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Abstract

Flywheels are mechanical devices that store energy as the inertia of a rotating disk.

Flywheel Energy Storage Systems (FESS) can combat the challenges of intermittency

and unreliability that prevent effective integration of renewable energy sources into

the electric grid. They have long lifespans, can undergo deep discharge without

degradation, and are made of environmentally safe materials, however, their cost and

storage capacity limit their large-scale deployment.

The use of optimization methods with mathematical models of the system can

considerably shorten design time, and minimize costly ‘hardware-in-the-loop’ design

iterations. The energy capacity of FESS rotors can be improved by choosing the

optimal rotor geometry, operation conditions, rotor materials and by tailoring the

material properties. Depending on the complexity of the design goals, the model used

to represent the system may range from a fairly simple analytical model to a complex

3D finite element model. In this thesis, an open-source optimization framework with

shape and topology optimization capabilities was developed for the design of optimal

FESS rotors. A suite of 1D, 2D axisymmetric and 3D linear elastic numerical rotor

models were developed for use with the optimizer.

FESS are broadly categorized as low-speed metal rotor and high-speed composite

rotor systems, and although both systems have been analyzed and optimized in lit-

erature, there is no consensus on which system is better suited to grid applications.

The first contribution of this thesis was to perform a quantitative comparison of the

two FESS technologies. Results showed that the total kinetic energy of both compos-

ite and metal constant thickness rotors was comparable. Multi-rim composite rotors
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with certain material sequences could outperform single-rim composite and metal fly-

wheels in terms of total or specific energy, but offered no significant cost advantage

over single rim metal rotors.

The second contribution of this thesis was to offer holistic metal rotor FESS de-

sign guidelines by establishing the correlation between rotor shape, speed and radius

and their combined effect on FESS energy capacity. Choosing the best combination

of rotor shape, speed and radius resulted in 21% to 46% improvements in the en-

ergy storage capacity of two different FESS designs, indicating a strong correlation

between these parameters. A study on the self discharge of optimally shaped fly-

wheels indicated that low-speed rotors with a large radius had a lower self discharge

than high-speed rotors with a smaller radius and the same weight, which could be an

important consideration during the FESS design process.

Stress-constrained topology optimization was used to further optimize energy stor-

age characteristics of the FESS by using complex geometries that could not be ana-

lyzed with shape optimization. This thesis proposed a novel specific energy formula-

tion with a global stress constraint, which allowed the optimizer to choose the topol-

ogy volume fraction that led to the best specific energy improvement. The proposed

formulation consistently achieved better design improvements than conventional ki-

netic energy formulations for various operating speeds and rotational symmetries. A

post-optimality analysis on the effect of acceleration related stresses on the optimal

topologies determined these to be significant only when considering extremely short

duration charge-discharge cycles of less than 0.1 s.

Two approaches were used to improve the discreteness and convergence of the

specific energy topology formulation. Local stress constraints with an Augmented

Lagrangian formulation were shown to achieve designs with a more uniform stress

distribution compared to P-norm aggregated global stress constraints, where unde-

sirable local stress concentrations could be seen at narrow bottleneck regions. A

modified robust approach improved design discreteness and allowed for 3D topology
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optimization with the specific energy formulation. Two distinct 3D rotor designs with

similar energy capacities were seen to emerge when two different ranges of density

filter radius were used for design, with one design being similar to shape optimized

rotors, and the other design having spokes connecting the central shaft with an outer

rim.

The developed optimization framework will serve as a comprehensive design tool

for FESS rotors. The open-source nature of the tool will allow for further extensions

to the library in terms of materials or analysis of non-linear or transient behaviour.

Keywords: FESS, energy storage, rotor materials, shape optimization, topology op-

timization, Augmented Lagrangian approach, local stress constraints, robust topology

optimization
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Chapter 1

Introduction�

1.1 Motivation

With current policy and energy trends, global warming is expected to raise the av-

erage world temperature by 4.1 - 4.8◦C above pre-industrial levels by the end of the

century [1]. This is well above the Paris Agreement’s long term goal of limiting the

temperature rise to 1.5◦C above pre-industrial levels [1]. The world is still grappling

with the implications of the Paris Agreement on its existing and planned energy in-

frastructure. For example, in the European Union (EU), the success of the plan to

scale up climate action relies on reducing emissions in three main areas - electricity

supply, residential buildings, and transportation; with the success of the transporta-

tion sector relying on a parallel de-carbonization of the electricity sector. In order to

achieve the 1.5◦C benchmark, the EU would have to increase the share of renewable

power from 30% in 2017 to 55% in 2030 [2]. Similarly, 20% of the total installed

power capacity in India is from renewable sources, which would have to be doubled

to achieve its Paris agreement goals[3]. Nearly 60% of the electricity produced in

Canada comes from hydro power, and 5.2% from other renewable sources [4]. How-

ever, as hydro power is constrained by geography (half of the world’s hydro power

installed capacity is in just three countries), other renewable energy sources must also

be deployed.

�Parts of this chapter have been published in: Vaishnavi Kale, and Marc Secanell. Luisa F.
Cabeza (eds.), Encyclopedia of Energy Storage Oxford: Elsevier, 2022; pp. 41-56.
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As an increasing number of renewable energy production technologies, such as

wind and solar farms, are integrated into the grid, the associated challenges, such

as intermittency and power quality, must be dealt with. Long-term and short-term

energy storage technologies are increasingly being deployed to solve this problem and

hence improve the reliability and robustness of a renewable energy based grid [5,

6]. As of 2017, the world total installed energy storage capacity was 176.5 GW,

of which 97% was pumped hydro power [7]. The International Energy Agency’s

sustainable development scenario target estimates an additional 80 GW of overall

storage capacity must be added by 2030. Thus, alternative energy storage technologies

such as batteries, flywheels, supercapacitors and compressed air storage are also being

tested and commercialized. As per the Canadian National Electricity Board’s market

snapshot, Canada is in the early testing stages with about 61.7 MW of installed

energy storage capacity (excluding pumped hydro), of which batteries constitute 81%,

followed by 11% flywheels, with the remainder being a mix of technologies [8].

Energy storage systems (ESS) can help to better integrate intermittent sources

like solar and wind into the electric grid, by enabling storage at times of low demand

and use at times of peak demand [5]. Besides, they can also improve the grid’s

power quality by performing voltage and frequency regulation, thereby improving

the system reliability and robustness [6]. Flywheel energy storage (FES) systems,

which are an old innovation, have seen a resurgence in modern times, mainly because

advancements in technology have made high-strength materials, rotor manufacturing

processes and power electronics more economically viable, which in turn, has increased

their efficiency significantly. FES systems typically have a high energy capacity, deep-

discharge capability, a long lifetime (> 20 years) and are made of environmentally

safe materials [9–12]. Due to their rapid charge-discharge characteristics, they are

best suited for short duration storage applications.

The capital cost per unit power of different FESS configurations was reported to be

between 600 and 2400 $/kW, and the cost of operation and maintenance was reported
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to be 5.56-5.80 $/kW-yr [13]. Another source reported that an FESS system, with

a power rating of 250 kW and a maximum expected storage duration of 15 minutes,

had a capital cost per unit power of 250-350 $/kW and a corresponding per unit

energy cost of 1000-5000 $/kWh [14]. The International Renewable Energy Agency

estimated that by 2030 the per unit energy installation costs of FESS would fall by

35%, from the current estimated 1500 - 6000 $/kWh to 1000 - 3900 $/kWh [15].

Although the overall capital cost of this technology is high, it is comparable to that

of ultracapacitors, which are the direct competitors to the FESS for short duration

storage, making FESS a serious contender in commercial storage applications, such

as grid stability and reliability.

The design of energy storage systems often requires multi-objective, multi-variable

optimization to improve the efficiency and thereby, the usability of the system. Op-

timization using mathematical models of the physical system can reduce the design

time by months, and can result in fewer ‘hardware-in-the-loop’ iterations during the

initial design stages. Depending on the complexity of the energy system and design

goals, the complexity of the model used to represent the system may range from a

fairly simple analytical model to a complex 3D finite element model. Most physical

systems have non-linear characteristics, and their optimal design may necessitate the

use of sophisticated non-linear optimization algorithms and strategies. Consequently,

the optimization of FES systems can be used to improve their performance, reduce

system losses or improve the overall cost effectiveness. Thus, the application of opti-

mization strategies to the mathematical models of FES systems can provide insight

into their design for commercial applications.

The overall objective of this thesis is to develop numerical optimization techniques

to maximize the performance of FES systems for short-duration grid-scale energy

storage, while minimizing their cost by improving on FESS design parameters such

as the rotor materials and geometry.
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1.2 Background

FES systems store energy in the form of kinetic energy, which is related to the ro-

tational speed and moment of inertia of the rotor. The energy stored in a rotating

flywheel, E, which depends on the operating speed, ω, and the moment of inertia, I,

is computed using the relation,

E =
1

2
Iω2 (1.1)

A flywheel rotor can be connected to the grid via an electric machine. When excess

energy from the grid needs to be stored in the flywheel, it is ‘charged’ by the electric

machine, working as a motor, which speeds up the flywheel rotor. When the grid

needs to use the stored energy, the flywheel is ‘discharged’, or used to drive the

electric machine as a generator, which converts kinetic energy to electricity. In the

‘standby’ mode, the flywheel is uncoupled from the grid, and in some cases, the

electric machine as well, and it simply stores the energy by rotating until the next

grid command. Over time, the flywheel rotor experiences self discharge because of

mechanical and electrical losses. Because of this, the FESS is ideal for short-duration

storage applications. The flywheel is operated in a vacuum enclosure to minimize

mechanical losses due to air friction and windage.

The main components of an FES system are: 1) a flywheel rotor to store kinetic

energy, 2) an electric machine and controller, which transfers energy between the

flywheel and the grid as needed, 3) bearings, on which the rotor rests, 4) a mechanism

to couple the rotating shafts of the flywheel rotor and the electric machine, 5) a

vacuum enclosure for the flywheel rotor, which also acts as a containment unit in

case of failure, and 6) peripheral devices such as speed and strain gauges that provide

feedback to the control system. Figure 1.1 shows a schematic of the FES system,

along with the main components.

The flywheel rotor is the energy storage component of the FESS, and determines its

energy capacity. Flywheel rotors used in FES systems can be classified as low speed

4



Figure 1.1: Schematic of a typical FES system, reproduced with permission from
Skinner [16].

or high speed rotors. Low speed flywheels store kinetic energy primarily in the form of

moment of inertia and are operated at relatively low speeds up to 10,000 rpm. Their

rotors are made from isotropic materials such as metals, alloys or concrete. High speed

flywheels, on the other hand, are designed with lightweight, high strength materials

such as composites, and usually operate at very high speeds typically between 10,000

and 30,000 rpm.

The performance of the flywheel rotor can be quantified by its energy capacity,

efficiency and cost. The energy capacity of the flywheel depends on a number of

factors such as the size and overall geometry of the rotor, the material used in the

construction of the rotor and the operating speed at which energy is stored. The

mechanical energy losses, on the other hand, occur primarily due to air friction and

windage, which are influenced by the operating speed and air pressure in the flywheel

housing. These mechanical losses are mitigated by operating the FESS in a vacuum

enclosure. This also acts as a physical barrier to ensure safe high speed operation.

Besides the vacuum enclosure, another layer of safety is usually provided by a con-

tainment chamber, which is built to handle the maximum impact of the rotor in case

of catastrophic failure. The overall cost of the FESS rotor is affected by the cost of

materials used to construct the rotor as well as its manufacturing complexity.

The electric machine is used to transfer energy between the grid and the flywheel

rotor and vice versa. When excess energy from the grid needs to be stored, the
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electric machine is operated as a motor which accelerates the flywheel rotor by using

the energy from the grid. When the grid needs to use the stored energy from the

flywheel, the electric machine is used as a generator which uses energy from the

deceleration of the flywheel to produce electrical energy which is sent to the grid.

There is a third mode, called the standby mode, wherein the electric machine does

nothing, and simply waits for the next grid command.

The power rating and energy capacity of the FESS are separable, since the rotor

determines the energy capacity, whereas the specifications of the electric machine

ultimately determine the power rating of the FESS. For energy storage applications

where it is critical to store or provide frequent short bursts of energy, an electrical

machine with a high power rating must be chosen. Over time, the FESS experiences

self discharge because of energy losses both during operation and standby, and the

electrical machine contributes to these losses in the form of copper losses during

operation and no-load losses due to eddy currents and hysteresis during standby. Some

common examples of electrical machines used in FESS are brushless DC (BLDC)

machine, induction machine and permanent magnet synchronous machine (PMSM).

Several different coupling mechanism configurations can be used to connect the

rotating flywheel and the electric machine. The mechanism shown in Figure 1.1 is a

magnetic coupling, which is used when the flywheel is operated in a vacuum enclosure,

and the electric machine is outside the enclosure [17]. Other configurations include a

flywheel which is directly built on the rotating component of the electric machine, or

a mechanically coupled flywheel and electric machine [12].

Bearings used in FESS can be categorized as passive and active bearings. Various

bearings such as passive ceramic or steel bearings, active electromagnetic bearings and

superconducting bearings have been studied in literature [18–20]. Passive bearings

are usually radial bearings, and can be made of steel, ceramic (roller / ball). Active

bearings need additional controllers to provide axial / radial control. Losses occurring

in the bearings depend on the type of bearings used, such as eddy currents in magnetic
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bearings and friction in passive radial bearings. The bearings are the most frequently

replaced component in the FESS due to wear, therefore their cost contributes to the

operational cost of the FESS.

This thesis will focus mainly on FESS rotor design, with the aim of improving its

energy capacity while minimizing cost in the form of material used.

1.3 Literature review

1.3.1 Flywheel rotor modeling

Quasi static rotor models

The flywheel rotor is the energy storage component of the FES system. Several

analytical and numerical models of the rotor have been proposed in literature. The

quasi-static rotor model is predominantly used for stress and failure analysis in the

rotor [21]. Flywheel rotor models are typically developed in a cylindrical coordinate

system for convenience. Depending on the geometry of the rotor, certain assumptions

can be made to simplify the governing equations and make it possible to determine

an exact analytical solution for the model. For instance, if a relatively thin disk

with a constant thickness profile is used as the rotor, a plane-stress assumption can

be made [21]. If there are no external forces acting on the flywheel rotor and it is

perfectly balanced, it can be assumed to be axisymmetric [21]. The linear elastic

constitutive law is an excellent predictor of the response of materials, such as steel

and concrete, that undergo small deformations under large loads.

Optimal composite rotor designs described in literature predominantly use analyt-

ical rotor models [22, 23]. This is because composite rotors are typically designed in

literature as thin, cylindrical, annular disks, press-fitted or temperature fitted onto

a metallic hub. Axisymmetric flywheel models with the plane stress assumption are

thus good approximations and have been used in references [24, 25] whereas the

plane strain assumption was used in reference [22]. A modified generalized plane
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strain (MGPS) assumption was proposed in reference [26]. The authors showed that

the MGPS assumption allowed the analytical results to better match 3D FEM re-

sults. While the use of the MGPS assumption could not account for edge effects

at the top and bottom surfaces of the rotor, the mid-plane results for axial stresses

were in agreement with FEM results. Some researchers also used numerical models

to account for axial or shear stresses in the rotor [24, 27]. Design considerations that

are unique to composite rotor design, such as tailored orthotropic material proper-

ties, fiber winding angles used during the filament winding manufacturing process,

the choice of fibers and matrix materials are relatively easy to incorporate into these

analytical or 1D models [21].

The geometry of the flywheel rotor can affect the specific energy of the FESS, and

using optimal shapes can improve their performance [21]. Thus, researchers have also

developed models to represent variable thickness rotors using analytical expressions.

Holland [28] proposed an analytical model to determine the radial displacement and

radial and circumferential stresses in a rotating disk with a hyperbolic profile. The

authors improved on the original model proposed by Stodola for turbine blades [29]

by including a solution for an indeterminate case. However, these analytical solu-

tions were limited to hyperbolic profiles which may not be ideal for the purpose of

energy storage. Manna [30] proposed a generic analytical model of a variable thick-

ness rotating disk, with linear, hyperbolic or exponential thickness profiles. Yeh and

Han [31] developed mathematical models of rotating disks with variable thickness

and inhomogeneity. Singh and Chaudhary [32, 33] used the Runge-Kutta method

to solve a piecewise two-point boundary value problem for the variable thickness fly-

wheel rotor. However this method was only able to capture radial and tangential

stress components.

When researchers found that the geometry of variable thickness rotors could not

be adequately represented by analytical models [34, 35], or when the axial or shear

stresses in thick rotors were significant [27, 36], they developed numerical rotor models
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based on linear elasticity, which could capture details that the analytical models could

not, such as gravity and acceleration loads which were previously neglected. Most

numerical models of flywheels used for optimal rotor design have been developed using

commercial finite element packages, which are capable of generating meshes, imposing

the necessary boundary conditions, and have post processing tools to determine the

three-dimensional stress state in the rotor. 2D axisymmetric, 2D plane stress and

complete 3D numerical models have been used in literature.

Since this thesis aims to design optimal low-cost flywheel rotors for stationary grid-

scale applications, it is expected that low-cost isotropic metals would be used in the

rotor, which can be accurately modeled using the linear elastic assumption. Since

flywheel rotors can be balanced after being manufactured, and as there is little risk

of gyroscopic effects in the rotor due to the influence of external forces in stationary

applications, the axisymmetric assumption is a reasonably good one for grid-scale

flywheels. The plane-stress assumption may not hold always, especially for variable

thickness rotors or rotors with high aspect ratios (h >> r). Additionally, the effect

of gravity loads is also ignored under the plane-stress assumption, which may be

necessary to determine the maximum rotor size at standstill or low speeds. As a result,

this thesis will use a 2D axisymmetric numerical rotor model, which can accommodate

gravity and rotational loads, as well as account for variable shape rotors and thick

rotors. Also, to study the influence of the rotor topology and acceleration loads on its

performance and stress distribution, it is necessary to use either a 2D plane stress or

a 3D numerical rotor model. Thus, 2D axisymmetric numerical models will be used

to design the rotor shape, whereas 2D plane stress and 3D quasi-static, linear elastic

numerical rotor models will be used for the optimal rotor topology.

Transient models

Transient rotor models can predict the stresses due to acceleration and deceleration

of the rotor during charging or discharging operations. These acceleration stresses
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can affect the overall rotor design as well as define the limits of safe transient oper-

ating characteristics [37–41]. This is important for short to medium duration storage

applications such as power quality, frequency regulation or voltage regulation, where

the ESS is frequently and rapidly charged and discharged in the order of seconds.

Tang [38] simulated a plane-stress analytical model of a rotor centrally mounted on

a circular shaft, subjected to rotational and acceleration loads. The angular velocity

contributed to the body force in the radial direction, and the angular acceleration

contributed to the tangential component of the body force. As a result, the angular

acceleration was seen to affect the shear stress σrθ developed in the rotor. The author

found that the maximum shear stress occurred at the inner periphery of the disk

at the interface with the shaft, and the maximum tangential displacement occurred

at the outer periphery of the disk. The maximum shear stress was seen to increase

drastically as the ratio of the inner and outer radii of the disk was reduced. However,

the results of this article were later demonstrated to hold only when the rotor was at

rest and just beginning to accelerate. Phillips and Schrock [39] analyzed the effect of

acceleration stresses on variable thickness disks. They found a significant reduction

in the maximum shear stress due to acceleration when the disk was tapered. They

also found the thickness profile for which the shear stress was uniform throughout the

disk.

Reid [40] determined a method to find the least time in which a uniform thickness

flywheel could be accelerated from zero to maximum speed without any plastic de-

formation. The author considered the effect of centrifugal radial and hoop stresses

as well as shear stresses due to acceleration. They found that, for an annular disk

with zero radial stress at the inner and outer rims, as the ratio of outer to inner radii

(m = b
a
) was increased, the maximum angular acceleration decreased very rapidly

compared to the maximum angular velocity. If angular accelerations are expected to

be within 3000 rad/s2, then the ratio m can be of the order of 9 or 10 before yield

takes place. Thus, the importance of considering acceleration stress effects was seen
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to depend on the disk geometry and the magnitude of acceleration required in the ap-

plication. Similarly, the minimum time to ramp-up the speed from zero to maximum

speed was seen to increase cubically with the ratio of outer to inner radii, m. For a

steel disk with inner and outer radii of 50 and 200 mm respectively, the minimum

run-up time was found to be 0.16 s, whereas typical run-up times are of the order

of 1.5 s, so these were determined as unlikely to cause yield. On the other hand,

sudden removal of load (fault conditions) could result in high enough accelerations to

cause yield. Reddy and Srinath [41] devised a similar method to determine the yield

behavior of centrally mounted uniform and variable thickness disks using von Mises

criterion. They used a hyperbolic function to capture the rotor shape and used a

different, fixed radial displacement boundary condition at the inner rim. Both stud-

ies [40, 41] established that the effects of acceleration stresses could become significant

depending on the disk geometry and the minimum time to ramp-up the speed of the

FESS.

The effect of transient behaviour on the rotor stress distribution can affect the

transient operating characteristics such as the maximum ramp rate of the FES system.

Previous studies have been performed on uniform and variable thickness flywheels.

The addition of acceleration loads in the numerical rotor model can give useful insights

into how the transient behaviour of the flywheel affects the optimal rotor design.

This thesis will use a quasi-static approach to study acceleration related stresses on

the optimal rotor designs. Since the acceleration loads mainly affect in-plane shear

stresses in the rotor, these will be investigated using the 2D plane stress or 3D rotor

models.

Standby losses

The flywheel rotor specifications such as choice of operating speed and rotor geom-

etry also influence the total standby losses which contribute to self-discharge and

can impact the overall efficiency of the FESS. These standby losses can be mainly

11



attributed to mechanical losses due to bearing friction and windage, and electrical

losses due to eddy currents and core losses. Literature studies have used simulations

based on analytical models [42] and empirical models based on experiments [16, 43]

to characterize standby losses, as well as run-time losses occurring while charging or

discharging the FESS [44].

Gurumurthy et al. [43] quantified the mechanical and electrical losses in the FESS

by performing tests at atmospheric pressure on an experimental flywheel setup. They

accelerated the FESS to 15000 rpm and then allowed the system to decelerate under

various loaded and no-load conditions. Their experiments determined that the me-

chanical losses, specifically the drag losses, dominated the losses especially at very

high speeds of 15000 rpm, where they accounted for 72% of the total power loss. On

the other hand, switching losses in the power converter accounted for a very high

fraction (11%) of the total losses at the lowest speed of 2670 rpm due to the high

input current. Skinner et al. [16] performed experiments on a cylindrical composite

rotor FESS accelerated to speeds up to 5000 rpm to characterize the mechanical and

no-load electrical losses occurring as a result of self discharge of the rotor during

standby. Empirical models of the power losses developed using a curve-fitting ap-

proach showed that the mechanical losses were strongly dependent on the operating

speed and vacuum pressure inside the FESS enclosure. Amiryar and Pullen [42] per-

formed simulations using analytical and empirical models respectively to estimate the

windage and bearing friction losses in a cylindrical steel flywheel operating at various

low pressures and at speeds between 10000 and 20000 rpm. They determined that

while the windage losses increased non-linearly with the operating speed, they could

be strongly controlled by changing the vacuum pressure and the gap between the

rotor and the enclosure. However, the bearing losses, which could be attributed to

speed dependent and load dependent loss components, could not be influenced greatly

by the air pressure. Further, the speed dependent losses were seen to increase much

more than the load dependent losses with an increase in operating speed, therefore the
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Table 1.1: Flywheel storage solutions deployed at utility scale applications

Flywheel model Rotor type Power Capacity Energy Storage Mass Specific Energy Speed Self-discharge η Ref

kW kWh kg Wh/kg rpm W %

Beacon Power, LLC (BP400) Carbon composite 100 25 1133 22.06 8000-16000 4500 85 [45]

LEVISYS Carbon composite 10-40 10 - - - -a - [46]

Stornetic GmBH (EnWheel) Carbon composite 22-80 3.6 - - <45000 - - [47]

Flywheel Energy Systems Inc. Composite 50 0.75 135 5.55 15500-31000 500-1000 86

Powerthru / Pentadyne Carbon composite 190 0.528 590 0.89 30000-53000 250-300 - [48]

Calnetix (VDS-XE) 4340 Aerospace steel 300 1.11 821 1.35 24500-36750 - - [49]

Amber Kinetics (M32) Low-carbon Steel 8 32 2268 14.10 <8500 65 88 [50]

Temporal Power Steel 100-500 50 3500 14.28 <10000 500 85 [51]

ActivePower Steel 50-250 0.958 272 3.55 7700 2500 - [52]

ABB (PowerStore) Steel 100-1500 5 2900 1.72 1800-3600 12000 - [53]

Piller - 2400 5.833 - - 1500-3600 - - [54]

Energiestro Concrete 5 5 1700 2.94 - - - [55]

aThree weeks standby time

choice of operating speeds during FESS design could affect these losses significantly.

The above studies established a strong influence of the FESS design parameters

such as operating speed, air gap and vacuum pressure on the total standby losses

in the system. The empirical models proposed by Skinner et al. [16] will be used

to determine the effect of the chosen operating speed on the standby losses in the

optimized rotor designs.

1.3.2 Optimal rotor design

A number of studies have optimized the flywheel rotor, which is the energy storage

component of the FESS. Two broad categories of materials are used in the construc-

tion of the flywheel rotor: orthotropic composites and isotropic metals. The choice

of rotor material is seen to significantly affect the rotor design, as composite rotors

are light and high-speed systems, whereas metal rotors are heavy and operate at rel-

atively lower speeds. Table 1.1 depicts the specifications, including choice of rotor

materials, of flywheels manufactured for commercial applications. There is an even

mix of metal and composite rotors, which indicates that they might both be suited

to different applications.

Figure 1.2 compares the energy capacity of several existing low speed metal rotor
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Figure 1.2: A comparison of the energy capacity and maximum operating speed of
existing metal and composite rotor FESS

and high speed composite rotor FESS. Metal rotor FESS are usually employed in

grid or electric utility applications, whereas composite rotor FESS are more prevalent

in transportation and mobile applications. This difference in the application could

explain the generally large energy capacity of the low speed FESS compared to the

high speed composite FESS.

Researchers have predominantly used specific energy as a performance measure

to compare flywheel designs. Genta [21] compared flywheel materials using their

specific energy at burst speeds, which is given by the relation:

e =
E

m
= K

(︃
σu

ρ

)︃
(1.2)

where e is the specific energy, E is the total energy, m is the mass of the rotor, σu

is the ultimate strength and ρ is the density of the material. The shape factor K

depends mainly on the flywheel geometry. Using equation (1.2), the specific strengths

of some isotropic materials, Carbon Steel (Fe 34), Aluminium Alloy 2024, Titanium

Alloy and Maraging Steel were found to be 12, 46, 63 and 66 Wh/kg respectively,
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and those of composites such as unidirectional Glass, Kevlar and Graphite reinforced

plastics were 180, 230 and 240 Wh/kg respectively. This indicated that the theoretical

maximum specific energy of composites was greater than that of metals, by a factor

of 4-5 on average.

As described by Genta, however, there are some precautions to be taken when

using this method to compute the specific energy. When orthotropic materials such

as composites are used to fabricate flywheel rotors, the ultimate strength, σu, must

be indicative of the failure mode of the composite rotor. Also, rotor designs with

shape factors > 0.5 have bi-directional stress distributions, which cannot be handled

by filament wound composite rotors with unidirectional laminates, since their tensile

strengths transverse to the fiber direction (i.e., in the radial direction) are very low.

Thus, designs with shape factors ≤ 0.5 must be chosen, or an alternative manufac-

turing method must be used, which would result in a multi-directional composite,

with a better transverse tensile strength, albeit a lower hoop strength. Metal rotors,

on the other hand, can be fabricated to have high shape factors, leading to improved

performance. Thus, the shape factor depends on the choice of rotor material.

Liu et al. [56] estimated the theoretical maximum energy density of different fly-

wheel rotors using (1.2), and found the specific energy of Maraging steel, Kevlar and

T700-Graphite fiber composite flywheels to be 47, 370 and 545 Wh/kg respectively,

when using a fixed shape factor of 0.5, corresponding to a rotor of constant thick-

ness. The flywheel shape used for this comparison is unfavorable for metal rotors,

since they can be manufactured with complex shapes to improve the shape factor K.

Bitterly et al. [9], calculated the specific energy of the flywheel using the relation:

e = 1.57× 10−5

(︃
σθ

ρ

)︃
ξStressξDesign (1.3)

where, σθ is the hoop stress, ρ is the material density, ξStress and ξDesign are safety

factors for stress and design. They reported the theoretical maximum energy density

emax of 4340-Steel and Kevlar-49 flywheels to be 31.7 and 350 Wh/kg, using (2),
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with safety factors of 100% to estimate the energy density. Neither of these methods

accounted for the different failure modes in composites, and thus could not be used

to reliably compare the specific energy of metal and composite rotors.

Arnold et al. [23] modified the shape factor to account for material anisotropy and

stress-state multiaxiality and compared the specific energy of a slightly anisotropic

and a strongly anisotropic material using the original and modified shape factors.

They found that, for the strongly anisotropic material with a volume fraction of 40%,

the calculated specific energy varied from 327.86 to 113.74 and to 115.36 Wh/kg when

using the original ‘hoop only’, a modified ‘radial-only’ and ‘multi-axial’ shape factors

respectively. Thus, the use of multi-axial shape factors could account for the geometry

and operating conditions of the rotor more accurately. Also, this study showed that

the shape factor of the type used in previous literature resulted in an over-prediction

of the specific energy in the case of anisotropic materials such as composites.

The data from Table 1.1 indicates that there is a balanced mix of composite and

metal flywheels currently being manufactured, despite evidence from previously pub-

lished work that the specific energy of composites is much higher than that of met-

als. Literature studies aimed towards the design of optimized flywheel rotors can be

broadly categorized under the following groups:

� Studies that improve the energy capacity by use of optimal materials or combi-

nations of materials by multiple rim assembly or by tailoring material properties,

� Studies that design variable thickness axisymmetric rotors with optimized shapes,

and

� Studies that design rotors with spokes, holes or features using topology opti-

mization approaches.

In this thesis, optimization techniques will be developed to address each of these

problems. Therefore, a description of the optimization objectives, constraints, design
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variables and optimization strategies used in literature for these three broad areas of

optimal flywheel design is provided below.

1.3.2.1 Rotor materials

Appendix A.1 contains the optimization formulations used in FESS rotor design stud-

ies that are focused on improving the FESS energy capacity by using different ma-

terial combinations or tailored material properties. The objectives, design variables,

constraints and optimization strategies used in these studies are discussed below.

Objectives

Several objective functions have been used in the optimization of rotors for FES

systems that focused on material design or combinations. Most studies focus on the

energy storage capacity of the FES system, either characterized by the maximum

kinetic energy or the specific energy of the rotor. A few studies have included the

cost of the rotor materials and manufacturing process.

References [26, 57] maximized the total kinetic energy of the rotor. Ha et al. [26,

57] maximized the kinetic energy of the rotor by tailoring the number of rims used in

the rotor, the combination of composite materials used in the rims and the thickness

of the rims. They found that the kinetic energy of the rotor was directly influenced

by the chosen composite materials and their combinations. Increasing the number of

rims increased the kinetic energy, but also the size of the rotor. Since the size of the

flywheels was not fixed in these studies, the performance index (kinetic energy) could

not be used to compare designs obtained using a single rim with those obtained with

multiple rims.

Ha et al. [22] maximized the specific energy of a composite multi-rim rotor of fixed

size, by varying the interference between rings and the fiber winding angles. They

obtained a 29% and 145% increase in the specific energy by designing with optimal

ply angles and optimal interferences between the ten rims of the flywheel respectively.
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Ha et al. [58] also optimized a multi-rim composite flywheel by allowing the thickness

of rims and interference between rims to vary. The inner radius and operating speed

were fixed. They were able to achieve higher specific energies with an increase in

the number of rims, but as the outer radius was allowed to vary, this came with a

corresponding increase in the total size and mass.

Krack et al. [17, 24, 27] maximized the energy-per-cost of the rotor by tailoring

various properties of the composite materials used in two-rim rotors. They allowed the

relative thickness of the two rims to vary while the outer radius was kept constant, and

found that the optimal design was subjective to the cost ratio of the two materials

used in the rims [17]. They also found that the use of a split hub with optimal

thickness could improve the objective by about 20% [27]. The authors also tried an

approach where two distinct composite materials were used to construct the rotor,

and the number of rims of each material, their interferences and ply angles could

be varied to maximize the energy-per-cost of the rotor. They obtained increases of

12% and 13% in the objective function when the number of rims per material were

increased from one to two and four respectively. The use of energy-per-cost as a

performance metric can be useful when the overall size of the rotor is fixed and a

combination of materials with varying cost ratios are used in the rotor. It may also

be useful in determining the optimal rotor material from a set of candidate rotor

materials. Mittelstedt et al. [25] solved a multi-objective problem which maximized

the energy and manufacturing productivity while minimizing the cost of the rotor, by

tailoring properties of the composite materials used in the rotor. The use of multi-

objective formulations provided these studies with insights into the trade-offs between

competing objectives, albeit at the cost of increased complexity of the optimization

algorithm.

This thesis will perform a comparison of the three predominantly used different

performance indices, i.e., kinetic energy, specific energy or energy density and energy-

per-cost, to determine how the choice of performance metric or objective varied with
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the choice of rotor material

Design variables

While some studies on optimal composite rotors were performed at a prescribed op-

erating speed [59], most studies also allowed the maximum operating speed to vary

[17, 24, 27, 60]. The optimal operating speeds were found to be limited only by the

material failure, and thus, the optimal speed was typically the highest possible speed

allowed by the properties of the chosen material.

The multi-rim composite rotor has been extensively studied and optimized in fly-

wheel design. The effect of the optimal thickness of composite rims on the kinetic

energy or the specific energy of the rotor has been established [17, 24–27, 58, 60].

While some authors designed rotors with a fixed overall size and only varied the rel-

ative thickness of composite rims [17, 24, 27, 60], others chose to vary the overall

dimensions such as the inner radius [25], or the outer radius [58]. Studies which

varied the relative thickness of composite rims while keeping the overall dimension

fixed, found that the optimal rim thickness was dependent on the optimization objec-

tive. When the specific energy or kinetic energy was maximized, the optimal relative

thickness of each rim depended on materials used and the effective stress distribu-

tion in the rotor. When the energy-per-cost of the rotor was maximized, the optimal

thickness ratio also depended on the cost ratio of the materials.

The effect of the number of press-fitted rims on the performance of the rotor was

studied by Ha et al. [58], who allowed the outer radius to vary, and found a significant

increase in the specific energy with every additional rim up to three rims, when only

carbon composite materials were used in the rims. Mittelstedt et al. [25] varied the

number of rims as a parameter and optimized the rim materials, speed, interference

and thickness, while keeping the overall size of the rotor fixed. Their Pareto-front

helped to better analyze the trade-offs between an increase in specific energy and an

increase in the cost that came with increasing number of composite rims. Krack et
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al [24] studied the effect of cost ratios on the optimal number of rims. When there

was a significant difference in the prices of the composite materials being used for

the rims, single rim optimal solutions were obtained. The increase in objective with

increased rims was not significant beyond two rims, and the authors felt the increased

manufacturing complexity was not justified.

When multiple rim rotors were found to improve the performance, other related

properties such as the combination and choice of materials used in the rims [25, 26,

59], the interference between the rims [22, 24, 59], the fibre winding angles [22, 24],

and the manufacturing and assembly method [59] were also explored.

This thesis will perform a comparison of several metal and composite rotor materi-

als using several different objective functions or performance indices. The multi-rim

rotor using different material combinations will also be evaluated. The design of hy-

brid metal-composite rotors has not been explored previously, and could yield designs

which combine the best traits of both rotor types. However, as the energy as well

as the cost of the rotor are the two main objectives of this thesis, tailored material

properties or multi-rim rotors with more than two rims are not investigated in greater

depth.

Constraints

Flywheel rotor design optimization is typically performed by imposing constraints or

bounds on the size of the rotor, which can influence the energy capacity of the FESS,

and constraints on stress or strain measures which prevents material failure in the

system.

Constraints to prevent material failure were used in almost all the rotor optimiza-

tion studies, with appropriate failure criteria for the chosen rotor material. Several

failure theories have been proposed and used in literature, each with its own merits.

The Puck failure criterion, which can capture fibre failure and matrix failure due to

transverse and shear loads in unidirectional composites, was used in reference [61].
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The Tsai Wu failure criterion, capable of predicting overall failure but not the di-

rection or the mode, was used in references [22, 24, 26]. A combination of all three

criteria was used in reference [25].

When multi-rim rotors are used in the FESS, the use of additional failure criteria

such as detachment of press-fitted rings as optimization constraint could be useful.

While the optimization studies discussed above all checked for rim detachment as a

post-processing step, they did not explore the use of a detachment failure constraint.

Optimization strategies

The optimization of FESS rotors is a non-linear constrained optimization problem,

and several different optimization strategies have been presented in literature. Tra-

ditional methods such as parametric studies, local methods and global gradient free

algorithms have been used in some studies mainly due to their prevalence in commer-

cial optimization packages and their ease of use. Global methods, such as simulated

annealing [62], and gradient-based methods, such as the modified method of feasible

direction with the golden section line search method [22, 57] and sequential quadratic

programming (SQP) [59, 63], have been used in rotor design.

Traditional gradient based optimization methods have been used to a certain extent

in rotor optimal design. However, in scenarios where the optimization domain was

non-convex, hybrid optimization methods, such as multi-start or sequential strategies,

were used to avoid getting stuck in local minima. Global methods were also used when

categorical design variables, such as number of rims, rotor material combinations and

design configurations, needed to be selected. When the trade-offs between multiple

conflicting optimization objectives needed to be compared and analyzed, approaches

such as multi-objective genetic algorithms have been used to solve the multi-objective

problem as discussed below.

Several hybrid optimization strategies have also been used in literature, mainly

in an effort to find a compromise between the robustness and convergence of global
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methods and the speed of local methods. A multi-start strategy with Newton type

method was used in reference [24] to ensure global convergence of the local method.

A surrogate strategy was used in references [24, 27], where a simple 1D surrogate

model of the rotor was used in the optimization iterations, with a 2D FEM model,

run less frequently, used to provide corrections to the surrogate solutions. A variation

of the local Newton method was used for optimization. A multi-strategy scheme was

proposed in references [24, 27], where an evolutionary algorithm was used to move

close to the vicinity of the optimal, after which a local gradient based Newton method

could be used to quickly converge to the optimal solution. In another case, the rotor

material was a design variable and the mixed integer nonlinear optimization problem

was solved using a hybrid GA-SQP strategy [25]. The GA was used to solve the mixed

integer problem where the rim materials could be chosen, with the SQP algorithm

used to solve the non-linear constrained optimization sub-problem of selecting the

best speed and rim thickness once the material, interference fit and number of rims

had been chosen. The GA-SQP hybrid optimization strategy resulted in a reduced

computational effort.

In this thesis, a mesh adaptive direct search (MADS) algorithm was used to com-

pare rotor materials. The MADS algorithm is a local, gradient-free method, hence it

converges faster than global methods, and it does not need any analytical gradient

calculations that are necessary for gradient-based methods. It also allows for global

convergence by using a variable neighborhood search strategy to escape local minima.

Discussion

Most recent research on flywheel rotors has focused on high-speed composite rotors

as the storage element of the flywheel energy storage system (FESS). Literature re-

search indicates that this is primarily due to the high specific energy of composites

compared to metals. However, a quantitative comparison of the performance of fly-

wheels made from these materials has not been conducted. The first objective of this
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thesis aims to answer the question - ’Are composite flywheels better suited for energy

storage than metal flywheels?’. This study uses three different performance indices:

kinetic energy; specific energy; and, energy per cost, to compare the corresponding

rotor designs. A plain-stress, linear elastic mathematical model of the flywheel rotor

described by Krack et al. [17] is used for analysis. Different optimization formula-

tions corresponding to performance indices chosen based on the FESS application are

then solved to study optimal FESS designs. Several metal and composite materials

are evaluated. Multi-rim designs with two rims made with different combinations of

composite materials as well as hybrid metal-composite materials are also evaluated

and compared. A rim-detachment failure constraint is introduced for multi-rim rotor

optimization formulations.

1.3.2.2 Shape optimization

The shape factors of some common rotor geometries are shown in Table 1.2, with

higher shape factors resulting in a more uniform stress distribution in the rotor. The

shape of the flywheel rotor is known to affects its stress distribution and moment of

inertia [21], and can therefore be optimized to achieve a uniform stress distribution, or

a higher specific energy. However, shape optimization is employed mostly in the design

of rotors made of isotropic materials. Composite rotors, which are manufactured

by filament winding, are typically constant thickness rim-type rotors. Due to their

orthotropic material properties, variable thickness rotors made of composites do not

have very high shear and axial strength and are not prevalent [21], hence the design of

variable shape rotors is focused on metal rotor FESS optimization. The optimization

formulations used in shape optimization studies are recorded in Appendix A.2.

Objectives

Kress [35] and Bhavikatti and Ramakrishnan [64] tried to achieve a uniform stress

distribution in the rotor by minimizing the variation in the developed rotor stresses.
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Table 1.2: Shape factor K of some typical flywheel geometries, reproduced with per-
mission from reference [12]

Kress [35] tried to reduce the high circumferential stresses at the inner rim of an

annular shaft-mounted rotor by optimizing its shape. However, they used a modified

1D rotor model with spheres of variable radii at the inner and outer rotor rims to

approximate the shape of the rotor, and this model could not accurately predict the

rotor shape for annular disks with large ratios of inner to outer radii. Moreover,

the study was performed only at a fixed, predetermined operating speed. Bhavikatti

and Ramakrishnan [64] evaluated three different stress levelling objectives, including

a weighted objective function which minimized the volume and levelled the stress

distribution and found slight differences in the obtained optimal rotor shapes. Both

of the above studies chose stress levelling optimization objectives, and their results did

not indicate whether the energy storage capacity of the optimal disks was improved.

References [34, 65–69] maximized the specific energy of variable thickness rotors

by optimizing the shape of the rotor, subject to stress constraints. Jiang et al. [67]

maximized the specific energy of an FESS with an integrated rotor-shaft design sub-

ject to stress constraints by varying the rotor shape and studied how the maximum

allowable stress affected the optimal design. With different allowable stresses, 14 to
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23.2% improvements in the specific energy of integrated-shaft optimally shaped rotors

were achieved compared to the constant thickness design. The study was conducted

at a single operating speed of 1800 rpm, and resulted in similar rotor profiles, with

a slight thickening of the inner region near the hub as the maximum allowable stress

was reduced. Berger and Porat [34] maximized the specific energy of the rotor subject

to radial and tangential stress constraints by using non-smooth piece-wise functions

to approximate the inner, middle and outer regions of the rotor. The convergence of

specific energy based formulations without any mass or volume constraints to phys-

ically viable designs was achieved in these studies either by the use of fixed aspect

ratios resulting from the use of a fixed rotor radius or narrow bounds imposed on the

height of the variable rotor thickness.

Singh and Chaudhary [70] on the other hand, maximized the energy capacity, i.e.

kinetic energy, of the rotor subject to mass and stress constraints, by using a finite

difference rotor model with cubic B-splines to approximate the rotor shape. Their

choice of an extremely low operating speed resulted in an optimal shape that tried

to maximize the moment of inertia of the disk by concentrating most of the rotor

mass in the outer rim of the rotor. They were able to obtain a 36.55% increase in

the stored energy over a constant thickness flywheel. Pedrolli et al. [71] designed

optimally shaped flywheels using an evolutionary method with a fitness function

which was a weighted combination of the mass, the standard deviation of the stress,

the polar moment of inertia target, and maximum allowable stress target. Effectively,

this formulation minimized the mass of the rotor subject to constraints on the stress,

total energy and deviation of the stress distribution. Uyar et al. [72] also used a

multi-objective formulation to maximize the kinetic energy and minimize the mass of

the flywheel, subject to constraints on the maximum stress and speed.

Ghotbi and Dhingra [73] solved a multi-objective problem of maximizing the kinetic

energy of the rotor while minimizing the cost, by optimizing the shape of the flywheel

rotor. They used a bi-level game theoretic approach and assumed that the cost was
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a function of how much the optimal shape deviated from the uniform thickness rotor

shape.

Design Variables / Shape parametrization

Several researchers used analytical functions to represent the variable thickness of the

rotor. Ghotbi and Dhingra [73] represented the rotor thickness by a Fourier series

approximation, Bhavikatti and Ramakrishnan [64] used 5th order polynomial approx-

imations, and references [32, 33, 67, 70, 71] used cubic B-spline approximations.

Alternatively, the variable thickness of the rotor was controlled by mesh element re-

sizing in references [35, 65, 66]. Here, z-direction coordinates of the mesh were varied

to control the height at any given radius. Berger and Porat [34] proposed the use

of a non-smooth or piecewise initial rotor shape to find the optimal shape, based on

a rough idea of the optimal material distribution along the radius. Liu et al. [74]

proposed a metamorphic development approach to optimize the shape of continuum

structures using axisymmetric numerical models. The metamorphic development ap-

proach sought an optimal r-z plane domain shape through simultaneous growth and

degeneration, i.e., nodes and elements could be added or removed from the structure

as needed. ‘Growth cones’ defined how elements were added to boundary regions with

high strain energy, and elements carrying small loads were considered inefficient and

were removed from the domain. The optimization procedure did not need gradient

information, as only surface stress distributions were relevant.

Most studies which optimized the shape of the rotor designed them at a fixed

operating speed [32, 67, 70, 73]. While a few authors performed parametric studies

to determine the optimal shape for different ranges of operating speeds [34, 64, 71],

and only one study used the speed as a design variable [72]. This can be attributed

to the fact that the operating speed in shape or topology optimization problems

is essentially a categorical design variable, and can make the optimization problem

very complex. Bhavikatti and Ramakrishnan [64] performed parametric studies to
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determine the influence of operating speed on the optimal shape and found that the

operating speed had no impact on the shape if there was zero fit pressure at the

interface to the hub. However, as the fit pressure was increased, lesser thickening

was needed near the hub with increasing speeds. Berger and Porat [34] conducted a

parametric study to determine how the operating speeds influenced the optimal rotor

shape and obtained three distinct optimal flywheel shapes for low, medium and high

speeds of operation. They observed that as the operating speed was increased, mass

was redistributed from the outer to the inner regions of the rotors. Depending on the

speed of operation, the optimally shaped rotors achieved 30 to 52% improvements over

constant thickness disks and 41 to 65 % improvements over exponential profile disks

rotating at similar speeds. Thus this study established that the range of operating

speed had a strong influence on the obtained optimal rotor shape and specific energy.

Pedrolli et al. [71] studied the effect of varying different parameters such as max-

imum speed, material density, allowable stress, outer radius, and maximum kinetic

energy on the optimal profile, and found that, as the maximum operating speed or

the density of the rotor material was increased, the rotor material was redistributed

from the outer rim to the central axis. A similar effect was observed while increasing

the rotor radius at a fixed operating speed. Increasing the material’s strength while

keeping all other parameters fixed resulted in material being redistributed from the

central axis to the outer rim of the rotor. Based on the results of the parametric

study, the authors concluded that including the operating speed, rotor outer radius

and material properties in the optimization problem with appropriate cost functions

or constraints could be used to further improve the rotor design. Despite the para-

metric studies performed however, the interdependence of these parameters was not

studied.

Huang and Fadel [75] and Uyar et al [72] investigated the use of heterogeneous

material models to design optimally shaped flywheels using two or more materials,

operating at a low operating speed. While the manufacturing technologies that utilize
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heterogeneous materials are still not fully mature, the study demonstrated the advan-

tages of using optimal material placement and variable volume fractions to achieve

flywheels with better stress distributions or moment of inertia.

Several shape approximation alternatives are described in literature, but the B-

spline approximation is easily implemented in open-source meshing tools, and does

not need elaborate mesh modification or resizing algorithms. This thesis will use

the B-spline shape approximation function in rotor shape optimization studies. Also,

based on recommendations by Pedrolli et al. [71], design parameters like operating

speed, rotor outer radius and material properties will be included in the analysis.

Constraints

Shape optimization literature on metal rotor design that used an energy maximization

objective typically enforced constraints on the maximum mass of the rotor [70, 73],

and conversely, mass minimization objectives had a constraint on the minimum energy

capacity of the rotor [71]. These studies typically constrained the rotor mass [32, 33,

70] or the energy capacity [71] in order to fix the scale of the rotor being optimized.

Mass or energy constraints were also imposed on rotor shape optimization problems

to accommodate for other design considerations such as design of bearings or the

starting torque limitations of the electric machine.

The total size of the rotor was constrained in some optimization formulations which

maximized the specific energy content of the metal rotor using shape optimization [65,

67]. These shape optimization studies usually applied bounds on the maximum rotor

radius or height and thus ensured that the optimization problem was bounded [67].

Constraints to prevent material failure were used in almost all the rotor optimiza-

tion studies, with appropriate failure criteria for the chosen rotor material. Studies

that designed isotropic metal rotors predominantly used the maximum von Mises

stress to predict material failure [67, 71–73].
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Optimization strategies

Some studies used traditional methods such as parametric studies, local or global al-

gorithms to design optimally shaped rotors. Arslan et al. [69] conducted parametric

studies to compare the specific energy and maximum speeds of six different flywheel

shapes, represented using an axisymmetric numerical model. However, they did not

optimize the shape of the flywheel. Local methods such the method of feasible direc-

tions (MFD) [35], improved move limit sequential linear programming (SLP) [64], and

downhill simplex [67], as well as global methods such as evolutionary algorithm [71,

76], non dominated sorting GA-II [72] have been used in some shape optimization

studies. Singh and Chaudhary [70] used the Jaya global algorithm [77], and com-

pared their designs to those obtained using GA and particle swarm optimization

(PSO) global methods.

Predominantly, hybrid optimization strategies have been used in literature, mainly

due to the complex nature of the shape optimization problem and in an effort to find

a compromise between the robustness and convergence of global methods and the

speed of local methods. Ghotbi and Dhingra [73] used a bi-level game theoretic ap-

proach to optimize the kinetic energy and cost simultaneously. The cost was assumed

to be proportional to the deviation of the shape from a constant thickness profile.

The problem of maximizing the kinetic energy was assumed to be the leader, and

the minimization of cost was the follower problem. The seven shape related design

variables were divided among the leader and follower problems. For different vari-

able partitioning cases, the authors obtained different optimal shapes. Eby et al. [65]

introduced the use of island injection GA (iiGA) to optimize the shape of flywheels

for maximum specific energy. In the island injection GA, a plane stress 1D axisym-

metric and a 2D axisymmetric model were both used. The flywheel was assumed to

be composed of concentric rings of varying thickness. Initially, the 1D model, which

was accurate when the gradient of the thickness was small, was used to determine

a rough optimal shape, using varying levels of mesh refinement. Then, these rough
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estimates were used as the initial population in the optimization using a 2D model,

with increasing levels of mesh refinement. This helped the authors to save some time

by generating a good initial shape using the inexpensive 1D model at the beginning.

Discussion

Most of the studies discussed so far that used flywheel rotor shape optimization to

achieve improvements in the energy storage characteristics of the FESS focused solely

on improving the shape of the rotor at a fixed operating speed and rotor radius. As a

result, the improvements in the design were mainly attributed to the improved stress

distribution in the rotor achieved by tuning the rotor shape in a limited range. The

optimization formulations in these studies further limited the extent to which the

rotor geometry could be varied, either by means of imposing a mass constraint and

fixing the rotor radius or by enforcing strict bounds on the variables that controlled

the shape of the rotor. As a result, a major part of the optimal rotor design space

remained unexplored. Even though a few parametric studies [34, 71] showed that the

problem of finding the optimal rotor shape, size and speed is fully coupled, none of

them studied the simultaneous influence of multiple design parameters such as speed,

rotor material or rotor size on the optimal rotor shape and its energy capacity. The

impact of FESS design parameters such as operating speed and vacuum pressure on

the standby losses due to self discharge has been established by some literature stud-

ies using a combination of simulations based on analytical models and experimental

characterization using curve-fitting. However, the effect of choosing a specific operat-

ing speed on the energy storage characteristics as well as the standby losses has not

been evaluated previously.

It is essential to understand the correlation between important rotor design pa-

rameters such as rotor shape, radius, speed and choice of material, in order to design

optimal FESS rotors with improved energy storage characteristics. The aim of this

thesis is firstly to determine the effects of simultaneously varying multiple design
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parameters, such as operating speed and rotor size on the rotor shape optimization

problem and to understand if such an approach can offer a significant improvement in

the energy storage characteristics of the FESS as compared to an optimally shaped ro-

tor with an arbitrarily chosen radius and speed. This will allow for the exploration of

a much larger part of the rotor design space, which is expected to yield better optimal

rotor designs, and more importantly, to help visualize the nature of the optimization

response surface. Secondly, the effect of the rotor material on the optimal shape and

energy capacity is evaluated, while also studying how the operating speed and rotor

size affect the choice of rotor material. Lastly, since standby losses occurring in the

FESS are known to scale with the operating speed, and a few empirical and analytical

models of the standby losses have been determined, this thesis will also use one of

the existing empirical models [16] to determine how the chosen operating speed and

optimal rotor design can influence the standby losses in the system. The three studies

proposed above will result in an overall better understanding of the importance of

several rotor design parameters and can also be used as an optimal FESS rotor design

tool.

1.3.2.3 Topology optimization

Shape optimization methods attempted to find the optimal flywheel shape in the axial

cross section. This is important for metal flywheels where the manufacturing of the

rotor can be adapted to produce complex shapes [21]. However, these formulations do

not allow for variations in the circular cross section using shapes where the thickness

could vary along the circumference and the radius, which can be visualized as spokes

or perforations in the rotor. Topology optimization can be used to explore more of

the rotor design space compared to shape optimization methods that use analytical

shape functions such as B-Splines and Fourier series to approximate the rotor shape.

While shape optimization can be used to determine the best rotor shape in the r-z

plane, topology optimization can allow for the addition of features, such as spokes or
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Figure 1.3: Steel wire bare filament flywheel used in spin tests by Genta [78], repro-
duced with permission from authors.

holes, in the design and enhance the performance of the design further, by seeking

designs that might be too complex to achieve with shape optimization. The rotor

structure in the r-θ plane or the entire 3D domain can be designed with topology

optimization. Prototypes of rotors with such features were tested in the experimental

studies performed by Genta [78], who conducted spin tests on 56 flywheels made of

composites material laminates, composite rim flywheels, and quasi-circular flywheels

consisting of a metal hub with spokes and a bare filament or steel wire wound around

it. Their objective was to develop prototypes of low-cost advanced flywheels in the

medium-energy density range. They concluded from their tests that the energy densi-

ties obtained with steel wire bare-filament flywheels, along with their associated cost

and safety, were adequate for most applications. Figure 1.3 shows one of the steel

wire bare filament flywheels used in the spin tests.

Moreover, the topology can be optimized to account for variations in the geome-

try to better handle tangential loads due to the acceleration or deceleration of the

rotor, which is not possible with shape optimization. Even though the application of

topology optimization algorithms to structural problems, such as truss design, is well

understood and established [79], only a limited number of studies have reported the

use of topology optimization for flywheel rotor design [68, 80, 81]. The optimization

formulations used in topology optimization studies that designed energy storage fly-
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wheels are recorded in Appendix A.3. Formulations used in rotor topology studies

in other applications such as the design of motors, turbines and compressors can be

found in Appendix A.4.

Objectives

Tsai and Cheng [81] optimized the 2D r-θ plane rotor topology, for several different

optimization objectives such as torsional frequency, moment of inertia considering

centrifugal loads, and quasi-static compliance considering both centrifugal and accel-

eration loads on the flywheel at a fixed operating speed. Their compliance minimized

rotor design study showed that acceleration loads strongly influenced the topology

at standstill by resulting in a bending in the rotor spokes, whereas centrifugal loads

dominated at higher speeds and resulted in straight spokes between the shaft and

outer rim. The acceleration loads were approximated as point forces applied at eight

equally distributed locations on the outer rim, and the relation between the transient

operation of the flywheel and the corresponding value of the angular acceleration

loads was not discussed. On the other hand, the moment of inertia maximized rotor

design was reported to be a practically infeasible detached-rim rotor, because the

study only used a volume fraction constraint, and did not use any stress constraints

to enforce the formation of ribs or spokes between the central shaft and the fixed

outer rim. Moreover, a fixed volume fraction limit of 50% was used in the study,

without any background or parametric studies to establish why this volume fraction

was chosen.

Jiang and Wu [68] found the optimal rotor topology using a 2D r-θ plane numerical

model operating at a fixed angular speed of 2250 rpm, by maximizing the moment

of inertia of the rotor, subjected to volume fraction and maximum stress constraints.

They used a density-based approach with the SIMP power law, and a ‘minimum

member size’ for length scale control. The study demonstrated a 14% improvement

in the specific energy of the rotor by removing 30% of the material from a constant
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thickness rotor design. They tested the sensitivity of the design to parameters in-

cluding minimum member size, rotational symmetry, maximum volume fraction and

maximum allowable stress, and found that a rotational symmetry of 6 (i.e., 60◦ cir-

cular section), and a volume fraction limit of 70% achieved the best specific energy

for the chosen design. This study did not study the influence of acceleration induced

stresses or variations in the operating speed on the rotor topology.

Lottes et al. [82] used a combination of shape selection and topology optimization

to design the flywheel. They initially used a parametric study with four selection

criteria (mass, Rankine stress criterion, mass-specific angular momentum and form

factor) to rank and select the best rotor shape or contour from among 15 different

shapes, using axisymmetric 2D numerical models for analysis. Next, the selected

shape was used as the initial design to perform topology optimization only on the

inner structure of the rotor using a 3D numerical model, by effectively hollowing out

the rotor to minimize its compliance subject to a 40% volume fraction constraint.

The study reported a 16% increase in the specific energy over the reference flywheel

obtained from the initially selected optimal shape, but this was accompanied by a

74% increase in the developed stresses. This was attributed to the limited choice of

optimization objectives and constraints available in the software used for topology

optimization, which could not incorporate energy capacity or stress criteria in the

topology optimization problem. Details about the topology optimization approach,

solver, filters and other implementation details used to generate the results in the

article were not reported.

Hinterdorfer et al. [61] optimized specific energy by varying the r-z plane shape of

axisymmetric metal and composite rotors by discretization of the rotor thickness along

the radius. Although variable thickness composite rotor designs were determined,

the optimal shapes were highly irregular and the manufacturing feasibility of these

designs was not demonstrated. Bugeda et al. [76] used a combination of shape and

topology optimization to get the optimal r-θ plane geometry of the flywheel. The
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author initially obtained an initial ‘optimal’ topology using a topology optimization

routine, and then found the best smooth outline of the flywheel spokes using separate

shape approximation functions for each curved boundary.

Lopes et al. [80] optimized the topology of a hydro generator shaft using 2D and 3D

FEM models of the shaft. They used the standard SIMP model with an optimality

criterion to find the optimal designs, by minimizing the compliance of the shaft subject

to volume constraints. Both gravity loads and inertial loads due to rotation at a

constant speed were considered. Initially, they tried optimizing the 2D topology (top

view) under gravity only, and then added the inertial load. They found that at low

volume fraction constraints, the optimal design had intermediate densities at the

center of the structure, indicating that a 3D analysis would be needed. The optimal

topology using 3D models seemed to have converged to a feasible design; however, no

data was presented to indicate how the optimal design fared better than the original.

Also, the stress distribution in the model was not checked or reported.

Design variables

Density-based topology optimization techniques typically utilize the mesh element

or cell densities as the optimization design variables [83], although a few literature

studies have utilized nodal design variables, such as the continuous approximation of

material distribution (CAMD) approach used by Tsai and Cheng [81].

The use of element densities as topology design variables leads to unwanted che-

querboard patterns in the topology. Filtering techniques are used to ensure the con-

vergence of the problem to an optimal design without any chequerboard patterns,

as well as provide length scale control, which can be used to meet manufacturing

requirements such as minimum size of the features in the optimal topology. The

sensitivity filtering approach proposed by Sigmund [84] filters the objective function

sensitivities. This filtering approach may not be ideal if the sensitivity data does not

represent a descent direction. Thus, the success of this scheme can be subject to the

35



nature of the objective function. The density filter proposed by Bruns et al. [85] is

a more robust approach and is also commonly used in topology optimization. Here,

the element densities are filtered in a given neighbourhood, and the filtered densities

are used as design variables for the optimization problem. Le et al. [86] used this

approach to minimize the volume of an L-bracket subject to stress constraints.

In addition to the density filter, a Heaviside or projection filter stage is also some-

times necessary to allow convergence to a discrete design. Sigmund [87] used image

morphology techniques as a post-processing step on the optimal topology to remove

the gray regions and obtain purely black-and-white designs. They used sequences of

‘erosion’ and ‘dilation’ operations on the image to preserve the volume constraints of

the optimal design. Here, erosion and dilation referred to forcing pixels to take values

of 0 or 1 based on certain neighbourhood criteria.

Constraints

The flywheel topology studies reported so far utilized a fixed volume fraction con-

straint to remove material from the initial domain, whereas in reality, the volume

fraction that achieves the best energy capacity is not known, and should be deter-

mined during the optimization process. Thus, this constraint was artificially imposed

in order to remove material from the domain.

Based on energy storage flywheel topologies reported in literature, the use of a

stress-constraint in the optimization formulation is seen to be essential for two rea-

sons - it provides a means of predicting and preventing material failure, and it drives

the convergence of the design to a physically feasible design without any detachment

of the rotor rim from the inner shaft. Previous FESS topology studies have either

neglected or not discussed in detail the type of stress constraint used, despite stress-

constrained topology optimization being an established branch of topology problems

that have been tackled in great detail in literature for a variety of benchmarking

problems [86, 88–90]. Imposing stress constraints on a topology optimization prob-
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lem may make the feasible domain singular, thereby making it extremely difficult for

gradient-based optimization techniques to converge to the optimal solution. Several

stress constraint relaxation techniques have been proposed in literature to ensure con-

vergence. Collet et al.[91] used a q-p relaxation scheme to relax the stress constraint.

The sensitivities of the local stress constraints were computed using an adjoint for-

mulation. Alternatively, the ϵ-relaxation scheme by Cheng et al. [92] was also used in

several studies. Literature studies have reported the use of global stress constraints

aggregated using functions such as P-norm [88] or Kresselmeier–Steinhauser (K-S)

functions [93], as well as local stress constraints using the Augmented Lagrangian

(AL) approach [90].

Global stress constraints have been employed in the topology optimization of other

types of rotating machinery such as hydrogenerator shafts [94], compressor and tur-

bine rotors [95, 96], and synchronous reluctance machine rotors [97, 98]. While the

optimization objectives used for these rotors are different from the energy storage

flywheels, some of these studies used a global stress constraint in the optimization

formulation, computed as the P-norm aggregated relaxed von Mises stresses, which

can also be utilized in flywheel rotor design. In this method, the local stress con-

straints at each mesh element are combined into a single maximum constraint. Since

the ‘maximum’ function is not differentiable, an analytical function such as the P-

norm can be used to approximate the max function. References [96, 97] reported that

the use of a global stress constraint for compressor and synchronous reluctance motor

design made the optimization problem difficult to converge, especially since they used

projection filters with continuous updates on the slope to improve the discreteness of

design, and that the computed stresses would see large oscillations for large values

of the projection slope. They used an additional constraint on the strain energy or

compliance to try and prevent instabilities. Several strategies have been reported in

topology literature to ensure convergence of the design with a projection filter, such as

modified β-continuation schemes [99], volume preservation by performing line-search
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on the filter threshold [100] and morphology based filtering methods [87].

The global stress constraints described above are not very effective when the topol-

ogy domain is large or complicated. They can either be very difficult to converge, or

generate topologies with localized stress concentrations, which might be sub-optimal

or locally optimal. The use of regional or local stress constraints can offer more control

over the stress distribution in the entire domain, resulting in better convergence to an

optimal design. Collet et al. [91] computed the local stress constraints and their sen-

sitivities using an ‘active set selection’ strategy, which effectively eliminated the need

to check some of the stress constraints based on a heuristically determined threshold

value. Le et al. [86] used region-normalized stress constraints instead of local stress

constraints. They divided the domain into several smaller regions and used the nor-

malized p-norm of the maximum stress constraint over each region. This was done to

provide better control over the local stress than the maximum stress approach. Other

studies have used local stress constraints in their optimization formulations [101–103],

which resulted in an optimization problem with as many constraints as the number

of mesh elements. Since the calculation of sensitivities for local stress constraints

comes with a high computational cost, strategies such as Augmented Lagrangian

formulation [103, 104] have been used in literature to reduce this expense.

Optimization strategies

Density-based topology optimization techniques applied to numerical models treat

the density of each mesh element as a design variable. Thus, every element may

have a density of zero or one, indicating the absence or presence of material at that

location. This is essentially a discrete design problem with a very large number of

design variables that scales with mesh refinement. Although some studies have solved

this discrete problem using global optimization algorithms [61, 105], the majority of

topology optimization strategies relax the problem by allowing the element densities

to take intermediate, real values between zero and one. The solid isotropic material
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with penalization (SIMP), or ‘power law’ approach proposed by Bendsøe [83] does

this by imposing a penalty on the material properties of elements with intermediate

densities, thus allowing the optimization routine to converge to nearly black-and-white

designs.

The method of moving asymptotes (MMA) by Svanberg [106], which is specifically

developed for structural optimization, was used by Tsai and Cheng [81] and Lottes

et al. [82] to find the optimal flywheel topology. Other rotor design studies have used

the MMA method [80, 95, 96], Optimality criterion [107], and the globally convergent

MMA (GC-MMA) [97] for topology optimization. These methods require information

about the gradients of the objectives and constraints, which can be computationally

expensive for topology optimization problems, with a typical range of 10,000 to mil-

lions of design variables. Predominantly, adjoint approaches have been used for the

calculation of the optimization response sensitivities in topology optimization litera-

ture [86, 88, 91].

Discussion

Out of the few studies which were aimed at improving the energy capacity of FESS

rotors using topology optimization, only one was successful in obtaining manufac-

turable energy maximized rotor designs. The other studies either used compliance

minimization formulations because these are readily available in commercial tools, or

were unable to converge to physically feasible designs due to the lack of stress con-

straints in their formulation, and further, all the studies assumed a fixed, relatively

low operating speed. Moreover, the results reported so far utilized a fixed volume

fraction constraint to remove material from the initial domain, whereas in reality, the

volume fraction that achieves the best energy capacity is not known, and should be

determined during the optimization process. A robust topology framework is needed

in order to investigate different topology optimization formulations to improve the

energy storage performance of FESS. While kinetic energy and compliance have been
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used as objectives, the use of specific energy or energy-per-cost-ratios, as discussed

in references [17, 27] is hypothesized to be a more adequate objective as doing so will

drive the optimization algorithm to determine the most desirable volume fraction.

This approach has, however, not been evaluated thus far in topology optimization

based design of energy storage flywheels.

Although stress constraints have been used in rotor topology studies, they were

mostly global stress constraints, which suffer from problems such as localized stress

concentrations, which can cause the optimization problem to get stuck in a local

minima or suboptimal design. The use of local stress constraints with an Augmented

Lagrangian framework can help achieve better stress distributions while driving the

flywheel design towards a higher energy capacity.

Further, most existing flywheel topology optimization literature optimizes the 2D

topology of the rotor, as seen from the top, i.e, in the r-θ plane. To fully use the

capabilities of topology optimization algorithms, they need to be implemented on the

3D geometry to allow flexibility in the topology in all three dimensions. The addi-

tional computational expense can be reduced by the use of innovative optimization

strategies to reduce stress constraint and sensitivity information computations. These

modifications are not easily implemented while using commercial software, and the

implementation of an in-house numerical model and topology optimization algorithm

for this purpose is justified. The implementation of a specific-energy based, stress-

constrained 3D topology optimization framework is therefore an integral part of this

thesis. The optimal 3D rotor designs can be compared to, or combined with shape

optimized rotor designs, to further improve the specific energy by removing additional

unnecessary material from the interior regions of the rotor.

Grid-scale FESS are typically used in short duration energy storage applications

mainly related to grid reliability. At times, the system could be required to quickly

store or discharge energy by accelerating or decelerating the flywheel. Tsai and

Cheng [81] studied the effect of combined centrifugal and acceleration loads on the
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optimal rotor topology at various speeds for a compliance minimized formulation,

where the acceleration loads were incorporated by applying equally eight tangential

point loads distributed along the outer rim of the rotor. However, they did not study

the relation between ramp times and acceleration loads, and the corresponding effect

on the shear and von Mises stresses in the flywheel topology. This thesis will therefore

also discuss acceleration loads.

1.4 Objectives

Some gaps were identified in the literature on optimal FES rotor design, which will

be investigated in this thesis in order to assess and potentially improve the design

methodology of flywheel rotors. While there has been abundant literature on opti-

mizing composite rotors for flywheels, and some on optimal metal rotors, there was

no unified study that performed a quantitative comparison between composites and

metals that could help the designer choose the rotor material for a specific storage

application. It was essential to understand this before trying to design optimal rotors

for grid-scale FES systems. Hence, such a study was performed as a preliminary

objective of this thesis, which formed the basis for the subsequent research goals out-

line below. Based on this preliminary study, it was found that metal rotors, with

a higher energy-per-cost than composite rotors, were better suited to grid-storage

applications. Thus, the following goals aim to further optimize metal rotors based on

literature findings.

Studies have optimized the geometry of the rotor by using either shape or topology

optimization methods. Shape optimization studies have reported the effects of design

parameters, such as operating speed, on the optimal rotor shape and indicated that

the problem of determining the optimal rotor shape, size and speed is a fully couple

one. However, the simultaneous influence of multiple design parameters

including the rotor shape on the energy capacity has not been investigated.

So far, the optimal rotor design has aimed at maximizing the performance, usually

41



quantified by the storage capacity of the rotor. This design approach does not

take into account the standby losses occurring in the system, which are

also influenced by design parameters such as operating speed. In order

to perform the above studies, 2D axisymmetric numerical models of the rotor with

rotational and gravity loads will be developed using an open-source software. The

model will be integrated with a parameterized mesh generator for shape optimization.

An empirical model of the standby losses in the FES system, based on experimental

findings, will be used to study the influence of standby losses on the optimal operating

speed, rotor shape.

Topology optimization techniques utilized to define the optimal 2D flywheel topol-

ogy have either used compliance formulations that are readily available in commercial

tools but do not address the key objective of rotor design, i.e., maximizing the energy

capacity, or have used artificial volume fraction constraints to remove material from

the domain. The removal of the dependence of the topology optimization

formulation on a volume fraction constraint has not been explored previ-

ously. The use of local stress constraints instead of global constraints can yield better

topology optimized designs through greater control over the stress distribution in the

entire rotor. However, imposing local stress constraints can result in an optimiza-

tion problem with as many constraints as mesh elements, and needs to be handled

using approaches such as the Augmented Lagrangian formulation. A local stress

constrained problem with an Augmented Lagrangian formulation and its

comparison to global stress constrained formulations has not been previ-

ously performed for rotor topology design. Further, the use of a 3D numerical

model to find the optimal rotor topology could greatly improve and change the op-

timal topology by exploring a larger design space. Topology optimization with a 3D

rotor model is computationally expensive, and therefore requires novel optimization

strategies to reduce the computational effort. In order to perform the above stud-

ies, a numerical optimization framework will be developed to conduct the proposed
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topology optimization studies.

In summary, the overall objective of this thesis is to develop numerical optimiza-

tion techniques to maximize the energy storage of FES systems for short-duration

grid-scale energy storage, while minimizing their cost by improving on FESS design

parameters such as the rotor materials and geometry. Based on the identified gaps in

literature the specific goals of this thesis are:

� To determine the optimal FES system and rotor materials based on different

performance indices such as maximizing the kinetic energy, specific energy or

energy-per-cost, that reflect the type of storage application.

� To improve the performance of low-cost metal flywheels by simultaneously op-

timizing the rotor shape and multiple operating conditions, such as operating

speed, rotor size and rotor materials, and studying the influence of the optimal

design on standby losses in the system

� To improve the performance of low-cost metal flywheels by optimizing the rotor

topology through the use of a optimization formulation that removes depen-

dence on the artificial volume fraction constraint, and to study the effect of

acceleration loads on the optimal design

� The use of topology optimization with local stress constraints using an Aug-

mented Lagrangian formulation for greater control over the stress distribution

and 3D simulations for exploring a larger design space.

1.5 Thesis Outline

This thesis is divided into six chapters. This chapter provides a motivation and a

literature review which form the basis for the objectives of the work. The literature

review discusses the state-of-the-art for optimization approaches used for optimal

energy storage flywheel design. Since the flywheel models, optimization framework
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and solvers used for each of the objectives are different, the methodology for each

objective is discussed in the corresponding chapters. Chapter 2 uses a 1D plane-stress

axisymmetric quasi-static rotor model and an optimization framework to compare

various isotropic metal rotors and orthotropic composite rotors. The performance of

different rotor materials is compared using different optimization objectives, such as

maximizing the kinetic energy, specific energy or energy-per-cost. Chapter 3 describes

a 2D axisymmetric finite element model of the flywheel, which is integrated with a

shape optimization framework to design optimally shaped low-speed metal flywheels.

Chapter 4 uses a 2D plane-stress finite element model of the flywheel integrated

with a topology optimization framework to determine the optimal topology of metal

flywheels. Chapter 5 uses an Augmented Lagrangian framework with local stress

constraints to determine the optimal topology of the rotor. Chapter 6 presents a

modified robust formulation for performing 3D flywheel topology optimization and

compares the approach with previously explored shape optimized rotor designs. The

conclusions and contributions of this thesis are summarized in chapter 7.
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Chapter 2

Optimal selection of rotor
materials by FESS application�

Preface

Most recent research on flywheel rotors has focused on high-speed composite rotors as

the storage element of the flywheel energy storage system (FESS). Literature research

indicates that this is primarily due to the high specific energy of composites compared

to metals. However, a quantitative comparison of the performance of flywheels made

from these materials has not been conducted. This study described in this chap-

ter aims to answer the question - ’Are composite flywheels better suited for energy

storage than metal flywheels?’. This study uses three different performance indices:

kinetic energy; specific energy; and, energy per cost, to compare the corresponding

rotor designs. A plain-stress, linear elastic mathematical model of the flywheel rotor

described by Krack et al. [17] is used for analysis. Different optimization formulations

corresponding to performance indices chosen based on the FESS application are then

solved to study optimal FESS designs.

The first hypothesis is that the specific energy is not the only performance index

which is important while selecting the rotor material, and that there might be other

factors influencing the choice of materials during the design process. In utility or grid

�Parts of this chapter have been published in: V. Kale and M. Secanell. Energy Reports 4
(2018): 576-585.
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applications, the total energy and cost might be the most important performance

indices; whereas, in mobile applications, the weight or space occupied by the FESS

might be a major constraint, and thus the specific energy or energy density might be

the most important performance indices. There is, therefore, a need to compare opti-

mal flywheel designs based on different criteria, depending on the application. Krack

et al. [27], [60] optimized the energy per cost of fixed volume multi-rim composite

annular disk-type flywheels, by varying the operating speed and relative thickness of

the composite rims, using normalized costs of rotor materials. This approach can

be extended to the current work to select the best rotor materials for the optimal

flywheel for the application.

The second hypothesis is that the use of a simple geometric shape factor to estimate

the specific energy of a material might not accurately predict the specific energy

of a rotor made of that material, especially when anisotropic materials are used.

Thus, a mathematical model of the rotor is needed, which will account for material

anisotropy and failure modes. When this model is used to optimize the flywheel, a

more realistic value of the specific energy of the rotor can be obtained, which can then

be used to choose the appropriate rotor material. An additional advantage of using an

optimization formulation to determine the performance of the rotor materials is that,

practical constraints other than material failure can also be checked. For example,

constraints on the radial tensile stresses at the interface of multi-rim press-fitted

composite rotors ensure that the composite rims do not detach due to differences in

the radial expansion of the various rims.

The optimal flywheel rotor obtained using several different rotor materials is used

to compare and select rotor materials. The 1-D plane-stress axisymmetric flywheel

model, proposed by Krack et al. [17], is used for the analysis. Several optimization

formulations consisting of various configurations of metal and composite rotors are

studied. For multiple-rim flywheels, additional interference constraints are applied, to

ensure that there is no physical detachment of the rims. Comparing the optimal rotors
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ensures that the theoretical limits of the rotor material are reached, while also ensuring

a feasible rotor design, without other failures such as detachment of press-fitted rims

from the hub. Optimization objectives, such as total kinetic energy, energy per cost

and specific energy are used to compare the rotors and materials. A mesh adaptive

direct search (MADS) algorithm is used to solve the optimization problem, instead

of the hybrid and multi-start methods employed in [17]. The MADS algorithm is

a local, gradient-free method, hence it converges faster than global methods, while

being more reliable than gradient-based methods.

In Section 2.1.1, the analytical model of the flywheel is described. This model

calculates the kinetic energy, stresses and deformations in the flywheel rotor at a

given speed. Section 2.1.2 presents the optimization formulations, with constraints

imposed on the flywheel rotor model developed in the previous section. Objectives

such as kinetic energy, specific energy and energy per cost are optimized by varying

the operating speed, number of rims, rim materials and relative thickness of the rims.

Constraints on the material failure and rim detachment ensure that there is no failure

in the flywheel. Finally, in Sections 2.3 and 2.4, the results and conclusions drawn

from the studies conducted here are summarized.

2.1 Methodology

2.1.1 Flywheel structural model

The flywheel mathematical model proposed by Krack et al. [17] is used in this study.

A brief overview of the model is provided below. The stored energy of the flywheel

is given by

E =
1

2
Iω2 =

1

2
ρπhω2

n∑︂
j=1

[(rjo)
4 − (rji )

4] (2.1)

where ω is the rotational speed, ρ is the density, h is the constant rotor height, n is

the number of rotor rims and rjo, r
j
i are the outer and inner radii of the jth rim. A

linear elastic model is used to determine the developed stresses in the rotor, based on
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the assumptions of plane stress, and axisymmetric rotation. Cylindrical coordinates

are used for convenience.

2.1.1.1 Governing equations

The flywheel stresses can be found by solving Euler’s equation of balance of linear

momentum for a body,

∇ · σ + ρb = ρa (2.2)

where σ is the Cauchy stress tensor , b is the vector of body forces and a is the linear

acceleration. The strain-displacement relation for small deformations is used, along

with a linear stress-strain relation, given by Hooke’s law.

ϵ =
1

2
[∇u+ (∇u)T ] (2.3)

σ = Qϵ (2.4)

where ϵ is the strain tensor, u is the displacement vector and Q is the stiffness

tensor. The above relations are expressed in the cylindrical coordinate system, and

the assumptions of plane stress and axisymmetry are used to obtain the second order

equation:

∂2ur

∂r2
+

1

r

∂ur

∂r
− Q11

Q33

ur

r2
= −ρω2

Q33

r (2.5)

Here, ur is the radial displacement, Q11, Q33 are stiffness matrix components, ω is the

operating speed and ρ is the density of the material. The derivation and solution of

this equation can be found in [17].

2.1.1.2 Boundary conditions

The radial stresses at the interface of the hub and the rotor, or between rims for multi-

rim rotors, are continuous. Thus, the following compatibility condition is applied on

the radial stresses at the interfaces:

σj+1
ri

= σj
ro (2.6)
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where j = 1,2,...,(n - 1)

The radial displacements are continuous, but with an interference δj, which results

from the press-fitting of the rims during assembly. This results in the displacement

related compatibility condition:

uj+1
ri

= uj
ro + δj (2.7)

where j = 1,2,...,(n - 1)

The stresses at the rotor outer surface are assumed to be 0, and the stresses due to

the hub, at the inner surface of the rotor, can be expressed using the model from

[27]. Thus, the boundary conditions which are applied on the stresses are:

σ1
ri
= pi =

ρhubω
2(r3i − r3hub)

3ri
(2.8)

σNrim
ro = 0 (2.9)

2.1.1.3 Implementation

The above model is implemented and solved in Python. The numpy.linalg.solve solver,

which utilizes the LAPACK routine ’dgesv’, is used. The average simulation time for

the analysis model is < 10 ms, on a 64-bit 4-core, 3.3 GHz processor.

2.1.2 Optimization problem

2.1.2.1 Formulation

From the discussion in Section 1.3.2.1 it is clear that there is a need to formulate

the optimization problem in a way that allows a meaningful comparison of the rotor

materials. This means that the optimization formulation needs to have enough flex-

ibility to find the true optimal rotor that can be made using any type of material.

For example, the optimal composite rotor might have multiple thin rings press fit-

ted together to form a high speed composite rotor, whereas the optimal metal rotor

might be a single thick disk rotating at much lower speeds. Also, the performance
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index used to compare the optimal rotor materials might be different depending on

the application.

In order to compare the energy content of flywheel rotors made of different materials,

a rotor of the type shown in Figure 2.1 is used, where the rotor height is assumed to

be constant, since a thick rotor would violate the plane-stress assumption and neces-

sitate the use of FEA simulations. The optimization problem can thus be formulated

as:

max: f(x)

where the objective f(x) may be one of the following:

1
2
Iω2, kinetic energy (KE)

KE
Cost

, energy per cost

KE
Mass

, specific energy

w.r.t: x = {ω, n, {r1out,r2out,..,rn−1
out },{material1,material2,..,materialn} }

subject to: σi

σult
i

< 1, material failure constraint

and σj+1
rin

= σj
rout ≤ 0, rim detachment failure constraint

where,

j = 1,2,...,(n - 1) ; i = (r, θ, z)

ω : rotor speed, rpm

n : number of rims

rjout : outer radius of rim j, m

materialj : material used in rim j

σi : stress in direction i (i = r, θ, z)

σult
i : ultimate strength in direction i (i = r, θ, z)

σj
rin

, σj
rout : radial stress at inner and outer radii of rim j.
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For the material failure constraint, the yield strengths of the metals are used to

compute the strength ratio for the material failure constraint, to avoid plastic defor-

mation. For composite materials, the ultimate strengths of the composite laminates

are used for their strength ratios. The maximum stress failure theory (MSFT) is used

to indicate failure.

There is a constraint on the maximum radial tensile stress between the press-fitted

rims of a multi-rim composite rotor. The rim detachment constraint used in this

study is a novel one, which can allow the optimization routine to yield better results

that in the past. Previous research conducting optimization of press-fitted multi-rim

flywheels used a constraint which restricted the radial stresses in the flywheel to com-

pressive (negative) values at all points along the radius [27]. The new rim-detachment

constraint only restricts the radial stresses to compressive values at the interface be-

tween rims, where the load cannot be transferred in the radial direction. Thus, other

regions in the flywheel may be subjected to radial tensile stresses within the material

elastic limits, which further increases the energy capacity of the optimal FESS. The

number of rims in multi-rim composite rotors has been limited to two in this study,

since it has been demonstrated by previous researchers [108], that a further increase

in the number of rims results in a limited improvement in the performance of the

flywheel.

2.1.2.2 Implementation

The optimization problem is solved using DAKOTA toolbox [109], which allows the

use of its optimization algorithms as a black box, using a script interface. A schematic

of the interface between DAKOTA, and the analysis code, implemented in Python is

shown in Figure 2.2. A MADS algorithm is used to solve this non-linear constrained

optimization problem, as it is a local, gradient free method, and is more reliable

than local gradient-based methods, while being faster than global methods such as
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Figure 2.1: Block diagram of flywheel rotor

genetic algorithms. It has minimal dependence on the initial guess of the design

variables. Also, this method can reliably solve non-convex problems, which can prove

challenging for gradient-based methods because of their tendency to get stuck in local

optima when the optimization problem is non-convex.

2.2 Model and framework validation

The flywheel mathematical model used in this study was validated against the results

published by Krack et al. [17]. A 2-rim composite rotor consisting of an inner glass-

epoxy rim and an outer carbon-epoxy rim was simulated. The composite material

properties and flywheel dimensions from [17] were used. The radial and hoop stresses

developed in the flywheel rotating at 30,000 rpm were then plotted, and compared

with the stresses developed in a single rim rotor made from either of the 2 composite

materials. It was found that the radial stresses developed in the rotor were reduced by

introducing an extra rim. The stress distributions in the 1-rim and 2-rim composite

flywheel rotors, obtained from the Python model described in Section 2.1.1 are shown

in Figure 2.3. The results were in agreement with the previous publication.
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Figure 2.2: Schematic of the Python-DAKOTA interface

In order to validate the optimization framework, the design problem in [17] was also

solved. The energy per unit cost of materials, for the 2-rim glass-epoxy and carbon-

epoxy composite flywheel, was maximized by varying the operating speed and the

relative thickness of the 2 composite rims. The optimal solution was obtained for 4

different cost ratios of the materials used in the rims. Table 2.1 shows a comparison of

the optimal solution with the proposed framework and the solution obtained in [17].

The simulated results were within ±0.3% of the literature results, which could be due

to the use of different optimization algorithms.

The proposed optimization formulation discussed in Section 2.1.2, introduced an

additional constraint on the radial stress developed at the interface of press-fit rims

in multi-rim rotors. This constraint was necessary to ensure that there are no radial

tensile stresses at the rim interfaces, which could result in failure due to detachment

of the rims. The necessity and significance of this new constraint was investigated.

This constraint was not used in [17] because the radial stress at the rim interface

became more compressive at higher speeds, and there was no need of checking for

the rim detachment constraint. This is because the ratio of the specific stiffnesses of
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(a) (b)

Figure 2.3: Comparison of simulated and literature results [17] for a) Radial and b)
Hoop stress distributions in 2-rim and 1-rim composite flywheels

the composite materials used in the study were very similar. Figure 2.4(a) shows the

feasible range of designs for the glass-epoxy and carbon-epoxy rotor used in [17]. It

can be seen that the material failure constraint is the binding constraint, and the rim

detachment constraint is non-binding. However, when there is a large difference in

the specific stiffness of the 2 rims, the rim detachment constraint also tends to become

a binding constraint. Figure 2.4(b) shows the feasible range of designs using a kevlar-

epoxy and carbon-epoxy rotor, with a press-fit interference of 0.4 mm between the

rims. It is clear that there is a need to check for both constraints in the latter case.

The focus of this study is to select the best flywheel materials for various performance

criteria. Hence, the addition of the rim detachment constraint is important, in order

to evaluate all the materials and their combinations. The optimal designs for the two

flywheels evaluated in this study are also depicted in Table 2.2.

2.3 Results and discussion

The optimization problems formulated in Section 2.1.2 were solved using a set of 18

high strength composites and metals whose material properties are in Appendix B

under Tables B.1 and B.2 respectively. The 3D material properties of the composite
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Table 2.1: Optimal glass/epoxy and carbon/epoxy composite rotors for varying cost
ratios.

Optimization framework dcarbon

dglass
Eopt, MJ ω, rpm r1out, mm

Literature Data [17] [11.3684 - ∞) 2.205 18,661 240.0

[2.3271 - 11.3684) 11.387 45,363 187.18

[0.1712 - 2.3271) 12.459 48,219 166.51

[0.0 - 0.1712) 4.672 30,137 120.0

Simulation 20 2.212 18,692 239.99

5 11.396 45,381 187.18

1 12.487 48,278 166.39

0.1 4.670 30,134 120.01

Table 2.2: Optimal composite rotors with different binding constraints

Flywheel δ1, mm Eopt, MJ ω, rpm r1out, mm Binding Constraint

Glass-Epoxy, Carbon-Epoxy 0 12.486 48,278 166.39 Material failure

Kevlar49-Epoxy, Carbon-Epoxy 0.4 6.39 35,477 149.04 Material failure, Interface Stress
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(a) (b)

Figure 2.4: Rim detachment failure as a a) non-binding constraint, and b) binding
constraint.

laminates were computed using the properties of some typical laminae in Autodesk

Helius Composite software [110]. The costs of the metals were based on current

wholesale market prices. The costs of the composites were calculated using the volume

fraction of the composite, along with market prices of the composite fiber rovings,

and prices of the matrix materials such as resin and hardener. The cost of a rotor can

depend on factors such as manufacturing process and complexity of design. However,

this study only used the cost of the material, and did not account for manufacturing

and other costs. To alleviate the impact of the uncertainty in costs on the results, all

material costs were normalized before use in the optimization problem.

The performance criterion, or the objective function was maximized by varying

a combination of the following design variables: rpm ω, and relative rim thickness,

which depend on r1out. The choice of optimization objective, which was used as a

performance index to compare the rotor materials, was seen to affect the optimal

flywheel design. A parametric study was then conducted by varying the number of

press-fit rims n and the materials used in the rims materialj. The number of press-fit

rims, n, was limited to a maximum of 2, and a fixed rotor height of 50 mm, inner

radius of 110 mm and outer radius of 200 mm were used for the study. For multi-rim

rotors, the press-fit interference was fixed at 0.4 mm.
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The optimization convergence criterion was defined by the DAKOTA parameters

’function precision’ and ’maximum number of black-box evaluations’. The ’function

precision’ parameter, which defines the resolution or accuracy of the objectives and

constraints was set to 1.e−10, and the ’maximum number of black-box evaluations’

parameter was set to 1000. The DAKOTA parameter ’variable neighborhood search’

was used to escape local optima.

2.3.1 Optimal flywheels using maximum kinetic energy cri-
terion

The kinetic energy of the flywheel was maximized and the performance of the various

rotor designs is presented in Table 2.3. The stress distributions in the optimal 1-rim

metal, 1-rim composite, 2-rim composite and 2-rim hybrid flywheels are shown in

Figure 2.5. The material failure constraint is a binding constraint in all the optimal

designs. However, in some 2-rim rotor designs, the rim-detachment constraint also

becomes a binding constraint. Some optimal 2 rim composite rotors where the rim-

detachment is a binding constraint are Kevlar49-Epoxy/AS4-3501-6, AS4-8552/IM7-

8551-7 and T300-BSL914C/T300-PR319.

The following observations can be made from the study:

1. The average kinetic energy of optimal 1-rim flywheels made from composite

was around 1.5 times that of metal 1-rim flywheels. The kinetic energy was

maximized by allowing the operating speed and inner radius of the rotor to

vary. It was found that metal flywheels were around 3.7 times heavier than

composites. However, composite flywheels were 4 times costlier and operated

at 2.3 times the speed of metal flywheels

2. The kinetic energy of composite flywheels could be increased by using 2 press-

fit composite rims instead of 1. The rims were chosen in increasing order of

stiffness along the radius. This method allowed the kinetic energy to increase

by upto 150%, accompanied by an increase in the operating speed. A similar
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(a) (b)

(c) (d)

Figure 2.5: Maximum kinetic energy criterion : Radial (top) and hoop (bottom) stress
distributions for optimal a) 1-rim metal, b) 1-rim composite, c) 2-rim composite, d)
2-rim hybrid rotors

study was conducted by Ha et al. [37], where Graphite/Epoxy rotors with 1 to

5 rims were optimized by varying the thickness and interference of the press-fit

rims. It was found that increasing the number of rims from 1 to 2 could increase

the specific energy of the rotor by 145%.

3. The use of 2 press-fit metal rims resulted in a trivial 1-rim solution.

4. The use of more than 2 composite-rim rotors could further improve the kinetic

energy, but the increase was not large enough to justify the use of multiple rims,

which would need a more complex manufacturing process.

5. All the above designs used a constant height rotor, corresponding to a shape
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Table 2.3: Comparison of optimal flywheel designs based on kinetic energy criterion

Flywheel Material Kinetic energy, kJ Speed, rpm Rim radii, mm Mass, kg Relative Cost

Metal, 1-rim Al-6061-T6 418.86 15,713 (110 - 200) 11.87 27.31

Metal, 1-rim Al-2024 637.04 19,167 (110 - 200) 12.13 46.61

Metal, 1-rim Carbon-Steel-1020 685.47 11,818 (110 - 200) 34.35 60.47

Metal, 1-rim Al-7075-T6 709.56 20,156 (110 - 200) 12.22 37.53

Metal, 1-rim Steel-4340 749.61 12,351 (110 - 200) 34.40 34.40

Metal, 1-rim Stainless-Steel-15-7 1180.80 15,682 (110 - 200) 33.61 90.42

Metal, 1-rim Steel-18Ni-300 1203.03 15,460 (110 - 200) 35.23 53.91

Metal, 1-rim Stainless-Steel-440C 1947.44 20,100 (110 - 200) 33.74 42.51

Metal, 1-rim Stainless-Steel-455 2369.82 22,087 (110 - 200) 34.00 78.21

Composite, 1-rim T300-BSL914C 786.48 28,388 (110 - 200) 6.83 216.65

Composite, 1-rim Kevlar49-Epoxy 885.49 31,970 (110 - 200) 6.06 164.37

Composite, 1-rim E-Glass-Epoxy 1060.36 28,565 (110 - 200) 9.09 170.31

Composite, 1-rim S2-Glass-Epoxy 1355.19 32,958 (110 - 200) 8.73 269.97

Composite, 1-rim AS4-3501-6 1360.29 36,957 (110 - 200) 6.97 185.68

Composite, 1-rim T300-PR319 1403.14 37,877 (110 - 200) 6.84 217.12

Composite, 1-rim AS4-8552 2404.63 49,343 (110 - 200) 6.91 184.54

Composite, 1-rim IM7-8551-7 2452.16 49,883 (110 - 200) 6.89 246.78

Composite, 1-rim IM7-8552 3150.50 56,292 (110 - 200) 6.96 248.98

Composite, 2-rim EGlass-Epoxy, IM7-8551-7 3154.54 56,263 (110 - 119.32 - 200) 7.06 240.92

Composite, 2-rim EGlass-Epoxy, AS4-8552 3224.14 56,740 (110 - 120.48 - 200) 7.10 183.31

Composite, 2-rim Kevlar49-Epoxy, T300-BSL914C 2213.79 48,459 (110 - 155.64 - 200) 6.49 193.93

Composite, 2-rim Kevlar49-Epoxy, AS4-3501-6 2532.95 51,162 (110 - 146.72 - 200) 6.66 178.48

Composite, 2-rim Kevlar49-Epoxy, IM7-8551-7 3716.71 61,814 (110 - 134.25 - 200) 6.72 229.28

Composite, 2-rim S2-Glass-Epoxy, AS4-3501-6 2798.60 52,233 (110 - 133.60 - 200) 7.33 203.05

Composite, 2-rim S2-Glass-Epoxy, IM7-8552 4072.10 63,650 (110 - 120.22 - 200) 7.11 250.75

Composite, 2-rim AS4-8552, IM7-8551-7 3302.65 57,882 (110 - 137.42 - 200) 6.90 231.64

Composite, 2-rim T300-BSL914C, T300-PR319 1738.68 42,169 (110 - 134.62 - 200) 6.84 217.01

Hybrid, 2-rim Al-6061-T6, Kevlar49-Epoxy 441.64 17,006 (110 - 190 - 200) 11.06 46.47

Hybrid, 2-rim Al-2024, IM7-8552 719.87 21,325 (110 - 190 - 200) 11.41 74.90

Hybrid, 2-rim Steel-4340, IM7-8552 760.70 13,598 (110 - 190 - 200) 30.56 64.39

Hybrid, 2-rim Stainless-Steel-15-7, T300-PR319 1153.48 16,937 (110 - 190 - 200) 29.87 108.13

Hybrid, 2-rim Stainless-Steel-440C, Kevlar49-Epoxy 1804.94 21,208 (110 - 190 - 200) 29.87 59.55

Hybrid, 2-rim Stainless-Steel-455, Kevlar49-Epoxy 2188.32 23,265 (110 - 190 - 200) 30.10 90.26

Hybrid, 2-rim Stainless-Steel-455, IM7-8552 2274.63 23,644 (110 - 190 - 200) 30.22 102.08

factor of 0.5. Practically, metal flywheels can be fabricated with better shape

factors, and thus, can store more kinetic energy than projected in these simu-

lation results. Thus the use of rotor shape and topology as a design variable

needs to be explored.

6. Burst failure is one of the main causes of concern while using metal flywheels,

which fail in few, large fragments, whereas; composites fail either by delami-

nation or due to the fibers breaking into small fragments [21]. Thus, the con-
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tainment structure for composite flywheels must be designed to avoid fragment

penetration, whereas, that of metal flywheels must restrict the forces or mo-

ments of the flywheel fragments from being transferred outside. To address

the concern of burst safety, a hybrid metal-composite press-fit rotor was also

optimized in this study. The outer composite rim had a fixed thickness of 10

mm, and was primarily for safety. The flywheel was then optimized, by allowing

the rpm of the rotor to vary. It was found that the kinetic energy was nearly

the same as that of 1-rim metal flywheels, with a marginal increase in the cost

and operating speeds. These hybrid flywheels also provide an opportunity to

optimize the shape of the inner metallic rim, which could further increase the

kinetic energy and reduce the mass and the cost of the rotor.

2.3.2 Optimal flywheels using maximum specific energy cri-
terion

The specific energy of the flywheel was maximized, and a comparison of the perfor-

mance of various rotor designs is presented in Figures 2.6 and 2.7. The material failure

constraint is a binding constraint in all the optimal designs. However, in some 2-rim

rotor designs, the rim-detachment constraint also becomes a binding constraint. Some

optimal 2 rim composite rotors where the rim-detachment is a binding constraint

are Kevlar49-Epoxy/AS4-3501-6, AS4-8552/IM7-8551-7 and T300-BSL914C/T300-

PR319.

The following observations can be made from the study:

1. The average specific energy of optimal 1-rim composite flywheels was 5-6 times

that of optimal 1-rim metal flywheels.

2. The specific energy of rotors made from isotropic metals was in the range 6-19

Wh/kg, and that of composite rotors was in the range 32-126 Wh/kg. The spe-

cific energy of composite flywheels was significantly lower than the theoretical

maximum specific energy of the materials previously reported in literature. For
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(a) (b)

Figure 2.6: Comparison of Kinetic Energy and Specific Energy of a) Metal,
b)Composite rotor materials

Figure 2.7: Comparison of kinetic energy and specific energy of optimal 2-rim and
1-rim rotors

example, Genta [21] reported the specific strengths of Aluminium Alloy 2024

and unidirectional Kevlar composite as 46 and 240 Wh/kg respectively. Assum-

ing a shape factor of 0.303 corresponding to an annular constant thickness disc,

the flywheels made from these materials would have theoretical specific energies

of 13.938 and 72.72 Wh/kg respectively. The corresponding optimal flywheels

using these materials resulted in specific energies of 14.58 and 37.26 Wh/kg.

This justified the need for an optimization formulation and a rotor model that

captures the physical and material failure constraints on the rotor.
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3. The specific energy of composite rotors could be improved by upto 150 % over

1-rim rotors, by using multiple press-fit rims.

2.3.3 Optimal flywheels using maximum energy per cost cri-
terion

The energy-per-cost of the flywheel was maximized and a comparison of the perfor-

mance of various rotor designs is presented in Figures 2.8 and 2.9. The material failure

constraint is a binding constraint in all the optimal designs. However, in some 2-rim

rotor designs, the rim-detachment constraint also becomes a binding constraint. Some

optimal 2 rim composite rotors where the rim-detachment is a binding constraint

are Kevlar49-Epoxy/AS4-3501-6, AS4-8552/IM7-8551-7 and T300-BSL914C/T300-

PR319.

(a) (b)

Figure 2.8: Comparison of Kinetic Energy and Specific Energy of a) Metal,
b)Composite rotor materials

The following observations can be made from this study:

1. The average energy-per-cost of optimal 1-rim metal flywheels was 2.7 times that

of optimal 1-rim composite flywheels.

2. The use of 2 press-fit composite rims increased the energy-per-cost of the com-

posite rotor, but not enough to be competitive with high strength 1-rim metal

rotors of the same dimensions.
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Figure 2.9: Comparison of kinetic energy and energy per cost of optimal 2-rim and
1-rim rotors

2.4 Summary

This study optimized 1-rim and 2-rim flywheel rotors made of various metal and

composite materials to determine the optimal rotor material. It was found that

the choice of optimal material depended on the performance criterion being used.

Composite rotors performed better in terms of specific energy, whereas metal rotors

had a better energy per cost. The total kinetic energy of both composite and metal

rotors of a constant thickness were comparable. It was also shown that the specific

energy of the composite rotors was significantly lower than the theoretical specific

energy of the rotor materials, which only used uniaxial material failure considerations.

Thus, the significance of multiaxial material failure and other physical constraints

was established. The optimization model allowed us to apply constraints on the

radial displacement, as well as direction-dependent failure modes, which limited the

practically achievable specific energy of orthotropic materials such as composites used

to construct flywheel rotors.

The means of improving the performance of the flywheels were studied, and it was

shown that press-fitted multi-rim composite rotors with specific material sequences

could outperform single rim composite and metal flywheels, in terms of total en-

ergy or specific energy. However, when energy-per-cost was used as the performance
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criterion, 2-rim rotors offered no significant advantage over 1-rim rotors. Further im-

provements in the performance of metal flywheels can be achieved by optimizing the

stress distributions, using variations in the shape or topology of the rotor; however,

this analysis would need a 2D or 3D numerical rotor model.
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Chapter 3

Shape optimization of grid scale
FESS�

Preface

This chapter first analyzes two commercially manufactured FESS rotors with distinct

energy storage characteristics, which are then used as initial designs to perform fly-

wheel shape optimization studies. A shape optimization framework, along with a 2D

axisymmetric linear elastic numerical model of the flywheel is used to analyze the

performance of several rotor designs. Results show that when rotor shape, size and

speed are designed simultaneously, substantial gains in energy storage with the same

amount of material can be achieved, i.e., 21 to 46%. Further, a low speed design

is achieved, thereby limiting standby losses. While a few rotor shape optimization

studies used local optimization methods [35, 67], most other needed to use global

methods due to the complex nature of the optimization domain [70, 71]. A two-step

sequential hybrid optimization strategy, which combines a genetic algorithm with a

local search method, is used in this study, because it is a robust method that is seen

to converge reliably in over 100 different shape optimization problems solved as part

of the parametric studies conducted in this chapter. The use of the sequential hy-

brid strategy for rotor shape optimization is new, and is seen to offer the benefits of

�Parts of this chapter have been published in: Vaishnavi Kale, Mia Thomas, and Marc Secanell.
Structural and Multidisciplinary Optimization 64.3 (2021): 1481-1499.
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being more robust than a purely local method, and to allow for faster convergence

to the optimum as compared to a purely global method [111], therefore resulting in

an improved, open source, optimal FESS rotor design tool to be used in a variety of

applications. A post-optimality analysis is also performed to determine the effect of

gravity and the sensitivity of the optimal designs to manufacturing tolerances, speed

variations and mesh refinement levels.

3.1 Methodology

3.1.1 Flywheel numerical model

A steady-state balance of linear momentum equation (3.1) was used to predict the

stress-state of the rotor, which was assumed to rotate at a fixed operating speed,

∇ · σ + f = 0 , (3.1)

where σ is the second-order stress tensor and f is the vector of body forces. Hooke’s

law (3.2) was used to capture the stress-strain relationship,

σ = C ε , (3.2)

where C and ε are the fourth-order stiffness tensor and the second-order strain tensor

respectively. A constitutive law for linear isotropic materials (3.3) was used to de-

termine the components of the stiffness tensor, since low-speed isotropic metal rotors

are being used in this study, i.e.,

C = λI ⊗ I + 2µI , (3.3)

where λ and µ are Lamé’s first and second parameter respectively, and can be obtained

from the material properties using (3.4),

λ =
Eν

(1 + ν)(1− 2ν)
,

µ =
E

2(1− ν)
,

(3.4)
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where E, ν are the Young’s modulus and Poisson’s ratio, respectively. The strain-

displacement relation, assuming small deformations, can be expressed as (3.5),

ε =
1

2

(︂
∇u+ (∇u)T

)︂
(3.5)

where u is the vector of displacements.

The weak form used to solve the numerical rotor model can be obtained by multiply-

ing Equation (3.1) by a displacement test function, v, integrating over the domain Ω,

and using Green’s formula to simplify the weak form. The weak form of the governing

equation was thus reduced to∫︂
Ω

(∇v) : σ dΩ =

∫︂
Ω

v · f dΩ +

∫︂
Γ

v · (σ n) dΓ (3.6)

Interpreting the test function v as a virtual displacement vector, the virtual strain

form of the test function is defined as ε = 1
2

(︁
∇v +∇vT

)︁
. Then, the weak form of

the 3D linear elastic rotor model described in Equation (3.6) can be written as∫︂
Ω

ε : σ dΩ =

∫︂
Ω

v · f dΩ +

∫︂
Γ

v · (σ n) dΓ (3.7)

The domain Ω was treated as axisymmetric about the axis of rotation of the fly-

wheel, aligned with the z-axis. Thus, the domain was reduced from 3D to 2D (only

the r-z plane). Under axisymmetric loading conditions, the weak form described in

Equation (3.7) can be re-written as∫︂
r

∫︂
z

εTσ(2πr) dr dz =

∫︂
r

∫︂
z

vT f(2πr) dr dz +

∫︂
Γ

v · (σ n) dΓ (3.8)

where the inertial load due to the rotation of the flywheel was imposed as a body force

f = ρω2r over the entire domain and the surfaces of the flywheel were assumed to be

traction free. Also, symmetry about the r-axis was used to reduce the domain size

by half, assuming that gravity loads were negligible. Thus, the boundary conditions

for this FEM problem may be represented as shown in Figure 3.1 and expressed

mathematically as:
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Figure 3.1: Boundary conditions for the 2D axisymmetric rotor model with symmetry
about the r-axis

σ n = 0 ∀ Γ1

u · er = 0 ∀ Γ2

u · ez = 0 ∀ Γ3

(3.9)

Linear Lagrange quadrilateral elements with an iso-parametric mapping were used

in this study and solved using a two-point Gauss quadrature formula to determine

the element-wise stiffness matrix ke and forcing vector fe as

ke = 2π
m∑︂
i=1

n∑︂
j=1

wiwjB
T
C B r det(J) , (3.10)

fe = 2π
m∑︂
i=1

n∑︂
j=1

wiwjN
T
f r det(J) , (3.11)

where wi, wj are the weights corresponding to the quadrature points determined by

i,j; B, N are the solution approximations for the virtual strains and displacement,

respectively, det(J) is the determinant of the Jacobian matrix corresponding to the

geometric mapping, and r is the radial distance from the axis of rotation. These

equations along with the boundary conditions in (3.9) were used to assemble the global

stiffness matrix K and global forcing vector F . The linear system of equations KU =

F was then solved using a conjugate gradient (CG) linear solver, since the global

stiffness matrix K was symmetric and positive definite. The solver was implemented

in the open-source software OpenFCST [112], based on the deal.II FEM libraries [113].
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3.1.2 Post-processing, input parameters and shape parame-
terization

The numerical model used in this study predicted the components of the deformation,

u, in the rotor. The maximum von Mises stress in the flywheel rotor was obtained

a posteriori from the deformation solutions of the numerical model. The strain ten-

sor components were calculated from the solution using Equation (3.5). Then, the

components of the stress tensor σ were calculated using Equation (3.2). The local

stresses and strains in the mesh elements were computed at Gauss quadrature points

one order lower than the order of quadrature used for numerical integration, i.e. at

element centroids instead of the nodes. This is because there are discontinuities in the

stresses obtained using solution gradients at the element nodes, and the convergence

of the stress solution can be improved by using optimal locations for evaluating the

stresses [114]. The von Mises stresses in the rotor were computed using,

σvm =

√︃
1

2

[︁
(σrr − σθθ)2 + (σθθ − σzz)2 + (σzz − σrr)2 + 6σ2

rz

]︁
(3.12)

The optimization of flywheel rotors also requires the computation of performance

indices such as the kinetic energy, specific energy, and material failure constraints.

The kinetic energy of the rotor can be expressed as:

E =
1

2
Iω2 (3.13)

where, the moment of inertia, I, can be determined using

I =

∫︂
z

∫︂
r

∫︂
θ

ρ ∥r∥2 r dθ dr dz (3.14)

The weight of the rotor can be calculated as

m = ρV , (3.15)

where ρ is the material density and V is the volume of the rotor, which can be

calculated using

V =

h(r)∫︂
z=0

ro∫︂
r=ri

2π∫︂
θ=0

2r dθ dr dz , (3.16)
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Table 3.1: Flywheel numerical model and mesh input parameters

Parameter Value

FEM solver Conjugate Gradient (CG)

CG tolerance 10−10

Global mesh refinement 0.01 m

Number of B-spline points 8

where ri and ro are the inner and outer radii of the rotor. The input parameters used

to simulate the flywheel numerical model are recorded in Table 3.1.

The open source mesh generation tool Gmsh [115] was used to generate the 2D

quadrilateral mesh used for the numerical analysis. The top surface of the rotor,

whose shape needs to be optimized was parameterized using a cubic B-spline function.

Figure 3.2 shows the parameterized rotor geometry. The B-spline curve used to

parametrize the rotor shape had one fixed control point at the coordinates (rshaft,

hshaft), and eight variable control points which were treated as optimization design

variables. The number of B-spline control points was chosen keeping in mind that

the rotor radius could vary in a large range of [0.4 - 1.0] m in the parametric studies

that were conducted in the study. Thus, for example, choosing too few control points

resulted in a loss of detail for designs with larger radii, and choosing too many control

points resulted in shape fluctuations for designs with small radii. The choice of

eight control points allowed the use of the same geometry parameterization for all

flywheel radii that were evaluated. The control points were spaced equally along the

radius of the flywheel, and their height coordinates were changed at the optimization

iterations. Due to the large physical range of the design variables, i.e., the eight B-

spline control points, it was seen that the use of a fixed shaft height resulted in unusual

B-spline shapes. To avoid this, the height of the shaft, hshaft was made dependent

on the first B-spline control point h1. Similarly, the use of a shaft radius rshaft

that scaled with the flywheel radius rout helped to reduce large stress concentrations
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(a)
(b)

Figure 3.2: a) Parameterized geometry and b) mesh with symmetry about the r-axis
for the 2D Axisymmetric rotor model

at the shaft - rim interface. Gmsh scripts were used to parameterize the geometry

and python scripts were used to automatically generate the mesh with the specified

rotor radius and shape at each optimization iteration. The strategy to re-mesh the

entire domain at every iteration was chosen because large variations in the shape

were expected in the rotor optimization process. Techniques that deform the mesh at

optimization iterations without re-meshing can end up with low-quality quadrilateral

mesh elements that can distort the obtained solution [116], especially when there are

large variations in the shape and the size of the domain. An appropriate global mesh

refinement factor was used to ensure mesh independence of the stresses predicted by

the rotor model.

3.1.3 Optimization

In order to understand and quantify how the performance of existing rotor designs

could be improved using shape optimization, the design specifications of two com-

mercially manufactured flywheels were chosen as case studies and are shown in Table

3.2. Some of the design specifications, such as the exact dimensions and material

properties, were assumed or computed using the known specifications such as en-

ergy capacity, operating speed, and rotor material, which were obtained from the

manufacturer’s data sheets. The following optimization formulation was used to find

optimally shaped rotors with the maximum kinetic energy, having the same mass and
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Table 3.2: Specifications of flywheels used as the case studies for optimization

Parameter Design 1 (Temporal [51]) Design 2 (Amber Kinetics [50])

Energy, kWh 50.303 32.58

Mass, kg 3511.53 2280.33

Radius, m 0.434 0.510

Height, m 0.755 0.355

Material steel steel

E, GPa 210 210

ν 0.3 0.3

Density, kg/m3 7850 7850

σy, MPa 755 755

Max speed, rpm 10000 8500

σmax
vm , MPa 657.65 719.23

Safety factor SF−1 1.148 1.049

umax
r , µm 615.097 713.415
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allowable stress as the two commercial designs from Table 3.2:

maximize
x

E =
1

2
Iω2

w.r.t h(r) = {h1, h2, ..., h8}

subject to
σVM

σy

≤ SF−1

m ≤ mdesign

(3.17)

Initially, the operating speed ω and rotor radius rout were included as design variables

along with the shape parameters h(r) for the two optimization formulations described

above. However, due to the very different nature of the design variables, the problem

had many local optima and did not converge reliably. A parametric study on these

variables was therefore deemed suitable. Alternatively, a bi-level approach could be

used to handle such an optimization problem involving both - shape related and other

types of design variables [73]. The shape optimization problems described above have

nonlinearities in the objectives as well as the constraints. As a result, the conver-

gence of gradient-based methods was found to be highly dependent on the initial

solution, and purely global methods such as genetic algorithms were deemed too slow

to converge. A sequential optimization strategy implemented using the DAKOTA

optimization toolbox [109] was chosen for this study. This optimization strategy used

the soga genetic algorithm to converge to the vicinity of the global optimum and

generate a good initial guess, followed by a local gradient based method of feasible

directions, conmin mfd, to converge to the exact global optimum. The sequential hy-

brid optimization strategy, which was used for rotor shape optimization for the first

time in this study, combined the robustness of the global method in the initial search

with the quick convergence of the local method in the final stage of the optimization.

This ensured that the same optimization method and parameters could be used for

more than 100 shape optimization problems that were solved as part of the paramet-

ric studies with respect to various FESS design parameters. The global method was

seen to reliably converge to the vicinity of the global optimum when the maximum
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Figure 3.3: Block diagram of the shape optimization framework

difference between the average fitness function value did not exceed 10% for 5 succes-

sive generations. A maximum relative difference between objective function values in

successive iterations of 10−4 was used as the optimization convergence criterion for

the local method. It was seen that up to 18% improvements in the shape optimization

objective could be achieved by using the local gradient method in the second stage of

the sequential optimization method, compared to only using the global method with

the same convergence criterion. A corresponding 38% reduction in number of opti-

mization iterations was achieved by using the sequential hybrid method, compared to

the use of a purely global method with a stricter convergence criterion that tried to

converge to the same optimum as the hybrid method. The optimization parameters

used in the study are shown in Table 3.3.

A block diagram of the shape optimization framework and its integration with

the mesh generator and numerical rotor model is shown in Figure 3.3. At each shape

optimization iteration, the optimization algorithm generates a new guess for the shape

parameters h1, h2, ..., h8. These are used to modify the parameterized rotor geometry

and generate a new mesh. This new rotor mesh is used by the numerical rotor model

to predict the optimization responses such as maximum stresses and kinetic energy,

which are then returned to the optimizer. This process is performed iteratively until

an optimal rotor shape is found.
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Table 3.3: Flywheel shape optimization parameters

Parameter Value

Opt. strategy Hybrid sequential

Step 1 optimizer Genetic algorithm, soga

fitness type merit function

convergence type average fitness tracker

replacement type favor feasible

Crossover parameters 2-point real, crossover rate = 0.7

Mutation parameters replace uniform, mutation rate = 0.2

Convergence tolerance 10−3

Step 2 optimizer Method of feasible directions, conmin mfd

Convergence tolerance 10−4

Constraint tolerance 10−4

Gradients Numerical (central differences)

Gradient step size 10−3
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(a) (b) (c)

Figure 3.4: Comparison of mid-plane values of a) ur, b) stresses σrr, σθθ and c) strains
εrr, εθθ obtained from numerical and analytical rotor models

3.2 Results and discussion

3.2.1 Flywheel rotor model validation

The developed flywheel rotor numerical model was used to simulate a constant thick-

ness steel disk with an integrated shaft, with outer dimensions r = 0.20 m, h = 0.05

m, rotating at a fixed speed of 5000 rpm, having material properties E = 210 GPa,

ν = 0.3, ρ = 7850 kg/m3. The mid-plane components of the deformations, strains

and stresses obtained from the numerical model were compared to those obtained

from the analytical plane-stress model described in [117]. Figure 3.4, which compares

the mid-plane radial deformations ur, stresses σrr, σθθ and strains εrr, εθθ from the

analytical and numerical models shows good agreement between the solutions ob-

tained from the two models. The small discrepancies observed were assumed to be

due to the use plane-stress assumptions in the case of the analytical model, which is

only valid for thin disks (h << r). Further, the axisymmetric numerical model was

also determined to be mesh independent by performing mesh refinement and by using

higher order solution approximations. The results of the mesh independence study

can be found in Appendix C.1.

3.2.2 Initial design analysis

The two commercial rotors that were used as the initial designs for the shape opti-

mization studies were simulated using the developed numerical model. The numerical
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(a) (b)

Figure 3.5: Stress distribution σvm in FESS rotors of type a) design-1 (Temporal
steel) at 10000 rpm and b) design-2 (Amber Kinetics) at 8500 rpm

results of this simulation are shown in Figure 3.5. The two designs chosen for the case

studies have different energy capacities and rotor designs. The FESS in design-1 has

an energy capacity of 50 kWh and uses a tall rotor with a low aspect ratio, operating

at a maximum speed of 10000 rpm. On the other hand, the FESS in design-2 can

store up to 32 kWh using a rotor with a higher aspect ratio operated at a lower speed

of 8500 rpm. The rotor weights and maximum von Mises stresses obtained from these

designs were then used in the mass and stress constraints in the design of optimally

shaped flywheels.

3.2.3 Convergence of shape optimization studies

The convergence histories of the hybrid sequential strategy used for rotor shape op-

timization of design-1 and design-2 at an operating speed of 6000 rpm and a rotor

radius of 1.0 m can be seen in Figure 3.6. The plot tracks the evolution of f
fmax

,

which is the ratio of the maximum fitness of the population at each generation to the

fitness of the optimal solution, with the optimization iterations. It also depicts the

rotor shapes of the fittest candidates at some intermediate optimization iterations,

where the iterations in stage-1 of the sequential strategy refer to the generations of
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Table 3.4: Computational requirements for hybrid sequential shape optimization of
design-1 at ω = 6000 rpm, rout = 1.0 m and design-2 at ω = 6000 rpm, rout = 1.0 m

Rotor stage-1 Niter stage-1 Neval stage-2 Niter (N
grad
iter ) stage-2 Neval CPU time

design-1 160 17936 10 (4) 58 19 h, 48 m

design-2 166 17708 28 (8) 155 27 h

the genetic algorithm (soga), and those of stage-2 refer to the search steps of the

gradient based method (conmin mfd). The improvement offered by the second phase

conmin mfd gradient based method for the two examples can also be seen in the plot.

Although the convergence histories in the plots indicate that the computational effort

at the last few iterations of the stage-1 genetic algorithm could have been reduced

by choosing a more relaxed convergence tolerance to switch from stage-1 to stage-2,

the chosen criterion was found to ensure reliable convergence of all the shape op-

timization studies that were conducted in the parametric studies. The number of

optimization iterations and function evaluations required for the two stages of the

sequential optimization, as well as the total CPU time needed for the optimization

procedure can be seen in Table 3.4. The number of function evaluations Neval in

stage-1 depend on the population size, and those in stage-2 depend on the number

of design variables, because the response gradients are computed numerically using

central differences. N grad
iter is the number of iterations in stage-2 where numerical gra-

dients were computed. Since most of the computational effort for optimization was

required during the first stage of the sequential hybrid strategy which used the soga

genetic algorithm, the computational overhead of calculating numerical gradients in

the gradient-based second stage of optimization seemed justified. The number of

function evaluations were reduced to an extent by making use of an evaluation cache

available in the DAKOTA optimization toolbox [109] to avoid redundant computa-

tions. The optimization iterations were performed in parallel using 16 CPU cores.
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(a) (b)

Figure 3.6: Convergence history of the hybrid sequential shape optimization algorithm
for a) design-1 at ω = 6000 rpm, rout = 1.0 m and b) design-2 at ω = 6000 rpm, rout
= 1.0 m

3.2.4 Effect of operating speed and rotor radius on the opti-
mal rotor shape

The optimization formulation described in Equation (3.17) aimed to understand how

an optimally shaped flywheel could improve the kinetic energy of the original com-

mercial flywheel designs, and how the chosen operating speed and rotor radius spec-

ifications could influence the extent of improvement in the design. Thus, the shape

of the flywheel was optimized at various combinations of operating speeds and rotor

radii with the objective to maximize the energy capacity of the flywheel for a fixed

mass. The results of this parametric study can be seen in Figure 3.7, where the kinetic

energy of the optimally shaped rotors is plotted against the operating speed and rotor

radius. The response surface shape of the two flywheel designs is quite similar, with

a combination of large radii and low operating speeds achieving the highest energy

storage capacity. Also, for some combinations of speed and rotor radius, especially

at high speeds and with large radii, there were no feasible designs that could simul-

taneously adhere to the imposed mass constraint and maximum stress constraint.

The optimal shapes corresponding to various points distributed all over the re-
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Figure 3.7: 3D contour plot of the kinetic energy obtained with the optimal shaped
flywheels at various operating speeds and rotor radii, given specifications of rotors
from design-1 (left), and design-2 (right)

sponse surface can be seen in Figure 3.8. The optimal solutions for all shape optimiza-

tion studies conducted within the parametric study are available in Appendix C.2,

and the corresponding optimal designs are in Appendix C.3. At low operating speeds,

when the stress constraint was inactive, most of the rotor mass was distributed to-

wards the outer rim of the flywheel. This can be seen in case of the optimal Temporal

flywheel shape at an operating speed of 5000 rpm, and a rotor radius of 0.6 m. This

finding was consistent with the optimal rotor shapes reported in references [67, 70],

which designed optimally shaped rotors for relatively low speeds. As the operating

speed increases and the stress constraint started to become active, the rotor mass was

redistributed and concentrated near the central axis. This finding was also reported

in the parametric studies conducted by references [34, 71]. At any operating speed,

the optimal design was the one with the largest achievable radius that could minimize

variations in the stress distribution. A similar trend was observed as the rotor radius

was increased. As the rotor radius was increased at any fixed operating speed, the

rotor material was redistributed from the outer rim to the inner rim, in agreement

with the results reported by [34, 71].

Table 3.5 compares the two original rotor designs with the optimal designs obtained

from the parametric study. The energy storage capacity of the original design-1
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Figure 3.8: Optimal flywheel shapes (for maximum kinetic energy) obtained at various
operating speeds and rotor radii, given specifications of rotors from design-1 (top) and
design-2 (bottom)
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(Temporal) FESS improved by 21%, from 50.3 kWh to 60.9 kWh when the rotor

shape was optimized at a suitable rotor speed and radius combination (ω = 6000 rpm,

rout = 1.0 m). Note that further improvements could be possible by including ω and

rout as design variables in the optimization problem. Similarly, the energy capacity

of the rotor in design-2 could be improved by 46.6% by using an optimally shaped

rotor at a suitable rotor speed and radius. Thus, the choice of operating speed and

rotor radius were seen to affect the optimal rotor shape as well as the energy storage

characteristics. Although the aspect ratios of the two initial designs used in the study

were quite different, the resulting optimal shapes obtained in the parametric studies

for the two designs were quite similar. In both cases, the best optimal design was

obtained using the rotors with the largest rotor radii operated at relatively low speeds.

Since the kinetic energy, as seen from Equation 3.13, scales linearly with the moment

of inertia and quadratically with the operating speed, the optimal rotors which were

designed for lower speed rotors had a much higher contribution from the moment of

inertia than the original high speed rotors.

The findings reported in Table 3.5 indicate that this parametric study based op-

timal design approach improved the energy capacity of the rotors in design-1 and

design-2 by 21% and 46.6% respectively. To further understand how each parameter,

i.e., shape parameters, operating speed and rotor radius, contributed to the improve-

ment, a study was conducted to determine the partial design improvements offered

by each of the design parameters by a) performing only shape optimization of the

two original designs, and b) choosing an optimal speed or rotor radius, without any

shape optimization. Table 3.6 shows the results of these studies on the two initial

designs. For both designs, performing only shape optimization at the original speed

and rotor radius resulted in insignificant changes in the energy capacity because the

stress constraint is active thereby preventing any redistribution of material from the

region near the axis to the rim as it would violate the stress constraint. Next, the

operating speed was chosen as 6000 rpm (corresponding to the speed of the optimal
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Table 3.5: Comparison of the two original designs with optimal designs obtained from
the parametric study w.r.t ω, rout

FESS design E, kWh h(r), m ω, rpm r, m

design-1 50.3 {0.378, 0.378, 0.378, 0.378, 0.378, 0.378, 0.378, 0.378} 10000 0.43

design-1, h(∗)(r), ω(∗), r
(∗)
out 60.95 {0.201, 0.216, 0.153, 0.073, 0.062, 0.031, 0.035, 0.035} 6000 1.00

design-2 32.5 {0.178, 0.178, 0.178, 0.178, 0.178, 0.178, 0.178, 0.178} 8500 0.51

design-2, h(∗)(r), ω(∗), r
(∗)
out 47.67 {0.116, 0.111, 0.068, 0.054, 0.041, 0.025, 0.028, 0.038} 6000 1.00

designs reported in Table 3.5), the rotor shape was not optimized, and the rotor radius

was chosen so that it resulted in the same mass and maximum stress as the original

designs. In this case, the energy capacity of design-1 reduced by 8.9% and that of

design-2 increased by 2.5%. Similarly, the rotor radius was chosen as 1.0 m (to match

that of the optimal designs from Table 3.5), the rotor shape was not optimized and

the maximum speed was chosen so that it resulted in the same mass and stress limits

and the original rotor. Here, the performance of design-1 was seen to decrease by

3.3% and that of design-2 improved by 7.9%. Thus, it was seen that when the design

parameters such as shape, speed and radius were optimized or changed individually,

the energy capacity changed marginally and not always for the better. On the other

hand, the optimal combination of these design parameters resulted in a significant

improvement in the performance. This result clearly shows the synergies that can be

achieved by increasing the design space.

Since all the optimal designs obtained at various speed - radius combinations use

the same rotor mass constraint, the two optimal designs also improved the specific

energy of the original designs. In future, alternative optimization formulations to

evaluate the performance of the FESS will be studied. One such formulation is to

maximize the specific energy of the rotor without imposing constraints on the mass

or the overall rotor size, which would further increase the size of the optimization

search domain. This could allow the optimization problem to determine the optimal

rotor aspect ratio which can maximize the specific energy of the rotor.
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Table 3.6: Individual contributions of shape, operating speed and rotor radius to
design improvements obtained using the parametric study based shape optimization
approach

Rotor Original design Optimal Shape Optimal Speed Optimal Radius Shape + Speed + Radius

design-1

E, kWh 50.3 50.3 (0%) 45.83 (-8.9%) 48.64 (-3.3%) 60.95 (+21.1%)

ω, rpm 10000 10000 6000 4265 6000

rout, m 0.434 0.434 0.690 1.0 1.0

Shape

design-2

E, kWh 32.5 32.47 (-0.1%) 33.31 (+2.5%) 35.08 (+7.9%) 47.67 (+46.6%)

ω, rpm 8500 8500 6000 4495 6000

rout, m 0.510 0.510 0.730 1.0 1.0

Shape

3.2.5 Effect of power losses

The choice of operating speed and optimal rotor design also influences the total

standby losses, which is related to the self-discharge and overall efficiency of the

FESS. These standby losses can be attributed to mechanical losses due to bearing

friction and windage, and electrical losses due to eddy currents, core and copper losses.

The mechanical losses are known to depend on the FESS design parameters such as

operating speed, vacuum pressure and air gap between the rotor and the flywheel

enclosure. An empirical model of the standby losses in the flywheel, developed by

Skinner et al. [16], used curve-fitting of flywheel experimental data to characterize the

standby losses. The empirical relation used to characterize the total power losses as a

function of operating speed at a fixed vacuum pressure, as determined experimentally

in [16] is:

Ploss = αωβ (3.18)

where α = 2.753 × 10−4 and β = 1.685 are the experimentally determined fitting

parameters for a constant pressure of 133 Pa inside the flywheel enclosure. Using this

model of the rotor losses, the power losses for the Temporal flywheel (design-1) and

the optimal design for this case were evaluated. It was found that the power losses in
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the FESS reduced from 33.77 W to 14.28 W when the existing FESS rotor designed

for a maximum speed of 10000 rpm was replaced with the optimal rotor designed for

operation at 6000 rpm. This demonstrated the importance of considering standby

losses while designing the FESS rotor.

3.2.6 Interdependence of rotor material, operating speed and
outer radius of optimally shaped rotors

The effect of using a different rotor material, Aluminium 2024, on the optimal Tem-

poral steel rotor design was studied. The Temporal flywheel was optimized at the

three different design specifications in Table 3.7. The optimization formulation used

in these studies was:
minimize

x
m

w.r.t h(r) = {h1, h2, ..., h8}

subject to
σVM

σy

≤ SF−1

E ≥ Edesign

(3.19)

The above formulation minimized the mass of the rotor designed for a fixed energy

capacity. The energy capacity Edesign was chosen to be equal to the energy capacity

of equivalent optimal steel rotors. The optimal aluminium and steel rotor shapes for

the design specifications shown in Table 3.7 are shown in Figure 3.9. It was seen that

the aluminium rotor had a higher specific energy than the corresponding steel rotor

for lower rotor radii and vice-versa for higher rotor radii.

Rotor material selection is mainly influenced by cost and safety considerations,

therefore a cost analysis was also done to understand how the cost ratio of the two

rotor materials affected the energy-per-cost ratio of the flywheel. Figure 3.10 plots

the energy-per-cost ratio of materials vs the cost ratio of the two materials. The

plots show that aluminium rotors with smaller radii and operating at high speeds

become more feasible than steel for a cost ratio cAl

cSteel
= 1.45, where cAl, cSteel are the

cost-per-kg of the rotor materials, i.e., aluminium and steel, normalized with respect

to the cost of steel. As the rotor radii were increased, steel was seen to become more
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Figure 3.9: Optimal steel (left) and aluminium (right) rotors with a),b) ω=10000
rpm,rout=0.5 m, c),d) ω=8000 rpm,rout=0.7 m, and e),f) ω=7000 rpm,rout=0.8 m.
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Table 3.7: Temporal rotor design specifications used in the study to determine the
effect of rotor material on optimal shapes

Material E, kWh m, kg ω, rpm r, m

Steel 40.32 3511 10000 0.50

Aluminium 40.33 2392 10000 0.50

Steel 45.14 3511 8000 0.70

Aluminium 45.14 3005 8000 0.70

Steel 51.63 3511 7000 0.80

Aluminium 51.63 3579 7000 0.80

(a) (b) (c)

Figure 3.10: Plots of energy-per-cost ratio vs cost ratio of optimal steel and aluminium
rotors with design specifications shown in Table 3.7

feasible than aluminium.

3.2.7 Post optimality analysis

A post optimal analysis was performed on some of the designs obtained in Sec-

tion 3.2.4. The first order necessary conditions for optimality were checked by solving

the KKT conditions, and were found to be satisfied for the two optimal designs

reported in Table 3.5. The sensitivity of the optimal solution to the optimization

convergence criterion was also checked. A hybrid optimization strategy was used in

this study, with a global and a local optimization method used sequentially to find

the global optimum. Thus, the sensitivity of the solution was studied with respect

to the convergence criterion of the second-phase local optimization algorithm, which
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used a relative change in objective function as the convergence criterion. It was found

that convergence tolerances of 10−2 or less (i.e. 1 % change in objective function)

resulted in exactly the same optimal design. With a convergence tolerance of 10−1

(i.e. 10 % change in objective function), the objective function value reduced by 0.4

%. Thus, the default tolerance of 10−4 used in this study was found to be more than

sufficient for convergence.

The sensitivity of the optimal rotor designs to rotor manufacturing tolerances was

studied by perturbing the B-Spline control parameters, which were the optimization

design variables. The optimal shape for design-1 reported in Table 3.5 was used in

this analysis. When each of the eight B-spline control parameters were perturbed by

5 % of their optimal values, up to 1.2 % change in the kinetic energy was obtained in

the perturbed design. This was accompanied by up to 1.1 % changes in the rotor mass

and up to 2.8 % changes in the rotor stress σvm. The optimal design was found to

be increasingly sensitive to the B-spline control parameters towards the outer edge of

the rotor, i.e., the least sensitive parameter was h1 and the most sensitive parameter

was h8. This was expected, because the moment of inertia (and hence the kinetic

energy) is higher at larger distances from the axis of rotation.

A similar sensitivity analysis was also performed with respect to the rotor design

specifications (ω, rout) and the mesh refinement level of the numerical model used for

shape optimization, which is recorded in Table 3.8. A 5 % variation in the operating

speed was seen to change the objective function by 9 - 10 %. A 5 % variation in the

rotor radius led to 18.5 - 21.5 % variations in the objective function value. Thus, the

rotor design is quite sensitive to the maximum speed and rotor radius. On the other

hand, a 5 % variation in the mesh size changed the value of the stress criterion by

less than 0.2 %, so the optimal design was not too sensitive to variations in the mesh

refinement level.
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Table 3.8: Sensitivity of optimal solution to design parameters and mesh refinement

E, kWh σV M

σy
m, kg ω, rpm rout, m lc, m

Optimum 60.95 0.8707 3499 6000 1.0 0.01

0.95(ω) 55.37 0.7911 3499 5700 1.0 0.01

1.05(ω) 67.20 0.9599 3499 6300 1.0 0.01

0.95(rout) 49.64 0.7929 3158 6000 0.95 0.01

1.05(rout) 74.08 0.9522 3858 6000 1.05 0.01

0.95(lc) 60.95 0.8706 3499 6000 1.0 0.0095

1.05(lc) 60.95 0.8691 3499 6000 1.0 0.0105

3.2.7.1 Effect of gravity loads

The optimal rotor shapes obtained in the studies conducted in the previous sections

used symmetry to reduce the axisymmetric numerical model domain size by half.

This approach neglects the stress contributions of self weight as a result of gravity,

which could be significant depending on the overall size and aspect ratio of the rotor.

To understand how the introduction of gravity loads could affect the optimal designs,

the optimal design for two of the rotors from Section 3.2.4 (design-1 at ω=6000 rpm,

rout=1 m, and design-2 at ω=10000 rpm, rout=0.5 m) were simulated with gravity

loads on the complete 2D axisymmetric rotor model. Initially, the two designs were

simulated at standstill, i.e., with only gravity loads and no inertial loads, as shown in

Figure 3.11. The stresses developed in the rotor due to gravity alone were well below

the stresses developed during normal operation, and the highest stress concentration

was seen to appear at the interface of the shaft and the rotor rim at the bottom

of the flywheel, which was expected. Figure 3.12 depicts the stress distributions in

the two rotors at the designed operating speed, simulated using the full mesh with

gravity loads, as well as the original reduced mesh which neglects gravity loads. The

maximum stresses at the design speed were seen to increase by 1.36 % and 6.73

%, respectively for the two designs evaluated in this study. Thus, depending on
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Figure 3.11: Stress distribution at standstill in optimal rotors for design-1 (left) at
ω=0 rpm, rout=1 m and design-2 (right) at ω=0 rpm, rout=0.5 m (right)

the chosen FESS design specifications and aspect ratio, it might be necessary to

consider the gravity load of the rotor during the design phase. Gravity loads could

also be included during the optimization phase by using the entire 2D rotor mesh

for simulations. Further, the use of two separate B-Spline functions to approximate

the upper and lower rotor surfaces would help to determine if the optimal shape is

influenced by the gravity load as well as the additional degrees of freedom due to the

use of two separate shape approximations. This larger design space could be used to

mitigate any high stresses caused by gravity loads, or in general, to try and achieve

a more uniform stress distribution.

3.3 Summary

This chapter studied the relevance of choosing an ideal combination of interdepen-

dent FESS design parameters such as operating speed, rotor radius, rotor material

and standby losses in the design of optimally shaped metal rotors for grid scale energy

storage. An open-source rotor shape optimization framework was implemented inte-

grating a 2D axisymmetric numerical rotor model with a shape optimization frame-
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Figure 3.12: Stress distribution with gravity in optimal rotor for design-1 (left) at
ω=6000 rpm, rout=1 m and design-2 (right) at ω=10000 rpm, rout=0.5 m

work. The software was used to evaluate and improve two rotor designs, which were

based on two existing commercial FESS specifications. A hybrid sequential opti-

mization strategy combining a global and a local method was chosen for the FESS

rotor shape optimization studies because of the existence of multiple local optima in

the shape optimization problems that were solved. The use of this hybrid sequential

method for designing optimally shaped rotors was done for the first time in this study,

and it provided a good tradeoff between robustness and computational cost of opti-

mization. The global method, used in the first phase, ensured reliable convergence to

the vicinity of the optimum, while the local method used in the second phase allowed

the optimizer to quickly converge to the optimal designs.

The simultaneous effect of operating speed and rotor radius on the optimal ro-

tor shape and its energy capacity was determined using a parametric study based

approach. For a given mass and allowable stress, the two initial rotor designs were

optimized for maximum energy capacity by optimizing the rotor shape at several

speed - radius combinations. A response surface was plotted for the parametric study

and it was found that flywheels with a large aspect ratio (r>h) and relatively low
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speeds had the best energy storage capacity. The energy storage capacity was seen to

reduce as the designed rotor radius was reduced and the design speed was increased.

This was true for both initial designs, where 21% and 46% improvements in the

energy storage performance could be achieved by choosing the best combination of

rotor shape, speed and radius. A study conducted to determine the normalized effects

of the rotor shape, speed and radius on the improvements in rotor energy capacity

determined that no significant improvements could be achieved by performing only

shape optimization of the two initial designs. The effect of choosing optimal operating

speed or rotor radius while keeping the shape fixed (i.e., a constant thickness disk)

resulted in a reduction of 3.3 to 8.9% in the energy capacity of design-1, and small

improvements of 2.5-7.9% in the energy capacity of design-2. Thus it was seen that

the three design parameters were strongly correlated and only a suitable combina-

tion of these parameters could offer significant design improvements. Two optimally

shaped rotor designs based on the Temporal (design-1) specifications - one operating

at a low speed with a flat disc profile, and another high speed tall rotor were used to

study the effect of the FESS design specifications on the standby power losses due to

self discharge. It was seen that the low speed rotor with a large radius had a lower

self discharge, which could be an important factor to be considered during the FESS

design stage.

The effect of using a different rotor material on the optimal rotor designs was

investigated for a few different combinations of rotor radii and operating speeds. It

was seen that, for the same energy capacity, optimally shaped aluminium rotors had a

higher specific energy content than corresponding steel rotors at lower rotor radii and

high speeds, and vice-versa for higher rotor radii and low speeds. A cost analysis was

also done to understand how the cost ratio of the two rotor materials being considered

for the design could affect the choice of material. It was found that aluminium rotors

with smaller radii and operating at high speeds become more feasible than steel for

a cost ratio cAl

cSteel
= 1.45. As the rotor radii were increased, steel was seen to become
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more feasible than aluminium.

The sensitivity of the design to manufacturing tolerances, design specifications (ω,

rout), mesh refinement levels in the numerical model and gravity loads was assessed.

While the sensitivity of the optimal designs to the mesh refinement level was found

to be low, the design was sensitive to manufacturing tolerances arising from small

changes in the rotor radius or the B-spline control parameters that determined the

thickness of the rotor at the outer rim. Since the numerical model of the rotor used

symmetry to reduce the domain size, the effect of gravity loading was not accounted

for in the parametric studies. Thus, the sensitivity of the optimal design to gravity

loads was also studied, and was found to be dependent on the chosen rotor speed,

radius and optimal shape.
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Chapter 4

Topology optimization of grid-scale
FESS�

Preface

In this chapter, a novel stress-constrained flywheel topology optimization formulation

based on specific energy maximization is proposed. The use of the specific energy as

the main objective eliminates the need for a volume fraction constraint and accounts

for material costs. The new specific energy formulation is compared with kinetic

energy maximized designs at various volume fractions and is found to select the

volume fraction that results in the best improvement in the specific energy capacity

of the rotor. A P-norm aggregated stress constraint is used in this formulation to

ensure a physically viable design without any detachment of the rotor rim from the

shaft, while also preventing material failure. The optimization framework is used to

study the influence of design specifications such as the operating speed, maximum

stress, rotational symmetry, and choice of material on the optimal topology and

energy capacity. The effects of charge-discharge rates or acceleration loads on the

shear stresses in the optimal topology are also investigated, to determine the ramp

times that are achievable with the optimized designs.

�Parts of this chapter have been submitted for publication in: Vaishnavi Kale, Niels Aage, and
Marc Secanell. Journal of Energy Storage
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4.1 Methodology

This chapter uses two different formulations to design optimal energy storage rotors.

In the first approach, the kinetic energy of the flywheel rotor is maximized subject

to a volume fraction constraint and a P-norm aggregated von Mises stress constraint.

The optimization problem is formulated as:

max Ekin(ρ̂) =
1

2
I(ρ̂)ω2

w.r.t ρ̂ = {ρ̂1, ρ̂2, ..., ρ̂N}

s.t. KU = F

f(ρ̂) :
V (ρ̂)/V0

α
− 1 ≤ 0

g(ρ̂,u) :
σ̃pn

σy

− 1 ≤ 0

0.0 ≤ ρ̂e ≤ 1.0

(4.1)

where E(ρ̂) is the kinetic energy of the rotor, f(ρ̂) is the total volume fraction con-

straint, and g(ρ̂,u) is the P-norm aggregated von Mises stress constraint. The volume

fraction constraint aims to remove material from the initial domain, and the stress

constraint prevents material failure. Here ρ̂ = {ρ̂1, ρ̂2, ..., ρ̂N} are the filtered and

projected normalized design densities which are used to solve the numerical model.

The second approach tries to remove the dependence of the optimal design on a

predetermined volume fraction. Here, the specific energy ekin of the rotor is maximized

subject to a P-norm aggregated von Mises stress constraint to prevent material failure,

which is formulated as shown below:

max ekin(ρ̂) =
1
2
I(ρ̂)ω2

m(ρ̂)

w.r.t ρ̂ = {ρ̂1, ρ̂2, ..., ρ̂N}

s.t. KU = F

g(ρ̂,u) :
σ̃pn

σy

− 1 ≤ 0

0.0 ≤ ρ̂e ≤ 1.0

(4.2)

The main components of the topology optimization framework are:
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1. Numerical model to determine the deformations in the flywheel and correspond-

ing optimization responses

2. Adjoint solver for response gradient computations

3. Filtering mechanism for length scale control and checkerboard pattern preven-

tion

4. MMA gradient-based optimizer

The methodology used to implement these components is outlined in the following

discussion.

4.1.1 Flywheel numerical model

Assuming that the flywheel rotates at a constant speed, a 2D plane stress quasi-static

numerical model of the flywheel rotor is used in this study. The constitutive law

for isotropic materials is used, since the study utilizes metal rotor materials. Linear

elastic governing equations are used to predict the deformation and stress distribution

in the flywheel rotor. The derivation of the weak form of the linear elastic numerical

model used here can be found in Appendix D.1. The rotor geometry and boundary

conditions are seen in Figure 4.1(a). The central shaft and the rotor are assembled

by means of a press-fit assembly, which can be approximated by a Neumann-type

boundary condition Γ2, and the boundary Γ1 at the outer rim is treated as a stress-

free boundary for the topology optimization phase. Rotational symmetry is used to

reduce the size of the computational domain, which is approximated by the line-of-

symmetry boundaries Γ3. The open-source mesh generation tool GMsh [115] is used to

parametrize this geometry and generate the unstructured quadrilateral mesh seen in

Figure 4.1(b). The inner and outer rings are considered fixed portions of the topology,

and the region between these two rims is treated as the topology optimization domain.
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(a)                                                                       (b)

Figure 4.1: a) 2D rotor domain and boundary conditions and b) unstructured mesh
using rotational symmetry of N=6

Thus, the boundary conditions for this FEM problem may be represented as:

σn = 0 ∀ Γ1

σn = Pfit ∀ Γ2

u · n = 0 ∀ Γ3

(4.3)

In the density-based topology optimization approach, the mesh element densities

are optimization design variables, and the material properties are interpolated using

the solid isotropic material with penalization (SIMP) approach. The Young’s modulus

of the material for intermediate densities, i.e., ρ̂e ∈ (0, 1) is interpolated as:

Ee = Emin + ρ̂pe(E0 − Emin) (4.4)

where E0 is the Young’s modulus of the solid material, Ee is the Young’s modulus of

the eth mesh element with a density of ρ̂e and Emin is chosen as a very small number,

i.e., 10−9 E0, to ensure that the system matrix is invertible even when the density of

the mesh elements approaches zero (ρ̂e = 0). This definition of the Young’s modulus

also affects the local stiffness matrix Ke calculated over each cell, as:

ke
ij =

∫︂
Ωe

(︂
ϕi
k,k λe ϕ

j
l,l + ϕi

k,l µe ϕ
j
k,l + ϕi

k,l µe ϕ
j
l,k

)︂
dΩe (4.5)
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where i, j are the indices over the number of DoFs per dimension, k, l are indices over

the number of dimensions, ϕ is the shape function approximation and λe, µe are the

modified Lamè’s parameters, defined as:

λe =
Eeν

(1 + ν)(1− 2ν)
(4.6)

µe =
Ee

2(1 + ν)
(4.7)

The rotational load applied on each element in the flywheel mesh is :

f e = (ρ̂peρ0) ω
2rer (4.8)

where ρ̂e is the filtered and projected design density of each mesh element, ρ0 is the

density of the solid material, ω is the angular velocity, and r is the distance from the

central axis of rotation. The inertial load is converted to the cartesian coordinate

system, as f e = (ρ̂peρ0) ω2r cos θex + (ρ̂peρ0) ω2r sin θey, and contributes to the local

forcing vector f ei , shown below:

f ei =

∫︂
Ωe

(︂
ϕi
m f e

m

)︂
dΩe (4.9)

where i is an index over the DoFs per dimension, m is an index over the number

of dimensions and e is an index over mesh elements. This quasi-static centrifugal

load, as well as the kinetic energy of the rotor are proportional to the square of the

angular velocity ω, whereas the mass or volume fraction of the rotor are independent

of this term. As a result, any variation of the angular velocity will affect the kinetic

energy and mass differently, resulting in a different specific energy. It is important to

understand the influence of this factor on the optimal topology as well.

The quasi-static numerical model is also modified to include an acceleration term

in the forcing vector, which mainly impacts the shear stresses σrθ in the rotor. The

additional acceleration load applied on each element in the flywheel mesh is

f e
θ = −(ρ̂peρ0) ω̇reθ (4.10)
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where ω̇ = ∆ω
∆t

is the angular acceleration experienced by the flywheel. The accelera-

tion load is converted to the Cartesian coordinate system, as f e
θ = (ρ̂peρ0) ω̇r sin θex−

(ρ̂peρ0) ω̇r cos θey. The local forcing vector, f ei , for the combined centrifugal and ac-

celeration load is:

f ei =

∫︂
Ωe

(︂
ϕi
m (f e

m + f e
θm)
)︂
dΩe (4.11)

Since acceleration loads affect the circumferential direction deformations in the rotor,

rotational symmetry boundary conditions, i.e., (u · n = 0) cannot be used with the

acceleration loads, and the entire 2D rotor domain must be used when acceleration

loads are applied. So, this additional acceleration load is only used in the post-

optimality analysis presented in Section 4.2.3 to investigate the effects of acceleration

loads on the stresses developed in the optimal rotor topology.

4.1.2 Post-processing and adjoint sensitivity analysis

The solution of the numerical model described previously was used to compute the

optimization responses and their analytical gradients, which are described below.

4.1.2.1 Post-processing

Kinetic energy

The kinetic energy of the flywheel, which is the optimization objective for the formu-

lation defined in equation (4.1), is calculated as:

Ekin(ρ̂) =
1

2
I(ρ̂)ω2 (4.12)

where ω is the angular velocity of the flywheel, and I(ρ̂) is its moment of inertia,

which (assuming rotation about the Z-axis) is defined as:

I(ρ̂) =
N∑︂
e=1

Ie =
N∑︂
e=1

(︃
(ρ̂peρ0)

⃦⃦⃦
x2
e,c + y2e,c

⃦⃦⃦
ve

)︃
(4.13)

where xe,c, ye,c are the Cartesian coordinates of the centroid of the eth mesh element

w.r.t the central axis of rotation, ρ0 is the solid density of the material and ve is the

element volume.
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Specific energy

The specific energy maximization objective defined in equation (4.2) essentially com-

bines two optimization objectives, i.e., maximizing the kinetic energy and minimizing

the rotor mass or volume fraction. It is defined as a ratio of the rotor’s total kinetic

energy to its mass, and can be computed as:

ekin(ρ̂) =
Ekin(ρ̂)

m(ρ̂)
=

I(ρ̂)ω2

2m(ρ̂)
(4.14)

where the moment of inertia I is calculated as shown previously in equation (4.13),

and the flywheel mass m(ρ̂) is defined as:

m(ρ̂) =
N∑︂
e=1

(︁
(ρ̂peρ0)ve

)︁
(4.15)

Volume fraction constraint

The volume fraction constraint is defined as :

V (ρ̂)

V0

≤ α (4.16)

where V (ρ̂) =
N∑︁
e=1

ρ̂eve is the volume of the topology, V0 =
N∑︁
e=1

ve is the volume of the

entire domain, α is the prescribed maximum volume fraction, and ve is the volume

of each mesh element. The above equation is rearranged into the standard inequality

format used in optimization, as shown below:

f(ρ̂) :
V (ρ̂)

αV0

− 1 ≤ 0 (4.17)

P-norm aggregated stress constraint

The stress measure used here is developed based on the implementation adopted by

De Leon et al. [118]. The von Mises stress failure criterion which can be used to

predict failure in isotropic metals is:

σmax
vm ≤ σy (4.18)
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where σmax
vm is the maximum von Mises stress in the domain, and σy is the maximum

allowable stress. This constraint uses the max function, which is neither continuous

nor differentiable. So a P-norm aggregated local stress constraint is used instead.

The presence of intermediate densities causes very high stresses and prevents the

formation of holes in the topology, causing problems with convergence, therefore the

stress constraints need to be relaxed. To achieve this goal, the relaxed local stress

at the centroid of each mesh element e is used. Its value is obtained using the stress

relaxation scheme proposed by Le et al [86], shown below:

σe = ρ̂qeσ
e
vm (4.19)

Using this relaxed stress measure σe, the P-norm aggregated stress measure σpn is

written as:

σpn =

⎛⎝ N∑︂
e=1

veσ
P
e

⎞⎠ 1
P

=

⎛⎝ N∑︂
e=1

ve(ρ̂
q
eσ

e
vm)

P

⎞⎠ 1
P

(4.20)

The new stress measure σpn must be normalized to bring it to the same order of

magnitude as σmax
vm . The normalized P-norm stress measure σ̃pn is:

σ̃pn = cσpn (4.21)

The normalization parameter c is updated at each iteration n using the rule:

c(n) = α(n)σ
max(n−1)
vm

σ
(n−1)
pn

+ (1− α(n))c(n−1) (4.22)

where α(n) is an the update parameter. Thus, the normalized P-norm aggregated

relaxed stress constraint in the standard form is expressed as:

g(ρ̂,u) :
σ̃pn

σy

− 1 ≤ 0 (4.23)

4.1.2.2 Sensitivity Analysis

The gradients of the optimization responses w.r.t the design variables ρ̂ need to be

determined analytically. While some of the responses are dependent only on the
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design variables ρ̂, some are also dependent on the FEM solution variable u. Such

gradients are computed using an adjoint solver. The use of the adjoint solver (vs a

direct solver) reduces the number of matrix inversions needed to calculate analytical

gradients, provided that the number of optimization responses is less than the number

of design variables. Since the topology simulations have very large number of mesh

elements, using an adjoint solver can reduce computational overhead for calculating

these gradients. Below, a detailed explanation is provided for the analytical gradients

of the responses w.r.t the optimization design variables.

Kinetic energy

The gradient of the kinetic energy as defined in equation (4.12) is:

dEkin

dρ̂e
=

∂Ekin

∂ρ̂e
+

∂Ekin

∂u

∂u

∂ρ̂e
(4.24)

where the partial derivative w.r.t the design variables, ∂Ekin

∂ρ̂
, can be written as:

∂Ekin

∂ρ̂e
=

1

2

∂I(ρ̂)

∂ρ̂e
ω2 (4.25)

and the partial derivatives of the moment of inertia using the definition in equa-

tion (4.13) is:

∂I

∂ρ̂e
= (pρ̂p−1

e ρ0)
⃦⃦⃦
x2
e,c + y2e,c

⃦⃦⃦
ve (4.26)

and the partial derivative w.r.t the solution variables, ∂Ekin

∂u
is zero, because of the

assumption of small deformations in the linear elastic model. As a result, the second

term is zero, and the response gradient is:

dEkin

dρ̂e
=

1

2
ω2

(︃
(pρ̂p−1

e ρ0)
⃦⃦⃦
x2
e,c + y2e,c

⃦⃦⃦
ve

)︃
(4.27)

Specific energy

The gradient of the specific energy (4.14) response w.r.t design densities is defined

as:

dekin
dρ̂e

=
1

2
ω2

(︂
m ∂I

∂ρ̂e
− I ∂m

∂ρ̂e

)︂
m2

(4.28)
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where the moment of inertia I and its derivative ∂I
∂ρ̂e

are calculated as shown previously

in equations (4.13),(4.26) respectively, and the partial derivative of flywheel mass

m(ρ̂) defined in equation (4.15) w.r.t the design densities can be defined as:

∂m(ρ̂)

∂ρ̂e
= (pρ̂p−1

e ρ0)ve (4.29)

Volume fraction constraint

The sensitivity of the volume fraction constraint, f(ρ̂), defined in Equation (4.17)

w.r.t design variables ρ̂ is:

df(ρ̂)

dρ̂e
=

1

αV0

N∑︂
i=1

δeivi =
ve
αV0

(4.30)

where δei is the Dirac function. The adjoint formulation is also not needed in this

case because the constraint f(ρ̂) only depends on the design variables ρ̂, and is

independent of the solution vector u.

P-norm aggregated stress constraint

The sensitivity of the P-norm aggregated relaxed stress constraint g(ρ̂,u) defined in

Equation (4.23) w.r.t design variables ρ̂e is:

dg(ρ̂,u)

dρ̂e
=

∂g

∂ρ̂e
+

∂g

∂u

∂u

∂ρ̂e
(4.31)

Here, the adjoint solver is used to avoid having to perform a large number of matrix

inversions. The sensitivity of the stress constraint using the adjoint approach, dg
dρ̂e

,

and the corresponding adjoint vectors, λ, are shown below. Detailed derivations for

these expressions are in Appendix D.2.

dg

dρ̂e
=

∂g

∂ρ̂e
+ λT

(︃
∂K

∂ρ̂e
u− ∂F

∂ρ̂e

)︃
λ = −(KT )−1 ∂g

∂u

(4.32)

where the partial derivative w.r.t the design variables ∂g
∂ρ̂e

is:

∂g

∂ρ̂e
=

1

σy

c

(︃
1

P
σ

1
P
−1

sum

)︃(︂
Pveσ

P−1
e

)︂(︂
qρ̂q−1

e σvm,e

)︂
, (4.33)
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the partial derivative of the local stiffness matrix defined in equation (4.5) w.r.t the

design variables is:
∂ke

ij

∂ρ̂e
= pρ̂p−1

e k0
ij, (4.34)

where k0
ij is the original local stiffness matrix, and the partial derivative of the local

rhs term defined in equation (4.9) w.r.t the design variables is:

∂f ei
∂ρ̂e

= pρ̂p−1
e f0i (4.35)

where f 0
i is the original local rhs vector. The partial derivative w.r.t the solution

variable ∂g
∂ue

is:

∂g

∂ue

=
1

σy

c

(︃
1

P
σ

1
P
−1

sum

)︃(︂
Pveσ

P−1
e

)︂(︃
ρ̂qe
∂σvm,e

∂ue

)︃
(4.36)

where σsum is defined as the term inside the brackets seen in Equation (4.20) as:

σsum =
∑︂
e

veσ
P
e (4.37)

and the term ∂σvm,e

∂ue
can be evaluated using the definition of the von Mises stress in

terms of the deviatoric stress. The von Mises stress at the centroid of element e is

defined as:

σvm,e =

√︂
σ
(c)
e Vσ

(c)
e (4.38)

where σ
(c)
e is the vector form (Voight notation) of the stress tensor computed at the

element centroid, and can be computed as usual in the post-processing step, i.e.,

σ
(c)
e = CBue and V is an auxiliary matrix, used to transform the centroid stress σ

(c)
e

to the deviatoric stress tensor. The 2D auxiliary matrix is defined as:

V =

⎡⎢⎢⎢⎢⎣
1 −1

2
0

−1
2

1 0

0 0 3

⎤⎥⎥⎥⎥⎦ (4.39)

Thus, the term ∂σvm,e

∂ue
is defined as:

∂σvm,e

∂ue

=
1

σvm,e

BTCVσ(c)
e (4.40)
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4.1.3 Filtering

4.1.3.1 Density filtering

In order to provide length scale control and to resolve numerical instabilities such

as checkerboard patterns, the density filtering approach proposed by Bruns and Tor-

torelli [85] is commonly used in the stress constrained topology optimization litera-

ture [86]. The filtered element densities are defined as:

ρ̃e =

∑︁
f∈Ne

wfvfρf∑︁
f∈Ne

wfvf
(4.41)

where the filtered density measure ρ̃e for mesh element e is defined by a weighted

distribution of the element densities over the neighbourhood Ne of the element. For

each element e, the filtering weight wf is based on the distance from the centroid of e

to the centroid of the neighboring element f , within a fixed radius re of the centroid

of e. The filter kernel is scaled by the element volume vf for unstructured meshes.

The filter weights for a linear decay or conical distribution are defined as:

wf =

(︄
1−

√︁
(xf − xe)2 + (yf − ye)2

re

)︄
H(1−

√︁
(xf − xe)2 + (yf − ye)2

re
) (4.42)

4.1.3.2 Projection filtering

The density filter can result in excessive blurring of the topology and an additional

volume preserving projection or Heaviside filter (applied sequentially after the den-

sity filter) is usually applied to overcome this difficulty. The projected densities are

expressed as:

ρ̂e =
tanh (βh) + tanh

(︁
β(ρ̃e − h)

)︁
tanh (βh) + tanh

(︁
β(1− h)

)︁ (4.43)

where β is the slope of the projection filter, which is continuously updated, h is the

filter threshold, ρe is the output of the density filter, and ρê is the projected density.

This filter and the continuous update scheme have been used previously in literature

to obtain discrete optimal designs. De Leon et al. [118] used this scheme and found
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that using a constant slope β took too long to converge, and on the other hand,

if β was updated too quickly, the solution could diverge. Thus the update interval

βupdate and maximum slope βmax were determined heuristically. A study by Li and

Khandelwal [99] determined that a 2x slope update in the initial iterations followed

by a linear slope update after the emergence of a solid structure ensured convergence

of the design. A similar continuous slope update strategy has also been used in

this study. Further, the projection filter is made volume-preserving to improve the

convergence of the design by preventing instabilities at slope update iterations. In

order to preserve the volume of the design, the volume fractions of the topology before

and after the projection filter must be equal, i.e.,
∑︁

ρ̂eve =
∑︁

ρ̃eve. This is achieved

by updating the filter threshold h at each optimization iteration using a 1D line search

to preserve the volume fraction from the density filtered design.

4.1.3.3 Filtered sensitivities

The overall sensitivities for each of the optimization responses ϕ w.r.t the optimization

design variables ρ are computed using the chain rule as:

dϕ

dρe
=

∂ϕ

∂ρ̂e

∂ρ̂e
∂ρ̃e

∂ρ̃e
∂ρe

(4.44)

where the gradient of responses w.r.t filtered densities ρẽ is:

∂ϕ

∂ρ̃e
=

∂ϕ

∂ρ̂e

∂ρ̂e
∂ρ̃e

=
∂ϕ

∂ρ̂e

(︄
β sech2

(︁
β(ρ̃e − h)

)︁
tanh (βh) + tanh

(︁
β(1− h)

)︁)︄ (4.45)

and the gradient of responses w.r.t unfiltered densities ρe is:

∂ϕ

∂ρe
=

∂ϕ

∂ρ̃e

∂ρ̃e
∂ρe

=
∑︂
f∈Ne

wfvf (
∂ϕ
∂ρ̃e

)

wfvf
(4.46)

4.1.4 Optimization

The gradient based MMA algorithm by Svanberg [119] is used to optimize the topol-

ogy. The l2 -norm of the KKT residual and the percentage of gray elements in the
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topology are used as convergence criteria in this study. The percentage gray elements

are calculated using the measure of discreteness [87], defined as:

Mnd =

N∑︁
e=1

4ρe(1− ρe)

N
× 100% (4.47)

4.1.5 Implementation

A block diagram of the topology optimization framework is shown in Figure 4.2, with

the main components described above, as well as the output from each stage. The

unstructured quadrilateral meshes used in the rotor topology optimization studies

performed in this study were generated using the open-source script based meshing

tool GMsh [115]. The numerical model, adjoint solver and filters were implemented in

C++ in the OpenFCST toolbox [112], which uses the open-source deal.ii finite element

libraries [113]. An open-source C++ MMA solver [120] based on the implementation

by Aage and Lazarov [121] was adapted for use in the implemented framework.

4.2 Results and discussion

4.2.1 Flywheel rotor model validation

The results obtained from the implemented linear elastic numerical model of the

flywheel with a SIMP power law modification to the equations were validated against

a 1D plane-stress axisymmetric flywheel model implemented in a previous work by

the authors [117], by comparing the stress distributions and deformation of the rotor

in the radial direction in a uniform thickness, solid disk. The parameters used in these

simulations can be found in Table 4.1. Figure 4.3 plots the radial deformation ur as

well as radial stress σrr and hoop stress σθθ from the analytical and 2D numerical

rotor models, which shows a good agreement between the results. This numerical

model is used in the remaining topology optimization simulations.
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- displacement

- optimization response

Figure 4.2: Flowchart of the rotor topology optimization framework
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(a)                                                  (b)                                                   (c)

Figure 4.3: Validation of 2D plane stress numerical model of the rotor by comparison
to 1D solutions of a) radial deformation ur, b) radial stress σrr, and c) circumferential
stress σθθ

Table 4.1: Parameters used to validate 2D plane stress numerical flywheel model
using 1D solution

Parameter Value

Inner radius (ri), m 0.03

Outer radius (ro), m 0.2

Fit pressure (Pfit), MPa 55

Young’s modulus (E), GPa 210

Poisson’s ratio (ν) 0.3

Density, kg/m3 7850

Speed (ω), rpm 5000

FEM solver UMFPACK
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(a) (b)

Figure 4.4: Validation of rotor topology optimization framework, a) literature design
(reproduced from ref [68] with permission) and b) simulated design

4.2.2 Benchmarking of the topology framework

In order to ensure that the topology optimization framework was implemented cor-

rectly, the optimal rotor topology problem presented by Jiang and Wu [68] was re-

produced. The kinetic energy of the rotor was maximized subject to maximum stress

and volume fraction constraints. Finite difference tests were used to validate the

analytical gradients of the optimization responses used in this study by comparison

to numerically computed gradients, which can be found in Appendix D.3. Figure 4.4

and Table 4.2 show that there is good agreement between the literature and simulated

optimal topologies, although the maximum stress is seen to be slightly higher in the

simulated design. This is because the literature result was obtained after the extrac-

tion of a smooth final design from the optimal topology at post-processing. Moreover,

the maximum stress developed in the uniform thickness rotor is also higher in the sim-

ulated design compared to reference [68], indicating differences in the computation

of the stress measures in the reference and simulated designs. This, however, could

not be verified as the reference article did not specify how the stress constraint was

computed. Details about the simulation parameters used in the validation simula-

tions, rotor mesh and convergence plots of the optimization responses can be found

in Appendix D.4.
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Table 4.2: Comparison of literature and simulated rotor designs for constant thickness
and topology optimized designs

Study Rotor design Ekin, J m, kg ekin, J/kg σmax, MPa ∆ekin
e0kin

, % *

Literature [68]
Uniform thickness 139872 15.23 9184 146 -

Optimal topology 113534 10.82 10493 200 +14.3

Simulated
Uniform thickness 140020 15.23 9194 162 -

Optimal topology 111062 10.55 10527 213 +14.5

* e0kin is the specific energy of uniform thickness rotor

4.2.3 Rotor topology optimization for kinetic energy maxi-
mization under volume fraction and stress constraints

Optimal rotor topologies were designed for the FESS demonstrator experimental

setup in reference [108] using the optimization formulations described in Equation (4.1).

The parameters used to perform this topology optimization can be found in Table 4.3.

The optimal rotor was designed for an operating speed of 5,000 rpm, using an isotropic

material, 4340-Steel. Rotational symmetry was used to reduce the size of the com-

putational domain. Figure 4.5 shows the optimal topology and stress distribution in

the rotor, which was optimized for maximum energy capacity, with constraints on the

maximum stress (65 MPa) and volume fraction (70%). The convergence histories of

the optimization objective and constraints and the gray regions in the optimization

domain can be seen in Figure 4.6. The optimal design satisfies the volume and stress

constraints, both of which are active. The optimal topology design as seen in Ta-

ble 4.4 improves the specific energy of the uniform thickness disk flywheel by 12.79%,

by removing material from the region between the shaft and the rim and forming

connecting spokes. The influence of several FESS design parameters on the optimal

rotor topology and its energy capacity is studied in the next sections.

The mesh independence of the optimal solutions obtained in the study was verified

by using a different mesh refinement level for topology optimization. Figure 4.7

compares the optimal designs obtained with different mesh refinement levels of 1.5
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Table 4.3: Topology optimization parameters for kinetic energy maximization of fly-
wheel rotor using 2D plane stress numerical model

Parameter set Parameter Value

Material Properties

Young’s modulus (E), GPa 210

Poisson’s ratio (ν) 0.3

Solid density (ρ), kg/m3 7850

Flywheel model

Rotor height, m 0.05

Shaft boundary condition Neumann (press-fit)

Angular velocity (ω), rpm 5000

Inner radius (rshaft), m 0.03

Outer radius (rout), m 0.2

Fixed rims thickness (trim), m 0.01

SIMP parameters

penalty (p) 3

ρ0 0.55

Emin, GPa 1

MMA parameters

a 0.0

c 1000.0

d 0.0

γ(+) 1.2

γ(−) 0.7

move limit 0.03

Density filter
filter radius rfilt, m 0.035

distribution linear decay / conical

Projection filter

threshold (h) 1D line search

initial slope (β0) 1

maximum slope (βmax) 100

update interval 25

Mesh parameters
Rotational symmetry (N) 6

elements 11988

Volume fraction constraint Maximum volume fraction (α), % 70

Stress constraint aggregation

σy, MPa 65

P-norm (P ) 8.0

Stress relaxation (q) 0.5
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(a)                                        (b)                                             (c) 

Mnd = 2.48% 

Figure 4.5: a) Optimal topology, b) full rotor topology, and c) stress distribution in
the topology optimized energy storage flywheel

(a) (b)

(c) (d)

Figure 4.6: Convergence histories of a) kinetic energy, b) P-norm stress, c) volume
fraction, and d) % gray region in the optimal energy storage flywheel topology

113



Table 4.4: Comparison of original uniform thickness disk-type and optimal topology
flywheels

Rotor design Ekin, J m, kg ekin, J/kg
∆ekin
e0kin

x100, % *

Uniform thickness 135144.2 48.21 2803.05 0

Optimal topology 105851.4 33.48 3161.63 +12.79

* e0kin is the specific energy of uniform thickness rotor

mm, 3.0 mm and 6.0 mm. Good agreement was observed between the solutions, and

therefore it can be concluded that the optimal solution is mesh independent.

(a)                                           (b)                                      (c)

Figure 4.7: Optimal rotor topology obtained with mesh element sizes of a) 6 mm
(coarse mesh), b) 3 mm (medium mesh), and b) 1.5 mm (fine mesh)

The optimal rotor design and the corresponding stress distribution at a constant

operating speed was unaffected by the choice of inner radius ri, which can be an

important consideration for manufacturing of the flywheel, especially for assembly

with the central shaft. This is because, the necessary fit pressure Pfit, which is

used as a boundary condition in the numerical model used in this study, can only

be achieved by the correct choice of shaft-rotor interference. As the shaft radius is

increased, a larger interference is necessary to generate the same fit pressure. In this

case, since the topology is unaffected by the bore radius, the designer is free to choose

the value of ri that can be manufactured using available tools. Detailed results from

the parametric study to investigate the influence of bore radius on the optimal rotor

design can be found in Appendix D.5.
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In short duration energy storage applications, frequent charge-discharge cycles re-

sult in frequent acceleration and deceleration of the FESS, which could also affect the

overall stress distribution in the flywheel. Tsai and Cheng [81] used tangential loads

at eight equidistant points along the outer rim of the rotor to approximate acceler-

ation induced loads in the quasi-static numerical model of the rotor. However, the

results obtained using this approach could not be validated against the known ana-

lytical solution for acceleration induced stresses in a constant thickness rotor [40]. So

a different approach was used in this study to investigate the influence of acceleration

or deceleration related stresses on the FESS rotor, as described in equation (4.10).

The stresses and deformations in the rotor using the additional acceleration load were

in agreement with the analytical solution [40].

The stress distributions in the uniform thickness rotor and the optimal topology

were investigated by considering different time intervals for the flywheel to go from

its rated speed to standstill, as shown in Table 4.5. For a ramp-down time of 1 s or

slower, the acceleration load did not significantly increase the overall stress in either

the uniform thickness rotor or the optimized topology rotor. However, for very short

ramp-down times (< 0.1 s), the acceleration load accounted for 19.6% and 32.8%

increases in the predicted von Mises stresses over constant speed operation in the two

rotor designs. While the highest shear stresses in the uniform rotor were developed

at the interface to the central shaft, the optimized topology had the highest shear

stress concentrations near the spokes, as seen in Figure 4.8. Thus, the influence

of acceleration loads is most likely not important in most FESS applications unless

the FESS is required to have sub-second charge discharge cycles, which might only

be realistic for extreme scenarios and would require a large electrical machine. The

acceleration-related stresses are also influenced by the ratio of rotor radii ri
ro

[40], and

are known to increase significantly as this ratio decreases. Thus, a smaller bore size

can negatively affect the design if high acceleration loads are expected.
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Table 4.5: Comparison of stresses developed in the original uniform thickness disk-
type and optimal topology flywheels under acceleration loads

Rotor design ω̇, rad/s2 ∆t, s σmax
vm , MPa σrθ, MPa

Uniform thickness
0 - 45.74 1.56

523.59 1.0 45.86 3.27

5235.9 0.1 54.70 18.66

Optimal topology
0 - 65.56 42.26

523.59 1.0 67.24 40.90

5235.9 0.1 87.07 56.15

(a)                                                  (b) 

(c)                                                 (d)       

Figure 4.8: Shear stress distributions σrθ in constant speed operation of uniform
thickness rotors with a) ω̇=0 rad/s2, b) ω̇=5235.9 rad/s2, and optimal topology rotors
with c) ω̇=0 rad/s2, d) ω̇=5235.9 rad/s2

116



4.2.3.1 Effect of maximum stress limit

The effect of the maximum stress limit used in the global stress constraint on the

optimal topology was studied by varying the upper limit on the stress constraint

between 55 and 85 MPa. Figure 4.9 compares the optimal rotor topologies and

corresponding stress distributions obtained at various maximum stress values. As the

maximum stress limit was increased from 55 to 65 and 75 MPa, the shape of the holes

or features in the rotor topology remained the same, but they moved inwards towards

the central shaft. This caused the moment of inertia and consequently the kinetic

energy of the rotor to increase, as more material was distributed towards the outer

rim of the rotor. Since the holes moved inwards, the thickness of the spokes reduced,

which resulted in a higher peak stresses. This is consistent with the finding by Jiang

and Wu [68], where they determined that an increase in the maximum allowable stress

resulted in material being redistributed towards the outer rim, and that the highest

stresses always occurred in the ribs or spokes. However, the improvement in energy

capacity peaked at a maximum stress limit of 75 MPa, and then reduced slightly

for 85 MPa, as seen in Table 4.6. Thus, beyond a certain limit, an increase in the

maximum stress limit did not significantly improve the specific energy of the design.

This is because both the operating speed and the prescribed volume fraction were

constrained or fixed, so it was not possible to achieve a rotor design with a higher

specific energy by moving the holes any closer to the center. Also, as the maximum

stress was increased, the optimizer could not find a physically viable design, since it

was able to meet the stress criterion with a trivial solution of a detached rim without

any spokes, which has the highest kinetic energy possible.

4.2.3.2 Effect of maximum volume fraction

The effect of volume fraction on the optimal topology was studied by varying the

upper limit on the volume fraction constraint between 60 and 80%. Figure 4.10

compares the optimal rotor topologies and corresponding stress distributions obtained
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(a)                             (b)                           (c)                             (d)        

Mnd = 2.00% Mnd = 2.96% Mnd = 2.48% Mnd = 6.12% 

Figure 4.9: Optimal rotor topologies and corresponding stress distributions obtained
at different maximum stresses: a) 55 MPa, b) 65 MPa, c) 75 MPa, and d) 85 MPa

Table 4.6: Comparison of optimal rotor topologies for various maximum stresses

Design σy, MPa Ekin, J m, kg ekin, J/kg σ̃pn, MPa V
V0

∆ekin
e0kin

, % *

Uniform - 135,144 48.21 2803.1 48.76 1.0 0

Optimal

55 93,590 33.79 2769.7 54.92 0.709 -1.19

65 105,851 33.48 3161.6 64.22 0.699 +12.79

75 108,692 33.19 3274.8 73.52 0.699 +16.83

85 104,806 32.62 3213.1 86.76 0.701 +14.63

* e0kin is the specific energy of uniform thickness rotor

118



(a)                           (b)                         (c)                            (d)                           (e)

Mnd = 2.46% Mnd = 2.48% Mnd = 1.54% Mnd = 2.62% Mnd = 2.09% 

Figure 4.10: Optimal rotor topologies and corresponding stress distributions obtained
at different prescribed volume fractions of a) 60%, b) 65%, c) 70%, d) 75% and e)
80%

at various limiting values of volume fraction. It is seen that the general shape of the

features does not change much as the volume fraction is increased, and material is

added mainly by increasing the thickness of the outer rim and spokes connecting the

inner shaft to the outer rim. Table 4.7 compares the energy capacities of the different

designs, which shows that there is an optimal volume fraction of 70% which provides

the best improvement in specific energy of the design. This seems to indicate that

the imposition of a volume fraction constraint unnecessarily reduces the design space,

preventing the search for a truly optimal design. Given that in many applications,

such as flywheels used for grid stability and transportation, the energy per unit cost or

unit mass is the most critical parameter and not a specific volume fraction, a specific

energy maximization formulation is clearly better suited for design, while the volume

fraction is allowed to vary.

4.2.4 Rotor topology optimization for maximum specific en-
ergy under stress constraints

It is evident from the parametric studies that investigated the effects of prescribed

volume fraction on the optimal topology and energy capacity, that it does not make

sense to impose a volume fraction constraint while trying to maximize the kinetic
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Table 4.7: Comparison of optimal rotor topologies for various prescribed volume
fractions

Design α, % Ekin, J m, kg ekin, J/kg σ̃pn, MPa V
V0

∆ekin
e0kin

, % *

Uniform - 135,144 48.21 2803.1 48.76 1.0 0

Optimal

60 86,897 28.43 3056.51 64.48 0.599 +9.04

65 97,599 31.06 3142.4 65.97 0.650 +12.10

70 105,851 33.48 3161.6 64.22 0.699 +12.79

75 107,119 35.64 3005.8 63.67 0.749 +7.23

80 114,240 38.52 2965.9 64.07 0.807 +5.81

* e0kin is the specific energy of uniform thickness rotor

energy with stress constraints, because some volume fractions are better than others

at producing rotor designs with the best energy density. Thus, the volume fraction

constraint was removed from the original formulation and the specific energy was

maximized instead, thereby allowing the optimizer to search a larger design space.

The specific energy maximization approach effectively combined two objectives,

i.e maximizing the kinetic energy and minimizing the mass of the rotor. In order to

understand how the objectives, i.e., specific energy and kinetic energy were influenced

by the design densities, a sweep of the two functions with respect to the density of a

single mesh element was plotted, as seen in Figure 4.11. A solid uniform disk rotor was

used in this study, where the density of a single mesh element was varied. The element

was chosen at two different locations along the radius, as seen in Figure 4.11(a). The

kinetic energy had an increasing trend for both locations along the radius, however

it was more sensitive to the mesh element that was near the outer rim. On the other

hand, the specific energy had different trends for the two elements. Either removing

material from the inner regions or adding material at the outer region was seen to

improve the specific energy. Note that the magnitude of the variations in the two

objective functions are small because these were based on density variations for a
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Table 4.8: Comparison of optimal topologies at 5000 rpm, obtained with kinetic
energy and specific energy formulations

Formulation Ekin, J m, kg ekin, J/kg σ̃pn, MPa V
V0

∆ekin
e0kin

, % * Iterations Time, s

Eq. (4.1) 105,851 33.48 3161.6 64.22 0.699 +12.79 151 615

Eq. (4.2) 101,018 31.13 3244.8 64.92 0.646 +15.76 401 1119

* e0kin is the specific energy of uniform thickness rotor

single mesh element.

(a)                                                     (b)                                                      (c) 

Figure 4.11: a) Location of mesh elements used for density sweep, and variation of
b) specific energy and c) kinetic energy with density of the chosen mesh element

Figure 4.12 (a) and (d) depict the optimal topologies and corresponding rotor

stress distributions obtained using the kinetic energy and specific energy maximization

formulations respectively described in equations (4.1) and (4.2), with an operating

speed of 5000 rpm, rotational symmetry of 6 and maximum stress limit of 65 MPa.

For the kinetic energy formulation, the volume fraction constraint was set to 0.7,

since this volume fraction resulted in the best specific energy improvement. Table 4.8

compares the energy ratings of the two designs. The newly proposed optimization

formulation in equation (4.2) was able to achieve a higher specific energy by changing

the volume fraction of the material. This was an improvement over the kinetic energy

formulation, where the choice of volume fraction constraint limit was artificial and

based on a parametric study.

Since the specific energy formulation searched a larger design space, it was more
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Figure 4.12: Stress distribution in the optimal rotor topology at 5000 rpm using steel
with a) max Ekin, d) max ekin, formulations, using aluminium with b) max Ekin, e)
max ekin formulations, and using PEEK with c) max Ekin, f) max ekin formulations
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challenging and required more iterations to converge. The stress relaxation parameter

q had to be increased from the original value of 0.5 to 1.0 in the initial iterations,

and the MMA asymptotes’ increment and decrement limits (γ(+), γ(−)) and solver

move limit also had to be decreased to allow the problem to converge. Finally, a

volume preserving projection filter was also needed to converge to an optimal design

and prevent large variations in the maximum stress constraint during optimization

iterations. The volume preserving approach ensured that the volume of the design

before and after the projection filter was the same by varying the threshold using a 1D

line search. Figure 4.13 compares the convergence of the specific energy formulation

using the original Heaviside filter with a constant threshold to the volume preserving

Heaviside filter.

Despite these measures, the discreteness measure Mnd convergence tolerance of 5%

that was used in the kinetic energy formulations could not always be achieved with

the specific energy formulations, as seen in Figure 4.12. As a result, slightly larger

convergence tolerances were used in the specific energy based rotor designs. The effect

of visible gray regions in the specific energy formulation was further investigated by

using body-fitted meshes generated by extracting the solid regions of the domain to

analyze the optimal designs. In designs where the geometry was extracted using a

density threshold of 50%, up to 23% increase in the peak stress was observed, whereas

choosing a higher density threshold of 90% increased the peak stress in the designs

by up to 400%. The details of this study are presented in Appendix D.6 and further

justify the need for convergence to a fully discrete design. In the future, the design

discreteness and convergence could be improved with the use of a robust approach

using a combination of eroded, blueprint and dilated designs, albeit at the cost of an

increased number of FEM computations per optimization iteration [122]. In addition

to the robust formulation, the use of an Augmented Lagrangian formulation for the

treatment of stress constraints in a localized manner [123] could also improve the

stress distribution and convergence of designs with the specific energy formulation.
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(a)                                                                        (b)          

@ iter 100 @ iter 100

@ iter 200

@ iter 524

@ iter 401

@ iter 200

Figure 4.13: Convergence of the topology based on the specific energy formulation
using a Heaviside filter with a) fixed threshold, and b) volume preserving threshold
obtained with a line search

4.2.4.1 Effect of rotor material

To understand the influence of choice of rotor material on the optimal topology, both

the kinetic and specific energy formulations were used to determine optimal rotor

designs using two additional materials, i.e, aluminium-2024 (E = 73 GPa, ν = 0.33,

ρ = 2800 kg/m3), which was used by for flywheel design by Tsai and Cheng [81] and

polyether ether ketone (PEEK) (E = 4.5 GPa, ν = 0.38, ρ = 1310 kg/m3) which

was used in the study by Lottes et al. [82]. Rotational symmetry with N = 6 was

used, and the original operating speed of 5000 rpm was chosen for this study. The

maximum allowable stress was different for each material, to account for the difference

in their properties (E0, ρ, ν, σy). The results of this study, seen in Table 4.9 show

that even though the kinetic energy and mass of the designs are very different, the

optimal topologies obtained with steel and aluminium are nearly identical when using

the same formulation, which could be a result of the scaling of their properties (E,

ρ). For the PEEK rotor topology, where E, ρ do not scale identically, the design

shows a different volume fraction and topology as well as a smaller improvement in

the specific energy over the uniform thickness disk.

For all three materials, the designs obtained using the specific energy formulation

had rotor spokes with a slight bulge in the middle, which was not observed in the
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Table 4.9: Comparison of optimal topologies for different rotor materials at 5000 rpm

Material Formulation Ekin, J m, kg ekin, J/kg σ̃pn, MPa V
V0

∆ekin
e0kin

, % *

Steel
Uniform disk 135,144 48.21 2803.1 48.76 1.0 0

Eq. (4.1) 105,851 33.48 3161.6 64.22 0.699 +12.79

Eq. (4.2) 101,018 31.13 3244.8 64.92 0.646 +15.76

Aluminium
Uniform disk 48,204 17.19 2803.1 17.80 1.0 0

Eq. (4.1) 37,120 11.72 3166.2 22.96 0.699 +12.95

Eq. (4.2) 36,119 11.18 3230.7 23.33 0.650 +15.25

PEEK
Uniform disk 22,548 8.04 2803.1 7.14 1.0 0

Eq. (4.1) 16,745 5.486 3052.19 9.95 0.699 +8.9

Eq. (4.2) 17,742 5.66 3135.1 9.98 0.703 +11.8

* e0kin is the specific energy of uniform thickness rotor

kinetic energy maximized designs. One possible explanation for this difference is that

specific energy formulation is effectively a multi-objective optimization problem that

tries to simultaneously maximize the kinetic energy and minimize the mass of the

rotor by maximizing the energy to mass ratio. The kinetic energy of the rotor is more

sensitive to mesh element densities that are furthest away from the central axis, while

the mass or volume fraction is independent of the distance from the central axis, and

the highest stresses are expected to develop around the thin beams or holes. The

bulges in the rotor spokes observed in the specific energy formulation help to improve

the specific energy of the design by putting material in areas with a higher moment of

inertia, which do not have high stresses and by searching a larger design space than

the kinetic energy formulation.

4.2.4.2 Effect of operating speed

The effect of the operating speed on the optimal topology was studied by varying the

angular velocity to different values between 4000 and 6000 rpm. Figure 4.14 compares

the optimal topologies and corresponding rotor stress distributions obtained at various
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speeds, using both kinetic (maximum volume fraction = 70%)) and specific energy

formulations. Table 4.10 compares the energy capacities of the two formulations with

the constant thickness rotor operated at the corresponding speed. The maximum

stresses developed in the constant thickness rotor, σ̃pn, are highest at low speeds,

because of the interference fitting pressure applied at the interface to the shaft. As

the speed increases, σ̃pn reaches its lowest value of 47.28 MPa at a speed of 5500 rpm,

before increasing at the higher speed of 6000 rpm. Thus, the pressure at the shaft-

rotor assembly interface plays an important role in determining the energy storage

characteristics at a specified speed.

At low speeds, since the stresses developed due to the centrifugal load were not

too high, the shape of the holes between the rotor spokes was more elongated in both

optimization formulations, in order to move more mass towards the outer rim thereby

increasing the kinetic energy. As the operating speed increased, more material was

added closer to the central shaft, and the holes in the topology moved outward to

try and satisfy the stress constraint. This was accompanied by an increase in the

specific energy of the optimal topology rotors compared to the uniform thickness

rotor, and this improvement was seen to be the highest for ω=5000 rpm. However,

there was a limiting speed, beyond which the kinetic energy formulation could not

find feasible solutions that satisfied both stress and volume fraction constraint. For

instance, the optimal topology rotor designed for 6000 rpm had a 5.3% decrease in

specific energy over the constant thickness rotor operated at the same speed, and

the volume fraction exceeded the prescribed value of 70%. Using the specific energy

formulation, the volume fraction was automatically adjusted to be higher than 70% for

low and high speeds, thereby achieving a truly optimal design. Overall, the specific

energy formulation was able to achieve better improvements in the specific energy

because it could vary the volume fraction to suit the chosen operating speed and

stress distribution.
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(a)                           (b)                           (c)                           (d)                           (e)

(f)                           (g)                           (h)                           (i)                           (j)

Mnd = 3.91% Mnd = 2.48% Mnd = 1.93% Mnd = 7.30% Mnd = 2.07% 

Mnd = 4.84% Mnd = 8.12% Mnd = 4.97% Mnd = 4.95% Mnd = 6.00% 

Figure 4.14: Optimal rotor topology and corresponding stress distributions obtained
with kinetic energy and specific energy formulations respectively at different operating
speeds: a),f) 4000 rpm, b),g) 4500 rpm, c),h) 5000 rpm, d),i) 5500 rpm and e),j) 6000
rpm
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Table 4.10: Comparison of optimal rotor topologies for various operating speeds

Speed ω, rpm Design Ekin, J m, kg ekin, J/kg σ̃pn, MPa V
V0

∆ekin
e0kin

, % 1

4000

Uniform 86,495 48.21 1794.0 60.24 1.0 0

Eq. (4.1) 63,592 32.97 1928.8 64.57 0.699 +7.50

Eq. (4.2) 72,548 36.36 1995.37 64.90 0.77 +11.22

4500

Uniform 109,471 48.21 2270.5 53.66 1.0 0

Eq. (4.1) 82,917 33.34 2487.0 64.84 0.699 +9.53

Eq. (4.2) 87,036 34.37 2532.04 64.96 0.73 +11.52

5000

Uniform 135,144 48.21 2803.1 48.76 1.0 0

Eq. (4.1) 105,851 33.48 3161.6 64.22 0.699 +12.79

Eq. (4.2) 101,018 31.13 3244.8 64.92 0.646 +15.76

5500

Uniform 163,530 48.21 3391.8 47.28 1.0 0

Eq. (4.1) 116,511 33.34 3494.6 63.94 0.699 +3.03

Eq. (4.2) 128,825 36.14 3565.52 65.37 0.77 +5.12

6000

Uniform 194,615 48.21 4036.5 50.76 1.0 0

Eq. (4.1) 135,924 35.56 3822.4 64.04 0.765 2 -5.3

Eq. (4.2) 150,748 37.33 4037.49 64.04 0.795 +0.0

1 e0kin is the specific energy of uniform thickness rotor 2 Volume constraint violated
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4.2.4.3 Effect of rotational symmetry

Rotational symmetry was used to reduce the optimization domain size from the orig-

inal disc shape. For example, a symmetry N=5 corresponds to a circular section of

360
N

= 72◦. The effect of using different rotor meshes obtained with different circu-

lar symmetries on the optimal topology was studied by varying N between 5 and

9. Figure 4.15 compares the optimal rotor designs and corresponding stress distribu-

tions obtained using both kinetic and specific energy optimization formulations with

various circular sections and Table 4.11 compares the energy capacity improvements

offered by the different designs.

The use of rotational symmetry of 6 or 7 resulted in the best design improvement

when using the kinetic energy formulation. On the other hand, the specific energy

formulation was able to achieve higher overall design improvements for all circular

symmetries. While there is relatively little variation in the energy capacity of the de-

signs, this parameter can be relevant for manufacturing and is thus useful to consider

while designing the optimal topology.

4.3 Summary

This work explored several topology optimization formulations to design optimal en-

ergy storage flywheels for grid-scale FESS. To solve the different formulations, a den-

sity based topology optimization [124] framework was implemented with the SIMP

power law to interpolate the material properties at intermediate densities. A density

filter [85] was used for length scale control and to prevent checkerboard patterns in the

final design, followed by a Heaviside projection filter [122] with a continuous slope up-

date scheme, which was used to converge to a discrete topology. The threshold of the

projection filter was determined by a 1D line search, to ensure stability and prevent

large changes in the volume fraction at slope update intervals. The gradient-based

MMA algorithm by Svanberg [119] was used to optimize the rotor topology. An ad-
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(a)                          (b)                          (c)                         (d)                          (e)

(f)                         (g)                          (h)                         (i)                          (j)

Mnd = 2.56% Mnd = 3.30% Mnd = 2.48% Mnd = 2.87% Mnd = 6.20% 

Mnd = 6.07% Mnd = 6.35% Mnd = 8.12% Mnd = 6.39% Mnd = 4.5% 

Figure 4.15: Optimal rotor topologies and corresponding stress distributions obtained
with kinetic energy and specific energy formulations respectively using different cir-
cular symmetries: a),f) N=5, b),g) N=6, c),h) N=7, d),i) N=8, and e),j) N=9
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Table 4.11: Comparison of optimal rotor topologies for various circular symmetries

Symmetry N Design Ekin, J m, kg ekin, J/kg σ̃pn, MPa V
V0

∆ekin
e0kin

, % *

- Uniform 135,144 48.21 2803.1 48.76 1.0 0

5
Eq. (4.1) 99,651 33.23 2998.72 64.85 0.699 +6.98

Eq. (4.2) 104,347 31.80 3281.01 64.94 0.669 +17.05

6
Eq. (4.1) 105,851 33.48 3161.6 64.22 0.699 +12.79

Eq. (4.2) 101,018 31.13 3244.8 64.92 0.646 +15.76

7
Eq. (4.1) 104,795 33.09 3166.8 64.96 0.699 +12.97

Eq. (4.2) 100,070 30.99 3228.62 65.02 0.668 +15.18

8
Eq. (4.1) 101,430 33.19 3055.5 63.94 0.699 +9.0

Eq. (4.2) 109,624 34.84 3146.41 65.33 0.735 +12.24

9
Eq. (4.1) 100,589 32.62 3084.0 67.49 0.70 +10.02

Eq. (4.2) 102,841 32.03 3210.20 65.72 0.683 +14.5

* e0kin is the specific energy of uniform thickness rotor

joint approach was used to determine the analytical sensitivities of the optimization

responses.

Using a maximum kinetic energy topology optimization formulation with fixed

volume fraction and stress constraints, a FESS rotor with 12% improvement in the

specific energy over a uniform rotor was obtained by reducing 30% of the mass. When

the maximum stress limit was varied without changing the operating speed or volume

fraction limits, it was seen that the shape of the holes between the spokes remained

more or less similar, but the position along the radius changed. As the maximum

stress limit was increased, the holes in the rotor moved inwards and resulted in an

improvement in the moment of inertia by moving material towards the outer rim of

the rotor. The use of very large maximum stresses resulted in a trivial detached-

rim design, since the stress constraint could be satisfied without creating connecting

spokes or ribs between the shaft and the outer rim. A parametric study on volume

fraction showed the constraint value limited the design space and led to sub-optimal
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designs. Therefore, a novel specific energy maximization formulation with a stress

constraint was proposed and shown to allow the optimizer to determine the ideal

volume fraction which led to the best specific energy improvement, however, at the

cost of introducing more intermediate densities in the optimized designs.

The effect of other relevant FESS design parameters, such as rotor material, op-

erating speed, and rotational symmetry, on the optimal designs obtained with both

kinetic and specific energy formulations was investigated. The design obtained with

two different rotor material, aluminium and PEEK, was compared with the original

steel rotor designed with kinetic and specific energy formulations. In general, while

the energy content and mass of the rotors that used steel and aluminium were differ-

ent, the specific energy and optimal topology were nearly identical. The PEEK rotor

had a slightly different topology and a higher volume fraction, which was attributed

to the fact that the PEEK material properties E and ρ scaled differently compared

to steel and aluminium.

At low speeds, the optimal topologies using both formulations had elongated holes

and the material was distributed towards the outer rim to achieve a higher moment

of inertia. When the operating speed was increased, the material was redistributed

in the area surrounding the central shaft and the holes between the spokes became

more rounded. The specific energy formulation achieved better design improvements

than the kinetic energy formulation by using higher volume fractions at low and high

speeds, and lower volume fractions at intermediate speeds. The interaction between

the stresses developed in the rotor due to the interference fit shaft-rotor assembly

and the centrifugal loads was not trivial, and it influenced the optimal topology and

volume fractions at different speeds.

Different circular symmetries were used to reduce the size of the computational

domain, while keeping the operating speed, volume fraction and stress limits con-

stant. The specific energy formulation was able to use different volume fractions and

improve the energy capacity of the rotor to a similar extent, so the choice of rotational
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symmetry could be based mainly on manufacturing or other considerations.

The acceleration related stresses were seen to be only significant when considering

short duration charge-discharge cycles of less than 0.1 s, which are unlikely to be a

design requirement in FESS applications unless very short ramp times are required to

provide storage for fault protection and frequency regulation. If needed, the inclusion

of acceleration loads in the topology optimization problem might help to achieve

designs that can better handle these stresses as well.
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Chapter 5

Augmented Lagrangian approach
for locally stress constrained rotor
topology optimization

Preface

The 2D topology optimization studies discussed previously in Chapter 4 used a P-

norm aggregated global stress measure in the optimization formulation. It was seen

that the use of this global stress constraint allowed the optimizer to find feasible

designs that satisfied the stress constraints, but the obtained designs also had some

stress concentrations in bottleneck regions, which have potential for improvement

by using some means to improve the overall stress distribution. The Augmented

Lagrangian approach can be used to enforce stress constraints locally in the mesh

elements, thereby allowing greater control over the stresses in localized parts of the

rotor topology. This chapter discusses a new topology optimization framework based

on the Augmented Lagrangian approach, and compares the results obtained using

this method with the previous formulations that used global stress constraints.

5.1 Methodology

The overall methodology for topology optimization described in Chapter 4 was uti-

lized in this study, including the proposed SIMP modifications to the numerical model
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in Section 4.1.1, and the density and projection (Heaviside) filters described in Sec-

tion 4.1.3. The optimization formulation, including objectives and local stress con-

straints, and the adjoint sensitivity analysis are discussed below.

5.1.1 Optimization formulation

While the specific energy formulation proposed in Chapter 4 was effective, it also had

convergence issues and remnant gray regions in the optimized designs. On the other

hand, the kinetic energy maximization approach with a volume fraction constraint

imposed an artificial volume constraint that resulted in sub-optimal designs with low

specific energy. Thus, this chapter uses a multi-objective formulation with local stress

constraints to design optimal energy storage rotors, where the kinetic energy of the

flywheel rotor is maximized and the total mass of the rotor is minimized simultane-

ously, subject to local stress constraints. While the multi-objective formulation also

introduces an artificial weight on the two objective, i.e., kinetic energy and mass, it

allows for the creation of a Pareto front which can be used to select the best rotor

based on design requirements. The optimization problem is formulated as:

max Ekin(ρ̂),min m(ρ̂)

w.r.t ρ̂ = {ρ̂1, ρ̂2, ..., ρ̂N}

s.t. KU = F

g
(k)
j (ρ̂,u) =

σj
i (ρ̂,u)

σy

− 1.0 ≤ 0 ∀ j = 1, 2, ...N

0.0 ≤ ρ̂e ≤ 1.0

(5.1)

where E(ρ̂) is the kinetic energy of the rotor,m(ρ̂) is the total rotor mass, and gj(ρ̂,u)

is the von Mises stress constraint at the jth mesh element, which checks for material

failure, σj
i (ρ̂,u) is the relaxed von Mises stress at element j and σy is the maximum

allowable stress at mesh elements. Here ρ̂ = {ρ̂1, ρ̂2, ..., ρ̂N} are the filtered and

projected normalized design densities which are used to solve the numerical model.

As the above problem has as many stress constraints as the number of mesh ele-

ments, N , the use of the adjoint solver to calculate sensitivities alone cannot suffi-
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ciently reduce the computational cost of the problem, since the adjoint solver requires

as many matrix inversions as the number of constraints. As a result, the Augmented

Lagrangian (AL) formulation is used to solve the local stress constrained rotor topol-

ogy problem.

5.1.2 Augmented Lagrangian function

This approach combines the objective function and all the stress constraints in the

original formulation from Equation (5.1) into a single Augmented Lagrangian function

which can be treated as an unconstrained optimization problem [103]:

minimize
ρ̂

Lµ(k)(ρ̂,u) = f (k)(ρ̂) +
1

N

N∑︂
j=1

[︄
λ
(k)
j h

(k)
j (ρ̂,u) +

µ(k)

2
h
(k)
j (ρ̂,u)2

]︄
(5.2)

where f (k)(ρ̂) is the objective function evaluated at iteration k, and h
(k)
j (ρ̂,u) is the

local stress constraint at mesh element j, λ
(k)
j is the Lagrange multiplier correspond-

ing to the jth stress constraint and µ(k) is the penalty coefficient used to convert

the inequality constrained formulation into an unconstrained form. In the AL ap-

proach, the estimate of the Lagrange multipliers λ
(k)
j improves with each iteration,

thus helping to avoid a very large increase in the penalty µ(k) with iterations, which

can potentially make the problem ill-conditioned.

The unconstrained Lagrange function is minimized at each iteration of the AL

method using the MMA algorithm. Once the MMA solver generates a new design

guess, the Lagrange multipliers λ(k) and penalty function µ(k) are updated using the

rule [103],

λ
(k+1)
j = λ

(k)
j + µ(k)h

(k)
j

µ(k+1) = min
(︂
αµ(k), µmax

)︂ (5.3)

where α is the penalty multiplier and µmax is the maximum penalty. The convergence

of the problem is known to be sensitive to the choice of α, µmax and the initial penalty

µ(0), so a calibration study is necessary to determine these parameters [103, 104, 123]
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for the rotor problem. The constraints in the Lagrange function are normalized by

the number of mesh elements N to improve convergence of the topology.

The two objective functions in the multi-objective problem, the one that maximizes

the kinetic energy, and the one that minimizes the mass, are combined into a single

objective, f (k)(ρ̂), using a weighted sum approach shown in Equation (5.4),

f (k)(ρ̂) = −wke
Ekin(ρ̂)

E0
kin

+ wm
m(ρ̂)

m0
(5.4)

where the energy Ekin(ρ̂,u) and mass m(ρ̂) are normalized using the energy E0
kin and

mass m0 of a uniform thickness rotor respectively, and wke and wm are the weights

used to combine the two objectives, which are chosen such that wke +wm = 1.0, and

their values control the trade-off between the two objectives, allowing us to obtain a

Pareto set of solutions for varying weights. The negative sign for the energy objective

converts the maximization problem to a minimization problem.

Constraints h
(k)
j (ρ̂,u) are defined at each mesh element j, which convert the in-

equality constraints g
(k)
j (ρ̂,u) to equality constraints which can be used in the Aug-

mented Lagrangian function [103]:

h
(k)
j (ρ̂,u) = max

⎛⎝g
(k)
j (ρ̂, u),−

λ
(k)
j

µ(k)

⎞⎠
where g

(k)
j (ρ̂,u) =

σj
i (ρ̂,u)

σy

− 1.0 ≤ 0 ∀ j = 1, 2, ...N

(5.5)

The relaxed von Mises stresses at mesh elements are defined as:

σj
i (ρ̂,u) = ρqjσvm,j (5.6)

where σvm,j is the von Mises stress computed at the centroid of element j. It is defined

as discussed previously in Equations (4.38), (4.39).

5.1.3 Sensitivity analysis

The gradient of the AL function Lµ(k)(ρ̂,u) defined in Equation (5.2) w.r.t design

variable ρ̂e is:
dLµ(k)

dρ̂e
=

∂Lµ(k)

∂ρ̂e
+ λT

(︃
∂K

∂ρ̂e
u− ∂F

∂ρ̂e

)︃
(5.7)
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where the adjoint vector λ is defined as:

λ = −(KT )−1
∂Lµ(k)

∂u
(5.8)

Detailed derivations for the above expressions of adjoint sensitivity and adjoint vectors

are in Appendix D.2. The definitions of ∂K
∂ρ̂e

and ∂F
∂ρ̂e

are from Equations (4.34), (4.35)

respectively. The first term
∂L

µ(k)

∂ρ̂e
in Equation (5.7) can be calculated as:

∂Lµ(k)

∂ρ̂e
=

∂f (k)(ρ̂)

∂ρ̂e
+

1

N

N∑︂
j=1

⎡⎣(︂λ(k)
j + µ(k)h

(k)
j (ρ̂,u)

)︂ ∂h
(k)
j (ρ̂,u)

∂ρ̂e

⎤⎦ (5.9)

where partial derivative ∂f (k)(ρ̂)
∂ρ̂e

is

∂f (k)(ρ̂)

∂ρ̂e
= −

(︄
wke

E0
kin

)︄
∂Ekin(ρ̂)

∂ρ̂e
+

(︃
wm

m0

)︃
∂m(ρ̂)

∂ρ̂e
(5.10)

where partial derivatives of the kinetic energy Ekin and mass m are calculated using

Equations (4.25), (4.29) respectively.

The partial derivative ∂h
(k)
e

∂ρ̂e
in Equation (5.9) can be written as:

∂h
(k)
e

∂ρ̂e
=

⎧⎨⎩0 , if g
(k)
e (ρ̂,u) < −λ

(k)
e

µ(k)

qρ̂q−1
j

σvm,e

σy
, otherwise

(5.11)

Next, in order to calculate the adjoint vector in Equation (5.8), the term
∂L

µ(k)

∂u

can be simplified as:

∂Lµ(k)

∂u
=

N∑︂
j=1

(︂
λ
(k)
j + µ(k)h

(k)
j (ρ̂,u)

)︂ ∂h
(k)
j

∂u
(5.12)

since the objective function f (k)(ρ̂) is independent of the solution u. Here
∂h

(k)
j

∂uj
is

calculated as:

∂h
(k)
j

∂uj

=

⎧⎨⎩0 , if g
(k)
j (ρ̂,u) < −λ

(k)
j

µ(k)

1
σy
ρ̂qj

∂σvm,j

∂uj
, otherwise

(5.13)

where
∂σvm,j

∂uj
is determined using the definition of the von Mises stress at the cell

centroid from Equation (4.40).
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5.1.4 Optimization solver

The above optimization problem is solved using a version of MMA tailored to explic-

itly solve unconstrained problems, as described in reference [103]. The key difference

from the MMA solver used in Chapter 4 is that the minimizer of the approximate

convex-subproblem can be found explicitly in this case, which makes it more compu-

tationally efficient.

5.1.5 Implementation

A block diagram of the Augmented Lagrangian topology optimization framework is

shown in Figure 5.1. The unstructured quadrilateral meshes used in the rotor topology

optimization studies performed in this study were generated using the open-source

script based meshing tool GMsh [115]. The numerical model, adjoint solver and filters

were implemented in C++ in the OpenFCST toolbox [112], which uses the open-

source deal.ii finite element libraries [113]. An open-source C++ MMA solver [120]

was adapted for use in the implemented framework, based on the implementation of

the unconstrained MMA solver by Giraldo-Londoño and Paulino [103].

5.2 Results and Discussion

The Augmented Lagrangian framework described in Figure 5.1 was used to solve the

multi-objective problem seen in equation (5.2) to simultaneously maximize the kinetic

energy and minimize the mass of the rotor, while subject to local stress constraints

that were enforced at every mesh element. The two optimization objectives were

normalized and combined using a weighted sum approach as seen in equation (5.4).

Table 5.1 contains the simulation parameters used for this study, including how

the Lagrange multipliers λ
(k)
j and penalty µ(k) were initialized or updated at itera-

tions (k). The weights wke and wm used to combine the energy and mass objectives

were systematically varied to find several optimal solutions for the multi-objective
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Figure 5.1: Flowchart of the Augmented Lagrangian approach for rotor topology
optimization
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problem.

5.2.1 Pareto-optimal solutions

The optimal solutions obtained using several different combinations of the objective

weights were used to generate a Pareto-plot of the optimal rotor designs. Figures 5.2

and 5.3 contain the optimal topologies and corresponding stress distributions obtained

with different weight combinations. For wke ≥ 0.45, the optimization resulted in

a solid disk, since the mass minimization objective was nearly ignored. Table 5.2

contains the corresponding specific energy, maximum stress, and other relevant details

about the Pareto optimal designs. The remnant gray regions in the design were

measured using the previously defined measure of discreteness Mnd (Equation (4.47)),

which was required to be below 5% for convergence. Overall, the convergence of the

Augmented Lagrangian formulation was better than the specific energy formulation,

although a few designs had slightly higher than the acceptable remnant gray regions,

which could be further improved by using a robust approach.

Figure 5.4 plots the Pareto-optimal solutions obtained with the linearly weighted

multi-objective formulation to maximize the kinetic energy and minimize the mass.

A Pareto-front of non-dominated designs is seen to emerge, with several possible

energy-mass combinations. Although all non-dominated designs are equally optimal

with respect to the optimization formulation, there is a large variation in the specific

energy of the designs. Figure 5.4 also reports the specific energy of the designs with

a colorbar, and it is evident that the designs with the highest specific energy all have

a mass between 27 and 29 kg, resulting in volume fractions in the range of 55 to 65%.

The specific energy of the designs reduced both at lower and higher volume fractions

or rotor masses, which was also observed in the parametric study with respect to

volume fractions conducted in Section 4.2.3.2.

While the Pareto front clearly indicates that certain volume fractions result in

designs with a higher specific energy, it also allows the designer to choose a certain
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Table 5.1: Optimization parameters for Augmented Lagrangian approach for local
stress-constrained topology optimization of flywheel

Parameter set Parameter Value

Material Properties

Young’s modulus (E), GPa 210

Poisson’s ratio (ν) 0.3

Solid density (ρ), kg/m3 7850

Flywheel model

Rotor height, m 0.05

Shaft boundary condition Neumann (press-fit)

Angular velocity (ω), rpm 5000

Inner radius (rshaft), m 0.03

Outer radius (rout), m 0.2

Fixed rims thickness (trim), m 0.01

SIMP parameters

Penalty (p) 3

Initial guess (ρ0) 0.6

Minimum Young’s modulus (Emin), GPa 1

MMA parameters

a 0.0

c 1000.0

d 0.0

Move limit 0.01

Density filter
Filter radius (rfilt), m 0.035

Distribution linear decay / conical

Projection filter
Threshold (h) 0.5

Initial slope (β0) 1

Maximum slope (βmax) 100

Update factor 2.0

Update interval 25

Mesh parameters
Circular symmetry (N) 6

Elements 11988

Augmented Lagrangian

Maximum allowable stress (σy), MPa 65

Stress relaxation (q) 0.5

Initial Lagrange multipliers (λ0
j) 0.0

Initial penalty (µ0) 10.0

Maximum penalty (µmax) 50000.0

Penalty multiplier (α) 1.1
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Figure 5.2: Optimal topologies obtained using the multi-objective (max energy, min
mass) and the Augmented Lagrangian approach with local stress constraints, using
several combinations of objective function weights wke and wm
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Figure 5.3: Stress distributions in the optimal rotors obtained using the multi-
objective (max energy, min mass) and the Augmented Lagrangian approach with
local stress constraints, using several combinations of objective function weights wke

and wm
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Table 5.2: Comparison of non-dominated optimal rotor designs obtained with differ-
ent objective function weights for the multi-objective Augmented Lagrangian formu-
lation

wke wm Ekin, J m, kg ekin, J/kg σpn, MPa V
V0

Mnd, %

0.35 0.65 65,927 22.05 2989.09 65.59 0.48 5.00

0.36 0.64 74,683 23.31 3204.05 64.99 0.50 3.27

0.37 0.63 72,821 22.77 3198.59 66.10 0.51 4.28

0.38 0.62 77,979 24.11 3233.83 65.08 0.54 5.26

0.39 0.61 90,607 27.26 3324.24 66.75 0.58 4.64

0.40 0.60 89,625 27.09 3308.79 64.98 0.58 4.76

0.41 0.59 96,507 28.68 3364.37 65.99 0.63 5.21

0.42 0.58 95,579 28.82 3316.85 68.09 0.62 5.88

0.43 0.57 100,536 30.60 3285.52 65.00 0.67 6.17

0.44 0.56 98,156 29.72 3303.04 64.98 0.63 4.11

0.45 0.55 111,372 34.69 3210.51 64.93 0.73 3.85

0.46 0.54 117,762 37.61 3131.54 64.99 0.79 3.07

0.47 0.53 119,358 39.01 3059.68 64.87 0.82 3.17

0.48 0.52 120,701 39.58 3049.55 64.99 0.83 3.47

0.49 0.51 127,355 43.18 2949.40 65.03 0.91 4.44

1.00 0.00 135,144 48.21 2803.10 48.76 1.00 0.0
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Figure 5.4: Pareto optimal designs for the multi-objective rotor design problem using
the Augmented Lagrangian apporach

rotor design depending on the design specifications on the minimum energy capacity

or maximum rotor weight. Different criteria, such as specific energy, energy-per-cost,

or total energy capacity could be used for selecting the best rotor design for differ-

ent FESS applications such as transportation or grid-scale storage. For example, for

transportation applications one might tend to choose lightweight rotors, while ensur-

ing a reasonably high specific energy. On the other hand, rotors with slightly higher

weights and a reasonably high specific energy could benefit grid-scale applications

that use low-cost rotor materials.

5.2.2 Local vs global stress constraints

The designs obtained with the Augmented Lagrangian approach with local stress con-

straints were compared to those obtained using the global P-norm stress constraint.

While the local stress-constrained approach used a multi-objective formulation to

maximize the energy and minimize the mass seen in equation (5.2), the reference

global stress constrained formulations used here are the kinetic energy formulation

from equation (4.1) and the specific energy formulation from equation (4.2).
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Table 5.3: Comparison of optimal 2D rotor designs obtained using global P-norm and
local (Augmented Lagrangian) stress constraints

Approach V
V0

Ekin, J m, kg ekin, J/kg σpn, MPa ∆ekin
e0kin

, % * Mnd, %

Uniform disk 1.0 135,144 48.21 2803.1 48.76 - -

Global, KE formulation 0.65 97,599 31.06 3142.4 65.97 +12.10 1.54

Global, SE formulation 0.65 101,018 31.13 3244.8 64.92 +15.76 8.12

Local 0.63 100,536 30.60 3285.52 65.00 +17.21 6.17

* e0kin is the specific energy of uniform thickness rotor

Figure 5.5 compares the equivalent global and local stress constrained designs with

similar rotor masses. The global stress constrained designs with kinetic energy (with

volume fraction of 65%) and specific energy maximization formulations were seen to

be closest in terms of rotor mass, to the MOO formulation designs with objective

weights of (wke = 0.43, wm = 0.57). The geometry obtained with local stress con-

straints had a thicker outer rim and thinner spokes when compared to the global

stress constrained design with the kinetic energy formulation. On the other hand,

the specific energy formulation and the local stress constrained design had a similar

bulge in the spokes of the optimal designs. The local stress constrained designs had

a much more uniform stress distribution than both global stress designs, which likely

resulted in the differences in the geometry. The local stress design also had an overall

higher specific energy rotor than the global stress designs, as seen in Table 5.3.

As seen from the discreteness measure Mnd for the three designs in Figure 5.5(d-f),

the kinetic energy formulation with a global stress constraint resulted in the most

discrete design, followed by the MOO formulation with local stresses, and the specific

energy formulation with global stress constraint. This resulted in some noise at the

edges, which could be improved in the future using a robust formulation to achieve

better convergence.
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Figure 5.5: Comparison of stress distributions and flywheel topologies for designs
obtained with a),d) global stress constrained Ekin formulation, b),e) global stress
constrained ekin formulation, and c),f) local stress constrained MOO formulation

5.3 Summary

The local stress constrained optimization formulation with an Augmented Lagrangian

approach was evaluated to try and achieve a better stress distribution in the optimal

topology. A multi-objective formulation was used to maximize the kinetic energy

and minimize the rotor mass, subject to local stress constraints, using a weighted

sum approach to combine the two objectives. A Pareto-front of optimal designs with

different energy and mass combinations was obtained. Certain weight combinations

resulted in designs with a volume fraction of 55-65% and the highest specific en-

ergy. Comparing the locally stressed optimal designs to the global stress constrained

designs from the original formulation, the former resulted in a more uniform stress

distribution compared to the P-norm global stress constraint, where undesirable local

stress concentrations could be seen at narrow bottleneck regions. The local stress

constraints also improved the specific energy of the optimal design to a larger extent

than the global stress constraints.
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Chapter 6

Modified robust approach for 3D
rotor topology optimization

Preface

The new specific energy formulation for rotor design proposed in Chapter 4 removed

the dependence of the optimization on an artificial volume fraction constraint. How-

ever, using the specific energy as the objective function made the optimization prob-

lem harder to converge and additional measures were needed to reduce remnant gray

elements from the optimal design. A volume preserving projection filter was used to

improve the convergence of the stress-constrained problem, with a 1D line-search for

determining the filter threshold at each optimization iteration. However, the result-

ing rotor designs still had gray regions which could not be completely eliminated. A

modified robust strategy was investigated in this chapter, to explore its feasibility for

solving the specific energy formulation for rotor design and achieving better discrete-

ness of the optimal design. This strategy was then used to optimize the 3D topology

of the flywheel. The optimal 3D designs were compared with 2D topology optimized

designs from Chapters 4 and 5 and shape optimized designs using the framework from

Chapter 3.
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6.1 Methodology

This study aims at achieving a fully discrete topological design with the specific

energy flywheel optimization formulation in Chapter 4, by taking inspiration from the

robust design approach proposed byWang et al. [122], which was able to achieve better

convergence for stress-constrained problems using three different structures to predict

the stresses in the design. In particular they solved three different FEM problems

at each optimization iteration, i.e., a dilated, blueprint and eroded design obtained

by using three different threshold values for the projection filter. In this work, to

reduce the additional computational expense of the robust approach proposed in

reference [122], a modified robust approach similar to the one proposed by Andreasen

et al. [125] is used, that evaluates the optimization objective and constraint on the

dilated and eroded designs respectively, and evaluates the blueprint design only at

fixed intervals to update the constraint target. A block diagram of the modified

robust topology optimization framework is shown in Figure 6.1.

The overall methodology for topology optimization described in Chapter 4 was

reused in this study, including the proposed SIMP modifications to the numerical

model described in Section 4.1.1, the optimization responses and adjoint sensitivity

analysis from Section 4.1.2, and the density filtering stage described in Section 4.1.3.

The modified robust optimization formulation and its implementation are described

below.
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-  displacement
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d   -  dilated
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Figure 6.1: Flowchart of the modified robust approach for rotor topology optimization
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6.1.1 Modified robust formulation

The modified robust approach is used to solve the following specific energy formula-

tion,

max ekin(ρ̂
d) =

1
2
I(ρ̂d)ω2

m(ρ̂d)

w.r.t ρ̂ = {ρ̂1, ρ̂2, ..., ρ̂N}

s.t. KeU e = F e

g(ρ̂e,u) :
σ̃e
pn

σ∗
y

− 1 ≤ 0

0.0 ≤ ρ̂ei ≤ 1.0

(6.1)

where the superscripts d and e on the design densities refer to the dilated and eroded

designs.

At each optimization iteration, the stress constraint, g(ρ̂e,u), is evaluated on the

eroded design, and the specific energy objective, ekin(ρ̂
d), is evaluated using the di-

lated design. Since the objective function is independent of the FEM solution, a single

FEM evaluation per iteration is sufficient to solve this problem. The eroded design

is expected to have higher stresses, so the maximum allowable stress for the eroded

design, σ∗
y , is periodically re-estimated using the blueprint stresses, as follows:

σ∗
y =

σ̃e
pn

σb
i,max

σy (6.2)

where σy refers to the maximum allowable stress in the rotor. Here, the eroded

normalized P-norm stress, σ̃e
pn, and the maximum relaxed von Mises stress in the

blueprint design, σb
i,max are calculated as:

σ̃e
pn = c

⎛⎝ N∑︂
i=1

vi(ρ̂
q,e
i σe

vm,i)
P

⎞⎠ 1
P

σb
i,max = max

(︂
ρ̂q,bi σb

vm,i

)︂ (6.3)

where c is the normalization parameter, q is the stress relaxation term, and σvm,i is the

von Mises stress calculated at the centroid of element i. The blueprint stresses, σb
i,max,
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Figure 6.2: Projected density maps for an example 2D topology depicting: a) eroded
(ρ̂e), b) blueprint (ρ̂b), and c) dilated (ρ̂d) designs

are calculated using the projected design density variables ρ̂b, which are obtained

using a projection filter threshold of 0.5. These are only evaluated from time to time,

with the frequency chosen heuristically for each simulation (e.g., once in every 20

iterations), and need not be computed at all optimization iterations. As an example,

Figure 6.2 shows the three projected density maps (eroded, blueprint, and dilated)

for a 2D rotor topology. While the eroded and dilated density maps are utilized to

compute responses and their gradients at every optimization iteration, the blueprint

density map is only used to provide a stress correction update.

The projected densities for the eroded designs, ρ̂e are calculated using

ρ̂ei =
tanh (βhe) + tanh

(︁
β(ρ̃i − he)

)︁
tanh (βhe) + tanh

(︁
β(1− he)

)︁ (6.4)

where he is the eroded threshold, and its value is between (hb, 1.0]. Similarly, the

dilated design ρ̂d is computed using Equation (6.4), but using a dilated threshold

hd, that is typically chosen as 1.0 − he. The blueprint threshold hb is chosen as 0.5

to ensure that the volume fraction of the design is preserved. Broadly speaking, the

thresholds for the three designs are chosen such that 0 < hd < hb(= 0.5) < he < 1.0.
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6.1.2 3D numerical model

The flywheel numerical model described in Section 4.1.1 is dimension independent and

is reused here. The flywheel geometries used in the 3D simulations can be seen in

Figure 6.3(a) where mid-plane symmetry along the z-axis is used to reduce the height

of the mesh to half, and Figure 6.3(b), where the full height of the rotor is considered

for analysis. The reduced mesh in Figure 6.3(a) is used for a majority of the 3D studies

conducted, whereas the mesh with the full rotor height in Figure 6.3(b) is used to

study the effect of computational domain size on the optimal topology. In both cases,

rotational symmetry is used to further reduce the size of the computational domain.

The inner and outer rings are considered fixed portions of the topology, and the region

between these two rims is treated as the topology optimization domain. The open-

source mesh generation tool GMsh [115] is used to parametrize this geometry and

generate the unstructured hexahedral mesh seen in Figure 6.3(c), which also depicts

the boundary conditions for the problem. An average element side length of 3 mm is

used to generate the mesh.

Similarly, the optimization responses described in Section 4.1.2 are also reused

here, with the only exception being the definition of the Auxiliary matrix, V , used to

calculate the von Mises stresses, σvm, at the centroids of the mesh elements. The 3D

auxiliary matrix is:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
2

−1
2

0 0 0

−1
2

1 −1
2

0 0 0

−1
2

−1
2

1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.5)
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Figure 6.3: a) 3D rotor domain using a) half the rotor height H/2, b) full rotor
height H, and c) unstructured hexahedral mesh using rotational symmetry (N=6),
with corresponding boundary conditions
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6.1.3 Solver

The above optimization problem is solved using the MMA solver for inequality con-

strained problems that was previously discussed in Section 4.1.4.

6.2 Results and discussion

6.2.1 2D robust design compared to conventional design

Initially, the 2D rotor topology was optimized using the proposed modified robust

approach and compared to results form Chapter 4 that were obtained using the con-

ventional topology optimization method. Table 6.1 contains the simulation parame-

ters used for this study, including the projection filter thresholds for the eroded and

dilated designs and the target stress correction update interval used in the modified

robust approach.

Figure 6.2 shows the optimal eroded, blueprint and dilated designs obtained with

respective projection filter thresholds of 54, 50 and 46%. The convergence histories of

the optimization responses and the measure of discreteness convergence criterion can

be seen in Figure 6.4. Figure 6.4(a) plots the convergence of the specific energy objec-

tive evaluated on the dilated designs, with the actual specific energy evaluated using

the blueprint design every 20 iterations being slightly higher. Similarly, Figure 6.4(b)

plots the convergence of the eroded P-norm stress, σ̃e
pn, as well as the blueprint stress

measure, σb
i,max, computed on the blueprint design every 20 iterations. While the

maximum allowable stress for the blueprint stress, σy, is fixed throughout, the maxi-

mum stress for the eroded design, σ∗
y, is periodically corrected, and is seen to increase

or decrease depending on the ratio σ̃e
pn/σ

b
i,max. The correction allows the blueprint

design to converge to a feasible optimal topology.

The optimal solutions for the specific energy formulation obtained using the modi-

fied robust approach versus the volume preserving approach can be seen in Figure 6.5

and Table 6.2. Comparing the discreteness measure Mnd for the two designs, the
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Figure 6.4: Convergence plots of the a) specific energy objective, b) stress constraint
and c) convergence criterion in the modified robust approach

Figure 6.5: Optimal topology obtained using a) the robust approach and b) the
volume preserving approach

modified robust approach allowed the design to converge to a higher degree than the

volume preserving approach, while also achieving convergence in fewer iterations. The

computational cost of each iteration was similar in both cases, since both the modified

robust formulation and the conventional approach used a single FEM evaluation per

iteration. Both designs had similar volume fractions and energy capacities. Thus,

this approach can be used to improve the convergence, robustness and discreteness

of the specific energy formulation for rotor design. These improvements enabled us

to evaluate 3D rotor topologies with the specific energy formulation.
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Table 6.1: Topology optimization parameters for specific energy maximization of
flywheel rotor using modified robust approach

Parameter set Parameter Value

Material Properties

Young’s modulus (E), GPa 210

Poisson’s ratio (ν) 0.3

Solid density (ρ), kg/m3 7850

Flywheel model

Rotor height, m 0.05

Shaft boundary condition Neumann (press-fit)

Angular velocity (ω), rpm 5000

Inner radius (rshaft), m 0.03

Outer radius (rout), m 0.2

Fixed rims thickness (trim), m 0.01

SIMP parameters

Penalty (p) 3

Initial design (ρ0) 0.55

Minimum Young’s modulus (Emin), GPa 1

MMA parameters

a 0.0

c 1000.0

d 0.0

γ(+) 1.2

γ(−) 0.7

Move limit 0.03

Density filter
Filter radius (rfilt), m 0.035

Distribution linear decay / conical

Projection filter

Threshold (h) 1D line search

Initial slope (β0) 1

Maximum slope (βmax) 100

Update interval 25

Mesh parameters
Rotational symmetry (N) 6

Elements 11988

Stress constraint aggregation

σy, MPa 65

P-norm (P ) 8.0

Stress relaxation (q) 1.0

Modified Robust approach
he 0.54

hb 0.5

hd 0.46

Blueprint correction interval 20 iters
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Table 6.2: Comparison of optimal 2D rotor designs obtained using a) the robust
approach and b) the volume preserving approach, with the specific energy formulation

Approach Ekin, J m, kg ekin, J/kg σpn, MPa V
V0

∆ekin
e0kin

, % * Iterations Mnd, %

Robust 104,573 31.98 3269.43 65.08 0.674 +16.63 181 2.83

Volume preserving 101,018 31.13 3244.8 64.92 0.646 +15.76 401 8.12

* e0kin is the specific energy of uniform thickness rotor

6.2.2 3D Rotor topology

The 3D topology of the rotor was optimized using the implemented robust specific

energy optimization framework and simulation parameters in Table 6.1. A coarser

mesh with a global element size of 3 mm (compared to 1.5 mm for 2D) was chosen

for this study. This was to allow the use of the MUMPS direct solver for the 3D

simulation. As the mesh is refined, the use of an iterative solver becomes critical for

3D topology simulations. Although CG is the solver of choice for symmetric positive

definite problems like the linear elastic equations, the global matrix becomes ill-

conditioned for topology simulations because of the presence of holes and intermediate

densities. Multigrid preconditioners are needed to then solve the 3D problems with

iterative solvers. This was outside the scope of this thesis, and as a result, the 3D

studies reported here are all performed using direct solvers without preconditioners.

The 3D topology was identical to the 2D design in the r−θ plane, and had relatively

little to no geometrical variations in the z-direction, as seen in Figure 6.6. Table 6.3

compares the energy capacity, mass and stresses developed in the two designs, which

indicates that the 3D design has a slightly lower specific energy, due to a slightly

higher volume fraction than the optimal 2D design. Both designs converged to a

high level of discreteness (measured as a % value by Mnd). The corresponding DoFs

and total time for simulation are also recorded in Table 6.3, with the coarser 3D

mesh requiring four times the number of DoFs used in the 2D design. This study

suggested that there was no added benefit of using the 3D domain with more DoFs

and an additional dimension. However, it is possible that the obtained design is a
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Figure 6.6: a) Full 3D topology, b) optimal topology (ρ > 0.5), c) stress distribution,
d) clipped view of 3D topology , e) r-z plane slice of 3D topology, f) r-θ plane slice
of 3D topology

local optimum resulting from the use of a density filter radius similar to the height

of the rotor mesh used in the study, i.e., 35 mm vs 25 mm. Therefore, studies were

performed where the density filter radius, mesh refinement and computational domain

size (E.g., using the full rotor height or different circular section to offset filter effects)

were changed to understand their influence on the optimal design.

Table 6.3: Comparison of optimal 2D and 3D rotor topologies obtained with the
robust specific energy formulation in Eq. (6.1)

Dimension Ekin, J m, kg ekin, J/kg Vf σ̃pn, MPa Mnd, % DoFs Time, s (4 cores)

2D 104,573 31.98 3269.43 0.674 65.08 2.83 23976 758

3D 110,129 35.11 3136.33 0.735 65.28 1.57 98730 18137
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6.2.2.1 Effect of density filter radius

When the density filter radius from the 2D simulations was varied in the range 10 mm

to 35 mm, some geometrical variations in the z-direction and corresponding design

improvements started to emerge. For filter radii of 10-25 mm, a mesh with element

size (lc) of 2 mm was used, whereas for the studies with filter sizes 30 and 35 mm,

coarser mesh with element size (lc) of 3 mm had to be used to achieve convergence.

Figure 6.7 and Table 6.4 contain the optimal topologies and designs for different

density filter radii. It is seen that for smaller density filters, the optimal topology

does not have any spokes, and a nearly axisymmetric design is obtained. The design

somewhat resembles the designs obtained using shape optimization. With a filter

radius of 25 mm, spokes start to emerge in the 3D design, with differences in the

thickness along the Z-direction. For the largest filter radius of 35 mm, the design has

very little variation in the Z-direction, as the filter size is larger than the height of the

rotor in the Z-direction (=25 mm). Therefore, two very different optimal topologies

were obtained, that either resembled the shape optimized designs from Chapter 3, or

the designs with spokes in the r−θ plane that were obtained in Chapters 4 and 5. Both

options exhibited similar specific energy capacities and had similar rotor weights.

Table 6.4: Effect of density filter radius on the optimal 3D rotor topology obtained
with the robust specific energy formulation

rfilt, mm lc, mm Ekin, J m, kg ekin, J/kg σ̃pn, MPa Mnd, %

10 2 111,611 35.56 3138.60 65.61 1.96

15 2 107,302 33.38 3214.11 67.18 1.57

20 2 108,832 34.16 3185.77 64.05 2.36

25 2 109,018 34.01 3205.14 64.16 3.95

30 2 119,833 40.48 2960.08 65.37 1.16

35 3 110,129 35.11 3136.33 65.28 1.57
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Figure 6.7: Optimal stress distribution in the 3D topology and corresponding r − z
plane rotor profiles obtained using filter radius of a) 10 mm, b) 15 mm, c) 20 mm, d)
25 mm, e) 30 mm, f) 35 mm.
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6.2.2.2 Effect of domain size

The previous studies that used a smaller density filter radius (10 - 20 mm) had a

variable thickness design with no spokes, and larger filter radii (25 mm - 35 mm)

resulted in a geometry with spokes, as well as some thickness variations along the

height of the rotor. In order to investigate why the filter radius influenced the optimal

topology, the size of the computational domain used for analysis was varied in two

ways. In the first study, the rotational symmetry, N , used to determine the size of

the r− θ domain was changed from 6 (60◦ section) to 9 (40◦ section). Secondly, since

symmetry in the z-direction was also used to reduce the size of the domain, the effect

of using the full rotor height for analysis was also investigated.

Figure 6.8 shows the optimal 3D topologies obtained with rotational symmetries

of N=6 and N=9, with the same mesh size (lc = 2.0 mm) and density filter radius

(rfilt = 15 mm). The emergence of spokes is more evident in the N=9 topology, since

the filter size is of the same order as the size of the section. Table 6.5 compares the

two designs, which are very similar in terms of specific energy content as well.

Further, the chosen combination of mesh size, lc, and density filter, rfilt, was also

seen to affect the optimal 3D topology for a given rotational symmetry. For instance,

Figure 6.9 depicts three different topologies obtained with N=9. In Figure 6.9(a) and

(b), the density filter radius rfilt was fixed at 10 mm, and the element size was varied

from 1.5 to 2.0 mm, which significantly changed the optimal topology, although the

specific energy of the two designs was similar. Whereas, in Figure 6.9(b) and (c), the

density filter radius was varied from 10 to 15 mm, with a fixed mesh element size of

2.0 mm, which did not change the optimal topology to the same degree as the change

in mesh size. A comparison of the specific energies and stresses in the three designs

is in Table 6.6, which indicates that all three designs converged to a high degree of

discreteness. Thus the influence of other design parameters such as angular speed and

rotor height will also be investigated to determine the ideal choice of density filter
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Figure 6.8: Optimal 3D topologies obtained using rotational symmetry of a) N = 6,
and b) N = 9.

radius that is suitable for designing rotors at all operating conditions.

The 3D topology was also optimized using the entire height of the rotor, instead of

using a plane of symmetry to reduce the z-direction thickness by half. The results of

this study can be seen in Figure 6.10 and Table 6.7. The optimal topology obtained

with using the full height of the rotor had spokes rather than the optimal shape

profile obtained with the reduced domain of height H/2, and also had a lower specific

energy. However, the design with the full height was simulated with a coarser mesh

(lc = 3.0 mm) due to limitations on the memory and computational speed that could

be achieved with the existing CG solver.
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Table 6.5: Effect of rotational symmetry on the optimal 3D rotor topology obtained
with the robust specific energy formulation

N rfilt, mm lc, mm Ekin, J m, kg ekin, J/kg σ̃pn, MPa Mnd, %

6 15 2.0 107,302 33.38 3214.11 67.18 1.57

9 15 2.0 107,917 33.65 3206.75 64.87 2.49

Figure 6.9: Optimal 3D topology (N=9) and r − z plane views obtained using a),d)
lc=1.5 mm and rfilt=10 mm, b),e) lc=2.0 mm and rfilt=10 mm, and c),f) lc=2.0 mm
and rfilt=15 mm,

Table 6.6: Effect of rotational symmetry on the optimal 3D rotor topology obtained
with the robust specific energy formulation

rfilt, mm lc, mm Ekin, J m, kg ekin, J/kg σ̃pn, MPa Mnd, %

10 1.5 111,422 35.70 3120.61 61.26 2.03

10 2.0 111,190 35.19 3158.91 64.99 1.31

15 2.0 107,917 33.65 3206.75 64.87 2.49

Table 6.7: Effect of Z-direction symmetry on the optimal 3D rotor topology obtained
with the robust specific energy formulation

z-symmetry rfilt, mm lc, mm Ekin, J m, kg ekin, J/kg σ̃pn, MPa Mnd, %

H/2 20 2.0 108,832 34.16 3185.77 64.05 2.36

H 20 3.0 118,081 39.68 2975.55 66.34 1.22

165



Figure 6.10: Optimal 3D topologies obtained using Z-direction symmetry of a) H/2,
and b) H.
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Figure 6.11: Optimal 3D topologies and r−z plane views obtained using two different
density filter radii of 15 and 25 mm, with operating speeds of a),e) ω = 4000 rpm,
b),f) ω = 5000 rpm, c),g) ω = 5500 rpm, and d),h) ω = 6000 rpm

6.2.2.3 Effect of operating speed on optimal topology

The effect of operating speed on the optimal 3D topology was studied by using two

different density filter radii of 15 mm and 25 mm, which were seen to be representative

of the two distinct rotor topologies obtained previously. Figure 6.11 and Table 6.8

show the optimal topologies for operating speeds in the range 4000 to 6000 rpm.

Overall, the designs obtained with the smaller filter radius of 15 mm resulted in

higher or equal specific energy designs compared to the 25 mm filter radius at all

operating speeds. For higher speed of 5500 and 6000 rpm, the designs with rfilt=25

mm were sub-optimal designs with a much lower specific energy than corresponding

designs with rfilt=15 mm, and they approached a constant thickness disk. Therefore,

a smaller density filter was seen to increase the design space. On the other hand,

at low operating speeds such as 4000 RPM, the design with rfilt=15 mm had more

spokes than the other designs, again resulting in a higher specific energy.
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Table 6.8: Effect of operating speed and choice of density filter radius on the optimal
3D rotor topology obtained with the robust specific energy formulation

ω, rpm rfilt, mm lc, mm Ekin, J m, kg ekin, J/kg σ̃pn, MPa Mnd, %

4000 15 3 70,047 34.11 2053.46 64.72 1.23

5000 15 2 107,302 33.38 3214.11 67.18 1.57

5500 15 3 129,702 34.21 3791.24 64.63 2.44

6000 15 3 144,780 32.79 4414.42 65.59 3.02

4000 25 3 73,686 37.08 1986.77 64.78 2.77

5000 25 2 109,018 34.01 3205.14 64.16 3.95

5500 25 3 160,744 47.08 3414.89 62.02 0.72

6000 25 3 193,296 47.87 4037.40 50.81 0.67

6.2.2.4 Effect of rotor height on optimal topology

The effect of rotor height (or size) on the optimal 3D topology was investigated. A

rotational symmetry of N=6 and z-direction symmetry was used to reduce the size

of the domain. Figure 6.12 and Table 6.9 contain the optimal topologies obtained

using three different rotor heights of 40, 50, and 60 mm. For a density filter radius

of rfilt=25 mm, all three design look nearly identical, with a slight variation in the

shape of the spokes along the z-direction. The specific energy of the three designs

is also similar, whereas the kinetic energy and mass scale proportional to the height.

This indicates that the rotor height could be used to scale the design to meet specific

requirements on the minimum kinetic energy or maximum rotor weight.

Table 6.9: Effect of rotor height on the optimal 3D rotor topology obtained with the
robust specific energy formulation

H, mm rfilt, mm lc, mm Ekin, J m, kg ekin, J/kg σ̃pn, MPa Mnd, %

40 25 3 87,616 27,69 3163.64 65.35 2.24

50 25 2 109,018 34.01 3205.14 64.16 3.95

60 25 3 131,957 41.62 3170.78 67.39 2.03
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Figure 6.12: Optimal 3D topologies and r − z plane views obtained with different
rotor heights of a) H = 40 mm, b) H = 50 mm, and c) H = 60 mm

6.2.3 3D topology vs shape optimization

The two 3D designs obtained using topology optimization (with density filter, rfilt, set

to 15 mm and 25 mm) were compared to a design obtained with the 2D axisymmetric

rotor shape optimization framework from Chapter 3. In order to ensure the designs

were equivalent, the inner and outer rims of the parameterized geometry used for

the shape study were fixed. The thickness of the rotor between the fixed rims was

approximated using a B-Spline function with eight control parameters, as shown in

Figure 6.13(c). The optimization formulation described in Equation 3.17 was used,

with the maximum stress, σy, set to 65 MPa, and the maximum rotor mass, mdesign,

being 33 kg to keep the design comparable to the 3D topology designs.

Figure 6.13 and Table 6.10 compare the shape optimized design with the two

distinct topology designs obtained using the 3D robust specific energy formulation.

The shape optimized design is somewhat similar to the topology design-2 shown in

Figure 6.13(b) in terms of overall material and stress distribution, although it has

a smoother thickness profile compared to the topology optimized design. Based on

these results, either 2D shape optimization or 2D topology optimization are sufficient

to achieve optimal rotor designs, with the selection of one method over the other
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Figure 6.13: Comparison of optimal rotor geometry obtained using a) topology opti-
mization, and b) shape optimization

being the manufacturing method. For the shape optimized designs, manufacturing

complexity would be in the form of variations in the rotor thickness, and on the

other hand, the design with spokes would require holes to be cut out into the circular

cross-section of the rotor.

Table 6.10: Comparison of optimal rotor geometry obtained using topology optimiza-
tion, and shape optimization

Method rfilt, mm lc, mm Ekin, J m, kg ekin, J/kg σ̃pn, MPa Mnd, %

Topology-1 25 2 109,018 34.01 3205.14 64.16 3.95

Topology-2 15 2 107,302 33.38 3214.11 67.18 1.57

Shape - 1.5 107,987 32.84 3288.27 64.99 -

6.3 Summary

A modified robust approach was evaluated to improve the discreteness of the specific

energy formulation for rotor topology optimization. It was found to achieve a more

discrete design as compared to the volume-preserving approach used in Chapter 4.

The modified robust approach used a single FEM evaluation per optimization itera-

tion, compared to the traditional robust approach that would normally require three

FEM evaluations per iteration. This made the modified robust approach a viable

alternative to the volume preserving approach, as it also resulted in better and faster

convergence to a discrete design.
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The modified robust approach was subsequently used to design the 3D topology

of the rotor. The optimal rotor topology was found to be sensitive to the choice of

density filter radius. Two distinct rotor designs emerged when two different ranges

of density filter radius were used for design. Topologies with lower filter radii (rfilt ≤

20 mm) resulted in a design similar to the shape optimized rotor from Chapter 3. On

the other hand, topologies with spokes were obtained with large filter radii (rfilt ≥ 25

mm), which were also seen in the 2D topology studies presented in Chapters 4 and 5,

but with variations in the spoke thickness in the z-direction.

Since rotational and translational symmetry were used to reduce the size of the

topology optimization domain, the effect of these parameters on the optimal deign

was also studied. Using a different circular section resulted in the gradual appearance

of spoke-like formations in the topology without any holes. The use of the entire rotor

height was also seen to influence the type of optimal design obtained, but this was

likely due to the choice of a coarser mesh for the simulation that used the full rotor

height. In the future, efforts will be directed towards reducing the memory and

computational costs of topology optimization iterations so that large 3D simulations

with fine meshes can be performed.

The effect of design parameters such as operating speed and rotor height on the

3D topology was also studied. A range of operating speeds between 4000 and 6000

rpm were used, along with two density filter radii of 15 and 25 mm for each speed.

The lower filter radius resulted in higher specific energy designs for all speeds, while

the larger filter radius resulted in designs that approached constant thickness rotors

at high speeds. The optimal topologies obtained with three different rotor heights of

40, 50, and 60 mm were also evaluated with rfilt = 25 mm. All three designs yielded

similar looking topologies with similar energy densities. This indicated that the 3D

rotors with spokes could be scaled to an appropriate height in order to scale the total

energy capacity or weight of the rotor.

The two distinct 3D topologies obtained with the robust method were compared
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with a shape optimized design based on the framework described in Chapter 3. All

three designs had a similar specific energy, total energy and weight. The shape

optimized design resembled one of the topology optimized designs in terms of stress

and material distribution.
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Chapter 7

Conclusions and future work

The optimal design of cost-effective and energy efficient FESS remains a challenge

due to the high cost and low energy capacity of rotor materials used for rotor design.

The interactions between several design parameters such as operating speed, rotor

size and topology, and choice of material play an important role in determining the

energy capacity and overall cost of the FESS. Advancements in large scale stress con-

strained topology optimization using numerical simulations are enabling complex 3D

structural designs that can be manufactured with additive manufacturing techniques.

The overall objective of this thesis was to develop an optimization framework that

used numerical optimization techniques to design cost effective flywheel energy stor-

age systems with improved energy storage characteristics. Such a unified framework

would enable FESS designers or end users to determine the best FESS architecture,

operating conditions and overall geometry or topology for their specific application.

This thesis presented an open-source optimization framework integrated with nu-

merical rotor models of varying degrees of complexity that could be used to improve

the energy capacity of the FESS rotor by optimizing its size, shape or topology,

while using suitable rotor materials that minimized the cost or weight of the FESS.

A 1D rotor model integrated with the DAKOTA optimization library [109] was im-

plemented to allow for the analysis and optimization of several metal, composite or

hybrid rotors with single or multiple press-fit rims. A 2D axisymmetric numerical
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rotor model with a fully parameterized geometry was integrated with the DAKOTA

library to enable rotor shape optimization. A density-based topology optimization

framwork integrated with 2D / 3D linear elastic numerical rotor model was imple-

mented to allow the design of complex 3D rotor topologies. The numerical framework

was developed as part of the open-source package OpenFCST [112].

The FESS literature contained many studies optimizing the rotor for either com-

posite or metal flywheel rotors, however, a question that had not been addressed

was - which material is more appropriate for different applications? To answer this

question, optimal rotors with different materials were optimized based on different

performance indices such as maximizing the kinetic energy, specific energy or energy-

per-cost, that reflect the type of storage application. A number of composite and

metal rotor materials with a constant thickness rotor profile were analyzed in this

study. It was found that the choice of optimal material depended on the performance

criterion being used. While composite rotors performed better in terms of specific

energy, metal rotors had a better energy per cost. The total kinetic energy of both

composite and metal rotors of a constant thickness were comparable. Press-fitted

multi-rim composite rotors with specific material sequences could outperform single

rim composite and metal flywheels, in terms of total energy or specific energy. How-

ever, when energy-per-cost was used as the performance criterion, multi-rim rotors

offered no significant advantage over single-rim rotors. Therefore, the rest of this

thesis focused on the optimal design of metal rotor FESS, which were generally more

cost effective than composite rotors.

The next question was to determine what was the optimal rotor geometry that

could improve the energy storage characteristics of low-cost metal flywheels. While

most previous studies had designed optimally shaped rotors at fixed speeds and ro-

tor radii, the simultaneous influence of rotor shape, speed, size and choice of rotor

material had not been investigated. A framework to simultaneously optimize the

rotor shape and multiple design specifications like speed, size and materials was de-
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veloped [126], integrating a 2D axisymmetric numerical rotor model with a shape

parametrization approach and an optimization toolbox. 21% to 46% improvements

in the energy storage performance could be achieved by choosing the best combina-

tion of rotor shape, speed and radius. It was found that flywheels with the same

weight, constructed with a large aspect ratio (r>h) and operated at relatively low

speeds of 6000 rpm had a higher energy capacity than low aspect ratio (h>r) designs

operated at high speeds of 10000 rpm. The low speed, flat rotor with a large radius

had a lower self discharge than high-speed, tall rotors - which could be an important

factor to be considered during the FESS design stage. The choice of rotor material

also influenced the optimal speed-radius-shape combinations. For the same energy

capacity, lower rotor radii and high speed optimally shaped aluminium rotors had

a higher specific energy content than corresponding steel rotors, and vice-versa for

higher rotor radii and low speeds.

Only one stress-constrained topology optimization study for flywheel design was

found in literature [68], and it used a volume fraction constraint to remove material

from the topology domain. In this thesis, it was determined via preliminary paramet-

ric studies, that the use of a volume fraction constraint for a stress-constrained energy

maximization problem lead to suboptimal designs. Therefore a novel specific energy

based formulation was proposed without a volume fraction constraint, and was shown

to allow the optimizer to determine the ideal volume fraction which led to the best

specific energy improvement. However, due to its non-convex nature, the specific en-

ergy objective was generally harder to converge than the kinetic energy problem, and

strategies such as projection filter slope continuation and volume-preserving projec-

tion filter were adopted to achieve discrete optimal designs with the new formulation.

The effect of other relevant FESS design parameters, such as speed, rotational sym-

metry, and materials, on the optimal designs obtained with both kinetic and specific

energy formulations was investigated. The specific energy formulation achieved bet-

ter design improvements than the kinetic energy formulation by using higher volume
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fractions at low and high speeds, and lower volume fractions at intermediate speeds.

While the kinetic energy formulation was sensitive to the choice of rotational symme-

try used to reduce the computational domain size, the specific energy formulation was

able to use different volume fractions and improve the energy capacity of the rotor

to a similar extent; thus the choice of rotational symmetry could be based mainly

on manufacturing or other considerations. The specific energy and optimal rotor

topology obtained with different materials was identical if the material properties, E

and ρ, scaled proportionally. The effect of acceleration related stresses on the opti-

mal topologies were studied and determined to be significant only when considering

extremely short duration charge-discharge cycles of less than 0.1 s.

Global stress measures were used in previous topology optimization literature on

flywheel design [68] as well as other rotating disk applications such as motors [97,

98] and turbines [95, 96]. This thesis proposed the use of local stress constraints in

the topology optimization formulation using an Augmented Lagrangian approach, to

achieve a more uniform stress distribution in the optimal design. A multi-objective

formulation was explored to maximize the kinetic energy and minimize the rotor

mass, with a weighted sum approach to combine the two objectives, and subject

to local stress constraints applied locally at all mesh elements. The multi-objective

formulation was an alternative approach to the specific energy formulation, which

also explored a larger design space compared to the conventional approach with con-

straints on the stresses and the volume fraction. A Pareto-front of optimal designs

with different energy and mass combinations was obtained, and it demonstrated that

designs with a volume fraction of 55-65% had the highest specific energy content.

The locally stressed optimal designs resulted in a more uniform stress distribution

compared to the P-norm aggregated global stress constraint used previously, where

undesirable stress concentrations could be seen at narrow bottleneck regions.

The use of 3D topology optimization for flywheel design was relatively unexplored

in literature, with a single study [82] that used a compliance based formulation with-
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out any stress constraints. In this thesis, a modified robust approach was proposed

to improve the discreteness of the specific energy formulation so that it could be used

for 3D rotor design. The optimal 3D rotor topology was found to be sensitive to the

choice of density filter radius. Two distinct rotor designs emerged when two different

ranges of density filter radius were used for design. Topologies with lower filter radii

(rfilt ≤ 20 mm) resulted in a design similar to the shape optimized rotor designs. On

the other hand, topologies with spokes were obtained with large filter radii (rfilt ≥ 25

mm), which were similar to the 2D topology studies, but with additional variations

in the spoke thickness in the z-direction. The two distinct 3D topologies obtained

with the robust method were compared with a shape optimized rotor design. While

all three designs had a similar specific energy, total energy capacity and weight, the

shape optimized design closely resembled one of the topology optimized designs in

terms of stress and material distribution. Further research in this area could be

directed towards combining the designs obtained from the shape and topology opti-

mization frameworks to achieve better design improvements, by using the optimally

shaped rotor as a initial domain for 3D topology optimization. This could improve

the specific energy of the system even further by optimizing material usage in the

interior regions of the rotor, while maintaining a uniform stress distribution due to

the smooth thickness profile of the shape optimized design.

7.1 Contributions

In terms of numerical methods and optimization, the contributions of this thesis are:

� the development of an open-source shape optimization framework integrated

with a linear elastic numerical model and a parametrized meshing tool.

� the development of an adjoint solver for sensitivity analysis, which was vital for

solving topology optimization problems with a large number of design variables.
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� the development of an open-source and modular density-based topology opti-

mization framework integrated with a linear elastic numerical model, with direct

and adjoint solvers for sensitivity analysis. The modular nature of this toolbox

is a key strength and differentiator, which makes it easy to add new optimiza-

tion formulations, perform adaptive mesh refinement, or extend to multi-physics

problems.

� the development of an Augmented Lagrangian framework to incorporate local

stress constraints that can quickly achieve a more uniform stress distributions

in complex geometries, compared to global stress constrained methods.

� the development of a modified robust topology optimization framework to achieve

better convergence for problems with non-convex optimization objectives

The tools developed were integrated within an open-source framework, Open-

FCST [112], based on the deal.ii finite element libraries [113], and were validated

using benchmarking data from literature.

In terms of advancing the knowledge of the field, the key contributions of this work

are:

� providing a comparative study of several optimal metal and composite rotor

FESS, and establishing a means to determine the ideal FESS rotor material for

an application based on different performance metrics such as specific energy,

total energy and energy-per-cost.

� showing the importance of simultaneously optimizing operating speed, rotor

size and shape in order to achieve larger improvements in the energy capacity

of metal FESS rotors.

� demonstrating the use of a novel topology optimization formulation based on

the specific energy objective and eliminating the need for a volume constraint

to remove material from the topology design domain.
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� demonstrating the use of a multi-objective formulation with an Augmented

Lagrangian approach for local stress constraints in achieving a Pareto-front

and designs with a more uniform stress distribution and subsequently, higher

improvements in the design.

� demonstrating the use of a modified robust topology optimization formulation

for achieving optimal rotor topologies with a high level of discreteness.

This study is the first unified approach for the design of energy storage rotors for

FESS applications using a combination of several numerical models and optimization

strategies.

7.2 Future work

The shape optimization framework developed in OpenFCST is currently integrated

with 2D axisymmetric structural problems with a linear elastic model. This frame-

work could be extended to account for large deformations and non-isotropic materials,

which would allow for the analysis and shape optimization of FESS rotors with a larger

set of materials. It would also allow for the use of the shape optimization framework

for other multi-physics problems within the OpenFCST framework.

The density-based topology optimization framework in OpenFCST is currently in-

tegrated with 2D and 3D structural problems using a linear elastic numerical model.

The future applications of this framework include performing multi-physics topology

optimization simulations which would enable the addition of non-structural opti-

mization responses into the optimization formulation. This will allow the use of this

framework for designing novel porous microstructures used in electrochemical systems

such as fuel cells and electrolyzers. Some other natural extensions to the topology

optimization framework would be to implement a fully robust framework to account

for manufacturing tolerances in the optimized designs, as well as a multigrid solver

to solve very large 3D problems with millions of DoFs.
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Appendix A: Literature data

A.1 Literature on flywheel rotor sizing and mate-

rial optimization

Table A.1 contains information about flywheel rotor optimization studies from liter-

ature. A variety of optimization objectives, design variables, constraints and opti-

mization algorithms and strategies have been used to design optimal FESS rotors.
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Table A.1: Literature on optimal rotor design for FESS using tailored material properties

Reference Objective Design Variables Constraints Parameters Model Strategy

Krack et al. [17] max Ekin

cost
ω, t1 Tsai-Wu materials 1D PSS & 3D

multistart NIPM

multistrategy EA+NIPM

Ha et al. [22] max ω2 ω, {ϕj,δj}nrims
j=1 Tsai-Wu - 1D

SLP/MFD

GS/polynomial search

Krack et al. [24] max Ekin

cost
ω, { tj

tall
, ϕj}nrims

j=1 Tsai-Wu - 1D PSS & 3D
multistart NIPM

multistrategy EA+NIPM

Mittelstedt et al. [25]
max {Ekin, productivity}

& min cost
ω, nrims, {tj, δj,materialj}nrims

j=1 MσFT, MεFT, Tsai-Wu - 1D PSS GA+SQP

Ha et al. [26] max Ekin {tj}nrims
j=1 Tsai-Wu ∆T , materials 1D MPGS & PSS, 3D FEM Modified MFD

Krack et al. [27] max Ekin

cost
ω, t1

tall
, thub MσFT hub type 1D PSS & 3D FEM

NIPM (single/ sequential

/ surrogate models)

Ha et al. [57] max(Ekin) ro,ri,{tj}nrims
j=1 Tsai-Wu material sequence 1D PSS Modified MFD

Ha et al. [58] max(ekin) {tj, δj}nrims
j=1 Tsai-Wu, MσFT

assembly, no. of rims,

curing temperature
1D PSS not reported

Ha et al. [59] min(R∗
max) {tj, V j

f }
nrims
j=1 MσFT assembly 1D PSS SQP

Arvin and Bakis [62] max ekin ω, {tj}nrims
j=1 MσFT, Tsai-Wu rims, Tsf 1D PSS SA

Wen & Jiang [63]
max(Ekin or Ekin

m

or Ekin

V
or Ekin

cost
)

ω,ro,ri,{t1, .., tj, .., tn} MσFT, delamination, press-fit
acceleration,

gravity
1D PSS NIPM+SQP
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A.2 Literature on FESS rotor shape optimization

Table A.2 contains the optimization formulations used in literature for flywheel rotor shape optimization. A variety of opti-

mization objectives, shape approximation functions, constraints and optimization algorithms and strategies have been used to

design optimally shaped FESS rotors.

Table A.2: Literature on optimal metal rotor design using shape optimization

Reference Objective Design Variables Constraints Parameters Geometry Rotor model Strategy

Singh & Chaudhary [32, 70] max Ekin {hj}
nbspline

j=1 σmax
VM ≤ σdesign, m ≤ mdesign - annular disk 2D FDM JAYA global method

Singh & Chaudhary [33] max Ekin & min σmax
vm {hj}

nbspline

j=1 σmax
VM ≤ σdesign, m ≤ mdesign - annular disk 2D axisymmetric FDM

non-dominated

sorted Jaya

Berger & Porat. [34] max ekin h1(r),h2(r),h3(r),h4(r) σmax
r ≤ σdesign, σ

max
θ ≤ σdesign ω solid disk 2D axisymmetric -

Kress [35] min
∫︁
r

(σ − σ)2dr he(r) ∀e (elements) m = mdesign, Ekin = Edesign
kin rin, rout annular disk

modified 0D,

2D axisymmetric FEM
method of feasible directions

Bhavikatti & Ramakrishnan [64]

a) min (σmax
θ − σmin

θ )
5th degree

polynomial shape fn.
σr ≥ σmin

θ ω, p annular disk 2D axisymmetric FEM
improved move limit

seq lin programming
b) min

∫︁
r

(σ − σ)2dr

c) min (
∫︁
r

(σ − σ)2dr, V )

Eby & Averill [65] max ekin he(r) ∀e (elements) - - solid disk 1D & 2D axisymmetric FEM
injection island

genetic algorithm

Jiang et al. [67]
a) max ekin {hj}

nbspline

j=1

a) σmax
VM ≤ σdesign, h

L
j ≤ hj ≤ hU

j - a) solid disk
2D axisymmetric FEM downhill simplex

b) max Ekin

b) σmax
VM ≤ σdesign, h

L
j ≤ hj ≤ hU

j ,

m = mdesign

b) solid and annular disks

Pedrolli et al. [71] min m {hj}
nbspline

j=1

s(σVM) = 0, σmax
VM = σdesign,

I = Idesign
ω, Edesign

kin , rout, ρ, σy solid disk 2D axisymmetric FEM
evolutionary algorithm

(multi-member, elitist)

Uyar et al [72] max Eavg
kin , min m {hj}

nbspline

j=1 , materialj
σmax
VM ≤ σdesign, ωmax ≤ ωdesign,

m ≤ mdesign

ωdesign, materialj, rout annular disk
2D axisymmetric GDQM,

& FEM

non-dominated sorting

genetic algorithm II
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Table A.2: (Continued) Literature on optimal metal rotor design using shape optimization

Reference Objective Design Variables Constraints Parameters Geometry Rotor model Strategy

Ghotbi & Dhingra [73] max Ekin & min C
Fourier coefficients

(s0,ai,bi, i=1,2,3)
σmax
VM ≤ σdesign, m ≤ mdesign - annular disk 2D axisymmetric FDM bi-level Stackelberg game

Liu et al. [74] min m mesh elements σmax
VM ≤ σdesign - annular disk 3D FEM metamorphic development

Bugeda et al. [76] min m
60 shape parameters

in (r − θ) plane
σboundaries
V M ≤ σdesign - annular disk with spokes 2D plane-stress FEM evolutionary algorithm

Present work [126] max Ekin {hj}
nbspline

j=1 σmax
VM ≤ σdesign, m ≤ mdesign ω, rout, material solid disk

2D axisymmetric FEM

hybrid sequential

(global + local)
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A.3 Literature on FESS rotor topology optimiza-

tion

Table A.3 contains information about flywheel rotor topology or 3D geometry opti-

mization studies from literature. A variety of optimization objectives, design vari-

ables, constraints and optimization algorithms and strategies have been used to design

optimal FESS rotors.

Table A.3: Literature on topology optimization of flywheels used in energy storage
applications

Reference
Optimization formulation

Numerical model Load Boundary Conditions Solver
Objective Constraints

Tsai and Cheng [81]

Torsional frequency

Volume fraction
2D plane stress (r-θ),

CAMD

Centrifugal force Annular disk,

zero displacement inner boundary
MMA

Moment of Inertia

Torsional frequency and

Moment of Inertia (MOO)

Compliance
Centrifugal force and

Acceleration load

Jiang and Wu [68] Moment of Inertia
Maximum von Mises stress,

Volume fraction

2D plane stress (r-θ),

SIMP,
Centrifugal force

Annular disk,

zero displacement inner boundary
Not reported

Lottes et al. [82]

step 1. Shape parametric study

with ranking based on 4 criteria

Mass,

Form factor,

Rankine stress criterion,

Mass-specific angular momentum

2D axisymmetric (r-z) Centrifugal force
Different shaft geometries

were evaluated

step 2. Topology optimization

Minimize compliance
Volume fraction 3D Centrifugal force

Integrated shaft,

fixed outer contour / shape
MMA

Present work
Kinetic energy

P-norm stress,

Volume fraction

2D plane stress (r-θ)

3D

Centrifugal force,

Acceleration load,

Gravity load (3D)
Annular disk,

Press-fit shaft

MMA

Specific energy P-norm stress 2D plane stress (r-θ)
Centrifugal force and

Acceleration load

194



A.4 Literature on topology optimization of rotors

used in other applications

Table A.4 contains information about flywheel rotor topology or 3D geometry opti-

mization studies from literature. A variety of optimization objectives, design vari-

ables, constraints and optimization algorithms and strategies have been used to design

optimal rotors in other applications.

Table A.4: Literature on topology optimization of axisymmetric disks used in other
applications

Application Reference
Optimization formulation

Load Model Solver
Objective Constraints

Hydrogenerator shaft Lopes et al. [94]
Minimize

Compliance
Volume fraction

Centrifugal load

Radial load due to magnets

Linear elastic model,

2D plane stress (r-θ) and 3D
MMA

Theoretical Moses et al. [107]
Minimize

Compliance
Volume fraction Acceleration load

Periodic cyclic structure,

2D plane stress (r-θ)
Optimality criterion

Synchronous reluctance

motor

Guo and Brown [97]

Maximize

Average torque

Torque ripple,

P-norm stress,

Compliance

Magnetic load

Centrifugal load

Magneto-structural model,

2D plane stress (r-θ)
GCMMA

MOO:

Max Average torque,

Min Compliance

Torque ripple,

P-norm stress

Credo et al. [98]
Maximize

Average torque

Torque ripple,

Maximum stress,

Mass,

Phase voltage,

Peak torque

Magnetic load,

Centrifugal load

Magneto-structural model,

2D plane stress (r-θ)
-

Compressor / turbine

rotors

Wang et al. [95]
Minimize

Mass
P-norm stress

Centrifugal load

Radial load due to blades

Linear elastic model,

2D axisymmetric (r-z)
MMA

Wang et al. [96]
Minimize

Volume fraction

P-norm stress,

Compliance

Centrifugal load

Radial load due to blades,

Thermal load

Thermo-elastic model,

2D axisymmetric (r-z)
MMA
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Appendix B: Rotor Materials

B.1 Material Properties

Table B.1: Composite material properties [110]

Material Vf Eθ Er Gθr Grz νθr νrz ρ σult
θ,T σult

θ,C σult
r,T σult

r,C τultθr relative cost

GPa GPa GPa GPa g/cm3 MPa MPa MPa MPa MPa /kg

AS4-3501-6 0.6 127 11.15 6.55 3.64 0.27 0.53 1.591 1950 1480 48 200 79 26.63

AS4-8552 0.58 135.1 9.63 4.95 3.35 0.30 0.43 1.577 2206 1531 80 259.9 114.5 26.69

E-Glass Epoxy 0.45 44.81 12.41 5.51 3.59 0.28 0.36 2.076 1035 620 48 137.8 68.9 18.72

IM7-8551-7 0.6 165.8 8.56 5.59 2.94 0.27 0.46 1.574 2560 1590 73 185 90 35.77

IM7-8552 0.57 139.7 11.39 4.75 3.89 0.32 0.46 1.588 2723 1689 111 215.9 119.9 35.77

Kevlar-49 Epoxy 0.45 75.84 5.51 2.06 1.54 0.34 0.47 1.384 1378 275 29 137.8 62 27.10

S-2 Glass Epoxy 0.45 55.84 17.92 6.20 3.89 0.27 0.35 1.993 1999 965 62 155 93 30.91

T300-BSL914C 0.6 138.1 11 5.43 3.57 0.28 0.54 1.559 1500 900 27 200 80.0 31.71

T300-PR319 0.6 128.9 5.706 1.33 1.84 0.32 0.55 1.562 1378 950 40 125 97 31.71
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Table B.2: Isotropic material properties [127]

Material E G ν ρ Yield Strength relative cost

GPa GPa g/cm3 MPa /kg

Al-2024 73.1 27.1 0.332 2.77 417.8 3.84

Al-6061-T6 69.6 26.3 0.331 2.71 275 2.30

Al-7075-T6 71.8 26.8 0.33 2.79 465 3.07

Steel-4340 205.0 76.5 0.29 7.85 470 1.0

Steel-18Ni-300 190.0 66.3 0.318 8.04 758 1.53

Stainless-Steel-15-7 201.0 77.9 0.32 7.67 745 2.69

Stainless-Steel-440C 203.0 93.1 0.284 7.7 1220 1.26

Stainless-Steel-455 197.9 75.8 0.3 7.76 1489 2.30

Carbon-Steel-1020 206.2 80.0 0.288 7.84 429.6 1.76
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Appendix C: Shape optimization

C.1 Mesh independence of axisymmetric rotor model

The mesh independence of the 2D axisymmetric model implementation described in

Chapter 3 was checked using the convergence of the displacement and stress solutions

with mesh refinement (h-refinement) and higher order approximations (p-refinement).

An annular constant thickness rotor was used for this study, and the mesh with

120 elements used for simulations can be seen in Figure C.1. Figure C.2 shows the

convergence of the maximum radial displacement umax
r with h and p-refinement and

Figure C.3 shows the convergence of maximum stresses σmax
r in the axisymmetric

rotor with both h and p-refinement. The % difference between subsequent solutions

is calculated as shown in Equation (C.1), where xn is the solution obtained with n

refinement levels. The displacement solutions converge relatively quickly in both cases

and a second-order approximation with a mesh of 120 elements is sufficient to ensure

Figure C.1: Axisymmetric constant thickness rotor mesh for a) annular disk geometry
with 20x6 elements and b) solid disk geometry with 40x6 elements
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the accuracy of the displacement solution, but the stresses are not as accurate. This is

because the stresses are calculated using the gradients of the displacement solutions,

which are not necessarily continuous in the entire domain. The use of stresses obtained

at Gauss quadrature points (one order lower than the order of quadrature used for

numerical integration) instead of nodal stresses is seen to improve the convergence

of the stress solution, which is expected as per the super-convergence theory [114].

Thus, a combination of h and p refinement is used to ensure the convergence of all the

necessary solutions. Different mesh refinement strategies will be used in the shape and

topology optimization studies. In shape optimization, the FEM domain and mesh

is regenerated at every optimization iteration, so an adaptive re-meshing strategy

will be used to ensure stress convergence, whereas the domain and mesh are fixed in

topology optimization, thus a predetermined mesh refinement with either linear or

quadratic solution approximations will suffice in these studies.

%difference =
xn − xn−1

xn
∗ 100 (C.1)

(a) (b)

Figure C.2: Convergence of displacement umax
r in the axisymmetric rotor model with

a) h-refinement (first order approximations) and b) p-refinement (mesh with 120
elements).
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(a) (b)

Figure C.3: Convergence of stress σmax
r in the axisymmetric rotor model with a) h-

refinement (first order approximations) and b) p-refinement (mesh with 120 elements).

C.2 Optimal solutions for parametric studies to

determine the effect of operating speed and

rotor radius on the rotor design

Table C.1 shows the optimal solutions of the shape optimization problem which max-

imizes the rotor kinetic energy, based on design-1 (Temporal rotor) specifications, at

different combinations of operating speed and rotor radius. The parameters varied in

this study are rout = 0.4 : 1.0 m and ω = 4000 : 10000 rpm.

Table C.1: Kinetic energy in kWh for the optimal shaped rotors based on design-1

rout [m], ω [rpm] 4000 5000 6000 7000 8000 9000 10000

0.4 11.21 17.58 25.31 22.60 27.87 34.03 41.99

0.5 18.30 28.66 31.02 36.39 41.13 42.79 40.33

0.6 23.04 34.38 37.08 46.13 41.14 40.15 31.31

0.7 30.54 40.29 49.04 49.68 45.14 0.00 0.00

0.8 32.40 45.49 53.88 51.63 0.00 0.00 0.00

0.9 40.02 50.24 56.62 53.32 0.00 0.00 0.00

1 47.88 56.57 60.95 0.00 0.00 0.00 0.00

Table C.2 shows the optimal solutions of the shape optimization problem which max-

imizes the rotor kinetic energy, based on design-2 (Amber Kinetics) specifications, at
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different combinations of operating speed and rotor radius. The parameters varied in

this study are rout = 0.4 : 1.0 m and ω = 4000 : 10000 rpm.

Table C.2: Kinetic energy in kWh for the optimal shaped rotors based on design-2

rout [m], ω [rpm] 4000 5000 6000 7000 8000 9000 10000

0.4 6.95 11.11 15.94 22.22 19.00 23.85 25.81

0.5 11.56 18.20 20.71 24.67 30.06 32.29 29.72

0.6 14.81 19.78 22.50 31.77 34.57 33.17 31.51

0.7 17.70 25.40 33.18 36.60 38.37 32.88 0.00

0.8 19.51 32.00 36.52 41.24 41.80 0.00 0.00

0.9 27.27 34.70 41.23 44.61 0.00 0.00 0.00

1 32.23 43.04 47.68 0.00 0.00 0.00 0.00

C.3 Optimal designs for parametric studies to de-

termine the effect of operating speed and ro-

tor radius on the rotor design

Table C.3 shows the optimal shape design parameters h(r) in m, for the shape opti-

mization problem which maximizes the rotor kinetic energy, based on design-1 (Tem-

poral rotor) specifications, at different combinations of operating speed and rotor

radius.

Table C.3: Shape design parameters h(r) for optimal rotors in the parametric studies
based on design-1

Parametric study h1 h2 h3 h4 h5 h6 h7 h8

rout = 0.4 m, ω = 4000 rpm 0.03 0.03 0.03 0.03 0.03 0.03 0.80 1.81

rout =0.4m, ω =5000 rpm 0.03 0.03 0.03 0.03 0.03 0.03 0.75 1.87

rout =0.4m, ω =6000 rpm 0.03 0.03 0.03 0.03 0.03 0.03 0.76 1.87

rout =0.4m, ω =7000 rpm 0.35 0.33 0.35 0.32 0.49 0.40 0.55 0.51

rout =0.4m, ω =8000 rpm 0.35 0.36 0.36 0.61 0.33 0.46 0.51 0.42
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rout =0.4m, ω =9000 rpm 0.45 0.39 0.49 0.47 0.42 0.51 0.37 0.44

rout =0.4m, ω =10000 rpm 0.41 0.49 0.52 0.40 0.45 0.37 0.46 0.46

rout =0.5m, ω =4000 rpm 0.03 0.03 0.03 0.03 0.03 0.03 0.04 1.73

rout =0.5m, ω =5000 rpm 0.03 0.03 0.03 0.03 0.03 0.03 0.03 1.75

rout =0.5m, ω =6000 rpm 0.10 0.08 0.09 0.10 0.21 0.26 0.50 0.49

rout =0.5m, ω =7000 rpm 0.21 0.19 0.19 0.20 0.25 0.35 0.29 0.40

rout =0.5m, ω =8000 rpm 0.26 0.34 0.27 0.26 0.34 0.25 0.21 0.32

rout =0.5m, ω =9000 rpm 0.34 0.33 0.31 0.53 0.43 0.21 0.16 0.12

rout =0.5m, ω =10000 rpm 0.45 0.44 0.48 0.71 0.41 0.13 0.05 0.05

rout =0.6m, ω =4000 rpm 0.03 0.03 0.04 0.03 0.05 0.12 0.30 0.65

rout =0.6m, ω =5000 rpm 0.07 0.05 0.04 0.05 0.05 0.13 0.39 0.49

rout =0.6m, ω =6000 rpm 0.18 0.14 0.17 0.23 0.13 0.17 0.24 0.25

rout =0.6m, ω =7000 rpm 0.21 0.21 0.21 0.22 0.20 0.15 0.23 0.18

rout =0.6m, ω =8000 rpm 0.34 0.21 0.52 0.32 0.24 0.12 0.06 0.08

rout =0.6m, ω =9000 rpm 0.38 0.31 0.67 0.49 0.08 0.09 0.04 0.03

rout =0.6m, ω =10000 rpm 0.37 0.21 0.88 0.15 0.05 0.03 0.03 0.03

rout =0.7m, ω =4000 rpm 0.03 0.03 0.03 0.03 0.03 0.09 0.20 0.48

rout =0.7m, ω =5000 rpm 0.10 0.10 0.09 0.11 0.06 0.10 0.19 0.31

rout =0.7m, ω =6000 rpm 0.17 0.16 0.17 0.14 0.10 0.10 0.16 0.21

rout =0.7m, ω =7000 rpm 0.21 0.23 0.22 0.23 0.16 0.13 0.07 0.08

rout =0.7m, ω =8000 rpm 0.28 0.24 0.53 0.27 0.08 0.07 0.03 0.04

rout =0.7m, ω =9000 rpm 0.29 0.18 0.62 0.11 0.05 0.03 0.03 0.03

rout =0.7m, ω =10000 rpm 0.25 0.24 0.53 0.17 0.06 0.03 0.03 0.03

rout =0.8m, ω =4000 rpm 0.05 0.04 0.09 0.03 0.10 0.12 0.14 0.19

rout =0.8m, ω =5000 rpm 0.12 0.11 0.10 0.07 0.07 0.12 0.11 0.16

rout =0.8m, ω =6000 rpm 0.17 0.16 0.19 0.13 0.08 0.07 0.11 0.09

rout =0.8m, ω =7000 rpm 0.22 0.21 0.35 0.14 0.09 0.07 0.04 0.04

rout =0.8m, ω =8000 rpm 0.24 0.23 0.45 0.10 0.05 0.03 0.03 0.03

rout =0.8m, ω =9000 rpm 0.23 0.23 0.42 0.11 0.04 0.03 0.03 0.03

rout =0.8m, ω =10000 rpm 0.21 0.21 0.34 0.10 0.05 0.03 0.03 0.03
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rout =0.9m, ω =4000 rpm 0.06 0.05 0.05 0.04 0.05 0.12 0.10 0.14

rout =0.9m, ω =5000 rpm 0.13 0.13 0.08 0.11 0.07 0.10 0.05 0.10

rout =0.9m, ω =6000 rpm 0.17 0.17 0.18 0.11 0.06 0.07 0.05 0.06

rout =0.9m, ω =7000 rpm 0.20 0.23 0.26 0.10 0.05 0.03 0.03 0.03

rout =0.9m, ω =8000 rpm 0.19 0.24 0.24 0.11 0.06 0.03 0.04 0.03

rout =0.9m, ω =9000 rpm 0.21 0.24 0.22 0.09 0.05 0.03 0.03 0.03

rout =0.9m, ω =10000 rpm 0.20 0.23 0.26 0.10 0.05 0.03 0.03 0.03

rout =1m, ω =4000 rpm 0.07 0.07 0.05 0.05 0.04 0.09 0.05 0.13

rout =1m, ω =5000 rpm 0.15 0.12 0.09 0.07 0.05 0.07 0.05 0.06

rout =1m, ω =6000 rpm 0.20 0.22 0.15 0.07 0.06 0.03 0.03 0.04

rout =1m, ω =7000 rpm 0.20 0.22 0.18 0.07 0.05 0.03 0.03 0.03

rout =1m, ω =8000 rpm 0.19 0.23 0.16 0.09 0.05 0.03 0.03 0.03

rout =1m, ω =9000 rpm 0.21 0.23 0.17 0.07 0.05 0.03 0.03 0.03

rout =1m, ω =10000 rpm 0.19 0.23 0.19 0.08 0.05 0.03 0.03 0.03

Table C.4 shows the optimal shape design parameters h(r) in m, for the shape

optimization problem which maximizes the rotor kinetic energy, based on design-2

(Amber Kinetics) specifications, at different combinations of operating speed and

rotor radius.

Table C.4: Shape design parameters h(r) for optimal rotors in the parametric studies
based on design-2

Parametric study h1 h2 h3 h4 h5 h6 h7 h8

rout = 0.4 m, ω = 4000 rpm 0.03 0.03 0.03 0.03 0.03 0.14 0.53 0.98

rout =0.4m, ω =5000 rpm 0.03 0.03 0.03 0.03 0.03 0.08 0.50 1.11

rout =0.4m, ω =6000 rpm 0.03 0.03 0.03 0.03 0.03 0.10 0.48 1.10

rout =0.4m, ω =7000 rpm 0.03 0.03 0.03 0.03 0.03 0.03 0.44 1.25

rout =0.4m, ω =8000 rpm 0.20 0.18 0.17 0.21 0.38 0.22 0.33 0.36

rout =0.4m, ω =9000 rpm 0.23 0.23 0.23 0.23 0.29 0.36 0.25 0.36
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rout =0.4m, ω =10000 rpm 0.28 0.24 0.49 0.27 0.24 0.38 0.23 0.22

rout =0.5m, ω =4000 rpm 0.03 0.03 0.03 0.03 0.03 0.03 0.03 1.06

rout =0.5m, ω =5000 rpm 0.03 0.03 0.03 0.03 0.03 0.03 0.03 1.09

rout =0.5m, ω =6000 rpm 0.07 0.06 0.07 0.05 0.08 0.19 0.38 0.30

rout =0.5m, ω =7000 rpm 0.10 0.10 0.10 0.11 0.24 0.10 0.29 0.25

rout =0.5m, ω =8000 rpm 0.16 0.18 0.15 0.15 0.17 0.13 0.22 0.27

rout =0.5m, ω =9000 rpm 0.20 0.20 0.18 0.34 0.13 0.19 0.13 0.18

rout =0.5m, ω =10000 rpm 0.27 0.22 0.37 0.33 0.25 0.13 0.09 0.03

rout =0.6m, ω =4000 rpm 0.03 0.03 0.03 0.03 0.03 0.11 0.13 0.46

rout =0.6m, ω =5000 rpm 0.07 0.03 0.04 0.03 0.11 0.12 0.28 0.15

rout =0.6m, ω =6000 rpm 0.10 0.08 0.19 0.11 0.12 0.13 0.11 0.15

rout =0.6m, ω =7000 rpm 0.13 0.14 0.12 0.11 0.09 0.14 0.15 0.14

rout =0.6m, ω =8000 rpm 0.16 0.18 0.16 0.17 0.13 0.11 0.11 0.09

rout =0.6m, ω =9000 rpm 0.21 0.23 0.22 0.32 0.08 0.11 0.04 0.04

rout =0.6m, ω =10000 rpm 0.26 0.23 0.56 0.20 0.06 0.03 0.04 0.03

rout =0.7m, ω =4000 rpm 0.03 0.03 0.03 0.03 0.06 0.15 0.13 0.16

rout =0.7m, ω =5000 rpm 0.06 0.04 0.08 0.05 0.03 0.15 0.06 0.20

rout =0.7m, ω =6000 rpm 0.10 0.10 0.09 0.07 0.06 0.10 0.10 0.14

rout =0.7m, ω =7000 rpm 0.13 0.18 0.10 0.14 0.06 0.10 0.04 0.11

rout =0.7m, ω =8000 rpm 0.17 0.17 0.22 0.12 0.07 0.07 0.05 0.05

rout =0.7m, ω =9000 rpm 0.19 0.17 0.26 0.15 0.05 0.03 0.03 0.03

rout =0.7m, ω =10000 rpm 0.24 0.20 0.35 0.09 0.04 0.03 0.03 0.03

rout =0.8m, ω =4000 rpm 0.03 0.03 0.05 0.03 0.06 0.12 0.08 0.07

rout =0.8m, ω =5000 rpm 0.07 0.07 0.04 0.05 0.03 0.10 0.07 0.13

rout =0.8m, ω =6000 rpm 0.11 0.11 0.07 0.07 0.07 0.10 0.05 0.05

rout =0.8m, ω =7000 rpm 0.13 0.17 0.12 0.09 0.05 0.07 0.04 0.04

rout =0.8m, ω =8000 rpm 0.18 0.18 0.21 0.10 0.04 0.03 0.03 0.03

rout =0.8m, ω =9000 rpm 0.15 0.22 0.20 0.07 0.04 0.03 0.03 0.03

rout =0.8m, ω =10000 rpm 0.18 0.19 0.22 0.10 0.04 0.03 0.03 0.03

rout =0.9m, ω =4000 rpm 0.03 0.04 0.03 0.03 0.03 0.10 0.05 0.10
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rout =0.9m, ω =5000 rpm 0.07 0.05 0.09 0.04 0.03 0.07 0.06 0.05

rout =0.9m, ω =6000 rpm 0.12 0.11 0.06 0.07 0.04 0.03 0.05 0.05

rout =0.9m, ω =7000 rpm 0.16 0.18 0.10 0.07 0.04 0.03 0.03 0.03

rout =0.9m, ω =8000 rpm 0.15 0.18 0.12 0.06 0.04 0.03 0.03 0.03

rout =0.9m, ω =9000 rpm 0.14 0.18 0.11 0.07 0.04 0.03 0.03 0.03

rout =0.9m, ω =10000 rpm 0.18 0.17 0.07 0.07 0.03 0.03 0.03 0.03

rout =1m, ω =4000 rpm 0.03 0.03 0.03 0.03 0.03 0.07 0.05 0.07

rout =1m, ω =5000 rpm 0.08 0.06 0.05 0.04 0.03 0.03 0.05 0.06

rout =1m, ω =6000 rpm 0.12 0.11 0.07 0.05 0.04 0.03 0.03 0.04

rout =1m, ω =7000 rpm 0.14 0.20 0.09 0.05 0.04 0.03 0.03 0.03

rout =1m, ω =8000 rpm 0.20 0.21 0.18 0.07 0.05 0.03 0.03 0.03

rout =1m, ω =9000 rpm 0.15 0.23 0.10 0.06 0.05 0.03 0.03 0.03

rout =1m, ω =10000 rpm 0.16 0.19 0.09 0.07 0.04 0.03 0.03 0.03
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Appendix D: Topology
optimization

D.1 Weak form of linear elastic flywheel numerical

model

The balance of linear momentum is the governing equation that is used to predict the

stress-state of a solid object subject to various loads and boundary conditions. This

equation can be stated as

∇ · σ + ρb⏞⏟⏟⏞
f

=��⌃0ρa =⇒ ∇ · σ + f = 0 , (D.1)

where σ is the second-order stress tensor, ρ is the density of the material, b is the

vector of body forces, and a is the vector of acceleration loads on the body. A quasi-

static state is assumed here, thus the acceleration term is neglected in this analysis.

Hooke’s law is used to capture the stress-strain relationship, and can be expressed as

σ = C : ε , (D.2)

where C is the fourth-order elasticity tensor and ε is the second-order strain tensor.

A constitutive law may be used to determine the components of the elasticity tensor.

For isotropic materials, the elasticity tensor is given by

C = λI ⊗ I + 2µI (D.3)
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where λ and µ are Lamé’s first and second parameter respectively, and can be obtained

from the material properties using the following relations,

λ =
Eν

(1 + ν)(1− 2ν)
Lamé’s first parameter ,

µ =
E

2(1− ν)
Lamé’s second parameter .

(D.4)

where E, ν are the Young’s modulus and Poisson’s ratio respectively. The strain-

displacement relation, assuming small deformations, can be expressed as:

ε =
1

2

(︂
∇u+ (∇u)T

)︂
(D.5)

where u is the vector of displacements. The above equations form the basis for the

linear elastic numerical models. The weak form of the governing equations described

above is derived as follows. Let v be a vector-valued test function belonging to the

Sobolev functional space H1. Multiplying Equation (D.1) by v and integrating over

the domain, Ω, ∫︂
Ω

v · (∇ · σ + f) dΩ = 0 (D.6)

The above equation can be simplified using Green’s formula, i.e.,∫︂
Ω

v · (∇ · σ) dΩ = −
∫︂
Ω

(∇v) : σ dΩ +

∫︂
Γ

v · (σ n) dΓ (D.7)

Thus, Equation (D.6) becomes:∫︂
Ω

(∇v) : σ dΩ =

∫︂
Ω

v · f dΩ +

∫︂
Γ

v · (σ n) dΓ (D.8)

Interpreting the test function v as a virtual displacement vector, the following virtual

strain form of the test function can be defined:

ε =
1

2

(︂
∇v +∇vT

)︂
(D.9)

Then, the weak form of the 2D / 3D linear elastic model is developed using Equa-

tion (D.8) and can be written as:∫︂
Ω

ε : σ dΩ =

∫︂
Ω

v · f dΩ +

∫︂
Γ

v · σn dΓ (D.10)
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The domain Ω is discretized using a mesh with Lagrange quadrilateral (2D model)

or hexahedral (3D model) elements. For each mesh element located at Ωe, the dis-

placement vector u is approximated as:

⎡⎢⎢⎢⎢⎣
ux

uy

uz

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ϕ1 ... ϕn 0 ... 0 0 ... 0

0 ... 0 ϕ1 ... ϕn 0 ... 0

0 ... 0 0 ... 0 ϕ1 ... ϕn

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux1

...

uxn

uy1

...

uyn

uz1

...

uzn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D.11)

where ux, uy, uz are the components of the solution vector u, n is the number of

degrees of freedom (DoFs) per solution component approximation which is determined

by the degree of polynomial approximation function used and N is the matrix of shape

function coefficients. Using the above definitions, the vector-valued test function v

and solution u can be approximated as:

v = Nkpvpek = ϕ
(i)
k viek (D.12)

u = Nlquqel = ϕ
(j)
l ujel (D.13)

where i, j are the indices over the number of DoFs per dimension (n), p, q are the

indices over the total number of DoFs, and k, l are indices over the number of dimen-

sions.

Substituting the expressions above on the weak form of the governing equation,

the element-wise stiffness matrix, Ke, forcing vector, fe, and boundary term, fb, can

be obatained as follows,

Ke
ij =

∫︂
Ωe

(︂
ϕi
k,k λ ϕj

l,l + ϕi
k,l µ ϕj

k,l + ϕi
k,l µ ϕj

l,k

)︂
dΩe (D.14)
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where i, j are the indices over the number of DoFs per dimension, k, l are indices over

the number of dimensions.

f e
i =

∫︂
Ωe

(︂
ϕi
m fm

)︂
dΩe (D.15)

where i is an index over the number of DoFs per dimension, m is an index over the

number of dimensions.

f b
i =

∫︂
Γe

(︂
ϕi
m σmrnr

)︂
Γe (D.16)

where i is an index over the number of DoFs per dimension and m, r are indices over

the number of dimensions.

Here, the inertial load due to the rotation of the flywheel is imposed as a body

force fm = ρω2rm over the entire domain, and the outer surfaces of the flywheel are

assumed to be stress free.

The linear elasticity numerical model is implemented in the Cartesian coordinate

system to make the implementation generic i.e the same model can be used for 2D /

3D simulations.

The stresses and strains in the solid domain are obtained a posteriori from the

displacement solutions of the numerical model, by using the relations outlined in

Equations (D.2), (D.5).

D.2 Adjoint sensitivity analysis

The adjoint form can be used to analytically determine the gradient of topology

optimization responses with a reduced computational cost. The expression for the

adjoint sensitivity is derived below.

The sensitivity of an optimization response, ϕ(ρ̂,u) w.r.t design variable ρ̂e (using

the chain rule) is:

dϕ(ρ̂,u)

dρ̂e
=

∂ϕ

∂ρ̂e
+

∂ϕ

∂u

∂u

∂ρ̂e
(D.17)

The adjoint form of this equation can be used to avoid having to perform a large

209



number of matrix inversions. In this approach, the original response ϕ can be re-

written as:

ϕ(ρ̂,u) = ϕ(ρ̂,u) + λT (Ku− F ) (D.18)

where λT is an adjoint vector, and R = Ku − F = 0 is the residual of the FEM

solution. Using this new definition of the response, the gradient from Equation (D.17)

can be rewritten as:

dϕ(ρ̂,u)

dρ̂e
=

∂ϕ

∂ρ̂e
+

∂ϕ

∂u

∂u

∂ρ̂e
+ λT

(︃
K

∂u

∂ρ̂e
+

∂K

∂ρ̂e
u− ∂F

∂ρ̂e

)︃
(D.19)

Rearranging the terms,

dϕ

dρ̂e
=

∂ϕ

∂ρ̂e
+

(︃
∂ϕ

∂u
+ λTK

)︃
∂u

∂ρ̂e
+ λT

(︃
∂K

∂ρ̂e
u− ∂F

∂ρ̂e

)︃
(D.20)

In the above equation, the adjoint vector λ can be chosen so that the second term

becomes zero, i.e., (︃
∂ϕ

∂u
+ λTK

)︃
∂u

∂ρ̂e
= 0 (D.21)

This results in the following definition of the adjoint sensitivity:

dϕ

dρ̂e
=

∂ϕ

∂ρ̂e
+ λT

(︃
∂K

∂ρ̂e
u− ∂F

∂ρ̂e

)︃
(D.22)

where the adjoint vector λ is defined as:

λ = −(KT )−1 ∂ϕ

∂u
(D.23)

D.3 Finite difference tests for topology optimiza-

tion responses

The analytical sensitivities of topology optimization responses were validated using

finite difference tests. The sensitivity of the responses ϕ(ρ) w.r.t one of the design

variables was computed using finite differences, as shown in Eqn. (D.24).

˜︁∂ϕ(ρ)
∂ρi

≈ ϕ(ρ+ eih)− ϕ(ρ)

h
(D.24)
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The error or the relative difference between the above computed numerical gradient

and the sensitivity obtained from the analytical expression, was calculated as follows:

errϕ =

⃓⃓⃓
∂ϕ(ρ)
∂ρi

⃓⃓⃓
−

˜︂⃓⃓⃓∂ϕ(ρ)
∂ρi

⃓⃓⃓
⃓⃓⃓
∂ϕ(ρ)
∂ρi

⃓⃓⃓ (D.25)

The density of a randomly chosen mesh element was varied using different step sizes,

h, and the effect on the optimization response, ϕ, was observed. Figure D.1 plots the

errors in the analytical sensitivities of the kinetic energy and P-norm stress calculated

using Eqn. (D.25), vs the finite difference step size, h, on a log scale. As the step

size was reduced from 10−1 to 10−5, the finite difference error approached zero at

the same rate. The small increase in the finite difference error in the stress response

in Figure D.1(b) for very small step sizes ≤ 10−5 could be because the calculated

numerical gradients of the stress were approaching machine precision at these step

sizes. Thus, overall, the computed analytical sensitivities were sufficiently accurate

and could be used in the optimization studies.

(a) (b)

Figure D.1: Finite difference tests to validate the analytical sensitivity of a) kinetic
energy and b) P-norm aggregated stress response
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D.4 Benchmarking of 2D rotor topology reported

by Jiang and Wu [68]

The optimization problem solved in the benchmarking study is described below in

Equation D.26.

min σ̃pn = c

⎛⎝ N∑︂
e=1

ve(ρ̂
q
eσ

e
vm)

P

⎞⎠ 1
P

w.r.t ρ̂ = {ρ̂1, ρ̂2, ..., ρ̂N}

s.t. KU = F

f(ρ̂):
V (ρ̂)/V0

α
− 1 ≤ 0

g(ρ̂):
Ekin(ρ̂)

E0
kin

− 1 ≤ 0

0.0 ≤ ρ̂e ≤ 1.0

(D.26)

where σ̃pn is the normalized P-norm aggregated von Mises stress in the rotor, f(ρ̂)

is the volume fraction constraint and g(ρ̂,u) is the kinetic energy constraint. The

literature study maximized the kinetic energy subject to constraints on the volume

fraction and maximum stress. However, since there was a slight difference in the

predicted maximum stress in the simulated uniform thickness rotor, the problem was

solved as a stress minimization formulation instead. E0
kin is the kinetic energy of the

optimal rotor reported in the benchmark study.

Table D.1 contains the model and optimization related parameters used to bench-

mark the 2D rotor topology reported by Jiang and Wu [68].

Figure D.2 contains the 2D mesh, optimal topology and stress distribution obtained

from the simulation of the benchmark problem from Equation D.26.

Figure D.3 contains the simulation convergence histories of the optimization ob-

jective, constraints, convergence criterion and the % of gray elements in the mesh for

the benchmark problem from Equation D.26.

212



Table D.1: Topology optimization parameters for kinetic energy maximization of 2D
rotor design reported in reference [68]

Parameter set Parameter Literature [68] Simulation

Material Properties

Young’s modulus E, GPa 210 210

Poisson’s ratio ν 0.3 0.3

Solid density ρ, kg/m3 7850 7850

Flywheel model

Numerical model 2D Plane stress 2D Plane stress

Rotor height, m 0.001 0.001

Shaft boundary condition Dirichlet (zero displacement) Neumann (press-fit)

Angular velocity ω, rpm 2250 2250

Inner radius rshaft, m 0.15 0.15

Outer radius rout, m 0.80 0.80

Fixed rims thickness trim, m 0.05 0.05

SIMP parameters

penalty p 3 3

ρ0 not reported 0.55

Emin not reported 1

MMA parameters

a

not reported

0.0

c 1000.0

d 0.0

move limit 0.03

Density filter
filter radius rfilt, m 0.06 0.09

distribution not reported linear decay / conical

Projection filter

threshold h

not reported

1D line search

initial slope β0 1

maximum slope βmax 100

update interval 25

Mesh parameters
N (cyclic symmetry) 6 6

elements 19716 11731

Volume fraction constraint Maximum volume fraction α, % 70 70

Stress constraint aggregation

σmax, MPa 200 minimized

P-norm P not reported 8.0

Stress relaxation q not reported 0.5
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(a) (b) (c)

Figure D.2: a) 2D mesh, b) optimal topology and c) optimal stress distribution for
the benchmarking problem described in Equation D.26

Table D.2: Comparison of optimal topologies for various rotor radius ratios

ri, mm Ekin, J m, kg ekin, J/kg σpn, MPa V
V0

25 100239.9 33.58 2984.98 64.34 0.698

30 105851.4 33.48 3161.63 64.22 0.699

35 103418.7 33.06 3128.12 64.17 0.699

D.5 Effect of bore size on optimal topology

The effect of varying the bore size on the optimal topology was studied by fixing the

outer radius and varying the inner radius between 25 and 35 mm. Figure D.4 compares

the optimal designs based on the kinetic energy formulation and corresponding rotor

stress distributions obtained with various radius ratios. Only minor differences in

the optimal topologies or stress distributions are obtained while using different inner

radii. Table D.2 compares the energy capacity and other optimization responses for

the designs. The mass of the rotors is slightly different because of the difference in

the volume of the initial rotors. The specific energy of the rotors reduces as the inner

radius ri is decreased, because the difference in rotor mass is primarily added in the

region closest to the shaft, which does not contribute significantly to the moment of

inertia.
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(a) (b)

(c) (d)

(e)

Figure D.3: Convergence histories of a) kinetic energy, b) P-norm stress, c) volume
fraction, d) convergence criterion and e) % gray region in the topology for the bench-
marking problem described in Equation D.26
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(a)                                           (b)                                             (c)  

Figure D.4: Stress distributions in the optimal rotor topology obtained using different
radius ratios, with inner radius of a) 25 mm, b) 30 mm, and c) 35 mm

D.6 Post-optimality analysis on body fitted meshes

The specific energy maximized optimal designs presented in Figure 4.14 f), i), and j)

were seen to have visible remnant gray regions. These topolgies were post-processed to

extract body fitted geometries with smooth boundaries. Two different design density

thresholds of 50% and 90% were used to generate the body fitted meshes. The stress

distributions in the post-processed designs are presented in Figure D.5.
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(a)                             (b)                              (c)      

(d)                            (e)                              (f)      

(g)                             (h)                              (i)      

4000 RPM

Specific energy 

formulation, 

Eq. (2)

5500 RPM 6000 RPM

3565.52 J/kg1995.37 J/kg 4037.49 J/kg

3491.32 J/kg1960.50 J/kg 3991.85 J/kg

3562.63 J/kg2004.04 J/kg 4060.48 J/kg

Figure D.5: Effect of using a body fitted mesh to analyze design with remnant gray
regions: a-c) optimal topologies with visible gray regions, d-f) stress distribution in
post-processed meshes with density threshold of 50%, and g-i) stress distribution in
post-processed meshes with density threshold of 90%.
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