Nutrient availability, the microbiome and intestinal 1 transport during pregnancy 2 3 4 Stuart Astbury^{1,2}, Alison Mostyn³, Michael E Symonds² and Rhonda C Bell¹ 5 6 ¹Department of Agricultural, Food and Nutritional Science, University of Alberta, 7 Edmonton, AB Canada, T6G 2E1. 8 ²Child Health, Obstetrics and Gynaecology, School of Medicine, University of 9 Nottingham, Nottingham NG7 2UH, United Kingdom. 10 ³School of Veterinary Medicine and Science, University of Nottingham, Sutton 11 Bonington Campus, Leicestershire LE12 5RD, United Kingdom. 12 13 Author contact details 14 15 Corresponding author: Rhonda C Bell (email:rhonda.bell@ualberta.ca) 16 Address: Human Nutrition, Alberta Diabetes Institute, 4-126B Li Ka Shing Centre 17 (LKS), University of Alberta, Edmonton, AB T6G 2E1, Canada. 18 19 Stuart Astbury: Child Health, Obstetrics & Gynaecology, E Floor, East Block,

20 Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, United Kingdom, 21 mgxsa10@nottingham.ac.uk

22

- 23 Michael E Symonds: Child Health, Obstetrics & Gynaecology, E Floor, East Block,
- 24 Queen's Medical Centre, Derby Road, Nottingham NG7 2UH, United Kingdom,
- 25 <u>michael.symonds@nottingham.ac.uk</u>

26

- 27 Alison Mostyn: School of Veterinary Medicine and Science, Sutton Bonington
- 28 Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom,
- 29 <u>alison.mostyn@nottingham.ac.uk</u>
- 30

For

31 Abstract

32	Adequate adaptation of the gastrointestinal (GI) tract is important during
33	pregnancy to ensure that the increased metabolic demands by the developing
34	fetus are met. These include changes in surface area mediated by villus
35	hypertrophy and enhanced functional capacity of individual nutrient receptors
36	including those transporting glucose, fructose, leucine, and calcium. These
37	processes are regulated either by the enhanced nutrient demand or are
38	facilitated by changes in the secretion of pregnancy hormones. Our review also
39	covers recent research into the microbiome, and how pregnancy could lead to
40	microbial adaptations, which are beneficial to the mother, yet are also similar to
41	those seen in the metabolic syndrome. The potential role of diet in modulating
42	the microbiome during pregnancy, as well as the potential for the intestinal
43	microbiota to induce pregnancy complications are examined.
44	
45	Gaps in the current literature are highlighted including those where only
46	historical evidence is available, and we suggest areas that should be a priority for
47	further research. In summary, although a significant degree of adaptation has
48	been described, there are both well-established processes, and more recent
49	discoveries such as changes within the maternal microbiome that pose new
50	questions as to how the GI tract effectively adapts to pregnancy, especially in
51	conjunction with maternal obesity.
52	

53 Keywords: gastrointestinal adaptation, nutrition, pregnancy, microbiome,

54 nutrient transport, maternal health.

Page 3 of 29

56 Introduction

57	The perinatal period is associated with widespread adaptations in a majority of
58	maternal organ systems in order to ensure that nutrient supply to both the
59	mother and developing fetus can be maintained. These temporary changes,
60	collectively known as homeorhesis (Bauman and Currie 1980), are necessary to
61	optimise health during pregnancy, and to enable the mother to meet the
62	additional energetic and nutrient demands that accompany lactation. Many of
63	these maternal physiological adaptations have been previously reviewed. This
64	includes articles summarising the changes in energy metabolism (Herrera 2000,
65	Prentice and Goldberg 2000), and circulation (Hunter and Robson 1992), in both
66	women of normal (King 2000) and excess body mass index (BMI) (King 2006).
67	There is also a substantial body of literature covering adaptation of the placenta
68	to different nutrient intakes (Jones et al. 2007, Lager and Powell 2012), but there
69	is comparatively little work exploring whether the gut and bacterial inhabitants
70	of the gut are subject to similar changes.

71

The aim of this review is to discuss the variety of changes that have been 72 73 demonstrated to occur in the small and large intestine in pregnancy, ranging 74 from the anatomical to the molecular. It will also highlight the need for further 75 research, as much of the evidence discussed is now dated, and therefore has not 76 been considered in light of the significant increases in average pre-pregnancy 77 BMI of women of child-bearing age over the last two decades. Depending on the 78 cut-off used, the incidence of obesity in pregnant women in the USA ranged 79 between 18.5 and 38.3% (Galtier-Dereure et al. 2000, Catalano and Ehrenberg 80 2006, Guelinckx et al. 2008), and there has been a marked increase in the

Appl. Physiol. Nutr. Metab. Downloaded from www.nrcresearchpress.com by University of Alberta on 09/01/15 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

prevalence of obesity in women of childbearing age of ~33% between 1988 and
2000 (Kim et al. 2007). Among Canadian women aged 18-79, the proportion with
a BMI classified as underweight, normal weight overweight or obese is 2.2%,
44.7%, 29.5% and 23.6% respectively, and the prevalence of obesity among
women of child-bearing age (18-44) ranges between 5.5 and 19.4%
(Government of Canada 2011).

87

88 Changes in gut physiology during pregnancy and lactation

89 Gross changes of the alimentary tract using wet weight as an indicator of overall 90 size have been assessed in pregnant and lactating rats in studies dating back to 91 the 1930s (Lew et al. 1939), with more detailed documentation focusing on the 92 intestine beginning in the 1960s. Relative to the non-pregnant state, increases in 93 weight of the stomach and the small intestine of rats have been recorded 94 consistently during lactation but not pregnancy (Souders and Morgan 1957, Fell 95 et al. 1963, Campbell and Fell 1964). One study in sheep reported a 45% increase 96 in small intestine weight (p<0.05 vs age matched non-pregnant controls) in the 97 third trimester (Fell et al. 1972). Although intestinal weight does not appear to 98 change in pregnant rats, surface area increases throughout pregnancy. Villus 99 height increases in the duodenum by mid-pregnancy (Cripps and Williams 1975) 100 and this is accompanied by intestinal dilatation commencing at the beginning of 101 the final week of gestation; these observations have also been reported in 102 pregnant sheep (Fell et al. 1964). These changes persist through lactation (Fell et 103 al. 1963, Boyne et al. 1966) as evidenced by increased serosal circumference and 104 villus height in the jejunum and ileum at the end of lactation in rats, and lactating 105 mice (Campbell and Fell 1964). More recent research in rats shows villus heights

106 in the jejunum significantly increasing by gestational day 21, with no change in 107 the ileum or duodenum (Sarvestani et al. 2015). Intestinal length has been 108 reported to be unchanged during pregnancy in rats, but will increase by almost 109 25% during lactation (Craft 1970, Cripps and Williams 1975). 110 The mechanisms proposed to mediate these gross anatomical changes include 111 112 changing caloric intake, so called "work hypertrophy" (Fell et al. 1963). This has 113 been widely debated with two studies in non-pregnant rats showing significant 114 increases in stomach and colon weight with raised nutrient intake but no change

in the small intestine (Addis 1932, Dowling et al. 1967). Both an increase in

116 plasma thyroxine and insulin resistance may also play a role, both are known to

117 occur in pregnancy (Branch 1992), and both have been independently associated

118 with intestinal hypertrophy (Middleton 1971, Fujita et al. 1998). However this is

119 currently speculation as both effects have only been shown in non-pregnant

120 animal models.

121

122 When relating findings from rodent models to humans, substantial differences in 123 energy expenditure must be taken into account. The higher metabolic rate, 124 shorter gestation and larger litter sizes of rodents compared with human and 125 sheep pregnancies could contribute to more pronounced intestinal adaptations 126 than are observed in humans (Hammond 1997). Detailed information about 127 specific anatomical adaptations in pregnant is limited by the fact that collection 128 of GI tissue from healthy pregnant women throughout pregnancy is not ethically 129 feasible.

130

Appl. Physiol. Nutr. Metab. Downloaded from www.nrcresearchpress.com by University of Alberta on 09/01/15 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

131 Changes in gut motility and transit time

132 An increased occurrence of heartburn, bloating and constipation during 133 pregnancy has been well documented in humans (Feeney 1982) suggesting that 134 intestinal motility and transit time may both be increased. This was initially 135 thought to be caused by the expanding uterus placing pressure on the GI tract 136 (Byrne 1972) but additional studies suggest hormonally driven changes may add 137 to mechanical influences that slow these processes. Exposure to high concentrations of progesterone reduces GI motility, with in-vitro treatment of rat 138 139 GI sections with progesterone leading to reduced contractile activity in 140 oesophageal, antral and colonic tissue (Bruce and Behsudi 1979). Studies of the 141 effect of progesterone on motilin, a hormone which stimulates GI motility in the 142 stomach, showed significant inverse correlations between motilin and plasma 143 progesterone both during fasting and after a glucose load in humans 144 (Christofides et al. 1982, Holst et al. 1992). This suggests that progesterone has 145 a direct effect on GI tissue motility as well as an inhibitory effect on the action of 146 other hormones. Studies in humans using the lactulose hydrogen breath test to 147 measure oro-caecal transit report no significant changes in transit time in the 148 first trimester, despite women displaying dyspeptic symptoms such as heartburn 149 and bloating. Gut transit time increases during the third trimester (Chiloiro et al. 150 2001) when these symptoms can disappear. 151

152 **Changes in intestinal absorption and permeability**

153 The increased intestinal surface area and transit time observed in pregnancy

- 154 have the potential to affect fluid and electrolyte balance as well as nutrient
- absorption. Absorption of sodium and water increases by almost 50%, between

Page 7 of 29

156	12 to 20 weeks gestation in humans. Such changes could be mediated, in part, by
157	a raised plasma aldosterone concentration (Brown et al. 1992) but may also be
158	affected by hormonal adaptations to pregnancy. Changing concentrations of
159	oestrogen could influence sodium absorption by effects on the adrenal gland and
160	the renin-angiotensin system (RAS). Angiotensin II promotes fluid absorption in
161	the small intestine (Fändriks 2011), and plasma concentrations of several RAS
162	hormones including angiotensin II are elevated during pregnancy (Irani and Xia
163	2008). Enhanced absorption could reflect the raised transit time in late gestation
164	(Chiloiro et al. 2001), whereas chlorine (Cl) secretion in the colon may be
165	inhibited during pregnancy due to raised oestrogen (Condliffe et al. 2001). In
166	rats this response could be mediated by activating protein kinase-C delta
167	(O'Mahony et al. 2007), whilst blocking its action prevents the decrease in Cl
168	secretion on administration of 17β -oestradiol (Doolan et al. 2000). This is
169	consistent with the water retention observed towards the end of pregnancy,
170	when oestrogen levels are at their highest (Atherton et al. 1982, Schrier et al.
171	2001).
172	
173	Gene expression analyses using microarray and qPCR has shown that several ion
174	transporters associated with sodium, calcium and magnesium are all
175	upregulated in the rat duodenum during pregnancy and lactation
176	(Teerapornpuntakit et al. 2014). This has been suggested to be in part due to the
177	hypertrophy observed in the small intestine, however, as discussed above the
178	absorption of specific nutrients are affected by stage of pregnancy rather than
179	reflecting an increase in absorptive surface.
180	

181

182 Absorption of Major Dietary Constituents

183 Carbohydrates

184 Carbohydrates are the main substrate of fetal and placental metabolism, and 185 adequate intake, absorption and distribution are required for healthy pregnancy 186 outcome (Battaglia 1989, Hay 1991). Pregnancy is an insulin resistant state, with 187 both hyperinsulinaemia and insulin resistance peaking in the third trimester 188 (Cousins et al. 1980, Buchanan et al. 1990, Catalano et al. 1993). Fructose intake 189 in pregnancy is also becoming increasingly relevant given its increased role in 190 the Western diet since the 1980s, and its potential for inducing lipogenesis much 191 more readily than glucose (Regnault et al. 2013).

192

193 The relationship between pregnancy and glucose homeostasis is therefore of 194 clinical relevance, particularly with regard to how carbohydrates are absorbed 195 across the gut. An inhibitory effect of oestrogen on glucose absorption in the 196 small intestine has been demonstrated. Glucose uptake from the small intestine 197 in rats is increased by a third following ovariectomy and is reduced back to the 198 same level as sham-operated controls with 17β-estradiol and progesterone 199 replacement (Singh et al. 1985). This is at odds with more recent research 200 showing an upregulation in both glucose transporter 5 (GLUT5) and sodium-201 linked glucose transporter 1 (SGLT1) expression in late pregnancy compared to 202 age-matched non-pregnant controls (Teerapornpuntakit et al. 2014). Thus, we 203 speculate that upregulation in transport protein expression may offset 204 reductions in glucose absorption as a result of oestrogen-related changes. In the 205 case of fructose, to our knowledge no research has been conducted focusing on

Appl. Physiol. Nutr. Metab. Downloaded from www.nrcresearchpress.com by University of Alberta on 09/01/15 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

222

223

206	the transport of fructose during pregnancy. Rat studies have demonstrated that
207	exposure to luminal fructose in the fetus during critical stages of development
208	will program the offspring intestine by increasing expression of the fructose
209	transporter GLUT5 (Jiang and Ferraris 2001, Suzuki et al. 2011), suggesting that
210	fructose intake and intestinal uptake during pregnancy is of interest.
211	
212	Future pregnancy based studies could utilise Ussing chambers in conjunction
213	with inhibiting SGLT1 or other carbohydrate transporters, techniques that have
214	already been employed when studying transport of other nutrients across the
215	small intestine (Wolffram et al. 2002). Focus on GLUT2 would also be warranted
216	as this has been shown to play an equally important role as SGLT1 in intestinal
217	glucose transport (Kellett and Brot-Laroche 2005, Kellett et al. 2008)
218	
219	Amino acids
220	Protein intake, absorption and distribution is also vital during pregnancy, with
221	the fetus, uterus, placenta, and amniotic fluid together accounting for \sim 925g of

9

increase of 25g/day compared to the non-pregnant state), and a macronutrient
distribution whereby protein contributes between 10 and 35% of total calories
(United States National Research Council 2005). The effect of protein restriction
during pregnancy on the offspring has been well defined in animal models using
<9% of calories from protein (Lakshmy 2013), leading to growth restriction in
the offspring and an increase in incidence of the metabolic syndrome in later life.
The precise role of a low protein intake in mediating such responses is difficult

protein accreted over pregnancy in humans. This is to be obtained from a

recommended dietary intake of 1.1g per kg body weight per day (an average

to determine as all low protein diets contain additional carbohydrate in order to
ensure they are isocaloric compared to the control diet (Symonds et al. 2006). In
addition protein requirements are much higher in rodent pregnancies compared
to humans (Symonds et al. 2006).

235

236 Protein turnover increases linearly throughout pregnancy, shown indirectly

from measuring the fate of radio-labelled leucine (Thompson and Halliday 1992)

and glycine (de Benoist et al. 1985) in women. A lack of studies covering

239 potential mechanisms for the increase in amino acid absorption has been

highlighted in earlier reviews (Karasov and Diamond 1983), and this does not

241 appear to have changed. Therefore research into expression of the variety of

242 different transport proteins present in the small intestine (Bröer 2008) and how

243 expression changes throughout pregnancy is of interest.

244 Fatty acids

245 Maternal dietary fat intake is important throughout pregnancy not only as a 246 maternal energy source but also to provide the developing fetus with essential 247 fatty acids for optimal development (Budge and Symonds 2006). It has been 248 suggested that total fat requirements as a proportion of energy intake during 249 pregnancy should not be increased compared to non-pregnant women, as they 250 can be met by small increases in consumption of a balanced diet (United States 251 National Research Council 2005). There is debate as to whether the pre-formed 252 long-chain polyunsaturated fatty acids (LCPUFA) should be considered as 253 conditionally essential in pregnancy, and whether the normal dietary supply of 254 essential fatty acids, specifically linoleic and α -linolenic acid are sufficient for 255 optimal fetal development and long term health (Haggarty 2014). Current

256	literature has examined the lack of maternal dietary docosahexaenoic acid
257	(DHA), particularly during late pregnancy (Haggarty 2004), and the mobilisation
258	of maternal adipose tissue, but not the intestinal transport of fatty acids. The US
259	Dietary Reference Intakes (United States National Research Council 2005)
260	highlight a lack of evidence available to determine optimal intakes of n-3 and n-6
261	fatty acids during pregnancy, in part because of difficulties defining a range of
262	intakes in Western populations that would lead to a deficiency. This potentially
263	explains the lack of research interest shown in the uptake of fatty acids during
264	pregnancy.
265	
266	To summarise, although it is well established that glucose and fructose transport
267	across the intestine is a dynamic process modulated by the expression of
268	transport proteins, very little work has been done to ascertain how pregnancy
269	affects the expression and function of these transporters. Transport of both
270	amino and fatty acids across the intestinal epithelium during pregnancy is even
271	less well studied, despite the fact that in the case of amino acids, increased
272	absorption in pregnancy has been demonstrated.
273	
274	Absorption of Micronutrients
275	Micronutrients can have an important role in preventing adverse events such as
276	premature birth and low birth weight (Ramakrishnan et al. 1999, United States
277	National Research Council 2001, 2011). The intestinal absorption of calcium,
278	vitamin D and iron absorption in pregnancy are well described but many other

- 279 micronutrients remain unstudied. This includes magnesium and zinc, which
- 280 when deficient are associated with adverse outcomes such as pre-eclampsia and

preterm delivery (Black 2001). There is promising preliminary research into the
transport of some of these micronutrients, with microarrays showing
upregulation in duodenal transporters of both zinc and calcium during
pregnancy in rats; but no associated mechanisms have been identified
(Teerapornpuntakit et al. 2014).

286

287 Calcium and vitamin D absorption

288 The human fetus requires the transfer of \sim 30 g of calcium from maternal stores 289 between conception and birth. Both calcium uptake, excretion (Kent et al. 1991, 290 Ritchie et al. 1998) and regulation of vitamin D metabolism adapt to pregnancy (Phillips et al. 2000, Prentice 2000). In rats, intestinal calcium transport 291 292 increases throughout pregnancy to peak at day 14 of lactation coincident with 293 changes in plasma 1,25 dihydroxyvitamin D, a hormonally active metabolite of 294 vitamin D. However an increase in absorption was also observed in a cohort of 295 vitamin D deficient rats following the same study design, suggesting the 296 adaptations in calcium uptake may be independent of vitamin D status (Halloran 297 and DeLuca 1980). Further evidence for this is provided from pregnant mice 298 lacking the vitamin D receptor (VDR) which display osteomalacia at baseline 299 (before mating), and an increase in bone mineral content throughout pregnancy, 300 that is comparable to pregnant wild-type controls. (Fudge and Kovacs 2010). 301 Taken together these findings suggest other mechanisms of calcium transport 302 may be active during pregnancy.

303

304 Iron absorption

305	Maternal iron requirements in humans increase during pregnancy in order to
306	meet the needs of the raised erythrocyte mass, formation of the placenta, and
307	\sim 1g of stored iron accumulated by the fetus at term. These are met through a
308	combination of the maternal mobilisation of stored iron, reduced iron loss, and
309	potentially increased absorption from the maternal diet. Iron deficiency in
310	pregnancy, however, remains a problem, leading to an increased risk of
311	preeclampsia, intrauterine growth restriction and low birth weight (Cetin et al.
312	2011).
313	
314	Upregulation of iron absorption has been shown during the second and third
215	trimactor of program incorporting of iron status using labelled 54Es in a small

trimester of pregnancy irrespective of iron status using labelled ⁵⁴Fe in a small

316 study of 12 pregnant women (Barrett et al. 1994). Animal studies have proposed

317 potential mechanisms for these changes. For example, duodenal gene expression

318 of Dcytb, an enzyme responsible for converting dietary Fe^{3+} to Fe^{2+} for

319 metabolism, and divalent metal transporter 1 (DMT1), a major intestinal iron

320 transporter, have been shown to increase through pregnancy and decline within

48 hours after birth (Millard et al. 2004). The positive association between the

322 timing of changes in oestrogen concentrations and Dcytb and DMT1 protein

323 expression suggests that oestrogen may regulate iron absorption, but firm

324 evidence for this remains to be established.

325

326 Microbial changes

327 Over the last decade the microbiome has been shown to be an important

328 mediator of human health, and the composition of different bacterial species

329 making up the microbiome and potential mechanisms by which they can be

altered is now a well-established field of research (Cho and Blaser 2012). There
is growing appreciation that diet (Tilg and Kaser 2011, David et al. 2014, Walter
2015) and pregnancy (Koren et al. 2012, Jost et al. 2014) modulate the
microbiome, as well as speculation that the microbiome can influence offspring
development (Ma et al. 2014, Aagaard et al. 2014).

335

The influence of the microbial environment of the intestine on host physiology is 336 337 now well established (Hooper and Gordon 2001), and has led to a number of 338 studies examining how diet, and more recently pregnancy, affect it. The maternal 339 GI microbiome undergoes profound changes during pregnancy, some of which 340 are not dissimilar to those characteristics found in obesity (Koren et al. 2012), 341 i.e. a decrease in microbial diversity (Turnbaugh et al. 2009, Qin et al. 2010, 342 Greenblum et al. 2012). An "obese" type microbiome has been defined as one 343 with an increased capacity for energy utilisation, primarily due to the greater 344 abundance of bacterial species capable of fermenting and therefore increasing 345 availability of otherwise indigestible sugars. The most significant example of this 346 is the increased abundance of *Firmicutes* species relative to *Bacteroidetes*, with 347 *Firmicutes* being more efficient sugar fermenters. Analysis of the colonic 348 contents of ob/ob mice also shows an elevated concentration of the fermentation 349 products butyrate and acetate relative to lean controls (Turnbaugh et al. 2006). 350 A shift in *Bacteroidetes* and *Firmicutes* was not observed in the only maternal 351 microbiome sequencing study to date conducted in normal weight participants 352 (Koren et al. 2012), however a greater representation of the lactic acid 353 fermenters Lactobacillus, Streptococcus and Enterococcus was reported in the 354 third trimester. This has been suggested to be an evolutionary adaptation, and

355	the concomitant transfer of these microbes to the newborn could enable it to
356	take advantage of the lactose in its mother's milk (Cox and Blaser 2013).
357	

358	Similarities between the pregnant and obese microbiome are of interest since
359	both conditions are associated with increased fat mass, although the relative
360	distribution of this additional fat is different between pregnant and obese
361	individuals (Straughen et al. 2013). There are a number of potential explanations
362	for the development of an "obese type" microbiota during pregnancy. Species of
363	Bacteroidetes contain a number of glycoside hydrolases which are able to
364	ferment sugars which would otherwise pass through the large intestine and
365	remain undigested (Bäckhed et al. 2005). Increased availability of
366	polysaccharides is regarded as a hallmark of an obese microbiota (Turnbaugh et
367	al. 2006), but would also result in increased energy availability which may be
368	beneficial in pregnancy. This could help in meeting maternal energy demands
369	and supplying the additional demands of the fetus, and suggest that during
370	pregnancy the microbiome could be modulated to increase energy available for
371	absorption. However, it is currently unclear whether these adaptations are due
372	to the changing microbial environment, or are modulated by the other intestinal
373	adaptations outlined earlier in this review.

374

375 It is not only changes in the relative proportion of individual species that occur,
376 as the diversity of the microbiome also adapts, as defined by the relative number
377 and abundance of different types of organism. For example, both obesity and
378 inflammatory bowel disease have been linked with a low diversity of gut
379 microbes (Turnbaugh et al. 2009, Qin et al. 2010). Diversity is measured within

380	an individual (alpha diversity, for example, the number of different types
381	organisms within an individual's intestinal microbiome) and between
382	individuals (beta diversity). Patterns of alpha and beta diversity differ
383	significantly when making comparisons from the same habitat. For example, a
384	high alpha diversity indicates a diverse microbiome but this can be concomitant
385	with a low beta diversity, with members of a defined population all sharing
386	similar organisms. Currently a functional explanation for changes in diversity
387	has not been identified, with a need for studies taking into account responses to
388	short and long term dietary modifications, diurnal rhythms as well as mode of
389	delivery at birth and host genetics (The Human Microbiome Project Consortium
390	2012).

391

392 The current evidence base for understanding the changing gut microbiome has 393 compared the effect of different diets and physiological states including 394 pregnancy. Although this field is very new, it appears that the gut microbiome 395 does change with pregnancy (Koren et al. 2012), and it has been hypothesised 396 that inappropriate adaptation of the gut microbiome, such as that seen in a 397 number of inflammatory bowel disorders (Kamada et al. 2013) may contribute 398 to the development of pregnancy complications including pre-eclampsia, 399 intrauterine growth restriction and miscarriage (Zhang et al. 2015). Pregnancy is 400 associated with a significant reduction in alpha diversity and an increase in beta 401 diversity by the third trimester (Koren et al. 2012). At the species level, there is a 402 significant increase in abundance of Proteobacteria in the third trimester, which 403 has previously been observed in obesity (Turnbaugh et al. 2009) and chronic 404 inflammatory states (Mukhopadhya et al. 2012).

405	
406	Changes in intestinal permeability to larger molecules and bacteria are of
407	interest especially given the above changes in the gut microbiota during
408	pregnancy, and the recent description of a unique microbiome in the placenta
409	(Aagaard et al. 2014). The effect of pregnancy on epithelial tight junctions, which
410	mediate intestinal permeability (Turner 2009), has not been studied. There is
411	overlap here with research into the role of the gut microbiota in pregnancy, with
412	lipopolysaccharide (LPS) present on the membranes of Gram-negative bacteria
413	passing into the systemic circulation and leading to the low-level adipose tissue
414	inflammation characteristic of obesity (Lam et al. 2011). Catecholamines
415	released as part of the maternal stress response have been hypothesised to lead
416	to gut barrier failure (Friebe and Arck 2008), and the subsequent release of LPS
417	linked to an increased risk of spontaneous abortion (Friebe et al. 2011).
418	
419	Small studies in non-human primates (n=2-4 animals/group) have
420	demonstrated that a high fat diet in pregnancy has potentially adverse effects on
421	the offspring microbiome (Ma et al. 2014). An upregulation in amino acid,
422	carbohydrate and lipid metabolic pathways was observed in 1-year-old offspring
423	exposed to a high-fat diet during gestation and lactation. These changes were
424	partly reversed in offspring switched from a high-fat diet containing 36% fat to a
425	control diet containing 13% fat at weaning suggesting modest flexibility of the
426	offspring microbiome. The authors suggest that these results show the influence
427	of the maternal diet on establishment of the microbiome, rather than an
428	"obesity-causing" microbiome as indicated in the above research. However the
429	small numbers of animals studied together with the lack of an adverse
12)	sinali numbers of animals studied together with the lack of an adverse

phenotype in the offspring (McCurdy et al. 2009) suggest that these findingsneed following-up.

432

433 Conclusion

434 Maternal adaptations occur throughout pregnancy and lactation, ranging from 435 changes in gross gut anatomy to changes in the expression of specific nutrient 436 transporters as summarised in Figure 1. The evidence here demonstrates that 437 adaptation of the intestine to pregnancy is equally important as adaptation of 438 other organs. However much of the material presented here is based on dated 439 research, and there is a clear need for an expanded body of evidence using 440 contemporary techniques in animal models and humans where possible. This 441 would enable the addition of mechanistic data especially in pregnancies at risk 442 from complications. The increasing prevalence of obesity in the Western world 443 makes the study of obesogenic or diabetogenic diets during pregnancy critical to 444 furthering understanding of important adaptations and processes in the gut. The 445 microbiota is now considered a metabolically active organ, and the evidence 446 presented suggests that its adaptation in pregnancy is a part of increasing energy 447 extracted from the diet to provide for the fetus. Understanding these 448 adaptations, and how they may be modulated by diet could therefore be 449 beneficial in treating overweight and obesity during pregnancy.

450

Appl. Physiol. Nutr. Metab. Downloaded from www.nrcresearchpress.com by University of Alberta on 09/01/15 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

451 Acknowledgements

452

- 453 SA was funded during writing of this review by a Natural Sciences and
- 454 Engineering Research Council of Canada grant held by RCB at the University of
- 455 Alberta, and a Faculty of Medicine and Health Sciences PhD studentship at the
- 456 University of Nottingham.

458 **References**

459	Aagaard, K., Ma, J., Antony, K.M., Ganu, R., Petrosino, J., and Versalovic, J. 2014.
460	The Placenta Harbors a Unique Microbiome. Sci. Transl. Med. 6 (237) doi:
461	10.1126/scitranslmed.3008599.
462	Addis, T. 1932. Hypertrophy of the gastro-intestinal tract and high residue diets.
463	Am. J. Physiol. Content 99 (2): 417–423.
464	Atherton, J.C., Dark, J.M., Garland, H.O., Morgan, M.R., Pidgeon, J., and Soni, S.
465	1982. Changes in water and electrolyte balance, plasma volume and
466	composition during pregnancy in the rat. J. Physiol. 330 (1): 81–93. doi:
467	10.1113/jphysiol.1982.sp014330.
468	Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. 2005. Host-
469	Bacterial Mutualism in the Human Intestine. Science 307 (5717): 1915–
470	1920. doi: 10.1126/science.1104816.
471	Barrett, J.F.R., Whittaker, P.G., Williams, J.G., and Lind, T. 1994. Absorption of
472	non-haem iron from food during normal pregnancy. BMJ 309 (6947): 79–
473	82. doi: 10.1136/bmj.309.6947.79.
474	Battaglia, F.C. 1989. An update of fetal and placental metabolism: carbohydrate
475	and amino acids. Biol. Neonate 55 (6): 347–354.
476	Bauman, D.E., and Currie, W.B. 1980. Partitioning of nutrients during pregnancy
477	and lactation: a review of mechanisms involving homeostasis and
	homeorhesis. J. Dairy Sci. 63 (9): 1514–1529.
478	
479	de Benoist, B., Jackson, A.A., Hall, J.S., and Persaud, C. 1985. Whole-body protein
480	turnover in Jamaican women during normal pregnancy. Hum. Nutr. Clin.
481	Nutr. 39 (3): 167–179.
482	Black, R.E. 2001. Micronutrients in pregnancy. Br. J. Nutr. 85 (Supplement S2):
483	S193–S197. doi: 10.1079/BJN2000314.
484	Boyne, R., Fell, B.F., and Robb, I. 1966. The surface area of the intestinal mucosa
485	in the lactating rat. J. Physiol. 183 (3): 570–575.
486	Branch, D.W. 1992. Physiologic adaptations of pregnancy. Am. J. Reprod.
487	Immunol. N. Y. N 1989 28 (3-4): 120–122.
488	Bröer, S. 2008. Amino Acid Transport Across Mammalian Intestinal and Renal
489	Epithelia. Physiol. Rev. 88 (1): 249–286. doi:
490	10.1152/physrev.00018.2006.
491	Brown, M.A., Zammit, V.C., Mitar, D.A., and Whitworth, J.A. 1992. Renin-
492	aldosterone relationships in pregnancy-induced hypertension. Am. J.
493	Hypertens. 5 (6 Pt 1): 366–371.
494	Bruce, L.A., and Behsudi, F.M. 1979. Progesterone effects on three regional
495	gastrointestinal tissues. Life Sci. 25 (9): 729–734. doi: 10.1016/0024-
496	3205(79)90515-0.
497	Buchanan, T.A., Metzger, B.E., Freinkel, N., and Bergman, R.N. 1990. Insulin
498	sensitivity and B-cell responsiveness to glucose during late pregnancy in
499	lean and moderately obese women with normal glucose tolerance or mild
500	gestational diabetes. Am. J. Obstet. Gynecol. 162 (4): 1008–1014. doi:
501	10.1016/0002-9378(90)91306-W.
501	Budge, H., and Symonds, M.E. 2006. Fetal and neonatal nutrition - lipid and
503	carbohydrate requirements and adaptations to altered supply at birth. <i>In</i>
504	Textbook of Perinatal Medicine. Informa Healthcare. pp. 1005–1014.
505	Available from

506	http://informahealthcare.com/doi/abs/10.3109/9781439814697.093
507	[accessed 31 May 2015].
508	Byrne, J.J. 1972. Diagnostic Evaluation of Patients with Intestinal Problems. Clin.
509	Obstet. Gynecol. 15(2).
510	Campbell, R.M., and Fell, B.F. 1964. Gastro-intestinal hypertrophy in the lactating
511	rat and its relation to food intake. J. Physiol. 171 (1): 90–97.
512	Catalano, P., and Ehrenberg, H. 2006. Review article: The short- and long-term
513	implications of maternal obesity on the mother and her offspring. BJOG
514	Int. J. Obstet. Gynaecol. 113 (10): 1126–1133. doi: 10.1111/j.1471-
515	0528.2006.00989.x.
516	Catalano, P.M., Tyzbir, E.D., Wolfe, R.R., Calles, J., Roman, N.M., Amini, S.B., and
517	Sims, E.A. 1993. Carbohydrate metabolism during pregnancy in control
518	subjects and women with gestational diabetes. Am. J. Physiol
519	Endocrinol. Metab. 264 (1): E60–E67.
520	Cetin, I., Berti, C., Mandò, C., and Parisi, F. 2011. Placental Iron Transport and
521	Maternal Absorption. Ann. Nutr. Metab. 59 (1): 55–58. doi:
522	10.1159/000332133.
523	Chiloiro, M., Darconza, G., Piccioli, E., De Carne, M., Clemente, C., and Riezzo, G.
524	2001. Gastric emptying and orocecal transit time in pregnancy. J.
525	Gastroenterol. 36 (8): 538–543.
526	Cho, I., and Blaser, M.J. 2012. The human microbiome: at the interface of health
527	and disease. Nat. Rev. Genet. 13 (4): 260–270. doi: 10.1038/nrg3182.
528	Christofides, N.D., Ghatei, M.A., Bloom, S.R., Borberg, C., and Gillmer, M.D. 1982.
529	Decreased plasma motilin concentrations in pregnancy. Br. Med. J. Clin.
530	Res. Ed 285 (6353): 1453–1454.
531	Condliffe, S.B., Doolan, C.M., and Harvey, B.J. 2001. 17 β -Oestradiol acutely
532	regulates Cl– secretion in rat distal colonic epithelium. J. Physiol. 530 (1):
533	47–54. doi: 10.1111/j.1469-7793.2001.0047m.x.
534	Cousins, L., Rigg, L., Hollingsworth, D., Brink, G., Aurand, J., and Yen, S.S. 1980.
535	The 24-hour excursion and diurnal rhythm of glucose, insulin, and C-
536	peptide in normal pregnancy. Am. J. Obstet. Gynecol. 136 (4): 483–488.
537	Cox, L.M., and Blaser, M.J. 2013. Pathways in Microbe-Induced Obesity. Cell
538	Metab. 17 (6): 883–894. doi: 10.1016/j.cmet.2013.05.004.
539	Craft, I.L. 1970. The influence of pregnancy and lactation on the morphology and
540	absorptive capacity of the rat small intestine. Clin. Sci. 38 (3): 287–295.
541	Cripps, A.W., and Williams, V.J. 1975. The effect of pregnancy and lactation on
542	food intake, gastrointestinal anatomy and the absorptive capacity of the
543	small intestine in the albino rat. Br. J. Nutr. 33 (01): 17–32. doi:
544	10.1079/BJN19750005.
545	David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E.,
546	Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., Biddinger, S.B., Dutton,
547	R.J., and Turnbaugh, P.J. 2014. Diet rapidly and reproducibly alters the
548	human gut microbiome. Nature 505 (7484): 559–563. doi:
549	10.1038/nature12820.
550	Doolan, C.M., Condliffe, S.B., and Harvey, B.J. 2000. Rapid non-genomic activation
551	of cytosolic cyclic AMP-dependent protein kinase activity and [Ca2+]i by
552	17β-oestradiol in female rat distal colon. Br. J. Pharmacol. 129 (7): 1375–
553	1386. doi: 10.1038/sj.bjp.0703193.

iol. Nutr script is	ersity of Alberta on 09/01/15 ition 'It may differ from the final official version of reco	
	tab. D	
	For nersonal use only 7	fut an minarad in t

554 555	Dowling, R.H., Riecken, E.O., Laws, J.W., and Booth, C.C. 1967. The intestinal response to high bulk feeding in the rat. Clin. Sci. 32 (1): 1–9.
556	Fändriks, L. 2011. The renin-angiotensin system and the gastrointestinal
557	mucosa. Acta Physiol. 201 (1): 157–167. doi: 10.1111/j.1748-
558	1716.2010.02165.x.
559	Feeney, J.G. 1982. Heartburn in pregnancy. BMJ 284 (6323): 1138–1139. doi:
560	10.1136/bmj.284.6323.1138.
561	Fell, B.F., Campbell, R.M., and Boyne, R. 1964. Observations on the morphology
562	and nitrogen content of the alimentary canal in breeding hilsheep. Res Vet
563	Sci 5: 175–185.
564	Fell, B.F., Campbell, R.M., Mackie, W.S., and Weekes, T.E.C. 1972. Changes
565	associated with pregnancy and lactation in some extra-reproductive
566	organs of the ewe. J. Agric. Sci. 79 (03): 397–407. doi:
567	10.1017/S0021859600025752.
568	Fell, B.F., Smith, K.A., and Campbell, R.M. 1963. Hypertrophic and hyperplastic
569	changes in the alimentary canal of the lactating rat. J. Pathol. Bacteriol.
570	85 (1): 179–188. doi: 10.1002/path.1700850117.
571	Friebe, A., and Arck, P. 2008. Causes for spontaneous abortion: What the bugs
572	"gut" to do with it? Int. J. Biochem. Cell Biol. 40 (11): 2348–2352. doi:
572	10.1016/j.biocel.2008.04.019.
573 574	Friebe, A., Douglas, A.J., Solano, E., Blois, S.M., Hagen, E., Klapp, B.F., Clark, D.A.,
575	and Arck, P.C. 2011. Neutralization of LPS or blockage of TLR4 signaling
576	prevents stress-triggered fetal loss in murine pregnancy. J. Mol. Med.
577	89 (7): 689–699. doi: 10.1007/s00109-011-0743-5.
578	Fudge, N.J., and Kovacs, C.S. 2010. Pregnancy Up-Regulates Intestinal Calcium
579	Absorption and Skeletal Mineralization Independently of the Vitamin D
580	Receptor. Endocrinology 151 (3): 886–895. doi: 10.1210/en.2009-1010.
581	Fujita, Y., Kojima, H., Hidaka, H., Fujimiya, M., Kashiwagi, A., and Kikkawa, R.
582	1998. Increased intestinal glucose absorption and postprandial
583	hyperglycaemia at the early step of glucose intolerance in Otsuka Long-
584	Evans Tokushima Fatty Rats. Diabetologia 41 (12): 1459–1466. doi:
585	10.1007/s001250051092.
586	Galtier-Dereure, F., Boegner, C., and Bringer, J. 2000. Obesity and pregnancy:
587	complications and cost. Am. J. Clin. Nutr. 71 (5): 1242s–1248s.
588	Government of Canada, P.H.A. of C. 2011, June 23. Obesity in Canada - Healthy
589	Living - Public Health Agency of Canada. Available from
590	http://www.phac-aspc.gc.ca/hp-ps/hl-mvs/oic-oac/adult-eng.php
591	[accessed 1 June 2015].
592	Greenblum, S., Turnbaugh, P.J., and Borenstein, E. 2012. Metagenomic systems
593	biology of the human gut microbiome reveals topological shifts associated
594	with obesity and inflammatory bowel disease. Proc. Natl. Acad. Sci.
595	109 (2): 594–599. doi: 10.1073/pnas.1116053109.
596	Guelinckx, I., Devlieger, R., Beckers, K., and Vansant, G. 2008. Maternal obesity:
590 597	pregnancy complications, gestational weight gain and nutrition. Obes.
598	Rev. 9 (2): 140–150. doi: 10.1111/j.1467-789X.2007.00464.x.
590 599	Haggarty, P. 2004. Effect of placental function on fatty acid requirements during
600	pregnancy. Eur. J. Clin. Nutr. 58 (12): 1559–1570. doi:
601	10.1038/sj.ejcn.1602016.
001	10.1000/ 3.0001002010.

602	Haggarty, P. 2014. Meeting the fetal requirement for polyunsaturated fatty acids
603	in pregnancy. Curr. Opin. Clin. Nutr. Metab. Care 17 (2): 151–155. doi:
604	10.1097/MC0.00000000000036.
605	Halloran, B.P., and DeLuca, H.F. 1980. Calcium transport in small intestine during
606	pregnancy and lactation. Am. J. Physiol Endocrinol. Metab. 239(1): E64–
607	E68.
608	Hammond, K.A. 1997. Adaptation of the Maternal Intestine During Lactation. J.
609	Mammary Gland Biol. Neoplasia $2(3)$: 243–252. doi:
610	10.1023/A:1026332304435.
611	Hay, W.W. 1991. The role of placental-fetal interaction in fetal nutrition. Semin.
612	Perinatol. 15 (6): 424–433.
613	Herrera, E. 2000. Metabolic adaptations in pregnancy and their implications for
614	the availability of substrates to the fetus. Eur. J. Clin. Nutr. 54 Suppl 1 :
615	S47–51.
616	Holst, N., Jenssen, T.G., and Burhol, P.G. 1992. Plasma concentrations of motilin
617	and somatostatin are increased in late pregnancy and postpartum. BJOG
618	Int. J. Obstet. Gynaecol. 99 (4): 338–341. doi: 10.1111/j.1471-
619	0528.1992.tb13735.x.
620	Hooper, L.V., and Gordon, J.I. 2001. Commensal Host-Bacterial Relationships in
620 621	the Gut. Science 292 (5519): 1115–1118. doi: 10.1126/science.1058709.
622	Hunter, S., and Robson, S.C. 1992. Adaptation of the maternal heart in pregnancy.
623	Br. Heart J. $68(6)$: 540–543.
623 624	Irani, R.A., and Xia, Y. 2008. The Functional Role of the Renin–Angiotensin
624 625	System in Pregnancy and Preeclampsia. Placenta 29 (9): 763–771. doi:
625 626	
	10.1016/j.placenta.2008.06.011.
627	Jiang, L., and Ferraris, R.P. 2001. Developmental reprogramming of rat GLUT-5
628	requires de novo mRNA and protein synthesis. Am. J. Physiol
629	Gastrointest. Liver Physiol. 280 (1): G113–G120.
630	Jones, H.N., Powell, T.L., and Jansson, T. 2007. Regulation of Placental Nutrient Transport – A Review. Placenta 28 (8–9): 763–774. doi:
631	1 ()
632	10.1016/j.placenta.2007.05.002.
633	Jost, T., Lacroix, C., Braegger, C., and Chassard, C. 2014. Stability of the Maternal
634	Gut Microbiota During Late Pregnancy and Early Lactation. Curr.
635	Microbiol. 68 (4): 419–427. doi: 10.1007/s00284-013-0491-6.
636	Kamada, N., Seo, SU., Chen, G.Y., and Núñez, G. 2013. Role of the gut microbiota
637	in immunity and inflammatory disease. Nat. Rev. Immunol. 13 (5): 321–
638	335. doi: 10.1038/nri3430.
639	Karasov, W.H., and Diamond, J.M. 1983. Adaptive regulation of sugar and amino
640	acid transport by vertebrate intestine. Am. J. Physiol Gastrointest. Liver
641	Physiol. 245 (4): G443–G462.
642	Kellett, G.L., and Brot-Laroche, E. 2005. Apical GLUT2 A Major Pathway of
643	Intestinal Sugar Absorption. Diabetes 54 (10): 3056–3062. doi:
644	10.2337/diabetes.54.10.3056.
645	Kellett, G.L., Brot-Laroche, E., Mace, O.J., and Leturque, A. 2008. Sugar Absorption
646	in the Intestine: The Role of GLUT2. Annu. Rev. Nutr. 28 (1): 35–54. doi:
647	10.1146/annurev.nutr.28.061807.155518.
648	Kent, G., Price, R., Gutteridge, D., Rosman, K., Smith, M., Allen, J., Hickling, C., and
649	Blakeman, S. 1991. The efficiency of intestinal calcium absorption is

650	increased in late pregnancy but not in established lactation. Calcif. Tissue
651	Int. 48 (4): 293–295. doi: 10.1007/BF02556384.
652	Kim, S.Y., Dietz, P.M., England, L., Morrow, B., and Callaghan, W.M. 2007. Trends
653	in Pre-pregnancy Obesity in Nine States, 1993–2003. Obesity 15 (4): 986–
654	993. doi: 10.1038/oby.2007.621.
655	King, J.C. 2000. Determinants of maternal zinc status during pregnancy. Am. J.
656	Clin. Nutr. 71 (5): 1334s–1343s.
657	King, J.C. 2006. Maternal Obesity, Metabolism, and Pregnancy Outcomes. Annu.
658	Rev. Nutr. 26 (1): 271–291. doi:
659	10.1146/annurev.nutr.24.012003.132249.
660	Koren, O., Goodrich, J.K., Cullender, T.C., Spor, A., Laitinen, K., Kling Bäckhed, H.,
661	Gonzalez, A., Werner, J.J., Angenent, L.T., Knight, R., Bäckhed, F., Isolauri,
662	E., Salminen, S., and Ley, R.E. 2012. Host Remodeling of the Gut
663	Microbiome and Metabolic Changes during Pregnancy. Cell 150 (3): 470–
664	480. doi: 10.1016/j.cell.2012.07.008.
665	Lager, S., and Powell, T.L. 2012. Regulation of Nutrient Transport across the
666	Placenta. J. Pregnancy 2012 : e179827. doi: 10.1155/2012/179827.
667	Lakshmy, R. 2013. Metabolic syndrome: Role of maternal undernutrition and
668	fetal programming. Rev. Endocr. Metab. Disord. 14 (3): 229–240. doi:
669	10.1007/s11154-013-9266-4.
670	Lam, Y.Y., Mitchell, A.J., Holmes, A.J., Denyer, G.S., Gummesson, A., Caterson, I.D.,
671	Hunt, N.H., and Storlien, L.H. 2011. Role of the Gut in Visceral Fat
672	Inflammation and Metabolic Disorders. Obesity 19 (11): 2113–2120.
673	Lew, W., Addis, T., and Poo, L.J. 1939. Protein Anabolism of Organs and Tissues
674	During Pregnancy and Lactation. J. Biol. Chem. 128 (1): 69–77.
675	Ma, J., Prince, A.L., Bader, D., Hu, M., Ganu, R., Baquero, K., Blundell, P., Alan
676	Harris, R., Frias, A.E., Grove, K.L., and Aagaard, K.M. 2014. High-fat
677	maternal diet during pregnancy persistently alters the offspring
678	microbiome in a primate model. Nat. Commun. 5 . doi:
679	10.1038/ncomms4889.
680	McCurdy, C.E., Bishop, J.M., Williams, S.M., Grayson, B.E., Smith, M.S., Friedman,
681	J.E., and Grove, K.L. 2009. Maternal high-fat diet triggers lipotoxicity in the
682 683	fetal livers of nonhuman primates. J. Clin. Invest. 119 (2): 323–335. doi:
683 684	10.1172/JCI32661. Middleton, W.R. 1971. Thyroid hormones and the gut. Gut 12 (2): 172–177. doi:
685	10.1136/gut.12.2.172.
686	
687	Millard, K.N., Frazer, D.M., Wilkins, S.J., and Anderson, G.J. 2004. Changes in the expression of intestinal iron transport and hepatic regulatory molecules
688	explain the enhanced iron absorption associated with pregnancy in the
689	rat. Gut 53 (5): 655–660. doi: 10.1136/gut.2003.031153.
690	Mukhopadhya, I., Hansen, R., El-Omar, E.M., and Hold, G.L. 2012. IBD—what role
690 691	do Proteobacteria play? Nat. Rev. Gastroenterol. Hepatol. 9 (4): 219–230.
691 692	doi: 10.1038/nrgastro.2012.14.
692 693	O'Mahony, F., Alzamora, R., Betts, V., LaPaix, F., Carter, D., Irnaten, M., and Harvey,
693 694	B.J. 2007. Female Gender-specific Inhibition of KCNQ1 Channels and
695	Chloride Secretion by 17β -Estradiol in Rat Distal Colonic Crypts. J. Biol.
696	Chem. 282 (34): 24563–24573. doi: 10.1074/jbc.M611682200.
070	

697	Phillips, A.J., Ostlere, S.J., and Smith, R. 2000. Pregnancy-Associated Osteoporosis:
698	Does the Skeleton Recover? Osteoporos. Int. 11 (5): 449–454. doi:
699	10.1007/s001980070113.
700	Pinheiro, A.R., Salvucci, I.D.M., Aguila, M.B., and Mandarim-de-Lacerda, C.A. 2008.
701	Protein restriction during gestation and/or lactation causes adverse
702	transgenerational effects on biometry and glucose metabolism in F1 and
703	F2 progenies of rats. Clin. Sci. Lond. Engl. 1979 114 (5): 381–392. doi:
704	10.1042/CS20070302.
705	Prentice, A. 2000. Calcium in Pregnancy and Lactation. Annu. Rev. Nutr. 20 (1):
706	249–272. doi: 10.1146/annurev.nutr.20.1.249.
707	Prentice, A.M., and Goldberg, G.R. 2000. Energy adaptations in human pregnancy:
708	limits and long-term consequences. Am. J. Clin. Nutr. 71 (5): 1226s–1232s.
709	Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T.,
710	Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao,
711	J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M.,
712	Batto, JM., Hansen, T., Paslier, D.L., Linneberg, A., Nielsen, H.B., Pelletier,
713	E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M.,
714	Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré,
715	J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J.,
716	Antolin, M., Artiguenave, F., Blottiere, H., Borruel, N., Bruls, T., Casellas, F.,
717	Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Forte, M.,
718	Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Jamet, A., Juste, C., Kaci,
719	G., Kleerebezem, M., Knol, J., Kristensen, M., Layec, S., Roux, K.L., Leclerc,
720	M., Maguin, E., Minardi, R.M., Oozeer, R., Rescigno, M., Sanchez, N., Tims, S.,
721	Torrejon, T., Varela, E., Vos, W. de, Winogradsky, Y., Zoetendal, E., Antolin,
722	M., Artiguenave, F., Blottiere, H., Borruel, N., Bruls, T., Casellas, F.,
723	Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Forte, M.,
724	Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Jamet, A., Juste, C., Kaci,
725	G., Kleerebezem, M., Knol, J., Kristensen, M., Layec, S., Roux, K.L., Leclerc,
726	M., Maguin, E., Minardi, R.M., Oozeer, R., Rescigno, M., Sanchez, N., Tims, S.,
727	Torrejon, T., Varela, E., Vos, W. de, Winogradsky, Y., Zoetendal, E., Bork, P., Ehrlich, C.D., and Wang, J. 2010. A human submission high same actuals suc
728 729	Ehrlich, S.D., and Wang, J. 2010. A human gut microbial gene catalogue
	established by metagenomic sequencing. Nature 464 (7285): 59–65. doi:
730 731	10.1038/nature08821. Ramakrishnan, U., Manjrekar, R., Rivera, J., Gonzáles-Cossío, T., and Martorell, R.
732	1999. Micronutrients and pregnancy outcome: A review of the literature.
733	Nutr. Res. 19 (1): 103–159. doi: 10.1016/S0271-5317(98)00178-X.
734	Regnault, T.R., Gentili, S., Sarr, O., Toop, C.R., and Sloboda, D.M. 2013. Fructose,
735	pregnancy and later life impacts. Clin. Exp. Pharmacol. Physiol. 40 (11):
736	824–837. doi: 10.1111/1440-1681.12162.
737	Ritchie, L.D., Fung, E.B., Halloran, B.P., Turnlund, J.R., Loan, M.D.V., Cann, C.E., and
738	King, J.C. 1998. A longitudinal study of calcium homeostasis during human
739	pregnancy and lactation and after resumption of menses. Am. J. Clin. Nutr.
740	67 (4): 693–701.
741	Sarvestani, F., Rahmanifar, F., and Tamadon, A. 2015. Histomorphometric
742	changes of small intestine in pregnant rat. Vet. Res. Forum 6 (1): 69–73.
743	Schrier, R.W., Cadnapaphornchai, M.A., and Ohara, M. 2001. Water retention and
744	aquaporins in heart failure, liver disease and pregnancy. J. R. Soc. Med.
745	94 (6): 265–269.

oersonal use only. J

746	Singh, R., Nagapaul, J., Majumdar, S., Chakravarti, R., and Dhall, G. 1985. Effects of
747	17 beta-estradiol and progesterone on intestinal digestive and absorptive
748	functions in ovariectomized rats. Biochem. Int. 10 (5): 777–786.
749	Souders, H.J., and Morgan, A.F. 1957. Weight and Composition of Organs During
750	the Reproductive Cycle in the Rat. Am. J. Physiol Leg. Content 191 (1):
751	1–7.
752	Straughen, J.K., Trudeau, S., and Misra, V.K. 2013. Changes in adipose tissue
753	distribution during pregnancy in overweight and obese compared with
754	normal weight women. Nutr. Diabetes 3 (8): e84. doi:
755	10.1038/nutd.2013.25.
756	Suzuki, T., Douard, V., Mochizuki, K., Goda, T., and Ferraris, R.P. 2011. Diet-
757	induced epigenetic regulation in vivo of the intestinal fructose transporter
758	Glut5 during development of rat small intestine. Biochem. J. 435 (1): 43–
759	53. doi: 10.1042/BJ20101987.
760	Symonds, M.E., Stephenson, T., Gardner, D.S., and Budge, H. 2006. Long-term
761	effects of nutritional programming of the embryo and fetus: mechanisms
762	and critical windows. Reprod. Fertil. Dev. 19 (1): 53–63.
763	Teerapornpuntakit, J., Klanchui, A., Karoonuthaisiri, N., Wongdee, K., and
764	Charoenphandhu, N. 2014. Expression of transcripts related to intestinal
765	ion and nutrient absorption in pregnant and lactating rats as determined
766	by custom-designed cDNA microarray. Mol. Cell. Biochem. 391 (1-2): 103–
767	116. doi: 10.1007/s11010-014-1992-8.
768	The Human Microbiome Project Consortium. 2012. Structure, function and
769	diversity of the healthy human microbiome. Nature 486 (7402): 207–214.
770	doi: 10.1038/nature11234.
771	Thompson, G., and Halliday, D. 1992. Protein turnover in pregnancy. Eur. J. Clin.
772	Nutr. 46 (6): 411–417.
773	Tilg, H., and Kaser, A. 2011. Gut microbiome, obesity, and metabolic dysfunction.
774	J. Clin. Invest. 121 : 2126–2132. doi: 10.1172/JCI58109.
775	Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E.,
776	Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., Henrissat, B.,
777	Heath, A.C., Knight, R., and Gordon, J.I. 2009. A core gut microbiome in
778	obese and lean twins. Nature 457 (7228): 480–484. doi:
779	10.1038/nature07540.
780	Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon,
781	J.I. 2006. An obesity-associated gut microbiome with increased capacity
782	for energy harvest. Nature 444 (7122): 1027–131. doi:
783	10.1038/nature05414.
784	Turner, J.R. 2009. Intestinal mucosal barrier function in health and disease. Nat.
785	Rev. Immunol. 9 (11): 799–809. doi: 10.1038/nri2653.
786	United States National Research Council. 2001. Dietary Reference Intakes for
787	Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron,
788	Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. The
789	National Academies Press, Washington, DC. Available from
790	http://www.nap.edu/catalog.php?record_id=10026 [accessed 15 May
791	2014].
792	United States National Research Council. 2005. Dietary Reference Intakes for
793	Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and
794	Amino Acids (Macronutrients). The National Academies Press,

795	Washington, DC. Available from
796	http://www.nap.edu/openbook.php?record_id=10490.
797	United States National Research Council. 2011. Dietary Reference Intakes for
798	Calcium and Vitamin D. The National Academies Press, Washington, DC.
799	Available from http://www.nap.edu/catalog.php?record_id=13050
800	[accessed 15 May 2014].
801	Walter, J. 2015. Murine Gut Microbiota—Diet Trumps Genes. Cell Host Microbe
802	17 (1): 3–5. doi: 10.1016/j.chom.2014.12.004.
803	Wolffram, S., Blöck, M., and Ader, P. 2002. Quercetin-3-Glucoside Is Transported
804	by the Glucose Carrier SGLT1 across the Brush Border Membrane of Rat
805	Small Intestine. J. Nutr. 132 (4): 630–635.
806	Zhang, D., Huang, Y., and Ye, D. 2015. Intestinal dysbiosis: An emerging cause of
807	pregnancy complications? Med. Hypotheses 84(3): 223–226. doi:
808	10.1016/j.mehy.2014.12.029.
809	
810	

Appl. Physiol. Nutr. Metab. Downloaded from www.nrcresearchpress.com by University of Alberta on 09/01/15 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

811 Figure caption

812

- 813 Figure 1: Summary of the primary known gastrointestinal adaptations and
- 814 nutrient transporters affected during pregnancy. All processes shown are
- 815 upregulated, those with blue arrows have mechanisms suggested in the literature,
- 816 those without have been demonstrated but currently lack a well-defined
- 817 mechanism.

