︂MΘ(λ(u)) is spanned by ordered monomials of the form T
(m1)
i1j1

· · ·T (ms)
isjs

1̃λ(u),
where (ip, jp) ∈ Λ−Θ ∩ BM |N and mp ∈ Z+ for 1 ≤ p ≤ s, and 1̃λ(u) is the image of 1 in
the quotient ˜︂MΘ(λ(u)).

Indeed, let N−Θ be the sub-superalgebra of X(ospM |N) generated by the coefficients
of Tij(u) for (i, j) ∈ Λ−Θ; and accordingly let BΘ be the sub-superalgebra of X(ospM |N)
generated by the coefficients of Tij(u) for (i, j) ∈ Λ+

Θ ∪ Λ◦ and Z(u). Given the
decomposition ospM |N = n−Θ ⊕ bΘ, the images of the sub-superalgebras U(n−Θ[z]) and
U((zc ⊕ bΘ)[z]) under the isomorphism (2.4.6) coincides with the respective associated
graded superalgebras grN−Θ and grBΘ with respect to the filtrations induced by the
filtration E on X(ospM |N) via (2.2.21). Accordingly, one can construct appropriate
PBW bases for N−Θ and BΘ that show X(ospM |N) ∼= N−Θ ⊗BΘ.
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There is a 1-dimensional representation Cλ(u) of BΘ determined by the actions
Tij(u) · 1 = 0 for (i, j) ∈ Λ+

Θ ∩ BM |N , Tkk(u) · 1 = λk(u) for (k, k) ∈ BM |N , and
Z(u) · 1 = λ1(u+ κ)λM(u) if Θ = I or Z(u) · 1 = λM+1(u+ κ)λM+N(u) if Θ = II. Via
the PBW Theorem for X(ospM |N), we can therefore construct the X(ospM |N)-module

ˆ︂MΘ(λ(u)) := X(ospM |N)⊗BΘ
Cλ(u)

As a module over N−Θ, we observe that ˆ︂MΘ(λ(u)) ∼= N−Θ; in particular, it is non-
trivial. Finally, the PBW Theorem for X(ospM |N ) infers there is a module isomorphism˜︂MΘ(λ(u)) ∼= ˆ︂MΘ(λ(u)), thus showing ˜︂MΘ(λ(u)) is non-trivial as well.

We shall now show that ˜︂MΘ(λ(u)) can be realized as an XΘ-Verma module MΘ(˜︁λ(u))
for some highest weight ˜︁λ(u). Via the embedding (2.4.7), X(ospM |N) may be regarded
as an ospM |N -module whose action described by (3.1.3). By the PBW Theorem and
the action of the Cartan subalgebra h via (3.1.4), there is a root lattice decomposition
X(ospM |N) =

⨁︁
α∈ZΦ X(ospM |N)α, where each generator T (n)

ij , (i, j) ∈ Λ+
Θ, will lie in

the root space X(ospM |N)αij
for some positive root αij ∈ Φ+

Θ. Writing each such
generator T (n)

ij as a unique linear combination of PBW basis elements with respect to
the total order ‘⪯’, say T (n)

ij =
∑︁

k

∑︁
m1,...,mk

γm1,...,mk
Xm1 . . . Xmk

, then each monomial
Xm1 . . . Xmk

must also lie in X(ospM |N)αij
.

Since αij is positive, it is necessary that the the last term in each ordered monomial
Xm1 . . . Xmk

in the expression of T (n)
ij is equal to T (m)

kl for some (k, l) ∈ Λ+
Θ ∩ BM |N and

m ∈ Z+ by definition of the total order ‘⪯’. Thus, since 1̃λ(u) is annihilated by each
monomial in the expression of T (n)

ij , then 1̃λ(u) is annihilated by T (n)
ij as well.

Similarly, each generator T (b)
aa , (a, a) ∈ Λ◦, will lie in the root space X(ospM |N)0

(where 0 refers to the zero functional in h∗). Writing each such generator T (b)
aa as a

unique linear combination of PBW basis elements with respect to the total order ‘⪯’,
say T (n)

aa =
∑︁

k

∑︁
m1,...,mk

γ◦m1,...,mk
Xm1 . . . Xmk

, then each monomial Xm1 . . . Xmk
must

also lie in X(ospM |N)0.

By the definition of the total order ‘⪯’ and the fact that the central series Z(u)

acts on 1̃λ(u) by a scalar series, the action of each ordered monomial Xm1 . . . Xmk
in the

expression of T (b)
aa on 1̃λ(u) is of the form

γm1,...,mk

(︁
T

(n1)
i1j1

· · ·T (nr)
irjr

)︁(︁
T (d1)
c1c1

· · ·T (de)
cece

)︁(︁
T

(m1)
k1l1

· · ·T (ms)
ksls

)︁
1̃λ(u),
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where r, s ∈ N, (iq, jq) ∈ Λ−Θ ∩ BM |N , (cf , cf) ∈ Λ◦ ∩ BM |N , (kp, lp) ∈ Λ+
Θ ∩ BM |N , and

γm1,...,mk
∈ C. In particular, since T (m1)

k1l1
· · ·T (ms)

ksls
lies in X(ospM |N )β for some β ∈ Z+Φ+

Θ,
it must be that T (n1)

i1j1
· · ·T (nr)

irjr
lies in X(ospM |N)−β. Hence, since 1̃λ(u) is an eigenvector

for each ordered monomial in the expression of T (b)
aa , then 1̃λ(u) is an eigenvector for T (b)

aa

as well. Therefore, for each (k, k) ∈ Λ◦, we can write Tkk(u)1̃λ(u) = ˜︁λk(u)1̃λ(u) for some
formal power series ˜︁λk(u) ∈ 1 + u−1C[[u−1[], where ˜︁λk(u) = λk(u) for (k, k) ∈ BM |N .

Defining the ideal IΘ

(︁˜︁λ(u))︁ as in Definition 3.1.12, the above argument shows
IΘ

(︁˜︁λ(u))︁ ⊆ JΘ(λ(u)). To prove the reverse inclusion, all that is left to show is
that Z(u)− λ1(u+ κ)λM(u)1 lies in II

(︁˜︁λ(u))︁ and Z(u)− λM+1(u+ κ)λM+N(u)1 lies
in III

(︁˜︁λ(u))︁. First supposing Θ = I, setting i = j =M in equation (2.2.18) yields

Z(u)− λ1(u+ κ)λM(u)1

= T11(u+ κ)TMM(u)− λ1(u+ κ)λM(u)1+
∑︂
k ̸=M

(−1)[k]T k̄1(u+ κ)TkM(u)

=
(︁
T11(u+ κ)− λ1(u+ κ)1

)︁(︁
TMM(u)− λM(u)1

)︁
+ λ1(u+ κ)

(︁
TMM(u)− λM(u)1

)︁
+ λM(u)

(︁
T11(u+ κ)− λ1(u+ κ)1

)︁
+
∑︂
k ̸=M

(−1)[k]T k̄1(u+ κ)TkM(u),

which lies in II
(︁˜︁λ(u))︁. The case for Θ = II is similar. Hence, ˜︂MΘ(λ(u)) =MΘ(˜︁λ(u)).

Lastly, via the definition of JI(λ(u)), we know Z(u)1˜︁λ(u) = λ1(u+κ)λM (u)1˜︁λ(u). At
the same time, we know by Proposition 3.1.4, that Z(u)1˜︁λ(u) = λ1(u+ κ)˜︁λM(u)1˜︁λ(u);
hence, ˜︁λM(u) = λM(u). A similar argument can be made when Θ = II to conclude˜︁λM+N(u) = λM+N(u).

3.2 Finite-Dimensional Irreducible Representations

In this section, we prove our main results on the representation theory of X(ospM |N).
Ultimately, every finite-dimensional irreducible representation of these Yangians is
isomorphic to LI(λ(u)) for a certain XI-highest weight λ(u). In particular, the highest
weight representation theory that follows is solely based on the XI-highest weight theory.
Accordingly, we shall drop the prefix ‘XI’ and subscript ‘I’ for now on, referring to
highest weights as XI-highest weights, highest weight vectors as XI-highest weight
vectors, Λ+ = Λ+

I , M(λ(u)) =MI(λ(u)), etcetera.
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3.2.1 Consistency conditions for Verma modules

Given any highest weight representation of X(ospM |N), we will now establish a wide
array of relations that occur among its highest weight components. Such relations
have already been classified in the cases M = 1 and M = 2 in [Mol23b] and [Mol22b],
respectively. Utilizing the restriction functor F+ defined in the previous section, we can
use inductive arguments along with the results in the cited papers to yield consistency
conditions between the highest weight components in the general case.

Proposition 3.2.1. Suppose N ≥ 2 and let m =
⌊︁
M
2

⌋︁
, ˆ︁m =

⌈︁
M
2

⌉︁
, n = N

2
. Given any

highest weight representation V of X(ospM |N), the components of its highest weight
λ(u) = (λk(u))

M+N
k=1 must satisfy the consistency conditions

λi(u)

λi+1(u)
=

λM-i(u− κ+ i)

λM+1- i(u− κ+ i)
for i = 1, 2, . . . ,m−1, (3.2.1)

λM+j(u)

λM+j+1(u)
=

λM+N-j(u− κ− j +m)

λM+N+1-j(u− κ− j +m)
for j = 1, 2, . . . , n−1. (3.2.2)

Moreover, when M is odd:

λm(u)

λM+1(u)
=
λM+N(u− κ+m)

λˆ︁m+1(u− κ+m)
if M ≥ 3, (3.2.3)

and
λˆ︁m(u)
λM+n(u)

=
λM+n+1(u− κ+m−n)
λˆ︁m(u− κ+m−n)

, (3.2.4)

and when M is even:

λm(u)

λM+1(u)
=
λM+N(u− κ+m)

λm+1(u− κ+m)
if M ≥ 2. (3.2.5)

Proof. We shall prove the consistency conditions via induction on M ∈ 2Z+−1 and
M ∈ 2Z+.

For the base case M = 1, consistency conditions were found in [Mol23b] for the
presentation Xd(osp1|N), where d =

{︁
1+ N

2

}︁
⊂
{︁
1, 2, . . . , 1+N

}︁
. For the bijection

σ ∈ S1+N , where σ(k) = 1+k for k = 1, . . . , N
2
, σ(1+ N

2
) = 1, and σ(k) = k for

k = 2+ N
2
, . . . , 1+N , the mapping T d

ij (u) ↦→ Tσ(i)σ(j)(u) induces an isomorphism
Xd(osp1|N)

∼−→ X(osp1|N). Under such isomorphism, highest weight representations
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for Xd(osp1|N ) defined in the article [Mol23b, §3] coincide with highest weight represen-
tations for X(osp1|N ), and the consistency conditions stated in [Mol23b, Proposition 3.3]
are equivalent to (3.2.2) and (3.2.4) when M = 1.

For the base case M = 2, consistency conditions were found in [Mol22b] for the
presentation Xd(osp2|N), where d =

{︁
1, 2+N

}︁
⊂
{︁
1, 2, . . . , 2+N

}︁
. For the bijection

σ ∈ S2+N , where σ(1) = 1, σ(k) = 1+k for k = 2, . . . , 1+N , and σ(2+N) = 2,
the mapping T d

ij (u) ↦→ Tσ(i)σ(j)(u) induces an isomorphism Xd(osp2|N)
∼−→ X(osp2|N).

Under such isomorphism, highest weight representations for Xd(osp2|N) defined in the
article [Mol22b, §2] coincide with highest weight representations for X(osp2|N), and
the consistency conditions stated in [Mol22b, Proposition 2.2] are equivalent to (3.2.2)
and (3.2.5) when M = 2.

The base case for condition (3.2.3) is when M = 3. If ξ denotes the highest weight
vector of V , we use the relation T14(u)T3,3+N(v)ξ =

[︁
T14(u), T3,3+N(v)

]︁
ξ to yield

T14(u)T3,3+N(v)ξ = − 1

u− v − κ

(︂
T14(u)T3,3+N(v) + λ4(u)λ3+N(v)− λ1(u)λ3(v)

)︂
ξ,

so (u−v−κ+1)T13(u)T3,3+N (v)ξ =
(︁
λ4(u)λ3+N (v)− λ1(u)λ3(v)

)︁
ξ. Setting v = u−κ+1

then yields the desired relation.

Lastly, the base cases for relations (3.2.1) is when M = 4 and M = 5, but such
relations are guaranteed by Proposition 3.1.5.

Therefore, let us assume the consistency conditions hold up to M−2. By Proposi-
tion 3.1.6, V + is a non-trivial X(osp(M-2)|N)-module that contains the highest weight
vector ξλ(u), Moreover, the X(osp(M-2)|N)-submodule X(osp(M-2)|N)ξλ(u) ⊂ V + will be
a highest weight representation of X(osp(M-2)|N) with highest weight vector ξλ(u) and
highest weight

µ(u) = (µk(u))
M-2+N
k=1 =

(︁
λ2(u), . . . , λM-1(u), λM+1(u), . . . , λM+N(u)

)︁
.

Noting the formula κM−2,N = κM |N − 1, when M−2 ≥ 4 our induction hypothesis for
i = 1, 2, . . . ,

⌊︁
M−2
2

⌋︁
−1 =

⌊︁
M
2

⌋︁
−2 gives

µi(u)

µi+1(u)
=

µM-2-i(u− κM-2,N + i)

µM-2+1-i(u− κM-2,N + i)
⇔ λi+1(u)

λi+2(u)
=

λM-(i+1)(u− κM |N + (i+1))

λM+1-(i+1)(u− κM |N + (i+1))
,

proving the relations (3.2.1) for i = 2, 3, . . . ,m−1. The case i = 1 is guaranteed by
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Proposition 3.1.5. Similarly, we know by induction that for j = 1, 2, . . . , n−1,

µM−2+j(u)

µM−2+j+1(u)
=

µM−2+N−j(u− κM−2,N − j +
⌊︁
M−2
2

⌋︁
)

µM−2+N+1−j(u− κM−2,N − j +
⌊︁
M−2
2

⌋︁
)

⇔ λM+j(u)

λM+j+1(u)
=

λM+N−j(u− κM |N − j +
⌊︁
M
2

⌋︁
)

λM+N+1−j(u− κM |N − j +
⌊︁
M
2

⌋︁
)
.

Now assume M is odd. The induction hypothesis indicates

µ⌈M−2
2
⌉(u)

µM-2+n(u)
=
µM-2+n+1

(︁
u− κM−2,N +

⌊︁
M−2
2

⌋︁
−n
)︁

µ⌈M−2
2
⌉
(︁
u− κM−2,N +

⌊︁
M−2
2

⌋︁
−n
)︁

⇔
λ⌈M

2
⌉(u)

λM+n(u)
=
λM+n+1

(︁
u− κM |N +

⌊︁
M
2

⌋︁
−n
)︁

λ⌈M
2
⌉
(︁
u− κM |N +

⌊︁
M
2

⌋︁
−n
)︁ ,

and if M−2 ≥ 3,

µ⌊M−2
2
⌋(u)

µM−2+1(u)
=
µM−2+N(u− κM−2,N +

⌊︁
M−2
2

⌋︁
)

µ⌈M−2
2
⌉+1(u− κM−2,N +

⌊︁
M−2
2

⌋︁
)
⇔

λ⌊M
2
⌋(u)

λM+1(u)
=

λM+N(u− κ+
⌊︁
M
2

⌋︁
)

λ⌈M
2
⌉+1(u− κ+

⌊︁
M
2

⌋︁
)
.

Lastly, if M is even, then

µM−2
2

(u)

µM−2+1(u)
=
µM-2+N

(︁
u− κM−2,N + M−2

2

)︁
µM−2

2
+1

(︁
u− κM−2,N + M−2

2

)︁ ⇔
λM

2
(u)

λM+1(u)
=
λM+N

(︁
u− κM |N + M

2

)︁
λM

2
+1

(︁
u− κM |N + M

2

)︁ .

We now arrive at the primary result of this subsection:

Theorem 3.2.2. Suppose N ≥ 2. The Verma module M(λ(u)) is non-trivial if and
only if the components of the highest weight λ(u) = (λk(u))

M+N
k=1 satisfy the consis-

tency conditions in Proposition 3.2.1. Hence, for every finite-dimensional irreducible
representation V of X(ospM |N), it holds that

V ∼= L(λ(u))

for some unique tuple λ(u) satisfying such conditions.

Proof. “⇒” If M(λ(u)) is non-trivial, then it is a highest weight representation. Hence,
the consistency conditions follow from Proposition 3.2.1.
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“⇐” Conversely, let us suppose the highest weight λ(u) satisfies the conditions (3.2.1),
(3.2.2), and (3.2.3), (3.2.4) if M is odd or (3.2.5) if M is even. By Proposition 3.1.14,
we obtain a non-trivial Verma module M(˜︁λ(u)) To finish the proof, it therefore suffices
to show ˜︁λ(u) = λ(u). As ˜︁λk(u) = λk(u) for (k, k) ∈ BM |N as in (2.3.15) and k =M , we
need to show the equality in the remaining cases.

Furthermore, since M(˜︁λ(u)) is non-trivial and the first conditional statement of the
Proposition has been proven, the highest weight components of ˜︁λ(u) = (˜︁λk(u))M+N

k=1

satisfy the relations

λ1(u)

λ2(u)
=
˜︁λM-1(u− κ+ i)

λM(u− κ+ i)
and

λi(u)

λi+1(u)
=
˜︁λM-i(u− κ+ i)˜︁λM+1-i(u− κ+ i)

, (3.2.6)

for i = 2, . . . ,m−1,

λM+j(u)

λM+j+1(u)
=
˜︁λM+N-j(u− κ− j +m)˜︁λM+N+1-j(u− κ− j +m)

(3.2.7)

for j = 1, 2, . . . , n−1, and if M is odd:

λm(u)

λM+1(u)
=
˜︁λM+N(u− κ+m)˜︁λˆ︁m+1(u− κ+m)

when M ≥ 3, (3.2.8)

and
˜︁λˆ︁m(u)
λM+n(u)

=
˜︁λM+n+1

(︁
u− κ+m−n

)︁
˜︁λˆ︁m(︁u− κ+m−n

)︁ , (3.2.9)

or if M is even:
λm(u)

λM+1(u)
=
˜︁λM+N

(︁
u− κ+m

)︁
˜︁λm+1

(︁
u− κ+m

)︁ . (3.2.10)

When M = 1, equations (3.2.4) and (3.2.9) yield ˜︁λM+n+1(u) = λM+n+1(u). Thus, by
combining (3.2.2) and (3.2.7), we obtain ˜︁λk(u) = λk(u) for k =M+n+2, . . . ,M+N .

When M = 2, (3.2.5) and (3.2.10) infer ˜︁λM+N(u) = λM+N(u). Therefore, combin-
ing (3.2.2) with (3.2.7) shows ˜︁λk(u) = λk(u) for k =M+n+1, . . . ,M+N−1.

When M = 3, (3.2.3) and (3.2.8) similarly infer ˜︁λM+N(u) = λM+N(u). Hence,
combining (3.2.2) with (3.2.7) gives ˜︁λk(u) = λk(u) for k =M+n+1, . . . ,M+N−1.

Now assume M ≥ 4. In this case, relations (3.2.1) and (3.2.6) show ˜︁λk(u) = λk(u)
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for k = ˆ︁m+1, . . . ,M−1. Furthermore, by combining (3.2.3) and (3.2.8) if M is
odd, or (3.2.5) and (3.2.10) if M is even, one deduces ˜︁λM+N(u) = λM+N(u). Thus,
combining (3.2.2) and (3.2.7) will show ˜︁λk(u) = λk(u) for k =M+n+1, . . . ,M+N−1.
Finally, when M is odd, relations (3.2.4) and (3.2.9) will together yield the last equality˜︁λˆ︁m(u) = λˆ︁m(u).

3.2.2 Finite-dimensional irreducible representations

Let us assume m = ⌊M
2
⌋ and n = N

2
. For any tuple λ = (λ1, . . . , λm+n) ∈ Cm+n, we shall

let V (λ) denote the irreducible representation of the orthosymplectic Lie superalgebra
ospM |N with highest weight λ, where we suppose M ≥ 3. Most necessary conditions for
the finite-dimensionality of V (λ) can be derived from the embeddings soM ↪→ ospM |N

and spN ↪→ ospM |N . In particular, if V (λ) is finite-dimensional then it must be that

λi − λi+1 ∈ N for i = 1, . . . ,m−1; m+1, . . . ,m+n−1,

along with

λm+n ∈ N,

and λm−1 + λm ∈ N if M is even,

or 2λm ∈ N if M is odd.

A weight λ ∈ Cm+n satisfying these conditions will be called Φ+
even-dominant integral.

Since Φ+ is not the distinguished positive root system Φ+
dist as found in [Kac06], one

would have to translate between them by means of odd and/or real reflections in order
to state all necessary and sufficient conditions for the finite-dimensionality of V (λ) in
terms of Φ+-highest weights.

Before stating the main theorem, we recall the super Yangian Y(glm|n) and its
representation theory as appeared in [Zha96]. For the following results on this particular
Yangian, we suppose m and n are any natural numbers such that m+n ≥ 1 and consider
the gradation index (2.1.5) when d = m, D = m+n, and d = {1, 2, . . . ,m}; that is,
[i] = 0̄ for 1 ≤ i ≤ m and [i] = 1̄ for m+1 ≤ i ≤ m+n. Accordingly, the space Cm+n

is Z2-graded via the assignment [ei] = [i] on the standard basis vectors and we shall
denote the resulting super vector space as Cm|n. The simplest non-trivial solution to
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the SQYBE (2.2.4) in the space
(︁
EndCm|n)︁⊗3 [[u±1v±1]] is the R-matrix

Ṙ(u) = id⊗2− Ṗ
u

∈
(︁
EndCm|n)︁⊗2 [u−1], (3.2.11)

where Ṗ =
∑︁m+n

i,j=1(−1)[j]Eij ⊗ Eji is the super permutation operator.

Definition 3.2.3. The Yangian Y(glm|n) of glm|n is the unital associative C-super-
algebra on generators

{︁
t
(r)
ij | 1 ≤ i, j ≤ m+n, r ∈ Z+

}︁
, with Z2-grade

[︁
t
(r)
ij

]︁
:= [i]+ [j]

for all r ∈ Z+, subject to the defining RTT -relation

Ṙ(u− v)t1(u)t2(v) = t2(v)t1(u)Ṙ(u− v)

in
(︁
EndCm|n)︁⊗2 ⊗ Y(glm|n)[[u

±1, v±1]],

where t(u) :=
∑︁m+n

i,j=1(−1)[i][j]+[j]Eij ⊗ tij(u) ∈ End(Cm|n)⊗Y(glm|n)[[u
−1]] is the matrix

consisting of the series tij(u) := δij1+
∑︁∞

r=1 t
(r)
ij u

−r ∈ Y(glm|n)[[u
−1]] for 1 ≤ i, j ≤ m+n,

and Ṙ(u− v) is the R-matrix (3.2.11) identified with Ṙ(u− v)⊗ 1

We may now state the definition of a highest weight representation for this super
Yangian.

Definition 3.2.4 (See §3.1 in [Zha96]). A representation V of the Yangian Y(glm|n)

is a highest weight representation if there exists a nonzero vector ξ ∈ V such that
Y(glm|n)ξ = V , and

tij(u)ξ = 0 for all 1 ≤ i < j ≤ m+n

and tkk(u)ξ = λk(u)ξ for all 1 ≤ k ≤ m+n,

where λk(u) = 1 +
∑︁∞

n=1 λ
(n)
k u−n ∈ 1 + C[[u−1]]u−1. We say that ξ is the highest weight

vector of V and call the m+n-tuple (λk(u))
m+n
k=1 of formal series the highest weight of V .

The classification of the finite-dimensional irreducible representations of Y(glm|n)
by R .B. Zhang is provided by the following two theorems:

Theorem 3.2.5 (Theorem 2 in [Zha96]). Every finite-dimensional irreducible represen-
tation V of the Yangian Y(glm|n) is a highest weight representation. The highest weight
vector of V is unique up to scalar multiple.
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Theorem 3.2.6 (Theorem 4 in [Zha96]). An irreducible highest weight representation V
of Y(glm|n) with highest weight λ(u) = (λk(u))

m+n
k=1 is finite-dimensional if and only if

there exists monic polynomials ˜︁Q(u), Q(u), and Pk(u), k ∈ {1, 2, . . . ,m+n−1} \ {m},
such that

λk(u)

λk+1(u)
=
Pk(u+ (−1)[k])

Pk(u)
for k ∈ {1, 2, . . . ,m+n−1} \ {m},

and
λm(u)

λm+1(u)
=
˜︁Q(u)
Q(u)

,

where ˜︁Q(u) and Q(u) are coprime polynomials of the same polynomial degree.

For the remainder of this subsection, we assume m = ⌊M
2
⌋, ˆ︁m = ⌈M

2
⌉, and n = N

2
.

From Molev’s recent work (see [Mol21], [Mol23b], and [Mol22b]) on the representation
theory of Xd1(osp1|N ) and Xd2(osp2|N ) where d1 = {1+n} and d2 = {1, 2+N}, we can
use the isomorphisms Xd1(osp1|N)

∼−→ X(osp1|N) and Xd2(osp2|N)
∼−→ X(osp2|N) to get

the following theorem:

Theorem 3.2.7 (A. Molev). Suppose M = 1 or M = 2, set N ≥ 2, and let
λ(u) = (λk(u))

M+N
k=1 satisfy the consistency conditions stated in Proposition 3.2.1. The

X(ospM |N)-module L(λ(u)) is finite-dimensional if and only if there exists a tuple of
monic polynomials

(δM2
˜︁Q(u), δM2Q(u); (Pk(u))k∈I) ∈ C[u]n+2δM2 ,

with I = {M+1, . . . ,M+n}, such that

λk(u)

λk+1(u)
=
Pk(u− 1)

Pk(u)
for all k ∈ I \ {M+n},

and
λ1(u)

λ1+n(u)
=
P1+n(u+ 1)

P1+n(u)
when M = 1,

or
λ2+n(u)

λ2+n+1(u)
=
P2+n(u− 2)

P2+n(u)
and

λ1(u)

λ3(u)
=
˜︁Q(u)
Q(u)

when M = 2,

where ˜︁Q(u) and Q(u) are coprime polynomials of the same polynomial degree.
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Via Theorem 3.2.2, every finite-dimensional irreducible representation of X(ospM |N )
is isomorphic to L(λ(u)) for some highest weight λ(u) satisfying the consistency condi-
tions in Proposition 3.2.1. We now have the main theorem of this subsection:

Theorem 3.2.8. Suppose M,N ≥ 2 and let λ(u) = (λk(u))
M+N
k=1 satisfy the consistency

conditions stated in Proposition 3.2.1. If the X(ospM |N)-module L(λ(u)) is finite-
dimensional, then there exists a tuple of monic polynomials

( ˜︁Q(u), Q(u); (Pk(u))k∈I) ∈ C[u]m+n+1,

with I = {1, . . . ,m−1;M+1, . . . ,M+n}, such that

λk(u)

λk+1(u)
=
Pk(u+ (−1)[k])

Pk(u)
for k ∈ I \ {M+n}, (3.2.12)

λˆ︁m(u)
λM+n(u)

=
PM+n(u+ 1)

PM+n(u)
if M is odd, (3.2.13)

λM+n(u)

λM+n+1(u)
=
PM+n(u− 2)

PM+n(u)
if M is even, (3.2.14)

and
λm(u)

λM+1(u)
=
˜︁Q(u)
Q(u)

, (3.2.15)

where ˜︁Q(u) and Q(u) are coprime polynomials of the same polynomial degree.

The polynomials ( ˜︁Q(u), Q(u); (Pk(u))k∈I) are called the Drinfel’d polynomials corre-
sponding to L(λ(u)) and they are uniquely determined by the highest weight λ(u).

Proof of Theorem 3.2.8. Allowing tij(u) denote a generating series for the Yangian
Y(glm|n), there is a superalgebra morphism

ν : Y(glm|n) → X(ospM |N), tij(u) ↦→ Tν(i)ν(j)(u),

where ν(i) = i for 1 ≤ i ≤ m and ν(i) = ˆ︁m+i for m+1 ≤ i ≤ m+n. Under the above
morphism ν, representations of X(ospM |N) restrict to those of Y(glm|n). In particular,
if V is a highest weight representation of X(ospM |N) with highest weight vector ξ and
highest weight λ(u) = (λk(u))

M+N
k=1 , then the submodule Y(glm|n)ξ ⊂ V will be a highest
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weight representation of Y(glm|n) with the highest weight vector ξ and highest weight(︁
λ1(u), . . . , λm(u), λM+1(u), . . . , λM+n(u)

)︁
.

Assuming that the irreducible highest weight representation L(λ(u)) is finite-
dimensional, the Y(glm|n)-module Y(glm|n)1λ(u) will be a finite-dimensional as well. The
quotient Y(glm|n)1λ(u)/M, where M is its maximal submodule, will be an irreducible
finite-dimensional representation of Y(glm|n) with highest weight vector 1λ(u) modM
with highest weight

(︁
λ1(u), . . . , λm(u), λM+1(u), . . . , λM+n(u)

)︁
. Therefore, the Drinfel’d

polynomial relations for irreducible finite-dimensional representations of Y(glm|n) yield
the according relations (3.2.12) and (3.2.15).

The remaining Drinfel’d polynomial relations will be proved via induction on
M ∈ 2Z+−1 and M ∈ 2Z+, respectively. Let us first suppose M is odd. The
base case M = 1 is guaranteed by Molev’s results in [Mol23b]. Applying the restric-
tion functor of Proposition 3.1.9 to L(λ(u)), we yield an X(osp(M-2)|N)-submodule
X(osp(M-2)|N)1λ(u) ⊂ F+

(︁
L(λ(u))

)︁
= L(λ(u))+ that is a highest weight representation

with highest weight vector 1λ(u) and highest weight

(︁
µk(u)

)︁
M-2+N
k=1 =

(︁
λ2(u), . . . , λM-1(u), λM+1(u), . . . , λM+N

)︁
.

Since L(λ(u)) is finite-dimensional, then so is X(osp(M-2)|N)1λ(u) and the quotient
X(osp(M-2)|N)1λ(u)/M by its maximal submodule M. Such irreducible quotient will
also be a highest weight representation with highest weight vector 1λ(u) modM and
the same highest weight as above.

Hence, by induction hypothesis there exists a monic polynomial P µ
M-2+n(u) such

that
λ⌈M

2
⌉(u)

λM+n(u)
=

µ⌈M−2
2
⌉(u)

µM-2+n(u)
=
P µ
M-2+n(u+ 1)

P µ
M-2+n(u)

,

so set PM+n(u) = P µ
M-2+n(u).

When M is even, the base M = 2 is provided by Molev’s work in [Mol22b]. The
same argument to the above shows that one can construct a finite-dimensional ir-
reducible highest weight representation X(osp(M-2)|N)1λ(u)/M with highest weight
vector 1λ(u) modM and highest weight

(︁
µk(u)

)︁
M-2+N
k=1 . Hence, by induction hypothesis
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there exists a monic polynomial P µ
M-2+n(u) such that

λM+n(u)

λM+n+1(u)
=

µM-2+n(u)
µM-2+n+1(u)

=
P µ
M-2+n(u− 2)

P µ
M-2+n(u)

,

so set PM+n(u) = P µ
M-2+n(u).

Recalling that Rep(A) denotes the category of representations of a superalgebra A,
we let Repirr

fd (A) denote the subcategory of finite-dimensional irreducible representations.
Further, we define Repirr

fd (A)/∼ to be the set of isomorphism classes of Repirr
fd (A).

Letting C[u]2cp,ed denote the subset of C[u]2 consisting of all pairs (B1(u), B2(u))

such that B1(u) and B2(u) are coprime of the same polynomial degree, the proof of
Theorem 3.2.8 permits the well-defined map

℧ : Repirr
fd (X(ospM |N))/∼ →

{︁
(Bk(u))

m+n+1
k=1 ∈ C[u]2cp,ed×C[u]m+n−1 |Bk(u) is monic

}︁
L(λ(u)) ↦→ ( ˜︁Q(u), Q(u); (Pk(u))k∈I)

assuming M,N ≥ 2. However, such map is not injective: ℧(L(λ(u))) = ℧(L(µ(u))) if
and only if there exists a series f(u) ∈ 1+u−1C[[u−1]] such that µ(u) = f(u)λ(u).

Indeed, if the tuples λ(u) = (λk(u))
M+N
k=1 and µ(u) = (µk(u))

M+N
k=1 both satisfy the

consistency conditions in Proposition 3.2.1 while also corresponding to the same Drinfel’d
polynomials ( ˜︁Q(u), Q(u); (Pk(u))k∈I), then there exists a series f(u) ∈ 1 + u−1C[[u−1]]
such that µk(u) = f(u)λk(u) for all 1 ≤ k ≤ M+N : such a series is given by
f(u) = µM+n(u)λM+n(u)

−1.

On the other hand, given that L(λ(u)) is finite-dimensional, its highest weight
λ(u) = (λk(u))

M+N
k=1 must satisfy the consistency conditions as in Proposition 3.2.1

while also corresponding to the Drinfel’d polynomials ( ˜︁Q(u), Q(u); (Pk(u))k∈I). For
any series f(u) ∈ 1+u−1C[[u−1]], we observe the tuple f(u)λ(u) = (f(u)λk(u))

M+N
k=1

will still satisfy the same consistency conditions and Drinfel’d polynomials relations.
Hence, the pullback by the automorphism µf (2.2.9) will yield a module µ∗f(L(λ(u)))
isomorphic to L(f(u)λ(u)). As L(λ(u)) and µ∗f(L(λ(u))) are equal as super vector
spaces, their dimensions coincide, which infers the same is true for L(f(u)λ(u)), so
dimL(f(u)λ(u)) <∞ as well.

We now focus our attention on certain elementary tuples of Drinfel’d polynomials
and we call those modules corresponding to such tuples as fundamental representations:
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Definition 3.2.9. Let λ(u) satisfy the consistency conditions as stated in Proposi-
tion 3.2.1 so that the Verma module M(λ(u)) is non-trivial. The fundamental represen-
tations of X(ospM |N) are those irreducible representations L(λ(u)) that correspond to
Drinfel’d polynomials of the form

(︁
u+ α, u+ β; (1)k∈I

)︁
or

(︁
1, 1; ((u+γ)δik)k∈I

)︁
(3.2.16)

for i ∈ I and α, β, γ ∈ C where α ̸= β. The fundamental representations corresponding
to the first tuple are called type I and denoted L(λ(u);α, β), whereas those corresponding
to the second tuple are called type II and denoted L(λ(u); i : γ).

Assuming we are able to prove that all such fundamental representations are finite-
dimensional, then one can construct finite-dimensional irreducible representation of the
extended Yangian X(ospM |N) corresponding to any tuple of Drinfel’d polynomials by
virtue of the following lemma.

Lemma 3.2.10. Let V and W be two highest weight representations of X(ospM |N ) with
respective highest weights λ(u) = (λk(u))

M+N
k=1 , µ(u) = (µk(u))

M+N
k=1 and highest weight

vectors ξλ(u), ξµ(u). The submodule X(ospM |N)(ξλ(u) ⊗ ξµ(u)) ∈ V ⊗W will be a highest
weight representation with highest weight λ(u)µ(u) = (λk(u)µk(u))

M+N
k=1 .

Further, if V = L(λ(u)) and W = L(µ(u)) are finite-dimensional with corresponding
tuples of Drinfel’d polynomials ( ˜︁Q(u), Q(u); (Pk(u))k∈I) and ( ˜︁Q′(u), Q′(u); (P ′k(u))k∈I),
then the tuple of Drinfel’d polynomials corresponding to the irreducible quotient of
X(ospM |N)(1λ(u) ⊗ 1µ(u)) ∈ L(λ(u))⊗ L(µ(u)) will be

(︂ ˜︁Q(u) ˜︁Q′(u)
d(u)

,
Q(u)Q′(u)

d(u)
; (Pk(u)P

′
k(u))k∈I

)︂
(3.2.17)

where d(u) = gcd( ˜︁Q(u) ˜︁Q′(u), Q(u)Q′(u)) is monic.

Proof. Via the comultiplication map ∆ on X(ospM |N), the generators Tij(u) with
indices (i, j) ∈ Λ+ will annihilate ξλ(u) ⊗ ξµ(u) since for such indices, (i, k) ̸∈ Λ+ implies
(k, j) ∈ Λ+

I . Once can also verify Tkk(u) · (ξλ(u) ⊗ ξµ(u)) = λk(u)µk(u)(ξλ(u) ⊗ ξµ(u)) for
all integers 1 ≤ k ≤M+N .
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3.2.3 Type I fundamental representations

In this subsection, we show that type I fundamental representations L(λ(u);α, β) as
in Definition 3.2.9 are finite-dimensional if and only if the parameters α and β satisfy
certain conditions.

We note that if a non-trivial irreducible representation L(λ(u)) has associated
Drinfel’d polynomials ( ˜︁Q(u), Q(u); (Pk(u))k∈I), the pullback by the shift automor-
phism τa (2.2.10) will yield a module τ ∗a (L(λ(u))) isomorphic to L(λ(u−a)) with
Drinfel’d polynomials ( ˜︁Q(u−a), Q(u−a); (Pk(u−a))k∈I). In particular, the dimensions
of L(λ(u)) and L(λ(u−a)) coincide, so it suffices to prove dimL(λ(u);α, 0) < ∞ for
some highest weight λ(u) satisfying the consistency conditions in Proposition 3.2.1.

The primary result of this subsection is the following, which is a generalization
of [Mol22b, Proposition 2.4]:

Proposition 3.2.11. Suppose M,N ≥ 2. For α ∈ C∗, consider the type I fundamental
representation L(λ(u);α, 0) of X(ospM |N ), where λ(u) is the highest weight (λk(u))M+N

k=1

given by

λk(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u+ α

u
if 1 ≤ k ≤ m,

u+ κ−m

u+ α + κ−m
if ˆ︁m+1 ≤ k ≤M,

1 otherwise.

If M = 2, then dimL(λ(u);α, 0) ≤ 2N . Otherwise when M ≥ 3, then L(λ(u);α, 0)

is finite-dimensional if and only if the irreducible ospM |N -module V (λ(1)) is finite-
dimensional, where

λ(1) := (λ
(1)
1 , . . . , λ(1)m , λ

(1)
M+1, . . . , λ

(1)
M+n) = (α, . . . , α⏞ ⏟⏟ ⏞

m

, 0, . . . , 0⏞ ⏟⏟ ⏞
n

).

The collection of such numbers α comprise some non-trivial subset of 1
2
Z+. When M is

even in these cases, then dimL(λ(u);α, 0) ≤ 2mN .

In preparation to prove the above proposition, we need to introduce and prove two
preliminary computational lemmas.
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Lemma 3.2.12. Suppose M,N ≥ 2 and let ξ denote the highest weight vector of
L(λ(u);α, 0) as in Proposition 3.2.11. Then:

(i) Tkl(v)ξ = 0 for indices M+1 ≤ k ≠ l ≤ M+N ; moreover, when M is odd:
Tk ˆ︁m(v)ξ = Tˆ︁mk(v)ξ = 0 for indices M+1 ≤ k ≤M+N ,

(ii) Tkl(v)ξ = 0 for indices 1 ≤ k ̸= l ≤ m and ˆ︁m+1 ≤ k ̸= l ≤M ,

(iii) T (r)
kl ξ = 0 for indices M+1 ≤ k ≤M+N , 1 ≤ l ≤ m with r ≥ 2; moreover, when
M is odd: T (r)ˆ︁ml ξ = 0 for indices 1 ≤ l ≤ m with r ≥ 2.

Before proving the above lemma, we note that for a highest weight representation V
of X(ospM |N ) with highest weight vector ξ, we call a vector v ∈ V singular if Tij(u)v = 0

for all (i, j) ∈ Λ+. Since L(λ(u);α, 0) is irreducible, its only singular vectors lie in C∗ξ;
thus, to prove Tkl(v)ξ = 0 it suffices to show Tij(u)Tkl(v)ξ = 0 for all (i, j) ∈ Λ+.

Proof of Lemma 3.2.12. (i) Allowing F+
M to denote the restriction functor F+ as in

Proposition 3.1.9, we may apply the composition F+
M-2m+2 ◦ · · · ◦ F+

M-2 ◦ F+
M to

L(λ(u);α, 0) to obtain the X(osp(M-2m)|N)-module L(λ(u);α, 0)
∑︁

m+ as described in
Remark 3.1.11. For the given indices M+1 ≤ k, l ≤M+N , we claim that the vectors
Tkl(v)ξ, along with Tk ˆ︁m(v)ξ and Tˆ︁ml(v)ξ if M is odd, lie in L(λ(u);α, 0)

∑︁
m+. Ad-

dressing vectors of the form Tkl(v)ξ, we may suppose k > l without loss of generality.
For 1 ≤ i ≤ m and i < j ≤ M+N , using the defining relations (2.2.8) to compute[︁
Tij(u), Tkl(v)

]︁
will yield

Tij(u)Tkl(v)ξ =
1

u− v − κ
δ ȷ̄ l

i−1∑︂
p=1

θjTkp̄(v)Tip(u)ξ,

while for indices 1 ≤ p ≤ i − 1, the evaluation of
[︁
Tip(u), Tkp̄(v)

]︁
infers the equality

δ ȷ̄ lθjTkp̄(v)Tip(u)ξ = −Tij(u)Tkl(v)ξ, so Tij(u)Tkl(v)ξ = 0. Alternatively, when we have
m+1 ≤ i < j ≤M or M+1 ≤ i ≤M+N , ˆ︁m+1 ≤ j ≤M , computing

[︁
Tkl(v), Tij(u)

]︁
will give

Tij(u)Tkl(v)ξ =
1

v − u− κ
δ ı̄k

ȷ̄−1∑︂
p=1

θkTpl(v)Tp̄j(u)ξ,

while for indices 1 ≤ p ≤ ȷ̄ − 1, the evaluation of
[︁
Tpl(v), Tp̄j(u)

]︁
infers the equality

δ ı̄kθkTpl(v)Tp̄j(u)ξ = −Tij(u)Tkl(v)ξ, so Tij(u)Tkl(v)ξ = 0, which proves Tkl(v)ξ lies in
L(λ(u);α, 0)

∑︁
m+.
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Since ξ ∈ L(λ(u);α, 0)
∑︁

m+, the cyclic submodule X(osp(M-2m)|N )ξ is a highest weight
representation of X(osp(M-2m)|N ) with each highest weight component λk(u) equal to 1.
The irreducible quotient of X(osp(M-2m)|N)ξ is therefore 1-dimensional, which implies
Tij(u)Tkl(v)ξ = 0 for all (i, j) ∈ Λ+. The argument for Tk ˆ︁m(v)ξ = Tˆ︁ml(v)ξ = 0 when M
is odd is similar.

(ii) When M is even, the relations (3.1.2) infer that it suffices to show the property
Tij(u)Tkl(v)ξ = 0 for only the simple root generating series Tij(u) as given by Ti,i+1(u)

for i = 1, . . . ,m−1;M+1, . . . ,M+n, and Tm,M+1(u).

When M is odd, the same relations (3.1.2) infer that it suffices to show the property
Tij(u)Tkl(v)ξ = 0 for only the simple root generating series Tij(u) as given by Ti,i+1(u)

for i = 1, . . . ,m−1;M+1, . . . ,M+n−1, and Tm,M+1(u), Tˆ︁m,M+n+1(u).

Step 1. Let us first address the case 1 ≤ l < k ≤ m. Via the relations (3.1.2), it
suffices to show Tk+1,k(v)ξ = 0 for the indices 1 ≤ k ≤ m−1. We use the relations (2.2.8)
to evaluate

[︁
Ti,i+1(u), Tk+1,k(v)

]︁
which infers Ti,i+1(u)Tk+1,k(v)ξ = 0 for i = 1, . . . , k.

Alternatively, calculating
[︁
Tk+1,k(v), Ti,i+1(u)

]︁
will imply Ti,i+1(u)Tk+1,k(v)ξ = 0 for

the remaining indices i = k+1, . . . ,m−1;M+1, . . . ,M+n, while one can also find
Tm,M+1(u)Tk+1,k(v)ξ = 0 and Tˆ︁m,M+n+1(u)Tk+1,k(v)ξ = 0 via a similar computation.

Step 2. For the case ˆ︁m+1 ≤ l < k ≤ M , it suffices to show Tk+1,k(v)ξ = 0 for
indices ˆ︁m+1 ≤ k ≤M−1 via the relations (3.1.2). In particular, we will show

v+α+κ− k̄+1

v+κ−m
Tk+1,k(v)ξ = − v+κ− k̄+1

v+α+κ−m
Tk̄,k̄-1(v+κ− k̄+1)ξ,

which implies the result by Step 1. Using the defining relations (2.2.8) to compute the
commutator

[︁
Tk,k̄-1(u), Tk̄k(v)

]︁
, we yield

Tk̄k(v)Tk,k̄-1(u)ξ =
κ(v+κ−m)

(u−v)(u−v−κ)(v+α+κ−m)
Tk̄,k̄-1(u)ξ

+
u+κ−m

(u−v)(u+α+κ−m)
Tk̄,k̄-1(v)ξ +

1

u−v−κ

k̄-1∑︂
p=1

Tp,k̄-1(u)Tp̄k(v)ξ.

For 1 ≤ p ≤ k̄−1, evaluating
[︁
Tp,k̄-1(u), Tp̄k(v)

]︁
infers the equality

Tp,k̄-1(u)Tp̄k(v)ξ = δp,k̄-1
u+α

u
Tk+1,k(v)ξ +

u+κ−m
(u−v)(u+α+κ−m)

Tk̄,k̄-1(v)ξ

− v+κ−m
(u−v)(v+α+κ−m)

Tk̄,k̄-1(u)ξ − Tk̄k(v)Tk,k̄-1(u)ξ,
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so one yields the relation

(u−v−κ+ k̄−1)Tk̄k(v)Tk,k̄-1(u)ξ −
(κ− k̄+1)(v+κ−m)

(u−v)(v+α+κ−m)
Tk̄,k̄-1(u)ξ

=
u+α

u
Tk+1,k(v)ξ +

(u+κ−m)(u−v−κ+ k̄−1)

(u−v)(u+α+κ−m)
Tk̄,k̄-1(v)ξ.

Evaluating at u = v+κ− k̄+1 therefore gives the desired equation.

(iii) Similar to part (ii), when M is even, the relations (3.1.2) infer that it suffices
to show the property Tij(u)T

(r)
kl ξ = 0 for only the simple root generating series Tij(u)

as given by Ti,i+1(u) for i = 1, . . . ,m−1;M+1, . . . ,M+n, and Tm,M+1(u).

When M is odd, the relations (3.1.2) infer that it suffices to show the property
Tij(u)T

(r)
kl ξ = 0 for only the simple root generating series Tij(u) as given by Ti,i+1(u)

for i = 1, . . . ,m−1;M+1, . . . ,M+n−1, Tm,M+1(u), and Tˆ︁m,M+n+1(u).

We assume 1 ≤ l ≤ m throughout the remainder of the proof. In the following,
Steps 1 to 3 address the case M+1 ≤ k ≤M+N , while the last step, Step 4, addresses
the case k = ˆ︁m when M is odd.

Step 1. Assume M+1 ≤ k ≤ M+N . For i ∈ {1, . . . ,m−1} \ {l}, part (ii) of the
lemma infers that computing

[︁
Ti,i+1(u), Tkl(v)

]︁
via the defining relations (2.2.8) will

imply Ti,i+1(u)Tkl(v)ξ = 0. When i = M+1, . . . ,M+n and ı̄ ̸= k, using the defining
relations again to evaluate

[︁
Tkl(v), Ti,i+1(u)

]︁
, along with the fact Tk,i+1(v)ξ = δk,i+1ξ by

part (i) of the lemma, will yield

Ti,i+1(u)Tkl(v)ξ =
1

v − u
δk,i+1

(︁
Til(v)− Til(u)

)︁
ξ. (3.2.18)

In a similar way, we also find Tm,M+1(u)Tkl(v)ξ = (v−u)−1δk,M+1

(︁
Tml(v) − Tml(u)

)︁
ξ

and Tˆ︁m,M+n+1(u)Tkl(v)ξ = (v−u)−1δk,M+n+1

(︁
Tˆ︁ml(v)− Tˆ︁ml(u))︁ξ.

Step 2. We shall first prove the assertion for M+1 ≤ k ≤ M+n via reverse
induction on 1 ≤ l ≤ m. Hence, assume l = m and we will now proceed by induction
on M+1 ≤ k ≤M+n. For the base case k =M+1, Step 1 infers that it only remains
to evaluate Tm,M+1(u)TM+1,m(v)ξ. However, Tm,M+1(u)TM+1,m(v)ξ = (β − α)u−1v−1ξ

in this case, as desired.

Suppose now the induction hypothesis holds for the index k. We again see via
Step 1 that it only remains to check Tk,k+1(u)Tk+1,m(v)ξ. In this case, we use (3.2.18)
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to compute Tk,k+1(u)Tk+1,m(v)ξ = −u−1v−1T (1)
kmξ by induction hypothesis.

Now assume the reverse induction hypothesis holds for 1 ≤ l+1 ≤ m. Using
the defining relations to compute

[︁
Tl,l+1(u), Tkl(v)

]︁
, the reverse induction hypothesis

will imply Tl,l+1(u)Tkl(v)ξ = −u−1v−1T (1)
k,l+1ξ. Furthermore, part (ii) of the lemma

and Step 1 infers Tm,M+1(u)Tkl(v)ξ = 0 since l ≤ m−1. Similar to the case l = m,
we now proceed by induction on M+1 ≤ k ≤ M+n, where we note the base case
k =M+1 is automatically satisfied. Supposing the induction hypothesis holds for the
index k, all that remains to check is the element Tk,k+1(u)Tk+1,l(v)ξ, but (3.2.18) infers
Tk,k+1(u)Tk+1,l(v)ξ = −u−1v−1T (1)

kl ξ by induction hypothesis.

Step 3. We now prove the assertion for remaining indices M+n+1 ≤ k ≤M+N .
Of course, when ı̄ = k then (3.2.18) does not hold, so we shall derive the suitable
relation now in this case. Given M+1 ≤ i ≤M+n−1, and i =M+n when M is even,
we use the defining relations (2.2.8) to compute

[︁
Tı̄ l(v), Ti,i+1(u)

]︁
and incorporate the

fact that Til(v)ξ = v−1T
(1)
il ξ by Step 2 to obtain the formula

Ti,i+1(u)Tı̄ l(v)ξ = −δi,M+n

uv
T

(1)
il ξ −

θi+1

v − u− κ
Ti+1,l(v)ξ +

1

v − u− κ
Tll(v)T l̄,i+1(u)ξ

+
1

v − u− κ

∑︂
p∈{1,...,m}\{l}

Tpl(v)Tp̄,i+1(u)ξ,

noting the use of part (i) to simplify the sum. Again, we note that in the above formula
and for the proceeding computations, we assume the index i =M+n occurs only when
M is even; that is, we implicitly suppose δi,M+n = 0 when M is odd.

For p ∈ {1, . . . ,m} \ {l}, evaluating
[︁
Tpl(v), Tp̄,i+1(u)

]︁
and using part (ii) of the

lemma infers Tpl(v)Tp̄,i+1(u)ξ = −Ti,i+1(u)Tı̄ l(v)ξ − δi,M+nu
−1v−1T

(1)
il ξ; hence,

Ti,i+1(u)Tı̄ l(v)ξ = −δi,M+n

uv
T

(1)
il ξ −

θi+1

v−u−κ+m−1
Ti+1,l(v)ξ

+
1

v−u−κ+m−1
Tll(v)T l̄,i+1(u)ξ.

Via the defining relations, computing
[︁
Tll(v), T l̄,i+1(u)

]︁
provides the equation

v − u− κ+ 1

v − u− κ
Tll(v)T l̄,i+1(u)ξ =

v + α

v
T l̄,i+1(u)ξ +

θi+1

v − u− κ
Ti+1,l(v)ξ

− 1

v − u− κ

∑︂
p∈{1,...,m}\{l}

Tpl(v)Tp̄,i+1(u)ξ.
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Similar to before, evaluating
[︁
Tpl(v), Tp̄,i+1(u)

]︁
for indices p ∈ {1, . . . ,m} \ {l} implies

Tpl(v)Tp̄,i+1(u)ξ = Tll(v)T l̄,i+1(u)ξ − (1+αv−1)T l̄,i+1(u)ξ, so we obtain

Tll(v)T l̄,i+1(u)ξ =
(v−u−κ+m−1)(v+α)

v(v−u−κ+m)
T l̄,i+1(u)ξ +

θi+1

v−u−κ+m
Ti+1,l(v)ξ.

Taking the residue at v = u+ κ−m gives

T l̄,i+1(u)ξ = θi+1
u+κ−m

u+α+κ−m
Ti+1,l(u+κ−m)ξ,

and so we finally deduce

Ti,i+1(u)Tı̄ l(v)ξ = −δi,M+n

uv
T

(1)
il ξ −

θi+1

v−u−κ+m
Ti+1,l(v)ξ

+
θi+1(u+κ−m)(v+α)

v(v−u−κ+m)(u+α+κ−m)
Ti+1,l(u+κ−m)ξ.

(3.2.19)

We now proceed via reverse induction on 1 ≤ l ≤ m. Similar to before, we assume
l = m and now proceed via induction on M+n+1 ≤ k ≤ M+N . For the base case
k =M+n+1, Step 1 infers that it only remains to check the elements Tˆ︁mk(u)Tkl(v)ξ
when M is odd and Tk-1,k(u)Tkl(v)ξ when M is even. However, when M is odd, Step 4
below will show

Tk-1,k(u)Tkl(v)ξ = − 1

uv
T

(1)ˆ︁ml ξ,
while if M is even we utilize Step 2 and (3.2.19) to deduce

Tk-1,k(u)Tkl(v)ξ = −
(︃

1

uv
+

1

v(u+ α + κ−m)

)︃
T

(1)
k-1,l ξ. (3.2.20)

Assuming the induction hypothesis holds for the index k, it only remains to check
the element Tk+1,k̄(u)Tk+1,m(v)ξ by Step 1. However, via (3.2.19) and the induction
hypothesis, we conclude

Tk+1,k̄(u)Tk+1,l(v)ξ =
1

v(u+ α + κ−m)
T

(1)
kl ξ. (3.2.21)

Now assume the reverse induction hypothesis holds for 1 ≤ l+1 ≤ m. Using the
defining relations to compute

[︁
Tl,l+1(u), Tkl(v)

]︁
, the reverse induction hypothesis will

imply Tl,l+1(u)Tkl(v)ξ = −u−1v−1T (1)
k,l+1ξ. Similar to the case l = m, we now proceed

by induction on M+n+1 ≤ k ≤ M+N . For the base case k = M+n+1, all that is
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left to be checked is Tˆ︁mk(u)Tkl(v)ξ when M is odd and Tk-1,k(u)Tkl(v)ξ when M is
even, but we may similarly deduce Tˆ︁mk(u)Tkl(v)ξ = −u−1v−1T (1)ˆ︁ml ξ in the first case by
Step 4 of the lemma and conclude the relation (3.2.20) in the second case from Step 2
and (3.2.19). Supposing the induction hypothesis holds for the index k, all that remains
to check is the element Tk+1,k̄(u)Tk+1,m(v)ξ, but the induction hypothesis and (3.2.19)
will imply (3.2.21).

Step 4. Assume M is odd and k = ˆ︁m. We shall first prove Tˆ︁ml(v)ξ = T
(1)ˆ︁ml ξ for

such 1 ≤ l ≤ m. For indices i ∈ {1, . . . ,m−1} \ {l}, we use the defining relations
to evaluate

[︁
Ti,i+1(u), Tˆ︁ml(v)]︁ and use part (ii) to infer Ti,i+1(u)Tˆ︁ml(v)ξ = 0. For

indices i = M+1, . . . ,M+n−1, we calculate the commutator
[︁
Tˆ︁ml(v), Ti,i+1(u)

]︁
and

use part (i) of the lemma to conclude Ti,i+1(u)Tˆ︁mm(v)ξ = 0. We can similarly reason
Tm,M+1(u)Tˆ︁ml(v)ξ = 0, but we observe that computing

[︁
Tˆ︁ml(v), Tˆ︁m,M+n+1(u)

]︁
gives

Tˆ︁m,M+n+1(u)Tˆ︁ml(v)ξ = 1

v(v − u− κ)
T

(1)
M+n,l ξ +

1

v − u− κ

m∑︂
p=1

Tpl(v)Tp̄,M+n+1(u)ξ

by Step 2. Evaluating the commutator
[︁
Tpl(v), Tp̄,M+n+1(u)

]︁
for indices 1 ≤ p ≤ m will

infer the equality Tpl(v)Tp̄,M+n+1(u)ξ = δpl(1+αv
−1)Tl̄,M+n+1(u)ξ−Tˆ︁m,M+n+1(u)Tˆ︁ml(v)ξ,

so we deduce

Tˆ︁m,M+n+1(u)Tˆ︁ml(v)ξ = 1

v(v − u− κ+m)

(︂
T

(1)
M+n,l ξ + (v + α)Tl̄,M+n+1(u)ξ

)︂
.

Taking the residue at v = u+ κ−m therefore implies

Tl̄,M+n+1(u)ξ = − 1

u+ α + κ−m
T

(1)
M+n,l ξ,

which in turn infers Tˆ︁m,M+n+1(u)Tˆ︁ml(v)ξ = −v−1T (1)
M+n,l ξ.

We now proceed by reverse induction on 1 ≤ l ≤ m, with the above calculations
establishing the base case l = m. Assuming the induction hypothesis holds down to
the index l+1, the only vector remaining to check is Tl,l+1(u)Tˆ︁ml(v)ξ. To this end, we
evaluate

[︁
Tl,l+1(u), Tˆ︁ml(v)]︁ and use the induction hypothesis to obtain

Tl,l+1(u)Tˆ︁ml(v)ξ = − 1

uv
T

(1)ˆ︁m,l+1ξ,

finishing the proof.
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Lemma 3.2.13. Let ξ denote the highest weight vector of L(λ(u);α, 0) as in Propo-
sition 3.2.11. For indices ˆ︁m+1 ≤ k ≤ M , 1 ≤ l ≤ m and integers r ∈ Z+, there are
uniquely determined constants γ(r)kl ∈ C such that

T
(r)
kl ξ = γ

(r)
kl

M+n∑︂
p=M+1

T
(1)

p̄ k̄
T

(1)
pl ξ, where γ

(1)
kl = 0. (3.2.22)

When M is even, the constants are determined by
∑︁∞

r=1 γ
(r)
kl v

−r = 1
2
v−1(v+α+κ−m)−1.

Proof. We will first show T
(1)
kl ξ = 0 for indices ˆ︁m+1 ≤ k ≤ M , 1 ≤ l ≤ m. By

relation (3.1.1), T (1)

kk̄
= 0 for indices ˆ︁m+1 ≤ k ≤M , so we may assume k̄ ̸= l. Moreover,

the same relation infers that it suffices to prove T (1)
kl ξ = 0 for 1 ≤ l ≤ m−1 andˆ︁m+2 ≤ k < l̄.

Under the embedding (2.4.7), L(λ(u);α, 0) is given a U(ospM |N)-module structure
such that Fklξ = T

(1)
kl ξ for indices ˆ︁m+1 ≤ k ≤M , 1 ≤ l ≤ m, so it therefore suffices to

show T
(1)
kl ξ is a singular vector under such representation.

When M is even, the relations (3.1.3) infer that it suffices to show the property
FijT

(1)
kl ξ = 0 for only the simple root vectors Fij as given by Fi,i+1 for i = 1, . . . ,m−1;

M+1, . . . ,M+n, and Fm,M+1.

Similarly, when M is odd, the relations (3.1.3) infer that it suffices to show the
property FijT

(1)
kl ξ = 0 for only the simple root vectors Fij as given by Fi,i+1 for

i = 1, . . . ,m−1; M+1, . . . ,M+n−1, Fm,M+1, and Fˆ︁m,M+n+1.

By relations (3.1.3), we see Fi,i+1T
(1)
kl ξ =

[︁
Fi,i+1, T

(1)
kl

]︁
ξ = 0 for i =M+1, . . . ,M+n,

including Fm,M+1T
(1)
kl ξ =

[︁
Fm,M+1, T

(1)
kl

]︁
ξ = −δmlT (1)

k,M+1ξ + δˆ︁m+1,kT
(1)
M+N,l ξ, and when

M is odd: Fˆ︁m,M+n+1T
(1)
kl ξ =

[︁
Fˆ︁m,M+n+1, T

(1)
kl

]︁
ξ = 0. However, for i = 1, . . . ,m−1 we

compute
Fi,i+1T

(1)
kl ξ =

[︁
Fi,i+1, T

(1)
kl

]︁
ξ = −δilT (1)

k,l+1ξ − δ ı̄kT
(1)
k−1,l ξ.

We shall first prove T (1)
kl ξ = 0 for indices 1 ≤ l ≤ m−2 and ˆ︁m+2 ≤ k < l̄ by reverse

induction on 1 ≤ l ≤ m−2. When l = m−2, it must be that k = ˆ︁m+2, so the above
discussion infers that we only need to check Fl,l+1T

(1)
kl ξ = −T (1)

k,l+1ξ = T
(1)

kk̄
ξ which is

zero since T (1)

kk̄
= 0. Assuming the induction hypothesis holds for 1 ≤ l+1 ≤ m−2, we

similarly only need to compute the relation Fl,l+1T
(1)
kl ξ = −T (1)

k,l+1ξ, but such is zero by
induction for ˆ︁m+1 ≤ k < l̄−1, whereas T (1)

l̄−1,l+1
ξ = T

(1)

l+1,l+1
ξ = 0.
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For 1 ≤ l ≤ m−2, we observe
[︁
T

(1)ˆ︁m+1,k, T
(1)
kl

]︁
= T

(1)ˆ︁m+1,l for all ˆ︁m+2 ≤ k < l̄; hence,
T

(1)ˆ︁m+1,l ξ = 0 for 1 ≤ l ≤ m−2 by the argument above. Similarly, for such indices we see[︁
T

(1)ˆ︁m+1,l, T
(1)
l,m−1

]︁
= T

(1)ˆ︁m+1,m−1, so T (1)ˆ︁m+1,m−1ξ = 0 as well. We now complete the remainder
of the proof in two steps:

Step 1. By computing
[︁
Tk̄l(v), Tkk̄(u)

]︁
, we use part (ii) of Lemma 3.2.12 to provide

v−u−κ+1

v−u−κ
Tk̄l(v)Tkk̄(u)ξ =

(δk̄l(v−u)−1)(v+α)

v(v−u)
Tkl(u)ξ −

κ(u+α)

u(v−u)(v−u−κ)
Tkl(v)ξ

− 1−δk̄l
v−u−κ

Tll(v)Tl̄ k̄(u)ξ −
1

v−u−κ
∑︂

p∈{1,...,m}\{k̄,l},
M+1≤p≤M+N

θpTpl(v)Tp̄ k̄(u)ξ.

For indices p ∈ {1, . . . ,m} \ {k̄, l}, evaluating
[︁
Tpl(v), Tp̄ k̄(u)

]︁
and using part (ii)

Lemma 3.2.12 will infer the equality

Tpl(v)Tp̄ k̄(u)ξ = Tk̄l(v)Tkk̄(u)ξ −
u+α

u(v−u)
Tkl(v)ξ −

(δk̄l(v−u)−1)(v+α)

v(v−u)
Tkl(u)ξ,

and similarly,

(1−δk̄l)Tll(v)Tl̄ k̄(u)ξ =
(1−δk̄l)(v+α)

v
Tl̄ k̄(u)ξ + (1−δk̄l)Tk̄l(v)Tkk̄(u)ξ

− (1−δk̄l)(u+α)
u(v−u)

Tkl(v)ξ +
(1−δk̄l)(δk̄l(v−u)−1)(v+α)

v(v−u)
Tkl(u)ξ.

Hence, we find that Tk̄l(v)Tkk̄(u)ξ is equal to the expression

(δk̄l(v−u)−1)(v−u−κ+m−1)(v+α)

v(v−u)(v−u−κ+m)
Tkl(u)ξ −

(κ−m+1)(u+α)

u(v−u)(v−u−κ+m)
Tkl(v)ξ

− (1−δk̄l)(v+α)
v(v−u−κ+m)

Tl̄ k̄(u)ξ −
1

u(v−u−κ+m)

M+N∑︂
p=M+1

θpTpl(v)T
(1)

p̄ k̄
ξ,

where we used part (iii) of Lemma 3.2.12 for the terms occurring in the sum. Using the
previous lemma again along with the formula

[︁
T

(1)

p̄ k̄
, Tpl(v)

]︁
= −(−1)[p]θp̄Tkl(v), taking

the residue u = v−κ+m therefore gives

(δk̄l(κ−m)−1)(v+α)

(κ−m)v
Tkl(v−κ+m)ξ +

(κ−m+1)(v+α−κ+m)− (κ−m)N

(κ−m)(v−κ+m)
Tkl(v)ξ

= −(1−δk̄l)(v+α)
v

Tl̄ k̄(v−κ+m)ξ +
1

v(v−κ+m)

M+N∑︂
p=M+1

θpT
(1)

p̄ k̄
T

(1)
pl ξ.
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When k̄ = l, we realize that the coefficient of v−r on the left hand side of such equality
is given by 2T

(r)

kk̄
ξ modEr−2ξ, where E = {Er}r∈N is the filtration defined by (2.2.21).

Therefore, the above equation uniquely determines the action of T (r)

kk̄
ξ by an inductive

argument on r ∈ Z+. In particular, since T (1)

kk̄
= 0, then

[︁
T

(1)

p̄ k̄
, T

(1)

pk̄

]︁
= 0 which gives the

final form. Furthermore, when M is even we observe

Tkk̄(v)ξ =
1

2v(v+α+κ−m)

M+N∑︂
p=M+1

θpT
(1)

p̄ k̄
T

(1)

pk̄
ξ

satisfies the prior equation.

Step 2. Let us now assume k̄ ≠ l for the remainder of the proof. By equation (2.2.18),
we have

∑︁
M+N
p=1 T t

kp(v−κ+m)Tpl(v−2κ+m) = 0. Therefore, by Lemma 3.2.12 and
relations (3.1.2), we deduce

v+α−2κ−N+m

v−2κ+m
Tl̄ k̄(v−κ+m)ξ = −

M∑︂
p=ˆ︁m+1

Tp̄ k̄(v−κ+m)Tpl(v−2κ+m)ξ

− 1

(v−κ+m)(v−2κ+m)

M+N∑︂
p=M+1

θpT
(1)
pl T

(1)

p̄ k̄
ξ

Hence, by combining the above equation with the one in Step 1 and using the relation[︁
T

(1)
pl , T

(1)

p̄k̄

]︁
ξ = θpT

(1)

l̄ k̄
ξ = 0 for M+1 ≤ p ≤M+N , we yield

(κ−m+1)(v+α−κ+m)− (κ−m)N

(κ−m)(v−κ+m)
Tkl(v)ξ −

v+α

(κ−m)v
Tkl(v−κ+m)ξ

− (v−2κ+m)(v+α)

v(v+α−2κ−N+m)

M∑︂
p=ˆ︁m+1

Tp̄ k̄(v−κ+m)Tpl(v−2κ+m)ξ

=
−2κ−N+m

v(v−κ+m)(v+α−2κ−N+m)

M+N∑︂
p=M+1

θpT
(1)

p̄ k̄
T

(1)
pl ξ.

The coefficient of v−r on the left hand side of the above equation can be written as a
sum

∑︁r−1
s=2 c

(s)
kl T

(s)
kl for certain constants c(s)kl ∈ C where c(r−1)kl ̸= 0.

Hence, the above equation uniquely determines the action of T (r)
kl ξ for r ≥ 2

inductively. Since
[︁
T

(1)

p̄ k̄
, T

(1)
pl

]︁
ξ = −θpT (1)

kl ξ = 0 for the indices M+1 ≤ p ≤M+N , we
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get the final form. Furthermore, when M is even we observe

Tkl(v)ξ =
1

2v(v+α+κ−m)

M+N∑︂
p=M+1

θpT
(1)

p̄ k̄
T

(1)
pl ξ

satisfies the prior equation, or equivalently the equation as in Step 1.

We are now in position to prove the proposition.

Proof of Proposition 3.2.11. We shall demarcate the proof in two steps according to
the parity of M .

Step 1. Assume M is even. Considering the subset C ⊂ (Z+)2 defined by the
collection

{︁
(k, l) |M+1 ≤ k ≤M+N, 1 ≤ l ≤ m

}︁
, if ‘⪯’ is any total ordering on the

set {T (1)
kl | (k, l) ∈ C} we claim that

L(λ(u);α, 0) = spanC
{︁
T

(1)
k1l1

· · ·T (1)
krlr

ξ | (ki, li) ∈ C, T
(1)
kili

⪯ T
(1)
ki+1li+1

, r ∈ Z+
}︁
.

Let V denote the span on the right hand side of the above equation. By the irreducibility
of L(λ(u);α, 0) and the PBW Theorem for X(ospM |N ) (see Corollary 2.4.5), it therefore
suffices to show that V is invariant under the action of Tij(u) for (i, j) ∈ BM |N as
in (2.3.15).

Via the relations (3.1.2), we find
[︁
Tkl(u), T

(1)
k′l′

]︁
= −δk̄k′θkTl′l(u) for (k, l), (k′, l′) ∈ C.

Furthermore, since
[︁
Tij(u), T

(1)
kl

]︁
= 0 for indices m+1 ≤ i ≤ M , 1 ≤ j ≤ m and

(k, l) ∈ C, the action of Tkl(u) on each monomial T (1)
k1l1

· · ·T (1)
krlr

ξ in V is given by

(−1)rT
(1)
k1l1

· · ·T (1)
krlr

Tkl(u)ξ +
r∑︂

a=1

(−1)a−1T
(1)
k1l1

· · ·
[︁
Tkl(u), T

(1)
kala

]︁
· · ·T (1)

krlr
ξ,

which is equal to

(−1)rT
(1)
k1l1

· · ·T (1)
krlr

Tkl(u)ξ + θk

r∑︂
a=1

(−1)aδk̄kaT
(1)
k1l1

· · · ˆ︁T (1)
kala

· · ·T (1)
krlr

Tl̄al(u)ξ,

where ˆ︁T (1)
kala

denotes the omitted term. Hence, by part (iii) of Lemma 3.2.12 and
Lemma 3.2.13, we can conclude Tij(u)V ⊆ V for indices M+1 ≤ i ≤M+N , 1 ≤ j ≤ m.
In fact, we observed such is also true for m+1 ≤ i ≤M , 1 ≤ j ≤ m.
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We shall now determine Tij(v)V ⊆ V for m+1 ≤ i ≤ M and M+1 ≤ j ≤ M+N ,
starting with the action of Tij(v) on the vector ξ. Supposing 1 ≤ b ≤ m, parts (i)
and (ii) of Lemma 3.2.12 imply that computing the commutator

[︁
Tbı̄(u), Tb̄j(v)

]︁
gives

the expression

Tbı̄(u)Tb̄j(v)ξ = δ ı̄b
u+α

u
Tij(v)ξ −

1

u(u−v−κ)
T

(1)
ȷ̄ ı̄ ξ −

1

u−v−κ

m∑︂
p=1

Tpı̄(u)Tp̄j(v)ξ.

Evaluating the commutator
[︁
Tpı̄(u), Tp̄j(v)

]︁
for indices 1 ≤ p ≤ m will infer the equality

Tpı̄(u)Tp̄j(v)ξ = (δ ı̄p − δ ı̄b)(1 + αu−1)Tij(v)ξ + Tbı̄(u)Tb̄j(v)ξ, so we deduce

Tbı̄(u)Tb̄j(v)ξ =
1

u(u−v−κ+m)

(︂
(u+α)(δ ı̄b(u−v−κ+m)−1)Tij(v)ξ − T

(1)
ȷ̄ ı̄ ξ
)︂
.

Taking the residue at u = v + κ−m therefore implies

Tij(v)ξ = − 1

v + α + κ−m
T

(1)
ȷ̄ ı̄ ξ.

Furthermore, we observe
[︁
Tij(u), T

(1)
kl

]︁
= −δjkTil(u), so the above discussion establishes

the fact Tij(v)V ⊆ V .

When M+1 ≤ i, j ≤ M+N , we compute
[︁
Tij(u), T

(1)
kl

]︁
= −δjkTil(u) + δ ı̄kθiTl̄j(u)

for (k, l) ∈ C; thus, by part (i) of Lemma 3.2.12 and the prior discussion, we establish
Tij(u)V ⊆ V for such indices M+1 ≤ i, j ≤M+N .

The rest of the proof proceeds by systematically showing Tij(u)V ⊆ V for the
remaining indices (i, j) ∈ BM |N with similar argument, so we shall only outline how to
yield the remaining desired indices.

For indices m+1 ≤ i, j ≤ M , we find
[︁
Tij(u), T

(1)
kl

]︁
= −δȷ̄ lθkTik̄(u) for (k, l) ∈ C;

thus, when M+1 ≤ i ≤ M+N and m+1 ≤ j ≤ M , the commutator
[︁
Tij(u), T

(1)
kl

]︁
is

given by −δ ı̄kθiTl̄j(u)− δȷ̄ lθkTik̄(u), which shows Tij(u)V ⊆ V .

Given 1 ≤ i, j ≤ m, we find
[︁
Tij(u), T

(1)
kl

]︁
= −δilTkj(u) for (k, l) ∈ C, which proves

Tij(u)V ⊆ V .

For indices 1 ≤ i ≤ m and M+1 ≤ j ≤ M+N , one computes
[︁
Tij(u), T

(1)
kl

]︁
to be

δilTkj(u) − δjkTil(u) for (k, l) ∈ C; hence, when we have 1 ≤ i ≤ m, m+1 ≤ j ≤ M ,
then

[︁
Tij(u), T

(1)
kl

]︁
= −δilTkj(u) − δȷ̄ lθkTik̄(u), which therefore shows Tij(u)V ⊆ V for
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the remaining indices. In particular, we establish the equality L(λ(u);α, 0) = V, so
dimL(λ(u);α, 0) ≤ 2mN .

Since Z1ξ = 0, the embedding (2.4.7) equips L(λ(u);α, 0) with a U(ospM |N )-module
structure determined by Fijξ = (−1)[i]T

(1)
ij ξ for 1 ≤ i, j ≤M+N . As established in the

proof, we have the equality U(ospM |N )ξ = L(λ(u);α, 0), so the quotient of L(λ(u);α, 0)
by its maximal ospM |N -submodule will be isomorphic to the irreducible representation
V (λ(1)) of ospM |N with highest weight

λ(1) = (λ
(1)
1 , . . . , λ(1)m , λ

(1)
M+1, . . . , λ

(1)
M+n) = (α, . . . , α⏞ ⏟⏟ ⏞

m

, 0, . . . , 0⏞ ⏟⏟ ⏞
n

).

Since V (λ(1)) is finite-dimensional, the necessary conditions on the highest weight λ(1)

forces the requirement α ∈ 1
2
Z+.

Conversely, suppose α ∈ 1
2
Z+ such that the highest weight µ = (α, . . . , α, 0, . . . , 0)

of the above form makes the irreducible ospM |N -module V (µ) is finite-dimensional. If ζ
denotes the highest weight vector of V (µ), we can compute

V (µ) = spanC
{︁
Fk1l1 · · ·Fkrlrζ | (ki, li) ∈ C, Fkili ⪯ Fki+1li+1

, r ∈ Z+
}︁
,

where C and ‘⪯’ are defined similar to before. In particular, we deduce there is an
isomorphism L(λ(u);α, 0) ∼= V (µ) of ospM |N -modules.

Step 2. Assume M is odd. Recalling the subset C ⊂ (Z+)2 from Step 1, if we
suppose ‘⪯’ is any total ordering on the set {T (1)

kl , T
(1)ˆ︁mb | (k, l) ∈ C, 1 ≤ b ≤ m} such

that T (1)ˆ︁mb ⪯ T
(1)
kl for any indices 1 ≤ b ≤ m and (k, l) ∈ C, we claim that the module

L(λ(u);α, 0) is equal to the following span of ordered monomials:

W := spanC
{︁(︁
T

(1)ˆ︁mb1 · · ·T (1)ˆ︁mbs)︁(︁T (1)
k1l1

· · ·T (1)
krlr

)︁
ξ | 1 ≤ bj ≤ m, (ki, li) ∈ C, s, r ∈ Z+

}︁
,

where T (1)ˆ︁mbj ⪯ T
(1)ˆ︁mbj+1

and T (1)
kili

⪯ T
(1)
ki+1li+1

for 1 ≤ j ≤ s−1, 1 ≤ i ≤ r−1.

The proof is similar to Step 1, where it suffices to show W is invariant under the
action of Tij(u) for (i, j) ∈ BM |N via the irreducibility of L(λ(u);α, 0) and the PBW
Theorem for X(ospM |N).

We note that
[︁
Tˆ︁mb(u), T (1)ˆ︁mb′]︁ = Tb′b(u) for all 1 ≤ b, b′ ≤ m and

[︁
Tˆ︁mb(u), T (1)

kl

]︁
= 0

for (k, l) ∈ C. Since
[︁
Tij(u), T

(1)ˆ︁mb]︁ = 0 =
[︁
Tij(u), T

(1)
kl

]︁
for all ˆ︁m+1 ≤ i ≤M , 1 ≤ l ≤ m,
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we can conclude Tˆ︁mb(u)W ⊆ W and Tij(u)W ⊆ W by part (iii) of Lemma 3.2.12 and
Lemma 3.2.13. Similarly, we can use that

[︁
Tkl(u), T

(1)ˆ︁mb]︁ = 0 for (k, l) ∈ C and the
discussion in Step 1 to infer Tkl(u)W ⊆ W as well.

We shall now determine Tiˆ︁m(v)W ⊆ W for ˆ︁m+1 ≤ i ≤M , starting with the action
of Tiˆ︁m(v) on the vector ξ. Supposing 1 ≤ b ≤ m, Lemma 3.2.12 implies that computing
the commutator

[︁
Tbı̄(u), Tb̄ ˆ︁m(v)]︁ gives the expression

Tbı̄(u)Tb̄ ˆ︁m(v)ξ = δ ı̄b
u+α

u
Tiˆ︁m(v)ξ − 1

u(u−v−κ)
T

(1)ˆ︁mı̄ ξ − 1

u−v−κ

m∑︂
p=1

Tpı̄(u)Tp̄ ˆ︁m(v)ξ.

Evaluating the commutator
[︁
Tpı̄(u), Tp̄ ˆ︁m(v)]︁ for indices 1 ≤ p ≤ m will infer the equality

Tpı̄(u)Tp̄ ˆ︁m(v)ξ = (δ ı̄p − δ ı̄b)(1 + αu−1)Tiˆ︁m(v)ξ + Tbı̄(u)Tb̄ ˆ︁m(v)ξ, so we deduce

Tbı̄(u)Tb̄ ˆ︁m(v)ξ = 1

u(u−v−κ+m)

(︂
(u+α)(δ ı̄b(u−v−κ+m)−1)Tiˆ︁m(v)ξ − T

(1)ˆ︁mı̄ ξ
)︂
.

Taking the residue at u = v + κ−m therefore implies

Tiˆ︁m(v)ξ = − 1

v + α + κ−m
T

(1)ˆ︁mı̄ ξ.
Furthermore, since

[︁
Tiˆ︁m(u), T (1)ˆ︁mb]︁ = Tib(u) for 1 ≤ b ≤ m and

[︁
Tiˆ︁m(u), T (1)

kl

]︁
= 0 for

(k, l) ∈ C, we can establish Tiˆ︁m(v)W ⊆ W .

When M+1 ≤ i ≤ M+N , we compute
[︁
Tiˆ︁m(u), T (1)ˆ︁mb]︁ = Tib(u) for 1 ≤ b ≤ m and[︁

Tiˆ︁m(u), T (1)
kl

]︁
= δ ı̄kθkTl̄ ˆ︁m(u) for (k, l) ∈ C. By part (i) of Lemma 3.2.12 and the above

discussion, we can therefore conclude Tiˆ︁m(v)W ⊆ W for the indices M+1 ≤ i ≤M+N .

Now, for indices ˆ︁m+1 ≤ i ≤M and M+1 ≤ j ≤M+N , we can deploy an identical
argument as in Step 1 to determine the formula Tij(v)ξ = −(v+α+κ−m)−1T

(1)
ȷ̄ ı̄ ξ. In

particular, since
[︁
Tij(u), T

(1)ˆ︁mb]︁ = 0 for 1 ≤ b ≤ m and
[︁
Tij(u), T

(1)
kl

]︁
= −δjkTil(u) for

(k, l) ∈ C, we can establish Tij(u)W ⊆ W .

When M+1 ≤ i, j ≤ M+N , we compute
[︁
Tij(u), T

(1)ˆ︁mb]︁ = 0 for 1 ≤ b ≤ m and[︁
Tij(u), T

(1)
kl

]︁
= −δjkTil(u)+ δ ı̄kθiTl̄j(u) for (k, l) ∈ C; thus, by part (i) of Lemma 3.2.12

and the above, we establish Tij(u)W ⊆ W for such indices M+1 ≤ i, j ≤M+N .

Just as in Step 1, the rest of the proof will proceed by systematically showing the
inclusion Tij(u)W ⊆ W for the remaining indices (i, j) ∈ BM |N with similar argument,
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so we shall only outline how to yield the remaining desired indices.

For indices ˆ︁m+1 ≤ i, j ≤ M , we find
[︁
Tij(u), T

(1)ˆ︁mb]︁ = −δȷ̄bTiˆ︁m(u) for 1 ≤ b ≤ m

and
[︁
Tij(u), T

(1)
kl

]︁
= −δȷ̄ lθkTik̄(u) for (k, l) ∈ C; thus, when M+1 ≤ i ≤ M+N

and ˆ︁m+1 ≤ j ≤ M , we compute
[︁
Tij(u), T

(1)ˆ︁mb ]︁ = −δȷ̄bTiˆ︁m(u) for 1 ≤ b ≤ m and[︁
Tij(u), T

(1)
kl

]︁
= −δ ı̄kθiTl̄j(u)− δȷ̄ lθkTik̄(u) for (k, l) ∈ C, which shows Tij(u)W ⊆ W .

For indices 1 ≤ i, j ≤ m, we find
[︁
Tij(u), T

(1)ˆ︁mb]︁ = −δibTˆ︁mj(u) for 1 ≤ b ≤ m and[︁
Tij(u), T

(1)
kl

]︁
= −δilTkj(u) for (k, l) ∈ C, which proves Tij(u)W ⊆ W .

We compute
[︁
Tˆ︁m ˆ︁m(u), T (1)ˆ︁mb]︁ = Tˆ︁mb(u)+Tb̄ˆ︁m(u) for 1 ≤ b ≤ m and

[︁
Tˆ︁m ˆ︁m(u), T (1)

kl

]︁
= 0

for (k, l) ∈ C; hence, when 1 ≤ i ≤ m, we find
[︁
Tiˆ︁m(u), T (1)ˆ︁mb]︁ = Tib(u)− δibTˆ︁m ˆ︁m(u) for

1 ≤ b ≤ m and
[︁
Tiˆ︁m(u), T (1)

kl

]︁
= 0 for (k, l) ∈ C, showing Tiˆ︁m(u)W ⊆ W

For indices M+1 ≤ i ≤ M+N , we find
[︁
Tˆ︁mi(u), T (1)ˆ︁mb]︁ = Tb̄i(u) for 1 ≤ b ≤ m and[︁

Tˆ︁mi(u), T (1)
kl

]︁
= −δikTˆ︁ml(u) for (k, l) ∈ C; hence, when ˆ︁m+1 ≤ i ≤ M , we compute[︁

Tˆ︁mi(u), T (1)ˆ︁mb]︁ = Tb̄i(u) − δ ı̄bTˆ︁m ˆ︁m(u) for 1 ≤ b ≤ m and
[︁
Tˆ︁mi(u), T (1)

kl

]︁
= −δı̄ lθkTˆ︁mk̄(u)

for (k, l) ∈ C, showing Tˆ︁mi(u)W ⊆ W .

For indices 1 ≤ i ≤ m and M+1 ≤ j ≤ M+N , one computes
[︁
Tij(u), T

(1)
kl

]︁
as δilTkj(u) − δjkTil(u); hence, when we have 1 ≤ i ≤ m, ˆ︁m+1 ≤ j ≤ M , then[︁
Tij(u), T

(1)ˆ︁mb]︁ = −δibTˆ︁mj(u) − δȷ̄bTiˆ︁m(u) for 1 ≤ b ≤ m and
[︁
Tij(u), T

(1)
kl

]︁
is equal to

−δilTkj(u) − δȷ̄ lθkTik̄(u) for (k, l) ∈ C, which therefore shows Tij(u)W ⊆ W for the
remaining indices. In particular, we establish L(λ(u);α, 0) = W .

We recall the action of ospM |N on ξ is determined by Fijξ = (−1)[i]T
(1)
ij ξ for indices

1 ≤ i, j ≤M+N . Similar to Step 1, we have U(ospM |N )ξ = L(λ(u);α, 0), so the quotient
of L(λ(u);α, 0) by its maximal ospM |N -submodule will be isomorphic to the irreducible
representation V (λ(1)) of ospM |N with highest weight λ(1) = (α, . . . , α, 0, . . . , 0) where
the first m many terms are α. If L(λ(u);α, 0) is finite-dimensional, then V (λ(1)) is so
which forces the requirement α ∈ 1

2
Z+.

Conversely, suppose α ∈ 1
2
Z+ is such that the highest weight µ = (α, . . . , α, 0, . . . , 0)

of the above form makes the irreducible ospM |N -module V (µ) be finite-dimensional. If ζ
denotes the highest weight vector of V (µ), we can compute

V (µ) = spanC
{︁(︁
Fˆ︁mb1 · · ·Fˆ︁mbs)︁(︁Fk1l1 · · ·Fkrlr)︁ζ | 1 ≤ bj ≤ m, (ki, li) ∈ C, s, r ∈ Z+

}︁
,

where C and ‘⪯’ is defined similar to before such that Fˆ︁mbj ⪯ Fˆ︁mbj+1
, Fkili ⪯ Fki+1li+1
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for 1 ≤ j ≤ s−1, 1 ≤ i ≤ r−1. In particular, we deduce there is an isomorphism
L(λ(u);α, 0) ∼= V (µ) of ospM |N -modules.

Corollary 3.2.14. Suppose M,N ≥ 2 and let α, β ∈ C such that α ̸= β. When M = 2,
then dimL(λ(u);α, β) ≤ 2N . Otherwise when M ≥ 3, then L(λ(u);α, β) is finite-
dimensional if and only if the irreducible ospM |N -module V (µ) is finite-dimensional,
where

µ = (α− β, . . . , α− β⏞ ⏟⏟ ⏞
m

, 0, . . . , 0⏞ ⏟⏟ ⏞
n

).

Necessarily, α− β ∈ 1
2
Z+. When M is even in this case, then dimL(λ(u);α, β) ≤ 2mN .

3.2.4 Type II fundamental representations

In this subsection, we show that many type II fundamental representations L(λ(u); i : γ)
as in Definition 3.2.9 are finite-dimensional. As noted in the previous subsection, the
pullback of L(λ(u); i : γ) by the shift automorphism τa (2.2.10) will yield a module
τ ∗a (L(λ(u); i : γ)) isomorphic to L(λ(u−a); i : γ−a). In particular, the dimensions of
L(λ(u); i : γ) and L(λ(u−a); i : γ−a) coincide, which means it suffices to prove that
dimL(λ(u); i : γ) <∞ for any γ ∈ C with highest weight λ(u) satisfying the consistency
conditions in Proposition 3.2.1.

We construct two families of representations of X(ospM |N) by tensoring vector
representations of the form (2.3.9) in suitable ways. Before doing so, we construct vector
representations of the Yangian Y(glm|n) that produce highest weight representations
which will be utilized later in the section. As a direct analogue of (2.3.7), there is an
R-matrix representation of Y(glm|n) given by the assignment

Ṙ : Y(glm|n) → EndCm|n, t(u) ↦→ Ṙ(u).

Using the analogues of the superalgebra anti-automorphisms (2.2.12) and (2.2.14) for
Y(glm|n), so one can yield a representation

ϱ̇ : Y(glm|n) → EndCm|n, t(u) ↦→ Ṙ
st1
(−u).
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On the level of power series, such representation takes the form

ϱ̇ : tij(u) ↦→ δij id+
(−1)[i]Eij

u

and we call ϱ̇ the vector representation of Y(glm|n). Finally, postcomposing ϱ̇ with
an analogue of the automorphism τa as in (2.2.10) will result in a representation of
Y(glm|n) given by

ϱ̇a : Y(glm|n) → EndCm|n, t(u) ↦→ Ṙ
st1
(a− u) (3.2.23)

for any a ∈ C. On the level of power series, such representation takes the form

ϱ̇a : tij(u) ↦→ δij id+
(−1)[i]Eij
u− a

.

We call ϱ̇a the vector representation of Y(glm|n) at a ∈ C. For d ∈ Z+, tensoring these
vector representations from levels d−1 to 0 gives rise to a representation of Y(glm|n)
on (CM |N )⊗d called the vector representation of Y(glm|n) from levels d−1 to 0, denoted
ϱ̇(d−1)⇁0 := (

⨂︁d
i=1 ϱ̇d−i) ◦∆d−1 where

ϱ̇(d−1)⇁0 : Y(glm|n) → End(Cm|n)⊗d

t(u) ↦→
∏︂d

i=1
Ṙ
st1
1,i+1((d−i)− u).

(3.2.24)

We shall show that there exists a certain invariant subspace of (Cm|n)⊗d that is a highest
weight representation for the super Yangian.

For any super vector space V , we let ϵ : Sd × V ⊗d → Z2 denote the map defined
by ϵ(σ, v) =

∑︁
(i,j)∈Inv(σ)[vσ(i)][vσ(j)] where v = v1 ⊗ · · · ⊗ vd ∈ V ⊗d is homogeneous

decomposable tensor and Inv(σ) = {(i, j) | i < j, σ(i) > σ(j)} is the set of inversions.
The Koszul sign is defined as the value (−1)ϵ(σ,v). Accordingly, there is a representation
of the symmetric group Sd on V ⊗d via the formula

σ−1 · (v1 ⊗ · · · ⊗ vd) = (−1)ϵ(σ,v)vσ(1) ⊗ · · · ⊗ vσ(d). (3.2.25)

When V = Cm|n, such representation maps a transposition (a b) ∈ Sd with a < b to



124 Chapter 3. Representation Theory of Orthosymplectic Yangians

the operator

Pab =
m+n∑︂
i,j=1

(−1)[j] id⊗(a−1)⊗Eij ⊗ id⊗(b−a−1)⊗Eji ⊗ id⊗(d−b) .

This representation lifts to a corresponding representation of the group algebra CSd

on the same tensor space. Considering the anti-symmetrizer a(d) ∈ CSd given by the
formula a(d) = 1

d!

∑︁
σ∈S(sgnσ)σ, we may consider the image of its action on such tensor

space, denoted A(d)(Cm|n)⊗d, where A(d) is the image of a(d) under the representation
CSd → End(Cm|n)⊗d.

Proposition 3.2.15 (A. Molev). Let m,n ≥ 1. The subspace A(d)(Cm|n)⊗d ⊂ (Cm|n)⊗d

is invariant under the vector representation (3.2.24) of Y(glm|n) from levels d−1 to 0.
Furthermore,

(i) If d ≤ m, setting xd := e1 ⊗ · · · ⊗ ed and ζd := d!A(d)(xd) provides the relations

tij(u)ζd = 0 for

⎧⎨⎩i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . ,m+n} \ {i},

i ∈ {d+1, . . . ,m+n}, j ∈ {d+1, . . . ,m+n} \ {i},

and

tii(u)ζd =

⎧⎨⎩
u+1

u
ζd for 1 ≤ i ≤ d,

ζd for d+1 ≤ i ≤ m+n.

(ii) If d = m+1 and m+1 ≤ k ≤ m+n, setting xm,k := e1 ⊗ · · · ⊗ em ⊗ ek and
ζm,k := (m+1)!A(m+1)(xm,k) provides the relations

tij(u)ζm,k = 0 for

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,m+n} \ {i},

i = k; j ∈ {1, 2, . . . ,m},

i ∈ {m+1, . . . ,m+n}, j ∈ {m+1, . . . ,m+n} \ {i, k},

and

tii(u)ζm,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u+ 1

u
ζm,k for i ∈ {1, 2, . . . ,m},

ζm,k for i ∈ {m+1, . . . ,m+n} \ {k},
u− 1

u
ζm,k for i = k.
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Proof. We refer the reader to Appendix A in [Mol22b] for the original proof of these
results and we shall reproduce an outline of the proof here. By virtue of the fusion
procedure, c.f. [Mol07, §6.4], there is an equality in the space End(Cm|n)⊗(d+1) given by(︄

d∏︂
i=1

Ṙ1,i+1(u+ i−1)

)︄
(id⊗A(d)) = (id⊗A(d))

(︄
id⊗(d+1) −

∑︁d
i=1 P1,i+1

u

)︄
.

Applying (−)st to the first tensor factor of the equation above and substituting u ↦→ −u
will yield the equation(︄

d∏︂
i=1

Ṙ1,d+2−i((d−i)− u)

)︄
(id⊗A(d)) = (id⊗A(d))

(︄
id⊗(d+1) +

∑︁d
i=1 P

st1
1,i+1

u

)︄
.

Considering that the permutation ω ∈ Sd mapping a ↦→ d+1−a for integers 1 ≤ a ≤ d

can be written as ω = (1 d)(2 d−1) · · · (⌈d
2
⌉ ⌊d

2
⌋+1), we can describe its image Pω in

End(Cm|n)⊗d. Multiplying the above equation on the left by id⊗Pω therefore yields(︄
d∏︂
i=1

Ṙ1,i+1((d−i)− u)

)︄
(id⊗A(d)) = (sgnω)(id⊗A(d))

(︄
id⊗(d+1) +

∑︁d
i=1 P

st1
1,i+1

u

)︄

since ωa(d) = (sgnω)a(d).

To prove (i), the above argument shows that

tij(u)ζd = d!A(d)

(︄
δijxd +

(−1)[i]
∑︁d

a=1

(︁
id⊗(a−1)⊗Eij ⊗ id⊗(d−a)

)︁
(xd)

u

)︄
.

Since any decomposable tensor that contains an identical vector in two separate tensor
factors lies in the kernel of A(d), we can conclude tij(u)ζd = 0 for i ∈ {1, 2, . . . , d},
j ∈ {1, 2, . . . ,m+n} \ {i} and i ∈ {d+1, . . . ,m+n}, j ∈ {d+1, . . . ,m+n} \ {i}. More-
over, one can immediately verify tii(u)ζd = (1 + u−1)ζd for 1 ≤ i ≤ d and tii(u)ζd = ζd

for d+1 ≤ i ≤ m+n.

For (ii), the action tij(u)ζm,k is similarly given by

(m+1)!A(m+1)

(︄
δijxm,k +

(−1)[i]
∑︁m+1

a=1

(︁
id⊗(a−1)⊗Eij ⊗ id⊗(m+1−a) )︁(xm,k)

u

)︄
.
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With similar reasoning to before, we can conclude that tij(u)ζm,k = 0 for indices
satisfying either of the conditions i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,m+n}\{i}, or i ∈ {k},
j ∈ {1, 2, . . . ,m}, or i ∈ {m+1, . . . ,m+n}, j ∈ {m+1, . . . ,m+n} \ {i, k}. Further,
we can conclude tii(u)ζm,k = (1 + u−1)ζm,k for i ∈ {1, 2, . . . ,m}, tii(u)ζm,k = ζm,k for
i ∈ {m+1, . . . ,m+n} \ {k}, and tkk(u)ζm,k = (1− u−1)ζm,k.

Corollary 3.2.16 (A. Molev). For d ≤ m, the submodule Y(glm|n)ζd ⊆ A(d)(Cm|n)⊗d

is highest weight with highest weight vector ζd and highest weight λ(u) = (λi(u))
m+n
i=1 ,

where λi(u) = 1 + u−1 for 1 ≤ i ≤ d and λi(u) = 1 for d+1 ≤ i ≤ m+n.

Similarly, Y(glm|n)ζm,m+1 ⊆ A(m+1)(Cm|n)⊗(m+1) is a highest weight module with
highest weight vector ζm,m+1 and highest weight λ(u) = (λi(u))

m+n
i=1 , where λi(u) = 1+u−1

for 1 ≤ i ≤ m, λm+1(u) = 1− u−1, and λi(u) = 1 for m+2 ≤ i ≤ m+n.

We shall now assume m =
⌊︁
M
2

⌋︁
, ˆ︁m =

⌈︁
M
2

⌉︁
, and n = N

2
for the remainder of the

section. We recall the vector representation (2.3.9) of X(ospM |N ) on CM |N at level a ∈ C
defined by ϱa : T (u) ↦→ Rst(a− u). On the level of power series, such representation is
given by

ϱa : Tij(u) ↦→ δij id+
(−1)[i]Eij
u− a

− (−1)[i][j]θiθjE ȷ̄ ı̄

u+ κ− a
, where ϱ = ϱ0,

and we shall let the juxtaposition Tij(u)v for v ∈ CM |N denote the action ϱ(Tij(u))v.
A notable property for the vector representation is that

ϱ(Tij(−u− κ− c)) = (−1)[i][j]+[j]θiθj ϱ(Tȷ̄ ı̄(u+ c)) for any c ∈ C.

Tensoring these vector representations from levels 0 to 1−d gives rise to a represen-
tation of X(ospM |N) on (CM |N)⊗d called the vector representation of X(ospM |N) from
levels 0 to 1−d, denoted ϱ0⇁(1-d) := (

⨂︁d−1
i=0 ϱ-i) ◦∆d−1, and written

ϱ0⇁(1-d) : X(ospM |N) → End(CM |N)⊗d

T (u) ↦→
∏︂d

i=1
Rst1

1,i+1((1−i)− u).
(3.2.26)

Letting {ei}M+N
i=1 denote the standard basis for CM |N with Z2-grade [ei] = [i], any integer
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1 ≤ d ≤ m gives rise to the element

ξd :=
∑︂
σ∈Sd

(sgnσ)eσ(1) ⊗ eσ(2) ⊗ · · · ⊗ eσ(d) ∈ (CM |N)⊗d

and we claim that ξd generates a highest weight module over X(ospM |N).

Proposition 3.2.17. Suppose M ≥ 2. Given 1 ≤ d ≤ m, ξd ∈ (CM |N)⊗d, and the
module action (3.2.26) on (CM |N)⊗d, the X(ospM |N)-submodule generated by ξd is a
highest weight module with highest weight vector ξd and highest weight (λk(u))M+N

k=1 given
by

λk(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u+ d

u+ d− 1
if 1 ≤ k ≤ d,

u+ κ− 1

u+ κ
if M−d+1 ≤ k ≤M,

1 otherwise.

(3.2.27)

The quotient of X(ospM |N)ξd by its maximal submodule will be isomorphic to L(λ(u))
with dimL(λ(u)) < ∞. When d < m, then L(λ(u)) will be the type II fundamental
representation L(λ(u); d : d−1). Otherwise when d = m and N ≥ 2, then L(λ(u)) will
be the type I fundamental representation L(λ(u);m,m−1).

Proof. Let us consider how Tij(u) acts on tensor products ep1 ⊗ · · · ⊗ epd of even
basis vectors ep1 , . . . , epd of CM |N with indices satisfying 1 ≤ p1, . . . , pd ≤ m. Since
ϱ−a(Tij(u)) = ϱ(Tij(u+ a)) for any a ∈ C, such action is described by the formula

Tij(u)(ep1 ⊗ · · · ⊗ epd)

=
M+N∑︂

a1,...,ad−1=1

Tia1(u)ep1 ⊗ Ta1a2(u+ 1)ep2 ⊗ · · · ⊗ Tad−1j(u+ (d−1))epd .

(3.2.28)

With suitable restrictions on the index i, many of the terms in the above sum will be
zero. In particular, the summation indices a1, . . . , ad−1 in the formula (3.2.28) can be
restricted to 1 ≤ a1, . . . , ad−1 ≤ m when 1 ≤ i ≤ ˆ︁m or restricted to 1 ≤ a1, . . . , ad−1 ≤ m

and M+1 ≤ a1, . . . , ad−1 ≤M+N when M+1 ≤ i ≤M+N .

In particular, we can conclude Tij(u)(ep1 ⊗ · · · ⊗ epd) = 0 for indices (i, j) lying
in Γ0,1 ∪ Γ1,0 ∪ Γ1,1 and those (i, j) ∈ Γ0,0 such that 1 ≤ i ≤ ˆ︁m and m+1 ≤ j ≤ M .
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Moreover, for indices M+1 ≤ i = j ≤M+N , and i = j = ˆ︁m when M is odd, we have
Tii(u)(ep1 ⊗ · · · ⊗ epd) = ep1 ⊗ · · · ⊗ epd , so (3.2.27) is verified for these specified indices.

It remains to determine the action Tij(u)ξd for indices satisfying 1 ≤ i ≤ j ≤ m

and ˆ︁m+1 ≤ i ≤ j ≤M . Similar to before, we observe that restricting ˆ︁m+1 ≤ j ≤M

infers that the summation indices a1, . . . , ad−1 in the formula (3.2.28) can be limited
to ˆ︁m+1 ≤ a1, . . . , ad−1 ≤ M . Allowing ω ∈ Sd to denote the involutive permutation
ω : a ↦→ d+1−a for integers 1 ≤ a ≤ d, we set Pω to denote its image under the
representation CSd → End(CM |N)⊗d described by the action (3.2.25).

When 1 ≤ i, j ≤ m, the restrictions on the indices a1, . . . , ad−1 along with the
property ϱ(Tij(−u− κ− c)) = ϱ(Tȷ̄ ı̄(u+ c)) infers that the conjugation of the action of
Tij(−u− κ− (d−1)) with Pω on tensor products of even basis vectors ep1 ⊗ · · · ⊗ epd
of CM |N with 1 ≤ p1, . . . , pd ≤ m can be described by the formula

(︁
Pω · Tij(−u− κ− (d−1)) · Pω

)︁
(ep1 ⊗ · · · ⊗ epd) = Tȷ̄ ı̄ (u)(ep1 ⊗ · · · ⊗ epd).

The above relation shows that the action of Tij(−u − κ − (d−1)) on ξd for indices
1 ≤ i, j ≤ m determines the action of Tȷ̄ ı̄ (u) on ξ. In particular, when 1 ≤ i, j ≤ m,
the action (3.2.28) takes the same form as its Y(glm)-counterpart as in [AMR06, §5.3];
hence, Tij(u)ξd = 0 is true for 1 ≤ i < j ≤ m, so Tij(u)ξd = 0 for all (i, j) ∈ Λ+.

Moreover, the Y(glM) case implies the formula (3.2.27) for values 1 ≤ k ≤ m. To
yield the remaining relations for m+1 ≤ k ≤M , we use Pω(ξd) = (sgnω)ξd to get

Tkk(u)ξd =
(︁
Pω · Tk̄k̄(−u− κ− (d−1)) · Pω

)︁
ξd =

u+ κ− 1

u+ κ
ξd.

Thus, the irreducible quotient X(ospM |N )ξd/M by its maximal submodule M will be a
finite-dimensional highest weight representation with highest weight vector ξd modM
and highest weight λ(u) =

(︁
λk(u)

)︁
M+N
k=1 , where λk(u)ξd = Tkk(u)ξd as in (3.2.27). The

Drinfel’d polynomial relations can be verified directly.

We shall now construct another family of representations of X(ospM |N); however,
these constructions will not give rise to type II fundamental representations unless
M = 2. Nonetheless, we provide the general framework in hope that the following
constructions can be used or modified to generate the the remaining type II fundamental
representations when M ≥ 3 in future research.
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We assume M ≥ 2 for the remainder of the subsection. For M+1 ≤ k ≤ M+N ,
along with k = ˆ︁m when M is odd, we define the element

wk :=
∑︂

σ∈Sk
m+1

(sgnσ)eσ(1) ⊗ · · · ⊗ eσ(m) ⊗ eσ(k) ∈ (CM |N)⊗(m+1), (3.2.29)

where Sk
m+1 is the symmetric group on the symbols {1, . . . ,m} ∪ {k}. Recalling the

vector representation of X(ospM |N) at level a ∈ C given by ϱa : T (u) ↦→ Rst1(a − u),
see (2.3.9), we can tensor these representations from levels m to 0, which we denote
ϱm⇁0 := (

⨂︁m
i=0 ϱm−i) ◦∆m−1, to yield the representation

ϱm⇁0 : X(ospM |N) → End(CM |N)⊗(m+1)

T (u) ↦→
∏︂d

i=1
Rst1

1,i+1((m−i)− u).
(3.2.30)

We now consider how the above representation acts on the elements (3.2.29).

Lemma 3.2.18. Given integers M+1 ≤ k ≤ M+N , wk ∈ (CM |N)⊗(m+1), and the
module action (3.2.30), we have the following relations:

(i) Tij(u)wk = 0 for any indices 1 ≤ i, j ≤M+N satisfying

i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,M+N} \ {i};

i ∈ {ˆ︁m}, j ∈ {ˆ︁m+1, . . . ,M+N} \ {k}; i ∈ {k}, j ∈ {1, 2, . . . ,m};

i ∈ {ˆ︁m+1, . . . ,M+N}, j ∈ {ˆ︁m+1, . . . ,M} \ {i};

i ∈ {M+1, . . . ,M+N} \ {k̄}, j ∈ {m+1, . . . ,M};

i ∈ {M+1, . . . ,M+N} \ {k̄}, j ∈ {M+1, . . . ,M+N} \ {i, k}.

(ii) Tii(u)wk is an element in C[[u−1]]wk as described by

Tii(u)wk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u+ 1

u
wk if i ∈ {1, 2, . . . ,m},

u+ κ−m− 1

u+ κ−m
wk if i ∈ {ˆ︁m+1, . . . ,M},

u− 1

u
wk if i = k,

wk otherwise.
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Proof. We will consider how Tij(u) acts on decomposable tensors whose components are
comprised of ek and m even basis vectors ep1 , . . . , epm of CM |N with indices satisfying
1 ≤ p1, . . . , pm ≤ m. Since ϱa(Tij(u)) = ϱ(Tij(u−a)) for a ∈ C, such action is described
by the formula

Tij(u)(ep1 ⊗ · · · eps−1 ⊗ ek ⊗ eps ⊗ · · · ⊗ epm)

=
M+N∑︂

a1,...,am=1

(−1)(1+δs−1,m)([as]+[j])[k]Tia1(u−m)ep1 ⊗ · · · (3.2.31)

· · · ⊗ Tas−1as(u−(m+1−s))ek ⊗ · · · ⊗ Tamj(u)epm .

With suitable restriction on the index i, many of the terms in the above sum will be zero.
In particular, when 1 ≤ i ≤ ˆ︁m or M+1 ≤ i ≤M+N such that ı̄ ̸= k, the summation
indices a1, . . . , am in the formula (3.2.31) can be restricted to 1 ≤ a1, . . . , am ≤ m and
M+1 ≤ a1, . . . , am ≤M+N . Thus, we have

Tii(u)wk = wk for

⎧⎨⎩i = ˆ︁m when M is odd,

i ∈ {M+1, . . . ,M+N} \ {k, k̄}.

If one further assumes i ̸= j, then the summation (3.2.31) can be written as

s−1∑︂
r=1

m∑︂
ar=1

m∑︂
t=s

(︁ m∑︂
at=1

+
∑︂

at=···=as=k,
1≤at+1,...,am≤m

)︁
(−1)(1+δs−1,m)([as]+[j])[k]Tia1(u−m)ep1 ⊗ · · ·

· · · ⊗ Tas−1as(u−(m+1−s))ek ⊗ · · · ⊗ Tamj(u)epm ,

so we can deduce

Tij(u)wk = 0 for

⎧⎨⎩i ∈ {1, 2, . . . , ˆ︁m}, j ∈ {ˆ︁m+1, . . . ,M+N} \ {k},

i ∈ {M+1, . . . ,M+N}\{k̄}, j ∈ {m+1, . . . ,M+N}\{i, k}.

When 1 ≤ i ≤ ˆ︁m or M+1 ≤ i ≤ M+n, restraining M+1 ≤ k ≤ M+n allows
the summation indices a1, . . . , am in the formula (3.2.31) to be restricted further to
1 ≤ a1, . . . , am ≤ m and M+1 ≤ a1, . . . , am ≤M+n. Hence, under the embedding

ν : Y(glm|n) → X(ospM |N), tij(u) ↦→ Tν(i)ν(j)(u),

where ν(i) = i for 1 ≤ i ≤ m and ν(i) = ˆ︁m+i for m+1 ≤ i ≤ m+n, the map
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ei ↦→ eν(i) induces a Y(glm|n)-module isomorphism Y(glm|n)ζm,k ∼= Y(glm|n)wk for
indices M+1 ≤ k ≤M+n.

Alternatively, when 1 ≤ i ≤ ˆ︁m or M+n+1 ≤ i ≤ M+N , restraining the index
M+n+1 ≤ k ≤M+N permits the summation indices a1, . . . , am in the formula (3.2.31)
to be restricted further to 1 ≤ a1, . . . , am ≤ m and M+n+1 ≤ a1, . . . , am ≤ M+N .
Hence, under another embedding

ν ′ : Y(glm|n) → X(ospM |N), tij(u) ↦→ Tν′(i)ν′(j)(u),

where ν ′(i) = i for 1 ≤ i ≤ m and ν ′(i) = ˆ︁m+n+i for m+1 ≤ i ≤ m+n, the
map ei ↦→ eν′(i) induces a Y(glm|n)-module isomorphism Y(glm|n)ζm,k ∼= Y(glm|n)wk

for indices M+n+1 ≤ k ≤ M+N . Therefore, via these two embeddings and the
calculations performed earlier in the proof, we can conclude

Tij(u)wk = 0 for

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,M+N} \ {i},

i = ˆ︁m; j ∈ {ˆ︁m+1, . . . ,M+N} \ {k},

i = k; j ∈ {1, 2, . . . ,m},

i ∈ {M+1, . . . ,M+N}\{k̄}, j ∈ {m+1, . . . ,M+N}\{i, k}.

along with

Tii(u)wk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u+ 1

u
wk if i ∈ {1, 2, . . . ,m},

wk if i = ˆ︁m and M is odd,

wk if i ∈ {M+1, . . . ,M+N} \ {k},
u− 1

u
wk if i = k.

Let us now derive the the remaining relations. Assuming ˆ︁m+1 ≤ j ≤ M allows the
summation indices a1, . . . , am to be restricted to ˆ︁m+1 ≤ a1, . . . , am ≤ M+N . In
particular, we can write the sum (3.2.31) as

m∑︂
r=s

M∑︂
ar=ˆ︁m+1

s−1∑︂
t=1

(︁ M∑︂
at=ˆ︁m+1

+
∑︂

at=···=as−1=k̄,ˆ︁m+1≤a1,...,at−1≤M

)︁
(−1)(1+δs−1,m)([as]+[j])[k]Tia1(u−m)ep1 ⊗ · · ·

· · · ⊗ Tas−1as(u−(m+1−s))ek ⊗ · · · ⊗ Tamj(u)epm .
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Letting ω ∈ Sm+1 denote the involutive permutation ω : a ↦→ m+2−a for integers
1 ≤ a ≤ m+1, we set Pω to denote its image under the algebra representation
CSm+1 → End(CM |N)⊗(m+1) described by the action (3.2.25). If ˆ︁m+1 ≤ i ≤M+N

and ˆ︁m+1 ≤ j ≤M , the restrictions on the indices a1, . . . , ad−1 along with the property
ϱ(Tij(−u − κ − c)) = (−1)[i][j]+[j]θiθjϱ(Tȷ̄ ı̄(u + c)) infers that the conjugation of the
action of Tij(−u− κ− (d−1)) with Pω on wk can be described by the formula

(︁
Pω · Tij(u) · Pω

)︁
wk = θiTȷ̄ ı̄ (−u−κ+m)wk

Hence, for such indices ˆ︁m+1 ≤ i ≤ M+N , ˆ︁m+1 ≤ j ≤ M satisfying i ̸= j, we use
the fact that P 2

ω = id⊗(m+1) to compute Tij(u)wk = 0, yielding the remaining relations
for (i). Furthermore, when ˆ︁m+1 ≤ i ≤M one computes

Tii(u)wk = (sgnω)
(︁
Tii(u) · Pω

)︁
wk =

−u−κ+m+1

−u−κ+m
wk =

u+κ−m−1

u+κ−m
wk

which establishes the remaining relations for (ii).

Allowing Ṫ ij(u) to denote a generating series for the extended Yangian X(osp0|N)

and T́ ij(u) to denote a generating series for the extended Yangian X(osp1|N), we have
the following proposition:

Proposition 3.2.19. Suppose M,N ≥ 2 and let W be the subspace of the X(ospM |N)-
module (CM |N)⊗(m+1) spanned by the elements wk for M+1 ≤ k ≤ M+N , and let
W ′ := W ⊕ Cwˆ︁m. Then:

(i) When M is even, the subspace W is invariant under the operators Tij(u) for
i, j ∈ {M+1, . . . ,M+N}. Furthermore, the assignment Ṫ ij(u) ↦→ Tν(i)ν(j)(u)

where ν(i) =M+i for 1 ≤ i ≤ N , equips W with an X(osp0|N)-module structure
isomorphic to the vector representation C0|N as in (2.3.8).

(ii) When M is odd, the subspace W ′ is invariant under the operators Tij(u) for
i, j ∈ {ˆ︁m,M+1, . . . ,M+N}. Furthermore, the assignment T́ ij(u) ↦→ Tν(i)ν(j)(u)

where ν(1) = ˆ︁m and ν(i) = M−1 + i for 2 ≤ i ≤ 1+N equips W ′ with
an X(osp1|N)-module structure isomorphic to the vector representation C1|N as
in (2.3.8).
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Proof. (i) Let us set V = (CM |N )⊗(m+1) and write F+
M to denote restriction functor F+ in

Proposition 3.1.9. Applying the composition F+
2 ◦· · ·◦F+

M−2◦F
+
M to the representation V

yields an X(osp0|N)-module, denoted V
∑︁

m+. By Proposition 3.1.6 and Lemma 3.2.18,
the subspace W is contained in V

∑︁
m+. We will now prove that the action of X(osp0|N )

on W is determined by the formula

Tij(u)wk = δijwk −
δjk
u
wi +

δ ı̄k θiθj
u+ κ−m

w ȷ̄

for indices M+1 ≤ i, j ≤M+N which will finish the proof. For ease of computations,
we shall write wk =

∑︁m+1
a=1 (−1)m+1−af

[a]
k =

∑︁m
a=0(−1)af

[m+1−a]
k where

f
[a]
k :=

∑︂
σ∈Sm

(sgnσ)eσ(1) ⊗ · · · ⊗ eσ(a−1) ⊗ ek ⊗ eσ(a) ⊗ · · · ⊗ eσ(m).

Assuming M+1 ≤ i, j ≤M+N , one can compute the following for 0 ≤ a ≤ m:

Tij(u)f
[m+1−a]
k = δijf

[m+1−a]
k − δjk

u−a
f
[m+1−a]
i +

δjk(−1)[a]

(u−a−1)(u−a)

m∑︂
s=a+1

(−1)sf
[m+1−s]
i

+
δ ı̄k θiθj
u+κ−a

f
[m+1−a]
ȷ̄ +

δ ı̄k θiθj(−1)[a]

(u+κ−a)(u+κ−a+1)

a−1∑︂
s=1

(−1)sf
[m+1−s]
ȷ̄ ,

so either δij, δjk, or δ ı̄k occurs in each term of the expression Tij(u)wk. Writing

Tij(u)wk =
m∑︂
a=0

(−1)aTij(u)f
[m+1−a]
k ,

we see that the coefficient of δij in Tij(u)wk is wk. Furthermore, we find that the
coefficient of f [m+1−a]

i in Tij(u)wk is given by

− δjk(−1)a

(︄
1

u− a
−

a−1∑︂
s=0

1

(u− s− 1)(u− s)

)︄
= δjk(−1)au−1,

so the coefficient of δjk in Tij(u)wk is given by −δjku−1wi. Similarly, we find that the
coefficient of f [m+1−a]

ȷ̄ in Tij(u)wk is given by

δ ı̄k θiθj(−1)a

(︄
1

u+ κ− a
+

m∑︂
s=a+1

1

(u+ κ− s)(u+ κ− s+ 1)

)︄
=
δ ı̄k θiθj(−1)a

u+ κ−m
,
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so the coefficient of δ ı̄k in Tij(u)wk is given by δ ı̄k θiθj(u+ κ−m)−1w ȷ̄.

Therefore, the subspace W is invariant under the action of X(osp0|N) and there is
an X(osp0|N)-module isomorphism W ∼= C0|N given via the assignment wk ↦→ ek−M ,
where κ0,N = κM,N−m = κ−m since M is even.

(ii) Similar to the proof of (i), applying the composition F+
3 ◦ · · · ◦F+

M−2 ◦F
+
M to the

representation V = (CM |N )⊗(m+1) yields an X(osp1|N )-module V
∑︁

m+. Proposition 3.1.6
and Lemma 3.2.18 shows that the subspace W ′ is contained in V

∑︁
m+ and the action of

X(osp1|N) on W ′ can be similarly determined to have the form

Tij(u)wk = δijwk +
δjk(−1)[i]

u
wi −

δ ı̄k θiθj(−1)[i][j]

u+ κ−m
wȷ̄

for indices i, j ∈ {ˆ︁m,M+1, . . . ,M+N}. Hence, there is an X(osp1|N)-module iso-
morphism W ′ ∼= C1|N given via the assignment wˆ︁m ↦→ e1 and wk ↦→ ek+1−M for
M+1 ≤ k ≤M+N , where κ1,N = κM,N−m = κ−m since M is odd.

For 1 ≤ d ≤ n, we now construct new representations of X(ospM |N) by composing
the representation ϱm⇁0 (3.2.30) with the shift automorphism τa (2.2.10) for each of
the values a = 0, 1, . . . , d−1. Tensoring together these resulting representations gives

χ0⇁(d−1) := (
⨂︁d−1
i=0 ϱm⇁0 ◦ τi) ◦∆d−1 : X(ospM |N) → End(CM |N)⊗(m+1)d. (3.2.32)

Further, for integers 1 ≤ d ≤ n we consider the element

ξd =
∑︂

σ∈ˆ︁Sd

(sgnσ)wσ(M+1) ⊗ · · · ⊗ wσ(M+d) ∈ (CM |N)⊗(m+1)d,

where ˆ︁Sd is the symmetric group on the symbols {M+1, . . . ,M+d}. Furthermore, we
let

ϱ̇ : X(osp0|N) → EndW and ϱ′ : X(osp1|N) → EndW ′

denote the representations as described in Proposition 3.2.19. Similarly, we may compose
these representations with their respective the shift automorphisms τa for each of the
values a = 0, 1, . . . , d−1. Tensoring together these resulting representations gives
ϱ̇0⇁(d−1) := (

⨂︁d−1
i=0 ϱ̇ ◦ τi) ◦∆d−1 and ϱ′0⇁(d−1) := (

⨂︁d−1
i=0 ϱ

′ ◦ τi) ◦∆d−1:

ϱ̇0⇁(d−1) : X(osp0|N) → EndW⊗d and ϱ′0⇁(d−1) : X(osp1|N) → End(W ′)⊗d.
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Proposition 3.2.20. Suppose M,N ≥ 2. Given 1 ≤ d ≤ n, ξd ∈ (CM |N)⊗(m+1)d, and
the action (3.2.32) on the space (CM |N)⊗(m+1)d, the X(ospM |N)-submodule generated
by ξd is a highest weight module with highest weight vector ξd and highest weight
µ(u) = (µk(u))

M+N
k=1 given by

µk(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u+ 1

u− d+ 1
if 1 ≤ k ≤ m,

u+ κ−m− d

u+ κ−m
if ˆ︁m+1 ≤ k ≤M,

u− d

u− d+ 1
if M+1 ≤ k ≤M+d,

u− κ+m+ 1

u− κ+m
if M+N−d+1 ≤ k ≤M+N,

1 otherwise.

(3.2.33)

The quotient of X(ospM |N)ξd by its maximal submodule will be isomorphic to L(µ(u))
with dimL(µ(u)) < ∞. Its first two Drinfel’d polynomials are ˜︁Q(u) = u+1 and
Q(u) = u−d.

When d < n, the remaining Drinfel’d polynomials are PM+d(u) = u−d+1 and
Pk(u) = 1 for all k ∈ I \ {M+d}. Otherwise when d = n, then PM+n(u) = u−n when
M is odd or PM+n(u) = u−n+2 when M is even, with Pk(u) = 1 for all k ∈ I\{M+n}.

Proof. For now, we will consider how Tij(u) acts on tensor products wp1 ⊗ · · · ⊗ wpd of
the elements (3.2.29) with indices satisfying M+1 ≤ p1, . . . , pd ≤M+d. Such action is
described by the formula

Tij(u)(wp1 ⊗ · · · ⊗ wpd)

=
M+N∑︂

a1,...,ad−1=1

(−1)(d-1)[j]+
∑︁d−1

i=1 [ai]Tia1(u)wp1 ⊗ Ta1a2(u− 1)wp2 ⊗ · · · (3.2.34)

· · · ⊗ Tad−1j(u− (d−1))wpd .

Using the relations described in Lemma 3.2.18, one can show Tij(u)(wp1 ⊗· · ·⊗wpd) = 0

for indices (i, j) ∈ Γ0,0 ∪ Γ0,1 ∪ Γ1,0 and Tkk(u)(wp1 ⊗ · · · ⊗wpd) = λk(u)(wp1 ⊗ · · · ⊗wpd)

for indices 1 ≤ k ≤M where λk(u) is as described in (3.2.33).

Assuming M is even and M+1 ≤ i, j ≤ M+N , Lemma 3.2.18 shows that the
indices in (3.2.34) can be restricted to M+1 ≤ a1, . . . , ad−1,≤ M+N . Moreover,
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since ξd ∈ W⊗d, there is an equality χ0⇁(d−1)(Tij(u))ξd = ϱ̇0⇁(d−1)(Ṫ ν−1(i)ν−1(j)(u))ξd.
Thus, by the X(osp0|N)-module isomorphism C0|N ∼= W , ek ↦→ wM+k and the algebra
isomorphism X(spN) ∼= X(osp0|N),Tij(−u) ↦→ Ṫ ij(u), one can use the properties of the
vector representation of X(spN ) as in [AMR06, Theorem 5.16] to conclude Tij(u)ξd = 0

for (i, j) ∈ Γ1,1 and Tkk(u)ξd = λk(u)ξd for the remaining indices M+1 ≤ k ≤M+N .

Similarly, when M is odd and i, j ∈ {ˆ︁m,M+1, . . . ,M+N}, Lemma 3.2.18 shows
that the indices in (3.2.34) can be restricted to a1, . . . , ad−1 ∈ {ˆ︁m,M+1, . . . ,M+N}.
Furthermore, as ξd ∈ (W ′)⊗d, then χ0⇁(d−1)(Tij(u))ξd = ϱ′0⇁(d−1)(T́ (ν′)−1(i)(ν′)−1(j)(u))ξd.
Thus, by the X(osp1|N)-module isomorphism C1|N ∼= W ′ and the superalgebra isomor-
phism Xd(osp1|N) ∼= X(osp1|N) where d = {n+1}, one can use the properties of the
vector representation of Xd(osp1|N) as in [Mol23b, § 3] to conclude Tij(u)ξd = 0 for
(i, j) ∈ Γ1,1 and Tkk(u)ξd = λk(u)ξd for the remaining indices M+1 ≤ k ≤M+N .

3.2.5 Classification conjectures

In this final subsection, we formulate conjectures for the classifications of the sets
Repirr

fd (X(ospM |N))/∼ and Repirr
fd (Y(ospM |N))/∼, which will be stated shortly. We note

that the much of the style and argumentation in this subsection mirrors that given
in [Wen19, §4.1]. At the end of the subsection, we will also see examples of infinite-
dimensional irreducible representations of X(ospM |N ) that arise from spinor representa-
tions of ospM |N which demonstrates how such conjectures do not extend beyond the
finite-dimensional setting.

Supposing M,N ≥ 2, we recall the map

℧ : Repirr
fd (X(ospM |N))/∼ →

{︁
(Bk(u))

m+n+1
k=1 ∈ C[u]2cp,ed×C[u]m+n−1 |Bk(u) is monic

}︁
L(λ(u)) ↦→ ( ˜︁Q(u), Q(u); (Pk(u))k∈I)

and remember such map is not injective: ℧(L(λ(u))) = ℧(L(µ(u))) if and only if there
exists a series f(u) ∈ 1+u−1C[[u−1]] such that µ(u) = f(u)λ(u).

In Corollary 3.2.14, it is established that the type I fundamental representation
L(λ(u);α, β) is finite-dimensional if and only if α − β ∈ O, where O is a certain
non-trivial subset of 1

2
Z+. Accordingly, we let C[u]2O,ed denote the subset of C[u]2

described by pairs of polynomials (B1(u), B2(u)) that have equal degree and can be
written as B1(u) = c

∏︁n
i=1(u−αi) and B2(u) = d

∏︁n
i=1(u−βi) such that c, d ∈ C∗ and
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αi − βi ∈ O ⊆ 1
2
Z+ for each 1 ≤ i ≤ n.

When M ≥ 3, we conjecture that Theorem 3.2.8 can be refined to establish that
the Drinfel’d polynomials ˜︁Q(u) and Q(u) satisfy ( ˜︁Q(u), Q(u)) ∈ C[u]2O,ed. In this case,
we assert there exists a well-defined map

℧O : Repirr
fd (X(ospM |N))/∼ →

{︁
(Bk(u))

m+n+1
k=1 ∈ C[u]2O,ed×C[u]m+n−1 |Bk(u) is monic

}︁
L(λ(u)) ↦→ ( ˜︁Q(u), Q(u); (Pk(u))k∈I)

and that ℧O(L(λ(u))) = ℧O(L(µ(u))) if and only if there exists f(u) ∈ 1+u−1C[[u−1]]
such that µ(u) = f(u)λ(u).

Conjecture 3.2.21. The map ℧O is a surjective function.

In the following, let φλ(u) denote the morphism X(ospM |N) → EndL(λ(u)), and
recall the central series Y(u) defined by (2.4.4). We therefore have the following
conjecture for the classification for the set Repirr

fd (X(ospM |N))/∼:

Conjecture 3.2.22. Suppose M ≥ 3, N ≥ 2. The isomorphism classes of finite-
dimensional irreducible representations of the extended Yangian X(ospM |N) are para-
metrized by tuples

(f(u); (Bk(u))
m+n+1
k=1 ) ∈ (1+u−1C[[u−1]])× C[u]2O,ed × C[u]m+n−1,

where the polynomials (Bk(u))
m+n+1
k=1 are monic. The underlying correspondence ℧X is

given by
℧X

(︁
L(λ(u))

)︁
= (f(u); ˜︁Q(u), Q(u); (Pk(u))k∈I),

where f(u) ∈ 1 + u−1C[[u−1]] is the unique series such that µ∗f φλ(u)(Y(u)) = id and
( ˜︁Q(u), Q(u); (Pk(u))k∈I) are the Drinfel’d polynomials corresponding to L(λ(u)) under
the map ℧O.

Proof. We first show the map ℧X is well-defined. Assuming dimL(λ(u)) < ∞, the
irreducibility of L(λ(u)) implies that the central series Y(u) acts by a scalar series
y(u) ∈ 1 + u−1C[[u−1]]. However, as shown in the proof of Theorem 2.4.7, there is an
equality µh(Y(u)) = h(u)Y(u) for all h(u) ∈ 1 + u−1C[[u−1]]; thus, f(u) = y(u)−1 is the
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unique series satisfying (φλ(u) ◦ µf )(Y(u)) = id. Furthermore, since µ∗hφλ(u) ∼= φh(u)λ(u)

for all h(u) ∈ 1 + u−1C[[u−1]], there is the assignment

℧X : L(h(u)λ(u)) ↦→ (h(u)−1y(u)−1; ˜︁Q(u), Q(u); (Pk(u))k∈I).
The surjectivity of ℧X follows from the surjectivity of ℧O, so we can associate a
finite-dimensional representation L(λ(u)) to any tuple ( ˜︁Q(u), Q(u); (Pk(u))k∈I) sat-
isfying the appropriate conditions. In particular, ℧X maps L(f(u)−1y(u)−1λ(u)) to
(f(u); ˜︁Q(u), Q(u); (Pk(u))k∈I) for any f(u) ∈ 1 + u−1C[[u−1]].

For injectivity, ℧X(L(λ(u))) = ℧X(L(µ(u))) infers ℧O(L(λ(u))) = ℧O(L(µ(u))), im-
plying µ(u) = h(u)λ(u) for some series h(u) ∈ 1+u−1C[[u−1]]. However, h(u)−1y(u)−1 =
y(u)−1 if and only if h(u) = 1.

Shifting our attention to the representation theory of Y(ospM |N), we note the
projection εY : X(ospM |N) ↠ Y(ospM |N), T (u) ↦→ T (u) induces the pullback functor

ε∗Y : Rep(Y(ospM |N)) → Rep(X(ospM |N)),

while the embedding ιY : Y(ospM |N) ↪→ X(ospM |N), T (u) ↦→ Y(u)−1T (u) gives rise to
another pullback functor

ι∗Y : Rep(X(ospM |N)) → Rep(Y(ospM |N)).

Since εY (Y(u)) = 1, one can readily verify ι∗Y ◦ ε∗Y = 1. In fact, for those representa-
tions φ of X(ospM |N) satisfying φ(Y(u)) = id, then one can also get (ε∗Y ◦ ι∗Y )(φ) = φ.

As εY is an epimorphism, ε∗Y restricts to Repirr(Y(ospM |N)) → Repirr(X(ospM |N)),
and consequently, Repirr

fd (Y(ospM |N)) → Repirr
fd (X(ospM |N)). Conversely, elements of

the center ZX(ospM |N) act on any finite-dimensional irreducible representation V of
X(ospM |N) by multiplication of non-zero scalars in C. Under the induced action of the
Yangian Y(ospM |N) by the embedding, V remains irreducible as a Y(ospM |N)-module.
Hence, ι∗Y similarly restricts to Repirr

fd (X(ospM |N )) → Repirr
fd (Y(ospM |N )). In particular,

the function

Υ: Repirr
fd (Y(ospM |N))/∼ → Repirr

fd (X(ospM |N))/∼, [V ] ↦→ [ε∗Y (V )]
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is injective with image equal to

{︁
L(λ(u)) ∈ Repirr

fd (X(ospM |N))/∼ | φλ(u)(Y(u)) = id
}︁
,

where φλ(u) denotes the morphism X(ospM |N) → EndL(λ(u)).

Conjecture 3.2.23. Suppose M ≥ 3, N ≥ 2. The isomorphism classes of finite-
dimensional irreducible representations of the Yangian Y(ospM |N) are parametrized by
tuples

(Bk(u))
m+n+1
k=1 ∈ C[u]2O,ed × C[u]m+n−1,

where the polynomials (Bk(u))
m+n+1
k=1 are monic. The underlying correspondence is given

by ΩX ◦Υ.

Proof. Under the map ΩX , the image imΥ is mapped to tuples (1; (Bk(u))
m+n+1
k=1 ),

where the polynomials (Bk(u))
m+n+1
k=1 are monic such that B1(u) and B2(u) are coprime

of the same polynomial degree.

Definition 3.2.24. The fundamental representations of Y(ospM |N ) are those irreducible
representations that correspond to Drinfel’d polynomials of the form

(︁
u+ α, u+ β; (1)k∈I

)︁
or

(︁
1, 1; (u+γ)δik)k∈I

)︁
for i ∈ I and α, β, γ ∈ C where α ̸= β. The fundamental representations corresponding
to the first tuple are called type I and denoted L(α, β), whereas those corresponding to
the second tuple are called type II and denoted L(i : γ).

Conjecture 3.2.25. Suppose M ≥ 3, N ≥ 2. Given any finite-dimensional irreducible
Y(ospM |N)-module V , there exists r ∈ N, i1, . . . , ir ∈ I, and α, β, γ1, . . . , γr ∈ C where
α− β ∈ O, such that V is isomorphic to the irreducible quotient of

Y(ospM |N)(ζ ⊗ ξ1 ⊗ · · · ⊗ ξr) ⊆ L(α, β)⊗ L(i1 : γ1)⊗ · · · ⊗ L(ir : γr)

where ζ ∈ L(α, β), ξk ∈ L(ik : γk), 1 ≤ k ≤ r, are the highest weight vectors.

We now conclude this subsection by investigating a family of infinite-dimensional
irreducible representations of the extended Yangian X(ospM |N) and demonstrate how



140 Chapter 3. Representation Theory of Orthosymplectic Yangians

the Drinfel’d polynomial relations fail in these cases. As is convention, we still set
m =

⌊︁
M
2

⌋︁
, ˆ︁m =

⌈︁
M
2

⌉︁
, and n = N

2
.

The superexterior algebra Λ(Cm|n) on Cm|n is the quotient T (Cm|n)/J , where
T (Cm|n) is the tensor superalgebra on Cm|n and J is the two-sided graded ideal generated
by elements of the form x ⊗ y + (−1)[x][y]y ⊗ x, where x, y ∈ Cm|n are homogeneous.
Letting {ζˆ︁m+1, . . . , ζM} ∪ {yM+n+1, . . . , yM+N} denote a homogeneous bases for Cm|n

where [ζi] = 0̄ for ˆ︁m+1 ≤ i ≤ M and [yk] = 1̄ for M+n+1 ≤ k ≤ M+N , then
Λ(Cm|n) can be regarded as the unital associative C-superalgebra on the even generators
{ζˆ︁m+1, . . . , ζM} and odd generators {yM+n+1, . . . , yM+N} subject to the relations

ζiζj = −ζj ζi, ykyl = ylyk, and ζiyk = −yk ζi,

for all ˆ︁m+1 ≤ i, j ≤M and M+n+1 ≤ k, l ≤M+N . We note that the superexterior
algebra Λ(Cm|n) is finite-dimensional if and only if n = 0.

Given a superalgebra A, we say that a homogeneous linear map D : A → A is a
graded anti-derivation if D(xy) = D(x)y−(−1)[D][x]xD(y) for all homogeneous elements
x, y ∈ A. For indices ˆ︁m+1 ≤ i ≤ M we let ∂ζ i ∈ EndΛ(Cm|n) denote the even anti-
derivation defined by ∂ζ i(ζj) = δij and ∂ζ i(yk) = 0 for indices ˆ︁m+1 ≤ j ≤ M and
M+n+1 ≤ k ≤ M+N . For indices M+n+1 ≤ k ≤ M+N we let ∂yk ∈ EndΛ(Cm|n)

denote the odd anti-derivation defined by ∂yk(ζi) = 0 and ∂yk(yl) = δkl for the integersˆ︁m+1 ≤ i ≤M and M+n+1 ≤ k, l ≤M+N .

Letting mζ i,myk ∈ EndΛ(Cm|n) denote the left multiplication maps by ζi and yk,
respectively, we observe that mζ i will be even and myk will be odd. Furthermore, if
{ · , · } denotes the graded anti-commutator {x, y} = xy + (−1)[x][y]yx, where x and y
are homogeneous, then there are the following relations in EndΛ(Cm|n):

mζ imζj = −mζjmζ i, mykmyl = mylmyk, mζ imyk = −mykmζ i,

∂ζ i∂ζj = −∂ζj∂ζ i, ∂yk∂yl = ∂yl∂yk, ∂ζ i∂yk = −∂yk∂ζ i,

{∂ζ i,mζj} = δij id, {∂yk,myl} = δij id, ∂ζ imyk = −myk∂ζ i, ∂ykmζ i = −mζ i∂yk.

The spinor representation of ospM |N is the representation on Λ(Cm|n), denoted

sp : ospM |N → gl
(︁
Λ(Cm|n)

)︁
, (3.2.35)
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which for the indices ˆ︁m+1 ≤ i, j ≤M and M+n+1 ≤ k, l ≤M+N is determined by

sp(Fij) = mζ i∂ζj −
1

2
δij id, sp(Fı̄j) = −∂ζ i∂ζj, sp(Fiȷ̄) = −mζ imζj,

sp(Fkl) = myk∂yl +
1

2
δkl id, sp(F k̄l) = ∂yk∂yl, sp(Fkl̄) = −mykmyl,

sp(Fik) = −mζ i∂yk, sp(Fı̄ k̄) = myk∂ζ i, sp(Fı̄k) = ∂ζ i∂yk, sp(Fik̄) = mζ imyk,

and also
sp(Fiˆ︁m) = 1√

2
mζ i, sp(Fˆ︁mj) = 1√

2
∂ζj

when M is odd.

When M is odd, the spinor representation is irreducible. However, when M is even,
the spinor representation splits into a direct sum Λ(Cm|n) = Λ(Cm|n)+ ⊕ Λ(Cm|n)− of
two irreducible submodules, where Λ(Cm|n)+ is the submodule spanned by monomials
consisting of an even amount of generators (not to be confused with the submodule
spanned by generators of Z2-grade 0̄) and Λ(Cm|n)− is the submodule spanned by
monomials consisting of an odd amount of generators (not to be confused with the
submodule spanned by generators of Z2-grade 1̄).

Proposition 3.2.26. The spinor representation (3.2.35) of ospM |N lifts to a represen-
tation of the extended Yangian X(ospM |N) via the assignment

X(ospM |N) → EndΛ(Cm|n), Tij(u) ↦→ δij id+(−1)[i]sp(Fij)u
−1.

Proof. One checks the defining relations (2.2.8) directly with use of the identity

M+N∑︂
p=1

(−1)[p]sp(Fip)sp(Fpj) =

(︃
κ

2
+

1

4

)︃
δij(−1)[i] id+κ sp(Fij).

By the above proposition, we will obtain either one or two irreducible infinite-
dimensional representations of X(ospM |N) depending on the parity of M . However, in
each case we will see that the Drinfel’d polynomial relations for PM+n(u) fails. Indeed,
when M is odd, Λ(Cm|n) is a highest weight module over X(ospM |N ) with highest weight
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vector 1. However, we observe that

λm(u)

λM+n(u)
=

u

u+ 1
2

,

so the Drinfel’d polynomial relation fails for PM+n(u) fails. Assuming now that M is
even, the submodule Λ(Cm|n)+ will be a highest weight module also with highest weight
vector 1. However, we similarly deduce

λM+n(u)

λM+n+1(u)
=
u+ 1

2

u− 1
2

.

Moreover, the submodule Λ(Cm|n)− will be a highest weight module over X(ospM |N)

with highest weight vector yM+n+1. However, we can again compute

λM+n(u)

λM+n+1(u)
=
u+ 3

2

u− 3
2

,

showing that the Drinfel’d polynomial relation for PM+n(u) fails for another time.



Part Two

The Periplectic Yangian
Y(pN ) and Twisted

Yangian Y(glM |N ,G)tw
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Chapter 4

Yangians of Strange Lie Superalgebras

The main purpose of Chapter 4 is to adapt and extend many structural results obtained
for Yangians of the strange Lie superalgebras of type Q, as found in [Naz99], to the
case of type P .

The outline will be as follows. The first section §4.1 establishes required notation
and introduces the presentations of the strange Lie superalgebras sN = pN , qN that
will be used throughout this work. In § 4.2, the definitions of Yangians Y(sN) are
provided via the RTT realization as originally given by Nazarov. The main result of
the chapter resides in §4.3, where the PBW-type Theorem for the Yangian of type P
is proven. In subsection §4.3.3, the definition of the Yangians Yℏ(sN) are given via
the Rees superalgebra formalism and it is shown that they serve as a homogeneous
quantization of glN |N [z]ϑ, which represents the fixed-point subalgebra of glN |N [z] under
a suitable involution ϑ.

4.1 Strange Lie Superalgebras

In Kac’s original classification of simple Lie superalgebras [Kac77], the two families
of classical Lie superalgebras which are not basic are known as the simple strange
Lie superalgebras of types P and Q. Types P and Q each describe several families
of “strange” Lie superalgebras, including such simple strange Lie superalgebras. In
this work, we consider the most general families in each type, denoted pN and qN

144
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for N ∈ Z+, respectively. In fact, we will see that pN and qN may be realized as
fixed-point Lie sub-superalgebras of glN |N under certain involutions, which prompts the
following notation.

For a positive integer N ∈ Z+, we define the set IN := { i ∈ Z \ {0} | −N ≤ i ≤ N }
and redefine the gradation index

[ · ] : IN → Z2, i ↦→ [i] where [i] = 0̄ and [−i] = 1̄ for i > 0. (4.1.1)

We denote CN |N to be the vector space C2N equipped with the Z2-grading given by
[ei] = [i], where B = {ei}i∈IN is the standard ordered basis of C2N enumerated from −N
to N omitting 0. Consequently, the space of C-linear maps CN |N → CN |N , denoted
EndCN |N , carries a natural Z2-grading such that [Eij] = [i]+ [j], where {Eij}i,j∈IN is
the collection of standard matrix units with respect to the basis B.

We now consider two relevant involutory automorphisms of glN |N = gl(CN |N ), which
we will denote (−)ι

Q and (−)ι
P . The first is given by

(−)ι
Q

: glN |N → glN |N , Eij ↦→ E ιQ

ij := E-i,-j, (4.1.2)

whereas the second is defined by

(−)ι
P
:= −(−)ι

Q ◦ (−)st : glN |N → glN |N , Eij ↦→ E ιP

ij := −(−1)[i][j]+[i]E-j,-i, (4.1.3)

where (−)st is the super-transpose (2.1.7). We observe that the involutory automor-
phism (−)ι

Q can also restrict to one on the special linear Lie superalgebra slN |N , which
we will denote with an identical symbol. We can now define the following.

Definition 4.1.1. The Lie superalgebra pN of type P (or periplectic Lie superalgebra)
is the fixed-point Lie sub-superalgebra gl ι

P

N |N of glN |N under the involutory automor-
phism (−)ι

P :
pN := gl ι

P

N |N = {X ∈ glN |N | X ιP = X}.

Similarly, the Lie superalgebra qN of type Q is the fixed-point Lie sub-superalgebra sl ι
Q

N |N

of slN |N under the involutory automorphism (−)ι
Q :

qN := sl ι
Q

N |N = {X ∈ slN |N | X ιQ = X}.
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Under the identification EndCN |N ∼= MatN |N(C), any element A ∈ glN |N can be
identified with a 2× 2 block matrix (︄

A00 A01

A10 A11

)︄

where Aij ∈ MatN (C) for all i, j ∈ {0, 1}. In particular, we find that A ∈ pN if and only if
A11 = −At00, A01 = At01, and A10 = −At10, where (−)t denotes the transpose on MatN (C)
with respect to the anti-diagonal. We note that the simple Lie superalgebra of type P is
the Lie sub-superalgebra of pN consisting of all matrices A with tr(A00) = 0 = tr(A11).

Similarly, A ∈ qN if and only if A00 = A11 and A01 = A10. One can also consider
the Lie sub-superalgebra sqN := [qN , qN ] that consists of all matrices A ∈ qN with
tr(A01) = tr(A10) = 0. Observing that the identity matrix I still lies in sqN , the simple
Lie superalgebra of type Q is the quotient psqN := sqN/CI.

Returning out attention to the Lie superalgebras pN and qN , we wish to express
these Lie superalgebras in terms of generators and relations. To this end, we find
that pN is generated by the operators

Eij := Eij + E ιP

ij = Eij − (−1)[i][j]+[i]E-j,-i ∈ glN |N for all i, j ∈ IN (4.1.4)

subject only to the relations[︁
Eij,Ekl

]︁
= δjkEil − δil(−1)([i]+[j])([k]+[l])Ekj

− δi,-k(−1)[i][j]+[i]E-j,l + δj,-l(−1)([i]+[j])[k]Ek,-i

and Eij + (−1)[i][j]+[i]E-j,-i = 0.

Similarly, the Lie superalgebra qN is generated by the operators

Fij := Eij + E ιQ

ij = Eij + E-i,-j ∈ slN |N for all i, j ∈ IN (4.1.5)

subject only to the relations

[︁
Fij,Fkl

]︁
= δjkFil − δil(−1)([i]+[j])([k]+[l])Fkj + δj,-kF-i,l − δi,-l(−1)([i]+[j])([k]+[l])Fk,-j

and Fij − F-j,-i = 0.
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4.2 Yangians of Types P and Q

In this section, we shall provide the definitions for the Yangians Y(pN ) and Y(qN ) using
the RTT formalism as first provided by Nazarov in [Naz92].

4.2.1 Yangians of strange Lie superalgebras

To start, we recall the super permutation operator in
(︁
EndCN |N)︁⊗2 as given by

P :=
∑︂
i,j∈IN

(−1)[j]Eij ⊗ Eji. (4.2.1)

By setting (−)ι
K
1 = (−)ι

K⊗ id, (−)ι
K
2 = id⊗ (−)ι

K ∈
(︁
EndCN |N)︁⊗2 for K = P,Q, these

maps act on the super permutation operator via

P ιK2 = −P ιK1 and (P ιK1 )ι
K
2 = (P ιK2 )ι

K
1 = −P.

Defining QK := P ιK2 , so

QP = −
∑︂
i,j∈IN

(−1)[i][j]Eij ⊗ E-i,-j and QQ =
∑︂
i,j∈IN

(−1)[j]Eij ⊗ E-j,-i, (4.2.2)

the R-matrix RK(u, v) is the rational function in formal parameters u, v taking coeffi-
cients in

(︁
EndCN |N)︁⊗2 given by

RK(u, v) := id⊗2− P

u− v
− QK

u+ v
∈
(︁
EndCN |N)︁⊗2 (u, v). (4.2.3)

We recall that for indices 1 ≤ k < l ≤ m, there is a morphism of superalgebras

φkl :
(︁
EndCN |N)︁⊗2 → (︁

EndCN |N)︁⊗m
a⊗ b ↦→ 1⊗(k−1) ⊗ a⊗ 1⊗(l−k−1) ⊗ b⊗ 1⊗(m−l)

and set Xkl = φkl(X) for an element X ∈
(︁
EndCN |N)︁⊗2. When X = X(u, v) depends

on formal parameters u, v, then we write Xkl(u, v) for φkl(X(u, v)). In particular, the
R-matrix (4.2.3) satisfies the super quantum Yang-Baxter equation (SQYBE):

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v). (4.2.4)
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Regarding (−)ι
K
1 and (−)ι

K
2 as maps lifted to act on the space

(︁
EndCN |N)︁⊗2 (u, v),

such act on the R-matrix via the formulas

RP(u, v)ι
P
1 = −RP(u,−v), RP(u, v)ι

P
2 = −RP(−u, v),

and RQ(u, v)ι
Q
1 = RQ(−u, v), RQ(u, v)ι

Q
2 = RP(u,−v).

Moreover, given the operator jd :=
∑︁

j∈IN (−1)[j]Ej,-j, the array of equalities

P 2 = id⊗2, PQP = QP, QPP = −QP, (QP)2 = 0,

PQQ = − jd⊗2, QQP = jd⊗2, and (QQ)2 = id⊗2,

infer that the R-matrix RK(u, v) satisfies the properties

(RK(u, v)ι
K
1 )ι

K
2 = RK(−u,−v), (4.2.5)

RK(u, v)RK(−u,−v) =
(︃
1− 1

(u− v)2
− δKQ

(u+ v)2

)︃
id⊗2, (4.2.6)

known as crossing symmetry and unitarity, respectively.

Given a superalgebra A and indices 1 ≤ k ≤ m, we also recall there is a morphism
of superalgebras

φk : End(CN |N)⊗A →
(︁
EndCN |N)︁⊗m ⊗A, ψ ⊗ w ↦→ id⊗(k−1)⊗ψ ⊗ id⊗(m−k) ⊗w,

and set Xk = φk(X) for an element X ∈ EndCN |N ⊗ A. When X = X(u) depends
on a formal parameter u, we shall write Xk(u) for the element φk(X(u)). We can now
provide the definitions of the Yangians for both types P and Q:

Definition 4.2.1. The Yangian Y(pN) of pN is the unital associative C-superalgebra
on generators {T (n)

ij | i, j ∈ IN , n ∈ Z+}, with Z2-grade
[︁
T (n)
ij

]︁
:= [i]+ [j] for all n ∈ Z+,

subject to the RTT -relation

RP(u, v)T1(u)T2(v) = T2(v)T1(u)R
P(u, v)

in
(︁
EndCN |N)︁⊗2 ⊗ Y(pN)[[u

±1, v±1]],
(4.2.7)

where RP(u, v) is identified with RP(u, v)⊗ 1, and

T jP(u)T (−u) = 1 in End(CN |N)⊗ Y(pN)[[u
±1]], (4.2.8)
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given T (u) :=
∑︁

i,j∈IN (−1)[i][j]+[j]Eij ⊗Tij(u) ∈ End(CN |N )⊗Y(pN )[[u
−1]] is the matrix

consisting of the series Tij(u) := δij1+
∑︁∞

n=1 T
(n)
ij u−n ∈ Y(pN)[[u

−1]] for i, j ∈ IN and
T jP(u) = ((−)j

P⊗ id)T (u) where (−)j
P
:= −(−)ι

P .

Definition 4.2.2. The Yangian Y(qN) of qN is the unital associative C-superalgebra
on generators {T (n)

ij | i, j ∈ IN , n ∈ Z+}, with Z2-grade
[︁
T (n)
ij

]︁
:= [i]+ [j] for all n ∈ Z+,

subject to the RTT -relation

RQ(u, v)T1(u)T2(v) = T2(v)T1(u)R
Q(u, v)

in
(︁
EndCN |N)︁⊗2 ⊗ Y(qN)[[u

±1, v±1]],
(4.2.9)

where RQ(u, v) is identified with RQ(u, v)⊗ 1, and

T ιQ(u) = T (−u) in End(CN |N)⊗ Y(qN)[[u
±1]], (4.2.10)

given T (u) :=
∑︁

i,j∈IN (−1)[i][j]+[j]Eij ⊗Tij(u) ∈ End(CN |N )⊗Y(qN )[[u
−1]] is the matrix

consisting of the series Tij(u) := δij1+
∑︁∞

n=1 T
(n)
ij u−n ∈ Y(qN)[[u

−1]] for i, j ∈ IN and
T ιQ(u) = ((−)ι

Q⊗ id)T (u).

The remainder of this subsection will dedicated to the overview of many structural
properties of the Yangian Y(qN) that have been established in [Naz92], [Naz99]. The
treatment of the type P Yangians will be investigated in the following subsections.

In terms of formal power series, the RTT -relation (4.2.9) equivalently takes the form

(−1)[i][j]+[i][k]+[j][k]
[︁
Tij(u), Tkl(v)

]︁
=

1

u− v

(︁
Tkj(u)Til(v)− Tkj(v)Til(u)

)︁
(4.2.11)

− 1

u+ v

(︂
(−1)[j]+[k]T-k,j(u)T-i,l(v)− (−1)[i]+[l]Tk,-j(v)Ti,-l(u)

)︂
for all i, j, k, l ∈ IN , where the above equality may be regarded as one in the extension
Y(qN)[[u

±1, v±1]] and [ · , · ] is understood as the super-bracket

[︁
Tij(u), Tkl(v)

]︁
= Tij(u)Tkl(v)− (−1)([i]+[j])([k]+[l])Tkl(v)Tij(u).

Furthermore, the relation (4.2.10) is equivalent to the condition that

T-i,-j(u) = (−1)[i]+[j]Tij(−u) for all i, j ∈ IN , (4.2.12)
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which is an equality in the space Y(qN)[[u
−1]].

Given any formal series f = f(u) = 1+
∑︁∞

n=1 fnu
−n ∈ 1+u−1C[[u−1]], one can

readily verify that the mapping

µf : T (u) ↦→ f(u)T (u)

defines a superalgebra automorphism of Y(qN ). Furthermore, the Yangian Y(qN ) admits
at least two important superalgebra anti-automorphisms. First, by regarding T (u) as a
formal power series in u−1 whose coefficients lie in End(CN |N) ⊗ Y(qN), its constant
term is the unit object 1 = id⊗1; hence, T (u) has an inverse T (u)−1. In particular,
the assignments

ς : T (u) ↦→ T (−u),

S : T (u) ↦→ T (u)−1

define superalgebra anti-automorphisms of Y(qN), c.f. [Naz99, §2], [Mol07, Proposi-
tion 1.3.3]. The Yangian Y(qN) comes equipped with a Hopf superalgebra structure as
provided by the comultiplication

∆: Y(qN) → Y(qN)⊗ Y(qN), T (u) ↦→ T[1](u)T[2](u),

the counit
ε : Y(pN) → C, T (u) ↦→ 1,

and the antipode
S : Y(qN) → Y(qN), T (u) ↦→ T (u)−1.

The Yangians of type Q benefit from the existence of a Hopf superalgebra epimorphism

π : Y(qN) ↠ U(qN), Tij(u) ↦→ δij − (−1)[i][j]Fjiu
−1 for all i, j ∈ IN ,

which is referred to as the evaluation homomorphism. Hence, there is a pullback functor
π∗ : Rep(U(qN)) → Rep(Y(qN)), which restricts to Repirr(U(qN)) → Repirr(Y(qN)) by
virtue that π is surjective. Moreover, composing the map π with the Hopf superalgebra
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morphism

ι : U(qN) → Y(qN), Fij ↦→ −(−1)[i][j]T (1)
ji for all i, j ∈ IN ,

gives π ◦ ι = id, so ι is in fact an embedding of Hopf superalgebras.

There are two relevant ascending algebra filtrations on Y(qN), which we denote
F(Y(qN )) = {Fn(Y(qN ))}n∈N and F′(Y(qN )) = {F′n(Y(qN ))}n∈N, given by the respective
filtration degree assignments

degF T (n)
ij = n−1 and degF′ T (n)

ij = n.

for all i, j ∈ IN and n ∈ Z+. From the defining relations of they Yangian of type Q,
one can deduce that the associated graded superalgebra induced by the second filtra-
tion F′(Y(qN)) is supercommutative. The more important filtration is the first, which
will induce a more interesting associated graded superalgebra:

grY(qN) := grFY(qN) =
⨁︂
n∈N

Fn(Y(qN))/Fn−1(Y(qN)).

We note that grY(qN) inherits a Z2-graded structure from grY(qN) by assigning
Z2-grade [i]+ [j] to the image T (n)

ij of T (n)
ij in Fn−1(Y(qN))/Fn−2(Y(qN)). Further-

more, F(Y(qN)) is a Hopf filtration, so grY(qN) is equipped with an N-graded Hopf
superalgebra structure given by the comultiplication

gr∆: grY(qN) → gr
(︁
Y(qN)

⊗2)︁ ∼= (grY(qN))
⊗2

T (n)

ij ↦→ T (n)
ij ⊗ 1+ 1⊗ T (n)

ij ,

the counit
gr ε : grY(qN) → C, T (n)

ij ↦→ 0,

and antipode
grS : grY(qN) → grY(qN), T (n)

ij ↦→ −T (n)
ij ,

for all i, j ∈ IN and n ∈ Z+.

Letting slN |N [z] = slN |N ⊗ C[z] denote the polynomial current Lie superalgebra
associated to slN |N , the involution (−)ι

Q may be extended to an involutory automorphism
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of slN |N [z], which we also denote (−)ι
Q , by assigning

(X ⊗ f(z))ι
Q

= X ιQ⊗ f(−z) for all X ∈ slN |N , f(z) ∈ C[z].

Hence, we define the twisted current Lie superalgebra slN |N [z]
ιQ to be the fixed-point

Lie sub-superalgebra of slN |N [z] under the the involutive automorphism (−)ι
Q :

slN |N [z]
ιQ :=

{︁
g(z) ∈ slN |N [z] | g(z)ι

Q

= g(z)
}︁
= glN |N [z]

ιQ .

Using the identification Xzn = X ⊗ zn for elements in glN |N [z], we find that slN |N [z]ι
Q

is generated by the operators

F
(n)
ij (z) := Eij z

n + E ιQ

ij (−z)n = (Eij + (−1)nE-i,-j)zn ∈ glN |N [z]
ιQ (4.2.13)

for all i, j ∈ IN and n ∈ N, subject only to the relations

[︁
F
(m)
ij (z),F

(n)
kl (z)

]︁
= δjkF

(m+n)
il (z)− δil(−1)([i]+[j])([k]+[l])F

(m+n)
kj (z) (4.2.14)

+ δj,-k(−1)mF
(m+n)
−i,l (z)− δi,−l(−1)([i]+[j])([k]+[l])+mF

(m+n)
k,-j (z)

and
F
(n)
ij (z)− (−1)nF

(n)
-i,-j(z) = 0. (4.2.15)

In particular, we have the following theorem:

Theorem 4.2.3 (Theorem 2.3 in [Naz99]). There is an N-graded Hopf superalgebra
isomorphism

Φ: U(slN |N [z]
ιQ)

∼−→ grY(qN), F
(n−1)
ij ↦→ −(−1)[i][j]T (n)

ji (4.2.16)

for i, j ∈ IN , n ∈ Z+.

4.2.2 The extended Yangian of type P

In this subsection, we introduce the extended Yangian of pN . In subsequent subsections,
we will show that the Yangian Y(pN) may be regarded as a certain quotient of the
extended Yangian by an ideal generated by an infinite number of central elements.
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Definition 4.2.4. The extended Yangian X(pN ) of pN is the unital associative C-super-
algebra on generators {T (n)

ij | i, j ∈ IN , n ∈ Z+}, with Z2-grade
[︁
T

(n)
ij

]︁
:= [i]+ [j] for all

n ∈ Z+, subject to the RTT -relation

RP(u, v)T1(u)T2(v) = T2(v)T1(u)R
P(u, v),

in
(︁
EndCN |N)︁⊗2 ⊗ X(pN)[[u

±1, v±1]],
(4.2.17)

where T (u) :=
∑︁

i,j∈IN (−1)[i][j]+[j]Eij⊗Tij(u) ∈ End(CN |N )⊗X(pN )[[u
−1]] is the matrix

consisting of the series Tij(u) := δij1+
∑︁∞

n=1 T
(n)
ij u−n ∈ X(pN)[[u

−1]] for i, j ∈ IN , and
RP(u, v) is identified with RP(u, v)⊗ 1.

In terms of formal power series, the RTT -relation (4.2.17) is equivalent to the
relations

[︁
Tij(u), Tkl(v)

]︁
=

1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︁
Tkj(u)Til(v)− Tkj(v)Til(u)

)︁
− 1

u+ v

(︂
δi,-k

∑︂
p∈IN

(−1)[i][j]+[j][p]+[p]Tpj(u)T-p,l(v) (4.2.18)

− δj,-l
∑︂
p∈IN

(−1)[i][k]+[i]+[j][k]+[j]+[i][p]Tk,-p(v)Tip(u)
)︂

for all i, j, k, l ∈ IN , where [ · , · ] is understood as the Lie superbracket

[︁
Tij(u), Tkl(v)

]︁
= Tij(u)Tkl(v)− (−1)([i]+[j])([k]+[l])Tkl(v)Tij(u).

For any formal series f(u) = 1 +
∑︁∞

n=1 fnu
−n ∈ 1 + u−1C[[u−1]], the map

µf : T (u) ↦→ f(u)T (u) (4.2.19)

defines an automorphism of X(pN ). Furthermore, by defining T jP(u) := ((−)j
P⊗ id)T (u)

where (−)j
P
= −(−)ι

P , so that T jP

ij (u) := (−1)[i][j]+[i]T-j,-i(u), the assignment

jP : T (u) ↦→ T j
P

(u) (4.2.20)

also defines a superalgebra automorphism of X(pN ). We remark that although the map
(−)j

P
: EndCN |N → EndCN |N is an anti -automorphism, the induced map jP on X(pN )

will only be an automorphism due to the crossing symmetry property (4.2.5) of the
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R-matrix RP(u, v).

The extended Yangian X(pN) also has at least two important superalgebra anti-
automorphisms. Since T (u) as a formal power series in End(CN |N )⊗X(pN )[[u

−1]] whose
constant term is the unit object 1 = id⊗1, it must have an inverse T (u)−1. Hence,
each mapping

ς : T (u) ↦→ T (−u), (4.2.21)

S : T (u) ↦→ T (u)−1 (4.2.22)

induces a superalgebra anti-automorphism of X(pN). For instance, proving that a
graded map (−)◦ : X(pN) → X(pN) is a superalgebra anti-morphism is equivalent to
showing the relation

RP(u, v)T ◦2 (v)T
◦
1 (u) = T ◦1 (u)T

◦
2 (v)R

P(u, v),

where T ◦(u) =
∑︁

i,j∈IN (−1)[i][j]+[j]Eij ⊗ T ◦ij(u) and T ◦k (u), k = 1, 2 are defined in the
suitable ways. In our case, one can achieve this by modifying the RTT -relation (4.2.17)
in suitable ways and using the stated properties of the R-matrix RP(u, v).

4.2.3 The Hopf structure and central series Z(u) of X(pN)

The extended Yangian X(pN) comes equipped with a Hopf superalgebra structure as
given by the comultiplication

∆: X(pN) → X(pN)⊗ X(pN), T (u) ↦→ T[1](u)T[2](u),

the counit
ε : X(pN) → C, T (u) ↦→ 1,

and the antipode
S : X(pN) → X(pN), T (u) ↦→ T (u)−1.

Let us define Z(u) := T jP(u)T (−u) and further consider the series Z(u) lying in
X(pN)[[u

−1]] such that id⊗Z(u) = Z(u). Multiplying both sides of the RTT -relation
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by −(u+ v) and setting v = −u yields the equation

QT1(u)T2(−u) = T2(−u)T1(u)Q. (4.2.23)

Using that QT1(u) = QT jP

2 (u) and T1(u)Q = T jP

2 (u)Q and applying the map (−)j
P to

the first tensor factor of (4.2.23), we deduce

P ⊗Z(u) = P T jP

2 (u)T2(−u) = T2(−u)T jP

2 (u)P.

Multiplying the above on the left by P , we obtain id⊗2⊗Z(u) = T jP

2 (u)T2(−u). Simi-
larly, if we instead multiply the above equation on the right by P , we yield the relation
id⊗2⊗Z(u) = T2(−u)T jP

2 (u). Therefore,

Z(u) = T jP(u)T (−u) = T (−u)T jP(u), (4.2.24)

or rather put,

δijZ(u) =
∑︂
k∈IN

T jP

ik (u)Tkj(−u) =
∑︂
k∈IN

Tik(−u)T jP

kj(u), (4.2.25)

where Z(u) = 1+
∑︁∞

n=1Znu
−n ∈ X(pN )[[u

−1]]. We note that the coefficients of Z(u) are
homogeneous of even degree, so all coefficients of Z(u) lies within the even subalgebra
of X(pN). Let us denote ZX(pN) to be the subalgebra generated by the coefficients
of Z(u) and let (Z(u)− 1) to mean the two-sided graded ideal of X(pN) generated by
the coefficients of Z(u)− 1. We now consider the following proposition which was first
established in part by [Naz92].

Proposition 4.2.5. The coefficients of the series Z(u) ∈ 1 + u−1X(pN)[[u
−1]] given

by the equation id⊗Z(u) = T jP(u)T (−u) = T (−u)T jP(u) lie in the center of X(pN).
Furthermore,

∆: Z(u) ↦→ Z(u)⊗Z(u), (4.2.26)

where ∆ is the comultiplication map on X(pN). In particular, ZX(pN) is a sub-Hopf
superalgebra and (Z(u)− 1) is a graded Hopf ideal of X(pN).

Proof. The proof is similar to [AAC+03, Theorem 3.1], but we shall provide it here.
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First, we observe

(id⊗Z(u))T2(v) = T jP

1 (u)T1(−u)T2(v) = T jP

1 (u)RP(−u, v)−1T2(v)T1(−u)RP(−u, v),

by the RTT -relation. By applying (−)j
P to the first tensor factor of the RTT -

relation (4.2.17) and using the unitarity property (4.2.6), one yields the equation

T jP

1 (u)RP(−u, v)−1T2(v) = T2(v)R
P(−u, v)−1T jP

1 (u).

Therefore,

(id⊗Z(u))T2(v) = T2(v)R
P(−u, v)−1T jP

1 (u)T1(−u)RP(−u, v)

= T2(v)R
P(−u, v)−1(id⊗Z(u))RP(−u, v) = T2(v)(id⊗Z(u)),

since id⊗Z(u) commutes with RP(−u, v)⊗ 1. Furthermore, ∆: Z(u) ↦→ Z(u)⊗Z(u)

is readily verified, since

∆(Z(u)) =
∑︂

a,b,k∈IN

(−1)[k][j]+[k]
(︁
Tia(−u)⊗ Tak(−u)

)︁(︁
T-j,-b(u)⊗ T-b,-k(u)

)︁
=

∑︂
a,b,k∈IN

(−1)[k][j]+[k]+([a]+[k])([j]+[b])Tia(−u)T-j,-b(u)⊗ Tak(−u)T-b,-k(u)

=
∑︂
a,b∈IN

(−1)[a][j]+[a]Tia(−u)T-j,-a(u)⊗ δabZ(u) = Z(u)⊗Z(u).

Let us set I = (Z(u) − 1). One may verify that ε : Z(u) ↦→ 1 and so ε(I) = 0.
Moreover, since ∆(Zn) =

∑︁
a+b=nZa ⊗ Zb (where Z0 = 1), then for X ∈ X(pN) we

have ∆(XZn),∆(ZnX) ∈ I ⊗X(pN ) +X(pN )⊗I, so I is a coideal. Lastly, the axioms
of the Hopf superalgebra structure infer that the image of Z(u) under the antipode is
given by

S : Z(u) ↦→ Z(u)−1,

which proves the proposition.

By identifying Z(u) with Z(u), equation (4.2.24) shows that the inverse of T (u) is
given by

T (u)−1 = Z(−u)−1T jP(−u), (4.2.27)

so the antipode on X(pN ) is the mapping T (u) ↦→ Z(−u)−1T jP(−u). In particular, the
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square of the antipode is given by

S2 : T (u) ↦→ Z(−u)Z(u)−1T (u). (4.2.28)

4.2.4 The Yangian Y(pN)

We re-arrive at the definition of the Yangian for pN :

Definition 4.2.6. The Yangian Y(pN ) of pN is the quotient of X(pN ) by the two-sided
ideal (Z(u)− 1), i.e.,

Y(pN) := X(pN)/(Z(u)− 1).

For i, j ∈ IN , n ∈ Z+, letting T (n)
ij denote the image of the generator T (n)

ij under the
canonical projection X(pN) ↠ Y(pN) shows that the Yangian Y(pN) coincides with
Definition 4.2.1.

In terms of formal power series, the RTT -relation in Definition 4.2.1 is equivalent
to the relations

[︁
Tij(u), Tkl(v)

]︁
=

1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︁
Tkj(u)Til(v)− Tkj(v)Til(u)

)︁
− 1

u+ v

(︂
δi,-k

∑︂
p∈IN

(−1)[i][j]+[j][p]+[p]Tpj(u)T-p,l(v) (4.2.29)

− δj,-l
∑︂
p∈IN

(−1)[i][k]+[i]+[j][k]+[j]+[i][p]Tk,-p(v)Tip(u)
)︂

for all i, j, k, l ∈ IN and relation (4.2.8) is equivalent to∑︂
k∈IN

T jP

ik (u)Tkj(−u) = δij1 for all i, j ∈ IN . (4.2.30)

Since (Z(u)− 1) is a graded Hopf ideal, the quotient of X(pN ) by (Z(u)− 1) comes
equipped with a unique Hopf superalgebra structure such that the canonical projection
X(pN) ↠ X(pN)/(Z(u)− 1) is a Hopf superalgebra morphism. Hence, there is a Hopf
superalgebra structure on Y(pN) is given by the comultiplication

∆: Y(pN) → Y(pN)⊗ Y(pN), T (u) ↦→ T[1](u)T[2](u),
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the counit
ε : Y(pN) → C, T (u) ↦→ 1,

and the antipode

S : Y(pN) → Y(pN), T (u) ↦→ T (u)−1 = T jP(−u).

We shall consider two ascending algebra filtrations on Y(pN ), which will be denoted
F
(︁
Y(pN)

)︁
= F = {Fn}n∈N and F′

(︁
Y(pN)

)︁
= F′ = {F′n}n∈N, given via the respective

filtration degree assignments

degF T (n)
ij = n−1 and degF′ T (n)

ij = n. (4.2.31)

for all i, j ∈ IN and n ∈ Z+. From the relations (4.2.29), one can deduce that the
associated graded superalgebra grF′ Y(pN) =

⨁︁
n∈N F

′
n/F

′
n−1 is supercommutative. We

shall direct our attention to the first filtration F which will induce a more relevant
associated graded superalgebra:

grY(pN) = grFY(pN) =
⨁︂
n∈N

Fn/Fn−1,

We note that grY(pN ) inherits a Z2-graded structure from Y(pN ) by assigning Z2-grade
[i]+ [j] to the image T (n)

ij of T (n)
ij in Fn−1/Fn−2. Furthermore, F is a Hopf filtration, so

grY(pN ) is endowed with an N-graded Hopf superstructure given by the comultiplication

gr∆: grY(pN) → gr
(︁
Y(pN)

⊗2)︁ ∼= (grY(pN))
⊗2

T (n)

ij ↦→ T (n)
ij ⊗ 1+ 1⊗ T (n)

ij ,

the counit
gr ε : grY(pN) → C, T (n)

ij ↦→ 0,

and antipode
grS : grY(pN) → grY(pN), T (n)

ij ↦→ −T (n)
ij .

for all i, j ∈ IN and n ∈ Z+.

Letting glN |N [z] = glN |N ⊗ C[z] denote the polynomial current Lie superalgebra
associated to glN |N , the involution (−)ι

P may be extended to an involutory automorphism
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on glN |N [z], also denoted (−)ι
P, by assigning

(X ⊗ f(z))ι
P

= X ιP⊗ f(−z) for all X ∈ glN |N , f(z) ∈ C[z].

The twisted current Lie superalgebra glN |N [z]
ιP is defined as the fixed-point Lie sub-

superalgebra of glN |N [z] under the involutive automorphism (−)ι
P:

glN |N [z]
ιP :=

{︁
g(z) ∈ glN |N [z] | g(z)ι

P

= g(z)
}︁
.

Using the identification Xzn = X ⊗ zn for elements in glN |N [z], we find that glN |N [z]ι
P

is generated by the operators

E
(n)
ij (z) := Eij z

n + E ιP

ij (−z)n = (Eij − (−1)[i][j]+[i]+nE-j,-i)zn ∈ glN |N [z]
ιP (4.2.32)

with i, j ∈ IN , n ∈ N, subject only to the relations

[︁
E
(m)
ij (z),E

(n)
kl (z)

]︁
= δjkE

(m+n)
il (z)− δil(−1)([i]+[j])([k]+[l])E

(m+n)
kj (z) (4.2.33)

− δi,-k(−1)[i][j]+[i]+mE
(m+n)
-j,l (z) + δj,-l(−1)([i]+[j])[k]+mE

(m+n)
k,-i (z)

and
E
(n)
ij (z) + (−1)[i][j]+[i]+nE

(n)
-j,-i(z) = 0. (4.2.34)

We now have the following proposition:

Proposition 4.2.7. There is an N-graded Hopf superalgebra epimorphism

Φ: U(glN |N [z]
ιP) → grY(pN), E

(n−1)
ij (z) ↦→ −(−1)[i][j]T (n)

ji (4.2.35)

for all i, j ∈ IN and n ∈ Z+.

Proof. To show Φ: glN |N [z]
ιP → Lie(grY(pN)) is an N-graded Lie superalgebra mor-

phism, one passes the defining relations (4.2.29) and (4.2.30) to the associated graded
superalgebra and uses the expansions

1

u∓ v
=

u−1

1∓ u−1v
= u−1

∞∑︂
r=0

(±u−1v)r
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to yield the relations

[︁
T (m)
ji , T (n)

lk

]︁
= −δjk(−1)[i][j]+[i][l]+[k][l]T (m+n−1)

li + δil(−1)[i]T (m+n−1)
jk

+ δi,-k(−1)[i][l]+[i]+[j][l]+m−1T (m+n−1)
l,-j − δj,-l(−1)[i][j]+m−1T (m+n−1)

-i,k .

and
(−1)nT (n)

ji + (−1)[i][j]+[j]T (n)
-i,-j = 0

for all i, j ∈ IN and m,n ∈ Z+. The desired relations follow from multiplying the first
relation by the scalar (−1)[i][j]+[k][l] and the second by −(−1)[i][j]+n.

Hence, Ψ extends to a superalgebra morphism U(glN |N [z]
ιP) → grY(pN), which

is also N-graded. Such morphism is surjective since grY(pN) is generated by the
elements T (n)

ij . Lastly, it can be seen that Ψ is a morphism of Hopf superalgebras
from the descriptions of those Hopf superstructures on U(glN |N [z]

ιP) and grY(pN) as
before.

4.3 Poincaré-Birkhoff-Witt Theorem for Yangians of

Type P

In this section, we illustrate how to obtain an explicit algebraic basis for the Yangian
Y(pN ) which amounts to proving the Yangian is a filtered deformation of U(glN |N [z]ι

P
).

Indeed, suppose such an isomorphism Φ: U(glN |N [z]
ιP)

∼−→ grY(pN) exists, where
grY(pN ) is the associated graded superalgebra induced by the filtration F as described
by (4.2.31). The Poincaré-Birkhoff-Witt Theorem for Lie superalgebras infers one can
construct a basis B for U(glN |N [z]ι

P
), so any lift of Φ(B) will yield the desired basis for

the Yangian.

4.3.1 Evaluation and R-matrix representations

Given the vector representation ρ : U(glN |N) → EndCN |N , one can pullback ρ by the
superalgebra morphism eva : U(glN |N [z]) → U(glN |N) induced by the assignment z ↦→ a

to yield the evaluation representation of U(glN |N [z]) at a ∈ C given by

ρa := ev∗a ρ : U(glN |N) → EndCN |N , Eij ↦→ anρ(Eij)
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for all i, j ∈ IN . For any complex numbers a1, . . . , an ∈ C, we consider the tensor
product of 2n evaluation representations of U(glN |N [z]) as described by

ρa1⇁an := (
⨂︁n
i=1(ρai ⊗ ρ−ai)) ◦∆2n−1, (4.3.1)

where ∆2n−1 : U(glN |N [z]) → U(glN |N [z])
⊗2n is the unique (2n−1)-fold coproduct send-

ing X ∈ U(glN |N [z]
ιP) to the element

∑︁
(X)X(1)⊗X(2)⊗· · ·⊗X(2n) in Sweedler notation.

The following lemma establishes that the intersection of the kernels of all such
representations ρa1⇁an , a1, . . . , an ∈ C is trivial. The core ideas for the proof come from
the proofs of similar statements in [Naz99, Proposition 2.2] and [AMR06, Lemma 3.5].

Lemma 4.3.1.
⋂︁
n∈Z+

⋂︁
(a1,...,an)∈Cn ker(ρa1⇁an) = 0 in U(glN |N [z]).

Proof. Let {Xi}4N
2

i=1 be an ordered homogeneous basis of glN |N such that X1 = id,
where we will write χi = ρ(Xi) for all indices i = 1, 2, . . . , 4N2. Furthermore, we shall
let {Un(glN |N [z])}n∈N denote the canonical ascending algebra filtration on U(glN |N [z])

determined by monomial length.

Step 1. Given the ordering on {Xi}4N
2

i=1 , there will be an induced total ordering ‘⪯’ on
the basis {Xbz

m | 1 ≤ b ≤ 4N2, m ∈ N} of glN |N [z]. The Poincaré-Birkhoff-Witt Theo-
rem for Lie superalgebras states that its universal enveloping superalgebra U(glN |N [z])

therefore has a basis consisting of ordered monomials of the form
∏︁r

j=1Xbjz
mj such that

Xbjz
mj ⪯ Xbj+1

zmj+1 for indices j = 1, . . . , r−1, and Xbjz
mj ̸= Xbj+1

zmj+1 if [Xbj ] = 1̄.
Given a nonzero element A in U(glN |N [z]), we may therefore express such element as
a unique linear combination of PBW basis monomials in U(glN |N [z]) and we shall let
{Mi =

∏︁n
j=1Xbijz

mij}pi=1 denote the collection of those basis elements with maximal
filtration degree n.

For each index 1 ≤ k ≤ n, we shall set ˆ︁z2k−1 = zk and ˆ︁z2k = −zk where z1, . . . , zn
are formal variables. In particular, any n integers 1 ≤ r1 < · · · < rn ≤ 2n determine an
embedding

νr1,...,rn : U(glN |N [z])
⊗n →

⨂︁n
k=1 U(glN |N [zk])⊗ U(glN |N [−zk])

Y1(z)⊗ · · · ⊗ Yn(z) ↦→ 1⊗(r1−1) ⊗ Y1(ˆ︁zr1)⊗ 1⊗(r2−r1−1) ⊗ · · · ⊗ Yn(ˆ︁zrn)⊗ 1⊗(2n−rn),

where Yk(z), 1 ≤ k ≤ n, are monomials in U(glN |N [z]).
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Thus, for each monomial Mi, 1 ≤ i ≤ p, we associate the supersymmetrized object

Mσ
i :=

∑︂
σ∈Sn

(−1)ϵ(σ,Mi)
∑︂

1≤r1<···<rn≤2n

νr1,...,rn
(︁⨂︁n

j=1Xbiσ(j)
zmiσ(j)

)︁
, (4.3.2)

where (−1)ϵ(σ,Mi) is the Koszul sign provided that ϵ : Sn× (glN |N [z])
⊗n → Z2 is the map

defined by the assignment ϵ(σ, x) =
∑︁

(k,l)∈Inv(σ)[xσ(k)][xσ(l)] for homogeneous tensors
x = x1 ⊗ · · · ⊗ xn ∈ (glN |N [z])

⊗n and where Inv(σ) = {(k, l) | k < l, σ(k) > σ(l)} is the
set of inversions.

Step 2. For each current Lie superalgebra glN |N [ˆ︁zk], 1 ≤ k ≤ 2n, we endow a
total ordering on its basis {Xbˆ︁z mk | 1 ≤ b ≤ 4N2, m ∈ N} in a similar way to
before so that we obtain a basis B of

⨂︁2n
k=1 U(glN |N [ˆ︁zk]) consisting of elements of the

form
⨂︁2n
k=1Xbk,1ˆ︁z mk,1

i · · ·Xbk,hk
ˆ︁z mk,hk
i , where Xbk,1ˆ︁z mk,1

i · · ·Xbk,hk
ˆ︁z mk,hk
i is a PBW basis

monomial for glN |N [ˆ︁zk]. Considering now the linear map

ϕ :
⨂︁2n

k=1 U(glN |N [ˆ︁zk]) → U(glN |N)
⊗2n[z1, . . . , zn]⨂︁2n

k=1Xbk,1ˆ︁z mk,1

i · · ·Xbk,hk
ˆ︁z mk,hk
i ↦→

(︁⨂︁2n
i=1Xbk,1 · · ·Xbk,hk

)︁∏︁2n
k=1 ˆ︁z mk,1

k · · · ˆ︁z mk,hk
k ,

we claim that the elements ϕ(Mσ
i ), i = 1, . . . , p, are linearly independent. Noting that

each term in the sum ϕ(Mσ
i ) is an element of the basis B up to sign, it suffices to show

that there exists a basis element (up to scaling) in each expression ϕ(Mσ
i ) that does

not occur in any other expressions ϕ(Mσ
k ) for k ̸= i. In fact, we observe that such a

candidate is

ϕ
(︁
ν1,3,...,2n−1

(︁⨂︁n
j=1Xbijz

mij
)︁)︁

= (Xbi1 ⊗ 1⊗ · · · ⊗Xbin ⊗ 1)zmi1
1 · · · zmin

n , (4.3.3)

since the elements ˜︂Mσ
i :=

∑︁
σ∈Sn

(−1)ϵ(σ,Mi)
⨂︁n
j=1Xbiσ(j)

zmiσ(j) , i = 1, . . . , p, are linearly
independent.

Step 3. For any complex numbers a1, . . . , an ∈ C and each index 1 ≤ k ≤ n, we
shall set ˆ︁a2k−1 = ak and ˆ︁a2k = −ak. In particular, as

ρa1⇁an(Xbz
m) =

2n∑︂
k=1

ˆ︁amk χ[k]
b , χ

[k]
b := id⊗(k−1)⊗χb ⊗ id⊗(n−k) ∈ End(CN |N)⊗2n,
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then the image of any monomial
∏︁r

j=1Xbjz
mj under ρa1⇁an will be given by

2n∑︂
k1,...,kr=1

ˆ︁am1
k1

· · ·ˆ︁amr
kr
χ
[k1]
b1

· · ·χ[kr]
br

∈ End(CN |N)⊗2n. (4.3.4)

Consider now the subspace of End(CN |N)⊗2n given by

W2n := spanC
{︁
χi1 ⊗ · · · ⊗ χi2n | χ1 = id occurs in at least n+1 tensor factors

}︁
,

where 1 ≤ ik ≤ 4N2 for 1 ≤ k ≤ 2n. We observe that the image of any element in
Un−1(glN |N [z]) under ρa1⇁an will be contained in the subspace W2n. Moreover, since
any n integers 1 ≤ r1 < · · · < rn ≤ 2n determines an embedding

υr1,...,rn : End(CN |N)⊗n → End(CN |N)⊗2n

φ1 ⊗ · · · ⊗ φn ↦→ id⊗(r1−1)⊗φ1 ⊗ id⊗(r2−r1−1)⊗ · · · ⊗ φn ⊗ id⊗(2n−rn),

we can use (4.3.4) to express the image of the monomial Mi under ρa1⇁an as

∑︂
σ∈Sn

(−1)ϵ(σ,Mi)
∑︂

1≤r1<···<rn≤2n

ˆ︁amiσ(1)
r1 · · ·ˆ︁amiσ(n)

rn υr1,...,rn
(︁ n⨂︂
j=1

χbiσ(j)

)︁
mod W2n. (4.3.5)

Since ρ is a faithful representation, then so is ρ⊗2n : U(glN |N)⊗2n → End(CN |N)⊗2n

and its extension to U(glN |N )
⊗2n[z1, . . . , zn] → End(CN |N )⊗2n[z1, . . . , zn], which we also

denote ρ⊗2n. Therefore, since the elements ϕ(Mσ
i ), i = 1, . . . , p, are linearly independent,

then their images under ρ⊗n are so. That is, a nonzero linear combination
∑︁p

i=1 λiϕ(M
σ
i )

implies that the sum of polynomials

p∑︂
i=1

λi
∑︂
σ∈Sn

(−1)ϵ(σ,Mi)
∑︂

1≤r1<···<rn≤2n

υr1,...,rn
(︁ n⨂︂
j=1

χbiσ(j)

)︁ˆ︁z miσ(1)
r1 · · · ˆ︁z miσ(n)

rn

is nonzero. Hence, there exists complex numbers a1, . . . , an ∈ C such that

p∑︂
i=1

λi
∑︂
σ∈Sn

(−1)ϵ(σ,Mi)
∑︂

1≤r1<···<rn≤2n

ˆ︁amiσ(1)
r1 · · ·ˆ︁amiσ(n)

rn υr1,...,rn
(︁ n⨂︂
j=1

χbiσ(j)

)︁
is nonzero. Comparing the above with (4.3.5), we conclude that that image of ρa1⇁an(A)

in the quotient End(CN |N)⊗2n/W2n is nonzero and therefore ρa1⇁an(A) ̸= 0, proving
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the lemma.

For any a ∈ C, restricting the evaluation representation ρa to U(glN |N [z]
ιP) via

the inclusion U(glN |N [z]
ιP) ↪→ U(glN |N [z]) will give rise to a corresponding evaluation

representation which we also denote by ρa:

ρa : U(glN |N [z]
ιP) → EndCN |N , E

(n)
ij (z) ↦→ anEij + (−a)nE ιP

ij (4.3.6)

for all i, j ∈ IN and n ∈ N. Accordingly, by regarding ρa1⇁an for a1, . . . , an ∈ C as a
representation of U(glN |N [z]ι

P
) by restriction, it follows from the previous lemma that

we have
⋂︁
n∈Z+

⋂︁
(a1,...,an)∈Cn ker(ρa1⇁an) = 0 in U(glN |N [z]

ιP) as well.

We will now direct our attention to a canonical representation of the extended
Yangian X(pN) called the R-matrix representation. This representation will give rise
to an important representation of the Yangian Y(pN) which will be used to prove the
isomorphism U(glN |N [z]

ιP) ∼= grY(pN ). For any a ∈ C, such R-matrix representation at
a ∈ C is given by

Ra : X(pN) → EndCN |N , T (u) ↦→ R(u, a). (4.3.7)

In terms of formal power series, the R-matrix representation takes the form

Ra : Tji(u) ↦→ −(−1)[i][j]
(︃
−(−1)[i][j]1+

Eij
u− a

− (−1)[i][j]+[i]E-j,-i
u+ a

)︃
,

for i, j ∈ IN ; hence, Ra(T
(n)
ji ) = −(−1)[i][j]ρa(E

(n−1)
ij (z)) for n ∈ Z+. By the Hopf

superalgebra structure on X(pN), we may consider the tensor product of these rep-
resentations: (Ra ⊗ R−a) ◦ ∆: T (u) ↦→ R12(u, a)R13(u,−a). Considering the series
fa(u) ∈ 1 + u−1C[[u−1]] given by

fa(u) =
(u+ a)2

(u+ a)2 − 1
,

the pullback of the representation (Ra⊗R−a)◦∆ by the shift automorphism µfa (4.2.19)
yields a new representation ϕa := µ∗fa((Ra ⊗R−a) ◦∆) of X(pN) given by

ϕa : X(pN) → End(CN |N)⊗2, T (u) ↦→ fa(u)R12(u, a)R13(u,−a).
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In particular, we find that ϕa(Z(u)) = id⊗2. Indeed, by the unitarity property (4.2.6)
of the R-matrix, we have

ϕa(T
jP(u)T (−u)) = fa(u)fa(−u)R1,3(u,−a)j

P
1R12(u, a)

jP1R12(−u, a)R13(−u,−a)

= fa(u)fa(−u)fa(u)−1fa(−u)−1 id⊗2n = id⊗2n .

Therefore, the representation ϕa descends to a representation of the Yangian:

φa : Y(pN) → End(CN |N)⊗2, T (u) ↦→ fa(u)R12(u, a)R13(u,−a). (4.3.8)

4.3.2 The PBW Theorem and supercenter of Y(pN)

We are now in position to prove that Y(pN) is a filtered deformation of U(glN |N [z]ι
P
).

The proof of the following theorem is similar to [AMR06, Theorem 3.6], which leverages
the lemma introduced in the previous subsection.

Theorem 4.3.2. The epimorphism in Proposition 4.2.7 is an N-graded Hopf superal-
gebra isomorphism

Φ: U(glN |N [z]
ιP)

∼−→ grY(pN), E
(n−1)
ij (z) ↦→ −(−1)[i][j]T (n)

ji (4.3.9)

for i, j ∈ IN and n ∈ Z+.

Proof. By Proposition (4.2.7), all that is left to show is injectivity. To this end, we let
A ∈ U(glN |N [z]

ιP) be a nonzero homogeneous element of gradation degree d; that is,

A =
∑︂

Ak1;...;kmi1j1;...;imjm
E
(k1−1)
i1j1

(z) · · ·E(km−1)
imjm

(z), where Ak1;...;kmi1j1;...;imjm
∈ C,

and the summation indices ib, jb, kb, 1 ≤ b ≤ m, satisfy ib, jb ∈ IN and
∑︁m

b=1 kb = d+m.
Considering the element

˜︁A =
∑︂

(−1)m+
∑︁m

b=1[ib][jb]Ak1;...;kmi1j1;...;imjm
T (k1)
j1i1

· · · T (km)
jmim

∈ Y(pN)

whose summation indices ib, jb, kb, 1 ≤ b ≤ m, satisfy the same conditions as above,
then Φ(A) coincides with the image of ˜︁A in grY(pN), so it suffices to prove that the
filtration degree of ˜︁A is d.
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Step 1. Via the expansion fa(u) = (u+ a)2/((u+ a)2−1) =
∑︁∞

p=0(u+ a)−2p, where

1

(u+ a)2p
= u−2p

(︃ ∞∑︂
n=0

(−a)nu−n
)︃2p

=
∞∑︂

n=2p

(︃
n− 1

n− 2p

)︃
(−a)n−2pu−n,

we see that the coefficient of u−n in fa(u) is given by
∑︁⌊n

2
⌋

p=1

(︁
n−1
n−2p

)︁
(−a)n−2p. In particular,

by regarding a as a formal variable in C, the coefficients of fa(u) are polynomials in C[a]
with polynomial degrees given by dega f

(1)
a = 0 and dega f

(n)
a = n−2 for n ≥ 2.

Recalling the map ρa (4.3.6), the image of T (n)
ij under the representation (4.3.8) is given

by

φa(T (n)
ji ) = δijf

(n)
a id⊗2−(−1)[i][j]

(︁
ρa(E

(n−1)
ij (z))⊗ id+ id⊗ ρ−a(E

(n−1)
ij (z))

)︁
+

∑︂
r+s+t=n

f (r)
a ρa(E

(s−1)
ij (z))⊗ ρ−a(E

(t−1)
ij (z)),

where r ∈ N and s, t, n ∈ Z+. Thus, φa(T (n)
ji ) ∈ End(CN |N )⊗2[a] with polynomial degree

n−1, where its highest degree term is −(−1)[i][j](ρa(E
(n−1)
ij (z))⊗ id+ id⊗ ρa(E

(n−1)
ij (z))).

Step 2. Given complex numbers x1, . . . , xn ∈ C, we consider the tensor product
φx1⇁xn := (

⨂︁n
i=1 φxi) ◦∆n−1. Equipping Y(pN)

⊗n with the tensor product filtration
Fn = {Fn

h }h∈N induced by the one on Y(pN), i.e., Fn
h =

⨁︁∑︁n
i=1 ki=h

Fk1 ⊗ · · · ⊗ Fkn ,

then writing the sum
∑︁m

b=1 kb = d+m allows one to express ∆n−1(T (k1)
j1i1

· · · T (km)
jmim

) as∑︂n

q1,...,qm=1
(T (k1)

j1i1
)[q1] · · · (T

(km)
jmim

)[qm] mod Fn
d−1,

where (T (kb)
ibjb

)[qb] = 1⊗(qb−1) ⊗ T (kb)
ibjb

⊗ 1⊗(n−qb) for 1 ≤ b ≤ m. Regarding x1, . . . , xn

as formal variables taking values in C, the image of the monomial T (k1)
j1i1

· · · T (km)
jmim

under the representation φx1⇁xn will lie in End(CN |N)⊗2n[x1, . . . , xn] with polynomial
degree satisfying deg

(︁
φx1⇁xn(T

(k1)
j1i1

· · · T (km)
jmim

)
)︁
≤ d. If End(CN |N)⊗2n[x1, . . . , xn]d−1

denotes the subspace of polynomials in x1, . . . , xn with degree at most d−1, the
element φx1⇁xn(T

(k1)
j1i1

· · · T (km)
jmim

) is equivalent modulo End(CM |N)⊗2n[x1, . . . , xn]d−1 to
the expression

n∑︂
q1,...,qm=1

(−1)m+
∑︁m

b=1[ib][jb]

m∏︂
b=1

(︁
ρxqb (E

(kb−1)
ibjb

(z))⊗ id+ id⊗ ρ−xqb (E
(kb−1)
ibjb

(z))
)︁[qb],



4.3. Poincaré-Birkhoff-Witt Theorem for Yangians of Type P 167

where X [qb] = id⊗(2qb−2)⊗X ⊗ id⊗(2n−2qb) for 1 ≤ b ≤ m. In particular, we have

φx1⇁xn( ˜︁A) ≡ ρx1⇁xn(A) mod End(CN |N)⊗2n[x1, . . . , xn]d−1,

where ρx1⇁xn is the representation (4.3.1). By Lemma 4.3.1, there exists a1, . . . , an ∈ C
such that ρa1⇁an(A) ̸= 0; thus, φx1⇁xn( ˜︁A) has polynomial degree d, so ˜︁A is of filtration
degree d.

We now arrive at the Poincaré-Birkhoff-Witt-type theorem for the Yangian as an
immediate consequence of Theorem 4.3.2 and the Poincaré-Birkhoff-Witt theorem for
Lie superalgebras:

Corollary 4.3.3 (PBW Theorem for Y(pN)). Let B be an index set of pairs (i, j, n)

in (Z+)2 × N such that {E(n)
ij | (i, j, n) ∈ B} forms a basis for glN |N [z]

ιP. Given any
total ordering ‘⪯’ on the set B =

{︁
T (n+1)
ij | (i, j, n) ∈ B

}︁
, the collection of all ordered

monomials of the form
T (n1)
i1j1

T (n2)
i2j2

· · · T (nk)
ikjk

,

where T (na)
iaja

∈ B, T (na)
iaja

⪯ T (na+1)
ia+1ja+1

, and T (na)
iaja

≠ T (na+1)
ia+1ja+1

if T (na)
iaja

is odd, constitutes a
basis for the Yangian Y(pN).

For instance, the index set B may be constructed via the collection of all tuples
(i, j, n) ∈ (Z+)2 × N that satisfying any of the following four conditions:

1 ≤ |i| < |j| ≤ N, n ∈ N; 1 ≤ i = j ≤ N, n ∈ N;

1 ≤ −i = j ≤ N, n ∈ 2N+1; or −N ≤ −i = j ≤ −1, n ∈ 2N.

Suppose g denotes a Lie superalgebra with trivial supercenter and assume there
exists an involution (−)ϑ ∈ Aut(g). By extending (−)ϑ to an involutive automorphism
of g[z] in a similar way to (−)ι

P, i.e., (X ⊗ f(z))ϑ = Xϑ ⊗ f(−z) for X ∈ g and
f(z) ∈ C[z], then it is a result of [Naz99, Proposition 3.6] that the supercenter of
U(g[z]ϑ) must also be trivial, where g[z]ϑ denotes the fixed-point Lie sub-superalgebra
of g[z] under the automorphism (−)ϑ. Via this result and the previous theorem, we
obtain another corollary:
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Corollary 4.3.4. The supercenter ZY(pN) of Y(pN) is trivial: C ·1.

Proof. By the decomposition glN |N ∼= (C · id)⊕ (glN |N/C · id), it follows that

glN |N [z]
ιP ∼= (glN |N/C · id)[z]ιP ,

so U(glN |N [z]
ιP) has trivial supercenter as established by [Naz99, Proposition 3.6].

In particular, the associated graded grY(pN) therefore has trivial supercenter via
Theorem 4.3.2, which implies the same is true for Y(pN) as well.

Proposition 4.3.5. There is a Hopf superalgebra embedding

ι : U(pN) ↪→ Y(pN), Eij ↦→ −(−1)[i][j]T (1)
ji for i, j ∈ IN .

Proof. Taking the coefficient of u−1 in the relations (4.2.29) give

[︁
T (1)
ji , Tlk(v)

]︁
= −δjk(−1)[i][j]+[i][l]+[k][l]Tli(v) + δil(−1)[i]Tjk(v)

+ δi,-k(−1)[i][l]+[i]+[j][l]Tl,-j(v)− δj,-l(−1)[i][j]T-i,k(v),

so one takes the coefficient of −(−1)[i][j]+[k][l]v−1 above. Furthermore, we realize that
relation (4.2.30) infers T (1)

ji − (−1)[i][j]+[j]T (1)
-i,-j = 0, so one multiplies this relation by

the scalar −(−1)[i][j]. The Hopf superstructures are compatible by their definitions, so
all that remains to show is injectivity, but this follows from Corollary 4.3.3.

4.3.3 Homogeneous quantization

When g is any finite-dimensional Lie superalgebra, Nazarov described in [Naz99, §1]
that given any even, super-symmetric, and g-invariant element ω ∈ g⊗ g, then rational
function r(u, v) = ω/(u − v) is antisymmetric (r(u, v) + σ(r(v, u)) = 0) and is an
r-matrix, i.e., SCYB(r(u, v)) = 0, where

SCYB(r(u, v))

= [r12(u1, u2), r13(u1, u3)] + [r12(u1, u2), r23(u2, u3)] + [r13(u1, u3), r23(u2, u3)].

We refer the reader to §2.3.3 for a more detailed exposition on the notation for the super
classical Yang-Baxter equation (SCYBE). In particular, such an element ω ∈ g ⊗ g



4.3. Poincaré-Birkhoff-Witt Theorem for Yangians of Type P 169

allows one to define a map

δω : g[z] → (g⊗ g) [u, v] ∼= g[z]⊗ g[z]

f(z) ↦→
(︁
adf(u) ⊗ id+ id⊗ adf(v)

)︁ (︂ ω

u− v

)︂
,

(4.3.10)

which will be the Lie co-superbracket for a Lie superbialgebra structure (g[z], δω) on
the polynomial current Lie superalgebra g[z].

When g is basic, such an element ω ∈ g ⊗ g exists as one can select it to be the
Casimir 2-tensor due to the fact that g is equipped with an even, non-degenerate,
super-symmetric, and g-invariant bilinear form (see §2.3.3). With similar reasoning,
such an element also exists when g = glM |N as the the super trace induces a bilinear
form

( · , · ) : glM |N × glM |N → C, (X, Y ) ↦→ str(XY )

which is even, non-degenerate, super-symmetric, and glN |N -invariant. Hence, taking the
Casimir 2-tensor Ω of glM |N to be the preimage of the identity element in End(glM |N)

under the isomorphism

glM |N ⊗ glM |N
∼−→ glM |N ⊗ gl ∗M |N

∼−→ End(glM |N),

then Ω ∈ gl⊗2M |N satisfies the required properties to define the above Lie superbialgebra
structure on glM |N [z]. In fact, the Casimir 2-tensor of glM |N takes a familiar form: since
the dual basis {E ∗ij}i,j∈IN of the standard basis {Eij}i,j∈IN of glN |N with respect to the
above bilinear form is given by E ∗ij = (−1)[i]Eji, the element Ω can be written as

Ω =
∑︂
i,j∈IN

(−1)[Eij ]Eij ⊗ (−1)[i]Eji =
∑︂
i,j∈IN

(−1)[j]Eij ⊗ Eji,

which is the super permutation operator P . By the glM |N -invariance of P , the Lie
co-superbracket on glM |N [z] is equivalent to the assignment

δP (Xz
n) =

∑︂
i,j∈IN

n−1∑︂
a=0

(−1)[j][X,Eij]z
a ⊗ Ejiz

n−a−1

for all X ∈ glM |N and n ∈ Z+, where it is understood that δP (X) = 0.

A natural question to ask is whether or not it is possible to define such a Lie
superbialgebra structure on the strange Lie superalgebras sN = pN , qN in a similar way
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via the use of an appropriate element in s⊗2N . However, as was observed by M. Nazarov
in [Naz92], the above map δω fails to be non-trivial in these cases due to the fact that
all even, super-symmetric, and sN -invariant elements ω ∈ s⊗2N are trivial:

ω ∈ C
∑︁N

i,j=1 Eii ⊗ Ejj if sN = pN and ω ∈ C id⊗2 if sN = qN .

In either case, it is verifiable to check δω = 0. In light of this, Nazarov observed that one
can instead define a non-trivial Lie superbialgebra structure on the twisted polynomial
current Lie superalgebras glM |N [z]

ιK for K = P,Q, so we will state such construction
here. To start, it is proven by [Naz99, Proposition 1.1] that the rational function

rK(u, v) =
P

u− v
+

QK

u+ v
∈ gl⊗2N |N(u, v) (4.3.11)

is antisymmetric and an r-matrix (SCYB(rK(u, v)) = 0); in particular, such r-matrix
allows one to define a map

δK : glN |N [z] →
(︁
glN |N ⊗ glN |N

)︁
[u, v] ∼= glN |N [z]⊗ glN |N [z]

f(z) ↦→
(︁
adf(u) ⊗ id+ id⊗ adf(v)

)︁ (︁
rK(u, v)

)︁
.

In fact, since (id⊗ adf(v))(Q
K/(u+ v)) =

(︁
(id⊗ adf(−v))(P/(u+ v))

)︁ιK2 for polynomials
f(z) ∈ glN |N [z]

ιK, the glN |N -invariance of P implies that the function δ restricts to
well-defined map δ : glN |N [z]ι

K → glN |N [z]
ιK⊗ glN |N [z]

ιK given by

δK(Xz
n) =

∑︂
i,j∈IN

∑︂
a+b=n−1

(−1)[j][X,Eij]z
a ⊗ (Ejiz

b + E ιK

ji (−z)b), (4.3.12)

where X has polynomial degree 0 and it is understood that δ(X) = 0. In terms of the
generators of glN |N [z]ι

K, one can compute the formula

δP(E
(n)
ij (z)) =

∑︂
k∈IN

(−1)[k]
∑︂

a+b=n−1

(︁
E
(a)
ik (z)⊗ E

(b)
kj (z)− (−1)([i]+[k])([k]+[j])E

(a)
kj (z)⊗ E

(b)
ik (z)

)︁
for i, j ∈ IN and n ∈ Z+ when K = P, with a similar formula holding when K = Q

(see [Naz99, §2]). Hence, it follows from the properties of the r-matrix rK(u, v) that δK
becomes a Lie co-superbracket for a Lie superbialgebra structure (glN |N [z]

ιK, δK) on the
space glN |N [z]

ιK.
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We adopt the same definitions of (homogeneous) Hopf superalgebra deformations
and quantizations as in §2.3.3; namely, we assume such notions are taken over the
polynomial ring C[ℏ], where ℏ is a formal element of Z2-degree 0̄. As noted in Chapter 2,
if Uℏ(b) is any Hopf superalgebra deformation of U(b) for any Lie superalgebra b, then b

is endowed with a Lie superbialgebra structure (b, δb) defined by the Lie co-superbracket

δb(X) :=
∆ℏ( ˜︁X)−∆cop

ℏ ( ˜︁X)

ℏ
mod ℏ (Uℏ(b)⊗ Uℏ(b)) for all X ∈ b, (4.3.13)

where ∆ℏ is the comultiplication map on Uℏ(b), ∆cop
ℏ = σ ◦ ∆ℏ is the co-opposite

comultiplication, and ˜︁X is any element in the fiber of X ∈ b ↪→ U(b) under the
composition Uℏ(b) ↠ Uℏ(b)/ℏUℏ(b)

∼−→ U(b).

Furthermore, as discussed in [Wen22], if Uℏ(b) is a homogeneous quantization (over
C[ℏ]) of an N-graded Lie superbialgebra (b, δb), then its ℏ-adic completion

ˆ︁Uℏ(b) = lim
←−

Uℏ(b)/ℏnUℏ(b)

will be a homogeneous quantization of (b, δb) in the sense of [Dri85], taking into account
the super-analogues of the definitions therein. We shall now construct such a homoge-
neous quantization of (glN |N [z]ι

K
, δK), where δK is the Lie co-superbracket (4.3.12).

Definition 4.3.6. Let sN denote either pN or qN . Given C[ℏ] ⊗ Y(sN) = Y(sN)[ℏ]
where ℏ is a formal element of Z2-degree 0̄, the Yangian Yℏ(sN) is defined as the Rees
superalgebra of Y(sN) with respect to the filtration F(Y(sN)) = {Fn(Y(sN))}n∈N on
Y(sN) defined by the assignment deg T (n)

ij = n−1:

Yℏ(sN) := Rℏ(Y(sN)) =
⨁︂
n∈N

ℏnFn(Y(sN)) ⊂ Y(sN)[ℏ].

By definition, the Yangian Yℏ(sN) is N-graded and it further comes equipped with
a Hopf superstructure by extending the one on Y(sN) by C[ℏ]-linearity. In particular,
by setting ˜︁T (n)

ij = ℏn−1T (n)
ij for all i, j ∈ IN and n ∈ Z+, such Hopf superstructure is

given by the comultiplication

∆ℏ : Yℏ(sN) → Yℏ(sN)⊗C[ℏ] Yℏ(sN)˜︁T (n)
ij ↦→ ˜︁T (n)

ij ⊗ 1+ 1⊗ ˜︁T (n)
ij + ℏ

∑︂M+N

k=1

∑︂n−1

a=1
˜︁T (a)
ik ⊗ ˜︁T (n−a)

kj ,
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the counit
εℏ : Yℏ(sN) → C[ℏ], ˜︁T (n)

ij ↦→ 0,

for all i, j ∈ IN and n ∈ Z+, whilst the antipode

Sℏ : Yℏ(sN) → Yℏ(sN)

is given by the assignment

˜︁T (n)
ij ↦→ −˜︁T (n)

ij +
n∑︂
s=2

(−1)sℏs−1
∑︂

∑︁s
j=1 kj=n

(︄ ∑︂
a1,a2,...,as−1∈IN

˜︁T (k1)
ia1

˜︁T (k2)
a1a2

· · · ˜︁T (ks)
as−1j

)︄

with kj ∈ Z+ for each term in the sum
∑︁s

j=1 kj = n and i, j ∈ IN , n ∈ Z+. When
sN = pN , we note the antipode takes on the simpler form Sℏ(˜︁T (n)

ij ) = (−1)[i][j]+[i]+n ˜︁T (n)
-j,-i.

We now arrive at the main proposition of this subsection, which was first stated
in [Naz92]. Note that the proof of the following proposition is completely analogous to
the proof of Proposition 2.3.8.

Proposition 4.3.7. The Yangian Yℏ(pN ) is a homogeneous quantization of the Lie su-
perbialgebra (glN |N [z]

ιP, δP), whilst the Yangian Yℏ(qN ) is a homogeneous quantization of
the Lie superbialgebra (glN |N [z]

ιQ, δQ). Furthermore, there is a superalgebra isomorphism

Yℏ(sN)/(ℏ− λ)Yℏ(sN) ∼= Y(sN) for all λ ∈ C∗,

where sN denotes either pN or qN .

Proof. We shall provide the proof for sN = pN since the case sN = qN is similar with
much of its proof already provided in [Naz99, Proposition 2.5]. To show Yℏ(pN) is
a homogeneous Hopf superalgebra deformation of U(glN |N [z]ι

P
), we initially observe

that Yℏ(pN) is torsion-free, being a C[ℏ]-subalgebra of Y(pN)[ℏ]. In particular, the
composition of the Hopf superalgebra isomorphism

ϕ : Yℏ(pN)/ℏYℏ(pN)
∼−→ grY(pN), ℏn−1T (n)

ij mod ℏYℏ(pN) ↦→ T (n)
ij

for i, j ∈ IN , n ∈ Z+, with the inverse of the isomorphism Φ (4.3.6) gives the desired
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N-graded Hopf superalgebra isomorphism

Φ−1 ◦ ϕ : Yℏ(pN)/ℏYℏ(pN)
∼−→ U(glN |N [z]

ιP).

By the prior discussion, it follows that Yℏ(pN) homogeneously quantizes the Lie super-
bialgebra structure on U(glN |N [z]

ιP) with Lie co-superbracket given by (4.3.13). In fact,
such Lie co-superbracket coincides with the one given by (4.3.12) with K = P, since
defining evℏ as the morphism

evℏ : Yℏ(pN) ↠ Yℏ(pN)/ℏYℏ(pN)
∼−→ U(glN |N [z]

ιP)

mapping ℏn−1T (n)
ij ↦→ −(−1)[i][j]E

(n−1)
ji (z) for i, j ∈ IN and n ∈ Z+, we obtain the

commutative diagram

Yℏ(pN) Yℏ(pN)
⊗2

U(glN |N [z]
ιP) U(glN |N [z]

ιP)⊗2

ℏ−1(∆ℏ −∆cop
ℏ )

evℏ evℏ ⊗ evℏ

δP

where δP is the extension of the Lie co-superbracket (4.3.12) to a coPoisson superbracket
on U(glN |N [z]

ιP).

For the second claim, we consider the epimorphism evλ : Y(pN )[ℏ] → Y(pN ) induced
by the assignment ℏ ↦→ λ. The restriction evRλ of evλ to Rℏ(Y(pN)) will still remain
surjective and its kernel is given by

ker(evRλ ) = Rℏ(Y(pN)) ∩ (ℏ− λ)Y(pN)[ℏ] = (ℏ− λ)Rℏ(Y(pN)),

which finishes the proof.

As discussed earlier in this subsection, it therefore follows by the work in [Wen22]
that the ℏ-adic completions

ˆ︁Yℏ(pN) = lim
←−

Yℏ(pN)/ℏnYℏ(pN) and ˆ︁Yℏ(qN) = lim
←−

Yℏ(qN)/ℏnYℏ(qN)

are homogeneous quantizations of (glN |N [z]ι
P
, δP) and (glN |N [z]

ιQ, δQ), respectively, in
the sense of [Dri85].
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The remainder of this subsection is devoted to expressing the Yangian Yℏ(sN) in
terms of generators and relations for sN = pN , qN . Similar to Chapter 2, we will define
certain C[ℏ]-superalgebras ˜︁Yℏ(pN) and ˜︁Yℏ(qN) built on generators subject to relations
and ultimately show that these are respectively isomorphic to the Yangians Yℏ(pN)

and Yℏ(qN).

Definition 4.3.8. Define ˜︁Yℏ(pN) as the unital associative C[ℏ]-superalgebra on the
generators {˜︁T (n)

ij | i, j ∈ IN , n ∈ Z+}, with Z2-grade
[︁ ˜︁T (n)

ij

]︁
= [i]+ [j] for all n ∈ Z+,

subject to the relations

[︁ ˜︁T (m)
ij , ˜︁T (n)

kl

]︁
= δjk(−1)[k] ˜︁T (m+n−1)

il − δil(−1)[i][k]+[j][k]+[j][l] ˜︁T (m+n−1)
kj

+ δi,-k(−1)[i][j]+m ˜︁T (m+n−1)
-j,l − δj,-l(−1)[i][k]+[j][k]+[j]+m ˜︁T (m+n−1)

k,-i

+ (−1)[i][j]+[i][k]+[j][k]ℏ
min(m,n)∑︂
a=2

(︁˜︁T (a−1)
kj

˜︁T (m+n−a)
il − ˜︁T (m+n−a)

kj
˜︁T (a−1)
il

)︁
− δi,-k ℏ

m∑︂
a=2

∑︂
p∈IN

(−1)[i][j]+[j][p]+[p]+m−a ˜︁T (a−1)
pj

˜︁T (m+n−a)
-p,l

+ δj,-l ℏ
m∑︂
a=2

∑︂
p∈IN

(−1)[i][k]+[i]+[j][k]+[j]+[i][p]+m−a ˜︁T (m+n−a)
k,-p ˜︁T (a−1)

ip

and

(−1)[i][j]+[i] ˜︁T (n)
-j,-i = (−1)n ˜︁T (n)

ij + ℏ
∑︂
p∈IN

n−1∑︂
a=1

(−1)[i][p]+[i]+n−a−1 ˜︁T (a)
-p,-i ˜︁T (n−a)

pj

for all i, j, k, l ∈ IN and m,n ∈ Z+.

Definition 4.3.9. Define ˜︁Yℏ(qN) as the unital associative C[ℏ]-superalgebra on the
generators {˜︁T (n)

ij | i, j ∈ IN , n ∈ Z+}, with Z2-grade
[︁ ˜︁T (n)

ij

]︁
= [i]+ [j] for all n ∈ Z+,

subject to the relations

(−1)[i][j]+[i][k]+[j][k]
[︁ ˜︁T (m)

ij , ˜︁T (n)
kl

]︁
= δjk ˜︁T (m+n−1)

il − δil ˜︁T (m+n−1)
kj − δj,-k(−1)m ˜︁T (m+n−1)

-i,l + δi,-l(−1)m ˜︁T (m+n−1)
k,-j

+ ℏ
min(m,n)∑︂
a=2

(︁˜︁T (a−1)
kj

˜︁T (m+n−a)
il − ˜︁T (m+n−a)

kj
˜︁T (a−1)
il

)︁
− ℏ

m∑︂
a=2

(−1)m−a
(︂
(−1)[j]+[k] ˜︁T (a−1)

-k,j ˜︁T (m+n−a)
-i,l − (−1)[i]+[l] ˜︁T (m+n−a)

k,-j ˜︁T (a−1)
i,-l

)︂
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and ˜︁T (n)
-i,-j = (−1)[i]+[j]+n ˜︁T (n)

ij

for all i, j, k, l ∈ IN and m,n ∈ Z+.

For sN = pN , qN , we observe the superalgebra ˜︁Yℏ(sN ) is N-graded via the gradation
assignments

deg ℏ = 1 and deg ˜︁T (n)
ij = n−1 for i, j ∈ IN , n ∈ Z+.

In Proposition 4.3.11 below, we will show ˜︁Yℏ(sN) ∼= Yℏ(sN). Again, the following
arguments are completely analogous to those used in §2.3.3, which themselves derive
from the articles [GRW19a, Proposition 2.2] and [GRW19c, Theorem 6.10].

For K = P,Q, by equipping U(glN |N [z]
ιK ) with a C[ℏ]-superalgebra structure via

the action induced by ℏ ↦→ 0, we get the following result:

Lemma 4.3.10. There are N-graded superalgebra epimorphisms

˜︁evPℏ : ˜︁Yℏ(pN) ↠ U(glN |N [z]
ιP) and ˜︁evQℏ : ˜︁Yℏ(qN) ↠ U(glN |N [z]

ιQ)

defined by ˜︁T (n)
ij ↦→ −(−1)[i][j]E

(n−1)
ji (z) and ˜︁T (n)

ij ↦→ −(−1)[i][j]F
(n−1)
ji (z), respectively, for

all i, j ∈ IN , n ∈ Z+. In particular, ker( ˜︁evPℏ ) = ℏ˜︁Yℏ(pN) and ker( ˜︁evQℏ ) = ℏ˜︁Yℏ(qN), so
there are isomorphisms

˜︁Yℏ(pN)/ℏ˜︁Yℏ(pN) ∼= U(glN |N [z]
ιP) and ˜︁Yℏ(qN)/ℏ˜︁Yℏ(qN) ∼= U(glN |N [z]

ιQ)

as N-graded superalgebras.

Proof. We shall provide the proof for sN = pN , and the case sN = qN is similar. By
the C[ℏ]-module structure on U(glN |N [z]

ιP), it is routine to prove ˜︁evPℏ is a gradation
preserving superalgebra epimorphism such that ℏ˜︁Yℏ(pN) ⊆ ker( ˜︁evPℏ ); hence, ˜︁evPℏ de-
scends to an epimorphism ˜︁Yℏ(pN)/ℏ˜︁Yℏ(pN) → U(glN |N [z]

ιP) of N-graded superalgebras
mapping ˜︁T (n)

ij mod ℏ˜︁Yℏ(pN) ↦→ −(−1)[i][j]E
(n−1)
ji (z). Conversely, there is a superal-

gebra morphism U(glN |N [z]
ιP) → ˜︁Yℏ(pN)/ℏ˜︁Yℏ(pN) sending E

(n−1)
ji (z) to the element

−(−1)[i][j] ˜︁T (n)
ij mod ℏ˜︁Yℏ(pN), which establishes the isomorphism.
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Proposition 4.3.11. For sN = pN , qN , there is an isomorphism of C[ℏ]-superalgebras

φℏ : ˜︁Yℏ(sN) → Yℏ(sN), ˜︁T (n)
ij ↦→ ℏn−1T (n)

ij

for all i, j ∈ IN , n ∈ Z+.

Proof. We shall provide the proof for sN = pN , and the case sN = qN is similar. By
the defining relations in the Yangian Y(pN) and the fact that the elements ℏn−1T (n)

ij ,
i, j ∈ IN , n ∈ Z+, generate Yℏ(pN), the map φℏ is a superalgebra epimorphism.
Recalling the C[ℏ]-superalgebra structure on U(glN |N [z]

ιP) defined by ℏ ↦→ 0, there
is an epimorphism evPℏ : Yℏ(pN) ↠ U(glN |N [z]

ιP) of C[ℏ]-superalgebras induced by
Yℏ(pN)/ℏYℏ(pN) ∼= U(glN |N [z]

ιP). In fact, we have the commuting diagram:

˜︁Yℏ(pN) Yℏ(pN)

U(glN |N [z]
ιP) U(glN |N [z]

ιP)

φℏ

˜︁evPℏ evPℏ

id

Suppose X ∈ ˜︁Yℏ(pN) is nonzero such that X ∈ kerφℏ. As there exists a maximal
integer n ∈ N such that X ∈ ℏn˜︁Yℏ(pN ), one can write X = ℏnY for some Y ̸∈ ℏ˜︁Yℏ(pN ).
In particular, since 0 = φℏ(ℏnY ) = ℏnφℏ(Y ), it must be Y ∈ kerφℏ as well due to
Yℏ(pN) being torsion-free. However, the above commutative diagram would imply
Y ∈ ker( ˜︁evPℏ ) = ℏ˜︁Yℏ(pN), a contradiction.



Chapter 5

Twisted Super Yangians of Type AIII

In this penultimate chapter, we define twisted Yangians associated to symmetric
superpairs of type AIII which take the form

(glM |N , glp|q ⊕ gl(M−p)|(N−q)) for 0 ≤ p ≤M, 0 ≤ q < N.

In particular, the first section starts by introducing a family of reflection superalgebras in
§5.1.1 that are subject to an additional unitary condition. Such twisted super Yangians
are defined in § 5.1.2, where it is shown that they are in fact isomorphic to these
reflection superalgebras. In §5.2, a highest weight theory for the super twisted Yangians
is cultivated where it is proven that every finite-dimensional irreducible representation
must be highest weight.

5.1 The Twisted Yangian Y(glM |N ,G)tw

We shall prove twisted super Yangians of type AIII are also reflection superalgebras
subject to an additional unitary condition. As a consequence, we will be able to to
establish a PBW-type theorem for these twisted super Yangians by making use of
certain properties of the Yangian Y(glM |N).

177
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5.1.1 Reflection superalgebras

Given a integers M,N ∈ N such that M+N ≥ 1, we recall the gradation index from
subsection §2.1.2 when d = {1, 2, . . . ,M}:

[ · ] : {1, 2, . . . ,M+N} → Z2

given by [i] = 0̄ if 1 ≤ i ≤M and [i] = 1̄ if M+1 ≤ i ≤M+N .

We recall that CM |N denotes the vector space CM+N equipped with the Z2-grading
by assigning [ei] = [i], where {ei}M+N

i=1 is the standard ordered basis of CM+N . The
space of C-linear maps CM |N → CM |N , denoted EndCM |N , carries the natural Z2-
grading such that [Eij] := [i]+ [j], where {Eij}M+N

i,j=1 is the collection of the matrix
units of EndCM |N with respect to the standard basis. The space EndCM |N is denoted
glM |N = gl(CM |N ) when given the Lie superalgebra structure via the super-commutator
[Eij, Ekl] := δjkEil − (−1)([i]+[j])([k]+[l])δliEkj. We also recall the super permutation
operator (2.2.1) in

(︁
EndCM |N)︁⊗2 given by

P :=
∑︂M+N

i,j=1
(−1)[j]Eij ⊗ Eji,

and the super-transpose (2.1.7) map

(−)st : EndCM |N → EndCM |N , Eij ↦→ Est
ij := (−1)[i][j]+[i]Eji.

Throughout Chapter 5, we define the R-matrix R(u) to be the rational function in
the formal parameter u taking coefficients in

(︁
EndCM |N)︁⊗2 given by

R(u) := id⊗2−Pu−1, (5.1.1)

which is the simplest non-trivial solution to the super quantum Yang-Baxter equation
(SQYBE):

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u), (5.1.2)

Moreover, the equations P 2 = id⊗2 and P st1◦st2 = P = P st2◦st1 infer the relations

PR(u)P = R(u) = Rst2◦st1(u) = Rst1◦st2(u), (5.1.3)

R(u)R(−u) =
(︃
1− 1

u2

)︃
id⊗2, (5.1.4)
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known as crossing symmetry and unitarity, respectively.

Consider now integers M,N ∈ N such that M+N ≥ 1. By decomposing M and N
into sums of two non-negative integers: M = p+kM and N = q+kN , we define a matrix
G = (Gij)M+N

i,j=1 ∈ MatM+N(C) via the formula

Gij :=

⎧⎨⎩δij if 1 ≤ i ≤ p or M+1 ≤ i ≤M+q,

−δij if p+1 ≤ i ≤M or M+q+1 ≤ i ≤M+N.
(5.1.5)

The matrix G will underlie several constructions in this chapter, including the reflection
superalgebras. These superalgebras are important in twisted Yangian theory and these
shall be the first objects we investigate.

Definition 5.1.1. The extended reflection superalgebra XB(glM |N ,G) of glM |N is the
unital associative C-superalgebra on generators

{︁
B
(n)
ij | 1 ≤ i, j ≤ M+N, n ∈ Z+

}︁
,

with Z2-grade
[︁
B
(n)
ij

]︁
:= [i]+ [j] for all n ∈ Z+, subject to the defining super reflection

equation

R(u− v)B1(u)R(u+ v)B2(v) = B2(v)R(u+ v)B1(u)R(u− v)

in
(︁
EndCM |N)︁⊗2 ⊗ XB(glM |N ,G)[[u±1, v±1]],

(5.1.6)

where B(u) :=
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ Bij(u) ∈ End(CM |N )⊗XB(glM |N ,G)[[u−1]] is the
matrix consisting of the series Bij(u) := Gij1 +

∑︁∞
n=1 B

(n)
ij u

−n ∈ XB(glM |N ,G)[[u−1]]
for indices 1 ≤ i, j ≤ M+N , and R(u − v) is the R-matrix (5.1.1) identified with
R(u− v)⊗ 1.

On the level of power series, the super reflection equation (5.1.6) takes the form

[︁
Bij(u),Bkl(v)

]︁
=

1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︁
Bkj(u)Bil(v)− Bkj(v)Bil(u)

)︁
+

(−1)[j][k]

u+ v

(︂
δjk

M+N∑︂
a=1

Bia(u)Bal(v)− (−1)[i][j]+[i][k]δil

M+N∑︂
a=1

Bka(v)Baj(u)
)︂

− 1

u2 − v2
δij

(︂M+N∑︂
a=1

Bka(u)Bal(v)−
M+N∑︂
a=1

Bka(v)Bal(u)
)︂

(5.1.7)

for all 1 ≤ i, j, k, l ≤M+N , where the above equality may be regarded as one in the
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extension XB(glM |N ,G)[[u±1, v±1]], where [ · , · ] is understood as the Lie superbracket

[︁
Bij(u),Bkl(v)

]︁
= Bij(u)Bkl(v)− (−1)([i]+[j])([k]+[l])Bkl(v)Bij(u).

Following [MR02, Proposition 2.1], we can construct a series of central elements in
XB(glM |N ,G) as described by the proposition below.

Proposition 5.1.2. There is a series f(u) = 1+
∑︁∞

n=1 f
(2n)u−2n ∈ XB(glM |N ,G)[[u−2]]

satisfying the relation

B(u)B(−u) = B(−u)B(u) = id⊗ f(u) (5.1.8)

whose coefficients f(2n), n ∈ Z+, are central elements of homogeneous Z2-degree 0̄.

Proof. By multiplying the defining relations (5.1.7) with the polynomial u2 − v2 and
substituting v = −u, we yield the relation

δij

(︂M+N∑︂
a=1

Bka(u)Bal(−u)−
M+N∑︂
a=1

Bka(−u)Bal(u)
)︂

= (−1)[j][k]2u
(︂
δjk

M+N∑︂
a=1

Bia(u)Bal(−u)− (−1)[i][j]+[i][k]δil

M+N∑︂
a=1

Bka(−u)Baj(u)
)︂
.

Fixing i = j, evaluating at k, l ̸= i and k = l = i in the above relation infers the equality
B(u)B(−u) = B(−u)B(u). Alternatively, for any i ̸= j, evaluating at k = j and l = i,
and again at k = j and l ̸= i, in the above relation implies

B(u)B(−u) = id⊗
M+N∑︂
a=1

Bka(u)Bak(−u) for any 1 ≤ k ≤M+N ;

hence, we set f(u) =
∑︁M+N

a=1 (−1)[k]+[a]Bka(u)Bak(−u) for any 1 ≤ k ≤M+N . Multiply-
ing the super reflection equation (5.1.6) on the right by B2(−v) yields the equation

R(u− v)B1(u)R(u+ v)
(︁
id⊗2⊗ f(v)

)︁
= B2(v)R(u+ v)B1(u)R(u− v)B2(−v).

However, by translating v ↦→ −v in the super reflection equation, we therefore have

B2(v)R(u+ v)B1(u)R(u− v)B2(−v) = B2(v)B2(−v)R(u− v)B1(u)R(u+ v)

=
(︁
id⊗2⊗ f(v)

)︁
R(u− v)B1(u)R(u+ v),
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resulting in the relation

R(u− v)B1(u)R(u+ v)
(︁
id⊗2⊗ f(v)

)︁
=
(︁
id⊗2⊗ f(v)

)︁
R(u− v)B1(u)R(u+ v).

By the unitarity property (5.1.4) of the R-matrix and the fact that the coefficients of
the series f(v) are of Z2-grade 0̄, we yield the desired relation

B1(u)
(︁
id⊗2⊗ f(v)

)︁
=
(︁
id⊗2⊗ f(v)

)︁
B1(u),

which itself implies Bij(u)f(v) = f(v)Bij(u) for all 1 ≤ i, j ≤M+N .

By letting (f(u)− 1) denote the two-sided ideal of XB(glM |N ,G) generated by the
coefficients of f(u)− 1, we obtain the following definition:

Definition 5.1.3. The reflection superalgebra B(glM |N ,G) of glM |N is the quotient of
XB(glM |N ,G) by the two-sided ideal (f(u)− 1):

B(glM |N ,G) = XB(glM |N ,G)/ (f(u)− 1) .

Equivalently, B(glM |N ,G) is the unital associative C-superalgebra on the generators
{B(n)

ij | 1 ≤ i, j ≤ M+N, n ∈ Z+}, with Z2-grade
[︁
B

(n)
ij

]︁
:= [i]+ [j] for all n ∈ Z+,

subject to the super reflection equation

R(u− v)B1(u)R(u+ v)B2(v) = B2(v)R(u+ v)B1(u)R(u− v)

in
(︁
EndCM |N)︁⊗2 ⊗ B(glM |N ,G)[[u±1, v±1]],

(5.1.9)

where R(u− v) is the R-matrix (5.1.1) identified with R(u− v)⊗ 1, and the unitary
condition

B(u)B(−u) = 1 ∈ End(CM |N)⊗ B(glM |N ,G)[[u−1]], (5.1.10)

given B(u) :=
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ Bij(u) ∈ End(CM |N)⊗ B(glM |N ,G)[[u−1]] is the
matrix consisting of the series Bij(u) := Gij1+

∑︁∞
n=1B

(n)
ij u

−n ∈ B(glM |N ,G)[[u−1]] for
indices 1 ≤ i, j ≤M+N .

In terms of formal power series, the defining relations for the reflection superalgebra



182 Chapter 5. Twisted Super Yangians of Type AIII

take the following form:

[︁
Bij(u), Bkl(v)

]︁
=

1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︁
Bkj(u)Bil(v)−Bkj(v)Bil(u)

)︁
+

(−1)[j][k]

u+ v

(︂
δjk

M+N∑︂
a=1

Bia(u)Bal(v)− (−1)[i][j]+[i][k]δil

M+N∑︂
a=1

Bka(v)Baj(u)
)︂

− 1

u2 − v2
δij

(︂M+N∑︂
a=1

Bka(u)Bal(v)−
M+N∑︂
a=1

Bka(v)Bal(u)
)︂

(5.1.11)

and
M+N∑︂
a=1

Bia(u)Baj(−u) = δij1 (5.1.12)

for all 1 ≤ i, j, k, l ≤M+N .

We now establish some notation. Recalling Z+
M+N = Z ∩ [1,M+N ], we consider

the subset C ⊂ (Z+
M+N)

2 consisting of all pairs (i, j) that satisfy any of the following
inequalities:

1 ≤ i, j ≤ p; p+1 ≤ i, j ≤M ; M+1 ≤ i, j ≤M+q; M+q+1 ≤ i, j ≤M+N ;

1 ≤ i ≤ p, M+1 ≤ j ≤M+q; M+1 ≤ i ≤M+q, 1 ≤ j ≤ p;

p+1 ≤ i ≤M, M+q+1 ≤ j ≤M+N ; M+q+1 ≤ i ≤M+N, p+1 ≤ j ≤M.

Finally, we define the subset K ⊂ (Z+
M+N)

2 × Z+ to be the following collection:

K :=
{︁
(i, j, n) | (i, j) ∈ C, n ∈ 2Z+−1 or (i, j) ∈ (Z+

M+N)
2\C, n ∈ 2Z+

}︁
. (5.1.13)

Consequently, we arrive at the following proposition.

Proposition 5.1.4. The set
{︁
B

(n)
ij

}︁
(i,j,n)∈K generates B(glM |N ,G).

Proof. Letting A denote the sub-superalgebra generated by the set {B(n)
ij | (i, j, n) ∈ K},

we shall prove that B(m)
ij ∈ A for all 1 ≤ i, j ≤M+N and m ∈ Z+ via induction on m.

First, the unitary condition (5.1.12) implies

∑︂
r+s=m

(−1)s
M+N∑︂
a=1

B
(r)
ia B

(s)
aj = 0 for m ∈ Z+.
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For instance, when m = 1 this equation becomes (Gjj − Gii)B(1)
ij = 0; hence,

B
(1)
ij = 0 for all (i, j) ∈ (Z+

M+N)
2 \ C. (5.1.14)

When m = 2, we obtain (Gii + Gjj)B(2)
ij =

∑︁M+N
a=1 B

(1)
ia B

(1)
aj , so (5.1.14) implies B(2)

ij ∈ A
for (i, j) ∈ C. Let us assume the induction hypothesis holds for m−1. By computing

(Gjj + (−1)mGii)B(m)
ij = −

m−1∑︂
s=1

(−1)s
M+N∑︂
a=1

B
(m−s)
ia B

(s)
aj ,

the induction hypothesis infers B(m)
ij ∈ A for (i, j) ∈ (Z+

M+N)
2 \ C if m is odd and

(i, j) ∈ C if m is even, concluding the proof.

Two canonical ascending algebra filtrations on B(glM |N ,G) are E = {En}n∈N and
E′ = {E′n}n∈N given via the respective filtration degree assignments

degEB
(n)
ij = n−1 and degE′ B

(n)
ij = n.

for all 1 ≤ i, j ≤ M+N and n ∈ Z+. Due to the relations (5.1.11), the associated
graded superalgebra grE′ B(glM |N ,G) =

⨁︁
n∈N E

′
n/E

′
n−1 is supercommutative.

5.1.2 Twisted super Yangians of type AIII

We start this subsection by first recalling the definition of the Yangian of glM |N which
was first introduced in §3.2.2.

Definition 5.1.5. The Yangian Y(glM |N) of glM |N is the unital associative C-super-
algebra on generators

{︁
T

(n)
ij | 1 ≤ i, j ≤ M+N, n ∈ Z+

}︁
, equipped with Z2-grade[︁

T
(n)
ij

]︁
:= [i]+ [j] for all n ∈ Z+, subject to the defining RTT -relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v)

in
(︁
EndCM |N)︁⊗2 ⊗ Y(glM |N)[[u

±1, v±1]],
(5.1.15)

where T (u) :=
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ Tij(u) ∈ End(CM |N) ⊗ Y(glM |N)[[u
−1]] is the

matrix consisting of the series Tij(u) := δij1 +
∑︁∞

n=1 T
(n)
ij u−n ∈ Y(glM |N)[[u

−1]] for
1 ≤ i, j ≤M+N , and R(u− v) is the R-matrix (5.1.1) identified with R(u− v)⊗ 1.



184 Chapter 5. Twisted Super Yangians of Type AIII

On the level of power series, the RTT -relation (5.1.15) takes the form

[︁
Tij(u), Tkl(v)

]︁
=

1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︁
Tkj(u)Til(v)− Tkj(v)Til(u)

)︁
, (5.1.16)

for all 1 ≤ i, j, k, l ≤M+N , where [ · , · ] is understood as the Lie superbracket

[︁
Tij(u), Tkl(v)

]︁
= Tij(u)Tkl(v)− (−1)([i]+[j])([k]+[l])Tkl(v)Tij(u).

We note that the super Yangian Y(glM |N) comes equipped with a Hopf superstructure
as given by the comultiplication, counit, and antipode:

∆: T (u) ↦→ T[1](u)T[2](u), ε : T (u) ↦→ 1, S : T (u) ↦→ T (u)−1. (5.1.17)

Furthermore, the Yangian Y(glM |N) benefits from a Hopf superalgebra embedding

ι : U(glM |N) ↪→ Y(glM |N), Eij ↦→ (−1)[i]T
(1)
ij (5.1.18)

and a Hopf superalgebra epimorphism

ev : Y(glM |N) → U(glM |N), Tij(u) ↦→ δij + (−1)[i]Eiju
−1 (5.1.19)

as can be verified by the composition ev ◦ ι = id.

Two important ascending algebra filtrations on Y(glM |N) are F = {Fn}n∈N and
F′ = {F′n}n∈N given via the respective filtration degree assignments

degF T
(n)
ij = n−1 and degF′ T

(n)
ij = n.

for all 1 ≤ i, j ≤ M+N and n ∈ Z+. By the defining relations of the Yangian, the
associated graded superalgebra grF′Y(glM |N) =

⨁︁
n∈N F

′
n/F

′
n−1 is supercommutative.

Definition 5.1.6. The twisted Yangian Y(glM |N ,G)tw of glM |N is the sub-superalgebra
of Y(glM |N) generated by the coefficients

{︁
S
(n)
ij | 1 ≤ i, j ≤M+N, n ∈ Z+

}︁
of

S(u) := T (u)GT (−u)−1 ∈
(︁
EndCM |N)︁⊗2 ⊗ Y(glM |N)[[u

−1]], (5.1.20)

where S(u) =
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ Sij(u) ∈ End(CM |N) ⊗ Y(glM |N)[[u
−1]] is the

matrix consisting of the series Sij(u) := Gij1+
∑︁∞

n=1 S
(n)
ij u

−n ∈ Y(glM |N)[[u
−1]].
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By writing the matrix T (u)−1 =
∑︁M+N

i,j=1 (−1)[i][j]+[j]Eij ⊗ T •ij(u) where T •ij(u) is
written as δij1+

∑︁∞
n=1 T

•
ij
(n)u−n, then the series Sij(u) takes the form

Sij(u) =
M+N∑︂
a=1

GaaTia(u)T •aj(−u). (5.1.21)

We note that one can compute the coefficients of T •ij(u) explicitly as

T •ij
(n) = −T (n)

ij +
n∑︂
s=2

(−1)s
∑︂

∑︁s
j=1 kj=n

(︄
M+N∑︂

a1,a2,...,as−1=1

T
(k1)
ia1

T (k2)
a1a2

· · ·T (ks)
as−1j

)︄
,

where kj ∈ Z+ for each kj in the sum
∑︁s

j=1 kj = n. In particular, we can conclude Sij(u)
is homogeneous of degree [Sij(u)] = [i]+ [j] since [T •aj(−u)] = [a]+ [j].

As a sub-superalgebra of the Hopf superalgebra Y(glM |N), a natural inquiry is
whether or not the Hopf superstructure on the Yangian restricts to one on the twisted
Yangian Y(glM |N ,G)tw. The answer to this question is in the negative, as the twisted
super Yangian appears instead as a left coideal of Y(glM |N).

Proposition 5.1.7. The twisted Yangian Y(glM |N ,G)tw is a left coideal of Y(glM |N):

∆(Y(glM |N ,G)tw) ⊆ Y(glM |N)⊗ Y(glM |N ,G)tw.

Proof. Having the comultiplication map ∆ on Y(glM |N) act on T (u)T (u)−1 = 1 infers
the equality

∆(T (u)−1) = T[2](u)
−1T[1](u)

−1.

Thus, ∆(T •ij(u)) =
∑︁M+N

k=1 (−1)([i]+[k])([k]+[j])T •kj(u) ⊗ T •ik(u). Hence, for any indices
1 ≤ i, j ≤M+N , one can compute

∆(Sij(u)) =
M+N∑︂
c=1

Gcc∆(Tic(u))∆(T •cj(−u))

=
M+N∑︂
a,b,c=1

(−1)([c]+[b])([b]+[j])Gcc(Tia(u)⊗ Tac(u))(T
•
bj(−u)⊗ T •cb(−u))

=
M+N∑︂
a,b=1

(−1)([a]+[b])([b]+[j])Tia(u)T
•
bj(−u)⊗ Sab(u),

completing the proof.
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Note that the filtrations F and F′ on Y(glM |N) endow filtrations on the twisted
super Yangian Y(glM |N ,G)tw, which we will also denote F and F′ respectively. Such
filtrations are given by the degree assignments

degF S
(n)
ij = n−1 and degF′ S

(n)
ij = n.

for all 1 ≤ i, j ≤M+N and n ∈ Z+.

Lemma 5.1.8. Let S(n)
ij denote the image of S(n)

ij in n-th graded component F′n/F′n−1
of the graded superalgebra grF′Y(glM |N ,G)tw =

⨁︁
n∈N F

′
n/F

′
n−1. Fixing a total order ‘⪯’

on the index set K defined by (5.1.13), then the collection of all ordered monomials of
the form

S
(n1)
i1j1

S
(n2)
i2j2

· · ·S(nk)
ikjk

(5.1.22)

with (ia, ja, na) ∈ K, (ia, ja, na) ⪯ (ia+1, ja+1, na+1), and (ia, ja, na) ̸= (ia+1, ja+1, na+1)

if [ia]+ [ja] = 1̄, are linearly independent.

Proof. We recall the associated graded superalgebra grF′Y(glM |N ) and let us have T (n)
ij

denote the image of the generator T (n)
ij in its n-th graded component. As was shown in the

proof of [Gow07, Theorem 1], if we endow a total order ⪯ on the set I = (Z+
M+N )

2×Z+,
then the collection of all ordered monomials of the form

T
(n1)
i1j1

T
(n2)
i2j2

· · ·T (nk)
ikjk

(5.1.23)

with (ia, ja, na) ∈ I, (ia, ja, na) ⪯ (ia+1, ja+1, na+1), and (ia, ja, na) ̸= (ia+1, ja+1, na+1)

if [ia]+ [ja] = 1̄, forms a basis for grF′Y(glM |N).

Let us now introduce another filtration F = {Fn}n∈N but instead on grF′Y(glM |N)

via degF T
(n)
ij = n−1. Therefore, from the description (5.1.21), we have

S
(n)
ij ≡ (Gjj + (−1)n+1Gii)T (n)

ij mod Fn−2, (5.1.24)

so S̄(n)
ij ≡ ±2T

(n)
ij modFn−2 if and only if (i, j, k) ∈ K.

If we assume to the contrary that there exists a non-trivial linear combination A of
ordered monomials of the form (5.1.22) such that A = 0, then let R denote the linear
combination of those monomials occurring in A of maximal F-filtration degree say α.
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However, the equivalence (5.1.24) would imply 0 = A ≡ R ≡ ˜︁RmodFα−1, where ˜︁R is a
non-trivial linear combination of ordered monomials of the form (5.1.23) of F-filtration
degree α, but this contradicts their linear independence.

We can now establish the following isomorphism:

Theorem 5.1.9. There is a superalgebra isomorphism

φ : B(glM |N ,G)
∼−→ Y(glM |N ,G)tw, B(u) ↦→ S(u). (5.1.25)

Proof. It is immediate that the map φ is homogeneous and surjective. To show φ is a
superalgebra morphism, one can first readily check S(u)S(−u) = 1 is satisfied since
G2 = id. To show to S(u) satisfies the super reflection equation, we require the use of
the following equations obtained from the RTT -relation (5.1.15):

T1(−u)−1R(u+ v)T2(v) = T2(v)R(u+ v)T1(−u)−1, (5.1.26)

R(u− v)T1(−u)−1T2(−v)−1 = T2(−v)−1T1(−u)−1R(u− v), (5.1.27)

T1(u)R(u+ v)T2(−v)−1 = T2(−v)−1R(u+ v)T1(u). (5.1.28)

By using (5.1.26) and the fact that Gi commutes with Tj(u) and Tj(−u)−1 for
integers 1 ≤ i ̸= j ≤ 2, the expression R(u− v)S1(u)R(u+ v)S2(v) is given by

R(u− v)T1(u)G1T1(−u)−1R(u+ v)T2(v)G2T2(−v)−1

= R(u− v)T1(u)G1T2(v)R(u+ v)T1(−u)−1G2T2(−v)−1

= R(u− v)T1(u)T2(v)G1R(u+ v)G2T1(−u)−1T2(−v)−1

= T2(v)T1(u)R(u− v)G1R(u+ v)G2T1(−u)−1T2(−v)−1,

where we used the RTT -relation in the last equality. Furthermore, since G1G2 = G2G1

and G1P = P G2, then R(u− v)G1R(u+ v)G2 = G2R(u− v)G1R(u+ v). Therefore, by
using this equality and equations (5.1.27), (5.1.28), the above expression becomes

T2(v)T1(u)G2R(u+ v)G1R(u− v)T1(−u)−1T2(−v)−1

= T2(v)T1(u)G2R(u+ v)G1T2(−v)−1T1(−u)−1R(u− v)

= T2(v)G2T1(u)R(u+ v)T2(−v)−1G1T1(−u)−1R(u− v)

= T2(v)G2T2(−v)−1R(u+ v)T1(u)G1T1(−u)−1R(u− v),
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which is the expression S2(v)R(u+ v)S1(u)R(u− v).

To show the morphism φ is injective, it suffices to prove that the associated morphism

grφ : grE′ B(glM |N ,G) → grF′Y(glM |N ,G)tw

is so. However, by Proposition (5.1.4), we know the set
{︁
B

(n)
ij

}︁
(i,j,n)∈K generates

grE′ B(glM |N ,G), so the map grφ is injective by Lemma (5.1.8).

Through the course of the proof for Theorem 5.1.9, we also established an explicit
basis for the reflection superalgebra and twisted super Yangian. Such is described by
the corollary below.

Corollary 5.1.10 (PBW Theorem). Fix a total order ‘⪯’ on the index set K defined
by (5.1.13).

(i) The collection of all ordered monomials of the form

B
(n1)
i1j1

B
(n2)
i2j2

· · ·B(nk)
ikjk

, where (ia, ja, na) ∈ K for 1 ≤ a ≤ k, (5.1.29)

such that (ia, ja, na) ⪯ (ia+1, ja+1, na+1), and (ia, ja, na) ̸= (ia+1, ja+1, na+1) if
[ia]+ [ja] = 1̄, constitutes a basis for B(glM |N ,G).

(ii) The collection of all ordered monomials of the form

S
(n1)
i1j1

S
(n2)
i2j2

· · ·S(nk)
ikjk

, where (ia, ja, na) ∈ K for 1 ≤ a ≤ k, (5.1.30)

such that (ia, ja, na) ⪯ (ia+1, ja+1, na+1), and (ia, ja, na) ̸= (ia+1, ja+1, na+1) if
[ia]+ [ja] = 1̄, constitutes a basis for Y(glM |N ,G)tw.

As a benefit of Theorem 5.1.9, we can also express the twisted super Yangian in
terms of generators and relations, which will be particularly useful in investigating its
representation theory in the subsequent section.
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Corollary 5.1.11. The twisted Yangian Y(glM |N ,G)tw is the unital associative C-super-
algebra on generators

{︁
S
(n)
ij | 1 ≤ i, j ≤ M+N, n ∈ Z+

}︁
, equipped with Z2-grade[︁

S
(n)
ij

]︁
:= [i]+ [j] for all n ∈ Z+, subject to the defining relations

[︁
Sij(u), Skl(v)

]︁
=

1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︁
Skj(u)Sil(v)− Skj(v)Sil(u)

)︁
+

(−1)[j][k]

u+ v

(︂
δjk

M+N∑︂
a=1

Sia(u)Sal(v)− (−1)[i][j]+[i][k]δil

M+N∑︂
a=1

Ska(v)Saj(u)
)︂

− 1

u2 − v2
δij

(︂M+N∑︂
a=1

Ska(u)Sal(v)−
M+N∑︂
a=1

Ska(v)Sal(u)
)︂

(5.1.31)

and
M+N∑︂
a=1

Sia(u)Saj(−u) = δij1 (5.1.32)

for all 1 ≤ i, j, k, l ≤M+N .

We end this section by providing justification to the terminology ‘twisted’ used
in name of the twisted Yangian Y(glM |N ,G)tw. Namely, by defining Yℏ(glM |N ,G)tw as
the Rees superalgebra of Y(glM |N ,G)tw, we will establish a superalgebra isomorphism
Yℏ(glM |N ,G)tw/ℏYℏ(glM |N ,G)tw ∼= U(glM |N [z]

ϑ), where glM |N [z]
ϑ is the fixed-point Lie

sub-superalgebra of glM |N [z] under some involutive automorphism ϑ, called the twisted
current Lie superalgebra. To this end, consider the involution ϑ ∈ Aut(glM |N) given by

ϑ : glM |N → glM |N , Eij ↦→ GiiGjjEij. (5.1.33)

We find that the fixed-point Lie sub-superalgebra glϑM |N of glM |N under the involutive
automorphism ϑ is generated by the operators

Eij + ϑ(Eij) = (1 + GiiGjj)Eij ∈ glϑM |N for all 1 ≤ i, j ≤M+N.

In particular, by setting p′ =M−p and q′ = N−q, one can verify the Lie superalgebra
isomorphism

glϑM |N
∼= glp|q ⊕ glp′|q′
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Extending ϑ to an involutive automorphism of glM |N [z] via the assignment

ϑ(f(z)) = ϑ(f)(−z) for all f(z) ∈ glM |N [z],

define the twisted current Lie superalgebra glM |N [z]
ϑ as the fixed-point sub-superalgebra

of glM |N [z] under the involutive automorphism ϑ:

glM |N [z]
ϑ :=

{︁
g(z) ∈ glM |N [z] | ϑ(g(z)) = g(z)

}︁
.

In particular, we find glM |N [z]
ϑ is generated by the operators

E
(n)
ij (z) := Eijz

n + ϑ(Eij)(−z)n = (1 + (−1)nGiiGjj)Eijzn ∈ glM |N [z]
ϑ (5.1.34)

with 1 ≤ i, j ≤M+N , n ∈ N, subject only to the relations

[︁
E

(m)
ij (z), E

(n)
kl (z)

]︁
= (1 + (−1)mGiiGjj)

(︁
δjkE

(m+n)
il (z)− δil(−1)([i]+[j])([k]+[l])E

(m+n)
kj (z)

)︁
and

(1−(−1)nGiiGjj)E(n)
ij (z) = 0.

Now consider the following corollary to the PBW Theorem:

Corollary 5.1.12. There is an N-graded superalgebra isomorphism

Ψ: U(glM |N [z]
ϑ)
∼−→ grFY(glM |N ,G)tw, E

(n−1)
ij (z) ↦→ (−1)[i]GjjS(n)

ij (5.1.35)

for 1 ≤ i, j ≤M+N and n ∈ Z+.

Proof. To show Ψ: glM |N [z]
ϑ ∼−→ Lie(grFY(glM |N ,G)tw) is an N-graded Lie superalgebra

morphism, one passes the relations (5.1.31) and (5.1.32) to the associated graded
superalgebra to yield the respective relations

[︁
S
(m)
ij , S

(n)
kl

]︁
= δjk(−1)[k](Gjj + (−1)m−1Gii)S(m+n−1)

il

− δil(−1)[i][j]+[i][k]+[j][k](Gii + (−1)m−1Gjj)S(m+n−1)
kj

and
(Gii + (−1)nGjj)S(n)

ij = 0
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for all 1 ≤ i, j, k, l ≤ M+N and m,n ∈ Z+. Hence, the desired relations follow from
multiplying the first equation above by (−1)[i]+[k]GjjGll and the second by (−1)[i]+nGjj.

Thus, Ψ extends to a morphism of superalgebras U(glM |N [z]
ϑ) → grFY(glM |N ,G)tw

which is also N-graded. The injectivity of Ψ follows from Corollary 5.1.10, whilst Ψ is
surjective since grFY(glM |N ,G)tw is generated by the elements S (n)

ij for 1 ≤ i, j ≤M+N

and n ∈ Z+.

Definition 5.1.13. Given the tensor product C[ℏ]⊗Y(glM |N ,G)tw = Y(glM |N ,G)tw[ℏ]
where ℏ is a formal element of Z2-degree 0̄, the twisted Yangian Yℏ(glM |N ,G)tw is defined
as the Rees superalgebra of Y(glM |N ,G)tw with respect to the filtration F:

Yℏ(glM |N ,G)tw := Rℏ(Y(glM |N ,G)tw) =
⨁︂
n∈N

ℏnFn ⊂ Y(glM |N ,G)tw[ℏ].

We recall that given any superalgebra A over C, a flat deformation of A (over C[ℏ])
is a superalgebra Aℏ over C[ℏ] such that:

(i) Aℏ is flat as a C[ℏ]-module.

(ii) The quotient Aℏ/ℏAℏ is isomorphic to A as a superalgebra.

Regarding C[ℏ] =
⨁︁

k∈N ℏkC as an N-graded ring, such deformation is called homoge-
neous if both A and Aℏ are N-graded modules where the isomorphism Aℏ/ℏAℏ ∼= A is
grade-preserving.

Proposition 5.1.14. The twisted Yangian Yℏ(glM |N ,G)tw is a homogeneous flat defor-
mation of U(glM |N [z]ϑ). Furthermore, there is a superalgebra isomorphism

Yℏ(glM |N ,G)tw/(ℏ− λ)Yℏ(glM |N ,G)tw ∼= Y(glM |N ,G)tw for all λ ∈ C∗.

Proof. We observe that Yℏ(glM |N ,G)tw is flat since it is torsion-free as a C[ℏ]-subalgebra
of Y(glM |N ,G)tw[ℏ]. In particular, the composition of the superalgebra isomorphism

ϕ : Yℏ(glM |N ,G)tw/ℏYℏ(glM |N ,G)tw
∼−→ grFY(glM |N ,G)tw

ℏn−1S (n)
ij mod ℏYℏ(glM |N ,G)tw ↦→ S (n)

ij
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for 1 ≤ i, j ≤M+N , n ∈ Z+, with the inverse of the isomorphism Ψ (5.1.35) gives the
desired N-graded Hopf superalgebra isomorphism

Ψ−1 ◦ ϕ : Yℏ(glM |N ,G)tw/ℏYℏ(glM |N ,G)tw
∼−→ U(glM |N [z]

ϑ).

For the second claim, consider the morphism evλ : Y(glM |N ,G)tw[ℏ] → Y(glM |N ,G)tw

induced by the assignment ℏ ↦→ λ. The restriction evRλ of evλ to Rℏ(Y(glM |N ,G)tw) will
still remain surjective and its kernel is given by

ker(evRλ ) = Rℏ(Y(glM |N ,G)tw) ∩ (ℏ− λ)Y(glM |N ,G)tw[ℏ] = (ℏ− λ)Rℏ(Y(glM |N ,G)tw),

proving the proposition.

5.2 Representation Theory of Twisted Super Yangians

5.2.1 Highest weight theory

From equation (5.1.21) we have GkkS(1)
kk = 2T

(1)
kk , so by identifying the Cartan subalge-

bra h of glM |N with its image in Y(glM |N) under the embedding (5.1.18), we deduce

h =
⨁︂

M+N

k=1
CSkk ⊂ Y(glM |N ,G)tw.

Declaring the basis {Hk}M+N
k=1 of h defined by Hk := 1

2
(−1)[k]GkkS(1)

kk , we consider its
dual basis {εk}M+N

k=1 ⊂ h∗ to yield the root system

Φ = {εi − εj | 1 ≤ i, j ≤M+N, i ̸= j}

of glM |N . We use the standard root system decomposition Φ = Φ+ ⊔ Φ−, where
Φ+ = {εi−εj ∈ Φ | i < j} and Φ− = {εi−εj ∈ Φ | i > j} and call the linear functionals
in Φ± as positive/negative roots. Via the relations (5.1.31), we compute

[︁
S
(1)
kl , Sij(u)

]︁
= (−1)[i][k]+[i][l]+[k][l](Gkk + Gll)

(︁
δilSkj(u)− δjkSil(u)

)︁
, (5.2.1)

and hence [︁
Hk, Sij(u)

]︁
= (δik−δjk)Sij(u) = (εi−εj)(Hk)Sij(u) (5.2.2)
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for all 1 ≤ i, j, k ≤M+N . In particular, we have the following decomposition in terms
of the root lattice ZΦ:

Y(glM |N ,G)tw =
⨁︂
α∈ZΦ

Y(glM |N ,G)twα ,

where Y(glM |N ,G)twα = {X ∈ Y(glM |N ,G)tw | [H,X] = α(H)X for all H ∈ h}. We
also have familiar notions of weights and weight vectors for representations V of
Y(glM |N ,G)tw: for any functional λ ∈ h∗, provided

Vλ := {v ∈ V | H · v = λ(H)v for all H ∈ h} ≠ 0,

then λ is called a weight, Vλ is called a weight space, and nonzero vectors in Vλ are
called weight vectors. We endow a partial ordering ‘≼’ on the set of weights of V via the
rule ω ≼ µ⇔ µ− ω is an N-linear combination of positive roots of glM |N . Furthermore,
since Y(glM |N ,G)twα

(︁
Vλ
)︁
⊆ Vλ+α, then

Y(glM |N ,G)twα
(︂⨁︂

µ∈h∗
Vµ

)︂
⊆
⨁︂

µ∈h∗
Vµ. (5.2.3)

Definition 5.2.1. A representation V of the twisted super Yangian Y(glM |N ,G)tw is
defined as a highest weight representation if there exists a nonzero vector ξ ∈ V such
that Y(glM |N ,G)twξ = V , and

Sij(u)ξ = 0 for all 1 ≤ i < j ≤M+N

and Skk(u)ξ = λk(u)ξ for all 1 ≤ k ≤M+N,
(5.2.4)

where λk(u) is some formal series

λk(u) = Gkk +
∞∑︂
n=1

λ
(n)
k u−n ∈ C[[u−1]]. (5.2.5)

We say that ξ is the highest weight vector of V and call the tuple λ(u) = (λk(u))
M+N
k=1 of

formal series the highest weight of V .

To prove the first theorem of this section, we will need the following technical lemma.
We note that many of the techniques used in the proof below arise from those used in
the proof of [MR02, Theorem 4.1].
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Lemma 5.2.2. Let J be the left graded ideal of Y(glM |N ,G)tw generated by the coeffi-
cients of Sij(u) for all 1 ≤ i < j ≤M+N . Then:

(i) Sij(u)Skk(v) ≡ 0 modJ for all 1 ≤ i < j ≤M+N and 1 ≤ k ≤M+N ,

(ii)
[︁
Skk(u), Sll(v)

]︁
≡ 0 modJ for all 1 ≤ k, l ≤M+N .

Proof. For brevity, we shall use ‘≡’ to denote the equivalence of elements in Y(glM |N ,G)tw

modulo J .

(i) We shall prove the statement via reverse strong induction on 1 ≤ k ≤ M+N .
For the base case k =M+N , the relations (5.1.31) imply Sij(u)SM+N,M+N(v) ≡ 0 for
indices 1 ≤ i < j ≤M+N−1. When 1 ≤ i < j =M+N , the same relations imply

Si,M+N(u)SM+N,M+N(v) ≡ − 1

u+ v
Si,M+N(u)SM+N,M+N(v),

so Si,M+N(u)SM+N,M+N(v) ≡ 0 as well.

Suppose now the hypothesis holds down to k+1. We make the initial observation
that for any indices j, l such that 1 ≤ i < j, l, then the relations (5.1.31) imply

Sij(u)Sjl(v) ≡
1

u+ v
(−1)[j]

M+N∑︂
a=l

Sia(u)Sal(v). (5.2.6)

Since the right side of the equivalence (5.2.6) is independent of the index j, we have
the following equivalence for all indices i, j1, j2, l such that 1 ≤ i < j1, j2, l:

Sij1(u)Sj1l(v) ≡ (−1)[j1]+[j2]Sij2(u)Sj2l(v). (5.2.7)

We demarcate the remaining inductive proof of (i) into three steps addressing the
respective cases i < k, i = k, and i > k.

Step 1. First assuming i < k such that j ̸= k, the relations (5.1.31) immediately
show Sij(u)Skk(v) ≡ 0, so we may suppose 1 ≤ i < j = k without loss of generality. By
the equivalences (5.2.6) and (5.2.7), we obtain

Sik(u)Skk(v) ≡
1

u+ v
(−1)[k]

M+N∑︂
a=k

Sia(u)Sak(v) ≡
(−1)[k](M+1−k)−N

u+ v
Sik(u)Skk(v),
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since
∑︁M+N

a=k (−1)[a] = (−1)[k](M+1−k)−N . Thus, Sik(u)Skk(v) ≡ 0.

Step 2. When 1 ≤ i = k < j, the relations (5.1.31) give

Skj(u)Skk(v) ≡
1

u− v
(−1)[k]

(︁
Skj(u)Skk(v)− Skj(v)Skk(u)

)︁
− 1

u+ v
(−1)[k]

M+N∑︂
a=j

Ska(v)Saj(u).

However, by the formula (5.2.7) the sum
∑︁M+N

a=j Ska(v)Saj(u) is equivalent to the
series (M+1−j−(−1)[j]N)Skj(u)Sjj(v), which itself is equivalent to zero by induction
hypothesis. We therefore have the relation

u− v − (−1)[k]

u− v
Skj(u)Skk(v) +

(−1)[k]

u− v
Skj(v)Skk(u) ≡ 0. (5.2.8)

Furthermore, by exchanging u↔ v in (5.2.8), we obtain

− (−1)[k]

u− v
Skj(u)Skk(v) +

u− v + (−1)[k]

u− v
Skj(v)Skk(u) ≡ 0. (5.2.9)

Hence, taking the difference of (5.2.8) and (5.2.9), infers Skj(u)Skk(v) ≡ Skj(v)Skk(u),
so either (5.2.8) or (5.2.9) will establish Skj(u)Skk(v) ≡ 0.

Step 3. Lastly, when 1 ≤ k < i < j, the relations (5.1.31) imply both

Sij(u)Skk(v) ≡
1

u− v
(−1)[i][j]

(︁
Skj(u)Sik(v)− Skj(v)Sik(v)

)︁
and

Skj(u)Sik(v) ≡
1

u− v
(−1)[i][j]+[i][k]+[j][k]

(︁
Sij(u)Skk(v)− Sij(v)Skk(u)

)︁
− 1

u+ v
(−1)[i][j]+[i][k]+[j][k]

M+N∑︂
a=j

Sia(v)Saj(u).

By the equivalence (5.2.7), the sum
∑︁M+N

a=j Sia(v)Saj(u) is equivalent to the series
(M+1−j−(−1)[j]N)Sij(v)Sjj(u), which itself is equivalent to zero by induction hy-
pothesis. Therefore, Skj(u)Sik(v) ≡ Skj(v)Sik(u) and so Sij(u)Skk(v) ≡ 0.

(ii) We shall first prove that [Skk(u), Skk(v)] ≡ 0 for all 1 ≤ k ≤M+N via reverse
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strong induction on k. To this end, it will be useful to define the element

βk(u, v) :=
∑︂M+N

a=k+1

(︁
Ska(u)Sak(v)− Ska(v)Sak(u)

)︁
. (5.2.10)

In particular, the relations (5.1.31) imply

[︁
Skk(u), Skk(v)

]︁
≡ (−1)[k]

u− v

[︁
Skk(u), Skk(v)

]︁
+

(−1)[k]

u+ v

[︁
Skk(u), Skk(v)

]︁
+

(−1)[k]

u+ v
βk(u, v)

− 1

u2 − v2
[︁
Skk(u), Skk(v)

]︁
− 1

u2 − v2
βk(u, v),

which becomes(︃
1 +

1− 2(−1)[k]u

u2 − v2

)︃[︁
Skk(u), Skk(v)

]︁
≡ (−1)[k](u− v)− 1

u2 − v2
βk(u, v). (5.2.11)

Hence, [Skk(u), Skk(v)] ≡ 0 if and only if βk(u, v) ≡ 0. The base case k = M+N is
therefore satisfied since βM+N (u, v) is the empty sum, so we may suppose the induction
hypothesis holds down to k+1.

Given 1 ≤ k < a ≤M+N , relations (5.1.31) assert the equivalences

[︁
Saa(u), Skk(v)

]︁
≡ 1

u− v
(−1)[a]

(︁
Ska(u)Sak(v)− Ska(v)Sak(u)

)︁
− 1

u2 − v2
(︁[︁
Skk(u), Skk(v)

]︁
+ βk(u, v)

)︁
and [︁

Skk(v), Saa(u)
]︁
≡ 1

u2 − v2
(︁[︁
Saa(u), Saa(v)

]︁
+ βa(u, v)

)︁
.

Therefore, since [Saa(u), Skk(v)] = −[Skk(v), Saa(u)] we deduce the relation

(−1)[a]
(︁
Ska(u)Sak(v)− Ska(v)Sak(u)

)︁
≡ 1

u+ v

(︁[︁
Skk(u), Skk(v)

]︁
−
[︁
Saa(u), Saa(v)

]︁
+ βk(u, v)− βa(u, v)

)︁
.

Hence, by (5.2.10),

βk(u, v) ≡
(−1)[k+1](M−k)−N

u+ v

(︁[︁
Skk(u), Skk(v)

]︁
+ βk(u, v)

)︁
− 1

u+ v

∑︂M+N

a=k+1
(−1)[a]

(︁[︁
Saa(u), Saa(v)

]︁
+ βa(u, v)

)︁
,
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so we have

(u+ v − (−1)[k+1](M−k)+N)βk(u, v) ≡ ((−1)[k+1](M−k)−N)
[︁
Skk(u), Skk(v)

]︁
since [Saa(u), Saa(v)] ≡ 0 ≡ ρa(u, v) for a > k by induction hypothesis. By combining
the above equivalence with (5.2.11), one concludes [Skk(u), Skk(v)] ≡ 0 ≡ ρk(u, v).

To finish the proof, it suffices to show [Skk(u), Sll(v)] ≡ 0 for 1 ≤ k < l ≤ M+N .
To this end, we realize by the relations (5.1.31) that

[︁
Skk(u), Sll(v)

]︁
≡ − 1

u2 − v2
(︁[︁
Sll(u), Sll(v)

]︁
+ βl(u, v)

)︁
,

which is equivalent to zero by before.

Leveraging the lemma just proven, we are now in position to prove the main theorem
of this section.

Theorem 5.2.3. Every finite-dimensional irreducible representation V of the twisted
Yangian Y(glM |N ,G)tw is a highest weight representation. The highest weight vector
of V is unique up to scalar multiple.

Proof. Let V denote a finite-dimensional irreducible representation of Y(glM |N ,G)tw

and define the subspace

V 0 :=
{︁
v ∈ V | Sij(u)v = 0 for all 1 ≤ i < j ≤M+N

}︁
(5.2.12)

We first establish that V 0 is non-trivial. Since the Cartan subalgebra h of glM |N

lies within the twisted Yangian Y(glM |N ,G)tw under the embedding (5.1.18), one can
consider the set of weight via the action of h on V . There is a partial ordering ‘≼’ on
such set of weights via the rule that for any weights α, β ∈ h∗, one has α ≼ β if and
only if β − α is an N-linear combination of positive roots in Φ+.

Since the set {Hk}M+N
k=1 consists of pairwise commuting elements, their actions on V

form a family of pairwise commuting operators, implying that these operators must
share a simultaneous eigenvector as dimV < ∞. Such set of weights is finite, so V
must have a maximal weight µ with respect to the partial ordering ‘≼’.
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Letting v be a weight vector corresponding to µ, the assertion follows if v ∈ V 0,
so we may assume v ̸∈ V 0 and therefore S(n)

ij v ̸= 0 for some (i, j) ∈ Λ+
Θ and n ∈ Z+.

However, since
HkS

(n)
ij v = T

(n)
ij Hkv +

[︁
Hk, S

(n)
ij

]︁
v,

we conclude from equation (5.2.2) that the weight of S(n)
ij v is of the form µ+α for some

positive root α ∈ Φ+, contradicting the maximality of µ and proving the claim.

By Lemma 5.2.2, the actions of the generators {S(n)
kk | 1 ≤ k ≤M+N, n ∈ Z+} form

a family of pairwise commuting operators on V 0. As V 0 is a non-trivial subspace of V ,
there must exist a simultaneous eigenvector 0 ̸= ξ ∈ V 0 for such operators: S(n)

kk ξ = λ
(n)
k ξ

for complex eigenvalues λ(n)k , 1 ≤ k ≤M+N , n ∈ Z+. Via the irreducibility of V , we
conclude Y(glM |N ,G)twξ = V , and by collecting these eigenvalues into power series
λk(u) = Gkk +

∑︁∞
n=1 λ

(n)
k u−n we observe the vector ξ satisfies the conditions (5.2.4),

so V is a highest weight representation with highest weight vector ξ and highest weight
(λk(u))

M+N
k=1 .

It remains to show that ξ is unique up to scalar multiples. Recalling the PBW
Theorem (5.1.10) for Y(glM |N ,G)tw, we fix a total order ‘⪯’ on the index set K (5.1.13)
such that for any tuples (i1, j1, n1), (i2, j2, n2), (i3, j3, n3) ∈ K satisfying i1 > j1, i2 = j2,
i3 < j3, then (i1, j1, n1) ⪯ (i2, j2, n2) ⪯ (i3, j3, n3). Via this total ordering ordering, we
conclude that V is spanned by ordered elements of the form

S
(n1)
i1j1

· · ·S(nk)
ikjk

ξ, (5.2.13)

where k ∈ N, ia > ja, and (ia, ja, na) ∈ K for 1 ≤ a ≤ k. By (5.2.2), the elements (5.2.13)
are weight vectors with corresponding weights of the form

µ+
k∑︂
a=1

(εia − εja)

where µ is the linear functional on h given by Hk ↦→ 1
2
(−1)[k]Gkkλ(1)k . Hence, there is

a weight space decomposition V =
⨁︁

ν∈h∗ Vν where each weight ν ≠ µ is of the form
µ−

∑︁k
a=1(εia − εja) for ia < ja, a = 1, . . . , k. As a result, the space Vµ is 1-dimensional

and is given by Vµ = spanC{ξ}.

If ξ̃ is another highest weight vector of V of highest weight (λk(u))
M+N
k=1 , the weight
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space decomposition ensures that its weight must be equal to µ. Hence, ξ̃ = c ξ for
some c ∈ C∗.

Definition 5.2.4. Given a tuple λ(u) = (λk(u))
M+N
k=1 of series of the form (5.2.5), the

Verma module M(λ(u)) is the quotient:

M(λ(u)) := Y(glM |N ,G)tw/Iλ(u), (5.2.14)

where Iλ(u) is the left graded ideal generated by the coefficients of the series Sij(u)
where 1 ≤ i < j ≤M+N , and Skk(u)− λk(u)1 where 1 ≤ k ≤M+N .

When M(λ(u)) is non-trivial, it is a highest weight representation of Y(glM |N ,G)tw

with highest weight λ(u) and highest weight vector 1λ(u), the image of 1 in the canonical
projection Y(glM |N ,G)tw →M(λ(u)). Furthermore, if L is a highest weight represen-
tation of Y(glM |N ,G)tw with highest weight λ(u) and highest weight vector ξ, then,
provided M(λ(u)) is non-trivial, there is a surjective Y(glM |N ,G)tw-module morphism
φ : M(λ(u)) → L induced by the assignment 1λ(u) ↦→ ξ; thus, L ∼= M(λ(u))/ kerφ.

By (5.2.3),
⨁︁

µ∈h∗ M(λ(u))µ is invariant under the action of Y(glM |N ,G)tw. Therefore,
since 1λ(u) is contained in M(λ(u))λ(1) ⊂

⨁︁
µ∈h∗ MΘ(λ(u))µ, where λ(1) ∈ h∗ is the linear

functional given by λ(1)(Hk) = λ
(1)
k , we have the weight space decomposition

M(λ(u)) =
⨁︂
µ∈h∗

M(λ(u))µ (5.2.15)

and each weight µ is of the form λ(1)−ω, where ω is a Z+-linear combination of positive
roots in Φ+. Indeed, recalling the PBW Theorem (5.1.10), we fix a total order ⪯ on
the index set K (5.1.13) such that for any tuples (i1, j1, n1), (i2, j2, n2), (i3, j3, n3) ∈ K
satisfying i1 > j1, i2 = j2, i3 < j3, then (i1, j1, n1) ⪯ (i2, j2, n2) ⪯ (i3, j3, n3). Via this
total ordering ordering, we conclude that M(λ(u)) is spanned by ordered elements of
the form

S
(n1)
i1j1

· · ·S(nk)
ikjk

1λ(u), (5.2.16)

where k ∈ N, ia > ja, and (ia, ja, na) ∈ K for 1 ≤ a ≤ k. In particular, we conclude
that M(λ(u))λ(1) is 1-dimensional; M(λ(u))λ(1) = spanC{1λ(u)}.

Any submodule P of M(λ(u)) also has a weight space decomposition P =
⨁︁

µ∈h∗ Pµ,
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where Pµ = P ∩ M(λ(u))µ. Since dimM(λ(u))λ(1) = 1, it necessarily follows that
P ⊆

⨁︁
λ(1) ̸=µ∈h∗ M(λ(u))µ and so the sum of all proper submodules K =

∑︁
P<M(λ(u)) P

is the unique maximal submodule of M(λ(u)).

We end this chapter by providing the following definition of an irreducible highest
weight representation, which will be the types of representations used in the overall
classification of the set Repirr

fd (Y(glM |N ,G)tw)/∼:

Definition 5.2.5. When the Verma module M(λ(u)) is non-trivial, we define the irre-
ducible highest weight representation L(λ(u)) of Y(glM |N ,G)tw with highest weight λ(u)
as the quotient of M(λ(u)) by its unique maximal proper submodule.

The next goal in the story of the representation theory for the twisted Yangian
Y(glM |N ,G)tw is to classify the necessary and sufficient conditions for the non-triviality
of the Verma module M(λ(u)). Addressing such question is unfortunately out of the
scope of the dissertation, which is the cause of future research in this area.



Chapter 6

Conclusion

This dissertation addressed three different topics in super Yangian theory. In summary,
Chapters 2 and 3 investigated Yangians of orthosymplectic Lie superalgebras, while
Chapter 4 considered Yangians of periplectic Lie superalgebras and Chapter 5 introduced
twisted super Yangians of type AIII.

Chapter 2 provided a detailed exposition on the algebraic structure of the orthosym-
plectic Yangians Y(ospM |N), which involved proving a Poincaré-Birkhoff-Witt-type
theorem in detail that has not yet occurred in the literature. In Chapter 3, we estab-
lished many necessary conditions for the irreducible representations of X(ospM |N ) to be
finite-dimensional by formulating a suitable highest weight theory.

Later in Chapter 4, we recalled the strange Yangians Y(sN) for sN = pN , qN as
originally defined by M. Nazarov in [Naz92]. We proved a Poincaré-Birkhoff-Witt-type
theorem for the Yangian Y(pN) by adapting the arguments used to show a similar
result for its counterpart Y(qN) in the paper [Naz99]. Lastly, we defined the twisted
Yangians Y(glM |N ,G)tw of type AIII in Chapter 5 and established that they can also
be realized as reflection superalgebras subject to an additional unitary constraint.
Moreover, we founded a highest weight theory for Y(glM |N ,G)tw and proven that every
finite-dimensional irreducible representation must be highest weight.

To conclude this chapter and dissertation, we survey some natural questions that
arise from our work which instigates future research directions.

201
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6.0.1 The classification of finite-dimensional irreducible repre-

sentations and the universal R-matrix of Y(ospM |N)

The main research priority on these Yangians is to obtain sufficient conditions for the
irreducible representations of X(ospM |N ) to be finite-dimensional. This will be achieved
if one is able to finalize the construction of the remaining type II fundamental represen-
tations as carried out in §3.2.4. To prove such sufficient conditions are also necessary,
there will need to be further restrictions on the roots of the Drinfel’d polynomials ˜︁Q(u)

and Q(u) associated to any finite-dimensional irreducible representation. If both of
these tasks can be completed, a full classification of the sets Repirr

fd (X(ospM |N))/∼ and
Repirr

fd (Y(ospM |N))/∼ should be possible; we refer the reader to the Conjecture 3.2.22
and Conjecture 3.2.23.

When g is a simple Lie algebra, it has been known since [Dri85] that a universal
R-matrix exists for the Yangian Y(g):

R(u) = 1+
∞∑︂
k=1

Rku
−k ∈ (Y(g)⊗ Y(g))[[u−1]].

In fact, a recent constructive proof of the universal R-matrix in this case has appeared
in the article [GLW21]. The mentioned proof, however, utilizes Drinfel’d’s current
presentation of the Yangian as opposed to the RTT formalism used predominantly in
this dissertation.

As initially discussed in Chapter 1, the question of whether or not such a universal
R-matrix exists for the Yangian Y(ospM |N) currently remains open. Recent progress
has been achieved in formulating an analogue of Drinfel’d’s current presentation for the
Yangian Y(ospM |N) in the works [Mol23a, MR23]; hence, a natural research direction
would be to adapt the arguments used in the constructive proof of the R-matrix to the
case of the orthosymplectic Yangian Y(ospM |N ) utilizing Drinfel’d’s current presentation.

Another research direction is the construction of the Yangian double: the adaptation
of the Drinfel’d double in Hopf algebra theory to such infinite-dimensional quantum
groups. In the paper [JYL20], a construction of the Yangian doubles DY(soM) and
DY(spN) were provided via the RTT formalism. A direct adaptation of such construc-
tions in the aforementioned paper to the supersymmetric setting should be blueprint
for defining the Yangian double DY(ospM |N).
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6.0.2 Representation theory for Yangians of type P

In Chapter 4, we investigated much of the algebraic structure of the Yangian Y(pN);
however, we did not examine any of its representation theory. In [Naz99, §5], Nazarov
constructed functors between the representation categories of Y(qN ) and the degenerate
affine Sergeev algebras, thereby constructing a wide array of irreducible representations
for this Yangian. Accordingly, one could attempt to imitate the construction of such a
representation functor between the representation categories of Y(pN) and some other
superalgebra A.

In fact, the author has already performed calculations on this question when A
is the degenerate affine periplectic Brauer algebra Baff

d , which is denoted ˆ︁Pd in the
paper [CP18]. However, certain difficulties arise in this case that forces one to take a
certain unnatural quotient of the algebra Baff

d which unfortunately diminishes the value
of the result. Furthermore, the relations between the super permutation operator P
and the matrix QP are somewhat more complicated than the comparative relations
between P and QQ, which creates complications when attempting to construct a faithful
adaptation of the functor presented by Nazarov.

Of course, a direct investigation into the classification of finite-dimensional irre-
ducible representations of Y(pN) is a possible future research venture. Similar to
the orthosymplectic Yangians, one would hope to first establish a tensor product
decomposition

X(pN) ∼= ZX(pN)⊗ Y(pN),

where ZX(pN ) is the supercenter of the extended Yangian X(pN ), thereby allowing one
to focus on the representation theory of X(pN). However, such a decomposition is yet
to be proven.

A construction of the Yangian double DY(pN ) may also be possible in a similar way
to the Yangian double in [JYL20] via the RTT formalism. In [Naz99, §4], Nazarov
does define the Yangian double DY(qN) as the superalgebra generated by Y(qN) and
its dual Y∗(qN). However, adapting many of the results involving Y(qN) and its dual
to the periplectic case can prove to be difficult due to the aforementioned relationship
between the matrices P and QP.
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6.0.3 The supercenter and representation theory for twisted

super Yangians of type AIII

The last research direction is on the topic of the twisted Yangian Y(glM |N ,G)tw. The
notable omission on the algebraic structure of these twisted super Yangians in Chapter 5
is the description of its supercenter. When N = 0, it is known by [MR02, §3] that
the center of Y(glM |0,G)tw ∼= Y(glM ,G)tw is determined by the Sklyanin determinant
sdetS(u) which itself is given in terms of the quantum determinant qdetT (u), where T (u)
is the generating matrix of Y(glM).

It is known that the quantum determinant generates the center of Y(glM ), whereas
its super-analogue, the quantum Berezinian (see [Gow07, §7]), generates the supercenter
of Y(glM |N). To describe the supercenter of the twisted Yangian Y(glM |N ,G)tw, one
would therefore aim to construct a super-analogue of the Sklyanin determinant in terms
of the quantum Berezinian in lieu of the quantum determinant.

After obtaining the description of the supercenter of these twisted super Yangians,
the next goal is to continue the investigation into their finite-dimensional irreducible
representations. In particular, the next immediate result to attain is the necessary and
sufficient conditions for the non-triviality of their Verma modules M(λ(u)). Certain
necessary conditions are already determined by the author, but the proof for sufficiency
will likely require the use of the quantum Berezinian in accordance with the methodology
used in the proof of the non-super case [MR02, Theorem 4.2].

Ultimately, by following the exposition of [MR02], one would have to address the
classification of the finite-dimensional irreducible representations for the low rank cases
Y(gl1|1,G)tw and Y(gl2|1,G)tw, but this will require further investigation.
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