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Abstract

The demand for large dataset and demand of privacy protection are in con-

stantly conflicts as the balance between the two is hard to keep. Differential

privacy is a mathematical rigor definition that provides the balance bewteen

these two opposite sides. It’s developed with the purpose of making privacy-

preserving analysis/inference [9]. Ever since the introduction of differential pri-

vacy, the literatures around it have been flourishing. However, the methodolo-

gies of statistical analysis and inference given the differentially private dataset

are not much studied. In this thesis, we will tackle this problem using Bayesian

method from the perspective of measurement error problems. Our simulation

study shows that it outperforms the existing method (SIMEX) when applying

to a similar specification of problem. Additionally, we will investigate briefly

the question whether it’s beneficial to generate multiple DP datasets.
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Chapter 1

Introduction

The demand for large dataset has been growing ever since the explosive growth

of computer power from the beginning of this century. Along with the demand

for large data, the privacy issue has become a increasing concern. These two

opposite demands drive the development of differential privacy. On the one

hand, Too much privacy protection or rather when privacy protection is not

applied efficiently, the data will stop being useful. On the other hand, too

little privacy protection, private information of individual is in risk of being

discovered. Differential privacy provides a mathematical rigor definition suited

towards the privacy-preserving analysis [9].

Differentially private has traditionally been applied to aggregate/summary

statistics, and this has many shortcomings. First of all, as the data cura-

tor, the need to provide differentially private data for queries submitted con-

stantly until the privacy budget runs out is not ideal. Secondly, since the

privacy budget is pre-specified and finite, once it runs out, the data curator

can no longer answer additional queries. Lastly, as the analyst/statistician,

aggregate/summary statistics are often not enough to work with. To over-

come these issues, attentions have been turn into the direction of differentially

private data synthesis. That is, to generate/synthesize a dataset that is dif-

ferentially private.

Even through the literatures on differential privacy have been flourishing,

the methodology of statistical analysis and inference on differentially private

data has hardly been studied. To elaborate, as a analyst/statistician, suppose
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you are given a differentially private aggregate/summary statistic. How would

you go about analyzing this statistic? Should you take the naive approach,

that is, treat the dataset as if no privacy protection is added? Or should you

develop a approach that takes the privacy protection into consideration? In

turns out, the naive approach performs poorly comparing to the approach that

considers the privacy protection [3]. Furthermore, how should you analyze a

differentially private dataset? In this thesis, we will develop Bayesian inference

for differentially private dataset in linear regression.

This thesis is organized as follow,

1. In chapter 2, we will discuss all the related works includes differential

privacy, differentially private dataset synthesis, existing methods of in-

ference on differentially private data and Bayesian inference.

2. In chapter 3, we will introduce the main method of this thesis. Inspired

by the Bayesian method used in measurement error problem, we apply

the Bayesian inference on the setting of differentially private dataset.

Forthermor, the method will be extended to multiple differentially pri-

vate dataset setting.

3. In chapter 4, we will discuss the setup and the result for our simula-

tion study to evaluate the performance of the Bayesian inference and to

compare using single differentially private dataset with using multiple

differentially private datasets.

4. In chapter 5, we will end with a brief conclusion and directions on the

future works.
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Chapter 2

Related works

In this chapter, we will discuss all the relevant works in details. In section

2.1, we will give a overview of differential privacy, which includes the defini-

tion, a hypothesis testing point of view to help understanding the definition,

two important properties of differential privacy and two mechanisms to create

differentially privacy randomized algorithm. In the next section, we will focus

on differentially private data synthesis, which is different from the traditional

release of differentially private aggregate statistics. Specifically, MODIPS and

Laplace mechanism for dataset synthesis will be considered. Moving on to

section 2.3, we will review the existing method for making inference on dif-

ferentially private data. Lastly, we will end this chapter with an overview of

Bayesian method and Markov Chain Monte Carlo simulation in section 2.4.

2.1 Differential privacy

Figure 2.1: Illustration of differential privacy

Differential privacy is mainly concerned about a dataset and a specific
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query. Suppose you are a dataset holder, and some outside party have some

query regarding the dataset for one reason or another. As an example, a query

could be “what’s the average grade of the STAT 566 in Fall 2021?” or “What’s

the percentage of people that are full vaccinated returning to campus this

Fall?”. Simply providing the precise answer to these queries could pose privacy

concerns as the Fundamental Law of Information Recovery states that overly

accurate answers to too many questions will destroy privacy in a spectacular

way [9]. Therefore, it’s necessary to add some perturbation to the query

result for privacy measure. However, how much perturbation is enough? Too

little perturbation does not provide enough privacy protection. Too much

perturbation would render the query result entirely useless. This is where

differential privacy comes into play. It quantifies the privacy protection and

provides guidance on how should we perturb the query result for given amount

of privacy budget.

2.1.1 Why differential privacy?

[9] describes differential privacy as follow,

“Differential privacy” describes a promise, made by a data holder,

or curator, to a data subject: “You will not be affected, adversely

or otherwise, by allowing your data to be used in any study or

analysis, no matter what other studies, data sets, or information

sources, are available.”

This quote highlights the main idea of the differential privacy, that is, it

provides a balance between privacy and data utility. Its concept centers around

the goal of making insightful inference regarding a population while learning

nothing about any individual within that population. In other words, whether

an individual (record) resides in the population (dataset) or not should not

make a impact on the inference we make on the population (dataset). It is pre-

cisely this idea gives differential privacy one of the more appealing advantage

over other privacy-preserving approach. That is, differential privacy prevent
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linkage attack [9], which is referred to adversary using auxiliary information

to identify an individual in a private dataset.

2.1.2 Definition of differential privacy

Before we introduce the definition of differential privacy, we need to go over

some preliminary definitions.

Definition 1 (Neighbouring datasets). Two datasets D and D′ are said

to be neighboring datasets iff they are differ only in one record/row.

Definition 2 (Probability Simplex [9]). Given a discrete set B, the prob-

ability simplex over B, denoted ∆(B) is defined to be:

∆(B) =

⎧⎨⎩x ∈ R|B| : xi ≥ 0 for all i and

|B|∑︂
i=1

xi = 1

⎫⎬⎭
Definition 3 (Randomized Algorithm [9]). A randomized algorithm M

with domain A and discrete range B is associated with a mapping M : A →

∆(B). On input a ∈ A, the algorithm M outputs M(a) = b with probability

(M(a))b for each b ∈ B. The probability space is over the coin flips of the

algorithm M.

Now we are ready to introduce the formal definition for differential privacy.

Definition 4 (ϵ-differential privacy [8]). A randomized algorithm M is

ϵ-differentially private if for all neighborhood datasets D and D′ and all

possible result subset (event) Q, we have

Pr(M(D) ∈ Q) ≤ eϵ · Pr(M(D′) ∈ Q)

where ϵ is commonly referred as the privacy budget.

There exists a natural extension of ϵ-differential privacy, but we will mainly

use ϵ-differential privacy throughout. For completeness, it’s stated below.

Definition 5 ((ϵ, δ)-differential privacy). A randomized algorithm M is

(ϵ, δ)-differentially private if for all neighborhood datasets D and D′ and

all possible result subset (event) Q, we have

Pr(M(D) ∈ Q) ≤ eϵ · Pr(M(D′) ∈ Q) + δ
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2.1.3 Hypothesis testing perspective

Let S and S ′ be two neighboring datasets. Denote the outcome of the random

mechanism by Y , that is, the perturbed query result. Once Y is observed, we

are dealing with the following hypothesis testing problem,

H0 : the underlying dataset is D

Hα : the underlying dataset is D′

Or equivalently, let P denotes the distribution of M(D) and Q denotes the

distribution of M(D′)

H0 : the underlying distribution of Y is P

Hα : the underlying distribution of Y is Q

This is a simply (simply in the sense that both null hypothesis and alternative

hypothesis consist of singleton) hypothesis testing problem. Due to Neyman-

Pearson lemma, we know the most powerful test for this class of problem is

the likelihood ratio test. That is, reject H0 if y ∈ C, where

C =
{︂
y :

L(P ; y)

L(Q; y)
≤ c
}︂

For a likelihood ratio test of size α, we have

PP (Y ∈ C) = α

⇐⇒ Pr(M(D) ∈ C) = α

It follows that if M is (ϵ, δ)-DP, then we have

Pr(M(D′) ∈ C) ≤ eϵ Pr(M(D) ∈ C) + δ

⇐⇒ PQ(y ∈ C) ≤ eϵPP (y ∈ C) + δ

⇐⇒ PQ(y ∈ C) ≤ eϵα + δ

That is, the power of the likelihood ratio test of size α is bounded above

by eϵα + δ. Since the likelihood ratio test is the most powerful hypothesis

test, all hypothesis tests of size α are bounded above by eϵα + δ. It follows

that the smaller the ϵ and δ, the smaller the power upper bound will be. In

other words, the smaller the ϵ and δ, the harder to distinguish two

neighbouring datasets given the perturbed query result y.
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2.1.4 Properties of differential privacy

A very important property of differential privacy is the post-processing prop-

erty. Informally, this property says that any result obtained from the output

of a ϵ-DP randomized algorithm, without the additional information from the

original dataset, will be ϵ-DP as well.

Theorem 1 (Post-processing property [9]). Let M be a randomized al-

gorithm that is (ε, δ)-differentially private. Let f be an arbitrary randomized

mapping whose domain is a superset of the range of the randomized algorithm

M. Then f ◦M is (ε, δ) differentially private randomized algorithm.

Another important of differential privacy is the composition property. That

is, the composition of two (ϵ, δ)-differentially private mechanisms is (2ϵ, 2δ)-

differentially private. Formally, it’s stated as below,

Theorem 2 (Composition theorem [14]). Let {Mj} be a sequence random

mechanism that satisfies ϵj-DP, then the sequence Mj(D) corporate on the

same dataset D is, as a whole, a random mechanism that satisfies
∑︁

j ϵj-DP.

This important property will be used many times throughout this report,

especially in section 2.2.

2.1.5 Mechanisms of differential privacy

Laplace Mechanism

One of the most commonly used differential privacy method is the Laplace

mechanism. It fulfills ϵ-DP by adding a certain size, depending on the size of

ϵ, of Laplace noise to the query result.

Definition 6 (Sensitivity). Let f : D → Rk be a query function. The

sensitivity w.r.t f is defined as,

∆f = max
D,D′

∥f(D)− f(D′)∥1

where D and D′ are neighboring datasets.
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Definition 7 (Laplace Mechanism). A randomized algorithm M satis-

fies the ϵ-DP w.r.t the query function f if M (i)(D) ∼ Lap(f (i)(D),
∆f

ϵ
) for

i = 1, 2, . . . , k, where M (i) and f (i) denote the i-th component of M and f

respectively.

In other words, the Laplace mechanism perturb the query result with a

Laplace noise of size
∆f

ϵ
.

Example 1 (Counting query [9]). Let consider the simply query, “how

many records/rows in a dataset satisfies some specific property?”. This type

of query is referred as a counting query, and it’s simplistic as its sensitivity will

always be 1 as a single row difference will result in at most 1 count difference.

It follows that to apply the Laplace mechanism is as simply as adding a Laplace

noise with the scale parameter 1
ϵ
.

Since the sensitivity ∆f determines how much perturbation is required for

a fixed amount of privacy budget ϵ, the implicit assumption that the sen-

sitivity ∆f is finite is made for Laplace mechanism to work appropriately.

Is this assumption realistic? How should we deal with the potentially infi-

nite/unbounded sensitivity?

Dealing with unbounded sensitivity

We will start by addressing the first question, is the assumption realistic?

This is discussed in [12] and [4], and I will reiterate the point here briefly. The

argument is that for most of the variables, their values are naturally bounded.

For example, the human height, income and etc. This explanation seems fairly

reasonable, however, it’s not the case in simulation study as the frequent usage

of gaussian distribution and other distributions with unbounded support.

This leads to the second question, how should we deal with unbounded

variable? This is discussed in [2] and [16]. In our discussion, we will follow

[2] and truncate the support of unbounded variables to a reasonable interval.

For example, we would truncated a standard normal random variable to the

interval (−1.96, 1.96). It follows that the sensitivity is calculated using the

interval.
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Exponential mechanism

One shortcoming of the Laplace mechanism, aside from the potentially infinite

sensitivity discussed above, is that it only applies to numerical data. Differ

from the Laplace mechanism, the exponential mechanism does not add noise

directly to the query result, thus it applies to all types of data.

Definition 8 (Exponential Mechanism [13]). In the Exponential mecha-

nism, a utility function u assigns a score to each possible output s∗ and releases

s∗ with probability

exp
(︂
u (s∗ | D) ϵ

2∆u

)︂
∫︁
exp

(︂
u (s∗ | D) ϵ

2∆u

)︂
ds∗

to ensure ϵ-DP, where

∆u = max
D,D′

|u (s∗ | D)− u (s∗ | D′)|

is the sensitivity of the score function u. Note, if s∗ is discrete, the integral is

replaced with summation.

However, we will only works with numerical data in this report. Therefore,

no further discussion will be made regarding the exponential mechanism.

2.2 Differentially private dataset synthesis (DIPS)

In this section, we will consider synthesize a differentially private dataset,

which is referred as DIPS (differentially private data synthesis) in [4], instead

of generating differentially private aggregate statistics to answer queries sub-

mitted to data curator. As explained in [4], DIPS addressed one shortcoming

of releasing aggregate/summary statistics, that is, since the privacy budget

is often pre-specified, the data curator cannot answer any further query once

the privacy budget is exhausted by answering a number of queries. DIPS

bypasses this issue by release the dataset directly to perform statistical analy-

sis/inference. Due to the post-pressing of differential privacy, any future query

can be obtained using the synthesized dataset.

9



We will focus on two DIPS algorithms, binary datasets synthesis mecha-

nism proposed in [1] and the model-based differentially private data synthesis

(MODIPS) algorithm developed in [12].

2.2.1 Binary data synthesis

As mentioned before, we will consider a binary dataset, x1:n = (x1, . . . , xn)

with xi ∈ {0, 1} for i = 1, . . . , n. As usual, a binomial distribution is assumed

for the data, and thus it’s sufficient to represent the data x1:n by its sufficient

statistic x =
∑︁n

i xi. The synthesis algorithm is to sample,

p̃ ∼ Beta(α + x, α + n− x)

x̃ ∼ Binomial(ñ, p̃)

where the parameters α must satisfy α ≥ ñ
exp(ϵ)−1

to fulfill ϵ-DP. x̃ is the

synthetic dataset that will be released. Note ñ can be different from the

original sample size n if we want to keep the sample size private as well.

Using the composition theorem, we can also extend this algorithm to gen-

erate multiple synthetic datasets,

p̃m ∼ Beta(α + x, α + n− x)

x̃m ∼ Binomial(ñ, p̃m)

for m = 1, . . . ,M , where α ≥ ñ
exp(ϵ/M)−1

[6] provided the following insight regarding this synthesis mechanism,

We can interpret this synthetic data generation process as gener-

ating from a perturbed posterior predictive distribution.

This interpretation connects nicely to the next synthesis algorithm, MODIPS,

which is also based on sampling from a perturbed posterior predictive distri-

bution.

2.2.2 MODIPS

Although the binary data synthesis mechanism works fine, the limitation to

binary data is far too restrictive. For applying to a more general data, we
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will discuss another model-based synthesis method, MODIPS. Using the post-

processing property of differential privacy, MODIPS [12] synthesize differen-

tially private dataset using posterior sampling. Similar to [2] and [3], differ-

ential privacy is applied to the sufficient statistics s. Sufficient statistics is

important here since

p(θ | x1:n) = p(θ | s)

That is, the posterior distribution given the full data x1:n is the same as the

posterior distribution given the sufficient statistics s. Denote the perturbed

(differentially private) sufficient statistics as y, then it follows that p(θ | y)

is also differentially private by the post-processing property. Similarly, if we

sample θ̃ from p(θ | y), it will also be differentially private. Lastly, if we sample

a synthetic dataset x̃1:n from f(x | θ̃), then the dataset will be differentially

private. Refer to figure 2.2 for the illustration of this process.

Figure 2.2: Illustration of MODIPS. Image from [12]

2.2.3 Laplace mechanism for dataset synthesis

MODIPS at its core is a model-based synthesis, and thus it requires a likelihood

model. In practice, the specification of a likelihood model introduces additional

uncertainty, which might not be necessary sometimes. In this section, we will

introduce a more simplistic and model-free approach. That is, we will simply

extend the Laplace mechanism to dataset generation.

Definition 9 (Sensitivity for dataset). The sensitivity w.r.t dataset gen-

eration is defined as,

∆f = max
D,D′

max
i

∥di − d′i∥1

where D and D′ are neighboring datasets and di & d′i denote their i-th rows.
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Algorithm 1: MODIPS algorithm

Input:

• m: number of released data sets

• ϵ: overall privacy budget

• s: sufficient statistics in the Bayesian model assumed on original data
x1:n

For k = 1, 2, . . . ,m,

1. sanitize s via a differentially private mechanism with privacy budget
ϵ/m to generate s(k)∗

2. draw θ(k)∗ from the sanitized posterior distribution f
(︁
θ | s(k)∗

)︁
3. draw x̃

(k)∗
1:n from f

(︁
x1:n | θ(k)∗

)︁
.

Output: datasets: x̃
(1)∗
1:n , . . . , x̃

(m)∗
1:n

Definition 10 (Laplace mechanism for dataset). A randomized algorithm

M satisfies the ϵ-DP w.r.t dataset generation f if M (i,j)(D) ∼ Lap(di,j,
∆f

ϵ
),

where M (i,j) denote the (i, j)-th component of M and di,j denotes the (i, j)-th

element of D.

2.3 Inference on differentially private data

Over the last decade, there are many literatures regarding differential privacy.

However, literatures on how to analyze and make inference on differentially

private data are few and far bewteen. In this section, we will focus on 4

such papers. Two of these, [2] and [3], are about inferencing on differentially

private sufficient statistics, and the other two, [6] and [7], are about analysis

on differentially private datasets. Note, Bayesian methods are used in many

parts of this section. For more details on Bayesian methods, refer to section

2.4.
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2.3.1 Inference on DP sufficient statistics

Both [2] and [3] discusses DP Bayesian inference within the setting of expo-

nential family as the sufficient statistics are easy to compute for exponential

family. Since Bayesian inference is utilized, we are interested in obtain the

posterior distribution.

Denote the data as x1:n, then the density of the data is of the form,

p(x1:n | η) = h(x1:n) exp
(︁
η⊤t(x1:n − nA(η))

)︁
where η is the natural parameter, and t(x1:n) is the sufficient statistics, denote

it as s = t(x1:n). To ensure privacy protection, Laplace mechanism is applied

to the sufficient statistics s, denote it by y, we have

y ∼ Lap(s,
∆s

ϵ
)

Denote the parameter of interested as θ, and it follows that we are inter-

ested in the posterior distribution p(θ | y), which can be written as,

p(θ | y) ∝ p(θ, y)

=

∫︂
p(θ, s, y)ds

=

∫︂
p(θ)p(s | θ)p(y | s)

Gibbs sampler is used to sample from this distribution, and as mention in

the paper, the main difficulties centered around p(s | θ) and the full conditional

distribution for s, p(s | θ, y).

In general, there no exact form of p(s | θ). To bypass this issue, [2] uses

central limit theorem and the nice properties of exponential families to derive

a normal approximation for p(s | θ) ≈ N (µ,Σ) where

µ = E[t(x)] =
∂

∂η⊤
A(η), Σ = Var[t(x)] =

∂2

∂η∂η⊤
A(η)

Gibbs sampler is based on sampling from the full conditional distributions,

and thus the conditional distribution p(s | θ, y) is required. To obtain p(s |

θ, y), the simply trick that Laplace distribution can be written as a scale

mixture of normal distributions is used (For more details, refer to A.3).
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Algorithm 2: Gibbs sampler for noisy sufficient statistic

Initialize θ, s, σ2

repeat

• θ ∼ p (θ;λ′) where λ′ = Conjugate-Update (λ, s, n).

• Calculate µ = E[s] and Σ = Var[s]

• s ∼ NormProduct (nµ, nΣ, y, diag (σ2))

• 1/σ2
j ∼ InverseGaussian

(︂
ϵ

∆s|y−s| ,
ϵ2

∆2
s

)︂

Algorithm 3: NormProduct

input: µ1,Σ1, µ2,Σ2

Σ3 = (Σ−1
1 + Σ−1

2 )−1

µ3 = Σ3(Σ
−1
1 µ1 + Σ−1

2 µ2)

return: N (µ3,Σ3)

For completeness, the Gibbs sampler is listed below,

With all the details above, [2] develops a general algorithm that applies

to any exponential family with bounded sufficient statistics. (Note that, a

extension to unbounded sufficient statistics is also provided in [2]). To go a

step further, applying the general framework in [2], [3] developed differentially

private Bayesian linear regression. [3] demonstrated that the naive approach

of ignoring the perturbation noise of the differential privacy mechanism is far

inferior in realistic data settings comparing to the noise-aware methods that

it developed as the noise-aware methods produce correct posteriors during a

wide range of scenarios.

2.3.2 Analysis DP synthetic dataset

subsubsectionDP analysis on binary data

[6] is one of the first, if not the first, papers discussing how should one go

about analyze differentially private dataset. It focused on binary data since

the only algorithm (discussed in section 2.2.1) for generating differentially
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private synthetic dataset at the time is for count data [1]. Given the synthetic

dataset, [6] utilize the Bayesian method and make inference using the posterior

distribution of the parameter of interest p.

As discussed in 2.2.1, the data generation model is,

x ∼ Binomial(n, p)

p̃m ∼ Beta(α + x, α + n− x)

x̃m ∼ Binomial(ñ, p̃m)

where x is the original dataset, which is not available to the analyst, and

x̃1, . . . , x̃m are the synthetic differentially-private dataset, which is available to

the analyst. Note that α and n are assumed known to the analyst.

To simplify the posterior computation, a conjugate prior is chosen, p ∼

Beta(γ1, γ2). There is no closed form for the posterior distribution of p, and

thus we sample from the posterior distribution using MCMC. More specifically,

to update x, a Metropolis-Hastings step can be used, and to update p and

{tidlepm}Mm=1, the following simple Gibbs sampler can be used,

p | x, p̃, {x̃m}Mm=1 ∼ Beta (γ1 + x, γ2 + n− x)

p̃m | x, x̃m, p ∼ Beta (α1 + x̃m + x, α2 + m̃− x̃m + n− x) for m = 1, · · · ,M

[6] demonstrated that by taking the data generation model/mechanism into

consideration, it allows for accurate estimation for the parameter of interest p

for moderately large privacy budget ϵ.

Simulation extrapolation (SIMEX)

Originally employed in measurement error problems, SIMEX is a method based

on extrapolation as the name suggested. The idea is to introduce an additional

parameter ζ. The naive estimator Θ̂naive is computed at ζ = 0. By adding

another perturbation noise to the predictor and computing the least square

estimator, we obtain another estimator at ζ = 1. Repeat the process, we

obtain multiple estimators at a variety values of ζ. Given these estimators,

a curved is fitted and by extrapolate the curve to ζ = −1, we obtained the

SIMEX estimator. For more details on SIMEX, refer to chapter 5 of [5].
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Figure 2.3: The SIMEX estimate is an extrapolation to ζ = −1. The naive
estimate occurs at ζ = 0. Image from Page 99, Section 5.2 of [5].

As in the measurement error setting, usually only the predictor is perturbed

and the perturbation noise is usually gaussian. [7] employees SIMEX method

for DP inference by extending SIMEX to Laplace noise and the scenario where

both predictor and response are perturbed.

Referring to the simulation result in [7], the performance of SIMEX in

DP inference leaves a lot to be desired. It requires a large privacy budget ϵ,

around 20, to obtain a estimator with reasonaly small bias. For this scale of

privacy budget, it might no longer provide any meaning privacy protection.

Additional, SIMEX as a method does not incorporate the model into estima-

tion. Therefore, if the true data generation model is known, SIMEX will not

utilize all the available information. This leads to the question, what measure-

ment error method incorporate the model into consideration? The Bayesian

approach is the obviously answer.
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2.4 Bayesian inference

Bayesian approach differs from the frequentist approach as it involves the deci-

sion on prior specifications. In Bayesian perspective, the unknown parameters

are treated as random variables. The prior knowledges about these parame-

ters are embedded by selecting probability distributions for these parameter.

These probability distributions are called prior distributions. Once prior dis-

tributions are specified, an experiment is conducted and data is collected.

These components are called the likelihood. Using the prior distribution and

the likelihood, we can obtain newly updated probability distributions on the

unknown parameters through Bayes’ rule. These updated distributions are

called the posterior distributions.

2.4.1 Why Bayesian?

The advantage of the Bayesian approach lies in that it takes the prior knowl-

edge about the unknown parameter into account and incorporate it into the

prior distributions. However, it’s at the same time the center of contravercy

as it’s commonly criticized due to the subjectivity of the prior distributions

specification.

Another advantage of the Bayesian method, which highlights the distinct

difference between frequentist and Bayesian, is the posterior distribution. In-

stead of point estimator or set/interval estimator often used in frequentist

approach, we can obtain the posterior distribution, which is much more in-

formative. However, at the same time, the posterior distribution is precisely

where the difficulties with Bayesian method reside.

2.4.2 Difficulties with Bayesian method

Although the Bayesian approach has been around since the nineteenth cen-

tury, it has only started gaining popularity in the recent decades. The reason

of this surge of noterity centered around the computation of posterior distribu-

tion. A closed form for posterior distribution almost does not exists aside from

a handful of simple model (conjugate models). As the complexity of model
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increases, the computation of posterior distribution becomes exceedingly diffi-

cult. However, with a boom of the processing power since late 90s and advent

of Markov chain Monte Carlo simulation, posterior distribution computation

has become much more manageable.

2.4.3 Markov Chain Monte Carlo

Markov chain monte carlo (MCMC) is a class of methods for sampling from

difficult/complex distribution. In the context of Bayesian method, the pos-

terior distribution is often without closed form or it’s difficult to obtain its

closed form. In such scenarios, MCMC have proven to be quite useful.

The idea is to create a markov chain (Xt) such that its stationary distribu-

tion π is the desired distribution. By the converging theorem, the distribution

of Xt is close to π for large enough t. For more details on MCMC, refer to

section 3.1 of [11].

Gibbs Sampler

Gibbs sampler is one of the most commonly used method in MCMC. It utilize

the conditional distributions, which should be easy to sample from, to sample

from the full distribution, which is difficult to sample from. The following brief

explanation is mainly from section 10.1 of [15].

Suppose that for some p > 1, the random variable X ∈ X can be written

as X = (X1, . . . , Xp), where the Xi’s are either uni- or multidimensional.

Moreover, suppose that we can simulate from the corresponding univariate

conditional densities f1, . . . , fp, that is, we can simulate

(Xi | x1, x2, . . . , xi−1, xi+1, . . . , xp) ∼ fi (xi | x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p. The densities f1, . . . , fp are called the full conditionals.

The associated Gibbs sampling algorithm (or Gibbs sampler) is given by

the following transition from X(t) to X(t+1) :
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Algorithm 4: Gibbs sampler

Given x(t) =
(︂
x
(t)
1 , . . . , x

(t)
p

)︂
, generate

X
(t+1)
1 ∼ f1

(︂
x1 | x(t)

2 , . . . , x(t)
p

)︂
X

(t+1)
2 ∼ f2

(︂
x2 | x(t+1)

1 , x
(t)
3 , . . . , x(t)

p

)︂
...

X(t+1)
p ∼ fp

(︂
xp | x(t+1)

1 , . . . , x
(t+1)
p−1

)︂

2.4.4 Bayesian method on measurement error problem

We will consider the setting of linear regression, where the predictor X and

the response Y are both random and modeled as follow,

Y = β0 +Xβ1 + ε

ε ∼ N (0, σ2
ε)

X ∼ N (µx, σ
2
x)

where β0, β1, µx, σ
2
x are the unknown parameters.

In most of the measurement error problems, only the predictor X is per-

turbed. The perturbed response scenario is not much considered with the

reason being the perturbation noise is usually gaussian, which is usually the

distribution for regression noise. Therefore, a perturbed response is equivalent

to a unperturbed response with larger regression noise.

In order to simplify the posterior computation, the following priors are

often chosen so that Gibbs sampler can be applied easily.

(β0, β1)
T ∼ N (0, σβI)

µ ∼ N (0, σ2
µ)

σ2
x ∼ IG(η1,x, η2,x)

σ2
ε ∼ IG(η1,ε, η2,ε)

where IG denotes the inverse gamma distribution.
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Chapter 3

Bayesian inference on DP
dataset

In this chapter, we will introduce the purposed Bayesian method of this re-

port. First, the task DP inference is related to measurement error problem.

Then, the Bayesian method for measurement error is extended to DP synthetic

dataset. Lastly, we extend the method to multiple DP synthetic datasets.

3.1 Model setup

As mentioned in the introduction, we will be focusing on the setting of linear

regression. More specifically, a random predictor, X, is used instead of a fixed

predictor. The full model is stated as follow,

Y = β0 +Xβ + ε

X ∼ N (µX ,ΣX)

ε ∼ N (0, σ2
ε)

Therefore, the dataset consists of both the predictor, X, and the response, Y ,

is considered. Denoted the perturbed predictors and perturbed response as X̃

and Ỹ , we have,

X̃ = X + εx

Ỹ = Y + εy
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where in the case of Laplace mechanism,

εx, εy ∼ Lap(0,
∆f

ϵ
)

where ∆f is the sensitivity of the dataset and ϵ is the privacy budget as usual.

The main goal is to make inference on (β0, β1) given the DP dataset (X̃, Ỹ ).

3.2 DP Inference as a measurement error prob-

lem

Recall from section 2.2.3, to create a DP dataset is to perturb the dataset

in a specific way, which is specified by DP and its privacy budget ϵ. That

is, the task of making inference on a DP dataset is simply a subset of the

measurement error problems. Although only the predictors are perturbed in

most of the measurement problems, extending the method for measurement

error problem to include a perturbed response takes little work as we will see

later.

3.3 DP inference on linear regression

As explained in section 3.2, making inference on DP dataset can be viewed as

a measurement error problem, and Bayesian method is commonly employed

in measurement error problem as discussed in section 2.4.4. Therefore, it’s

natural to suspect that Bayesian method will be a good fit for making inference

on DP dataset.

3.3.1 Choose the prior distributions

For the ease of simulation, only β0 and β1 are assumed unknown. Although

it is not difficulty to extend to unknown µx, σ
2
x and σε, ∆f would be also

unknown as a result. It turns out that unknown ∆f cause numerical overflow

during the Gibbs sampler iterations. Therefore, we will only set the prior

distribution for (β0, β1) as,

(β0, β1) ∼ N (0, σ2
β)
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Once again, the gaussian distribution is chosen so that Gibbs sampler can be

applied.

3.3.2 Gibbs sampler

To obtain the Gibbs sampler, it mainly utilize the idea that Laplace distribu-

tion can be represented as a mixture of normal distribution. For more details

on this, refer to section A.3.

Algorithm 5: Gibbs sampler for Bayesian DP inference

Given β
(t)
0 , β

(t)
1 , {x(t)

i }ni=1, {y
(t)
i }ni=1, {u

(t)
i }ni=1, {v

(t)
i }ni=1, {x̃i}ni=1, {ỹi}ni=1,

we sample the following,

1. U
(t+1)
i ∼ InvGauss(b1/|x̃i − x

(t)
i |, 1) for i = 1, . . . , n.

2. V
(t+1)
i ∼ InvGauss(b2/|ỹi − y

(t)
i |, 1) for i = 1, . . . , n.

3. (X
(t+1)
i , Y

(t+1)
i ) ∼ N (µi,Σi) for i = 1, . . . , n, where (we will drop the

subscript i and superscript (t) for notation convenient)

µ = Σ

[︃
A2

B2

]︃
, Σi =

[︄
B1

A1B1−C2
1

C1

A1B1−C2
1

C1

A1B1−C2
1

A1

A1B1−C2
1

]︄

with

A1 =
1

σ2
x

+
β2
1

σ2
ε

+
Ui

b21
, A2 =

µx

σ2
x

− β0β1

σ2
ε

+
U2
i X̃ i

b21

B1 =
1

σ2
ε

+
V 2
i

b22
, B2 =

β0

σ2
ε

+
V 2
i Ỹ i

b22

C1 =
β1

σ2
ε

4. (β
(t+1)
0 , β

(t+1)
1 ) ∼ N

(︂
( σ

2
ε

σ2
β
I+ X̃

⊤
X̃)−1X̃

⊤
y, ( 1

σ2
β
I+ 1

σ2
ε
X̃

⊤
X̃)−1

)︂
where

X̃ =

⎡⎢⎣1 X
(t+1)
1

...
...

1 X
(t+1)
n

⎤⎥⎦ , y =

⎡⎢⎣Y
(t+1)
1
...

Y
(t+1)
n

⎤⎥⎦
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3.3.3 Inference on multiple DP dataset

Is multiple DP datasets more beneficial than a single DP dataset? That is,

is creating multiple DP datasets with less privacy budget for each one more

beneficial than creating only a single DP dataset, which will have more privacy

budget for said dataset? We will answer this equation in the perspective of

making inference.

Using the composition theorem from section 2.1.4, we can easily create

multiple DP datasets that as a whole satisfies any given amount of privacy

budget ϵ. Continuing with the linear regression from previous chapter, we can

create multiple DP datasets as follow,

Ỹ i,j = Yi + εxi,j

X̃ i,j = Xi + εyi,j

where (X̃ i,j, Ỹ i,j) indicates the j-th DP synthetic copy for the i-th record in

the original dataset. In the case of Laplace mechanism,

εxi,j, ε
y
i,j ∼ Lap(0,m

∆f

ϵ
)

where m is the number DP synthetic dataset.

Gibbs sampler

Here we state the Gibbs sampler extended to accommodate multiple DP syn-

thetic dataset.
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Algorithm 6: Gibbs sampler for Bayesian inference on multiple DP
datasets

Given β
(t)
0 , β

(t)
1 , {x(t)

i }ni=1, {y
(t)
i }ni=1, {u

(t)
i }ni=1, {v

(t)
i }ni=1, we sample the

following

1. U
(t+1)
i,j ∼ InvGauss(b1/|x̃i,j − x

(t)
i |, 1) for i = 1, . . . , n.

2. V
(t+1)
i,j ∼ InvGauss(b2/|ỹi,j − y

(t)
i |, 1) for i = 1, . . . , n.

3. (X
(t+1)
i , Y

(t+1)
i ) ∼ N (µi,Σi) for i = 1, . . . , n, where (we will drop the

subscript i and superscript (t) for notation convenient)

µ = Σ

[︃
A2

B2

]︃
+

[︃
0
β0

]︃
, Σi =

[︄
B1

A1B1−C2
1

C1

A1B1−C2
1

C1

A1B1−C2
1

A1

A1B1−C2
1

]︄

with

A1 =
1

σ2
x

+
β2
1

σ2
ε

+

∑︁J
j=1 Ui,j

b21
, A2 =

µx

σ2
x

+

∑︁J
j=1 Ui,jX̃ i,j

b21

B1 =
1

σ2
ε

+

∑︁J
j=1 Vi,j

b22
, B2 =

∑︁J
j=1 Vi,j(Ỹ i,j − β0)

b22

C1 =
β1

σ2
ε

4. (β
(t+1)
0 , β

(t+1)
1 ) ∼ N

(︂
( σ

2
ε

σ2
β
I+ X̃

⊤
X̃)−1X̃

⊤
y, ( 1

σ2
β
I+ 1

σ2
ε
X̃

⊤
X̃)−1

)︂
where

X̃ =

⎡⎢⎣1 X
(t+1)
1

...
...

1 X
(t+1)
n

⎤⎥⎦ , y =

⎡⎢⎣Y
(t+1)
1
...

Y
(t+1)
n

⎤⎥⎦
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Chapter 4

Simulation and results

In this chapter, we will discuss the simulation setup to study the effectiveness of

the Bayesian inference on differentially private dataset in the linear regression

setting. Next, the simulation results are summarized, and the comparison

plots between inference on single differentially private dataset and inference

on multiple (2) differentially private datasets are drawn.

4.1 Simulation setup

Using the linear regression models stated on chapter 3 and chapter 4,

Xi
iid∼ N (µx, σ

2
x)

Yi | Xi
idd∼ N (β0 + β1Xi, σ

2
ε)

X̃ i,j | Xi
iid∼ Lap(Xi,∆f/ϵ)

Ỹ i,j | Yi
iid∼ Lap(Yi,∆f/ϵ)

for i = 1, 2, . . . , n and j = 1, 2, . . . ,m wherem = 1 if only a single DP dataset is

generated. Since Y and X both have unbounded support, we have to deal with

infinite sensitivity ∆f . Recall from section 2.1.5, using the truncated interval

(−1.96, 1.96) for a standard normal random variable, the dataset sensitivity

∆f is computed as

∆f = (1.96− (−1.96)) ∗ (σx + σε)
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With the model stated above, we set

(β0, β1) = (2, 2)

(µx, σ
2
x) = (0, 1)

σε = 0.5

with n = 500 and m = 1, 2 for single DP datasets and double DP datasets.

For this simulation, it’s assumed that β0 and β1 are the only two unknown

parameters. We set the prior distribution as,

(β0, β1) ∼ N (0, σ2
βI)

with σβ = 10.

4.2 Results

We generate the DP dataset(s) (X̃ i,j, Ỹ i,j)i,j with n = 500, m = 1 for single DP

dataset and m = 2 for double DP datasets. Next, we using the gibbs sampler

described in section 3.3.2 & 3.3.3 to obtain posterior means for β0 and β1.

Repeating this process 50 times, we summarize the result by computing the

mean square error,

1

50

50∑︂
l=1

(β0̂

(l)
− β0)

2 + (β1̂

(l)
− β1)

2

and mean absolute relative error for β1,

1

50

50∑︂
l=1

|β1̂

(l)
− β1|
β1

where β0̂

(l)
and β1̂

(l)
denote the posterior means for β0 and β1 in l-th iteration,

respectively.

The results are listed in the table 4.1 and table 4.2. Additionally, to com-

pare the results between single DP synthetic dataset with multiple (2) DP

synthetic datasets, 2 comparison plots are drawn.

It seems evident from the 4.1 and 4.2, using single DP synthetic dataset

results in less bias in posterior mean estimator. The advantage of single DP
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Privacy budget ϵ Mean square error Mean relative bias for slope
5 0.0280 0.0495
2.5 0.0403 0.0565
2 0.0745 0.0796
1.5 0.1379 0.1072
1 0.1338 0.0959
0.5 0.8162 0.2609
0.25 3.1700 0.4698

Table 4.1: Result for using only a single DP dataset

Privacy budget ϵ Mean square error Mean relative bias for slope
5 0.0366 0.0566
2.5 0.0498 0.0660
2 0.1041 0.0958
1.5 0.1416 0.1122
1 0.5135 0.2125
0.5 1.0955 0.2846
0.25 6.1115 0.7127

Table 4.2: Result for using two DP datasets

synthetic is much more pronounced when the privacy budget ϵ is small. How-

ever, in both case, a privacy budget of 2.5 seems to be enough to provide a

reasonably accurate estimates.
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Figure 4.1: Mean square error for single DP dataset and double DP dataset
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Figure 4.2: Mean relative error for single DP dataset and double DP dataset
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Chapter 5

Conclusion and furture
directions

Referring back to the simulation result (chapter 4), we were able to obtain

point estimator with small bias at moderate large ϵ (around 2.5). Comparing

to the result in [7], we see a great improvement as they obtain reasonable

point estimator with much larger ϵ, around 20. Furthermore, generating two

DP datasets resulted in slightly worser (much worser when privacy budget ϵ

is small) result than generating a single DP dataset. One reason behind this

could be the composition theorem does not provide a sharp privacy bound

[10]. That is, when applying the composition theorem, there is a loss of the

privacy budget.

However, the Bayesian method discussed in this work is far more complete.

First, we assumed µx, σ
2
x and σε are known during the simulation. Although

it’s not much work to extend the model to this unknown parameters, the

key issues are that ∆f would be unknown as well as the result. It turns out

that extending the model to unknown ∆f is fairly problematic as it causes

computational problem in Gibbs sampler. Next, we assumed that there is

only one predictor, which is extremely restrictive. With multiple predictors, it

will also introduce the scenario of correlated predictors. Last but not least, the

gaussian distribution assumption on the predictors and the linear regression

setting are extremely unrealistic in application.
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Appendix A

Background Material

A.1 Laplace distribution

Definition 11 (Laplace distribution). A random variable X is said to be

a Laplace random variable with location parameter m and scale parameter b,

denoted as Lap(m, b), if it has the following probability density function,

f(x | m, b) =
1

2b
exp

(︃
−|x−m|

b

)︃

A.2 Derivation for Laplace mechanism

A.2.1 Laplace mechanism for regular query

Proof. Let f : D → Rk be the query function with f = (f1, f2, . . . , fk),

and fix a dataset D ∈ Rn×p with its neigboring dataset by D′. Let y =

(y1, y2, . . . , yk) ∈ Rk, we have

log

(︃
Pr(M(D) = y)

Pr(M(D′) = y)

)︃
= log

(︄∏︁k
i=1 Lap(yi | fi(D),∆f/ϵ)∏︁k
i=1 Lap(yi | fi(D′),∆f/ϵ)

)︄

=
k∑︂

i=1

log

(︃
Lap(yi | fi(D),∆f/ϵ)

Lap(yi | fi(D′),∆f/ϵ)

)︃

=
k∑︂

i=1

log

(︃
exp

(︃
−|yi − fi(D)|+ |yi − fi(D

′)|
∆f/ϵ

)︃)︃

=
1

∆f/ϵ

k∑︂
i=1

−|yi − fi(D)|+ |yi − fi(D
′)|
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Then it follows that ⃓⃓⃓⃓
log

(︃
Pr(M(D) = y)

Pr(M(D′) = y)

)︃⃓⃓⃓⃓
≤ 1

∆f/ϵ

k∑︂
i=1

|fi(D)− fi(D
′)|

≤ϵ

A.2.2 Laplace mechanism for DP dataset

Proof. Fix a dataset D ∈ Rn×k, where denotes its row by di. Denotes its

neigboring dataset by D′ and its row by d′
i. Let j be the index of the row that

D and D′ differ.

log

(︃
Pr(M(D) = D∗)

Pr(M(D′) = D∗)

)︃
= log

(︃∏︁n
i=1 Pr(mi = d∗

i )∏︁n
i=1 Pr(m

′
i = d∗

i )

)︃
= log

(︃
Pr(mj = d∗

j)

Pr(m′
j = d∗

j)

)︃
, since D and D′ only differ in 1 row

= log

(︄∏︁k
i=1 Pr(mj,i = d∗j,i)∏︁k
i=1 Pr(m

′
j,i = d∗j,i)

)︄

=
K∑︂
i=1

log

(︃
Pr(mj,i = d∗j,i)

Pr(m′
j,i = d∗j,i)

)︃

=
K∑︂
i=1

log

(︃
Lap(d∗j,i | dj,i,∆f/ϵ)

Lap(d∗j,i | d′j,i,∆f/ϵ)

)︃

=
K∑︂
i=1

log

(︃
exp

(︃−|d∗j,i − dj,i|+ |d∗j,i − d′j,i|
∆f/ϵ

)︃)︃

=
1

∆f/ϵ

K∑︂
i=1

−|d∗j,i − dj,i|+ |d∗j,i − d′j,i|
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Then it follows that,

log

(︃
Pr(M(D) = D∗)

Pr(M(D′) = D∗)

)︃
≤ 1

∆f/ϵ

K∑︂
i=1

|dj,i − d′j,i|

≤ϵ

A.3 Laplace as a mixture of gaussian

Theorem 3. Fix a b > 0, we have

X | W ∼ N (0,W )

W ∼ Exp

(︃
1

2b2

)︃ ⎫⎬⎭ =⇒ X ∼ Lap(0, b)

Note fW (w) = 1
2b2

exp
(︁
− w

2b2

)︁
for w ≥ 0.

Proof.∫︂ ∞

0

fX|W=w(x)fW (w)dw

=

∫︂ ∞

0

1√
2πw

exp

(︃
− x2

2w

)︃
1

2b2
exp

(︂
− w

2b2

)︂
dw

=
1

2b2

∫︂ ∞

0

1√
2πw

exp

(︃
−w2 + |x|2b2

2b2w

)︃
dw

=
1

2b2

∫︂ ∞

0

1√
2πw

exp

(︃
−(w − |x|b)2

2b2w
− 2w|x|b

2b2w

)︃
dw

=
1

2b2
e−|x|/b

∫︂ ∞

0

1√
2πw

exp

(︃
−|x|2(w − |x|b)2

2|x|2b2w

)︃
dw

=
1

2b2
e−|x|/b 1√

λ

∫︂ ∞

0

w

√
λ√

2πw3
exp

(︃
−λ(w − µ)2

2µ2w

)︃
⏞ ⏟⏟ ⏞

InvGauss(µ,λ)

dw, where λ = |x|2, µ = |x|b

=
1

2b2
e−|x|/b 1

|x|
E[Z], where Z ∼ InvGauss(µ, λ)

=
1

2|x|b2
e−|x|/bµ

=
1

2b
e−|x|/b
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Corollary 1. Fix a b > 0, we have

X | W ∼ N (0, b2

W
)

W ∼ IG
(︁
1, 1

2

)︁
}︄

=⇒ X ∼ Lap(0, b)

where IG denotes the inverse gamma distribution. In addition, we have

W | X ∼ InvGauss(
b

X
, 1)
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