
Implementation Security, or a
language-theoretic security analysis of
OpenFlow and what I found there.

ĵ ŉļĹňĽň ńŇĹňĹłŉĹĸ
Ķŏ

JĵňŃł MĹŀŉŐĹŇ
ŉŃ

TļĹ DĹńĵŇŉŁĹłŉ Ńĺ EŀĹķŉŇĽķĵŀ ĵłĸ CŃŁńŊŉĹŇ EłĻĽłĹĹŇĽłĻ

Ľł ńĵŇŉĽĵŀ ĺŊŀĺĽŀŀŁĹłŉ Ńĺ ŉļĹ ŇĹŅŊĽŇĹŁĹłŉň
ĺŃŇ ŉļĹ ĸĹĻŇĹĹ Ńĺ
MĵňŉĹŇ Ńĺ SķĽĹłķĹ
Ľł ŉļĹ ňŊĶľĹķŉ Ńĺ
IłŉĹŇłĹŉŌŃŇĿĽłĻ

UłĽŋĹŇňĽŉŏ Ńĺ AŀĶĹŇŉĵ
EĸŁŃłŉŃł, AŀĶĹŇŉĵ

NŃŋĹŁĶĹŇ Ǌǈǉǋ

© ȖȔȕȗ - JķŊŅń MĻłŋőĻŉ
Aŀŀ ŇĽĻļŉň ŇĹňĹŇŋĹĸ.

ĉesis advisor: Dr. Mike MacGregor Jason Meltzer

Implementation Security, or a language-theoretic security analysis of
OpenFlow and what I found there.

AĶňŉŇĵķŉ

Implementation is the most immediate aspect of security in the construction of real-
world distributed computing systems; designs have Ěaws but vulnerabilities themselves
manifest in implementations. ĉe challenge of securing systems during implementation
is apparent fromobserving the computingworld struggle tomanage vulnerabilities. ĉe
fact is that the fundamental structure of the implementation security problem is still
not well-deėned or even easily discernible, and might never be. In spite of the lack of a
encompassing problem to solve, I will argue thatwe canworkwith the knowledge gained
from failures, using the knowledge to develop heuristic approaches that have practical
value.

In this paper I introduce language-theoretic security (LANGSEC), an approach to
soěware security that supports reasoning about some types of implementation vulnera-
bilities as phenomena emergent from formally UNDECIDABLE language recognition
problems. As a demonstration I apply the LANGSEC approach to the analysis of
OpenFlow, the protocol which underpins the exceedingly popular Soěware-Deėned
Networking model of network virtualization. In the analysis I prove that OpenFlow is
context-sensitive and discuss the grim consequences of this complexity, for OpenFlow
implementation security and for veriėcation schemes in OpenFlow-based networks.

Following from the discussions of implementation security and LANGSEC, I will
conclude this paper by introducing a heuristic device for reasoning about implementa-
tion security relevant design aĨributes, a device which I currently refer to as “the Map”.

iii

Contents

ǉ GŇĵĶ ĵ ŉļŇĹĵĸ ĵłĸ ńŊŀŀ ǉ
ǉ.ǉ Introductions . ǉ
ǉ.Ǌ Report Structure . Ǌ

Ǌ ǉǈ MĽŀĹň HĽĻļ ǌ
Ǌ.ǉ Implementation Security . ǌ
Ǌ.Ǌ LANGSEC . ǎ
Ǌ.ǋ Virtualizing Networks . ǉǈ
Ǌ.ǌ OpenFlow . ǉǋ

ǋ CŃŁńŀĹŎĽŉŏ AłĵŀŏňĽň ǉǐ
ǋ.ǉ Pick a Packet . ǉǐ
ǋ.Ǌ OXM_OF_MAKEMEDINNER . ǉǑ
ǋ.ǋ Pudding . Ǌǉ

ǌ IŁńŀĽķĵŉĽŃłň Ǌǎ
ǌ.ǉ Current Interpreter Implementations ǊǏ
ǌ.Ǌ Fingerprinting . ǊǏ
ǌ.ǋ Grander Aspects . Ǌǐ
ǌ.ǌ Expansive Vulnerability . Ǌǐ
ǌ.Ǎ Network Veriėcation . ǊǑ

Ǎ A Mĵń Ńĺ Wļĵŉ Ľň DĽĺĺĽķŊŀŉ ǋǋ
Ǎ.ǉ ĉe Map and Analogy . ǋǌ
Ǎ.Ǌ OpenFlow on the Map . ǋǍ
Ǎ.ǋ Implementation Mechanism Safety ǋǍ

iv

ǎ FŊŉŊŇĹ WŃŇĿ ĵłĸ ňĽŁĽŀĵŇ ĸĽŋĹŇňĽŃłň ǋǏ
ǎ.ǉ Parsing OpenFlow . ǋǏ
ǎ.Ǌ Hunting OpenFlow Flaws . ǋǐ
ǎ.ǋ Hunting OpenFlow Bugs . ǋǑ
ǎ.ǌ Traditional Security Analysis . ǌǈ
ǎ.Ǎ Tabula Rasa Rasa . ǌǈ
ǎ.ǎ Parsing-aware Design . ǌǉ
ǎ.Ǐ Reasons Why and Other Approaches ǌǊ
ǎ.ǐ Map Exegesis . ǌǋ
ǎ.Ǒ Signs and Portents (of Change) . ǌǌ

Ǐ Iĺ ŏŃŊ ĸŃł’ŉ ňŉŃń ŉļĵŉ ŏŃŊ’ŀŀ ĻŃ ĶŀĽłĸ... ǌǍ
Ǐ.ǉ Final Words . ǌǍ

ǐ AńńĹłĸĽŎ A - GŇĵŁŁĵŇ ǌǏ
ǐ.ǉ ĉe Grammar . ǌǐ
ǐ.Ǌ Slightly more formal notation . Ǎǈ
ǐ.ǋ But there are pictures . Ǎǈ

Ǒ AńńĹłĸĽŎ B - NŃŉĽŃłň Ǎǉ
Ǒ.ǉ OpenFlow Spec Complexity Exploding Ǎǉ
Ǒ.Ǌ Via Negativa . ǍǊ
Ǒ.ǋ On Models . Ǎǋ
Ǒ.ǌ Because API . Ǎǌ
Ǒ.Ǎ Correct Parser . ǍǍ

RĹĺĹŇĹłķĹň ǎǈ

v

Listing of ėgures

Ǌ.Ǌ.ǉ Semantic Communications . Ǒ
Ǌ.ǋ.ǉ Traditional Network . ǉǉ
Ǌ.ǌ.ǉ OpenFlow Switch Architecture . ǉǌ
Ǎ.ǉ.ǉ ĉe Map . ǋǌ
ǐ.ǋ.ǉ OpenFlow Match Parse Tree . Ǎǈ

vi

DĹĸĽķĵŉĹĸ ŉŃ ŉļĹ ŁĹŁŃŇĽĹň Ńĺ ňŃŁĹ ĺĽłĹ ńĹŃńŀĹ ĵłĸ ĵ ŃłķĹ ĻŇĹĵŉ
ŃŇĻĵłĽŐĵŉĽŃł, ňŉĵŇĿ ŇĹŁĽłĸĹŇň Ńĺ ĽŁńĹŇŁĵłĹłķĹ:

• C͐ĸŇĽķ ‘SĽĸ’ BŀĵłķļĹŇ;

• LĹł SĵňňĵŁĵł;

• M. A. PĵĸŀĽńňĿŏ; ĵłĸ,

• TļĹ BŀĵķĿBĹŇŇŏ SĹķŊŇĽŉŏ RĹňĹĵŇķļ GŇŃŊń.

SĹŁńĹŇ ŁĵŀĽŉĽŃňĽ Ľł ńŃŉĹłŉĽĵ

vii

Acknowledgments

TļĽň ŉļĹňĽň ļĵĸ ĵ ŀŃłĻ ĵłĸ ňŃŁĹŌļĵŉ ĸĽĺĺĽķŊŀŉ ĻĹňŉĵŉĽŃł, years of prevari-
cation and stubbornness nearly resulted in it not happening. Now that it is ėnished I
can truly offer my appreciation to those who helped the birthing process; I know I’m
a difficult patient. Chief among those due thanks is Josh Ryder, for his dedication to
thesis-midwifery and patience with my procrastinations. Dr. Patrick Pilarski, for man-
aging to get me out of the house and keeping me socialized. Alexandra, for making tea
and being awesome. Dr. Mike Macgregor, for showing exceptional patience. Last but
not least: my parents and brother, for preĨy much everything else.

viii

Men are terribly in need of suggestion, and this dangerous need for suggestion is one of my
main themes today. My theme is large. I have worked hard but gladly to present it as simply
as I can. I fear I have not fully succeeded, and I must ask for your active cooperation.

But I would also ask you not to believe anything that I suggest! Do not believe a word! I know
that that is asking too much, as I will speak only the truth, as well as I can. But I warn you:
I know nothing, or almost nothing. We all know nothing or almost nothing. I conjecture
that that is a basic fact of life. We know nothing, we can only conjecture: we guess. Our best
knowledge is the wonderful scientiėc knowledge we have built up over Ȗ,șȔȔ years. But the
natural sciences consist precisely of conjectures or hypotheses.

– Sir Karl Popper, from “Epistemology and the Problem of Peace” 1
Grab a thread and pull

ǉ.ǉ IłŉŇŃĸŊķŉĽŃłň

IŁńŀĹŁĹłŉĵŉĽŃł Ľň ŉļĹ ŁŃňŉ ĽŁŁĹĸĽĵŉĹ ĵňńĹķŉ Ńĺ ňĹķŊŇĽŉŏ in the construction
of real-world distributed computing systems. Designs have Ěaws but vulnerabilities
themselves manifest in implementations, where repair oěen has a great cost. ĉe scale
of the challenge presented by implementation is certainly apparent from observing the
computing world struggle to manage vulnerabilities. It is perhaps arguable that the
fundamental structure of the implementation security problem is still not well-deėned
or even easily discernable, and might never be. In spite of the lack of a encompassing
problem to solve, I do think that we can work with the knowledge gained from failures,
and the limited understanding failure provides about what things cannot work, to
develop heuristic approaches to implementation security that have practical value.

In this paper I will look at some of what cannot work, speciėcally the security im-
pact of two UNDECIDABLE problems that emerge within the area of communication
message processing: ĉe ėrst of these problems occurs when aĨempting to recognize
messages for protocols deėned by strong classes of formal languages with an insuffi-
ciently strong parser. If a message cannot be fully recognized then it cannot be effec-
tively validated, and malformed messages cannot be decisively rejected. ĉe effect that
an arbitrary message has on a given implementation becomes indeterminate without ef-

ǉ

fective validation, this indeterminacy establishes a necessary condition for the existence
of many classes of security vulnerability.

ĉe second problem is that validating the computational equivalence of parsers for
ambiguous context-free (and stronger) languages is UNDECIDABLE. If the equiva-
lence of the parsers in protocol endpoints can not be determined then it is possible that a
receiver will not interpret amessage as it was intended by its transmiĨer. Ambiguous in-
terpretation of arbitrary messages results in indeterminate behaviour in the receiver and
this fundamentally undermines the assumed safetyǉ (nee security) properties of the in-
volved components, i.e. bad things can happenǊ.

Together the input recognition and parser equivalence problems form a substancial
basis for LANGSEC, an approach to the security of real-world composed systems based
on computational complexity and formal language theory. ĉe approach was initially
conceived of byLen Sassaman andMeredith L. PaĨerson andhas quickly aĨractedmany
strong contributors from both academia and industry[ǋǎ] [Ǎ]. LANGSEC promises to
be a powerful tool for assisting the security analysis of existing protocol implementa-
tions, as well as in the design of new implementations and new protocols. In this paper
I will be applying LANGSEC concepts in the analysis of a protocol named OpenFlow.

OpenFlow is the protocol which underpins the exceedingly popular Soěware-
Deėned Networking (SDN) approach to network virtualization. OpenFlow based
networking has received spectacular levels of aĨention in many ways: from a massive
real-world implementation at Googleǋ to billion-plus dollar corporate acquisitionsǌ,
and beyond that, the appearance of OpenFlow compatibility as a major feature on
equipment from nearly every traditional networking hardware vendor. As easy as it is
to be cynical about all that hype, the fact remains that OpenFlow has been effective
at enabling a wide variety of novel networking capabilities in the real-world operation
of some truly massive-scale systems. Couple its apparent utility with a relatively open
standard and OpenFlow becomes an arguabley aĨractive approache to programmable
networking and virtualization; and a worthy target for critical analysis.

ǉ.Ǌ RĹńŃŇŉ SŉŇŊķŉŊŇĹ

ĉis paper begins with sections introducing Implementation Security, LANGSEC, and
network virtualization, respectively, that set up context for a language-theoretic analysis
of OpenFlow. In the analysis I will assess the formal language complexity of the Open-
Flow protocol, proving that the protocol is at best context-sensitive. ĉe analysis will
also review aspects of the protocol that indicate it might belong to a stronger class of
formal language.

Ǌ

From the complexity analysis results I will draw implications both for OpenFlow im-
plementations and the use of the protocol in system composition. ĉe implications dis-
cussion will speciėcally address how the complexity of OpenFlow poses a fundamental
obstacle to the effectiveness of currently proposed SDN veriėcation schemes, particu-
larly those that rely on inspection of OpenFlow message traffic.

AĨempting to break from the inevitable darkness of critical analysis and move for-
ward on a more upbeat note, the concluding sections will introduce a visual heuristic
device for reasoning about implementation security and offer a bit of explicitly prescrip-
tive advice directed towards avoiding some of the design Ěaws observed in OpenFlow,
along with other potential avenues for future work.

NŃŉĹň

ǉIn the ėeld of distributed systems there is formal terminology for qualifying system properties: safety
and liveness. For the purpose ofmaintaining at least someminor pretence of scholarly semantic consistency
the following are my working deėnitions of the terms: a safety property is one that asserts something bad
does not happen; a liveness property is one that asserts something good will eventually happen. Security
properties are frequently stated in terms of safety and it is in this sense that the term safety is used. I’ve
also brought in the term safety because with the second problem we are essentially discussing distributed
systems.

Ǌĉere is frequently a point in discussions about obscure, complex, or otherwise difficult to under-
stand topics where someone argues that the likelihood of some bad things happening is really really small
and therefore said bad things should not be a maĨer of concern. Quibble all we might about those small
probabilities, they can’t be accurately estimated and so likelihood is uĨerly irrelevant to making reasoned
decisions about those rarely occurring bad things. It is the consequences of the bad things, and the relative
costs of dealing with the consequences, that maĨer. ĉe way I usually paraphrase the main thrust of this
line of reasoning is with the statement, “the only way somethingwon’t happen is if it can’t happen”.

ǋGoogle’s private “Bǌ” global wide-area network is OpenFlow based. Bǌ’s existence was revealed by
Urs Hölzle at Open Networking Summit ǊǈǉǊ and the network was recently described in detail at ACM
SIGCOMM Ǌǈǉǋ [ǉǑ]

ǌVMware acquired the SDN startup Nicira in July ǊǈǉǊ for USƮǉ.Ǌǎ Billion. ĉe acquisition can be
recognized as a landmark of sorts for SDN, if anything the gargantuan amount of money conveys the level
of *ahem* excitement surrounding the technology [ǌǊ].

ǋ

“You remember when I said how I was gonna explain about life, buddy? Well, the thing about
life is, it gets weird. People are always talking ya about truth. Everybody always knows what
the truth is, like it was toilet paper or somethin’, and they got a supply in the closet. But what
you learn, as you get older, is there ain’t no truth. All there is is bullshit, pardon my vulgarity
here. Layers of it. One layer of bullshit on top of another. And what you do in life when you
get older is, you pick the layer of bullshit that you prefer and that’s your bullshit, so to speak.”

– Dustin Hoffman as Bernie LaPlante in “Hero”

2
ǉǈMiles High

Ǌ.ǉ IŁńŀĹŁĹłŉĵŉĽŃł SĹķŊŇĽŉŏ

Ǌ.ǉ.ǉ EĺĺĽłĻ DĽĺĺĽķŊŀŉĽĹň

IŁńŀĹŁĹłŉĵŉĽŃłSĹķŊŇĽŉŏ Ľň ĸĽĺĺĽķŊŀŉŉŃĸĽňķŊňň perhaps precisely because it has
to do with all the assumptions, largely unacknowledged, that are made during the effort
between the conceptual moment for a design and its execution in operational soěware.
ĉousand page tomes, of well respected quality, have even been wriĨen on the topic of
Security Engineering but they barely mentioned the subtleties of implementating those
systems securely let alone providing much speciėc guiding detail¹. Having been over-
looked in the foregoing context, onemight be excused for thinking that Implementation
Security is a bit ineffable or even that it might be bullshit.

Now, I’mnot trying to leave the impression that there are no treatments of Implemen-
tation Security in the Literature, it is just that they are widely distributed and relatively

¹It’s funny in a somewhat disturbing sort of way…Peruse Ross Anderson’s Security Engineering[ǉ] and
observe that the book doesn’t ever explicitly discuss fundamental technical origins for vulnerabilities in real
systems. Anderson has bits of insight sprinkled throughout his discussions but it’s all rather implicit. Secu-
rity Engineering is still a completely fantastic book though, particularly for addressing the general security
design problem.

ǌ

rare. For the sake of the current discussion though, two examples do stand out from
the rest: ėrst, Daniel J. Bernstein (DJB) has many useful observations to bring to the
topic but he is especially explicit in a retrospective on the security of the “qmail” soě-
ware package [Ǌ]. Second, is an example from the authors ofĉeArt of SoĜware Security
Assessment, who refer to the concept of ‘Accuracy’ in their discussion of soěware design
fundamentals. ĉe last paragraph of the Accuracy section begins with the following gem
(page ǋǊ of [ǉǋ]):

“Discrepancies between a soěware design and its implementation result in
weaknesses in the design abstraction. ĉese weaknesses are fertile ground
for a range of bugs to creep in, including security vulnerabilities.”

At this point in the discussion the reader would be correct to note that I’ve described
Implementation Security bearing some relation to assumptions, design abstractions,
and the contents of a paper from DJB, yet our subject is still in rather vague territory.
I might even be accused of spending the ėrst paragraphs of this section prevaricating
about the proverbial shrubberies for my own amusement. I’ll confess this accusation is
partially correct, but only partially. Hopefully I’ve brought the discussion to a place of
intrigue, or some irritated variation of it, and at least partially primed the reader’s mind
with sufficient skepticism.

Leaving aside anyof theprofesseddifficulties in sortingout objective semantics, some
semblance of a coherent working deėnition for Implementation Security would be help-
ful tomake someprogress on this topic. I propose the followingdeėnition for the current
discourse:

“Implementation Security is the technical Engineering (skillfulness) and
Meta-Engineering (artfulness) that has an impact on the emergent security
properties of a system.”

One can observe that there is still as much concrete structure to even these concepts
as there is to any subject in philosophy and I would agree that in some sense this is terri-
bly unsatisfying. From a practical standpoint I think the lack of structure simply means
that Implementation Problems writ large are intractable and developing detailed top-
down theories to solve them is not only futile but potentially harmful. ĉe endeavour of
Implementation Security needs to be conducted from the same perspective as any other
real-world engineering activity, namely working from the boĨom up by examining fail-
ures, identifying what doesn’t work, developing heuristics to apply, and then repeating
those activities, tinkering as one goes along.

Working with the empirical approach I describe doesn’t mean abandoning theory,
far from it. ĉe idea I have in mind is to apply the more formal and rigorous methods
tactically, in circumstances where it would be instructive to know where “being careful”
is not only risky but a practical impossibility, where even absolute care can not manage

Ǎ

certain problems. Understanding of these difficult problems and how they manifest in
implementations is the speciėc sort of engineering knowledge that I think can be perco-
lated back towards, and perhaps connected with, the tasks of design and speciėcation.
Illustrating the tactical application of formal tools in the describedmanner is exactly the
reason this paper introduces the LANGSEC approach and applies it to the security of
OpenFlow.

Ǌ.Ǌ LANGSEC

ĉe language-theoretic approach to security (LANGSEC) is based on concepts from
formal languages and computational complexity theory. It is rooted in the hypothesis
that signiėcant classes of security vulnerabilities emerge from design aĨributes that im-
plicitly require a system implementer to aĨempt solving some variation of the Halting
Problem (also known as Rice’s ĉeorem) [ǋǏ]. Computationally intractable (UNDE-
CIDABLE) problems like theHalting Problem cannot be solved through functional ap-
proximation with any practical amount of soěware engineering effort and partial solu-
tions are considered generally unsafe.

Partial solutions are reasoned to be unsafe due to the observation that those solutions
will behave indeterminately under some conditions, behaviour which is likely to have
security impacts when those conditions are processing of arbitrary malicious data. ĉis
point was discussed in the introduction but I restate it here for good measure.

Efforts to apply the LANGSEC approach to soěware security have largely concen-
trated on deconstructing how a composed system design can encounter the Halting
Problem. ĉehighest level breakdown looks at two contexts, the single component view
and the system view. Respectively, this corresponds to input processing and protocol in-
terpreter computational equivalence.

Ǌ.Ǌ.ǉ IłńŊŉ PŇŃķĹňňĽłĻ

From a formal language perspective input processing can be characterized as the task of
recognizing that a receivedmessage belongs to a language and then determining, accord-
ing to the language semantics, whether to accept or reject the message. ĉe implication
of this view is that the validation question is UNDECIDABLE if the message cannot be
fully recognized. If invalid, and potentiallymalicious, inputs cannot be deterministically
rejected then any assumptions about the safety of using those inputs aren’t reasonable
and they create the potential for security vulnerabilities. ĉis reasoning leads us to the
ėrst admonition from LANGSEC:

• Inputs must be fully recognized before being processed.

ǎ

Recognizer functionality in real-world soěware is oěen ad hoc and distributed
throughout the logic of (sometimes sizeable) components, recognition then is effec-
tively an implicit task for the whole system. Testing and debugging recognizer logic
implemented in this manner is an extremely hard problem, nearly impossible to do
through systematic reasoning. For an accessible example of this phenomenon just look
at the implementation of any mainstream operating system’s network stack, examine
how it generally validates data and then look at its vulnerability history ².

ĉe ėrst admonition also provokes two signiėcant follow-on questions. How can I
ensure full recognition is possible? How is it effective? ĉe corresponding two-fold
answer is inwhat I’ll state to be the twomajor facets of recognition: ėrst, the input parser
must be sufficiently powerful to fully recognize the protocol language. Second, the input
parser should not bemore powerful than is strictly necessary for full recognition, seeing
as I don’t want my parser to expose more computation resources to an aĨacker than is
absolutely required.

While any soěware componentmight have security vulnerabilities due to implemen-
tation errors, a formal parser can at least be validated against the algorithm it implements
which is in turn supported by formal proofs. An ad hoc parser on the other hand does
not have a validation mechanism short of exhaustive testing, which will necessarily al-
ways be an intractable task. AĨempting to programatically analyze the safety of an ad
hoc parser is tantamount to trying to solve the Halting Problem.

ĉe task of recognizing valid or expected inputs for a Turing-complete language is
more or less a direct restatement of the Halting Problem. No amount of care, aĨention,
or testing will allow for validation of Turing-complete inputs ³. ĉe context-sensitive
(CS) languages don’t present such a deėnitively impossible challenge for recognizing,
it is always possible to construct a parser for them. Constructing an efficient parser for
CS grammars is nevertheless known to be “very difficult” and the literature on parsers
for CS grammars appears extremely sparse compared to that for weaker grammar types
(by orders of magnitude in fact), according to §ǋ.ǌ.Ǌ of [ǉǍ] and gleaned from §ǉǐ.ǉ.ǉ
of [ǉǍ] respectively. In contrast, efficient methods for parsing Context-Free grammars
(CFG), Regular (Chomsky Type ǋ) grammars, and Finite-Choice (FC) grammars have
been thoroughly studied and the topics are extremely mature.

²Exempli gratia, the Linux kernel network stack. A quick search of the CVE database returns Ǌǋ en-
tries that reference source code locations corresponding to IPvǎ components of the network stack [ǉǈ],
using search terms that reference Linux network stack code more generically yield literally hundreds of en-
tries. One must keep in mind that CVE entries only illuminate a subset of the publically known security
vulnerabilities in any given component.

³ĉe whole notion of formal decidability and the results it provides are quite remarkable. ĉere is a
small conceit in simply making the statement that the recognition problem for Turing-complete input lan-
guages is UNDECIDABLE though. What the statement misses pointing out is that the fundamental proof

Ǐ

Ǌ.Ǌ.Ǌ PŇŃŉŃķŃŀ IłŉĹŇńŇĹŉĹŇ CŃŁńŊŉĵŉĽŃłĵŀ EŅŊĽŋĵŀĹłķĹ

ĉe importance of interpreter equivalence in the LANGSEC approach is based on an
information-theoretic modelling of communication from a security perspective. As
Shannon describes in [ǋǐ]:

“An information source selects a desired message out of a set of possible
messages. ĉe transmiĨer changes themessage into a signal, which is actu-
ally sent over a communication channel from the transmiĪer to the receiver.”

ĉe signal transmission process is the subject of what Shannon considered the en-
gineering problem of communications. Now, system designers have some tendency
to take an anthropocentric view of communication and protocol design, and especially
those aspects related to transmiĨing semantics of varying sorts⁴. A key subtlety to high-
light here is that the engineering problem is not solved completely at the level of raw
symbol transmission. As I have discussed with respect to recognition of messages, there
are still fundamental technical constraints on communication between computing pro-
cesses rooted in the formal properties of the automata they implement. Starting from
asking the question, “does the destination receive the intendedmessage?”, I can formally
reason about the recognition properties of the destination processes up to the limit of
decidability. ĉis reasoning can be extended to the question of the equivalence of those
language recognizers (nee processes).

Modifying Shannon’s original diagram slightly, Weaver in [ǋǐ] introduces the idea of
a semantic decoder on the receiving side to deal with what he terms, “injection of se-
mantic noise”. Weaver suggests renaming the noise source on the channel to Engineering
Noise and adding an additional semantic noise source between the information source
and the transmiĨer. I would like tomakemy own tweak toWeaver’s suggestions, adding
semantic encoders and decoders to the communication system diagram which essen-
tially correspond to protocol interpreters. ĉe interpreters being automata running on
Turing machines. ĉe results of my tweaking are depicted in Figure Ǌ.Ǌ.ǉ.

ĉis is where I introduce two more decidability problems to describe the limits for
comparing automata: ėrst, is the Equivalence problem. Where G and H are grammars
and L(x) is the language produced by automata implementing those grammars, the
Equivalence problem is whetherL(G) = L(H). ĉe second problem is known as Con-

of undecidability is for Type 0 Chomsky grammars and that the Church-Turing thesis provides the con-
nection being claimed for Turing-complete inputs. Practically speaking, this detail doesn’t reallymaĨer but
some pedantic souls might ėnd the absence of its mention deeply unsatisfying. ĉose who are interested
can ėnd a great explanation of decidability and the Church-Turing thesis in Chapter Ǐ of [ǋǍ].

⁴All completely understandable, designers being people themselves.

ǐ

Figure 2.2.1: Diagram of a Semantic Communications System

tainment, or is L(G) a sublanguage of L(H), denoted formally by L(G) ⊆ L(H). ĉe
Equivalence problem is DECIDABLE for deterministic context-free, and weaker, gram-
mars [ǋǎ]. Where the Equivalence problem is DECIDABLE though, the Containment
problem is still UNDECIDABLE. In point of fact, the containment problem is UNDE-
CIDABLE for arbitrary Regular languages as well, as demonstrated by ĉeorem Ǐ.ǉǈ
Corollary Ǌ in [ǋǍ].

ĉe Equivalence problem is intuitively key to deciding parser equivalence but Con-
tainment is particularly relevant to reasoning about equivalence in parsing of protocol
sub-formats. While the two problems do create tight constraints, there are some partic-
ular automata constructions, with aĨendant formal language properties, where theCon-
tainment and Equivalence problems are DECIDABLE. One such DECIDABLE con-
struction is detailed in Lemma ǉ of [ǉǎ].

Semantic equivalence of parsers has an impact on the more mundane aspects of sys-
tem composition and interoperability as much as it does on security. In this respect,
parser equivalence is simply a more rigorous way of looking at compatibility, which I
think oěen gets taken for granted as being something of an unavoidable challenge in
real-world systems. At the very least, if parser equivalence is DECIDABLE then inter-
preter compatibility should be easier to achieve.

To recapitulate: protocol interpreters must implement computationally equivalent
parsers, otherwise the semantics of messages sent between endpoints cannot be pre-
served. Semantic ambiguity creates the opportunity for indeterminate effects inmessage
processing, therein creating opportunity for insecurity. ĉis draws forward the second,
and at the moment last, admonition from the LANGSEC approach:

• Use only regular and deterministic context-free languages in protocol designs to
ensure computational equivalence of endpoints.

Ǒ

Ǌ.ǋ VĽŇŉŊĵŀĽŐĽłĻ NĹŉŌŃŇĿň

Ǌ.ǋ.ǉ TļĹ TŇĵĸĽŉĽŃłĵŀ (IłŉĹŇ)NĹŉŌŃŇĿ

“Mais qu’est-ce alors ceĨe vérité historique, la plupart du temps? Une fable
convenue, ainsi qu’on l’a dit fort ingénieusement.

[But thenwhat is this historical truth, most of the time? A fable agreed upon,
as someone ingeniously said.]”

– Napoléon Bonaparte, in de Bradi’s Les Misères de Napoléon

Establishing a deėnitive context for the current Collective Wisdom about network
virtualization would be fascinating but it isn’t going to get the current topic moving in
the right direction. I will have to seĨle for a brief stereotyping of what I think forms the
consensus view. Wikipedia’s introductory deėnition is as good a place as any to start,
it insists that a Computer Network is “a telecommunications network that allows com-
puters to exchange data…ĉe best-known computer network is the Internet.” For the
purposes I have in mind, I will simplify things one slight further and state that our con-
sensus ideal for a network is one with nodes communicating using Internet Protocols
(TCP/IP) running over something that is fungible for switched Ethernet.

Application of policy for the control of network traffic in a Traditional Network is or-
chestrated between routers through application level protocols (such as BGP, OSPF, or
IS-IS). Logical network topology in theTraditionalNetwork is generally tightly coupled
with the network’s physical topology. Routing policy is generally applied in a hierarchi-
cal fashion and has fairly low granularity, typically differentiating traffic at a higher level
than individual Ěows ⁵. Each router maintains a representation of its view of the net-
work topology in routing look-up tables. ĉe routing tables are in turn used to control
forwarding elements that process actual packets. A visual depiction of this conceptual-
ization is illustrated in Figure Ǌ.ǋ.ǉ.

For the sake of drawing distinctions between Traditional Network hardware and that
implementing contemporary virtualization schemes, SDN or otherwise, I’ll deėne Tra-
ditional Network hardware as that which has routing control and forwarding elements
that are integrated into the same physical chassis and which participate in routing pro-
tocols as distinct entities.

⁵I deėne a Network Flow (Ěow) to be the logically identiėable collection of packets, belonging to com-
munication between distributed processes, transiting through a particular point in a network.

ǉǈ

Figure 2.3.1: Depiction of a Traditional Network

Ǌ.ǋ.Ǌ NĹŉŌŃŇĿ VĽŇŉŊĵŀĽŐĵŉĽŃł

Much to the chagrin ofmany telecommunication engineers and service providers, a net-
workon it owndoesnothing. Intercomputer networking is simply amechanism formov-
ing data between distributed computing processes, fundamentally just inter-process re-
source sharing. A simple enough problem to state succinctly but therein, as the Bardwill
tell us, lies the rub.

Traditional Networking comes with aĨached conceptual baggage, in preĨy much ev-
ery aspect between design and construction, through to operations. In practical terms
the baggage manifests as established implementations, standards, and commonly ac-
cepted practises; collections of the abstractions and assumptions created to solve the
problems of yesterday. Eventually understanding of those problems changes in some
way, new insights might be embraced and old axioms might be forgoĨen, but suffice it
to say that things don’t work as well (nee optimally) as they used to. One way of deal-
ing with such exigent circumstances is by creating a new abstraction to encapsulate the
old problems. In contemporary computing, a common method of abstracting the past
is what is termed Virtualization.

ǉǉ

Conceptually, Virtualization entails schemes where the logical organization of re-
sources is decoupled from their physical implementation. Bruce Davie, a luminary in
the networking ėeld, describes network virtualization as having the following character-
istic functions[ǉǉ]:

• Decoupling the services provided by a (virtualized) network from the physical
network.

• Providing a container of network services (LǊ-LǏ) provisioned by soěware.

• Faithfully reproductioning services provided by a physical network.

I think it should not go unremarked upon thatDaviewas employed byVMWarewhen
this conceptualization was presented and that the characteristics bear a striking resem-
blance to contemporary computing hardware virtualization. Nevertheless, his points do
form an apt summary of the current Common Wisdom. One reason I reference Davies’
presentation is that he takes some effort to stress that while Soěware-DeėnedNetworks
built using OpenFlow are one way of achieving the aforementioned functionality, there
are many other ways. A point on which some service providers are in strong agreement,
according to Boucadair and Jacquenet in [ǋ]:

“SDNtechniques are not necessary to developnewnetwork services per
se. ĉe basic service remains IP connectivity that solicits resources located
in the network.”

ĉe primary distinction drawn for SDN then is that it exposes direct programmatic
access to the forwarding plane of network elements via a remotely accessible API, with
OpenFlow currently being themost popular one. In this respect, the general approach of
SDN andOpenFlow doesmake certain assumptions about the existence of some sort of
network connectivity between forwarding plane elements and their controller applica-
tion servers. Connectivity may be an arguable small conceit for manymodern networks
but it is an important one, at least conceptually, for Inter-networking in particular and
distributed systems more generally ⁶.

ĉe corollary to exposing the forwarding plane to remote access via an API is that
the control plane can now run on server hardware, with fast processors and expansive
storage, and is no longer restricted to themeagre resources of a control-plane supervisor
running on embedded-class computing resources. Despite the very astute observation
that there are otherways of implementing network services besides SDN,Boucadair and
his co-author miss this point entirely when they write [ǋ]:

⁶Now, this may be a fanciful perspective on history but I certainly maintain the understanding that
networks were not as homogeneous as they presently appear, the current era being dominated almost ex-
clusively by IP running over something that looks like Ethernet (and is generally preĨy reliable).

ǉǊ

“By deėnition, SDN technique activation and operation remain limited
to what is supported by embedded soěware and hardware. One cannot
expect SDN techniques to support unlimited customizable features.”

SDN techniques are certainly limited to what can be accomplished with program-
matic control over (micro-)Ěow management, but beyond that customizations are only
limited by computational complexity and similar constraints. ĉat is to say, features are
actually close to being unlimited and that is what makes the technology fundamentally
compelling. Interestingly, this appears to be a direct fulėlment of the predictionMichael
Padlipsky offered at INFOCOMM in ǉǑǐǋ: “with computing power now effectively un-
restricted people can do networking any way they please”[ǋǉ]⁷.

Ǌ.ǌ OńĹłFŀŃŌ

Ǌ.ǌ.ǉ EňňĹłŉĽĵŀ DĹňķŇĽńŉĽŋĹň

OpenFlow is a switch architecture speciėcation and application-level network protocol
designed with the intent of enabling direct programmatic access to the forwarding ele-
ments of soěware and hardware networking components. ĉe architecture is a compo-
sition based on a distributed soěware control plane, the Controller, that interfaces via a
wire protocol to an abstraction of the forwarding elements of a generic hardware switch.
ĉe switch beingmodelled aěer one that employs a TCAM-based Forwarding Informa-
tion Base (FIB) architecture ⁸. In the context of OpenFlow the FIB is represented by a
series of Ěow tables; these tables associate network Ěow match conditions with packet
processing actions and table usage statistic counters. ĉe structure of OpenFlow’s ar-
chitecture is illustrated in FigureǊ.ǌ.ǉ.

⁷It is worth mentioning that Padlipsky’s prediction came with a confession that he feared schemes that
did assume end-to-endness at the Network level would foul things up. Some might argue that the connec-
tivity and reliability OpenFlow assumes commits those sins exactly; I am not inclined to disagree.

⁸Ternary Content-AddressableMemory (TCAM) can be summarily described as being a hardware im-
plementation of an associative array that enables lookups based on partial, wildcard like, matching of array
keys in addition to binary, i.e. yes/no, matching.

ǉǋ

Figure 2.4.1: A Depiction of the OpenFlow Specification Switch Architecture

Referring to the diagram for context Iwill brieĚy explain themajor functional compo-
nents, a general understanding of which will make the discussion of complexity analysis
targeting clearer. So, a packet will arrive via a Port and then enter the Packet Pipeline
startingwith the ėrst FlowTable. AFlowTable is a look-up tablewith entries that consist
of the following elements:

• Packet characteristics to match on;

• Actions to apply on matching packets; and

• Entry use statistics, e.g. the number of packets matched and processed by that
entry.

ĉeActions in a Ěow table entry that can be applied onmatch conditions correspond
to one of six types, the ėrtst four being fairly general:

ǉ. Forward a Ěow’s packets.

Ǌ. Encapsulate a Ěow’s packets and send them to a Controller for processing.

ǋ. Drop a Ěow’s packets.

ǌ. Perform a speciėed action on a Ěow’s packets.
ǉǌ

ĉefourthAction is rather vague in termsof self-descriptionbut in essence it is simply
a generic way of referring to the capabilities anOpenFlow switch implements to manip-
ulate or inspect packets in somewhat arbitrary ways. In practice this would be function-
ality such as address translation at various layers, traffic ėltering and ėrewalls, VLANs, et
cetera. All forwarding Actions can target subsequent Flow Tables in the Packet Pipeline
as well as Ports.

ĉe speciėcation allows for so-called hybrid switches, which are typically traditional
network switches that implement anOpenFlow processing path along side their normal
layer Ǌ/ǋ processing path. ĉese switches would implement an additional Action for
processing:

Ǎ. Forward a Ěow’s packets through the switches’ normal, non-OpenFlow, process-
ing path.

ĉe OpenFlow speciėcation deėnes one last primary processing Action type and
while it is not related to Ěow table entrymatching per se, it is deėned in the speciėcation:

ǎ. Decapsulate packets received from the Controller and forward them.

ĉe Group Table is the OpenFlow mechanism for applying actions to collections or
groups of Ěows.

To round out this description it would make some sense to discuss the Controller
brieĚy. Essentially the Controller is just an application server that manages the con-
ėguration of the switch tables and otherwise controls and monitors the operations of
the switches. Yes, in practise Controllers can actually be very sophisticated soěware
systems, however, the fact remains that at a fundamental level a Controllers is basically
indistinguishable from any other socket-based application server that might be found in
a client-server architecture system.

From an operational perspective, OpenFlow’s default behaviour is for switches to ini-
tiate a TCP connection to the Controller speciėed in their conėguration. An initial ex-
change of OpenFlow messages is used to conduct an application level handshake pro-
cedure that in turn establishes a session, which in OpenFlow parlance is referred to as
a Channel. Once the primary Channel is set up, operational messages are exchanged
between the switch and its Controller.

Ǌ.ǌ.Ǌ A ĺĹŌ ŌŃŇĸň ĵĶŃŊŉ ĵ łĵŁĹ

An industry group called the Open Networking Foundation (ONF) ⁹ currently man-
ages theOpenFlow brand, which they’ve started using tomarket a collection of protocol
speciėcations beyond the original switch control protocol. ĉe ONF tends to refer to
the originalOpenFlow protocol interchangeably, and somewhat inconsistently, as either

ǉǍ

“OpenFlow” or the “OpenFlow Switch SpeciėcationWire Protocol” (the laĨer abbrevi-
ated asOF-SPEC). For the sake of familiarity, and a passing effort at reducing confusion,
I will observe the historical practise of using “OpenFlow” to refer to the switch speciė-
cation and the messaging protocol it deėnes.

Ǌ.ǌ.ǋ IŁĵĻĽłĵŇĽŊŁ

Imagine for amoment¹⁰ the soěware implementation of a network switch that is wriĨen
(as one would expect for such things) in the C programming language. ĉe internals
of this imaginary switch would very likely consist of numerous collections of struct
deėned types, differentiated by function and speciėed as analogues to the structure of
a hypothetical hardware switch. Since this is networking soěware, and network byte
ordering is big endian, the implementation being imagined stores much of its internal
state in big endian representations. Native byte ordering of the hardware running the
soěware switch be damned.

When the switch is running, the contents of all the foregoing collections of structures
will literally represent the internal state of the switch. If one desired to change the state
of the switch in a dynamic fashion then all one has to do is have a mechanism for chang-
ing the contents of the internal structures; to accomplish this from a separate controller
application, perhaps running on a different host, onewould need a protocol of some sort
to facilitate the communication of the structure changes. Easy enough.

ĉe quick and dirty approach to a switch control protocol could be to send the con-
tents of the running switch’s internal state directly, maybe with some message headers
for metadata. ĉe implementation already stores most state in network byte order so
craěingmessages for this protocolwould be a very straight forward operation, the switch
could essentially just write the contents of structures into a socket connected to its con-
troller. Writing the speciėcationdocument for our simple protocolwill be a doddle since
the struct deėned in the source code can be copied and pasted directly into the doc-
ument. A full header ėle with all the struct can be included as an appendix too of
course, one wouldn’t want to provoke copy and paste errors in other implementations
aěer all.

Careful, I almost forgot that Security is Terribly Important…ĉe switch control pro-
tocol should probably run on top of a TLS wrapped connection and maybe X.ǍǈǑ cer-
tiėcates could be used for authentication (optionally).

⁹Like many industry organizations comprised mostly of vendors, and who’s name makes mention of
“Open”, one doesn’t get to play with the other SDN kids for free: the ONF’s current membership fee is
USƮǋǈ,ǈǈǈ.

¹⁰Indulge me brieĚy, please.

ǉǎ

Believe it or not, this story does have a punch-line: I’ve just provided a guided vi-
sualization of the OpenFlow protocol. Absent a detailed history of the design process,
which doesn’t appear to exist, the best explanation for the design of the protocol is that
its speciėcation was derived directly from headers in the source code of a prototype pro-
grammable soěware switch. A prototype soěware switch which in turn eventually be-
came the initial reference implementation for OpenFlow¹¹.

¹¹ĉe location of the source code repository for the reference switch has been somewhat obscure for
quite some time, at least since before ONF took guardianship of OpenFlow in early ǊǈǉǊ. ĉe last commit
to the repositorywas some timebetween speciėcationversionsǉ.ǉ.ǈ andǉ.Ǌ so the repository location likely
hasn’t been widely published due to the fact that the code was quite out of date. ĉe out of date reference
code means that no consolidated header ėle was openly available for OpenFlow versions ǉ.Ǌ (December
Ǌǈǉǉ) through ǉ.ǋ.Ǌ (April ǊǍ, Ǌǈǉǋ). Version ǉ.ǌ.ǈ (August ǉǌ, Ǌǈǉǋ) of the speciėcation ėnally includes
a copy of the whole header ėle (albeit as an appendix inside a PDF document, which only some readers can
easily extract). ĉe source of the original reference implementation is managed with git and the repository
can be cloned from git://gitosis.stanford.edu/openflow (or it could at the time of writing).

ǉǏ

git://gitosis.stanford.edu/openflow

Raoul Duke: ĉere’s a uh, big machine in the sky, some kind of, I dunno, electric snake, coming straight at us.
Dr. Gonzo: Shoot it.
Raoul Duke: Not yet, I want to study its habits.

– Johnny Depp and Benicio Del Toro in “Fear and Loathing in Las Vegas”

3
Complexity Analysis

A ĶŇĽĹĺ ĽłňńĹķŉĽŃł Ńĺ ŉļĹ OńĹłFŀŃŌ ňńĹķĽĺĽķĵŉĽŃł can quickly create the im-
pression that the protocol is feature-rich and highly extensible, if not dazzlingly compli-
cated. Complexity certainly canbe some cause for concern but discussing it in subjective
terms inevitably turns into arguing about aesthetics. What I thinkwould be immediately
valuable then, are formal or quantitative assessments of design aĨributes related to com-
plexity. Toward this more rigorous end, I think one thing that can be done is establish
bounds on the formal language complexity of OpenFlow. Analyzed using the concepts
in language-theoretic security, the protocol’s complexity bounds will directly indicate
the potential for implementation problems. In the following analysis I will illustrate the
complexity of OpenFlow using proofs based on the properties of formal languages, de-
tailed implications of the analysis are presented in the chapter that follows.

ǋ.ǉ PĽķĿ ĵ PĵķĿĹŉ

ĉe OpenFlow protocol presents an expansive array of options for complexity analy-
sis and aĨempting a top-down analysis, let alone an exhaustive one, would not be any-
where close to practical. Instead of an analysis of the whole protocol then, I chose to
focus on a single message type. Now, important characteristics of the OpenFlow pro-
tocol emerge from its C structure oriented design and chief among these is the fact that

ǉǐ

messages, and their component subtypes, generally each contain a length ėeld given in
bytes. ĉe length ėelds have the effect of making each message component its own ad
hoc Type-Length-Value (TLV) format, oěen with very idiosyncratic semantics. With
all the myriad TLV formats on offer, choosing one to analyze was based on two general
criteria:

• ĉe format should be employed in a generally signiėcant role in themessages sent
by both Controllers and Switches;

• ĉe format should be self-contained and unambiguous enough to represent using
an aĨribute grammar without too much simpliėcation.

Looking through the speciėcation for a message type that met these criteria seems
like it should be a reasonably straight forward task; it was not.

ǋ.ǉ.ǉ Ałŏ ńĵķĿĹŉ?

While examples abound, the curious reader canėndaprimeexampleofOpenFlow’s per-
vasive complexity in the Hello message, deėned in §Ǐ.Ǎ.ǉ of [ǊǑ]. I would have thought
Hello would be quite simple and unambiguous but it turns out to be extensible just in
case something besides protocol version support needs to be communicated (at some
future time). Adding a bit of insult to that injury, the version information itself is also
extensible. Speciėcally, version support is encoded as bitmaps in raw ǋǊ bit unsigned
integers, where ordinal bits indicate the versions of wire protocol supported: versions ǈ
to ǋǉ are encoded in the ėrst integer, ǋǊ - ǎǋ in the second, and so on. ĉe number of
bitmaps actually present in a given Hello message must be inferred from the length ėeld
of its enclosing ofp_hello_elem_versionbitmap structure. ĉe current version of
the wire protocol, by the way, is 0x05.

ǋ.Ǌ OXM_OF_MAKEMEDINNER

Aěer reviewing theOpenFlow speciėcation, I noted that it does explicitly deėne a single
generic TLV format namedOpenFlow eXtensibleMatch (OXM) that met the selection
criteria I deėned. As its name suggests, the primary application forOXM is representing
the Ěow match criteria used to conėgure the switch Ěow tables. OXM has also been
repurposed elsewhere in the protocol in a number of different ways, among them:

• to specify modiėcation values in Set-Field actions;

• to communicate which ėelds a Ěow table supports matching or modifying within
table feature messages (using a list of OXM headers only);

ǉǑ

• to communicate Ěow parameters in Ěow expiration/removal messages, Ěow
statistics messages, Ěowmonitor messages, Ěow update messages, and Packet-In
messages.

In this analysis Iwill concentrate onOXMusewithinmatching contexts. A fully spec-
iėedOpenFlowmatch is described by anofp_match structure, which has the following
declaration¹:

struct ofp_match {
uint16_t type; /* One of OFPMT_* */
uint16_t length; /* Length of ofp_match (excluding padding) */

/* Followed by:
*
* - Exactly (length - 4) (possibly 0) bytes containing OXM TLVs, then
* - Exactly ((length + 7)/8*8 - length) (between 0 and 7) bytes of
* all-zero bytes
*
* In summary, ofp_match is padded as needed, to make its overall size
* a multiple of 8, to preserve alignement in structures using it.
*/
uint8_t oxm_fields[0]; /* 0 or more OXM match fields */
uint8_t pad[4]; /* Zero bytes - see above for sizing */

};
OFP_ASSERT(sizeof(struct ofp_match) == 8);

ĉe oxm_fields array marks the start of a possible list of OXM ėelds. Each OXM
ėeld begins with a header which the data immediately follows, the header format is il-
lustrated as follows:

3 1 1
1 6 5 9 8 7 0
+---+-+-+-+-+-+-+-+-+
| oxm_class | oxm_field | h | oxm_length |
| | | m | |
+---+-+-+-+-+-+-+-+-+

¹It is preĨy difficult not notice the comments that describe padding within thematch structure and the
simple fact that the arithmetic doesn’t calculate padding correctly. Interestingly, this same incorrect padding
description can be found pasted verbatim inside many other structures in the speciėcation. Finding this
mistake in one revision of the protocol gives rise to a bit of schadenfreude but seeing it go uncorrected in
three versions of the speciėcation (vǉ.ǋ.ǉ - vǉ.ǌ.ǈ) released over the course of a year is bad enough that I’m
starting to feel embarrassed about it.

Ǌǈ

An example OXM ėeld for oxm_field == OXM_OF_ARP_SPA, which describes
matching on the IPvǌ address of an ARP payload, would be:

3 1 1
1 6 5 9 8 7 0
+-+
|1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 1 0 1 1 0|1|0 0 0 0 1 0 0 0|
+-+
| IPv4 address (network byte order) |
+-+
| arbitrary address mask (network byte order) |
+-+

An aĨribute grammar for recognizing an ofp_match structure that contains basic
OXM ėelds is deėned in Appendix A.

ǋ.ǋ PŊĸĸĽłĻ

ĉe following is an examination of the formal language properties of OpenFlow. ĉe
proofs draw inspiration from [ǋǎ] and [ǉǎ] but any mistakes are my own. In regard to
any uncertainty about speciėc claims, I assert the second deėnition does not violate the
Containment problem is based on the fact that the grammars are not arbitrary. Now,
without further ado:

ĉeorem ǉ. OpenFlow is at least context-sensitive.
Deėnition Ǌ. If G and H are grammars for ofp_match and OpenFlow, respectively, then
L(G) andL(H) are the languages they generate.
Deėnition ǋ. ĉe ofp_match structure is a necessary element of the OpenFlow speciėca-
tion, per §ț.Ȗ.Ȗ.Ȗ of [Ȗȝ], making it a proper sub-grammar ofOpenFlow (G ⊆ H). ĉerefore
ofp_match is a sublanguage of OpenFlow: L(G) ⊆ L(H).
Lemmaǌ. ĉeupper bound for the complexity of a language has a correspondingminimally-
strong mechanism for recognition.

Generating strings belonging to language L, S ∈ L, requires a mechanism M that is
minimally-strong enough to apply the production rules of L. ĉe minimally-strong mecha-
nism M is deėned by the upper bound for the complexity ofL.

Proof. Recognition is simply an inversion of the production rules so if a mechanism ex-
ists to recognize S that is weaker than M then M is not strong enough to apply the pro-
duction rules ofL and this contradicts the statement that M is minimally-strong.

Ǌǉ

Lemma Ǎ. If languageL(G) is a sublanguage ofL(H) and a minimally-strong mechanism
M is required to recognize strings inL(G) then a string S ∈ L(H)must be recognized using
a mechanism at least as strong as M.

Proof. If L(G) ⊆ L(H) then there exists an arbitrary string S′ such that S′ ∈ L(H)
implies S′ ∈ L(G). If S′ can be validated using a mechanism that is weaker than M
then this contradicts the statement that M is the minimally-strong mechanism required
to validateL(G).

Lemma ǎ. ofp_match complexity has an upper bound of Context-Sensitive

ĉe deėnition of a linear-bounded automaton for ofp_match establishes the upper
bound for its complexity as Context-Sensitive.

Proof. We deėne an input word P = {wn | w is a hexadecimal octet, Ƥ < n ≤ ƥƪƩƧƪ is
the sizeof anofp_match structure,wn = len '00' '01' length oxm_fields pad,
where len and length are each two octets representing total input length as an unsigned
integer, oxm_fields = '08' '00' field hashmask length data, where
the concatenation of field and hashmask is a ėxed binary string ∈ {Ƥ, ƥ} encoding
match data types as speciėed in [ǊǑ] and data is a variable length binary string∈ {Ƥ, ƥ}
appropriate for a basic class ėeld and hashmask. pad is up to ǌ octets of zero padding}.

Let AP be a Linear-Bounded Automaton that only accepts strings in P. ĉe length of
AP’s input tape is n, it has states qƤ . . . qƧƭ, qr is the REJECT state, and qƧƭ is the start
state.

ǉ. Go to the leěmost cell of the tape.

Ǌ. Consume the octet ‘00’ and transition to state qƧƬ. If any other octet is present,
transition to qr and halt.

ǋ. Consume the octet ‘01’ and transition to state qƧƫ. If any other octet is present,
transition to qr and halt.

ǌ. Simulate a decrementing counter initialized with the value of octets ǋ and ǌ. Sub-
tract ǌ from the counter and transition to state qƧƪ. If the counter reaches zero,
transition→ qƨ

Ǎ. Consume the octet ‘80’, decrement the counter, and transition to state qƧƩ. If any
other octet is present or the counter reaches zero, transition to qr and halt.

ǎ. Consume the octet ‘00’, decrement the counter, and transition to state qƧƨ. If any
other octet is present or the counter reaches zero, transition to qr and halt.

Ǐ. Simulate regular expression matching of the ėxed bit strings encoding the con-
catenated oxm_field + oxm_hasmask values over octets Ǐ and ǐ as described

ǊǊ

in the aĨribute grammar deėned in Appendix A. Transitions are made according
to the following rules:

(a) OXM_OF_MPLS_BOS, OXM_OF_PBB_UCA, OXM_OF_IP_ECN, OXM_OF_MPLS_TC,
OXM_OF_VLAN_PCP, OXM_OF_IP_DSCP, OXM_OF_ICMPV4_CODE,
OXM_OF_ICMPV4_TYPE, OXM_OF_ICMPV6_CODE, OXM_OF_ICMPV6_TYPE,
OXM_OF_IP_PROTO → qƦ

(b) OXM_OF_ARP_OP, OXM_OF_ETH_TYPE, OXM_OF_SCTP_DST,
OXM_OF_SCTP_SRC, OXM_OF_TCP_DST, OXM_OF_TCP_SRC,
OXM_OF_UDP_DST, OXM_OF_UDP_SRC, OXM_OF_IPV6_EXTHDR,
OXM_OF_VLAN_VID → qƧ

(c) OXM_OF_MPLS_LABEL, OXM_OF_IPV6_FLABEL, OXM_OF_PBB_ISID,
OXM_OF_IPV6_EXTHDR_mask → qƨ

(d) OXM_OF_IN_PHY_PORT, OXM_OF_IN_PORT, OXM_OF_ARP_SPA,
OXM_OF_ARP_TPA, OXM_OF_IPV4_DST, OXM_OF_IPV4_SRC,
OXM_OF_VLAN_VID_mask → qƩ

(e) OXM_OF_IPV6_FLABEL_mask → qƪ

(f) OXM_OF_IPV6_ND_SLL, OXM_OF_IPV6_ND_TLL, OXM_OF_ARP_SHA,
OXM_OF_ARP_THA, OXM_OF_ETH_DST, OXM_OF_ETH_SRC, OXM_OF_PBB_ISID_mask
→ qƫ

(g) OXM_OF_METADATA, OXM_OF_TUNNEL_ID, OXM_OF_ARP_SPA_mask,
OXM_OF_ARP_TPA_mask, OXM_OF_IPV4_DST_mask, OXM_OF_IPV4_SRC_mask
→ qƭ

(h) OXM_OF_ARP_SHA_mask, OXM_OF_ARP_THA_mask, OXM_OF_ETH_DST_mask,
OXM_OF_ETH_SRC_mask → qƥƧ

(i) OXM_OF_IPV6_ND_TARGET, OXM_OF_IPV6_DST, OXM_OF_IPV6_SRC,
OXM_OF_METADATA_mask, OXM_OF_TUNNEL_ID_mask → qƥƫ

(j) OXM_OF_IPV6_DST_mask, OXM_OF_IPV6_SRC_mask → qƧƧ

(k) No match→ qr

ǐ. Consume two octets, decrement the counter by ǌ, and transition: qn → qn−ƥ. If
the counter reaches zero, transition to qr and halt

Ǌǋ

Ǒ. Until qƤ is reached, the counter reaches zero, or the rightmost end of the tape is
encountered, carry out the following operations:

(a) Consume an octet

(b) Decrement the counter

(c) Transition qn → qn−ƥ

ǉǈ. If:

• in state qƤ, the counter is zero, and the tape head is at the rightmost end of
the tape, ACCEPT.

• in state qƤ and the counter is not zero, transition→ qƧƪ

Otherwise, REJECT.

BecauseOXMcanbedescribedby a linear-boundedautomaton, it is therefore atmost
context-sensitive.

Lemma Ǐ. OXM is not context-ěee.

To show OXM is not context-ěee we use the uvwxy theorem, also known as the pump-
ing lemma for context-ěee languages, as described in §Ȗ.ț.ȕ of [ȕș] and ĉeorem ȗ.Ț [ȗș]
respectively.

ĉe theorem is as follows: for every context-ěee languageL we can give two natural num-
ber p and q, such that each string S ∈ L that is longer than p has the form UVWXY where
|VWX| ≤ q, VX ̸= λ, and UViWXiY ∈ L for all i ≥ Ƥ. Where λ denotes the empty word
and p is what is referred to as the pumping length.

Proof. If OXM can be generated by a context-free grammar then we would have strings
UVWXY such that UViWXiY for i ≥ Ƥ is of the form P deėned in Lemma ǌ. ĉis,
however, is impossible since the only way to arbitrarily vary i without exceeding n is
if VX = λ. ĉerefore OXM is not context-free.

Proof(ĉeorem ȕ). As P is at most context-sensitive (Lemma ǎ) and must be stronger
than context-free (Lemma Ǐ), P (thusOXM)must therefore be context-sensitive. Since
QXM is a sublanguage of OpenFlow (Deėnition Ǌ) and requires at least the same
minimally-strong mechanism for recognition (Lemma Ǎ) then OpenFlow must be at
least Context-Sensitive.

Ǌǌ

ǋ.ǋ.ǉ A LĽŔŀĹ BĽŉ SŉŇŃłĻĹŇ?

In previous efforts toward adumbrating this dissertation Imentioned therewas potential
forOpenFlow to beTuring-complete. Proof of this conjecture is doubtlessly too sizeable
to ėt within any reasonable length, or time, allowance for this particular project. ĉat
said, I think there is potential to prove Turing-completeness in a reasonable straightfor-
wardmanner by implementingTuringMachine equivalent automata (such as Rule ǉǉǈ)
through the mechanisms available to Instructions and Action Sets. ĉe push/pop ac-
tions forMPLS labels orĈL increment/decrement operations could be used to imple-
ment stacks for instance (§Ǎ.ǉǈ [ǊǑ]).

ǊǍ

Dr. Peter Venkman: Ray, pretend for a moment that I don’t know anything about
metallurgy, engineering, or physics, and just tell me what the hell is going on.
Dr. Ray Stantz: You never studied.

– Bill Murray and Dan Aykroyd in “Ghostbusters”

4
Implications

TļĹ ķŃŁńŀĹŎĽŉŏ ĵłĵŀŏňĽň Ľł ŉļĹ ńŇĹķĹĸĽłĻ ķļĵńŉĹŇ establishes themost critical
aĨribute of OpenFlow for this investigation: its formal complexity is at least context-
sensitive. From a LANGSEC perspective there are two chief consequences to be ob-
served from the complexity strength:

Observation ȕ Ad hoc parsers are not capable of fully recognizing OpenFlowmessages and con-
sequently are not able to safely, and deėnitively, validate messages.

Observation Ȗ It is not possible to determine whether OpenFlow implementations have equiv-
alent parsers. ĉis is to say that one cannot determine if a given collection of
parsers will derive the same semantics when processing the same arbitraryOpen-
Flow messages.

ĉe two observations both directly impact the security of OpenFlow implementa-
tions, which I will discuss, but the laĨer observation also has signiėcant second order
impacts for systems composed around OpenFlow.

Without deėnitive validation of OpenFlow messages there is no assurance that any
computation performed on the contents of those messages is safe. In particular, an im-
plementation cannot make any safe assumptions about the structure of data that hasn’t
been processed based on data that has been processed. In these cases the safety of an
operation is dictated by data-dependent interactions on the execution paths leading to
that operation within a program’s call graph.

Ǌǎ

Determining exact static call graphs is known to be an UNDECIDABLE problem,
approximate solutions are nevertheless necessary when auditing the security of a piece
of soěware. ĉe effectiveness of these approximate solutions (nee auditing) depend sig-
niėcantly on the correctness of the reasoning that goes into them, regardless of whether
those solutions are programmatic tools or manual call tracing. Reasoning, however, is
fragile.

ĉe uncertainty of security auditing, in particular, highlights why I think LANGSEC
is a valuable tool for understanding the nature of implementation insecurity. LANGSEC
allows for a substantive explanation for why a fragile looking piece of code cannot rely
on the safety of the data it is processing. ĉe question of the likelihood that data might
be unsafe is moot when formal proof is available to show that it cannot be safe.

ǌ.ǉ CŊŇŇĹłŉ IłŉĹŇńŇĹŉĹŇ IŁńŀĹŁĹłŉĵŉĽŃłň

ĉe implications of Observation ǉ are profound for the security of OpenFlow inter-
preter implementations: they are all likely to be Ěawed in some way. Whether a par-
ticular implementation is going to be prone to having exploitable vulnerabilities is then
largely dependent on the implementation mechanism. An implementation is highly
likely to have security bugs if it hasn’t been built using tools that structurally prevent
particular classes of vulnerabilities, tools which include programming languages that are
strongly typed, strictly evaluated, and have automatic memory management. Unfortu-
nately, most switch implementations are wriĨen in C andControllers are a rather mixed
bag of C, C++, Java, and assorted dynamic languages like Python. A few niche inter-
preter implementations built in safer languages do exist though, these include OpenMi-
rage (OCaml) [ǋǈ] and Galois Inc.’s NeĨle (Haskell) [Ǌǐ].

ǌ.Ǌ FĽłĻĹŇńŇĽłŉĽłĻ

One of the primary consequences of inequivalent parsers is knowing that the parsers
will respond in discernibly different ways to carefully craěed inputs. ĉrough such be-
haviour differences it should be possible to ėngerprint OpenFlow parser implementa-
tions. I make a subtle distinction here between the parsers and the whole OpenFlow
interpreter, even though there isn’t likely to be a large difference in most ad hoc im-
plementations. ĉe reason for the distinction is that I think that components whose
function is effectively front-end parsing are likely to be reused across OpenFlow imple-
mentations, even if the reuse is at the level of copy and paste in source code.

ǊǏ

ĉesigniėcant potential for vulnerabilities in parsing code that follows fromObserva-
tion ǉ makes ėngerprinting extremely valuable for not only aĨack targeting in exploita-
tion operations but for targeting bug hunting as well; widely reused components are
much more valuable targets for practical security research.

ǌ.ǋ GŇĵłĸĹŇ AňńĹķŉň

Aside from direct access to an OpenFlow channel, there are two main routes for an at-
tacker to inĚuence data within OpenFlow messages or in the runtime state of protocol
interpreters: ėrst, through the ability to manipulate the layout and content of network
packets processed by an OpenFlow switch. Second, through the ability to manipulate
or otherwise affect the conėguration of OpenFlow controllers.

For the ėrst route the refrain remains, “avoid parsing” and this applies to packets as
much asOpenFlow itself in SDNdesigns. In particular, this means being extrememind-
ful of the risks inherent in architectures that make signiėcant use of exchanging packets
between switches and controllers via Packet-In or Packet-Out messages.

ĉe second route particularly affects multi-tenant distributed service architectures
(i.e. cloud computing) which implement dynamic networking services using Open-
Flow. ĉe soěware implementation of OpenFlow most likely to be found in such envi-
ronments is theOpen vSwitch soěware switch, forming the core network for XenServer
and most OpenStack systems amongst other things. ĉe nature and degree of inĚuence
over the SDN components in a system using Open vSwitch depends on speciėc opera-
tional conėgurations, naturally, but the fact remains that there is signiėcant opportunity
for an aĨacker to directly inĚuence the system.

ǌ.ǌ EŎńĵłňĽŋĹ VŊŀłĹŇĵĶĽŀĽŉŏ

ĉe immediate implications of OpenFlow insecurity are quite signiėcant but when the
nature of OpenFlow’s diffusion into computing infrastructure is considered, the higher
order and longitudinal effects are truly staggering. OpenFlow interpreters are being
ėelded in every context where networking is deployed: from the soěware switches of
virtual machine hosting infrastructure, through data-centre and service provider net-
works, and on down to customer premises equipment and similar low-cost embedded
applications (e.g. wireless access points and ADSL modems). Applications that involve
embedded-class hardware, where the protocol interpreters are implemented in the de-
vices’ ėrmware, will be especially problematic to manage over long time scales. Opera-
tional experience has proven that updating ėrmware is generally some combination of
difficult, risky, and costly, which is unlikely to change soon.

Ǌǐ

In terms of time scales, networking hardware tends to have amuch longer operational
service lifetime than general purpose computing hardware, especially service provider
transport infrastructure. ĉe impact of vulnerabilities in core infrastructure can be im-
mense and the full consequences of such impacts over the course of time is complicated;
none of this can be ignored. ĉe legacy of OpenFlow might well be the vastness of
vulnerable soěware it will leave scaĨered across the computing and telecommunication
landscapes.

ǌ.Ǎ NĹŉŌŃŇĿ VĹŇĽĺĽķĵŉĽŃł

Much like every dynamic distributed system, Soěware-Deėned Network implementa-
tions have tomanage intrinsic transaction and consistency issues. In the lingua franca of
contemporary distributed systems these issues are usually discussed in terms of ACID
¹, BASE ², and CAP theorem³ properties. It is arguable that the design of OpenFlow did
not initially take these issues into serious consideration, dealing with them has had to
come aěer the fact as the SDN ėeld has gained experience with designing and ėelding
systems.

One veriėcation related idea described by ReiblaĨ et al [ǋǌ] advocates for determin-
ingwhat kinds of conėguration operations are safe to apply a priori. By establishing such
a set of safe operations, the authors hope to gain assurance over the behaviour of con-
ėguration updates. In an apparent effort to address update related concerns, the latest
version of the OpenFlow speciėcation (ǉ.ǌ.ǈ) now deėnes a mechanism, termed Bun-
dles, for improving transaction properties of controller-to-switch command and conėg-
uration messages. Aside from improving transaction mechanisms though, a signiėcant
element of the response to distributed systems issues is the appearance of various differ-
ent SDN veriėcation schemes.

ĉe schemes examine a variety of different aspects of OpenFlow networks, from for-
mal network speciėcation through tooperational veriėcationof so-called invariant prop-
erties. Network design checking schemes aren’t particularly relevant to the current dis-
cussion but operational schemes are, and these fall into two basic types: controller-
hosted and message inspecting.

¹Atomicity, Consistency, Isolation, and Durability

²Basically Available, Soě state, Eventual consistency

³Consistency, Availability, Partition Tolerance

ǊǑ

ǌ.Ǎ.ǉ CŃłŉŇŃŀŀĹŇ-ļŃňŉĹĸ AńńŀĽķĵŉĽŃłň

Controller-hosted veriėcation schemes are typically implemented as plug-ins to ex-
isting controller applications; examples of such schemes include Kinetic[ǋǌ] and
FLOVER[ǌǈ]. Effectively subcomponents of a Controller, these schemes rely on the
interpretation of OpenFlow messages by their host application. ĉe most signiėcant
implication of language complexity for these applications then comes from the inability
to effectively validate OpenFlow message data: the veriėcation applications might
receive malicious data to process. Realistically, this isn’t a problem for these types of
veriėcation schemes per se, they are simply affected by insecurity in Controller’s parser.

Due to the fact that these schemes are designed to be situated inside the system they
are monitoring, they do suffer from observer vantage-point problems. I will discuss
this problem in more depth in a following section concerning alternate veriėcation ap-
proaches.

ǌ.Ǎ.Ǌ OńĹłFŀŃŌ MĹňňĵĻĹ IłňńĹķŉĽŃł

Veriėcation schemes that rely on inspecting or intercepting OpenFlow message traffic,
such as VeriĚow [Ǌǌ], depend on the assumption that the interpretation of messages by
veriėcation elements and endpoints is equivalent. ĉrough the language-theoretic anal-
ysis of OpenFlow I’ve proved that OpenFlow parser equivalence is fundamentally UN-
DECIDABLE and the assumptions supporting these schemes cannot hold. In practical
terms the impact of this undecidability is that systems using these veriėcation mecha-
nisms will be a priori vulnerable to classes of aĨack that include insertion of malicious
OpenFlow messages as well outright evasion of the veriėcation mechanisms.

Even if I were to pretend for a brief moment that computational intractability wasn’t
a limitation, I can still reason that there are very difficult problems with message inspec-
tion schemes. Namely, a veriėcation scheme that examinesOpenFlowmessages directly
would need to manage the interpretations idiosyncrasies of every end-point it is moni-
toring and do this over time across operational environment changes. In practise, this
approach to veriėcationwould result in systems that are indeterminately effective, which
I think amounts to liĨle more than just pretending the veriėcation system works.

ǌ.Ǎ.ǋ PĵŇŉĽŉĽŃł Ķŏ PŇŃŎŏ

One of the oě cited challenges in empirical networking research is the difficulty of ac-
cessing realistic experimental environments; short of direct access to production net-
works, all other approaches make signiėcant compromises in some dimension. Hard-

ǋǈ

ware test-bed networks are costly in nearly every aspect over the course of their lifetime.
Soěware simulation, while cost effective andĚexible, is always going to be an incomplete
approximation to a real network. To address these problems Sherwood [ǋǑ] proposes
using the capabilities of OpenFlow-enabled networking hardware to allowmultiple par-
ties to simultaneously access a real production network by partitioning it into isolated
“slices” whose resources can be managed dynamically.

ĉere is no major conceptual problem with the premise of using a dynamic mecha-
nism to enablemulti-party access to a real network, this is exactly how Service Providers
operate day to day; however, the mechanism Sherwood describes [ǋǑ] for partitioning
a network is a transparent proxy for OpenFlow, named Flowvisor, that will:

“forward a given [OpenFlow] message unchanged, translate it to a suitable
message and forward, or ‘bounce’ themessageback to its sender in the form
of an OpenFlow error message”.

Following from the implications ofOpenFlow’s complexity it is apparent that Flowvi-
sor will not be able to deėnitively validate messages it receives nor will it be possible to
determine if Flowvisor is deriving the same semantics from messages as the switches
it is supposed to protect: Flowvisor can not enforce security policy with any certainty.
ĉe OpenFlow interpreter of the proxy itself also presents an exceptionally large aĨack
surface.

In a production network that implements partioning through an intercepting Open-
Flow proxy scheme (like Flowvisor), the proxy would be the fundamental mechanism
for security policy enforcement. In such circumstances, the intercepting proxy would be
a highly valuable target and, due to OpenFlow’s complexity, an extraordinarily vulnera-
ble one. ĉe failure modes for an OpenFlow intercepting proxy are disastrous and the
design simply can not be used to safely partition a single physical network into multiple
independently controlled security domains.

ǌ.Ǎ.ǌ OŉļĹŇ AńńŇŃĵķļĹň

Security issues aside for a brief moment, the SDN veriėcation approaches in the fore-
going discussion all have an additional limitation in that they are subjective and only
provide a perspective on the internal consistency of the network. ĉe internal perspec-
tive cannot be either complete or objective, the information that would be required for
either is outside the targeted OpenFlow system and is inaccessible to the veriėcation
mechanism. I do think there is operational value inmechanisms formaintaining control
over the internal consistency of a network but the limitations of thosemechanisms need
to be explicitly acknowledged.

ǋǉ

If I was trying to verify operational reality instead of just reaffirming a controller’s
reference point, I would look at veriėcation mechanisms that collect information from
sources outside the control andmanagement planes of the target system, such as through
out-of-band network instrumentation ⁴. A technique that appears to have some promise
for such an application is something named Header Space Analysis (HSA) [ǊǊ]:

“[ĉe technique] treats the entire packet header as a concatenation of bits
without any associated meaning. Each packet is mapped to a point in the
Ƥ, ƥL space, where L is the maximum length of a packet header, and net-
working [middle] boxes transform packets from one point in the space to
another point or set of points (multicast).”

ĉe HSA technique has been recently expanded with additional formalism in the
form of a tool name NetPlumber [Ǌǋ]. NetPlumber was apparently very effective when
applied to Google’s SDN WAN, albeit the tool was operating from within the control
plane of the network and suffers from the observer issues previously discussed.

⁴I’m aĨempting to avoidwandering off topic by keeping discussion aboutmeasurement and veriėcation
as constrained as possible. Instrumenting networks that make heavy use of virtualization, in particular,
present an exceptional challenge and is a distinct subject area in its own right.

ǋǊ

Special Agent Fox Mulder: Whatever happened to playing a hunch, Scully? ĉe element of
surprise, random acts of unpredictability? If we fail to anticipate the unforeseen or expect the
unexpected in a universe of inėnite possibilities, we may ėnd ourselves at the mercy of anyone
or anything that cannot be programmed, categorized or easily referenced.
{Pops a sunĚower seed into his mouth}
Special Agent Fox Mulder: What are we doing up here, Scully? It’s hoĪer than hell.

– David Duchovny in “ĉe X Files”

5
AMap ofWhat is Difficult

TļĹ Mĵń is a visual reference with an accompanying grand, but hopefully intuitively
helpful, analogy to worldly adventure. ĉe intent is to use it to establish a less person-
ally subjective way to frame design discussions with an explicit and multi-dimensional
reference for describing some security characteristics of a system, how the characteris-
tics might relate, and how design changes could affect those relationships. To wit, the
map is a heuristic tool depicting where experience, expertise, ‘being careful’, technical
mechanisms, et cetera are helpful and where relying on them is likely not possible, per-
haps even dangerous. At the very least I think it is a useful representation of important
aspects of the implementation security problem in the context of LANGSEC.

Inspiration for themapwas drawn in large parts from the areas ofmathematical prob-
lem solving and risk engineering. Respectively, George Polya’s recommendation to,
“Draw a hypothetical ėgure which supposes the conditions of the problem satisėed in
all its parts” [ǋǋ] and Nassim Taleb’s discussion of applied statistical knowledge along
with his own concept of “ĉe Fourth Quadrant” [ǌǉ].

Aěer detailing the Map and its analogy I will illustrate its application brieĚy with
OpenFlow and then discuss my perspective on the semantics of implementation mech-
anism safety.

ǋǋ

Ǎ.ǉ TļĹMĵń ĵłĸ AłĵŀŃĻŏ

Figure 5.1.1: A Map of What is Difficult

Quadrant ƺǉ ĉink about the terrain in the ėrst quadrant as being like a stroll through a local
municipal park, or similar green-space: it is generally a safe place to let the kids
play and any hazards are preĨy visible, or arguably non-existent.

Quadrant ƺǊ ĉe second quadrant is an explored wilderness: there are deėnite hazards, per-
haps many, but they are known with some certainty. Experience can guide a trav-
eller around hazards, or otherwise prepare for them, but mistakes are deėnitely
possible, if not inevitable.

Quadrant ƺǋ ĉe third quadrant is likened to areas on the outer edges of an old map where ex-
perience is limited and the nature of the terrain is largely hypothetical. It’s uncer-
tain whether the adventurous, but prepared, traveller might ėnd relatively benign
wilderness or some deėnitively hostile terrain.

Quadrant ƺǌ Our fourth quadrant is the home of a loose pantheon of ancient, powerful, and
malevolent deities; or places of worship for their cults. ĉis is a realm of many-
tentacled Lovecraěian horrors replete with unfathomable terror, depthless insan-
ity, and international standards bodies.

ǋǌ

Ǎ.Ǌ OńĹłFŀŃŌ Ńł ŉļĹMĵń

AnOpenFlow interpreter implemented inC sits squarely inQuadrant ȆȘ (a genuine hor-
ror) and the Map provides some gentle indications of how it might be possible improve
the interpreter’s circumstances. I’ll consider twooptions thatwillmove the hypothetical
OpenFlow interpreter into less arduous terrain by a single step:

ǉ. ĉe ėrst option could be making a move into Quadrant ȆȖ by removing the im-
plicit requirement to implement solutions toUNDECIDABLEproblems. I could
remove this requirement for the OpenFlow interpreter by signiėcantly reducing
the complexity of the protocol itself, ideally making it at most deterministic
context-free.

Ǌ. A second option could be to employ safermechanisms in the implementation and
thereby move into Quadrant Ȇȗ. One safer mechanism would be implementing
the protocol interpreter in a programming language that is statically typed, strictly
evaluated, and uses automatic memory management (such as OCaml) instead of
C. Changing the implementation language in this way would eliminate the possi-
bility ofmost vulnerabilities that rely on abusingmemory corruption or data type
confusion.

Discussions about my hypothetical implementation now have contextual reference
points for the current characteristics of the system design; as well, I have a framework
for discussing changes that I might consider for eliminating input handling insecurity.
For instance, I can say that, from a practical standpoint, making drastic changes to a
widely employed and well entrenched protocol may be slightly fanciful if not entirely
impossible. Security vulnerabilities in the new language runtime itself notwithstanding,
the second option is entirely under our control and is reasonably practical.

Ǎ.ǋ IŁńŀĹŁĹłŉĵŉĽŃłMĹķļĵłĽňŁ SĵĺĹŉŏ

If I was to suggest thinking about the vertical partition of the Map as an indication that
an exposure exists then the horizontal partition could coarsely articulate the nature, or
perhaps even degree, of exposure. Does the implementation mechanism have aĨributes
that make exploiting broad classes of security vulnerabilities fundamentally more diffi-
cult? Are there aĨributes that offer concrete hazard prevention, or otherwise enable risk
avoidance? Safer implementation mechanisms are those which embody the aphorism,
“ĉe only way to make sure something won’t happen, is if it can’t happen.” It is in this
way that Safety is being employed as a general descriptor on the Map; formal properties
of themechanismsmight contribute to the assessment of safety but it is not about formal
properties per se.

ǋǍ

When I started writing this section it was initially named “Runtime Environment
Safety” but I realised that I’d lost the plot in my own narrative. What I want, is to focus
the current discussion on prevention and avoidance. Runtime environment aĨributes
doubtlessly contribute to the overall resilience of a systembut they are, by and large,mit-
igation strategies. Contemporary technicalmechanismswith the hinting label of ‘exploit
mitigations’ are among the tools that I speciėcally do not consider immediately relevant,
a non-exhaustive list of which include:

• Privilege restrictions and execution containment via structural abstractions, indi-
rections, and architecture (virtualization, sandboxing,…);

• Operating system/Platformmitigations: ASLR,W⊕X, heaphardening, canaries;

• Compiler-based mitigations: Bounds checking, function replacement.

Unhappy as some people can be with arguments made via negativa, I do want to offer
a few more speciėc suggestions for aĨributes that can affect mechanism safety. I just
want to be clear that the intent behind this heuristic is its focus on enabling engineering
discussions and I’m speciėcally trying to avoid establishing any assumptions about partic-
ular mechanisms. Nevertheless, mechanism safety assessment could consider aĨributes
like the following:

• Memory life-cycle management;

• Data type strength and semantics;

• Computational strength limitations;

• Trusted Computing Base (TCB) minimizations;

• Parser construction tools;

• Explicit grammars and similarly rigorous details in speciėcations.

ǋǎ

...when the weather forecast inevitably becomes RIVERS OF BLOOD ALL DAY EVERY DAY.
– James Mickens in [Ǌǎ]

6
FutureWork and similar diversions

ǎ.ǉ PĵŇňĽłĻOńĹłFŀŃŌ

ĉe analysis presented in this paper establishes an objective reference point for under-
standing the signiėcant, and fundamental, obstacles that stand before implementing se-
cure OpenFlow interpreters. Parsing context-sensitive languages isn’t trivial in general
circumstances let alone those which have strong performance constraints like network-
ing, at least according to the understanding I presently have of the literature. Resigned to
live and work with OpenFlow for the near future as we are, I think this is a topic worthy
for consideration as Future Work.

In terms of speciėc suggestions for where the FutureWork on securely parsingOpen-
Flow might proceed, Non-Chomsky grammars and Recognition Systems appear to be
promising practical directions. ĉeAĨributeGrammar forOXMdescribed inAppendix
A is actually an example of a type of Non-Chomsky Grammar that appears to be an ef-
fective tool for describing existing protocols in away that allows parsers to bemost easily
derived.

As noted in §ǉǍ.Ǐ of [ǉǍ], ChomskyGrammars are fundamentally generative descrip-
tions of languages. Just specifying a generative grammar requires signiėcant effort and,
even then, deriving practical mechanisms for recognizing those grammars is generally
non-trivial. Observing that recognition is usually what actually maĨers, [ǉǍ] suggests
that a beĨer strategy would be to specify languages, or in our case network protocols,

ǋǏ

directly with a recognizer system. Considering that the OpenFlow speciėcation devel-
opment process effectively derived the protocol from an ad hoc recognizer suggests such
a strategy might integrate well with real-world development’s natural tendencies.

ǎ.Ǌ HŊłŉĽłĻOńĹłFŀŃŌ FŀĵŌň

ĉe main thrust of the analysis in this paper was at the OpenFlow wire protocol itself,
however, the speciėcation deėnes more than just a network protocol. ĉe OpenFlow
switch speciėcation deėnes the structure and behaviour of a hypothetical networking
device that the wire protocol is simply an interface to, a device which parses and ma-
nipulates other network protocols itself. It would likely be very productive to apply
LANGSEC concepts to analysing the way the speciėcation model interacts with other
network protocols.

As chancewould have it, an example of the type of network protocol parsing inconsis-
tencies that could be illuminated in further such analysis was introduced along with the
addition of extensible match support (and consequently OXM) in OpenFlow version
ǉ.Ǌ. From the ReleaseNotes section of [ǊǑ] observe that the following rather signiėcant
behavioural change was made in the speciėcation:

B.10.7 Removed packet parsing specification

The OpenFlow specification no longer attempts to define how to
parse packets (EXT-3). The match fields are only defined
logically.

* OpenFlow does not mandate how to parse packets
* Parsing consistency acheived via OXM pre-requisite

When the packet parsingmechanismwas speciėed explicitly it wasmuchmore likely,
though as we’ve discussed still not guaranteed, that two OpenFlow endpoints would
parse a packet consistently. ĉe speciėcation maintainers did not understand that re-
moving the parsing mechanism requirements is not semantically equivalent to specify-
ing prerequisites for the match contents. It is entirely possible for two OpenFlow end-
points to derive differentmeaning from the same packets and applymatch rules in an in-
consistent manner. ĉere are many more similar opportunities to apply the LANGSEC
approach to further analysis of the OpenFlow switch speciėcation.

ǎ.Ǌ.ǉ IŁńŀĹŁĹłŉĵŉĽŃł-ĸĹĺĽłĹĸ BĹļĵŋĽŃŊŇ Aŉ BĹňŉ

ĉe OpenFlow switch speciėcation has an unmistakably strong relationship with the C
programming language: the speciėcation originated from the C implementation of an

ǋǐ

experimental soěware switch and aCheader ėle remains theprotocol deėnition’s central
feature. ĉe issue here that deserves aĨention in Future Work is that the deėnition of
message structures in the speciėcation assumes a naive ‘hardware’ behaviourmodel that
is incorrect for the context of contemporary standards-compliant (Cǉǉ) development
and run-time environment. Using the structures as the speciėcation deėnes them will
result in a number of different implementation-deėned and undeėned behaviours, some
of which are likely to result in security vulnerabilities.

ChieĚy, the issues relate to structure memory layouts and assumptions about the na-
ture of alignment and padding. ĉere are numerous instances of these types of problems
and a full analysis would be worthy of another thesis, at least. An illustrative example of
constructions that lead toproblemswithundeėnedbehaviour[Ǐ] are thenumerousmes-
sage structures, includingofp_match, where Ěexible arraymembers are not declared as
the last member of the structure or where, due to nesting, arrays of structures with Ěex-
ible members are deėned inside other structures. ĉe creative use of ad hoc padding to
enforce ǐ byte alignments in messages also creates all sorts of related issues.

I think a lesson to be found with OpenFlow is that implied implementation mecha-
nisms create signėcant risks, which are contributed directly by a protocol designer mis-
understanding real-world implementation mechanisms. I would argue that this circum-
stance aligns well with the reasoning behind the advice from the Internet Engineering
Task Force (IETF), stated explicitly in §ǎ of RFC ǊǉǉǑ[ǌ], to make standards descrip-
tive of protocols while avoiding prescription of speciėc implementation methods.

ǎ.ǋ HŊłŉĽłĻOńĹłFŀŃŌ BŊĻň

A natural corollary to the bug prevention tactic “avoid parsing” is the bug discovery tac-
tic “ėnd parsing”. ĉe parser abuse mentioned in the foregoing Implications section of
this thesis lays out the context for the strong suspicion that OpenFlow interpreters are
likely to have exploitable security bugs. Constructive proof for validating this suspicion
could be furnished by constructing exploits for the bugs in OpenFlow implementations
predicted by the language-theoretic analysis I have undertaken.

In this vein, translating LANGSEC concepts into novel analysis strategies or even
speciėc tactics is deėnitely another area for further research. An aĨack methodology
called Parse Tree Differential Analysis, described with application in [ǋǎ] and [Ǌǉ], is
directly derivable from LANGSEC concepts but there are doubtlessly others. It might
also be productive to consider existing practical vulnerability discovery techniques from
a LANGSEC perspective, such as fuzzing, ideally to derive some improvements if not
just to obtain different understanding for their effectiveness.

ǋǑ

ǎ.ǌ TŇĵĸĽŉĽŃłĵŀ SĹķŊŇĽŉŏ AłĵŀŏňĽň

In this paper I steer quite clear of traditional security analysis of the OpenFlow speci-
ėcation; chieĚy for the reason that the typical analysis doesn’t account for things such
as fundamental computational impediments to fully correct implementation. ĉese im-
pediments being evidence that, I have argued, establishes aprima facie case for insecurity
in OpenFlow implementations. Nevertheless, there is always room for more evidence
when considering insecurity and the OpenFlow speciėcation provides many opportu-
nities for further analysis. ¹.

When the the work on this project began in early summer ǊǈǉǊ no security analyses
of OpenFlow had been publicly disclosed. Since that time solid examples of traditional
analysis have begun appearing, starting with Wasserman[ǌǌ] (updated in [ǌǋ]). ĉose
same authors have also published a draě [ǉǏ] laying out security requirements for SDN
through an IETF working group. ĉe requirements are deėnitely a good start but it is
worth noting that the effort is completely outside the forum responsible for the actual
OpenFlow speciėcation. Additional security analyses, arriving most recently at SIG-
COMM Ǌǈǉǋ, likely offer further insight but were not considered in the analysis I have
undertaken.

ǎ.Ǎ TĵĶŊŀĵ Rĵňĵ Rĵňĵ

“One of the problems of being a pioneer is you always make mistakes and
I never, never want to be a pioneer. It’s always best to come second when
you can look at the mistakes the pioneers made.”

– Seymour Cray, Public lecture at Lawrence Livermore Laboratories on
the introduction of the Cray-ǉ (ǉǑǏǎ), from Appendix B of [ǉǐ].

OpenFlow has frequently been discussed as something of a networking analog to the
xǐǎ Instruction Set Architecture (ISA). Comparing OpenFlow to xǐǎ isn’t entirely fair
though: obvious warts notwithstanding, xǐǎ isn’t that bad. SnoĨyness aside, there ap-
pear to be many parallels between the challenges facing Network Virtualization, partic-
ularly OpenFlow, and the evolution of computer processor ISA so I think on the surface

¹Starting with the absence of any sort of security model…It certainly doesn’t bode well that the word
security has only one relevant appearance in the whole speciėcation, not even warranting its own subsec-
tion title. What is there is a very brief subsection (§ǎ.ǋ.ǋ in [ǊǑ]) titled ”Encryption” that makes (entirely
optional) recommendations to run OpenFlow TCP connections over TLS and to authenticate endpoints
with certiėcates. Unfortunately TLS and X.ǍǈǑ certiėcates are rather prickly mechanisms and their basic
integration into any non-trivial system is, at best, a magniėcent challenge.

ǌǈ

this analogy can be a very apt one. Where the analogy breaks down is in the nature of
the interface: OpenFlow is an API, a user interface for programmers, whereas an ISA
isn’t an API and generally doesn’t pretend to be. In terms of the structure of contempo-
rary soěware an ISA is quite a few levels of abstractions removed frommost application
soěware logic ².

In the implications section I discussed some of the fundamental limitations of veriė-
cation within OpenFlow systems due to language complexity but I think that even the
fact that bolting on veriėcation schemes is necessary speaks to yet deeper problemswith
the OpenFlow design. In particular, an OpenFlow SDN is a distributed system and yet
it makes a priori false assumptions about the reliability, security, capacity of the chan-
nels that connect switches and controllers. Sadly, many of these assumptions are so well
know that they are collected in a piece of technofolk wisdom known as the “Fallacies of
Distributed Computing”[ǉǊ].

In terms of Future Work here I think there are two related points; ėrst, the design
of programmable network Ěow management interfaces must accept their nature as dis-
tributed systems as axiomatic. Second, instead of applying the ISA analogy aěer the fact,
it would be productive to examine designing Ěow management interfaces starting from
an ISA perspective and being mindful of the parsimony that ISA designs require.

ǎ.ǎ PĵŇňĽłĻ-ĵŌĵŇĹ DĹňĽĻł

ĉe LANGSEC approach provides excellent explanations for the fundamental cause of
many common classes of soěware vulnerabilities and it does provide some security en-
gineering advice; however, if there is one aspect that shows the relative newness of the
approach it is in the limited availability of more detailed information about applying its
principals to real-world protocol design. ĉere is tremendous opportunity for contribut-
ing to this aspect of Applied LANGSEC.

Without diving headlong down the rabbit hole of this topic, which is FutureWork af-
ter all, I can scarcely summarize signiėcant aspects of the situation beĨer thanMight and
Darais in [ǊǏ]. A fantastic paper which focuses on parsing tools, those authors astutely
observe that nearly every programming language has a well integrated regular expres-
sions package but few have the same level of support for parsers. In particular I think
it would be worthwhile investigating the evaluation of parsing approaches especially
suited to network protocols (and similar performance concerned applications) as well

²I think it’s arguable that everything encountered between source code and execution is a substantial
layer of abstraction in its own right. ĉis is everything involved in compilation, linking and loading, an
operating systems’ Application Binary Interfaces…et cetera, et cetera.

ǌǉ

as a toolkit that implements them. ĉe Hammer parsing library, from Meredith PaĨer-
son no less, has a number of features that make it useful for parsing binary data and is a
promising approach in this area [ǋǊ].

ǎ.Ǐ RĹĵňŃłňWļŏ ĵłĸOŉļĹŇ AńńŇŃĵķļĹň

Asigniėcant question frequently pops intomymindwhen I considerLANGSECand the
terrain of existing network protocols, “why do people tend to design protocols that are
context-sensitive?”. ĉere is a very apparent predisposition towards context-sensitivity
in the Internet protocols, in particular, so I think it is worth exploring the nature of this
phenomenon and the context related to it. ĉere are questions here that remain very
much open.

It is rightly point out by Sassaman [ǋǎ] that when Claude Shannon was formulating
his mathematical theory of communication he was primarily concerned with the prob-
lems involved in engineering communication systems; however, it is perhaps a stretch to
make a general claim that he regarded the semantics of messages as outside the scope of
hismodel. Shannonwas awareof thewider implications of his conceptualizationof com-
munication and together with Warren Weaver republished his original report together
with additional material discussing broader implications of modelling communication
mathematically [ǋǐ].

ĉe original LANGSEC position papers don’t spend much time on analyzing the
conceptual space between the engineering focus of Shannon’s theory the more general
problems of communication. In [ǋǐ] these problems were described by Weaver using a
three level taxonomy:

Level A –How accurately can symbols of communication be transmiĨed? (ĉe technical
problem)

Level B – How precisely do the transmiĨed symbols convey the desired meaning? (ĉe
semantic problem)

Level C – How effectively does the received meaning affect conduct in the desired way?
(ĉe effectiveness problem)

When discussing modelling communication from a security standpoint in [ǋǎ] the
authors span the conceptual gap between information theoretic communication and se-
mantics with reference to arguments from social science but I don’t think that is nec-
essary. In [ǋǐ] Shannon wrote, “…ĉese semantic aspects of communication are irrel-
evant to the engineering problem.” but he does not discuss the converse. I think the
LANGSEC paper misses something when it assumes the foregoing statement about se-
mantics is somehow symmetric, it isn’t necessarily. Weaver actually describes in [ǋǐ]

ǌǊ

how he, and Shannon, think the problems at levels B and C are related to the statisti-
cal characteristics of information at those levels and infers that this makes the level A
engineering problems more relevant than is otherwise assumed.

At the time Shannon and Weaver published their work linguistics was in a vastly dif-
ferent paradigmatic era, if only for the reason thatChomskywouldn’t publish his seminal
work until a solid decade later. I don’t know to what degree the connection described
by Weaver remained unexplored but it is intriguing. I think there might be a provable
link between the information density of stronger formal languages and information the-
oretic communications. Some of these ideas about information density are axiomatic to
coding theory but the extension to stronger languages doesn’t seem to be quite as well
explored. Perhaps these ideas are worth further investigation³.

Intuitively, context-sensitive languages seem more information dense so maybe the
predisposition to context-sensitive protocol designs is perhaps due in part to uninten-
tional optimization? By this I mean that it might be that people have a bias to substitute
difficult problems at level B and C with related but beĨer understood problems from
level A, or otherwise apply techniques from level A. Just to provide some support that
the phenomena I hypothesize isn’t a completely spurious suggestion, I can offer the fact
that this substitution bias is an experimentally reproducible phenomenon, described ac-
cessibly by Daniel Kahneman in [Ǌǈ]. I must note that this musing is essentially phe-
nomenological and is by no means an aĨempt at deriving some sort of reductive grand
explanation about protocol design.

ǎ.ǐ Mĵń EŎĹĻĹňĽň

ĉe Map heuristic device introduced in this thesis could beneėt from further explana-
tion and reėnement. Further examples, that is applying it to other implementations and
protocols, would likely be helpful. Beyond the Map itself, one of the main aspects of
the approach I advocate is developing the concepts and heuristic tools for engineering
in the presence of computationally hard problems whose approximate solutions have
security implications. ĉe ėeld of distributed computing looks like a particularly com-
pelling source for more such problems.

³Indeed, apparently hidden within the overbearing shadow of Chomsky and his conception of formal
languages is the ėeld of Mathematical Linguistics, signiėcant aspects of which are statistical and similar
quantitative approaches to language. ĉis informationwas discovered aěerwriting the foregoingparagraph,
which I’ve leě as is because it captured my original thoughts.

ǌǋ

ǎ.Ǒ SĽĻłň ĵłĸ PŃŇŉĹłŉň (Ńĺ CļĵłĻĹ)

ĉe evolution of OpenFlow has been largely driven by feature extension: capabilities
are added to the switch model and the protocol grows accordingly. ĉe ėrst item in the
change notes for the vǉ.ǌ.ǈ speciėcation was in fact, “More extensible wire protocol”.
For a protocol that is being widely and rapidly ėelded, in non-trivial embedded con-
texts, the degree to which the syntax and semantics of the protocol continues changing
is breathtaking. I seriously wonder at what point OpenFlow caretakers think upgrading
implementations will become truly unmanageable, if it isn’t already.

ĉe version ǉ.ǋ.x series of speciėcations stabilized the wire protocol at version 0x04
between late June ǊǈǉǊ and the middle of August Ǌǈǉǋ, during which time the use and
popularity of OpenFlow has (to put it mildly) experienced exponential growth. No
doubt owing to the level of popularity aĨained during this brief period of lower volatil-
ity, theONF released a package of speciėcations for optional extensions that can be used
to add major ǉ.ǌ.ǈ features to an implementation without breaking compatibility with
the v.0x04 wire protocol.

Extending older versions of OpenFlow in parallel with deėning a new incompatible
version seems to be a curiously divisive strategy for evolving the protocol and its ecosys-
tem; I amwilling to bet hard currency that version ǉ.ǋ.x will persist for quite some time.
Further to that, I think the expansion of the protocol through ever more ad hoc features
only serve to embriĨle it further and OpenFlow is itself following a trajectory toward
the soěware-deėned fate famously described by Alan J. Perlis:

“In the long run every program becomes rococo – then rubble”

As pessimistic as I am about the future of OpenFlow itself, many of the concepts
advanced through the current SDN and network virtualization paradigms do show ab-
solutely tremendous promise as potent tools for improving the use of networking in dis-
tributed computing systems.

ǌǌ

As I have emphasized in detail already, there are no standard templates or uni-
versal solutions…Fundamentals and principles exist, but they require judgement
in application, and there is no substitute for studying the environment in detail,
developing locally tailored solutions, and being prepared to adjust them in an
agile way as the situation develops.

– David Kilcullen, in [ǊǍ]

7
If you don’t stop that you’ll go blind...

Ǐ.ǉ FĽłĵŀWŃŇĸň

LĵłĻŊĵĻĹ-ŉļĹŃŇĹŉĽķ ňĹķŊŇĽŉŏ ķŃłķĹńŉň do not deėne speciėc solutions so much
as they offer a reėnement to our understanding of existing problems. Knowing not only
where something does not work but cannot work is the speciėc sort of implementation
relevant engineering knowledge that can be percolated back to inform our doctrine for
protocol design and speciėcation. Actionable heuristics developed from this knowledge
are especially important because practise demonstrates that the raw aĨention and care
of experts, though necessary, is not sufficient for good engineering.

As a security practitioner I think it is difficult not to notice the wishful thinking of ‘ex-
pert care’ neatly encapsulated in the following quotation fromReitblaĨ et al[ǋǌ] in their
discussion of determining the safety of conėguration updates in anOpenFlow network:

“We believe that, instead of relying on point solutions for network updates,
the networking community needs foundational principles for designing
solutions that are applicable to a wide range of protocols and properties.
ĉese solutions should come with two parts: (ǉ) an abstract interface
that offers strong, precise, and intuitive semantic guarantees, and (Ǌ) con-
crete mechanisms that faithfully implement the semantics speciėed in the
abstract interface. Programmers can use the interface to build robust ap-

ǌǍ

plications on top of a reliable foundation. ĉemechanisms, while possibly
complex, would be implemented once by experts, tuned and optimized,
and used over and over, much like register allocation or garbage collection
in a high-level programming language. ĉe mechanisms, while possibly
complex, would be implemented once by experts, tuned and optimized,
and used over and over, much like register allocation or garbage collection
in a high-level programming language.”

ĉewhat suggested by ReitblaĨ is correct I think, but their how is a practical impossi-
bility with OpenFlow. Regardless of the good intentions of caring experts, solutions to
UNDECIDABLE problems will always be approximate and so anything requiring their
implementation will be unavoidably Ěawed, if only subtly. ĉis isn’t to say that time and
aĨention can’t beneėcially alter the security of a system: the network stacks in many
major operating systems today tell just such a story, having had their bugs (metaphor-
ically) hammered out through sheer force of aĨention over the course of many years.
Fixing bugs does not, however, change fundamental aĨributes of the designs and subtle
but devastating vulnerabilities can exist even aěer years of focus on secure development
practises. An existence proof for which is the OpenBSD ICMPvǎ mbuf handling vul-
nerability found by Core Security in ǊǈǈǏ [Ǒ]¹.

So expertise is not a direct solution to intractable problems, but we can inform ex-
pertise to improve our ability to identify them. ĉe LANGSEC approach provides such
practical means for problem identiėcation, and I have demonstrated how it can be ap-
plied to illuminate practical security problems. In this light I think it is not a stretch to
claim LANGSECwill have substantial impacts on improving Implementation Security;
if not that of OpenFlow, then preĨy much everywhere else.

¹OpenBSD is a free, multi-platform, ǌ.ǌBSD-based UNIX-like operating system and is arguable the
most secure operating system that is publicly-available. Core elements of the project’s philosophy are rigor-
ous application of secure coding practises and a nearly fanatical devotion to implementing correct solutions
to problems, despite the time that may be required to develop them. ĉe pace of feature implementation is
a common criticism of the project’s development process both inside and outside its developer community,
but it works.

ǌǎ

ĉe interface to an interpreter of a protocol is not the protocol.
– M.A. Padlipsky in [ǋǉ]

8
Appendix A - Grammar

Wļĵŉ ĺŃŀŀŃŌň Ľň ĵł AŔŇĽĶŊŉĹ GŇĵŁŁĵŇ for an instance of the OpenFlow
ofp_match structure containing a sequence of OFPXMC_OPENFLOW_BASIC ‘Open-
Flow eXtensible Match’ ėelds. ĉe grammar follows the notation described by Grune
& Jacobs in §ǉǍ.ǋ.ǉ of [ǉǍ] and was chosen, despite being admiĨedly ad hoc, because
it allows for a more straightforward deėnition of a Linear-Bounded Automata (LBA)
recognizer.

Grune & Jacobs note explicitly at the end of §ǉǍ.ǋ.ǉ that they are doubtful AĨribute
Grammars are generative grammars, ”since it is next to impossible to use them as a sen-
tence production mechanism”, and that they should instead be classiėed as recognition
systems. It is in the laĨer capacity that I employ them here.

Caveat lector, this is a restricted grammar for just the OXM basic ėeld types and I’ve
imposed two, somewhat trivial, constraints in order to be able to write a grammar that
isn’t absurdly large. ĉe grammar I deėne:

• does not recognize unknown OXM ėelds that appear in OXM ėeld sequence;

• does not enforce the prerequisites that exist betweenOXMėelds in sequences, as
described in §Ǐ.Ǌ.Ǌ.ǎ of [ǊǑ].

ǌǏ

ǐ.ǉ TļĹ GŇĵŁŁĵŇ

In a further effort to keep the grammar compact it has been made less explicit:

• Sythesized aĨributes of non-terminals are omiĨed on the right-hand side of rules
as the aĨributes are alreadynotedwhere they appear on the leě-hand sideof gram-
mar rules.

• Inherited aĨributes, however, are noted for non-terminals on the right-hand side
of grammar rules in order to make their difference distinct.

• AĨribute evaluation rules that encounter undeėned aĨributes can simply defer
those rules until the missing aĨributes have been synthesized in a child node.

• ĉe grammar isn’t explicit about what is done with the raw bytes corresponding
to the ėeld data because once parsing the larger OXM ėeld is complete they are
essentially ėxed values.

• syn distinguishes leě-hand side aĨributes of grammar rules where the aĨribute
evalution rules of the grammar rule compute (synthesize) the value of that at-
tribute.

• inh indicates leě-hand side aĨributes that were computed by the aĨribute eval-
uation rules of a parent node, therefore ‘inherited’.

• u16 denotes an unsigned ǉǎ bit integer, likewise u8 indicates an unsigned ǐ bit
integer.

• AĨribute evaluation statements are contained in {} braces.

• bits(n) signiėes a string of n raw bits.

• ĉe length for OXM ‘basic’ ėelds is ėxed for known type and hasmask val-
ues, all of which is detailed in the OpenFlow speciėcation. For the sake of
tidiness, a long list of the actual values has been omiĨed and in its place a
lookup_field_length() function has been deėned. Conceptually. the
function simply consults a table that contains the length values.

ofp_match(inh u16 len, # we always have the external perspective on the size of the structure
syn u16 plength,
syn u16 flength): Type Length OXM_fields(flength) Pad(plength)

{ check(len >= 8); /* min. 8 byte-aligned empty, external check */
check(type == 0x0001); /* OXM? */
plength:= ((length % 8) ? (8 - (length % 8)) : 0); /* padding? */
check(len == (length + plength)); /* consistancy check */
flength:= (length - 4);
check(flength >= 5); #smallest OXM
check((flength - consumed) == 0); }

ǌǐ

Type(syn u16 type): bits(16)
{ type:= value(Type);}

Length(syn u16 length): bits(16)
{ length:= value(Length);}

At this point we know there is at least enough data for OXM_Field to
contain a single copy of the smallest OXM field, so keep parsing...

OXM_fields(inh u16 flength,
syn u16 consumed): OXM

{ check(flength == oxm_length);
consumed:= oxm_length; }

OXM_fields(inh u16 flength,
syn u16 consumed): OXM OXM_fields(flen,con)

{ check((flength - consumed) >= 5);
flen:= flength - oxm_length;
consumed:= con + oxm_length; }

OXM(syn u8 dlength): OXM_Type OXM_Length OXM_Data(dlength)
{ check(oxm_class == 0x8000);
check(oxm_length == spec_length);
dlength:= oxm_length; }

OXM_Type(syn u8 spec_length): OXM_Class Fieldmask
{ spec_len:= lookup_field_length(oxm_field, oxm_hasmask); }

OXM_Class(syn u16 oxm_class): bits(16)
{ oxm_class:= OXM_Class; }

Fieldmask(syn u8 oxm_field,
syn u8 oxm_hasmask): bits(8)

{ oxm_field:= ((Fieldmask >> 1) & 0x7F);
oxm_hasmask:= (Fieldmask & 0x01); }

OXM_Length(syn u8 oxm_length): bits(16)
{ oxm_length:= value(OXM_Length); }

OXM_Data(inh u8 dlength): bits(8)
{ check(dlength == 1); }

OXM_Data(inh u8 dlength): bits(8) OXM_Data(dlen)
{ check(dlength > 1);
dlen:= (oxm_length - 1); }

Pad(inh u16 plength): bits(8)
{ check(plength == 1); }

Pad(inh u16 plength): bits(8) Pad(plen)
{ check(plength > 1);

plen := (plength - 1); }

ǌǑ

ǐ.Ǌ SŀĽĻļŉŀŏ ŁŃŇĹ ĺŃŇŁĵŀ łŃŉĵŉĽŃł

ĉeėrst draě of this thesis featured a note here indicating that the aĨribute grammar for
ofp_match could be Ěeshed out in a more standard formal notation, ‘time permiĨing’.
On further reĚection, I think adding more notational formalism to this analysis would
not have high practical value and, as M. A. Padlipsky might put it, we can all do without
me gilding the ragweed any further.

ǐ.ǋ BŊŉ ŉļĹŇĹ ĵŇĹ ńĽķŉŊŇĹň

Born out of a concern that the aĨribute grammer I deėned forOXMmight not be imme-
diately intuitive, I though it would be helpful to provide a visual depiction of the parse
tree the grammar implies. ĉe diagram that follows (ǐ.ǋ.ǉ) depicts OXM parsed down
to raw byte terminal nodes, where the aĨributes of non-terminals are annotated using
aĨached boxes and the arrows in the tree indicate the direction of information Ěow.

Figure 8.3.1: The tree for an attribute grammar parsing of an OpenFlow ofp_match
structure.

Ǎǈ

Raoul Duke: Suddenly, there was a terrible roar all around us, and the sky was full of what
looked like huge bats, all swooping and screeching and diving around the car, and a voice was
screaming: Holy Jesus. What are these goddamn animals?

– Johnny Depp in Terry Gilliam’s Fear and Loathing in Las Vegas

9
Appendix B - Notions

DŊŇĽłĻŉļĹķŃŊŇňĹŃĺĿłĽŔĽłĻŉļĽň ŉļĹňĽň ŉŃĻĹŉļĹŇ I ended up,metaphorically
speaking, with a fewextra balls of interesting yarn. ĉe following sections arediscussions
of topics that are part of a grander examination of OpenFlow and Implementation Se-
curity but which turned out to be too awkward to integrate without adding substantially
more context, and so length. ĉis thesis being perhaps a bit overlong as it is…

Ǒ.ǉ OńĹłFŀŃŌ SńĹķ CŃŁńŀĹŎĽŉŏ EŎńŀŃĸĽłĻ

An independent technology research institute in Brazil, Fundação CPqD, has imple-
mented switches based on the Ericsson TrafficLab soěware switch for the last three
major versions of OpenFlow [ǐ]. To satisfy a maĨer of curiosity around the soěware
development impact of OpenFlow’s version on version feature expansion, I undertook
some (very) ad hoc comparison of source code metrics from the three CPqD switches.
Speciėcation size increase was calculated from OpenFlow speciėcation page numbers,
a very rough metric certainly but directly correlated with feature growth nonetheless.
Source Lines of Code (SLOC) values for the switches were obtained using the Scien-
tiėc Toolworks Understand IDE. Convenient for the purposes of analysis the majority
of the switches’ OpenFlow-related code is located in a single oflib directory. ĉe re-
sults are presented in Table Ǒ.ǉ.ǉ.

Ǎǉ

OpenFlow version ǉ.ǉ ǉ.Ǌ ǉ.ǋ ǉ.ǌ
OpenFlow Spec. size increase – ǊǍ.ǈƻ ǎǊ.Ǎƻ ǊǈǏƻ

ofsoftswitch oflib SLOC ǎǊǉǌ ǏǊǌǏ ǑǊǐǏ ???
Code size increase – ǉǎ.ǎƻ Ǌǐ.ǉƻ ???

Table 9.1.1: Obervations of coincident specification and code growth

One should note that the CPqD switches do not implement any backwards compat-
ibility so any growth between successive switch releases should correspond, effectively
at least, to handling the expansion of OpenFlow features. A brief examination of the
source code for the switches did not indicate that signiėcant refactoring of the oflib
code had occurred so as to confound the foregoing explanation. No deep interpretation
of these observations is particularly necessary, it is simply interesting to observe how
substantially the spec and a particular implementation have grown.

ĉe speciėcation for OpenFlow ǉ.ǌ.ǈ adds many signiėcant features and con-
sequently expands the protocol enough to necessitate a version bump in the wire
protocol. It will be interesting to observe the impact should CPqD continue to evolve
their switch implementation. As well, if construction defect rates were to remain
relatively constant, or even decline slightly, it is at least reasonable to expect future
implementations will have ever greater numbers of bugs.

Ǒ.Ǌ VĽĵ NĹĻĵŉĽŋĵ

It is oěen as important to deėne what something isn’t as it is to deėne what something
is, sometimes more so. ĉat in mind, the working deėnition for Implementation Secu-
rity I’mproposing does not include the high level secure soěware development activities
such as those that are usually collected under the popular banner of “Security Develop-
ment Lifecycle (SDL)”. ĉe reasoning for this position is that I think SDL activities are
executed at a level of abstraction well above the technical engineering I consider to have
proximate causal links to the emergent security properties found in implementations. It
is entirely possible for bad engineering to be part of a well executed development pro-
cess.

Leaving aside SDL isn’t any sort of aĨempt to denigrate it. ĉere is reasonably strong
real-world evidence establishing correlations between SDL activities and overall soě-
ware security quality [ǎ] that certainly establishes a measure of value for SDL. In other
contexts I will even heap praise on SDL for the simple fact that it brings some focus
to soěware security problems. Nevertheless, confusing the hypothetical outcomes of a
process with causality appears to be a frequent conceit of the way entities go about the

ǍǊ

organization and execution of SDL activities; that is reason enough to make an explicit
distinction between Implementation Security and SDL.

Ǒ.Ǌ.ǉ SĹķŊŇĹ CŃĸĽłĻ

ĉere is a tremendous amount of important and helpful work that has gone into improv-
ing soěware security, particularly over the last twelve or so years¹. Some of that work can
be grouped under the larger banner of SDL, as discussed above, but there are bits that
arguably fall under Implementation Security as I’ve deėned it. ĉis situation is precisely
my concern though, there are bits and pieces but there is liĨle said about the nature of
the incompleteness itself. Essentially, a large part of what I’m arguing for is developing
an epistemology of Implementation Security.

Ǒ.ǋ OłMŃĸĹŀň

Ever so brieĚy, as life is just long enough to make disputes with the milling machinery
worthwhile…

Models are the result of abstractions andpeople² generally have at least some intuitive
understanding of the fact that a model necessarily contains less information than the
thing it describes, the so-called unnecessary having been removed. Towit, themodelling
process is a lossy one. It is unfortunate then how ephemeral this understanding oěen
is, vanishing especially rapidly as we implement a system based on a design (neemodel)
which is itself an abstractionof requirements and intents that are, in their own turn, likely
incomplete and possibly inconsistent.

ĉat inconsistency is certainly important but I want concentrate on Ěogging the com-
pleteness nag for just a moment or twomore…So information is lost during design cre-
ation, or just doesn’t exist, due to error, omission, or otherwise. So what of this blind-
ing glimpse of the obvious? ĉree quick observations: ėrst, a realized system contains
information beyond what was provided in its design, this extra information is part of
what is commonly referred to as ImplementationDetails. Second, theDetails are impor-
tant because the functionality and behaviour of the realized system ultimately emerges

¹I’d argue that the time (Ǌǈǈǉ, roughly) around the publication ofHoward&LeBlanc’s “Writing Secure
Code” and Viega & McGraw’s “Building Secure Soěware” is a good reference point for soěware security
properly entering the developer mainstream. Many people were working on soěware security for a very
long time before that, certainly, but in terms of mainstreaming I’ve based my assessment on the question
“Can I buy a book from a major publisher about it”.

²With the exception of most Economists and PHBs.

Ǎǋ

from those Details, unintended security-impacting functionality (aka. Vulnerabilities)
included. ĉird, the opacity³ of ImplementationDetailsmight be intrisic due to the fun-
damentally intractable or undecidable nature of problem solutions being aĨempted in
an implementation.

Ǒ.ǋ.ǉ TļĹ TĹŀĹŃŀŃĻĽķĵŀ Fĵŀŀĵķŏ Ńĺ CŃŁńŊŉĽłĻ SŏňŉĹŁň EłĻĽłĹĹŇĽłĻ

Riffing on Nassim Nicolas Taleb’s more general Teleological Fallacy and applying it to
engineering, the illusion that:

• you know exactly what you are building;

• you knew what you were building in the past;

• others have succeeded in the past by knowing what they were building.

Ǒ.ǌ BĹķĵŊňĹ API

I’ve personally argued for the beneėts of textual protocols in the past, a la “look I can
talk to my server with netcat, testing is easy!”. ĉis idea is strongly embraced in the
UNIX/Internet programming culture, a fact which reminds me about the extensive
discussion of protocol design in Eric S. Raymond’s Art of UNIX Programming. Inci-
dentally, a book which now needs a thorough critique. Part of the confusion does stem,
I think, from anthropocentric misunderstandings of the circumstances of semantic
processing and protocol interpreters. Very succinctly, what gets mixed up or otherwise
confused is my interpretation of semantics versus endpoint processes’ interpretation.
ĉose viewpoints are not equivalent and they have different requirements for encod-
ing/decoding which don’t completely intersect. ĉere are compromises here though
and there is some overlap: for instance, you can have a protocol be text-based and still
be deterministic CFG (or weaker). DJB talks about this in his own way in the ‘Avoid
Parsing’ section of [Ǌ] when he describes the concept of ‘good interfaces vs. user
interfaces‘. I might call this situation a grand misunderstanding of a subtle but crucial
point. Anyroad, critiquing textual protocol design is a whole other dissertation.

³Opacity refers to the quality that some particular knowledge is inaccessible (‘opaque’) to us, andwhere
this inaccessibility leads to illusions of understanding.

Ǎǌ

Ǒ.Ǎ CŃŇŇĹķŉ PĵŇňĹŇ

ĉe following parody was wriĨen to introduce the LANGSEC overview section but it
just never worked quite the right way with the speciėc LATEX formaĨing I eventually de-
cided on. With all apologies to Adam Brooks and the cast of Frech Kiss…

Kate: Unambiguous context-free grammar ã deterministic pushdown
automaton. Regular grammar ã ėnite-state automaton. Use the
corresponding recognizer for the corresponding language complexity.
But no. You want this implementation to be optimized, efficient,
extensible…

Luc: Non. No no no. It is not me who wants it. I don’t want it.

Kate: Well what do you want?

Luc: I want you…I want you…

Kate: You want me…

Luc: I want you…to…make it secure. To make a potentially malicious
user feel like even though you are right there in front of them, they
can’t exploit you.

ǍǍ

References

[ǉ] Ross J. Anderson. Security engineering - a guide to building dependable distributed
systems (Ȗ. ed.). Wiley, Ǌǈǈǐ. ISBN ǑǏǐ-ǈ-ǌǏǈ-ǈǎǐǍǊ-ǎ.

[Ǌ] Daniel J. Bernstein. Some thoughts on security aěer ten years of qmail ǉ.ǈ. In
Peng Ning and Vijay Atluri, editors, CSAW, pages ǉ–ǉǈ. ACM, ǊǈǈǏ. ISBN ǑǏǐ-
ǉ-ǍǑǍǑǋ-ǐǑǈ-Ǒ.

[ǋ] M. Boucadair and C. Jacquenet. Soěware-deėned networking: A service
provider’s perspective. Internet-Draě draě-sin-sdnrg-sdn-approach-ǈǌ, Internet
Engineering Task Force, October Ǌǈǉǋ. URL https://datatracker.ietf.org/
doc/draft-sin-sdnrg-sdn-approach.

[ǌ] S. Bradner. Keywords for use in RFCs to Indicate Requirement Levels. RFC ǊǉǉǑ
(Best Current Practice), March ǉǑǑǏ. URL http://www.ietf.org/rfc/rfcƦƥƥƭ.
txt.

[Ǎ] Sergey Bratus, Michael E. Locasto, Meredith L. PaĨerson, Len Sassaman, and
Anna Shubina. Exploit programming: from buffer overĚows to weird machines
and theory of computation. ;login:, ǋǎ(ǎ), Ǌǈǉǉ. URL http://www.cs.dartmouth.
edu/~sergey/langsec/papers/Bratus.pdf.

[ǎ] BSIMM. ĉe building security in maturity model, Ǌǈǉǋ. URL http://bsimm.com.

[Ǐ] CERT Secure C Coding Standard. Dclǋǐ-c. use the correct syn-
tax when declaring Ěexible array members, November Ǌǈǉǋ. URL
https://www.securecoding.cert.org/confluence/display/seccode/DCLƧƬ-C.
+Use+the+correct+syntax+when+declaring+flexible+array+members.

[ǐ] Fundação CPqD. Github page, Ǌǈǉǋ. URL https://github.com/CPqD.

[Ǒ] CVE-ǊǈǈǏ-ǉǋǎǍ. Openbsd ipvǎ mbuf remote kernel buffer overĚow. Na-
tional Vulnerability Database, March ǊǈǈǏ. URL http://nvd.nist.gov/nvd.cfm?
cvename=CVE-ƦƤƤƫ-ƥƧƪƩ. [description] http://www.coresecurity.com/content/
open-bsd-advisorie.

Ǎǎ

https://datatracker.ietf.org/doc/draft-sin-sdnrg-sdn-approach
https://datatracker.ietf.org/doc/draft-sin-sdnrg-sdn-approach
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.cs.dartmouth.edu/~sergey/langsec/papers/Bratus.pdf
http://www.cs.dartmouth.edu/~sergey/langsec/papers/Bratus.pdf
http://bsimm.com
https://www.securecoding.cert.org/confluence/display/seccode/DCL38-C.+Use+the+correct+syntax+when+declaring+flexible+array+members
https://www.securecoding.cert.org/confluence/display/seccode/DCL38-C.+Use+the+correct+syntax+when+declaring+flexible+array+members
https://github.com/CPqD
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-1365
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2007-1365
http://www.coresecurity.com/content/open-bsd-advisorie
http://www.coresecurity.com/content/open-bsd-advisorie

[ǉǈ] CVE Database. Search of cve database for linux ipvǎ network stack vulnerabil-
ities. Common Vulnerabilities and Exposures Database, Ǌǈǉǋ. URL "https:
//cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux%ƦC+net%ƦFipvƪ".

[ǉǉ] Bruce Davie. Network virtualization: Delivering on the promise of sdn, Ǌǈǉǋ.
URL http://www.slideshare.net/drbruced/ons-ƦƤƥƧnv.

[ǉǊ] Peter Deutsch. ĉe eight fallacies of distributed computing, ǉǑǑǊ. URL https:
//blogs.oracle.com/jag/resource/Fallacies.html.

[ǉǋ] MarkDowd, JohnMcDonald, and Justin Schuh. ĉeArt of SoĜware SecurityAssess-
ment. Addison-Wesley Professional, November Ǌǈǈǎ. ISBN ǑǏǐ-ǈǋǊǉǌǌ-ǌǌǊ-ǌ.

[ǉǌ] Nick Feamster and Jeff Mogul, editors. NSDI’ȕȗ: Proceedings of the ȕȔth USENIX
Conference on Networked Systems Design and Implementation, Berkeley, CA, USA,
Ǌǈǉǋ. USENIX Association.

[ǉǍ] Dick Grune and Ceriel J. H. Jacobs. Parsing Techniques: A Practical Guide (Ȗ. ed.).
Springer-Verlag, ǊǈǈǏ. ISBN ǑǏǐ-ǈ-ǋǐǏǊ-ǈǊǌǐ-ǐ. URL http://dickgrune.com/
Books/PTAPG_Ʀnd_Edition/.

[ǉǎ] Robert J. Hansen and Meredith L. PaĨerson. Guns and buĨer: Toward
formal axioms of input validation. In Black Hat USA ȖȔȔș. Black Hat
Brieėngs, ǊǈǈǍ. URL https://www.blackhat.com/html/bh-media-archives/
bh-multi-media-archives.html#USA-ƦƤƤƩ.

[ǉǏ] S. Hartman, M. Wasserman, and D. Zhang. Security requirements in the soěware
deėned networking model. Internet-Draě draě-hartman-sdnsec-requirements-
ǈǉ, Internet Engineering Task Force, April Ǌǈǉǋ. URL https://datatracker.
ietf.org/doc/draft-hartman-sdnsec-requirements/.

[ǉǐ] John L. Hennessy and David A. PaĨerson. Computer Architecture: A Quantitative
Approach, Ȗnd Edition. Morgan Kaufmann, ǉǑǑǎ. ISBN ǉ-ǍǍǐǎǈ-ǋǊǑ-ǐ.

[ǉǑ] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. Bǌ: experience with a globally-
deployed soěware deėned wan. In Dah Ming Chiu, Jia Wang, Paul Barford, and
Srinivasan Seshan, editors, SIGCOMM, pages ǋ–ǉǌ. ACM, Ǌǈǉǋ. ISBN ǑǏǐ-ǉ-
ǌǍǈǋ-ǊǈǍǎ-ǎ.

[Ǌǈ] Daniel Kahneman. ĉinking, Fast and Slow. Doubleday Canada, Ǌǈǉǉ. ISBN
ǑǏǐ-ǈǋǐǍǎǏ-ǎǍǉ-Ǒ.

ǍǏ

"https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux%2C+net%2Fipv6"
"https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux%2C+net%2Fipv6"
http://www.slideshare.net/drbruced/ons-2013nv
https://blogs.oracle.com/jag/resource/Fallacies.html
https://blogs.oracle.com/jag/resource/Fallacies.html
http://dickgrune.com/Books/PTAPG_2nd_Edition/
http://dickgrune.com/Books/PTAPG_2nd_Edition/
https://www.blackhat.com/html/bh-media-archives/bh-multi-media-archives.html#USA-2005
https://www.blackhat.com/html/bh-media-archives/bh-multi-media-archives.html#USA-2005
https://datatracker.ietf.org/doc/draft-hartman-sdnsec-requirements/
https://datatracker.ietf.org/doc/draft-hartman-sdnsec-requirements/

[Ǌǉ] Dan Kaminsky, Meredith L. PaĨerson, and Len Sassaman. Pki layer cake: New
collision aĨacks against the global x.ǍǈǑ infrastructure. In Radu Sion, editor, Fi-
nancial Cryptography, volume ǎǈǍǊ of Lecture Notes in Computer Science, pages
ǊǐǑ–ǋǈǋ. Springer, Ǌǈǉǈ. ISBN ǑǏǐ-ǋ-ǎǌǊ-ǉǌǍǏǎ-ǎ.

[ǊǊ] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analy-
sis: Static checking for networks. In Proceedings of the ȝth USENIX Conference on
Networked Systems Design and Implementation, NSDI’ǉǊ, pages Ǒ–Ǒ, Berkeley, CA,
USA, ǊǈǉǊ. USENIX Association. URL http://cseweb.ucsd.edu/~varghese/
PAPERS/headerspace.pdf.

[Ǌǋ] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McK-
eown, and ScoĨ Whyte. Real time network policy checking using header space
analysis. In Feamster and Mogul [ǉǌ], pages ǑǑ–ǉǉǊ. URL http://www.sysnet.
ucsd.edu/sysnet/miscpapers/net_plumber-nsdiƥƧ.pdf.

[Ǌǌ] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, MaĨhew Caesar, and P. Brighten
Godfrey. VeriĚow: Verifying network-wide invariants in real time. In Feam-
ster and Mogul [ǉǌ], pages ǉǍ–Ǌǐ. URL http://www.sysnet.ucsd.edu/sysnet/
miscpapers/net_plumber-nsdiƥƧ.pdf.

[ǊǍ] David Kilcullen. Counterinsurgency. Oxford University Press, Ǌǈǉǈ. ISBN ǑǏǐ-
ǈǉǑǑǏǋ-ǏǌǑ-Ǒ.

[Ǌǎ] James Mickens. ĉe night watch. ;login:logout, ǋǐ, November Ǌǈǉǋ. URL http:
//research.microsoft.com/en-us/people/mickens/thenightwatch.pdf�.

[ǊǏ] MaĨhew Might and David Darais. Yacc is dead. CoRR, abs/ǉǈǉǈ.ǍǈǊǋ, Ǌǈǉǈ.

[Ǌǐ] NeĨle. Haskell openĚow package, Ǌǈǉǋ. URL http://hackage.haskell.org/
package/nettle-openflow.

[ǊǑ] OpenFlow vǉ.ǌ.ǈ. OpenĚow switch speciėcation version ǉ.ǌ.ǈ (wire protocol
ǈxǈǍ). Approved-Draě, August Ǌǈǉǋ. URL https://test.opennetworking.
org/images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-vƥ.ƨ.Ƥ.pdf.

[ǋǈ] OpenMirage. Cloud operating system, Ǌǈǉǋ. URL http://www.openmirage.org/.

[ǋǉ] M. A. Padlipsky. ĉe Elements of Networking Style. iUniverse.com, Ǌǈǈǈ. ISBN
ǈ-ǍǑǍ-ǈǐǐǏǑ-ǉ.

[ǋǊ] Meredith L. PaĨerson. Hammer parsing library, Ǌǈǉǋ. URL https://github.com/
abiggerhammer/hammer.

Ǎǐ

http://cseweb.ucsd.edu/~varghese/PAPERS/headerspace.pdf
http://cseweb.ucsd.edu/~varghese/PAPERS/headerspace.pdf
http://www.sysnet.ucsd.edu/sysnet/miscpapers/net_plumber-nsdi13.pdf
http://www.sysnet.ucsd.edu/sysnet/miscpapers/net_plumber-nsdi13.pdf
http://www.sysnet.ucsd.edu/sysnet/miscpapers/net_plumber-nsdi13.pdf
http://www.sysnet.ucsd.edu/sysnet/miscpapers/net_plumber-nsdi13.pdf
http://research.microsoft.com/en-us/people/mickens/thenightwatch.pdf‎
http://research.microsoft.com/en-us/people/mickens/thenightwatch.pdf‎
http://hackage.haskell.org/package/nettle-openflow
http://hackage.haskell.org/package/nettle-openflow
https://test.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://test.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://test.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.openmirage.org/
https://github.com/abiggerhammer/hammer
https://github.com/abiggerhammer/hammer

[ǋǋ] G. Polya. How to Solve It: A New Aspect of Mathematical Method. Princeton Uni-
versity Press, ǉǑǌǍ. ISBN ǈ-ǎǑǉ-ǈǊǋǍǎ-Ǎ.

[ǋǌ] Mark ReitblaĨ, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. Abstractions for network update. In Lars Eggert, Jörg OĨ, Venkata N.
Padmanabhan, and George Varghese, editors, SIGCOMM, pages ǋǊǋ–ǋǋǌ. ACM,
ǊǈǉǊ. ISBN ǑǏǐ-ǉ-ǌǍǈǋ-ǉǌǉǑ-ǈ.

[ǋǍ] Gyorgy E. Revesz. Introduction to Formal Languages. Dover Publications, ǊǈǉǊ.
ISBN ǑǏǐ-ǈ-ǌǐǎǎ-ǎǎǑǏ-ǎ.

[ǋǎ] Len Sassaman, Meredith L. PaĨerson, Sergey Bratus, and Michael E. Locasto.
Security applications of formal language theory. Technical Report TRǊǈǉǉ-
ǏǈǑ, Dartmouth College, Ǌǈǉǉ. URL http://www.cs.dartmouth.edu/~sergey/
langsec/papers/langsec-tr.pdf.

[ǋǏ] Len Sassaman, Meredith L. PaĨerson, Sergey Bratus, and Anna Shubina. ĉe
halting problems of network stack insecurity. ;login:, ǋǎ(ǎ), Ǌǈǉǉ. URL http:
//db.usenix.org/publications/login/ƦƤƥƥ-ƥƦ/openpdfs/Sassaman.pdf.

[ǋǐ] Claude E. Shannon and Warren Weaver. ĉe Mathematical ĉeory of Communica-
tion. University of Illinois Press, ǉǑǌǑ. ISBN ǑǏǐ-ǈǊǍǊǏǊ-Ǎǌǎ-ǋ.

[ǋǑ] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru M. Parulkar. Can the production network be the
testbed? In Remzi H. Arpaci-Dusseau and Brad Chen, editors, OSDI, pages ǋǎǍ–
ǋǏǐ. USENIX Association, Ǌǈǉǈ. ISBN ǑǏǐ-ǉ-ǑǋǉǑǏǉ-ǏǑ-Ǒ.

[ǌǈ] Sooel Son, Seungwon Shin, VinodYegneswaran, Phillip A. Porras, andGuofeiGu.
Model checking invariant security properties in openĚow. In ICC, pages ǉǑǏǌ–
ǉǑǏǑ. IEEE, Ǌǈǉǋ.

[ǌǉ] Nassim Nicholas Taleb. ĉe fourth quadrant: A map of the limits
of statistics. Edge.org, Ǌǈǈǐ. URL http://edge.org/conversation/
the-fourth-quadrant-a-map-of-the-limits-of-statistics.

[ǌǊ] VMWare. Nicira acquisition press-release, ǊǈǉǊ. URL http://www.vmware.com/
company/news/releases/vmw-nicira-Ƥƫ-ƦƧ-ƥƦ.html.

[ǌǋ] M. Wasserman and S. Hartman. Security analysis of the open networking foun-
dation (onf) openĚow switch speciėcation. Internet-Draě draě-mrw-sdnsec-
openĚow-analysis-ǈǊ, Internet Engineering Task Force, April Ǌǈǉǋ. URL https:
//datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis.

ǍǑ

http://www.cs.dartmouth.edu/~sergey/langsec/papers/langsec-tr.pdf
http://www.cs.dartmouth.edu/~sergey/langsec/papers/langsec-tr.pdf
http://db.usenix.org/publications/login/2011-12/openpdfs/Sassaman.pdf
http://db.usenix.org/publications/login/2011-12/openpdfs/Sassaman.pdf
http://edge.org/conversation/the-fourth-quadrant-a-map-of-the-limits-of-statistics
http://edge.org/conversation/the-fourth-quadrant-a-map-of-the-limits-of-statistics
http://www.vmware.com/company/news/releases/vmw-nicira-07-23-12.html
http://www.vmware.com/company/news/releases/vmw-nicira-07-23-12.html
https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis
https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis

[ǌǌ] M. Wasserman, S. Hartman, and D. Zhang. Security analysis of the open
networking foundation (onf) openĚow switch speciėcation. Internet-
Draě draě-mrw-sdnsec-openĚow-analysis-ǈǈ, Internet Engineering
Task Force, October ǊǈǉǊ. URL https://datatracker.ietf.org/doc/
draft-mrw-sdnsec-openflow-analysis.

ǎǈ

https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis
https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis

Colophon

TļĽň ŉļĹňĽň Ōĵň ŉŏńĹňĹŉ using LATEX,
originally developed by Leslie Lamport
and based on Donald Knuth’s TEX. ĉe

body text is set in ǉǉ point Arno Pro, designed
by Robert Slimbach in the style of book types
from the Aldine Press in Venice, and issued by
Adobe in ǊǈǈǏ. ĉe style this thesis was
formaĨed in is the result of the author’s
signiėcant modiėcations to a template created
by Jordan Suchow (many thanks!). ĉe original
template was released under the permissive ŁĽŉ
(Ŏǉǉ) license and can be found online at
github.com/suchow/ or from the author at
suchow@post.harvard.edu.

ǎǉ

https://github.com/suchow/
mailto:suchow@fas.harvard.edu

	Grab a thread and pull
	Introductions
	Report Structure

	10 Miles High
	Implementation Security
	LANGSEC
	Virtualizing Networks
	OpenFlow

	Complexity Analysis
	Pick a Packet
	OXM_OF_MAKEMEDINNER
	Pudding

	Implications
	Current Interpreter Implementations
	Fingerprinting
	Grander Aspects
	Expansive Vulnerability
	Network Verification

	A Map of What is Difficult
	The Map and Analogy
	OpenFlow on the Map
	Implementation Mechanism Safety

	Future Work and similar diversions
	Parsing OpenFlow
	Hunting OpenFlow Flaws
	Hunting OpenFlow Bugs
	Traditional Security Analysis
	Tabula Rasa Rasa
	Parsing-aware Design
	Reasons Why and Other Approaches
	Map Exegesis
	Signs and Portents (of Change)

	If you don't stop that you'll go blind...
	Final Words

	Appendix A - Grammar
	The Grammar
	Slightly more formal notation
	But there are pictures

	Appendix B - Notions
	OpenFlow Spec Complexity Exploding
	Via Negativa
	On Models
	Because API
	Correct Parser

	References

