

EXPERIMENTAL STUDY OF MODSECURITY WEB APPLICATION FIREWALLS

Co-authored by Timilehin David Sobola

Pavol Zavarsky

Sergey Butakov

Project report

Submitted to the Faculty of Graduate Studies,

Concordia University of Edmonton

in Partial Fulfillment of the

Requirements for the

Final Research Project for the Degree

MASTER OF INFORMATION SYSTEMS SECURITY MANAGEMENT

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

April 2020

EXPERIMENTAL STUDY OF MODSECURITY WEB APPLICATION FIREWALLS

Timilehin David Sobola

Date: April 6, 2020

Date: April 17, 2020

Approved:

Pavol Zavarsky [Approval on File]

Pavol Zavarsky

Primary Supervisor

Edgar Schmidt [Approval on File]

Edgar Schmidt, DSocSci

Dean, Faculty of Graduate Studies

U.S. Government work not protected by U.S. copyright

Experimental Study of ModSecurity Web Application

Firewalls

Timilehin David Sobola

Information Systems Security Management

Concordia University of Edmonton

Edmonton, Canada

tsobola@student.concordia.ab.ca

Pavol Zavarsky

Information Systems Security Management

Concordia University of Edmonton

Edmonton, Canada

pavol.zavarsky@concordia.ab.ca

Sergey Butakov

Information Systems Security Management

Concordia University of Edmonton

Edmonton, Canada

sergey.butakov@concordia.ab.ca

Abstract— Risks related to web security are too important to

be ignored. The Open Web Application Security Project

(OWASP) document maintains a rating of the top 10 common

threats. Although not an official standard, is widely acknowledged

in the classification of vulnerabilities. This paper evaluates the

effectiveness of ModSecurity web application firewall with

OWASP Core Rule Set (CRS) version 3.2 released in September

2019 to detect known web security risks. This paper proposes to

provide insight on detection capability of ModSecurity with CRS

v.3.2 at default level, how well it can protect web server against

Denial of Service (DoS) attacks, and performance on web server

in terms of Throughput (the average amount of bytes transmitted

every second), Transaction rates (the amount of hits),

Concurrency (the average number of parallel connections and

increases as server efficiency declines). In addition, provides

recommendation on areas of improvement and future research

areas.

Keywords—web application firewall (waf), OWASP,

ModSecurity, OWASP Core Rule Set, throughput, transaction,

concurrency

I. INTRODUCTION

Web application security is an information security division
concerned with web security, web services and web
applications. Protection for web applications is based on security
concepts for applications but is applied directly to the web and
network systems [2]. Most web application vulnerabilities are
caused by cross-site scripting (XSS) and SQL injection attempts,
typically made possible by faulty coding and failure to sanitise
software inputs and outputs.

Akamai in its State of Internet / Security Volume 6 report,
mentioned that, unique DDoS targets accounted for more than
40% against the conventional login (username and password)
financial services industry, accounting for the plurality (74%) of
device and server entry methods between November 2017 and
October 2019 [9]. They experienced a record - attack against a
financial company. The identified attacks contained 55,141,782
malicious login attempts registered on 7 August 2019. One of
these attacks is the credential stuffing. Akamai [9] reported
662,556,776 attacks against the financial services industry on
web apps and 7,957,307,672 attacks on all verticals. SQL
Injection (SQLi) contributed to more than 72% of all attacks
across all verticals. Local File Inclusion (LFI) was the leading
form of attack against the financial services sector with 47% of
activity recorded. DDoS attacks are not only a successful way of
gaining targets ' attention, but they could also mask certain forms
of threats, such as SQLi and LFI [9]. Hackers may pursue
various methods to attack until they have effectively made

significant progress, which is why a solid, multi-layer security
strategy is required to prevent these attacks.

Web application firewalls (WAFs) identifies, monitors, and
prevents HTTP traffic to and from a web server. Application
vulnerabilities such as SQL injection, cross-site scripting (XSS),
file inclusion and protection bugs can be prevented by
controlling HTTP traffic. Many vendors provide firewall
solutions for web applications. According to Gartner Magic
quadrant [4], some of the top solutions include Cloudflare,
ModSecurity, Fortinet, Barracuda Networks, Imperva, Qualys.
Each WAF mentioned has its own unique features, but its
performance is highly influenced by the policies configured.

The OWASP Core Rule Set is a project maintained also by
the OWASP team as a set of generic rules used with
ModSecurity aiming to protect against wide range of attacks
including the OWASP Top Ten web risks [7].

This paper presents test results of ModSecurity with CRS
v.3.2 against OWASP Top 10 risks to evaluate its effectiveness
in detecting attacks and performance on web server.
ModSecurity gives the ability to customize rules to industry
specific needs. ModSecurity is commonly used for tracking,
logging and identity management of web applications in real-
time. The overall objective of this paper includes:

• Evaluating the performance of ModSecurity with CRS
v.3.2 at default install (i.e. paranoia level 1).

• Study reasons for existing limitations of ModSecurity
with CRS v.3.2 in detecting some attacks.

• Present some recommendations on how improvements
can be made.

 The next parts of this research paper are structured as
follows. Section II outlines some related works with findings
and limitations in their papers. Section III discusses some of the
standards developed by the Web Application Consortium
(WASC) to test web application firewalls. Section IV outlines
the steps and tools used to perform the objectives of the research
paper successfully. Section V provides detailed information on
findings based on experiments conducted. Section VI describes
the limitations and recommendations from the experiments
conducted which are followed by conclusion in Section VII.

II. RELATED WORKS

There are not many papers out there that focus extensively on
the effectiveness of ModSecurity firewall with CRS. Some

either place focus on detection capabilities or impact of the
paranoia levels in ModSecurity firewall.

A study by Kim [10] evaluated the effectiveness of ModSecurity
in detecting XSS and SQLi attacks without investigating a more
comprehensive web attack set.

Jatesh Singh study [11], enumerated more comprehensive
attacks without limitations to XSS and SQLi as some research
papers do. The paper evaluated the effectiveness of paranoia
levels in ModSecurity firewall with CRS v3.0 to detect vide
range of web attacks but did not consider firewall performance
on web server and firewall ability to detect or prevent DoS or
DDoS attacks.

This paper evaluates a more comprehensive area of
effectiveness of ModSecurity with CRS v3.2 in terms of
detection capabilities (keeping in scope DoS attacks) and
performance on web server by load testing.

III. EVALUATION CRITERIA

The following assessment requirements established by the
Web Application Security Consortium (WASC) are used to test
ModSecurity with CRS v.3.2:

A. Deployment Architecture

It illustrates the key issues that decide the feasibility of
applying a firewall to a web application in an environment.
ModSecurity is configured in reverse proxy mode in this paper
where traffic is redirected to pass by the WAF through DNS
configuration changes or network-level traffic redirection. It can
also be configured in embedded mode where it is installed on a
server as a plug-in.

B. Detection Techniques

Web application firewalls must be able to identify

manipulation intents and turn the data into a structured

sequence to make rules and signatures usable [5]. Some

normalization techniques used by ModSecurity are:

• URL-decoding (e.g. %XX)

• Self-referencing paths (i.e. usage of /./ equivalent and
encoded alternatives).

• Eliminating comments (e.g. transform
DELETE/**/FROM to DELETE FROM).

C. Performance

Performance is a complex issue. It is especially difficult to
measure the performance of a WAF on the network level. This
paper covers HTTP-level performance with the scope of:

• Maximum throughput.

• Maximum transaction rates.

• Request latency.

• Management under high attack load.

IV. TEST METHODOLOGY

To conduct the tests, various tools that had the functionality
needed to achieve the objectives effectively were chosen. Table
I provides a list of the tools used to perform our experiments.

TABLE I. LIST TOOLS USED

Tools Description

Kali Linux
Linux-based operating system featuring pre-installed
penetration testing tools.

Metasploitable2

Deliberately unsafe Linux virtual machine that can be

used for security training, security tools testing, and

conventional penetration testing.

Nmap scanner
Free and open source (licensed) network exploration

and security auditing functionality.

Apache Bench
Single-threaded command line computer program
designed to measure HTTP web server performance.

THC Hydra
Parallel password cracker which supports various attack

protocols.

Weevely Stealth PHP browser shell, simulating telnet link.

Siege Multi-threaded benchmarking and http load testing tool.

SlowHTTPTest
Used to send partial HTTP requests to get a denial of

service from target HTTP server

A. Network Setup

With the tools gathered, we created a testbed to simulate the
experiment. Figure I below show the network diagram used for
experimentation.

Fig. 1. Network architecture used for simulations.

Kali Linux is used to simulate the attacker machine. It has
preinstalled penetration testing tools. ModSecurity is configured
in reverse proxy mode on Ubuntu OS running Apache 2.2.8
server. Metasploitable2 is configured as the vulnerable
webserver with two vulnerable web applications inbuilt (Damn
Vulnerable Web Application (DVWA) and Mutillidae). We
used DVWA for this experiment as it has a much-simplified
layout than mutillidae. We configured CRS v.3.2 with
ModSecurity and left all settings in the default install state.

Each experiment followed the steps shown in Table II to
obtain reliable results. The main objective is to test for
performance at default install, we did not focus on creating or
editing rules in CRS v.3.2.

TABLE II. TEST STEPS

1. Configure ModSecurity with default CRS v.3.2 rule sets.

P
la

n
n

in
g

2. Perform tests for different paranoia level.

E
x
ec

u
tio

n

3. Check ModSecurity audit log for alerts if attack is detected or not.

4. Analyze result and clear log file to prepare for another attack
process and run Step 2 again for another level.

A
n

a
ly

sis

V. RESULTS AND DISCUSSION

The following attack vectors were used to the effectiveness
of ModSecurity with CRS v.3.2 from the OWASP Top 10 risks.
Table III below, shows a summary of the results from the
simulated attacks done keeping in scope the four paranoia levels
(PL) and not limiting to just the default level (PL 1).

TABLE III. TEST SUMMARY

Attacks PL 1 PL 2 PL 3 PL 4

XSS Stored (file

upload)
Failed Failed Failed Failed

XSS Reflected Pass Pass Pass Pass

SQL Stored
Injection

Failed Pass Pass Pass

SQL Injection in

URL (GET)
Pass Pass Pass Pass

SQL Injection in
Login forms

(POST)

Pass Pass Pass Pass

PHP code injection Pass Pass Pass Pass

Command Injection Pass Pass Pass Pass

Path Traversal Pass Pass Pass Pass

Local and Remote
File inclusion

Pass Pass Pass Pass

DoS Attacks

Slow Headers
(Slowloris)

Down Down Down Down

Slow Body (R-U-

Dead-Yet)
Down Down Down Down

Range Attack
(Apache Killer)

Up Up Up Up

where,
 Failed – Successful attempt to bypass the firewall.
 Pass – Failed attempt to bypass the firewall.
 Down – DoS attempt rendered service, unavailable.
 Up – DoS attempt but service still available.

This asset/target and threat-based approach formed the baseline
of our experiment in evaluating the effectiveness of
ModSecurity with CRS v.3.2 in detecting web attacks.

A. Performance of ModSecurity with CRS v.3.2 in detecting

cross-site scripting (XSS) attacks

The test summary of the XSS stored and reflected attacks are
shown in Table III. To conduct our experiment on XSS stored
attack, we uploaded a .xhtml file to the webserver backend
which contained a malicious JavaScript code that logs the
session cookie of the web application in the browser. With the
approach, we were able to bypass the firewall at the different
paranoia levels.

B. Performance of ModSecurity with CRS v.3.2 in detecting

stored SQL injection attack

For this analysis, we tried different payloads to try retrieve

a list of users from the database of the webserver. CRS v.3.2

was able to detect these payloads and logged them. We tried

injecting “1 exec sp_ (or exec xp_) AND 1=1” payload and

was able to retrieve a user from the database. CRS v.3.2 rule set

was unable to detect this payload at the default paranoia level

i.e. PL1 but was blocked at PL 2 to 4.

C. Performance of ModSecurity with CRS v.3.2 in detecting

protocol attack

This attack was performed using Weevely to perform a URL

encoding abuse attack to breach protocol. We generated a shell

file i.e. <filename>.sh on the attacker machine and then

uploaded the file to the webserver. The firewall should be able

to detect such file being uploaded but no detection. With the file

successfully uploaded, we tried to use Weevely to connect

remotely to the webserver using the shell file we uploaded but

the firewall was able to detect and log that.

D. Performance of ModSecurity with CRS v.3.2 in detecting

file inclusion attack

For this test, we tried manipulating application-level code to

insert random, local and remote data into parameter field, but

an alert was logged in the firewall log file of possible file

inclusion attack. This attack was detected at PL 1 (paranoia

level 1).

E. Performance of ModSecurity with CRS v.3.2 in detecting

DoS attacks

Slow HTTP DoS attacks occur under the HTTP protocol,

enabling the server to completely acknowledge them. If the

HTTP request is not complete or the transmission rate is low,

the server must wait for the rest of the data to keep its resources

busy. If the system uses too many resources, this could lead to

a denial of service. We used SlowHTTPTest tool to send partial

HTTP requests to get a denial of service from target HTTP

server with ModSecurity sitting in-between to prevent our

attack.

TABLE IV. TEST PARAMETERS FOR DOS ATTACKS

Test Types
SLOWHEADERS, SLOWBODY,

RANGE ATTACKS

Number of connections 1000

Verb GET

Content-Length header value 4096

Data max length 52

Interval between follow up data 5 seconds

Connections per second 200

Timeout for probe connection 3 seconds

Target test duration 60 seconds

Using proxy HTTP proxy at server.com:80

From Table IV, 1000 connections were used to test with

slowheaders (slowloris attack), slowbody (r-u-dead-yet attack),

and range attacks (Apache killer attack) respectively. The test

ran with 5 seconds wait for data, 200 connections per seconds,

using GET request method against the vulnerable web server

address, maximum data length of 52 bytes, with a 3 second time

out for a total of 60 seconds to conduct each attacks.

Fig. 2. Slowheader (slowloris) attack result chart.

Fig. 3. Slowbody (R-U-Dead-Yet) attack result chart.

Figures 2 and 3 above, indicates that for the first 5 seconds, the

server was still available to respond to requests and then

became unavailable in the 6th second. After running for 60

seconds, the number of pending requests were 683 and 641 left

to be handled by the server with 317 and 359 successful

connections before the server went down for the slowheader

and slowbody attacks respectively and no closed connections.

Fig. 4. Range (Apache killer) attack result chart.

Figure 4 above indicates that, within the 6 seconds, the server

remained available and handled 860 successful connections,

closed 2 connections and left 2 pending before the WAF

shutdown the attack.

F. Performance of ModSecurity with CRS v.3.2 against Nmap

port scanner

Nmap port scanner was used to seek response from IPs and

open ports to search for vulnerabilities using a database of

established resources. Expectation is for ModSecurity not to

have any accessible ports outside the network. The result is

outlined in Table IV.

TABLE V. PORT SCAN WITH NMAP

Ports Found Ports Open

None 80 – standard traffic purpose

G. Performance of ModSecurity with CRS v.3.2 based on

Throughput, Transaction rate and Concurrency level

There are constant trade-offs between performance and
effectiveness, so it is right to judge a WAF’s effectiveness
within the context of its performance hence being able to avoid
a lag in performance due to added features. To have an overview
of the WAF performance, we ran siege which is a great
benchmarking tool that helped simulate concurrent users
requesting resources for a given period while increasing the
number of concurrent users (C) and then comparing the result.

Table VI below, notice how concurrency level increases as the
firewall’s performance decreases but service remained available
even with 100 concurrent users simulated. The throughput
identifies the average amount of bytes transmitted every second
to all imitated users. The amount decreases as the number of
simulated users increases. Also, the transaction rate identifies
the number of requests the firewall could handle per second. The
transaction rate also diminishes with number of concurrent
users.

TABLE VI. PERFORMANCE TEST

 C 5 C 10 C 20 C 30 C 100

Transactions 44221 40390 30010 23792 22051

Availability 100% 100% 100% 100% 100%

Elapsed time

(s)

59.40 59.93 59.34 59.59 59.75

Date
transferred

(mb)

137.57 125.65 93.36 74.01 68.59

Response

time (s)

0.01 0.01 0.04 0.07 0.27

Transaction

rate

(trans/sec)

744.46 673.95 505.73 399.26 369.05

Throughput

(mb/sec)

2.32 2.10 1.57 1.24 1.15

Concurrency 4.90 9.89 19.87 29.89 99.57

Successful
transactions

44221 40390 30010 23792 22051

Failed 0 0 0 0 0

Longest 0.10 0.39 0.49 0.64 1.03

Shortest 0.00 0.00 0.00 0.00 0.01

Where,

 C = concurrent users

VI. LIMITATIONS AND RECOMMENDATIONS

Although ModSecurity with CRS v.3.2 at default install was
able to detect some of the attack vectors, some were not
detected, and some were detected but not logged. A security risk
could arise with insertion of attack payloads into file uploads
which there is no policy in place for.

A recommendation could be to inspect all contents of HTTP
request headers and files but could impede on the firewall
performance. This might be far fetched as ModSecurity
performance is not as encouraging compared to other
competitors although it boasts of flexibility over others. A use
case as mentioned by Trustwave Holdings Inc. [6], is the
introduction of strict profile checks using positive or negative
security model. The positive security model allows access
through specific rules where each rule added allows greater
access while having no rules in place will block everything by
default. This can severely limit the attack methods attackers can
use to exploit a vulnerability. The downside to the positive
model is the intense care needed in its implementation so as not
to block out legitimate users. Negative security model on the
other hand, works on the premise that attack methods used by
hackers are known so exploits are blocked based on this
knowledge and creating patches or updates for new
vulnerabilities that occur. Very little work is needed in the
negative model. This model has no way to prevent against zero-
day attack since it relies on maintaining the WAF to stay up to
date on exploits. A recommendation will be to bridge the gap
between positive and negative security models while
maintaining good performance measures.

VII. CONCLUSION

 According to a post by the OWASP CRS team [8], a Denial
of Service vulnerability was identified on ModSecurity 3.0.x
releases caused by malformed cookie header which at that time
had not come to our attention at the time of conducting the
experiments in this paper. The experiments and findings
indicated that ModSecurity with CRS v.3.2 still has loopholes
and can be bypassed by putting time and efforts. This paper
examined specifically, the top ten web security risks, the
techniques, and new ways these attack vectors can be carried out
to successful penetrate a firewall. The paper’s main contribution
is towards the understanding of the effectiveness of
ModSecurity with CRS v.3.2 in terms of detection capabilities

of web attacks and performance when subject to heavy traffic
(DoS). It also contributes to the confidence areas (strong and
weak) for further improvements on the Core Rule Sets. As
discussed under limitations and recommendations, future
research would involve an approach in balancing the positive
and negative security models to help improve effectiveness and
thereby maintaining good management overhead i.e. ensure
proper enforcement, refinement and verification of policies.
Also, an evaluation on the stability and reliability of
ModSecurity with CRS in blocking during an extended attack,
attempting to pass legitimate traffic under extended attack, and
port detection using protocol fuzzing and mutations would be a
good focus area.

REFERENCES

[1] Walter Hop, OWASP ModSecurity Core Ruke Set Version 3.2.0," 2019.
[Online]. Available: https://coreruleset.org/20190924/owasp-
modsecurity-core-rule-set-version-3-2-0/.

[2] "Web Application Security Overview," 2010. [Online]. Available:
https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/ff648636(v=pandp.10)?redirectedfrom=MSDN.

[3] Common Weakness Enumeration, “2019 CWE Top 25 Most Dangerous
Software Errors,“ [Online].
Available:http://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.htm
l.

[4] T. SpiderLabs, "ModSecurity Rules," Trustwave SpiderLabs, [Online].
Available: https://modsecurity.org/rules.html.

[5] Web Application Security Consortium, "Web Application Firewall
Evaluation," [Online]. Available: http://projects.webappsec.org/f/wasc-
wafec-v1.0.pdf.

[6] SpiderLabs, Trustwave Holdings Inc., “ModSecurity Reference Manual”,
[Online]. Available:
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-
(v2.x)#Attack_Prevention_and_Virtual_Patching

[7] OWASP ModSecurity Core Rule Set, [Online]. Available:
https://coreruleset.org/

[8] Christian Folini, “CVE-2019-19886–HIGH–DoS against libModSecurity
3”, January 18, 2020. [Online]. Available:
https://coreruleset.org/20200118/cve-2019-19886-high-dos-against-
libmodsecurity-3/

[9] Akamai, “State of the Internet / Security Volume 6, Issue 1”, [Online].
Available: https://www.akamai.com/us/en/multimedia/documents/state-
of-the-internet/soti-security-financial-services-hostile-takeover-attempts-
report-2020.pdf

[10] I. M. KIM, “Using Web Application Firewalls to Detect and Block
Common Web Application Attacks”, 2011. [Online] Available:
https://www.sans.org/reading-room/whitepapers/webservers/web-
application-firewall-detect-block-common-web-application-attacks-
33831

[11] Jatesh Singh, “Impact of Paranoia Levels on the Effectiveness of the
ModSecurity Web Application Firewall”, 2016, IEEE IDS 2018, Texas

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)#Attack_Prevention_and_Virtual_Patching
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)#Attack_Prevention_and_Virtual_Patching
https://coreruleset.org/
https://coreruleset.org/20200118/cve-2019-19886-high-dos-against-libmodsecurity-3/
https://coreruleset.org/20200118/cve-2019-19886-high-dos-against-libmodsecurity-3/
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-financial-services-hostile-takeover-attempts-report-2020.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-financial-services-hostile-takeover-attempts-report-2020.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-financial-services-hostile-takeover-attempts-report-2020.pdf
https://www.sans.org/reading-room/whitepapers/webservers/web-application-firewall-detect-block-common-web-application-attacks-33831
https://www.sans.org/reading-room/whitepapers/webservers/web-application-firewall-detect-block-common-web-application-attacks-33831
https://www.sans.org/reading-room/whitepapers/webservers/web-application-firewall-detect-block-common-web-application-attacks-33831

	Sobola, Timilehin David - 139023 - MISSM - Title Page
	Sobola, Timilehin David - 139023 - MISSM - Signature Page
	Sobola, Timilehin David - 139023 - MISSM - Capstone Project

