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Abstract

Adequate adaptation of the gastrointestinal (GI) tract is important during
pregnancy to ensure that the increased metabolic demands by the developing
fetus are met. These include changes in surface area mediated by villus
hypertrophy and enhanced functional capacity of individual nutrient receptors
including those transporting glucose, fructose, leucine, and calcium. These
processes are regulated either by the enhanced nutrient demand or are
facilitated by changes in the secretion of pregnancy hormones. Our review also
covers recent research into the microbiome, and how pregnancy could lead to
microbial adaptations, which are beneficial to the mother, yet are also similar to
those seen in the metabolic syndrome. The potential role of diet in modulating
the microbiome during pregnancy, as well as the potential for the intestinal

microbiota to induce pregnancy complications are examined.

Gaps in the current literature are highlighted including those where only
historical evidence is available, and we suggest areas that should be a priority for
further research. In summary, although a significant degree of adaptation has
been described, there are both well-established processes, and more recent
discoveries such as changes within the maternal microbiome that pose new
questions as to how the GI tract effectively adapts to pregnancy, especially in

conjunction with maternal obesity.

Keywords: gastrointestinal adaptation, nutrition, pregnancy, microbiome,

nutrient transport, maternal health.
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Introduction

The perinatal period is associated with widespread adaptations in a majority of
maternal organ systems in order to ensure that nutrient supply to both the
mother and developing fetus can be maintained. These temporary changes,
collectively known as homeorhesis (Bauman and Currie 1980), are necessary to
optimise health during pregnancy, and to enable the mother to meet the
additional energetic and nutrient demands that accompany lactation. Many of
these maternal physiological adaptations have been previously reviewed. This
includes articles summarising the changes in energy metabolism (Herrera 2000,
Prentice and Goldberg 2000), and circulation (Hunter and Robson 1992), in both
women of normal (King 2000) and excess body mass index (BMI) (King 2006).
There is also a substantial body of literature covering adaptation of the placenta
to different nutrient intakes (Jones et al. 2007, Lager and Powell 2012), but there
is comparatively little work exploring whether the gut and bacterial inhabitants

of the gut are subject to similar changes.

The aim of this review is to discuss the variety of changes that have been
demonstrated to occur in the small and large intestine in pregnancy, ranging
from the anatomical to the molecular. It will also highlight the need for further
research, as much of the evidence discussed is now dated, and therefore has not
been considered in light of the significant increases in average pre-pregnancy
BMI of women of child-bearing age over the last two decades. Depending on the
cut-off used, the incidence of obesity in pregnant women in the USA ranged
between 18.5 and 38.3% (Galtier-Dereure et al. 2000, Catalano and Ehrenberg

2006, Guelinckx et al. 2008), and there has been a marked increase in the
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prevalence of obesity in women of childbearing age of ~33% between 1988 and
2000 (Kim et al. 2007). Among Canadian women aged 18-79, the proportion with
a BMI classified as underweight, normal weight overweight or obese is 2.2%,
44.7%, 29.5% and 23.6% respectively, and the prevalence of obesity among
women of child-bearing age (18-44) ranges between 5.5 and 19.4%

(Government of Canada 2011).

Changes in gut physiology during pregnancy and lactation

Gross changes of the alimentary tract using wet weight as an indicator of overall
size have been assessed in pregnant and lactating rats in studies dating back to
the 1930s (Lew et al. 1939), with more detailed documentation focusing on the
intestine beginning in the 1960s. Relative to the non-pregnant state, increases in
weight of the stomach and the small intestine of rats have been recorded
consistently during lactation but not pregnancy (Souders and Morgan 1957, Fell
et al. 1963, Campbell and Fell 1964). One study in sheep reported a 45% increase
in small intestine weight (p<0.05 vs age matched non-pregnant controls) in the
third trimester (Fell et al. 1972). Although intestinal weight does not appear to
change in pregnant rats, surface area increases throughout pregnancy. Villus
height increases in the duodenum by mid-pregnancy (Cripps and Williams 1975)
and this is accompanied by intestinal dilatation commencing at the beginning of
the final week of gestation; these observations have also been reported in
pregnant sheep (Fell et al. 1964). These changes persist through lactation (Fell et
al. 1963, Boyne et al. 1966) as evidenced by increased serosal circumference and
villus height in the jejunum and ileum at the end of lactation in rats, and lactating

mice (Campbell and Fell 1964). More recent research in rats shows villus heights
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in the jejunum significantly increasing by gestational day 21, with no change in
the ileum or duodenum (Sarvestani et al. 2015). Intestinal length has been
reported to be unchanged during pregnancy in rats, but will increase by almost

25% during lactation (Craft 1970, Cripps and Williams 1975).

The mechanisms proposed to mediate these gross anatomical changes include
changing caloric intake, so called “work hypertrophy” (Fell et al. 1963). This has
been widely debated with two studies in non-pregnant rats showing significant
increases in stomach and colon weight with raised nutrient intake but no change
in the small intestine (Addis 1932, Dowling et al. 1967). Both an increase in
plasma thyroxine and insulin resistance may also play a role, both are known to
occur in pregnancy (Branch 1992), and both have been independently associated
with intestinal hypertrophy (Middleton 1971, Fujita et al. 1998). However this is
currently speculation as both effects have only been shown in non-pregnant

animal models.

When relating findings from rodent models to humans, substantial differences in
energy expenditure must be taken into account. The higher metabolic rate,
shorter gestation and larger litter sizes of rodents compared with human and
sheep pregnancies could contribute to more pronounced intestinal adaptations
than are observed in humans (Hammond 1997). Detailed information about
specific anatomical adaptations in pregnant is limited by the fact that collection
of GI tissue from healthy pregnant women throughout pregnancy is not ethically

feasible.
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Changes in gut motility and transit time

An increased occurrence of heartburn, bloating and constipation during
pregnancy has been well documented in humans (Feeney 1982) suggesting that
intestinal motility and transit time may both be increased. This was initially
thought to be caused by the expanding uterus placing pressure on the GI tract
(Byrne 1972) but additional studies suggest hormonally driven changes may add
to mechanical influences that slow these processes. Exposure to high
concentrations of progesterone reduces GI motility, with in-vitro treatment of rat
GI sections with progesterone leading to reduced contractile activity in
oesophageal, antral and colonic tissue (Bruce and Behsudi 1979). Studies of the
effect of progesterone on motilin, a hormone which stimulates GI motility in the
stomach, showed significant inverse correlations between motilin and plasma
progesterone both during fasting and after a glucose load in humans
(Christofides et al. 1982, Holst et al. 1992). This suggests that progesterone has
a direct effect on GI tissue motility as well as an inhibitory effect on the action of
other hormones. Studies in humans using the lactulose hydrogen breath test to
measure oro-caecal transit report no significant changes in transit time in the
first trimester, despite women displaying dyspeptic symptoms such as heartburn
and bloating. Gut transit time increases during the third trimester (Chiloiro et al.

2001) when these symptoms can disappear.

Changes in intestinal absorption and permeability
The increased intestinal surface area and transit time observed in pregnancy
have the potential to affect fluid and electrolyte balance as well as nutrient

absorption. Absorption of sodium and water increases by almost 50%, between
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12 to 20 weeks gestation in humans. Such changes could be mediated, in part, by
araised plasma aldosterone concentration (Brown et al. 1992) but may also be
affected by hormonal adaptations to pregnancy. Changing concentrations of
oestrogen could influence sodium absorption by effects on the adrenal gland and
the renin-angiotensin system (RAS). Angiotensin Il promotes fluid absorption in
the small intestine (Fandriks 2011), and plasma concentrations of several RAS
hormones including angiotensin Il are elevated during pregnancy (Irani and Xia
2008). Enhanced absorption could reflect the raised transit time in late gestation
(Chiloiro et al. 2001), whereas chlorine (Cl) secretion in the colon may be
inhibited during pregnancy due to raised oestrogen (Condliffe et al. 2001). In
rats this response could be mediated by activating protein kinase-C delta
(O’Mahony et al. 2007), whilst blocking its action prevents the decrease in Cl
secretion on administration of 17(3-oestradiol (Doolan et al. 2000). This is
consistent with the water retention observed towards the end of pregnancy,
when oestrogen levels are at their highest (Atherton et al. 1982, Schrier et al.

2001).

Gene expression analyses using microarray and qPCR has shown that several ion
transporters associated with sodium, calcium and magnesium are all
upregulated in the rat duodenum during pregnancy and lactation
(Teerapornpuntakit et al. 2014). This has been suggested to be in part due to the
hypertrophy observed in the small intestine, however, as discussed above the
absorption of specific nutrients are affected by stage of pregnancy rather than

reflecting an increase in absorptive surface.
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Absorption of Major Dietary Constituents

Carbohydrates

Carbohydrates are the main substrate of fetal and placental metabolism, and
adequate intake, absorption and distribution are required for healthy pregnancy
outcome (Battaglia 1989, Hay 1991). Pregnancy is an insulin resistant state, with
both hyperinsulinaemia and insulin resistance peaking in the third trimester
(Cousins et al. 1980, Buchanan et al. 1990, Catalano et al. 1993). Fructose intake
in pregnancy is also becoming increasingly relevant given its increased role in
the Western diet since the 1980s, and its potential for inducing lipogenesis much

more readily than glucose (Regnault et al. 2013).

The relationship between pregnancy and glucose homeostasis is therefore of
clinical relevance, particularly with regard to how carbohydrates are absorbed
across the gut. An inhibitory effect of oestrogen on glucose absorption in the
small intestine has been demonstrated. Glucose uptake from the small intestine
in rats is increased by a third following ovariectomy and is reduced back to the
same level as sham-operated controls with 173-estradiol and progesterone
replacement (Singh et al. 1985). This is at odds with more recent research
showing an upregulation in both glucose transporter 5 (GLUT5) and sodium-
linked glucose transporter 1 (SGLT1) expression in late pregnancy compared to
age-matched non-pregnant controls (Teerapornpuntakit et al. 2014). Thus, we
speculate that upregulation in transport protein expression may offset
reductions in glucose absorption as a result of oestrogen-related changes. In the

case of fructose, to our knowledge no research has been conducted focusing on
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the transport of fructose during pregnancy. Rat studies have demonstrated that
exposure to luminal fructose in the fetus during critical stages of development
will program the offspring intestine by increasing expression of the fructose
transporter GLUT5 (Jiang and Ferraris 2001, Suzuki et al. 2011), suggesting that

fructose intake and intestinal uptake during pregnancy is of interest.

Future pregnancy based studies could utilise Ussing chambers in conjunction
with inhibiting SGLT1 or other carbohydrate transporters, techniques that have
already been employed when studying transport of other nutrients across the
small intestine (Wolffram et al. 2002). Focus on GLUT2 would also be warranted
as this has been shown to play an equally important role as SGLT1 in intestinal

glucose transport (Kellett and Brot-Laroche 2005, Kellett et al. 2008)

Amino acids

Protein intake, absorption and distribution is also vital during pregnancy, with
the fetus, uterus, placenta, and amniotic fluid together accounting for ~925g of
protein accreted over pregnancy in humans. This is to be obtained from a
recommended dietary intake of 1.1g per kg body weight per day (an average
increase of 25g/day compared to the non-pregnant state), and a macronutrient
distribution whereby protein contributes between 10 and 35% of total calories
(United States National Research Council 2005). The effect of protein restriction
during pregnancy on the offspring has been well defined in animal models using
<9% of calories from protein (Lakshmy 2013), leading to growth restriction in
the offspring and an increase in incidence of the metabolic syndrome in later life.

The precise role of a low protein intake in mediating such responses is difficult
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to determine as all low protein diets contain additional carbohydrate in order to
ensure they are isocaloric compared to the control diet (Symonds et al. 2006). In
addition protein requirements are much higher in rodent pregnancies compared

to humans (Symonds et al. 2006).

Protein turnover increases linearly throughout pregnancy, shown indirectly
from measuring the fate of radio-labelled leucine (Thompson and Halliday 1992)
and glycine (de Benoist et al. 1985) in women. A lack of studies covering
potential mechanisms for the increase in amino acid absorption has been
highlighted in earlier reviews (Karasov and Diamond 1983), and this does not
appear to have changed. Therefore research into expression of the variety of
different transport proteins present in the small intestine (Bréer 2008) and how
expression changes throughout pregnancy is of interest.

Fatty acids

Maternal dietary fat intake is important throughout pregnancy not only as a
maternal energy source but also to provide the developing fetus with essential
fatty acids for optimal development (Budge and Symonds 2006). It has been
suggested that total fat requirements as a proportion of energy intake during
pregnancy should not be increased compared to non-pregnant women, as they
can be met by small increases in consumption of a balanced diet (United States
National Research Council 2005). There is debate as to whether the pre-formed
long-chain polyunsaturated fatty acids (LCPUFA) should be considered as
conditionally essential in pregnancy, and whether the normal dietary supply of
essential fatty acids, specifically linoleic and a-linolenic acid are sufficient for

optimal fetal development and long term health (Haggarty 2014). Current

10
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literature has examined the lack of maternal dietary docosahexaenoic acid
(DHA), particularly during late pregnancy (Haggarty 2004), and the mobilisation
of maternal adipose tissue, but not the intestinal transport of fatty acids. The US
Dietary Reference Intakes (United States National Research Council 2005)
highlight a lack of evidence available to determine optimal intakes of n-3 and n-6
fatty acids during pregnancy, in part because of difficulties defining a range of
intakes in Western populations that would lead to a deficiency. This potentially
explains the lack of research interest shown in the uptake of fatty acids during

pregnancy.

To summarise, although it is well established that glucose and fructose transport
across the intestine is a dynamic process modulated by the expression of
transport proteins, very little work has been done to ascertain how pregnancy
affects the expression and function of these transporters. Transport of both
amino and fatty acids across the intestinal epithelium during pregnancy is even
less well studied, despite the fact that in the case of amino acids, increased

absorption in pregnancy has been demonstrated.

Absorption of Micronutrients

Micronutrients can have an important role in preventing adverse events such as
premature birth and low birth weight (Ramakrishnan et al. 1999, United States
National Research Council 2001, 2011). The intestinal absorption of calcium,
vitamin D and iron absorption in pregnancy are well described but many other
micronutrients remain unstudied. This includes magnesium and zinc, which

when deficient are associated with adverse outcomes such as pre-eclampsia and
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preterm delivery (Black 2001). There is promising preliminary research into the
transport of some of these micronutrients, with microarrays showing
upregulation in duodenal transporters of both zinc and calcium during
pregnancy in rats; but no associated mechanisms have been identified

(Teerapornpuntakit et al. 2014).

Calcium and vitamin D absorption

The human fetus requires the transfer of ~30 g of calcium from maternal stores
between conception and birth. Both calcium uptake, excretion (Kent et al. 1991,
Ritchie et al. 1998) and regulation of vitamin D metabolism adapt to pregnancy
(Phillips et al. 2000, Prentice 2000). In rats, intestinal calcium transport
increases throughout pregnancy to peak at day 14 of lactation coincident with
changes in plasma 1,25 dihydroxyvitamin D, a hormonally active metabolite of
vitamin D. However an increase in absorption was also observed in a cohort of
vitamin D deficient rats following the same study design, suggesting the
adaptations in calcium uptake may be independent of vitamin D status (Halloran
and DeLuca 1980). Further evidence for this is provided from pregnant mice
lacking the vitamin D receptor (VDR) which display osteomalacia at baseline
(before mating), and an increase in bone mineral content throughout pregnancy,
that is comparable to pregnant wild-type controls. (Fudge and Kovacs 2010).
Taken together these findings suggest other mechanisms of calcium transport

may be active during pregnancy.

Iron absorption

12
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Maternal iron requirements in humans increase during pregnancy in order to
meet the needs of the raised erythrocyte mass, formation of the placenta, and
~1g of stored iron accumulated by the fetus at term. These are met through a
combination of the maternal mobilisation of stored iron, reduced iron loss, and
potentially increased absorption from the maternal diet. Iron deficiency in
pregnancy, however, remains a problem, leading to an increased risk of
preeclampsia, intrauterine growth restriction and low birth weight (Cetin et al.

2011).

Upregulation of iron absorption has been shown during the second and third
trimester of pregnancy irrespective of iron status using labelled >*Fe in a small
study of 12 pregnant women (Barrett et al. 1994). Animal studies have proposed
potential mechanisms for these changes. For example, duodenal gene expression
of Dcytb, an enzyme responsible for converting dietary Fe3+* to Fe2+ for
metabolism, and divalent metal transporter 1 (DMT1), a major intestinal iron
transporter, have been shown to increase through pregnancy and decline within
48 hours after birth (Millard et al. 2004). The positive association between the
timing of changes in oestrogen concentrations and Dcytb and DMT1 protein
expression suggests that oestrogen may regulate iron absorption, but firm

evidence for this remains to be established.

Microbial changes
Over the last decade the microbiome has been shown to be an important
mediator of human health, and the composition of different bacterial species

making up the microbiome and potential mechanisms by which they can be
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altered is now a well-established field of research (Cho and Blaser 2012). There
is growing appreciation that diet (Tilg and Kaser 2011, David et al. 2014, Walter
2015) and pregnancy (Koren et al. 2012, Jost et al. 2014) modulate the

microbiome, as well as speculation that the microbiome can influence offspring

development (Ma et al. 2014, Aagaard et al. 2014).

The influence of the microbial environment of the intestine on host physiology is
now well established (Hooper and Gordon 2001), and has led to a number of
studies examining how diet, and more recently pregnancy, affect it. The maternal
GI microbiome undergoes profound changes during pregnancy, some of which
are not dissimilar to those characteristics found in obesity (Koren et al. 2012),
i.e. a decrease in microbial diversity (Turnbaugh et al. 2009, Qin et al. 2010,
Greenblum et al. 2012). An “obese” type microbiome has been defined as one
with an increased capacity for energy utilisation, primarily due to the greater
abundance of bacterial species capable of fermenting and therefore increasing
availability of otherwise indigestible sugars. The most significant example of this
is the increased abundance of Firmicutes species relative to Bacteroidetes, with
Firmicutes being more efficient sugar fermenters. Analysis of the colonic
contents of ob/ob mice also shows an elevated concentration of the fermentation
products butyrate and acetate relative to lean controls (Turnbaugh et al. 2006).
A shift in Bacteroidetes and Firmicutes was not observed in the only maternal
microbiome sequencing study to date conducted in normal weight participants
(Koren et al. 2012), however a greater representation of the lactic acid
fermenters Lactobacillus, Streptococcus and Enterococcus was reported in the

third trimester. This has been suggested to be an evolutionary adaptation, and

14
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the concomitant transfer of these microbes to the newborn could enable it to

take advantage of the lactose in its mother’s milk (Cox and Blaser 2013).

Similarities between the pregnant and obese microbiome are of interest since
both conditions are associated with increased fat mass, although the relative
distribution of this additional fat is different between pregnant and obese
individuals (Straughen et al. 2013). There are a number of potential explanations
for the development of an “obese type” microbiota during pregnancy. Species of
Bacteroidetes contain a number of glycoside hydrolases which are able to
ferment sugars which would otherwise pass through the large intestine and
remain undigested (Backhed et al. 2005). Increased availability of
polysaccharides is regarded as a hallmark of an obese microbiota (Turnbaugh et
al. 2006), but would also result in increased energy availability which may be
beneficial in pregnancy. This could help in meeting maternal energy demands
and supplying the additional demands of the fetus, and suggest that during
pregnancy the microbiome could be modulated to increase energy available for
absorption. However, it is currently unclear whether these adaptations are due
to the changing microbial environment, or are modulated by the other intestinal

adaptations outlined earlier in this review.

It is not only changes in the relative proportion of individual species that occur,
as the diversity of the microbiome also adapts, as defined by the relative number
and abundance of different types of organism. For example, both obesity and
inflammatory bowel disease have been linked with a low diversity of gut

microbes (Turnbaugh et al. 2009, Qin et al. 2010). Diversity is measured within

15
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an individual (alpha diversity, for example, the number of different types
organisms within an individual’s intestinal microbiome) and between
individuals (beta diversity). Patterns of alpha and beta diversity differ
significantly when making comparisons from the same habitat. For example, a
high alpha diversity indicates a diverse microbiome but this can be concomitant
with a low beta diversity, with members of a defined population all sharing
similar organisms. Currently a functional explanation for changes in diversity
has not been identified, with a need for studies taking into account responses to
short and long term dietary modifications, diurnal rhythms as well as mode of
delivery at birth and host genetics (The Human Microbiome Project Consortium

2012).

The current evidence base for understanding the changing gut microbiome has
compared the effect of different diets and physiological states including
pregnancy. Although this field is very new, it appears that the gut microbiome
does change with pregnancy (Koren et al. 2012), and it has been hypothesised
that inappropriate adaptation of the gut microbiome, such as that seen in a
number of inflammatory bowel disorders (Kamada et al. 2013) may contribute
to the development of pregnancy complications including pre-eclampsia,
intrauterine growth restriction and miscarriage (Zhang et al. 2015). Pregnancy is
associated with a significant reduction in alpha diversity and an increase in beta
diversity by the third trimester (Koren et al. 2012). At the species level, there is a
significant increase in abundance of Proteobacteria in the third trimester, which
has previously been observed in obesity (Turnbaugh et al. 2009) and chronic

inflammatory states (Mukhopadhya et al. 2012).
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Changes in intestinal permeability to larger molecules and bacteria are of
interest especially given the above changes in the gut microbiota during
pregnancy, and the recent description of a unique microbiome in the placenta
(Aagaard et al. 2014). The effect of pregnancy on epithelial tight junctions, which
mediate intestinal permeability (Turner 2009), has not been studied. There is
overlap here with research into the role of the gut microbiota in pregnancy, with
lipopolysaccharide (LPS) present on the membranes of Gram-negative bacteria
passing into the systemic circulation and leading to the low-level adipose tissue
inflammation characteristic of obesity (Lam et al. 2011). Catecholamines
released as part of the maternal stress response have been hypothesised to lead
to gut barrier failure (Friebe and Arck 2008), and the subsequent release of LPS

linked to an increased risk of spontaneous abortion (Friebe et al. 2011).

Small studies in non-human primates (n=2-4 animals/group) have
demonstrated that a high fat diet in pregnancy has potentially adverse effects on
the offspring microbiome (Ma et al. 2014). An upregulation in amino acid,
carbohydrate and lipid metabolic pathways was observed in 1-year-old offspring
exposed to a high-fat diet during gestation and lactation. These changes were
partly reversed in offspring switched from a high-fat diet containing 36% fat to a
control diet containing 13% fat at weaning suggesting modest flexibility of the
offspring microbiome. The authors suggest that these results show the influence
of the maternal diet on establishment of the microbiome, rather than an
“obesity-causing” microbiome as indicated in the above research. However the

small numbers of animals studied together with the lack of an adverse
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phenotype in the offspring (McCurdy et al. 2009) suggest that these findings

need following-up.

Conclusion

Maternal adaptations occur throughout pregnancy and lactation, ranging from
changes in gross gut anatomy to changes in the expression of specific nutrient
transporters as summarised in Figure 1. The evidence here demonstrates that
adaptation of the intestine to pregnancy is equally important as adaptation of
other organs. However much of the material presented here is based on dated
research, and there is a clear need for an expanded body of evidence using
contemporary techniques in animal models and humans where possible. This
would enable the addition of mechanistic data especially in pregnancies at risk
from complications. The increasing prevalence of obesity in the Western world
makes the study of obesogenic or diabetogenic diets during pregnancy critical to
furthering understanding of important adaptations and processes in the gut. The
microbiota is now considered a metabolically active organ, and the evidence
presented suggests that its adaptation in pregnancy is a part of increasing energy
extracted from the diet to provide for the fetus. Understanding these
adaptations, and how they may be modulated by diet could therefore be

beneficial in treating overweight and obesity during pregnancy.
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Figure caption

Figure 1: Summary of the primary known gastrointestinal adaptations and
nutrient transporters affected during pregnancy. All processes shown are
upregulated, those with blue arrows have mechanisms suggested in the literature,
those without have been demonstrated but currently lack a well-defined

mechanism.
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