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Abstract

Data is becoming more valuable as there are still many uncertainties and hidden

information that have yet to be discovered. For this reason, the application of data

analysis and machine learning in the industry is becoming more popular. For example,

SAGD (steam assisted gravity drainage) is a type of oil extraction process where

high-pressure steam is used to heat the bitumen underground. Optimizing the steam

generation is one of the ways to improve the SAGD process as steam is an important

part of the SAGD process. One method that may be used to optimize this process is

the feature extraction analysis.

Feature extraction analysis is a method that tries to extract valuable information

from a given dataset. Essentially, it projects the given dataset to another subspace

such that a particular statistical property is amplified and noises are minimized. In

this thesis, data analysis is explored to optimize the SAGD process. The first chapter

defines the problem and feature extraction methods are introduced.

In the second chapter, a grey box model is used to develop a soft sensor to predict

the steam quality out of a steam generator in the real SAGD process. The core

model structure is based on energy balance and data analytic methods is used to

further improve the predictability strength by applying a Kalman filter and online

bias updating technique. Later on, feature extraction methods are further explored

to improve the developed soft sensor. Finally, cointegration analysis (CA), which is a

type of feature extraction method, is modified to monitor fouling accumulation inside

the steam generator tubes. The difficulty of predicting fouling buildup in a steam

generator using process knowledge alone is addressed. Since fouling buildup involves

ii



complex chemical phenomena, a data analysis approach is proposed that can be easily

applied in the industry. In the proposed method, PCA is paired with CA to develop

a practical solution to predict fouling buildup.
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Chapter 1

Introduction

1.1 Background and Motivation

In chemical engineering, predictive models are widely used to predict quality variables

as soft sensors. Predictive models can either be black box models, white box models

or grey box models. A black box model is a purely data-driven model. It does

not require prior knowledge about the process but requires the training dataset to

represent the system. On the other hand, a white box model is solely based on

process knowledge. Therefore, for the model development of a white box model, the

quality of the training dataset is not a major concern. But building predictive models

solely based on engineering/process knowledge has limitations. First of all, it does

not consider the uncertainties in the system. Second, some chemical processes, such

as fouling accumulation, are too complicated to develop a white box model.

With an abundant source of available data, the application of statistical and ma-

chine learning methods has become popular in recent years in chemical engineering.

For example, a SAGD (steam assisted gravity drainage) process is a type of in-situ

bitumen extraction process that uses heat from steam to reduce the viscosity of bi-

tumen to bring it up to surface. The steam that is used for the process is generated

by steam generators and the energy used in steam generators is responsible for more

than 90% of the total energy requirements in the SAGD process. Therefore, it is

desirable to optimize the OTSG (once-through steam generators) operation as much
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as possible.

Some typical steam generators used in the SAGD process are OTSG and HRSG

(heat recovery steam generators). Two of the many ways to optimize OTSG are: 1.

predict steam quality out of the steam generator with high accuracy so that advanced

control can be implemented for steam quality, and 2. monitor and predict the fouling

accumulation inside the tubes to ensure normal OTSG operations. Steam quality is

the mass fraction in the saturated mixture that is vapor. For example, 80% steam

quality would mean that 80% is steam and 20% is water in the saturated mixture (by

weight). Typically, steam quality is sampled manually and manual samples give the

most reliable measurement, but the sampling frequency is not fast enough to be useful

for control or optimization. Due to its complex chemical mechanism however, it is

very difficult to predict fouling buildup despite the fact fouling/scaling accumulation

in steam generators has been studied for many years. Consequently, the goal of this

research is to maximize the use of available process data - both known and hidden

information - to solve engineering problems in the industry. In this thesis, grey box

and black box models will be investigated and developed to predict steam quality and

fouling accumulation in the steam generator used in the SAGD process respectively.

1.2 Preliminaries

As this thesis mainly deals with feature extraction analysis and soft sensors, they are

briefly introduced in this section.

1.2.1 Feature Extraction Analysis

With the ability to store a large amount of data, data analytics and machine learning

have become a popular choice to solve engineering problems. One method of machine

learning is feature extraction analysis. In essence, feature extraction methods try

to extract informative features that contain valuable information within the data.

Through some form of mapping, it extracts a set of new features from the original
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dataset. This method is particularly useful when dealing with a multivariate system

as it can be used to reduce the dimension of the system, consequently focusing only

on the selected features. Also, feature extraction transforms the data such that

redundancy within the original dataset is reduced. Below is a brief explanation of

some feature extraction methods that are commonly used in chemical engineering.

1.2.2 Brief overview of PCA

PCA (principal component analysis) is one of the most commonly used feature ex-

traction methods in process data analysis. It was first invented by Pearson in 1901

[1] and independently developed by Hotelling in 1933 [2]. In essence, PCA tries to

extract features based on variation by applying eigendecomposition. It transforms

the data and projects it into a coordinate system (commonly known as the latent

space) so the components (also known as scores) are orthogonal to each other and

ordered based on variance. Thus the first component will try to find the direction

where the variance of the system is maximized:

maximizeθ11,...,θp1

{
1

n

n∑
i=1

( p∑
j=1

θj1xij

)2
}

subject to

p∑
j=1

θ2
j1 = 1 (1.1)

where θ is the parameter (loading vector), xij is the data point, and the first principal

component can be expressed as:

zil = θ11xi1 + θ21xi2 + ...+ θp1xip where i = 1,...,n (1.2)

Equation (1.2) is commonly known as scores or latent variables and they define the

latent space. Since PCA tries to find the direction where the variance of the system

is maximized, it can consequently be used as a dimension reduction method: it can

represent the data in a lower dimension that contains most of the variation. Also,

it can be observed that there is no temporal interpretation in conventional PCA:

conventional PCA does not consider sequential correlations of data samples. To

incorporate temporal information, SFA (slow feature analysis) and CA (cointegration

analysis) also have been considered.
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1.2.3 Brief overview of SFA

Like PCA, SFA (slow feature analysis) is another feature extraction method that uses

eigendecomposition to solve the feature extraction problem. Unlike PCA, SFA focuses

on the dynamics and tries to extract slowly varying features and the dimension of the

new coordinate system needs to be predefined. Although the original dataset does

not need to be linear, SFA assumes that the features extracted are linear.

SFA tries to find the slowly varying feature by minimizing the temporal variation

within the latent space:

minimize E(ż2
i ) (1.3)

Since any constant value would give the optimal solution, equation (1.3) must be

satisfied while:

E(zi) = 0 (1.4)

E(z2
i ) = 1 (1.5)

E(zizj) = 0 (1.6)

where

żi(t) = zi(t)− zi(t− 1) (1.7)

Equation 1.6 ensures that obtained slow features are orthogonal to each other, thus

decorrelated. By minimizing the temporal variation of the latent score, we try to

find the smooth and simple underlying feature from the dataset, which tends to be

important in process data analysis.

1.2.4 Brief overview of CA

CA (cointegration analysis) was developed by Engle and Granger [3] in econometrics

and Chen et al [4] first introduced it in chemical engineering as statistical process

monitoring methods. The main objective of CA is to extract the most stationary

feature within a nonstationary dataset so that we can understand the cointegrated
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relationship between the variables. Assuming that the dataset can be represented as

a VAR (vector autoregressive) model, and then applying first-order difference, the

system can be represented as:

Xt −Xt−1 = [Π1 − I][Xt−1 −Xt−2] + [Π1 + Π2 − I][Xt−2 −Xt−3]

+ ...+ [Π1 + Π2 + ..+ Πk − I]Xt−k + et
(1.8)

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2...+ Γk−1∆Xt−k+1 + ΠXt−k + et (1.9)

where et is is white noise with zero mean and finite variance, et ∼ N(0,Λ) and the

parameter Π maps the nonstationary space to the stationary space. Π can be further

decomposed into α and β:

Π = αβT (1.10)

where βTXt becomes stationary even if Xt is nonstationary. Johansen shows how to

determine β by applying eigendecomposition [5].

1.2.5 Brief overview of PLS

PLS (partial least squares) is different from the feature extraction methods mentioned

above in the sense that PLS is a supervised learning method while the other methods

are unsupervised methods. As an unsupervised method, PCA, SFA, and CA do

not use any information from the response variable (Y). Consequently, there is no

guarantee that the extracted features would best describe the response variables when

using unsupervised methods. PLS, on the other hand, maps both X and Y to latent

space such that the covariance is maximized.

X = TP T + E (1.11)

Y = UQT + F (1.12)

1.2.6 Soft sensor

In the process industry, measurement of key variables, such as steam quality and

fouling buildup, is of great importance. The availability of online measurements of
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these variables is crucial for control, optimization, and monitoring. However, hard-

ware instruments do not always perform at a satisfactory level. In many cases, manual

measurements are not sufficiently frequent enough for advanced process control. Con-

sequently, analyzers are usually used but suffer from reliability issues and poor eco-

nomic efficiency. As a result, estimating key process variables using inferential sensors

(soft sensors) has become a favorable alternative solution for the online measurement

of key variables. Soft sensors have shown that they are a valuable alternative to ob-

tain critical values and popular soft sensor modeling techniques have been discussed

in [6].

In [6], the authors briefly mentions about the different types of soft sensor models

that can be developed, namely the white box (first principle) model, grey box (hy-

brid) model, and black box (data-driven) model. White box models are based on the

chemical and physical properties of the process. As a result, it is heavily dependent

on detailed and in-depth process knowledge, which may not be always available. The

black box model, on the other hand, is data-based so as long as there is data available,

in-depth process knowledge is not required. However, they are more susceptible to

the typical properties of process data, such as missing data, drifting phenomenon,

outliers, and co-linearity. Manual pre-processing and basic process knowledge is nec-

essary to work around these properties while developing a soft sensor. To mitigate

these issues, semi-automated/ recursive soft sensors have been developed. A grey

box model is a mixture of both white and black box models and it tries to reduce

disadvantages of black box models. The most common application of soft sensors

is the online prediction of a quality variable, but they can also be used for process

monitoring and fault detection by using multivariate statistics such as PCA (princi-

pal component analysis). In addition to PCA, there are other popular multivariate

statistical methods that are used to develop data-driven soft sensors, such as PLS

(partial least squares), SVM (support vector machines), and ANN (artificial neural

networks).
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In [7], Shima et al. further discusses soft sensor development but focuses on how

Bayesian methods can be incorporated to further improve soft sensors. It also divides

different types of soft sensors into a white box, black box, and grey box models, and

emphasizing importance of pre-processing the data to deal with missing datasets,

outliers and co-linearity. Some of the advantages of Bayesian methods that were

mentioned in the paper are the ability to obtain grey box models by incorporating

process knowledge in a Bayesian scheme via prior distributions over model parameters,

functional forms, and constraints. It can also handle incomplete and non-Gaussian

distribution data.

1.3 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 explains the development of the grey-box steam quality soft sensor

and evaluates the performance in detail. As this model has been developed for the

industry, the main focus was to develop a model that is robust yet accurate enough

to predict steam quality. The core model structure was based on energy balance and

it was developed to maximize the use of the available process variables while simple

enough to be implemented in the DCS. In order to utilize the available data as much

as possible, statistical techniques are also implemented to improve predictability. The

developed model is then compared with the existing steam quality analyzer to show

performance improvement.

In Chapter 3, PCA (principal component analysis), SFA (slow feature analysis)

and CA (cointegration analysis) are selected to extract informative features to further

improve the developed steam quality soft sensor. The importance of this chapter is

to maximize the information and extract the hidden features within the system for

model development. The different feature methods were selected to determine which

type of feature(s) is most informative. The proposed model can be implemented in

any grey-box models. To validate the model, its correlation with the lab samples and
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predictability are compared with the grey-box model that was developed in Chapter

2.

Feature extraction methods are further explored in Chapter 4. In this chapter,

residual CA is proposed to extract the most nonstationary feature within the system.

In chemical engineering, the process is inevitably nonstationary due to equipment ag-

ing and accumulation in the system. Consequently, understanding the nonstationary

features within the system becomes desirable. Multiple numerical simulations were

conducted to validate that the proposed model can indeed extract the most nonsta-

tionary feature(s) in the system. To show the importance of this model, residual CA

is implemented in the two-layer feature extraction method to predict and monitor

fouling accumulation in OTSG tubes, which is a very difficult process to predict due

to the complex chemical phenomenon.

Finally, Chapter 5 summarizes the thesis and recommends future research direc-

tions.

1.4 Thesis Contributions

contribution of this thesis are as follows:

1. Developed a grey-box steam quality soft sensor to predict steam quality out

of once-through steam generators (OTSG) that are used in SAGD processes,

where the core model structure was based on energy balance and statistical

techniques were used to enhance the predictability.

2. Improved the developed grey-box steam quality soft sensor by applying feature

extraction techniques on the bias terms and process variables.

3. Developed a method to extract nonstationary features from process data.

4. Proposed a method to monitor and predict fouling accumulation in OTSG tubes

by using a two-layer feature extraction method using PCA and modified CA.
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Chapter 2

Developing steam quality soft
sensor with an energy balance
based model

2.1 Introduction

Steam-assisted gravity drainage (SAGD) is an enhanced oil recovery (EOR) method

that uses heat from high-pressure steam to reduce the viscosity of oil sand under-

ground so that it is easier to bringing up to surface. Compared to other EOR methods,

SAGD has higher bitumen production rates. The steam used for the SAGD process

can be produced by once-through steam generators (OTSG). OTSG uses combustion

energy from fuel gas (FG) to change the water (BFW) into wet steam (WS). Fuel gas

can be either sweet gas, makeup gas, or a mixture of both. To maximize efficiency,

BFW is divided into a certain number of passes. The energy used in OTSGs is respon-

sible for more than 90% of the total energy requirements in the SAGD process [8].

Therefore, it is desirable to optimize the OTSG operation as much as possible. Figure

2.1 is a process flow diagram of a typical OTSG. One of the ways to optimize OTSG

operation is by measuring steam quality with high accuracy (measurements can be

used to control the steam generator with tight operating limits). Steam quality is the

mass fraction in the saturated mixture that is vapor. For example, 80% steam quality

would mean that 80% is steam and 20% is water in the saturated mixture (by weight).
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Unfortunately, hardware instruments often give not-so-accurate measurements. It is

common to sample quality variables in the field (which gives reliable measurements),

but they are not sampled frequently enough to be useful for process control. There-

fore, inferential sensors (soft sensors) have become a promising alternative solution

for measuring key variables.

Inferential sensors can either be based on a black-box model, white box model or

grey box model. A black box model is purely data-driven. It does not require prior

knowledge about the process but requires the training dataset to be representative of

system operations. On the other hand, a white box model is solely based on process

knowledge.

However, many industrial processes are complex such that it requires in-depth

knowledge to develop a model, and the quality of data is often not good enough to

develop accurate black box models. To mitigate these shortfalls, grey box models

have been considered as a more practical solution. A grey box model is a mixture of

black box and white box models where it tries to amplify advantages and minimize

their disadvantages. For example, a simpler model structure can be developed from

process knowledge with a few assumptions. With readily available data, parameters

for the models can be identified. In addition to parameter identification, statistical

techniques can be used to further compensate for the inadequacy of the assump-

tions and extract hidden information from the process data to capture the essential

information.

The majority of the soft sensor development in this chapter will be based on hybrid

modeling where the core model structure is based on energy balance. The parameter

identification and other soft sensing techniques will be based on process data. Figure

2.1 is a brief process diagram of an OTSG.

Figure 2.2 is a diagram that briefly explains the soft sensing algorithm. Developing

a reliable steam quality sensor ultimately leads to enhancing the performance of the

OTSG and achieving its optimization. A typical procedure to develop a soft sensor
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Figure 2.1: OTSG schematic

is as follows.

1. Problem statement: As with many engineering problems, the first step is to

identify the problem that needs to be solved and learn about the process. In

this chapter, the problem that needs to be solved is to develop a steam quality

soft sensor. The process required to be learned is the steam generation process

via OTSG.

2. Data collection and validation: After identifying the problem, appropriate data

should be collected and validated. For this thesis, a year-long data from six

OTSGs with a one-minute sampling interval was obtained. The quality of data

is assessed to determine if they could be used for modeling.

3. Model identification: Based on the knowledge about the process, a model struc-

ture can be developed. Based on the available data and the knowledge about

the steam generation process via OTSG, an energy balance based model is de-

veloped.

4. Soft sensing techniques: To strengthen the prediction power, soft sensing tech-

niques like robust index, filtering, and online bias updating are used. A robust

index is used to increase the robustness of the soft sensor by indicating poten-
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Figure 2.2: Soft Sensing Algorithm

tial problems in advance. Kalman filter is used as a filtering method to reduce

the variability and the online bias updating technique is used as an adaptation

mechanism.

5. Soft sensor validation: The developed soft sensor needs to be validated to see if

all the requirements have been met. The performance should also be validated

online to ensure there is no significant discrepancy between offline performance

and online performance.

6. Re-identification: During soft sensor validation step, offline and/or online, it

is possible to find problems and fail to meet the requirements. In such cases,

fine-tuning of the soft sensor is required.

In the remainder of this chapter, section 2.2 explains the previous method. Section

2.3 describes the model structure derived from process knowledge. Section 2.4 de-

scribes the soft sensing techniques based on statistical methods. Section 2.5 shows

the performance of the developed soft sensor and section 2.6 describes the future work
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and some concluding remarks.

2.2 Preliminaries: Existing energy balance steam

quality soft sensor

A grey box steam quality soft sensor based on energy balance has been previously

developed in [9]. In [9], the authors showed the successful application of the soft

sensor in the industry, where online bias update technique and online outlier detection

techniques were incorporated to compensate for the error and increase the robustness

of the model respectively.

2.2.1 Model development

The model developed in [9] assumes that there is no heat loss between the individual

passes and the recombined outlet. By assuming that there is no heat loss, the energy

balance at the recombined outlet becomes:

Q(t) = Qa(t) +Qb(t) (2.1)

where

Qa(t) = ρFf (t)Cp
(
Tr(t)− Tf (t)

)
(2.2)

Qb(t) = ρFf∆HX(t) (2.3)

Similar equation can be developed for individual passes:

Qi(t) = Qai(t) +Qbi(t) (2.4)

where

Qai(t) = ρFi(t)Cp
(
Ti(t)− Tf (t)

)
(2.5)

Qbi(t) = ρFi∆HXi(t) (2.6)

Taking the energy balance between the individual passes and the recombined outlet,

equation (2.1) and (2.4) can be recombined to determine Xi(t):

Xi(t) = k1u1(t) + k2u2(t) + k3u3(t) (2.7)
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where k1, k2, k3 are scaling parameters that will be estimated with the following phys-

ical properties:

k1 = ξi

k2 =
100ξiCp

∆H

k3 =
−100Cp

∆H

and u1, u2, u3 are process inputs:

u1(t) =
Ff (t)

Fi(t)
X(t)

u2(t) =
Ff (t)

Fi(t)
[Tr(t)− Tf (t)]

u3(t) = [Ti(t)− Tf (t)]

The final steam quality soft sensor prediction for the individual passes thus becomes:

Ŷi(t) = Xi(t) + β(t) (2.8)

where Xi(t) is the model prediction obtained from equation (2.7), and β(t) is the

online bias term used to offset the model error which has the following formulation:

β(t) = α[Yi(t− 1)−Xi(t− 1)] + (1− α)β(t− 1) (2.9)

where α ∈ [0, 1] is the weighting factor. In their work, α, k1, k2, k3 have been deter-

mined using the prediction error method (PEM). To determine the outliers, Hampel’s

method was used, which is later discussed in detail in section 2.4.1.

2.3 Model derivation and assumptions

Process knowledge-based models usually start from the laws of conservation. For the

proposed application in this thesis, the conservation of thermal energy was used. Since

recombined manual steam quality samples were not available however, a different

approach from [9] was taken.
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To develop a simple model with available process variables, some assumptions

are made while developing the model structure. Statistical techniques can be used to

compensate for the assumptions made. This section explains how the model structure

was made along with its associated assumptions.

2.3.1 Model derivation

A general energy balance equation can be established between the total energy input

(Qin) and total energy output (Qout). The energy output can be expressed as the

summation of sensible heat (Q
(s)
out) and latent heat (Q

(l)
out). When there is a phase

change and assuming no heat loss, the energy consumption of the system can be

expressed as:

Qin = Qout = Q
(s)
out +Q

(l)
out. (2.10)

The energy supplied from a furnace or a steam generator can be determined by the

combustion energy equation [10].

Qin = ṁfuel · LHV · ηcombustion (2.11)

With the fuel gas flowrate (FFG) available and assuming that LHV and efficiency

stays constant, equation (2.11) could be simplified as a linear function of FFG:

Qin = k
′ · FFG + b

′
(2.12)

where k’ and b’ are unknown parameters. Assumptions made to develop equation

(2.12) will be discussed further in section 2.3.2.

Sensible heat is defined as the energy required to raise the temperature of a system

to its boiling point:

Q
(s)
out = ṁ · Cp · (Tout − Tin) (2.13)

where

ṁ = ṁ · x+ ṁ(1− x) (2.14)
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and x is the mass fraction of steam and 0 ≤ x ≤ 1. To simplify the model structure,

the liquid phase of the steam mixture is ignored in the heat balance model and the

detailed discussion is provided later. Hence, equation (2.13) can be simplified into

Q
(s)
out ≈ ṁ · x · Cp · (Tout − Tin). (2.15)

Latent heat is the energy required to change water into steam without changing

temperature:

Q
(l)
out = ṁ · x ·∆h (2.16)

Combining equations (2.15) and (2.16), the total output energy can be expressed as:

Qin = ṁ · x · Cp · (Tout − Tin) + ṁ · x∆h. (2.17)

Combining equation (2.12) and equation (2.17):

k
′ · FFG + b

′
= ṁ · x · Cp · (Tout − Tin) + ṁ · x ·∆h (2.18)

Solving for steam quality, equation (2.18) can be simplified and hence the model

structure for steam quality soft sensor becomes:

X̂M =
k′ · FFG + b′

ṁfCp(Tin, P in) · (Tout − Tin) + f∆h(Tout)
(2.19)

where fCp , and f∆h(Tout) are known functions, and FFG, ṁ, Tin , Pin and Tout are

measurements available from the hardware sensors. In order to compensate for the

error from unmeasurable variables and simplified assumptions, the following equation

is proposed as the soft sensor model:

X̂M = K · FFG
ṁfCp(Tin, Pin) · (Tout − Tin) + f∆h(Tout)

+ b (2.20)

where K is the gain parameter and b is the bias term. Bias can be offline esti-

mated and online updated. The estimation of parameters is required in the model as

compensation of errors since many assumptions were made. To compensate for the

assumptions, K and b are determined from data and these parameters will attempt to
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capture the factors that were not included in the model such as efficiency (ηcombustion)

and heating value (LHV). Latent heat is the energy required to change water into

steam without changing temperature:

2.3.2 Assumptions

Since the model is based on energy balance (knowledge-based), it is usually more

versatile than data-driven based models. However, in the developed model above,

the following assumptions had to be made to maintain a simple model structure and

compensate for missing information.

Assumption 1: Representation of the energy input

The amount of heat required to change water into the saturated mixture is provided

by the combustion energy of fuel gas and air. To calculate the actual amount of heat

produced from fuel gas, however, its exact physical properties must be known. If the

fuel gas is a purchased sweet gas, obtaining its physical properties should not be so

difficult. The problem arises when the fuel gas contains makeup gas where its physical

properties are difficult to obtain. To develop a simple model, it has been assumed

that LHV and steam generator efficiency stays constant. The flow rate of fuel is used

to represent the energy input and the regression parameters are used to compensate

for the inadequacy of these assumptions.

Assumption 2: Ignoring of the liquid phase

It can be observed in equation (2.19) that the liquid phase of the saturated mixture

has been ignored. The steam quality used in SAGD operations typically ranges from

70 to 100 % [11]. In a volumetric fraction, if the steam quality is at 70%, it is

mostly steam. Therefore, while developing the model, it was assumed that process

variables measuring the saturated mixture represent saturated steam. Consequently,

the proposed method is limited to high quality saturated mixtures.
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Assumption 3: Using inlet temperature to calculate heat capacity

Specific heat capacity at a constant pressure (Cp) is defined as the heat required

to raise the temperature of a substance by one degree. Mathematically, it can be

expressed as

Cp = (
dH

dT
)p (2.21)

where H represents heat and T is temperature. Even when there is a temperature

variation in the system, Cp is often used as a constant term, where the average

temperature is used to calculate its value, since it is considered that the variation due

to changing temperature is usually insignificant [12]. To reduce the variation of the

prediction as much as possible, various ways of calculation have been studied.

Figure 2.3 shows that the change in Cp with respect to the temperature is a

quadratic function and its variance increases as temperature increases. Therefore,

simply taking the average temperature to calculate this value is questionable. Most

importantly, although the difference was quite small, the performance of the EB model

prediction was best when the inlet temperature was used to determine Cp. For these

reasons, inlet temperature will be used to determine Cp. Table 2.1 summarizes the

correlation coefficients of the steam quality in pass 1 from six different OTSGs.

Table 2.1: Correlation Coefficient between the predicted steam quality and its refer-
ence value

OTSG A OTSG B OTSG C OTSG D OTSG E OTSG F
Inlet 0.84 0.77 0.62 0.70 0.54 0.77

Averaged 0.85 0.76 0.61 0.69 0.54 0.76
Outlet 0.84 0.73 0.57 0.62 0.53 0.71

2.4 Soft sensing techniques

In order to increase the robustness and accuracy of the model, the developed soft

sensor uses the following statistical techniques for further processing:
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Figure 2.3: Specific heat capacity at constant pressure vs. Temperature

1. A robust layer to protect soft sensor prediction to check the reliability of the

process measurements.

2. A filtering layer to reduce variance in the soft sensor prediction.

3. An online bias updating method to remove bias in soft sensor prediction.

2.4.1 Robust layer

Outliers from the process measurements can significantly impact soft sensor predic-

tion. For this reason, robust layers to detect outliers online should be part of the soft

sensor algorithm. To calculate, Hampel’s method was used:

1. First bound: Med(X)± 3 ·MAD(X)

2. Second bound: Med(X)± 6 ·MAD(X)

where Med(X) is the median value of a given process measurement, and MAD(X) is

the median absolute deviation, which is an indicator of measurement variance:

MAD(X) = Med(|X −Med(X)|) (2.22)
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Compared to the 3σ method, which is another common outlier detection method

that determines the outliers by comparing data with 3 standard deviations, Hampel’s

method is more robust to outliers [9]. Figure 2.4 shows an example of the robust layers

calculated by using Hampel’s method, where y-axis has been removed for proprietary

reason. To calculate the upper layer, the high operating region was used. Conversely,

the low operating region was used to determine the lower layer. With these four layers,

each variable can be classified as normal (N), mild outlier (M) or severe outlier (S).

Based on this classification, the robust index can be assigned. Table 2.2 summarizes

how the roust index is assigned for given process measurement.

Figure 2.4: Robust boundary for a process variable

Table 2.2: Models used to generate features

Robust Index (RI) Determination Description
2 Number of severe outliers ≥ 1 Soft sensor has stopped working
1 Number of mild outliers ≥ 2 The prediction may not be accurate
0 Otherwise The prediction is in good condition

2.4.2 Correction factor

Using the robust index, the soft sensor can distinguish if the process variables are

reliable enough to be used for the calculations. After having a model prediction by

using equation (2.20), a state estimation method is used to reduce the variance of
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the prediction and online bias update technique is used to mitigate for the drifting

phenomena in the process.

State Estimation

State estimation is a useful technique that applies to systems subject to disturbances

and can be used for filtering and smoothing. In the proposed application of steam

quality prediction, a simplified Kalman filter is applied. Comparing to the fixed

weight filters such as low-pass filters [13] or wavelet filters [14, 15], the Kalman filter

can adjust the weights automatically for each state sample.

Kalman filter can also be used to predict new values in the state space system

[16]. The original model for a dynamic system is as follows [17]:{
S(t) = A · S(t− 1) + w(t), w(t) ∼ N(0, σ2

p),

X(t) = H · S(t) + v(t), v(t) ∼ N(0, σ2
o),

(2.23)

where S(t) is the state at time t and X(t) is the observation at time t. Based on the

linear model considered in equation (2.23), the current state S(t) can be estimated

from the previous state and the current observation sample. More importantly, the

uncertainties of this model are described in a probabilistic way, where Normal distri-

bution is assumed for the noise terms, w(t) and v(t). Thus, the state value can be

solved optimally through this probabilistic model.

To apply Kalman filter to steam quality prediction, model output (X̂M from equa-

tion (2.20)) will be considered as an observation. Soft sensor output (steam quality)

can be an indicator of the steam generation process. Therefore, it should show dy-

namic behavior and can be described by using the state S(t) in the first equation of

model (2.23). The simplification used in this application is that the parameters, A

and H, will be set as one. The justification of this application is as follows.

1. Based on the prior knowledge, the steam quality is controlled with a pre-

determined setpoint and the process has strong inertia. This means that the
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current steam quality value should be near the steam quality value at the pre-

vious time step. Consequently, A will be set as one.

2. The model prediction is calculated based on observed process variables. Since

the model prediction is based on first principle knowledge, model output value

should also be close to the actual steam quality value. Therefore, H = 1 is based

on the intuitive interpretation.

It can be observed that only the variance parameters σp and σo in the Normal dis-

tributions in equation (2.23) are left for identification. In practice, cross-validation

methods can be used to identify the optimal values of these two variance parameters

from the collected process data.

Bias Update

After the prediction is smoothed through Kalman filter, online bias updating is used

to further improve the prediction quality. Chemical processes often contain drifting

bias. Some examples of the causes of the drifts are fouling and equipment aging. To

capture this phenomenon, an online bias updating technique will be used:

X̂ss(t) = X̂k(t) + β(t) (2.24)

where X̂k(t) is the model output after the filter. The β(t) term is the bias term

that is updated online based on the manual field measurements. As mentioned in

section 2.1, quality variables are often sampled in the field. Although the manual field

measurements are not sampled frequently enough to be used for control purposes, they

represent the actual value of steam quality most accurately. For this reason, manual

field readings will be used for bias updating. To control the speed of bias updating,

weight factor, α ∈ [0, 1], will be used:

β(t+ 1) = β(t) + α(Xref (t)− X̂M(t)) (2.25)

During normal operations (RI=0), small weight factor will be used to give more

weight to the model output. Conversely, during the initialization of the soft sensor
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or transient stage, a higher weight factor will be used. By having different weight

factors, it is possible to avoid abrupt changes in the soft sensor prediction during

normal operation that may be misleading but still allow quick capture during star-

tups or plant upsets. Based on the training data, α = 0.1 was used during normal

operations and α = 0.7 for initialization. To further control bias updating, the value

of β(t + 1) is restricted to a maximum value of 1 during normal operation and 10

during initialization and when the manual field measurement is within its designated

range. Although manual field measurement represents steam quality most accurately,

it still contains noise and not all of its measurements are trustable. The additional

restrictions on bias updating technique allow a good balance between the prediction

made by the model structure and manual field readings.

2.5 Performance analysis

After all parts of the soft sensing algorithms have been considered, a statistical anal-

ysis must be carried out to evaluate the performance of the proposed soft sensors

before online implementation. Two evaluation indices, Mean Absolute Error (MAE)

and standard deviation are calculated for the proposed and the existing soft sensors.

In addition to the statistical summary, visualization will be used to illustrate the

features of soft sensing algorithms.

Figure 2.5 compares the steam quality prediction with the existing steam quality

analyzer and figure 2.6 compares the variance. From figure 2.5, it can be observed that

the proposed method captures the steam quality better with smaller variance. From

figure 2.6, it is evident that the proposed method improved the ability to capture

steam qualities.

2.5.1 Mean absolute error (MAE) comparison

Table 2.3 summarizes offline MAE comparison for pass one of six OTSGs. To ensure

a fair comparison, the following conditions are required for the manual sampled steam
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Figure 2.5: Time trend of steam quality prediction at OTSG B, pass 1

Figure 2.6: Variance comparison (left) and correlation comparison (right) at OTSG
B, pass 1

quality to mitigate possible error while collecting the samples:

1. Manual field reading is a valid number (i.e., ignore NaN, ignore steam quality

measurements that were recorded during turnaround period).

2. Manual field reading ranges from 60% to 90%.

3. Validation dataset is used.

Table 2.3: MAE Comparison

Existing EBSS % reduction
OTSG A 1.01 0.59 42%
OTSG B 0.70 0.56 20%
OTSG C 0.67 0.56 16%
OTSG D 0.67 0.53 22%
OTSG E 1.16 0.59 49%
OTSG F 1.25 0.56 55%
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2.5.2 Standard deviation comparison

During steady-state operations, where the steam quality is within a small variation

range, the prediction should not vary too widely. 3σ represents the magnitude of

variability of predictions. Table 2.4 summarizes 3σ for all six OTSGs at pass 1. The

ranges were chosen to ensure the process is as steady as possible. Since each OTSGs

are considered as independent systems, the time frame where it is most steady may

be different for different OTSGs. Consequently, different data range was used for

different OTSGs.

Table 2.4: 3σ Comparison

Existing EBSS % reduction
OTSG A 2.93 1.13 61%
OTSG B 1.34 1.49 -11%
OTSG C 1.33 0.85 36%
OTSG D 1.64 0.73 55%
OTSG E 1.55 0.88 43%
OTSG F 1.35 0.96 29%

From 2.3 and 2.4, it can be observed that the proposed method generally improved

the performance, except for OTSG B. Therefore, it can be concluded that the perfor-

mance of the developed model is promising and can be used to further improve OTSG

optimization. However, seeing the poorer in performance for OTSG B indicates that

there is room for improvement.

2.5.3 Limitation of the Proposed Method

Since EB soft sensor is based on first principle methods, they are generally more

versatile than data-driven models. However, due to the assumptions made while

developing the models, it may have the following limitations:

1. Outlet stream has to be mostly steam: One of the assumptions made while

developing the soft sensors was that the liquid phase of the mixture is unmea-

surable. For this assumption to be valid, the outlet stream must be mostly
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steam. As a result, the proposed soft sensors may lose performance in predict-

ing the steam quality when the outlet of the OTSGs might have a significant

amount of liquid. For this reason, the current mitigation of this downfall is to

give more weight to an online bias updating technique using manual samples.

2. State estimation parameters should be re-tuned for faster rate: The state es-

timation parameters were trained based on one-minute data. Consequently, if

the proposed soft sensors are to be implemented for faster sampling rate data,

the parameters should be retrained to ensure performance.

3. Bias adjustment is required for a startup: During startup, it is common for

process measurements to show large bias. To capture such changes introduced

in the process during startup, bias should be updated more quickly during

process startups. Currently, the proposed soft sensors are designed so that bias

update has higher weight during startups.

4. Efficiency and LHV value stay constant: The model structure is from an energy

balance and its development has made multiple assumptions. Two regression

parameters were obtained from data to compensate for the inadequacy of the

assumptions, but they may not be sufficient to capture all the dynamics that

happen in the steam generator. For the linear regression parameters to have

better compensation effect, efficiency and LHV values should stay constant.

One way to improve on this deficiency is to extract additional information from

the readily available dataset and add it as inputs.

2.6 Conclusion

In this chapter, the energy balance based soft sensor was developed to predict the

steam quality of the steam generated by OTSG. The model structure was based

on the energy balance but statistical techniques such as regression, robust index,
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state estimation and online bias update were used to compensate for inadequate

assumptions, making it as a hybrid (grey box) model. A linear model structure was

chosen for its practicality and simplicity, but it may not be sufficient to capture all

dynamics within the system and introduces room for improvement for the model.

Compared to an existing steam quality analyzer, the proposed energy balance soft

sensor improved MAE by 34% on average and variance by 36%, However OTSG B

showed a decline in performance when comparing the variance. Therefore, it can

be concluded that although the proposed soft sensors can be used to predict steam

quality, improvements can be made to further enhance the developed soft sensor

and further optimize OTSG control. In the next chapter, we will consider such

improvement through better bias update mechanism.
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Chapter 3

Applying Feature Extraction
Method on the Bias Estimation

3.1 Introduction

Previously, an energy balance steam quality soft sensor was developed to determine

the steam quality from a once-through steam generator (OTSG). It was a grey model

where the model structure was based on energy balance, model parameter was ob-

tained from the training dataset and statistical techniques were used to enhance the

quality of the prediction. To develop a simple and practical model, several assump-

tions were made such as constant efficiency and low heating value (LHV).

Although the developed model showed performance improvements compared to

the existing soft sensor, it still had room for improvement. For example, while val-

idating the soft sensor, it was observed that the online bias update trends showed

similar characteristics for the different passes. Also, several assumptions were made

while developing the hybrid model, there may exist valuable hidden information in

the process variables that could be further extracted and used to improve the per-

formance of the soft sensor. Therefore, the objective of this chapter is to develop

a method that extracts information from the bias or the process variable to further

improve the energy balance based soft sensor.

In section 3.2, the motivation of the chapter will be discussed. In section 3.3,

the proposed method to extract information from the bias will be explained and the
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results will be discussed in section 3.8. Conclusion will be provided in section 3.9.

3.2 Motivation

Motivations of the proposed method are as follows:

1. Attempt to develop a model that is not dependent on online bias updating

technique.

2. Maximize information extracted from the available process variables.

Section 3.2.1 and 3.2.2 will explain both motivations in detail.

3.2.1 Attempt to develop model that is not dependent on
online bias updating technique

Although the real values of the output can be determined by manual sampling, the

frequency of sampling can vary and typically requires manual work. For example,

one operating company may sample twice a shift whereas another may only sample

once a month. Therefore, it is ideal to develop a model that is only dependent on

input variables. Even if sampling is done twice a day, it is still not frequent enough

for control and optimization. Therefore, it will be attempted to extract process

information from the bias term and map it back such that the final model is only

dependent on process variables, and also to develop a model that maximizes the

information extracted from the available inputs.

3.2.2 Maximize information from the available process vari-
ables

Due to the changes in the process such as adjustments in the feed quality or fouling in

the equipment, industrial processes exhibit some form of time-variant behavior. Such

time-variant behaviors cause estimates for the soft sensor to deviate from actual ones

over time and give biased results. To capture such behavior, a bias updating term
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has been incorporated in the soft sensor design. In practice, the bias term in the soft

sensor gets updated to reduce the error between the predictive model and the manual

samples. In equation (3.1), X̂M(t) is the model output after applying the filtering

method to reduce the variance, and the bias term gets updated only when there is a

manual sample available at time t. Consequently, the bias term is time-dependent.

X̂ss(t) = X̂M(t) + β(t) (3.1)

β(t) =

{
(1− α)β(t) + α(Xref − X̂M(t)), if Xref available

β(t), otherwise
(3.2)

The bias correction method is commonly used in soft sensing techniques to fur-

ther improve the soft sensor prediction and various methods for online bias updating

techniques have been investigated in many papers. For example Mu et al [18] and Ni

et al [19] uses weighting factors between 0 and 1 for the online bias updating, where

the weighting factor was determined by trial and error. Xie et al [20] used prediction

error method to determine the optimal parameters for the weighting factors. Shardt

and Huang discuss how the online bias update term is used to compensate for the

slow or drifting disturbance. In their work, they also discuss how to tune the soft

sensor’s bias update term when there is measurement delay, multirate sampling, or

both in both open loop case and closed loop case [21, 22].

In the previous chapter, the bias term β was updated by using the manual sample

data to capture the deviations. The rate of the update was controlled by a tuning

parameter, α. The bias term gets updated when the manual samples are available.

For the energy balance based steam quality soft sensor that was developed in chapter

1, α is relatively small (α = 0.2) during the normal operating mode. When at

transient state such as start-ups, α = 0.7 so that we can capture the unsteady state

much faster. Since the bias term only gets updated when there is a manual sample

available at time t, it is also dependent on the sampling frequency of the manual
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samples. For example, the soft sensor when there is a manual sample available every

six hours will be more dependent on the bias term than the soft sensor when there is

a manual sample available every 30 days.

While validating the energy balance model, it was observed that the bias term

for the different passes shares a similar characteristic, in particular for passes 1, 2, 3,

5 and 6. Therefore, this may indicate that the bias update is to to correct for the

missing information from the process. In other words, the bias terms may contain

information about the system. Figure 3.1 shows the time trend of the bias term from

the different passes using an energy balance steam quality soft sensor.

Figure 3.1: Time trend of the bias correction term

One of the major assumptions made for the energy balance was that the fuel gas

flow rate is sufficient to capture the dynamics of the energy into the system. In reality,

however, the energy provided in the system is more complicated, especially when the

property of the fuel gas changes. Also, the model did not consider energy loss. With

such assumptions made, it is not surprising that the bias correction was used to

correct the missing information from the system and not just disturbance/error from

the transmitters.
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Since bias most likely contains information about the system, we can potentially

improve the performance of the soft sensor if we can extract information from the

bias. For this reason, it was decided to improve the performance of the soft sensor

by extracting features from the bias.

3.3 Proposed Method

Bias correction is the last step in the soft sensor which is used to improve the predic-

tion. If the bias trend from the different passes shares a similar characteristic, then

using the extracted features from the bias corrections should further improve the soft

sensor performance. However, since the bias correction is time-dependent and we are

updating the next bias term to be used, we cannot directly use the extracted features

from bias for online application. Consequently, we instead need to find a way to map

it back to the process variables.

Feature extraction methods are commonly used in machine learning to extract

valuable information from the system. In particular, since feature extraction methods

sort out the latent variables in the order of importance, feature extraction methods

are widely used for feature selection and dimension reduction [23]. In essence, feature

extraction methods project the data into a latent space using a loading matrix. As

the loading matrix is used to connect the original system (data) with the latent space,

we use the loading matrix to determine the latent variables which define the latent

space. By selecting the adequate latent variable / proper number of dimensions, we

can filter out the noise from the data and define a new system (in latent space). By

applying feature extraction methods to the bias and the process variables, we can

further improve the prediction by adding valuable information as one of the inputs.

The common trend of the bias term from the different passes suggests that the

bias term is also correcting to amend the missing information from the process data.

Therefore, by selecting features from the bias terms to extract valuable information,

and then mapping the process variables with the selected features, we can potentially
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find good parameters for the process variables to improve the performance of the soft

sensor. The proposed method is summarized below:

1. Apply bias updating to the original (first-principles) energy balance model.

2. Obtain bias corrected time trend β from the multiple passes in the OTSG and

see if they have a similar trend.

3. Extract features from multiple bias terms using feature extraction methods.

4. Regress the process variables onto the extracted features to obtain coefficients

(loading matrix) for the process variables.

5. Regress process variables and original energy balance model onto manual steam

quality soft sensor.

Figure 3.2 shows the general process of the proposed method. In summary, we

are extracting features from the bias, regressing the process variables to the extracted

features to determine the optimal coefficients for the process variables to further im-

prove the performance of the soft sensor. For online implementation and verification,

only the model without an online bias updating technique will be used to determine

its predictability as an infinite step ahead predictor. To verify if the information

from the bias is more useful than applying the feature extraction method directly to

the process variables, the effect of using feature extracted directly from the process

variables has also been investigated. Figure 3.3 shows this method.

Figure 3.2: Schematic of the proposed method
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Figure 3.3: Schematic of the comparing method

To validate and compare the improvement of adding the extracted features as one

of the inputs, the original energy balance model is used as a benchmark:

X̂M =
FNG

Fi(Cp∆T + ∆H)
(3.3)

where FNG is the fuel gas flowrate, Fi is the boiler feedwater flowrate from the indi-

vidual passes, and Cp is the specific heat capacity. ∆T is the temperature difference

between the individual inlet flowrate and recombined outlet flowrate and ∆H is the

heat of vaporization. Detailed information on how this model was formulated and the

corresponding assumptions have been explained in Chapter 1 in detail. Three deter-

ministic feature extraction methods are chosen and an explanation of each method

follows.

3.4 Overview of PCA

PCA (principal component analysis) is one of the most commonly used feature extrac-

tion methods in process data analysis. Also, it is commonly used for a normalization

technique called sphering [24]. The sphering technique using PCA is applied in SFA,

which will be discussed shortly.

It was first invented by Pearson in 1901 [1] and independently developed by

Hotelling in 1933 [2]. In essence, PCA tries to extract features based on the vari-

ation. It transforms the data and projects it into a coordinate system (commonly

known as the latent space) so the components (also known as scores) are orthogonal

to each other and ordered based on variance. Thus the first component will try to
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find the direction where the variance of the system is maximized:

maximizev(Xv)T (Xv) subject to vTv = 1 (3.4)

In scalar format:

maximizev11,...,vp1

{
1

n

n∑
i=1

( p∑
j=1

vj1xij

)2
}

subject to

p∑
j=1

v2
j1 = 1 (3.5)

where v is the parameter (loading vector), and xij is the data point. Since PCA tries

to find the direction where the data varies the most, it essentially tries to find the

eigenvectors and orders them such that the largest eigenvalue of the covariance matrix

corresponds to the direction where it is desired to project the data onto. PCA solves

equation (3.5) by applying singular value decomposition on the covariance matrix of

the centered data. Since the covariance matrix is symmetric:

Σx =
XTX

N − 1
(3.6)

Applying SVD on Σx:

Σx = V ΛV T (3.7)

where V shows the direction in which the data varies the most and it is ordered

by the magnitude of the eigenvalues:

λ1 ≥ λ2 ≥ ... ≥ λp

The first principal component can be determined by mapping the original data

based on the eigenvectors:

Z = XV (3.8)

In a scalar format:

zil = v11xi1 + v21xi2 + ...+ vp1xip where i = 1,...,n (3.9)

Equation (3.9) is commonly known as scores or latent variables and they define the

latent space. For p dimension system, p number of latent variables can be obtained.
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Since PCA tries to find the direction where the variance of the system is maxi-

mized, it can consequently be used as a dimension reduction method: it can represent

the data in a lower dimension that contains most of the variation. Also, it can be

observed that there is no temporal interpretation in PCA: PCA is independent of

time. To incorporate temporal information, SFA (slow feature analysis) and CA

(cointegration analysis) have been considered.

3.5 Overview of SFA

Like PCA, SFA (slow feature analysis) is another feature extraction method that

uses eigendecomposition to solve the feature extraction problem. Unlike PCA, SFA

focuses on the dynamics and tries to extract slowly varying features.

Suppose we are given data matrix X (N × P ) with N representing the number of

sample points, t = 1, 2, ..., N , and P representing the dimension of the system. So at

a given time point:

x(t) = [x1(t), x2(t), ..., xP (t)] (3.10)

Assume that the input vector x(t) is mapped to a latent subspace by using the

following input-out function g(x):

g(x) = [g1(x), g2(x), ..., gJ(x)] (3.11)

The latent subspace can be expressed as:

yj(t) = gj(x(t)), j = 1, ...,m (3.12)

The mapping gj(x(t)) is typically assumed as a linear combination of some basis

functions

yj(t) = gj(x(t)) = wTj h(x(t)) = wTj z(t) (3.13)

where z(t) is the expanded signal: z(t) = h(x(t)). In [25], the authors mention how

h(x) can be a set on nonlinear function. In this thesis, z(t) will be derived linearly.

36



The objective of SFA is to find the slowly varying feature by trying to minimize

the temporal variation within the latent space:

minimize E(ẏ2
i ) (3.14)

where

ẏi(t) = yi(t)− yi(t− 1) (3.15)

Since any constant value would give the optimal solution, equation (3.14) must

be satisfied while subject to:

E(yi) = 0 (3.16)

E(y2
i ) = 1 (3.17)

E(yiyj) = 0, ∀i 6= j (3.18)

Equation (3.18) ensures that obtained slow features are orthogonal to each other,

thus decorrelated. By minimizing the temporal variation of the latent score, we try

to find a smooth, simple underlying feature from the dataset, which tends to be

important in process data analysis [26].

If expanded, equation (3.14) becomes

minimize E(ẏ2
i ) = wTj E(żż)wj (3.19)

If the expanded signal, z(t), was chosen such that it has zero mean and unit

variance:

E(yi) = wTj E(z) = 0 (3.20)

E(y2
i ) = wTj E(zzT )wj = wTj wj = 1 (3.21)

E(yiyj) = wTi E(zzT )wj = wTi wj = 0, ∀i 6= j (3.22)

In other words, if the weight vectors are constrained to be orthonormal, the three

constraints will be satisfied.
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A normalization method called sphering or whitening will be used to generate

signal z(t) such that it has zero mean and identity covariance. One of the ways to

whiten data is by applying PCA [24].

Σx =
XTX

N − 1
= UΛUT (3.23)

where X has been zero-mean centered.

Σ−1
x = UΛ−1UT = UΛ−1/2Λ−1/2UT (3.24)

Σ−1/2
x = Λ−1/2UT (3.25)

z = Λ−1/2UTX (3.26)

Since z has zero mean and identity covariance matrix, the objective function now can

be simplified to:

min
wj

wTj E(żżT )wj (3.27)

such that

wTj wj = 1

wTi wj = 0, ∀i 6= j

Solving the optimization problem such that the weight vectors are set of orthonormal

vectors:

J = min
wj

wTj E(żżT )wj − λ(wTj wj − I) (3.28)

dJ

dwj
= 2E(żżT )wj − 2λwj = 0 (3.29)

E(żżT )wj = λwj (3.30)

From equation (3.30), it can be seen that wj can be obtained by solving eigenvalue

decomposition problem on matrix żżT , where the weight factors are ordered such

that:

λ1 ≤ λ2 ≤ ... ≤ λJ
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For nonlinear expansion, h(x) can be chosen such that z(t) becomes expanded

signal. For example, for quadratic SFA:

h(x) = [x1, ..., xp, x1x1, ..., x1xp] (3.31)

3.6 Overview of CA

CA (cointegration analysis) was developed by Engle and Granger [3] in econometrics

and Chen et al [4] first introduced it in chemical engineering for statistical process

monitoring. The detailed derivation of CA is shown in the next chapter, but a brief

explanation of the algorithm is summarized below.

The main objective of CA is to extract the most stationary feature within a

nonstationary dataset so that we can understand the cointegrated relationship be-

tween the variables. Assuming that the dataset can be represented as a VAR (vector

autoregressive) model, and then applying first-order difference, the system can be

represented as:

Xt −Xt−1 = [Π1 − I][Xt−1 −Xt−2] + [Π1 + Π2 − I][Xt−2 −Xt−3]

+ ...+ [Π1 + Π2 + ..+ Πk − I]Xt−k + et
(3.32)

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2...+ Γk−1∆Xt−k+1 + ΠXt−k + et (3.33)

where et is white noise with zero mean and finite variance, et ∼ N(0,Λ) and the

parameter Π maps the nonstationary space to the stationary space. Π can be further

decomposed into α and β:

Π = αβT (3.34)

where βTXt becomes stationary even if Xt is nonstationary. Johansen shows how

to determine β by applying eigendecomposition [5]. To apply CA on bias however,

we instead try to find the most nonstationary feature by slightly modifying CA.

Explanation of this modification will be discussed in detail in Chapter 4.
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3.7 Overview of PLS

PLS (partial least squares) is different from the unsupervised feature extraction meth-

ods mentioned above in the sense that PLS is a supervised learning method while

PCA, SFA, and CA are unsupervised methods. Unsupervised methods do not use

any information from the response variable (Y), which in this case is the manual

samples of the steam quality. Consequently, there is no guarantee that the extracted

features using the unsupervised methods would best describe the response variables.

PLS, on the other hand, maps both X (N × P ) and Y (N ×M) to latent space such

that the covariance between the scores extracted from both is maximized.

X = TP T + E (3.35)

Y = UQT + F (3.36)

where X(N × P) is a regressor matrix, Y (N × M) is the matrix containing the

response variables, T is the latent score matrix for X, U is the latent score matrix for

Y, P is the projection matrix that is used to map X, U is the projection matrix for

Y, E is the residual matrix for X and F is the residual matrix for Y.

The objective function for PLS can be defined as:

max
W T
x X

TYWy√
W T
x Wx

√
W T
y Wy

(3.37)

which is equivalent to:

max W T
x X

TYWy, (3.38)

subject to

W T
x Wx = 1

W T
y Wy = 1

Solving the optimization problem:

J = W T
x X

TYWy − λxW T
x Wx − λyW T

y Wy (3.39)
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dJ

dWx

= XTYWy − 2λxWx = 0 (3.40)

dJ

dWy

= W T
x X

TY − 2λyWy = 0 (3.41)

Since 2 can be absorbed in the eigenvalues, equations (3.40) and (3.41) can be sim-

plified to:

W T
x SxyWy = λxW

T
x Wx (3.42)

W T
y SyxWx = λyW

T
y Wy (3.43)

respectively, where

Sxy = XTY

Syx = STxy = Y TX

Since W T
x Wx = 1 and W T

y Wy = 1, it is easy to see that:

λx = λy = λ

Therefore, the optimization problem can be simplified to:[
0 Sxy
Syx 0

] [
Wx

Wy

]
= λ

[
Wx

Wy

]
(3.44)

Compared to the ordinary least squares (OLS) method, PLS can handle colinearity

better as the regressors are orthogonalized. If xj and xi are highly correlated, the

parameters, θ(j) can become very unstable, which is one of the main drawbacks of

OLS. PLS projects Y and X onto a subspace to obtain latent variables T and U

respectively such that the elements of T and U are independent. Consequently, when

estimating the parameter θ, the regressors do not affect each other’s parameters.

There are two commonly used algorithms to compute PLS: NIPALS (nonlinear

iterative partial least squares) or SIMPLS (simple partial least squares). In this thesis,

PLS obtained via NIPALS will be explained.

As the name suggests, NIPALS is an iterative algorithm and it tries to find the

scores factor by factor, T = [t1, t2, ..., tA] and U = [u1, u2, ..., uA] where A ≤ min(P,M).
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The first t1 and u1 are weighted sum of the mean-centered variables.

t1 = X0w1 (3.45)

u1 = Y0q1 (3.46)

where X0 and Y0 are the mean-centered input and output matrices respectively, w1

and t1 are the weight vectors that can be obtained by applying SVD onto XTY . After

obtaining the first set of scores, residual matrices are calculated as:

X1 = X0 − t1(t1X0)(tT1 t1)−1 (3.47)

Y1 = Y0 − t1(t1Y0)(tT1 t1)−1 (3.48)

From the equations, it can be observed that the residual matrices have been obtained

by regressing all variables on t1.

Introducing p to represent the loading vector for t1 on X, equation (3.47) can be

rewritten as,

X1 = X0 − t1pT1 (3.49)

where

p1 = X0t1(tT1 t1)−1

Similarly, equation (3.48) can be rewritten as,

Y1 = Y0 − b1t1q
T
1 (3.50)

where b is the regression coefficient for the inner relationship:

b1 = uT1 tt(t
T
1 t1)−1 (3.51)

SVD is applied again on the residual matrix to determine the next set of latent

scores. The NIPALS algorithm continues until the dimension of the subspace, A, has

been determined.
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3.7.1 Summary of Methods

In summary, the methods reviewed above will be used as the feature extraction meth-

ods, which is either applied directly on the process variables or the bias term. To

determine which method is better, the original energy balance model will be used as

a benchmark. To have a simpler notation, each method will be distinguished with

subscripts and its description is as follows:

1. Benchmark: The original energy balance model: Ŷ1 = θ1,1X̂M + θ2,1

2. Applying PCA on the process variables and adding the features as the inputs

along with the energy balance model: Ŷ2 = θ1,2X̂M + θ2,2ZPCA,PV + θ3,2

3. Applying SFA on the process variables and adding the features as the inputs

along with the energy balance model: Ŷ3 = θ1,3X̂M + θ2,3ZSFA,PV + θ3,3

4. Applying CA on the process variables and adding the features as the inputs

along with the energy balance model: Ŷ4 = θ1,4X̂M + θ2,4ZCA,PV + θ3,4

5. Applying PLS on the process variables (as inputs) and manual samples (as

outputs) and adding the features as the inputs along with the energy balance

model: Ŷ5 = θ1,5X̂M + θ2,5(αPCA,biasXPV ) + θ3,5

6. Applying PCA on the bias term, regress the process variables onto the ex-

tracted features to obtain model coefficients, and then use the process variables

along with the energy balance model as the model inputs: Ŷ6 = θ1,6X̂M +

θ2,6(αPCA,biasXPV ) + θ3,6

7. Applying SFA on the bias term, regress the process variables onto the ex-

tracted features to obtain model coefficients, and then use the process vari-

ables along with the energy balance model as the model inputs Ŷ7 = θ1,7X̂M +

θ2,7(αSFA,biasXPV ) + θ3,7
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8. Applying CA on the bias term, regress the process variables onto the ex-

tracted features to obtain model coefficients, and then use the process vari-

ables along with the energy balance model as the model inputs Ŷ8 = θ1,8X̂M +

θ2,8(αCA,biasXPV ) + θ3,8

3.8 Results and Discussion

To validate and compare the model, correlation and mean absolute error (MAE) are

calculated and compared on the validation data. Pass 4 manual sampling points vary

a lot compared to other passes, which has resulted in a larger error. For this reason,

pass 4 was not used to determine which method is the best. Up to three features were

used for feature extraction methods and the results are summarized in Table 3.1 to

3.6. The top two results from each pass are bolded.

3.8.1 Correlation Analysis Comparison

To determine the best model, the correlation between the different models and the

manual samples was compared. The results for using one feature is summarized in

Table 3.1, two features in Table 3.2, and three features in Table 3.3. From the tables,

it can be seen that when using only one feature, using SFA to extract features from

the process variables and CA to extract the feature from the bias term seems to

give the best result. Shardt and Huang mention how online bias term is used to

capture the slow/drifting disturbance [21, 22]. Since CA was used to extract the

nonstationary feature, it is likely that the extracted feature contains the drifting

phenomenon of the system. Cointegration biased model and the benchmark model

have been compared and plotted in Figure 3.4 as an example to see which model

correlates better with the manual sample readings. From the figure, it can be observed

that the Cointegration bias model has a better correlation with the manual samples

than the benchmark model. When applying the feature extraction method on the

process variables directly, SFA gave the best result. This may indicate and confirm
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how the important features in the system are the slowly varying trend in chemical

engineering [26].

On the other hand, when using two or three features, it is difficult to see which

feature extraction method is superior to the other. When using two features, it gener-

ally seems using CA on either process variables or the bias term seems to give better

correlation with the manual samples, which may indicate that nonstationary/drifting

features embedded in the system contain valuable information. The quality variables

that are being attempted to be predicted are steam quality of the steam generator,

and it is widely known that steam generators suffer from fouling accumulation (in

addition to equipment aging). If features extracted from CA was able to improve

the correlation between the manual samples, then it may suggest that the process

variables contain important nonstationary feature of the system. When using three

features, results are even more spread out, which may suggest as more features are

used, it starts to capture more information, regardless of its characteristics: it be-

comes difficult to distinguish important nonstationary features from a slowly varying

feature and vice versa. Regardless of how many features were used, extracting features

from bias or directly from the process variables did not show any evident distinction.

Also, extracting features using PCA did not seem to improve the correlation com-

pared to the benchmark model, which may suggest that features that reflect variance

of the system are not as informative as the features that represent nonstationarity or

slowness.

3.8.2 MAE (mean absolute error) Comparison

Online bias update is heavily dependent on the sampling frequency of the manual

samples, and manual samples typically require manual work. Consequently, it would

be ideal to develop a model that is solely dependent on readily available process

variables that are typically measured using instrumentation. To determine if an

infinite step ahead predictor could be developed, MAE was also compared. Results
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Table 3.1: Model comparison based on correlation (using 1 feature)

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6

Ŷ1 (benchmark) 0.66 0.73 0.76 0.14 0.70 0.78

Ŷ2 (PCA, PV) 0.69 0.68 0.74 0.27 0.66 0.65

Ŷ3 (SFA, PV) 0.62 0.80 0.84 0.07 0.71 0.82

Ŷ4 (PLS, PV) 0.41 0.35 0.40 0.14 0.30 0.33

Ŷ5 (CA, PV) 0.84 0.73 0.71 0.19 0.70 0.67

Ŷ6 (PCA, bias) 0.74 0.69 0.74 -0.26 0.66 0.70

Ŷ7 (SFA, bias) 0.56 0.58 0.61 0.11 0.65 0.60

Ŷ8 (CA, bias) 0.87 0.79 0.80 -0.20 0.71 0.79

Table 3.2: Model comparison based on correlation (using 2 features)

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6

Ŷ1 (benchmark) 0.66 0.73 0.76 0.14 0.70 0.78

Ŷ2 (PCA, PV) 0.56 0.56 0.56 0.11 0.62 0.57

Ŷ3 (SFA, PV) 0.74 0.63 0.70 0.12 0.71 0.69

Ŷ4 (PLS, PV) 0.47 0.33 0.38 0.30 0.38 0.37

Ŷ5 (CA, PV) 0.81 0.78 0.83 0.08 0.69 0.79

Ŷ6 (PCA, bias) 0.69 0.68 0.74 0.07 0.66 0.69

Ŷ7 (SFA, bias) 0.60 0.76 0.64 -0.18 0.69 0.74

Ŷ8 (CA, bias) 0.64 0.78 0.74 -0.02 0.70 0.77

are summarized in Table 3.4 to 3.6. For visual comparison, Figure 3.5 was plotted,

which compares the benchmark model (Ŷ1) with the model that used CA to extract

a feature from the bias terms (Ŷ8). From the figure, it can be observed that the

proposed model (Ŷ8) can capture the widespread of manual samples around 4 × 105

- 5 × 105 better. From the tables, it can be seen that adding features improves the

results, but it is debatable if they are sufficient to develop a soft sensor without an

online bias updating technique. Compared to the added complexity, the results seem

unrewarding, especially because with the online bias updating technique, MAE for

all the passes was lower than one.
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Table 3.3: Model comparison based on correlation (using 3 features)

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6

Ŷ1 (benchmark) 0.66 0.73 0.76 0.14 0.70 0.78

Ŷ2 (PCA, PV) 0.51 0.50 0.53 0.21 0.57 0.48

Ŷ3 (SFA, PV) 0.71 0.63 0.70 0.14 0.61 0.79

Ŷ4 (PLS, PV) 0.66 0.49 0.55 0.18 0.53 0.53

Ŷ5 (CA, PV) 0.84 0.79 0.53 0.04 0.67 0.81

Ŷ6 (PCA, bias) 0.60 0.72 0.76 -0.09 0.64 0.73

Ŷ7 (SFA, bias) 0.73 0.81 0.75 -0.01 0.69 0.81

Ŷ8 (CA, bias) 0.67 0.80 0.75 0.01 0.70 0.79

Figure 3.4: Correlation comparison for Pass 1

3.9 Summary

In this chapter, feature extraction methods (PCA, CA and SFA) were explored to

improve the steam quality soft sensor that was developed in Chapter 1. Feature

extraction methods were applied either directly to the process variables or on the

online bias terms. Regardless of the method, adding features generally improved the

results. In particular, when using only one feature, the feature extracted from the

process variables using SFA generally gave the best result while features extracted

from the bias terms using CA generally gave the best result. This aligns with previous
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Figure 3.5: Time Trend Comparison for Pass 1

Table 3.4: Model comparison based on MAE (using 1 feature)

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6

Ŷ1 (benchmark) 1.79 1.54 1.28 7.62 1.47 1.20

Ŷ2 (PCA, PV) 1.45 1.41 1.33 7.86 1.42 1.43

Ŷ3 (SFA, PV) 1.85 1.23 1.07 8.62 1.27 1.01

Ŷ4 (PLS, PV) 2.36 2.49 2.60 7.68 2.69 2.49

Ŷ5 (CA, PV) 1.29 1.60 1.50 8.46 1.42 1.45

Ŷ6 (PCA, bias) 1.51 1.77 1.39 7.86 1.41 1.60

Ŷ7 (SFA, bias) 2.07 2.15 1.86 7.61 1.51 1.91

Ŷ8 (CA, bias) 1.16 1.45 1.46 8.36 1.25 1.53

statements how slowly varying features are important in process engineering while

the online bias term is used to capture the disturbance in the system. In addition

to comparing correlation, MAE was also compared to see if an infinite step ahead

predictor can be developed, but it was concluded that adding extracted features as

inputs is not sufficient to create an infinite step ahead predictor.
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Table 3.5: Model comparison based on MAE (using 2 features)

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6

Ŷ1 (benchmark) 1.79 1.54 1.28 7.62 1.47 1.20

Ŷ2 (PCA, PV) 1.73 1.85 1.96 8.16 1.56 1.77

Ŷ3 (SFA, PV) 1.61 1.85 1.68 9.07 1.28 1.66

Ŷ4 (PLS, PV) 2.23 2.87 2.81 8.21 2.63 2.56

Ŷ5 (CA, PV) 1.16 1.24 1.14 8.62 1.27 1.17

Ŷ6 (PCA, bias) 1.64 1.79 1.44 7.71 1.43 1.60

Ŷ7 (SFA, bias) 2.00 1.58 1.79 8.59 1.36 1.66

Ŷ8 (CA, bias) 1.89 1.51 1.65 8.01 1.30 1.60

Table 3.6: Model comparison based on MAE (using 3 features)

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6

Ŷ1 (benchmark) 1.79 1.54 1.28 7.62 1.47 1.20

Ŷ2 (PCA, PV) 1.98 1.95 1.96 8.50 1.70 1.82

Ŷ3 (SFA, PV) 1.49 1.84 1.68 9.17 1.57 1.50

Ŷ4 (PLS, PV) 1.67 2.47 2.44 8.87 2.22 2.23

Ŷ5 (CA, PV) 1.08 1.81 1.90 8.67 1.50 1.39

Ŷ6 (PCA, bias) 1.81 1.75 1.39 8.31 1.56 1.59

Ŷ7 (SFA, bias) 1.91 1.87 1.55 7.94 1.49 1.51

Ŷ8 (CA, bias) 1.86 1.44 1.64 7.78 1.31 1.54
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Chapter 4

Extracting Nonstationary Features
for Process Data Analytics and
Application in Fouling Detection ∗

4.1 Introduction

With the ability to store a large amount of data, data-driven methods and latent vari-

able models are becoming more popular and are being used for predictive modeling

and process monitoring. Compared to conventional methods, latent variable models

have the advantage of extracting representative latent features to capture the essen-

tial information, which makes them more robust to low-quality observations. As one

critical component of time series data, the nonstationary trend is the desired variation

to be extracted in this study. In particular, nonstationary features can be used to

represent the cumulating behaviour in process data. To extract the feature that rep-

resents cumulating behavior, a novel feature extraction method is proposed based on

a cointegration analysis. Through its maximum likelihood estimation, nonstationary

trends can be extracted, and the effectiveness of the proposed model is validated with

numerical examples. By combining with principal component analysis, its advantages

are highlighted in an industrial application of monitoring fouling buildup in steam

generators.

∗part of this chapter has been submitted for publication as “Kwak, S., Ma, Y., & Huang,
B. (2018). Extracting Nonstationary Features for Process Data Analytic and Application in Fouling
Detection” in Computers & Chemical Engineering.
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4.2 Background

Predictive models play an important role in the chemical process. In particular, when

influential variables cannot be measured with transmitters easily, predictive models

are formulated to provide informative estimation from readily available process mea-

surements. For example, soft sensors [20] use predictive models to give more granular

estimations of quality variables, which can be used to optimize the process. Exam-

ples of quality variables are steam quality out of steam generators and water content

in water-oil emulsions. The predictive model can either be the first principle based,

data-driven, or a mixture of both. First principle based models essentially use conser-

vation laws such as mass and energy balance to describe the process. Consequently,

they usually assume an ideal, steady state process and can be sensitive to condition

changes. Also, to develop theoretical models, we need in-depth knowledge about the

process and availability of all the related measurements.

Data-driven methods, on the other hand, are less dependent on the detailed knowl-

edge about the process. As a result, when the process is too complicated to develop a

first-principles model, data-driven methods become attractive and useful in predict-

ing important quality variables [6, 27, 20, 7]. Examples of data-driven models include

principal component analysis (PCA) [28], partial least squares (PLS)[29] and slow

feature analysis (SFA) [25]. The similarity among these methods is that raw observa-

tions are projected to a latent space to formulate ”informative” features. For example,

PCA projects the observations based on the variance of the system. PLS uses latent

space to extract correlated variations between inputs and the desired outputs. SFA

tries to separate slowly varying features from quickly varying observations.

A common assumption made in the aforementioned data-driven methods is that

the system is stationary. In other words, the statistical properties (such as mean and

variance) of the observed data are independent of time. Due to this assumption, the

latent scores (s1:T ) are usually assumed with zero mean and unit variance: Et(st) = 0
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and Et(st · st) = 1. In reality, however, chemical processes can be nonstationary due

to different operating modes, equipment aging, accumulation within the system, and

so on. In some applications, understanding the most nonstationary feature within the

system is valuable. Accumulation in chemical processes, such as fouling buildup in

heat exchanging equipment, is an example of a nonstationary trend. Fouling buildup

in heat exchanging equipment has been a long-lasting issue in chemical engineering.

Due to its complexity, however, it is difficult to monitor fouling buildups directly in

real time. In some simplified cases, the fouling buildup can be monitored through

some primitive calculations. For example, monitoring the differential pressure across

the tube can indicate fouling buildup: if differential pressure increases over time, it

may indicate that tube diameter is decreasing, which is most likely caused by fouling

buildup on the tube surface. However, since differential pressure contains information

other than reducing tube diameter, monitoring differential pressure alone cannot give

consistent estimates. Indeed, there are fouling predictive models that give a better

understanding of fouling buildup [30, 31] and many of the models try to predict

fouling resistance:

Rf =
1

Udirty
− 1

Uclean
(4.1)

where Rf is the fouling resistance, Uclean represents the overall heat transfer coefficient

when the tubing is clean and Udirty is the overall heat transfer coefficient when the

tubing has fouling buildup. Change in the fouling resistance would indicate the effect

of fouling in the system over time. Ebert and Panchal [31] introduced the ”threshold

concept” to predict fouling in crude oil processing:

dRf

dt
= ARe−β exp

(
− E

RTf

)
− Cτw, (4.2)

where A, β and C are model parameters. However, the application of the fouling resis-

tance predictive models on the industrial heat exchangers is challenging. For example,

the overall heat transfer coefficient depends on the heat exchanger configuration and
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chemical process which makes its calculation complex. Also, the parameters in equa-

tion (4.2) can only be determined experimentally. As a result, it is inevitable to tune

the estimate parameters for an online application. Since fouling data is collected

sparsely, determining these parameters is difficult.

To understand the complex fouling phenomenon, a data-driven method is pro-

posed in this work. By extracting the nonstationary features from historical process

measurements, the fouling predictive model uses latent features to capture the cumu-

lating trend. Consequently, we are no longer limited by rigorous physical assumptions

and difficulties from sparse samples. Cointegration analysis (CA) is a method actively

used in econometrics that tries to find the relationship between stationarity and non-

stationarity within the system. One particular advantage of CA is that it preserves

the dynamics that exist over a long period. By preserving the dynamic informa-

tion, we can potentially distinguish the stationary features from the nonstationary

features. The concept of CA was first introduced by Engle and Granger [3], where

they used CA to show that consumption and income are cointegrated. For process

data analytics, CA allows us to extract the stationary relationship between variables

while the system is nonstationary. CA was first presented in chemical engineering by

Chen et al [4], where it was used for process monitoring purposes. CA based process

monitoring focuses on nonstationary variables within the system and identifies faulty

variables within the system. Based on the cointegration relationship, the faults can

be detected when the cointegration relationship is disrupted and the noise term be-

comes nonstationary. Successful application of CA in chemical engineering can be

found in [32, 33], and [34], where CA was again used for fault detection and diagno-

sis of nonstationary processes. The existing adaptation of CA focuses on extracting

stationary features to study the cointegrated relationship between process variables.

However, nonstationary trends are our interest. Therefore, a novel CA based feature

extraction method is proposed to extract the most nonstationary feature to determine

the fouling.
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In this chapter, a method to extract the most nonstationary feature in the system

is presented. In section 4.4, the method to extract the most nonstationary feature is

explained. In sections 4.5 and 4.6, numerical simulation and industrial examples for

estimating fouling buildup are discussed respectively. Finally, in section 4.7, conclud-

ing remarks with some future works are listed.

4.3 Preliminaries: Cointegration Analysis (CA)

If a nonstationary system X becomes stationary by differencing it by d times, it is said

to be integrated of order d, which can be also represented as X ∼ I(d). Cointegration

analysis was originally proposed to show that nonstationary variables can have a

stationary relationship as long as the nonstationary variables are integrated with the

same order [3]. Johansen proposed a method to use a vector autoregressive (VAR)

model to determine the cointegrated relationship between nonstationary variables.

VAR model expresses a dynamic system based on its own lagged values:

Xt = Π1Xt−1 + Π2Xt−2 + ...+ ΠkXt−k + et (4.3)

where X is (N × P ) data matrix with P representing the dimension of the system

and N representing the number of sample points, t = 1, 2, ..., N . k is the order

of the VAR model and et is white noise with zero mean and finite variance, et ∼

N(0,Λ). The nonstationary data investigated by CA is assumed with first order

nonstationarity, which means their first order differences are stationary (X ∼ I(1))

[35]. The following vector error-correction (VEC) model can be transformed to show

the connection between the stationary feature and the nonstationary feature within

the system:

Xt −Xt−1 = [Π1 − I][Xt−1 −Xt−2] + [Π1 + Π2 − I][Xt−2 −Xt−3]

+ ...+ [Π1 + Π2 + ..+ Πk − I]Xt−k + et
(4.4)
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∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2...+ Γk−1∆Xt−k+1 + ΠXt−k + et (4.5)

In a more compact form:

Z0t = ΓZ1t + ΠZkt + et (4.6)

where

Z0t = ∆Xt = [Xt −Xt−1]

Z1t = [∆Xt−1,∆Xt−2, ...,∆Xt−k+1]

∆Xt−1 = Xt−1 −Xt−2, ...,∆Xt−k+1 = Xt−k+1 −Xt−k

Γ = [Γ1,Γ2,Γk−1]

Π = [Πk + Πk−1 + ...− I]

Zkt = Xt−k

Based on the preliminary assumptions, the data sample Zkt is from nonstationary

sequences. On the other hand, the first order differences, Z0t and Z1t, are stationary.

Thus, the matrix Π, which connects the nonstationary space to the stationary space,

is the critical parameter. Depending on its rank, there are three possible cases:

1. rank(Π) = 0, implies Π = 0 and there’s no cointegrated relationship.

2. rank(Π) = P implies all variables are cointegrated, hence the co-integrated

system is stationary.

3. rank(Π) = r < P implies there are r cointegrated variables, or r co-integrated

stationary variables.

It can be observed that the third case is the main interest, which indicates that Π

can be further decomposed into two column full r-rank matrices:

Π = αβT (4.7)
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where β is a P-by-r matrix (βT thus being β transpose), consisting of r column vectors

as the cointegration vector and α is a P-by-r matrix, including some r column vectors

as the distributing weights [5]. In cointegration analysis, β allows βTXt to be a

stationary feature even though X is nonstationary. Therefore, the goal of CA is to

find β. To determine β, the maximum likelihood estimation method has been utilized

[5]. Based on the probability density function for all N samples, ∆X can be expressed

as:

p(∆X|Γ,Π,Λ) =
N∏
t=1

p(∆Xt)

=
N∏
t=1

P∏
i=1

p(∆xi)

= (2π)−NP/2|Λ|−N/2 exp(−1

2

N∑
t=1

eTt Λ−1et)

(4.8)

et = Z0t − ΓZ1t − ΠZkt (4.9)

The problem is now formulated as the maximization of likelihood (4.8). Before inves-

tigating the parameter β, the optimal solution is first discussed for the parameter Γ,

Π and the covariance matrix for the noises, Λ.

Before manipulating the above likelihood, the connection between Γ and Π can be

used to reduce the computational complexity. Also, the fact that Z1t is perpendicular

to et is used to derive the following equation from equation ((4.6)):

M01 = ΓM11 + ΠMk1 (4.10)

where

M01 =
N∑
t=1

Z0tZ
T
1t

M11 =
N∑
t=1

Z1tZ
T
lt

Mk1 =
N∑
t=1

ZktZ
T
1t
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Thus, the parameter Γ can be represented in terms of Π by using covariance

matrices from data:

Γ = M01M
−1
11 − ΠMk1M

−1
11 (4.11)

Substituting (4.11) for Γ and after rearranging it, equation ((4.10)) becomes:

et = R0t − ΠRkt (4.12)

where

R0t = Z0t −M01M
−1
11 Z1t

and

Rkt = Zkt −Mk1M
−1
11 Z1t

From the definition of matrices M01, M11, and Mk1, it can be seen that R0t is the

residual regressing Z0t onto Z1t and Rkt is the residual regressing Zkt onto Z1t. Based

on this new formulation of the noise term in equation (4.12), the optimal solution for

parameter Π can be determined through least square estimation:

S0k = ΠSkk (4.13)

Π = S0kS
−1
kk (4.14)

where

S0k =
N∑
t=1

R0tR
T
kt

and

Skk =
N∑
t=1

RktR
T
kt

Similarly, based on the objective function in equation (4.8), the optimal solution

for Λ can be obtained as:

Λ =
T∑
t=1

ete
T
t (4.15)
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Substituting the solution for Π into equation (4.12), the final expression of Λ can be

written as:

Λ =
T∑
t=1

(R0t − S0kS
−1
kk Rkt)(R0t − S0kS

−1
kk Rkt)

T (4.16)

and simplified as:

Λ = S00 − S0kS
−1
kk Sk0 (4.17)

Now, we can use the assumption in equation (3.34) to determine the parameter

β. After substituting (3.34) into (4.14), the optimal solution of Π, α and Λ can be

determined for a fixed β:

Π(β) = S0kβ(βTSkkβ)−1βT (4.18)

Λ(β) = S00 − S0kβ(βTSkkβ)−1βTSk0 (4.19)

Substituting the expressions above into the objective function in equation ((4.8)),

we can simplify the likelihood function by using the property of trace:

L(β) ∝|Λ|−P/2 exp

(
− 1

2

N∑
t=1

(R0t − ΠRkt)
TΛ−1(R0t − ΠRkt)

)

= |Λ|−P/2 exp

(
− 1

2
tr
(
Λ−1

N∑
t=1

(R0t − ΠRkt)(R0t − ΠRkt)
T
))

= |Λ|−P/2 exp

(
− 1

2
tr
(

Λ−1(S00 − S0kβ(βTSkkβ)−1βTSk0)
))

= |Λ|−P/2

(4.20)

From the equation, it can be seen that maximizing the likelihood with respect to

β is equivalent to maximizing the determinant Λ. Johansen shows how MLE of βT is

equivalent to solving the eigenvalue equation †:

|λSkk − Sk0S
−1
00 S0k| = 0 (4.21)

†maxβ |S00 − S0kβ(β
TSkkβ)

−1βTSk0| ⇐⇒ maxβ
|S00||βT (S00−Sk0(S00)

−1S0k)|β
|βTSkkβ|
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where

Sk0 = ST0k

From equation ((4.21)), it can be observed that the solution to β is simply solving

an eigenvalue decomposition problem, where the eigenvector corresponding to the

highest eigenvalue is the most cointegrated feature (i.e. the most stationary feature)

and the eigenvectors can be ordered based on their level of stationarity. Based on the

conintegrated features, the dynamic relationship within the nonstationary variables

is expressed as:

Z = βTX (4.22)

where β(P × r) = [β1, β2, ..., βr] and Z is stationary.

Assumptions and the associated equations are summarized in Figure 4.1.

Figure 4.1: Summary of CA

4.4 Proposed model: Residual CA (r-CA)

CA has been studied in chemical engineering for process monitoring and fault di-

agnosis for nonstationary processes [32, 33, 34]. They use projection matrix, β =

[β1, ..., βr], to study the stationary features within the nonstationary processes and
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the stationary features are ordered based on the descending order of their associated

eigenvalues. Theoretically, in traditional CA, the rank of the system should equal

the number of stationary features. Hence in the maximum eigenvalue test proposed

by Johansen, it essentially looks at the number of nonzero eigenvalues to determine

the number of cointegrated vectors. In reality, however, it is most likely to have a

full rank system due to measurement noise: by assuming that measurement noise is

independent of each other, we cannot have perfect collinearity. Consequently, the

system will have full rank and the number of nonstationary features will be repre-

sented with eigenvalues close to zero. Therefore, if there exists a sharp decrease in the

eigenvalues, we commonly associate features corresponding to those eigenvalues after

the sharp jump as the features that describe the nonstationarity in the system. Based

on this consideration, the features are ordered in a manner where stationary features

come first in the principal space (r < P) and the latter features in the residual space

(P − r) are therefore by definition the nonstationary features. In addition to the sta-

tionary features, understanding the nonstationary features is important in chemical

engineering as it can explain what causes the system to be nonstationary, such as

fouling buildup, equipment aging, and different engineering modes. Extracting the

nonstationary features that are unique in the system and cannot become stationary

through co-integration with other variables allow us to understand the dynamics that

exist over time. For these reasons, rather than using CA to study the principal space

of CA, we instead focus on the residual space or nonstationary features and call this

method as residual cointegration analysis (r-CA).

In statistical analysis, residual space has been widely used such as independent

component analysis (ICA) [36] and slow feature analysis (SFA) [25]. ICA essentially

tries to decompose the system into statistically independent features. By assuming

that the desired features are non-Gaussian and that noise is Gaussian, ICA obtains

the desired features by removing Gaussian noise from the system. After Gaussian

noise is removed, the left-over features in the ”residual space” are considered to be
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important. SFA is another method that extracts slowly varying features from the

quickly varying system. The SFA algorithm achieves its objective by first extracting

the fastest varying feature from the system. The latter features in the residual space

are thus the slowly varying features, which are the desired features.

In addition to ICA and SFA, knowledge about the most nonstationary features

is valuable in chemical engineering and features in the residual space have been used

in many applications. The most common usage of residual space is SPE (squared

prediction error) statistics in process monitoring methods [36, 33, 37, 38, 34, 32, 4, 39].

For the residual space of cointegration analysis method, the nonstationary features are

valuable since they can reveal the information about the undesired attributes within

the chemical process. Examples of the important nonstationary features in chemical

processes include: fouling buildup in heat exchanging equipment, residue buildup

in reactor walls and corrosion. In particular, understanding the fouling feature is

desirable as it can be used to plan the fouling removal effectively.

Like many statistical methods such as PCA, ICA, and SFA, it is important to

normalize the inputs for r-CA to avoid misleading results while extracting features

and give equal chances to each process variable. If the system is not normalized, it may

distribute uneven and incorrect weights in the loading matrix when the eigenvalues

are being determined. The number of latent features used to represent the system

can be determined by plotting the eigenvalues associated with the features. Since

the proposed model essentially determines the desired features based on eigenvalue

decomposition, the percentage of these eigenvalues can tell the desired information.

The algorithm for the r-CA is as follows:

1. Given a nonstationary system, write in vector error correction (VEC) form as

shown in Equation (4.5), where Π in the equation can further be divided into:

Π = αβT

2. Determine the β by maximizing the likelihood function in Equation (4.20),
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which is equivalent to maximizing the determinant Λ

3. Assuming that the measurement noise is independent of each another, Π will

have full rank and no eigenvalues will equal zero. However, the stationary

features will be associated with large eigenvalues (principal space) and the non-

stationary features will be associated with eigenvalues close to zero (residual

space).

4. Focusing on the residual space, the nonstationary features can be mapped from

the original system if we allow β to involve nonstationary features (residual

space)

Application of the r-CA to predict fouling buildup in once-through steam gener-

ator (OTSG) tubes will be discussed in Section 4.6. To verify if the reverse order of

eigenvalues can be used to extract the most nonstationary feature, numerical simula-

tion was conducted first in Section 4.5.

4.5 Numerical simulations and property investiga-

tions

To validate if the r-CA can truly capture the most nonstationary feature(s) within

the system, numerical simulation was conducted. In section 4.5.1, r-CA was used to

extract the most nonstationary feature(s) within a system. In section 4.5.2, the effect

of the following items on r-CA was also investigated:

• Effect of the number of samples (N): when performing any statistical analysis,

sample size plays an important role. To study the effect of sample size in r-CA

model, sample size was varied (N=50, N=100, N=1000).

• Effect of assuming wrong VAR order: to determine if the specified order (lag

length) is valid, AIC (Akaike information criterion) and/or BIC (Bayesian in-

formation criterion) can be calculated. Once the order is determined, it should

62



be ensured that the error term is white noise. To understand the significance of

wrong order assumption, multiple numerical simulations with wrong CA order

specified were performed. Orders in Table 4.4 and 4.5 are validated using AIC

and BIC.

• Effect of X ∼ I(1) assumption: if a nonstationary time series X becomes

stationary by differencing it d times, X is then integrated by order d and it is

written as X ∼ I(d). One assumption made for CA and in r-CA is that first

order difference of the system is stationary, which is denoted as X ∼ I(1). To

evaluate the sensitivity of this assumption, r-CA was used to extract second

order nonstationary features to see its performance for Xt ∼ I(d > 1).

4.5.1 Case 1: Nonstationary feature extraction

Numerical simulation has been conducted to verify if the r-CA can extract the nonsta-

tionary feature(s) from a given dataset. 50 Monte Carlo simulations were performed

to randomly simulate features with different dynamics. Table 4.1 summarizes the

models used to generate the features: three models were used to generate station-

ary features and one model was used to generate the nonstationary feature (random

walk). The objective of this numerical simulation is to extract the most nonstationary

feature. To study if r-CA can extract more than one nonstationary feature, the third

model in Table 4.1 was replaced with another random walk model later on so that

the system contained two first order random walks. For comparison, PCA (principal

component analysis) was used to see if it can also extract the most nonstationary fea-

ture. PCA is a widely used unsupervised learning method where feature extraction is

based on variance. The first feature extracted from PCA (first principal component)

is the direction where the variance of the system is maximized. The second principal

component is orthogonal to the first principal component and captures the direction

where the variance is smaller than the first but larger than the latter principal com-

ponents. PCA was chosen as a benchmark for comparison since it is one of the most
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widely used machine learning methods. Also, although PCA should be applied to

stationary data, in theory, the first principal component shows the direction where

the data varies the most. Hence it should capture the nonstationary feature to some

extent.

Table 4.1: Models used to generate features

1st order 2nd order 3rd order
model 1 1

1−0.5z−1 et
1

1−0.7z−1+0.06z−2 et
1

1−1.3z−1+0.39z−2−0.027z−3 et
model 2 1

1−0.9z−1 et
1

1+0.5z−1+0.06z−2 et
1

1+0.4z−1−0.39z−2−0.126z−3 et
model 3 1

1−0.7z−1 et
1

1−1.3z−1+0.42z−2 et
1

1+1.4z−1+0.41z−2−0.056z−3 et
model 4 1

1−z−1 et
1

1−z−1 et
1

1−z−1 et

X = Z×P (4.23)

where for a system with single nonstationary feature

Z = [model 1, model 2, model 3, model 4]

and for a system with two nonstationary features

Z = [model 1, model 2, model 4, model 4]

The P in Equation (4.23) is randomized uniformly by Monte Carlo simulations.

To visually present the performance of the r-CA, one Monte Carlo simulation result

was randomly selected and the results are shown in Figures 4.3 and 4.4. To compare

the performance, the correlation coefficient was averaged, and the distribution of the

correlation coefficients obtained from each Monte Carlo simulation is also plotted. To

validate that X is nonstationary, the ADF test can be done. To determine how many

cointegrated relationships exist in X, Johansen test is performed.

Figure 4.2 shows the time trend of X and ∆X from one of the simulations. Ta-

ble 4.2 summarizes the average correlation for a single nonstationary feature system,

where the number of samples was set as 100. The specified order in the table repre-

sents the order of r-CA. From the table, it can be seen that r-CA was able to capture
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the nonstationary feature better than PCA. Figure 4.3 compares the extracted non-

stationary features from PCA and r-CA with the original nonstationary feature which

is a random walk stochastic process (model 4). The figure also clearly shows how r-CA

is superior to PCA at capturing the nonstationary feature. For the system with two

nonstationary features, the correlation was calculated based on the vector regressed

by the two nonstationary features. Figure 4.4 shows the feature extracted from r-CA

and the surface of the two nonstationary features. From figure 4.4, it can be seen

that the feature extracted using r-CA has less error than PCA. This is more evident

in the correlation comparison in table 4.3. In summary, r-CA was able to extract the

nonstationary feature in both where the system has one nonstationary feature and

where the system has two nonstationary features.

Figure 4.2: Top:X, bottom:∆X, N=1000, order=2 (time trend)

Table 4.2: Correlation comparison between PCA and r-CA. N=100, system with
single nonstationary feature

Order = 1 Order = 2 Order = 3
r-CA 1.0 0.99 0.94
PCA 0.87 0.82 0.62

To compare the performance from all 50 Monte Carlo simulations, correlation co-

efficients from all the simulations are plotted as a histogram. The top plot in Figure
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Figure 4.3: Top: Z3= 1
1−z−1 et, middle: feature extracted from r-CA, bottom: feature

extracted from PCA (time trend)

Figure 4.4: Numerical simulation: System order = 1; Left: feature extracted from
r-CA; Right: feature extracted from PCA

4.5 shows the distribution of the correlation coefficient from r-CA and the bottom

plot shows the distribution of the correlation coefficient extracted from PCA. From

the figure, it is evident that r-CA is superior at extracting the nonstationary feature.

In particular, it can be seen that all 50 simulations gave very similar correlation coef-

ficient results for r-CA, indicating that r-CA indeed gave consistent results to extract

the nonstationary feature. Similarly, figure 4.6 compares the correlation coefficient

distribution from the system with 2 nonstationary features. This figure reiterates

how r-CA is better than PCA at capturing the nonstationary feature.
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Table 4.3: Correlation comparison between PCA and r-CA. N=100, system with 2
nonstationary features

Order = 1 Order = 2 Order = 3
r-CA 0.99 0.99 0.93
PCA 0.87 0.91 0.77

Figure 4.5: Correlation coefficient distribution; 1 nonstationary variable

4.5.2 Case 2: Effects of different assumptions

To study the different effects from the different assumptions, 50 Monte Carlo sim-

ulations were again performed to randomly generate different loading matrices and

r-CA was used to extract the most nonstationary feature (random walk, model 4). To

compare the performance, the correlation coefficient between the extracted feature

and random walk data was calculated for each simulation. The average values of 50

simulations are summarized in Table 4.4 for the effect of sample sizes, Table 4.5 shows

the effect of Xt ∼ I(d > 1), and Table 4.6 shows the effect of wrong CA order. The

number of the nonstationary feature was set as one.

Sampling size: Except for the 3rd order with N=50, the feature extracted from

r-CA matches very well with the random walk in terms of correlation coefficients

regardless of the sample size. On the other hand, the performance of PCA was more
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Figure 4.6: Correlation coefficient distribution; 2 nonstationary variables

dependent on the sample size. Although the performance of r-CA does increase with

the sampling rate, the incremental improvement does not behave in the same way as

PCA.

Higher order random walk: For extracting the most nonstationary feature

using r-CA, the X ∼ I(1) assumption does not always have a significant impact on

the performance. Although r-CA assumes that the system is first order stationary,

results in terms of the correlation coefficient for second-order stationary systems also

appear to be acceptable. Even if the original data have higher order nonstationarity,

using the proposed method give acceptable result in terms of correlation coefficient

so this method could be considered for higher order nonstationary data.

r-CA lag order: The bold numbers in Table 4.6 indicate the correct order num-

ber. Except for the 3rd order system, r-CA outperforms PCA, even with the wrong

order. Regardless, the correct order assumption does give better results so using AIC

and/or BIC to determine the correct order can improve the results. Orders in Table

4.4 and 4.5 have been validated using AIC and BIC.
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Table 4.4: Effect of sampling size on r-CA

Sampling size
N=50 N=100 N=1000

System order PCA r-CA PCA r-CA PCA r-CA
1st order 0.61 0.96 0.87 1.0 0.98 1.0
2nd order 0.45 0.81 0.82 0.99 0.98 1.0
3rd order 0.14 0.58 0.62 0.94 0.95 1.0

Table 4.5: Effect of X ∼ I(d > 1). N=100

Random walk order
1st order 2nd order

System order PCA r-CA PCA r-CA
1st order 0.87 1.0 1.0 0.47
2nd order 0.82 0.99 1.0 0.99
3rd order 0.62 0.94 1.0 0.92

4.6 Industrial application results

In this section, r-CA was applied on industrial data along with PCA to predict foul-

ing buildup in steam generators. Fouling buildup in once-through steam generator

(OTSG) tubes were used as a case study. Fouling in heat exchanging equipment such

as OTSGs has been a long-standing problem in chemical engineering. Due to its com-

plexity, however, building predictive models for fouling buildup is very [40, 30, 41].

It should be stressed however that the method to be developed is not restricted to

OTSGs: it can be applied to other steam generators or heat exchangers as well.

4.6.1 Process and data description

Steam-assisted gravity drainage (SAGD) is a type of in-situ methods where bitumen

underground is extracted by injecting steam into the reservoir. During the steam

generation process, steam generators accumulate impurities (scales/fouling). Figure

4.7 summarizes the general water cycle within the SAGD process.

In a typical industrial scale process, scales/fouling are removed physically when

the system is offline by a process called ”pigging.” By understanding/ knowing how

much impurity is formed inside the tubes, shutdowns can be planned more effectively
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Table 4.6: Effect of lag order on r-CA. N=100

r-CA order
1st order 2nd order 3rd order 5th order 7th order

System order PCA r-CA r-CA r-CA r-CA r-CA
1st order 0.87 1.0 0.99 0.99 0.97 0.99
2nd order 0.82 0.98 0.99 0.98 0.98 0.94
3rd order 0.62 0.85 0.95 0.94 0.56 0.56

Figure 4.7: Water cycle within SAGD process

to schedule fouling removal. Pigging is done typically every 100 - 500 days for SAGD

operations. In other words, in order to have a sufficient amount of pigging data

and develop a predictive model based on supervised learning methods, we need to

collect data for decades. As an alternative, lab experiments can be done to obtain

an adequate amount of fouling data, and then perform regression analysis. However,

it will be difficult to scale up the exact same model in large scale plants and achieve

the same results as the lab experiment. For these reasons, the unsupervised learning

method was used to extract features from commonly measured process variables that

may represent fouling. Available fast rate process variables for OTSGs are listed in

Table 4.7. The sampling interval was 10 minutes for all variables.

To effectively apply r-CA to extract informative information, a two-layer system
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Table 4.7: Available process variables

Variable Unit
Temperature of boiler feed water

Pressure of boiler feed water kPa
Boiler feed water flow rate of individual passes t/hr

Outlet temperature of recombined stream
Outlet pressure of recombined stream kPa

Differential pressure of individual passes kPa
Fuel gas flowrate kg/hr

is proposed. In the first layer, PCA was applied to extract informative features

with slow varying fluctuations, thus removing large fluctuation part of data. This is

based on the understanding that scaling is a slowly increasing process. In the second

layer, r-CA was used to extract the most nonstationary trend from the slowly varying

features, which captures a slowly increasing trend. Should r-CA be applied directly to

the raw measurements, the extracted features can be flooded with noise/disturbance

due to common process upset or operating condition changes. In order to extract the

most informative feature as much as possible, PCA was essentially used as a filtering

method. PCA is one of the most widely used unsupervised methods. PCA extracts

feature based on variance. In other words, features that capture the most variance

of the system are in the PCA principal space. Therefore, applying PCA on the data

to remove the most dominant variation features can remove undesired fluctuations.

Another advantage of using PCA prior to using r-CA is that since r-CA uses the least

squares for regression, applying PCA will help with the regression by making the

regressor orthogonal to each other. We can, therefore, avoid the issues of collinearity

in regression. The algorithm for the industrial application of the modified CA is

summarized below:

1. Identify the informative nonstationary variables by unit root tests.

2. Apply PCA on the training dataset where high variance/fluctuations represent

disturbances/noise. In this way, first principal component typically contains the
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undesirable features (disturbance/noise). Use the rest principal components will

be retained to capture the slowly-increasing fouling.

3. Apply r-CA to the latent variables. Since undesired fluctuations have been

removed via PCA, the extracted nonstationary feature contains the desired

dynamic information.

In summary, in the first layer, PCA will be applied where the data has large

fluctuations, and the first principal component will be removed and the rest p-1

principal components are retained to capture slowly-increasing trends. In the second

layer, r-CA will be applied to extract the slowly accumulating fouling in the steam

generators.

Before applying r-CA, the stationary variables should be separated from the non-

stationary variables since stationary variables may mask the cointegrated relationship

between the nonstationary variables. As a result, when r-CA is applied to a system

with stationary variables included, the obtained features may not represent the rela-

tionship accurately. Nonstationary variables can be detected by unit root tests such

as the Augmented Dickey-Fuller test (ADF) [32]. For the industrial application of

r-CA, relevant process variables were selected based on prior knowledge. Figure 4.8

summarizes the proposed method:

Figure 4.8: PCA-rCA algorithm

For this case study, results from three OTSGs are demonstrated. For propri-

etary reason, the actual amount of scales collected from each pigging incident is not

disclosed and all data is normalized.
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4.6.2 Results and discussion

Since the thorough first-principle knowledge about fouling buildup in OTSGs tubes is

still an unsolved problem, the r-CA order was determined by numerical experiments.

Figure 4.9 shows the extracted fouling buildup feature. The blue trend is the extracted

feature, the pink vertical lines are shutdowns, and red vertical lines are the shutdowns

where pigging was performed. From the figure, it can be observed how the trends are

generally increased and suddenly drops after fouling/scaling buildup inside the tubes

is removed. The sudden drop/fluctuations in the latter part of the process are caused

by the step changes and/or shutdowns in input variables. Table 4.8 summarizes

the percent error between the estimated fouling buildup and the actual amount of

fouling buildups measured after each pigging. From the table, it can be seen that

the estimated fouling buildup amount is comparable with the actual fouling buildup

amount, indicating a promising result from the proposed method.

Figure 4.9: PCA-rCA results
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Table 4.8: prediction percent error

1 2
OTSG A 0.02 0.2
OTSG B 0.64 16.7
OTSG C 15.6 8.3

4.7 Conclusion

In this paper, a novel application of CA is proposed to extract the most nonsta-

tionary feature in data. Extracting the nonstationary feature is valuable in chemical

processes since it can be used to analyze accumulation in the system such as fouling

buildup in heat exchanging equipment, residue buildups in reactors and so on. The

performance of the proposed method has been validated in various numerical simu-

lations. Associated industrial application to monitor fouling buildup in OTSG tubes

has also been presented. From the numerical simulations, it can be observed that

the proposed method is capable of extracting the nonstationary feature from data.

From the industrial application example, the proposed method was able to predict

the general increasing trend of fouling buildup in OTSG tubes with approximately

2- 17% error from the fouling accumulation obtained by the actual amount scalings

measured after the pigging. It can thus be concluded that the method presented in

this study is promising in monitoring fouling accumulation behaviour from process

data.
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Chapter 5

Conclusion

5.1 Conclusion

This chapter summarizes the work and recommends future work for potential im-

provements.

5.1.1 Summary

In this work, the focus was on applying statistical methods to develop predictive

models that are difficult to measure with instrumentation. While applying chemical

engineering fundamentals, we also investigated data-driven methods to improve the

predictability of quality variables in chemical processes such as steam quality and

fouling accumulation in steam generators. Contribution of this thesis is summarized

below:

In Chapter 2, the grey box model based soft sensor was developed to predict steam

quality in a steam generator for SAGD (steam-assisted gravity drainage) process. The

core model structure was based on energy balance, and model parameter identification

and statistical techniques were used to enhance the predictive power. As the steam

generator process is the most energy-intensive part of the SAGD process, knowing

the steam quality with high accuracy can help with steam generator optimization.

The developed model was then compared with an existing steam quality analyzer to

show the improvements in detail.
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To further improve the steam quality soft sensor performance, feature extraction

methods were explored in Chapter 3. In this chapter, it was attempted to extract

features from readily available process variables and also the online bias trends. The

motivation of extracting features from the bias term was because the bias terms

from the different passes in the steam generator showed a similar trend, which is a

strong indication that the online bias correction may be used to correct the missing

process information. In addition to improving the performance of the soft sensor,

the possibility of developing an infinite step ahead predictor was also investigated: if

the extracted features significantly improve the performance, a soft sensor that is not

dependent on online bias update could be developed, which results in less manpower

by having fewer manual samples. PCA (principal component analysis), SFA (slow

feature analysis), and CA (cointegration analysis) were selected as feature extraction

methods to extract informative features from the bias terms, which were mapped

back to obtain appropriate coefficients for the process variables, which were used

as additional inputs for the soft sensor. When compared with the original steam

quality soft sensor, the additional features both improved correlation and reduced

mean absolute error.

In Chapter 4, feature extraction methods were further investigated to solve the

difficult problem of fouling accumulation in heat exchanger tubes. Fouling has been a

long time problem in chemical engineering for many years. Unfortunately, due to the

complicated fouling buildup phenomenon, it is very difficult to develop a predictive

model solely based on chemical engineering fundamentals. To solve this problem, two-

layer feature extraction method was used, where PCA (principal component analysis)

was used for the first layer for de-noising purpose and residual CA (cointegration

analysis) was used to extract the nonstationary trend. The results showed that the

proposed method was able to capture the slowly accumulating trend and could predict

the general fouling buildup trend, given only the readily available process variables

in the industry.

76



5.1.2 Future Work

In this thesis, various feature extraction methods were explored and modified to

improve the predictability of steam quality soft sensor and to predict fouling buildup

in steam generators. To further improve the performance, some recommendations are

listed below:

1. Apply the stochastic method in chapter 3: in chapter 3, feature extraction meth-

ods were applied to further improve the steam quality soft sensor. The chosen

feature extraction methods, however, were all deterministic. To further improve

this method, it is recommended to explore probabilistic feature extraction meth-

ods. Compared to the deterministic methods, probabilistic methods have the

advantage of being able to deal with missing process data and dealing with

the multimode process. In chemical engineering, due to field instrumentation

and/or server connection issues, missing process information is a common prob-

lem in chemical processes. In addition, continuous processes typically operate

in multiple modes. Since probabilistic methods can handle missing information

and the multimode process, the proposed method in Chapter 3 can be further

improved.

2. Develop probabilistic / Bayesian CA for fouling detection: two layer feature

extraction method using PCA for de-noising and CA for extracting slow accu-

mulating features were used to predict fouling buildup. For further improve-

ment, it is recommended to explore stochastic methods such as probabilistic CA

or Bayesian CA. Fouling is a very slow process and requires to be monitored

for a long duration, typically in years. Consequently, fouling predictive models

should ideally be able to deal with multi-mode processes and missing informa-

tion: since monitoring fouling accumulation is done is a long time span, it most

likely suffers from missing information from aging instrumentation and multi-

mode continuous processes. By applying stochastic CA method on monitoring
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fouling accumulation, it is expected to achieve better performance

3. Apply el-1 filtering method to improve the fouling detection method: el-1 fil-

tering method is a modification of el-2 filtering method. Typically, fouling is

removed from steam generator tubes by a process called pigging. If multiple pig-

ging is performed, fouling accumulation will portray a piece-wise trend, where

the trend is slowly accumulating due to the fouling buildup, then suddenly drops

as a result of pigging. Therefore, by applying el-1 filtering method in addition

to CA, the predictability of fouling accumulation may improve.

78



Bibliography

[1] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2(11):559–572, 1901.

[2] Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417, 1933.

[3] Robert F Engle and Clive WJ Granger. Co-integration and error correction: rep-
resentation, estimation, and testing. Econometrica: journal of the Econometric
Society, pages 251–276, 1987.

[4] Qian Chen, Uwe Kruger, and Andrew YT Leung. Cointegration testing method
for monitoring nonstationary processes. Industrial & Engineering Chemistry
Research, 48(7):3533–3543, 2009.

[5] Søren Johansen and Katarina Juselius. Maximum likelihood estimation and
inference on cointegration—with applications to the demand for money. Oxford
Bulletin of Economics and statistics, 52(2):169–210, 1990.

[6] Petr Kadlec, Bogdan Gabrys, and Sibylle Strandt. Data-driven soft sensors in
the process industry. Computers & Chemical Engineering, 33(4):795 – 814, 2009.

[7] Shima Khatibisepehr, Biao Huang, and Swanand Khare. Design of inferential
sensors in the process industry: A review of bayesian methods. Journal of Process
Control, 23(10):1575–1596, 2013.

[8] Omid Ashrafi, Philippe Navarri, Robin Hughes, and Dennis Lu. Heat recovery
optimization in a steam-assisted gravity drainage (sagd) plant. Energy, 111:981
– 990, 2016.

[9] Li Xie, Yu Zhao, Daniel Aziz, Xing Jin, Litao Geng, Errol Goberdhansingh, Fei
Qi, and Biao Huang. Soft sensors for online steam quality measurements of otsgs.
Journal of Process Control, 23(7):990–1000, 2013.

[10] K Nihed, K KTahar, and BB Ammar. A thermal analysis and optimization of a
combined cycle by several technologies. Am J Energy Res, 2:35–41, 2014.

[11] Kwan-Woong Gwak and Wisup Bae. A review of steam generation for in-situ oil
sands projects. Geosystem Engineering, 13(3):111–118, 2010.

79



[12] Frank Incropera and David DeWitt. Introduction to heat transfer. 1985.

[13] JF Kaiser and WA Reed. Data smoothing using low-pass digital filters. Review
of Scientific Instruments, 48(11):1447–1457, 1977.

[14] Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingrid Daubechies. Im-
age coding using wavelet transform. IEEE Transactions on image processing,
1(2):205–220, 1992.

[15] Jin Lin and MJ Zuo. Gearbox fault diagnosis using adaptive wavelet filter.
Mechanical systems and signal processing, 17(6):1259–1269, 2003.

[16] Yuri AW Shardt. Statistics for Chemical and Process Engineers. Springer, 2015.

[17] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of basic Engineering, 82(1):35–45, 1960.

[18] Shengjing Mu, Yingzhi Zeng, Ruilan Liu, Ping Wu, Hongye Su, and Jian Chu.
Online dual updating with recursive pls model and its application in predicting
crystal size of purified terephthalic acid (pta) process. Journal of Process Control,
16(6):557–566, 2006.

[19] Wangdong Ni, Ke Wang, Tao Chen, Wun Jern Ng, and Soon Keat Tan. Gpr
model with signal preprocessing and bias update for dynamic processes modeling.
Control Engineering Practice, 20(12):1281–1292, 2012.

[20] Li Xie, Yu Zhao, Daniel Aziz, Xing Jin, Litao Geng, Errol Goberdhansingh, Fei
Qi, and Biao Huang. Soft sensors for online steam quality measurements of otsgs.
Journal of Process Control, 23(7):990 – 1000, 2013.

[21] Yuri AW Shardt and Biao Huang. Tuning a soft sensor’s bias update term. 1. the
open-loop case. Industrial & Engineering Chemistry Research, 51(13):4958–4967,
2012.

[22] Yuri AW Shardt and Biao Huang. Tuning a soft sensor’s bias update term. 2.
the closed-loop case. Industrial & Engineering Chemistry Research, 51(13):4968–
4981, 2012.

[23] Samina Khalid, Tehmina Khalil, and Shamila Nasreen. A survey of feature
selection and feature extraction techniques in machine learning. In 2014 Science
and Information Conference, pages 372–378. IEEE, 2014.

[24] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and
decorrelation. The American Statistician, 72(4):309–314, 2018.

[25] Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised
learning of invariances. Neural computation, 14(4):715 –770, 2002.

80



[26] Chao Shang, Fan Yang, Xinqing Gao, and Dexian Huang. Extracting latent
dynamics from process data for quality prediction and performance assessment
via slow feature regression. In 2015 American Control Conference (ACC), pages
912–917. IEEE, 2015.
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