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Abstract

This dissertation establishes various structural and representation theoretic results

in super Yangian theory.

In its first part, this dissertation details the algebraic structure and representation
theory for the Yangians of orthosymplectic Lie superalgebras. Addressing these Yangians
via the RT'T realization, we prove a Poincaré-Birkhoff-Witt-type theorem and provide a
thorough study of the algebraic structure of their extended Yangians. The main result of
this part, and of this dissertation, is the provision of many necessary conditions for the
irreducible representations of these orthosymplectic Yangians to be finite-dimensional;
furthermore, there is much progress made to address attaining sufficient conditions as
well. These representation theoretic results are accomplished via the development of
a highest weight theory, and such necessary conditions are given in terms of highest

weights and tuples of Drinfel’d polynomials.

The second part of this dissertation is devoted to the Yangians of periplectic Lie

superalgebras and the twisted Yangians associated to symmetric superpairs of type AIIL

Via the RT'T formalism, we prove many structural results for the Yangians of type P
strange Lie superalgebras that have only so far been established for the Yangians of
type @ strange Lie superalgebras, including a proof of a Poincaré-Birkhoff-Witt-type

theorem.

The twisted super Yangians of type AIII are defined along with many structural
properties established. We lay the foundation for the classification of their finite-
dimensional irreducible representations by cultivating a highest weight theory and

proving that all finite-dimensional irreducible modules must be highest weight.
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Chapter 1
Introduction

Yangians comprise one of the two important families of affine quantum groups, alongside
the Drinfel’d-Jimbo quantum affine algebras. As formalized by Vladimir Drinfel’d in
his seminal paper [Dri85], the Yangian Yj(g) of a finite-dimensional complex simple Lie
algebra g is a certain Hopf algebra over C[A] that quantizes a canonical Lie bialgebra
structure on the polynomial current Lie algebra g[z], which, among other requirements,

means:

Yi(9)/h Yn(g) = K(g[2])-

One often aims to study the Yangian when the parameter # takes on a nonzero complex
number A € C*, therefore working over the field C in lieu of C[#]. In this case, the
Yangian is commonly denoted Y(g) since Y)(g) is isomorphic to Y;(g) for all such
values \. In particular, it is a foundational theorem of Drinfel’d in his aforementioned
paper that every finite-dimensional irreducible representation of the Yangian Y (g) yields

a rational solution to the quantum Yang-Baxter equation (QYBE):
R12 (u - ’U)R13(U)R23(’U) = R23 (’U)R13 (U)R12 (u - ’l)).

As an essential consistency equation for integrable models in statistical mechanics
and quantum field theory (see [KS82b, Jim89)], for instance), the search for non-trivial
rational solutions to the QYBE serves as the primary motivation for investigating
Yangians and exploring their representation theory. However, it is known that Yangians

originally arose prior to their formalization by Drinfel’d; namely, the Yangian of gly
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2  Chapter 1. Introduction

emerged in work on the quantum inverse scattering method, which describes a systematic

approach for solving certain integrable systems (refer to [TF'79, KS82a]).

The structure and representation theory of Yangians, as well as their extensions,
based on finite-dimensional complex simple Lie algebras has been extensively studied
in Drinfel’d’s papers [Dri85, Dri86b, Dri88] and the following: [CP95, MNO96, Mol07,
AMRO06, Wen18, GNW18, GRW19a, GLW21]. In fact, the complete classification
of their finite-dimensional irreducible representations was established by Drinfel’d
in [Dri88], with a more detailed exposition available in [AMR06, Mol07].

Since their formulation, the theory of Yangians has expanded to include construc-
tions based on the general linear Lie superalgebras and the (non-exceptional) finite-
dimensional classical Lie superalgebras as described by Victor Kac [Kac77]. Hence,
the natural questions raised in this context are whether one can extend Drinfel’d’s
fundamental theorems for the Yangian to the supersymmetric setting and whether it is
possible to achieve a classification of the finite-dimensional irreducible representations
for such super Yangians. In fact, for Yangians based on the general linear Lie super-
algebras, a positive answer to the latter question was provided in the 1990’s by two
articles of Ruibin Zhang (see [Zha95, Zha96]).

The core property of the Yangian that is pivotal to Drinfel’d’s theorems is the

existence of universal R-matriz
Ruw) =1+ Reu ™ € (Y(g) ® Y(g)[u™"].
k=1

The question of whether such a universal R-matrix exists for super Yangians remains
open; however, for reasons explained in §1.1, there may be good reason to believe
that progress on this problem is achievable at least when g is an orthosymplectic Lie

superalgebra.

In this dissertation, we address three different topics in super Yangian theory,
demarcated in two parts. The first part, comprising Chapters 2 and 3, focuses on
Yangians of orthosymplectic Lie superalgebras, while the second part, encompassing
Chapters 4 and 5, considers Yangians of the strange Lie superalgebras and twisted
super Yangians of type AIIl, respectively.

In particular, Chapter 2 is dedicated to establishing many structural results for the
orthosymplectic Yangians, as originally defined in [AAC*03]. The primary results of
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this chapter consists of a detailed proof of a Poincaré-Birkhoff-Witt-type theorem for
these Yangians and a thorough study of their extended Yangians. Chapter 3 investigates
the representation theory of these Yangians and contains our approach to addressing
a classification of their finite-dimensional irreducible representations. A summary of

these results, and how they are achieved, is provided in §1.1 below.

Yangians of the strange Lie superalgebras were first defined by Maxim Nazarov
in [Naz92], with a more detailed exposition on the type @ case published later in [Naz99].
The purpose of Chapter 4 is to adapt and prove many of the structural results of
Nazarov’s latter paper in the type P case, including a proof of a Poincaré-Birkhoff-Witt-
type theorem. We refer the reader to §1.2 for our main results on this topic. Finally,
Chapter 5 introduces the notion of super twisted Yangians as a direct super-analogue of
those twisted Yangians defined in [MR02]. Among various structural results, we lay the
foundation for the classification of their finite-dimensional irreducible representations by
establishing a highest weight theory and proving that all finite-dimensional irreducible

modules must be highest weight: see §1.3 for a survey of these results.

1.1 Yangians of Orthosymplectic Lie Superalgebras

1.1.1 Background and motivation

Yangians of orthosymplectic Lie superalgebras were first defined in [AAC*03] utilizing
the RTT formalism, which we will deploy in this dissertation. However, we should
mention that traditionally, Yangians of finite-dimensional simple Lie algebras admit
at least three important presentations: Drinfel’d’s J-presentation, Drinfel’d’s current
presentation, and the RT'T realization (see [Dri85, Dri88, RTF16], respectively).

Vladimir Drinfel’d’s consequential theorems regarding Yangians of finite-dimensional
simple Lie algebras were originally proven in terms of his original J-presentation,
including the existence of the universal R-matrix. Many of his results, including the
construction of the universal R-matrix, were later published in more detail in [GLW21],
but in terms of Drinfel’d’s current presentation. It is worth noting that only recently
has progress been made in establishing Drinfel’d’s current presentation for the Yangians
of orthosymplectic Lie superalgebras (refer to [Mol23a, MR23]). This development has
allowed for the possibility to address the construction of the universal R-matrix in the
supersymmetric case; however, undertaking this particular question will be outside the

scope of this dissertation.
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Returning to the RT'T realization, it is natural to define the Yangian as a certain
quotient of its extended Yangian. Namely, suppose CMIV denotes the super vector
space CM*N whose first M standard basis vectors are even while the rest are odd.
Allowing R(u) € (End CMIV )®2 (u) to denote the solution to the (super) QYBE given
by (2.2.3), one may define the extended Yangian X(ospasn) of the orthosymplectic Lie
superalgebra ospasn as the Hopf superalgebra whose generators are collected into a

matrix
T(u) € End(CM™) @ X(ospasw)[u"]

subject to defining relations as described by the RIT'T-relation:
R(u — v)T1(uw)Ta(v) = To(v)T1(u)R(u — v).

As shown in [AAC*03], there exists a formal series Z(u) =1+ ) > Z,u™" consisting
of even central elements in the extended Yangian X(ospasn), allowing for one to define
the quotient

Y (ospan) = X(ospuin)/(Z2(u) — 1),

where (Z(u) — 1) denotes the graded ideal generated by the set {Z, | n € Z*}. In
particular, it can be shown that (Z(u) — 1) is a graded Hopf ideal, therefore endowing
the Yangian with an induced Hopf superstructure as well. The above definition proves to
be appropriate due to the fact that its Rees superalgebra Yz(ospun) := Rs(Y (0sprn))
serves as a homogeneous quantization of a canonical Lie superbialgebra structure on the
polynomial current Lie superalgebra ospan|2] (refer to §2.3.3 for a detailed exposition
on this point).

There are, however, several questions concerning the algebraic structure of both the
Yangian and the extended Yangian of ospas v that are yet to be proven in detail in the

literature:
(i) Describe explicit algebraic bases for Y (ospn) and X(ospasn)-
(i) Determine the (super)centers of Y(ospasn) and X(ospan).
(iii) Prove Y (ospan) is isomorphic to the subalgebra of X(ospasn) fixed by a family

of automorphisms {4} C Aut(X(08pan)) indexed by f=f(u) € 1+u'Clu~"]:

Y (ospuin) 2 {Y € X(osprrn) | ps(Y) =Y forall f= f(u) €1+u'Clu"]}.
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Addressing such structural questions is the main purpose of Chapter 2. Of course,
the primary motivation for studying these Yangians is the investigation of their rep-
resentation theory, and in particular, the determination of the isomorphism classes of

their finite-dimensional irreducible representations, denoted
Repyg (Y(0spuminv))/~ and  Repgg (X(0spari))/n-

These investigations comprises Chapter 3; however, we note that classifications of the
above sets has recently been accomplished in the cases M = 1 and M = 2 by virtue
of Alexander Molev’s recent papers (see [Mol21, Mol23b, Mol22b]). In due course, we
will present his theorems after introducing the necessary notation in the subsequent

subsection.

1.1.2 Main results

We shall now summarize the main findings from Chapters 2 and 3, starting with the
structural results that comprise Chapter 2. The primary realization of this first chapter
on orthosymplectic Yangians is the statement of a Poincaré-Birkhoff-Witt-type theorem
as described in §2.3. We present the PBW-type theorem given as part (a) of Theorem I
which asserts that the associated graded superalgebra grY (ospy n) of the Yangian,
with respect to a certain filtration, must have a basis by the PBW Theorem for Lie
superalgebras; hence, a basis is provided for the Yangian as well. We also present

parts (b) and (c), which are immediate consequences of the first part of theorem:

Theorem I. The Yangian Y (ospan) has the following structural properties:

(a) There is an N-graded Hopf superalgebra isomorphism

U(osprn[z]) = grY (osprn)-

(b) The supercenter ZY (osparn) of Y(ospun) is trivial: C-1.

(c) There is a Hopf superalgebra embedding

L: ﬂ(osleN) — Y(OE.]JM“V).

The conglomerated results in Theorem I can all be found in §2.3 as stated in
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Theorem 2.3.3, Corollary 2.3.5, and Proposition 2.3.6, respectively.

The second set of structural results are for the extended Yangian X(ospasn). Re-
calling there exists a formal series Z(u) = 1+ ) - Z,u™" consisting of even central

elements in X(0spasn), we have the following:

Theorem II. The extended Yangian X(osparn) has the following structural properties:

(a) There is a Hopf superalgebra isomorphism

X(ospmin) = C[Z, | n € ZT) @ Y(05puin)-

(b) The supercenter ZX(ospan) of X(ospumn) is C[Z, | n € ZH].

(c) There is an N-graded Hopf superalgebra isomorphism

U(osparnv[2] © Clz]) = gr X(ospayn)-

(d) There is a Hopf superalgebra embedding

L: u(ospM“v) — X(OS]JM]N).

(e) There is a family of automorphisms {us}y C Aut(X(osparn)) indexed by the
collection f=f(u) € 1+ u 'Clu™] such that:

Y (ospuin) 2 {Y € X(osprin) | ps(Y) =Y forall f= f(u) € 1+u'Clu™"]}.

All the results in Theorem II are described in §2.4. Respectively, these are given by
Theorem 2.4.2, Proposition 2.4.3, Theorem 2.4.4, Proposition 2.4.6, and Theorem 2.4.7.
We note that Part (c) in Theorem II provides a Poincaré-Birkhoff-Witt-type theorem
for the extended Yangian.

Chapter 3 starts by investigating a highest weight theory for X(ospan) based on
fixing a certain positive root system ®* for the orthosymplectic Lie superalgebra ospn-
The definitions that form the foundation of the theory are found in §3.1.2, which in
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summary describe that highest weights take the form of tuples of power series

M) = Qe@)MN e TIEY (1 +u'Clu ™).

To any such highest weight A(u), one may define a Verma module M (A(u)) and, provided
it is non-trivial, it will have an irreducible quotient L(A(u)).

In particular, we will see that all such finite-dimensional irreducible quotients
L(A(u)) will exhaust the set Repfy (X(08parn))/~ via their isomorphism classes, so the
characterization of the non-triviality of M (A(u)) is one of the first important tasks of
Chapter 3. In fact, A. Molev in [Mol23b, Mol22b] has proven such characterization in
the cases M =1 and M = 2, as determined by the following theorem:

Theorem M1. Set M =1 or M = 2, N > 2, and assign m = %], n = &,

k= (M—N-2)/2. The Verma module M(A(u)) of X(ospan) is non-trivial if and
only if its highest weight \(u) = (Mx(u))MEN satisfies the consistency conditions

/\M+j(u) . )\M+N_j(u — K —j + m)

= . or 7=12,...,n—1,
Arjri(u)  Appnii-i(u — K — 7 +m) for 3

o MW _ Msafu—r—n)
1\u n+2\U — K—T
= when M =1,
An+1(u) A(u — k—n)
o A A 1
1(w) _ deww(u—r+1) when M =2.

)\3(U) - )\2(“ — K+ 1)

Moreover, for every finite-dimensional irreducible representation V' of X(ospan), it
holds that
V = L(A(w))

for some unique tuple A(u) = (M\i(w))MEN satisfying the above relations. The highest

weight vector of V is unique up to scalar multiple.

Section §3.1.3 is devoted to a pivotal construction in the representation theory of

the extended Yangian X(0spasn): the construction of non-trivial covariant functors

Fir: Repgy (X(0sparn)) — Repgy (X(0spar—2)v)) for M >2
and FY: Repg (X(ospumin)) — Repiy (X(ospaiv-2))) for N >2,
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which we refer to as restriction functors. In particular, via an inductive argument on
the rank of ospasy that utilizes the above restriction functors and takes Theorem M1
as the induction base, we are able to classify the necessary and sufficient conditions for
the non-triviality of the Verma module M (A(u)) in full generality:

Theorem III. Set N > 2 and let m = |Y4|, m=[¥],n=%, k = (M-N-2)/2.
The Verma module M(A\(u)) of X(0spun) is non-trivial if and only if its highest weight

AMu) = (M (u))MIN satisfies the consistency conditions

)\1(’114) i )\M_,(u — K+ ’l)
Air1(u)  Apr1-i(u — K+ 1)

for i=1,2,...,m—1,

Ai(u) _ Awn-j(u—K—j+m)
Mgrjri(u)  Apprnvir-j(u — £ — j +m)

for 7=1,2,...,n—1,

and when M is odd:

Am (1) _ Am+n(u — K+ m)
)\M+1 (u) )\7?,,4.1 (u — K+ m)

Ma(u)  Ayn+i(u— K+ m—n)
Mrn(u)  Aa(u— Kk +m—n)

if M >3,

and

)

or when M is even:

Am(u)  Apn(u—K+m)
A+1(v)  Aptr(u— Kk +m)

if M >2.

Moreover, for every finite-dimensional irreducible representation V of X(ospmn), it
holds that
V = L(A(u))

for some unique tuple A(u) = (A\i(w))MEN satisfying the above relations. The highest

weight vector of V' is unique up to scalar multiple.

Theorem III is given as Theorem 3.2.2, where itself is a consequence of Theorem 3.1.3,
Proposition 3.1.14, and Proposition 3.2.1. The next important task of Chapter 3 is
to classify the conditions for when L(A(u)) is finite-dimensional. As in A. Molev’s

aforementioned papers, this classification has been successfully completed in the cases
M=1and M =2:
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Theorem M2. Set M =1 or M =2, N >2,n =1, and let A(u) = (\p(u))MN
satisfy the consistency conditions in Theorem MI1. The X(osppn)-module L(A(u)) is

finite-dimensional if and only if there exists a tuple of monic polynomials

(5ra2Q(w), 8302 Q(w); (Pe(w)ker) € Clul™¥2,
with I = {M+17 ERS) M+n}, such that

)\k(u) . Pk(u—l) o G n
(W = P forall keI\{M+n},

and M@  Pun(u+1)
1\u 1+n U
(@)~ Prn(u) U M=1
or ~
A'n+2(u) _ P2+n(u - 2) /\l(u) _ Q(u)

)‘n+3(u) B P2+n(u) and /\3(u) - m when M = 2a

where Cj(u) and Q(u) are coprime polynomials of the same polynomial degree.

Setting (—1)¥ =1 for 1 <k < M and (—1)H = —1 for M+1 < k < M+N, we

now state one of the main results of Chapter 3:

Theorem IV. Set M,N > 2, m= |¥| m=[Y%],n=15, and let A\(v) = (\e(u))MN
satisfy the consistency conditions in Theorem III. If the X(osppn)-module L(A(u)) is

finite-dimensional, then there exists a tuple of monic polynomials

(Q(u), Qw); (Pe(w))ker) € Clu™™*,
with I ={1,...,m—1;M+1,..., M+n}, such that
Me(u) _ Py(u+ (=1)H)
)\k+1(u) o Pk(u)

Ar’ﬁ(u) PM+n(u + 1) . .
= if M is odd,
Mien@®  Pusaw) Y
)\M+n(u) _ PM+n(u - 2)

AM+n+1(u) B PM+n(U)

for keI\{M+n},

if M is even,

and ~
An(v) _ Q)
A(u)  Qu)’

where é(u) and Q(u) are coprime polynomials of the same polynomial degree.
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The polynomials (Q(x), Q(u); (Ps(u))xer) are called the Drinfel’d polynomials cor-
responding to L(A(u)) and they are uniquely determined by the highest weight A(u).
Given as Theorem 3.2.8, the proof of Theorem IV follows from the combination of
1) R. B. Zhang’s classification of Repj (Y(glnjn))/~ (see [Zha96]) due to an embedding
Y (glnpn) <= X(0spumn), and 2) an inductive argument on the rank of ospasn via the
use of restriction functors and taking Theorem M2 as the induction base.

Proving the converse of Theorem IV will be considerably more technical, which will
involve the construction of fundamental representations of X(0sppn) corresponding to

Drinfel’d polynomials of the form

(w+o,ut B (Drer) or (1,1 ((w+7)**ker)

for i € I and a, B,y € C where a # 8. Those fundamental representations associated
to the first tuple will be denoted L(\(w); e, §), whereas those corresponding to the
second tuple will be denoted L(A(u);%: v). We now consider the following theorem
which partially addresses the sufficiency of the conditions stated in Theorem IV.

Theorem V. Set M > 2, let o, 3,7 € C such that a # B, and let A(u) satisfy the

consistency conditions in Theorem III.

(a) Set N >2. When M = 2, then dim L(\(u); , B) < 2V. Otherwise when M > 3,
then dim L(A\(u); @, 8) < oo if and only if a — B € O, where O is a certain non-
trivial subset of 3Z*. When M is even in this case, then dim L(A(u); e, B) < 2™V,

(b) When 1 <i<m-—1, then dim L(A(u);%: ) < 00.

We refer the reader to the subsections §3.2.3 and §3.2.4 for the results described by
Theorem V. The notable omission in the above theorem is that there is no determination
on the finite-dimensionality of L(A(u);%: v) when M +1 < i < M +n. Moreover, further
necessary conditions on the roots of the Drinfel’d polynomials Q(u) and Q(u) that would
be inferred by Theorem V have not yet been established. Currently, these questions

remain open.

Refer to Conjectures 3.2.22 and 3.2.23 for our estimation on the classifications of

the sets Repg; (X(0sparin))/~ and Repgy (Y(0sparn))/~, Tespectively.
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1.2 Yangians of Strange Lie Superalgebras

1.2.1 Motivation and main results

In Kac’s classification of finite-dimensional simple Lie superalgebras [Kac77], there are
two families of finite-dimensional classical Lie superalgebras which are not basic: the
simple strange Lie superalgebras of types P and (). Types P and () each describe several
families of finite-dimensional “strange” Lie superalgebras, including the aforementioned
simple strange Lie superalgebras. In this work, we consider the most general families in
each type, which we denote py and gy for N € Z*, respectively. We note that in regards
to pn or qn, the simple strange Lie superalgebras are either Lie sub-superalgebras or

quotients of such.

In [Naz92|, Nazarov defined Yangians for these strange Lie superalgebras py and qy,
which are regarded as the Yangians of types P and (), respectively. Nazarov later studied
the Yangians of type @ more extensively in [Naz99], but there has been no comparable
article for the Yangians of type P released to date, prompting the motivation for this

work.

In contrast to the finite-dimensional simple Lie algebras and the orthosymplectic Lie
superalgebras, there is no canonical Lie superbialgebra structure on the polynomial cur-
rent Lie superalgebra sy[z] for sy = pn, qn. As a consequence of this, Nazarov proposed
the following construction: by regarding sy as a fixed-point Lie sub-superalgebra g[}%l N
of glyn under a certain involution 9 € Aut(gly|n), one can extend ¥ in a non-trivial

way to an involutive automorphism of glyn[2] via the assignment

H(f(2)) =9(f)(—2) forall f(2) € glyn[2]-

In particular, one is able to define a natural Lie superbialgebra structure on the fwisted
polynomial current Lie superalgebra gly, ~|[2]?, the fixed-point Lie sub-superalgebra of
glnn[2] under the involution 9 (refer to §4.3.3 for a detailed discussion on this point);
namely, the Yangian Yj(sy) will (homogeneously) quantize this Lie superbialgebra

structure:
Yi(sn) /B Ya(sn) = U(glvin[2]%).-

In Nazarov’s second paper, he proved several structural results for Yangians of strange
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Lie superalgebras of type @, including:
(i) A description of an explicit algebraic basis for Y(qn).
(ii) A description of the supercenter of Y(qy).

In this dissertation, we extend to type P many of the structural results for the
type @ case as in [Naz99]. Unlike our investigation into the orthosymplectic Yangians
in Chapter 3, however, we will not study the representation theoretic aspects of Y(pn).
In fact, even though the defining relations of the Yangian Y(qy) are relatively more
agreeable when compared to its strange counterpart Y (py), the study into the represen-
tation theory for the Yangians of type @ is still only at early development. Although
Nazarov constructed functors between the representation categories of Y(qy) and the
degenerate affine Sergeev algebras, thereby presenting a wide array of finite-dimensional
irreducible representations for the Yangian (see [Naz99, §5]), the classification of all
finite-dimensional irreducible representations of Y(qx) has only recently been completed
when N =1 (refer to [PS21]).

We now provide the main theorem of Chapter 4 and of this topic, which is the
statement of a Poincaré-Birkhoff-Witt-type theorem for Y(py). We present the PBW-
type theorem given as part (a) of Theorem VI which asserts that the associated graded
superalgebra grY(py) of the Yangian, with respect to a certain filtration, must be

isomorphic to the universal enveloping superalgebra (gly v ([2]®):

Theorem VI. The Yangian Y (pn) has the following structural properties:

(a) There exists an involution ¥ € Aut(glyy) such that py = g[}{’,l n and the non-
trivial extension of ¥ to gly|n|[2] yields an N-graded Hopf superalgebra isomorphism

U(glvin[2]”) 2 gr Y(pn).

(b) The supercenter ZY (pn) of Y(pn) is trivial: C-1.

(c) There is a Hopf superalgebra embedding

v: U(pn) = Y(pw).

The conglomerated results in Theorem VI can all be found in §4.3 as stated in

Theorem 4.3.2, Corollary 4.3.4, and Proposition 4.3.5, respectively.
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1.3 Twisted Super Yangians of Type AIII

1.3.1 Motivation and main results

Twisted Yangians serve as one of the main examples of quantum symmetric pairs of
affine type, while at the same time form important instances of reflection algebras
with additional symmetry and/or unitarity conditions. Namely, when g is a finite-
dimensional simple Lie algebra (or gly) and g? is the fixed-point Lie subalgebra under
an involution ¥ € Aut(g), one can associate to a symmetric pair (g,g%) a certain
left coideal subalgebra Y (g, g®)® of Y(g) called the twisted Yangian corresponding to
the pair (g,g%). In particular, we refer to the tuple (Y(g), Y(g, %)) as a quantum
symmetric pair. These twisted Yangians have been shown to be an integral part of
many models in mathematical physics, such as open spin chains, vertex models, and
integrable systems with boundaries, whilst also playing a meaningful part in quantum
field theory (see [Sk188, DMS01, Mac02, Mac05]).

There has been much work completed in regards to twisted Yangians associated to
symmetric pairs of types A, B, C, and D, including their representation theories. The

symmetric pairs most relevant to this work are those of type A which take the form
AL: (gly,s0y), AIL: (gly,spy), and AIIL: (gly,gl, ® gly—p) for 0<p< N,

The twisted Yangians corresponding to the above symmetric pairs have been extensively
studied, including the classification of their finite-dimensional irreducible representations
(see [Mol92, Mol98, Mol07] for types Al & AII and [MRO02] for type AIII). For the
treatment of twisted Yangians corresponding to symmetric pairs of types B, C, and D,
we refer the reader to the articles [GR16, GRW17, GRW19b].

This work concerns the development of twisted Yangians corresponding to the

super-analogue of symmetric pairs of type AIIl: the symmetric superpairs
AIII: (g[M[N,g[p[q Gagl(M_,,)](N_q)) for 0<p<M,0<¢g<N.

Indeed, for such indices p, g, one can realize gl,, ® gl(rr—p)(v—q) as @ fixed-point Lie
sub-superalgebra g[]\’;ll  for some involution ¥ € Aut(glyn). Similar to the previous

subsection, one can extend ¥ in a non-trivial way to an involutive automorphism of the
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polynomial current Lie superalgebra glan[2] via the assignment

(f(2)) = 9(f)(—2) forall f(2) € glalel

The twisted Yangian Y (glasn, g[}\’;ﬂ &) will be a particular left coideal sub-superalgebra
of the Yangian Y (gl n). Its relation to the symmetric superpair is realized by the fact
that its parametrized twisted Yangian Yi(gla v, g[&l &)™ C Yi(glan) is a homogeneous

superalgebra deformation of (glynn(2]®):

Yi(ghain, 8Wn)™ /B (b, 985n) ™ = U(alan[2]°).

We shall now provide the main findings of Chapter 5 concerning these twisted super
Yangians. The first main result comprises Theorem VII which acts as a Poincaré-
Birkhoff-Witt-type theorem for Y (gl n, g[}";ll N, given as Corollary 5.1.12.

Theorem VII. The twisted Yangian Y(g[M[N,g[&] N is a filtered deformation of
(ghin[2]?), i.e., there exists an N-graded superalgebra isomorphism

.

Aol (2]°) = gr Y(ghw, 9lin

In §5.2, we develop a highest weight theory for studying the representations of
Y (glaw, g[}\’;ﬂ ~)*. In particular, the following theorem is an initial important result

for addressing the the classification of all finite-dimensional irreducible representations
of Y(g[M|N,g[}\’;I|N)tw:

Theorem VIII. Every finite-dimensional irreducible representation V of the twisted
Yangian Y (gly|n, g[}\’h N is a highest weight representation. The highest weight vector

of V' is unique up to scalar multiple.

We refer the reader to Theorem 5.2.3 for proof of Theorem VIII.
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Chapter 2

Yangians of Orthosymplectic
Lie Superalgebras

In this chapter, we establish many structural properties for both the Yangians and
extended Yangians of the orthosymplectic Lie superalgebras. The results proven here will
be leveraged in Chapter 3, wherein we investigate their representation theories with the

ultimate goal to classify their respective finite-dimensional irreducible representations.

We outline the chapter as follows. The first section §2.1 will serve as the preliminary
component of both the chapter and the dissertation by recalling the definition of the
Yangian of a finite-dimensional simple Lie algebra and introducing notation that will
be standard across all chapters in this work. In §2.2, the definitions of the extended
Yangian X(ospy|n) and Yangian Y (ospasn) are provided via the RTT realization. The
primary result of the chapter resides in §2.3, where the PBW-type theorem for the
Yangian is proven. The subsection §2.3.3 provides a comprehensive account of the
Lie superbialgebra structure on 0spn[2] and introduces the Yangian Y(ospan) via
the Rees superalgebra formalism. In particular, there is a detailed explanation of how
Yr(0span) serves as a homogeneous quantization of 0spasn([2]. The final section §2.4
establishes many structural properties of the extended Yangian, including a tensor
product decomposition, a PBW-type theorem, and the realization of the Yangian as a
fixed-point subalgebra under a parametrized family of automorphisms of the extended

Yangian.

16
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2.1 Preliminaries

By convention, N = {0,1,2,3,...} denotes the set of natural numbers, Z is the set of all
integers, Z* denotes the set of positive integers, C is the field of complex numbers, Q is
the field of rational numbers, and Z, := Z/2Z = {(_), T} denotes the field of two elements.
Let us fix our ground field to be C. Unless otherwise stated, all linear algebraic notions
are formulated with respect to this fixed ground field C, i.e., vector space = C-vector

space, algebra = C-algebra, linear map = C-linear map, ® = ®¢, etcetera.

2.1.1 The Yangian of a simple Lie algebra

Let g denote a finite-dimensional complex simple Lie algebra equipped with a non-
degenerate symmetric g-invariant bilinear form (-,-) and fix an orthonormal basis
{X>} e of g with respect to such form, where A is an index set of cardinality dim(g).
As defined in terms of its original J-presentation in [Dri85], the Yangian of g is the

following:

Definition 2.1.1. The Yangian Y(g) is the unital associative C-algebra generated by
the elements {X, J(X)}xeq subject to the following relations:

(X, Y]y =[X,Y], J(X,Y])=[J(X)Y],
J(@aX +bY) =aJ(X) +bJ(Y),
[J(X), [J(Y), Z]] - [X, [J(Y), J(2)]]
= Z ([X,XA]’[[YaXv],[Z’XU]]){XA,XM’Xv}a

A B UEA
[(X), J)L1Z, S]] + [[9(2), W), 1X, (V)]
= 2 (X0, 12w, X])
e + (12, X0, W, X,0, 11X, Y], X)) {50, X (X)),

for all W, X,Y, Z € g and for all a,b € C, where

1
{Zh Z2, Z3} = ﬂ Z Z7r(1)Z7r(2)Z7r(3) for all Zla Z2a Z3 € Y(g)

w€EG3

We observe that the Yangian is N-graded given by deg X = 0 and deg J(X) =1 for
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elements X € g. The Yangian Y(g) admits at least three equivalent presentations, with
the J-presentation being the first given above. In [Dri88|, Drinfel’d discovered a second
presentation of the Yangian, suitably called Drinfel’d’s second (or current) realization,
inspired by the Chevalley-Serre presentation of g. We will not focus on either the first
or second presentation of the Yangian in the remainder of this work and instead forward

to the third presentation which will dominate this dissertation: the RTT realization.

Let us assume M, N € N such that N is even and M+N > 1. Further, define
thesign ; = 1for 1 <1 < M+% and 6; = —1 for M+%+1 <3< M+N. The

transposition is the C-linear map defined by
(—=)*: EndCM*N — EndC™*N,  E;; — Ef, :=0,0,Ey,

where 7 = M+ N+1—4 for the indices 1 < 1 < M+ N. The permutation operator in
the space (End CM*N )®2 is given by

M+N
P:= Z Eij ® Eji € (EIld CM+N)®2 (211)

iyj=1
and further define the Q operator

M+N
Q:=(d®(-))P = 6:6,E; ® Es; € (End CM*)**,

1,j=1

The R-matriz R(u) is the rational function in the formal parameter u taking coefficients
in (End CM*N )‘8’2 given by

R(u) = id®? —5 +-— € (End CM*)®* (u), (2.1.2)

where k = kyn 1= (M+N —26on+200p)/2 and dop is the Kronecker delta. When
M =0or N =0, it is known that the R-matrix (2.1.2) is a solution to the quantum
Yang-Bazter equation (QYBE):

R12 (U) R13 (u + ’U) R23(’U) = R23(’U) R13(u + ’U) R12 (’U,), (213)

cf. [ZZ79, KS82b, AAC*03]. For a description of the notation used in (2.1.3) and
Definition 2.1.2 below, we refer the reader to subsection §2.1.3.
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Definition 2.1.2. Let Xy n be the unital associative C-algebra on the generators
{tg) |1<4,5 < M+N, n € Z*} subject to the defining RT T-relation

R(u — v)t; (w)ta(v) = ta(v)t1(uw)R(u — v)
in (End CM+N)®2 ® Xpgn [, v,

where t(u) := Z%Jg E;; @ ti;(u) € End(CM™) @ Xy n[u] is the matrix consisting

of the generating series t;;(u) := 6;;1 + 3.2 tMu™ ¢ Xmn[u™], and R(u — v) is

n=1 “ij

identified with R(u — v) ® 1. Note that d,; denotes the Kronecker delta.

When N = 0, the algebra Xy is called the ertended Yangian X(sopr) of the
orthogonal Lie algebra s0,,, whereas if M = 0, the algebra Xgx is called the extended
Yangian X(spy) of the symplectic Lie algebra spy.

Setting T*(u+k) := ((—)*®id) T(u+k), we consider the matrix Z(u) := T*(u+k) T (u)
and the series z(u) € 1+u~* Xpsn[u~"] defined by id ® 2(u) = Z(u). Allowing (z(u)—1)
to denote the two-sided ideal of Xy n generated by the coefficients of z(u) — 1, we

arrive at another definition of the Yangian for the Lie algebras so0j; and spy:

Definition 2.1.3. Let Yasn be the quotient of Xy n by the two-sided ideal (2(u) —1):
Yuv = Xun /(Z(u) — 1). (2.1.4)

When N = 0, the quotient Yo is called the Yangian Y(soys) of sop. Accordingly, if
M =0, the quotient Yoy is called the Yangian Y(spn) of spx.

We refer the reader to [GRW19a] for a detailed exposition on the equivalence of the

three aforementioned presentations for the orthogonal and symplectic Yangians.

2.1.2 The gradation index and orthosymplectic Lie
superalgebra
If V denotes a vector space with an ordered basis {z;}2,, a natural way to equip V

with a Zy-grading is by specifying its first d many basis vectors, with d < D, to be even

whilst setting the remaining basis vectors to be odd. We note the more general case
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when one may set any d many basis vectors to be even, which prompts the following

definition:

Definition 2.1.4. Fix two integers d € N, D € Z* such that d < D. For a subset
d C {1,2,..., D} of cardinality d, we introduce the gradation index

[-la: {1,2,...,D} = Z; (2.1.5)

given by [i]g = 0 fori € dand [i]g = 1 for i € d' = {1,2,...,D} \d. When
d={1,2,...,d}, weset [-]=]-]a.

We will primarily be working with super vector spaces V = V5 @ Vj that are graded
with respect to the gradation index (2.1.5), but we shall also denote the gradation
of homogeneous elements in V' with the similar notation: [-]: VU V§ — Za,v — [v],
where [v] =y € Z, if v € V. For a super vector space V, elements in Vj are said to be

even and elements in Vj are said to be odd.

The prototypical vector space we will use that is graded with respect to the gradation
index (2.1.5) is the space CM*N where M, N € N such that M+ N > 1. We let the
standard basis be given by B = {¢;}M!V and denote CﬁllN to be such vector space
equipped with the Z,-grading given by [e;] := [i]a for 1 <7 < M+ N, where d = M and

D = M+N as in Definition 2.1.4. When d = {1,2,..., M}, we set CMIN = CgIlN.

Setting V = Cg”N, the space of C-linear maps V — V, denoted End V, carries a

natural Z,-grading via the assignment (End V), = {p € End V' |p(V;)) C Vpyy, 0 € Zo}.

D

In fact, such grading is provided by [E;;] := [i]la+[j]a, where {E;;};’;_; is the collection

of the matrix units of End V' with respect to the basis B.

Again assume M,N € N such that M+N > 1, N is even, and set d = M,
D = M+N as in Definition 2.1.4. Further, consider d and d’ as ordered sets with
respect to the canonical ordering on N, so that d[4] and d’[;j] denotes the j** elements
in these sets and d?\I/z denotes the first % integers in d’. For each 1 < i < M+N,
define the sign
1 if 1edUdy,,

~1 if ied\djy,

Hd =

?
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and define the conjugate index 79 as

d[M+1-j3] if ¢=d[j] for some 1<j <M,
d'[N+1—j] if i=d'[j] for some 1< j<N.

Ed'

We shall see that the definitions of the Yangian depend on the selection of the set d,
which will be more relevant in Chapter 3. For the remainder of this chapter, however,
we shall assume d = {1,2,..., M} unless otherwise specified. Accordingly, we denote

6; := 62 and 7 := 79 in this case, which means such symbols are given by

] 1 if 1<i<M+E,
" |-t i M+Y+1<i<M+N,
M+1—i if 1<i<M,
QM+N+1—i if M+1<i<M+N.

S|
Il

Generally, spaces in this work will be regarded as an object in the symmetric
monoidal category of super vector spaces over C, denoted sVectc, which is equipped
with the super-braiding o. As such, given any two objects V' and W in sVectc, there
is an isomorphism oy w: VW - W RV, v®w — (—1)P*w ® v on homogeneous
elements v € V and w € W. We note that it will be common to drop the subscripts on

the super-braiding oy,w throughout this dissertation.

For homogeneous linear maps ¢ € EndV and ¢ € End W, their (super) tensor
product is the homogeneous linear map in End(V ® W), denoted ¢ ® 1, given by

eRY:VOW VW, vewr (—1)Mllp(y) @ ¢(w)

Note that when ¢ and 1) are even (or just 1), then their (super) tensor product is simply
the traditional tensor product of linear maps. For instance, the operator E;; ® Ej,; in
(End CMIV )®2 =~ End(CMIV @ CMIV) acts on basis elements e, ® e, via the formula,

(Ez'j ® Ekl) (ea ® 6b) — 5ja61b(_1)([k]+[l])[a]ei Q ey.

If we further suppose that V' and W are algebras in sVectc with multiplication maps
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py:V®V =V and pw: W W — W, then multiplication in V ® W is defined by
the composition (uy ® uw) o (idy ® o ® idy). Explicitly, this multiplication is given
by (v; ® wy)(ve ® wg) = (—1)*12ly; 9, ® wiw, on homogeneous elements. When V is
associative, we shall let Lie(V') denote the Lie superalgebra structure on V' given by the

super-commutator [vy, vg] = vyve — (—1)P2lyy0; for homogeneous elements vy, v, € V.

Given a superalgebra A, we shall let Matysn(A) denote the collection of superma-
trices over A with dimension M|N. As a set, Matpn(A) coincides with Matn(A)
but each supermatrix A € Matyn(A) of Zo-degree [A] = vy is a 2 x 2 block matrix

AOO AOl (2 1 6)
AIO All

such that Ay € MatM(A,,), Ay € MathN(A7+1), A € Ma,tNxM(A,H_i), and
Ay € Maty(A,). Via traditional matrix multiplication, the collection Mat s n(A)

forms a superalgebra structure over A.

When A is not super, one can naturally identify the algebra End(CM*V) ® A with
Mat pr4n(A) so that multiplication in End(CM*V) ® A may be simply regarded as matrix
multiplication. However, when A is super, one invariably encounters signs occurring
with multiplication in End(C*") ® A that does not occur with ordinary (super) matrix
multiplication in Matyny(A). We therefore observe there is an algebra isomorphism

(End(CM™M) ® A)y = Matagn(A)s, DM (—)HUHEIE,; ® Aij > (Ay)MEY

ij= ij=1>

where the elements A;; € A are homogeneous of degree [A;;] = [E;;] = [i] +[j]-

For the remainder of this section, we shall only consider the case when A is the
base field C = C!° with the trivial Z,-grading by deeming all elements as even. The

super-transpose is the C-linear map defined by
(-)**: EndCM¥N - EndCMW, Ey — E := (—1)HHH B, (2.1.7)

and is furthermore a superalgebra anti-automorphism: (A;A4;)® = (—1)l41li42] A5t Ast
for any homogeneous elements A;, A; € End CMIV. If (—)’ denotes the conventional

matrix transpose, then via the superalgebra identification End CMIN = Mat Mmn(C), the
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super-transpose A% of A = (A;;)} ;—o € Matyn(C) is provided by

st
Aw An) _ [ Aw A
Ap An —Ay A

The space End CMV ig a unital associative superalgebra and therefore carries the

structure of a Lie superalgebra given by the super-commutator
[E:ij, Ext) := 8B — 5il(_1)([i]+[j])([k]+[l])Ekj

for indices 1 < 4,5 < M+N, where ¢;; is the Kronecker delta. When equipped
with the above Lie superalgebra structure, we shall denote the space End CMIVN as

glary = gl(CMIV) and call it the general Lie superalgebra.

Definition 2.1.5. Assume b: CMI¥ x CMIN 4 C is an even, super-symmetric, non-
degenerate C-bilinear form; hence, N is necessarily even. The orthosymplectic Lie
superalgebra 0sprrn = 08P n(CM N b) is defined as the Lie sub-superalgebra of gl n

preserving such bilinear form b.

That is, 0spn is the Lie sub-superalgebra generated by homogeneous elements
¢ € glyn satisfying the relation b(¢p(v), w)+(—1)¥Ib(v, p(w)) = 0 for all homogeneous
vectors v,w € CMIN, The associated matrix of b with respect to the standard basis

{e 2N is given by B = (b(e;, e5)) Mt

-5

where G € Maty(C) and J € Maty(C) are invertible matrices satisfying G’ = G and
J' = —J. As the definition of 0spyn is independent of the selection of such a bilinear

which necessarily has the form

form, we may assume

G= (51‘5)%:1

and J= (Hjéij)N so B= (Hjéij)MJrN. (218)

i,j=17 i,j=1

Regarding A € glyn in its matrix form (2.1.6), one therefore has A € osppy if and
only if A®*B + BA = 0, i.e., if Ag € S0, A € spn, and AIIOJ + GAp; = 0.

Given the super-trace str: glygqny — C, A > tr(Agp) — tr(A11), where A is of the
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form (2.1.6), the special linear Lie superalgebra slyy is the Lie sub-superalgebra of
glyn defined by the set {X € glyw | str(X) = 0}. Since sop C sly and spy C sly,
it follows that osprn C slagn-

We will now show that one may also regard ospy,ny as a certain fixed-point Lie
sub-superalgebra of sly;xy under some involution ¥. It is this realization of the or-
thosymplectic Lie superalgebras that will be utilized more prominently in this chapter,
and subsequently, Chapter 3. To this end, we introduce the super-transposition as the

C-linear map defined by
(=)': EndCMW — EndCMWV,  E;; — Ef; .= (—1)Mlitlg,0, B5;. (2.1.9)

Similar to the super-transpose (2.1.7), the super-transposition is a superalgebra anti-
automorphism: (A;A4;)" = (—1)M1l42] AL A for homogeneous maps A;, A, € End CMIV,
However, we note that the super-transposition is in fact an involution, unlike the
super-transpose which is of order 4. Moreover, the super-transposition and the super-
transpose commute: (—)*o (=) = (—)® o (—)*; and given any index 1 < k < m, it will

be convention throughout this work to let (—)* denote the map
id®*-) g (-)* ® id®™® € End (End C*V)*".

Via the super-transposition, there is an involutive automorphism ¢ € Aut(slasn)
defined by
9= —(—)t: 5[M|N — 5[M|N, X —Xt,

and one can show that the orthosymplectic Lie superalgebra ospasn coincides with the
fixed-point sub-superalgebra 5[1% ~ of slan under such involution 4. In particular, the

Lie superalgebra ospyn is generated by the operators
F;j := Ey; +9(Eyj) = Ei; — (—1)1IU+0,0, F-; € slyn (2.1.10)
with indices 1 < 4,7 < M+ N, subject only to the relations

(Fijy Fia] = 85 Fy — 8a(—1)EHIDEHD

. Y (2.1.11)
— 5ik(_1)[1][1]+[%]9i9jpjl + 571(_1)(["]'*‘[]])["7]979?Fki

and
Fi + (_1)[i][j]+[i]9i9jpji =0. (2.1.12)
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2.1.3 Mapping notation

Let W be an arbitrary super vector space and let V' be a finite-dimensional super vector
space of dimension d with a fixed basis {by, .. .,ba}, where {E;;}#,_; denotes the matrix
units of End V' with respect to this basis. In this work, we will often represent objects in
(End V) ® W in the larger ambient space (End V)®™ ® W for some integer m > 2. For

this purpose, any index 1 < k < m will determine a morphism of super vector spaces

or: (EndV)@W — (EndV)*" @ W
P Q@w > id®* Y @y ®id®™ P Qu,

and set Xj = ¢x(X) for X € (End V) ® W. Explicitly, if X = 3°¢._, E;; ® w;;, then

1,j=1
d
X =Y id®* V@ E; @id®™ ™ @uy; € (End V)®™ @ W.
i,j=1

If X = X(u) depends on some formal parameter u, we shall write X;(u) instead
of X (u)y for the element (X (u)).

Generalizing of the above map when W = A is a superalgebra with unit 1, we will
also aim to represent objects in (End V) ® A in the larger space (End V)®™ ® A®" for
some integers m,n € Z*. For this, any indices 1 < k < m and 1 <1 < n determine a

morphism of superalgebras

orp: (EndV) ® A — (End V)*™ @ A"
¥ ® a - id®* D @y ®id®™ P @100 g g @ 180D,

and set Xgy = gy (X) for an element X € (End V) ® A. Explicitly, if we express X

d
as the sum ) ', Ej; ® a;5, then
d
Xy =Y id®¢ D@ E; ®1d®™ ™ @190 @ a;; @ 12071 € (End V)®™ @ A®".
ij=1

If k = 1 we shall abbreviate X by X and if [ = 1 we shall abbreviate Xy by Xj just
as above. When X = X (u) depends on some formal parameter u, we shall write X (u)
instead of X (u)kp) for the element oy (X (w)).
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Analogously, we will like to express elements of A ® A within A®™ for some integer

m > 3. Any pair of indices 1 < k < | < m will determine a morphism of superalgebras
o ARA =A™, a®b— 186D Q41841 gpg 180D,

and set Xz = pu(X) for an element X € A ® A. Explicitly, if X =) 7_; a; ® b;, then

Xy = Z 1®(k—1) Qa; ® 1®(l—k—1) Qb ® 1®(m—l)'

=1

Again, when X = X (u) depends on some formal parameter u, then we write Xy;(u)
instead of X (u) for the element ¢ (X (u)).

In Yangian theory, it is convention to use formal power series to define maps between
spaces since at least one of these spaces is usually (countably) infinite-dimensional
and such notation offers the advantage of brevity. In particular, if W; and W, are
super vector spaces or superalgebras with series A(u) =Y oo Apu™ € Wi[u™!] and
B(u) =Y o2  Bou™™ € Wa[u!], then we write

@: A(u) — B(u)

to mean the map ¢(A,) = B, for all n € N. Typically, W; will be a superalgebra
with generating set {A,}32,, so provided the coefficients of B(u) satisfy the necessary

conditions, then ¢ will define a morphism W; — Ws.

As we will see, the more relevant setup is the following. Supposing that V' is a super
vector space of dimension D € Z* graded with respect to the gradation index (2.1.5),
we consider the matrices A(u) = Y-P,_, (-1)lHUIE; ® A;;(u) € End(V) @ Wi[u™!]
and B(u) = Y P._, (-1)HUHU E;; @ B;j(u) € End(V) ® Wa[u™"] consisting of formal
power series A;j(u) = 6;;1+ Y oo Agb)u“" and B;j(u) = 051+ o0, Bz(]" Ju=". One
then writes

@: A(u) — B(u)

D and n € Z*. When W; is
i,j < D, n € Z*} and the
coefficients of B;;(u), 1 < 4,5 < D, satisfy the necessary conditions, then ¢ will define

)y — ™ ;g
to mean the map p(4;;") = B;;” for all 1 < 4,5 <
<

a superalgebra with the generating set {Ag‘) | 1

a morphism W; — Ws.
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Lastly, assume A is a superalgebra generated by {Ag') |1<4,7 <D, neZt}
When describing the action of A on a vector £ in a representation V, it will be common
to set Aij(u) = 6;;1+> oo, Ag‘)u“n € AJu!] and vi;(u) = X2, vPu™ € V[u!], so

n=1 “ij

one can write
Aii(u)€ = 6i;€ + vij(u)

to mean the action of A on £ € V given by Ag')ﬁ = vg-L) foralll1<i4,5 < Dandne€Zt.

2.2 Orthosymplectic Yangians

The first definition of the Yangian Y (ospn) for the orthosymplectic Lie superalge-
bra osppqn was given in [AACT03, §3] via the RTT realization. In this section, we
will recall such definition of the Yangian as a certain quotient of the extended Yangian

X(ospun), which appeared also in the same article.

The following constructions will yield isomorphic presentations of the Yangians, and
extended Yangians, of the orthogonal Lie algebra soj)s when N = 0, and the symplectic
Lie algebra spy when M = 0, whose RT'T' presentations were thoroughly examined in
the paper [AMRO6].

2.2.1 Extended orthosymplectic Yangians

As one can infer from §2.1.1, the RTT realization for Yangians of the orthosymplectic
Lie superalgebras will rely on a solution to the super-analogue of the QYBE (2.1.3),
so we accordingly construct such an R-matrix here. To start, the super permutation
operator in (End cMIN )®2 is given by

M+N

P:= Y (-1)VE; ® Ej;; € (EndCMN)**. (2.2.1)

ij=1
Further, we define @ € (End CMIV )®2 as the transposed operator
M+N ,
Q:=Ph =Pt = Y (-1)ll19,0,E;; ® Ey; € (End CMV)™, (2.2.2)

i,j=1

where (—)* is the involution (2.1.9). The R-matriz R(u) is the rational function in the
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®2

formal parameter u taking coefficients in (End cMIv ) given by

Q

Uu—~r

R(u) := id®? —5 + € (End CMIN)®2 (u), &=ryy:=2D=2  (223)

2

It is known that the R-matrix (2.2.3) is a solution to the super quantum Yang-Bazter
equation (SQYBE):

Rya(u)Ry3(u + v) Ras(v) = Ras(v)Ris(u + v) Riz(u), (2.2.4)
c.f. [Z2Z79, KS82b, AAC*03]. Moreover, the array of equalities
P?=id®, PQ=QP=Q, and Q®=(M-N)Q,
infer that the R-matrix R(u) satisfies the properties

R"(u+ k) = R®(u + k) = R(—u), (2.2.5)

R(u)R(—u) = <1 — é) id®?, (2.2.6)

known as crossing symmetry and unitarity, respectively.

A particular consequence of crossing symmetry is that the R-matrix is invariant
under the map (—)’ ® (—)*, which will be utilized later in the subsection. Using the
R-matrix (2.2.3), we can introduce the definition of the extended Yangian:

Definition 2.2.1. The extended Yangian X(osparn) of 0spasn is the unital associative
C-superalgebra on generators {Ti(j") | 1 <4,j < M+N, n € Z*}, with Z,-grade
[ﬂ(jn)] := [¢]+[J] for all n € Z*, subject to the defining RT'T-relation

R(u — v)T1(u)T3(v) = To(v)T1(u) R(u — v)

- (2.2.7)

in (End CM]N) ® X(ospprn)[u*, vH],
where T(u) := Y501 (—1)IUHIE,; ® Ty5(u) € End(CMV) @ X(osparn)[u] is the
matrix consisting of the series T;;(u) := 051 + Y o) T}(jn)u"" € X(osppn)[u~?] for

indices 1 < 4,7 < M+N, and R(u — v) is identified with R(u — v) ® 1.
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In terms of formal power series, the RT'T-relation (2.2.7) equivalently takes the form

1 PTPT .
[T,-J-(u), Tkz(’v)] =— v(_l)[ 105]+ (2] (k] 4[] (] (Tkj('u)Til(U) — Tkj('U)Til(U))
1 MHN N
- m (Jik Z (_1)[z][]]+[z]+[1][p]0i0prj (U)Tz—,[ (’U) (228)
p=1
M+N
- Z (_1)["][k]'*'[J][k]'*'[J]'*'["'][P]'*‘[P]gjakaz_’(v)ﬂp(u))

p=1

for all 1 <4,5,k,1l < M+ N, where the above equality may be regarded as one in the

extension X(0sppsn)[ut?, v*!] and [-, -] is understood as the super-bracket
[Ti3(u), Tia(v)] = Tj(w) Tua(v) — (=1) EHDEHDT, ()T (w).

Remark 2.2.2. Definition 2.2.1 of X(0spp n) inherently relies on the selection of
the set d for the gradation index (2.1.5). Suppose that X% (0spasn) and X%(0sparn)
denote two definitions of the extended Yangian in terms of two different sets d; and ds
as in Definition 2.1.4; accordingly, we denote the generating series for each of these
definitions as Tgl (u) and Ti? (u), respectively. if Gy denotes the symmetric group
on the symbols {1,2,..., M+ N} and the bijection o € Gy satisfies [i]a, = [0(2)]ds,
o = 9:(21.), and o(z%) = mdz, then

XM (ospany) = X¥(0spary), T (w) = Ty (w)

is an isomorphism of superalgebras.

Remark 2.2.3. When N = 0, the non-super permutation operator (2.1.1) and super
permutation operator (2.2.1) coincide: P = P. One can also readily verify in this case
that Q = Q and kas0 = K0, S0 the matrices (2.1.2) and (2.2.3) are equal: R(u) = R(u).
Hence, the assignment t(u) — T'(u) yields an algebra isomorphism X(s0,) = X(08pas(o)-
Alternatively, when M = 0 we have P = —P, Q = —Q, and kg y = —&Ko n; hence,
R(u) = R(—u). Exchanging (u,v) — (—u,—v) in the RTT-relation (2.2.7) therefore
shows that t(u) — T'(—u) induces an algebra isomorphism X(spx) = X(0spojn)-

In practice, to prove that some graded map ¢ from X(ospn) to some superalge-

bra A is a superalgebra morphism, one sets A = o(T™) and collects these images into
i 4 ij
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a matrix A(u) = Y M (-1)HUHUE; @ A;;(u) € End(CMW) @ Afu'], where Aj;(u)
is the series ;1 + > oo A(") ~": thus, the map ¢: T'(u) — A(u) describes the assign-
ment ¢: Tz-(j") — Ag-L). To show that the defining relations of the extended Yangian are
satisfied when we replace the elements Tz(J ") with ASJ ), one observes that such relations
will be satisfied if and only if

R(u — v)A;(u)Az(v) = Az(v)Ar(u)R(u — v).

Showing that A(u) satisfies this latter form will be how we prove many graded maps

are superalgebra morphisms from the extended Yangian X(ospan).

As such, for any formal series f = f(u) =14 > > fau™ € 1 + 4 'C[u"!] and
any a € C, two important superalgebra automorphisms of X(0spasn) are provided by
the assignments

pr: T(u) = f()T(u), (2.2.9)
To: T(u) = T'(u — a), (2.2.10)

where one can show the above maps take the more explicit forms

e -1
f TP S LTY and Ta;z;gw,_)}:(Z_k)an—k:l;g’“) for neZ*.
a+b=n k=1

There also exists several important anti-automorphisms for the extended Yangian
X(ospumn). To introduce such morphisms, we first note that we may regard T'(u) as
a formal power series in u~! whose coefficients lie in End(CM™) ® X(ospan). Since
the constant term of such power series is the unit object 1 =id ® 1, then 7'(u) must
have an inverse T'(u)~!. Further, we shall understand T*(u) as ((—)! ® id)T'(u) and
T*(u) as ((—)® ® id)T(u). Hence, by interpreting T'(u) = (T};(u))M* as a matrix in
MatM.Hv(X(ospM]N) [[u_ll]), then

T(u) = (( 1)[z][J]+[J]9 0,Ty: (u))MH}T and T°(u) = ((_1)[i][j]+[i]7}i(u))1v§+1¥,
so we accordingly define the following for all 1 <¢,7 < M+N:

Té(u) = (_1)[i][j]+[j]9i0jr7i(u) and n;t(u) — (_1)[i][j]+[i]1}i(u). (2.2.11)
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In particular, the assignments

¢: T'(u) = T(—u), (2.2.12)
t: T(u) = T(u), (2.2.13)
st: T'(u) — T*(u), (2.2.14)
S: T(u) — T(uw)™?, (2.2.15)

define superalgebra anti-automorphisms of X(0spasn), c.f. [Mol07, Proposition 1.3.3].
For instance, proving that a graded map (—)°: X(ospan) — X(0span) is a superal-

gebra anti-morphism is equivalent to showing the relation
R(u — )Ty (0)T7 (u) = T7 (u)T7 (v) R(u — v),

where T°(u) = Y15 (-1 E; @ T5(u) and Tg(u), k = 1,2, are defined in the
suitable ways. For the maps (2.2.12)—(2.2.15), one can obtain the above relation by
modifying the RT'T-relation (2.2.7) in suitable ways and using the unitarity property
of the R-matrix R(u — v) along with the fact that R(u — v) is invariant under the
operators (—)* ® (—)* and (—)% ® (—)*.

2.2.2 The Hopf structure and central series Z(u) of X(0spn)

As was first stated in [AACT03, §3] with proof similar to [Mol07, Theorem 1.5.1], the
extended Yangian X(ospn) comes equipped with a Hopf superalgebra structure given
by the comultiplication

A: X(osprn) — X(ospamin) ® X(osprn),  T(u) — Tiy(u)Tiz (w),

the counit
€: X(OEIJM“V) - C, T(u) — 1,

and the antipode
S: X(05PM|N) — X(OﬁleN), T(u) — T(u)_l,

which was previously introduced as the anti-automorphism (2.2.15). On the level of
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power series, the comultiplication A and counit ¢ take the form
M+N

A: Ty(u) = > Ti(w) ® Tej(u) and e: Ty(u) > 6 for 1<4,5 < M+N.
k=1

Hence, these maps can be written explicitly as A(Ti(jn)) = e N S b T ® T,S?)

and s(Ti(j")) =0for1<4%j< M+N and n € Z*. To compute how the antipode S

maps such generators, one can write

T(u)t = " (1) B, © T3 (u),

1,j=1

where T(u) = 1+ o0, T53™u™ are uniquely determined series in X(ospaqn)[u~"].

In particular, S (TZ(J")) =T ™ and one can verify such images are of the form

n M+N
o(n) __ (n) s (k1) (% (ks)
T30 = 19 1 31 Y ( R T;:z---ns_l,-)

s=2 ;=1 kj=n a1,02,...,as—1=1

with k; € Z* for each k; in the sum } ;) k; = n.

Let us define the matrix
Z(u) := T*(u + k)T (u) (2.2.16)

and further consider the series Z(u) lying in X(0spasn)[u"] such that id ® Z(uv) = Z(u).
Multiplying both sides of the RT'T-relation by u—v—k, setting 4 = v+ and replacing v
by u yields the equation

QTi(u+ k)T (u) = To(uw)Ti(u + K)Q.

Using the relations QT3 (u) = QT¢(u) and T;(u)Q = T¢(u)Q, transposing the first

tensor factor of the above equation yields
P® Z(u) = PTH(u+ k)Tz(u) = To(u)Ty(u + &) P.

Multiplying the above equation on left by P gives id®? ® Z(u) = T§(u + )Tz (), whilst
instead multiplying on the right by P yields id®? ® Z(u) = T3(u)T#(u + ). Thus,

Z(u) = THu + k)T(u) = T(w)T*(u + &), (2.2.17)
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or rather put,

M+N M+N
i 2 (u) = Z Tk (u+ k)T (uw) = Z Tix ()T (u + k), (2.2.18)
k=1 k=1

where we shall write Z(u) =1+ > o2 Z,u™ € 1+ u~t X(ospaw) [u™"].

We note that the coefficients of Z(u) are homogeneous of even degree, so such
coefficients lie within the even subalgebra of X(ospan). We shall let ZX(ospasn)
denote the subalgebra generated by the coefficients of Z(u) and let (Z(u) — 1) to mean
the two-sided graded ideal of X(ospasn) generated by the coefficients of Z(u) — 1.

Proposition 2.2.4. The coefficients of the series Z(u) € 1 + v~ X(ospumn)[v']
given by the equation T*(u + k)T'(u) = T(u)T*(u + k) = id ® Z(u) lie in the center of
X(osppn). Furthermore,

A: Z(u) — Z(u) @ Z(u) (2.2.19)

where A is the comultiplication map. In particular, ZX(osppn) is a sub-Hopf superal-
gebra and (Z(u) — 1) is a graded Hopf ideal of X(osparn)-

Proof. The proof was provided in [AAC*03, Theorem 3.1, but we will reproduce the
argument here. First, one observes

Z(u)Tz(v) = Ti(u + k)T1(w)Ta(v) = TY(u + &) R(u — v) " T (v) Ty (u) R(u — v)

using the RT'T-relation. By transposing the first tensor factor of the RT'T-relation (2.2.7)
and using properties (2.2.5) and (2.2.6), we also get the equation

Ti(u+ k) R(u — v) ' Tz(v) = Ta(v)R(u — v) T} (u + ).
Therefore,

Z(w)Ta(v) = Ta(v)R(u — v) T} (u + k)Ty(u) R(u — v)
= Ty(v)R(u — v) "' Z(u)R(u — v) = To(v) Z(u),

since Z(u) commutes with R(u — v). Furthermore, A: Z(u) — Z(u) ® Z(u) is readily



34  Chapter 2. Yangians of Orthosymplectic Lie Superalgebras

verified from the computation

M+N
A(Z(’U,)) = Z (—1)[i][k]+[k]9.,;9k (T,-m(u + Iﬁl) ® Tai(u + KZ)) (ka(u) X Tm(u))

a,b,k=1
M+N .

= D (~1)EHDEREDTL (o + ) Teo () © T (u + 5) ()
a,b,k=1
M+N

= Y (~1) DD 6 2 () © T (u + £) Thi(w) = Z(u) ® Z(u).

a,b=1

Denoting Z = (Z(u) — 1), one may verify that £: Z(u) — 1 and so £(Z) = 0. Moreover,
since A(Z,) = D 1p—pn Za ® Zp (Where Zy = 1), then for any X € X(osppn) one
has A(X Z2,), A(Z2,X) € T ® X(ospan) + X(ospumn) ® Z, showing that 7 is a coideal.
Lastly, the axioms of a Hopf superalgebra structure infer that the image of Z(u) under
the antipode is given by

S: Z(u) — Z(u)™,

which proves the proposition. n

By identifying Z(u) with Z(u), equation (2.2.17) shows that the inverse of T'(u) is
given by
T(w)™ =Zu T (u+r),

so the antipode S is the mapping T'(u) — Z(u)"'T*(u + k). In particular, the square

of the antipode is computed as
S?2: T(u) = Z(w)Z(u+ &) T (u+ 2k), (2.2.20)

which will be relevant the later subsection §2.4.1.

2.2.3 The associated graded superalgebra gr X(ospn)

We shall now consider two (ascending algebra) filtrations on X(o0spasn), denoted
E(X(0spmin)) = E = {En}nen and E'(X(0spmin)) = E' = {E} }nen, given via the
respective filtration degree assignments

degg, Ti(j") =n—1 and degg 7}(1-") =n (2.2.21)
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forall1 <4,j < M+N and n € Z*. From the defining relations (2.2.8), the associated
graded superalgebra grgy X(ospuyiy) = @D,y En/E,_; is supercommutative. Our
attention will primarily focus on the first filtration E which will induce a more interesting

associated graded superalgebra, denoted

grX(ospupn) = grg X(osparn) = @En/En_l.
neN
We note that gr X(ospas ) inherits a Zo-graded structure from X(ospasn) by assigning
Zo-grade [i]+[4] to the image Ti(j") of Ti(j") in E,_;/E,_s. Furthermore, by endowing
X(0sprn)®? with the tensor product filtration E? = {E2},cy and assigning C with
the trivial filtration C = {C,}nen, i€,

Efb= ZEi(X)Ej and C,=C forall n €N,
i+j=n

one can verify that each of the Hopf superalgebra structure maps on X(osppn) will
preserve their relative filtrations. In short, E is a Hopf filtration on X(ospn), so
gr X(ospas ) is equipped with an N-graded Hopf superalgebra structure given by the

comultiplication

~ 2
gr A: grX(ospan) — gr(X(ospann)®2) = (grX(osparn))®
TP TP e1+10TY,

the counit
gre: grX(ospmn) = C, Ti(jn) — 0,

and antipode

grS: grX(ospyn) — gr X(ospumn), T,-(jn) = Ti;-(n) =T

g

where 1 <4,7 < M+N and n € Z*.

Given a Lie superalgebra g, we recall that g[z] denotes the polynomsial current Lie
superalgebra associated to g; that is, g[z] is equal to g ® C[z] as a super vector space

(where the indeterminate z is of Z,-grade 0), and is equipped with the Lie superbracket

(X ® f(2),Y ®g(2)] :==[X,Y] ® f(2)g9(2) for X,Y € g and f(2),g9(z) € C[z].
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Equivalently, g[z] may be regarded as the Lie superalgebra of polynomial maps f: C — g
with Lie superbracket given point-wise. We note that g[2] is an N-graded Lie superalge-
bra €, c 9[2]n, Where g[z], = g®C2", and we shall use the identification X 2" = X ® 2"

for elements in g[z].

Given any Lie superalgebra a, we let ${(a) denote its universal enveloping superalge-
bra; that is, U(a) = T'(a)/I(a), where T'(a) is the tensor superalgebra of a and I(a) is
the two-sided ideal generated by elements of the form X @ Y — (—1)¥I¥ly @ X — [X, Y]
for homogeneous elements X,Y € a. Furthermore, {(a) is endowed with a Hopf

superalgebra structure given by structure maps

A: U(a) = U(a) @ YU(a), e: Y(a) = C, S: U(a) = Y(a),
X—XR1+10X X—0 X—-X

for all X € a. In the case when a = g[z] is a polynomial current Lie superalgebra, we
see that {U(g[z]) is an N-graded superalgebra @, . 4"(g[2]), where

U™ (gl2]) = spanc{ 1T}, Xaz* | v € Z*, Xa € g, 3201 ka = n}.

Consider a central extension 0spasn @ 3c of 0span by a purely even 1-dimensional
abelian Lie superalgebra 3. := C-c. As a Lie superalgebra, 0spasn[2] @ jc[2] is generated
by the elements {F;;z™,c2" |1 <i,5 < M+N, m,n € N} subject only to the relations

[F;:jzm, Fklzn] — (Sjkﬂlzm+n _ (511(_1)([i]+[j])([k]+[l])ijzm+n
— gik(_l)[i][j]+[i]9i9jpﬂzm+n + 531(—1)([i]+[j])[k]6’76’7szzm+n,
Fy;2" + (—1)Ul+g.0. 2 = 0, and [Fi;2™,c2"] = 0.
We will now aim to construct a Hopf superalgebra epimorphism from the universal
enveloping superalgebra U(ospasn(2] @ 3c[2]) to the associated graded superalgebra

gr X(osppn). Before doing so, we note the defining equation (2.2.18) for the central

elements Z,, infers
8520 = T + (-1)WH+,6, T mod E,_,. (2.2.22)

In particular, Z, has filtration degree n—1, so we shall let Z, denote the image of Z,

in the graded component E,,_;/E,_». We can now describe the desired map as in the
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following proposition.

Proposition 2.2.5. The map V: {(osprn[2] @ 3c[2]) = gr X(osppn) defined by

Fy" e (-1)(T - 16,2,), "' 12,

foralll1 <i,j < M+N andn € Z™, is an epimorphism of N-graded Hopf superalgebras.

Proof. To show V: ospaqn(2] ® 3c[2] — Lie(gr X(ospasn)) is an N-graded Lie super-
algebra morphism, one passes the defining relations (2.2.8) to the associated graded

superalgebra to yield the relations

[T,-(J-'”),T,SL’] — 5jk(_1)[k]Ti(lm+"—1) _ 5“(_1)([z']+[j])[k1+[j][l]T’g,Hn—l)
_ gik(_1)[i][j1+[i1+[j19i9ﬁj(;n+n—1) + 85y (—1) DI+ g, 0 T (mn—D),

for 1 < 4,5,k,l < M+N and m,n € Z*. Hence, the desired relations follow from
multiplying the above equation by the scalar (—1)E+ using that the elements Z,,,

n € Z*, are central, and incorporating the equivalence (2.2.22).

Hence, ¥ extends to a superalgebra morphism U(osprn[2] D 3c[2]) — gr X(ospamn),
which is also N-graded. Such morphism is surjective since gr X(ospn) is generated by
the elements Ti(j") and the morphism ¥ sends (—1)l1F;;2"! to Ti(jn) for i # j and maps
(1) F, + )22 to T,

Lastly, it can be seen that ¥ is a morphism of Hopf superalgebras from the de-

scriptions of those Hopf superstructures on {U(ospasn[2] ® 3c[2]) and gr X(ospasn) as
before. O

2.2.4 Orthosymplectic Yangians

We are now in position to define the Yangian Y (ospan):

Definition 2.2.6. The Yangian Y (0spasn) of 0spsn is the quotient of X(ospasn) by
the graded ideal (Z(u) — 1), i.e.,

Y (ospary) = X(0spanw)/(Z(w) — 1). (2.2.23)
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Equivalently, Y (ospasn) is the unital associative C-superalgebra on the generators
{T\" |1 < 4,5 < M+N, n € Z+}, with Zy-grade [T,"] := [i]+[4] for all n € Z*,
subject to the RT'T-relation

R(u — )T1(w)T2(v) = T2(v)T1(w) R(u — v)

2 (2.2.24)
in  (End CM™)™ @ Y(osprqn) [ut?, v*],
where R(u — v) is identified with R(u — v) ® 1, and
T'u+k)T(w) =1 in End(C*™)® Y(osparn)[u™], (2.2.25)

where T'(u) := 3170 (-1 B, © Ti5(u) € End(CMY) @ Y (ospar) [u™] is the
matrix consisting of the series Tz;(u) := di1 + Y oo ﬂ;n)u_" € Y(osparn)[u~?] for
indices 1 <14,5 < M+N.

Remark 2.2.7. When N = 0, the non-super and super R-matrices (2.1.2) and (2.2.3)
coincide: R(u) = R(u). In particular, the assignment t(u) — 7 (u) yields an algebra
isomorphism Y(s0p) = Y(0spao). Alternatively, when M = 0 then there is an
equality R(v) = R(—wu). Exchanging (u,v) — (—u,—v) in the RTT-relation (2.2.24)
therefore shows t(u) — 7 (—uw) induces an algebra isomorphism Y (spx) = Y (0spojn)-

The defining relations for the Yangian in terms of formal power series equivalently
take the form

[T 1), Ta(0)] = - (~ DRI (7, ) Ta o) — Tay () ()

1 M+N . . .
S (Jik Z (—1)[z][J]+[z]+[J][P]0i0p7;j(u)7},l(v) (2.2.26)
p=1
M+N
— 851 Z (_1)[i][k]‘*‘[j][k]-f—[j]-{-[i][p]—*—[p]ajapnﬁ(v)ﬂp(u)) ,
p=1
and
M+N
Z p (U + K) T (w) = 8351, (2.2.27)

for all indices 1 <14,j,k,l < M+N.
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Note that since (Z(u) — 1) is a graded Hopf ideal, the quotient of X(ospn) by
(Z(u) — 1) comes equipped with a unique Hopf superstructure such that the canonical
projection X(osparn) — X(ospan)/(Z(u) — 1) is a morphism of Hopf superalgebras.
Hence, there is Hopf superalgebra structure on Y (ospsn) given by the comultiplication

A: Y(ospun) = Y(ospun) @ Y(0spuin), T (u) = Tpy(w) Tz (w),

the counit
€. Y(°5PM|N) —C, T(u) — 1,

and the antipode

S': Y(ospr) — Y(OS]JM|N), T(u) — T(u)“l = Tt(u + Iﬁ}).

Furthermore, the filtrations E and E’ on X(ospaqn) will endow the respective
filtrations E = {E, }nen and E' = {E/ }nen on the quotient X(osparn)/(Z(u) — 1) such
that

E, = E./(B.N(2@) - 1) and E,=E,/(E,n(Z0) - 1)),

For simplicity, we shall set F = {F,}pen := E and F/ = {F'},.cn := E'. In particular,

these filtrations are given by the respective filtration degree assignments
degg 7;;") =n—1 and degm 'EJ(-") =n (2.2.28)

forall1 <i,7 < M+N and n € Z*. From the defining relations (2.2.26), one can
deduce that the associated graded superalgebra grg: Y(ospyin) = @penFr/Fn_y is
supercommutative. Similar to the case of the extended Yangian, we will direct our
attention to the first filtration F which will induce a more interesting associated graded

superalgebra:
gr Y (ospan) := gt Y(0spmn) = @ Fo/Foa,

neEN
The associated graded superalgebra gr Y (ospasn) inherits a Z,-graded structure from
Y (ospan) by assigning Zo-grade [i]+[;] to the image 7_21(-") of 7;1(-") in F,_1/F,_s.

Again, similar to the subsection §2.2.3, one can verify that F is a Hopf filtration;
hence, gr Y(ospuqn) comes equipped with an N-graded Hopf superalgebra structure
grA, gre, grS analogous to the one on grX(ospyn). We note, however, that the
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antipode on gr Y (ospyn) takes on the form
(7'(")) 7'(") (— )[n][]]+[]]9 0; 7'(")

forall1<i,j < M+N and n € Z*.

Recalling the polynomial current superalgebra ospn[z] whose defining relations
were described in the previous subsection, we obtain the following analogue of Proposi-
tion 2.2.5 for the Yangian Y (0span):

Proposition 2.2.8. There is an N-graded Hopf superalgebra epimorphism
@: U(ospanl]) — gr Y (ospaqw),  Fyz"' v (~)IT"
forall1<i,j < M+N andn € Z*.

Proof. To show ®: ospysn[z] — Lie(gr Y(ospamn)) is an N-graded Lie superalgebra
morphism, one passes the relations (2.2.26) and (2.2.27) to the associated graded

superalgebra to yield the respective relations

[T, T5] = 650(—1) BT+ _ gy (—1) EHIDEHGIN =)
— ba(—1 )[’][J]+["]+[J]99T(m+n 1)+5 i(~1 )[z]+[j])[k]+[j]aiaj,]_;:(im+n—1)

and
T + (—1)Wli+ig,0 T =
forall1 <i,5,k,l < M+N and m,n € Z*. Hence, the desired relations follow from

multiplying the first equation above by (—1)F+*l and the second by (—1)!.

Thus, ® extends to a morphism of superalgebras U(osprn[z]) — grY(ospan)
which is also N-graded. This morphism is surjective since gr Y (ospasn) is generated by
the elements 7_23(-").

Moreover, it can be seen that ® is a morphism of Hopf superalgebras from the
descriptions of the Hopf superstructures on {{(ospasn|[2]) and grY (ospn). O
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2.3 Poincaré-Birkhoff-Witt Theorem for the Yangian

In this section, we illustrate how to obtain an explicit algebraic basis for the Yangian
Y (ospan) which amounts to proving that the Yangian is a filtered deformation of
U(ospan(2]). Indeed, if such an isomorphism ®: U(osparn[z]) = gr Y (ospan) exists,
then the Poincaré-Birkhoff-Witt Theorem for Lie superalgebras infers that one can
construct a basis B for Y(osparn|2]), so any lift of ®(B) will yield the desired basis for
the Yangian.

2.3.1 Evaluation and vector representations

Consider the vector representation of {{(ospn) on the super vector space CMIN a5

given by
p: u(05leN) — End CMIN, F:,;j — E,;j - (—1)[1][‘7]+[1]919]E77 (231)

foralll <i,j < M+N. Given any a € C, one can pullback the vector representation by
the superalgebra morphism ev,: U(osprn[2]) = U(0sprn) induced by the assignment
z — a to yield the evaluation representation of U(osparn[2]) at a € C given by

pa = eV, p: Wospuyw[z]) = EndCMIV,  Fijz" s a"p(Fy).

For any complex numbers a,, ..., a, € C, we may therefore consider the tensor product

of such evaluation representations of U(ospan|[2]):

Par—an = (®=1 Pa;) © D1, (2.3.2)

where A,,_1: Y(0sprrn[2]) = U(osprn[2])®" is the unique (n—1)-fold comultiplication
sending X € U(ospan([2]) to the element 3y X1) ® X(2) ® -+ ® X(n) in Sweedler

notation.

The following lemma establishes that the intersection of all kernels of such represen-
tations pg,—q,, for all ai,...,a, € C, n € Z*, is trivial. The core ideas for the proof
arise from the proofs of analogous statements in the papers [Naz99, Proposition 2.2]
and [AMRO06, Lemma 3.5].
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Lemma 2.3.1. (V,cz+ (ay,....an)ecn KeT(Par—an) = 0 in U(0sparr v [2])-

Proof. Let {X;}{_, be a homogeneous basis of 0spyn and write x; = p(X;) for indices
i = 1,2,...,d. Furthermore, we shall let {{,(0span[2])}nen denote the canonical

ascending algebra filtration on $(ospasn[2]) determined by monomial length.

Step 1. We start by endowing a total ordering ‘<’ on the collection of basis elements
{Xpz™ | 1 < b < d, m € N} of asppn[2], so via the Poincaré-Birkhoff-Witt Theorem
for Lie superalgebras, the universal enveloping superalgebra (ospn[2]) has a basis
consisting of ordered monomials of the form H;zl Xp,;2™ such that X3 2™ X Xy, 2™+
for indices j = 1,...,7—1, and X;,2™ # X, 2™+ provided [X;] = 1. Given
a nonzero element A in Y(ospasn[2]), we can therefore express such element as a
unique linear combination of PBW basis monomials in {(0span(2]) and we denote
{M; = 115, Xp,;2™4 }7_; as the collection of those basis elements with maximal filtration
degree n. For every such maximal length monomial, we consider their corresponding

supersymmetrized object

Mia = Z (_1)6(0,Mi) ®Xbia(j)zmia(j) € (o's‘leN[z])@n’ (233)
j=1

c€S,

where (—1)€(*™) is the Koszul sign provided that &, is the symmetric group on n
letters and €: &, X (0spun[2])®" — Zy is the map €(0, %) = 3 jyetuv(0) [Fow)] [Zo)]
on homogeneous tensors £ =2, @ L2 ® -+ + ® T, € (08ppr)n[2])®", where Inv(c) is the
set of inversions {(k,l) | k <, a(k) > o(l)}.

Step 2. We now show that the p supersymmetrized elements (2.3.3) are linearly
independent, which amounts to proving such is true for their images under the projection
T (osparn([2]) —> U(osparn([2]). To start, we first express each monomial in the sum
> oes, (—1)c@M) [T7; Xb,,(;,2™@ in terms of the PBW basis for #(ospasn[2]) with
respect to the total order ‘<’. By repeated use of the defining relations of the universal

enveloping algebra, one yields that

l_IIXbia(j)zmi"(j) = (—1)6(U’M") H Xbijzm"j mod Lln_l(ospM[N[z]).
J:

j=1

Therefore, the linear independence of the supersymmetrized elements (2.3.3) amounts
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to whether or not there is a non-trivial solution to

p n
Z i H Xp,;2™ =0 mod Un_1(0sprn[2]),

but this is not possible unless \; =0 for alli =1,2,...,p.

Step 8. Since

Pas—an (szm) — Z al;cnxl[)k], X[bk] = id@(k—l) ® Xb ® id®(n—k) e End(CMIN)®n,
k=1

then the image of the any monomial [I}_; X5,2™ under pg,—.q, is given by

m my. [k kr n
Z akll - a‘kr XI[;II] . Xl[)r ] € End(CM|N)® ) (234)
k1,...,kr=1

By completing the collection {x;}%, to a homogeneous basis {x;}*™ of End(CMIV)
such that x; = id for some d+1 < j < (M+N)?, we consider the subspace of
End(CMIV)®" given by

W, := spang { Xiy @+ ® Xi, | xj =1d occurs in at least one tensor factor},

where 1 < iy < (M+N)? for 1 < k < n. We observe that the image of any element
in Y,_1(0sparn([2]) under p,,—a, will be contained in the subspace W,. Moreover,

by (2.3.4) the image of the monomial M; under p,,_,, may be written as

Z (—1)@Mg 5 ® . g7 "™ @)y, mod Wy (2.3.5)
a-EGn j=1
Under the identification ¢: (0spun[2])®" = (08parin)®™ [21, . . . , 2n], the images of the

supersymmetrized elements M; under ¢ are given by
n . .
Z ((_1)5(‘7,Mi) ® Xbia(j))z;""’(l) cen z;n“’(") . (236)
Ueen j=1

Since p is a faithful representation, then so is p®*: U(ospasn)®" — End(CMIN)®n
and its extension to U(0sprn)®™[21,---,2,] — End(CMIN)®"[z, ..., 2,], which we
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also denote p®". Furthermore, since the elements ¢(M7), i = 1,...,p, are linearly
independent, then their images under p®" are so. Hence, a nonzero linear combination

P _1 Ai¢(M7) implies that the sum of polynomials

Z Ai Z ((—1)E(U,Mi) ® Xbia(j))z;niau) . z;n""(")
: 2

i=1 o0€Gy,
is nonzero. Thus, there exists complex numbers a,,...,a, € C such that
p n
E(U,Mi) Mio(1) Mio(n)
E :)\’L E : (_1) a ©rGn ®Xbia(j)
=1 oeG, j=1

is nonzero. Comparing the above with (2.3.5), we conclude that that image of p,, 4, (A)
in the quotient End(CMV)®" /W, is nonzero and therefore p,,_,,(A) # 0, proving the

lemma. O

We will now direct our attention to an important representation of the extended
Yangian X(o0span) called the vector representation. The vector representation will
play an important role in study of the representation theory of X(ospasn) in the
next chapter; however, it is relevant for this section since it will give rise to a vector
representation of the Yangian Y (ospysn) which will be used to prove the isomorphism
U(osprrn[2]) = gr'Y(ospan).

The vector representation is built from a canonical representation of the extended
Yangian which we will show here. By substituting « — u — v in the SQYBE (2.2.4),

one can readily verify that the assignment
R: X(0sppn) = EndCMW, T(u) — R(u) (2.3.7)

defines a representation of X(0spasn), which we call the R-matriz representation of the
extended Yangian. On the level of power series, the R-matrix representation takes the

form

—-1)HlE., —-1)196,0. E;-
RT”(u)r—)cS,Jld—( ) J +( ) iy
u U—K
forall 1 <i,5 < M+N. A variant of the R-matrix representation is achieved by first

twisting the action via the automorphism st o ¢ described by (2.2.12) and (2.2.14),
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yielding the representation p := R o st o ¢ given on the level of power series by

Q(T;J('u’)) = (_1)[i][j]+[i]R(Tji(_U)) = 51;]' id+

(—1)["]Ez-,- B (_1)[1‘][1‘]6)1.(9].]5;ji
U u+ K

for all 1 <3%,j < M+N, or in matrix form
0: X(ospyn) = EndCMW, T(u) — R*(—u), (2.3.8)

where we identify R*(u) with R*'(u). We call g the vector representation of X(ospn)-
The pullback of ¢ by the automorphism 7, as in (2.2.10) will result in a representation
of X(ospam|n) given by

00 = Tr0: X(osprn) = EndCMN | T(u) — R*(a — u) (2.3.9)

for any a € C. On the level of power series, such representation takes the form

Oa: T,',,](’U,) —> 5,,;_7' id +

Y

(=D¥E;  (-1)¥16;6,E5
Uu—a U+K—a

and we call g, the vector representation of X(ospan) at level a € C. We will see that by
composing the vector representation g, with a suitable automorphism of X(0spsn), the
resulting representation will descend to one for Y (ospsn), thereby giving an analogue

of the vector representations for the Yangian.

Proposition 2.3.2. If A is a commutative unital associative C-algebra, then for any
formal series a(u) =1+ oo a,u™ € 1+ urAfu'] and any k € C, there ezists a
unique formal series y(u) =1+ Y o you™ € 1+ u~tAJu™] such that

a(u) = y(u)y(u + k). (2.3.10)

Proof. The argument is the same as in [MNO96, §2.15], [AMRO06, Theorem 3.1]. By
writing the equality (2.3.10) in terms of the coefficients of a(u), we yield the relations

an = 2Un + Bo(V1, ., Un—1)  for n € Z*, (2.3.11)

where B,, is a quadratic polynomial in n—1 indeterminates over C. One may then

inductively solve for the coefficients of y(u) since the above relation implies that y,
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will be a quadratic polynomial in aj,...,a,. By construction, such a series y(u) is

unique. O

Given a € C, Proposition 2.3.2 infers there exists a unique series f,(u) lying in
1+ uwCJu™!] such that

(u+ K — a)?
(u+K—a)2-1

fa(u) fa(u + K) = (2.3.12)

The pullback of the vector representation g, (2.3.9) at level a € C by the shift auto-
morphism py, (2.2.10) yields a new representation of X(ospsn) given by

ba = p}, 00 X(05prrn) = EndCMV, T(u) — fo(u)R*(a — ),

where we are identifying (—)* with (—)*!. Using equation (2.2.17) and the fact that
the super-transposition (—)* and super-transpose (—)* commute, we find ¢,(Z(u)) is
given by f,(u)fa(u+ k)R*(a — v)(R*(a —u — n))St, where we similarly identify (—)?
with (—)®. Using the relations

(Pst)2 — (M—N)PSt, Pstht — QstPst — PSt, and (Qst)2 — id®2,

we find R*%(a — u)(R'(a — u — n))St = % id®?; hence, ¢o(Z(u)) = id, where

(ut+r—a

Z(u) is the series defined by (2.2.18), and so ¢, descends to the representation

CM]N

@a: Y(0sprn) — End , T~ fo(u)R%(a —u), (2.3.13)

called the vector representation of Y (ospayn) at level a € C. When a = 0, we set
¢o = ¢ and simply refer to it as the vector representation of Y (0span)-

2.3.2 The PBW Theorem and supercenter of Y (ospn)

We are now in pole position to prove the main theorem of Chapter 2; namely, that the
Yangian Y (ospn) is a filtered deformation of (ospasn[2]). The proof of the following
theorem is similar to [AMR06, Theorem 3.6] and leverages the lemma proven in the

previous subsection.
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Theorem 2.3.3. The epimorphism in Proposition 2.2.8 is an N-graded Hopf superal-
gebra isomorphism

®: U(osparvle]) <> gr¥(ospany), Fyz" ' e (DA (2.3.14)
forall1<i, < M+N andn €Z™.

Proof. By Proposition 2.2.8, all that is left to show is injectivity. To this end, we let
A € Y(ospun[2]) be a nonzero homogeneous element of gradation degree d; that is,

A= g APie-ikm mlz’“_l---F- 2Fm=l where AMi-bm o

11J15.5imIm tmJim 11J1;5-3tmIm

and the summation indices 4, jp, ks, 1 < b < m, satisfy 1 < 4,5, < M+N and
Y ey k» = d + m. Considering the element

A=) (—nyEimbl gk - T T € Y (0spar)

1171;---3%mIm 4151 tmJm

whose summation indices %y, jp, ky, 1 < b < m, satisfy the same conditions as above,
then ®(A) coincides with the image of A in gr Y (osp M), so it suffices to prove that
the filtration degree of Aisd.

Step 1. Writing the series f,(u) in (2.3.12) as the sum Z My, £9 =1, the co-

n—O a

efficient of u™™ in f,(u) fo(u + k) is given by 2f, (n) 4 Z (p_llc)( K)Pk f(n—p) f(p)
Furthermore, using the expansion % = Zp—o (u + k — a)~?P, where
1 — 2—2p - n, —n 2p_ ¢ n—1 n—2p, —m
(u—{—n—a)zll_u ngo(“—“)“ _7;2], n—2p (@ —K)""Pu™,

we see that the coefficient of 4™ in % is given by Z (n 2p) (a — k)"2.

Regarding a as a formal variable in C, the defining relation for f,(u) infers that its
coefficients are elements in C[a]. In particular, the polynomial degree of f,f") is given
by deg, f{" = 0 and deg, f™ =n—2 for n > 2.

1 __ o] n,,—n—1 1 — 00 n,,—n—1
Via the expansions =~ = } >  a"™u and - — = > " (a—Kk)"u , the

image of T( ™ under the representation (2.3.13) is given by

0a(Ty”) = 5 fMid+ Y fO(-D)IE o — Y £ (=1)119,6,E53(a — k),

r+s=n r+s=n
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where r € N and s,n € Z*. In particular, goa(T(")) € End(CMI™)[a] with polynomial

n—1

degree n—1 where the coefficient of a™! is precisely (—1)[p(F};) as given by (2.3.1).

Step 2. Given complex numbers zi,...,z, € C, we consider the tensor product
Pz1—an = (®f1 @z;) © An_1. Equipping Y (ospasn)®" with the tensor product filtration
F" = {F}nen induced by the one on Y(ospun), ie., Fy = Osr 1p Frn @ @Fp,,
then writing the sum ) ;" | ky = d + m allows one to express A,_ 1(T(k1) T(k'”))

1n tmJim
k m n
Z (7:1(311 ) )las] * (7:,(,.Jm))[qm] mod Fj' ,,
q1,.. aQ'm,—l
where (7;(1:))[%] =18@-) g 7;(;9:) ® 18(*~%) for 1 < b < m.

Regarding z,,...,z, as formal variables taking values in C, the image of the mono-
mial 7:1(511) 7;&’;’:‘") under the representation (g, _ 5, will lie in End(CMIV)® [z, ..., z,]
with polynomial degree satisfying deg (¢z,—a, (7:1(;“11) 7;(:“;"))) <d.

If End(CMV)®"[g,, ..., 2,]a_1 denotes the subspace of polynomials in z,...,Z,

with degree at most d—1, the element g, 4, (T(kl) T(k’")) is equivalent modulo

1n TmJIm
End(CMIN)®" [z, ..., z,]4-1 to the expression

n

> (F)EEE(F ) g o(Fin)igm T - o™

q1;.--sgm=1

where p(Fj,;,)iq = 1d2@ ™V ® p(F,;,) ®id®"~®) for 1 < b < m. In particular, we have
Pa1—ron (A) = Poyrzn(A)  mod End(CMM)® [z, ... z,]a 1,

where p;, 5, is the representation of U(0spn[2]) given by (2.3.2). By Lemma 2.3.1,
there exists a4, ... ,a, € C such that p,,_4,(A) # 0; thus, s, ., (A) has polynomial
degree d, so A is of filtration degree d. m

Given as Corollary 2.3.4, the explicit form of the Poincaré-Birkhoff-Witt-type
theorem for the Yangian is an immediate consequence of Theorem 2.3.3 and the

Poincaré-Birkhoff-Witt Theorem for Lie superalgebras.
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Corollary 2.3.4 (PBW Theorem for Y(ospan)). Let Byn be an index set of pairs
(4,5) € (Z*)? such that {Fy; | (,5) € Bun} forms a basis for ospasn. Given any total
ordering ‘X’ on the set Y = {7;1(") | (3,4,n) € Buv X Z+}, the collection of all ordered
monomials of the form
(n1) 4~(n2) ()
7;11'11 7;2]'22 T 7;kj: ’
(ra) (na) (na+1) (na) (mat+1) r(na) ; :
where T, 2" €Y, T, 5V 2T viais and T30 # T if Tie’ is odd, constitutes a

basis for the Yangian Y (ospumn)-

To construct the index set By n, one may first find bases for so) — 0spy N and
$pN — 0spp v and complement such with a basis for the odd subspace of ospasn. For
instance, by setting

BM ={(i,5) € (Z*)* |2 <i+j < M}
and By = {(i,j) € (Z")*|2M+2<i+j <2M+N+1},

the collections {F;; | (i,j) € BM} and {F;; | (3,j) € Bn} form respective bases
for soar < osparn and spy — ospagn. If we further define

C={(Gj) € @) | M+1<i<M+N,1<j< M},

then the union
Bupny =BMuByUC (2.3.15)

indexes a basis {E-j | (3,7) € BM|N} for ospasn-
Corollary 2.3.5. The supercenter ZY (osppmn) of Y(ospan) is trivial: C-1.

Proof. 1t is known by [Naz99, Proposition 3.6] that if a Lie superalgebra g has trivial
supercenter, then so does {(g[z]). As osppn is simple, Nazarov’s result implies that
the associated graded gr Y (ospasn) has trivial supercenter by Theorem 2.3.3; hence,
the same is true for Y (ospasn) as well. O

Proposition 2.3.6. There is a Hopf superalgebra embedding
v: U(osparn) = Y(ospamin), Fij — (—1)["]721(1). (2.3.16)

foralll1 <i,j < M+N.



50  Chapter 2. Yangians of Orthosymplectic Lie Superalgebras

Proof. Relations (2.2.26) give

[721(1),7791(0)] = 6,;5(—1) 9T (v) — 8y(—1)E+HEHIDEHD T (1)
— 57]:(_1)[j]+[i][j]+[i]9i0j7§l(’v) + 571(_1)[j]+([i]+[j])[k]gigj'ﬁﬁ(v),

for all 1 < i,j,k,1 < M+ N, so one takes the coefficient of (—1)E*[Fly~1, Furthermore,
equation (2.2.27) gives the relation 7;;1) + (—1)[i][j]+[j]0,-0j7§§1) = 0 for all indices
1 <1i,j < M+N, so we multiply such expression by (—1)¥. Thus, the map is a
superalgebra morphism and we observe the Hopf superstructures are compatible, so all

that remains to show is injectivity, but this follows from Corollary 2.3.4. O

2.3.3 Homogeneous quantization

As the orthosymplectic Lie superalgebra g = 0spyn is basic, it comes equipped with
an even, non-degenerate, super-symmetric, and g-invariant C-bilinear form which we
denote ¥ = (-,-): g x g = C. As any two such bilinear forms on g are proportional,
we may take ¥: (X,Y) — 3 str(XY'), where str: g — C is the super-trace.

Recall that C = C° is equipped with the trivial Z,-grading, so the dual space g* is
graded as a super vector space gj @ g via the assignment g}, = {p € g* | ¢(g 1) = 0}
for v € Zs. Since the bilinear form % is even and non-degenerate, the C-linear maps
Yr,Yr: g — g* defined by ¥ (v) = ¢¥(v,-) and ¥r(v) = ¢¥(-,v), respectively, are super
vector space isomorphisms.

Considering the bilinear map 3¢: g x g* — End(g), (X, ¢) — ¢x where px is the
C-linear function Y ~ (—1)¥Xl(Y) X on homogeneous elements X € g, ¢ € g*, there

is consequently a super vector space isomorphism
n:g®g* > End(g), X®p+— (Y = (-1)FFp1)X)

on homogeneous elements X € g, ¢ € g*. Indeed, one can confirm s is a grade preserving
and if {:c;}gi:n;(“) C g* denotes the dual basis to a homogeneous basis B = {a:b}gi:n;(“)

for g, then the inverse of s is given by s~ 1: f — S 0@ (_1)fllwl+=l f(7,) @ .

The Casimir 2-tensor Q is the preimage of the identity element in End(g) under
the isomorphism
o (id®Yr): g g = g® g* = End(g).
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Letting B = {xb}giﬁ(“) be some homogeneous basis of g, with B* = {yb}gi:n;(g) to denote
its dual basis with respect to the bilinear form v (so ¥(xy, yc) = 0 and Ay := [p] = [ys]
for all 1 < b,c < dim(g)), the Casimir 2-tensor has the form

dim(g)

Q= Z (—1)Ab$b QU €EPR Y.
b=1

In terms of the generators (2.1.10), one can compute

1 . -

5 StI‘(_F,;ij[) = (—1)[1]5,;[5_7'13 — (—1)[1']['7]97935%531
for all 1 <4,5,k,1 < M+N. Thus, given the basis {F;; | (¢,j) € Byn} with Byn as
in (2.3.15), its dual basis with respect to the form v is {27% (—1)8F}; | (4,5) € Buw}-
The Casimir 2-tensor may therefore be written as

Q= Z 2_6ij(—1)[jlﬂj ® E,,, € 05PN @ 0SP M |N-

(3,9)€EBM N

As the bilinear form 1) is super-symmetric and g-invariant, then the Casimir 2-tensor is
80, i.e., d(2) = Q where o is the super-braiding and (adx ® id +id ® adx) (2) = 0 for
all X € g where adx denotes the adjoint action. Furthermore, by identifying 2 with its

image in $/(g), the Casimir 2-tensor lies in the supercenter of $I(g).

To state the final important property of the Casimir 2-tensor we need, let us
first introduce some required notation. Given an element s € g ® g and indices
1 <1< j <3, we identify elements under the canonical embedding g < (g) to define
a new elements s;; in $(g)®3 via

S12:=8Q®1, s33:=1Q®s, and s;3:=(dR7)(s®1),

where 7: U(g)®% — U(g)®2%,v; ® v — vg ® v; is the twist map. When s = s(u,v)
depends on some formal parameters u and v, we shall write s;;(u;, u;) for s(u,v);;. If
the element s € g® g is even, it may be written as a sum of homogeneous decomposable

tensors s = 3.%_ a, ® by, where 7y, 1= [a,] = [b).

For indices 1 < i< j<3and 1< k <! < 3, we may consider the commutator

[$ij, Ski] = SijSki — SmSi; and use the defining relations of the universal enveloping
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superalgebra to yield

d d
[8127 513] = Z (_1)7"”” [ama an] ® bm X bna [312a 323] = Z Ay, @ [bma an] ® b’na
m,n=1 m,n=1

d
and [813, 823] = Z (—1)7’"'Y"am Ra, ® [bm, bn]

m,n=1
In particular, we are able to interpret the above commutators as elements in g ® g ® g.

If r(u,v) is a function in formal parameters u and v with coefficients in (g ® g)5, we
say that r(u,v) is an r-matriz if it satisfies the super classical Yang-Baxter equation
(SCYBE), i.e., SCYB(r(u, v)) = 0, where

SCYB(r(u,v))

= [ria(u1, u2), r13(u1, u3)] + [riz(ua, uz), ras(ue, us)] + [ri3(u, us), ras(uz, us)].

For instance, if r(u,v) € (g ® g)s[u*?, v*'], then SCYB(r(u,v)) may be regarded as an
element in the space (g ® g ® g)p[u’, us', uF']. In fact, the g-invariance of the Casimir

2-tensor implies Q/(u — v) is an r-matrix:
SCYB(Q/(u —v)) = 0.

Using the aforementioned properties of the Casimir 2-tensor, one is able to equip
the polynomial current superalgebra g[z| with a Lie superbialgebra structure (g[z2], §)

determined by the Lie co-superbracket

6: g[z] = (9® 9) [u,v] = g[z] ® g[]
(2.3.17)

Q
u—v>'

At face value, it is not clear that the above map is well-defied since the element Q/(u—v)

f(2) = (adg(w) ®id +id @ ad;w)) (

can not be interpreted as an element in (g ® g) [u,v]. However, using the g-invariance

of €2, one can prove the above map is equivalent to the assignment

dim(g) n—1

§(Xz) =) > (-)M[X, 2]z @ oz

b=1 a=0
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on homogeneous X € gand n € Z*, where it is understood that §(X) = 0. In particular,
the defining relations of 0spasn show that the Lie co-superbracket is given on generators
by the formula

M+N
§(Fijz") = Z (—1) Z (Fip2® ® Fij2® — (—1)EHEHID B e @ By 2b).
k=0 a+b=n—1

We now establish terminology relating to deformation and quantization theory of
superalgebras over C[#], where # is a formal element of Z,-degree 0. To this effect, given
any Hopf superalgebra A over C, a Hopf superalgebra deformation of A (over C[#]) is a
Hopf superalgebra A over C[h] such that:

(i) Ap is torsion-free as a C[h]-module.
(ii) The quotient A;/AAj is isomorphic to A as a Hopf superalgebra.

Regarding C[fi] = @,y C#* as an N-graded ring, such deformation is called homoge-
neous if both A and Ay are N-graded modules such that the isomorphism A;/hA; = A
preserves these gradations. A direct super-analogue of [CP95, Proposition 6.2.7] shows
that if Us(b) = $4(b)5 is any Hopf superalgebra deformation of A = ${(b) for any Lie
superalgebra b, then b is endowed with a Lie superbialgebra structure (b, ;) defined by
the Lie co-superbracket

~ ~

An(X) — A" (X)

(Sb(X) = 7

mod 7 (Uz(b) ® Ux(b)) forall X e€b, (2.3.18)

where Ay is the comultiplication map on Uz(b), A = o o Ay is the co-opposite
comultiplication, and X is any element in the fiber of X € b C ${(b) under the
composition Uy(b) — Ux(b)/AUx(b) = U(b). Accordingly, a quantization of a Lie
superbialgebra (b, ds) (over C[#]) is a Hopf superalgebra Us(b) over C[#] such that:

(i) Uz(b) is a Hopf superalgebra deformation of $/(b).
(ii) The Lie co-superbracket & coincides with the form (2.3.18).

When the Lie superbialgebra (b, §) is N-graded, it induces an N-grading on $4(b);
hence, a quantization Uz(b) is called homogeneous if the deformation is so.

In the theory of quantum groups, deformations and quantizations are traditionally

defined instead as topological Hopf superalgebras over C[#], where the topological
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tensor product is taken as the fi-adic completion of the algebraic one (refer to [Dri85],
[CP95, §6] for such definitions). However, as discussed in detail in [Wen22], if Ux(b) is
a homogeneous quantization (over C[#]) of an N-graded Lie superbialgebra (b, dp), then
its A-adic completion

Tn(b) = Lim Uy(b) /7" Un(b)

will be a homogeneous quantization of (b, dy) in the sense of [Dri85], taking into account
the super-analogues of the definitions therein. We shall now construct such a homoge-
neous quantization of (g[z] = ospun[2], ), where 0 is the Lie co-superbracket (2.3.17).

Definition 2.3.7. Given the tensor product C[] ® Y (osparn) = Y(ospasn)[Fi] where fi
is a formal element of Z,-degree 0, the Yangian Y;(osp Mm|n) is defined as the Rees
superalgebra of Y (ospysn) with respect to the filtration F (2.2.28):

Ya(ospuin) 1= Rr(Y(0sprin)) = €D A"Fn C Y (08paai) [,

neN

By definition, the Yangian Y;(osp n) is N-graded and it further comes equipped
with a Hopf superstructure by extending the one on Y(ospan) by C[#]-linearity. In
particular, by setting T( R 17-(n) forall1 <4,7 < M+N and n € Z*, such Hopf
superstructure is given by the comultiplication

Ay Yﬁ(osleN) — Yﬁ(OE]JM[N) Qcyh) Yﬁ(OS]JM“v)
~ ~ ~ n—1~
T e TP e1+1e TP +8Y 1 Y TP eI,
the counit
en: Yn(ospagn) — C[A, 7;,(”) — 0,

and the antipode

Si: Yr(osparn) — Yr(ospasn)

~ i)[5]+[F n n—1 Nn—p En—pa-
751()'_’(_1)[][J]+[]]9"9jZp=1<n_p>(_“) PinrTP),

forall1 <i,7 < M+N and n € Z*. We now arrive at the main proposition of this

subsection:
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Proposition 2.3.8. The Yangian Ys(osppyn) is a homogeneous quantization of the

Lie superbialgebra (osparn(2],0). Furthermore, there is a superalgebra isomorphism

Yr(ospan)/ (B — ) Yr(osprn) & Y(ospun) for all X e C.

Proof. To show that Y;(0span) is a homogeneous Hopf superalgebra deformation of
the universal enveloping superalgebra U(ospn[2]), we first observe that Yy(ospasn) is
torsion-free, as it is a C[fi]-subalgebra of Y (ospasn)[]. Moreover, by composing the

Hopf superalgebra isomorphism
¢ : Yﬁ(OﬁpM[N)/ﬁYﬁ(OSPM“v) :) gr Y(OS]JM]N)

mapping
hn—lrri'(") mod ﬁYﬁ(UﬁleN) = 7_:‘1(")

for 1 <4,j < M+N and n € Z*, with the inverse of the isomorphism @ (2.3.14), one
yields the desired N-graded Hopf superalgebra isomorphism

dlo ¢: Yﬁ(OﬁPM|N)/ﬁYﬁ(O§pM|N) ACY iL(osleN[z]).
By the prior discussion, it follows that Yj(0span) homogeneously quantizes the Lie

superbialgebra structure on ospys (2] with Lie co-superbracket given by (2.3.18).

We shall show that such Lie co-superbracket coincides with the one given by (2.3.17).
Before doing so, we recall that as is the case in Lie bialgebra theory, all Lie superbialgebra
structures (b, d) on a Lie superalgebra b are in one to one correspondence with coPoisson
Hopf superalgebra structures (L(b), ) on U(b).

In particular, any Lie co-superbracket § on b may be extended to a coPoisson

superbracket on 4(b), also denoted 4, via the rule
I(XY)=0(X)AY)+A(X)d(Y) forall X,Y €b.
Defining evy as the morphism
evi: Yr(0spain) = Ya(0sparn)/fYn(0sparn) = U(0sparn(z])

mapping ﬁ"“lﬁ](") — (=1)EF; ;21 for 1 <i,5 < M+N and n € Z*, we obtain the

commutative diagram
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A1(Ap — AZP)

Y (08P n) > Yr(0span)®?

eVﬁl leVﬁ Revy

Wospuin2]) 5 » Wospuin[2])®?

where ¢ denotes the extension of (2.3.17) to a coPoisson superbracket on U(ospn|[2])-

For the second claim, we consider the epimorphism evy: Y (ospan)[7] — Y (0span)
induced by the assignment % — \. The restriction ev of evy to Ry(Y (0sparn)) will
still remain surjective and its kernel is given by

ker(evy) = Ra(Y (0sparin)) N (B — A) Y(ospan)[A] = (% — X) Ru(Y (05pa)),

proving the proposition. n

As discussed earlier in this subsection, it therefore follows by the work in [Wen22]

that the A-adic completion

A~

Yﬁ(OS]JM[N) = 1({11 Yﬁ(OS]JM]N)/ﬁn Yﬁ(OﬁpM]N)

serves as a homogeneous quantization of (ospn[2],d) in the sense of [Dri85]. The
remainder of this subsection is devoted to expressing Y;(0sppn) in terms of generators
and relations. To do so, we define a new superalgebra \?ﬁ(osp Mm|n) and ultimately prove

there exists an isomorphism Yj(0spasn) = ?ﬁ(osp M|N)-

Definition 2.3.9. Define Y (osp M|n) as the unital associative C[h]-superalgebra on
the generators {’7;](") |1<i,j < M+N,n € Z*}, with Z,-grade [’77(")] = [¢]+[4] for

ij
all n € Z*, subject to the relations

[T(m) T(n)] (_1)[k] 7”-(m+n—1) _ &il(_1)[i][k]+[j][k]+[j][l] 7-(m+n—1)
— 0y (—1)HllaIHE+ g, 0; T(m+n—1) + &51(— 1)K+ g, 0; T(m+n—1)

min(m,n)
(LRGN 3 (oD min-a) _ Fmtn-a)7e-D)
a=2
M+N m m-—a m—a - -
1533 Y < , )(,iﬁ)b(_1)[1][k]+[J][k]+[J]+[l][P]+[P]gjgp'];(ﬁm+"—“—b)7;zg“—1)
p=1 a=2 b=0

a

M+N m m—a
— Ozh Z Z Z (m a) K;ﬁ ( )[’][J]+[l]+[p]9 0 T(G—I)T(m+n a—b)
p=1 a=2 b=0
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T 4 (—1)blli+ g9, T
M+N n

=—h Z ZZ < )( kh)*~ b( 1)[’:][17]‘*‘[]7]91:0?7;(75)7;‘(7@—@,

p=1 a=1 b=1

forall1<4,5,k,l < M+N and m,n € Z™.

The superalgebra \?ﬁ(osp Mm|n) is N-graded via the gradation assignments
degfi=1 and deg7.” =n—1 for 1<4,j<M+N, neZ"

In Proposition 2.3.11 below, it is established that \?ﬁ(osleN) = Yr(ospmn). We
note that the following arguments used are similar to those presented in the articles
[GRW19a, Proposition 2.2] and [GRW19c, Theorem 6.10].

By equipping $4(0spasn[2]) with a C[h]-superalgebra structure via the action induced
by A+ 0, we get the following result:

Lemma 2.3.10. There is an N-graded superalgebra epimorphism
evy: \?h(OleM[N) — U(osppn[2]), '7;(") 5 (—1)Fymt

foralll1 <i,5 < M+N,n € Z*. In particular, ker(évy) = ﬁ\?ﬁ(ospMW), so there is
an isomorphism
T(ospaa)/iTs(05Pan) 2= $K(08parl2])

as N-graded superalgebras.

Proof. By the C[h]-module structure on {(ospasn|[2]), it is routine to prove évj is a
gradation preserving superalgebra epimorphism such that ﬁ\?ﬁ(osp Mmin) C ker(évg);
hence, évy descends to an epimorphism \?ﬁ(osleN) / fﬂ?ﬁ(osleN) — U(osprn[2]) of
N-graded superalgebras mapping T( ™ mod % Y5(0sp my) — (1) E; ;271 Conversely,
there is a superalgebra morphism (ospn(2]) — Y (osp Mn)/ A Y5 (0sp Mmn) sending
Fijz" 1 (—1)["]’7;](-”) mod %Y5(08pasw), which establishes the isomorphism. O
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Proposition 2.3.11. There is an isomorphism of C[h]-superalgebras
on: Ya(ospann) = Ya(0sparw), ﬁ;n) = ﬁ"“lﬁ,‘")
foralll1<i,j < M+N,neZ".

Proof. By the defining relations in the Yangian Y (0spysn) and the fact that the elements
ﬁ"‘lﬁ](-”), 1<4,j < M+N,n€Z", generate Ys(05pan), it follows that the map o5

is a superalgebra epimorphism.

Recalling the C[fi]-superalgebra structure on 4(ospysn[2]) defined by A — 0, there
is an epimorphism evy: Ys(ospasn) — U(osparn|[2]) of C[h]-superalgebras induced by
Yr(ospan) /R Yr(0sparn) = U(0sparn[2]). In fact, we have the commuting diagram:

?ﬁ(05leN) " Y (0spamin)
T
U(ospun(2]) ——7— Uospuyn[2])

Suppose X € ?ﬁ(osp M| ~) is nonzero such that X € ker ¢;. As there exists a maximal
integer n € N such that X € ﬁn?ﬁ(osp M|N), one can write X = A"Y for some element

Y ¢& ﬁ?ﬁ(ospMW).

In particular, since 0 = p5(A"Y) = A"px(Y), it must be Y € ker @3 as well due to
Yr(0span) being torsion-free. However, the above commutative diagram would imply
Y € ker(6vy) = AYx(osp M|n), & contradiction. O

2.4 Structure of the Extended Yangian

In this section, we prove many structural results about the extended Yangian X(ospasn),
including showing that it is isomorphic to the tensor product of the Yangian Y (ospasn)
with a polynomial algebra in countably many Z,-grade 0 variables. We will also
determine its supercenter and establish a Poincaré-Birkhoff-Witt type theorem for the
superalgebra. Broadly, we follow much of the structure of [Wen18, §7], deploying similar

arguments to those provided there.
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2.4.1 The tensor product decomposition, supercenter, and
PBW Theorem of X(o0spn)

Definition 2.4.1. Equipping the polynomial algebra C[y, |n € Z*] with the purely even
Zy-grading, the auziliary superalgebra X(ospysn) is the tensor product of Cly, |n € Z7]
with the Yangian Y (ospun):

X(Oﬁ'.pM|N) = (C[yn |’I’L € Z+] ® Y(OEPMIN).

Defining Y(u) := 1+ Y oo You™ € (Clyn|n € Z*]) [u~'], we may consider the
following series for 1 <i,57 < M+ N:

Tii(w) = 01+ ) T u™ ==Y (u) ® Ts;(u) € X(ospagn)[u], (2.4.1)

n=1

with the matrix T(u) := 37 (-1 E,; @ Ty;(u) € End(CMPY) @ X (ospann) [u]-

1,

Writing YU (u) for id ® Y(u) ® 1 and TB(u) for X (—1)HUHAE,; ® 1 ® T;;(u), we

iyj=
may then express T(u) = Y (u)7T1(u). We equip C[y, |n € Z*] with the Hopf algebra,
structure determined by the comultiplication

Ay: Clyn|n € Z'] = (Clya|n € Z')®%, Y(u)~ Y(u) ® Y(u),

the counit
evy: Clyn|n€Zt] = C, Y(u)—1,

and antipode

Sy: Clyn|n € ZY] = Clyn|n € Z*], Y(u)+— Y(u)™ .

Moreover, we note that since Cly, | n € Z*]| is a commutative Hopf algebra, its
antipode is an involution: S2 = id. Given the Hopf superstructure maps Ay, €y, Sy
on Y (ospu|n), the auxiliary superalgebra X(ospyn) can be equipped with the tensor

product Hopf superstructure given by
Ax = (id®0’®id) o (Ay@Ay), ex=¢evyQ®cy, Sx=5y®Sy,

where o is the super-braiding. In particular, such structure maps are given by
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Ax: T(u) — Tpyy(w) T (u), ex: T(w) — 1, and Sx: T(u) — T(u)™!, where we note that
T(u)™ = Yl (u) 7B (u)~ = TR ()Y 0 () 2.
By endowing a filtration H = {H,, },cn on the polynomial algebra Cly, |n € Z*]

via the filtration degree assignment degy y, = n—1, we can equip X(0spasn) with the
tensor product filtration F (X(osparn)) = {Fn(X(05parin)) }nen defined by

Fn(X(ospMW)) = Z H, ®Fb(Y(O§]JM|N)), (2.4.2)
a+b=n
where {Fb(Y(05PM|N))}beN is the filtration F = {Fb}beN on Y(OS]JM|N) as in (2228)
Since C[yn|n € Z7] is isomorphic to its own associated graded algebra, the mapping
F, (X(osp M) N)) — @otoen Ha/Ha1 ® Fy/Fy_; induces an isomorphism

grX(ospain) = Clyn|n € Z*] ® gr Y (ospumn).

In particular, by allowing Ti(j") and 7_21(-") to denote the respective images of Ti(jn) and 7;](-7‘)
in the (n—1)" graded components of gr X(ospasn) and grY (0span), identifying the

above superalgebras provides

since Ti(j") =Yn®0;1+1® 7;1(-") + atben Ya® 7;1(-") for a,b € Z*. Given a 1-dimensional
abelian Lie superalgebra 3. = C-:c with trivial Z,-grade, we may use the isomorphism
Ye: Clyn|n € Z¥] @ U(0sprrn[2]) = U(08parn[2] @ 3c[2]) alongside the inverse ! of
the isomorphism (2.3.14) to construct the isomorphism

P 0 (id X ‘1)_1) D gr X(O}S.IJM|N) 5 ﬂ(Oﬁ'.]JM|N[Z] D 3c[2’]).

which sends Ti(j") — (DU F; + §;5c)z" forall 1 < 4,5 < M+N and n € Z*.

Theorem 2.4.2. The assignment T'(u) — T(u) defines a Hopf superalgebra isomor-
phism
x: X(0sprn) = X(0sprn) = Clyn|n € Z¥] @ Y(05parn).- (2.4.3)

Proof. Via the relations (2.2.26) in the Yangian, the map x: T(u) — T(u) defines a

morphism of superalgebras; furthermore, we observe the relative Hopf superstructures
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are compatible. Since x preserves the filtrations on X(o0sppn) and X(osppn) given
respectively by E in (2.2.21) and F(X(ospumn)) via (2.4.2), we can consider the associ-
ated graded morphism gr x. Hence, to show x is invertible, it suffices to prove such is
true for gry.

Given the epimorphism W: U(ospan[2] @ 3c[2z]) — grX(ospan) as in Proposi-
tion 2.2.5, the composition grx o ¥: (osparn(2] @ 3c[2]) — gr X(osprqn) maps

1 i (T (n il[4 1 F(n — 1 F(n F(n
Fyz"' e 2 ()BT — (D0, TD), can o S(T +TF),

for1 <3,j < M+N,n € Z*. Using the relations (2.1.12), we find that the composition
(Yo (iId® P1)) o (grx o V) is equal to the identity map on LU(0sparn[2] ® 3c[2]); hence,
there is an equality grx o ¥ = (b0 (id ® 1)) ™1, which implies gr x is surjective and ¥
is injective. The existence of ¥~! means we can write grx = (0 (id® ®71)) 1o U1

which proves the invertibility of gr x. O

Let us define Y (u) to be the preimage of the series Y(u)®1 under the isomorphism x:
V) =1+ Vou™:=x""(Y(uv) ®1) € X(osppn)[u]. (2.4.4)
n=1

Using (2.2.20) where Sx denotes the antipode on X(0span), We observe

X(Z@)Z(u+ k)7 = x(SX(T (@) x(T(u+2£)7") = Sx(T(w)) T(u + 25) ™
=Yw)Y@E+2k)1'®1

since S = id. Thus, via equation (2.2.17) and the computation above, x(Z(u)) is given
by x(Z(uw)Z(u+ &) x(Z(u+ k) = Y(u)Y(u + k) ® 1 using that T (u)~! = T (u + ).
Hence,

Z(u) = Y)Y(u+ k). (2.4.5)

Proposition 2.4.3. The collection of elements {V,}nez+ are an algebraically inde-
pendent set over C that generates the supercenter of X(ospyn). Consequently, the
supercenter of X(ospasn) is

C[V, | n € Z¥] = ZX(0sprry) = C[ 2, | n € Z7].
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Proof. By Corollary 2.3.5, the supercenter of X(ospan) is C[yn|n € Z*] ® C-1; hence,
the collection {x~!(yn ® 1) = Yy }nez+ must be an algebraically independent set over C
that generates the supercenter of X(ospasn). Via the relation (2.4.5), it follows that

the same must be true for {Z,},cz+ as well. O

Through the course of the proof for Theorem 2.4.2, we proved that the epimorphism
in Proposition 2.2.5 is injective; thus, we can state the following Poincaré-Birkhoff-Witt-

type theorem for the extended Yangian:

Theorem 2.4.4. The epimorphism in Proposition 2.2.5 is an N-graded Hopf superal-
gebra isomorphism WV : U(osparn (2] @ 3c[2]) — gr X(ospamn) given by

Fyz" e (-1)(TY - 16,2,), c2" e 1Z, (2.4.6)

for indices 1 <4, < M+N, n € Z*.

We now state the explicit form of the Poincaré-Birkhoff-Witt-type theorem for the
extended Yangian due to Theorem 2.4.4.

Corollary 2.4.5 (PBW Theorem for X(ospan)). Let Byn be an indez set of pairs
(3,5) € (Z*)? such that {F;; | (,5) € Bun} forms a basis for osppn. Given any total
ordering ‘<X’ on the set X = {Ti(j"),Zr | (i,4,n) € Buiv X Z*, v € Z*}, the collection
of all ordered monomaals of the form

Xy Xy Xn

k

where X,, € X, Xp, =X X, and Xy, # Xn,., if Xn, 15 odd, constitutes a basis for
the extended Yangian X(ospum|n)-

a+1’

Proof. As {F;;z"',cz"1 | (¢,5) € Buin, n,7 € Z*} forms a basis for 0sppn[2] @ 3c[2],
then so does the set

{(_1)[i]Ejzn—1a ((_1)[k]Fkk + c)zn—l,czr—l | (7',.7)’ (k’ k) € BM|N .’ 7é J; n,T € Z+}

]
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Furthermore, one can embed $4(0spasy) Within the extended Yangian as well:

Proposition 2.4.6. There is a Hopf superalgebra embedding
1 , P
v: Mosparin) — X(ospmn), Fij 5(_1)[11 (71'(]'1) _(_1)[11[J]+[J]9i9j7}(71)) (24.7)

foralll1<i,j < M+N.

Proof. By Theorem 2.4.2, there is an embedding vy : Y (0span) < X(05pasn) mapping
T(u) = Y(uw) 'T(u); hence, 7;§1) — Ti(jl) — 6;;)1 under such inclusion for indices
1<4,j<M+N.

Using relation (2.4.5) and taking the coefficient of v~ in equation (2.2.18) which
yields fZ’i(jl) + (—1)["][7'”[7']91-0]-?1’1-(]-1) = 6;;2Z1, we therefore find Ly('EJO)) is equal to the
expression %(TZ(;) — (—1)Hll+ 01-91-1}(]-1)). Composing the Yangian inclusion ¢y with the
embedding U(osprrn) < Y(0span) in (2.3.16) gives the result. O

2.4.2 The Yangian as fixed-point subalgebra of its extended

Yangian

As was observed in the proof of Proposition 2.4.6, the Yangian Y(ospas ) may be
regarded as a Hopf sub-superalgebra of X(ospyn) via the embedding

vy: Y(ospay) — X(ospann), T (w) = Y(u)™ T (u) (2.4.8)

which itself is obtained by composing the inverse of the map (2.4.3) with the Hopf
superalgebra inclusion Y(ospan) < Clyn|n € Z1] ® Y(osprn). This subsection is
dedicated to showing that the image ¢y (Y (0spasn)) of the Yangian can be realized as
fixed point subalgebra of X(ospasn). In particular, we prove the following theorem:

Theorem 2.4.7. The Yangian vy (Y (0sparn)) is equal to the subalgebra of X(ospan)
fized by all automorphisms of the form py (2.2.9):

ty (Y(osprin)) = {V € X(osprmn) | (V) =Y for all f(u) € 1+uw'Clu']}.

Proof. We let X(osppn)* denote the fixed point subalgebra described by the right
hand side of the equation in the theorem statement.
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To show the inclusion vy (Y (0span)) € X(ospan)*f, we note that every series
f(u) € 14+ u™'C[u""] defines a superalgebra automorphism u¥ € Aut(Cly,|n € Z*])
mapping Y(u) — f(u)Y(u), which itself extends to the superalgebra automorphism
pf = pf @ id € Aut(X(ospan)). Since pF(T(u)) = f(u)T(w), there is an equality
X © fif = jif o X, where x is the isomorphism (2.4.3). Hence, p(V(u)) = f(u)Y(u),
which infers ps(Y(u)"'T(u)) = Y(u)" T (u) for all f(u) € 1 + 4 CJu~1].

For the reverse inclusion ¢y (Y (0sparn)) 2 X(ospayn)*f, one can argue similar
to [AMRO06, Theorem 3.1] by supposing in contradiction that there exists an element
X € X(ospan)™ \ ty(Y(osparw)). Since the collection of elements {V,}nez+ are
central in X(0spyn), there is a decomposition T'(u) = Y(u) T (u)Y(u) which infers
every element in X(ospasn) may also be considered as one lying in the polynomial

superalgebra vy (Y (0sparw)) [V | n € Z*]. In particular, we may write
X =B(h,...,Vm) forsome B(zy,...,Zm) € ty(Y(05prn))[zn | n € Z7),

where z,, n € Z*, are indeterminates and X is obtained by evaluating z, — Y, for
1 < r < m. Note that B(x,...,%n,) must be non-constant by hypothesis on X and we
may further assume m € Z* is minimal in how X may be written in the above form.
Expanding B(z1,...,Zm) = Zzzo Bu(z1, ..., Tm-1)2?, as a polynomial in z,,, we write
P(zp) == E‘Ll B.(Q, - - -y Ym—1)2P, observing that the polynomial degree of P(z,)

must be positive.

For any scalar a € C, the series f,(u) = 1+ au™™ determines an automorphism gy, .

Since py, (V(u)) = fa(w)Y(u), we note us, (Vm) = Vm + al and pg,(3,) = 0 for all
indices  # m. Using that 1y (Y (osparn)) € X(0span)¥/e, it follows

X =ps(X)=Bo(Qh, ...y Vm-1)+ P(Ym+al) forall aeC;

hence,
P(Yn) = P(Ym+al) forall a€C. (2.4.9)

For any a € C, there is an algebra morphism evy,,: C[y,|n € Z*] = Cly,|n € Z]
mapping y,, — —a and y, — y, for all r # m. Extending ev,,, to the superalgebra

morphism evy, , ‘= eV, @id: X(0sprn) — X(0span), we observe

ker(evy, ;) = ker(eVm,q) ® Y(0sprn) = (Ym + @) ® Y(0sprrn),
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where (Y, +a) is the ideal in C[y, |n € Z™] generated by the linear polynomial y,,+a. In
particular, Ngec ker(evyy, ,) is trivial. Since relation (2.4.9) infers x(P(Vnm)) € ker(evys )

for all @ € C where x is the isomorphism (2.4.3), we deduce x(P(Vr)) = 0; thus,

P(Y,,) = 0. However, such implies X = By(),. .., Ym-1) contradicting the minimality
of meZt. O



Chapter 3

Representation Theory of

Orthosymplectic Yangians

After proving many structural results in Chapter 2 on the Yangian Y (ospasn) and its
extension X(ospan), we are now equipped with the necessary tools to investigate their
representation theories. We note that even if classifications of their finite-dimensional
irreducible representations are achieved, they will not canonically lift to ones for all
finite-dimensional representations since these latter representation categories are not
semisimple. Asremarked in [CP95, §12.1], the failure of the categories Repgy (Y (0spasn))
and Repgy(X(0spsn)) to be semisimple follows from the failure of Repg(£(g[z])) to be
so for g = ospasn and g = 05PN @ 3c, ¢.f. Theorem 2.3.3 and Theorem 2.4.4. Indeed,
for k € Z* and a € C, the representation of g[z] on the space of k-jets

Jka(@) = 9l2]/(z — a)**'g[2]

is indecomposable but not irreducible as (z — a)Ji(g) is a proper submodule. As
one will see, Chapter 3 will be heavily focused on the representation theory of the
extended Yangian. This is due to the fact a classification of finite-dimensional irreducible
representations for X(ospysn) will infer the corresponding classification for the Yangian
by virtue of the tensor product decomposition (c.f. Theorem 2.4.2):

X(ospmin) 2 C[Z, | n € ZY] Q Y(0spun ).

66
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The chapter is demarcated in two sizeable sections. The first section §3.1 lays
the foundation for the classification by establishing a highest weight theory for the
extended Yangian X (ospasn) based on fixing certain root systems of osp s n described in
§3.1.1. In particular, it is established in §3.1.2 that every finite-dimensional irreducible
representation of the extended Yangian is highest weight. Furthermore, the constructions
of restriction functors and Verma modules are actualized in subsections §3.1.3 and

§3.1.4, respectively.

The principal theorems of this chapter lie in the second section §3.2. In §3.2.1, the
characterization for the non-triviality of Verma modules is supplied, which allows for
the statement of the Theorem 3.2.8 in the following subsection §3.2.2 which describes
necessary conditions for all finite-dimensional irreducible representations. To address
obtaining sufficient conditions, we follow the strategy of comnstructing fundamental

representations, which constitute the subsequent two subsections §3.2.3 and §3.2.4.

3.1 Highest Weight Theory of Extended Yangians

In this section, we develop the highest weight theory for the extended Yangian. In
fact, we address the construction of two inequivalent highest weight theories on
Rep(X(o0sparn)) associated to a selection of two inequivalent positive root systems ®;
and ®7 of the orthosymplectic Lie superalgebra osp m|n- However, for the intents and
purposes of the classification of finite-dimensional irreducible representations, one only
needs to consider the first highest weight theory; indeed, the subsequent section §3.2
tacitly assumes as such.

Nonetheless, we maintain the more general scheme in this section since both theories
infer useful results in and of themselves. For instance, it shown in §3.1.3 that these two

highest weight theories respectively prove the non-triviality of covariant functors

F*: Repg; (X(0span)) — Repgg (X(0spas-2)n))
and F,: Repg (X(0span)) — Repy (X(0spa(n-2)))-

Furthermore, Proposition 3.1.14 shows that one can always construct non-trivial Verma
modules for either highest weight theory.
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3.1.1 Root systems of orthosymplectic Lie superalgebras

-1

Taking the coefficient of 4~" in equation (2.2.18) yields the equality

T + (—1)W+i,0, T = 6,2, (3.1.1)

Thus, by identifying the generators Fj; € osppn with their images in X(0spsn) under
the embedding (2.4.7), equation (3.1.1) infers F;; = (—1)[2']Ti(jl) — 16;;(-1)H 2;. Under
such embedding, the extended Yangian becomes 0sp s y-module and to determine the
action of the generators Fj; on X(0spasn), we observe that the coefficient of ! in the
defining relations (2.2.8) give

[T(-l)

&g

Tu(v)] = (=) Ty (v) — 65(—1)EFEHEDAEHID T - (2)

A Y TNT (3.1.2)
— 5%(_1)[J]+[1][J]+[119i9jj"jl(,U) + 5‘7!(_1)[J]+([’L]+[J])[k]aingki(fU)_

Hence, since Z; lies in the supercenter ZX(ospysn), the generators F;; act on X(osppsn)
by the formula

[Fij, Tu(u)] = 8 (—1)EHITY () — 65(—1) EHDEHD T () (5.13)
— aik(_1)[i][j]+[j]0i9j1%l(u) + 5_7!(_1)([i]+[j])([k]+1)Hiekai(u)-

Let us set m = L%J, m = f%], and n = %, where |- |: Q — N denotes the

floor function and [-]: Q — N denotes the ceiling function. Let h denote the Cartan
subalgebra of 0spyn given by

b=EDCFw, where K={1,...,m;M+1,...,M+n}.
heK

Note that ospasw is of rank m+n and the action of the Cartan subalgebra on X(osp )
is given by
[Ehny Tij(w)] = (Oni — Ong — Oz + 0ng) Tj (w). (3.1.4)

Further, let {&;,0; |1 <i <m, 1< j < n} denote the dual basis for h, where ¢; and J;

are those C-linear functionals in h* given by

Ei(th)Z s and Jj(th):5M+j,h for heK.
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To introduce a notion of positivity for the root system of 0spasn, we declare the
nonzero even generators Fj; of ospasn with indices satisfying ¢ < j to be positive even

root vectors; the collection of their corresponding roots will form a system of positive
+

even roots, which we will denote @7, .

We will complete the set &

even

to positive root system of ospyn in two ways by
selecting appropriate collections of odd roots to be positive, with the first collection of
odd positive roots denoted @:dd[l], and the second by @:dd[m. The two resulting positive

root systems for ospy,n will be denoted respectively as

even

O 1= By UBJyqy and  Of = Bgey U DTy

The orthosymplectic Lie superalgebras comprise three infinite families of basic Lie
superalgebras: B(m,n) = 05p(2m+1)j2 for integers m > 0 and n > 1; C(n+1) = ospajn
for integers n > 1; and D(m,n) = 08Pam|on for integers m > 2 and n > 1. As the
descriptions of the root systems of 0sp sy vary depending on the family, we will describe
each of these instances separately. Further, we note that the Cartan subalgebra action

on o0spn is described by
[Fun, Fij] = (0hi — Onj — O + O3 Fij.

Considering the case 0spyn = B(m,n) = 08P (2m+1)j2n, the collection of its associ-

ated positive even roots is given by

q)+

even

= {:i:E,;—Ej, —Eq, ﬁ:&k—él, _251)},

withl<i<j<m,1<qg<m,1<k<l<n,and 1 <p<n. The first selection of
positive odd roots are
(I):_dd[I] ={—ei £, —0p},

where 1 < ¢ < mand 1 < k,p < n, which gives a simple root system A; with
corresponding Dynkin diagram:

- 81 —085 Op—1—0n Op,—€1 €1—62 Em—1—Em
T G- O @O 5

Figure 3.1: Dynkin diagram corresponding to Aj for B(m,n)
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The second selection of positive odds roots are

(I’:dd[n] = {£ei—0bk, —0p},

when 1 <i<m and 1< k,p <n as well. The simple root system Ay corresponding

to this second positive root system has the Dynkin diagram:

—&1 €1—&9 Em—1—Em Em—01 01—02 On—1—0n
M M
O==0O—----- O———(O—--- —0O

Figure 3.2: Dynkin diagram corresponding to Ay for B(m,n)

Here, we observe the black nodes correspond to simple odd roots of nonzero length
whereas the tensor nodes correspond to isotropic simple odd roots. Consequently, we
remark that the first simple root system is not a distinguished one, in so far as that
it has more than one simple odd root. Thus, for a detailed description on how these

Dynkin diagrams are constructed in general, we refer the reader to [Zhal4].

In the case ospyy = C(n+1) = 08pg)2n, the collection of even positive roots is
given by
OF o = {X6—0&, —26,},

even

where 1 <k <l <nand 1< p<n Wecomplete such to a positive root system by

selecting the positive odd roots to be

q):—dd[l] = {—e1 £ &},

where 1 < k < n. In such case, the system of simple roots A; has the Dynkin diagram:

—26; 01 —02 0n-1—0n Op—e1
oo S— O—®

Figure 3.3: Dynkin diagram corresponding to A for C(n+1)

The second selection of positive odd roots are

q):dd[II] = {£e1 -},

with 1 < k < n. The simple root system A corresponding with this second positive

root system has the Dynkin diagram:
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€1—01

01—062 02—63 On—1—"0n

—£1—01

Figure 3.4: Dynkin diagram corresponding to Ay for C(n+1)

Lastly, when 0spn = D(m, n) = 08pam|2n, its collection of even positive roots are
0F., = {tei—¢j, £6—8, —26,},

where 1 <i<j<m,1<k<l<n,and 1 <p<n. To complete such to a set of

positive roots, the first selection of positive odd roots will be
(I):_dd[I] = {—ei £},

where 1 <4 <m and 1 < k < n. The Dynkin diagram corresponding to the simple
roots system Aj of these positive roots is therefore given by:

—26; 61— 02 67,,_1—671, On—E€1 E1—E€g Em—1—"Em
( )i( >7 ______ M ( —— ______ 4< )
N4 ® \4

Figure 3.5: Dynkin diagram corresponding to A; for D(m,n)

A second selection of positive odd roots is given as

‘I’:dd[n] = {£ei—d},

with 1 <7 <m and 1 < k£ < n. The simple root system Ay corresponding with this

second positive root system has the Dynkin diagram:
€1—E2

E9—E3 Em—-1—Em 6m—51 51—52 (5n—1—6-"

------ O—®—O——0

—E&1—E&2

Figure 3.6: Dynkin diagram corresponding to Ay for D(m,n)
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We will now provide a description of the pairs of indices (%, j) for which the genera-
tor Fj; will be a positive root vector for either positive root system @7 or ®7;. Setting
Zin = [1, M+ N]NZ*, we consider the following subsets of (Z1,, )%

Fo,o={(i,j)|1ﬁi<j§M}; F1,1={(?:1j)|M+1Si<jSM+N}’

o1 ={(64) [1<i<m, M+1<j < M+n},
Tow ={(i,4) | 1< i <M, M+n+1<j< M+N},
o ={(,§) | M+1<i< M+n, m+1<j < M},

I ={(67) | M+n+1<i< M+N, m+1<j< M},

TL = {(,§) |1 <4 < M, M+n+1<j < M+N},
T = {(6,§) | M+1<i < M+n, 1< j < M},

and assign 1"&,1 = I‘g,la U F&,un 1"1110 = 1"11,0,, U 1"11,0,, to define
— 7l I . I I
Leven :=Too UI11, Toaam :=1Ip1 UL, Loadmm = Ip; UL .
At last, we can finally define the following sets
Ai'_ = Peven U Podd[I]; AE = ]-‘even U Fodd[II]- (315)

Visually, by regarding (Z},)? as an index set for the entries of an (M +N) x (M+N)
matrix, then those indices that correspond to the dark grey regions of the following
diagrams are exactly those that occur in A{" and Ajj, respectively:

M+n+1 M+n+1
0 M M+N 0 M M+N

M M
M+n M+n
M+N M+N

m+1--m+1

Figure 3.7: Visualizations of Af" and Af;
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Further, let us consider the sets

A = {(i,3) | i € Zi N}, (3.1.6)
A = Zha)*\ (Af UA®), and Agi=(Ziy)®\ (AfUA®).  (317)

If we let © denote either I or II, then we will have the triangular decomposition
0spmy = g D be = ng ® h ® nd, where b is the Cartan subalgebra, bg = h d ng is
the Borel subalgebra, and

ng =spanc {Fij}jens: Mo =sPanc {Fij} pens-

Letting (ospmn)a = {X € ospyn | [H, X] = a(H)X for all H € b} denote the root

space corresponding to o € bh*, then

g = @ (ospuin)e and ng = @(OspMuv)a-

a€dg edd

Furthermore, the action of the Cartan subalgebra on X(o0spas ) described by (3.1.4)
results in the following decomposition for the extended Yangian X(ospasn) in terms of
the root lattice ZPg:

X(osprn) = @ X(08pp|N)as

a€Zdg

where X(ospan)a = {X € X(ospumn) | [H,X] = a(H)X for all H € b} is the root
lattice space for a € Z®g.

3.1.2 Highest weight theory

Via the embedding (2.4.7), any representation of X(ospysn) can be pulled back to one
for the Lie superalgebra ospasn. Therefore, we have the familiar notions of weights and

weight vectors for representations V' of X(ospasn): for any functional u € b*, provided
Vii={veV |H -v=up(H)v for all Heh}+#0,

then p is called a weight, V,, is called a weight space, and nonzero vectors in V,, are called
weight vectors. Selecting a system of positive roots ®; or ®;;, we can endow a partial

ordering ‘<’ on the set of weights of V' via the rule: w X 4 & p — w is an N-linear
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combination of positive roots of 0spysn. Furthermore, since X(osp M| N)a(Vu) C Vitas
then

X(ospaw)a (€D, ,.Vu) €D, . Vi (3.18)

We now introduce the notion of highest weight:

Definition 3.1.1. Let © denote either I or II. A representation V of the extended
Yangian X(osppn) is an Xe-highest weight representation if there exists a nonzero
vector £ € V such that X(ospan)§ =V, and

T,j(w)¢ =0 forall (i,j) €A

(3.1.9)
and Tie(u)é = Me(u)é forall 1<k< M+N,
where A (u) is some formal series
Me(w) =1+ A u™ € 1+u ' Clu™]. (3.1.10)

n=1
We say that ¢ is the Xg-highest weight vector of V and call the tuple A(u) = (Ag(u))MHN
of formal series as the Xg-highest weight of V.

The first main result to prove in a highest weight theory is to show that every
finite-dimensional irreducible representation is highest weight. However, to do so in our

setting will require proving a rather computational lemma.

We note that many of the techniques used in the proof of the lemma below, and the
subsequent theorem, arise from those used in the proof of [AMR06, Theorem 5.1].

Lemma 3.1.2. Let © denote either I or II. If Tg is the left graded ideal of X(0spun)
generated by the coefficients of T;;(u) for (i,7) € A, then

(i) for all (i,5) € A§ and 1 <k < M+N:
Tij(w)Tke(v) =0 mod Ze, (3.1.11)

(ii) forall1 <k,0 < M+N:
[Tk (u), Tu(v)] =0 mod Ze. (3.1.12)
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Proof. For brevity, we shall only use ‘=’ to denote equivalence of elements in X(ospn)

modulo Zg.

(i) We shall provide a proof for © = I as the case © = II is similar; accordingly,
throughout the proof we shall suppose (i,5) € A{ and 1 < k < M+N. Throughout,
M| = M N

we shall suppose m = |_7J, m = [7], and n = 5.

To verify equation (3.1.11), we demarcate the problem into the two situations when
(i,k) € Af and when (i,k) € Af. If (i,k) € A{ such that k # 7, k # 7, then the
relation is immediate from Tj;(u)Tik(v) = [Ti(u), Ter(v)]. However, if (3,k) & Af,
then (k,j) € A{, so if we further assume k # 7, k # 7, then the relation follows from
Tii(w) Tk (v) = —[Trk(v), Tij(w)] = 0. Therefore, the remainder of the proof will be
demarcated into four steps to show that equation (3.1.11) is true in the exceptional

cases when k =7o0r k =7.

Step 1. Let us suppose (i,k) € Aj and k = 7. These conditions necessarily imply
that either 1 <i<mor M+1<i< M+n.

When 1 < i < m, we must have m+1 < k < M and (3,5) € oo U F&yl. Because
j #i =k and (k, k) € Ty, the defining relations (2.2.8) imply

k

Since k < j, each index 1 < p < k < m satisfies (p,j) € Iyo U I§,1; thus, because we

have (p, k) € Iyp and k # 7, for such indices we can compute

k
1 . )
Iy (U)Tz‘vk(v) =- § :(_1)[p][]]+h7]+[]][q]9p9qqu (U)Tak(v)

’U,—’U—quzl

and therefore, (—1)PIUHPIG T (u) Tk (v

= (—1)HU+FG T (u)Tik(v). The original
equation therefore implies T%;(u)Tix(v) = 0.

When M+1 <i < M+n, we have M+n+1 <k < M+N and (i,5) € T[4, UT1;.
Since j # i = k and (k, k) € T} 1, the defining relations give

1

Uu—v—~K

Ti;(w) T (v) = — > ()Mo T (u) Tk (v).
1<p<m,_
M+1<p<k
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Note that if 1 < p < m, then (p,j) € Lo UL} ,; whilst for M+1 < p < k, we have
(p,§) € T g, if (3,5) € T, and (p,5) € Ty if (4,5) € Ty since p < k
these indices, we can then compute

=i < j. For

1 . .
Toi (u)Tpn(v) = T Uu—v—k § : (= 1)+l ldlg, 6, T (u) Ty (v).
1<q<m,
M+1<q<k

Therefore, by using a similar argument as before we can deduce TF;(u)Tix(v) = 0.

Step 2. Now suppose (i, k) € A] and k = 7. Necessarily, these conditions impose
that either (,5) € I 1, or (3,5) € I§ 4y, i < m.

When (3, §) € Ij,,, we have M+1 < k < M+n. Since (k,k) € Ty; and k #7, the
relation Tz (w)Tkk(v) = — [Tk (v), Tiz(u)] infers
1
T () = ————— Y (1M, 6 T (u)Tip (v). (3.1.13)
V—u—K
1<psm,
MF1<p<k
For 1 < p < m, we have (i,p) € I and (k,p) € I} ,; whilst M+1 < p < k satisfy

(i,p) € F&,m and (k,p) € I 1. Hence, Tip(u)Tky(v) = —[Tkp(v),fl’i,—,(u)] gives

1 i+ plli
Tip(u)Tip(v) = SP— Z (—1)HE+PIE PRl g g T (4) T (v), (3.1.14)
i

and therefore, (—1)MEHPIE+PIg T (u) T (v) = (—1)M05 i (u) Tk (v). Equation (3.1.13)
therefore implies T;z(uw)Tkx(v) = 0.

Otherwise, when (i,5) € Ij,, and i < m, we have M+n+1 < k < M+N. Since
(i,k) € I 1, and k # 7, the defining relations imply
1 : [k +i
Tir(u)Tir(v) = P— ;(—1)[][km]h”]H”]H,;Hkaﬁ(v)ﬂp(u). (3.1.15)
Now, for each index 1 < p <4 < m we have (k,Dp) € Fll,ob and (i,p) € Ioo. Since & #7,
we use Tiz(v)Tip(u) = — [Tip(u), Tip(v)] to deduce

1 i i i
Tep(v) Tip(u) = ———— D (—1)Hk kA g g, Ty (v) Ty (w).  (3.1.16)
g=1
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Hence, —07 T (u) Tk (v) = (—1)PIFE+PG, Ty5(v) Tip(u) and so equation (3.1.15) implies
Tix(u) T (v) = 0.

Step 3. Here, we assume (i, k) € A} and k =7. These conditions require that either
m<i<MorM+n+1<i< M+N.

When 7 < i < M, we must have either (4, j) € Top or (4,5) € I ;, when ¢ = M and
M is odd. In the first case, we therefore have 1 < k < m, (k,j) € Iy, and k # 7 since
k =7. Hence, the defining relations (2.2.8) imply

1 J
TEj(u)Tkk('U) = — [Tk;k(’U),TEj (U)] = m Z(—l)[k][p]okeprk(’U)Tz—,J (U) (3117)
p=1
For each index 1 < p < 7, since m <% < j < M and k =7, then both (p, k) and (p, j)
lie in I p. Hence,
1 J
Tok(0)Tp(w) = ———— Z(_1)h’][k]+[p]+[k][q]0p9qqu('U)Taj(u)a (3.1.18)

’U—U—I’n}qzl

and therefore —0; T, (u)Tix(v) = (—1)PIF+FIG, T, (v)T5;(u), implying Tg;(w)Tik(v) = 0.

In the second case, i = k = k = f and (k,5) € Fll,o,,, so we use the equivalence
T%; () Tx(v) = — [Tkk (v), T%; (U)] to obtain

1

Tl_cj (’U,)Tkk(’l)) = m

> ()M, T (v) T (). (3.1.19)
1<p<m,
M+1<p<j
Each index 1 < p < m, satisfies (p, k) € Iy (since M is odd) and (p, j) € I[j,; whilst
each index M +1 < p < 7 satisfies (p, k) € I, and (p, j) € I'1;. For such indices,
1
T (0) Ty (u) = ———— > (—1)elkRRdg 6 T (0)T(u),  (3.1.20)

1<g<m,
M+1<q<7

and a similar argument to before shows T'%;(u) Tk (v) = 0.

When M+n+1<1i< M+N, we have (,5) € F{’Ob UL and M+1 <k < M+n.
If we first assume (i,5) € I, then (k,j) € I} ,. Consequently, we yield the equiva-
lence (3.1.17). Since for each index 1 < p < 7, we find that (p, k) € I§ ;, and (p, j) € Loy,
we also get equation (3.1.18) and can therefore deduce T%;(u)Tix(v) = 0.
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If instead (2,7) € I, then (k,j) € I 1, so we can deduce (3.1.19). Each index
1 < p < m satisfies (p, k) € I§,, and (p,5) € I§,;; whilst for each index M+1 < p <7,
both (p, k) and (p, 5) lie in [} ; since M+n+1 < k =i < j < M+N. Therefore, we
get the equation (3.1.20) and hence Tf,;(u)Tik(v) = 0.

Step 4. Finally, we consider the case when (i,k) € A{ and k = 7. Necessarily,
these conditions imply that either m < i < M, (i,5) € I, where m+1 < j, or
M+n+1<i<j<M+N.

When 7 < i < M, it must be that either (i, §) € Iop or (i,5) € I§,, when i = M
and M is odd. In the first case, we therefore have 1 < k < m and (k, k) € I}, so the
relation Tig(u)Tkk(v) = — [Tix(v), Tig(u)] yields

k
1
Ta(w)T(v) = ———— Y (-)HHIg0 T T, @), (3.121)
p=1

Since for indices 1 < p < k, we have both (¢, p) and (k,p) in I p, we can use the relation
Tip(w)Tip(v) = — [Tip(v), Tip(u)] to compute
1 k
Tp(u)Tigle) = —— L I (~1)HIHBI Bl g0, T, ()T (o), (3.1.22)
v—u—k
and therefore, (—1)EHPE+PIG T (u) Ty, (v) = (—1)M0; Ty (u) Tix (v). Equation (3.1.21)
therefore implies Tz (u)Tkx(v) = 0.

In the second case we have M+1 < k < M+n, so (k,k) € I, and k # 7, which
yields the equivalence (3.1.13). For indices 1 < p < m, we have (i,p) € Iyo and
(k,p) € Ty,; whilst the indices M+1 < p < k satisfy (4,p) € I{;, and (k,p) € I',1.
Thus, we obtain equation (3.1.14) and ultimately deduce Tz (u)Tkr(v) = 0.

When (i,5) € Il where ii+1 < j, we have 1 < k < m. Since (k, k) € Iyp, the
get the equivalence (3.1.21). For indices 1 < p < k, we have both (i,p) € I‘ll,0 and
(k,p) € I, so we can deduce (3.1.22) and hence Tz (u)Tix(v) = 0.

Lastly, when M+n+1 < i< j < M+N, we have M+1 < k < M+n. Since
(k,k) € Ty; and i # j = k, we also get the equivalence (3.1.13). For indices 1 < p < m,
we have (4,p) € If o, and (k,D) € I} o,; whilst for the indices M+1 < p < k, both (,7)
and (k,p) lie in I' ;. Thus, we obtain (3.1.14) which implies Tiz(u)Tkk(v) = 0.
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(ii) Again, we shall only provide a proof for © = I as the case © = II is similar;
accordingly, throughout the proof we shall suppose (i,7) € Af and 1 <k < M+N.

Step 1. Recall that we have the decomposition (Z3,, )% = A UA° U A;. Assuming
k # m (i.e., k # k) when M is odd, we observe

1
-

[T (w), Tt (0)] = = (=)™ (Tet () T (0) — T (0) T ()

and hence, [Tix(u), Tik(v)] = 0. Furthermore, if (k,I) € Af such that & # I, we have

[Tia(w), Tu(w)] = - (~1)¥ (T ) Tu(v) ~ T(0)Tua(w)) = .

Since (k,1) € A{ if and only if ({,k) € A7, and [Tik(u), Tu(v)] = — [Tu(v), Ter(u)], all
that remains to verify (3.1.12) is to examine when k = I. To this end, it suffices to show
[Ti(u), Trr(v)] =0 for 1 <1< and M+1 <! < M+n. Moreover, for the remaining

steps we shall define the element
Akl = Tkl(u)TEf(’U) — (—1)[k]+[l]T7,;(v)ﬂk(u). (3123)

forany 1 < k,l < M+N.

Step 2. First suppose 1 < | < m. Since Ay = [Tj(u), Ti;(v)], the defining
relations (2.2.8) gives

Au= = 3 (T T 0) = Ty Tip )

1 l
————— ) Ag. (3.124)
k=1

Uu—v—kK

Since for such indices, Ag = [Tiu(u), T (v)] + [T (w), Tiz(v)], we have

k l
1 1
A E——E A ——E A 1.2
K U—v— Ko P U—v—k o ” (8.1.25)

The equivalences (3.1.24) and (3.1.25) therefore imply the relation Ay = Axx + Ay for
indices 1 < k < I < m. Using this resulting relation along with (3.1.24), we derive the

formula l
-1

[ 1
(1+ o0y ) At gy S Aw=0
Uu—v—kK U—’I)—szl
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Hence, an inductive argument will show Ay =0forall 1 <[l <m.

Step 8. Let us now suppose M+1 <! < M+n. Since Ay = [Tll(u),Tn (v)], the
defining relations (2.2.8) imply

1
Ap=——— ) (-1HHA, 1.
i U—U—F ( 1) Akl (3126)
1<k<m,
M+1<k<l

For indices M+1 < k <1< M+n, Ay = [Tu(u), Tir(v)] + [Tie(u), Tix(v)], so

1 1
Au=-— Y (CDFMA - S (—1)FlA, (3127)
U=0=F 1 oem, U=v=F 1 lozm,
M*13p<k MF1<p<l

The equivalences (3.1.26) and (3.1.27) imply Ay = Agg+Ayfor M+1 < k<1< M+n.
Forindices1 < k<mand M+1<I< M+n, Ay = [Tkl(u),TH(v)] + [Tik(u),TI,—c(v)],

SO

1 1
Ay=—— E - E —1)FllA . 3.1.28
M= o—k Apk U—U— K (-1) Pl ( )
== SR

The equivalences (3.1.24), (3.1.26), and (3.1.28) therefore imply Ay = Ay — Ay for
indices 1 < k <mand M+1 <! < M+n. By combining this new relation with (3.1.26),

we can deduce the formula
m+M—1 1 L
(1+—)Au—— E Ay =0
U—v—K U—vV—kK
k=M+1

since Agr, = 0 for 1 < k < m by Step 2. Hence, an inductive argument will prove
Ayj=0for M+1<I< M+n.

Step 4. In the special case when | = 7 and M is odd, Ay = [Tu(u), Tu(v)], so

1 1
Ay= - Y (-1 1.
U u—vA” 4—v—r ( 1) Akl (3129)
1<k<l,
M+1<k<M+n

For indices 1 < k <! =, A = [Tu(u), Tri(v)] + [Ti(u), Tix(v)], so we have

1 1
Aus=—— Y Ap-— _1)blla, 1
w=—— A — — — S (-1PlA, (3.1.30)
1<p<k 1<p<l,
M+1<p<M+n
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Hence, the equivalences (3.1.24), (3.1.29), and (3.1.30) imply Ay = A + =21 Ay for
1 < k <l = m. Furthermore, since Ay = [Tkl(u),T,—c,( )] [le(u), le(v)] for indices
M+1< k < M+n, we have

1
A= — 7l 1,
M=o E Apk+ E (—1)PHA,. (3.1.31)
1<p<m, 1<p<l,
M+1<p<k M+1<p<M+n

Thus, the equivalences (3.1.26), (3.1.29), and (3.1.31) imply Ay = Akt + %A”
for M+1 < k < M +n. Combining these new relations with (3.1.29) will yield

1 1 l-1-n)(u—v—1) _
<1 U—’U+u—v—,4;+ (u—v)(u—v—kK) )A”_O

since Agr =0for 1 <k <mand M+1< k < M+n by Steps 2 and 3. O

Leveraging the lemma we have just proved, we can now address the first theorem of

section §3.1.

Theorem 3.1.3. Let © denote either I or I1. Every finite-dimensional irreducible repre-
sentation V' of the extended Yangian X(osppmn) is an Xe-highest weight representation.
The Xeg-highest weight vector of V is unique up to scalar multiple.

Proof. Let V denote a finite-dimensional irreducible representation of X(0spas ) and

define the subspace
VO:={veV|T;u)v=0 foral (i,j)€Ad}. (3.1.32)

We claim V° is non-trivial. Regarding V as an 0spyy-module under the embed-
ding (2.4.7), there is a partial ordering ‘<’ on its set of weights by stipulating that for
any weights o, 8 € h*, one has o < B if and only if § — « is an N-linear combination of

+
positive roots in ®g.

Since the set {Fpn |1 < h < L%J, M+1<h< M+ %} consists of pairwise com-
muting elements, their actions on V' form a family of pairwise commuting operators,
implying that these operators must share a simultaneous eigenvector as dim V' < oo.
Hence, since the set of 0sp s n-weights is non-empty and finite, then V' must have a

maximal weight u with respect to the partial ordering ‘<’
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Letting v be a weight vector corresponding to p, the assertion follows if v € V7,
so we may assume v ¢€ V° and therefore ﬂ(f)v # 0 for some (i,7) € Af and n € Z*.
However, since
Fun T30 = T Fupv + [Fn, T3 v,

we conclude from equation (3.1.4) that the weight of Ti(j")v is of the form p + o for some

positive root a € ®¢, contradicting the maximality of p and proving the claim.

By Lemma 3.1.2, the actions of the generators {T,SZ) |1< k< M+N, neZt} form
a family of pairwise commuting operators on V°. As V? is a non-trivial subspace of V,
there must exist a simultaneous eigenvector 0 # £ € V° for such operators: T,S:)f = )\,(c")f
for complex eigenvalues )\59"), 1<k< M+N,n e Z*. Via the irreducibility of V,
we conclude X(ospyn)§ = V, and by collecting these eigenvalues into power series
Me(u) =142, )\,(cn)u"" we observe the vector ¢ satisfies the conditions (3.1.9), so V'

is a highest weight representation with highest weight vector £ and highest weight
(Ae(u)R-

It remains to show that £ is unique up to scalar multiplication. Recalling the PBW
Theorem 2.4.5 for X(ospn), We fix a total order ‘<’ on the set X in such a way that
for any 1}(17;-1), 11(;;2),51’,2';2) € X satisfying (i1, j1) € Bmny N Ag, (42, J2) € Bmin N A°, and
(i3, J3) € Buw N A, then Tz(f;i) =< Tl(zr;z) =< 71(3752) Since V is irreducible and finite-
dimensional, Schur’s lemma infers that each generator Z,. of the center ZX(o0spasn)
acts by a scalar. Therefore, by the total ordering on X, we conclude that V' is spanned
by ordered elements of the form

TG T (31.33)
where k € N, (ip,jp) € Buiy N Ag, and n, € Z* for 1 < p < k. Furthermore,
since Fy, = (—1)PTS) — 1(~1) 2y, then ¢ is also a weight vector of some weight .
By (3.1.4), the elements (3.1.33) will therefore be weight vectors with corresponding
weights of the form u + Z’;=1 ap, Where o) € ®g.

Hence, there is a weight space decomposition V = @ V., where each weight

veh*
v # p is of the form p— Z’;=1 ap for a, € ®E. As a result, the space V), has dimension 1
and is given by V,, = spanc{¢}. If £ is another highest weight vector of V of highest
weight (A\x(u))MEN, the weight space decomposition ensures that its ospasn-weight

must be equal to u. Hence, e V.., showing £ = ¢¢ for some ¢ € C*. H
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As we saw in the proof of Theorem 3.1.3, Schur’s lemma infers that central elements
in X(ospr|n) act on finite-dimensional irreducible representations by scalars. As we

show in the following proposition, we can determine these scalars explicitly.

Proposition 3.1.4. Let © denote either I or I and let V' be an Xe-highest weight
representation of X(ospan) with highest weight A(u) = (Ak(u))M4N and highest weight
vector {g. For © =1, Z(u) acts on €g by A1(u + k) Apm(w) and for © =11, Z(u) acts
on &g by A1 (v + K) Aan (u).

Proof. Let &g be a highest weight vector of V' so that V = X(ospamn)ée. If © =1,
setting i = j = M in equation (2.2.18) gives Z(u) = Y MV (—1)K Ty, (u + £)Tipr(u), so

Z(w)ér = T (v + &) T (W& = Aa(u + £) A (u)ér-

Otherwise when © = II, we may designate ¢ = j = M+ N in equation (2.2.18) to

provide Z(u) = — Y MNT vri1 (v + &) Thpan (w), S0

Z(u)én = Trr1,m+1 (U + £) Tapenveen (W) = Ang1 (u + £) A (u)épr-
]

Furthermore, there are some immediate relations of the components of highest
weights:

Proposition 3.1.5. Let © denote either I or II and let V be an Xg-highest weight

representation of X(ospan) with highest weight A(u) = (Ae(uw))MEYN and highest weight

vector £g. If© =1 and M > 4, then

M(u)  Apya(u—rk+1)
Ao(u)  Aylu—k+1)"°

(3.1.34)

orif © =1I and N > 4, then

A+1(4) _ Apn-1(u — £ — 1)
Mgr2(v)  Agn(u—k-—1)

(3.1.35)

Proof. By first assuming © =1 and M > 4, the defining relations (2.2.8) infer

Tio(u)Trm-1(v)& = [TIZ(”),TM,M-I(”)]fl

___ 1 (le(u)TM,M_l(v) + Ao(w)Ap—1(v) — Al(U)AM(U))fl,

U—vV—K
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s0 (u— v — & + 1)Tia(u) Tar,m-1(v)€; = (A2(w)Amr-1(v) — A1 (w)Apr(v)) €. Evaluating at
v = u — K + 1 then yields the desired relation. Similarly, if instead © = Il and N > 4,
the defining relations (2.2.8) show

TM+1,M+2(U)TM+N,M+N-1(”)§11 = [TM+1,M+2(U), TM+N,M+N-1(U)]511

1

p— (TM+1,M+2 () Tagan, m+8-1 (V) F Ansr2 (W) Anran-1 (V) — Az (W) Angan (U)) €

so setting v = u — K — 1 in the equation

(u — v — & — 1)Tagr1, m+2(w) Trren,peev-1(v) €
= (Arra(W)Aaren-1(v) = A1 () A (v)) €y

will yield the desired relation. m

3.1.3 Restriction functors from Rep X(ospyn)

One can embed the lower rank Lie superalgebras 0sp(y-2)n and 0spsv-2) Within the
ambient orthosymplectic Lie superalgebra ospysn, thereby allowing one to pullback
representations of 0spyqn to those of 0sp—2) v and osparv-2)- On the level of
Yangians, the maps X(0sp(a—2)v) — X(05parn) and X(0spari(v-2)) = X(0spasn) that
imitate these Lie superalgebra inclusions are, however, not superalgebra morphisms.
The purpose of this section is to find an alternate construction to solve this problem.

First, let us consider the following subsets of (Z*)>2:

Moo = {(5,7) | 2<4,j < M-1}, My ={(i,j) | M+1<4,j < M+N},
Mo ={(5,5) |2<i<M-1, M+1<j < M+N},
Mo ={(5,j) | M+1<i<M+N, 2<j< M-1},

Noo = {(5,) |1 <4,j < M}, Nig={(4) | M+2<4,j < M+N-1},
Noi={(4,7) | 1<i<M, M+2<j < M+N-1},
Nio = {(i,5) | M+2<i < M+N-1,1<j < M},

so we can define

M:= MO,O U Mo,]_ U Ml,g U M]_,l and N := NO,O U N0,1 U Nl,g U N]_,l. (3136)
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Setting
m= spanC{Fij}(i,j)eM and n= SpanC{Fij}(i,j)EM

these are Lie sub-superalgebras of ospyn of ranks m+n—1 which represent the em-
beddings of 0sp(a-2)| v and 0spas(v-2) Within 0spasn, respectively:

0SP(-2) N — M > 0sppy  and  08Pas(N—2) —> N > 0SPas|N-

We now consider the following proposition:

Proposition 3.1.6. (i) Let I* be the left graded ideal of X(osprn) generated by
the coefficients of Tyx(u) and Tipr(u) for indices2 < k< M,1<I< M-1, and
M+1<k,l<M+N. There is a superalgebra morphism

X (0sp(ar-2)nv) = X(08parn) /I,  Tij(w) = Ty (v) mod I+,

where Ti;(u) denotes a generating series for X(osp(a-2)v) and v(i) =i+ 1 for
1<i<M-2, whereasv(i) =i+2 for M—1<i< M+N-2.

(i) Let Iy be the left graded ideal of X(ospnn) generated by the coefficients of
Trae(w) and Tipen(u) for indices 1 < k,l < M, M+2 < k < M+N, and
M+1 <1< M+N-—1. There is a superalgebra morphism

X(OEIJM|(N_2)) - X(OsleN)/I+, T”(u) = T,,/(,;),,/(j) (u) mod I+,

where Tij(u) denotes a generating series for X(ospmin-2)) and V(i) = i for
1<i< M, whereas V'(i) =i+1 for M+1 <i< M+N-2.

We observe that the maps

X(ospar-2yw) = X(0spary),  Tii(w) = Ty (w)
and  X(0sparv-2)) = X(0sparn),  Tij () = Torgiyr(y) ()

will not be superalgebra morphisms, thereby instigating one to descend to a certain quo-
tient of X(0sps ) as in the above proposition. We note, however, that a true embedding
of X(0spa(n-2)) in X(0span) has recently been established in the paper [Mol23a, §3]
via the use of quasideterminants. Moreover, such embedding is compatible with Propo-

sition 3.1.6. For our purposes, the above morphisms are sufficient in regards to studying
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the representation theory of the extended Yangians in this work (c.f. Proposition 3.1.9),

so we continue with the proof of the above result.

Proof of Proposition 3.1.6. We shall provide a proof for part (i) as (ii) is similar. Ac-
cordingly, we shall suppose (3, ), (k,1) € M for the duration of the proof and shall use
‘=’ to denote equivalence of elements in X(ospyn) modulo Z* for brevity. By the
defining relations (2.2.8), we have

1 o
[Ti5(u), Tha(v)] = ——(-1) VI (Tk,- (u)Ta(v) — Tk]-(v)Ti,(u)>
1 NP
_m@k S (1)FEHEEg0, T, ()T o)
2<p<M-1,
MA1<p<MAN
— &5 Z (_1)[i][k]+[j][k]+[j]+[i]b}]+[p]9j9kaz_)(v)ﬂp(u)>
2<p<M-1,
M+1<p<MAN
1 o
S (5fk(—1)[’][’ 6,73 (u) Tan (v)

— 85y(—1) B+ 9kaM(v)Ti1(U)) .

Via the defining relations again along with T3;(u)Tau(v) = [T1;(w), Tan(v)], we deduce

1 .
T (w)Tan(v) = Py —— > (DU, T, (w) T (v)
2<p<M-1,
MF1<p<M+N 1 )
’ + m%z(—l)“]@jTMM(v)Tu(u)-

Analogously, we compute

Tine(0)Tia () = —(~ ) EHDEHD [T, (), Tigy ()]

1
S — (5ik0iT11(U)TMM(7)) - TkM(v)Til(u))
1 ,
— Y (DM T ) T(w)
U=V=FE aepam,
M+1<p<M+N
and hence
1
TkM(v)ﬂl (U) = m&kﬂiTu(u)TMM(v)
__ 1 Z (—1)[i][p]+[”]9ka,—,(v)fZ’,-p(u).

—v— 1
U—v—K+ a<p<M-1,
MF1<p<M+N



3.1. Highest Weight Theory of Extended Yangians 87

Combining everything, we obtain

1

1 o
_—<5ik Z (— 1)+l 9,0 T - (u) Ty (v)

u—v—kKk+1
+ 2<p<M-1,
M+1<p<M+N

> (_1)[i][k]+[j][k]+[j]+[i]Lp]+[p]9j9ka?(v)ﬂp(u))

2<p<M-1,
MF1<p<MHN

5%57[(_1)[1'] [41+[E]+[4] gz.gj [Tn(U), TMM(v)] )

[Tij(w), Tu(v)] =

. (= 1) BT+l (Tkj (w)Ta(v) — Thi (v) T (u)>

+

Lastly, the relations (2.2.8) imply

1

U—v—K

[Tu(u),TMM(U)] == [Tu(u),TMM(U)},
meaning [T11(u), Tara(v)] = 0 and therefore the desired relations are satisfied for the
operators T;;(u), (i,7) € M, on V', since kpr—o v = kv —1 is the parameter associated

to the Lie superalgebra m = 0spp—2)|n- m

If tps denotes the superalgebra morphism X(0spas—2)n) — X(0sparn)/Z3; in the
above proposition, where we write Z;, for the left graded ideal Z*, then there is an

induced superalgebra morphism
iz X(08pu-2)n )/ Tiz—g = X(08pan) /T2,

where Z22" is the left graded ideal generated by the coefficients of Tjx(u) and Tj;(u) for
indicest =1,2;t1+1<k<M,1<I<M-i,and M+1 < k,l < M+ N. Consequently,
the composition zps o tp—2 describes a superalgebra morphism from X(osp( M-4)| N) to
X(osparn) /T2,

Depending on the parity of M, we can therefore construct a superalgebra mor-
phism from either X(ospojn) or X(0sp1n) to X(0spasn)/Z2m+ for a certain left graded
ideal Z2m*. Accordingly, one can similarly construct a superalgebra morphism from
X(0spao) to X(ospun)/Is 4+ for a particular left graded ideal Zy~ . We summarize
these observations in the following remark.
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Remark 3.1.7. (i) Let m = %] and define 2w+ to be the left graded ideal of
X(ospan) generated by the coefficients of T;;(u) for indices 1 < i < j < M;
1<i<m M+1<j<M+N;and M+1<i< M+N,m+1<j< M. There

is a superalgebra morphism
X(08p(a-2myin) = X(08ppn) /=", Tij(u) = Ty (v) mod TEmt,

where T';;(u) denotes a generating series for X(08p(r-2m)n) and v(i) =i + m for
1 <i< M-2m, whereas v(i) =2m +i for M—2m+1<i< M—-2m+N.

(ii) Let n = ¥ and define Ty 4 to be the left graded ideal of X(ospasn) generated
by the coefficients of T;;(u) for indices 1 < i < M, M+n+1 < j < M+N;
M+1<i< M+n,1 < j< M,and M+1 < i< j < M+N. There is a

superalgebra morphism
X(ospario) = X(ospuin) /Iy +) T (u) = Ty (s)(u) mod Iy +s

where T';(u) denotes a generating series for X(osp Mjo) and /(i) = for indices
1<i< M.

Before proving the main result of this section, we need to establish some relations

occurring in X(ospysn) modulo the left graded ideals Zt or Z, as in Proposition 3.1.6.

Lemma 3.1.8. Let I+ and I, be the left graded ideals of X(ospn) as defined in
Proposition 3.1.6.

(i) Tw(v)Tij(vw) = Tim(v)T;j(u) = 0 mod Z* for indices (3,57) € M, 2 < k < M,
1<I<M-1, and M+1 < k,1 < M+N.

(i) Tar1x(v)Tij(uw) = Tipan(0)Tij(w) = 0 mod Iy for (3,5) € N, 1 < k,l < M,
M+2<k<M+N,and M+1<I< M+N-1.

Proof. We shall provide the proof for (i) as (ii) is similar. Accordingly, we shall suppose
(2,7), (k,1) € M for the duration of the proof and shall use ‘=’ to denote equivalence of
elements in X(ospasn) modulo Z* for brevity.

First supposing 2 < k < M and (4,j) € Mpgs UMy, or M+1 < k < M+N
and (4,7) € Moo U My, relations (2.2.8) imply Tix(u)T;;(v) = [Tw(w), T;j(v)] = 0.
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Alternatively, when 2 < k < M and (3,5) € Moo UM; g, or M+1 < k < M+N and
(¢,7) € Mp1 UMy, the same relations yield

0% ,
#(—1)[’”kmklakﬂM(v)Tu(U)-

U—YV—RK

Ti(w)Tij(v) = [Tue(u), T5(v)]

Since Tipr(v)Ti1(u) = —[Ti1(w), Tine(v)] = —(u — v — &) " Tipr (v) T2 (w), it follows that
Tim(v)T11(u) = 0 and hence Ty (u)T;;(v)n = 0.

Lastly, when 1 <1 < M—1 and (¢,j5) € MjpUM;;, or M+1 <1 < M+N and
(3,5) € Mop U My, relations (2.2.8) provide Ty (v)Ti;(u) = —[Tii(u), Tim(v)] = 0.
Otherwise, if 1 <1 < M—1 and (3,5) € Moo U Mg, or M+1 <1 < M+N and

(4,4) € M1,0 U My 1, the same relations give

Oak

P E(—1)[i][j]9iT1j(U)TMM(U)U-

Tim(v)Tij(u) = —[Ti5(w), Timr (v)]

As T1(u)Trm (v) = [Tij(w), Tunr (v)] = —(u — v — &) 7 T15(w) Tarae (v), it follows that
T1;(u)Taa(v) = 0 and hence Tjp (v)T35(w)n = 0, proving the lemma. O

Any representation V' of X(0spasn) will have two important subspaces denoted V*
and V.. To introduce these, we first consider the subspaces

Vi={neV|Tu(wn=0 for 2<k<M and M+1<k<M+N},
Vu={neV|Tiuup=0 for 1<k<M-1and M+1<k < M+N},
Virr={n €V | Tus1(u)n=0 for 1<k <M and M+2<k < M+N},

Virn = {n €V | Tipen(u)n=0 for 1<k<M and M+1<k< M+N-1},

so that we can accordingly define
Vt:=VinVy and Vi := Vi NVagn. (3.1.37)

Note that these intersections may be trivial; however, if V' is an X;j-highest weight
representation, then V* contains the Xi-highest weight vector and if V' is an Xy-highest
weight representation, then V, contains the Xj-highest weight vector. In particular,
if V is finite-dimensional and irreducible, then Theorem 3.1.3 ensures that V* and V.,

will always be non-trivial.
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For a superalgebra A, we shall let Rep(.A) denote its category of representations.

We now arrive at the main proposition for this subsection.

Proposition 3.1.9. There are covariant functors

F*: Rep(X(ospprn)) = Rep(X(0spar-2)v)), V=V, ¢ @ly+
and Fi: Rep(X(ospan)) = Rep(X(0sparin-2))); V= Vi, ¢ dlv,,

where FH(V) =Vt and FL(V) =V, are defined by (3.1.37) for any X(osparn)-module
V and F*(¢) = ¢lv+ and F(¢) = @lv, for any X(osprn)-module morphism ¢.

Proof. We shall only prove the existence of F*, as the proof for F, is similar. Given a
representation ¢: X(ospyn) — End V, we know by the definition of the left graded
ideal Z* that ¢(Z7)(V*) = 0; hence, there is a well-defined action @ of the quo-
tient X(ospan)/ZT on V* and composing such with the superalgebra morphism in

Proposition 3.1.6 gives
X (0spu-gyn) 25 X(ospain)/Zt 2 Hom(V+, V).

We observe that it is not evident V' should be closed under the action of X(ospn)/Zt.
However, Lemma 3.1.8 ensures that the image of @ o ¢)s lies in V', so we nonetheless

attain a representation @ o tpr: X(0sp(a—2)n) = End V'+.

Given an X(0spysn)-module morphism ¢: V' — W, the X(0spasn)-linearity of ¢
implies @|y+(V*+) C W*. A similar discussion to the above also shows that ¢|y+ is
X (0sp(r—2)|n)-linear. O

Remark 3.1.10. We observe that if V' is an Xi-highest weight representation with
Xi-highest weight vector £ and Xi-highest weight (Ax(u))M%N, then ¢ € V* and the
X (0sp(am-2)|n)-submodule generated by £ will be an Xj-highest weight representation
with Xi-highest weight vector £ and Xi-highest weight

(A2(w), - - -, An=1(w), Angr1 (W), - - -, Anganv (w)).-

Similarly, if V' is an Xy-highest weight representation with Xj-highest weight vector &
and Xp-highest weight (Ax(u))M4¥, then ¢ € V, and the X(0spas(n-2))-submodule
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generated by & will be an Xp-highest weight representation with Xi-highest weight
vector ¢ and Xj-highest weight

()\1(U), oo A (w), Aar2 (), - - )\M+N—1('U'))-

Allowing F;; to denote the restriction functor F* in Proposition 3.1.9, one can
consider the composition (Fy;_, 0 Fiz) (V) = (V*)* for any X(0spasn)-module V. Via
the embedding in Proposition 3.1.6, we observe (V+)* is the subspace of V* consisting
of all vectors n € V* satisfying Ty pr—1(w)n = Ta(u)n = 0 for indices 2 < k < M -2,
3<I<M-1,and M+1< k,l < M+N. In particular, we note the following remark.

Remark 3.1.11. Let m = |¥ |, i = [¥], n = & and define the subspaces

VER = {neV|Ty(un =0 for (5,5) € A} \ (To U{(k, M), (m+1,k)}En,.) }
and Vy . :={neV|T;un=0 for (i,j) € Af\I1}. (3.1.38)

If Fyi7, FY denotes the respective restriction functors F*, F in Proposition 3.1.9, one

computes

(Far-ams2 00 Fagp 0 Fir) (V) = Vit
and (fio---off'2off)(V) =Vy +

In particular, V2=t becomes a representation of X (08P (rr-2m)|n), While Vs + becomes
a representation of X(osps0) = X(s07).

3.1.4 Verma modules

An essential component of our highest weight theory is the notion of a Verma module.

In contrast to traditional Lie theory, however, Verma modules here can be trivial.

Definition 3.1.12. Let © denote either I or II. Given a tuple A(u) = (A\g(u))M¥N of
the form (3.1.10) we define the Xg-Verma module Mg(A(u)) to be the quotient:

Mg (A(w)) := X(ospmin)/Le(A(w)), (3.1.39)

where Zg(A(u)) is the left graded ideal of X(0spasn) generated by the coefficients of
the series T;;(u) for (3,5) € Ad and Tix(u) — M(u)l for L < k< M+N.
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When Mg (A(u)) is non-trivial, it is an Xe-highest weight representation of X (0spasn)
with Xe-highest weight A(u) and Xe-highest weight vector 1,(,), the image of 1 in
the canonical projection X(ospasn) = Me(A(u)). Furthermore, if L is an Xg-highest
weight representation of X(0spsn) with highest weight A(u) and highest weight vector &,
then, provided M (A(u)) is non-trivial, there is a surjective X(0sp s n)-module morphism
¢: Mg(A(u)) — L induced by the assignment 1y, — &; thus, L = Mg(A(u))/ ker ¢.

By (3.1.8) , @5 Me(A(u)), is invariant under the action of X(ospan). Therefore,
since 1)) is contained in Me(A(u))rw» C €D, Mo(A(u))y, Where AD € p* is the
linear functional given by /\(1)(Fkk) = )\fc ), we have the weight space decomposition

Mo(A(w)) = €D Me(A(w))s (3.1.40)

BED*

and each weight y is of the form AY) — w, where w is a Z*-linear combination of
positive roots in ®&. Indeed, recalling the PBW Theorem 2.4.5 for X(ospumn), we
fix a total order ‘<X’ on the set X in such a way that for any Tz(lr;i), 11(;;2),71(;2) e X
satisfying (i1, 1) € Buny N Ag, (i2,52) € Buy N A°, and (33, 53) € Baw N Ag, then
Tz(:ﬁ) =< Tz(z';i) =< Tgﬁ) Therefore, by the total ordering on X and Proposition 3.1.4, we

conclude that Mg(A(u)) is spanned by ordered elements of the form

T T, 0, (3.1.41)

1 eIk

where k € N, (ip,7p) € Buiy N Ag, and n, € Z* for 1 < p < k. In particular, we
conclude that Mg (A(u)), is 1-dimensional; i.e., Mg (A(u))y@ = spanc{1iw)}-

Any submodule P of Mg (A(u)) also has a weight space decomposition P = @ ,cy. Fu,
where P, = P N Mg(A(w)),. Since dim Mg(A(w))y@ = 1, it necessarily follows that
P C @) 4ucy Mo(A(v)), and so the sum of all proper submodules K' = 3" p_ s auy) P
is the unique maximal submodule of Mg(A(u)).

Definition 3.1.13. When the Xg-Verma module Mg (A(u)) is non-trivial, we define the
irreducible Xeo-highest weight representation Le(A(u)) of X(osppn) with Xe-highest
weight A(u) as the quotient of the Xg-Verma module Mg(A(u)) by its unique maximal

proper submodule.

As noted prior, the caveat in the definition of Verma modules of X(ospysn) is that
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they are not yet guaranteed to be non-trivial. In fact, we will see in the next section that
there are necessary and sufficient conditions on the highest weight A(u) in order for the
Verma module Mj(A(u)) to be non-trivial. However, we conclude this section by proving
a proposition that describes how one can always modify a collection A(u) = (Ag(u))MHN

of formal series of the form (3.1.10) to attain a non-trivial Verma module.

Proposition 3.1.14. Let © denote either I or Il. From any tuple A(u) = (A (u))}MEN
of formal series of the form (3.1.10), one can construct a tuple X(u) of formal series of

the same type
Aw) = Q@)™ such that No(u) = M(u) for (bd) € Bun as in (2.3.15)

which provides a non-trivial Verma module Mo(X\(v)). Furthermore, if © =1 then
Ar(w) = Apr(u), and if © =11 then Appn(u) = Apen ().

Proof. Let Jg(A(u)) denote the left graded ideal of X(ospn) generated by the coef-
ficients of the series Tj;(u) for (¢,5) € A§ N Buyw, Trr(uw) — Ae(u)1 for (k, k) € Buyw,
and Z(u) — A\ (u+ k) A (w)1 if © =1 or Z(u) — Ay (u + £) Apn (u)1 if © =11, We

can therefore consider the quotient
Me(Mu)) = X(0span)/ Jo(A(w))

By Corollary 2.4.5, choose a total ordering ‘<’ on the set X such that Tz-(jm) = T = T,S?)
for indices (Z,]) € Aé ﬂBM[N, (a, a) € BM]N; (k, l) € Ag ﬂBM[N and m,ne€ Z*,beN.
By such, Me(A(u)) is spanned by ordered monomials of the form 7}(1’;11) i -Tiﬂ")i Aw))

where (ip, jp) € Ag N Byy and m, € Z* for 1 <p < s, and iA(u) is the image of 1 in
the quotient Mg (A(w)).

Indeed, let 915 be the sub-superalgebra of X(ospasn) generated by the coefficients
of T;;(u) for (i,7) € Ag; and accordingly let Bg be the sub-superalgebra of X(0spasn)
generated by the coefficients of Tj;(u) for (3,5) € A U A° and Z(u). Given the
decomposition ospyy = ng @ be, the images of the sub-superalgebras {(ng[z]) and
U((3c ® bo)[2]) under the isomorphism (2.4.6) coincides with the respective associated
graded superalgebras grMg and grBe with respect to the filtrations induced by the
filtration E on X(ospaqn) via (2.2.21). Accordingly, one can construct appropriate
PBW bases for 915 and Bg that show X(ospan) = Mg ® Be.
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There is a 1-dimensional representation Cy(,) of Be determined by the actions
Tij(u) - 1 = 0 for (3,7) € A§ N Buw, Tren(u) - 1 = Ag(u) for (k,k) € Byn, and
Zw)-1=Mu+r)Ayw)ifO =Tor Z(u) 1= Ara(u+ &) Apn(u) if © =1I1. Via
the PBW Theorem for X(ospyn), we can therefore construct the X(ospsn)-module

Mo (A\(1)) := X(08Parin) ®6 Caw)

As a module over 9tg, we observe that J/W\e()\(u)) = NMg; in particular, it is non-
trivial. Finally, the PBW Theorem for X(ospyn) infers there is a module isomorphism
Mo (A(u)) = Mo (A(u)), thus showing Mg()\(u)) is non-trivial as well.

We shall now show that Hg()\(u)) can be realized as an Xg-Verma module Mg (X(u))
for some highest weight A(u). Via the embedding (2.4.7), X(osp Mm|n) may be regarded
as an ospny-module whose action described by (3.1.3). By the PBW Theorem and
the action of the Cartan subalgebra h via (3.1.4), there is a root lattice decomposition
X(ospuin) = D, ezo X(05PmN)a, Where each generator Ti(j"), (3,7) € A, will lie in
the root space X(08pum|n)a,; for some positive root a;; € ®§. Writing each such
generator Tz-(j") as a unique linear combination of PBW basis elements with respect to
the total order ‘<’, say fI’i(j") =>>
Xmy + -« Xm, must also lie in X(0spasn)as;-

T Yma,...;miXmy - - - Xmy, then each monomial

Since qy; is positive, it is necessary that the the last term in each ordered monomial
Xy - - - Xm, in the expression of Ti(j") is equal to T™ for some (k,1) € AL N Bun and
m € Z* by definition of the total order ‘<’. Thus, since 1 A(u) is annihilated by each

monomial in the expression of T\™, then 1 A(u) is annihilated by I}(j") as well.

ij

Similarly, each generator Téﬁ?, (a,a) € A°, will lie in the root space X(0sprmn)o

(where 0 refers to the zero functional in §*). Writing each such generator T as a

unique linear combination of PBW basis elements with respect to the total order ‘=<’,

say ToD = Dok 2y, Yoty Xma + - - Xy, then each monomial Xy, ... Xon, must
also lie in X(0spasn)o-

By the definition of the total order ‘<’ and the fact that the central series Z(u)
acts on 1 A(u) by a scalar series, the action of each ordered monomial Xy, ... Xp,, in the
expression of T on 1 A(u) i8 of the form

Y (T("l) ... T_(",r)) (T(d1) ... T(de)) (T’g'lbll) ... T,E'?)) i)‘(u),

11 irjr cicy CeCe
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where 7,8 € N, (34, 44) € Ag N Buyn, (cs,¢1) € A° N Buwy, (kpy lp) € A N Bygywv, and
Ymg,...m, € C. In particular, since T,S:';ll) e T,S:'l‘:) lies in X(0spasin)s for some B € Z+ P,
it must be that Tf:;i) = TZ(:;:) lies in X(ospasn)—p- HenceN, since 1y, is an eigenvector
for each ordered monomial in the expression of Ta(z), then 1,(,) is an eigenvector for TOSZ)
as well. Therefore, for each (k, k) € A°, we can write Trx(u)Irw) = Xk(u)i A(u) for some

formal power series Az(u) € 1+ u~'CJu~], where Xg(u) = M(u) for (k, k) € Ban-

Defining the ideal Zg (X(u)) as in Definition 3.1.12, the above argument shows
Ze (X(u)) C Jo(Mw)). To prove the reverse inclusion, all that is left to show is
that Z(u) — M (u + k) Aar(u)1 lies in Zp (X(u)) and Z(u) — Ap1(u + £) A (w)1 lies
in Ty (X(u)) First supposing © = I, setting i = j = M in equation (2.2.18) yields

Z(u) — M(u+ £)Am(u)l
=Ti1(u+ &) Tam(w) — A1 (v + &) A (u)l + Z (=DM Ty, (u + &) T (w)
k£M
= (Tu(u+ k) — M(u+ &)1) (Tarae(u) — Apr(w)1) + A (u + £) (Treae(w) — A (u)1)

+ Ar(w) (T (u + K) — M(u+ £)1) + Z (=DM (w4 £)Tiar(u),
k£M

which lies in Z; (A(u)). The case for © = II is similar. Hence, Mg (A(u)) = Mg ().

Lastly, via the definition of Ji(A(u)), we know Z(u)15,y = A(u+r)Anm(u)15,,. At
the same time, we know by Proposition 3.1.4, that Z(u)15,, = A (u+ K) A () 15);
hence, Ap(u) = Ay(u). A similar argument can be made when © = II to conclude

XM+N('UI) = Ap+nv (u). O

3.2 Finite-Dimensional Irreducible Representations

In this section, we prove our main results on the representation theory of X(ospas ).
Ultimately, every finite-dimensional irreducible representation of these Yangians is
isomorphic to Ly(A(u)) for a certain Xj-highest weight A(u). In particular, the highest
weight representation theory that follows is solely based on the Xi-highest weight theory.
Accordingly, we shall drop the prefix ‘X;’ and subscript ‘I’ for now on, referring to
highest weights as Xi-highest weights, highest weight vectors as Xj-highest weight
vectors, A* = Af, M(\(u)) = Mi(\(u)), etcetera.
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3.2.1 Consistency conditions for Verma modules

Given any highest weight representation of X(ospun), we will now establish a wide
array of relations that occur among its highest weight components. Such relations
have already been classified in the cases M = 1 and M = 2 in [Mol23b] and [Mol22b],
respectively. Utilizing the restriction functor F* defined in the previous section, we can
use inductive arguments along with the results in the cited papers to yield consistency

conditions between the highest weight components in the general case.

Proposition 3.2.1. Suppose N > 2 and let m = L%J, m = {%], n= % Given any

highest weight representation V' of X(osparn), the components of its highest weight

Au) = (M (w)MEN must satisfy the consistency conditions

)\1(’114) i )\M_,(u—ﬂ-i-z)

= - or 1=1,2,...,m—1, 3.2.1
Ait1(w)  Apa-i(u — K +14) f (3.2.1)

A+i(u) _ Aan-j(u— Kk —j+m)
Agrjr1(u)  Apprnei-i(u — K — 5+ m)

for j=1,2,...,n—1. (3.2.2)
Moreover, when M 1is odd:

Mm(u)  Apan(u—K+m)

= if M 23, 3.2.3
A+1(v)  Ap+(u— Kk +m) f M2 ( )
and A (u) _ Avan+1(u — K+ m—n), (3:2.4)
Mira() © Am(u—r+m—n)
and when M is even:
Mnl) _ Juaanlu = B2 g (3.2.5)

Mrei(®)  Amii(u— K+ m)

Proof. We shall prove the consistency conditions via induction on M € 2Z* —1 and
M € 2Z.

For the base case M = 1, consistency conditions were found in [Mol23b] for the
presentation X9 (ospyn), where d = {1+%} c {1,2,...,1+N}. For the bijection
o € Gy, where o(k) = 1+k for k = 1,...,%, o(1+%) = 1, and o(k) = & for
kE = 2+%,...,1+N , the mapping TZ‘J’(u) — Ty(i)o()(w) induces an isomorphism
X9 (ospyn) = X(ospyn). Under such isomorphism, highest weight representations
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for X%(0spy ) defined in the article [Mol23b, §3| coincide with highest weight represen-
tations for X(osp;|n), and the consistency conditions stated in [Mol23b, Proposition 3.3]
are equivalent to (3.2.2) and (3.2.4) when M = 1.

For the base case M = 2, consistency conditions were found in [Mol22b] for the
presentation Xd(osp2|N), where d = {1, 2+N} C {1, 2,... ,2+N}. For the bijection
o € Gan, where 0(1) = 1, o(k) = 1+k for k = 2,...,1+N, and 0(2+N) = 2,
the mapping T.5(u) — Ty(s)o(;)(u) induces an isomorphism X9 (ospzn) — X(05p2n).-
Under such isomorphism, highest weight representations for Xd(ospgl ~) defined in the
article [Mol22b, §2] coincide with highest weight representations for X(ospan), and
the consistency conditions stated in [Mol22b, Proposition 2.2] are equivalent to (3.2.2)
and (3.2.5) when M = 2.

The base case for condition (3.2.3) is when M = 3. If £ denotes the highest weight
vector of V, we use the relation T14(u)T534n(v)€ = [T14(u), T3,3+N(v)]§ to yield

1

T Taain ) = ——— — (Ta@)Taaen(0) + MW Aasn (v) — M (@)s(v) €,

50 (u—v—K+1)T13(u)Ts34n (V)€ = (Aa(w) Az (v) — Ar(w)As(v))é. Setting v = u—r+1
then yields the desired relation.

Lastly, the base cases for relations (3.2.1) is when M = 4 and M = 5, but such
relations are guaranteed by Proposition 3.1.5.

Therefore, let us assume the consistency conditions hold up to M —2. By Proposi-
tion 3.1.6, V't is a non-trivial X(0sp(as—2)v)-module that contains the highest weight
vector &), Moreover, the X(osp(a-2)n)-submodule X(0sp(ar—2)n)éxw) C V' will be
a highest weight representation of X(osp(ar—2)n) with highest weight vector £, and
highest weight

p(u) = (up(w)M52N = (M), - -, An=1(w), Aagx1(w), - - -, Aaganv (W) -

Noting the formula ko x = Kpmny — 1, when M —2 > 4 our induction hypothesis for
i=1,2,...,|%2|-1=|¥]| -2 gives

) _ Am=ry) (U — Ky + (i+1))
) Asri-@rn(u — &pyy + (3+1))°

i(u) _ prr-2-i(u — Kp—2 N + 1) i1 (
piv1(w)  pa—2+1-i(u — Kp—2n +1) A

u
u

proving the relations (3.2.1) for i = 2,3,...,m—1. The case ¢ = 1 is guaranteed by
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Proposition 3.1.5. Similarly, we know by induction that for j =1,2,...,n—1,

prr—a+5(u) _ UM —2+N—j (u— KM-2,N — ]+ L#J
uM—2+j+1(U) KM —24+N+1—j (u — KM—2N—J+ [%J)

AIM‘"J’(’U’) — AM+N—j(u — KM|N -7+ L%J)
Avrj+1(v)  Appanvi—j(u — kay — 5 + L%J)

4

Now assume M is odd. The induction hypothesis indicates
s (u) _ BM-2+n+1 (v — kpr—2n + [ 252 —n)
MM—2+n(U) NI'M 2 (u — KpM—2N + |_M 2J n)

A Masnsa (u = kaw + | ] —n)
A+n(u) )\[%'I (v—kmy + | %] —n) ’

and if M -2 > 3,

e (W) payaen(u — my-an + | 252]) o W) Mpw(w—r+|¥])
pm-gr1(w)  praez), (U — Kp-a N + [MTJ) Aera(w)  Apng(w—c+[F])

Lastly, if M is even, then

prca(u)  pygin(u— Kyoan + %52) Au(w)  Appw (v — kagn + %)
prr—a+1(u)  pueay (u—ky-an +¥52) 7 Aa(w)  Awgy (u—magy + §)

We now arrive at the primary result of this subsection:

Theorem 3.2.2. Suppose N > 2. The Verma module M(A(u)) is non-trivial if and
only if the components of the highest weight A(u) = (Ae(u))MEN satisfy the consis-
tency conditions in Proposition 3.2.1. Hence, for every finite-dimensional irreducible
representation V' of X(ospumn), it holds that

V = L(A(w))
for some unique tuple A(u) satisfying such conditions.

Proof. “=" If M(A(u)) is non-trivial, then it is a highest weight representation. Hence,
the consistency conditions follow from Proposition 3.2.1.
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“«" Conversely, let us suppose the highest weight A(u) satisfies the conditions (3.2.1),
(3.2.2), and (3.2.3), (3.2.4) if M is odd or (3.2.5) if M is even. By Proposition 3.1.14,
we obtain a non-trivial Verma module M (X(u)) To finish the proof, it therefore suffices
to show A(u) = A(u). As Ae(u) = Ag(w) for (k, k) € By as in (2.3.15) and k = M, we

need to show the equality in the remaining cases.

~

Furthermore, since M (A(u)) is non-trivial and the first conditional statement of the

Proposition has been proven, the highest weight components of X(u) = (Xk(u))ﬁi"'lN

satisfy the relations

M(u)  Ay—i(u— K +1) A(w) | Apmiu— K +9)

= - and == , 3.2.6
Xa() ~ Aulu—r+9) Mir@) " Fpppaoi(u— 5+ ) (326)
fori=2,...,m—1,
M) _ Appn—j(u— K — j +m) (3.2.7)
Artj(u) AMiNt1-j(u — K —j+m)
for j=1,2,...,n—1, and if M is odd:
Am(W) _ Awew(u=rmFm) o> 3, (3.2.8)
Ari(vw)  Aga(u— K +m)
T s _ _
and 2@ _ Mnna (=Kt m-n) (3.2.9)
Adgn(u) Ain(u— Kk +m—n)
or if M is even: _
Am (1) _ )\M+N(u - K+ m) (3.2.10)

A1 (w) X (v — Kk +m)
When M = 1, equations (3.2.4) and (3.2.9) yield Aprn+1(t) = Aprrn1(w). Thus, by
combining (3.2.2) and (3.2.7), we obtain Ag(u) = Ag(u) for k = M+n+2,...,M+N.

When M = 2, (3.2.5) and (3.2.10) infer XM+N(U) = Ap+n(u). Therefore, combin-
ing (3.2.2) with (3.2.7) shows Ax(u) = As(u) for k= M+n+1,..., M+N—1.

When M = 3, (3.2.3) and (3.2.8) similarly infer Ayn(u) = Apan(u). Hence,
combining (3.2.2) with (3.2.7) gives A\x(u) = Ax(u) for k = M+n+1,...,M+N—1.

Now assume M > 4. In this case, relations (3.2.1) and (3.2.6) show Ax(u) = Ai(u)
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for Kk = m+1,...,M—1. Furthermore, by combining (3.2.3) and (3.2.8) if M is
odd, or (3.2.5) and (3.2.10) if M is even, one deduces Aprn(u) = Apsn(u). Thus,
combining (3.2.2) and (3.2.7) will show Ag(u) = Ag(u) for k= M+n+1,...,M+N—1.
Finally, when M is odd, relations (3.2.4) and (3.2.9) will together yield the last equality
A (w) = A (u). 0

3.2.2 Finite-dimensional irreducible representations

Let us assume m = |# ] and n = &. For any tuple A = (\y, ..., Am+4n) € C™™, we shall
let V(A) denote the irreducible representation of the orthosymplectic Lie superalgebra
0sp v With highest weight A, where we suppose M > 3. Most necessary conditions for
the finite-dimensionality of V'()) can be derived from the embeddings 505 < 0sp N
and spy < 0sppn. In particular, if V(A) is finite-dimensional then it must be that

AMi—Aq1 €N for 2=1,...,m—1;m+1,... m+n—1,

along with
Amtn € N,
and A1+ AIn €N if M is even,
or 2 m €N if M is odd.

A weight A € C™*" satisfying these conditions will be called ®¢_ -dominant integral.
Since ®* is not the distinguished positive root system @7, as found in [Kac06], one
would have to translate between them by means of odd and/or real reflections in order
to state all necessary and sufficient conditions for the finite-dimensionality of V()) in

terms of ®*-highest weights.

Before stating the main theorem, we recall the super Yangian Y(gln.) and its
representation theory as appeared in [Zha96]. For the following results on this particular
Yangian, we suppose m and n are any natural numbers such that m+n > 1 and consider
the gradation index (2.1.5) when d = m, D = m+n, and d = {1,2,...,m}; that is,
[{]] =0for 1 <i<mand [i] =1 for m+1 < i< m+n. Accordingly, the space C™*"
is Zy-graded via the assignment [e;] = [i] on the standard basis vectors and we shall

denote the resulting super vector space as C™™. The simplest non-trivial solution to
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the SQYBE (2.2.4) in the space (End (Cm|")®3 [utv*!] is the R-matrix

3 . ®2 P m|n ®2 -1

R(u) =id — € (End C™"™)™ [u71], (3.2.11)
where P = Em+n( 1)VIE,; ® E;; is the super permutation operator.

Definition 3.2.3. The Yangian Y(glnp,) of gln)s is the unital associative C-super-
algebra on generators {tg-) |1<14,j <m+n, r € Z*}, with Z,-grade [t(r)] = [i]+[4]
for all r € Z*, subject to the defining RTT-relation

R(u — v)ty(u)t2(v) = ta(v)ts (u) R(u — v)
in (End len)®2 ® Y(glnjn) [[uﬂ, vﬂ]],

where t(u) 1= E:;“L"( DHUHUE; @ ti5(u) € End(C™") ® Y(glnp)[u™!] is the matrix
consisting of the series ¢;;(u) := 6;;1+> e, tg) T € Y(glnp)[u ] for 1 <i,5 < m+n,

and R(u — v) is the R-matrix (3.2.11) identified with R(u —v) ® 1

We may now state the definition of a highest weight representation for this super

Yangian.

Definition 3.2.4 (See §3.1 in [Zha96]). A representation V' of the Yangian Y (glnn)

is a highest weight representation if there exists a nonzero vector £ € V such that
Y(g[mln)é. = Va and

tij(w)é =0 forall 1<i<j<m+n
and trr(u)é = Me(w)¢  forall 1<k <m+n,

where \g(u) =1+ 7, )\(n) ™ €1+ CluJut. We say that £ is the highest weight
vector of V and call the m+n-tuple (Ax(u));" of formal series the highest weight of V.

The classification of the finite-dimensional irreducible representations of Y (glm»)

by R .B. Zhang is provided by the following two theorems:

Theorem 3.2.5 (Theorem 2 in [Zha96]). Every finite-dimensional irreducible represen-
tation V' of the Yangian Y (gln)s) is a highest weight representation. The highest weight

vector of V' is unique up to scalar multiple.
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Theorem 3.2.6 (Theorem 4 in [Zha96]). An irreducible highest weight representation V
of Y (@lmjn) with highest weight A\(u) = (Ax(u))jly is finite-dimensional if and only if
there exists monic polynomials Q(v), Q(u), and Pi(u), k € {1,2,...,m+n—1}\ {m},
such that

M(w) _ Pilu+ (=1)¥)

Ae1(u) Py(u) for ke€{l,2,...,m+n—1}\{m},

and -
M) _ Qu)
Amt1(v)  Q(u)’

where é(u) and Q(u) are coprime polynomials of the same polynomial degree.

For the remainder of this subsection, we assume m = | % |, M = [4], and n = ¥.
From Molev’s recent work (see [Mol21], [Mol23b], and [Mol22b]) on the representation
theory of X% (0spyn) and X9 (ospq ) where d; = {1+n} and d; = {1,2+ N}, we can
use the isomorphisms X% (ospyn) — X(0sp1yv) and X% (0spgy) — X(ospgn) to get

the following theorem:

Theorem 3.2.7 (A. Molev). Suppose M = 1 or M = 2, set N > 2, and let
Aw) = (\e(w))MIN satisfy the consistency conditions stated in Proposition 3.2.1. The
X(osprn)-module L(A(u)) is finite-dimensional if and only if there exists a tuple of
monic polynomials

(6M2é(u), JMzQ(’U,), (Pk(u))kGI) € C[u]n+26M2,
with I = {M+1,...,M+n}, such that

Ak(u) . Pk(’U, - 1) S, n
()~ Pe(w) forall kelI\{M+n},

and A (w) Piin(u+1)
1(u 1+n(U
— when M =1,
Atn(u) Py n(u)
or N
A24n(w) _ Poyn(u—2) and M) _ Q) when M =2

A2+n+1(w) Pain(u) Az (u) B Q(u)

where é(u) and Q(u) are coprime polynomials of the same polynomial degree.
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Via Theorem 3.2.2, every finite-dimensional irreducible representation of X(0spasn)
is isomorphic to L(A(u)) for some highest weight A(u) satisfying the consistency condi-

tions in Proposition 3.2.1. We now have the main theorem of this subsection:

Theorem 3.2.8. Suppose M, N > 2 and let A(u) = (\p(u))MEN satisfy the consistency
conditions stated in Proposition 3.2.1. If the X(osprn)-module L(A(u)) is finite-

dimensional, then there exists a tuple of monic polynomials

(Q(u), Qu); (Pe(w))ker) € Clu]™ ™,
with I ={1,...,m—1;M+1,...,M+n}, such that
M) _ Pilut (-1
)\k+1(u) Pk(u)

A (u) _ Prin(u+1) . )
Mtn(@) ~ Prpn(u) 0 M 0ddh (32.13)
Ag+n(t)  Papn(u —2)

)\M+n+1(u) - PM+n(U)

for keI\{M+n}, (3.2.12)

if M is even, (3.2.14)

and ~
An(u) _ Qu)
A (u)  Qw)’

where @(u) and Q(u) are coprime polynomials of the same polynomial degree.

(3.2.15)

~

The polynomials (Q(u), Q(u); (Pr(u))ker) are called the Drinfel’d polynomials corre-
sponding to L(A(u)) and they are uniquely determined by the highest weight A(u).

Proof of Theorem 3.2.8. Allowing t;;(u) denote a generating series for the Yangian

Y (glmjn), there is a superalgebra morphism

v: Y(glnpm) = X(0span),  tii(w) = Ty (),

where v(i) =14 for 1 < i <m and v(i) = m+i for m+1 < i < m+n. Under the above
morphism v, representations of X(ospysn) restrict to those of Y(gly),). In particular,
if V' is a highest weight representation of X(ospysn) with highest weight vector £ and
highest weight A(u) = (Ax(w))M4Y, then the submodule Y(gly,)¢ C V will be a highest
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weight representation of Y(gly,) with the highest weight vector £ and highest weight
()\1(“), cee )‘m(u)) )\M+1(U), s a)‘M+n(u))-

Assuming that the irreducible highest weight representation L(A(u)) is finite-
dimensional, the Y (gln»)-module Y (glnn) 1) Will be a finite-dimensional as well. The
quotient Y (glmn) L)/ M, where M is its maximal submodule, will be an irreducible
finite-dimensional representation of Y(gln,) with highest weight vector 1) mod M
with highest weight (A1(w), ..., Am (), Asrs1(w), - . ., Aar+n(u)). Therefore, the Drinfel’d
polynomial relations for irreducible finite-dimensional representations of Y (gly,,) yield
the according relations (3.2.12) and (3.2.15).

The remaining Drinfel’d polynomial relations will be proved via induction on
M € 2Z*—1 and M € 2Z%, respectively. Let us first suppose M is odd. The
base case M = 1 is guaranteed by Molev’s results in [Mol23b]. Applying the restric-
tion functor of Proposition 3.1.9 to L(A(u)), we yield an X(osp(a-2)n)-submodule
X(08p(a-2) ) Irw) C FFH(L(A(u))) = L(A(uw))* that is a highest weight representation
with highest weight vector 1), and highest weight

(Nk(u))kM=_12+N = ()\2 (w),..., Am=1(v), Apera (u), - . ., /\M+N)-

Since L(A(u)) is finite-dimensional, then so is X(0spm-2)n)1aw) and the quotient
X(08p(a-2)|v)1rw)/M by its maximal submodule M. Such irreducible quotient will
also be a highest weight representation with highest weight vector 1) mod M and

the same highest weight as above.

Hence, by induction hypothesis there exists a monic polynomial Pj;_,. . (u) such
that
A _ ppea®) Pt D)
A+n(u)  pum-24n(v)  Plrara(u)

80 set Prryn(u) = Php_or,(w).

When M is even, the base M = 2 is provided by Molev’s work in [Mol22b]. The
same argument to the above shows that one can construct a finite-dimensional ir-
reducible highest weight representation X(0sp(ar—2)n)1r)/M with highest weight

vector 1) mod M and highest weight (px(u))M52*V. Hence, by induction hypothesis
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there exists a monic polynomial Py,_,. . () such that

Art+n(u) _ pirv=2+n (W) _ Pyi—oin(u —2)
Mn+1(8)  py-24n+1(u) P Al}-2+n(”) ’
80 set Prryn(u) = Php_or,(w). O

Recalling that Rep(.A) denotes the category of representations of a superalgebra A,
we let Repi;(,A) denote the subcategory of finite-dimensional irreducible representations.
Further, we define Repg; (A)/~ to be the set of isomorphism classes of Repjg (A).

Letting C[u]2, .q denote the subset of C[u]? consisting of all pairs (Bj(u), Ba(u))
such that B;(u) and By(u) are coprime of the same polynomial degree, the proof of
Theorem 3.2.8 permits the well-defined map

U: Repgy (X(08pr(n))/~ = {(Br(w))pd"' € Clu]2, oq X Clu]™*"" | B(u) is monic}

Cp;,

L(\(w)) = (Q(w), Q(uw); (Pe(u))ker)

assuming M, N > 2. However, such map is not injective: U(L(A(w))) = O(L(p(u))) if
and only if there exists a series f(u) € 1+u~C[u~1] such that u(u) = f(u)\(u).

Indeed, if the tuples A\(u) = (A\k(w)) MY and p(u) = (ur(w)) MY both satisfy the
consistency conditions in Proposition 3.2.1 while also corresponding to the same Drinfel’d
polynomials (Q(u), Q(u); (Pe(u))ker), then there exists a series f(u) € 1 + uClu]
such that u(u) = f(u)e(w) for all 1 < kK < M+N: such a series is given by
Fw) = pagen (W) Aprrn(w)

On the other hand, given that L(A(u)) is finite-dimensional, its highest weight
AMu) = (Me(u))MEN must satisfy the consistency conditions as in Proposition 3.2.1
while also corresponding to the Drinfel’d polynomials (@(u), Q(u); (Pe(w))ker). For
any series f(u) € 1+u"'CJu!], we observe the tuple f(u)\(u) = (f(u)Ap(w))MEN
will still satisfy the same consistency conditions and Drinfel’d polynomials relations.
Hence, the pullback by the automorphism uy (2.2.9) will yield a module p}(L(A(u)))
isomorphic to L(f(u)A(u)). As L(A(u)) and u}f(L(A(u))) are equal as super vector
spaces, their dimensions coincide, which infers the same is true for L(f(u)A(u)), so
dim L(f(u)A(u)) < oo as well.

We now focus our attention on certain elementary tuples of Drinfel’d polynomials

and we call those modules corresponding to such tuples as fundamental representations:
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Definition 3.2.9. Let A(u) satisfy the consistency conditions as stated in Proposi-
tion 3.2.1 so that the Verma module M (A(u)) is non-trivial. The fundamental represen-
tations of X(ospasn) are those irreducible representations L(A(u)) that correspond to

Drinfel’d polynomials of the form
(u+a,u+B;(Lrer) or (1,1 ((utv)*)er) (3.2.16)

for i € I and a, 8,7 € C where a # 8. The fundamental representations corresponding
to the first tuple are called type I and denoted L(A(u); , B), whereas those corresponding
to the second tuple are called type II and denoted L(A(uw);% : 7).

Assuming we are able to prove that all such fundamental representations are finite-
dimensional, then one can construct finite-dimensional irreducible representation of the
extended Yangian X(ospn) corresponding to any tuple of Drinfel’d polynomials by
virtue of the following lemma.

Lemma 3.2.10. Let V and W be two highest weight representations of X(ospn) with
respective highest weights A(u) = (A\x(w))MN | p(u) = (uk(w)) XN and highest weight
vectors Ex(u), Euw)- The submodule X(0sprrn) (Erw) ® uw) €V @ W will be a highest

weight representation with highest weight A(u)u(u) = (M(w)pr(u))MN.

Further, if V.= L(A(u)) and W = L(u(u)) are finite-dimensional with corresponding

tuples of Drinfel’d polynomials (Q(u), Q(w); (Pe(w))ker) and (Q'(w), Q' (w); (Pi(w))ker),
then the tuple of Drinfel’d polynomials corresponding to the irreducible quotient of
X (05Parn) (a) @ Luw) € L(Mw)) ® L(u(u)) will be

Quw)Q'(u) Qu)Q (u). ,
( duv) ’  d(u) ’(Pk(u)Pk(u))keI) (3.2.17)

where d(u) = ged(Q(v)Q' (v), Q(w)Q' () is monic.

Proof. Via the comultiplication map A on X(ospyn), the generators T;j;j(u) with
indices (¢, 7) € AT will annihilate £x() ® &) since for such indices, (i, k) ¢ At implies
(k,5) € Af. Once can also verify Ti(u) - (€x) ® Euqw)) = Mo (w) e (w) (Eru) @ Epuqwy) for
all integers 1 < k < M+N. O
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3.2.3 Type I fundamental representations

In this subsection, we show that type I fundamental representations L(A(u); e, ) as
in Definition 3.2.9 are finite-dimensional if and only if the parameters o and 3 satisfy

certain conditions.

We note that if a non-trivial irreducible representation L(A(u)) has associated
Drinfel’d polynomials (Q(u), Q(u); (Px(w))ker), the pullback by the shift automor-
phism 7, (2.2.10) will yield a module 7;(L(A(u))) isomorphic to L(A(u—a)) with
Drinfel'd polynomials (Q(u—a), Q(u—a); (Ps(u—a))ker). In particular, the dimensions
of L(A(u)) and L(A(u—a)) coincide, so it suffices to prove dim L(A(u); e, 0) < oo for

some highest weight A\(u) satisfying the consistency conditions in Proposition 3.2.1.

The primary result of this subsection is the following, which is a generalization
of [Mol22b, Proposition 2.4]:

Proposition 3.2.11. Suppose M, N > 2. For o € C*, consider the type I fundamental
representation L(A(u); e, 0) of X(0sparin), where \(u) is the highest weight (Ax(u))MEN
given by

”:a if 1<k<m,
Me(w) =4 _UTETM e mrl<k<M,

vut+a+kKk—m

1 otherwise.
If M = 2, then dim L(\(u);@,0) < 2N. Otherwise when M > 3, then L(A(u);a,0)

is finite-dimensional if and only if the irreducible osppsn-module V(A®) s finite-

dimensional, where

Y " Ym )

AD = OO @D D Yy (... ,a,0,...,0).
(1 M+1 M+n) ( )

m n

The collection of such numbers ac comprise some non-trivial subset of %Z“L. When M is

even in these cases, then dim L(\(u); @, 0) < 2m¥,

In preparation to prove the above proposition, we need to introduce and prove two

preliminary computational lemmas.
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Lemma 3.2.12. Suppose M, N > 2 and let £ denote the highest weight vector of
L(A(u); @,0) as in Proposition 3.2.11. Then:

(i) T(v)€ = 0 for indices M+1 < k # 1 < M+N; moreover, when M is odd:
Tin(v)€ = Tk (v)€ = 0 for indices M+1 < k< M+N,

(i) Tr(v)€ =0 for indices lL< k#[<mand m+1<k#1< M,

(iii) T,S")E =0 for indices M+1 < k< M+N, 1<l <m with r > 2; moreover, when
M 1is odd: Tgk =0 for indices 1 <1l < m withr > 2.

Before proving the above lemma, we note that for a highest weight representation V'
of X(ospn) with highest weight vector £, we call a vector v € V singular if T;;(u)v = 0
for all (¢,j) € A*. Since L(A(u); e, 0) is irreducible, its only singular vectors lie in C*¢;
thus, to prove Tj;(v)¢ = 0 it suffices to show T;;(u)Ti(v)€ = 0 for all (3,5) € A*.

Proof of Lemma 8.2.12. (i) Allowing F;; to denote the restriction functor 7+ as in
Proposition 3.1.9, we may apply the composition Fj;_, .0 0 -+ 0 Fir_, © Fiy to
L(A\(u); @, 0) to obtain the X(05p(ar—am)n)-module L(A(u);a, 0)Z=* as described in
Remark 3.1.11. For the given indices M +1 < k,l < M+ N, we claim that the vectors
Tw(v)€, along with Tis(v)€ and Tiy(v)€ if M is odd, lie in L(\(u); o, 0)Xmt. Ad-
dressing vectors of the form Tj;(v)§, we may suppose k > [ without loss of generality.
For 1 <i<mandi< j< M+N, using the defining relations (2.2.8) to compute
[T;;(w), Tia(v)] will yield

-1
Ty Ta@) = b1 Y 65Tigl0) T (w)é
p=1

v

while for indices 1 < p < ¢ — 1, the evaluation of [Tj,(u), Tip(v)] infers the equality
0510 Trp (V) Tip(u)€ = —Tij(w) Tra(v)€, so Tij(uw)Tri(v)€ = 0. Alternatively, when we have
m+1<i<j<Mor M+1<i< M+N, m+1<j <M, computing [Ti(v), T;;(u)]
will give

1

Tij(u)Tu(v)é = p—

71
Ok Z Ok Tp1(v) T (u)€,
p=1

while for indices 1 < p < 7 — 1, the evaluation of [T};(v), Tp;(u)] infers the equality
01k0kTp1(v) T (w)€ = —Tij(u) T (v)E, so T;j(uw)Tr(v)€ = 0, which proves Ty (v)¢ lies in
L(\(u); a, 0)Zmt,
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Since ¢ € L(A(u); a, 0)=m*, the cyclic submodule X (08P ar-a2m)v)€ is & highest weight
representation of X(0sp(a-2m)n) With each highest weight component Ax(u) equal to 1.
The irreducible quotient of X(0spa—a2m)w)§ is therefore 1-dimensional, which implies
T;j(u)Tr(v) = 0 for all (¢,5) € A*. The argument for Ty (v)€ = Tr(v)€ = 0 when M

is odd is similar.

(ii) When M is even, the relations (3.1.2) infer that it suffices to show the property
T;j(u)Tia(v)€ = 0 for only the simple root generating series T;;(u) as given by T; ;+1(u)
fori=1,... m—1;M+1,...,M+n, and T, pr+1(u).

When M is odd, the same relations (3.1.2) infer that it suffices to show the property
T:;(u)Ti(v)€ = 0 for only the simple root generating series T;;(u) as given by T; ;41 (u)
fori=1,..., m—1;M+1,..., M+n—1, and T, m+1(), Ti man+1(w)-

Step 1. Let us first address the case 1 < I < k < m. Via the relations (3.1.2), it
suffices to show Ty41 % (v)§ = O for the indices 1 < k < m—1. We use the relations (2.2.8)
to evaluate [ﬂ,Hl(u),TkH,k(v)] which infers T; ;41 (¢)Ti+1,(v)§ =0 for ¢ = 1,...,k.
Alternatively, calculating [Tk+1,k(v),Ti’i+1(u)] will imply T ;41 (u)Tk41.(v)€ = 0 for
the remaining indices ¢ = k+1,...,m—1;M+1,..., M+n, while one can also find

Ton 1 () Tt £ (v)€ = 0 and T pran+1(8) Tir1,6(v)€ = 0 via a similar computation.
Step 2. For the case m+1 < I < k < M, it suffices to show Ty41x(v)€ = 0 for
indices m+1 < k < M —1 via the relations (3.1.2). In particular, we will show

v+a+trk—k+1 v+k—k+1
k+1,k(v)f = -

T,—c’,—c_l(’v-i-lﬁ;—k-i-l)f,

v+tE—m vtatk—m

which implies the result by Step 1. Using the defining relations (2.2.8) to compute the

commutator [Ty, z—1(w), Tix(v)], we yield

k(v+Kk—m)
(u—v)(u—v—k)(v+a+k—m)

T (v) Ty -1 (w)€ = Trp-1(u)é

utk—m 1
(u—v)(u-l—a-l—n—m)T’_“”_“_l(v)g+

> D1 (W) Tpr()E-

U—v—K

For 1 < p < k—1, evaluating [T -1(w), T,—,k(v)] infers the equality

P
utao ut+K—m
Tp i1 (W) Tpk(0)€ = 81— — Trrrk (v)€ + (=) (utatr—m) Ty j-1(v)€
vt+te—m

T u—v)(vtatr—m) Ty p-1(w)€ — T (v) T -1 (w)é,
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so one yields the relation

(k—k+1)(v+K—m)

(u—v—K+k—1)T (V) T 1 (w)é — (u—v)(v+a+n—m)TE’E'1(u)€
= u—’;aTk+1,k(v)§ - (u7§:$1§u+_av+_f_+£)_ D ).

Evaluating at v = v+k—k+1 therefore gives the desired equation.

(iii) Similar to part (ii), when M is even, the relations (3.1.2) infer that it suffices
to show the property T;; (u)T,Slr)f = 0 for only the simple root generating series T;;(u)
as given by T;;41(u) fori=1,...,m—1;M+1,..., M+n, and T, pr+1(u).

When M is odd, the relations (3.1.2) infer that it suffices to show the property
T;; (u)T,Slr)f = 0 for only the simple root generating series T;;(u) as given by T; ;1 (u)
fori=1,... m—1;M+1,... M+n—1, Ty, p+1(w), and T pren+1(w).

We assume 1 < | < m throughout the remainder of the proof. In the following,
Steps 1 to 3 address the case M +1 < k < M+ N, while the last step, Step 4, addresses

the case k = m when M is odd.

Step 1. Assume M+1 < k< M+N. Fori € {1,...,m—1}\ {l}, part (ii) of the
lemma infers that computing [T ;4+1(u), T (v)] via the defining relations (2.2.8) will
imply T; ;+1(w)Ti(v)6 = 0. When ¢ = M+1,...,M+n and 7 # k, using the defining
relations again to evaluate [T k), Ti it (u)], along with the fact Ty ;4+1(v)§ = 6k i+1€ by
part (i) of the lemma, will yield

1

Tir1(u)T(v)€ = p—

Ok,i+1 (Tu(v) — Tu(u))é. (3.2.18)

In a similar way, we also find T;, ar1(u)Tra(v)€ = (v—u)" 0k p+1 (Tml(v) — Tml(u))§
and T, s n+1(W) T (V)€ = (v—1) 20k prn+1 (T (v) — Tr(u))£.

Step 2. We shall first prove the assertion for M+1 < k < M+n via reverse
induction on 1 <[ < m. Hence, assume ! = m and we will now proceed by induction

on M+1 < k < M+n. For the base case k = M +1, Step 1 infers that it only remains

to evaluate Ty, pr+1(w) Tarrr,m(v)€. However, Tp a1 (W) Tarr1,m(v)€ = (B8 — @)u o€
in this case, as desired.

Suppose now the induction hypothesis holds for the index k. We again see via
Step 1 that it only remains to check Tk g+1(%)Tk+1,m(v)E. In this case, we use (3.2.18)
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to compute T g+1(u)Th+1,m (V)€ = —u_lv_lT,Sn)f by induction hypothesis.

Now assume the reverse induction hypothesis holds for 1 < [+1 < m. Using
the defining relations to compute [Tl 1(u), T (v)] the reverse induction hypothesis
will imply T} 41 (w)Ti(v)€ = u‘lv_lT,S +1&. Furthermore, part (ii) of the lemma
and Step 1 infers Ty, a1 (u)Tri(v)€ = 0 since | < m—1. Similar to the case | = m,
we now proceed by induction on M+1 < k < M +n, where we note the base case
k = M +1 is automatically satisfied. Supposing the induction hypothesis holds for the
index k, all that remains to check is the element Tj g+1(u)Tk+1,(v)€, but (3.2.18) infers
T j+1 () T2, (v)€ = —u"lv"lT,gl1 )¢ by induction hypothesis.

Step 3. We now prove the assertion for remaining indices M +n+1< k< M+N.
Of course, when 7 = k then (3.2.18) does not hold, so we shall derive the suitable
relation now in this case. Given M+1 <7< M+n—1, and i = M +n when M is even,
we use the defining relations (2.2.8) to compute [T3;(v), T;;+1(u)] and incorporate the
fact that Ty(v)¢ = v_lTi(,l)E by Step 2 to obtain the formula,

1 n 2 1
T (W) Tu(v)é = :H TV - —Jl_ L)+ - — — Tu(©)Trin (w)é
1
+ Z Tp1(v) Tpi+1(w)§,
V—U—K
pe{l,...mN\{l}

noting the use of part (i) to simplify the sum. Again, we note that in the above formula
and for the proceeding computations, we assume the index i = M +n occurs only when

M is even, that is, we implicitly suppose 6; pr+, = 0 when M is odd.

For p € {1,...,m} \ {I}, evaluating [T};(v), Tp+1(u)] and using part (ii) of the

lemma infers Tpy(v)Tp,i+1(w)é = =T 41 (u) Tu(v)€ — JZ-,MJFnu_lv_lTi(,l)E : hence,

1, M+n (1) 0i+1 '
’L’H‘l( ) 11('0)5 uv E ’U—’U,—Ii+m—1ﬂ+1’l(v)£
1
v—u—Kk+m— 1ﬂl (U)Tl,’i+1 (’U.)E

Via the defining relations, computing [Ty (v), T} 41 (u)] provides the equation

v—u—k+1 v+« 0;
V—U— K Tll(v)Ti,Hl (w)€ = o TI,i+1 (w)€ + ﬁTﬂ-—l,l(v)g

1
- Y Tu)Tpin(u).

O S (V)
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Similar to before, evaluating [Tpl(v), Tpi+1(u ] for indices p € {1,...,m} \ {l} implies
Tt (V) Tp,i+1(w)€ = Tu(v) Ty (W)€ — (1+av™) T 441 (w), s0 we obtain

(v—u—k+m—1)(v+a),, 041
v(v—u—r+m) T (w)€ + o —u—rtm Tz (v)€.

Iy (”)Tf,i+1 (w)€ =

Taking the residue at v = u + kK — m gives

uts—m

T;. =0;p1—————
z,z+1(u)f +1u+a+n—m

TH-_l,l (’U,+K/ - m)f’

and so we finally deduce

51 n 912
Tiann (W Ta(v)¢ = =0 2T — 0T (0)€
+K— +
in(utn—m)(v+a) Tria(utk—m)E.

v(v—u—k+m)(utat+k—m) *

(3.2.19)

We now proceed via reverse induction on 1 <[ < m. Similar to before, we assume
[ = m and now proceed via induction on M+n+1 < k < M+ N. For the base case
k = M+n+1, Step 1 infers that it only remains to check the elements Ty (u) Ty (v)€
when M is odd and Tg-1 x(u)Tk(v)€ when M is even. However, when M is odd, Step 4
below will show

Te-1,5(w) T (v)€ = ——T(l) 3

while if M is even we utilize Step 2 and (3.2.19) to deduce

Tor () T (v)€ = — (i + — m))T,SPl’, . (3.2.20)

w v(ut+a+k

Assuming the induction hypothesis holds for the index k, it only remains to check
the element Tz z(u)Th+1,m(v)§ by Step 1. However, via (3.2.19) and the induction
hypothesis, we conclude

1
Thﬂ@ﬂhUWM=vW+a+n_mﬂﬁ% (3.2.21)

Now assume the reverse induction hypothesis holds for 1 < I+1 < m. Using the
defining relations to compute [Tl 1(w), T (v)] the reverse induction hypothesis will
imply Tj 141(w)Ti (v)€ = u‘lv_lT,S 1+1€. Similar to the case | = m, we now proceed
by induction on M+n+1 < k < M+ N. For the base case k = M +n+1, all that is
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left to be checked is Ty (u)Tki(v)€ when M is odd and Ty-1 x(u)Tk(v)€ when M is
even, but we may similarly deduce Ty (u)Ti(v)€ = —u‘lv_lTT%l)f in the first case by
Step 4 of the lemma and conclude the relation (3.2.20) in the second case from Step 2
and (3.2.19). Supposing the induction hypothesis holds for the index k, all that remains
to check is the element Tr7 5 (¢)Th+1,m(v)€, but the induction hypothesis and (3.2.19)
will imply (3.2.21).

Step 4. Assume M is odd and k = m. We shall first prove Ty (v)€ = Tfﬁll)f for
such 1 < I < m. For indices 7 € {1,...,m—1} \ {{}, we use the defining relations
to evaluate [T;;41(u), Tru(v)] and use part (ii) to infer Tj;1(u)Tm(v)é = 0. For
indices : = M+1,..., M+n—1, we calculate the commutator [ m(v), “+1(u)] and
use part (i) of the lemma to conclude T ;11(u)Tim(v)€ = 0. We can similarly reason

T m+1(w) T (v)€ = 0, but we observe that computing [Tm (v), T, M+n+1(u)] gives

Tﬁ;,M+n+1(U)Tml(’U)§ = m Elnlg + ZTpl('U)T JM+n+1 (u)§

by Step 2. Evaluating the commutator [T},:(v), Tp,a+n+1(u)] for indices 1 < p < m will
infer the equality Tpl('U)T—,M+n+1 (U)f = 5pl(1 +04'U_1)Tf,M+n+1 (u)f—Tﬁ»,M+n+1 (U)Tﬁbl ('U)fa
so we deduce

1

T pvn1(w) T (v)€ = w0 —u— K +m) (Tﬁln,zf + @+ a)TI,M+n+1(U)5)-

Taking the residue at v = u + kK — m therefore implies

1 1
H,M+n+1(u)£ = _’U, +a+k—m Jfl-)i-n,l ’

which in turn infers T prynt1(w) T (v)€ = — —1T(1) i

We now proceed by reverse induction on 1 < [ < m, with the above calculations
establishing the base case [ = m. Assuming the induction hypothesis holds down to
the index I+1, the only vector remaining to check is T ;41 (u)Tmi(v)€. To this end, we
evaluate [Tl 1(w), Tru (v)] and use the induction hypothesis to obtain

1
Tip+1(w) Tru(v)€ = —U_T(ll+1§’

finishing the proof. O
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Lemma 3.2.13. Let £ denote the highest weight vector of L(\(u);a,0) as in Propo-
sition 3.2.11. For indices m+1 < k < M, 1 <1 < m and integers r € Z*, there are

uniquely determined constants fy,(c;) € C such that

M+n
T,S)f = ’Y,(J) Z T;,%)T‘Sll)f, where 'y,(c}) = 0. (3.2.22)
p=M+1

When M is even, the constants are determined by 3%, A v—" = vl (vtats—m)L

Proof. We will first show T,S’g = 0 for indices m+1 < k < M, 1 <1 < m. By
relation (3.1.1), T,Sg) = 0 for indices Mm+1 < k < M, so we may assume k # . Moreover,
the same relation infers that it suffices to prove T,S,l )f =0forl <l < m-—1and
m+2<k<l.

Under the embedding (2.4.7), L(A(u); o, 0) is given a $I(0spasn)-module structure
such that Fi€ = T,Sll )§ for indices m+1 < k < M, 1 <[ <m, so it therefore suffices to

P . .
show T,St )f is a singular vector under such representation.

When M is even, the relations (3.1.3) infer that it suffices to show the property
FijT,gll)f = 0 for only the simple root vectors F;; as given by F;;4; fori=1,...,m—1;
M+1,...,M+n, and Fy, pr41.

Similarly, when M is odd, the relations (3.1.3) infer that it suffices to show the
property E:jTISll )f = 0 for only the simple root vectors Fj; as given by F;,;; for
t=1,...,m—1;, M+1,...,M+n—1, F p41, and Fi apren+1.

By relations (3.1.3), we see Fy ;11T € = [Fiie1,T\)]€ = 0 for i = M+1,..., M+n,
including Fr a1 T € = [Frprrt, TP)E = —OmiToigin€ + SmsrpTapy €, and when
M is odd: Fﬁ’M+n+1TI§l1)f = [Fﬁ1M+n+1,Tl§;)]£ = 0. However, fori=1,...,m—1 we
compute

Fyon TP = [Fran, TP)E = —0aT{Pn€ — 0Tyt €.

We shall first prove T,Sll )f =0 forindices 1 <! <m—-2and m+2< k<1 by reverse
induction on 1 <! < m—2. When [ = m—2, it must be that £ = m+2, so the above
discussion infers that we only need to check Fl,H_lT,Sll )f = —T,Syllz_lf = T,Sc)f which is
zero since Tgc) = 0. Assuming the induction hypothesis holds for 1 < 1+1 < m—2, we
similarly only need to compute the relation Fl,l+1T,5,1 )§ = —T,g,lt)ﬂﬁ , but such is zero by

: : = 7 (1) _ m(1) —
induction for m+1 < k < -1, whereas TT—1,1+1§ = Tt+_1,z+1§ =0.
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For 1 <1 < m—2, we observe [Tg}rl’k,T,gll)] = Tr%lll’l for all Mm+2 < k < I; hence,

11§ =0for 1 <1 < m—2 by the argument above. Similarly, for such indices we see
TS, €=0for 1 <1< m—2byth bove. Similarly, for such indi

iy, 70

lym—1

] = Tg}rl’m_l, S0 T;(ﬁlll’m_lf = (0 as well. We now complete the remainder
of the proof in two steps:

Step 1. By computing [T,;, (v), Tk,;(u)}, we use part (ii) of Lemma 3.2.12 to provide

v;g;leTm(v)TkE(u)f _ (g (v —0’212:3(1)4-&) T (uw)§ — e —,j)i:fl—n) T (v)€
vl—_'LLJ_El,gﬂl(v)ﬂl_c(u)f - 'U—'jt— Z OpTp1(v) Tz (w)€.

pe{l,...m}\{k,},
M+1<p<M+N

For indices p € {1,...,m} \ {k,{}, evaluating [Tpi(v),T,z(u)] and using part (ii)
Lemma 3.2.12 will infer the equality

uta Ta(w)é — (Og(v—u)—1)(v+a)

To1(v) Tpr(v)€ = Tiy(v) Tiz (w)€ — " T (u)€,

(v—u)

v(v—u)
and similarly,

(1-0g)(v+a)

(1—05)Tu(v)Tix(v)€ = Tip(u)é + (1—05) Ty (v) Tig ()€

— (1_6El)(u+a)Tkl(’U)f+ (1_al?:l)(al?:l(v_'u’)_1)(U+a)Tkl(u)£
u(v—u) v(v—u) '
Hence, we find that Tj;(v)Tz(w)€ is equal to the expression
(g(v—u)—1)(v—u—r+m—1)(v+a) _ (k=m+1)(uta) 0
v(v—u)(v—u—kK+m) Ta(u)e u(v—u)(v—u—n—i—m)Tkl( )¢
_ =)t oo L 2 67 o)
v(v—u—n+m)le( )¢ u(v—u—k+m) Z 6T )Tf’k &

p=M+1

where we used part (iii) of Lemma 3.2.12 for the terms occurring in the sum. Using the
previous lemma again along with the formula [Tﬁ(,}c), Tpi(v)] = —(—1)P05Th(v), taking

the residue v = v—k+m therefore gives

0z (k—m)—1)(v+a) (k—m+1)(v+a—k+m) — (k—m)N

(o) Ti(v—Kk+m)é + (k—m)(v—Kk+m) Talo)t
s . M+N
_ kl?))(v+a) Tp(v—rk+m)e + e P epTz_f;c)Téng.

p=M+1



116  Chapter 3. Representation Theory of Orthosymplectic Yangians

When k = [, we realize that the coefficient of v™" on the left hand side of such equality
is given by 2T( )£ mod E,_»&, where E = {E, },¢y is the filtration defined by (2.2.21).

Therefore, the above equation uniquely determines the action of TISE)§ by an inductive
argument on r € Z*. In particular, since T, (—) = 0, then [T_(Ilc), T(l)] = 0 which gives the
final form. Furthermore, when M is even we observe

M+N

6,TOT®
2v(v+a+n m) Z bR Tk
p=M+1

satisfies the prior equation.

Step 2. Let us now assume k # [ for the remainder of the proof. By equation (2.2.18),
we have Y JINT! (v—k+m)T,(v—2k+m) = 0. Therefore, by Lemma 3.2.12 and
relations (3.1.2), we deduce

v+a—26—N+m

A Y Tir(v—k+m)& Z se(V—K+m) T, (v—2k+m)E
p=m+l 1 M+N
- 0,7 T
(v—n+m)(v—2n+m Z o Tpet

=M+1

Hence, by combining the above equation with the one in Step 1 and using the relation

[T, TP]¢ = 6,106 = 0 for M+1 < p < M+N, we yield

(k—m+1)(vta—k+m) — (k—m)N vt+a

Tru(v)€ — WTM (v—r+m)€

(k—m)(v—Kk+m)

(v—2k+m)(v+a) Z

~ v(vta—2k—N+m) Tor(v—K+m)Tp(v—26+m)¢

p=m+1
M+N
v(v—n+m)(v+a—2n—N+m) v ¥ bTok Lot €

The coefficient of v™" on the left hand side of the above equation can be written as a

sum Y772 T for certain constants ¢ € C where ¢{7~" # 0.

Hence, the above equation uniquely determines the action of T,g)ﬁ for r > 2

inductively. Since [T1p, T3']¢ = 6,15 ¢ = 0 for the indices M+1 < p < M+N, we
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get the final form. Furthermore, when M is even we observe

M+N
T; = 0,TVT V¢
u(v)¢ (v+a+/€ m) Z ok o'
p=M+1
satisfies the prior equation, or equivalently the equation as in Step 1. O

We are now in position to prove the proposition.

Proof of Proposition 3.2.11. We shall demarcate the proof in two steps according to
the parity of M.

Step 1. Assume M is even. Considering the subset C C (Z*)? defined by the
collection {(k,?) | M+1<k < M+N, 1<1<m}, if ‘X’ is any total ordering on the
set {T,gll) | (k,1) € C} we claim that

L(\(u); @,0) = spanc {T{) --- T € | (kiyli) € C, T < T

kit1liy1?

reZzZt}.

Let V denote the span on the right hand side of the above equation. By the irreducibility
of L(A(u); @, 0) and the PBW Theorem for X(o0spasn) (see Corollary 2.4.5), it therefore
suffices to show that V is invariant under the action of T;;(u) for (i,j) € By as
in (2.3.15).

Via the relations (3.1.2), we find [Tx(u), T,s,ll),] = — Oz 00Ty, (u) for (k,1), (K',I') € C.

Furthermore, since [Tij(u),T,Sll )] = 0 for indices m+1 < i < M, 1 < j < m and
(k,1) € C, the action of Ty;(u) on each monomial T,glll)l . -T,S:l)rf in V is given by

r (1 1 a— 1 1 1
(_1) Tk(:ll)l T Tk(:,nl),,-Tkl(u)g + Z(_l) 1Tk(:1[)1 ' [Tkl(u)’ Tlgal)a] et Tk(:-,-l)-,-g’

a=1
which is equal to

() T - T Ta(w)é + 66 Y (—1)%08, Tiog, - T, - Ton Tha(w)é,

a=1

where T,Sga denotes the omitted term. Hence, by part (iii) of Lemma 3.2.12 and
Lemma 3.2.13, we can conclude T;;(u)V C V for indices M+1 <i< M+N,1<j<m.
In fact, we observed such is also true for m+1<:< M,1<j<m.
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We shall now determine T;;(v)V CV for m+1 <i< M and M+1< j < M+N,
starting with the action of T;;(v) on the vector £. Supposing 1 < b < m, parts (i)
and (ii) of Lemma 3.2.12 imply that computing the commutator [Ty:(w), Ty;(v)] gives

the expression

1 TWe _

Toa(uw)Ty;(v)€ = 5zb TzJ('U)§ m 73 U—v— KIZTP’L(U’ pi(v)€.

Evaluating the commutator [T,;(w), Tp;(v)] for indices 1 < p < m will infer the equality
Tya(u) Ty (0)6 = (85 — 636) (1 + au™L) T (v) + Toa(u) T (v)€, s0 we deduce

T = o !

(1)
+ w(u—v—K+ i 7%
wu—v—rtm) ((u a)(0zp(u—v—rK+m)—1)T;(v)€ — T3; )
Taking the residue at u = v + k — m therefore implies

1
v+a+K—m

Ti;(v)€ = — TYE.

Furthermore, we observe [T};(u), T4 )] = —0;xTi(u), so the above discussion establishes
the fact T;;(v)V C V.

When M+1 <1i,57 < M+ N, we compute [Ti,-(u),T,Sll)] = —0;uTu(u) + 6:10:T7;(u)
for (k,!) € C; thus, by part (i) of Lemma 3.2.12 and the prior discussion, we establish
T;j(u)V C V for such indices M+1 <i,j < M+N.

The rest of the proof proceeds by systematically showing T;;(u)Y C V for the
remaining indices (¢, j) € Bagy with similar argument, so we shall only outline how to

yield the remaining desired indices.

For indices m+1 < 4,5 < M, we find [T;j(u),T,S,l)] = —0;0,Tiz(u) for (k,1) € C;
thus, when M+1 < ¢ < M+N and m+1 < j < M, the commutator [ﬂj(u),T,S)] is
given by —0:x0;T3;(u) — 0510k T;z(u), which shows Tj;(u)V C V.

Given 1 < 4,5 < m, we find [Tij(u),T,Sll)] = —0;Tk;(u) for (k,l) € C, which proves
Tij(w)V C V.
For indices 1 <i < m and M+1 < j < M+N, one computes [T;;(u), T,Sll)] to be

0iTkj(w) — 6;xTu(u) for (k,1) € C; hence, when we have 1 <i<m, m+1 < j < M,
then [Ty;(w), TG] = —64Tk;(u) — 5;10xTj5(w), which therefore shows Tj;(w)V C V for
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the remaining indices. In particular, we establish the equality L(A(u);a,0) =V, so
dim L(A(v); o, 0) < 2™V,

Since Z; £ = 0, the embedding (2.4.7) equips L(A(u); @, 0) with a £l(0spasn)-module
structure determined by F;;{ = (—1)["]Ti(jl)f for 1 <1i,7 < M+N. As established in the
proof, we have the equality U(osprn )€ = L(A(u); @, 0), so the quotient of L(A(u); a, 0)
by its maximal 0$p s n-submodule will be isomorphic to the irreducible representation
V(AD) of ospann with highest weight

) m

AD = O Am W AD Yy~ (oa,0,...,0).
(1 M+1 M+n) ( )

m n

Since V(A(®) is finite-dimensional, the necessary conditions on the highest weight A(1)

forces the requirement o € 1Z*.

Conversely, suppose a € %Z*’ such that the highest weight u = («,...,,0,...,0)
of the above form makes the irreducible 0spssn-module V() is finite-dimensional. If ¢

denotes the highest weight vector of V' (1), we can compute

V(u) = spanc {Fk1l1 o Fea, ¢ | (kiy ) € C, Figy, 2 Fripilipas T € Z+}’

where C and ‘X’ are defined similar to before. In particular, we deduce there is an

isomorphism L(A(u); @, 0) = V(1) of osppsn-modules.

Step 2. Assume M is odd. Recalling the subset C C (Z*)? from Step 1, if we
suppose ‘X’ is any total ordering on the set {T,S),TT%Z | (k,l) € C, 1 < b< m} such
that TT(?ng < T,Sll ) for any indices 1 < b < m and (k,!) € C, we claim that the module
L(\(u); o, 0) is equal to the following span of ordered monomials:

W := spang¢ {(T(l) c.rd

mby mbs

)(Tlgllt)l o T;Sz)r)f |1<b; <m, (ki,l;) €C, s,r € Z+},

1 1 1 1 . .
where T'F(ﬂzj =< TT%ZJ_H and TlS,—l)i < T,Silllm for1<j<s—-1,1<i<r-1.

The proof is similar to Step 1, where it suffices to show W is invariant under the
action of T;;(u) for (3,5) € Buyn Via the irreducibility of L(A(u);«,0) and the PBW
Theorem for X(osp s n).

We note that [Ts(1), Tay] = Ty(u) for all 1 < b, < m and [Tms(u), ] = 0
for (k,1) € C. Since [T};(u), Tan] = 0 = [Ti;(u), TS] forall m+1 <5 < M, 1 <[ < m,

) mb
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we can conclude Tip(uw)W C W and T;;(u)W C W by part (iii) of Lemma 3.2.12 and
Lemma 3.2.13. Similarly, we can use that [Tkl(u),ng] = 0 for (k,I) € C and the
discussion in Step 1 to infer Ty (u)W C W as well.

We shall now determine Tz (v)W C W for m+1 < i < M, starting with the action
of T;#(v) on the vector £. Supposing 1 < b < m, Lemma 3.2.12 implies that computing

the commutator [Tys(w), Ths(v)] gives the expression

+ 1 1
Ty(w)Tim(v)€ = 5%b%ﬂfﬁ.(v)€ - mﬂ%f E— ;Tpi(u)Tpﬁ(v)E-

Evaluating the commutator [Tyz(u), Tpa(v)] for indices 1 < p < m will infer the equality
Ta(u) Tpm ()€ = (8zp — 0m) (1 + @u™)Tia (v)€ + Tia(w) Ty (v)€, s0 we deduce

1
uw(u—v—kKk+m

Tya(u) Ty (v)€ =

] ((u+a)(57b(u—v—n+m)—l)T,-ﬁ,(v)f - Tr(nli )

Taking the residue at u = v + k — m therefore implies

1 1
Tim(v)€ = — T¢,
(v)¢ v+at+Kk—m i &

Furthermore, since [Tim(u),T T%g] = Ty(u) for 1 < b < m and [Tim(u),T ,Sll )] = 0 for
(k,1) € C, we can establish T;7(v)W CW.

When M+1 <i< M+N, we compute [ﬂﬁ,(ﬂ),T,,%Z] = Tp(u) for 1 < b < m and
[T (u),T,S)] = 030k T3 (u) for (k,1) € C. By part (i) of Lemma 3.2.12 and the above
discussion, we can therefore conclude Tz (v)W C W for the indices M+1<i < M+N.

Now, for indices m+1 <4< M and M+1 < j < M+ N, we can deploy an identical
argument as in Step 1 to determine the formula T;;(v)§ = —(v+a+/~c—m)"1’l}(i1)f. In
particular, since [T}j(u),ngg] =0for 1 <b<mand [T}j(u),T,S)] = —0;;Ty(u) for
(k,1) € C, we can establish T;;(u)lW CW.

When M+1 < 4,5 < M+ N, we compute [ﬂj(u),TT%Z] =0for1 <b<mand
[Tij(u),T,Sll)] = —0;x T (u) + 6:x0;T3; (u) for (k,1) € C; thus, by part (i) of Lemma 3.2.12
and the above, we establish T;;(u)W C W for such indices M+1 <4, < M+N.

Just as in Step 1, the rest of the proof will proceed by systematically showing the

inclusion Tj;(u)W C W for the remaining indices (4, j) € Bagn with similar argument,



3.2. Finite-Dimensional Irreducible Representations 121

so we shall only outline how to yield the remaining desired indices.

For indices m+1 < i,57 < M, we find [ﬂ-j(u),TT%Z] = —0plim(u) for 1 <b<m
and [ﬂj(u),T,Sll)] = —0;10kT;z(u) for (k,1) € C; thus, when M+1 < ¢ < M+N
and m+1 < j < M, we compute [fl’ij(u),TT%)] = —0pLim(u) for 1 < b < m and
[T3(w), TS] = —8a0iT; (w) — 506 Ti5(w) for (k,1) € C, which shows Ty;(u)W C W.

For indices 1 < 4,5 < m, we find [T;;(u) T(l)] = —0T;(u) for 1 < b < m and

» Limb
[Tij(u),T,S)] = —0iTy;(uw) for (k,1) € C, which proves T;;(u)W C W.
We compute [Tz (u), 7%12] = Tiap(u)+ T (u) for 1 < b < mand [Trm(u), T,S)] =0
for (k,l) € C; hence, when 1 < 1 < m, we find [Em(u),TT(ﬁlg] = Tip(u) — dpTimm(u) for
1<b<mand [ﬂ;ﬁ(“),TlS;)] = 0 for (k,!) € C, showing T;z(u)W C W

For indices M+1 < i< M+N, we find [Tﬁi(u),T,%Z] = T5;(u) for 1 < b < m and
[T,Am-(u),T,gll)] = —0;Tmi(u) for (k,l) € C; hence, when m+1 < ¢ < M, we compute
[Ti(w), TS = Tyi(w) — 6nTm(u) for 1 < b < m and [Tai(w), T3] = — 80k Ting(w)
for (k,1) € C, showing Ti;(u)W C W.

For indices 1 < 4 < m and M+1 < j < M+N, one computes [Tij(u),T,gll)]
as 04T%j(u) — 0;xTu(u); hence, when we have 1 < ¢ < m, m+1 < j < M, then
[ﬂj(u),T,%Z] = —dapTm;(u) — &pTlim(u) for 1 < b < m and [Tij(u),T,Ell )] is equal to
—0uTkj(u) — 0510k Tiz(w) for (k,I) € C, which therefore shows T;;(u)W C W for the
remaining indices. In particular, we establish L(A(u);a,0) = W.

We recall the action of ospyn on £ is determined by Fj;€ = (—1)["]1}(1-1)5 for indices
1 <14,5 < M+N. Similar to Step 1, we have {(ospan)€ = L(A(u); @, 0), so the quotient
of L(A(u); @, 0) by its maximal 0spasn-submodule will be isomorphic to the irreducible
representation V(A() of ospysy with highest weight A = (e, ...,,0,...,0) where
the first m many terms are o. If L(A(u); @, 0) is finite-dimensional, then V' (A()) is so

which forces the requirement o € %Z*L.

Conversely, suppose a € 1Z7 is such that the highest weight 4 = (..., ,0,...,0)
of the above form makes the irreducible 0spasn-module V(1) be finite-dimensional. If ¢

denotes the highest weight vector of V' (1), we can compute
V(/l,) = spang {(Ff'ﬂbl X Ffﬁbs) (Fklh o Fkrl'r)C | 1< bj <m, (k,;,l,‘) eC, s,re€ Z+},

where C and ‘X’ is defined similar to before such that Fimp, < Fp;\yy Fri X Fripgtin
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for 1 < j<s—1,1<1% < r—1. In particular, we deduce there is an isomorphism
L(A(u); @, 0) = V() of osppn-modules. O

Corollary 3.2.14. Suppose M, N > 2 and let o, 8 € C such that o # 3. When M = 2,
then dim L(\(u); o, B8) < 2N. Otherwise when M > 3, then L(\(u);a, B) is finite-
dimensional if and only if the irreducible ospynn-module V(p) is finite-dimensional,

where

p=(a-p4,...,aa—0,0,...,0).
~ ~~ 7 N——

m n

Necessarily, o — 8 € 1Z+. When M is even in this case, then dim L(\(u); o, B) < 2™V,

3.2.4 Type II fundamental representations

In this subsection, we show that many type II fundamental representations L(A(u);: 7)
as in Definition 3.2.9 are finite-dimensional. As noted in the previous subsection, the
pullback of L(A(u);i: ) by the shift automorphism 7, (2.2.10) will yield a module
Tx(L(A(u);i: v)) isomorphic to L(A(u—a);i: y—a). In particular, the dimensions of
L(A\(w);2: ) and L(A(u—a);i: y—a) coincide, which means it suffices to prove that
dim L(A(u);i: ) < oo for any v € C with highest weight A(u) satisfying the consistency
conditions in Proposition 3.2.1.

We construct two families of representations of X(ospqn) by tensoring vector
representations of the form (2.3.9) in suitable ways. Before doing so, we construct vector
representations of the Yangian Y(gln») that produce highest weight representations
which will be utilized later in the section. As a direct analogue of (2.3.7), there is an

R-matrix representation of Y (gln») given by the assignment
R: Y(glnn) = EndC™",  t(u) — R(u).

Using the analogues of the superalgebra anti-automorphisms (2.2.12) and (2.2.14) for

Y (glmin), so one can yield a representation

« st1

0: Y(glnn) = End Cc™n, t(u) » R (—u).
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On the level of power series, such representation takes the form

-1 E;;

and we call p the vector representation of Y(gly). Finally, postcomposing ¢ with

an analogue of the automorphism 7, as in (2.2.10) will result in a representation of
Y(glnn) given by

20 Y(glnm) = EndC™",  t(u) = R™(a — u) (3.2.23)

for any a € C. On the level of power series, such representation takes the form

(-)ME;

bal tij (’LL) > 55_7' id+

We call p, the vector representation of Y(glns) at a € C. For d € Z*, tensoring these
vector representations from levels d—1 to 0 gives rise to a representation of Y (gly,)
on (CMIN)®d called the vector representation of Y (glun) from levels d—1 to 0, denoted
0(-1)—0 = (B1 84_;) 0 Ag_1 Where

0d-1—0° Y(glnin) — End(C™")®¢

s (3.2.24)
t(u) = 1, Rl ((d—4) —w).

We shall show that there exists a certain invariant subspace of (C™")®4 that is a highest

weight representation for the super Yangian.

For any super vector space V, we let €: &4 x V® — Z, denote the map defined
by €(0,v) = 3 i j)etv(o)[Vo@][Vo(s)] Where v = v1 Q@ --- ®@ vy € V®4 is homogeneous
decomposable tensor and Inv(c) = {(3,5) | ¢ < j, (%) > o(j)} is the set of inversions.
The Koszul sign is defined as the value (—1)6("’”). Accordingly, there is a representation

of the symmetric group G4 on V®¢ via the formula
o l. (® - Quy) = (—1)5(”’”)1)0(1) ® - ® Ug(d)- (3.2.25)

When V = C™", such representation maps a transposition (a b) € &4 with a < b to
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the operator

m+n
Py=>Y (-)"id®V g E; ® id®**D @ E; ® id®@Y .

ij=1
This representation lifts to a corresponding representation of the group algebra CSy
on the same tensor space. Considering the anti-symmetrizer a® € CS&, given by the
formula @ = 1 > _(sgno)o, we may consider the image of its action on such tensor
space, denoted A (C™")®4 where A@ is the image of a? under the representation
CBy — End(C™in)®d,

Proposition 3.2.15 (A. Molev). Let m,n > 1. The subspace A (C™")®d c (C™in)®d
is invariant under the vector representation (3.2.24) of Y(glnn) from levels d—1 to 0.
Furthermore,

(i) Ifd <m, setting x4 := €1 ® - - - @ eq and (g := d!AD(z4) provides the relations

ie{1,2,...,d}, j€{1,2,...,m+n}\ {i},

tij =0
(u) ¢ for i€ {d+1,...,m+n}, j € {d+1,...,m+n}\ {i},

and +1
”Tcd for 1<i<d,

tis(u)Ca =
@ for d+1<i<m+n.

(i) Ifd = m+1 and m+1 < k < m+n, setting Ty = €1 Q - Q ey, Q e and
G i= (mA DA™ (g, ) provides the relations

i€{L,2,...,m}, 5€{1,2,...,m+n}\ {i},
tij(u)Gmr =0 for i=k; j€{1,2,...,m},
i€ {m+1,...,m+n}, j € {m+1,... m+n}\{ik},

and +1
= Cmrp  for i€{1,2,...,m},
u

tii(u)Cm,k = Cm,k fOT’ 1 € {m+1a e ,m+'n’} \ {k}a

u_lCm,k for i=k.

u
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Proof. We refer the reader to Appendix A in [Mol22b] for the original proof of these
results and we shall reproduce an outline of the proof here. By virtue of the fusion
procedure, c.f. [Mol07, §6.4], there is an equality in the space End(C™?)®(@+1) given by

“ . 4 P
[ Ruivau+i-1) | (d®A@) = (id®AD) [ d®@+) —=i=L-Li1 )
=1

u

Applying (—)** to the first tensor factor of the equation above and substituting u — —u
will yield the equation

u

d . Zd PSt.l
<H Ryave-i((d—i) - ”)> (id®A?) = (id®A®) <id®(d+1) +M> |
=1

Considering that the permutation w € &4 mapping a — d+1—a for integers 1 < a < d
can be written as w = (1d)(2d—1)---([2] [¢]+1), we can describe its image P, in
End(C™")®4, Multiplying the above equation on the left by id ® P,, therefore yields

u

d ) Ed P'gt-l
(H By ((d—3) - u>) (d®A©) = (sgnw)(id 949) (id@m +=—+)
i=1

since wa® = (sgnw)a@.

To prove (i), the above argument shows that

tii(u) ¢y = d!A@ (5- i Tq+ (-)F Yo, (id®* V@ B ©id®¢ )(md)>
L) ¢ () .

[/

Since any decomposable tensor that contains an identical vector in two separate tensor
factors lies in the kernel of A, we can conclude ¢;(u)(; = 0 for i € {1,2,...,d},
j€{1,2,...,m+n}\ {i} and i € {d+1,...,m+n}, j € {d+1,...,m+n}\ {i}. More-
over, one can immediately verify #;(u)(s = (1 +u™1)¢; for 1 <4 < d and t;(u){y = (a
for d+1 <i<m+n.

For (ii), the action ¢;;(u)(n k is similarly given by

(m+1)LAM+D (5. T + (-DE Y (1d®C) @ By @ id®m 1 )(ﬂfm,k))
. ijLm, .

[/
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With similar reasoning to before, we can conclude that ¢;;(u)({mx = O for indices
satisfying either of the conditions i € {1,2,...,m},j € {1,2,...,m+n}\{i}, ori € {k},
j€{L,2,...,m},ori € {m+1,...,m+n}, j € {m+1,...,m+n} \ {i,k}. Further,
we can conclude t;(u)(np = (1 4+ 6 ™) Gni for i € {1,2,...,m}, t;;(w)np = Cmp for
i € {m+1,...,m+n}\ {k}, and txx(u)Cnr = (1 — v mk- O

Corollary 3.2.16 (A. Molev). For d < m, the submodule Y (glnjs){a C A@(Cmin)®d
is highest weight with highest weight vector {; and highest weight A(u) = (\;(u))™4™,
where \j(u) =1+ 4! for 1 <i<d and \i(u) =1 ford+1 < i < m+n.

Similarly, Y (8lnjn) Gnms1 C AMTD(CmIn)@m+Y) 4 g highest weight module with
highest weight vector (m m+1 and highest weight A(u) = (A;(w))h™, where Ai(uw) = 14+u™1

=1

for1<i<m, Api(v) =1—u?, and \i(u) =1 for m+2 <i < m+n.

We shall now assume m = L%J, m = f%], and n = % for the remainder of the
section. We recall the vector representation (2.3.9) of X(0sparn) on CMIV at level a € C
defined by g,: T'(u) — R*(a — u). On the level of power series, such representation is

given by

(_1)[i]Eij 3 (_1)[i][j]9i9jEﬁ
Uu—a U+K—a

0a: Tij(u) — &;;id+ , Where = gy,

and we shall let the juxtaposition T;;(u)v for v € CMIV denote the action o(T;;(u))v.

A notable property for the vector representation is that

o(Tij(~u — £ = ¢)) = (=1)HH16:9; o(Ty5(u + ¢)) for any ceC.

Tensoring these vector representations from levels 0 to 1 —d gives rise to a represen-
tation of X(ospasn) on (CMIN)®4 called the wector representation of X(osparn) from
levels 0 to 1—d, denoted g¢_,(1-q) := (®;fl:_01 0-;) © A4_1, and written

00—(1-d)* X(ospM[N) — End(CMlN)®d

(3.2.26)
T(w) = [T, R ((1—i) — ).

Letting {e;}" denote the standard basis for CMIV with Z,-grade [e;] = [i], any integer
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1 < d < m gives rise to the element

&g == Z (sgn 0)60(1) R er2) @ -V esq) € (CMlN)®d
o€Gy

and we claim that {; generates a highest weight module over X(ospn)-

Proposition 3.2.17. Suppose M > 2. Given 1 < d < m, & € (CMIM)®d  gnd the
module action (3.2.26) on (CMN)®4 the X(ospprn)-submodule generated by &; is a

highest weight module with highest weight vector &; and highest weight (A\g(u))MAN given

by

wray ¥ 1sksa

Ak(u) = %ﬂ_l if M—d+1<k<M, (3.2.27)
u+ kK
1 otherwise.

The quotient of X(ospun)&a by its mazimal submodule will be isomorphic to L(A(u))
with dim L(A(uw)) < 0o. When d < m, then L(A(u)) will be the type II fundamental
representation L(A\(u);d : d—1). Otherwise when d =m and N > 2, then L(A(w)) will
be the type I fundamental representation L(A(u); m, m—1).

Proof. Let us consider how T;;(u) acts on tensor products e, ® :-+ ® e,, of even
basis vectors e, ..., e, of CM IN' with indices satisfying 1 < py,...,pq < m. Since
0—-a(Tij(w)) = o(T;(u + a)) for any a € C, such action is described by the formula

Tij(u)(ep, ® -+~ @ €5,)
M+N
= Z Tial (u)em ® Talaz (u + 1)6172 ® - ® Tad—1j(u + (d_l))epd'

Q1,e050g—1=1

(3.2.28)

With suitable restrictions on the index 7, many of the terms in the above sum will be
zero. In particular, the summation indices ay, . ..,a4—1 in the formula (3.2.28) can be
restricted to 1 < ag,...,a4-1 < mwhenl < i < morrestriccedtol < ay,...,a4-1 <m
and M+1<ay,...,a3-1 < M+N when M+1<i< M+N.

In particular, we can conclude T;;(u)(ep, ® - -+ ® ep,;) = 0 for indices (4, ) lying
in Iy UTh o UTY, and those (¢,5) € I such that 1 <3 < mand m+1 < j < M.
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Moreover, for indices M+1<i=j < M+N, and i = j = m when M is odd, we have
Tii(u)(ep, ® -+ €p,) =€p, @+ ® €p,, 50 (3.2.27) is verified for these specified indices.

It remains to determine the action T;;(u)é,; for indices satisfying 1 < i < j <m
and m+1 < i < j < M. Similar to before, we observe that restricting m+1<j < M
infers that the summation indices aj, . ..,a4-1 in the formula (3.2.28) can be limited
tom+1<a,...,aq-1 < M. Allowing w € &; to denote the involutive permutation
w:a +— d+1—a for integers 1 < a < d, we set P, to denote its image under the
representation C&4 — End(CMV)®d described by the action (3.2.25).

When 1 < 4,7 < m, the restrictions on the indices aj,...,a4—1 along with the
property o(T;j(—u — k — ¢)) = 0(T3:(u + ¢)) infers that the conjugation of the action of
T;j(—u — k — (d—1)) with P,, on tensor products of even basis vectors e,, ® - -+ ® ep,
of CMIN with 1 < py,...,ps < m can be described by the formula

(Po Tij(—u—k—(d—1)) - P,)(ep, ® - - D ep,) = Tz (u)(ep, @ - - D ep,).

The above relation shows that the action of T;;(—u — k — (d—1)) on &; for indices
1 < ,j < m determines the action of T3;(u) on £. In particular, when 1 < 4,5 < m,
the action (3.2.28) takes the same form as its Y(gl,,)-counterpart as in [AMRO6, §5.3];
hence, T;;(u)€q = 0 is true for 1 < i < j < m, so T;;(u)és = 0 for all (z,5) € At.

Moreover, the Y(glys) case implies the formula (3.2.27) for values 1 < k < m. To
yield the remaining relations for m+1 < k < M, we use P, (£s) = (sgnw)&, to get
u+k—1
Tin(w)éa = (P - Tig(—u — k — (d—1)) - P,)ég = ————&a.

U+K

Thus, the irreducible quotient X(ospasn)€s/M by its maximal submodule M will be a
finite-dimensional highest weight representation with highest weight vector £; mod M
and highest weight A(u) = (Ae(u))25Y, where Ag(u)éa = Tir(u)é; as in (3.2.27). The
Drinfel’d polynomial relations can be verified directly. m

We shall now construct another family of representations of X(ospan); however,
these constructions will not give rise to type II fundamental representations unless
M = 2. Nonetheless, we provide the general framework in hope that the following
constructions can be used or modified to generate the the remaining type II fundamental

representations when M > 3 in future research.
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We assume M > 2 for the remainder of the subsection. For M+1 < k < M+N,

along with ¥ = m when M is odd, we define the element

wy, 1= Z (SEN0) Er(t) ® - - ® Eqm) ® €x(ry € (CMIN)BmHD) (3.2.29)

oe6k

where &%, is the symmetric group on the symbols {1,...,m} U {k}. Recalling the
vector representation of X(o0spn) at level a € C given by g,: T(u) — R*(a — u),
see (2.3.9), we can tensor these representations from levels m to 0, which we denote

Om—0 = (R~ Om—i) © Am—_1, to yield the representation

Om—o: X(08pprn) — End(CMIV)@(m+1)

(3.2.30)
T(w) = [T, R, ((m—i) — w).

We now consider how the above representation acts on the elements (3.2.29).

Lemma 3.2.18. Given integers M+1 < k < M+N, wy € (CMN)8m+) " gnd the

module action (3.2.30), we have the following relations:

(i) Tij(w)wy =0 for any indices 1 < i,j5 < M+N satisfying

i€{1,2,...,m}, j€{1,2,..., M+N}\ {i};
i€ {m}, je{m+1,..., M+N}\ {k}; ie{k}, j€{1,2,...,m};
ie{m+1,...,M+N}, je{m+1,...,M}\ {i};
i€ {M+1,..., M+N}\{k}, j € {m+1,...,M};
i€ {M+1,...,M+N}\{k}, j € {M+1,...,M+N}\ {i,k}.

(ii) Tyi(w)wk is an element in Clu~Jwy as described by

(u+1
vt if i€{L,2,...,m},
u

u+Kk—m-—1

Ti(wwy=q U+TrK—m
u—1

we if ie{m+1,...,M},

Wk Zf ’i=k‘,
u

| Wk otherwise.
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Proof. We will consider how T;;(u) acts on decomposable tensors whose components are
comprised of e and m even basis vectors ey, . . ., €, of CM IN with indices satisfying
1<pi1,...,om < m. Since g4(T;j(w)) = o(Tij(u —a)) for a € C, such action is described
by the formula

Tii(u)(epy @+ €p,_, @ € €y, @+ @ €y,,)
M+N
= Z(_1)(1+53—1,m)([as]+[j])[k] Cr’m1 (U—m)€p1 R (3231)

a1,...,am=1 e ® Tas—las (U— (m-|— 1 —S))Ck R R Tamj(u)epm_

With suitable restriction on the index ¢, many of the terms in the above sum will be zero.
In particular, when 1 <i < or M+1 < i< M+ N such that 7 # k, the summation
indices aj, . . ., @y, in the formula (3.2.31) can be restricted to 1 < a4, ..., a, < m and
M+1<ay,...,an < M+N. Thus, we have

¢ = m when M is odd,

Ti(u)wy = wy  for _
ie{M+1,...,M+N}\ {k,k}.

If one further assumes % # j, then the summation (3.2.31) can be written as

s—=1 m m m

Z Z Z ( Z + Z )(_1)(1+6.g_1,m)([aa1+[j1)[k] Tiay (u—m)ep, ® - - -

r=1 a,=1 t=s ar=1 at:...:as:k’

1<arr1,tmem @ To,_ja,(u—(m+1-5))er ® -+ ® T, j(u)ep,,,
so we can deduce

i€ {1,2,...,m}, j € {m+1,..., M+N}\ {k},

Tij(w)wr =0 for _
i€ {M+1,..., M+N}\{k}, j € {m+1,..., M+ N}\{sk}.

When 1 <i<mor M+1 < i < M+n, restraining M+1 < k < M+n allows
the summation indices aj,...,a, in the formula (3.2.31) to be restricted further to
1<ay,...,0,n <mand M+1<ay,...,a, < M+n. Hence, under the embedding

v: Y(glnin) = X(0sbumyn),  tii(w) = Ty (),

where v(i) = i for 1 < i < m and v(i) = m+i for m+1 < 7 < m+n, the map
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e; — ey() induces a Y(gly,)-module isomorphism Y(glnn)Cmr = Y(glnn)wi for
indices M+1 <k < M+n.

Alternatively, when 1 < i < m or M+n+1 < i < M+N, restraining the index
M+n+1 < k < M+ N permits the summation indices ay, . . . , @, in the formula (3.2.31)
to be restricted further to 1 < a4,...,a,, < mand M+n+1 < ay,...,0,m < M+N.
Hence, under another embedding

V': Y(glnp) = X(ospan),  tii(w) = Ty (w),

where /(i) = i for 1 < i < m and V(i) = m+n+i for m+1 < i < m+n, the
map e; > e, ;) induces a Y (glnjn)-module isomorphism Y (glnin)(mx = Y (glnjn) w
for indices M+n+1 < k < M+N. Therefore, via these two embeddings and the
calculations performed earlier in the proof, we can conclude

(ic{1,2,...,m}, j €{1,2,..., M+N}\ {i},

i = § e {m+l,..., M+N}\ {k},

i=k; j€{1,2,...,m},

(i€ {M+1,...,M+N}\{k}, j € {m+1,..., M+N}\{5,k}.

Tij(w)wg, =0 for <

along with
)
u—;—lwk if 1€{1,2,...,m},
W if i=m and M is odd,
Ti(u)wy = -
W if ie{M+1,...,M+N}\ {k},
L u

Let us now derive the the remaining relations. Assuming 7i+1 < j < M allows the
summation indices ay,...,a, to be restricted to m+1 < ay,...,a,, < M+N. In

particular, we can write the sum (3.2.31) as

m M s—1 M
Z Z Z(Z + Z)(—1)‘1+5s-1"")‘[““]+["m’“]Tial(u—m)epl Q-
r=8 ar=m+1 t=1 at=M+1 g1=--=a,_1=Fk,

m+1<ai,...,at—1<M o ® Tas—las (u_ (m+1 _S))ek ® - ® Tamj (u)epm'
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Letting w € &,,+1 denote the involutive permutation w: a — m+2—a for integers
1 < a < m+l, we set P, to denote its image under the algebra representation
CBpmy1 — End(CMIV)®m+1) described by the action (3.2.25). If m+1<i< M+N
and m+1 < j < M, the restrictions on the indices a,, ..., a4—1 along with the property
o(Tij(—u — & — ¢)) = (—1)E+016,0, 0(T5:(u + ¢)) infers that the conjugation of the
action of T;;(—u — k — (d—1)) with P, on wj can be described by the formula

(Pw - Tij(u) - Pw)wk = 0;T5;:(—u—Kk+m)wy

Hence, for such indices m+1 < i < M+N, m+1 < j < M satisfying i # j, we use
the fact that P2 = id®™*) to compute T;;(u)wg = 0, yielding the remaining relations
for (i). Furthermore, when m+1 < i < M one computes

—u—kt+tm+1 utk—m-—1

Tii(w)we = (sgnw) (Tii(w) - Po)wy = u—ktm FT utk—m K

which establishes the remaining relations for (ii). O

Allowing T';;(u) to denote a generating series for the extended Yangian X(ospov)
and Tij (u) to denote a generating series for the extended Yangian X(osp,n), we have
the following proposition:

Proposition 3.2.19. Suppose M, N > 2 and let W be the subspace of the X(ospum|n)-
module (CMIN)8(m+1) spanned by the elements wy for M+1 < k < M+N, and let
W' :=W & Cws. Then:

(i) When M is even, the subspace W is invariant under the operators T;j(u) for
i,j € {M+1,...,M+N}. Furthermore, the assignment Ti;j(u) — T (u)
where v(i) = M+i for 1 <i < N, equips W with an X(ospon)-module structure

isomorphic to the vector representation CON as in (2.3.8).

(i) When M is odd, the subspace W' is invariant under the operators T;;(u) for
i,j € {M, M+1,..., M+N}. Furthermore, the assignment T'i;(u) —> T iy (i) (1)
where v(1) = m and v(i) = M—1+41i for 2 < i < 1+N equips W' with
an X(ospyn)-module structure isomorphic to the vector representation C*V as
in (2.3.8).
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Proof. (i) Let us set V = (CMIV)®(m+1) and write F3; to denote restriction functor F+ in
Proposition 3.1.9. Applying the composition F o- - -0 F;_,0F;; to the representation V
yields an X(0spo|n)-module, denoted V2w+. By Proposition 3.1.6 and Lemma 3.2.18,
the subspace W is contained in V2mt. We will now prove that the action of X(0spon)
on W is determined by the formula
5 'k (sik 010 1
ﬂ](u)wk = 5¢jwk - ﬁwi + mw§

for indices M +1 < 4,7 < M+ N which will finish the proof. For ease of computations,
we shall write wy, = Y™ (—1)m e gl = S (=) fim+1-al where

a=1

,La] = Z (sgno)es(1) ® -+ ® €sia—1) D €k ® €s(a) ® -+ * ® €s(m)-
c€ESH,

Assuming M +1 < 14,7 < M+ N, one can compute the following for 0 < a < m:

[m+1 a] — 5 [m+1—a] ‘sjk Im—{—l—a] 6 1 [m+1—s]
O e TP MY
a a—1
+ 01k0i0;  [m+1—d] b70:0;(—1)k! Z(_l)s fm-+1—g]
utrk—a”? (utr—a)(utr—a+l) & I ’

so either ;;, d;x, or &z occurs in each term of the expression T;;(u)wy. Writing
m
Tyj(wwe = Y _(=1)* T (u) fi™ 77,

a=0

we see that the coefficient of §;; in T;;(u)wy is wg. Furthermore, we find that the

coefficient of f; m+1-d] ;

~ 0i(=1)° (u i a sz;; (u—s —11)(U - S)) = (1)

so the coefficient of d;;, in T;;(u)wy is given by —d;xu™'w;. Similarly, we find that the

in T;;(u)wy is given by

coefficient of f; m+1=a] 5 T7. i (w)wy, is given by

. 1 _ 0w 0i0;(—1)"
01k 0:0;(—1) < Z (u+n—s u+/<;—s+1))_ u+k—m'’
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so the coefficient of &z, in Tj;(w)wy, is given by 67,0;0;(u + kK — m) ™ w;.

Therefore, the subspace W is invariant under the action of X(0spgx) and there is
an X(ospon)-module isomorphism W = CON given via the assignment wy — ex_pr,

where Koy = Kp,v —m = K—m since M is even.

(ii) Similar to the proof of (i), applying the composition JF3 o- -0 Fj;_, 0 Fj; to the
representation V = (CMIV)®m+1) yields an X(0spy y)-module VZm+. Proposition 3.1.6
and Lemma, 3.2.18 shows that the subspace W’ is contained in VXt and the action of
X(ospyn) on W’ can be similarly determined to have the form

Sir(—=1)H 63%0:0,(—1)L0]
T;J(u)wk = 51;_7"wk + J » w; — u -{-JK) —m ’(,Uj

for indices 4,5 € {m,M+1,...,M+N}. Hence, there is an X(0sp;y)-module iso-

morphism W’ = CUN given via the assighment wz + e; and wy — exy1_p for
M+1< k< M+N, where K1y = kpyy—m = K—m since M is odd. O

For 1 < d < n, we now construct new representations of X(ospn) by composing
the representation g,,—0 (3.2.30) with the shift automorphism 7, (2.2.10) for each of
the values a = 0,1,...,d—1. Tensoring together these resulting representations gives

Xo—(d-1) = (@0 0m—0 0 Ti) 0 Ag_1: X(08pasn) — End(CMIN)®m+Dd (32 39)
Further, for integers 1 < d < n we consider the element
M|N\®(m+1)d
&= Zae@d(sgn TN Wo(M+1) ® - -+ ® Wo(ara) € (CHIV)BWHD

where &, is the symmetric group on the symbols {M+1,..., M+d}. Furthermore, we
let
0: X(ospoy) = EndW and o': X(ospyn) = End W’

denote the representations as described in Proposition 3.2.19. Similarly, we may compose
these representations with their respective the shift automorphisms 7, for each of the
values a = 0,1,...,d—1. Tensoring together these resulting representations gives

Po—(a-1) = (®i5 00 7) 0 Mgy and gy = (B & o) 0 Agr:

00— (d-1): X(0spov) — End W®¢  and O0—(a-1)° X(0spyn) — End(W')®,
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Proposition 3.2.20. Suppose M, N > 2. Given 1 < d < n, £; € (CMIN)®m+1)d g4
the action (3.2.32) on the space (CMIN)®m+Dd  the X(osppn)-submodule generated
by &5 is a highest weight module with highest weight vector & and highest weight

p(u) = (u(w) R given by

( u+1
_— 1<k<
u—d+1 ¥ 1< ™
uth—m=—d . Sl1<k<M,
U+rK—m
pie(w) = _u—d if M+1<k<M+d, (3.2.33)
u—d+1 - -
u—ktmtl e N N_d+1<k < M+N,
u—Kk+m
\1 otherwise.

The quotient of X(ospmn)&a by its mazimal submodule will be isomorphic to L(p(u))
with dim L(u(u)) < oo. Iis first two Drinfel’d polynomials are Q(u) = u+1 and

Q(u) = u—d.
When d < n, the remaining Drinfel’d polynomials are Pyyq(u) = u—d+1 and

Py(u) =1 for allk € I \ {M+d}. Otherwise when d = n, then Pyryn(u) = u—n when
M is odd or Pypyn(u) = u—n+2 when M is even, with Py(u) =1 for allk € I\{M +n}.

Proof. For now, we will consider how T;;(u) acts on tensor products wp, ® - -+ ® wy, of
the elements (3.2.29) with indices satisfying M +1 < py,...,ps < M +d. Such action is
described by the formula

ﬂj(u)(wpl X--Q wpd)

M+N
- Z (_1)(d_1)[j]+zf;11[ai]na1 (W) wp, ® Toyaz (v — 1wy, @ -+ (3.2.34)
@ Ty yg(u = (A= 1))y,

Using the relations described in Lemma 3.2.18, one can show T;;(u)(wp, ® - - - @wp,) =0
for indices (%, §) € Lo UTo1 UTh0 and Tix(u)(wp, ® « - - Q@ wp,) = Ak(w)(Wp, @ * + - @ wy,)
for indices 1 < k < M where Ax(u) is as described in (3.2.33).

Assuming M is even and M+1 < i,j5 < M+ N, Lemma 3.2.18 shows that the
indices in (3.2.34) can be restricted to M+1 < ay,...,04-1,< M+N. Moreover,
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since &; € W®9, there is an equality Xo—(4—1)(Tij(u))és = éo_’(d_l)(TV—l(i)y—l(j) (w))éa.
Thus, by the X(ospojn)-module isomorphism COV = W, e, — wpsr and the algebra
isomorphism X (spx) 2 X(0spojn), Tij(—u) = Ti;(u), one can use the properties of the
vector representation of X(spy) as in [AMRO6, Theorem 5.16] to conclude T;;(u)€q = 0
for (3,7) € I and Tir(w)éa = Ak(u)é4 for the remaining indices M+1 <k < M+N.

Similarly, when M is odd and %,j € {m,M+1,..., M+ N}, Lemma 3.2.18 shows
that the indices in (3.2.34) can be restricted to ay,...,aq—1 € {M, M+1,..., M+N}.
Furthermore, as & € (W')®?, then Xo—a-1)(Tij(w))éa = 96_,(,1_1)(T(u')—l(i)(u')—l(j) ())&
Thus, by the X(o0sp;x)-module isomorphism C'W =~ W’ and the superalgebra isomor-
phism X%(0spy ) = X(0spyn) where d = {n+1}, one can use the properties of the
vector representation of X9(ospyn) as in [Mol23b, §3] to conclude T;;(u)¢; = 0 for
(¢,7) € I 1 and Tir(u)és = Ae(u)€g for the remaining indices M+1 < k< M+N. O

3.2.5 Classification conjectures

In this final subsection, we formulate conjectures for the classifications of the sets
Repg; (X(05pan))/~ and Repsy (Y (05parin))/~, Which will be stated shortly. We note
that the much of the style and argumentation in this subsection mirrors that given
in [Wenl9, §4.1]. At the end of the subsection, we will also see examples of infinite-
dimensional irreducible representations of X(0spysn) that arise from spinor representa-
tions of 0spysn which demonstrates how such conjectures do not extend beyond the

finite-dimensional setting.

Supposing M, N > 2, we recall the map

U: Repg (X(0sprin))/~ = {(Br(w))ed"* € Clu]?, oq X C[u]™t™ ! | Bi(u) is monic}

Cp,e

LO\(w)) = (Q(w), Q(w); (Pe(u))ker)

and remember such map is not injective: U(L(A(u))) = O(L(u(u))) if and only if there
exists a series f(u) € 1+u~'Cu~] such that u(u) = f(u)A(u).

In Corollary 3.2.14, it is established that the type I fundamental representation
L(A\(uw); , B) is finite-dimensional if and only if o — 8 € O, where O is a certain
non-trivial subset of ;Z*. Accordingly, we let C[u? 4 denote the subset of Clu]?
described by pairs of polynomials (B;(u), Ba(u)) that have equal degree and can be
written as By(u) = c[[;,(u— ;) and Ba(u) = d][i—,(u—B;) such that ¢,d € C* and
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ai—ﬂiEOQ%Z“Lforeachlgign.

When M > 3, we conjecture that Theorem 3.2.8 can be refined to establish that
the Drinfel’d polynomials Q(u) and Q(u) satisfy (Q(u), Q(v)) € Clu]? o4 In this case,

we assert there exists a well-defined map

Uo: Repig (X(osprn))/~ — {(Bi(uw))pd " e C[u]%’edxC[u]m+"_1 | Bi(u) is monic}
L(A(w)) = (Q(w), Q(w); (P(u))ker)

and that Uo(L(A(u))) = Uo(L(u(u))) if and only if there exists f(u) € 1+u'Clu~1]
such that u(u) = f(u)A(u).

Conjecture 3.2.21. The map Up is a surjective function.

In the following, let ¢)(,) denote the morphism X(osprn) — End L(A(u)), and
recall the central series )J(u) defined by (2.4.4). We therefore have the following

irr

conjecture for the classification for the set Repg (X(0spasn))/~:

Conjecture 3.2.22. Suppose M > 3, N > 2. The isomorphism classes of finite-
dimensional irreducible representations of the extended Yangian X(ospyn) are para-

metrized by tuples

(£ (w); (Be(w)iZ™*) € (1+u™"Clu™]) x CluJ e x Clu]™™,
where the polynomials (By(u))7"t! are monic. The underlying correspondence Ux is
given by
Ux (L(Mw)) = (f(w); Q(u), Q(u); (Ps(w))ker),

where f(u) € 1+ u™'Clu™"] is the unique series such that y}paw)(Y(u)) = id and
(Q(u), Q(u); (Pe(u))ker) are the Drinfel’d polynomials corresponding to L(A(u)) under
the map Up.

Proof. We first show the map Uy is well-defined. Assuming dim L(A(u)) < oo, the
irreducibility of L(A\(u)) implies that the central series Y(u) acts by a scalar series

y(u) € 1+ u'CJu']. However, as shown in the proof of Theorem 2.4.7, there is an
equality ps(Y(u)) = h(u)Y(u) for all h(u) € 1+ u~1C[u~]; thus, f(u) = y(u)™! is the
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unique series satisfying (¢aw) © pf)(Y(u)) = id. Furthermore, since pf @) = Qrw)rw)
for all h(u) € 1 + u~'CJu~"], there is the assignment

Ux: L((u)A(w)) = (A(w) ™ "y(u) ™ Qu), Q(w); (Pe(w))rer)-

The surjectivity of Ux follows from the surjectivity of Up, so we can associate a
finite-dimensional representation L(A(u)) to any tuple (é(u),Q(u), (Px(u))ker) sat-
isfying the appropriate conditions. In particular, Ux maps L(f(u)  y(u)"1A(u)) to
(f (w); O(w), Q(w); (Pu(w))ier) for any f(u) € 1+ u'Clu~1].

For injectivity, Ux (L(A(u))) = Ox(L(u(w))) infers Uo(L(A(u))) = Oo(L(u(v))), im-
plying u(u) = h(u)(u) for some series h(u) € 1+u 'CJu~!]. However, h(u)ly(u)™! =
y(u)~?! if and only if A(u) = 1.

U

Shifting our attention to the representation theory of Y(ospasn), we note the
projection ey : X(ospan) = Y (0span), T (u) — T (u) induces the pullback functor

ey : Rep(Y (ospun)) — Rep(X(ospan)),

while the embedding ty : Y (0sparn) — X(ospan), T (w) — Y(u)~ T (u) gives rise to
another pullback functor

ty : Rep(X(ospmin)) — Rep(Y (0spasin))-

Since ey (Y(u)) = 1, one can readily verify ¢} o €} = 1. In fact, for those representa-
tions ¢ of X(ospar ) satisfying ¢()(u)) = id, then one can also get (€3 0 t3)(¢) = ¢

As ey is an epimorphism, &} restricts to Rep™ (Y (0sparn)) — Rep™ (X (0sparn)),
and consequently, Repg; (Y (0sparv)) — Repg; (X(0sparn)). Conversely, elements of
the center ZX(ospyn) act on any finite-dimensional irreducible representation V' of
X (osparn) by multiplication of non-zero scalars in C. Under the induced action of the
Yangian Y (osppn) by the embedding, V' remains irreducible as a Y (0sp s n)-module.
Hence, ¢} similarly restricts to Repg; (X (0sparv)) — Repg; (Y (0sparn))- In particular,
the function

T: Repg; (Y (0sparn))/~ — Repig (X(08par))/ms V] [€5(V)]
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is injective with image equal to

{L(A(w) € Repgg (X(08pa11x)) /- | 02 (V(w)) =1id },

where ¢, (,) denotes the morphism X(o0sppn) — End L(A(u)).

Conjecture 3.2.23. Suppose M > 3, N > 2. The isomorphism classes of finite-
dimensional irreducible representations of the Yangian Y (ospyn) are parametrized by

tuples
(Bi(uw)i** € Cluld eq x Clu]™" 7,

where the polynomials (Bg(uw))7 ™! are monic. The underlying correspondence is given

Proof. Under the map {x, the image im Y is mapped to tuples (1; (Bx(u))p4"t?),

m+n+ 1

where the polynomials (By(u))7e,""" are monic such that B;(u) and By(u) are coprime

of the same polynomial degree. m

Definition 3.2.24. The fundamental representations of Y (0sp s n) are those irreducible
representations that correspond to Drinfel’d polynomials of the form

(u+a,u+B;(Qker) or (1,1 (u+'y)‘s“=)kel)

for i € I and a, 8,7 € C where a # 8. The fundamental representations corresponding
to the first tuple are called type I and denoted L(a, ), whereas those corresponding to
the second tuple are called type II and denoted L(i : 7).

Conjecture 3.2.25. Suppose M > 3, N > 2. Given any finite-dimensional irreducible
Y (osparn)-module V, there exists r €N, 44,...,i, € I, and o, B,71,...,¥ € C where
a— B € O, such that V is isomorphic to the irreducible quotient of

Y(ospun)((®6® - ®&) € L(e, B) ® L(in : 11) ® -+ ® L(ir : )

where ( € L(a, B), & € L(ix : 1), 1 < k < r, are the highest weight vectors.

We now conclude this subsection by investigating a family of infinite-dimensional

irreducible representations of the extended Yangian X(ospn) and demonstrate how
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the Drinfel’d polynomial relations fail in these cases. As is convention, we still set

m= 4], = %], andn ="

The superexterior algebra A(C™") on C™" is the quotient 7(C™")/J, where
T(C™") is the tensor superalgebra on C™" and J is the two-sided graded ideal generated
by elements of the form z ® y + (—1)I¥ly ® x, where z,y € C™" are homogeneous.
Letting {Ga+1,--->Cm} U {YrM+n+1,--->Ym+n} denote a homogeneous bases for Cmin
where [(;] = 0 for m+1 < i < M and [yx] = 1 for M+n+1 < kK < M+N, then
A(C™") can be regarded as the unital associative C-superalgebra on the even generators

{Ga+1,---,Cu} and odd generators {yar+n+1,- - -, Yrm+n} Subject to the relations

GG = —GiG, Yk Yl = Y1 Yk, and  Gyr = —UkG,

for all m+1 <14, < M and M+n+1<k,l < M+N. We note that the superexterior
algebra A(C™") is finite-dimensional if and only if n = 0.

Given a superalgebra A, we say that a homogeneous linear map D: A - A is a
graded anti-derivation if D(zy) = D(z)y— (—1)PlElzD(y) for all homogeneous elements
z,y € A. For indices m+1 < i < M we let 0, € End A(C”"") denote the even anti-
derivation defined by 0;,(¢;) = é;; and O;,(yx) = O for indices m+1 < j < M and
M+n+1<k < M+N. For indices M+n+1 <k < M+N we let 9, € End A(C™")
denote the odd anti-derivation defined by 9,, ({;) = 0 and 9,, (y;) = 0w for the integers
m+1<i<Mand M+n+1<k,l < M+N.

Letting m¢,,m,, € End A(C™") denote the left multiplication maps by ¢; and yx,
respectively, we observe that m¢, will be even and m,, will be odd. Furthermore, if
{-, -} denotes the graded anti-commutator {z,y} = zy + (—1)Flllyz, where x and y
are homogeneous, then there are the following relations in End A(C™I"):

me,me; = —Mmgme;, My Ty = Ty My MMy = —My TN
aCiacj = _aCjaCi’ Oyi.Oy, = Oy Oy, 00y, = =0y, 0;,

{0c;, ij} =0ijid, {0y, my} = 8i5id, O¢myy, = —my, B,y Oyme; = —mg Oy

The spinor representation of 0sp sy is the representation on A(C™"), denoted

Sp: 0SpM|IN — g[(A(CmIn)), (3235)
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which for the indices m+1 <14, < M and M+n+1<k,l < M+N is determined by
1. .
sp(F;) = mCiaCj - 55@' id, sp(F;) = _aCiaCj’ sp(Fy) = —M¢; M,
1. .
sP(Fit) = My, Oy + S0kid,  sp(F) =0y, sP(Fi) = —mymy,

Sp(Fik) = _mciayk, sp(Fﬂ_c) = mykacia sp(Fik) = aCiayka SP(E,;E = MMy

and also

when M is odd.

When M is odd, the spinor representation is irreducible. However, when M is even,
the spinor representation splits into a direct sum A(C™") = A(C™")* @ A(C™")~ of
two irreducible submodules, where A(C™")* is the submodule spanned by monomials
consisting of an even amount of generators (not to be confused with the submodule
spanned by generators of Z,-grade 0) and A(C™")~ is the submodule spanned by
monomials consisting of an odd amount of generators (not to be confused with the

submodule spanned by generators of Zy-grade 1).

Proposition 3.2.26. The spinor representation (3.2.35) of osparn lifts to a represen-
tation of the extended Yangian X(ospan) via the assignment

X(OSPM|N) — End A(len), T,J(’U,) —> 5—,;_7' id +(—1)[i]sp(F,-j)u—1.

Proof. One checks the defining relations (2.2.8) directly with use of the identity

> ()Psp(Ep)sp(F) = (5 + ) 8- id +wsp(Fy).

p=1
L]

By the above proposition, we will obtain either one or two irreducible infinite-
dimensional representations of X(0spasn) depending on the parity of M. However, in
each case we will see that the Drinfel’d polynomial relations for Py, (u) fails. Indeed,
when M is odd, A(C™") is a highest weight module over X(0spys ) With highest weight
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vector 1. However, we observe that

Am(u)  u

)

so the Drinfel’d polynomial relation fails for Ppsyn(u) fails. Assuming now that M is
even, the submodule A(Cm|")+ will be a highest weight module also with highest weight
vector 1. However, we similarly deduce

)\M+n(u) i U+

Avmin+1(¥)  uw—

1

2

£

2

Moreover, the submodule A(C™")~ will be a highest weight module over X(ospasn)

with highest weight vector yjs+n+1- However, we can again compute

+

)\M+n(u)
AMin+1 (U)

u
- )
u

NN

showing that the Drinfel’d polynomial relation for Pysyn(u) fails for another time.
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Chapter 4
Yangians of Strange Lie Superalgebras

The main purpose of Chapter 4 is to adapt and extend many structural results obtained
for Yangians of the strange Lie superalgebras of type @, as found in [Naz99], to the
case of type P.

The outline will be as follows. The first section §4.1 establishes required notation
and introduces the presentations of the strange Lie superalgebras sy = py,qn that
will be used throughout this work. In §4.2, the definitions of Yangians Y(sy) are
provided via the RT'T realization as originally given by Nazarov. The main result of
the chapter resides in §4.3, where the PBW-type Theorem for the Yangian of type P
is proven. In subsection §4.3.3, the definition of the Yangians Y;(sy) are given via
the Rees superalgebra formalism and it is shown that they serve as a homogeneous
quantization of gly|n[2]?, which represents the fixed-point subalgebra of glyx[2] under

a suitable involution 4.

4.1 Strange Lie Superalgebras

In Kac’s original classification of simple Lie superalgebras [Kac77], the two families
of classical Lie superalgebras which are not basic are known as the simple strange
Lie superalgebras of types P and ). Types P and () each describe several families
of “strange” Lie superalgebras, including such simple strange Lie superalgebras. In

this work, we consider the most general families in each type, denoted py and qn

144
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for N € Z*, respectively. In fact, we will see that py and qy may be realized as
fixed-point Lie sub-superalgebras of gly|x under certain involutions, which prompts the

following notation.

For a positive integer N € Z*, we define the set Iy := {i € Z\ {0} | -N<i< N}

and redefine the gradation index
[-]: IN— Zy, i+ [i] where [{]=0 and [—i]=1 for i>0. (4.1.1)

We denote CVV to be the vector space C2V equipped with the Z,-grading given by
[es] = [i], where B = {e; }ic1,, is the standard ordered basis of C2V enumerated from —N
to N omitting 0. Consequently, the space of C-linear maps CN¥IV — CNI¥ denoted
End CVWV| carries a natural Z,-grading such that [E;;] = [i]+[j], where {E;;}i jery is

the collection of standard matrix units with respect to the basis B.
We now consider two relevant involutory automorphisms of glyy = gl(CV™), which
we will denote (—)*° and (—). The first is given by
(—)LQZ g[N[N — g[N|N; Eij —> E,LL]Q = E_,,;,_j, (412)
whereas the second is defined by

(=)= (=) 0 (=)": gl — glww, By > B = —(-D)PIHIE , (413)

where (—)* is the super-transpose (2.1.7). We observe that the involutory automor-
phism (—)LQ can also restrict to one on the special linear Lie superalgebra sly)y, which

we will denote with an identical symbol. We can now define the following.

Definition 4.1.1. The Lie superalgebra pyn of type P (or periplectic Lie superalgebra)
is the fixed-point Lie sub-superalgebra g[f\i;l ~ ©f glyy under the involutory automor-
phism (—)*:

PN = B[f\:w ={X € glyw | X" =X}

Similarly, the Lie superalgebra qn of type Q is the fixed-point Lie sub-superalgebra s[jvql N

of sly|x under the involutory automorphism (=)<

qn =sliy = {X €slyy | X = X}
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Under the identification End CNIV = Matyn(C), any element A € glyn can be
identified with a 2 x 2 block matrix

AOO AOI
AIO All

where A;; € Maty(C) for all i, j € {0,1}. In particular, we find that A € py if and only if
Ay = —Ab,, Agy = Ab;, and Ajp = — A%, where (—)* denotes the transpose on Mat y(C)
with respect to the anti-diagonal. We note that the simple Lie superalgebra of type P is
the Lie sub-superalgebra of py consisting of all matrices A with tr(Agy) = 0 = tr(A4y).

Similarly, A € qy if and only if Agy = A;; and Ag; = Ajo- One can also consider
the Lie sub-superalgebra sqn = [qn,qn] that consists of all matrices A € qy with
tr(Ap1) = tr(Aio) = 0. Observing that the identity matrix I still lies in sqx, the simple
Lie superalgebra of type @ is the quotient psqy := sqn/CI.

Returning out attention to the Lie superalgebras py and qy, we wish to express
these Lie superalgebras in terms of generators and relations. To this end, we find

that py is generated by the operators
Eij = Ej+EY = Ej — (-)UUE ;e glyy forall i,jely  (414)
subject only to the relations

[Esj, Eu] = 0Ea — 6a(—1)E+UD+IDE,
by (—L)HEHEE_ L 45, (—1)EHIDHE,

and E+ (—1)HUHEE ;. —0.
Similarly, the Lie superalgebra qy is generated by the operators
Fij = By + Ej; = Eyj+ E_i; € slyy forall i,j€ Iy (4.1.5)
subject only to the relations

[Fijs Fra] = 0Fa — (1) EHDBHIDE 45 E 5, (1) EHDEHDE,
and F,;j - F_j’_.,; =0.
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4.2 Yangians of Types P and ()

In this section, we shall provide the definitions for the Yangians Y(py) and Y(qu) using
the RTT formalism as first provided by Nazarov in [Naz92].

4.2.1 Yangians of strange Lie superalgebras

To start, we recall the super permutation operator in (End CNIV )®2 as given by

P:= Y (-1)VE;® Ej;. (4.2.1)

i,jEIN

By setting (—)4 = (=) ®id, (-)4" =id® (=) € (EndC¥™)® for K = P, Q, these

maps act on the super permutation operator via
P% =—p% and (PH)% =(P%)M =-P.
Defining Q¥ := P, so

QF =— Z (—1)[i][j]E¢j ®E.-; and Q%= Z (_1)[j]E1'j ® E_j-i, (42.2)

the R-matriz RX(u,v) is the rational function in formal parameters u,v taking coeffi-

cients in (End CNIV )®2 given by

P K
R¥(u,v) :=id®?* ———— — ¢
u—7v u—+v

€ (End CM™)®* (4, v). (4.2.3)

We recall that for indices 1 < k < I < m, there is a morphism of superalgebras

Pkl : (End CNIv )®2 — (End CNIv )®m

a®b 120D ¢ q ® 18(-+-1) g p @ 18™-)

and set Xy = g (X) for an element X € (End CVIV )®2. When X = X (u,v) depends
on formal parameters u, v, then we write Xy;(u,v) for pg (X (u,v)). In particular, the

R-matrix (4.2.3) satisfies the super quantum Yang-Bazter equation (SQYBE):

R12 (u, v)ng(u, 'U))Rzg(’l), 'LU) = R23 (’U, 'LU)R13 (’LL, ’LU)R12 (u, 'U). (424)
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Regarding (—)4 and (—)% as maps lifted to act on the space (End CNIV )®2 (u,v),

such act on the R-matrix via the formulas

RP(u,v)% = —RP(u,—v), RP(u,v)* = —RP(—u,v),
and R%(u, 'v)Liz = R(—u,v), RQ(u,v)‘8 = RP(u, —v).

Moreover, given the operator jd := . IN(—l)[j] E;_;, the array of equalities

P?=id®? PQP=QF, Q°P=-Q° (Q)?=0,
PQY¥=—jd®?, QWP =jd®*?, and (QWV)?%=id®?

infer that the R-matrix R¥ (u,v) satisfies the properties

(R¥ (u,v)T)4 = R¥(~u,—v), (4.2.5)

RX (u,v)RE(—u, —v) = <1 1 L Oxa )id®2, (4.2.6)

u—v)?  (u+v)?
known as crossing symmetry and unitarity, respectively.

Given a superalgebra A and indices 1 < k < m, we also recall there is a morphism

of superalgebras
or: End(C'W) @ A - (EndC"W)*" @ 4, ¢ @w—id®* D@y eid®™ P gu,

and set X; = x(X) for an element X € End CN¥ ® A. When X = X (u) depends
on a formal parameter u, we shall write Xy (u) for the element (X (u)). We can now
provide the definitions of the Yangians for both types P and Q:

Definition 4.2.1. The Yangian Y (pn) of py is the unital associative C-superalgebra
on generators {7;1(") | 3,5 € In, n € Z*}, with Z,-grade [7:1(")] := [i]+[4] for all n € Z,
subject to the RTT -relation

RP(u,0)Ti(w) T2(v) = Ta(v) T1 (u) R (u,v)

in (EndCNlN)®2®Y(p ) (42.7)
N)[u ",V ]]1

where RP(u,v) is identified with RP(u,v) ® 1, and

T w)T(—w) =1 in End(C"W)® Y(pn)[u'], (4.2.8)
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given T (u) := 3, ;er (— D) E;; © Tij(u) € End(CNW) @ Y (pn)[u™"] is the matrix
consisting of the series T;;(u) := 6;;1+ > o, 7;J(")u_” € Y(pn)[u™] for i,5 € Iy and
T/ (u) = (=) ®id)T(w) where (=) := —(-)"".

Definition 4.2.2. The Yangian Y(qn) of qx is the unital associative C-superalgebra
on generators {7;1(-") | 3,5 € In, n € Z*}, with Zy-grade [7:1(")] := [i]+[4] for all n € Z*,
subject to the RTT-relation

R%(u,v)Ti(w)T2(v) = T2(v) T (4) R (u, v)

o2 (4.2.9)
in (EndC"™)™ @ Y(qn)[ut!, v*],
where RQ(u,v) is identified with R?(u,v) ® 1, and
T%w)=T(-v) in End(C"W)® Y(qn)[u*], (4.2.10)

given T (u) == 3, jer, (-D)HHUE; @ Ty5(u) € End(CVV) @ Y(qn)[u™"] is the matrix
consisting of the series Ty;(u) := 01+ > o, 7;§n)u"" € Y(qn)[u™?] for i,5 € Iy and
Tw) = ()" ®id)T(w).

The remainder of this subsection will dedicated to the overview of many structural
properties of the Yangian Y(qy) that have been established in [Naz92], [Naz99]. The

treatment of the type P Yangians will be investigated in the following subsections.

In terms of formal power series, the RT'T-relation (4.2.9) equivalently takes the form

(= 1) HHARHAR [T, (), Ty (0)] = ﬁ(nj(um(v) — Tij () Ta(u)) (4.2.11)
1
u—+v

(VBT () Taa(0) = (~1) BT, (0) Tia(w))

for all ¢, 7, k,1l € In, where the above equality may be regarded as one in the extension

Y(qn)[ut?,v*] and [-,-] is understood as the super-bracket
[T ), Ta@)] = To(Taw) — (-)EPEHOT )T, ),
Furthermore, the relation (4.2.10) is equivalent to the condition that

Toi-ij(w) = (1)U (—y) forall 4,j € Iy, (4.2.12)
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which is an equality in the space Y(qn)[u™]-

Given any formal series f = f(u) = 1+ Y 02, fou™ € 14+u"'C[u"!], one can

readily verify that the mapping

pr: T(u) = f(w)T(w)

defines a superalgebra automorphism of Y(q). Furthermore, the Yangian Y(qy) admits
at least two important superalgebra anti-automorphisms. First, by regarding T'(u) as a
formal power series in u~! whose coefficients lie in End(CVV) ® Y(qx), its constant
term is the unit object 1 = id ® 1; hence, T'(u) has an inverse T'(u)~!. In particular,

the assignments

s: T(w) = T(—u),
S: T (u) — T(u)™?

define superalgebra anti-automorphisms of Y(qy), c.f. [Naz99, §2], [Mol07, Proposi-
tion 1.3.3]. The Yangian Y(qy) comes equipped with a Hopf superalgebra structure as
provided by the comultiplication

A: Y(qn) = Y(an) ® Y(an), T (w) = Tyy(u) Ty (u),

the counit
e: Ylpy)—C, T(u)—1,

and the antipode
S: Y(an) = Y(an), T(u)+— T(u)™

The Yangians of type () benefit from the existence of a Hopf superalgebra epimorphism
T Y(qn) » U(qn), Tij(w) = 6; — (-D)EUF4~! forall 4,5 € Iy,

which is referred to as the evaluation homomorphism. Hence, there is a pullback functor
7*: Rep(U(qn)) — Rep(Y(qn)), which restricts to Rep™ (U(qn)) — Rep™(Y(qn)) by

virtue that 7 is surjective. Moreover, composing the map 7 with the Hopf superalgebra



4.2. Yangians of Types P and Q) 151

morphism
v U(ay) = Y(aw), Fig e —(DEATD forall 4,5 € Iy,

gives m ot =1id, so ¢ is in fact an embedding of Hopf superalgebras.

There are two relevant ascending algebra filtrations on Y(qy), which we denote

F(Y(qn)) = {Fa(Y(qn)) }nen and F/(Y(qn)) = {F.L(Y(qn)) }nen, given by the respective
filtration degree assignments

degp 7'( ™ =p—1 and degg 7'( " =n.

for all 4,5 € Iy and n € Z*. From the defining relations of they Yangian of type Q,
one can deduce that the associated graded superalgebra induced by the second filtra-
tion F/'(Y(qn)) is supercommutative. The more important filtration is the first, which

will induce a more interesting associated graded superalgebra:

Y(an) = gre Y(an) = P Fa(Y(an))/Fao1(Y(an)).

neN

We note that grY(qy) inherits a Z,-graded structure from grY(qy) by assigning
Za-grade [i]+[j] to the image 7'( " of 7'(") in F,_1(Y(qn))/Fn-2(Y(qn)). Further-
more, F(Y(qn)) is a Hopf filtration, so gr Y(qx) is equipped with an N-graded Hopf
superalgebra structure given by the comultiplication

grA: grY(an) — gr(Y(aw)®*) = (er Y(qw))™
T TN e1+10T,"

&y

the counit
gre: gr¥(an) = C, T” =0,

and antipode
grS: gr¥(ay) = gr¥(aw), T~ =T,

for all 4,5 € Iy and n € Zt.

Letting sly|n[2] = slyjy ® C[z] denote the polynomial current Lie superalgebra

associated to sly|n, the involution (—)** may be extended to an involutory automorphism
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of slyn[2], which we also denote (—)%, by assigning
(X ® f(2))° =X°® f(—2) forall X € sly, f(2) € Clz].

Hence, we define the twisted current Lie superalgebra sly) N[z]‘Q to be the fixed-point
Lie sub-superalgebra of sly|x[2] under the the involutive automorphism (=)

5[N|N[z = {g (2) € slynl2] | g(z) = g(2) } E[Nuv[z]

Using the identification X 2" = X ® 2" for elements in gly|n[2], we find that sly, N

is generated by the operators
FM(2) i= Eyj2" + Ef (—2)" = (Byj + (—1)"E=i~;)2" € glyn[2]° (4.2.13)
for all 7,5 € Iy and n € N, subject only to the relations

[FI™(2), F ()] = 8F§™™ (2) — 6 (—1) EHIDEHD Femen) ) (4.2.14)
+ 65k (L) FIE (2) — 6,y (— 1) EH DA+ +m plmdn) )

(n)( ) — (=1)"F ™ (z) =0. (4.2.15)

—i—j

In particular, we have the following theorem:

Theorem 4.2.3 (Theorem 2.3 in [Naz99]). There is an N-graded Hopf superalgebra

isomorphism

®: Wstwn[“) S e Y(an), FGY o —(-1)HUT (42.16)

%)

fori,j €Iy, neZt.

4.2.2 The extended Yangian of type P

In this subsection, we introduce the extended Yangian of p. In subsequent subsections,
we will show that the Yangian Y(py) may be regarded as a certain quotient of the

extended Yangian by an ideal generated by an infinite number of central elements.
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Definition 4.2.4. The extended Yangian X(px) of py is the unital associative C-super-
algebra on generators {1}(1-") | i,5 € In, n € Z1}, with Zy-grade [TZ(J")] := [i]+[4] for all
n € Z*, subject to the RT'T-relation

R (u,v)T1(u)Ta(v) = Ta(v)T1(w)RP (u,v),

in (End CN[N)®2 ® X( +1 +1 (4217)
pN) [['u‘ U ]]’

where T'(u) := Y, o (1)U E; @ T(u) € End(CYWV) @ X(pw) [u™"] is the matrix
consisting of the series T;;(u) 1= 6;;1 + > . TMu=" € X(py) [u=] for i,5 € Iy, and

n=1 " 1ij

RP(u,v) is identified with RP(u,v) ® 1.

In terms of formal power series, the RTT-relation (4.2.17) is equivalent to the

relations

1 i+l .

[T (u), Ta(v)] = m(—l)[ B (T (w) T (v) — Ty (0) Taa(u))
1 .
- (5i,_k 3 (~1)HEHABHAT, ()T, () (4.2.18)
p€EIN
byt 3 (1), _p(v)ﬂ-,,(u))
pEln

for all 4, j,k,l € Iy, where [-,-] is understood as the Lie superbracket

[T (), Tia(v)] = Tij(u)Tra(v) — (= 1) FHDEHDT ()T (u).

For any formal series f(u) =14 o, fru™ € 1+ u'Clu~'], the map
pr: T(u) = f(u)T(u) (4.2.19)

defines an automorphism of X(py). Furthermore, by defining 77 (u) := ((-)¥ ® id)T'(v)
where (=) = —(=), so that Tfjp(u) i= (—1)EUET; _;(u), the assignment

37 T(u) = T (u) (4.2.20)

also defines a superalgebra automorphism of X(py). We remark that although the map
(=)": EndC¥V — End CMW is an anti-automorphism, the induced map jP on X(py)

will only be an automorphism due to the crossing symmetry property (4.2.5) of the
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R-matrix RP(u,v).

The extended Yangian X(px) also has at least two important superalgebra anti-
automorphisms. Since T'(u) as a formal power series in End(CVV) ® X(pn)[u~'] whose
constant term is the unit object 1 = id®1, it must have an inverse T'(u)~!. Hence,

each mapping

s: T(u) = T(—u), (4.2.21)
S: T(u) — T(u)™" (4.2.22)

induces a superalgebra anti-automorphism of X(py). For instance, proving that a
graded map (—)°: X(pn) — X(pn) is a superalgebra anti-morphism is equivalent to
showing the relation

Rp(ua )Ty (0)T7 (u) = T3 (w) Ty (U)RP(U, v),

where T°(u) = 3, jer (-1 E; @ T (u) and T (u), k = 1,2 are defined in the
suitable ways. In our case, one can achieve this by modifying the RT'T-relation (4.2.17)

in suitable ways and using the stated properties of the R-matrix R (u,v).

4.2.3 The Hopf structure and central series Z(u) of X(py)

The extended Yangian X(px) comes equipped with a Hopf superalgebra structure as
given by the comultiplication

A: X(py) = X(pw) @ X(pw),  T(u) = Ty (u)Tig (w),

the counit
e: X(pny) = C, T(u)—1,
and the antipode
S: X(pn) = X(pw), T(uw) = T(w)™

Let us define Z(u) := T9(u)T(—u) and further consider the series Z(u) lying in
X(pn)[u~1] such that id ® Z(u) = Z(u). Multiplying both sides of the RT'T-relation
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by —(u + v) and setting v = —u yields the equation

Using that QT (u) = QTY P(u) and T (u)Q = T P(u)Q and applying the map (—)7 to
the first tensor factor of (4.2.23), we deduce

P® Z(u) = PT (w)Ta(—u) = To(—u)T{ (u)P.

Multiplying the above on the left by P, we obtain id®? ® Z(u) = T (u)Ty(—u). Simi-
larly, if we instead multiply the above equation on the right by P, we yield the relation
id®? @ Z(u) = Tp(—u)T§ P(u). Therefore,

Z(w) = T9 (w)T(—u) = T(—u)T7 (u), (4.2.24)
or rather put,

S52(u) = Y Th(WTy(—u) = Y Ta(—w)T{;(w), (4.2.25)

kely keln

where Z(u) =1+ - Z,u™ € X(pn)[u~']. We note that the coefficients of Z(u) are
homogeneous of even degree, so all coefficients of Z(u) lies within the even subalgebra
of X(pn). Let us denote ZX(pn) to be the subalgebra generated by the coefficients
of Z(u) and let (Z(u) — 1) to mean the two-sided graded ideal of X(py) generated by
the coefficients of Z(u) —1. We now consider the following proposition which was first
established in part by [Naz92].

Proposition 4.2.5. The coefficients of the series Z(u) € 1+ u 1 X(pn)[u™'] given
by the equation id ® Z(u) = T7 (w)T(—u) = T(—u)T9 (v) lie in the center of X(py).
Furthermore,

A: Z(u) — Z(u) @ Z(u), (4.2.26)

where A is the comultiplication map on X(py). In particular, ZX(py) is a sub-Hopf
superalgebra and (Z(u) — 1) is a graded Hopf ideal of X(pn).

Proof. The proof is similar to [AAC*03, Theorem 3.1], but we shall provide it here.
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First, we observe
(id® Z()Ta(v) = T (w)Ti(—u)Ta(v) = T} (u) RP (—u, v) T3 (v) Ty (—u) RP (—u, v),

by the RT'T-relation. By applying (—)jP to the first tensor factor of the RT'T-
relation (4.2.17) and using the unitarity property (4.2.6), one yields the equation

T (u) RP (—u, v) 1Ty (v) = To(v) RP (—u, v) " 'T7 (u).
Therefore,

(id ® Z(u))Ta(v) = Tz (v)RP (—u, 'u)_llep(u)Tl(—u)RP(—u, v)
= To(v) RP(—u,v) 1 (id ® Z(u)) RP (—u,v) = To(v)(id ® Z(u)),

since id ® Z(u) commutes with RP(—u,v) ® 1. Furthermore, A: Z(u) = Z(u) ® Z(u)
is readily verified, since

AZw)= ), (~DHIH(Ty(—u) @ Tur(—u)) (Toj-b(u) @ Tos-1(w))

abkely

= Z (—1)[k][j]+[k]+([“]+[k])([j]+[b])Tia(—U)T-j,-b(u)®Tak(—u)T-b,-k(u)
abkely

= Y (—D)EHET ()T o (4) ® G2 (u) = Z(u) ® Z(u).
abelN

Let us set Z = (Z(u) — 1). One may verify that ¢: Z(u) — 1 and so ¢(Z) = 0.
Moreover, since A(Z,) = >, .-, Za ® 23 (Where Zy = 1), then for X € X(pn) we
have A(XZ,),A(Z,X) e Z®X(pn) +X(pn) ®Z, so T is a coideal. Lastly, the axioms
of the Hopf superalgebra structure infer that the image of Z(u) under the antipode is
given by

S: Z(u) = Z(u)™,

which proves the proposition. O]

By identifying Z(u) with Z(u), equation (4.2.24) shows that the inverse of T'(u) is
given by
T(u)™ = Z(—w) T (—u), (4.2.27)

so the antipode on X(py) is the mapping T'(u) — Z(—u)~'T7"(—u). In particular, the
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square of the antipode is given by

S%: T(u) = Z(—u)Z(u) T (u). (4.2.28)

4.2.4 The Yangian Y(py)

We re-arrive at the definition of the Yangian for py:

Definition 4.2.6. The Yangian Y (py) of px is the quotient of X(px) by the two-sided
ideal (Z(u) — 1), i.e.,

Y(pn) = X(pn)/(Z(w) — 1).
For 7,7 € Iy, n € Z*, letting 7;1(") denote the image of the generator Ti(j") under the

canonical projection X(pnx) = Y(pn) shows that the Yangian Y(py) coincides with
Definition 4.2.1.

In terms of formal power series, the RT'T-relation in Definition 4.2.1 is equivalent
to the relations

1 AT .
[Tis(w), Ta(v)] = py— (—1)VEHEEHIAE (T (u) Ta(v) — T (v) Ta(w))
1 e
- (51.,_,c 3 (— 1) GBI (4T, (v) (4.2.29)
p€ElN
— 01 Z (_1)[1'][k]+[i]+[j][l'v]+[j]+[i][p]77c _p(v)ﬁp(u)>
pElN

for all 4, ,k,l € Iy and relation (4.2.8) is equivalent to

3 Td W) Tii(~u) = 61 forall i,j € Iy. (4.2.30)
kel
Since (Z(u) — 1) is a graded Hopf ideal, the quotient of X(px) by (Z(u) — 1) comes
equipped with a unique Hopf superalgebra structure such that the canonical projection
X(pn) = X(pn)/(Z(u) — 1) is a Hopf superalgebra morphism. Hence, there is a Hopf
superalgebra structure on Y(py) is given by the comultiplication

A: Y(pn) = Y(pN)®Y(pN), T (u) = Ty(uw)Tiz(u),
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the counit

e: Ypn)—2C, Tu)m—1

and the antipode
Y(pn) = Y(pn), T(@) = T(w)™ =T (~u).

We shall consider two ascending algebra filtrations on Y (py), which will be denoted

F(Y(pn)) =F = {Fu}nen and F'(Y(pn)) = F' = {F. }nen, given via the respective
filtration degree assignments

degp T( " =n—1 and degm T( " =n, (4.2.31)

for all 4,57 € Iy and n € Z*. From the relations (4.2.29), one can deduce that the
associated graded superalgebra grg. Y(pn) = @, oy Fn/F, 1 is supercommutative. We
shall direct our attention to the first filtration F which will induce a more relevant

associated graded superalgebra.:

g Y(pn) = g Y(pr) = @ Fu/Foc1,

neN

We note that gr Y (px) inherits a Zo-graded structure from Y (py) by assigning Z,-grade
[i]+[J] to the image 'T( ™ of 7'( ™ in F,_; /Fn_s. Furthermore, F is a Hopf filtration, so
gr Y(py) is endowed with an N-graded Hopf superstructure given by the comultiplication

grA: grY(pn) — gr (Y(pw)®?) 2 (gr Y(pw))®?
TV s TMel1+10T,

the counit
gre: gr¥(py) =+ C, T\ 0,

and antipode
grS: grY(pn) = grY(pn), 7—;](@) = _7—;](@)_

for all 4,5 € Iy and n € Z*+.

Letting glyn([2] = glvv ® C[2] denote the polynomial current Lie superalgebra

associated to gly|n, the involution (=) may be extended to an involutory automorphism
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on glyn|[2], also denoted (—), by assigning
(X® f(2)) =X"® f(—z) forall X €glyn, f(2)€C[z.

‘The twisted current Lie superalgebra g[NlN[z]‘P is defined as the fixed-point Lie sub-

superalgebra of gly|n[z] under the involutive automorphism (=)

H[N]N[Z] = {9(2) € glvn[2] | 9(2 9(2)}.

Using the identification X 2™ = X ® 2" for elements in glyn[2], we find that gly N
is generated by the operators

EM(2) 1= Eyj2" + Ef (—2)" = (B — (-1 E_,_52m € glyw[z]”  (4.2.32)
with i,j € Iy, n € N, subject only to the relations

[ESV(2), ER (2)] = S#ET* ™ (2) — 6(—1)EHIDEHID ET+™) () (4.2.33)
— 8- (— 1)L EHmECA) () 4 g, o (—1)E+HEDELm EOmte) )

EQ (2) + (—1)lH+HnER () = 0. (4.2.34)

We now have the following proposition:

Proposition 4.2.7. There is an N-graded Hopf superalgebra epimorphism
®: U(glvin[z]” Y S —(—1)HITm 4.2.35
 Uolviv[2]") = grY(pn), Ej 7 (2) = —(=1)"V'T; (4.2.35)
foralli,j € Iy andn € Z+.

Proof. To show ®: gly; ~[z]* — Lie(gr Y(py)) is an N-graded Lie superalgebra mor-
phism, one passes the defining relations (4.2.29) and (4.2.30) to the associated graded
superalgebra and uses the expansions

1 >

—1 -1 _A\r
= +
uFv 1 Fulv Tz_;( U~ )
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to yield the relations

[T T = —p4(— 1) HUHHI RO Tntn=) 5 pyla7(mtn=
+ 8 _p(—1) B+ l+m—1 7—;’(_n;+n—1) _ 5j’_l(_1)[i][j]+m—1 T($c+n—1)_

and
()T 4 (—)HEHEITE  —

==

for all 4,5 € Iy and m,n € Z*. The desired relations follow from multiplying the first
relation by the scalar (—1)@+HE and the second by —(—1)Ell+n,

Hence, ¥ extends to a superalgebra morphism {(gly; ~[2]©) = grY(py), which
is also N-graded. Such morphism is surjective since grY(py) is generated by the
elements 7_21(."). Lastly, it can be seen that ¥ is a morphism of Hopf superalgebras
from the descriptions of those Hopf superstructures on #(glyn[2]) and grY (py) as
before. O

4.3 Poincaré-Birkhoff-Witt Theorem for Yangians of
Type P

In this section, we illustrate how to obtain an explicit algebraic basis for the Yangian
Y (pn) which amounts to proving the Yangian is a filtered deformation of £{(gly, ~[2]9).
Indeed, suppose such an isomorphism @: ${(glyn[2]") => grY(pn) exists, where
grY(py) is the associated graded superalgebra induced by the filtration F as described
by (4.2.31). The Poincaré-Birkhoff-Witt Theorem for Lie superalgebras infers one can
construct a basis B for (gl ~[2]*), so any lift of ®(B) will yield the desired basis for
the Yangian.

4.3.1 Evaluation and R-matrix representations

Given the vector representation p: U(glyy) — End CMIN | one can pullback p by the
superalgebra morphism ev,: 4(glyn([2]) = U(gly|n) induced by the assignment z — a
to yield the evaluation representation of U(glyn[2]) at a € C given by

Po = eV; p: ﬂ(g[N|N) — End CNlN, E,;j — a"p(Eij)
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for all 7,5 € Iy. For any complex numbers ay,...,a, € C, we consider the tensor

product of 2n evaluation representations of U(gly|n[2]) as described by

pal—’an = (®?:1(pai ® p—ai)) o A2n—1, (4.3.1)

where Agn_1: U(glnn[2]) — U(glnn[2])®?" is the unique (2n—1)-fold coproduct send-
ing X € U(gln N[z]bp) to the element Z( X) X1)®X(2)®- -+ ®X(2n) in Sweedler notation.

The following lemma establishes that the intersection of the kernels of all such
representations pg, —q4,,, @1, - ., a, € C is trivial. The core ideas for the proof come from
the proofs of similar statements in [Naz99, Proposition 2.2] and [AMRO06, Lemma 3.5].

Lemma 4.3.1. (,cz+ (a,.....an)ccn K€T(Pa1—a,) = 0 in U(glyn[2])-

Proof. Let {X;}" be an ordered homogeneous basis of gly)nv such that X; = id,
where we will write x; = p(X;) for all indices ¢ = 1,2, ...,4N2. Furthermore, we shall
let {80,,(glnin[2]) }nen denote the canonical ascending algebra filtration on $(glyn(2])
determined by monomial length.

Step 1. Given the ordering on {X;}4, there will be an induced total ordering ‘<’ on
the basis {X,2™ | 1 < b < 4N?, m € N} of glyn[2]. The Poincaré-Birkhoff-Witt Theo-
rem for Lie superalgebras states that its universal enveloping superalgebra $4(glnn[2])
therefore has a basis consisting of ordered monomials of the form [];_, Xs,2™ such that
Xy, 2™ R Xy, 2™ for indices j =1,...,7—1, and X, 2™ # X, 2™ if [ X, ] = 1.
Given a nonzero element A in {(glyn[2]), we may therefore express such element as
a unique linear combination of PBW basis monomials in {(gly|n([2]) and we shall let
{M; = [, Xs,;2™i};_, denote the collection of those basis elements with maximal

filtration degree n.

For each index 1 < k < n, we shall set Z3;_1 = 2 and Zo; = — 2 where 21,...,2,
are formal variables. In particular, any n integers 1 <7 < --- <1, < 2n determine an

embedding

Vps,orn - @IV [2]) P = @y M(lvin[2x]) @ S(glin[—24])
Yi(2) ® - @ Yp(2) = 12V Y (Z,) ® 192D @ ... @ Y, (2,) @ 18@—™),

where Y;(2), 1 < k < n, are monomials in Y(glyn|2]).
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Thus, for each monomial M;, 1 < i < p, we associate the supersymmetrized object

M,;U = Z (_1)E(U’Mi) Z Uryyorn ( ®_7=1 Xbia(j)zmw(j)), (432)

o€Gn, 1<ri1<--<rn<2n

where (—1)€() is the Koszul sign provided that €: &, X (glyn[2])®" — Zj is the map
defined by the assignment €(o, ) = 3_ 4 j)crav(0) [Zo(t)|[Zo@] for homogeneous tensors
T=21Q - Qx, € (glyn[2])®" and where Inv(c) = {(k,I) | k <, o(k) > o(l)} is the

set of inversions.

Step 2. For each current Lie superalgebra glyn[2i], 1 < k < 2n, we endow a
total ordering on its basis {X,Z" | 1 < b < 4N%, m € N} in a similar way to
before so that we obtain a basis B of @}, #{(glyn[2]) consisting of elements of the
form ®32) X, 2 -+ X 5 ¢, Where Xy, 2 - Xy, 7 is a PBW basis

monomial for gly n[2;]. Considering now the linear map

¢: @i, Uglvin[Ze]) = Wolvn)®® (21, - -, 2n)

2n ~mg,1 ~Mk,hy 2n 2n Mg AME,hy
®k:1 ka,lzi e kaﬁhk zi > (®’i=1 ka,l e ka,hk) k=1 zk e zk ,

we claim that the elements ¢(M7), i = 1,...,p, are linearly independent. Noting that
each term in the sum ¢(M7) is an element of the basis B up to sign, it suffices to show
that there exists a basis element (up to scaling) in each expression ¢(M7) that does
not occur in any other expressions ¢(M7) for k # i. In fact, we observe that such a

candidate is

¢(V1v37"'!2n_1 ( ®.;L=1 Xbijzmij)) = (Xbil ® 1 ® e ® Xbin ® l)z;n“ Ut z;nin, (433)

since the elements M7 := Zaeen(—l)e(a’M‘) ®fcy b,y 2™o@, i =1,...,p, are linearly
independent.

Step 8. For any complex numbers a;,...,a, € C and each index 1 < k < n, we
shall set @ox_; = ax and @z, = —ay. In particular, as

2n
Par—ran(Xo2™) = DX, x5 = 1424V @ x, ®1d®" M) € End(CVV)®,
k=1
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then the image of any monomial H;.ZI Xp;2™ under pg,_q, Will be given by

2n
~m ~my k ky n
Z ak11 LT XI[)11] . Xl[yr ] c End(CNlN)®2 _ (4.3.4)
k1,....kr=1

Consider now the subspace of End(CYN"V)®2" given by
Wy, := spang {Xz'1 ® -+ ® Xig, | X1 =1d occurs in at least n+1 tensor factors},

where 1 < i, < 4N? for 1 < k < 2n. We observe that the image of any element in
Up—1(glvn[2]) under pg,—,, Will be contained in the subspace Ws,. Moreover, since
any n integers 1 <r; < --- < r, < 2n determines an embedding

Urgyeyrn - End(CNlN)®n — End(CN[N)®2n

P1® -y — id®rn-Y 1 ® id®rzg...q On ® id@(zn_"'n),

we can use (4.3.4) to express the image of the monomial M; under p,,_,, as

Z (_l)E(U,Mi) Z a:;lwu) .. 'a::ia(n)vrl,...,rn ( ®wa(j)) mod Ws,,. (4'3'5)
j=1

o€, 1<r1<<rn<2n

Since p is a faithful representation, then so is p®%": U(glyy)®2* — End(CNIV)®2n
and its extension to $(gly|n)®%"[21, ..., 2,] = End(CN)®2"[2,, .. .| 2,], which we also
denote p®2". Therefore, since the elements ¢(M?), i = 1,...,p, are linearly independent,
then their images under p®" are so. That is, a nonzero linear combination ) >_, A\;¢(M7)

implies that the sum of polynomials

p

n
Z )‘i Z (_1)6(0,Mi) Z Uriyeestn ( ® Xb,-,(j))?rTia(l) e Z"T:ia(")
: j=1

i=1 o€6, 1<r1<-<rn<2n

is nonzero. Hence, there exists complex numbers ay,...,a, € C such that

p

n
DN Y ()M S G Gy (@ Xy

i=1 o€EG, 1<r1<-<rp<2n

is nonzero. Comparing the above with (4.3.5), we conclude that that image of p,, 4, (4)
in the quotient End(CVV)®%" /W,, is nonzero and therefore p,,_q,(A) # 0, proving



164  Chapter 4. Yangians of Strange Lie Superalgebras

the lemma. O]

For any a € C, restricting the evaluation representation p, to (gly ~[2]") via
the inclusion U(glyn[2] F) U(glvwv[z]) will give rise to a corresponding evaluation

representation which we also denote by p,:
pa: Wglwin[2]") = EndCMW,  ED(2) s a"Eyj + (—a)"E}; (4.3.6)

for all 7,7 € Iy and n € N. Accordingly, by regarding p,, 4, for a;,...,a, € C as a
representation of 4(glx ~[2]*) by restriction, it follows from the previous lemma, that

we have (),cz+ [a,..an)ccn keT(Pa;—a,) = 0 in U(glyin[2]”) as well.

We will now direct our attention to a canonical representation of the extended
Yangian X(py) called the R-matriz representation. This representation will give rise
to an important representation of the Yangian Y(py) which will be used to prove the
isomorphism U(gly) ~[2]°) =2 gr'Y(py). For any a € C, such R-matrix representation at
a € C is given by

R.: X(py) = EndC¥V T(u) = R(u,a). (4.3.7)

In terms of formal power series, the R-matrix representation takes the form

- . E;; —1)EU+EE_. .
R,: Tji(u) — _(_1)[11[31 <_(_1)['L][J]1 + i (1) 3; ) ,

uUu—a u+a

for i, € Iy; hence, Ra(Tj(f)) = —(—1)[i][j]pa(E§?_1)(z)) for n € Z*. By the Hopf
superalgebra structure on X(py), we may consider the tensor product of these rep-
resentations: (R, ® R_;) o A: T'(u) — Rjs(u,a)Ri3(u, —a). Considering the series
fa(u) € 1+ u™'C[u"] given by

_ (u+ a)?
fa('u') - (u+a)2_ 1’

the pullback of the representation (R, ® R_;) oA by the shift automorphism 4, (4.2.19)
yields a new representation ¢, := u}, (R, ® R_s) o A) of X(pn) given by

da: X(pn) — End((CNlN)®2, T(u) = fo(u)Ri2(u,a)Riz(u, —a).
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In particular, we find that ¢,(Z(u)) = id®?. Indeed, by the unitarity property (4.2.6)

of the R-matrix, we have

$o(T7 (W)T(—1)) = fa(u) fa(—u) Ry3(u, —a)’% Rya(u, @)t Ria(—u, @) Riz(—u, —a)
= fa(u) fa(—u) fa(u) " fa(—u) " id®*" = id®*" .

Therefore, the representation ¢, descends to a representation of the Yangian:

©a: Y(pn) = End(CVNM)®2 T(u) = fa(u)Riz(u,a)Rys(u, —a). (4.3.8)

4.3.2 The PBW Theorem and supercenter of Y (py)

We are now in position to prove that Y(py) is a filtered deformation of U(glyn[2]*).
The proof of the following theorem is similar to [AMRO06, Theorem 3.6], which leverages

the lemma introduced in the previous subsection.

Theorem 4.3.2. The epimorphism in Proposition 4.2.7 is an N-graded Hopf superal-

gebra isomorphism
@: Uglwwl]") = erY(pw), ED(2) = —(=1)HATM (4.3.9)
fori,j €Iy andn € Z*.

Proof. By Proposition (4.2.7), all that is left to show is injectivity. To this end, we let

A € U(gln ~[2]”) be a nonzero homogeneous element of gradation degree d; that is,

A= Z Aksikm E(.kl_l)(z) ... ng:;;l) (), where Akviikm o C,

1115 3%mIm 411 2151} 30mIm
and the summation indices @, jp, kb, 1 < b < m, satisfy 4, j» € Iy and > -, kp = d+m.
Considering the element

A= S (1) Sateltnl ghipibm 00 ) €y ()

1151;5-3¢mJIm ! J1t1

whose summation indices %y, j, ky, 1 < b < m, satisfy the same conditions as above,
then ®(A) coincides with the image of A in gr'Y(py), so it suffices to prove that the
filtration degree of Aisd.
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Step 1. Via the expansion f,(u) = (u+a)?/((u+a)®>—1) = 37 (u + a)~?, where

o= (G- § (e

n=2p

we see that the coefficient of ™ in f,(u) is given by Eﬁ (™ 2p)( a)"?P. In particular,
by regarding a as a formal variable in C, the coefficients of f,(u) are polynomials in Cla]
with polynomial degrees given by deg, fa W = 0 and deg, fa ™ = n—2 for n > 2.
Recalling the map p, (4.3.6), the image of T( ™) under the representation (4.3.8) is given
by

Ca(T) = 81 1d® —(—1) M (p,(E2V(2)) ® id +id ® p_a(EZ(2)))
+ Y O ESTV() ® p-a(EL TV (2),

r+s+t=n

where r € N and s,t,n € Z*. Thus, goa(7;§" ) € End(CNV)®2[q] with polynomial degree
n—1, where its highest degree term is —(—1)El1(p, (E("_l)(z)) ®id +id ® p,e(E ("_1)(2))).

Step 2. Given complex numbers zi,...,x, € C, we consider the tensor product

Py = (Rhy ¥z;) © Ap_1. Equipping Y(py)®" with the tensor product filtration

F™ = {F}sen induced by the one on Y(py), ie., Ff = Dsr jnFe, ® - @ Fy,,
then writing the sum Y™ k, = d 4+ m allows one to express A,_1 (T;V . - T(k'"))

Jin Imim

n k ™ n
Z (755111) ) [QI] (7;7(,.14") ) [Qm] IIlOd Fd—l ’

q1,--,gm=1

where (7'( "))[qb] = 19@-1) g T-*) g 18(n-a) for 1 < b < m. Regarding z1,...,Z,

b *bJb

as formal variables taking values in C, the image of the monomial 7;5“1) 7;1(5{:‘")

under the representation (,,_,, will lie in End(CNV)®%*[g,, ..., z,] with polynomial
degree satisfying deg (¢z;—an (T T(k'"))) < d. If End(CVN™M)® (g ... zn]as

i Imim

denotes the subspace of polynomials in z,...,z, with degree at most d—1, the
element ¢, _ ., (7;5511) . 7;7(5{:”3) is equivalent modulo End(CM™)®2 [z, ... z,]4_1 to
the expression

n

S (1R llzb]m]H (P2qy EF~2(2)) @ id +1d ® p_gy, (ER(2))) @),

q1;.--sgm=1
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where X#l = id®?#-2) @ X ® id®?"~2®) for 1 < b < m. In particular, we have
P21z (A) = poyzn(A) mod End(CVN)®2 [y, . x.]y

where p;, ., is the representation (4.3.1). By Lemma 4.3.1, there exists a;,...,a, € C
such that pa,_a, (A) # 0; thus, ¢u,_ . (A) has polynomial degree d, so A is of filtration
degree d. n

We now arrive at the Poincaré-Birkhoff-Witt-type theorem for the Yangian as an
immediate consequence of Theorem 4.3.2 and the Poincaré-Birkhoff-Witt theorem for
Lie superalgebras:

Corollary 4.3.3 (PBW Theorem for Y(py)). Let B be an index set of pairs (3,j,n)
in (Z*)? x N such that {Eg?) | (i,5,n) € B} forms a basis for glyn[2]”. Given any
total ordering ‘X’ on the set B = {7;1("“) | (,4,n) € B}, the collection of all ordered

monomials of the form

T(nl)T(ffz) .. _7‘_(”_‘!:)

i1j1 7i2j2 ke !

where 7:(5?:) eB, T, < 7,metD) g 7:5?:) # T mat1) e (Ma) o odd constitutes a

taja ta+1Ja+1’ ta+1Ja+1 laja

basis for the Yangian Y (pn).

For instance, the index set B may be constructed via the collection of all tuples
(¢,4,m) € (Z*)? x N that satisfying any of the following four conditions:

1<[|i|<|j|<N,neN; 1<i=j<N,nel;
1<—-i=j3<N,ne€e2N+1; or —N<-i=5<-1,ne2N

Suppose g denotes a Lie superalgebra with trivial supercenter and assume there
exists an involution (—)? € Aut(g). By extending (—)? to an involutive automorphism
of g[z] in a similar way to (=)*, ie., (X ® f(2))® = X? ® f(—z) for X € g and
f(2) € C|z], then it is a result of [Naz99, Proposition 3.6] that the supercenter of
$4(g[2]?) must also be trivial, where g[2]® denotes the fixed-point Lie sub-superalgebra
of g[z] under the automorphism (—)®. Via this result and the previous theorem, we
obtain another corollary:
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Corollary 4.3.4. The supercenter ZY (pn) of Y(pn) is trivial: C- 1.
Proof. By the decomposition glyy = (C - id) @ (glyn/C - id), it follows that

glvw[2]” = (glyw/C - id)[2],

P

so U(glyv[2]* ) has trivial supercenter as established by [Naz99, Proposition 3.6].
In particular, the associated graded grY(py) therefore has trivial supercenter via

Theorem 4.3.2, which implies the same is true for Y(py) as well. O

Proposition 4.3.5. There is a Hopf superalgebra embedding
v: U(pn) = Y(pn), Eijr— —(—1)[i][j]7;§1) for 4,7 € Iy.
Proof. Taking the coefficient of u~! in the relations (4.2.29) give

[7;§1), ﬁk(v)] = _5jk(_1)[i][j]+[i][l]+[k][l] Ti(v) + 511(_1)[1'] Tir(v)
+ gi,_k(_l)[i][l]+[i]+[j][l] Ti-i(v) — 5,',-1(—1)["]["] Tix(v),

so one takes the coefficient of —(—1)E7+¥ly—1 above. Furthermore, we realize that
relation (4.2.30) infers 7;§1) - (—1)[i][j]+[j]7:(il,lj = 0, so one multiplies this relation by
the scalar —(—1)“1 [4], The Hopf superstructures are compatible by their definitions, so

all that remains to show is injectivity, but this follows from Corollary 4.3.3. O

4.3.3 Homogeneous quantization

When g is any finite-dimensional Lie superalgebra, Nazarov described in [Naz99, §1]
that given any even, super-symmetric, and g-invariant element w € g ® g, then rational
function 7(u,v) = w/(u — v) is antisymmetric (r(u,v) + o(r(v,u)) = 0) and is an
r-matriz, i.e., SCYB(r(u,v)) = 0, where

SCYB(r(u,v))

= [7"12(U1,U2), r13(u1,u3)] + [r12(u1, uz), T23(U2, Us)] + [T13(U1, Us),Tzs(Uz, Us)]

We refer the reader to §2.3.3 for a more detailed exposition on the notation for the super

classical Yang-Baxter equation (SCYBE). In particular, such an element w € g® g
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allows one to define a map

dw: glz] = (3® ) [u,v] = g[2] ® g[7]
f(2) = (adsw ®id +id @ ad(y)) (

w (4.3.10)
u— v)’

which will be the Lie co-superbracket for a Lie superbialgebra structure (g[z],d,,) on

the polynomial current Lie superalgebra g[z].

When g is basic, such an element w € g ® g exists as one can select it to be the
Casimir 2-tensor due to the fact that g is equipped with an even, non-degenerate,
super-symmetric, and g-invariant bilinear form (see §2.3.3). With similar reasoning,
such an element also exists when g = gl n as the the super trace induces a bilinear

form
(+y-): glawy x gy = €, (X,Y) = str(XY)

which is even, non-degenerate, super-symmetric, and gly|y-invariant. Hence, taking the
Casimir 2-tensor (2 of glynx to be the preimage of the identity element in End(glpn)

under the isomorphism

gluiv ® glan = gluiny ® g[j\",ﬂN = End(glmn),

then Q € g[ﬁTN satisfies the required properties to define the above Lie superbialgebra
structure on glyn[2]. In fact, the Casimir 2-tensor of glyn takes a familiar form: since
the dual basis { E; }i jery of the standard basis {Ej;}ijery of glyn with respect to the
above bilinear form is given by E; = (=1)MEj;, the element 2 can be written as

Q= Z (-1)Ful B @ (-1)PE; = Z (-)VE; ® Ej;,
ijeln ijeln

which is the super permutation operator P. By the gljsy-invariance of P, the Lie

co-superbracket on glasn (2] is equivalent to the assignment
n—1
Sp(X2") = Y Y (-D)VIX, Eyle® @ Bz !
i,j€In a=0
for all X € glpyn and n € ZT, where it is understood that dp(X) = 0.

A natural question to ask is whether or not it is possible to define such a Lie

superbialgebra structure on the strange Lie superalgebras sy = pn, qn in a similar way
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via the use of an appropriate element in s§°. However, as was observed by M. Nazarov
in [Naz92], the above map 4, fails to be non-trivial in these cases due to the fact that

all even, super-symmetric, and $y-invariant elements w € 5%2 are trivial:

w e CZ Ei® Ejj if sy =pn and w e Cid®? if 5N = qnN.

1,j=1
In either case, it is verifiable to check d,, = 0. In light of this, Nazarov observed that one
can instead define a non-trivial Lie superbialgebra structure on the twisted polynomial
current Lie superalgebras gl N[z]LK for K =P, Q, so we will state such construction
here. To start, it is proven by [Naz99, Proposition 1.1] that the rational function

K
, 9

K _
" (u’v)_u—v u+v

€ g[NIN(u v) (4.3.11)

is antisymmetric and an r-matrix (SCYB(r¥ (u,v)) = 0); in particular, such r-matrix

allows one to define a map

ox: glvin[z] = (glviy @ glviw) [u, v] & glvin[2] ® glvw[2]
f(2) = (ady) ®id +id @ adsw)) (r* (u,v)).

In fact, since (id ® ads())(Q¥ /(v +v)) = ((id ® adf(—v)) (P/(u+ v)))bé{ for polynomials
f(z) € gln ~[z]*", the gly|nv-invariance of P implies that the function § restricts to

well-defined map 4: glyn[2]*" — glnin[2]”" ® glwn[2]" given by

Sx(Xz") =" Y (-)VIX, Eyle" ® (Ejs2® + Ej; (—2)"), (4.3.12)

t,J€IN at+b=n—1

where X has polynomial degree 0 and it is understood that §(X) = 0. In terms of the

generators of gly|n|[2] ‘K, one can compute the formula

n a b i 1 a b
6p(EF () =Y (-DM Y (ER(2) ®Ey)(2) — (-)EHIEHDED () © ER (2))
kely a+b=n—-1
for 3,7 € Iy and n € Z* when K = P, with a similar formula holding when K = Q
(see [Naz99, §2]). Hence, it follows from the properties of the r-matrix r¥ (u, v) that dx
becomes a Lie co-superbracket for a Lie superbialgebra structure (gly, N[z]‘K, dk) on the

space glyn[2] K
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We adopt the same definitions of (homogeneous) Hopf superalgebra deformations
and quantizations as in §2.3.3; namely, we assume such notions are taken over the
polynomial ring C[#], where 7 is a formal element of Z,-degree 0. As noted in Chapter 2,
if Uy(b) is any Hopf superalgebra deformation of $4(b) for any Lie superalgebra b, then b
is endowed with a Lie superbialgebra structure (b, §5) defined by the Lie co-superbracket

_ A(X) - AP ()
h

mod 7 (Uz(b) ® Ux(b)) forall X e€b, (4.3.13)

where Ay is the comultiplication map on Uz(b), A;™ = o o Ay is the co-opposite
comultiplication, and X is any element in the fiber of X € b —» $(b) under the
composition Uz(b) = Uz(b)/AUx(b) = LI(b).

Furthermore, as discussed in [Wen22], if Uy(b) is a homogeneous quantization (over

C[A]) of an N-graded Lie superbialgebra (b, ds), then its h-adic completion
Us(b) = l(iglUﬁ(b)/ﬁnUﬁ(b)

will be a homogeneous quantization of (b, dy) in the sense of [Dri85], taking into account
the super-analogues of the definitions therein. We shall now construct such a homoge-

neous quantization of (gly ~[2]*, 8x), where 0k is the Lie co-superbracket (4.3.12).

Definition 4.3.6. Let sy denote either py or qy. Given C[f] ® Y(sny) = Y(sn)[F]
where # is a formal element of Zy-degree 0, the Yangian Yj(sy) is defined as the Rees
superalgebra of Y(sx) with respect to the filtration F(Y(sy)) = {Fn(Y(sn))}nen on
Y(sy) defined by the assignment deg T(") =n—1:

Yi(sv) == Ru(Y(sn)) = @D B"Fu(Y(sn)) C Y(sn)[H.
neN

By definition, the Yangian Y;(sy) is N-graded and it further comes equipped with
a Hopf superstructure by extending the one on Y(sy) by C[A]-linearity. In particular,
by setting T( ™ = ﬁ"‘lT( " for all 1,7 € In and n € Z*, such Hopf superstructure is
given by the comultiplication

Ar: Yi(sn) = Ya(sw) ®cpn Ya(sw)
TP e TP e1+10 T +1) MY TIRO @ T,
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the counit
en: Ya(sw) = C[H], T.\” 0,

for all 4,j € Iy and n € Z*, whilst the antipode
Sﬁ: Yﬁ(ﬁN) — Yﬁ(ﬁN)

is given by the assignment

R S (% grm. )

_1 1];;]=n a1,a2,...,as—1E€IN

with k; € Z* for each term in the sum Zs ; =nand i,j € Iy, n € Z+. When
§N = PN, We note the antipode takes on the 31mp1er form Sﬁ(T(n)) (—1)tl UH["H":f_(ﬁi.
We now arrive at the main proposition of this subsection, which was first stated
in [Naz92]. Note that the proof of the following proposition is completely analogous to
the proof of Proposition 2.3.8.

Proposition 4.3.7. The Yangian Y;(pn) is a homogeneous quantization of the Lie su-
perbialgebra (gly N[2]", 8p), whilst the Yangian Yx(qn) s a homogeneous quantization of
the Lie superbialgebra (gl N[z]LQ, 0q)- Furthermore, there is a superalgebra isomorphism

Yﬁ(ﬁN)/(ﬁ — )\) Yﬁ(SN) = Y(EN) forall X\e C*,

where sy denotes either py or qn.

Proof. We shall provide the proof for s)y = py since the case sy = qy is similar with
much of its proof already provided in [Naz99, Proposition 2.5]. To show Yz(pn) is
a homogeneous Hopf superalgebra deformation of $I(gly ~[2]*), we initially observe
that Yx(pn) is torsion-free, being a C[h]-subalgebra of Y(py)[f]. In particular, the
composition of the Hopf superalgebra isomorphism

¢: Yu(pn)/FEYn(pw) > grY(py), A7 mod A Yi(py) = T

ij

for i,j € In, n € Z*, with the inverse of the isomorphism ® (4.3.6) gives the desired
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N-graded Hopf superalgebra isomorphism

& o ¢: Ya(pw) /B Ya(pn) <> Uglwv[2]")-

By the prior discussion, it follows that Y;(py) homogeneously quantizes the Lie super-
bialgebra structure on {U(gly, ~[2]”) with Lie co-superbracket given by (4.3.13). In fact,
such Lie co-superbracket coincides with the one given by (4.3.12) with K = P, since

defining evy as the morphism

evi: Ya(pn) = Ya(pn)/H Ya(pn) = Wglyn[2]")

mapping ﬁ”"lﬁ](") > —(—1)0l] Eg’i‘_l)(z) for i,7 € Iy and n € Z*, we obtain the

commutative diagram

Fl(An — ASP)

Yi(pn) > Yi(pw)®?

evﬁl levﬁ Kevy

Ugtyw(=]") s Walw[4")®

where Jp is the extension of the Lie co-superbracket (4.3.12) to a coPoisson superbracket
on ﬂ(g[MN[z]LP).

For the second claim, we consider the epimorphism evy: Y(px)[i] = Y(pn) induced
by the assignment % — A. The restriction ev of evy to Rys(Y(py)) will still remain

surjective and its kernel is given by
ker(evy) = Ra(Y(pn)) N (= X) Y(pn)[A] = (i — N)Ra(Y (b)),

which finishes the proof. O

As discussed earlier in this subsection, it therefore follows by the work in [Wen22]

that the A-adic completions
Ya(pw) = lim Ya(pn) /1" Ya(pn) and  Ya(qw) = lim Ya(qw)/A" Ya(an)

are homogeneous quantizations of (gly, ~[2]”, 6p) and (gln ~[2]*° 8q), respectively, in
the sense of [Dri85].
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The remainder of this subsection is devoted to expressing the Yangian Yj(sy) in
terms of generators and relations for sy = pn, qn. Similar to Chapter 2, we will define
certain C[#]-superalgebras Yx(py) and Ys(qn) built on generators subject to relations
and ultimately show that these are respectively isomorphic to the Yangians Yz(pn)
and Yz(qn).

Definition 4.3.8. Define Y;(px) as the unital associative C[fi]-superalgebra on the
generators {’7;](") | 3,7 € In, n € Z*}, with Zy-grade [7:1(")] = [i]+[4] for all n € Z*,
subject to the relations

[f’,v;;m),ﬁgn)] — 5jk(_1)[k] ﬁl(m+n—1) _ 5il(_1)[i][k]+[j][k]+[j][l] ﬁ(jm+n—1)
+ 51.,_,6(_1)[i][j]+m7~_(;’rlb+n—1) _ Jj’_l(_1)[i][k]+[j][k]+[j]+m7;52+n—1)

min(m,n)

+ (_1)[i][j]+[i] [k]+[4][] Z (ﬁga—l)il(m+n—a) _ ﬁ§m+n—a)f7";l(a—1))

a=2

- Ji,_kﬁz Z (_1)[z'][j1+[jmo]+u71+m—a7~;§a 1)7-(m+n a)

a=2 peln

+ 8 ﬁz Z (—1) R G1HAPm—a ﬁfzfn—a)iz(’a—l)

a=2 peln

and

(~)HEHET, — 1T 4 5 3 Z( 1)l n-a-170) Fn-a)

-p,—i
p€E€ln a=1

for all 4, 4,k,l € Iy and m,n € Z*.

Definition 4.3.9. Define Y;(qy) as the unital associative C[fi]-superalgebra on the
generators {’7;](") | i,j € In, n € Z*}, with Zs-grade [7'-(.")] = [i]+[4] for all n € Z¥,

ij
subject to the relations

(_1)[i][j]+[i][k]+[j][k] [ﬁ(m) 7-(n)]
zéjk;f;l(m+n—1) T(m+n—1) ]_ ( 1) (m+n—1) +51_( l)m,];c(m+n_1)

-1l

min(m,n)

+ﬁz (a 1) (m+n a) T(m+n a)T(a 1))

_ﬁz m a(( 1 []+%] T(a 1)7-(m+n a) ( )[1].*.[1 T(m+n a)T(a 1))



4.3. Poincaré-Birkhoff-Witt Theorem for Yangians of Type P 175

and T, = (—1)EHll+n T

for all 4, j,k,l € Iy and m,n € Z™.

For sy = pn, qn, we observe the superalgebra \?ﬁ(sN) is N-graded via the gradation

assignments
degh=1 and degT( ™=n—1 for i,jely, neZ.

In Proposition 4.3.11 below, we will show Yi(sn) = Yi(sy). Again, the following
arguments are completely analogous to those used in §2.3.3, which themselves derive
from the articles [GRW19a, Proposition 2.2] and [GRW19c, Theorem 6.10].

For K = P,Q, by equipping {(gly ~[2]*) with a C[#]-superalgebra structure via.
the action induced by % +— 0, we get the following result:

Lemma 4.3.10. There are N-graded superalgebra epimorphisms
&vh: Ya(pw) > Uolvn[2]") and  &3: Ya(an) - Walww[2])

defined by T(n) —(—1)tilld] Eg-?_l) (2) and 7;](-") > —(—1)Hll F;?_l)(z) respectively, for
alli,j € Iy, n € Z*. In particular, ker(&vF) = A¥x(py) and ker(6vQ) = AYx(qn), so
there are isomorphisms

Ya(on)/AYa(pn) = U(glvn[2]”)  and  Ya(an)/AYn(an) = U(glain(e]")
as N-graded superalgebras.

Proof. We shall provide the proof for sy = py, and the case s = qy is similar. By
the C[A]-module structure on $I(gly, ~[2]%), it is routine to prove &% is a gradation
preserving superalgebra epimorphism such that AY(py) C ker(évh); hence, évF de-
scends to an epimorphism Yi(pn)/AYx(pN) — U(gln ~[2]") of N-graded superalgebras
mapping T( ™) mod AYx(py) — —(—1)Hl E(n_l)( ). Conversely, there is a superal-
gebra morphism ﬂ,(g[N[N[z]LP) — Yiu(pn)/HEYx(pn) sending E(" Y () to the element
—(=1)H [j]'ﬁ;") mod #Yx(py), which establishes the isomorphism. O
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Proposition 4.3.11. For sy = pn, qn, there is an isomorphism of C[h]-superalgebras
on: Ya(sw) = Ya(sn), T = BT
foralli,j € Iy, n € ZT.

Proof. We shall provide the proof for sy = py, and the case sy = qy is similar. By
the defining relations in the Yangian Y (py) and the fact that the elements ﬁ"‘lﬁj(-n),
i,j € Iy, n € Z*, generate Y;(pn), the map 5 is a superalgebra epimorphism.
Recalling the Cl[h]-superalgebra structure on 4(gly, ~[2]”) defined by % — 0, there
is an epimorphism evt: Yi(pn) — U(glvn([2]”) of C[h]-superalgebras induced by
Yia(pn)/BYs(pn) = U(gln ~[2]”). In fact, we have the commuting diagram:

Ya(pw) 6 > Ya(pn)
Uglyin[2]") ——7— Motwn (2]

Suppose X € Yx(pn) is nonzero such that X € ker ;. As there exists a maximal
integer n € N such that X € #"Y;(pn), one can write X = AY for some Y & AYx(pn).
In particular, since 0 = 5(A"Y) = A"px(Y), it must be Y € ker ¢ as well due to
Y:(pn) being torsion-free. However, the above commutative diagram would imply
Y € ker(6vh) = AYx(pn), & contradiction. O



Chapter 5
Twisted Super Yangians of Type AIIl

In this penultimate chapter, we define twisted Yangians associated to symmetric

superpairs of type AIIl which take the form

(8laivs Blplg ® Blm—p)(v—g)) for 0<p<M,0<g<N.

In particular, the first section starts by introducing a family of reflection superalgebras in
§5.1.1 that are subject to an additional unitary condition. Such twisted super Yangians
are defined in §5.1.2, where it is shown that they are in fact isomorphic to these
reflection superalgebras. In §5.2, a highest weight theory for the super twisted Yangians
is cultivated where it is proven that every finite-dimensional irreducible representation

must be highest weight.

5.1 The Twisted Yangian Y(glyn,G)™

We shall prove twisted super Yangians of type AIII are also reflection superalgebras
subject to an additional unitary condition. As a consequence, we will be able to to
establish a PBW-type theorem for these twisted super Yangians by making use of
certain properties of the Yangian Y (gl n).

177
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5.1.1 Reflection superalgebras

Given a integers M, N € N such that M+ N > 1, we recall the gradation index from
subsection §2.1.2 when d = {1,2,..., M}:

[-]: {1,2,..., M+N} > Z,

givenby [(]=0if 1<i<Mand [i]]=1if M+1<i< M+N.

We recall that CMIN denotes the vector space CM*N equipped with the Z,-grading

by assigning [e;] = [i], where {e;} " is the standard ordered basis of CM¥*N, The
space of C-linear maps CMIV — CM IN " denoted End CMIV, carries the natural Z,-
grading such that [E;;] := [i]+[j], where {E;; M";N is the collection of the matrix

units of End CMI¥ with respect to the standard basis. The space End CMV is denoted
gluiy = gl(CMIV) when given the Lie superalgebra structure via the super-commutator
[Eij, Bri] == 6By — (—1)U+IDE+N G, By .. We also recall the super permutation
operator (2.2.1) in (End CMIV )®2 given by

P:=Y """ (-1)VE; ® B,

1,j=1

and the super-transpose (2.1.7) map
(—-)**: EndCMY - EndCMIN,|  E;; s B := (—1)HUHE By,

Throughout Chapter 5, we define the R-matriz R(u) to be the rational function in
the formal parameter u taking coefficients in (End CMIV )®2 given by

R(u) :=id®? —Pu™1, (5.1.1)

which is the simplest non-trivial solution to the super quantum Yang-Bazter equation
(SQYBE):
R12 (U)R13 (u + ’U)R23(’U) = R23 (’U)R13 (u + ’U)Rlz(’u), (512)

Moreover, the equations P? = id®? and P*%:°%%2 = P = P*%2°%1 infer the relations
PR(u)P = R(u) = R*2°%1(y) = R™°%2(y), (5.1.3)
1
R(u)R(—u) = (1 - —> id®?, (5.1.4)

u2
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known as crossing symmetry and unitarity, respectively.

Consider now integers M, N € N such that M+ N > 1. By decomposing M and N
into sums of two non-negative integers: M = p+kjy and N = g+kpy, we define a matrix
G = (Gi)XiH) € Matp4n(C) via the formula,

0;; i 1<i<por M+1<i< M+g,
Gij = (5.1.5)
—0;; if p+1<i<M or M+q+1<i< M+N.

The matrix G will underlie several constructions in this chapter, including the reflection
superalgebras. These superalgebras are important in twisted Yangian theory and these

shall be the first objects we investigate.

Definition 5.1.1. The extended reflection superalgebra XB(glpyn,G) of glyn is the
unital associative C-superalgebra on generators {B(") |1<4,j< M+N, n€ Z+},
with Z,-grade [B(")] = [i]+[4] for all n € Z*, subject to the defining super reflection

equation

R(u — v)B;1(u)R(u + v)Ba(v) = Be(v)R(u + v)B1 (u) R(u — v)

in  (End C¥™® @ XB(ghyy, 6)[u*?, vt (5:19
giMm|N, )[[u U ]]’

where B(u) := Y12 (-1) MU B;; @ Byj(x) € End(CMV) @ XB(glav, G)[u~"] is the
matrix consisting of the series B;j(u) := Gi;j1 + Y ooy B(") " € XB(glun, 9)[u™]
for indices 1 < 4,5 < M+N, and R(u — v) is the R-matrix (5.1.1) identified with
R(u—v)®1.

On the level of power series, the super reflection equation (5.1.6) takes the form

1 140 .
[Bij(u), Bkl(v)] = — v(_l)[][J]‘*‘[][k]‘*‘[J][k] (Bkj(u)B,-l(v) _ Bkj(v)Bi,(u))
[5]1K] M+N M+N
+ (ulj_ sz Bia(u)Ba(v) — (—1)HlHK s, Z Bra(v) aj(u)>

M+N M+N

- 1 1._7( Z Bka u)Bal Z Bka(v)Ba,l )) (517)

’U,

for all 1 <14,7,k,1 < M+ N, where the above equality may be regarded as one in the



180  Chapter 5. Twisted Super Yangians of Type AIII

extension XB(glpn, G)[ut?, v!], where [-, -] is understood as the Lie superbracket
[Bsj(w), Bua(v)] = Bij(u)Bu(v) — (=1)EHDEHDBy, (v)By;(w).

Following [MRO02, Proposition 2.1], we can construct a series of central elements in

XB(glmn,G) as described by the proposition below.

Proposition 5.1.2. There is a series f(u) =1+ > oo f@y~ € XB(glyn, G)[u?]

satisfying the relation
B(u)B(—u) = B(—u)B(u) = id ® f(u) (5.1.8)
whose coefficients {2, n € Z*, are central elements of homogeneous Zy-degree 0.

Proof. By multiplying the defining relations (5.1.7) with the polynomial u?> — »? and

substituting v = —u, we yield the relation
M+N M+N
1,_1( Z Bka U)Bal _u Z Bka(_u)Bal(u))

M +N M+N

= (-1)¥2u oy ZBM u)Ba(—u) — (—1) ML+ s, ZBM( 4)Bag(u) ).

Fixing i = j, evaluating at k,! # ¢ and k = [ = i in the above relation infers the equality
B(u)B(—u) = B(—u)B(u). Alternatively, for any i # j, evaluating at k = j and [ =1,
and again at k = j and [ # 4, in the above relation implies

M+N

B(u)B(—u) =id® Z Bka(u)Bok(—u) forany 1<k < M+N;

a=1

hence, we set f(u) = S0t (—1)Kl+el By, (u)B i (—u) for any 1 < k < M+ N. Multiply-
ing the super reflection equation (5.1.6) on the right by By(—wv) yields the equation

R(u — v)B1(u)R(u + v) (id®* ® f(v)) = B2(v)R(u + v)By(u)R(u — v)Ba(—v).
However, by translating v — —wv in the super reflection equation, we therefore have

B2 (v)R(u + v)B1(u) R(u — v)Ba(—v) = Ba(v)Ba(—v)R(u — v)By(u) R(u + v)
= (id®*? ®@f(v)) R(u — v)B1(u)R(u + v),
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resulting in the relation
R(u — v)By(u)R(u +v) (id** ® f(v)) = (1d®? @ f(v)) R(u — v)B1(u)R(u + v).

By the unitarity property (5.1.4) of the R-matrix and the fact that the coefficients of
the series f(v) are of Zy-grade 0, we yield the desired relation

Bi(u) (id®* ®f(v)) = (id®*? ®f(v)) B1(u),
which itself implies B;;(uw)f(v) = f(v)B;;(u) for all 1 < 4,5 < M+N. O

By letting (f(u) — 1) denote the two-sided ideal of XB(glan,G) generated by the

coefficients of f(u) — 1, we obtain the following definition:

Definition 5.1.3. The reflection superalgebra B(glasn,G) of glyn is the quotient of
XB(glmn, G) by the two-sided ideal (f(u) — 1):

B(glmn, G) = XB(gluv, G)/ (f(u) — 1).

Equivalently, B(glan, G) is the unital associative C-superalgebra on the generators
(B |1 <4,j < M+N, n € Z*}, with Zy-grade [BY] := [i]+[4] for all n € Z*,

3] ij
subject to the super reflection equation
R(u — v)B1(u)R(u + v) Ba(v) = B2(v)R(u + v) By (u) R(u — v)

in (EndCMlN)®2®B([ g)[u*', v (5:19)
gM|N, U, ]])

where R(u — v) is the R-matrix (5.1.1) identified with R(u — v) ® 1, and the unitary
condition
B(u)B(—u) = 1 € End(CM") ® B(glyn, G)[u 1], (5.1.10)

given B(u) := Y177 (-1) I E,; ® B;;(u) € End(CMW) @ B(glyn, §)[u] is the
matrix consisting of the series B;j(u) := Gij1 + Y -, BZ(J" Ju= € B(glyn, G)[u™] for
indices 1 <1, < M+N.

In terms of formal power series, the defining relations for the reflection superalgebra
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take the following form:

1 R ,
[Bij(u), Bu(v)] = (—1)[‘] LRI ( By (w) By (v) — Bj(v)Ba(u))
( 1 [J][k] M+N I M+N
——( Sie 3 But)Bulw) = (1)L, 3 Bia(v)Bas(u))
a=1
1 M+N M+N
S g az-j( 3" Bra(u)Ba(v) = Y B,m(v)Ba,(u)) (5.1.11)
a=1 a=1
and
M+N
> Bia(u)Baj(—u) = §;1 (5.1.12)

forall 1 <4,j5,k,l < M+N.

We now establish some notation. Recalling Z3},, v = Z N [1, M+ N], we consider
the subset C C (Z},,y)? consisting of all pairs (4, j) that satisfy any of the following
inequalities:

1<4,j<p; p+1<4,j<M; M+1<4,j<M+q M+q+1<i,j<M+N;
1<i<p, M+1<j<M+qg M+1<i<M+q, 1<j<p;
pt1<i< M, M+q+1<j<M+N; M+qg+1<i<M+N, p+1<j< M.

Finally, we define the subset K C (Z},,5)? X Z* to be the following collection:
K :={(,j,n) | (G,5) €C, n€2Z* -1 or (i,j) € (Z},n)*\C, n €2Z*}. (5.1.13)

Consequently, we arrive at the following proposition.

Proposition 5.1.4. The set {Bi(j")}(i,j,n)e,c generates B(glyn, G).

Proof. Letting A denote the sub-superalgebra generated by the set {B;; () | (¢,4,n) € K},
we shall prove that Bg" )e Aforall 1 <1, < M+N and m € Z* via induction on m.
First, the unitary condition (5.1.12) implies

M+N

Y (-1 Y BPBY =0 for mez*.
a=1

r+s=m
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For instance, when m = 1 this equation becomes (G;; — Gi) Bz.(jl) = 0; hence,
1 ..
Bi(j) =0 forall (i,5) € (Zin)\C. (5.1.14)

When m = 2, we obtain (G;; + gj]-)Bi(;) = SN Bi(i)B(l) so (5.1.14) implies Bi(;) €A

aj

for (¢,7) € C. Let us assume the induction hypothesis holds for m—1. By computing

m—1 M+N
Gy + (-1)"Gx)B{Y = - S (-1)* Y BEBY,
s=1 a=1

the induction hypothesis infers Bg" ) € A for (i,j) € (Zi,n)? \ C if m is odd and
(,7) € C if m is even, concluding the proof. O

Two canonical ascending algebra filtrations on B(glyn, G) are E = {E, }nen and

E' = {E/ },en given via the respective filtration degree assignments
degg, BfJ" )=n—1 and degg BfJ" ) =n.

forall1 <4,j < M+N and n € Z*. Due to the relations (5.1.11), the associated
graded superalgebra gry B(glyn, G) = @,.cn Er/Er,_; is supercommutative.

5.1.2 Twisted super Yangians of type AIII

We start this subsection by first recalling the definition of the Yangian of gljsx which
was first introduced in §3.2.2.

Definition 5.1.5. The Yangian Y (glyn) of glyn is the unital associative C-super-
algebra on generators {Ti(j") |1 <4,j < M+N, n€ Z+}, equipped with Z,-grade
[Ti(jn)] := [¢]+[j] for all n € Z*, subject to the defining RTT-relation

R(u — v)T1(uw)T3(v) = To(v)T1(u) R(u — v)

22 (5.1.15)

in (EndCM™)™ @ Y(glanw) [ut?, vH],
where T'(u) := Z%ZI;,(—l)[i][j]+[j]quj ® T;j(u) € End(CMWV) ® Y(glan)[u] is the
matrix consisting of the series T;;(u) = 6;1 + > Ti(jn)u_" € Y(glyn)[u"] for

1<i,7<M+N, and R(u — v) is the R-matrix (5.1.1) identified with R(u —v) ® 1.
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On the level of power series, the RT'T-relation (5.1.15) takes the form

1
-

[T (), Tha(v)] =~ (—1) GBI UM (T, (w) T (v) — T (0)Ta(w)),  (5.1.16)
for all 1 <4,j,k,l < M+N, where |-, -] is understood as the Lie superbracket

[T (), Tia(v)] = Tij(u)Ta(v) — (= 1) FHDEHDT ()T (u).

We note that the super Yangian Y (glyn) comes equipped with a Hopf superstructure
as given by the comultiplication, counit, and antipode:

A: T(u) = Tyy(w)Tig(u), e:T(w)—1, S:T(u)— T(u)™ (6.1.17)
Furthermore, the Yangian Y (glysn) benefits from a Hopf superalgebra embedding
v U(ghay) = Y(ohuw),  Eij = (-1)BT (5.1.18)
and a Hopf superalgebra epimorphism
ev: Y(glhuy) = Ughnn), Tij(w) = 6; + (-1 Eu? (5.1.19)

as can be verified by the composition evo: = id.

Two important ascending algebra filtrations on Y(g[Ml n) are F = {F,.},cn and

F' = {F/ },.en given via the respective filtration degree assignments
degg T;(J-") =n—1 and deggp J}(j") =n.

forall1 <i,j < M+N and n € Z*. By the defining relations of the Yangian, the

associated graded superalgebra grg. Y (glan) = @,en Fr/Frn_1 is supercommutative.

neN

Definition 5.1.6. The twisted Yangian Y(glyn, G)™ of glayn is the sub-superalgebra
of Y(glumn) generated by the coefficients {SZ-(;') |1<4,j < M+N, ne€Z} of

S(u) :=T(u)GT(—u)™" € (End CMlN)®2 ® Y(glv)[u™], (5.1.20)

where S(u) = Zx-;};,(—l)[i][j]+[j]Eij ® Sij(u) € End(CMV) ® Y(glan)[u™!] is the
matrix consisting of the series S;;(u) 1= Gi;;j1+ 3.2, SMu" € Y (glagn) [u~?].

n=1~ij



5.1. The Twisted Yangian Y (glyn,9)™” 185

By writing the matrix T'(u)™! = EM+N( 1)U E; @ Ti3(u) where T(u) is

written as 6;;1 + Y o, Tz;(n)u_" then the series S;;(u) takes the form

M+N

w) = Y GaaTia(u)Tgj(—). (5.1.21)

We note that one can compute the coefficients of T;}(u) explicitly as

n M+N
o(n (n) 8 (k1) (ke (ks)
130 = 10 Sy 3 ( Y poge)..pt )
s=2

Yoy kj=n \ @1,02,,8s-1=1

where k; € Z7 for each k; in the sum ) J7_, k; = n. In particular, we can conclude S;;(u)
is homogeneous of degree [S;;(u)] = [i]+[4] since [T,;(—u)] = [a] +[]].

As a sub-superalgebra of the Hopf superalgebra Y (gl n), a natural inquiry is
whether or not the Hopf superstructure on the Yangian restricts to one on the twisted
Yangian Y (glan, G)*. The answer to this question is in the negative, as the twisted

super Yangian appears instead as a left coideal of Y (glasn)-

Proposition 5.1.7. The twisted Yangian Y (gln, G)™ is a left coideal of Y (glan):

A(Y (ghin, G)™) C Y(glan) @ Y(ghain, G)™

Proof. Having the comultiplication map A on Y(glan) act on T'(w)T(u)~! =1 infers
the equality

A(T (u)™) = Tigy(w) ™ Ty (w)

Thus, A(T(w)) = Sy (—1)E+HEXE+IDTe (u) ® Ty (u). Hence, for any indices
1<14,7 < M+N, one can compute

M+N

A(Sij(w) = Y GooA(Tic(w)) A(Te5(—u))

c=1
M+N

= ) (~)EHDEHDG(Ty (1) © Tuc(w)) (T35(—u) ® T (~w))

a,b,c=1
M+N

= Z (—1)@HBDEHED T, () Ty (—u) ® Sa(w),

a,b=1

completing the proof. n



186  Chapter 5. Twisted Super Yangians of Type AIII

Note that the filtrations F and F’ on Y(glyn) endow filtrations on the twisted
super Yangian Y (glyn,G)™, which we will also denote F and F' respectively. Such
filtrations are given by the degree assignments

degg SfJ" )=n—1 and degp ,S’z.(j") =n.

forall1<i4,j < M+N and n € Zt.

Lemma 5.1.8. Let §§;‘) denote the image of SI(J" ) in n-th graded component F./F._,
of the graded superalgebra gre/Y (gl v, G)™ = @ ey Fu/ Fin_y. Fizing a total order ‘<’
on the indezx set K defined by (5.1.13), then the collection of all ordered monomials of
the form

Gm)gne)  Glmw) (5.1.22)

2171 T 1272 Ik

with (ia’ja’na) ek, (ia,ja,na) = (ia+1,ja+1ana+1); and ('I:aaja,na) 7é (ia+1,ja+1,na+1)

if [ia) +[ja] = 1, are linearly independent.

Proof. We recall the associated graded superalgebra gre Y (glasn) and let us have Tg‘)
denote the image of the generator 1}(3-") in its n~th graded component. As was shown in the
proof of [Gow07, Theorem 1], if we endow a total order < on the set Z = (Z};,5)? X Z™,

then the collection of all ordered monomials of the form

T(m)T(nz) . T("l_c) (5123)

11J1~ d252 ik Ik
with (iq, Ja, %) € Z, (fa)Jas Ta) = (bat1s Jat1, Mat1), 80d (g, Jas M) # (Sa+1, Jat1, Pat1)
if [¢4]+[ja] = 1, forms a basis for gre Y (glan)-
Let us now introduce another filtration F = {F, }en but instead on grg Y (glan)
via degg Tg') = n—1. Therefore, from the description (5.1.21), we have

5% = (Gy + (~1™1G) TS mod Fos, (5.1.24)

SO S’g‘) = :EZTZ(;') modF,_, if and only if (4,5, k) € K.

If we assume to the contrary that there exists a non-trivial linear combination A of
ordered monomials of the form (5.1.22) such that A = 0, then let R denote the linear
combination of those monomials occurring in A of maximal F-filtration degree say a.
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However, the equivalence (5.1.24) would imply 0= A=R = Rmod F._1, where Risa
non-trivial linear combination of ordered monomials of the form (5.1.23) of F-filtration

degree a, but this contradicts their linear independence. O]

We can now establish the following isomorphism:

Theorem 5.1.9. There is a superalgebra isomorphism

¢: Blglun,9) = Y(gluv, )™, B(u) — S(u). (5.1.25)

Proof. 1t is immediate that the map ¢ is homogeneous and surjective. To show ¢ is a
superalgebra morphism, one can first readily check S(u)S(—u) = 1 is satisfied since
G? = id. To show to S(u) satisfies the super reflection equation, we require the use of
the following equations obtained from the RTT-relation (5.1.15):

Ti(—u) ' R(u + v)Ta(v) = To(v)R(u + v) Ty (—u) %, (5.1.26)
R(u — v)Ty(—u) ' Ta(—v) ™ = Ta(—v) Ty (—u) "t R(u — v), (5.1.27)
Ti (u)R(u + )Tz (—v) ™! = To(—v) ' R(u + v) T (u). (5.1.28)

By using (5.1.26) and the fact that §; commutes with Tj(u) and Tj(—w)™! for
integers 1 < i # j < 2, the expression R(u — v)S1(u)R(u + v)Sz(v) is given by

R(u— )Ty (w)Gi1Ti(—u) ' R(u + v)To(v)GoTo(—v) ™t
= R(u — v)T1 ()G Ta(v) R(u + v)T1 (—u) ' GoTo(—v) !
= R(u — v)T1(u) T2 (v)G1 R(u + v)Go T (—u) ' Tp(—v) !
= Ty (v)Ti(u) R(u — v)G1 R(u + v)Go T (—u) T3 (—v) 7,

where we used the RTT-relation in the last equality. Furthermore, since G1G2 = G2G1
and G; P = PGy, then R(u — v)G1R(u + v)G2 = GoR(u — v)G1 R(u + v). Therefore, by
using this equality and equations (5.1.27), (5.1.28), the above expression becomes

To(v)T1(w)G2R(u + v)G1 R(u — )Ty (—u) ' Tp(—v) ™
= To(v)T1(u)GaR(u + v)Gi1 To(—v) "' T1(—u) ' R(u — v)
= T3(v)Go Ty (v) R(u + v)To(—v) G Th (—u) " R(u — v)
= T3(v)GaTo(—v) "' R(u + v)T1 (u)G1 Ty (—uw) " R(u — v),



188  Chapter 5. Twisted Super Yangians of Type AIII

which is the expression Sy(v)R(u + v)S1(u)R(u — v).
To show the morphism ¢ is injective, it suffices to prove that the associated morphism
gro: grey B(glyy, 9) — gre Y (glan, G)™

is so. However, by Proposition (5.1.4), we know the set {F’E.?)}(i,j,n) cx

grg B(glmn, G), so the map gr ¢ is injective by Lemma (5.1.8). O

generates

Through the course of the proof for Theorem 5.1.9, we also established an explicit
basis for the reflection superalgebra and twisted super Yangian. Such is described by

the corollary below.

Corollary 5.1.10 (PBW Theorem). Fix a total order ‘X’ on the index set K defined
by (5.1.13).

(i) The collection of all ordered monomsials of the form

BIMBID .. B yhere  (ig,ja,na) €K for 1<a<k,  (5.1.29)

i1J1 ~ i2]2 TkJk?

such that ('imja;na) j (Z‘a+1;ja+1;na+1); and (imja;na) 7é (ia+1;ja+17na+1) Zf
[ia] +[ja] = 1, constitutes a basis for B(glmn, G).

(ii) The collection of all ordered monomials of the form

(n1) o(n2) (nx) .
Sivis Sie =+ Sirtes  where  (ig,ja,ma) €K for 1<a<k, (5.1.30)
such that (iaaja,na) = (ia—{—l,ja—{-l,na—{-l); and (iaaja,na) # (ia+1’ja+1,’n’a+1) Zf
[ia] +[Ja] = 1, constitutes a basis for Y (glaun, G)™.

As a benefit of Theorem 5.1.9, we can also express the twisted super Yangian in
terms of generators and relations, which will be particularly useful in investigating its

representation theory in the subsequent section.
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Corollary 5.1.11. The twisted Yangian Y (glan, G)™ is the unital associative C-super-
algebra on generators {S,(J" ) |1 <45 < M+N, n€ Z+}, equipped with Za-grade
[S’z(J" )] := [i]+][4] for all n € Z*, subject to the defining relations

[Sij (w), Swi(v)] (—1)FIEHEIRH IR (S, () S (v) — Skj(v) Sa(w))

u-—7v

(=DM 0 SN LA+ [k] L
e (0 Sia@)Sa®) — (“)FIHIEE Y S, (0)Sis(w))
a=1 a=1
1 M+N M+N
— 85 Sua(@)Sul) = Y Sul)Su(w)  (5:131)
a=1 a=1
and
M+N
> Sia()Saj(—u) = 651 (5.1.32)
a=1

foralll1 <i,j,k,l < M+N.

We end this section by providing justification to the terminology ‘twisted’ used
in name of the twisted Yangian Y (glan, G)™. Namely, by defining Yi(glan, G)™ as
the Rees superalgebra of Y(glasn, G)*, we will establish a superalgebra isomorphism
Yi(ghiv, G)™ /B Y r(glan, G)™ = U(glarn[2]®), where glagn[2]? is the fixed-point Lie
sub-superalgebra of gl n[2] under some involutive automorphism 13, called the twisted

current Lie superalgebra. To this end, consider the involution ¥ € Aut(glan) given by
79: gy = glmy, By — Gi Gy Eij. (5.1.33)

We find that the fixed-point Lie sub-superalgebra g[}&l ~ of glyn under the involutive

automorphism 1 is generated by the operators
Ei; +9(Ey;) = (1+ GuGj)Ei; € g[}&,IN forall 1<i,57<M+N.

In particular, by setting p’ = M —p and ¢’ = N —q, one can verify the Lie superalgebra
isomorphism
Q[J%N = glyjq @ glyy
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Extending ¢ to an involutive automorphism of gl n[2] via the assignment

3(f(2)) =9(f)(=2) forall f(z) € glunlz],

define the twisted current Lie superalgebra glyy ~[2]? as the fixed-point sub-superalgebra
of glar (2] under the involutive automorphism 4

ghun[2]” = {9(2) € gluwlz] | 9(9(2)) = g(2)}
In particular, we find glan([2]? is generated by the operators
El(an) (2) i= Ey2" + H(Ey)(—2)" = 1+ (-1)"GuiGy) Eij2" € gluv[2]”  (5.1.34)
with 1 <4,5 < M+N, n € N, subject only to the relations
[B5(2), B (2)] = (1+ (~1)"Guis) (6 ™™ (2) = (= 1) EHDEHD EF ()

and
(1- (_1)ngiigjj)E,gL) (2) = 0.

Now consider the following corollary to the PBW Theorem:
Corollary 5.1.12. There is an N-graded superalgebra isomorphism

U: Wghunl2]®) = greY (g, 6), By V(2) = (-1)fG;55  (5.1.35)
for1<4,j < M+N andn e Z*.

Proof. To show U: gl n[2]® = Lie(grgY (glmn, G)™) is an N-graded Lie superalgebra
morphism, one passes the relations (5.1.31) and (5.1.32) to the associated graded
superalgebra to yield the respective relations

[Sgn),s(n)] ( )[k](gﬂ + (=)™ 1g1,1,)S(m+n 1)
— 8y (—1)HUHERHAE (G 4 (—1)m- lgﬂ)S(mM 1

and

(gii + (—1)"@,)?5;‘) =0
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for all 1 <14,5,k,l < M+ N and m,n € Z*. Hence, the desired relations follow from
multiplying the first equation above by (—1)F+¥G,.G; and the second by (—1)l+"G,;.

Thus, ¥ extends to a morphism of superalgebras U(glusn[2]°) = greY (glain, G)™
which is also N-graded. The injectivity of ¥ follows from Corollary 5.1.10, whilst ¥ is
surjective since grg Y (glun, G)* is generated by the elements gz(: ) for 1 < 4, j<M+N
and n € Z*. O

Definition 5.1.13. Given the tensor product C[f] ® Y(glmn, G)™ = Y(glumn, G)™[R]
where i is a formal element of Zo-degree 0, the twisted Yangian Yz(glasn,G)™ is defined
as the Rees superalgebra of Y(glyn, G)* with respect to the filtration F:

Ya(ghin, G)™ = Ru(Y(8lain, 9)™) = @D A°F, C Y(glaaiy, G)™[7]-

neN

We recall that given any superalgebra A over C, a flat deformation of A (over C[h])
is a superalgebra Ay over C[A] such that:

(i) Ap is flat as a C[fi]-module.
(ii) The quotient .Az/AAj is isomorphic to A as a superalgebra.

Regarding C[#i] = @,y #*C as an N-graded ring, such deformation is called homoge-
neous if both A and Aj; are N-graded modules where the isomorphism A;/AA; = A is
grade-preserving.

Proposition 5.1.14. The twisted Yangian Ys(gln, G)™ is a homogeneous flat defor-

mation of (gl n[2]°). Furthermore, there is a superalgebra isomorphism
Yﬁ(g[MlN, g)“"/(ﬁ - )\) Yﬁ(g[MlN, g)t“’ = Y(g[M|N, g)t“’ fO’!‘ all Ne C*.

Proof. We observe that Yj(glan, G)™ is flat since it is torsion-free as a C[h]-subalgebra,

of Y(glasn, G)*[f]. In particular, the composition of the superalgebra isomorphism

~

¢: Ya(gluw, G) /B YR(glmn, G)™ = gre Y (8lmiv, G)™
718 mod % Ya(ghuyw, §)™ > S5

ij
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for 1 <i,7 < M+ N, n € Z*, with the inverse of the isomorphism ¥ (5.1.35) gives the
desired N-graded Hopf superalgebra isomorphism

T lo o: Yﬁ(g[MlN, g)tw/ﬁYﬁ(g[MlN, g)tw A Ll(g[MlN[z]ﬂ)

For the second claim, consider the morphism evy: Y(glyn, G)*[f] = Y(glmw, G)*™
induced by the assignment % — \. The restriction ev¥ of evy to Rx(Y(glarn, G)™) will

still remain surjective and its kernel is given by
ker(evy) = Ra(Y (gluin, G)™) N (i = X) Y(gla, §)™ (] = (i — M) R(Y (8laiv, 9)™),

proving the proposition. O

5.2 Representation Theory of Twisted Super Yangians

5.2.1 Highest weight theory

From equation (5.1.21) we have Gy S,(c}c) = 2T,§,1c), so by identifying the Cartan subalge-
bra b of glyn with its image in Y(gly ) under the embedding (5.1.18), we deduce

b =P CSi C (gl G)™.

Declaring the basis {Hx}M*N of b defined by Hy := 1(—1)MGy, S, we consider its
dual basis {ex }EN C b* to yield the root system

of glyn. We use the standard root system decomposition ® = &+ LI &=, where
t={e;—e;€®|i<j}and &~ ={e;—¢; € ® |7 > j} and call the linear functionals

in ®* as positive/negative roots. Via the relations (5.1.31), we compute
[SIS)’ Sij(w)] = (—1)WRHEEER (G + Gy (6:Sk; (w) — Si%Sa(u)), (5.2.1)

and hence

[Hr, Si(u)] = (6ir—031) Sij(u) = (g5 —€;) (H) Sij () (5.2.2)
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for all 1 < 4,7,k < M+ N. In particular, we have the following decomposition in terms
of the root lattice Z®:

Y(gban, 6)™ = @ Y(ghan, 9)%,
a€ZP
where Y(g[MIN,g)f;" = {X € Y(g[MIN,g)“" | [H,X] = a(H)X for all H € h} We
also have familiar notions of weights and weight vectors for representations V' of
Y (glawv, G)™: for any functional A € h*, provided

Wi={veV|H -v=AH)vforall Heh} #0,

then A is called a weight, V) is called a weight space, and nonzero vectors in V) are
called weight vectors. We endow a partial ordering ‘<’ on the set of weights of V' via the
rule w < ¢ < p — w is an N-linear combination of positive roots of glysy. Furthermore,
since Y (glan, G)5 (VA) C Vata, then

Y (gl g)iw(@ueb‘vﬂ) <P, .V (5.2.3)

Definition 5.2.1. A representation V' of the twisted super Yangian Y (glyn, G)™ is
defined as a highest weight representation if there exists a nonzero vector £ € V such
that Y(g[M|N, G)¢ =V, and

Sij(u)é =0 forall 1<i<j<M+N

(5.2.4)
and Skp(u) =A(u)é forall 1<k< M+N,
where A\;(u) is some formal series
Me(w) = G + Y Au™ € Clu™]. (5.2.5)

n=1

We say that £ is the highest weight vector of V and call the tuple A(u) = (Ag(u))M4N of
formal series the highest weight of V.

To prove the first theorem of this section, we will need the following technical lemma.
We note that many of the techniques used in the proof below arise from those used in
the proof of [MR02, Theorem 4.1].
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Lemma 5.2.2. Let J be the left graded ideal of Y(glyn, G)™ generated by the coeffi-
cients of S;j(u) for all1 <i < j < M+N. Then:

(i) Sij(w)Skk(v) =0 modJ forall 1<i<j<M+N andl1 <k<M+N,

(ii) [Skk(u), Su(v)] =0 modJ for all 1 < k,l < M+N.

Proof. For brevity, we shall use ‘=’ to denote the equivalence of elements in Y (glasn, G)*
modulo J.

(i) We shall prove the statement via reverse strong induction on 1 < k < M+N.
For the base case k = M+ N, the relations (5.1.31) imply S;;(u)Samsn,man(v) = 0 for
indices 1 <i<j< M+N-1. When 1<% < j= M+N, the same relations imply

1

Sz‘,M+N(U)SM+N,M+N('U) = _u—-H) i,M+N(U)SM+N,M+N(U),

80 S; m+N (W) Sm+n, v (v) = 0 as well.

Suppose now the hypothesis holds down to k+1. We make the initial observation
that for any indices j,! such that 1 < i < j,[, then the relations (5.1.31) imply

M+N

: (1)~ Sia(u)Su(v). (5.2.6)
a=l

u+v

Sij(u)Su(v) =

Since the right side of the equivalence (5.2.6) is independent of the index j, we have

the following equivalence for all indices 1, j1, j2, such that 1 < i < 71, jo, I:
Siiy (W) Sju(v) = (-1)HHEIG, () 8j(v). (5.2.7)

We demarcate the remaining inductive proof of (i) into three steps addressing the

respective cases 1 < k, ¢ = k, and ¢ > k.

Step 1. First assuming ¢ < k such that j # k, the relations (5.1.31) immediately
show S;;(u)Skk(v) = 0, so we may suppose 1 < 7 < j = k without loss of generality. By
the equivalences (5.2.6) and (5.2.7), we obtain

M+N

S ()i (v) = u—iv(—nlkl 3" Siau)Sur(v)

a=k

_ (-)¥(M+1-k)-N

v Sik(u)skk (v),
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since MV (_1)lel = (—1)M(M +1—k)— N. Thus, Si(u)Skk(v) = 0.

Step 2. When 1 < ¢ =k < j, the relations (5.1.31) give

ki (0)Sks(0) = —— (~D) (S1s(w) S (v) — Sk () (w)
1 M+N
= o COH D Ska(0)Sui(w).

However, by the formula (5.2.7) the sum ZﬁgN

series (M +1—35—(—1)U1N)Sy;(u)S;i(v), which itself is equivalent to zero by induction
hypothesis. We therefore have the relation

Ska(v)Saj(u) is equivalent to the

u—v— (—1)K
u_

St (1) Sa(v) + (u_i)z] St (0) Sis (1) = 0. (5.2.8)

Furthermore, by exchanging u <> v in (5.2.8), we obtain

— (=D Sk () Skr(v) + u—vt ()W

uw— Skj('u)Skk(u) =0. (529)

Hence, taking the difference of (5.2.8) and (5.2.9), infers Sk; (%) Skk(v) = Sk;(v) Skk(u),
so either (5.2.8) or (5.2.9) will establish Si;(u)Skk(v) = 0.
Step 3. Lastly, when 1 < k < i < j, the relations (5.1.31) imply both

S ) Skx(v) = (~1) (S (w)Si(v) — Sy () Sae))

Skj(w)Sik(v) = — 1)U+ (S, (w) S (v) — Si(v) Sk (w))
M+N
[El[5]+[e][k]+[5][K]
~ux v( 1) az_; Sia(v)Saj(u).

By the equivalence (5.2.7), the sum fo;NSa(v)Saj(u) is equivalent to the series

(M+1—35—(=1)UIN)S;;(v)S;;(u), which itself is equivalent to zero by induction hy-
pothesis. Therefore, Sg;(u)Si(v) = Skj(v)Sik(u) and so S;;(u)Skx(v) = 0.

(ii) We shall first prove that [Skr(w), Skx(v)] =0 for all 1 < k < M+ N via reverse
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strong induction on k. To this end, it will be useful to define the element

Br(u,v) == ZM+N (Ska(u)Sak(v) — Ska(v)Sar(w)). (5.2.10)

a=k+1

In particular, the relations (5.1.31) imply

[Ski(u), Skr(v)] = (u_ i)[:] [Ski (), Sex(v)] + (; i)f] [Skie (), Ske(v)] + (u_ i)if] B (u,v)
— ﬁ [S’kk(u), Skk(’l))] - ﬁﬂk(u, ’U),

which becomes

(1 + ﬂ) [Skk(u),skk(v)] — (—1)[k](u —v) — 1ﬂk(U, v). (5.2.11)

u2 — 2 u2 — 2

Hence, [Skx(u), Skx(v)] = 0 if and only if Bi(u,v) = 0. The base case k = M+N is
therefore satisfied since Bas+n(u,v) is the empty sum, so we may suppose the induction
hypothesis holds down to k+1.

Given 1 <k <a < M+N, relations (5.1.31) assert the equivalences

1
u—2v

[S’aa(u), Skk(’l))] = (_1)[a] (Ska(u)Sak(v) —_ Ska(v)Sak(u))

: ([Sex(w), Skr(v)] + Br(u, v))

u2 — 2

[S5k(0), Suaw)] = L 5 ([Sea(®), Sual®)] + Ba(t,)).

Therefore, since [Sgq (), Skk(v)] = —[Skr(v), Saa(u)] we deduce the relation

(_ 1) lo] (Ska (u) Sak (v) — Ska (v)sak (u))

" _}_ v([Skk(u), Sk (v)] — [Saa(t), Saa(v)] + Be(u,v) — Ba(u,v)).

Hence, by (5.2.10),

(=1)*+ (M —k)—N

ﬂk(U, ’U) = “to ([Skk(u), Skk(’l))] + ﬂk(u, ’l)))
~ i » S (1) ([Saa(®), Saa(v)] + Balu, ),
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so we have
(u+v — ()M —E)+N)By(u,v) = (-1)F(M —k) = N) [Ske (), Str(v)]

since [Sgqa(u), Saa(v)] = 0 = py(u,v) for a > k by induction hypothesis. By combining
the above equivalence with (5.2.11), one concludes [Skx(w), Skx(v)] = 0 = pr(u, v).

To finish the proof, it suffices to show [Skx(u), Su(v)]=0for 1 <k <1< M+N.
To this end, we realize by the relations (5.1.31) that

[Sk (1), Su(v)] = —2;

u? — v?

( [Su (), Su (U)] + Bi(u, v)),
which is equivalent to zero by before. m

Leveraging the lemma just proven, we are now in position to prove the main theorem

of this section.

Theorem 5.2.3. Every finite-dimensional irreducible representation V of the twisted
Yangian Y (gl n, G)™ is a highest weight representation. The highest weight vector

of V is unique up to scalar multiple.

Proof. Let V' denote a finite-dimensional irreducible representation of Y (glyn, G)*™

and define the subspace
V0:={veV|S;uv=0 forall 1<i<j<M+N} (5.2.12)

We first establish that VO is non-trivial. Since the Cartan subalgebra b of glan
lies within the twisted Yangian Y (glyn,G)* under the embedding (5.1.18), one can
consider the set of weight via the action of h on V. There is a partial ordering ‘<’ on
such set of weights via the rule that for any weights a, 8 € h*, one has a x § if and

only if 8 — « is an N-linear combination of positive roots in ®+.

Since the set {H;}M4Y consists of pairwise commuting elements, their actions on V
form a family of pairwise commuting operators, implying that these operators must
share a simultaneous eigenvector as dim V' < o0o. Such set of weights is finite, so V'

must have a maximal weight p with respect to the partial ordering ‘<’.
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Letting v be a weight vector corresponding to p, the assertion follows if v € V7,
so we may assume v € V° and therefore SZ(J" Dy # 0 for some (i,5) € A§ and n € Z*.
However, since
HiSP v = To My + [Hi, ST,

we conclude from equation (5.2.2) that the weight of Sz(Jn )v is of the form 1+ a for some

positive root o € ®*, contradicting the maximality of u and proving the claim.

By Lemma 5.2.2, the actions of the generators {S,Sz) |1< k< M+N, neZt} form
a family of pairwise commuting operators on V°. As V? is a non-trivial subspace of V,
there must exist a simultaneous eigenvector 0 # ¢ € V? for such operators: S,(cﬁ)f = )\,(c")f
for complex eigenvalues )\59"), 1<k< M+N,ne€Z". Via the irreducibility of V, we
conclude Y (glasn, G)™¢ = V, and by collecting these eigenvalues into power series
Me(u) = Gre + Domg A"y—n we observe the vector ¢ satisfies the conditions (5.2.4),

n=

so V is a highest weight representation with highest weight vector £ and highest weight
(Ae(u)R-

It remains to show that £ is unique up to scalar multiples. Recalling the PBW
Theorem (5.1.10) for Y(glasn, G)™, we fix a total order ‘<’ on the index set K (5.1.13)
such that for any tuples (i1, j1,71), (42, J2, M2), (13, J3, 3) € K satisfying i1 > j1, i2 = Jo,
i3 < js, then (i1, 51,m1) =X (@2, j2,n2) =X (i3, 3, m3). Via this total ordering ordering, we
conclude that V' is spanned by ordered elements of the form

gm) S-("")E, (5.2.13)

1151 ek

where k € N, 44 > j,, and (g, ja, ns) € K for 1 < a < k. By (5.2.2), the elements (5.2.13)
are weight vectors with corresponding weights of the form

k

p+ Y (e, — &)

a=1

where 4 is the linear functional on b given by H; — %(—1)lk1gkk>\§j’. Hence, there is

a weight space decomposition V = @, .. V,, where each weight v # p is of the form

veh*
- ZZ=1 (€i, — €j) for iq < Jo, @ =1,... k. As a result, the space V,, is 1-dimensional

and is given by V,, = spanc{¢}.

If £ is another highest weight vector of V' of highest weight (\(u))M%Y, the weight
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space decomposition ensures that its weight must be equal to u. Hence, £ = c£ for
some ¢ € C*. O

Definition 5.2.4. Given a tuple A\(u) = (A\x(u))MHN of series of the form (5.2.5), the
Verma module M(A(u)) is the quotient:

M(A(w)) == Y(gluin, §)* [ Taw)» (5.2.14)

where T, is the left graded ideal generated by the coefficients of the series S;;(u)
where 1 < i< j < M+N, and Ski(u) — Ax(u)l where 1 <k < M+N.

When M (A(u)) is non-trivial, it is a highest weight representation of Y (glasn, G)™
with highest weight A\(u) and highest weight vector 1)), the image of 1 in the canonical
projection Y (glyn,G)™ — M(A(u)). Furthermore, if L is a highest weight represen-
tation of Y (gl n, )™ with highest weight A(u) and highest weight vector £, then,
provided M(A(u)) is non-trivial, there is a surjective Y(glyn, G)*’-module morphism
@: M(A(u)) = L induced by the assignment 1)) +> &; thus, L = M(A(u))/ ker .

By (5.2.3), 5 M (A(u)), is invariant under the action of Y(glasn,G)™. Therefore,
since 1y(u) is contained in M(A(u))r0) C D5 Mo(A(1))y, Where A ¢ p* is the linear
functional given by AM(Hy;) = )\,(cl), we have the weight space decomposition

M) = P M), (5.2.15)

LED*

and each weight p is of the form A() —w, where w is a Z*-linear combination of positive
roots in ®*. Indeed, recalling the PBW Theorem (5.1.10), we fix a total order < on
the index set KC (5.1.13) such that for any tuples (i1, j1,m1), (42, 42, N2), (33, J3,13) € K
satisfying i, > j1, i2 = jo, i3 < J3, then (i1, j1,11) =< (i2, J2, n2) =X (i3, 73, n3). Via this
total ordering ordering, we conclude that M (A(u)) is spanned by ordered elements of

the form
Ssm) | o)

111 ikJk 1'\(“')’

(5.2.16)

where k € N, i, > j,, and (4,4, Ja,m6) € K for 1 < a < k. In particular, we conclude
that M(A(u))yw is 1-dimensional; M(A(u))yw = spanc{1xw)}-

Any submodule P of M(A(u)) also has a weight space decomposition P = @ ,y. Pu,
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where P, = PN M(A(u)),. Since dim M(A(u))y@w = 1, it necessarily follows that
P C @) 4ucy M(A(2)), and so the sum of all proper submodules K =" p_p1ay) P
is the unique maximal submodule of M (A(u)).

We end this chapter by providing the following definition of an irreducible highest
weight representation, which will be the types of representations used in the overall
classification of the set Reppy (Y (glain, G)™)/~:

Definition 5.2.5. When the Verma module M (A(u)) is non-trivial, we define the irre-
ducible highest weight representation L(A(u)) of Y(glpn,G)™ with highest weight \(u)

as the quotient of M (A(u)) by its unique maximal proper submodule.

The next goal in the story of the representation theory for the twisted Yangian
Y (glaw, G)™ is to classify the necessary and sufficient conditions for the non-triviality
of the Verma module M (A(u)). Addressing such question is unfortunately out of the

scope of the dissertation, which is the cause of future research in this area.



Chapter 6
Conclusion

This dissertation addressed three different topics in super Yangian theory. In summary,
Chapters 2 and 3 investigated Yangians of orthosymplectic Lie superalgebras, while
Chapter 4 considered Yangians of periplectic Lie superalgebras and Chapter 5 introduced

twisted super Yangians of type AIII.

Chapter 2 provided a detailed exposition on the algebraic structure of the orthosym-
plectic Yangians Y (ospasn), which involved proving a Poincaré-Birkhoff-Witt-type
theorem in detail that has not yet occurred in the literature. In Chapter 3, we estab-
lished many necessary conditions for the irreducible representations of X(ospasn) to be

finite-dimensional by formulating a suitable highest weight theory.

Later in Chapter 4, we recalled the strange Yangians Y(sy) for sy = pn,qn as
originally defined by M. Nazarov in [Naz92]. We proved a Poincaré-Birkhoff-Witt-type
theorem for the Yangian Y(py) by adapting the arguments used to show a similar
result for its counterpart Y(qy) in the paper [Naz99|. Lastly, we defined the twisted
Yangians Y (gl n, G)™ of type AIII in Chapter 5 and established that they can also
be realized as reflection superalgebras subject to an additional unitary constraint.
Moreover, we founded a highest weight theory for Y (gl v, G)* and proven that every
finite-dimensional irreducible representation must be highest weight.

To conclude this chapter and dissertation, we survey some natural questions that

arise from our work which instigates future research directions.

201
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6.0.1 The classification of finite-dimensional irreducible repre-

sentations and the universal R-matrix of Y (ospn)

The main research priority on these Yangians is to obtain sufficient conditions for the
irreducible representations of X(o0spsn) to be finite-dimensional. This will be achieved
if one is able to finalize the construction of the remaining type II fundamental represen-
tations as carried out in §3.2.4. To prove such sufficient conditions are also necessary,
there will need to be further restrictions on the roots of the Drinfel’d polynomials é(u)
and @Q(u) associated to any finite-dimensional irreducible representation. If both of
these tasks can be completed, a full classification of the sets Repyy (X(0spasin))/~ and
Repg; (Y (0sppn))/~ should be possible; we refer the reader to the Conjecture 3.2.22

and Conjecture 3.2.23.

When g is a simple Lie algebra, it has been known since [Dri85] that a universal

R-matrix exists for the Yangian Y(g):
Ruw) =1+ Reu™* € (Y(g) ® Y(g)[u™"].
k=1

In fact, a recent constructive proof of the universal R-matrix in this case has appeared
in the article [GLW21]. The mentioned proof, however, utilizes Drinfel’d’s current
presentation of the Yangian as opposed to the RT'T formalism used predominantly in

this dissertation.

As initially discussed in Chapter 1, the question of whether or not such a universal
R-matrix exists for the Yangian Y (0spasn) currently remains open. Recent progress
has been achieved in formulating an analogue of Drinfel’d’s current presentation for the
Yangian Y (ospan) in the works [Mol23a, MR23|; hence, a natural research direction
would be to adapt the arguments used in the constructive proof of the R-matrix to the

case of the orthosymplectic Yangian Y (ospasn) utilizing Drinfel’d’s current presentation.

Another research direction is the construction of the Yangian double: the adaptation
of the Drinfel’d double in Hopf algebra theory to such infinite-dimensional quantum
groups. In the paper [JYL20], a construction of the Yangian doubles DY (so;s) and
DY (spn) were provided via the RTT formalism. A direct adaptation of such construc-
tions in the aforementioned paper to the supersymmetric setting should be blueprint
for defining the Yangian double DY (ospan).
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6.0.2 Representation theory for Yangians of type P

In Chapter 4, we investigated much of the algebraic structure of the Yangian Y(py);
however, we did not examine any of its representation theory. In [Naz99, §5|, Nazarov
constructed functors between the representation categories of Y(qn) and the degenerate
affine Sergeev algebras, thereby constructing a wide array of irreducible representations
for this Yangian. Accordingly, one could attempt to imitate the construction of such a
representation functor between the representation categories of Y(pn) and some other

superalgebra, A.

In fact, the author has already performed calculations on this question when 4
is the degenerate affine periplectic Brauer algebra B3, which is denoted ﬁa in the
paper [CP18]. However, certain difficulties arise in this case that forces one to take a
certain unnatural quotient of the algebra %2f which unfortunately diminishes the value
of the result. Furthermore, the relations between the super permutation operator P
and the matrix QF are somewhat more complicated than the comparative relations
between P and Q®, which creates complications when attempting to construct a faithful

adaptation of the functor presented by Nazarov.

Of course, a direct investigation into the classification of finite-dimensional irre-
ducible representations of Y(py) is a possible future research venture. Similar to
the orthosymplectic Yangians, one would hope to first establish a tensor product
decomposition

X(pn) = ZX(pn) @ Y(pn),

where ZX(px) is the supercenter of the extended Yangian X(py), thereby allowing one
to focus on the representation theory of X(py). However, such a decomposition is yet

to be proven.

A construction of the Yangian double DY (py) may also be possible in a similar way
to the Yangian double in [JYL20] via the RTT formalism. In [Naz99, §4|, Nazarov
does define the Yangian double DY (qy) as the superalgebra generated by Y(qn) and
its dual Y*(qn). However, adapting many of the results involving Y(qy) and its dual
to the periplectic case can prove to be difficult due to the aforementioned relationship

between the matrices P and QF.



204  Chapter 6. Conclusion

6.0.3 The supercenter and representation theory for twisted

super Yangians of type AIII

The last research direction is on the topic of the twisted Yangian Y (glasn, G)*™. The
notable omission on the algebraic structure of these twisted super Yangians in Chapter 5
is the description of its supercenter. When N = 0, it is known by [MR02, §3] that
the center of Y(glaio, )™ = Y(gla, G)™ is determined by the Sklyanin determinant
sdet S(u) which itself is given in terms of the quantum determinant qdet T'(u), where T'(u)
is the generating matrix of Y (glar).

It is known that the quantum determinant generates the center of Y(glys), whereas
its super-analogue, the quantum Berezinian (see [Gow07, §7]), generates the supercenter
of Y(glan). To describe the supercenter of the twisted Yangian Y(glyn,G)™, one
would therefore aim to construct a super-analogue of the Sklyanin determinant in terms
of the quantum Berezinian in lieu of the quantum determinant.

After obtaining the description of the supercenter of these twisted super Yangians,
the next goal is to continue the investigation into their finite-dimensional irreducible
representations. In particular, the next immediate result to attain is the necessary and
sufficient conditions for the non-triviality of their Verma modules M (A(u)). Certain
necessary conditions are already determined by the author, but the proof for sufficiency
will likely require the use of the quantum Berezinian in accordance with the methodology
used in the proof of the non-super case [MR02, Theorem 4.2].

Ultimately, by following the exposition of [MR02], one would have to address the
classification of the finite-dimensional irreducible representations for the low rank cases
Y(gli1, G)™ and Y(glyj1,G)™, but this will require further investigation.
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