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Abstract

A net (xα) in a vector lattice X is unbounded order convergent to

x ∈ X if |xα − x| ∧ u converges in order to 0 for all u ∈ X+. Recent

work by Gao et al. has shown that this type of convergence has many

interesting theoretical and practical applications. In this thesis, we use

unbounded order convergence as a tool to study a different convergence

in Banach lattices. A net (xα) in a Banach lattice X is unbounded

norm convergent to x ∈ X if |xα − x| ∧ u converges in norm to 0 for

all u ∈ X+. We describe basic properties of this convergence and show

that it can be viewed as a generalization of convergence in measure to

the setting of Banach lattices.
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Preface

The research appearing in Chapter 2 of this thesis is my contribu-

tion to the article Unbounded norm convergence in Banach lattices by

Y. Deng, M. O’Brien and V.G. Troitsky, arXiv:1605.03538v1 [math.FA]

which has been submitted for publication. All of the original results

and the proofs appearing in Chapter 2 are due to myself and V.G.

Troitsky. V.G. Troitsky formulated and proved Theorem 2.12, Corol-

lary 2.13 and the results appearing in the section on un-topology.
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1. Preliminaries and Introduction

In this thesis, we will work primarily in Banach lattices, which, for

the moment, can be thought of as Banach spaces with some type of

ordering. Since these spaces have several structures on them, we pro-

vide a brief overview of the background material. For more details, we

refer the reader to [AB06], [Sch74] and [LT79, Chapter 1]. We begin

by reviewing the notion of an ordered set.

1.1. Order Structures.

Definition 1.1. A set P together with a binary relation � is called a

partially ordered set if the following hold for each x, y, z ∈ P :

(i) x � x (Reflexivity)

(ii) If x � y and y � x, then x = y (Anti-symmetry)

(iii) If x � y and y � z, then x � z (Transitivity)

In addition, we say that P is directed by � if for each x, y ∈ P

there exists z ∈ P such that x � z and y � z.

We may view this definition as an abstraction of ≤ for real numbers.

Indeed, R with the ≤ relation is a directed set. We call this the usual

ordering of R. Here are some other important examples of this concept.

Example 1.2. LetX be any set. The power set ofX, P(X), is directed

by set inclusion. Explicitly, for subsets U and V of X, we write U � V

iff U ⊆ V . It is straightforward to verify ⊆ is a partial order on P(X),

and that P(X) with this ordering is a directed set.
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Example 1.3. Let (X, τ) be a topological space and let x ∈ X be

fixed. Then the set of open neighborhoods of x is directed by reverse

inclusion; that is, V � U iff U ⊆ V .

We now come to the main purpose for introducing directed sets.

Definition 1.4. Let Λ be a directed set, and let X be any set. A

function x : Λ → X is called a net in X. We write x(α) := xα for

α ∈ Λ

It is more common to identify a net with its range; i.e., we say that

(xα)α∈Λ is a net in X. Sometimes we will suppress the index set and

write (xα) when the index set is clear. If X itself is partially ordered

by �′, then a net (xα)α∈Λ is called increasing if xα �′ xβ whenever

α � β in Λ; in this case, we write xα ↑. Similarly, one can define

decreasing nets and these are denoted by xα ↓.

Example 1.5. Recall that a sequence in X is a function into X whose

domain is the set of all natural numbers, N. Observing that N is

directed by ≤, we see that any sequence is an example of a net.

Example 1.6. If (X, τ) is a topological space and x ∈ X is fixed, let

Nx denote the open neighborhoods of x. Example 1.3 yields Nx is a

directed set. For each U ∈ Nx, U 6= ∅, so pick some xU ∈ U . Then

(xU)U∈Nx is a net in X.

For any subset A of a partially ordered set X, there is a notion

of ‘largest’ and ‘smallest’ elements. An element u ∈ X is called an

upper bound for A if a � u for every a ∈ A. In this case, we may
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write A � u and say that A is bounded above by u. Notice that an

upper bound need not belong to the set which it bounds. We say

that u ∈ X is the greatest element of A if A � u and u ∈ A.

Notice that we called it ‘the’ greatest element; this is justified since

a greatest element, if it exists, is unique. In a similar fashion, one

can define lower bounds and a least element of A. We say that

A is order bounded if it is bounded above and below; in this case,

A ⊆ [a, b] = {x ∈ X : a � x � b} where a and b are lower and upper

bounds of A, respectively.

Example 1.7. Let Q denote the set of all rational numbers. Then

Q with the relation ≤ is a partially ordered set. Consider the subset

A := {q ∈ Q : q2 ≤ 2}. Then A has many upper bounds; for example,

12
5

, 3 and 7 are all upper bounds for A.

This example helps to motivate the following terminology. Let UA

and LA denote the set of all upper and lower bounds of A, respectively.

If UA has a least element, then we call it the least upper bound

or supremum of A, and denote it by supA. If LA has a greatest

element, then we call it the greatest lower bound or infimum of

A, and denote it by inf A. It is important to remark that supA and

inf A need not exist for a general subset A of X; one such example of

this is Example 1.7.

The notation xα ↑ u means that (xα)α∈Λ is an increasing net and

u = sup{xα : α ∈ Λ}. Similarly, xα ↓ u means (xα)α∈Λ is a decreasing

net and u = inf{xα : α ∈ Λ}.
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Definition 1.8. Let X be a partially ordered set. For x, y ∈ X define

x ∨ y := sup{x, y} and x ∧ y := inf{x, y}. We say that X is a lattice

if x ∨ y and x ∧ y exist in X for every x, y ∈ X.

Here are some important examples of sets with a lattice structure.

Example 1.9. For any set X, P(X) is a lattice under the ordering

from Example 1.2. The lattice operations are A ∨ B = A ∪ B and

A ∧B = A ∩B for any A,B ∈ P(X).

Example 1.10. Let Ω be any set. The set of all R-valued functions on

Ω, RΩ, is a lattice under pointwise ordering of functions. That is, for

f, g ∈ RΩ we write f ≤ g iff f(ω) ≤ g(ω) for every ω ∈ Ω. Notice that

f ∨ g and f ∧ g are defined pointwise via

(f ∨ g)(ω) = f(ω) ∨ g(ω) (f ∧ g)(ω) = f(ω) ∧ g(ω)

for ω ∈ Ω. In particular, setting Ω = N yields the set of all real

sequences is a lattice under pointwise operations.

Example 1.11. As a special case of the previous example, if Ω is

finite, then we can identify RΩ with Rn (where |Ω| = n) by viewing R-

valued functions on {1, . . . , n} as vectors in Rn; i.e., we identify x ∈ RΩ

with the vector in Rn whose coordinates are given by xi = x(i) for

i ∈ {1, . . . , n}. It follows from Example 1.10 that Rn is a lattice under

the pointwise ordering of functions. In this case, we say that Rn is

ordered coordinate-wise; that is, for x, y ∈ Rn x ≤ y iff xi ≤ yi for

every i ∈ {1, . . . , n}. It is easy to see that the lattice operations are
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also computed coordinate-wise:

x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn)

where x = (x1, . . . , xn) and y = (y1, . . . yn) ∈ Rn.

Example 1.12. Let C(K) denote the space of all continuous R-valued

functions on a compact Hausdorff space K. Again, this is a lattice

under pointwise ordering of functions; i.e., f ≤ g in C(K) iff f(t) ≤ g(t)

for all t ∈ K. We have

(f ∨ g)(t) = max{f(t), g(t)} =
f(t) + g(t) + |f(t)− g(t)|

2

and

(f ∧ g)(t) = min{f(t), g(t)} =
f(t) + g(t)− |f(t)− g(t)|

2

for t ∈ K.

Example 1.13. Let (Ω,Σ, µ) be a measure space and set L0(µ) = {f :

Ω → R : f is Σ–measurable}. Recall that we identify two functions in

L0(µ) if they are equal µ-almost everywhere (a.e.); hence, elements of

L0(µ) are actually equivalence classes of functions. For f, g ∈ L0(µ) we

set f ≤ g iff f(ω) ≤ g(ω) µ-a.e.. Under this order, L0(µ) is a lattice

where

(f ∨ g)(ω) = f(ω) ∨ g(ω) (f ∧ g)(ω) = f(ω) ∧ g(ω)
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hold for µ-a.e. ω ∈ Ω. Moreover, for 1 ≤ p < ∞ we let ‖f‖p =

(
∫

Ω
|f(ω)|pdµ)

1
p and define Lp(µ) = {f ∈ L0(µ) : ‖f‖p < ∞}. Then

Lp(µ) is a lattice under the order it inherits from L0(µ).

1.2. Vector Lattices.

The examples at the end of the previous section illustrate how many

classical function spaces have a lattice structure. In fact, it will often be

helpful to view Banach lattices as function spaces. In order to develop

this idea, we now consider sets with an order and a linear structure.

Definition 1.14. An ordered vector space is a R-vector space X

with an ordering ≤ such that the following compatibility conditions

hold for every x, y, z ∈ X and λ ∈ R+:

(i) x ≤ y implies x+ z ≤ y + z, and

(ii) x ≤ y implies λx ≤ λy.

If, in addition, X is also a lattice, then it is called a vector lattice .

See Example 1.10 – Example 1.13 above for examples of this concept.

Throughout the rest of this section X will always denote a vector

lattice. An element x ∈ X is called positive if 0 ≤ x. The set of

all positive elements of X is denoted by X+. We say x is negative if

0 ≤ −x. The following result is easy to verify.

Lemma 1.15. For every x, y ∈ X+ and λ ∈ R+ the following hold:

(i) x+ y ∈ X+;

(ii) λx ∈ X+;

(iii) x ∈ X+ and −x ∈ X+ if and only if x = 0.
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Lemma 1.15 says that X+ is a cone in X; we call it the positive

cone of X. We say that X is Archimedean if 1
n
u ↓ 0 for any u ∈ X+.

The following identities describe the interactions of the linear and

order structure in vector lattices. We present some of their proofs to

familiarize the reader with common calculations in vector lattices. For

more details, see [AB06, Theorem 1.3].

Lemma 1.16. For every x, y, z ∈ X and λ ∈ R+ the following hold:

(i) −(x ∨ y) = (−x) ∧ (−y) and −(x ∧ y) = (−x) ∨ (−y);

(ii) x+ y = x ∧ y + x ∨ y;

(iii) x+(y∨z) = (x+y)∨(x+z) and x+(y∧z) = (x+y)∧(x+z);

(iv) λ(x ∨ y) = (λx) ∨ (λy) and λ(x ∧ y) = (λx) ∧ (λy).

Proof. We begin by remarking that if x ≤ y, then y − x ≥ 0 and

−x ≥ −y.

(i) From the definition of supremum we have x ≤ x ∨ y. It follows

that −x ≥ −(x∨ y). Similarly, −y ≥ −(x∨ y). This shows −(x∨ y) is

a lower bound for −x and −y. Since (−x)∧ (−y) is the largest element

with this property, we must have −(x ∨ y) ≤ (−x) ∧ (−y). If z ≤ −x

and z ≤ −y, then −z ≥ x and −z ≥ y. It follows that −z ≥ x ∨ y;

hence, z ≤ −(x ∨ y). This shows that −(x ∨ y) is the infimum of −x

and −y, which proves the first identity in (i); the second one follows

by replacing x with −x and y with −y in the first identity.

(ii) Since x∧y ≤ x implies x−x∧y ≥ 0, we must have y ≤ y+x−x∧y.

A similar argument shows x ≤ x + y − x ∧ y, so x + y − x ∧ y is an

upper bound of x and y. It follows that x ∨ y ≤ x + y − x ∧ y,

hence x∧ y+x∨ y ≤ x+ y. To obtain the reverse inequality, note that
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y ≤ x∨y which implies y−x∨y ≤ 0, hence x+y−x∨y ≤ x. Similarly,

x+ y − x ∨ y ≤ y, so x+ y − x ∨ y ≤ x ∧ y; i.e., x+ y ≤ x ∧ y + x ∨ y.

The anti-symmetry of ≤ yields the identity in (ii).

(iii) We leave it as an exercise to the reader to show that (x + y) ∨

(x + z) ≤ x + (y ∨ z). The first identity in (iii) follows from the

trick y = −x + (x + y) ≤ −x + [(x + y) ∨ (x + z)] and, similarly,

z ≤ −x+ [(x+ y)∨ (x+ z)]. The second identity can be proven in the

same way.

(iv) Exercise. �

Perhaps the most noticeable omission from Lemma 1.16 is the dis-

tributivity of ∨ and ∧ over addition. In fact, ∨ and ∧ need not be

distributive over addition in a vector lattice. Nevertheless, for positive

elements, we have the following inequality.

Lemma 1.17. If x, x1, x2 ∈ X+, then

x ∧ (x1 + x2) ≤ x ∧ x1 + x ∧ x2.

Proof. See [AB06, Lemma 1.4] for a proof based on the definitions. �

For x ∈ X we define the positive part of x, the negative part of

x, and the modulus of x with the following identities.

x+ = x ∨ 0 x− = (−x) ∨ 0 |x| = x ∨ (−x)

Remark 1.18. The modulus of x, |x|, should not be confused with

the absolute value over R, though, for R with the usual ordering, they

coincide.
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Example 1.19. In Example 1.10-Example 1.13 we showed that the

lattice operations ∨ and ∧ are computed pointwise. Similarly, for an

element f in any of these vector lattices, f+, f− and |f | can be com-

puted pointwise with the appropriate modifications for each case. For

instance, if f ∈ L0(µ) then |f | ∈ L0(µ) is computed pointwise µ-a.e.

by

|f |(ω) = |f(ω)|

for µ-a.e. ω ∈ Ω.

One can derive the following basic results using Definition 1.14 and

Lemma 1.16.

Lemma 1.20. The following hold for every x ∈ X:

(i) x+, x−, |x| ∈ X+;

(ii) x = x+ − x−;

(iii) |x| = x+ + x−.

We call the mappings that send x to x+, x−, |x|, x ∨ y, or x ∧ y the

lattice operations on X. It is of interest to note that all of the lattice

operations can be expressed in terms of each other.

Lemma 1.21. The following identities hold for x, y ∈ X:

(i) x+ = 1
2
(|x|+ x) and x− = 1

2
(|x| − x),

(ii) x ∨ y = x+y+|x−y|
2

and x ∧ y = x+y−|x−y|
2

, and

(iii) x ∨ y = x+ (y − x)+ and x ∧ y = x− (x− y)+.

We say that x, y ∈ X are disjoint if |x| ∧ |y| = 0. In this case, we

write x ⊥ y.
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We will often use the following inequality for making estimates in

vector lattices.

Lemma 1.22. For every x, y ∈ X,

∣∣|x| − |y|∣∣ ≤ |x± y| ≤ |x|+ |y|
Moreover, if x ⊥ y then |x+ y| = |x|+ |y|.

Remark 1.23. In light of Remark 1.18, it is peculiar that the modu-

lus, which is only defined in-terms of the order structure, also satisfies

the triangle inequality. This alludes to a deeper connection between

the modulus and absolute value. Indeed, it can be shown that every

inequality that is valid for real numbers is also true for vectors in a

Banach lattice; see, for example, [LT79, Theorem 1.d.1].

In order to understand the structure of a vector lattice, we need to

understand both its vector subspaces and ‘lattice subspaces’. Let Y

be a vector subspace of X. If, in addition, Y is closed under each of

the lattice operations, then we say that Y is a sublattice of X. By

Lemma 1.21, it is enough to show that Y is closed under any single

lattice operation. For example, if Y is closed under the modulus op-

eration, i.e., x ∈ Y implies |x| ∈ Y for every x ∈ Y , then Y is closed

under all lattice operations since they are all expressed via each other.

Another important class of sublattices are the order ideals. We say

that Y is an order ideal of X, or just an ideal , if Y is a sublattice

of X and 0 ≤ x ≤ y implies x ∈ Y whenever y ∈ Y . For S ⊆ X, the

intersection of all ideals containing S is, again, an ideal containing S;
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this is the smallest such ideal, so we call it the ideal generated by

S , and denote it by IS. If S = {e}, then we write Ie instead of I{e}. It

is important to note that we can describe IS for any subset S of X.

Lemma 1.24. For any subset S of a vector lattice X, we have

IS =
{
x : |x| ≤

k∑
i=1

λi|xi|; k ∈ N, λ1, . . . , λk ∈ R+, x1, . . . , xk ∈ S
}

If B is an ideal of X and xα ↑ in B+ implies supα{xα} ∈ B for any

net (xα) in B+, then we call B a band . As with ideals, given a subset

S of a vector lattice, one may speak about the band generated by

S , BS. In the case where S = {e}, we write Be for the band generated

by e. The following is a useful characterization of Be.

Lemma 1.25. If e, x ∈ X+, then

x ∈ Be ⇐⇒ x = sup
n∈N
{x ∧ ne}

Remark 1.26. It is interesting to contrast Ie with Be. Suppose x ∈

X+. On the one hand, by Lemma 1.24, x ∈ Ie iff there exists some

n ∈ N such that x ≤ ne; i.e., x is eventually dominated by a multiple

of e. Said differently, x ∈ Ie iff there exists some n0 ∈ N such that

x = x∧ ne for all n ≥ n0. On the other hand, (x∧ ne)n∈N is a positive

increasing net in Be, so x ∈ Be iff x ∧ ne ↑ x.

The following is a standard fact from the theory of vector lattices.

For a proof, see [AB06, Theorem 1.20].



12

Theorem 1.27 (The Riesz Decomposition Property). Let x1, ..., xn

and y1, ..., ym be positive vectors in a vector lattice X. If

n∑
i=1

xi =
m∑
j=1

yj

then there is a finite set {zij : i = 1, ..., n; j = 1, ...,m} of positive

vectors such that

xi =
m∑
j=1

zij

for each i = 1, ..., n and

yj =
n∑
i=1

zij

for each j = 1, ...,m.

Lemma 1.28. Let |x| = u + v for some vector x and some positive

vectors u and v in a vector lattice. Then there exist y and z such that

x = y + z, |y| = u, and |z| = v.

Proof. Applying Theorem 1.27 to the equality x+ + x− = u + v, we

find four positive vectors vectors a, b, c, and d such that u = a + b,

v = c + d, x+ = a + c, and x− = b + d. Put y = a − b and z = c − d.

Then y+ z = x+−x− = x. It follows from 0 ≤ a ≤ x+ and 0 ≤ b ≤ x−

that a ⊥ b and, therefore, |y| = |a − b| = a + b = u. Similarly, c ⊥ d,

and, therefore, |z| = v. �

The following concepts are useful for studying the structure of vector

lattices.

Definition 1.29. A vector e ∈ X+ is called a

(i) weak unit if for every x ∈ X, x ⊥ e implies x = 0;



13

(ii) strong unit if for every x ∈ X, there is a λ ∈ R+ such that

|x| ≤ λe.

In Remark 1.26 we highlighted a similarity between Ie and Be for

an arbitrary e ∈ X+. We can now deepen this connection through the

following simple facts.

Proposition 1.30. e ∈ X+ is a strong unit iff Ie = X. If X is

Archimedean, then e is a weak unit iff Be = X.

Remark 1.31. The condition that X is Archimedean is not a very

restrictive one. Indeed, any vector lattice with a compatible norm

structure is an Archimedean vector lattice. In particular, every Ba-

nach lattice is Archimedean; for clarification of these definitions, see

Section 1.3 below.

We now introduce a concept of convergence in vector lattices.

Definition 1.32. A net (xα)α∈A in a vector lattice X is said to be

order convergent to x ∈ X if

(i) there is a net (zβ)β∈B in X such that zβ ↓ 0, and

(ii) for every β ∈ B, there exists α0 ∈ A such that |xα − x| ≤ zβ

whenever α ≥ α0.

For short, we will denote this convergence by xα
o−→ x and write that

xα is o-convergent to x.

Definition 1.32 is quite abstract. It is best to think of order conver-

gence as bounded a.e. convergence in Lp(µ), as the following example

demonstrates.
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Example 1.33. A sequence (fn) in Lp(µ) converges in order to f ∈

Lp(µ) if and only if (fn) is order bounded and fn
a.e.−−→ f .

The next fact can often be used to simplify arguments involving order

convergence.

Lemma 1.34. If (xα) is a net in a vector lattice X such that xα ↑ x,

then xα
o−→ x. The same is true if we replace ↑ with ↓, or replace nets

with sequences. In particular, a band is an ideal that is closed with

respect to order convergence.

A function on a vector lattice is said to be order continuous if

f(xα)
o−→ f(x) whenever xα

o−→ x in X.

Proposition 1.35. The lattice operations are order continuous.

1.3. Banach Lattices.

We are now ready to introduce the formal definition of a Banach

lattice. A normed lattice is a vector lattice with a norm that satisfies

the following conditions:

(i) x ≤ y implies ‖x‖ ≤ ‖y‖ for every x, y ∈ X+;

(ii)
∥∥|x|∥∥ = ‖x‖ for every x ∈ X.

A norm that satisfies these criteria is called a lattice norm . If,

in addition to being a normed lattice, X is complete with respect to

its lattice norm, then we call it a Banach lattice . Unless stated

otherwise, we will always assume that X is a Banach lattice. Since X

is also a Banach space, we may discuss norm-convergence in X; for a
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net (xα) and x ∈ X, we write xα → x when ‖xα − x‖ → 0. We may

also consider the norm dual of X, X∗. The next results show that the

lattice operations are compatible with taking limits.

Proposition 1.36. The lattice operations on X are continuous.

Proof. Suppose xα → x in X. Then

∥∥|xα| − |x|∥∥ ≤ ∥∥|xα − x|∥∥ = ‖xα − x‖ → 0.

Thus, |xα| → |x|; that is, the modulus operation is continuous. The

desired result is now an immediate consequence of Lemma 1.21. �

The order structure on X interacts with limits in the following way.

Corollary 1.37. If (xα), (yα) are nets in X such that xα → x, yα → y

and xα ≤ yα for every α, then x ≤ y.

Proof. Our goal is to show that y − x ∈ X+. Since xα ≤ yα, we have

zα = yα − xα ∈ X+ for every α. As zα → y − x, it suffices to show

that X+ is norm closed. To this end, suppose wβ → w for any net

(wβ) in X+ and some w ∈ X. By Proposition 1.36, wβ = w+
β → w+.

As the norm topology is Hausdorff, the limit is unique and we obtain

w = w+ ∈ X+. �

Here are some important examples of Banach lattices.

Example 1.38. R with the usual order and absolute value is a Banach

lattice.
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Example 1.39. The following sequence spaces are all sublattices of

RN under the pointwise order given in Example 1.10. In addition, they

are all Banach lattices with their given norms.

• `∞, the space of all bounded sequences, with norm ‖x‖∞ =

supn|xn| for x = (xn)n∈N ∈ `∞;

• c, the space of all convergent sequences, with ‖·‖∞;

• c0, the space of all sequences converging to zero, with ‖·‖∞;

and

• `p, the space of all p-summable sequences, where 1 ≤ p <

∞ and the norm is given by ‖x‖p = (
∑∞

n=1|xn|p)
1
p for x =

(xn)n∈N ∈ `p.

Example 1.40. In Example 1.12 we introduced a lattice structure on

C(K) for a compact Hausdorff space K. In fact, it is a Banach lattice.

As C(K) with the sup-norm ‖f‖ = supx∈K{|f(x)|} is a Banach space

and a vector lattice under pointwise ordering of functions, it remains

to show that the sup-norm is a lattice norm. Indeed, suppose f ≤ g in

C(K). Then |f(x)| ≤ |g(x)| for every x ∈ K. It follows that ‖f‖ ≤ ‖g‖.

Also,
∥∥|f |∥∥ = supx∈K{|f |(x)} = supx∈K{|f(x)|} = ‖f‖.

Example 1.41. If X is a locally compact Hausdorff space, then we

denote by C0(X) the set of all continuous R-valued functions on X

that vanish at infinity; i.e. it is the set of all continuous functions

f : X → R such that for every ε > 0 there is a compact subset K of

X with f(x) < ε whenever x ∈ X \ K. With the sup-norm from the

previous example, C0(X) is a Banach lattice.
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Example 1.42. For a measure space (Ω,Σ, µ), recall that a function

f ∈ L0(µ) is said to be essentially bounded if there exists a positive

real number M such that µ({ω : |f(ω)| > M}) = 0. Taking the

infimum over all such M defines a norm on all essentially bounded

functions; we denote this space by L∞(µ) where ‖f‖∞ = infM∈R+

{
M :

µ({ω : |f(ω)| > M}) = 0
}

. It is a basic fact from functional analysis

that L∞(µ) is a Banach space. Moreover, it is a Banach lattice under

the order introduced in Example 1.13.

Example 1.43. Let (Ω,Σ, µ) be a measure space. For 1 ≤ p <∞, we

have mentioned that the space Lp(µ) is a vector lattice under the point-

wise µ-a.e. order. Recall that two functions f, g ∈ Lp(µ) that agree µ-

a.e. are identified with each other. In this case, ‖f‖p = (
∫

Ω
|f(ω)|pdµ)

1
p

is a lattice norm and Lp(µ) is a Banach lattice.

Given that X has the structure of both a vector lattice and a Banach

space, it is natural to ask about the relation between order and norm

convergence in X. Unfortunately, these two convergences may not be

directly related in general. If xα
o−→ x implies xα → x for any net (xα)

and x ∈ X, then we say that X is order continuous. If this property

holds for sequences instead of nets, then we say that X is σ-order

continuous . Clearly, order continuity implies σ-order continuity.

Example 1.44. Lp(µ) for 1 ≤ p <∞ is order continuous.

Example 1.45. C([0, 1]) is not even σ-order continuous.
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The following is a standard result that is useful for extracting order

convergent sequences from norm convergent ones; see [AA02, Exer-

cise 13]

Proposition 1.46. Every norm convergent sequence in a Banach lat-

tice has a subsequence that converges in order to the same limit.

1.4. Representations of Banach Lattices.

In this section we give a more rigorous discussion on how one may

view Banach lattices as spaces of functions. We begin with a few defi-

nitions.

Let T be a linear operator between two Banach lattices T : X →

Y . T is said to be positive if T (X+) ⊂ Y+. We call T a lattice

homomorphism if T (x ∧ y) = Tx ∧ Ty for all x, y ∈ X.

Remark 1.47. In the definition above, we made no assumptions about

the continuity of T . In fact, positive operators between Banach lattices

are continuous; see, for example, [AB06, Theorem 4.3]. If T is a lattice

homomorphism, then T preserves all lattice operations via Lemma 1.21.

In particular, if x ∈ X+ then Tx = T |x| = |Tx| ≥ 0; that is, T is

positive and, therefore, continuous.

If T is an injective lattice homomorphism, then we call T a lattice

isomorphism . Notice that we do not require T to be surjective. If

there is a surjective lattice isomorphism between X and Y , then we say

that X and Y are lattice isomorphic. Similarly, a lattice isomorphism
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T is called a lattice isometry if ‖Tx‖ = ‖x‖ for every x ∈ X, and X

is lattice isometric to Y if there is a lattice isometry from X onto Y .

If e ∈ X+, then one can consider Ie = {x : |x| ≤ λe for some λ ∈

[0,∞)} as in Lemma 1.24. We can define a lattice norm on Ie via

‖x‖e = inf{λ ≥ 0 : |x| ≤ λe}

For a Banach lattice, (Ie, ‖·‖e) is complete for every choice of e ∈

X+. In addition, if e is a strong unit, then Ie = X with ‖·‖e is a

Banach lattice. Since any two norms turning X into a Banach lattice

are equivalent, ‖·‖e is equivalent to the original norm on X. This leads

to the following result. For a proof, see [LT79, Chapter 1b].

Theorem 1.48. For every e ∈ X+ (Ie, ‖·‖e) is lattice isometric to

C(K) for some compact Hausdorff space K. Moreover, through this

correspondence we may identify e ∈ Ie with the constant function 1 in

C(K); i.e. 1(x) = 1 for every x ∈ K.

In particular, if e is a strong unit in X, then Theorem 1.48 says that

X is lattice isomorphic to a C(K) space. Therefore, from the point

of view of the lattice structure, Banach lattices with strong units are

C(K) spaces.

In this thesis, we will be interested in studying the relationships be-

tween different convergences in Banach lattices. Since we will often deal

with order and norm convergence, it is natural to restrict our atten-

tion to order continuous Banach lattices. However, in Example 1.45 we

showed that C(K) spaces are not necessarily order continuous; hence,

C(K) spaces may not be sufficient for the purposes of representing
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order continuous spaces. In light of this, it will be useful to have a

representation of a Banach lattice on a space that is always order con-

tinuous. We can do this with the following construction.

A strictly positive functional is an element h ∈ X∗ such that

h(x) > 0 whenever x > 0. This concept is useful because it allows us

to define the following norm. If X admits a strictly positive functional,

h, define

‖x‖h = h(|x|)

It is easy to verify that (X, ‖·‖h) is a normed lattice, but it need not

be complete with respect to ‖·‖h. Any norm satisfying

(1) ‖x+ y‖ = ‖x‖+ ‖y‖ whenever x ⊥ y

is called an AL-norm and a Banach lattice with a norm satisfying

(1) is called an AL-space . It is straightforward to check that ‖·‖h

satisfies (1); hence, if X is a Banach lattice that admits a strictly

positive functional, we can apply the above construction to obtain an

AL-norm on X. It follows that the completion of X with respect to

‖·‖h, X̃, is an AL-space. At this point, we draw on the following

powerful result due to [Kak41].

Theorem 1.49 (Kakutani’s AL-representation Theorem). Every AL-

space is lattice isometric to L1(µ) for some measure µ.

Since X̃ can be identified with an L1-space via a lattice isome-

try, we will often write X̃ = L1(µ) and say that L1(µ) is an AL-

representation of X.
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Remark 1.50. In the AL-representation of X, we will view X as a

sublattice of L1(µ). To justify this, let V : X̃ → L1(µ) be a lattice

isometry and let ι : X → X̃ be the inclusion map. If we let T = V ◦ ι,

then T : X → L1(µ) is a lattice isomorphism; hence, the range of T is

a sublattice of L1(µ). Now X is lattice isometric to T (X).

Theorem 1.51. Let X be an order continuous Banach lattice with a

weak unit, e. Then X is a dense ideal in L1(µ) for a finite measure µ.

Moreover, e ∈ X can be identified with 1 ∈ L1(µ) and the inclusion of

X into L1(µ) is continuous.

Remark 1.52. The proof of this result is a direct consequence of The-

orem 1.49. We point out a few subtleties. The conditions that X is

order continuous and has a weak unit guarantee that there is an order

continuous strictly positive functional on X; see, e.g. [LT79, Proposi-

tion 1.b.15]. This leads to the fact that X is an ideal in L1(µ). The

fact that there is a weak unit in X allows one to choose the measure in

Theorem 1.49 to be finite. Finally, the continuity of the inclusion of X

into L1(µ) follows from ‖x‖L1(µ) = ‖x‖h = h(|x|) ≤ ‖h‖‖x‖ for some

h ∈ X∗ that is strictly positive.

1.5. Unbounded Order Convergence.

The variety of structures on Banach lattices make them host to a

number of interesting convergences. In addition, one can study how

these convergences are related amongst each other. For example, in

Banach lattices one may study order convergence and how it relates
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with the norm convergence. Of course, these convergences need not be

directly related in general, but there is a rich theory that follows from

the cases when they are; for further reading in this area, see [AB06,

Chapter 4.1] on the theory of order continuous Banach lattices. Still,

even in vector lattices, the order convergence is lacking some desirable

properties. For instance, if Y is a sublattice of a vector lattice X, then a

net (yα) in Y which converges in order to some y ∈ Y need not converge

in order in X; this is in sharp contrast with the behavior of norm

convergence in subspaces. Of particular interest to this thesis, [GTX]

show that we can resolve this issue if we replace order convergence with

uo-convergence and use regular sublattices.

Definition 1.53. A sublattice Y of a vector lattice X is called regular

if xα ↓ 0 in Y implies xα ↓ 0 in X. In particular, every ideal in a vector

lattice is a regular sublattice.

Definition 1.54. A net (xα) in a vector lattice X is said to be un-

bounded order convergent to x ∈ X if |xα − x| ∧ u
o−→ 0 for every

u ∈ X+; we denote this convergence by xα
uo−→ x and say xα uo-

converges to x.

Theorem 1.55 (GTX, Theorem 3.2 ). Let Y be a sublattice of a vector

lattice X. The following are equivalent:

(i) Y is regular;

(ii) For any net (yα) in Y , yα
uo−→ 0 in Y implies yα

uo−→ 0 in X;

(iii) For any net (yα) in Y , yα
uo−→ 0 in Y if and only if yα

uo−→ 0 in

X.



23

Uo-convergence first appeared in [Nak48] and was formally intro-

duced by [Wic77]. Since this time, there have been several theoretical

and practical applications of uo-convergence; see, for example, [Gao14]

and [GX]. For a detailed account of many interesting properties of

uo-convergence, we refer the reader to [GX14], [Gao14] and [GTX].

In particular, it is straightforward to verify that this is a linear con-

vergence; hence it suffices to study uo-convergence of nets to 0. One

property that will be particularly useful in this thesis is the following.

Lemma 1.56. [GTX, Corollary 3.5] Let X be a vector lattice with a

weak unit, e. Then for a net (xα) in X, xα
uo−→ 0 in X if and only if

|xα| ∧ e
o−→ 0

Thus, if a weak unit exists, it suffices to check the uo-convergence at

a single point.

It is of theoretical interest to note that one may view uo-convergence

in Banach lattices as a generalization of almost everywhere convergence

in Lp-spaces.

Theorem 1.57. [GTX] Let X be an order continuous Banach lattice

with a weak unit, and let L1(µ) be an AL-representation of X. Then

xn
uo−→ 0 in X if and only if xn

a.e.−−→ 0 in L1(µ).
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2. Unbounded Norm Convergence

In this thesis, we will use uo-convergence as a tool to study another

convergence in Banach lattices. A net (xα) in X is unbounded norm

convergent to x ∈ X if |xα − x| ∧ u→ 0 for all u ∈ X+; in this case,

we write xα
un−→ x and say xα un-converges to x. This concept was first

introduced in [Tro04], where it was shown that un-convergence in c0 is

the same as coordinate-wise convergence. Additionally, it was shown

in [Tro04] that un-convergence agrees with convergence in measure in

Lp(µ) for a finite measure µ and 1 ≤ p <∞. Given the relationship be-

tween a.e. convergence and convergence in measure in Lp-spaces, it is

natural to ask about how uo- and un-convergence are related in general.

As their definitions only differ by the use of order and norm conver-

gence, the appropriate setting for this question is in order continuous

spaces. This leads to the following characterization of un-convergence

in terms of uo-convergence for order continuous Banach lattices: a se-

quence (xn) un-converges to x if and only if each subsequence has a

further subsequence that uo-converges to the same limit. We will also

demonstrate that un-convergence can be viewed as a generalization of

convergence in measure to Banach lattices.

2.1. Basic Properties.

A version of the results presented in this chapter can be found in

[DOT].

Unless stated otherwise, we will assume that X is a Banach lattice

and all nets and vectors lie in X. The first result highlights some basic

properties of un-convergence.
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Lemma 2.1.

(i) xα
un−→ x iff (xα − x)

un−→ 0;

(ii) If xα
un−→ x, then |xα|

un−→ |x|;

(iii) If xα
un−→ x and yα

un−→ y, then axα + byα
un−→ ax + by for any

a, b ∈ R;

(iv) If xα
un−→ x and xα

un−→ y, then x = y;

(v) If xn
un−→ x, then xnk

un−→ x for any subsequence (xnk
) of (xn).

Proof. (i) Suppose xα
un−→ x. Then |(xα−x)−0| ∧u = |xα−x| ∧u→ 0

for each u ∈ X+, so (xα−x)
un−→ 0. The proof of the converse is similar.

(ii) As
∣∣|xα| − |x|∣∣ ≤ |xα − x|, it follows that

∣∣|xα| − |x|∣∣ ∧ u ≤ |xα − x| ∧ u→ 0

for every u ∈ X+; that is, |xα|
un−→ |x|.

(iii) Suppose xα
un−→ x and yα

un−→ y. Applying the triangle inequality,

we obtain

|(xα+yα)−(x+y)|∧u ≤ (|xα−x|+|yα−y|)∧u ≤ |xα−x|∧u+|yα−y|∧u

for each α and u ∈ X+. It follows that xα + yα
un−→ x+ y.

Next, fix a ∈ R and let u ∈ X+. Observe that |axα − ax| ∧ u =

(|a| · |xα − x|) ∧ u. If |a| ≤ 1, then

|a| · |xα − x| ∧ u ≤ |xα − x| ∧ u→ 0.

If |a| ≥ 1, then u ≤ |a| · u and

|a| · |xα − x| ∧ u ≤ |a| · |xα − x| ∧ |a| · u = |a| · (|xα − x| ∧ u)→ 0.
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In either case, axα
un−→ ax.

(iv) Observe that |x − y| ≤ |x − xα| + |y − xα| for every α. Let

u = |x− y| and notice that

|x− y| = |x− y| ∧ u ≤ |x− xα| ∧ u+ |y − xα| ∧ u→ 0.

(v) Suppose xn
un−→ x and let (xnk

) be any subsequence of (xn). For

any ε > 0 and u ∈ X+ there is a n0 ∈ N such that ‖(xn − x) ∧ u‖ < ε

whenever n ≥ n0. Then for k ≥ nk ≥ n0 we must have ‖(xnk
−x)∧u‖ <

ε. As ε was arbitrary, we have xnk

un−→ x. �

Remark 2.2. Recall that each of the lattice operations can be ex-

pressed via each other. In light of this, Lemma 2.1 (ii) shows that

un-convergence preserves all the lattice operations.

Remark 2.3. Combining Lemma 2.1 (i) and (ii) we obtain xα
un−→ 0 if

and only if |xα−x|
un−→ 0. This often allows us to reduce un-convergence

of nets to un-convergence of positive nets to zero.

The next result justifies the name unbounded norm convergence.

Proposition 2.4. If xα → 0 then xα
un−→ 0. If (xα) is order bounded,

then the converse is also true.

Proof. Without loss of generality, suppose xα ≥ 0 for all α. Then

xα ∧ u ≤ xα → 0
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for any u ∈ X+. Conversely, if xα
un−→ 0 and there is some b ∈ X+ such

that xα ≤ b for each α, then

xα = xα ∧ b→ 0.

�

We will show that the condition that (xα) is order bounded in Propo-

sition 2.4 can be weakened. First, we need the following relation be-

tween uo- and un-convergence.

Proposition 2.5. In an order continuous Banach lattice, uo-convergence

implies un-convergence.

Proof. In order continuous spaces, order convergence implies norm con-

vergence. Thus, if xα
uo−→ 0 we must have |xα|∧u

o−→ 0 for each u ∈ X+.

Order continuity gives |xα| ∧ u→ 0 for each u ∈ X+. �

Example 2.6. Let (en) denote the standard unit sequence in `∞; that

is, for each n ∈ N let en = (0, 0, ..., 0, 0, 1, 0, 0, ...) be the sequence with

a 1 in the nth coordinate and 0 elsewhere. Note that (0, 0, 0, ...) ≤

en ≤ (1, 1, 1, ...) for each n; hence, (en) is order bounded. However,

‖en‖ = 1 for each n, so en 6→ 0 in `∞. It follows from Proposition 2.4

that en 6
un−→ 0 in `∞. Since it is known that `∞ is not order continuous

and en
uo−→ 0 in `∞ (see [Gao14, Lemma 1.1]), the order continuity

assumption in Proposition 2.5 cannot be dropped.

Example 2.7. Example 2.6 also shows that Theorem 1.55 fails for

un-convergence. Indeed, (en) converges coordinate-wise to (0, 0, 0, ...);

hence, by [Tro04, Example 21], en
un−→ 0 in c0, but not in `∞.
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We now use Proposition 2.5 to weaken the condition that (xα) is

order bounded in Proposition 2.4. A subset A of X is almost order

bounded if for every ε > 0 there exists u ∈ X+ such that A ⊆ [−u, u]+

εBX where BX denotes the unit ball of X.

Lemma 2.8. If xα
un−→ x and (xα) is almost order bounded then xα →

x.

Proof. The proof is identical to [GX14, Lemma 3.7] after applying

Proposition 2.5 to reduce uo-convergence to un-convergence. However,

unlike [GX14], we do not require the space to be order continuous. �

We also have the following estimate on the limit of a un-convergent

net.

Lemma 2.9. If xα
un−→ x then |xα| ∧ |x| → |x| and ‖x‖ ≤ lim infα‖xα‖.

Proof. Again, the proof follows immediately from [GX14, Lemma 3.6]

and Proposition 2.5. �

Our next goal is to reduce the task of checking un-convergence at

every positive vector to a single ‘special’ vector as in Lemma 1.56. A

vector e ∈ X+ is called a quasi-interior point if x ∧ ne → x for

every x ∈ X+. This leads to the following result.

Lemma 2.10. Let X be a Banach lattice with a quasi-interior point e.

Then xα
un−→ 0 if and only if |xα| ∧ e→ 0.
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Proof. The forward implication is immediate. For the reverse implica-

tion, let u ∈ X+ be arbitrary and fix ε > 0. Note that

|xα| ∧ u = |xα| ∧ (u− u ∧me+ u ∧me)

for every α and each m ∈ N. It follows that

|xα|∧u ≤ |xα|∧(u−u∧me)+|xα|∧(u∧me) ≤ (u−u∧me)+m
(
|xα|∧e

)
and, therefore,

∥∥|xα| ∧ u∥∥ ≤ ‖u− u ∧me‖+m
∥∥|xα| ∧ e∥∥

for all α and all m ∈ N. Since e is quasi-interior, we can find m such

that ‖u− u ∧me‖ < ε. Furthermore, it follows from |xα| ∧ e→ 0 that

there exists α0 such that
∥∥|xα| ∧ e∥∥ < ε

m
whenever α ≥ α0. It follows

that
∥∥|xα| ∧ u∥∥ < ε+m ε

m
= 2ε. Therefore, |xα| ∧ u→ 0. �

In order continuous spaces, we can obtain a version of Lemma 1.56

for un-convergence.

Corollary 2.11. Let X be an order continuous Banach lattice with a

weak unit e. Then xα
un−→ 0 if and only if |xα| ∧ e→ 0.

Proof. If X is order continuous, then e is a weak unit if and only if e

is a quasi-interior point. �

In [GTX, Corollary 3.6], it was shown that every disjoint sequence is

uo-null. Example 2.6 shows that this fact is not true for un-convergence.

The following result says that un-null sequences are “almost” disjoint.
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Theorem 2.12. Let (xα) be a net in X such that xα
un−→ 0. Then there

exists an increasing sequence of indices (αk) and a disjoint sequence

(dk) such that xαk
− dk → 0.

Proof. Assume first that xα ≥ 0 for every α. Pick any α1. Suppose

that α1, . . . , αk−1 have been constructed. Note that xα ∧ xαi
→ 0 for

every i = 1, . . . , k−1. Choose αk > αk−1 so that
∥∥xαk

∧xαi

∥∥ ≤ 1
2k+i for

every i = 1, . . . , k− 1. This produces an increasing sequence of indices

(αk) such that ‖zik‖ ≤ 1
2k+i where zik = xαi

∧ xαk
, 1 ≤ i < k.

For every k, put vk =
∑k−1

i=1 zik +
∑∞

j=k+1 zkj. Clearly, vk is defined

and ‖vk‖ < 1
2k

. Put dk = (xαk
− vk)

+. It is easy to see that 0 ≤

xαk
− dk ≤ vk, so that ‖xαk

− dk‖ → 0 as k → ∞. It is left to show

that the sequence (dk) is disjoint. Let k < m. Then

dk = (xαk
− vk)+ ≤ (xαk

− zkm)+ = xαk
− xαk

∧ xαm , and

dm = (xαm − vm)+ ≤ (xαm − zkm)+ = xαm − xαk
∧ xαm .

It follows that dk ⊥ dm.

For the general case, we apply the first part of the proof to the

net
(
|xα|

)
and produce an increasing sequence of indices (αk) and two

positive sequences (wk) and (hk) such that |xαk
| = wk + hk, (wk) is

disjoint, and hk → 0. By Lemma 1.28, we can find sequences (dk) and

(gk) in X with |dk| = wk, |gk| = hk and xαk
= dk + gk. It follows that

(dk) is a disjoint sequence and gk → 0. Thus, xαk
− dk → 0. �
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It is well-known that a topology induced by a norm is sequential in

nature; i.e., the norm topology can be described by prescribing con-

vergent sequences instead of convergent nets. For order continuous

Banach lattices, un-convergence is also sequential in nature; that is,

one can always work with un-convergent sequences instead of nets.

Corollary 2.13. Let (xα) be a net in an order continuous Banach

lattice X such that xα
un−→ 0. Then there exists an increasing sequence

of indices (αk) such that xαk

uo−→ 0 and xαk

un−→ 0.

Proof. Let (αk) and (dk) be as in Theorem 2.12. Since (dk) is disjoint,

we have dk
uo−→ 0 and, therefore, dk

un−→ 0. It now follows from xαk
−dk →

0 that xαk
− dk

un−→ 0 and, therefore, xαk

un−→ 0. Furthermore, since

xαk
− dk → 0, passing to a further subsequence, we may assume that

xαk
− dk

o−→ 0 and, therefore, xαk
− dk

uo−→ 0. This yields xαk

uo−→ 0. �

2.2. Generalized Convergence in Measure.

In this section, we characterize un-convergence in terms of uo-convergence.

As a consequence, we obtain a generalization of convergence in measure

in Banach lattices.

Proposition 2.14. If xn
un−→ 0 then there is a subsequence (xnk

) of

(xn) such that xnk

uo−→ 0.

Proof. Define e :=
∑∞

n=1
|xn|

2n‖xn‖ . Let Be be the band generated by e

in X. It follows from xn
un−→ 0 that |xn| ∧ e → 0 in X. As Be is

norm closed, |xn| ∧ e → 0 in Be. By Proposition 1.46, there exists a
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subsequence (xnk
) of (xn) such that |xnk

| ∧ e o−→ 0 in Be. Since e is a

weak unit in Be, we have xnk

uo−→ 0 in Be. Finally, as Be is an ideal in

X, it follows from Theorem 1.55 that xnk

uo−→ 0 in X. �

It was observed in [Tro04, Example 23] that for sequences in Lp(µ),

where µ is a finite measure, un-convergence agrees with convergence

in measure. We now provide an alternative proof of this fact based on

Proposition 2.14.

Corollary 2.15. [Tro04] Let (fn) be a sequence in Lp(µ) where 1 ≤

p <∞ and µ is a finite measure. Then fn
un−→ 0 if and only if fn

µ−→ 0.

Proof. Without loss of generality, fn ≥ 0 for all n. Suppose fn
µ−→ 0.

It is easy to see that fn ∧ 1 → 0 in the norm of Lp(µ). Since Lp(µ) is

order continuous and 1 is a weak unit, it follows from Corollary 2.11

that fn
un−→ 0.

Conversely, suppose that fn
un−→ 0. Then every subsequence (fnk

)

is still un-null and, therefore, has a further subsequence (fnki
) such

that fnki

uo−→ 0 by Proposition 2.14. Since uo-convergence agrees with

a.e. convergence in Lp(µ), we have fnki

a.e.−−→ 0. In summary, (fn) is

a sequence in Lp(µ) with the property that every subsequence has a

further subsequence that converges a.e. to the same limit. Since µ is

finite, this yields fn
µ−→ 0. �

Remark 2.16. In the preceding proof, we used the fact that if (Ω,Σ, µ)

is measure space with a finite measure and (fn) is a sequence of Σ-

measurable functions on Ω, then fn
µ−→ 0 iff every subsequence (fnk

)
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has a further subsequence (fnki
) such that fnki

a.e.−−→ 0; see, for exam-

ple, [Cohn13, Exercise 6, p. 84]. It is of interest to note that Propo-

sition 2.14 may be viewed as an extension of the forward direction of

this result to general Banach lattices. Our next result shows that the

converse is true in order continuous Banach lattices.

Theorem 2.17. A sequence in an order continuous Banach lattice X

is un-null if and only if every subsequence has a further subsequence

which is uo-null.

Proof. The forward implication is Proposition 2.14. To show the con-

verse, assume that xn 6
un−→ 0. Then there exist δ > 0, u ∈ X+, and a

subsequence (xnk
) such that

∥∥|xnk
| ∧ u

∥∥ > δ for all k. By assumption,

there is a subsequence (xnki
) of (xnk

) such that xnki

uo−→ 0; therefore,

xnki

un−→ 0 by Proposition 2.5. This yields |xnki
| ∧ u → 0, which is a

contradiction. �

Remark 2.18. Again, Example 2.6 shows that the order continuity

assumption in Theorem 2.17 cannot be dropped.

These techniques allow us to generalize convergence in measure to

the setting of order continuous Banach lattices with a weak unit.

Theorem 2.19. Let X be an order continuous Banach lattice with

a weak unit, e, and let L1(µ) be an AL-representation of X. For a

sequence (xn) in X, we have xn
un−→ 0 in X if and only if xn

µ−→ 0 in

L1(µ).
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Proof. Recall that, by Theorem 1.51, these conditions allow us to rep-

resent X as a dense ideal in L1(µ) for a finite measure µ, where e is

identified with 1, and T , the inclusion of X into L1(µ), is a contin-

uous lattice isomorphism. We also view X as sitting inside L1(µ) by

Remark 1.50.

Without loss of generality, we take xn ≥ 0 for all n ∈ N. For the

forward direction, suppose xn
un−→ 0 in X. Since we view X as being

contained inside L1(µ) and e ∈ X is identified with 1, Corollary 2.11

and the continuity of T gives

xn ∧ 1→ 0.

in L1(µ). As 1 is a weak unit in L1(µ) when µ is finite, Corollary 2.11

yields that xn
un−→ 0 in L1(µ). By Corollary 2.15, this is equivalent to

xn
µ−→ 0 in L1(µ).

Conversely, suppose (xn) is a sequence in X whose representation

in L1(µ) satisfies xn
µ−→ 0. Let (xnk

) be any subsequence of (xn).

Then there exists a further subsequence (xnki
) such that xnki

a.e.−−→ 0;

so xnki

uo−→ 0 in L1(µ). Since we view X as an ideal in L1(µ), Theo-

rem 1.55 gives us that xnki

uo−→ 0 in X. Now apply Theorem 2.17 to

obtain xn
un−→ 0 in X. �

2.3. Un-Topology.

Recall that a topology on a set X is determined by its open subsets.

Equivalently, one can describe a topology by prescribing convergent

nets or by describing a system of neighborhoods.
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It is known that a.e. convergence is not given by a topology [Ord66];

i.e. there is no topology for which the associated convergence is a.e.

convergence. In particular, this shows that uo-convergence is gener-

ally not given by a topology. We show that un-convergence is always

given by a topology and define its neighborhoods explicitly. In light of

Lemma 2.1 and Remark 2.3, we expect that this will be a linear topol-

ogy; hence, we begin by describing a base of neighborhoods of zero.

Given an ε > 0 and a non-zero u ∈ X+, we set

Vu,ε =
{
x ∈ X :

∥∥|x| ∧ u∥∥ < ε
}
.

Set N0 = {Vu,ε : ε > 0;u ∈ X+ \ {0}}.

Proposition 2.20. The collection N0 is a base of neighborhoods of

zero for a linear topology.

Proof. We apply [KN76, Theorem 5.1].

First, every set in N0 trivially contains zero.

Second, we need to show that the intersection of any two sets in N0

contains another set in N0. Take Vu1,ε1 and Vu2,ε2 in N0. Put ε = ε1∧ε2

and u = u1 ∨ u2. We claim that Vu,ε ⊆ Vu1,ε1 ∩ Vu2,ε2 . Indeed, take any

x ∈ Vu,ε. Then
∥∥|x| ∧ u∥∥ < ε. It follows from |x| ∧ u1 ≤ |x| ∧ u that

∥∥|x| ∧ u1

∥∥ ≤ ∥∥|x| ∧ u∥∥ < ε ≤ ε1,

so that x ∈ Vu1,ε1 . Similarly, x ∈ Vu2,ε2 .

It is easy to see that Vu,ε + Vu,ε ⊆ Vu,2ε. This immediately implies

that for every U in N0 there exists V ∈ N0 such that V + V ⊆ U . It is
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also easy to see that for every U ∈ N0 and every scalar λ with |λ| ≤ 1

we have λU ⊆ U .

Next, we need to show that for every U ∈ N0 and every y ∈ U ,

there exists V ∈ N0 such that y + V ⊆ U . Let y ∈ Vu,ε for some

ε > 0 and a non-zero u ∈ X+. We need to find δ > 0 and a non-

zero v ∈ X+ such that y + Vv,δ ⊆ Vu,ε. Put v := u. It follows from

y ∈ Vu,ε that
∥∥|y| ∧ u∥∥ < ε; take δ := ε −

∥∥|y| ∧ u∥∥. We claim that

y + Vv,δ ⊆ Vu,ε. Let x ∈ Vv,δ; it suffices show that y + x ∈ Vu,ε. Indeed,

|y + x| ∧ u ≤ |y| ∧ u+ |x| ∧ u, so that

∥∥|y + x| ∧ u
∥∥ ≤ ∥∥|y| ∧ u∥∥+

∥∥|x| ∧ u∥∥ < ∥∥|y| ∧ u∥∥+ δ = ε.

�

Now we can describe all the neighborhoods in this topology: a subset

U of X is a neighborhood of y if y + V ⊆ U for some V ∈ N0.

The next result shows that un-convergence is topological.

Proposition 2.21. Un-convergence in a Banach lattice is the same as

the convergence in the topology whose base neighborhoods of zero are

given by N0.

Proof. If xα
un−→ 0, then for every ε > 0 and u ∈ X+ there is some α0

such that
∥∥|xα| ∧ u∥∥ < ε whenever α � α0. Said differently, for any

Vu,ε ∈ N0, there is an α0 such that xα ∈ Vu,ε whenever α � α0. The

converse follows immediately. �

Thus, the natural convergence in this topology is exactly un-convergence.

Notice that this topology must also be Hausdorff by Lemma 2.1 (iv).
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